diff --git "a/113791/metadata.json" "b/113791/metadata.json" new file mode 100644--- /dev/null +++ "b/113791/metadata.json" @@ -0,0 +1,100472 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "113791", + "quality_score": 0.9095, + "per_segment_quality_scores": [ + { + "start": 48.89, + "end": 52.04, + "probability": 0.2736 + }, + { + "start": 52.04, + "end": 53.9, + "probability": 0.0226 + }, + { + "start": 53.9, + "end": 62.32, + "probability": 0.0322 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.08, + "end": 121.18, + "probability": 0.2277 + }, + { + "start": 121.18, + "end": 123.3, + "probability": 0.829 + }, + { + "start": 123.82, + "end": 128.48, + "probability": 0.9625 + }, + { + "start": 128.96, + "end": 131.18, + "probability": 0.9966 + }, + { + "start": 131.18, + "end": 134.46, + "probability": 0.9394 + }, + { + "start": 141.46, + "end": 142.6, + "probability": 0.5463 + }, + { + "start": 147.42, + "end": 147.86, + "probability": 0.5071 + }, + { + "start": 147.96, + "end": 149.58, + "probability": 0.6607 + }, + { + "start": 150.12, + "end": 150.66, + "probability": 0.7334 + }, + { + "start": 150.92, + "end": 154.44, + "probability": 0.9797 + }, + { + "start": 154.44, + "end": 157.52, + "probability": 0.9976 + }, + { + "start": 158.22, + "end": 160.28, + "probability": 0.9746 + }, + { + "start": 161.12, + "end": 161.88, + "probability": 0.9467 + }, + { + "start": 162.76, + "end": 163.5, + "probability": 0.6235 + }, + { + "start": 164.44, + "end": 164.8, + "probability": 0.8962 + }, + { + "start": 165.5, + "end": 166.36, + "probability": 0.7446 + }, + { + "start": 167.26, + "end": 169.14, + "probability": 0.9644 + }, + { + "start": 170.42, + "end": 173.14, + "probability": 0.9937 + }, + { + "start": 174.24, + "end": 177.28, + "probability": 0.9578 + }, + { + "start": 178.08, + "end": 181.26, + "probability": 0.9985 + }, + { + "start": 182.08, + "end": 184.04, + "probability": 0.9972 + }, + { + "start": 185.52, + "end": 187.7, + "probability": 0.9507 + }, + { + "start": 189.0, + "end": 190.84, + "probability": 0.9231 + }, + { + "start": 191.46, + "end": 193.58, + "probability": 0.7793 + }, + { + "start": 194.12, + "end": 195.3, + "probability": 0.9906 + }, + { + "start": 196.04, + "end": 199.56, + "probability": 0.9612 + }, + { + "start": 202.8, + "end": 205.1, + "probability": 0.9973 + }, + { + "start": 205.86, + "end": 206.72, + "probability": 0.66 + }, + { + "start": 207.5, + "end": 210.04, + "probability": 0.9787 + }, + { + "start": 210.66, + "end": 212.3, + "probability": 0.9941 + }, + { + "start": 212.34, + "end": 214.74, + "probability": 0.978 + }, + { + "start": 215.28, + "end": 218.32, + "probability": 0.9419 + }, + { + "start": 218.66, + "end": 219.9, + "probability": 0.9403 + }, + { + "start": 221.1, + "end": 223.42, + "probability": 0.9283 + }, + { + "start": 223.42, + "end": 226.22, + "probability": 0.9951 + }, + { + "start": 226.84, + "end": 230.82, + "probability": 0.8789 + }, + { + "start": 231.94, + "end": 233.1, + "probability": 0.9985 + }, + { + "start": 233.96, + "end": 236.66, + "probability": 0.9414 + }, + { + "start": 236.98, + "end": 238.14, + "probability": 0.9924 + }, + { + "start": 238.7, + "end": 239.42, + "probability": 0.9926 + }, + { + "start": 241.16, + "end": 245.66, + "probability": 0.9971 + }, + { + "start": 246.24, + "end": 246.96, + "probability": 0.9554 + }, + { + "start": 247.7, + "end": 248.76, + "probability": 0.9524 + }, + { + "start": 249.14, + "end": 249.86, + "probability": 0.8984 + }, + { + "start": 250.5, + "end": 251.18, + "probability": 0.9906 + }, + { + "start": 251.92, + "end": 252.56, + "probability": 0.9674 + }, + { + "start": 253.48, + "end": 254.12, + "probability": 0.9627 + }, + { + "start": 255.06, + "end": 257.86, + "probability": 0.9297 + }, + { + "start": 259.54, + "end": 262.24, + "probability": 0.9888 + }, + { + "start": 263.44, + "end": 265.94, + "probability": 0.9809 + }, + { + "start": 266.48, + "end": 268.86, + "probability": 0.8856 + }, + { + "start": 269.5, + "end": 272.84, + "probability": 0.9846 + }, + { + "start": 274.5, + "end": 275.04, + "probability": 0.9254 + }, + { + "start": 276.2, + "end": 277.12, + "probability": 0.9827 + }, + { + "start": 278.52, + "end": 279.82, + "probability": 0.9691 + }, + { + "start": 280.64, + "end": 282.92, + "probability": 0.998 + }, + { + "start": 283.94, + "end": 286.46, + "probability": 0.8593 + }, + { + "start": 287.26, + "end": 291.96, + "probability": 0.9785 + }, + { + "start": 293.4, + "end": 293.64, + "probability": 0.7491 + }, + { + "start": 295.54, + "end": 296.74, + "probability": 0.9089 + }, + { + "start": 296.92, + "end": 299.5, + "probability": 0.3429 + }, + { + "start": 299.62, + "end": 300.44, + "probability": 0.6701 + }, + { + "start": 301.16, + "end": 306.1, + "probability": 0.9958 + }, + { + "start": 306.7, + "end": 308.84, + "probability": 0.9533 + }, + { + "start": 309.96, + "end": 312.02, + "probability": 0.9149 + }, + { + "start": 312.6, + "end": 313.94, + "probability": 0.9197 + }, + { + "start": 314.7, + "end": 315.8, + "probability": 0.9843 + }, + { + "start": 316.72, + "end": 320.32, + "probability": 0.9211 + }, + { + "start": 321.42, + "end": 326.84, + "probability": 0.9358 + }, + { + "start": 328.24, + "end": 331.04, + "probability": 0.8267 + }, + { + "start": 332.18, + "end": 334.74, + "probability": 0.9552 + }, + { + "start": 335.6, + "end": 337.5, + "probability": 0.917 + }, + { + "start": 338.1, + "end": 338.58, + "probability": 0.8986 + }, + { + "start": 339.32, + "end": 340.74, + "probability": 0.5979 + }, + { + "start": 341.8, + "end": 343.92, + "probability": 0.9925 + }, + { + "start": 344.5, + "end": 345.2, + "probability": 0.987 + }, + { + "start": 346.34, + "end": 348.68, + "probability": 0.9813 + }, + { + "start": 349.4, + "end": 352.76, + "probability": 0.9978 + }, + { + "start": 353.68, + "end": 355.32, + "probability": 0.9731 + }, + { + "start": 356.3, + "end": 357.46, + "probability": 0.9871 + }, + { + "start": 358.58, + "end": 362.36, + "probability": 0.9799 + }, + { + "start": 364.24, + "end": 372.52, + "probability": 0.982 + }, + { + "start": 374.34, + "end": 376.4, + "probability": 0.9004 + }, + { + "start": 376.58, + "end": 377.6, + "probability": 0.8646 + }, + { + "start": 377.68, + "end": 380.82, + "probability": 0.7903 + }, + { + "start": 381.18, + "end": 383.24, + "probability": 0.9937 + }, + { + "start": 384.06, + "end": 385.9, + "probability": 0.9624 + }, + { + "start": 386.84, + "end": 388.94, + "probability": 0.9635 + }, + { + "start": 390.72, + "end": 393.9, + "probability": 0.9491 + }, + { + "start": 394.78, + "end": 397.86, + "probability": 0.9949 + }, + { + "start": 398.42, + "end": 399.54, + "probability": 0.841 + }, + { + "start": 400.08, + "end": 401.58, + "probability": 0.7892 + }, + { + "start": 402.2, + "end": 403.74, + "probability": 0.9779 + }, + { + "start": 403.86, + "end": 404.26, + "probability": 0.6036 + }, + { + "start": 404.78, + "end": 405.62, + "probability": 0.9961 + }, + { + "start": 406.84, + "end": 407.34, + "probability": 0.9697 + }, + { + "start": 407.96, + "end": 410.16, + "probability": 0.9654 + }, + { + "start": 411.5, + "end": 412.9, + "probability": 0.9743 + }, + { + "start": 414.42, + "end": 417.1, + "probability": 0.9646 + }, + { + "start": 417.52, + "end": 418.78, + "probability": 0.9894 + }, + { + "start": 419.6, + "end": 421.82, + "probability": 0.9775 + }, + { + "start": 423.48, + "end": 424.46, + "probability": 0.9778 + }, + { + "start": 425.24, + "end": 426.24, + "probability": 0.9932 + }, + { + "start": 427.62, + "end": 431.4, + "probability": 0.9931 + }, + { + "start": 433.38, + "end": 434.4, + "probability": 0.879 + }, + { + "start": 435.16, + "end": 437.22, + "probability": 0.9448 + }, + { + "start": 438.84, + "end": 440.34, + "probability": 0.641 + }, + { + "start": 441.28, + "end": 443.08, + "probability": 0.7559 + }, + { + "start": 444.02, + "end": 446.1, + "probability": 0.9019 + }, + { + "start": 446.76, + "end": 449.88, + "probability": 0.9214 + }, + { + "start": 451.04, + "end": 451.9, + "probability": 0.8834 + }, + { + "start": 452.82, + "end": 453.94, + "probability": 0.9902 + }, + { + "start": 455.94, + "end": 458.18, + "probability": 0.9927 + }, + { + "start": 459.24, + "end": 462.2, + "probability": 0.9564 + }, + { + "start": 462.62, + "end": 465.42, + "probability": 0.8533 + }, + { + "start": 467.04, + "end": 468.64, + "probability": 0.992 + }, + { + "start": 469.2, + "end": 469.74, + "probability": 0.9448 + }, + { + "start": 470.26, + "end": 471.32, + "probability": 0.4874 + }, + { + "start": 472.02, + "end": 475.36, + "probability": 0.9924 + }, + { + "start": 476.1, + "end": 480.06, + "probability": 0.9727 + }, + { + "start": 480.2, + "end": 481.28, + "probability": 0.9631 + }, + { + "start": 482.1, + "end": 486.4, + "probability": 0.9637 + }, + { + "start": 486.94, + "end": 487.28, + "probability": 0.6651 + }, + { + "start": 487.84, + "end": 494.64, + "probability": 0.968 + }, + { + "start": 494.68, + "end": 495.28, + "probability": 0.8802 + }, + { + "start": 496.04, + "end": 497.0, + "probability": 0.8865 + }, + { + "start": 497.66, + "end": 501.5, + "probability": 0.4968 + }, + { + "start": 502.42, + "end": 503.3, + "probability": 0.9748 + }, + { + "start": 504.18, + "end": 510.0, + "probability": 0.9641 + }, + { + "start": 510.48, + "end": 514.94, + "probability": 0.9906 + }, + { + "start": 515.66, + "end": 517.46, + "probability": 0.9164 + }, + { + "start": 518.34, + "end": 521.66, + "probability": 0.7736 + }, + { + "start": 523.68, + "end": 526.7, + "probability": 0.9641 + }, + { + "start": 527.32, + "end": 529.38, + "probability": 0.9437 + }, + { + "start": 530.1, + "end": 531.46, + "probability": 0.9874 + }, + { + "start": 532.0, + "end": 532.26, + "probability": 0.9973 + }, + { + "start": 532.8, + "end": 533.68, + "probability": 0.9979 + }, + { + "start": 534.9, + "end": 536.26, + "probability": 0.6205 + }, + { + "start": 537.08, + "end": 539.7, + "probability": 0.8523 + }, + { + "start": 539.7, + "end": 544.98, + "probability": 0.9836 + }, + { + "start": 546.02, + "end": 549.22, + "probability": 0.9562 + }, + { + "start": 549.76, + "end": 550.52, + "probability": 0.9545 + }, + { + "start": 552.48, + "end": 554.93, + "probability": 0.8631 + }, + { + "start": 556.46, + "end": 558.56, + "probability": 0.9731 + }, + { + "start": 559.12, + "end": 560.2, + "probability": 0.5735 + }, + { + "start": 561.64, + "end": 561.74, + "probability": 0.6428 + }, + { + "start": 563.42, + "end": 568.14, + "probability": 0.9904 + }, + { + "start": 570.34, + "end": 571.08, + "probability": 0.5849 + }, + { + "start": 571.94, + "end": 573.39, + "probability": 0.9198 + }, + { + "start": 574.14, + "end": 579.62, + "probability": 0.7513 + }, + { + "start": 579.72, + "end": 581.92, + "probability": 0.8936 + }, + { + "start": 582.76, + "end": 583.86, + "probability": 0.9845 + }, + { + "start": 585.92, + "end": 590.82, + "probability": 0.9469 + }, + { + "start": 590.82, + "end": 597.54, + "probability": 0.9696 + }, + { + "start": 598.48, + "end": 603.06, + "probability": 0.9773 + }, + { + "start": 603.72, + "end": 606.32, + "probability": 0.6306 + }, + { + "start": 606.86, + "end": 607.06, + "probability": 0.8138 + }, + { + "start": 608.04, + "end": 609.76, + "probability": 0.9883 + }, + { + "start": 610.56, + "end": 614.24, + "probability": 0.9562 + }, + { + "start": 614.72, + "end": 615.82, + "probability": 0.915 + }, + { + "start": 616.56, + "end": 617.48, + "probability": 0.8623 + }, + { + "start": 619.28, + "end": 621.56, + "probability": 0.9683 + }, + { + "start": 622.64, + "end": 626.1, + "probability": 0.9785 + }, + { + "start": 627.2, + "end": 628.36, + "probability": 0.9893 + }, + { + "start": 629.54, + "end": 630.68, + "probability": 0.8715 + }, + { + "start": 631.9, + "end": 634.3, + "probability": 0.9731 + }, + { + "start": 634.46, + "end": 636.74, + "probability": 0.9904 + }, + { + "start": 637.86, + "end": 640.72, + "probability": 0.9037 + }, + { + "start": 642.22, + "end": 642.96, + "probability": 0.9827 + }, + { + "start": 644.26, + "end": 645.67, + "probability": 0.9751 + }, + { + "start": 646.5, + "end": 647.42, + "probability": 0.5528 + }, + { + "start": 647.86, + "end": 650.88, + "probability": 0.9799 + }, + { + "start": 651.58, + "end": 653.4, + "probability": 0.9706 + }, + { + "start": 654.94, + "end": 658.4, + "probability": 0.9968 + }, + { + "start": 659.02, + "end": 659.74, + "probability": 0.9233 + }, + { + "start": 663.24, + "end": 665.42, + "probability": 0.8832 + }, + { + "start": 666.12, + "end": 667.14, + "probability": 0.9741 + }, + { + "start": 667.82, + "end": 668.62, + "probability": 0.8528 + }, + { + "start": 669.46, + "end": 670.14, + "probability": 0.9295 + }, + { + "start": 671.38, + "end": 674.38, + "probability": 0.9969 + }, + { + "start": 675.42, + "end": 676.64, + "probability": 0.9882 + }, + { + "start": 677.18, + "end": 678.28, + "probability": 0.7653 + }, + { + "start": 678.34, + "end": 679.22, + "probability": 0.7599 + }, + { + "start": 679.28, + "end": 680.92, + "probability": 0.6076 + }, + { + "start": 681.92, + "end": 684.18, + "probability": 0.9805 + }, + { + "start": 685.04, + "end": 687.62, + "probability": 0.976 + }, + { + "start": 688.44, + "end": 692.02, + "probability": 0.9773 + }, + { + "start": 693.46, + "end": 695.94, + "probability": 0.9733 + }, + { + "start": 696.84, + "end": 697.98, + "probability": 0.9965 + }, + { + "start": 700.18, + "end": 701.44, + "probability": 0.8914 + }, + { + "start": 702.46, + "end": 703.4, + "probability": 0.651 + }, + { + "start": 704.76, + "end": 704.96, + "probability": 0.875 + }, + { + "start": 705.72, + "end": 706.62, + "probability": 0.9482 + }, + { + "start": 707.28, + "end": 708.36, + "probability": 0.8752 + }, + { + "start": 708.62, + "end": 712.12, + "probability": 0.9753 + }, + { + "start": 712.52, + "end": 714.94, + "probability": 0.9761 + }, + { + "start": 715.02, + "end": 715.22, + "probability": 0.6983 + }, + { + "start": 715.88, + "end": 717.34, + "probability": 0.9856 + }, + { + "start": 717.48, + "end": 720.02, + "probability": 0.9901 + }, + { + "start": 720.02, + "end": 723.0, + "probability": 0.9808 + }, + { + "start": 723.68, + "end": 724.76, + "probability": 0.9529 + }, + { + "start": 726.8, + "end": 727.78, + "probability": 0.117 + }, + { + "start": 728.38, + "end": 728.66, + "probability": 0.6526 + }, + { + "start": 728.74, + "end": 729.3, + "probability": 0.7192 + }, + { + "start": 729.58, + "end": 731.36, + "probability": 0.8261 + }, + { + "start": 732.1, + "end": 732.52, + "probability": 0.9489 + }, + { + "start": 733.98, + "end": 736.18, + "probability": 0.8999 + }, + { + "start": 737.2, + "end": 738.9, + "probability": 0.7513 + }, + { + "start": 739.7, + "end": 742.44, + "probability": 0.8203 + }, + { + "start": 742.8, + "end": 745.54, + "probability": 0.749 + }, + { + "start": 746.16, + "end": 749.4, + "probability": 0.9937 + }, + { + "start": 750.06, + "end": 753.56, + "probability": 0.9624 + }, + { + "start": 753.82, + "end": 754.92, + "probability": 0.9088 + }, + { + "start": 755.38, + "end": 757.94, + "probability": 0.9912 + }, + { + "start": 758.72, + "end": 760.66, + "probability": 0.9854 + }, + { + "start": 760.78, + "end": 763.62, + "probability": 0.9722 + }, + { + "start": 764.2, + "end": 765.12, + "probability": 0.9538 + }, + { + "start": 765.26, + "end": 766.9, + "probability": 0.9668 + }, + { + "start": 767.5, + "end": 768.14, + "probability": 0.9719 + }, + { + "start": 768.78, + "end": 769.18, + "probability": 0.7713 + }, + { + "start": 769.94, + "end": 771.3, + "probability": 0.9979 + }, + { + "start": 771.42, + "end": 773.44, + "probability": 0.9362 + }, + { + "start": 773.58, + "end": 774.28, + "probability": 0.8928 + }, + { + "start": 774.92, + "end": 776.32, + "probability": 0.9935 + }, + { + "start": 777.02, + "end": 778.86, + "probability": 0.966 + }, + { + "start": 779.34, + "end": 781.26, + "probability": 0.9863 + }, + { + "start": 782.26, + "end": 785.18, + "probability": 0.9976 + }, + { + "start": 785.5, + "end": 788.58, + "probability": 0.9978 + }, + { + "start": 789.28, + "end": 790.81, + "probability": 0.9038 + }, + { + "start": 791.66, + "end": 793.44, + "probability": 0.9819 + }, + { + "start": 793.86, + "end": 794.74, + "probability": 0.9664 + }, + { + "start": 795.7, + "end": 798.14, + "probability": 0.9802 + }, + { + "start": 799.04, + "end": 801.08, + "probability": 0.9503 + }, + { + "start": 801.08, + "end": 803.8, + "probability": 0.9949 + }, + { + "start": 804.0, + "end": 805.32, + "probability": 0.9141 + }, + { + "start": 805.92, + "end": 806.96, + "probability": 0.955 + }, + { + "start": 807.52, + "end": 810.14, + "probability": 0.9163 + }, + { + "start": 810.98, + "end": 813.7, + "probability": 0.9891 + }, + { + "start": 813.7, + "end": 816.2, + "probability": 0.9951 + }, + { + "start": 817.06, + "end": 819.02, + "probability": 0.9331 + }, + { + "start": 819.5, + "end": 822.6, + "probability": 0.9885 + }, + { + "start": 823.08, + "end": 825.02, + "probability": 0.9924 + }, + { + "start": 826.1, + "end": 828.34, + "probability": 0.9321 + }, + { + "start": 829.06, + "end": 830.88, + "probability": 0.9866 + }, + { + "start": 831.1, + "end": 832.66, + "probability": 0.9448 + }, + { + "start": 833.08, + "end": 835.2, + "probability": 0.988 + }, + { + "start": 835.58, + "end": 838.94, + "probability": 0.9825 + }, + { + "start": 839.6, + "end": 840.34, + "probability": 0.7413 + }, + { + "start": 840.76, + "end": 841.82, + "probability": 0.6913 + }, + { + "start": 842.26, + "end": 844.82, + "probability": 0.9883 + }, + { + "start": 845.34, + "end": 846.26, + "probability": 0.9977 + }, + { + "start": 847.38, + "end": 848.24, + "probability": 0.9906 + }, + { + "start": 848.52, + "end": 849.76, + "probability": 0.9524 + }, + { + "start": 850.1, + "end": 852.0, + "probability": 0.9967 + }, + { + "start": 853.42, + "end": 853.82, + "probability": 0.5173 + }, + { + "start": 854.5, + "end": 857.78, + "probability": 0.9577 + }, + { + "start": 858.28, + "end": 858.82, + "probability": 0.7098 + }, + { + "start": 858.92, + "end": 863.3, + "probability": 0.978 + }, + { + "start": 864.3, + "end": 867.2, + "probability": 0.987 + }, + { + "start": 867.2, + "end": 868.98, + "probability": 0.8963 + }, + { + "start": 869.92, + "end": 873.56, + "probability": 0.9917 + }, + { + "start": 873.92, + "end": 876.1, + "probability": 0.9587 + }, + { + "start": 876.7, + "end": 880.58, + "probability": 0.896 + }, + { + "start": 880.98, + "end": 881.34, + "probability": 0.8265 + }, + { + "start": 881.56, + "end": 882.12, + "probability": 0.7694 + }, + { + "start": 882.72, + "end": 884.44, + "probability": 0.9556 + }, + { + "start": 884.94, + "end": 887.2, + "probability": 0.9697 + }, + { + "start": 887.32, + "end": 889.14, + "probability": 0.9672 + }, + { + "start": 889.78, + "end": 892.34, + "probability": 0.9509 + }, + { + "start": 893.66, + "end": 894.02, + "probability": 0.7048 + }, + { + "start": 894.66, + "end": 898.66, + "probability": 0.976 + }, + { + "start": 899.32, + "end": 900.64, + "probability": 0.9733 + }, + { + "start": 900.76, + "end": 903.6, + "probability": 0.8428 + }, + { + "start": 904.12, + "end": 906.48, + "probability": 0.9558 + }, + { + "start": 906.48, + "end": 910.12, + "probability": 0.999 + }, + { + "start": 910.24, + "end": 910.62, + "probability": 0.7854 + }, + { + "start": 911.8, + "end": 914.6, + "probability": 0.9829 + }, + { + "start": 914.76, + "end": 918.16, + "probability": 0.9887 + }, + { + "start": 918.82, + "end": 920.72, + "probability": 0.2604 + }, + { + "start": 920.72, + "end": 922.88, + "probability": 0.7058 + }, + { + "start": 922.96, + "end": 926.48, + "probability": 0.9703 + }, + { + "start": 927.24, + "end": 930.22, + "probability": 0.9956 + }, + { + "start": 930.22, + "end": 932.76, + "probability": 0.9897 + }, + { + "start": 933.28, + "end": 935.44, + "probability": 0.9785 + }, + { + "start": 935.85, + "end": 938.84, + "probability": 0.6928 + }, + { + "start": 938.9, + "end": 941.7, + "probability": 0.9923 + }, + { + "start": 942.36, + "end": 945.12, + "probability": 0.994 + }, + { + "start": 945.56, + "end": 947.56, + "probability": 0.9953 + }, + { + "start": 948.0, + "end": 948.9, + "probability": 0.9092 + }, + { + "start": 949.66, + "end": 951.3, + "probability": 0.8633 + }, + { + "start": 951.74, + "end": 953.82, + "probability": 0.7799 + }, + { + "start": 954.88, + "end": 956.32, + "probability": 0.7129 + }, + { + "start": 957.04, + "end": 959.16, + "probability": 0.9966 + }, + { + "start": 959.16, + "end": 961.68, + "probability": 0.9937 + }, + { + "start": 962.2, + "end": 963.28, + "probability": 0.9832 + }, + { + "start": 963.54, + "end": 969.38, + "probability": 0.9812 + }, + { + "start": 969.96, + "end": 971.54, + "probability": 0.9301 + }, + { + "start": 972.0, + "end": 974.76, + "probability": 0.9765 + }, + { + "start": 974.96, + "end": 976.54, + "probability": 0.8448 + }, + { + "start": 977.32, + "end": 981.28, + "probability": 0.9357 + }, + { + "start": 982.28, + "end": 982.78, + "probability": 0.4738 + }, + { + "start": 983.34, + "end": 986.12, + "probability": 0.967 + }, + { + "start": 986.8, + "end": 990.76, + "probability": 0.9935 + }, + { + "start": 990.98, + "end": 993.24, + "probability": 0.9947 + }, + { + "start": 994.04, + "end": 996.06, + "probability": 0.9736 + }, + { + "start": 996.54, + "end": 998.94, + "probability": 0.7432 + }, + { + "start": 999.68, + "end": 1001.96, + "probability": 0.982 + }, + { + "start": 1002.14, + "end": 1006.16, + "probability": 0.9888 + }, + { + "start": 1006.74, + "end": 1009.9, + "probability": 0.9713 + }, + { + "start": 1011.64, + "end": 1015.66, + "probability": 0.9929 + }, + { + "start": 1016.64, + "end": 1020.04, + "probability": 0.9751 + }, + { + "start": 1020.8, + "end": 1022.0, + "probability": 0.9982 + }, + { + "start": 1022.62, + "end": 1024.82, + "probability": 0.9907 + }, + { + "start": 1025.4, + "end": 1028.14, + "probability": 0.9576 + }, + { + "start": 1028.58, + "end": 1030.24, + "probability": 0.9951 + }, + { + "start": 1030.92, + "end": 1032.94, + "probability": 0.9915 + }, + { + "start": 1033.4, + "end": 1033.9, + "probability": 0.9264 + }, + { + "start": 1034.02, + "end": 1034.6, + "probability": 0.8274 + }, + { + "start": 1034.94, + "end": 1036.8, + "probability": 0.988 + }, + { + "start": 1037.74, + "end": 1038.54, + "probability": 0.6952 + }, + { + "start": 1039.08, + "end": 1039.92, + "probability": 0.7567 + }, + { + "start": 1040.62, + "end": 1044.62, + "probability": 0.9604 + }, + { + "start": 1045.38, + "end": 1047.46, + "probability": 0.9944 + }, + { + "start": 1047.74, + "end": 1051.2, + "probability": 0.9736 + }, + { + "start": 1052.34, + "end": 1056.06, + "probability": 0.9977 + }, + { + "start": 1057.28, + "end": 1060.7, + "probability": 0.9945 + }, + { + "start": 1061.2, + "end": 1064.74, + "probability": 0.988 + }, + { + "start": 1065.26, + "end": 1066.12, + "probability": 0.8361 + }, + { + "start": 1066.78, + "end": 1069.3, + "probability": 0.938 + }, + { + "start": 1069.92, + "end": 1071.64, + "probability": 0.9944 + }, + { + "start": 1072.24, + "end": 1075.42, + "probability": 0.9888 + }, + { + "start": 1075.84, + "end": 1078.58, + "probability": 0.982 + }, + { + "start": 1079.56, + "end": 1083.52, + "probability": 0.9971 + }, + { + "start": 1084.02, + "end": 1087.1, + "probability": 0.9868 + }, + { + "start": 1087.54, + "end": 1092.51, + "probability": 0.9984 + }, + { + "start": 1092.9, + "end": 1095.18, + "probability": 0.9819 + }, + { + "start": 1095.62, + "end": 1096.34, + "probability": 0.7961 + }, + { + "start": 1096.42, + "end": 1097.22, + "probability": 0.9529 + }, + { + "start": 1097.78, + "end": 1100.26, + "probability": 0.9356 + }, + { + "start": 1100.66, + "end": 1104.9, + "probability": 0.9973 + }, + { + "start": 1105.64, + "end": 1107.9, + "probability": 0.9087 + }, + { + "start": 1108.38, + "end": 1109.76, + "probability": 0.9845 + }, + { + "start": 1110.66, + "end": 1112.78, + "probability": 0.9912 + }, + { + "start": 1112.78, + "end": 1115.58, + "probability": 0.9945 + }, + { + "start": 1116.1, + "end": 1116.72, + "probability": 0.73 + }, + { + "start": 1117.18, + "end": 1120.24, + "probability": 0.9905 + }, + { + "start": 1120.6, + "end": 1121.9, + "probability": 0.993 + }, + { + "start": 1123.3, + "end": 1126.66, + "probability": 0.946 + }, + { + "start": 1127.28, + "end": 1129.02, + "probability": 0.9617 + }, + { + "start": 1129.88, + "end": 1131.12, + "probability": 0.9875 + }, + { + "start": 1131.84, + "end": 1134.04, + "probability": 0.8164 + }, + { + "start": 1134.74, + "end": 1136.68, + "probability": 0.9951 + }, + { + "start": 1137.02, + "end": 1137.82, + "probability": 0.9315 + }, + { + "start": 1137.98, + "end": 1138.8, + "probability": 0.9305 + }, + { + "start": 1139.28, + "end": 1142.46, + "probability": 0.9713 + }, + { + "start": 1142.92, + "end": 1144.38, + "probability": 0.8554 + }, + { + "start": 1144.72, + "end": 1147.28, + "probability": 0.9595 + }, + { + "start": 1148.1, + "end": 1150.12, + "probability": 0.9744 + }, + { + "start": 1150.22, + "end": 1152.32, + "probability": 0.8728 + }, + { + "start": 1152.44, + "end": 1153.14, + "probability": 0.6489 + }, + { + "start": 1153.3, + "end": 1154.07, + "probability": 0.9564 + }, + { + "start": 1154.68, + "end": 1155.26, + "probability": 0.9661 + }, + { + "start": 1156.2, + "end": 1156.6, + "probability": 0.5206 + }, + { + "start": 1156.94, + "end": 1157.14, + "probability": 0.7623 + }, + { + "start": 1157.46, + "end": 1159.13, + "probability": 0.9839 + }, + { + "start": 1159.3, + "end": 1160.18, + "probability": 0.9326 + }, + { + "start": 1160.66, + "end": 1163.14, + "probability": 0.9158 + }, + { + "start": 1163.14, + "end": 1166.12, + "probability": 0.9961 + }, + { + "start": 1166.38, + "end": 1167.7, + "probability": 0.8789 + }, + { + "start": 1168.18, + "end": 1171.02, + "probability": 0.9951 + }, + { + "start": 1171.62, + "end": 1175.18, + "probability": 0.9503 + }, + { + "start": 1175.44, + "end": 1177.82, + "probability": 0.9967 + }, + { + "start": 1177.82, + "end": 1180.14, + "probability": 0.9993 + }, + { + "start": 1180.62, + "end": 1181.28, + "probability": 0.7784 + }, + { + "start": 1181.44, + "end": 1182.71, + "probability": 0.9702 + }, + { + "start": 1183.38, + "end": 1184.34, + "probability": 0.8159 + }, + { + "start": 1184.78, + "end": 1185.42, + "probability": 0.9615 + }, + { + "start": 1186.22, + "end": 1187.68, + "probability": 0.9474 + }, + { + "start": 1188.62, + "end": 1189.94, + "probability": 0.97 + }, + { + "start": 1190.0, + "end": 1191.68, + "probability": 0.8766 + }, + { + "start": 1192.06, + "end": 1192.96, + "probability": 0.9043 + }, + { + "start": 1193.84, + "end": 1195.62, + "probability": 0.9302 + }, + { + "start": 1196.04, + "end": 1199.24, + "probability": 0.9783 + }, + { + "start": 1200.22, + "end": 1201.19, + "probability": 0.913 + }, + { + "start": 1201.9, + "end": 1202.44, + "probability": 0.8446 + }, + { + "start": 1202.74, + "end": 1203.62, + "probability": 0.9151 + }, + { + "start": 1203.82, + "end": 1208.62, + "probability": 0.9917 + }, + { + "start": 1209.3, + "end": 1210.98, + "probability": 0.9949 + }, + { + "start": 1211.24, + "end": 1213.86, + "probability": 0.9927 + }, + { + "start": 1214.8, + "end": 1219.58, + "probability": 0.9941 + }, + { + "start": 1220.62, + "end": 1223.22, + "probability": 0.9875 + }, + { + "start": 1224.0, + "end": 1226.9, + "probability": 0.8892 + }, + { + "start": 1227.32, + "end": 1228.3, + "probability": 0.9816 + }, + { + "start": 1228.5, + "end": 1229.98, + "probability": 0.9946 + }, + { + "start": 1231.3, + "end": 1233.34, + "probability": 0.923 + }, + { + "start": 1233.92, + "end": 1236.66, + "probability": 0.9906 + }, + { + "start": 1236.84, + "end": 1239.78, + "probability": 0.9532 + }, + { + "start": 1240.96, + "end": 1242.92, + "probability": 0.994 + }, + { + "start": 1243.6, + "end": 1244.94, + "probability": 0.9481 + }, + { + "start": 1245.2, + "end": 1246.14, + "probability": 0.9032 + }, + { + "start": 1246.6, + "end": 1247.98, + "probability": 0.9902 + }, + { + "start": 1248.56, + "end": 1251.1, + "probability": 0.9436 + }, + { + "start": 1251.82, + "end": 1253.3, + "probability": 0.9139 + }, + { + "start": 1253.86, + "end": 1257.72, + "probability": 0.9827 + }, + { + "start": 1258.26, + "end": 1259.98, + "probability": 0.9887 + }, + { + "start": 1260.22, + "end": 1264.6, + "probability": 0.9965 + }, + { + "start": 1265.38, + "end": 1267.42, + "probability": 0.8471 + }, + { + "start": 1268.02, + "end": 1270.16, + "probability": 0.9715 + }, + { + "start": 1270.16, + "end": 1273.46, + "probability": 0.9967 + }, + { + "start": 1274.08, + "end": 1274.74, + "probability": 0.7537 + }, + { + "start": 1275.52, + "end": 1277.34, + "probability": 0.8875 + }, + { + "start": 1278.16, + "end": 1280.94, + "probability": 0.9386 + }, + { + "start": 1280.94, + "end": 1283.84, + "probability": 0.916 + }, + { + "start": 1284.6, + "end": 1288.08, + "probability": 0.956 + }, + { + "start": 1289.08, + "end": 1291.8, + "probability": 0.8607 + }, + { + "start": 1292.6, + "end": 1294.1, + "probability": 0.7478 + }, + { + "start": 1294.22, + "end": 1295.46, + "probability": 0.9839 + }, + { + "start": 1295.9, + "end": 1298.28, + "probability": 0.9879 + }, + { + "start": 1299.04, + "end": 1300.2, + "probability": 0.9354 + }, + { + "start": 1300.84, + "end": 1303.66, + "probability": 0.9153 + }, + { + "start": 1303.76, + "end": 1304.66, + "probability": 0.8866 + }, + { + "start": 1305.0, + "end": 1306.68, + "probability": 0.9777 + }, + { + "start": 1307.5, + "end": 1307.7, + "probability": 0.9595 + }, + { + "start": 1308.22, + "end": 1309.48, + "probability": 0.8564 + }, + { + "start": 1309.72, + "end": 1311.8, + "probability": 0.9863 + }, + { + "start": 1311.94, + "end": 1313.2, + "probability": 0.9916 + }, + { + "start": 1314.0, + "end": 1314.54, + "probability": 0.9612 + }, + { + "start": 1315.26, + "end": 1318.48, + "probability": 0.9589 + }, + { + "start": 1318.48, + "end": 1322.2, + "probability": 0.9657 + }, + { + "start": 1322.94, + "end": 1327.5, + "probability": 0.9733 + }, + { + "start": 1328.3, + "end": 1329.86, + "probability": 0.8844 + }, + { + "start": 1330.22, + "end": 1331.42, + "probability": 0.9725 + }, + { + "start": 1331.46, + "end": 1332.84, + "probability": 0.9561 + }, + { + "start": 1333.68, + "end": 1336.4, + "probability": 0.9406 + }, + { + "start": 1337.5, + "end": 1340.08, + "probability": 0.9937 + }, + { + "start": 1340.6, + "end": 1342.5, + "probability": 0.9912 + }, + { + "start": 1343.24, + "end": 1343.38, + "probability": 0.3462 + }, + { + "start": 1343.38, + "end": 1347.76, + "probability": 0.723 + }, + { + "start": 1348.06, + "end": 1349.76, + "probability": 0.9771 + }, + { + "start": 1350.36, + "end": 1351.1, + "probability": 0.9327 + }, + { + "start": 1351.82, + "end": 1352.38, + "probability": 0.4995 + }, + { + "start": 1352.54, + "end": 1354.2, + "probability": 0.8394 + }, + { + "start": 1354.58, + "end": 1357.26, + "probability": 0.9416 + }, + { + "start": 1357.8, + "end": 1359.4, + "probability": 0.8013 + }, + { + "start": 1359.5, + "end": 1361.9, + "probability": 0.9885 + }, + { + "start": 1361.96, + "end": 1365.94, + "probability": 0.9937 + }, + { + "start": 1366.38, + "end": 1369.96, + "probability": 0.9946 + }, + { + "start": 1369.96, + "end": 1372.52, + "probability": 0.9886 + }, + { + "start": 1373.22, + "end": 1376.08, + "probability": 0.9727 + }, + { + "start": 1376.54, + "end": 1380.08, + "probability": 0.9823 + }, + { + "start": 1380.72, + "end": 1383.26, + "probability": 0.8931 + }, + { + "start": 1383.94, + "end": 1385.56, + "probability": 0.8874 + }, + { + "start": 1386.46, + "end": 1390.0, + "probability": 0.2925 + }, + { + "start": 1390.0, + "end": 1390.3, + "probability": 0.2075 + }, + { + "start": 1390.36, + "end": 1390.5, + "probability": 0.1568 + }, + { + "start": 1390.5, + "end": 1390.5, + "probability": 0.0106 + }, + { + "start": 1390.5, + "end": 1391.5, + "probability": 0.7161 + }, + { + "start": 1391.58, + "end": 1392.34, + "probability": 0.6236 + }, + { + "start": 1392.86, + "end": 1396.08, + "probability": 0.8607 + }, + { + "start": 1396.62, + "end": 1401.98, + "probability": 0.9569 + }, + { + "start": 1402.44, + "end": 1403.32, + "probability": 0.5409 + }, + { + "start": 1403.7, + "end": 1406.44, + "probability": 0.9964 + }, + { + "start": 1406.92, + "end": 1409.64, + "probability": 0.8745 + }, + { + "start": 1409.92, + "end": 1410.16, + "probability": 0.8982 + }, + { + "start": 1410.66, + "end": 1411.02, + "probability": 0.3888 + }, + { + "start": 1411.08, + "end": 1413.54, + "probability": 0.9639 + }, + { + "start": 1413.54, + "end": 1416.24, + "probability": 0.9967 + }, + { + "start": 1417.0, + "end": 1419.7, + "probability": 0.9738 + }, + { + "start": 1430.46, + "end": 1431.84, + "probability": 0.3746 + }, + { + "start": 1431.86, + "end": 1432.8, + "probability": 0.5549 + }, + { + "start": 1432.9, + "end": 1433.34, + "probability": 0.4808 + }, + { + "start": 1433.74, + "end": 1434.82, + "probability": 0.9087 + }, + { + "start": 1434.94, + "end": 1435.56, + "probability": 0.8809 + }, + { + "start": 1436.86, + "end": 1444.92, + "probability": 0.9884 + }, + { + "start": 1444.92, + "end": 1450.44, + "probability": 0.9833 + }, + { + "start": 1453.84, + "end": 1457.56, + "probability": 0.7911 + }, + { + "start": 1457.78, + "end": 1460.08, + "probability": 0.9984 + }, + { + "start": 1460.68, + "end": 1461.5, + "probability": 0.8957 + }, + { + "start": 1462.44, + "end": 1463.66, + "probability": 0.9071 + }, + { + "start": 1465.46, + "end": 1468.8, + "probability": 0.929 + }, + { + "start": 1469.18, + "end": 1471.72, + "probability": 0.9021 + }, + { + "start": 1472.58, + "end": 1474.56, + "probability": 0.617 + }, + { + "start": 1475.18, + "end": 1477.4, + "probability": 0.9913 + }, + { + "start": 1477.98, + "end": 1481.48, + "probability": 0.9779 + }, + { + "start": 1481.6, + "end": 1482.04, + "probability": 0.8097 + }, + { + "start": 1482.1, + "end": 1482.6, + "probability": 0.9756 + }, + { + "start": 1482.66, + "end": 1485.98, + "probability": 0.7697 + }, + { + "start": 1486.0, + "end": 1486.98, + "probability": 0.2022 + }, + { + "start": 1487.22, + "end": 1488.7, + "probability": 0.5814 + }, + { + "start": 1489.44, + "end": 1494.82, + "probability": 0.9794 + }, + { + "start": 1495.38, + "end": 1497.34, + "probability": 0.7906 + }, + { + "start": 1497.4, + "end": 1500.58, + "probability": 0.9205 + }, + { + "start": 1501.42, + "end": 1502.18, + "probability": 0.5519 + }, + { + "start": 1502.52, + "end": 1503.89, + "probability": 0.7007 + }, + { + "start": 1504.54, + "end": 1506.44, + "probability": 0.7018 + }, + { + "start": 1507.0, + "end": 1509.02, + "probability": 0.7272 + }, + { + "start": 1509.02, + "end": 1511.48, + "probability": 0.9946 + }, + { + "start": 1511.98, + "end": 1512.5, + "probability": 0.5822 + }, + { + "start": 1512.72, + "end": 1513.38, + "probability": 0.9075 + }, + { + "start": 1513.46, + "end": 1513.8, + "probability": 0.9128 + }, + { + "start": 1515.63, + "end": 1520.44, + "probability": 0.672 + }, + { + "start": 1521.78, + "end": 1523.4, + "probability": 0.719 + }, + { + "start": 1524.84, + "end": 1531.16, + "probability": 0.9415 + }, + { + "start": 1531.88, + "end": 1536.78, + "probability": 0.814 + }, + { + "start": 1536.96, + "end": 1538.26, + "probability": 0.9973 + }, + { + "start": 1538.86, + "end": 1540.86, + "probability": 0.9049 + }, + { + "start": 1541.64, + "end": 1543.38, + "probability": 0.9697 + }, + { + "start": 1544.36, + "end": 1550.48, + "probability": 0.9941 + }, + { + "start": 1550.48, + "end": 1558.02, + "probability": 0.9982 + }, + { + "start": 1558.16, + "end": 1559.48, + "probability": 0.9993 + }, + { + "start": 1560.4, + "end": 1567.0, + "probability": 0.9997 + }, + { + "start": 1568.06, + "end": 1572.66, + "probability": 0.9918 + }, + { + "start": 1573.56, + "end": 1574.3, + "probability": 0.983 + }, + { + "start": 1574.98, + "end": 1576.24, + "probability": 0.9945 + }, + { + "start": 1576.48, + "end": 1577.2, + "probability": 0.714 + }, + { + "start": 1577.32, + "end": 1577.97, + "probability": 0.8838 + }, + { + "start": 1579.24, + "end": 1579.96, + "probability": 0.8966 + }, + { + "start": 1580.12, + "end": 1582.36, + "probability": 0.9677 + }, + { + "start": 1582.56, + "end": 1585.86, + "probability": 0.6717 + }, + { + "start": 1586.32, + "end": 1589.18, + "probability": 0.9859 + }, + { + "start": 1589.6, + "end": 1592.06, + "probability": 0.9865 + }, + { + "start": 1592.46, + "end": 1593.33, + "probability": 0.9941 + }, + { + "start": 1594.32, + "end": 1597.28, + "probability": 0.9402 + }, + { + "start": 1597.36, + "end": 1598.12, + "probability": 0.9062 + }, + { + "start": 1598.22, + "end": 1598.66, + "probability": 0.9371 + }, + { + "start": 1598.66, + "end": 1599.74, + "probability": 0.8989 + }, + { + "start": 1600.1, + "end": 1602.28, + "probability": 0.9943 + }, + { + "start": 1603.54, + "end": 1605.16, + "probability": 0.9523 + }, + { + "start": 1605.2, + "end": 1605.76, + "probability": 0.907 + }, + { + "start": 1605.84, + "end": 1606.92, + "probability": 0.9455 + }, + { + "start": 1607.48, + "end": 1611.3, + "probability": 0.9929 + }, + { + "start": 1611.74, + "end": 1615.08, + "probability": 0.9871 + }, + { + "start": 1615.76, + "end": 1617.22, + "probability": 0.8931 + }, + { + "start": 1617.72, + "end": 1618.5, + "probability": 0.9373 + }, + { + "start": 1618.68, + "end": 1621.52, + "probability": 0.9944 + }, + { + "start": 1622.12, + "end": 1628.86, + "probability": 0.9766 + }, + { + "start": 1629.7, + "end": 1632.52, + "probability": 0.7697 + }, + { + "start": 1633.16, + "end": 1634.46, + "probability": 0.2049 + }, + { + "start": 1634.46, + "end": 1635.26, + "probability": 0.0569 + }, + { + "start": 1635.86, + "end": 1637.94, + "probability": 0.1312 + }, + { + "start": 1638.28, + "end": 1638.84, + "probability": 0.2753 + }, + { + "start": 1638.86, + "end": 1640.54, + "probability": 0.8356 + }, + { + "start": 1640.64, + "end": 1642.3, + "probability": 0.9952 + }, + { + "start": 1642.96, + "end": 1647.68, + "probability": 0.9653 + }, + { + "start": 1648.14, + "end": 1653.64, + "probability": 0.9977 + }, + { + "start": 1653.94, + "end": 1656.18, + "probability": 0.8071 + }, + { + "start": 1656.2, + "end": 1656.9, + "probability": 0.8729 + }, + { + "start": 1657.66, + "end": 1659.32, + "probability": 0.849 + }, + { + "start": 1659.48, + "end": 1660.78, + "probability": 0.9409 + }, + { + "start": 1660.92, + "end": 1662.88, + "probability": 0.9952 + }, + { + "start": 1663.22, + "end": 1664.3, + "probability": 0.9645 + }, + { + "start": 1664.58, + "end": 1666.48, + "probability": 0.991 + }, + { + "start": 1667.06, + "end": 1668.58, + "probability": 0.8611 + }, + { + "start": 1669.08, + "end": 1670.44, + "probability": 0.986 + }, + { + "start": 1670.52, + "end": 1672.14, + "probability": 0.9927 + }, + { + "start": 1672.54, + "end": 1676.18, + "probability": 0.9936 + }, + { + "start": 1676.18, + "end": 1679.06, + "probability": 0.9923 + }, + { + "start": 1679.46, + "end": 1683.14, + "probability": 0.479 + }, + { + "start": 1683.14, + "end": 1683.7, + "probability": 0.3461 + }, + { + "start": 1684.44, + "end": 1686.12, + "probability": 0.6767 + }, + { + "start": 1686.68, + "end": 1688.26, + "probability": 0.0465 + }, + { + "start": 1688.26, + "end": 1688.26, + "probability": 0.318 + }, + { + "start": 1688.26, + "end": 1688.9, + "probability": 0.2038 + }, + { + "start": 1688.9, + "end": 1689.1, + "probability": 0.7035 + }, + { + "start": 1689.28, + "end": 1689.8, + "probability": 0.5954 + }, + { + "start": 1689.88, + "end": 1690.9, + "probability": 0.8806 + }, + { + "start": 1691.02, + "end": 1691.46, + "probability": 0.8455 + }, + { + "start": 1691.6, + "end": 1692.48, + "probability": 0.752 + }, + { + "start": 1693.1, + "end": 1695.12, + "probability": 0.9521 + }, + { + "start": 1695.76, + "end": 1696.46, + "probability": 0.9113 + }, + { + "start": 1697.48, + "end": 1699.56, + "probability": 0.9941 + }, + { + "start": 1700.24, + "end": 1703.38, + "probability": 0.9973 + }, + { + "start": 1703.38, + "end": 1707.62, + "probability": 0.9246 + }, + { + "start": 1708.14, + "end": 1709.76, + "probability": 0.9432 + }, + { + "start": 1709.88, + "end": 1711.74, + "probability": 0.9305 + }, + { + "start": 1711.94, + "end": 1712.14, + "probability": 0.801 + }, + { + "start": 1712.4, + "end": 1713.36, + "probability": 0.939 + }, + { + "start": 1713.72, + "end": 1714.48, + "probability": 0.5235 + }, + { + "start": 1714.98, + "end": 1717.84, + "probability": 0.9896 + }, + { + "start": 1718.44, + "end": 1719.82, + "probability": 0.998 + }, + { + "start": 1722.14, + "end": 1723.23, + "probability": 0.9235 + }, + { + "start": 1723.32, + "end": 1724.47, + "probability": 0.9956 + }, + { + "start": 1725.2, + "end": 1725.66, + "probability": 0.8671 + }, + { + "start": 1725.68, + "end": 1726.78, + "probability": 0.9864 + }, + { + "start": 1727.34, + "end": 1732.22, + "probability": 0.9878 + }, + { + "start": 1732.78, + "end": 1733.42, + "probability": 0.7863 + }, + { + "start": 1734.22, + "end": 1735.64, + "probability": 0.6409 + }, + { + "start": 1736.68, + "end": 1738.13, + "probability": 0.9097 + }, + { + "start": 1738.58, + "end": 1739.94, + "probability": 0.8685 + }, + { + "start": 1740.26, + "end": 1741.66, + "probability": 0.9331 + }, + { + "start": 1742.86, + "end": 1747.46, + "probability": 0.9695 + }, + { + "start": 1748.64, + "end": 1749.56, + "probability": 0.7705 + }, + { + "start": 1749.74, + "end": 1750.48, + "probability": 0.9128 + }, + { + "start": 1750.52, + "end": 1752.94, + "probability": 0.9422 + }, + { + "start": 1752.94, + "end": 1756.38, + "probability": 0.9617 + }, + { + "start": 1757.08, + "end": 1758.56, + "probability": 0.9983 + }, + { + "start": 1759.44, + "end": 1760.04, + "probability": 0.7067 + }, + { + "start": 1760.16, + "end": 1761.2, + "probability": 0.9907 + }, + { + "start": 1761.62, + "end": 1763.18, + "probability": 0.9553 + }, + { + "start": 1763.9, + "end": 1767.12, + "probability": 0.9617 + }, + { + "start": 1767.64, + "end": 1769.78, + "probability": 0.9556 + }, + { + "start": 1770.4, + "end": 1771.5, + "probability": 0.9111 + }, + { + "start": 1771.94, + "end": 1773.04, + "probability": 0.983 + }, + { + "start": 1773.34, + "end": 1774.38, + "probability": 0.9756 + }, + { + "start": 1778.3, + "end": 1780.08, + "probability": 0.8198 + }, + { + "start": 1780.7, + "end": 1782.46, + "probability": 0.6635 + }, + { + "start": 1782.46, + "end": 1783.7, + "probability": 0.3285 + }, + { + "start": 1784.68, + "end": 1784.82, + "probability": 0.2149 + }, + { + "start": 1784.82, + "end": 1787.12, + "probability": 0.6115 + }, + { + "start": 1787.2, + "end": 1787.92, + "probability": 0.8246 + }, + { + "start": 1788.54, + "end": 1790.06, + "probability": 0.9116 + }, + { + "start": 1796.3, + "end": 1797.54, + "probability": 0.646 + }, + { + "start": 1798.94, + "end": 1799.5, + "probability": 0.598 + }, + { + "start": 1800.34, + "end": 1801.54, + "probability": 0.6524 + }, + { + "start": 1802.64, + "end": 1806.6, + "probability": 0.978 + }, + { + "start": 1807.78, + "end": 1809.04, + "probability": 0.8733 + }, + { + "start": 1809.26, + "end": 1811.76, + "probability": 0.9811 + }, + { + "start": 1813.34, + "end": 1813.94, + "probability": 0.7434 + }, + { + "start": 1815.4, + "end": 1816.58, + "probability": 0.973 + }, + { + "start": 1816.66, + "end": 1817.69, + "probability": 0.9792 + }, + { + "start": 1818.22, + "end": 1819.52, + "probability": 0.9277 + }, + { + "start": 1820.06, + "end": 1820.5, + "probability": 0.8188 + }, + { + "start": 1821.6, + "end": 1822.28, + "probability": 0.3891 + }, + { + "start": 1822.98, + "end": 1824.9, + "probability": 0.9932 + }, + { + "start": 1825.84, + "end": 1828.2, + "probability": 0.9287 + }, + { + "start": 1828.5, + "end": 1828.84, + "probability": 0.7385 + }, + { + "start": 1829.56, + "end": 1831.1, + "probability": 0.8565 + }, + { + "start": 1831.98, + "end": 1832.59, + "probability": 0.9795 + }, + { + "start": 1833.44, + "end": 1834.58, + "probability": 0.8602 + }, + { + "start": 1835.6, + "end": 1838.58, + "probability": 0.9864 + }, + { + "start": 1838.66, + "end": 1839.78, + "probability": 0.9568 + }, + { + "start": 1840.94, + "end": 1842.12, + "probability": 0.9985 + }, + { + "start": 1843.38, + "end": 1846.68, + "probability": 0.9935 + }, + { + "start": 1846.78, + "end": 1848.9, + "probability": 0.9249 + }, + { + "start": 1849.82, + "end": 1850.86, + "probability": 0.9789 + }, + { + "start": 1851.68, + "end": 1853.94, + "probability": 0.9747 + }, + { + "start": 1855.68, + "end": 1856.92, + "probability": 0.9955 + }, + { + "start": 1857.9, + "end": 1860.05, + "probability": 0.9266 + }, + { + "start": 1861.06, + "end": 1862.24, + "probability": 0.9467 + }, + { + "start": 1863.46, + "end": 1865.1, + "probability": 0.8674 + }, + { + "start": 1865.88, + "end": 1866.36, + "probability": 0.8896 + }, + { + "start": 1867.38, + "end": 1869.96, + "probability": 0.929 + }, + { + "start": 1870.88, + "end": 1874.44, + "probability": 0.978 + }, + { + "start": 1875.26, + "end": 1875.75, + "probability": 0.9718 + }, + { + "start": 1877.28, + "end": 1881.2, + "probability": 0.9772 + }, + { + "start": 1881.32, + "end": 1881.76, + "probability": 0.7206 + }, + { + "start": 1881.8, + "end": 1882.36, + "probability": 0.562 + }, + { + "start": 1883.5, + "end": 1884.24, + "probability": 0.5542 + }, + { + "start": 1884.36, + "end": 1885.7, + "probability": 0.9164 + }, + { + "start": 1886.56, + "end": 1887.34, + "probability": 0.9237 + }, + { + "start": 1888.06, + "end": 1889.3, + "probability": 0.979 + }, + { + "start": 1890.32, + "end": 1890.96, + "probability": 0.8872 + }, + { + "start": 1892.06, + "end": 1893.9, + "probability": 0.9434 + }, + { + "start": 1895.56, + "end": 1897.06, + "probability": 0.9223 + }, + { + "start": 1897.94, + "end": 1899.58, + "probability": 0.7673 + }, + { + "start": 1899.64, + "end": 1900.5, + "probability": 0.6434 + }, + { + "start": 1902.02, + "end": 1903.92, + "probability": 0.7603 + }, + { + "start": 1904.22, + "end": 1905.86, + "probability": 0.981 + }, + { + "start": 1906.14, + "end": 1907.33, + "probability": 0.7314 + }, + { + "start": 1908.14, + "end": 1908.86, + "probability": 0.8158 + }, + { + "start": 1910.06, + "end": 1910.71, + "probability": 0.5433 + }, + { + "start": 1911.14, + "end": 1912.47, + "probability": 0.6942 + }, + { + "start": 1913.14, + "end": 1916.06, + "probability": 0.9965 + }, + { + "start": 1917.24, + "end": 1919.72, + "probability": 0.9738 + }, + { + "start": 1920.64, + "end": 1922.37, + "probability": 0.9045 + }, + { + "start": 1924.34, + "end": 1926.5, + "probability": 0.9602 + }, + { + "start": 1926.62, + "end": 1926.88, + "probability": 0.3266 + }, + { + "start": 1926.92, + "end": 1927.82, + "probability": 0.8096 + }, + { + "start": 1927.92, + "end": 1930.58, + "probability": 0.945 + }, + { + "start": 1931.22, + "end": 1932.62, + "probability": 0.7978 + }, + { + "start": 1933.92, + "end": 1934.14, + "probability": 0.9716 + }, + { + "start": 1934.78, + "end": 1940.66, + "probability": 0.8744 + }, + { + "start": 1942.24, + "end": 1946.22, + "probability": 0.9809 + }, + { + "start": 1947.12, + "end": 1947.32, + "probability": 0.0344 + }, + { + "start": 1947.32, + "end": 1949.92, + "probability": 0.6979 + }, + { + "start": 1950.06, + "end": 1951.04, + "probability": 0.6167 + }, + { + "start": 1951.66, + "end": 1952.86, + "probability": 0.2858 + }, + { + "start": 1952.86, + "end": 1953.38, + "probability": 0.0955 + }, + { + "start": 1953.84, + "end": 1953.84, + "probability": 0.1181 + }, + { + "start": 1953.84, + "end": 1953.84, + "probability": 0.0504 + }, + { + "start": 1953.84, + "end": 1957.26, + "probability": 0.7742 + }, + { + "start": 1957.36, + "end": 1958.39, + "probability": 0.8791 + }, + { + "start": 1958.57, + "end": 1962.79, + "probability": 0.9805 + }, + { + "start": 1963.29, + "end": 1966.53, + "probability": 0.7084 + }, + { + "start": 1966.55, + "end": 1966.79, + "probability": 0.5693 + }, + { + "start": 1967.29, + "end": 1967.37, + "probability": 0.562 + }, + { + "start": 1967.37, + "end": 1968.41, + "probability": 0.7863 + }, + { + "start": 1968.45, + "end": 1970.55, + "probability": 0.8468 + }, + { + "start": 1970.93, + "end": 1973.97, + "probability": 0.6658 + }, + { + "start": 1974.43, + "end": 1974.93, + "probability": 0.8596 + }, + { + "start": 1975.07, + "end": 1975.9, + "probability": 0.2504 + }, + { + "start": 1976.51, + "end": 1980.25, + "probability": 0.8516 + }, + { + "start": 1980.41, + "end": 1981.39, + "probability": 0.9271 + }, + { + "start": 1981.61, + "end": 1982.73, + "probability": 0.9729 + }, + { + "start": 1983.15, + "end": 1984.69, + "probability": 0.7474 + }, + { + "start": 1985.93, + "end": 1988.13, + "probability": 0.9451 + }, + { + "start": 1988.23, + "end": 1990.25, + "probability": 0.9873 + }, + { + "start": 1990.44, + "end": 1991.59, + "probability": 0.9959 + }, + { + "start": 1992.17, + "end": 1994.33, + "probability": 0.9043 + }, + { + "start": 1994.71, + "end": 1994.71, + "probability": 0.08 + }, + { + "start": 1994.71, + "end": 1995.59, + "probability": 0.8103 + }, + { + "start": 1996.03, + "end": 1997.18, + "probability": 0.9815 + }, + { + "start": 1997.27, + "end": 1999.05, + "probability": 0.8486 + }, + { + "start": 1999.27, + "end": 2000.85, + "probability": 0.696 + }, + { + "start": 2000.87, + "end": 2002.51, + "probability": 0.8918 + }, + { + "start": 2002.73, + "end": 2003.15, + "probability": 0.1045 + }, + { + "start": 2003.15, + "end": 2003.33, + "probability": 0.226 + }, + { + "start": 2003.45, + "end": 2004.07, + "probability": 0.763 + }, + { + "start": 2004.19, + "end": 2005.27, + "probability": 0.7281 + }, + { + "start": 2005.27, + "end": 2007.91, + "probability": 0.9432 + }, + { + "start": 2008.17, + "end": 2009.76, + "probability": 0.5363 + }, + { + "start": 2010.37, + "end": 2012.45, + "probability": 0.4947 + }, + { + "start": 2012.57, + "end": 2013.27, + "probability": 0.0256 + }, + { + "start": 2016.47, + "end": 2016.79, + "probability": 0.058 + }, + { + "start": 2016.79, + "end": 2016.79, + "probability": 0.0232 + }, + { + "start": 2016.79, + "end": 2016.79, + "probability": 0.5981 + }, + { + "start": 2016.79, + "end": 2016.79, + "probability": 0.0171 + }, + { + "start": 2016.79, + "end": 2016.79, + "probability": 0.1306 + }, + { + "start": 2016.79, + "end": 2017.43, + "probability": 0.5703 + }, + { + "start": 2017.53, + "end": 2018.91, + "probability": 0.5203 + }, + { + "start": 2019.25, + "end": 2021.49, + "probability": 0.7069 + }, + { + "start": 2022.49, + "end": 2025.15, + "probability": 0.9949 + }, + { + "start": 2025.15, + "end": 2027.43, + "probability": 0.9113 + }, + { + "start": 2027.99, + "end": 2029.07, + "probability": 0.6462 + }, + { + "start": 2030.73, + "end": 2030.99, + "probability": 0.2075 + }, + { + "start": 2031.21, + "end": 2031.25, + "probability": 0.0316 + }, + { + "start": 2031.25, + "end": 2032.93, + "probability": 0.676 + }, + { + "start": 2033.05, + "end": 2035.47, + "probability": 0.9941 + }, + { + "start": 2035.87, + "end": 2037.61, + "probability": 0.9912 + }, + { + "start": 2037.61, + "end": 2038.11, + "probability": 0.2562 + }, + { + "start": 2038.11, + "end": 2042.31, + "probability": 0.4898 + }, + { + "start": 2042.41, + "end": 2043.81, + "probability": 0.2786 + }, + { + "start": 2043.95, + "end": 2045.89, + "probability": 0.7139 + }, + { + "start": 2046.13, + "end": 2046.13, + "probability": 0.6104 + }, + { + "start": 2047.17, + "end": 2047.43, + "probability": 0.0472 + }, + { + "start": 2047.43, + "end": 2047.49, + "probability": 0.2858 + }, + { + "start": 2047.49, + "end": 2047.49, + "probability": 0.1367 + }, + { + "start": 2047.49, + "end": 2047.69, + "probability": 0.2651 + }, + { + "start": 2047.69, + "end": 2047.76, + "probability": 0.3935 + }, + { + "start": 2048.71, + "end": 2049.45, + "probability": 0.1753 + }, + { + "start": 2049.55, + "end": 2051.68, + "probability": 0.6785 + }, + { + "start": 2052.63, + "end": 2052.65, + "probability": 0.0556 + }, + { + "start": 2052.65, + "end": 2052.65, + "probability": 0.3162 + }, + { + "start": 2052.65, + "end": 2053.21, + "probability": 0.6549 + }, + { + "start": 2053.83, + "end": 2056.51, + "probability": 0.7711 + }, + { + "start": 2056.51, + "end": 2057.04, + "probability": 0.2571 + }, + { + "start": 2059.43, + "end": 2060.75, + "probability": 0.2021 + }, + { + "start": 2061.07, + "end": 2061.07, + "probability": 0.0898 + }, + { + "start": 2061.07, + "end": 2062.97, + "probability": 0.2765 + }, + { + "start": 2063.13, + "end": 2063.65, + "probability": 0.0726 + }, + { + "start": 2063.65, + "end": 2064.55, + "probability": 0.542 + }, + { + "start": 2064.61, + "end": 2064.63, + "probability": 0.465 + }, + { + "start": 2065.25, + "end": 2071.61, + "probability": 0.3514 + }, + { + "start": 2072.15, + "end": 2072.71, + "probability": 0.1958 + }, + { + "start": 2072.71, + "end": 2074.73, + "probability": 0.1174 + }, + { + "start": 2074.79, + "end": 2077.31, + "probability": 0.2089 + }, + { + "start": 2077.97, + "end": 2079.17, + "probability": 0.47 + }, + { + "start": 2079.57, + "end": 2080.79, + "probability": 0.1116 + }, + { + "start": 2080.79, + "end": 2082.13, + "probability": 0.0803 + }, + { + "start": 2086.11, + "end": 2086.25, + "probability": 0.0941 + }, + { + "start": 2086.25, + "end": 2086.71, + "probability": 0.1075 + }, + { + "start": 2086.91, + "end": 2088.27, + "probability": 0.1222 + }, + { + "start": 2088.79, + "end": 2091.81, + "probability": 0.2711 + }, + { + "start": 2094.19, + "end": 2096.67, + "probability": 0.328 + }, + { + "start": 2100.25, + "end": 2102.67, + "probability": 0.2601 + }, + { + "start": 2107.02, + "end": 2110.37, + "probability": 0.0627 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.0, + "end": 2117.0, + "probability": 0.0 + }, + { + "start": 2117.16, + "end": 2117.5, + "probability": 0.0769 + }, + { + "start": 2121.44, + "end": 2122.06, + "probability": 0.1789 + }, + { + "start": 2122.2, + "end": 2124.06, + "probability": 0.6447 + }, + { + "start": 2124.52, + "end": 2124.92, + "probability": 0.0113 + }, + { + "start": 2125.86, + "end": 2127.38, + "probability": 0.3711 + }, + { + "start": 2127.38, + "end": 2128.72, + "probability": 0.6931 + }, + { + "start": 2128.72, + "end": 2129.16, + "probability": 0.0697 + }, + { + "start": 2129.16, + "end": 2129.62, + "probability": 0.1996 + }, + { + "start": 2130.74, + "end": 2135.56, + "probability": 0.417 + }, + { + "start": 2137.42, + "end": 2137.64, + "probability": 0.3914 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.0, + "end": 2244.0, + "probability": 0.0 + }, + { + "start": 2244.22, + "end": 2244.3, + "probability": 0.1947 + }, + { + "start": 2244.7, + "end": 2250.14, + "probability": 0.9383 + }, + { + "start": 2250.72, + "end": 2252.26, + "probability": 0.9973 + }, + { + "start": 2253.91, + "end": 2259.3, + "probability": 0.8613 + }, + { + "start": 2259.92, + "end": 2261.2, + "probability": 0.9735 + }, + { + "start": 2261.44, + "end": 2266.36, + "probability": 0.9951 + }, + { + "start": 2266.5, + "end": 2269.34, + "probability": 0.8322 + }, + { + "start": 2269.82, + "end": 2272.06, + "probability": 0.9849 + }, + { + "start": 2272.6, + "end": 2274.66, + "probability": 0.9331 + }, + { + "start": 2275.12, + "end": 2277.14, + "probability": 0.9585 + }, + { + "start": 2277.32, + "end": 2279.42, + "probability": 0.8827 + }, + { + "start": 2280.06, + "end": 2280.98, + "probability": 0.9292 + }, + { + "start": 2281.08, + "end": 2281.76, + "probability": 0.6094 + }, + { + "start": 2281.92, + "end": 2285.44, + "probability": 0.9299 + }, + { + "start": 2285.94, + "end": 2289.36, + "probability": 0.9419 + }, + { + "start": 2289.46, + "end": 2290.0, + "probability": 0.683 + }, + { + "start": 2290.02, + "end": 2294.0, + "probability": 0.9435 + }, + { + "start": 2294.32, + "end": 2298.04, + "probability": 0.9932 + }, + { + "start": 2298.14, + "end": 2301.02, + "probability": 0.9858 + }, + { + "start": 2301.56, + "end": 2302.74, + "probability": 0.6615 + }, + { + "start": 2303.18, + "end": 2304.42, + "probability": 0.9326 + }, + { + "start": 2304.52, + "end": 2307.26, + "probability": 0.9971 + }, + { + "start": 2307.72, + "end": 2311.44, + "probability": 0.9926 + }, + { + "start": 2311.84, + "end": 2315.68, + "probability": 0.9781 + }, + { + "start": 2315.74, + "end": 2319.28, + "probability": 0.9482 + }, + { + "start": 2319.94, + "end": 2322.54, + "probability": 0.9807 + }, + { + "start": 2322.54, + "end": 2325.38, + "probability": 0.9998 + }, + { + "start": 2325.94, + "end": 2326.46, + "probability": 0.7459 + }, + { + "start": 2326.8, + "end": 2327.4, + "probability": 0.696 + }, + { + "start": 2327.48, + "end": 2331.12, + "probability": 0.9359 + }, + { + "start": 2331.46, + "end": 2331.68, + "probability": 0.9072 + }, + { + "start": 2341.96, + "end": 2343.54, + "probability": 0.9117 + }, + { + "start": 2344.02, + "end": 2345.86, + "probability": 0.777 + }, + { + "start": 2347.14, + "end": 2347.6, + "probability": 0.741 + }, + { + "start": 2348.94, + "end": 2349.93, + "probability": 0.8367 + }, + { + "start": 2351.52, + "end": 2352.88, + "probability": 0.9394 + }, + { + "start": 2353.42, + "end": 2355.78, + "probability": 0.7482 + }, + { + "start": 2357.28, + "end": 2358.06, + "probability": 0.9332 + }, + { + "start": 2360.32, + "end": 2361.36, + "probability": 0.984 + }, + { + "start": 2361.5, + "end": 2362.68, + "probability": 0.9815 + }, + { + "start": 2362.86, + "end": 2364.06, + "probability": 0.9786 + }, + { + "start": 2365.12, + "end": 2366.88, + "probability": 0.9613 + }, + { + "start": 2368.5, + "end": 2371.66, + "probability": 0.9653 + }, + { + "start": 2372.56, + "end": 2373.6, + "probability": 0.7869 + }, + { + "start": 2377.26, + "end": 2378.22, + "probability": 0.2266 + }, + { + "start": 2379.7, + "end": 2383.74, + "probability": 0.8953 + }, + { + "start": 2384.6, + "end": 2387.34, + "probability": 0.8371 + }, + { + "start": 2388.04, + "end": 2390.12, + "probability": 0.9863 + }, + { + "start": 2390.66, + "end": 2391.72, + "probability": 0.6988 + }, + { + "start": 2392.92, + "end": 2393.61, + "probability": 0.8003 + }, + { + "start": 2395.42, + "end": 2399.42, + "probability": 0.9489 + }, + { + "start": 2399.54, + "end": 2400.1, + "probability": 0.5583 + }, + { + "start": 2400.14, + "end": 2402.66, + "probability": 0.8325 + }, + { + "start": 2403.1, + "end": 2404.12, + "probability": 0.2553 + }, + { + "start": 2404.44, + "end": 2405.18, + "probability": 0.566 + }, + { + "start": 2405.34, + "end": 2406.84, + "probability": 0.7829 + }, + { + "start": 2407.7, + "end": 2409.2, + "probability": 0.9941 + }, + { + "start": 2411.04, + "end": 2412.02, + "probability": 0.9961 + }, + { + "start": 2412.66, + "end": 2413.66, + "probability": 0.713 + }, + { + "start": 2413.74, + "end": 2414.56, + "probability": 0.5575 + }, + { + "start": 2415.7, + "end": 2419.66, + "probability": 0.9362 + }, + { + "start": 2420.82, + "end": 2422.2, + "probability": 0.9274 + }, + { + "start": 2422.28, + "end": 2423.48, + "probability": 0.7642 + }, + { + "start": 2423.82, + "end": 2424.68, + "probability": 0.9922 + }, + { + "start": 2425.62, + "end": 2426.36, + "probability": 0.7221 + }, + { + "start": 2426.8, + "end": 2429.04, + "probability": 0.709 + }, + { + "start": 2432.86, + "end": 2435.0, + "probability": 0.9281 + }, + { + "start": 2436.38, + "end": 2438.06, + "probability": 0.9818 + }, + { + "start": 2439.56, + "end": 2440.76, + "probability": 0.5371 + }, + { + "start": 2441.48, + "end": 2443.76, + "probability": 0.95 + }, + { + "start": 2445.5, + "end": 2446.68, + "probability": 0.9909 + }, + { + "start": 2447.28, + "end": 2449.88, + "probability": 0.9788 + }, + { + "start": 2451.18, + "end": 2451.88, + "probability": 0.6559 + }, + { + "start": 2451.98, + "end": 2455.24, + "probability": 0.9591 + }, + { + "start": 2456.24, + "end": 2457.36, + "probability": 0.7968 + }, + { + "start": 2457.62, + "end": 2459.85, + "probability": 0.074 + }, + { + "start": 2460.1, + "end": 2460.94, + "probability": 0.1628 + }, + { + "start": 2461.02, + "end": 2461.66, + "probability": 0.106 + }, + { + "start": 2462.32, + "end": 2462.66, + "probability": 0.2403 + }, + { + "start": 2463.2, + "end": 2463.2, + "probability": 0.4129 + }, + { + "start": 2463.6, + "end": 2464.08, + "probability": 0.0568 + }, + { + "start": 2465.66, + "end": 2467.76, + "probability": 0.8932 + }, + { + "start": 2471.12, + "end": 2474.66, + "probability": 0.9371 + }, + { + "start": 2475.9, + "end": 2477.98, + "probability": 0.8965 + }, + { + "start": 2479.04, + "end": 2479.98, + "probability": 0.9073 + }, + { + "start": 2482.02, + "end": 2484.6, + "probability": 0.9609 + }, + { + "start": 2485.12, + "end": 2485.92, + "probability": 0.7803 + }, + { + "start": 2486.6, + "end": 2489.32, + "probability": 0.9 + }, + { + "start": 2490.36, + "end": 2494.24, + "probability": 0.9893 + }, + { + "start": 2496.28, + "end": 2498.7, + "probability": 0.9082 + }, + { + "start": 2499.62, + "end": 2500.7, + "probability": 0.7274 + }, + { + "start": 2501.66, + "end": 2502.38, + "probability": 0.9679 + }, + { + "start": 2502.82, + "end": 2505.54, + "probability": 0.8693 + }, + { + "start": 2506.58, + "end": 2508.94, + "probability": 0.9766 + }, + { + "start": 2509.72, + "end": 2510.64, + "probability": 0.9873 + }, + { + "start": 2511.34, + "end": 2512.02, + "probability": 0.946 + }, + { + "start": 2513.36, + "end": 2515.18, + "probability": 0.8722 + }, + { + "start": 2517.0, + "end": 2517.82, + "probability": 0.324 + }, + { + "start": 2517.92, + "end": 2518.74, + "probability": 0.9241 + }, + { + "start": 2520.78, + "end": 2521.7, + "probability": 0.6137 + }, + { + "start": 2521.84, + "end": 2523.54, + "probability": 0.9893 + }, + { + "start": 2524.62, + "end": 2525.43, + "probability": 0.9741 + }, + { + "start": 2525.54, + "end": 2525.9, + "probability": 0.5004 + }, + { + "start": 2526.16, + "end": 2526.72, + "probability": 0.5536 + }, + { + "start": 2526.96, + "end": 2527.8, + "probability": 0.8535 + }, + { + "start": 2527.84, + "end": 2529.18, + "probability": 0.9667 + }, + { + "start": 2529.76, + "end": 2531.94, + "probability": 0.9803 + }, + { + "start": 2532.36, + "end": 2534.5, + "probability": 0.6961 + }, + { + "start": 2534.62, + "end": 2535.8, + "probability": 0.5314 + }, + { + "start": 2536.18, + "end": 2536.78, + "probability": 0.6683 + }, + { + "start": 2538.12, + "end": 2540.66, + "probability": 0.9171 + }, + { + "start": 2541.18, + "end": 2544.22, + "probability": 0.985 + }, + { + "start": 2544.86, + "end": 2545.98, + "probability": 0.9974 + }, + { + "start": 2547.66, + "end": 2550.02, + "probability": 0.9829 + }, + { + "start": 2551.62, + "end": 2553.36, + "probability": 0.7589 + }, + { + "start": 2553.84, + "end": 2558.14, + "probability": 0.9656 + }, + { + "start": 2558.14, + "end": 2562.3, + "probability": 0.9702 + }, + { + "start": 2562.78, + "end": 2564.9, + "probability": 0.8808 + }, + { + "start": 2564.98, + "end": 2565.7, + "probability": 0.624 + }, + { + "start": 2566.16, + "end": 2567.15, + "probability": 0.5514 + }, + { + "start": 2567.26, + "end": 2569.74, + "probability": 0.9354 + }, + { + "start": 2584.02, + "end": 2585.54, + "probability": 0.9377 + }, + { + "start": 2586.08, + "end": 2586.98, + "probability": 0.6543 + }, + { + "start": 2588.68, + "end": 2590.18, + "probability": 0.847 + }, + { + "start": 2592.96, + "end": 2593.2, + "probability": 0.8626 + }, + { + "start": 2593.24, + "end": 2593.86, + "probability": 0.9958 + }, + { + "start": 2594.28, + "end": 2595.3, + "probability": 0.9883 + }, + { + "start": 2595.46, + "end": 2599.62, + "probability": 0.9703 + }, + { + "start": 2599.62, + "end": 2602.56, + "probability": 0.9995 + }, + { + "start": 2602.76, + "end": 2603.12, + "probability": 0.6442 + }, + { + "start": 2604.18, + "end": 2604.82, + "probability": 0.9815 + }, + { + "start": 2605.62, + "end": 2606.48, + "probability": 0.9104 + }, + { + "start": 2607.16, + "end": 2609.08, + "probability": 0.9779 + }, + { + "start": 2609.84, + "end": 2611.58, + "probability": 0.9839 + }, + { + "start": 2613.08, + "end": 2614.6, + "probability": 0.9682 + }, + { + "start": 2617.88, + "end": 2618.24, + "probability": 0.0332 + }, + { + "start": 2618.24, + "end": 2619.8, + "probability": 0.8224 + }, + { + "start": 2621.22, + "end": 2624.44, + "probability": 0.9866 + }, + { + "start": 2625.46, + "end": 2626.3, + "probability": 0.9912 + }, + { + "start": 2629.4, + "end": 2630.4, + "probability": 0.9993 + }, + { + "start": 2631.62, + "end": 2633.92, + "probability": 0.9959 + }, + { + "start": 2635.32, + "end": 2636.52, + "probability": 0.8068 + }, + { + "start": 2638.02, + "end": 2639.44, + "probability": 0.9961 + }, + { + "start": 2640.4, + "end": 2642.04, + "probability": 0.9984 + }, + { + "start": 2642.88, + "end": 2643.12, + "probability": 0.9707 + }, + { + "start": 2643.72, + "end": 2644.88, + "probability": 0.7825 + }, + { + "start": 2645.7, + "end": 2647.12, + "probability": 0.9155 + }, + { + "start": 2649.06, + "end": 2651.88, + "probability": 0.9001 + }, + { + "start": 2652.62, + "end": 2654.96, + "probability": 0.8884 + }, + { + "start": 2656.36, + "end": 2657.89, + "probability": 0.9297 + }, + { + "start": 2658.76, + "end": 2660.68, + "probability": 0.9971 + }, + { + "start": 2662.16, + "end": 2667.52, + "probability": 0.9958 + }, + { + "start": 2667.96, + "end": 2668.66, + "probability": 0.3488 + }, + { + "start": 2669.14, + "end": 2670.04, + "probability": 0.5321 + }, + { + "start": 2672.14, + "end": 2674.76, + "probability": 0.9896 + }, + { + "start": 2674.82, + "end": 2675.48, + "probability": 0.6595 + }, + { + "start": 2676.74, + "end": 2679.28, + "probability": 0.9621 + }, + { + "start": 2679.74, + "end": 2680.72, + "probability": 0.9614 + }, + { + "start": 2681.1, + "end": 2681.88, + "probability": 0.9615 + }, + { + "start": 2681.9, + "end": 2683.22, + "probability": 0.9941 + }, + { + "start": 2685.16, + "end": 2688.46, + "probability": 0.9806 + }, + { + "start": 2688.7, + "end": 2690.54, + "probability": 0.655 + }, + { + "start": 2691.64, + "end": 2693.14, + "probability": 0.8081 + }, + { + "start": 2693.78, + "end": 2695.72, + "probability": 0.7219 + }, + { + "start": 2696.08, + "end": 2698.18, + "probability": 0.8757 + }, + { + "start": 2698.72, + "end": 2700.0, + "probability": 0.972 + }, + { + "start": 2700.82, + "end": 2702.49, + "probability": 0.9067 + }, + { + "start": 2703.58, + "end": 2705.92, + "probability": 0.5715 + }, + { + "start": 2706.68, + "end": 2708.9, + "probability": 0.8806 + }, + { + "start": 2709.92, + "end": 2712.18, + "probability": 0.9238 + }, + { + "start": 2712.58, + "end": 2715.9, + "probability": 0.9389 + }, + { + "start": 2716.3, + "end": 2717.38, + "probability": 0.8907 + }, + { + "start": 2718.0, + "end": 2719.88, + "probability": 0.9839 + }, + { + "start": 2720.66, + "end": 2721.6, + "probability": 0.7712 + }, + { + "start": 2722.82, + "end": 2724.58, + "probability": 0.9738 + }, + { + "start": 2724.7, + "end": 2726.66, + "probability": 0.9538 + }, + { + "start": 2726.9, + "end": 2727.91, + "probability": 0.8255 + }, + { + "start": 2728.78, + "end": 2731.88, + "probability": 0.7625 + }, + { + "start": 2731.9, + "end": 2733.8, + "probability": 0.7808 + }, + { + "start": 2734.42, + "end": 2735.38, + "probability": 0.9155 + }, + { + "start": 2735.58, + "end": 2736.3, + "probability": 0.6954 + }, + { + "start": 2736.5, + "end": 2738.4, + "probability": 0.4503 + }, + { + "start": 2738.52, + "end": 2740.22, + "probability": 0.625 + }, + { + "start": 2740.96, + "end": 2742.28, + "probability": 0.9872 + }, + { + "start": 2742.72, + "end": 2745.8, + "probability": 0.8812 + }, + { + "start": 2746.26, + "end": 2747.88, + "probability": 0.8345 + }, + { + "start": 2748.5, + "end": 2750.62, + "probability": 0.9941 + }, + { + "start": 2751.2, + "end": 2753.84, + "probability": 0.9859 + }, + { + "start": 2753.94, + "end": 2757.24, + "probability": 0.9486 + }, + { + "start": 2757.94, + "end": 2761.95, + "probability": 0.9829 + }, + { + "start": 2762.38, + "end": 2763.8, + "probability": 0.8692 + }, + { + "start": 2764.22, + "end": 2766.72, + "probability": 0.8315 + }, + { + "start": 2767.0, + "end": 2767.72, + "probability": 0.7881 + }, + { + "start": 2768.32, + "end": 2772.56, + "probability": 0.7984 + }, + { + "start": 2773.22, + "end": 2774.38, + "probability": 0.7974 + }, + { + "start": 2774.5, + "end": 2775.66, + "probability": 0.888 + }, + { + "start": 2775.92, + "end": 2777.02, + "probability": 0.8396 + }, + { + "start": 2778.04, + "end": 2778.04, + "probability": 0.0144 + }, + { + "start": 2778.04, + "end": 2778.64, + "probability": 0.902 + }, + { + "start": 2779.66, + "end": 2781.22, + "probability": 0.9066 + }, + { + "start": 2781.3, + "end": 2782.6, + "probability": 0.9912 + }, + { + "start": 2783.18, + "end": 2784.46, + "probability": 0.9966 + }, + { + "start": 2785.74, + "end": 2787.32, + "probability": 0.8956 + }, + { + "start": 2787.48, + "end": 2787.9, + "probability": 0.8098 + }, + { + "start": 2788.46, + "end": 2788.64, + "probability": 0.0103 + }, + { + "start": 2788.64, + "end": 2788.64, + "probability": 0.0911 + }, + { + "start": 2788.64, + "end": 2788.64, + "probability": 0.0689 + }, + { + "start": 2788.64, + "end": 2789.02, + "probability": 0.478 + }, + { + "start": 2789.04, + "end": 2790.78, + "probability": 0.8913 + }, + { + "start": 2791.42, + "end": 2792.56, + "probability": 0.8995 + }, + { + "start": 2794.14, + "end": 2794.9, + "probability": 0.1103 + }, + { + "start": 2795.16, + "end": 2795.74, + "probability": 0.1056 + }, + { + "start": 2795.96, + "end": 2799.3, + "probability": 0.1711 + }, + { + "start": 2799.58, + "end": 2799.68, + "probability": 0.1041 + }, + { + "start": 2799.68, + "end": 2801.28, + "probability": 0.8251 + }, + { + "start": 2804.92, + "end": 2805.66, + "probability": 0.6837 + }, + { + "start": 2806.78, + "end": 2807.24, + "probability": 0.9211 + }, + { + "start": 2810.22, + "end": 2811.24, + "probability": 0.7366 + }, + { + "start": 2812.16, + "end": 2818.06, + "probability": 0.9614 + }, + { + "start": 2818.72, + "end": 2819.58, + "probability": 0.9659 + }, + { + "start": 2820.72, + "end": 2823.72, + "probability": 0.9955 + }, + { + "start": 2825.98, + "end": 2826.72, + "probability": 0.9755 + }, + { + "start": 2828.3, + "end": 2832.72, + "probability": 0.9959 + }, + { + "start": 2833.8, + "end": 2835.18, + "probability": 0.7349 + }, + { + "start": 2835.4, + "end": 2837.7, + "probability": 0.991 + }, + { + "start": 2838.58, + "end": 2841.08, + "probability": 0.9978 + }, + { + "start": 2842.3, + "end": 2844.92, + "probability": 0.9993 + }, + { + "start": 2846.72, + "end": 2848.5, + "probability": 0.9949 + }, + { + "start": 2849.44, + "end": 2850.98, + "probability": 0.9973 + }, + { + "start": 2851.88, + "end": 2854.56, + "probability": 0.9324 + }, + { + "start": 2855.42, + "end": 2858.06, + "probability": 0.99 + }, + { + "start": 2859.68, + "end": 2860.24, + "probability": 0.7301 + }, + { + "start": 2860.78, + "end": 2861.76, + "probability": 0.9787 + }, + { + "start": 2862.74, + "end": 2865.48, + "probability": 0.9973 + }, + { + "start": 2865.48, + "end": 2868.76, + "probability": 0.8747 + }, + { + "start": 2868.86, + "end": 2869.92, + "probability": 0.9606 + }, + { + "start": 2872.02, + "end": 2875.21, + "probability": 0.7565 + }, + { + "start": 2876.22, + "end": 2881.44, + "probability": 0.9635 + }, + { + "start": 2881.44, + "end": 2885.98, + "probability": 0.9788 + }, + { + "start": 2888.1, + "end": 2890.06, + "probability": 0.8439 + }, + { + "start": 2891.34, + "end": 2893.94, + "probability": 0.9893 + }, + { + "start": 2896.16, + "end": 2897.52, + "probability": 0.9273 + }, + { + "start": 2898.42, + "end": 2900.46, + "probability": 0.9849 + }, + { + "start": 2901.28, + "end": 2903.22, + "probability": 0.9924 + }, + { + "start": 2904.18, + "end": 2907.96, + "probability": 0.9983 + }, + { + "start": 2908.78, + "end": 2911.26, + "probability": 0.9961 + }, + { + "start": 2913.0, + "end": 2917.02, + "probability": 0.9345 + }, + { + "start": 2917.98, + "end": 2920.3, + "probability": 0.9422 + }, + { + "start": 2920.86, + "end": 2923.78, + "probability": 0.9142 + }, + { + "start": 2924.3, + "end": 2925.7, + "probability": 0.8859 + }, + { + "start": 2927.02, + "end": 2928.75, + "probability": 0.9831 + }, + { + "start": 2929.36, + "end": 2931.02, + "probability": 0.9978 + }, + { + "start": 2931.18, + "end": 2933.36, + "probability": 0.9676 + }, + { + "start": 2933.64, + "end": 2935.16, + "probability": 0.9991 + }, + { + "start": 2936.08, + "end": 2939.56, + "probability": 0.9034 + }, + { + "start": 2940.16, + "end": 2940.86, + "probability": 0.9357 + }, + { + "start": 2941.84, + "end": 2942.38, + "probability": 0.7067 + }, + { + "start": 2944.66, + "end": 2946.24, + "probability": 0.9629 + }, + { + "start": 2948.38, + "end": 2948.52, + "probability": 0.7388 + }, + { + "start": 2948.58, + "end": 2951.84, + "probability": 0.9636 + }, + { + "start": 2952.64, + "end": 2956.72, + "probability": 0.9596 + }, + { + "start": 2957.28, + "end": 2960.2, + "probability": 0.954 + }, + { + "start": 2961.0, + "end": 2963.66, + "probability": 0.9492 + }, + { + "start": 2963.66, + "end": 2967.26, + "probability": 0.9944 + }, + { + "start": 2967.88, + "end": 2968.78, + "probability": 0.7856 + }, + { + "start": 2969.2, + "end": 2971.46, + "probability": 0.9448 + }, + { + "start": 2971.92, + "end": 2974.88, + "probability": 0.9837 + }, + { + "start": 2975.24, + "end": 2976.48, + "probability": 0.8212 + }, + { + "start": 2976.82, + "end": 2977.82, + "probability": 0.985 + }, + { + "start": 2977.88, + "end": 2978.62, + "probability": 0.7037 + }, + { + "start": 2979.24, + "end": 2980.5, + "probability": 0.9834 + }, + { + "start": 2980.88, + "end": 2983.92, + "probability": 0.6255 + }, + { + "start": 2984.18, + "end": 2985.42, + "probability": 0.99 + }, + { + "start": 2985.96, + "end": 2986.48, + "probability": 0.8571 + }, + { + "start": 2987.78, + "end": 2989.74, + "probability": 0.4997 + }, + { + "start": 2990.32, + "end": 2991.84, + "probability": 0.9731 + }, + { + "start": 2992.34, + "end": 2995.46, + "probability": 0.9868 + }, + { + "start": 2996.04, + "end": 2998.14, + "probability": 0.603 + }, + { + "start": 2998.26, + "end": 2999.24, + "probability": 0.6997 + }, + { + "start": 2999.42, + "end": 2999.7, + "probability": 0.8651 + }, + { + "start": 3000.42, + "end": 3002.84, + "probability": 0.9661 + }, + { + "start": 3003.56, + "end": 3005.2, + "probability": 0.9979 + }, + { + "start": 3005.28, + "end": 3007.28, + "probability": 0.9673 + }, + { + "start": 3007.9, + "end": 3009.98, + "probability": 0.9828 + }, + { + "start": 3011.78, + "end": 3014.42, + "probability": 0.8883 + }, + { + "start": 3015.04, + "end": 3017.72, + "probability": 0.9548 + }, + { + "start": 3018.42, + "end": 3020.22, + "probability": 0.826 + }, + { + "start": 3021.18, + "end": 3023.0, + "probability": 0.9915 + }, + { + "start": 3023.94, + "end": 3024.75, + "probability": 0.9916 + }, + { + "start": 3025.84, + "end": 3027.98, + "probability": 0.9956 + }, + { + "start": 3028.2, + "end": 3028.94, + "probability": 0.8515 + }, + { + "start": 3029.34, + "end": 3031.0, + "probability": 0.9985 + }, + { + "start": 3031.62, + "end": 3034.32, + "probability": 0.9945 + }, + { + "start": 3034.54, + "end": 3034.98, + "probability": 0.7953 + }, + { + "start": 3035.38, + "end": 3036.78, + "probability": 0.7488 + }, + { + "start": 3036.86, + "end": 3039.0, + "probability": 0.9351 + }, + { + "start": 3053.92, + "end": 3055.24, + "probability": 0.9003 + }, + { + "start": 3057.06, + "end": 3057.26, + "probability": 0.6402 + }, + { + "start": 3057.94, + "end": 3060.56, + "probability": 0.905 + }, + { + "start": 3061.2, + "end": 3062.46, + "probability": 0.9406 + }, + { + "start": 3063.0, + "end": 3065.6, + "probability": 0.9694 + }, + { + "start": 3066.44, + "end": 3069.56, + "probability": 0.8339 + }, + { + "start": 3070.44, + "end": 3071.04, + "probability": 0.6874 + }, + { + "start": 3071.1, + "end": 3071.44, + "probability": 0.9808 + }, + { + "start": 3071.56, + "end": 3072.18, + "probability": 0.9905 + }, + { + "start": 3072.36, + "end": 3072.68, + "probability": 0.9944 + }, + { + "start": 3072.96, + "end": 3073.44, + "probability": 0.5735 + }, + { + "start": 3073.44, + "end": 3074.1, + "probability": 0.8462 + }, + { + "start": 3074.72, + "end": 3076.36, + "probability": 0.6987 + }, + { + "start": 3077.04, + "end": 3078.28, + "probability": 0.8925 + }, + { + "start": 3078.98, + "end": 3080.56, + "probability": 0.6185 + }, + { + "start": 3082.98, + "end": 3084.86, + "probability": 0.1378 + }, + { + "start": 3084.86, + "end": 3084.86, + "probability": 0.1387 + }, + { + "start": 3084.86, + "end": 3084.86, + "probability": 0.0951 + }, + { + "start": 3084.86, + "end": 3090.48, + "probability": 0.9237 + }, + { + "start": 3091.22, + "end": 3092.36, + "probability": 0.7871 + }, + { + "start": 3093.06, + "end": 3094.54, + "probability": 0.8822 + }, + { + "start": 3095.32, + "end": 3097.84, + "probability": 0.8629 + }, + { + "start": 3099.1, + "end": 3102.46, + "probability": 0.3994 + }, + { + "start": 3103.2, + "end": 3105.02, + "probability": 0.9146 + }, + { + "start": 3105.02, + "end": 3107.36, + "probability": 0.96 + }, + { + "start": 3108.24, + "end": 3109.04, + "probability": 0.6143 + }, + { + "start": 3109.16, + "end": 3111.58, + "probability": 0.9753 + }, + { + "start": 3112.14, + "end": 3115.78, + "probability": 0.8994 + }, + { + "start": 3116.26, + "end": 3117.9, + "probability": 0.9533 + }, + { + "start": 3119.06, + "end": 3120.68, + "probability": 0.9955 + }, + { + "start": 3121.68, + "end": 3124.8, + "probability": 0.9973 + }, + { + "start": 3125.22, + "end": 3128.04, + "probability": 0.9702 + }, + { + "start": 3129.04, + "end": 3129.42, + "probability": 0.5882 + }, + { + "start": 3129.44, + "end": 3136.0, + "probability": 0.8942 + }, + { + "start": 3136.54, + "end": 3139.56, + "probability": 0.7679 + }, + { + "start": 3140.2, + "end": 3140.8, + "probability": 0.9346 + }, + { + "start": 3142.1, + "end": 3143.82, + "probability": 0.9701 + }, + { + "start": 3144.36, + "end": 3144.94, + "probability": 0.8677 + }, + { + "start": 3145.48, + "end": 3146.78, + "probability": 0.8801 + }, + { + "start": 3147.4, + "end": 3150.69, + "probability": 0.9835 + }, + { + "start": 3151.64, + "end": 3155.04, + "probability": 0.9857 + }, + { + "start": 3155.6, + "end": 3158.48, + "probability": 0.9246 + }, + { + "start": 3158.92, + "end": 3161.0, + "probability": 0.7481 + }, + { + "start": 3161.04, + "end": 3161.78, + "probability": 0.7599 + }, + { + "start": 3162.3, + "end": 3163.36, + "probability": 0.9534 + }, + { + "start": 3163.52, + "end": 3165.8, + "probability": 0.8259 + }, + { + "start": 3165.8, + "end": 3168.66, + "probability": 0.9893 + }, + { + "start": 3169.46, + "end": 3170.66, + "probability": 0.8253 + }, + { + "start": 3171.02, + "end": 3174.3, + "probability": 0.8118 + }, + { + "start": 3174.42, + "end": 3175.24, + "probability": 0.8275 + }, + { + "start": 3176.18, + "end": 3178.3, + "probability": 0.9648 + }, + { + "start": 3179.0, + "end": 3181.14, + "probability": 0.9854 + }, + { + "start": 3182.1, + "end": 3183.4, + "probability": 0.8276 + }, + { + "start": 3184.06, + "end": 3186.86, + "probability": 0.9867 + }, + { + "start": 3188.06, + "end": 3190.34, + "probability": 0.9565 + }, + { + "start": 3191.1, + "end": 3192.94, + "probability": 0.9733 + }, + { + "start": 3194.08, + "end": 3195.66, + "probability": 0.9818 + }, + { + "start": 3196.28, + "end": 3197.86, + "probability": 0.8859 + }, + { + "start": 3198.42, + "end": 3201.38, + "probability": 0.996 + }, + { + "start": 3202.26, + "end": 3205.22, + "probability": 0.7507 + }, + { + "start": 3205.88, + "end": 3210.68, + "probability": 0.9857 + }, + { + "start": 3211.12, + "end": 3213.04, + "probability": 0.9485 + }, + { + "start": 3213.82, + "end": 3218.46, + "probability": 0.9927 + }, + { + "start": 3218.46, + "end": 3223.78, + "probability": 0.993 + }, + { + "start": 3224.54, + "end": 3226.4, + "probability": 0.9979 + }, + { + "start": 3226.92, + "end": 3231.88, + "probability": 0.998 + }, + { + "start": 3232.54, + "end": 3234.23, + "probability": 0.9976 + }, + { + "start": 3235.06, + "end": 3236.16, + "probability": 0.8009 + }, + { + "start": 3236.26, + "end": 3237.22, + "probability": 0.7253 + }, + { + "start": 3237.36, + "end": 3238.14, + "probability": 0.7036 + }, + { + "start": 3238.46, + "end": 3242.68, + "probability": 0.8945 + }, + { + "start": 3243.36, + "end": 3246.2, + "probability": 0.9705 + }, + { + "start": 3246.6, + "end": 3247.92, + "probability": 0.7616 + }, + { + "start": 3248.8, + "end": 3249.24, + "probability": 0.4456 + }, + { + "start": 3249.24, + "end": 3251.78, + "probability": 0.7716 + }, + { + "start": 3252.24, + "end": 3253.48, + "probability": 0.906 + }, + { + "start": 3253.7, + "end": 3254.36, + "probability": 0.8965 + }, + { + "start": 3254.9, + "end": 3257.38, + "probability": 0.6261 + }, + { + "start": 3257.76, + "end": 3259.36, + "probability": 0.9873 + }, + { + "start": 3260.04, + "end": 3261.94, + "probability": 0.9912 + }, + { + "start": 3262.56, + "end": 3264.64, + "probability": 0.8221 + }, + { + "start": 3265.1, + "end": 3267.32, + "probability": 0.9366 + }, + { + "start": 3269.84, + "end": 3271.5, + "probability": 0.5105 + }, + { + "start": 3271.84, + "end": 3271.84, + "probability": 0.1455 + }, + { + "start": 3271.84, + "end": 3271.84, + "probability": 0.3703 + }, + { + "start": 3271.84, + "end": 3275.28, + "probability": 0.9913 + }, + { + "start": 3275.92, + "end": 3276.38, + "probability": 0.4721 + }, + { + "start": 3276.48, + "end": 3277.0, + "probability": 0.6912 + }, + { + "start": 3277.22, + "end": 3279.1, + "probability": 0.8727 + }, + { + "start": 3279.52, + "end": 3281.32, + "probability": 0.2315 + }, + { + "start": 3282.34, + "end": 3282.34, + "probability": 0.0889 + }, + { + "start": 3282.34, + "end": 3282.7, + "probability": 0.3129 + }, + { + "start": 3291.5, + "end": 3291.5, + "probability": 0.2608 + }, + { + "start": 3291.5, + "end": 3293.2, + "probability": 0.5781 + }, + { + "start": 3293.2, + "end": 3293.86, + "probability": 0.608 + }, + { + "start": 3294.38, + "end": 3296.24, + "probability": 0.8854 + }, + { + "start": 3298.02, + "end": 3302.62, + "probability": 0.9499 + }, + { + "start": 3303.66, + "end": 3307.64, + "probability": 0.8896 + }, + { + "start": 3308.38, + "end": 3311.0, + "probability": 0.8877 + }, + { + "start": 3311.68, + "end": 3313.56, + "probability": 0.9495 + }, + { + "start": 3314.14, + "end": 3314.92, + "probability": 0.9123 + }, + { + "start": 3315.82, + "end": 3319.84, + "probability": 0.9954 + }, + { + "start": 3320.68, + "end": 3325.21, + "probability": 0.9793 + }, + { + "start": 3326.04, + "end": 3328.76, + "probability": 0.8029 + }, + { + "start": 3330.02, + "end": 3331.56, + "probability": 0.9645 + }, + { + "start": 3332.58, + "end": 3334.16, + "probability": 0.8879 + }, + { + "start": 3335.12, + "end": 3335.92, + "probability": 0.8614 + }, + { + "start": 3336.54, + "end": 3337.84, + "probability": 0.9242 + }, + { + "start": 3339.0, + "end": 3341.94, + "probability": 0.798 + }, + { + "start": 3342.46, + "end": 3345.46, + "probability": 0.9644 + }, + { + "start": 3346.9, + "end": 3348.08, + "probability": 0.9688 + }, + { + "start": 3348.92, + "end": 3352.54, + "probability": 0.8337 + }, + { + "start": 3353.5, + "end": 3354.54, + "probability": 0.7259 + }, + { + "start": 3354.87, + "end": 3358.4, + "probability": 0.9131 + }, + { + "start": 3359.16, + "end": 3361.2, + "probability": 0.5885 + }, + { + "start": 3361.72, + "end": 3366.26, + "probability": 0.967 + }, + { + "start": 3367.1, + "end": 3369.44, + "probability": 0.8878 + }, + { + "start": 3370.82, + "end": 3372.14, + "probability": 0.9843 + }, + { + "start": 3373.02, + "end": 3373.97, + "probability": 0.9138 + }, + { + "start": 3375.24, + "end": 3376.32, + "probability": 0.8862 + }, + { + "start": 3377.36, + "end": 3377.64, + "probability": 0.8236 + }, + { + "start": 3378.26, + "end": 3380.94, + "probability": 0.9699 + }, + { + "start": 3381.76, + "end": 3383.32, + "probability": 0.9292 + }, + { + "start": 3384.6, + "end": 3388.22, + "probability": 0.9877 + }, + { + "start": 3388.94, + "end": 3390.68, + "probability": 0.4924 + }, + { + "start": 3391.54, + "end": 3395.78, + "probability": 0.662 + }, + { + "start": 3396.5, + "end": 3398.28, + "probability": 0.9871 + }, + { + "start": 3399.04, + "end": 3400.5, + "probability": 0.652 + }, + { + "start": 3400.72, + "end": 3403.94, + "probability": 0.9701 + }, + { + "start": 3404.34, + "end": 3406.0, + "probability": 0.9391 + }, + { + "start": 3407.0, + "end": 3407.66, + "probability": 0.2878 + }, + { + "start": 3408.34, + "end": 3410.46, + "probability": 0.7788 + }, + { + "start": 3411.6, + "end": 3412.54, + "probability": 0.966 + }, + { + "start": 3413.08, + "end": 3414.14, + "probability": 0.7977 + }, + { + "start": 3414.78, + "end": 3417.24, + "probability": 0.9929 + }, + { + "start": 3417.92, + "end": 3421.08, + "probability": 0.9882 + }, + { + "start": 3421.08, + "end": 3424.14, + "probability": 0.9946 + }, + { + "start": 3424.24, + "end": 3426.5, + "probability": 0.9246 + }, + { + "start": 3427.42, + "end": 3429.72, + "probability": 0.9995 + }, + { + "start": 3430.48, + "end": 3435.88, + "probability": 0.9871 + }, + { + "start": 3436.38, + "end": 3436.92, + "probability": 0.858 + }, + { + "start": 3437.02, + "end": 3437.74, + "probability": 0.8928 + }, + { + "start": 3438.22, + "end": 3440.74, + "probability": 0.9569 + }, + { + "start": 3441.48, + "end": 3448.38, + "probability": 0.9482 + }, + { + "start": 3448.92, + "end": 3450.48, + "probability": 0.9917 + }, + { + "start": 3450.56, + "end": 3451.18, + "probability": 0.9924 + }, + { + "start": 3451.28, + "end": 3452.05, + "probability": 0.9492 + }, + { + "start": 3452.54, + "end": 3453.46, + "probability": 0.5075 + }, + { + "start": 3453.68, + "end": 3455.04, + "probability": 0.8191 + }, + { + "start": 3455.64, + "end": 3457.96, + "probability": 0.9233 + }, + { + "start": 3458.86, + "end": 3460.06, + "probability": 0.948 + }, + { + "start": 3461.0, + "end": 3462.64, + "probability": 0.7631 + }, + { + "start": 3463.12, + "end": 3465.64, + "probability": 0.9697 + }, + { + "start": 3466.44, + "end": 3467.42, + "probability": 0.9697 + }, + { + "start": 3467.88, + "end": 3470.12, + "probability": 0.9905 + }, + { + "start": 3470.8, + "end": 3472.34, + "probability": 0.647 + }, + { + "start": 3472.96, + "end": 3474.7, + "probability": 0.7947 + }, + { + "start": 3476.22, + "end": 3481.08, + "probability": 0.9912 + }, + { + "start": 3481.44, + "end": 3482.38, + "probability": 0.9492 + }, + { + "start": 3482.52, + "end": 3483.44, + "probability": 0.844 + }, + { + "start": 3484.28, + "end": 3485.96, + "probability": 0.7839 + }, + { + "start": 3486.02, + "end": 3486.72, + "probability": 0.9676 + }, + { + "start": 3487.2, + "end": 3488.72, + "probability": 0.5173 + }, + { + "start": 3490.0, + "end": 3493.18, + "probability": 0.9294 + }, + { + "start": 3493.92, + "end": 3495.96, + "probability": 0.954 + }, + { + "start": 3515.72, + "end": 3516.42, + "probability": 0.4845 + }, + { + "start": 3516.56, + "end": 3518.17, + "probability": 0.6707 + }, + { + "start": 3518.4, + "end": 3521.7, + "probability": 0.8227 + }, + { + "start": 3521.8, + "end": 3525.4, + "probability": 0.978 + }, + { + "start": 3528.92, + "end": 3533.84, + "probability": 0.9615 + }, + { + "start": 3534.84, + "end": 3537.36, + "probability": 0.9989 + }, + { + "start": 3538.18, + "end": 3540.28, + "probability": 0.9951 + }, + { + "start": 3541.64, + "end": 3545.48, + "probability": 0.9902 + }, + { + "start": 3546.9, + "end": 3554.78, + "probability": 0.8936 + }, + { + "start": 3555.04, + "end": 3558.36, + "probability": 0.7062 + }, + { + "start": 3558.44, + "end": 3565.68, + "probability": 0.939 + }, + { + "start": 3566.66, + "end": 3577.16, + "probability": 0.9617 + }, + { + "start": 3577.32, + "end": 3579.14, + "probability": 0.9026 + }, + { + "start": 3580.34, + "end": 3591.3, + "probability": 0.9697 + }, + { + "start": 3592.1, + "end": 3595.04, + "probability": 0.9951 + }, + { + "start": 3595.22, + "end": 3595.9, + "probability": 0.7556 + }, + { + "start": 3596.22, + "end": 3600.64, + "probability": 0.9768 + }, + { + "start": 3602.34, + "end": 3606.78, + "probability": 0.9847 + }, + { + "start": 3606.78, + "end": 3610.4, + "probability": 0.9941 + }, + { + "start": 3612.32, + "end": 3620.96, + "probability": 0.9115 + }, + { + "start": 3621.1, + "end": 3623.08, + "probability": 0.8652 + }, + { + "start": 3623.14, + "end": 3624.88, + "probability": 0.9534 + }, + { + "start": 3625.68, + "end": 3626.8, + "probability": 0.5559 + }, + { + "start": 3628.1, + "end": 3630.64, + "probability": 0.6619 + }, + { + "start": 3630.88, + "end": 3634.44, + "probability": 0.7684 + }, + { + "start": 3635.95, + "end": 3639.84, + "probability": 0.9884 + }, + { + "start": 3640.38, + "end": 3641.7, + "probability": 0.9741 + }, + { + "start": 3643.48, + "end": 3647.72, + "probability": 0.9829 + }, + { + "start": 3647.88, + "end": 3648.82, + "probability": 0.8086 + }, + { + "start": 3648.94, + "end": 3649.14, + "probability": 0.5063 + }, + { + "start": 3649.96, + "end": 3655.26, + "probability": 0.9822 + }, + { + "start": 3656.16, + "end": 3660.5, + "probability": 0.715 + }, + { + "start": 3661.66, + "end": 3665.84, + "probability": 0.9827 + }, + { + "start": 3666.08, + "end": 3674.06, + "probability": 0.9961 + }, + { + "start": 3676.34, + "end": 3682.38, + "probability": 0.835 + }, + { + "start": 3683.5, + "end": 3686.42, + "probability": 0.9574 + }, + { + "start": 3687.26, + "end": 3692.7, + "probability": 0.8517 + }, + { + "start": 3693.06, + "end": 3696.92, + "probability": 0.8844 + }, + { + "start": 3697.14, + "end": 3701.26, + "probability": 0.9886 + }, + { + "start": 3701.32, + "end": 3702.54, + "probability": 0.8601 + }, + { + "start": 3703.22, + "end": 3708.14, + "probability": 0.9985 + }, + { + "start": 3710.38, + "end": 3712.26, + "probability": 0.5168 + }, + { + "start": 3712.28, + "end": 3715.68, + "probability": 0.996 + }, + { + "start": 3716.58, + "end": 3719.68, + "probability": 0.9695 + }, + { + "start": 3719.72, + "end": 3719.98, + "probability": 0.5379 + }, + { + "start": 3720.08, + "end": 3720.08, + "probability": 0.2888 + }, + { + "start": 3720.2, + "end": 3723.56, + "probability": 0.945 + }, + { + "start": 3739.68, + "end": 3740.08, + "probability": 0.0155 + }, + { + "start": 3744.8, + "end": 3744.8, + "probability": 0.2399 + }, + { + "start": 3744.88, + "end": 3748.62, + "probability": 0.8204 + }, + { + "start": 3750.54, + "end": 3756.28, + "probability": 0.982 + }, + { + "start": 3757.7, + "end": 3759.54, + "probability": 0.8687 + }, + { + "start": 3760.9, + "end": 3761.88, + "probability": 0.7949 + }, + { + "start": 3762.86, + "end": 3765.0, + "probability": 0.9768 + }, + { + "start": 3766.08, + "end": 3767.72, + "probability": 0.9854 + }, + { + "start": 3768.66, + "end": 3771.02, + "probability": 0.0231 + }, + { + "start": 3771.5, + "end": 3772.1, + "probability": 0.1741 + }, + { + "start": 3773.1, + "end": 3773.78, + "probability": 0.5901 + }, + { + "start": 3779.44, + "end": 3785.7, + "probability": 0.9703 + }, + { + "start": 3786.6, + "end": 3789.92, + "probability": 0.9248 + }, + { + "start": 3790.06, + "end": 3793.64, + "probability": 0.7709 + }, + { + "start": 3795.9, + "end": 3797.66, + "probability": 0.751 + }, + { + "start": 3798.26, + "end": 3798.76, + "probability": 0.8462 + }, + { + "start": 3802.12, + "end": 3803.44, + "probability": 0.9726 + }, + { + "start": 3804.44, + "end": 3809.92, + "probability": 0.8887 + }, + { + "start": 3812.14, + "end": 3815.12, + "probability": 0.8804 + }, + { + "start": 3816.22, + "end": 3816.78, + "probability": 0.9858 + }, + { + "start": 3816.96, + "end": 3817.68, + "probability": 0.9715 + }, + { + "start": 3820.08, + "end": 3821.34, + "probability": 0.8383 + }, + { + "start": 3822.78, + "end": 3823.7, + "probability": 0.4131 + }, + { + "start": 3826.08, + "end": 3826.86, + "probability": 0.5247 + }, + { + "start": 3830.28, + "end": 3833.2, + "probability": 0.8209 + }, + { + "start": 3835.9, + "end": 3837.74, + "probability": 0.9702 + }, + { + "start": 3838.34, + "end": 3839.24, + "probability": 0.6197 + }, + { + "start": 3840.06, + "end": 3841.34, + "probability": 0.9543 + }, + { + "start": 3841.96, + "end": 3843.08, + "probability": 0.7346 + }, + { + "start": 3844.64, + "end": 3845.5, + "probability": 0.9384 + }, + { + "start": 3846.24, + "end": 3848.18, + "probability": 0.9202 + }, + { + "start": 3849.3, + "end": 3856.9, + "probability": 0.9769 + }, + { + "start": 3859.4, + "end": 3860.94, + "probability": 0.7263 + }, + { + "start": 3862.16, + "end": 3862.4, + "probability": 0.311 + }, + { + "start": 3862.94, + "end": 3864.72, + "probability": 0.9138 + }, + { + "start": 3867.5, + "end": 3869.44, + "probability": 0.8872 + }, + { + "start": 3870.18, + "end": 3871.52, + "probability": 0.7096 + }, + { + "start": 3872.12, + "end": 3875.8, + "probability": 0.5817 + }, + { + "start": 3876.58, + "end": 3877.28, + "probability": 0.7497 + }, + { + "start": 3878.92, + "end": 3879.9, + "probability": 0.6816 + }, + { + "start": 3883.86, + "end": 3886.08, + "probability": 0.9976 + }, + { + "start": 3887.34, + "end": 3890.97, + "probability": 0.0271 + }, + { + "start": 3894.0, + "end": 3894.98, + "probability": 0.6267 + }, + { + "start": 3896.72, + "end": 3898.08, + "probability": 0.6163 + }, + { + "start": 3898.76, + "end": 3899.78, + "probability": 0.7193 + }, + { + "start": 3901.84, + "end": 3901.96, + "probability": 0.1627 + }, + { + "start": 3903.84, + "end": 3905.04, + "probability": 0.0255 + }, + { + "start": 3905.7, + "end": 3908.84, + "probability": 0.7633 + }, + { + "start": 3908.86, + "end": 3910.44, + "probability": 0.8538 + }, + { + "start": 3910.5, + "end": 3911.34, + "probability": 0.7473 + }, + { + "start": 3912.3, + "end": 3919.72, + "probability": 0.8491 + }, + { + "start": 3919.86, + "end": 3920.46, + "probability": 0.541 + }, + { + "start": 3920.6, + "end": 3923.74, + "probability": 0.6797 + }, + { + "start": 3924.64, + "end": 3926.18, + "probability": 0.9585 + }, + { + "start": 3926.9, + "end": 3928.16, + "probability": 0.6413 + }, + { + "start": 3929.14, + "end": 3931.7, + "probability": 0.9904 + }, + { + "start": 3933.6, + "end": 3937.46, + "probability": 0.9207 + }, + { + "start": 3938.0, + "end": 3939.48, + "probability": 0.9475 + }, + { + "start": 3941.1, + "end": 3943.76, + "probability": 0.7603 + }, + { + "start": 3944.74, + "end": 3949.36, + "probability": 0.9978 + }, + { + "start": 3950.64, + "end": 3952.2, + "probability": 0.8387 + }, + { + "start": 3954.02, + "end": 3955.54, + "probability": 0.8536 + }, + { + "start": 3955.7, + "end": 3956.9, + "probability": 0.9759 + }, + { + "start": 3957.3, + "end": 3958.3, + "probability": 0.6809 + }, + { + "start": 3958.44, + "end": 3959.76, + "probability": 0.9373 + }, + { + "start": 3960.0, + "end": 3960.36, + "probability": 0.7646 + }, + { + "start": 3960.86, + "end": 3962.76, + "probability": 0.847 + }, + { + "start": 3962.76, + "end": 3963.62, + "probability": 0.6999 + }, + { + "start": 3964.32, + "end": 3966.62, + "probability": 0.9321 + }, + { + "start": 3970.22, + "end": 3971.04, + "probability": 0.764 + }, + { + "start": 3981.18, + "end": 3983.12, + "probability": 0.6114 + }, + { + "start": 3984.14, + "end": 3986.52, + "probability": 0.9941 + }, + { + "start": 3986.52, + "end": 3989.64, + "probability": 0.9905 + }, + { + "start": 3990.2, + "end": 3993.54, + "probability": 0.9706 + }, + { + "start": 3994.0, + "end": 3994.42, + "probability": 0.8107 + }, + { + "start": 3994.54, + "end": 3994.98, + "probability": 0.8265 + }, + { + "start": 3996.08, + "end": 4000.48, + "probability": 0.9876 + }, + { + "start": 4001.4, + "end": 4004.5, + "probability": 0.835 + }, + { + "start": 4005.0, + "end": 4008.28, + "probability": 0.9164 + }, + { + "start": 4008.86, + "end": 4012.42, + "probability": 0.9033 + }, + { + "start": 4012.42, + "end": 4015.56, + "probability": 0.8679 + }, + { + "start": 4016.18, + "end": 4018.18, + "probability": 0.7645 + }, + { + "start": 4018.9, + "end": 4021.4, + "probability": 0.985 + }, + { + "start": 4022.02, + "end": 4025.04, + "probability": 0.9854 + }, + { + "start": 4025.68, + "end": 4027.08, + "probability": 0.7587 + }, + { + "start": 4027.86, + "end": 4033.16, + "probability": 0.9977 + }, + { + "start": 4033.16, + "end": 4037.86, + "probability": 0.9977 + }, + { + "start": 4038.56, + "end": 4045.2, + "probability": 0.9979 + }, + { + "start": 4045.66, + "end": 4047.34, + "probability": 0.9213 + }, + { + "start": 4048.12, + "end": 4052.38, + "probability": 0.9399 + }, + { + "start": 4052.48, + "end": 4057.66, + "probability": 0.9217 + }, + { + "start": 4058.34, + "end": 4059.22, + "probability": 0.8867 + }, + { + "start": 4059.66, + "end": 4060.2, + "probability": 0.9055 + }, + { + "start": 4060.68, + "end": 4061.2, + "probability": 0.732 + }, + { + "start": 4061.26, + "end": 4065.22, + "probability": 0.9573 + }, + { + "start": 4065.72, + "end": 4065.92, + "probability": 0.3933 + }, + { + "start": 4066.22, + "end": 4066.82, + "probability": 0.4089 + }, + { + "start": 4067.22, + "end": 4069.26, + "probability": 0.9951 + }, + { + "start": 4069.78, + "end": 4072.22, + "probability": 0.9462 + }, + { + "start": 4072.68, + "end": 4074.58, + "probability": 0.9795 + }, + { + "start": 4075.02, + "end": 4076.86, + "probability": 0.9959 + }, + { + "start": 4078.06, + "end": 4078.56, + "probability": 0.5561 + }, + { + "start": 4079.16, + "end": 4080.72, + "probability": 0.9948 + }, + { + "start": 4080.82, + "end": 4083.22, + "probability": 0.9879 + }, + { + "start": 4083.96, + "end": 4086.86, + "probability": 0.9507 + }, + { + "start": 4087.0, + "end": 4088.46, + "probability": 0.7873 + }, + { + "start": 4089.12, + "end": 4092.24, + "probability": 0.9902 + }, + { + "start": 4092.26, + "end": 4096.06, + "probability": 0.9578 + }, + { + "start": 4096.8, + "end": 4100.42, + "probability": 0.9893 + }, + { + "start": 4101.22, + "end": 4105.28, + "probability": 0.9941 + }, + { + "start": 4105.76, + "end": 4107.0, + "probability": 0.8797 + }, + { + "start": 4107.62, + "end": 4109.28, + "probability": 0.9655 + }, + { + "start": 4109.98, + "end": 4113.24, + "probability": 0.9541 + }, + { + "start": 4113.86, + "end": 4116.58, + "probability": 0.98 + }, + { + "start": 4117.2, + "end": 4120.46, + "probability": 0.9004 + }, + { + "start": 4121.0, + "end": 4121.98, + "probability": 0.9202 + }, + { + "start": 4122.08, + "end": 4122.9, + "probability": 0.9585 + }, + { + "start": 4122.98, + "end": 4123.88, + "probability": 0.9327 + }, + { + "start": 4124.18, + "end": 4125.94, + "probability": 0.9702 + }, + { + "start": 4126.74, + "end": 4128.72, + "probability": 0.9863 + }, + { + "start": 4129.14, + "end": 4131.94, + "probability": 0.9824 + }, + { + "start": 4132.44, + "end": 4134.0, + "probability": 0.9954 + }, + { + "start": 4135.24, + "end": 4140.1, + "probability": 0.991 + }, + { + "start": 4140.52, + "end": 4143.08, + "probability": 0.9546 + }, + { + "start": 4143.52, + "end": 4145.64, + "probability": 0.9204 + }, + { + "start": 4146.1, + "end": 4147.16, + "probability": 0.8207 + }, + { + "start": 4147.48, + "end": 4150.32, + "probability": 0.6541 + }, + { + "start": 4150.64, + "end": 4151.7, + "probability": 0.8709 + }, + { + "start": 4152.12, + "end": 4154.36, + "probability": 0.9297 + }, + { + "start": 4154.68, + "end": 4155.38, + "probability": 0.9165 + }, + { + "start": 4155.46, + "end": 4156.14, + "probability": 0.7729 + }, + { + "start": 4156.6, + "end": 4157.32, + "probability": 0.9142 + }, + { + "start": 4157.84, + "end": 4159.94, + "probability": 0.9937 + }, + { + "start": 4160.44, + "end": 4161.94, + "probability": 0.9807 + }, + { + "start": 4162.42, + "end": 4164.67, + "probability": 0.9656 + }, + { + "start": 4165.28, + "end": 4166.28, + "probability": 0.7055 + }, + { + "start": 4166.66, + "end": 4169.9, + "probability": 0.8148 + }, + { + "start": 4170.2, + "end": 4175.62, + "probability": 0.9645 + }, + { + "start": 4175.94, + "end": 4176.9, + "probability": 0.9624 + }, + { + "start": 4177.28, + "end": 4177.28, + "probability": 0.2554 + }, + { + "start": 4177.34, + "end": 4180.08, + "probability": 0.9871 + }, + { + "start": 4180.24, + "end": 4182.9, + "probability": 0.668 + }, + { + "start": 4182.92, + "end": 4183.38, + "probability": 0.9406 + }, + { + "start": 4184.5, + "end": 4200.62, + "probability": 0.5974 + }, + { + "start": 4202.28, + "end": 4204.16, + "probability": 0.6347 + }, + { + "start": 4205.14, + "end": 4206.94, + "probability": 0.7055 + }, + { + "start": 4209.3, + "end": 4218.82, + "probability": 0.9538 + }, + { + "start": 4219.92, + "end": 4221.8, + "probability": 0.8496 + }, + { + "start": 4222.42, + "end": 4226.48, + "probability": 0.981 + }, + { + "start": 4227.16, + "end": 4232.6, + "probability": 0.9979 + }, + { + "start": 4233.28, + "end": 4237.24, + "probability": 0.9982 + }, + { + "start": 4238.44, + "end": 4240.72, + "probability": 0.9714 + }, + { + "start": 4240.76, + "end": 4242.44, + "probability": 0.8773 + }, + { + "start": 4243.0, + "end": 4245.38, + "probability": 0.6935 + }, + { + "start": 4246.0, + "end": 4249.0, + "probability": 0.9763 + }, + { + "start": 4249.64, + "end": 4251.58, + "probability": 0.9897 + }, + { + "start": 4252.36, + "end": 4255.44, + "probability": 0.9924 + }, + { + "start": 4257.44, + "end": 4260.44, + "probability": 0.9691 + }, + { + "start": 4260.54, + "end": 4263.1, + "probability": 0.999 + }, + { + "start": 4263.72, + "end": 4266.9, + "probability": 0.9823 + }, + { + "start": 4267.58, + "end": 4269.93, + "probability": 0.7397 + }, + { + "start": 4270.64, + "end": 4274.6, + "probability": 0.9762 + }, + { + "start": 4275.14, + "end": 4277.74, + "probability": 0.9102 + }, + { + "start": 4278.3, + "end": 4282.24, + "probability": 0.9592 + }, + { + "start": 4283.04, + "end": 4286.6, + "probability": 0.9854 + }, + { + "start": 4287.92, + "end": 4288.68, + "probability": 0.5837 + }, + { + "start": 4289.1, + "end": 4289.8, + "probability": 0.5554 + }, + { + "start": 4289.84, + "end": 4291.92, + "probability": 0.9926 + }, + { + "start": 4292.36, + "end": 4294.32, + "probability": 0.8217 + }, + { + "start": 4294.94, + "end": 4297.78, + "probability": 0.9912 + }, + { + "start": 4298.7, + "end": 4299.24, + "probability": 0.7898 + }, + { + "start": 4300.08, + "end": 4304.74, + "probability": 0.8743 + }, + { + "start": 4305.3, + "end": 4307.18, + "probability": 0.9878 + }, + { + "start": 4307.64, + "end": 4311.24, + "probability": 0.9935 + }, + { + "start": 4312.56, + "end": 4317.9, + "probability": 0.915 + }, + { + "start": 4317.9, + "end": 4323.44, + "probability": 0.9982 + }, + { + "start": 4323.92, + "end": 4327.08, + "probability": 0.8647 + }, + { + "start": 4327.66, + "end": 4328.32, + "probability": 0.7551 + }, + { + "start": 4328.64, + "end": 4331.32, + "probability": 0.8955 + }, + { + "start": 4331.32, + "end": 4335.08, + "probability": 0.9902 + }, + { + "start": 4335.88, + "end": 4336.78, + "probability": 0.6985 + }, + { + "start": 4337.44, + "end": 4338.84, + "probability": 0.969 + }, + { + "start": 4339.5, + "end": 4344.4, + "probability": 0.9906 + }, + { + "start": 4345.56, + "end": 4347.56, + "probability": 0.9948 + }, + { + "start": 4347.56, + "end": 4351.39, + "probability": 0.9833 + }, + { + "start": 4352.08, + "end": 4355.86, + "probability": 0.9963 + }, + { + "start": 4356.9, + "end": 4358.96, + "probability": 0.9869 + }, + { + "start": 4359.28, + "end": 4359.92, + "probability": 0.779 + }, + { + "start": 4359.98, + "end": 4360.62, + "probability": 0.806 + }, + { + "start": 4360.72, + "end": 4363.14, + "probability": 0.9961 + }, + { + "start": 4364.08, + "end": 4365.9, + "probability": 0.8955 + }, + { + "start": 4366.36, + "end": 4367.83, + "probability": 0.8376 + }, + { + "start": 4368.36, + "end": 4370.78, + "probability": 0.9775 + }, + { + "start": 4371.32, + "end": 4373.32, + "probability": 0.9255 + }, + { + "start": 4374.0, + "end": 4375.84, + "probability": 0.9971 + }, + { + "start": 4376.5, + "end": 4381.16, + "probability": 0.9831 + }, + { + "start": 4381.84, + "end": 4385.64, + "probability": 0.6114 + }, + { + "start": 4386.1, + "end": 4386.34, + "probability": 0.6378 + }, + { + "start": 4386.6, + "end": 4388.88, + "probability": 0.8635 + }, + { + "start": 4388.94, + "end": 4389.66, + "probability": 0.7667 + }, + { + "start": 4389.9, + "end": 4390.72, + "probability": 0.7349 + }, + { + "start": 4390.72, + "end": 4391.0, + "probability": 0.9024 + }, + { + "start": 4392.16, + "end": 4393.0, + "probability": 0.7652 + }, + { + "start": 4394.62, + "end": 4395.38, + "probability": 0.96 + }, + { + "start": 4398.28, + "end": 4399.82, + "probability": 0.7492 + }, + { + "start": 4400.7, + "end": 4402.11, + "probability": 0.7849 + }, + { + "start": 4404.16, + "end": 4405.32, + "probability": 0.9951 + }, + { + "start": 4405.92, + "end": 4406.84, + "probability": 0.9985 + }, + { + "start": 4407.34, + "end": 4408.58, + "probability": 0.4588 + }, + { + "start": 4408.98, + "end": 4409.32, + "probability": 0.9474 + }, + { + "start": 4410.56, + "end": 4411.54, + "probability": 0.3469 + }, + { + "start": 4411.58, + "end": 4413.0, + "probability": 0.6182 + }, + { + "start": 4413.76, + "end": 4414.38, + "probability": 0.9492 + }, + { + "start": 4414.82, + "end": 4417.4, + "probability": 0.8781 + }, + { + "start": 4417.94, + "end": 4419.58, + "probability": 0.7955 + }, + { + "start": 4420.0, + "end": 4422.56, + "probability": 0.9802 + }, + { + "start": 4423.52, + "end": 4425.18, + "probability": 0.9072 + }, + { + "start": 4425.68, + "end": 4428.28, + "probability": 0.8442 + }, + { + "start": 4428.84, + "end": 4429.4, + "probability": 0.869 + }, + { + "start": 4430.86, + "end": 4432.48, + "probability": 0.7389 + }, + { + "start": 4432.6, + "end": 4433.1, + "probability": 0.8829 + }, + { + "start": 4434.3, + "end": 4438.42, + "probability": 0.9114 + }, + { + "start": 4439.74, + "end": 4440.06, + "probability": 0.4784 + }, + { + "start": 4440.16, + "end": 4441.8, + "probability": 0.4176 + }, + { + "start": 4442.74, + "end": 4443.46, + "probability": 0.9057 + }, + { + "start": 4445.06, + "end": 4447.04, + "probability": 0.015 + }, + { + "start": 4447.14, + "end": 4447.6, + "probability": 0.4204 + }, + { + "start": 4448.12, + "end": 4449.24, + "probability": 0.8667 + }, + { + "start": 4449.9, + "end": 4450.78, + "probability": 0.7853 + }, + { + "start": 4450.84, + "end": 4451.72, + "probability": 0.8213 + }, + { + "start": 4451.78, + "end": 4452.9, + "probability": 0.6953 + }, + { + "start": 4453.58, + "end": 4455.86, + "probability": 0.9521 + }, + { + "start": 4457.32, + "end": 4460.22, + "probability": 0.8965 + }, + { + "start": 4461.24, + "end": 4461.96, + "probability": 0.6714 + }, + { + "start": 4462.4, + "end": 4462.84, + "probability": 0.3384 + }, + { + "start": 4463.2, + "end": 4463.52, + "probability": 0.6001 + }, + { + "start": 4463.68, + "end": 4465.32, + "probability": 0.7355 + }, + { + "start": 4466.3, + "end": 4469.82, + "probability": 0.9567 + }, + { + "start": 4471.06, + "end": 4471.5, + "probability": 0.6084 + }, + { + "start": 4472.08, + "end": 4473.3, + "probability": 0.9868 + }, + { + "start": 4473.92, + "end": 4474.96, + "probability": 0.8376 + }, + { + "start": 4475.76, + "end": 4477.12, + "probability": 0.9794 + }, + { + "start": 4477.18, + "end": 4477.9, + "probability": 0.6693 + }, + { + "start": 4477.94, + "end": 4479.68, + "probability": 0.9635 + }, + { + "start": 4480.46, + "end": 4483.84, + "probability": 0.8593 + }, + { + "start": 4484.04, + "end": 4484.58, + "probability": 0.9182 + }, + { + "start": 4485.76, + "end": 4487.92, + "probability": 0.9571 + }, + { + "start": 4489.0, + "end": 4490.8, + "probability": 0.9375 + }, + { + "start": 4492.36, + "end": 4493.36, + "probability": 0.5261 + }, + { + "start": 4493.66, + "end": 4498.5, + "probability": 0.9449 + }, + { + "start": 4499.4, + "end": 4502.78, + "probability": 0.9183 + }, + { + "start": 4503.48, + "end": 4505.44, + "probability": 0.9052 + }, + { + "start": 4507.16, + "end": 4507.75, + "probability": 0.9836 + }, + { + "start": 4508.96, + "end": 4510.54, + "probability": 0.9548 + }, + { + "start": 4511.56, + "end": 4512.52, + "probability": 0.7974 + }, + { + "start": 4513.16, + "end": 4515.22, + "probability": 0.9922 + }, + { + "start": 4516.14, + "end": 4517.38, + "probability": 0.9365 + }, + { + "start": 4518.08, + "end": 4520.11, + "probability": 0.8253 + }, + { + "start": 4520.8, + "end": 4521.7, + "probability": 0.9533 + }, + { + "start": 4522.5, + "end": 4525.04, + "probability": 0.8735 + }, + { + "start": 4528.54, + "end": 4528.64, + "probability": 0.1428 + }, + { + "start": 4528.64, + "end": 4528.64, + "probability": 0.1236 + }, + { + "start": 4528.64, + "end": 4529.85, + "probability": 0.5074 + }, + { + "start": 4530.4, + "end": 4534.06, + "probability": 0.8998 + }, + { + "start": 4535.02, + "end": 4537.84, + "probability": 0.8377 + }, + { + "start": 4538.54, + "end": 4540.24, + "probability": 0.8985 + }, + { + "start": 4540.82, + "end": 4541.24, + "probability": 0.8365 + }, + { + "start": 4542.16, + "end": 4544.16, + "probability": 0.9443 + }, + { + "start": 4545.12, + "end": 4547.7, + "probability": 0.6355 + }, + { + "start": 4548.18, + "end": 4549.7, + "probability": 0.7646 + }, + { + "start": 4551.92, + "end": 4554.02, + "probability": 0.8833 + }, + { + "start": 4554.08, + "end": 4554.78, + "probability": 0.6221 + }, + { + "start": 4555.32, + "end": 4555.78, + "probability": 0.7873 + }, + { + "start": 4555.86, + "end": 4557.56, + "probability": 0.9702 + }, + { + "start": 4558.68, + "end": 4559.82, + "probability": 0.9736 + }, + { + "start": 4560.12, + "end": 4561.08, + "probability": 0.9893 + }, + { + "start": 4562.12, + "end": 4564.2, + "probability": 0.7997 + }, + { + "start": 4564.32, + "end": 4566.58, + "probability": 0.9091 + }, + { + "start": 4567.06, + "end": 4569.3, + "probability": 0.999 + }, + { + "start": 4569.84, + "end": 4570.84, + "probability": 0.3888 + }, + { + "start": 4572.04, + "end": 4573.48, + "probability": 0.7663 + }, + { + "start": 4574.84, + "end": 4575.48, + "probability": 0.9281 + }, + { + "start": 4575.6, + "end": 4577.38, + "probability": 0.9683 + }, + { + "start": 4577.44, + "end": 4577.9, + "probability": 0.5299 + }, + { + "start": 4578.88, + "end": 4579.38, + "probability": 0.9961 + }, + { + "start": 4579.6, + "end": 4580.86, + "probability": 0.7549 + }, + { + "start": 4580.9, + "end": 4581.82, + "probability": 0.9 + }, + { + "start": 4581.86, + "end": 4582.52, + "probability": 0.9146 + }, + { + "start": 4583.98, + "end": 4585.14, + "probability": 0.8103 + }, + { + "start": 4585.24, + "end": 4585.66, + "probability": 0.68 + }, + { + "start": 4585.72, + "end": 4588.35, + "probability": 0.9707 + }, + { + "start": 4590.42, + "end": 4593.25, + "probability": 0.9802 + }, + { + "start": 4594.14, + "end": 4596.14, + "probability": 0.6688 + }, + { + "start": 4596.82, + "end": 4597.42, + "probability": 0.8023 + }, + { + "start": 4598.18, + "end": 4600.34, + "probability": 0.9966 + }, + { + "start": 4601.88, + "end": 4604.76, + "probability": 0.9871 + }, + { + "start": 4605.16, + "end": 4606.06, + "probability": 0.8641 + }, + { + "start": 4607.4, + "end": 4608.1, + "probability": 0.8015 + }, + { + "start": 4609.3, + "end": 4610.11, + "probability": 0.8047 + }, + { + "start": 4611.34, + "end": 4611.62, + "probability": 0.919 + }, + { + "start": 4613.08, + "end": 4620.2, + "probability": 0.9856 + }, + { + "start": 4620.88, + "end": 4625.84, + "probability": 0.9634 + }, + { + "start": 4626.34, + "end": 4628.28, + "probability": 0.9736 + }, + { + "start": 4629.0, + "end": 4629.82, + "probability": 0.9291 + }, + { + "start": 4630.46, + "end": 4631.46, + "probability": 0.5713 + }, + { + "start": 4632.28, + "end": 4633.92, + "probability": 0.9921 + }, + { + "start": 4634.88, + "end": 4636.16, + "probability": 0.9937 + }, + { + "start": 4636.74, + "end": 4638.12, + "probability": 0.9567 + }, + { + "start": 4638.72, + "end": 4640.55, + "probability": 0.9839 + }, + { + "start": 4641.86, + "end": 4643.12, + "probability": 0.9835 + }, + { + "start": 4643.3, + "end": 4647.52, + "probability": 0.958 + }, + { + "start": 4647.54, + "end": 4650.22, + "probability": 0.9865 + }, + { + "start": 4650.28, + "end": 4651.57, + "probability": 0.8665 + }, + { + "start": 4652.28, + "end": 4653.58, + "probability": 0.7229 + }, + { + "start": 4654.56, + "end": 4656.68, + "probability": 0.9072 + }, + { + "start": 4656.86, + "end": 4656.86, + "probability": 0.3269 + }, + { + "start": 4656.86, + "end": 4658.18, + "probability": 0.8197 + }, + { + "start": 4658.66, + "end": 4663.03, + "probability": 0.9463 + }, + { + "start": 4664.06, + "end": 4667.3, + "probability": 0.1318 + }, + { + "start": 4667.3, + "end": 4667.3, + "probability": 0.0372 + }, + { + "start": 4667.3, + "end": 4667.3, + "probability": 0.0506 + }, + { + "start": 4667.3, + "end": 4669.62, + "probability": 0.7404 + }, + { + "start": 4671.24, + "end": 4671.24, + "probability": 0.0634 + }, + { + "start": 4671.24, + "end": 4672.32, + "probability": 0.5175 + }, + { + "start": 4672.4, + "end": 4677.08, + "probability": 0.7505 + }, + { + "start": 4677.46, + "end": 4679.92, + "probability": 0.9149 + }, + { + "start": 4680.36, + "end": 4683.3, + "probability": 0.0678 + }, + { + "start": 4683.44, + "end": 4685.9, + "probability": 0.1804 + }, + { + "start": 4687.3, + "end": 4689.7, + "probability": 0.3401 + }, + { + "start": 4690.32, + "end": 4690.52, + "probability": 0.0443 + }, + { + "start": 4690.62, + "end": 4691.56, + "probability": 0.0447 + }, + { + "start": 4691.94, + "end": 4693.24, + "probability": 0.089 + }, + { + "start": 4694.34, + "end": 4695.12, + "probability": 0.1104 + }, + { + "start": 4695.12, + "end": 4695.12, + "probability": 0.0493 + }, + { + "start": 4708.32, + "end": 4709.04, + "probability": 0.0425 + }, + { + "start": 4709.67, + "end": 4711.54, + "probability": 0.149 + }, + { + "start": 4712.5, + "end": 4716.36, + "probability": 0.148 + }, + { + "start": 4716.36, + "end": 4717.72, + "probability": 0.0279 + }, + { + "start": 4720.12, + "end": 4724.4, + "probability": 0.0895 + }, + { + "start": 4724.58, + "end": 4725.74, + "probability": 0.1763 + }, + { + "start": 4725.74, + "end": 4726.1, + "probability": 0.0297 + }, + { + "start": 4726.1, + "end": 4726.1, + "probability": 0.0189 + }, + { + "start": 4726.1, + "end": 4726.67, + "probability": 0.0724 + }, + { + "start": 4728.97, + "end": 4729.2, + "probability": 0.0977 + }, + { + "start": 4729.2, + "end": 4729.98, + "probability": 0.021 + }, + { + "start": 4730.88, + "end": 4733.68, + "probability": 0.1333 + }, + { + "start": 4734.52, + "end": 4739.72, + "probability": 0.0529 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4759.0, + "end": 4759.0, + "probability": 0.0 + }, + { + "start": 4760.32, + "end": 4761.46, + "probability": 0.0818 + }, + { + "start": 4761.63, + "end": 4764.5, + "probability": 0.1694 + }, + { + "start": 4764.62, + "end": 4765.02, + "probability": 0.0366 + }, + { + "start": 4765.02, + "end": 4765.02, + "probability": 0.0324 + }, + { + "start": 4765.02, + "end": 4765.02, + "probability": 0.0251 + }, + { + "start": 4765.02, + "end": 4766.6, + "probability": 0.467 + }, + { + "start": 4767.2, + "end": 4767.84, + "probability": 0.6216 + }, + { + "start": 4771.36, + "end": 4772.24, + "probability": 0.0225 + }, + { + "start": 4772.24, + "end": 4772.42, + "probability": 0.0988 + }, + { + "start": 4772.48, + "end": 4773.58, + "probability": 0.1416 + }, + { + "start": 4773.58, + "end": 4774.3, + "probability": 0.2044 + }, + { + "start": 4775.52, + "end": 4776.36, + "probability": 0.1015 + }, + { + "start": 4777.86, + "end": 4778.58, + "probability": 0.1893 + }, + { + "start": 4780.08, + "end": 4783.3, + "probability": 0.073 + }, + { + "start": 4784.66, + "end": 4787.02, + "probability": 0.0179 + }, + { + "start": 4787.34, + "end": 4792.08, + "probability": 0.2519 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.0, + "end": 4887.0, + "probability": 0.0 + }, + { + "start": 4887.47, + "end": 4887.54, + "probability": 0.1948 + }, + { + "start": 4887.54, + "end": 4889.7, + "probability": 0.3161 + }, + { + "start": 4892.62, + "end": 4893.36, + "probability": 0.1155 + }, + { + "start": 4894.16, + "end": 4894.42, + "probability": 0.0236 + }, + { + "start": 4914.24, + "end": 4916.4, + "probability": 0.0555 + }, + { + "start": 4916.84, + "end": 4917.26, + "probability": 0.1704 + }, + { + "start": 4917.26, + "end": 4917.52, + "probability": 0.122 + }, + { + "start": 4917.52, + "end": 4917.52, + "probability": 0.072 + }, + { + "start": 4917.52, + "end": 4919.62, + "probability": 0.7177 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.0, + "end": 5008.0, + "probability": 0.0 + }, + { + "start": 5008.02, + "end": 5008.86, + "probability": 0.9753 + }, + { + "start": 5009.74, + "end": 5010.34, + "probability": 0.6248 + }, + { + "start": 5010.52, + "end": 5010.86, + "probability": 0.9734 + }, + { + "start": 5011.22, + "end": 5012.4, + "probability": 0.9971 + }, + { + "start": 5012.46, + "end": 5014.04, + "probability": 0.9443 + }, + { + "start": 5014.48, + "end": 5019.22, + "probability": 0.9714 + }, + { + "start": 5019.32, + "end": 5021.68, + "probability": 0.9824 + }, + { + "start": 5022.06, + "end": 5025.0, + "probability": 0.9731 + }, + { + "start": 5025.46, + "end": 5031.12, + "probability": 0.967 + }, + { + "start": 5031.46, + "end": 5032.14, + "probability": 0.7171 + }, + { + "start": 5032.52, + "end": 5033.44, + "probability": 0.8464 + }, + { + "start": 5033.84, + "end": 5036.22, + "probability": 0.9956 + }, + { + "start": 5036.64, + "end": 5040.76, + "probability": 0.9979 + }, + { + "start": 5041.72, + "end": 5043.74, + "probability": 0.1137 + }, + { + "start": 5044.04, + "end": 5047.52, + "probability": 0.606 + }, + { + "start": 5047.7, + "end": 5048.19, + "probability": 0.5825 + }, + { + "start": 5048.28, + "end": 5049.6, + "probability": 0.8978 + }, + { + "start": 5049.98, + "end": 5051.38, + "probability": 0.9758 + }, + { + "start": 5051.94, + "end": 5052.64, + "probability": 0.8335 + }, + { + "start": 5052.84, + "end": 5053.52, + "probability": 0.8935 + }, + { + "start": 5053.92, + "end": 5058.92, + "probability": 0.9965 + }, + { + "start": 5058.92, + "end": 5064.44, + "probability": 0.9989 + }, + { + "start": 5064.56, + "end": 5068.9, + "probability": 0.8283 + }, + { + "start": 5069.06, + "end": 5069.56, + "probability": 0.7727 + }, + { + "start": 5071.0, + "end": 5073.1, + "probability": 0.9551 + }, + { + "start": 5074.02, + "end": 5076.36, + "probability": 0.9602 + }, + { + "start": 5077.12, + "end": 5078.12, + "probability": 0.995 + }, + { + "start": 5079.36, + "end": 5081.91, + "probability": 0.6479 + }, + { + "start": 5083.08, + "end": 5083.08, + "probability": 0.022 + }, + { + "start": 5083.08, + "end": 5083.08, + "probability": 0.3155 + }, + { + "start": 5083.08, + "end": 5084.62, + "probability": 0.9204 + }, + { + "start": 5086.19, + "end": 5086.7, + "probability": 0.7163 + }, + { + "start": 5087.86, + "end": 5090.02, + "probability": 0.2534 + }, + { + "start": 5090.74, + "end": 5093.36, + "probability": 0.9881 + }, + { + "start": 5094.52, + "end": 5095.5, + "probability": 0.559 + }, + { + "start": 5096.18, + "end": 5099.92, + "probability": 0.999 + }, + { + "start": 5100.44, + "end": 5105.28, + "probability": 0.9964 + }, + { + "start": 5106.2, + "end": 5108.98, + "probability": 0.9912 + }, + { + "start": 5111.7, + "end": 5113.88, + "probability": 0.1571 + }, + { + "start": 5121.48, + "end": 5122.4, + "probability": 0.4667 + }, + { + "start": 5124.82, + "end": 5125.14, + "probability": 0.6954 + }, + { + "start": 5125.55, + "end": 5126.59, + "probability": 0.8464 + }, + { + "start": 5126.96, + "end": 5128.08, + "probability": 0.7983 + }, + { + "start": 5130.14, + "end": 5130.6, + "probability": 0.0038 + }, + { + "start": 5134.08, + "end": 5134.82, + "probability": 0.4055 + }, + { + "start": 5135.14, + "end": 5135.34, + "probability": 0.57 + }, + { + "start": 5135.46, + "end": 5136.06, + "probability": 0.8027 + }, + { + "start": 5136.26, + "end": 5138.09, + "probability": 0.9976 + }, + { + "start": 5138.99, + "end": 5140.95, + "probability": 0.8355 + }, + { + "start": 5141.01, + "end": 5142.39, + "probability": 0.7713 + }, + { + "start": 5142.55, + "end": 5145.23, + "probability": 0.9758 + }, + { + "start": 5146.03, + "end": 5150.31, + "probability": 0.9438 + }, + { + "start": 5151.13, + "end": 5153.85, + "probability": 0.9976 + }, + { + "start": 5154.41, + "end": 5158.81, + "probability": 0.0264 + }, + { + "start": 5158.81, + "end": 5159.59, + "probability": 0.0309 + }, + { + "start": 5159.89, + "end": 5160.39, + "probability": 0.7033 + }, + { + "start": 5160.61, + "end": 5161.33, + "probability": 0.3842 + }, + { + "start": 5162.71, + "end": 5164.95, + "probability": 0.3125 + }, + { + "start": 5166.73, + "end": 5168.19, + "probability": 0.489 + }, + { + "start": 5169.55, + "end": 5169.55, + "probability": 0.1076 + }, + { + "start": 5169.55, + "end": 5171.49, + "probability": 0.8146 + }, + { + "start": 5171.79, + "end": 5177.35, + "probability": 0.8143 + }, + { + "start": 5178.11, + "end": 5178.11, + "probability": 0.3541 + }, + { + "start": 5178.11, + "end": 5182.81, + "probability": 0.7983 + }, + { + "start": 5183.47, + "end": 5188.23, + "probability": 0.9968 + }, + { + "start": 5188.79, + "end": 5190.81, + "probability": 0.96 + }, + { + "start": 5191.21, + "end": 5193.27, + "probability": 0.9943 + }, + { + "start": 5194.19, + "end": 5195.29, + "probability": 0.8607 + }, + { + "start": 5196.29, + "end": 5196.41, + "probability": 0.8052 + }, + { + "start": 5196.47, + "end": 5199.59, + "probability": 0.9262 + }, + { + "start": 5200.37, + "end": 5204.65, + "probability": 0.3137 + }, + { + "start": 5206.41, + "end": 5207.91, + "probability": 0.3711 + }, + { + "start": 5208.45, + "end": 5208.45, + "probability": 0.2383 + }, + { + "start": 5208.55, + "end": 5210.73, + "probability": 0.1278 + }, + { + "start": 5213.23, + "end": 5214.55, + "probability": 0.1045 + }, + { + "start": 5214.55, + "end": 5214.55, + "probability": 0.086 + }, + { + "start": 5214.55, + "end": 5214.55, + "probability": 0.0491 + }, + { + "start": 5214.55, + "end": 5214.69, + "probability": 0.1714 + }, + { + "start": 5215.53, + "end": 5218.53, + "probability": 0.6323 + }, + { + "start": 5219.59, + "end": 5224.15, + "probability": 0.6577 + }, + { + "start": 5225.25, + "end": 5227.09, + "probability": 0.7123 + }, + { + "start": 5227.27, + "end": 5228.99, + "probability": 0.979 + }, + { + "start": 5229.13, + "end": 5229.69, + "probability": 0.5402 + }, + { + "start": 5230.35, + "end": 5233.37, + "probability": 0.9955 + }, + { + "start": 5233.37, + "end": 5237.73, + "probability": 0.998 + }, + { + "start": 5238.25, + "end": 5243.87, + "probability": 0.9935 + }, + { + "start": 5243.87, + "end": 5248.49, + "probability": 0.9995 + }, + { + "start": 5249.35, + "end": 5250.71, + "probability": 0.9518 + }, + { + "start": 5251.01, + "end": 5253.99, + "probability": 0.9794 + }, + { + "start": 5254.35, + "end": 5258.17, + "probability": 0.9956 + }, + { + "start": 5258.55, + "end": 5263.73, + "probability": 0.9065 + }, + { + "start": 5264.81, + "end": 5266.17, + "probability": 0.8145 + }, + { + "start": 5266.25, + "end": 5267.11, + "probability": 0.9382 + }, + { + "start": 5267.17, + "end": 5269.93, + "probability": 0.8228 + }, + { + "start": 5270.33, + "end": 5274.93, + "probability": 0.9386 + }, + { + "start": 5276.71, + "end": 5278.19, + "probability": 0.922 + }, + { + "start": 5280.01, + "end": 5282.39, + "probability": 0.9365 + }, + { + "start": 5282.53, + "end": 5283.96, + "probability": 0.9017 + }, + { + "start": 5287.11, + "end": 5292.43, + "probability": 0.9984 + }, + { + "start": 5292.95, + "end": 5294.07, + "probability": 0.8752 + }, + { + "start": 5301.23, + "end": 5302.25, + "probability": 0.8273 + }, + { + "start": 5303.51, + "end": 5304.13, + "probability": 0.3414 + }, + { + "start": 5309.45, + "end": 5309.93, + "probability": 0.5436 + }, + { + "start": 5317.25, + "end": 5317.91, + "probability": 0.9652 + }, + { + "start": 5318.03, + "end": 5322.33, + "probability": 0.9491 + }, + { + "start": 5324.67, + "end": 5326.23, + "probability": 0.981 + }, + { + "start": 5326.23, + "end": 5326.61, + "probability": 0.7957 + }, + { + "start": 5326.73, + "end": 5328.11, + "probability": 0.9854 + }, + { + "start": 5328.17, + "end": 5328.35, + "probability": 0.4856 + }, + { + "start": 5331.15, + "end": 5334.61, + "probability": 0.9894 + }, + { + "start": 5334.83, + "end": 5336.45, + "probability": 0.9451 + }, + { + "start": 5337.07, + "end": 5341.65, + "probability": 0.6809 + }, + { + "start": 5342.37, + "end": 5345.29, + "probability": 0.949 + }, + { + "start": 5346.35, + "end": 5347.87, + "probability": 0.8947 + }, + { + "start": 5349.21, + "end": 5354.37, + "probability": 0.8456 + }, + { + "start": 5354.99, + "end": 5356.61, + "probability": 0.3715 + }, + { + "start": 5357.75, + "end": 5360.51, + "probability": 0.9824 + }, + { + "start": 5361.07, + "end": 5363.85, + "probability": 0.8634 + }, + { + "start": 5364.57, + "end": 5365.61, + "probability": 0.8804 + }, + { + "start": 5366.53, + "end": 5371.95, + "probability": 0.9956 + }, + { + "start": 5372.45, + "end": 5373.03, + "probability": 0.5265 + }, + { + "start": 5374.99, + "end": 5375.21, + "probability": 0.2369 + }, + { + "start": 5375.61, + "end": 5376.59, + "probability": 0.9838 + }, + { + "start": 5382.97, + "end": 5383.49, + "probability": 0.8283 + }, + { + "start": 5383.83, + "end": 5389.53, + "probability": 0.998 + }, + { + "start": 5389.69, + "end": 5389.75, + "probability": 0.1561 + }, + { + "start": 5390.15, + "end": 5391.95, + "probability": 0.9533 + }, + { + "start": 5394.17, + "end": 5395.25, + "probability": 0.9803 + }, + { + "start": 5395.79, + "end": 5396.01, + "probability": 0.9285 + }, + { + "start": 5396.89, + "end": 5398.81, + "probability": 0.9943 + }, + { + "start": 5398.81, + "end": 5401.15, + "probability": 0.9997 + }, + { + "start": 5403.01, + "end": 5403.97, + "probability": 0.9906 + }, + { + "start": 5404.53, + "end": 5411.01, + "probability": 0.9883 + }, + { + "start": 5411.01, + "end": 5415.49, + "probability": 0.9972 + }, + { + "start": 5416.27, + "end": 5418.39, + "probability": 0.9982 + }, + { + "start": 5418.47, + "end": 5421.09, + "probability": 0.9379 + }, + { + "start": 5422.17, + "end": 5424.91, + "probability": 0.9968 + }, + { + "start": 5424.91, + "end": 5428.43, + "probability": 0.9776 + }, + { + "start": 5429.45, + "end": 5430.93, + "probability": 0.9793 + }, + { + "start": 5431.45, + "end": 5433.39, + "probability": 0.967 + }, + { + "start": 5434.11, + "end": 5437.61, + "probability": 0.9982 + }, + { + "start": 5437.69, + "end": 5438.57, + "probability": 0.8371 + }, + { + "start": 5439.35, + "end": 5443.51, + "probability": 0.9865 + }, + { + "start": 5444.39, + "end": 5451.39, + "probability": 0.9954 + }, + { + "start": 5451.65, + "end": 5454.45, + "probability": 0.8474 + }, + { + "start": 5455.01, + "end": 5456.75, + "probability": 0.4117 + }, + { + "start": 5457.79, + "end": 5458.19, + "probability": 0.769 + }, + { + "start": 5459.15, + "end": 5462.81, + "probability": 0.9367 + }, + { + "start": 5463.25, + "end": 5465.89, + "probability": 0.9828 + }, + { + "start": 5466.55, + "end": 5469.09, + "probability": 0.8632 + }, + { + "start": 5469.79, + "end": 5472.95, + "probability": 0.9652 + }, + { + "start": 5472.95, + "end": 5476.59, + "probability": 0.9984 + }, + { + "start": 5477.13, + "end": 5478.53, + "probability": 0.9653 + }, + { + "start": 5479.65, + "end": 5485.55, + "probability": 0.9946 + }, + { + "start": 5486.55, + "end": 5488.73, + "probability": 0.905 + }, + { + "start": 5489.33, + "end": 5493.03, + "probability": 0.9797 + }, + { + "start": 5493.63, + "end": 5496.83, + "probability": 0.9229 + }, + { + "start": 5497.57, + "end": 5501.31, + "probability": 0.8973 + }, + { + "start": 5501.31, + "end": 5504.81, + "probability": 0.9652 + }, + { + "start": 5504.91, + "end": 5506.25, + "probability": 0.8459 + }, + { + "start": 5507.39, + "end": 5508.03, + "probability": 0.2692 + }, + { + "start": 5510.11, + "end": 5510.53, + "probability": 0.9701 + }, + { + "start": 5511.53, + "end": 5512.37, + "probability": 0.7527 + }, + { + "start": 5513.05, + "end": 5513.33, + "probability": 0.9941 + }, + { + "start": 5514.03, + "end": 5514.69, + "probability": 0.8114 + }, + { + "start": 5527.37, + "end": 5527.67, + "probability": 0.9847 + }, + { + "start": 5528.63, + "end": 5529.69, + "probability": 0.0268 + }, + { + "start": 5531.28, + "end": 5531.35, + "probability": 0.0336 + }, + { + "start": 5531.35, + "end": 5532.29, + "probability": 0.1696 + }, + { + "start": 5532.31, + "end": 5532.31, + "probability": 0.0442 + }, + { + "start": 5532.31, + "end": 5532.31, + "probability": 0.49 + }, + { + "start": 5532.31, + "end": 5533.13, + "probability": 0.3808 + }, + { + "start": 5534.73, + "end": 5535.13, + "probability": 0.9202 + }, + { + "start": 5536.49, + "end": 5537.33, + "probability": 0.8446 + }, + { + "start": 5538.83, + "end": 5541.11, + "probability": 0.8097 + }, + { + "start": 5542.27, + "end": 5542.53, + "probability": 0.98 + }, + { + "start": 5544.11, + "end": 5544.79, + "probability": 0.8337 + }, + { + "start": 5545.73, + "end": 5546.03, + "probability": 0.8183 + }, + { + "start": 5547.21, + "end": 5547.95, + "probability": 0.8842 + }, + { + "start": 5548.81, + "end": 5550.53, + "probability": 0.9694 + }, + { + "start": 5551.89, + "end": 5554.31, + "probability": 0.9653 + }, + { + "start": 5555.85, + "end": 5556.61, + "probability": 0.964 + }, + { + "start": 5558.27, + "end": 5559.53, + "probability": 0.9861 + }, + { + "start": 5560.83, + "end": 5561.17, + "probability": 0.9871 + }, + { + "start": 5562.89, + "end": 5563.63, + "probability": 0.9442 + }, + { + "start": 5564.57, + "end": 5565.05, + "probability": 0.9784 + }, + { + "start": 5566.01, + "end": 5566.75, + "probability": 0.9401 + }, + { + "start": 5567.59, + "end": 5568.09, + "probability": 0.9946 + }, + { + "start": 5568.89, + "end": 5569.81, + "probability": 0.9434 + }, + { + "start": 5570.97, + "end": 5571.69, + "probability": 0.7741 + }, + { + "start": 5572.25, + "end": 5572.97, + "probability": 0.7186 + }, + { + "start": 5574.11, + "end": 5574.87, + "probability": 0.8818 + }, + { + "start": 5575.57, + "end": 5576.31, + "probability": 0.947 + }, + { + "start": 5577.61, + "end": 5579.79, + "probability": 0.9907 + }, + { + "start": 5583.15, + "end": 5583.83, + "probability": 0.7616 + }, + { + "start": 5584.69, + "end": 5585.63, + "probability": 0.9732 + }, + { + "start": 5586.69, + "end": 5587.19, + "probability": 0.9795 + }, + { + "start": 5588.05, + "end": 5589.05, + "probability": 0.9425 + }, + { + "start": 5590.05, + "end": 5590.85, + "probability": 0.969 + }, + { + "start": 5592.43, + "end": 5593.39, + "probability": 0.9609 + }, + { + "start": 5594.77, + "end": 5595.23, + "probability": 0.9967 + }, + { + "start": 5596.41, + "end": 5597.11, + "probability": 0.9276 + }, + { + "start": 5598.83, + "end": 5599.27, + "probability": 0.7074 + }, + { + "start": 5602.49, + "end": 5603.11, + "probability": 0.5113 + }, + { + "start": 5604.17, + "end": 5604.73, + "probability": 0.9442 + }, + { + "start": 5605.73, + "end": 5606.51, + "probability": 0.7592 + }, + { + "start": 5607.67, + "end": 5608.17, + "probability": 0.994 + }, + { + "start": 5608.91, + "end": 5609.63, + "probability": 0.883 + }, + { + "start": 5612.15, + "end": 5612.85, + "probability": 0.9739 + }, + { + "start": 5613.85, + "end": 5614.57, + "probability": 0.891 + }, + { + "start": 5615.93, + "end": 5616.43, + "probability": 0.9883 + }, + { + "start": 5617.25, + "end": 5617.89, + "probability": 0.9907 + }, + { + "start": 5618.41, + "end": 5619.11, + "probability": 0.8953 + }, + { + "start": 5619.81, + "end": 5620.29, + "probability": 0.9018 + }, + { + "start": 5621.57, + "end": 5622.01, + "probability": 0.9967 + }, + { + "start": 5622.63, + "end": 5623.55, + "probability": 0.9511 + }, + { + "start": 5624.07, + "end": 5624.47, + "probability": 0.9763 + }, + { + "start": 5625.05, + "end": 5626.67, + "probability": 0.9761 + }, + { + "start": 5627.33, + "end": 5628.43, + "probability": 0.6381 + }, + { + "start": 5629.15, + "end": 5630.71, + "probability": 0.7829 + }, + { + "start": 5631.85, + "end": 5632.31, + "probability": 0.9896 + }, + { + "start": 5632.83, + "end": 5633.43, + "probability": 0.8368 + }, + { + "start": 5635.63, + "end": 5636.29, + "probability": 0.7649 + }, + { + "start": 5636.85, + "end": 5637.47, + "probability": 0.8465 + }, + { + "start": 5638.95, + "end": 5639.47, + "probability": 0.9814 + }, + { + "start": 5640.93, + "end": 5641.63, + "probability": 0.7013 + }, + { + "start": 5642.81, + "end": 5643.55, + "probability": 0.9499 + }, + { + "start": 5644.49, + "end": 5645.21, + "probability": 0.9357 + }, + { + "start": 5646.25, + "end": 5648.55, + "probability": 0.6896 + }, + { + "start": 5649.91, + "end": 5650.73, + "probability": 0.9526 + }, + { + "start": 5651.33, + "end": 5651.93, + "probability": 0.4534 + }, + { + "start": 5653.07, + "end": 5653.47, + "probability": 0.8074 + }, + { + "start": 5655.07, + "end": 5656.18, + "probability": 0.9831 + }, + { + "start": 5657.05, + "end": 5657.39, + "probability": 0.9753 + }, + { + "start": 5658.07, + "end": 5659.23, + "probability": 0.972 + }, + { + "start": 5659.75, + "end": 5660.19, + "probability": 0.9743 + }, + { + "start": 5661.05, + "end": 5662.07, + "probability": 0.8519 + }, + { + "start": 5663.25, + "end": 5663.89, + "probability": 0.8813 + }, + { + "start": 5664.59, + "end": 5665.75, + "probability": 0.7226 + }, + { + "start": 5666.83, + "end": 5667.59, + "probability": 0.9232 + }, + { + "start": 5670.91, + "end": 5672.53, + "probability": 0.4364 + }, + { + "start": 5673.41, + "end": 5675.37, + "probability": 0.8008 + }, + { + "start": 5676.27, + "end": 5677.05, + "probability": 0.8184 + }, + { + "start": 5679.23, + "end": 5679.93, + "probability": 0.982 + }, + { + "start": 5680.79, + "end": 5681.47, + "probability": 0.9904 + }, + { + "start": 5682.53, + "end": 5684.11, + "probability": 0.9611 + }, + { + "start": 5685.63, + "end": 5686.09, + "probability": 0.9761 + }, + { + "start": 5688.35, + "end": 5689.01, + "probability": 0.891 + }, + { + "start": 5690.83, + "end": 5691.27, + "probability": 0.9886 + }, + { + "start": 5692.05, + "end": 5693.01, + "probability": 0.9793 + }, + { + "start": 5693.85, + "end": 5694.23, + "probability": 0.9935 + }, + { + "start": 5696.81, + "end": 5697.59, + "probability": 0.8758 + }, + { + "start": 5698.61, + "end": 5699.99, + "probability": 0.5158 + }, + { + "start": 5703.89, + "end": 5704.35, + "probability": 0.9539 + }, + { + "start": 5705.41, + "end": 5705.95, + "probability": 0.8093 + }, + { + "start": 5707.19, + "end": 5709.27, + "probability": 0.8542 + }, + { + "start": 5710.03, + "end": 5710.83, + "probability": 0.8864 + }, + { + "start": 5712.25, + "end": 5714.15, + "probability": 0.9495 + }, + { + "start": 5715.61, + "end": 5717.57, + "probability": 0.9335 + }, + { + "start": 5718.23, + "end": 5719.85, + "probability": 0.9337 + }, + { + "start": 5720.87, + "end": 5721.65, + "probability": 0.9968 + }, + { + "start": 5722.29, + "end": 5722.91, + "probability": 0.941 + }, + { + "start": 5723.89, + "end": 5724.25, + "probability": 0.9932 + }, + { + "start": 5725.77, + "end": 5726.65, + "probability": 0.9016 + }, + { + "start": 5728.47, + "end": 5729.17, + "probability": 0.7438 + }, + { + "start": 5729.79, + "end": 5730.73, + "probability": 0.5329 + }, + { + "start": 5731.69, + "end": 5733.83, + "probability": 0.6666 + }, + { + "start": 5735.41, + "end": 5738.95, + "probability": 0.9288 + }, + { + "start": 5741.67, + "end": 5742.07, + "probability": 0.9897 + }, + { + "start": 5743.19, + "end": 5744.05, + "probability": 0.7363 + }, + { + "start": 5744.89, + "end": 5748.83, + "probability": 0.979 + }, + { + "start": 5753.15, + "end": 5753.55, + "probability": 0.61 + }, + { + "start": 5756.97, + "end": 5757.97, + "probability": 0.6642 + }, + { + "start": 5759.47, + "end": 5759.75, + "probability": 0.9235 + }, + { + "start": 5761.69, + "end": 5762.51, + "probability": 0.8675 + }, + { + "start": 5764.15, + "end": 5764.57, + "probability": 0.9863 + }, + { + "start": 5766.31, + "end": 5767.11, + "probability": 0.743 + }, + { + "start": 5768.63, + "end": 5769.41, + "probability": 0.9048 + }, + { + "start": 5770.11, + "end": 5771.05, + "probability": 0.8589 + }, + { + "start": 5772.33, + "end": 5774.43, + "probability": 0.9641 + }, + { + "start": 5775.37, + "end": 5775.79, + "probability": 0.9977 + }, + { + "start": 5776.75, + "end": 5777.57, + "probability": 0.8997 + }, + { + "start": 5779.21, + "end": 5779.65, + "probability": 0.9922 + }, + { + "start": 5781.47, + "end": 5782.27, + "probability": 0.8935 + }, + { + "start": 5786.95, + "end": 5787.37, + "probability": 0.6968 + }, + { + "start": 5789.39, + "end": 5790.11, + "probability": 0.6338 + }, + { + "start": 5792.17, + "end": 5795.01, + "probability": 0.7553 + }, + { + "start": 5796.05, + "end": 5796.51, + "probability": 0.9867 + }, + { + "start": 5798.65, + "end": 5799.27, + "probability": 0.7659 + }, + { + "start": 5800.47, + "end": 5801.37, + "probability": 0.9884 + }, + { + "start": 5802.31, + "end": 5802.91, + "probability": 0.9377 + }, + { + "start": 5803.87, + "end": 5805.65, + "probability": 0.9548 + }, + { + "start": 5807.71, + "end": 5809.51, + "probability": 0.8204 + }, + { + "start": 5811.99, + "end": 5813.07, + "probability": 0.9747 + }, + { + "start": 5814.03, + "end": 5816.33, + "probability": 0.8238 + }, + { + "start": 5817.23, + "end": 5818.95, + "probability": 0.6415 + }, + { + "start": 5820.39, + "end": 5821.07, + "probability": 0.9553 + }, + { + "start": 5822.07, + "end": 5823.39, + "probability": 0.8012 + }, + { + "start": 5824.53, + "end": 5824.97, + "probability": 0.9836 + }, + { + "start": 5826.79, + "end": 5827.81, + "probability": 0.7998 + }, + { + "start": 5830.45, + "end": 5831.13, + "probability": 0.824 + }, + { + "start": 5831.87, + "end": 5833.03, + "probability": 0.8155 + }, + { + "start": 5834.49, + "end": 5834.97, + "probability": 0.9717 + }, + { + "start": 5835.85, + "end": 5836.63, + "probability": 0.8946 + }, + { + "start": 5837.41, + "end": 5837.83, + "probability": 0.9744 + }, + { + "start": 5838.59, + "end": 5839.61, + "probability": 0.9551 + }, + { + "start": 5840.27, + "end": 5840.65, + "probability": 0.9811 + }, + { + "start": 5841.33, + "end": 5842.55, + "probability": 0.6788 + }, + { + "start": 5848.81, + "end": 5848.97, + "probability": 0.5285 + }, + { + "start": 5849.89, + "end": 5850.57, + "probability": 0.7718 + }, + { + "start": 5851.15, + "end": 5853.17, + "probability": 0.9307 + }, + { + "start": 5854.59, + "end": 5855.43, + "probability": 0.9668 + }, + { + "start": 5856.55, + "end": 5857.25, + "probability": 0.9458 + }, + { + "start": 5858.77, + "end": 5859.51, + "probability": 0.9529 + }, + { + "start": 5860.21, + "end": 5860.65, + "probability": 0.9116 + }, + { + "start": 5863.11, + "end": 5863.87, + "probability": 0.9762 + }, + { + "start": 5864.47, + "end": 5865.41, + "probability": 0.5757 + }, + { + "start": 5866.59, + "end": 5867.13, + "probability": 0.991 + }, + { + "start": 5867.83, + "end": 5868.57, + "probability": 0.8611 + }, + { + "start": 5869.15, + "end": 5870.49, + "probability": 0.9332 + }, + { + "start": 5871.81, + "end": 5872.31, + "probability": 0.7284 + }, + { + "start": 5873.65, + "end": 5874.05, + "probability": 0.7799 + }, + { + "start": 5877.09, + "end": 5877.83, + "probability": 0.9113 + }, + { + "start": 5878.77, + "end": 5879.55, + "probability": 0.8777 + }, + { + "start": 5880.91, + "end": 5881.37, + "probability": 0.9886 + }, + { + "start": 5882.53, + "end": 5883.43, + "probability": 0.9001 + }, + { + "start": 5884.87, + "end": 5885.67, + "probability": 0.9832 + }, + { + "start": 5886.39, + "end": 5887.61, + "probability": 0.7973 + }, + { + "start": 5893.39, + "end": 5893.85, + "probability": 0.7834 + }, + { + "start": 5896.65, + "end": 5897.89, + "probability": 0.645 + }, + { + "start": 5900.69, + "end": 5901.61, + "probability": 0.8813 + }, + { + "start": 5902.23, + "end": 5902.65, + "probability": 0.7708 + }, + { + "start": 5906.69, + "end": 5907.07, + "probability": 0.9891 + }, + { + "start": 5908.51, + "end": 5909.13, + "probability": 0.9717 + }, + { + "start": 5910.21, + "end": 5910.55, + "probability": 0.9932 + }, + { + "start": 5911.47, + "end": 5912.39, + "probability": 0.916 + }, + { + "start": 5914.07, + "end": 5914.57, + "probability": 0.9941 + }, + { + "start": 5915.23, + "end": 5916.05, + "probability": 0.9631 + }, + { + "start": 5917.65, + "end": 5917.99, + "probability": 0.9731 + }, + { + "start": 5919.49, + "end": 5920.19, + "probability": 0.8327 + }, + { + "start": 5920.95, + "end": 5921.35, + "probability": 0.9945 + }, + { + "start": 5922.41, + "end": 5923.29, + "probability": 0.9785 + }, + { + "start": 5928.07, + "end": 5931.23, + "probability": 0.5454 + }, + { + "start": 5934.29, + "end": 5935.97, + "probability": 0.8901 + }, + { + "start": 5936.69, + "end": 5937.31, + "probability": 0.6376 + }, + { + "start": 5939.03, + "end": 5939.45, + "probability": 0.984 + }, + { + "start": 5940.15, + "end": 5940.99, + "probability": 0.8106 + }, + { + "start": 5943.39, + "end": 5943.89, + "probability": 0.971 + }, + { + "start": 5944.57, + "end": 5945.23, + "probability": 0.9281 + }, + { + "start": 5947.89, + "end": 5948.61, + "probability": 0.7467 + }, + { + "start": 5949.21, + "end": 5950.37, + "probability": 0.8711 + }, + { + "start": 5952.88, + "end": 5955.87, + "probability": 0.6004 + }, + { + "start": 5957.25, + "end": 5959.11, + "probability": 0.7452 + }, + { + "start": 5960.61, + "end": 5962.67, + "probability": 0.9336 + }, + { + "start": 5964.27, + "end": 5966.53, + "probability": 0.969 + }, + { + "start": 5967.25, + "end": 5967.67, + "probability": 0.8416 + }, + { + "start": 5968.95, + "end": 5969.73, + "probability": 0.8381 + }, + { + "start": 5971.41, + "end": 5973.33, + "probability": 0.7549 + }, + { + "start": 5973.95, + "end": 5975.11, + "probability": 0.8973 + }, + { + "start": 5976.25, + "end": 5977.79, + "probability": 0.8825 + }, + { + "start": 5978.59, + "end": 5979.03, + "probability": 0.9673 + }, + { + "start": 5982.87, + "end": 5983.51, + "probability": 0.5601 + }, + { + "start": 5983.95, + "end": 5986.03, + "probability": 0.7575 + }, + { + "start": 5986.05, + "end": 5988.19, + "probability": 0.8312 + }, + { + "start": 5988.83, + "end": 5989.51, + "probability": 0.4021 + }, + { + "start": 5990.51, + "end": 5990.95, + "probability": 0.9297 + }, + { + "start": 5993.25, + "end": 5994.19, + "probability": 0.4069 + }, + { + "start": 5995.71, + "end": 5999.49, + "probability": 0.7975 + }, + { + "start": 6000.33, + "end": 6000.75, + "probability": 0.9751 + }, + { + "start": 6002.63, + "end": 6002.87, + "probability": 0.9699 + }, + { + "start": 6004.89, + "end": 6005.71, + "probability": 0.4922 + }, + { + "start": 6011.21, + "end": 6011.63, + "probability": 0.5766 + }, + { + "start": 6013.69, + "end": 6014.59, + "probability": 0.8563 + }, + { + "start": 6017.45, + "end": 6018.81, + "probability": 0.9325 + }, + { + "start": 6021.33, + "end": 6022.99, + "probability": 0.9742 + }, + { + "start": 6025.53, + "end": 6025.87, + "probability": 0.5667 + }, + { + "start": 6028.11, + "end": 6028.99, + "probability": 0.7625 + }, + { + "start": 6030.61, + "end": 6030.99, + "probability": 0.8942 + }, + { + "start": 6034.67, + "end": 6035.57, + "probability": 0.7632 + }, + { + "start": 6041.57, + "end": 6042.21, + "probability": 0.4849 + }, + { + "start": 6044.15, + "end": 6045.93, + "probability": 0.8718 + }, + { + "start": 6047.87, + "end": 6049.59, + "probability": 0.9585 + }, + { + "start": 6051.91, + "end": 6052.69, + "probability": 0.9943 + }, + { + "start": 6053.59, + "end": 6054.27, + "probability": 0.8297 + }, + { + "start": 6055.27, + "end": 6056.03, + "probability": 0.9434 + }, + { + "start": 6056.79, + "end": 6057.79, + "probability": 0.3869 + }, + { + "start": 6061.29, + "end": 6062.03, + "probability": 0.6567 + }, + { + "start": 6063.37, + "end": 6067.79, + "probability": 0.6295 + }, + { + "start": 6068.41, + "end": 6069.61, + "probability": 0.6079 + }, + { + "start": 6071.25, + "end": 6073.59, + "probability": 0.8359 + }, + { + "start": 6074.63, + "end": 6075.33, + "probability": 0.1551 + }, + { + "start": 6075.33, + "end": 6077.15, + "probability": 0.8332 + }, + { + "start": 6077.59, + "end": 6079.45, + "probability": 0.9102 + }, + { + "start": 6080.59, + "end": 6081.55, + "probability": 0.7776 + }, + { + "start": 6082.63, + "end": 6083.35, + "probability": 0.8783 + }, + { + "start": 6084.47, + "end": 6085.21, + "probability": 0.9452 + }, + { + "start": 6087.57, + "end": 6088.29, + "probability": 0.908 + }, + { + "start": 6089.09, + "end": 6090.81, + "probability": 0.9575 + }, + { + "start": 6091.49, + "end": 6092.19, + "probability": 0.9814 + }, + { + "start": 6093.07, + "end": 6093.61, + "probability": 0.9736 + }, + { + "start": 6094.27, + "end": 6094.75, + "probability": 0.9655 + }, + { + "start": 6096.4, + "end": 6098.07, + "probability": 0.9731 + }, + { + "start": 6099.31, + "end": 6099.55, + "probability": 0.5843 + }, + { + "start": 6101.23, + "end": 6102.13, + "probability": 0.7536 + }, + { + "start": 6103.49, + "end": 6104.25, + "probability": 0.8626 + }, + { + "start": 6105.39, + "end": 6106.29, + "probability": 0.8809 + }, + { + "start": 6108.95, + "end": 6109.75, + "probability": 0.9093 + }, + { + "start": 6110.97, + "end": 6111.33, + "probability": 0.9822 + }, + { + "start": 6113.2, + "end": 6115.47, + "probability": 0.7536 + }, + { + "start": 6118.01, + "end": 6118.37, + "probability": 0.9756 + }, + { + "start": 6120.21, + "end": 6120.85, + "probability": 0.9262 + }, + { + "start": 6123.03, + "end": 6125.79, + "probability": 0.9612 + }, + { + "start": 6126.91, + "end": 6127.71, + "probability": 0.7905 + }, + { + "start": 6129.89, + "end": 6131.87, + "probability": 0.9263 + }, + { + "start": 6132.51, + "end": 6133.35, + "probability": 0.9801 + }, + { + "start": 6140.17, + "end": 6140.31, + "probability": 0.4954 + }, + { + "start": 6142.41, + "end": 6143.27, + "probability": 0.9622 + }, + { + "start": 6144.03, + "end": 6144.95, + "probability": 0.8081 + }, + { + "start": 6146.05, + "end": 6147.29, + "probability": 0.9836 + }, + { + "start": 6148.59, + "end": 6149.43, + "probability": 0.8512 + }, + { + "start": 6154.29, + "end": 6155.27, + "probability": 0.9433 + }, + { + "start": 6156.23, + "end": 6156.99, + "probability": 0.9905 + }, + { + "start": 6158.23, + "end": 6160.03, + "probability": 0.9922 + }, + { + "start": 6162.19, + "end": 6166.71, + "probability": 0.9418 + }, + { + "start": 6168.11, + "end": 6169.09, + "probability": 0.4567 + }, + { + "start": 6169.83, + "end": 6170.05, + "probability": 0.5831 + }, + { + "start": 6172.01, + "end": 6172.97, + "probability": 0.6624 + }, + { + "start": 6174.31, + "end": 6175.05, + "probability": 0.8686 + }, + { + "start": 6175.85, + "end": 6176.67, + "probability": 0.8346 + }, + { + "start": 6182.67, + "end": 6182.89, + "probability": 0.5671 + }, + { + "start": 6185.27, + "end": 6185.91, + "probability": 0.6862 + }, + { + "start": 6190.17, + "end": 6190.97, + "probability": 0.6673 + }, + { + "start": 6191.51, + "end": 6192.13, + "probability": 0.8839 + }, + { + "start": 6193.53, + "end": 6194.23, + "probability": 0.7414 + }, + { + "start": 6195.41, + "end": 6196.31, + "probability": 0.8422 + }, + { + "start": 6198.45, + "end": 6199.21, + "probability": 0.9012 + }, + { + "start": 6201.57, + "end": 6202.35, + "probability": 0.8629 + }, + { + "start": 6204.19, + "end": 6206.25, + "probability": 0.9668 + }, + { + "start": 6208.61, + "end": 6209.41, + "probability": 0.8403 + }, + { + "start": 6210.13, + "end": 6210.35, + "probability": 0.5831 + }, + { + "start": 6212.15, + "end": 6213.07, + "probability": 0.8694 + }, + { + "start": 6214.91, + "end": 6217.15, + "probability": 0.9246 + }, + { + "start": 6218.73, + "end": 6218.89, + "probability": 0.5906 + }, + { + "start": 6222.83, + "end": 6226.09, + "probability": 0.6133 + }, + { + "start": 6226.71, + "end": 6228.41, + "probability": 0.8104 + }, + { + "start": 6231.05, + "end": 6231.55, + "probability": 0.96 + }, + { + "start": 6233.23, + "end": 6234.35, + "probability": 0.9276 + }, + { + "start": 6235.75, + "end": 6238.31, + "probability": 0.8911 + }, + { + "start": 6238.92, + "end": 6241.35, + "probability": 0.9514 + }, + { + "start": 6242.93, + "end": 6245.13, + "probability": 0.927 + }, + { + "start": 6247.65, + "end": 6248.53, + "probability": 0.9722 + }, + { + "start": 6250.93, + "end": 6251.07, + "probability": 0.6873 + }, + { + "start": 6256.15, + "end": 6256.93, + "probability": 0.7218 + }, + { + "start": 6263.17, + "end": 6264.79, + "probability": 0.7329 + }, + { + "start": 6265.87, + "end": 6266.93, + "probability": 0.7377 + }, + { + "start": 6268.73, + "end": 6269.53, + "probability": 0.8974 + }, + { + "start": 6272.27, + "end": 6276.65, + "probability": 0.9368 + }, + { + "start": 6276.67, + "end": 6277.13, + "probability": 0.4521 + }, + { + "start": 6277.45, + "end": 6278.23, + "probability": 0.1892 + }, + { + "start": 6278.81, + "end": 6280.43, + "probability": 0.6604 + }, + { + "start": 6281.07, + "end": 6281.53, + "probability": 0.8645 + }, + { + "start": 6282.51, + "end": 6284.72, + "probability": 0.9907 + }, + { + "start": 6285.18, + "end": 6286.82, + "probability": 0.2594 + }, + { + "start": 6291.42, + "end": 6291.88, + "probability": 0.7905 + }, + { + "start": 6293.9, + "end": 6296.56, + "probability": 0.9816 + }, + { + "start": 6297.38, + "end": 6298.5, + "probability": 0.4294 + }, + { + "start": 6298.5, + "end": 6298.98, + "probability": 0.6428 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6978.0, + "end": 6978.0, + "probability": 0.0 + }, + { + "start": 6979.1, + "end": 6980.08, + "probability": 0.0219 + }, + { + "start": 6980.96, + "end": 6982.18, + "probability": 0.0575 + }, + { + "start": 6982.18, + "end": 6982.18, + "probability": 0.342 + }, + { + "start": 6987.14, + "end": 6988.42, + "probability": 0.019 + }, + { + "start": 6990.76, + "end": 6991.54, + "probability": 0.0871 + }, + { + "start": 6993.04, + "end": 6993.2, + "probability": 0.2814 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.0, + "end": 7130.0, + "probability": 0.0 + }, + { + "start": 7130.52, + "end": 7131.32, + "probability": 0.89 + }, + { + "start": 7132.24, + "end": 7132.46, + "probability": 0.5415 + }, + { + "start": 7134.82, + "end": 7135.74, + "probability": 0.696 + }, + { + "start": 7141.18, + "end": 7141.67, + "probability": 0.4958 + }, + { + "start": 7143.16, + "end": 7143.6, + "probability": 0.8096 + }, + { + "start": 7145.38, + "end": 7146.22, + "probability": 0.7088 + }, + { + "start": 7146.84, + "end": 7147.1, + "probability": 0.5417 + }, + { + "start": 7149.2, + "end": 7150.12, + "probability": 0.6885 + }, + { + "start": 7150.82, + "end": 7152.84, + "probability": 0.8372 + }, + { + "start": 7153.9, + "end": 7154.36, + "probability": 0.5922 + }, + { + "start": 7156.62, + "end": 7157.32, + "probability": 0.6273 + }, + { + "start": 7159.24, + "end": 7161.54, + "probability": 0.9574 + }, + { + "start": 7162.97, + "end": 7165.36, + "probability": 0.8908 + }, + { + "start": 7169.52, + "end": 7170.4, + "probability": 0.9642 + }, + { + "start": 7171.32, + "end": 7172.64, + "probability": 0.8796 + }, + { + "start": 7173.3, + "end": 7174.94, + "probability": 0.989 + }, + { + "start": 7175.68, + "end": 7176.4, + "probability": 0.9928 + }, + { + "start": 7177.52, + "end": 7177.88, + "probability": 0.9963 + }, + { + "start": 7181.28, + "end": 7181.98, + "probability": 0.5293 + }, + { + "start": 7183.48, + "end": 7185.18, + "probability": 0.9066 + }, + { + "start": 7186.56, + "end": 7186.98, + "probability": 0.9502 + }, + { + "start": 7189.38, + "end": 7190.36, + "probability": 0.9368 + }, + { + "start": 7194.42, + "end": 7194.86, + "probability": 0.9729 + }, + { + "start": 7197.76, + "end": 7198.42, + "probability": 0.5529 + }, + { + "start": 7200.51, + "end": 7202.54, + "probability": 0.9014 + }, + { + "start": 7205.39, + "end": 7208.62, + "probability": 0.7401 + }, + { + "start": 7209.88, + "end": 7211.12, + "probability": 0.9749 + }, + { + "start": 7212.92, + "end": 7217.26, + "probability": 0.9875 + }, + { + "start": 7218.72, + "end": 7218.92, + "probability": 0.4654 + }, + { + "start": 7219.02, + "end": 7219.7, + "probability": 0.5586 + }, + { + "start": 7220.76, + "end": 7223.1, + "probability": 0.0138 + }, + { + "start": 7227.34, + "end": 7229.64, + "probability": 0.2055 + }, + { + "start": 7231.27, + "end": 7232.61, + "probability": 0.072 + }, + { + "start": 7280.52, + "end": 7283.8, + "probability": 0.0657 + }, + { + "start": 7307.19, + "end": 7308.9, + "probability": 0.0333 + }, + { + "start": 7308.9, + "end": 7310.78, + "probability": 0.0035 + }, + { + "start": 7431.28, + "end": 7437.58, + "probability": 0.6764 + }, + { + "start": 7438.6, + "end": 7438.74, + "probability": 0.3716 + }, + { + "start": 7438.8, + "end": 7439.56, + "probability": 0.5779 + }, + { + "start": 7439.64, + "end": 7440.91, + "probability": 0.8175 + }, + { + "start": 7442.1, + "end": 7444.54, + "probability": 0.9401 + }, + { + "start": 7445.76, + "end": 7448.0, + "probability": 0.6701 + }, + { + "start": 7448.36, + "end": 7452.54, + "probability": 0.7602 + }, + { + "start": 7452.54, + "end": 7455.24, + "probability": 0.869 + }, + { + "start": 7455.68, + "end": 7458.0, + "probability": 0.7192 + }, + { + "start": 7458.11, + "end": 7460.26, + "probability": 0.9309 + }, + { + "start": 7460.42, + "end": 7460.9, + "probability": 0.8391 + }, + { + "start": 7461.52, + "end": 7462.6, + "probability": 0.7245 + }, + { + "start": 7462.7, + "end": 7463.26, + "probability": 0.9807 + }, + { + "start": 7463.26, + "end": 7465.34, + "probability": 0.9951 + }, + { + "start": 7465.64, + "end": 7468.36, + "probability": 0.5158 + }, + { + "start": 7470.54, + "end": 7472.32, + "probability": 0.9439 + }, + { + "start": 7474.06, + "end": 7476.2, + "probability": 0.7712 + }, + { + "start": 7477.52, + "end": 7481.56, + "probability": 0.8854 + }, + { + "start": 7481.66, + "end": 7487.06, + "probability": 0.9006 + }, + { + "start": 7488.06, + "end": 7491.08, + "probability": 0.9651 + }, + { + "start": 7491.94, + "end": 7491.94, + "probability": 0.0001 + }, + { + "start": 7492.56, + "end": 7494.98, + "probability": 0.0373 + }, + { + "start": 7495.54, + "end": 7496.24, + "probability": 0.7035 + }, + { + "start": 7496.34, + "end": 7497.58, + "probability": 0.9883 + }, + { + "start": 7499.92, + "end": 7502.82, + "probability": 0.994 + }, + { + "start": 7503.48, + "end": 7506.7, + "probability": 0.9919 + }, + { + "start": 7506.7, + "end": 7509.92, + "probability": 0.9891 + }, + { + "start": 7510.92, + "end": 7515.04, + "probability": 0.7363 + }, + { + "start": 7516.04, + "end": 7519.14, + "probability": 0.7936 + }, + { + "start": 7519.88, + "end": 7521.5, + "probability": 0.8634 + }, + { + "start": 7522.36, + "end": 7525.26, + "probability": 0.9754 + }, + { + "start": 7525.26, + "end": 7530.14, + "probability": 0.9253 + }, + { + "start": 7531.04, + "end": 7534.06, + "probability": 0.7103 + }, + { + "start": 7534.6, + "end": 7537.24, + "probability": 0.9771 + }, + { + "start": 7537.34, + "end": 7541.04, + "probability": 0.3222 + }, + { + "start": 7541.64, + "end": 7543.68, + "probability": 0.7927 + }, + { + "start": 7543.86, + "end": 7545.06, + "probability": 0.4542 + }, + { + "start": 7546.6, + "end": 7548.72, + "probability": 0.7338 + }, + { + "start": 7549.38, + "end": 7553.6, + "probability": 0.9883 + }, + { + "start": 7554.44, + "end": 7557.12, + "probability": 0.44 + }, + { + "start": 7557.78, + "end": 7561.94, + "probability": 0.6777 + }, + { + "start": 7562.9, + "end": 7566.14, + "probability": 0.8734 + }, + { + "start": 7566.9, + "end": 7567.96, + "probability": 0.7958 + }, + { + "start": 7570.98, + "end": 7577.86, + "probability": 0.8913 + }, + { + "start": 7578.62, + "end": 7583.2, + "probability": 0.8413 + }, + { + "start": 7583.92, + "end": 7588.56, + "probability": 0.7135 + }, + { + "start": 7589.56, + "end": 7595.47, + "probability": 0.9484 + }, + { + "start": 7596.2, + "end": 7600.02, + "probability": 0.5641 + }, + { + "start": 7600.2, + "end": 7606.1, + "probability": 0.979 + }, + { + "start": 7606.1, + "end": 7612.38, + "probability": 0.9736 + }, + { + "start": 7612.82, + "end": 7616.46, + "probability": 0.9697 + }, + { + "start": 7617.34, + "end": 7622.12, + "probability": 0.9886 + }, + { + "start": 7622.78, + "end": 7625.4, + "probability": 0.8352 + }, + { + "start": 7626.02, + "end": 7626.66, + "probability": 0.715 + }, + { + "start": 7628.1, + "end": 7629.28, + "probability": 0.973 + }, + { + "start": 7629.48, + "end": 7633.38, + "probability": 0.9901 + }, + { + "start": 7633.38, + "end": 7638.78, + "probability": 0.9954 + }, + { + "start": 7639.22, + "end": 7640.52, + "probability": 0.8269 + }, + { + "start": 7640.56, + "end": 7647.42, + "probability": 0.9744 + }, + { + "start": 7648.0, + "end": 7652.72, + "probability": 0.9943 + }, + { + "start": 7653.32, + "end": 7655.38, + "probability": 0.8329 + }, + { + "start": 7656.0, + "end": 7661.48, + "probability": 0.9962 + }, + { + "start": 7662.52, + "end": 7663.3, + "probability": 0.6538 + }, + { + "start": 7663.72, + "end": 7668.08, + "probability": 0.9749 + }, + { + "start": 7668.08, + "end": 7673.94, + "probability": 0.9637 + }, + { + "start": 7674.6, + "end": 7678.96, + "probability": 0.959 + }, + { + "start": 7679.38, + "end": 7683.96, + "probability": 0.9912 + }, + { + "start": 7684.4, + "end": 7686.7, + "probability": 0.9961 + }, + { + "start": 7687.16, + "end": 7692.5, + "probability": 0.9961 + }, + { + "start": 7694.2, + "end": 7696.56, + "probability": 0.8777 + }, + { + "start": 7696.62, + "end": 7698.08, + "probability": 0.8328 + }, + { + "start": 7698.94, + "end": 7701.24, + "probability": 0.9584 + }, + { + "start": 7702.12, + "end": 7703.82, + "probability": 0.8368 + }, + { + "start": 7724.26, + "end": 7725.56, + "probability": 0.662 + }, + { + "start": 7726.14, + "end": 7729.06, + "probability": 0.9335 + }, + { + "start": 7729.52, + "end": 7730.3, + "probability": 0.8418 + }, + { + "start": 7730.4, + "end": 7734.06, + "probability": 0.7542 + }, + { + "start": 7734.6, + "end": 7735.62, + "probability": 0.8095 + }, + { + "start": 7735.72, + "end": 7738.6, + "probability": 0.9596 + }, + { + "start": 7739.16, + "end": 7740.26, + "probability": 0.9832 + }, + { + "start": 7740.3, + "end": 7742.62, + "probability": 0.953 + }, + { + "start": 7743.54, + "end": 7744.84, + "probability": 0.8538 + }, + { + "start": 7744.98, + "end": 7748.82, + "probability": 0.9167 + }, + { + "start": 7749.84, + "end": 7751.14, + "probability": 0.8784 + }, + { + "start": 7751.4, + "end": 7755.78, + "probability": 0.8979 + }, + { + "start": 7755.94, + "end": 7757.74, + "probability": 0.9612 + }, + { + "start": 7758.4, + "end": 7759.92, + "probability": 0.9836 + }, + { + "start": 7760.04, + "end": 7761.2, + "probability": 0.9729 + }, + { + "start": 7761.26, + "end": 7762.78, + "probability": 0.9938 + }, + { + "start": 7763.22, + "end": 7764.88, + "probability": 0.9742 + }, + { + "start": 7765.06, + "end": 7766.64, + "probability": 0.9373 + }, + { + "start": 7767.22, + "end": 7767.98, + "probability": 0.6662 + }, + { + "start": 7768.14, + "end": 7769.86, + "probability": 0.9714 + }, + { + "start": 7769.86, + "end": 7772.3, + "probability": 0.9967 + }, + { + "start": 7772.4, + "end": 7773.84, + "probability": 0.8889 + }, + { + "start": 7774.12, + "end": 7774.28, + "probability": 0.7047 + }, + { + "start": 7775.6, + "end": 7776.12, + "probability": 0.7928 + }, + { + "start": 7776.24, + "end": 7777.33, + "probability": 0.6797 + }, + { + "start": 7777.8, + "end": 7782.69, + "probability": 0.9634 + }, + { + "start": 7783.56, + "end": 7786.73, + "probability": 0.4554 + }, + { + "start": 7787.8, + "end": 7789.07, + "probability": 0.7317 + }, + { + "start": 7791.82, + "end": 7791.96, + "probability": 0.1598 + }, + { + "start": 7791.96, + "end": 7795.32, + "probability": 0.7194 + }, + { + "start": 7796.86, + "end": 7797.34, + "probability": 0.8013 + }, + { + "start": 7805.52, + "end": 7806.3, + "probability": 0.572 + }, + { + "start": 7807.52, + "end": 7809.06, + "probability": 0.7904 + }, + { + "start": 7811.28, + "end": 7815.16, + "probability": 0.995 + }, + { + "start": 7815.42, + "end": 7819.02, + "probability": 0.5259 + }, + { + "start": 7820.08, + "end": 7823.16, + "probability": 0.8609 + }, + { + "start": 7824.68, + "end": 7828.12, + "probability": 0.9924 + }, + { + "start": 7828.12, + "end": 7830.28, + "probability": 0.9936 + }, + { + "start": 7830.64, + "end": 7831.41, + "probability": 0.7097 + }, + { + "start": 7832.14, + "end": 7834.52, + "probability": 0.9551 + }, + { + "start": 7835.84, + "end": 7839.48, + "probability": 0.9944 + }, + { + "start": 7840.18, + "end": 7842.68, + "probability": 0.8714 + }, + { + "start": 7842.68, + "end": 7845.5, + "probability": 0.9629 + }, + { + "start": 7846.14, + "end": 7848.1, + "probability": 0.9041 + }, + { + "start": 7850.0, + "end": 7850.7, + "probability": 0.684 + }, + { + "start": 7850.98, + "end": 7852.24, + "probability": 0.2271 + }, + { + "start": 7853.88, + "end": 7855.14, + "probability": 0.0042 + }, + { + "start": 7855.44, + "end": 7855.8, + "probability": 0.5999 + }, + { + "start": 7856.86, + "end": 7857.2, + "probability": 0.9697 + }, + { + "start": 7857.28, + "end": 7861.0, + "probability": 0.8777 + }, + { + "start": 7861.0, + "end": 7863.9, + "probability": 0.825 + }, + { + "start": 7864.52, + "end": 7869.72, + "probability": 0.8457 + }, + { + "start": 7869.8, + "end": 7872.66, + "probability": 0.6956 + }, + { + "start": 7873.1, + "end": 7878.98, + "probability": 0.9375 + }, + { + "start": 7879.4, + "end": 7879.94, + "probability": 0.5958 + }, + { + "start": 7880.72, + "end": 7883.7, + "probability": 0.9934 + }, + { + "start": 7884.12, + "end": 7885.52, + "probability": 0.936 + }, + { + "start": 7886.36, + "end": 7889.96, + "probability": 0.7853 + }, + { + "start": 7889.97, + "end": 7893.58, + "probability": 0.9769 + }, + { + "start": 7894.58, + "end": 7898.34, + "probability": 0.9204 + }, + { + "start": 7898.54, + "end": 7904.36, + "probability": 0.976 + }, + { + "start": 7904.8, + "end": 7905.98, + "probability": 0.9896 + }, + { + "start": 7906.14, + "end": 7907.94, + "probability": 0.6921 + }, + { + "start": 7908.64, + "end": 7909.82, + "probability": 0.9752 + }, + { + "start": 7910.0, + "end": 7910.74, + "probability": 0.9646 + }, + { + "start": 7910.88, + "end": 7913.76, + "probability": 0.9694 + }, + { + "start": 7914.22, + "end": 7917.2, + "probability": 0.9778 + }, + { + "start": 7917.26, + "end": 7919.02, + "probability": 0.7602 + }, + { + "start": 7919.46, + "end": 7920.18, + "probability": 0.5802 + }, + { + "start": 7920.96, + "end": 7921.3, + "probability": 0.9013 + }, + { + "start": 7921.8, + "end": 7925.44, + "probability": 0.9048 + }, + { + "start": 7926.04, + "end": 7927.16, + "probability": 0.8587 + }, + { + "start": 7927.62, + "end": 7930.96, + "probability": 0.9865 + }, + { + "start": 7931.7, + "end": 7935.22, + "probability": 0.92 + }, + { + "start": 7935.22, + "end": 7938.02, + "probability": 0.7883 + }, + { + "start": 7938.68, + "end": 7939.78, + "probability": 0.8516 + }, + { + "start": 7940.6, + "end": 7945.64, + "probability": 0.9621 + }, + { + "start": 7945.74, + "end": 7948.34, + "probability": 0.9771 + }, + { + "start": 7949.0, + "end": 7950.44, + "probability": 0.9682 + }, + { + "start": 7951.16, + "end": 7952.86, + "probability": 0.8718 + }, + { + "start": 7953.4, + "end": 7954.8, + "probability": 0.8713 + }, + { + "start": 7955.54, + "end": 7957.2, + "probability": 0.9812 + }, + { + "start": 7957.38, + "end": 7960.12, + "probability": 0.9943 + }, + { + "start": 7960.22, + "end": 7963.22, + "probability": 0.992 + }, + { + "start": 7963.22, + "end": 7966.28, + "probability": 0.9888 + }, + { + "start": 7967.0, + "end": 7968.14, + "probability": 0.9724 + }, + { + "start": 7968.8, + "end": 7970.54, + "probability": 0.974 + }, + { + "start": 7971.0, + "end": 7974.82, + "probability": 0.9839 + }, + { + "start": 7975.12, + "end": 7976.82, + "probability": 0.9457 + }, + { + "start": 7978.0, + "end": 7978.14, + "probability": 0.158 + }, + { + "start": 7979.0, + "end": 7982.38, + "probability": 0.996 + }, + { + "start": 7982.48, + "end": 7982.62, + "probability": 0.7441 + }, + { + "start": 7983.1, + "end": 7985.42, + "probability": 0.5466 + }, + { + "start": 7985.94, + "end": 7986.92, + "probability": 0.6311 + }, + { + "start": 7987.12, + "end": 7991.64, + "probability": 0.8877 + }, + { + "start": 7991.72, + "end": 7993.3, + "probability": 0.8721 + }, + { + "start": 7994.32, + "end": 7998.72, + "probability": 0.9797 + }, + { + "start": 7998.96, + "end": 8003.74, + "probability": 0.5957 + }, + { + "start": 8003.74, + "end": 8006.92, + "probability": 0.8316 + }, + { + "start": 8006.92, + "end": 8009.86, + "probability": 0.8694 + }, + { + "start": 8009.92, + "end": 8013.74, + "probability": 0.9042 + }, + { + "start": 8013.74, + "end": 8018.28, + "probability": 0.966 + }, + { + "start": 8018.54, + "end": 8020.16, + "probability": 0.9553 + }, + { + "start": 8020.8, + "end": 8023.96, + "probability": 0.9762 + }, + { + "start": 8023.96, + "end": 8027.36, + "probability": 0.9952 + }, + { + "start": 8028.26, + "end": 8029.28, + "probability": 0.7598 + }, + { + "start": 8029.34, + "end": 8035.12, + "probability": 0.987 + }, + { + "start": 8035.26, + "end": 8036.54, + "probability": 0.6449 + }, + { + "start": 8037.12, + "end": 8039.12, + "probability": 0.9983 + }, + { + "start": 8039.18, + "end": 8042.1, + "probability": 0.9927 + }, + { + "start": 8042.64, + "end": 8043.16, + "probability": 0.7522 + }, + { + "start": 8043.76, + "end": 8045.7, + "probability": 0.9743 + }, + { + "start": 8046.16, + "end": 8046.86, + "probability": 0.8704 + }, + { + "start": 8047.34, + "end": 8051.06, + "probability": 0.7066 + }, + { + "start": 8051.18, + "end": 8055.68, + "probability": 0.8866 + }, + { + "start": 8055.68, + "end": 8058.36, + "probability": 0.9899 + }, + { + "start": 8059.12, + "end": 8059.8, + "probability": 0.7094 + }, + { + "start": 8060.26, + "end": 8061.63, + "probability": 0.8825 + }, + { + "start": 8061.72, + "end": 8062.35, + "probability": 0.8424 + }, + { + "start": 8063.16, + "end": 8069.98, + "probability": 0.9696 + }, + { + "start": 8069.98, + "end": 8075.14, + "probability": 0.9925 + }, + { + "start": 8075.82, + "end": 8080.02, + "probability": 0.8377 + }, + { + "start": 8080.04, + "end": 8080.44, + "probability": 0.7502 + }, + { + "start": 8081.36, + "end": 8083.86, + "probability": 0.7834 + }, + { + "start": 8084.7, + "end": 8087.02, + "probability": 0.9147 + }, + { + "start": 8087.02, + "end": 8089.46, + "probability": 0.9902 + }, + { + "start": 8090.7, + "end": 8092.36, + "probability": 0.6714 + }, + { + "start": 8092.72, + "end": 8092.72, + "probability": 0.8687 + }, + { + "start": 8110.08, + "end": 8110.85, + "probability": 0.5284 + }, + { + "start": 8112.58, + "end": 8113.68, + "probability": 0.7348 + }, + { + "start": 8115.04, + "end": 8116.24, + "probability": 0.6828 + }, + { + "start": 8118.06, + "end": 8120.38, + "probability": 0.9492 + }, + { + "start": 8121.44, + "end": 8122.98, + "probability": 0.9629 + }, + { + "start": 8123.96, + "end": 8124.46, + "probability": 0.8838 + }, + { + "start": 8124.94, + "end": 8125.22, + "probability": 0.8735 + }, + { + "start": 8126.4, + "end": 8131.36, + "probability": 0.9745 + }, + { + "start": 8132.32, + "end": 8133.14, + "probability": 0.9069 + }, + { + "start": 8134.54, + "end": 8138.08, + "probability": 0.9941 + }, + { + "start": 8138.96, + "end": 8140.76, + "probability": 0.734 + }, + { + "start": 8141.82, + "end": 8142.88, + "probability": 0.8621 + }, + { + "start": 8143.86, + "end": 8146.0, + "probability": 0.9336 + }, + { + "start": 8146.86, + "end": 8149.66, + "probability": 0.9611 + }, + { + "start": 8150.5, + "end": 8152.26, + "probability": 0.9073 + }, + { + "start": 8153.0, + "end": 8155.11, + "probability": 0.9985 + }, + { + "start": 8156.0, + "end": 8157.46, + "probability": 0.9855 + }, + { + "start": 8158.38, + "end": 8160.08, + "probability": 0.9995 + }, + { + "start": 8160.78, + "end": 8162.98, + "probability": 0.9193 + }, + { + "start": 8164.0, + "end": 8167.0, + "probability": 0.8299 + }, + { + "start": 8167.24, + "end": 8171.64, + "probability": 0.5968 + }, + { + "start": 8172.04, + "end": 8174.2, + "probability": 0.9843 + }, + { + "start": 8174.74, + "end": 8175.98, + "probability": 0.9186 + }, + { + "start": 8177.1, + "end": 8179.1, + "probability": 0.9702 + }, + { + "start": 8181.32, + "end": 8187.26, + "probability": 0.861 + }, + { + "start": 8188.34, + "end": 8190.86, + "probability": 0.9956 + }, + { + "start": 8191.64, + "end": 8193.7, + "probability": 0.7894 + }, + { + "start": 8195.62, + "end": 8195.92, + "probability": 0.8323 + }, + { + "start": 8196.44, + "end": 8198.38, + "probability": 0.9846 + }, + { + "start": 8199.78, + "end": 8201.58, + "probability": 0.9972 + }, + { + "start": 8202.6, + "end": 8204.84, + "probability": 0.9942 + }, + { + "start": 8205.66, + "end": 8207.4, + "probability": 0.9954 + }, + { + "start": 8208.8, + "end": 8209.74, + "probability": 0.7626 + }, + { + "start": 8211.08, + "end": 8213.82, + "probability": 0.9977 + }, + { + "start": 8214.7, + "end": 8216.92, + "probability": 0.9983 + }, + { + "start": 8217.9, + "end": 8220.52, + "probability": 0.9858 + }, + { + "start": 8222.46, + "end": 8225.12, + "probability": 0.6704 + }, + { + "start": 8225.42, + "end": 8225.74, + "probability": 0.9812 + }, + { + "start": 8227.28, + "end": 8228.16, + "probability": 0.8061 + }, + { + "start": 8228.94, + "end": 8233.9, + "probability": 0.9363 + }, + { + "start": 8234.76, + "end": 8235.58, + "probability": 0.9609 + }, + { + "start": 8236.68, + "end": 8237.62, + "probability": 0.9062 + }, + { + "start": 8239.24, + "end": 8243.66, + "probability": 0.9961 + }, + { + "start": 8244.46, + "end": 8246.06, + "probability": 0.7056 + }, + { + "start": 8247.48, + "end": 8250.02, + "probability": 0.9949 + }, + { + "start": 8251.38, + "end": 8252.42, + "probability": 0.444 + }, + { + "start": 8252.5, + "end": 8252.78, + "probability": 0.793 + }, + { + "start": 8252.78, + "end": 8253.59, + "probability": 0.4736 + }, + { + "start": 8253.66, + "end": 8256.0, + "probability": 0.7687 + }, + { + "start": 8256.28, + "end": 8257.9, + "probability": 0.957 + }, + { + "start": 8259.48, + "end": 8260.14, + "probability": 0.6126 + }, + { + "start": 8261.5, + "end": 8261.5, + "probability": 0.1821 + }, + { + "start": 8261.5, + "end": 8262.14, + "probability": 0.8712 + }, + { + "start": 8262.18, + "end": 8263.12, + "probability": 0.8921 + }, + { + "start": 8263.36, + "end": 8263.38, + "probability": 0.0371 + }, + { + "start": 8263.52, + "end": 8263.8, + "probability": 0.1649 + }, + { + "start": 8263.8, + "end": 8265.58, + "probability": 0.1175 + }, + { + "start": 8266.58, + "end": 8266.82, + "probability": 0.1833 + }, + { + "start": 8266.82, + "end": 8268.4, + "probability": 0.9688 + }, + { + "start": 8269.44, + "end": 8273.12, + "probability": 0.6572 + }, + { + "start": 8273.8, + "end": 8275.1, + "probability": 0.8007 + }, + { + "start": 8276.58, + "end": 8279.64, + "probability": 0.6909 + }, + { + "start": 8280.3, + "end": 8281.58, + "probability": 0.8163 + }, + { + "start": 8281.74, + "end": 8282.3, + "probability": 0.0005 + }, + { + "start": 8283.4, + "end": 8284.48, + "probability": 0.8019 + }, + { + "start": 8285.82, + "end": 8289.66, + "probability": 0.9873 + }, + { + "start": 8290.1, + "end": 8292.68, + "probability": 0.4706 + }, + { + "start": 8293.34, + "end": 8295.3, + "probability": 0.9258 + }, + { + "start": 8296.72, + "end": 8297.9, + "probability": 0.9948 + }, + { + "start": 8299.04, + "end": 8301.13, + "probability": 0.9598 + }, + { + "start": 8302.08, + "end": 8305.45, + "probability": 0.617 + }, + { + "start": 8306.76, + "end": 8307.82, + "probability": 0.7569 + }, + { + "start": 8309.3, + "end": 8309.52, + "probability": 0.8359 + }, + { + "start": 8310.98, + "end": 8315.14, + "probability": 0.9622 + }, + { + "start": 8316.04, + "end": 8319.86, + "probability": 0.9883 + }, + { + "start": 8321.22, + "end": 8323.58, + "probability": 0.9885 + }, + { + "start": 8324.36, + "end": 8326.46, + "probability": 0.9873 + }, + { + "start": 8327.64, + "end": 8329.06, + "probability": 0.9951 + }, + { + "start": 8330.16, + "end": 8332.84, + "probability": 0.9436 + }, + { + "start": 8333.7, + "end": 8334.8, + "probability": 0.8677 + }, + { + "start": 8335.72, + "end": 8337.85, + "probability": 0.9646 + }, + { + "start": 8338.8, + "end": 8339.7, + "probability": 0.8757 + }, + { + "start": 8340.98, + "end": 8341.94, + "probability": 0.9445 + }, + { + "start": 8342.78, + "end": 8344.32, + "probability": 0.996 + }, + { + "start": 8345.02, + "end": 8346.26, + "probability": 0.9277 + }, + { + "start": 8347.64, + "end": 8348.04, + "probability": 0.948 + }, + { + "start": 8348.74, + "end": 8350.7, + "probability": 0.952 + }, + { + "start": 8351.52, + "end": 8353.44, + "probability": 0.8802 + }, + { + "start": 8354.76, + "end": 8356.4, + "probability": 0.9707 + }, + { + "start": 8357.44, + "end": 8358.8, + "probability": 0.8276 + }, + { + "start": 8359.88, + "end": 8360.08, + "probability": 0.8754 + }, + { + "start": 8361.64, + "end": 8363.24, + "probability": 0.9342 + }, + { + "start": 8363.84, + "end": 8364.88, + "probability": 0.8658 + }, + { + "start": 8366.18, + "end": 8370.4, + "probability": 0.9858 + }, + { + "start": 8371.64, + "end": 8372.52, + "probability": 0.7497 + }, + { + "start": 8373.42, + "end": 8374.88, + "probability": 0.853 + }, + { + "start": 8376.92, + "end": 8378.0, + "probability": 0.9502 + }, + { + "start": 8378.7, + "end": 8380.26, + "probability": 0.9635 + }, + { + "start": 8382.06, + "end": 8383.64, + "probability": 0.3331 + }, + { + "start": 8384.54, + "end": 8389.44, + "probability": 0.9908 + }, + { + "start": 8390.12, + "end": 8391.92, + "probability": 0.9993 + }, + { + "start": 8393.16, + "end": 8394.12, + "probability": 0.8087 + }, + { + "start": 8395.04, + "end": 8396.7, + "probability": 0.9961 + }, + { + "start": 8397.56, + "end": 8397.86, + "probability": 0.9558 + }, + { + "start": 8398.56, + "end": 8399.68, + "probability": 0.9922 + }, + { + "start": 8401.16, + "end": 8403.0, + "probability": 0.9583 + }, + { + "start": 8407.92, + "end": 8410.02, + "probability": 0.9966 + }, + { + "start": 8411.04, + "end": 8412.56, + "probability": 0.9976 + }, + { + "start": 8412.66, + "end": 8413.28, + "probability": 0.3356 + }, + { + "start": 8413.74, + "end": 8414.84, + "probability": 0.8891 + }, + { + "start": 8416.4, + "end": 8418.56, + "probability": 0.9604 + }, + { + "start": 8419.98, + "end": 8421.58, + "probability": 0.926 + }, + { + "start": 8422.74, + "end": 8425.54, + "probability": 0.9982 + }, + { + "start": 8426.6, + "end": 8427.7, + "probability": 0.993 + }, + { + "start": 8428.44, + "end": 8431.5, + "probability": 0.8962 + }, + { + "start": 8432.32, + "end": 8433.8, + "probability": 0.954 + }, + { + "start": 8434.66, + "end": 8435.98, + "probability": 0.9605 + }, + { + "start": 8436.84, + "end": 8438.04, + "probability": 0.8284 + }, + { + "start": 8438.88, + "end": 8439.56, + "probability": 0.9876 + }, + { + "start": 8440.5, + "end": 8444.22, + "probability": 0.8773 + }, + { + "start": 8445.26, + "end": 8447.02, + "probability": 0.764 + }, + { + "start": 8448.04, + "end": 8449.26, + "probability": 0.941 + }, + { + "start": 8450.3, + "end": 8451.36, + "probability": 0.541 + }, + { + "start": 8452.42, + "end": 8453.71, + "probability": 0.9988 + }, + { + "start": 8454.76, + "end": 8456.24, + "probability": 0.7693 + }, + { + "start": 8457.26, + "end": 8458.72, + "probability": 0.9805 + }, + { + "start": 8459.56, + "end": 8461.94, + "probability": 0.9968 + }, + { + "start": 8462.02, + "end": 8463.88, + "probability": 0.9506 + }, + { + "start": 8465.0, + "end": 8466.04, + "probability": 0.8954 + }, + { + "start": 8467.3, + "end": 8468.0, + "probability": 0.9224 + }, + { + "start": 8468.6, + "end": 8471.36, + "probability": 0.8542 + }, + { + "start": 8472.32, + "end": 8472.6, + "probability": 0.7456 + }, + { + "start": 8473.66, + "end": 8475.84, + "probability": 0.7239 + }, + { + "start": 8476.0, + "end": 8477.88, + "probability": 0.6843 + }, + { + "start": 8477.92, + "end": 8478.66, + "probability": 0.8943 + }, + { + "start": 8490.3, + "end": 8490.86, + "probability": 0.4689 + }, + { + "start": 8491.52, + "end": 8493.18, + "probability": 0.7745 + }, + { + "start": 8494.32, + "end": 8494.94, + "probability": 0.5607 + }, + { + "start": 8495.04, + "end": 8498.22, + "probability": 0.9917 + }, + { + "start": 8499.24, + "end": 8501.24, + "probability": 0.6575 + }, + { + "start": 8501.48, + "end": 8502.21, + "probability": 0.9813 + }, + { + "start": 8502.72, + "end": 8503.88, + "probability": 0.8745 + }, + { + "start": 8504.2, + "end": 8504.62, + "probability": 0.7253 + }, + { + "start": 8504.76, + "end": 8505.59, + "probability": 0.9434 + }, + { + "start": 8506.38, + "end": 8510.02, + "probability": 0.5416 + }, + { + "start": 8510.66, + "end": 8511.18, + "probability": 0.7519 + }, + { + "start": 8511.7, + "end": 8515.56, + "probability": 0.9959 + }, + { + "start": 8515.7, + "end": 8515.86, + "probability": 0.4434 + }, + { + "start": 8515.9, + "end": 8518.5, + "probability": 0.9709 + }, + { + "start": 8518.64, + "end": 8519.73, + "probability": 0.8087 + }, + { + "start": 8521.46, + "end": 8522.12, + "probability": 0.0647 + }, + { + "start": 8523.12, + "end": 8527.58, + "probability": 0.9723 + }, + { + "start": 8527.7, + "end": 8528.08, + "probability": 0.8256 + }, + { + "start": 8528.36, + "end": 8529.88, + "probability": 0.8743 + }, + { + "start": 8529.96, + "end": 8530.78, + "probability": 0.9504 + }, + { + "start": 8531.1, + "end": 8534.48, + "probability": 0.9866 + }, + { + "start": 8534.48, + "end": 8536.88, + "probability": 0.9126 + }, + { + "start": 8537.04, + "end": 8537.34, + "probability": 0.2823 + }, + { + "start": 8537.34, + "end": 8538.64, + "probability": 0.9514 + }, + { + "start": 8538.96, + "end": 8538.96, + "probability": 0.6792 + }, + { + "start": 8539.06, + "end": 8541.34, + "probability": 0.5057 + }, + { + "start": 8541.34, + "end": 8546.16, + "probability": 0.9675 + }, + { + "start": 8546.16, + "end": 8550.36, + "probability": 0.8828 + }, + { + "start": 8550.8, + "end": 8553.16, + "probability": 0.667 + }, + { + "start": 8553.2, + "end": 8555.76, + "probability": 0.8364 + }, + { + "start": 8555.76, + "end": 8556.32, + "probability": 0.6357 + }, + { + "start": 8556.62, + "end": 8557.44, + "probability": 0.6626 + }, + { + "start": 8557.48, + "end": 8557.74, + "probability": 0.9277 + }, + { + "start": 8557.74, + "end": 8561.07, + "probability": 0.9652 + }, + { + "start": 8561.18, + "end": 8561.24, + "probability": 0.4775 + }, + { + "start": 8561.4, + "end": 8562.57, + "probability": 0.9165 + }, + { + "start": 8562.78, + "end": 8564.02, + "probability": 0.6702 + }, + { + "start": 8564.06, + "end": 8564.51, + "probability": 0.7314 + }, + { + "start": 8565.34, + "end": 8569.0, + "probability": 0.7595 + }, + { + "start": 8569.62, + "end": 8570.44, + "probability": 0.6582 + }, + { + "start": 8570.6, + "end": 8571.68, + "probability": 0.8358 + }, + { + "start": 8571.78, + "end": 8572.38, + "probability": 0.9256 + }, + { + "start": 8572.42, + "end": 8577.1, + "probability": 0.7992 + }, + { + "start": 8578.37, + "end": 8580.18, + "probability": 0.9312 + }, + { + "start": 8580.22, + "end": 8581.94, + "probability": 0.9907 + }, + { + "start": 8582.02, + "end": 8585.0, + "probability": 0.908 + }, + { + "start": 8585.76, + "end": 8588.86, + "probability": 0.9983 + }, + { + "start": 8589.94, + "end": 8593.98, + "probability": 0.9813 + }, + { + "start": 8594.66, + "end": 8595.64, + "probability": 0.9331 + }, + { + "start": 8596.56, + "end": 8597.8, + "probability": 0.8105 + }, + { + "start": 8598.4, + "end": 8600.38, + "probability": 0.8035 + }, + { + "start": 8601.41, + "end": 8605.26, + "probability": 0.9723 + }, + { + "start": 8605.7, + "end": 8607.36, + "probability": 0.457 + }, + { + "start": 8607.56, + "end": 8608.45, + "probability": 0.7515 + }, + { + "start": 8610.0, + "end": 8612.22, + "probability": 0.9084 + }, + { + "start": 8613.46, + "end": 8614.6, + "probability": 0.9045 + }, + { + "start": 8614.7, + "end": 8615.78, + "probability": 0.7104 + }, + { + "start": 8615.92, + "end": 8616.63, + "probability": 0.8008 + }, + { + "start": 8616.7, + "end": 8617.76, + "probability": 0.5394 + }, + { + "start": 8618.34, + "end": 8619.92, + "probability": 0.8943 + }, + { + "start": 8620.94, + "end": 8623.06, + "probability": 0.6163 + }, + { + "start": 8623.1, + "end": 8624.0, + "probability": 0.7524 + }, + { + "start": 8624.76, + "end": 8627.82, + "probability": 0.7852 + }, + { + "start": 8628.76, + "end": 8631.46, + "probability": 0.872 + }, + { + "start": 8631.68, + "end": 8632.32, + "probability": 0.5756 + }, + { + "start": 8632.62, + "end": 8633.4, + "probability": 0.6904 + }, + { + "start": 8634.42, + "end": 8637.44, + "probability": 0.8975 + }, + { + "start": 8637.96, + "end": 8638.36, + "probability": 0.8386 + }, + { + "start": 8638.48, + "end": 8641.7, + "probability": 0.9958 + }, + { + "start": 8642.18, + "end": 8645.26, + "probability": 0.9434 + }, + { + "start": 8645.56, + "end": 8648.04, + "probability": 0.9263 + }, + { + "start": 8648.22, + "end": 8650.46, + "probability": 0.9927 + }, + { + "start": 8651.36, + "end": 8652.13, + "probability": 0.9451 + }, + { + "start": 8652.88, + "end": 8653.92, + "probability": 0.9458 + }, + { + "start": 8653.92, + "end": 8656.2, + "probability": 0.9892 + }, + { + "start": 8656.98, + "end": 8658.16, + "probability": 0.9805 + }, + { + "start": 8658.78, + "end": 8659.26, + "probability": 0.7715 + }, + { + "start": 8660.22, + "end": 8663.38, + "probability": 0.857 + }, + { + "start": 8664.5, + "end": 8666.13, + "probability": 0.9526 + }, + { + "start": 8666.36, + "end": 8668.56, + "probability": 0.9235 + }, + { + "start": 8669.74, + "end": 8672.34, + "probability": 0.7123 + }, + { + "start": 8673.7, + "end": 8674.62, + "probability": 0.808 + }, + { + "start": 8675.46, + "end": 8681.64, + "probability": 0.9307 + }, + { + "start": 8681.78, + "end": 8682.62, + "probability": 0.3459 + }, + { + "start": 8683.34, + "end": 8684.56, + "probability": 0.7193 + }, + { + "start": 8685.16, + "end": 8686.28, + "probability": 0.02 + }, + { + "start": 8688.06, + "end": 8689.48, + "probability": 0.6973 + }, + { + "start": 8692.13, + "end": 8693.06, + "probability": 0.0502 + }, + { + "start": 8693.06, + "end": 8693.06, + "probability": 0.0571 + }, + { + "start": 8693.06, + "end": 8694.7, + "probability": 0.7247 + }, + { + "start": 8695.02, + "end": 8697.96, + "probability": 0.5998 + }, + { + "start": 8699.1, + "end": 8702.76, + "probability": 0.8536 + }, + { + "start": 8703.1, + "end": 8704.46, + "probability": 0.8083 + }, + { + "start": 8705.76, + "end": 8708.6, + "probability": 0.8874 + }, + { + "start": 8709.52, + "end": 8712.74, + "probability": 0.7809 + }, + { + "start": 8713.86, + "end": 8715.78, + "probability": 0.9048 + }, + { + "start": 8716.58, + "end": 8716.66, + "probability": 0.0227 + }, + { + "start": 8716.66, + "end": 8716.88, + "probability": 0.6201 + }, + { + "start": 8717.82, + "end": 8718.42, + "probability": 0.0501 + }, + { + "start": 8719.94, + "end": 8721.8, + "probability": 0.019 + }, + { + "start": 8722.64, + "end": 8725.48, + "probability": 0.7147 + }, + { + "start": 8725.64, + "end": 8727.34, + "probability": 0.4026 + }, + { + "start": 8728.3, + "end": 8730.28, + "probability": 0.2613 + }, + { + "start": 8730.46, + "end": 8733.26, + "probability": 0.1164 + }, + { + "start": 8734.02, + "end": 8734.34, + "probability": 0.1773 + }, + { + "start": 8734.34, + "end": 8735.56, + "probability": 0.7885 + }, + { + "start": 8735.66, + "end": 8736.51, + "probability": 0.4523 + }, + { + "start": 8737.72, + "end": 8742.64, + "probability": 0.0607 + }, + { + "start": 8743.16, + "end": 8746.65, + "probability": 0.8322 + }, + { + "start": 8746.76, + "end": 8747.68, + "probability": 0.6172 + }, + { + "start": 8748.64, + "end": 8750.36, + "probability": 0.2801 + }, + { + "start": 8750.46, + "end": 8753.9, + "probability": 0.4618 + }, + { + "start": 8754.06, + "end": 8754.7, + "probability": 0.0756 + }, + { + "start": 8754.78, + "end": 8755.66, + "probability": 0.5822 + }, + { + "start": 8756.06, + "end": 8757.0, + "probability": 0.1471 + }, + { + "start": 8757.12, + "end": 8758.68, + "probability": 0.824 + }, + { + "start": 8758.92, + "end": 8760.64, + "probability": 0.6614 + }, + { + "start": 8760.9, + "end": 8763.08, + "probability": 0.4106 + }, + { + "start": 8763.44, + "end": 8766.2, + "probability": 0.2007 + }, + { + "start": 8766.38, + "end": 8767.66, + "probability": 0.6133 + }, + { + "start": 8767.76, + "end": 8769.5, + "probability": 0.6072 + }, + { + "start": 8770.22, + "end": 8771.04, + "probability": 0.8391 + }, + { + "start": 8771.6, + "end": 8775.2, + "probability": 0.9968 + }, + { + "start": 8777.4, + "end": 8779.24, + "probability": 0.689 + }, + { + "start": 8780.46, + "end": 8783.28, + "probability": 0.9337 + }, + { + "start": 8783.96, + "end": 8785.54, + "probability": 0.9937 + }, + { + "start": 8785.6, + "end": 8785.92, + "probability": 0.9464 + }, + { + "start": 8786.0, + "end": 8786.3, + "probability": 0.7179 + }, + { + "start": 8786.56, + "end": 8786.86, + "probability": 0.9791 + }, + { + "start": 8786.94, + "end": 8787.22, + "probability": 0.9824 + }, + { + "start": 8787.28, + "end": 8787.54, + "probability": 0.5392 + }, + { + "start": 8787.88, + "end": 8788.46, + "probability": 0.9812 + }, + { + "start": 8789.32, + "end": 8791.7, + "probability": 0.6758 + }, + { + "start": 8792.91, + "end": 8795.76, + "probability": 0.8345 + }, + { + "start": 8795.88, + "end": 8796.44, + "probability": 0.688 + }, + { + "start": 8798.02, + "end": 8800.02, + "probability": 0.9868 + }, + { + "start": 8800.12, + "end": 8802.02, + "probability": 0.9896 + }, + { + "start": 8802.62, + "end": 8805.52, + "probability": 0.9946 + }, + { + "start": 8806.7, + "end": 8808.97, + "probability": 0.9961 + }, + { + "start": 8809.74, + "end": 8812.16, + "probability": 0.7116 + }, + { + "start": 8812.86, + "end": 8815.96, + "probability": 0.9209 + }, + { + "start": 8817.74, + "end": 8818.34, + "probability": 0.7345 + }, + { + "start": 8819.06, + "end": 8820.1, + "probability": 0.3636 + }, + { + "start": 8820.36, + "end": 8822.26, + "probability": 0.8982 + }, + { + "start": 8822.82, + "end": 8824.5, + "probability": 0.871 + }, + { + "start": 8825.6, + "end": 8831.5, + "probability": 0.9284 + }, + { + "start": 8832.1, + "end": 8833.04, + "probability": 0.8606 + }, + { + "start": 8833.96, + "end": 8835.38, + "probability": 0.7468 + }, + { + "start": 8835.9, + "end": 8838.14, + "probability": 0.8771 + }, + { + "start": 8838.16, + "end": 8838.36, + "probability": 0.8143 + }, + { + "start": 8838.44, + "end": 8838.83, + "probability": 0.9238 + }, + { + "start": 8841.02, + "end": 8844.14, + "probability": 0.5786 + }, + { + "start": 8845.12, + "end": 8848.82, + "probability": 0.9058 + }, + { + "start": 8849.16, + "end": 8851.58, + "probability": 0.6947 + }, + { + "start": 8852.34, + "end": 8854.9, + "probability": 0.7801 + }, + { + "start": 8855.3, + "end": 8855.9, + "probability": 0.9187 + }, + { + "start": 8856.72, + "end": 8857.88, + "probability": 0.8034 + }, + { + "start": 8859.08, + "end": 8860.04, + "probability": 0.5044 + }, + { + "start": 8860.9, + "end": 8862.84, + "probability": 0.9953 + }, + { + "start": 8863.32, + "end": 8864.48, + "probability": 0.6836 + }, + { + "start": 8865.1, + "end": 8866.23, + "probability": 0.9863 + }, + { + "start": 8867.64, + "end": 8871.66, + "probability": 0.9715 + }, + { + "start": 8872.18, + "end": 8873.8, + "probability": 0.6137 + }, + { + "start": 8874.44, + "end": 8875.44, + "probability": 0.0622 + }, + { + "start": 8876.08, + "end": 8877.56, + "probability": 0.4672 + }, + { + "start": 8877.6, + "end": 8877.6, + "probability": 0.5629 + }, + { + "start": 8877.68, + "end": 8878.76, + "probability": 0.8395 + }, + { + "start": 8878.92, + "end": 8880.48, + "probability": 0.8194 + }, + { + "start": 8880.98, + "end": 8881.74, + "probability": 0.4529 + }, + { + "start": 8882.04, + "end": 8882.72, + "probability": 0.8748 + }, + { + "start": 8883.1, + "end": 8884.37, + "probability": 0.9661 + }, + { + "start": 8885.48, + "end": 8886.22, + "probability": 0.8315 + }, + { + "start": 8887.28, + "end": 8887.66, + "probability": 0.9367 + }, + { + "start": 8887.76, + "end": 8890.29, + "probability": 0.9619 + }, + { + "start": 8891.54, + "end": 8895.8, + "probability": 0.9736 + }, + { + "start": 8895.92, + "end": 8896.06, + "probability": 0.1883 + }, + { + "start": 8896.8, + "end": 8899.44, + "probability": 0.9482 + }, + { + "start": 8899.54, + "end": 8901.18, + "probability": 0.8579 + }, + { + "start": 8902.62, + "end": 8903.98, + "probability": 0.9854 + }, + { + "start": 8904.3, + "end": 8905.36, + "probability": 0.594 + }, + { + "start": 8905.48, + "end": 8906.22, + "probability": 0.8241 + }, + { + "start": 8906.4, + "end": 8909.38, + "probability": 0.9393 + }, + { + "start": 8909.44, + "end": 8909.82, + "probability": 0.2479 + }, + { + "start": 8910.44, + "end": 8911.46, + "probability": 0.751 + }, + { + "start": 8912.26, + "end": 8914.84, + "probability": 0.9058 + }, + { + "start": 8915.2, + "end": 8916.2, + "probability": 0.7015 + }, + { + "start": 8916.64, + "end": 8921.6, + "probability": 0.9819 + }, + { + "start": 8923.38, + "end": 8924.38, + "probability": 0.9937 + }, + { + "start": 8924.88, + "end": 8925.48, + "probability": 0.9539 + }, + { + "start": 8926.4, + "end": 8926.82, + "probability": 0.3196 + }, + { + "start": 8927.74, + "end": 8927.8, + "probability": 0.3855 + }, + { + "start": 8928.48, + "end": 8928.88, + "probability": 0.8267 + }, + { + "start": 8929.18, + "end": 8930.62, + "probability": 0.3038 + }, + { + "start": 8930.76, + "end": 8932.16, + "probability": 0.3484 + }, + { + "start": 8932.18, + "end": 8933.7, + "probability": 0.8845 + }, + { + "start": 8934.46, + "end": 8936.16, + "probability": 0.9916 + }, + { + "start": 8936.94, + "end": 8939.12, + "probability": 0.9984 + }, + { + "start": 8939.68, + "end": 8939.8, + "probability": 0.0523 + }, + { + "start": 8939.8, + "end": 8940.6, + "probability": 0.6414 + }, + { + "start": 8940.74, + "end": 8944.98, + "probability": 0.9644 + }, + { + "start": 8945.22, + "end": 8946.02, + "probability": 0.8025 + }, + { + "start": 8946.44, + "end": 8947.56, + "probability": 0.7679 + }, + { + "start": 8947.92, + "end": 8949.74, + "probability": 0.9296 + }, + { + "start": 8949.84, + "end": 8950.83, + "probability": 0.975 + }, + { + "start": 8952.18, + "end": 8954.9, + "probability": 0.9281 + }, + { + "start": 8956.9, + "end": 8957.78, + "probability": 0.9637 + }, + { + "start": 8957.84, + "end": 8957.94, + "probability": 0.562 + }, + { + "start": 8958.08, + "end": 8958.28, + "probability": 0.8157 + }, + { + "start": 8958.64, + "end": 8960.98, + "probability": 0.7235 + }, + { + "start": 8962.3, + "end": 8964.72, + "probability": 0.9856 + }, + { + "start": 8965.16, + "end": 8966.18, + "probability": 0.9701 + }, + { + "start": 8967.62, + "end": 8971.46, + "probability": 0.9888 + }, + { + "start": 8972.38, + "end": 8974.94, + "probability": 0.9951 + }, + { + "start": 8975.46, + "end": 8976.48, + "probability": 0.8292 + }, + { + "start": 8977.21, + "end": 8980.56, + "probability": 0.9872 + }, + { + "start": 8982.56, + "end": 8984.02, + "probability": 0.573 + }, + { + "start": 8984.16, + "end": 8985.1, + "probability": 0.669 + }, + { + "start": 8985.24, + "end": 8986.26, + "probability": 0.6834 + }, + { + "start": 8986.62, + "end": 8987.36, + "probability": 0.9712 + }, + { + "start": 8987.56, + "end": 8988.64, + "probability": 0.7024 + }, + { + "start": 8989.1, + "end": 8991.22, + "probability": 0.8565 + }, + { + "start": 8992.28, + "end": 8994.68, + "probability": 0.7502 + }, + { + "start": 8995.16, + "end": 8995.42, + "probability": 0.9449 + }, + { + "start": 8995.46, + "end": 8996.82, + "probability": 0.9951 + }, + { + "start": 8997.76, + "end": 8998.92, + "probability": 0.9854 + }, + { + "start": 9000.14, + "end": 9001.6, + "probability": 0.9774 + }, + { + "start": 9002.48, + "end": 9003.9, + "probability": 0.9832 + }, + { + "start": 9003.98, + "end": 9005.01, + "probability": 0.9897 + }, + { + "start": 9005.26, + "end": 9009.92, + "probability": 0.9973 + }, + { + "start": 9009.98, + "end": 9011.02, + "probability": 0.9447 + }, + { + "start": 9011.38, + "end": 9012.9, + "probability": 0.976 + }, + { + "start": 9013.02, + "end": 9013.42, + "probability": 0.8015 + }, + { + "start": 9013.7, + "end": 9014.33, + "probability": 0.6437 + }, + { + "start": 9016.24, + "end": 9016.54, + "probability": 0.1277 + }, + { + "start": 9016.54, + "end": 9016.88, + "probability": 0.4277 + }, + { + "start": 9017.88, + "end": 9019.16, + "probability": 0.974 + }, + { + "start": 9019.98, + "end": 9022.76, + "probability": 0.7581 + }, + { + "start": 9024.34, + "end": 9025.0, + "probability": 0.7164 + }, + { + "start": 9025.12, + "end": 9028.07, + "probability": 0.9785 + }, + { + "start": 9029.4, + "end": 9030.75, + "probability": 0.9846 + }, + { + "start": 9032.74, + "end": 9033.8, + "probability": 0.9049 + }, + { + "start": 9033.86, + "end": 9035.96, + "probability": 0.9932 + }, + { + "start": 9037.38, + "end": 9038.84, + "probability": 0.769 + }, + { + "start": 9038.84, + "end": 9038.94, + "probability": 0.4322 + }, + { + "start": 9039.28, + "end": 9040.44, + "probability": 0.9403 + }, + { + "start": 9040.86, + "end": 9041.95, + "probability": 0.8105 + }, + { + "start": 9042.88, + "end": 9043.46, + "probability": 0.0314 + }, + { + "start": 9043.46, + "end": 9044.96, + "probability": 0.7695 + }, + { + "start": 9044.96, + "end": 9046.24, + "probability": 0.6472 + }, + { + "start": 9047.28, + "end": 9049.82, + "probability": 0.7395 + }, + { + "start": 9050.36, + "end": 9050.9, + "probability": 0.0068 + }, + { + "start": 9050.9, + "end": 9051.52, + "probability": 0.5326 + }, + { + "start": 9052.08, + "end": 9055.38, + "probability": 0.9631 + }, + { + "start": 9056.46, + "end": 9060.34, + "probability": 0.6626 + }, + { + "start": 9060.4, + "end": 9062.6, + "probability": 0.7499 + }, + { + "start": 9062.82, + "end": 9063.42, + "probability": 0.7891 + }, + { + "start": 9064.46, + "end": 9065.9, + "probability": 0.6103 + }, + { + "start": 9066.32, + "end": 9068.04, + "probability": 0.7564 + }, + { + "start": 9068.04, + "end": 9069.26, + "probability": 0.735 + }, + { + "start": 9070.32, + "end": 9072.04, + "probability": 0.9423 + }, + { + "start": 9072.08, + "end": 9072.18, + "probability": 0.5194 + }, + { + "start": 9072.18, + "end": 9072.34, + "probability": 0.7905 + }, + { + "start": 9073.02, + "end": 9075.2, + "probability": 0.8377 + }, + { + "start": 9075.86, + "end": 9077.0, + "probability": 0.9857 + }, + { + "start": 9077.42, + "end": 9077.42, + "probability": 0.0854 + }, + { + "start": 9077.42, + "end": 9080.92, + "probability": 0.852 + }, + { + "start": 9081.52, + "end": 9085.46, + "probability": 0.9929 + }, + { + "start": 9085.9, + "end": 9086.42, + "probability": 0.8653 + }, + { + "start": 9086.78, + "end": 9088.98, + "probability": 0.933 + }, + { + "start": 9089.98, + "end": 9090.66, + "probability": 0.7977 + }, + { + "start": 9090.66, + "end": 9091.62, + "probability": 0.7978 + }, + { + "start": 9091.66, + "end": 9092.78, + "probability": 0.8233 + }, + { + "start": 9092.82, + "end": 9094.34, + "probability": 0.9727 + }, + { + "start": 9095.5, + "end": 9099.86, + "probability": 0.7838 + }, + { + "start": 9100.36, + "end": 9102.24, + "probability": 0.8647 + }, + { + "start": 9102.92, + "end": 9104.11, + "probability": 0.8177 + }, + { + "start": 9104.96, + "end": 9108.06, + "probability": 0.8923 + }, + { + "start": 9108.94, + "end": 9110.18, + "probability": 0.7544 + }, + { + "start": 9110.24, + "end": 9113.66, + "probability": 0.9951 + }, + { + "start": 9113.66, + "end": 9117.18, + "probability": 0.9982 + }, + { + "start": 9117.74, + "end": 9119.12, + "probability": 0.6305 + }, + { + "start": 9120.26, + "end": 9121.34, + "probability": 0.9666 + }, + { + "start": 9121.66, + "end": 9124.4, + "probability": 0.9893 + }, + { + "start": 9124.86, + "end": 9126.8, + "probability": 0.4956 + }, + { + "start": 9127.18, + "end": 9130.6, + "probability": 0.9676 + }, + { + "start": 9131.06, + "end": 9132.3, + "probability": 0.9837 + }, + { + "start": 9133.18, + "end": 9136.28, + "probability": 0.9949 + }, + { + "start": 9137.12, + "end": 9137.4, + "probability": 0.7877 + }, + { + "start": 9137.54, + "end": 9140.36, + "probability": 0.9708 + }, + { + "start": 9140.36, + "end": 9143.7, + "probability": 0.9573 + }, + { + "start": 9144.62, + "end": 9147.35, + "probability": 0.9634 + }, + { + "start": 9148.08, + "end": 9149.34, + "probability": 0.6491 + }, + { + "start": 9150.06, + "end": 9151.88, + "probability": 0.7786 + }, + { + "start": 9152.3, + "end": 9152.52, + "probability": 0.5763 + }, + { + "start": 9152.58, + "end": 9153.58, + "probability": 0.5834 + }, + { + "start": 9153.58, + "end": 9154.07, + "probability": 0.8975 + }, + { + "start": 9154.26, + "end": 9154.76, + "probability": 0.8147 + }, + { + "start": 9155.52, + "end": 9160.82, + "probability": 0.9894 + }, + { + "start": 9161.48, + "end": 9165.6, + "probability": 0.8256 + }, + { + "start": 9166.18, + "end": 9167.88, + "probability": 0.7372 + }, + { + "start": 9168.42, + "end": 9172.76, + "probability": 0.9402 + }, + { + "start": 9173.22, + "end": 9173.98, + "probability": 0.5355 + }, + { + "start": 9174.12, + "end": 9176.98, + "probability": 0.7809 + }, + { + "start": 9177.8, + "end": 9181.0, + "probability": 0.6755 + }, + { + "start": 9181.0, + "end": 9181.48, + "probability": 0.9102 + }, + { + "start": 9195.62, + "end": 9196.72, + "probability": 0.6426 + }, + { + "start": 9199.62, + "end": 9200.46, + "probability": 0.6138 + }, + { + "start": 9202.62, + "end": 9204.2, + "probability": 0.4245 + }, + { + "start": 9204.72, + "end": 9206.36, + "probability": 0.996 + }, + { + "start": 9207.62, + "end": 9209.04, + "probability": 0.842 + }, + { + "start": 9209.78, + "end": 9210.62, + "probability": 0.8434 + }, + { + "start": 9212.08, + "end": 9217.5, + "probability": 0.9933 + }, + { + "start": 9218.04, + "end": 9218.86, + "probability": 0.8703 + }, + { + "start": 9219.38, + "end": 9220.22, + "probability": 0.9497 + }, + { + "start": 9221.22, + "end": 9221.72, + "probability": 0.9883 + }, + { + "start": 9222.68, + "end": 9224.02, + "probability": 0.8818 + }, + { + "start": 9224.54, + "end": 9231.66, + "probability": 0.9535 + }, + { + "start": 9232.52, + "end": 9235.68, + "probability": 0.9863 + }, + { + "start": 9236.74, + "end": 9239.32, + "probability": 0.9544 + }, + { + "start": 9240.1, + "end": 9244.0, + "probability": 0.6962 + }, + { + "start": 9244.2, + "end": 9244.76, + "probability": 0.9134 + }, + { + "start": 9244.88, + "end": 9246.5, + "probability": 0.8613 + }, + { + "start": 9247.08, + "end": 9250.88, + "probability": 0.9442 + }, + { + "start": 9252.3, + "end": 9254.32, + "probability": 0.8492 + }, + { + "start": 9254.84, + "end": 9257.56, + "probability": 0.9863 + }, + { + "start": 9259.5, + "end": 9261.25, + "probability": 0.485 + }, + { + "start": 9261.94, + "end": 9262.46, + "probability": 0.8171 + }, + { + "start": 9263.6, + "end": 9266.58, + "probability": 0.9911 + }, + { + "start": 9267.14, + "end": 9269.18, + "probability": 0.9156 + }, + { + "start": 9269.64, + "end": 9270.3, + "probability": 0.7878 + }, + { + "start": 9270.42, + "end": 9271.06, + "probability": 0.9846 + }, + { + "start": 9271.48, + "end": 9272.12, + "probability": 0.9393 + }, + { + "start": 9272.3, + "end": 9272.94, + "probability": 0.9755 + }, + { + "start": 9273.8, + "end": 9274.88, + "probability": 0.9791 + }, + { + "start": 9276.44, + "end": 9278.74, + "probability": 0.9741 + }, + { + "start": 9279.44, + "end": 9280.16, + "probability": 0.4062 + }, + { + "start": 9281.34, + "end": 9283.44, + "probability": 0.9945 + }, + { + "start": 9284.4, + "end": 9289.02, + "probability": 0.9937 + }, + { + "start": 9290.5, + "end": 9295.86, + "probability": 0.9834 + }, + { + "start": 9296.72, + "end": 9298.28, + "probability": 0.9778 + }, + { + "start": 9299.38, + "end": 9306.06, + "probability": 0.9927 + }, + { + "start": 9307.56, + "end": 9308.94, + "probability": 0.9697 + }, + { + "start": 9309.64, + "end": 9313.0, + "probability": 0.9899 + }, + { + "start": 9313.6, + "end": 9317.44, + "probability": 0.9676 + }, + { + "start": 9318.26, + "end": 9322.8, + "probability": 0.9972 + }, + { + "start": 9323.54, + "end": 9328.24, + "probability": 0.9962 + }, + { + "start": 9328.46, + "end": 9330.94, + "probability": 0.8837 + }, + { + "start": 9331.86, + "end": 9334.82, + "probability": 0.9854 + }, + { + "start": 9335.52, + "end": 9340.1, + "probability": 0.9919 + }, + { + "start": 9341.42, + "end": 9344.94, + "probability": 0.9871 + }, + { + "start": 9345.88, + "end": 9349.52, + "probability": 0.9951 + }, + { + "start": 9350.24, + "end": 9353.12, + "probability": 0.9586 + }, + { + "start": 9353.86, + "end": 9357.08, + "probability": 0.9927 + }, + { + "start": 9357.68, + "end": 9358.0, + "probability": 0.8915 + }, + { + "start": 9358.3, + "end": 9358.86, + "probability": 0.9052 + }, + { + "start": 9359.88, + "end": 9362.38, + "probability": 0.9465 + }, + { + "start": 9363.12, + "end": 9364.5, + "probability": 0.9937 + }, + { + "start": 9364.86, + "end": 9365.38, + "probability": 0.7232 + }, + { + "start": 9365.62, + "end": 9369.62, + "probability": 0.9938 + }, + { + "start": 9369.96, + "end": 9374.22, + "probability": 0.9505 + }, + { + "start": 9374.32, + "end": 9376.36, + "probability": 0.8643 + }, + { + "start": 9376.52, + "end": 9379.24, + "probability": 0.9272 + }, + { + "start": 9379.86, + "end": 9383.14, + "probability": 0.8658 + }, + { + "start": 9384.2, + "end": 9387.22, + "probability": 0.9919 + }, + { + "start": 9387.52, + "end": 9388.94, + "probability": 0.7579 + }, + { + "start": 9389.62, + "end": 9392.5, + "probability": 0.9282 + }, + { + "start": 9393.16, + "end": 9395.66, + "probability": 0.8738 + }, + { + "start": 9397.14, + "end": 9398.44, + "probability": 0.8397 + }, + { + "start": 9398.98, + "end": 9402.58, + "probability": 0.9838 + }, + { + "start": 9402.72, + "end": 9404.38, + "probability": 0.9301 + }, + { + "start": 9404.5, + "end": 9404.92, + "probability": 0.6149 + }, + { + "start": 9404.96, + "end": 9405.58, + "probability": 0.5361 + }, + { + "start": 9406.54, + "end": 9409.08, + "probability": 0.7915 + }, + { + "start": 9409.94, + "end": 9415.5, + "probability": 0.9983 + }, + { + "start": 9416.08, + "end": 9418.84, + "probability": 0.8007 + }, + { + "start": 9419.48, + "end": 9425.52, + "probability": 0.9537 + }, + { + "start": 9426.12, + "end": 9430.44, + "probability": 0.874 + }, + { + "start": 9431.7, + "end": 9433.4, + "probability": 0.6681 + }, + { + "start": 9434.0, + "end": 9435.44, + "probability": 0.9922 + }, + { + "start": 9435.94, + "end": 9438.84, + "probability": 0.9846 + }, + { + "start": 9439.02, + "end": 9439.72, + "probability": 0.5191 + }, + { + "start": 9440.36, + "end": 9446.82, + "probability": 0.9678 + }, + { + "start": 9448.26, + "end": 9453.14, + "probability": 0.9825 + }, + { + "start": 9453.6, + "end": 9458.26, + "probability": 0.9819 + }, + { + "start": 9459.92, + "end": 9464.24, + "probability": 0.9441 + }, + { + "start": 9464.42, + "end": 9465.52, + "probability": 0.9229 + }, + { + "start": 9466.4, + "end": 9470.3, + "probability": 0.9713 + }, + { + "start": 9470.48, + "end": 9474.44, + "probability": 0.9961 + }, + { + "start": 9474.88, + "end": 9477.18, + "probability": 0.7265 + }, + { + "start": 9478.18, + "end": 9480.2, + "probability": 0.9744 + }, + { + "start": 9480.58, + "end": 9482.38, + "probability": 0.9872 + }, + { + "start": 9482.96, + "end": 9490.14, + "probability": 0.9769 + }, + { + "start": 9490.4, + "end": 9491.6, + "probability": 0.8392 + }, + { + "start": 9492.34, + "end": 9493.32, + "probability": 0.8312 + }, + { + "start": 9494.14, + "end": 9495.08, + "probability": 0.9761 + }, + { + "start": 9496.78, + "end": 9500.48, + "probability": 0.9902 + }, + { + "start": 9502.66, + "end": 9505.66, + "probability": 0.7511 + }, + { + "start": 9505.9, + "end": 9506.52, + "probability": 0.2902 + }, + { + "start": 9506.54, + "end": 9509.72, + "probability": 0.9063 + }, + { + "start": 9510.42, + "end": 9515.02, + "probability": 0.9927 + }, + { + "start": 9515.52, + "end": 9518.12, + "probability": 0.9915 + }, + { + "start": 9518.58, + "end": 9525.52, + "probability": 0.9881 + }, + { + "start": 9526.26, + "end": 9531.98, + "probability": 0.9893 + }, + { + "start": 9533.8, + "end": 9537.16, + "probability": 0.9923 + }, + { + "start": 9537.16, + "end": 9541.78, + "probability": 0.979 + }, + { + "start": 9541.88, + "end": 9543.56, + "probability": 0.9604 + }, + { + "start": 9544.5, + "end": 9547.76, + "probability": 0.7578 + }, + { + "start": 9548.18, + "end": 9551.92, + "probability": 0.9917 + }, + { + "start": 9553.02, + "end": 9557.66, + "probability": 0.9976 + }, + { + "start": 9557.78, + "end": 9559.02, + "probability": 0.8945 + }, + { + "start": 9559.34, + "end": 9560.58, + "probability": 0.8246 + }, + { + "start": 9560.72, + "end": 9561.72, + "probability": 0.5895 + }, + { + "start": 9564.54, + "end": 9568.46, + "probability": 0.9969 + }, + { + "start": 9569.02, + "end": 9571.24, + "probability": 0.9219 + }, + { + "start": 9571.96, + "end": 9575.26, + "probability": 0.4153 + }, + { + "start": 9575.26, + "end": 9576.4, + "probability": 0.8236 + }, + { + "start": 9577.56, + "end": 9578.36, + "probability": 0.9875 + }, + { + "start": 9578.62, + "end": 9580.54, + "probability": 0.6776 + }, + { + "start": 9580.78, + "end": 9580.9, + "probability": 0.7926 + }, + { + "start": 9581.82, + "end": 9583.22, + "probability": 0.7777 + }, + { + "start": 9585.06, + "end": 9586.08, + "probability": 0.1339 + }, + { + "start": 9587.12, + "end": 9589.54, + "probability": 0.1616 + }, + { + "start": 9589.84, + "end": 9592.66, + "probability": 0.9341 + }, + { + "start": 9592.88, + "end": 9594.24, + "probability": 0.865 + }, + { + "start": 9594.3, + "end": 9596.4, + "probability": 0.8839 + }, + { + "start": 9596.44, + "end": 9597.7, + "probability": 0.9538 + }, + { + "start": 9598.12, + "end": 9602.88, + "probability": 0.8942 + }, + { + "start": 9603.08, + "end": 9603.98, + "probability": 0.847 + }, + { + "start": 9604.32, + "end": 9606.9, + "probability": 0.7497 + }, + { + "start": 9607.32, + "end": 9610.86, + "probability": 0.9841 + }, + { + "start": 9615.18, + "end": 9619.62, + "probability": 0.6654 + }, + { + "start": 9619.88, + "end": 9621.04, + "probability": 0.8423 + }, + { + "start": 9621.2, + "end": 9624.55, + "probability": 0.9973 + }, + { + "start": 9624.98, + "end": 9625.88, + "probability": 0.3572 + }, + { + "start": 9625.98, + "end": 9629.56, + "probability": 0.8434 + }, + { + "start": 9630.22, + "end": 9632.6, + "probability": 0.979 + }, + { + "start": 9632.68, + "end": 9635.68, + "probability": 0.9124 + }, + { + "start": 9636.38, + "end": 9639.26, + "probability": 0.9738 + }, + { + "start": 9639.38, + "end": 9642.02, + "probability": 0.9315 + }, + { + "start": 9642.26, + "end": 9644.26, + "probability": 0.9503 + }, + { + "start": 9644.46, + "end": 9646.63, + "probability": 0.9395 + }, + { + "start": 9650.12, + "end": 9650.18, + "probability": 0.257 + }, + { + "start": 9650.18, + "end": 9654.78, + "probability": 0.9889 + }, + { + "start": 9655.08, + "end": 9655.72, + "probability": 0.7192 + }, + { + "start": 9655.76, + "end": 9659.84, + "probability": 0.7356 + }, + { + "start": 9659.98, + "end": 9663.66, + "probability": 0.9937 + }, + { + "start": 9664.58, + "end": 9666.66, + "probability": 0.926 + }, + { + "start": 9667.34, + "end": 9668.06, + "probability": 0.7655 + }, + { + "start": 9668.52, + "end": 9670.48, + "probability": 0.96 + }, + { + "start": 9670.62, + "end": 9671.92, + "probability": 0.479 + }, + { + "start": 9671.92, + "end": 9672.26, + "probability": 0.683 + }, + { + "start": 9673.22, + "end": 9674.56, + "probability": 0.813 + }, + { + "start": 9674.68, + "end": 9675.84, + "probability": 0.8203 + }, + { + "start": 9676.04, + "end": 9677.48, + "probability": 0.7726 + }, + { + "start": 9677.7, + "end": 9679.04, + "probability": 0.889 + }, + { + "start": 9679.78, + "end": 9682.1, + "probability": 0.9903 + }, + { + "start": 9682.1, + "end": 9685.24, + "probability": 0.6742 + }, + { + "start": 9685.58, + "end": 9685.68, + "probability": 0.7131 + }, + { + "start": 9686.7, + "end": 9686.82, + "probability": 0.2367 + }, + { + "start": 9687.34, + "end": 9688.82, + "probability": 0.952 + }, + { + "start": 9689.7, + "end": 9691.76, + "probability": 0.696 + }, + { + "start": 9692.6, + "end": 9693.94, + "probability": 0.4551 + }, + { + "start": 9694.48, + "end": 9695.74, + "probability": 0.785 + }, + { + "start": 9695.88, + "end": 9696.88, + "probability": 0.9952 + }, + { + "start": 9697.16, + "end": 9697.66, + "probability": 0.5251 + }, + { + "start": 9698.36, + "end": 9700.82, + "probability": 0.6666 + }, + { + "start": 9701.38, + "end": 9703.52, + "probability": 0.801 + }, + { + "start": 9704.5, + "end": 9707.32, + "probability": 0.9825 + }, + { + "start": 9708.48, + "end": 9711.1, + "probability": 0.9894 + }, + { + "start": 9711.86, + "end": 9715.8, + "probability": 0.9944 + }, + { + "start": 9715.8, + "end": 9720.98, + "probability": 0.996 + }, + { + "start": 9721.54, + "end": 9724.26, + "probability": 0.9983 + }, + { + "start": 9724.74, + "end": 9727.34, + "probability": 0.9552 + }, + { + "start": 9729.2, + "end": 9733.34, + "probability": 0.8364 + }, + { + "start": 9733.34, + "end": 9738.58, + "probability": 0.9771 + }, + { + "start": 9739.14, + "end": 9742.88, + "probability": 0.6865 + }, + { + "start": 9743.32, + "end": 9744.58, + "probability": 0.3758 + }, + { + "start": 9744.58, + "end": 9746.46, + "probability": 0.8227 + }, + { + "start": 9765.7, + "end": 9766.68, + "probability": 0.7373 + }, + { + "start": 9766.86, + "end": 9767.07, + "probability": 0.4905 + }, + { + "start": 9768.26, + "end": 9769.36, + "probability": 0.7795 + }, + { + "start": 9770.36, + "end": 9770.66, + "probability": 0.7933 + }, + { + "start": 9770.72, + "end": 9771.48, + "probability": 0.7805 + }, + { + "start": 9771.5, + "end": 9773.96, + "probability": 0.9893 + }, + { + "start": 9774.02, + "end": 9775.52, + "probability": 0.9595 + }, + { + "start": 9776.18, + "end": 9777.19, + "probability": 0.8787 + }, + { + "start": 9777.74, + "end": 9778.24, + "probability": 0.6433 + }, + { + "start": 9778.48, + "end": 9779.32, + "probability": 0.9985 + }, + { + "start": 9781.12, + "end": 9782.68, + "probability": 0.8163 + }, + { + "start": 9783.02, + "end": 9783.64, + "probability": 0.9461 + }, + { + "start": 9784.22, + "end": 9784.56, + "probability": 0.856 + }, + { + "start": 9784.62, + "end": 9788.24, + "probability": 0.9901 + }, + { + "start": 9790.02, + "end": 9791.56, + "probability": 0.551 + }, + { + "start": 9791.66, + "end": 9792.38, + "probability": 0.8019 + }, + { + "start": 9792.54, + "end": 9793.3, + "probability": 0.8052 + }, + { + "start": 9793.72, + "end": 9794.74, + "probability": 0.6714 + }, + { + "start": 9794.78, + "end": 9796.04, + "probability": 0.5893 + }, + { + "start": 9796.16, + "end": 9796.9, + "probability": 0.6365 + }, + { + "start": 9797.0, + "end": 9799.28, + "probability": 0.9162 + }, + { + "start": 9799.44, + "end": 9801.04, + "probability": 0.9761 + }, + { + "start": 9801.22, + "end": 9802.36, + "probability": 0.5208 + }, + { + "start": 9802.36, + "end": 9805.88, + "probability": 0.9541 + }, + { + "start": 9806.14, + "end": 9806.58, + "probability": 0.7265 + }, + { + "start": 9807.86, + "end": 9814.86, + "probability": 0.9805 + }, + { + "start": 9815.84, + "end": 9816.12, + "probability": 0.702 + }, + { + "start": 9817.28, + "end": 9817.94, + "probability": 0.9823 + }, + { + "start": 9819.68, + "end": 9823.22, + "probability": 0.9614 + }, + { + "start": 9824.0, + "end": 9824.72, + "probability": 0.9308 + }, + { + "start": 9825.78, + "end": 9827.08, + "probability": 0.9547 + }, + { + "start": 9828.31, + "end": 9831.42, + "probability": 0.8044 + }, + { + "start": 9837.14, + "end": 9838.72, + "probability": 0.8177 + }, + { + "start": 9838.9, + "end": 9843.9, + "probability": 0.9778 + }, + { + "start": 9843.9, + "end": 9848.26, + "probability": 0.9259 + }, + { + "start": 9848.46, + "end": 9850.54, + "probability": 0.7926 + }, + { + "start": 9850.64, + "end": 9852.9, + "probability": 0.7995 + }, + { + "start": 9853.92, + "end": 9855.48, + "probability": 0.8245 + }, + { + "start": 9856.26, + "end": 9857.98, + "probability": 0.8868 + }, + { + "start": 9859.42, + "end": 9860.36, + "probability": 0.7548 + }, + { + "start": 9860.48, + "end": 9861.88, + "probability": 0.9895 + }, + { + "start": 9862.14, + "end": 9864.88, + "probability": 0.99 + }, + { + "start": 9866.08, + "end": 9868.56, + "probability": 0.9973 + }, + { + "start": 9868.72, + "end": 9869.78, + "probability": 0.979 + }, + { + "start": 9870.5, + "end": 9870.6, + "probability": 0.5584 + }, + { + "start": 9871.28, + "end": 9872.24, + "probability": 0.8543 + }, + { + "start": 9872.42, + "end": 9873.34, + "probability": 0.8882 + }, + { + "start": 9873.38, + "end": 9874.9, + "probability": 0.7375 + }, + { + "start": 9874.9, + "end": 9875.16, + "probability": 0.3566 + }, + { + "start": 9875.18, + "end": 9884.64, + "probability": 0.9777 + }, + { + "start": 9885.06, + "end": 9891.32, + "probability": 0.995 + }, + { + "start": 9891.36, + "end": 9892.02, + "probability": 0.546 + }, + { + "start": 9892.06, + "end": 9893.98, + "probability": 0.9351 + }, + { + "start": 9895.32, + "end": 9897.42, + "probability": 0.9985 + }, + { + "start": 9898.12, + "end": 9900.34, + "probability": 0.9883 + }, + { + "start": 9900.74, + "end": 9902.06, + "probability": 0.8771 + }, + { + "start": 9902.54, + "end": 9903.38, + "probability": 0.7206 + }, + { + "start": 9904.64, + "end": 9906.36, + "probability": 0.9395 + }, + { + "start": 9906.96, + "end": 9908.42, + "probability": 0.9609 + }, + { + "start": 9908.5, + "end": 9910.36, + "probability": 0.9971 + }, + { + "start": 9911.72, + "end": 9912.6, + "probability": 0.9547 + }, + { + "start": 9913.44, + "end": 9915.74, + "probability": 0.973 + }, + { + "start": 9920.34, + "end": 9924.08, + "probability": 0.9974 + }, + { + "start": 9924.82, + "end": 9930.94, + "probability": 0.9979 + }, + { + "start": 9931.0, + "end": 9936.14, + "probability": 0.9949 + }, + { + "start": 9936.18, + "end": 9940.86, + "probability": 0.972 + }, + { + "start": 9941.38, + "end": 9943.84, + "probability": 0.9983 + }, + { + "start": 9943.92, + "end": 9945.54, + "probability": 0.9944 + }, + { + "start": 9945.78, + "end": 9949.78, + "probability": 0.8631 + }, + { + "start": 9950.24, + "end": 9952.14, + "probability": 0.991 + }, + { + "start": 9952.3, + "end": 9956.32, + "probability": 0.968 + }, + { + "start": 9957.1, + "end": 9958.14, + "probability": 0.9995 + }, + { + "start": 9959.2, + "end": 9960.12, + "probability": 0.9971 + }, + { + "start": 9960.22, + "end": 9960.97, + "probability": 0.8317 + }, + { + "start": 9961.08, + "end": 9962.26, + "probability": 0.9712 + }, + { + "start": 9962.94, + "end": 9964.57, + "probability": 0.7869 + }, + { + "start": 9965.26, + "end": 9969.34, + "probability": 0.8918 + }, + { + "start": 9970.18, + "end": 9970.92, + "probability": 0.7724 + }, + { + "start": 9971.68, + "end": 9974.32, + "probability": 0.772 + }, + { + "start": 9974.64, + "end": 9982.1, + "probability": 0.8726 + }, + { + "start": 9982.78, + "end": 9983.56, + "probability": 0.8643 + }, + { + "start": 9985.04, + "end": 9987.1, + "probability": 0.8804 + }, + { + "start": 9987.72, + "end": 9992.08, + "probability": 0.9829 + }, + { + "start": 9992.3, + "end": 9996.12, + "probability": 0.9727 + }, + { + "start": 9996.28, + "end": 9997.3, + "probability": 0.8666 + }, + { + "start": 9997.42, + "end": 9998.58, + "probability": 0.6826 + }, + { + "start": 9998.62, + "end": 9999.5, + "probability": 0.8605 + }, + { + "start": 10000.3, + "end": 10002.26, + "probability": 0.6964 + }, + { + "start": 10003.5, + "end": 10005.06, + "probability": 0.9036 + }, + { + "start": 10005.68, + "end": 10006.6, + "probability": 0.6595 + }, + { + "start": 10008.38, + "end": 10008.62, + "probability": 0.4503 + }, + { + "start": 10009.5, + "end": 10010.2, + "probability": 0.8757 + }, + { + "start": 10010.74, + "end": 10013.8, + "probability": 0.9939 + }, + { + "start": 10013.92, + "end": 10016.12, + "probability": 0.9926 + }, + { + "start": 10018.72, + "end": 10019.84, + "probability": 0.9385 + }, + { + "start": 10022.6, + "end": 10023.16, + "probability": 0.4297 + }, + { + "start": 10024.06, + "end": 10025.02, + "probability": 0.976 + }, + { + "start": 10025.44, + "end": 10027.28, + "probability": 0.9978 + }, + { + "start": 10028.04, + "end": 10028.72, + "probability": 0.7134 + }, + { + "start": 10030.26, + "end": 10032.5, + "probability": 0.9955 + }, + { + "start": 10033.46, + "end": 10034.16, + "probability": 0.9557 + }, + { + "start": 10034.56, + "end": 10035.46, + "probability": 0.7211 + }, + { + "start": 10036.52, + "end": 10038.84, + "probability": 0.9868 + }, + { + "start": 10039.74, + "end": 10044.76, + "probability": 0.9927 + }, + { + "start": 10045.5, + "end": 10046.84, + "probability": 0.9973 + }, + { + "start": 10048.18, + "end": 10048.9, + "probability": 0.9025 + }, + { + "start": 10050.56, + "end": 10055.12, + "probability": 0.991 + }, + { + "start": 10056.12, + "end": 10060.5, + "probability": 0.9741 + }, + { + "start": 10061.38, + "end": 10064.36, + "probability": 0.9994 + }, + { + "start": 10064.52, + "end": 10067.74, + "probability": 0.9996 + }, + { + "start": 10068.68, + "end": 10074.1, + "probability": 0.9989 + }, + { + "start": 10074.88, + "end": 10081.34, + "probability": 0.9989 + }, + { + "start": 10082.54, + "end": 10083.56, + "probability": 0.9883 + }, + { + "start": 10087.85, + "end": 10089.34, + "probability": 0.2892 + }, + { + "start": 10089.74, + "end": 10090.94, + "probability": 0.3406 + }, + { + "start": 10091.96, + "end": 10093.67, + "probability": 0.347 + }, + { + "start": 10094.0, + "end": 10096.76, + "probability": 0.6188 + }, + { + "start": 10096.96, + "end": 10098.94, + "probability": 0.9487 + }, + { + "start": 10099.02, + "end": 10099.09, + "probability": 0.2498 + }, + { + "start": 10099.86, + "end": 10104.44, + "probability": 0.3854 + }, + { + "start": 10104.44, + "end": 10104.44, + "probability": 0.0981 + }, + { + "start": 10104.66, + "end": 10108.47, + "probability": 0.4293 + }, + { + "start": 10108.86, + "end": 10108.86, + "probability": 0.2545 + }, + { + "start": 10108.88, + "end": 10108.88, + "probability": 0.5623 + }, + { + "start": 10109.0, + "end": 10109.02, + "probability": 0.5865 + }, + { + "start": 10109.16, + "end": 10109.84, + "probability": 0.2788 + }, + { + "start": 10109.86, + "end": 10110.88, + "probability": 0.6866 + }, + { + "start": 10111.12, + "end": 10111.82, + "probability": 0.1592 + }, + { + "start": 10112.28, + "end": 10112.36, + "probability": 0.5532 + }, + { + "start": 10112.64, + "end": 10114.08, + "probability": 0.6025 + }, + { + "start": 10114.72, + "end": 10116.35, + "probability": 0.7327 + }, + { + "start": 10117.22, + "end": 10118.96, + "probability": 0.8879 + }, + { + "start": 10120.16, + "end": 10122.64, + "probability": 0.9038 + }, + { + "start": 10123.26, + "end": 10125.4, + "probability": 0.9962 + }, + { + "start": 10125.9, + "end": 10126.08, + "probability": 0.0199 + }, + { + "start": 10126.72, + "end": 10127.42, + "probability": 0.4545 + }, + { + "start": 10128.06, + "end": 10130.9, + "probability": 0.5635 + }, + { + "start": 10131.34, + "end": 10132.74, + "probability": 0.9031 + }, + { + "start": 10132.82, + "end": 10133.77, + "probability": 0.6104 + }, + { + "start": 10134.16, + "end": 10137.46, + "probability": 0.8856 + }, + { + "start": 10137.68, + "end": 10137.68, + "probability": 0.1046 + }, + { + "start": 10137.7, + "end": 10138.6, + "probability": 0.9001 + }, + { + "start": 10138.88, + "end": 10140.6, + "probability": 0.9215 + }, + { + "start": 10140.7, + "end": 10140.9, + "probability": 0.2748 + }, + { + "start": 10141.08, + "end": 10141.91, + "probability": 0.5753 + }, + { + "start": 10142.0, + "end": 10142.74, + "probability": 0.2609 + }, + { + "start": 10143.04, + "end": 10143.72, + "probability": 0.3237 + }, + { + "start": 10143.72, + "end": 10145.06, + "probability": 0.0914 + }, + { + "start": 10145.36, + "end": 10146.54, + "probability": 0.3478 + }, + { + "start": 10146.54, + "end": 10150.54, + "probability": 0.0966 + }, + { + "start": 10151.13, + "end": 10151.76, + "probability": 0.2771 + }, + { + "start": 10151.76, + "end": 10151.76, + "probability": 0.3798 + }, + { + "start": 10151.76, + "end": 10153.88, + "probability": 0.6272 + }, + { + "start": 10154.24, + "end": 10155.16, + "probability": 0.7982 + }, + { + "start": 10155.22, + "end": 10156.08, + "probability": 0.7687 + }, + { + "start": 10156.96, + "end": 10158.68, + "probability": 0.7552 + }, + { + "start": 10158.74, + "end": 10159.06, + "probability": 0.0062 + }, + { + "start": 10159.08, + "end": 10159.16, + "probability": 0.1348 + }, + { + "start": 10159.16, + "end": 10159.44, + "probability": 0.3224 + }, + { + "start": 10159.54, + "end": 10160.18, + "probability": 0.8119 + }, + { + "start": 10160.3, + "end": 10162.1, + "probability": 0.7371 + }, + { + "start": 10162.12, + "end": 10162.12, + "probability": 0.4903 + }, + { + "start": 10162.12, + "end": 10164.32, + "probability": 0.6278 + }, + { + "start": 10164.34, + "end": 10166.92, + "probability": 0.6608 + }, + { + "start": 10171.41, + "end": 10172.3, + "probability": 0.0458 + }, + { + "start": 10172.3, + "end": 10172.3, + "probability": 0.083 + }, + { + "start": 10172.3, + "end": 10172.3, + "probability": 0.1775 + }, + { + "start": 10172.3, + "end": 10172.3, + "probability": 0.4121 + }, + { + "start": 10172.3, + "end": 10172.46, + "probability": 0.0112 + }, + { + "start": 10172.54, + "end": 10172.94, + "probability": 0.0522 + }, + { + "start": 10172.94, + "end": 10176.18, + "probability": 0.6649 + }, + { + "start": 10176.24, + "end": 10177.03, + "probability": 0.2739 + }, + { + "start": 10178.38, + "end": 10178.76, + "probability": 0.009 + }, + { + "start": 10178.76, + "end": 10179.71, + "probability": 0.0421 + }, + { + "start": 10180.14, + "end": 10180.76, + "probability": 0.6753 + }, + { + "start": 10180.86, + "end": 10182.0, + "probability": 0.7517 + }, + { + "start": 10182.2, + "end": 10184.44, + "probability": 0.8835 + }, + { + "start": 10184.44, + "end": 10187.38, + "probability": 0.8843 + }, + { + "start": 10187.44, + "end": 10190.29, + "probability": 0.0397 + }, + { + "start": 10190.84, + "end": 10193.6, + "probability": 0.5432 + }, + { + "start": 10193.72, + "end": 10199.24, + "probability": 0.0735 + }, + { + "start": 10199.66, + "end": 10201.02, + "probability": 0.0594 + }, + { + "start": 10201.08, + "end": 10201.52, + "probability": 0.0823 + }, + { + "start": 10201.68, + "end": 10205.44, + "probability": 0.0453 + }, + { + "start": 10205.74, + "end": 10210.94, + "probability": 0.0256 + }, + { + "start": 10211.16, + "end": 10212.76, + "probability": 0.0582 + }, + { + "start": 10213.04, + "end": 10214.86, + "probability": 0.0434 + }, + { + "start": 10214.94, + "end": 10215.52, + "probability": 0.0676 + }, + { + "start": 10215.84, + "end": 10219.36, + "probability": 0.2766 + }, + { + "start": 10219.64, + "end": 10220.56, + "probability": 0.068 + }, + { + "start": 10221.1, + "end": 10222.71, + "probability": 0.3523 + }, + { + "start": 10225.84, + "end": 10226.3, + "probability": 0.0373 + }, + { + "start": 10227.08, + "end": 10227.68, + "probability": 0.0696 + }, + { + "start": 10227.85, + "end": 10230.94, + "probability": 0.0242 + }, + { + "start": 10231.42, + "end": 10231.46, + "probability": 0.0901 + }, + { + "start": 10242.0, + "end": 10242.0, + "probability": 0.0 + }, + { + "start": 10242.0, + "end": 10242.0, + "probability": 0.0 + }, + { + "start": 10242.0, + "end": 10242.0, + "probability": 0.0 + }, + { + "start": 10242.0, + "end": 10242.0, + "probability": 0.0 + }, + { + "start": 10242.0, + "end": 10242.0, + "probability": 0.0 + }, + { + "start": 10242.0, + "end": 10242.0, + "probability": 0.0 + }, + { + "start": 10242.0, + "end": 10242.0, + "probability": 0.0 + }, + { + "start": 10242.2, + "end": 10242.38, + "probability": 0.0507 + }, + { + "start": 10242.38, + "end": 10242.38, + "probability": 0.0077 + }, + { + "start": 10242.38, + "end": 10242.38, + "probability": 0.0043 + }, + { + "start": 10242.38, + "end": 10242.38, + "probability": 0.1523 + }, + { + "start": 10242.38, + "end": 10242.38, + "probability": 0.0275 + }, + { + "start": 10242.38, + "end": 10244.34, + "probability": 0.3919 + }, + { + "start": 10244.5, + "end": 10245.62, + "probability": 0.5283 + }, + { + "start": 10245.88, + "end": 10249.18, + "probability": 0.2118 + }, + { + "start": 10252.3, + "end": 10256.32, + "probability": 0.1231 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.0, + "end": 10373.0, + "probability": 0.0 + }, + { + "start": 10373.1, + "end": 10373.1, + "probability": 0.0801 + }, + { + "start": 10373.1, + "end": 10373.26, + "probability": 0.0429 + }, + { + "start": 10373.26, + "end": 10373.26, + "probability": 0.0173 + }, + { + "start": 10373.26, + "end": 10373.26, + "probability": 0.1357 + }, + { + "start": 10373.26, + "end": 10374.86, + "probability": 0.0674 + }, + { + "start": 10376.42, + "end": 10377.14, + "probability": 0.3208 + }, + { + "start": 10377.78, + "end": 10379.02, + "probability": 0.0594 + }, + { + "start": 10379.84, + "end": 10380.25, + "probability": 0.5767 + }, + { + "start": 10380.74, + "end": 10381.7, + "probability": 0.9293 + }, + { + "start": 10381.82, + "end": 10381.96, + "probability": 0.863 + }, + { + "start": 10381.96, + "end": 10383.84, + "probability": 0.5212 + }, + { + "start": 10384.5, + "end": 10384.6, + "probability": 0.0264 + }, + { + "start": 10384.6, + "end": 10385.58, + "probability": 0.8349 + }, + { + "start": 10385.66, + "end": 10387.24, + "probability": 0.7488 + }, + { + "start": 10387.26, + "end": 10390.3, + "probability": 0.1313 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.0, + "end": 10493.0, + "probability": 0.0 + }, + { + "start": 10493.08, + "end": 10493.42, + "probability": 0.0022 + }, + { + "start": 10494.06, + "end": 10496.72, + "probability": 0.1317 + }, + { + "start": 10496.78, + "end": 10497.16, + "probability": 0.6927 + }, + { + "start": 10497.36, + "end": 10498.64, + "probability": 0.453 + }, + { + "start": 10498.82, + "end": 10501.7, + "probability": 0.3358 + }, + { + "start": 10504.02, + "end": 10511.12, + "probability": 0.9489 + }, + { + "start": 10512.64, + "end": 10514.3, + "probability": 0.6858 + }, + { + "start": 10516.3, + "end": 10516.88, + "probability": 0.9722 + }, + { + "start": 10517.56, + "end": 10518.78, + "probability": 0.9995 + }, + { + "start": 10519.78, + "end": 10521.22, + "probability": 0.9696 + }, + { + "start": 10521.82, + "end": 10523.14, + "probability": 0.9988 + }, + { + "start": 10524.26, + "end": 10526.48, + "probability": 0.8995 + }, + { + "start": 10527.24, + "end": 10528.3, + "probability": 0.9757 + }, + { + "start": 10529.38, + "end": 10532.34, + "probability": 0.9963 + }, + { + "start": 10533.58, + "end": 10536.36, + "probability": 0.9965 + }, + { + "start": 10537.48, + "end": 10538.88, + "probability": 0.8636 + }, + { + "start": 10539.6, + "end": 10540.68, + "probability": 0.9725 + }, + { + "start": 10541.18, + "end": 10542.92, + "probability": 0.9858 + }, + { + "start": 10543.62, + "end": 10547.24, + "probability": 0.9804 + }, + { + "start": 10548.0, + "end": 10548.86, + "probability": 0.8227 + }, + { + "start": 10552.02, + "end": 10556.38, + "probability": 0.9953 + }, + { + "start": 10558.74, + "end": 10564.14, + "probability": 0.9701 + }, + { + "start": 10565.44, + "end": 10568.02, + "probability": 0.9917 + }, + { + "start": 10568.78, + "end": 10573.4, + "probability": 0.9953 + }, + { + "start": 10574.54, + "end": 10576.6, + "probability": 0.6838 + }, + { + "start": 10577.92, + "end": 10582.36, + "probability": 0.9967 + }, + { + "start": 10583.08, + "end": 10584.54, + "probability": 0.9958 + }, + { + "start": 10585.08, + "end": 10588.14, + "probability": 0.9985 + }, + { + "start": 10588.14, + "end": 10592.36, + "probability": 0.9881 + }, + { + "start": 10593.3, + "end": 10596.98, + "probability": 0.9919 + }, + { + "start": 10597.12, + "end": 10598.82, + "probability": 0.7988 + }, + { + "start": 10599.26, + "end": 10600.9, + "probability": 0.9993 + }, + { + "start": 10601.04, + "end": 10603.92, + "probability": 0.9819 + }, + { + "start": 10605.06, + "end": 10606.7, + "probability": 0.9448 + }, + { + "start": 10606.86, + "end": 10609.81, + "probability": 0.7871 + }, + { + "start": 10610.94, + "end": 10612.78, + "probability": 0.9922 + }, + { + "start": 10613.14, + "end": 10615.08, + "probability": 0.998 + }, + { + "start": 10616.44, + "end": 10617.94, + "probability": 0.8434 + }, + { + "start": 10619.26, + "end": 10622.42, + "probability": 0.9927 + }, + { + "start": 10623.06, + "end": 10627.56, + "probability": 0.9974 + }, + { + "start": 10628.0, + "end": 10630.88, + "probability": 0.7625 + }, + { + "start": 10631.06, + "end": 10632.62, + "probability": 0.8125 + }, + { + "start": 10632.66, + "end": 10633.09, + "probability": 0.9749 + }, + { + "start": 10633.64, + "end": 10636.58, + "probability": 0.9974 + }, + { + "start": 10640.16, + "end": 10641.02, + "probability": 0.6743 + }, + { + "start": 10641.02, + "end": 10641.7, + "probability": 0.7571 + }, + { + "start": 10642.12, + "end": 10643.2, + "probability": 0.7952 + }, + { + "start": 10644.08, + "end": 10646.56, + "probability": 0.9375 + }, + { + "start": 10646.76, + "end": 10648.02, + "probability": 0.4297 + }, + { + "start": 10648.17, + "end": 10649.54, + "probability": 0.8384 + }, + { + "start": 10650.46, + "end": 10652.82, + "probability": 0.9699 + }, + { + "start": 10655.66, + "end": 10659.62, + "probability": 0.9965 + }, + { + "start": 10660.2, + "end": 10664.86, + "probability": 0.9983 + }, + { + "start": 10666.04, + "end": 10668.36, + "probability": 0.9971 + }, + { + "start": 10668.98, + "end": 10670.14, + "probability": 0.9961 + }, + { + "start": 10671.45, + "end": 10675.3, + "probability": 0.9624 + }, + { + "start": 10676.0, + "end": 10676.64, + "probability": 0.7001 + }, + { + "start": 10677.2, + "end": 10679.14, + "probability": 0.9641 + }, + { + "start": 10679.94, + "end": 10683.02, + "probability": 0.9112 + }, + { + "start": 10683.74, + "end": 10684.98, + "probability": 0.749 + }, + { + "start": 10685.54, + "end": 10688.34, + "probability": 0.9904 + }, + { + "start": 10689.34, + "end": 10689.82, + "probability": 0.448 + }, + { + "start": 10689.84, + "end": 10690.62, + "probability": 0.6586 + }, + { + "start": 10690.64, + "end": 10691.34, + "probability": 0.7671 + }, + { + "start": 10691.72, + "end": 10692.54, + "probability": 0.6294 + }, + { + "start": 10693.38, + "end": 10694.16, + "probability": 0.9003 + }, + { + "start": 10694.42, + "end": 10695.62, + "probability": 0.9427 + }, + { + "start": 10695.82, + "end": 10699.92, + "probability": 0.509 + }, + { + "start": 10700.56, + "end": 10700.96, + "probability": 0.7612 + }, + { + "start": 10701.42, + "end": 10705.78, + "probability": 0.6145 + }, + { + "start": 10705.86, + "end": 10706.68, + "probability": 0.8562 + }, + { + "start": 10706.76, + "end": 10706.78, + "probability": 0.0426 + }, + { + "start": 10706.78, + "end": 10707.26, + "probability": 0.5524 + }, + { + "start": 10707.34, + "end": 10707.64, + "probability": 0.5278 + }, + { + "start": 10707.72, + "end": 10708.36, + "probability": 0.9799 + }, + { + "start": 10708.44, + "end": 10709.04, + "probability": 0.679 + }, + { + "start": 10709.26, + "end": 10709.36, + "probability": 0.7801 + }, + { + "start": 10709.6, + "end": 10714.48, + "probability": 0.8711 + }, + { + "start": 10715.28, + "end": 10719.0, + "probability": 0.9978 + }, + { + "start": 10719.48, + "end": 10721.28, + "probability": 0.9925 + }, + { + "start": 10721.74, + "end": 10722.86, + "probability": 0.915 + }, + { + "start": 10723.46, + "end": 10724.66, + "probability": 0.9319 + }, + { + "start": 10725.46, + "end": 10729.7, + "probability": 0.9965 + }, + { + "start": 10730.54, + "end": 10731.5, + "probability": 0.9895 + }, + { + "start": 10732.14, + "end": 10733.24, + "probability": 0.7705 + }, + { + "start": 10733.92, + "end": 10734.9, + "probability": 0.999 + }, + { + "start": 10735.5, + "end": 10736.04, + "probability": 0.4786 + }, + { + "start": 10736.76, + "end": 10738.88, + "probability": 0.9858 + }, + { + "start": 10740.36, + "end": 10743.08, + "probability": 0.9788 + }, + { + "start": 10743.24, + "end": 10745.06, + "probability": 0.9937 + }, + { + "start": 10745.82, + "end": 10749.88, + "probability": 0.9951 + }, + { + "start": 10749.88, + "end": 10753.44, + "probability": 0.9995 + }, + { + "start": 10754.0, + "end": 10755.74, + "probability": 0.9042 + }, + { + "start": 10756.24, + "end": 10757.46, + "probability": 0.9914 + }, + { + "start": 10758.26, + "end": 10761.38, + "probability": 0.9989 + }, + { + "start": 10762.28, + "end": 10764.12, + "probability": 0.9982 + }, + { + "start": 10765.1, + "end": 10767.9, + "probability": 0.8978 + }, + { + "start": 10768.4, + "end": 10769.68, + "probability": 0.9351 + }, + { + "start": 10771.04, + "end": 10772.9, + "probability": 0.9975 + }, + { + "start": 10773.84, + "end": 10774.52, + "probability": 0.9379 + }, + { + "start": 10775.28, + "end": 10777.24, + "probability": 0.9956 + }, + { + "start": 10778.44, + "end": 10779.04, + "probability": 0.9144 + }, + { + "start": 10779.96, + "end": 10783.08, + "probability": 0.9977 + }, + { + "start": 10783.08, + "end": 10786.36, + "probability": 0.9995 + }, + { + "start": 10787.32, + "end": 10788.56, + "probability": 0.8018 + }, + { + "start": 10789.24, + "end": 10792.74, + "probability": 0.9946 + }, + { + "start": 10792.94, + "end": 10794.26, + "probability": 0.9917 + }, + { + "start": 10795.38, + "end": 10797.1, + "probability": 0.9932 + }, + { + "start": 10797.6, + "end": 10799.82, + "probability": 0.9013 + }, + { + "start": 10800.66, + "end": 10801.28, + "probability": 0.6539 + }, + { + "start": 10801.46, + "end": 10804.32, + "probability": 0.9896 + }, + { + "start": 10804.7, + "end": 10806.4, + "probability": 0.9922 + }, + { + "start": 10806.98, + "end": 10809.03, + "probability": 0.9646 + }, + { + "start": 10809.68, + "end": 10812.5, + "probability": 0.95 + }, + { + "start": 10812.94, + "end": 10817.38, + "probability": 0.9613 + }, + { + "start": 10818.26, + "end": 10821.36, + "probability": 0.9837 + }, + { + "start": 10822.34, + "end": 10824.66, + "probability": 0.9941 + }, + { + "start": 10824.66, + "end": 10828.18, + "probability": 0.9148 + }, + { + "start": 10829.16, + "end": 10829.68, + "probability": 0.9228 + }, + { + "start": 10831.02, + "end": 10832.44, + "probability": 0.7708 + }, + { + "start": 10832.58, + "end": 10834.28, + "probability": 0.7274 + }, + { + "start": 10834.36, + "end": 10835.3, + "probability": 0.8971 + }, + { + "start": 10844.08, + "end": 10845.06, + "probability": 0.6761 + }, + { + "start": 10845.14, + "end": 10846.76, + "probability": 0.8166 + }, + { + "start": 10847.04, + "end": 10848.7, + "probability": 0.8917 + }, + { + "start": 10849.86, + "end": 10851.08, + "probability": 0.8197 + }, + { + "start": 10852.2, + "end": 10854.22, + "probability": 0.9954 + }, + { + "start": 10854.94, + "end": 10858.32, + "probability": 0.8029 + }, + { + "start": 10859.98, + "end": 10861.12, + "probability": 0.5454 + }, + { + "start": 10861.52, + "end": 10862.67, + "probability": 0.7054 + }, + { + "start": 10864.02, + "end": 10864.68, + "probability": 0.3688 + }, + { + "start": 10865.44, + "end": 10866.22, + "probability": 0.9275 + }, + { + "start": 10866.26, + "end": 10868.0, + "probability": 0.8825 + }, + { + "start": 10868.48, + "end": 10869.14, + "probability": 0.9675 + }, + { + "start": 10870.14, + "end": 10870.94, + "probability": 0.9302 + }, + { + "start": 10871.2, + "end": 10873.4, + "probability": 0.9932 + }, + { + "start": 10873.56, + "end": 10874.74, + "probability": 0.8463 + }, + { + "start": 10874.88, + "end": 10877.15, + "probability": 0.9932 + }, + { + "start": 10877.3, + "end": 10877.9, + "probability": 0.1601 + }, + { + "start": 10877.9, + "end": 10878.52, + "probability": 0.7182 + }, + { + "start": 10879.34, + "end": 10880.76, + "probability": 0.2096 + }, + { + "start": 10880.84, + "end": 10882.96, + "probability": 0.9177 + }, + { + "start": 10883.1, + "end": 10883.88, + "probability": 0.6974 + }, + { + "start": 10884.76, + "end": 10885.0, + "probability": 0.7062 + }, + { + "start": 10885.31, + "end": 10888.26, + "probability": 0.7391 + }, + { + "start": 10888.38, + "end": 10888.56, + "probability": 0.4363 + }, + { + "start": 10888.74, + "end": 10889.28, + "probability": 0.3664 + }, + { + "start": 10889.62, + "end": 10889.82, + "probability": 0.1438 + }, + { + "start": 10889.82, + "end": 10890.4, + "probability": 0.6349 + }, + { + "start": 10891.06, + "end": 10891.97, + "probability": 0.7159 + }, + { + "start": 10892.6, + "end": 10894.64, + "probability": 0.1701 + }, + { + "start": 10894.76, + "end": 10895.54, + "probability": 0.1943 + }, + { + "start": 10895.54, + "end": 10897.7, + "probability": 0.2674 + }, + { + "start": 10897.74, + "end": 10898.74, + "probability": 0.2034 + }, + { + "start": 10898.98, + "end": 10899.98, + "probability": 0.2691 + }, + { + "start": 10900.04, + "end": 10901.62, + "probability": 0.8964 + }, + { + "start": 10902.4, + "end": 10904.96, + "probability": 0.7736 + }, + { + "start": 10906.34, + "end": 10909.06, + "probability": 0.9916 + }, + { + "start": 10910.14, + "end": 10911.1, + "probability": 0.991 + }, + { + "start": 10911.18, + "end": 10912.08, + "probability": 0.8857 + }, + { + "start": 10913.22, + "end": 10914.8, + "probability": 0.7837 + }, + { + "start": 10914.96, + "end": 10916.36, + "probability": 0.9843 + }, + { + "start": 10916.38, + "end": 10918.14, + "probability": 0.9233 + }, + { + "start": 10919.24, + "end": 10921.9, + "probability": 0.9952 + }, + { + "start": 10922.06, + "end": 10922.74, + "probability": 0.8174 + }, + { + "start": 10922.8, + "end": 10923.38, + "probability": 0.9414 + }, + { + "start": 10924.56, + "end": 10926.58, + "probability": 0.9539 + }, + { + "start": 10927.34, + "end": 10928.48, + "probability": 0.9327 + }, + { + "start": 10929.3, + "end": 10930.98, + "probability": 0.7095 + }, + { + "start": 10932.06, + "end": 10936.16, + "probability": 0.9721 + }, + { + "start": 10936.84, + "end": 10940.36, + "probability": 0.996 + }, + { + "start": 10941.8, + "end": 10944.5, + "probability": 0.9574 + }, + { + "start": 10945.9, + "end": 10948.16, + "probability": 0.8787 + }, + { + "start": 10949.82, + "end": 10953.74, + "probability": 0.9405 + }, + { + "start": 10954.98, + "end": 10957.86, + "probability": 0.9943 + }, + { + "start": 10958.38, + "end": 10960.92, + "probability": 0.9212 + }, + { + "start": 10961.7, + "end": 10965.6, + "probability": 0.9943 + }, + { + "start": 10965.98, + "end": 10967.1, + "probability": 0.9672 + }, + { + "start": 10969.24, + "end": 10970.54, + "probability": 0.9713 + }, + { + "start": 10972.22, + "end": 10973.92, + "probability": 0.993 + }, + { + "start": 10975.84, + "end": 10981.28, + "probability": 0.7197 + }, + { + "start": 10982.64, + "end": 10985.92, + "probability": 0.9029 + }, + { + "start": 10986.1, + "end": 10987.92, + "probability": 0.9825 + }, + { + "start": 10988.58, + "end": 10992.5, + "probability": 0.9949 + }, + { + "start": 10993.22, + "end": 10993.62, + "probability": 0.9982 + }, + { + "start": 10994.36, + "end": 10995.36, + "probability": 0.8102 + }, + { + "start": 10997.52, + "end": 10999.58, + "probability": 0.459 + }, + { + "start": 10999.58, + "end": 11001.16, + "probability": 0.9697 + }, + { + "start": 11001.82, + "end": 11004.8, + "probability": 0.9614 + }, + { + "start": 11005.86, + "end": 11006.76, + "probability": 0.9142 + }, + { + "start": 11008.04, + "end": 11008.9, + "probability": 0.7351 + }, + { + "start": 11009.12, + "end": 11011.68, + "probability": 0.7648 + }, + { + "start": 11011.92, + "end": 11013.92, + "probability": 0.8405 + }, + { + "start": 11015.14, + "end": 11015.68, + "probability": 0.6113 + }, + { + "start": 11018.56, + "end": 11023.76, + "probability": 0.9969 + }, + { + "start": 11025.5, + "end": 11028.34, + "probability": 0.9653 + }, + { + "start": 11031.18, + "end": 11031.82, + "probability": 0.7352 + }, + { + "start": 11032.74, + "end": 11036.6, + "probability": 0.9821 + }, + { + "start": 11036.6, + "end": 11040.28, + "probability": 0.9979 + }, + { + "start": 11042.06, + "end": 11042.46, + "probability": 0.7283 + }, + { + "start": 11042.54, + "end": 11044.66, + "probability": 0.963 + }, + { + "start": 11044.88, + "end": 11045.68, + "probability": 0.9132 + }, + { + "start": 11045.8, + "end": 11046.36, + "probability": 0.8228 + }, + { + "start": 11047.4, + "end": 11050.88, + "probability": 0.7992 + }, + { + "start": 11051.4, + "end": 11053.92, + "probability": 0.7944 + }, + { + "start": 11054.9, + "end": 11057.12, + "probability": 0.916 + }, + { + "start": 11058.52, + "end": 11062.08, + "probability": 0.9973 + }, + { + "start": 11062.08, + "end": 11066.36, + "probability": 0.86 + }, + { + "start": 11067.2, + "end": 11068.02, + "probability": 0.5664 + }, + { + "start": 11068.7, + "end": 11069.84, + "probability": 0.9238 + }, + { + "start": 11070.82, + "end": 11073.32, + "probability": 0.6814 + }, + { + "start": 11074.26, + "end": 11076.21, + "probability": 0.9899 + }, + { + "start": 11076.7, + "end": 11077.28, + "probability": 0.4723 + }, + { + "start": 11077.36, + "end": 11078.64, + "probability": 0.8098 + }, + { + "start": 11078.76, + "end": 11080.32, + "probability": 0.9761 + }, + { + "start": 11082.14, + "end": 11086.76, + "probability": 0.8341 + }, + { + "start": 11088.56, + "end": 11091.62, + "probability": 0.9943 + }, + { + "start": 11092.58, + "end": 11093.94, + "probability": 0.9814 + }, + { + "start": 11094.52, + "end": 11095.86, + "probability": 0.99 + }, + { + "start": 11096.44, + "end": 11099.3, + "probability": 0.9382 + }, + { + "start": 11099.48, + "end": 11100.82, + "probability": 0.9159 + }, + { + "start": 11101.84, + "end": 11104.26, + "probability": 0.967 + }, + { + "start": 11104.38, + "end": 11107.08, + "probability": 0.9577 + }, + { + "start": 11107.86, + "end": 11108.84, + "probability": 0.4153 + }, + { + "start": 11110.66, + "end": 11113.18, + "probability": 0.9836 + }, + { + "start": 11113.84, + "end": 11117.54, + "probability": 0.9803 + }, + { + "start": 11117.74, + "end": 11118.26, + "probability": 0.935 + }, + { + "start": 11118.88, + "end": 11119.46, + "probability": 0.8955 + }, + { + "start": 11120.76, + "end": 11125.12, + "probability": 0.9893 + }, + { + "start": 11125.12, + "end": 11130.32, + "probability": 0.9971 + }, + { + "start": 11131.22, + "end": 11131.56, + "probability": 0.6561 + }, + { + "start": 11132.1, + "end": 11133.12, + "probability": 0.3729 + }, + { + "start": 11134.36, + "end": 11135.56, + "probability": 0.999 + }, + { + "start": 11135.94, + "end": 11138.54, + "probability": 0.9906 + }, + { + "start": 11139.3, + "end": 11139.94, + "probability": 0.5259 + }, + { + "start": 11142.04, + "end": 11143.94, + "probability": 0.999 + }, + { + "start": 11144.12, + "end": 11144.5, + "probability": 0.8058 + }, + { + "start": 11144.72, + "end": 11146.72, + "probability": 0.7077 + }, + { + "start": 11147.04, + "end": 11150.69, + "probability": 0.996 + }, + { + "start": 11151.96, + "end": 11154.5, + "probability": 0.9365 + }, + { + "start": 11154.56, + "end": 11154.86, + "probability": 0.9225 + }, + { + "start": 11155.3, + "end": 11155.42, + "probability": 0.4624 + }, + { + "start": 11156.94, + "end": 11159.46, + "probability": 0.8965 + }, + { + "start": 11160.32, + "end": 11162.72, + "probability": 0.9973 + }, + { + "start": 11162.72, + "end": 11165.6, + "probability": 0.9807 + }, + { + "start": 11167.2, + "end": 11171.52, + "probability": 0.9988 + }, + { + "start": 11172.52, + "end": 11174.36, + "probability": 0.6683 + }, + { + "start": 11174.92, + "end": 11178.18, + "probability": 0.9981 + }, + { + "start": 11178.26, + "end": 11180.28, + "probability": 0.3995 + }, + { + "start": 11181.76, + "end": 11182.42, + "probability": 0.807 + }, + { + "start": 11183.24, + "end": 11185.7, + "probability": 0.9175 + }, + { + "start": 11186.72, + "end": 11188.56, + "probability": 0.8086 + }, + { + "start": 11188.84, + "end": 11194.34, + "probability": 0.984 + }, + { + "start": 11194.86, + "end": 11196.7, + "probability": 0.8988 + }, + { + "start": 11196.72, + "end": 11197.3, + "probability": 0.6676 + }, + { + "start": 11197.42, + "end": 11198.52, + "probability": 0.9261 + }, + { + "start": 11199.04, + "end": 11203.2, + "probability": 0.997 + }, + { + "start": 11204.12, + "end": 11205.08, + "probability": 0.9167 + }, + { + "start": 11206.68, + "end": 11208.47, + "probability": 0.9951 + }, + { + "start": 11209.3, + "end": 11209.48, + "probability": 0.1114 + }, + { + "start": 11209.48, + "end": 11211.66, + "probability": 0.9863 + }, + { + "start": 11212.86, + "end": 11214.64, + "probability": 0.9093 + }, + { + "start": 11215.98, + "end": 11218.0, + "probability": 0.981 + }, + { + "start": 11218.16, + "end": 11225.4, + "probability": 0.928 + }, + { + "start": 11226.48, + "end": 11229.86, + "probability": 0.847 + }, + { + "start": 11230.54, + "end": 11234.58, + "probability": 0.9959 + }, + { + "start": 11234.7, + "end": 11235.56, + "probability": 0.8162 + }, + { + "start": 11236.42, + "end": 11236.5, + "probability": 0.554 + }, + { + "start": 11236.52, + "end": 11238.6, + "probability": 0.9537 + }, + { + "start": 11239.26, + "end": 11240.3, + "probability": 0.7235 + }, + { + "start": 11240.68, + "end": 11242.34, + "probability": 0.9131 + }, + { + "start": 11242.82, + "end": 11243.68, + "probability": 0.7927 + }, + { + "start": 11244.76, + "end": 11245.08, + "probability": 0.1934 + }, + { + "start": 11245.08, + "end": 11246.08, + "probability": 0.5312 + }, + { + "start": 11246.36, + "end": 11249.14, + "probability": 0.9524 + }, + { + "start": 11250.26, + "end": 11251.96, + "probability": 0.4174 + }, + { + "start": 11252.02, + "end": 11252.76, + "probability": 0.4545 + }, + { + "start": 11253.56, + "end": 11254.5, + "probability": 0.5429 + }, + { + "start": 11254.74, + "end": 11257.4, + "probability": 0.5565 + }, + { + "start": 11257.46, + "end": 11260.76, + "probability": 0.0497 + }, + { + "start": 11260.96, + "end": 11265.54, + "probability": 0.5844 + }, + { + "start": 11265.68, + "end": 11266.36, + "probability": 0.4807 + }, + { + "start": 11266.42, + "end": 11268.0, + "probability": 0.8384 + }, + { + "start": 11268.3, + "end": 11269.1, + "probability": 0.6507 + }, + { + "start": 11269.36, + "end": 11274.44, + "probability": 0.7391 + }, + { + "start": 11274.74, + "end": 11275.78, + "probability": 0.8982 + }, + { + "start": 11277.06, + "end": 11279.34, + "probability": 0.0751 + }, + { + "start": 11279.6, + "end": 11280.54, + "probability": 0.6874 + }, + { + "start": 11280.94, + "end": 11283.92, + "probability": 0.7064 + }, + { + "start": 11283.92, + "end": 11289.78, + "probability": 0.1447 + }, + { + "start": 11290.08, + "end": 11292.23, + "probability": 0.2802 + }, + { + "start": 11292.7, + "end": 11294.73, + "probability": 0.6028 + }, + { + "start": 11295.39, + "end": 11296.12, + "probability": 0.1941 + }, + { + "start": 11296.14, + "end": 11296.14, + "probability": 0.5132 + }, + { + "start": 11296.14, + "end": 11296.48, + "probability": 0.3732 + }, + { + "start": 11303.98, + "end": 11304.0, + "probability": 0.4867 + }, + { + "start": 11304.0, + "end": 11305.48, + "probability": 0.1033 + }, + { + "start": 11305.8, + "end": 11307.74, + "probability": 0.1562 + }, + { + "start": 11308.16, + "end": 11309.74, + "probability": 0.7444 + }, + { + "start": 11310.4, + "end": 11311.13, + "probability": 0.117 + }, + { + "start": 11313.24, + "end": 11314.64, + "probability": 0.3843 + }, + { + "start": 11314.92, + "end": 11316.76, + "probability": 0.8743 + }, + { + "start": 11317.6, + "end": 11317.68, + "probability": 0.5108 + }, + { + "start": 11318.36, + "end": 11319.36, + "probability": 0.8065 + }, + { + "start": 11320.26, + "end": 11321.42, + "probability": 0.9912 + }, + { + "start": 11321.54, + "end": 11322.44, + "probability": 0.6923 + }, + { + "start": 11323.36, + "end": 11324.68, + "probability": 0.9697 + }, + { + "start": 11326.22, + "end": 11330.36, + "probability": 0.9913 + }, + { + "start": 11330.36, + "end": 11334.44, + "probability": 0.9995 + }, + { + "start": 11335.38, + "end": 11336.04, + "probability": 0.3072 + }, + { + "start": 11336.68, + "end": 11342.66, + "probability": 0.7917 + }, + { + "start": 11343.68, + "end": 11350.24, + "probability": 0.9992 + }, + { + "start": 11350.7, + "end": 11352.12, + "probability": 0.8728 + }, + { + "start": 11353.9, + "end": 11355.84, + "probability": 0.9976 + }, + { + "start": 11356.5, + "end": 11359.18, + "probability": 0.9976 + }, + { + "start": 11360.1, + "end": 11363.64, + "probability": 0.9949 + }, + { + "start": 11364.52, + "end": 11366.04, + "probability": 0.9471 + }, + { + "start": 11366.58, + "end": 11368.9, + "probability": 0.9961 + }, + { + "start": 11369.22, + "end": 11370.58, + "probability": 0.9951 + }, + { + "start": 11371.58, + "end": 11376.34, + "probability": 0.9825 + }, + { + "start": 11376.34, + "end": 11379.26, + "probability": 0.9451 + }, + { + "start": 11380.1, + "end": 11381.24, + "probability": 0.6531 + }, + { + "start": 11382.66, + "end": 11383.76, + "probability": 0.8945 + }, + { + "start": 11383.92, + "end": 11386.1, + "probability": 0.9561 + }, + { + "start": 11386.32, + "end": 11388.08, + "probability": 0.7008 + }, + { + "start": 11388.14, + "end": 11388.68, + "probability": 0.2665 + }, + { + "start": 11389.8, + "end": 11391.04, + "probability": 0.8872 + }, + { + "start": 11391.42, + "end": 11392.3, + "probability": 0.8599 + }, + { + "start": 11392.92, + "end": 11396.4, + "probability": 0.7273 + }, + { + "start": 11396.78, + "end": 11399.76, + "probability": 0.8718 + }, + { + "start": 11400.62, + "end": 11405.94, + "probability": 0.9539 + }, + { + "start": 11406.54, + "end": 11410.0, + "probability": 0.9382 + }, + { + "start": 11410.2, + "end": 11411.2, + "probability": 0.6653 + }, + { + "start": 11411.4, + "end": 11412.24, + "probability": 0.9502 + }, + { + "start": 11412.98, + "end": 11415.92, + "probability": 0.8236 + }, + { + "start": 11416.82, + "end": 11419.78, + "probability": 0.9902 + }, + { + "start": 11419.78, + "end": 11422.92, + "probability": 0.922 + }, + { + "start": 11423.38, + "end": 11425.78, + "probability": 0.9646 + }, + { + "start": 11426.5, + "end": 11430.12, + "probability": 0.9891 + }, + { + "start": 11430.32, + "end": 11430.8, + "probability": 0.789 + }, + { + "start": 11431.86, + "end": 11433.86, + "probability": 0.979 + }, + { + "start": 11434.0, + "end": 11434.14, + "probability": 0.8382 + }, + { + "start": 11434.38, + "end": 11434.78, + "probability": 0.7157 + }, + { + "start": 11435.54, + "end": 11436.02, + "probability": 0.9663 + }, + { + "start": 11436.14, + "end": 11436.86, + "probability": 0.988 + }, + { + "start": 11437.02, + "end": 11438.1, + "probability": 0.9749 + }, + { + "start": 11438.56, + "end": 11439.26, + "probability": 0.9513 + }, + { + "start": 11439.46, + "end": 11442.1, + "probability": 0.9908 + }, + { + "start": 11443.08, + "end": 11443.62, + "probability": 0.8203 + }, + { + "start": 11443.78, + "end": 11444.5, + "probability": 0.9448 + }, + { + "start": 11444.6, + "end": 11445.04, + "probability": 0.7207 + }, + { + "start": 11445.12, + "end": 11445.74, + "probability": 0.7408 + }, + { + "start": 11446.26, + "end": 11449.08, + "probability": 0.9132 + }, + { + "start": 11449.08, + "end": 11451.06, + "probability": 0.9989 + }, + { + "start": 11452.12, + "end": 11453.52, + "probability": 0.9193 + }, + { + "start": 11454.58, + "end": 11456.98, + "probability": 0.9954 + }, + { + "start": 11457.78, + "end": 11459.58, + "probability": 0.9878 + }, + { + "start": 11460.02, + "end": 11462.46, + "probability": 0.9863 + }, + { + "start": 11462.96, + "end": 11463.88, + "probability": 0.9927 + }, + { + "start": 11464.32, + "end": 11466.18, + "probability": 0.9492 + }, + { + "start": 11466.46, + "end": 11467.87, + "probability": 0.9766 + }, + { + "start": 11468.32, + "end": 11472.5, + "probability": 0.9947 + }, + { + "start": 11472.62, + "end": 11476.5, + "probability": 0.9994 + }, + { + "start": 11477.04, + "end": 11478.36, + "probability": 0.7615 + }, + { + "start": 11479.32, + "end": 11481.26, + "probability": 0.9941 + }, + { + "start": 11482.08, + "end": 11483.34, + "probability": 0.9648 + }, + { + "start": 11483.7, + "end": 11484.6, + "probability": 0.9607 + }, + { + "start": 11485.3, + "end": 11487.4, + "probability": 0.8623 + }, + { + "start": 11487.52, + "end": 11489.36, + "probability": 0.9801 + }, + { + "start": 11490.46, + "end": 11494.08, + "probability": 0.9852 + }, + { + "start": 11494.34, + "end": 11496.27, + "probability": 0.9904 + }, + { + "start": 11497.26, + "end": 11499.28, + "probability": 0.9568 + }, + { + "start": 11499.86, + "end": 11502.74, + "probability": 0.9896 + }, + { + "start": 11503.42, + "end": 11504.18, + "probability": 0.7324 + }, + { + "start": 11504.48, + "end": 11505.54, + "probability": 0.9682 + }, + { + "start": 11505.78, + "end": 11506.92, + "probability": 0.9819 + }, + { + "start": 11507.26, + "end": 11508.08, + "probability": 0.9433 + }, + { + "start": 11508.42, + "end": 11510.68, + "probability": 0.728 + }, + { + "start": 11510.98, + "end": 11512.5, + "probability": 0.3828 + }, + { + "start": 11513.1, + "end": 11517.32, + "probability": 0.9888 + }, + { + "start": 11517.56, + "end": 11520.44, + "probability": 0.9573 + }, + { + "start": 11521.14, + "end": 11521.78, + "probability": 0.7864 + }, + { + "start": 11523.12, + "end": 11526.06, + "probability": 0.6821 + }, + { + "start": 11526.14, + "end": 11527.18, + "probability": 0.873 + }, + { + "start": 11527.22, + "end": 11528.95, + "probability": 0.9243 + }, + { + "start": 11530.12, + "end": 11532.38, + "probability": 0.9922 + }, + { + "start": 11532.52, + "end": 11535.02, + "probability": 0.8227 + }, + { + "start": 11535.92, + "end": 11540.38, + "probability": 0.9329 + }, + { + "start": 11540.46, + "end": 11541.92, + "probability": 0.9539 + }, + { + "start": 11542.52, + "end": 11546.18, + "probability": 0.9158 + }, + { + "start": 11546.86, + "end": 11547.6, + "probability": 0.9286 + }, + { + "start": 11548.58, + "end": 11552.98, + "probability": 0.8412 + }, + { + "start": 11553.22, + "end": 11556.52, + "probability": 0.9976 + }, + { + "start": 11557.16, + "end": 11558.36, + "probability": 0.9597 + }, + { + "start": 11559.22, + "end": 11560.04, + "probability": 0.9546 + }, + { + "start": 11560.4, + "end": 11561.6, + "probability": 0.9233 + }, + { + "start": 11561.76, + "end": 11562.44, + "probability": 0.6196 + }, + { + "start": 11562.8, + "end": 11564.66, + "probability": 0.9955 + }, + { + "start": 11565.18, + "end": 11566.1, + "probability": 0.8918 + }, + { + "start": 11566.88, + "end": 11570.8, + "probability": 0.9958 + }, + { + "start": 11571.64, + "end": 11572.58, + "probability": 0.9396 + }, + { + "start": 11573.89, + "end": 11578.34, + "probability": 0.9438 + }, + { + "start": 11579.06, + "end": 11583.5, + "probability": 0.9758 + }, + { + "start": 11584.1, + "end": 11587.16, + "probability": 0.9922 + }, + { + "start": 11587.68, + "end": 11588.72, + "probability": 0.8759 + }, + { + "start": 11588.84, + "end": 11589.96, + "probability": 0.8304 + }, + { + "start": 11590.26, + "end": 11591.68, + "probability": 0.9889 + }, + { + "start": 11591.96, + "end": 11593.24, + "probability": 0.8676 + }, + { + "start": 11594.28, + "end": 11597.52, + "probability": 0.9668 + }, + { + "start": 11598.0, + "end": 11601.94, + "probability": 0.9974 + }, + { + "start": 11602.14, + "end": 11603.18, + "probability": 0.7173 + }, + { + "start": 11603.64, + "end": 11606.4, + "probability": 0.9733 + }, + { + "start": 11607.02, + "end": 11610.02, + "probability": 0.8993 + }, + { + "start": 11611.0, + "end": 11612.24, + "probability": 0.5001 + }, + { + "start": 11612.88, + "end": 11614.22, + "probability": 0.9285 + }, + { + "start": 11614.22, + "end": 11614.6, + "probability": 0.9393 + }, + { + "start": 11614.84, + "end": 11618.72, + "probability": 0.9818 + }, + { + "start": 11618.72, + "end": 11623.44, + "probability": 0.9954 + }, + { + "start": 11623.6, + "end": 11623.92, + "probability": 0.837 + }, + { + "start": 11624.3, + "end": 11624.78, + "probability": 0.6887 + }, + { + "start": 11624.92, + "end": 11626.92, + "probability": 0.6685 + }, + { + "start": 11626.92, + "end": 11627.76, + "probability": 0.8682 + }, + { + "start": 11646.02, + "end": 11648.2, + "probability": 0.6793 + }, + { + "start": 11648.98, + "end": 11653.14, + "probability": 0.9704 + }, + { + "start": 11653.22, + "end": 11657.16, + "probability": 0.9149 + }, + { + "start": 11657.46, + "end": 11659.2, + "probability": 0.9674 + }, + { + "start": 11659.9, + "end": 11666.62, + "probability": 0.9911 + }, + { + "start": 11667.32, + "end": 11668.76, + "probability": 0.7504 + }, + { + "start": 11669.56, + "end": 11670.37, + "probability": 0.865 + }, + { + "start": 11671.42, + "end": 11674.12, + "probability": 0.9984 + }, + { + "start": 11674.36, + "end": 11677.46, + "probability": 0.9338 + }, + { + "start": 11677.98, + "end": 11681.7, + "probability": 0.9078 + }, + { + "start": 11682.52, + "end": 11684.98, + "probability": 0.9937 + }, + { + "start": 11685.16, + "end": 11687.06, + "probability": 0.8949 + }, + { + "start": 11688.1, + "end": 11688.86, + "probability": 0.9821 + }, + { + "start": 11689.66, + "end": 11692.32, + "probability": 0.9961 + }, + { + "start": 11693.1, + "end": 11694.72, + "probability": 0.9913 + }, + { + "start": 11695.24, + "end": 11696.26, + "probability": 0.6224 + }, + { + "start": 11696.84, + "end": 11699.56, + "probability": 0.9904 + }, + { + "start": 11700.18, + "end": 11701.54, + "probability": 0.9198 + }, + { + "start": 11702.22, + "end": 11703.5, + "probability": 0.9097 + }, + { + "start": 11704.18, + "end": 11705.38, + "probability": 0.9746 + }, + { + "start": 11706.24, + "end": 11709.4, + "probability": 0.9692 + }, + { + "start": 11709.4, + "end": 11713.36, + "probability": 0.933 + }, + { + "start": 11714.84, + "end": 11716.68, + "probability": 0.7647 + }, + { + "start": 11716.98, + "end": 11719.84, + "probability": 0.6936 + }, + { + "start": 11720.26, + "end": 11723.56, + "probability": 0.9733 + }, + { + "start": 11723.96, + "end": 11726.4, + "probability": 0.9738 + }, + { + "start": 11727.34, + "end": 11728.08, + "probability": 0.4984 + }, + { + "start": 11728.58, + "end": 11731.08, + "probability": 0.9946 + }, + { + "start": 11732.0, + "end": 11734.66, + "probability": 0.8511 + }, + { + "start": 11735.34, + "end": 11737.62, + "probability": 0.9942 + }, + { + "start": 11738.54, + "end": 11739.96, + "probability": 0.9924 + }, + { + "start": 11740.48, + "end": 11741.44, + "probability": 0.8862 + }, + { + "start": 11742.1, + "end": 11742.68, + "probability": 0.9547 + }, + { + "start": 11743.66, + "end": 11747.56, + "probability": 0.9967 + }, + { + "start": 11747.56, + "end": 11754.1, + "probability": 0.9449 + }, + { + "start": 11754.64, + "end": 11756.42, + "probability": 0.9516 + }, + { + "start": 11757.68, + "end": 11760.16, + "probability": 0.7651 + }, + { + "start": 11760.4, + "end": 11761.71, + "probability": 0.6909 + }, + { + "start": 11762.08, + "end": 11763.1, + "probability": 0.8649 + }, + { + "start": 11763.64, + "end": 11765.02, + "probability": 0.9741 + }, + { + "start": 11765.68, + "end": 11770.39, + "probability": 0.9707 + }, + { + "start": 11771.66, + "end": 11775.8, + "probability": 0.9753 + }, + { + "start": 11776.34, + "end": 11778.24, + "probability": 0.7447 + }, + { + "start": 11779.48, + "end": 11781.48, + "probability": 0.9421 + }, + { + "start": 11782.0, + "end": 11785.28, + "probability": 0.8755 + }, + { + "start": 11785.98, + "end": 11789.89, + "probability": 0.9658 + }, + { + "start": 11790.56, + "end": 11792.16, + "probability": 0.8612 + }, + { + "start": 11793.22, + "end": 11796.94, + "probability": 0.9844 + }, + { + "start": 11797.46, + "end": 11798.58, + "probability": 0.7384 + }, + { + "start": 11799.12, + "end": 11802.04, + "probability": 0.834 + }, + { + "start": 11803.8, + "end": 11809.18, + "probability": 0.9887 + }, + { + "start": 11810.06, + "end": 11811.82, + "probability": 0.9985 + }, + { + "start": 11812.38, + "end": 11815.84, + "probability": 0.7756 + }, + { + "start": 11816.5, + "end": 11819.4, + "probability": 0.75 + }, + { + "start": 11820.3, + "end": 11825.56, + "probability": 0.9716 + }, + { + "start": 11826.46, + "end": 11828.32, + "probability": 0.9856 + }, + { + "start": 11829.4, + "end": 11833.78, + "probability": 0.8544 + }, + { + "start": 11834.32, + "end": 11835.74, + "probability": 0.9886 + }, + { + "start": 11836.3, + "end": 11839.28, + "probability": 0.9142 + }, + { + "start": 11839.28, + "end": 11842.58, + "probability": 0.9923 + }, + { + "start": 11843.48, + "end": 11845.86, + "probability": 0.8784 + }, + { + "start": 11847.84, + "end": 11852.7, + "probability": 0.9973 + }, + { + "start": 11853.62, + "end": 11856.96, + "probability": 0.8417 + }, + { + "start": 11858.08, + "end": 11861.88, + "probability": 0.9984 + }, + { + "start": 11862.42, + "end": 11864.62, + "probability": 0.9827 + }, + { + "start": 11865.34, + "end": 11868.32, + "probability": 0.9993 + }, + { + "start": 11868.32, + "end": 11871.52, + "probability": 0.9614 + }, + { + "start": 11872.26, + "end": 11873.92, + "probability": 0.8702 + }, + { + "start": 11874.7, + "end": 11877.06, + "probability": 0.9758 + }, + { + "start": 11878.12, + "end": 11880.04, + "probability": 0.7228 + }, + { + "start": 11880.88, + "end": 11885.32, + "probability": 0.7984 + }, + { + "start": 11885.62, + "end": 11888.38, + "probability": 0.9904 + }, + { + "start": 11888.94, + "end": 11892.3, + "probability": 0.9719 + }, + { + "start": 11894.16, + "end": 11896.74, + "probability": 0.7907 + }, + { + "start": 11897.64, + "end": 11900.56, + "probability": 0.9937 + }, + { + "start": 11901.5, + "end": 11905.2, + "probability": 0.9855 + }, + { + "start": 11905.42, + "end": 11906.54, + "probability": 0.8555 + }, + { + "start": 11907.46, + "end": 11910.86, + "probability": 0.9835 + }, + { + "start": 11911.4, + "end": 11913.88, + "probability": 0.9907 + }, + { + "start": 11914.48, + "end": 11915.77, + "probability": 0.9799 + }, + { + "start": 11916.52, + "end": 11920.09, + "probability": 0.9961 + }, + { + "start": 11920.96, + "end": 11922.26, + "probability": 0.8603 + }, + { + "start": 11923.04, + "end": 11926.22, + "probability": 0.9954 + }, + { + "start": 11927.18, + "end": 11928.5, + "probability": 0.3018 + }, + { + "start": 11929.12, + "end": 11931.34, + "probability": 0.9526 + }, + { + "start": 11931.9, + "end": 11936.32, + "probability": 0.9745 + }, + { + "start": 11937.12, + "end": 11938.74, + "probability": 0.9546 + }, + { + "start": 11939.24, + "end": 11939.76, + "probability": 0.91 + }, + { + "start": 11940.38, + "end": 11944.62, + "probability": 0.9214 + }, + { + "start": 11945.66, + "end": 11951.34, + "probability": 0.9657 + }, + { + "start": 11952.06, + "end": 11954.32, + "probability": 0.9375 + }, + { + "start": 11955.14, + "end": 11958.78, + "probability": 0.9207 + }, + { + "start": 11959.72, + "end": 11962.97, + "probability": 0.9806 + }, + { + "start": 11964.76, + "end": 11966.46, + "probability": 0.7787 + }, + { + "start": 11966.74, + "end": 11967.44, + "probability": 0.8929 + }, + { + "start": 11967.9, + "end": 11972.58, + "probability": 0.9783 + }, + { + "start": 11972.84, + "end": 11973.42, + "probability": 0.9674 + }, + { + "start": 11974.6, + "end": 11977.5, + "probability": 0.9199 + }, + { + "start": 11977.79, + "end": 11980.92, + "probability": 0.9635 + }, + { + "start": 11981.54, + "end": 11983.68, + "probability": 0.7531 + }, + { + "start": 11984.54, + "end": 11986.72, + "probability": 0.7006 + }, + { + "start": 11987.24, + "end": 11989.88, + "probability": 0.9417 + }, + { + "start": 11990.68, + "end": 11991.28, + "probability": 0.6237 + }, + { + "start": 11991.36, + "end": 11994.11, + "probability": 0.8876 + }, + { + "start": 11994.48, + "end": 11994.48, + "probability": 0.0725 + }, + { + "start": 11994.48, + "end": 11999.0, + "probability": 0.9927 + }, + { + "start": 11999.96, + "end": 12002.88, + "probability": 0.8702 + }, + { + "start": 12003.56, + "end": 12005.52, + "probability": 0.9003 + }, + { + "start": 12006.16, + "end": 12009.32, + "probability": 0.9832 + }, + { + "start": 12010.28, + "end": 12011.84, + "probability": 0.8214 + }, + { + "start": 12013.88, + "end": 12016.22, + "probability": 0.7368 + }, + { + "start": 12017.46, + "end": 12020.54, + "probability": 0.5818 + }, + { + "start": 12021.36, + "end": 12021.88, + "probability": 0.9543 + }, + { + "start": 12022.42, + "end": 12025.32, + "probability": 0.6865 + }, + { + "start": 12025.88, + "end": 12027.36, + "probability": 0.9717 + }, + { + "start": 12028.24, + "end": 12031.68, + "probability": 0.9435 + }, + { + "start": 12032.16, + "end": 12035.94, + "probability": 0.9609 + }, + { + "start": 12037.4, + "end": 12040.04, + "probability": 0.8713 + }, + { + "start": 12040.58, + "end": 12041.98, + "probability": 0.5154 + }, + { + "start": 12042.52, + "end": 12044.66, + "probability": 0.9989 + }, + { + "start": 12045.6, + "end": 12048.42, + "probability": 0.9777 + }, + { + "start": 12049.08, + "end": 12050.26, + "probability": 0.9358 + }, + { + "start": 12050.78, + "end": 12052.52, + "probability": 0.9761 + }, + { + "start": 12054.16, + "end": 12055.06, + "probability": 0.5449 + }, + { + "start": 12055.74, + "end": 12057.46, + "probability": 0.9167 + }, + { + "start": 12058.5, + "end": 12060.44, + "probability": 0.4396 + }, + { + "start": 12061.18, + "end": 12064.56, + "probability": 0.8568 + }, + { + "start": 12064.8, + "end": 12066.4, + "probability": 0.6975 + }, + { + "start": 12066.92, + "end": 12068.38, + "probability": 0.9368 + }, + { + "start": 12069.06, + "end": 12070.3, + "probability": 0.8779 + }, + { + "start": 12071.2, + "end": 12071.86, + "probability": 0.9105 + }, + { + "start": 12072.68, + "end": 12075.76, + "probability": 0.956 + }, + { + "start": 12076.82, + "end": 12080.88, + "probability": 0.9961 + }, + { + "start": 12081.48, + "end": 12083.7, + "probability": 0.9611 + }, + { + "start": 12084.26, + "end": 12087.28, + "probability": 0.9824 + }, + { + "start": 12087.96, + "end": 12089.79, + "probability": 0.9915 + }, + { + "start": 12090.46, + "end": 12093.16, + "probability": 0.9028 + }, + { + "start": 12094.3, + "end": 12095.44, + "probability": 0.8644 + }, + { + "start": 12095.74, + "end": 12097.12, + "probability": 0.9757 + }, + { + "start": 12097.62, + "end": 12099.64, + "probability": 0.9839 + }, + { + "start": 12099.74, + "end": 12101.6, + "probability": 0.9805 + }, + { + "start": 12102.28, + "end": 12105.9, + "probability": 0.9587 + }, + { + "start": 12105.9, + "end": 12111.08, + "probability": 0.9544 + }, + { + "start": 12112.42, + "end": 12116.86, + "probability": 0.9965 + }, + { + "start": 12117.5, + "end": 12118.02, + "probability": 0.8782 + }, + { + "start": 12118.92, + "end": 12120.86, + "probability": 0.9764 + }, + { + "start": 12121.56, + "end": 12122.86, + "probability": 0.8757 + }, + { + "start": 12123.18, + "end": 12126.46, + "probability": 0.9961 + }, + { + "start": 12127.28, + "end": 12131.56, + "probability": 0.9933 + }, + { + "start": 12132.32, + "end": 12134.08, + "probability": 0.9995 + }, + { + "start": 12134.82, + "end": 12136.3, + "probability": 0.8274 + }, + { + "start": 12137.24, + "end": 12139.22, + "probability": 0.7868 + }, + { + "start": 12140.16, + "end": 12140.66, + "probability": 0.6697 + }, + { + "start": 12141.42, + "end": 12145.22, + "probability": 0.9213 + }, + { + "start": 12145.8, + "end": 12148.86, + "probability": 0.9736 + }, + { + "start": 12149.72, + "end": 12152.02, + "probability": 0.7328 + }, + { + "start": 12152.48, + "end": 12155.84, + "probability": 0.981 + }, + { + "start": 12157.08, + "end": 12159.76, + "probability": 0.7307 + }, + { + "start": 12160.74, + "end": 12162.22, + "probability": 0.9302 + }, + { + "start": 12162.26, + "end": 12163.56, + "probability": 0.9816 + }, + { + "start": 12163.96, + "end": 12166.32, + "probability": 0.7772 + }, + { + "start": 12167.12, + "end": 12169.48, + "probability": 0.9158 + }, + { + "start": 12170.12, + "end": 12174.76, + "probability": 0.8949 + }, + { + "start": 12174.98, + "end": 12175.82, + "probability": 0.6626 + }, + { + "start": 12176.4, + "end": 12178.58, + "probability": 0.9927 + }, + { + "start": 12179.27, + "end": 12180.02, + "probability": 0.8244 + }, + { + "start": 12181.24, + "end": 12183.36, + "probability": 0.9054 + }, + { + "start": 12184.8, + "end": 12185.3, + "probability": 0.7928 + }, + { + "start": 12185.88, + "end": 12186.52, + "probability": 0.7358 + }, + { + "start": 12187.12, + "end": 12189.38, + "probability": 0.9756 + }, + { + "start": 12190.2, + "end": 12191.0, + "probability": 0.7518 + }, + { + "start": 12191.78, + "end": 12192.4, + "probability": 0.881 + }, + { + "start": 12193.12, + "end": 12194.26, + "probability": 0.6873 + }, + { + "start": 12194.82, + "end": 12195.38, + "probability": 0.6825 + }, + { + "start": 12196.64, + "end": 12200.48, + "probability": 0.998 + }, + { + "start": 12200.48, + "end": 12204.32, + "probability": 0.9326 + }, + { + "start": 12204.78, + "end": 12206.62, + "probability": 0.7206 + }, + { + "start": 12207.14, + "end": 12208.34, + "probability": 0.8665 + }, + { + "start": 12208.96, + "end": 12211.24, + "probability": 0.7208 + }, + { + "start": 12211.82, + "end": 12213.32, + "probability": 0.966 + }, + { + "start": 12214.14, + "end": 12217.72, + "probability": 0.985 + }, + { + "start": 12218.08, + "end": 12222.32, + "probability": 0.9925 + }, + { + "start": 12222.96, + "end": 12223.9, + "probability": 0.9053 + }, + { + "start": 12224.84, + "end": 12224.94, + "probability": 0.0335 + }, + { + "start": 12229.28, + "end": 12230.0, + "probability": 0.0721 + }, + { + "start": 12230.86, + "end": 12232.84, + "probability": 0.9976 + }, + { + "start": 12233.58, + "end": 12235.66, + "probability": 0.9956 + }, + { + "start": 12236.6, + "end": 12239.16, + "probability": 0.7662 + }, + { + "start": 12239.78, + "end": 12242.74, + "probability": 0.9932 + }, + { + "start": 12242.78, + "end": 12245.28, + "probability": 0.9963 + }, + { + "start": 12245.94, + "end": 12248.18, + "probability": 0.7507 + }, + { + "start": 12249.18, + "end": 12252.78, + "probability": 0.8942 + }, + { + "start": 12253.46, + "end": 12254.82, + "probability": 0.4323 + }, + { + "start": 12255.52, + "end": 12257.08, + "probability": 0.7028 + }, + { + "start": 12257.66, + "end": 12260.8, + "probability": 0.9823 + }, + { + "start": 12261.22, + "end": 12262.34, + "probability": 0.9148 + }, + { + "start": 12262.5, + "end": 12263.2, + "probability": 0.9007 + }, + { + "start": 12263.68, + "end": 12265.4, + "probability": 0.8649 + }, + { + "start": 12265.98, + "end": 12269.06, + "probability": 0.9808 + }, + { + "start": 12270.08, + "end": 12270.84, + "probability": 0.6326 + }, + { + "start": 12271.68, + "end": 12275.92, + "probability": 0.9949 + }, + { + "start": 12277.08, + "end": 12280.44, + "probability": 0.9809 + }, + { + "start": 12281.34, + "end": 12283.72, + "probability": 0.9854 + }, + { + "start": 12284.24, + "end": 12286.26, + "probability": 0.8591 + }, + { + "start": 12286.84, + "end": 12289.36, + "probability": 0.9878 + }, + { + "start": 12290.1, + "end": 12295.82, + "probability": 0.9929 + }, + { + "start": 12296.64, + "end": 12298.02, + "probability": 0.8438 + }, + { + "start": 12298.84, + "end": 12301.36, + "probability": 0.9892 + }, + { + "start": 12302.32, + "end": 12303.48, + "probability": 0.7295 + }, + { + "start": 12303.64, + "end": 12306.7, + "probability": 0.8833 + }, + { + "start": 12308.2, + "end": 12308.5, + "probability": 0.8837 + }, + { + "start": 12311.04, + "end": 12311.72, + "probability": 0.9101 + }, + { + "start": 12312.62, + "end": 12314.18, + "probability": 0.9984 + }, + { + "start": 12316.04, + "end": 12316.44, + "probability": 0.9891 + }, + { + "start": 12317.46, + "end": 12319.62, + "probability": 0.411 + }, + { + "start": 12319.8, + "end": 12320.08, + "probability": 0.2896 + }, + { + "start": 12320.54, + "end": 12322.84, + "probability": 0.6317 + }, + { + "start": 12324.02, + "end": 12325.54, + "probability": 0.5734 + }, + { + "start": 12326.24, + "end": 12330.55, + "probability": 0.9751 + }, + { + "start": 12331.3, + "end": 12333.2, + "probability": 0.6798 + }, + { + "start": 12333.7, + "end": 12333.92, + "probability": 0.8696 + }, + { + "start": 12354.62, + "end": 12355.34, + "probability": 0.4051 + }, + { + "start": 12356.32, + "end": 12359.12, + "probability": 0.6495 + }, + { + "start": 12360.04, + "end": 12361.42, + "probability": 0.9379 + }, + { + "start": 12362.44, + "end": 12363.92, + "probability": 0.9934 + }, + { + "start": 12364.5, + "end": 12366.9, + "probability": 0.8709 + }, + { + "start": 12367.7, + "end": 12369.86, + "probability": 0.9826 + }, + { + "start": 12370.42, + "end": 12375.3, + "probability": 0.9915 + }, + { + "start": 12376.38, + "end": 12378.04, + "probability": 0.8981 + }, + { + "start": 12379.14, + "end": 12381.96, + "probability": 0.9548 + }, + { + "start": 12382.82, + "end": 12386.28, + "probability": 0.9968 + }, + { + "start": 12386.38, + "end": 12391.36, + "probability": 0.9526 + }, + { + "start": 12392.4, + "end": 12393.28, + "probability": 0.908 + }, + { + "start": 12393.94, + "end": 12395.89, + "probability": 0.9308 + }, + { + "start": 12397.88, + "end": 12400.96, + "probability": 0.999 + }, + { + "start": 12401.64, + "end": 12404.58, + "probability": 0.9812 + }, + { + "start": 12405.1, + "end": 12406.14, + "probability": 0.7046 + }, + { + "start": 12406.56, + "end": 12407.52, + "probability": 0.8789 + }, + { + "start": 12407.62, + "end": 12408.4, + "probability": 0.7175 + }, + { + "start": 12408.88, + "end": 12415.08, + "probability": 0.9961 + }, + { + "start": 12415.26, + "end": 12415.96, + "probability": 0.9538 + }, + { + "start": 12417.1, + "end": 12419.9, + "probability": 0.9956 + }, + { + "start": 12420.48, + "end": 12423.88, + "probability": 0.9816 + }, + { + "start": 12424.42, + "end": 12427.76, + "probability": 0.6709 + }, + { + "start": 12428.74, + "end": 12429.8, + "probability": 0.9793 + }, + { + "start": 12431.66, + "end": 12434.42, + "probability": 0.9453 + }, + { + "start": 12434.7, + "end": 12439.34, + "probability": 0.9941 + }, + { + "start": 12440.74, + "end": 12440.94, + "probability": 0.9658 + }, + { + "start": 12441.68, + "end": 12442.62, + "probability": 0.9877 + }, + { + "start": 12443.16, + "end": 12445.64, + "probability": 0.9998 + }, + { + "start": 12445.64, + "end": 12449.4, + "probability": 0.9991 + }, + { + "start": 12449.42, + "end": 12450.3, + "probability": 0.7411 + }, + { + "start": 12451.62, + "end": 12451.8, + "probability": 0.3904 + }, + { + "start": 12452.5, + "end": 12452.92, + "probability": 0.9136 + }, + { + "start": 12454.42, + "end": 12455.26, + "probability": 0.8631 + }, + { + "start": 12455.74, + "end": 12459.02, + "probability": 0.964 + }, + { + "start": 12459.2, + "end": 12460.2, + "probability": 0.9295 + }, + { + "start": 12460.82, + "end": 12464.78, + "probability": 0.9974 + }, + { + "start": 12464.78, + "end": 12468.12, + "probability": 0.9935 + }, + { + "start": 12469.48, + "end": 12471.92, + "probability": 0.9969 + }, + { + "start": 12472.54, + "end": 12473.96, + "probability": 0.9763 + }, + { + "start": 12475.04, + "end": 12476.72, + "probability": 0.9947 + }, + { + "start": 12477.58, + "end": 12478.18, + "probability": 0.8958 + }, + { + "start": 12478.28, + "end": 12481.88, + "probability": 0.995 + }, + { + "start": 12482.52, + "end": 12484.44, + "probability": 0.8883 + }, + { + "start": 12484.54, + "end": 12485.66, + "probability": 0.8448 + }, + { + "start": 12485.92, + "end": 12488.28, + "probability": 0.7552 + }, + { + "start": 12488.48, + "end": 12489.82, + "probability": 0.2608 + }, + { + "start": 12492.24, + "end": 12492.36, + "probability": 0.204 + }, + { + "start": 12492.36, + "end": 12495.04, + "probability": 0.8602 + }, + { + "start": 12496.16, + "end": 12496.8, + "probability": 0.9546 + }, + { + "start": 12497.58, + "end": 12498.32, + "probability": 0.7356 + }, + { + "start": 12498.96, + "end": 12499.8, + "probability": 0.8618 + }, + { + "start": 12499.8, + "end": 12500.15, + "probability": 0.6501 + }, + { + "start": 12500.48, + "end": 12500.62, + "probability": 0.2281 + }, + { + "start": 12501.8, + "end": 12502.82, + "probability": 0.9644 + }, + { + "start": 12503.62, + "end": 12503.62, + "probability": 0.0046 + }, + { + "start": 12504.6, + "end": 12505.54, + "probability": 0.0083 + }, + { + "start": 12505.54, + "end": 12505.54, + "probability": 0.1189 + }, + { + "start": 12505.54, + "end": 12506.12, + "probability": 0.4716 + }, + { + "start": 12507.0, + "end": 12508.42, + "probability": 0.6096 + }, + { + "start": 12509.54, + "end": 12513.32, + "probability": 0.958 + }, + { + "start": 12514.04, + "end": 12519.76, + "probability": 0.9531 + }, + { + "start": 12519.86, + "end": 12522.94, + "probability": 0.9889 + }, + { + "start": 12523.76, + "end": 12525.82, + "probability": 0.893 + }, + { + "start": 12526.64, + "end": 12529.58, + "probability": 0.9943 + }, + { + "start": 12529.58, + "end": 12533.38, + "probability": 0.9909 + }, + { + "start": 12533.8, + "end": 12534.12, + "probability": 0.7238 + }, + { + "start": 12536.46, + "end": 12537.16, + "probability": 0.9745 + }, + { + "start": 12538.14, + "end": 12540.42, + "probability": 0.9897 + }, + { + "start": 12540.96, + "end": 12541.96, + "probability": 0.5295 + }, + { + "start": 12543.62, + "end": 12545.85, + "probability": 0.946 + }, + { + "start": 12547.4, + "end": 12549.62, + "probability": 0.9694 + }, + { + "start": 12550.56, + "end": 12551.32, + "probability": 0.7207 + }, + { + "start": 12551.4, + "end": 12552.28, + "probability": 0.987 + }, + { + "start": 12552.68, + "end": 12553.92, + "probability": 0.9918 + }, + { + "start": 12554.42, + "end": 12555.6, + "probability": 0.9863 + }, + { + "start": 12555.76, + "end": 12557.52, + "probability": 0.8947 + }, + { + "start": 12557.68, + "end": 12560.6, + "probability": 0.9788 + }, + { + "start": 12560.68, + "end": 12561.3, + "probability": 0.6793 + }, + { + "start": 12561.94, + "end": 12563.28, + "probability": 0.9662 + }, + { + "start": 12564.0, + "end": 12568.92, + "probability": 0.9886 + }, + { + "start": 12569.36, + "end": 12570.32, + "probability": 0.9796 + }, + { + "start": 12571.54, + "end": 12573.42, + "probability": 0.9871 + }, + { + "start": 12574.36, + "end": 12576.0, + "probability": 0.8847 + }, + { + "start": 12576.86, + "end": 12577.44, + "probability": 0.7131 + }, + { + "start": 12577.5, + "end": 12579.94, + "probability": 0.9794 + }, + { + "start": 12582.3, + "end": 12584.88, + "probability": 0.9443 + }, + { + "start": 12584.98, + "end": 12589.88, + "probability": 0.9883 + }, + { + "start": 12590.76, + "end": 12595.62, + "probability": 0.9913 + }, + { + "start": 12595.68, + "end": 12596.48, + "probability": 0.9636 + }, + { + "start": 12597.16, + "end": 12598.84, + "probability": 0.9924 + }, + { + "start": 12599.68, + "end": 12603.36, + "probability": 0.9733 + }, + { + "start": 12604.04, + "end": 12607.56, + "probability": 0.95 + }, + { + "start": 12608.04, + "end": 12609.44, + "probability": 0.1094 + }, + { + "start": 12609.86, + "end": 12612.54, + "probability": 0.9066 + }, + { + "start": 12613.26, + "end": 12615.76, + "probability": 0.8008 + }, + { + "start": 12616.8, + "end": 12617.3, + "probability": 0.5786 + }, + { + "start": 12617.94, + "end": 12621.02, + "probability": 0.8662 + }, + { + "start": 12621.26, + "end": 12622.57, + "probability": 0.998 + }, + { + "start": 12623.36, + "end": 12627.54, + "probability": 0.6254 + }, + { + "start": 12628.37, + "end": 12631.24, + "probability": 0.9896 + }, + { + "start": 12631.84, + "end": 12634.54, + "probability": 0.985 + }, + { + "start": 12636.88, + "end": 12638.72, + "probability": 0.9297 + }, + { + "start": 12639.36, + "end": 12640.2, + "probability": 0.9771 + }, + { + "start": 12641.04, + "end": 12644.66, + "probability": 0.9846 + }, + { + "start": 12644.66, + "end": 12646.98, + "probability": 0.9977 + }, + { + "start": 12647.36, + "end": 12648.2, + "probability": 0.9682 + }, + { + "start": 12648.54, + "end": 12653.62, + "probability": 0.7954 + }, + { + "start": 12654.52, + "end": 12654.68, + "probability": 0.8945 + }, + { + "start": 12655.44, + "end": 12659.48, + "probability": 0.9966 + }, + { + "start": 12660.62, + "end": 12663.32, + "probability": 0.8757 + }, + { + "start": 12665.52, + "end": 12668.34, + "probability": 0.9704 + }, + { + "start": 12669.28, + "end": 12670.1, + "probability": 0.91 + }, + { + "start": 12670.76, + "end": 12674.02, + "probability": 0.9738 + }, + { + "start": 12674.68, + "end": 12675.34, + "probability": 0.9469 + }, + { + "start": 12675.98, + "end": 12676.8, + "probability": 0.9777 + }, + { + "start": 12677.7, + "end": 12679.03, + "probability": 0.989 + }, + { + "start": 12680.3, + "end": 12684.26, + "probability": 0.9708 + }, + { + "start": 12685.22, + "end": 12686.32, + "probability": 0.7866 + }, + { + "start": 12687.22, + "end": 12688.04, + "probability": 0.5549 + }, + { + "start": 12688.76, + "end": 12692.46, + "probability": 0.9899 + }, + { + "start": 12693.34, + "end": 12697.48, + "probability": 0.9736 + }, + { + "start": 12697.96, + "end": 12698.82, + "probability": 0.9801 + }, + { + "start": 12699.8, + "end": 12701.18, + "probability": 0.9946 + }, + { + "start": 12701.86, + "end": 12705.4, + "probability": 0.981 + }, + { + "start": 12706.5, + "end": 12708.46, + "probability": 0.8092 + }, + { + "start": 12709.14, + "end": 12709.6, + "probability": 0.7047 + }, + { + "start": 12711.18, + "end": 12713.12, + "probability": 0.9696 + }, + { + "start": 12713.26, + "end": 12714.54, + "probability": 0.9141 + }, + { + "start": 12714.62, + "end": 12717.88, + "probability": 0.9764 + }, + { + "start": 12717.9, + "end": 12723.26, + "probability": 0.9733 + }, + { + "start": 12724.92, + "end": 12727.3, + "probability": 0.9969 + }, + { + "start": 12728.1, + "end": 12731.82, + "probability": 0.9937 + }, + { + "start": 12732.86, + "end": 12739.16, + "probability": 0.9819 + }, + { + "start": 12742.08, + "end": 12742.7, + "probability": 0.8327 + }, + { + "start": 12743.42, + "end": 12744.16, + "probability": 0.7932 + }, + { + "start": 12745.0, + "end": 12750.34, + "probability": 0.9871 + }, + { + "start": 12750.98, + "end": 12755.08, + "probability": 0.9531 + }, + { + "start": 12756.2, + "end": 12758.22, + "probability": 0.9969 + }, + { + "start": 12758.54, + "end": 12761.8, + "probability": 0.9653 + }, + { + "start": 12762.36, + "end": 12764.32, + "probability": 0.8421 + }, + { + "start": 12764.46, + "end": 12766.32, + "probability": 0.5847 + }, + { + "start": 12767.32, + "end": 12769.22, + "probability": 0.9636 + }, + { + "start": 12770.14, + "end": 12770.72, + "probability": 0.7739 + }, + { + "start": 12772.7, + "end": 12773.48, + "probability": 0.7703 + }, + { + "start": 12774.64, + "end": 12775.74, + "probability": 0.8647 + }, + { + "start": 12775.86, + "end": 12776.64, + "probability": 0.8311 + }, + { + "start": 12777.08, + "end": 12778.84, + "probability": 0.9971 + }, + { + "start": 12779.62, + "end": 12783.06, + "probability": 0.8561 + }, + { + "start": 12784.16, + "end": 12786.72, + "probability": 0.9698 + }, + { + "start": 12787.62, + "end": 12789.98, + "probability": 0.9441 + }, + { + "start": 12790.34, + "end": 12793.08, + "probability": 0.9961 + }, + { + "start": 12793.62, + "end": 12796.14, + "probability": 0.9979 + }, + { + "start": 12796.84, + "end": 12801.0, + "probability": 0.9991 + }, + { + "start": 12801.54, + "end": 12804.98, + "probability": 0.9905 + }, + { + "start": 12805.5, + "end": 12807.84, + "probability": 0.9973 + }, + { + "start": 12808.66, + "end": 12812.94, + "probability": 0.9983 + }, + { + "start": 12813.12, + "end": 12815.12, + "probability": 0.922 + }, + { + "start": 12816.46, + "end": 12820.98, + "probability": 0.9973 + }, + { + "start": 12822.12, + "end": 12823.78, + "probability": 0.9937 + }, + { + "start": 12824.24, + "end": 12826.18, + "probability": 0.7231 + }, + { + "start": 12826.28, + "end": 12830.08, + "probability": 0.9171 + }, + { + "start": 12831.68, + "end": 12833.04, + "probability": 0.8533 + }, + { + "start": 12833.16, + "end": 12833.66, + "probability": 0.4684 + }, + { + "start": 12833.74, + "end": 12834.3, + "probability": 0.6151 + }, + { + "start": 12834.34, + "end": 12834.96, + "probability": 0.5938 + }, + { + "start": 12835.1, + "end": 12837.22, + "probability": 0.7216 + }, + { + "start": 12837.38, + "end": 12837.96, + "probability": 0.7916 + }, + { + "start": 12838.38, + "end": 12840.32, + "probability": 0.9763 + }, + { + "start": 12840.98, + "end": 12845.55, + "probability": 0.911 + }, + { + "start": 12846.12, + "end": 12848.06, + "probability": 0.7791 + }, + { + "start": 12848.12, + "end": 12850.0, + "probability": 0.8623 + }, + { + "start": 12875.06, + "end": 12876.88, + "probability": 0.9444 + }, + { + "start": 12876.98, + "end": 12878.26, + "probability": 0.7719 + }, + { + "start": 12879.05, + "end": 12881.52, + "probability": 0.8657 + }, + { + "start": 12887.54, + "end": 12888.02, + "probability": 0.9329 + }, + { + "start": 12888.66, + "end": 12890.38, + "probability": 0.6703 + }, + { + "start": 12891.44, + "end": 12893.2, + "probability": 0.3248 + }, + { + "start": 12893.3, + "end": 12894.38, + "probability": 0.8655 + }, + { + "start": 12895.38, + "end": 12898.6, + "probability": 0.9407 + }, + { + "start": 12899.7, + "end": 12901.4, + "probability": 0.9539 + }, + { + "start": 12905.02, + "end": 12905.18, + "probability": 0.0351 + }, + { + "start": 12905.18, + "end": 12905.18, + "probability": 0.0116 + }, + { + "start": 12905.18, + "end": 12907.54, + "probability": 0.5043 + }, + { + "start": 12907.64, + "end": 12912.74, + "probability": 0.8325 + }, + { + "start": 12914.2, + "end": 12914.78, + "probability": 0.9257 + }, + { + "start": 12916.46, + "end": 12917.78, + "probability": 0.9985 + }, + { + "start": 12919.56, + "end": 12920.64, + "probability": 0.9714 + }, + { + "start": 12921.58, + "end": 12922.24, + "probability": 0.9412 + }, + { + "start": 12924.6, + "end": 12925.54, + "probability": 0.9978 + }, + { + "start": 12927.06, + "end": 12927.84, + "probability": 0.9814 + }, + { + "start": 12929.08, + "end": 12930.5, + "probability": 0.9989 + }, + { + "start": 12931.86, + "end": 12933.7, + "probability": 0.9603 + }, + { + "start": 12934.82, + "end": 12936.62, + "probability": 0.9832 + }, + { + "start": 12938.28, + "end": 12939.22, + "probability": 0.8963 + }, + { + "start": 12940.52, + "end": 12941.3, + "probability": 0.9909 + }, + { + "start": 12941.98, + "end": 12942.58, + "probability": 0.9748 + }, + { + "start": 12943.68, + "end": 12947.06, + "probability": 0.9976 + }, + { + "start": 12949.34, + "end": 12950.66, + "probability": 0.9351 + }, + { + "start": 12950.86, + "end": 12952.96, + "probability": 0.998 + }, + { + "start": 12953.32, + "end": 12954.98, + "probability": 0.8171 + }, + { + "start": 12955.18, + "end": 12955.68, + "probability": 0.6848 + }, + { + "start": 12956.8, + "end": 12958.92, + "probability": 0.8497 + }, + { + "start": 12960.5, + "end": 12961.82, + "probability": 0.9812 + }, + { + "start": 12963.62, + "end": 12965.52, + "probability": 0.9893 + }, + { + "start": 12966.14, + "end": 12967.66, + "probability": 0.9976 + }, + { + "start": 12968.4, + "end": 12969.24, + "probability": 0.9891 + }, + { + "start": 12970.28, + "end": 12972.02, + "probability": 0.9797 + }, + { + "start": 12973.14, + "end": 12974.18, + "probability": 0.9778 + }, + { + "start": 12975.4, + "end": 12976.7, + "probability": 0.9978 + }, + { + "start": 12979.16, + "end": 12980.38, + "probability": 0.7134 + }, + { + "start": 12981.14, + "end": 12982.32, + "probability": 0.9977 + }, + { + "start": 12983.6, + "end": 12985.8, + "probability": 0.9644 + }, + { + "start": 12987.62, + "end": 12988.9, + "probability": 0.9924 + }, + { + "start": 12990.72, + "end": 12991.48, + "probability": 0.8466 + }, + { + "start": 12993.78, + "end": 12994.56, + "probability": 0.9482 + }, + { + "start": 12995.68, + "end": 12997.92, + "probability": 0.9627 + }, + { + "start": 12999.14, + "end": 13000.88, + "probability": 0.9893 + }, + { + "start": 13001.42, + "end": 13002.62, + "probability": 0.9941 + }, + { + "start": 13003.82, + "end": 13006.82, + "probability": 0.9907 + }, + { + "start": 13008.44, + "end": 13010.42, + "probability": 0.9915 + }, + { + "start": 13013.64, + "end": 13014.7, + "probability": 0.9998 + }, + { + "start": 13015.62, + "end": 13016.96, + "probability": 0.9816 + }, + { + "start": 13017.46, + "end": 13021.46, + "probability": 0.9902 + }, + { + "start": 13022.92, + "end": 13024.42, + "probability": 0.7235 + }, + { + "start": 13025.2, + "end": 13026.16, + "probability": 0.9872 + }, + { + "start": 13026.68, + "end": 13029.0, + "probability": 0.999 + }, + { + "start": 13030.54, + "end": 13032.96, + "probability": 0.7103 + }, + { + "start": 13034.84, + "end": 13038.84, + "probability": 0.9937 + }, + { + "start": 13040.02, + "end": 13041.5, + "probability": 0.8239 + }, + { + "start": 13042.5, + "end": 13043.86, + "probability": 0.7203 + }, + { + "start": 13045.44, + "end": 13047.06, + "probability": 0.957 + }, + { + "start": 13047.86, + "end": 13049.38, + "probability": 0.9126 + }, + { + "start": 13049.9, + "end": 13052.3, + "probability": 0.9818 + }, + { + "start": 13052.92, + "end": 13054.34, + "probability": 0.7013 + }, + { + "start": 13057.76, + "end": 13061.94, + "probability": 0.6456 + }, + { + "start": 13063.62, + "end": 13065.26, + "probability": 0.9515 + }, + { + "start": 13066.44, + "end": 13067.16, + "probability": 0.499 + }, + { + "start": 13068.06, + "end": 13070.26, + "probability": 0.7462 + }, + { + "start": 13071.0, + "end": 13071.94, + "probability": 0.8648 + }, + { + "start": 13072.58, + "end": 13073.42, + "probability": 0.9265 + }, + { + "start": 13074.72, + "end": 13076.36, + "probability": 0.9706 + }, + { + "start": 13077.28, + "end": 13077.88, + "probability": 0.4835 + }, + { + "start": 13078.4, + "end": 13079.24, + "probability": 0.8109 + }, + { + "start": 13080.6, + "end": 13083.78, + "probability": 0.9799 + }, + { + "start": 13084.94, + "end": 13087.9, + "probability": 0.8368 + }, + { + "start": 13088.68, + "end": 13090.38, + "probability": 0.9123 + }, + { + "start": 13091.3, + "end": 13099.26, + "probability": 0.9296 + }, + { + "start": 13099.78, + "end": 13100.98, + "probability": 0.7603 + }, + { + "start": 13102.62, + "end": 13103.36, + "probability": 0.7021 + }, + { + "start": 13104.0, + "end": 13106.32, + "probability": 0.9797 + }, + { + "start": 13107.56, + "end": 13109.52, + "probability": 0.5126 + }, + { + "start": 13110.78, + "end": 13112.1, + "probability": 0.9292 + }, + { + "start": 13113.56, + "end": 13115.66, + "probability": 0.994 + }, + { + "start": 13115.66, + "end": 13118.64, + "probability": 0.9958 + }, + { + "start": 13119.88, + "end": 13121.16, + "probability": 0.9658 + }, + { + "start": 13122.62, + "end": 13123.44, + "probability": 0.9881 + }, + { + "start": 13125.18, + "end": 13128.06, + "probability": 0.9934 + }, + { + "start": 13129.38, + "end": 13133.18, + "probability": 0.9932 + }, + { + "start": 13133.74, + "end": 13137.58, + "probability": 0.9726 + }, + { + "start": 13139.28, + "end": 13146.22, + "probability": 0.9922 + }, + { + "start": 13148.06, + "end": 13152.7, + "probability": 0.9787 + }, + { + "start": 13156.24, + "end": 13156.5, + "probability": 0.5 + }, + { + "start": 13157.46, + "end": 13158.52, + "probability": 0.9728 + }, + { + "start": 13159.48, + "end": 13159.88, + "probability": 0.862 + }, + { + "start": 13161.48, + "end": 13163.86, + "probability": 0.9961 + }, + { + "start": 13165.54, + "end": 13168.18, + "probability": 0.9523 + }, + { + "start": 13169.68, + "end": 13171.74, + "probability": 0.999 + }, + { + "start": 13172.98, + "end": 13175.72, + "probability": 0.9983 + }, + { + "start": 13176.24, + "end": 13177.06, + "probability": 0.9318 + }, + { + "start": 13178.52, + "end": 13180.24, + "probability": 0.6879 + }, + { + "start": 13180.88, + "end": 13182.4, + "probability": 0.8312 + }, + { + "start": 13183.42, + "end": 13185.04, + "probability": 0.9657 + }, + { + "start": 13185.58, + "end": 13192.64, + "probability": 0.9165 + }, + { + "start": 13194.76, + "end": 13195.34, + "probability": 0.8013 + }, + { + "start": 13196.0, + "end": 13196.72, + "probability": 0.7134 + }, + { + "start": 13198.3, + "end": 13199.08, + "probability": 0.8716 + }, + { + "start": 13201.36, + "end": 13203.18, + "probability": 0.9871 + }, + { + "start": 13203.82, + "end": 13204.86, + "probability": 0.9365 + }, + { + "start": 13206.38, + "end": 13210.98, + "probability": 0.9978 + }, + { + "start": 13211.54, + "end": 13213.34, + "probability": 0.9937 + }, + { + "start": 13214.04, + "end": 13216.22, + "probability": 0.9985 + }, + { + "start": 13218.24, + "end": 13219.28, + "probability": 0.9749 + }, + { + "start": 13220.62, + "end": 13222.02, + "probability": 0.9915 + }, + { + "start": 13222.88, + "end": 13225.92, + "probability": 0.9959 + }, + { + "start": 13226.5, + "end": 13227.34, + "probability": 0.6451 + }, + { + "start": 13228.02, + "end": 13229.42, + "probability": 0.9657 + }, + { + "start": 13232.68, + "end": 13235.14, + "probability": 0.7625 + }, + { + "start": 13235.68, + "end": 13237.2, + "probability": 0.9893 + }, + { + "start": 13238.72, + "end": 13239.4, + "probability": 0.9335 + }, + { + "start": 13240.06, + "end": 13241.4, + "probability": 0.9997 + }, + { + "start": 13242.72, + "end": 13247.66, + "probability": 0.9966 + }, + { + "start": 13249.56, + "end": 13252.96, + "probability": 0.999 + }, + { + "start": 13253.8, + "end": 13255.3, + "probability": 0.8701 + }, + { + "start": 13257.44, + "end": 13259.4, + "probability": 0.9975 + }, + { + "start": 13262.06, + "end": 13264.74, + "probability": 0.9983 + }, + { + "start": 13266.66, + "end": 13267.68, + "probability": 0.9771 + }, + { + "start": 13269.3, + "end": 13269.76, + "probability": 0.9553 + }, + { + "start": 13272.48, + "end": 13275.76, + "probability": 0.8145 + }, + { + "start": 13277.32, + "end": 13280.24, + "probability": 0.9756 + }, + { + "start": 13281.32, + "end": 13283.52, + "probability": 0.9861 + }, + { + "start": 13285.16, + "end": 13286.98, + "probability": 0.9877 + }, + { + "start": 13287.98, + "end": 13288.36, + "probability": 0.8672 + }, + { + "start": 13288.9, + "end": 13290.3, + "probability": 0.9975 + }, + { + "start": 13292.54, + "end": 13293.32, + "probability": 0.9717 + }, + { + "start": 13294.02, + "end": 13295.12, + "probability": 0.9985 + }, + { + "start": 13295.9, + "end": 13296.7, + "probability": 0.7421 + }, + { + "start": 13297.62, + "end": 13297.94, + "probability": 0.4998 + }, + { + "start": 13299.4, + "end": 13300.0, + "probability": 0.8189 + }, + { + "start": 13300.42, + "end": 13301.3, + "probability": 0.9708 + }, + { + "start": 13301.38, + "end": 13302.14, + "probability": 0.9742 + }, + { + "start": 13303.3, + "end": 13305.14, + "probability": 0.9993 + }, + { + "start": 13307.02, + "end": 13308.18, + "probability": 0.9529 + }, + { + "start": 13308.78, + "end": 13310.48, + "probability": 0.9079 + }, + { + "start": 13311.48, + "end": 13314.88, + "probability": 0.9517 + }, + { + "start": 13314.9, + "end": 13315.98, + "probability": 0.9489 + }, + { + "start": 13317.16, + "end": 13318.5, + "probability": 0.9846 + }, + { + "start": 13318.54, + "end": 13320.66, + "probability": 0.9927 + }, + { + "start": 13322.9, + "end": 13323.86, + "probability": 0.9945 + }, + { + "start": 13324.46, + "end": 13326.82, + "probability": 0.8631 + }, + { + "start": 13327.84, + "end": 13331.64, + "probability": 0.8847 + }, + { + "start": 13333.18, + "end": 13334.76, + "probability": 0.9785 + }, + { + "start": 13335.48, + "end": 13336.62, + "probability": 0.9983 + }, + { + "start": 13337.78, + "end": 13340.22, + "probability": 0.9854 + }, + { + "start": 13343.12, + "end": 13346.34, + "probability": 0.9949 + }, + { + "start": 13347.32, + "end": 13348.18, + "probability": 0.9182 + }, + { + "start": 13350.39, + "end": 13352.72, + "probability": 0.9712 + }, + { + "start": 13352.74, + "end": 13353.26, + "probability": 0.7223 + }, + { + "start": 13353.76, + "end": 13357.86, + "probability": 0.9827 + }, + { + "start": 13358.96, + "end": 13360.08, + "probability": 0.8969 + }, + { + "start": 13360.2, + "end": 13362.36, + "probability": 0.867 + }, + { + "start": 13363.2, + "end": 13364.0, + "probability": 0.8328 + }, + { + "start": 13364.0, + "end": 13364.4, + "probability": 0.5758 + }, + { + "start": 13364.76, + "end": 13365.68, + "probability": 0.8895 + }, + { + "start": 13365.89, + "end": 13369.54, + "probability": 0.9949 + }, + { + "start": 13370.36, + "end": 13371.3, + "probability": 0.6792 + }, + { + "start": 13373.6, + "end": 13377.4, + "probability": 0.9811 + }, + { + "start": 13378.42, + "end": 13379.14, + "probability": 0.8947 + }, + { + "start": 13381.55, + "end": 13383.42, + "probability": 0.778 + }, + { + "start": 13384.58, + "end": 13387.0, + "probability": 0.9943 + }, + { + "start": 13388.32, + "end": 13392.02, + "probability": 0.9973 + }, + { + "start": 13393.32, + "end": 13396.1, + "probability": 0.9585 + }, + { + "start": 13396.96, + "end": 13397.98, + "probability": 0.9766 + }, + { + "start": 13399.54, + "end": 13400.72, + "probability": 0.9897 + }, + { + "start": 13402.14, + "end": 13403.2, + "probability": 0.998 + }, + { + "start": 13403.76, + "end": 13405.66, + "probability": 0.8045 + }, + { + "start": 13406.58, + "end": 13407.72, + "probability": 0.9653 + }, + { + "start": 13408.18, + "end": 13408.96, + "probability": 0.7886 + }, + { + "start": 13409.04, + "end": 13409.96, + "probability": 0.9983 + }, + { + "start": 13410.06, + "end": 13412.02, + "probability": 0.9944 + }, + { + "start": 13413.68, + "end": 13414.64, + "probability": 0.9985 + }, + { + "start": 13415.2, + "end": 13416.82, + "probability": 0.9941 + }, + { + "start": 13417.96, + "end": 13418.58, + "probability": 0.6668 + }, + { + "start": 13419.88, + "end": 13422.96, + "probability": 0.9979 + }, + { + "start": 13423.58, + "end": 13424.98, + "probability": 0.9994 + }, + { + "start": 13426.38, + "end": 13426.72, + "probability": 0.885 + }, + { + "start": 13427.76, + "end": 13428.62, + "probability": 0.6598 + }, + { + "start": 13429.56, + "end": 13430.3, + "probability": 0.9741 + }, + { + "start": 13431.58, + "end": 13435.7, + "probability": 0.9691 + }, + { + "start": 13437.2, + "end": 13439.26, + "probability": 0.9898 + }, + { + "start": 13439.96, + "end": 13440.98, + "probability": 0.915 + }, + { + "start": 13442.0, + "end": 13443.92, + "probability": 0.922 + }, + { + "start": 13445.52, + "end": 13446.94, + "probability": 0.9964 + }, + { + "start": 13447.82, + "end": 13448.46, + "probability": 0.8768 + }, + { + "start": 13449.58, + "end": 13450.31, + "probability": 0.7075 + }, + { + "start": 13451.88, + "end": 13453.24, + "probability": 0.9059 + }, + { + "start": 13453.68, + "end": 13458.42, + "probability": 0.9941 + }, + { + "start": 13459.76, + "end": 13462.74, + "probability": 0.9798 + }, + { + "start": 13462.84, + "end": 13463.42, + "probability": 0.9574 + }, + { + "start": 13463.52, + "end": 13463.84, + "probability": 0.8445 + }, + { + "start": 13464.9, + "end": 13466.02, + "probability": 0.9983 + }, + { + "start": 13466.98, + "end": 13468.22, + "probability": 0.8296 + }, + { + "start": 13469.42, + "end": 13470.06, + "probability": 0.9674 + }, + { + "start": 13471.06, + "end": 13473.06, + "probability": 0.9949 + }, + { + "start": 13474.2, + "end": 13474.46, + "probability": 0.8794 + }, + { + "start": 13475.48, + "end": 13479.44, + "probability": 0.9991 + }, + { + "start": 13480.4, + "end": 13481.6, + "probability": 0.9944 + }, + { + "start": 13482.18, + "end": 13483.0, + "probability": 0.8561 + }, + { + "start": 13484.32, + "end": 13485.94, + "probability": 0.9902 + }, + { + "start": 13486.78, + "end": 13487.92, + "probability": 0.8449 + }, + { + "start": 13488.6, + "end": 13489.42, + "probability": 0.9451 + }, + { + "start": 13489.5, + "end": 13491.36, + "probability": 0.9991 + }, + { + "start": 13491.9, + "end": 13492.38, + "probability": 0.8462 + }, + { + "start": 13493.66, + "end": 13494.15, + "probability": 0.9966 + }, + { + "start": 13495.16, + "end": 13496.1, + "probability": 0.979 + }, + { + "start": 13497.18, + "end": 13497.8, + "probability": 0.9806 + }, + { + "start": 13499.18, + "end": 13500.56, + "probability": 0.998 + }, + { + "start": 13502.16, + "end": 13503.52, + "probability": 0.9941 + }, + { + "start": 13505.06, + "end": 13508.24, + "probability": 0.9951 + }, + { + "start": 13509.66, + "end": 13510.38, + "probability": 0.8339 + }, + { + "start": 13511.18, + "end": 13512.06, + "probability": 0.9265 + }, + { + "start": 13512.18, + "end": 13514.84, + "probability": 0.8039 + }, + { + "start": 13516.26, + "end": 13518.84, + "probability": 0.9955 + }, + { + "start": 13519.68, + "end": 13520.34, + "probability": 0.9899 + }, + { + "start": 13521.58, + "end": 13522.38, + "probability": 0.5108 + }, + { + "start": 13522.96, + "end": 13524.66, + "probability": 0.9529 + }, + { + "start": 13525.64, + "end": 13527.34, + "probability": 0.9197 + }, + { + "start": 13528.48, + "end": 13530.58, + "probability": 0.9986 + }, + { + "start": 13531.84, + "end": 13533.7, + "probability": 0.9704 + }, + { + "start": 13534.76, + "end": 13536.58, + "probability": 0.9942 + }, + { + "start": 13537.82, + "end": 13538.98, + "probability": 0.9669 + }, + { + "start": 13540.02, + "end": 13543.02, + "probability": 0.9312 + }, + { + "start": 13543.68, + "end": 13545.82, + "probability": 0.9966 + }, + { + "start": 13547.18, + "end": 13547.68, + "probability": 0.8888 + }, + { + "start": 13550.68, + "end": 13555.02, + "probability": 0.9994 + }, + { + "start": 13556.3, + "end": 13557.14, + "probability": 0.9373 + }, + { + "start": 13557.84, + "end": 13560.02, + "probability": 0.9986 + }, + { + "start": 13560.14, + "end": 13562.9, + "probability": 0.9995 + }, + { + "start": 13564.66, + "end": 13566.1, + "probability": 0.9961 + }, + { + "start": 13567.2, + "end": 13568.5, + "probability": 0.9656 + }, + { + "start": 13570.26, + "end": 13574.56, + "probability": 0.9982 + }, + { + "start": 13576.52, + "end": 13577.08, + "probability": 0.917 + }, + { + "start": 13578.38, + "end": 13580.0, + "probability": 0.8507 + }, + { + "start": 13580.86, + "end": 13582.02, + "probability": 0.9988 + }, + { + "start": 13583.6, + "end": 13585.7, + "probability": 0.948 + }, + { + "start": 13588.7, + "end": 13590.46, + "probability": 0.9028 + }, + { + "start": 13591.48, + "end": 13592.2, + "probability": 0.8357 + }, + { + "start": 13593.3, + "end": 13593.48, + "probability": 0.7563 + }, + { + "start": 13594.4, + "end": 13595.68, + "probability": 0.9929 + }, + { + "start": 13596.58, + "end": 13597.96, + "probability": 0.9878 + }, + { + "start": 13598.08, + "end": 13601.1, + "probability": 0.9933 + }, + { + "start": 13601.94, + "end": 13602.4, + "probability": 0.7434 + }, + { + "start": 13603.16, + "end": 13604.3, + "probability": 0.9985 + }, + { + "start": 13605.76, + "end": 13608.88, + "probability": 0.9985 + }, + { + "start": 13610.42, + "end": 13613.92, + "probability": 0.9863 + }, + { + "start": 13615.84, + "end": 13616.94, + "probability": 0.9858 + }, + { + "start": 13618.22, + "end": 13619.22, + "probability": 0.8915 + }, + { + "start": 13619.6, + "end": 13620.98, + "probability": 0.9893 + }, + { + "start": 13621.18, + "end": 13622.4, + "probability": 0.7472 + }, + { + "start": 13622.82, + "end": 13625.68, + "probability": 0.9879 + }, + { + "start": 13625.76, + "end": 13626.26, + "probability": 0.5079 + }, + { + "start": 13626.32, + "end": 13626.94, + "probability": 0.9822 + }, + { + "start": 13628.46, + "end": 13630.88, + "probability": 0.9956 + }, + { + "start": 13632.0, + "end": 13632.37, + "probability": 0.9781 + }, + { + "start": 13634.48, + "end": 13637.36, + "probability": 0.9941 + }, + { + "start": 13638.16, + "end": 13638.76, + "probability": 0.8783 + }, + { + "start": 13639.78, + "end": 13641.58, + "probability": 0.9968 + }, + { + "start": 13642.88, + "end": 13645.22, + "probability": 0.9978 + }, + { + "start": 13646.82, + "end": 13648.56, + "probability": 0.9993 + }, + { + "start": 13649.38, + "end": 13651.06, + "probability": 0.9967 + }, + { + "start": 13652.56, + "end": 13654.28, + "probability": 0.998 + }, + { + "start": 13655.1, + "end": 13655.98, + "probability": 0.9954 + }, + { + "start": 13656.6, + "end": 13660.24, + "probability": 0.9936 + }, + { + "start": 13660.8, + "end": 13662.62, + "probability": 0.9861 + }, + { + "start": 13664.38, + "end": 13666.06, + "probability": 0.9984 + }, + { + "start": 13667.64, + "end": 13669.86, + "probability": 0.9946 + }, + { + "start": 13672.08, + "end": 13674.3, + "probability": 0.9963 + }, + { + "start": 13675.52, + "end": 13677.3, + "probability": 0.8794 + }, + { + "start": 13678.42, + "end": 13681.74, + "probability": 0.9948 + }, + { + "start": 13681.74, + "end": 13683.76, + "probability": 0.9991 + }, + { + "start": 13685.9, + "end": 13688.16, + "probability": 0.9836 + }, + { + "start": 13688.7, + "end": 13693.94, + "probability": 0.9711 + }, + { + "start": 13694.46, + "end": 13695.02, + "probability": 0.8436 + }, + { + "start": 13697.7, + "end": 13698.28, + "probability": 0.9366 + }, + { + "start": 13700.08, + "end": 13702.98, + "probability": 0.9986 + }, + { + "start": 13703.54, + "end": 13704.82, + "probability": 0.8091 + }, + { + "start": 13705.96, + "end": 13709.56, + "probability": 0.9918 + }, + { + "start": 13710.08, + "end": 13711.64, + "probability": 0.9941 + }, + { + "start": 13712.1, + "end": 13714.68, + "probability": 0.998 + }, + { + "start": 13714.88, + "end": 13717.22, + "probability": 0.9605 + }, + { + "start": 13717.46, + "end": 13718.8, + "probability": 0.999 + }, + { + "start": 13722.59, + "end": 13725.26, + "probability": 0.9963 + }, + { + "start": 13725.26, + "end": 13728.9, + "probability": 0.9991 + }, + { + "start": 13729.76, + "end": 13730.36, + "probability": 0.3537 + }, + { + "start": 13731.68, + "end": 13734.18, + "probability": 0.9952 + }, + { + "start": 13735.78, + "end": 13738.48, + "probability": 0.9961 + }, + { + "start": 13741.16, + "end": 13743.18, + "probability": 0.9061 + }, + { + "start": 13745.6, + "end": 13747.4, + "probability": 0.9841 + }, + { + "start": 13749.54, + "end": 13750.54, + "probability": 0.9968 + }, + { + "start": 13751.18, + "end": 13752.54, + "probability": 0.992 + }, + { + "start": 13754.5, + "end": 13755.6, + "probability": 0.9487 + }, + { + "start": 13757.08, + "end": 13758.21, + "probability": 0.9956 + }, + { + "start": 13759.9, + "end": 13761.72, + "probability": 0.9982 + }, + { + "start": 13762.3, + "end": 13763.61, + "probability": 0.9818 + }, + { + "start": 13766.82, + "end": 13769.22, + "probability": 0.9891 + }, + { + "start": 13769.66, + "end": 13769.94, + "probability": 0.7663 + }, + { + "start": 13771.58, + "end": 13772.2, + "probability": 0.9208 + }, + { + "start": 13773.54, + "end": 13774.46, + "probability": 0.9854 + }, + { + "start": 13775.26, + "end": 13778.72, + "probability": 0.8467 + }, + { + "start": 13778.84, + "end": 13780.26, + "probability": 0.9912 + }, + { + "start": 13781.6, + "end": 13782.4, + "probability": 0.7453 + }, + { + "start": 13785.16, + "end": 13787.08, + "probability": 0.2244 + }, + { + "start": 13787.5, + "end": 13788.66, + "probability": 0.7563 + }, + { + "start": 13789.79, + "end": 13792.0, + "probability": 0.9214 + }, + { + "start": 13792.06, + "end": 13793.5, + "probability": 0.8856 + }, + { + "start": 13794.05, + "end": 13795.68, + "probability": 0.5208 + }, + { + "start": 13795.7, + "end": 13795.91, + "probability": 0.7571 + }, + { + "start": 13797.66, + "end": 13798.78, + "probability": 0.6095 + }, + { + "start": 13799.06, + "end": 13799.72, + "probability": 0.3386 + }, + { + "start": 13800.8, + "end": 13800.8, + "probability": 0.0016 + }, + { + "start": 13801.32, + "end": 13806.06, + "probability": 0.9911 + }, + { + "start": 13807.16, + "end": 13808.92, + "probability": 0.9824 + }, + { + "start": 13810.1, + "end": 13811.8, + "probability": 0.9998 + }, + { + "start": 13813.04, + "end": 13817.66, + "probability": 0.9592 + }, + { + "start": 13818.84, + "end": 13819.46, + "probability": 0.9039 + }, + { + "start": 13820.64, + "end": 13820.98, + "probability": 0.6916 + }, + { + "start": 13822.86, + "end": 13825.5, + "probability": 0.955 + }, + { + "start": 13827.04, + "end": 13828.21, + "probability": 0.9947 + }, + { + "start": 13829.28, + "end": 13829.84, + "probability": 0.9222 + }, + { + "start": 13831.16, + "end": 13833.04, + "probability": 0.9131 + }, + { + "start": 13834.64, + "end": 13837.12, + "probability": 0.9951 + }, + { + "start": 13838.14, + "end": 13840.56, + "probability": 0.9651 + }, + { + "start": 13842.24, + "end": 13842.72, + "probability": 0.9744 + }, + { + "start": 13845.86, + "end": 13846.82, + "probability": 0.9989 + }, + { + "start": 13848.5, + "end": 13849.26, + "probability": 0.7244 + }, + { + "start": 13849.8, + "end": 13852.4, + "probability": 0.9189 + }, + { + "start": 13854.26, + "end": 13855.84, + "probability": 0.9963 + }, + { + "start": 13857.86, + "end": 13859.8, + "probability": 0.9672 + }, + { + "start": 13860.0, + "end": 13860.56, + "probability": 0.3449 + }, + { + "start": 13860.62, + "end": 13861.64, + "probability": 0.9502 + }, + { + "start": 13862.76, + "end": 13863.88, + "probability": 0.9342 + }, + { + "start": 13864.86, + "end": 13867.02, + "probability": 0.9223 + }, + { + "start": 13868.2, + "end": 13870.16, + "probability": 0.8887 + }, + { + "start": 13871.08, + "end": 13874.53, + "probability": 0.9956 + }, + { + "start": 13874.62, + "end": 13877.92, + "probability": 0.9228 + }, + { + "start": 13879.2, + "end": 13881.02, + "probability": 0.9979 + }, + { + "start": 13881.54, + "end": 13886.36, + "probability": 0.9954 + }, + { + "start": 13887.72, + "end": 13888.26, + "probability": 0.8192 + }, + { + "start": 13889.96, + "end": 13892.3, + "probability": 0.9889 + }, + { + "start": 13892.44, + "end": 13892.82, + "probability": 0.7104 + }, + { + "start": 13893.66, + "end": 13894.26, + "probability": 0.8845 + }, + { + "start": 13895.96, + "end": 13898.6, + "probability": 0.998 + }, + { + "start": 13900.46, + "end": 13901.32, + "probability": 0.9854 + }, + { + "start": 13902.08, + "end": 13902.3, + "probability": 0.8129 + }, + { + "start": 13903.32, + "end": 13903.9, + "probability": 0.9966 + }, + { + "start": 13905.38, + "end": 13906.96, + "probability": 0.9722 + }, + { + "start": 13907.16, + "end": 13908.26, + "probability": 0.96 + }, + { + "start": 13908.64, + "end": 13910.36, + "probability": 0.9956 + }, + { + "start": 13910.44, + "end": 13911.72, + "probability": 0.9551 + }, + { + "start": 13911.76, + "end": 13912.58, + "probability": 0.01 + }, + { + "start": 13912.84, + "end": 13913.74, + "probability": 0.9681 + }, + { + "start": 13913.9, + "end": 13914.66, + "probability": 0.681 + }, + { + "start": 13914.9, + "end": 13917.02, + "probability": 0.5908 + }, + { + "start": 13917.14, + "end": 13917.6, + "probability": 0.1231 + }, + { + "start": 13917.6, + "end": 13917.62, + "probability": 0.1809 + }, + { + "start": 13918.28, + "end": 13919.9, + "probability": 0.5242 + }, + { + "start": 13919.9, + "end": 13922.57, + "probability": 0.5078 + }, + { + "start": 13923.06, + "end": 13923.56, + "probability": 0.5338 + }, + { + "start": 13923.64, + "end": 13925.05, + "probability": 0.7672 + }, + { + "start": 13925.2, + "end": 13926.16, + "probability": 0.7609 + }, + { + "start": 13926.24, + "end": 13927.54, + "probability": 0.9386 + }, + { + "start": 13927.68, + "end": 13929.24, + "probability": 0.9957 + }, + { + "start": 13929.4, + "end": 13930.1, + "probability": 0.097 + }, + { + "start": 13930.22, + "end": 13932.0, + "probability": 0.9804 + }, + { + "start": 13932.02, + "end": 13933.56, + "probability": 0.7909 + }, + { + "start": 13933.74, + "end": 13933.74, + "probability": 0.6084 + }, + { + "start": 13933.74, + "end": 13936.04, + "probability": 0.7942 + }, + { + "start": 13936.04, + "end": 13937.06, + "probability": 0.4376 + }, + { + "start": 13937.96, + "end": 13939.23, + "probability": 0.5956 + }, + { + "start": 13940.98, + "end": 13942.24, + "probability": 0.8858 + }, + { + "start": 13942.8, + "end": 13944.36, + "probability": 0.5596 + }, + { + "start": 13944.4, + "end": 13945.24, + "probability": 0.7466 + }, + { + "start": 13946.06, + "end": 13948.58, + "probability": 0.6894 + }, + { + "start": 13949.55, + "end": 13949.62, + "probability": 0.1979 + }, + { + "start": 13949.72, + "end": 13952.94, + "probability": 0.7367 + }, + { + "start": 13952.96, + "end": 13953.8, + "probability": 0.164 + }, + { + "start": 13953.86, + "end": 13955.08, + "probability": 0.9543 + }, + { + "start": 13955.44, + "end": 13955.54, + "probability": 0.1734 + }, + { + "start": 13955.6, + "end": 13956.18, + "probability": 0.6068 + }, + { + "start": 13956.68, + "end": 13959.5, + "probability": 0.8745 + }, + { + "start": 13960.32, + "end": 13964.0, + "probability": 0.7933 + }, + { + "start": 13964.08, + "end": 13964.8, + "probability": 0.5082 + }, + { + "start": 13964.8, + "end": 13966.54, + "probability": 0.6652 + }, + { + "start": 13966.66, + "end": 13968.42, + "probability": 0.4054 + }, + { + "start": 13970.98, + "end": 13971.94, + "probability": 0.0085 + }, + { + "start": 13971.94, + "end": 13971.94, + "probability": 0.0672 + }, + { + "start": 13972.18, + "end": 13973.18, + "probability": 0.9216 + }, + { + "start": 13973.98, + "end": 13976.5, + "probability": 0.5059 + }, + { + "start": 13977.2, + "end": 13978.06, + "probability": 0.9095 + }, + { + "start": 13978.48, + "end": 13979.4, + "probability": 0.9717 + }, + { + "start": 13979.79, + "end": 13980.52, + "probability": 0.7764 + }, + { + "start": 13981.88, + "end": 13981.88, + "probability": 0.5165 + }, + { + "start": 13982.69, + "end": 13984.4, + "probability": 0.4579 + }, + { + "start": 13984.8, + "end": 13986.5, + "probability": 0.8486 + }, + { + "start": 13987.26, + "end": 13987.69, + "probability": 0.4614 + }, + { + "start": 13988.34, + "end": 13989.94, + "probability": 0.5588 + }, + { + "start": 13990.2, + "end": 13993.34, + "probability": 0.564 + }, + { + "start": 13994.86, + "end": 13996.21, + "probability": 0.9448 + }, + { + "start": 13996.7, + "end": 13997.58, + "probability": 0.571 + }, + { + "start": 13997.6, + "end": 13998.18, + "probability": 0.7396 + }, + { + "start": 13998.18, + "end": 13999.54, + "probability": 0.6678 + }, + { + "start": 13999.88, + "end": 14000.66, + "probability": 0.4564 + }, + { + "start": 14000.74, + "end": 14002.62, + "probability": 0.815 + }, + { + "start": 14003.88, + "end": 14007.46, + "probability": 0.9703 + }, + { + "start": 14007.84, + "end": 14009.26, + "probability": 0.6569 + }, + { + "start": 14009.26, + "end": 14010.16, + "probability": 0.8759 + }, + { + "start": 14010.38, + "end": 14010.76, + "probability": 0.2026 + }, + { + "start": 14010.76, + "end": 14011.0, + "probability": 0.8906 + }, + { + "start": 14011.08, + "end": 14011.86, + "probability": 0.8346 + }, + { + "start": 14011.88, + "end": 14012.16, + "probability": 0.0862 + }, + { + "start": 14012.16, + "end": 14012.16, + "probability": 0.5477 + }, + { + "start": 14012.16, + "end": 14012.73, + "probability": 0.8735 + }, + { + "start": 14013.92, + "end": 14015.2, + "probability": 0.6663 + }, + { + "start": 14016.84, + "end": 14016.98, + "probability": 0.3073 + }, + { + "start": 14017.34, + "end": 14017.34, + "probability": 0.103 + }, + { + "start": 14017.34, + "end": 14017.84, + "probability": 0.6462 + }, + { + "start": 14020.0, + "end": 14021.76, + "probability": 0.9973 + }, + { + "start": 14022.38, + "end": 14024.16, + "probability": 0.9744 + }, + { + "start": 14024.74, + "end": 14025.66, + "probability": 0.1779 + }, + { + "start": 14026.95, + "end": 14027.16, + "probability": 0.2107 + }, + { + "start": 14027.26, + "end": 14027.77, + "probability": 0.5875 + }, + { + "start": 14028.4, + "end": 14028.4, + "probability": 0.2085 + }, + { + "start": 14029.16, + "end": 14030.54, + "probability": 0.9731 + }, + { + "start": 14030.54, + "end": 14030.66, + "probability": 0.2761 + }, + { + "start": 14031.18, + "end": 14033.38, + "probability": 0.9385 + }, + { + "start": 14034.02, + "end": 14035.34, + "probability": 0.6596 + }, + { + "start": 14036.78, + "end": 14037.94, + "probability": 0.9524 + }, + { + "start": 14039.01, + "end": 14040.18, + "probability": 0.1457 + }, + { + "start": 14040.18, + "end": 14040.18, + "probability": 0.3591 + }, + { + "start": 14040.18, + "end": 14040.18, + "probability": 0.0999 + }, + { + "start": 14040.18, + "end": 14040.5, + "probability": 0.2175 + }, + { + "start": 14040.6, + "end": 14042.16, + "probability": 0.6433 + }, + { + "start": 14042.46, + "end": 14043.82, + "probability": 0.8494 + }, + { + "start": 14044.6, + "end": 14045.22, + "probability": 0.7809 + }, + { + "start": 14045.22, + "end": 14046.04, + "probability": 0.4895 + }, + { + "start": 14047.79, + "end": 14049.38, + "probability": 0.0613 + }, + { + "start": 14049.38, + "end": 14050.3, + "probability": 0.0859 + }, + { + "start": 14051.58, + "end": 14051.9, + "probability": 0.0046 + }, + { + "start": 14052.04, + "end": 14052.04, + "probability": 0.035 + }, + { + "start": 14052.04, + "end": 14052.46, + "probability": 0.4057 + }, + { + "start": 14052.96, + "end": 14055.5, + "probability": 0.2381 + }, + { + "start": 14057.48, + "end": 14057.76, + "probability": 0.545 + }, + { + "start": 14060.48, + "end": 14060.58, + "probability": 0.6865 + }, + { + "start": 14061.4, + "end": 14061.52, + "probability": 0.1851 + }, + { + "start": 14061.52, + "end": 14061.52, + "probability": 0.3631 + }, + { + "start": 14061.52, + "end": 14061.52, + "probability": 0.0879 + }, + { + "start": 14061.52, + "end": 14061.52, + "probability": 0.2353 + }, + { + "start": 14061.52, + "end": 14062.12, + "probability": 0.2426 + }, + { + "start": 14063.56, + "end": 14064.73, + "probability": 0.8446 + }, + { + "start": 14065.2, + "end": 14067.04, + "probability": 0.8198 + }, + { + "start": 14067.12, + "end": 14068.4, + "probability": 0.8929 + }, + { + "start": 14069.18, + "end": 14070.82, + "probability": 0.9788 + }, + { + "start": 14071.6, + "end": 14073.7, + "probability": 0.9243 + }, + { + "start": 14074.76, + "end": 14077.96, + "probability": 0.9786 + }, + { + "start": 14078.14, + "end": 14079.12, + "probability": 0.8794 + }, + { + "start": 14080.82, + "end": 14081.24, + "probability": 0.9591 + }, + { + "start": 14081.8, + "end": 14083.64, + "probability": 0.6828 + }, + { + "start": 14085.58, + "end": 14086.72, + "probability": 0.2177 + }, + { + "start": 14086.74, + "end": 14087.88, + "probability": 0.1149 + }, + { + "start": 14088.06, + "end": 14088.1, + "probability": 0.256 + }, + { + "start": 14088.1, + "end": 14088.1, + "probability": 0.364 + }, + { + "start": 14088.1, + "end": 14091.6, + "probability": 0.8028 + }, + { + "start": 14092.16, + "end": 14092.7, + "probability": 0.498 + }, + { + "start": 14092.82, + "end": 14093.06, + "probability": 0.7729 + }, + { + "start": 14093.06, + "end": 14093.98, + "probability": 0.9735 + }, + { + "start": 14095.44, + "end": 14095.74, + "probability": 0.8303 + }, + { + "start": 14096.64, + "end": 14098.66, + "probability": 0.9597 + }, + { + "start": 14099.36, + "end": 14101.22, + "probability": 0.9915 + }, + { + "start": 14103.06, + "end": 14104.24, + "probability": 0.9608 + }, + { + "start": 14104.94, + "end": 14105.56, + "probability": 0.8848 + }, + { + "start": 14106.22, + "end": 14107.06, + "probability": 0.9845 + }, + { + "start": 14107.68, + "end": 14108.06, + "probability": 0.7738 + }, + { + "start": 14109.36, + "end": 14114.84, + "probability": 0.8977 + }, + { + "start": 14115.4, + "end": 14115.4, + "probability": 0.7812 + }, + { + "start": 14115.58, + "end": 14116.76, + "probability": 0.9911 + }, + { + "start": 14117.34, + "end": 14118.2, + "probability": 0.9477 + }, + { + "start": 14118.68, + "end": 14120.1, + "probability": 0.9517 + }, + { + "start": 14120.66, + "end": 14123.02, + "probability": 0.9568 + }, + { + "start": 14123.16, + "end": 14126.24, + "probability": 0.9965 + }, + { + "start": 14126.88, + "end": 14128.52, + "probability": 0.9888 + }, + { + "start": 14128.92, + "end": 14131.76, + "probability": 0.998 + }, + { + "start": 14132.74, + "end": 14134.74, + "probability": 0.9807 + }, + { + "start": 14135.46, + "end": 14137.82, + "probability": 0.66 + }, + { + "start": 14138.52, + "end": 14139.15, + "probability": 0.628 + }, + { + "start": 14140.16, + "end": 14141.46, + "probability": 0.8223 + }, + { + "start": 14142.16, + "end": 14144.32, + "probability": 0.9573 + }, + { + "start": 14145.26, + "end": 14147.88, + "probability": 0.9313 + }, + { + "start": 14151.72, + "end": 14152.98, + "probability": 0.8785 + }, + { + "start": 14153.66, + "end": 14157.6, + "probability": 0.9902 + }, + { + "start": 14157.62, + "end": 14158.18, + "probability": 0.6674 + }, + { + "start": 14158.38, + "end": 14161.0, + "probability": 0.8792 + }, + { + "start": 14161.08, + "end": 14161.56, + "probability": 0.4482 + }, + { + "start": 14161.66, + "end": 14162.32, + "probability": 0.7879 + }, + { + "start": 14162.44, + "end": 14163.74, + "probability": 0.9547 + }, + { + "start": 14164.56, + "end": 14166.8, + "probability": 0.9872 + }, + { + "start": 14166.88, + "end": 14168.47, + "probability": 0.9894 + }, + { + "start": 14168.72, + "end": 14170.08, + "probability": 0.9318 + }, + { + "start": 14170.64, + "end": 14173.12, + "probability": 0.9622 + }, + { + "start": 14173.54, + "end": 14174.14, + "probability": 0.8835 + }, + { + "start": 14175.16, + "end": 14176.1, + "probability": 0.9605 + }, + { + "start": 14177.4, + "end": 14179.83, + "probability": 0.9971 + }, + { + "start": 14181.7, + "end": 14183.46, + "probability": 0.998 + }, + { + "start": 14184.24, + "end": 14186.16, + "probability": 0.999 + }, + { + "start": 14186.86, + "end": 14187.84, + "probability": 0.8997 + }, + { + "start": 14189.4, + "end": 14189.56, + "probability": 0.8331 + }, + { + "start": 14190.78, + "end": 14191.82, + "probability": 0.8506 + }, + { + "start": 14192.0, + "end": 14192.92, + "probability": 0.8188 + }, + { + "start": 14193.06, + "end": 14193.38, + "probability": 0.9231 + }, + { + "start": 14193.64, + "end": 14194.0, + "probability": 0.6494 + }, + { + "start": 14195.28, + "end": 14197.66, + "probability": 0.9952 + }, + { + "start": 14198.68, + "end": 14201.56, + "probability": 0.9907 + }, + { + "start": 14202.28, + "end": 14206.36, + "probability": 0.8426 + }, + { + "start": 14207.36, + "end": 14209.12, + "probability": 0.6894 + }, + { + "start": 14209.38, + "end": 14210.74, + "probability": 0.9641 + }, + { + "start": 14211.24, + "end": 14213.22, + "probability": 0.951 + }, + { + "start": 14213.58, + "end": 14214.42, + "probability": 0.9961 + }, + { + "start": 14214.62, + "end": 14216.54, + "probability": 0.969 + }, + { + "start": 14217.54, + "end": 14218.14, + "probability": 0.5013 + }, + { + "start": 14219.0, + "end": 14221.08, + "probability": 0.9887 + }, + { + "start": 14221.8, + "end": 14223.36, + "probability": 0.6403 + }, + { + "start": 14224.48, + "end": 14225.22, + "probability": 0.9322 + }, + { + "start": 14226.32, + "end": 14228.3, + "probability": 0.9091 + }, + { + "start": 14228.82, + "end": 14230.27, + "probability": 0.8566 + }, + { + "start": 14231.64, + "end": 14232.85, + "probability": 0.9865 + }, + { + "start": 14234.02, + "end": 14235.2, + "probability": 0.9627 + }, + { + "start": 14235.5, + "end": 14239.36, + "probability": 0.7497 + }, + { + "start": 14240.56, + "end": 14241.5, + "probability": 0.7499 + }, + { + "start": 14241.52, + "end": 14242.37, + "probability": 0.8564 + }, + { + "start": 14242.9, + "end": 14243.94, + "probability": 0.9967 + }, + { + "start": 14244.56, + "end": 14245.46, + "probability": 0.7959 + }, + { + "start": 14246.12, + "end": 14247.74, + "probability": 0.9927 + }, + { + "start": 14247.96, + "end": 14248.5, + "probability": 0.9341 + }, + { + "start": 14249.82, + "end": 14253.42, + "probability": 0.9974 + }, + { + "start": 14253.72, + "end": 14255.6, + "probability": 0.9981 + }, + { + "start": 14256.31, + "end": 14258.62, + "probability": 0.9985 + }, + { + "start": 14259.48, + "end": 14261.6, + "probability": 0.998 + }, + { + "start": 14261.6, + "end": 14263.84, + "probability": 0.9918 + }, + { + "start": 14263.98, + "end": 14264.7, + "probability": 0.9994 + }, + { + "start": 14264.76, + "end": 14266.54, + "probability": 0.9925 + }, + { + "start": 14266.68, + "end": 14269.14, + "probability": 0.9758 + }, + { + "start": 14269.76, + "end": 14271.68, + "probability": 0.9819 + }, + { + "start": 14272.82, + "end": 14273.56, + "probability": 0.9993 + }, + { + "start": 14274.12, + "end": 14275.72, + "probability": 0.956 + }, + { + "start": 14276.28, + "end": 14276.58, + "probability": 0.7091 + }, + { + "start": 14277.62, + "end": 14280.4, + "probability": 0.9294 + }, + { + "start": 14281.24, + "end": 14281.72, + "probability": 0.5305 + }, + { + "start": 14282.48, + "end": 14283.78, + "probability": 0.8224 + }, + { + "start": 14283.92, + "end": 14286.75, + "probability": 0.9956 + }, + { + "start": 14287.42, + "end": 14289.84, + "probability": 0.9552 + }, + { + "start": 14290.66, + "end": 14292.44, + "probability": 0.9945 + }, + { + "start": 14293.25, + "end": 14294.31, + "probability": 0.9946 + }, + { + "start": 14294.8, + "end": 14297.86, + "probability": 0.9973 + }, + { + "start": 14297.86, + "end": 14300.28, + "probability": 0.999 + }, + { + "start": 14301.48, + "end": 14302.58, + "probability": 0.634 + }, + { + "start": 14303.54, + "end": 14306.22, + "probability": 0.9579 + }, + { + "start": 14307.68, + "end": 14309.42, + "probability": 0.9074 + }, + { + "start": 14309.54, + "end": 14309.98, + "probability": 0.7125 + }, + { + "start": 14309.98, + "end": 14310.08, + "probability": 0.6865 + }, + { + "start": 14311.34, + "end": 14313.1, + "probability": 0.7511 + }, + { + "start": 14313.86, + "end": 14314.78, + "probability": 0.7344 + }, + { + "start": 14315.48, + "end": 14317.68, + "probability": 0.8389 + }, + { + "start": 14318.78, + "end": 14320.26, + "probability": 0.9838 + }, + { + "start": 14321.12, + "end": 14324.4, + "probability": 0.9639 + }, + { + "start": 14325.64, + "end": 14325.96, + "probability": 0.6744 + }, + { + "start": 14326.08, + "end": 14328.34, + "probability": 0.8132 + }, + { + "start": 14329.12, + "end": 14331.76, + "probability": 0.7264 + }, + { + "start": 14332.52, + "end": 14334.88, + "probability": 0.8612 + }, + { + "start": 14335.76, + "end": 14339.56, + "probability": 0.9922 + }, + { + "start": 14340.46, + "end": 14341.06, + "probability": 0.8359 + }, + { + "start": 14341.66, + "end": 14342.6, + "probability": 0.8499 + }, + { + "start": 14343.42, + "end": 14350.96, + "probability": 0.9667 + }, + { + "start": 14352.74, + "end": 14353.64, + "probability": 0.9738 + }, + { + "start": 14354.18, + "end": 14356.26, + "probability": 0.9497 + }, + { + "start": 14357.04, + "end": 14359.04, + "probability": 0.9976 + }, + { + "start": 14360.36, + "end": 14363.03, + "probability": 0.9797 + }, + { + "start": 14364.04, + "end": 14365.46, + "probability": 0.9971 + }, + { + "start": 14366.52, + "end": 14369.24, + "probability": 0.9967 + }, + { + "start": 14369.92, + "end": 14371.4, + "probability": 0.9261 + }, + { + "start": 14371.98, + "end": 14373.46, + "probability": 0.9058 + }, + { + "start": 14374.28, + "end": 14376.9, + "probability": 0.9756 + }, + { + "start": 14377.54, + "end": 14379.42, + "probability": 0.9484 + }, + { + "start": 14381.04, + "end": 14383.38, + "probability": 0.9941 + }, + { + "start": 14384.88, + "end": 14387.14, + "probability": 0.9847 + }, + { + "start": 14387.96, + "end": 14389.5, + "probability": 0.8828 + }, + { + "start": 14390.54, + "end": 14390.74, + "probability": 0.9839 + }, + { + "start": 14391.46, + "end": 14392.76, + "probability": 0.9674 + }, + { + "start": 14394.48, + "end": 14396.74, + "probability": 0.9831 + }, + { + "start": 14398.82, + "end": 14399.74, + "probability": 0.9674 + }, + { + "start": 14400.52, + "end": 14401.4, + "probability": 0.9968 + }, + { + "start": 14402.62, + "end": 14404.28, + "probability": 0.7739 + }, + { + "start": 14405.82, + "end": 14406.48, + "probability": 0.6638 + }, + { + "start": 14408.68, + "end": 14410.78, + "probability": 0.8743 + }, + { + "start": 14412.42, + "end": 14413.94, + "probability": 0.9792 + }, + { + "start": 14415.22, + "end": 14418.9, + "probability": 0.9914 + }, + { + "start": 14420.24, + "end": 14421.36, + "probability": 0.8586 + }, + { + "start": 14426.13, + "end": 14426.67, + "probability": 0.0636 + }, + { + "start": 14428.46, + "end": 14431.04, + "probability": 0.9917 + }, + { + "start": 14434.26, + "end": 14436.28, + "probability": 0.9956 + }, + { + "start": 14437.22, + "end": 14438.04, + "probability": 0.9955 + }, + { + "start": 14439.22, + "end": 14440.42, + "probability": 0.9835 + }, + { + "start": 14441.48, + "end": 14442.36, + "probability": 0.9919 + }, + { + "start": 14443.16, + "end": 14444.36, + "probability": 0.9909 + }, + { + "start": 14445.34, + "end": 14446.92, + "probability": 0.983 + }, + { + "start": 14449.1, + "end": 14449.68, + "probability": 0.7369 + }, + { + "start": 14451.38, + "end": 14453.34, + "probability": 0.9941 + }, + { + "start": 14456.02, + "end": 14457.4, + "probability": 0.9966 + }, + { + "start": 14459.78, + "end": 14461.38, + "probability": 0.995 + }, + { + "start": 14462.36, + "end": 14463.84, + "probability": 0.9541 + }, + { + "start": 14464.8, + "end": 14466.62, + "probability": 0.9141 + }, + { + "start": 14467.5, + "end": 14469.76, + "probability": 0.999 + }, + { + "start": 14471.0, + "end": 14472.08, + "probability": 0.9901 + }, + { + "start": 14473.42, + "end": 14474.88, + "probability": 0.8305 + }, + { + "start": 14476.34, + "end": 14479.42, + "probability": 0.9904 + }, + { + "start": 14480.22, + "end": 14483.94, + "probability": 0.9975 + }, + { + "start": 14484.18, + "end": 14485.06, + "probability": 0.616 + }, + { + "start": 14486.34, + "end": 14488.04, + "probability": 0.9498 + }, + { + "start": 14488.88, + "end": 14490.8, + "probability": 0.913 + }, + { + "start": 14491.78, + "end": 14492.48, + "probability": 0.8032 + }, + { + "start": 14494.14, + "end": 14496.34, + "probability": 0.8657 + }, + { + "start": 14497.0, + "end": 14498.5, + "probability": 0.9803 + }, + { + "start": 14503.22, + "end": 14505.14, + "probability": 0.8274 + }, + { + "start": 14506.86, + "end": 14508.54, + "probability": 0.8651 + }, + { + "start": 14510.22, + "end": 14510.88, + "probability": 0.6926 + }, + { + "start": 14512.64, + "end": 14513.08, + "probability": 0.8238 + }, + { + "start": 14515.76, + "end": 14516.62, + "probability": 0.9763 + }, + { + "start": 14519.28, + "end": 14519.54, + "probability": 0.961 + }, + { + "start": 14522.3, + "end": 14522.58, + "probability": 0.7856 + }, + { + "start": 14524.4, + "end": 14525.38, + "probability": 0.9844 + }, + { + "start": 14527.62, + "end": 14528.08, + "probability": 0.9562 + }, + { + "start": 14529.62, + "end": 14530.8, + "probability": 0.9932 + }, + { + "start": 14533.86, + "end": 14535.62, + "probability": 0.9928 + }, + { + "start": 14537.8, + "end": 14540.16, + "probability": 0.9756 + }, + { + "start": 14542.68, + "end": 14542.88, + "probability": 0.5434 + }, + { + "start": 14543.64, + "end": 14544.36, + "probability": 0.9934 + }, + { + "start": 14547.62, + "end": 14548.98, + "probability": 0.8732 + }, + { + "start": 14549.1, + "end": 14550.26, + "probability": 0.0012 + }, + { + "start": 14552.04, + "end": 14552.28, + "probability": 0.743 + }, + { + "start": 14552.82, + "end": 14553.9, + "probability": 0.9974 + }, + { + "start": 14554.7, + "end": 14556.54, + "probability": 0.9681 + }, + { + "start": 14558.44, + "end": 14559.14, + "probability": 0.9804 + }, + { + "start": 14560.66, + "end": 14561.5, + "probability": 0.9952 + }, + { + "start": 14562.1, + "end": 14565.44, + "probability": 0.9601 + }, + { + "start": 14567.3, + "end": 14568.16, + "probability": 0.9455 + }, + { + "start": 14570.48, + "end": 14571.22, + "probability": 0.9788 + }, + { + "start": 14573.4, + "end": 14573.9, + "probability": 0.975 + }, + { + "start": 14574.44, + "end": 14577.34, + "probability": 0.9677 + }, + { + "start": 14579.18, + "end": 14579.72, + "probability": 0.9915 + }, + { + "start": 14582.22, + "end": 14583.3, + "probability": 0.9934 + }, + { + "start": 14583.92, + "end": 14584.38, + "probability": 0.9832 + }, + { + "start": 14586.68, + "end": 14587.28, + "probability": 0.9952 + }, + { + "start": 14589.2, + "end": 14590.68, + "probability": 0.9875 + }, + { + "start": 14593.66, + "end": 14594.56, + "probability": 0.8492 + }, + { + "start": 14597.4, + "end": 14598.04, + "probability": 0.8726 + }, + { + "start": 14599.0, + "end": 14599.74, + "probability": 0.7265 + }, + { + "start": 14603.12, + "end": 14603.72, + "probability": 0.7285 + }, + { + "start": 14605.54, + "end": 14605.86, + "probability": 0.8047 + }, + { + "start": 14606.74, + "end": 14607.76, + "probability": 0.9937 + }, + { + "start": 14609.88, + "end": 14615.46, + "probability": 0.9801 + }, + { + "start": 14616.26, + "end": 14617.58, + "probability": 0.9093 + }, + { + "start": 14619.7, + "end": 14620.18, + "probability": 0.6485 + }, + { + "start": 14621.16, + "end": 14622.72, + "probability": 0.7315 + }, + { + "start": 14622.8, + "end": 14624.14, + "probability": 0.0426 + }, + { + "start": 14624.26, + "end": 14625.76, + "probability": 0.7693 + }, + { + "start": 14626.46, + "end": 14629.72, + "probability": 0.8883 + }, + { + "start": 14630.26, + "end": 14630.26, + "probability": 0.1611 + }, + { + "start": 14630.26, + "end": 14631.42, + "probability": 0.8351 + }, + { + "start": 14631.64, + "end": 14632.22, + "probability": 0.6559 + }, + { + "start": 14632.3, + "end": 14635.1, + "probability": 0.4439 + }, + { + "start": 14635.1, + "end": 14636.78, + "probability": 0.67 + }, + { + "start": 14637.3, + "end": 14638.1, + "probability": 0.2416 + }, + { + "start": 14638.28, + "end": 14638.58, + "probability": 0.68 + }, + { + "start": 14638.92, + "end": 14641.08, + "probability": 0.6014 + }, + { + "start": 14641.16, + "end": 14642.1, + "probability": 0.8271 + }, + { + "start": 14642.38, + "end": 14642.38, + "probability": 0.0266 + }, + { + "start": 14642.38, + "end": 14644.12, + "probability": 0.7027 + }, + { + "start": 14644.72, + "end": 14645.45, + "probability": 0.9004 + }, + { + "start": 14645.64, + "end": 14647.92, + "probability": 0.599 + }, + { + "start": 14648.02, + "end": 14648.8, + "probability": 0.2136 + }, + { + "start": 14652.36, + "end": 14652.36, + "probability": 0.0444 + }, + { + "start": 14652.9, + "end": 14653.78, + "probability": 0.0854 + }, + { + "start": 14653.78, + "end": 14653.78, + "probability": 0.0946 + }, + { + "start": 14653.78, + "end": 14653.78, + "probability": 0.0647 + }, + { + "start": 14653.78, + "end": 14654.56, + "probability": 0.0592 + }, + { + "start": 14654.7, + "end": 14655.72, + "probability": 0.1914 + }, + { + "start": 14655.74, + "end": 14655.74, + "probability": 0.1646 + }, + { + "start": 14655.74, + "end": 14656.96, + "probability": 0.1849 + }, + { + "start": 14657.46, + "end": 14661.66, + "probability": 0.0613 + }, + { + "start": 14662.54, + "end": 14663.02, + "probability": 0.167 + }, + { + "start": 14663.02, + "end": 14663.02, + "probability": 0.095 + }, + { + "start": 14663.02, + "end": 14663.14, + "probability": 0.0268 + }, + { + "start": 14663.54, + "end": 14664.86, + "probability": 0.3228 + }, + { + "start": 14664.86, + "end": 14664.96, + "probability": 0.0736 + }, + { + "start": 14664.96, + "end": 14665.44, + "probability": 0.1417 + }, + { + "start": 14665.58, + "end": 14667.22, + "probability": 0.8967 + }, + { + "start": 14667.3, + "end": 14668.22, + "probability": 0.8884 + }, + { + "start": 14668.64, + "end": 14670.84, + "probability": 0.8545 + }, + { + "start": 14675.0, + "end": 14675.0, + "probability": 0.0 + }, + { + "start": 14675.0, + "end": 14675.0, + "probability": 0.0 + }, + { + "start": 14675.26, + "end": 14677.47, + "probability": 0.0521 + }, + { + "start": 14678.06, + "end": 14678.78, + "probability": 0.19 + }, + { + "start": 14678.78, + "end": 14679.26, + "probability": 0.0464 + }, + { + "start": 14679.92, + "end": 14680.64, + "probability": 0.0582 + }, + { + "start": 14681.99, + "end": 14683.18, + "probability": 0.0862 + }, + { + "start": 14683.18, + "end": 14683.62, + "probability": 0.3031 + }, + { + "start": 14683.64, + "end": 14684.29, + "probability": 0.2019 + }, + { + "start": 14685.18, + "end": 14685.3, + "probability": 0.1581 + }, + { + "start": 14686.66, + "end": 14690.08, + "probability": 0.085 + }, + { + "start": 14690.08, + "end": 14690.36, + "probability": 0.3318 + }, + { + "start": 14690.38, + "end": 14691.26, + "probability": 0.0504 + }, + { + "start": 14691.26, + "end": 14691.68, + "probability": 0.1866 + }, + { + "start": 14693.58, + "end": 14696.08, + "probability": 0.1459 + }, + { + "start": 14696.5, + "end": 14696.9, + "probability": 0.2271 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.0, + "end": 14799.0, + "probability": 0.0 + }, + { + "start": 14799.12, + "end": 14799.72, + "probability": 0.1307 + }, + { + "start": 14799.72, + "end": 14801.1, + "probability": 0.1708 + }, + { + "start": 14801.2, + "end": 14802.96, + "probability": 0.6242 + }, + { + "start": 14803.04, + "end": 14803.6, + "probability": 0.076 + }, + { + "start": 14804.7, + "end": 14805.96, + "probability": 0.0267 + }, + { + "start": 14810.04, + "end": 14814.28, + "probability": 0.2408 + }, + { + "start": 14817.42, + "end": 14821.22, + "probability": 0.1089 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.0, + "end": 14920.0, + "probability": 0.0 + }, + { + "start": 14920.72, + "end": 14922.98, + "probability": 0.9541 + }, + { + "start": 14924.88, + "end": 14926.02, + "probability": 0.99 + }, + { + "start": 14927.82, + "end": 14928.93, + "probability": 0.9915 + }, + { + "start": 14931.38, + "end": 14932.62, + "probability": 0.9721 + }, + { + "start": 14934.92, + "end": 14936.06, + "probability": 0.7793 + }, + { + "start": 14936.14, + "end": 14937.4, + "probability": 0.8262 + }, + { + "start": 14937.42, + "end": 14938.76, + "probability": 0.8521 + }, + { + "start": 14938.78, + "end": 14939.44, + "probability": 0.2045 + }, + { + "start": 14939.82, + "end": 14940.32, + "probability": 0.2007 + }, + { + "start": 14941.98, + "end": 14943.24, + "probability": 0.7412 + }, + { + "start": 14943.24, + "end": 14945.5, + "probability": 0.8148 + }, + { + "start": 14946.2, + "end": 14947.68, + "probability": 0.9639 + }, + { + "start": 14949.0, + "end": 14951.06, + "probability": 0.829 + }, + { + "start": 14951.8, + "end": 14952.6, + "probability": 0.9053 + }, + { + "start": 14952.8, + "end": 14954.36, + "probability": 0.9973 + }, + { + "start": 14954.46, + "end": 14954.74, + "probability": 0.6264 + }, + { + "start": 14954.78, + "end": 14955.62, + "probability": 0.9934 + }, + { + "start": 14955.78, + "end": 14956.26, + "probability": 0.8562 + }, + { + "start": 14956.66, + "end": 14959.7, + "probability": 0.9931 + }, + { + "start": 14959.78, + "end": 14960.92, + "probability": 0.6188 + }, + { + "start": 14960.92, + "end": 14962.94, + "probability": 0.8373 + }, + { + "start": 14965.09, + "end": 14968.48, + "probability": 0.1656 + }, + { + "start": 14968.48, + "end": 14968.48, + "probability": 0.0421 + }, + { + "start": 14968.48, + "end": 14969.68, + "probability": 0.1158 + }, + { + "start": 14970.0, + "end": 14971.86, + "probability": 0.9293 + }, + { + "start": 14971.94, + "end": 14974.3, + "probability": 0.9225 + }, + { + "start": 14974.38, + "end": 14974.66, + "probability": 0.1589 + }, + { + "start": 14975.08, + "end": 14975.16, + "probability": 0.2503 + }, + { + "start": 14975.26, + "end": 14977.68, + "probability": 0.3351 + }, + { + "start": 14977.68, + "end": 14978.08, + "probability": 0.4855 + }, + { + "start": 14978.16, + "end": 14978.84, + "probability": 0.3113 + }, + { + "start": 14978.92, + "end": 14979.28, + "probability": 0.1196 + }, + { + "start": 14979.28, + "end": 14979.6, + "probability": 0.2268 + }, + { + "start": 14979.64, + "end": 14980.32, + "probability": 0.3967 + }, + { + "start": 14980.36, + "end": 14981.14, + "probability": 0.742 + }, + { + "start": 14981.5, + "end": 14982.2, + "probability": 0.6026 + }, + { + "start": 14982.22, + "end": 14982.96, + "probability": 0.6861 + }, + { + "start": 14983.16, + "end": 14984.96, + "probability": 0.8405 + }, + { + "start": 14985.46, + "end": 14986.58, + "probability": 0.8579 + }, + { + "start": 14986.94, + "end": 14986.98, + "probability": 0.5701 + }, + { + "start": 14986.98, + "end": 14988.32, + "probability": 0.386 + }, + { + "start": 14988.32, + "end": 14990.76, + "probability": 0.6434 + }, + { + "start": 14991.3, + "end": 14991.86, + "probability": 0.2453 + }, + { + "start": 14992.22, + "end": 14992.22, + "probability": 0.1642 + }, + { + "start": 14992.22, + "end": 14993.64, + "probability": 0.2754 + }, + { + "start": 14994.48, + "end": 14998.19, + "probability": 0.6219 + }, + { + "start": 14998.62, + "end": 14999.18, + "probability": 0.3626 + }, + { + "start": 14999.18, + "end": 15000.34, + "probability": 0.5694 + }, + { + "start": 15001.42, + "end": 15003.14, + "probability": 0.2398 + }, + { + "start": 15003.68, + "end": 15004.65, + "probability": 0.1101 + }, + { + "start": 15005.2, + "end": 15006.1, + "probability": 0.1707 + }, + { + "start": 15006.4, + "end": 15006.74, + "probability": 0.542 + }, + { + "start": 15006.74, + "end": 15006.74, + "probability": 0.3294 + }, + { + "start": 15006.74, + "end": 15007.04, + "probability": 0.4016 + }, + { + "start": 15007.34, + "end": 15008.32, + "probability": 0.2321 + }, + { + "start": 15008.42, + "end": 15008.44, + "probability": 0.1399 + }, + { + "start": 15008.44, + "end": 15009.9, + "probability": 0.6063 + }, + { + "start": 15010.44, + "end": 15013.72, + "probability": 0.1544 + }, + { + "start": 15015.52, + "end": 15016.82, + "probability": 0.4083 + }, + { + "start": 15016.82, + "end": 15017.5, + "probability": 0.519 + }, + { + "start": 15017.86, + "end": 15018.74, + "probability": 0.6463 + }, + { + "start": 15019.78, + "end": 15021.4, + "probability": 0.8659 + }, + { + "start": 15021.62, + "end": 15025.23, + "probability": 0.9845 + }, + { + "start": 15026.52, + "end": 15027.48, + "probability": 0.8623 + }, + { + "start": 15028.72, + "end": 15029.54, + "probability": 0.7223 + }, + { + "start": 15031.04, + "end": 15033.32, + "probability": 0.8435 + }, + { + "start": 15034.42, + "end": 15035.56, + "probability": 0.99 + }, + { + "start": 15036.54, + "end": 15037.56, + "probability": 0.6996 + }, + { + "start": 15038.08, + "end": 15039.78, + "probability": 0.8046 + }, + { + "start": 15040.8, + "end": 15041.3, + "probability": 0.5022 + }, + { + "start": 15042.26, + "end": 15043.06, + "probability": 0.8536 + }, + { + "start": 15043.96, + "end": 15045.9, + "probability": 0.8028 + }, + { + "start": 15047.42, + "end": 15048.9, + "probability": 0.9901 + }, + { + "start": 15049.56, + "end": 15052.56, + "probability": 0.9816 + }, + { + "start": 15054.02, + "end": 15054.82, + "probability": 0.7734 + }, + { + "start": 15056.26, + "end": 15058.06, + "probability": 0.9924 + }, + { + "start": 15059.18, + "end": 15059.98, + "probability": 0.8528 + }, + { + "start": 15062.0, + "end": 15062.6, + "probability": 0.9498 + }, + { + "start": 15064.04, + "end": 15067.4, + "probability": 0.9994 + }, + { + "start": 15068.22, + "end": 15069.5, + "probability": 0.9801 + }, + { + "start": 15072.3, + "end": 15073.26, + "probability": 0.8856 + }, + { + "start": 15074.04, + "end": 15074.9, + "probability": 0.999 + }, + { + "start": 15075.74, + "end": 15076.54, + "probability": 0.8876 + }, + { + "start": 15077.58, + "end": 15078.38, + "probability": 0.9784 + }, + { + "start": 15080.58, + "end": 15083.0, + "probability": 0.9993 + }, + { + "start": 15083.88, + "end": 15084.8, + "probability": 0.6774 + }, + { + "start": 15087.3, + "end": 15088.24, + "probability": 0.7989 + }, + { + "start": 15089.92, + "end": 15090.26, + "probability": 0.9685 + }, + { + "start": 15092.52, + "end": 15093.04, + "probability": 0.478 + }, + { + "start": 15093.92, + "end": 15094.58, + "probability": 0.946 + }, + { + "start": 15096.16, + "end": 15096.92, + "probability": 0.6891 + }, + { + "start": 15098.32, + "end": 15100.42, + "probability": 0.9359 + }, + { + "start": 15102.22, + "end": 15103.58, + "probability": 0.7576 + }, + { + "start": 15104.94, + "end": 15108.74, + "probability": 0.8373 + }, + { + "start": 15109.42, + "end": 15109.96, + "probability": 0.9437 + }, + { + "start": 15110.72, + "end": 15111.38, + "probability": 0.7015 + }, + { + "start": 15112.6, + "end": 15115.02, + "probability": 0.9885 + }, + { + "start": 15117.08, + "end": 15121.12, + "probability": 0.9812 + }, + { + "start": 15122.62, + "end": 15123.88, + "probability": 0.9963 + }, + { + "start": 15124.02, + "end": 15125.4, + "probability": 0.9941 + }, + { + "start": 15126.1, + "end": 15128.25, + "probability": 0.9927 + }, + { + "start": 15129.1, + "end": 15132.1, + "probability": 0.9746 + }, + { + "start": 15132.2, + "end": 15133.47, + "probability": 0.425 + }, + { + "start": 15133.62, + "end": 15133.8, + "probability": 0.9534 + }, + { + "start": 15134.48, + "end": 15137.12, + "probability": 0.9492 + }, + { + "start": 15138.5, + "end": 15138.74, + "probability": 0.9351 + }, + { + "start": 15139.54, + "end": 15140.12, + "probability": 0.8057 + }, + { + "start": 15141.12, + "end": 15142.16, + "probability": 0.997 + }, + { + "start": 15142.9, + "end": 15143.62, + "probability": 0.6683 + }, + { + "start": 15145.92, + "end": 15146.7, + "probability": 0.9764 + }, + { + "start": 15148.8, + "end": 15149.69, + "probability": 0.9597 + }, + { + "start": 15150.56, + "end": 15151.24, + "probability": 0.6585 + }, + { + "start": 15153.24, + "end": 15154.34, + "probability": 0.8569 + }, + { + "start": 15156.04, + "end": 15157.9, + "probability": 0.9653 + }, + { + "start": 15158.88, + "end": 15160.44, + "probability": 0.9948 + }, + { + "start": 15161.36, + "end": 15164.28, + "probability": 0.9507 + }, + { + "start": 15165.1, + "end": 15167.0, + "probability": 0.9443 + }, + { + "start": 15167.6, + "end": 15169.34, + "probability": 0.9808 + }, + { + "start": 15170.34, + "end": 15171.32, + "probability": 0.5906 + }, + { + "start": 15173.58, + "end": 15174.97, + "probability": 0.9927 + }, + { + "start": 15175.82, + "end": 15179.04, + "probability": 0.9889 + }, + { + "start": 15179.48, + "end": 15180.78, + "probability": 0.8479 + }, + { + "start": 15181.08, + "end": 15181.38, + "probability": 0.0933 + }, + { + "start": 15181.38, + "end": 15184.1, + "probability": 0.8986 + }, + { + "start": 15184.44, + "end": 15186.9, + "probability": 0.9951 + }, + { + "start": 15186.94, + "end": 15187.42, + "probability": 0.528 + }, + { + "start": 15187.66, + "end": 15189.94, + "probability": 0.856 + }, + { + "start": 15190.26, + "end": 15191.52, + "probability": 0.6722 + }, + { + "start": 15192.02, + "end": 15192.8, + "probability": 0.7672 + }, + { + "start": 15193.0, + "end": 15193.26, + "probability": 0.6181 + }, + { + "start": 15193.26, + "end": 15197.12, + "probability": 0.5456 + }, + { + "start": 15197.46, + "end": 15198.7, + "probability": 0.818 + }, + { + "start": 15198.84, + "end": 15201.12, + "probability": 0.6152 + }, + { + "start": 15201.88, + "end": 15202.5, + "probability": 0.7805 + }, + { + "start": 15203.3, + "end": 15204.31, + "probability": 0.7788 + }, + { + "start": 15205.44, + "end": 15207.8, + "probability": 0.6697 + }, + { + "start": 15209.46, + "end": 15214.02, + "probability": 0.7163 + }, + { + "start": 15214.04, + "end": 15216.12, + "probability": 0.5381 + }, + { + "start": 15216.34, + "end": 15217.5, + "probability": 0.7666 + }, + { + "start": 15217.64, + "end": 15218.32, + "probability": 0.484 + }, + { + "start": 15219.0, + "end": 15220.56, + "probability": 0.2885 + }, + { + "start": 15221.48, + "end": 15222.32, + "probability": 0.388 + }, + { + "start": 15223.1, + "end": 15224.8, + "probability": 0.8748 + }, + { + "start": 15226.0, + "end": 15227.44, + "probability": 0.9956 + }, + { + "start": 15228.02, + "end": 15230.02, + "probability": 0.8445 + }, + { + "start": 15230.04, + "end": 15232.22, + "probability": 0.7034 + }, + { + "start": 15232.78, + "end": 15232.8, + "probability": 0.1294 + }, + { + "start": 15232.8, + "end": 15236.42, + "probability": 0.9824 + }, + { + "start": 15237.14, + "end": 15237.82, + "probability": 0.4855 + }, + { + "start": 15237.82, + "end": 15239.02, + "probability": 0.2341 + }, + { + "start": 15239.46, + "end": 15240.34, + "probability": 0.7433 + }, + { + "start": 15241.37, + "end": 15243.56, + "probability": 0.8347 + }, + { + "start": 15244.2, + "end": 15246.98, + "probability": 0.7219 + }, + { + "start": 15247.54, + "end": 15248.32, + "probability": 0.706 + }, + { + "start": 15249.0, + "end": 15249.52, + "probability": 0.8083 + }, + { + "start": 15250.0, + "end": 15250.86, + "probability": 0.9569 + }, + { + "start": 15251.32, + "end": 15252.28, + "probability": 0.822 + }, + { + "start": 15252.44, + "end": 15253.56, + "probability": 0.9813 + }, + { + "start": 15254.12, + "end": 15257.12, + "probability": 0.806 + }, + { + "start": 15257.28, + "end": 15257.4, + "probability": 0.4686 + }, + { + "start": 15257.5, + "end": 15257.66, + "probability": 0.9642 + }, + { + "start": 15258.14, + "end": 15258.64, + "probability": 0.8146 + }, + { + "start": 15259.02, + "end": 15259.78, + "probability": 0.5196 + }, + { + "start": 15259.92, + "end": 15262.0, + "probability": 0.0252 + }, + { + "start": 15262.0, + "end": 15262.82, + "probability": 0.367 + }, + { + "start": 15262.82, + "end": 15263.74, + "probability": 0.9062 + }, + { + "start": 15264.18, + "end": 15267.46, + "probability": 0.9275 + }, + { + "start": 15267.84, + "end": 15269.48, + "probability": 0.5487 + }, + { + "start": 15269.7, + "end": 15269.7, + "probability": 0.0956 + }, + { + "start": 15269.84, + "end": 15272.38, + "probability": 0.6925 + }, + { + "start": 15272.56, + "end": 15272.62, + "probability": 0.1994 + }, + { + "start": 15272.62, + "end": 15273.48, + "probability": 0.4498 + }, + { + "start": 15273.48, + "end": 15274.78, + "probability": 0.1594 + }, + { + "start": 15275.0, + "end": 15276.04, + "probability": 0.0938 + }, + { + "start": 15276.78, + "end": 15278.32, + "probability": 0.6758 + }, + { + "start": 15279.22, + "end": 15281.32, + "probability": 0.8992 + }, + { + "start": 15281.94, + "end": 15282.78, + "probability": 0.8623 + }, + { + "start": 15283.12, + "end": 15284.74, + "probability": 0.972 + }, + { + "start": 15285.34, + "end": 15285.69, + "probability": 0.0084 + }, + { + "start": 15285.84, + "end": 15286.12, + "probability": 0.6015 + }, + { + "start": 15286.9, + "end": 15290.44, + "probability": 0.8709 + }, + { + "start": 15291.12, + "end": 15294.76, + "probability": 0.5444 + }, + { + "start": 15301.58, + "end": 15303.88, + "probability": 0.6765 + }, + { + "start": 15304.6, + "end": 15305.52, + "probability": 0.0994 + }, + { + "start": 15305.52, + "end": 15305.52, + "probability": 0.2119 + }, + { + "start": 15305.52, + "end": 15307.04, + "probability": 0.0562 + }, + { + "start": 15307.28, + "end": 15309.14, + "probability": 0.1229 + }, + { + "start": 15310.96, + "end": 15313.9, + "probability": 0.1638 + }, + { + "start": 15316.93, + "end": 15319.08, + "probability": 0.0045 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15407.0, + "end": 15407.0, + "probability": 0.0 + }, + { + "start": 15408.15, + "end": 15409.64, + "probability": 0.4713 + }, + { + "start": 15409.64, + "end": 15410.55, + "probability": 0.8018 + }, + { + "start": 15411.34, + "end": 15412.68, + "probability": 0.8064 + }, + { + "start": 15413.0, + "end": 15415.26, + "probability": 0.4596 + }, + { + "start": 15415.76, + "end": 15417.74, + "probability": 0.3406 + }, + { + "start": 15418.0, + "end": 15422.88, + "probability": 0.8518 + }, + { + "start": 15423.5, + "end": 15424.96, + "probability": 0.9979 + }, + { + "start": 15425.08, + "end": 15425.18, + "probability": 0.0649 + }, + { + "start": 15426.04, + "end": 15427.46, + "probability": 0.9103 + }, + { + "start": 15428.46, + "end": 15429.22, + "probability": 0.4384 + }, + { + "start": 15429.58, + "end": 15432.32, + "probability": 0.9674 + }, + { + "start": 15432.88, + "end": 15433.56, + "probability": 0.6442 + }, + { + "start": 15433.68, + "end": 15434.34, + "probability": 0.7929 + }, + { + "start": 15434.76, + "end": 15435.92, + "probability": 0.6564 + }, + { + "start": 15435.92, + "end": 15436.96, + "probability": 0.8065 + }, + { + "start": 15437.24, + "end": 15437.92, + "probability": 0.9616 + }, + { + "start": 15438.08, + "end": 15439.6, + "probability": 0.9785 + }, + { + "start": 15439.78, + "end": 15442.9, + "probability": 0.3157 + }, + { + "start": 15443.2, + "end": 15446.64, + "probability": 0.8441 + }, + { + "start": 15446.64, + "end": 15449.7, + "probability": 0.1341 + }, + { + "start": 15449.7, + "end": 15450.9, + "probability": 0.007 + }, + { + "start": 15454.58, + "end": 15456.44, + "probability": 0.9234 + }, + { + "start": 15457.14, + "end": 15458.14, + "probability": 0.8507 + }, + { + "start": 15458.94, + "end": 15459.76, + "probability": 0.8489 + }, + { + "start": 15460.94, + "end": 15462.48, + "probability": 0.9565 + }, + { + "start": 15463.88, + "end": 15464.74, + "probability": 0.9915 + }, + { + "start": 15466.12, + "end": 15467.94, + "probability": 0.9954 + }, + { + "start": 15469.9, + "end": 15473.02, + "probability": 0.9805 + }, + { + "start": 15474.13, + "end": 15475.72, + "probability": 0.9538 + }, + { + "start": 15477.0, + "end": 15477.26, + "probability": 0.2651 + }, + { + "start": 15477.32, + "end": 15478.18, + "probability": 0.9292 + }, + { + "start": 15479.22, + "end": 15481.56, + "probability": 0.8398 + }, + { + "start": 15481.56, + "end": 15481.58, + "probability": 0.342 + }, + { + "start": 15481.6, + "end": 15482.04, + "probability": 0.3288 + }, + { + "start": 15482.26, + "end": 15482.76, + "probability": 0.1961 + }, + { + "start": 15482.76, + "end": 15483.42, + "probability": 0.7544 + }, + { + "start": 15483.44, + "end": 15485.32, + "probability": 0.7357 + }, + { + "start": 15485.78, + "end": 15487.04, + "probability": 0.1108 + }, + { + "start": 15487.34, + "end": 15488.98, + "probability": 0.9466 + }, + { + "start": 15489.84, + "end": 15490.58, + "probability": 0.9993 + }, + { + "start": 15491.34, + "end": 15492.52, + "probability": 0.9974 + }, + { + "start": 15493.34, + "end": 15495.64, + "probability": 0.9834 + }, + { + "start": 15496.84, + "end": 15497.84, + "probability": 0.9967 + }, + { + "start": 15498.7, + "end": 15499.16, + "probability": 0.6886 + }, + { + "start": 15499.82, + "end": 15500.34, + "probability": 0.7083 + }, + { + "start": 15501.26, + "end": 15503.0, + "probability": 0.9897 + }, + { + "start": 15503.8, + "end": 15504.34, + "probability": 0.9418 + }, + { + "start": 15505.12, + "end": 15508.5, + "probability": 0.9631 + }, + { + "start": 15508.88, + "end": 15510.16, + "probability": 0.6852 + }, + { + "start": 15510.76, + "end": 15511.74, + "probability": 0.6729 + }, + { + "start": 15512.82, + "end": 15513.68, + "probability": 0.6779 + }, + { + "start": 15515.76, + "end": 15517.1, + "probability": 0.9526 + }, + { + "start": 15518.24, + "end": 15520.2, + "probability": 0.9946 + }, + { + "start": 15521.16, + "end": 15522.85, + "probability": 0.9995 + }, + { + "start": 15524.06, + "end": 15525.06, + "probability": 0.9338 + }, + { + "start": 15526.06, + "end": 15529.62, + "probability": 0.9941 + }, + { + "start": 15530.84, + "end": 15534.02, + "probability": 0.9956 + }, + { + "start": 15534.68, + "end": 15536.04, + "probability": 0.9997 + }, + { + "start": 15538.04, + "end": 15539.44, + "probability": 0.9981 + }, + { + "start": 15540.64, + "end": 15542.16, + "probability": 0.9341 + }, + { + "start": 15542.92, + "end": 15546.02, + "probability": 0.9991 + }, + { + "start": 15548.14, + "end": 15548.88, + "probability": 0.9036 + }, + { + "start": 15550.22, + "end": 15550.86, + "probability": 0.9696 + }, + { + "start": 15551.96, + "end": 15552.9, + "probability": 0.995 + }, + { + "start": 15554.3, + "end": 15554.86, + "probability": 0.9854 + }, + { + "start": 15556.86, + "end": 15558.3, + "probability": 0.9943 + }, + { + "start": 15558.88, + "end": 15560.4, + "probability": 0.9482 + }, + { + "start": 15561.41, + "end": 15566.44, + "probability": 0.7054 + }, + { + "start": 15566.44, + "end": 15566.44, + "probability": 0.0902 + }, + { + "start": 15566.44, + "end": 15569.47, + "probability": 0.6511 + }, + { + "start": 15569.68, + "end": 15570.32, + "probability": 0.4486 + }, + { + "start": 15570.72, + "end": 15573.54, + "probability": 0.9805 + }, + { + "start": 15574.0, + "end": 15576.32, + "probability": 0.0968 + }, + { + "start": 15576.32, + "end": 15578.44, + "probability": 0.4384 + }, + { + "start": 15578.48, + "end": 15579.2, + "probability": 0.6498 + }, + { + "start": 15579.56, + "end": 15580.5, + "probability": 0.5478 + }, + { + "start": 15580.5, + "end": 15580.5, + "probability": 0.8696 + }, + { + "start": 15580.5, + "end": 15582.5, + "probability": 0.9011 + }, + { + "start": 15584.2, + "end": 15587.06, + "probability": 0.3896 + }, + { + "start": 15589.08, + "end": 15590.3, + "probability": 0.6262 + }, + { + "start": 15591.47, + "end": 15593.78, + "probability": 0.8511 + }, + { + "start": 15596.36, + "end": 15597.04, + "probability": 0.8097 + }, + { + "start": 15602.02, + "end": 15602.94, + "probability": 0.8346 + }, + { + "start": 15605.24, + "end": 15606.14, + "probability": 0.9933 + }, + { + "start": 15606.96, + "end": 15609.96, + "probability": 0.9714 + }, + { + "start": 15610.62, + "end": 15612.08, + "probability": 0.8425 + }, + { + "start": 15612.58, + "end": 15616.18, + "probability": 0.9897 + }, + { + "start": 15616.35, + "end": 15618.12, + "probability": 0.4047 + }, + { + "start": 15618.2, + "end": 15621.98, + "probability": 0.5146 + }, + { + "start": 15622.46, + "end": 15623.54, + "probability": 0.441 + }, + { + "start": 15625.82, + "end": 15625.96, + "probability": 0.7251 + }, + { + "start": 15628.94, + "end": 15632.06, + "probability": 0.4141 + }, + { + "start": 15635.38, + "end": 15635.96, + "probability": 0.7839 + }, + { + "start": 15637.3, + "end": 15638.05, + "probability": 0.9803 + }, + { + "start": 15638.82, + "end": 15639.84, + "probability": 0.9415 + }, + { + "start": 15640.94, + "end": 15643.3, + "probability": 0.9941 + }, + { + "start": 15644.5, + "end": 15648.18, + "probability": 0.999 + }, + { + "start": 15649.76, + "end": 15650.96, + "probability": 0.9759 + }, + { + "start": 15652.06, + "end": 15653.22, + "probability": 0.999 + }, + { + "start": 15653.86, + "end": 15655.8, + "probability": 0.9894 + }, + { + "start": 15656.26, + "end": 15657.96, + "probability": 0.7196 + }, + { + "start": 15659.54, + "end": 15661.68, + "probability": 0.9983 + }, + { + "start": 15662.5, + "end": 15663.74, + "probability": 0.9994 + }, + { + "start": 15664.88, + "end": 15667.46, + "probability": 0.9998 + }, + { + "start": 15668.16, + "end": 15669.86, + "probability": 0.9998 + }, + { + "start": 15670.38, + "end": 15672.24, + "probability": 0.9969 + }, + { + "start": 15673.26, + "end": 15673.72, + "probability": 0.7195 + }, + { + "start": 15674.0, + "end": 15676.12, + "probability": 0.8306 + }, + { + "start": 15697.58, + "end": 15699.12, + "probability": 0.6584 + }, + { + "start": 15699.88, + "end": 15701.1, + "probability": 0.6782 + }, + { + "start": 15704.14, + "end": 15704.86, + "probability": 0.816 + }, + { + "start": 15706.12, + "end": 15708.84, + "probability": 0.9346 + }, + { + "start": 15711.2, + "end": 15717.54, + "probability": 0.9985 + }, + { + "start": 15719.12, + "end": 15721.46, + "probability": 0.8247 + }, + { + "start": 15725.2, + "end": 15728.08, + "probability": 0.9117 + }, + { + "start": 15729.96, + "end": 15734.82, + "probability": 0.9916 + }, + { + "start": 15736.94, + "end": 15737.52, + "probability": 0.5345 + }, + { + "start": 15739.0, + "end": 15740.92, + "probability": 0.988 + }, + { + "start": 15742.42, + "end": 15745.56, + "probability": 0.9458 + }, + { + "start": 15746.84, + "end": 15747.66, + "probability": 0.9541 + }, + { + "start": 15748.28, + "end": 15749.58, + "probability": 0.9775 + }, + { + "start": 15751.08, + "end": 15753.78, + "probability": 0.9966 + }, + { + "start": 15754.66, + "end": 15755.74, + "probability": 0.9634 + }, + { + "start": 15756.46, + "end": 15757.1, + "probability": 0.9076 + }, + { + "start": 15758.02, + "end": 15758.8, + "probability": 0.4988 + }, + { + "start": 15760.48, + "end": 15765.86, + "probability": 0.8646 + }, + { + "start": 15766.84, + "end": 15768.58, + "probability": 0.6252 + }, + { + "start": 15769.74, + "end": 15774.61, + "probability": 0.99 + }, + { + "start": 15775.82, + "end": 15777.86, + "probability": 0.9641 + }, + { + "start": 15778.74, + "end": 15781.98, + "probability": 0.9445 + }, + { + "start": 15782.2, + "end": 15783.8, + "probability": 0.9918 + }, + { + "start": 15786.02, + "end": 15787.9, + "probability": 0.9907 + }, + { + "start": 15788.92, + "end": 15792.8, + "probability": 0.9474 + }, + { + "start": 15793.38, + "end": 15795.38, + "probability": 0.8906 + }, + { + "start": 15796.7, + "end": 15799.76, + "probability": 0.9818 + }, + { + "start": 15800.3, + "end": 15802.0, + "probability": 0.9976 + }, + { + "start": 15803.08, + "end": 15806.36, + "probability": 0.9964 + }, + { + "start": 15806.36, + "end": 15811.42, + "probability": 0.9983 + }, + { + "start": 15812.7, + "end": 15815.28, + "probability": 0.9771 + }, + { + "start": 15815.36, + "end": 15815.74, + "probability": 0.8174 + }, + { + "start": 15816.1, + "end": 15817.02, + "probability": 0.8945 + }, + { + "start": 15817.16, + "end": 15820.34, + "probability": 0.9564 + }, + { + "start": 15820.46, + "end": 15821.88, + "probability": 0.6724 + }, + { + "start": 15822.74, + "end": 15826.52, + "probability": 0.8741 + }, + { + "start": 15827.26, + "end": 15828.78, + "probability": 0.8538 + }, + { + "start": 15829.66, + "end": 15832.42, + "probability": 0.9967 + }, + { + "start": 15833.02, + "end": 15834.66, + "probability": 0.8822 + }, + { + "start": 15836.08, + "end": 15838.42, + "probability": 0.9948 + }, + { + "start": 15839.68, + "end": 15844.15, + "probability": 0.9739 + }, + { + "start": 15844.54, + "end": 15846.4, + "probability": 0.9847 + }, + { + "start": 15846.78, + "end": 15847.38, + "probability": 0.4968 + }, + { + "start": 15847.44, + "end": 15849.16, + "probability": 0.9941 + }, + { + "start": 15850.16, + "end": 15851.58, + "probability": 0.9774 + }, + { + "start": 15854.54, + "end": 15855.52, + "probability": 0.9845 + }, + { + "start": 15856.08, + "end": 15856.64, + "probability": 0.9556 + }, + { + "start": 15857.2, + "end": 15860.72, + "probability": 0.9907 + }, + { + "start": 15861.68, + "end": 15863.88, + "probability": 0.9982 + }, + { + "start": 15864.8, + "end": 15867.66, + "probability": 0.9968 + }, + { + "start": 15868.44, + "end": 15873.1, + "probability": 0.9987 + }, + { + "start": 15874.06, + "end": 15877.72, + "probability": 0.9922 + }, + { + "start": 15878.52, + "end": 15879.32, + "probability": 0.8128 + }, + { + "start": 15879.32, + "end": 15882.2, + "probability": 0.887 + }, + { + "start": 15883.16, + "end": 15884.64, + "probability": 0.9381 + }, + { + "start": 15885.54, + "end": 15888.16, + "probability": 0.9495 + }, + { + "start": 15888.24, + "end": 15890.44, + "probability": 0.9567 + }, + { + "start": 15891.84, + "end": 15896.05, + "probability": 0.9963 + }, + { + "start": 15897.22, + "end": 15900.44, + "probability": 0.9943 + }, + { + "start": 15900.74, + "end": 15902.76, + "probability": 0.5192 + }, + { + "start": 15904.06, + "end": 15905.62, + "probability": 0.9971 + }, + { + "start": 15906.2, + "end": 15907.4, + "probability": 0.8248 + }, + { + "start": 15907.98, + "end": 15909.38, + "probability": 0.9946 + }, + { + "start": 15910.32, + "end": 15912.49, + "probability": 0.9954 + }, + { + "start": 15913.38, + "end": 15915.52, + "probability": 0.9845 + }, + { + "start": 15916.96, + "end": 15918.1, + "probability": 0.99 + }, + { + "start": 15919.1, + "end": 15921.46, + "probability": 0.9889 + }, + { + "start": 15922.62, + "end": 15925.28, + "probability": 0.9982 + }, + { + "start": 15926.06, + "end": 15928.62, + "probability": 0.9982 + }, + { + "start": 15928.68, + "end": 15930.1, + "probability": 0.9968 + }, + { + "start": 15931.04, + "end": 15931.44, + "probability": 0.4001 + }, + { + "start": 15931.48, + "end": 15931.69, + "probability": 0.6328 + }, + { + "start": 15932.64, + "end": 15933.18, + "probability": 0.9855 + }, + { + "start": 15933.98, + "end": 15934.87, + "probability": 0.8521 + }, + { + "start": 15935.8, + "end": 15937.5, + "probability": 0.9943 + }, + { + "start": 15937.62, + "end": 15939.92, + "probability": 0.841 + }, + { + "start": 15940.32, + "end": 15942.15, + "probability": 0.9373 + }, + { + "start": 15942.48, + "end": 15942.66, + "probability": 0.8284 + }, + { + "start": 15942.8, + "end": 15944.1, + "probability": 0.9488 + }, + { + "start": 15944.66, + "end": 15947.2, + "probability": 0.9971 + }, + { + "start": 15948.0, + "end": 15948.86, + "probability": 0.8826 + }, + { + "start": 15948.96, + "end": 15949.41, + "probability": 0.9717 + }, + { + "start": 15949.7, + "end": 15950.86, + "probability": 0.9781 + }, + { + "start": 15951.18, + "end": 15952.61, + "probability": 0.8705 + }, + { + "start": 15953.4, + "end": 15954.58, + "probability": 0.772 + }, + { + "start": 15954.7, + "end": 15958.84, + "probability": 0.9588 + }, + { + "start": 15959.04, + "end": 15963.8, + "probability": 0.9928 + }, + { + "start": 15964.4, + "end": 15966.92, + "probability": 0.9826 + }, + { + "start": 15966.94, + "end": 15970.36, + "probability": 0.9899 + }, + { + "start": 15970.42, + "end": 15972.42, + "probability": 0.2852 + }, + { + "start": 15972.82, + "end": 15974.16, + "probability": 0.4477 + }, + { + "start": 15974.44, + "end": 15977.0, + "probability": 0.8337 + }, + { + "start": 15977.18, + "end": 15977.42, + "probability": 0.9822 + }, + { + "start": 15977.96, + "end": 15978.68, + "probability": 0.7562 + }, + { + "start": 15978.9, + "end": 15979.58, + "probability": 0.8294 + }, + { + "start": 15979.76, + "end": 15980.74, + "probability": 0.991 + }, + { + "start": 15980.86, + "end": 15981.66, + "probability": 0.5136 + }, + { + "start": 15981.82, + "end": 15982.6, + "probability": 0.7976 + }, + { + "start": 15983.12, + "end": 15985.44, + "probability": 0.9672 + }, + { + "start": 15985.44, + "end": 15987.56, + "probability": 0.9941 + }, + { + "start": 15987.72, + "end": 15988.45, + "probability": 0.9192 + }, + { + "start": 15989.76, + "end": 15994.44, + "probability": 0.9945 + }, + { + "start": 15995.12, + "end": 15995.36, + "probability": 0.8922 + }, + { + "start": 15997.0, + "end": 15999.2, + "probability": 0.9816 + }, + { + "start": 16000.46, + "end": 16003.9, + "probability": 0.9272 + }, + { + "start": 16004.46, + "end": 16006.16, + "probability": 0.9894 + }, + { + "start": 16007.92, + "end": 16008.66, + "probability": 0.9368 + }, + { + "start": 16009.48, + "end": 16010.16, + "probability": 0.9748 + }, + { + "start": 16011.06, + "end": 16011.88, + "probability": 0.8376 + }, + { + "start": 16012.76, + "end": 16016.02, + "probability": 0.8652 + }, + { + "start": 16016.8, + "end": 16020.12, + "probability": 0.9873 + }, + { + "start": 16021.04, + "end": 16021.94, + "probability": 0.8351 + }, + { + "start": 16022.76, + "end": 16026.5, + "probability": 0.9893 + }, + { + "start": 16027.08, + "end": 16029.08, + "probability": 0.9847 + }, + { + "start": 16030.44, + "end": 16032.58, + "probability": 0.9963 + }, + { + "start": 16032.84, + "end": 16038.62, + "probability": 0.9997 + }, + { + "start": 16039.54, + "end": 16040.54, + "probability": 0.8783 + }, + { + "start": 16040.96, + "end": 16041.3, + "probability": 0.8162 + }, + { + "start": 16041.42, + "end": 16042.24, + "probability": 0.7657 + }, + { + "start": 16042.56, + "end": 16044.0, + "probability": 0.6463 + }, + { + "start": 16045.02, + "end": 16047.52, + "probability": 0.9991 + }, + { + "start": 16047.52, + "end": 16051.04, + "probability": 0.9964 + }, + { + "start": 16051.62, + "end": 16054.58, + "probability": 0.907 + }, + { + "start": 16055.1, + "end": 16058.08, + "probability": 0.993 + }, + { + "start": 16058.38, + "end": 16060.16, + "probability": 0.9288 + }, + { + "start": 16060.24, + "end": 16061.4, + "probability": 0.9569 + }, + { + "start": 16061.54, + "end": 16063.3, + "probability": 0.9985 + }, + { + "start": 16063.74, + "end": 16066.92, + "probability": 0.9946 + }, + { + "start": 16067.38, + "end": 16070.49, + "probability": 0.999 + }, + { + "start": 16071.56, + "end": 16075.5, + "probability": 0.9987 + }, + { + "start": 16075.7, + "end": 16077.44, + "probability": 0.9949 + }, + { + "start": 16078.02, + "end": 16081.14, + "probability": 0.9406 + }, + { + "start": 16081.74, + "end": 16082.74, + "probability": 0.8447 + }, + { + "start": 16082.82, + "end": 16085.76, + "probability": 0.9372 + }, + { + "start": 16086.58, + "end": 16090.24, + "probability": 0.9891 + }, + { + "start": 16091.16, + "end": 16093.62, + "probability": 0.9883 + }, + { + "start": 16093.82, + "end": 16097.34, + "probability": 0.9988 + }, + { + "start": 16098.92, + "end": 16102.36, + "probability": 0.9972 + }, + { + "start": 16103.92, + "end": 16107.34, + "probability": 0.9994 + }, + { + "start": 16107.72, + "end": 16110.92, + "probability": 0.8245 + }, + { + "start": 16111.88, + "end": 16113.84, + "probability": 0.876 + }, + { + "start": 16113.98, + "end": 16117.1, + "probability": 0.9679 + }, + { + "start": 16117.24, + "end": 16118.94, + "probability": 0.9627 + }, + { + "start": 16119.06, + "end": 16121.3, + "probability": 0.9976 + }, + { + "start": 16122.12, + "end": 16123.59, + "probability": 0.8711 + }, + { + "start": 16123.9, + "end": 16125.06, + "probability": 0.9702 + }, + { + "start": 16126.94, + "end": 16133.74, + "probability": 0.9987 + }, + { + "start": 16134.32, + "end": 16136.16, + "probability": 0.7641 + }, + { + "start": 16136.92, + "end": 16140.64, + "probability": 0.8911 + }, + { + "start": 16141.32, + "end": 16145.34, + "probability": 0.9941 + }, + { + "start": 16146.38, + "end": 16149.64, + "probability": 0.9274 + }, + { + "start": 16150.32, + "end": 16152.0, + "probability": 0.9446 + }, + { + "start": 16152.64, + "end": 16154.44, + "probability": 0.9985 + }, + { + "start": 16154.98, + "end": 16156.88, + "probability": 0.9229 + }, + { + "start": 16157.14, + "end": 16157.84, + "probability": 0.4828 + }, + { + "start": 16157.94, + "end": 16158.69, + "probability": 0.9565 + }, + { + "start": 16159.42, + "end": 16159.86, + "probability": 0.9078 + }, + { + "start": 16160.46, + "end": 16163.98, + "probability": 0.9952 + }, + { + "start": 16164.52, + "end": 16165.48, + "probability": 0.7945 + }, + { + "start": 16165.74, + "end": 16167.24, + "probability": 0.9298 + }, + { + "start": 16167.32, + "end": 16169.34, + "probability": 0.9385 + }, + { + "start": 16169.4, + "end": 16170.26, + "probability": 0.5974 + }, + { + "start": 16170.34, + "end": 16171.8, + "probability": 0.9958 + }, + { + "start": 16172.36, + "end": 16175.16, + "probability": 0.9849 + }, + { + "start": 16175.82, + "end": 16180.58, + "probability": 0.9905 + }, + { + "start": 16181.62, + "end": 16186.48, + "probability": 0.9443 + }, + { + "start": 16187.42, + "end": 16190.78, + "probability": 0.9928 + }, + { + "start": 16192.24, + "end": 16194.52, + "probability": 0.9527 + }, + { + "start": 16196.34, + "end": 16197.65, + "probability": 0.9912 + }, + { + "start": 16198.46, + "end": 16206.78, + "probability": 0.9972 + }, + { + "start": 16207.52, + "end": 16208.92, + "probability": 0.7543 + }, + { + "start": 16210.06, + "end": 16211.94, + "probability": 0.9104 + }, + { + "start": 16212.52, + "end": 16212.92, + "probability": 0.4663 + }, + { + "start": 16212.96, + "end": 16213.12, + "probability": 0.8927 + }, + { + "start": 16213.26, + "end": 16213.78, + "probability": 0.8135 + }, + { + "start": 16213.9, + "end": 16214.92, + "probability": 0.9618 + }, + { + "start": 16215.1, + "end": 16215.2, + "probability": 0.087 + }, + { + "start": 16215.38, + "end": 16216.78, + "probability": 0.848 + }, + { + "start": 16218.14, + "end": 16218.98, + "probability": 0.9233 + }, + { + "start": 16219.74, + "end": 16221.06, + "probability": 0.9978 + }, + { + "start": 16221.8, + "end": 16224.26, + "probability": 0.9927 + }, + { + "start": 16224.84, + "end": 16226.68, + "probability": 0.7665 + }, + { + "start": 16227.48, + "end": 16230.54, + "probability": 0.8924 + }, + { + "start": 16230.68, + "end": 16232.3, + "probability": 0.9385 + }, + { + "start": 16232.58, + "end": 16234.16, + "probability": 0.9054 + }, + { + "start": 16234.22, + "end": 16235.18, + "probability": 0.9688 + }, + { + "start": 16235.7, + "end": 16236.6, + "probability": 0.9214 + }, + { + "start": 16237.04, + "end": 16239.22, + "probability": 0.8407 + }, + { + "start": 16239.38, + "end": 16240.18, + "probability": 0.6577 + }, + { + "start": 16240.46, + "end": 16242.88, + "probability": 0.9972 + }, + { + "start": 16243.4, + "end": 16244.82, + "probability": 0.9991 + }, + { + "start": 16245.36, + "end": 16249.96, + "probability": 0.949 + }, + { + "start": 16250.8, + "end": 16256.5, + "probability": 0.9644 + }, + { + "start": 16257.3, + "end": 16258.06, + "probability": 0.7761 + }, + { + "start": 16258.2, + "end": 16261.96, + "probability": 0.9457 + }, + { + "start": 16262.98, + "end": 16265.6, + "probability": 0.9863 + }, + { + "start": 16266.06, + "end": 16267.38, + "probability": 0.3435 + }, + { + "start": 16268.08, + "end": 16272.22, + "probability": 0.9966 + }, + { + "start": 16272.22, + "end": 16275.84, + "probability": 0.9888 + }, + { + "start": 16277.26, + "end": 16278.3, + "probability": 0.6087 + }, + { + "start": 16278.62, + "end": 16279.7, + "probability": 0.969 + }, + { + "start": 16281.18, + "end": 16282.66, + "probability": 0.8472 + }, + { + "start": 16282.88, + "end": 16287.1, + "probability": 0.9596 + }, + { + "start": 16287.94, + "end": 16290.24, + "probability": 0.95 + }, + { + "start": 16290.24, + "end": 16293.28, + "probability": 0.9587 + }, + { + "start": 16293.5, + "end": 16293.92, + "probability": 0.7006 + }, + { + "start": 16294.76, + "end": 16300.5, + "probability": 0.9608 + }, + { + "start": 16301.2, + "end": 16302.44, + "probability": 0.9824 + }, + { + "start": 16303.04, + "end": 16304.16, + "probability": 0.7861 + }, + { + "start": 16304.82, + "end": 16309.7, + "probability": 0.7554 + }, + { + "start": 16310.32, + "end": 16315.41, + "probability": 0.9977 + }, + { + "start": 16316.66, + "end": 16318.34, + "probability": 0.9852 + }, + { + "start": 16319.42, + "end": 16320.05, + "probability": 0.8562 + }, + { + "start": 16320.24, + "end": 16323.99, + "probability": 0.9968 + }, + { + "start": 16324.18, + "end": 16324.93, + "probability": 0.958 + }, + { + "start": 16326.24, + "end": 16329.68, + "probability": 0.927 + }, + { + "start": 16330.26, + "end": 16331.4, + "probability": 0.9961 + }, + { + "start": 16332.78, + "end": 16336.96, + "probability": 0.9951 + }, + { + "start": 16337.1, + "end": 16340.54, + "probability": 0.9755 + }, + { + "start": 16341.44, + "end": 16343.48, + "probability": 0.8661 + }, + { + "start": 16344.06, + "end": 16344.76, + "probability": 0.8745 + }, + { + "start": 16344.94, + "end": 16346.6, + "probability": 0.9889 + }, + { + "start": 16347.0, + "end": 16347.2, + "probability": 0.5935 + }, + { + "start": 16347.26, + "end": 16347.86, + "probability": 0.9846 + }, + { + "start": 16348.0, + "end": 16352.5, + "probability": 0.9413 + }, + { + "start": 16353.64, + "end": 16354.7, + "probability": 0.7408 + }, + { + "start": 16355.96, + "end": 16357.66, + "probability": 0.9973 + }, + { + "start": 16358.3, + "end": 16359.49, + "probability": 0.9976 + }, + { + "start": 16359.8, + "end": 16360.48, + "probability": 0.6408 + }, + { + "start": 16360.5, + "end": 16360.64, + "probability": 0.6609 + }, + { + "start": 16360.78, + "end": 16361.74, + "probability": 0.984 + }, + { + "start": 16361.82, + "end": 16363.44, + "probability": 0.9969 + }, + { + "start": 16363.84, + "end": 16367.44, + "probability": 0.9941 + }, + { + "start": 16368.0, + "end": 16369.52, + "probability": 0.9837 + }, + { + "start": 16370.08, + "end": 16370.72, + "probability": 0.6314 + }, + { + "start": 16371.7, + "end": 16372.78, + "probability": 0.9846 + }, + { + "start": 16373.32, + "end": 16375.18, + "probability": 0.9993 + }, + { + "start": 16376.92, + "end": 16377.2, + "probability": 0.7846 + }, + { + "start": 16378.26, + "end": 16379.48, + "probability": 0.9815 + }, + { + "start": 16380.26, + "end": 16382.6, + "probability": 0.9984 + }, + { + "start": 16383.16, + "end": 16389.9, + "probability": 0.9866 + }, + { + "start": 16390.66, + "end": 16392.06, + "probability": 0.7392 + }, + { + "start": 16392.76, + "end": 16392.96, + "probability": 0.9811 + }, + { + "start": 16394.56, + "end": 16396.72, + "probability": 0.9937 + }, + { + "start": 16397.4, + "end": 16403.72, + "probability": 0.9877 + }, + { + "start": 16404.1, + "end": 16404.98, + "probability": 0.8549 + }, + { + "start": 16405.28, + "end": 16407.37, + "probability": 0.7892 + }, + { + "start": 16409.78, + "end": 16409.78, + "probability": 0.0743 + }, + { + "start": 16409.78, + "end": 16413.22, + "probability": 0.9885 + }, + { + "start": 16417.02, + "end": 16418.9, + "probability": 0.645 + }, + { + "start": 16419.52, + "end": 16421.46, + "probability": 0.9125 + }, + { + "start": 16422.14, + "end": 16423.4, + "probability": 0.8809 + }, + { + "start": 16424.0, + "end": 16426.94, + "probability": 0.991 + }, + { + "start": 16427.38, + "end": 16429.16, + "probability": 0.9495 + }, + { + "start": 16432.0, + "end": 16435.3, + "probability": 0.9261 + }, + { + "start": 16436.54, + "end": 16438.72, + "probability": 0.9818 + }, + { + "start": 16439.94, + "end": 16443.48, + "probability": 0.988 + }, + { + "start": 16443.8, + "end": 16444.08, + "probability": 0.2722 + }, + { + "start": 16445.22, + "end": 16448.36, + "probability": 0.9996 + }, + { + "start": 16448.36, + "end": 16453.76, + "probability": 0.9992 + }, + { + "start": 16454.18, + "end": 16458.02, + "probability": 0.9801 + }, + { + "start": 16458.02, + "end": 16461.62, + "probability": 0.9985 + }, + { + "start": 16462.16, + "end": 16468.08, + "probability": 0.9981 + }, + { + "start": 16469.26, + "end": 16472.88, + "probability": 0.8964 + }, + { + "start": 16473.94, + "end": 16475.26, + "probability": 0.9834 + }, + { + "start": 16475.48, + "end": 16479.2, + "probability": 0.9977 + }, + { + "start": 16480.68, + "end": 16482.38, + "probability": 0.9795 + }, + { + "start": 16484.0, + "end": 16487.82, + "probability": 0.9962 + }, + { + "start": 16489.12, + "end": 16489.92, + "probability": 0.9676 + }, + { + "start": 16490.72, + "end": 16493.14, + "probability": 0.9395 + }, + { + "start": 16493.64, + "end": 16494.06, + "probability": 0.93 + }, + { + "start": 16494.84, + "end": 16497.54, + "probability": 0.9932 + }, + { + "start": 16498.48, + "end": 16500.08, + "probability": 0.9987 + }, + { + "start": 16500.7, + "end": 16501.94, + "probability": 0.9416 + }, + { + "start": 16502.82, + "end": 16504.02, + "probability": 0.8086 + }, + { + "start": 16505.02, + "end": 16505.18, + "probability": 0.4943 + }, + { + "start": 16506.72, + "end": 16507.86, + "probability": 0.96 + }, + { + "start": 16508.58, + "end": 16509.54, + "probability": 0.9132 + }, + { + "start": 16510.56, + "end": 16512.7, + "probability": 0.987 + }, + { + "start": 16513.46, + "end": 16516.1, + "probability": 0.9987 + }, + { + "start": 16516.82, + "end": 16520.06, + "probability": 0.8345 + }, + { + "start": 16521.4, + "end": 16522.88, + "probability": 0.9894 + }, + { + "start": 16523.4, + "end": 16524.06, + "probability": 0.8314 + }, + { + "start": 16525.54, + "end": 16527.44, + "probability": 0.9368 + }, + { + "start": 16527.96, + "end": 16530.16, + "probability": 0.9907 + }, + { + "start": 16530.62, + "end": 16532.34, + "probability": 0.9753 + }, + { + "start": 16532.4, + "end": 16533.14, + "probability": 0.8312 + }, + { + "start": 16534.94, + "end": 16535.2, + "probability": 0.9528 + }, + { + "start": 16536.72, + "end": 16538.26, + "probability": 0.7679 + }, + { + "start": 16538.98, + "end": 16540.78, + "probability": 0.9242 + }, + { + "start": 16541.3, + "end": 16545.88, + "probability": 0.9966 + }, + { + "start": 16546.38, + "end": 16547.96, + "probability": 0.9783 + }, + { + "start": 16548.34, + "end": 16550.84, + "probability": 0.9963 + }, + { + "start": 16551.38, + "end": 16555.18, + "probability": 0.9978 + }, + { + "start": 16557.1, + "end": 16557.9, + "probability": 0.9949 + }, + { + "start": 16558.5, + "end": 16560.5, + "probability": 0.865 + }, + { + "start": 16561.4, + "end": 16561.64, + "probability": 0.6661 + }, + { + "start": 16562.68, + "end": 16564.82, + "probability": 0.9956 + }, + { + "start": 16566.36, + "end": 16567.24, + "probability": 0.8393 + }, + { + "start": 16568.26, + "end": 16570.24, + "probability": 0.9148 + }, + { + "start": 16570.68, + "end": 16571.68, + "probability": 0.9904 + }, + { + "start": 16572.06, + "end": 16572.9, + "probability": 0.973 + }, + { + "start": 16573.1, + "end": 16577.3, + "probability": 0.9982 + }, + { + "start": 16578.2, + "end": 16580.44, + "probability": 0.8978 + }, + { + "start": 16581.88, + "end": 16582.16, + "probability": 0.6956 + }, + { + "start": 16582.88, + "end": 16585.06, + "probability": 0.9938 + }, + { + "start": 16585.1, + "end": 16590.8, + "probability": 0.9274 + }, + { + "start": 16591.28, + "end": 16592.75, + "probability": 0.9863 + }, + { + "start": 16593.36, + "end": 16593.6, + "probability": 0.6296 + }, + { + "start": 16594.24, + "end": 16597.52, + "probability": 0.9104 + }, + { + "start": 16598.32, + "end": 16600.34, + "probability": 0.8075 + }, + { + "start": 16601.02, + "end": 16601.52, + "probability": 0.9509 + }, + { + "start": 16602.2, + "end": 16606.68, + "probability": 0.9984 + }, + { + "start": 16606.68, + "end": 16611.36, + "probability": 0.998 + }, + { + "start": 16611.8, + "end": 16614.6, + "probability": 0.9847 + }, + { + "start": 16615.46, + "end": 16616.9, + "probability": 0.7703 + }, + { + "start": 16617.46, + "end": 16619.1, + "probability": 0.9979 + }, + { + "start": 16619.62, + "end": 16620.92, + "probability": 0.7937 + }, + { + "start": 16621.84, + "end": 16624.82, + "probability": 0.9888 + }, + { + "start": 16625.06, + "end": 16625.66, + "probability": 0.696 + }, + { + "start": 16626.18, + "end": 16627.04, + "probability": 0.9395 + }, + { + "start": 16627.92, + "end": 16631.84, + "probability": 0.9915 + }, + { + "start": 16632.42, + "end": 16633.26, + "probability": 0.8148 + }, + { + "start": 16633.42, + "end": 16636.54, + "probability": 0.9947 + }, + { + "start": 16637.36, + "end": 16638.9, + "probability": 0.9728 + }, + { + "start": 16639.76, + "end": 16642.43, + "probability": 0.9333 + }, + { + "start": 16643.54, + "end": 16644.14, + "probability": 0.5212 + }, + { + "start": 16645.44, + "end": 16648.01, + "probability": 0.9104 + }, + { + "start": 16650.36, + "end": 16651.2, + "probability": 0.5687 + }, + { + "start": 16652.0, + "end": 16652.56, + "probability": 0.9353 + }, + { + "start": 16652.76, + "end": 16652.86, + "probability": 0.8173 + }, + { + "start": 16653.02, + "end": 16655.56, + "probability": 0.9939 + }, + { + "start": 16655.7, + "end": 16656.53, + "probability": 0.9409 + }, + { + "start": 16656.72, + "end": 16661.34, + "probability": 0.9738 + }, + { + "start": 16661.6, + "end": 16665.06, + "probability": 0.9867 + }, + { + "start": 16665.4, + "end": 16666.68, + "probability": 0.9107 + }, + { + "start": 16666.82, + "end": 16667.87, + "probability": 0.998 + }, + { + "start": 16668.0, + "end": 16668.74, + "probability": 0.9015 + }, + { + "start": 16668.78, + "end": 16669.16, + "probability": 0.6571 + }, + { + "start": 16669.72, + "end": 16669.86, + "probability": 0.9989 + }, + { + "start": 16670.78, + "end": 16674.04, + "probability": 0.9846 + }, + { + "start": 16674.44, + "end": 16677.24, + "probability": 0.9602 + }, + { + "start": 16677.4, + "end": 16679.08, + "probability": 0.9137 + }, + { + "start": 16679.72, + "end": 16680.38, + "probability": 0.9162 + }, + { + "start": 16681.02, + "end": 16682.98, + "probability": 0.9961 + }, + { + "start": 16683.58, + "end": 16686.18, + "probability": 0.8586 + }, + { + "start": 16686.52, + "end": 16687.08, + "probability": 0.8102 + }, + { + "start": 16687.82, + "end": 16691.14, + "probability": 0.9779 + }, + { + "start": 16693.0, + "end": 16694.94, + "probability": 0.9922 + }, + { + "start": 16696.04, + "end": 16696.82, + "probability": 0.9584 + }, + { + "start": 16697.0, + "end": 16697.98, + "probability": 0.9565 + }, + { + "start": 16698.3, + "end": 16701.72, + "probability": 0.9967 + }, + { + "start": 16702.98, + "end": 16705.38, + "probability": 0.9978 + }, + { + "start": 16705.58, + "end": 16707.5, + "probability": 0.9769 + }, + { + "start": 16708.38, + "end": 16709.08, + "probability": 0.9532 + }, + { + "start": 16710.74, + "end": 16711.76, + "probability": 0.9609 + }, + { + "start": 16712.58, + "end": 16713.42, + "probability": 0.979 + }, + { + "start": 16714.36, + "end": 16717.54, + "probability": 0.9979 + }, + { + "start": 16717.62, + "end": 16720.36, + "probability": 0.6517 + }, + { + "start": 16720.94, + "end": 16721.16, + "probability": 0.5384 + }, + { + "start": 16721.83, + "end": 16722.64, + "probability": 0.0881 + }, + { + "start": 16722.64, + "end": 16722.64, + "probability": 0.3282 + }, + { + "start": 16722.64, + "end": 16722.64, + "probability": 0.2319 + }, + { + "start": 16722.64, + "end": 16722.64, + "probability": 0.3994 + }, + { + "start": 16722.64, + "end": 16724.06, + "probability": 0.9878 + }, + { + "start": 16724.5, + "end": 16725.14, + "probability": 0.9241 + }, + { + "start": 16725.14, + "end": 16725.44, + "probability": 0.859 + }, + { + "start": 16725.56, + "end": 16726.4, + "probability": 0.9893 + }, + { + "start": 16726.66, + "end": 16727.44, + "probability": 0.8814 + }, + { + "start": 16728.64, + "end": 16733.42, + "probability": 0.6345 + }, + { + "start": 16734.38, + "end": 16736.1, + "probability": 0.9519 + }, + { + "start": 16736.74, + "end": 16738.12, + "probability": 0.832 + }, + { + "start": 16738.8, + "end": 16740.24, + "probability": 0.7622 + }, + { + "start": 16741.62, + "end": 16744.96, + "probability": 0.9979 + }, + { + "start": 16745.84, + "end": 16748.06, + "probability": 0.9913 + }, + { + "start": 16748.14, + "end": 16750.28, + "probability": 0.9824 + }, + { + "start": 16750.58, + "end": 16751.28, + "probability": 0.7541 + }, + { + "start": 16752.74, + "end": 16756.08, + "probability": 0.9976 + }, + { + "start": 16756.08, + "end": 16758.82, + "probability": 0.9955 + }, + { + "start": 16759.62, + "end": 16762.36, + "probability": 0.9776 + }, + { + "start": 16763.2, + "end": 16765.16, + "probability": 0.9481 + }, + { + "start": 16766.02, + "end": 16766.67, + "probability": 0.9181 + }, + { + "start": 16767.96, + "end": 16770.12, + "probability": 0.6807 + }, + { + "start": 16771.48, + "end": 16776.02, + "probability": 0.9974 + }, + { + "start": 16776.82, + "end": 16777.8, + "probability": 0.9689 + }, + { + "start": 16778.74, + "end": 16779.66, + "probability": 0.9883 + }, + { + "start": 16779.74, + "end": 16781.31, + "probability": 0.9924 + }, + { + "start": 16781.94, + "end": 16783.07, + "probability": 0.8838 + }, + { + "start": 16783.86, + "end": 16785.84, + "probability": 0.894 + }, + { + "start": 16785.98, + "end": 16788.46, + "probability": 0.9849 + }, + { + "start": 16790.42, + "end": 16791.72, + "probability": 0.9156 + }, + { + "start": 16792.32, + "end": 16793.72, + "probability": 0.9594 + }, + { + "start": 16794.52, + "end": 16797.78, + "probability": 0.8857 + }, + { + "start": 16798.28, + "end": 16800.02, + "probability": 0.9623 + }, + { + "start": 16800.2, + "end": 16801.62, + "probability": 0.8508 + }, + { + "start": 16801.72, + "end": 16804.94, + "probability": 0.9763 + }, + { + "start": 16805.46, + "end": 16806.36, + "probability": 0.7081 + }, + { + "start": 16806.88, + "end": 16807.8, + "probability": 0.7563 + }, + { + "start": 16808.4, + "end": 16809.06, + "probability": 0.9899 + }, + { + "start": 16809.62, + "end": 16814.12, + "probability": 0.981 + }, + { + "start": 16814.58, + "end": 16815.88, + "probability": 0.8993 + }, + { + "start": 16816.42, + "end": 16816.9, + "probability": 0.9815 + }, + { + "start": 16817.46, + "end": 16818.94, + "probability": 0.9993 + }, + { + "start": 16820.54, + "end": 16822.22, + "probability": 0.842 + }, + { + "start": 16823.84, + "end": 16825.08, + "probability": 0.7244 + }, + { + "start": 16827.56, + "end": 16828.94, + "probability": 0.9224 + }, + { + "start": 16830.2, + "end": 16832.56, + "probability": 0.9941 + }, + { + "start": 16833.4, + "end": 16834.36, + "probability": 0.6666 + }, + { + "start": 16835.12, + "end": 16835.58, + "probability": 0.7729 + }, + { + "start": 16836.3, + "end": 16837.22, + "probability": 0.9468 + }, + { + "start": 16838.04, + "end": 16840.58, + "probability": 0.9922 + }, + { + "start": 16841.6, + "end": 16843.86, + "probability": 0.6702 + }, + { + "start": 16844.44, + "end": 16848.26, + "probability": 0.8717 + }, + { + "start": 16849.76, + "end": 16854.36, + "probability": 0.9738 + }, + { + "start": 16854.88, + "end": 16857.78, + "probability": 0.9835 + }, + { + "start": 16858.62, + "end": 16860.28, + "probability": 0.8916 + }, + { + "start": 16861.32, + "end": 16862.92, + "probability": 0.9624 + }, + { + "start": 16863.58, + "end": 16866.0, + "probability": 0.9938 + }, + { + "start": 16866.56, + "end": 16867.98, + "probability": 0.4832 + }, + { + "start": 16868.08, + "end": 16868.12, + "probability": 0.5166 + }, + { + "start": 16868.18, + "end": 16870.44, + "probability": 0.9906 + }, + { + "start": 16871.6, + "end": 16872.74, + "probability": 0.9797 + }, + { + "start": 16873.48, + "end": 16875.98, + "probability": 0.9793 + }, + { + "start": 16876.62, + "end": 16877.78, + "probability": 0.9078 + }, + { + "start": 16878.68, + "end": 16884.38, + "probability": 0.9668 + }, + { + "start": 16884.6, + "end": 16886.26, + "probability": 0.8794 + }, + { + "start": 16888.48, + "end": 16890.18, + "probability": 0.999 + }, + { + "start": 16891.02, + "end": 16892.74, + "probability": 0.9441 + }, + { + "start": 16893.88, + "end": 16894.6, + "probability": 0.8529 + }, + { + "start": 16895.16, + "end": 16897.58, + "probability": 0.9813 + }, + { + "start": 16897.96, + "end": 16899.65, + "probability": 0.7896 + }, + { + "start": 16900.52, + "end": 16902.52, + "probability": 0.9048 + }, + { + "start": 16903.02, + "end": 16904.1, + "probability": 0.9542 + }, + { + "start": 16904.24, + "end": 16904.54, + "probability": 0.97 + }, + { + "start": 16905.04, + "end": 16907.18, + "probability": 0.9632 + }, + { + "start": 16907.32, + "end": 16909.42, + "probability": 0.9976 + }, + { + "start": 16909.74, + "end": 16910.87, + "probability": 0.8867 + }, + { + "start": 16911.66, + "end": 16912.52, + "probability": 0.8674 + }, + { + "start": 16913.58, + "end": 16914.59, + "probability": 0.9292 + }, + { + "start": 16915.26, + "end": 16915.82, + "probability": 0.6092 + }, + { + "start": 16916.02, + "end": 16917.1, + "probability": 0.5514 + }, + { + "start": 16917.64, + "end": 16918.84, + "probability": 0.8128 + }, + { + "start": 16919.06, + "end": 16919.82, + "probability": 0.8232 + }, + { + "start": 16919.98, + "end": 16920.9, + "probability": 0.8303 + }, + { + "start": 16920.9, + "end": 16920.9, + "probability": 0.2261 + }, + { + "start": 16920.9, + "end": 16921.68, + "probability": 0.4972 + }, + { + "start": 16921.9, + "end": 16922.96, + "probability": 0.8061 + }, + { + "start": 16922.98, + "end": 16923.32, + "probability": 0.4243 + }, + { + "start": 16923.36, + "end": 16923.36, + "probability": 0.5275 + }, + { + "start": 16923.64, + "end": 16925.53, + "probability": 0.8442 + }, + { + "start": 16926.96, + "end": 16929.16, + "probability": 0.9374 + }, + { + "start": 16929.66, + "end": 16930.86, + "probability": 0.9116 + }, + { + "start": 16931.0, + "end": 16933.22, + "probability": 0.9803 + }, + { + "start": 16935.14, + "end": 16938.64, + "probability": 0.8462 + }, + { + "start": 16939.7, + "end": 16940.42, + "probability": 0.7703 + }, + { + "start": 16940.56, + "end": 16945.72, + "probability": 0.991 + }, + { + "start": 16946.58, + "end": 16947.94, + "probability": 0.9922 + }, + { + "start": 16948.62, + "end": 16951.12, + "probability": 0.9988 + }, + { + "start": 16951.46, + "end": 16954.86, + "probability": 0.9867 + }, + { + "start": 16955.72, + "end": 16959.58, + "probability": 0.9825 + }, + { + "start": 16959.66, + "end": 16960.12, + "probability": 0.822 + }, + { + "start": 16960.34, + "end": 16960.56, + "probability": 0.7939 + }, + { + "start": 16960.86, + "end": 16962.84, + "probability": 0.9723 + }, + { + "start": 17001.5, + "end": 17003.64, + "probability": 0.5268 + }, + { + "start": 17004.64, + "end": 17006.08, + "probability": 0.6286 + }, + { + "start": 17007.84, + "end": 17008.92, + "probability": 0.7898 + }, + { + "start": 17010.86, + "end": 17013.6, + "probability": 0.9945 + }, + { + "start": 17014.88, + "end": 17019.36, + "probability": 0.9962 + }, + { + "start": 17020.62, + "end": 17024.56, + "probability": 0.991 + }, + { + "start": 17025.92, + "end": 17029.76, + "probability": 0.9786 + }, + { + "start": 17031.14, + "end": 17033.38, + "probability": 0.8432 + }, + { + "start": 17034.32, + "end": 17035.94, + "probability": 0.8706 + }, + { + "start": 17037.8, + "end": 17040.22, + "probability": 0.9905 + }, + { + "start": 17041.94, + "end": 17042.48, + "probability": 0.9627 + }, + { + "start": 17043.1, + "end": 17043.72, + "probability": 0.9948 + }, + { + "start": 17044.36, + "end": 17045.02, + "probability": 0.9942 + }, + { + "start": 17045.64, + "end": 17049.48, + "probability": 0.9898 + }, + { + "start": 17050.78, + "end": 17053.84, + "probability": 0.8226 + }, + { + "start": 17054.8, + "end": 17056.32, + "probability": 0.9695 + }, + { + "start": 17057.22, + "end": 17060.06, + "probability": 0.6615 + }, + { + "start": 17061.18, + "end": 17064.2, + "probability": 0.8964 + }, + { + "start": 17066.82, + "end": 17077.08, + "probability": 0.9691 + }, + { + "start": 17077.2, + "end": 17077.58, + "probability": 0.4456 + }, + { + "start": 17078.56, + "end": 17079.62, + "probability": 0.4483 + }, + { + "start": 17080.82, + "end": 17085.3, + "probability": 0.9435 + }, + { + "start": 17086.34, + "end": 17087.9, + "probability": 0.9359 + }, + { + "start": 17089.3, + "end": 17090.3, + "probability": 0.9748 + }, + { + "start": 17090.98, + "end": 17093.94, + "probability": 0.986 + }, + { + "start": 17094.6, + "end": 17095.9, + "probability": 0.8946 + }, + { + "start": 17096.78, + "end": 17099.26, + "probability": 0.8419 + }, + { + "start": 17100.7, + "end": 17104.48, + "probability": 0.8739 + }, + { + "start": 17105.82, + "end": 17106.5, + "probability": 0.6974 + }, + { + "start": 17107.2, + "end": 17108.22, + "probability": 0.5662 + }, + { + "start": 17109.9, + "end": 17111.58, + "probability": 0.9431 + }, + { + "start": 17112.28, + "end": 17114.64, + "probability": 0.9637 + }, + { + "start": 17115.44, + "end": 17117.9, + "probability": 0.941 + }, + { + "start": 17119.52, + "end": 17121.64, + "probability": 0.842 + }, + { + "start": 17122.5, + "end": 17123.64, + "probability": 0.9217 + }, + { + "start": 17124.6, + "end": 17126.54, + "probability": 0.9373 + }, + { + "start": 17128.56, + "end": 17129.36, + "probability": 0.5007 + }, + { + "start": 17130.26, + "end": 17133.3, + "probability": 0.8183 + }, + { + "start": 17134.8, + "end": 17137.52, + "probability": 0.9858 + }, + { + "start": 17138.6, + "end": 17142.94, + "probability": 0.9963 + }, + { + "start": 17143.68, + "end": 17148.96, + "probability": 0.9712 + }, + { + "start": 17150.28, + "end": 17153.32, + "probability": 0.9711 + }, + { + "start": 17154.16, + "end": 17155.04, + "probability": 0.6496 + }, + { + "start": 17155.74, + "end": 17160.68, + "probability": 0.7271 + }, + { + "start": 17161.64, + "end": 17162.28, + "probability": 0.9134 + }, + { + "start": 17163.64, + "end": 17164.86, + "probability": 0.9591 + }, + { + "start": 17165.66, + "end": 17166.96, + "probability": 0.7252 + }, + { + "start": 17167.9, + "end": 17169.8, + "probability": 0.9526 + }, + { + "start": 17170.38, + "end": 17174.1, + "probability": 0.9707 + }, + { + "start": 17175.44, + "end": 17180.04, + "probability": 0.974 + }, + { + "start": 17180.96, + "end": 17184.0, + "probability": 0.9958 + }, + { + "start": 17184.58, + "end": 17186.28, + "probability": 0.9604 + }, + { + "start": 17188.56, + "end": 17191.08, + "probability": 0.8255 + }, + { + "start": 17191.54, + "end": 17196.48, + "probability": 0.9949 + }, + { + "start": 17197.32, + "end": 17200.42, + "probability": 0.9736 + }, + { + "start": 17202.42, + "end": 17202.72, + "probability": 0.7451 + }, + { + "start": 17203.26, + "end": 17204.4, + "probability": 0.9434 + }, + { + "start": 17205.86, + "end": 17207.94, + "probability": 0.9719 + }, + { + "start": 17209.48, + "end": 17211.18, + "probability": 0.7444 + }, + { + "start": 17212.06, + "end": 17215.72, + "probability": 0.8207 + }, + { + "start": 17216.86, + "end": 17218.74, + "probability": 0.9126 + }, + { + "start": 17220.24, + "end": 17220.44, + "probability": 0.2732 + }, + { + "start": 17221.26, + "end": 17224.62, + "probability": 0.9271 + }, + { + "start": 17225.46, + "end": 17231.3, + "probability": 0.9958 + }, + { + "start": 17235.04, + "end": 17237.46, + "probability": 0.6706 + }, + { + "start": 17239.28, + "end": 17241.42, + "probability": 0.9242 + }, + { + "start": 17242.4, + "end": 17244.16, + "probability": 0.8335 + }, + { + "start": 17245.22, + "end": 17246.36, + "probability": 0.6992 + }, + { + "start": 17247.18, + "end": 17248.84, + "probability": 0.9114 + }, + { + "start": 17249.74, + "end": 17250.9, + "probability": 0.5571 + }, + { + "start": 17251.66, + "end": 17257.34, + "probability": 0.9835 + }, + { + "start": 17258.74, + "end": 17260.28, + "probability": 0.9874 + }, + { + "start": 17261.06, + "end": 17261.9, + "probability": 0.8823 + }, + { + "start": 17262.96, + "end": 17265.7, + "probability": 0.9452 + }, + { + "start": 17266.88, + "end": 17267.64, + "probability": 0.9749 + }, + { + "start": 17268.28, + "end": 17271.5, + "probability": 0.9683 + }, + { + "start": 17273.22, + "end": 17277.88, + "probability": 0.8848 + }, + { + "start": 17278.5, + "end": 17279.3, + "probability": 0.9383 + }, + { + "start": 17280.24, + "end": 17281.94, + "probability": 0.9616 + }, + { + "start": 17283.26, + "end": 17285.36, + "probability": 0.8728 + }, + { + "start": 17286.62, + "end": 17289.54, + "probability": 0.7581 + }, + { + "start": 17290.14, + "end": 17293.12, + "probability": 0.9227 + }, + { + "start": 17294.76, + "end": 17297.54, + "probability": 0.9982 + }, + { + "start": 17298.28, + "end": 17301.3, + "probability": 0.9945 + }, + { + "start": 17302.44, + "end": 17308.3, + "probability": 0.9935 + }, + { + "start": 17308.82, + "end": 17310.44, + "probability": 0.5667 + }, + { + "start": 17311.46, + "end": 17312.8, + "probability": 0.8285 + }, + { + "start": 17313.7, + "end": 17315.94, + "probability": 0.9398 + }, + { + "start": 17316.8, + "end": 17319.96, + "probability": 0.7975 + }, + { + "start": 17321.48, + "end": 17323.54, + "probability": 0.9537 + }, + { + "start": 17324.64, + "end": 17325.98, + "probability": 0.9302 + }, + { + "start": 17327.6, + "end": 17330.0, + "probability": 0.7326 + }, + { + "start": 17331.12, + "end": 17333.34, + "probability": 0.8137 + }, + { + "start": 17334.08, + "end": 17335.1, + "probability": 0.1731 + }, + { + "start": 17335.86, + "end": 17336.52, + "probability": 0.9956 + }, + { + "start": 17337.26, + "end": 17338.56, + "probability": 0.6196 + }, + { + "start": 17339.44, + "end": 17342.7, + "probability": 0.7061 + }, + { + "start": 17343.52, + "end": 17346.32, + "probability": 0.991 + }, + { + "start": 17346.6, + "end": 17349.08, + "probability": 0.6823 + }, + { + "start": 17349.4, + "end": 17350.28, + "probability": 0.6208 + }, + { + "start": 17350.8, + "end": 17352.44, + "probability": 0.9765 + }, + { + "start": 17353.38, + "end": 17354.08, + "probability": 0.6074 + }, + { + "start": 17355.1, + "end": 17355.7, + "probability": 0.8126 + }, + { + "start": 17357.02, + "end": 17358.1, + "probability": 0.9833 + }, + { + "start": 17358.44, + "end": 17362.5, + "probability": 0.986 + }, + { + "start": 17362.92, + "end": 17365.06, + "probability": 0.998 + }, + { + "start": 17366.0, + "end": 17369.01, + "probability": 0.9295 + }, + { + "start": 17370.6, + "end": 17376.84, + "probability": 0.9831 + }, + { + "start": 17377.12, + "end": 17378.61, + "probability": 0.9644 + }, + { + "start": 17379.0, + "end": 17379.9, + "probability": 0.4423 + }, + { + "start": 17380.04, + "end": 17381.08, + "probability": 0.9573 + }, + { + "start": 17381.22, + "end": 17382.24, + "probability": 0.8086 + }, + { + "start": 17382.98, + "end": 17383.62, + "probability": 0.6862 + }, + { + "start": 17384.9, + "end": 17386.56, + "probability": 0.8555 + }, + { + "start": 17387.42, + "end": 17389.32, + "probability": 0.9901 + }, + { + "start": 17389.98, + "end": 17390.48, + "probability": 0.9889 + }, + { + "start": 17391.2, + "end": 17393.36, + "probability": 0.9829 + }, + { + "start": 17393.98, + "end": 17396.55, + "probability": 0.6894 + }, + { + "start": 17397.98, + "end": 17401.7, + "probability": 0.8253 + }, + { + "start": 17402.68, + "end": 17405.26, + "probability": 0.7021 + }, + { + "start": 17405.9, + "end": 17407.44, + "probability": 0.9985 + }, + { + "start": 17408.08, + "end": 17410.66, + "probability": 0.994 + }, + { + "start": 17410.7, + "end": 17413.52, + "probability": 0.9761 + }, + { + "start": 17414.12, + "end": 17415.22, + "probability": 0.7637 + }, + { + "start": 17415.96, + "end": 17418.74, + "probability": 0.9272 + }, + { + "start": 17419.58, + "end": 17424.74, + "probability": 0.9905 + }, + { + "start": 17425.82, + "end": 17426.72, + "probability": 0.9795 + }, + { + "start": 17428.02, + "end": 17429.48, + "probability": 0.7324 + }, + { + "start": 17430.64, + "end": 17432.0, + "probability": 0.9996 + }, + { + "start": 17432.74, + "end": 17433.9, + "probability": 0.6577 + }, + { + "start": 17435.26, + "end": 17436.88, + "probability": 0.894 + }, + { + "start": 17437.44, + "end": 17438.8, + "probability": 0.9635 + }, + { + "start": 17438.92, + "end": 17443.74, + "probability": 0.9733 + }, + { + "start": 17445.24, + "end": 17449.34, + "probability": 0.9841 + }, + { + "start": 17449.5, + "end": 17453.4, + "probability": 0.8369 + }, + { + "start": 17453.48, + "end": 17454.34, + "probability": 0.7232 + }, + { + "start": 17454.72, + "end": 17456.24, + "probability": 0.6169 + }, + { + "start": 17457.04, + "end": 17459.32, + "probability": 0.9042 + }, + { + "start": 17459.86, + "end": 17462.8, + "probability": 0.9951 + }, + { + "start": 17463.18, + "end": 17467.08, + "probability": 0.929 + }, + { + "start": 17467.9, + "end": 17472.04, + "probability": 0.8997 + }, + { + "start": 17472.66, + "end": 17474.24, + "probability": 0.8786 + }, + { + "start": 17475.06, + "end": 17476.74, + "probability": 0.9865 + }, + { + "start": 17477.68, + "end": 17481.42, + "probability": 0.9862 + }, + { + "start": 17482.02, + "end": 17485.48, + "probability": 0.9956 + }, + { + "start": 17487.56, + "end": 17490.22, + "probability": 0.9364 + }, + { + "start": 17490.76, + "end": 17491.86, + "probability": 0.7332 + }, + { + "start": 17492.04, + "end": 17495.6, + "probability": 0.9663 + }, + { + "start": 17496.86, + "end": 17498.88, + "probability": 0.917 + }, + { + "start": 17498.98, + "end": 17500.6, + "probability": 0.7611 + }, + { + "start": 17507.12, + "end": 17508.16, + "probability": 0.7021 + }, + { + "start": 17508.98, + "end": 17509.68, + "probability": 0.6363 + }, + { + "start": 17510.73, + "end": 17514.62, + "probability": 0.8137 + }, + { + "start": 17516.7, + "end": 17519.82, + "probability": 0.8494 + }, + { + "start": 17520.78, + "end": 17521.96, + "probability": 0.9596 + }, + { + "start": 17522.62, + "end": 17524.02, + "probability": 0.9414 + }, + { + "start": 17524.84, + "end": 17528.54, + "probability": 0.8711 + }, + { + "start": 17529.68, + "end": 17532.12, + "probability": 0.9855 + }, + { + "start": 17532.72, + "end": 17534.34, + "probability": 0.9517 + }, + { + "start": 17535.0, + "end": 17536.88, + "probability": 0.9014 + }, + { + "start": 17537.92, + "end": 17539.38, + "probability": 0.8944 + }, + { + "start": 17540.68, + "end": 17541.1, + "probability": 0.5016 + }, + { + "start": 17542.14, + "end": 17544.18, + "probability": 0.8292 + }, + { + "start": 17544.96, + "end": 17546.28, + "probability": 0.8636 + }, + { + "start": 17548.16, + "end": 17549.6, + "probability": 0.9636 + }, + { + "start": 17555.64, + "end": 17556.72, + "probability": 0.7457 + }, + { + "start": 17558.3, + "end": 17560.94, + "probability": 0.9762 + }, + { + "start": 17562.1, + "end": 17564.08, + "probability": 0.821 + }, + { + "start": 17564.36, + "end": 17566.92, + "probability": 0.767 + }, + { + "start": 17568.56, + "end": 17577.0, + "probability": 0.9888 + }, + { + "start": 17577.68, + "end": 17579.76, + "probability": 0.7003 + }, + { + "start": 17579.98, + "end": 17580.6, + "probability": 0.7448 + }, + { + "start": 17581.38, + "end": 17583.14, + "probability": 0.9878 + }, + { + "start": 17584.44, + "end": 17586.94, + "probability": 0.9066 + }, + { + "start": 17588.56, + "end": 17590.25, + "probability": 0.9897 + }, + { + "start": 17591.34, + "end": 17592.58, + "probability": 0.7846 + }, + { + "start": 17593.22, + "end": 17594.28, + "probability": 0.8823 + }, + { + "start": 17595.0, + "end": 17600.5, + "probability": 0.9648 + }, + { + "start": 17601.0, + "end": 17601.46, + "probability": 0.9425 + }, + { + "start": 17602.24, + "end": 17607.38, + "probability": 0.9767 + }, + { + "start": 17608.56, + "end": 17610.88, + "probability": 0.3166 + }, + { + "start": 17611.38, + "end": 17611.84, + "probability": 0.8359 + }, + { + "start": 17612.82, + "end": 17614.06, + "probability": 0.5518 + }, + { + "start": 17615.58, + "end": 17616.82, + "probability": 0.8633 + }, + { + "start": 17617.88, + "end": 17620.84, + "probability": 0.7619 + }, + { + "start": 17621.6, + "end": 17623.06, + "probability": 0.8862 + }, + { + "start": 17623.72, + "end": 17624.92, + "probability": 0.9519 + }, + { + "start": 17626.24, + "end": 17632.54, + "probability": 0.994 + }, + { + "start": 17633.96, + "end": 17638.38, + "probability": 0.9966 + }, + { + "start": 17639.6, + "end": 17643.64, + "probability": 0.9961 + }, + { + "start": 17643.76, + "end": 17644.5, + "probability": 0.6933 + }, + { + "start": 17646.06, + "end": 17648.24, + "probability": 0.9851 + }, + { + "start": 17648.74, + "end": 17649.68, + "probability": 0.6824 + }, + { + "start": 17649.78, + "end": 17650.7, + "probability": 0.7634 + }, + { + "start": 17650.88, + "end": 17651.44, + "probability": 0.6793 + }, + { + "start": 17652.72, + "end": 17653.71, + "probability": 0.959 + }, + { + "start": 17654.76, + "end": 17660.02, + "probability": 0.8146 + }, + { + "start": 17660.94, + "end": 17664.26, + "probability": 0.994 + }, + { + "start": 17665.02, + "end": 17667.08, + "probability": 0.9811 + }, + { + "start": 17667.8, + "end": 17670.84, + "probability": 0.8301 + }, + { + "start": 17671.0, + "end": 17674.56, + "probability": 0.9369 + }, + { + "start": 17674.96, + "end": 17675.94, + "probability": 0.925 + }, + { + "start": 17676.02, + "end": 17680.64, + "probability": 0.996 + }, + { + "start": 17682.1, + "end": 17682.2, + "probability": 0.7288 + }, + { + "start": 17682.88, + "end": 17686.34, + "probability": 0.884 + }, + { + "start": 17687.46, + "end": 17689.82, + "probability": 0.9468 + }, + { + "start": 17691.86, + "end": 17694.44, + "probability": 0.2863 + }, + { + "start": 17695.96, + "end": 17699.4, + "probability": 0.9927 + }, + { + "start": 17700.4, + "end": 17702.36, + "probability": 0.8606 + }, + { + "start": 17703.9, + "end": 17705.42, + "probability": 0.9926 + }, + { + "start": 17707.12, + "end": 17708.32, + "probability": 0.6781 + }, + { + "start": 17708.46, + "end": 17711.46, + "probability": 0.5687 + }, + { + "start": 17713.36, + "end": 17715.4, + "probability": 0.9813 + }, + { + "start": 17715.62, + "end": 17717.9, + "probability": 0.9901 + }, + { + "start": 17718.54, + "end": 17720.9, + "probability": 0.9301 + }, + { + "start": 17721.44, + "end": 17722.18, + "probability": 0.7691 + }, + { + "start": 17723.34, + "end": 17725.36, + "probability": 0.6731 + }, + { + "start": 17726.8, + "end": 17729.08, + "probability": 0.9669 + }, + { + "start": 17729.84, + "end": 17731.14, + "probability": 0.7429 + }, + { + "start": 17732.56, + "end": 17735.46, + "probability": 0.9933 + }, + { + "start": 17737.16, + "end": 17739.78, + "probability": 0.9827 + }, + { + "start": 17740.44, + "end": 17742.0, + "probability": 0.9775 + }, + { + "start": 17743.5, + "end": 17744.22, + "probability": 0.9863 + }, + { + "start": 17745.42, + "end": 17746.98, + "probability": 0.9609 + }, + { + "start": 17748.04, + "end": 17749.18, + "probability": 0.7241 + }, + { + "start": 17749.38, + "end": 17755.56, + "probability": 0.8512 + }, + { + "start": 17756.16, + "end": 17757.46, + "probability": 0.5952 + }, + { + "start": 17758.96, + "end": 17759.6, + "probability": 0.5934 + }, + { + "start": 17759.68, + "end": 17760.46, + "probability": 0.7894 + }, + { + "start": 17761.02, + "end": 17763.18, + "probability": 0.877 + }, + { + "start": 17764.7, + "end": 17766.6, + "probability": 0.6332 + }, + { + "start": 17767.38, + "end": 17767.78, + "probability": 0.4803 + }, + { + "start": 17767.94, + "end": 17770.86, + "probability": 0.9838 + }, + { + "start": 17772.74, + "end": 17773.58, + "probability": 0.938 + }, + { + "start": 17774.39, + "end": 17776.16, + "probability": 0.926 + }, + { + "start": 17777.72, + "end": 17779.14, + "probability": 0.9495 + }, + { + "start": 17784.52, + "end": 17785.74, + "probability": 0.8035 + }, + { + "start": 17786.38, + "end": 17787.66, + "probability": 0.6587 + }, + { + "start": 17787.9, + "end": 17788.86, + "probability": 0.9951 + }, + { + "start": 17791.78, + "end": 17792.52, + "probability": 0.9918 + }, + { + "start": 17794.94, + "end": 17796.12, + "probability": 0.9391 + }, + { + "start": 17799.2, + "end": 17801.86, + "probability": 0.9724 + }, + { + "start": 17803.0, + "end": 17806.18, + "probability": 0.9844 + }, + { + "start": 17806.44, + "end": 17807.48, + "probability": 0.8041 + }, + { + "start": 17808.04, + "end": 17809.1, + "probability": 0.8054 + }, + { + "start": 17810.82, + "end": 17811.26, + "probability": 0.5743 + }, + { + "start": 17812.84, + "end": 17814.24, + "probability": 0.9971 + }, + { + "start": 17814.92, + "end": 17815.18, + "probability": 0.8976 + }, + { + "start": 17815.94, + "end": 17816.72, + "probability": 0.5916 + }, + { + "start": 17817.5, + "end": 17820.18, + "probability": 0.9807 + }, + { + "start": 17821.26, + "end": 17821.88, + "probability": 0.5774 + }, + { + "start": 17822.98, + "end": 17824.26, + "probability": 0.8999 + }, + { + "start": 17825.62, + "end": 17829.72, + "probability": 0.8872 + }, + { + "start": 17829.72, + "end": 17833.46, + "probability": 0.9919 + }, + { + "start": 17834.3, + "end": 17835.68, + "probability": 0.9592 + }, + { + "start": 17836.9, + "end": 17841.2, + "probability": 0.979 + }, + { + "start": 17842.14, + "end": 17843.54, + "probability": 0.6391 + }, + { + "start": 17844.74, + "end": 17848.1, + "probability": 0.9658 + }, + { + "start": 17849.14, + "end": 17852.76, + "probability": 0.9263 + }, + { + "start": 17853.54, + "end": 17855.8, + "probability": 0.9893 + }, + { + "start": 17856.52, + "end": 17859.46, + "probability": 0.87 + }, + { + "start": 17859.58, + "end": 17860.71, + "probability": 0.9824 + }, + { + "start": 17861.44, + "end": 17863.34, + "probability": 0.8244 + }, + { + "start": 17864.26, + "end": 17866.62, + "probability": 0.9697 + }, + { + "start": 17866.94, + "end": 17869.28, + "probability": 0.8867 + }, + { + "start": 17869.82, + "end": 17871.26, + "probability": 0.9727 + }, + { + "start": 17871.5, + "end": 17873.84, + "probability": 0.9927 + }, + { + "start": 17874.58, + "end": 17875.9, + "probability": 0.7376 + }, + { + "start": 17876.92, + "end": 17879.06, + "probability": 0.8428 + }, + { + "start": 17880.66, + "end": 17885.78, + "probability": 0.9914 + }, + { + "start": 17886.36, + "end": 17891.28, + "probability": 0.8521 + }, + { + "start": 17891.82, + "end": 17895.46, + "probability": 0.9161 + }, + { + "start": 17895.96, + "end": 17896.56, + "probability": 0.1631 + }, + { + "start": 17903.22, + "end": 17903.22, + "probability": 0.0163 + }, + { + "start": 17903.22, + "end": 17907.16, + "probability": 0.9861 + }, + { + "start": 17907.56, + "end": 17908.02, + "probability": 0.3911 + }, + { + "start": 17909.2, + "end": 17911.2, + "probability": 0.9906 + }, + { + "start": 17913.76, + "end": 17914.66, + "probability": 0.5049 + }, + { + "start": 17914.96, + "end": 17918.16, + "probability": 0.8444 + }, + { + "start": 17920.02, + "end": 17921.31, + "probability": 0.9751 + }, + { + "start": 17922.28, + "end": 17927.79, + "probability": 0.8693 + }, + { + "start": 17928.46, + "end": 17932.54, + "probability": 0.9866 + }, + { + "start": 17933.2, + "end": 17935.46, + "probability": 0.6475 + }, + { + "start": 17935.46, + "end": 17936.32, + "probability": 0.9695 + }, + { + "start": 17937.66, + "end": 17940.8, + "probability": 0.8848 + }, + { + "start": 17941.04, + "end": 17943.8, + "probability": 0.9768 + }, + { + "start": 17943.94, + "end": 17944.62, + "probability": 0.5614 + }, + { + "start": 17945.58, + "end": 17945.9, + "probability": 0.9505 + }, + { + "start": 17946.66, + "end": 17950.98, + "probability": 0.998 + }, + { + "start": 17951.14, + "end": 17952.58, + "probability": 0.9138 + }, + { + "start": 17953.16, + "end": 17955.48, + "probability": 0.9761 + }, + { + "start": 17956.18, + "end": 17959.62, + "probability": 0.9799 + }, + { + "start": 17960.4, + "end": 17963.06, + "probability": 0.9768 + }, + { + "start": 17964.32, + "end": 17966.05, + "probability": 0.8317 + }, + { + "start": 17967.66, + "end": 17969.88, + "probability": 0.9455 + }, + { + "start": 17970.48, + "end": 17971.3, + "probability": 0.7649 + }, + { + "start": 17972.06, + "end": 17972.56, + "probability": 0.8432 + }, + { + "start": 17973.94, + "end": 17976.26, + "probability": 0.9937 + }, + { + "start": 17976.32, + "end": 17977.26, + "probability": 0.9956 + }, + { + "start": 17978.26, + "end": 17979.18, + "probability": 0.8748 + }, + { + "start": 17979.74, + "end": 17983.2, + "probability": 0.9963 + }, + { + "start": 17999.48, + "end": 18002.64, + "probability": 0.9783 + }, + { + "start": 18003.9, + "end": 18005.62, + "probability": 0.7016 + }, + { + "start": 18006.92, + "end": 18008.74, + "probability": 0.8615 + }, + { + "start": 18009.68, + "end": 18011.36, + "probability": 0.7178 + }, + { + "start": 18012.32, + "end": 18015.04, + "probability": 0.8835 + }, + { + "start": 18018.44, + "end": 18022.0, + "probability": 0.9857 + }, + { + "start": 18023.98, + "end": 18026.5, + "probability": 0.998 + }, + { + "start": 18027.4, + "end": 18031.64, + "probability": 0.9973 + }, + { + "start": 18032.92, + "end": 18036.44, + "probability": 0.9561 + }, + { + "start": 18037.2, + "end": 18040.52, + "probability": 0.8119 + }, + { + "start": 18042.64, + "end": 18046.64, + "probability": 0.9898 + }, + { + "start": 18047.56, + "end": 18048.28, + "probability": 0.6389 + }, + { + "start": 18049.14, + "end": 18052.24, + "probability": 0.9722 + }, + { + "start": 18053.04, + "end": 18058.88, + "probability": 0.9823 + }, + { + "start": 18059.36, + "end": 18059.62, + "probability": 0.6586 + }, + { + "start": 18060.14, + "end": 18062.82, + "probability": 0.979 + }, + { + "start": 18063.36, + "end": 18065.64, + "probability": 0.9624 + }, + { + "start": 18069.34, + "end": 18072.0, + "probability": 0.9885 + }, + { + "start": 18073.22, + "end": 18074.53, + "probability": 0.9214 + }, + { + "start": 18075.68, + "end": 18082.34, + "probability": 0.9828 + }, + { + "start": 18083.34, + "end": 18086.9, + "probability": 0.8883 + }, + { + "start": 18087.78, + "end": 18090.7, + "probability": 0.9875 + }, + { + "start": 18091.54, + "end": 18095.8, + "probability": 0.9969 + }, + { + "start": 18095.8, + "end": 18100.56, + "probability": 0.9968 + }, + { + "start": 18101.62, + "end": 18104.24, + "probability": 0.8771 + }, + { + "start": 18104.86, + "end": 18110.1, + "probability": 0.9976 + }, + { + "start": 18111.24, + "end": 18114.32, + "probability": 0.8629 + }, + { + "start": 18115.46, + "end": 18117.0, + "probability": 0.8841 + }, + { + "start": 18118.0, + "end": 18119.12, + "probability": 0.7075 + }, + { + "start": 18119.86, + "end": 18123.54, + "probability": 0.9893 + }, + { + "start": 18123.54, + "end": 18129.76, + "probability": 0.9629 + }, + { + "start": 18130.34, + "end": 18132.02, + "probability": 0.7382 + }, + { + "start": 18132.44, + "end": 18132.68, + "probability": 0.6868 + }, + { + "start": 18133.38, + "end": 18135.26, + "probability": 0.897 + }, + { + "start": 18136.28, + "end": 18137.28, + "probability": 0.8992 + }, + { + "start": 18138.76, + "end": 18140.64, + "probability": 0.9524 + }, + { + "start": 18141.34, + "end": 18145.42, + "probability": 0.9982 + }, + { + "start": 18146.3, + "end": 18148.04, + "probability": 0.8275 + }, + { + "start": 18148.5, + "end": 18155.4, + "probability": 0.9519 + }, + { + "start": 18156.5, + "end": 18159.18, + "probability": 0.9395 + }, + { + "start": 18159.78, + "end": 18163.52, + "probability": 0.9985 + }, + { + "start": 18164.84, + "end": 18169.56, + "probability": 0.9907 + }, + { + "start": 18170.2, + "end": 18173.66, + "probability": 0.8611 + }, + { + "start": 18174.38, + "end": 18176.02, + "probability": 0.3561 + }, + { + "start": 18176.76, + "end": 18178.08, + "probability": 0.9837 + }, + { + "start": 18178.66, + "end": 18183.28, + "probability": 0.9878 + }, + { + "start": 18184.38, + "end": 18185.72, + "probability": 0.9822 + }, + { + "start": 18187.5, + "end": 18190.28, + "probability": 0.998 + }, + { + "start": 18191.2, + "end": 18196.4, + "probability": 0.9822 + }, + { + "start": 18197.32, + "end": 18201.0, + "probability": 0.9686 + }, + { + "start": 18202.14, + "end": 18205.58, + "probability": 0.9946 + }, + { + "start": 18206.68, + "end": 18209.38, + "probability": 0.9872 + }, + { + "start": 18210.48, + "end": 18211.36, + "probability": 0.9618 + }, + { + "start": 18212.04, + "end": 18217.32, + "probability": 0.9685 + }, + { + "start": 18218.04, + "end": 18226.14, + "probability": 0.9731 + }, + { + "start": 18226.96, + "end": 18229.14, + "probability": 0.9476 + }, + { + "start": 18230.42, + "end": 18233.4, + "probability": 0.5136 + }, + { + "start": 18234.74, + "end": 18235.28, + "probability": 0.9333 + }, + { + "start": 18235.84, + "end": 18239.02, + "probability": 0.9975 + }, + { + "start": 18239.4, + "end": 18241.68, + "probability": 0.964 + }, + { + "start": 18242.6, + "end": 18245.64, + "probability": 0.9881 + }, + { + "start": 18246.78, + "end": 18249.88, + "probability": 0.9546 + }, + { + "start": 18250.8, + "end": 18252.98, + "probability": 0.9798 + }, + { + "start": 18253.76, + "end": 18255.52, + "probability": 0.9105 + }, + { + "start": 18256.7, + "end": 18261.32, + "probability": 0.9893 + }, + { + "start": 18262.3, + "end": 18264.9, + "probability": 0.9245 + }, + { + "start": 18266.18, + "end": 18267.14, + "probability": 0.9471 + }, + { + "start": 18268.1, + "end": 18269.76, + "probability": 0.9936 + }, + { + "start": 18271.9, + "end": 18272.84, + "probability": 0.9521 + }, + { + "start": 18273.12, + "end": 18276.6, + "probability": 0.9932 + }, + { + "start": 18277.12, + "end": 18278.68, + "probability": 0.9919 + }, + { + "start": 18279.7, + "end": 18283.88, + "probability": 0.999 + }, + { + "start": 18284.6, + "end": 18290.6, + "probability": 0.9933 + }, + { + "start": 18291.14, + "end": 18293.78, + "probability": 0.9993 + }, + { + "start": 18294.4, + "end": 18295.46, + "probability": 0.9437 + }, + { + "start": 18296.28, + "end": 18298.48, + "probability": 0.9023 + }, + { + "start": 18299.22, + "end": 18302.56, + "probability": 0.9907 + }, + { + "start": 18303.12, + "end": 18306.1, + "probability": 0.9948 + }, + { + "start": 18307.16, + "end": 18308.5, + "probability": 0.9786 + }, + { + "start": 18309.18, + "end": 18314.0, + "probability": 0.9894 + }, + { + "start": 18314.0, + "end": 18318.6, + "probability": 0.9986 + }, + { + "start": 18319.24, + "end": 18320.58, + "probability": 0.9965 + }, + { + "start": 18322.12, + "end": 18324.34, + "probability": 0.6959 + }, + { + "start": 18325.3, + "end": 18327.32, + "probability": 0.9858 + }, + { + "start": 18328.1, + "end": 18330.82, + "probability": 0.9979 + }, + { + "start": 18331.5, + "end": 18334.04, + "probability": 0.995 + }, + { + "start": 18335.3, + "end": 18337.44, + "probability": 0.9476 + }, + { + "start": 18338.18, + "end": 18340.26, + "probability": 0.6956 + }, + { + "start": 18341.24, + "end": 18342.42, + "probability": 0.5218 + }, + { + "start": 18343.42, + "end": 18347.4, + "probability": 0.9515 + }, + { + "start": 18347.98, + "end": 18349.66, + "probability": 0.7723 + }, + { + "start": 18351.88, + "end": 18353.66, + "probability": 0.9923 + }, + { + "start": 18354.3, + "end": 18357.02, + "probability": 0.8171 + }, + { + "start": 18357.66, + "end": 18361.24, + "probability": 0.7266 + }, + { + "start": 18361.4, + "end": 18363.06, + "probability": 0.863 + }, + { + "start": 18365.36, + "end": 18366.68, + "probability": 0.9719 + }, + { + "start": 18366.82, + "end": 18371.66, + "probability": 0.98 + }, + { + "start": 18373.08, + "end": 18374.92, + "probability": 0.9008 + }, + { + "start": 18375.74, + "end": 18379.46, + "probability": 0.9646 + }, + { + "start": 18380.16, + "end": 18380.56, + "probability": 0.6005 + }, + { + "start": 18381.18, + "end": 18383.8, + "probability": 0.9825 + }, + { + "start": 18384.56, + "end": 18389.84, + "probability": 0.9902 + }, + { + "start": 18394.6, + "end": 18396.82, + "probability": 0.9984 + }, + { + "start": 18397.94, + "end": 18400.62, + "probability": 0.6862 + }, + { + "start": 18402.46, + "end": 18407.28, + "probability": 0.9974 + }, + { + "start": 18407.98, + "end": 18409.48, + "probability": 0.9096 + }, + { + "start": 18410.4, + "end": 18414.56, + "probability": 0.9908 + }, + { + "start": 18415.36, + "end": 18415.82, + "probability": 0.1065 + }, + { + "start": 18416.42, + "end": 18417.96, + "probability": 0.9993 + }, + { + "start": 18418.6, + "end": 18422.9, + "probability": 0.9723 + }, + { + "start": 18423.86, + "end": 18427.74, + "probability": 0.999 + }, + { + "start": 18428.7, + "end": 18429.7, + "probability": 0.8688 + }, + { + "start": 18430.32, + "end": 18433.62, + "probability": 0.9917 + }, + { + "start": 18434.94, + "end": 18436.72, + "probability": 0.9912 + }, + { + "start": 18437.34, + "end": 18439.86, + "probability": 0.9462 + }, + { + "start": 18440.48, + "end": 18441.52, + "probability": 0.7697 + }, + { + "start": 18442.46, + "end": 18446.18, + "probability": 0.992 + }, + { + "start": 18446.94, + "end": 18453.94, + "probability": 0.5074 + }, + { + "start": 18454.54, + "end": 18457.3, + "probability": 0.9921 + }, + { + "start": 18457.84, + "end": 18459.28, + "probability": 0.6697 + }, + { + "start": 18463.82, + "end": 18465.24, + "probability": 0.4855 + }, + { + "start": 18465.76, + "end": 18466.75, + "probability": 0.9876 + }, + { + "start": 18468.57, + "end": 18469.3, + "probability": 0.7008 + }, + { + "start": 18469.7, + "end": 18472.02, + "probability": 0.8905 + }, + { + "start": 18472.86, + "end": 18477.76, + "probability": 0.9835 + }, + { + "start": 18478.36, + "end": 18479.4, + "probability": 0.9602 + }, + { + "start": 18481.04, + "end": 18482.68, + "probability": 0.8884 + }, + { + "start": 18484.22, + "end": 18484.94, + "probability": 0.859 + }, + { + "start": 18485.72, + "end": 18487.9, + "probability": 0.8235 + }, + { + "start": 18488.9, + "end": 18490.46, + "probability": 0.8644 + }, + { + "start": 18491.56, + "end": 18495.02, + "probability": 0.8215 + }, + { + "start": 18496.44, + "end": 18498.54, + "probability": 0.8427 + }, + { + "start": 18499.18, + "end": 18501.94, + "probability": 0.9882 + }, + { + "start": 18502.5, + "end": 18504.48, + "probability": 0.9826 + }, + { + "start": 18505.44, + "end": 18507.66, + "probability": 0.989 + }, + { + "start": 18508.36, + "end": 18511.74, + "probability": 0.5983 + }, + { + "start": 18512.64, + "end": 18513.8, + "probability": 0.7989 + }, + { + "start": 18514.74, + "end": 18517.26, + "probability": 0.991 + }, + { + "start": 18517.8, + "end": 18519.38, + "probability": 0.7754 + }, + { + "start": 18519.94, + "end": 18520.74, + "probability": 0.7962 + }, + { + "start": 18521.04, + "end": 18521.34, + "probability": 0.7763 + }, + { + "start": 18524.06, + "end": 18525.54, + "probability": 0.9718 + }, + { + "start": 18525.78, + "end": 18526.7, + "probability": 0.8462 + }, + { + "start": 18527.22, + "end": 18528.66, + "probability": 0.8204 + }, + { + "start": 18532.7, + "end": 18533.2, + "probability": 0.4541 + }, + { + "start": 18534.9, + "end": 18534.9, + "probability": 0.1839 + }, + { + "start": 18560.06, + "end": 18561.14, + "probability": 0.518 + }, + { + "start": 18562.84, + "end": 18563.56, + "probability": 0.6285 + }, + { + "start": 18563.8, + "end": 18568.58, + "probability": 0.9891 + }, + { + "start": 18569.78, + "end": 18574.88, + "probability": 0.999 + }, + { + "start": 18575.66, + "end": 18578.4, + "probability": 0.8975 + }, + { + "start": 18579.02, + "end": 18586.8, + "probability": 0.9993 + }, + { + "start": 18586.84, + "end": 18594.54, + "probability": 0.9994 + }, + { + "start": 18595.96, + "end": 18596.58, + "probability": 0.3482 + }, + { + "start": 18598.08, + "end": 18604.48, + "probability": 0.9976 + }, + { + "start": 18606.16, + "end": 18610.14, + "probability": 0.9826 + }, + { + "start": 18610.8, + "end": 18612.92, + "probability": 0.8774 + }, + { + "start": 18613.02, + "end": 18617.62, + "probability": 0.9761 + }, + { + "start": 18619.06, + "end": 18623.94, + "probability": 0.9882 + }, + { + "start": 18623.94, + "end": 18630.72, + "probability": 0.9989 + }, + { + "start": 18631.5, + "end": 18637.08, + "probability": 0.9963 + }, + { + "start": 18637.92, + "end": 18642.48, + "probability": 0.9972 + }, + { + "start": 18643.1, + "end": 18646.98, + "probability": 0.8274 + }, + { + "start": 18647.7, + "end": 18650.56, + "probability": 0.8001 + }, + { + "start": 18651.42, + "end": 18654.74, + "probability": 0.9889 + }, + { + "start": 18656.22, + "end": 18658.96, + "probability": 0.994 + }, + { + "start": 18659.5, + "end": 18660.64, + "probability": 0.9804 + }, + { + "start": 18661.58, + "end": 18665.94, + "probability": 0.9987 + }, + { + "start": 18666.7, + "end": 18667.38, + "probability": 0.7471 + }, + { + "start": 18668.7, + "end": 18670.32, + "probability": 0.8666 + }, + { + "start": 18670.84, + "end": 18672.92, + "probability": 0.9885 + }, + { + "start": 18674.12, + "end": 18676.86, + "probability": 0.9943 + }, + { + "start": 18677.92, + "end": 18681.24, + "probability": 0.9997 + }, + { + "start": 18682.32, + "end": 18685.44, + "probability": 0.9995 + }, + { + "start": 18686.08, + "end": 18689.72, + "probability": 0.9946 + }, + { + "start": 18690.98, + "end": 18696.84, + "probability": 0.9968 + }, + { + "start": 18698.32, + "end": 18700.94, + "probability": 0.9896 + }, + { + "start": 18700.94, + "end": 18704.9, + "probability": 0.9868 + }, + { + "start": 18705.62, + "end": 18707.37, + "probability": 0.9985 + }, + { + "start": 18708.12, + "end": 18710.24, + "probability": 0.8582 + }, + { + "start": 18710.72, + "end": 18713.28, + "probability": 0.9812 + }, + { + "start": 18713.86, + "end": 18716.72, + "probability": 0.8731 + }, + { + "start": 18717.14, + "end": 18720.24, + "probability": 0.9966 + }, + { + "start": 18721.02, + "end": 18724.32, + "probability": 0.9199 + }, + { + "start": 18724.82, + "end": 18728.0, + "probability": 0.9921 + }, + { + "start": 18728.46, + "end": 18729.8, + "probability": 0.9677 + }, + { + "start": 18730.16, + "end": 18732.2, + "probability": 0.9019 + }, + { + "start": 18732.62, + "end": 18734.48, + "probability": 0.9889 + }, + { + "start": 18734.94, + "end": 18736.94, + "probability": 0.9897 + }, + { + "start": 18737.04, + "end": 18739.17, + "probability": 0.8997 + }, + { + "start": 18739.38, + "end": 18741.86, + "probability": 0.9967 + }, + { + "start": 18742.3, + "end": 18745.02, + "probability": 0.9935 + }, + { + "start": 18745.52, + "end": 18747.6, + "probability": 0.98 + }, + { + "start": 18748.74, + "end": 18750.96, + "probability": 0.8814 + }, + { + "start": 18751.78, + "end": 18753.84, + "probability": 0.9984 + }, + { + "start": 18754.64, + "end": 18756.1, + "probability": 0.9827 + }, + { + "start": 18756.8, + "end": 18760.4, + "probability": 0.9471 + }, + { + "start": 18761.22, + "end": 18765.56, + "probability": 0.9355 + }, + { + "start": 18765.82, + "end": 18766.6, + "probability": 0.9601 + }, + { + "start": 18766.74, + "end": 18771.42, + "probability": 0.9748 + }, + { + "start": 18772.52, + "end": 18774.16, + "probability": 0.8786 + }, + { + "start": 18774.88, + "end": 18780.2, + "probability": 0.9967 + }, + { + "start": 18781.0, + "end": 18782.38, + "probability": 0.9724 + }, + { + "start": 18782.88, + "end": 18786.28, + "probability": 0.9734 + }, + { + "start": 18787.18, + "end": 18791.36, + "probability": 0.9991 + }, + { + "start": 18792.2, + "end": 18796.64, + "probability": 0.9985 + }, + { + "start": 18796.72, + "end": 18802.16, + "probability": 0.9804 + }, + { + "start": 18802.98, + "end": 18808.16, + "probability": 0.9078 + }, + { + "start": 18808.64, + "end": 18810.0, + "probability": 0.8696 + }, + { + "start": 18810.1, + "end": 18810.58, + "probability": 0.9549 + }, + { + "start": 18810.72, + "end": 18811.42, + "probability": 0.9 + }, + { + "start": 18811.88, + "end": 18816.56, + "probability": 0.9775 + }, + { + "start": 18817.42, + "end": 18821.7, + "probability": 0.9904 + }, + { + "start": 18822.3, + "end": 18825.22, + "probability": 0.978 + }, + { + "start": 18826.0, + "end": 18828.56, + "probability": 0.9277 + }, + { + "start": 18829.14, + "end": 18833.78, + "probability": 0.9878 + }, + { + "start": 18834.88, + "end": 18835.02, + "probability": 0.8132 + }, + { + "start": 18835.08, + "end": 18836.23, + "probability": 0.9849 + }, + { + "start": 18836.74, + "end": 18842.08, + "probability": 0.9956 + }, + { + "start": 18843.46, + "end": 18850.64, + "probability": 0.9954 + }, + { + "start": 18850.64, + "end": 18856.88, + "probability": 0.9817 + }, + { + "start": 18856.88, + "end": 18864.08, + "probability": 0.9924 + }, + { + "start": 18864.2, + "end": 18867.66, + "probability": 0.9188 + }, + { + "start": 18868.68, + "end": 18874.48, + "probability": 0.9973 + }, + { + "start": 18875.48, + "end": 18880.22, + "probability": 0.9909 + }, + { + "start": 18880.22, + "end": 18884.04, + "probability": 0.9927 + }, + { + "start": 18884.78, + "end": 18886.46, + "probability": 0.9988 + }, + { + "start": 18887.04, + "end": 18890.78, + "probability": 0.9946 + }, + { + "start": 18891.32, + "end": 18896.94, + "probability": 0.9966 + }, + { + "start": 18897.58, + "end": 18900.32, + "probability": 0.9331 + }, + { + "start": 18901.14, + "end": 18905.62, + "probability": 0.9659 + }, + { + "start": 18906.24, + "end": 18909.88, + "probability": 0.9982 + }, + { + "start": 18909.88, + "end": 18914.42, + "probability": 0.9919 + }, + { + "start": 18914.96, + "end": 18918.56, + "probability": 0.9899 + }, + { + "start": 18919.5, + "end": 18922.02, + "probability": 0.9885 + }, + { + "start": 18922.76, + "end": 18927.76, + "probability": 0.9957 + }, + { + "start": 18928.76, + "end": 18931.36, + "probability": 0.942 + }, + { + "start": 18932.5, + "end": 18935.74, + "probability": 0.9647 + }, + { + "start": 18936.22, + "end": 18938.64, + "probability": 0.9933 + }, + { + "start": 18939.16, + "end": 18943.44, + "probability": 0.9537 + }, + { + "start": 18944.28, + "end": 18945.6, + "probability": 0.9015 + }, + { + "start": 18946.5, + "end": 18948.4, + "probability": 0.7679 + }, + { + "start": 18949.02, + "end": 18952.32, + "probability": 0.7549 + }, + { + "start": 18953.28, + "end": 18956.88, + "probability": 0.9925 + }, + { + "start": 18956.88, + "end": 18961.96, + "probability": 0.9984 + }, + { + "start": 18962.48, + "end": 18965.26, + "probability": 0.9328 + }, + { + "start": 18966.14, + "end": 18970.4, + "probability": 0.9969 + }, + { + "start": 18970.4, + "end": 18976.16, + "probability": 0.9966 + }, + { + "start": 18976.16, + "end": 18981.28, + "probability": 0.999 + }, + { + "start": 18982.1, + "end": 18987.84, + "probability": 0.985 + }, + { + "start": 18988.42, + "end": 18995.28, + "probability": 0.9971 + }, + { + "start": 18996.0, + "end": 18998.24, + "probability": 0.9983 + }, + { + "start": 18998.94, + "end": 19001.84, + "probability": 0.9814 + }, + { + "start": 19003.18, + "end": 19005.4, + "probability": 0.7575 + }, + { + "start": 19006.3, + "end": 19008.04, + "probability": 0.9519 + }, + { + "start": 19008.94, + "end": 19014.38, + "probability": 0.9557 + }, + { + "start": 19015.16, + "end": 19019.9, + "probability": 0.9933 + }, + { + "start": 19020.12, + "end": 19021.86, + "probability": 0.9972 + }, + { + "start": 19022.38, + "end": 19025.7, + "probability": 0.9975 + }, + { + "start": 19026.46, + "end": 19031.1, + "probability": 0.9984 + }, + { + "start": 19031.44, + "end": 19033.8, + "probability": 0.9893 + }, + { + "start": 19034.56, + "end": 19037.18, + "probability": 0.9811 + }, + { + "start": 19037.74, + "end": 19038.84, + "probability": 0.8053 + }, + { + "start": 19039.66, + "end": 19040.58, + "probability": 0.7392 + }, + { + "start": 19041.14, + "end": 19046.72, + "probability": 0.9792 + }, + { + "start": 19047.58, + "end": 19049.54, + "probability": 0.9712 + }, + { + "start": 19050.12, + "end": 19054.5, + "probability": 0.9934 + }, + { + "start": 19054.5, + "end": 19058.72, + "probability": 0.9623 + }, + { + "start": 19059.32, + "end": 19064.86, + "probability": 0.9788 + }, + { + "start": 19065.34, + "end": 19067.36, + "probability": 0.9246 + }, + { + "start": 19068.0, + "end": 19071.36, + "probability": 0.8597 + }, + { + "start": 19071.92, + "end": 19075.32, + "probability": 0.9826 + }, + { + "start": 19075.98, + "end": 19080.58, + "probability": 0.9982 + }, + { + "start": 19081.3, + "end": 19083.14, + "probability": 0.5999 + }, + { + "start": 19083.64, + "end": 19086.2, + "probability": 0.9932 + }, + { + "start": 19086.68, + "end": 19091.3, + "probability": 0.9954 + }, + { + "start": 19091.84, + "end": 19094.26, + "probability": 0.9814 + }, + { + "start": 19094.92, + "end": 19098.78, + "probability": 0.9387 + }, + { + "start": 19099.3, + "end": 19104.02, + "probability": 0.9829 + }, + { + "start": 19104.44, + "end": 19107.82, + "probability": 0.9918 + }, + { + "start": 19108.6, + "end": 19110.62, + "probability": 0.9543 + }, + { + "start": 19111.22, + "end": 19117.16, + "probability": 0.955 + }, + { + "start": 19117.92, + "end": 19119.2, + "probability": 0.7202 + }, + { + "start": 19119.64, + "end": 19125.32, + "probability": 0.9917 + }, + { + "start": 19125.32, + "end": 19128.76, + "probability": 0.9978 + }, + { + "start": 19129.52, + "end": 19137.06, + "probability": 0.9861 + }, + { + "start": 19137.62, + "end": 19145.06, + "probability": 0.9989 + }, + { + "start": 19145.7, + "end": 19149.14, + "probability": 0.9702 + }, + { + "start": 19149.64, + "end": 19149.88, + "probability": 0.7495 + }, + { + "start": 19151.74, + "end": 19151.74, + "probability": 0.4889 + }, + { + "start": 19151.74, + "end": 19152.98, + "probability": 0.7754 + }, + { + "start": 19154.82, + "end": 19155.78, + "probability": 0.1193 + }, + { + "start": 19159.1, + "end": 19160.62, + "probability": 0.006 + }, + { + "start": 19181.4, + "end": 19184.28, + "probability": 0.7019 + }, + { + "start": 19185.14, + "end": 19190.5, + "probability": 0.9885 + }, + { + "start": 19192.0, + "end": 19193.26, + "probability": 0.743 + }, + { + "start": 19194.78, + "end": 19196.98, + "probability": 0.7592 + }, + { + "start": 19198.94, + "end": 19206.04, + "probability": 0.8898 + }, + { + "start": 19207.7, + "end": 19214.24, + "probability": 0.9011 + }, + { + "start": 19216.42, + "end": 19219.34, + "probability": 0.9832 + }, + { + "start": 19219.9, + "end": 19220.88, + "probability": 0.9893 + }, + { + "start": 19221.92, + "end": 19224.94, + "probability": 0.9865 + }, + { + "start": 19226.24, + "end": 19228.46, + "probability": 0.735 + }, + { + "start": 19229.94, + "end": 19233.08, + "probability": 0.9972 + }, + { + "start": 19233.82, + "end": 19234.12, + "probability": 0.8326 + }, + { + "start": 19236.58, + "end": 19241.42, + "probability": 0.9887 + }, + { + "start": 19242.28, + "end": 19246.5, + "probability": 0.9781 + }, + { + "start": 19247.9, + "end": 19248.86, + "probability": 0.9146 + }, + { + "start": 19251.28, + "end": 19252.14, + "probability": 0.533 + }, + { + "start": 19253.1, + "end": 19255.46, + "probability": 0.382 + }, + { + "start": 19256.24, + "end": 19256.96, + "probability": 0.5719 + }, + { + "start": 19257.62, + "end": 19258.58, + "probability": 0.728 + }, + { + "start": 19260.32, + "end": 19263.68, + "probability": 0.9922 + }, + { + "start": 19265.38, + "end": 19266.08, + "probability": 0.8278 + }, + { + "start": 19266.78, + "end": 19268.0, + "probability": 0.9777 + }, + { + "start": 19269.36, + "end": 19272.34, + "probability": 0.9888 + }, + { + "start": 19274.08, + "end": 19274.08, + "probability": 0.9502 + }, + { + "start": 19275.08, + "end": 19275.58, + "probability": 0.8458 + }, + { + "start": 19276.78, + "end": 19277.06, + "probability": 0.9402 + }, + { + "start": 19278.0, + "end": 19279.18, + "probability": 0.7051 + }, + { + "start": 19280.0, + "end": 19282.68, + "probability": 0.9836 + }, + { + "start": 19283.6, + "end": 19285.7, + "probability": 0.8768 + }, + { + "start": 19287.14, + "end": 19288.3, + "probability": 0.8618 + }, + { + "start": 19289.34, + "end": 19291.86, + "probability": 0.981 + }, + { + "start": 19292.4, + "end": 19296.86, + "probability": 0.8937 + }, + { + "start": 19297.6, + "end": 19300.38, + "probability": 0.7933 + }, + { + "start": 19300.76, + "end": 19302.75, + "probability": 0.9833 + }, + { + "start": 19303.64, + "end": 19307.02, + "probability": 0.9302 + }, + { + "start": 19309.12, + "end": 19310.06, + "probability": 0.6215 + }, + { + "start": 19310.64, + "end": 19313.28, + "probability": 0.8149 + }, + { + "start": 19316.5, + "end": 19325.2, + "probability": 0.9828 + }, + { + "start": 19326.36, + "end": 19327.86, + "probability": 0.922 + }, + { + "start": 19328.96, + "end": 19330.86, + "probability": 0.9905 + }, + { + "start": 19332.42, + "end": 19336.06, + "probability": 0.9893 + }, + { + "start": 19337.42, + "end": 19339.68, + "probability": 0.9816 + }, + { + "start": 19340.18, + "end": 19343.34, + "probability": 0.953 + }, + { + "start": 19343.92, + "end": 19344.78, + "probability": 0.346 + }, + { + "start": 19346.98, + "end": 19349.36, + "probability": 0.928 + }, + { + "start": 19351.3, + "end": 19352.3, + "probability": 0.9028 + }, + { + "start": 19353.64, + "end": 19357.66, + "probability": 0.9988 + }, + { + "start": 19358.66, + "end": 19360.76, + "probability": 0.999 + }, + { + "start": 19361.28, + "end": 19364.84, + "probability": 0.9192 + }, + { + "start": 19365.94, + "end": 19372.52, + "probability": 0.9833 + }, + { + "start": 19373.02, + "end": 19373.42, + "probability": 0.8444 + }, + { + "start": 19375.96, + "end": 19378.16, + "probability": 0.998 + }, + { + "start": 19379.04, + "end": 19380.88, + "probability": 0.7386 + }, + { + "start": 19382.28, + "end": 19382.8, + "probability": 0.81 + }, + { + "start": 19382.88, + "end": 19386.38, + "probability": 0.9488 + }, + { + "start": 19386.68, + "end": 19387.32, + "probability": 0.9548 + }, + { + "start": 19387.56, + "end": 19388.18, + "probability": 0.8083 + }, + { + "start": 19388.84, + "end": 19390.48, + "probability": 0.6759 + }, + { + "start": 19393.18, + "end": 19394.12, + "probability": 0.4445 + }, + { + "start": 19395.36, + "end": 19401.26, + "probability": 0.995 + }, + { + "start": 19401.9, + "end": 19402.74, + "probability": 0.5398 + }, + { + "start": 19404.58, + "end": 19406.4, + "probability": 0.7981 + }, + { + "start": 19408.0, + "end": 19409.06, + "probability": 0.9827 + }, + { + "start": 19409.68, + "end": 19410.7, + "probability": 0.9754 + }, + { + "start": 19412.16, + "end": 19417.3, + "probability": 0.9724 + }, + { + "start": 19420.08, + "end": 19421.14, + "probability": 0.8184 + }, + { + "start": 19423.04, + "end": 19424.54, + "probability": 0.9807 + }, + { + "start": 19425.4, + "end": 19426.56, + "probability": 0.9907 + }, + { + "start": 19428.58, + "end": 19430.73, + "probability": 0.9951 + }, + { + "start": 19431.86, + "end": 19435.78, + "probability": 0.9697 + }, + { + "start": 19436.54, + "end": 19437.82, + "probability": 0.9214 + }, + { + "start": 19439.02, + "end": 19440.94, + "probability": 0.9149 + }, + { + "start": 19442.06, + "end": 19443.9, + "probability": 0.9783 + }, + { + "start": 19445.32, + "end": 19445.98, + "probability": 0.7014 + }, + { + "start": 19447.78, + "end": 19451.48, + "probability": 0.9991 + }, + { + "start": 19452.54, + "end": 19454.8, + "probability": 0.9851 + }, + { + "start": 19455.98, + "end": 19459.3, + "probability": 0.999 + }, + { + "start": 19462.72, + "end": 19465.66, + "probability": 0.9886 + }, + { + "start": 19466.76, + "end": 19468.64, + "probability": 0.999 + }, + { + "start": 19469.28, + "end": 19471.94, + "probability": 0.7925 + }, + { + "start": 19473.2, + "end": 19474.02, + "probability": 0.9517 + }, + { + "start": 19474.64, + "end": 19474.9, + "probability": 0.4118 + }, + { + "start": 19475.04, + "end": 19476.34, + "probability": 0.959 + }, + { + "start": 19477.96, + "end": 19478.62, + "probability": 0.9223 + }, + { + "start": 19480.28, + "end": 19482.21, + "probability": 0.9951 + }, + { + "start": 19483.86, + "end": 19486.66, + "probability": 0.9961 + }, + { + "start": 19487.22, + "end": 19488.4, + "probability": 0.8289 + }, + { + "start": 19489.4, + "end": 19493.66, + "probability": 0.9888 + }, + { + "start": 19494.58, + "end": 19496.5, + "probability": 0.9995 + }, + { + "start": 19497.96, + "end": 19499.3, + "probability": 0.8161 + }, + { + "start": 19500.28, + "end": 19502.94, + "probability": 0.9919 + }, + { + "start": 19505.48, + "end": 19511.48, + "probability": 0.9937 + }, + { + "start": 19516.46, + "end": 19519.18, + "probability": 0.9951 + }, + { + "start": 19519.22, + "end": 19520.42, + "probability": 0.9807 + }, + { + "start": 19520.82, + "end": 19522.2, + "probability": 0.9199 + }, + { + "start": 19523.72, + "end": 19525.7, + "probability": 0.994 + }, + { + "start": 19527.02, + "end": 19529.3, + "probability": 0.979 + }, + { + "start": 19531.56, + "end": 19532.72, + "probability": 0.9963 + }, + { + "start": 19533.88, + "end": 19535.43, + "probability": 0.866 + }, + { + "start": 19536.4, + "end": 19536.66, + "probability": 0.6185 + }, + { + "start": 19538.52, + "end": 19542.11, + "probability": 0.9616 + }, + { + "start": 19543.14, + "end": 19544.68, + "probability": 0.8924 + }, + { + "start": 19546.36, + "end": 19548.04, + "probability": 0.9851 + }, + { + "start": 19548.86, + "end": 19551.66, + "probability": 0.9868 + }, + { + "start": 19553.22, + "end": 19554.7, + "probability": 0.8503 + }, + { + "start": 19555.98, + "end": 19559.54, + "probability": 0.8828 + }, + { + "start": 19563.92, + "end": 19565.51, + "probability": 0.967 + }, + { + "start": 19566.44, + "end": 19567.46, + "probability": 0.9292 + }, + { + "start": 19568.34, + "end": 19570.26, + "probability": 0.9617 + }, + { + "start": 19570.98, + "end": 19572.76, + "probability": 0.776 + }, + { + "start": 19573.32, + "end": 19575.26, + "probability": 0.7724 + }, + { + "start": 19577.02, + "end": 19577.46, + "probability": 0.8325 + }, + { + "start": 19578.5, + "end": 19581.3, + "probability": 0.9285 + }, + { + "start": 19582.24, + "end": 19582.94, + "probability": 0.714 + }, + { + "start": 19584.4, + "end": 19587.12, + "probability": 0.9883 + }, + { + "start": 19587.88, + "end": 19592.28, + "probability": 0.9009 + }, + { + "start": 19593.12, + "end": 19595.82, + "probability": 0.5934 + }, + { + "start": 19596.54, + "end": 19598.62, + "probability": 0.7658 + }, + { + "start": 19599.26, + "end": 19600.52, + "probability": 0.9707 + }, + { + "start": 19601.28, + "end": 19602.56, + "probability": 0.749 + }, + { + "start": 19604.54, + "end": 19605.68, + "probability": 0.9223 + }, + { + "start": 19606.1, + "end": 19608.98, + "probability": 0.8963 + }, + { + "start": 19610.16, + "end": 19613.84, + "probability": 0.907 + }, + { + "start": 19615.16, + "end": 19617.8, + "probability": 0.941 + }, + { + "start": 19620.86, + "end": 19622.7, + "probability": 0.9758 + }, + { + "start": 19625.3, + "end": 19628.34, + "probability": 0.9965 + }, + { + "start": 19629.4, + "end": 19631.88, + "probability": 0.9952 + }, + { + "start": 19633.02, + "end": 19637.8, + "probability": 0.8677 + }, + { + "start": 19638.92, + "end": 19641.98, + "probability": 0.8977 + }, + { + "start": 19642.02, + "end": 19645.28, + "probability": 0.928 + }, + { + "start": 19645.42, + "end": 19645.88, + "probability": 0.9626 + }, + { + "start": 19646.0, + "end": 19646.76, + "probability": 0.9142 + }, + { + "start": 19647.34, + "end": 19649.14, + "probability": 0.6459 + }, + { + "start": 19652.46, + "end": 19655.18, + "probability": 0.9949 + }, + { + "start": 19656.6, + "end": 19657.54, + "probability": 0.924 + }, + { + "start": 19661.02, + "end": 19667.34, + "probability": 0.9941 + }, + { + "start": 19667.34, + "end": 19668.86, + "probability": 0.896 + }, + { + "start": 19673.78, + "end": 19676.56, + "probability": 0.9941 + }, + { + "start": 19677.14, + "end": 19678.04, + "probability": 0.3914 + }, + { + "start": 19678.38, + "end": 19679.2, + "probability": 0.9923 + }, + { + "start": 19679.8, + "end": 19681.9, + "probability": 0.9953 + }, + { + "start": 19682.46, + "end": 19682.82, + "probability": 0.793 + }, + { + "start": 19682.96, + "end": 19685.32, + "probability": 0.7664 + }, + { + "start": 19686.22, + "end": 19687.4, + "probability": 0.9939 + }, + { + "start": 19688.2, + "end": 19691.5, + "probability": 0.9933 + }, + { + "start": 19693.48, + "end": 19694.71, + "probability": 0.8076 + }, + { + "start": 19695.52, + "end": 19696.56, + "probability": 0.9651 + }, + { + "start": 19697.58, + "end": 19698.24, + "probability": 0.8961 + }, + { + "start": 19701.18, + "end": 19701.18, + "probability": 0.0412 + }, + { + "start": 19701.22, + "end": 19702.01, + "probability": 0.9897 + }, + { + "start": 19702.64, + "end": 19704.24, + "probability": 0.9832 + }, + { + "start": 19704.78, + "end": 19707.28, + "probability": 0.9254 + }, + { + "start": 19707.86, + "end": 19708.24, + "probability": 0.8287 + }, + { + "start": 19710.88, + "end": 19711.8, + "probability": 0.9814 + }, + { + "start": 19713.14, + "end": 19714.16, + "probability": 0.9552 + }, + { + "start": 19715.44, + "end": 19717.5, + "probability": 0.9224 + }, + { + "start": 19718.86, + "end": 19724.38, + "probability": 0.9705 + }, + { + "start": 19725.66, + "end": 19728.3, + "probability": 0.9558 + }, + { + "start": 19730.0, + "end": 19736.14, + "probability": 0.994 + }, + { + "start": 19736.7, + "end": 19739.64, + "probability": 0.9875 + }, + { + "start": 19739.66, + "end": 19743.48, + "probability": 0.9704 + }, + { + "start": 19747.22, + "end": 19750.88, + "probability": 0.9898 + }, + { + "start": 19751.82, + "end": 19756.48, + "probability": 0.962 + }, + { + "start": 19757.62, + "end": 19762.84, + "probability": 0.9974 + }, + { + "start": 19763.72, + "end": 19766.46, + "probability": 0.9775 + }, + { + "start": 19769.18, + "end": 19769.56, + "probability": 0.7439 + }, + { + "start": 19770.52, + "end": 19776.43, + "probability": 0.7445 + }, + { + "start": 19777.24, + "end": 19782.3, + "probability": 0.9902 + }, + { + "start": 19783.0, + "end": 19785.46, + "probability": 0.984 + }, + { + "start": 19786.2, + "end": 19786.94, + "probability": 0.5054 + }, + { + "start": 19787.64, + "end": 19791.58, + "probability": 0.7554 + }, + { + "start": 19794.42, + "end": 19796.66, + "probability": 0.8086 + }, + { + "start": 19799.52, + "end": 19800.28, + "probability": 0.82 + }, + { + "start": 19800.5, + "end": 19802.4, + "probability": 0.9833 + }, + { + "start": 19802.74, + "end": 19803.28, + "probability": 0.8 + }, + { + "start": 19806.48, + "end": 19809.18, + "probability": 0.9946 + }, + { + "start": 19809.52, + "end": 19810.08, + "probability": 0.7325 + }, + { + "start": 19810.52, + "end": 19811.64, + "probability": 0.9273 + }, + { + "start": 19812.1, + "end": 19812.68, + "probability": 0.6642 + }, + { + "start": 19813.52, + "end": 19813.74, + "probability": 0.8942 + }, + { + "start": 19814.98, + "end": 19817.22, + "probability": 0.9509 + }, + { + "start": 19818.42, + "end": 19820.41, + "probability": 0.9761 + }, + { + "start": 19821.2, + "end": 19826.48, + "probability": 0.9307 + }, + { + "start": 19826.88, + "end": 19828.02, + "probability": 0.9956 + }, + { + "start": 19831.6, + "end": 19833.02, + "probability": 0.892 + }, + { + "start": 19835.06, + "end": 19837.98, + "probability": 0.8959 + }, + { + "start": 19839.66, + "end": 19842.44, + "probability": 0.9634 + }, + { + "start": 19845.24, + "end": 19847.14, + "probability": 0.8774 + }, + { + "start": 19851.46, + "end": 19855.5, + "probability": 0.9436 + }, + { + "start": 19856.46, + "end": 19857.34, + "probability": 0.7325 + }, + { + "start": 19857.94, + "end": 19860.24, + "probability": 0.7269 + }, + { + "start": 19861.08, + "end": 19864.18, + "probability": 0.9845 + }, + { + "start": 19864.76, + "end": 19866.88, + "probability": 0.8011 + }, + { + "start": 19867.78, + "end": 19868.82, + "probability": 0.9365 + }, + { + "start": 19869.26, + "end": 19869.52, + "probability": 0.9183 + }, + { + "start": 19870.4, + "end": 19870.84, + "probability": 0.8034 + }, + { + "start": 19872.18, + "end": 19873.32, + "probability": 0.9812 + }, + { + "start": 19874.84, + "end": 19879.04, + "probability": 0.9774 + }, + { + "start": 19879.06, + "end": 19880.66, + "probability": 0.7968 + }, + { + "start": 19880.74, + "end": 19881.42, + "probability": 0.9808 + }, + { + "start": 19882.3, + "end": 19883.72, + "probability": 0.9671 + }, + { + "start": 19884.2, + "end": 19884.9, + "probability": 0.7272 + }, + { + "start": 19887.88, + "end": 19889.32, + "probability": 0.9602 + }, + { + "start": 19899.66, + "end": 19900.34, + "probability": 0.6596 + }, + { + "start": 19900.54, + "end": 19901.26, + "probability": 0.8077 + }, + { + "start": 19901.36, + "end": 19903.96, + "probability": 0.8626 + }, + { + "start": 19904.04, + "end": 19905.06, + "probability": 0.8941 + }, + { + "start": 19906.32, + "end": 19907.14, + "probability": 0.8768 + }, + { + "start": 19907.42, + "end": 19908.66, + "probability": 0.944 + }, + { + "start": 19908.88, + "end": 19910.06, + "probability": 0.9822 + }, + { + "start": 19910.34, + "end": 19912.08, + "probability": 0.9234 + }, + { + "start": 19912.98, + "end": 19914.26, + "probability": 0.6526 + }, + { + "start": 19917.5, + "end": 19919.0, + "probability": 0.9849 + }, + { + "start": 19919.44, + "end": 19921.06, + "probability": 0.9982 + }, + { + "start": 19921.14, + "end": 19926.44, + "probability": 0.9961 + }, + { + "start": 19927.26, + "end": 19931.0, + "probability": 0.9955 + }, + { + "start": 19932.16, + "end": 19932.82, + "probability": 0.894 + }, + { + "start": 19933.36, + "end": 19941.1, + "probability": 0.9983 + }, + { + "start": 19943.26, + "end": 19944.46, + "probability": 0.8711 + }, + { + "start": 19945.24, + "end": 19947.98, + "probability": 0.9976 + }, + { + "start": 19948.22, + "end": 19950.64, + "probability": 0.9802 + }, + { + "start": 19950.8, + "end": 19952.82, + "probability": 0.9968 + }, + { + "start": 19953.92, + "end": 19957.2, + "probability": 0.9442 + }, + { + "start": 19957.76, + "end": 19958.58, + "probability": 0.8616 + }, + { + "start": 19958.82, + "end": 19961.62, + "probability": 0.9966 + }, + { + "start": 19962.44, + "end": 19963.32, + "probability": 0.8041 + }, + { + "start": 19963.38, + "end": 19964.18, + "probability": 0.9406 + }, + { + "start": 19965.0, + "end": 19966.9, + "probability": 0.8862 + }, + { + "start": 19967.58, + "end": 19968.42, + "probability": 0.7561 + }, + { + "start": 19969.08, + "end": 19972.12, + "probability": 0.9883 + }, + { + "start": 19972.7, + "end": 19973.76, + "probability": 0.8174 + }, + { + "start": 19974.94, + "end": 19978.42, + "probability": 0.9724 + }, + { + "start": 19978.62, + "end": 19980.88, + "probability": 0.9474 + }, + { + "start": 19981.66, + "end": 19984.66, + "probability": 0.9441 + }, + { + "start": 19985.26, + "end": 19986.98, + "probability": 0.9985 + }, + { + "start": 19987.62, + "end": 19990.9, + "probability": 0.9904 + }, + { + "start": 19992.08, + "end": 19993.82, + "probability": 0.9853 + }, + { + "start": 19994.9, + "end": 19996.28, + "probability": 0.979 + }, + { + "start": 19996.44, + "end": 19997.28, + "probability": 0.9202 + }, + { + "start": 19997.44, + "end": 20000.47, + "probability": 0.9252 + }, + { + "start": 20001.68, + "end": 20003.45, + "probability": 0.9894 + }, + { + "start": 20004.34, + "end": 20005.96, + "probability": 0.9516 + }, + { + "start": 20006.7, + "end": 20012.8, + "probability": 0.9974 + }, + { + "start": 20013.08, + "end": 20015.38, + "probability": 0.9987 + }, + { + "start": 20015.96, + "end": 20023.0, + "probability": 0.962 + }, + { + "start": 20023.16, + "end": 20026.78, + "probability": 0.9326 + }, + { + "start": 20028.04, + "end": 20031.1, + "probability": 0.9727 + }, + { + "start": 20031.32, + "end": 20032.18, + "probability": 0.9873 + }, + { + "start": 20032.88, + "end": 20035.14, + "probability": 0.9906 + }, + { + "start": 20035.62, + "end": 20038.3, + "probability": 0.9883 + }, + { + "start": 20038.38, + "end": 20040.8, + "probability": 0.9506 + }, + { + "start": 20041.56, + "end": 20042.84, + "probability": 0.9863 + }, + { + "start": 20043.98, + "end": 20045.14, + "probability": 0.9983 + }, + { + "start": 20046.0, + "end": 20052.34, + "probability": 0.9927 + }, + { + "start": 20052.96, + "end": 20057.16, + "probability": 0.9985 + }, + { + "start": 20057.82, + "end": 20064.38, + "probability": 0.9969 + }, + { + "start": 20065.28, + "end": 20067.56, + "probability": 0.6852 + }, + { + "start": 20067.96, + "end": 20070.86, + "probability": 0.9357 + }, + { + "start": 20071.74, + "end": 20076.74, + "probability": 0.9767 + }, + { + "start": 20076.8, + "end": 20079.76, + "probability": 0.9911 + }, + { + "start": 20080.58, + "end": 20086.22, + "probability": 0.9971 + }, + { + "start": 20086.9, + "end": 20091.02, + "probability": 0.9965 + }, + { + "start": 20093.52, + "end": 20096.02, + "probability": 0.9639 + }, + { + "start": 20096.18, + "end": 20097.74, + "probability": 0.9778 + }, + { + "start": 20098.52, + "end": 20099.04, + "probability": 0.9266 + }, + { + "start": 20099.74, + "end": 20101.0, + "probability": 0.8818 + }, + { + "start": 20102.16, + "end": 20104.98, + "probability": 0.9842 + }, + { + "start": 20105.2, + "end": 20108.33, + "probability": 0.9971 + }, + { + "start": 20109.38, + "end": 20112.6, + "probability": 0.9921 + }, + { + "start": 20113.96, + "end": 20116.39, + "probability": 0.998 + }, + { + "start": 20116.68, + "end": 20119.94, + "probability": 0.9963 + }, + { + "start": 20121.12, + "end": 20122.12, + "probability": 0.7368 + }, + { + "start": 20122.76, + "end": 20124.7, + "probability": 0.9968 + }, + { + "start": 20124.86, + "end": 20126.7, + "probability": 0.8856 + }, + { + "start": 20126.72, + "end": 20127.87, + "probability": 0.9512 + }, + { + "start": 20128.09, + "end": 20129.67, + "probability": 0.9624 + }, + { + "start": 20130.52, + "end": 20131.42, + "probability": 0.8634 + }, + { + "start": 20131.82, + "end": 20132.68, + "probability": 0.6034 + }, + { + "start": 20133.2, + "end": 20134.58, + "probability": 0.9163 + }, + { + "start": 20135.24, + "end": 20137.72, + "probability": 0.9913 + }, + { + "start": 20138.14, + "end": 20142.28, + "probability": 0.9951 + }, + { + "start": 20143.96, + "end": 20147.38, + "probability": 0.998 + }, + { + "start": 20147.46, + "end": 20149.37, + "probability": 0.9956 + }, + { + "start": 20150.3, + "end": 20152.98, + "probability": 0.9547 + }, + { + "start": 20153.96, + "end": 20155.08, + "probability": 0.801 + }, + { + "start": 20156.08, + "end": 20156.66, + "probability": 0.9423 + }, + { + "start": 20156.76, + "end": 20157.42, + "probability": 0.9773 + }, + { + "start": 20157.48, + "end": 20158.7, + "probability": 0.9644 + }, + { + "start": 20158.88, + "end": 20159.62, + "probability": 0.9346 + }, + { + "start": 20160.0, + "end": 20160.66, + "probability": 0.9847 + }, + { + "start": 20161.36, + "end": 20162.6, + "probability": 0.9966 + }, + { + "start": 20163.2, + "end": 20164.44, + "probability": 0.9771 + }, + { + "start": 20165.56, + "end": 20168.33, + "probability": 0.9965 + }, + { + "start": 20169.22, + "end": 20171.2, + "probability": 0.9985 + }, + { + "start": 20172.36, + "end": 20175.12, + "probability": 0.9945 + }, + { + "start": 20175.78, + "end": 20178.2, + "probability": 0.9946 + }, + { + "start": 20178.86, + "end": 20186.08, + "probability": 0.999 + }, + { + "start": 20187.26, + "end": 20188.94, + "probability": 0.9918 + }, + { + "start": 20189.1, + "end": 20190.14, + "probability": 0.9391 + }, + { + "start": 20190.26, + "end": 20191.44, + "probability": 0.9725 + }, + { + "start": 20192.32, + "end": 20192.92, + "probability": 0.9192 + }, + { + "start": 20193.58, + "end": 20194.24, + "probability": 0.9792 + }, + { + "start": 20195.12, + "end": 20196.58, + "probability": 0.8716 + }, + { + "start": 20197.04, + "end": 20198.12, + "probability": 0.9867 + }, + { + "start": 20198.56, + "end": 20201.68, + "probability": 0.9905 + }, + { + "start": 20202.28, + "end": 20203.06, + "probability": 0.6517 + }, + { + "start": 20203.72, + "end": 20206.6, + "probability": 0.9595 + }, + { + "start": 20207.26, + "end": 20208.18, + "probability": 0.8973 + }, + { + "start": 20208.24, + "end": 20212.32, + "probability": 0.9925 + }, + { + "start": 20212.76, + "end": 20214.24, + "probability": 0.9878 + }, + { + "start": 20214.66, + "end": 20217.24, + "probability": 0.9954 + }, + { + "start": 20217.76, + "end": 20221.38, + "probability": 0.9898 + }, + { + "start": 20221.56, + "end": 20222.54, + "probability": 0.9644 + }, + { + "start": 20223.18, + "end": 20226.76, + "probability": 0.9684 + }, + { + "start": 20227.5, + "end": 20233.24, + "probability": 0.9985 + }, + { + "start": 20234.42, + "end": 20236.4, + "probability": 0.9888 + }, + { + "start": 20237.72, + "end": 20238.82, + "probability": 0.9556 + }, + { + "start": 20239.28, + "end": 20240.44, + "probability": 0.9644 + }, + { + "start": 20240.94, + "end": 20243.58, + "probability": 0.5751 + }, + { + "start": 20243.6, + "end": 20245.38, + "probability": 0.9877 + }, + { + "start": 20245.48, + "end": 20247.02, + "probability": 0.9813 + }, + { + "start": 20247.24, + "end": 20248.12, + "probability": 0.8911 + }, + { + "start": 20248.64, + "end": 20249.8, + "probability": 0.9101 + }, + { + "start": 20249.88, + "end": 20251.42, + "probability": 0.9796 + }, + { + "start": 20252.12, + "end": 20253.9, + "probability": 0.9974 + }, + { + "start": 20253.9, + "end": 20255.92, + "probability": 0.9991 + }, + { + "start": 20256.76, + "end": 20259.9, + "probability": 0.9983 + }, + { + "start": 20260.56, + "end": 20263.36, + "probability": 0.9215 + }, + { + "start": 20264.0, + "end": 20264.76, + "probability": 0.9973 + }, + { + "start": 20266.44, + "end": 20267.36, + "probability": 0.9387 + }, + { + "start": 20268.24, + "end": 20270.9, + "probability": 0.999 + }, + { + "start": 20271.6, + "end": 20273.06, + "probability": 0.9644 + }, + { + "start": 20273.84, + "end": 20274.62, + "probability": 0.9995 + }, + { + "start": 20275.28, + "end": 20277.08, + "probability": 0.9968 + }, + { + "start": 20277.4, + "end": 20280.62, + "probability": 0.9301 + }, + { + "start": 20280.84, + "end": 20281.46, + "probability": 0.5001 + }, + { + "start": 20281.78, + "end": 20282.46, + "probability": 0.9335 + }, + { + "start": 20282.98, + "end": 20283.57, + "probability": 0.9896 + }, + { + "start": 20284.32, + "end": 20285.24, + "probability": 0.655 + }, + { + "start": 20285.72, + "end": 20286.78, + "probability": 0.9216 + }, + { + "start": 20287.24, + "end": 20288.54, + "probability": 0.9948 + }, + { + "start": 20289.02, + "end": 20290.1, + "probability": 0.9746 + }, + { + "start": 20290.6, + "end": 20293.5, + "probability": 0.9892 + }, + { + "start": 20294.04, + "end": 20295.1, + "probability": 0.6796 + }, + { + "start": 20295.74, + "end": 20297.56, + "probability": 0.9033 + }, + { + "start": 20298.2, + "end": 20298.96, + "probability": 0.8149 + }, + { + "start": 20299.56, + "end": 20304.28, + "probability": 0.9886 + }, + { + "start": 20304.36, + "end": 20308.96, + "probability": 0.9922 + }, + { + "start": 20310.0, + "end": 20312.66, + "probability": 0.9149 + }, + { + "start": 20313.44, + "end": 20316.8, + "probability": 0.9733 + }, + { + "start": 20317.62, + "end": 20320.47, + "probability": 0.9854 + }, + { + "start": 20320.56, + "end": 20325.2, + "probability": 0.9971 + }, + { + "start": 20325.4, + "end": 20326.08, + "probability": 0.7615 + }, + { + "start": 20326.32, + "end": 20327.02, + "probability": 0.6753 + }, + { + "start": 20327.46, + "end": 20330.46, + "probability": 0.9905 + }, + { + "start": 20331.52, + "end": 20333.82, + "probability": 0.798 + }, + { + "start": 20333.96, + "end": 20338.18, + "probability": 0.9912 + }, + { + "start": 20338.9, + "end": 20340.04, + "probability": 0.9941 + }, + { + "start": 20340.38, + "end": 20342.46, + "probability": 0.97 + }, + { + "start": 20343.54, + "end": 20346.2, + "probability": 0.9823 + }, + { + "start": 20346.78, + "end": 20347.54, + "probability": 0.9912 + }, + { + "start": 20348.12, + "end": 20351.14, + "probability": 0.8699 + }, + { + "start": 20351.98, + "end": 20355.1, + "probability": 0.9894 + }, + { + "start": 20355.78, + "end": 20356.16, + "probability": 0.9056 + }, + { + "start": 20356.96, + "end": 20357.8, + "probability": 0.9001 + }, + { + "start": 20358.34, + "end": 20362.5, + "probability": 0.9734 + }, + { + "start": 20362.8, + "end": 20365.0, + "probability": 0.9868 + }, + { + "start": 20365.7, + "end": 20366.72, + "probability": 0.9821 + }, + { + "start": 20367.36, + "end": 20368.86, + "probability": 0.9689 + }, + { + "start": 20369.88, + "end": 20371.04, + "probability": 0.9984 + }, + { + "start": 20371.96, + "end": 20372.47, + "probability": 0.8915 + }, + { + "start": 20373.52, + "end": 20374.96, + "probability": 0.9911 + }, + { + "start": 20375.72, + "end": 20376.61, + "probability": 0.9883 + }, + { + "start": 20377.76, + "end": 20378.38, + "probability": 0.9315 + }, + { + "start": 20379.62, + "end": 20381.0, + "probability": 0.954 + }, + { + "start": 20382.32, + "end": 20386.16, + "probability": 0.9419 + }, + { + "start": 20387.74, + "end": 20390.3, + "probability": 0.9812 + }, + { + "start": 20391.08, + "end": 20391.88, + "probability": 0.7398 + }, + { + "start": 20393.02, + "end": 20393.62, + "probability": 0.9371 + }, + { + "start": 20393.8, + "end": 20394.22, + "probability": 0.911 + }, + { + "start": 20394.66, + "end": 20397.1, + "probability": 0.9941 + }, + { + "start": 20397.9, + "end": 20398.24, + "probability": 0.8167 + }, + { + "start": 20398.9, + "end": 20402.32, + "probability": 0.9935 + }, + { + "start": 20402.66, + "end": 20402.92, + "probability": 0.933 + }, + { + "start": 20403.02, + "end": 20403.56, + "probability": 0.5673 + }, + { + "start": 20403.62, + "end": 20410.02, + "probability": 0.92 + }, + { + "start": 20410.84, + "end": 20412.54, + "probability": 0.9878 + }, + { + "start": 20413.06, + "end": 20414.58, + "probability": 0.9177 + }, + { + "start": 20415.16, + "end": 20416.24, + "probability": 0.9923 + }, + { + "start": 20416.62, + "end": 20419.64, + "probability": 0.999 + }, + { + "start": 20420.44, + "end": 20424.76, + "probability": 0.9266 + }, + { + "start": 20425.3, + "end": 20427.36, + "probability": 0.9821 + }, + { + "start": 20428.4, + "end": 20431.1, + "probability": 0.9939 + }, + { + "start": 20431.84, + "end": 20433.14, + "probability": 0.9752 + }, + { + "start": 20433.9, + "end": 20436.52, + "probability": 0.9969 + }, + { + "start": 20436.66, + "end": 20439.24, + "probability": 0.9959 + }, + { + "start": 20439.32, + "end": 20442.06, + "probability": 0.9991 + }, + { + "start": 20445.16, + "end": 20446.66, + "probability": 0.9423 + }, + { + "start": 20447.4, + "end": 20449.42, + "probability": 0.9761 + }, + { + "start": 20450.0, + "end": 20453.54, + "probability": 0.7907 + }, + { + "start": 20454.12, + "end": 20456.7, + "probability": 0.9888 + }, + { + "start": 20457.8, + "end": 20459.74, + "probability": 0.9976 + }, + { + "start": 20460.92, + "end": 20466.22, + "probability": 0.9937 + }, + { + "start": 20466.42, + "end": 20466.88, + "probability": 0.6309 + }, + { + "start": 20467.4, + "end": 20467.9, + "probability": 0.9155 + }, + { + "start": 20468.14, + "end": 20471.34, + "probability": 0.9912 + }, + { + "start": 20471.82, + "end": 20473.66, + "probability": 0.9985 + }, + { + "start": 20474.1, + "end": 20474.8, + "probability": 0.8741 + }, + { + "start": 20475.22, + "end": 20476.72, + "probability": 0.9355 + }, + { + "start": 20476.86, + "end": 20477.88, + "probability": 0.9574 + }, + { + "start": 20478.3, + "end": 20480.86, + "probability": 0.9639 + }, + { + "start": 20481.72, + "end": 20482.31, + "probability": 0.9712 + }, + { + "start": 20483.44, + "end": 20485.74, + "probability": 0.9973 + }, + { + "start": 20486.3, + "end": 20488.4, + "probability": 0.742 + }, + { + "start": 20488.88, + "end": 20490.56, + "probability": 0.924 + }, + { + "start": 20490.66, + "end": 20491.8, + "probability": 0.9659 + }, + { + "start": 20492.08, + "end": 20493.16, + "probability": 0.9832 + }, + { + "start": 20493.22, + "end": 20494.36, + "probability": 0.9543 + }, + { + "start": 20494.7, + "end": 20495.24, + "probability": 0.9672 + }, + { + "start": 20495.5, + "end": 20497.62, + "probability": 0.98 + }, + { + "start": 20497.66, + "end": 20497.84, + "probability": 0.7817 + }, + { + "start": 20498.28, + "end": 20499.38, + "probability": 0.9502 + }, + { + "start": 20499.58, + "end": 20504.06, + "probability": 0.8777 + }, + { + "start": 20505.24, + "end": 20507.42, + "probability": 0.9915 + }, + { + "start": 20508.2, + "end": 20511.81, + "probability": 0.998 + }, + { + "start": 20512.36, + "end": 20512.88, + "probability": 0.8734 + }, + { + "start": 20513.52, + "end": 20514.9, + "probability": 0.9219 + }, + { + "start": 20515.88, + "end": 20518.22, + "probability": 0.9906 + }, + { + "start": 20518.84, + "end": 20520.32, + "probability": 0.9421 + }, + { + "start": 20521.44, + "end": 20522.66, + "probability": 0.958 + }, + { + "start": 20523.26, + "end": 20526.22, + "probability": 0.9844 + }, + { + "start": 20526.72, + "end": 20527.84, + "probability": 0.6833 + }, + { + "start": 20528.72, + "end": 20529.14, + "probability": 0.8187 + }, + { + "start": 20530.54, + "end": 20532.42, + "probability": 0.9883 + }, + { + "start": 20533.16, + "end": 20533.66, + "probability": 0.7384 + }, + { + "start": 20533.72, + "end": 20534.86, + "probability": 0.9878 + }, + { + "start": 20535.04, + "end": 20538.82, + "probability": 0.9751 + }, + { + "start": 20539.3, + "end": 20539.82, + "probability": 0.9662 + }, + { + "start": 20540.64, + "end": 20541.16, + "probability": 0.9617 + }, + { + "start": 20541.8, + "end": 20543.68, + "probability": 0.934 + }, + { + "start": 20544.04, + "end": 20545.38, + "probability": 0.9776 + }, + { + "start": 20546.22, + "end": 20549.51, + "probability": 0.9919 + }, + { + "start": 20550.2, + "end": 20553.38, + "probability": 0.9858 + }, + { + "start": 20554.7, + "end": 20555.72, + "probability": 0.9344 + }, + { + "start": 20556.26, + "end": 20558.2, + "probability": 0.6043 + }, + { + "start": 20558.38, + "end": 20559.06, + "probability": 0.8052 + }, + { + "start": 20559.2, + "end": 20559.64, + "probability": 0.686 + }, + { + "start": 20560.28, + "end": 20562.28, + "probability": 0.9738 + }, + { + "start": 20563.0, + "end": 20564.06, + "probability": 0.8535 + }, + { + "start": 20565.06, + "end": 20565.9, + "probability": 0.91 + }, + { + "start": 20566.32, + "end": 20568.64, + "probability": 0.9853 + }, + { + "start": 20569.1, + "end": 20573.7, + "probability": 0.9977 + }, + { + "start": 20574.7, + "end": 20575.88, + "probability": 0.9961 + }, + { + "start": 20575.94, + "end": 20577.32, + "probability": 0.9972 + }, + { + "start": 20577.8, + "end": 20579.1, + "probability": 0.9573 + }, + { + "start": 20579.58, + "end": 20582.22, + "probability": 0.9966 + }, + { + "start": 20582.38, + "end": 20584.68, + "probability": 0.9968 + }, + { + "start": 20585.56, + "end": 20586.5, + "probability": 0.9949 + }, + { + "start": 20587.12, + "end": 20588.52, + "probability": 0.7413 + }, + { + "start": 20589.16, + "end": 20591.96, + "probability": 0.9937 + }, + { + "start": 20592.42, + "end": 20592.98, + "probability": 0.954 + }, + { + "start": 20593.4, + "end": 20594.28, + "probability": 0.7461 + }, + { + "start": 20595.06, + "end": 20595.78, + "probability": 0.9245 + }, + { + "start": 20596.44, + "end": 20597.48, + "probability": 0.9616 + }, + { + "start": 20598.36, + "end": 20601.32, + "probability": 0.9548 + }, + { + "start": 20601.5, + "end": 20605.52, + "probability": 0.9875 + }, + { + "start": 20606.38, + "end": 20610.32, + "probability": 0.9523 + }, + { + "start": 20611.18, + "end": 20613.98, + "probability": 0.993 + }, + { + "start": 20613.98, + "end": 20617.06, + "probability": 0.9018 + }, + { + "start": 20617.2, + "end": 20618.24, + "probability": 0.9779 + }, + { + "start": 20618.46, + "end": 20619.38, + "probability": 0.9609 + }, + { + "start": 20619.66, + "end": 20622.24, + "probability": 0.9713 + }, + { + "start": 20623.46, + "end": 20624.58, + "probability": 0.7221 + }, + { + "start": 20625.96, + "end": 20627.86, + "probability": 0.8031 + }, + { + "start": 20628.48, + "end": 20629.17, + "probability": 0.7462 + }, + { + "start": 20630.66, + "end": 20631.88, + "probability": 0.9858 + }, + { + "start": 20632.62, + "end": 20632.94, + "probability": 0.8175 + }, + { + "start": 20633.94, + "end": 20638.2, + "probability": 0.9925 + }, + { + "start": 20638.44, + "end": 20639.22, + "probability": 0.8848 + }, + { + "start": 20639.86, + "end": 20640.18, + "probability": 0.7109 + }, + { + "start": 20640.86, + "end": 20641.8, + "probability": 0.7467 + }, + { + "start": 20642.18, + "end": 20644.31, + "probability": 0.9858 + }, + { + "start": 20645.78, + "end": 20648.04, + "probability": 0.9865 + }, + { + "start": 20648.56, + "end": 20649.46, + "probability": 0.9312 + }, + { + "start": 20650.16, + "end": 20651.56, + "probability": 0.8889 + }, + { + "start": 20651.72, + "end": 20652.98, + "probability": 0.937 + }, + { + "start": 20653.1, + "end": 20656.76, + "probability": 0.9944 + }, + { + "start": 20657.14, + "end": 20658.38, + "probability": 0.9861 + }, + { + "start": 20659.26, + "end": 20660.88, + "probability": 0.9889 + }, + { + "start": 20661.36, + "end": 20662.47, + "probability": 0.9917 + }, + { + "start": 20663.2, + "end": 20667.84, + "probability": 0.9863 + }, + { + "start": 20668.02, + "end": 20671.16, + "probability": 0.9521 + }, + { + "start": 20672.2, + "end": 20673.18, + "probability": 0.9368 + }, + { + "start": 20673.72, + "end": 20676.44, + "probability": 0.9468 + }, + { + "start": 20676.9, + "end": 20678.38, + "probability": 0.9749 + }, + { + "start": 20678.48, + "end": 20679.22, + "probability": 0.9927 + }, + { + "start": 20679.96, + "end": 20681.3, + "probability": 0.9341 + }, + { + "start": 20681.56, + "end": 20683.48, + "probability": 0.9515 + }, + { + "start": 20684.0, + "end": 20687.38, + "probability": 0.7958 + }, + { + "start": 20687.46, + "end": 20687.84, + "probability": 0.6305 + }, + { + "start": 20688.32, + "end": 20690.06, + "probability": 0.91 + }, + { + "start": 20690.6, + "end": 20693.98, + "probability": 0.9656 + }, + { + "start": 20696.02, + "end": 20697.66, + "probability": 0.9983 + }, + { + "start": 20698.18, + "end": 20699.72, + "probability": 0.9965 + }, + { + "start": 20701.04, + "end": 20702.14, + "probability": 0.8914 + }, + { + "start": 20702.44, + "end": 20702.6, + "probability": 0.494 + }, + { + "start": 20702.66, + "end": 20706.82, + "probability": 0.9963 + }, + { + "start": 20706.82, + "end": 20709.9, + "probability": 0.9881 + }, + { + "start": 20711.38, + "end": 20712.36, + "probability": 0.9974 + }, + { + "start": 20713.06, + "end": 20715.24, + "probability": 0.9971 + }, + { + "start": 20716.16, + "end": 20716.88, + "probability": 0.8265 + }, + { + "start": 20717.58, + "end": 20718.88, + "probability": 0.8868 + }, + { + "start": 20719.58, + "end": 20720.72, + "probability": 0.9951 + }, + { + "start": 20721.32, + "end": 20721.96, + "probability": 0.8926 + }, + { + "start": 20722.22, + "end": 20724.44, + "probability": 0.9976 + }, + { + "start": 20726.38, + "end": 20732.56, + "probability": 0.9973 + }, + { + "start": 20732.56, + "end": 20736.66, + "probability": 0.9987 + }, + { + "start": 20736.66, + "end": 20739.48, + "probability": 0.9977 + }, + { + "start": 20741.2, + "end": 20743.06, + "probability": 0.9862 + }, + { + "start": 20744.42, + "end": 20746.1, + "probability": 0.9995 + }, + { + "start": 20747.14, + "end": 20750.64, + "probability": 0.8139 + }, + { + "start": 20751.54, + "end": 20752.41, + "probability": 0.5361 + }, + { + "start": 20752.98, + "end": 20753.6, + "probability": 0.9462 + }, + { + "start": 20754.38, + "end": 20756.74, + "probability": 0.9971 + }, + { + "start": 20757.38, + "end": 20758.62, + "probability": 0.9708 + }, + { + "start": 20758.94, + "end": 20759.54, + "probability": 0.8967 + }, + { + "start": 20760.06, + "end": 20761.24, + "probability": 0.8809 + }, + { + "start": 20761.72, + "end": 20763.4, + "probability": 0.9915 + }, + { + "start": 20763.52, + "end": 20766.94, + "probability": 0.8361 + }, + { + "start": 20767.52, + "end": 20769.74, + "probability": 0.9936 + }, + { + "start": 20770.36, + "end": 20771.1, + "probability": 0.825 + }, + { + "start": 20772.48, + "end": 20775.38, + "probability": 0.9919 + }, + { + "start": 20776.24, + "end": 20777.0, + "probability": 0.9397 + }, + { + "start": 20778.78, + "end": 20781.24, + "probability": 0.9988 + }, + { + "start": 20782.56, + "end": 20783.24, + "probability": 0.972 + }, + { + "start": 20784.32, + "end": 20786.52, + "probability": 0.9878 + }, + { + "start": 20787.3, + "end": 20788.08, + "probability": 0.8486 + }, + { + "start": 20788.8, + "end": 20789.56, + "probability": 0.8816 + }, + { + "start": 20790.56, + "end": 20792.44, + "probability": 0.9582 + }, + { + "start": 20792.96, + "end": 20794.44, + "probability": 0.966 + }, + { + "start": 20794.58, + "end": 20795.18, + "probability": 0.9742 + }, + { + "start": 20795.52, + "end": 20797.38, + "probability": 0.9827 + }, + { + "start": 20798.0, + "end": 20799.85, + "probability": 0.98 + }, + { + "start": 20800.9, + "end": 20802.2, + "probability": 0.9817 + }, + { + "start": 20803.36, + "end": 20808.74, + "probability": 0.9991 + }, + { + "start": 20809.56, + "end": 20812.8, + "probability": 0.9859 + }, + { + "start": 20813.38, + "end": 20814.68, + "probability": 0.9895 + }, + { + "start": 20815.78, + "end": 20819.18, + "probability": 0.994 + }, + { + "start": 20819.6, + "end": 20820.84, + "probability": 0.9833 + }, + { + "start": 20821.48, + "end": 20825.64, + "probability": 0.9951 + }, + { + "start": 20826.42, + "end": 20828.76, + "probability": 0.8533 + }, + { + "start": 20829.54, + "end": 20832.26, + "probability": 0.978 + }, + { + "start": 20832.84, + "end": 20834.4, + "probability": 0.9067 + }, + { + "start": 20835.42, + "end": 20836.38, + "probability": 0.999 + }, + { + "start": 20836.9, + "end": 20839.38, + "probability": 0.9918 + }, + { + "start": 20839.38, + "end": 20842.26, + "probability": 0.9562 + }, + { + "start": 20842.72, + "end": 20843.34, + "probability": 0.9667 + }, + { + "start": 20845.08, + "end": 20850.06, + "probability": 0.9917 + }, + { + "start": 20851.56, + "end": 20853.46, + "probability": 0.9803 + }, + { + "start": 20854.32, + "end": 20858.06, + "probability": 0.9954 + }, + { + "start": 20859.7, + "end": 20861.46, + "probability": 0.9899 + }, + { + "start": 20862.58, + "end": 20864.72, + "probability": 0.9974 + }, + { + "start": 20864.86, + "end": 20865.6, + "probability": 0.5863 + }, + { + "start": 20866.54, + "end": 20867.13, + "probability": 0.915 + }, + { + "start": 20867.98, + "end": 20868.76, + "probability": 0.5245 + }, + { + "start": 20870.46, + "end": 20871.23, + "probability": 0.5123 + }, + { + "start": 20872.16, + "end": 20874.38, + "probability": 0.9484 + }, + { + "start": 20876.64, + "end": 20877.72, + "probability": 0.9458 + }, + { + "start": 20879.18, + "end": 20881.66, + "probability": 0.9849 + }, + { + "start": 20882.58, + "end": 20883.9, + "probability": 0.9504 + }, + { + "start": 20884.94, + "end": 20886.97, + "probability": 0.9939 + }, + { + "start": 20887.68, + "end": 20890.32, + "probability": 0.8494 + }, + { + "start": 20890.7, + "end": 20891.6, + "probability": 0.9341 + }, + { + "start": 20892.42, + "end": 20894.12, + "probability": 0.9395 + }, + { + "start": 20894.28, + "end": 20895.2, + "probability": 0.9883 + }, + { + "start": 20896.88, + "end": 20900.34, + "probability": 0.9911 + }, + { + "start": 20901.1, + "end": 20902.76, + "probability": 0.9865 + }, + { + "start": 20904.52, + "end": 20907.8, + "probability": 0.9765 + }, + { + "start": 20908.1, + "end": 20909.78, + "probability": 0.9874 + }, + { + "start": 20911.54, + "end": 20914.92, + "probability": 0.9958 + }, + { + "start": 20915.3, + "end": 20916.68, + "probability": 0.9755 + }, + { + "start": 20917.28, + "end": 20920.36, + "probability": 0.9912 + }, + { + "start": 20920.36, + "end": 20924.44, + "probability": 0.9972 + }, + { + "start": 20924.7, + "end": 20926.48, + "probability": 0.9602 + }, + { + "start": 20927.0, + "end": 20929.6, + "probability": 0.9534 + }, + { + "start": 20930.58, + "end": 20933.32, + "probability": 0.998 + }, + { + "start": 20935.5, + "end": 20937.56, + "probability": 0.814 + }, + { + "start": 20938.0, + "end": 20939.64, + "probability": 0.8912 + }, + { + "start": 20942.42, + "end": 20944.44, + "probability": 0.8319 + }, + { + "start": 20944.7, + "end": 20946.64, + "probability": 0.9904 + }, + { + "start": 20948.02, + "end": 20950.52, + "probability": 0.9834 + }, + { + "start": 20951.34, + "end": 20953.94, + "probability": 0.9752 + }, + { + "start": 20954.92, + "end": 20956.84, + "probability": 0.9938 + }, + { + "start": 20957.2, + "end": 20958.9, + "probability": 0.9684 + }, + { + "start": 20960.4, + "end": 20961.76, + "probability": 0.9287 + }, + { + "start": 20961.96, + "end": 20962.3, + "probability": 0.6609 + }, + { + "start": 20962.4, + "end": 20963.82, + "probability": 0.9946 + }, + { + "start": 20963.92, + "end": 20967.64, + "probability": 0.9961 + }, + { + "start": 20967.82, + "end": 20968.69, + "probability": 0.927 + }, + { + "start": 20969.42, + "end": 20974.12, + "probability": 0.9869 + }, + { + "start": 20974.54, + "end": 20978.76, + "probability": 0.9958 + }, + { + "start": 20979.36, + "end": 20979.6, + "probability": 0.5762 + }, + { + "start": 20979.68, + "end": 20982.74, + "probability": 0.9863 + }, + { + "start": 20982.88, + "end": 20985.02, + "probability": 0.9867 + }, + { + "start": 20985.66, + "end": 20988.3, + "probability": 0.9944 + }, + { + "start": 20988.52, + "end": 20988.6, + "probability": 0.4871 + }, + { + "start": 20988.74, + "end": 20989.46, + "probability": 0.9109 + }, + { + "start": 20990.0, + "end": 20990.94, + "probability": 0.9307 + }, + { + "start": 20991.06, + "end": 20991.98, + "probability": 0.9429 + }, + { + "start": 20992.48, + "end": 20993.96, + "probability": 0.9965 + }, + { + "start": 20996.97, + "end": 21001.42, + "probability": 0.9085 + }, + { + "start": 21001.72, + "end": 21001.82, + "probability": 0.7324 + }, + { + "start": 21002.64, + "end": 21003.63, + "probability": 0.7739 + }, + { + "start": 21005.3, + "end": 21008.76, + "probability": 0.9932 + }, + { + "start": 21011.26, + "end": 21015.54, + "probability": 0.989 + }, + { + "start": 21015.76, + "end": 21019.36, + "probability": 0.9987 + }, + { + "start": 21020.88, + "end": 21021.92, + "probability": 0.8503 + }, + { + "start": 21022.2, + "end": 21024.1, + "probability": 0.9543 + }, + { + "start": 21024.6, + "end": 21028.08, + "probability": 0.7496 + }, + { + "start": 21028.76, + "end": 21032.22, + "probability": 0.97 + }, + { + "start": 21033.16, + "end": 21034.88, + "probability": 0.9653 + }, + { + "start": 21036.42, + "end": 21037.48, + "probability": 0.769 + }, + { + "start": 21038.62, + "end": 21040.38, + "probability": 0.9985 + }, + { + "start": 21041.36, + "end": 21042.98, + "probability": 0.9878 + }, + { + "start": 21043.94, + "end": 21046.04, + "probability": 0.967 + }, + { + "start": 21046.94, + "end": 21051.38, + "probability": 0.8913 + }, + { + "start": 21052.08, + "end": 21052.92, + "probability": 0.7089 + }, + { + "start": 21053.62, + "end": 21057.2, + "probability": 0.9301 + }, + { + "start": 21058.16, + "end": 21060.02, + "probability": 0.9962 + }, + { + "start": 21061.04, + "end": 21062.76, + "probability": 0.8467 + }, + { + "start": 21063.2, + "end": 21063.72, + "probability": 0.7408 + }, + { + "start": 21064.3, + "end": 21064.6, + "probability": 0.6531 + }, + { + "start": 21065.96, + "end": 21068.44, + "probability": 0.9675 + }, + { + "start": 21068.86, + "end": 21069.08, + "probability": 0.6459 + }, + { + "start": 21069.34, + "end": 21070.24, + "probability": 0.6211 + }, + { + "start": 21070.72, + "end": 21072.51, + "probability": 0.9868 + }, + { + "start": 21073.4, + "end": 21074.6, + "probability": 0.8184 + }, + { + "start": 21074.94, + "end": 21076.54, + "probability": 0.9779 + }, + { + "start": 21076.96, + "end": 21080.66, + "probability": 0.9674 + }, + { + "start": 21081.2, + "end": 21084.74, + "probability": 0.8835 + }, + { + "start": 21085.28, + "end": 21086.24, + "probability": 0.9918 + }, + { + "start": 21086.5, + "end": 21089.1, + "probability": 0.9831 + }, + { + "start": 21090.46, + "end": 21091.46, + "probability": 0.9977 + }, + { + "start": 21091.84, + "end": 21094.3, + "probability": 0.9812 + }, + { + "start": 21094.48, + "end": 21096.42, + "probability": 0.925 + }, + { + "start": 21097.1, + "end": 21101.68, + "probability": 0.9805 + }, + { + "start": 21102.24, + "end": 21105.22, + "probability": 0.9149 + }, + { + "start": 21105.68, + "end": 21107.58, + "probability": 0.9182 + }, + { + "start": 21107.66, + "end": 21111.06, + "probability": 0.9879 + }, + { + "start": 21111.18, + "end": 21112.16, + "probability": 0.7187 + }, + { + "start": 21112.52, + "end": 21113.81, + "probability": 0.9937 + }, + { + "start": 21114.8, + "end": 21116.24, + "probability": 0.9955 + }, + { + "start": 21116.36, + "end": 21119.52, + "probability": 0.9817 + }, + { + "start": 21120.12, + "end": 21121.48, + "probability": 0.9979 + }, + { + "start": 21121.78, + "end": 21123.22, + "probability": 0.986 + }, + { + "start": 21123.62, + "end": 21125.34, + "probability": 0.8455 + }, + { + "start": 21126.44, + "end": 21127.76, + "probability": 0.9939 + }, + { + "start": 21128.56, + "end": 21130.68, + "probability": 0.9954 + }, + { + "start": 21131.38, + "end": 21132.7, + "probability": 0.9502 + }, + { + "start": 21133.4, + "end": 21133.88, + "probability": 0.9316 + }, + { + "start": 21134.82, + "end": 21135.42, + "probability": 0.9492 + }, + { + "start": 21136.0, + "end": 21137.5, + "probability": 0.9908 + }, + { + "start": 21137.9, + "end": 21140.46, + "probability": 0.9609 + }, + { + "start": 21141.04, + "end": 21142.02, + "probability": 0.9783 + }, + { + "start": 21143.54, + "end": 21143.74, + "probability": 0.8799 + }, + { + "start": 21144.38, + "end": 21144.8, + "probability": 0.864 + }, + { + "start": 21147.1, + "end": 21148.8, + "probability": 0.928 + }, + { + "start": 21165.54, + "end": 21167.98, + "probability": 0.6885 + }, + { + "start": 21170.28, + "end": 21172.62, + "probability": 0.9269 + }, + { + "start": 21174.18, + "end": 21175.6, + "probability": 0.9925 + }, + { + "start": 21177.02, + "end": 21178.32, + "probability": 0.8685 + }, + { + "start": 21179.02, + "end": 21183.14, + "probability": 0.9863 + }, + { + "start": 21183.34, + "end": 21183.82, + "probability": 0.8058 + }, + { + "start": 21184.46, + "end": 21185.98, + "probability": 0.9952 + }, + { + "start": 21188.2, + "end": 21193.36, + "probability": 0.9964 + }, + { + "start": 21194.32, + "end": 21195.3, + "probability": 0.9655 + }, + { + "start": 21197.32, + "end": 21204.0, + "probability": 0.9974 + }, + { + "start": 21205.32, + "end": 21207.14, + "probability": 0.995 + }, + { + "start": 21207.8, + "end": 21208.54, + "probability": 0.9526 + }, + { + "start": 21209.42, + "end": 21211.18, + "probability": 0.901 + }, + { + "start": 21212.98, + "end": 21214.3, + "probability": 0.9869 + }, + { + "start": 21215.86, + "end": 21220.38, + "probability": 0.741 + }, + { + "start": 21221.98, + "end": 21225.38, + "probability": 0.9971 + }, + { + "start": 21225.58, + "end": 21229.88, + "probability": 0.9834 + }, + { + "start": 21231.54, + "end": 21232.64, + "probability": 0.9968 + }, + { + "start": 21233.18, + "end": 21234.98, + "probability": 0.9911 + }, + { + "start": 21235.9, + "end": 21239.0, + "probability": 0.995 + }, + { + "start": 21239.82, + "end": 21241.68, + "probability": 0.9667 + }, + { + "start": 21242.64, + "end": 21245.9, + "probability": 0.9979 + }, + { + "start": 21246.7, + "end": 21248.3, + "probability": 0.9583 + }, + { + "start": 21249.82, + "end": 21250.8, + "probability": 0.9423 + }, + { + "start": 21251.68, + "end": 21253.52, + "probability": 0.9727 + }, + { + "start": 21254.68, + "end": 21256.26, + "probability": 0.9747 + }, + { + "start": 21258.6, + "end": 21260.56, + "probability": 0.9991 + }, + { + "start": 21261.48, + "end": 21262.28, + "probability": 0.9427 + }, + { + "start": 21262.98, + "end": 21263.72, + "probability": 0.9919 + }, + { + "start": 21264.42, + "end": 21265.06, + "probability": 0.9628 + }, + { + "start": 21266.04, + "end": 21266.64, + "probability": 0.9928 + }, + { + "start": 21268.82, + "end": 21271.5, + "probability": 0.9985 + }, + { + "start": 21273.06, + "end": 21275.26, + "probability": 0.9894 + }, + { + "start": 21276.02, + "end": 21276.52, + "probability": 0.7779 + }, + { + "start": 21277.56, + "end": 21279.8, + "probability": 0.9964 + }, + { + "start": 21280.32, + "end": 21281.28, + "probability": 0.9569 + }, + { + "start": 21282.28, + "end": 21283.48, + "probability": 0.9008 + }, + { + "start": 21284.4, + "end": 21285.5, + "probability": 0.9956 + }, + { + "start": 21287.34, + "end": 21288.82, + "probability": 0.9375 + }, + { + "start": 21289.9, + "end": 21290.72, + "probability": 0.97 + }, + { + "start": 21292.54, + "end": 21293.9, + "probability": 0.9951 + }, + { + "start": 21295.1, + "end": 21296.92, + "probability": 0.7592 + }, + { + "start": 21297.84, + "end": 21298.37, + "probability": 0.9673 + }, + { + "start": 21299.54, + "end": 21300.32, + "probability": 0.884 + }, + { + "start": 21301.24, + "end": 21302.36, + "probability": 0.9787 + }, + { + "start": 21303.14, + "end": 21304.28, + "probability": 0.9805 + }, + { + "start": 21304.8, + "end": 21305.82, + "probability": 0.9858 + }, + { + "start": 21307.32, + "end": 21310.4, + "probability": 0.972 + }, + { + "start": 21312.18, + "end": 21317.68, + "probability": 0.9972 + }, + { + "start": 21318.3, + "end": 21319.84, + "probability": 0.998 + }, + { + "start": 21321.6, + "end": 21323.92, + "probability": 0.979 + }, + { + "start": 21324.44, + "end": 21325.34, + "probability": 0.9908 + }, + { + "start": 21326.84, + "end": 21328.28, + "probability": 0.9865 + }, + { + "start": 21330.42, + "end": 21331.9, + "probability": 0.9658 + }, + { + "start": 21333.06, + "end": 21334.06, + "probability": 0.9865 + }, + { + "start": 21334.6, + "end": 21336.2, + "probability": 0.9752 + }, + { + "start": 21337.48, + "end": 21343.2, + "probability": 0.9807 + }, + { + "start": 21344.12, + "end": 21345.76, + "probability": 0.89 + }, + { + "start": 21346.58, + "end": 21348.62, + "probability": 0.9905 + }, + { + "start": 21350.84, + "end": 21353.92, + "probability": 0.9777 + }, + { + "start": 21355.08, + "end": 21356.2, + "probability": 0.8256 + }, + { + "start": 21357.34, + "end": 21359.22, + "probability": 0.984 + }, + { + "start": 21360.76, + "end": 21361.88, + "probability": 0.7464 + }, + { + "start": 21362.56, + "end": 21363.7, + "probability": 0.8197 + }, + { + "start": 21364.66, + "end": 21365.32, + "probability": 0.6324 + }, + { + "start": 21366.78, + "end": 21369.42, + "probability": 0.991 + }, + { + "start": 21370.38, + "end": 21374.0, + "probability": 0.9966 + }, + { + "start": 21375.22, + "end": 21376.8, + "probability": 0.9983 + }, + { + "start": 21377.42, + "end": 21380.2, + "probability": 0.9624 + }, + { + "start": 21381.88, + "end": 21382.36, + "probability": 0.9287 + }, + { + "start": 21383.2, + "end": 21384.68, + "probability": 0.9722 + }, + { + "start": 21385.84, + "end": 21387.06, + "probability": 0.9482 + }, + { + "start": 21388.38, + "end": 21389.1, + "probability": 0.8223 + }, + { + "start": 21389.98, + "end": 21390.46, + "probability": 0.919 + }, + { + "start": 21391.26, + "end": 21394.16, + "probability": 0.9839 + }, + { + "start": 21396.06, + "end": 21398.38, + "probability": 0.9974 + }, + { + "start": 21398.96, + "end": 21399.94, + "probability": 0.9434 + }, + { + "start": 21403.58, + "end": 21406.98, + "probability": 0.9528 + }, + { + "start": 21407.5, + "end": 21409.24, + "probability": 0.7545 + }, + { + "start": 21410.18, + "end": 21414.22, + "probability": 0.9989 + }, + { + "start": 21414.22, + "end": 21418.72, + "probability": 0.998 + }, + { + "start": 21420.28, + "end": 21423.68, + "probability": 0.9799 + }, + { + "start": 21425.6, + "end": 21427.8, + "probability": 0.7407 + }, + { + "start": 21428.56, + "end": 21429.56, + "probability": 0.9548 + }, + { + "start": 21430.06, + "end": 21432.62, + "probability": 0.99 + }, + { + "start": 21433.5, + "end": 21437.72, + "probability": 0.9868 + }, + { + "start": 21438.58, + "end": 21442.5, + "probability": 0.9825 + }, + { + "start": 21443.16, + "end": 21443.66, + "probability": 0.8218 + }, + { + "start": 21444.34, + "end": 21447.52, + "probability": 0.9741 + }, + { + "start": 21448.84, + "end": 21449.06, + "probability": 0.9271 + }, + { + "start": 21449.9, + "end": 21451.34, + "probability": 0.4986 + }, + { + "start": 21451.34, + "end": 21452.06, + "probability": 0.7247 + }, + { + "start": 21453.26, + "end": 21456.22, + "probability": 0.9352 + }, + { + "start": 21457.2, + "end": 21460.06, + "probability": 0.9932 + }, + { + "start": 21461.02, + "end": 21461.84, + "probability": 0.9868 + }, + { + "start": 21462.82, + "end": 21463.5, + "probability": 0.4914 + }, + { + "start": 21464.62, + "end": 21467.64, + "probability": 0.9783 + }, + { + "start": 21468.94, + "end": 21473.16, + "probability": 0.6666 + }, + { + "start": 21474.28, + "end": 21477.14, + "probability": 0.9964 + }, + { + "start": 21479.18, + "end": 21480.28, + "probability": 0.8074 + }, + { + "start": 21481.34, + "end": 21483.06, + "probability": 0.9844 + }, + { + "start": 21484.06, + "end": 21485.0, + "probability": 0.9828 + }, + { + "start": 21486.6, + "end": 21490.06, + "probability": 0.9978 + }, + { + "start": 21490.6, + "end": 21492.08, + "probability": 0.9499 + }, + { + "start": 21492.7, + "end": 21494.7, + "probability": 0.9881 + }, + { + "start": 21495.66, + "end": 21496.3, + "probability": 0.8253 + }, + { + "start": 21497.2, + "end": 21497.74, + "probability": 0.8421 + }, + { + "start": 21498.76, + "end": 21500.22, + "probability": 0.9852 + }, + { + "start": 21501.46, + "end": 21502.6, + "probability": 0.6174 + }, + { + "start": 21504.44, + "end": 21504.74, + "probability": 0.25 + }, + { + "start": 21504.82, + "end": 21506.16, + "probability": 0.8087 + }, + { + "start": 21507.06, + "end": 21508.54, + "probability": 0.994 + }, + { + "start": 21509.36, + "end": 21509.4, + "probability": 0.1826 + }, + { + "start": 21509.4, + "end": 21511.14, + "probability": 0.9908 + }, + { + "start": 21511.76, + "end": 21515.46, + "probability": 0.9837 + }, + { + "start": 21516.16, + "end": 21518.28, + "probability": 0.9957 + }, + { + "start": 21518.96, + "end": 21521.06, + "probability": 0.9822 + }, + { + "start": 21521.62, + "end": 21523.48, + "probability": 0.9953 + }, + { + "start": 21523.48, + "end": 21526.54, + "probability": 0.9524 + }, + { + "start": 21526.88, + "end": 21527.22, + "probability": 0.8364 + }, + { + "start": 21527.56, + "end": 21528.14, + "probability": 0.7401 + }, + { + "start": 21529.12, + "end": 21532.64, + "probability": 0.9312 + }, + { + "start": 21534.96, + "end": 21537.0, + "probability": 0.9535 + }, + { + "start": 21537.0, + "end": 21538.9, + "probability": 0.9639 + }, + { + "start": 21538.96, + "end": 21539.97, + "probability": 0.99 + }, + { + "start": 21540.1, + "end": 21541.17, + "probability": 0.7857 + }, + { + "start": 21542.38, + "end": 21543.6, + "probability": 0.2461 + }, + { + "start": 21543.76, + "end": 21544.22, + "probability": 0.4681 + }, + { + "start": 21544.3, + "end": 21544.64, + "probability": 0.4185 + }, + { + "start": 21553.9, + "end": 21556.08, + "probability": 0.6502 + }, + { + "start": 21556.08, + "end": 21556.64, + "probability": 0.3457 + }, + { + "start": 21556.76, + "end": 21557.74, + "probability": 0.5602 + }, + { + "start": 21557.88, + "end": 21559.64, + "probability": 0.967 + }, + { + "start": 21559.84, + "end": 21561.5, + "probability": 0.9318 + }, + { + "start": 21561.58, + "end": 21562.06, + "probability": 0.801 + }, + { + "start": 21563.04, + "end": 21563.86, + "probability": 0.7492 + }, + { + "start": 21563.88, + "end": 21564.38, + "probability": 0.5684 + }, + { + "start": 21565.5, + "end": 21565.96, + "probability": 0.9808 + }, + { + "start": 21566.26, + "end": 21566.48, + "probability": 0.0586 + }, + { + "start": 21566.64, + "end": 21568.14, + "probability": 0.8725 + }, + { + "start": 21568.3, + "end": 21569.72, + "probability": 0.9312 + }, + { + "start": 21570.58, + "end": 21570.92, + "probability": 0.9471 + }, + { + "start": 21571.28, + "end": 21574.84, + "probability": 0.6413 + }, + { + "start": 21574.94, + "end": 21575.98, + "probability": 0.9609 + }, + { + "start": 21577.12, + "end": 21578.96, + "probability": 0.8859 + }, + { + "start": 21579.12, + "end": 21579.34, + "probability": 0.0429 + }, + { + "start": 21579.44, + "end": 21579.87, + "probability": 0.8154 + }, + { + "start": 21580.12, + "end": 21582.52, + "probability": 0.9361 + }, + { + "start": 21583.05, + "end": 21587.54, + "probability": 0.8987 + }, + { + "start": 21588.5, + "end": 21589.28, + "probability": 0.6051 + }, + { + "start": 21589.72, + "end": 21589.88, + "probability": 0.6331 + }, + { + "start": 21590.4, + "end": 21591.08, + "probability": 0.3862 + }, + { + "start": 21591.24, + "end": 21592.08, + "probability": 0.6793 + }, + { + "start": 21593.84, + "end": 21596.1, + "probability": 0.7537 + }, + { + "start": 21596.62, + "end": 21597.84, + "probability": 0.8 + }, + { + "start": 21598.7, + "end": 21599.92, + "probability": 0.9863 + }, + { + "start": 21600.6, + "end": 21602.14, + "probability": 0.9396 + }, + { + "start": 21602.26, + "end": 21602.86, + "probability": 0.8141 + }, + { + "start": 21602.94, + "end": 21602.94, + "probability": 0.1227 + }, + { + "start": 21602.94, + "end": 21605.24, + "probability": 0.9917 + }, + { + "start": 21605.68, + "end": 21606.88, + "probability": 0.6628 + }, + { + "start": 21606.9, + "end": 21608.7, + "probability": 0.9657 + }, + { + "start": 21609.12, + "end": 21610.34, + "probability": 0.8213 + }, + { + "start": 21610.44, + "end": 21612.16, + "probability": 0.9932 + }, + { + "start": 21612.22, + "end": 21613.83, + "probability": 0.9919 + }, + { + "start": 21614.24, + "end": 21615.18, + "probability": 0.9041 + }, + { + "start": 21615.46, + "end": 21615.82, + "probability": 0.2155 + }, + { + "start": 21615.82, + "end": 21617.58, + "probability": 0.8882 + }, + { + "start": 21617.74, + "end": 21619.1, + "probability": 0.8999 + }, + { + "start": 21620.22, + "end": 21621.94, + "probability": 0.8928 + }, + { + "start": 21622.16, + "end": 21624.76, + "probability": 0.9949 + }, + { + "start": 21624.82, + "end": 21626.21, + "probability": 0.9934 + }, + { + "start": 21627.08, + "end": 21630.74, + "probability": 0.9862 + }, + { + "start": 21631.0, + "end": 21634.98, + "probability": 0.7764 + }, + { + "start": 21636.72, + "end": 21636.9, + "probability": 0.2636 + }, + { + "start": 21636.9, + "end": 21637.1, + "probability": 0.0785 + }, + { + "start": 21637.1, + "end": 21637.1, + "probability": 0.0122 + }, + { + "start": 21637.1, + "end": 21637.1, + "probability": 0.3347 + }, + { + "start": 21637.1, + "end": 21637.14, + "probability": 0.7228 + }, + { + "start": 21637.14, + "end": 21637.24, + "probability": 0.3487 + }, + { + "start": 21637.56, + "end": 21637.98, + "probability": 0.8425 + }, + { + "start": 21638.08, + "end": 21640.38, + "probability": 0.9918 + }, + { + "start": 21640.6, + "end": 21642.22, + "probability": 0.8012 + }, + { + "start": 21643.2, + "end": 21643.2, + "probability": 0.3329 + }, + { + "start": 21643.2, + "end": 21644.46, + "probability": 0.7153 + }, + { + "start": 21645.26, + "end": 21648.08, + "probability": 0.9349 + }, + { + "start": 21648.66, + "end": 21652.84, + "probability": 0.7748 + }, + { + "start": 21652.86, + "end": 21653.04, + "probability": 0.3905 + }, + { + "start": 21653.1, + "end": 21653.78, + "probability": 0.8901 + }, + { + "start": 21653.9, + "end": 21655.04, + "probability": 0.8143 + }, + { + "start": 21655.3, + "end": 21656.68, + "probability": 0.6379 + }, + { + "start": 21658.16, + "end": 21659.02, + "probability": 0.7281 + }, + { + "start": 21659.02, + "end": 21659.2, + "probability": 0.1213 + }, + { + "start": 21659.2, + "end": 21659.2, + "probability": 0.0413 + }, + { + "start": 21659.2, + "end": 21659.34, + "probability": 0.6919 + }, + { + "start": 21661.12, + "end": 21665.28, + "probability": 0.7653 + }, + { + "start": 21665.84, + "end": 21667.13, + "probability": 0.9895 + }, + { + "start": 21667.28, + "end": 21669.2, + "probability": 0.6845 + }, + { + "start": 21669.4, + "end": 21670.66, + "probability": 0.9883 + }, + { + "start": 21670.94, + "end": 21672.82, + "probability": 0.5654 + }, + { + "start": 21672.82, + "end": 21673.3, + "probability": 0.8756 + }, + { + "start": 21674.34, + "end": 21678.48, + "probability": 0.9902 + }, + { + "start": 21678.76, + "end": 21680.62, + "probability": 0.9399 + }, + { + "start": 21681.64, + "end": 21684.42, + "probability": 0.7593 + }, + { + "start": 21684.93, + "end": 21685.76, + "probability": 0.4208 + }, + { + "start": 21686.82, + "end": 21690.08, + "probability": 0.991 + }, + { + "start": 21690.26, + "end": 21690.48, + "probability": 0.7375 + }, + { + "start": 21691.12, + "end": 21693.43, + "probability": 0.8486 + }, + { + "start": 21694.32, + "end": 21695.52, + "probability": 0.5352 + }, + { + "start": 21695.88, + "end": 21697.63, + "probability": 0.9985 + }, + { + "start": 21698.44, + "end": 21699.7, + "probability": 0.9713 + }, + { + "start": 21699.74, + "end": 21699.94, + "probability": 0.6251 + }, + { + "start": 21700.0, + "end": 21700.12, + "probability": 0.3328 + }, + { + "start": 21700.28, + "end": 21703.74, + "probability": 0.7549 + }, + { + "start": 21703.86, + "end": 21706.48, + "probability": 0.9617 + }, + { + "start": 21707.82, + "end": 21709.2, + "probability": 0.9497 + }, + { + "start": 21709.28, + "end": 21711.54, + "probability": 0.9829 + }, + { + "start": 21711.74, + "end": 21713.54, + "probability": 0.9968 + }, + { + "start": 21714.46, + "end": 21716.2, + "probability": 0.7609 + }, + { + "start": 21716.24, + "end": 21716.44, + "probability": 0.2074 + }, + { + "start": 21716.48, + "end": 21721.48, + "probability": 0.8174 + }, + { + "start": 21722.08, + "end": 21726.98, + "probability": 0.6166 + }, + { + "start": 21727.78, + "end": 21730.85, + "probability": 0.8191 + }, + { + "start": 21732.18, + "end": 21732.18, + "probability": 0.0753 + }, + { + "start": 21732.18, + "end": 21732.18, + "probability": 0.016 + }, + { + "start": 21732.18, + "end": 21732.4, + "probability": 0.5314 + }, + { + "start": 21733.44, + "end": 21734.66, + "probability": 0.3423 + }, + { + "start": 21734.96, + "end": 21739.0, + "probability": 0.8519 + }, + { + "start": 21739.02, + "end": 21739.8, + "probability": 0.5668 + }, + { + "start": 21740.34, + "end": 21742.02, + "probability": 0.9603 + }, + { + "start": 21742.08, + "end": 21743.54, + "probability": 0.8184 + }, + { + "start": 21743.9, + "end": 21745.86, + "probability": 0.9639 + }, + { + "start": 21746.02, + "end": 21746.54, + "probability": 0.8488 + }, + { + "start": 21747.0, + "end": 21753.8, + "probability": 0.9911 + }, + { + "start": 21753.94, + "end": 21754.9, + "probability": 0.7695 + }, + { + "start": 21755.3, + "end": 21758.46, + "probability": 0.9934 + }, + { + "start": 21759.14, + "end": 21762.04, + "probability": 0.9744 + }, + { + "start": 21762.88, + "end": 21766.68, + "probability": 0.9679 + }, + { + "start": 21767.68, + "end": 21768.64, + "probability": 0.9629 + }, + { + "start": 21769.96, + "end": 21771.84, + "probability": 0.9956 + }, + { + "start": 21773.54, + "end": 21775.66, + "probability": 0.9441 + }, + { + "start": 21775.96, + "end": 21778.78, + "probability": 0.9557 + }, + { + "start": 21778.98, + "end": 21779.59, + "probability": 0.9182 + }, + { + "start": 21780.62, + "end": 21784.2, + "probability": 0.9827 + }, + { + "start": 21785.2, + "end": 21788.58, + "probability": 0.9829 + }, + { + "start": 21788.84, + "end": 21793.14, + "probability": 0.9886 + }, + { + "start": 21793.18, + "end": 21794.7, + "probability": 0.9642 + }, + { + "start": 21795.54, + "end": 21799.54, + "probability": 0.993 + }, + { + "start": 21800.66, + "end": 21802.04, + "probability": 0.8679 + }, + { + "start": 21802.58, + "end": 21804.6, + "probability": 0.5719 + }, + { + "start": 21804.72, + "end": 21807.64, + "probability": 0.9515 + }, + { + "start": 21808.5, + "end": 21812.64, + "probability": 0.9954 + }, + { + "start": 21813.24, + "end": 21815.34, + "probability": 0.9961 + }, + { + "start": 21816.08, + "end": 21819.38, + "probability": 0.9851 + }, + { + "start": 21819.48, + "end": 21825.3, + "probability": 0.9253 + }, + { + "start": 21826.12, + "end": 21833.32, + "probability": 0.8954 + }, + { + "start": 21833.32, + "end": 21837.1, + "probability": 0.994 + }, + { + "start": 21837.1, + "end": 21837.1, + "probability": 0.7586 + }, + { + "start": 21837.1, + "end": 21840.58, + "probability": 0.9958 + }, + { + "start": 21841.02, + "end": 21841.65, + "probability": 0.5322 + }, + { + "start": 21842.06, + "end": 21846.64, + "probability": 0.908 + }, + { + "start": 21846.74, + "end": 21848.08, + "probability": 0.933 + }, + { + "start": 21848.12, + "end": 21848.81, + "probability": 0.9698 + }, + { + "start": 21849.32, + "end": 21850.44, + "probability": 0.999 + }, + { + "start": 21851.68, + "end": 21853.0, + "probability": 0.9753 + }, + { + "start": 21853.1, + "end": 21853.78, + "probability": 0.6595 + }, + { + "start": 21854.12, + "end": 21858.38, + "probability": 0.9473 + }, + { + "start": 21858.92, + "end": 21861.24, + "probability": 0.9315 + }, + { + "start": 21861.6, + "end": 21861.88, + "probability": 0.2492 + }, + { + "start": 21861.92, + "end": 21862.02, + "probability": 0.0072 + }, + { + "start": 21862.02, + "end": 21863.38, + "probability": 0.7642 + }, + { + "start": 21863.42, + "end": 21864.44, + "probability": 0.9736 + }, + { + "start": 21864.54, + "end": 21866.26, + "probability": 0.9776 + }, + { + "start": 21867.06, + "end": 21868.9, + "probability": 0.8832 + }, + { + "start": 21869.18, + "end": 21872.5, + "probability": 0.9938 + }, + { + "start": 21872.52, + "end": 21873.74, + "probability": 0.5323 + }, + { + "start": 21874.36, + "end": 21875.16, + "probability": 0.4921 + }, + { + "start": 21875.9, + "end": 21878.3, + "probability": 0.9824 + }, + { + "start": 21878.94, + "end": 21882.04, + "probability": 0.9923 + }, + { + "start": 21882.52, + "end": 21882.76, + "probability": 0.7632 + }, + { + "start": 21883.0, + "end": 21885.0, + "probability": 0.9976 + }, + { + "start": 21885.02, + "end": 21886.96, + "probability": 0.8833 + }, + { + "start": 21887.02, + "end": 21887.2, + "probability": 0.0451 + }, + { + "start": 21887.22, + "end": 21887.96, + "probability": 0.4648 + }, + { + "start": 21888.02, + "end": 21888.23, + "probability": 0.5752 + }, + { + "start": 21888.65, + "end": 21892.98, + "probability": 0.8696 + }, + { + "start": 21893.08, + "end": 21894.42, + "probability": 0.9893 + }, + { + "start": 21895.32, + "end": 21897.26, + "probability": 0.8044 + }, + { + "start": 21898.14, + "end": 21901.94, + "probability": 0.9166 + }, + { + "start": 21901.98, + "end": 21906.5, + "probability": 0.9772 + }, + { + "start": 21906.58, + "end": 21909.68, + "probability": 0.9775 + }, + { + "start": 21909.78, + "end": 21912.72, + "probability": 0.5248 + }, + { + "start": 21913.36, + "end": 21914.68, + "probability": 0.9631 + }, + { + "start": 21914.74, + "end": 21918.28, + "probability": 0.957 + }, + { + "start": 21918.52, + "end": 21919.2, + "probability": 0.9385 + }, + { + "start": 21919.7, + "end": 21919.92, + "probability": 0.368 + }, + { + "start": 21920.02, + "end": 21921.1, + "probability": 0.994 + }, + { + "start": 21921.4, + "end": 21923.0, + "probability": 0.9319 + }, + { + "start": 21923.0, + "end": 21927.1, + "probability": 0.9855 + }, + { + "start": 21927.24, + "end": 21927.52, + "probability": 0.8994 + }, + { + "start": 21928.06, + "end": 21929.96, + "probability": 0.965 + }, + { + "start": 21930.9, + "end": 21933.16, + "probability": 0.7495 + }, + { + "start": 21933.3, + "end": 21933.9, + "probability": 0.9173 + }, + { + "start": 21933.98, + "end": 21934.14, + "probability": 0.9119 + }, + { + "start": 21934.36, + "end": 21934.8, + "probability": 0.9522 + }, + { + "start": 21934.9, + "end": 21936.78, + "probability": 0.9324 + }, + { + "start": 21936.82, + "end": 21937.6, + "probability": 0.7023 + }, + { + "start": 21938.5, + "end": 21940.4, + "probability": 0.616 + }, + { + "start": 21940.6, + "end": 21945.28, + "probability": 0.8944 + }, + { + "start": 21945.44, + "end": 21946.6, + "probability": 0.9463 + }, + { + "start": 21946.96, + "end": 21947.7, + "probability": 0.9329 + }, + { + "start": 21948.46, + "end": 21950.12, + "probability": 0.8436 + }, + { + "start": 21950.86, + "end": 21953.3, + "probability": 0.9919 + }, + { + "start": 21953.98, + "end": 21959.6, + "probability": 0.9866 + }, + { + "start": 21960.2, + "end": 21963.74, + "probability": 0.9164 + }, + { + "start": 21964.08, + "end": 21964.08, + "probability": 0.3679 + }, + { + "start": 21964.08, + "end": 21965.98, + "probability": 0.1237 + }, + { + "start": 21967.38, + "end": 21967.78, + "probability": 0.9192 + }, + { + "start": 21967.88, + "end": 21967.98, + "probability": 0.2321 + }, + { + "start": 21967.98, + "end": 21967.98, + "probability": 0.0506 + }, + { + "start": 21967.98, + "end": 21969.08, + "probability": 0.8024 + }, + { + "start": 21969.26, + "end": 21970.54, + "probability": 0.9603 + }, + { + "start": 21970.68, + "end": 21973.12, + "probability": 0.9938 + }, + { + "start": 21973.22, + "end": 21973.58, + "probability": 0.4669 + }, + { + "start": 21973.58, + "end": 21973.58, + "probability": 0.403 + }, + { + "start": 21973.58, + "end": 21973.86, + "probability": 0.4853 + }, + { + "start": 21974.14, + "end": 21975.08, + "probability": 0.346 + }, + { + "start": 21975.64, + "end": 21976.2, + "probability": 0.0395 + }, + { + "start": 21976.24, + "end": 21978.32, + "probability": 0.9014 + }, + { + "start": 21978.32, + "end": 21980.58, + "probability": 0.9738 + }, + { + "start": 21980.66, + "end": 21980.84, + "probability": 0.4871 + }, + { + "start": 21980.84, + "end": 21981.53, + "probability": 0.9673 + }, + { + "start": 21982.0, + "end": 21982.74, + "probability": 0.8921 + }, + { + "start": 21986.34, + "end": 21989.98, + "probability": 0.9917 + }, + { + "start": 21990.24, + "end": 21991.44, + "probability": 0.8335 + }, + { + "start": 21991.5, + "end": 21993.8, + "probability": 0.9498 + }, + { + "start": 21994.16, + "end": 21995.98, + "probability": 0.9414 + }, + { + "start": 21996.1, + "end": 21996.66, + "probability": 0.8589 + }, + { + "start": 21996.82, + "end": 21997.4, + "probability": 0.569 + }, + { + "start": 21997.84, + "end": 21999.66, + "probability": 0.7454 + }, + { + "start": 21999.78, + "end": 21999.78, + "probability": 0.3736 + }, + { + "start": 21999.86, + "end": 21999.98, + "probability": 0.3408 + }, + { + "start": 21999.98, + "end": 22002.14, + "probability": 0.6879 + }, + { + "start": 22002.22, + "end": 22003.74, + "probability": 0.9941 + }, + { + "start": 22004.12, + "end": 22005.96, + "probability": 0.7665 + }, + { + "start": 22006.0, + "end": 22010.28, + "probability": 0.9499 + }, + { + "start": 22010.48, + "end": 22012.68, + "probability": 0.9988 + }, + { + "start": 22013.72, + "end": 22019.42, + "probability": 0.9354 + }, + { + "start": 22019.5, + "end": 22020.14, + "probability": 0.9059 + }, + { + "start": 22020.22, + "end": 22025.24, + "probability": 0.9976 + }, + { + "start": 22025.82, + "end": 22028.04, + "probability": 0.902 + }, + { + "start": 22028.68, + "end": 22032.2, + "probability": 0.9985 + }, + { + "start": 22032.94, + "end": 22033.98, + "probability": 0.8225 + }, + { + "start": 22034.04, + "end": 22034.14, + "probability": 0.4379 + }, + { + "start": 22034.26, + "end": 22037.6, + "probability": 0.7975 + }, + { + "start": 22037.74, + "end": 22039.4, + "probability": 0.7803 + }, + { + "start": 22040.88, + "end": 22044.84, + "probability": 0.9528 + }, + { + "start": 22047.2, + "end": 22048.18, + "probability": 0.7568 + }, + { + "start": 22048.4, + "end": 22049.64, + "probability": 0.9842 + }, + { + "start": 22049.76, + "end": 22051.06, + "probability": 0.9886 + }, + { + "start": 22051.26, + "end": 22056.28, + "probability": 0.9811 + }, + { + "start": 22056.38, + "end": 22058.3, + "probability": 0.9811 + }, + { + "start": 22058.3, + "end": 22060.65, + "probability": 0.8682 + }, + { + "start": 22061.48, + "end": 22061.92, + "probability": 0.8477 + }, + { + "start": 22063.2, + "end": 22068.64, + "probability": 0.964 + }, + { + "start": 22068.78, + "end": 22071.68, + "probability": 0.959 + }, + { + "start": 22073.0, + "end": 22076.86, + "probability": 0.9949 + }, + { + "start": 22077.62, + "end": 22079.94, + "probability": 0.9984 + }, + { + "start": 22080.78, + "end": 22081.18, + "probability": 0.6637 + }, + { + "start": 22081.52, + "end": 22081.94, + "probability": 0.6923 + }, + { + "start": 22082.3, + "end": 22084.21, + "probability": 0.9845 + }, + { + "start": 22085.36, + "end": 22089.48, + "probability": 0.8024 + }, + { + "start": 22090.36, + "end": 22090.42, + "probability": 0.4379 + }, + { + "start": 22090.42, + "end": 22092.08, + "probability": 0.9921 + }, + { + "start": 22092.18, + "end": 22092.92, + "probability": 0.7263 + }, + { + "start": 22093.3, + "end": 22096.82, + "probability": 0.9817 + }, + { + "start": 22097.2, + "end": 22100.02, + "probability": 0.9257 + }, + { + "start": 22100.68, + "end": 22101.38, + "probability": 0.999 + }, + { + "start": 22102.68, + "end": 22103.52, + "probability": 0.964 + }, + { + "start": 22104.72, + "end": 22105.98, + "probability": 0.9443 + }, + { + "start": 22109.62, + "end": 22115.02, + "probability": 0.9884 + }, + { + "start": 22115.1, + "end": 22116.3, + "probability": 0.9261 + }, + { + "start": 22117.18, + "end": 22118.76, + "probability": 0.9912 + }, + { + "start": 22119.96, + "end": 22128.44, + "probability": 0.9683 + }, + { + "start": 22128.64, + "end": 22129.16, + "probability": 0.764 + }, + { + "start": 22129.22, + "end": 22129.68, + "probability": 0.9528 + }, + { + "start": 22129.92, + "end": 22136.06, + "probability": 0.9801 + }, + { + "start": 22137.44, + "end": 22140.58, + "probability": 0.9126 + }, + { + "start": 22142.34, + "end": 22145.09, + "probability": 0.9851 + }, + { + "start": 22145.94, + "end": 22149.5, + "probability": 0.9991 + }, + { + "start": 22150.32, + "end": 22154.38, + "probability": 0.9996 + }, + { + "start": 22155.3, + "end": 22156.42, + "probability": 0.9988 + }, + { + "start": 22157.7, + "end": 22161.16, + "probability": 0.9902 + }, + { + "start": 22161.32, + "end": 22161.92, + "probability": 0.6359 + }, + { + "start": 22162.02, + "end": 22164.41, + "probability": 0.9822 + }, + { + "start": 22164.56, + "end": 22165.7, + "probability": 0.9475 + }, + { + "start": 22165.86, + "end": 22166.2, + "probability": 0.8297 + }, + { + "start": 22167.16, + "end": 22169.14, + "probability": 0.9156 + }, + { + "start": 22169.34, + "end": 22171.62, + "probability": 0.8909 + }, + { + "start": 22171.82, + "end": 22174.03, + "probability": 0.9238 + }, + { + "start": 22175.36, + "end": 22177.54, + "probability": 0.8948 + }, + { + "start": 22178.06, + "end": 22180.94, + "probability": 0.9387 + }, + { + "start": 22181.0, + "end": 22183.42, + "probability": 0.7837 + }, + { + "start": 22184.06, + "end": 22185.1, + "probability": 0.9044 + }, + { + "start": 22185.7, + "end": 22186.98, + "probability": 0.9657 + }, + { + "start": 22187.42, + "end": 22188.62, + "probability": 0.9896 + }, + { + "start": 22188.72, + "end": 22190.72, + "probability": 0.8984 + }, + { + "start": 22191.48, + "end": 22192.8, + "probability": 0.9839 + }, + { + "start": 22193.6, + "end": 22195.02, + "probability": 0.7512 + }, + { + "start": 22196.08, + "end": 22197.18, + "probability": 0.9819 + }, + { + "start": 22198.16, + "end": 22199.78, + "probability": 0.998 + }, + { + "start": 22200.48, + "end": 22206.14, + "probability": 0.9961 + }, + { + "start": 22206.84, + "end": 22207.54, + "probability": 0.9614 + }, + { + "start": 22209.0, + "end": 22213.08, + "probability": 0.9897 + }, + { + "start": 22213.62, + "end": 22214.34, + "probability": 0.9825 + }, + { + "start": 22215.16, + "end": 22216.86, + "probability": 0.9639 + }, + { + "start": 22217.14, + "end": 22217.42, + "probability": 0.8879 + }, + { + "start": 22217.5, + "end": 22218.82, + "probability": 0.9925 + }, + { + "start": 22218.92, + "end": 22219.54, + "probability": 0.9477 + }, + { + "start": 22219.58, + "end": 22220.86, + "probability": 0.9934 + }, + { + "start": 22220.92, + "end": 22222.36, + "probability": 0.9305 + }, + { + "start": 22223.1, + "end": 22224.25, + "probability": 0.9799 + }, + { + "start": 22226.24, + "end": 22229.0, + "probability": 0.9905 + }, + { + "start": 22230.14, + "end": 22230.63, + "probability": 0.9531 + }, + { + "start": 22231.64, + "end": 22232.25, + "probability": 0.6852 + }, + { + "start": 22232.5, + "end": 22235.48, + "probability": 0.9194 + }, + { + "start": 22235.54, + "end": 22236.64, + "probability": 0.765 + }, + { + "start": 22236.7, + "end": 22237.58, + "probability": 0.9787 + }, + { + "start": 22237.66, + "end": 22238.76, + "probability": 0.9651 + }, + { + "start": 22239.3, + "end": 22240.52, + "probability": 0.6485 + }, + { + "start": 22240.64, + "end": 22242.22, + "probability": 0.5474 + }, + { + "start": 22242.54, + "end": 22244.9, + "probability": 0.9647 + }, + { + "start": 22244.92, + "end": 22245.26, + "probability": 0.7037 + }, + { + "start": 22245.58, + "end": 22246.36, + "probability": 0.9127 + }, + { + "start": 22247.42, + "end": 22247.94, + "probability": 0.9725 + }, + { + "start": 22248.5, + "end": 22250.22, + "probability": 0.9391 + }, + { + "start": 22250.82, + "end": 22252.98, + "probability": 0.9856 + }, + { + "start": 22253.5, + "end": 22257.92, + "probability": 0.9697 + }, + { + "start": 22258.82, + "end": 22259.72, + "probability": 0.9738 + }, + { + "start": 22261.58, + "end": 22263.54, + "probability": 0.8776 + }, + { + "start": 22264.56, + "end": 22267.86, + "probability": 0.3239 + }, + { + "start": 22267.98, + "end": 22268.34, + "probability": 0.676 + }, + { + "start": 22268.38, + "end": 22270.26, + "probability": 0.7756 + }, + { + "start": 22270.4, + "end": 22273.58, + "probability": 0.9966 + }, + { + "start": 22273.98, + "end": 22277.68, + "probability": 0.9545 + }, + { + "start": 22277.72, + "end": 22281.74, + "probability": 0.9947 + }, + { + "start": 22282.74, + "end": 22286.32, + "probability": 0.9951 + }, + { + "start": 22286.84, + "end": 22288.72, + "probability": 0.9717 + }, + { + "start": 22289.32, + "end": 22290.26, + "probability": 0.7739 + }, + { + "start": 22290.68, + "end": 22292.91, + "probability": 0.9961 + }, + { + "start": 22294.0, + "end": 22295.3, + "probability": 0.9983 + }, + { + "start": 22295.5, + "end": 22296.76, + "probability": 0.9993 + }, + { + "start": 22297.78, + "end": 22299.48, + "probability": 0.9531 + }, + { + "start": 22300.16, + "end": 22301.72, + "probability": 0.9466 + }, + { + "start": 22302.44, + "end": 22303.24, + "probability": 0.975 + }, + { + "start": 22303.32, + "end": 22306.12, + "probability": 0.7342 + }, + { + "start": 22306.5, + "end": 22308.6, + "probability": 0.9785 + }, + { + "start": 22309.18, + "end": 22309.84, + "probability": 0.3586 + }, + { + "start": 22310.62, + "end": 22313.18, + "probability": 0.9941 + }, + { + "start": 22313.78, + "end": 22315.36, + "probability": 0.9979 + }, + { + "start": 22315.92, + "end": 22318.52, + "probability": 0.9634 + }, + { + "start": 22319.94, + "end": 22321.11, + "probability": 0.9751 + }, + { + "start": 22322.0, + "end": 22322.98, + "probability": 0.9805 + }, + { + "start": 22323.68, + "end": 22325.46, + "probability": 0.9993 + }, + { + "start": 22326.24, + "end": 22329.73, + "probability": 0.9969 + }, + { + "start": 22330.12, + "end": 22331.08, + "probability": 0.6158 + }, + { + "start": 22332.08, + "end": 22332.64, + "probability": 0.8924 + }, + { + "start": 22333.64, + "end": 22335.94, + "probability": 0.9375 + }, + { + "start": 22337.66, + "end": 22338.64, + "probability": 0.9275 + }, + { + "start": 22338.84, + "end": 22340.94, + "probability": 0.7993 + }, + { + "start": 22341.88, + "end": 22343.7, + "probability": 0.9248 + }, + { + "start": 22345.08, + "end": 22346.44, + "probability": 0.5994 + }, + { + "start": 22346.88, + "end": 22347.76, + "probability": 0.8965 + }, + { + "start": 22347.84, + "end": 22347.96, + "probability": 0.364 + }, + { + "start": 22348.0, + "end": 22349.92, + "probability": 0.9908 + }, + { + "start": 22350.44, + "end": 22351.49, + "probability": 0.8833 + }, + { + "start": 22352.32, + "end": 22354.28, + "probability": 0.9062 + }, + { + "start": 22354.9, + "end": 22356.84, + "probability": 0.8857 + }, + { + "start": 22357.38, + "end": 22361.42, + "probability": 0.9956 + }, + { + "start": 22361.72, + "end": 22362.9, + "probability": 0.9722 + }, + { + "start": 22363.64, + "end": 22365.22, + "probability": 0.9365 + }, + { + "start": 22365.88, + "end": 22367.02, + "probability": 0.9452 + }, + { + "start": 22367.94, + "end": 22368.6, + "probability": 0.956 + }, + { + "start": 22369.6, + "end": 22372.76, + "probability": 0.7331 + }, + { + "start": 22374.28, + "end": 22377.76, + "probability": 0.9118 + }, + { + "start": 22377.76, + "end": 22382.2, + "probability": 0.8921 + }, + { + "start": 22382.88, + "end": 22385.32, + "probability": 0.7882 + }, + { + "start": 22385.52, + "end": 22387.3, + "probability": 0.792 + }, + { + "start": 22387.9, + "end": 22390.46, + "probability": 0.822 + }, + { + "start": 22390.6, + "end": 22390.84, + "probability": 0.7315 + }, + { + "start": 22390.98, + "end": 22394.7, + "probability": 0.978 + }, + { + "start": 22395.14, + "end": 22396.18, + "probability": 0.96 + }, + { + "start": 22397.06, + "end": 22397.74, + "probability": 0.9641 + }, + { + "start": 22398.54, + "end": 22400.8, + "probability": 0.813 + }, + { + "start": 22400.9, + "end": 22401.86, + "probability": 0.8802 + }, + { + "start": 22402.06, + "end": 22405.34, + "probability": 0.9409 + }, + { + "start": 22406.64, + "end": 22408.86, + "probability": 0.9789 + }, + { + "start": 22409.96, + "end": 22411.36, + "probability": 0.9822 + }, + { + "start": 22412.08, + "end": 22415.94, + "probability": 0.9673 + }, + { + "start": 22417.1, + "end": 22418.14, + "probability": 0.9966 + }, + { + "start": 22419.55, + "end": 22421.04, + "probability": 0.5004 + }, + { + "start": 22421.54, + "end": 22422.5, + "probability": 0.7329 + }, + { + "start": 22422.96, + "end": 22424.62, + "probability": 0.9579 + }, + { + "start": 22425.32, + "end": 22426.66, + "probability": 0.8281 + }, + { + "start": 22426.76, + "end": 22432.5, + "probability": 0.9634 + }, + { + "start": 22433.4, + "end": 22434.3, + "probability": 0.4704 + }, + { + "start": 22435.14, + "end": 22436.1, + "probability": 0.9759 + }, + { + "start": 22436.62, + "end": 22438.6, + "probability": 0.6906 + }, + { + "start": 22439.62, + "end": 22441.54, + "probability": 0.8121 + }, + { + "start": 22441.64, + "end": 22442.02, + "probability": 0.9172 + }, + { + "start": 22442.52, + "end": 22443.34, + "probability": 0.9811 + }, + { + "start": 22444.26, + "end": 22445.56, + "probability": 0.3506 + }, + { + "start": 22445.72, + "end": 22446.12, + "probability": 0.7433 + }, + { + "start": 22447.12, + "end": 22447.44, + "probability": 0.5958 + }, + { + "start": 22448.45, + "end": 22449.24, + "probability": 0.7476 + }, + { + "start": 22450.0, + "end": 22452.2, + "probability": 0.7453 + }, + { + "start": 22452.2, + "end": 22452.74, + "probability": 0.6418 + }, + { + "start": 22453.88, + "end": 22456.66, + "probability": 0.8416 + }, + { + "start": 22456.72, + "end": 22458.36, + "probability": 0.8119 + }, + { + "start": 22458.4, + "end": 22460.66, + "probability": 0.9978 + }, + { + "start": 22460.98, + "end": 22462.1, + "probability": 0.896 + }, + { + "start": 22462.1, + "end": 22464.88, + "probability": 0.6757 + }, + { + "start": 22464.98, + "end": 22468.26, + "probability": 0.9775 + }, + { + "start": 22468.76, + "end": 22474.66, + "probability": 0.9844 + }, + { + "start": 22474.9, + "end": 22475.74, + "probability": 0.9263 + }, + { + "start": 22475.96, + "end": 22478.48, + "probability": 0.969 + }, + { + "start": 22479.58, + "end": 22479.78, + "probability": 0.2881 + }, + { + "start": 22479.78, + "end": 22484.16, + "probability": 0.6115 + }, + { + "start": 22485.57, + "end": 22489.34, + "probability": 0.9648 + }, + { + "start": 22489.56, + "end": 22489.94, + "probability": 0.7321 + }, + { + "start": 22489.94, + "end": 22491.06, + "probability": 0.8982 + }, + { + "start": 22491.1, + "end": 22491.92, + "probability": 0.7758 + }, + { + "start": 22492.36, + "end": 22492.76, + "probability": 0.8515 + }, + { + "start": 22493.64, + "end": 22502.5, + "probability": 0.8359 + }, + { + "start": 22502.5, + "end": 22508.8, + "probability": 0.9995 + }, + { + "start": 22509.56, + "end": 22510.44, + "probability": 0.9315 + }, + { + "start": 22511.1, + "end": 22513.14, + "probability": 0.9779 + }, + { + "start": 22513.48, + "end": 22514.22, + "probability": 0.8453 + }, + { + "start": 22514.4, + "end": 22515.98, + "probability": 0.9563 + }, + { + "start": 22516.9, + "end": 22517.16, + "probability": 0.6565 + }, + { + "start": 22517.78, + "end": 22518.94, + "probability": 0.8642 + }, + { + "start": 22519.26, + "end": 22521.06, + "probability": 0.7598 + }, + { + "start": 22521.96, + "end": 22524.76, + "probability": 0.8164 + }, + { + "start": 22524.86, + "end": 22526.06, + "probability": 0.5609 + }, + { + "start": 22526.06, + "end": 22528.2, + "probability": 0.6697 + }, + { + "start": 22528.92, + "end": 22529.44, + "probability": 0.5683 + }, + { + "start": 22529.52, + "end": 22531.02, + "probability": 0.8086 + }, + { + "start": 22531.04, + "end": 22532.76, + "probability": 0.851 + }, + { + "start": 22548.48, + "end": 22551.47, + "probability": 0.5397 + }, + { + "start": 22554.1, + "end": 22555.36, + "probability": 0.6314 + }, + { + "start": 22560.72, + "end": 22563.7, + "probability": 0.9954 + }, + { + "start": 22564.0, + "end": 22568.92, + "probability": 0.919 + }, + { + "start": 22570.66, + "end": 22573.58, + "probability": 0.987 + }, + { + "start": 22573.66, + "end": 22576.5, + "probability": 0.999 + }, + { + "start": 22576.58, + "end": 22578.02, + "probability": 0.9125 + }, + { + "start": 22578.86, + "end": 22579.92, + "probability": 0.9076 + }, + { + "start": 22580.23, + "end": 22583.27, + "probability": 0.9989 + }, + { + "start": 22583.4, + "end": 22584.88, + "probability": 0.6696 + }, + { + "start": 22585.99, + "end": 22587.24, + "probability": 0.9805 + }, + { + "start": 22589.32, + "end": 22591.72, + "probability": 0.1934 + }, + { + "start": 22591.72, + "end": 22592.54, + "probability": 0.8176 + }, + { + "start": 22594.44, + "end": 22594.96, + "probability": 0.1823 + }, + { + "start": 22596.92, + "end": 22599.1, + "probability": 0.3076 + }, + { + "start": 22599.2, + "end": 22600.36, + "probability": 0.6646 + }, + { + "start": 22600.36, + "end": 22601.22, + "probability": 0.8348 + }, + { + "start": 22601.4, + "end": 22607.02, + "probability": 0.9775 + }, + { + "start": 22607.52, + "end": 22609.12, + "probability": 0.8788 + }, + { + "start": 22609.8, + "end": 22610.72, + "probability": 0.9583 + }, + { + "start": 22611.57, + "end": 22613.62, + "probability": 0.928 + }, + { + "start": 22613.66, + "end": 22617.2, + "probability": 0.9272 + }, + { + "start": 22618.9, + "end": 22619.48, + "probability": 0.0283 + }, + { + "start": 22620.92, + "end": 22625.06, + "probability": 0.9771 + }, + { + "start": 22625.16, + "end": 22626.43, + "probability": 0.941 + }, + { + "start": 22628.47, + "end": 22630.42, + "probability": 0.9351 + }, + { + "start": 22631.0, + "end": 22631.72, + "probability": 0.9993 + }, + { + "start": 22632.42, + "end": 22634.06, + "probability": 0.9026 + }, + { + "start": 22636.06, + "end": 22639.38, + "probability": 0.9787 + }, + { + "start": 22639.86, + "end": 22641.4, + "probability": 0.9473 + }, + { + "start": 22641.62, + "end": 22641.68, + "probability": 0.374 + }, + { + "start": 22643.1, + "end": 22644.02, + "probability": 0.9807 + }, + { + "start": 22644.76, + "end": 22648.48, + "probability": 0.7945 + }, + { + "start": 22648.62, + "end": 22651.36, + "probability": 0.994 + }, + { + "start": 22651.94, + "end": 22654.58, + "probability": 0.952 + }, + { + "start": 22655.56, + "end": 22657.84, + "probability": 0.9105 + }, + { + "start": 22660.2, + "end": 22661.06, + "probability": 0.8204 + }, + { + "start": 22662.02, + "end": 22662.69, + "probability": 0.9946 + }, + { + "start": 22665.44, + "end": 22667.58, + "probability": 0.8335 + }, + { + "start": 22667.88, + "end": 22669.32, + "probability": 0.8148 + }, + { + "start": 22669.7, + "end": 22670.6, + "probability": 0.8371 + }, + { + "start": 22671.02, + "end": 22672.8, + "probability": 0.6081 + }, + { + "start": 22673.56, + "end": 22676.63, + "probability": 0.973 + }, + { + "start": 22677.02, + "end": 22681.16, + "probability": 0.9941 + }, + { + "start": 22682.3, + "end": 22688.42, + "probability": 0.8667 + }, + { + "start": 22689.34, + "end": 22692.02, + "probability": 0.9965 + }, + { + "start": 22692.82, + "end": 22695.12, + "probability": 0.9998 + }, + { + "start": 22696.28, + "end": 22700.84, + "probability": 0.9814 + }, + { + "start": 22701.42, + "end": 22704.3, + "probability": 0.9817 + }, + { + "start": 22705.36, + "end": 22708.72, + "probability": 0.9444 + }, + { + "start": 22709.64, + "end": 22713.22, + "probability": 0.9542 + }, + { + "start": 22714.18, + "end": 22715.34, + "probability": 0.9863 + }, + { + "start": 22716.22, + "end": 22717.18, + "probability": 0.8883 + }, + { + "start": 22718.18, + "end": 22720.22, + "probability": 0.9464 + }, + { + "start": 22720.86, + "end": 22722.66, + "probability": 0.8177 + }, + { + "start": 22723.46, + "end": 22725.32, + "probability": 0.9927 + }, + { + "start": 22726.12, + "end": 22728.94, + "probability": 0.9913 + }, + { + "start": 22729.68, + "end": 22731.98, + "probability": 0.9828 + }, + { + "start": 22733.52, + "end": 22736.92, + "probability": 0.4528 + }, + { + "start": 22738.24, + "end": 22741.1, + "probability": 0.966 + }, + { + "start": 22741.1, + "end": 22743.96, + "probability": 0.9946 + }, + { + "start": 22744.78, + "end": 22748.9, + "probability": 0.9991 + }, + { + "start": 22750.18, + "end": 22754.72, + "probability": 0.946 + }, + { + "start": 22756.02, + "end": 22758.54, + "probability": 0.9782 + }, + { + "start": 22759.14, + "end": 22760.5, + "probability": 0.9904 + }, + { + "start": 22761.26, + "end": 22762.18, + "probability": 0.8743 + }, + { + "start": 22762.84, + "end": 22766.0, + "probability": 0.9987 + }, + { + "start": 22766.0, + "end": 22771.18, + "probability": 0.997 + }, + { + "start": 22772.5, + "end": 22775.58, + "probability": 0.9951 + }, + { + "start": 22776.46, + "end": 22779.36, + "probability": 0.9903 + }, + { + "start": 22780.08, + "end": 22783.54, + "probability": 0.9636 + }, + { + "start": 22783.54, + "end": 22786.8, + "probability": 0.9971 + }, + { + "start": 22787.32, + "end": 22790.06, + "probability": 0.9992 + }, + { + "start": 22790.94, + "end": 22796.1, + "probability": 0.9938 + }, + { + "start": 22796.1, + "end": 22800.48, + "probability": 0.998 + }, + { + "start": 22801.62, + "end": 22805.08, + "probability": 0.9097 + }, + { + "start": 22805.8, + "end": 22811.6, + "probability": 0.998 + }, + { + "start": 22812.04, + "end": 22813.1, + "probability": 0.6818 + }, + { + "start": 22813.98, + "end": 22816.6, + "probability": 0.9927 + }, + { + "start": 22817.06, + "end": 22820.64, + "probability": 0.9641 + }, + { + "start": 22822.72, + "end": 22826.24, + "probability": 0.9927 + }, + { + "start": 22826.24, + "end": 22830.1, + "probability": 0.9913 + }, + { + "start": 22830.8, + "end": 22832.34, + "probability": 0.9379 + }, + { + "start": 22833.42, + "end": 22836.24, + "probability": 0.9713 + }, + { + "start": 22836.92, + "end": 22842.29, + "probability": 0.9956 + }, + { + "start": 22844.14, + "end": 22849.62, + "probability": 0.9603 + }, + { + "start": 22849.62, + "end": 22853.74, + "probability": 0.9964 + }, + { + "start": 22854.84, + "end": 22859.4, + "probability": 0.9064 + }, + { + "start": 22859.64, + "end": 22864.14, + "probability": 0.9961 + }, + { + "start": 22865.66, + "end": 22867.92, + "probability": 0.99 + }, + { + "start": 22867.92, + "end": 22871.66, + "probability": 0.9994 + }, + { + "start": 22872.76, + "end": 22875.58, + "probability": 0.9955 + }, + { + "start": 22875.58, + "end": 22879.48, + "probability": 0.9941 + }, + { + "start": 22880.5, + "end": 22883.52, + "probability": 0.8405 + }, + { + "start": 22884.48, + "end": 22886.84, + "probability": 0.9476 + }, + { + "start": 22887.66, + "end": 22889.58, + "probability": 0.9979 + }, + { + "start": 22890.84, + "end": 22895.88, + "probability": 0.9955 + }, + { + "start": 22896.64, + "end": 22901.12, + "probability": 0.9977 + }, + { + "start": 22901.86, + "end": 22903.16, + "probability": 0.9652 + }, + { + "start": 22904.48, + "end": 22908.1, + "probability": 0.8665 + }, + { + "start": 22908.8, + "end": 22911.1, + "probability": 0.7372 + }, + { + "start": 22911.68, + "end": 22914.2, + "probability": 0.5386 + }, + { + "start": 22915.48, + "end": 22920.82, + "probability": 0.9917 + }, + { + "start": 22921.54, + "end": 22927.2, + "probability": 0.9437 + }, + { + "start": 22928.68, + "end": 22931.86, + "probability": 0.9897 + }, + { + "start": 22932.7, + "end": 22934.88, + "probability": 0.9673 + }, + { + "start": 22935.68, + "end": 22938.62, + "probability": 0.9971 + }, + { + "start": 22939.2, + "end": 22941.3, + "probability": 0.9465 + }, + { + "start": 22942.72, + "end": 22947.94, + "probability": 0.8836 + }, + { + "start": 22948.72, + "end": 22951.52, + "probability": 0.9985 + }, + { + "start": 22952.2, + "end": 22956.18, + "probability": 0.9883 + }, + { + "start": 22956.84, + "end": 22958.82, + "probability": 0.7488 + }, + { + "start": 22959.74, + "end": 22965.28, + "probability": 0.9986 + }, + { + "start": 22965.8, + "end": 22966.56, + "probability": 0.9261 + }, + { + "start": 22967.32, + "end": 22968.74, + "probability": 0.9967 + }, + { + "start": 22969.26, + "end": 22971.94, + "probability": 0.8914 + }, + { + "start": 22973.0, + "end": 22975.56, + "probability": 0.9962 + }, + { + "start": 22976.66, + "end": 22980.32, + "probability": 0.9951 + }, + { + "start": 22981.58, + "end": 22984.2, + "probability": 0.9961 + }, + { + "start": 22984.2, + "end": 22986.6, + "probability": 0.992 + }, + { + "start": 22987.16, + "end": 22992.04, + "probability": 0.9878 + }, + { + "start": 22993.2, + "end": 22998.0, + "probability": 0.9983 + }, + { + "start": 22999.26, + "end": 23002.84, + "probability": 0.9898 + }, + { + "start": 23002.84, + "end": 23007.7, + "probability": 0.9987 + }, + { + "start": 23008.6, + "end": 23009.42, + "probability": 0.6197 + }, + { + "start": 23009.88, + "end": 23013.26, + "probability": 0.9384 + }, + { + "start": 23014.02, + "end": 23016.74, + "probability": 0.9986 + }, + { + "start": 23017.44, + "end": 23022.22, + "probability": 0.9985 + }, + { + "start": 23022.22, + "end": 23027.94, + "probability": 0.9983 + }, + { + "start": 23028.4, + "end": 23029.82, + "probability": 0.8528 + }, + { + "start": 23030.92, + "end": 23033.24, + "probability": 0.9961 + }, + { + "start": 23033.84, + "end": 23036.14, + "probability": 0.9779 + }, + { + "start": 23036.92, + "end": 23042.9, + "probability": 0.9719 + }, + { + "start": 23044.56, + "end": 23052.62, + "probability": 0.9976 + }, + { + "start": 23053.8, + "end": 23057.98, + "probability": 0.998 + }, + { + "start": 23057.98, + "end": 23062.9, + "probability": 0.9871 + }, + { + "start": 23063.46, + "end": 23065.9, + "probability": 0.9979 + }, + { + "start": 23067.38, + "end": 23073.18, + "probability": 0.9791 + }, + { + "start": 23073.8, + "end": 23075.76, + "probability": 0.9328 + }, + { + "start": 23076.44, + "end": 23076.96, + "probability": 0.769 + }, + { + "start": 23078.04, + "end": 23079.86, + "probability": 0.9043 + }, + { + "start": 23080.6, + "end": 23081.24, + "probability": 0.9121 + }, + { + "start": 23081.86, + "end": 23083.14, + "probability": 0.3863 + }, + { + "start": 23083.72, + "end": 23089.4, + "probability": 0.9855 + }, + { + "start": 23089.52, + "end": 23091.22, + "probability": 0.9946 + }, + { + "start": 23093.3, + "end": 23096.16, + "probability": 0.952 + }, + { + "start": 23099.74, + "end": 23100.36, + "probability": 0.4472 + }, + { + "start": 23101.28, + "end": 23102.45, + "probability": 0.8277 + }, + { + "start": 23105.12, + "end": 23105.86, + "probability": 0.865 + }, + { + "start": 23105.92, + "end": 23108.5, + "probability": 0.8624 + }, + { + "start": 23108.68, + "end": 23109.54, + "probability": 0.9912 + }, + { + "start": 23109.68, + "end": 23110.44, + "probability": 0.9556 + }, + { + "start": 23111.04, + "end": 23113.24, + "probability": 0.9323 + }, + { + "start": 23114.42, + "end": 23119.06, + "probability": 0.9807 + }, + { + "start": 23120.24, + "end": 23122.56, + "probability": 0.9944 + }, + { + "start": 23123.14, + "end": 23123.8, + "probability": 0.9783 + }, + { + "start": 23124.7, + "end": 23125.92, + "probability": 0.943 + }, + { + "start": 23126.52, + "end": 23127.4, + "probability": 0.6867 + }, + { + "start": 23128.08, + "end": 23129.62, + "probability": 0.9602 + }, + { + "start": 23130.22, + "end": 23131.34, + "probability": 0.9535 + }, + { + "start": 23131.94, + "end": 23132.92, + "probability": 0.7759 + }, + { + "start": 23133.6, + "end": 23135.04, + "probability": 0.9944 + }, + { + "start": 23135.82, + "end": 23138.1, + "probability": 0.9882 + }, + { + "start": 23138.72, + "end": 23141.56, + "probability": 0.9475 + }, + { + "start": 23142.42, + "end": 23144.26, + "probability": 0.8 + }, + { + "start": 23145.0, + "end": 23147.64, + "probability": 0.991 + }, + { + "start": 23148.4, + "end": 23149.28, + "probability": 0.9646 + }, + { + "start": 23149.82, + "end": 23150.86, + "probability": 0.9902 + }, + { + "start": 23151.46, + "end": 23152.94, + "probability": 0.994 + }, + { + "start": 23153.82, + "end": 23154.86, + "probability": 0.8451 + }, + { + "start": 23155.56, + "end": 23156.34, + "probability": 0.7532 + }, + { + "start": 23157.2, + "end": 23160.16, + "probability": 0.963 + }, + { + "start": 23160.82, + "end": 23162.04, + "probability": 0.9327 + }, + { + "start": 23162.66, + "end": 23163.56, + "probability": 0.9295 + }, + { + "start": 23164.14, + "end": 23165.1, + "probability": 0.7485 + }, + { + "start": 23165.64, + "end": 23166.32, + "probability": 0.6559 + }, + { + "start": 23167.2, + "end": 23169.86, + "probability": 0.9771 + }, + { + "start": 23170.54, + "end": 23171.96, + "probability": 0.9673 + }, + { + "start": 23173.92, + "end": 23175.4, + "probability": 0.9074 + }, + { + "start": 23175.46, + "end": 23178.9, + "probability": 0.4127 + }, + { + "start": 23180.78, + "end": 23181.66, + "probability": 0.4732 + }, + { + "start": 23183.02, + "end": 23183.8, + "probability": 0.991 + }, + { + "start": 23185.0, + "end": 23185.8, + "probability": 0.4922 + }, + { + "start": 23186.22, + "end": 23187.14, + "probability": 0.723 + }, + { + "start": 23187.84, + "end": 23191.53, + "probability": 0.8742 + }, + { + "start": 23192.62, + "end": 23194.4, + "probability": 0.6775 + }, + { + "start": 23194.46, + "end": 23195.08, + "probability": 0.618 + }, + { + "start": 23195.86, + "end": 23197.64, + "probability": 0.7775 + }, + { + "start": 23197.66, + "end": 23199.92, + "probability": 0.6831 + }, + { + "start": 23200.08, + "end": 23201.99, + "probability": 0.6147 + }, + { + "start": 23202.3, + "end": 23202.84, + "probability": 0.6923 + }, + { + "start": 23203.0, + "end": 23203.52, + "probability": 0.0503 + }, + { + "start": 23203.82, + "end": 23205.74, + "probability": 0.7453 + }, + { + "start": 23206.48, + "end": 23207.06, + "probability": 0.7573 + }, + { + "start": 23207.2, + "end": 23208.9, + "probability": 0.8975 + }, + { + "start": 23210.56, + "end": 23212.12, + "probability": 0.5095 + }, + { + "start": 23212.38, + "end": 23213.18, + "probability": 0.5382 + }, + { + "start": 23213.7, + "end": 23213.7, + "probability": 0.1875 + }, + { + "start": 23213.7, + "end": 23214.34, + "probability": 0.5256 + }, + { + "start": 23216.1, + "end": 23218.08, + "probability": 0.5382 + }, + { + "start": 23218.18, + "end": 23218.57, + "probability": 0.4794 + }, + { + "start": 23218.64, + "end": 23222.98, + "probability": 0.8828 + }, + { + "start": 23224.3, + "end": 23224.5, + "probability": 0.4464 + }, + { + "start": 23225.42, + "end": 23227.0, + "probability": 0.7467 + }, + { + "start": 23227.22, + "end": 23228.1, + "probability": 0.282 + }, + { + "start": 23228.36, + "end": 23230.08, + "probability": 0.8323 + }, + { + "start": 23230.16, + "end": 23231.07, + "probability": 0.6585 + }, + { + "start": 23231.98, + "end": 23234.4, + "probability": 0.5756 + }, + { + "start": 23234.42, + "end": 23237.79, + "probability": 0.4673 + }, + { + "start": 23238.16, + "end": 23239.52, + "probability": 0.1723 + }, + { + "start": 23239.76, + "end": 23240.78, + "probability": 0.465 + }, + { + "start": 23241.0, + "end": 23242.3, + "probability": 0.5869 + }, + { + "start": 23242.6, + "end": 23243.9, + "probability": 0.4348 + }, + { + "start": 23243.92, + "end": 23244.46, + "probability": 0.5132 + }, + { + "start": 23244.78, + "end": 23246.9, + "probability": 0.6775 + }, + { + "start": 23247.06, + "end": 23248.3, + "probability": 0.8585 + }, + { + "start": 23249.53, + "end": 23251.4, + "probability": 0.1541 + }, + { + "start": 23251.98, + "end": 23254.2, + "probability": 0.8797 + }, + { + "start": 23254.88, + "end": 23255.14, + "probability": 0.6356 + }, + { + "start": 23256.0, + "end": 23258.48, + "probability": 0.6539 + }, + { + "start": 23258.82, + "end": 23261.0, + "probability": 0.9256 + }, + { + "start": 23261.28, + "end": 23264.46, + "probability": 0.9935 + }, + { + "start": 23264.9, + "end": 23267.34, + "probability": 0.7605 + }, + { + "start": 23268.12, + "end": 23273.48, + "probability": 0.9976 + }, + { + "start": 23274.08, + "end": 23275.06, + "probability": 0.998 + }, + { + "start": 23275.58, + "end": 23277.34, + "probability": 0.9976 + }, + { + "start": 23277.84, + "end": 23280.78, + "probability": 0.973 + }, + { + "start": 23280.88, + "end": 23281.52, + "probability": 0.7246 + }, + { + "start": 23281.62, + "end": 23284.34, + "probability": 0.3505 + }, + { + "start": 23284.68, + "end": 23287.96, + "probability": 0.4663 + }, + { + "start": 23288.0, + "end": 23288.7, + "probability": 0.7317 + }, + { + "start": 23288.98, + "end": 23289.98, + "probability": 0.9082 + }, + { + "start": 23290.04, + "end": 23291.14, + "probability": 0.8073 + }, + { + "start": 23291.38, + "end": 23293.04, + "probability": 0.7395 + }, + { + "start": 23293.84, + "end": 23297.0, + "probability": 0.8183 + }, + { + "start": 23297.26, + "end": 23297.84, + "probability": 0.2637 + }, + { + "start": 23297.88, + "end": 23300.06, + "probability": 0.4089 + }, + { + "start": 23300.7, + "end": 23302.19, + "probability": 0.066 + }, + { + "start": 23304.1, + "end": 23304.3, + "probability": 0.1567 + }, + { + "start": 23304.7, + "end": 23306.38, + "probability": 0.9385 + }, + { + "start": 23306.42, + "end": 23306.72, + "probability": 0.807 + }, + { + "start": 23306.84, + "end": 23309.78, + "probability": 0.8677 + }, + { + "start": 23310.66, + "end": 23311.74, + "probability": 0.9626 + }, + { + "start": 23311.76, + "end": 23315.06, + "probability": 0.7424 + }, + { + "start": 23315.48, + "end": 23319.44, + "probability": 0.825 + }, + { + "start": 23319.98, + "end": 23324.66, + "probability": 0.7916 + }, + { + "start": 23325.62, + "end": 23328.88, + "probability": 0.9684 + }, + { + "start": 23330.36, + "end": 23332.98, + "probability": 0.4835 + }, + { + "start": 23333.36, + "end": 23334.1, + "probability": 0.176 + }, + { + "start": 23334.18, + "end": 23335.1, + "probability": 0.4457 + }, + { + "start": 23335.44, + "end": 23337.28, + "probability": 0.9875 + }, + { + "start": 23337.36, + "end": 23338.23, + "probability": 0.0781 + }, + { + "start": 23338.66, + "end": 23339.32, + "probability": 0.6314 + }, + { + "start": 23340.16, + "end": 23340.78, + "probability": 0.4274 + }, + { + "start": 23341.92, + "end": 23343.0, + "probability": 0.356 + }, + { + "start": 23343.02, + "end": 23344.8, + "probability": 0.8929 + }, + { + "start": 23345.3, + "end": 23345.86, + "probability": 0.4147 + }, + { + "start": 23345.94, + "end": 23346.52, + "probability": 0.8465 + }, + { + "start": 23346.86, + "end": 23347.66, + "probability": 0.5667 + }, + { + "start": 23347.92, + "end": 23349.18, + "probability": 0.7401 + }, + { + "start": 23349.38, + "end": 23351.38, + "probability": 0.9692 + }, + { + "start": 23352.02, + "end": 23353.9, + "probability": 0.9631 + }, + { + "start": 23354.59, + "end": 23359.92, + "probability": 0.9789 + }, + { + "start": 23360.6, + "end": 23362.14, + "probability": 0.9927 + }, + { + "start": 23362.24, + "end": 23365.8, + "probability": 0.9805 + }, + { + "start": 23366.66, + "end": 23368.86, + "probability": 0.8186 + }, + { + "start": 23370.52, + "end": 23371.63, + "probability": 0.5387 + }, + { + "start": 23372.64, + "end": 23373.12, + "probability": 0.5269 + }, + { + "start": 23373.62, + "end": 23374.46, + "probability": 0.9667 + }, + { + "start": 23374.76, + "end": 23375.56, + "probability": 0.4716 + }, + { + "start": 23375.74, + "end": 23380.16, + "probability": 0.5864 + }, + { + "start": 23381.78, + "end": 23383.64, + "probability": 0.6979 + }, + { + "start": 23384.7, + "end": 23386.72, + "probability": 0.7422 + }, + { + "start": 23386.88, + "end": 23387.46, + "probability": 0.2656 + }, + { + "start": 23388.08, + "end": 23390.68, + "probability": 0.7108 + }, + { + "start": 23391.7, + "end": 23392.32, + "probability": 0.9621 + }, + { + "start": 23392.42, + "end": 23394.34, + "probability": 0.7708 + }, + { + "start": 23395.24, + "end": 23395.62, + "probability": 0.9043 + }, + { + "start": 23395.74, + "end": 23400.04, + "probability": 0.9415 + }, + { + "start": 23400.14, + "end": 23400.44, + "probability": 0.4696 + }, + { + "start": 23400.44, + "end": 23402.38, + "probability": 0.2312 + }, + { + "start": 23402.38, + "end": 23402.38, + "probability": 0.0895 + }, + { + "start": 23402.42, + "end": 23403.42, + "probability": 0.6008 + }, + { + "start": 23403.52, + "end": 23403.87, + "probability": 0.9348 + }, + { + "start": 23404.06, + "end": 23406.19, + "probability": 0.9238 + }, + { + "start": 23406.46, + "end": 23409.42, + "probability": 0.9185 + }, + { + "start": 23411.72, + "end": 23414.5, + "probability": 0.9777 + }, + { + "start": 23415.14, + "end": 23416.98, + "probability": 0.4679 + }, + { + "start": 23417.56, + "end": 23421.28, + "probability": 0.9746 + }, + { + "start": 23421.28, + "end": 23425.16, + "probability": 0.9719 + }, + { + "start": 23425.78, + "end": 23426.18, + "probability": 0.8513 + }, + { + "start": 23427.67, + "end": 23430.1, + "probability": 0.8954 + }, + { + "start": 23431.34, + "end": 23433.96, + "probability": 0.6333 + }, + { + "start": 23434.12, + "end": 23434.3, + "probability": 0.5517 + }, + { + "start": 23434.36, + "end": 23438.12, + "probability": 0.5851 + }, + { + "start": 23438.54, + "end": 23439.42, + "probability": 0.7534 + }, + { + "start": 23440.24, + "end": 23441.16, + "probability": 0.6224 + }, + { + "start": 23442.78, + "end": 23445.14, + "probability": 0.5948 + }, + { + "start": 23445.92, + "end": 23446.96, + "probability": 0.7904 + }, + { + "start": 23447.76, + "end": 23448.52, + "probability": 0.1731 + }, + { + "start": 23448.74, + "end": 23450.76, + "probability": 0.9041 + }, + { + "start": 23451.41, + "end": 23454.28, + "probability": 0.3953 + }, + { + "start": 23454.56, + "end": 23457.28, + "probability": 0.9636 + }, + { + "start": 23458.6, + "end": 23465.62, + "probability": 0.9563 + }, + { + "start": 23467.18, + "end": 23468.98, + "probability": 0.9765 + }, + { + "start": 23469.12, + "end": 23471.06, + "probability": 0.9481 + }, + { + "start": 23471.1, + "end": 23474.46, + "probability": 0.8465 + }, + { + "start": 23474.88, + "end": 23477.7, + "probability": 0.8738 + }, + { + "start": 23477.78, + "end": 23478.34, + "probability": 0.8682 + }, + { + "start": 23478.93, + "end": 23482.0, + "probability": 0.8809 + }, + { + "start": 23482.42, + "end": 23487.78, + "probability": 0.9851 + }, + { + "start": 23488.92, + "end": 23489.58, + "probability": 0.8226 + }, + { + "start": 23489.62, + "end": 23489.86, + "probability": 0.6943 + }, + { + "start": 23490.04, + "end": 23492.96, + "probability": 0.8955 + }, + { + "start": 23493.14, + "end": 23495.16, + "probability": 0.9883 + }, + { + "start": 23496.68, + "end": 23497.02, + "probability": 0.6045 + }, + { + "start": 23498.18, + "end": 23499.26, + "probability": 0.5537 + }, + { + "start": 23511.64, + "end": 23511.74, + "probability": 0.192 + }, + { + "start": 23511.74, + "end": 23512.32, + "probability": 0.5059 + }, + { + "start": 23512.42, + "end": 23512.6, + "probability": 0.4324 + }, + { + "start": 23513.72, + "end": 23514.7, + "probability": 0.6258 + }, + { + "start": 23515.62, + "end": 23516.06, + "probability": 0.6714 + }, + { + "start": 23516.12, + "end": 23517.24, + "probability": 0.6159 + }, + { + "start": 23519.35, + "end": 23523.84, + "probability": 0.9249 + }, + { + "start": 23524.36, + "end": 23525.76, + "probability": 0.9858 + }, + { + "start": 23525.9, + "end": 23528.16, + "probability": 0.9964 + }, + { + "start": 23530.62, + "end": 23533.0, + "probability": 0.8816 + }, + { + "start": 23533.54, + "end": 23535.12, + "probability": 0.8216 + }, + { + "start": 23535.76, + "end": 23536.6, + "probability": 0.8346 + }, + { + "start": 23537.46, + "end": 23538.98, + "probability": 0.6959 + }, + { + "start": 23540.02, + "end": 23543.1, + "probability": 0.9704 + }, + { + "start": 23543.78, + "end": 23547.06, + "probability": 0.9663 + }, + { + "start": 23548.14, + "end": 23550.64, + "probability": 0.8821 + }, + { + "start": 23551.52, + "end": 23554.56, + "probability": 0.9356 + }, + { + "start": 23555.3, + "end": 23562.32, + "probability": 0.9941 + }, + { + "start": 23563.66, + "end": 23567.12, + "probability": 0.9508 + }, + { + "start": 23567.12, + "end": 23570.88, + "probability": 0.9889 + }, + { + "start": 23571.82, + "end": 23576.98, + "probability": 0.9779 + }, + { + "start": 23577.38, + "end": 23578.88, + "probability": 0.7931 + }, + { + "start": 23579.56, + "end": 23580.42, + "probability": 0.9084 + }, + { + "start": 23581.16, + "end": 23582.38, + "probability": 0.9811 + }, + { + "start": 23583.12, + "end": 23584.36, + "probability": 0.9375 + }, + { + "start": 23584.9, + "end": 23587.12, + "probability": 0.9373 + }, + { + "start": 23587.84, + "end": 23589.44, + "probability": 0.8794 + }, + { + "start": 23590.2, + "end": 23592.34, + "probability": 0.9877 + }, + { + "start": 23593.06, + "end": 23595.74, + "probability": 0.9851 + }, + { + "start": 23596.36, + "end": 23598.24, + "probability": 0.9843 + }, + { + "start": 23599.94, + "end": 23603.32, + "probability": 0.5111 + }, + { + "start": 23604.06, + "end": 23607.26, + "probability": 0.9606 + }, + { + "start": 23607.26, + "end": 23609.96, + "probability": 0.9934 + }, + { + "start": 23610.62, + "end": 23615.38, + "probability": 0.9996 + }, + { + "start": 23616.36, + "end": 23619.0, + "probability": 0.9712 + }, + { + "start": 23619.14, + "end": 23624.1, + "probability": 0.9687 + }, + { + "start": 23624.88, + "end": 23626.4, + "probability": 0.992 + }, + { + "start": 23627.04, + "end": 23628.16, + "probability": 0.8603 + }, + { + "start": 23629.0, + "end": 23630.1, + "probability": 0.7448 + }, + { + "start": 23630.16, + "end": 23634.12, + "probability": 0.9946 + }, + { + "start": 23634.12, + "end": 23638.26, + "probability": 0.9958 + }, + { + "start": 23639.46, + "end": 23642.12, + "probability": 0.9928 + }, + { + "start": 23643.28, + "end": 23646.04, + "probability": 0.9699 + }, + { + "start": 23646.84, + "end": 23652.68, + "probability": 0.9956 + }, + { + "start": 23652.68, + "end": 23657.76, + "probability": 0.998 + }, + { + "start": 23658.4, + "end": 23661.74, + "probability": 0.9981 + }, + { + "start": 23662.4, + "end": 23666.06, + "probability": 0.9975 + }, + { + "start": 23666.66, + "end": 23668.3, + "probability": 0.999 + }, + { + "start": 23670.6, + "end": 23674.06, + "probability": 0.9801 + }, + { + "start": 23675.54, + "end": 23679.28, + "probability": 0.9724 + }, + { + "start": 23680.04, + "end": 23682.52, + "probability": 0.9282 + }, + { + "start": 23683.16, + "end": 23686.06, + "probability": 0.9893 + }, + { + "start": 23686.8, + "end": 23689.96, + "probability": 0.9485 + }, + { + "start": 23691.36, + "end": 23696.44, + "probability": 0.9912 + }, + { + "start": 23696.44, + "end": 23701.88, + "probability": 0.9834 + }, + { + "start": 23702.78, + "end": 23703.6, + "probability": 0.8467 + }, + { + "start": 23704.18, + "end": 23707.84, + "probability": 0.9945 + }, + { + "start": 23707.96, + "end": 23710.76, + "probability": 0.9952 + }, + { + "start": 23712.1, + "end": 23717.42, + "probability": 0.9651 + }, + { + "start": 23717.42, + "end": 23721.94, + "probability": 0.995 + }, + { + "start": 23722.96, + "end": 23726.68, + "probability": 0.8844 + }, + { + "start": 23727.36, + "end": 23731.36, + "probability": 0.9854 + }, + { + "start": 23732.44, + "end": 23734.8, + "probability": 0.9907 + }, + { + "start": 23734.8, + "end": 23739.0, + "probability": 0.9993 + }, + { + "start": 23739.92, + "end": 23742.6, + "probability": 0.9819 + }, + { + "start": 23742.6, + "end": 23747.22, + "probability": 0.9937 + }, + { + "start": 23748.24, + "end": 23749.58, + "probability": 0.6966 + }, + { + "start": 23750.26, + "end": 23751.6, + "probability": 0.9529 + }, + { + "start": 23752.28, + "end": 23754.28, + "probability": 0.9523 + }, + { + "start": 23755.1, + "end": 23757.9, + "probability": 0.9985 + }, + { + "start": 23758.72, + "end": 23761.38, + "probability": 0.964 + }, + { + "start": 23762.0, + "end": 23764.62, + "probability": 0.9542 + }, + { + "start": 23765.4, + "end": 23769.64, + "probability": 0.9966 + }, + { + "start": 23770.88, + "end": 23772.18, + "probability": 0.985 + }, + { + "start": 23773.28, + "end": 23773.96, + "probability": 0.7408 + }, + { + "start": 23774.64, + "end": 23777.18, + "probability": 0.9303 + }, + { + "start": 23777.74, + "end": 23778.54, + "probability": 0.8977 + }, + { + "start": 23779.3, + "end": 23780.59, + "probability": 0.6871 + }, + { + "start": 23781.42, + "end": 23783.34, + "probability": 0.8262 + }, + { + "start": 23784.7, + "end": 23789.62, + "probability": 0.9993 + }, + { + "start": 23789.62, + "end": 23795.4, + "probability": 0.9474 + }, + { + "start": 23796.13, + "end": 23800.76, + "probability": 0.9974 + }, + { + "start": 23801.34, + "end": 23802.66, + "probability": 0.8153 + }, + { + "start": 23803.26, + "end": 23803.8, + "probability": 0.9193 + }, + { + "start": 23804.28, + "end": 23807.72, + "probability": 0.9829 + }, + { + "start": 23808.42, + "end": 23810.5, + "probability": 0.8673 + }, + { + "start": 23811.42, + "end": 23815.38, + "probability": 0.8111 + }, + { + "start": 23816.2, + "end": 23819.06, + "probability": 0.9956 + }, + { + "start": 23819.92, + "end": 23821.92, + "probability": 0.9948 + }, + { + "start": 23822.64, + "end": 23826.52, + "probability": 0.9414 + }, + { + "start": 23827.42, + "end": 23832.22, + "probability": 0.9902 + }, + { + "start": 23832.98, + "end": 23833.76, + "probability": 0.9875 + }, + { + "start": 23834.44, + "end": 23835.38, + "probability": 0.6548 + }, + { + "start": 23836.26, + "end": 23840.78, + "probability": 0.9875 + }, + { + "start": 23841.7, + "end": 23843.98, + "probability": 0.9976 + }, + { + "start": 23844.74, + "end": 23848.96, + "probability": 0.9928 + }, + { + "start": 23850.48, + "end": 23853.6, + "probability": 0.9966 + }, + { + "start": 23853.6, + "end": 23856.16, + "probability": 0.9985 + }, + { + "start": 23856.72, + "end": 23862.22, + "probability": 0.9769 + }, + { + "start": 23863.3, + "end": 23867.91, + "probability": 0.9974 + }, + { + "start": 23869.66, + "end": 23873.36, + "probability": 0.991 + }, + { + "start": 23873.36, + "end": 23878.4, + "probability": 0.9984 + }, + { + "start": 23879.86, + "end": 23880.64, + "probability": 0.6823 + }, + { + "start": 23881.2, + "end": 23882.54, + "probability": 0.9895 + }, + { + "start": 23883.08, + "end": 23884.32, + "probability": 0.9863 + }, + { + "start": 23884.96, + "end": 23890.72, + "probability": 0.9995 + }, + { + "start": 23891.28, + "end": 23895.56, + "probability": 0.9995 + }, + { + "start": 23896.48, + "end": 23901.4, + "probability": 0.9996 + }, + { + "start": 23902.4, + "end": 23904.82, + "probability": 0.9926 + }, + { + "start": 23905.4, + "end": 23906.96, + "probability": 0.9785 + }, + { + "start": 23908.26, + "end": 23914.12, + "probability": 0.9858 + }, + { + "start": 23915.9, + "end": 23920.26, + "probability": 0.999 + }, + { + "start": 23920.8, + "end": 23923.42, + "probability": 0.9924 + }, + { + "start": 23924.66, + "end": 23929.6, + "probability": 0.9952 + }, + { + "start": 23930.18, + "end": 23931.44, + "probability": 0.7439 + }, + { + "start": 23932.16, + "end": 23934.52, + "probability": 0.9951 + }, + { + "start": 23935.08, + "end": 23937.82, + "probability": 0.9986 + }, + { + "start": 23938.98, + "end": 23939.82, + "probability": 0.8626 + }, + { + "start": 23940.64, + "end": 23941.72, + "probability": 0.677 + }, + { + "start": 23942.2, + "end": 23946.0, + "probability": 0.8481 + }, + { + "start": 23946.8, + "end": 23948.68, + "probability": 0.9543 + }, + { + "start": 23949.46, + "end": 23950.48, + "probability": 0.7701 + }, + { + "start": 23951.02, + "end": 23951.76, + "probability": 0.9651 + }, + { + "start": 23952.46, + "end": 23954.1, + "probability": 0.7974 + }, + { + "start": 23954.98, + "end": 23955.82, + "probability": 0.4161 + }, + { + "start": 23956.52, + "end": 23959.92, + "probability": 0.6362 + }, + { + "start": 23960.94, + "end": 23961.14, + "probability": 0.0736 + }, + { + "start": 23963.16, + "end": 23964.28, + "probability": 0.0616 + }, + { + "start": 23964.88, + "end": 23964.94, + "probability": 0.0128 + }, + { + "start": 23977.8, + "end": 23979.28, + "probability": 0.3536 + }, + { + "start": 23981.34, + "end": 23982.8, + "probability": 0.9966 + }, + { + "start": 23983.8, + "end": 23984.66, + "probability": 0.5424 + }, + { + "start": 23985.4, + "end": 23985.84, + "probability": 0.9872 + }, + { + "start": 23986.54, + "end": 23987.26, + "probability": 0.9349 + }, + { + "start": 23988.08, + "end": 23990.04, + "probability": 0.9666 + }, + { + "start": 23990.92, + "end": 23991.52, + "probability": 0.9764 + }, + { + "start": 23992.18, + "end": 23993.48, + "probability": 0.9679 + }, + { + "start": 23994.28, + "end": 23994.94, + "probability": 0.7115 + }, + { + "start": 23996.0, + "end": 23996.72, + "probability": 0.9761 + }, + { + "start": 23997.24, + "end": 23998.4, + "probability": 0.9955 + }, + { + "start": 23999.2, + "end": 23999.9, + "probability": 0.9737 + }, + { + "start": 24000.88, + "end": 24002.14, + "probability": 0.9448 + }, + { + "start": 24002.9, + "end": 24003.58, + "probability": 0.9706 + }, + { + "start": 24004.3, + "end": 24005.04, + "probability": 0.9967 + }, + { + "start": 24005.58, + "end": 24006.38, + "probability": 0.9893 + }, + { + "start": 24007.02, + "end": 24008.1, + "probability": 0.9587 + }, + { + "start": 24008.88, + "end": 24009.78, + "probability": 0.7526 + }, + { + "start": 24010.52, + "end": 24011.84, + "probability": 0.961 + }, + { + "start": 24012.8, + "end": 24013.78, + "probability": 0.9885 + }, + { + "start": 24014.64, + "end": 24015.24, + "probability": 0.8992 + }, + { + "start": 24015.96, + "end": 24016.64, + "probability": 0.9563 + }, + { + "start": 24017.54, + "end": 24018.12, + "probability": 0.9853 + }, + { + "start": 24018.78, + "end": 24019.1, + "probability": 0.9931 + }, + { + "start": 24020.1, + "end": 24021.74, + "probability": 0.991 + }, + { + "start": 24023.0, + "end": 24025.2, + "probability": 0.9717 + }, + { + "start": 24026.52, + "end": 24027.36, + "probability": 0.7822 + }, + { + "start": 24027.88, + "end": 24028.86, + "probability": 0.9633 + }, + { + "start": 24029.98, + "end": 24031.18, + "probability": 0.9771 + }, + { + "start": 24031.96, + "end": 24034.38, + "probability": 0.9879 + }, + { + "start": 24035.08, + "end": 24036.12, + "probability": 0.9693 + }, + { + "start": 24037.38, + "end": 24038.9, + "probability": 0.9653 + }, + { + "start": 24039.48, + "end": 24040.74, + "probability": 0.9416 + }, + { + "start": 24041.32, + "end": 24042.18, + "probability": 0.9374 + }, + { + "start": 24043.06, + "end": 24044.96, + "probability": 0.6377 + }, + { + "start": 24046.28, + "end": 24046.54, + "probability": 0.8122 + }, + { + "start": 24048.54, + "end": 24049.21, + "probability": 0.9736 + }, + { + "start": 24050.1, + "end": 24052.54, + "probability": 0.8169 + }, + { + "start": 24053.06, + "end": 24053.44, + "probability": 0.2126 + }, + { + "start": 24053.44, + "end": 24053.68, + "probability": 0.1152 + }, + { + "start": 24054.18, + "end": 24054.52, + "probability": 0.3607 + }, + { + "start": 24055.0, + "end": 24056.68, + "probability": 0.6187 + }, + { + "start": 24058.86, + "end": 24059.74, + "probability": 0.2893 + }, + { + "start": 24059.74, + "end": 24060.02, + "probability": 0.0888 + }, + { + "start": 24061.32, + "end": 24061.72, + "probability": 0.286 + }, + { + "start": 24062.28, + "end": 24063.78, + "probability": 0.0973 + }, + { + "start": 24063.78, + "end": 24063.8, + "probability": 0.3293 + }, + { + "start": 24064.64, + "end": 24065.34, + "probability": 0.2566 + }, + { + "start": 24065.86, + "end": 24066.76, + "probability": 0.2225 + }, + { + "start": 24067.54, + "end": 24069.72, + "probability": 0.7646 + }, + { + "start": 24079.78, + "end": 24080.42, + "probability": 0.8656 + }, + { + "start": 24081.18, + "end": 24081.94, + "probability": 0.9106 + }, + { + "start": 24082.78, + "end": 24084.52, + "probability": 0.8249 + }, + { + "start": 24085.26, + "end": 24086.08, + "probability": 0.8261 + }, + { + "start": 24087.18, + "end": 24089.24, + "probability": 0.7488 + }, + { + "start": 24090.22, + "end": 24093.82, + "probability": 0.992 + }, + { + "start": 24094.62, + "end": 24098.64, + "probability": 0.9849 + }, + { + "start": 24099.88, + "end": 24101.42, + "probability": 0.8223 + }, + { + "start": 24102.44, + "end": 24106.44, + "probability": 0.8962 + }, + { + "start": 24107.36, + "end": 24109.16, + "probability": 0.9954 + }, + { + "start": 24109.86, + "end": 24114.28, + "probability": 0.9831 + }, + { + "start": 24115.44, + "end": 24117.4, + "probability": 0.998 + }, + { + "start": 24118.42, + "end": 24120.24, + "probability": 0.9975 + }, + { + "start": 24120.88, + "end": 24124.12, + "probability": 0.9817 + }, + { + "start": 24125.1, + "end": 24126.2, + "probability": 0.9646 + }, + { + "start": 24126.88, + "end": 24128.6, + "probability": 0.8177 + }, + { + "start": 24129.44, + "end": 24130.22, + "probability": 0.9641 + }, + { + "start": 24130.84, + "end": 24132.38, + "probability": 0.915 + }, + { + "start": 24133.16, + "end": 24134.0, + "probability": 0.8645 + }, + { + "start": 24134.78, + "end": 24136.02, + "probability": 0.9557 + }, + { + "start": 24136.86, + "end": 24138.2, + "probability": 0.9753 + }, + { + "start": 24138.96, + "end": 24141.62, + "probability": 0.9283 + }, + { + "start": 24142.36, + "end": 24144.4, + "probability": 0.8367 + }, + { + "start": 24145.3, + "end": 24147.3, + "probability": 0.9966 + }, + { + "start": 24148.1, + "end": 24151.34, + "probability": 0.9882 + }, + { + "start": 24151.96, + "end": 24154.74, + "probability": 0.9836 + }, + { + "start": 24156.06, + "end": 24159.38, + "probability": 0.4773 + }, + { + "start": 24160.46, + "end": 24163.06, + "probability": 0.9657 + }, + { + "start": 24163.06, + "end": 24166.26, + "probability": 0.9722 + }, + { + "start": 24167.08, + "end": 24171.9, + "probability": 0.9989 + }, + { + "start": 24172.98, + "end": 24175.52, + "probability": 0.9431 + }, + { + "start": 24175.82, + "end": 24181.02, + "probability": 0.9775 + }, + { + "start": 24181.76, + "end": 24183.36, + "probability": 0.9866 + }, + { + "start": 24184.6, + "end": 24189.06, + "probability": 0.9925 + }, + { + "start": 24189.06, + "end": 24194.32, + "probability": 0.9987 + }, + { + "start": 24194.84, + "end": 24196.5, + "probability": 0.997 + }, + { + "start": 24198.34, + "end": 24201.12, + "probability": 0.9829 + }, + { + "start": 24202.02, + "end": 24204.98, + "probability": 0.972 + }, + { + "start": 24205.76, + "end": 24211.36, + "probability": 0.9899 + }, + { + "start": 24211.36, + "end": 24216.1, + "probability": 0.9969 + }, + { + "start": 24216.78, + "end": 24220.54, + "probability": 0.9957 + }, + { + "start": 24220.54, + "end": 24224.72, + "probability": 0.9985 + }, + { + "start": 24225.28, + "end": 24226.98, + "probability": 0.9924 + }, + { + "start": 24228.24, + "end": 24232.12, + "probability": 0.8732 + }, + { + "start": 24232.86, + "end": 24237.18, + "probability": 0.9987 + }, + { + "start": 24237.86, + "end": 24238.84, + "probability": 0.9908 + }, + { + "start": 24239.4, + "end": 24240.62, + "probability": 0.867 + }, + { + "start": 24241.44, + "end": 24244.4, + "probability": 0.988 + }, + { + "start": 24245.04, + "end": 24248.04, + "probability": 0.9755 + }, + { + "start": 24249.88, + "end": 24251.08, + "probability": 0.9974 + }, + { + "start": 24251.84, + "end": 24253.1, + "probability": 0.9816 + }, + { + "start": 24253.64, + "end": 24257.28, + "probability": 0.9937 + }, + { + "start": 24257.28, + "end": 24261.32, + "probability": 0.9983 + }, + { + "start": 24262.14, + "end": 24266.76, + "probability": 0.9961 + }, + { + "start": 24266.76, + "end": 24270.44, + "probability": 0.978 + }, + { + "start": 24271.96, + "end": 24277.86, + "probability": 0.9532 + }, + { + "start": 24277.86, + "end": 24282.28, + "probability": 0.9937 + }, + { + "start": 24283.12, + "end": 24287.86, + "probability": 0.868 + }, + { + "start": 24288.54, + "end": 24293.14, + "probability": 0.9799 + }, + { + "start": 24294.72, + "end": 24296.44, + "probability": 0.993 + }, + { + "start": 24297.0, + "end": 24302.52, + "probability": 0.9993 + }, + { + "start": 24303.46, + "end": 24307.62, + "probability": 0.9813 + }, + { + "start": 24307.62, + "end": 24312.26, + "probability": 0.9922 + }, + { + "start": 24313.52, + "end": 24317.18, + "probability": 0.8498 + }, + { + "start": 24317.9, + "end": 24320.62, + "probability": 0.9772 + }, + { + "start": 24321.4, + "end": 24324.36, + "probability": 0.9971 + }, + { + "start": 24325.12, + "end": 24327.96, + "probability": 0.9883 + }, + { + "start": 24328.48, + "end": 24331.34, + "probability": 0.9463 + }, + { + "start": 24331.98, + "end": 24336.2, + "probability": 0.9974 + }, + { + "start": 24337.46, + "end": 24338.84, + "probability": 0.9722 + }, + { + "start": 24340.1, + "end": 24340.8, + "probability": 0.7952 + }, + { + "start": 24341.42, + "end": 24343.2, + "probability": 0.9635 + }, + { + "start": 24343.72, + "end": 24344.22, + "probability": 0.8329 + }, + { + "start": 24344.94, + "end": 24347.2, + "probability": 0.7163 + }, + { + "start": 24347.94, + "end": 24349.74, + "probability": 0.6946 + }, + { + "start": 24351.12, + "end": 24356.32, + "probability": 0.994 + }, + { + "start": 24356.98, + "end": 24362.82, + "probability": 0.9927 + }, + { + "start": 24364.08, + "end": 24367.28, + "probability": 0.9929 + }, + { + "start": 24368.74, + "end": 24371.28, + "probability": 0.7331 + }, + { + "start": 24371.8, + "end": 24374.54, + "probability": 0.998 + }, + { + "start": 24375.22, + "end": 24377.42, + "probability": 0.8184 + }, + { + "start": 24378.8, + "end": 24382.68, + "probability": 0.9487 + }, + { + "start": 24383.62, + "end": 24386.0, + "probability": 0.9967 + }, + { + "start": 24387.36, + "end": 24389.2, + "probability": 0.9048 + }, + { + "start": 24390.02, + "end": 24391.66, + "probability": 0.8784 + }, + { + "start": 24392.22, + "end": 24394.26, + "probability": 0.7855 + }, + { + "start": 24395.18, + "end": 24401.92, + "probability": 0.9948 + }, + { + "start": 24402.68, + "end": 24403.72, + "probability": 0.8886 + }, + { + "start": 24404.56, + "end": 24405.9, + "probability": 0.9633 + }, + { + "start": 24406.62, + "end": 24408.2, + "probability": 0.9267 + }, + { + "start": 24408.76, + "end": 24410.0, + "probability": 0.8967 + }, + { + "start": 24410.84, + "end": 24413.24, + "probability": 0.9968 + }, + { + "start": 24414.34, + "end": 24418.14, + "probability": 0.9963 + }, + { + "start": 24419.68, + "end": 24422.72, + "probability": 0.9746 + }, + { + "start": 24422.72, + "end": 24425.08, + "probability": 0.9989 + }, + { + "start": 24425.62, + "end": 24430.82, + "probability": 0.9814 + }, + { + "start": 24431.9, + "end": 24436.64, + "probability": 0.9987 + }, + { + "start": 24438.38, + "end": 24440.32, + "probability": 0.9678 + }, + { + "start": 24440.98, + "end": 24445.16, + "probability": 0.9949 + }, + { + "start": 24445.16, + "end": 24448.56, + "probability": 0.9999 + }, + { + "start": 24449.68, + "end": 24450.42, + "probability": 0.6854 + }, + { + "start": 24451.12, + "end": 24454.6, + "probability": 0.9822 + }, + { + "start": 24455.3, + "end": 24461.66, + "probability": 0.9972 + }, + { + "start": 24461.66, + "end": 24468.58, + "probability": 0.9995 + }, + { + "start": 24469.0, + "end": 24470.44, + "probability": 0.8634 + }, + { + "start": 24471.58, + "end": 24476.48, + "probability": 0.9971 + }, + { + "start": 24477.22, + "end": 24483.04, + "probability": 0.9888 + }, + { + "start": 24484.92, + "end": 24487.88, + "probability": 0.9998 + }, + { + "start": 24488.68, + "end": 24489.98, + "probability": 0.9922 + }, + { + "start": 24490.84, + "end": 24492.82, + "probability": 0.7592 + }, + { + "start": 24493.4, + "end": 24494.8, + "probability": 0.9964 + }, + { + "start": 24496.14, + "end": 24498.74, + "probability": 0.9985 + }, + { + "start": 24499.4, + "end": 24502.76, + "probability": 0.9321 + }, + { + "start": 24503.46, + "end": 24509.14, + "probability": 0.9962 + }, + { + "start": 24510.84, + "end": 24512.94, + "probability": 0.979 + }, + { + "start": 24513.62, + "end": 24517.78, + "probability": 0.9948 + }, + { + "start": 24518.42, + "end": 24520.3, + "probability": 0.9219 + }, + { + "start": 24520.98, + "end": 24524.0, + "probability": 0.8067 + }, + { + "start": 24524.56, + "end": 24525.24, + "probability": 0.8389 + }, + { + "start": 24525.84, + "end": 24526.66, + "probability": 0.5235 + }, + { + "start": 24528.34, + "end": 24535.2, + "probability": 0.9124 + }, + { + "start": 24536.48, + "end": 24537.62, + "probability": 0.7228 + }, + { + "start": 24537.8, + "end": 24538.66, + "probability": 0.9671 + }, + { + "start": 24538.76, + "end": 24539.42, + "probability": 0.9409 + }, + { + "start": 24539.88, + "end": 24540.62, + "probability": 0.9686 + }, + { + "start": 24540.82, + "end": 24541.66, + "probability": 0.9406 + }, + { + "start": 24542.2, + "end": 24544.3, + "probability": 0.9812 + }, + { + "start": 24545.08, + "end": 24545.74, + "probability": 0.6531 + }, + { + "start": 24546.56, + "end": 24548.6, + "probability": 0.981 + }, + { + "start": 24549.24, + "end": 24549.78, + "probability": 0.9703 + }, + { + "start": 24550.64, + "end": 24551.74, + "probability": 0.9229 + }, + { + "start": 24551.9, + "end": 24552.5, + "probability": 0.862 + }, + { + "start": 24552.8, + "end": 24553.34, + "probability": 0.9896 + }, + { + "start": 24553.64, + "end": 24554.3, + "probability": 0.9793 + }, + { + "start": 24554.98, + "end": 24557.0, + "probability": 0.6599 + }, + { + "start": 24557.84, + "end": 24559.06, + "probability": 0.9914 + }, + { + "start": 24559.74, + "end": 24561.54, + "probability": 0.9759 + }, + { + "start": 24562.12, + "end": 24565.08, + "probability": 0.9851 + }, + { + "start": 24565.86, + "end": 24567.64, + "probability": 0.979 + }, + { + "start": 24568.44, + "end": 24572.1, + "probability": 0.86 + }, + { + "start": 24573.38, + "end": 24576.12, + "probability": 0.9855 + }, + { + "start": 24576.84, + "end": 24578.94, + "probability": 0.9915 + }, + { + "start": 24579.66, + "end": 24580.62, + "probability": 0.9832 + }, + { + "start": 24581.18, + "end": 24582.46, + "probability": 0.9717 + }, + { + "start": 24583.14, + "end": 24584.36, + "probability": 0.8285 + }, + { + "start": 24585.12, + "end": 24585.88, + "probability": 0.7667 + }, + { + "start": 24586.46, + "end": 24588.48, + "probability": 0.8881 + }, + { + "start": 24591.96, + "end": 24596.34, + "probability": 0.9944 + }, + { + "start": 24598.42, + "end": 24600.96, + "probability": 0.7629 + }, + { + "start": 24603.1, + "end": 24605.44, + "probability": 0.6647 + }, + { + "start": 24605.92, + "end": 24606.5, + "probability": 0.3071 + }, + { + "start": 24607.28, + "end": 24608.5, + "probability": 0.61 + }, + { + "start": 24609.24, + "end": 24611.22, + "probability": 0.9985 + }, + { + "start": 24611.3, + "end": 24613.14, + "probability": 0.9456 + }, + { + "start": 24614.76, + "end": 24614.82, + "probability": 0.23 + }, + { + "start": 24614.84, + "end": 24615.68, + "probability": 0.9788 + }, + { + "start": 24616.7, + "end": 24621.17, + "probability": 0.9118 + }, + { + "start": 24621.32, + "end": 24622.82, + "probability": 0.998 + }, + { + "start": 24624.0, + "end": 24626.3, + "probability": 0.8335 + }, + { + "start": 24626.78, + "end": 24628.64, + "probability": 0.8429 + }, + { + "start": 24629.5, + "end": 24630.92, + "probability": 0.8108 + }, + { + "start": 24631.2, + "end": 24633.32, + "probability": 0.9932 + }, + { + "start": 24634.2, + "end": 24636.38, + "probability": 0.8273 + }, + { + "start": 24637.72, + "end": 24641.7, + "probability": 0.9932 + }, + { + "start": 24642.23, + "end": 24648.06, + "probability": 0.9613 + }, + { + "start": 24649.12, + "end": 24649.58, + "probability": 0.7983 + }, + { + "start": 24651.54, + "end": 24652.04, + "probability": 0.5664 + }, + { + "start": 24652.34, + "end": 24654.14, + "probability": 0.8556 + }, + { + "start": 24656.94, + "end": 24658.12, + "probability": 0.7698 + }, + { + "start": 24659.98, + "end": 24662.26, + "probability": 0.961 + }, + { + "start": 24662.26, + "end": 24664.86, + "probability": 0.9947 + }, + { + "start": 24665.0, + "end": 24667.06, + "probability": 0.7651 + }, + { + "start": 24668.24, + "end": 24668.86, + "probability": 0.5331 + }, + { + "start": 24669.0, + "end": 24671.5, + "probability": 0.9735 + }, + { + "start": 24672.1, + "end": 24674.0, + "probability": 0.5354 + }, + { + "start": 24674.74, + "end": 24677.64, + "probability": 0.7704 + }, + { + "start": 24679.72, + "end": 24681.64, + "probability": 0.5836 + }, + { + "start": 24681.7, + "end": 24684.06, + "probability": 0.9913 + }, + { + "start": 24685.06, + "end": 24685.52, + "probability": 0.6784 + }, + { + "start": 24686.3, + "end": 24687.6, + "probability": 0.9822 + }, + { + "start": 24688.38, + "end": 24690.26, + "probability": 0.9934 + }, + { + "start": 24691.38, + "end": 24695.72, + "probability": 0.9848 + }, + { + "start": 24696.26, + "end": 24697.92, + "probability": 0.8724 + }, + { + "start": 24698.92, + "end": 24702.06, + "probability": 0.9077 + }, + { + "start": 24702.06, + "end": 24704.28, + "probability": 0.9976 + }, + { + "start": 24705.38, + "end": 24707.02, + "probability": 0.9986 + }, + { + "start": 24707.26, + "end": 24708.5, + "probability": 0.9344 + }, + { + "start": 24708.8, + "end": 24709.36, + "probability": 0.6113 + }, + { + "start": 24709.88, + "end": 24714.2, + "probability": 0.9625 + }, + { + "start": 24715.22, + "end": 24718.28, + "probability": 0.9849 + }, + { + "start": 24719.2, + "end": 24719.76, + "probability": 0.7277 + }, + { + "start": 24720.62, + "end": 24724.54, + "probability": 0.9652 + }, + { + "start": 24724.54, + "end": 24727.84, + "probability": 0.915 + }, + { + "start": 24728.16, + "end": 24728.46, + "probability": 0.7613 + }, + { + "start": 24730.26, + "end": 24732.42, + "probability": 0.9991 + }, + { + "start": 24733.1, + "end": 24734.68, + "probability": 0.9954 + }, + { + "start": 24735.74, + "end": 24738.06, + "probability": 0.9702 + }, + { + "start": 24738.06, + "end": 24742.14, + "probability": 0.9986 + }, + { + "start": 24743.04, + "end": 24745.62, + "probability": 0.9127 + }, + { + "start": 24745.82, + "end": 24746.4, + "probability": 0.9779 + }, + { + "start": 24747.42, + "end": 24750.4, + "probability": 0.964 + }, + { + "start": 24751.1, + "end": 24755.8, + "probability": 0.9466 + }, + { + "start": 24756.96, + "end": 24759.74, + "probability": 0.9387 + }, + { + "start": 24760.36, + "end": 24764.98, + "probability": 0.9581 + }, + { + "start": 24765.68, + "end": 24768.22, + "probability": 0.889 + }, + { + "start": 24769.08, + "end": 24773.18, + "probability": 0.9985 + }, + { + "start": 24773.22, + "end": 24776.38, + "probability": 0.9756 + }, + { + "start": 24778.12, + "end": 24782.72, + "probability": 0.9878 + }, + { + "start": 24783.78, + "end": 24785.32, + "probability": 0.7271 + }, + { + "start": 24786.5, + "end": 24791.16, + "probability": 0.9787 + }, + { + "start": 24791.78, + "end": 24795.18, + "probability": 0.9935 + }, + { + "start": 24795.9, + "end": 24797.12, + "probability": 0.7896 + }, + { + "start": 24798.0, + "end": 24800.68, + "probability": 0.9464 + }, + { + "start": 24801.1, + "end": 24804.5, + "probability": 0.926 + }, + { + "start": 24805.8, + "end": 24811.04, + "probability": 0.9589 + }, + { + "start": 24811.38, + "end": 24812.76, + "probability": 0.978 + }, + { + "start": 24813.38, + "end": 24818.96, + "probability": 0.9968 + }, + { + "start": 24819.68, + "end": 24820.32, + "probability": 0.9926 + }, + { + "start": 24820.98, + "end": 24822.02, + "probability": 0.9987 + }, + { + "start": 24823.04, + "end": 24825.96, + "probability": 0.9827 + }, + { + "start": 24827.04, + "end": 24832.92, + "probability": 0.9837 + }, + { + "start": 24833.92, + "end": 24837.06, + "probability": 0.9702 + }, + { + "start": 24837.58, + "end": 24840.18, + "probability": 0.9363 + }, + { + "start": 24841.36, + "end": 24842.96, + "probability": 0.9789 + }, + { + "start": 24843.86, + "end": 24846.82, + "probability": 0.8596 + }, + { + "start": 24847.78, + "end": 24850.74, + "probability": 0.9894 + }, + { + "start": 24851.33, + "end": 24855.32, + "probability": 0.9953 + }, + { + "start": 24855.4, + "end": 24856.42, + "probability": 0.5643 + }, + { + "start": 24857.38, + "end": 24859.76, + "probability": 0.9863 + }, + { + "start": 24861.12, + "end": 24863.38, + "probability": 0.9937 + }, + { + "start": 24863.38, + "end": 24866.44, + "probability": 0.9901 + }, + { + "start": 24867.46, + "end": 24870.1, + "probability": 0.9979 + }, + { + "start": 24870.64, + "end": 24874.14, + "probability": 0.9934 + }, + { + "start": 24874.14, + "end": 24878.38, + "probability": 0.9919 + }, + { + "start": 24879.34, + "end": 24882.02, + "probability": 0.9872 + }, + { + "start": 24882.02, + "end": 24885.16, + "probability": 0.9979 + }, + { + "start": 24885.92, + "end": 24889.54, + "probability": 0.864 + }, + { + "start": 24890.62, + "end": 24896.28, + "probability": 0.9737 + }, + { + "start": 24897.88, + "end": 24901.54, + "probability": 0.998 + }, + { + "start": 24902.1, + "end": 24905.6, + "probability": 0.9988 + }, + { + "start": 24906.3, + "end": 24911.26, + "probability": 0.9107 + }, + { + "start": 24911.34, + "end": 24912.26, + "probability": 0.8846 + }, + { + "start": 24912.72, + "end": 24917.86, + "probability": 0.9448 + }, + { + "start": 24918.78, + "end": 24923.86, + "probability": 0.9974 + }, + { + "start": 24924.66, + "end": 24927.16, + "probability": 0.9844 + }, + { + "start": 24928.6, + "end": 24931.28, + "probability": 0.9579 + }, + { + "start": 24931.28, + "end": 24935.76, + "probability": 0.9904 + }, + { + "start": 24936.82, + "end": 24939.56, + "probability": 0.9982 + }, + { + "start": 24939.56, + "end": 24942.78, + "probability": 0.9878 + }, + { + "start": 24943.48, + "end": 24946.62, + "probability": 0.9956 + }, + { + "start": 24947.34, + "end": 24948.24, + "probability": 0.9392 + }, + { + "start": 24949.14, + "end": 24950.96, + "probability": 0.8906 + }, + { + "start": 24951.6, + "end": 24955.68, + "probability": 0.9954 + }, + { + "start": 24956.6, + "end": 24959.74, + "probability": 0.9957 + }, + { + "start": 24959.74, + "end": 24963.76, + "probability": 0.9885 + }, + { + "start": 24965.14, + "end": 24968.18, + "probability": 0.9624 + }, + { + "start": 24970.0, + "end": 24971.74, + "probability": 0.6647 + }, + { + "start": 24972.28, + "end": 24975.56, + "probability": 0.8971 + }, + { + "start": 24976.1, + "end": 24978.06, + "probability": 0.9979 + }, + { + "start": 24978.7, + "end": 24979.96, + "probability": 0.8338 + }, + { + "start": 24980.76, + "end": 24983.84, + "probability": 0.9977 + }, + { + "start": 24983.84, + "end": 24987.36, + "probability": 0.9983 + }, + { + "start": 24989.38, + "end": 24992.78, + "probability": 0.9866 + }, + { + "start": 24993.4, + "end": 24995.88, + "probability": 0.986 + }, + { + "start": 24995.88, + "end": 24998.6, + "probability": 0.9972 + }, + { + "start": 24999.6, + "end": 25001.94, + "probability": 0.9988 + }, + { + "start": 25002.72, + "end": 25006.34, + "probability": 0.9936 + }, + { + "start": 25006.34, + "end": 25010.92, + "probability": 0.9695 + }, + { + "start": 25012.2, + "end": 25014.8, + "probability": 0.9978 + }, + { + "start": 25015.76, + "end": 25018.01, + "probability": 0.9922 + }, + { + "start": 25018.08, + "end": 25018.46, + "probability": 0.8604 + }, + { + "start": 25019.32, + "end": 25022.86, + "probability": 0.9655 + }, + { + "start": 25024.0, + "end": 25025.26, + "probability": 0.9213 + }, + { + "start": 25025.78, + "end": 25029.2, + "probability": 0.9948 + }, + { + "start": 25030.46, + "end": 25032.26, + "probability": 0.9802 + }, + { + "start": 25032.26, + "end": 25035.82, + "probability": 0.9852 + }, + { + "start": 25036.68, + "end": 25038.4, + "probability": 0.9312 + }, + { + "start": 25039.4, + "end": 25042.22, + "probability": 0.9962 + }, + { + "start": 25042.96, + "end": 25046.58, + "probability": 0.958 + }, + { + "start": 25046.98, + "end": 25047.88, + "probability": 0.9633 + }, + { + "start": 25048.4, + "end": 25050.7, + "probability": 0.9249 + }, + { + "start": 25051.78, + "end": 25054.82, + "probability": 0.9971 + }, + { + "start": 25055.82, + "end": 25059.24, + "probability": 0.9878 + }, + { + "start": 25059.7, + "end": 25061.96, + "probability": 0.9567 + }, + { + "start": 25062.98, + "end": 25064.54, + "probability": 0.9951 + }, + { + "start": 25064.64, + "end": 25068.54, + "probability": 0.9645 + }, + { + "start": 25068.74, + "end": 25070.94, + "probability": 0.9804 + }, + { + "start": 25072.22, + "end": 25075.72, + "probability": 0.9763 + }, + { + "start": 25076.18, + "end": 25077.62, + "probability": 0.6565 + }, + { + "start": 25078.4, + "end": 25081.8, + "probability": 0.9932 + }, + { + "start": 25082.82, + "end": 25085.48, + "probability": 0.942 + }, + { + "start": 25086.8, + "end": 25090.96, + "probability": 0.8068 + }, + { + "start": 25092.06, + "end": 25095.64, + "probability": 0.9598 + }, + { + "start": 25095.64, + "end": 25100.74, + "probability": 0.9972 + }, + { + "start": 25101.48, + "end": 25103.34, + "probability": 0.9848 + }, + { + "start": 25104.22, + "end": 25105.45, + "probability": 0.9429 + }, + { + "start": 25106.58, + "end": 25107.4, + "probability": 0.9821 + }, + { + "start": 25108.34, + "end": 25109.6, + "probability": 0.7843 + }, + { + "start": 25110.88, + "end": 25113.58, + "probability": 0.9921 + }, + { + "start": 25115.28, + "end": 25119.8, + "probability": 0.9689 + }, + { + "start": 25119.88, + "end": 25124.1, + "probability": 0.9935 + }, + { + "start": 25125.3, + "end": 25126.52, + "probability": 0.8721 + }, + { + "start": 25127.2, + "end": 25130.1, + "probability": 0.9982 + }, + { + "start": 25131.32, + "end": 25132.04, + "probability": 0.7876 + }, + { + "start": 25132.56, + "end": 25137.32, + "probability": 0.9968 + }, + { + "start": 25139.68, + "end": 25140.24, + "probability": 0.8532 + }, + { + "start": 25140.94, + "end": 25145.56, + "probability": 0.9941 + }, + { + "start": 25146.26, + "end": 25149.12, + "probability": 0.8366 + }, + { + "start": 25150.02, + "end": 25150.28, + "probability": 0.8037 + }, + { + "start": 25151.14, + "end": 25155.68, + "probability": 0.9987 + }, + { + "start": 25157.14, + "end": 25158.08, + "probability": 0.6538 + }, + { + "start": 25158.64, + "end": 25159.8, + "probability": 0.9973 + }, + { + "start": 25160.4, + "end": 25163.16, + "probability": 0.9416 + }, + { + "start": 25163.86, + "end": 25164.34, + "probability": 0.7759 + }, + { + "start": 25164.4, + "end": 25167.12, + "probability": 0.9985 + }, + { + "start": 25167.98, + "end": 25171.22, + "probability": 0.9812 + }, + { + "start": 25172.3, + "end": 25173.34, + "probability": 0.778 + }, + { + "start": 25173.86, + "end": 25175.5, + "probability": 0.9985 + }, + { + "start": 25176.02, + "end": 25180.02, + "probability": 0.998 + }, + { + "start": 25180.98, + "end": 25181.66, + "probability": 0.7791 + }, + { + "start": 25182.2, + "end": 25183.12, + "probability": 0.9893 + }, + { + "start": 25183.7, + "end": 25186.98, + "probability": 0.9984 + }, + { + "start": 25188.22, + "end": 25190.54, + "probability": 0.9423 + }, + { + "start": 25191.64, + "end": 25194.76, + "probability": 0.871 + }, + { + "start": 25195.94, + "end": 25199.8, + "probability": 0.9957 + }, + { + "start": 25200.68, + "end": 25202.16, + "probability": 0.9393 + }, + { + "start": 25202.88, + "end": 25205.54, + "probability": 0.9852 + }, + { + "start": 25205.54, + "end": 25207.72, + "probability": 0.9983 + }, + { + "start": 25208.46, + "end": 25210.58, + "probability": 0.7884 + }, + { + "start": 25211.54, + "end": 25212.0, + "probability": 0.7515 + }, + { + "start": 25212.6, + "end": 25216.58, + "probability": 0.9981 + }, + { + "start": 25217.72, + "end": 25220.68, + "probability": 0.9962 + }, + { + "start": 25220.68, + "end": 25224.46, + "probability": 0.9919 + }, + { + "start": 25225.26, + "end": 25228.14, + "probability": 0.9786 + }, + { + "start": 25228.9, + "end": 25231.94, + "probability": 0.9932 + }, + { + "start": 25232.84, + "end": 25235.48, + "probability": 0.9985 + }, + { + "start": 25235.48, + "end": 25237.82, + "probability": 0.9659 + }, + { + "start": 25238.58, + "end": 25239.44, + "probability": 0.8171 + }, + { + "start": 25240.56, + "end": 25245.96, + "probability": 0.9972 + }, + { + "start": 25246.7, + "end": 25249.7, + "probability": 0.9959 + }, + { + "start": 25250.12, + "end": 25251.72, + "probability": 0.6536 + }, + { + "start": 25252.28, + "end": 25256.04, + "probability": 0.9963 + }, + { + "start": 25257.12, + "end": 25260.56, + "probability": 0.9419 + }, + { + "start": 25261.34, + "end": 25264.18, + "probability": 0.9752 + }, + { + "start": 25265.34, + "end": 25266.42, + "probability": 0.6017 + }, + { + "start": 25266.6, + "end": 25269.34, + "probability": 0.9866 + }, + { + "start": 25270.16, + "end": 25271.5, + "probability": 0.9094 + }, + { + "start": 25272.3, + "end": 25272.92, + "probability": 0.7748 + }, + { + "start": 25273.42, + "end": 25276.4, + "probability": 0.993 + }, + { + "start": 25277.46, + "end": 25279.82, + "probability": 0.8693 + }, + { + "start": 25280.38, + "end": 25284.02, + "probability": 0.9619 + }, + { + "start": 25284.6, + "end": 25286.16, + "probability": 0.9943 + }, + { + "start": 25286.78, + "end": 25287.38, + "probability": 0.7996 + }, + { + "start": 25289.3, + "end": 25290.54, + "probability": 0.8373 + }, + { + "start": 25291.94, + "end": 25292.22, + "probability": 0.7432 + }, + { + "start": 25293.52, + "end": 25296.68, + "probability": 0.9947 + }, + { + "start": 25296.68, + "end": 25298.56, + "probability": 0.9996 + }, + { + "start": 25299.22, + "end": 25300.96, + "probability": 0.9009 + }, + { + "start": 25300.96, + "end": 25304.36, + "probability": 0.989 + }, + { + "start": 25305.08, + "end": 25307.12, + "probability": 0.9404 + }, + { + "start": 25307.22, + "end": 25309.74, + "probability": 0.9982 + }, + { + "start": 25310.38, + "end": 25312.46, + "probability": 0.9704 + }, + { + "start": 25313.84, + "end": 25314.06, + "probability": 0.6494 + }, + { + "start": 25314.78, + "end": 25316.3, + "probability": 0.9225 + }, + { + "start": 25316.94, + "end": 25320.44, + "probability": 0.9941 + }, + { + "start": 25321.06, + "end": 25323.88, + "probability": 0.9968 + }, + { + "start": 25323.92, + "end": 25326.86, + "probability": 0.9976 + }, + { + "start": 25329.4, + "end": 25332.06, + "probability": 0.9915 + }, + { + "start": 25332.3, + "end": 25335.38, + "probability": 0.9804 + }, + { + "start": 25336.4, + "end": 25337.64, + "probability": 0.7688 + }, + { + "start": 25338.94, + "end": 25343.0, + "probability": 0.9923 + }, + { + "start": 25343.74, + "end": 25346.76, + "probability": 0.9973 + }, + { + "start": 25346.76, + "end": 25352.32, + "probability": 0.9344 + }, + { + "start": 25352.9, + "end": 25357.02, + "probability": 0.9883 + }, + { + "start": 25357.84, + "end": 25359.54, + "probability": 0.789 + }, + { + "start": 25359.7, + "end": 25362.26, + "probability": 0.9639 + }, + { + "start": 25362.78, + "end": 25366.96, + "probability": 0.9963 + }, + { + "start": 25368.8, + "end": 25371.0, + "probability": 0.9885 + }, + { + "start": 25371.0, + "end": 25373.52, + "probability": 0.953 + }, + { + "start": 25374.28, + "end": 25375.86, + "probability": 0.9875 + }, + { + "start": 25376.68, + "end": 25378.96, + "probability": 0.887 + }, + { + "start": 25379.64, + "end": 25380.02, + "probability": 0.6355 + }, + { + "start": 25380.6, + "end": 25383.6, + "probability": 0.9933 + }, + { + "start": 25383.6, + "end": 25389.76, + "probability": 0.9453 + }, + { + "start": 25390.64, + "end": 25393.1, + "probability": 0.9982 + }, + { + "start": 25393.1, + "end": 25395.98, + "probability": 0.9779 + }, + { + "start": 25396.88, + "end": 25400.44, + "probability": 0.9827 + }, + { + "start": 25401.32, + "end": 25403.48, + "probability": 0.9977 + }, + { + "start": 25403.48, + "end": 25405.86, + "probability": 0.9563 + }, + { + "start": 25406.58, + "end": 25409.68, + "probability": 0.9971 + }, + { + "start": 25409.68, + "end": 25413.62, + "probability": 0.9956 + }, + { + "start": 25414.46, + "end": 25416.56, + "probability": 0.9976 + }, + { + "start": 25416.56, + "end": 25418.58, + "probability": 0.9966 + }, + { + "start": 25419.26, + "end": 25421.54, + "probability": 0.9901 + }, + { + "start": 25421.54, + "end": 25423.94, + "probability": 0.9983 + }, + { + "start": 25424.72, + "end": 25427.68, + "probability": 0.9875 + }, + { + "start": 25429.14, + "end": 25430.02, + "probability": 0.8269 + }, + { + "start": 25430.62, + "end": 25432.04, + "probability": 0.9982 + }, + { + "start": 25432.76, + "end": 25435.9, + "probability": 0.9771 + }, + { + "start": 25436.7, + "end": 25439.72, + "probability": 0.8215 + }, + { + "start": 25439.82, + "end": 25440.28, + "probability": 0.8617 + }, + { + "start": 25440.5, + "end": 25441.44, + "probability": 0.9868 + }, + { + "start": 25441.46, + "end": 25442.52, + "probability": 0.958 + }, + { + "start": 25443.2, + "end": 25446.54, + "probability": 0.9792 + }, + { + "start": 25447.96, + "end": 25450.1, + "probability": 0.989 + }, + { + "start": 25450.24, + "end": 25452.7, + "probability": 0.9972 + }, + { + "start": 25453.24, + "end": 25455.34, + "probability": 0.9987 + }, + { + "start": 25455.38, + "end": 25458.16, + "probability": 0.9981 + }, + { + "start": 25458.62, + "end": 25459.32, + "probability": 0.8527 + }, + { + "start": 25459.86, + "end": 25464.94, + "probability": 0.9718 + }, + { + "start": 25465.5, + "end": 25470.66, + "probability": 0.9891 + }, + { + "start": 25470.92, + "end": 25472.2, + "probability": 0.9327 + }, + { + "start": 25472.36, + "end": 25474.68, + "probability": 0.9809 + }, + { + "start": 25474.68, + "end": 25477.22, + "probability": 0.9626 + }, + { + "start": 25477.88, + "end": 25479.24, + "probability": 0.6681 + }, + { + "start": 25479.78, + "end": 25482.42, + "probability": 0.9893 + }, + { + "start": 25482.42, + "end": 25485.08, + "probability": 0.999 + }, + { + "start": 25485.9, + "end": 25488.22, + "probability": 0.9849 + }, + { + "start": 25488.42, + "end": 25490.62, + "probability": 0.9955 + }, + { + "start": 25490.76, + "end": 25494.18, + "probability": 0.9517 + }, + { + "start": 25495.02, + "end": 25498.32, + "probability": 0.9827 + }, + { + "start": 25498.96, + "end": 25500.26, + "probability": 0.7994 + }, + { + "start": 25500.86, + "end": 25501.48, + "probability": 0.8992 + }, + { + "start": 25502.34, + "end": 25502.7, + "probability": 0.5066 + }, + { + "start": 25504.04, + "end": 25506.32, + "probability": 0.9712 + }, + { + "start": 25506.32, + "end": 25508.76, + "probability": 0.8544 + }, + { + "start": 25508.8, + "end": 25511.16, + "probability": 0.752 + }, + { + "start": 25512.32, + "end": 25515.08, + "probability": 0.9968 + }, + { + "start": 25515.7, + "end": 25516.88, + "probability": 0.9328 + }, + { + "start": 25518.8, + "end": 25520.22, + "probability": 0.8953 + }, + { + "start": 25520.34, + "end": 25521.5, + "probability": 0.8301 + }, + { + "start": 25521.58, + "end": 25523.4, + "probability": 0.9963 + }, + { + "start": 25523.56, + "end": 25524.62, + "probability": 0.8005 + }, + { + "start": 25525.22, + "end": 25525.78, + "probability": 0.6476 + }, + { + "start": 25525.92, + "end": 25530.22, + "probability": 0.8806 + }, + { + "start": 25530.22, + "end": 25534.18, + "probability": 0.9328 + }, + { + "start": 25534.8, + "end": 25539.62, + "probability": 0.9939 + }, + { + "start": 25540.2, + "end": 25542.18, + "probability": 0.9876 + }, + { + "start": 25542.62, + "end": 25544.64, + "probability": 0.9985 + }, + { + "start": 25545.12, + "end": 25545.68, + "probability": 0.4074 + }, + { + "start": 25545.98, + "end": 25551.8, + "probability": 0.8833 + }, + { + "start": 25553.85, + "end": 25558.66, + "probability": 0.9458 + }, + { + "start": 25558.78, + "end": 25562.76, + "probability": 0.9705 + }, + { + "start": 25563.36, + "end": 25567.8, + "probability": 0.9891 + }, + { + "start": 25568.72, + "end": 25569.74, + "probability": 0.6237 + }, + { + "start": 25569.84, + "end": 25571.52, + "probability": 0.769 + }, + { + "start": 25571.8, + "end": 25572.7, + "probability": 0.991 + }, + { + "start": 25573.04, + "end": 25573.52, + "probability": 0.5596 + }, + { + "start": 25573.68, + "end": 25574.11, + "probability": 0.9775 + }, + { + "start": 25576.69, + "end": 25580.06, + "probability": 0.9856 + }, + { + "start": 25580.3, + "end": 25580.6, + "probability": 0.6922 + }, + { + "start": 25581.62, + "end": 25583.52, + "probability": 0.9051 + }, + { + "start": 25584.04, + "end": 25585.02, + "probability": 0.7724 + }, + { + "start": 25607.16, + "end": 25609.48, + "probability": 0.753 + }, + { + "start": 25610.82, + "end": 25611.42, + "probability": 0.8094 + }, + { + "start": 25615.2, + "end": 25617.7, + "probability": 0.6797 + }, + { + "start": 25619.32, + "end": 25622.64, + "probability": 0.9558 + }, + { + "start": 25623.1, + "end": 25627.52, + "probability": 0.9266 + }, + { + "start": 25628.88, + "end": 25635.52, + "probability": 0.7866 + }, + { + "start": 25636.88, + "end": 25638.76, + "probability": 0.7745 + }, + { + "start": 25639.56, + "end": 25642.14, + "probability": 0.9488 + }, + { + "start": 25644.98, + "end": 25646.54, + "probability": 0.7953 + }, + { + "start": 25648.88, + "end": 25649.28, + "probability": 0.6864 + }, + { + "start": 25650.48, + "end": 25653.56, + "probability": 0.9348 + }, + { + "start": 25654.4, + "end": 25660.38, + "probability": 0.0601 + }, + { + "start": 25660.9, + "end": 25662.26, + "probability": 0.112 + }, + { + "start": 25663.04, + "end": 25664.68, + "probability": 0.0856 + }, + { + "start": 25665.1, + "end": 25665.92, + "probability": 0.0828 + }, + { + "start": 25666.78, + "end": 25667.92, + "probability": 0.2908 + }, + { + "start": 25669.08, + "end": 25670.84, + "probability": 0.8199 + }, + { + "start": 25671.42, + "end": 25674.58, + "probability": 0.0321 + }, + { + "start": 25686.06, + "end": 25689.38, + "probability": 0.0087 + }, + { + "start": 25697.84, + "end": 25698.58, + "probability": 0.0936 + }, + { + "start": 25701.4, + "end": 25702.56, + "probability": 0.2966 + }, + { + "start": 25702.56, + "end": 25702.56, + "probability": 0.0571 + }, + { + "start": 25702.56, + "end": 25702.86, + "probability": 0.185 + }, + { + "start": 25703.5, + "end": 25704.52, + "probability": 0.0208 + }, + { + "start": 25705.16, + "end": 25705.66, + "probability": 0.0877 + }, + { + "start": 25705.66, + "end": 25706.0, + "probability": 0.1706 + }, + { + "start": 25706.76, + "end": 25707.68, + "probability": 0.3768 + }, + { + "start": 25708.2, + "end": 25709.06, + "probability": 0.5472 + }, + { + "start": 25711.66, + "end": 25711.66, + "probability": 0.0454 + }, + { + "start": 25711.66, + "end": 25711.66, + "probability": 0.0193 + }, + { + "start": 25711.66, + "end": 25711.66, + "probability": 0.0296 + }, + { + "start": 25711.66, + "end": 25711.66, + "probability": 0.07 + }, + { + "start": 25711.66, + "end": 25714.94, + "probability": 0.7981 + }, + { + "start": 25716.38, + "end": 25719.76, + "probability": 0.5062 + }, + { + "start": 25722.42, + "end": 25723.6, + "probability": 0.4404 + }, + { + "start": 25724.34, + "end": 25726.62, + "probability": 0.688 + }, + { + "start": 25727.16, + "end": 25730.84, + "probability": 0.9778 + }, + { + "start": 25731.5, + "end": 25734.26, + "probability": 0.787 + }, + { + "start": 25735.24, + "end": 25738.64, + "probability": 0.9214 + }, + { + "start": 25739.96, + "end": 25745.12, + "probability": 0.9463 + }, + { + "start": 25745.66, + "end": 25750.73, + "probability": 0.9837 + }, + { + "start": 25751.74, + "end": 25752.25, + "probability": 0.8949 + }, + { + "start": 25752.3, + "end": 25752.46, + "probability": 0.1723 + }, + { + "start": 25752.78, + "end": 25753.55, + "probability": 0.8969 + }, + { + "start": 25753.9, + "end": 25755.66, + "probability": 0.9166 + }, + { + "start": 25756.2, + "end": 25759.18, + "probability": 0.8691 + }, + { + "start": 25759.44, + "end": 25762.44, + "probability": 0.9541 + }, + { + "start": 25763.42, + "end": 25763.58, + "probability": 0.4376 + }, + { + "start": 25764.64, + "end": 25767.18, + "probability": 0.4689 + }, + { + "start": 25767.44, + "end": 25770.04, + "probability": 0.9378 + }, + { + "start": 25770.7, + "end": 25771.18, + "probability": 0.3511 + }, + { + "start": 25771.52, + "end": 25774.88, + "probability": 0.9533 + }, + { + "start": 25775.58, + "end": 25777.12, + "probability": 0.7496 + }, + { + "start": 25777.32, + "end": 25777.34, + "probability": 0.5372 + }, + { + "start": 25777.34, + "end": 25779.78, + "probability": 0.7719 + }, + { + "start": 25780.12, + "end": 25780.22, + "probability": 0.8188 + }, + { + "start": 25781.26, + "end": 25781.74, + "probability": 0.9664 + }, + { + "start": 25782.5, + "end": 25784.4, + "probability": 0.5436 + }, + { + "start": 25785.32, + "end": 25789.14, + "probability": 0.9219 + }, + { + "start": 25789.72, + "end": 25790.46, + "probability": 0.6777 + }, + { + "start": 25791.16, + "end": 25793.64, + "probability": 0.7027 + }, + { + "start": 25793.68, + "end": 25797.38, + "probability": 0.8409 + }, + { + "start": 25797.9, + "end": 25799.94, + "probability": 0.7974 + }, + { + "start": 25800.3, + "end": 25800.62, + "probability": 0.7766 + }, + { + "start": 25802.24, + "end": 25803.22, + "probability": 0.7812 + }, + { + "start": 25804.66, + "end": 25805.76, + "probability": 0.9689 + }, + { + "start": 25806.34, + "end": 25806.44, + "probability": 0.8145 + }, + { + "start": 25807.9, + "end": 25810.58, + "probability": 0.7076 + }, + { + "start": 25811.42, + "end": 25816.56, + "probability": 0.2497 + }, + { + "start": 25817.42, + "end": 25819.36, + "probability": 0.3115 + }, + { + "start": 25824.46, + "end": 25824.66, + "probability": 0.056 + }, + { + "start": 25824.66, + "end": 25825.42, + "probability": 0.5311 + }, + { + "start": 25826.32, + "end": 25826.9, + "probability": 0.469 + }, + { + "start": 25826.98, + "end": 25827.92, + "probability": 0.9036 + }, + { + "start": 25829.14, + "end": 25831.4, + "probability": 0.6469 + }, + { + "start": 25831.4, + "end": 25832.49, + "probability": 0.7764 + }, + { + "start": 25832.92, + "end": 25833.54, + "probability": 0.6508 + }, + { + "start": 25833.56, + "end": 25836.86, + "probability": 0.7297 + }, + { + "start": 25837.62, + "end": 25838.48, + "probability": 0.7687 + }, + { + "start": 25840.04, + "end": 25840.72, + "probability": 0.9597 + }, + { + "start": 25841.6, + "end": 25842.44, + "probability": 0.6165 + }, + { + "start": 25844.24, + "end": 25845.02, + "probability": 0.9614 + }, + { + "start": 25846.58, + "end": 25849.57, + "probability": 0.9688 + }, + { + "start": 25853.82, + "end": 25857.78, + "probability": 0.7265 + }, + { + "start": 25859.44, + "end": 25860.05, + "probability": 0.9995 + }, + { + "start": 25862.74, + "end": 25863.4, + "probability": 0.6729 + }, + { + "start": 25864.76, + "end": 25867.72, + "probability": 0.8714 + }, + { + "start": 25869.12, + "end": 25871.62, + "probability": 0.9562 + }, + { + "start": 25873.74, + "end": 25874.5, + "probability": 0.9835 + }, + { + "start": 25876.18, + "end": 25876.98, + "probability": 0.8733 + }, + { + "start": 25878.42, + "end": 25879.74, + "probability": 0.9752 + }, + { + "start": 25880.54, + "end": 25881.64, + "probability": 0.9903 + }, + { + "start": 25884.0, + "end": 25887.46, + "probability": 0.8016 + }, + { + "start": 25889.64, + "end": 25890.26, + "probability": 0.5016 + }, + { + "start": 25892.8, + "end": 25898.32, + "probability": 0.9432 + }, + { + "start": 25900.12, + "end": 25900.76, + "probability": 0.9951 + }, + { + "start": 25902.86, + "end": 25907.28, + "probability": 0.9549 + }, + { + "start": 25910.4, + "end": 25911.98, + "probability": 0.9983 + }, + { + "start": 25913.54, + "end": 25914.86, + "probability": 0.9759 + }, + { + "start": 25916.94, + "end": 25918.02, + "probability": 0.4468 + }, + { + "start": 25919.4, + "end": 25920.04, + "probability": 0.6669 + }, + { + "start": 25921.22, + "end": 25922.0, + "probability": 0.7502 + }, + { + "start": 25924.56, + "end": 25925.48, + "probability": 0.9961 + }, + { + "start": 25926.34, + "end": 25927.38, + "probability": 0.733 + }, + { + "start": 25928.5, + "end": 25929.48, + "probability": 0.8964 + }, + { + "start": 25930.46, + "end": 25931.14, + "probability": 0.7001 + }, + { + "start": 25933.44, + "end": 25940.28, + "probability": 0.9854 + }, + { + "start": 25941.0, + "end": 25942.56, + "probability": 0.7719 + }, + { + "start": 25944.76, + "end": 25949.28, + "probability": 0.9685 + }, + { + "start": 25951.14, + "end": 25952.84, + "probability": 0.5613 + }, + { + "start": 25954.3, + "end": 25956.02, + "probability": 0.9209 + }, + { + "start": 25957.52, + "end": 25959.18, + "probability": 0.7703 + }, + { + "start": 25960.94, + "end": 25962.88, + "probability": 0.991 + }, + { + "start": 25964.32, + "end": 25967.74, + "probability": 0.999 + }, + { + "start": 25969.24, + "end": 25970.96, + "probability": 0.1723 + }, + { + "start": 25976.94, + "end": 25977.94, + "probability": 0.7035 + }, + { + "start": 25979.74, + "end": 25981.44, + "probability": 0.7468 + }, + { + "start": 25982.76, + "end": 25989.56, + "probability": 0.9881 + }, + { + "start": 25990.94, + "end": 25995.72, + "probability": 0.9078 + }, + { + "start": 25996.7, + "end": 26000.56, + "probability": 0.9912 + }, + { + "start": 26002.18, + "end": 26002.56, + "probability": 0.0001 + }, + { + "start": 26004.38, + "end": 26006.2, + "probability": 0.7231 + }, + { + "start": 26008.74, + "end": 26009.58, + "probability": 0.805 + }, + { + "start": 26010.14, + "end": 26012.24, + "probability": 0.9894 + }, + { + "start": 26012.98, + "end": 26014.5, + "probability": 0.9699 + }, + { + "start": 26016.18, + "end": 26020.36, + "probability": 0.9803 + }, + { + "start": 26022.72, + "end": 26026.52, + "probability": 0.9878 + }, + { + "start": 26028.14, + "end": 26030.84, + "probability": 0.9973 + }, + { + "start": 26032.42, + "end": 26033.0, + "probability": 0.4262 + }, + { + "start": 26033.68, + "end": 26034.74, + "probability": 0.8292 + }, + { + "start": 26035.5, + "end": 26037.58, + "probability": 0.9367 + }, + { + "start": 26039.56, + "end": 26039.56, + "probability": 0.0 + }, + { + "start": 26041.16, + "end": 26044.24, + "probability": 0.9507 + }, + { + "start": 26046.72, + "end": 26052.36, + "probability": 0.7556 + }, + { + "start": 26053.78, + "end": 26054.82, + "probability": 0.9946 + }, + { + "start": 26057.72, + "end": 26060.44, + "probability": 0.9925 + }, + { + "start": 26061.74, + "end": 26066.32, + "probability": 0.9989 + }, + { + "start": 26068.18, + "end": 26071.06, + "probability": 0.9971 + }, + { + "start": 26072.12, + "end": 26073.36, + "probability": 0.5152 + }, + { + "start": 26074.14, + "end": 26077.18, + "probability": 0.8804 + }, + { + "start": 26078.78, + "end": 26081.74, + "probability": 0.7134 + }, + { + "start": 26083.42, + "end": 26085.04, + "probability": 0.9391 + }, + { + "start": 26085.72, + "end": 26090.64, + "probability": 0.9966 + }, + { + "start": 26091.84, + "end": 26093.16, + "probability": 0.9103 + }, + { + "start": 26094.22, + "end": 26095.5, + "probability": 0.8324 + }, + { + "start": 26096.38, + "end": 26101.52, + "probability": 0.9546 + }, + { + "start": 26103.22, + "end": 26103.92, + "probability": 0.7087 + }, + { + "start": 26105.42, + "end": 26106.92, + "probability": 0.7715 + }, + { + "start": 26108.04, + "end": 26109.08, + "probability": 0.966 + }, + { + "start": 26110.98, + "end": 26114.82, + "probability": 0.8882 + }, + { + "start": 26114.82, + "end": 26118.82, + "probability": 0.9369 + }, + { + "start": 26120.56, + "end": 26121.78, + "probability": 0.9919 + }, + { + "start": 26122.92, + "end": 26129.94, + "probability": 0.9754 + }, + { + "start": 26131.82, + "end": 26132.6, + "probability": 0.8463 + }, + { + "start": 26134.42, + "end": 26135.26, + "probability": 0.6633 + }, + { + "start": 26136.8, + "end": 26140.58, + "probability": 0.9928 + }, + { + "start": 26141.36, + "end": 26143.2, + "probability": 0.981 + }, + { + "start": 26144.1, + "end": 26144.9, + "probability": 0.8912 + }, + { + "start": 26146.48, + "end": 26148.0, + "probability": 0.7253 + }, + { + "start": 26149.46, + "end": 26151.56, + "probability": 0.9783 + }, + { + "start": 26152.76, + "end": 26153.9, + "probability": 0.2869 + }, + { + "start": 26154.9, + "end": 26156.48, + "probability": 0.973 + }, + { + "start": 26157.32, + "end": 26160.76, + "probability": 0.9783 + }, + { + "start": 26161.78, + "end": 26162.46, + "probability": 0.8695 + }, + { + "start": 26163.4, + "end": 26166.26, + "probability": 0.8462 + }, + { + "start": 26166.82, + "end": 26172.58, + "probability": 0.9666 + }, + { + "start": 26173.9, + "end": 26174.44, + "probability": 0.9675 + }, + { + "start": 26175.14, + "end": 26177.74, + "probability": 0.9499 + }, + { + "start": 26179.4, + "end": 26181.48, + "probability": 0.53 + }, + { + "start": 26182.58, + "end": 26184.6, + "probability": 0.9957 + }, + { + "start": 26185.74, + "end": 26188.96, + "probability": 0.9899 + }, + { + "start": 26190.26, + "end": 26195.9, + "probability": 0.9727 + }, + { + "start": 26197.56, + "end": 26199.2, + "probability": 0.3103 + }, + { + "start": 26199.8, + "end": 26205.7, + "probability": 0.96 + }, + { + "start": 26207.06, + "end": 26208.82, + "probability": 0.4906 + }, + { + "start": 26209.48, + "end": 26213.32, + "probability": 0.8154 + }, + { + "start": 26213.54, + "end": 26213.92, + "probability": 0.7238 + }, + { + "start": 26214.56, + "end": 26215.04, + "probability": 0.7099 + }, + { + "start": 26216.68, + "end": 26218.24, + "probability": 0.9355 + }, + { + "start": 26243.12, + "end": 26244.42, + "probability": 0.8287 + }, + { + "start": 26244.54, + "end": 26244.84, + "probability": 0.512 + }, + { + "start": 26244.98, + "end": 26246.21, + "probability": 0.6613 + }, + { + "start": 26247.64, + "end": 26250.1, + "probability": 0.9969 + }, + { + "start": 26252.08, + "end": 26253.78, + "probability": 0.9917 + }, + { + "start": 26255.28, + "end": 26259.16, + "probability": 0.9832 + }, + { + "start": 26260.04, + "end": 26263.28, + "probability": 0.9948 + }, + { + "start": 26267.18, + "end": 26269.4, + "probability": 0.937 + }, + { + "start": 26269.6, + "end": 26273.46, + "probability": 0.9946 + }, + { + "start": 26274.38, + "end": 26280.44, + "probability": 0.8603 + }, + { + "start": 26280.82, + "end": 26284.0, + "probability": 0.9905 + }, + { + "start": 26284.92, + "end": 26287.12, + "probability": 0.9971 + }, + { + "start": 26287.28, + "end": 26287.56, + "probability": 0.5637 + }, + { + "start": 26287.88, + "end": 26288.16, + "probability": 0.8456 + }, + { + "start": 26288.52, + "end": 26290.68, + "probability": 0.973 + }, + { + "start": 26291.28, + "end": 26291.38, + "probability": 0.9124 + }, + { + "start": 26292.38, + "end": 26293.3, + "probability": 0.7827 + }, + { + "start": 26293.86, + "end": 26294.32, + "probability": 0.9623 + }, + { + "start": 26294.9, + "end": 26299.13, + "probability": 0.9646 + }, + { + "start": 26300.19, + "end": 26301.54, + "probability": 0.954 + }, + { + "start": 26303.24, + "end": 26303.88, + "probability": 0.6668 + }, + { + "start": 26304.98, + "end": 26309.22, + "probability": 0.9976 + }, + { + "start": 26309.34, + "end": 26309.84, + "probability": 0.7459 + }, + { + "start": 26310.08, + "end": 26313.26, + "probability": 0.9761 + }, + { + "start": 26313.38, + "end": 26314.18, + "probability": 0.8615 + }, + { + "start": 26314.52, + "end": 26316.22, + "probability": 0.9854 + }, + { + "start": 26317.24, + "end": 26318.92, + "probability": 0.9492 + }, + { + "start": 26320.04, + "end": 26320.34, + "probability": 0.7304 + }, + { + "start": 26320.42, + "end": 26321.4, + "probability": 0.781 + }, + { + "start": 26321.48, + "end": 26322.42, + "probability": 0.7379 + }, + { + "start": 26322.5, + "end": 26323.62, + "probability": 0.7389 + }, + { + "start": 26324.5, + "end": 26326.94, + "probability": 0.9699 + }, + { + "start": 26327.08, + "end": 26332.2, + "probability": 0.9896 + }, + { + "start": 26332.66, + "end": 26336.98, + "probability": 0.9504 + }, + { + "start": 26337.12, + "end": 26338.88, + "probability": 0.9966 + }, + { + "start": 26339.52, + "end": 26341.02, + "probability": 0.9628 + }, + { + "start": 26341.98, + "end": 26345.08, + "probability": 0.8876 + }, + { + "start": 26345.82, + "end": 26349.82, + "probability": 0.9818 + }, + { + "start": 26350.3, + "end": 26353.48, + "probability": 0.9985 + }, + { + "start": 26354.0, + "end": 26356.54, + "probability": 0.9949 + }, + { + "start": 26357.32, + "end": 26358.54, + "probability": 0.9767 + }, + { + "start": 26358.98, + "end": 26359.88, + "probability": 0.9954 + }, + { + "start": 26360.9, + "end": 26362.1, + "probability": 0.9778 + }, + { + "start": 26365.1, + "end": 26365.74, + "probability": 0.0526 + }, + { + "start": 26366.68, + "end": 26367.41, + "probability": 0.448 + }, + { + "start": 26368.52, + "end": 26370.86, + "probability": 0.9276 + }, + { + "start": 26372.02, + "end": 26373.12, + "probability": 0.9008 + }, + { + "start": 26374.02, + "end": 26379.24, + "probability": 0.9878 + }, + { + "start": 26380.26, + "end": 26383.42, + "probability": 0.9288 + }, + { + "start": 26383.94, + "end": 26388.26, + "probability": 0.8958 + }, + { + "start": 26389.06, + "end": 26394.66, + "probability": 0.8774 + }, + { + "start": 26395.56, + "end": 26397.64, + "probability": 0.9937 + }, + { + "start": 26397.84, + "end": 26401.64, + "probability": 0.9305 + }, + { + "start": 26402.58, + "end": 26403.3, + "probability": 0.4648 + }, + { + "start": 26404.22, + "end": 26404.48, + "probability": 0.3633 + }, + { + "start": 26404.54, + "end": 26408.44, + "probability": 0.9723 + }, + { + "start": 26408.52, + "end": 26409.02, + "probability": 0.6937 + }, + { + "start": 26409.8, + "end": 26411.18, + "probability": 0.6734 + }, + { + "start": 26411.84, + "end": 26412.1, + "probability": 0.752 + }, + { + "start": 26413.18, + "end": 26414.58, + "probability": 0.788 + }, + { + "start": 26415.08, + "end": 26415.8, + "probability": 0.555 + }, + { + "start": 26416.1, + "end": 26417.04, + "probability": 0.7712 + }, + { + "start": 26417.24, + "end": 26417.94, + "probability": 0.7587 + }, + { + "start": 26418.46, + "end": 26421.04, + "probability": 0.8672 + }, + { + "start": 26421.68, + "end": 26423.12, + "probability": 0.926 + }, + { + "start": 26423.68, + "end": 26424.12, + "probability": 0.831 + }, + { + "start": 26425.56, + "end": 26430.46, + "probability": 0.9932 + }, + { + "start": 26431.28, + "end": 26433.8, + "probability": 0.9955 + }, + { + "start": 26433.8, + "end": 26437.62, + "probability": 0.9993 + }, + { + "start": 26438.46, + "end": 26439.06, + "probability": 0.6786 + }, + { + "start": 26439.7, + "end": 26442.84, + "probability": 0.9806 + }, + { + "start": 26443.7, + "end": 26446.22, + "probability": 0.9482 + }, + { + "start": 26447.06, + "end": 26449.56, + "probability": 0.9544 + }, + { + "start": 26450.32, + "end": 26451.24, + "probability": 0.3981 + }, + { + "start": 26451.26, + "end": 26454.02, + "probability": 0.8159 + }, + { + "start": 26454.74, + "end": 26457.68, + "probability": 0.9918 + }, + { + "start": 26458.88, + "end": 26462.88, + "probability": 0.9876 + }, + { + "start": 26463.08, + "end": 26465.38, + "probability": 0.9696 + }, + { + "start": 26466.28, + "end": 26469.1, + "probability": 0.9602 + }, + { + "start": 26469.84, + "end": 26471.92, + "probability": 0.9589 + }, + { + "start": 26472.54, + "end": 26475.54, + "probability": 0.9923 + }, + { + "start": 26477.82, + "end": 26482.2, + "probability": 0.9866 + }, + { + "start": 26482.7, + "end": 26484.42, + "probability": 0.7732 + }, + { + "start": 26485.58, + "end": 26488.74, + "probability": 0.9977 + }, + { + "start": 26489.74, + "end": 26495.72, + "probability": 0.7149 + }, + { + "start": 26497.22, + "end": 26499.38, + "probability": 0.7648 + }, + { + "start": 26499.9, + "end": 26501.28, + "probability": 0.7181 + }, + { + "start": 26501.28, + "end": 26501.38, + "probability": 0.4231 + }, + { + "start": 26501.38, + "end": 26501.38, + "probability": 0.7746 + }, + { + "start": 26501.38, + "end": 26503.88, + "probability": 0.6666 + }, + { + "start": 26503.98, + "end": 26504.2, + "probability": 0.878 + }, + { + "start": 26504.98, + "end": 26505.38, + "probability": 0.8323 + }, + { + "start": 26505.56, + "end": 26507.64, + "probability": 0.9627 + }, + { + "start": 26507.68, + "end": 26509.34, + "probability": 0.8372 + }, + { + "start": 26509.58, + "end": 26511.82, + "probability": 0.6689 + }, + { + "start": 26512.02, + "end": 26512.52, + "probability": 0.6718 + }, + { + "start": 26513.04, + "end": 26513.35, + "probability": 0.7333 + }, + { + "start": 26513.7, + "end": 26513.7, + "probability": 0.773 + }, + { + "start": 26513.7, + "end": 26516.29, + "probability": 0.7023 + }, + { + "start": 26517.71, + "end": 26519.68, + "probability": 0.1169 + }, + { + "start": 26519.68, + "end": 26519.68, + "probability": 0.8181 + }, + { + "start": 26519.68, + "end": 26519.7, + "probability": 0.0491 + }, + { + "start": 26519.7, + "end": 26521.8, + "probability": 0.3989 + }, + { + "start": 26521.8, + "end": 26522.72, + "probability": 0.4872 + }, + { + "start": 26523.22, + "end": 26524.38, + "probability": 0.8277 + }, + { + "start": 26524.4, + "end": 26525.5, + "probability": 0.1791 + }, + { + "start": 26525.5, + "end": 26526.8, + "probability": 0.5789 + }, + { + "start": 26526.8, + "end": 26527.76, + "probability": 0.6068 + }, + { + "start": 26528.12, + "end": 26529.44, + "probability": 0.8018 + }, + { + "start": 26530.13, + "end": 26531.64, + "probability": 0.4976 + }, + { + "start": 26531.7, + "end": 26533.88, + "probability": 0.556 + }, + { + "start": 26533.92, + "end": 26534.08, + "probability": 0.7646 + }, + { + "start": 26534.74, + "end": 26535.52, + "probability": 0.7891 + }, + { + "start": 26535.96, + "end": 26536.34, + "probability": 0.9077 + }, + { + "start": 26536.86, + "end": 26537.26, + "probability": 0.859 + }, + { + "start": 26537.46, + "end": 26538.18, + "probability": 0.8671 + }, + { + "start": 26538.2, + "end": 26539.32, + "probability": 0.8124 + }, + { + "start": 26539.34, + "end": 26540.56, + "probability": 0.6664 + }, + { + "start": 26540.8, + "end": 26540.8, + "probability": 0.1833 + }, + { + "start": 26540.8, + "end": 26540.8, + "probability": 0.3531 + }, + { + "start": 26540.8, + "end": 26544.38, + "probability": 0.8462 + }, + { + "start": 26544.66, + "end": 26547.94, + "probability": 0.4793 + }, + { + "start": 26548.36, + "end": 26548.64, + "probability": 0.0407 + }, + { + "start": 26548.64, + "end": 26548.66, + "probability": 0.098 + }, + { + "start": 26548.66, + "end": 26548.66, + "probability": 0.1753 + }, + { + "start": 26548.66, + "end": 26548.9, + "probability": 0.243 + }, + { + "start": 26549.02, + "end": 26549.1, + "probability": 0.3139 + }, + { + "start": 26549.1, + "end": 26549.1, + "probability": 0.3904 + }, + { + "start": 26549.1, + "end": 26550.26, + "probability": 0.5995 + }, + { + "start": 26551.06, + "end": 26551.82, + "probability": 0.6633 + }, + { + "start": 26552.12, + "end": 26553.13, + "probability": 0.7849 + }, + { + "start": 26554.04, + "end": 26555.58, + "probability": 0.8012 + }, + { + "start": 26556.8, + "end": 26558.22, + "probability": 0.8312 + }, + { + "start": 26558.62, + "end": 26560.9, + "probability": 0.3767 + }, + { + "start": 26560.96, + "end": 26562.86, + "probability": 0.5726 + }, + { + "start": 26562.96, + "end": 26565.7, + "probability": 0.8979 + }, + { + "start": 26566.92, + "end": 26568.21, + "probability": 0.7754 + }, + { + "start": 26568.7, + "end": 26569.26, + "probability": 0.2546 + }, + { + "start": 26569.4, + "end": 26570.53, + "probability": 0.5687 + }, + { + "start": 26570.82, + "end": 26571.06, + "probability": 0.7585 + }, + { + "start": 26573.56, + "end": 26574.42, + "probability": 0.4289 + }, + { + "start": 26574.52, + "end": 26575.1, + "probability": 0.9089 + }, + { + "start": 26575.24, + "end": 26577.36, + "probability": 0.8452 + }, + { + "start": 26578.58, + "end": 26578.96, + "probability": 0.0248 + }, + { + "start": 26578.96, + "end": 26579.66, + "probability": 0.6079 + }, + { + "start": 26580.42, + "end": 26583.84, + "probability": 0.8853 + }, + { + "start": 26585.18, + "end": 26586.36, + "probability": 0.9651 + }, + { + "start": 26588.02, + "end": 26588.18, + "probability": 0.1791 + }, + { + "start": 26589.7, + "end": 26592.86, + "probability": 0.8439 + }, + { + "start": 26593.92, + "end": 26600.44, + "probability": 0.96 + }, + { + "start": 26601.36, + "end": 26604.12, + "probability": 0.8426 + }, + { + "start": 26605.7, + "end": 26608.26, + "probability": 0.7991 + }, + { + "start": 26609.94, + "end": 26613.26, + "probability": 0.9219 + }, + { + "start": 26613.72, + "end": 26616.0, + "probability": 0.9911 + }, + { + "start": 26617.18, + "end": 26619.38, + "probability": 0.9413 + }, + { + "start": 26620.56, + "end": 26620.98, + "probability": 0.4447 + }, + { + "start": 26622.68, + "end": 26626.34, + "probability": 0.9508 + }, + { + "start": 26628.94, + "end": 26629.22, + "probability": 0.7336 + }, + { + "start": 26629.98, + "end": 26633.02, + "probability": 0.7614 + }, + { + "start": 26634.42, + "end": 26639.56, + "probability": 0.8932 + }, + { + "start": 26643.74, + "end": 26646.46, + "probability": 0.9357 + }, + { + "start": 26647.4, + "end": 26651.24, + "probability": 0.9526 + }, + { + "start": 26654.42, + "end": 26656.22, + "probability": 0.749 + }, + { + "start": 26658.12, + "end": 26658.52, + "probability": 0.5191 + }, + { + "start": 26659.28, + "end": 26661.5, + "probability": 0.8084 + }, + { + "start": 26664.64, + "end": 26665.84, + "probability": 0.7321 + }, + { + "start": 26667.28, + "end": 26668.86, + "probability": 0.9648 + }, + { + "start": 26670.1, + "end": 26672.2, + "probability": 0.9468 + }, + { + "start": 26672.94, + "end": 26673.92, + "probability": 0.9222 + }, + { + "start": 26677.68, + "end": 26678.78, + "probability": 0.7998 + }, + { + "start": 26679.52, + "end": 26681.54, + "probability": 0.9863 + }, + { + "start": 26683.56, + "end": 26689.88, + "probability": 0.8332 + }, + { + "start": 26691.83, + "end": 26694.24, + "probability": 0.9938 + }, + { + "start": 26695.96, + "end": 26696.38, + "probability": 0.9014 + }, + { + "start": 26697.24, + "end": 26697.94, + "probability": 0.9537 + }, + { + "start": 26698.48, + "end": 26704.26, + "probability": 0.962 + }, + { + "start": 26704.66, + "end": 26709.74, + "probability": 0.9976 + }, + { + "start": 26710.64, + "end": 26711.94, + "probability": 0.6429 + }, + { + "start": 26713.58, + "end": 26717.36, + "probability": 0.8725 + }, + { + "start": 26718.82, + "end": 26719.7, + "probability": 0.359 + }, + { + "start": 26722.76, + "end": 26723.74, + "probability": 0.9941 + }, + { + "start": 26725.22, + "end": 26728.88, + "probability": 0.9467 + }, + { + "start": 26729.5, + "end": 26730.26, + "probability": 0.7027 + }, + { + "start": 26731.88, + "end": 26735.02, + "probability": 0.9749 + }, + { + "start": 26735.72, + "end": 26738.8, + "probability": 0.9404 + }, + { + "start": 26741.12, + "end": 26741.82, + "probability": 0.2725 + }, + { + "start": 26742.2, + "end": 26746.74, + "probability": 0.7842 + }, + { + "start": 26749.02, + "end": 26752.6, + "probability": 0.9173 + }, + { + "start": 26753.56, + "end": 26754.28, + "probability": 0.9795 + }, + { + "start": 26754.82, + "end": 26759.12, + "probability": 0.9808 + }, + { + "start": 26759.72, + "end": 26760.36, + "probability": 0.7967 + }, + { + "start": 26762.74, + "end": 26766.04, + "probability": 0.9566 + }, + { + "start": 26768.86, + "end": 26773.06, + "probability": 0.871 + }, + { + "start": 26774.92, + "end": 26776.18, + "probability": 0.7203 + }, + { + "start": 26777.26, + "end": 26779.02, + "probability": 0.9819 + }, + { + "start": 26780.5, + "end": 26781.3, + "probability": 0.9433 + }, + { + "start": 26781.96, + "end": 26782.58, + "probability": 0.9655 + }, + { + "start": 26784.44, + "end": 26787.44, + "probability": 0.9702 + }, + { + "start": 26788.9, + "end": 26790.46, + "probability": 0.9141 + }, + { + "start": 26791.32, + "end": 26795.22, + "probability": 0.84 + }, + { + "start": 26796.66, + "end": 26798.4, + "probability": 0.7436 + }, + { + "start": 26799.74, + "end": 26801.22, + "probability": 0.6551 + }, + { + "start": 26802.14, + "end": 26802.98, + "probability": 0.998 + }, + { + "start": 26803.54, + "end": 26806.38, + "probability": 0.7764 + }, + { + "start": 26807.6, + "end": 26809.62, + "probability": 0.9236 + }, + { + "start": 26810.14, + "end": 26810.77, + "probability": 0.999 + }, + { + "start": 26811.56, + "end": 26812.94, + "probability": 0.9814 + }, + { + "start": 26813.8, + "end": 26817.02, + "probability": 0.7448 + }, + { + "start": 26817.56, + "end": 26819.18, + "probability": 0.7783 + }, + { + "start": 26820.44, + "end": 26821.46, + "probability": 0.9736 + }, + { + "start": 26823.58, + "end": 26824.54, + "probability": 0.7238 + }, + { + "start": 26825.56, + "end": 26829.72, + "probability": 0.937 + }, + { + "start": 26830.46, + "end": 26831.94, + "probability": 0.9532 + }, + { + "start": 26832.5, + "end": 26833.54, + "probability": 0.5494 + }, + { + "start": 26836.06, + "end": 26838.86, + "probability": 0.878 + }, + { + "start": 26840.08, + "end": 26840.74, + "probability": 0.9587 + }, + { + "start": 26841.88, + "end": 26842.66, + "probability": 0.9442 + }, + { + "start": 26843.6, + "end": 26850.1, + "probability": 0.9872 + }, + { + "start": 26850.34, + "end": 26852.62, + "probability": 0.986 + }, + { + "start": 26853.06, + "end": 26854.44, + "probability": 0.994 + }, + { + "start": 26854.98, + "end": 26858.7, + "probability": 0.9228 + }, + { + "start": 26859.88, + "end": 26861.7, + "probability": 0.92 + }, + { + "start": 26863.56, + "end": 26865.58, + "probability": 0.6463 + }, + { + "start": 26866.2, + "end": 26870.64, + "probability": 0.9315 + }, + { + "start": 26871.0, + "end": 26872.28, + "probability": 0.9541 + }, + { + "start": 26873.6, + "end": 26879.86, + "probability": 0.9679 + }, + { + "start": 26881.16, + "end": 26884.2, + "probability": 0.8415 + }, + { + "start": 26885.04, + "end": 26885.6, + "probability": 0.3874 + }, + { + "start": 26886.56, + "end": 26888.92, + "probability": 0.9683 + }, + { + "start": 26890.34, + "end": 26893.72, + "probability": 0.97 + }, + { + "start": 26893.78, + "end": 26896.64, + "probability": 0.9855 + }, + { + "start": 26896.74, + "end": 26897.5, + "probability": 0.9922 + }, + { + "start": 26897.6, + "end": 26898.36, + "probability": 0.8257 + }, + { + "start": 26899.36, + "end": 26902.18, + "probability": 0.9842 + }, + { + "start": 26903.0, + "end": 26906.58, + "probability": 0.6107 + }, + { + "start": 26907.14, + "end": 26910.56, + "probability": 0.9513 + }, + { + "start": 26911.54, + "end": 26913.64, + "probability": 0.9911 + }, + { + "start": 26914.54, + "end": 26918.48, + "probability": 0.9901 + }, + { + "start": 26919.74, + "end": 26921.5, + "probability": 0.9268 + }, + { + "start": 26922.2, + "end": 26924.86, + "probability": 0.9504 + }, + { + "start": 26925.4, + "end": 26927.6, + "probability": 0.9634 + }, + { + "start": 26928.4, + "end": 26930.84, + "probability": 0.9142 + }, + { + "start": 26931.7, + "end": 26936.98, + "probability": 0.9434 + }, + { + "start": 26938.0, + "end": 26940.2, + "probability": 0.9956 + }, + { + "start": 26940.26, + "end": 26940.72, + "probability": 0.6724 + }, + { + "start": 26941.46, + "end": 26945.66, + "probability": 0.9984 + }, + { + "start": 26947.04, + "end": 26947.78, + "probability": 0.6282 + }, + { + "start": 26947.78, + "end": 26948.78, + "probability": 0.7163 + }, + { + "start": 26949.62, + "end": 26951.6, + "probability": 0.9585 + }, + { + "start": 26952.7, + "end": 26956.7, + "probability": 0.9694 + }, + { + "start": 26957.86, + "end": 26963.1, + "probability": 0.9537 + }, + { + "start": 26963.64, + "end": 26965.06, + "probability": 0.7874 + }, + { + "start": 26965.58, + "end": 26966.82, + "probability": 0.9568 + }, + { + "start": 26967.4, + "end": 26970.76, + "probability": 0.9621 + }, + { + "start": 26973.74, + "end": 26976.44, + "probability": 0.4798 + }, + { + "start": 26977.3, + "end": 26985.26, + "probability": 0.9817 + }, + { + "start": 26985.9, + "end": 26988.8, + "probability": 0.9984 + }, + { + "start": 26989.5, + "end": 26990.72, + "probability": 0.8052 + }, + { + "start": 26991.84, + "end": 26995.34, + "probability": 0.8418 + }, + { + "start": 26996.92, + "end": 26998.5, + "probability": 0.8931 + }, + { + "start": 26998.64, + "end": 27002.56, + "probability": 0.9467 + }, + { + "start": 27003.4, + "end": 27006.98, + "probability": 0.9829 + }, + { + "start": 27007.76, + "end": 27008.28, + "probability": 0.8591 + }, + { + "start": 27009.02, + "end": 27014.3, + "probability": 0.9886 + }, + { + "start": 27014.88, + "end": 27015.6, + "probability": 0.7531 + }, + { + "start": 27016.74, + "end": 27018.08, + "probability": 0.9585 + }, + { + "start": 27018.96, + "end": 27025.66, + "probability": 0.994 + }, + { + "start": 27026.96, + "end": 27030.56, + "probability": 0.9022 + }, + { + "start": 27031.26, + "end": 27031.94, + "probability": 0.4311 + }, + { + "start": 27032.68, + "end": 27033.38, + "probability": 0.5595 + }, + { + "start": 27034.4, + "end": 27037.94, + "probability": 0.9553 + }, + { + "start": 27038.1, + "end": 27041.72, + "probability": 0.7896 + }, + { + "start": 27042.54, + "end": 27045.14, + "probability": 0.7322 + }, + { + "start": 27046.04, + "end": 27048.06, + "probability": 0.9705 + }, + { + "start": 27048.56, + "end": 27050.48, + "probability": 0.964 + }, + { + "start": 27051.3, + "end": 27055.72, + "probability": 0.999 + }, + { + "start": 27055.82, + "end": 27059.16, + "probability": 0.9775 + }, + { + "start": 27059.9, + "end": 27061.7, + "probability": 0.6188 + }, + { + "start": 27062.46, + "end": 27069.0, + "probability": 0.7217 + }, + { + "start": 27070.0, + "end": 27073.18, + "probability": 0.9786 + }, + { + "start": 27073.74, + "end": 27077.26, + "probability": 0.9844 + }, + { + "start": 27077.84, + "end": 27078.44, + "probability": 0.6525 + }, + { + "start": 27079.3, + "end": 27079.68, + "probability": 0.9041 + }, + { + "start": 27081.5, + "end": 27085.08, + "probability": 0.9945 + }, + { + "start": 27085.92, + "end": 27090.54, + "probability": 0.984 + }, + { + "start": 27091.7, + "end": 27091.88, + "probability": 0.4374 + }, + { + "start": 27091.96, + "end": 27098.62, + "probability": 0.9887 + }, + { + "start": 27099.38, + "end": 27104.9, + "probability": 0.9834 + }, + { + "start": 27105.52, + "end": 27106.34, + "probability": 0.7491 + }, + { + "start": 27106.96, + "end": 27109.66, + "probability": 0.9679 + }, + { + "start": 27110.62, + "end": 27111.26, + "probability": 0.641 + }, + { + "start": 27112.18, + "end": 27113.68, + "probability": 0.9355 + }, + { + "start": 27115.52, + "end": 27121.42, + "probability": 0.949 + }, + { + "start": 27122.62, + "end": 27123.84, + "probability": 0.6911 + }, + { + "start": 27124.78, + "end": 27127.2, + "probability": 0.9355 + }, + { + "start": 27128.4, + "end": 27129.2, + "probability": 0.9202 + }, + { + "start": 27130.4, + "end": 27132.76, + "probability": 0.9884 + }, + { + "start": 27133.82, + "end": 27135.59, + "probability": 0.9976 + }, + { + "start": 27136.8, + "end": 27138.2, + "probability": 0.9358 + }, + { + "start": 27140.68, + "end": 27141.24, + "probability": 0.9714 + }, + { + "start": 27142.02, + "end": 27145.54, + "probability": 0.9787 + }, + { + "start": 27146.52, + "end": 27150.82, + "probability": 0.9893 + }, + { + "start": 27151.78, + "end": 27155.14, + "probability": 0.7184 + }, + { + "start": 27156.28, + "end": 27158.1, + "probability": 0.6304 + }, + { + "start": 27158.58, + "end": 27161.94, + "probability": 0.9946 + }, + { + "start": 27162.6, + "end": 27165.06, + "probability": 0.9709 + }, + { + "start": 27165.6, + "end": 27172.42, + "probability": 0.9823 + }, + { + "start": 27173.72, + "end": 27174.02, + "probability": 0.754 + }, + { + "start": 27174.16, + "end": 27179.8, + "probability": 0.9106 + }, + { + "start": 27180.12, + "end": 27181.6, + "probability": 0.575 + }, + { + "start": 27181.68, + "end": 27182.64, + "probability": 0.299 + }, + { + "start": 27182.64, + "end": 27184.6, + "probability": 0.7982 + }, + { + "start": 27185.4, + "end": 27188.94, + "probability": 0.991 + }, + { + "start": 27188.94, + "end": 27195.22, + "probability": 0.9033 + }, + { + "start": 27195.64, + "end": 27199.28, + "probability": 0.8903 + }, + { + "start": 27200.06, + "end": 27209.38, + "probability": 0.9932 + }, + { + "start": 27209.56, + "end": 27210.73, + "probability": 0.7411 + }, + { + "start": 27211.28, + "end": 27211.92, + "probability": 0.8304 + }, + { + "start": 27212.02, + "end": 27213.77, + "probability": 0.9966 + }, + { + "start": 27216.02, + "end": 27217.68, + "probability": 0.9681 + }, + { + "start": 27219.03, + "end": 27221.74, + "probability": 0.7408 + }, + { + "start": 27222.28, + "end": 27224.9, + "probability": 0.9962 + }, + { + "start": 27225.0, + "end": 27226.14, + "probability": 0.8908 + }, + { + "start": 27227.06, + "end": 27228.42, + "probability": 0.9954 + }, + { + "start": 27228.68, + "end": 27230.28, + "probability": 0.9676 + }, + { + "start": 27230.5, + "end": 27231.46, + "probability": 0.524 + }, + { + "start": 27232.66, + "end": 27233.86, + "probability": 0.7075 + }, + { + "start": 27235.02, + "end": 27238.89, + "probability": 0.7002 + }, + { + "start": 27239.96, + "end": 27240.06, + "probability": 0.6309 + }, + { + "start": 27241.68, + "end": 27242.7, + "probability": 0.7033 + }, + { + "start": 27242.96, + "end": 27247.94, + "probability": 0.9928 + }, + { + "start": 27248.58, + "end": 27251.64, + "probability": 0.9856 + }, + { + "start": 27252.94, + "end": 27257.04, + "probability": 0.9954 + }, + { + "start": 27257.62, + "end": 27263.6, + "probability": 0.9202 + }, + { + "start": 27263.68, + "end": 27268.2, + "probability": 0.7961 + }, + { + "start": 27269.56, + "end": 27274.54, + "probability": 0.7058 + }, + { + "start": 27275.18, + "end": 27276.64, + "probability": 0.942 + }, + { + "start": 27276.92, + "end": 27284.6, + "probability": 0.9946 + }, + { + "start": 27285.46, + "end": 27285.84, + "probability": 0.2514 + }, + { + "start": 27285.84, + "end": 27291.8, + "probability": 0.9811 + }, + { + "start": 27292.41, + "end": 27295.54, + "probability": 0.9927 + }, + { + "start": 27296.42, + "end": 27299.82, + "probability": 0.986 + }, + { + "start": 27300.92, + "end": 27301.69, + "probability": 0.8276 + }, + { + "start": 27302.16, + "end": 27303.18, + "probability": 0.891 + }, + { + "start": 27303.26, + "end": 27305.64, + "probability": 0.9713 + }, + { + "start": 27306.34, + "end": 27309.38, + "probability": 0.8774 + }, + { + "start": 27310.16, + "end": 27315.34, + "probability": 0.8843 + }, + { + "start": 27315.7, + "end": 27317.76, + "probability": 0.9348 + }, + { + "start": 27318.04, + "end": 27319.89, + "probability": 0.9532 + }, + { + "start": 27321.06, + "end": 27325.02, + "probability": 0.9965 + }, + { + "start": 27325.64, + "end": 27329.32, + "probability": 0.9161 + }, + { + "start": 27330.06, + "end": 27334.48, + "probability": 0.9823 + }, + { + "start": 27334.56, + "end": 27337.42, + "probability": 0.9681 + }, + { + "start": 27337.96, + "end": 27346.54, + "probability": 0.9147 + }, + { + "start": 27347.6, + "end": 27348.64, + "probability": 0.8325 + }, + { + "start": 27349.54, + "end": 27355.38, + "probability": 0.9754 + }, + { + "start": 27356.56, + "end": 27358.46, + "probability": 0.9914 + }, + { + "start": 27358.58, + "end": 27361.12, + "probability": 0.9868 + }, + { + "start": 27361.28, + "end": 27363.05, + "probability": 0.8215 + }, + { + "start": 27363.34, + "end": 27365.52, + "probability": 0.9736 + }, + { + "start": 27366.02, + "end": 27367.42, + "probability": 0.966 + }, + { + "start": 27367.48, + "end": 27369.18, + "probability": 0.9913 + }, + { + "start": 27369.24, + "end": 27373.9, + "probability": 0.9631 + }, + { + "start": 27374.58, + "end": 27377.74, + "probability": 0.9207 + }, + { + "start": 27378.28, + "end": 27380.56, + "probability": 0.9666 + }, + { + "start": 27381.64, + "end": 27386.84, + "probability": 0.984 + }, + { + "start": 27388.9, + "end": 27393.84, + "probability": 0.681 + }, + { + "start": 27394.36, + "end": 27394.98, + "probability": 0.391 + }, + { + "start": 27395.06, + "end": 27399.4, + "probability": 0.9447 + }, + { + "start": 27400.0, + "end": 27400.98, + "probability": 0.6604 + }, + { + "start": 27401.46, + "end": 27403.56, + "probability": 0.7802 + }, + { + "start": 27404.76, + "end": 27408.22, + "probability": 0.9312 + }, + { + "start": 27409.55, + "end": 27411.32, + "probability": 0.6658 + }, + { + "start": 27412.06, + "end": 27412.98, + "probability": 0.9972 + }, + { + "start": 27413.66, + "end": 27414.7, + "probability": 0.922 + }, + { + "start": 27415.32, + "end": 27419.06, + "probability": 0.5985 + }, + { + "start": 27419.98, + "end": 27423.32, + "probability": 0.7408 + }, + { + "start": 27424.88, + "end": 27426.52, + "probability": 0.2345 + }, + { + "start": 27426.52, + "end": 27428.88, + "probability": 0.8037 + }, + { + "start": 27429.68, + "end": 27435.8, + "probability": 0.7972 + }, + { + "start": 27436.7, + "end": 27439.14, + "probability": 0.7567 + }, + { + "start": 27440.02, + "end": 27442.76, + "probability": 0.9877 + }, + { + "start": 27442.82, + "end": 27444.52, + "probability": 0.8787 + }, + { + "start": 27445.58, + "end": 27448.62, + "probability": 0.9979 + }, + { + "start": 27448.62, + "end": 27450.78, + "probability": 0.9612 + }, + { + "start": 27451.26, + "end": 27453.42, + "probability": 0.9978 + }, + { + "start": 27454.46, + "end": 27455.86, + "probability": 0.9746 + }, + { + "start": 27456.58, + "end": 27459.22, + "probability": 0.9419 + }, + { + "start": 27460.36, + "end": 27461.24, + "probability": 0.7071 + }, + { + "start": 27461.34, + "end": 27461.64, + "probability": 0.7797 + }, + { + "start": 27461.92, + "end": 27462.42, + "probability": 0.855 + }, + { + "start": 27463.34, + "end": 27464.84, + "probability": 0.5551 + }, + { + "start": 27492.06, + "end": 27494.02, + "probability": 0.7814 + }, + { + "start": 27495.9, + "end": 27496.68, + "probability": 0.7574 + }, + { + "start": 27497.26, + "end": 27499.22, + "probability": 0.8468 + }, + { + "start": 27500.3, + "end": 27501.38, + "probability": 0.8374 + }, + { + "start": 27503.28, + "end": 27506.34, + "probability": 0.8391 + }, + { + "start": 27506.86, + "end": 27508.34, + "probability": 0.9521 + }, + { + "start": 27509.36, + "end": 27513.56, + "probability": 0.9072 + }, + { + "start": 27515.48, + "end": 27520.54, + "probability": 0.9952 + }, + { + "start": 27521.89, + "end": 27528.02, + "probability": 0.9976 + }, + { + "start": 27529.08, + "end": 27531.76, + "probability": 0.9775 + }, + { + "start": 27532.16, + "end": 27534.5, + "probability": 0.9875 + }, + { + "start": 27535.38, + "end": 27537.6, + "probability": 0.8421 + }, + { + "start": 27538.28, + "end": 27542.03, + "probability": 0.9614 + }, + { + "start": 27542.58, + "end": 27543.46, + "probability": 0.7645 + }, + { + "start": 27543.64, + "end": 27546.0, + "probability": 0.9891 + }, + { + "start": 27546.06, + "end": 27550.14, + "probability": 0.9583 + }, + { + "start": 27551.86, + "end": 27555.06, + "probability": 0.9512 + }, + { + "start": 27555.74, + "end": 27563.6, + "probability": 0.9927 + }, + { + "start": 27563.66, + "end": 27566.4, + "probability": 0.9954 + }, + { + "start": 27567.14, + "end": 27571.62, + "probability": 0.9988 + }, + { + "start": 27571.62, + "end": 27577.16, + "probability": 0.999 + }, + { + "start": 27578.38, + "end": 27582.22, + "probability": 0.9089 + }, + { + "start": 27582.74, + "end": 27583.9, + "probability": 0.9805 + }, + { + "start": 27585.52, + "end": 27591.5, + "probability": 0.9961 + }, + { + "start": 27592.56, + "end": 27595.92, + "probability": 0.9915 + }, + { + "start": 27596.2, + "end": 27599.64, + "probability": 0.8408 + }, + { + "start": 27600.42, + "end": 27606.26, + "probability": 0.9976 + }, + { + "start": 27607.72, + "end": 27612.26, + "probability": 0.991 + }, + { + "start": 27613.04, + "end": 27617.91, + "probability": 0.8843 + }, + { + "start": 27618.02, + "end": 27621.94, + "probability": 0.9979 + }, + { + "start": 27622.46, + "end": 27623.46, + "probability": 0.9696 + }, + { + "start": 27624.64, + "end": 27632.16, + "probability": 0.9962 + }, + { + "start": 27632.66, + "end": 27633.5, + "probability": 0.7615 + }, + { + "start": 27633.74, + "end": 27634.46, + "probability": 0.9779 + }, + { + "start": 27635.42, + "end": 27646.28, + "probability": 0.9694 + }, + { + "start": 27647.5, + "end": 27651.82, + "probability": 0.8263 + }, + { + "start": 27652.88, + "end": 27657.68, + "probability": 0.9966 + }, + { + "start": 27658.6, + "end": 27664.76, + "probability": 0.9948 + }, + { + "start": 27665.72, + "end": 27668.2, + "probability": 0.9795 + }, + { + "start": 27669.24, + "end": 27672.74, + "probability": 0.9853 + }, + { + "start": 27673.58, + "end": 27678.0, + "probability": 0.8939 + }, + { + "start": 27679.08, + "end": 27684.9, + "probability": 0.9932 + }, + { + "start": 27685.92, + "end": 27688.78, + "probability": 0.8242 + }, + { + "start": 27688.78, + "end": 27694.28, + "probability": 0.9964 + }, + { + "start": 27695.14, + "end": 27696.74, + "probability": 0.7485 + }, + { + "start": 27697.4, + "end": 27702.46, + "probability": 0.7458 + }, + { + "start": 27702.98, + "end": 27707.06, + "probability": 0.9761 + }, + { + "start": 27707.98, + "end": 27710.06, + "probability": 0.8435 + }, + { + "start": 27711.82, + "end": 27716.12, + "probability": 0.9674 + }, + { + "start": 27717.08, + "end": 27718.82, + "probability": 0.998 + }, + { + "start": 27719.72, + "end": 27725.38, + "probability": 0.9973 + }, + { + "start": 27725.86, + "end": 27728.76, + "probability": 0.994 + }, + { + "start": 27729.2, + "end": 27730.66, + "probability": 0.7372 + }, + { + "start": 27730.8, + "end": 27731.75, + "probability": 0.8688 + }, + { + "start": 27732.7, + "end": 27737.94, + "probability": 0.8837 + }, + { + "start": 27739.2, + "end": 27742.3, + "probability": 0.9692 + }, + { + "start": 27743.22, + "end": 27745.42, + "probability": 0.4418 + }, + { + "start": 27746.14, + "end": 27748.22, + "probability": 0.6279 + }, + { + "start": 27749.26, + "end": 27751.58, + "probability": 0.9616 + }, + { + "start": 27753.16, + "end": 27754.94, + "probability": 0.8871 + }, + { + "start": 27755.48, + "end": 27758.12, + "probability": 0.7212 + }, + { + "start": 27758.32, + "end": 27760.2, + "probability": 0.9885 + }, + { + "start": 27760.86, + "end": 27761.64, + "probability": 0.8824 + }, + { + "start": 27762.94, + "end": 27766.68, + "probability": 0.9941 + }, + { + "start": 27767.36, + "end": 27769.52, + "probability": 0.9539 + }, + { + "start": 27770.32, + "end": 27772.94, + "probability": 0.9956 + }, + { + "start": 27774.78, + "end": 27776.88, + "probability": 0.9796 + }, + { + "start": 27777.58, + "end": 27778.64, + "probability": 0.7558 + }, + { + "start": 27779.62, + "end": 27790.46, + "probability": 0.9731 + }, + { + "start": 27791.14, + "end": 27797.8, + "probability": 0.9965 + }, + { + "start": 27798.52, + "end": 27800.46, + "probability": 0.9701 + }, + { + "start": 27802.24, + "end": 27807.14, + "probability": 0.9961 + }, + { + "start": 27807.14, + "end": 27812.34, + "probability": 0.9946 + }, + { + "start": 27813.2, + "end": 27814.92, + "probability": 0.9945 + }, + { + "start": 27815.7, + "end": 27819.84, + "probability": 0.9966 + }, + { + "start": 27820.8, + "end": 27821.36, + "probability": 0.4937 + }, + { + "start": 27821.58, + "end": 27828.72, + "probability": 0.9775 + }, + { + "start": 27829.6, + "end": 27833.62, + "probability": 0.9998 + }, + { + "start": 27834.22, + "end": 27837.02, + "probability": 0.7927 + }, + { + "start": 27837.9, + "end": 27838.4, + "probability": 0.4903 + }, + { + "start": 27838.6, + "end": 27840.44, + "probability": 0.7407 + }, + { + "start": 27840.52, + "end": 27846.32, + "probability": 0.9641 + }, + { + "start": 27847.14, + "end": 27852.34, + "probability": 0.9836 + }, + { + "start": 27852.58, + "end": 27856.1, + "probability": 0.9937 + }, + { + "start": 27857.24, + "end": 27861.08, + "probability": 0.9822 + }, + { + "start": 27862.4, + "end": 27864.04, + "probability": 0.98 + }, + { + "start": 27865.18, + "end": 27870.9, + "probability": 0.8535 + }, + { + "start": 27871.52, + "end": 27872.92, + "probability": 0.939 + }, + { + "start": 27873.18, + "end": 27873.56, + "probability": 0.92 + }, + { + "start": 27874.08, + "end": 27876.24, + "probability": 0.9644 + }, + { + "start": 27877.4, + "end": 27879.88, + "probability": 0.987 + }, + { + "start": 27882.74, + "end": 27888.78, + "probability": 0.9325 + }, + { + "start": 27889.34, + "end": 27895.06, + "probability": 0.9943 + }, + { + "start": 27896.06, + "end": 27900.64, + "probability": 0.7896 + }, + { + "start": 27901.46, + "end": 27908.28, + "probability": 0.872 + }, + { + "start": 27910.08, + "end": 27914.3, + "probability": 0.9844 + }, + { + "start": 27915.32, + "end": 27916.3, + "probability": 0.7675 + }, + { + "start": 27916.44, + "end": 27922.5, + "probability": 0.9435 + }, + { + "start": 27922.68, + "end": 27927.68, + "probability": 0.996 + }, + { + "start": 27928.46, + "end": 27934.48, + "probability": 0.9806 + }, + { + "start": 27934.48, + "end": 27940.12, + "probability": 0.9935 + }, + { + "start": 27940.88, + "end": 27944.88, + "probability": 0.9917 + }, + { + "start": 27946.02, + "end": 27948.18, + "probability": 0.9966 + }, + { + "start": 27948.18, + "end": 27952.18, + "probability": 0.9975 + }, + { + "start": 27952.48, + "end": 27955.88, + "probability": 0.8435 + }, + { + "start": 27956.3, + "end": 27962.2, + "probability": 0.9987 + }, + { + "start": 27963.28, + "end": 27969.74, + "probability": 0.9937 + }, + { + "start": 27970.88, + "end": 27973.36, + "probability": 0.8338 + }, + { + "start": 27974.66, + "end": 27975.31, + "probability": 0.9822 + }, + { + "start": 27975.72, + "end": 27976.3, + "probability": 0.9906 + }, + { + "start": 27976.76, + "end": 27978.2, + "probability": 0.9656 + }, + { + "start": 27978.62, + "end": 27983.7, + "probability": 0.8838 + }, + { + "start": 27984.96, + "end": 27990.3, + "probability": 0.8095 + }, + { + "start": 27991.12, + "end": 27995.58, + "probability": 0.7255 + }, + { + "start": 27996.24, + "end": 28000.94, + "probability": 0.9854 + }, + { + "start": 28002.12, + "end": 28006.82, + "probability": 0.9975 + }, + { + "start": 28007.38, + "end": 28014.06, + "probability": 0.9498 + }, + { + "start": 28014.6, + "end": 28017.06, + "probability": 0.7544 + }, + { + "start": 28017.3, + "end": 28017.44, + "probability": 0.6237 + }, + { + "start": 28018.14, + "end": 28020.5, + "probability": 0.8181 + }, + { + "start": 28021.24, + "end": 28027.94, + "probability": 0.998 + }, + { + "start": 28029.06, + "end": 28030.74, + "probability": 0.9966 + }, + { + "start": 28030.96, + "end": 28034.82, + "probability": 0.8693 + }, + { + "start": 28035.54, + "end": 28041.4, + "probability": 0.9912 + }, + { + "start": 28042.42, + "end": 28045.04, + "probability": 0.9188 + }, + { + "start": 28046.08, + "end": 28047.84, + "probability": 0.8103 + }, + { + "start": 28048.54, + "end": 28049.68, + "probability": 0.8652 + }, + { + "start": 28050.24, + "end": 28050.64, + "probability": 0.7378 + }, + { + "start": 28051.24, + "end": 28057.78, + "probability": 0.9682 + }, + { + "start": 28059.0, + "end": 28060.42, + "probability": 0.9888 + }, + { + "start": 28060.86, + "end": 28068.78, + "probability": 0.9956 + }, + { + "start": 28071.18, + "end": 28073.1, + "probability": 0.8737 + }, + { + "start": 28075.4, + "end": 28079.42, + "probability": 0.8195 + }, + { + "start": 28080.38, + "end": 28084.92, + "probability": 0.9028 + }, + { + "start": 28086.02, + "end": 28090.38, + "probability": 0.9546 + }, + { + "start": 28091.28, + "end": 28098.14, + "probability": 0.9956 + }, + { + "start": 28098.92, + "end": 28102.9, + "probability": 0.8371 + }, + { + "start": 28103.88, + "end": 28106.56, + "probability": 0.884 + }, + { + "start": 28107.28, + "end": 28111.62, + "probability": 0.9209 + }, + { + "start": 28112.38, + "end": 28115.24, + "probability": 0.8632 + }, + { + "start": 28116.04, + "end": 28121.76, + "probability": 0.9849 + }, + { + "start": 28121.94, + "end": 28123.34, + "probability": 0.984 + }, + { + "start": 28124.2, + "end": 28125.84, + "probability": 0.7804 + }, + { + "start": 28126.64, + "end": 28132.62, + "probability": 0.9095 + }, + { + "start": 28134.06, + "end": 28134.06, + "probability": 0.771 + }, + { + "start": 28134.64, + "end": 28140.44, + "probability": 0.9971 + }, + { + "start": 28141.3, + "end": 28148.54, + "probability": 0.9915 + }, + { + "start": 28149.14, + "end": 28150.48, + "probability": 0.7732 + }, + { + "start": 28151.38, + "end": 28153.56, + "probability": 0.5084 + }, + { + "start": 28154.68, + "end": 28160.54, + "probability": 0.9351 + }, + { + "start": 28161.24, + "end": 28162.02, + "probability": 0.9157 + }, + { + "start": 28162.7, + "end": 28164.08, + "probability": 0.9202 + }, + { + "start": 28164.78, + "end": 28168.32, + "probability": 0.8809 + }, + { + "start": 28169.08, + "end": 28170.76, + "probability": 0.6558 + }, + { + "start": 28172.34, + "end": 28180.58, + "probability": 0.9899 + }, + { + "start": 28181.22, + "end": 28182.86, + "probability": 0.9842 + }, + { + "start": 28183.4, + "end": 28186.48, + "probability": 0.9941 + }, + { + "start": 28187.06, + "end": 28188.96, + "probability": 0.8379 + }, + { + "start": 28189.66, + "end": 28195.38, + "probability": 0.84 + }, + { + "start": 28196.06, + "end": 28197.3, + "probability": 0.8209 + }, + { + "start": 28197.96, + "end": 28206.32, + "probability": 0.9627 + }, + { + "start": 28206.32, + "end": 28213.64, + "probability": 0.9969 + }, + { + "start": 28214.4, + "end": 28217.32, + "probability": 0.8689 + }, + { + "start": 28217.84, + "end": 28220.44, + "probability": 0.9722 + }, + { + "start": 28220.76, + "end": 28225.52, + "probability": 0.9908 + }, + { + "start": 28226.02, + "end": 28227.62, + "probability": 0.9723 + }, + { + "start": 28228.3, + "end": 28229.1, + "probability": 0.6066 + }, + { + "start": 28229.28, + "end": 28230.88, + "probability": 0.7212 + }, + { + "start": 28236.74, + "end": 28239.32, + "probability": 0.3044 + }, + { + "start": 28250.21, + "end": 28252.58, + "probability": 0.4286 + }, + { + "start": 28252.72, + "end": 28253.02, + "probability": 0.7539 + }, + { + "start": 28253.58, + "end": 28254.82, + "probability": 0.8016 + }, + { + "start": 28255.6, + "end": 28258.9, + "probability": 0.9929 + }, + { + "start": 28258.96, + "end": 28260.36, + "probability": 0.9679 + }, + { + "start": 28262.0, + "end": 28262.54, + "probability": 0.6236 + }, + { + "start": 28264.14, + "end": 28267.18, + "probability": 0.8387 + }, + { + "start": 28268.1, + "end": 28271.32, + "probability": 0.9864 + }, + { + "start": 28272.16, + "end": 28274.28, + "probability": 0.7722 + }, + { + "start": 28274.34, + "end": 28274.62, + "probability": 0.8688 + }, + { + "start": 28274.82, + "end": 28277.86, + "probability": 0.9907 + }, + { + "start": 28278.96, + "end": 28281.76, + "probability": 0.9949 + }, + { + "start": 28281.76, + "end": 28286.0, + "probability": 0.9925 + }, + { + "start": 28287.52, + "end": 28288.6, + "probability": 0.6776 + }, + { + "start": 28289.08, + "end": 28289.96, + "probability": 0.9673 + }, + { + "start": 28290.06, + "end": 28290.48, + "probability": 0.7861 + }, + { + "start": 28290.54, + "end": 28294.68, + "probability": 0.9348 + }, + { + "start": 28295.82, + "end": 28300.36, + "probability": 0.9825 + }, + { + "start": 28301.22, + "end": 28303.7, + "probability": 0.9034 + }, + { + "start": 28304.62, + "end": 28307.12, + "probability": 0.9985 + }, + { + "start": 28307.88, + "end": 28310.44, + "probability": 0.7795 + }, + { + "start": 28310.44, + "end": 28315.5, + "probability": 0.9949 + }, + { + "start": 28317.12, + "end": 28320.38, + "probability": 0.9966 + }, + { + "start": 28321.06, + "end": 28324.12, + "probability": 0.8774 + }, + { + "start": 28325.06, + "end": 28326.56, + "probability": 0.9546 + }, + { + "start": 28327.24, + "end": 28329.34, + "probability": 0.9892 + }, + { + "start": 28329.5, + "end": 28329.8, + "probability": 0.9377 + }, + { + "start": 28329.96, + "end": 28330.96, + "probability": 0.8441 + }, + { + "start": 28331.1, + "end": 28334.56, + "probability": 0.9958 + }, + { + "start": 28335.38, + "end": 28336.56, + "probability": 0.9264 + }, + { + "start": 28337.28, + "end": 28341.46, + "probability": 0.9713 + }, + { + "start": 28341.96, + "end": 28345.4, + "probability": 0.9235 + }, + { + "start": 28346.24, + "end": 28348.46, + "probability": 0.8276 + }, + { + "start": 28349.18, + "end": 28351.42, + "probability": 0.9657 + }, + { + "start": 28352.34, + "end": 28353.04, + "probability": 0.8176 + }, + { + "start": 28354.12, + "end": 28357.75, + "probability": 0.9915 + }, + { + "start": 28359.62, + "end": 28362.56, + "probability": 0.99 + }, + { + "start": 28363.36, + "end": 28367.9, + "probability": 0.9898 + }, + { + "start": 28368.72, + "end": 28369.16, + "probability": 0.9399 + }, + { + "start": 28369.92, + "end": 28371.02, + "probability": 0.8468 + }, + { + "start": 28371.74, + "end": 28374.92, + "probability": 0.9684 + }, + { + "start": 28375.84, + "end": 28379.26, + "probability": 0.9116 + }, + { + "start": 28380.42, + "end": 28383.1, + "probability": 0.9919 + }, + { + "start": 28384.88, + "end": 28385.28, + "probability": 0.7576 + }, + { + "start": 28385.4, + "end": 28389.84, + "probability": 0.9543 + }, + { + "start": 28390.0, + "end": 28390.78, + "probability": 0.7249 + }, + { + "start": 28390.88, + "end": 28391.58, + "probability": 0.9471 + }, + { + "start": 28393.6, + "end": 28395.36, + "probability": 0.9463 + }, + { + "start": 28397.48, + "end": 28400.36, + "probability": 0.9935 + }, + { + "start": 28400.92, + "end": 28403.47, + "probability": 0.9985 + }, + { + "start": 28403.9, + "end": 28405.55, + "probability": 0.9983 + }, + { + "start": 28406.4, + "end": 28408.14, + "probability": 0.8993 + }, + { + "start": 28408.8, + "end": 28411.82, + "probability": 0.9859 + }, + { + "start": 28412.3, + "end": 28412.7, + "probability": 0.687 + }, + { + "start": 28412.82, + "end": 28417.26, + "probability": 0.991 + }, + { + "start": 28417.26, + "end": 28422.72, + "probability": 0.9985 + }, + { + "start": 28423.86, + "end": 28424.38, + "probability": 0.5635 + }, + { + "start": 28425.66, + "end": 28427.12, + "probability": 0.9557 + }, + { + "start": 28428.16, + "end": 28431.4, + "probability": 0.9899 + }, + { + "start": 28432.12, + "end": 28433.73, + "probability": 0.9971 + }, + { + "start": 28434.26, + "end": 28438.46, + "probability": 0.9985 + }, + { + "start": 28440.12, + "end": 28441.86, + "probability": 0.7817 + }, + { + "start": 28443.1, + "end": 28445.68, + "probability": 0.992 + }, + { + "start": 28445.76, + "end": 28446.74, + "probability": 0.9067 + }, + { + "start": 28446.8, + "end": 28447.28, + "probability": 0.991 + }, + { + "start": 28448.88, + "end": 28452.14, + "probability": 0.9928 + }, + { + "start": 28453.1, + "end": 28455.2, + "probability": 0.9912 + }, + { + "start": 28456.14, + "end": 28458.94, + "probability": 0.7104 + }, + { + "start": 28460.12, + "end": 28463.6, + "probability": 0.9076 + }, + { + "start": 28464.34, + "end": 28465.94, + "probability": 0.9331 + }, + { + "start": 28466.2, + "end": 28466.88, + "probability": 0.9193 + }, + { + "start": 28467.54, + "end": 28468.84, + "probability": 0.9648 + }, + { + "start": 28470.66, + "end": 28474.5, + "probability": 0.9009 + }, + { + "start": 28475.5, + "end": 28477.04, + "probability": 0.9459 + }, + { + "start": 28477.72, + "end": 28479.42, + "probability": 0.9973 + }, + { + "start": 28479.98, + "end": 28482.46, + "probability": 0.9907 + }, + { + "start": 28483.14, + "end": 28485.16, + "probability": 0.9698 + }, + { + "start": 28486.14, + "end": 28488.78, + "probability": 0.9609 + }, + { + "start": 28489.2, + "end": 28489.92, + "probability": 0.9841 + }, + { + "start": 28490.18, + "end": 28491.22, + "probability": 0.8893 + }, + { + "start": 28491.82, + "end": 28494.24, + "probability": 0.9844 + }, + { + "start": 28495.36, + "end": 28497.42, + "probability": 0.9581 + }, + { + "start": 28499.78, + "end": 28504.36, + "probability": 0.9955 + }, + { + "start": 28504.36, + "end": 28508.68, + "probability": 0.9984 + }, + { + "start": 28509.42, + "end": 28512.42, + "probability": 0.8877 + }, + { + "start": 28513.14, + "end": 28516.54, + "probability": 0.9958 + }, + { + "start": 28517.9, + "end": 28519.12, + "probability": 0.9317 + }, + { + "start": 28519.98, + "end": 28521.02, + "probability": 0.9807 + }, + { + "start": 28522.18, + "end": 28525.66, + "probability": 0.9967 + }, + { + "start": 28526.32, + "end": 28526.74, + "probability": 0.7857 + }, + { + "start": 28526.9, + "end": 28528.0, + "probability": 0.9939 + }, + { + "start": 28528.46, + "end": 28531.74, + "probability": 0.9983 + }, + { + "start": 28532.9, + "end": 28535.34, + "probability": 0.9637 + }, + { + "start": 28536.12, + "end": 28538.92, + "probability": 0.9968 + }, + { + "start": 28540.02, + "end": 28542.08, + "probability": 0.9993 + }, + { + "start": 28542.68, + "end": 28545.16, + "probability": 0.9591 + }, + { + "start": 28546.02, + "end": 28550.1, + "probability": 0.9908 + }, + { + "start": 28553.52, + "end": 28554.76, + "probability": 0.9961 + }, + { + "start": 28556.15, + "end": 28558.58, + "probability": 0.877 + }, + { + "start": 28561.98, + "end": 28566.42, + "probability": 0.812 + }, + { + "start": 28567.04, + "end": 28568.02, + "probability": 0.9872 + }, + { + "start": 28569.18, + "end": 28572.4, + "probability": 0.9797 + }, + { + "start": 28572.96, + "end": 28574.76, + "probability": 0.9857 + }, + { + "start": 28575.52, + "end": 28576.36, + "probability": 0.8448 + }, + { + "start": 28578.12, + "end": 28579.54, + "probability": 0.9924 + }, + { + "start": 28580.1, + "end": 28580.88, + "probability": 0.8645 + }, + { + "start": 28582.32, + "end": 28586.68, + "probability": 0.9912 + }, + { + "start": 28587.76, + "end": 28589.65, + "probability": 0.9943 + }, + { + "start": 28590.28, + "end": 28593.46, + "probability": 0.9741 + }, + { + "start": 28594.32, + "end": 28594.74, + "probability": 0.5803 + }, + { + "start": 28595.4, + "end": 28595.74, + "probability": 0.3676 + }, + { + "start": 28596.62, + "end": 28598.94, + "probability": 0.8837 + }, + { + "start": 28600.12, + "end": 28603.16, + "probability": 0.8515 + }, + { + "start": 28603.72, + "end": 28604.3, + "probability": 0.9114 + }, + { + "start": 28605.44, + "end": 28608.88, + "probability": 0.9575 + }, + { + "start": 28609.26, + "end": 28614.14, + "probability": 0.9719 + }, + { + "start": 28616.32, + "end": 28618.14, + "probability": 0.951 + }, + { + "start": 28618.34, + "end": 28621.22, + "probability": 0.9714 + }, + { + "start": 28621.86, + "end": 28625.38, + "probability": 0.9795 + }, + { + "start": 28626.66, + "end": 28628.8, + "probability": 0.9453 + }, + { + "start": 28629.34, + "end": 28630.58, + "probability": 0.9802 + }, + { + "start": 28632.83, + "end": 28634.02, + "probability": 0.1208 + }, + { + "start": 28634.02, + "end": 28634.62, + "probability": 0.1416 + }, + { + "start": 28635.54, + "end": 28636.74, + "probability": 0.7637 + }, + { + "start": 28637.28, + "end": 28639.3, + "probability": 0.9631 + }, + { + "start": 28640.44, + "end": 28643.38, + "probability": 0.9956 + }, + { + "start": 28643.38, + "end": 28646.7, + "probability": 0.9986 + }, + { + "start": 28646.98, + "end": 28647.44, + "probability": 0.8834 + }, + { + "start": 28648.06, + "end": 28651.34, + "probability": 0.9983 + }, + { + "start": 28651.55, + "end": 28656.3, + "probability": 1.0 + }, + { + "start": 28657.78, + "end": 28661.72, + "probability": 0.9921 + }, + { + "start": 28663.6, + "end": 28664.64, + "probability": 0.6815 + }, + { + "start": 28665.24, + "end": 28668.56, + "probability": 0.8616 + }, + { + "start": 28669.86, + "end": 28672.64, + "probability": 0.7504 + }, + { + "start": 28673.18, + "end": 28674.12, + "probability": 0.8497 + }, + { + "start": 28674.56, + "end": 28676.68, + "probability": 0.9756 + }, + { + "start": 28677.06, + "end": 28681.84, + "probability": 0.9951 + }, + { + "start": 28682.94, + "end": 28684.04, + "probability": 0.5856 + }, + { + "start": 28684.42, + "end": 28687.18, + "probability": 0.9944 + }, + { + "start": 28688.18, + "end": 28689.94, + "probability": 0.9651 + }, + { + "start": 28690.6, + "end": 28691.42, + "probability": 0.8157 + }, + { + "start": 28692.8, + "end": 28693.66, + "probability": 0.9985 + }, + { + "start": 28695.14, + "end": 28696.12, + "probability": 0.9109 + }, + { + "start": 28697.06, + "end": 28697.44, + "probability": 0.9287 + }, + { + "start": 28702.68, + "end": 28707.24, + "probability": 0.879 + }, + { + "start": 28707.74, + "end": 28711.86, + "probability": 0.9402 + }, + { + "start": 28711.88, + "end": 28713.78, + "probability": 0.8404 + }, + { + "start": 28715.58, + "end": 28716.8, + "probability": 0.9613 + }, + { + "start": 28717.34, + "end": 28718.74, + "probability": 0.8774 + }, + { + "start": 28719.52, + "end": 28721.26, + "probability": 0.9479 + }, + { + "start": 28722.9, + "end": 28723.36, + "probability": 0.6109 + }, + { + "start": 28723.52, + "end": 28726.88, + "probability": 0.9747 + }, + { + "start": 28727.52, + "end": 28730.48, + "probability": 0.667 + }, + { + "start": 28730.96, + "end": 28731.9, + "probability": 0.9899 + }, + { + "start": 28733.44, + "end": 28736.94, + "probability": 0.9818 + }, + { + "start": 28737.86, + "end": 28738.3, + "probability": 0.7637 + }, + { + "start": 28739.42, + "end": 28740.42, + "probability": 0.9394 + }, + { + "start": 28741.46, + "end": 28743.04, + "probability": 0.9009 + }, + { + "start": 28743.56, + "end": 28745.8, + "probability": 0.8809 + }, + { + "start": 28746.96, + "end": 28750.5, + "probability": 0.9819 + }, + { + "start": 28751.2, + "end": 28756.5, + "probability": 0.9245 + }, + { + "start": 28756.5, + "end": 28759.86, + "probability": 0.965 + }, + { + "start": 28760.54, + "end": 28764.04, + "probability": 0.9207 + }, + { + "start": 28764.72, + "end": 28767.3, + "probability": 0.9938 + }, + { + "start": 28767.78, + "end": 28770.16, + "probability": 0.9456 + }, + { + "start": 28770.88, + "end": 28774.14, + "probability": 0.9041 + }, + { + "start": 28777.39, + "end": 28780.3, + "probability": 0.5548 + }, + { + "start": 28780.42, + "end": 28781.48, + "probability": 0.9206 + }, + { + "start": 28782.58, + "end": 28782.9, + "probability": 0.7476 + }, + { + "start": 28783.94, + "end": 28789.1, + "probability": 0.9911 + }, + { + "start": 28791.06, + "end": 28796.64, + "probability": 0.986 + }, + { + "start": 28798.6, + "end": 28803.04, + "probability": 0.9923 + }, + { + "start": 28804.32, + "end": 28805.78, + "probability": 0.9223 + }, + { + "start": 28806.3, + "end": 28808.22, + "probability": 0.9944 + }, + { + "start": 28810.06, + "end": 28810.7, + "probability": 0.9753 + }, + { + "start": 28810.82, + "end": 28811.18, + "probability": 0.87 + }, + { + "start": 28811.36, + "end": 28813.18, + "probability": 0.9606 + }, + { + "start": 28814.12, + "end": 28818.28, + "probability": 0.9863 + }, + { + "start": 28819.44, + "end": 28821.52, + "probability": 0.994 + }, + { + "start": 28822.42, + "end": 28823.6, + "probability": 0.8706 + }, + { + "start": 28824.2, + "end": 28825.72, + "probability": 0.958 + }, + { + "start": 28826.56, + "end": 28828.38, + "probability": 0.9953 + }, + { + "start": 28828.78, + "end": 28831.26, + "probability": 0.6978 + }, + { + "start": 28831.82, + "end": 28834.36, + "probability": 0.8511 + }, + { + "start": 28834.98, + "end": 28838.88, + "probability": 0.9857 + }, + { + "start": 28839.92, + "end": 28844.34, + "probability": 0.9868 + }, + { + "start": 28845.18, + "end": 28845.98, + "probability": 0.998 + }, + { + "start": 28846.06, + "end": 28847.4, + "probability": 0.9973 + }, + { + "start": 28847.58, + "end": 28849.04, + "probability": 0.9964 + }, + { + "start": 28851.5, + "end": 28854.78, + "probability": 0.9863 + }, + { + "start": 28855.88, + "end": 28860.08, + "probability": 0.9862 + }, + { + "start": 28861.18, + "end": 28864.36, + "probability": 0.72 + }, + { + "start": 28865.92, + "end": 28868.86, + "probability": 0.9956 + }, + { + "start": 28869.22, + "end": 28871.46, + "probability": 0.8913 + }, + { + "start": 28871.94, + "end": 28872.88, + "probability": 0.9784 + }, + { + "start": 28873.2, + "end": 28874.08, + "probability": 0.9885 + }, + { + "start": 28874.34, + "end": 28875.34, + "probability": 0.9888 + }, + { + "start": 28875.72, + "end": 28876.64, + "probability": 0.7844 + }, + { + "start": 28877.14, + "end": 28878.0, + "probability": 0.9843 + }, + { + "start": 28879.36, + "end": 28880.26, + "probability": 0.9219 + }, + { + "start": 28880.6, + "end": 28882.72, + "probability": 0.9874 + }, + { + "start": 28883.24, + "end": 28884.44, + "probability": 0.97 + }, + { + "start": 28885.2, + "end": 28888.48, + "probability": 0.9573 + }, + { + "start": 28889.24, + "end": 28893.86, + "probability": 0.9872 + }, + { + "start": 28894.34, + "end": 28894.84, + "probability": 0.9727 + }, + { + "start": 28895.6, + "end": 28897.14, + "probability": 0.9875 + }, + { + "start": 28897.88, + "end": 28898.62, + "probability": 0.751 + }, + { + "start": 28899.7, + "end": 28903.62, + "probability": 0.9969 + }, + { + "start": 28904.16, + "end": 28906.18, + "probability": 0.9976 + }, + { + "start": 28906.18, + "end": 28909.18, + "probability": 0.9986 + }, + { + "start": 28910.28, + "end": 28913.04, + "probability": 0.9893 + }, + { + "start": 28913.68, + "end": 28915.9, + "probability": 0.9976 + }, + { + "start": 28915.98, + "end": 28917.62, + "probability": 0.9905 + }, + { + "start": 28918.12, + "end": 28919.48, + "probability": 0.9198 + }, + { + "start": 28920.9, + "end": 28921.6, + "probability": 0.8403 + }, + { + "start": 28922.84, + "end": 28925.2, + "probability": 0.988 + }, + { + "start": 28925.88, + "end": 28929.24, + "probability": 0.9968 + }, + { + "start": 28930.42, + "end": 28932.48, + "probability": 0.9904 + }, + { + "start": 28935.44, + "end": 28938.64, + "probability": 0.7265 + }, + { + "start": 28940.24, + "end": 28943.34, + "probability": 0.998 + }, + { + "start": 28943.98, + "end": 28946.22, + "probability": 0.976 + }, + { + "start": 28946.92, + "end": 28948.68, + "probability": 0.9902 + }, + { + "start": 28949.62, + "end": 28951.5, + "probability": 0.9847 + }, + { + "start": 28952.42, + "end": 28954.2, + "probability": 0.999 + }, + { + "start": 28954.82, + "end": 28957.56, + "probability": 0.9881 + }, + { + "start": 28958.3, + "end": 28960.88, + "probability": 0.9993 + }, + { + "start": 28961.56, + "end": 28962.42, + "probability": 0.9731 + }, + { + "start": 28963.36, + "end": 28964.9, + "probability": 0.9896 + }, + { + "start": 28965.46, + "end": 28969.2, + "probability": 0.9746 + }, + { + "start": 28971.32, + "end": 28971.84, + "probability": 0.804 + }, + { + "start": 28972.54, + "end": 28974.7, + "probability": 0.8917 + }, + { + "start": 28975.88, + "end": 28977.54, + "probability": 0.951 + }, + { + "start": 28978.38, + "end": 28983.52, + "probability": 0.9868 + }, + { + "start": 28984.54, + "end": 28987.44, + "probability": 0.9934 + }, + { + "start": 28987.44, + "end": 28989.68, + "probability": 0.9985 + }, + { + "start": 28990.2, + "end": 28993.28, + "probability": 0.9528 + }, + { + "start": 28994.02, + "end": 28995.34, + "probability": 0.9882 + }, + { + "start": 28995.9, + "end": 29001.52, + "probability": 0.9921 + }, + { + "start": 29001.58, + "end": 29004.98, + "probability": 0.8843 + }, + { + "start": 29005.34, + "end": 29009.42, + "probability": 0.9479 + }, + { + "start": 29010.6, + "end": 29010.94, + "probability": 0.5035 + }, + { + "start": 29010.98, + "end": 29012.1, + "probability": 0.9877 + }, + { + "start": 29012.34, + "end": 29013.72, + "probability": 0.8926 + }, + { + "start": 29013.96, + "end": 29017.2, + "probability": 0.9922 + }, + { + "start": 29017.8, + "end": 29021.42, + "probability": 0.9972 + }, + { + "start": 29022.02, + "end": 29025.8, + "probability": 0.9381 + }, + { + "start": 29026.72, + "end": 29027.88, + "probability": 0.8189 + }, + { + "start": 29028.12, + "end": 29031.4, + "probability": 0.9835 + }, + { + "start": 29033.38, + "end": 29036.14, + "probability": 0.979 + }, + { + "start": 29037.36, + "end": 29041.24, + "probability": 0.929 + }, + { + "start": 29041.82, + "end": 29044.68, + "probability": 0.9926 + }, + { + "start": 29045.34, + "end": 29045.74, + "probability": 0.8976 + }, + { + "start": 29047.0, + "end": 29050.34, + "probability": 0.988 + }, + { + "start": 29051.0, + "end": 29052.94, + "probability": 0.9941 + }, + { + "start": 29053.46, + "end": 29057.92, + "probability": 0.9875 + }, + { + "start": 29059.78, + "end": 29063.56, + "probability": 0.855 + }, + { + "start": 29063.56, + "end": 29066.32, + "probability": 0.9963 + }, + { + "start": 29068.92, + "end": 29069.5, + "probability": 0.9489 + }, + { + "start": 29070.08, + "end": 29073.14, + "probability": 0.2799 + }, + { + "start": 29074.72, + "end": 29078.38, + "probability": 0.9889 + }, + { + "start": 29079.32, + "end": 29080.38, + "probability": 0.9967 + }, + { + "start": 29081.78, + "end": 29087.42, + "probability": 0.9871 + }, + { + "start": 29088.22, + "end": 29089.46, + "probability": 0.7985 + }, + { + "start": 29090.6, + "end": 29094.58, + "probability": 0.985 + }, + { + "start": 29094.74, + "end": 29097.93, + "probability": 0.9896 + }, + { + "start": 29098.2, + "end": 29100.42, + "probability": 0.9647 + }, + { + "start": 29101.36, + "end": 29103.5, + "probability": 0.92 + }, + { + "start": 29103.72, + "end": 29104.92, + "probability": 0.9684 + }, + { + "start": 29105.86, + "end": 29107.58, + "probability": 0.9313 + }, + { + "start": 29107.76, + "end": 29108.18, + "probability": 0.965 + }, + { + "start": 29109.12, + "end": 29113.82, + "probability": 0.9972 + }, + { + "start": 29114.3, + "end": 29115.06, + "probability": 0.9843 + }, + { + "start": 29115.72, + "end": 29120.0, + "probability": 0.9842 + }, + { + "start": 29120.1, + "end": 29120.5, + "probability": 0.7499 + }, + { + "start": 29121.2, + "end": 29125.06, + "probability": 0.9973 + }, + { + "start": 29125.76, + "end": 29128.96, + "probability": 0.9436 + }, + { + "start": 29129.64, + "end": 29130.5, + "probability": 0.9076 + }, + { + "start": 29131.7, + "end": 29137.36, + "probability": 0.9979 + }, + { + "start": 29137.48, + "end": 29138.42, + "probability": 0.9143 + }, + { + "start": 29138.94, + "end": 29140.84, + "probability": 0.9619 + }, + { + "start": 29141.16, + "end": 29142.66, + "probability": 0.9575 + }, + { + "start": 29143.18, + "end": 29147.42, + "probability": 0.9859 + }, + { + "start": 29148.16, + "end": 29153.3, + "probability": 0.9986 + }, + { + "start": 29154.22, + "end": 29156.56, + "probability": 0.77 + }, + { + "start": 29157.96, + "end": 29164.5, + "probability": 0.9894 + }, + { + "start": 29166.1, + "end": 29169.74, + "probability": 0.9888 + }, + { + "start": 29170.68, + "end": 29174.84, + "probability": 0.9978 + }, + { + "start": 29174.84, + "end": 29178.04, + "probability": 0.9982 + }, + { + "start": 29180.06, + "end": 29183.36, + "probability": 0.9976 + }, + { + "start": 29184.92, + "end": 29185.96, + "probability": 0.98 + }, + { + "start": 29187.28, + "end": 29189.54, + "probability": 0.9706 + }, + { + "start": 29190.12, + "end": 29192.76, + "probability": 0.9792 + }, + { + "start": 29193.72, + "end": 29195.86, + "probability": 0.933 + }, + { + "start": 29196.32, + "end": 29197.18, + "probability": 0.9958 + }, + { + "start": 29197.38, + "end": 29199.52, + "probability": 0.9913 + }, + { + "start": 29200.34, + "end": 29206.02, + "probability": 0.9971 + }, + { + "start": 29206.46, + "end": 29208.24, + "probability": 0.9567 + }, + { + "start": 29209.38, + "end": 29213.76, + "probability": 0.9492 + }, + { + "start": 29214.7, + "end": 29218.24, + "probability": 0.9967 + }, + { + "start": 29219.56, + "end": 29222.76, + "probability": 0.8901 + }, + { + "start": 29227.68, + "end": 29228.46, + "probability": 0.9122 + }, + { + "start": 29230.12, + "end": 29230.5, + "probability": 0.7909 + }, + { + "start": 29234.54, + "end": 29235.62, + "probability": 0.8311 + }, + { + "start": 29236.9, + "end": 29239.0, + "probability": 0.9972 + }, + { + "start": 29240.6, + "end": 29242.12, + "probability": 0.9796 + }, + { + "start": 29243.76, + "end": 29248.02, + "probability": 0.9973 + }, + { + "start": 29248.02, + "end": 29252.58, + "probability": 0.9904 + }, + { + "start": 29254.26, + "end": 29256.04, + "probability": 0.9513 + }, + { + "start": 29258.1, + "end": 29259.44, + "probability": 0.8822 + }, + { + "start": 29260.54, + "end": 29261.76, + "probability": 0.8501 + }, + { + "start": 29263.56, + "end": 29268.5, + "probability": 0.938 + }, + { + "start": 29269.52, + "end": 29272.2, + "probability": 0.9955 + }, + { + "start": 29273.84, + "end": 29276.56, + "probability": 0.9889 + }, + { + "start": 29277.54, + "end": 29277.8, + "probability": 0.8267 + }, + { + "start": 29278.72, + "end": 29279.54, + "probability": 0.7585 + }, + { + "start": 29281.08, + "end": 29282.64, + "probability": 0.9205 + }, + { + "start": 29296.16, + "end": 29297.86, + "probability": 0.8238 + }, + { + "start": 29300.66, + "end": 29302.0, + "probability": 0.6761 + }, + { + "start": 29302.48, + "end": 29304.44, + "probability": 0.8791 + }, + { + "start": 29305.26, + "end": 29308.06, + "probability": 0.9283 + }, + { + "start": 29309.62, + "end": 29310.62, + "probability": 0.9048 + }, + { + "start": 29311.96, + "end": 29313.36, + "probability": 0.7676 + }, + { + "start": 29314.9, + "end": 29316.09, + "probability": 0.7091 + }, + { + "start": 29317.94, + "end": 29318.36, + "probability": 0.7976 + }, + { + "start": 29319.62, + "end": 29322.32, + "probability": 0.9947 + }, + { + "start": 29324.0, + "end": 29329.72, + "probability": 0.9958 + }, + { + "start": 29331.16, + "end": 29336.44, + "probability": 0.9979 + }, + { + "start": 29336.44, + "end": 29341.18, + "probability": 0.9987 + }, + { + "start": 29341.7, + "end": 29343.12, + "probability": 0.7332 + }, + { + "start": 29343.96, + "end": 29345.05, + "probability": 0.9507 + }, + { + "start": 29345.68, + "end": 29351.28, + "probability": 0.9973 + }, + { + "start": 29352.0, + "end": 29356.58, + "probability": 0.9814 + }, + { + "start": 29357.69, + "end": 29358.8, + "probability": 0.9497 + }, + { + "start": 29360.76, + "end": 29361.32, + "probability": 0.9532 + }, + { + "start": 29362.92, + "end": 29363.3, + "probability": 0.6898 + }, + { + "start": 29364.52, + "end": 29367.72, + "probability": 0.9965 + }, + { + "start": 29368.72, + "end": 29375.28, + "probability": 0.9937 + }, + { + "start": 29375.28, + "end": 29381.32, + "probability": 0.9946 + }, + { + "start": 29382.62, + "end": 29383.2, + "probability": 0.6196 + }, + { + "start": 29383.86, + "end": 29388.24, + "probability": 0.9627 + }, + { + "start": 29388.8, + "end": 29389.78, + "probability": 0.9985 + }, + { + "start": 29390.4, + "end": 29395.24, + "probability": 0.9996 + }, + { + "start": 29395.88, + "end": 29399.96, + "probability": 0.8664 + }, + { + "start": 29400.6, + "end": 29404.58, + "probability": 0.9331 + }, + { + "start": 29404.58, + "end": 29408.22, + "probability": 0.995 + }, + { + "start": 29408.74, + "end": 29409.72, + "probability": 0.5515 + }, + { + "start": 29410.3, + "end": 29413.44, + "probability": 0.9355 + }, + { + "start": 29414.16, + "end": 29415.16, + "probability": 0.8534 + }, + { + "start": 29415.96, + "end": 29418.96, + "probability": 0.9799 + }, + { + "start": 29420.38, + "end": 29421.91, + "probability": 0.8406 + }, + { + "start": 29422.46, + "end": 29427.78, + "probability": 0.9983 + }, + { + "start": 29428.32, + "end": 29429.3, + "probability": 0.8441 + }, + { + "start": 29431.28, + "end": 29433.46, + "probability": 0.7857 + }, + { + "start": 29433.98, + "end": 29435.74, + "probability": 0.9525 + }, + { + "start": 29436.28, + "end": 29436.34, + "probability": 0.4484 + }, + { + "start": 29436.68, + "end": 29438.62, + "probability": 0.9141 + }, + { + "start": 29438.74, + "end": 29440.66, + "probability": 0.8027 + }, + { + "start": 29441.26, + "end": 29444.8, + "probability": 0.9929 + }, + { + "start": 29445.58, + "end": 29449.6, + "probability": 0.9924 + }, + { + "start": 29450.36, + "end": 29451.96, + "probability": 0.8296 + }, + { + "start": 29453.44, + "end": 29456.42, + "probability": 0.7564 + }, + { + "start": 29457.06, + "end": 29458.82, + "probability": 0.9291 + }, + { + "start": 29459.78, + "end": 29462.8, + "probability": 0.9771 + }, + { + "start": 29463.42, + "end": 29467.07, + "probability": 0.9924 + }, + { + "start": 29468.46, + "end": 29470.68, + "probability": 0.9604 + }, + { + "start": 29471.56, + "end": 29473.34, + "probability": 0.9643 + }, + { + "start": 29474.26, + "end": 29477.52, + "probability": 0.9087 + }, + { + "start": 29479.0, + "end": 29483.64, + "probability": 0.9929 + }, + { + "start": 29484.3, + "end": 29485.7, + "probability": 0.9853 + }, + { + "start": 29486.48, + "end": 29491.4, + "probability": 0.9971 + }, + { + "start": 29492.34, + "end": 29494.9, + "probability": 0.9369 + }, + { + "start": 29495.54, + "end": 29499.06, + "probability": 0.9083 + }, + { + "start": 29499.76, + "end": 29504.46, + "probability": 0.9836 + }, + { + "start": 29505.58, + "end": 29507.56, + "probability": 0.9827 + }, + { + "start": 29508.96, + "end": 29511.26, + "probability": 0.9791 + }, + { + "start": 29511.84, + "end": 29517.18, + "probability": 0.9847 + }, + { + "start": 29517.7, + "end": 29519.9, + "probability": 0.8326 + }, + { + "start": 29520.86, + "end": 29525.76, + "probability": 0.9919 + }, + { + "start": 29526.76, + "end": 29533.2, + "probability": 0.9968 + }, + { + "start": 29534.08, + "end": 29537.16, + "probability": 0.9907 + }, + { + "start": 29537.64, + "end": 29538.32, + "probability": 0.9392 + }, + { + "start": 29539.02, + "end": 29541.12, + "probability": 0.5881 + }, + { + "start": 29541.86, + "end": 29544.76, + "probability": 0.9667 + }, + { + "start": 29545.96, + "end": 29547.64, + "probability": 0.8689 + }, + { + "start": 29548.62, + "end": 29549.82, + "probability": 0.7454 + }, + { + "start": 29549.94, + "end": 29553.0, + "probability": 0.9596 + }, + { + "start": 29553.72, + "end": 29555.22, + "probability": 0.998 + }, + { + "start": 29556.42, + "end": 29558.18, + "probability": 0.9976 + }, + { + "start": 29558.86, + "end": 29560.4, + "probability": 0.8018 + }, + { + "start": 29561.42, + "end": 29563.06, + "probability": 0.9963 + }, + { + "start": 29563.76, + "end": 29568.88, + "probability": 0.9992 + }, + { + "start": 29569.48, + "end": 29572.28, + "probability": 0.8926 + }, + { + "start": 29573.54, + "end": 29576.92, + "probability": 0.9476 + }, + { + "start": 29578.82, + "end": 29582.84, + "probability": 0.9801 + }, + { + "start": 29582.84, + "end": 29584.92, + "probability": 0.9742 + }, + { + "start": 29587.14, + "end": 29589.6, + "probability": 0.7752 + }, + { + "start": 29590.78, + "end": 29592.86, + "probability": 0.9745 + }, + { + "start": 29594.0, + "end": 29595.76, + "probability": 0.995 + }, + { + "start": 29597.52, + "end": 29600.98, + "probability": 0.9993 + }, + { + "start": 29602.6, + "end": 29605.74, + "probability": 0.9684 + }, + { + "start": 29606.54, + "end": 29608.22, + "probability": 0.8387 + }, + { + "start": 29609.06, + "end": 29609.68, + "probability": 0.9575 + }, + { + "start": 29611.04, + "end": 29612.96, + "probability": 0.9055 + }, + { + "start": 29614.36, + "end": 29618.52, + "probability": 0.9621 + }, + { + "start": 29619.32, + "end": 29622.54, + "probability": 0.9639 + }, + { + "start": 29624.91, + "end": 29626.54, + "probability": 0.2689 + }, + { + "start": 29627.58, + "end": 29629.56, + "probability": 0.8547 + }, + { + "start": 29630.82, + "end": 29635.5, + "probability": 0.991 + }, + { + "start": 29636.62, + "end": 29638.04, + "probability": 0.9937 + }, + { + "start": 29638.76, + "end": 29641.2, + "probability": 0.9919 + }, + { + "start": 29642.4, + "end": 29647.52, + "probability": 0.9897 + }, + { + "start": 29647.52, + "end": 29654.56, + "probability": 0.9982 + }, + { + "start": 29655.02, + "end": 29655.56, + "probability": 0.7947 + }, + { + "start": 29656.8, + "end": 29657.88, + "probability": 0.9777 + }, + { + "start": 29658.96, + "end": 29665.76, + "probability": 0.9937 + }, + { + "start": 29666.74, + "end": 29670.22, + "probability": 0.8667 + }, + { + "start": 29671.02, + "end": 29675.4, + "probability": 0.9972 + }, + { + "start": 29675.4, + "end": 29680.74, + "probability": 0.983 + }, + { + "start": 29681.78, + "end": 29683.48, + "probability": 0.9976 + }, + { + "start": 29684.08, + "end": 29685.72, + "probability": 0.8799 + }, + { + "start": 29686.46, + "end": 29687.92, + "probability": 0.9129 + }, + { + "start": 29688.3, + "end": 29690.94, + "probability": 0.9961 + }, + { + "start": 29692.18, + "end": 29692.62, + "probability": 0.9469 + }, + { + "start": 29694.14, + "end": 29697.08, + "probability": 0.9634 + }, + { + "start": 29698.26, + "end": 29703.64, + "probability": 0.9979 + }, + { + "start": 29704.8, + "end": 29705.38, + "probability": 0.2567 + }, + { + "start": 29705.38, + "end": 29709.34, + "probability": 0.9863 + }, + { + "start": 29710.16, + "end": 29714.3, + "probability": 0.9895 + }, + { + "start": 29715.02, + "end": 29716.66, + "probability": 0.8034 + }, + { + "start": 29717.84, + "end": 29718.89, + "probability": 0.9517 + }, + { + "start": 29719.38, + "end": 29725.16, + "probability": 0.9696 + }, + { + "start": 29725.38, + "end": 29726.16, + "probability": 0.6883 + }, + { + "start": 29726.2, + "end": 29726.72, + "probability": 0.4942 + }, + { + "start": 29726.72, + "end": 29727.08, + "probability": 0.2129 + }, + { + "start": 29727.62, + "end": 29728.58, + "probability": 0.8616 + }, + { + "start": 29729.16, + "end": 29731.06, + "probability": 0.9857 + }, + { + "start": 29732.16, + "end": 29736.34, + "probability": 0.8011 + }, + { + "start": 29737.6, + "end": 29739.6, + "probability": 0.5739 + }, + { + "start": 29739.94, + "end": 29742.3, + "probability": 0.9945 + }, + { + "start": 29743.06, + "end": 29745.58, + "probability": 0.9978 + }, + { + "start": 29746.36, + "end": 29749.06, + "probability": 0.9786 + }, + { + "start": 29749.48, + "end": 29752.24, + "probability": 0.9962 + }, + { + "start": 29752.98, + "end": 29753.7, + "probability": 0.7524 + }, + { + "start": 29755.28, + "end": 29755.28, + "probability": 0.0862 + }, + { + "start": 29755.84, + "end": 29756.24, + "probability": 0.9247 + }, + { + "start": 29757.06, + "end": 29757.6, + "probability": 0.858 + }, + { + "start": 29757.88, + "end": 29758.64, + "probability": 0.6377 + }, + { + "start": 29758.84, + "end": 29760.12, + "probability": 0.979 + }, + { + "start": 29778.4, + "end": 29778.44, + "probability": 0.707 + }, + { + "start": 29778.44, + "end": 29781.24, + "probability": 0.7707 + }, + { + "start": 29785.12, + "end": 29788.68, + "probability": 0.5967 + }, + { + "start": 29789.44, + "end": 29790.74, + "probability": 0.7239 + }, + { + "start": 29792.44, + "end": 29793.96, + "probability": 0.9153 + }, + { + "start": 29795.24, + "end": 29798.04, + "probability": 0.9844 + }, + { + "start": 29799.22, + "end": 29800.38, + "probability": 0.7568 + }, + { + "start": 29801.5, + "end": 29803.7, + "probability": 0.9465 + }, + { + "start": 29804.89, + "end": 29808.44, + "probability": 0.9808 + }, + { + "start": 29809.24, + "end": 29810.5, + "probability": 0.9209 + }, + { + "start": 29811.92, + "end": 29817.62, + "probability": 0.9846 + }, + { + "start": 29817.62, + "end": 29822.5, + "probability": 0.9599 + }, + { + "start": 29823.74, + "end": 29827.44, + "probability": 0.9422 + }, + { + "start": 29828.6, + "end": 29832.3, + "probability": 0.9579 + }, + { + "start": 29833.61, + "end": 29834.1, + "probability": 0.0871 + }, + { + "start": 29834.1, + "end": 29835.0, + "probability": 0.7563 + }, + { + "start": 29836.0, + "end": 29838.28, + "probability": 0.993 + }, + { + "start": 29840.7, + "end": 29841.7, + "probability": 0.6607 + }, + { + "start": 29842.78, + "end": 29843.56, + "probability": 0.6711 + }, + { + "start": 29844.6, + "end": 29845.56, + "probability": 0.9468 + }, + { + "start": 29847.14, + "end": 29847.86, + "probability": 0.9938 + }, + { + "start": 29849.22, + "end": 29850.1, + "probability": 0.9995 + }, + { + "start": 29852.72, + "end": 29854.78, + "probability": 0.6507 + }, + { + "start": 29856.38, + "end": 29857.66, + "probability": 0.9958 + }, + { + "start": 29857.76, + "end": 29860.22, + "probability": 0.9888 + }, + { + "start": 29860.56, + "end": 29861.98, + "probability": 0.9479 + }, + { + "start": 29864.02, + "end": 29865.82, + "probability": 0.9661 + }, + { + "start": 29866.94, + "end": 29868.28, + "probability": 0.9617 + }, + { + "start": 29869.06, + "end": 29871.34, + "probability": 0.9665 + }, + { + "start": 29872.78, + "end": 29875.4, + "probability": 0.9214 + }, + { + "start": 29877.5, + "end": 29880.18, + "probability": 0.9701 + }, + { + "start": 29880.92, + "end": 29881.9, + "probability": 0.9727 + }, + { + "start": 29882.86, + "end": 29885.98, + "probability": 0.9938 + }, + { + "start": 29886.52, + "end": 29889.0, + "probability": 0.918 + }, + { + "start": 29890.56, + "end": 29893.36, + "probability": 0.9665 + }, + { + "start": 29894.1, + "end": 29897.0, + "probability": 0.9865 + }, + { + "start": 29897.7, + "end": 29899.36, + "probability": 0.8517 + }, + { + "start": 29900.12, + "end": 29901.76, + "probability": 0.6146 + }, + { + "start": 29902.34, + "end": 29902.6, + "probability": 0.9443 + }, + { + "start": 29903.92, + "end": 29908.46, + "probability": 0.8313 + }, + { + "start": 29909.4, + "end": 29912.46, + "probability": 0.9851 + }, + { + "start": 29913.18, + "end": 29916.02, + "probability": 0.8761 + }, + { + "start": 29916.9, + "end": 29918.58, + "probability": 0.4508 + }, + { + "start": 29919.64, + "end": 29919.88, + "probability": 0.8544 + }, + { + "start": 29920.96, + "end": 29922.28, + "probability": 0.8403 + }, + { + "start": 29923.14, + "end": 29926.28, + "probability": 0.852 + }, + { + "start": 29927.38, + "end": 29929.58, + "probability": 0.9922 + }, + { + "start": 29930.48, + "end": 29932.86, + "probability": 0.979 + }, + { + "start": 29933.46, + "end": 29935.9, + "probability": 0.9952 + }, + { + "start": 29936.48, + "end": 29940.02, + "probability": 0.9958 + }, + { + "start": 29941.52, + "end": 29944.6, + "probability": 0.9943 + }, + { + "start": 29945.28, + "end": 29945.98, + "probability": 0.0451 + }, + { + "start": 29947.04, + "end": 29948.2, + "probability": 0.8331 + }, + { + "start": 29948.92, + "end": 29952.64, + "probability": 0.9966 + }, + { + "start": 29953.48, + "end": 29958.38, + "probability": 0.9854 + }, + { + "start": 29959.22, + "end": 29961.38, + "probability": 0.9884 + }, + { + "start": 29962.48, + "end": 29963.22, + "probability": 0.8373 + }, + { + "start": 29963.76, + "end": 29966.94, + "probability": 0.998 + }, + { + "start": 29967.8, + "end": 29971.5, + "probability": 0.9837 + }, + { + "start": 29972.84, + "end": 29975.76, + "probability": 0.6738 + }, + { + "start": 29976.64, + "end": 29979.16, + "probability": 0.9933 + }, + { + "start": 29980.51, + "end": 29983.14, + "probability": 0.9735 + }, + { + "start": 29983.74, + "end": 29986.06, + "probability": 0.9749 + }, + { + "start": 29986.58, + "end": 29988.14, + "probability": 0.9691 + }, + { + "start": 29988.72, + "end": 29991.88, + "probability": 0.9874 + }, + { + "start": 29992.98, + "end": 29995.2, + "probability": 0.9844 + }, + { + "start": 29995.46, + "end": 29996.0, + "probability": 0.9614 + }, + { + "start": 29996.94, + "end": 29998.0, + "probability": 0.9682 + }, + { + "start": 29998.96, + "end": 30001.04, + "probability": 0.7404 + }, + { + "start": 30001.78, + "end": 30004.42, + "probability": 0.9976 + }, + { + "start": 30005.2, + "end": 30007.4, + "probability": 0.9631 + }, + { + "start": 30008.2, + "end": 30010.74, + "probability": 0.9938 + }, + { + "start": 30010.74, + "end": 30014.42, + "probability": 0.9849 + }, + { + "start": 30015.24, + "end": 30017.14, + "probability": 0.5194 + }, + { + "start": 30017.72, + "end": 30023.68, + "probability": 0.9897 + }, + { + "start": 30025.12, + "end": 30031.22, + "probability": 0.9911 + }, + { + "start": 30032.36, + "end": 30033.47, + "probability": 0.9248 + }, + { + "start": 30034.42, + "end": 30035.74, + "probability": 0.9305 + }, + { + "start": 30036.18, + "end": 30038.52, + "probability": 0.9965 + }, + { + "start": 30039.36, + "end": 30041.58, + "probability": 0.9967 + }, + { + "start": 30042.18, + "end": 30045.04, + "probability": 0.9969 + }, + { + "start": 30045.58, + "end": 30046.86, + "probability": 0.9185 + }, + { + "start": 30047.28, + "end": 30049.68, + "probability": 0.9988 + }, + { + "start": 30050.72, + "end": 30052.52, + "probability": 0.8996 + }, + { + "start": 30053.26, + "end": 30054.5, + "probability": 0.9643 + }, + { + "start": 30054.88, + "end": 30055.92, + "probability": 0.7422 + }, + { + "start": 30056.38, + "end": 30059.28, + "probability": 0.9819 + }, + { + "start": 30059.88, + "end": 30064.08, + "probability": 0.9971 + }, + { + "start": 30065.3, + "end": 30069.56, + "probability": 0.9712 + }, + { + "start": 30069.7, + "end": 30072.14, + "probability": 0.5078 + }, + { + "start": 30072.96, + "end": 30076.32, + "probability": 0.9881 + }, + { + "start": 30077.02, + "end": 30078.06, + "probability": 0.9628 + }, + { + "start": 30078.58, + "end": 30080.18, + "probability": 0.8414 + }, + { + "start": 30080.74, + "end": 30081.16, + "probability": 0.8555 + }, + { + "start": 30081.7, + "end": 30082.44, + "probability": 0.9749 + }, + { + "start": 30083.22, + "end": 30083.88, + "probability": 0.8716 + }, + { + "start": 30084.44, + "end": 30087.18, + "probability": 0.8725 + }, + { + "start": 30087.48, + "end": 30088.76, + "probability": 0.6191 + }, + { + "start": 30089.12, + "end": 30092.66, + "probability": 0.9756 + }, + { + "start": 30093.24, + "end": 30093.32, + "probability": 0.141 + }, + { + "start": 30093.32, + "end": 30094.44, + "probability": 0.9957 + }, + { + "start": 30095.0, + "end": 30096.62, + "probability": 0.8398 + }, + { + "start": 30097.66, + "end": 30098.3, + "probability": 0.7624 + }, + { + "start": 30099.02, + "end": 30101.8, + "probability": 0.7647 + }, + { + "start": 30102.37, + "end": 30103.7, + "probability": 0.8676 + }, + { + "start": 30104.02, + "end": 30104.32, + "probability": 0.8369 + }, + { + "start": 30104.7, + "end": 30105.72, + "probability": 0.7559 + }, + { + "start": 30106.0, + "end": 30106.3, + "probability": 0.8732 + }, + { + "start": 30107.14, + "end": 30109.22, + "probability": 0.7811 + }, + { + "start": 30110.28, + "end": 30111.3, + "probability": 0.9164 + }, + { + "start": 30126.18, + "end": 30126.78, + "probability": 0.6319 + }, + { + "start": 30127.56, + "end": 30128.58, + "probability": 0.6587 + }, + { + "start": 30129.82, + "end": 30132.68, + "probability": 0.9956 + }, + { + "start": 30133.02, + "end": 30135.28, + "probability": 0.9886 + }, + { + "start": 30137.76, + "end": 30140.62, + "probability": 0.8995 + }, + { + "start": 30141.6, + "end": 30144.56, + "probability": 0.9856 + }, + { + "start": 30146.09, + "end": 30148.72, + "probability": 0.9944 + }, + { + "start": 30148.82, + "end": 30151.04, + "probability": 0.9909 + }, + { + "start": 30153.54, + "end": 30156.06, + "probability": 0.8987 + }, + { + "start": 30156.62, + "end": 30157.02, + "probability": 0.7977 + }, + { + "start": 30157.36, + "end": 30161.76, + "probability": 0.9333 + }, + { + "start": 30162.7, + "end": 30166.54, + "probability": 0.9863 + }, + { + "start": 30167.72, + "end": 30171.2, + "probability": 0.9828 + }, + { + "start": 30171.72, + "end": 30176.9, + "probability": 0.9896 + }, + { + "start": 30177.28, + "end": 30184.78, + "probability": 0.9177 + }, + { + "start": 30184.86, + "end": 30187.94, + "probability": 0.9203 + }, + { + "start": 30188.54, + "end": 30193.2, + "probability": 0.8188 + }, + { + "start": 30194.26, + "end": 30198.5, + "probability": 0.7342 + }, + { + "start": 30198.94, + "end": 30200.48, + "probability": 0.9183 + }, + { + "start": 30200.68, + "end": 30201.22, + "probability": 0.8274 + }, + { + "start": 30201.32, + "end": 30203.4, + "probability": 0.9696 + }, + { + "start": 30204.4, + "end": 30206.68, + "probability": 0.9875 + }, + { + "start": 30207.3, + "end": 30209.88, + "probability": 0.9462 + }, + { + "start": 30210.12, + "end": 30213.96, + "probability": 0.9778 + }, + { + "start": 30214.82, + "end": 30215.44, + "probability": 0.8047 + }, + { + "start": 30215.7, + "end": 30215.8, + "probability": 0.8789 + }, + { + "start": 30216.68, + "end": 30217.16, + "probability": 0.4902 + }, + { + "start": 30218.06, + "end": 30223.14, + "probability": 0.9902 + }, + { + "start": 30224.58, + "end": 30225.68, + "probability": 0.9038 + }, + { + "start": 30226.22, + "end": 30229.18, + "probability": 0.8993 + }, + { + "start": 30229.18, + "end": 30233.34, + "probability": 0.9915 + }, + { + "start": 30233.5, + "end": 30235.12, + "probability": 0.9905 + }, + { + "start": 30235.5, + "end": 30236.32, + "probability": 0.9422 + }, + { + "start": 30236.42, + "end": 30238.32, + "probability": 0.9919 + }, + { + "start": 30238.78, + "end": 30241.38, + "probability": 0.9685 + }, + { + "start": 30242.6, + "end": 30243.26, + "probability": 0.9539 + }, + { + "start": 30243.52, + "end": 30250.72, + "probability": 0.993 + }, + { + "start": 30251.44, + "end": 30255.38, + "probability": 0.9956 + }, + { + "start": 30256.36, + "end": 30256.96, + "probability": 0.8178 + }, + { + "start": 30257.04, + "end": 30259.18, + "probability": 0.9273 + }, + { + "start": 30259.66, + "end": 30262.08, + "probability": 0.9747 + }, + { + "start": 30263.08, + "end": 30263.6, + "probability": 0.8416 + }, + { + "start": 30264.16, + "end": 30268.14, + "probability": 0.9913 + }, + { + "start": 30268.18, + "end": 30273.26, + "probability": 0.9971 + }, + { + "start": 30273.26, + "end": 30276.9, + "probability": 0.8825 + }, + { + "start": 30278.06, + "end": 30278.52, + "probability": 0.5836 + }, + { + "start": 30278.6, + "end": 30285.32, + "probability": 0.9919 + }, + { + "start": 30286.28, + "end": 30290.86, + "probability": 0.9502 + }, + { + "start": 30290.86, + "end": 30296.02, + "probability": 0.9362 + }, + { + "start": 30297.18, + "end": 30299.82, + "probability": 0.8345 + }, + { + "start": 30300.76, + "end": 30302.72, + "probability": 0.9732 + }, + { + "start": 30303.24, + "end": 30305.24, + "probability": 0.962 + }, + { + "start": 30306.48, + "end": 30311.04, + "probability": 0.9686 + }, + { + "start": 30311.04, + "end": 30315.85, + "probability": 0.9951 + }, + { + "start": 30316.22, + "end": 30316.44, + "probability": 0.1808 + }, + { + "start": 30317.12, + "end": 30321.88, + "probability": 0.7204 + }, + { + "start": 30323.24, + "end": 30324.1, + "probability": 0.963 + }, + { + "start": 30324.72, + "end": 30328.46, + "probability": 0.922 + }, + { + "start": 30329.24, + "end": 30331.08, + "probability": 0.9653 + }, + { + "start": 30332.12, + "end": 30333.76, + "probability": 0.9976 + }, + { + "start": 30334.56, + "end": 30339.8, + "probability": 0.994 + }, + { + "start": 30340.84, + "end": 30341.42, + "probability": 0.8538 + }, + { + "start": 30342.14, + "end": 30347.24, + "probability": 0.9966 + }, + { + "start": 30348.02, + "end": 30350.52, + "probability": 0.9595 + }, + { + "start": 30350.52, + "end": 30353.14, + "probability": 0.9164 + }, + { + "start": 30354.52, + "end": 30356.38, + "probability": 0.7915 + }, + { + "start": 30356.6, + "end": 30357.06, + "probability": 0.842 + }, + { + "start": 30357.42, + "end": 30360.56, + "probability": 0.7646 + }, + { + "start": 30362.12, + "end": 30362.88, + "probability": 0.95 + }, + { + "start": 30363.72, + "end": 30369.38, + "probability": 0.9748 + }, + { + "start": 30370.0, + "end": 30373.28, + "probability": 0.9955 + }, + { + "start": 30374.6, + "end": 30374.88, + "probability": 0.5114 + }, + { + "start": 30375.1, + "end": 30379.44, + "probability": 0.9937 + }, + { + "start": 30379.96, + "end": 30385.0, + "probability": 0.9818 + }, + { + "start": 30385.98, + "end": 30389.76, + "probability": 0.9647 + }, + { + "start": 30390.82, + "end": 30392.24, + "probability": 0.6294 + }, + { + "start": 30392.98, + "end": 30395.24, + "probability": 0.9814 + }, + { + "start": 30395.48, + "end": 30400.64, + "probability": 0.7792 + }, + { + "start": 30400.9, + "end": 30403.5, + "probability": 0.9628 + }, + { + "start": 30405.18, + "end": 30405.98, + "probability": 0.9547 + }, + { + "start": 30406.62, + "end": 30408.42, + "probability": 0.9226 + }, + { + "start": 30409.16, + "end": 30409.8, + "probability": 0.7664 + }, + { + "start": 30410.96, + "end": 30414.42, + "probability": 0.9639 + }, + { + "start": 30415.62, + "end": 30418.68, + "probability": 0.9834 + }, + { + "start": 30418.68, + "end": 30422.36, + "probability": 0.9888 + }, + { + "start": 30423.02, + "end": 30423.66, + "probability": 0.9321 + }, + { + "start": 30424.44, + "end": 30425.16, + "probability": 0.8098 + }, + { + "start": 30426.48, + "end": 30426.92, + "probability": 0.7802 + }, + { + "start": 30431.2, + "end": 30432.12, + "probability": 0.4838 + }, + { + "start": 30433.46, + "end": 30434.7, + "probability": 0.5425 + }, + { + "start": 30434.92, + "end": 30438.66, + "probability": 0.9193 + }, + { + "start": 30475.94, + "end": 30476.86, + "probability": 0.5938 + }, + { + "start": 30478.08, + "end": 30479.04, + "probability": 0.7675 + }, + { + "start": 30480.34, + "end": 30484.66, + "probability": 0.7962 + }, + { + "start": 30485.4, + "end": 30490.18, + "probability": 0.6094 + }, + { + "start": 30491.1, + "end": 30495.46, + "probability": 0.9935 + }, + { + "start": 30496.56, + "end": 30497.88, + "probability": 0.6837 + }, + { + "start": 30498.04, + "end": 30500.68, + "probability": 0.9924 + }, + { + "start": 30502.84, + "end": 30503.61, + "probability": 0.9724 + }, + { + "start": 30503.98, + "end": 30505.14, + "probability": 0.9299 + }, + { + "start": 30505.3, + "end": 30505.96, + "probability": 0.9526 + }, + { + "start": 30506.2, + "end": 30509.92, + "probability": 0.981 + }, + { + "start": 30510.86, + "end": 30513.62, + "probability": 0.9478 + }, + { + "start": 30514.2, + "end": 30517.48, + "probability": 0.9436 + }, + { + "start": 30518.06, + "end": 30518.68, + "probability": 0.9174 + }, + { + "start": 30519.22, + "end": 30524.22, + "probability": 0.9949 + }, + { + "start": 30525.16, + "end": 30528.64, + "probability": 0.9958 + }, + { + "start": 30529.28, + "end": 30531.8, + "probability": 0.9245 + }, + { + "start": 30532.46, + "end": 30533.64, + "probability": 0.9754 + }, + { + "start": 30534.3, + "end": 30535.98, + "probability": 0.9857 + }, + { + "start": 30536.6, + "end": 30539.6, + "probability": 0.961 + }, + { + "start": 30539.98, + "end": 30541.16, + "probability": 0.869 + }, + { + "start": 30541.58, + "end": 30542.96, + "probability": 0.9928 + }, + { + "start": 30544.72, + "end": 30545.7, + "probability": 0.3135 + }, + { + "start": 30549.18, + "end": 30552.38, + "probability": 0.9956 + }, + { + "start": 30552.68, + "end": 30556.42, + "probability": 0.9754 + }, + { + "start": 30557.18, + "end": 30563.12, + "probability": 0.9955 + }, + { + "start": 30563.7, + "end": 30564.48, + "probability": 0.8 + }, + { + "start": 30565.14, + "end": 30565.14, + "probability": 0.0464 + }, + { + "start": 30565.14, + "end": 30566.42, + "probability": 0.3185 + }, + { + "start": 30566.94, + "end": 30568.26, + "probability": 0.8909 + }, + { + "start": 30568.94, + "end": 30573.0, + "probability": 0.9136 + }, + { + "start": 30573.48, + "end": 30574.02, + "probability": 0.7895 + }, + { + "start": 30574.88, + "end": 30575.22, + "probability": 0.9517 + }, + { + "start": 30575.72, + "end": 30578.46, + "probability": 0.999 + }, + { + "start": 30579.2, + "end": 30582.34, + "probability": 0.9995 + }, + { + "start": 30582.8, + "end": 30586.18, + "probability": 0.9933 + }, + { + "start": 30586.66, + "end": 30588.93, + "probability": 0.9826 + }, + { + "start": 30589.36, + "end": 30592.78, + "probability": 0.9897 + }, + { + "start": 30593.92, + "end": 30594.02, + "probability": 0.4949 + }, + { + "start": 30594.08, + "end": 30594.42, + "probability": 0.9598 + }, + { + "start": 30594.44, + "end": 30599.02, + "probability": 0.9902 + }, + { + "start": 30599.98, + "end": 30601.0, + "probability": 0.543 + }, + { + "start": 30601.68, + "end": 30603.82, + "probability": 0.9792 + }, + { + "start": 30604.68, + "end": 30607.64, + "probability": 0.8939 + }, + { + "start": 30608.9, + "end": 30612.98, + "probability": 0.9977 + }, + { + "start": 30613.6, + "end": 30618.92, + "probability": 0.9968 + }, + { + "start": 30619.5, + "end": 30621.7, + "probability": 0.7204 + }, + { + "start": 30621.82, + "end": 30622.18, + "probability": 0.5831 + }, + { + "start": 30622.34, + "end": 30623.9, + "probability": 0.8965 + }, + { + "start": 30624.38, + "end": 30626.74, + "probability": 0.9825 + }, + { + "start": 30627.56, + "end": 30634.08, + "probability": 0.9948 + }, + { + "start": 30634.48, + "end": 30634.64, + "probability": 0.4319 + }, + { + "start": 30634.74, + "end": 30639.02, + "probability": 0.922 + }, + { + "start": 30639.8, + "end": 30642.52, + "probability": 0.8795 + }, + { + "start": 30643.18, + "end": 30644.22, + "probability": 0.9251 + }, + { + "start": 30644.58, + "end": 30645.5, + "probability": 0.8253 + }, + { + "start": 30646.36, + "end": 30650.22, + "probability": 0.819 + }, + { + "start": 30650.98, + "end": 30652.84, + "probability": 0.5789 + }, + { + "start": 30653.42, + "end": 30654.86, + "probability": 0.9146 + }, + { + "start": 30655.34, + "end": 30657.0, + "probability": 0.8919 + }, + { + "start": 30657.2, + "end": 30658.5, + "probability": 0.9266 + }, + { + "start": 30658.8, + "end": 30662.22, + "probability": 0.9967 + }, + { + "start": 30662.72, + "end": 30665.58, + "probability": 0.9639 + }, + { + "start": 30666.78, + "end": 30671.08, + "probability": 0.6962 + }, + { + "start": 30671.68, + "end": 30678.4, + "probability": 0.9134 + }, + { + "start": 30679.0, + "end": 30683.76, + "probability": 0.9988 + }, + { + "start": 30684.4, + "end": 30685.64, + "probability": 0.6938 + }, + { + "start": 30686.66, + "end": 30690.74, + "probability": 0.8298 + }, + { + "start": 30691.16, + "end": 30691.68, + "probability": 0.8434 + }, + { + "start": 30692.44, + "end": 30693.3, + "probability": 0.9422 + }, + { + "start": 30693.88, + "end": 30694.94, + "probability": 0.8158 + }, + { + "start": 30695.22, + "end": 30695.76, + "probability": 0.5911 + }, + { + "start": 30696.1, + "end": 30698.72, + "probability": 0.8669 + }, + { + "start": 30699.26, + "end": 30701.78, + "probability": 0.9684 + }, + { + "start": 30702.7, + "end": 30708.48, + "probability": 0.9979 + }, + { + "start": 30708.56, + "end": 30709.58, + "probability": 0.9731 + }, + { + "start": 30710.02, + "end": 30712.68, + "probability": 0.9949 + }, + { + "start": 30713.3, + "end": 30715.16, + "probability": 0.9578 + }, + { + "start": 30715.92, + "end": 30720.44, + "probability": 0.9834 + }, + { + "start": 30721.18, + "end": 30727.5, + "probability": 0.983 + }, + { + "start": 30727.98, + "end": 30731.12, + "probability": 0.9618 + }, + { + "start": 30731.86, + "end": 30732.28, + "probability": 0.9799 + }, + { + "start": 30733.16, + "end": 30734.22, + "probability": 0.988 + }, + { + "start": 30734.86, + "end": 30735.82, + "probability": 0.9836 + }, + { + "start": 30736.88, + "end": 30738.75, + "probability": 0.9846 + }, + { + "start": 30739.56, + "end": 30741.62, + "probability": 0.6086 + }, + { + "start": 30742.26, + "end": 30747.0, + "probability": 0.9146 + }, + { + "start": 30747.88, + "end": 30750.48, + "probability": 0.8177 + }, + { + "start": 30752.12, + "end": 30752.55, + "probability": 0.9834 + }, + { + "start": 30753.4, + "end": 30755.04, + "probability": 0.9502 + }, + { + "start": 30755.52, + "end": 30755.8, + "probability": 0.9192 + }, + { + "start": 30756.58, + "end": 30758.42, + "probability": 0.9834 + }, + { + "start": 30759.76, + "end": 30761.52, + "probability": 0.9443 + }, + { + "start": 30762.1, + "end": 30762.94, + "probability": 0.7822 + }, + { + "start": 30763.58, + "end": 30766.42, + "probability": 0.9847 + }, + { + "start": 30766.42, + "end": 30770.04, + "probability": 0.9355 + }, + { + "start": 30770.54, + "end": 30773.2, + "probability": 0.9749 + }, + { + "start": 30773.78, + "end": 30774.76, + "probability": 0.8649 + }, + { + "start": 30774.78, + "end": 30775.08, + "probability": 0.937 + }, + { + "start": 30775.24, + "end": 30780.9, + "probability": 0.9634 + }, + { + "start": 30781.3, + "end": 30782.4, + "probability": 0.9171 + }, + { + "start": 30783.04, + "end": 30785.32, + "probability": 0.9778 + }, + { + "start": 30785.42, + "end": 30786.32, + "probability": 0.7361 + }, + { + "start": 30786.68, + "end": 30788.76, + "probability": 0.9568 + }, + { + "start": 30789.76, + "end": 30793.2, + "probability": 0.9088 + }, + { + "start": 30793.2, + "end": 30797.1, + "probability": 0.9973 + }, + { + "start": 30797.5, + "end": 30798.46, + "probability": 0.8458 + }, + { + "start": 30799.04, + "end": 30800.9, + "probability": 0.979 + }, + { + "start": 30801.72, + "end": 30804.4, + "probability": 0.8894 + }, + { + "start": 30805.0, + "end": 30807.94, + "probability": 0.9895 + }, + { + "start": 30808.68, + "end": 30808.96, + "probability": 0.9465 + }, + { + "start": 30809.46, + "end": 30810.84, + "probability": 0.9286 + }, + { + "start": 30811.54, + "end": 30812.32, + "probability": 0.7882 + }, + { + "start": 30813.0, + "end": 30813.8, + "probability": 0.9618 + }, + { + "start": 30814.5, + "end": 30814.84, + "probability": 0.6903 + }, + { + "start": 30815.06, + "end": 30816.2, + "probability": 0.5783 + }, + { + "start": 30816.22, + "end": 30818.72, + "probability": 0.7559 + }, + { + "start": 30819.08, + "end": 30820.2, + "probability": 0.9088 + }, + { + "start": 30820.48, + "end": 30823.76, + "probability": 0.9526 + }, + { + "start": 30823.76, + "end": 30826.96, + "probability": 0.9873 + }, + { + "start": 30827.62, + "end": 30830.64, + "probability": 0.8727 + }, + { + "start": 30831.7, + "end": 30838.14, + "probability": 0.7961 + }, + { + "start": 30838.78, + "end": 30841.68, + "probability": 0.9771 + }, + { + "start": 30842.22, + "end": 30843.82, + "probability": 0.7433 + }, + { + "start": 30844.26, + "end": 30845.84, + "probability": 0.9424 + }, + { + "start": 30846.34, + "end": 30846.78, + "probability": 0.8036 + }, + { + "start": 30847.28, + "end": 30848.3, + "probability": 0.6625 + }, + { + "start": 30849.06, + "end": 30852.84, + "probability": 0.9578 + }, + { + "start": 30853.34, + "end": 30856.04, + "probability": 0.9548 + }, + { + "start": 30856.76, + "end": 30859.42, + "probability": 0.8705 + }, + { + "start": 30860.02, + "end": 30865.66, + "probability": 0.943 + }, + { + "start": 30866.9, + "end": 30868.36, + "probability": 0.8751 + }, + { + "start": 30869.02, + "end": 30870.14, + "probability": 0.8232 + }, + { + "start": 30870.64, + "end": 30871.14, + "probability": 0.9252 + }, + { + "start": 30871.58, + "end": 30876.8, + "probability": 0.9632 + }, + { + "start": 30877.56, + "end": 30882.26, + "probability": 0.9819 + }, + { + "start": 30883.6, + "end": 30884.78, + "probability": 0.8728 + }, + { + "start": 30885.62, + "end": 30888.96, + "probability": 0.9643 + }, + { + "start": 30888.96, + "end": 30892.08, + "probability": 0.9986 + }, + { + "start": 30892.18, + "end": 30892.88, + "probability": 0.6353 + }, + { + "start": 30893.46, + "end": 30896.34, + "probability": 0.9884 + }, + { + "start": 30896.34, + "end": 30899.68, + "probability": 0.9223 + }, + { + "start": 30900.44, + "end": 30904.16, + "probability": 0.8886 + }, + { + "start": 30904.32, + "end": 30905.8, + "probability": 0.8763 + }, + { + "start": 30906.9, + "end": 30908.96, + "probability": 0.8283 + }, + { + "start": 30909.5, + "end": 30911.16, + "probability": 0.7425 + }, + { + "start": 30911.7, + "end": 30914.26, + "probability": 0.9688 + }, + { + "start": 30914.84, + "end": 30915.88, + "probability": 0.7214 + }, + { + "start": 30916.24, + "end": 30919.36, + "probability": 0.8679 + }, + { + "start": 30920.1, + "end": 30922.97, + "probability": 0.9232 + }, + { + "start": 30923.82, + "end": 30925.08, + "probability": 0.9856 + }, + { + "start": 30925.46, + "end": 30930.46, + "probability": 0.9857 + }, + { + "start": 30931.12, + "end": 30932.48, + "probability": 0.7135 + }, + { + "start": 30932.6, + "end": 30937.18, + "probability": 0.9908 + }, + { + "start": 30937.22, + "end": 30939.64, + "probability": 0.9825 + }, + { + "start": 30941.32, + "end": 30942.72, + "probability": 0.9133 + }, + { + "start": 30943.54, + "end": 30948.64, + "probability": 0.9935 + }, + { + "start": 30949.28, + "end": 30953.0, + "probability": 0.8036 + }, + { + "start": 30953.68, + "end": 30956.52, + "probability": 0.8518 + }, + { + "start": 30956.82, + "end": 30957.9, + "probability": 0.9202 + }, + { + "start": 30958.76, + "end": 30962.38, + "probability": 0.9921 + }, + { + "start": 30962.86, + "end": 30963.22, + "probability": 0.4849 + }, + { + "start": 30963.68, + "end": 30964.2, + "probability": 0.7458 + }, + { + "start": 30964.76, + "end": 30969.36, + "probability": 0.9847 + }, + { + "start": 30969.74, + "end": 30970.24, + "probability": 0.9766 + }, + { + "start": 30971.2, + "end": 30975.54, + "probability": 0.978 + }, + { + "start": 30976.18, + "end": 30980.02, + "probability": 0.9377 + }, + { + "start": 30981.24, + "end": 30984.9, + "probability": 0.6388 + }, + { + "start": 30985.58, + "end": 30986.18, + "probability": 0.7853 + }, + { + "start": 30986.8, + "end": 30987.74, + "probability": 0.733 + }, + { + "start": 30988.52, + "end": 30991.58, + "probability": 0.9639 + }, + { + "start": 30992.36, + "end": 30997.12, + "probability": 0.9084 + }, + { + "start": 30997.68, + "end": 30999.62, + "probability": 0.5593 + }, + { + "start": 31000.18, + "end": 31002.74, + "probability": 0.9529 + }, + { + "start": 31003.12, + "end": 31007.62, + "probability": 0.9587 + }, + { + "start": 31007.62, + "end": 31010.9, + "probability": 0.9942 + }, + { + "start": 31011.58, + "end": 31013.74, + "probability": 0.9956 + }, + { + "start": 31013.74, + "end": 31016.6, + "probability": 0.9945 + }, + { + "start": 31017.12, + "end": 31018.4, + "probability": 0.9779 + }, + { + "start": 31018.96, + "end": 31021.26, + "probability": 0.9479 + }, + { + "start": 31022.04, + "end": 31024.38, + "probability": 0.9819 + }, + { + "start": 31024.82, + "end": 31025.82, + "probability": 0.964 + }, + { + "start": 31026.06, + "end": 31027.06, + "probability": 0.864 + }, + { + "start": 31027.58, + "end": 31029.04, + "probability": 0.7496 + }, + { + "start": 31030.02, + "end": 31031.84, + "probability": 0.9769 + }, + { + "start": 31032.44, + "end": 31033.6, + "probability": 0.9663 + }, + { + "start": 31034.46, + "end": 31035.15, + "probability": 0.9958 + }, + { + "start": 31036.34, + "end": 31037.16, + "probability": 0.4669 + }, + { + "start": 31037.46, + "end": 31038.25, + "probability": 0.9233 + }, + { + "start": 31038.94, + "end": 31041.78, + "probability": 0.925 + }, + { + "start": 31042.54, + "end": 31043.6, + "probability": 0.8993 + }, + { + "start": 31043.94, + "end": 31046.62, + "probability": 0.8552 + }, + { + "start": 31047.44, + "end": 31049.24, + "probability": 0.8594 + }, + { + "start": 31049.24, + "end": 31051.32, + "probability": 0.6481 + }, + { + "start": 31051.84, + "end": 31054.32, + "probability": 0.9587 + }, + { + "start": 31054.86, + "end": 31056.47, + "probability": 0.8767 + }, + { + "start": 31057.26, + "end": 31059.8, + "probability": 0.9321 + }, + { + "start": 31060.02, + "end": 31061.52, + "probability": 0.9954 + }, + { + "start": 31062.0, + "end": 31064.08, + "probability": 0.9673 + }, + { + "start": 31064.54, + "end": 31066.26, + "probability": 0.8652 + }, + { + "start": 31066.94, + "end": 31067.34, + "probability": 0.5046 + }, + { + "start": 31068.08, + "end": 31070.4, + "probability": 0.9331 + }, + { + "start": 31070.96, + "end": 31071.28, + "probability": 0.3751 + }, + { + "start": 31077.62, + "end": 31079.28, + "probability": 0.0039 + }, + { + "start": 31080.08, + "end": 31081.64, + "probability": 0.2949 + }, + { + "start": 31082.32, + "end": 31084.08, + "probability": 0.6401 + }, + { + "start": 31084.08, + "end": 31085.81, + "probability": 0.8174 + }, + { + "start": 31086.52, + "end": 31089.12, + "probability": 0.9617 + }, + { + "start": 31089.12, + "end": 31093.34, + "probability": 0.6063 + }, + { + "start": 31094.14, + "end": 31094.54, + "probability": 0.4669 + }, + { + "start": 31095.02, + "end": 31097.04, + "probability": 0.9404 + }, + { + "start": 31097.42, + "end": 31098.86, + "probability": 0.8315 + }, + { + "start": 31099.14, + "end": 31102.59, + "probability": 0.8086 + }, + { + "start": 31103.02, + "end": 31107.6, + "probability": 0.9419 + }, + { + "start": 31108.62, + "end": 31109.2, + "probability": 0.8594 + }, + { + "start": 31109.3, + "end": 31112.1, + "probability": 0.9793 + }, + { + "start": 31112.54, + "end": 31113.3, + "probability": 0.8555 + }, + { + "start": 31113.46, + "end": 31113.88, + "probability": 0.7772 + }, + { + "start": 31114.18, + "end": 31118.24, + "probability": 0.9915 + }, + { + "start": 31118.3, + "end": 31120.18, + "probability": 0.9686 + }, + { + "start": 31120.26, + "end": 31121.42, + "probability": 0.8331 + }, + { + "start": 31121.76, + "end": 31124.24, + "probability": 0.9927 + }, + { + "start": 31124.76, + "end": 31125.94, + "probability": 0.8563 + }, + { + "start": 31126.24, + "end": 31126.66, + "probability": 0.899 + }, + { + "start": 31126.78, + "end": 31127.88, + "probability": 0.9197 + }, + { + "start": 31128.34, + "end": 31131.88, + "probability": 0.9647 + }, + { + "start": 31132.34, + "end": 31133.14, + "probability": 0.942 + }, + { + "start": 31133.86, + "end": 31134.12, + "probability": 0.7286 + }, + { + "start": 31134.26, + "end": 31135.04, + "probability": 0.9229 + }, + { + "start": 31135.2, + "end": 31135.52, + "probability": 0.493 + }, + { + "start": 31135.94, + "end": 31136.38, + "probability": 0.959 + }, + { + "start": 31136.42, + "end": 31136.94, + "probability": 0.7808 + }, + { + "start": 31137.3, + "end": 31138.8, + "probability": 0.9542 + }, + { + "start": 31139.32, + "end": 31142.04, + "probability": 0.9958 + }, + { + "start": 31142.3, + "end": 31143.78, + "probability": 0.9738 + }, + { + "start": 31143.98, + "end": 31144.6, + "probability": 0.9733 + }, + { + "start": 31145.36, + "end": 31147.1, + "probability": 0.7897 + }, + { + "start": 31147.16, + "end": 31147.48, + "probability": 0.9202 + }, + { + "start": 31147.92, + "end": 31149.04, + "probability": 0.9893 + }, + { + "start": 31149.92, + "end": 31152.83, + "probability": 0.9359 + }, + { + "start": 31154.52, + "end": 31156.44, + "probability": 0.8379 + }, + { + "start": 31156.74, + "end": 31160.1, + "probability": 0.9823 + }, + { + "start": 31160.2, + "end": 31160.44, + "probability": 0.6137 + }, + { + "start": 31160.62, + "end": 31162.16, + "probability": 0.8048 + }, + { + "start": 31162.26, + "end": 31163.44, + "probability": 0.9485 + }, + { + "start": 31163.52, + "end": 31163.74, + "probability": 0.8607 + }, + { + "start": 31164.42, + "end": 31166.82, + "probability": 0.9558 + }, + { + "start": 31167.54, + "end": 31169.0, + "probability": 0.9529 + }, + { + "start": 31170.94, + "end": 31174.72, + "probability": 0.9985 + }, + { + "start": 31175.56, + "end": 31175.98, + "probability": 0.8835 + }, + { + "start": 31176.48, + "end": 31178.16, + "probability": 0.9946 + }, + { + "start": 31178.7, + "end": 31179.3, + "probability": 0.9773 + }, + { + "start": 31179.82, + "end": 31181.94, + "probability": 0.9912 + }, + { + "start": 31182.32, + "end": 31182.9, + "probability": 0.881 + }, + { + "start": 31182.96, + "end": 31183.54, + "probability": 0.8234 + }, + { + "start": 31184.02, + "end": 31189.66, + "probability": 0.9838 + }, + { + "start": 31190.64, + "end": 31191.8, + "probability": 0.8526 + }, + { + "start": 31192.56, + "end": 31193.42, + "probability": 0.7394 + }, + { + "start": 31193.9, + "end": 31194.66, + "probability": 0.9185 + }, + { + "start": 31194.96, + "end": 31196.02, + "probability": 0.6632 + }, + { + "start": 31196.54, + "end": 31198.68, + "probability": 0.9313 + }, + { + "start": 31199.12, + "end": 31203.28, + "probability": 0.9634 + }, + { + "start": 31203.6, + "end": 31204.76, + "probability": 0.9408 + }, + { + "start": 31204.78, + "end": 31206.52, + "probability": 0.7367 + }, + { + "start": 31207.06, + "end": 31211.22, + "probability": 0.95 + }, + { + "start": 31211.22, + "end": 31214.62, + "probability": 0.928 + }, + { + "start": 31214.78, + "end": 31215.5, + "probability": 0.9417 + }, + { + "start": 31216.18, + "end": 31217.38, + "probability": 0.9065 + }, + { + "start": 31217.84, + "end": 31218.82, + "probability": 0.9518 + }, + { + "start": 31219.36, + "end": 31221.74, + "probability": 0.9039 + }, + { + "start": 31222.12, + "end": 31223.54, + "probability": 0.9414 + }, + { + "start": 31223.56, + "end": 31225.82, + "probability": 0.9363 + }, + { + "start": 31226.28, + "end": 31228.5, + "probability": 0.9573 + }, + { + "start": 31228.56, + "end": 31229.02, + "probability": 0.7739 + }, + { + "start": 31230.76, + "end": 31232.46, + "probability": 0.5157 + }, + { + "start": 31232.52, + "end": 31234.44, + "probability": 0.9083 + }, + { + "start": 31234.58, + "end": 31235.96, + "probability": 0.7924 + }, + { + "start": 31236.34, + "end": 31237.22, + "probability": 0.841 + }, + { + "start": 31237.94, + "end": 31239.14, + "probability": 0.2878 + }, + { + "start": 31239.2, + "end": 31242.22, + "probability": 0.2222 + }, + { + "start": 31242.22, + "end": 31243.86, + "probability": 0.2633 + }, + { + "start": 31274.92, + "end": 31276.66, + "probability": 0.9997 + }, + { + "start": 31277.9, + "end": 31281.21, + "probability": 0.84 + }, + { + "start": 31282.1, + "end": 31284.0, + "probability": 0.8869 + }, + { + "start": 31284.16, + "end": 31287.24, + "probability": 0.1841 + }, + { + "start": 31288.7, + "end": 31290.56, + "probability": 0.6202 + }, + { + "start": 31292.9, + "end": 31295.56, + "probability": 0.7447 + }, + { + "start": 31296.8, + "end": 31299.56, + "probability": 0.8947 + }, + { + "start": 31300.06, + "end": 31301.06, + "probability": 0.7651 + }, + { + "start": 31302.3, + "end": 31305.04, + "probability": 0.9785 + }, + { + "start": 31306.42, + "end": 31307.14, + "probability": 0.0 + }, + { + "start": 31309.05, + "end": 31310.2, + "probability": 0.0314 + }, + { + "start": 31310.2, + "end": 31310.58, + "probability": 0.099 + }, + { + "start": 31313.34, + "end": 31318.4, + "probability": 0.5722 + }, + { + "start": 31318.58, + "end": 31319.96, + "probability": 0.948 + }, + { + "start": 31320.08, + "end": 31321.18, + "probability": 0.9956 + }, + { + "start": 31322.86, + "end": 31325.52, + "probability": 0.9852 + }, + { + "start": 31326.86, + "end": 31329.58, + "probability": 0.9854 + }, + { + "start": 31331.04, + "end": 31331.62, + "probability": 0.312 + }, + { + "start": 31331.82, + "end": 31332.76, + "probability": 0.9216 + }, + { + "start": 31332.86, + "end": 31337.22, + "probability": 0.9946 + }, + { + "start": 31338.2, + "end": 31339.44, + "probability": 0.9801 + }, + { + "start": 31341.16, + "end": 31343.5, + "probability": 0.996 + }, + { + "start": 31344.1, + "end": 31346.92, + "probability": 0.9406 + }, + { + "start": 31349.24, + "end": 31350.08, + "probability": 0.5749 + }, + { + "start": 31350.78, + "end": 31351.4, + "probability": 0.6864 + }, + { + "start": 31353.02, + "end": 31358.9, + "probability": 0.7531 + }, + { + "start": 31360.38, + "end": 31363.44, + "probability": 0.964 + }, + { + "start": 31364.38, + "end": 31365.34, + "probability": 0.8705 + }, + { + "start": 31367.4, + "end": 31371.32, + "probability": 0.9708 + }, + { + "start": 31373.04, + "end": 31378.8, + "probability": 0.9984 + }, + { + "start": 31379.74, + "end": 31381.08, + "probability": 0.994 + }, + { + "start": 31381.84, + "end": 31386.06, + "probability": 0.512 + }, + { + "start": 31386.22, + "end": 31387.44, + "probability": 0.9423 + }, + { + "start": 31388.42, + "end": 31388.42, + "probability": 0.8877 + }, + { + "start": 31389.68, + "end": 31393.16, + "probability": 0.9479 + }, + { + "start": 31393.52, + "end": 31400.5, + "probability": 0.8729 + }, + { + "start": 31401.92, + "end": 31402.52, + "probability": 0.8061 + }, + { + "start": 31404.38, + "end": 31406.72, + "probability": 0.9924 + }, + { + "start": 31408.96, + "end": 31412.2, + "probability": 0.9239 + }, + { + "start": 31414.72, + "end": 31420.6, + "probability": 0.9539 + }, + { + "start": 31421.8, + "end": 31423.46, + "probability": 0.6733 + }, + { + "start": 31424.6, + "end": 31428.38, + "probability": 0.869 + }, + { + "start": 31429.28, + "end": 31430.8, + "probability": 0.9976 + }, + { + "start": 31431.36, + "end": 31432.62, + "probability": 0.9963 + }, + { + "start": 31433.46, + "end": 31437.62, + "probability": 0.9889 + }, + { + "start": 31438.32, + "end": 31439.36, + "probability": 0.8679 + }, + { + "start": 31441.6, + "end": 31442.78, + "probability": 0.9327 + }, + { + "start": 31443.06, + "end": 31446.4, + "probability": 0.9689 + }, + { + "start": 31450.02, + "end": 31451.76, + "probability": 0.9951 + }, + { + "start": 31453.0, + "end": 31458.1, + "probability": 0.6674 + }, + { + "start": 31459.02, + "end": 31459.58, + "probability": 0.876 + }, + { + "start": 31460.06, + "end": 31461.72, + "probability": 0.5087 + }, + { + "start": 31467.04, + "end": 31468.08, + "probability": 0.9992 + }, + { + "start": 31468.74, + "end": 31470.1, + "probability": 0.9668 + }, + { + "start": 31471.32, + "end": 31473.48, + "probability": 0.995 + }, + { + "start": 31475.66, + "end": 31476.8, + "probability": 0.9832 + }, + { + "start": 31477.52, + "end": 31479.06, + "probability": 0.9608 + }, + { + "start": 31480.92, + "end": 31483.22, + "probability": 0.7985 + }, + { + "start": 31483.96, + "end": 31485.5, + "probability": 0.9136 + }, + { + "start": 31485.58, + "end": 31487.18, + "probability": 0.6006 + }, + { + "start": 31487.56, + "end": 31488.96, + "probability": 0.9585 + }, + { + "start": 31490.16, + "end": 31490.42, + "probability": 0.6362 + }, + { + "start": 31491.04, + "end": 31493.08, + "probability": 0.6452 + }, + { + "start": 31494.84, + "end": 31495.4, + "probability": 0.6901 + }, + { + "start": 31496.54, + "end": 31499.38, + "probability": 0.8091 + }, + { + "start": 31500.5, + "end": 31503.1, + "probability": 0.6223 + }, + { + "start": 31504.88, + "end": 31506.94, + "probability": 0.9956 + }, + { + "start": 31508.06, + "end": 31508.94, + "probability": 0.9323 + }, + { + "start": 31510.5, + "end": 31511.9, + "probability": 0.9411 + }, + { + "start": 31512.88, + "end": 31513.4, + "probability": 0.8524 + }, + { + "start": 31514.02, + "end": 31514.4, + "probability": 0.791 + }, + { + "start": 31515.12, + "end": 31516.76, + "probability": 0.9868 + }, + { + "start": 31517.44, + "end": 31519.06, + "probability": 0.8865 + }, + { + "start": 31519.76, + "end": 31521.54, + "probability": 0.9896 + }, + { + "start": 31522.52, + "end": 31525.1, + "probability": 0.9873 + }, + { + "start": 31525.68, + "end": 31526.56, + "probability": 0.9681 + }, + { + "start": 31527.2, + "end": 31528.7, + "probability": 0.7163 + }, + { + "start": 31529.26, + "end": 31531.86, + "probability": 0.9793 + }, + { + "start": 31532.66, + "end": 31535.22, + "probability": 0.993 + }, + { + "start": 31536.44, + "end": 31539.2, + "probability": 0.9962 + }, + { + "start": 31539.76, + "end": 31542.52, + "probability": 0.9954 + }, + { + "start": 31543.42, + "end": 31544.68, + "probability": 0.9577 + }, + { + "start": 31545.66, + "end": 31547.1, + "probability": 0.9994 + }, + { + "start": 31547.68, + "end": 31548.66, + "probability": 0.7783 + }, + { + "start": 31549.24, + "end": 31550.08, + "probability": 0.9905 + }, + { + "start": 31551.14, + "end": 31552.1, + "probability": 0.8438 + }, + { + "start": 31552.66, + "end": 31557.88, + "probability": 0.9622 + }, + { + "start": 31558.42, + "end": 31559.34, + "probability": 0.888 + }, + { + "start": 31560.04, + "end": 31561.04, + "probability": 0.2961 + }, + { + "start": 31562.74, + "end": 31566.94, + "probability": 0.9508 + }, + { + "start": 31567.76, + "end": 31570.62, + "probability": 0.7305 + }, + { + "start": 31570.62, + "end": 31573.52, + "probability": 0.9988 + }, + { + "start": 31574.5, + "end": 31575.5, + "probability": 0.6662 + }, + { + "start": 31575.98, + "end": 31581.52, + "probability": 0.8823 + }, + { + "start": 31582.82, + "end": 31584.48, + "probability": 0.6652 + }, + { + "start": 31585.7, + "end": 31586.9, + "probability": 0.7885 + }, + { + "start": 31587.74, + "end": 31589.04, + "probability": 0.7955 + }, + { + "start": 31589.68, + "end": 31590.54, + "probability": 0.8527 + }, + { + "start": 31591.56, + "end": 31592.64, + "probability": 0.862 + }, + { + "start": 31593.28, + "end": 31594.42, + "probability": 0.3729 + }, + { + "start": 31595.1, + "end": 31596.62, + "probability": 0.9477 + }, + { + "start": 31597.38, + "end": 31599.0, + "probability": 0.9771 + }, + { + "start": 31600.0, + "end": 31601.92, + "probability": 0.8573 + }, + { + "start": 31602.72, + "end": 31604.22, + "probability": 0.9928 + }, + { + "start": 31604.92, + "end": 31606.92, + "probability": 0.7591 + }, + { + "start": 31607.5, + "end": 31608.0, + "probability": 0.5859 + }, + { + "start": 31609.44, + "end": 31610.28, + "probability": 0.6999 + }, + { + "start": 31610.84, + "end": 31612.26, + "probability": 0.9922 + }, + { + "start": 31612.88, + "end": 31615.28, + "probability": 0.9957 + }, + { + "start": 31616.7, + "end": 31619.34, + "probability": 0.9883 + }, + { + "start": 31619.94, + "end": 31620.72, + "probability": 0.8398 + }, + { + "start": 31622.2, + "end": 31623.0, + "probability": 0.6164 + }, + { + "start": 31623.4, + "end": 31624.38, + "probability": 0.9984 + }, + { + "start": 31625.08, + "end": 31627.52, + "probability": 0.9444 + }, + { + "start": 31628.44, + "end": 31629.62, + "probability": 0.7495 + }, + { + "start": 31631.74, + "end": 31632.64, + "probability": 0.9902 + }, + { + "start": 31633.38, + "end": 31636.38, + "probability": 0.9854 + }, + { + "start": 31638.52, + "end": 31641.7, + "probability": 0.8324 + }, + { + "start": 31643.5, + "end": 31646.42, + "probability": 0.9771 + }, + { + "start": 31646.94, + "end": 31647.78, + "probability": 0.8692 + }, + { + "start": 31648.84, + "end": 31653.26, + "probability": 0.9912 + }, + { + "start": 31653.26, + "end": 31659.2, + "probability": 0.9508 + }, + { + "start": 31659.62, + "end": 31660.82, + "probability": 0.4593 + }, + { + "start": 31661.12, + "end": 31661.96, + "probability": 0.9937 + }, + { + "start": 31662.64, + "end": 31663.38, + "probability": 0.96 + }, + { + "start": 31663.86, + "end": 31664.78, + "probability": 0.9502 + }, + { + "start": 31665.02, + "end": 31667.3, + "probability": 0.8481 + }, + { + "start": 31667.38, + "end": 31667.84, + "probability": 0.7253 + }, + { + "start": 31669.0, + "end": 31671.2, + "probability": 0.7982 + }, + { + "start": 31671.22, + "end": 31671.88, + "probability": 0.8078 + }, + { + "start": 31672.32, + "end": 31674.62, + "probability": 0.9394 + }, + { + "start": 31674.74, + "end": 31675.02, + "probability": 0.8743 + }, + { + "start": 31675.9, + "end": 31677.55, + "probability": 0.8558 + }, + { + "start": 31678.18, + "end": 31680.2, + "probability": 0.965 + }, + { + "start": 31680.4, + "end": 31681.24, + "probability": 0.5237 + }, + { + "start": 31684.28, + "end": 31687.26, + "probability": 0.8101 + }, + { + "start": 31693.82, + "end": 31696.7, + "probability": 0.9809 + }, + { + "start": 31696.7, + "end": 31700.08, + "probability": 0.7491 + }, + { + "start": 31700.16, + "end": 31703.1, + "probability": 0.3197 + }, + { + "start": 31703.82, + "end": 31706.48, + "probability": 0.9633 + }, + { + "start": 31706.72, + "end": 31707.82, + "probability": 0.9299 + }, + { + "start": 31707.92, + "end": 31708.72, + "probability": 0.8279 + }, + { + "start": 31708.78, + "end": 31709.1, + "probability": 0.9496 + }, + { + "start": 31709.5, + "end": 31710.16, + "probability": 0.5563 + }, + { + "start": 31710.64, + "end": 31711.24, + "probability": 0.8446 + }, + { + "start": 31711.28, + "end": 31712.08, + "probability": 0.9732 + }, + { + "start": 31712.12, + "end": 31712.66, + "probability": 0.9559 + }, + { + "start": 31712.7, + "end": 31713.44, + "probability": 0.968 + }, + { + "start": 31714.04, + "end": 31714.66, + "probability": 0.9622 + }, + { + "start": 31714.78, + "end": 31715.6, + "probability": 0.8308 + }, + { + "start": 31715.74, + "end": 31716.62, + "probability": 0.8419 + }, + { + "start": 31716.72, + "end": 31717.74, + "probability": 0.9169 + }, + { + "start": 31718.26, + "end": 31718.92, + "probability": 0.9193 + }, + { + "start": 31718.98, + "end": 31719.96, + "probability": 0.5231 + }, + { + "start": 31720.02, + "end": 31720.82, + "probability": 0.5867 + }, + { + "start": 31720.9, + "end": 31721.38, + "probability": 0.5529 + }, + { + "start": 31721.54, + "end": 31722.76, + "probability": 0.8874 + }, + { + "start": 31723.16, + "end": 31724.22, + "probability": 0.883 + }, + { + "start": 31724.3, + "end": 31725.12, + "probability": 0.9149 + }, + { + "start": 31725.2, + "end": 31725.7, + "probability": 0.83 + }, + { + "start": 31725.86, + "end": 31726.52, + "probability": 0.7766 + }, + { + "start": 31727.22, + "end": 31730.18, + "probability": 0.8651 + }, + { + "start": 31731.36, + "end": 31732.98, + "probability": 0.7005 + }, + { + "start": 31733.1, + "end": 31734.54, + "probability": 0.974 + }, + { + "start": 31734.76, + "end": 31735.32, + "probability": 0.972 + }, + { + "start": 31735.44, + "end": 31736.18, + "probability": 0.4652 + }, + { + "start": 31736.74, + "end": 31737.48, + "probability": 0.7589 + }, + { + "start": 31737.6, + "end": 31738.64, + "probability": 0.6619 + }, + { + "start": 31738.78, + "end": 31739.44, + "probability": 0.8921 + }, + { + "start": 31739.52, + "end": 31740.14, + "probability": 0.9322 + }, + { + "start": 31740.64, + "end": 31741.92, + "probability": 0.9868 + }, + { + "start": 31742.22, + "end": 31742.9, + "probability": 0.9585 + }, + { + "start": 31742.98, + "end": 31744.0, + "probability": 0.9578 + }, + { + "start": 31744.52, + "end": 31746.46, + "probability": 0.7147 + }, + { + "start": 31747.1, + "end": 31748.88, + "probability": 0.6078 + }, + { + "start": 31749.48, + "end": 31752.56, + "probability": 0.7342 + }, + { + "start": 31753.26, + "end": 31754.96, + "probability": 0.824 + }, + { + "start": 31755.52, + "end": 31758.26, + "probability": 0.9821 + }, + { + "start": 31758.34, + "end": 31760.2, + "probability": 0.7901 + }, + { + "start": 31760.86, + "end": 31764.3, + "probability": 0.953 + }, + { + "start": 31765.58, + "end": 31767.54, + "probability": 0.6729 + }, + { + "start": 31768.08, + "end": 31778.76, + "probability": 0.2219 + }, + { + "start": 31778.9, + "end": 31782.48, + "probability": 0.0259 + }, + { + "start": 31782.94, + "end": 31786.6, + "probability": 0.7754 + }, + { + "start": 31786.86, + "end": 31789.34, + "probability": 0.9666 + }, + { + "start": 31789.5, + "end": 31792.5, + "probability": 0.9675 + }, + { + "start": 31795.18, + "end": 31798.56, + "probability": 0.9002 + }, + { + "start": 31805.22, + "end": 31808.08, + "probability": 0.7416 + }, + { + "start": 31810.58, + "end": 31813.46, + "probability": 0.986 + }, + { + "start": 31814.26, + "end": 31815.2, + "probability": 0.7348 + }, + { + "start": 31815.74, + "end": 31816.14, + "probability": 0.6359 + }, + { + "start": 31817.86, + "end": 31819.82, + "probability": 0.0994 + }, + { + "start": 31819.94, + "end": 31820.0, + "probability": 0.1875 + }, + { + "start": 31820.0, + "end": 31820.0, + "probability": 0.0923 + }, + { + "start": 31820.0, + "end": 31820.0, + "probability": 0.016 + }, + { + "start": 31820.0, + "end": 31820.0, + "probability": 0.4143 + }, + { + "start": 31820.0, + "end": 31820.0, + "probability": 0.0427 + }, + { + "start": 31820.0, + "end": 31820.0, + "probability": 0.1507 + }, + { + "start": 31820.0, + "end": 31820.32, + "probability": 0.2398 + }, + { + "start": 31838.26, + "end": 31841.58, + "probability": 0.8465 + }, + { + "start": 31842.22, + "end": 31844.1, + "probability": 0.7337 + }, + { + "start": 31844.66, + "end": 31846.82, + "probability": 0.3642 + }, + { + "start": 31851.86, + "end": 31856.3, + "probability": 0.2219 + }, + { + "start": 31861.66, + "end": 31866.53, + "probability": 0.8016 + }, + { + "start": 31867.44, + "end": 31868.16, + "probability": 0.7435 + }, + { + "start": 31868.44, + "end": 31870.9, + "probability": 0.7282 + }, + { + "start": 31871.62, + "end": 31872.18, + "probability": 0.5107 + }, + { + "start": 31872.28, + "end": 31874.44, + "probability": 0.9869 + }, + { + "start": 31874.94, + "end": 31880.24, + "probability": 0.9813 + }, + { + "start": 31881.22, + "end": 31881.82, + "probability": 0.5187 + }, + { + "start": 31882.58, + "end": 31884.82, + "probability": 0.1549 + }, + { + "start": 31887.44, + "end": 31889.98, + "probability": 0.1596 + }, + { + "start": 31896.12, + "end": 31897.34, + "probability": 0.362 + }, + { + "start": 31903.88, + "end": 31905.66, + "probability": 0.5191 + }, + { + "start": 31906.08, + "end": 31908.72, + "probability": 0.716 + }, + { + "start": 31908.9, + "end": 31913.56, + "probability": 0.751 + }, + { + "start": 31914.26, + "end": 31914.66, + "probability": 0.7045 + }, + { + "start": 31914.74, + "end": 31917.6, + "probability": 0.0575 + }, + { + "start": 31919.04, + "end": 31921.5, + "probability": 0.709 + }, + { + "start": 31922.38, + "end": 31925.61, + "probability": 0.0552 + }, + { + "start": 31927.22, + "end": 31928.26, + "probability": 0.0001 + }, + { + "start": 31935.52, + "end": 31954.26, + "probability": 0.4265 + }, + { + "start": 31954.26, + "end": 31954.26, + "probability": 0.1981 + }, + { + "start": 31954.26, + "end": 31955.82, + "probability": 0.2523 + }, + { + "start": 31955.82, + "end": 31956.78, + "probability": 0.8434 + }, + { + "start": 31957.22, + "end": 31961.9, + "probability": 0.8441 + }, + { + "start": 31964.72, + "end": 31967.9, + "probability": 0.034 + }, + { + "start": 31976.32, + "end": 31978.12, + "probability": 0.3492 + }, + { + "start": 31978.24, + "end": 31979.88, + "probability": 0.8184 + }, + { + "start": 31980.36, + "end": 31981.18, + "probability": 0.6637 + }, + { + "start": 31981.84, + "end": 31983.54, + "probability": 0.9966 + }, + { + "start": 31984.06, + "end": 31988.16, + "probability": 0.9621 + }, + { + "start": 31988.86, + "end": 31989.36, + "probability": 0.5433 + }, + { + "start": 32003.5, + "end": 32004.22, + "probability": 0.1245 + }, + { + "start": 32004.22, + "end": 32006.52, + "probability": 0.3568 + }, + { + "start": 32007.06, + "end": 32009.34, + "probability": 0.7712 + }, + { + "start": 32009.4, + "end": 32011.16, + "probability": 0.6472 + }, + { + "start": 32011.58, + "end": 32011.7, + "probability": 0.4778 + }, + { + "start": 32011.7, + "end": 32014.54, + "probability": 0.905 + }, + { + "start": 32015.06, + "end": 32016.02, + "probability": 0.4598 + }, + { + "start": 32016.62, + "end": 32017.82, + "probability": 0.466 + }, + { + "start": 32018.6, + "end": 32020.1, + "probability": 0.0028 + }, + { + "start": 32029.66, + "end": 32029.76, + "probability": 0.0516 + }, + { + "start": 32031.98, + "end": 32034.38, + "probability": 0.7281 + }, + { + "start": 32034.46, + "end": 32035.92, + "probability": 0.8297 + }, + { + "start": 32036.52, + "end": 32037.18, + "probability": 0.7 + }, + { + "start": 32037.36, + "end": 32042.14, + "probability": 0.9094 + }, + { + "start": 32042.48, + "end": 32047.72, + "probability": 0.938 + }, + { + "start": 32062.32, + "end": 32062.76, + "probability": 0.3646 + }, + { + "start": 32062.76, + "end": 32062.76, + "probability": 0.0738 + }, + { + "start": 32062.76, + "end": 32064.58, + "probability": 0.2001 + }, + { + "start": 32064.74, + "end": 32067.16, + "probability": 0.715 + }, + { + "start": 32067.74, + "end": 32067.74, + "probability": 0.1287 + }, + { + "start": 32067.74, + "end": 32069.46, + "probability": 0.9434 + }, + { + "start": 32070.06, + "end": 32074.3, + "probability": 0.5748 + }, + { + "start": 32075.62, + "end": 32076.18, + "probability": 0.3483 + }, + { + "start": 32077.12, + "end": 32077.2, + "probability": 0.0007 + }, + { + "start": 32087.44, + "end": 32087.9, + "probability": 0.0522 + }, + { + "start": 32087.9, + "end": 32089.86, + "probability": 0.4999 + }, + { + "start": 32089.98, + "end": 32091.24, + "probability": 0.8493 + }, + { + "start": 32091.56, + "end": 32096.36, + "probability": 0.764 + }, + { + "start": 32097.52, + "end": 32099.1, + "probability": 0.0596 + }, + { + "start": 32110.06, + "end": 32112.2, + "probability": 0.8391 + }, + { + "start": 32113.18, + "end": 32117.28, + "probability": 0.9096 + }, + { + "start": 32117.94, + "end": 32120.18, + "probability": 0.3419 + }, + { + "start": 32120.18, + "end": 32120.94, + "probability": 0.7568 + }, + { + "start": 32134.08, + "end": 32135.76, + "probability": 0.8196 + }, + { + "start": 32135.78, + "end": 32137.4, + "probability": 0.9777 + }, + { + "start": 32138.12, + "end": 32139.56, + "probability": 0.6508 + }, + { + "start": 32140.1, + "end": 32140.8, + "probability": 0.1854 + }, + { + "start": 32140.8, + "end": 32141.06, + "probability": 0.4246 + }, + { + "start": 32153.08, + "end": 32156.14, + "probability": 0.6782 + }, + { + "start": 32156.26, + "end": 32157.4, + "probability": 0.8445 + }, + { + "start": 32157.88, + "end": 32159.38, + "probability": 0.8315 + }, + { + "start": 32159.5, + "end": 32162.0, + "probability": 0.7695 + }, + { + "start": 32162.06, + "end": 32162.42, + "probability": 0.9271 + }, + { + "start": 32162.9, + "end": 32165.16, + "probability": 0.8075 + }, + { + "start": 32179.42, + "end": 32179.86, + "probability": 0.1263 + }, + { + "start": 32179.86, + "end": 32181.38, + "probability": 0.4886 + }, + { + "start": 32181.44, + "end": 32182.88, + "probability": 0.4331 + }, + { + "start": 32183.32, + "end": 32184.66, + "probability": 0.7362 + }, + { + "start": 32185.2, + "end": 32186.06, + "probability": 0.4561 + }, + { + "start": 32188.28, + "end": 32191.82, + "probability": 0.6441 + }, + { + "start": 32199.46, + "end": 32201.8, + "probability": 0.6769 + }, + { + "start": 32201.96, + "end": 32204.34, + "probability": 0.7334 + }, + { + "start": 32204.74, + "end": 32207.76, + "probability": 0.9656 + }, + { + "start": 32208.73, + "end": 32210.62, + "probability": 0.1768 + }, + { + "start": 32210.7, + "end": 32213.58, + "probability": 0.242 + }, + { + "start": 32214.0, + "end": 32215.14, + "probability": 0.4209 + }, + { + "start": 32224.64, + "end": 32226.68, + "probability": 0.3745 + }, + { + "start": 32227.2, + "end": 32228.38, + "probability": 0.486 + }, + { + "start": 32229.0, + "end": 32244.06, + "probability": 0.356 + }, + { + "start": 32244.06, + "end": 32244.06, + "probability": 0.2523 + }, + { + "start": 32244.06, + "end": 32245.76, + "probability": 0.7441 + }, + { + "start": 32245.84, + "end": 32249.14, + "probability": 0.8984 + }, + { + "start": 32249.54, + "end": 32251.36, + "probability": 0.3374 + }, + { + "start": 32251.86, + "end": 32253.88, + "probability": 0.9622 + }, + { + "start": 32253.94, + "end": 32255.4, + "probability": 0.9912 + }, + { + "start": 32255.9, + "end": 32256.82, + "probability": 0.7039 + }, + { + "start": 32256.84, + "end": 32256.98, + "probability": 0.1597 + }, + { + "start": 32257.02, + "end": 32257.54, + "probability": 0.7641 + }, + { + "start": 32257.56, + "end": 32259.38, + "probability": 0.9712 + }, + { + "start": 32259.9, + "end": 32263.44, + "probability": 0.8481 + }, + { + "start": 32272.46, + "end": 32275.82, + "probability": 0.4986 + }, + { + "start": 32275.92, + "end": 32278.08, + "probability": 0.6306 + }, + { + "start": 32278.32, + "end": 32280.24, + "probability": 0.8067 + }, + { + "start": 32280.34, + "end": 32296.62, + "probability": 0.8486 + }, + { + "start": 32296.7, + "end": 32296.7, + "probability": 0.3782 + }, + { + "start": 32296.7, + "end": 32298.5, + "probability": 0.2448 + }, + { + "start": 32298.74, + "end": 32299.3, + "probability": 0.678 + }, + { + "start": 32299.98, + "end": 32300.98, + "probability": 0.5226 + }, + { + "start": 32301.5, + "end": 32303.18, + "probability": 0.7463 + }, + { + "start": 32303.96, + "end": 32304.7, + "probability": 0.7303 + }, + { + "start": 32318.54, + "end": 32319.16, + "probability": 0.1129 + }, + { + "start": 32319.16, + "end": 32320.92, + "probability": 0.4601 + }, + { + "start": 32320.98, + "end": 32321.64, + "probability": 0.6586 + }, + { + "start": 32322.16, + "end": 32323.2, + "probability": 0.6851 + }, + { + "start": 32323.3, + "end": 32326.02, + "probability": 0.7581 + }, + { + "start": 32326.04, + "end": 32326.36, + "probability": 0.7197 + }, + { + "start": 32326.96, + "end": 32330.92, + "probability": 0.2232 + }, + { + "start": 32330.98, + "end": 32333.82, + "probability": 0.1733 + }, + { + "start": 32340.64, + "end": 32343.48, + "probability": 0.4609 + }, + { + "start": 32343.88, + "end": 32347.16, + "probability": 0.9503 + }, + { + "start": 32347.72, + "end": 32349.06, + "probability": 0.6242 + }, + { + "start": 32358.78, + "end": 32359.3, + "probability": 0.0409 + }, + { + "start": 32359.32, + "end": 32361.6, + "probability": 0.579 + }, + { + "start": 32361.7, + "end": 32363.62, + "probability": 0.4664 + }, + { + "start": 32363.68, + "end": 32366.64, + "probability": 0.9413 + }, + { + "start": 32380.14, + "end": 32380.84, + "probability": 0.0179 + }, + { + "start": 32380.84, + "end": 32382.44, + "probability": 0.5786 + }, + { + "start": 32383.56, + "end": 32384.34, + "probability": 0.8818 + }, + { + "start": 32384.38, + "end": 32388.26, + "probability": 0.4988 + }, + { + "start": 32401.9, + "end": 32402.06, + "probability": 0.3908 + }, + { + "start": 32402.06, + "end": 32406.16, + "probability": 0.3887 + }, + { + "start": 32409.25, + "end": 32412.08, + "probability": 0.2437 + }, + { + "start": 32422.24, + "end": 32425.82, + "probability": 0.0495 + }, + { + "start": 32426.2, + "end": 32428.0, + "probability": 0.3774 + }, + { + "start": 32428.86, + "end": 32429.28, + "probability": 0.7234 + }, + { + "start": 32429.88, + "end": 32431.28, + "probability": 0.1533 + }, + { + "start": 32441.44, + "end": 32441.9, + "probability": 0.0538 + }, + { + "start": 32441.9, + "end": 32443.88, + "probability": 0.5765 + }, + { + "start": 32444.0, + "end": 32445.42, + "probability": 0.5557 + }, + { + "start": 32445.8, + "end": 32448.08, + "probability": 0.285 + }, + { + "start": 32448.42, + "end": 32448.96, + "probability": 0.5668 + }, + { + "start": 32450.92, + "end": 32452.04, + "probability": 0.0256 + }, + { + "start": 32455.5, + "end": 32457.84, + "probability": 0.1076 + }, + { + "start": 32458.54, + "end": 32460.28, + "probability": 0.0685 + }, + { + "start": 32461.76, + "end": 32463.6, + "probability": 0.4818 + }, + { + "start": 32464.5, + "end": 32465.52, + "probability": 0.0619 + }, + { + "start": 32466.72, + "end": 32468.74, + "probability": 0.2242 + }, + { + "start": 32469.22, + "end": 32471.94, + "probability": 0.6008 + }, + { + "start": 32473.22, + "end": 32479.68, + "probability": 0.0317 + }, + { + "start": 32487.0, + "end": 32487.0, + "probability": 0.0 + }, + { + "start": 32487.0, + "end": 32487.0, + "probability": 0.0 + }, + { + "start": 32487.0, + "end": 32487.0, + "probability": 0.0 + }, + { + "start": 32487.0, + "end": 32487.0, + "probability": 0.0 + }, + { + "start": 32487.0, + "end": 32487.0, + "probability": 0.0 + }, + { + "start": 32487.0, + "end": 32487.0, + "probability": 0.0 + }, + { + "start": 32487.3, + "end": 32487.82, + "probability": 0.3643 + }, + { + "start": 32498.38, + "end": 32499.78, + "probability": 0.0579 + }, + { + "start": 32505.46, + "end": 32507.7, + "probability": 0.7125 + }, + { + "start": 32508.26, + "end": 32510.0, + "probability": 0.5141 + }, + { + "start": 32510.06, + "end": 32511.82, + "probability": 0.2712 + }, + { + "start": 32512.26, + "end": 32512.82, + "probability": 0.4409 + }, + { + "start": 32513.64, + "end": 32513.9, + "probability": 0.4581 + }, + { + "start": 32514.52, + "end": 32515.54, + "probability": 0.3588 + }, + { + "start": 32515.54, + "end": 32517.8, + "probability": 0.3634 + }, + { + "start": 32527.2, + "end": 32527.56, + "probability": 0.3245 + }, + { + "start": 32527.56, + "end": 32527.56, + "probability": 0.1877 + }, + { + "start": 32527.56, + "end": 32527.56, + "probability": 0.7082 + }, + { + "start": 32527.56, + "end": 32527.56, + "probability": 0.2546 + }, + { + "start": 32527.56, + "end": 32529.86, + "probability": 0.7167 + }, + { + "start": 32530.9, + "end": 32532.74, + "probability": 0.8721 + }, + { + "start": 32532.84, + "end": 32536.22, + "probability": 0.8989 + }, + { + "start": 32537.42, + "end": 32539.12, + "probability": 0.0042 + }, + { + "start": 32549.8, + "end": 32549.98, + "probability": 0.0189 + }, + { + "start": 32549.98, + "end": 32554.52, + "probability": 0.7515 + }, + { + "start": 32554.66, + "end": 32561.6, + "probability": 0.9462 + }, + { + "start": 32564.06, + "end": 32566.26, + "probability": 0.2088 + }, + { + "start": 32568.46, + "end": 32569.42, + "probability": 0.5996 + }, + { + "start": 32569.6, + "end": 32571.66, + "probability": 0.5411 + }, + { + "start": 32571.78, + "end": 32573.43, + "probability": 0.5796 + }, + { + "start": 32573.62, + "end": 32577.18, + "probability": 0.2424 + }, + { + "start": 32579.56, + "end": 32581.88, + "probability": 0.0696 + }, + { + "start": 32587.18, + "end": 32590.36, + "probability": 0.6803 + }, + { + "start": 32590.5, + "end": 32593.44, + "probability": 0.8137 + }, + { + "start": 32593.96, + "end": 32600.1, + "probability": 0.963 + }, + { + "start": 32600.62, + "end": 32600.72, + "probability": 0.8643 + }, + { + "start": 32609.14, + "end": 32611.72, + "probability": 0.0039 + }, + { + "start": 32613.88, + "end": 32614.62, + "probability": 0.1462 + }, + { + "start": 32614.62, + "end": 32616.98, + "probability": 0.6734 + }, + { + "start": 32617.08, + "end": 32620.58, + "probability": 0.9901 + }, + { + "start": 32621.18, + "end": 32621.24, + "probability": 0.276 + }, + { + "start": 32621.24, + "end": 32625.46, + "probability": 0.9685 + }, + { + "start": 32625.54, + "end": 32626.8, + "probability": 0.6428 + }, + { + "start": 32627.32, + "end": 32628.56, + "probability": 0.5841 + }, + { + "start": 32629.18, + "end": 32631.0, + "probability": 0.895 + }, + { + "start": 32631.2, + "end": 32633.3, + "probability": 0.8949 + }, + { + "start": 32633.86, + "end": 32634.74, + "probability": 0.3942 + }, + { + "start": 32635.66, + "end": 32636.8, + "probability": 0.804 + }, + { + "start": 32638.14, + "end": 32639.12, + "probability": 0.4909 + }, + { + "start": 32639.66, + "end": 32640.96, + "probability": 0.667 + }, + { + "start": 32641.1, + "end": 32643.18, + "probability": 0.8791 + }, + { + "start": 32643.26, + "end": 32644.68, + "probability": 0.8425 + }, + { + "start": 32648.98, + "end": 32649.78, + "probability": 0.8518 + }, + { + "start": 32650.6, + "end": 32651.58, + "probability": 0.9495 + }, + { + "start": 32652.39, + "end": 32653.74, + "probability": 0.9049 + }, + { + "start": 32654.66, + "end": 32656.42, + "probability": 0.769 + }, + { + "start": 32658.8, + "end": 32663.04, + "probability": 0.7155 + }, + { + "start": 32665.58, + "end": 32666.2, + "probability": 0.8925 + }, + { + "start": 32666.84, + "end": 32667.76, + "probability": 0.8964 + }, + { + "start": 32669.32, + "end": 32669.8, + "probability": 0.8787 + }, + { + "start": 32671.1, + "end": 32671.86, + "probability": 0.8918 + }, + { + "start": 32673.82, + "end": 32675.74, + "probability": 0.9607 + }, + { + "start": 32677.58, + "end": 32678.34, + "probability": 0.9568 + }, + { + "start": 32680.46, + "end": 32681.18, + "probability": 0.9865 + }, + { + "start": 32681.74, + "end": 32682.2, + "probability": 0.9602 + }, + { + "start": 32683.2, + "end": 32683.98, + "probability": 0.9724 + }, + { + "start": 32685.24, + "end": 32685.94, + "probability": 0.9712 + }, + { + "start": 32687.18, + "end": 32688.02, + "probability": 0.8966 + }, + { + "start": 32688.9, + "end": 32689.18, + "probability": 0.7299 + }, + { + "start": 32690.66, + "end": 32691.44, + "probability": 0.5821 + }, + { + "start": 32692.22, + "end": 32692.54, + "probability": 0.8604 + }, + { + "start": 32693.38, + "end": 32694.12, + "probability": 0.7325 + }, + { + "start": 32696.78, + "end": 32697.3, + "probability": 0.8997 + }, + { + "start": 32698.88, + "end": 32699.8, + "probability": 0.8818 + }, + { + "start": 32700.72, + "end": 32701.34, + "probability": 0.9214 + }, + { + "start": 32702.0, + "end": 32702.8, + "probability": 0.9372 + }, + { + "start": 32705.46, + "end": 32706.98, + "probability": 0.9309 + }, + { + "start": 32707.92, + "end": 32708.73, + "probability": 0.9695 + }, + { + "start": 32709.58, + "end": 32710.28, + "probability": 0.9961 + }, + { + "start": 32711.04, + "end": 32712.02, + "probability": 0.9921 + }, + { + "start": 32716.06, + "end": 32716.76, + "probability": 0.8499 + }, + { + "start": 32717.36, + "end": 32719.34, + "probability": 0.3894 + }, + { + "start": 32719.98, + "end": 32720.74, + "probability": 0.5695 + }, + { + "start": 32721.94, + "end": 32722.88, + "probability": 0.756 + }, + { + "start": 32723.44, + "end": 32724.24, + "probability": 0.8021 + }, + { + "start": 32725.26, + "end": 32725.98, + "probability": 0.9019 + }, + { + "start": 32727.01, + "end": 32732.62, + "probability": 0.9526 + }, + { + "start": 32734.84, + "end": 32736.42, + "probability": 0.8999 + }, + { + "start": 32741.16, + "end": 32741.6, + "probability": 0.9192 + }, + { + "start": 32742.9, + "end": 32743.62, + "probability": 0.9537 + }, + { + "start": 32744.54, + "end": 32746.22, + "probability": 0.9085 + }, + { + "start": 32747.06, + "end": 32747.54, + "probability": 0.9829 + }, + { + "start": 32748.88, + "end": 32750.72, + "probability": 0.7867 + }, + { + "start": 32751.4, + "end": 32752.16, + "probability": 0.7593 + }, + { + "start": 32756.64, + "end": 32757.32, + "probability": 0.8783 + }, + { + "start": 32758.16, + "end": 32759.04, + "probability": 0.8189 + }, + { + "start": 32760.18, + "end": 32760.84, + "probability": 0.9834 + }, + { + "start": 32761.38, + "end": 32763.02, + "probability": 0.96 + }, + { + "start": 32763.58, + "end": 32764.6, + "probability": 0.7098 + }, + { + "start": 32771.6, + "end": 32771.8, + "probability": 0.5888 + }, + { + "start": 32773.2, + "end": 32773.82, + "probability": 0.5294 + }, + { + "start": 32774.68, + "end": 32776.0, + "probability": 0.9428 + }, + { + "start": 32776.88, + "end": 32778.72, + "probability": 0.9404 + }, + { + "start": 32779.68, + "end": 32781.0, + "probability": 0.8632 + }, + { + "start": 32781.48, + "end": 32783.38, + "probability": 0.9302 + }, + { + "start": 32789.04, + "end": 32789.58, + "probability": 0.9766 + }, + { + "start": 32791.22, + "end": 32793.7, + "probability": 0.7091 + }, + { + "start": 32795.22, + "end": 32795.62, + "probability": 0.969 + }, + { + "start": 32797.1, + "end": 32798.35, + "probability": 0.9442 + }, + { + "start": 32799.16, + "end": 32799.42, + "probability": 0.5235 + }, + { + "start": 32800.16, + "end": 32801.2, + "probability": 0.9328 + }, + { + "start": 32802.04, + "end": 32803.9, + "probability": 0.7196 + }, + { + "start": 32805.4, + "end": 32806.9, + "probability": 0.8516 + }, + { + "start": 32807.66, + "end": 32808.74, + "probability": 0.6692 + }, + { + "start": 32808.86, + "end": 32810.3, + "probability": 0.5844 + }, + { + "start": 32810.36, + "end": 32811.88, + "probability": 0.8693 + }, + { + "start": 32813.8, + "end": 32814.48, + "probability": 0.9696 + }, + { + "start": 32815.12, + "end": 32815.64, + "probability": 0.0923 + }, + { + "start": 32816.2, + "end": 32817.64, + "probability": 0.7795 + }, + { + "start": 32819.06, + "end": 32823.08, + "probability": 0.8083 + }, + { + "start": 32824.34, + "end": 32826.26, + "probability": 0.9231 + }, + { + "start": 32829.36, + "end": 32831.82, + "probability": 0.9651 + }, + { + "start": 32832.92, + "end": 32833.86, + "probability": 0.9283 + }, + { + "start": 32834.5, + "end": 32835.58, + "probability": 0.9684 + }, + { + "start": 32837.24, + "end": 32839.42, + "probability": 0.9671 + }, + { + "start": 32840.2, + "end": 32840.68, + "probability": 0.9355 + }, + { + "start": 32842.24, + "end": 32842.58, + "probability": 0.7439 + }, + { + "start": 32843.86, + "end": 32845.5, + "probability": 0.8157 + }, + { + "start": 32846.24, + "end": 32847.0, + "probability": 0.9019 + }, + { + "start": 32847.54, + "end": 32848.4, + "probability": 0.9405 + }, + { + "start": 32849.26, + "end": 32849.86, + "probability": 0.984 + }, + { + "start": 32850.58, + "end": 32851.24, + "probability": 0.9025 + }, + { + "start": 32852.16, + "end": 32852.58, + "probability": 0.7756 + }, + { + "start": 32853.82, + "end": 32854.38, + "probability": 0.9337 + }, + { + "start": 32856.52, + "end": 32856.94, + "probability": 0.8008 + }, + { + "start": 32857.84, + "end": 32858.72, + "probability": 0.9593 + }, + { + "start": 32859.66, + "end": 32860.1, + "probability": 0.9626 + }, + { + "start": 32860.84, + "end": 32861.44, + "probability": 0.9891 + }, + { + "start": 32862.98, + "end": 32865.1, + "probability": 0.8099 + }, + { + "start": 32865.38, + "end": 32866.96, + "probability": 0.9608 + }, + { + "start": 32867.24, + "end": 32868.8, + "probability": 0.5989 + }, + { + "start": 32869.86, + "end": 32871.56, + "probability": 0.8969 + }, + { + "start": 32873.32, + "end": 32875.26, + "probability": 0.975 + }, + { + "start": 32875.72, + "end": 32877.18, + "probability": 0.9798 + }, + { + "start": 32877.44, + "end": 32878.04, + "probability": 0.8997 + }, + { + "start": 32878.56, + "end": 32880.18, + "probability": 0.9427 + }, + { + "start": 32881.04, + "end": 32881.44, + "probability": 0.9731 + }, + { + "start": 32882.78, + "end": 32886.32, + "probability": 0.8668 + }, + { + "start": 32888.2, + "end": 32889.06, + "probability": 0.8113 + }, + { + "start": 32890.16, + "end": 32891.24, + "probability": 0.8052 + }, + { + "start": 32892.34, + "end": 32894.36, + "probability": 0.915 + }, + { + "start": 32899.92, + "end": 32900.6, + "probability": 0.8778 + }, + { + "start": 32902.3, + "end": 32903.34, + "probability": 0.9087 + }, + { + "start": 32904.54, + "end": 32904.98, + "probability": 0.9189 + }, + { + "start": 32906.8, + "end": 32907.68, + "probability": 0.9714 + }, + { + "start": 32910.38, + "end": 32912.1, + "probability": 0.9734 + }, + { + "start": 32913.58, + "end": 32914.64, + "probability": 0.7895 + }, + { + "start": 32915.54, + "end": 32917.34, + "probability": 0.6962 + }, + { + "start": 32918.64, + "end": 32919.5, + "probability": 0.8665 + }, + { + "start": 32920.5, + "end": 32922.78, + "probability": 0.5477 + }, + { + "start": 32923.88, + "end": 32924.66, + "probability": 0.9695 + }, + { + "start": 32925.88, + "end": 32926.52, + "probability": 0.9544 + }, + { + "start": 32927.54, + "end": 32930.48, + "probability": 0.9854 + }, + { + "start": 32932.66, + "end": 32935.96, + "probability": 0.9223 + }, + { + "start": 32937.22, + "end": 32938.98, + "probability": 0.8167 + }, + { + "start": 32939.8, + "end": 32940.44, + "probability": 0.717 + }, + { + "start": 32941.24, + "end": 32942.28, + "probability": 0.9371 + }, + { + "start": 32943.36, + "end": 32943.72, + "probability": 0.5971 + }, + { + "start": 32945.9, + "end": 32946.74, + "probability": 0.8532 + }, + { + "start": 32948.77, + "end": 32950.4, + "probability": 0.8379 + }, + { + "start": 32951.16, + "end": 32953.4, + "probability": 0.9556 + }, + { + "start": 32955.51, + "end": 32957.04, + "probability": 0.9098 + }, + { + "start": 32958.96, + "end": 32961.16, + "probability": 0.9668 + }, + { + "start": 32961.92, + "end": 32962.74, + "probability": 0.949 + }, + { + "start": 32963.8, + "end": 32964.28, + "probability": 0.9895 + }, + { + "start": 32965.14, + "end": 32965.92, + "probability": 0.9683 + }, + { + "start": 32966.64, + "end": 32967.08, + "probability": 0.9875 + }, + { + "start": 32967.78, + "end": 32968.4, + "probability": 0.6832 + }, + { + "start": 32969.98, + "end": 32970.74, + "probability": 0.8305 + }, + { + "start": 32971.38, + "end": 32972.02, + "probability": 0.8815 + }, + { + "start": 32974.02, + "end": 32976.2, + "probability": 0.9308 + }, + { + "start": 32976.96, + "end": 32977.4, + "probability": 0.9878 + }, + { + "start": 32979.02, + "end": 32980.02, + "probability": 0.5352 + }, + { + "start": 32980.78, + "end": 32981.24, + "probability": 0.9182 + }, + { + "start": 32981.92, + "end": 32982.72, + "probability": 0.8502 + }, + { + "start": 32983.34, + "end": 32985.8, + "probability": 0.9727 + }, + { + "start": 32986.4, + "end": 32986.9, + "probability": 0.9785 + }, + { + "start": 32987.7, + "end": 32988.5, + "probability": 0.9514 + }, + { + "start": 32990.44, + "end": 32991.24, + "probability": 0.9837 + }, + { + "start": 32992.24, + "end": 32993.08, + "probability": 0.816 + }, + { + "start": 32993.92, + "end": 32994.34, + "probability": 0.541 + }, + { + "start": 32995.4, + "end": 32996.26, + "probability": 0.8227 + }, + { + "start": 32998.16, + "end": 33000.62, + "probability": 0.8365 + }, + { + "start": 33001.6, + "end": 33002.82, + "probability": 0.7808 + }, + { + "start": 33003.6, + "end": 33005.7, + "probability": 0.884 + }, + { + "start": 33006.46, + "end": 33007.92, + "probability": 0.9643 + }, + { + "start": 33008.96, + "end": 33009.6, + "probability": 0.9378 + }, + { + "start": 33010.68, + "end": 33011.4, + "probability": 0.991 + }, + { + "start": 33012.1, + "end": 33012.56, + "probability": 0.9692 + }, + { + "start": 33013.22, + "end": 33014.1, + "probability": 0.9694 + }, + { + "start": 33015.16, + "end": 33016.98, + "probability": 0.9617 + }, + { + "start": 33018.78, + "end": 33019.48, + "probability": 0.7898 + }, + { + "start": 33020.22, + "end": 33020.92, + "probability": 0.6296 + }, + { + "start": 33023.76, + "end": 33024.16, + "probability": 0.8499 + }, + { + "start": 33025.8, + "end": 33026.7, + "probability": 0.8678 + }, + { + "start": 33029.62, + "end": 33030.08, + "probability": 0.5371 + }, + { + "start": 33033.36, + "end": 33033.98, + "probability": 0.6178 + }, + { + "start": 33035.42, + "end": 33036.8, + "probability": 0.6918 + }, + { + "start": 33038.66, + "end": 33039.2, + "probability": 0.9519 + }, + { + "start": 33040.8, + "end": 33041.7, + "probability": 0.8872 + }, + { + "start": 33045.14, + "end": 33046.76, + "probability": 0.8974 + }, + { + "start": 33048.26, + "end": 33048.78, + "probability": 0.9884 + }, + { + "start": 33049.8, + "end": 33050.94, + "probability": 0.9148 + }, + { + "start": 33052.44, + "end": 33053.3, + "probability": 0.9937 + }, + { + "start": 33053.88, + "end": 33054.96, + "probability": 0.7039 + }, + { + "start": 33058.18, + "end": 33058.96, + "probability": 0.9291 + }, + { + "start": 33059.52, + "end": 33060.38, + "probability": 0.6584 + }, + { + "start": 33062.44, + "end": 33063.26, + "probability": 0.804 + }, + { + "start": 33064.16, + "end": 33065.1, + "probability": 0.8574 + }, + { + "start": 33066.16, + "end": 33066.6, + "probability": 0.9803 + }, + { + "start": 33067.82, + "end": 33068.86, + "probability": 0.8244 + }, + { + "start": 33071.24, + "end": 33073.28, + "probability": 0.966 + }, + { + "start": 33074.78, + "end": 33076.6, + "probability": 0.8073 + }, + { + "start": 33077.14, + "end": 33078.28, + "probability": 0.8196 + }, + { + "start": 33080.42, + "end": 33083.36, + "probability": 0.985 + }, + { + "start": 33083.92, + "end": 33085.68, + "probability": 0.6768 + }, + { + "start": 33087.1, + "end": 33087.76, + "probability": 0.3793 + }, + { + "start": 33089.98, + "end": 33090.96, + "probability": 0.1833 + }, + { + "start": 33092.26, + "end": 33095.56, + "probability": 0.7415 + }, + { + "start": 33097.26, + "end": 33097.93, + "probability": 0.388 + }, + { + "start": 33102.22, + "end": 33104.7, + "probability": 0.6663 + }, + { + "start": 33106.98, + "end": 33109.86, + "probability": 0.8159 + }, + { + "start": 33110.58, + "end": 33112.16, + "probability": 0.931 + }, + { + "start": 33112.88, + "end": 33113.3, + "probability": 0.9219 + }, + { + "start": 33117.38, + "end": 33118.06, + "probability": 0.9131 + }, + { + "start": 33118.96, + "end": 33121.34, + "probability": 0.7616 + }, + { + "start": 33124.42, + "end": 33124.9, + "probability": 0.9661 + }, + { + "start": 33128.94, + "end": 33129.84, + "probability": 0.6641 + }, + { + "start": 33130.6, + "end": 33131.94, + "probability": 0.9631 + }, + { + "start": 33133.1, + "end": 33133.94, + "probability": 0.939 + }, + { + "start": 33139.0, + "end": 33140.56, + "probability": 0.7394 + }, + { + "start": 33141.58, + "end": 33142.36, + "probability": 0.6858 + }, + { + "start": 33144.78, + "end": 33145.14, + "probability": 0.8835 + }, + { + "start": 33147.92, + "end": 33148.74, + "probability": 0.7736 + }, + { + "start": 33150.12, + "end": 33150.74, + "probability": 0.8136 + }, + { + "start": 33151.5, + "end": 33152.38, + "probability": 0.8324 + }, + { + "start": 33156.58, + "end": 33156.58, + "probability": 0.7913 + }, + { + "start": 33157.54, + "end": 33159.82, + "probability": 0.8911 + }, + { + "start": 33160.6, + "end": 33160.98, + "probability": 0.9635 + }, + { + "start": 33163.36, + "end": 33164.04, + "probability": 0.9534 + }, + { + "start": 33165.18, + "end": 33165.94, + "probability": 0.9565 + }, + { + "start": 33166.48, + "end": 33167.34, + "probability": 0.9288 + }, + { + "start": 33168.02, + "end": 33168.42, + "probability": 0.9873 + }, + { + "start": 33170.54, + "end": 33171.28, + "probability": 0.9702 + }, + { + "start": 33171.82, + "end": 33173.62, + "probability": 0.9751 + }, + { + "start": 33174.26, + "end": 33174.96, + "probability": 0.9496 + }, + { + "start": 33175.98, + "end": 33177.86, + "probability": 0.5685 + }, + { + "start": 33179.08, + "end": 33179.94, + "probability": 0.6372 + }, + { + "start": 33181.44, + "end": 33184.0, + "probability": 0.8511 + }, + { + "start": 33184.56, + "end": 33186.54, + "probability": 0.6731 + }, + { + "start": 33186.64, + "end": 33188.34, + "probability": 0.8206 + }, + { + "start": 33188.82, + "end": 33190.16, + "probability": 0.8398 + }, + { + "start": 33190.7, + "end": 33191.1, + "probability": 0.991 + }, + { + "start": 33193.38, + "end": 33194.08, + "probability": 0.9893 + }, + { + "start": 33194.88, + "end": 33195.5, + "probability": 0.9796 + }, + { + "start": 33198.94, + "end": 33199.7, + "probability": 0.8303 + }, + { + "start": 33200.84, + "end": 33201.3, + "probability": 0.8018 + }, + { + "start": 33203.4, + "end": 33204.06, + "probability": 0.7526 + }, + { + "start": 33206.16, + "end": 33208.34, + "probability": 0.8557 + }, + { + "start": 33209.26, + "end": 33210.12, + "probability": 0.9756 + }, + { + "start": 33211.9, + "end": 33212.62, + "probability": 0.9879 + }, + { + "start": 33213.6, + "end": 33219.08, + "probability": 0.9471 + }, + { + "start": 33219.68, + "end": 33220.34, + "probability": 0.9844 + }, + { + "start": 33221.6, + "end": 33222.18, + "probability": 0.9896 + }, + { + "start": 33224.22, + "end": 33225.14, + "probability": 0.4696 + }, + { + "start": 33225.78, + "end": 33226.02, + "probability": 0.8041 + }, + { + "start": 33227.52, + "end": 33228.04, + "probability": 0.7588 + }, + { + "start": 33229.02, + "end": 33229.68, + "probability": 0.9515 + }, + { + "start": 33230.3, + "end": 33231.08, + "probability": 0.9615 + }, + { + "start": 33232.38, + "end": 33234.22, + "probability": 0.889 + }, + { + "start": 33238.14, + "end": 33239.0, + "probability": 0.927 + }, + { + "start": 33239.66, + "end": 33240.6, + "probability": 0.9933 + }, + { + "start": 33240.96, + "end": 33242.74, + "probability": 0.9855 + }, + { + "start": 33243.08, + "end": 33245.04, + "probability": 0.9811 + }, + { + "start": 33245.98, + "end": 33246.38, + "probability": 0.9928 + }, + { + "start": 33249.28, + "end": 33250.16, + "probability": 0.6067 + }, + { + "start": 33251.28, + "end": 33253.46, + "probability": 0.8499 + }, + { + "start": 33254.42, + "end": 33255.28, + "probability": 0.985 + }, + { + "start": 33256.92, + "end": 33257.92, + "probability": 0.8144 + }, + { + "start": 33260.64, + "end": 33261.3, + "probability": 0.8664 + }, + { + "start": 33265.8, + "end": 33266.72, + "probability": 0.5821 + }, + { + "start": 33267.56, + "end": 33269.04, + "probability": 0.7511 + }, + { + "start": 33271.24, + "end": 33271.7, + "probability": 0.9368 + }, + { + "start": 33275.28, + "end": 33277.66, + "probability": 0.6552 + }, + { + "start": 33278.82, + "end": 33279.34, + "probability": 0.9915 + }, + { + "start": 33280.38, + "end": 33281.26, + "probability": 0.805 + }, + { + "start": 33281.82, + "end": 33283.78, + "probability": 0.9795 + }, + { + "start": 33284.78, + "end": 33285.66, + "probability": 0.9631 + }, + { + "start": 33287.56, + "end": 33288.46, + "probability": 0.9965 + }, + { + "start": 33289.46, + "end": 33290.1, + "probability": 0.9619 + }, + { + "start": 33291.92, + "end": 33292.68, + "probability": 0.9953 + }, + { + "start": 33294.96, + "end": 33295.78, + "probability": 0.9213 + }, + { + "start": 33297.74, + "end": 33298.2, + "probability": 0.9967 + }, + { + "start": 33300.6, + "end": 33301.58, + "probability": 0.8239 + }, + { + "start": 33302.46, + "end": 33302.86, + "probability": 0.9961 + }, + { + "start": 33304.88, + "end": 33306.12, + "probability": 0.8163 + }, + { + "start": 33307.02, + "end": 33307.32, + "probability": 0.745 + }, + { + "start": 33309.1, + "end": 33310.44, + "probability": 0.8734 + }, + { + "start": 33311.14, + "end": 33312.52, + "probability": 0.9875 + }, + { + "start": 33313.5, + "end": 33314.26, + "probability": 0.9556 + }, + { + "start": 33315.16, + "end": 33315.76, + "probability": 0.9056 + }, + { + "start": 33316.74, + "end": 33317.52, + "probability": 0.986 + }, + { + "start": 33318.98, + "end": 33319.44, + "probability": 0.9956 + }, + { + "start": 33323.42, + "end": 33323.9, + "probability": 0.4201 + }, + { + "start": 33324.72, + "end": 33326.2, + "probability": 0.8841 + }, + { + "start": 33328.82, + "end": 33329.5, + "probability": 0.8565 + }, + { + "start": 33330.62, + "end": 33331.68, + "probability": 0.7801 + }, + { + "start": 33333.1, + "end": 33333.96, + "probability": 0.9486 + }, + { + "start": 33335.12, + "end": 33335.96, + "probability": 0.7837 + }, + { + "start": 33336.88, + "end": 33337.26, + "probability": 0.9181 + }, + { + "start": 33338.96, + "end": 33339.78, + "probability": 0.7653 + }, + { + "start": 33341.48, + "end": 33343.6, + "probability": 0.9924 + }, + { + "start": 33346.19, + "end": 33350.4, + "probability": 0.9902 + }, + { + "start": 33350.54, + "end": 33352.06, + "probability": 0.7249 + }, + { + "start": 33352.84, + "end": 33355.5, + "probability": 0.9275 + }, + { + "start": 33357.64, + "end": 33361.0, + "probability": 0.9619 + }, + { + "start": 33362.18, + "end": 33363.1, + "probability": 0.6908 + }, + { + "start": 33363.16, + "end": 33364.18, + "probability": 0.4559 + }, + { + "start": 33364.22, + "end": 33365.72, + "probability": 0.829 + }, + { + "start": 33375.58, + "end": 33376.64, + "probability": 0.3548 + }, + { + "start": 33376.72, + "end": 33377.48, + "probability": 0.5724 + }, + { + "start": 33377.72, + "end": 33378.34, + "probability": 0.1188 + }, + { + "start": 33378.56, + "end": 33379.32, + "probability": 0.8929 + }, + { + "start": 33379.68, + "end": 33381.76, + "probability": 0.7882 + }, + { + "start": 33382.34, + "end": 33383.22, + "probability": 0.2654 + }, + { + "start": 33383.86, + "end": 33383.86, + "probability": 0.2213 + }, + { + "start": 33383.86, + "end": 33385.92, + "probability": 0.1311 + }, + { + "start": 33386.52, + "end": 33387.08, + "probability": 0.2564 + }, + { + "start": 33390.6, + "end": 33391.96, + "probability": 0.0274 + }, + { + "start": 33393.96, + "end": 33395.0, + "probability": 0.028 + }, + { + "start": 33395.2, + "end": 33397.52, + "probability": 0.0058 + }, + { + "start": 33399.78, + "end": 33400.22, + "probability": 0.0554 + }, + { + "start": 33406.41, + "end": 33408.5, + "probability": 0.0409 + }, + { + "start": 33409.86, + "end": 33411.6, + "probability": 0.115 + }, + { + "start": 33411.6, + "end": 33414.49, + "probability": 0.0249 + }, + { + "start": 33417.56, + "end": 33421.0, + "probability": 0.0037 + }, + { + "start": 33421.86, + "end": 33421.92, + "probability": 0.0515 + }, + { + "start": 33423.22, + "end": 33423.66, + "probability": 0.054 + }, + { + "start": 33588.0, + "end": 33588.0, + "probability": 0.0 + }, + { + "start": 33588.0, + "end": 33588.0, + "probability": 0.0 + }, + { + "start": 33588.38, + "end": 33590.12, + "probability": 0.015 + }, + { + "start": 33591.94, + "end": 33594.52, + "probability": 0.2575 + }, + { + "start": 33606.96, + "end": 33608.06, + "probability": 0.0101 + }, + { + "start": 33608.06, + "end": 33608.06, + "probability": 0.0538 + }, + { + "start": 33608.06, + "end": 33608.36, + "probability": 0.0345 + }, + { + "start": 33608.36, + "end": 33608.36, + "probability": 0.0659 + }, + { + "start": 33609.38, + "end": 33611.5, + "probability": 0.3557 + }, + { + "start": 33614.28, + "end": 33615.4, + "probability": 0.6752 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33708.0, + "end": 33708.0, + "probability": 0.0 + }, + { + "start": 33709.01, + "end": 33711.46, + "probability": 0.9786 + }, + { + "start": 33712.5, + "end": 33716.92, + "probability": 0.9771 + }, + { + "start": 33717.38, + "end": 33722.6, + "probability": 0.9946 + }, + { + "start": 33722.6, + "end": 33727.0, + "probability": 0.9941 + }, + { + "start": 33727.78, + "end": 33733.92, + "probability": 0.9969 + }, + { + "start": 33734.6, + "end": 33739.16, + "probability": 0.9903 + }, + { + "start": 33739.16, + "end": 33744.08, + "probability": 0.9827 + }, + { + "start": 33745.36, + "end": 33749.54, + "probability": 0.9353 + }, + { + "start": 33749.7, + "end": 33752.68, + "probability": 0.9573 + }, + { + "start": 33753.2, + "end": 33757.7, + "probability": 0.9968 + }, + { + "start": 33757.75, + "end": 33763.3, + "probability": 0.9938 + }, + { + "start": 33764.92, + "end": 33768.8, + "probability": 0.9886 + }, + { + "start": 33768.8, + "end": 33773.5, + "probability": 0.8784 + }, + { + "start": 33774.16, + "end": 33777.64, + "probability": 0.9875 + }, + { + "start": 33777.96, + "end": 33779.98, + "probability": 0.641 + }, + { + "start": 33780.08, + "end": 33781.01, + "probability": 0.0528 + }, + { + "start": 33781.92, + "end": 33782.28, + "probability": 0.2874 + }, + { + "start": 33782.28, + "end": 33786.92, + "probability": 0.8011 + }, + { + "start": 33787.24, + "end": 33788.06, + "probability": 0.443 + }, + { + "start": 33788.1, + "end": 33788.9, + "probability": 0.4643 + }, + { + "start": 33788.9, + "end": 33790.83, + "probability": 0.09 + }, + { + "start": 33791.72, + "end": 33793.1, + "probability": 0.4787 + }, + { + "start": 33793.74, + "end": 33795.34, + "probability": 0.136 + }, + { + "start": 33798.08, + "end": 33802.64, + "probability": 0.9888 + }, + { + "start": 33802.64, + "end": 33805.9, + "probability": 0.9963 + }, + { + "start": 33806.44, + "end": 33808.3, + "probability": 0.9948 + }, + { + "start": 33808.86, + "end": 33811.56, + "probability": 0.817 + }, + { + "start": 33812.08, + "end": 33815.72, + "probability": 0.9562 + }, + { + "start": 33816.82, + "end": 33820.28, + "probability": 0.9916 + }, + { + "start": 33820.28, + "end": 33824.46, + "probability": 0.9903 + }, + { + "start": 33825.16, + "end": 33825.52, + "probability": 0.6954 + }, + { + "start": 33825.58, + "end": 33830.18, + "probability": 0.9739 + }, + { + "start": 33830.26, + "end": 33832.32, + "probability": 0.9987 + }, + { + "start": 33832.84, + "end": 33834.86, + "probability": 0.9889 + }, + { + "start": 33835.66, + "end": 33840.48, + "probability": 0.9899 + }, + { + "start": 33841.38, + "end": 33847.1, + "probability": 0.964 + }, + { + "start": 33847.1, + "end": 33851.88, + "probability": 0.9761 + }, + { + "start": 33852.1, + "end": 33857.38, + "probability": 0.9919 + }, + { + "start": 33857.38, + "end": 33860.88, + "probability": 0.9971 + }, + { + "start": 33860.9, + "end": 33866.92, + "probability": 0.9381 + }, + { + "start": 33867.6, + "end": 33868.54, + "probability": 0.8641 + }, + { + "start": 33869.88, + "end": 33873.02, + "probability": 0.9945 + }, + { + "start": 33873.9, + "end": 33878.18, + "probability": 0.9788 + }, + { + "start": 33879.24, + "end": 33882.94, + "probability": 0.8894 + }, + { + "start": 33883.4, + "end": 33883.72, + "probability": 0.7711 + }, + { + "start": 33885.12, + "end": 33889.68, + "probability": 0.9979 + }, + { + "start": 33889.68, + "end": 33893.28, + "probability": 0.9969 + }, + { + "start": 33894.1, + "end": 33898.62, + "probability": 0.9766 + }, + { + "start": 33898.94, + "end": 33900.16, + "probability": 0.8259 + }, + { + "start": 33900.84, + "end": 33903.94, + "probability": 0.9346 + }, + { + "start": 33905.82, + "end": 33906.06, + "probability": 0.8158 + }, + { + "start": 33906.68, + "end": 33910.41, + "probability": 0.9924 + }, + { + "start": 33910.48, + "end": 33914.4, + "probability": 0.9948 + }, + { + "start": 33914.96, + "end": 33920.28, + "probability": 0.9895 + }, + { + "start": 33920.7, + "end": 33922.16, + "probability": 0.8154 + }, + { + "start": 33922.7, + "end": 33929.32, + "probability": 0.9893 + }, + { + "start": 33929.64, + "end": 33931.8, + "probability": 0.8846 + }, + { + "start": 33932.48, + "end": 33938.78, + "probability": 0.9787 + }, + { + "start": 33939.54, + "end": 33941.1, + "probability": 0.9788 + }, + { + "start": 33942.94, + "end": 33945.82, + "probability": 0.9247 + }, + { + "start": 33945.82, + "end": 33949.06, + "probability": 0.9967 + }, + { + "start": 33950.02, + "end": 33954.4, + "probability": 0.9969 + }, + { + "start": 33954.98, + "end": 33958.4, + "probability": 0.9898 + }, + { + "start": 33958.4, + "end": 33961.84, + "probability": 0.9886 + }, + { + "start": 33962.7, + "end": 33963.06, + "probability": 0.5977 + }, + { + "start": 33963.94, + "end": 33968.76, + "probability": 0.9773 + }, + { + "start": 33969.34, + "end": 33972.04, + "probability": 0.7195 + }, + { + "start": 33972.82, + "end": 33977.06, + "probability": 0.9938 + }, + { + "start": 33977.96, + "end": 33979.94, + "probability": 0.998 + }, + { + "start": 33980.44, + "end": 33984.3, + "probability": 0.9966 + }, + { + "start": 33985.2, + "end": 33988.06, + "probability": 0.9961 + }, + { + "start": 33988.24, + "end": 33988.64, + "probability": 0.8505 + }, + { + "start": 33988.9, + "end": 33989.48, + "probability": 0.9565 + }, + { + "start": 33989.96, + "end": 33991.38, + "probability": 0.9438 + }, + { + "start": 33993.24, + "end": 33995.26, + "probability": 0.9845 + }, + { + "start": 33995.46, + "end": 33997.76, + "probability": 0.987 + }, + { + "start": 33998.46, + "end": 34002.1, + "probability": 0.9652 + }, + { + "start": 34002.1, + "end": 34004.72, + "probability": 0.958 + }, + { + "start": 34005.26, + "end": 34009.08, + "probability": 0.9912 + }, + { + "start": 34009.68, + "end": 34012.14, + "probability": 0.9578 + }, + { + "start": 34013.06, + "end": 34014.9, + "probability": 0.876 + }, + { + "start": 34015.44, + "end": 34018.18, + "probability": 0.9891 + }, + { + "start": 34019.02, + "end": 34023.56, + "probability": 0.9347 + }, + { + "start": 34023.82, + "end": 34024.06, + "probability": 0.6699 + }, + { + "start": 34027.0, + "end": 34029.66, + "probability": 0.6244 + }, + { + "start": 34030.2, + "end": 34031.9, + "probability": 0.9238 + }, + { + "start": 34031.98, + "end": 34033.34, + "probability": 0.777 + }, + { + "start": 34034.18, + "end": 34035.78, + "probability": 0.7208 + }, + { + "start": 34035.98, + "end": 34036.16, + "probability": 0.7795 + }, + { + "start": 34052.86, + "end": 34054.48, + "probability": 0.7487 + }, + { + "start": 34055.06, + "end": 34055.4, + "probability": 0.9016 + }, + { + "start": 34055.84, + "end": 34058.7, + "probability": 0.4888 + }, + { + "start": 34059.74, + "end": 34061.98, + "probability": 0.8204 + }, + { + "start": 34063.22, + "end": 34067.6, + "probability": 0.95 + }, + { + "start": 34067.82, + "end": 34072.44, + "probability": 0.937 + }, + { + "start": 34072.9, + "end": 34074.24, + "probability": 0.8407 + }, + { + "start": 34077.64, + "end": 34078.84, + "probability": 0.5221 + }, + { + "start": 34080.5, + "end": 34081.87, + "probability": 0.5318 + }, + { + "start": 34083.7, + "end": 34086.88, + "probability": 0.9905 + }, + { + "start": 34089.28, + "end": 34092.08, + "probability": 0.9497 + }, + { + "start": 34092.98, + "end": 34094.14, + "probability": 0.7472 + }, + { + "start": 34094.3, + "end": 34096.34, + "probability": 0.7175 + }, + { + "start": 34096.42, + "end": 34097.08, + "probability": 0.958 + }, + { + "start": 34097.56, + "end": 34099.64, + "probability": 0.89 + }, + { + "start": 34099.72, + "end": 34101.24, + "probability": 0.9976 + }, + { + "start": 34102.28, + "end": 34104.68, + "probability": 0.7383 + }, + { + "start": 34105.9, + "end": 34106.74, + "probability": 0.9083 + }, + { + "start": 34107.78, + "end": 34108.48, + "probability": 0.7861 + }, + { + "start": 34108.56, + "end": 34109.52, + "probability": 0.7455 + }, + { + "start": 34109.68, + "end": 34114.62, + "probability": 0.9059 + }, + { + "start": 34114.62, + "end": 34118.0, + "probability": 0.9948 + }, + { + "start": 34119.8, + "end": 34123.9, + "probability": 0.9745 + }, + { + "start": 34125.58, + "end": 34126.62, + "probability": 0.5603 + }, + { + "start": 34127.86, + "end": 34128.9, + "probability": 0.9988 + }, + { + "start": 34129.72, + "end": 34131.88, + "probability": 0.8491 + }, + { + "start": 34133.16, + "end": 34135.73, + "probability": 0.9979 + }, + { + "start": 34136.94, + "end": 34142.8, + "probability": 0.9834 + }, + { + "start": 34144.34, + "end": 34144.98, + "probability": 0.4743 + }, + { + "start": 34145.02, + "end": 34148.87, + "probability": 0.9934 + }, + { + "start": 34150.9, + "end": 34153.22, + "probability": 0.8751 + }, + { + "start": 34153.32, + "end": 34155.38, + "probability": 0.8826 + }, + { + "start": 34155.62, + "end": 34156.76, + "probability": 0.756 + }, + { + "start": 34157.64, + "end": 34159.05, + "probability": 0.9802 + }, + { + "start": 34160.14, + "end": 34163.46, + "probability": 0.9745 + }, + { + "start": 34164.02, + "end": 34168.54, + "probability": 0.9912 + }, + { + "start": 34168.66, + "end": 34170.64, + "probability": 0.9233 + }, + { + "start": 34171.62, + "end": 34173.96, + "probability": 0.9961 + }, + { + "start": 34174.58, + "end": 34176.36, + "probability": 0.6735 + }, + { + "start": 34177.78, + "end": 34180.62, + "probability": 0.8677 + }, + { + "start": 34180.86, + "end": 34183.68, + "probability": 0.9825 + }, + { + "start": 34184.88, + "end": 34188.12, + "probability": 0.9937 + }, + { + "start": 34188.42, + "end": 34189.47, + "probability": 0.9971 + }, + { + "start": 34191.26, + "end": 34192.16, + "probability": 0.9971 + }, + { + "start": 34192.86, + "end": 34196.06, + "probability": 0.8994 + }, + { + "start": 34196.22, + "end": 34196.3, + "probability": 0.1724 + }, + { + "start": 34197.26, + "end": 34199.02, + "probability": 0.8496 + }, + { + "start": 34200.74, + "end": 34205.36, + "probability": 0.9762 + }, + { + "start": 34206.62, + "end": 34207.5, + "probability": 0.7199 + }, + { + "start": 34208.76, + "end": 34209.92, + "probability": 0.896 + }, + { + "start": 34211.04, + "end": 34216.08, + "probability": 0.9957 + }, + { + "start": 34217.28, + "end": 34219.24, + "probability": 0.7119 + }, + { + "start": 34220.34, + "end": 34222.5, + "probability": 0.9305 + }, + { + "start": 34223.7, + "end": 34225.32, + "probability": 0.6689 + }, + { + "start": 34227.04, + "end": 34228.44, + "probability": 0.9976 + }, + { + "start": 34228.62, + "end": 34231.18, + "probability": 0.9948 + }, + { + "start": 34231.28, + "end": 34233.12, + "probability": 0.9306 + }, + { + "start": 34233.96, + "end": 34235.28, + "probability": 0.6822 + }, + { + "start": 34235.74, + "end": 34237.1, + "probability": 0.8983 + }, + { + "start": 34237.18, + "end": 34238.34, + "probability": 0.7236 + }, + { + "start": 34238.9, + "end": 34240.9, + "probability": 0.7204 + }, + { + "start": 34242.18, + "end": 34244.16, + "probability": 0.9613 + }, + { + "start": 34244.72, + "end": 34248.9, + "probability": 0.9932 + }, + { + "start": 34249.14, + "end": 34251.76, + "probability": 0.8442 + }, + { + "start": 34251.76, + "end": 34251.76, + "probability": 0.381 + }, + { + "start": 34251.76, + "end": 34253.32, + "probability": 0.6515 + }, + { + "start": 34255.46, + "end": 34258.88, + "probability": 0.9702 + }, + { + "start": 34260.16, + "end": 34261.02, + "probability": 0.9919 + }, + { + "start": 34262.48, + "end": 34264.2, + "probability": 0.8351 + }, + { + "start": 34265.1, + "end": 34267.44, + "probability": 0.9641 + }, + { + "start": 34268.62, + "end": 34272.12, + "probability": 0.9518 + }, + { + "start": 34272.54, + "end": 34273.02, + "probability": 0.8687 + }, + { + "start": 34273.86, + "end": 34277.52, + "probability": 0.9268 + }, + { + "start": 34278.6, + "end": 34283.73, + "probability": 0.9775 + }, + { + "start": 34284.52, + "end": 34285.7, + "probability": 0.9219 + }, + { + "start": 34287.18, + "end": 34288.34, + "probability": 0.6311 + }, + { + "start": 34288.38, + "end": 34289.28, + "probability": 0.8506 + }, + { + "start": 34289.42, + "end": 34290.28, + "probability": 0.8524 + }, + { + "start": 34290.38, + "end": 34291.42, + "probability": 0.8153 + }, + { + "start": 34292.22, + "end": 34292.36, + "probability": 0.5987 + }, + { + "start": 34292.46, + "end": 34294.66, + "probability": 0.9912 + }, + { + "start": 34295.2, + "end": 34296.66, + "probability": 0.995 + }, + { + "start": 34297.64, + "end": 34299.46, + "probability": 0.9983 + }, + { + "start": 34300.5, + "end": 34301.9, + "probability": 0.9966 + }, + { + "start": 34302.89, + "end": 34304.9, + "probability": 0.7566 + }, + { + "start": 34304.92, + "end": 34305.99, + "probability": 0.9478 + }, + { + "start": 34306.66, + "end": 34308.0, + "probability": 0.8875 + }, + { + "start": 34308.36, + "end": 34309.5, + "probability": 0.9275 + }, + { + "start": 34310.86, + "end": 34311.56, + "probability": 0.9189 + }, + { + "start": 34312.08, + "end": 34315.36, + "probability": 0.9936 + }, + { + "start": 34316.1, + "end": 34317.22, + "probability": 0.7573 + }, + { + "start": 34318.22, + "end": 34320.0, + "probability": 0.7877 + }, + { + "start": 34320.1, + "end": 34321.1, + "probability": 0.9934 + }, + { + "start": 34322.44, + "end": 34325.18, + "probability": 0.9917 + }, + { + "start": 34325.72, + "end": 34326.3, + "probability": 0.9619 + }, + { + "start": 34326.94, + "end": 34327.36, + "probability": 0.5861 + }, + { + "start": 34328.14, + "end": 34330.22, + "probability": 0.7943 + }, + { + "start": 34330.36, + "end": 34331.31, + "probability": 0.9083 + }, + { + "start": 34332.4, + "end": 34336.72, + "probability": 0.9986 + }, + { + "start": 34336.76, + "end": 34338.66, + "probability": 0.9236 + }, + { + "start": 34339.78, + "end": 34341.04, + "probability": 0.9868 + }, + { + "start": 34341.82, + "end": 34343.48, + "probability": 0.9965 + }, + { + "start": 34344.38, + "end": 34346.5, + "probability": 0.9974 + }, + { + "start": 34346.62, + "end": 34347.22, + "probability": 0.2245 + }, + { + "start": 34347.38, + "end": 34348.72, + "probability": 0.9695 + }, + { + "start": 34349.06, + "end": 34350.8, + "probability": 0.8064 + }, + { + "start": 34351.82, + "end": 34353.7, + "probability": 0.9854 + }, + { + "start": 34354.36, + "end": 34354.94, + "probability": 0.9892 + }, + { + "start": 34355.7, + "end": 34358.54, + "probability": 0.705 + }, + { + "start": 34358.84, + "end": 34360.54, + "probability": 0.4364 + }, + { + "start": 34361.36, + "end": 34363.06, + "probability": 0.9397 + }, + { + "start": 34363.82, + "end": 34366.16, + "probability": 0.987 + }, + { + "start": 34366.92, + "end": 34370.9, + "probability": 0.9985 + }, + { + "start": 34371.12, + "end": 34372.22, + "probability": 0.9705 + }, + { + "start": 34373.0, + "end": 34375.36, + "probability": 0.9387 + }, + { + "start": 34376.66, + "end": 34378.12, + "probability": 0.9738 + }, + { + "start": 34379.18, + "end": 34380.38, + "probability": 0.9828 + }, + { + "start": 34380.98, + "end": 34383.36, + "probability": 0.8816 + }, + { + "start": 34384.52, + "end": 34386.52, + "probability": 0.8066 + }, + { + "start": 34388.08, + "end": 34389.0, + "probability": 0.8215 + }, + { + "start": 34389.64, + "end": 34391.42, + "probability": 0.9961 + }, + { + "start": 34392.06, + "end": 34393.6, + "probability": 0.9972 + }, + { + "start": 34393.9, + "end": 34395.94, + "probability": 0.9971 + }, + { + "start": 34396.02, + "end": 34397.66, + "probability": 0.9172 + }, + { + "start": 34398.18, + "end": 34399.82, + "probability": 0.9863 + }, + { + "start": 34399.94, + "end": 34403.2, + "probability": 0.9978 + }, + { + "start": 34403.72, + "end": 34404.92, + "probability": 0.8076 + }, + { + "start": 34405.2, + "end": 34406.46, + "probability": 0.9485 + }, + { + "start": 34407.42, + "end": 34410.68, + "probability": 0.9536 + }, + { + "start": 34412.02, + "end": 34413.28, + "probability": 0.9064 + }, + { + "start": 34413.42, + "end": 34415.9, + "probability": 0.9966 + }, + { + "start": 34416.1, + "end": 34418.82, + "probability": 0.992 + }, + { + "start": 34419.74, + "end": 34421.94, + "probability": 0.9589 + }, + { + "start": 34422.6, + "end": 34424.08, + "probability": 0.9951 + }, + { + "start": 34424.88, + "end": 34427.9, + "probability": 0.9954 + }, + { + "start": 34429.96, + "end": 34430.83, + "probability": 0.999 + }, + { + "start": 34431.98, + "end": 34432.78, + "probability": 0.8532 + }, + { + "start": 34433.74, + "end": 34439.42, + "probability": 0.9989 + }, + { + "start": 34440.08, + "end": 34440.84, + "probability": 0.7808 + }, + { + "start": 34441.04, + "end": 34441.3, + "probability": 0.8619 + }, + { + "start": 34441.54, + "end": 34442.62, + "probability": 0.5001 + }, + { + "start": 34442.96, + "end": 34444.02, + "probability": 0.9871 + }, + { + "start": 34445.24, + "end": 34447.14, + "probability": 0.9703 + }, + { + "start": 34448.0, + "end": 34448.7, + "probability": 0.8654 + }, + { + "start": 34449.62, + "end": 34451.49, + "probability": 0.7052 + }, + { + "start": 34451.98, + "end": 34452.98, + "probability": 0.9927 + }, + { + "start": 34453.14, + "end": 34454.46, + "probability": 0.9159 + }, + { + "start": 34455.32, + "end": 34456.34, + "probability": 0.8698 + }, + { + "start": 34456.44, + "end": 34458.49, + "probability": 0.9931 + }, + { + "start": 34459.0, + "end": 34460.66, + "probability": 0.9924 + }, + { + "start": 34461.88, + "end": 34463.46, + "probability": 0.9893 + }, + { + "start": 34465.0, + "end": 34469.22, + "probability": 0.9979 + }, + { + "start": 34469.6, + "end": 34471.72, + "probability": 0.9743 + }, + { + "start": 34471.78, + "end": 34472.74, + "probability": 0.4861 + }, + { + "start": 34473.68, + "end": 34475.44, + "probability": 0.9746 + }, + { + "start": 34476.6, + "end": 34477.46, + "probability": 0.9888 + }, + { + "start": 34478.1, + "end": 34478.86, + "probability": 0.921 + }, + { + "start": 34480.68, + "end": 34483.2, + "probability": 0.6611 + }, + { + "start": 34484.34, + "end": 34488.16, + "probability": 0.9915 + }, + { + "start": 34489.24, + "end": 34489.56, + "probability": 0.6753 + }, + { + "start": 34490.7, + "end": 34492.98, + "probability": 0.9891 + }, + { + "start": 34493.96, + "end": 34495.5, + "probability": 0.8938 + }, + { + "start": 34497.1, + "end": 34499.18, + "probability": 0.803 + }, + { + "start": 34499.5, + "end": 34500.44, + "probability": 0.8538 + }, + { + "start": 34500.56, + "end": 34502.84, + "probability": 0.9752 + }, + { + "start": 34504.32, + "end": 34506.9, + "probability": 0.9741 + }, + { + "start": 34506.9, + "end": 34511.24, + "probability": 0.994 + }, + { + "start": 34512.04, + "end": 34514.36, + "probability": 0.8954 + }, + { + "start": 34514.46, + "end": 34515.17, + "probability": 0.5275 + }, + { + "start": 34515.72, + "end": 34518.39, + "probability": 0.9976 + }, + { + "start": 34519.12, + "end": 34523.24, + "probability": 0.9906 + }, + { + "start": 34524.34, + "end": 34526.45, + "probability": 0.9326 + }, + { + "start": 34526.9, + "end": 34529.14, + "probability": 0.9398 + }, + { + "start": 34529.8, + "end": 34531.22, + "probability": 0.9655 + }, + { + "start": 34531.4, + "end": 34533.18, + "probability": 0.9972 + }, + { + "start": 34533.7, + "end": 34538.24, + "probability": 0.9946 + }, + { + "start": 34539.26, + "end": 34539.74, + "probability": 0.965 + }, + { + "start": 34540.82, + "end": 34541.3, + "probability": 0.9705 + }, + { + "start": 34542.5, + "end": 34543.44, + "probability": 0.9395 + }, + { + "start": 34544.94, + "end": 34548.06, + "probability": 0.9648 + }, + { + "start": 34548.22, + "end": 34548.54, + "probability": 0.839 + }, + { + "start": 34548.66, + "end": 34549.68, + "probability": 0.8966 + }, + { + "start": 34550.42, + "end": 34551.32, + "probability": 0.9484 + }, + { + "start": 34551.9, + "end": 34555.6, + "probability": 0.9802 + }, + { + "start": 34556.54, + "end": 34560.86, + "probability": 0.9106 + }, + { + "start": 34561.8, + "end": 34562.45, + "probability": 0.6944 + }, + { + "start": 34563.28, + "end": 34564.84, + "probability": 0.9951 + }, + { + "start": 34565.2, + "end": 34565.66, + "probability": 0.8014 + }, + { + "start": 34566.06, + "end": 34566.76, + "probability": 0.865 + }, + { + "start": 34566.8, + "end": 34566.9, + "probability": 0.2403 + }, + { + "start": 34567.04, + "end": 34567.74, + "probability": 0.9841 + }, + { + "start": 34568.34, + "end": 34569.78, + "probability": 0.9804 + }, + { + "start": 34570.3, + "end": 34571.94, + "probability": 0.8644 + }, + { + "start": 34572.06, + "end": 34575.5, + "probability": 0.9871 + }, + { + "start": 34575.6, + "end": 34579.7, + "probability": 0.9867 + }, + { + "start": 34580.12, + "end": 34583.14, + "probability": 0.8867 + }, + { + "start": 34583.84, + "end": 34584.84, + "probability": 0.9917 + }, + { + "start": 34584.94, + "end": 34586.5, + "probability": 0.4224 + }, + { + "start": 34586.6, + "end": 34589.66, + "probability": 0.9756 + }, + { + "start": 34589.66, + "end": 34592.58, + "probability": 0.9924 + }, + { + "start": 34593.68, + "end": 34594.74, + "probability": 0.8604 + }, + { + "start": 34595.76, + "end": 34599.14, + "probability": 0.9589 + }, + { + "start": 34599.68, + "end": 34602.62, + "probability": 0.8501 + }, + { + "start": 34603.14, + "end": 34604.13, + "probability": 0.7697 + }, + { + "start": 34604.76, + "end": 34610.82, + "probability": 0.9915 + }, + { + "start": 34611.36, + "end": 34613.14, + "probability": 0.8618 + }, + { + "start": 34614.22, + "end": 34614.81, + "probability": 0.9241 + }, + { + "start": 34615.5, + "end": 34617.04, + "probability": 0.9743 + }, + { + "start": 34617.22, + "end": 34619.06, + "probability": 0.9495 + }, + { + "start": 34619.54, + "end": 34621.94, + "probability": 0.9956 + }, + { + "start": 34622.04, + "end": 34622.7, + "probability": 0.8366 + }, + { + "start": 34623.34, + "end": 34625.76, + "probability": 0.9755 + }, + { + "start": 34626.5, + "end": 34629.7, + "probability": 0.993 + }, + { + "start": 34631.04, + "end": 34631.7, + "probability": 0.7292 + }, + { + "start": 34632.58, + "end": 34634.14, + "probability": 0.8936 + }, + { + "start": 34635.46, + "end": 34640.98, + "probability": 0.9934 + }, + { + "start": 34641.5, + "end": 34646.14, + "probability": 0.9738 + }, + { + "start": 34647.02, + "end": 34650.66, + "probability": 0.9954 + }, + { + "start": 34650.7, + "end": 34651.04, + "probability": 0.766 + }, + { + "start": 34651.42, + "end": 34653.46, + "probability": 0.9829 + }, + { + "start": 34653.47, + "end": 34656.94, + "probability": 0.9976 + }, + { + "start": 34657.56, + "end": 34659.72, + "probability": 0.9648 + }, + { + "start": 34660.04, + "end": 34660.74, + "probability": 0.6831 + }, + { + "start": 34660.92, + "end": 34663.96, + "probability": 0.9899 + }, + { + "start": 34664.44, + "end": 34665.37, + "probability": 0.8025 + }, + { + "start": 34665.96, + "end": 34668.18, + "probability": 0.9397 + }, + { + "start": 34668.3, + "end": 34670.46, + "probability": 0.9893 + }, + { + "start": 34671.22, + "end": 34672.36, + "probability": 0.5865 + }, + { + "start": 34674.14, + "end": 34675.14, + "probability": 0.8011 + }, + { + "start": 34676.32, + "end": 34677.98, + "probability": 0.8474 + }, + { + "start": 34678.52, + "end": 34679.7, + "probability": 0.7216 + }, + { + "start": 34680.54, + "end": 34681.88, + "probability": 0.9658 + }, + { + "start": 34681.98, + "end": 34685.08, + "probability": 0.9988 + }, + { + "start": 34685.2, + "end": 34687.78, + "probability": 0.9671 + }, + { + "start": 34688.32, + "end": 34689.78, + "probability": 0.983 + }, + { + "start": 34690.58, + "end": 34691.28, + "probability": 0.7818 + }, + { + "start": 34691.36, + "end": 34694.0, + "probability": 0.9214 + }, + { + "start": 34694.1, + "end": 34694.56, + "probability": 0.646 + }, + { + "start": 34695.08, + "end": 34697.22, + "probability": 0.9854 + }, + { + "start": 34698.46, + "end": 34699.68, + "probability": 0.8943 + }, + { + "start": 34700.64, + "end": 34701.62, + "probability": 0.8576 + }, + { + "start": 34702.58, + "end": 34705.9, + "probability": 0.9991 + }, + { + "start": 34705.9, + "end": 34709.1, + "probability": 0.9902 + }, + { + "start": 34709.7, + "end": 34710.38, + "probability": 0.4129 + }, + { + "start": 34710.46, + "end": 34711.12, + "probability": 0.7519 + }, + { + "start": 34711.44, + "end": 34713.59, + "probability": 0.7809 + }, + { + "start": 34714.68, + "end": 34717.16, + "probability": 0.9697 + }, + { + "start": 34717.68, + "end": 34719.12, + "probability": 0.9575 + }, + { + "start": 34719.36, + "end": 34720.72, + "probability": 0.7817 + }, + { + "start": 34721.6, + "end": 34723.74, + "probability": 0.8168 + }, + { + "start": 34725.02, + "end": 34727.56, + "probability": 0.9226 + }, + { + "start": 34728.12, + "end": 34729.78, + "probability": 0.9964 + }, + { + "start": 34730.3, + "end": 34731.98, + "probability": 0.9498 + }, + { + "start": 34732.38, + "end": 34734.04, + "probability": 0.9481 + }, + { + "start": 34734.66, + "end": 34735.56, + "probability": 0.72 + }, + { + "start": 34736.08, + "end": 34737.6, + "probability": 0.8659 + }, + { + "start": 34739.08, + "end": 34740.74, + "probability": 0.9619 + }, + { + "start": 34740.86, + "end": 34746.0, + "probability": 0.8965 + }, + { + "start": 34746.76, + "end": 34748.3, + "probability": 0.5212 + }, + { + "start": 34748.92, + "end": 34750.0, + "probability": 0.5993 + }, + { + "start": 34750.92, + "end": 34752.84, + "probability": 0.9899 + }, + { + "start": 34753.36, + "end": 34755.0, + "probability": 0.949 + }, + { + "start": 34755.2, + "end": 34756.3, + "probability": 0.9633 + }, + { + "start": 34756.72, + "end": 34757.4, + "probability": 0.9209 + }, + { + "start": 34757.64, + "end": 34759.7, + "probability": 0.947 + }, + { + "start": 34761.2, + "end": 34763.18, + "probability": 0.9948 + }, + { + "start": 34763.74, + "end": 34765.4, + "probability": 0.9961 + }, + { + "start": 34765.56, + "end": 34768.86, + "probability": 0.9854 + }, + { + "start": 34770.86, + "end": 34774.4, + "probability": 0.9983 + }, + { + "start": 34775.22, + "end": 34776.8, + "probability": 0.9978 + }, + { + "start": 34778.18, + "end": 34780.0, + "probability": 0.9946 + }, + { + "start": 34781.2, + "end": 34785.04, + "probability": 0.9969 + }, + { + "start": 34786.74, + "end": 34790.43, + "probability": 0.979 + }, + { + "start": 34790.88, + "end": 34794.94, + "probability": 0.9854 + }, + { + "start": 34796.4, + "end": 34799.6, + "probability": 0.9985 + }, + { + "start": 34800.56, + "end": 34802.24, + "probability": 0.3072 + }, + { + "start": 34802.4, + "end": 34805.36, + "probability": 0.9942 + }, + { + "start": 34805.36, + "end": 34809.18, + "probability": 0.9935 + }, + { + "start": 34809.56, + "end": 34810.26, + "probability": 0.9278 + }, + { + "start": 34811.34, + "end": 34815.58, + "probability": 0.9634 + }, + { + "start": 34816.0, + "end": 34817.34, + "probability": 0.9468 + }, + { + "start": 34818.12, + "end": 34820.14, + "probability": 0.9368 + }, + { + "start": 34821.78, + "end": 34824.82, + "probability": 0.9596 + }, + { + "start": 34825.52, + "end": 34827.2, + "probability": 0.8273 + }, + { + "start": 34827.36, + "end": 34830.32, + "probability": 0.939 + }, + { + "start": 34830.92, + "end": 34834.38, + "probability": 0.9946 + }, + { + "start": 34834.38, + "end": 34837.22, + "probability": 0.9967 + }, + { + "start": 34837.26, + "end": 34837.82, + "probability": 0.694 + }, + { + "start": 34838.62, + "end": 34841.7, + "probability": 0.7664 + }, + { + "start": 34842.28, + "end": 34842.63, + "probability": 0.9285 + }, + { + "start": 34842.76, + "end": 34843.4, + "probability": 0.7575 + }, + { + "start": 34843.58, + "end": 34844.34, + "probability": 0.861 + }, + { + "start": 34844.44, + "end": 34845.58, + "probability": 0.9785 + }, + { + "start": 34846.12, + "end": 34848.6, + "probability": 0.9774 + }, + { + "start": 34849.38, + "end": 34852.5, + "probability": 0.9746 + }, + { + "start": 34853.0, + "end": 34853.0, + "probability": 0.7974 + }, + { + "start": 34854.02, + "end": 34859.94, + "probability": 0.9961 + }, + { + "start": 34861.0, + "end": 34862.12, + "probability": 0.8745 + }, + { + "start": 34862.36, + "end": 34864.32, + "probability": 0.8111 + }, + { + "start": 34865.24, + "end": 34866.74, + "probability": 0.9375 + }, + { + "start": 34866.82, + "end": 34869.18, + "probability": 0.9829 + }, + { + "start": 34869.34, + "end": 34870.84, + "probability": 0.9756 + }, + { + "start": 34871.2, + "end": 34874.6, + "probability": 0.9717 + }, + { + "start": 34875.06, + "end": 34879.54, + "probability": 0.8324 + }, + { + "start": 34879.66, + "end": 34881.86, + "probability": 0.803 + }, + { + "start": 34882.46, + "end": 34885.12, + "probability": 0.9735 + }, + { + "start": 34886.48, + "end": 34890.5, + "probability": 0.9912 + }, + { + "start": 34890.5, + "end": 34893.38, + "probability": 0.99 + }, + { + "start": 34894.0, + "end": 34896.82, + "probability": 0.9959 + }, + { + "start": 34897.42, + "end": 34899.06, + "probability": 0.8726 + }, + { + "start": 34899.66, + "end": 34900.44, + "probability": 0.916 + }, + { + "start": 34900.84, + "end": 34902.92, + "probability": 0.8718 + }, + { + "start": 34903.88, + "end": 34905.58, + "probability": 0.9984 + }, + { + "start": 34906.9, + "end": 34908.5, + "probability": 0.9944 + }, + { + "start": 34909.06, + "end": 34912.58, + "probability": 0.9842 + }, + { + "start": 34912.86, + "end": 34914.1, + "probability": 0.9937 + }, + { + "start": 34915.08, + "end": 34918.28, + "probability": 0.994 + }, + { + "start": 34918.28, + "end": 34922.0, + "probability": 0.9915 + }, + { + "start": 34923.08, + "end": 34924.04, + "probability": 0.6831 + }, + { + "start": 34925.12, + "end": 34927.96, + "probability": 0.9626 + }, + { + "start": 34928.64, + "end": 34932.18, + "probability": 0.9949 + }, + { + "start": 34932.84, + "end": 34933.92, + "probability": 0.9756 + }, + { + "start": 34934.78, + "end": 34936.68, + "probability": 0.9922 + }, + { + "start": 34937.34, + "end": 34939.14, + "probability": 0.9211 + }, + { + "start": 34939.9, + "end": 34942.98, + "probability": 0.7602 + }, + { + "start": 34943.94, + "end": 34947.42, + "probability": 0.9955 + }, + { + "start": 34948.08, + "end": 34948.82, + "probability": 0.6259 + }, + { + "start": 34950.09, + "end": 34952.14, + "probability": 0.9845 + }, + { + "start": 34953.1, + "end": 34956.22, + "probability": 0.9878 + }, + { + "start": 34956.92, + "end": 34959.24, + "probability": 0.7627 + }, + { + "start": 34960.08, + "end": 34961.54, + "probability": 0.1763 + }, + { + "start": 34962.58, + "end": 34962.88, + "probability": 0.9734 + }, + { + "start": 34963.7, + "end": 34966.08, + "probability": 0.8042 + }, + { + "start": 34967.18, + "end": 34967.8, + "probability": 0.9971 + }, + { + "start": 34968.7, + "end": 34969.48, + "probability": 0.7922 + }, + { + "start": 34970.16, + "end": 34971.36, + "probability": 0.9716 + }, + { + "start": 34972.16, + "end": 34973.74, + "probability": 0.9867 + }, + { + "start": 34974.62, + "end": 34977.16, + "probability": 0.9655 + }, + { + "start": 34978.44, + "end": 34979.96, + "probability": 0.9185 + }, + { + "start": 34980.02, + "end": 34983.36, + "probability": 0.9485 + }, + { + "start": 34984.18, + "end": 34985.2, + "probability": 0.9257 + }, + { + "start": 34986.12, + "end": 34988.62, + "probability": 0.9981 + }, + { + "start": 34988.9, + "end": 34989.32, + "probability": 0.903 + }, + { + "start": 34989.88, + "end": 34991.14, + "probability": 0.9264 + }, + { + "start": 34991.64, + "end": 34993.08, + "probability": 0.9209 + }, + { + "start": 34993.14, + "end": 34994.19, + "probability": 0.925 + }, + { + "start": 34994.74, + "end": 34995.62, + "probability": 0.6143 + }, + { + "start": 34996.14, + "end": 34996.72, + "probability": 0.9442 + }, + { + "start": 34996.82, + "end": 35000.06, + "probability": 0.9879 + }, + { + "start": 35000.7, + "end": 35001.94, + "probability": 0.9883 + }, + { + "start": 35002.38, + "end": 35002.99, + "probability": 0.9785 + }, + { + "start": 35003.78, + "end": 35004.44, + "probability": 0.8504 + }, + { + "start": 35005.26, + "end": 35006.9, + "probability": 0.9178 + }, + { + "start": 35007.46, + "end": 35009.4, + "probability": 0.8845 + }, + { + "start": 35009.56, + "end": 35010.46, + "probability": 0.7902 + }, + { + "start": 35010.56, + "end": 35011.08, + "probability": 0.7936 + }, + { + "start": 35011.44, + "end": 35013.3, + "probability": 0.9831 + }, + { + "start": 35013.9, + "end": 35018.0, + "probability": 0.9822 + }, + { + "start": 35018.8, + "end": 35021.5, + "probability": 0.9732 + }, + { + "start": 35021.62, + "end": 35022.04, + "probability": 0.8862 + }, + { + "start": 35022.72, + "end": 35026.86, + "probability": 0.9822 + }, + { + "start": 35027.36, + "end": 35028.7, + "probability": 0.9845 + }, + { + "start": 35029.14, + "end": 35031.4, + "probability": 0.9971 + }, + { + "start": 35031.76, + "end": 35032.22, + "probability": 0.4057 + }, + { + "start": 35032.46, + "end": 35032.94, + "probability": 0.7318 + }, + { + "start": 35032.94, + "end": 35033.56, + "probability": 0.7956 + }, + { + "start": 35033.64, + "end": 35037.16, + "probability": 0.964 + }, + { + "start": 35037.22, + "end": 35039.92, + "probability": 0.9974 + }, + { + "start": 35040.6, + "end": 35041.6, + "probability": 0.8018 + }, + { + "start": 35041.84, + "end": 35042.41, + "probability": 0.9861 + }, + { + "start": 35043.02, + "end": 35044.02, + "probability": 0.9354 + }, + { + "start": 35044.5, + "end": 35047.82, + "probability": 0.9892 + }, + { + "start": 35047.86, + "end": 35048.82, + "probability": 0.9204 + }, + { + "start": 35049.7, + "end": 35052.06, + "probability": 0.9971 + }, + { + "start": 35052.5, + "end": 35054.54, + "probability": 0.9897 + }, + { + "start": 35054.76, + "end": 35055.28, + "probability": 0.9453 + }, + { + "start": 35055.78, + "end": 35058.2, + "probability": 0.9801 + }, + { + "start": 35058.38, + "end": 35060.14, + "probability": 0.998 + }, + { + "start": 35060.9, + "end": 35062.18, + "probability": 0.9976 + }, + { + "start": 35062.98, + "end": 35065.16, + "probability": 0.8722 + }, + { + "start": 35065.26, + "end": 35066.98, + "probability": 0.8114 + }, + { + "start": 35067.12, + "end": 35069.54, + "probability": 0.9396 + }, + { + "start": 35070.18, + "end": 35071.18, + "probability": 0.7307 + }, + { + "start": 35071.26, + "end": 35072.04, + "probability": 0.7987 + }, + { + "start": 35072.52, + "end": 35073.28, + "probability": 0.6631 + }, + { + "start": 35073.72, + "end": 35075.7, + "probability": 0.7987 + }, + { + "start": 35076.04, + "end": 35076.82, + "probability": 0.6924 + }, + { + "start": 35077.68, + "end": 35078.2, + "probability": 0.7301 + }, + { + "start": 35079.14, + "end": 35079.5, + "probability": 0.7791 + }, + { + "start": 35080.58, + "end": 35081.82, + "probability": 0.901 + }, + { + "start": 35082.2, + "end": 35085.56, + "probability": 0.6187 + }, + { + "start": 35085.68, + "end": 35087.26, + "probability": 0.9893 + }, + { + "start": 35087.44, + "end": 35090.46, + "probability": 0.8702 + }, + { + "start": 35091.4, + "end": 35093.32, + "probability": 0.8836 + }, + { + "start": 35094.06, + "end": 35094.32, + "probability": 0.8898 + }, + { + "start": 35094.42, + "end": 35096.32, + "probability": 0.9591 + }, + { + "start": 35096.52, + "end": 35097.26, + "probability": 0.8967 + }, + { + "start": 35098.16, + "end": 35099.62, + "probability": 0.9674 + }, + { + "start": 35099.98, + "end": 35101.22, + "probability": 0.9951 + }, + { + "start": 35102.14, + "end": 35102.92, + "probability": 0.9435 + }, + { + "start": 35104.1, + "end": 35104.82, + "probability": 0.9449 + }, + { + "start": 35105.2, + "end": 35106.02, + "probability": 0.9811 + }, + { + "start": 35106.36, + "end": 35107.1, + "probability": 0.8833 + }, + { + "start": 35107.22, + "end": 35107.84, + "probability": 0.7819 + }, + { + "start": 35107.94, + "end": 35110.92, + "probability": 0.9537 + }, + { + "start": 35111.42, + "end": 35112.56, + "probability": 0.8959 + }, + { + "start": 35112.74, + "end": 35113.74, + "probability": 0.9883 + }, + { + "start": 35113.86, + "end": 35115.52, + "probability": 0.8743 + }, + { + "start": 35116.12, + "end": 35116.38, + "probability": 0.7924 + }, + { + "start": 35116.72, + "end": 35120.42, + "probability": 0.989 + }, + { + "start": 35121.16, + "end": 35122.03, + "probability": 0.9671 + }, + { + "start": 35122.96, + "end": 35125.32, + "probability": 0.9863 + }, + { + "start": 35125.78, + "end": 35126.22, + "probability": 0.8709 + }, + { + "start": 35126.56, + "end": 35127.1, + "probability": 0.874 + }, + { + "start": 35127.22, + "end": 35128.82, + "probability": 0.9452 + }, + { + "start": 35129.28, + "end": 35131.92, + "probability": 0.964 + }, + { + "start": 35132.26, + "end": 35132.7, + "probability": 0.6306 + }, + { + "start": 35132.86, + "end": 35133.8, + "probability": 0.8075 + }, + { + "start": 35134.22, + "end": 35136.82, + "probability": 0.8478 + }, + { + "start": 35136.94, + "end": 35137.36, + "probability": 0.8816 + }, + { + "start": 35138.26, + "end": 35138.96, + "probability": 0.7894 + }, + { + "start": 35139.56, + "end": 35143.3, + "probability": 0.9921 + }, + { + "start": 35143.52, + "end": 35144.4, + "probability": 0.8885 + }, + { + "start": 35145.28, + "end": 35146.84, + "probability": 0.9702 + }, + { + "start": 35148.36, + "end": 35149.87, + "probability": 0.9443 + }, + { + "start": 35150.9, + "end": 35152.0, + "probability": 0.9556 + }, + { + "start": 35152.2, + "end": 35154.88, + "probability": 0.9966 + }, + { + "start": 35155.38, + "end": 35157.26, + "probability": 0.832 + }, + { + "start": 35158.48, + "end": 35162.28, + "probability": 0.9885 + }, + { + "start": 35163.3, + "end": 35166.38, + "probability": 0.8983 + }, + { + "start": 35167.3, + "end": 35171.06, + "probability": 0.9893 + }, + { + "start": 35171.22, + "end": 35171.98, + "probability": 0.9561 + }, + { + "start": 35172.9, + "end": 35173.4, + "probability": 0.9866 + }, + { + "start": 35174.18, + "end": 35175.87, + "probability": 0.9277 + }, + { + "start": 35176.32, + "end": 35178.0, + "probability": 0.986 + }, + { + "start": 35178.1, + "end": 35180.02, + "probability": 0.9513 + }, + { + "start": 35180.42, + "end": 35180.92, + "probability": 0.8651 + }, + { + "start": 35181.04, + "end": 35183.5, + "probability": 0.9172 + }, + { + "start": 35184.12, + "end": 35184.18, + "probability": 0.0477 + }, + { + "start": 35184.24, + "end": 35189.0, + "probability": 0.9927 + }, + { + "start": 35189.68, + "end": 35192.52, + "probability": 0.8901 + }, + { + "start": 35194.26, + "end": 35195.66, + "probability": 0.9935 + }, + { + "start": 35196.24, + "end": 35197.54, + "probability": 0.8811 + }, + { + "start": 35198.1, + "end": 35199.62, + "probability": 0.8555 + }, + { + "start": 35199.88, + "end": 35204.52, + "probability": 0.9377 + }, + { + "start": 35204.62, + "end": 35206.8, + "probability": 0.9937 + }, + { + "start": 35207.82, + "end": 35208.62, + "probability": 0.8962 + }, + { + "start": 35208.72, + "end": 35210.47, + "probability": 0.8704 + }, + { + "start": 35211.04, + "end": 35211.98, + "probability": 0.7872 + }, + { + "start": 35213.4, + "end": 35214.02, + "probability": 0.6401 + }, + { + "start": 35214.84, + "end": 35216.06, + "probability": 0.8773 + }, + { + "start": 35216.66, + "end": 35219.3, + "probability": 0.511 + }, + { + "start": 35219.98, + "end": 35221.86, + "probability": 0.7072 + }, + { + "start": 35222.0, + "end": 35222.1, + "probability": 0.2324 + }, + { + "start": 35222.1, + "end": 35222.1, + "probability": 0.4695 + }, + { + "start": 35222.1, + "end": 35222.1, + "probability": 0.897 + }, + { + "start": 35222.1, + "end": 35224.02, + "probability": 0.8625 + }, + { + "start": 35224.12, + "end": 35226.64, + "probability": 0.8028 + }, + { + "start": 35226.7, + "end": 35228.08, + "probability": 0.4507 + }, + { + "start": 35230.4, + "end": 35230.4, + "probability": 0.0225 + }, + { + "start": 35230.4, + "end": 35232.78, + "probability": 0.9773 + }, + { + "start": 35233.24, + "end": 35236.46, + "probability": 0.7847 + }, + { + "start": 35236.7, + "end": 35236.84, + "probability": 0.496 + }, + { + "start": 35237.02, + "end": 35239.6, + "probability": 0.0246 + }, + { + "start": 35240.14, + "end": 35240.44, + "probability": 0.0217 + }, + { + "start": 35240.44, + "end": 35240.72, + "probability": 0.4664 + }, + { + "start": 35240.92, + "end": 35241.4, + "probability": 0.793 + }, + { + "start": 35241.56, + "end": 35242.52, + "probability": 0.3672 + }, + { + "start": 35243.7, + "end": 35246.74, + "probability": 0.8756 + }, + { + "start": 35247.22, + "end": 35250.0, + "probability": 0.1284 + }, + { + "start": 35251.68, + "end": 35251.76, + "probability": 0.2792 + }, + { + "start": 35251.76, + "end": 35251.76, + "probability": 0.4171 + }, + { + "start": 35251.76, + "end": 35252.3, + "probability": 0.333 + }, + { + "start": 35253.16, + "end": 35254.18, + "probability": 0.8639 + }, + { + "start": 35254.5, + "end": 35255.52, + "probability": 0.9336 + }, + { + "start": 35255.84, + "end": 35256.78, + "probability": 0.3835 + }, + { + "start": 35256.78, + "end": 35259.76, + "probability": 0.0106 + }, + { + "start": 35261.56, + "end": 35262.3, + "probability": 0.2725 + }, + { + "start": 35262.46, + "end": 35262.46, + "probability": 0.3167 + }, + { + "start": 35262.46, + "end": 35262.5, + "probability": 0.0784 + }, + { + "start": 35262.5, + "end": 35262.5, + "probability": 0.3197 + }, + { + "start": 35262.5, + "end": 35262.66, + "probability": 0.7303 + }, + { + "start": 35262.66, + "end": 35266.34, + "probability": 0.91 + }, + { + "start": 35266.44, + "end": 35271.26, + "probability": 0.9796 + }, + { + "start": 35271.42, + "end": 35272.46, + "probability": 0.4576 + }, + { + "start": 35272.52, + "end": 35273.64, + "probability": 0.9868 + }, + { + "start": 35273.96, + "end": 35277.38, + "probability": 0.9942 + }, + { + "start": 35277.92, + "end": 35281.6, + "probability": 0.9305 + }, + { + "start": 35282.2, + "end": 35285.08, + "probability": 0.4011 + }, + { + "start": 35285.85, + "end": 35288.84, + "probability": 0.279 + }, + { + "start": 35288.92, + "end": 35291.92, + "probability": 0.8872 + }, + { + "start": 35309.2, + "end": 35310.2, + "probability": 0.6425 + }, + { + "start": 35311.1, + "end": 35312.12, + "probability": 0.7122 + }, + { + "start": 35312.7, + "end": 35313.4, + "probability": 0.8167 + }, + { + "start": 35313.92, + "end": 35314.6, + "probability": 0.9545 + }, + { + "start": 35315.88, + "end": 35318.97, + "probability": 0.9746 + }, + { + "start": 35319.32, + "end": 35320.88, + "probability": 0.9965 + }, + { + "start": 35321.6, + "end": 35322.6, + "probability": 0.8583 + }, + { + "start": 35323.28, + "end": 35326.56, + "probability": 0.9876 + }, + { + "start": 35326.84, + "end": 35328.98, + "probability": 0.9183 + }, + { + "start": 35329.96, + "end": 35331.93, + "probability": 0.9866 + }, + { + "start": 35332.28, + "end": 35337.92, + "probability": 0.991 + }, + { + "start": 35339.56, + "end": 35339.88, + "probability": 0.4503 + }, + { + "start": 35340.08, + "end": 35340.18, + "probability": 0.758 + }, + { + "start": 35340.58, + "end": 35344.1, + "probability": 0.9884 + }, + { + "start": 35344.1, + "end": 35348.14, + "probability": 0.9305 + }, + { + "start": 35349.42, + "end": 35350.28, + "probability": 0.9001 + }, + { + "start": 35351.0, + "end": 35352.12, + "probability": 0.918 + }, + { + "start": 35352.8, + "end": 35353.54, + "probability": 0.9073 + }, + { + "start": 35354.56, + "end": 35358.2, + "probability": 0.992 + }, + { + "start": 35359.7, + "end": 35362.0, + "probability": 0.9977 + }, + { + "start": 35362.58, + "end": 35364.14, + "probability": 0.9888 + }, + { + "start": 35366.62, + "end": 35367.9, + "probability": 0.9436 + }, + { + "start": 35369.26, + "end": 35371.24, + "probability": 0.9063 + }, + { + "start": 35371.54, + "end": 35371.84, + "probability": 0.8838 + }, + { + "start": 35371.98, + "end": 35375.06, + "probability": 0.9207 + }, + { + "start": 35376.06, + "end": 35379.98, + "probability": 0.9951 + }, + { + "start": 35379.98, + "end": 35384.04, + "probability": 0.9951 + }, + { + "start": 35385.4, + "end": 35385.94, + "probability": 0.923 + }, + { + "start": 35387.64, + "end": 35388.86, + "probability": 0.9856 + }, + { + "start": 35390.6, + "end": 35391.4, + "probability": 0.9691 + }, + { + "start": 35392.06, + "end": 35394.9, + "probability": 0.9957 + }, + { + "start": 35395.62, + "end": 35396.3, + "probability": 0.8729 + }, + { + "start": 35398.3, + "end": 35399.36, + "probability": 0.9974 + }, + { + "start": 35400.3, + "end": 35403.94, + "probability": 0.8781 + }, + { + "start": 35405.28, + "end": 35407.04, + "probability": 0.9078 + }, + { + "start": 35408.38, + "end": 35409.32, + "probability": 0.8818 + }, + { + "start": 35410.66, + "end": 35414.82, + "probability": 0.949 + }, + { + "start": 35416.42, + "end": 35417.6, + "probability": 0.8875 + }, + { + "start": 35418.6, + "end": 35419.24, + "probability": 0.9889 + }, + { + "start": 35421.1, + "end": 35424.94, + "probability": 0.9927 + }, + { + "start": 35425.58, + "end": 35427.1, + "probability": 0.761 + }, + { + "start": 35427.96, + "end": 35431.12, + "probability": 0.9763 + }, + { + "start": 35431.8, + "end": 35432.66, + "probability": 0.8376 + }, + { + "start": 35433.5, + "end": 35433.76, + "probability": 0.9671 + }, + { + "start": 35434.82, + "end": 35435.48, + "probability": 0.8204 + }, + { + "start": 35436.8, + "end": 35438.96, + "probability": 0.9977 + }, + { + "start": 35440.52, + "end": 35440.86, + "probability": 0.8307 + }, + { + "start": 35443.9, + "end": 35451.94, + "probability": 0.9873 + }, + { + "start": 35453.66, + "end": 35454.66, + "probability": 0.9549 + }, + { + "start": 35456.42, + "end": 35457.48, + "probability": 0.9792 + }, + { + "start": 35458.94, + "end": 35460.82, + "probability": 0.9517 + }, + { + "start": 35461.4, + "end": 35462.52, + "probability": 0.9186 + }, + { + "start": 35464.26, + "end": 35464.5, + "probability": 0.7929 + }, + { + "start": 35466.82, + "end": 35468.32, + "probability": 0.6453 + }, + { + "start": 35469.1, + "end": 35470.12, + "probability": 0.6317 + }, + { + "start": 35472.48, + "end": 35474.04, + "probability": 0.9348 + }, + { + "start": 35474.6, + "end": 35476.22, + "probability": 0.9888 + }, + { + "start": 35477.6, + "end": 35478.5, + "probability": 0.9796 + }, + { + "start": 35480.64, + "end": 35481.3, + "probability": 0.9849 + }, + { + "start": 35483.18, + "end": 35485.56, + "probability": 0.9721 + }, + { + "start": 35485.62, + "end": 35486.06, + "probability": 0.7783 + }, + { + "start": 35486.28, + "end": 35489.22, + "probability": 0.6139 + }, + { + "start": 35489.68, + "end": 35490.62, + "probability": 0.7345 + }, + { + "start": 35491.5, + "end": 35494.12, + "probability": 0.9739 + }, + { + "start": 35495.5, + "end": 35496.14, + "probability": 0.9209 + }, + { + "start": 35498.1, + "end": 35499.28, + "probability": 0.9463 + }, + { + "start": 35500.34, + "end": 35500.6, + "probability": 0.7125 + }, + { + "start": 35501.48, + "end": 35502.3, + "probability": 0.9966 + }, + { + "start": 35503.44, + "end": 35503.68, + "probability": 0.9001 + }, + { + "start": 35504.3, + "end": 35505.36, + "probability": 0.9352 + }, + { + "start": 35506.88, + "end": 35507.7, + "probability": 0.8018 + }, + { + "start": 35508.32, + "end": 35512.5, + "probability": 0.9272 + }, + { + "start": 35514.04, + "end": 35516.34, + "probability": 0.9688 + }, + { + "start": 35518.0, + "end": 35518.42, + "probability": 0.8608 + }, + { + "start": 35519.38, + "end": 35519.86, + "probability": 0.5826 + }, + { + "start": 35521.0, + "end": 35523.14, + "probability": 0.9761 + }, + { + "start": 35524.44, + "end": 35525.14, + "probability": 0.7236 + }, + { + "start": 35527.72, + "end": 35529.5, + "probability": 0.9356 + }, + { + "start": 35530.16, + "end": 35534.04, + "probability": 0.8501 + }, + { + "start": 35535.56, + "end": 35537.32, + "probability": 0.9734 + }, + { + "start": 35537.92, + "end": 35538.96, + "probability": 0.8379 + }, + { + "start": 35540.24, + "end": 35540.68, + "probability": 0.5963 + }, + { + "start": 35541.9, + "end": 35544.0, + "probability": 0.7279 + }, + { + "start": 35546.84, + "end": 35547.64, + "probability": 0.9508 + }, + { + "start": 35549.04, + "end": 35550.48, + "probability": 0.9652 + }, + { + "start": 35551.02, + "end": 35552.28, + "probability": 0.7791 + }, + { + "start": 35552.88, + "end": 35553.8, + "probability": 0.9747 + }, + { + "start": 35555.16, + "end": 35556.82, + "probability": 0.9427 + }, + { + "start": 35559.26, + "end": 35560.62, + "probability": 0.9015 + }, + { + "start": 35561.78, + "end": 35562.2, + "probability": 0.557 + }, + { + "start": 35563.6, + "end": 35564.04, + "probability": 0.9867 + }, + { + "start": 35565.58, + "end": 35566.3, + "probability": 0.5974 + }, + { + "start": 35568.58, + "end": 35571.77, + "probability": 0.7081 + }, + { + "start": 35573.3, + "end": 35573.62, + "probability": 0.3341 + }, + { + "start": 35573.82, + "end": 35575.48, + "probability": 0.6686 + }, + { + "start": 35575.6, + "end": 35579.62, + "probability": 0.9763 + }, + { + "start": 35579.62, + "end": 35585.54, + "probability": 0.9915 + }, + { + "start": 35585.62, + "end": 35585.88, + "probability": 0.5466 + }, + { + "start": 35586.56, + "end": 35587.46, + "probability": 0.8138 + }, + { + "start": 35587.66, + "end": 35588.59, + "probability": 0.8203 + }, + { + "start": 35589.76, + "end": 35592.84, + "probability": 0.9658 + }, + { + "start": 35594.28, + "end": 35594.4, + "probability": 0.662 + }, + { + "start": 35595.04, + "end": 35595.56, + "probability": 0.7989 + }, + { + "start": 35598.12, + "end": 35599.04, + "probability": 0.9838 + }, + { + "start": 35599.84, + "end": 35600.48, + "probability": 0.925 + }, + { + "start": 35601.34, + "end": 35601.58, + "probability": 0.9672 + }, + { + "start": 35603.3, + "end": 35605.42, + "probability": 0.9824 + }, + { + "start": 35606.4, + "end": 35608.56, + "probability": 0.9899 + }, + { + "start": 35609.8, + "end": 35611.9, + "probability": 0.9891 + }, + { + "start": 35612.84, + "end": 35615.1, + "probability": 0.9886 + }, + { + "start": 35616.82, + "end": 35617.18, + "probability": 0.8546 + }, + { + "start": 35618.42, + "end": 35619.12, + "probability": 0.6653 + }, + { + "start": 35620.22, + "end": 35622.4, + "probability": 0.7746 + }, + { + "start": 35623.88, + "end": 35624.92, + "probability": 0.7389 + }, + { + "start": 35626.92, + "end": 35629.0, + "probability": 0.9036 + }, + { + "start": 35629.92, + "end": 35630.74, + "probability": 0.9811 + }, + { + "start": 35631.48, + "end": 35632.9, + "probability": 0.9614 + }, + { + "start": 35634.02, + "end": 35634.24, + "probability": 0.4546 + }, + { + "start": 35635.3, + "end": 35642.26, + "probability": 0.9946 + }, + { + "start": 35643.18, + "end": 35644.32, + "probability": 0.7523 + }, + { + "start": 35645.24, + "end": 35646.6, + "probability": 0.9449 + }, + { + "start": 35647.96, + "end": 35648.8, + "probability": 0.804 + }, + { + "start": 35651.37, + "end": 35654.88, + "probability": 0.6265 + }, + { + "start": 35656.32, + "end": 35658.34, + "probability": 0.9281 + }, + { + "start": 35659.18, + "end": 35661.43, + "probability": 0.828 + }, + { + "start": 35662.82, + "end": 35664.2, + "probability": 0.8319 + }, + { + "start": 35665.02, + "end": 35665.6, + "probability": 0.9242 + }, + { + "start": 35666.18, + "end": 35666.94, + "probability": 0.7365 + }, + { + "start": 35668.88, + "end": 35673.3, + "probability": 0.3317 + }, + { + "start": 35673.32, + "end": 35673.71, + "probability": 0.0092 + }, + { + "start": 35673.76, + "end": 35674.35, + "probability": 0.4451 + }, + { + "start": 35674.42, + "end": 35675.08, + "probability": 0.4834 + }, + { + "start": 35675.08, + "end": 35677.34, + "probability": 0.93 + }, + { + "start": 35678.48, + "end": 35681.38, + "probability": 0.842 + }, + { + "start": 35682.12, + "end": 35683.26, + "probability": 0.9943 + }, + { + "start": 35684.9, + "end": 35685.52, + "probability": 0.934 + }, + { + "start": 35687.06, + "end": 35687.8, + "probability": 0.9788 + }, + { + "start": 35689.54, + "end": 35692.22, + "probability": 0.9634 + }, + { + "start": 35693.42, + "end": 35694.26, + "probability": 0.9644 + }, + { + "start": 35695.22, + "end": 35700.7, + "probability": 0.9907 + }, + { + "start": 35701.58, + "end": 35702.46, + "probability": 0.9658 + }, + { + "start": 35703.62, + "end": 35706.14, + "probability": 0.9961 + }, + { + "start": 35707.1, + "end": 35707.66, + "probability": 0.7576 + }, + { + "start": 35708.44, + "end": 35709.06, + "probability": 0.9157 + }, + { + "start": 35709.72, + "end": 35710.04, + "probability": 0.7615 + }, + { + "start": 35711.16, + "end": 35714.82, + "probability": 0.7347 + }, + { + "start": 35716.44, + "end": 35717.4, + "probability": 0.7596 + }, + { + "start": 35719.44, + "end": 35720.82, + "probability": 0.957 + }, + { + "start": 35722.56, + "end": 35724.93, + "probability": 0.998 + }, + { + "start": 35726.82, + "end": 35727.78, + "probability": 0.7636 + }, + { + "start": 35728.98, + "end": 35730.72, + "probability": 0.7265 + }, + { + "start": 35731.72, + "end": 35734.8, + "probability": 0.91 + }, + { + "start": 35738.46, + "end": 35739.06, + "probability": 0.3305 + }, + { + "start": 35739.46, + "end": 35740.02, + "probability": 0.4496 + }, + { + "start": 35741.72, + "end": 35743.4, + "probability": 0.7281 + }, + { + "start": 35745.28, + "end": 35748.46, + "probability": 0.9619 + }, + { + "start": 35749.9, + "end": 35752.36, + "probability": 0.8246 + }, + { + "start": 35753.86, + "end": 35755.0, + "probability": 0.831 + }, + { + "start": 35756.62, + "end": 35757.14, + "probability": 0.3419 + }, + { + "start": 35758.22, + "end": 35760.54, + "probability": 0.8715 + }, + { + "start": 35761.54, + "end": 35762.4, + "probability": 0.812 + }, + { + "start": 35764.72, + "end": 35765.82, + "probability": 0.864 + }, + { + "start": 35767.58, + "end": 35770.8, + "probability": 0.5656 + }, + { + "start": 35772.24, + "end": 35774.9, + "probability": 0.8982 + }, + { + "start": 35775.5, + "end": 35776.52, + "probability": 0.9854 + }, + { + "start": 35777.28, + "end": 35778.32, + "probability": 0.7623 + }, + { + "start": 35779.24, + "end": 35780.42, + "probability": 0.9767 + }, + { + "start": 35781.6, + "end": 35782.66, + "probability": 0.8339 + }, + { + "start": 35784.26, + "end": 35785.94, + "probability": 0.9322 + }, + { + "start": 35787.48, + "end": 35788.16, + "probability": 0.6787 + }, + { + "start": 35789.78, + "end": 35790.62, + "probability": 0.9165 + }, + { + "start": 35791.84, + "end": 35794.46, + "probability": 0.999 + }, + { + "start": 35796.02, + "end": 35797.74, + "probability": 0.8637 + }, + { + "start": 35799.3, + "end": 35800.76, + "probability": 0.9238 + }, + { + "start": 35802.68, + "end": 35805.14, + "probability": 0.7503 + }, + { + "start": 35807.16, + "end": 35808.67, + "probability": 0.9901 + }, + { + "start": 35810.38, + "end": 35813.14, + "probability": 0.9274 + }, + { + "start": 35813.36, + "end": 35814.0, + "probability": 0.832 + }, + { + "start": 35815.06, + "end": 35819.86, + "probability": 0.9264 + }, + { + "start": 35821.14, + "end": 35821.66, + "probability": 0.6058 + }, + { + "start": 35822.87, + "end": 35827.5, + "probability": 0.9777 + }, + { + "start": 35828.36, + "end": 35830.82, + "probability": 0.9927 + }, + { + "start": 35831.02, + "end": 35832.9, + "probability": 0.9504 + }, + { + "start": 35833.72, + "end": 35835.56, + "probability": 0.9774 + }, + { + "start": 35837.18, + "end": 35838.28, + "probability": 0.8319 + }, + { + "start": 35839.82, + "end": 35841.22, + "probability": 0.9895 + }, + { + "start": 35842.22, + "end": 35842.8, + "probability": 0.9597 + }, + { + "start": 35844.36, + "end": 35845.28, + "probability": 0.9352 + }, + { + "start": 35846.36, + "end": 35847.44, + "probability": 0.9865 + }, + { + "start": 35847.6, + "end": 35848.52, + "probability": 0.9883 + }, + { + "start": 35848.62, + "end": 35849.42, + "probability": 0.8799 + }, + { + "start": 35851.28, + "end": 35852.56, + "probability": 0.8252 + }, + { + "start": 35853.98, + "end": 35855.17, + "probability": 0.9585 + }, + { + "start": 35855.46, + "end": 35855.46, + "probability": 0.0152 + }, + { + "start": 35856.72, + "end": 35859.06, + "probability": 0.9596 + }, + { + "start": 35859.3, + "end": 35861.36, + "probability": 0.5551 + }, + { + "start": 35864.04, + "end": 35869.74, + "probability": 0.9977 + }, + { + "start": 35869.86, + "end": 35871.74, + "probability": 0.8589 + }, + { + "start": 35872.88, + "end": 35874.76, + "probability": 0.9051 + }, + { + "start": 35875.98, + "end": 35878.0, + "probability": 0.9625 + }, + { + "start": 35878.84, + "end": 35879.26, + "probability": 0.9941 + }, + { + "start": 35880.14, + "end": 35882.08, + "probability": 0.9931 + }, + { + "start": 35882.6, + "end": 35883.94, + "probability": 0.9958 + }, + { + "start": 35885.52, + "end": 35887.58, + "probability": 0.9003 + }, + { + "start": 35888.22, + "end": 35888.78, + "probability": 0.973 + }, + { + "start": 35889.56, + "end": 35890.54, + "probability": 0.5521 + }, + { + "start": 35890.68, + "end": 35892.48, + "probability": 0.9744 + }, + { + "start": 35893.9, + "end": 35895.02, + "probability": 0.9492 + }, + { + "start": 35895.74, + "end": 35902.74, + "probability": 0.8218 + }, + { + "start": 35903.08, + "end": 35904.18, + "probability": 0.9744 + }, + { + "start": 35905.3, + "end": 35907.64, + "probability": 0.9731 + }, + { + "start": 35908.88, + "end": 35910.9, + "probability": 0.4009 + }, + { + "start": 35911.66, + "end": 35912.86, + "probability": 0.9873 + }, + { + "start": 35914.14, + "end": 35915.08, + "probability": 0.9299 + }, + { + "start": 35916.94, + "end": 35918.9, + "probability": 0.7427 + }, + { + "start": 35919.58, + "end": 35920.72, + "probability": 0.9758 + }, + { + "start": 35923.36, + "end": 35926.1, + "probability": 0.9971 + }, + { + "start": 35926.2, + "end": 35927.14, + "probability": 0.9576 + }, + { + "start": 35927.88, + "end": 35929.38, + "probability": 0.9812 + }, + { + "start": 35931.34, + "end": 35931.68, + "probability": 0.7944 + }, + { + "start": 35931.78, + "end": 35938.04, + "probability": 0.8387 + }, + { + "start": 35939.06, + "end": 35939.6, + "probability": 0.9184 + }, + { + "start": 35940.28, + "end": 35945.5, + "probability": 0.9954 + }, + { + "start": 35946.52, + "end": 35947.92, + "probability": 0.7026 + }, + { + "start": 35948.66, + "end": 35949.52, + "probability": 0.9944 + }, + { + "start": 35950.42, + "end": 35951.18, + "probability": 0.5528 + }, + { + "start": 35951.8, + "end": 35953.38, + "probability": 0.6545 + }, + { + "start": 35954.44, + "end": 35955.08, + "probability": 0.5313 + }, + { + "start": 35956.76, + "end": 35960.4, + "probability": 0.9494 + }, + { + "start": 35960.94, + "end": 35963.9, + "probability": 0.9601 + }, + { + "start": 35968.82, + "end": 35969.98, + "probability": 0.6507 + }, + { + "start": 35971.3, + "end": 35972.5, + "probability": 0.807 + }, + { + "start": 35973.18, + "end": 35979.34, + "probability": 0.8318 + }, + { + "start": 35980.6, + "end": 35982.76, + "probability": 0.6844 + }, + { + "start": 35984.36, + "end": 35987.96, + "probability": 0.9363 + }, + { + "start": 35988.44, + "end": 35988.44, + "probability": 0.0516 + }, + { + "start": 35988.44, + "end": 35988.7, + "probability": 0.615 + }, + { + "start": 35988.82, + "end": 35989.74, + "probability": 0.8215 + }, + { + "start": 35991.08, + "end": 35992.12, + "probability": 0.9498 + }, + { + "start": 35992.64, + "end": 35995.26, + "probability": 0.9871 + }, + { + "start": 35996.82, + "end": 35999.14, + "probability": 0.6388 + }, + { + "start": 35999.26, + "end": 36005.18, + "probability": 0.6697 + }, + { + "start": 36006.44, + "end": 36010.05, + "probability": 0.6912 + }, + { + "start": 36011.74, + "end": 36014.28, + "probability": 0.8018 + }, + { + "start": 36015.22, + "end": 36020.28, + "probability": 0.9695 + }, + { + "start": 36021.88, + "end": 36023.72, + "probability": 0.8167 + }, + { + "start": 36025.0, + "end": 36025.8, + "probability": 0.7431 + }, + { + "start": 36029.04, + "end": 36031.02, + "probability": 0.9836 + }, + { + "start": 36031.7, + "end": 36034.02, + "probability": 0.9871 + }, + { + "start": 36035.28, + "end": 36036.08, + "probability": 0.9016 + }, + { + "start": 36037.56, + "end": 36039.46, + "probability": 0.9925 + }, + { + "start": 36041.04, + "end": 36043.46, + "probability": 0.926 + }, + { + "start": 36044.92, + "end": 36046.86, + "probability": 0.9824 + }, + { + "start": 36048.2, + "end": 36052.74, + "probability": 0.9937 + }, + { + "start": 36054.04, + "end": 36054.74, + "probability": 0.7352 + }, + { + "start": 36056.56, + "end": 36058.92, + "probability": 0.7475 + }, + { + "start": 36059.92, + "end": 36061.1, + "probability": 0.9261 + }, + { + "start": 36063.22, + "end": 36066.44, + "probability": 0.9424 + }, + { + "start": 36067.02, + "end": 36067.52, + "probability": 0.8999 + }, + { + "start": 36069.56, + "end": 36072.02, + "probability": 0.8051 + }, + { + "start": 36073.54, + "end": 36074.18, + "probability": 0.6511 + }, + { + "start": 36075.26, + "end": 36076.04, + "probability": 0.9006 + }, + { + "start": 36077.92, + "end": 36079.36, + "probability": 0.7595 + }, + { + "start": 36080.14, + "end": 36082.24, + "probability": 0.8399 + }, + { + "start": 36082.98, + "end": 36084.46, + "probability": 0.9223 + }, + { + "start": 36085.06, + "end": 36089.82, + "probability": 0.997 + }, + { + "start": 36091.0, + "end": 36094.08, + "probability": 0.9597 + }, + { + "start": 36095.94, + "end": 36096.96, + "probability": 0.7313 + }, + { + "start": 36098.24, + "end": 36100.36, + "probability": 0.8545 + }, + { + "start": 36101.44, + "end": 36101.78, + "probability": 0.8059 + }, + { + "start": 36102.9, + "end": 36107.88, + "probability": 0.9674 + }, + { + "start": 36108.7, + "end": 36109.15, + "probability": 0.7444 + }, + { + "start": 36110.28, + "end": 36111.14, + "probability": 0.9059 + }, + { + "start": 36112.36, + "end": 36112.68, + "probability": 0.4761 + }, + { + "start": 36112.92, + "end": 36113.06, + "probability": 0.8956 + }, + { + "start": 36115.24, + "end": 36115.84, + "probability": 0.9677 + }, + { + "start": 36117.42, + "end": 36120.24, + "probability": 0.9331 + }, + { + "start": 36121.16, + "end": 36121.86, + "probability": 0.8647 + }, + { + "start": 36123.21, + "end": 36124.78, + "probability": 0.7451 + }, + { + "start": 36126.4, + "end": 36129.46, + "probability": 0.4338 + }, + { + "start": 36131.28, + "end": 36133.52, + "probability": 0.922 + }, + { + "start": 36134.56, + "end": 36135.78, + "probability": 0.9796 + }, + { + "start": 36136.34, + "end": 36136.94, + "probability": 0.7429 + }, + { + "start": 36139.3, + "end": 36140.74, + "probability": 0.8786 + }, + { + "start": 36140.9, + "end": 36142.25, + "probability": 0.995 + }, + { + "start": 36143.5, + "end": 36144.0, + "probability": 0.7285 + }, + { + "start": 36144.56, + "end": 36144.86, + "probability": 0.9883 + }, + { + "start": 36145.4, + "end": 36145.98, + "probability": 0.9756 + }, + { + "start": 36147.56, + "end": 36149.08, + "probability": 0.993 + }, + { + "start": 36150.1, + "end": 36153.3, + "probability": 0.9878 + }, + { + "start": 36154.54, + "end": 36159.62, + "probability": 0.9703 + }, + { + "start": 36160.6, + "end": 36161.52, + "probability": 0.8225 + }, + { + "start": 36162.12, + "end": 36163.82, + "probability": 0.8005 + }, + { + "start": 36165.06, + "end": 36166.0, + "probability": 0.9829 + }, + { + "start": 36166.7, + "end": 36167.78, + "probability": 0.9817 + }, + { + "start": 36169.16, + "end": 36169.56, + "probability": 0.383 + }, + { + "start": 36170.28, + "end": 36173.48, + "probability": 0.9819 + }, + { + "start": 36174.22, + "end": 36176.24, + "probability": 0.9639 + }, + { + "start": 36179.04, + "end": 36179.98, + "probability": 0.782 + }, + { + "start": 36181.16, + "end": 36181.85, + "probability": 0.9985 + }, + { + "start": 36183.52, + "end": 36184.16, + "probability": 0.8412 + }, + { + "start": 36185.94, + "end": 36186.96, + "probability": 0.8577 + }, + { + "start": 36188.52, + "end": 36189.12, + "probability": 0.7428 + }, + { + "start": 36190.3, + "end": 36191.66, + "probability": 0.9937 + }, + { + "start": 36192.98, + "end": 36193.78, + "probability": 0.9443 + }, + { + "start": 36194.4, + "end": 36196.08, + "probability": 0.8494 + }, + { + "start": 36197.12, + "end": 36198.06, + "probability": 0.4464 + }, + { + "start": 36200.12, + "end": 36200.6, + "probability": 0.896 + }, + { + "start": 36204.78, + "end": 36206.08, + "probability": 0.8787 + }, + { + "start": 36206.72, + "end": 36209.2, + "probability": 0.5333 + }, + { + "start": 36209.78, + "end": 36213.84, + "probability": 0.9575 + }, + { + "start": 36215.16, + "end": 36217.72, + "probability": 0.7497 + }, + { + "start": 36218.72, + "end": 36219.98, + "probability": 0.8942 + }, + { + "start": 36221.46, + "end": 36222.76, + "probability": 0.5174 + }, + { + "start": 36223.54, + "end": 36224.4, + "probability": 0.1293 + }, + { + "start": 36224.52, + "end": 36225.68, + "probability": 0.4715 + }, + { + "start": 36226.98, + "end": 36229.76, + "probability": 0.9346 + }, + { + "start": 36231.04, + "end": 36232.36, + "probability": 0.8766 + }, + { + "start": 36233.9, + "end": 36236.16, + "probability": 0.9121 + }, + { + "start": 36236.34, + "end": 36237.58, + "probability": 0.9807 + }, + { + "start": 36238.08, + "end": 36239.18, + "probability": 0.9902 + }, + { + "start": 36240.36, + "end": 36241.04, + "probability": 0.6222 + }, + { + "start": 36242.82, + "end": 36246.42, + "probability": 0.7215 + }, + { + "start": 36247.14, + "end": 36248.14, + "probability": 0.6771 + }, + { + "start": 36249.86, + "end": 36254.78, + "probability": 0.9896 + }, + { + "start": 36255.74, + "end": 36259.7, + "probability": 0.9863 + }, + { + "start": 36261.38, + "end": 36262.4, + "probability": 0.9827 + }, + { + "start": 36264.34, + "end": 36265.46, + "probability": 0.9614 + }, + { + "start": 36266.48, + "end": 36268.14, + "probability": 0.6994 + }, + { + "start": 36269.24, + "end": 36270.06, + "probability": 0.7831 + }, + { + "start": 36271.02, + "end": 36273.3, + "probability": 0.9556 + }, + { + "start": 36274.26, + "end": 36274.96, + "probability": 0.8029 + }, + { + "start": 36276.78, + "end": 36278.58, + "probability": 0.9582 + }, + { + "start": 36280.54, + "end": 36281.62, + "probability": 0.8061 + }, + { + "start": 36284.54, + "end": 36285.48, + "probability": 0.9731 + }, + { + "start": 36287.14, + "end": 36294.42, + "probability": 0.9861 + }, + { + "start": 36295.2, + "end": 36298.38, + "probability": 0.9278 + }, + { + "start": 36298.6, + "end": 36298.88, + "probability": 0.4282 + }, + { + "start": 36300.28, + "end": 36304.9, + "probability": 0.9966 + }, + { + "start": 36305.66, + "end": 36307.56, + "probability": 0.8521 + }, + { + "start": 36308.54, + "end": 36309.28, + "probability": 0.9119 + }, + { + "start": 36311.44, + "end": 36312.42, + "probability": 0.8895 + }, + { + "start": 36313.12, + "end": 36317.68, + "probability": 0.9881 + }, + { + "start": 36318.84, + "end": 36320.42, + "probability": 0.9932 + }, + { + "start": 36322.22, + "end": 36326.49, + "probability": 0.9982 + }, + { + "start": 36328.7, + "end": 36331.68, + "probability": 0.9242 + }, + { + "start": 36332.54, + "end": 36332.93, + "probability": 0.9714 + }, + { + "start": 36334.6, + "end": 36335.08, + "probability": 0.8013 + }, + { + "start": 36335.8, + "end": 36336.44, + "probability": 0.9768 + }, + { + "start": 36337.1, + "end": 36337.9, + "probability": 0.7407 + }, + { + "start": 36339.22, + "end": 36339.82, + "probability": 0.926 + }, + { + "start": 36340.68, + "end": 36341.18, + "probability": 0.9852 + }, + { + "start": 36341.7, + "end": 36342.12, + "probability": 0.4674 + }, + { + "start": 36343.7, + "end": 36345.06, + "probability": 0.9905 + }, + { + "start": 36345.66, + "end": 36348.68, + "probability": 0.9839 + }, + { + "start": 36349.44, + "end": 36350.26, + "probability": 0.9531 + }, + { + "start": 36350.98, + "end": 36353.57, + "probability": 0.9945 + }, + { + "start": 36355.7, + "end": 36359.58, + "probability": 0.9749 + }, + { + "start": 36361.36, + "end": 36363.5, + "probability": 0.5877 + }, + { + "start": 36364.2, + "end": 36366.18, + "probability": 0.6448 + }, + { + "start": 36366.72, + "end": 36368.74, + "probability": 0.9526 + }, + { + "start": 36368.98, + "end": 36369.38, + "probability": 0.6568 + }, + { + "start": 36369.48, + "end": 36372.26, + "probability": 0.7104 + }, + { + "start": 36373.0, + "end": 36373.76, + "probability": 0.9298 + }, + { + "start": 36374.28, + "end": 36375.06, + "probability": 0.9544 + }, + { + "start": 36375.6, + "end": 36377.56, + "probability": 0.7555 + }, + { + "start": 36379.48, + "end": 36382.36, + "probability": 0.8321 + }, + { + "start": 36382.74, + "end": 36382.98, + "probability": 0.9021 + }, + { + "start": 36384.2, + "end": 36384.97, + "probability": 0.8703 + }, + { + "start": 36385.72, + "end": 36387.2, + "probability": 0.9703 + }, + { + "start": 36388.94, + "end": 36389.16, + "probability": 0.6281 + }, + { + "start": 36389.22, + "end": 36392.9, + "probability": 0.9973 + }, + { + "start": 36394.38, + "end": 36397.2, + "probability": 0.9894 + }, + { + "start": 36399.68, + "end": 36406.18, + "probability": 0.9871 + }, + { + "start": 36407.26, + "end": 36408.0, + "probability": 0.9058 + }, + { + "start": 36409.62, + "end": 36414.36, + "probability": 0.9919 + }, + { + "start": 36417.52, + "end": 36418.18, + "probability": 0.5071 + }, + { + "start": 36419.84, + "end": 36421.4, + "probability": 0.8843 + }, + { + "start": 36422.0, + "end": 36424.32, + "probability": 0.9429 + }, + { + "start": 36424.88, + "end": 36425.4, + "probability": 0.567 + }, + { + "start": 36426.02, + "end": 36427.88, + "probability": 0.9557 + }, + { + "start": 36428.66, + "end": 36431.08, + "probability": 0.9648 + }, + { + "start": 36431.78, + "end": 36433.98, + "probability": 0.9715 + }, + { + "start": 36434.22, + "end": 36434.5, + "probability": 0.8418 + }, + { + "start": 36437.64, + "end": 36439.71, + "probability": 0.7637 + }, + { + "start": 36440.38, + "end": 36442.03, + "probability": 0.9349 + }, + { + "start": 36443.92, + "end": 36464.08, + "probability": 0.8326 + }, + { + "start": 36464.4, + "end": 36464.8, + "probability": 0.7836 + }, + { + "start": 36465.12, + "end": 36466.98, + "probability": 0.8837 + }, + { + "start": 36467.6, + "end": 36468.6, + "probability": 0.6166 + }, + { + "start": 36470.2, + "end": 36470.74, + "probability": 0.6621 + }, + { + "start": 36472.24, + "end": 36474.58, + "probability": 0.9976 + }, + { + "start": 36476.34, + "end": 36478.38, + "probability": 0.7078 + }, + { + "start": 36479.76, + "end": 36480.44, + "probability": 0.9275 + }, + { + "start": 36481.84, + "end": 36483.62, + "probability": 0.922 + }, + { + "start": 36487.32, + "end": 36489.08, + "probability": 0.5167 + }, + { + "start": 36491.58, + "end": 36492.76, + "probability": 0.9259 + }, + { + "start": 36493.86, + "end": 36494.28, + "probability": 0.7158 + }, + { + "start": 36496.7, + "end": 36497.36, + "probability": 0.9286 + }, + { + "start": 36498.84, + "end": 36501.48, + "probability": 0.9554 + }, + { + "start": 36503.38, + "end": 36504.56, + "probability": 0.9683 + }, + { + "start": 36506.78, + "end": 36507.2, + "probability": 0.9606 + }, + { + "start": 36508.94, + "end": 36510.76, + "probability": 0.6666 + }, + { + "start": 36512.68, + "end": 36512.68, + "probability": 0.7864 + }, + { + "start": 36513.9, + "end": 36514.72, + "probability": 0.6911 + }, + { + "start": 36517.04, + "end": 36518.56, + "probability": 0.9937 + }, + { + "start": 36519.7, + "end": 36521.6, + "probability": 0.9518 + }, + { + "start": 36524.0, + "end": 36524.82, + "probability": 0.9878 + }, + { + "start": 36527.82, + "end": 36529.22, + "probability": 0.9554 + }, + { + "start": 36529.86, + "end": 36530.94, + "probability": 0.9071 + }, + { + "start": 36532.08, + "end": 36532.92, + "probability": 0.9428 + }, + { + "start": 36534.1, + "end": 36534.9, + "probability": 0.8378 + }, + { + "start": 36537.1, + "end": 36537.48, + "probability": 0.5056 + }, + { + "start": 36539.88, + "end": 36542.27, + "probability": 0.9025 + }, + { + "start": 36545.46, + "end": 36546.86, + "probability": 0.9151 + }, + { + "start": 36547.64, + "end": 36548.28, + "probability": 0.801 + }, + { + "start": 36551.16, + "end": 36554.06, + "probability": 0.9545 + }, + { + "start": 36555.52, + "end": 36556.32, + "probability": 0.8066 + }, + { + "start": 36557.68, + "end": 36558.64, + "probability": 0.8581 + }, + { + "start": 36562.16, + "end": 36563.4, + "probability": 0.9929 + }, + { + "start": 36565.64, + "end": 36566.02, + "probability": 0.7117 + }, + { + "start": 36569.04, + "end": 36570.2, + "probability": 0.9446 + }, + { + "start": 36571.5, + "end": 36573.8, + "probability": 0.8565 + }, + { + "start": 36574.48, + "end": 36574.84, + "probability": 0.72 + }, + { + "start": 36576.16, + "end": 36577.62, + "probability": 0.9365 + }, + { + "start": 36579.3, + "end": 36581.22, + "probability": 0.988 + }, + { + "start": 36581.94, + "end": 36582.24, + "probability": 0.4894 + }, + { + "start": 36585.54, + "end": 36591.9, + "probability": 0.8368 + }, + { + "start": 36598.38, + "end": 36598.52, + "probability": 0.7397 + }, + { + "start": 36599.06, + "end": 36599.78, + "probability": 0.8874 + }, + { + "start": 36601.32, + "end": 36605.02, + "probability": 0.9852 + }, + { + "start": 36605.8, + "end": 36607.16, + "probability": 0.9827 + }, + { + "start": 36609.82, + "end": 36613.86, + "probability": 0.9931 + }, + { + "start": 36615.66, + "end": 36617.32, + "probability": 0.9739 + }, + { + "start": 36619.22, + "end": 36621.27, + "probability": 0.9858 + }, + { + "start": 36621.34, + "end": 36623.14, + "probability": 0.6689 + }, + { + "start": 36624.1, + "end": 36625.26, + "probability": 0.9995 + }, + { + "start": 36628.24, + "end": 36629.1, + "probability": 0.5535 + }, + { + "start": 36629.72, + "end": 36630.38, + "probability": 0.61 + }, + { + "start": 36633.48, + "end": 36634.24, + "probability": 0.8876 + }, + { + "start": 36634.52, + "end": 36636.16, + "probability": 0.9941 + }, + { + "start": 36637.3, + "end": 36639.02, + "probability": 0.9866 + }, + { + "start": 36640.34, + "end": 36643.14, + "probability": 0.9729 + }, + { + "start": 36645.6, + "end": 36648.14, + "probability": 0.9814 + }, + { + "start": 36650.2, + "end": 36652.41, + "probability": 0.6612 + }, + { + "start": 36657.98, + "end": 36662.12, + "probability": 0.9268 + }, + { + "start": 36663.68, + "end": 36666.06, + "probability": 0.86 + }, + { + "start": 36667.16, + "end": 36668.1, + "probability": 0.9537 + }, + { + "start": 36668.8, + "end": 36669.46, + "probability": 0.579 + }, + { + "start": 36672.54, + "end": 36679.53, + "probability": 0.9961 + }, + { + "start": 36681.58, + "end": 36683.24, + "probability": 0.7963 + }, + { + "start": 36684.2, + "end": 36685.46, + "probability": 0.9965 + }, + { + "start": 36686.22, + "end": 36687.22, + "probability": 0.7065 + }, + { + "start": 36689.32, + "end": 36690.52, + "probability": 0.9746 + }, + { + "start": 36691.1, + "end": 36696.08, + "probability": 0.9737 + }, + { + "start": 36697.84, + "end": 36698.88, + "probability": 0.9978 + }, + { + "start": 36699.74, + "end": 36700.6, + "probability": 0.9447 + }, + { + "start": 36702.0, + "end": 36706.11, + "probability": 0.9956 + }, + { + "start": 36707.9, + "end": 36709.08, + "probability": 0.9076 + }, + { + "start": 36710.16, + "end": 36711.22, + "probability": 0.9787 + }, + { + "start": 36712.96, + "end": 36713.76, + "probability": 0.8415 + }, + { + "start": 36715.0, + "end": 36715.98, + "probability": 0.8837 + }, + { + "start": 36718.44, + "end": 36719.52, + "probability": 0.9452 + }, + { + "start": 36720.36, + "end": 36721.74, + "probability": 0.4963 + }, + { + "start": 36723.26, + "end": 36723.82, + "probability": 0.7678 + }, + { + "start": 36726.74, + "end": 36728.08, + "probability": 0.8151 + }, + { + "start": 36730.74, + "end": 36741.4, + "probability": 0.9729 + }, + { + "start": 36744.78, + "end": 36746.12, + "probability": 0.9985 + }, + { + "start": 36750.0, + "end": 36750.9, + "probability": 0.9982 + }, + { + "start": 36754.08, + "end": 36755.3, + "probability": 0.9627 + }, + { + "start": 36757.42, + "end": 36758.1, + "probability": 0.8274 + }, + { + "start": 36759.26, + "end": 36760.84, + "probability": 0.8712 + }, + { + "start": 36764.24, + "end": 36769.24, + "probability": 0.9423 + }, + { + "start": 36770.24, + "end": 36770.96, + "probability": 0.9112 + }, + { + "start": 36772.3, + "end": 36773.22, + "probability": 0.8799 + }, + { + "start": 36774.46, + "end": 36775.38, + "probability": 0.7107 + }, + { + "start": 36777.66, + "end": 36779.4, + "probability": 0.9178 + }, + { + "start": 36782.36, + "end": 36785.44, + "probability": 0.9727 + }, + { + "start": 36786.86, + "end": 36788.86, + "probability": 0.9935 + }, + { + "start": 36789.4, + "end": 36793.1, + "probability": 0.999 + }, + { + "start": 36794.52, + "end": 36796.44, + "probability": 0.9764 + }, + { + "start": 36797.26, + "end": 36799.8, + "probability": 0.9682 + }, + { + "start": 36800.32, + "end": 36801.66, + "probability": 0.8768 + }, + { + "start": 36804.62, + "end": 36807.74, + "probability": 0.9601 + }, + { + "start": 36808.8, + "end": 36810.12, + "probability": 0.994 + }, + { + "start": 36812.1, + "end": 36815.44, + "probability": 0.9907 + }, + { + "start": 36816.78, + "end": 36821.82, + "probability": 0.9532 + }, + { + "start": 36825.76, + "end": 36827.46, + "probability": 0.9277 + }, + { + "start": 36829.06, + "end": 36830.0, + "probability": 0.9941 + }, + { + "start": 36831.0, + "end": 36831.62, + "probability": 0.9131 + }, + { + "start": 36832.62, + "end": 36835.61, + "probability": 0.9164 + }, + { + "start": 36837.6, + "end": 36838.12, + "probability": 0.7719 + }, + { + "start": 36839.4, + "end": 36843.78, + "probability": 0.9702 + }, + { + "start": 36847.7, + "end": 36848.3, + "probability": 0.7659 + }, + { + "start": 36849.62, + "end": 36854.9, + "probability": 0.9893 + }, + { + "start": 36856.1, + "end": 36857.32, + "probability": 0.9618 + }, + { + "start": 36857.98, + "end": 36858.78, + "probability": 0.6425 + }, + { + "start": 36860.44, + "end": 36863.5, + "probability": 0.607 + }, + { + "start": 36865.22, + "end": 36866.54, + "probability": 0.8249 + }, + { + "start": 36867.56, + "end": 36868.36, + "probability": 0.6692 + }, + { + "start": 36872.56, + "end": 36875.06, + "probability": 0.9518 + }, + { + "start": 36877.46, + "end": 36878.1, + "probability": 0.9336 + }, + { + "start": 36881.64, + "end": 36883.72, + "probability": 0.5107 + }, + { + "start": 36884.72, + "end": 36888.54, + "probability": 0.9945 + }, + { + "start": 36890.94, + "end": 36892.26, + "probability": 0.8066 + }, + { + "start": 36893.26, + "end": 36894.56, + "probability": 0.9956 + }, + { + "start": 36895.18, + "end": 36898.48, + "probability": 0.9943 + }, + { + "start": 36899.84, + "end": 36900.54, + "probability": 0.4968 + }, + { + "start": 36902.98, + "end": 36904.5, + "probability": 0.998 + }, + { + "start": 36906.56, + "end": 36909.86, + "probability": 0.8979 + }, + { + "start": 36911.5, + "end": 36912.7, + "probability": 0.778 + }, + { + "start": 36913.26, + "end": 36913.7, + "probability": 0.4915 + }, + { + "start": 36916.86, + "end": 36917.54, + "probability": 0.3008 + }, + { + "start": 36919.02, + "end": 36920.59, + "probability": 0.6919 + }, + { + "start": 36921.9, + "end": 36924.04, + "probability": 0.8689 + }, + { + "start": 36925.28, + "end": 36927.26, + "probability": 0.5797 + }, + { + "start": 36929.21, + "end": 36932.02, + "probability": 0.9736 + }, + { + "start": 36932.18, + "end": 36932.26, + "probability": 0.2314 + }, + { + "start": 36932.26, + "end": 36932.56, + "probability": 0.5183 + }, + { + "start": 36932.72, + "end": 36934.66, + "probability": 0.9539 + }, + { + "start": 36935.3, + "end": 36937.91, + "probability": 0.9269 + }, + { + "start": 36939.76, + "end": 36940.02, + "probability": 0.5656 + }, + { + "start": 36940.82, + "end": 36942.34, + "probability": 0.9057 + }, + { + "start": 36943.12, + "end": 36944.36, + "probability": 0.9107 + }, + { + "start": 36944.92, + "end": 36946.0, + "probability": 0.981 + }, + { + "start": 36946.64, + "end": 36949.26, + "probability": 0.9727 + }, + { + "start": 36949.46, + "end": 36951.06, + "probability": 0.884 + }, + { + "start": 36951.72, + "end": 36952.35, + "probability": 0.9395 + }, + { + "start": 36952.74, + "end": 36958.22, + "probability": 0.0193 + }, + { + "start": 36958.22, + "end": 36960.73, + "probability": 0.4641 + }, + { + "start": 36961.74, + "end": 36964.12, + "probability": 0.8785 + }, + { + "start": 36964.64, + "end": 36967.0, + "probability": 0.9858 + }, + { + "start": 36967.64, + "end": 36968.88, + "probability": 0.8276 + }, + { + "start": 36969.74, + "end": 36970.26, + "probability": 0.9845 + }, + { + "start": 36973.24, + "end": 36977.96, + "probability": 0.9233 + }, + { + "start": 36978.5, + "end": 36979.26, + "probability": 0.7564 + }, + { + "start": 36980.3, + "end": 36983.28, + "probability": 0.7006 + }, + { + "start": 36983.62, + "end": 36985.42, + "probability": 0.6331 + }, + { + "start": 36985.84, + "end": 36987.44, + "probability": 0.8403 + }, + { + "start": 36988.36, + "end": 36989.8, + "probability": 0.9771 + }, + { + "start": 36990.58, + "end": 36992.16, + "probability": 0.703 + }, + { + "start": 36993.24, + "end": 36995.1, + "probability": 0.896 + }, + { + "start": 36995.82, + "end": 36996.24, + "probability": 0.6154 + }, + { + "start": 36996.24, + "end": 37000.84, + "probability": 0.823 + }, + { + "start": 37001.08, + "end": 37003.3, + "probability": 0.6411 + }, + { + "start": 37003.58, + "end": 37009.5, + "probability": 0.9844 + }, + { + "start": 37011.04, + "end": 37013.78, + "probability": 0.7693 + }, + { + "start": 37016.56, + "end": 37018.18, + "probability": 0.7544 + }, + { + "start": 37020.7, + "end": 37022.3, + "probability": 0.8801 + }, + { + "start": 37023.06, + "end": 37024.25, + "probability": 0.9553 + }, + { + "start": 37025.4, + "end": 37026.78, + "probability": 0.9547 + }, + { + "start": 37028.48, + "end": 37030.56, + "probability": 0.9829 + }, + { + "start": 37031.86, + "end": 37033.48, + "probability": 0.0878 + }, + { + "start": 37034.2, + "end": 37043.24, + "probability": 0.9037 + }, + { + "start": 37044.32, + "end": 37045.7, + "probability": 0.5728 + }, + { + "start": 37046.44, + "end": 37046.98, + "probability": 0.758 + }, + { + "start": 37048.36, + "end": 37052.24, + "probability": 0.7403 + }, + { + "start": 37053.66, + "end": 37054.98, + "probability": 0.8435 + }, + { + "start": 37057.22, + "end": 37058.32, + "probability": 0.7245 + }, + { + "start": 37058.44, + "end": 37061.14, + "probability": 0.9048 + }, + { + "start": 37061.32, + "end": 37062.12, + "probability": 0.796 + }, + { + "start": 37064.06, + "end": 37064.62, + "probability": 0.9758 + }, + { + "start": 37067.08, + "end": 37068.22, + "probability": 0.9622 + }, + { + "start": 37069.72, + "end": 37072.6, + "probability": 0.8761 + }, + { + "start": 37075.12, + "end": 37076.87, + "probability": 0.501 + }, + { + "start": 37077.96, + "end": 37080.88, + "probability": 0.6791 + }, + { + "start": 37082.78, + "end": 37084.96, + "probability": 0.6699 + }, + { + "start": 37085.2, + "end": 37087.82, + "probability": 0.9334 + }, + { + "start": 37105.3, + "end": 37105.68, + "probability": 0.5474 + }, + { + "start": 37106.32, + "end": 37106.42, + "probability": 0.2597 + }, + { + "start": 37120.48, + "end": 37122.82, + "probability": 0.6947 + }, + { + "start": 37124.04, + "end": 37125.44, + "probability": 0.8363 + }, + { + "start": 37127.08, + "end": 37129.26, + "probability": 0.9989 + }, + { + "start": 37129.94, + "end": 37134.02, + "probability": 0.998 + }, + { + "start": 37134.7, + "end": 37136.52, + "probability": 0.999 + }, + { + "start": 37137.06, + "end": 37138.38, + "probability": 0.9956 + }, + { + "start": 37139.6, + "end": 37143.32, + "probability": 0.9634 + }, + { + "start": 37143.56, + "end": 37145.45, + "probability": 0.3195 + }, + { + "start": 37146.3, + "end": 37147.58, + "probability": 0.15 + }, + { + "start": 37147.99, + "end": 37150.48, + "probability": 0.4624 + }, + { + "start": 37150.78, + "end": 37154.16, + "probability": 0.3047 + }, + { + "start": 37156.0, + "end": 37160.38, + "probability": 0.8929 + }, + { + "start": 37160.38, + "end": 37165.4, + "probability": 0.9841 + }, + { + "start": 37167.3, + "end": 37168.58, + "probability": 0.9321 + }, + { + "start": 37169.68, + "end": 37172.46, + "probability": 0.9979 + }, + { + "start": 37173.2, + "end": 37176.4, + "probability": 0.8939 + }, + { + "start": 37176.76, + "end": 37177.62, + "probability": 0.5238 + }, + { + "start": 37178.32, + "end": 37178.74, + "probability": 0.3299 + }, + { + "start": 37180.2, + "end": 37185.12, + "probability": 0.9966 + }, + { + "start": 37186.14, + "end": 37188.18, + "probability": 0.9925 + }, + { + "start": 37190.42, + "end": 37192.18, + "probability": 0.9443 + }, + { + "start": 37193.44, + "end": 37198.7, + "probability": 0.9956 + }, + { + "start": 37199.48, + "end": 37204.94, + "probability": 0.9821 + }, + { + "start": 37207.0, + "end": 37208.32, + "probability": 0.6067 + }, + { + "start": 37208.42, + "end": 37209.28, + "probability": 0.9507 + }, + { + "start": 37209.4, + "end": 37210.92, + "probability": 0.974 + }, + { + "start": 37211.24, + "end": 37211.42, + "probability": 0.7751 + }, + { + "start": 37211.54, + "end": 37212.62, + "probability": 0.7862 + }, + { + "start": 37213.38, + "end": 37214.88, + "probability": 0.9779 + }, + { + "start": 37215.44, + "end": 37216.82, + "probability": 0.9565 + }, + { + "start": 37217.54, + "end": 37219.46, + "probability": 0.9476 + }, + { + "start": 37220.24, + "end": 37220.72, + "probability": 0.5063 + }, + { + "start": 37220.76, + "end": 37221.44, + "probability": 0.9778 + }, + { + "start": 37221.54, + "end": 37224.98, + "probability": 0.9883 + }, + { + "start": 37226.2, + "end": 37227.8, + "probability": 0.6077 + }, + { + "start": 37228.68, + "end": 37230.4, + "probability": 0.6861 + }, + { + "start": 37231.06, + "end": 37232.0, + "probability": 0.895 + }, + { + "start": 37234.6, + "end": 37239.12, + "probability": 0.9219 + }, + { + "start": 37240.62, + "end": 37242.82, + "probability": 0.8308 + }, + { + "start": 37243.64, + "end": 37245.0, + "probability": 0.9497 + }, + { + "start": 37245.52, + "end": 37247.44, + "probability": 0.9954 + }, + { + "start": 37248.0, + "end": 37249.84, + "probability": 0.9529 + }, + { + "start": 37251.66, + "end": 37253.0, + "probability": 0.9583 + }, + { + "start": 37253.78, + "end": 37254.56, + "probability": 0.836 + }, + { + "start": 37255.1, + "end": 37256.92, + "probability": 0.9934 + }, + { + "start": 37259.18, + "end": 37261.43, + "probability": 0.9781 + }, + { + "start": 37262.26, + "end": 37265.56, + "probability": 0.7693 + }, + { + "start": 37266.0, + "end": 37268.96, + "probability": 0.9636 + }, + { + "start": 37270.0, + "end": 37271.42, + "probability": 0.5987 + }, + { + "start": 37272.7, + "end": 37272.98, + "probability": 0.8738 + }, + { + "start": 37274.86, + "end": 37276.26, + "probability": 0.7662 + }, + { + "start": 37276.8, + "end": 37277.26, + "probability": 0.74 + }, + { + "start": 37278.54, + "end": 37282.54, + "probability": 0.9989 + }, + { + "start": 37283.06, + "end": 37287.7, + "probability": 0.9731 + }, + { + "start": 37289.28, + "end": 37296.14, + "probability": 0.8625 + }, + { + "start": 37296.88, + "end": 37301.34, + "probability": 0.9229 + }, + { + "start": 37301.88, + "end": 37303.84, + "probability": 0.8862 + }, + { + "start": 37305.02, + "end": 37306.64, + "probability": 0.9691 + }, + { + "start": 37307.34, + "end": 37308.94, + "probability": 0.9624 + }, + { + "start": 37309.56, + "end": 37314.3, + "probability": 0.9792 + }, + { + "start": 37315.0, + "end": 37316.5, + "probability": 0.9573 + }, + { + "start": 37318.76, + "end": 37320.48, + "probability": 0.7105 + }, + { + "start": 37321.22, + "end": 37321.76, + "probability": 0.9388 + }, + { + "start": 37324.46, + "end": 37326.18, + "probability": 0.9922 + }, + { + "start": 37328.08, + "end": 37332.18, + "probability": 0.9532 + }, + { + "start": 37332.82, + "end": 37338.46, + "probability": 0.9486 + }, + { + "start": 37339.24, + "end": 37340.34, + "probability": 0.7945 + }, + { + "start": 37340.66, + "end": 37341.77, + "probability": 0.9639 + }, + { + "start": 37344.76, + "end": 37345.52, + "probability": 0.647 + }, + { + "start": 37346.24, + "end": 37346.96, + "probability": 0.9472 + }, + { + "start": 37347.4, + "end": 37350.34, + "probability": 0.9725 + }, + { + "start": 37351.44, + "end": 37354.54, + "probability": 0.9893 + }, + { + "start": 37357.55, + "end": 37364.34, + "probability": 0.9865 + }, + { + "start": 37364.48, + "end": 37373.4, + "probability": 0.968 + }, + { + "start": 37374.08, + "end": 37376.46, + "probability": 0.9877 + }, + { + "start": 37377.02, + "end": 37381.64, + "probability": 0.9976 + }, + { + "start": 37385.34, + "end": 37386.9, + "probability": 0.9621 + }, + { + "start": 37387.6, + "end": 37390.74, + "probability": 0.9985 + }, + { + "start": 37391.4, + "end": 37392.64, + "probability": 0.9878 + }, + { + "start": 37393.36, + "end": 37396.34, + "probability": 0.9976 + }, + { + "start": 37398.12, + "end": 37399.77, + "probability": 0.999 + }, + { + "start": 37400.98, + "end": 37404.22, + "probability": 0.9949 + }, + { + "start": 37405.42, + "end": 37410.92, + "probability": 0.9497 + }, + { + "start": 37411.68, + "end": 37414.7, + "probability": 0.9841 + }, + { + "start": 37415.9, + "end": 37416.6, + "probability": 0.7649 + }, + { + "start": 37417.88, + "end": 37419.92, + "probability": 0.9901 + }, + { + "start": 37420.44, + "end": 37422.82, + "probability": 0.963 + }, + { + "start": 37423.82, + "end": 37427.62, + "probability": 0.9767 + }, + { + "start": 37430.6, + "end": 37435.18, + "probability": 0.9973 + }, + { + "start": 37435.62, + "end": 37439.36, + "probability": 0.9841 + }, + { + "start": 37440.96, + "end": 37446.1, + "probability": 0.9912 + }, + { + "start": 37446.96, + "end": 37449.88, + "probability": 0.9979 + }, + { + "start": 37451.3, + "end": 37454.38, + "probability": 0.9984 + }, + { + "start": 37455.02, + "end": 37458.94, + "probability": 0.9679 + }, + { + "start": 37459.56, + "end": 37460.96, + "probability": 0.9445 + }, + { + "start": 37462.18, + "end": 37464.34, + "probability": 0.9796 + }, + { + "start": 37465.18, + "end": 37465.92, + "probability": 0.9966 + }, + { + "start": 37466.46, + "end": 37467.67, + "probability": 0.9976 + }, + { + "start": 37469.04, + "end": 37476.28, + "probability": 0.98 + }, + { + "start": 37477.18, + "end": 37483.16, + "probability": 0.999 + }, + { + "start": 37484.04, + "end": 37486.76, + "probability": 0.7251 + }, + { + "start": 37487.86, + "end": 37489.89, + "probability": 0.75 + }, + { + "start": 37490.12, + "end": 37490.56, + "probability": 0.633 + }, + { + "start": 37490.6, + "end": 37491.84, + "probability": 0.9831 + }, + { + "start": 37495.42, + "end": 37499.7, + "probability": 0.9981 + }, + { + "start": 37499.7, + "end": 37502.6, + "probability": 0.9924 + }, + { + "start": 37503.78, + "end": 37508.86, + "probability": 0.9438 + }, + { + "start": 37510.8, + "end": 37512.32, + "probability": 0.7274 + }, + { + "start": 37513.06, + "end": 37515.84, + "probability": 0.9714 + }, + { + "start": 37516.98, + "end": 37518.82, + "probability": 0.9915 + }, + { + "start": 37519.88, + "end": 37524.58, + "probability": 0.9958 + }, + { + "start": 37524.68, + "end": 37530.02, + "probability": 0.9963 + }, + { + "start": 37530.82, + "end": 37531.5, + "probability": 0.8145 + }, + { + "start": 37532.02, + "end": 37536.56, + "probability": 0.9963 + }, + { + "start": 37537.82, + "end": 37541.76, + "probability": 0.9966 + }, + { + "start": 37542.4, + "end": 37548.5, + "probability": 0.9546 + }, + { + "start": 37552.13, + "end": 37555.2, + "probability": 0.6235 + }, + { + "start": 37555.72, + "end": 37560.6, + "probability": 0.5924 + }, + { + "start": 37561.56, + "end": 37563.5, + "probability": 0.9829 + }, + { + "start": 37564.06, + "end": 37566.48, + "probability": 0.994 + }, + { + "start": 37567.2, + "end": 37570.9, + "probability": 0.9292 + }, + { + "start": 37571.46, + "end": 37575.14, + "probability": 0.9888 + }, + { + "start": 37576.2, + "end": 37578.84, + "probability": 0.9717 + }, + { + "start": 37580.42, + "end": 37584.36, + "probability": 0.9719 + }, + { + "start": 37585.2, + "end": 37591.12, + "probability": 0.9961 + }, + { + "start": 37591.74, + "end": 37596.0, + "probability": 0.9331 + }, + { + "start": 37596.0, + "end": 37600.36, + "probability": 0.9028 + }, + { + "start": 37601.16, + "end": 37603.74, + "probability": 0.9952 + }, + { + "start": 37605.14, + "end": 37607.48, + "probability": 0.8588 + }, + { + "start": 37608.28, + "end": 37609.24, + "probability": 0.9212 + }, + { + "start": 37610.7, + "end": 37615.22, + "probability": 0.9756 + }, + { + "start": 37615.22, + "end": 37619.88, + "probability": 0.9982 + }, + { + "start": 37623.52, + "end": 37628.48, + "probability": 0.9979 + }, + { + "start": 37629.0, + "end": 37633.88, + "probability": 0.8271 + }, + { + "start": 37635.2, + "end": 37638.08, + "probability": 0.9705 + }, + { + "start": 37638.8, + "end": 37640.56, + "probability": 0.9591 + }, + { + "start": 37641.12, + "end": 37643.98, + "probability": 0.9955 + }, + { + "start": 37644.84, + "end": 37645.8, + "probability": 0.9905 + }, + { + "start": 37646.66, + "end": 37650.92, + "probability": 0.9985 + }, + { + "start": 37651.74, + "end": 37653.9, + "probability": 0.995 + }, + { + "start": 37654.82, + "end": 37656.4, + "probability": 0.9696 + }, + { + "start": 37656.94, + "end": 37661.34, + "probability": 0.9948 + }, + { + "start": 37662.0, + "end": 37665.32, + "probability": 0.9688 + }, + { + "start": 37666.34, + "end": 37669.7, + "probability": 0.998 + }, + { + "start": 37669.7, + "end": 37673.78, + "probability": 0.9988 + }, + { + "start": 37674.44, + "end": 37675.06, + "probability": 0.8346 + }, + { + "start": 37675.42, + "end": 37675.98, + "probability": 0.0105 + }, + { + "start": 37676.44, + "end": 37678.86, + "probability": 0.6295 + }, + { + "start": 37679.06, + "end": 37679.18, + "probability": 0.2306 + }, + { + "start": 37679.18, + "end": 37681.5, + "probability": 0.8135 + }, + { + "start": 37682.04, + "end": 37683.64, + "probability": 0.2667 + }, + { + "start": 37684.26, + "end": 37686.82, + "probability": 0.9995 + }, + { + "start": 37687.86, + "end": 37694.24, + "probability": 0.6809 + }, + { + "start": 37695.34, + "end": 37697.2, + "probability": 0.8346 + }, + { + "start": 37698.02, + "end": 37701.64, + "probability": 0.9807 + }, + { + "start": 37702.2, + "end": 37705.3, + "probability": 0.9742 + }, + { + "start": 37705.88, + "end": 37708.76, + "probability": 0.9932 + }, + { + "start": 37709.9, + "end": 37712.06, + "probability": 0.9888 + }, + { + "start": 37713.56, + "end": 37714.16, + "probability": 0.851 + }, + { + "start": 37715.8, + "end": 37718.5, + "probability": 0.9069 + }, + { + "start": 37719.66, + "end": 37722.0, + "probability": 0.8276 + }, + { + "start": 37731.98, + "end": 37735.4, + "probability": 0.8616 + }, + { + "start": 37736.9, + "end": 37737.96, + "probability": 0.6159 + }, + { + "start": 37738.08, + "end": 37739.12, + "probability": 0.8381 + }, + { + "start": 37740.52, + "end": 37742.82, + "probability": 0.8681 + }, + { + "start": 37742.9, + "end": 37743.58, + "probability": 0.5196 + }, + { + "start": 37744.48, + "end": 37746.8, + "probability": 0.8726 + }, + { + "start": 37747.98, + "end": 37751.04, + "probability": 0.9668 + }, + { + "start": 37751.1, + "end": 37751.44, + "probability": 0.7266 + }, + { + "start": 37752.2, + "end": 37754.5, + "probability": 0.981 + }, + { + "start": 37754.74, + "end": 37756.3, + "probability": 0.4725 + }, + { + "start": 37756.82, + "end": 37758.0, + "probability": 0.896 + }, + { + "start": 37760.88, + "end": 37765.4, + "probability": 0.2036 + }, + { + "start": 37766.46, + "end": 37767.06, + "probability": 0.2813 + }, + { + "start": 37767.06, + "end": 37767.1, + "probability": 0.1716 + }, + { + "start": 37767.1, + "end": 37767.74, + "probability": 0.0429 + }, + { + "start": 37767.8, + "end": 37768.22, + "probability": 0.2818 + }, + { + "start": 37768.3, + "end": 37768.44, + "probability": 0.329 + }, + { + "start": 37770.92, + "end": 37770.92, + "probability": 0.0522 + }, + { + "start": 37770.96, + "end": 37771.46, + "probability": 0.6436 + }, + { + "start": 37772.1, + "end": 37773.38, + "probability": 0.9003 + }, + { + "start": 37776.38, + "end": 37778.32, + "probability": 0.7651 + }, + { + "start": 37779.34, + "end": 37779.34, + "probability": 0.6641 + }, + { + "start": 37779.46, + "end": 37782.92, + "probability": 0.7321 + }, + { + "start": 37783.14, + "end": 37784.28, + "probability": 0.8059 + }, + { + "start": 37785.1, + "end": 37787.28, + "probability": 0.9707 + }, + { + "start": 37788.62, + "end": 37789.26, + "probability": 0.8872 + }, + { + "start": 37790.42, + "end": 37792.56, + "probability": 0.9874 + }, + { + "start": 37792.82, + "end": 37793.4, + "probability": 0.9004 + }, + { + "start": 37793.86, + "end": 37794.24, + "probability": 0.9169 + }, + { + "start": 37794.36, + "end": 37795.32, + "probability": 0.9727 + }, + { + "start": 37796.28, + "end": 37797.14, + "probability": 0.5779 + }, + { + "start": 37797.36, + "end": 37800.44, + "probability": 0.9932 + }, + { + "start": 37800.48, + "end": 37801.12, + "probability": 0.4227 + }, + { + "start": 37801.12, + "end": 37801.84, + "probability": 0.3215 + }, + { + "start": 37802.06, + "end": 37804.44, + "probability": 0.7523 + }, + { + "start": 37805.28, + "end": 37810.68, + "probability": 0.998 + }, + { + "start": 37811.12, + "end": 37811.34, + "probability": 0.592 + }, + { + "start": 37811.38, + "end": 37817.0, + "probability": 0.9695 + }, + { + "start": 37817.22, + "end": 37818.14, + "probability": 0.9993 + }, + { + "start": 37819.44, + "end": 37821.86, + "probability": 0.9775 + }, + { + "start": 37821.94, + "end": 37823.54, + "probability": 0.9226 + }, + { + "start": 37823.94, + "end": 37830.48, + "probability": 0.6003 + }, + { + "start": 37830.48, + "end": 37832.84, + "probability": 0.5055 + }, + { + "start": 37832.86, + "end": 37835.14, + "probability": 0.0642 + }, + { + "start": 37835.88, + "end": 37836.25, + "probability": 0.0408 + }, + { + "start": 37837.92, + "end": 37840.36, + "probability": 0.4177 + }, + { + "start": 37840.64, + "end": 37840.64, + "probability": 0.0237 + }, + { + "start": 37840.64, + "end": 37840.64, + "probability": 0.1421 + }, + { + "start": 37840.64, + "end": 37840.64, + "probability": 0.0368 + }, + { + "start": 37840.64, + "end": 37841.16, + "probability": 0.3866 + }, + { + "start": 37841.52, + "end": 37846.04, + "probability": 0.9624 + }, + { + "start": 37846.06, + "end": 37846.86, + "probability": 0.9581 + }, + { + "start": 37847.02, + "end": 37847.88, + "probability": 0.9863 + }, + { + "start": 37848.84, + "end": 37849.76, + "probability": 0.8301 + }, + { + "start": 37850.34, + "end": 37856.0, + "probability": 0.9797 + }, + { + "start": 37856.08, + "end": 37856.52, + "probability": 0.4079 + }, + { + "start": 37857.22, + "end": 37858.82, + "probability": 0.8411 + }, + { + "start": 37858.92, + "end": 37860.02, + "probability": 0.9488 + }, + { + "start": 37860.68, + "end": 37863.18, + "probability": 0.9636 + }, + { + "start": 37863.84, + "end": 37865.46, + "probability": 0.8711 + }, + { + "start": 37866.06, + "end": 37868.9, + "probability": 0.988 + }, + { + "start": 37869.8, + "end": 37870.6, + "probability": 0.6685 + }, + { + "start": 37870.66, + "end": 37873.28, + "probability": 0.8904 + }, + { + "start": 37874.02, + "end": 37876.34, + "probability": 0.9891 + }, + { + "start": 37877.78, + "end": 37880.48, + "probability": 0.9689 + }, + { + "start": 37881.08, + "end": 37881.9, + "probability": 0.9448 + }, + { + "start": 37882.08, + "end": 37885.86, + "probability": 0.8061 + }, + { + "start": 37886.62, + "end": 37886.62, + "probability": 0.8554 + }, + { + "start": 37886.68, + "end": 37887.08, + "probability": 0.45 + }, + { + "start": 37887.18, + "end": 37889.42, + "probability": 0.9866 + }, + { + "start": 37890.08, + "end": 37890.46, + "probability": 0.6537 + }, + { + "start": 37891.48, + "end": 37893.68, + "probability": 0.8977 + }, + { + "start": 37894.76, + "end": 37896.66, + "probability": 0.9987 + }, + { + "start": 37896.66, + "end": 37900.64, + "probability": 0.9951 + }, + { + "start": 37900.76, + "end": 37901.14, + "probability": 0.845 + }, + { + "start": 37901.18, + "end": 37904.06, + "probability": 0.8692 + }, + { + "start": 37904.14, + "end": 37905.55, + "probability": 0.6654 + }, + { + "start": 37906.22, + "end": 37908.76, + "probability": 0.9677 + }, + { + "start": 37908.84, + "end": 37910.58, + "probability": 0.8841 + }, + { + "start": 37911.02, + "end": 37912.18, + "probability": 0.9062 + }, + { + "start": 37912.28, + "end": 37912.82, + "probability": 0.9151 + }, + { + "start": 37913.54, + "end": 37914.1, + "probability": 0.5086 + }, + { + "start": 37914.44, + "end": 37915.68, + "probability": 0.9708 + }, + { + "start": 37916.5, + "end": 37919.26, + "probability": 0.65 + }, + { + "start": 37919.34, + "end": 37922.1, + "probability": 0.8947 + }, + { + "start": 37922.84, + "end": 37924.66, + "probability": 0.9897 + }, + { + "start": 37924.66, + "end": 37927.0, + "probability": 0.9241 + }, + { + "start": 37928.68, + "end": 37930.56, + "probability": 0.9365 + }, + { + "start": 37930.7, + "end": 37933.86, + "probability": 0.9254 + }, + { + "start": 37934.38, + "end": 37934.72, + "probability": 0.5959 + }, + { + "start": 37935.48, + "end": 37938.48, + "probability": 0.6451 + }, + { + "start": 37939.0, + "end": 37942.68, + "probability": 0.9741 + }, + { + "start": 37943.42, + "end": 37943.78, + "probability": 0.9106 + }, + { + "start": 37943.9, + "end": 37945.74, + "probability": 0.9538 + }, + { + "start": 37946.22, + "end": 37948.64, + "probability": 0.9215 + }, + { + "start": 37948.98, + "end": 37951.26, + "probability": 0.3271 + }, + { + "start": 37951.97, + "end": 37954.48, + "probability": 0.6573 + }, + { + "start": 37955.1, + "end": 37958.06, + "probability": 0.9987 + }, + { + "start": 37958.68, + "end": 37961.88, + "probability": 0.982 + }, + { + "start": 37962.72, + "end": 37964.46, + "probability": 0.9929 + }, + { + "start": 37965.68, + "end": 37968.1, + "probability": 0.6925 + }, + { + "start": 37968.7, + "end": 37970.6, + "probability": 0.8734 + }, + { + "start": 37970.86, + "end": 37971.04, + "probability": 0.7093 + }, + { + "start": 37971.14, + "end": 37974.9, + "probability": 0.9968 + }, + { + "start": 37975.3, + "end": 37975.78, + "probability": 0.4403 + }, + { + "start": 37976.22, + "end": 37977.18, + "probability": 0.9668 + }, + { + "start": 37977.48, + "end": 37980.44, + "probability": 0.9919 + }, + { + "start": 37980.66, + "end": 37981.18, + "probability": 0.5905 + }, + { + "start": 37981.26, + "end": 37981.56, + "probability": 0.7495 + }, + { + "start": 37982.6, + "end": 37983.44, + "probability": 0.9391 + }, + { + "start": 37984.08, + "end": 37987.26, + "probability": 0.8715 + }, + { + "start": 37987.46, + "end": 37988.42, + "probability": 0.8928 + }, + { + "start": 37988.88, + "end": 37989.48, + "probability": 0.922 + }, + { + "start": 37989.98, + "end": 37990.4, + "probability": 0.9339 + }, + { + "start": 37991.0, + "end": 37992.02, + "probability": 0.9114 + }, + { + "start": 37992.72, + "end": 37994.0, + "probability": 0.9565 + }, + { + "start": 37994.78, + "end": 37997.72, + "probability": 0.9982 + }, + { + "start": 37997.72, + "end": 38000.5, + "probability": 0.9495 + }, + { + "start": 38000.74, + "end": 38002.86, + "probability": 0.9111 + }, + { + "start": 38003.24, + "end": 38006.12, + "probability": 0.9976 + }, + { + "start": 38007.0, + "end": 38008.0, + "probability": 0.8416 + }, + { + "start": 38009.08, + "end": 38010.8, + "probability": 0.7547 + }, + { + "start": 38010.98, + "end": 38012.14, + "probability": 0.8818 + }, + { + "start": 38012.36, + "end": 38012.8, + "probability": 0.458 + }, + { + "start": 38013.46, + "end": 38014.94, + "probability": 0.9066 + }, + { + "start": 38015.56, + "end": 38017.06, + "probability": 0.9589 + }, + { + "start": 38017.56, + "end": 38018.92, + "probability": 0.9754 + }, + { + "start": 38020.26, + "end": 38020.52, + "probability": 0.8452 + }, + { + "start": 38021.68, + "end": 38024.2, + "probability": 0.8938 + }, + { + "start": 38024.24, + "end": 38025.14, + "probability": 0.9644 + }, + { + "start": 38026.04, + "end": 38027.82, + "probability": 0.9211 + }, + { + "start": 38028.44, + "end": 38029.42, + "probability": 0.971 + }, + { + "start": 38030.24, + "end": 38033.72, + "probability": 0.9951 + }, + { + "start": 38033.72, + "end": 38038.9, + "probability": 0.8734 + }, + { + "start": 38039.16, + "end": 38041.3, + "probability": 0.6242 + }, + { + "start": 38041.8, + "end": 38042.24, + "probability": 0.1475 + }, + { + "start": 38042.24, + "end": 38045.52, + "probability": 0.7306 + }, + { + "start": 38045.8, + "end": 38052.46, + "probability": 0.9835 + }, + { + "start": 38052.6, + "end": 38054.64, + "probability": 0.8779 + }, + { + "start": 38055.24, + "end": 38055.7, + "probability": 0.6858 + }, + { + "start": 38056.4, + "end": 38058.56, + "probability": 0.9388 + }, + { + "start": 38058.98, + "end": 38063.96, + "probability": 0.9106 + }, + { + "start": 38064.12, + "end": 38067.1, + "probability": 0.8054 + }, + { + "start": 38067.2, + "end": 38069.26, + "probability": 0.9063 + }, + { + "start": 38069.8, + "end": 38072.52, + "probability": 0.9228 + }, + { + "start": 38073.14, + "end": 38073.86, + "probability": 0.8185 + }, + { + "start": 38074.4, + "end": 38078.82, + "probability": 0.9744 + }, + { + "start": 38078.88, + "end": 38080.08, + "probability": 0.7549 + }, + { + "start": 38080.16, + "end": 38082.47, + "probability": 0.9912 + }, + { + "start": 38083.12, + "end": 38084.58, + "probability": 0.9066 + }, + { + "start": 38085.2, + "end": 38086.18, + "probability": 0.8368 + }, + { + "start": 38087.64, + "end": 38089.54, + "probability": 0.6903 + }, + { + "start": 38090.26, + "end": 38092.2, + "probability": 0.9707 + }, + { + "start": 38092.82, + "end": 38095.12, + "probability": 0.7876 + }, + { + "start": 38095.66, + "end": 38098.18, + "probability": 0.6088 + }, + { + "start": 38098.54, + "end": 38098.78, + "probability": 0.7809 + }, + { + "start": 38098.9, + "end": 38099.78, + "probability": 0.7344 + }, + { + "start": 38099.84, + "end": 38101.98, + "probability": 0.958 + }, + { + "start": 38102.66, + "end": 38103.96, + "probability": 0.7999 + }, + { + "start": 38104.5, + "end": 38106.1, + "probability": 0.9917 + }, + { + "start": 38106.68, + "end": 38108.1, + "probability": 0.9917 + }, + { + "start": 38108.88, + "end": 38109.84, + "probability": 0.6837 + }, + { + "start": 38110.48, + "end": 38115.38, + "probability": 0.9073 + }, + { + "start": 38116.64, + "end": 38119.68, + "probability": 0.8688 + }, + { + "start": 38120.44, + "end": 38122.4, + "probability": 0.8313 + }, + { + "start": 38122.48, + "end": 38127.52, + "probability": 0.988 + }, + { + "start": 38128.08, + "end": 38129.26, + "probability": 0.8962 + }, + { + "start": 38129.8, + "end": 38131.08, + "probability": 0.8106 + }, + { + "start": 38131.14, + "end": 38131.89, + "probability": 0.8341 + }, + { + "start": 38132.66, + "end": 38135.06, + "probability": 0.4469 + }, + { + "start": 38135.26, + "end": 38135.92, + "probability": 0.5365 + }, + { + "start": 38136.42, + "end": 38138.88, + "probability": 0.9956 + }, + { + "start": 38139.22, + "end": 38141.14, + "probability": 0.9588 + }, + { + "start": 38141.34, + "end": 38141.87, + "probability": 0.6644 + }, + { + "start": 38142.72, + "end": 38143.08, + "probability": 0.8629 + }, + { + "start": 38143.1, + "end": 38143.78, + "probability": 0.9535 + }, + { + "start": 38144.2, + "end": 38146.3, + "probability": 0.792 + }, + { + "start": 38146.82, + "end": 38147.86, + "probability": 0.8838 + }, + { + "start": 38147.92, + "end": 38149.26, + "probability": 0.9871 + }, + { + "start": 38149.44, + "end": 38149.84, + "probability": 0.8999 + }, + { + "start": 38149.84, + "end": 38151.4, + "probability": 0.8599 + }, + { + "start": 38151.96, + "end": 38152.12, + "probability": 0.5023 + }, + { + "start": 38152.66, + "end": 38154.98, + "probability": 0.8772 + }, + { + "start": 38155.4, + "end": 38155.98, + "probability": 0.7843 + }, + { + "start": 38156.04, + "end": 38156.92, + "probability": 0.9649 + }, + { + "start": 38157.3, + "end": 38161.68, + "probability": 0.9009 + }, + { + "start": 38162.38, + "end": 38167.0, + "probability": 0.9991 + }, + { + "start": 38167.16, + "end": 38167.72, + "probability": 0.6062 + }, + { + "start": 38168.18, + "end": 38169.02, + "probability": 0.8092 + }, + { + "start": 38169.58, + "end": 38172.5, + "probability": 0.9514 + }, + { + "start": 38173.08, + "end": 38173.74, + "probability": 0.5053 + }, + { + "start": 38173.84, + "end": 38176.22, + "probability": 0.8687 + }, + { + "start": 38176.68, + "end": 38179.8, + "probability": 0.9105 + }, + { + "start": 38180.38, + "end": 38182.0, + "probability": 0.695 + }, + { + "start": 38182.52, + "end": 38183.43, + "probability": 0.9813 + }, + { + "start": 38184.1, + "end": 38186.78, + "probability": 0.9136 + }, + { + "start": 38187.18, + "end": 38189.46, + "probability": 0.9967 + }, + { + "start": 38190.08, + "end": 38193.3, + "probability": 0.9974 + }, + { + "start": 38193.52, + "end": 38195.44, + "probability": 0.9759 + }, + { + "start": 38195.64, + "end": 38196.0, + "probability": 0.8502 + }, + { + "start": 38197.66, + "end": 38200.08, + "probability": 0.9861 + }, + { + "start": 38200.94, + "end": 38201.38, + "probability": 0.6497 + }, + { + "start": 38201.54, + "end": 38203.7, + "probability": 0.9675 + }, + { + "start": 38204.36, + "end": 38205.06, + "probability": 0.9075 + }, + { + "start": 38205.5, + "end": 38209.3, + "probability": 0.9951 + }, + { + "start": 38209.8, + "end": 38213.52, + "probability": 0.9937 + }, + { + "start": 38214.04, + "end": 38216.56, + "probability": 0.877 + }, + { + "start": 38216.68, + "end": 38217.12, + "probability": 0.1907 + }, + { + "start": 38217.12, + "end": 38217.34, + "probability": 0.3456 + }, + { + "start": 38217.4, + "end": 38217.78, + "probability": 0.5041 + }, + { + "start": 38218.52, + "end": 38219.58, + "probability": 0.858 + }, + { + "start": 38220.74, + "end": 38223.46, + "probability": 0.7977 + }, + { + "start": 38224.18, + "end": 38224.98, + "probability": 0.6656 + }, + { + "start": 38225.42, + "end": 38226.48, + "probability": 0.916 + }, + { + "start": 38227.2, + "end": 38227.82, + "probability": 0.5898 + }, + { + "start": 38228.16, + "end": 38229.08, + "probability": 0.9815 + }, + { + "start": 38229.2, + "end": 38231.3, + "probability": 0.8928 + }, + { + "start": 38231.88, + "end": 38232.34, + "probability": 0.9883 + }, + { + "start": 38232.86, + "end": 38234.43, + "probability": 0.979 + }, + { + "start": 38234.78, + "end": 38235.24, + "probability": 0.7373 + }, + { + "start": 38236.14, + "end": 38238.16, + "probability": 0.3033 + }, + { + "start": 38238.24, + "end": 38242.72, + "probability": 0.1179 + }, + { + "start": 38242.9, + "end": 38244.54, + "probability": 0.903 + }, + { + "start": 38244.58, + "end": 38253.24, + "probability": 0.9965 + }, + { + "start": 38253.76, + "end": 38257.88, + "probability": 0.9597 + }, + { + "start": 38259.56, + "end": 38262.48, + "probability": 0.8533 + }, + { + "start": 38263.1, + "end": 38268.28, + "probability": 0.8257 + }, + { + "start": 38268.52, + "end": 38269.0, + "probability": 0.9106 + }, + { + "start": 38269.12, + "end": 38269.72, + "probability": 0.7856 + }, + { + "start": 38270.68, + "end": 38273.9, + "probability": 0.9814 + }, + { + "start": 38274.04, + "end": 38276.12, + "probability": 0.998 + }, + { + "start": 38276.12, + "end": 38278.74, + "probability": 0.9998 + }, + { + "start": 38279.4, + "end": 38281.92, + "probability": 0.7494 + }, + { + "start": 38281.98, + "end": 38282.66, + "probability": 0.2069 + }, + { + "start": 38282.76, + "end": 38287.24, + "probability": 0.9782 + }, + { + "start": 38287.3, + "end": 38288.98, + "probability": 0.8533 + }, + { + "start": 38288.98, + "end": 38293.88, + "probability": 0.9841 + }, + { + "start": 38293.88, + "end": 38297.14, + "probability": 0.9918 + }, + { + "start": 38297.7, + "end": 38298.78, + "probability": 0.998 + }, + { + "start": 38299.58, + "end": 38303.08, + "probability": 0.948 + }, + { + "start": 38303.58, + "end": 38308.12, + "probability": 0.964 + }, + { + "start": 38308.5, + "end": 38313.2, + "probability": 0.978 + }, + { + "start": 38313.2, + "end": 38316.8, + "probability": 0.8643 + }, + { + "start": 38317.2, + "end": 38317.94, + "probability": 0.8566 + }, + { + "start": 38318.36, + "end": 38320.04, + "probability": 0.9955 + }, + { + "start": 38320.1, + "end": 38320.76, + "probability": 0.5734 + }, + { + "start": 38321.28, + "end": 38322.52, + "probability": 0.9911 + }, + { + "start": 38323.06, + "end": 38326.24, + "probability": 0.9695 + }, + { + "start": 38326.66, + "end": 38327.36, + "probability": 0.9331 + }, + { + "start": 38328.0, + "end": 38329.3, + "probability": 0.9725 + }, + { + "start": 38329.72, + "end": 38330.78, + "probability": 0.8837 + }, + { + "start": 38331.48, + "end": 38333.06, + "probability": 0.9285 + }, + { + "start": 38333.66, + "end": 38336.34, + "probability": 0.9808 + }, + { + "start": 38337.08, + "end": 38337.46, + "probability": 0.8008 + }, + { + "start": 38338.06, + "end": 38338.84, + "probability": 0.8977 + }, + { + "start": 38339.48, + "end": 38343.42, + "probability": 0.9662 + }, + { + "start": 38344.76, + "end": 38346.82, + "probability": 0.8524 + }, + { + "start": 38347.06, + "end": 38347.7, + "probability": 0.5684 + }, + { + "start": 38347.82, + "end": 38348.04, + "probability": 0.9184 + }, + { + "start": 38348.14, + "end": 38350.4, + "probability": 0.8462 + }, + { + "start": 38351.58, + "end": 38352.58, + "probability": 0.8118 + }, + { + "start": 38353.44, + "end": 38356.4, + "probability": 0.9892 + }, + { + "start": 38357.04, + "end": 38357.9, + "probability": 0.9365 + }, + { + "start": 38357.96, + "end": 38359.94, + "probability": 0.9723 + }, + { + "start": 38360.44, + "end": 38364.5, + "probability": 0.9797 + }, + { + "start": 38365.06, + "end": 38369.32, + "probability": 0.9728 + }, + { + "start": 38370.08, + "end": 38374.12, + "probability": 0.8888 + }, + { + "start": 38374.82, + "end": 38377.66, + "probability": 0.9722 + }, + { + "start": 38378.36, + "end": 38380.18, + "probability": 0.9988 + }, + { + "start": 38380.78, + "end": 38381.58, + "probability": 0.6646 + }, + { + "start": 38381.68, + "end": 38386.64, + "probability": 0.9962 + }, + { + "start": 38387.12, + "end": 38387.86, + "probability": 0.9937 + }, + { + "start": 38388.48, + "end": 38389.36, + "probability": 0.9204 + }, + { + "start": 38389.74, + "end": 38390.4, + "probability": 0.7038 + }, + { + "start": 38390.58, + "end": 38391.36, + "probability": 0.9967 + }, + { + "start": 38392.28, + "end": 38396.96, + "probability": 0.6125 + }, + { + "start": 38397.78, + "end": 38400.6, + "probability": 0.9482 + }, + { + "start": 38401.4, + "end": 38404.36, + "probability": 0.9004 + }, + { + "start": 38404.88, + "end": 38405.59, + "probability": 0.5643 + }, + { + "start": 38406.3, + "end": 38407.84, + "probability": 0.9355 + }, + { + "start": 38408.1, + "end": 38410.98, + "probability": 0.9972 + }, + { + "start": 38411.08, + "end": 38411.92, + "probability": 0.7804 + }, + { + "start": 38412.8, + "end": 38415.8, + "probability": 0.9651 + }, + { + "start": 38416.6, + "end": 38419.18, + "probability": 0.9524 + }, + { + "start": 38419.26, + "end": 38420.52, + "probability": 0.9028 + }, + { + "start": 38420.62, + "end": 38421.88, + "probability": 0.7532 + }, + { + "start": 38421.94, + "end": 38422.8, + "probability": 0.9766 + }, + { + "start": 38422.98, + "end": 38424.28, + "probability": 0.9834 + }, + { + "start": 38424.88, + "end": 38425.28, + "probability": 0.5402 + }, + { + "start": 38425.32, + "end": 38427.76, + "probability": 0.9575 + }, + { + "start": 38428.32, + "end": 38430.5, + "probability": 0.9822 + }, + { + "start": 38432.02, + "end": 38433.52, + "probability": 0.8633 + }, + { + "start": 38434.02, + "end": 38434.32, + "probability": 0.6622 + }, + { + "start": 38435.06, + "end": 38436.14, + "probability": 0.9011 + }, + { + "start": 38436.44, + "end": 38437.28, + "probability": 0.8091 + }, + { + "start": 38437.4, + "end": 38438.64, + "probability": 0.9102 + }, + { + "start": 38439.32, + "end": 38439.36, + "probability": 0.6354 + }, + { + "start": 38439.36, + "end": 38440.16, + "probability": 0.7129 + }, + { + "start": 38440.72, + "end": 38442.74, + "probability": 0.8638 + }, + { + "start": 38443.34, + "end": 38448.3, + "probability": 0.9849 + }, + { + "start": 38449.1, + "end": 38452.2, + "probability": 0.9977 + }, + { + "start": 38453.2, + "end": 38455.64, + "probability": 0.9797 + }, + { + "start": 38456.34, + "end": 38459.14, + "probability": 0.999 + }, + { + "start": 38460.36, + "end": 38464.28, + "probability": 0.9294 + }, + { + "start": 38464.28, + "end": 38469.08, + "probability": 0.8858 + }, + { + "start": 38469.96, + "end": 38472.2, + "probability": 0.9996 + }, + { + "start": 38473.84, + "end": 38475.8, + "probability": 0.9735 + }, + { + "start": 38475.82, + "end": 38479.84, + "probability": 0.6246 + }, + { + "start": 38480.18, + "end": 38481.37, + "probability": 0.4717 + }, + { + "start": 38481.7, + "end": 38485.28, + "probability": 0.2715 + }, + { + "start": 38485.28, + "end": 38485.34, + "probability": 0.1821 + }, + { + "start": 38485.48, + "end": 38486.06, + "probability": 0.5527 + }, + { + "start": 38486.12, + "end": 38487.6, + "probability": 0.6219 + }, + { + "start": 38487.72, + "end": 38489.46, + "probability": 0.8787 + }, + { + "start": 38489.46, + "end": 38492.46, + "probability": 0.7954 + }, + { + "start": 38492.78, + "end": 38499.16, + "probability": 0.9848 + }, + { + "start": 38500.18, + "end": 38503.58, + "probability": 0.9984 + }, + { + "start": 38504.3, + "end": 38507.86, + "probability": 0.99 + }, + { + "start": 38508.84, + "end": 38511.76, + "probability": 0.9745 + }, + { + "start": 38512.44, + "end": 38515.3, + "probability": 0.7096 + }, + { + "start": 38516.72, + "end": 38520.32, + "probability": 0.9808 + }, + { + "start": 38520.92, + "end": 38525.72, + "probability": 0.9944 + }, + { + "start": 38527.18, + "end": 38529.34, + "probability": 0.9979 + }, + { + "start": 38530.02, + "end": 38532.56, + "probability": 0.8991 + }, + { + "start": 38533.28, + "end": 38534.5, + "probability": 0.9191 + }, + { + "start": 38535.16, + "end": 38536.24, + "probability": 0.7054 + }, + { + "start": 38537.26, + "end": 38539.84, + "probability": 0.9666 + }, + { + "start": 38540.82, + "end": 38545.34, + "probability": 0.9892 + }, + { + "start": 38546.56, + "end": 38550.2, + "probability": 0.9883 + }, + { + "start": 38551.1, + "end": 38556.26, + "probability": 0.9887 + }, + { + "start": 38557.22, + "end": 38560.54, + "probability": 0.8979 + }, + { + "start": 38561.88, + "end": 38566.18, + "probability": 0.998 + }, + { + "start": 38567.26, + "end": 38568.96, + "probability": 0.9636 + }, + { + "start": 38570.32, + "end": 38571.88, + "probability": 0.9893 + }, + { + "start": 38572.4, + "end": 38575.86, + "probability": 0.9785 + }, + { + "start": 38577.2, + "end": 38580.36, + "probability": 0.8594 + }, + { + "start": 38581.56, + "end": 38584.54, + "probability": 0.8031 + }, + { + "start": 38585.48, + "end": 38589.14, + "probability": 0.9646 + }, + { + "start": 38590.16, + "end": 38593.66, + "probability": 0.9948 + }, + { + "start": 38594.92, + "end": 38596.62, + "probability": 0.817 + }, + { + "start": 38597.62, + "end": 38602.06, + "probability": 0.9805 + }, + { + "start": 38602.58, + "end": 38603.78, + "probability": 0.8449 + }, + { + "start": 38604.74, + "end": 38606.78, + "probability": 0.6322 + }, + { + "start": 38607.38, + "end": 38613.52, + "probability": 0.9738 + }, + { + "start": 38614.92, + "end": 38617.9, + "probability": 0.9925 + }, + { + "start": 38618.04, + "end": 38619.48, + "probability": 0.9782 + }, + { + "start": 38620.02, + "end": 38624.6, + "probability": 0.9797 + }, + { + "start": 38625.22, + "end": 38626.56, + "probability": 0.9969 + }, + { + "start": 38627.22, + "end": 38629.24, + "probability": 0.6513 + }, + { + "start": 38630.36, + "end": 38631.34, + "probability": 0.6347 + }, + { + "start": 38632.02, + "end": 38637.98, + "probability": 0.9497 + }, + { + "start": 38639.12, + "end": 38641.94, + "probability": 0.9682 + }, + { + "start": 38643.28, + "end": 38646.22, + "probability": 0.8096 + }, + { + "start": 38647.72, + "end": 38648.18, + "probability": 0.697 + }, + { + "start": 38648.86, + "end": 38650.16, + "probability": 0.6164 + }, + { + "start": 38650.24, + "end": 38651.48, + "probability": 0.9688 + }, + { + "start": 38651.54, + "end": 38654.94, + "probability": 0.9549 + }, + { + "start": 38655.8, + "end": 38657.0, + "probability": 0.9371 + }, + { + "start": 38658.2, + "end": 38659.34, + "probability": 0.5387 + }, + { + "start": 38660.22, + "end": 38662.54, + "probability": 0.9762 + }, + { + "start": 38663.18, + "end": 38665.98, + "probability": 0.8259 + }, + { + "start": 38667.04, + "end": 38671.86, + "probability": 0.9233 + }, + { + "start": 38673.66, + "end": 38677.94, + "probability": 0.9883 + }, + { + "start": 38679.7, + "end": 38681.12, + "probability": 0.7536 + }, + { + "start": 38681.7, + "end": 38683.48, + "probability": 0.9708 + }, + { + "start": 38684.48, + "end": 38689.54, + "probability": 0.736 + }, + { + "start": 38689.54, + "end": 38695.1, + "probability": 0.8485 + }, + { + "start": 38696.44, + "end": 38698.22, + "probability": 0.4676 + }, + { + "start": 38698.98, + "end": 38702.88, + "probability": 0.9863 + }, + { + "start": 38703.44, + "end": 38705.82, + "probability": 0.9982 + }, + { + "start": 38706.38, + "end": 38707.45, + "probability": 0.979 + }, + { + "start": 38709.08, + "end": 38711.4, + "probability": 0.9559 + }, + { + "start": 38712.24, + "end": 38714.32, + "probability": 0.9151 + }, + { + "start": 38715.18, + "end": 38717.52, + "probability": 0.8504 + }, + { + "start": 38718.4, + "end": 38721.56, + "probability": 0.9738 + }, + { + "start": 38723.9, + "end": 38724.68, + "probability": 0.9734 + }, + { + "start": 38725.7, + "end": 38728.66, + "probability": 0.9451 + }, + { + "start": 38729.48, + "end": 38731.26, + "probability": 0.9866 + }, + { + "start": 38732.1, + "end": 38738.14, + "probability": 0.9969 + }, + { + "start": 38738.78, + "end": 38739.24, + "probability": 0.6969 + }, + { + "start": 38740.78, + "end": 38743.28, + "probability": 0.9879 + }, + { + "start": 38743.82, + "end": 38744.82, + "probability": 0.8242 + }, + { + "start": 38745.58, + "end": 38747.78, + "probability": 0.9945 + }, + { + "start": 38748.24, + "end": 38750.26, + "probability": 0.8262 + }, + { + "start": 38750.7, + "end": 38750.98, + "probability": 0.8168 + }, + { + "start": 38752.48, + "end": 38756.98, + "probability": 0.99 + }, + { + "start": 38758.24, + "end": 38762.36, + "probability": 0.9709 + }, + { + "start": 38763.3, + "end": 38765.22, + "probability": 0.9703 + }, + { + "start": 38765.56, + "end": 38770.08, + "probability": 0.9865 + }, + { + "start": 38771.1, + "end": 38775.32, + "probability": 0.9659 + }, + { + "start": 38776.3, + "end": 38778.12, + "probability": 0.8921 + }, + { + "start": 38779.22, + "end": 38781.1, + "probability": 0.9611 + }, + { + "start": 38782.62, + "end": 38784.14, + "probability": 0.7829 + }, + { + "start": 38785.32, + "end": 38788.76, + "probability": 0.7723 + }, + { + "start": 38789.8, + "end": 38793.9, + "probability": 0.9937 + }, + { + "start": 38794.62, + "end": 38798.66, + "probability": 0.992 + }, + { + "start": 38799.42, + "end": 38800.12, + "probability": 0.5788 + }, + { + "start": 38800.6, + "end": 38803.24, + "probability": 0.9803 + }, + { + "start": 38803.72, + "end": 38804.74, + "probability": 0.7247 + }, + { + "start": 38805.06, + "end": 38809.86, + "probability": 0.9674 + }, + { + "start": 38811.04, + "end": 38813.52, + "probability": 0.9596 + }, + { + "start": 38814.04, + "end": 38815.4, + "probability": 0.6661 + }, + { + "start": 38816.94, + "end": 38821.92, + "probability": 0.8781 + }, + { + "start": 38822.26, + "end": 38822.78, + "probability": 0.6138 + }, + { + "start": 38823.72, + "end": 38828.24, + "probability": 0.9775 + }, + { + "start": 38829.58, + "end": 38833.84, + "probability": 0.8963 + }, + { + "start": 38834.72, + "end": 38837.66, + "probability": 0.9758 + }, + { + "start": 38838.38, + "end": 38842.32, + "probability": 0.9706 + }, + { + "start": 38842.32, + "end": 38845.66, + "probability": 0.9929 + }, + { + "start": 38846.66, + "end": 38849.24, + "probability": 0.8695 + }, + { + "start": 38850.12, + "end": 38850.76, + "probability": 0.7681 + }, + { + "start": 38851.72, + "end": 38856.0, + "probability": 0.998 + }, + { + "start": 38857.28, + "end": 38859.6, + "probability": 0.9789 + }, + { + "start": 38860.08, + "end": 38864.94, + "probability": 0.9904 + }, + { + "start": 38865.78, + "end": 38866.3, + "probability": 0.9225 + }, + { + "start": 38867.3, + "end": 38871.24, + "probability": 0.9244 + }, + { + "start": 38871.38, + "end": 38872.06, + "probability": 0.958 + }, + { + "start": 38872.94, + "end": 38878.44, + "probability": 0.9788 + }, + { + "start": 38879.8, + "end": 38882.28, + "probability": 0.9171 + }, + { + "start": 38883.08, + "end": 38885.2, + "probability": 0.9779 + }, + { + "start": 38886.38, + "end": 38888.16, + "probability": 0.9547 + }, + { + "start": 38889.14, + "end": 38890.84, + "probability": 0.9259 + }, + { + "start": 38891.92, + "end": 38896.08, + "probability": 0.9989 + }, + { + "start": 38896.08, + "end": 38899.92, + "probability": 0.9948 + }, + { + "start": 38900.7, + "end": 38902.82, + "probability": 0.8738 + }, + { + "start": 38903.54, + "end": 38904.94, + "probability": 0.9828 + }, + { + "start": 38905.68, + "end": 38906.06, + "probability": 0.9042 + }, + { + "start": 38907.1, + "end": 38912.42, + "probability": 0.9776 + }, + { + "start": 38913.1, + "end": 38914.24, + "probability": 0.9676 + }, + { + "start": 38915.5, + "end": 38918.1, + "probability": 0.7762 + }, + { + "start": 38918.72, + "end": 38919.82, + "probability": 0.9538 + }, + { + "start": 38920.42, + "end": 38924.14, + "probability": 0.9775 + }, + { + "start": 38925.1, + "end": 38929.68, + "probability": 0.988 + }, + { + "start": 38930.56, + "end": 38934.0, + "probability": 0.7826 + }, + { + "start": 38935.02, + "end": 38936.08, + "probability": 0.7675 + }, + { + "start": 38936.76, + "end": 38937.32, + "probability": 0.932 + }, + { + "start": 38938.14, + "end": 38940.04, + "probability": 0.9937 + }, + { + "start": 38941.76, + "end": 38943.84, + "probability": 0.949 + }, + { + "start": 38945.02, + "end": 38946.46, + "probability": 0.8659 + }, + { + "start": 38947.46, + "end": 38951.28, + "probability": 0.9839 + }, + { + "start": 38951.86, + "end": 38953.18, + "probability": 0.9801 + }, + { + "start": 38954.56, + "end": 38958.98, + "probability": 0.9907 + }, + { + "start": 38960.22, + "end": 38962.72, + "probability": 0.9965 + }, + { + "start": 38962.72, + "end": 38966.12, + "probability": 0.9985 + }, + { + "start": 38967.54, + "end": 38971.96, + "probability": 0.9514 + }, + { + "start": 38973.54, + "end": 38978.9, + "probability": 0.9977 + }, + { + "start": 38980.38, + "end": 38984.94, + "probability": 0.9908 + }, + { + "start": 38986.14, + "end": 38987.6, + "probability": 0.922 + }, + { + "start": 38988.22, + "end": 38989.68, + "probability": 0.6752 + }, + { + "start": 38990.2, + "end": 38992.34, + "probability": 0.98 + }, + { + "start": 38992.88, + "end": 38996.78, + "probability": 0.8737 + }, + { + "start": 38997.62, + "end": 39002.26, + "probability": 0.9858 + }, + { + "start": 39003.78, + "end": 39006.7, + "probability": 0.7912 + }, + { + "start": 39007.36, + "end": 39010.64, + "probability": 0.995 + }, + { + "start": 39011.8, + "end": 39015.0, + "probability": 0.9926 + }, + { + "start": 39015.82, + "end": 39017.68, + "probability": 0.9899 + }, + { + "start": 39018.52, + "end": 39020.74, + "probability": 0.8994 + }, + { + "start": 39022.54, + "end": 39024.98, + "probability": 0.9863 + }, + { + "start": 39025.5, + "end": 39029.14, + "probability": 0.893 + }, + { + "start": 39030.0, + "end": 39032.06, + "probability": 0.948 + }, + { + "start": 39032.86, + "end": 39037.12, + "probability": 0.8816 + }, + { + "start": 39037.86, + "end": 39038.44, + "probability": 0.8268 + }, + { + "start": 39039.38, + "end": 39042.12, + "probability": 0.9957 + }, + { + "start": 39043.04, + "end": 39046.02, + "probability": 0.8584 + }, + { + "start": 39048.04, + "end": 39053.86, + "probability": 0.9356 + }, + { + "start": 39054.88, + "end": 39057.88, + "probability": 0.983 + }, + { + "start": 39058.69, + "end": 39059.76, + "probability": 0.7271 + }, + { + "start": 39061.4, + "end": 39064.9, + "probability": 0.9943 + }, + { + "start": 39065.48, + "end": 39067.7, + "probability": 0.9783 + }, + { + "start": 39067.8, + "end": 39071.96, + "probability": 0.8755 + }, + { + "start": 39072.86, + "end": 39075.08, + "probability": 0.9891 + }, + { + "start": 39075.92, + "end": 39077.54, + "probability": 0.9537 + }, + { + "start": 39078.94, + "end": 39082.24, + "probability": 0.9845 + }, + { + "start": 39082.92, + "end": 39085.72, + "probability": 0.9985 + }, + { + "start": 39086.26, + "end": 39089.42, + "probability": 0.9661 + }, + { + "start": 39090.52, + "end": 39093.24, + "probability": 0.9941 + }, + { + "start": 39093.86, + "end": 39099.94, + "probability": 0.9808 + }, + { + "start": 39101.22, + "end": 39102.88, + "probability": 0.9975 + }, + { + "start": 39103.7, + "end": 39107.04, + "probability": 0.9742 + }, + { + "start": 39108.28, + "end": 39113.1, + "probability": 0.974 + }, + { + "start": 39113.1, + "end": 39119.5, + "probability": 0.9962 + }, + { + "start": 39120.98, + "end": 39122.04, + "probability": 0.7939 + }, + { + "start": 39123.44, + "end": 39129.36, + "probability": 0.9592 + }, + { + "start": 39130.76, + "end": 39133.32, + "probability": 0.8022 + }, + { + "start": 39134.24, + "end": 39136.06, + "probability": 0.4813 + }, + { + "start": 39136.9, + "end": 39137.54, + "probability": 0.8179 + }, + { + "start": 39139.22, + "end": 39147.14, + "probability": 0.9227 + }, + { + "start": 39147.84, + "end": 39149.32, + "probability": 0.8578 + }, + { + "start": 39150.68, + "end": 39154.82, + "probability": 0.9725 + }, + { + "start": 39155.38, + "end": 39158.86, + "probability": 0.7719 + }, + { + "start": 39160.5, + "end": 39161.72, + "probability": 0.4998 + }, + { + "start": 39162.28, + "end": 39166.96, + "probability": 0.9684 + }, + { + "start": 39167.88, + "end": 39169.42, + "probability": 0.9958 + }, + { + "start": 39170.3, + "end": 39171.86, + "probability": 0.9864 + }, + { + "start": 39172.26, + "end": 39172.92, + "probability": 0.8951 + }, + { + "start": 39173.4, + "end": 39175.04, + "probability": 0.8813 + }, + { + "start": 39175.42, + "end": 39176.16, + "probability": 0.5735 + }, + { + "start": 39176.86, + "end": 39178.04, + "probability": 0.9539 + }, + { + "start": 39178.86, + "end": 39180.92, + "probability": 0.9105 + }, + { + "start": 39181.58, + "end": 39185.42, + "probability": 0.9915 + }, + { + "start": 39186.16, + "end": 39189.22, + "probability": 0.9884 + }, + { + "start": 39191.4, + "end": 39192.7, + "probability": 0.8793 + }, + { + "start": 39193.3, + "end": 39197.16, + "probability": 0.9778 + }, + { + "start": 39199.66, + "end": 39202.42, + "probability": 0.7617 + }, + { + "start": 39203.26, + "end": 39203.74, + "probability": 0.9452 + }, + { + "start": 39204.48, + "end": 39206.44, + "probability": 0.9468 + }, + { + "start": 39207.08, + "end": 39207.78, + "probability": 0.9493 + }, + { + "start": 39208.32, + "end": 39209.54, + "probability": 0.9388 + }, + { + "start": 39210.16, + "end": 39211.69, + "probability": 0.998 + }, + { + "start": 39212.3, + "end": 39215.54, + "probability": 0.9853 + }, + { + "start": 39216.48, + "end": 39219.2, + "probability": 0.9804 + }, + { + "start": 39219.72, + "end": 39222.0, + "probability": 0.885 + }, + { + "start": 39222.6, + "end": 39223.44, + "probability": 0.7845 + }, + { + "start": 39224.32, + "end": 39226.64, + "probability": 0.6341 + }, + { + "start": 39227.34, + "end": 39231.64, + "probability": 0.9987 + }, + { + "start": 39231.64, + "end": 39237.18, + "probability": 0.9985 + }, + { + "start": 39238.42, + "end": 39240.94, + "probability": 0.9934 + }, + { + "start": 39240.94, + "end": 39244.78, + "probability": 0.9976 + }, + { + "start": 39245.62, + "end": 39248.06, + "probability": 0.9159 + }, + { + "start": 39248.96, + "end": 39251.1, + "probability": 0.9785 + }, + { + "start": 39251.48, + "end": 39253.28, + "probability": 0.982 + }, + { + "start": 39255.26, + "end": 39258.02, + "probability": 0.8007 + }, + { + "start": 39258.72, + "end": 39260.1, + "probability": 0.8817 + }, + { + "start": 39260.68, + "end": 39263.7, + "probability": 0.9615 + }, + { + "start": 39264.44, + "end": 39267.14, + "probability": 0.8715 + }, + { + "start": 39267.72, + "end": 39268.22, + "probability": 0.576 + }, + { + "start": 39269.3, + "end": 39272.94, + "probability": 0.9167 + }, + { + "start": 39273.7, + "end": 39278.46, + "probability": 0.9995 + }, + { + "start": 39279.72, + "end": 39280.8, + "probability": 0.7402 + }, + { + "start": 39282.22, + "end": 39283.44, + "probability": 0.978 + }, + { + "start": 39284.74, + "end": 39288.96, + "probability": 0.989 + }, + { + "start": 39289.52, + "end": 39289.84, + "probability": 0.5112 + }, + { + "start": 39291.68, + "end": 39296.86, + "probability": 0.9715 + }, + { + "start": 39298.24, + "end": 39299.78, + "probability": 0.8901 + }, + { + "start": 39300.38, + "end": 39302.76, + "probability": 0.9854 + }, + { + "start": 39303.38, + "end": 39306.18, + "probability": 0.9719 + }, + { + "start": 39307.26, + "end": 39308.02, + "probability": 0.9424 + }, + { + "start": 39309.54, + "end": 39310.69, + "probability": 0.7422 + }, + { + "start": 39311.78, + "end": 39313.2, + "probability": 0.9136 + }, + { + "start": 39314.16, + "end": 39317.05, + "probability": 0.9757 + }, + { + "start": 39318.36, + "end": 39320.46, + "probability": 0.9951 + }, + { + "start": 39321.74, + "end": 39324.66, + "probability": 0.938 + }, + { + "start": 39325.44, + "end": 39328.46, + "probability": 0.9873 + }, + { + "start": 39329.1, + "end": 39331.06, + "probability": 0.9913 + }, + { + "start": 39332.06, + "end": 39332.62, + "probability": 0.69 + }, + { + "start": 39333.78, + "end": 39337.48, + "probability": 0.9932 + }, + { + "start": 39338.5, + "end": 39340.44, + "probability": 0.998 + }, + { + "start": 39341.04, + "end": 39341.64, + "probability": 0.4939 + }, + { + "start": 39342.96, + "end": 39343.78, + "probability": 0.9789 + }, + { + "start": 39344.62, + "end": 39347.2, + "probability": 0.9897 + }, + { + "start": 39348.16, + "end": 39351.04, + "probability": 0.998 + }, + { + "start": 39352.36, + "end": 39358.34, + "probability": 0.9955 + }, + { + "start": 39359.0, + "end": 39362.78, + "probability": 0.9485 + }, + { + "start": 39364.36, + "end": 39368.66, + "probability": 0.9939 + }, + { + "start": 39368.84, + "end": 39373.16, + "probability": 0.9917 + }, + { + "start": 39374.38, + "end": 39377.56, + "probability": 0.9973 + }, + { + "start": 39377.56, + "end": 39381.4, + "probability": 0.998 + }, + { + "start": 39383.06, + "end": 39384.93, + "probability": 0.9961 + }, + { + "start": 39386.34, + "end": 39389.76, + "probability": 0.9819 + }, + { + "start": 39390.46, + "end": 39393.56, + "probability": 0.8757 + }, + { + "start": 39394.4, + "end": 39397.32, + "probability": 0.962 + }, + { + "start": 39397.8, + "end": 39401.46, + "probability": 0.9911 + }, + { + "start": 39402.8, + "end": 39406.38, + "probability": 0.9976 + }, + { + "start": 39407.14, + "end": 39408.6, + "probability": 0.7425 + }, + { + "start": 39409.24, + "end": 39413.02, + "probability": 0.9965 + }, + { + "start": 39414.08, + "end": 39418.58, + "probability": 0.9979 + }, + { + "start": 39418.58, + "end": 39425.24, + "probability": 0.9806 + }, + { + "start": 39426.28, + "end": 39430.6, + "probability": 0.9383 + }, + { + "start": 39431.14, + "end": 39434.94, + "probability": 0.9918 + }, + { + "start": 39435.88, + "end": 39442.72, + "probability": 0.9946 + }, + { + "start": 39443.66, + "end": 39450.42, + "probability": 0.9885 + }, + { + "start": 39451.0, + "end": 39454.16, + "probability": 0.7292 + }, + { + "start": 39454.7, + "end": 39455.73, + "probability": 0.5073 + }, + { + "start": 39456.64, + "end": 39457.72, + "probability": 0.7349 + }, + { + "start": 39458.56, + "end": 39460.3, + "probability": 0.5199 + }, + { + "start": 39460.92, + "end": 39466.96, + "probability": 0.9674 + }, + { + "start": 39467.62, + "end": 39467.96, + "probability": 0.7619 + }, + { + "start": 39471.54, + "end": 39471.54, + "probability": 0.027 + }, + { + "start": 39471.54, + "end": 39471.54, + "probability": 0.2813 + }, + { + "start": 39471.54, + "end": 39474.04, + "probability": 0.7078 + }, + { + "start": 39476.16, + "end": 39476.76, + "probability": 0.1279 + }, + { + "start": 39513.36, + "end": 39515.04, + "probability": 0.6537 + }, + { + "start": 39516.26, + "end": 39517.68, + "probability": 0.5184 + }, + { + "start": 39518.84, + "end": 39519.88, + "probability": 0.8336 + }, + { + "start": 39520.54, + "end": 39522.78, + "probability": 0.9551 + }, + { + "start": 39523.82, + "end": 39525.74, + "probability": 0.9395 + }, + { + "start": 39526.54, + "end": 39529.16, + "probability": 0.8853 + }, + { + "start": 39530.02, + "end": 39531.16, + "probability": 0.771 + }, + { + "start": 39531.86, + "end": 39533.24, + "probability": 0.9688 + }, + { + "start": 39534.22, + "end": 39536.6, + "probability": 0.6652 + }, + { + "start": 39536.8, + "end": 39537.7, + "probability": 0.9761 + }, + { + "start": 39539.58, + "end": 39541.02, + "probability": 0.9443 + }, + { + "start": 39542.56, + "end": 39547.28, + "probability": 0.9641 + }, + { + "start": 39548.48, + "end": 39555.84, + "probability": 0.9674 + }, + { + "start": 39556.94, + "end": 39561.36, + "probability": 0.9965 + }, + { + "start": 39562.26, + "end": 39566.42, + "probability": 0.9991 + }, + { + "start": 39567.54, + "end": 39569.52, + "probability": 0.7402 + }, + { + "start": 39570.84, + "end": 39573.82, + "probability": 0.9944 + }, + { + "start": 39574.52, + "end": 39576.36, + "probability": 0.9843 + }, + { + "start": 39577.96, + "end": 39579.9, + "probability": 0.9415 + }, + { + "start": 39581.44, + "end": 39586.5, + "probability": 0.9958 + }, + { + "start": 39586.5, + "end": 39591.1, + "probability": 0.9966 + }, + { + "start": 39592.26, + "end": 39598.82, + "probability": 0.9873 + }, + { + "start": 39599.86, + "end": 39603.54, + "probability": 0.9932 + }, + { + "start": 39604.72, + "end": 39608.24, + "probability": 0.984 + }, + { + "start": 39608.76, + "end": 39611.14, + "probability": 0.8423 + }, + { + "start": 39611.74, + "end": 39614.28, + "probability": 0.9937 + }, + { + "start": 39615.54, + "end": 39619.68, + "probability": 0.9824 + }, + { + "start": 39620.6, + "end": 39623.44, + "probability": 0.9268 + }, + { + "start": 39624.7, + "end": 39627.9, + "probability": 0.9714 + }, + { + "start": 39628.62, + "end": 39632.3, + "probability": 0.9915 + }, + { + "start": 39633.46, + "end": 39634.43, + "probability": 0.9312 + }, + { + "start": 39635.52, + "end": 39636.6, + "probability": 0.8734 + }, + { + "start": 39637.4, + "end": 39643.92, + "probability": 0.9954 + }, + { + "start": 39646.24, + "end": 39648.04, + "probability": 0.9615 + }, + { + "start": 39648.6, + "end": 39651.58, + "probability": 0.8395 + }, + { + "start": 39652.1, + "end": 39658.22, + "probability": 0.9727 + }, + { + "start": 39659.0, + "end": 39663.0, + "probability": 0.9365 + }, + { + "start": 39663.0, + "end": 39665.98, + "probability": 0.9955 + }, + { + "start": 39666.58, + "end": 39669.82, + "probability": 0.9802 + }, + { + "start": 39670.22, + "end": 39675.78, + "probability": 0.9635 + }, + { + "start": 39676.42, + "end": 39677.7, + "probability": 0.922 + }, + { + "start": 39678.8, + "end": 39680.56, + "probability": 0.6456 + }, + { + "start": 39681.5, + "end": 39683.6, + "probability": 0.9722 + }, + { + "start": 39684.76, + "end": 39688.92, + "probability": 0.8062 + }, + { + "start": 39689.14, + "end": 39692.0, + "probability": 0.9648 + }, + { + "start": 39693.44, + "end": 39694.74, + "probability": 0.7666 + }, + { + "start": 39695.66, + "end": 39698.92, + "probability": 0.9422 + }, + { + "start": 39699.58, + "end": 39702.06, + "probability": 0.8693 + }, + { + "start": 39703.58, + "end": 39707.58, + "probability": 0.9982 + }, + { + "start": 39709.02, + "end": 39709.94, + "probability": 0.879 + }, + { + "start": 39710.54, + "end": 39714.82, + "probability": 0.9946 + }, + { + "start": 39715.6, + "end": 39718.62, + "probability": 0.9763 + }, + { + "start": 39720.08, + "end": 39725.36, + "probability": 0.9659 + }, + { + "start": 39726.12, + "end": 39731.38, + "probability": 0.9728 + }, + { + "start": 39732.98, + "end": 39734.3, + "probability": 0.9114 + }, + { + "start": 39735.2, + "end": 39737.1, + "probability": 0.9022 + }, + { + "start": 39738.42, + "end": 39739.34, + "probability": 0.3818 + }, + { + "start": 39740.04, + "end": 39743.54, + "probability": 0.9993 + }, + { + "start": 39744.7, + "end": 39747.7, + "probability": 0.9779 + }, + { + "start": 39748.8, + "end": 39756.76, + "probability": 0.9543 + }, + { + "start": 39757.46, + "end": 39760.16, + "probability": 0.9983 + }, + { + "start": 39761.4, + "end": 39761.98, + "probability": 0.9923 + }, + { + "start": 39762.56, + "end": 39764.46, + "probability": 0.9588 + }, + { + "start": 39765.04, + "end": 39766.26, + "probability": 0.5425 + }, + { + "start": 39766.86, + "end": 39770.56, + "probability": 0.8697 + }, + { + "start": 39771.12, + "end": 39776.8, + "probability": 0.7433 + }, + { + "start": 39779.0, + "end": 39779.98, + "probability": 0.0366 + }, + { + "start": 39779.98, + "end": 39779.98, + "probability": 0.2511 + }, + { + "start": 39779.98, + "end": 39784.74, + "probability": 0.4364 + }, + { + "start": 39784.74, + "end": 39789.62, + "probability": 0.9822 + }, + { + "start": 39790.96, + "end": 39795.62, + "probability": 0.9937 + }, + { + "start": 39796.38, + "end": 39797.32, + "probability": 0.9279 + }, + { + "start": 39797.36, + "end": 39798.12, + "probability": 0.8643 + }, + { + "start": 39798.76, + "end": 39800.2, + "probability": 0.9926 + }, + { + "start": 39801.02, + "end": 39807.28, + "probability": 0.9991 + }, + { + "start": 39807.92, + "end": 39811.02, + "probability": 0.7921 + }, + { + "start": 39811.02, + "end": 39813.72, + "probability": 0.7941 + }, + { + "start": 39815.2, + "end": 39816.8, + "probability": 0.7712 + }, + { + "start": 39817.48, + "end": 39818.88, + "probability": 0.6768 + }, + { + "start": 39819.3, + "end": 39825.44, + "probability": 0.9085 + }, + { + "start": 39826.0, + "end": 39828.88, + "probability": 0.9988 + }, + { + "start": 39830.32, + "end": 39832.54, + "probability": 0.7246 + }, + { + "start": 39832.66, + "end": 39833.62, + "probability": 0.593 + }, + { + "start": 39833.64, + "end": 39836.46, + "probability": 0.911 + }, + { + "start": 39836.9, + "end": 39839.86, + "probability": 0.9961 + }, + { + "start": 39840.64, + "end": 39843.76, + "probability": 0.9828 + }, + { + "start": 39844.4, + "end": 39846.66, + "probability": 0.9024 + }, + { + "start": 39847.52, + "end": 39852.72, + "probability": 0.9131 + }, + { + "start": 39852.8, + "end": 39859.58, + "probability": 0.9872 + }, + { + "start": 39860.44, + "end": 39862.04, + "probability": 0.9893 + }, + { + "start": 39862.64, + "end": 39869.88, + "probability": 0.9911 + }, + { + "start": 39869.88, + "end": 39875.9, + "probability": 0.9989 + }, + { + "start": 39877.92, + "end": 39883.76, + "probability": 0.9238 + }, + { + "start": 39884.64, + "end": 39887.98, + "probability": 0.9296 + }, + { + "start": 39889.2, + "end": 39890.88, + "probability": 0.9785 + }, + { + "start": 39892.08, + "end": 39894.66, + "probability": 0.9449 + }, + { + "start": 39895.5, + "end": 39899.66, + "probability": 0.9783 + }, + { + "start": 39899.86, + "end": 39901.36, + "probability": 0.8589 + }, + { + "start": 39901.86, + "end": 39904.12, + "probability": 0.7296 + }, + { + "start": 39905.58, + "end": 39909.96, + "probability": 0.8958 + }, + { + "start": 39910.62, + "end": 39911.06, + "probability": 0.1049 + }, + { + "start": 39911.06, + "end": 39915.68, + "probability": 0.9974 + }, + { + "start": 39915.68, + "end": 39922.2, + "probability": 0.9769 + }, + { + "start": 39923.4, + "end": 39926.74, + "probability": 0.6274 + }, + { + "start": 39929.74, + "end": 39931.36, + "probability": 0.9473 + }, + { + "start": 39931.96, + "end": 39939.08, + "probability": 0.9901 + }, + { + "start": 39939.54, + "end": 39940.98, + "probability": 0.9625 + }, + { + "start": 39941.2, + "end": 39941.6, + "probability": 0.8258 + }, + { + "start": 39942.94, + "end": 39947.76, + "probability": 0.9805 + }, + { + "start": 39947.76, + "end": 39954.22, + "probability": 0.8553 + }, + { + "start": 39955.8, + "end": 39957.9, + "probability": 0.9478 + }, + { + "start": 39958.44, + "end": 39962.16, + "probability": 0.9846 + }, + { + "start": 39962.16, + "end": 39966.54, + "probability": 0.9954 + }, + { + "start": 39967.1, + "end": 39967.56, + "probability": 0.6708 + }, + { + "start": 39968.52, + "end": 39973.92, + "probability": 0.9829 + }, + { + "start": 39974.92, + "end": 39976.19, + "probability": 0.9683 + }, + { + "start": 39976.58, + "end": 39982.42, + "probability": 0.9787 + }, + { + "start": 39982.42, + "end": 39985.32, + "probability": 0.2848 + }, + { + "start": 39985.64, + "end": 39985.9, + "probability": 0.199 + }, + { + "start": 39985.9, + "end": 39985.9, + "probability": 0.172 + }, + { + "start": 39985.9, + "end": 39989.48, + "probability": 0.9831 + }, + { + "start": 39990.14, + "end": 39991.32, + "probability": 0.4961 + }, + { + "start": 39991.4, + "end": 39996.22, + "probability": 0.8623 + }, + { + "start": 39996.88, + "end": 40001.76, + "probability": 0.9743 + }, + { + "start": 40002.6, + "end": 40006.36, + "probability": 0.978 + }, + { + "start": 40009.0, + "end": 40017.14, + "probability": 0.8916 + }, + { + "start": 40017.62, + "end": 40020.1, + "probability": 0.8793 + }, + { + "start": 40020.92, + "end": 40026.22, + "probability": 0.9828 + }, + { + "start": 40027.48, + "end": 40030.84, + "probability": 0.9983 + }, + { + "start": 40031.72, + "end": 40033.7, + "probability": 0.7913 + }, + { + "start": 40034.48, + "end": 40036.16, + "probability": 0.9803 + }, + { + "start": 40036.54, + "end": 40036.74, + "probability": 0.1764 + }, + { + "start": 40036.86, + "end": 40039.06, + "probability": 0.8699 + }, + { + "start": 40039.48, + "end": 40040.76, + "probability": 0.8956 + }, + { + "start": 40041.44, + "end": 40048.56, + "probability": 0.9951 + }, + { + "start": 40049.54, + "end": 40053.0, + "probability": 0.9988 + }, + { + "start": 40053.0, + "end": 40057.16, + "probability": 0.8123 + }, + { + "start": 40058.04, + "end": 40063.72, + "probability": 0.8843 + }, + { + "start": 40064.34, + "end": 40069.92, + "probability": 0.8816 + }, + { + "start": 40071.02, + "end": 40077.58, + "probability": 0.998 + }, + { + "start": 40078.36, + "end": 40082.52, + "probability": 0.9855 + }, + { + "start": 40083.5, + "end": 40085.84, + "probability": 0.8525 + }, + { + "start": 40086.86, + "end": 40090.42, + "probability": 0.6141 + }, + { + "start": 40091.26, + "end": 40095.78, + "probability": 0.9685 + }, + { + "start": 40096.96, + "end": 40098.72, + "probability": 0.9901 + }, + { + "start": 40099.3, + "end": 40103.94, + "probability": 0.9862 + }, + { + "start": 40104.6, + "end": 40106.58, + "probability": 0.9961 + }, + { + "start": 40107.12, + "end": 40109.26, + "probability": 0.9993 + }, + { + "start": 40109.84, + "end": 40117.18, + "probability": 0.9926 + }, + { + "start": 40118.54, + "end": 40120.96, + "probability": 0.9766 + }, + { + "start": 40121.52, + "end": 40122.64, + "probability": 0.8592 + }, + { + "start": 40122.88, + "end": 40126.3, + "probability": 0.5497 + }, + { + "start": 40127.88, + "end": 40130.78, + "probability": 0.5105 + }, + { + "start": 40130.82, + "end": 40132.02, + "probability": 0.9277 + }, + { + "start": 40133.34, + "end": 40137.52, + "probability": 0.8174 + }, + { + "start": 40138.78, + "end": 40140.36, + "probability": 0.9268 + }, + { + "start": 40141.3, + "end": 40142.58, + "probability": 0.6797 + }, + { + "start": 40143.26, + "end": 40145.56, + "probability": 0.9961 + }, + { + "start": 40146.5, + "end": 40149.1, + "probability": 0.8738 + }, + { + "start": 40150.0, + "end": 40153.3, + "probability": 0.9625 + }, + { + "start": 40154.42, + "end": 40156.66, + "probability": 0.9724 + }, + { + "start": 40157.48, + "end": 40162.16, + "probability": 0.8301 + }, + { + "start": 40162.78, + "end": 40164.22, + "probability": 0.6962 + }, + { + "start": 40165.04, + "end": 40167.26, + "probability": 0.847 + }, + { + "start": 40167.86, + "end": 40171.18, + "probability": 0.9971 + }, + { + "start": 40172.02, + "end": 40173.34, + "probability": 0.9354 + }, + { + "start": 40174.48, + "end": 40180.56, + "probability": 0.9953 + }, + { + "start": 40181.16, + "end": 40184.42, + "probability": 0.9875 + }, + { + "start": 40185.06, + "end": 40186.56, + "probability": 0.9061 + }, + { + "start": 40187.76, + "end": 40191.24, + "probability": 0.9865 + }, + { + "start": 40192.02, + "end": 40197.32, + "probability": 0.9437 + }, + { + "start": 40198.06, + "end": 40198.8, + "probability": 0.8806 + }, + { + "start": 40199.7, + "end": 40203.08, + "probability": 0.8938 + }, + { + "start": 40203.82, + "end": 40209.28, + "probability": 0.9835 + }, + { + "start": 40210.34, + "end": 40214.08, + "probability": 0.9041 + }, + { + "start": 40214.8, + "end": 40219.44, + "probability": 0.998 + }, + { + "start": 40219.44, + "end": 40226.18, + "probability": 0.9969 + }, + { + "start": 40226.98, + "end": 40227.56, + "probability": 0.4986 + }, + { + "start": 40228.06, + "end": 40235.16, + "probability": 0.9953 + }, + { + "start": 40235.72, + "end": 40240.08, + "probability": 0.9995 + }, + { + "start": 40240.78, + "end": 40241.82, + "probability": 0.6036 + }, + { + "start": 40242.34, + "end": 40246.24, + "probability": 0.9985 + }, + { + "start": 40246.76, + "end": 40250.94, + "probability": 0.9959 + }, + { + "start": 40251.62, + "end": 40254.26, + "probability": 0.9801 + }, + { + "start": 40254.82, + "end": 40256.52, + "probability": 0.7243 + }, + { + "start": 40257.18, + "end": 40263.56, + "probability": 0.9828 + }, + { + "start": 40263.56, + "end": 40269.98, + "probability": 0.9987 + }, + { + "start": 40270.64, + "end": 40272.94, + "probability": 0.9263 + }, + { + "start": 40273.68, + "end": 40275.42, + "probability": 0.5811 + }, + { + "start": 40276.0, + "end": 40279.34, + "probability": 0.9818 + }, + { + "start": 40279.74, + "end": 40280.22, + "probability": 0.89 + }, + { + "start": 40282.4, + "end": 40285.0, + "probability": 0.8896 + }, + { + "start": 40285.26, + "end": 40287.92, + "probability": 0.9761 + }, + { + "start": 40289.8, + "end": 40290.26, + "probability": 0.2782 + }, + { + "start": 40294.68, + "end": 40297.62, + "probability": 0.0104 + }, + { + "start": 40303.8, + "end": 40306.78, + "probability": 0.2087 + }, + { + "start": 40307.8, + "end": 40308.44, + "probability": 0.4767 + }, + { + "start": 40308.44, + "end": 40311.14, + "probability": 0.0561 + }, + { + "start": 40311.5, + "end": 40313.24, + "probability": 0.9789 + }, + { + "start": 40314.02, + "end": 40315.5, + "probability": 0.9726 + }, + { + "start": 40316.18, + "end": 40319.56, + "probability": 0.9413 + }, + { + "start": 40320.78, + "end": 40321.32, + "probability": 0.959 + }, + { + "start": 40322.48, + "end": 40323.1, + "probability": 0.8593 + }, + { + "start": 40324.34, + "end": 40326.88, + "probability": 0.7867 + }, + { + "start": 40328.5, + "end": 40330.48, + "probability": 0.7927 + }, + { + "start": 40330.82, + "end": 40333.52, + "probability": 0.665 + }, + { + "start": 40333.6, + "end": 40334.86, + "probability": 0.1069 + }, + { + "start": 40335.1, + "end": 40338.3, + "probability": 0.9324 + }, + { + "start": 40338.48, + "end": 40342.36, + "probability": 0.8691 + }, + { + "start": 40342.36, + "end": 40343.25, + "probability": 0.7384 + }, + { + "start": 40343.88, + "end": 40344.32, + "probability": 0.0012 + }, + { + "start": 40344.6, + "end": 40345.98, + "probability": 0.7256 + }, + { + "start": 40346.02, + "end": 40351.44, + "probability": 0.7455 + }, + { + "start": 40351.52, + "end": 40355.72, + "probability": 0.9236 + }, + { + "start": 40355.86, + "end": 40356.8, + "probability": 0.962 + }, + { + "start": 40357.84, + "end": 40358.52, + "probability": 0.8377 + }, + { + "start": 40360.5, + "end": 40361.82, + "probability": 0.8667 + }, + { + "start": 40362.46, + "end": 40363.42, + "probability": 0.5808 + }, + { + "start": 40364.08, + "end": 40364.68, + "probability": 0.7207 + }, + { + "start": 40365.38, + "end": 40368.7, + "probability": 0.666 + }, + { + "start": 40369.7, + "end": 40371.52, + "probability": 0.9768 + }, + { + "start": 40371.58, + "end": 40376.52, + "probability": 0.9458 + }, + { + "start": 40376.66, + "end": 40377.15, + "probability": 0.9889 + }, + { + "start": 40377.68, + "end": 40378.44, + "probability": 0.9673 + }, + { + "start": 40380.28, + "end": 40382.1, + "probability": 0.8617 + }, + { + "start": 40384.37, + "end": 40389.45, + "probability": 0.9926 + }, + { + "start": 40390.26, + "end": 40391.33, + "probability": 0.7441 + }, + { + "start": 40391.92, + "end": 40393.8, + "probability": 0.9479 + }, + { + "start": 40394.96, + "end": 40398.54, + "probability": 0.9585 + }, + { + "start": 40398.68, + "end": 40400.48, + "probability": 0.7107 + }, + { + "start": 40400.94, + "end": 40404.1, + "probability": 0.9955 + }, + { + "start": 40405.2, + "end": 40406.04, + "probability": 0.7655 + }, + { + "start": 40407.34, + "end": 40408.64, + "probability": 0.9595 + }, + { + "start": 40408.72, + "end": 40410.28, + "probability": 0.9031 + }, + { + "start": 40410.32, + "end": 40414.08, + "probability": 0.9125 + }, + { + "start": 40414.16, + "end": 40418.68, + "probability": 0.9977 + }, + { + "start": 40418.88, + "end": 40422.82, + "probability": 0.8009 + }, + { + "start": 40423.4, + "end": 40424.03, + "probability": 0.8225 + }, + { + "start": 40424.9, + "end": 40425.82, + "probability": 0.5125 + }, + { + "start": 40426.64, + "end": 40430.2, + "probability": 0.9956 + }, + { + "start": 40430.3, + "end": 40432.72, + "probability": 0.9387 + }, + { + "start": 40433.98, + "end": 40437.04, + "probability": 0.9321 + }, + { + "start": 40437.88, + "end": 40441.48, + "probability": 0.9863 + }, + { + "start": 40442.74, + "end": 40444.16, + "probability": 0.9973 + }, + { + "start": 40445.28, + "end": 40446.6, + "probability": 0.9057 + }, + { + "start": 40447.18, + "end": 40450.26, + "probability": 0.8887 + }, + { + "start": 40451.14, + "end": 40454.1, + "probability": 0.9985 + }, + { + "start": 40454.28, + "end": 40455.3, + "probability": 0.6039 + }, + { + "start": 40455.34, + "end": 40456.78, + "probability": 0.7725 + }, + { + "start": 40457.76, + "end": 40459.82, + "probability": 0.9829 + }, + { + "start": 40460.24, + "end": 40464.26, + "probability": 0.9234 + }, + { + "start": 40465.22, + "end": 40466.31, + "probability": 0.976 + }, + { + "start": 40467.46, + "end": 40469.86, + "probability": 0.8415 + }, + { + "start": 40472.34, + "end": 40474.08, + "probability": 0.7809 + }, + { + "start": 40474.22, + "end": 40478.6, + "probability": 0.9973 + }, + { + "start": 40478.84, + "end": 40481.62, + "probability": 0.8129 + }, + { + "start": 40482.68, + "end": 40483.34, + "probability": 0.572 + }, + { + "start": 40484.7, + "end": 40486.9, + "probability": 0.55 + }, + { + "start": 40486.9, + "end": 40487.86, + "probability": 0.3074 + }, + { + "start": 40488.66, + "end": 40491.42, + "probability": 0.9449 + }, + { + "start": 40494.04, + "end": 40496.62, + "probability": 0.9917 + }, + { + "start": 40499.14, + "end": 40500.5, + "probability": 0.8682 + }, + { + "start": 40501.06, + "end": 40503.65, + "probability": 0.9569 + }, + { + "start": 40512.1, + "end": 40515.74, + "probability": 0.8706 + }, + { + "start": 40516.98, + "end": 40518.26, + "probability": 0.2768 + }, + { + "start": 40518.72, + "end": 40523.52, + "probability": 0.888 + }, + { + "start": 40526.24, + "end": 40526.46, + "probability": 0.3698 + }, + { + "start": 40526.46, + "end": 40528.04, + "probability": 0.8771 + }, + { + "start": 40528.46, + "end": 40532.16, + "probability": 0.8282 + }, + { + "start": 40532.84, + "end": 40535.31, + "probability": 0.8831 + }, + { + "start": 40536.74, + "end": 40537.82, + "probability": 0.8145 + }, + { + "start": 40538.56, + "end": 40540.9, + "probability": 0.8351 + }, + { + "start": 40541.02, + "end": 40543.72, + "probability": 0.9473 + }, + { + "start": 40544.76, + "end": 40545.34, + "probability": 0.0075 + }, + { + "start": 40546.38, + "end": 40547.08, + "probability": 0.237 + }, + { + "start": 40548.96, + "end": 40549.22, + "probability": 0.6124 + }, + { + "start": 40549.22, + "end": 40552.74, + "probability": 0.933 + }, + { + "start": 40553.18, + "end": 40559.74, + "probability": 0.86 + }, + { + "start": 40560.62, + "end": 40562.42, + "probability": 0.8987 + }, + { + "start": 40562.7, + "end": 40566.12, + "probability": 0.6975 + }, + { + "start": 40567.12, + "end": 40567.58, + "probability": 0.5984 + }, + { + "start": 40568.12, + "end": 40572.84, + "probability": 0.9147 + }, + { + "start": 40573.14, + "end": 40576.76, + "probability": 0.9422 + }, + { + "start": 40577.82, + "end": 40580.44, + "probability": 0.9679 + }, + { + "start": 40581.58, + "end": 40582.29, + "probability": 0.6882 + }, + { + "start": 40583.34, + "end": 40584.36, + "probability": 0.9983 + }, + { + "start": 40585.16, + "end": 40586.3, + "probability": 0.9831 + }, + { + "start": 40587.22, + "end": 40591.64, + "probability": 0.9971 + }, + { + "start": 40593.6, + "end": 40594.08, + "probability": 0.9932 + }, + { + "start": 40595.64, + "end": 40599.88, + "probability": 0.9661 + }, + { + "start": 40601.1, + "end": 40605.56, + "probability": 0.9189 + }, + { + "start": 40605.92, + "end": 40609.04, + "probability": 0.9977 + }, + { + "start": 40609.54, + "end": 40611.2, + "probability": 0.9361 + }, + { + "start": 40612.98, + "end": 40613.92, + "probability": 0.8317 + }, + { + "start": 40615.08, + "end": 40615.76, + "probability": 0.7051 + }, + { + "start": 40616.9, + "end": 40620.58, + "probability": 0.8913 + }, + { + "start": 40620.9, + "end": 40622.96, + "probability": 0.8129 + }, + { + "start": 40623.58, + "end": 40626.46, + "probability": 0.9594 + }, + { + "start": 40626.56, + "end": 40626.9, + "probability": 0.8151 + }, + { + "start": 40627.08, + "end": 40628.26, + "probability": 0.9805 + }, + { + "start": 40628.6, + "end": 40629.58, + "probability": 0.9868 + }, + { + "start": 40629.74, + "end": 40630.9, + "probability": 0.9849 + }, + { + "start": 40631.74, + "end": 40632.16, + "probability": 0.9229 + }, + { + "start": 40633.2, + "end": 40635.16, + "probability": 0.7982 + }, + { + "start": 40635.42, + "end": 40638.64, + "probability": 0.9646 + }, + { + "start": 40639.44, + "end": 40640.72, + "probability": 0.8986 + }, + { + "start": 40641.64, + "end": 40642.06, + "probability": 0.3595 + }, + { + "start": 40642.14, + "end": 40644.98, + "probability": 0.9154 + }, + { + "start": 40645.04, + "end": 40647.35, + "probability": 0.9937 + }, + { + "start": 40648.16, + "end": 40650.54, + "probability": 0.61 + }, + { + "start": 40650.86, + "end": 40652.5, + "probability": 0.9225 + }, + { + "start": 40654.08, + "end": 40654.24, + "probability": 0.9248 + }, + { + "start": 40654.34, + "end": 40657.98, + "probability": 0.9874 + }, + { + "start": 40658.1, + "end": 40662.3, + "probability": 0.95 + }, + { + "start": 40663.24, + "end": 40664.46, + "probability": 0.9632 + }, + { + "start": 40665.74, + "end": 40668.82, + "probability": 0.8113 + }, + { + "start": 40669.54, + "end": 40673.76, + "probability": 0.8763 + }, + { + "start": 40673.76, + "end": 40678.64, + "probability": 0.981 + }, + { + "start": 40678.92, + "end": 40679.48, + "probability": 0.9459 + }, + { + "start": 40680.04, + "end": 40681.7, + "probability": 0.9228 + }, + { + "start": 40682.28, + "end": 40683.3, + "probability": 0.5889 + }, + { + "start": 40683.9, + "end": 40686.46, + "probability": 0.9011 + }, + { + "start": 40687.12, + "end": 40688.88, + "probability": 0.7722 + }, + { + "start": 40688.92, + "end": 40690.66, + "probability": 0.9647 + }, + { + "start": 40691.0, + "end": 40691.8, + "probability": 0.7892 + }, + { + "start": 40693.52, + "end": 40694.94, + "probability": 0.9365 + }, + { + "start": 40695.64, + "end": 40695.94, + "probability": 0.47 + }, + { + "start": 40695.94, + "end": 40696.84, + "probability": 0.9922 + }, + { + "start": 40696.9, + "end": 40698.98, + "probability": 0.9924 + }, + { + "start": 40699.28, + "end": 40701.68, + "probability": 0.871 + }, + { + "start": 40702.6, + "end": 40705.6, + "probability": 0.9595 + }, + { + "start": 40707.1, + "end": 40712.02, + "probability": 0.6888 + }, + { + "start": 40712.86, + "end": 40717.18, + "probability": 0.9819 + }, + { + "start": 40718.28, + "end": 40719.6, + "probability": 0.3832 + }, + { + "start": 40719.74, + "end": 40720.78, + "probability": 0.7974 + }, + { + "start": 40722.74, + "end": 40723.35, + "probability": 0.947 + }, + { + "start": 40723.52, + "end": 40724.72, + "probability": 0.9685 + }, + { + "start": 40725.16, + "end": 40726.3, + "probability": 0.5227 + }, + { + "start": 40726.3, + "end": 40727.7, + "probability": 0.9842 + }, + { + "start": 40728.18, + "end": 40730.28, + "probability": 0.9939 + }, + { + "start": 40731.28, + "end": 40731.54, + "probability": 0.5123 + }, + { + "start": 40731.62, + "end": 40733.68, + "probability": 0.8893 + }, + { + "start": 40734.48, + "end": 40739.7, + "probability": 0.8618 + }, + { + "start": 40740.5, + "end": 40745.46, + "probability": 0.8806 + }, + { + "start": 40746.0, + "end": 40748.42, + "probability": 0.9482 + }, + { + "start": 40748.54, + "end": 40748.84, + "probability": 0.7416 + }, + { + "start": 40748.9, + "end": 40751.74, + "probability": 0.713 + }, + { + "start": 40752.1, + "end": 40753.34, + "probability": 0.6557 + }, + { + "start": 40754.12, + "end": 40757.5, + "probability": 0.9402 + }, + { + "start": 40757.62, + "end": 40759.2, + "probability": 0.9688 + }, + { + "start": 40759.32, + "end": 40760.24, + "probability": 0.812 + }, + { + "start": 40760.86, + "end": 40761.62, + "probability": 0.9283 + }, + { + "start": 40762.77, + "end": 40766.12, + "probability": 0.9769 + }, + { + "start": 40766.32, + "end": 40766.46, + "probability": 0.585 + }, + { + "start": 40766.66, + "end": 40769.42, + "probability": 0.9944 + }, + { + "start": 40769.82, + "end": 40771.86, + "probability": 0.7543 + }, + { + "start": 40771.9, + "end": 40772.32, + "probability": 0.9668 + }, + { + "start": 40772.5, + "end": 40772.89, + "probability": 0.9917 + }, + { + "start": 40773.48, + "end": 40773.82, + "probability": 0.9863 + }, + { + "start": 40774.4, + "end": 40774.94, + "probability": 0.971 + }, + { + "start": 40776.02, + "end": 40779.16, + "probability": 0.9003 + }, + { + "start": 40779.48, + "end": 40781.2, + "probability": 0.9893 + }, + { + "start": 40781.44, + "end": 40783.38, + "probability": 0.8472 + }, + { + "start": 40783.86, + "end": 40784.38, + "probability": 0.9808 + }, + { + "start": 40785.34, + "end": 40786.54, + "probability": 0.7182 + }, + { + "start": 40786.98, + "end": 40789.76, + "probability": 0.9494 + }, + { + "start": 40790.56, + "end": 40793.3, + "probability": 0.8291 + }, + { + "start": 40794.26, + "end": 40797.12, + "probability": 0.984 + }, + { + "start": 40797.74, + "end": 40799.12, + "probability": 0.9834 + }, + { + "start": 40799.32, + "end": 40800.02, + "probability": 0.9666 + }, + { + "start": 40800.78, + "end": 40803.08, + "probability": 0.9973 + }, + { + "start": 40803.56, + "end": 40804.98, + "probability": 0.9978 + }, + { + "start": 40807.42, + "end": 40810.58, + "probability": 0.751 + }, + { + "start": 40811.38, + "end": 40813.42, + "probability": 0.967 + }, + { + "start": 40814.12, + "end": 40815.12, + "probability": 0.7984 + }, + { + "start": 40815.18, + "end": 40816.96, + "probability": 0.99 + }, + { + "start": 40817.0, + "end": 40818.14, + "probability": 0.3768 + }, + { + "start": 40818.28, + "end": 40819.06, + "probability": 0.8846 + }, + { + "start": 40820.1, + "end": 40820.73, + "probability": 0.5682 + }, + { + "start": 40821.32, + "end": 40822.44, + "probability": 0.9698 + }, + { + "start": 40822.56, + "end": 40824.4, + "probability": 0.9883 + }, + { + "start": 40824.92, + "end": 40825.78, + "probability": 0.9774 + }, + { + "start": 40825.9, + "end": 40826.62, + "probability": 0.8787 + }, + { + "start": 40826.78, + "end": 40828.34, + "probability": 0.9824 + }, + { + "start": 40828.4, + "end": 40831.04, + "probability": 0.8917 + }, + { + "start": 40831.12, + "end": 40831.28, + "probability": 0.5122 + }, + { + "start": 40831.96, + "end": 40834.32, + "probability": 0.9966 + }, + { + "start": 40836.59, + "end": 40842.92, + "probability": 0.8485 + }, + { + "start": 40845.7, + "end": 40846.98, + "probability": 0.7395 + }, + { + "start": 40847.52, + "end": 40848.5, + "probability": 0.9764 + }, + { + "start": 40849.18, + "end": 40852.92, + "probability": 0.9453 + }, + { + "start": 40853.2, + "end": 40854.08, + "probability": 0.9232 + }, + { + "start": 40854.68, + "end": 40855.98, + "probability": 0.9677 + }, + { + "start": 40856.64, + "end": 40857.9, + "probability": 0.9651 + }, + { + "start": 40858.78, + "end": 40860.16, + "probability": 0.932 + }, + { + "start": 40860.54, + "end": 40862.24, + "probability": 0.9336 + }, + { + "start": 40862.24, + "end": 40864.46, + "probability": 0.9579 + }, + { + "start": 40864.98, + "end": 40865.32, + "probability": 0.6863 + }, + { + "start": 40865.5, + "end": 40872.44, + "probability": 0.9863 + }, + { + "start": 40872.54, + "end": 40877.69, + "probability": 0.9868 + }, + { + "start": 40878.96, + "end": 40879.12, + "probability": 0.2621 + }, + { + "start": 40879.14, + "end": 40880.08, + "probability": 0.8198 + }, + { + "start": 40880.6, + "end": 40880.76, + "probability": 0.5897 + }, + { + "start": 40881.46, + "end": 40883.1, + "probability": 0.5773 + }, + { + "start": 40883.7, + "end": 40884.66, + "probability": 0.9089 + }, + { + "start": 40884.88, + "end": 40885.16, + "probability": 0.6173 + }, + { + "start": 40885.22, + "end": 40885.32, + "probability": 0.8374 + }, + { + "start": 40885.68, + "end": 40885.98, + "probability": 0.8928 + }, + { + "start": 40886.36, + "end": 40886.92, + "probability": 0.4879 + }, + { + "start": 40886.92, + "end": 40888.92, + "probability": 0.8778 + }, + { + "start": 40889.12, + "end": 40889.44, + "probability": 0.9451 + }, + { + "start": 40890.0, + "end": 40890.84, + "probability": 0.9741 + }, + { + "start": 40891.02, + "end": 40891.52, + "probability": 0.5458 + }, + { + "start": 40891.56, + "end": 40891.88, + "probability": 0.9279 + }, + { + "start": 40892.12, + "end": 40893.64, + "probability": 0.9724 + }, + { + "start": 40894.08, + "end": 40894.78, + "probability": 0.9559 + }, + { + "start": 40894.92, + "end": 40896.78, + "probability": 0.931 + }, + { + "start": 40897.22, + "end": 40898.06, + "probability": 0.9751 + }, + { + "start": 40899.88, + "end": 40900.94, + "probability": 0.8271 + }, + { + "start": 40901.74, + "end": 40903.94, + "probability": 0.9909 + }, + { + "start": 40904.38, + "end": 40906.74, + "probability": 0.9984 + }, + { + "start": 40907.32, + "end": 40908.44, + "probability": 0.694 + }, + { + "start": 40908.78, + "end": 40910.22, + "probability": 0.9966 + }, + { + "start": 40911.08, + "end": 40912.47, + "probability": 0.9163 + }, + { + "start": 40913.44, + "end": 40914.48, + "probability": 0.776 + }, + { + "start": 40914.66, + "end": 40916.72, + "probability": 0.4591 + }, + { + "start": 40916.88, + "end": 40919.9, + "probability": 0.6111 + }, + { + "start": 40920.34, + "end": 40921.94, + "probability": 0.1767 + }, + { + "start": 40922.02, + "end": 40923.02, + "probability": 0.3095 + }, + { + "start": 40923.02, + "end": 40925.78, + "probability": 0.6006 + }, + { + "start": 40926.4, + "end": 40931.46, + "probability": 0.9217 + }, + { + "start": 40932.82, + "end": 40935.26, + "probability": 0.893 + }, + { + "start": 40935.82, + "end": 40937.54, + "probability": 0.9175 + }, + { + "start": 40938.06, + "end": 40938.3, + "probability": 0.963 + }, + { + "start": 40938.38, + "end": 40939.66, + "probability": 0.96 + }, + { + "start": 40940.0, + "end": 40941.84, + "probability": 0.6644 + }, + { + "start": 40941.94, + "end": 40943.03, + "probability": 0.7131 + }, + { + "start": 40943.54, + "end": 40943.84, + "probability": 0.8159 + }, + { + "start": 40943.94, + "end": 40944.28, + "probability": 0.8538 + }, + { + "start": 40944.32, + "end": 40944.7, + "probability": 0.9464 + }, + { + "start": 40944.94, + "end": 40945.4, + "probability": 0.6319 + }, + { + "start": 40945.58, + "end": 40945.78, + "probability": 0.4165 + }, + { + "start": 40946.3, + "end": 40946.42, + "probability": 0.8828 + }, + { + "start": 40947.14, + "end": 40949.62, + "probability": 0.6323 + }, + { + "start": 40949.78, + "end": 40953.28, + "probability": 0.9924 + }, + { + "start": 40953.98, + "end": 40956.38, + "probability": 0.868 + }, + { + "start": 40957.24, + "end": 40958.6, + "probability": 0.8771 + }, + { + "start": 40959.34, + "end": 40961.58, + "probability": 0.9905 + }, + { + "start": 40962.46, + "end": 40964.18, + "probability": 0.9131 + }, + { + "start": 40964.7, + "end": 40965.34, + "probability": 0.9417 + }, + { + "start": 40966.42, + "end": 40968.64, + "probability": 0.7772 + }, + { + "start": 40969.14, + "end": 40971.16, + "probability": 0.9849 + }, + { + "start": 40971.66, + "end": 40973.0, + "probability": 0.2822 + }, + { + "start": 40973.0, + "end": 40973.6, + "probability": 0.1587 + }, + { + "start": 40973.6, + "end": 40975.2, + "probability": 0.8502 + }, + { + "start": 40975.28, + "end": 40976.06, + "probability": 0.3863 + }, + { + "start": 40977.0, + "end": 40977.3, + "probability": 0.6254 + }, + { + "start": 40977.98, + "end": 40979.08, + "probability": 0.4675 + }, + { + "start": 40979.8, + "end": 40981.2, + "probability": 0.4034 + }, + { + "start": 40981.32, + "end": 40982.76, + "probability": 0.4346 + }, + { + "start": 40983.18, + "end": 40984.38, + "probability": 0.6255 + }, + { + "start": 40984.96, + "end": 40986.6, + "probability": 0.4997 + }, + { + "start": 40986.68, + "end": 40987.26, + "probability": 0.5689 + }, + { + "start": 40987.38, + "end": 40988.96, + "probability": 0.4123 + }, + { + "start": 40990.82, + "end": 40992.22, + "probability": 0.9855 + }, + { + "start": 40992.8, + "end": 40993.41, + "probability": 0.9548 + }, + { + "start": 40993.46, + "end": 40995.0, + "probability": 0.9824 + }, + { + "start": 40995.5, + "end": 40996.6, + "probability": 0.9351 + }, + { + "start": 40997.06, + "end": 41003.08, + "probability": 0.8305 + }, + { + "start": 41004.52, + "end": 41004.88, + "probability": 0.4244 + }, + { + "start": 41005.92, + "end": 41009.73, + "probability": 0.8574 + }, + { + "start": 41010.94, + "end": 41015.74, + "probability": 0.9751 + }, + { + "start": 41015.94, + "end": 41017.52, + "probability": 0.9956 + }, + { + "start": 41018.4, + "end": 41023.24, + "probability": 0.8521 + }, + { + "start": 41024.82, + "end": 41027.9, + "probability": 0.8869 + }, + { + "start": 41027.96, + "end": 41029.4, + "probability": 0.327 + }, + { + "start": 41029.92, + "end": 41031.28, + "probability": 0.3519 + }, + { + "start": 41031.7, + "end": 41032.4, + "probability": 0.4155 + }, + { + "start": 41032.66, + "end": 41033.18, + "probability": 0.4223 + }, + { + "start": 41033.24, + "end": 41035.24, + "probability": 0.8159 + }, + { + "start": 41035.88, + "end": 41037.9, + "probability": 0.7373 + }, + { + "start": 41038.2, + "end": 41039.44, + "probability": 0.929 + }, + { + "start": 41039.98, + "end": 41041.07, + "probability": 0.9364 + }, + { + "start": 41041.64, + "end": 41042.74, + "probability": 0.8998 + }, + { + "start": 41042.96, + "end": 41048.9, + "probability": 0.9954 + }, + { + "start": 41049.22, + "end": 41051.74, + "probability": 0.6671 + }, + { + "start": 41052.44, + "end": 41055.18, + "probability": 0.975 + }, + { + "start": 41055.32, + "end": 41059.2, + "probability": 0.95 + }, + { + "start": 41059.42, + "end": 41059.64, + "probability": 0.8484 + }, + { + "start": 41060.22, + "end": 41060.9, + "probability": 0.9326 + }, + { + "start": 41061.02, + "end": 41064.3, + "probability": 0.9587 + }, + { + "start": 41065.38, + "end": 41065.54, + "probability": 0.746 + }, + { + "start": 41066.46, + "end": 41066.46, + "probability": 0.1661 + }, + { + "start": 41066.46, + "end": 41068.92, + "probability": 0.4954 + }, + { + "start": 41069.72, + "end": 41070.8, + "probability": 0.9555 + }, + { + "start": 41071.58, + "end": 41072.74, + "probability": 0.9004 + }, + { + "start": 41072.9, + "end": 41073.22, + "probability": 0.7602 + }, + { + "start": 41073.52, + "end": 41074.0, + "probability": 0.7408 + }, + { + "start": 41074.14, + "end": 41076.3, + "probability": 0.9678 + }, + { + "start": 41076.38, + "end": 41077.28, + "probability": 0.9436 + }, + { + "start": 41077.44, + "end": 41079.27, + "probability": 0.5609 + }, + { + "start": 41079.46, + "end": 41082.24, + "probability": 0.5803 + }, + { + "start": 41082.52, + "end": 41083.14, + "probability": 0.8973 + }, + { + "start": 41085.18, + "end": 41088.4, + "probability": 0.9655 + }, + { + "start": 41088.58, + "end": 41089.84, + "probability": 0.79 + }, + { + "start": 41090.4, + "end": 41093.72, + "probability": 0.84 + }, + { + "start": 41094.8, + "end": 41095.34, + "probability": 0.5169 + }, + { + "start": 41095.86, + "end": 41097.62, + "probability": 0.7787 + }, + { + "start": 41097.76, + "end": 41098.74, + "probability": 0.7505 + }, + { + "start": 41098.8, + "end": 41099.1, + "probability": 0.8848 + }, + { + "start": 41099.82, + "end": 41101.06, + "probability": 0.8483 + }, + { + "start": 41101.46, + "end": 41104.58, + "probability": 0.9343 + }, + { + "start": 41104.8, + "end": 41106.06, + "probability": 0.9788 + }, + { + "start": 41106.32, + "end": 41110.96, + "probability": 0.9016 + }, + { + "start": 41111.04, + "end": 41111.52, + "probability": 0.5116 + }, + { + "start": 41111.84, + "end": 41112.04, + "probability": 0.6888 + }, + { + "start": 41112.5, + "end": 41112.78, + "probability": 0.8938 + }, + { + "start": 41113.84, + "end": 41117.22, + "probability": 0.9823 + }, + { + "start": 41117.9, + "end": 41119.88, + "probability": 0.9295 + }, + { + "start": 41120.1, + "end": 41123.24, + "probability": 0.7871 + }, + { + "start": 41123.82, + "end": 41126.04, + "probability": 0.9046 + }, + { + "start": 41126.98, + "end": 41129.38, + "probability": 0.9551 + }, + { + "start": 41129.5, + "end": 41130.69, + "probability": 0.5961 + }, + { + "start": 41130.82, + "end": 41131.02, + "probability": 0.7988 + }, + { + "start": 41131.08, + "end": 41133.54, + "probability": 0.9114 + }, + { + "start": 41134.06, + "end": 41135.96, + "probability": 0.866 + }, + { + "start": 41137.6, + "end": 41138.4, + "probability": 0.5028 + }, + { + "start": 41138.58, + "end": 41142.44, + "probability": 0.9832 + }, + { + "start": 41143.3, + "end": 41143.66, + "probability": 0.5981 + }, + { + "start": 41144.02, + "end": 41145.94, + "probability": 0.9014 + }, + { + "start": 41146.94, + "end": 41148.54, + "probability": 0.9104 + }, + { + "start": 41148.64, + "end": 41149.9, + "probability": 0.8169 + }, + { + "start": 41150.0, + "end": 41151.3, + "probability": 0.9913 + }, + { + "start": 41151.72, + "end": 41154.64, + "probability": 0.7635 + }, + { + "start": 41154.72, + "end": 41155.28, + "probability": 0.5418 + }, + { + "start": 41156.0, + "end": 41156.8, + "probability": 0.8734 + }, + { + "start": 41157.3, + "end": 41158.18, + "probability": 0.7314 + }, + { + "start": 41158.88, + "end": 41162.34, + "probability": 0.6296 + }, + { + "start": 41162.44, + "end": 41163.08, + "probability": 0.6223 + }, + { + "start": 41163.12, + "end": 41166.18, + "probability": 0.8658 + }, + { + "start": 41166.65, + "end": 41168.56, + "probability": 0.8315 + }, + { + "start": 41169.16, + "end": 41170.56, + "probability": 0.6641 + }, + { + "start": 41171.0, + "end": 41173.46, + "probability": 0.9062 + }, + { + "start": 41173.82, + "end": 41176.44, + "probability": 0.6311 + }, + { + "start": 41177.16, + "end": 41178.14, + "probability": 0.989 + }, + { + "start": 41178.32, + "end": 41179.38, + "probability": 0.9289 + }, + { + "start": 41179.44, + "end": 41180.28, + "probability": 0.9477 + }, + { + "start": 41180.38, + "end": 41181.1, + "probability": 0.8582 + }, + { + "start": 41181.24, + "end": 41182.0, + "probability": 0.7817 + }, + { + "start": 41182.22, + "end": 41184.14, + "probability": 0.867 + }, + { + "start": 41184.26, + "end": 41185.58, + "probability": 0.6782 + }, + { + "start": 41185.7, + "end": 41187.24, + "probability": 0.8707 + }, + { + "start": 41188.14, + "end": 41190.74, + "probability": 0.91 + }, + { + "start": 41192.12, + "end": 41194.08, + "probability": 0.9858 + }, + { + "start": 41194.14, + "end": 41195.14, + "probability": 0.6218 + }, + { + "start": 41195.84, + "end": 41198.76, + "probability": 0.9602 + }, + { + "start": 41200.84, + "end": 41202.84, + "probability": 0.9116 + }, + { + "start": 41202.96, + "end": 41206.79, + "probability": 0.9878 + }, + { + "start": 41208.16, + "end": 41208.72, + "probability": 0.7834 + }, + { + "start": 41208.9, + "end": 41209.84, + "probability": 0.7851 + }, + { + "start": 41211.14, + "end": 41212.64, + "probability": 0.5012 + }, + { + "start": 41212.76, + "end": 41217.64, + "probability": 0.9893 + }, + { + "start": 41218.14, + "end": 41220.52, + "probability": 0.9584 + }, + { + "start": 41220.62, + "end": 41223.18, + "probability": 0.8242 + }, + { + "start": 41223.74, + "end": 41231.98, + "probability": 0.8345 + }, + { + "start": 41232.58, + "end": 41233.08, + "probability": 0.5967 + }, + { + "start": 41234.0, + "end": 41236.44, + "probability": 0.916 + }, + { + "start": 41237.1, + "end": 41239.7, + "probability": 0.8702 + }, + { + "start": 41240.62, + "end": 41240.78, + "probability": 0.5648 + }, + { + "start": 41241.86, + "end": 41242.14, + "probability": 0.549 + }, + { + "start": 41243.18, + "end": 41245.94, + "probability": 0.9662 + }, + { + "start": 41246.88, + "end": 41247.96, + "probability": 0.8093 + }, + { + "start": 41248.1, + "end": 41250.06, + "probability": 0.9915 + }, + { + "start": 41250.54, + "end": 41251.68, + "probability": 0.9457 + }, + { + "start": 41252.16, + "end": 41253.02, + "probability": 0.9559 + }, + { + "start": 41253.12, + "end": 41256.86, + "probability": 0.9554 + }, + { + "start": 41257.24, + "end": 41258.1, + "probability": 0.996 + }, + { + "start": 41259.46, + "end": 41262.16, + "probability": 0.9665 + }, + { + "start": 41262.6, + "end": 41264.46, + "probability": 0.9348 + }, + { + "start": 41265.26, + "end": 41266.66, + "probability": 0.9032 + }, + { + "start": 41267.28, + "end": 41270.16, + "probability": 0.9965 + }, + { + "start": 41271.14, + "end": 41271.95, + "probability": 0.9634 + }, + { + "start": 41272.12, + "end": 41273.1, + "probability": 0.9671 + }, + { + "start": 41273.54, + "end": 41274.36, + "probability": 0.8496 + }, + { + "start": 41275.02, + "end": 41275.88, + "probability": 0.7858 + }, + { + "start": 41276.8, + "end": 41279.02, + "probability": 0.9688 + }, + { + "start": 41280.02, + "end": 41281.56, + "probability": 0.9717 + }, + { + "start": 41281.76, + "end": 41283.98, + "probability": 0.7172 + }, + { + "start": 41284.04, + "end": 41284.56, + "probability": 0.7373 + }, + { + "start": 41285.48, + "end": 41287.66, + "probability": 0.9761 + }, + { + "start": 41287.76, + "end": 41289.42, + "probability": 0.9834 + }, + { + "start": 41289.88, + "end": 41291.2, + "probability": 0.9908 + }, + { + "start": 41291.8, + "end": 41292.66, + "probability": 0.2623 + }, + { + "start": 41293.46, + "end": 41294.96, + "probability": 0.9328 + }, + { + "start": 41296.1, + "end": 41297.86, + "probability": 0.7375 + }, + { + "start": 41298.16, + "end": 41299.92, + "probability": 0.9771 + }, + { + "start": 41300.02, + "end": 41301.06, + "probability": 0.9298 + }, + { + "start": 41301.8, + "end": 41301.9, + "probability": 0.6754 + }, + { + "start": 41301.96, + "end": 41303.18, + "probability": 0.8328 + }, + { + "start": 41304.1, + "end": 41304.9, + "probability": 0.9922 + }, + { + "start": 41305.38, + "end": 41306.28, + "probability": 0.9888 + }, + { + "start": 41306.46, + "end": 41307.6, + "probability": 0.9352 + }, + { + "start": 41308.58, + "end": 41309.82, + "probability": 0.9443 + }, + { + "start": 41311.48, + "end": 41311.58, + "probability": 0.832 + }, + { + "start": 41311.86, + "end": 41316.14, + "probability": 0.9639 + }, + { + "start": 41316.22, + "end": 41317.48, + "probability": 0.9738 + }, + { + "start": 41319.08, + "end": 41319.58, + "probability": 0.3563 + }, + { + "start": 41319.8, + "end": 41323.0, + "probability": 0.9618 + }, + { + "start": 41323.1, + "end": 41323.22, + "probability": 0.863 + }, + { + "start": 41324.1, + "end": 41325.76, + "probability": 0.9951 + }, + { + "start": 41326.34, + "end": 41328.16, + "probability": 0.8983 + }, + { + "start": 41330.3, + "end": 41331.81, + "probability": 0.9387 + }, + { + "start": 41333.16, + "end": 41341.38, + "probability": 0.9915 + }, + { + "start": 41342.1, + "end": 41343.91, + "probability": 0.8876 + }, + { + "start": 41345.02, + "end": 41347.52, + "probability": 0.8012 + }, + { + "start": 41347.58, + "end": 41349.22, + "probability": 0.98 + }, + { + "start": 41349.68, + "end": 41351.34, + "probability": 0.962 + }, + { + "start": 41352.04, + "end": 41357.34, + "probability": 0.9966 + }, + { + "start": 41357.34, + "end": 41361.75, + "probability": 0.9344 + }, + { + "start": 41362.44, + "end": 41363.68, + "probability": 0.9708 + }, + { + "start": 41364.64, + "end": 41367.82, + "probability": 0.9546 + }, + { + "start": 41368.6, + "end": 41372.9, + "probability": 0.9847 + }, + { + "start": 41374.06, + "end": 41375.96, + "probability": 0.9971 + }, + { + "start": 41376.08, + "end": 41378.19, + "probability": 0.9373 + }, + { + "start": 41378.88, + "end": 41380.02, + "probability": 0.7876 + }, + { + "start": 41380.12, + "end": 41381.26, + "probability": 0.888 + }, + { + "start": 41381.54, + "end": 41382.9, + "probability": 0.9744 + }, + { + "start": 41383.06, + "end": 41386.04, + "probability": 0.8346 + }, + { + "start": 41386.1, + "end": 41386.48, + "probability": 0.664 + }, + { + "start": 41386.62, + "end": 41387.56, + "probability": 0.6592 + }, + { + "start": 41387.98, + "end": 41389.18, + "probability": 0.7243 + }, + { + "start": 41389.72, + "end": 41390.42, + "probability": 0.3743 + }, + { + "start": 41391.22, + "end": 41392.02, + "probability": 0.5224 + }, + { + "start": 41392.14, + "end": 41393.22, + "probability": 0.8264 + }, + { + "start": 41393.74, + "end": 41394.36, + "probability": 0.7202 + }, + { + "start": 41394.66, + "end": 41394.94, + "probability": 0.3346 + }, + { + "start": 41394.94, + "end": 41395.92, + "probability": 0.9863 + }, + { + "start": 41396.06, + "end": 41400.96, + "probability": 0.9397 + }, + { + "start": 41401.05, + "end": 41402.58, + "probability": 0.9717 + }, + { + "start": 41402.64, + "end": 41404.52, + "probability": 0.9924 + }, + { + "start": 41405.84, + "end": 41409.45, + "probability": 0.9384 + }, + { + "start": 41410.8, + "end": 41411.72, + "probability": 0.983 + }, + { + "start": 41412.16, + "end": 41413.72, + "probability": 0.8775 + }, + { + "start": 41416.24, + "end": 41417.98, + "probability": 0.9976 + }, + { + "start": 41418.76, + "end": 41421.64, + "probability": 0.9738 + }, + { + "start": 41421.68, + "end": 41422.82, + "probability": 0.6576 + }, + { + "start": 41423.3, + "end": 41424.44, + "probability": 0.9449 + }, + { + "start": 41425.22, + "end": 41427.12, + "probability": 0.9719 + }, + { + "start": 41428.12, + "end": 41433.3, + "probability": 0.9937 + }, + { + "start": 41434.02, + "end": 41435.37, + "probability": 0.899 + }, + { + "start": 41436.36, + "end": 41440.42, + "probability": 0.9102 + }, + { + "start": 41440.64, + "end": 41443.42, + "probability": 0.9502 + }, + { + "start": 41443.54, + "end": 41445.38, + "probability": 0.6571 + }, + { + "start": 41446.64, + "end": 41448.64, + "probability": 0.973 + }, + { + "start": 41449.36, + "end": 41451.44, + "probability": 0.9821 + }, + { + "start": 41451.66, + "end": 41453.06, + "probability": 0.8994 + }, + { + "start": 41453.96, + "end": 41455.11, + "probability": 0.9187 + }, + { + "start": 41456.7, + "end": 41458.0, + "probability": 0.5362 + }, + { + "start": 41458.06, + "end": 41460.66, + "probability": 0.9576 + }, + { + "start": 41460.78, + "end": 41468.72, + "probability": 0.9891 + }, + { + "start": 41468.86, + "end": 41470.4, + "probability": 0.9757 + }, + { + "start": 41471.14, + "end": 41472.58, + "probability": 0.937 + }, + { + "start": 41472.66, + "end": 41473.74, + "probability": 0.8812 + }, + { + "start": 41475.12, + "end": 41475.8, + "probability": 0.9524 + }, + { + "start": 41476.06, + "end": 41476.99, + "probability": 0.8145 + }, + { + "start": 41477.32, + "end": 41478.88, + "probability": 0.5394 + }, + { + "start": 41479.02, + "end": 41481.74, + "probability": 0.9155 + }, + { + "start": 41484.22, + "end": 41487.16, + "probability": 0.9409 + }, + { + "start": 41489.12, + "end": 41490.5, + "probability": 0.1371 + }, + { + "start": 41490.5, + "end": 41490.8, + "probability": 0.2987 + }, + { + "start": 41490.94, + "end": 41491.2, + "probability": 0.6599 + }, + { + "start": 41491.54, + "end": 41492.24, + "probability": 0.9048 + }, + { + "start": 41492.3, + "end": 41494.82, + "probability": 0.8817 + }, + { + "start": 41494.92, + "end": 41495.86, + "probability": 0.9907 + }, + { + "start": 41496.54, + "end": 41497.28, + "probability": 0.9635 + }, + { + "start": 41497.94, + "end": 41501.64, + "probability": 0.8738 + }, + { + "start": 41501.74, + "end": 41502.66, + "probability": 0.5309 + }, + { + "start": 41503.02, + "end": 41504.54, + "probability": 0.7434 + }, + { + "start": 41504.62, + "end": 41505.04, + "probability": 0.4585 + }, + { + "start": 41505.5, + "end": 41507.14, + "probability": 0.9844 + }, + { + "start": 41507.34, + "end": 41509.74, + "probability": 0.801 + }, + { + "start": 41509.9, + "end": 41510.1, + "probability": 0.8262 + }, + { + "start": 41510.14, + "end": 41512.68, + "probability": 0.9616 + }, + { + "start": 41513.42, + "end": 41514.34, + "probability": 0.8089 + }, + { + "start": 41514.84, + "end": 41515.44, + "probability": 0.966 + }, + { + "start": 41515.62, + "end": 41516.64, + "probability": 0.9787 + }, + { + "start": 41516.94, + "end": 41517.52, + "probability": 0.9073 + }, + { + "start": 41517.76, + "end": 41518.56, + "probability": 0.8031 + }, + { + "start": 41519.66, + "end": 41524.88, + "probability": 0.7743 + }, + { + "start": 41525.22, + "end": 41527.32, + "probability": 0.9976 + }, + { + "start": 41527.4, + "end": 41529.31, + "probability": 0.9825 + }, + { + "start": 41529.52, + "end": 41531.88, + "probability": 0.8115 + }, + { + "start": 41532.56, + "end": 41535.92, + "probability": 0.9595 + }, + { + "start": 41536.62, + "end": 41537.18, + "probability": 0.6062 + }, + { + "start": 41537.5, + "end": 41537.94, + "probability": 0.9779 + }, + { + "start": 41538.08, + "end": 41538.44, + "probability": 0.9622 + }, + { + "start": 41538.62, + "end": 41538.84, + "probability": 0.9775 + }, + { + "start": 41538.98, + "end": 41539.24, + "probability": 0.9944 + }, + { + "start": 41539.38, + "end": 41539.8, + "probability": 0.9071 + }, + { + "start": 41540.22, + "end": 41541.96, + "probability": 0.9932 + }, + { + "start": 41542.08, + "end": 41545.32, + "probability": 0.9862 + }, + { + "start": 41546.62, + "end": 41548.36, + "probability": 0.6718 + }, + { + "start": 41549.48, + "end": 41549.58, + "probability": 0.9233 + }, + { + "start": 41550.72, + "end": 41553.56, + "probability": 0.9979 + }, + { + "start": 41555.1, + "end": 41555.26, + "probability": 0.9583 + }, + { + "start": 41556.52, + "end": 41557.58, + "probability": 0.9907 + }, + { + "start": 41558.88, + "end": 41559.56, + "probability": 0.9763 + }, + { + "start": 41560.32, + "end": 41561.26, + "probability": 0.9798 + }, + { + "start": 41562.48, + "end": 41564.06, + "probability": 0.8604 + }, + { + "start": 41564.14, + "end": 41568.02, + "probability": 0.6871 + }, + { + "start": 41568.69, + "end": 41570.94, + "probability": 0.9056 + }, + { + "start": 41571.14, + "end": 41572.98, + "probability": 0.8846 + }, + { + "start": 41573.1, + "end": 41573.56, + "probability": 0.9873 + }, + { + "start": 41575.28, + "end": 41575.77, + "probability": 0.1203 + }, + { + "start": 41576.1, + "end": 41576.48, + "probability": 0.0205 + }, + { + "start": 41579.35, + "end": 41579.48, + "probability": 0.0972 + }, + { + "start": 41579.48, + "end": 41581.24, + "probability": 0.9897 + }, + { + "start": 41582.0, + "end": 41583.68, + "probability": 0.7788 + }, + { + "start": 41583.8, + "end": 41584.52, + "probability": 0.9485 + }, + { + "start": 41584.64, + "end": 41585.02, + "probability": 0.6692 + }, + { + "start": 41585.38, + "end": 41587.4, + "probability": 0.9812 + }, + { + "start": 41589.46, + "end": 41589.56, + "probability": 0.6024 + }, + { + "start": 41590.82, + "end": 41596.3, + "probability": 0.9857 + }, + { + "start": 41597.84, + "end": 41600.34, + "probability": 0.9929 + }, + { + "start": 41601.1, + "end": 41603.3, + "probability": 0.8595 + }, + { + "start": 41604.02, + "end": 41607.5, + "probability": 0.9199 + }, + { + "start": 41608.92, + "end": 41609.5, + "probability": 0.7529 + }, + { + "start": 41609.62, + "end": 41614.0, + "probability": 0.9829 + }, + { + "start": 41614.44, + "end": 41615.08, + "probability": 0.7954 + }, + { + "start": 41615.44, + "end": 41618.12, + "probability": 0.9941 + }, + { + "start": 41619.54, + "end": 41621.74, + "probability": 0.8738 + }, + { + "start": 41623.24, + "end": 41626.38, + "probability": 0.9937 + }, + { + "start": 41627.38, + "end": 41629.14, + "probability": 0.9023 + }, + { + "start": 41629.22, + "end": 41630.88, + "probability": 0.998 + }, + { + "start": 41631.66, + "end": 41635.3, + "probability": 0.9969 + }, + { + "start": 41635.3, + "end": 41637.22, + "probability": 0.9996 + }, + { + "start": 41638.12, + "end": 41640.22, + "probability": 0.9798 + }, + { + "start": 41641.26, + "end": 41642.94, + "probability": 0.9297 + }, + { + "start": 41644.02, + "end": 41644.44, + "probability": 0.6678 + }, + { + "start": 41644.46, + "end": 41646.86, + "probability": 0.9988 + }, + { + "start": 41646.92, + "end": 41647.79, + "probability": 0.8523 + }, + { + "start": 41648.0, + "end": 41648.94, + "probability": 0.8901 + }, + { + "start": 41649.04, + "end": 41651.28, + "probability": 0.9568 + }, + { + "start": 41651.44, + "end": 41654.62, + "probability": 0.9966 + }, + { + "start": 41654.62, + "end": 41656.88, + "probability": 0.9911 + }, + { + "start": 41656.94, + "end": 41657.9, + "probability": 0.9437 + }, + { + "start": 41658.36, + "end": 41659.62, + "probability": 0.9902 + }, + { + "start": 41660.56, + "end": 41662.86, + "probability": 0.8705 + }, + { + "start": 41663.68, + "end": 41663.98, + "probability": 0.9166 + }, + { + "start": 41666.12, + "end": 41666.32, + "probability": 0.9797 + }, + { + "start": 41667.04, + "end": 41668.5, + "probability": 0.9825 + }, + { + "start": 41668.8, + "end": 41671.02, + "probability": 0.9138 + }, + { + "start": 41672.3, + "end": 41673.58, + "probability": 0.908 + }, + { + "start": 41673.8, + "end": 41676.12, + "probability": 0.9929 + }, + { + "start": 41677.14, + "end": 41680.36, + "probability": 0.9989 + }, + { + "start": 41680.36, + "end": 41683.52, + "probability": 0.9647 + }, + { + "start": 41684.02, + "end": 41686.16, + "probability": 0.6502 + }, + { + "start": 41686.56, + "end": 41687.52, + "probability": 0.5688 + }, + { + "start": 41687.94, + "end": 41689.2, + "probability": 0.9224 + }, + { + "start": 41689.82, + "end": 41690.34, + "probability": 0.9753 + }, + { + "start": 41690.94, + "end": 41694.0, + "probability": 0.7947 + }, + { + "start": 41695.16, + "end": 41698.22, + "probability": 0.9767 + }, + { + "start": 41699.06, + "end": 41700.08, + "probability": 0.8986 + }, + { + "start": 41700.92, + "end": 41702.64, + "probability": 0.8979 + }, + { + "start": 41703.22, + "end": 41704.88, + "probability": 0.767 + }, + { + "start": 41705.52, + "end": 41706.04, + "probability": 0.4757 + }, + { + "start": 41707.3, + "end": 41708.1, + "probability": 0.675 + }, + { + "start": 41708.88, + "end": 41710.78, + "probability": 0.9901 + }, + { + "start": 41710.78, + "end": 41711.5, + "probability": 0.9498 + }, + { + "start": 41711.56, + "end": 41716.2, + "probability": 0.9414 + }, + { + "start": 41716.46, + "end": 41717.08, + "probability": 0.6682 + }, + { + "start": 41718.0, + "end": 41719.06, + "probability": 0.7981 + }, + { + "start": 41721.38, + "end": 41723.04, + "probability": 0.4305 + }, + { + "start": 41723.7, + "end": 41725.26, + "probability": 0.3288 + }, + { + "start": 41725.64, + "end": 41727.32, + "probability": 0.8006 + }, + { + "start": 41727.44, + "end": 41729.26, + "probability": 0.8512 + }, + { + "start": 41729.46, + "end": 41729.56, + "probability": 0.5626 + }, + { + "start": 41729.56, + "end": 41731.23, + "probability": 0.1343 + }, + { + "start": 41732.34, + "end": 41733.84, + "probability": 0.2693 + }, + { + "start": 41734.48, + "end": 41736.28, + "probability": 0.4098 + }, + { + "start": 41737.14, + "end": 41737.14, + "probability": 0.594 + }, + { + "start": 41737.24, + "end": 41737.58, + "probability": 0.8877 + }, + { + "start": 41738.52, + "end": 41738.7, + "probability": 0.8739 + }, + { + "start": 41738.78, + "end": 41739.58, + "probability": 0.6487 + }, + { + "start": 41739.98, + "end": 41740.0, + "probability": 0.329 + }, + { + "start": 41740.06, + "end": 41741.24, + "probability": 0.3369 + }, + { + "start": 41741.46, + "end": 41743.14, + "probability": 0.5198 + }, + { + "start": 41743.2, + "end": 41743.5, + "probability": 0.8384 + }, + { + "start": 41744.54, + "end": 41744.74, + "probability": 0.8192 + }, + { + "start": 41745.28, + "end": 41745.86, + "probability": 0.956 + }, + { + "start": 41746.82, + "end": 41747.32, + "probability": 0.8334 + }, + { + "start": 41747.92, + "end": 41749.36, + "probability": 0.9381 + }, + { + "start": 41750.16, + "end": 41750.38, + "probability": 0.7363 + }, + { + "start": 41750.5, + "end": 41751.48, + "probability": 0.8337 + }, + { + "start": 41752.0, + "end": 41752.87, + "probability": 0.9382 + }, + { + "start": 41753.26, + "end": 41753.72, + "probability": 0.8141 + }, + { + "start": 41753.88, + "end": 41754.52, + "probability": 0.247 + }, + { + "start": 41754.7, + "end": 41755.4, + "probability": 0.5423 + }, + { + "start": 41755.42, + "end": 41755.52, + "probability": 0.8749 + }, + { + "start": 41755.6, + "end": 41756.73, + "probability": 0.9332 + }, + { + "start": 41756.92, + "end": 41757.96, + "probability": 0.9686 + }, + { + "start": 41758.6, + "end": 41760.82, + "probability": 0.8166 + }, + { + "start": 41761.36, + "end": 41762.82, + "probability": 0.8952 + }, + { + "start": 41763.1, + "end": 41764.4, + "probability": 0.2592 + }, + { + "start": 41764.72, + "end": 41764.88, + "probability": 0.9275 + }, + { + "start": 41766.8, + "end": 41770.22, + "probability": 0.8643 + }, + { + "start": 41770.3, + "end": 41771.42, + "probability": 0.7202 + }, + { + "start": 41771.84, + "end": 41774.2, + "probability": 0.9614 + }, + { + "start": 41775.52, + "end": 41776.64, + "probability": 0.592 + }, + { + "start": 41778.36, + "end": 41782.66, + "probability": 0.9751 + }, + { + "start": 41782.74, + "end": 41785.62, + "probability": 0.8783 + }, + { + "start": 41786.2, + "end": 41787.93, + "probability": 0.9912 + }, + { + "start": 41788.14, + "end": 41791.34, + "probability": 0.8258 + }, + { + "start": 41792.16, + "end": 41794.76, + "probability": 0.8173 + }, + { + "start": 41794.86, + "end": 41795.7, + "probability": 0.9126 + }, + { + "start": 41796.58, + "end": 41798.18, + "probability": 0.5377 + }, + { + "start": 41801.44, + "end": 41804.12, + "probability": 0.4876 + }, + { + "start": 41805.94, + "end": 41807.0, + "probability": 0.9075 + }, + { + "start": 41807.24, + "end": 41807.97, + "probability": 0.7889 + }, + { + "start": 41808.5, + "end": 41809.16, + "probability": 0.6847 + }, + { + "start": 41809.18, + "end": 41810.6, + "probability": 0.8384 + }, + { + "start": 41811.54, + "end": 41811.92, + "probability": 0.8389 + }, + { + "start": 41812.86, + "end": 41819.04, + "probability": 0.9946 + }, + { + "start": 41819.84, + "end": 41824.62, + "probability": 0.9183 + }, + { + "start": 41826.02, + "end": 41827.88, + "probability": 0.8597 + }, + { + "start": 41828.06, + "end": 41828.78, + "probability": 0.844 + }, + { + "start": 41828.88, + "end": 41830.74, + "probability": 0.989 + }, + { + "start": 41830.74, + "end": 41833.84, + "probability": 0.9416 + }, + { + "start": 41835.02, + "end": 41836.04, + "probability": 0.8196 + }, + { + "start": 41837.74, + "end": 41839.5, + "probability": 0.5933 + }, + { + "start": 41840.6, + "end": 41842.14, + "probability": 0.8903 + }, + { + "start": 41842.86, + "end": 41846.04, + "probability": 0.8882 + }, + { + "start": 41846.3, + "end": 41850.64, + "probability": 0.8977 + }, + { + "start": 41851.04, + "end": 41853.36, + "probability": 0.9285 + }, + { + "start": 41853.5, + "end": 41856.02, + "probability": 0.9213 + }, + { + "start": 41856.68, + "end": 41857.76, + "probability": 0.8566 + }, + { + "start": 41857.94, + "end": 41858.08, + "probability": 0.3851 + }, + { + "start": 41858.5, + "end": 41859.74, + "probability": 0.9674 + }, + { + "start": 41859.88, + "end": 41860.36, + "probability": 0.9733 + }, + { + "start": 41860.48, + "end": 41862.06, + "probability": 0.7322 + }, + { + "start": 41863.2, + "end": 41865.4, + "probability": 0.9288 + }, + { + "start": 41866.04, + "end": 41868.12, + "probability": 0.9971 + }, + { + "start": 41869.58, + "end": 41869.78, + "probability": 0.7938 + }, + { + "start": 41870.68, + "end": 41871.5, + "probability": 0.8787 + }, + { + "start": 41872.1, + "end": 41873.56, + "probability": 0.9892 + }, + { + "start": 41873.88, + "end": 41874.2, + "probability": 0.6798 + }, + { + "start": 41874.28, + "end": 41875.92, + "probability": 0.9814 + }, + { + "start": 41875.98, + "end": 41876.4, + "probability": 0.6785 + }, + { + "start": 41877.32, + "end": 41879.66, + "probability": 0.9597 + }, + { + "start": 41881.69, + "end": 41884.18, + "probability": 0.96 + }, + { + "start": 41889.34, + "end": 41889.79, + "probability": 0.8573 + }, + { + "start": 41894.52, + "end": 41895.4, + "probability": 0.9612 + }, + { + "start": 41900.1, + "end": 41900.2, + "probability": 0.4227 + }, + { + "start": 41900.96, + "end": 41903.04, + "probability": 0.9912 + }, + { + "start": 41903.76, + "end": 41908.06, + "probability": 0.8081 + }, + { + "start": 41908.68, + "end": 41911.46, + "probability": 0.9782 + }, + { + "start": 41911.54, + "end": 41912.38, + "probability": 0.6395 + }, + { + "start": 41913.56, + "end": 41917.96, + "probability": 0.9784 + }, + { + "start": 41918.82, + "end": 41921.72, + "probability": 0.9944 + }, + { + "start": 41923.82, + "end": 41925.48, + "probability": 0.9284 + }, + { + "start": 41926.38, + "end": 41928.31, + "probability": 0.9688 + }, + { + "start": 41930.72, + "end": 41934.2, + "probability": 0.9985 + }, + { + "start": 41934.2, + "end": 41937.58, + "probability": 0.9941 + }, + { + "start": 41938.02, + "end": 41938.54, + "probability": 0.5167 + }, + { + "start": 41939.02, + "end": 41939.64, + "probability": 0.665 + }, + { + "start": 41939.8, + "end": 41940.42, + "probability": 0.8705 + }, + { + "start": 41940.48, + "end": 41942.6, + "probability": 0.9293 + }, + { + "start": 41942.66, + "end": 41946.12, + "probability": 0.9728 + }, + { + "start": 41946.78, + "end": 41947.0, + "probability": 0.7857 + }, + { + "start": 41947.06, + "end": 41951.3, + "probability": 0.9897 + }, + { + "start": 41951.4, + "end": 41953.46, + "probability": 0.8983 + }, + { + "start": 41955.08, + "end": 41957.56, + "probability": 0.9517 + }, + { + "start": 41957.82, + "end": 41959.36, + "probability": 0.9932 + }, + { + "start": 41960.78, + "end": 41961.69, + "probability": 0.9932 + }, + { + "start": 41962.6, + "end": 41964.38, + "probability": 0.9741 + }, + { + "start": 41968.68, + "end": 41972.08, + "probability": 0.9889 + }, + { + "start": 41972.98, + "end": 41977.3, + "probability": 0.9907 + }, + { + "start": 41978.12, + "end": 41981.84, + "probability": 0.9958 + }, + { + "start": 41981.88, + "end": 41984.48, + "probability": 0.9751 + }, + { + "start": 41985.44, + "end": 41988.28, + "probability": 0.767 + }, + { + "start": 41988.82, + "end": 41989.54, + "probability": 0.7489 + }, + { + "start": 41990.8, + "end": 41992.76, + "probability": 0.9569 + }, + { + "start": 41992.9, + "end": 41995.74, + "probability": 0.8286 + }, + { + "start": 41996.4, + "end": 41998.01, + "probability": 0.9719 + }, + { + "start": 41998.34, + "end": 42002.25, + "probability": 0.9902 + }, + { + "start": 42002.64, + "end": 42006.12, + "probability": 0.9985 + }, + { + "start": 42006.2, + "end": 42008.02, + "probability": 0.999 + }, + { + "start": 42009.58, + "end": 42013.46, + "probability": 0.9985 + }, + { + "start": 42013.46, + "end": 42016.82, + "probability": 0.9989 + }, + { + "start": 42017.08, + "end": 42019.16, + "probability": 0.9247 + }, + { + "start": 42020.42, + "end": 42023.06, + "probability": 0.9996 + }, + { + "start": 42023.94, + "end": 42025.12, + "probability": 0.8025 + }, + { + "start": 42026.76, + "end": 42028.25, + "probability": 0.999 + }, + { + "start": 42030.62, + "end": 42032.8, + "probability": 0.978 + }, + { + "start": 42033.5, + "end": 42035.08, + "probability": 0.8575 + }, + { + "start": 42035.4, + "end": 42036.1, + "probability": 0.8211 + }, + { + "start": 42036.62, + "end": 42037.34, + "probability": 0.768 + }, + { + "start": 42038.84, + "end": 42039.54, + "probability": 0.8096 + }, + { + "start": 42040.78, + "end": 42041.1, + "probability": 0.8877 + }, + { + "start": 42042.74, + "end": 42043.28, + "probability": 0.9688 + }, + { + "start": 42044.04, + "end": 42045.82, + "probability": 0.9119 + }, + { + "start": 42046.7, + "end": 42048.02, + "probability": 0.8413 + }, + { + "start": 42048.02, + "end": 42052.18, + "probability": 0.9109 + }, + { + "start": 42053.22, + "end": 42053.22, + "probability": 0.3043 + }, + { + "start": 42053.22, + "end": 42054.09, + "probability": 0.9678 + }, + { + "start": 42054.4, + "end": 42055.56, + "probability": 0.8667 + }, + { + "start": 42056.4, + "end": 42056.96, + "probability": 0.7977 + }, + { + "start": 42057.02, + "end": 42058.08, + "probability": 0.9805 + }, + { + "start": 42058.48, + "end": 42058.66, + "probability": 0.871 + }, + { + "start": 42058.76, + "end": 42059.28, + "probability": 0.9792 + }, + { + "start": 42059.64, + "end": 42063.5, + "probability": 0.9772 + }, + { + "start": 42064.12, + "end": 42064.9, + "probability": 0.6572 + }, + { + "start": 42065.32, + "end": 42067.62, + "probability": 0.6609 + }, + { + "start": 42067.8, + "end": 42070.86, + "probability": 0.8727 + }, + { + "start": 42071.94, + "end": 42072.16, + "probability": 0.8146 + }, + { + "start": 42072.22, + "end": 42072.72, + "probability": 0.9093 + }, + { + "start": 42072.96, + "end": 42073.96, + "probability": 0.8076 + }, + { + "start": 42074.4, + "end": 42076.94, + "probability": 0.9855 + }, + { + "start": 42077.0, + "end": 42077.32, + "probability": 0.4678 + }, + { + "start": 42077.36, + "end": 42077.64, + "probability": 0.7548 + }, + { + "start": 42078.26, + "end": 42079.94, + "probability": 0.6592 + }, + { + "start": 42079.98, + "end": 42082.68, + "probability": 0.988 + }, + { + "start": 42082.76, + "end": 42084.76, + "probability": 0.9591 + }, + { + "start": 42084.88, + "end": 42087.66, + "probability": 0.8638 + }, + { + "start": 42088.21, + "end": 42091.26, + "probability": 0.8909 + }, + { + "start": 42091.26, + "end": 42093.74, + "probability": 0.7581 + }, + { + "start": 42093.78, + "end": 42094.5, + "probability": 0.6833 + }, + { + "start": 42095.14, + "end": 42097.56, + "probability": 0.7493 + }, + { + "start": 42098.0, + "end": 42101.14, + "probability": 0.8856 + }, + { + "start": 42101.92, + "end": 42105.44, + "probability": 0.7333 + }, + { + "start": 42108.98, + "end": 42113.54, + "probability": 0.7398 + }, + { + "start": 42114.44, + "end": 42118.4, + "probability": 0.9623 + }, + { + "start": 42119.4, + "end": 42122.22, + "probability": 0.9919 + }, + { + "start": 42123.96, + "end": 42127.76, + "probability": 0.9709 + }, + { + "start": 42128.48, + "end": 42130.72, + "probability": 0.9061 + }, + { + "start": 42130.78, + "end": 42131.38, + "probability": 0.6426 + }, + { + "start": 42131.42, + "end": 42132.32, + "probability": 0.6596 + }, + { + "start": 42132.4, + "end": 42134.02, + "probability": 0.9916 + }, + { + "start": 42134.5, + "end": 42140.9, + "probability": 0.8879 + }, + { + "start": 42141.14, + "end": 42143.32, + "probability": 0.4157 + }, + { + "start": 42143.54, + "end": 42143.68, + "probability": 0.7319 + }, + { + "start": 42143.68, + "end": 42143.8, + "probability": 0.5869 + }, + { + "start": 42144.54, + "end": 42144.98, + "probability": 0.754 + }, + { + "start": 42145.08, + "end": 42148.78, + "probability": 0.9984 + }, + { + "start": 42149.26, + "end": 42153.22, + "probability": 0.9701 + }, + { + "start": 42153.74, + "end": 42158.42, + "probability": 0.9717 + }, + { + "start": 42158.84, + "end": 42161.04, + "probability": 0.8727 + }, + { + "start": 42161.58, + "end": 42163.62, + "probability": 0.9777 + }, + { + "start": 42164.34, + "end": 42165.92, + "probability": 0.8922 + }, + { + "start": 42166.08, + "end": 42170.02, + "probability": 0.994 + }, + { + "start": 42170.08, + "end": 42172.88, + "probability": 0.9922 + }, + { + "start": 42173.5, + "end": 42174.46, + "probability": 0.7974 + }, + { + "start": 42174.58, + "end": 42175.58, + "probability": 0.6963 + }, + { + "start": 42176.66, + "end": 42180.48, + "probability": 0.9937 + }, + { + "start": 42181.74, + "end": 42184.56, + "probability": 0.7666 + }, + { + "start": 42184.64, + "end": 42186.74, + "probability": 0.6152 + }, + { + "start": 42186.96, + "end": 42189.66, + "probability": 0.5566 + }, + { + "start": 42191.21, + "end": 42195.82, + "probability": 0.9691 + }, + { + "start": 42196.12, + "end": 42197.1, + "probability": 0.6655 + }, + { + "start": 42197.98, + "end": 42201.12, + "probability": 0.998 + }, + { + "start": 42201.4, + "end": 42203.46, + "probability": 0.7971 + }, + { + "start": 42203.62, + "end": 42209.75, + "probability": 0.9927 + }, + { + "start": 42209.84, + "end": 42214.62, + "probability": 0.9324 + }, + { + "start": 42214.94, + "end": 42215.71, + "probability": 0.9648 + }, + { + "start": 42215.94, + "end": 42216.7, + "probability": 0.7573 + }, + { + "start": 42216.72, + "end": 42219.7, + "probability": 0.9868 + }, + { + "start": 42220.18, + "end": 42220.76, + "probability": 0.6418 + }, + { + "start": 42221.48, + "end": 42223.42, + "probability": 0.9583 + }, + { + "start": 42225.54, + "end": 42227.2, + "probability": 0.8167 + }, + { + "start": 42242.8, + "end": 42243.42, + "probability": 0.678 + }, + { + "start": 42244.7, + "end": 42247.06, + "probability": 0.5451 + }, + { + "start": 42249.3, + "end": 42251.28, + "probability": 0.9646 + }, + { + "start": 42254.14, + "end": 42256.32, + "probability": 0.9981 + }, + { + "start": 42257.7, + "end": 42258.06, + "probability": 0.2939 + }, + { + "start": 42258.82, + "end": 42261.14, + "probability": 0.8826 + }, + { + "start": 42262.1, + "end": 42264.82, + "probability": 0.9661 + }, + { + "start": 42264.82, + "end": 42268.58, + "probability": 0.9274 + }, + { + "start": 42269.6, + "end": 42276.9, + "probability": 0.9893 + }, + { + "start": 42276.9, + "end": 42280.44, + "probability": 0.9976 + }, + { + "start": 42281.62, + "end": 42282.98, + "probability": 0.864 + }, + { + "start": 42283.56, + "end": 42285.26, + "probability": 0.9948 + }, + { + "start": 42286.04, + "end": 42290.02, + "probability": 0.9989 + }, + { + "start": 42290.9, + "end": 42295.02, + "probability": 0.9899 + }, + { + "start": 42296.49, + "end": 42299.7, + "probability": 0.9863 + }, + { + "start": 42300.42, + "end": 42301.34, + "probability": 0.7916 + }, + { + "start": 42302.46, + "end": 42303.04, + "probability": 0.561 + }, + { + "start": 42303.1, + "end": 42304.96, + "probability": 0.9941 + }, + { + "start": 42306.18, + "end": 42309.02, + "probability": 0.9529 + }, + { + "start": 42311.24, + "end": 42316.18, + "probability": 0.9877 + }, + { + "start": 42316.18, + "end": 42320.14, + "probability": 0.9985 + }, + { + "start": 42320.76, + "end": 42321.78, + "probability": 0.5812 + }, + { + "start": 42322.76, + "end": 42324.62, + "probability": 0.7852 + }, + { + "start": 42325.44, + "end": 42327.44, + "probability": 0.6964 + }, + { + "start": 42328.0, + "end": 42329.9, + "probability": 0.9753 + }, + { + "start": 42330.22, + "end": 42330.72, + "probability": 0.974 + }, + { + "start": 42331.1, + "end": 42331.24, + "probability": 0.9267 + }, + { + "start": 42332.44, + "end": 42333.84, + "probability": 0.8182 + }, + { + "start": 42333.92, + "end": 42335.24, + "probability": 0.6849 + }, + { + "start": 42335.98, + "end": 42336.9, + "probability": 0.3535 + }, + { + "start": 42336.9, + "end": 42337.86, + "probability": 0.8023 + }, + { + "start": 42337.98, + "end": 42339.14, + "probability": 0.7662 + }, + { + "start": 42339.96, + "end": 42345.16, + "probability": 0.8524 + }, + { + "start": 42345.22, + "end": 42346.96, + "probability": 0.9673 + }, + { + "start": 42348.7, + "end": 42351.52, + "probability": 0.94 + }, + { + "start": 42352.34, + "end": 42356.78, + "probability": 0.9954 + }, + { + "start": 42357.24, + "end": 42360.38, + "probability": 0.9935 + }, + { + "start": 42362.24, + "end": 42362.8, + "probability": 0.9301 + }, + { + "start": 42363.54, + "end": 42366.54, + "probability": 0.7557 + }, + { + "start": 42367.08, + "end": 42368.8, + "probability": 0.9922 + }, + { + "start": 42371.14, + "end": 42374.06, + "probability": 0.8742 + }, + { + "start": 42376.14, + "end": 42377.58, + "probability": 0.957 + }, + { + "start": 42377.72, + "end": 42378.9, + "probability": 0.9743 + }, + { + "start": 42378.98, + "end": 42384.28, + "probability": 0.9938 + }, + { + "start": 42384.28, + "end": 42388.9, + "probability": 0.9966 + }, + { + "start": 42389.92, + "end": 42390.4, + "probability": 0.3692 + }, + { + "start": 42390.52, + "end": 42391.04, + "probability": 0.5593 + }, + { + "start": 42391.36, + "end": 42393.9, + "probability": 0.9797 + }, + { + "start": 42394.46, + "end": 42396.54, + "probability": 0.9609 + }, + { + "start": 42397.54, + "end": 42400.52, + "probability": 0.9909 + }, + { + "start": 42401.26, + "end": 42406.68, + "probability": 0.9799 + }, + { + "start": 42409.3, + "end": 42410.52, + "probability": 0.6836 + }, + { + "start": 42411.64, + "end": 42414.3, + "probability": 0.9903 + }, + { + "start": 42414.86, + "end": 42416.72, + "probability": 0.9239 + }, + { + "start": 42417.64, + "end": 42423.06, + "probability": 0.9514 + }, + { + "start": 42423.06, + "end": 42429.28, + "probability": 0.9979 + }, + { + "start": 42429.9, + "end": 42432.2, + "probability": 0.997 + }, + { + "start": 42433.04, + "end": 42436.54, + "probability": 0.8248 + }, + { + "start": 42437.5, + "end": 42438.75, + "probability": 0.7731 + }, + { + "start": 42439.36, + "end": 42441.84, + "probability": 0.8786 + }, + { + "start": 42443.04, + "end": 42446.64, + "probability": 0.9236 + }, + { + "start": 42446.64, + "end": 42449.74, + "probability": 0.9799 + }, + { + "start": 42449.84, + "end": 42450.94, + "probability": 0.6 + }, + { + "start": 42451.2, + "end": 42451.74, + "probability": 0.8709 + }, + { + "start": 42451.88, + "end": 42453.78, + "probability": 0.8774 + }, + { + "start": 42454.38, + "end": 42455.0, + "probability": 0.6432 + }, + { + "start": 42455.32, + "end": 42455.84, + "probability": 0.5448 + }, + { + "start": 42456.5, + "end": 42456.56, + "probability": 0.7256 + }, + { + "start": 42456.78, + "end": 42459.8, + "probability": 0.9795 + }, + { + "start": 42460.18, + "end": 42461.8, + "probability": 0.8184 + }, + { + "start": 42461.94, + "end": 42462.38, + "probability": 0.9417 + }, + { + "start": 42464.48, + "end": 42469.22, + "probability": 0.9651 + }, + { + "start": 42470.08, + "end": 42473.02, + "probability": 0.592 + }, + { + "start": 42473.9, + "end": 42475.2, + "probability": 0.9431 + }, + { + "start": 42475.34, + "end": 42480.62, + "probability": 0.9739 + }, + { + "start": 42480.62, + "end": 42484.98, + "probability": 0.924 + }, + { + "start": 42486.32, + "end": 42487.84, + "probability": 0.6946 + }, + { + "start": 42489.26, + "end": 42491.86, + "probability": 0.9259 + }, + { + "start": 42493.14, + "end": 42495.34, + "probability": 0.9846 + }, + { + "start": 42495.58, + "end": 42496.18, + "probability": 0.8104 + }, + { + "start": 42496.36, + "end": 42497.24, + "probability": 0.9794 + }, + { + "start": 42497.42, + "end": 42498.02, + "probability": 0.8526 + }, + { + "start": 42498.2, + "end": 42498.42, + "probability": 0.4399 + }, + { + "start": 42498.98, + "end": 42501.14, + "probability": 0.8314 + }, + { + "start": 42501.34, + "end": 42502.4, + "probability": 0.8011 + }, + { + "start": 42502.98, + "end": 42503.74, + "probability": 0.4908 + }, + { + "start": 42503.86, + "end": 42505.5, + "probability": 0.9205 + }, + { + "start": 42505.62, + "end": 42507.0, + "probability": 0.7939 + }, + { + "start": 42507.14, + "end": 42507.94, + "probability": 0.9058 + }, + { + "start": 42508.26, + "end": 42510.02, + "probability": 0.7162 + }, + { + "start": 42510.54, + "end": 42514.66, + "probability": 0.8287 + }, + { + "start": 42516.0, + "end": 42519.24, + "probability": 0.8253 + }, + { + "start": 42519.3, + "end": 42523.9, + "probability": 0.9844 + }, + { + "start": 42524.28, + "end": 42524.38, + "probability": 0.2058 + }, + { + "start": 42525.62, + "end": 42531.38, + "probability": 0.9925 + }, + { + "start": 42532.16, + "end": 42533.12, + "probability": 0.8567 + }, + { + "start": 42533.96, + "end": 42535.62, + "probability": 0.9924 + }, + { + "start": 42535.82, + "end": 42537.52, + "probability": 0.998 + }, + { + "start": 42538.74, + "end": 42542.82, + "probability": 0.9928 + }, + { + "start": 42543.6, + "end": 42549.52, + "probability": 0.9773 + }, + { + "start": 42549.55, + "end": 42554.06, + "probability": 0.9609 + }, + { + "start": 42554.3, + "end": 42555.76, + "probability": 0.859 + }, + { + "start": 42557.1, + "end": 42560.16, + "probability": 0.9951 + }, + { + "start": 42560.16, + "end": 42563.8, + "probability": 0.7595 + }, + { + "start": 42564.92, + "end": 42568.36, + "probability": 0.9403 + }, + { + "start": 42568.46, + "end": 42569.1, + "probability": 0.7844 + }, + { + "start": 42569.62, + "end": 42570.36, + "probability": 0.7515 + }, + { + "start": 42570.46, + "end": 42575.06, + "probability": 0.8809 + }, + { + "start": 42576.72, + "end": 42580.4, + "probability": 0.9483 + }, + { + "start": 42580.6, + "end": 42582.04, + "probability": 0.0802 + }, + { + "start": 42582.04, + "end": 42582.58, + "probability": 0.0528 + }, + { + "start": 42582.88, + "end": 42585.52, + "probability": 0.9658 + }, + { + "start": 42585.56, + "end": 42586.2, + "probability": 0.8315 + }, + { + "start": 42586.72, + "end": 42590.28, + "probability": 0.9488 + }, + { + "start": 42592.3, + "end": 42594.56, + "probability": 0.9054 + }, + { + "start": 42594.7, + "end": 42595.24, + "probability": 0.6682 + }, + { + "start": 42595.42, + "end": 42596.46, + "probability": 0.6264 + }, + { + "start": 42596.6, + "end": 42598.46, + "probability": 0.9905 + }, + { + "start": 42599.96, + "end": 42600.44, + "probability": 0.3642 + }, + { + "start": 42600.78, + "end": 42608.5, + "probability": 0.969 + }, + { + "start": 42608.5, + "end": 42613.96, + "probability": 0.9882 + }, + { + "start": 42614.68, + "end": 42618.0, + "probability": 0.9899 + }, + { + "start": 42619.3, + "end": 42620.4, + "probability": 0.7022 + }, + { + "start": 42620.56, + "end": 42622.62, + "probability": 0.2004 + }, + { + "start": 42623.1, + "end": 42624.38, + "probability": 0.7988 + }, + { + "start": 42624.52, + "end": 42626.84, + "probability": 0.9249 + }, + { + "start": 42627.56, + "end": 42629.76, + "probability": 0.8743 + }, + { + "start": 42629.8, + "end": 42631.32, + "probability": 0.6575 + }, + { + "start": 42631.94, + "end": 42632.76, + "probability": 0.4026 + }, + { + "start": 42633.14, + "end": 42642.08, + "probability": 0.9499 + }, + { + "start": 42642.08, + "end": 42647.58, + "probability": 0.8854 + }, + { + "start": 42647.66, + "end": 42652.12, + "probability": 0.9956 + }, + { + "start": 42653.64, + "end": 42654.04, + "probability": 0.6906 + }, + { + "start": 42655.48, + "end": 42658.44, + "probability": 0.8695 + }, + { + "start": 42660.02, + "end": 42664.84, + "probability": 0.8417 + }, + { + "start": 42665.18, + "end": 42666.48, + "probability": 0.9568 + }, + { + "start": 42666.94, + "end": 42670.06, + "probability": 0.6599 + }, + { + "start": 42670.86, + "end": 42673.32, + "probability": 0.9956 + }, + { + "start": 42674.94, + "end": 42678.34, + "probability": 0.975 + }, + { + "start": 42679.2, + "end": 42680.04, + "probability": 0.7232 + }, + { + "start": 42682.0, + "end": 42683.76, + "probability": 0.9875 + }, + { + "start": 42683.86, + "end": 42685.18, + "probability": 0.7114 + }, + { + "start": 42685.5, + "end": 42687.26, + "probability": 0.9824 + }, + { + "start": 42688.18, + "end": 42692.42, + "probability": 0.9868 + }, + { + "start": 42693.08, + "end": 42695.56, + "probability": 0.9761 + }, + { + "start": 42695.76, + "end": 42698.74, + "probability": 0.9659 + }, + { + "start": 42699.66, + "end": 42703.15, + "probability": 0.9976 + }, + { + "start": 42705.6, + "end": 42707.34, + "probability": 0.1676 + }, + { + "start": 42708.26, + "end": 42711.28, + "probability": 0.9482 + }, + { + "start": 42711.4, + "end": 42712.12, + "probability": 0.4563 + }, + { + "start": 42712.24, + "end": 42713.62, + "probability": 0.7994 + }, + { + "start": 42715.02, + "end": 42716.72, + "probability": 0.9224 + }, + { + "start": 42716.72, + "end": 42717.3, + "probability": 0.8752 + }, + { + "start": 42717.36, + "end": 42717.62, + "probability": 0.9197 + }, + { + "start": 42718.6, + "end": 42722.22, + "probability": 0.9222 + }, + { + "start": 42722.36, + "end": 42724.9, + "probability": 0.9732 + }, + { + "start": 42725.0, + "end": 42725.5, + "probability": 0.4987 + }, + { + "start": 42725.64, + "end": 42726.66, + "probability": 0.7774 + }, + { + "start": 42727.3, + "end": 42727.78, + "probability": 0.877 + }, + { + "start": 42727.86, + "end": 42730.22, + "probability": 0.9608 + }, + { + "start": 42730.24, + "end": 42733.96, + "probability": 0.9368 + }, + { + "start": 42734.12, + "end": 42735.3, + "probability": 0.8364 + }, + { + "start": 42735.42, + "end": 42736.98, + "probability": 0.7998 + }, + { + "start": 42737.04, + "end": 42739.56, + "probability": 0.939 + }, + { + "start": 42740.18, + "end": 42742.28, + "probability": 0.9894 + }, + { + "start": 42743.2, + "end": 42745.96, + "probability": 0.9932 + }, + { + "start": 42749.56, + "end": 42753.4, + "probability": 0.7812 + }, + { + "start": 42753.92, + "end": 42756.56, + "probability": 0.9574 + }, + { + "start": 42759.08, + "end": 42762.34, + "probability": 0.8233 + }, + { + "start": 42762.58, + "end": 42763.42, + "probability": 0.8173 + }, + { + "start": 42763.44, + "end": 42768.08, + "probability": 0.9893 + }, + { + "start": 42769.04, + "end": 42774.6, + "probability": 0.9895 + }, + { + "start": 42774.64, + "end": 42782.5, + "probability": 0.9512 + }, + { + "start": 42782.62, + "end": 42783.4, + "probability": 0.3943 + }, + { + "start": 42784.16, + "end": 42784.66, + "probability": 0.8828 + }, + { + "start": 42785.76, + "end": 42788.28, + "probability": 0.924 + }, + { + "start": 42789.06, + "end": 42791.08, + "probability": 0.9955 + }, + { + "start": 42791.5, + "end": 42797.44, + "probability": 0.9856 + }, + { + "start": 42799.24, + "end": 42803.14, + "probability": 0.8577 + }, + { + "start": 42803.26, + "end": 42804.75, + "probability": 0.64 + }, + { + "start": 42805.63, + "end": 42810.34, + "probability": 0.9941 + }, + { + "start": 42811.0, + "end": 42813.28, + "probability": 0.9694 + }, + { + "start": 42813.38, + "end": 42815.62, + "probability": 0.9936 + }, + { + "start": 42816.2, + "end": 42821.98, + "probability": 0.9624 + }, + { + "start": 42824.8, + "end": 42826.64, + "probability": 0.8699 + }, + { + "start": 42826.88, + "end": 42828.96, + "probability": 0.802 + }, + { + "start": 42829.04, + "end": 42830.2, + "probability": 0.9524 + }, + { + "start": 42831.4, + "end": 42832.88, + "probability": 0.293 + }, + { + "start": 42833.36, + "end": 42836.36, + "probability": 0.7922 + }, + { + "start": 42836.76, + "end": 42836.92, + "probability": 0.4508 + }, + { + "start": 42837.06, + "end": 42840.64, + "probability": 0.7925 + }, + { + "start": 42841.24, + "end": 42843.92, + "probability": 0.8502 + }, + { + "start": 42845.1, + "end": 42846.96, + "probability": 0.6836 + }, + { + "start": 42847.7, + "end": 42848.6, + "probability": 0.0151 + }, + { + "start": 42848.68, + "end": 42855.4, + "probability": 0.94 + }, + { + "start": 42855.84, + "end": 42856.47, + "probability": 0.8777 + }, + { + "start": 42857.12, + "end": 42857.86, + "probability": 0.6609 + }, + { + "start": 42857.92, + "end": 42859.54, + "probability": 0.9427 + }, + { + "start": 42860.88, + "end": 42860.98, + "probability": 0.1883 + }, + { + "start": 42860.98, + "end": 42862.7, + "probability": 0.9169 + }, + { + "start": 42863.06, + "end": 42864.4, + "probability": 0.8958 + }, + { + "start": 42864.98, + "end": 42865.46, + "probability": 0.8599 + }, + { + "start": 42865.52, + "end": 42866.36, + "probability": 0.8114 + }, + { + "start": 42866.42, + "end": 42869.68, + "probability": 0.9888 + }, + { + "start": 42869.68, + "end": 42876.04, + "probability": 0.7127 + }, + { + "start": 42876.22, + "end": 42879.22, + "probability": 0.9735 + }, + { + "start": 42879.22, + "end": 42882.68, + "probability": 0.9589 + }, + { + "start": 42883.24, + "end": 42888.02, + "probability": 0.9937 + }, + { + "start": 42888.68, + "end": 42889.62, + "probability": 0.5752 + }, + { + "start": 42890.6, + "end": 42893.26, + "probability": 0.9387 + }, + { + "start": 42894.88, + "end": 42900.46, + "probability": 0.9712 + }, + { + "start": 42901.46, + "end": 42903.86, + "probability": 0.8924 + }, + { + "start": 42904.94, + "end": 42908.54, + "probability": 0.9396 + }, + { + "start": 42908.54, + "end": 42912.46, + "probability": 0.868 + }, + { + "start": 42913.28, + "end": 42914.52, + "probability": 0.9586 + }, + { + "start": 42915.22, + "end": 42917.64, + "probability": 0.792 + }, + { + "start": 42917.9, + "end": 42920.04, + "probability": 0.9861 + }, + { + "start": 42920.56, + "end": 42923.3, + "probability": 0.908 + }, + { + "start": 42923.86, + "end": 42926.57, + "probability": 0.97 + }, + { + "start": 42926.84, + "end": 42930.54, + "probability": 0.791 + }, + { + "start": 42931.36, + "end": 42935.14, + "probability": 0.9706 + }, + { + "start": 42935.92, + "end": 42937.52, + "probability": 0.9228 + }, + { + "start": 42937.9, + "end": 42941.64, + "probability": 0.9236 + }, + { + "start": 42942.44, + "end": 42948.48, + "probability": 0.983 + }, + { + "start": 42949.12, + "end": 42954.26, + "probability": 0.9986 + }, + { + "start": 42955.82, + "end": 42959.64, + "probability": 0.9855 + }, + { + "start": 42960.14, + "end": 42963.36, + "probability": 0.9974 + }, + { + "start": 42963.96, + "end": 42969.14, + "probability": 0.9707 + }, + { + "start": 42969.7, + "end": 42971.2, + "probability": 0.5486 + }, + { + "start": 42971.92, + "end": 42977.62, + "probability": 0.9674 + }, + { + "start": 42977.84, + "end": 42982.38, + "probability": 0.9663 + }, + { + "start": 42982.52, + "end": 42983.76, + "probability": 0.687 + }, + { + "start": 42984.24, + "end": 42987.36, + "probability": 0.8684 + }, + { + "start": 42987.38, + "end": 42988.64, + "probability": 0.6122 + }, + { + "start": 42990.0, + "end": 42991.76, + "probability": 0.4683 + }, + { + "start": 42991.76, + "end": 42995.78, + "probability": 0.9655 + }, + { + "start": 42996.9, + "end": 42998.94, + "probability": 0.5603 + }, + { + "start": 42999.92, + "end": 43000.49, + "probability": 0.7134 + }, + { + "start": 43001.06, + "end": 43002.58, + "probability": 0.9844 + }, + { + "start": 43003.14, + "end": 43005.78, + "probability": 0.9333 + }, + { + "start": 43006.76, + "end": 43011.24, + "probability": 0.9653 + }, + { + "start": 43011.76, + "end": 43012.54, + "probability": 0.9404 + }, + { + "start": 43013.12, + "end": 43016.1, + "probability": 0.9858 + }, + { + "start": 43016.8, + "end": 43017.74, + "probability": 0.9207 + }, + { + "start": 43017.8, + "end": 43020.32, + "probability": 0.8907 + }, + { + "start": 43020.46, + "end": 43022.16, + "probability": 0.7061 + }, + { + "start": 43022.28, + "end": 43026.88, + "probability": 0.9805 + }, + { + "start": 43028.0, + "end": 43029.4, + "probability": 0.823 + }, + { + "start": 43030.06, + "end": 43033.98, + "probability": 0.9716 + }, + { + "start": 43035.38, + "end": 43036.58, + "probability": 0.8442 + }, + { + "start": 43038.0, + "end": 43040.74, + "probability": 0.8867 + }, + { + "start": 43040.8, + "end": 43042.96, + "probability": 0.7312 + }, + { + "start": 43044.42, + "end": 43051.06, + "probability": 0.9961 + }, + { + "start": 43052.22, + "end": 43054.7, + "probability": 0.7931 + }, + { + "start": 43057.78, + "end": 43061.82, + "probability": 0.8461 + }, + { + "start": 43065.78, + "end": 43070.04, + "probability": 0.9353 + }, + { + "start": 43070.04, + "end": 43074.36, + "probability": 0.9975 + }, + { + "start": 43075.6, + "end": 43076.78, + "probability": 0.8178 + }, + { + "start": 43076.84, + "end": 43077.36, + "probability": 0.6375 + }, + { + "start": 43077.46, + "end": 43077.83, + "probability": 0.5036 + }, + { + "start": 43078.47, + "end": 43081.68, + "probability": 0.5528 + }, + { + "start": 43082.16, + "end": 43082.94, + "probability": 0.7722 + }, + { + "start": 43083.42, + "end": 43087.2, + "probability": 0.9937 + }, + { + "start": 43087.76, + "end": 43090.5, + "probability": 0.9964 + }, + { + "start": 43091.1, + "end": 43093.22, + "probability": 0.6675 + }, + { + "start": 43094.22, + "end": 43095.3, + "probability": 0.773 + }, + { + "start": 43095.42, + "end": 43095.82, + "probability": 0.96 + }, + { + "start": 43095.94, + "end": 43098.14, + "probability": 0.893 + }, + { + "start": 43098.88, + "end": 43101.6, + "probability": 0.5888 + }, + { + "start": 43103.42, + "end": 43103.42, + "probability": 0.0723 + }, + { + "start": 43103.42, + "end": 43103.42, + "probability": 0.1068 + }, + { + "start": 43103.44, + "end": 43107.4, + "probability": 0.748 + }, + { + "start": 43107.5, + "end": 43108.64, + "probability": 0.7852 + }, + { + "start": 43110.42, + "end": 43113.2, + "probability": 0.5406 + }, + { + "start": 43113.52, + "end": 43114.71, + "probability": 0.855 + }, + { + "start": 43116.38, + "end": 43117.43, + "probability": 0.4392 + }, + { + "start": 43118.16, + "end": 43120.26, + "probability": 0.708 + }, + { + "start": 43120.66, + "end": 43122.26, + "probability": 0.7358 + }, + { + "start": 43122.44, + "end": 43123.72, + "probability": 0.6114 + }, + { + "start": 43123.94, + "end": 43124.92, + "probability": 0.6864 + }, + { + "start": 43125.0, + "end": 43128.46, + "probability": 0.9795 + }, + { + "start": 43136.04, + "end": 43136.36, + "probability": 0.091 + }, + { + "start": 43136.36, + "end": 43136.36, + "probability": 0.0362 + }, + { + "start": 43136.36, + "end": 43136.64, + "probability": 0.5889 + }, + { + "start": 43136.84, + "end": 43140.24, + "probability": 0.9995 + }, + { + "start": 43140.24, + "end": 43144.54, + "probability": 0.9974 + }, + { + "start": 43145.1, + "end": 43148.03, + "probability": 0.9369 + }, + { + "start": 43148.89, + "end": 43150.91, + "probability": 0.9958 + }, + { + "start": 43151.64, + "end": 43152.3, + "probability": 0.7582 + }, + { + "start": 43153.36, + "end": 43154.38, + "probability": 0.7563 + }, + { + "start": 43154.46, + "end": 43154.87, + "probability": 0.9823 + }, + { + "start": 43155.2, + "end": 43160.23, + "probability": 0.9299 + }, + { + "start": 43162.56, + "end": 43164.58, + "probability": 0.9899 + }, + { + "start": 43166.0, + "end": 43166.0, + "probability": 0.1952 + }, + { + "start": 43166.0, + "end": 43170.44, + "probability": 0.9587 + }, + { + "start": 43170.5, + "end": 43172.95, + "probability": 0.9928 + }, + { + "start": 43173.54, + "end": 43176.66, + "probability": 0.8093 + }, + { + "start": 43177.26, + "end": 43178.84, + "probability": 0.6881 + }, + { + "start": 43179.44, + "end": 43183.56, + "probability": 0.901 + }, + { + "start": 43184.3, + "end": 43185.24, + "probability": 0.9427 + }, + { + "start": 43185.68, + "end": 43186.42, + "probability": 0.9631 + }, + { + "start": 43187.1, + "end": 43189.22, + "probability": 0.905 + }, + { + "start": 43189.76, + "end": 43189.9, + "probability": 0.7079 + }, + { + "start": 43190.0, + "end": 43191.26, + "probability": 0.9684 + }, + { + "start": 43191.4, + "end": 43192.16, + "probability": 0.9332 + }, + { + "start": 43192.36, + "end": 43193.08, + "probability": 0.8386 + }, + { + "start": 43193.46, + "end": 43196.38, + "probability": 0.9897 + }, + { + "start": 43197.16, + "end": 43197.94, + "probability": 0.5016 + }, + { + "start": 43198.52, + "end": 43202.48, + "probability": 0.717 + }, + { + "start": 43202.58, + "end": 43204.08, + "probability": 0.9583 + }, + { + "start": 43204.16, + "end": 43204.44, + "probability": 0.7407 + }, + { + "start": 43204.58, + "end": 43205.68, + "probability": 0.9973 + }, + { + "start": 43206.22, + "end": 43207.06, + "probability": 0.8494 + }, + { + "start": 43207.22, + "end": 43207.52, + "probability": 0.5012 + }, + { + "start": 43208.18, + "end": 43212.94, + "probability": 0.8126 + }, + { + "start": 43213.14, + "end": 43216.84, + "probability": 0.9385 + }, + { + "start": 43217.54, + "end": 43218.94, + "probability": 0.9805 + }, + { + "start": 43219.6, + "end": 43226.9, + "probability": 0.9545 + }, + { + "start": 43227.62, + "end": 43231.62, + "probability": 0.973 + }, + { + "start": 43231.74, + "end": 43232.26, + "probability": 0.4605 + }, + { + "start": 43233.82, + "end": 43235.92, + "probability": 0.7495 + }, + { + "start": 43236.76, + "end": 43239.28, + "probability": 0.95 + }, + { + "start": 43240.06, + "end": 43243.12, + "probability": 0.6848 + }, + { + "start": 43244.16, + "end": 43248.44, + "probability": 0.9832 + }, + { + "start": 43249.64, + "end": 43251.66, + "probability": 0.9939 + }, + { + "start": 43257.94, + "end": 43265.06, + "probability": 0.9972 + }, + { + "start": 43265.06, + "end": 43270.1, + "probability": 0.9986 + }, + { + "start": 43271.24, + "end": 43273.66, + "probability": 0.9846 + }, + { + "start": 43281.56, + "end": 43282.26, + "probability": 0.7897 + }, + { + "start": 43282.78, + "end": 43283.88, + "probability": 0.9014 + }, + { + "start": 43285.06, + "end": 43285.74, + "probability": 0.5001 + }, + { + "start": 43286.42, + "end": 43289.3, + "probability": 0.994 + }, + { + "start": 43289.3, + "end": 43292.58, + "probability": 0.9801 + }, + { + "start": 43293.1, + "end": 43294.96, + "probability": 0.6662 + }, + { + "start": 43295.86, + "end": 43298.96, + "probability": 0.9929 + }, + { + "start": 43299.52, + "end": 43305.18, + "probability": 0.9687 + }, + { + "start": 43305.98, + "end": 43309.6, + "probability": 0.9038 + }, + { + "start": 43310.32, + "end": 43311.54, + "probability": 0.9666 + }, + { + "start": 43312.6, + "end": 43315.52, + "probability": 0.8135 + }, + { + "start": 43316.7, + "end": 43317.26, + "probability": 0.6568 + }, + { + "start": 43318.08, + "end": 43325.44, + "probability": 0.8791 + }, + { + "start": 43325.86, + "end": 43327.22, + "probability": 0.012 + }, + { + "start": 43327.22, + "end": 43328.18, + "probability": 0.8245 + }, + { + "start": 43328.3, + "end": 43329.32, + "probability": 0.8443 + }, + { + "start": 43329.4, + "end": 43330.52, + "probability": 0.9512 + }, + { + "start": 43331.22, + "end": 43332.64, + "probability": 0.9351 + }, + { + "start": 43332.66, + "end": 43333.78, + "probability": 0.8851 + }, + { + "start": 43333.88, + "end": 43334.98, + "probability": 0.7661 + }, + { + "start": 43335.12, + "end": 43336.36, + "probability": 0.9739 + }, + { + "start": 43336.84, + "end": 43337.74, + "probability": 0.977 + }, + { + "start": 43338.44, + "end": 43340.12, + "probability": 0.8993 + }, + { + "start": 43340.16, + "end": 43340.76, + "probability": 0.6318 + }, + { + "start": 43341.0, + "end": 43341.34, + "probability": 0.9819 + }, + { + "start": 43341.36, + "end": 43342.54, + "probability": 0.9065 + }, + { + "start": 43343.0, + "end": 43344.12, + "probability": 0.9655 + }, + { + "start": 43344.38, + "end": 43345.44, + "probability": 0.4116 + }, + { + "start": 43348.08, + "end": 43351.72, + "probability": 0.7903 + }, + { + "start": 43352.22, + "end": 43353.64, + "probability": 0.8869 + }, + { + "start": 43354.14, + "end": 43355.5, + "probability": 0.6802 + }, + { + "start": 43356.08, + "end": 43361.68, + "probability": 0.9941 + }, + { + "start": 43362.34, + "end": 43367.34, + "probability": 0.8324 + }, + { + "start": 43367.94, + "end": 43375.48, + "probability": 0.9618 + }, + { + "start": 43376.9, + "end": 43378.72, + "probability": 0.7706 + }, + { + "start": 43379.38, + "end": 43384.08, + "probability": 0.9937 + }, + { + "start": 43384.3, + "end": 43386.28, + "probability": 0.7532 + }, + { + "start": 43386.78, + "end": 43390.16, + "probability": 0.9039 + }, + { + "start": 43390.86, + "end": 43394.3, + "probability": 0.989 + }, + { + "start": 43395.14, + "end": 43397.88, + "probability": 0.8583 + }, + { + "start": 43398.32, + "end": 43399.46, + "probability": 0.9248 + }, + { + "start": 43399.58, + "end": 43400.96, + "probability": 0.9796 + }, + { + "start": 43401.16, + "end": 43402.4, + "probability": 0.9292 + }, + { + "start": 43403.1, + "end": 43403.66, + "probability": 0.8455 + }, + { + "start": 43404.74, + "end": 43406.28, + "probability": 0.9128 + }, + { + "start": 43407.0, + "end": 43409.74, + "probability": 0.9325 + }, + { + "start": 43410.3, + "end": 43410.98, + "probability": 0.9307 + }, + { + "start": 43411.36, + "end": 43413.4, + "probability": 0.9976 + }, + { + "start": 43413.74, + "end": 43415.1, + "probability": 0.8712 + }, + { + "start": 43415.72, + "end": 43415.92, + "probability": 0.9136 + }, + { + "start": 43416.94, + "end": 43420.6, + "probability": 0.9095 + }, + { + "start": 43421.32, + "end": 43424.18, + "probability": 0.9971 + }, + { + "start": 43424.28, + "end": 43425.12, + "probability": 0.7471 + }, + { + "start": 43425.2, + "end": 43426.1, + "probability": 0.9743 + }, + { + "start": 43426.82, + "end": 43431.54, + "probability": 0.6656 + }, + { + "start": 43433.18, + "end": 43437.96, + "probability": 0.5191 + }, + { + "start": 43438.96, + "end": 43441.36, + "probability": 0.9573 + }, + { + "start": 43442.2, + "end": 43446.3, + "probability": 0.8018 + }, + { + "start": 43446.58, + "end": 43450.92, + "probability": 0.981 + }, + { + "start": 43451.56, + "end": 43456.74, + "probability": 0.9418 + }, + { + "start": 43456.74, + "end": 43460.02, + "probability": 0.9676 + }, + { + "start": 43460.1, + "end": 43460.84, + "probability": 0.6227 + }, + { + "start": 43460.96, + "end": 43462.66, + "probability": 0.9449 + }, + { + "start": 43463.28, + "end": 43467.72, + "probability": 0.99 + }, + { + "start": 43467.92, + "end": 43470.72, + "probability": 0.8676 + }, + { + "start": 43471.14, + "end": 43471.34, + "probability": 0.4877 + }, + { + "start": 43471.52, + "end": 43472.96, + "probability": 0.8555 + }, + { + "start": 43473.04, + "end": 43474.6, + "probability": 0.7965 + }, + { + "start": 43474.74, + "end": 43475.8, + "probability": 0.8123 + }, + { + "start": 43476.28, + "end": 43477.52, + "probability": 0.9537 + }, + { + "start": 43477.64, + "end": 43480.99, + "probability": 0.5929 + }, + { + "start": 43481.5, + "end": 43484.58, + "probability": 0.9932 + }, + { + "start": 43485.5, + "end": 43486.1, + "probability": 0.9727 + }, + { + "start": 43490.62, + "end": 43495.26, + "probability": 0.995 + }, + { + "start": 43495.86, + "end": 43496.68, + "probability": 0.7904 + }, + { + "start": 43496.8, + "end": 43497.7, + "probability": 0.6897 + }, + { + "start": 43497.86, + "end": 43498.58, + "probability": 0.9112 + }, + { + "start": 43498.68, + "end": 43499.48, + "probability": 0.913 + }, + { + "start": 43499.52, + "end": 43500.24, + "probability": 0.7949 + }, + { + "start": 43500.44, + "end": 43500.74, + "probability": 0.7924 + }, + { + "start": 43501.96, + "end": 43503.2, + "probability": 0.9806 + }, + { + "start": 43505.0, + "end": 43507.3, + "probability": 0.9124 + }, + { + "start": 43507.78, + "end": 43510.76, + "probability": 0.9017 + }, + { + "start": 43511.16, + "end": 43513.02, + "probability": 0.8191 + }, + { + "start": 43513.62, + "end": 43516.12, + "probability": 0.8052 + }, + { + "start": 43516.46, + "end": 43518.48, + "probability": 0.9618 + }, + { + "start": 43518.86, + "end": 43521.32, + "probability": 0.9917 + }, + { + "start": 43521.74, + "end": 43523.06, + "probability": 0.9969 + }, + { + "start": 43525.34, + "end": 43525.52, + "probability": 0.6102 + }, + { + "start": 43525.52, + "end": 43525.52, + "probability": 0.0071 + }, + { + "start": 43525.52, + "end": 43526.66, + "probability": 0.4136 + }, + { + "start": 43527.62, + "end": 43533.2, + "probability": 0.9102 + }, + { + "start": 43535.82, + "end": 43537.6, + "probability": 0.7398 + }, + { + "start": 43539.04, + "end": 43542.22, + "probability": 0.881 + }, + { + "start": 43543.22, + "end": 43550.08, + "probability": 0.9908 + }, + { + "start": 43550.94, + "end": 43554.4, + "probability": 0.7444 + }, + { + "start": 43556.1, + "end": 43560.5, + "probability": 0.9788 + }, + { + "start": 43560.56, + "end": 43563.46, + "probability": 0.8978 + }, + { + "start": 43563.9, + "end": 43565.12, + "probability": 0.8138 + }, + { + "start": 43565.18, + "end": 43568.96, + "probability": 0.6203 + }, + { + "start": 43569.34, + "end": 43570.26, + "probability": 0.8521 + }, + { + "start": 43570.4, + "end": 43570.96, + "probability": 0.981 + }, + { + "start": 43571.22, + "end": 43572.49, + "probability": 0.9619 + }, + { + "start": 43573.24, + "end": 43575.36, + "probability": 0.8306 + }, + { + "start": 43576.54, + "end": 43578.66, + "probability": 0.2126 + }, + { + "start": 43578.72, + "end": 43580.9, + "probability": 0.5003 + }, + { + "start": 43581.76, + "end": 43584.9, + "probability": 0.7228 + }, + { + "start": 43585.0, + "end": 43585.6, + "probability": 0.5337 + }, + { + "start": 43586.3, + "end": 43586.88, + "probability": 0.6589 + }, + { + "start": 43586.9, + "end": 43588.04, + "probability": 0.9329 + }, + { + "start": 43588.18, + "end": 43590.26, + "probability": 0.8864 + }, + { + "start": 43590.46, + "end": 43591.34, + "probability": 0.9902 + }, + { + "start": 43592.44, + "end": 43595.27, + "probability": 0.8185 + }, + { + "start": 43597.62, + "end": 43601.12, + "probability": 0.8657 + }, + { + "start": 43602.76, + "end": 43609.14, + "probability": 0.9751 + }, + { + "start": 43609.9, + "end": 43610.68, + "probability": 0.7675 + }, + { + "start": 43610.72, + "end": 43612.62, + "probability": 0.978 + }, + { + "start": 43612.72, + "end": 43614.36, + "probability": 0.8962 + }, + { + "start": 43615.08, + "end": 43617.54, + "probability": 0.7453 + }, + { + "start": 43618.82, + "end": 43622.74, + "probability": 0.9522 + }, + { + "start": 43622.74, + "end": 43628.3, + "probability": 0.9925 + }, + { + "start": 43629.58, + "end": 43633.46, + "probability": 0.6751 + }, + { + "start": 43634.08, + "end": 43636.82, + "probability": 0.6974 + }, + { + "start": 43637.48, + "end": 43641.77, + "probability": 0.9932 + }, + { + "start": 43642.82, + "end": 43645.33, + "probability": 0.7668 + }, + { + "start": 43646.14, + "end": 43648.66, + "probability": 0.9722 + }, + { + "start": 43648.66, + "end": 43651.26, + "probability": 0.9373 + }, + { + "start": 43651.86, + "end": 43652.6, + "probability": 0.5155 + }, + { + "start": 43652.72, + "end": 43654.76, + "probability": 0.9884 + }, + { + "start": 43654.8, + "end": 43655.38, + "probability": 0.8137 + }, + { + "start": 43655.46, + "end": 43657.06, + "probability": 0.9971 + }, + { + "start": 43657.82, + "end": 43663.64, + "probability": 0.9929 + }, + { + "start": 43664.22, + "end": 43665.06, + "probability": 0.5849 + }, + { + "start": 43665.12, + "end": 43666.32, + "probability": 0.6771 + }, + { + "start": 43667.12, + "end": 43670.06, + "probability": 0.9836 + }, + { + "start": 43671.0, + "end": 43672.36, + "probability": 0.9932 + }, + { + "start": 43672.42, + "end": 43675.24, + "probability": 0.9775 + }, + { + "start": 43675.8, + "end": 43678.5, + "probability": 0.9739 + }, + { + "start": 43679.08, + "end": 43680.84, + "probability": 0.9741 + }, + { + "start": 43681.8, + "end": 43686.44, + "probability": 0.973 + }, + { + "start": 43686.66, + "end": 43689.6, + "probability": 0.9152 + }, + { + "start": 43690.68, + "end": 43695.42, + "probability": 0.9868 + }, + { + "start": 43696.12, + "end": 43700.08, + "probability": 0.7574 + }, + { + "start": 43700.08, + "end": 43702.62, + "probability": 0.9613 + }, + { + "start": 43703.98, + "end": 43705.38, + "probability": 0.9338 + }, + { + "start": 43706.26, + "end": 43711.18, + "probability": 0.934 + }, + { + "start": 43713.32, + "end": 43716.54, + "probability": 0.998 + }, + { + "start": 43717.88, + "end": 43718.63, + "probability": 0.4572 + }, + { + "start": 43719.56, + "end": 43720.23, + "probability": 0.8915 + }, + { + "start": 43721.32, + "end": 43723.24, + "probability": 0.9119 + }, + { + "start": 43723.44, + "end": 43726.06, + "probability": 0.93 + }, + { + "start": 43726.6, + "end": 43730.82, + "probability": 0.9862 + }, + { + "start": 43730.84, + "end": 43731.38, + "probability": 0.6875 + }, + { + "start": 43733.59, + "end": 43736.3, + "probability": 0.9949 + }, + { + "start": 43736.4, + "end": 43739.04, + "probability": 0.9925 + }, + { + "start": 43739.44, + "end": 43740.72, + "probability": 0.8503 + }, + { + "start": 43741.38, + "end": 43741.82, + "probability": 0.8663 + }, + { + "start": 43741.9, + "end": 43746.96, + "probability": 0.9671 + }, + { + "start": 43747.54, + "end": 43749.8, + "probability": 0.8207 + }, + { + "start": 43749.86, + "end": 43751.12, + "probability": 0.7822 + }, + { + "start": 43751.58, + "end": 43752.46, + "probability": 0.8087 + }, + { + "start": 43753.02, + "end": 43755.38, + "probability": 0.9648 + }, + { + "start": 43756.0, + "end": 43758.6, + "probability": 0.6454 + }, + { + "start": 43761.16, + "end": 43764.08, + "probability": 0.9516 + }, + { + "start": 43764.32, + "end": 43768.46, + "probability": 0.8937 + }, + { + "start": 43769.14, + "end": 43771.26, + "probability": 0.9821 + }, + { + "start": 43773.58, + "end": 43781.1, + "probability": 0.8485 + }, + { + "start": 43781.74, + "end": 43782.94, + "probability": 0.7075 + }, + { + "start": 43783.6, + "end": 43785.7, + "probability": 0.9502 + }, + { + "start": 43785.76, + "end": 43788.25, + "probability": 0.9945 + }, + { + "start": 43788.98, + "end": 43790.82, + "probability": 0.9928 + }, + { + "start": 43791.24, + "end": 43791.94, + "probability": 0.8974 + }, + { + "start": 43792.2, + "end": 43792.66, + "probability": 0.8698 + }, + { + "start": 43792.72, + "end": 43797.04, + "probability": 0.9941 + }, + { + "start": 43797.82, + "end": 43798.58, + "probability": 0.9919 + }, + { + "start": 43799.28, + "end": 43800.16, + "probability": 0.9481 + }, + { + "start": 43800.28, + "end": 43801.34, + "probability": 0.9354 + }, + { + "start": 43802.42, + "end": 43805.94, + "probability": 0.9873 + }, + { + "start": 43805.94, + "end": 43809.64, + "probability": 0.9953 + }, + { + "start": 43810.5, + "end": 43810.76, + "probability": 0.7312 + }, + { + "start": 43811.14, + "end": 43813.16, + "probability": 0.9783 + }, + { + "start": 43813.66, + "end": 43817.54, + "probability": 0.9929 + }, + { + "start": 43817.72, + "end": 43820.72, + "probability": 0.9963 + }, + { + "start": 43821.32, + "end": 43821.98, + "probability": 0.9076 + }, + { + "start": 43822.78, + "end": 43823.76, + "probability": 0.8445 + }, + { + "start": 43824.78, + "end": 43828.52, + "probability": 0.999 + }, + { + "start": 43829.28, + "end": 43830.08, + "probability": 0.8398 + }, + { + "start": 43830.84, + "end": 43831.72, + "probability": 0.5369 + }, + { + "start": 43832.56, + "end": 43836.46, + "probability": 0.9958 + }, + { + "start": 43836.46, + "end": 43840.12, + "probability": 0.9592 + }, + { + "start": 43841.0, + "end": 43841.99, + "probability": 0.8594 + }, + { + "start": 43843.0, + "end": 43847.06, + "probability": 0.9731 + }, + { + "start": 43847.2, + "end": 43847.94, + "probability": 0.8247 + }, + { + "start": 43848.12, + "end": 43850.14, + "probability": 0.6634 + }, + { + "start": 43850.94, + "end": 43852.52, + "probability": 0.898 + }, + { + "start": 43852.66, + "end": 43853.08, + "probability": 0.9666 + }, + { + "start": 43853.52, + "end": 43855.76, + "probability": 0.7891 + }, + { + "start": 43855.86, + "end": 43860.08, + "probability": 0.9663 + }, + { + "start": 43860.08, + "end": 43862.86, + "probability": 0.9954 + }, + { + "start": 43863.78, + "end": 43866.88, + "probability": 0.8341 + }, + { + "start": 43868.94, + "end": 43869.18, + "probability": 0.3561 + }, + { + "start": 43869.3, + "end": 43869.95, + "probability": 0.6922 + }, + { + "start": 43870.1, + "end": 43870.6, + "probability": 0.7077 + }, + { + "start": 43870.92, + "end": 43872.3, + "probability": 0.9504 + }, + { + "start": 43873.32, + "end": 43874.61, + "probability": 0.9097 + }, + { + "start": 43875.76, + "end": 43880.46, + "probability": 0.9678 + }, + { + "start": 43881.12, + "end": 43882.74, + "probability": 0.976 + }, + { + "start": 43882.82, + "end": 43887.18, + "probability": 0.9138 + }, + { + "start": 43888.02, + "end": 43890.92, + "probability": 0.8325 + }, + { + "start": 43891.76, + "end": 43892.95, + "probability": 0.8063 + }, + { + "start": 43893.02, + "end": 43893.51, + "probability": 0.9844 + }, + { + "start": 43894.08, + "end": 43894.45, + "probability": 0.6914 + }, + { + "start": 43894.72, + "end": 43895.09, + "probability": 0.9076 + }, + { + "start": 43895.86, + "end": 43896.8, + "probability": 0.6687 + }, + { + "start": 43897.52, + "end": 43899.36, + "probability": 0.9945 + }, + { + "start": 43899.96, + "end": 43900.92, + "probability": 0.8216 + }, + { + "start": 43901.46, + "end": 43903.5, + "probability": 0.9932 + }, + { + "start": 43904.04, + "end": 43907.44, + "probability": 0.9778 + }, + { + "start": 43908.54, + "end": 43911.38, + "probability": 0.9937 + }, + { + "start": 43912.02, + "end": 43913.62, + "probability": 0.9443 + }, + { + "start": 43913.68, + "end": 43914.22, + "probability": 0.882 + }, + { + "start": 43914.32, + "end": 43916.24, + "probability": 0.7953 + }, + { + "start": 43917.0, + "end": 43917.96, + "probability": 0.9512 + }, + { + "start": 43923.44, + "end": 43923.88, + "probability": 0.3552 + }, + { + "start": 43924.6, + "end": 43926.82, + "probability": 0.8018 + }, + { + "start": 43928.58, + "end": 43930.1, + "probability": 0.8161 + }, + { + "start": 43930.54, + "end": 43930.98, + "probability": 0.8124 + }, + { + "start": 43934.88, + "end": 43939.16, + "probability": 0.8773 + }, + { + "start": 43939.2, + "end": 43940.04, + "probability": 0.6079 + }, + { + "start": 43940.48, + "end": 43944.84, + "probability": 0.8811 + }, + { + "start": 43945.22, + "end": 43945.78, + "probability": 0.9546 + }, + { + "start": 43946.54, + "end": 43950.96, + "probability": 0.9965 + }, + { + "start": 43951.12, + "end": 43952.14, + "probability": 0.648 + }, + { + "start": 43952.68, + "end": 43954.2, + "probability": 0.7905 + }, + { + "start": 43955.24, + "end": 43956.52, + "probability": 0.8942 + }, + { + "start": 43957.48, + "end": 43961.5, + "probability": 0.9472 + }, + { + "start": 43962.38, + "end": 43962.9, + "probability": 0.8865 + }, + { + "start": 43963.04, + "end": 43963.58, + "probability": 0.6083 + }, + { + "start": 43963.76, + "end": 43965.1, + "probability": 0.8718 + }, + { + "start": 43965.24, + "end": 43966.36, + "probability": 0.9604 + }, + { + "start": 43966.78, + "end": 43966.9, + "probability": 0.5575 + }, + { + "start": 43967.7, + "end": 43969.04, + "probability": 0.956 + }, + { + "start": 43969.84, + "end": 43972.18, + "probability": 0.9192 + }, + { + "start": 43972.86, + "end": 43974.26, + "probability": 0.7722 + }, + { + "start": 43975.0, + "end": 43978.16, + "probability": 0.9922 + }, + { + "start": 43978.22, + "end": 43979.9, + "probability": 0.9846 + }, + { + "start": 43980.22, + "end": 43982.36, + "probability": 0.9512 + }, + { + "start": 43982.48, + "end": 43985.64, + "probability": 0.9857 + }, + { + "start": 43985.98, + "end": 43989.7, + "probability": 0.986 + }, + { + "start": 43990.18, + "end": 43991.92, + "probability": 0.9429 + }, + { + "start": 43992.32, + "end": 43993.4, + "probability": 0.7502 + }, + { + "start": 43996.44, + "end": 43998.16, + "probability": 0.0705 + }, + { + "start": 43998.16, + "end": 43998.28, + "probability": 0.1616 + }, + { + "start": 43998.38, + "end": 44000.05, + "probability": 0.8693 + }, + { + "start": 44000.18, + "end": 44003.28, + "probability": 0.918 + }, + { + "start": 44004.02, + "end": 44007.48, + "probability": 0.9853 + }, + { + "start": 44008.34, + "end": 44008.98, + "probability": 0.5954 + }, + { + "start": 44009.02, + "end": 44013.52, + "probability": 0.9769 + }, + { + "start": 44014.54, + "end": 44018.1, + "probability": 0.993 + }, + { + "start": 44018.1, + "end": 44021.1, + "probability": 0.9982 + }, + { + "start": 44021.74, + "end": 44023.38, + "probability": 0.9653 + }, + { + "start": 44024.04, + "end": 44025.4, + "probability": 0.998 + }, + { + "start": 44025.8, + "end": 44028.64, + "probability": 0.9976 + }, + { + "start": 44031.06, + "end": 44032.26, + "probability": 0.0612 + }, + { + "start": 44032.26, + "end": 44032.73, + "probability": 0.5966 + }, + { + "start": 44033.78, + "end": 44034.56, + "probability": 0.5063 + }, + { + "start": 44034.8, + "end": 44035.18, + "probability": 0.8932 + }, + { + "start": 44035.3, + "end": 44037.0, + "probability": 0.9775 + }, + { + "start": 44037.1, + "end": 44037.7, + "probability": 0.8566 + }, + { + "start": 44037.84, + "end": 44038.54, + "probability": 0.6481 + }, + { + "start": 44039.34, + "end": 44041.34, + "probability": 0.9861 + }, + { + "start": 44041.44, + "end": 44043.8, + "probability": 0.9814 + }, + { + "start": 44044.34, + "end": 44046.7, + "probability": 0.9825 + }, + { + "start": 44047.52, + "end": 44048.48, + "probability": 0.6255 + }, + { + "start": 44049.1, + "end": 44049.52, + "probability": 0.9587 + }, + { + "start": 44049.62, + "end": 44050.2, + "probability": 0.8448 + }, + { + "start": 44050.42, + "end": 44050.6, + "probability": 0.65 + }, + { + "start": 44050.84, + "end": 44053.29, + "probability": 0.9727 + }, + { + "start": 44053.46, + "end": 44055.06, + "probability": 0.9674 + }, + { + "start": 44055.18, + "end": 44055.7, + "probability": 0.7292 + }, + { + "start": 44056.32, + "end": 44061.02, + "probability": 0.8655 + }, + { + "start": 44061.76, + "end": 44062.48, + "probability": 0.8089 + }, + { + "start": 44063.26, + "end": 44067.2, + "probability": 0.9741 + }, + { + "start": 44067.94, + "end": 44069.94, + "probability": 0.9916 + }, + { + "start": 44070.46, + "end": 44071.48, + "probability": 0.8991 + }, + { + "start": 44072.04, + "end": 44072.94, + "probability": 0.8135 + }, + { + "start": 44073.26, + "end": 44076.24, + "probability": 0.9952 + }, + { + "start": 44076.3, + "end": 44076.72, + "probability": 0.9316 + }, + { + "start": 44077.72, + "end": 44079.18, + "probability": 0.9976 + }, + { + "start": 44079.34, + "end": 44080.38, + "probability": 0.9584 + }, + { + "start": 44081.36, + "end": 44083.2, + "probability": 0.981 + }, + { + "start": 44083.2, + "end": 44087.5, + "probability": 0.9775 + }, + { + "start": 44087.66, + "end": 44088.02, + "probability": 0.2788 + }, + { + "start": 44088.34, + "end": 44090.24, + "probability": 0.882 + }, + { + "start": 44090.38, + "end": 44091.18, + "probability": 0.8588 + }, + { + "start": 44091.7, + "end": 44094.56, + "probability": 0.9342 + }, + { + "start": 44094.66, + "end": 44095.28, + "probability": 0.7245 + }, + { + "start": 44095.68, + "end": 44098.22, + "probability": 0.9932 + }, + { + "start": 44099.06, + "end": 44103.98, + "probability": 0.96 + }, + { + "start": 44104.34, + "end": 44107.04, + "probability": 0.9424 + }, + { + "start": 44107.12, + "end": 44107.54, + "probability": 0.8476 + }, + { + "start": 44108.08, + "end": 44110.82, + "probability": 0.9884 + }, + { + "start": 44111.32, + "end": 44113.08, + "probability": 0.8447 + }, + { + "start": 44113.16, + "end": 44114.0, + "probability": 0.838 + }, + { + "start": 44114.12, + "end": 44118.84, + "probability": 0.9946 + }, + { + "start": 44118.9, + "end": 44120.12, + "probability": 0.9724 + }, + { + "start": 44120.96, + "end": 44124.62, + "probability": 0.8978 + }, + { + "start": 44125.16, + "end": 44126.16, + "probability": 0.8719 + }, + { + "start": 44127.34, + "end": 44130.06, + "probability": 0.9943 + }, + { + "start": 44131.16, + "end": 44131.6, + "probability": 0.9047 + }, + { + "start": 44131.62, + "end": 44132.22, + "probability": 0.9929 + }, + { + "start": 44132.7, + "end": 44135.44, + "probability": 0.8973 + }, + { + "start": 44136.2, + "end": 44137.48, + "probability": 0.9849 + }, + { + "start": 44138.12, + "end": 44142.88, + "probability": 0.9631 + }, + { + "start": 44143.0, + "end": 44146.74, + "probability": 0.9829 + }, + { + "start": 44147.66, + "end": 44152.6, + "probability": 0.793 + }, + { + "start": 44153.54, + "end": 44155.88, + "probability": 0.8719 + }, + { + "start": 44156.56, + "end": 44159.1, + "probability": 0.9678 + }, + { + "start": 44159.7, + "end": 44163.98, + "probability": 0.9914 + }, + { + "start": 44164.46, + "end": 44165.34, + "probability": 0.7835 + }, + { + "start": 44165.44, + "end": 44166.4, + "probability": 0.9951 + }, + { + "start": 44167.62, + "end": 44169.82, + "probability": 0.7998 + }, + { + "start": 44170.7, + "end": 44172.24, + "probability": 0.7946 + }, + { + "start": 44173.28, + "end": 44174.88, + "probability": 0.7563 + }, + { + "start": 44175.68, + "end": 44176.26, + "probability": 0.884 + }, + { + "start": 44176.54, + "end": 44176.96, + "probability": 0.8917 + }, + { + "start": 44177.32, + "end": 44181.72, + "probability": 0.9727 + }, + { + "start": 44181.92, + "end": 44184.8, + "probability": 0.9457 + }, + { + "start": 44185.64, + "end": 44190.4, + "probability": 0.9637 + }, + { + "start": 44191.2, + "end": 44192.72, + "probability": 0.9951 + }, + { + "start": 44193.28, + "end": 44194.8, + "probability": 0.9215 + }, + { + "start": 44195.5, + "end": 44197.26, + "probability": 0.9125 + }, + { + "start": 44198.06, + "end": 44199.52, + "probability": 0.9688 + }, + { + "start": 44200.38, + "end": 44203.38, + "probability": 0.9937 + }, + { + "start": 44203.46, + "end": 44204.07, + "probability": 0.981 + }, + { + "start": 44204.38, + "end": 44206.42, + "probability": 0.9679 + }, + { + "start": 44207.08, + "end": 44208.1, + "probability": 0.9779 + }, + { + "start": 44209.1, + "end": 44213.58, + "probability": 0.9976 + }, + { + "start": 44214.12, + "end": 44216.56, + "probability": 0.8584 + }, + { + "start": 44217.36, + "end": 44218.7, + "probability": 0.9676 + }, + { + "start": 44219.44, + "end": 44223.14, + "probability": 0.9813 + }, + { + "start": 44223.88, + "end": 44227.92, + "probability": 0.9791 + }, + { + "start": 44228.94, + "end": 44230.64, + "probability": 0.8882 + }, + { + "start": 44231.22, + "end": 44232.12, + "probability": 0.9431 + }, + { + "start": 44232.86, + "end": 44235.44, + "probability": 0.8135 + }, + { + "start": 44236.16, + "end": 44241.46, + "probability": 0.9114 + }, + { + "start": 44242.18, + "end": 44243.32, + "probability": 0.9875 + }, + { + "start": 44244.8, + "end": 44247.14, + "probability": 0.9011 + }, + { + "start": 44248.8, + "end": 44249.32, + "probability": 0.8096 + }, + { + "start": 44249.8, + "end": 44253.74, + "probability": 0.8015 + }, + { + "start": 44256.34, + "end": 44263.4, + "probability": 0.9688 + }, + { + "start": 44280.16, + "end": 44281.62, + "probability": 0.0674 + }, + { + "start": 44281.62, + "end": 44283.06, + "probability": 0.1514 + }, + { + "start": 44283.06, + "end": 44283.06, + "probability": 0.1347 + }, + { + "start": 44283.06, + "end": 44283.18, + "probability": 0.0434 + }, + { + "start": 44283.18, + "end": 44283.18, + "probability": 0.0555 + }, + { + "start": 44304.88, + "end": 44305.06, + "probability": 0.4437 + }, + { + "start": 44307.74, + "end": 44310.74, + "probability": 0.2433 + }, + { + "start": 44313.04, + "end": 44318.24, + "probability": 0.5803 + }, + { + "start": 44320.78, + "end": 44321.34, + "probability": 0.7764 + }, + { + "start": 44321.42, + "end": 44323.14, + "probability": 0.8094 + }, + { + "start": 44323.5, + "end": 44325.18, + "probability": 0.8867 + }, + { + "start": 44327.34, + "end": 44328.02, + "probability": 0.7802 + }, + { + "start": 44329.1, + "end": 44332.16, + "probability": 0.9954 + }, + { + "start": 44335.04, + "end": 44335.48, + "probability": 0.8555 + }, + { + "start": 44336.68, + "end": 44338.08, + "probability": 0.8935 + }, + { + "start": 44340.32, + "end": 44342.4, + "probability": 0.7735 + }, + { + "start": 44343.2, + "end": 44345.36, + "probability": 0.979 + }, + { + "start": 44347.62, + "end": 44348.75, + "probability": 0.9785 + }, + { + "start": 44350.7, + "end": 44353.32, + "probability": 0.7807 + }, + { + "start": 44353.4, + "end": 44354.3, + "probability": 0.9424 + }, + { + "start": 44355.9, + "end": 44358.24, + "probability": 0.9822 + }, + { + "start": 44359.72, + "end": 44360.94, + "probability": 0.8765 + }, + { + "start": 44362.42, + "end": 44364.28, + "probability": 0.981 + }, + { + "start": 44366.54, + "end": 44368.24, + "probability": 0.9744 + }, + { + "start": 44368.96, + "end": 44370.46, + "probability": 0.9977 + }, + { + "start": 44373.82, + "end": 44375.64, + "probability": 0.5272 + }, + { + "start": 44377.6, + "end": 44381.88, + "probability": 0.7707 + }, + { + "start": 44384.04, + "end": 44391.52, + "probability": 0.8083 + }, + { + "start": 44393.62, + "end": 44396.54, + "probability": 0.9635 + }, + { + "start": 44398.68, + "end": 44399.16, + "probability": 0.7186 + }, + { + "start": 44400.88, + "end": 44403.88, + "probability": 0.9252 + }, + { + "start": 44405.76, + "end": 44407.8, + "probability": 0.9524 + }, + { + "start": 44408.74, + "end": 44410.06, + "probability": 0.7186 + }, + { + "start": 44412.26, + "end": 44413.92, + "probability": 0.9908 + }, + { + "start": 44416.42, + "end": 44420.88, + "probability": 0.9766 + }, + { + "start": 44424.42, + "end": 44425.32, + "probability": 0.5752 + }, + { + "start": 44425.5, + "end": 44426.64, + "probability": 0.8556 + }, + { + "start": 44430.0, + "end": 44433.98, + "probability": 0.7619 + }, + { + "start": 44436.8, + "end": 44438.06, + "probability": 0.9219 + }, + { + "start": 44438.76, + "end": 44440.46, + "probability": 0.8755 + }, + { + "start": 44442.3, + "end": 44443.92, + "probability": 0.9842 + }, + { + "start": 44445.04, + "end": 44446.84, + "probability": 0.9931 + }, + { + "start": 44447.98, + "end": 44451.22, + "probability": 0.9963 + }, + { + "start": 44452.6, + "end": 44456.02, + "probability": 0.9507 + }, + { + "start": 44456.62, + "end": 44457.92, + "probability": 0.9738 + }, + { + "start": 44458.88, + "end": 44459.78, + "probability": 0.9277 + }, + { + "start": 44462.42, + "end": 44465.32, + "probability": 0.9966 + }, + { + "start": 44467.06, + "end": 44469.44, + "probability": 0.9985 + }, + { + "start": 44470.52, + "end": 44471.54, + "probability": 0.9546 + }, + { + "start": 44472.2, + "end": 44473.33, + "probability": 0.5268 + }, + { + "start": 44474.14, + "end": 44475.52, + "probability": 0.7758 + }, + { + "start": 44477.82, + "end": 44479.54, + "probability": 0.8732 + }, + { + "start": 44480.68, + "end": 44482.56, + "probability": 0.9616 + }, + { + "start": 44483.8, + "end": 44484.36, + "probability": 0.9189 + }, + { + "start": 44485.56, + "end": 44487.08, + "probability": 0.9792 + }, + { + "start": 44490.5, + "end": 44496.0, + "probability": 0.9592 + }, + { + "start": 44499.62, + "end": 44501.0, + "probability": 0.6135 + }, + { + "start": 44503.24, + "end": 44509.1, + "probability": 0.6609 + }, + { + "start": 44509.1, + "end": 44512.74, + "probability": 0.9154 + }, + { + "start": 44513.78, + "end": 44514.4, + "probability": 0.8594 + }, + { + "start": 44515.28, + "end": 44516.15, + "probability": 0.6406 + }, + { + "start": 44518.0, + "end": 44519.28, + "probability": 0.9338 + }, + { + "start": 44519.54, + "end": 44523.0, + "probability": 0.974 + }, + { + "start": 44524.08, + "end": 44525.22, + "probability": 0.733 + }, + { + "start": 44526.78, + "end": 44528.62, + "probability": 0.8118 + }, + { + "start": 44529.64, + "end": 44531.18, + "probability": 0.9932 + }, + { + "start": 44532.52, + "end": 44537.26, + "probability": 0.9844 + }, + { + "start": 44537.38, + "end": 44539.28, + "probability": 0.9065 + }, + { + "start": 44539.42, + "end": 44541.16, + "probability": 0.7801 + }, + { + "start": 44542.26, + "end": 44544.5, + "probability": 0.9867 + }, + { + "start": 44546.7, + "end": 44548.24, + "probability": 0.8518 + }, + { + "start": 44548.9, + "end": 44552.64, + "probability": 0.9901 + }, + { + "start": 44553.3, + "end": 44555.96, + "probability": 0.9965 + }, + { + "start": 44556.78, + "end": 44557.66, + "probability": 0.9611 + }, + { + "start": 44558.86, + "end": 44559.34, + "probability": 0.9139 + }, + { + "start": 44560.2, + "end": 44561.94, + "probability": 0.9429 + }, + { + "start": 44563.06, + "end": 44565.42, + "probability": 0.9963 + }, + { + "start": 44565.52, + "end": 44566.72, + "probability": 0.9971 + }, + { + "start": 44567.58, + "end": 44570.08, + "probability": 0.9216 + }, + { + "start": 44570.62, + "end": 44572.18, + "probability": 0.6845 + }, + { + "start": 44572.98, + "end": 44575.2, + "probability": 0.9189 + }, + { + "start": 44576.34, + "end": 44577.6, + "probability": 0.9504 + }, + { + "start": 44577.84, + "end": 44580.3, + "probability": 0.7955 + }, + { + "start": 44580.38, + "end": 44580.72, + "probability": 0.7793 + }, + { + "start": 44582.68, + "end": 44585.72, + "probability": 0.9022 + }, + { + "start": 44587.6, + "end": 44589.15, + "probability": 0.4787 + }, + { + "start": 44589.54, + "end": 44594.82, + "probability": 0.9512 + }, + { + "start": 44596.34, + "end": 44600.38, + "probability": 0.0982 + }, + { + "start": 44601.9, + "end": 44602.9, + "probability": 0.0002 + }, + { + "start": 44604.36, + "end": 44605.08, + "probability": 0.0399 + }, + { + "start": 44605.54, + "end": 44605.54, + "probability": 0.0252 + }, + { + "start": 44605.54, + "end": 44605.75, + "probability": 0.0422 + }, + { + "start": 44606.38, + "end": 44607.22, + "probability": 0.0593 + }, + { + "start": 44607.62, + "end": 44608.14, + "probability": 0.1277 + }, + { + "start": 44609.12, + "end": 44610.48, + "probability": 0.0161 + }, + { + "start": 44618.91, + "end": 44620.76, + "probability": 0.0149 + }, + { + "start": 44620.76, + "end": 44621.34, + "probability": 0.0528 + }, + { + "start": 44622.52, + "end": 44622.56, + "probability": 0.199 + }, + { + "start": 44622.56, + "end": 44622.7, + "probability": 0.0917 + }, + { + "start": 44622.7, + "end": 44624.84, + "probability": 0.0469 + }, + { + "start": 44624.84, + "end": 44625.96, + "probability": 0.1435 + }, + { + "start": 44630.6, + "end": 44630.7, + "probability": 0.0326 + }, + { + "start": 44636.96, + "end": 44636.96, + "probability": 0.0291 + }, + { + "start": 44645.38, + "end": 44646.52, + "probability": 0.4982 + }, + { + "start": 44646.68, + "end": 44650.62, + "probability": 0.1407 + }, + { + "start": 44652.0, + "end": 44654.1, + "probability": 0.0091 + }, + { + "start": 44673.5, + "end": 44673.58, + "probability": 0.0157 + }, + { + "start": 44675.7, + "end": 44678.26, + "probability": 0.2144 + }, + { + "start": 44678.26, + "end": 44679.42, + "probability": 0.1072 + }, + { + "start": 44684.92, + "end": 44689.46, + "probability": 0.2674 + }, + { + "start": 44689.68, + "end": 44691.22, + "probability": 0.0191 + }, + { + "start": 44692.58, + "end": 44693.48, + "probability": 0.1986 + }, + { + "start": 44729.0, + "end": 44729.0, + "probability": 0.0 + }, + { + "start": 44729.0, + "end": 44729.0, + "probability": 0.0 + }, + { + "start": 44729.0, + "end": 44729.0, + "probability": 0.0 + }, + { + "start": 44729.0, + "end": 44729.0, + "probability": 0.0 + }, + { + "start": 44729.0, + "end": 44729.0, + "probability": 0.0 + }, + { + "start": 44729.0, + "end": 44729.0, + "probability": 0.0 + }, + { + "start": 44738.1, + "end": 44741.56, + "probability": 0.748 + }, + { + "start": 44743.94, + "end": 44752.66, + "probability": 0.6126 + }, + { + "start": 44752.78, + "end": 44756.82, + "probability": 0.8374 + }, + { + "start": 44757.54, + "end": 44758.54, + "probability": 0.7115 + }, + { + "start": 44758.94, + "end": 44759.08, + "probability": 0.1281 + }, + { + "start": 44759.08, + "end": 44760.44, + "probability": 0.0564 + }, + { + "start": 44763.11, + "end": 44765.44, + "probability": 0.0688 + }, + { + "start": 44784.24, + "end": 44784.56, + "probability": 0.5955 + }, + { + "start": 44788.12, + "end": 44790.2, + "probability": 0.7474 + }, + { + "start": 44790.5, + "end": 44791.76, + "probability": 0.8857 + }, + { + "start": 44792.8, + "end": 44804.69, + "probability": 0.7982 + }, + { + "start": 44805.02, + "end": 44805.56, + "probability": 0.4428 + }, + { + "start": 44806.32, + "end": 44807.24, + "probability": 0.6548 + }, + { + "start": 44807.84, + "end": 44810.36, + "probability": 0.8706 + }, + { + "start": 44810.68, + "end": 44814.5, + "probability": 0.8247 + }, + { + "start": 44814.6, + "end": 44822.16, + "probability": 0.881 + }, + { + "start": 44822.96, + "end": 44823.76, + "probability": 0.6474 + }, + { + "start": 44824.42, + "end": 44840.64, + "probability": 0.045 + }, + { + "start": 44840.64, + "end": 44847.24, + "probability": 0.3731 + }, + { + "start": 44848.1, + "end": 44848.54, + "probability": 0.7602 + }, + { + "start": 44852.04, + "end": 44853.8, + "probability": 0.7919 + }, + { + "start": 44854.52, + "end": 44857.36, + "probability": 0.5388 + }, + { + "start": 44858.32, + "end": 44859.76, + "probability": 0.572 + }, + { + "start": 44860.6, + "end": 44862.09, + "probability": 0.9321 + }, + { + "start": 44863.81, + "end": 44869.1, + "probability": 0.744 + }, + { + "start": 44869.28, + "end": 44869.56, + "probability": 0.0848 + }, + { + "start": 44869.86, + "end": 44870.42, + "probability": 0.3716 + }, + { + "start": 44870.68, + "end": 44872.6, + "probability": 0.095 + }, + { + "start": 44872.92, + "end": 44873.34, + "probability": 0.6803 + }, + { + "start": 44874.52, + "end": 44877.24, + "probability": 0.4961 + }, + { + "start": 44877.58, + "end": 44882.08, + "probability": 0.7588 + }, + { + "start": 44882.16, + "end": 44882.94, + "probability": 0.899 + }, + { + "start": 44888.3, + "end": 44889.52, + "probability": 0.0339 + }, + { + "start": 44890.44, + "end": 44892.76, + "probability": 0.2841 + }, + { + "start": 44896.28, + "end": 44897.66, + "probability": 0.2264 + }, + { + "start": 44899.28, + "end": 44899.7, + "probability": 0.3736 + }, + { + "start": 44903.9, + "end": 44904.66, + "probability": 0.2874 + }, + { + "start": 44905.28, + "end": 44907.46, + "probability": 0.4834 + }, + { + "start": 44907.96, + "end": 44917.92, + "probability": 0.2111 + }, + { + "start": 44918.08, + "end": 44918.56, + "probability": 0.3495 + }, + { + "start": 44919.22, + "end": 44920.98, + "probability": 0.8457 + }, + { + "start": 44921.12, + "end": 44921.86, + "probability": 0.5027 + }, + { + "start": 44923.02, + "end": 44924.8, + "probability": 0.0538 + }, + { + "start": 44925.3, + "end": 44925.3, + "probability": 0.1279 + }, + { + "start": 44925.3, + "end": 44929.82, + "probability": 0.6044 + }, + { + "start": 44931.2, + "end": 44932.74, + "probability": 0.7483 + }, + { + "start": 44933.28, + "end": 44936.56, + "probability": 0.5932 + }, + { + "start": 44939.08, + "end": 44943.66, + "probability": 0.0971 + }, + { + "start": 44949.5, + "end": 44954.34, + "probability": 0.79 + }, + { + "start": 44954.98, + "end": 44958.42, + "probability": 0.9568 + }, + { + "start": 44964.54, + "end": 44967.6, + "probability": 0.0398 + }, + { + "start": 44971.02, + "end": 44976.68, + "probability": 0.751 + }, + { + "start": 44977.5, + "end": 44980.6, + "probability": 0.7697 + }, + { + "start": 44987.72, + "end": 44992.56, + "probability": 0.1352 + }, + { + "start": 44994.71, + "end": 44997.88, + "probability": 0.8755 + }, + { + "start": 44998.5, + "end": 45000.14, + "probability": 0.5427 + }, + { + "start": 45000.42, + "end": 45004.24, + "probability": 0.6135 + }, + { + "start": 45007.2, + "end": 45012.0, + "probability": 0.0001 + }, + { + "start": 45014.78, + "end": 45016.14, + "probability": 0.0666 + }, + { + "start": 45017.62, + "end": 45021.86, + "probability": 0.6077 + }, + { + "start": 45022.38, + "end": 45026.02, + "probability": 0.6994 + }, + { + "start": 45030.24, + "end": 45032.12, + "probability": 0.1999 + }, + { + "start": 45039.46, + "end": 45043.66, + "probability": 0.8382 + }, + { + "start": 45044.04, + "end": 45045.38, + "probability": 0.6825 + }, + { + "start": 45045.9, + "end": 45047.46, + "probability": 0.689 + }, + { + "start": 45047.66, + "end": 45050.72, + "probability": 0.0678 + }, + { + "start": 45051.44, + "end": 45053.38, + "probability": 0.2778 + }, + { + "start": 45060.4, + "end": 45064.16, + "probability": 0.5903 + }, + { + "start": 45064.62, + "end": 45067.74, + "probability": 0.6775 + }, + { + "start": 45073.14, + "end": 45074.26, + "probability": 0.1838 + }, + { + "start": 45074.26, + "end": 45086.26, + "probability": 0.5744 + }, + { + "start": 45086.5, + "end": 45088.02, + "probability": 0.6762 + }, + { + "start": 45088.58, + "end": 45090.1, + "probability": 0.4295 + }, + { + "start": 45101.02, + "end": 45102.78, + "probability": 0.0778 + }, + { + "start": 45103.08, + "end": 45107.32, + "probability": 0.666 + }, + { + "start": 45107.64, + "end": 45111.16, + "probability": 0.6716 + }, + { + "start": 45125.24, + "end": 45125.24, + "probability": 0.105 + }, + { + "start": 45125.24, + "end": 45130.72, + "probability": 0.4891 + }, + { + "start": 45131.66, + "end": 45135.48, + "probability": 0.9766 + }, + { + "start": 45136.42, + "end": 45137.44, + "probability": 0.8862 + }, + { + "start": 45140.8, + "end": 45141.32, + "probability": 0.43 + }, + { + "start": 45153.0, + "end": 45153.0, + "probability": 0.1322 + }, + { + "start": 45153.0, + "end": 45155.0, + "probability": 0.3406 + }, + { + "start": 45155.54, + "end": 45155.9, + "probability": 0.6341 + }, + { + "start": 45157.98, + "end": 45161.98, + "probability": 0.7592 + }, + { + "start": 45162.26, + "end": 45163.39, + "probability": 0.7481 + }, + { + "start": 45164.06, + "end": 45168.82, + "probability": 0.8936 + }, + { + "start": 45169.0, + "end": 45170.52, + "probability": 0.7997 + }, + { + "start": 45170.54, + "end": 45173.66, + "probability": 0.7761 + }, + { + "start": 45177.44, + "end": 45182.34, + "probability": 0.4915 + }, + { + "start": 45182.78, + "end": 45185.88, + "probability": 0.9707 + }, + { + "start": 45186.14, + "end": 45186.58, + "probability": 0.7212 + }, + { + "start": 45187.2, + "end": 45205.7, + "probability": 0.5783 + }, + { + "start": 45205.7, + "end": 45205.7, + "probability": 0.0763 + }, + { + "start": 45205.7, + "end": 45209.64, + "probability": 0.6167 + }, + { + "start": 45209.92, + "end": 45211.66, + "probability": 0.8245 + }, + { + "start": 45226.14, + "end": 45226.14, + "probability": 0.295 + }, + { + "start": 45226.14, + "end": 45226.14, + "probability": 0.0819 + }, + { + "start": 45226.14, + "end": 45228.92, + "probability": 0.5357 + }, + { + "start": 45229.78, + "end": 45232.9, + "probability": 0.6892 + }, + { + "start": 45233.4, + "end": 45236.08, + "probability": 0.0708 + }, + { + "start": 45246.72, + "end": 45250.8, + "probability": 0.5436 + }, + { + "start": 45251.08, + "end": 45254.22, + "probability": 0.907 + }, + { + "start": 45257.86, + "end": 45258.34, + "probability": 0.3431 + }, + { + "start": 45258.34, + "end": 45258.5, + "probability": 0.4619 + }, + { + "start": 45267.6, + "end": 45270.84, + "probability": 0.4454 + }, + { + "start": 45271.02, + "end": 45272.02, + "probability": 0.6395 + }, + { + "start": 45272.86, + "end": 45273.92, + "probability": 0.5452 + }, + { + "start": 45274.88, + "end": 45275.02, + "probability": 0.0002 + }, + { + "start": 45275.84, + "end": 45277.38, + "probability": 0.0738 + }, + { + "start": 45286.7, + "end": 45290.84, + "probability": 0.5333 + }, + { + "start": 45291.22, + "end": 45292.64, + "probability": 0.8834 + }, + { + "start": 45293.24, + "end": 45293.96, + "probability": 0.788 + }, + { + "start": 45303.44, + "end": 45305.18, + "probability": 0.0832 + }, + { + "start": 45307.2, + "end": 45310.68, + "probability": 0.5452 + }, + { + "start": 45310.92, + "end": 45312.1, + "probability": 0.791 + }, + { + "start": 45312.62, + "end": 45313.8, + "probability": 0.574 + }, + { + "start": 45314.34, + "end": 45317.18, + "probability": 0.0741 + }, + { + "start": 45327.54, + "end": 45330.76, + "probability": 0.6028 + }, + { + "start": 45331.0, + "end": 45332.52, + "probability": 0.7814 + }, + { + "start": 45333.3, + "end": 45346.08, + "probability": 0.7803 + }, + { + "start": 45346.18, + "end": 45346.92, + "probability": 0.1626 + }, + { + "start": 45348.4, + "end": 45352.34, + "probability": 0.5228 + }, + { + "start": 45352.68, + "end": 45355.72, + "probability": 0.9154 + }, + { + "start": 45356.4, + "end": 45357.26, + "probability": 0.3889 + }, + { + "start": 45358.22, + "end": 45362.04, + "probability": 0.0698 + }, + { + "start": 45370.06, + "end": 45373.32, + "probability": 0.5206 + }, + { + "start": 45373.54, + "end": 45374.98, + "probability": 0.8834 + }, + { + "start": 45375.56, + "end": 45376.58, + "probability": 0.8487 + }, + { + "start": 45377.58, + "end": 45379.08, + "probability": 0.107 + }, + { + "start": 45382.7, + "end": 45382.98, + "probability": 0.2312 + }, + { + "start": 45390.72, + "end": 45395.06, + "probability": 0.4813 + }, + { + "start": 45396.8, + "end": 45400.94, + "probability": 0.6909 + }, + { + "start": 45401.12, + "end": 45403.0, + "probability": 0.9189 + }, + { + "start": 45403.04, + "end": 45405.34, + "probability": 0.8095 + }, + { + "start": 45406.2, + "end": 45408.94, + "probability": 0.7647 + }, + { + "start": 45416.5, + "end": 45416.5, + "probability": 0.0505 + }, + { + "start": 45427.04, + "end": 45429.2, + "probability": 0.3445 + }, + { + "start": 45429.82, + "end": 45430.18, + "probability": 0.3598 + }, + { + "start": 45431.6, + "end": 45436.48, + "probability": 0.665 + }, + { + "start": 45437.54, + "end": 45441.58, + "probability": 0.9353 + }, + { + "start": 45441.66, + "end": 45443.34, + "probability": 0.9182 + }, + { + "start": 45443.36, + "end": 45445.87, + "probability": 0.9712 + }, + { + "start": 45447.66, + "end": 45449.62, + "probability": 0.9034 + }, + { + "start": 45450.26, + "end": 45452.22, + "probability": 0.5723 + }, + { + "start": 45452.86, + "end": 45454.4, + "probability": 0.3833 + }, + { + "start": 45455.44, + "end": 45456.35, + "probability": 0.0489 + }, + { + "start": 45468.2, + "end": 45471.88, + "probability": 0.5956 + }, + { + "start": 45472.32, + "end": 45476.19, + "probability": 0.9028 + }, + { + "start": 45476.34, + "end": 45477.5, + "probability": 0.0716 + }, + { + "start": 45488.3, + "end": 45491.62, + "probability": 0.6519 + }, + { + "start": 45491.88, + "end": 45495.06, + "probability": 0.7224 + }, + { + "start": 45496.92, + "end": 45499.44, + "probability": 0.2479 + }, + { + "start": 45499.44, + "end": 45513.68, + "probability": 0.77 + }, + { + "start": 45513.76, + "end": 45516.36, + "probability": 0.9383 + }, + { + "start": 45516.42, + "end": 45519.5, + "probability": 0.9771 + }, + { + "start": 45519.68, + "end": 45520.8, + "probability": 0.8001 + }, + { + "start": 45521.36, + "end": 45522.76, + "probability": 0.8373 + }, + { + "start": 45525.58, + "end": 45527.4, + "probability": 0.0922 + }, + { + "start": 45528.1, + "end": 45529.36, + "probability": 0.0404 + }, + { + "start": 45537.02, + "end": 45537.3, + "probability": 0.1954 + }, + { + "start": 45537.3, + "end": 45539.22, + "probability": 0.3068 + }, + { + "start": 45539.82, + "end": 45540.16, + "probability": 0.5587 + }, + { + "start": 45542.24, + "end": 45543.98, + "probability": 0.2908 + }, + { + "start": 45544.3, + "end": 45545.98, + "probability": 0.7751 + }, + { + "start": 45546.18, + "end": 45546.2, + "probability": 0.2274 + }, + { + "start": 45546.2, + "end": 45547.7, + "probability": 0.8047 + }, + { + "start": 45548.02, + "end": 45552.29, + "probability": 0.8381 + }, + { + "start": 45552.56, + "end": 45556.12, + "probability": 0.9741 + }, + { + "start": 45556.14, + "end": 45558.5, + "probability": 0.5616 + }, + { + "start": 45559.02, + "end": 45560.74, + "probability": 0.8604 + }, + { + "start": 45561.0, + "end": 45561.96, + "probability": 0.9071 + }, + { + "start": 45562.26, + "end": 45563.68, + "probability": 0.7875 + }, + { + "start": 45577.42, + "end": 45577.6, + "probability": 0.1315 + }, + { + "start": 45577.6, + "end": 45580.84, + "probability": 0.3023 + }, + { + "start": 45581.9, + "end": 45586.02, + "probability": 0.8687 + }, + { + "start": 45586.64, + "end": 45591.14, + "probability": 0.9659 + }, + { + "start": 45591.6, + "end": 45593.12, + "probability": 0.8895 + }, + { + "start": 45593.48, + "end": 45595.16, + "probability": 0.5697 + }, + { + "start": 45599.84, + "end": 45602.64, + "probability": 0.345 + }, + { + "start": 45602.64, + "end": 45603.6, + "probability": 0.1756 + }, + { + "start": 45603.9, + "end": 45609.86, + "probability": 0.2184 + }, + { + "start": 45614.06, + "end": 45619.3, + "probability": 0.6033 + }, + { + "start": 45619.96, + "end": 45620.7, + "probability": 0.8165 + }, + { + "start": 45621.34, + "end": 45623.42, + "probability": 0.9259 + }, + { + "start": 45626.83, + "end": 45629.2, + "probability": 0.8892 + }, + { + "start": 45629.28, + "end": 45630.94, + "probability": 0.9343 + }, + { + "start": 45630.98, + "end": 45631.82, + "probability": 0.8873 + }, + { + "start": 45632.44, + "end": 45633.06, + "probability": 0.8527 + }, + { + "start": 45633.66, + "end": 45635.82, + "probability": 0.7745 + }, + { + "start": 45635.9, + "end": 45637.93, + "probability": 0.3706 + }, + { + "start": 45638.04, + "end": 45639.46, + "probability": 0.9199 + }, + { + "start": 45639.84, + "end": 45641.28, + "probability": 0.9288 + }, + { + "start": 45641.4, + "end": 45642.02, + "probability": 0.9447 + }, + { + "start": 45642.66, + "end": 45643.7, + "probability": 0.898 + }, + { + "start": 45645.16, + "end": 45647.68, + "probability": 0.9583 + }, + { + "start": 45649.06, + "end": 45650.58, + "probability": 0.9624 + }, + { + "start": 45653.56, + "end": 45654.96, + "probability": 0.9897 + }, + { + "start": 45655.58, + "end": 45656.24, + "probability": 0.9091 + }, + { + "start": 45656.42, + "end": 45657.88, + "probability": 0.6719 + }, + { + "start": 45657.88, + "end": 45659.06, + "probability": 0.7741 + }, + { + "start": 45659.16, + "end": 45660.56, + "probability": 0.7145 + }, + { + "start": 45661.78, + "end": 45665.76, + "probability": 0.8435 + }, + { + "start": 45666.24, + "end": 45667.6, + "probability": 0.9609 + }, + { + "start": 45667.75, + "end": 45669.68, + "probability": 0.9902 + }, + { + "start": 45669.8, + "end": 45671.46, + "probability": 0.7852 + }, + { + "start": 45671.48, + "end": 45673.0, + "probability": 0.8274 + }, + { + "start": 45673.34, + "end": 45674.1, + "probability": 0.7371 + }, + { + "start": 45676.12, + "end": 45678.78, + "probability": 0.917 + }, + { + "start": 45680.68, + "end": 45681.76, + "probability": 0.9756 + }, + { + "start": 45682.44, + "end": 45684.02, + "probability": 0.919 + }, + { + "start": 45685.3, + "end": 45686.06, + "probability": 0.8879 + }, + { + "start": 45687.92, + "end": 45689.62, + "probability": 0.9431 + }, + { + "start": 45691.16, + "end": 45691.78, + "probability": 0.9018 + }, + { + "start": 45692.34, + "end": 45694.12, + "probability": 0.9644 + }, + { + "start": 45694.54, + "end": 45695.84, + "probability": 0.5345 + }, + { + "start": 45695.94, + "end": 45697.62, + "probability": 0.9084 + }, + { + "start": 45697.78, + "end": 45698.38, + "probability": 0.747 + }, + { + "start": 45699.1, + "end": 45700.24, + "probability": 0.8461 + }, + { + "start": 45701.38, + "end": 45702.36, + "probability": 0.9879 + }, + { + "start": 45702.96, + "end": 45705.64, + "probability": 0.9661 + }, + { + "start": 45709.32, + "end": 45710.66, + "probability": 0.8662 + }, + { + "start": 45718.22, + "end": 45719.96, + "probability": 0.5652 + }, + { + "start": 45720.98, + "end": 45725.8, + "probability": 0.92 + }, + { + "start": 45726.46, + "end": 45729.38, + "probability": 0.7584 + }, + { + "start": 45730.38, + "end": 45730.9, + "probability": 0.9863 + }, + { + "start": 45732.18, + "end": 45734.54, + "probability": 0.6581 + }, + { + "start": 45735.3, + "end": 45735.76, + "probability": 0.9758 + }, + { + "start": 45737.12, + "end": 45738.3, + "probability": 0.8024 + }, + { + "start": 45739.42, + "end": 45741.48, + "probability": 0.7694 + }, + { + "start": 45741.86, + "end": 45743.74, + "probability": 0.7915 + }, + { + "start": 45744.96, + "end": 45746.18, + "probability": 0.7672 + }, + { + "start": 45746.54, + "end": 45747.58, + "probability": 0.4755 + }, + { + "start": 45747.64, + "end": 45748.94, + "probability": 0.7938 + }, + { + "start": 45749.59, + "end": 45750.52, + "probability": 0.3691 + }, + { + "start": 45750.62, + "end": 45751.98, + "probability": 0.7478 + }, + { + "start": 45753.14, + "end": 45754.64, + "probability": 0.8309 + }, + { + "start": 45756.04, + "end": 45756.36, + "probability": 0.7686 + }, + { + "start": 45757.98, + "end": 45758.62, + "probability": 0.6494 + }, + { + "start": 45760.56, + "end": 45762.26, + "probability": 0.959 + }, + { + "start": 45764.62, + "end": 45765.58, + "probability": 0.9768 + }, + { + "start": 45767.2, + "end": 45767.96, + "probability": 0.8803 + }, + { + "start": 45768.08, + "end": 45769.32, + "probability": 0.9327 + }, + { + "start": 45769.34, + "end": 45770.58, + "probability": 0.9031 + }, + { + "start": 45770.68, + "end": 45771.54, + "probability": 0.4957 + }, + { + "start": 45771.8, + "end": 45772.7, + "probability": 0.685 + }, + { + "start": 45772.8, + "end": 45774.68, + "probability": 0.7097 + }, + { + "start": 45774.72, + "end": 45776.18, + "probability": 0.8656 + }, + { + "start": 45777.52, + "end": 45778.68, + "probability": 0.9033 + }, + { + "start": 45782.76, + "end": 45783.28, + "probability": 0.5643 + }, + { + "start": 45784.84, + "end": 45785.38, + "probability": 0.58 + }, + { + "start": 45785.44, + "end": 45786.5, + "probability": 0.6433 + }, + { + "start": 45786.54, + "end": 45787.76, + "probability": 0.4114 + }, + { + "start": 45787.86, + "end": 45788.82, + "probability": 0.6881 + }, + { + "start": 45788.88, + "end": 45790.48, + "probability": 0.7423 + }, + { + "start": 45790.5, + "end": 45791.82, + "probability": 0.759 + }, + { + "start": 45791.84, + "end": 45793.98, + "probability": 0.923 + }, + { + "start": 45794.0, + "end": 45795.0, + "probability": 0.7758 + }, + { + "start": 45795.04, + "end": 45796.86, + "probability": 0.7019 + }, + { + "start": 45797.88, + "end": 45798.44, + "probability": 0.8252 + }, + { + "start": 45799.74, + "end": 45800.68, + "probability": 0.7568 + }, + { + "start": 45800.7, + "end": 45802.72, + "probability": 0.7839 + }, + { + "start": 45802.76, + "end": 45804.26, + "probability": 0.5257 + }, + { + "start": 45804.26, + "end": 45805.74, + "probability": 0.716 + }, + { + "start": 45807.08, + "end": 45808.18, + "probability": 0.9773 + }, + { + "start": 45808.88, + "end": 45809.9, + "probability": 0.8499 + }, + { + "start": 45810.52, + "end": 45810.96, + "probability": 0.5555 + }, + { + "start": 45813.2, + "end": 45813.98, + "probability": 0.824 + }, + { + "start": 45815.01, + "end": 45817.4, + "probability": 0.6149 + }, + { + "start": 45817.5, + "end": 45819.18, + "probability": 0.8016 + }, + { + "start": 45819.22, + "end": 45821.34, + "probability": 0.7118 + }, + { + "start": 45822.12, + "end": 45823.16, + "probability": 0.9695 + }, + { + "start": 45823.78, + "end": 45824.42, + "probability": 0.9718 + }, + { + "start": 45826.5, + "end": 45829.44, + "probability": 0.9509 + }, + { + "start": 45830.02, + "end": 45830.42, + "probability": 0.7251 + }, + { + "start": 45830.92, + "end": 45833.8, + "probability": 0.8004 + }, + { + "start": 45833.9, + "end": 45835.26, + "probability": 0.8201 + }, + { + "start": 45836.0, + "end": 45836.44, + "probability": 0.8345 + }, + { + "start": 45837.3, + "end": 45839.68, + "probability": 0.6873 + }, + { + "start": 45840.52, + "end": 45842.94, + "probability": 0.8414 + }, + { + "start": 45844.27, + "end": 45847.88, + "probability": 0.8178 + }, + { + "start": 45848.7, + "end": 45850.36, + "probability": 0.5272 + }, + { + "start": 45853.2, + "end": 45855.46, + "probability": 0.7225 + }, + { + "start": 45855.5, + "end": 45856.7, + "probability": 0.9222 + }, + { + "start": 45856.74, + "end": 45858.45, + "probability": 0.9481 + }, + { + "start": 45858.86, + "end": 45859.78, + "probability": 0.8882 + }, + { + "start": 45861.02, + "end": 45862.8, + "probability": 0.6399 + }, + { + "start": 45867.06, + "end": 45868.32, + "probability": 0.6794 + }, + { + "start": 45870.28, + "end": 45872.1, + "probability": 0.7295 + }, + { + "start": 45873.36, + "end": 45874.14, + "probability": 0.8894 + }, + { + "start": 45875.84, + "end": 45876.66, + "probability": 0.9165 + }, + { + "start": 45877.24, + "end": 45878.26, + "probability": 0.9652 + }, + { + "start": 45879.68, + "end": 45880.36, + "probability": 0.9817 + }, + { + "start": 45881.28, + "end": 45884.08, + "probability": 0.8828 + }, + { + "start": 45885.0, + "end": 45886.92, + "probability": 0.8738 + }, + { + "start": 45887.0, + "end": 45887.88, + "probability": 0.6914 + }, + { + "start": 45888.16, + "end": 45889.86, + "probability": 0.8714 + }, + { + "start": 45890.62, + "end": 45891.18, + "probability": 0.6664 + }, + { + "start": 45892.78, + "end": 45893.78, + "probability": 0.8956 + }, + { + "start": 45896.56, + "end": 45900.28, + "probability": 0.8708 + }, + { + "start": 45902.06, + "end": 45903.0, + "probability": 0.8879 + }, + { + "start": 45903.68, + "end": 45904.16, + "probability": 0.9529 + }, + { + "start": 45906.96, + "end": 45908.86, + "probability": 0.5045 + }, + { + "start": 45909.56, + "end": 45911.08, + "probability": 0.8569 + }, + { + "start": 45911.26, + "end": 45912.3, + "probability": 0.7981 + }, + { + "start": 45912.74, + "end": 45914.68, + "probability": 0.8449 + }, + { + "start": 45914.84, + "end": 45916.38, + "probability": 0.8903 + }, + { + "start": 45917.26, + "end": 45917.58, + "probability": 0.5706 + }, + { + "start": 45919.44, + "end": 45920.12, + "probability": 0.5199 + }, + { + "start": 45920.24, + "end": 45921.34, + "probability": 0.7279 + }, + { + "start": 45921.44, + "end": 45922.54, + "probability": 0.8036 + }, + { + "start": 45922.7, + "end": 45923.68, + "probability": 0.8009 + }, + { + "start": 45923.7, + "end": 45925.78, + "probability": 0.846 + }, + { + "start": 45926.6, + "end": 45927.04, + "probability": 0.9492 + }, + { + "start": 45927.7, + "end": 45930.22, + "probability": 0.638 + }, + { + "start": 45932.18, + "end": 45934.32, + "probability": 0.9691 + }, + { + "start": 45935.6, + "end": 45936.4, + "probability": 0.3242 + }, + { + "start": 45936.52, + "end": 45937.8, + "probability": 0.7585 + }, + { + "start": 45937.86, + "end": 45939.66, + "probability": 0.5923 + }, + { + "start": 45939.7, + "end": 45940.92, + "probability": 0.7905 + }, + { + "start": 45940.92, + "end": 45942.14, + "probability": 0.7677 + }, + { + "start": 45943.02, + "end": 45943.26, + "probability": 0.091 + }, + { + "start": 45943.34, + "end": 45944.26, + "probability": 0.7203 + }, + { + "start": 45944.38, + "end": 45945.46, + "probability": 0.8941 + }, + { + "start": 45945.9, + "end": 45947.0, + "probability": 0.9639 + }, + { + "start": 45947.16, + "end": 45948.02, + "probability": 0.914 + }, + { + "start": 45948.98, + "end": 45949.88, + "probability": 0.816 + }, + { + "start": 45950.62, + "end": 45951.52, + "probability": 0.855 + }, + { + "start": 45951.98, + "end": 45953.1, + "probability": 0.9079 + }, + { + "start": 45953.24, + "end": 45954.4, + "probability": 0.6546 + }, + { + "start": 45955.08, + "end": 45957.22, + "probability": 0.8434 + }, + { + "start": 45957.86, + "end": 45958.66, + "probability": 0.85 + }, + { + "start": 45959.1, + "end": 45960.22, + "probability": 0.6347 + }, + { + "start": 45960.3, + "end": 45961.34, + "probability": 0.7378 + }, + { + "start": 45961.38, + "end": 45962.48, + "probability": 0.7915 + }, + { + "start": 45964.85, + "end": 45965.76, + "probability": 0.2098 + }, + { + "start": 45965.76, + "end": 45966.26, + "probability": 0.294 + }, + { + "start": 45967.02, + "end": 45969.42, + "probability": 0.7417 + }, + { + "start": 45971.66, + "end": 45972.12, + "probability": 0.572 + }, + { + "start": 45972.24, + "end": 45973.46, + "probability": 0.8438 + }, + { + "start": 45973.48, + "end": 45974.66, + "probability": 0.7068 + }, + { + "start": 45974.78, + "end": 45975.92, + "probability": 0.9252 + }, + { + "start": 45976.0, + "end": 45977.3, + "probability": 0.5783 + }, + { + "start": 45978.26, + "end": 45979.72, + "probability": 0.6889 + }, + { + "start": 45979.84, + "end": 45980.86, + "probability": 0.8575 + }, + { + "start": 45980.96, + "end": 45981.96, + "probability": 0.9054 + }, + { + "start": 45982.12, + "end": 45983.98, + "probability": 0.9636 + }, + { + "start": 45984.08, + "end": 45985.82, + "probability": 0.7949 + }, + { + "start": 45985.88, + "end": 45987.8, + "probability": 0.6478 + }, + { + "start": 45988.5, + "end": 45990.24, + "probability": 0.6207 + }, + { + "start": 45990.38, + "end": 45992.02, + "probability": 0.6268 + }, + { + "start": 45992.16, + "end": 45993.34, + "probability": 0.7792 + }, + { + "start": 45993.34, + "end": 45994.26, + "probability": 0.4045 + }, + { + "start": 45994.3, + "end": 45995.56, + "probability": 0.6047 + }, + { + "start": 45997.08, + "end": 45997.38, + "probability": 0.2062 + }, + { + "start": 45997.54, + "end": 45998.46, + "probability": 0.618 + }, + { + "start": 45998.48, + "end": 45999.7, + "probability": 0.6867 + }, + { + "start": 46001.46, + "end": 46003.46, + "probability": 0.9536 + }, + { + "start": 46004.36, + "end": 46005.22, + "probability": 0.9788 + }, + { + "start": 46005.86, + "end": 46006.42, + "probability": 0.7372 + }, + { + "start": 46006.46, + "end": 46007.5, + "probability": 0.897 + }, + { + "start": 46007.54, + "end": 46008.6, + "probability": 0.8788 + }, + { + "start": 46008.64, + "end": 46010.68, + "probability": 0.6514 + }, + { + "start": 46011.5, + "end": 46012.24, + "probability": 0.4305 + }, + { + "start": 46012.24, + "end": 46013.18, + "probability": 0.6177 + }, + { + "start": 46013.28, + "end": 46014.8, + "probability": 0.8201 + }, + { + "start": 46015.48, + "end": 46016.96, + "probability": 0.9147 + }, + { + "start": 46017.6, + "end": 46018.8, + "probability": 0.905 + }, + { + "start": 46018.92, + "end": 46020.44, + "probability": 0.7393 + }, + { + "start": 46020.46, + "end": 46021.16, + "probability": 0.9419 + }, + { + "start": 46021.94, + "end": 46022.9, + "probability": 0.8564 + }, + { + "start": 46023.06, + "end": 46023.48, + "probability": 0.6066 + }, + { + "start": 46023.6, + "end": 46024.62, + "probability": 0.6157 + }, + { + "start": 46024.7, + "end": 46025.98, + "probability": 0.8071 + }, + { + "start": 46026.04, + "end": 46027.1, + "probability": 0.9412 + }, + { + "start": 46027.12, + "end": 46028.44, + "probability": 0.8788 + }, + { + "start": 46028.96, + "end": 46030.34, + "probability": 0.7911 + }, + { + "start": 46030.44, + "end": 46031.6, + "probability": 0.3981 + }, + { + "start": 46031.7, + "end": 46032.72, + "probability": 0.7017 + }, + { + "start": 46034.18, + "end": 46036.26, + "probability": 0.8103 + }, + { + "start": 46036.38, + "end": 46037.88, + "probability": 0.8905 + }, + { + "start": 46037.98, + "end": 46038.6, + "probability": 0.8562 + }, + { + "start": 46039.3, + "end": 46040.04, + "probability": 0.9637 + }, + { + "start": 46040.62, + "end": 46042.62, + "probability": 0.9706 + }, + { + "start": 46043.16, + "end": 46043.84, + "probability": 0.9748 + }, + { + "start": 46043.98, + "end": 46046.38, + "probability": 0.8634 + }, + { + "start": 46046.46, + "end": 46047.68, + "probability": 0.863 + }, + { + "start": 46048.32, + "end": 46049.54, + "probability": 0.8874 + }, + { + "start": 46049.7, + "end": 46050.96, + "probability": 0.5529 + }, + { + "start": 46050.98, + "end": 46052.44, + "probability": 0.823 + }, + { + "start": 46052.72, + "end": 46053.88, + "probability": 0.6219 + }, + { + "start": 46053.92, + "end": 46054.96, + "probability": 0.6414 + }, + { + "start": 46055.38, + "end": 46056.14, + "probability": 0.9549 + }, + { + "start": 46056.78, + "end": 46057.5, + "probability": 0.7116 + }, + { + "start": 46057.64, + "end": 46058.7, + "probability": 0.7352 + }, + { + "start": 46058.78, + "end": 46059.84, + "probability": 0.8058 + }, + { + "start": 46060.0, + "end": 46060.54, + "probability": 0.5968 + }, + { + "start": 46061.06, + "end": 46061.94, + "probability": 0.6422 + }, + { + "start": 46062.06, + "end": 46063.48, + "probability": 0.7646 + }, + { + "start": 46063.58, + "end": 46065.0, + "probability": 0.638 + }, + { + "start": 46065.02, + "end": 46065.74, + "probability": 0.6474 + }, + { + "start": 46065.9, + "end": 46066.36, + "probability": 0.6571 + }, + { + "start": 46066.88, + "end": 46068.46, + "probability": 0.7358 + }, + { + "start": 46069.22, + "end": 46070.58, + "probability": 0.8454 + }, + { + "start": 46071.46, + "end": 46071.86, + "probability": 0.3459 + }, + { + "start": 46072.02, + "end": 46073.04, + "probability": 0.4206 + }, + { + "start": 46073.18, + "end": 46074.2, + "probability": 0.6693 + }, + { + "start": 46074.28, + "end": 46075.14, + "probability": 0.6853 + }, + { + "start": 46075.18, + "end": 46076.74, + "probability": 0.7054 + }, + { + "start": 46076.74, + "end": 46078.4, + "probability": 0.8589 + }, + { + "start": 46078.4, + "end": 46079.68, + "probability": 0.792 + }, + { + "start": 46079.68, + "end": 46080.34, + "probability": 0.807 + }, + { + "start": 46080.98, + "end": 46081.86, + "probability": 0.9583 + }, + { + "start": 46081.98, + "end": 46083.68, + "probability": 0.6676 + }, + { + "start": 46083.82, + "end": 46085.28, + "probability": 0.6036 + }, + { + "start": 46085.32, + "end": 46086.02, + "probability": 0.9749 + }, + { + "start": 46086.7, + "end": 46087.46, + "probability": 0.6946 + }, + { + "start": 46087.6, + "end": 46091.76, + "probability": 0.9482 + }, + { + "start": 46092.46, + "end": 46094.76, + "probability": 0.3517 + }, + { + "start": 46095.18, + "end": 46097.0, + "probability": 0.9694 + }, + { + "start": 46097.04, + "end": 46097.24, + "probability": 0.5107 + }, + { + "start": 46097.84, + "end": 46099.34, + "probability": 0.3669 + }, + { + "start": 46107.84, + "end": 46110.84, + "probability": 0.0328 + }, + { + "start": 46112.14, + "end": 46114.16, + "probability": 0.1024 + }, + { + "start": 46115.12, + "end": 46117.84, + "probability": 0.0076 + }, + { + "start": 46117.84, + "end": 46117.84, + "probability": 0.0608 + }, + { + "start": 46117.84, + "end": 46117.84, + "probability": 0.0367 + }, + { + "start": 46117.84, + "end": 46118.69, + "probability": 0.4288 + }, + { + "start": 46119.15, + "end": 46121.04, + "probability": 0.0905 + }, + { + "start": 46140.5, + "end": 46140.84, + "probability": 0.162 + }, + { + "start": 46149.44, + "end": 46149.66, + "probability": 0.0417 + }, + { + "start": 46149.66, + "end": 46150.0, + "probability": 0.0081 + }, + { + "start": 46180.24, + "end": 46180.3, + "probability": 0.0382 + }, + { + "start": 46180.3, + "end": 46181.38, + "probability": 0.0763 + }, + { + "start": 46181.46, + "end": 46182.82, + "probability": 0.5099 + }, + { + "start": 46184.02, + "end": 46185.58, + "probability": 0.685 + }, + { + "start": 46185.78, + "end": 46188.38, + "probability": 0.9803 + }, + { + "start": 46188.46, + "end": 46189.92, + "probability": 0.8192 + }, + { + "start": 46190.08, + "end": 46191.42, + "probability": 0.8889 + }, + { + "start": 46191.6, + "end": 46192.26, + "probability": 0.8904 + }, + { + "start": 46205.62, + "end": 46207.22, + "probability": 0.6328 + }, + { + "start": 46207.64, + "end": 46208.74, + "probability": 0.737 + }, + { + "start": 46209.78, + "end": 46211.54, + "probability": 0.9292 + }, + { + "start": 46211.7, + "end": 46213.38, + "probability": 0.9811 + }, + { + "start": 46213.48, + "end": 46216.68, + "probability": 0.9609 + }, + { + "start": 46216.99, + "end": 46221.08, + "probability": 0.4276 + }, + { + "start": 46221.1, + "end": 46223.36, + "probability": 0.2084 + }, + { + "start": 46224.3, + "end": 46225.58, + "probability": 0.9238 + }, + { + "start": 46226.88, + "end": 46230.78, + "probability": 0.7534 + }, + { + "start": 46231.04, + "end": 46231.04, + "probability": 0.2615 + }, + { + "start": 46231.04, + "end": 46232.88, + "probability": 0.9941 + }, + { + "start": 46233.9, + "end": 46239.66, + "probability": 0.9944 + }, + { + "start": 46240.26, + "end": 46244.98, + "probability": 0.9534 + }, + { + "start": 46245.74, + "end": 46247.86, + "probability": 0.9318 + }, + { + "start": 46249.04, + "end": 46252.02, + "probability": 0.6312 + }, + { + "start": 46252.06, + "end": 46252.7, + "probability": 0.9382 + }, + { + "start": 46253.58, + "end": 46257.88, + "probability": 0.7281 + }, + { + "start": 46258.82, + "end": 46263.16, + "probability": 0.9833 + }, + { + "start": 46264.74, + "end": 46269.0, + "probability": 0.7804 + }, + { + "start": 46269.2, + "end": 46272.62, + "probability": 0.8987 + }, + { + "start": 46272.66, + "end": 46273.44, + "probability": 0.9658 + }, + { + "start": 46273.44, + "end": 46274.78, + "probability": 0.7584 + }, + { + "start": 46275.72, + "end": 46278.8, + "probability": 0.9265 + }, + { + "start": 46279.46, + "end": 46282.6, + "probability": 0.9788 + }, + { + "start": 46282.6, + "end": 46286.02, + "probability": 0.9755 + }, + { + "start": 46286.96, + "end": 46290.8, + "probability": 0.941 + }, + { + "start": 46291.48, + "end": 46292.46, + "probability": 0.6423 + }, + { + "start": 46292.5, + "end": 46292.96, + "probability": 0.6765 + }, + { + "start": 46293.04, + "end": 46298.68, + "probability": 0.9846 + }, + { + "start": 46299.64, + "end": 46302.76, + "probability": 0.9955 + }, + { + "start": 46303.3, + "end": 46304.8, + "probability": 0.9921 + }, + { + "start": 46305.66, + "end": 46311.4, + "probability": 0.9288 + }, + { + "start": 46312.24, + "end": 46317.64, + "probability": 0.9565 + }, + { + "start": 46317.64, + "end": 46322.08, + "probability": 0.9953 + }, + { + "start": 46322.72, + "end": 46324.62, + "probability": 0.7741 + }, + { + "start": 46325.38, + "end": 46330.58, + "probability": 0.9971 + }, + { + "start": 46331.1, + "end": 46333.74, + "probability": 0.9783 + }, + { + "start": 46334.24, + "end": 46335.08, + "probability": 0.6226 + }, + { + "start": 46337.0, + "end": 46339.66, + "probability": 0.9629 + }, + { + "start": 46341.2, + "end": 46346.78, + "probability": 0.9501 + }, + { + "start": 46347.48, + "end": 46349.42, + "probability": 0.9663 + }, + { + "start": 46365.92, + "end": 46367.24, + "probability": 0.4528 + }, + { + "start": 46368.06, + "end": 46368.5, + "probability": 0.6922 + }, + { + "start": 46368.92, + "end": 46371.44, + "probability": 0.6186 + }, + { + "start": 46372.46, + "end": 46374.46, + "probability": 0.8103 + }, + { + "start": 46376.06, + "end": 46382.66, + "probability": 0.9807 + }, + { + "start": 46382.78, + "end": 46382.88, + "probability": 0.7631 + }, + { + "start": 46383.44, + "end": 46383.9, + "probability": 0.5869 + }, + { + "start": 46384.72, + "end": 46385.2, + "probability": 0.9646 + }, + { + "start": 46385.6, + "end": 46387.04, + "probability": 0.671 + }, + { + "start": 46387.28, + "end": 46390.53, + "probability": 0.7094 + }, + { + "start": 46390.9, + "end": 46391.66, + "probability": 0.0009 + }, + { + "start": 46391.76, + "end": 46392.94, + "probability": 0.9392 + }, + { + "start": 46393.22, + "end": 46399.28, + "probability": 0.9811 + }, + { + "start": 46399.68, + "end": 46403.64, + "probability": 0.998 + }, + { + "start": 46403.64, + "end": 46407.34, + "probability": 0.9985 + }, + { + "start": 46407.84, + "end": 46410.88, + "probability": 0.9982 + }, + { + "start": 46411.3, + "end": 46411.72, + "probability": 0.8463 + }, + { + "start": 46412.36, + "end": 46412.9, + "probability": 0.0597 + }, + { + "start": 46413.06, + "end": 46418.18, + "probability": 0.7069 + }, + { + "start": 46418.32, + "end": 46419.92, + "probability": 0.991 + }, + { + "start": 46420.36, + "end": 46424.18, + "probability": 0.9904 + }, + { + "start": 46424.6, + "end": 46428.24, + "probability": 0.9887 + }, + { + "start": 46428.32, + "end": 46430.0, + "probability": 0.4214 + }, + { + "start": 46431.94, + "end": 46435.22, + "probability": 0.8334 + }, + { + "start": 46435.46, + "end": 46437.34, + "probability": 0.6628 + }, + { + "start": 46437.54, + "end": 46438.82, + "probability": 0.8359 + }, + { + "start": 46439.0, + "end": 46441.64, + "probability": 0.6092 + }, + { + "start": 46441.96, + "end": 46444.9, + "probability": 0.949 + }, + { + "start": 46445.14, + "end": 46447.92, + "probability": 0.7526 + }, + { + "start": 46447.94, + "end": 46448.98, + "probability": 0.9576 + }, + { + "start": 46449.0, + "end": 46449.16, + "probability": 0.0132 + }, + { + "start": 46449.16, + "end": 46449.24, + "probability": 0.3245 + }, + { + "start": 46449.24, + "end": 46451.58, + "probability": 0.7997 + }, + { + "start": 46452.14, + "end": 46453.26, + "probability": 0.5786 + }, + { + "start": 46453.76, + "end": 46455.56, + "probability": 0.9175 + }, + { + "start": 46455.66, + "end": 46458.1, + "probability": 0.6466 + }, + { + "start": 46458.18, + "end": 46458.5, + "probability": 0.5194 + }, + { + "start": 46458.58, + "end": 46459.28, + "probability": 0.8172 + }, + { + "start": 46459.32, + "end": 46461.02, + "probability": 0.6324 + }, + { + "start": 46461.18, + "end": 46462.12, + "probability": 0.8147 + }, + { + "start": 46462.14, + "end": 46462.98, + "probability": 0.4795 + }, + { + "start": 46463.04, + "end": 46466.42, + "probability": 0.8866 + }, + { + "start": 46466.54, + "end": 46466.88, + "probability": 0.6136 + }, + { + "start": 46466.9, + "end": 46468.24, + "probability": 0.7073 + }, + { + "start": 46468.38, + "end": 46471.04, + "probability": 0.3317 + }, + { + "start": 46471.64, + "end": 46473.14, + "probability": 0.7917 + }, + { + "start": 46473.44, + "end": 46475.12, + "probability": 0.9971 + }, + { + "start": 46475.58, + "end": 46477.8, + "probability": 0.8039 + }, + { + "start": 46478.22, + "end": 46481.06, + "probability": 0.981 + }, + { + "start": 46481.3, + "end": 46481.66, + "probability": 0.4586 + }, + { + "start": 46481.66, + "end": 46484.14, + "probability": 0.3521 + }, + { + "start": 46484.62, + "end": 46486.38, + "probability": 0.8889 + }, + { + "start": 46486.46, + "end": 46488.83, + "probability": 0.9814 + }, + { + "start": 46489.66, + "end": 46491.67, + "probability": 0.6123 + }, + { + "start": 46492.58, + "end": 46494.0, + "probability": 0.9302 + }, + { + "start": 46494.0, + "end": 46494.07, + "probability": 0.0199 + }, + { + "start": 46494.38, + "end": 46496.84, + "probability": 0.8638 + }, + { + "start": 46498.68, + "end": 46500.94, + "probability": 0.2275 + }, + { + "start": 46501.94, + "end": 46503.9, + "probability": 0.2851 + }, + { + "start": 46503.96, + "end": 46506.6, + "probability": 0.9861 + }, + { + "start": 46506.78, + "end": 46508.84, + "probability": 0.9714 + }, + { + "start": 46509.2, + "end": 46510.6, + "probability": 0.0152 + }, + { + "start": 46522.6, + "end": 46522.88, + "probability": 0.1264 + }, + { + "start": 46522.88, + "end": 46522.98, + "probability": 0.451 + }, + { + "start": 46523.28, + "end": 46524.48, + "probability": 0.826 + }, + { + "start": 46524.62, + "end": 46525.91, + "probability": 0.9958 + }, + { + "start": 46526.74, + "end": 46527.72, + "probability": 0.6979 + }, + { + "start": 46528.52, + "end": 46529.49, + "probability": 0.9382 + }, + { + "start": 46531.04, + "end": 46531.44, + "probability": 0.8125 + }, + { + "start": 46531.56, + "end": 46535.89, + "probability": 0.9589 + }, + { + "start": 46537.04, + "end": 46540.92, + "probability": 0.9375 + }, + { + "start": 46541.84, + "end": 46543.16, + "probability": 0.8946 + }, + { + "start": 46543.22, + "end": 46545.28, + "probability": 0.7912 + }, + { + "start": 46545.96, + "end": 46548.7, + "probability": 0.8785 + }, + { + "start": 46549.88, + "end": 46550.7, + "probability": 0.9624 + }, + { + "start": 46551.7, + "end": 46553.8, + "probability": 0.9288 + }, + { + "start": 46554.12, + "end": 46556.92, + "probability": 0.9961 + }, + { + "start": 46557.88, + "end": 46560.9, + "probability": 0.9643 + }, + { + "start": 46562.14, + "end": 46563.82, + "probability": 0.8708 + }, + { + "start": 46564.42, + "end": 46565.2, + "probability": 0.9641 + }, + { + "start": 46565.32, + "end": 46566.04, + "probability": 0.8033 + }, + { + "start": 46566.86, + "end": 46567.8, + "probability": 0.7425 + }, + { + "start": 46568.08, + "end": 46570.38, + "probability": 0.9705 + }, + { + "start": 46570.98, + "end": 46574.2, + "probability": 0.8163 + }, + { + "start": 46576.02, + "end": 46577.92, + "probability": 0.9927 + }, + { + "start": 46578.72, + "end": 46580.94, + "probability": 0.9964 + }, + { + "start": 46581.44, + "end": 46583.12, + "probability": 0.9631 + }, + { + "start": 46584.12, + "end": 46585.84, + "probability": 0.7563 + }, + { + "start": 46587.08, + "end": 46588.54, + "probability": 0.9355 + }, + { + "start": 46588.98, + "end": 46593.86, + "probability": 0.9879 + }, + { + "start": 46594.34, + "end": 46596.6, + "probability": 0.9735 + }, + { + "start": 46598.76, + "end": 46603.95, + "probability": 0.9936 + }, + { + "start": 46606.06, + "end": 46608.96, + "probability": 0.9948 + }, + { + "start": 46609.68, + "end": 46610.38, + "probability": 0.656 + }, + { + "start": 46610.46, + "end": 46612.6, + "probability": 0.8047 + }, + { + "start": 46613.6, + "end": 46613.86, + "probability": 0.9281 + }, + { + "start": 46617.38, + "end": 46617.96, + "probability": 0.7538 + }, + { + "start": 46619.68, + "end": 46621.96, + "probability": 0.6109 + }, + { + "start": 46623.62, + "end": 46628.6, + "probability": 0.9883 + }, + { + "start": 46628.74, + "end": 46629.28, + "probability": 0.9834 + }, + { + "start": 46629.42, + "end": 46630.76, + "probability": 0.9991 + }, + { + "start": 46631.62, + "end": 46633.04, + "probability": 0.9814 + }, + { + "start": 46634.0, + "end": 46638.64, + "probability": 0.9956 + }, + { + "start": 46639.86, + "end": 46641.28, + "probability": 0.9993 + }, + { + "start": 46641.88, + "end": 46643.66, + "probability": 0.992 + }, + { + "start": 46644.22, + "end": 46648.32, + "probability": 0.9766 + }, + { + "start": 46649.22, + "end": 46651.72, + "probability": 0.9946 + }, + { + "start": 46651.72, + "end": 46655.8, + "probability": 0.9606 + }, + { + "start": 46658.34, + "end": 46660.06, + "probability": 0.9151 + }, + { + "start": 46660.88, + "end": 46663.3, + "probability": 0.9894 + }, + { + "start": 46664.7, + "end": 46665.17, + "probability": 0.958 + }, + { + "start": 46665.78, + "end": 46666.8, + "probability": 0.5882 + }, + { + "start": 46666.96, + "end": 46667.78, + "probability": 0.5174 + }, + { + "start": 46667.78, + "end": 46671.14, + "probability": 0.8262 + }, + { + "start": 46672.2, + "end": 46673.7, + "probability": 0.8656 + }, + { + "start": 46674.36, + "end": 46676.22, + "probability": 0.984 + }, + { + "start": 46676.82, + "end": 46680.6, + "probability": 0.99 + }, + { + "start": 46683.24, + "end": 46684.96, + "probability": 0.9683 + }, + { + "start": 46685.48, + "end": 46689.32, + "probability": 0.9934 + }, + { + "start": 46690.9, + "end": 46693.7, + "probability": 0.9878 + }, + { + "start": 46694.26, + "end": 46697.88, + "probability": 0.9958 + }, + { + "start": 46699.42, + "end": 46702.6, + "probability": 0.818 + }, + { + "start": 46703.38, + "end": 46705.3, + "probability": 0.9908 + }, + { + "start": 46717.8, + "end": 46718.86, + "probability": 0.5331 + }, + { + "start": 46718.86, + "end": 46718.86, + "probability": 0.1196 + }, + { + "start": 46718.86, + "end": 46718.86, + "probability": 0.1919 + }, + { + "start": 46718.86, + "end": 46718.86, + "probability": 0.1029 + }, + { + "start": 46718.86, + "end": 46721.72, + "probability": 0.6064 + }, + { + "start": 46721.98, + "end": 46722.34, + "probability": 0.5658 + }, + { + "start": 46723.4, + "end": 46726.48, + "probability": 0.951 + }, + { + "start": 46726.86, + "end": 46728.52, + "probability": 0.7206 + }, + { + "start": 46730.08, + "end": 46732.72, + "probability": 0.9568 + }, + { + "start": 46733.44, + "end": 46733.7, + "probability": 0.7858 + }, + { + "start": 46734.46, + "end": 46734.68, + "probability": 0.7921 + }, + { + "start": 46735.66, + "end": 46737.0, + "probability": 0.961 + }, + { + "start": 46738.62, + "end": 46739.46, + "probability": 0.8733 + }, + { + "start": 46741.54, + "end": 46742.18, + "probability": 0.873 + }, + { + "start": 46743.12, + "end": 46744.8, + "probability": 0.9684 + }, + { + "start": 46746.32, + "end": 46747.46, + "probability": 0.5245 + }, + { + "start": 46748.16, + "end": 46750.4, + "probability": 0.9963 + }, + { + "start": 46751.48, + "end": 46753.56, + "probability": 0.7353 + }, + { + "start": 46754.26, + "end": 46757.74, + "probability": 0.7988 + }, + { + "start": 46758.3, + "end": 46762.84, + "probability": 0.9791 + }, + { + "start": 46764.26, + "end": 46765.27, + "probability": 0.8154 + }, + { + "start": 46766.02, + "end": 46768.72, + "probability": 0.9902 + }, + { + "start": 46769.56, + "end": 46770.58, + "probability": 0.969 + }, + { + "start": 46771.36, + "end": 46772.75, + "probability": 0.999 + }, + { + "start": 46773.16, + "end": 46778.06, + "probability": 0.9902 + }, + { + "start": 46778.64, + "end": 46779.92, + "probability": 0.779 + }, + { + "start": 46780.56, + "end": 46781.58, + "probability": 0.9949 + }, + { + "start": 46783.3, + "end": 46785.06, + "probability": 0.9865 + }, + { + "start": 46785.76, + "end": 46786.52, + "probability": 0.8505 + }, + { + "start": 46787.36, + "end": 46790.48, + "probability": 0.9575 + }, + { + "start": 46791.58, + "end": 46793.94, + "probability": 0.9951 + }, + { + "start": 46794.68, + "end": 46797.12, + "probability": 0.8982 + }, + { + "start": 46798.0, + "end": 46798.36, + "probability": 0.7501 + }, + { + "start": 46800.02, + "end": 46802.68, + "probability": 0.9866 + }, + { + "start": 46803.74, + "end": 46806.36, + "probability": 0.9004 + }, + { + "start": 46807.24, + "end": 46810.82, + "probability": 0.9736 + }, + { + "start": 46811.34, + "end": 46812.34, + "probability": 0.7673 + }, + { + "start": 46813.1, + "end": 46813.54, + "probability": 0.6618 + }, + { + "start": 46814.08, + "end": 46815.04, + "probability": 0.8821 + }, + { + "start": 46817.16, + "end": 46820.9, + "probability": 0.9828 + }, + { + "start": 46822.74, + "end": 46825.4, + "probability": 0.999 + }, + { + "start": 46825.68, + "end": 46827.5, + "probability": 0.9944 + }, + { + "start": 46828.48, + "end": 46831.08, + "probability": 0.978 + }, + { + "start": 46831.44, + "end": 46832.56, + "probability": 0.6803 + }, + { + "start": 46832.66, + "end": 46833.88, + "probability": 0.937 + }, + { + "start": 46834.26, + "end": 46835.02, + "probability": 0.971 + }, + { + "start": 46835.46, + "end": 46840.44, + "probability": 0.9988 + }, + { + "start": 46841.04, + "end": 46843.12, + "probability": 0.9996 + }, + { + "start": 46844.46, + "end": 46846.56, + "probability": 0.8706 + }, + { + "start": 46847.22, + "end": 46852.74, + "probability": 0.9979 + }, + { + "start": 46853.34, + "end": 46854.22, + "probability": 0.4831 + }, + { + "start": 46854.8, + "end": 46855.04, + "probability": 0.8761 + }, + { + "start": 46856.62, + "end": 46858.43, + "probability": 0.5307 + }, + { + "start": 46859.92, + "end": 46861.96, + "probability": 0.4711 + }, + { + "start": 46862.76, + "end": 46865.52, + "probability": 0.8189 + }, + { + "start": 46867.28, + "end": 46867.64, + "probability": 0.9201 + }, + { + "start": 46867.76, + "end": 46871.42, + "probability": 0.3045 + }, + { + "start": 46872.24, + "end": 46878.3, + "probability": 0.5007 + }, + { + "start": 46878.42, + "end": 46880.66, + "probability": 0.9612 + }, + { + "start": 46880.7, + "end": 46882.34, + "probability": 0.9211 + }, + { + "start": 46884.08, + "end": 46886.38, + "probability": 0.9985 + }, + { + "start": 46886.98, + "end": 46889.58, + "probability": 0.994 + }, + { + "start": 46890.08, + "end": 46895.54, + "probability": 0.9834 + }, + { + "start": 46895.82, + "end": 46896.24, + "probability": 0.8389 + }, + { + "start": 46896.87, + "end": 46899.68, + "probability": 0.813 + }, + { + "start": 46900.48, + "end": 46904.27, + "probability": 0.9287 + }, + { + "start": 46904.66, + "end": 46905.52, + "probability": 0.928 + }, + { + "start": 46905.9, + "end": 46907.16, + "probability": 0.9901 + }, + { + "start": 46907.3, + "end": 46908.4, + "probability": 0.8183 + }, + { + "start": 46909.0, + "end": 46910.36, + "probability": 0.9489 + }, + { + "start": 46911.14, + "end": 46914.54, + "probability": 0.9941 + }, + { + "start": 46915.32, + "end": 46917.18, + "probability": 0.9973 + }, + { + "start": 46917.88, + "end": 46919.56, + "probability": 0.901 + }, + { + "start": 46921.32, + "end": 46925.48, + "probability": 0.9453 + }, + { + "start": 46926.58, + "end": 46932.42, + "probability": 0.9738 + }, + { + "start": 46932.7, + "end": 46932.98, + "probability": 0.9464 + }, + { + "start": 46934.08, + "end": 46934.74, + "probability": 0.9883 + }, + { + "start": 46935.44, + "end": 46939.08, + "probability": 0.9165 + }, + { + "start": 46940.0, + "end": 46942.54, + "probability": 0.9976 + }, + { + "start": 46943.42, + "end": 46947.68, + "probability": 0.9976 + }, + { + "start": 46947.68, + "end": 46951.3, + "probability": 0.9319 + }, + { + "start": 46952.06, + "end": 46953.68, + "probability": 0.9987 + }, + { + "start": 46954.08, + "end": 46954.24, + "probability": 0.6363 + }, + { + "start": 46956.52, + "end": 46957.52, + "probability": 0.9858 + }, + { + "start": 46957.84, + "end": 46961.7, + "probability": 0.98 + }, + { + "start": 46962.04, + "end": 46962.68, + "probability": 0.7852 + }, + { + "start": 46964.72, + "end": 46965.3, + "probability": 0.9056 + }, + { + "start": 46965.82, + "end": 46970.56, + "probability": 0.9633 + }, + { + "start": 46971.08, + "end": 46975.22, + "probability": 0.9852 + }, + { + "start": 46975.64, + "end": 46977.2, + "probability": 0.8331 + }, + { + "start": 46978.56, + "end": 46981.22, + "probability": 0.9391 + }, + { + "start": 46982.98, + "end": 46986.28, + "probability": 0.9896 + }, + { + "start": 46986.64, + "end": 46987.63, + "probability": 0.74 + }, + { + "start": 46988.66, + "end": 46989.54, + "probability": 0.8493 + }, + { + "start": 46990.1, + "end": 46991.54, + "probability": 0.9771 + }, + { + "start": 46992.16, + "end": 46992.86, + "probability": 0.8237 + }, + { + "start": 46993.56, + "end": 46994.24, + "probability": 0.8604 + }, + { + "start": 46994.96, + "end": 46997.36, + "probability": 0.9685 + }, + { + "start": 46998.18, + "end": 47000.56, + "probability": 0.9665 + }, + { + "start": 47001.06, + "end": 47006.06, + "probability": 0.9987 + }, + { + "start": 47006.62, + "end": 47007.7, + "probability": 0.9039 + }, + { + "start": 47009.96, + "end": 47013.02, + "probability": 0.9889 + }, + { + "start": 47013.46, + "end": 47017.0, + "probability": 0.9844 + }, + { + "start": 47017.34, + "end": 47020.42, + "probability": 0.9803 + }, + { + "start": 47021.4, + "end": 47023.76, + "probability": 0.998 + }, + { + "start": 47023.76, + "end": 47025.62, + "probability": 0.9985 + }, + { + "start": 47026.46, + "end": 47028.06, + "probability": 0.82 + }, + { + "start": 47028.54, + "end": 47029.71, + "probability": 0.4987 + }, + { + "start": 47030.38, + "end": 47033.4, + "probability": 0.9176 + }, + { + "start": 47033.98, + "end": 47034.78, + "probability": 0.8301 + }, + { + "start": 47035.9, + "end": 47036.2, + "probability": 0.1047 + }, + { + "start": 47036.3, + "end": 47036.9, + "probability": 0.4361 + }, + { + "start": 47038.8, + "end": 47040.26, + "probability": 0.7879 + }, + { + "start": 47040.4, + "end": 47044.02, + "probability": 0.9977 + }, + { + "start": 47044.02, + "end": 47048.56, + "probability": 0.9965 + }, + { + "start": 47051.98, + "end": 47054.88, + "probability": 0.9966 + }, + { + "start": 47055.34, + "end": 47058.42, + "probability": 0.9897 + }, + { + "start": 47060.22, + "end": 47065.34, + "probability": 0.9819 + }, + { + "start": 47065.92, + "end": 47068.7, + "probability": 0.7825 + }, + { + "start": 47069.44, + "end": 47073.02, + "probability": 0.9918 + }, + { + "start": 47073.9, + "end": 47078.7, + "probability": 0.9521 + }, + { + "start": 47090.2, + "end": 47090.4, + "probability": 0.4988 + }, + { + "start": 47090.4, + "end": 47091.36, + "probability": 0.7565 + }, + { + "start": 47092.2, + "end": 47092.76, + "probability": 0.6352 + }, + { + "start": 47094.16, + "end": 47097.94, + "probability": 0.9653 + }, + { + "start": 47099.32, + "end": 47100.34, + "probability": 0.8679 + }, + { + "start": 47101.18, + "end": 47102.02, + "probability": 0.6871 + }, + { + "start": 47102.48, + "end": 47104.42, + "probability": 0.9928 + }, + { + "start": 47105.84, + "end": 47108.68, + "probability": 0.9855 + }, + { + "start": 47111.06, + "end": 47111.72, + "probability": 0.8886 + }, + { + "start": 47115.98, + "end": 47116.5, + "probability": 0.8357 + }, + { + "start": 47117.2, + "end": 47118.24, + "probability": 0.9151 + }, + { + "start": 47119.16, + "end": 47125.68, + "probability": 0.9901 + }, + { + "start": 47135.8, + "end": 47137.5, + "probability": 0.0373 + }, + { + "start": 47137.5, + "end": 47139.52, + "probability": 0.0615 + }, + { + "start": 47167.52, + "end": 47169.46, + "probability": 0.9465 + }, + { + "start": 47169.64, + "end": 47173.52, + "probability": 0.9646 + }, + { + "start": 47173.66, + "end": 47174.3, + "probability": 0.5149 + }, + { + "start": 47174.94, + "end": 47176.25, + "probability": 0.9935 + }, + { + "start": 47177.84, + "end": 47182.48, + "probability": 0.9861 + }, + { + "start": 47183.26, + "end": 47183.34, + "probability": 0.6523 + }, + { + "start": 47183.48, + "end": 47185.6, + "probability": 0.9913 + }, + { + "start": 47185.7, + "end": 47188.14, + "probability": 0.9442 + }, + { + "start": 47189.4, + "end": 47192.48, + "probability": 0.9842 + }, + { + "start": 47193.56, + "end": 47197.0, + "probability": 0.9972 + }, + { + "start": 47197.48, + "end": 47198.58, + "probability": 0.7128 + }, + { + "start": 47199.22, + "end": 47203.56, + "probability": 0.9951 + }, + { + "start": 47204.9, + "end": 47207.12, + "probability": 0.9958 + }, + { + "start": 47207.46, + "end": 47209.52, + "probability": 0.8947 + }, + { + "start": 47210.78, + "end": 47216.54, + "probability": 0.9951 + }, + { + "start": 47216.62, + "end": 47217.16, + "probability": 0.5202 + }, + { + "start": 47217.3, + "end": 47221.18, + "probability": 0.9949 + }, + { + "start": 47223.28, + "end": 47225.54, + "probability": 0.9958 + }, + { + "start": 47225.72, + "end": 47228.16, + "probability": 0.9932 + }, + { + "start": 47228.16, + "end": 47231.4, + "probability": 0.9765 + }, + { + "start": 47232.08, + "end": 47232.98, + "probability": 0.7013 + }, + { + "start": 47233.52, + "end": 47234.24, + "probability": 0.0592 + }, + { + "start": 47234.88, + "end": 47235.24, + "probability": 0.0969 + }, + { + "start": 47240.88, + "end": 47240.98, + "probability": 0.0233 + }, + { + "start": 47240.98, + "end": 47241.78, + "probability": 0.9941 + }, + { + "start": 47242.18, + "end": 47245.7, + "probability": 0.9912 + }, + { + "start": 47247.26, + "end": 47249.18, + "probability": 0.828 + }, + { + "start": 47250.02, + "end": 47251.0, + "probability": 0.9293 + }, + { + "start": 47252.14, + "end": 47254.5, + "probability": 0.9955 + }, + { + "start": 47255.04, + "end": 47257.48, + "probability": 0.993 + }, + { + "start": 47258.14, + "end": 47261.38, + "probability": 0.9969 + }, + { + "start": 47261.98, + "end": 47264.02, + "probability": 0.7737 + }, + { + "start": 47264.54, + "end": 47267.64, + "probability": 0.993 + }, + { + "start": 47268.5, + "end": 47271.32, + "probability": 0.9622 + }, + { + "start": 47273.18, + "end": 47274.26, + "probability": 0.8981 + }, + { + "start": 47274.56, + "end": 47276.63, + "probability": 0.9827 + }, + { + "start": 47277.02, + "end": 47278.84, + "probability": 0.8156 + }, + { + "start": 47278.9, + "end": 47279.78, + "probability": 0.9528 + }, + { + "start": 47280.42, + "end": 47284.16, + "probability": 0.9761 + }, + { + "start": 47284.82, + "end": 47290.1, + "probability": 0.9979 + }, + { + "start": 47291.16, + "end": 47293.5, + "probability": 0.9879 + }, + { + "start": 47294.84, + "end": 47295.46, + "probability": 0.8796 + }, + { + "start": 47296.08, + "end": 47299.2, + "probability": 0.9791 + }, + { + "start": 47299.34, + "end": 47302.7, + "probability": 0.8258 + }, + { + "start": 47304.4, + "end": 47306.22, + "probability": 0.9624 + }, + { + "start": 47306.52, + "end": 47307.46, + "probability": 0.5604 + }, + { + "start": 47307.96, + "end": 47309.94, + "probability": 0.9912 + }, + { + "start": 47310.7, + "end": 47313.34, + "probability": 0.98 + }, + { + "start": 47313.48, + "end": 47316.68, + "probability": 0.9967 + }, + { + "start": 47318.12, + "end": 47321.9, + "probability": 0.9958 + }, + { + "start": 47322.78, + "end": 47326.36, + "probability": 0.9964 + }, + { + "start": 47326.36, + "end": 47328.8, + "probability": 0.9886 + }, + { + "start": 47330.74, + "end": 47333.24, + "probability": 0.9572 + }, + { + "start": 47333.56, + "end": 47335.18, + "probability": 0.9819 + }, + { + "start": 47336.28, + "end": 47341.64, + "probability": 0.8982 + }, + { + "start": 47341.74, + "end": 47342.84, + "probability": 0.6212 + }, + { + "start": 47343.06, + "end": 47343.84, + "probability": 0.6906 + }, + { + "start": 47345.68, + "end": 47348.1, + "probability": 0.885 + }, + { + "start": 47348.2, + "end": 47353.54, + "probability": 0.7611 + }, + { + "start": 47354.26, + "end": 47355.62, + "probability": 0.9945 + }, + { + "start": 47356.52, + "end": 47358.26, + "probability": 0.9871 + }, + { + "start": 47358.44, + "end": 47364.7, + "probability": 0.9774 + }, + { + "start": 47365.22, + "end": 47365.83, + "probability": 0.9795 + }, + { + "start": 47366.82, + "end": 47368.08, + "probability": 0.9725 + }, + { + "start": 47368.54, + "end": 47369.16, + "probability": 0.9963 + }, + { + "start": 47369.6, + "end": 47370.42, + "probability": 0.9802 + }, + { + "start": 47370.86, + "end": 47374.22, + "probability": 0.9896 + }, + { + "start": 47375.0, + "end": 47379.52, + "probability": 0.9996 + }, + { + "start": 47380.3, + "end": 47384.3, + "probability": 0.6644 + }, + { + "start": 47384.96, + "end": 47389.54, + "probability": 0.987 + }, + { + "start": 47390.1, + "end": 47391.82, + "probability": 0.905 + }, + { + "start": 47392.86, + "end": 47395.38, + "probability": 0.9941 + }, + { + "start": 47396.08, + "end": 47396.64, + "probability": 0.7444 + }, + { + "start": 47397.28, + "end": 47402.86, + "probability": 0.9603 + }, + { + "start": 47403.52, + "end": 47406.82, + "probability": 0.8326 + }, + { + "start": 47408.7, + "end": 47409.63, + "probability": 0.9841 + }, + { + "start": 47410.24, + "end": 47411.55, + "probability": 0.9641 + }, + { + "start": 47412.38, + "end": 47415.1, + "probability": 0.9755 + }, + { + "start": 47415.76, + "end": 47416.98, + "probability": 0.9519 + }, + { + "start": 47417.7, + "end": 47419.56, + "probability": 0.9955 + }, + { + "start": 47419.68, + "end": 47421.4, + "probability": 0.888 + }, + { + "start": 47422.06, + "end": 47423.18, + "probability": 0.9366 + }, + { + "start": 47423.86, + "end": 47426.24, + "probability": 0.9949 + }, + { + "start": 47427.26, + "end": 47428.96, + "probability": 0.9878 + }, + { + "start": 47429.18, + "end": 47434.6, + "probability": 0.9915 + }, + { + "start": 47435.64, + "end": 47439.94, + "probability": 0.9946 + }, + { + "start": 47440.94, + "end": 47443.08, + "probability": 0.9912 + }, + { + "start": 47443.64, + "end": 47447.32, + "probability": 0.8923 + }, + { + "start": 47448.76, + "end": 47450.4, + "probability": 0.7893 + }, + { + "start": 47451.9, + "end": 47453.14, + "probability": 0.9531 + }, + { + "start": 47453.66, + "end": 47457.36, + "probability": 0.9843 + }, + { + "start": 47458.54, + "end": 47459.78, + "probability": 0.7141 + }, + { + "start": 47459.78, + "end": 47461.14, + "probability": 0.8364 + }, + { + "start": 47462.9, + "end": 47465.9, + "probability": 0.9731 + }, + { + "start": 47466.48, + "end": 47466.84, + "probability": 0.9761 + }, + { + "start": 47469.88, + "end": 47470.54, + "probability": 0.8278 + }, + { + "start": 47470.78, + "end": 47473.62, + "probability": 0.7693 + }, + { + "start": 47496.58, + "end": 47498.34, + "probability": 0.661 + }, + { + "start": 47498.82, + "end": 47499.36, + "probability": 0.6584 + }, + { + "start": 47500.88, + "end": 47503.26, + "probability": 0.6728 + }, + { + "start": 47504.34, + "end": 47505.26, + "probability": 0.9675 + }, + { + "start": 47505.34, + "end": 47508.08, + "probability": 0.9044 + }, + { + "start": 47508.16, + "end": 47508.8, + "probability": 0.2137 + }, + { + "start": 47512.43, + "end": 47516.18, + "probability": 0.967 + }, + { + "start": 47516.83, + "end": 47520.01, + "probability": 0.988 + }, + { + "start": 47520.6, + "end": 47521.52, + "probability": 0.9219 + }, + { + "start": 47522.05, + "end": 47523.04, + "probability": 0.9914 + }, + { + "start": 47523.79, + "end": 47524.49, + "probability": 0.981 + }, + { + "start": 47524.87, + "end": 47525.59, + "probability": 0.9777 + }, + { + "start": 47526.25, + "end": 47527.1, + "probability": 0.9618 + }, + { + "start": 47527.76, + "end": 47528.63, + "probability": 0.9982 + }, + { + "start": 47529.93, + "end": 47530.37, + "probability": 0.5385 + }, + { + "start": 47531.2, + "end": 47533.47, + "probability": 0.9954 + }, + { + "start": 47534.27, + "end": 47536.71, + "probability": 0.9978 + }, + { + "start": 47537.49, + "end": 47539.83, + "probability": 0.9871 + }, + { + "start": 47540.79, + "end": 47541.69, + "probability": 0.9971 + }, + { + "start": 47543.35, + "end": 47544.43, + "probability": 0.994 + }, + { + "start": 47544.55, + "end": 47545.64, + "probability": 0.9956 + }, + { + "start": 47545.97, + "end": 47546.69, + "probability": 0.8856 + }, + { + "start": 47546.87, + "end": 47547.49, + "probability": 0.9715 + }, + { + "start": 47547.59, + "end": 47548.23, + "probability": 0.9506 + }, + { + "start": 47548.99, + "end": 47550.47, + "probability": 0.9807 + }, + { + "start": 47551.19, + "end": 47554.15, + "probability": 0.9966 + }, + { + "start": 47554.15, + "end": 47556.53, + "probability": 0.9679 + }, + { + "start": 47557.49, + "end": 47558.37, + "probability": 0.9662 + }, + { + "start": 47559.09, + "end": 47561.57, + "probability": 0.9985 + }, + { + "start": 47562.49, + "end": 47565.23, + "probability": 0.8683 + }, + { + "start": 47566.25, + "end": 47568.79, + "probability": 0.9791 + }, + { + "start": 47568.95, + "end": 47569.93, + "probability": 0.7981 + }, + { + "start": 47570.39, + "end": 47573.89, + "probability": 0.9454 + }, + { + "start": 47574.49, + "end": 47576.25, + "probability": 0.9986 + }, + { + "start": 47577.51, + "end": 47580.69, + "probability": 0.7938 + }, + { + "start": 47581.91, + "end": 47587.19, + "probability": 0.9736 + }, + { + "start": 47588.15, + "end": 47591.11, + "probability": 0.2216 + }, + { + "start": 47591.29, + "end": 47593.09, + "probability": 0.5915 + }, + { + "start": 47593.44, + "end": 47596.97, + "probability": 0.9153 + }, + { + "start": 47599.79, + "end": 47602.09, + "probability": 0.7753 + }, + { + "start": 47602.47, + "end": 47602.73, + "probability": 0.2779 + }, + { + "start": 47602.99, + "end": 47603.69, + "probability": 0.4868 + }, + { + "start": 47603.77, + "end": 47604.39, + "probability": 0.4498 + }, + { + "start": 47609.75, + "end": 47611.35, + "probability": 0.8121 + }, + { + "start": 47611.47, + "end": 47615.51, + "probability": 0.9965 + }, + { + "start": 47616.05, + "end": 47616.51, + "probability": 0.8989 + }, + { + "start": 47617.09, + "end": 47618.77, + "probability": 0.9934 + }, + { + "start": 47620.01, + "end": 47620.97, + "probability": 0.8723 + }, + { + "start": 47621.85, + "end": 47623.17, + "probability": 0.9382 + }, + { + "start": 47623.49, + "end": 47627.99, + "probability": 0.9135 + }, + { + "start": 47628.73, + "end": 47631.01, + "probability": 0.689 + }, + { + "start": 47631.95, + "end": 47634.91, + "probability": 0.8439 + }, + { + "start": 47635.33, + "end": 47638.27, + "probability": 0.9972 + }, + { + "start": 47638.77, + "end": 47639.71, + "probability": 0.6051 + }, + { + "start": 47640.27, + "end": 47641.83, + "probability": 0.9319 + }, + { + "start": 47642.77, + "end": 47646.05, + "probability": 0.674 + }, + { + "start": 47646.85, + "end": 47649.57, + "probability": 0.9917 + }, + { + "start": 47650.53, + "end": 47652.79, + "probability": 0.8274 + }, + { + "start": 47654.17, + "end": 47655.89, + "probability": 0.6616 + }, + { + "start": 47656.45, + "end": 47658.15, + "probability": 0.812 + }, + { + "start": 47659.01, + "end": 47661.61, + "probability": 0.9667 + }, + { + "start": 47662.43, + "end": 47663.63, + "probability": 0.7071 + }, + { + "start": 47664.41, + "end": 47667.81, + "probability": 0.9454 + }, + { + "start": 47668.65, + "end": 47669.23, + "probability": 0.5326 + }, + { + "start": 47670.11, + "end": 47674.97, + "probability": 0.9971 + }, + { + "start": 47676.21, + "end": 47679.03, + "probability": 0.9849 + }, + { + "start": 47679.03, + "end": 47681.87, + "probability": 0.9978 + }, + { + "start": 47682.59, + "end": 47686.25, + "probability": 0.9461 + }, + { + "start": 47688.65, + "end": 47691.83, + "probability": 0.894 + }, + { + "start": 47691.83, + "end": 47693.99, + "probability": 0.9943 + }, + { + "start": 47694.61, + "end": 47696.45, + "probability": 0.5949 + }, + { + "start": 47697.75, + "end": 47699.51, + "probability": 0.8199 + }, + { + "start": 47699.97, + "end": 47702.87, + "probability": 0.9268 + }, + { + "start": 47703.59, + "end": 47704.91, + "probability": 0.9641 + }, + { + "start": 47706.45, + "end": 47708.37, + "probability": 0.8901 + }, + { + "start": 47708.99, + "end": 47709.87, + "probability": 0.9782 + }, + { + "start": 47710.65, + "end": 47713.25, + "probability": 0.9987 + }, + { + "start": 47713.99, + "end": 47716.95, + "probability": 0.9994 + }, + { + "start": 47717.33, + "end": 47718.77, + "probability": 0.9231 + }, + { + "start": 47719.89, + "end": 47724.31, + "probability": 0.7852 + }, + { + "start": 47724.89, + "end": 47725.95, + "probability": 0.9653 + }, + { + "start": 47727.75, + "end": 47728.79, + "probability": 0.8192 + }, + { + "start": 47729.51, + "end": 47734.65, + "probability": 0.9934 + }, + { + "start": 47735.75, + "end": 47738.91, + "probability": 0.9585 + }, + { + "start": 47739.71, + "end": 47742.65, + "probability": 0.9092 + }, + { + "start": 47742.73, + "end": 47745.77, + "probability": 0.999 + }, + { + "start": 47747.85, + "end": 47749.15, + "probability": 0.8943 + }, + { + "start": 47751.47, + "end": 47754.51, + "probability": 0.7666 + }, + { + "start": 47755.75, + "end": 47758.09, + "probability": 0.9922 + }, + { + "start": 47759.09, + "end": 47760.97, + "probability": 0.9989 + }, + { + "start": 47761.75, + "end": 47764.45, + "probability": 0.9983 + }, + { + "start": 47765.05, + "end": 47765.65, + "probability": 0.6368 + }, + { + "start": 47766.11, + "end": 47771.81, + "probability": 0.9819 + }, + { + "start": 47772.45, + "end": 47773.27, + "probability": 0.9454 + }, + { + "start": 47774.31, + "end": 47778.79, + "probability": 0.9785 + }, + { + "start": 47779.33, + "end": 47780.63, + "probability": 0.801 + }, + { + "start": 47782.01, + "end": 47782.89, + "probability": 0.8095 + }, + { + "start": 47783.41, + "end": 47784.13, + "probability": 0.8533 + }, + { + "start": 47785.43, + "end": 47787.83, + "probability": 0.8091 + }, + { + "start": 47788.45, + "end": 47791.99, + "probability": 0.7047 + }, + { + "start": 47792.55, + "end": 47793.77, + "probability": 0.9469 + }, + { + "start": 47795.75, + "end": 47798.53, + "probability": 0.9879 + }, + { + "start": 47799.59, + "end": 47801.69, + "probability": 0.7771 + }, + { + "start": 47802.65, + "end": 47804.93, + "probability": 0.9808 + }, + { + "start": 47806.37, + "end": 47809.43, + "probability": 0.9284 + }, + { + "start": 47809.97, + "end": 47813.35, + "probability": 0.9871 + }, + { + "start": 47813.57, + "end": 47814.23, + "probability": 0.9099 + }, + { + "start": 47814.73, + "end": 47818.13, + "probability": 0.9893 + }, + { + "start": 47818.59, + "end": 47821.37, + "probability": 0.9972 + }, + { + "start": 47824.73, + "end": 47825.55, + "probability": 0.4973 + }, + { + "start": 47826.27, + "end": 47827.57, + "probability": 0.9597 + }, + { + "start": 47828.51, + "end": 47829.63, + "probability": 0.9946 + }, + { + "start": 47830.59, + "end": 47832.49, + "probability": 0.9932 + }, + { + "start": 47833.09, + "end": 47834.17, + "probability": 0.8753 + }, + { + "start": 47834.97, + "end": 47838.03, + "probability": 0.9993 + }, + { + "start": 47838.61, + "end": 47840.05, + "probability": 0.9924 + }, + { + "start": 47840.59, + "end": 47841.91, + "probability": 0.9395 + }, + { + "start": 47842.73, + "end": 47845.69, + "probability": 0.9631 + }, + { + "start": 47846.45, + "end": 47847.17, + "probability": 0.8783 + }, + { + "start": 47848.01, + "end": 47851.47, + "probability": 0.9872 + }, + { + "start": 47853.15, + "end": 47855.47, + "probability": 0.8081 + }, + { + "start": 47857.11, + "end": 47861.27, + "probability": 0.9958 + }, + { + "start": 47861.78, + "end": 47867.35, + "probability": 0.9928 + }, + { + "start": 47867.87, + "end": 47869.21, + "probability": 0.8611 + }, + { + "start": 47869.35, + "end": 47869.73, + "probability": 0.9189 + }, + { + "start": 47869.85, + "end": 47872.27, + "probability": 0.9818 + }, + { + "start": 47873.41, + "end": 47874.03, + "probability": 0.9454 + }, + { + "start": 47874.57, + "end": 47875.23, + "probability": 0.7933 + }, + { + "start": 47875.91, + "end": 47879.11, + "probability": 0.9438 + }, + { + "start": 47880.13, + "end": 47882.89, + "probability": 0.9845 + }, + { + "start": 47885.19, + "end": 47887.99, + "probability": 0.9809 + }, + { + "start": 47888.83, + "end": 47890.35, + "probability": 0.8332 + }, + { + "start": 47896.45, + "end": 47897.61, + "probability": 0.5253 + }, + { + "start": 47897.71, + "end": 47902.87, + "probability": 0.9897 + }, + { + "start": 47903.45, + "end": 47905.89, + "probability": 0.9984 + }, + { + "start": 47906.53, + "end": 47907.19, + "probability": 0.6401 + }, + { + "start": 47908.27, + "end": 47911.79, + "probability": 0.9149 + }, + { + "start": 47915.03, + "end": 47917.13, + "probability": 0.6953 + }, + { + "start": 47918.61, + "end": 47923.39, + "probability": 0.9869 + }, + { + "start": 47923.99, + "end": 47926.19, + "probability": 0.9985 + }, + { + "start": 47926.83, + "end": 47928.17, + "probability": 0.9609 + }, + { + "start": 47929.47, + "end": 47933.29, + "probability": 0.9587 + }, + { + "start": 47934.09, + "end": 47938.41, + "probability": 0.9328 + }, + { + "start": 47939.89, + "end": 47942.11, + "probability": 0.7065 + }, + { + "start": 47943.03, + "end": 47946.7, + "probability": 0.9968 + }, + { + "start": 47950.05, + "end": 47951.77, + "probability": 0.2471 + }, + { + "start": 47953.83, + "end": 47955.09, + "probability": 0.9052 + }, + { + "start": 47955.53, + "end": 47957.71, + "probability": 0.832 + }, + { + "start": 47958.61, + "end": 47958.95, + "probability": 0.9509 + }, + { + "start": 47959.71, + "end": 47961.53, + "probability": 0.9946 + }, + { + "start": 47962.37, + "end": 47965.33, + "probability": 0.998 + }, + { + "start": 47965.33, + "end": 47968.67, + "probability": 0.9924 + }, + { + "start": 47970.45, + "end": 47970.87, + "probability": 0.5246 + }, + { + "start": 47970.97, + "end": 47972.45, + "probability": 0.972 + }, + { + "start": 47973.31, + "end": 47974.59, + "probability": 0.9617 + }, + { + "start": 47975.45, + "end": 47977.15, + "probability": 0.9951 + }, + { + "start": 47977.89, + "end": 47981.43, + "probability": 0.981 + }, + { + "start": 47982.09, + "end": 47983.23, + "probability": 0.7698 + }, + { + "start": 47983.61, + "end": 47986.93, + "probability": 0.9756 + }, + { + "start": 47986.93, + "end": 47990.05, + "probability": 0.9945 + }, + { + "start": 47992.01, + "end": 47995.27, + "probability": 0.7942 + }, + { + "start": 47996.29, + "end": 47998.85, + "probability": 0.9922 + }, + { + "start": 47999.67, + "end": 48001.95, + "probability": 0.9916 + }, + { + "start": 48002.51, + "end": 48006.01, + "probability": 0.9803 + }, + { + "start": 48006.01, + "end": 48010.53, + "probability": 0.9691 + }, + { + "start": 48011.17, + "end": 48013.93, + "probability": 0.9305 + }, + { + "start": 48014.87, + "end": 48018.13, + "probability": 0.9948 + }, + { + "start": 48019.95, + "end": 48022.29, + "probability": 0.9759 + }, + { + "start": 48024.35, + "end": 48028.75, + "probability": 0.994 + }, + { + "start": 48029.31, + "end": 48032.91, + "probability": 0.9895 + }, + { + "start": 48033.99, + "end": 48035.69, + "probability": 0.8484 + }, + { + "start": 48036.55, + "end": 48037.37, + "probability": 0.879 + }, + { + "start": 48038.09, + "end": 48040.07, + "probability": 0.9811 + }, + { + "start": 48040.87, + "end": 48044.31, + "probability": 0.9711 + }, + { + "start": 48045.91, + "end": 48046.41, + "probability": 0.9048 + }, + { + "start": 48047.61, + "end": 48048.75, + "probability": 0.8505 + }, + { + "start": 48051.15, + "end": 48054.65, + "probability": 0.9976 + }, + { + "start": 48055.31, + "end": 48059.83, + "probability": 0.9989 + }, + { + "start": 48060.63, + "end": 48062.55, + "probability": 0.9956 + }, + { + "start": 48066.81, + "end": 48067.83, + "probability": 0.7024 + }, + { + "start": 48068.53, + "end": 48069.03, + "probability": 0.5795 + }, + { + "start": 48069.85, + "end": 48072.41, + "probability": 0.9603 + }, + { + "start": 48073.07, + "end": 48074.13, + "probability": 0.8678 + }, + { + "start": 48075.41, + "end": 48078.83, + "probability": 0.9916 + }, + { + "start": 48078.83, + "end": 48083.29, + "probability": 0.9909 + }, + { + "start": 48084.67, + "end": 48086.57, + "probability": 0.9924 + }, + { + "start": 48087.25, + "end": 48089.23, + "probability": 0.9497 + }, + { + "start": 48090.51, + "end": 48092.75, + "probability": 0.9951 + }, + { + "start": 48093.95, + "end": 48096.29, + "probability": 0.9962 + }, + { + "start": 48097.49, + "end": 48098.61, + "probability": 0.8406 + }, + { + "start": 48099.39, + "end": 48100.91, + "probability": 0.9973 + }, + { + "start": 48102.79, + "end": 48103.99, + "probability": 0.7752 + }, + { + "start": 48104.55, + "end": 48108.67, + "probability": 0.9775 + }, + { + "start": 48109.79, + "end": 48115.91, + "probability": 0.9935 + }, + { + "start": 48116.95, + "end": 48118.19, + "probability": 0.9777 + }, + { + "start": 48119.31, + "end": 48119.91, + "probability": 0.8263 + }, + { + "start": 48120.55, + "end": 48122.99, + "probability": 0.9845 + }, + { + "start": 48123.99, + "end": 48124.83, + "probability": 0.5122 + }, + { + "start": 48125.95, + "end": 48128.25, + "probability": 0.9622 + }, + { + "start": 48128.93, + "end": 48131.45, + "probability": 0.9921 + }, + { + "start": 48132.01, + "end": 48134.07, + "probability": 0.9824 + }, + { + "start": 48134.85, + "end": 48135.75, + "probability": 0.6341 + }, + { + "start": 48136.71, + "end": 48139.73, + "probability": 0.828 + }, + { + "start": 48140.57, + "end": 48142.49, + "probability": 0.9951 + }, + { + "start": 48144.11, + "end": 48145.75, + "probability": 0.966 + }, + { + "start": 48147.17, + "end": 48149.85, + "probability": 0.9958 + }, + { + "start": 48152.27, + "end": 48155.07, + "probability": 0.8367 + }, + { + "start": 48155.61, + "end": 48157.41, + "probability": 0.9597 + }, + { + "start": 48157.85, + "end": 48158.69, + "probability": 0.9607 + }, + { + "start": 48161.23, + "end": 48165.47, + "probability": 0.9878 + }, + { + "start": 48166.11, + "end": 48167.35, + "probability": 0.8333 + }, + { + "start": 48168.57, + "end": 48169.91, + "probability": 0.8309 + }, + { + "start": 48170.97, + "end": 48171.65, + "probability": 0.8266 + }, + { + "start": 48172.51, + "end": 48175.59, + "probability": 0.9653 + }, + { + "start": 48176.63, + "end": 48179.93, + "probability": 0.9899 + }, + { + "start": 48181.17, + "end": 48182.15, + "probability": 0.0673 + }, + { + "start": 48182.79, + "end": 48185.07, + "probability": 0.8093 + }, + { + "start": 48186.51, + "end": 48191.89, + "probability": 0.6976 + }, + { + "start": 48192.39, + "end": 48196.09, + "probability": 0.9943 + }, + { + "start": 48197.53, + "end": 48203.23, + "probability": 0.9922 + }, + { + "start": 48204.07, + "end": 48206.13, + "probability": 0.9949 + }, + { + "start": 48207.23, + "end": 48209.05, + "probability": 0.9482 + }, + { + "start": 48210.09, + "end": 48211.79, + "probability": 0.8619 + }, + { + "start": 48212.49, + "end": 48214.29, + "probability": 0.9934 + }, + { + "start": 48218.05, + "end": 48219.65, + "probability": 0.9554 + }, + { + "start": 48220.61, + "end": 48222.89, + "probability": 0.9805 + }, + { + "start": 48223.85, + "end": 48228.09, + "probability": 0.9763 + }, + { + "start": 48228.91, + "end": 48229.33, + "probability": 0.7442 + }, + { + "start": 48230.31, + "end": 48231.61, + "probability": 0.9687 + }, + { + "start": 48232.29, + "end": 48235.45, + "probability": 0.9966 + }, + { + "start": 48236.43, + "end": 48237.83, + "probability": 0.8278 + }, + { + "start": 48238.47, + "end": 48239.26, + "probability": 0.9536 + }, + { + "start": 48240.19, + "end": 48242.85, + "probability": 0.9424 + }, + { + "start": 48243.59, + "end": 48248.27, + "probability": 0.9566 + }, + { + "start": 48249.81, + "end": 48251.03, + "probability": 0.6401 + }, + { + "start": 48252.47, + "end": 48255.77, + "probability": 0.7209 + }, + { + "start": 48256.13, + "end": 48257.43, + "probability": 0.9866 + }, + { + "start": 48258.93, + "end": 48261.39, + "probability": 0.9829 + }, + { + "start": 48262.71, + "end": 48265.37, + "probability": 0.7545 + }, + { + "start": 48266.31, + "end": 48267.83, + "probability": 0.8446 + }, + { + "start": 48267.95, + "end": 48267.95, + "probability": 0.6495 + }, + { + "start": 48267.95, + "end": 48268.09, + "probability": 0.4388 + }, + { + "start": 48268.17, + "end": 48268.49, + "probability": 0.6828 + }, + { + "start": 48268.55, + "end": 48272.03, + "probability": 0.9851 + }, + { + "start": 48274.21, + "end": 48274.23, + "probability": 0.1505 + }, + { + "start": 48274.23, + "end": 48279.59, + "probability": 0.9031 + }, + { + "start": 48280.91, + "end": 48285.23, + "probability": 0.978 + }, + { + "start": 48286.45, + "end": 48287.06, + "probability": 0.667 + }, + { + "start": 48287.97, + "end": 48289.73, + "probability": 0.8902 + }, + { + "start": 48290.29, + "end": 48292.69, + "probability": 0.9941 + }, + { + "start": 48294.61, + "end": 48298.33, + "probability": 0.9907 + }, + { + "start": 48300.37, + "end": 48302.03, + "probability": 0.9929 + }, + { + "start": 48302.75, + "end": 48305.95, + "probability": 0.9749 + }, + { + "start": 48307.63, + "end": 48308.71, + "probability": 0.9957 + }, + { + "start": 48311.07, + "end": 48312.27, + "probability": 0.9984 + }, + { + "start": 48313.41, + "end": 48314.99, + "probability": 0.9939 + }, + { + "start": 48316.07, + "end": 48320.53, + "probability": 0.9952 + }, + { + "start": 48321.21, + "end": 48322.61, + "probability": 0.99 + }, + { + "start": 48323.47, + "end": 48328.59, + "probability": 0.9882 + }, + { + "start": 48328.91, + "end": 48329.59, + "probability": 0.9133 + }, + { + "start": 48331.17, + "end": 48335.33, + "probability": 0.9896 + }, + { + "start": 48336.39, + "end": 48336.71, + "probability": 0.9546 + }, + { + "start": 48337.89, + "end": 48340.21, + "probability": 0.9777 + }, + { + "start": 48340.45, + "end": 48341.68, + "probability": 0.9979 + }, + { + "start": 48342.25, + "end": 48344.07, + "probability": 0.9424 + }, + { + "start": 48345.35, + "end": 48346.05, + "probability": 0.8375 + }, + { + "start": 48346.35, + "end": 48347.47, + "probability": 0.8415 + }, + { + "start": 48347.89, + "end": 48352.07, + "probability": 0.9825 + }, + { + "start": 48354.09, + "end": 48357.19, + "probability": 0.9961 + }, + { + "start": 48357.73, + "end": 48360.13, + "probability": 0.8859 + }, + { + "start": 48361.31, + "end": 48363.47, + "probability": 0.9607 + }, + { + "start": 48363.97, + "end": 48369.85, + "probability": 0.9699 + }, + { + "start": 48370.77, + "end": 48371.99, + "probability": 0.9976 + }, + { + "start": 48372.59, + "end": 48373.79, + "probability": 0.9862 + }, + { + "start": 48374.51, + "end": 48378.69, + "probability": 0.9838 + }, + { + "start": 48379.13, + "end": 48380.33, + "probability": 0.789 + }, + { + "start": 48381.57, + "end": 48383.87, + "probability": 0.9245 + }, + { + "start": 48384.63, + "end": 48386.65, + "probability": 0.9961 + }, + { + "start": 48387.23, + "end": 48388.49, + "probability": 0.8499 + }, + { + "start": 48389.17, + "end": 48391.87, + "probability": 0.9932 + }, + { + "start": 48393.41, + "end": 48395.2, + "probability": 0.9845 + }, + { + "start": 48395.83, + "end": 48397.93, + "probability": 0.8359 + }, + { + "start": 48399.53, + "end": 48403.21, + "probability": 0.9873 + }, + { + "start": 48405.29, + "end": 48406.63, + "probability": 0.9897 + }, + { + "start": 48407.03, + "end": 48410.33, + "probability": 0.9799 + }, + { + "start": 48411.87, + "end": 48416.67, + "probability": 0.9965 + }, + { + "start": 48417.93, + "end": 48420.42, + "probability": 0.9961 + }, + { + "start": 48421.55, + "end": 48423.27, + "probability": 0.9958 + }, + { + "start": 48424.37, + "end": 48426.33, + "probability": 0.9803 + }, + { + "start": 48428.85, + "end": 48429.47, + "probability": 0.9941 + }, + { + "start": 48430.81, + "end": 48432.85, + "probability": 0.9985 + }, + { + "start": 48433.65, + "end": 48435.67, + "probability": 0.9983 + }, + { + "start": 48437.91, + "end": 48438.77, + "probability": 0.9971 + }, + { + "start": 48440.97, + "end": 48441.91, + "probability": 0.9159 + }, + { + "start": 48444.79, + "end": 48445.37, + "probability": 0.9668 + }, + { + "start": 48445.37, + "end": 48446.79, + "probability": 0.8961 + }, + { + "start": 48447.33, + "end": 48448.74, + "probability": 0.9125 + }, + { + "start": 48450.13, + "end": 48452.29, + "probability": 0.9844 + }, + { + "start": 48453.75, + "end": 48457.69, + "probability": 0.9727 + }, + { + "start": 48458.73, + "end": 48460.33, + "probability": 0.9503 + }, + { + "start": 48462.11, + "end": 48464.75, + "probability": 0.9978 + }, + { + "start": 48465.29, + "end": 48466.09, + "probability": 0.9123 + }, + { + "start": 48466.75, + "end": 48467.75, + "probability": 0.9848 + }, + { + "start": 48468.45, + "end": 48471.53, + "probability": 0.9835 + }, + { + "start": 48472.83, + "end": 48474.45, + "probability": 0.9852 + }, + { + "start": 48475.49, + "end": 48477.03, + "probability": 0.9959 + }, + { + "start": 48478.55, + "end": 48479.97, + "probability": 0.9965 + }, + { + "start": 48481.27, + "end": 48484.25, + "probability": 0.8222 + }, + { + "start": 48484.35, + "end": 48486.57, + "probability": 0.9769 + }, + { + "start": 48487.03, + "end": 48490.99, + "probability": 0.9502 + }, + { + "start": 48491.49, + "end": 48494.87, + "probability": 0.9556 + }, + { + "start": 48494.87, + "end": 48498.63, + "probability": 0.9692 + }, + { + "start": 48499.01, + "end": 48499.65, + "probability": 0.719 + }, + { + "start": 48500.33, + "end": 48504.03, + "probability": 0.9922 + }, + { + "start": 48504.77, + "end": 48506.31, + "probability": 0.903 + }, + { + "start": 48506.73, + "end": 48507.85, + "probability": 0.9415 + }, + { + "start": 48508.27, + "end": 48510.69, + "probability": 0.9751 + }, + { + "start": 48511.05, + "end": 48511.69, + "probability": 0.7362 + }, + { + "start": 48512.07, + "end": 48513.03, + "probability": 0.9699 + }, + { + "start": 48513.49, + "end": 48517.35, + "probability": 0.9814 + }, + { + "start": 48518.19, + "end": 48519.19, + "probability": 0.7462 + }, + { + "start": 48519.69, + "end": 48525.07, + "probability": 0.9949 + }, + { + "start": 48525.65, + "end": 48526.79, + "probability": 0.9769 + }, + { + "start": 48527.53, + "end": 48530.17, + "probability": 0.9827 + }, + { + "start": 48533.43, + "end": 48535.61, + "probability": 0.9294 + }, + { + "start": 48536.41, + "end": 48537.31, + "probability": 0.8192 + }, + { + "start": 48537.97, + "end": 48538.37, + "probability": 0.8188 + }, + { + "start": 48538.97, + "end": 48539.97, + "probability": 0.978 + }, + { + "start": 48542.11, + "end": 48543.53, + "probability": 0.6724 + }, + { + "start": 48544.73, + "end": 48548.33, + "probability": 0.8691 + }, + { + "start": 48548.79, + "end": 48550.19, + "probability": 0.9896 + }, + { + "start": 48551.21, + "end": 48556.11, + "probability": 0.9918 + }, + { + "start": 48557.25, + "end": 48558.99, + "probability": 0.9967 + }, + { + "start": 48559.87, + "end": 48561.53, + "probability": 0.9071 + }, + { + "start": 48562.05, + "end": 48565.09, + "probability": 0.9946 + }, + { + "start": 48565.43, + "end": 48565.59, + "probability": 0.2589 + }, + { + "start": 48565.69, + "end": 48566.03, + "probability": 0.561 + }, + { + "start": 48566.51, + "end": 48568.93, + "probability": 0.9599 + }, + { + "start": 48569.53, + "end": 48571.13, + "probability": 0.9944 + }, + { + "start": 48572.05, + "end": 48574.15, + "probability": 0.9553 + }, + { + "start": 48575.23, + "end": 48578.03, + "probability": 0.9958 + }, + { + "start": 48578.43, + "end": 48582.87, + "probability": 0.9689 + }, + { + "start": 48583.39, + "end": 48585.13, + "probability": 0.9646 + }, + { + "start": 48585.79, + "end": 48587.91, + "probability": 0.9921 + }, + { + "start": 48588.67, + "end": 48590.0, + "probability": 0.9421 + }, + { + "start": 48590.59, + "end": 48592.63, + "probability": 0.8988 + }, + { + "start": 48594.05, + "end": 48596.85, + "probability": 0.8726 + }, + { + "start": 48597.85, + "end": 48600.43, + "probability": 0.9778 + }, + { + "start": 48602.69, + "end": 48605.45, + "probability": 0.9061 + }, + { + "start": 48605.85, + "end": 48606.67, + "probability": 0.8679 + }, + { + "start": 48607.67, + "end": 48611.33, + "probability": 0.9694 + }, + { + "start": 48611.73, + "end": 48612.69, + "probability": 0.7926 + }, + { + "start": 48613.01, + "end": 48613.91, + "probability": 0.7439 + }, + { + "start": 48614.69, + "end": 48615.35, + "probability": 0.8252 + }, + { + "start": 48616.47, + "end": 48618.91, + "probability": 0.6203 + }, + { + "start": 48619.45, + "end": 48620.85, + "probability": 0.9379 + }, + { + "start": 48621.53, + "end": 48625.71, + "probability": 0.9885 + }, + { + "start": 48627.03, + "end": 48627.51, + "probability": 0.879 + }, + { + "start": 48628.39, + "end": 48631.07, + "probability": 0.9724 + }, + { + "start": 48631.97, + "end": 48633.73, + "probability": 0.9806 + }, + { + "start": 48634.45, + "end": 48639.67, + "probability": 0.9248 + }, + { + "start": 48640.31, + "end": 48646.19, + "probability": 0.9836 + }, + { + "start": 48646.77, + "end": 48648.17, + "probability": 0.9977 + }, + { + "start": 48650.65, + "end": 48658.87, + "probability": 0.9971 + }, + { + "start": 48660.65, + "end": 48661.35, + "probability": 0.6548 + }, + { + "start": 48664.49, + "end": 48666.79, + "probability": 0.9092 + }, + { + "start": 48672.12, + "end": 48672.33, + "probability": 0.7281 + }, + { + "start": 48672.53, + "end": 48672.89, + "probability": 0.0618 + }, + { + "start": 48673.53, + "end": 48674.61, + "probability": 0.0689 + }, + { + "start": 48675.87, + "end": 48675.87, + "probability": 0.0679 + }, + { + "start": 48676.03, + "end": 48677.05, + "probability": 0.0112 + }, + { + "start": 48691.03, + "end": 48691.27, + "probability": 0.085 + }, + { + "start": 48719.23, + "end": 48720.01, + "probability": 0.069 + }, + { + "start": 48720.83, + "end": 48725.31, + "probability": 0.0179 + }, + { + "start": 48726.07, + "end": 48727.03, + "probability": 0.5513 + }, + { + "start": 48728.95, + "end": 48731.37, + "probability": 0.9759 + }, + { + "start": 48733.66, + "end": 48736.15, + "probability": 0.9964 + }, + { + "start": 48736.99, + "end": 48738.51, + "probability": 0.6389 + }, + { + "start": 48739.89, + "end": 48742.17, + "probability": 0.9067 + }, + { + "start": 48744.25, + "end": 48746.29, + "probability": 0.9382 + }, + { + "start": 48747.57, + "end": 48748.67, + "probability": 0.7698 + }, + { + "start": 48750.33, + "end": 48752.14, + "probability": 0.9925 + }, + { + "start": 48752.25, + "end": 48752.63, + "probability": 0.7561 + }, + { + "start": 48752.79, + "end": 48757.63, + "probability": 0.8546 + }, + { + "start": 48758.19, + "end": 48758.93, + "probability": 0.7645 + }, + { + "start": 48760.73, + "end": 48761.85, + "probability": 0.8708 + }, + { + "start": 48762.65, + "end": 48764.51, + "probability": 0.9966 + }, + { + "start": 48766.39, + "end": 48770.09, + "probability": 0.9744 + }, + { + "start": 48773.19, + "end": 48777.93, + "probability": 0.764 + }, + { + "start": 48780.59, + "end": 48782.23, + "probability": 0.6735 + }, + { + "start": 48783.13, + "end": 48784.07, + "probability": 0.6492 + }, + { + "start": 48784.17, + "end": 48784.99, + "probability": 0.7407 + }, + { + "start": 48785.01, + "end": 48787.07, + "probability": 0.9624 + }, + { + "start": 48788.17, + "end": 48789.09, + "probability": 0.8318 + }, + { + "start": 48789.79, + "end": 48790.59, + "probability": 0.998 + }, + { + "start": 48792.69, + "end": 48794.05, + "probability": 0.9619 + }, + { + "start": 48795.59, + "end": 48796.19, + "probability": 0.7391 + }, + { + "start": 48797.07, + "end": 48799.71, + "probability": 0.9748 + }, + { + "start": 48800.55, + "end": 48804.23, + "probability": 0.9489 + }, + { + "start": 48805.63, + "end": 48806.39, + "probability": 0.9935 + }, + { + "start": 48807.97, + "end": 48810.47, + "probability": 0.9766 + }, + { + "start": 48810.87, + "end": 48812.45, + "probability": 0.6805 + }, + { + "start": 48813.51, + "end": 48816.33, + "probability": 0.9873 + }, + { + "start": 48817.45, + "end": 48819.03, + "probability": 0.9399 + }, + { + "start": 48820.95, + "end": 48824.67, + "probability": 0.9595 + }, + { + "start": 48827.05, + "end": 48827.77, + "probability": 0.9968 + }, + { + "start": 48829.25, + "end": 48834.71, + "probability": 0.9985 + }, + { + "start": 48834.85, + "end": 48836.23, + "probability": 0.8232 + }, + { + "start": 48836.29, + "end": 48837.75, + "probability": 0.7215 + }, + { + "start": 48839.03, + "end": 48843.65, + "probability": 0.9915 + }, + { + "start": 48844.43, + "end": 48845.61, + "probability": 0.8167 + }, + { + "start": 48846.61, + "end": 48847.01, + "probability": 0.9845 + }, + { + "start": 48847.61, + "end": 48848.89, + "probability": 0.9798 + }, + { + "start": 48850.27, + "end": 48850.39, + "probability": 0.1032 + }, + { + "start": 48851.21, + "end": 48854.93, + "probability": 0.4728 + }, + { + "start": 48855.05, + "end": 48855.89, + "probability": 0.9723 + }, + { + "start": 48856.77, + "end": 48857.49, + "probability": 0.6917 + }, + { + "start": 48857.81, + "end": 48858.87, + "probability": 0.8442 + }, + { + "start": 48859.19, + "end": 48859.73, + "probability": 0.5467 + }, + { + "start": 48861.19, + "end": 48862.15, + "probability": 0.9985 + }, + { + "start": 48862.97, + "end": 48863.63, + "probability": 0.8401 + }, + { + "start": 48863.71, + "end": 48864.05, + "probability": 0.9863 + }, + { + "start": 48864.99, + "end": 48865.83, + "probability": 0.2809 + }, + { + "start": 48866.37, + "end": 48866.77, + "probability": 0.079 + }, + { + "start": 48869.05, + "end": 48869.43, + "probability": 0.7759 + }, + { + "start": 48869.57, + "end": 48872.51, + "probability": 0.9871 + }, + { + "start": 48872.71, + "end": 48874.47, + "probability": 0.7166 + }, + { + "start": 48874.75, + "end": 48874.91, + "probability": 0.135 + }, + { + "start": 48875.67, + "end": 48876.65, + "probability": 0.5172 + }, + { + "start": 48876.99, + "end": 48878.55, + "probability": 0.236 + }, + { + "start": 48878.55, + "end": 48880.73, + "probability": 0.3539 + }, + { + "start": 48880.77, + "end": 48881.75, + "probability": 0.9652 + }, + { + "start": 48882.73, + "end": 48884.41, + "probability": 0.9587 + }, + { + "start": 48884.67, + "end": 48886.21, + "probability": 0.356 + }, + { + "start": 48886.33, + "end": 48888.55, + "probability": 0.7063 + }, + { + "start": 48889.21, + "end": 48891.71, + "probability": 0.9688 + }, + { + "start": 48891.79, + "end": 48892.43, + "probability": 0.758 + }, + { + "start": 48893.14, + "end": 48893.83, + "probability": 0.772 + }, + { + "start": 48894.23, + "end": 48894.71, + "probability": 0.6215 + }, + { + "start": 48895.57, + "end": 48897.41, + "probability": 0.8839 + }, + { + "start": 48899.67, + "end": 48901.95, + "probability": 0.7534 + }, + { + "start": 48902.67, + "end": 48903.45, + "probability": 0.644 + }, + { + "start": 48903.53, + "end": 48904.81, + "probability": 0.7909 + }, + { + "start": 48904.99, + "end": 48906.51, + "probability": 0.7281 + }, + { + "start": 48909.01, + "end": 48911.79, + "probability": 0.6797 + }, + { + "start": 48911.83, + "end": 48913.13, + "probability": 0.2112 + }, + { + "start": 48913.19, + "end": 48914.67, + "probability": 0.8052 + }, + { + "start": 48915.17, + "end": 48916.71, + "probability": 0.9761 + }, + { + "start": 48917.21, + "end": 48918.45, + "probability": 0.9715 + }, + { + "start": 48919.13, + "end": 48920.4, + "probability": 0.8607 + }, + { + "start": 48920.53, + "end": 48921.85, + "probability": 0.7007 + }, + { + "start": 48922.77, + "end": 48925.01, + "probability": 0.9753 + }, + { + "start": 48926.23, + "end": 48928.83, + "probability": 0.9751 + }, + { + "start": 48929.23, + "end": 48930.39, + "probability": 0.998 + }, + { + "start": 48932.51, + "end": 48934.19, + "probability": 0.9049 + }, + { + "start": 48935.23, + "end": 48938.57, + "probability": 0.9882 + }, + { + "start": 48939.19, + "end": 48939.47, + "probability": 0.5934 + }, + { + "start": 48940.57, + "end": 48941.57, + "probability": 0.7743 + }, + { + "start": 48942.49, + "end": 48945.89, + "probability": 0.4907 + }, + { + "start": 48946.13, + "end": 48947.53, + "probability": 0.059 + }, + { + "start": 48947.87, + "end": 48949.35, + "probability": 0.65 + }, + { + "start": 48949.79, + "end": 48953.61, + "probability": 0.719 + }, + { + "start": 48953.67, + "end": 48954.97, + "probability": 0.0778 + }, + { + "start": 48956.19, + "end": 48957.23, + "probability": 0.5117 + }, + { + "start": 48957.29, + "end": 48958.33, + "probability": 0.4981 + }, + { + "start": 48958.61, + "end": 48959.73, + "probability": 0.1283 + }, + { + "start": 48960.03, + "end": 48960.59, + "probability": 0.5615 + }, + { + "start": 48960.99, + "end": 48962.21, + "probability": 0.3219 + }, + { + "start": 48962.59, + "end": 48963.53, + "probability": 0.4712 + }, + { + "start": 48964.29, + "end": 48967.87, + "probability": 0.6019 + }, + { + "start": 48968.03, + "end": 48969.53, + "probability": 0.3457 + }, + { + "start": 48970.07, + "end": 48971.73, + "probability": 0.4279 + }, + { + "start": 48971.85, + "end": 48973.27, + "probability": 0.2091 + }, + { + "start": 48973.29, + "end": 48973.67, + "probability": 0.4482 + }, + { + "start": 48973.67, + "end": 48973.67, + "probability": 0.338 + }, + { + "start": 48973.67, + "end": 48974.99, + "probability": 0.8931 + }, + { + "start": 48975.39, + "end": 48976.09, + "probability": 0.79 + }, + { + "start": 48978.93, + "end": 48980.51, + "probability": 0.2346 + }, + { + "start": 48981.19, + "end": 48982.33, + "probability": 0.3264 + }, + { + "start": 48982.65, + "end": 48983.41, + "probability": 0.3406 + }, + { + "start": 48983.55, + "end": 48986.09, + "probability": 0.0212 + }, + { + "start": 48986.61, + "end": 48992.15, + "probability": 0.4879 + }, + { + "start": 48992.45, + "end": 48993.63, + "probability": 0.5121 + }, + { + "start": 48994.07, + "end": 48994.57, + "probability": 0.5552 + }, + { + "start": 48995.05, + "end": 48995.89, + "probability": 0.6434 + }, + { + "start": 48996.53, + "end": 48997.73, + "probability": 0.9386 + }, + { + "start": 48997.93, + "end": 48999.09, + "probability": 0.9404 + }, + { + "start": 48999.17, + "end": 49000.81, + "probability": 0.7512 + }, + { + "start": 49000.91, + "end": 49001.75, + "probability": 0.4181 + }, + { + "start": 49002.65, + "end": 49003.83, + "probability": 0.5579 + }, + { + "start": 49003.99, + "end": 49005.87, + "probability": 0.1449 + }, + { + "start": 49006.59, + "end": 49007.13, + "probability": 0.0963 + }, + { + "start": 49007.23, + "end": 49008.05, + "probability": 0.0595 + }, + { + "start": 49008.13, + "end": 49011.17, + "probability": 0.5643 + }, + { + "start": 49012.83, + "end": 49013.47, + "probability": 0.0818 + }, + { + "start": 49013.69, + "end": 49014.05, + "probability": 0.452 + }, + { + "start": 49015.05, + "end": 49017.69, + "probability": 0.5139 + }, + { + "start": 49017.83, + "end": 49019.89, + "probability": 0.2252 + }, + { + "start": 49020.15, + "end": 49021.21, + "probability": 0.979 + }, + { + "start": 49022.07, + "end": 49023.48, + "probability": 0.7967 + }, + { + "start": 49023.53, + "end": 49026.29, + "probability": 0.4385 + }, + { + "start": 49026.47, + "end": 49028.45, + "probability": 0.2687 + }, + { + "start": 49028.51, + "end": 49029.69, + "probability": 0.1873 + }, + { + "start": 49029.99, + "end": 49031.31, + "probability": 0.7373 + }, + { + "start": 49032.23, + "end": 49035.89, + "probability": 0.3723 + }, + { + "start": 49036.31, + "end": 49037.47, + "probability": 0.4972 + }, + { + "start": 49037.51, + "end": 49038.51, + "probability": 0.678 + }, + { + "start": 49038.81, + "end": 49040.11, + "probability": 0.21 + }, + { + "start": 49040.81, + "end": 49045.53, + "probability": 0.9277 + }, + { + "start": 49046.25, + "end": 49046.69, + "probability": 0.5004 + }, + { + "start": 49047.33, + "end": 49047.91, + "probability": 0.5016 + }, + { + "start": 49048.49, + "end": 49049.37, + "probability": 0.8021 + }, + { + "start": 49049.67, + "end": 49053.41, + "probability": 0.3683 + }, + { + "start": 49053.65, + "end": 49056.99, + "probability": 0.4323 + }, + { + "start": 49057.19, + "end": 49058.47, + "probability": 0.7554 + }, + { + "start": 49059.15, + "end": 49059.81, + "probability": 0.0988 + }, + { + "start": 49060.89, + "end": 49063.51, + "probability": 0.7025 + }, + { + "start": 49063.81, + "end": 49065.41, + "probability": 0.2815 + }, + { + "start": 49065.57, + "end": 49067.71, + "probability": 0.1761 + }, + { + "start": 49067.79, + "end": 49068.87, + "probability": 0.4037 + }, + { + "start": 49068.99, + "end": 49071.06, + "probability": 0.8564 + }, + { + "start": 49072.93, + "end": 49073.59, + "probability": 0.1756 + }, + { + "start": 49073.59, + "end": 49074.07, + "probability": 0.4566 + }, + { + "start": 49075.21, + "end": 49076.87, + "probability": 0.3106 + }, + { + "start": 49076.87, + "end": 49077.19, + "probability": 0.0841 + }, + { + "start": 49077.71, + "end": 49078.85, + "probability": 0.2644 + }, + { + "start": 49079.59, + "end": 49079.97, + "probability": 0.0545 + }, + { + "start": 49080.11, + "end": 49081.61, + "probability": 0.1966 + }, + { + "start": 49081.99, + "end": 49083.69, + "probability": 0.2164 + }, + { + "start": 49083.89, + "end": 49086.69, + "probability": 0.0766 + }, + { + "start": 49086.85, + "end": 49087.39, + "probability": 0.2552 + }, + { + "start": 49088.35, + "end": 49088.81, + "probability": 0.3729 + }, + { + "start": 49089.55, + "end": 49089.55, + "probability": 0.6841 + }, + { + "start": 49090.75, + "end": 49092.11, + "probability": 0.4929 + }, + { + "start": 49093.13, + "end": 49093.69, + "probability": 0.0363 + }, + { + "start": 49094.05, + "end": 49094.51, + "probability": 0.2807 + }, + { + "start": 49094.77, + "end": 49095.73, + "probability": 0.0141 + }, + { + "start": 49095.73, + "end": 49098.67, + "probability": 0.0525 + }, + { + "start": 49098.71, + "end": 49099.15, + "probability": 0.1873 + }, + { + "start": 49099.75, + "end": 49100.15, + "probability": 0.2054 + }, + { + "start": 49100.19, + "end": 49104.7, + "probability": 0.4925 + }, + { + "start": 49105.43, + "end": 49105.51, + "probability": 0.0019 + }, + { + "start": 49107.47, + "end": 49108.17, + "probability": 0.029 + }, + { + "start": 49108.46, + "end": 49110.03, + "probability": 0.0556 + }, + { + "start": 49110.29, + "end": 49114.99, + "probability": 0.0168 + }, + { + "start": 49115.63, + "end": 49115.63, + "probability": 0.0009 + }, + { + "start": 49116.77, + "end": 49117.11, + "probability": 0.4071 + }, + { + "start": 49118.05, + "end": 49118.05, + "probability": 0.0279 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.0, + "end": 49168.0, + "probability": 0.0 + }, + { + "start": 49168.14, + "end": 49168.76, + "probability": 0.121 + }, + { + "start": 49171.76, + "end": 49176.42, + "probability": 0.6554 + }, + { + "start": 49177.2, + "end": 49178.04, + "probability": 0.2974 + }, + { + "start": 49179.14, + "end": 49180.1, + "probability": 0.945 + }, + { + "start": 49180.48, + "end": 49184.0, + "probability": 0.2973 + }, + { + "start": 49184.32, + "end": 49187.7, + "probability": 0.6475 + }, + { + "start": 49187.78, + "end": 49190.5, + "probability": 0.8364 + }, + { + "start": 49191.94, + "end": 49194.04, + "probability": 0.894 + }, + { + "start": 49195.45, + "end": 49197.24, + "probability": 0.9976 + }, + { + "start": 49197.32, + "end": 49198.31, + "probability": 0.3981 + }, + { + "start": 49198.76, + "end": 49200.26, + "probability": 0.9281 + }, + { + "start": 49200.44, + "end": 49200.98, + "probability": 0.8539 + }, + { + "start": 49201.08, + "end": 49201.84, + "probability": 0.5737 + }, + { + "start": 49202.84, + "end": 49202.96, + "probability": 0.0 + }, + { + "start": 49204.1, + "end": 49204.84, + "probability": 0.3578 + }, + { + "start": 49204.84, + "end": 49206.12, + "probability": 0.5619 + }, + { + "start": 49206.2, + "end": 49209.52, + "probability": 0.7519 + }, + { + "start": 49209.64, + "end": 49210.64, + "probability": 0.8858 + }, + { + "start": 49210.76, + "end": 49211.96, + "probability": 0.9557 + }, + { + "start": 49212.16, + "end": 49216.94, + "probability": 0.9688 + }, + { + "start": 49217.68, + "end": 49219.02, + "probability": 0.4529 + }, + { + "start": 49219.28, + "end": 49220.92, + "probability": 0.73 + }, + { + "start": 49222.77, + "end": 49224.44, + "probability": 0.9624 + }, + { + "start": 49224.7, + "end": 49226.42, + "probability": 0.9668 + }, + { + "start": 49226.48, + "end": 49226.74, + "probability": 0.5442 + }, + { + "start": 49226.74, + "end": 49230.42, + "probability": 0.9209 + }, + { + "start": 49230.62, + "end": 49232.06, + "probability": 0.9819 + }, + { + "start": 49233.24, + "end": 49235.82, + "probability": 0.9844 + }, + { + "start": 49236.44, + "end": 49238.82, + "probability": 0.7382 + }, + { + "start": 49240.18, + "end": 49242.24, + "probability": 0.9856 + }, + { + "start": 49242.28, + "end": 49243.14, + "probability": 0.9788 + }, + { + "start": 49243.62, + "end": 49245.56, + "probability": 0.8817 + }, + { + "start": 49246.24, + "end": 49249.16, + "probability": 0.9897 + }, + { + "start": 49249.28, + "end": 49249.9, + "probability": 0.895 + }, + { + "start": 49251.12, + "end": 49252.08, + "probability": 0.0784 + }, + { + "start": 49252.2, + "end": 49253.44, + "probability": 0.981 + }, + { + "start": 49255.13, + "end": 49258.52, + "probability": 0.9157 + }, + { + "start": 49258.66, + "end": 49263.76, + "probability": 0.5885 + }, + { + "start": 49263.94, + "end": 49264.8, + "probability": 0.4256 + }, + { + "start": 49265.02, + "end": 49265.32, + "probability": 0.3182 + }, + { + "start": 49265.42, + "end": 49266.14, + "probability": 0.734 + }, + { + "start": 49266.82, + "end": 49268.54, + "probability": 0.9558 + }, + { + "start": 49268.6, + "end": 49268.84, + "probability": 0.9634 + }, + { + "start": 49268.92, + "end": 49270.06, + "probability": 0.9731 + }, + { + "start": 49272.4, + "end": 49275.46, + "probability": 0.9868 + }, + { + "start": 49276.22, + "end": 49280.48, + "probability": 0.9321 + }, + { + "start": 49281.36, + "end": 49282.38, + "probability": 0.8668 + }, + { + "start": 49282.74, + "end": 49284.56, + "probability": 0.9343 + }, + { + "start": 49284.96, + "end": 49285.52, + "probability": 0.9412 + }, + { + "start": 49285.66, + "end": 49285.82, + "probability": 0.707 + }, + { + "start": 49286.32, + "end": 49287.92, + "probability": 0.7599 + }, + { + "start": 49288.38, + "end": 49289.28, + "probability": 0.9316 + }, + { + "start": 49289.88, + "end": 49293.78, + "probability": 0.8996 + }, + { + "start": 49294.34, + "end": 49294.88, + "probability": 0.5081 + }, + { + "start": 49295.82, + "end": 49297.26, + "probability": 0.2326 + }, + { + "start": 49297.34, + "end": 49298.47, + "probability": 0.6307 + }, + { + "start": 49298.98, + "end": 49301.14, + "probability": 0.9395 + }, + { + "start": 49301.2, + "end": 49301.72, + "probability": 0.5313 + }, + { + "start": 49302.1, + "end": 49303.08, + "probability": 0.9372 + }, + { + "start": 49303.4, + "end": 49306.42, + "probability": 0.6267 + }, + { + "start": 49306.48, + "end": 49307.0, + "probability": 0.3742 + }, + { + "start": 49308.06, + "end": 49311.16, + "probability": 0.377 + }, + { + "start": 49311.16, + "end": 49312.22, + "probability": 0.887 + }, + { + "start": 49312.82, + "end": 49317.86, + "probability": 0.9399 + }, + { + "start": 49318.42, + "end": 49318.9, + "probability": 0.3895 + }, + { + "start": 49319.58, + "end": 49322.94, + "probability": 0.9941 + }, + { + "start": 49323.2, + "end": 49323.85, + "probability": 0.5265 + }, + { + "start": 49324.08, + "end": 49324.98, + "probability": 0.9554 + }, + { + "start": 49325.0, + "end": 49325.69, + "probability": 0.9135 + }, + { + "start": 49325.98, + "end": 49327.82, + "probability": 0.854 + }, + { + "start": 49328.18, + "end": 49328.54, + "probability": 0.7656 + }, + { + "start": 49328.6, + "end": 49329.18, + "probability": 0.5784 + }, + { + "start": 49329.6, + "end": 49334.08, + "probability": 0.5929 + }, + { + "start": 49334.24, + "end": 49335.2, + "probability": 0.932 + }, + { + "start": 49336.6, + "end": 49336.88, + "probability": 0.0021 + }, + { + "start": 49337.14, + "end": 49338.52, + "probability": 0.4956 + }, + { + "start": 49338.9, + "end": 49341.58, + "probability": 0.7154 + }, + { + "start": 49341.74, + "end": 49343.26, + "probability": 0.8883 + }, + { + "start": 49343.62, + "end": 49344.44, + "probability": 0.645 + }, + { + "start": 49344.6, + "end": 49345.9, + "probability": 0.5887 + }, + { + "start": 49345.92, + "end": 49348.6, + "probability": 0.7354 + }, + { + "start": 49349.88, + "end": 49350.22, + "probability": 0.8078 + }, + { + "start": 49350.58, + "end": 49350.78, + "probability": 0.0029 + }, + { + "start": 49350.78, + "end": 49351.26, + "probability": 0.2657 + }, + { + "start": 49352.08, + "end": 49352.84, + "probability": 0.479 + }, + { + "start": 49352.92, + "end": 49353.38, + "probability": 0.2887 + }, + { + "start": 49353.38, + "end": 49353.58, + "probability": 0.1637 + }, + { + "start": 49353.82, + "end": 49354.32, + "probability": 0.2313 + }, + { + "start": 49354.76, + "end": 49358.04, + "probability": 0.6627 + }, + { + "start": 49358.22, + "end": 49360.4, + "probability": 0.583 + }, + { + "start": 49360.48, + "end": 49360.66, + "probability": 0.6507 + }, + { + "start": 49360.88, + "end": 49363.24, + "probability": 0.808 + }, + { + "start": 49363.24, + "end": 49364.72, + "probability": 0.2134 + }, + { + "start": 49365.28, + "end": 49368.42, + "probability": 0.782 + }, + { + "start": 49368.89, + "end": 49370.3, + "probability": 0.9741 + }, + { + "start": 49370.36, + "end": 49373.24, + "probability": 0.6736 + }, + { + "start": 49373.24, + "end": 49374.76, + "probability": 0.3232 + }, + { + "start": 49378.32, + "end": 49379.64, + "probability": 0.0659 + }, + { + "start": 49379.64, + "end": 49379.64, + "probability": 0.0963 + }, + { + "start": 49379.64, + "end": 49380.62, + "probability": 0.28 + }, + { + "start": 49381.4, + "end": 49382.71, + "probability": 0.0579 + }, + { + "start": 49383.28, + "end": 49384.33, + "probability": 0.2464 + }, + { + "start": 49384.4, + "end": 49384.88, + "probability": 0.2529 + }, + { + "start": 49384.88, + "end": 49386.05, + "probability": 0.0831 + }, + { + "start": 49386.38, + "end": 49386.96, + "probability": 0.2969 + }, + { + "start": 49387.36, + "end": 49387.5, + "probability": 0.0063 + }, + { + "start": 49387.58, + "end": 49388.82, + "probability": 0.2536 + }, + { + "start": 49388.88, + "end": 49389.65, + "probability": 0.1399 + }, + { + "start": 49389.68, + "end": 49390.02, + "probability": 0.0305 + }, + { + "start": 49390.14, + "end": 49390.96, + "probability": 0.8945 + }, + { + "start": 49391.04, + "end": 49391.6, + "probability": 0.417 + }, + { + "start": 49392.08, + "end": 49392.56, + "probability": 0.3659 + }, + { + "start": 49392.56, + "end": 49393.16, + "probability": 0.1733 + }, + { + "start": 49393.34, + "end": 49394.4, + "probability": 0.8258 + }, + { + "start": 49394.46, + "end": 49395.44, + "probability": 0.5104 + }, + { + "start": 49395.58, + "end": 49396.52, + "probability": 0.2462 + }, + { + "start": 49396.96, + "end": 49397.38, + "probability": 0.4745 + }, + { + "start": 49397.56, + "end": 49400.16, + "probability": 0.5957 + }, + { + "start": 49400.54, + "end": 49401.54, + "probability": 0.7235 + }, + { + "start": 49401.62, + "end": 49402.28, + "probability": 0.4249 + }, + { + "start": 49403.02, + "end": 49405.5, + "probability": 0.5372 + }, + { + "start": 49406.26, + "end": 49410.54, + "probability": 0.4572 + }, + { + "start": 49411.88, + "end": 49411.88, + "probability": 0.0088 + }, + { + "start": 49411.88, + "end": 49412.4, + "probability": 0.5161 + }, + { + "start": 49412.6, + "end": 49415.36, + "probability": 0.0966 + }, + { + "start": 49415.65, + "end": 49417.69, + "probability": 0.0237 + }, + { + "start": 49418.4, + "end": 49419.14, + "probability": 0.0874 + }, + { + "start": 49419.22, + "end": 49419.9, + "probability": 0.2846 + }, + { + "start": 49420.04, + "end": 49420.64, + "probability": 0.7421 + }, + { + "start": 49420.84, + "end": 49422.84, + "probability": 0.7367 + }, + { + "start": 49423.28, + "end": 49426.12, + "probability": 0.7321 + }, + { + "start": 49426.9, + "end": 49427.64, + "probability": 0.7563 + }, + { + "start": 49427.96, + "end": 49429.9, + "probability": 0.7217 + }, + { + "start": 49430.32, + "end": 49432.24, + "probability": 0.8458 + }, + { + "start": 49432.92, + "end": 49434.1, + "probability": 0.1373 + }, + { + "start": 49434.16, + "end": 49434.7, + "probability": 0.921 + }, + { + "start": 49435.28, + "end": 49439.46, + "probability": 0.9438 + }, + { + "start": 49439.52, + "end": 49441.92, + "probability": 0.7738 + }, + { + "start": 49442.22, + "end": 49443.62, + "probability": 0.7925 + }, + { + "start": 49443.98, + "end": 49445.28, + "probability": 0.7555 + }, + { + "start": 49445.6, + "end": 49446.98, + "probability": 0.4322 + }, + { + "start": 49447.48, + "end": 49449.28, + "probability": 0.1627 + }, + { + "start": 49449.28, + "end": 49450.0, + "probability": 0.7773 + }, + { + "start": 49450.22, + "end": 49451.54, + "probability": 0.1558 + }, + { + "start": 49451.9, + "end": 49453.01, + "probability": 0.9545 + }, + { + "start": 49453.26, + "end": 49454.08, + "probability": 0.7274 + }, + { + "start": 49454.12, + "end": 49454.56, + "probability": 0.1676 + }, + { + "start": 49454.56, + "end": 49454.82, + "probability": 0.5335 + }, + { + "start": 49455.04, + "end": 49455.3, + "probability": 0.3503 + }, + { + "start": 49455.3, + "end": 49455.93, + "probability": 0.3437 + }, + { + "start": 49456.58, + "end": 49456.98, + "probability": 0.1686 + }, + { + "start": 49457.16, + "end": 49457.44, + "probability": 0.3992 + }, + { + "start": 49458.48, + "end": 49459.18, + "probability": 0.249 + }, + { + "start": 49459.28, + "end": 49459.88, + "probability": 0.35 + }, + { + "start": 49460.8, + "end": 49463.78, + "probability": 0.0076 + }, + { + "start": 49464.38, + "end": 49466.44, + "probability": 0.1557 + }, + { + "start": 49471.4, + "end": 49477.66, + "probability": 0.2947 + }, + { + "start": 49478.78, + "end": 49479.78, + "probability": 0.4281 + }, + { + "start": 49480.06, + "end": 49481.38, + "probability": 0.2494 + }, + { + "start": 49481.48, + "end": 49483.01, + "probability": 0.9761 + }, + { + "start": 49484.64, + "end": 49487.04, + "probability": 0.2515 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.0, + "end": 49561.0, + "probability": 0.0 + }, + { + "start": 49561.22, + "end": 49563.86, + "probability": 0.0642 + }, + { + "start": 49564.2, + "end": 49566.84, + "probability": 0.248 + }, + { + "start": 49568.0, + "end": 49573.82, + "probability": 0.2115 + }, + { + "start": 49575.6, + "end": 49575.6, + "probability": 0.1204 + }, + { + "start": 49575.6, + "end": 49576.42, + "probability": 0.1399 + }, + { + "start": 49576.56, + "end": 49578.2, + "probability": 0.4262 + }, + { + "start": 49580.14, + "end": 49582.2, + "probability": 0.1633 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.0, + "end": 49682.0, + "probability": 0.0 + }, + { + "start": 49682.62, + "end": 49683.18, + "probability": 0.038 + }, + { + "start": 49684.18, + "end": 49688.76, + "probability": 0.1658 + }, + { + "start": 49688.76, + "end": 49688.76, + "probability": 0.1101 + }, + { + "start": 49688.76, + "end": 49688.76, + "probability": 0.0414 + }, + { + "start": 49690.45, + "end": 49693.78, + "probability": 0.0307 + }, + { + "start": 49693.78, + "end": 49694.6, + "probability": 0.1448 + }, + { + "start": 49696.54, + "end": 49697.6, + "probability": 0.0239 + }, + { + "start": 49708.1, + "end": 49710.66, + "probability": 0.0409 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49808.0, + "probability": 0.0 + }, + { + "start": 49808.0, + "end": 49809.23, + "probability": 0.9253 + }, + { + "start": 49809.56, + "end": 49811.54, + "probability": 0.4783 + }, + { + "start": 49811.64, + "end": 49812.62, + "probability": 0.9179 + }, + { + "start": 49812.78, + "end": 49813.14, + "probability": 0.2609 + }, + { + "start": 49813.24, + "end": 49813.32, + "probability": 0.5056 + }, + { + "start": 49813.32, + "end": 49815.38, + "probability": 0.7244 + }, + { + "start": 49816.1, + "end": 49821.2, + "probability": 0.9194 + }, + { + "start": 49821.58, + "end": 49824.2, + "probability": 0.4338 + }, + { + "start": 49824.5, + "end": 49826.3, + "probability": 0.7725 + }, + { + "start": 49826.98, + "end": 49830.0, + "probability": 0.6981 + }, + { + "start": 49830.32, + "end": 49830.84, + "probability": 0.7672 + }, + { + "start": 49831.02, + "end": 49831.62, + "probability": 0.1596 + }, + { + "start": 49831.62, + "end": 49832.86, + "probability": 0.3811 + }, + { + "start": 49832.86, + "end": 49834.26, + "probability": 0.7536 + }, + { + "start": 49835.5, + "end": 49836.74, + "probability": 0.173 + }, + { + "start": 49836.74, + "end": 49836.81, + "probability": 0.0264 + }, + { + "start": 49838.36, + "end": 49841.34, + "probability": 0.5953 + }, + { + "start": 49841.34, + "end": 49844.4, + "probability": 0.5865 + }, + { + "start": 49845.36, + "end": 49848.54, + "probability": 0.8455 + }, + { + "start": 49851.49, + "end": 49852.74, + "probability": 0.233 + }, + { + "start": 49852.74, + "end": 49853.3, + "probability": 0.1352 + }, + { + "start": 49854.08, + "end": 49857.28, + "probability": 0.2704 + }, + { + "start": 49857.46, + "end": 49857.78, + "probability": 0.2996 + }, + { + "start": 49857.88, + "end": 49858.74, + "probability": 0.1432 + }, + { + "start": 49858.74, + "end": 49858.88, + "probability": 0.1097 + }, + { + "start": 49858.98, + "end": 49861.56, + "probability": 0.0732 + }, + { + "start": 49861.88, + "end": 49862.74, + "probability": 0.1199 + }, + { + "start": 49862.8, + "end": 49863.7, + "probability": 0.0264 + }, + { + "start": 49863.7, + "end": 49866.18, + "probability": 0.0225 + }, + { + "start": 49866.2, + "end": 49866.66, + "probability": 0.2882 + }, + { + "start": 49866.7, + "end": 49867.0, + "probability": 0.0535 + }, + { + "start": 49867.1, + "end": 49867.1, + "probability": 0.1652 + }, + { + "start": 49867.5, + "end": 49867.68, + "probability": 0.0341 + }, + { + "start": 49867.74, + "end": 49869.14, + "probability": 0.3355 + }, + { + "start": 49869.84, + "end": 49869.84, + "probability": 0.2671 + }, + { + "start": 49870.36, + "end": 49870.95, + "probability": 0.2836 + }, + { + "start": 49871.28, + "end": 49871.92, + "probability": 0.6181 + }, + { + "start": 49872.08, + "end": 49875.02, + "probability": 0.2037 + }, + { + "start": 49875.14, + "end": 49875.62, + "probability": 0.3577 + }, + { + "start": 49875.82, + "end": 49878.5, + "probability": 0.4989 + }, + { + "start": 49878.58, + "end": 49880.04, + "probability": 0.2338 + }, + { + "start": 49880.74, + "end": 49881.8, + "probability": 0.0806 + }, + { + "start": 49881.82, + "end": 49882.26, + "probability": 0.0641 + }, + { + "start": 49882.9, + "end": 49883.1, + "probability": 0.0596 + }, + { + "start": 49883.38, + "end": 49885.98, + "probability": 0.1581 + }, + { + "start": 49886.28, + "end": 49886.88, + "probability": 0.4133 + }, + { + "start": 49887.0, + "end": 49887.02, + "probability": 0.0426 + }, + { + "start": 49887.36, + "end": 49887.62, + "probability": 0.4384 + }, + { + "start": 49887.74, + "end": 49890.78, + "probability": 0.4657 + }, + { + "start": 49892.26, + "end": 49892.94, + "probability": 0.8783 + }, + { + "start": 49893.16, + "end": 49893.78, + "probability": 0.9485 + }, + { + "start": 49894.46, + "end": 49895.6, + "probability": 0.9268 + }, + { + "start": 49896.2, + "end": 49896.36, + "probability": 0.2351 + }, + { + "start": 49896.36, + "end": 49896.74, + "probability": 0.3537 + }, + { + "start": 49896.84, + "end": 49898.28, + "probability": 0.5113 + }, + { + "start": 49898.28, + "end": 49898.84, + "probability": 0.6333 + }, + { + "start": 49898.86, + "end": 49899.26, + "probability": 0.4727 + }, + { + "start": 49899.4, + "end": 49899.7, + "probability": 0.8148 + }, + { + "start": 49899.82, + "end": 49902.1, + "probability": 0.7188 + }, + { + "start": 49902.16, + "end": 49903.58, + "probability": 0.8483 + }, + { + "start": 49903.58, + "end": 49905.54, + "probability": 0.3633 + }, + { + "start": 49906.16, + "end": 49906.6, + "probability": 0.5135 + }, + { + "start": 49906.62, + "end": 49911.18, + "probability": 0.8177 + }, + { + "start": 49911.54, + "end": 49912.18, + "probability": 0.53 + }, + { + "start": 49912.2, + "end": 49914.16, + "probability": 0.5612 + }, + { + "start": 49914.52, + "end": 49915.46, + "probability": 0.937 + }, + { + "start": 49915.56, + "end": 49917.86, + "probability": 0.5092 + }, + { + "start": 49917.96, + "end": 49919.0, + "probability": 0.9796 + }, + { + "start": 49919.44, + "end": 49925.9, + "probability": 0.9338 + }, + { + "start": 49925.98, + "end": 49926.52, + "probability": 0.3418 + }, + { + "start": 49926.54, + "end": 49927.66, + "probability": 0.2542 + }, + { + "start": 49927.84, + "end": 49927.96, + "probability": 0.0379 + }, + { + "start": 49927.98, + "end": 49930.78, + "probability": 0.8088 + }, + { + "start": 49931.4, + "end": 49932.5, + "probability": 0.5832 + }, + { + "start": 49933.09, + "end": 49935.34, + "probability": 0.5733 + }, + { + "start": 49935.34, + "end": 49936.4, + "probability": 0.9432 + }, + { + "start": 49936.78, + "end": 49937.46, + "probability": 0.7963 + }, + { + "start": 49937.58, + "end": 49941.08, + "probability": 0.9464 + }, + { + "start": 49941.42, + "end": 49947.88, + "probability": 0.965 + }, + { + "start": 49948.36, + "end": 49949.77, + "probability": 0.9661 + }, + { + "start": 49950.58, + "end": 49952.28, + "probability": 0.9512 + }, + { + "start": 49952.32, + "end": 49955.04, + "probability": 0.8176 + }, + { + "start": 49955.34, + "end": 49956.38, + "probability": 0.9795 + }, + { + "start": 49956.6, + "end": 49957.6, + "probability": 0.8198 + }, + { + "start": 49957.96, + "end": 49958.62, + "probability": 0.9843 + }, + { + "start": 49959.32, + "end": 49960.5, + "probability": 0.9476 + }, + { + "start": 49960.7, + "end": 49961.64, + "probability": 0.8972 + }, + { + "start": 49961.92, + "end": 49963.68, + "probability": 0.9885 + }, + { + "start": 49964.78, + "end": 49965.9, + "probability": 0.7334 + }, + { + "start": 49966.26, + "end": 49971.0, + "probability": 0.6427 + }, + { + "start": 49971.6, + "end": 49973.94, + "probability": 0.7142 + }, + { + "start": 49974.06, + "end": 49975.34, + "probability": 0.9597 + }, + { + "start": 49975.56, + "end": 49977.56, + "probability": 0.0574 + }, + { + "start": 49977.56, + "end": 49978.21, + "probability": 0.1456 + }, + { + "start": 49978.6, + "end": 49979.38, + "probability": 0.5157 + }, + { + "start": 49980.16, + "end": 49981.33, + "probability": 0.4526 + }, + { + "start": 49981.72, + "end": 49984.86, + "probability": 0.6121 + }, + { + "start": 49985.2, + "end": 49987.48, + "probability": 0.4826 + }, + { + "start": 49988.1, + "end": 49990.37, + "probability": 0.7963 + }, + { + "start": 49993.1, + "end": 49993.26, + "probability": 0.0471 + }, + { + "start": 49993.26, + "end": 49994.38, + "probability": 0.2622 + }, + { + "start": 49994.64, + "end": 49997.3, + "probability": 0.607 + }, + { + "start": 49997.78, + "end": 50000.76, + "probability": 0.7207 + }, + { + "start": 50001.0, + "end": 50001.72, + "probability": 0.1666 + }, + { + "start": 50001.72, + "end": 50002.46, + "probability": 0.4645 + }, + { + "start": 50002.76, + "end": 50003.92, + "probability": 0.9695 + }, + { + "start": 50004.2, + "end": 50005.12, + "probability": 0.7317 + }, + { + "start": 50005.18, + "end": 50005.9, + "probability": 0.188 + }, + { + "start": 50006.14, + "end": 50009.1, + "probability": 0.7908 + }, + { + "start": 50009.16, + "end": 50010.74, + "probability": 0.895 + }, + { + "start": 50011.08, + "end": 50013.48, + "probability": 0.713 + }, + { + "start": 50013.76, + "end": 50015.44, + "probability": 0.3926 + }, + { + "start": 50015.9, + "end": 50015.96, + "probability": 0.4995 + }, + { + "start": 50016.04, + "end": 50016.58, + "probability": 0.5942 + }, + { + "start": 50016.68, + "end": 50017.52, + "probability": 0.2686 + }, + { + "start": 50017.6, + "end": 50018.53, + "probability": 0.2166 + }, + { + "start": 50018.54, + "end": 50019.72, + "probability": 0.1801 + }, + { + "start": 50019.82, + "end": 50020.64, + "probability": 0.3163 + }, + { + "start": 50020.78, + "end": 50021.0, + "probability": 0.6611 + }, + { + "start": 50021.54, + "end": 50022.56, + "probability": 0.6512 + }, + { + "start": 50023.12, + "end": 50027.3, + "probability": 0.8359 + }, + { + "start": 50027.3, + "end": 50030.38, + "probability": 0.7036 + }, + { + "start": 50030.54, + "end": 50032.36, + "probability": 0.6316 + }, + { + "start": 50032.52, + "end": 50032.74, + "probability": 0.1939 + }, + { + "start": 50032.96, + "end": 50034.52, + "probability": 0.4318 + }, + { + "start": 50034.96, + "end": 50035.46, + "probability": 0.574 + }, + { + "start": 50035.6, + "end": 50039.18, + "probability": 0.7044 + }, + { + "start": 50039.86, + "end": 50041.52, + "probability": 0.601 + }, + { + "start": 50042.38, + "end": 50043.2, + "probability": 0.4083 + }, + { + "start": 50043.32, + "end": 50044.1, + "probability": 0.3112 + }, + { + "start": 50044.46, + "end": 50044.68, + "probability": 0.3401 + }, + { + "start": 50044.74, + "end": 50045.75, + "probability": 0.3987 + }, + { + "start": 50045.9, + "end": 50046.48, + "probability": 0.2655 + }, + { + "start": 50047.02, + "end": 50049.34, + "probability": 0.5867 + }, + { + "start": 50049.75, + "end": 50051.3, + "probability": 0.0157 + }, + { + "start": 50051.3, + "end": 50051.3, + "probability": 0.0709 + }, + { + "start": 50051.3, + "end": 50052.22, + "probability": 0.7372 + }, + { + "start": 50052.78, + "end": 50054.5, + "probability": 0.3261 + }, + { + "start": 50054.62, + "end": 50059.5, + "probability": 0.3113 + }, + { + "start": 50059.7, + "end": 50060.9, + "probability": 0.1652 + }, + { + "start": 50061.02, + "end": 50063.22, + "probability": 0.0119 + }, + { + "start": 50063.92, + "end": 50064.38, + "probability": 0.7477 + }, + { + "start": 50064.6, + "end": 50066.24, + "probability": 0.6222 + }, + { + "start": 50066.46, + "end": 50067.74, + "probability": 0.5315 + }, + { + "start": 50068.74, + "end": 50069.36, + "probability": 0.4052 + }, + { + "start": 50070.24, + "end": 50071.08, + "probability": 0.3721 + }, + { + "start": 50071.94, + "end": 50076.48, + "probability": 0.3835 + }, + { + "start": 50076.64, + "end": 50079.08, + "probability": 0.6905 + }, + { + "start": 50079.66, + "end": 50080.88, + "probability": 0.5069 + }, + { + "start": 50082.0, + "end": 50084.4, + "probability": 0.1867 + }, + { + "start": 50084.58, + "end": 50085.12, + "probability": 0.1708 + }, + { + "start": 50085.12, + "end": 50085.32, + "probability": 0.2143 + }, + { + "start": 50085.32, + "end": 50086.08, + "probability": 0.5606 + }, + { + "start": 50086.52, + "end": 50087.36, + "probability": 0.8665 + }, + { + "start": 50088.6, + "end": 50090.38, + "probability": 0.1407 + }, + { + "start": 50090.64, + "end": 50090.86, + "probability": 0.27 + }, + { + "start": 50090.96, + "end": 50091.18, + "probability": 0.0659 + }, + { + "start": 50091.18, + "end": 50093.06, + "probability": 0.8263 + }, + { + "start": 50093.18, + "end": 50093.76, + "probability": 0.8291 + }, + { + "start": 50095.62, + "end": 50096.4, + "probability": 0.0632 + }, + { + "start": 50096.4, + "end": 50096.96, + "probability": 0.357 + }, + { + "start": 50096.96, + "end": 50098.54, + "probability": 0.6509 + }, + { + "start": 50098.94, + "end": 50100.04, + "probability": 0.8884 + }, + { + "start": 50100.16, + "end": 50102.26, + "probability": 0.9663 + }, + { + "start": 50103.56, + "end": 50105.84, + "probability": 0.9385 + }, + { + "start": 50106.74, + "end": 50109.1, + "probability": 0.9899 + }, + { + "start": 50109.2, + "end": 50113.37, + "probability": 0.9388 + }, + { + "start": 50114.56, + "end": 50116.76, + "probability": 0.9858 + }, + { + "start": 50117.64, + "end": 50119.1, + "probability": 0.9987 + }, + { + "start": 50120.28, + "end": 50126.28, + "probability": 0.9967 + }, + { + "start": 50127.26, + "end": 50127.7, + "probability": 0.6176 + }, + { + "start": 50129.4, + "end": 50131.61, + "probability": 0.8708 + }, + { + "start": 50132.08, + "end": 50135.38, + "probability": 0.6236 + }, + { + "start": 50135.72, + "end": 50136.22, + "probability": 0.1254 + }, + { + "start": 50136.5, + "end": 50138.7, + "probability": 0.3213 + }, + { + "start": 50143.14, + "end": 50148.28, + "probability": 0.7532 + }, + { + "start": 50149.68, + "end": 50151.39, + "probability": 0.9307 + }, + { + "start": 50151.68, + "end": 50152.88, + "probability": 0.9662 + }, + { + "start": 50154.3, + "end": 50155.68, + "probability": 0.9766 + }, + { + "start": 50155.96, + "end": 50157.96, + "probability": 0.9822 + }, + { + "start": 50158.26, + "end": 50158.66, + "probability": 0.5862 + }, + { + "start": 50158.68, + "end": 50159.6, + "probability": 0.6441 + }, + { + "start": 50160.54, + "end": 50161.74, + "probability": 0.9775 + }, + { + "start": 50161.92, + "end": 50163.66, + "probability": 0.9979 + }, + { + "start": 50164.38, + "end": 50164.82, + "probability": 0.7764 + }, + { + "start": 50165.58, + "end": 50165.96, + "probability": 0.9036 + }, + { + "start": 50166.42, + "end": 50167.38, + "probability": 0.1282 + }, + { + "start": 50167.66, + "end": 50169.16, + "probability": 0.9783 + }, + { + "start": 50169.86, + "end": 50171.76, + "probability": 0.8501 + }, + { + "start": 50172.94, + "end": 50176.36, + "probability": 0.9749 + }, + { + "start": 50177.58, + "end": 50179.5, + "probability": 0.9301 + }, + { + "start": 50180.34, + "end": 50182.62, + "probability": 0.9969 + }, + { + "start": 50183.18, + "end": 50185.72, + "probability": 0.9588 + }, + { + "start": 50186.76, + "end": 50187.74, + "probability": 0.8049 + }, + { + "start": 50189.01, + "end": 50191.69, + "probability": 0.9769 + }, + { + "start": 50191.8, + "end": 50194.0, + "probability": 0.9295 + }, + { + "start": 50194.28, + "end": 50195.64, + "probability": 0.8463 + }, + { + "start": 50196.24, + "end": 50197.14, + "probability": 0.8326 + }, + { + "start": 50197.84, + "end": 50198.2, + "probability": 0.6711 + }, + { + "start": 50198.28, + "end": 50198.72, + "probability": 0.6513 + }, + { + "start": 50200.56, + "end": 50203.3, + "probability": 0.5712 + }, + { + "start": 50203.3, + "end": 50203.82, + "probability": 0.1667 + }, + { + "start": 50203.82, + "end": 50204.35, + "probability": 0.1369 + }, + { + "start": 50204.92, + "end": 50208.5, + "probability": 0.7591 + }, + { + "start": 50209.18, + "end": 50209.98, + "probability": 0.9962 + }, + { + "start": 50211.28, + "end": 50214.04, + "probability": 0.9775 + }, + { + "start": 50214.14, + "end": 50215.6, + "probability": 0.4982 + }, + { + "start": 50216.48, + "end": 50216.72, + "probability": 0.3986 + }, + { + "start": 50216.9, + "end": 50217.54, + "probability": 0.6919 + }, + { + "start": 50217.66, + "end": 50219.52, + "probability": 0.968 + }, + { + "start": 50219.98, + "end": 50222.88, + "probability": 0.9536 + }, + { + "start": 50223.58, + "end": 50224.78, + "probability": 0.9802 + }, + { + "start": 50226.02, + "end": 50226.92, + "probability": 0.3674 + }, + { + "start": 50227.54, + "end": 50229.62, + "probability": 0.9927 + }, + { + "start": 50229.7, + "end": 50230.73, + "probability": 0.9963 + }, + { + "start": 50230.78, + "end": 50231.9, + "probability": 0.9963 + }, + { + "start": 50232.02, + "end": 50234.6, + "probability": 0.8523 + }, + { + "start": 50236.16, + "end": 50237.02, + "probability": 0.6703 + }, + { + "start": 50237.6, + "end": 50238.7, + "probability": 0.9821 + }, + { + "start": 50239.3, + "end": 50243.98, + "probability": 0.9936 + }, + { + "start": 50244.92, + "end": 50249.22, + "probability": 0.8416 + }, + { + "start": 50249.98, + "end": 50250.98, + "probability": 0.7778 + }, + { + "start": 50251.46, + "end": 50252.56, + "probability": 0.2595 + }, + { + "start": 50253.04, + "end": 50254.2, + "probability": 0.9775 + }, + { + "start": 50255.08, + "end": 50256.5, + "probability": 0.8766 + }, + { + "start": 50257.1, + "end": 50262.66, + "probability": 0.8232 + }, + { + "start": 50263.3, + "end": 50265.72, + "probability": 0.8945 + }, + { + "start": 50267.38, + "end": 50269.0, + "probability": 0.9208 + }, + { + "start": 50269.18, + "end": 50269.62, + "probability": 0.7332 + }, + { + "start": 50269.7, + "end": 50270.5, + "probability": 0.7292 + }, + { + "start": 50270.54, + "end": 50272.04, + "probability": 0.8399 + }, + { + "start": 50273.36, + "end": 50275.36, + "probability": 0.9925 + }, + { + "start": 50276.58, + "end": 50279.62, + "probability": 0.9834 + }, + { + "start": 50280.4, + "end": 50281.92, + "probability": 0.9927 + }, + { + "start": 50282.48, + "end": 50284.38, + "probability": 0.8889 + }, + { + "start": 50285.26, + "end": 50288.0, + "probability": 0.9057 + }, + { + "start": 50288.54, + "end": 50290.7, + "probability": 0.984 + }, + { + "start": 50291.86, + "end": 50292.3, + "probability": 0.7532 + }, + { + "start": 50293.84, + "end": 50294.82, + "probability": 0.924 + }, + { + "start": 50295.3, + "end": 50298.48, + "probability": 0.9059 + }, + { + "start": 50303.42, + "end": 50306.3, + "probability": 0.579 + }, + { + "start": 50306.44, + "end": 50308.7, + "probability": 0.7434 + }, + { + "start": 50309.12, + "end": 50311.45, + "probability": 0.0098 + }, + { + "start": 50324.7, + "end": 50327.02, + "probability": 0.7829 + }, + { + "start": 50330.2, + "end": 50334.55, + "probability": 0.6726 + }, + { + "start": 50335.06, + "end": 50335.5, + "probability": 0.5741 + }, + { + "start": 50335.54, + "end": 50336.73, + "probability": 0.1974 + }, + { + "start": 50337.18, + "end": 50337.76, + "probability": 0.3084 + }, + { + "start": 50337.82, + "end": 50340.2, + "probability": 0.6298 + }, + { + "start": 50340.36, + "end": 50341.62, + "probability": 0.9564 + }, + { + "start": 50341.7, + "end": 50342.25, + "probability": 0.5204 + }, + { + "start": 50343.42, + "end": 50343.72, + "probability": 0.5944 + }, + { + "start": 50344.68, + "end": 50345.48, + "probability": 0.7183 + }, + { + "start": 50346.58, + "end": 50350.68, + "probability": 0.9362 + }, + { + "start": 50350.82, + "end": 50351.49, + "probability": 0.9588 + }, + { + "start": 50351.62, + "end": 50352.92, + "probability": 0.9098 + }, + { + "start": 50354.26, + "end": 50356.2, + "probability": 0.9391 + }, + { + "start": 50357.04, + "end": 50358.64, + "probability": 0.9907 + }, + { + "start": 50359.24, + "end": 50361.44, + "probability": 0.9402 + }, + { + "start": 50364.07, + "end": 50364.82, + "probability": 0.0801 + }, + { + "start": 50366.09, + "end": 50369.96, + "probability": 0.5898 + }, + { + "start": 50369.96, + "end": 50369.98, + "probability": 0.3934 + }, + { + "start": 50370.6, + "end": 50371.0, + "probability": 0.7601 + }, + { + "start": 50372.36, + "end": 50374.16, + "probability": 0.315 + }, + { + "start": 50374.5, + "end": 50378.06, + "probability": 0.985 + }, + { + "start": 50378.16, + "end": 50378.94, + "probability": 0.8215 + }, + { + "start": 50379.84, + "end": 50382.66, + "probability": 0.825 + }, + { + "start": 50382.78, + "end": 50384.38, + "probability": 0.7037 + }, + { + "start": 50384.94, + "end": 50388.16, + "probability": 0.9824 + }, + { + "start": 50388.92, + "end": 50391.52, + "probability": 0.9822 + }, + { + "start": 50392.1, + "end": 50395.34, + "probability": 0.9517 + }, + { + "start": 50396.64, + "end": 50399.62, + "probability": 0.9993 + }, + { + "start": 50400.94, + "end": 50403.34, + "probability": 0.9199 + }, + { + "start": 50403.4, + "end": 50407.4, + "probability": 0.9979 + }, + { + "start": 50407.4, + "end": 50410.14, + "probability": 0.9595 + }, + { + "start": 50410.2, + "end": 50410.48, + "probability": 0.7984 + }, + { + "start": 50411.14, + "end": 50415.32, + "probability": 0.9921 + }, + { + "start": 50415.4, + "end": 50417.08, + "probability": 0.7514 + }, + { + "start": 50418.68, + "end": 50422.48, + "probability": 0.9282 + }, + { + "start": 50423.68, + "end": 50425.02, + "probability": 0.9064 + }, + { + "start": 50426.58, + "end": 50429.98, + "probability": 0.9938 + }, + { + "start": 50430.9, + "end": 50432.98, + "probability": 0.9749 + }, + { + "start": 50433.4, + "end": 50436.46, + "probability": 0.9606 + }, + { + "start": 50436.46, + "end": 50437.4, + "probability": 0.9272 + }, + { + "start": 50438.02, + "end": 50444.48, + "probability": 0.933 + }, + { + "start": 50445.0, + "end": 50446.22, + "probability": 0.878 + }, + { + "start": 50448.56, + "end": 50450.6, + "probability": 0.9348 + }, + { + "start": 50450.66, + "end": 50453.04, + "probability": 0.9907 + }, + { + "start": 50453.76, + "end": 50457.3, + "probability": 0.8822 + }, + { + "start": 50457.96, + "end": 50458.94, + "probability": 0.9868 + }, + { + "start": 50459.5, + "end": 50461.36, + "probability": 0.9694 + }, + { + "start": 50461.7, + "end": 50466.76, + "probability": 0.9575 + }, + { + "start": 50467.28, + "end": 50469.12, + "probability": 0.8176 + }, + { + "start": 50469.8, + "end": 50470.52, + "probability": 0.768 + }, + { + "start": 50471.12, + "end": 50474.04, + "probability": 0.968 + }, + { + "start": 50474.62, + "end": 50477.18, + "probability": 0.9952 + }, + { + "start": 50477.84, + "end": 50482.16, + "probability": 0.9812 + }, + { + "start": 50483.32, + "end": 50484.24, + "probability": 0.9834 + }, + { + "start": 50485.46, + "end": 50491.58, + "probability": 0.9904 + }, + { + "start": 50494.52, + "end": 50496.8, + "probability": 0.9945 + }, + { + "start": 50498.66, + "end": 50499.48, + "probability": 0.8986 + }, + { + "start": 50501.62, + "end": 50503.6, + "probability": 0.8878 + }, + { + "start": 50505.28, + "end": 50509.22, + "probability": 0.5304 + }, + { + "start": 50509.76, + "end": 50514.1, + "probability": 0.8481 + }, + { + "start": 50515.1, + "end": 50519.62, + "probability": 0.9914 + }, + { + "start": 50522.0, + "end": 50525.4, + "probability": 0.999 + }, + { + "start": 50526.22, + "end": 50528.76, + "probability": 0.9452 + }, + { + "start": 50529.6, + "end": 50532.08, + "probability": 0.962 + }, + { + "start": 50532.64, + "end": 50533.42, + "probability": 0.9402 + }, + { + "start": 50534.48, + "end": 50536.3, + "probability": 0.9845 + }, + { + "start": 50537.32, + "end": 50538.64, + "probability": 0.9847 + }, + { + "start": 50538.72, + "end": 50541.24, + "probability": 0.9447 + }, + { + "start": 50542.32, + "end": 50545.72, + "probability": 0.978 + }, + { + "start": 50546.44, + "end": 50549.82, + "probability": 0.9696 + }, + { + "start": 50549.82, + "end": 50552.46, + "probability": 0.9973 + }, + { + "start": 50553.22, + "end": 50557.96, + "probability": 0.7439 + }, + { + "start": 50557.96, + "end": 50562.1, + "probability": 0.9897 + }, + { + "start": 50564.68, + "end": 50565.92, + "probability": 0.5629 + }, + { + "start": 50568.07, + "end": 50574.16, + "probability": 0.9915 + }, + { + "start": 50582.2, + "end": 50589.88, + "probability": 0.9697 + }, + { + "start": 50591.06, + "end": 50594.1, + "probability": 0.969 + }, + { + "start": 50595.04, + "end": 50595.9, + "probability": 0.9066 + }, + { + "start": 50597.22, + "end": 50597.64, + "probability": 0.8348 + }, + { + "start": 50599.2, + "end": 50602.1, + "probability": 0.9652 + }, + { + "start": 50603.34, + "end": 50603.76, + "probability": 0.9824 + }, + { + "start": 50606.12, + "end": 50609.6, + "probability": 0.9203 + }, + { + "start": 50610.16, + "end": 50613.48, + "probability": 0.9635 + }, + { + "start": 50615.38, + "end": 50620.76, + "probability": 0.9959 + }, + { + "start": 50620.92, + "end": 50623.66, + "probability": 0.9946 + }, + { + "start": 50623.74, + "end": 50625.46, + "probability": 0.9861 + }, + { + "start": 50627.14, + "end": 50630.24, + "probability": 0.667 + }, + { + "start": 50634.2, + "end": 50637.2, + "probability": 0.9813 + }, + { + "start": 50638.18, + "end": 50640.66, + "probability": 0.9937 + }, + { + "start": 50642.08, + "end": 50642.74, + "probability": 0.737 + }, + { + "start": 50642.84, + "end": 50647.52, + "probability": 0.998 + }, + { + "start": 50648.04, + "end": 50650.48, + "probability": 0.7887 + }, + { + "start": 50651.89, + "end": 50655.88, + "probability": 0.9467 + }, + { + "start": 50657.42, + "end": 50659.08, + "probability": 0.7658 + }, + { + "start": 50659.9, + "end": 50662.66, + "probability": 0.9953 + }, + { + "start": 50662.92, + "end": 50665.24, + "probability": 0.9699 + }, + { + "start": 50666.5, + "end": 50666.54, + "probability": 0.1034 + }, + { + "start": 50666.66, + "end": 50666.76, + "probability": 0.8813 + }, + { + "start": 50666.88, + "end": 50668.48, + "probability": 0.7224 + }, + { + "start": 50668.61, + "end": 50669.48, + "probability": 0.9565 + }, + { + "start": 50671.66, + "end": 50674.22, + "probability": 0.9751 + }, + { + "start": 50674.22, + "end": 50677.18, + "probability": 0.9619 + }, + { + "start": 50691.42, + "end": 50692.24, + "probability": 0.0949 + }, + { + "start": 50692.24, + "end": 50692.24, + "probability": 0.0542 + }, + { + "start": 50692.24, + "end": 50695.81, + "probability": 0.6351 + }, + { + "start": 50696.7, + "end": 50699.88, + "probability": 0.9961 + }, + { + "start": 50700.86, + "end": 50702.46, + "probability": 0.6046 + }, + { + "start": 50704.31, + "end": 50709.48, + "probability": 0.987 + }, + { + "start": 50709.6, + "end": 50713.32, + "probability": 0.9772 + }, + { + "start": 50714.02, + "end": 50714.44, + "probability": 0.4924 + }, + { + "start": 50714.56, + "end": 50714.9, + "probability": 0.9448 + }, + { + "start": 50715.04, + "end": 50715.38, + "probability": 0.8964 + }, + { + "start": 50715.52, + "end": 50715.82, + "probability": 0.5176 + }, + { + "start": 50716.24, + "end": 50718.96, + "probability": 0.9874 + }, + { + "start": 50719.12, + "end": 50720.08, + "probability": 0.8263 + }, + { + "start": 50721.2, + "end": 50721.94, + "probability": 0.6696 + }, + { + "start": 50723.0, + "end": 50726.74, + "probability": 0.9941 + }, + { + "start": 50727.48, + "end": 50730.48, + "probability": 0.9663 + }, + { + "start": 50730.64, + "end": 50732.8, + "probability": 0.9995 + }, + { + "start": 50733.9, + "end": 50735.86, + "probability": 0.6778 + }, + { + "start": 50735.9, + "end": 50736.2, + "probability": 0.6861 + }, + { + "start": 50736.76, + "end": 50737.2, + "probability": 0.7729 + }, + { + "start": 50737.24, + "end": 50738.16, + "probability": 0.6581 + }, + { + "start": 50738.56, + "end": 50739.5, + "probability": 0.9211 + }, + { + "start": 50739.62, + "end": 50741.58, + "probability": 0.9587 + }, + { + "start": 50742.32, + "end": 50744.8, + "probability": 0.8965 + }, + { + "start": 50744.8, + "end": 50747.6, + "probability": 0.9961 + }, + { + "start": 50748.48, + "end": 50749.24, + "probability": 0.2708 + }, + { + "start": 50752.42, + "end": 50752.86, + "probability": 0.5386 + }, + { + "start": 50752.96, + "end": 50753.74, + "probability": 0.8739 + }, + { + "start": 50753.82, + "end": 50754.64, + "probability": 0.9299 + }, + { + "start": 50755.58, + "end": 50759.86, + "probability": 0.9302 + }, + { + "start": 50760.12, + "end": 50765.98, + "probability": 0.9907 + }, + { + "start": 50766.56, + "end": 50770.02, + "probability": 0.9915 + }, + { + "start": 50770.34, + "end": 50771.34, + "probability": 0.7354 + }, + { + "start": 50772.2, + "end": 50773.7, + "probability": 0.8385 + }, + { + "start": 50775.46, + "end": 50776.52, + "probability": 0.8431 + }, + { + "start": 50777.12, + "end": 50779.52, + "probability": 0.9871 + }, + { + "start": 50779.52, + "end": 50784.02, + "probability": 0.9725 + }, + { + "start": 50784.78, + "end": 50788.28, + "probability": 0.9976 + }, + { + "start": 50788.44, + "end": 50789.63, + "probability": 0.9517 + }, + { + "start": 50791.08, + "end": 50796.58, + "probability": 0.9743 + }, + { + "start": 50796.82, + "end": 50798.2, + "probability": 0.9937 + }, + { + "start": 50798.7, + "end": 50803.72, + "probability": 0.9603 + }, + { + "start": 50804.7, + "end": 50806.42, + "probability": 0.7046 + }, + { + "start": 50807.06, + "end": 50810.78, + "probability": 0.981 + }, + { + "start": 50813.24, + "end": 50814.5, + "probability": 0.9426 + }, + { + "start": 50815.8, + "end": 50818.42, + "probability": 0.9976 + }, + { + "start": 50818.6, + "end": 50821.52, + "probability": 0.9975 + }, + { + "start": 50822.98, + "end": 50824.78, + "probability": 0.977 + }, + { + "start": 50825.02, + "end": 50827.8, + "probability": 0.9871 + }, + { + "start": 50828.4, + "end": 50828.68, + "probability": 0.9894 + }, + { + "start": 50829.22, + "end": 50830.8, + "probability": 0.984 + }, + { + "start": 50831.42, + "end": 50834.58, + "probability": 0.9923 + }, + { + "start": 50836.7, + "end": 50839.66, + "probability": 0.9215 + }, + { + "start": 50839.9, + "end": 50840.64, + "probability": 0.9265 + }, + { + "start": 50841.9, + "end": 50846.1, + "probability": 0.999 + }, + { + "start": 50846.26, + "end": 50848.34, + "probability": 0.9938 + }, + { + "start": 50849.58, + "end": 50850.96, + "probability": 0.6979 + }, + { + "start": 50851.1, + "end": 50855.7, + "probability": 0.9976 + }, + { + "start": 50856.96, + "end": 50857.16, + "probability": 0.9619 + }, + { + "start": 50857.92, + "end": 50861.84, + "probability": 0.9618 + }, + { + "start": 50862.66, + "end": 50868.04, + "probability": 0.9961 + }, + { + "start": 50868.22, + "end": 50871.56, + "probability": 0.998 + }, + { + "start": 50871.56, + "end": 50874.1, + "probability": 0.9983 + }, + { + "start": 50875.97, + "end": 50881.06, + "probability": 0.9965 + }, + { + "start": 50882.2, + "end": 50884.7, + "probability": 0.8658 + }, + { + "start": 50885.3, + "end": 50887.4, + "probability": 0.9917 + }, + { + "start": 50888.04, + "end": 50891.28, + "probability": 0.994 + }, + { + "start": 50892.02, + "end": 50893.26, + "probability": 0.8966 + }, + { + "start": 50894.72, + "end": 50895.92, + "probability": 0.7183 + }, + { + "start": 50896.02, + "end": 50897.1, + "probability": 0.9367 + }, + { + "start": 50897.22, + "end": 50898.8, + "probability": 0.8793 + }, + { + "start": 50898.88, + "end": 50900.0, + "probability": 0.9404 + }, + { + "start": 50903.74, + "end": 50907.06, + "probability": 0.9781 + }, + { + "start": 50907.36, + "end": 50911.6, + "probability": 0.9948 + }, + { + "start": 50913.36, + "end": 50916.64, + "probability": 0.9825 + }, + { + "start": 50916.64, + "end": 50920.44, + "probability": 0.9974 + }, + { + "start": 50921.3, + "end": 50924.4, + "probability": 0.9775 + }, + { + "start": 50924.4, + "end": 50927.26, + "probability": 0.9922 + }, + { + "start": 50928.52, + "end": 50932.6, + "probability": 0.9902 + }, + { + "start": 50932.6, + "end": 50936.44, + "probability": 0.9588 + }, + { + "start": 50938.52, + "end": 50939.12, + "probability": 0.8764 + }, + { + "start": 50940.08, + "end": 50940.86, + "probability": 0.8815 + }, + { + "start": 50941.16, + "end": 50943.02, + "probability": 0.8961 + }, + { + "start": 50943.24, + "end": 50945.64, + "probability": 0.9898 + }, + { + "start": 50945.74, + "end": 50947.52, + "probability": 0.9755 + }, + { + "start": 50948.46, + "end": 50951.88, + "probability": 0.9764 + }, + { + "start": 50951.88, + "end": 50954.58, + "probability": 0.999 + }, + { + "start": 50955.3, + "end": 50958.3, + "probability": 0.7408 + }, + { + "start": 50958.98, + "end": 50962.2, + "probability": 0.9821 + }, + { + "start": 50962.38, + "end": 50965.86, + "probability": 0.9887 + }, + { + "start": 50966.46, + "end": 50969.04, + "probability": 0.9702 + }, + { + "start": 50970.32, + "end": 50972.72, + "probability": 0.9418 + }, + { + "start": 50974.48, + "end": 50977.7, + "probability": 0.9825 + }, + { + "start": 50977.72, + "end": 50977.86, + "probability": 0.1139 + }, + { + "start": 50977.86, + "end": 50979.04, + "probability": 0.5311 + }, + { + "start": 50979.2, + "end": 50981.9, + "probability": 0.9987 + }, + { + "start": 50981.9, + "end": 50984.26, + "probability": 0.9964 + }, + { + "start": 50984.76, + "end": 50988.48, + "probability": 0.9283 + }, + { + "start": 50989.1, + "end": 50993.06, + "probability": 0.9817 + }, + { + "start": 50993.28, + "end": 50994.02, + "probability": 0.981 + }, + { + "start": 50994.1, + "end": 50994.36, + "probability": 0.8381 + }, + { + "start": 50995.68, + "end": 50996.2, + "probability": 0.7733 + }, + { + "start": 50996.6, + "end": 50998.92, + "probability": 0.8066 + }, + { + "start": 51013.78, + "end": 51014.66, + "probability": 0.6424 + }, + { + "start": 51015.3, + "end": 51016.24, + "probability": 0.182 + }, + { + "start": 51016.36, + "end": 51016.92, + "probability": 0.2293 + }, + { + "start": 51016.92, + "end": 51017.2, + "probability": 0.3625 + }, + { + "start": 51017.96, + "end": 51020.54, + "probability": 0.0531 + }, + { + "start": 51022.86, + "end": 51026.42, + "probability": 0.3054 + }, + { + "start": 51037.88, + "end": 51038.8, + "probability": 0.0493 + }, + { + "start": 51043.96, + "end": 51045.74, + "probability": 0.0976 + }, + { + "start": 51059.1, + "end": 51059.54, + "probability": 0.2443 + }, + { + "start": 51067.96, + "end": 51070.34, + "probability": 0.992 + }, + { + "start": 51075.86, + "end": 51078.76, + "probability": 0.9961 + }, + { + "start": 51080.66, + "end": 51081.42, + "probability": 0.6748 + }, + { + "start": 51082.32, + "end": 51084.48, + "probability": 0.8579 + }, + { + "start": 51086.5, + "end": 51091.6, + "probability": 0.9976 + }, + { + "start": 51093.86, + "end": 51095.26, + "probability": 0.9863 + }, + { + "start": 51096.46, + "end": 51100.22, + "probability": 0.9958 + }, + { + "start": 51101.1, + "end": 51107.74, + "probability": 0.9829 + }, + { + "start": 51108.86, + "end": 51112.69, + "probability": 0.9352 + }, + { + "start": 51114.06, + "end": 51117.28, + "probability": 0.9955 + }, + { + "start": 51120.24, + "end": 51123.56, + "probability": 0.9869 + }, + { + "start": 51124.58, + "end": 51125.94, + "probability": 0.9364 + }, + { + "start": 51126.78, + "end": 51128.48, + "probability": 0.8441 + }, + { + "start": 51129.58, + "end": 51134.16, + "probability": 0.904 + }, + { + "start": 51135.54, + "end": 51135.64, + "probability": 0.9912 + }, + { + "start": 51137.28, + "end": 51140.78, + "probability": 0.998 + }, + { + "start": 51141.52, + "end": 51144.26, + "probability": 0.9939 + }, + { + "start": 51145.22, + "end": 51146.64, + "probability": 0.7518 + }, + { + "start": 51147.22, + "end": 51149.42, + "probability": 0.9373 + }, + { + "start": 51151.1, + "end": 51153.12, + "probability": 0.9097 + }, + { + "start": 51153.42, + "end": 51155.73, + "probability": 0.9707 + }, + { + "start": 51156.46, + "end": 51158.64, + "probability": 0.9923 + }, + { + "start": 51159.94, + "end": 51164.0, + "probability": 0.9947 + }, + { + "start": 51164.7, + "end": 51167.86, + "probability": 0.8178 + }, + { + "start": 51168.3, + "end": 51169.16, + "probability": 0.8409 + }, + { + "start": 51169.26, + "end": 51169.56, + "probability": 0.7394 + }, + { + "start": 51169.56, + "end": 51169.56, + "probability": 0.4554 + }, + { + "start": 51169.68, + "end": 51172.27, + "probability": 0.9697 + }, + { + "start": 51172.76, + "end": 51176.06, + "probability": 0.9819 + }, + { + "start": 51180.78, + "end": 51184.98, + "probability": 0.9939 + }, + { + "start": 51185.4, + "end": 51186.44, + "probability": 0.7982 + }, + { + "start": 51187.6, + "end": 51189.56, + "probability": 0.997 + }, + { + "start": 51190.94, + "end": 51194.78, + "probability": 0.9722 + }, + { + "start": 51199.06, + "end": 51202.24, + "probability": 0.9954 + }, + { + "start": 51203.15, + "end": 51205.62, + "probability": 0.9949 + }, + { + "start": 51207.38, + "end": 51209.32, + "probability": 0.9949 + }, + { + "start": 51210.48, + "end": 51216.64, + "probability": 0.9456 + }, + { + "start": 51218.32, + "end": 51219.72, + "probability": 0.92 + }, + { + "start": 51221.96, + "end": 51223.66, + "probability": 0.9983 + }, + { + "start": 51224.68, + "end": 51227.64, + "probability": 0.9426 + }, + { + "start": 51228.5, + "end": 51230.74, + "probability": 0.9763 + }, + { + "start": 51232.12, + "end": 51234.08, + "probability": 0.9968 + }, + { + "start": 51235.02, + "end": 51236.86, + "probability": 0.9692 + }, + { + "start": 51238.12, + "end": 51238.42, + "probability": 0.7944 + }, + { + "start": 51241.64, + "end": 51243.22, + "probability": 0.9978 + }, + { + "start": 51244.36, + "end": 51246.74, + "probability": 0.9933 + }, + { + "start": 51247.82, + "end": 51248.74, + "probability": 0.8151 + }, + { + "start": 51249.64, + "end": 51252.92, + "probability": 0.9833 + }, + { + "start": 51253.62, + "end": 51254.36, + "probability": 0.9611 + }, + { + "start": 51255.26, + "end": 51255.76, + "probability": 0.8022 + }, + { + "start": 51257.42, + "end": 51262.32, + "probability": 0.738 + }, + { + "start": 51264.74, + "end": 51266.2, + "probability": 0.4828 + }, + { + "start": 51267.6, + "end": 51268.66, + "probability": 0.8308 + }, + { + "start": 51270.06, + "end": 51270.44, + "probability": 0.8984 + }, + { + "start": 51270.98, + "end": 51275.62, + "probability": 0.98 + }, + { + "start": 51275.98, + "end": 51277.14, + "probability": 0.9795 + }, + { + "start": 51277.94, + "end": 51278.94, + "probability": 0.8502 + }, + { + "start": 51279.98, + "end": 51280.84, + "probability": 0.7318 + }, + { + "start": 51281.8, + "end": 51287.58, + "probability": 0.9966 + }, + { + "start": 51288.78, + "end": 51291.68, + "probability": 0.9412 + }, + { + "start": 51293.28, + "end": 51296.54, + "probability": 0.9873 + }, + { + "start": 51297.2, + "end": 51298.24, + "probability": 0.7639 + }, + { + "start": 51300.08, + "end": 51301.28, + "probability": 0.839 + }, + { + "start": 51303.22, + "end": 51305.92, + "probability": 0.9873 + }, + { + "start": 51307.66, + "end": 51309.12, + "probability": 0.9842 + }, + { + "start": 51310.7, + "end": 51314.58, + "probability": 0.998 + }, + { + "start": 51315.18, + "end": 51315.92, + "probability": 0.7594 + }, + { + "start": 51317.08, + "end": 51317.34, + "probability": 0.9413 + }, + { + "start": 51317.9, + "end": 51320.64, + "probability": 0.5154 + }, + { + "start": 51320.74, + "end": 51324.32, + "probability": 0.9934 + }, + { + "start": 51324.74, + "end": 51327.52, + "probability": 0.998 + }, + { + "start": 51328.56, + "end": 51329.3, + "probability": 0.9458 + }, + { + "start": 51330.72, + "end": 51336.22, + "probability": 0.9329 + }, + { + "start": 51336.34, + "end": 51342.84, + "probability": 0.9978 + }, + { + "start": 51343.7, + "end": 51346.46, + "probability": 0.9969 + }, + { + "start": 51347.06, + "end": 51349.36, + "probability": 0.9969 + }, + { + "start": 51350.86, + "end": 51353.84, + "probability": 0.991 + }, + { + "start": 51355.3, + "end": 51357.68, + "probability": 0.8003 + }, + { + "start": 51359.0, + "end": 51361.48, + "probability": 0.9827 + }, + { + "start": 51362.3, + "end": 51364.44, + "probability": 0.9499 + }, + { + "start": 51365.32, + "end": 51367.02, + "probability": 0.9905 + }, + { + "start": 51368.16, + "end": 51369.06, + "probability": 0.9393 + }, + { + "start": 51369.84, + "end": 51370.76, + "probability": 0.8702 + }, + { + "start": 51371.42, + "end": 51372.84, + "probability": 0.983 + }, + { + "start": 51373.66, + "end": 51376.58, + "probability": 0.8672 + }, + { + "start": 51377.92, + "end": 51381.4, + "probability": 0.9991 + }, + { + "start": 51381.4, + "end": 51385.62, + "probability": 0.9991 + }, + { + "start": 51386.76, + "end": 51386.98, + "probability": 0.3351 + }, + { + "start": 51387.1, + "end": 51391.98, + "probability": 0.9897 + }, + { + "start": 51392.1, + "end": 51394.76, + "probability": 0.9951 + }, + { + "start": 51397.12, + "end": 51399.76, + "probability": 0.9952 + }, + { + "start": 51400.98, + "end": 51404.55, + "probability": 0.9791 + }, + { + "start": 51406.46, + "end": 51409.62, + "probability": 0.9837 + }, + { + "start": 51411.7, + "end": 51415.78, + "probability": 0.9868 + }, + { + "start": 51415.78, + "end": 51418.78, + "probability": 0.9972 + }, + { + "start": 51419.66, + "end": 51420.14, + "probability": 0.6811 + }, + { + "start": 51420.72, + "end": 51425.2, + "probability": 0.9893 + }, + { + "start": 51425.2, + "end": 51428.82, + "probability": 0.9961 + }, + { + "start": 51429.62, + "end": 51433.7, + "probability": 0.998 + }, + { + "start": 51434.26, + "end": 51437.22, + "probability": 0.9971 + }, + { + "start": 51437.74, + "end": 51440.6, + "probability": 0.9989 + }, + { + "start": 51443.66, + "end": 51444.14, + "probability": 0.7861 + }, + { + "start": 51444.74, + "end": 51446.5, + "probability": 0.9982 + }, + { + "start": 51447.02, + "end": 51448.98, + "probability": 0.976 + }, + { + "start": 51449.72, + "end": 51453.86, + "probability": 0.9953 + }, + { + "start": 51454.6, + "end": 51455.14, + "probability": 0.8718 + }, + { + "start": 51455.8, + "end": 51461.08, + "probability": 0.9919 + }, + { + "start": 51462.12, + "end": 51462.52, + "probability": 0.7769 + }, + { + "start": 51462.7, + "end": 51468.34, + "probability": 0.9774 + }, + { + "start": 51471.18, + "end": 51472.1, + "probability": 0.4862 + }, + { + "start": 51472.44, + "end": 51475.44, + "probability": 0.9953 + }, + { + "start": 51475.44, + "end": 51480.24, + "probability": 0.9951 + }, + { + "start": 51480.66, + "end": 51487.68, + "probability": 0.9883 + }, + { + "start": 51488.3, + "end": 51490.98, + "probability": 0.9974 + }, + { + "start": 51491.96, + "end": 51497.66, + "probability": 0.9879 + }, + { + "start": 51498.22, + "end": 51499.54, + "probability": 0.6531 + }, + { + "start": 51500.14, + "end": 51500.46, + "probability": 0.4622 + }, + { + "start": 51500.74, + "end": 51503.36, + "probability": 0.9561 + }, + { + "start": 51503.36, + "end": 51508.52, + "probability": 0.9888 + }, + { + "start": 51511.38, + "end": 51512.9, + "probability": 0.6281 + }, + { + "start": 51513.82, + "end": 51514.44, + "probability": 0.9243 + }, + { + "start": 51514.62, + "end": 51518.44, + "probability": 0.9069 + }, + { + "start": 51518.56, + "end": 51522.66, + "probability": 0.7962 + }, + { + "start": 51522.84, + "end": 51524.86, + "probability": 0.9983 + }, + { + "start": 51526.2, + "end": 51528.12, + "probability": 0.4729 + }, + { + "start": 51529.8, + "end": 51531.88, + "probability": 0.9869 + }, + { + "start": 51532.52, + "end": 51534.18, + "probability": 0.9473 + }, + { + "start": 51534.68, + "end": 51536.72, + "probability": 0.882 + }, + { + "start": 51537.16, + "end": 51540.06, + "probability": 0.9662 + }, + { + "start": 51540.5, + "end": 51542.46, + "probability": 0.9669 + }, + { + "start": 51543.04, + "end": 51545.46, + "probability": 0.5709 + }, + { + "start": 51548.8, + "end": 51554.16, + "probability": 0.9198 + }, + { + "start": 51556.0, + "end": 51558.9, + "probability": 0.747 + }, + { + "start": 51559.56, + "end": 51561.22, + "probability": 0.9921 + }, + { + "start": 51562.24, + "end": 51564.38, + "probability": 0.9934 + }, + { + "start": 51564.64, + "end": 51568.14, + "probability": 0.9618 + }, + { + "start": 51569.48, + "end": 51572.86, + "probability": 0.979 + }, + { + "start": 51573.02, + "end": 51577.3, + "probability": 0.9818 + }, + { + "start": 51578.2, + "end": 51579.26, + "probability": 0.998 + }, + { + "start": 51580.8, + "end": 51585.36, + "probability": 0.9429 + }, + { + "start": 51586.48, + "end": 51588.62, + "probability": 0.9983 + }, + { + "start": 51589.88, + "end": 51592.64, + "probability": 0.9891 + }, + { + "start": 51593.54, + "end": 51594.88, + "probability": 0.9448 + }, + { + "start": 51595.06, + "end": 51595.78, + "probability": 0.9908 + }, + { + "start": 51595.86, + "end": 51596.74, + "probability": 0.6041 + }, + { + "start": 51597.12, + "end": 51598.26, + "probability": 0.8994 + }, + { + "start": 51598.36, + "end": 51599.34, + "probability": 0.9693 + }, + { + "start": 51599.42, + "end": 51604.74, + "probability": 0.9072 + }, + { + "start": 51606.24, + "end": 51606.86, + "probability": 0.8639 + }, + { + "start": 51609.14, + "end": 51610.16, + "probability": 0.5591 + }, + { + "start": 51610.84, + "end": 51613.82, + "probability": 0.9855 + }, + { + "start": 51614.38, + "end": 51617.44, + "probability": 0.9387 + }, + { + "start": 51618.28, + "end": 51623.88, + "probability": 0.9984 + }, + { + "start": 51625.54, + "end": 51626.93, + "probability": 0.9985 + }, + { + "start": 51628.4, + "end": 51634.18, + "probability": 0.9977 + }, + { + "start": 51634.84, + "end": 51636.26, + "probability": 0.7398 + }, + { + "start": 51637.38, + "end": 51639.26, + "probability": 0.9907 + }, + { + "start": 51639.62, + "end": 51640.12, + "probability": 0.3311 + }, + { + "start": 51640.22, + "end": 51640.56, + "probability": 0.8737 + }, + { + "start": 51640.66, + "end": 51642.58, + "probability": 0.9177 + }, + { + "start": 51643.7, + "end": 51645.18, + "probability": 0.9941 + }, + { + "start": 51647.12, + "end": 51648.06, + "probability": 0.8695 + }, + { + "start": 51648.12, + "end": 51652.32, + "probability": 0.9627 + }, + { + "start": 51652.92, + "end": 51655.22, + "probability": 0.9434 + }, + { + "start": 51657.9, + "end": 51659.32, + "probability": 0.6681 + }, + { + "start": 51660.32, + "end": 51662.2, + "probability": 0.5665 + }, + { + "start": 51662.8, + "end": 51665.08, + "probability": 0.9847 + }, + { + "start": 51666.72, + "end": 51667.52, + "probability": 0.7056 + }, + { + "start": 51668.96, + "end": 51672.36, + "probability": 0.9919 + }, + { + "start": 51672.4, + "end": 51673.52, + "probability": 0.8243 + }, + { + "start": 51675.56, + "end": 51677.64, + "probability": 0.9832 + }, + { + "start": 51679.6, + "end": 51682.02, + "probability": 0.6892 + }, + { + "start": 51682.68, + "end": 51684.52, + "probability": 0.941 + }, + { + "start": 51685.06, + "end": 51686.38, + "probability": 0.9745 + }, + { + "start": 51686.96, + "end": 51689.12, + "probability": 0.8673 + }, + { + "start": 51693.02, + "end": 51695.64, + "probability": 0.8333 + }, + { + "start": 51696.16, + "end": 51697.56, + "probability": 0.7175 + }, + { + "start": 51698.14, + "end": 51699.56, + "probability": 0.8985 + }, + { + "start": 51700.8, + "end": 51703.58, + "probability": 0.9954 + }, + { + "start": 51704.06, + "end": 51705.12, + "probability": 0.9341 + }, + { + "start": 51705.84, + "end": 51708.72, + "probability": 0.9978 + }, + { + "start": 51709.42, + "end": 51712.46, + "probability": 0.9732 + }, + { + "start": 51713.14, + "end": 51714.46, + "probability": 0.8048 + }, + { + "start": 51716.5, + "end": 51718.98, + "probability": 0.9985 + }, + { + "start": 51720.96, + "end": 51722.2, + "probability": 0.9682 + }, + { + "start": 51723.54, + "end": 51725.04, + "probability": 0.9924 + }, + { + "start": 51725.52, + "end": 51729.76, + "probability": 0.9279 + }, + { + "start": 51731.28, + "end": 51731.64, + "probability": 0.8951 + }, + { + "start": 51732.66, + "end": 51734.92, + "probability": 0.9937 + }, + { + "start": 51736.1, + "end": 51737.84, + "probability": 0.959 + }, + { + "start": 51738.58, + "end": 51739.74, + "probability": 0.9783 + }, + { + "start": 51741.14, + "end": 51742.66, + "probability": 0.7966 + }, + { + "start": 51744.84, + "end": 51746.35, + "probability": 0.9546 + }, + { + "start": 51747.14, + "end": 51747.82, + "probability": 0.7456 + }, + { + "start": 51747.88, + "end": 51749.14, + "probability": 0.7709 + }, + { + "start": 51750.64, + "end": 51751.25, + "probability": 0.7017 + }, + { + "start": 51752.3, + "end": 51754.32, + "probability": 0.8646 + }, + { + "start": 51755.2, + "end": 51758.82, + "probability": 0.9756 + }, + { + "start": 51760.58, + "end": 51762.52, + "probability": 0.9738 + }, + { + "start": 51763.34, + "end": 51764.88, + "probability": 0.8609 + }, + { + "start": 51766.38, + "end": 51768.14, + "probability": 0.5111 + }, + { + "start": 51768.94, + "end": 51770.62, + "probability": 0.9586 + }, + { + "start": 51771.5, + "end": 51774.7, + "probability": 0.7951 + }, + { + "start": 51776.7, + "end": 51779.12, + "probability": 0.99 + }, + { + "start": 51779.98, + "end": 51782.14, + "probability": 0.6119 + }, + { + "start": 51782.96, + "end": 51783.92, + "probability": 0.9125 + }, + { + "start": 51785.36, + "end": 51788.28, + "probability": 0.985 + }, + { + "start": 51789.36, + "end": 51795.74, + "probability": 0.9499 + }, + { + "start": 51796.42, + "end": 51799.82, + "probability": 0.7713 + }, + { + "start": 51800.76, + "end": 51804.14, + "probability": 0.9734 + }, + { + "start": 51804.88, + "end": 51806.94, + "probability": 0.9937 + }, + { + "start": 51807.82, + "end": 51810.42, + "probability": 0.9977 + }, + { + "start": 51811.46, + "end": 51813.58, + "probability": 0.9763 + }, + { + "start": 51814.94, + "end": 51816.28, + "probability": 0.9614 + }, + { + "start": 51816.38, + "end": 51818.54, + "probability": 0.6761 + }, + { + "start": 51820.28, + "end": 51827.76, + "probability": 0.9795 + }, + { + "start": 51833.94, + "end": 51835.11, + "probability": 0.8751 + }, + { + "start": 51840.92, + "end": 51844.28, + "probability": 0.9771 + }, + { + "start": 51845.06, + "end": 51845.82, + "probability": 0.967 + }, + { + "start": 51846.36, + "end": 51850.12, + "probability": 0.9948 + }, + { + "start": 51851.88, + "end": 51853.0, + "probability": 0.9871 + }, + { + "start": 51855.42, + "end": 51856.04, + "probability": 0.7435 + }, + { + "start": 51856.7, + "end": 51859.28, + "probability": 0.9974 + }, + { + "start": 51859.52, + "end": 51862.9, + "probability": 0.9271 + }, + { + "start": 51864.06, + "end": 51866.1, + "probability": 0.9836 + }, + { + "start": 51867.0, + "end": 51867.98, + "probability": 0.9933 + }, + { + "start": 51897.12, + "end": 51898.4, + "probability": 0.8738 + }, + { + "start": 51899.12, + "end": 51902.78, + "probability": 0.9961 + }, + { + "start": 51902.86, + "end": 51906.58, + "probability": 0.9971 + }, + { + "start": 51907.86, + "end": 51908.68, + "probability": 0.8328 + }, + { + "start": 51910.2, + "end": 51912.54, + "probability": 0.9988 + }, + { + "start": 51912.54, + "end": 51916.02, + "probability": 0.9838 + }, + { + "start": 51917.0, + "end": 51920.28, + "probability": 0.9917 + }, + { + "start": 51920.8, + "end": 51925.48, + "probability": 0.9965 + }, + { + "start": 51926.54, + "end": 51931.6, + "probability": 0.9644 + }, + { + "start": 51932.42, + "end": 51934.78, + "probability": 0.9994 + }, + { + "start": 51935.6, + "end": 51937.66, + "probability": 0.9932 + }, + { + "start": 51938.08, + "end": 51943.3, + "probability": 0.9871 + }, + { + "start": 51944.58, + "end": 51948.22, + "probability": 0.9987 + }, + { + "start": 51948.22, + "end": 51953.1, + "probability": 0.9971 + }, + { + "start": 51954.18, + "end": 51956.15, + "probability": 0.9369 + }, + { + "start": 51956.58, + "end": 51958.12, + "probability": 0.9062 + }, + { + "start": 51958.64, + "end": 51961.34, + "probability": 0.9981 + }, + { + "start": 51961.7, + "end": 51964.94, + "probability": 0.9958 + }, + { + "start": 51965.3, + "end": 51967.06, + "probability": 0.989 + }, + { + "start": 51968.02, + "end": 51971.2, + "probability": 0.8805 + }, + { + "start": 51972.16, + "end": 51976.48, + "probability": 0.9834 + }, + { + "start": 51976.88, + "end": 51979.02, + "probability": 0.9966 + }, + { + "start": 51980.26, + "end": 51987.22, + "probability": 0.9964 + }, + { + "start": 51988.14, + "end": 51989.62, + "probability": 0.8628 + }, + { + "start": 51990.2, + "end": 51997.92, + "probability": 0.9122 + }, + { + "start": 51998.54, + "end": 52001.96, + "probability": 0.9836 + }, + { + "start": 52003.12, + "end": 52003.52, + "probability": 0.5879 + }, + { + "start": 52003.7, + "end": 52004.1, + "probability": 0.9144 + }, + { + "start": 52004.36, + "end": 52007.5, + "probability": 0.9901 + }, + { + "start": 52007.94, + "end": 52011.22, + "probability": 0.9933 + }, + { + "start": 52012.06, + "end": 52015.7, + "probability": 0.9985 + }, + { + "start": 52016.66, + "end": 52021.46, + "probability": 0.9922 + }, + { + "start": 52022.34, + "end": 52029.28, + "probability": 0.9907 + }, + { + "start": 52030.0, + "end": 52033.72, + "probability": 0.9935 + }, + { + "start": 52034.46, + "end": 52040.44, + "probability": 0.9979 + }, + { + "start": 52041.02, + "end": 52042.08, + "probability": 0.9982 + }, + { + "start": 52042.9, + "end": 52048.54, + "probability": 0.9922 + }, + { + "start": 52050.2, + "end": 52055.26, + "probability": 0.9668 + }, + { + "start": 52056.0, + "end": 52062.74, + "probability": 0.9968 + }, + { + "start": 52062.94, + "end": 52063.94, + "probability": 0.9285 + }, + { + "start": 52064.38, + "end": 52066.6, + "probability": 0.908 + }, + { + "start": 52067.64, + "end": 52070.72, + "probability": 0.9956 + }, + { + "start": 52070.9, + "end": 52071.56, + "probability": 0.9277 + }, + { + "start": 52072.4, + "end": 52076.04, + "probability": 0.9063 + }, + { + "start": 52077.38, + "end": 52077.8, + "probability": 0.816 + }, + { + "start": 52078.28, + "end": 52085.12, + "probability": 0.9947 + }, + { + "start": 52085.9, + "end": 52088.94, + "probability": 0.9919 + }, + { + "start": 52089.34, + "end": 52094.52, + "probability": 0.9946 + }, + { + "start": 52095.54, + "end": 52100.94, + "probability": 0.9969 + }, + { + "start": 52102.6, + "end": 52102.84, + "probability": 0.8215 + }, + { + "start": 52103.62, + "end": 52108.7, + "probability": 0.9983 + }, + { + "start": 52109.5, + "end": 52115.0, + "probability": 0.9947 + }, + { + "start": 52115.74, + "end": 52119.58, + "probability": 0.992 + }, + { + "start": 52119.58, + "end": 52125.52, + "probability": 0.9939 + }, + { + "start": 52126.96, + "end": 52127.36, + "probability": 0.7943 + }, + { + "start": 52127.98, + "end": 52129.3, + "probability": 0.9989 + }, + { + "start": 52129.82, + "end": 52134.06, + "probability": 0.9962 + }, + { + "start": 52135.48, + "end": 52140.52, + "probability": 0.9857 + }, + { + "start": 52141.18, + "end": 52143.36, + "probability": 0.9968 + }, + { + "start": 52143.48, + "end": 52146.42, + "probability": 0.9983 + }, + { + "start": 52146.92, + "end": 52147.92, + "probability": 0.9906 + }, + { + "start": 52149.1, + "end": 52149.7, + "probability": 0.6862 + }, + { + "start": 52150.34, + "end": 52154.4, + "probability": 0.9966 + }, + { + "start": 52155.0, + "end": 52155.72, + "probability": 0.7223 + }, + { + "start": 52156.28, + "end": 52158.08, + "probability": 0.8534 + }, + { + "start": 52159.1, + "end": 52161.24, + "probability": 0.9885 + }, + { + "start": 52161.6, + "end": 52165.02, + "probability": 0.9474 + }, + { + "start": 52165.54, + "end": 52168.98, + "probability": 0.9896 + }, + { + "start": 52170.36, + "end": 52171.58, + "probability": 0.868 + }, + { + "start": 52172.4, + "end": 52174.18, + "probability": 0.7591 + }, + { + "start": 52174.4, + "end": 52179.36, + "probability": 0.9818 + }, + { + "start": 52180.36, + "end": 52183.5, + "probability": 0.9894 + }, + { + "start": 52184.52, + "end": 52188.32, + "probability": 0.9847 + }, + { + "start": 52188.84, + "end": 52193.02, + "probability": 0.9905 + }, + { + "start": 52193.54, + "end": 52195.84, + "probability": 0.9861 + }, + { + "start": 52196.3, + "end": 52198.48, + "probability": 0.9542 + }, + { + "start": 52199.48, + "end": 52200.12, + "probability": 0.8718 + }, + { + "start": 52202.24, + "end": 52205.32, + "probability": 0.9534 + }, + { + "start": 52207.82, + "end": 52210.84, + "probability": 0.9886 + }, + { + "start": 52212.26, + "end": 52215.1, + "probability": 0.9932 + }, + { + "start": 52216.6, + "end": 52220.12, + "probability": 0.9896 + }, + { + "start": 52220.26, + "end": 52222.38, + "probability": 0.8475 + }, + { + "start": 52223.76, + "end": 52226.28, + "probability": 0.9878 + }, + { + "start": 52227.08, + "end": 52232.86, + "probability": 0.994 + }, + { + "start": 52235.18, + "end": 52237.46, + "probability": 0.9812 + }, + { + "start": 52238.48, + "end": 52242.68, + "probability": 0.9866 + }, + { + "start": 52244.3, + "end": 52246.18, + "probability": 0.9779 + }, + { + "start": 52247.6, + "end": 52253.88, + "probability": 0.9928 + }, + { + "start": 52254.22, + "end": 52254.64, + "probability": 0.4135 + }, + { + "start": 52256.8, + "end": 52258.86, + "probability": 0.9963 + }, + { + "start": 52259.68, + "end": 52263.96, + "probability": 0.9988 + }, + { + "start": 52264.72, + "end": 52266.56, + "probability": 0.994 + }, + { + "start": 52268.2, + "end": 52272.88, + "probability": 0.9818 + }, + { + "start": 52273.42, + "end": 52275.32, + "probability": 0.9663 + }, + { + "start": 52275.9, + "end": 52276.28, + "probability": 0.5517 + }, + { + "start": 52276.8, + "end": 52277.96, + "probability": 0.7888 + }, + { + "start": 52279.42, + "end": 52282.18, + "probability": 0.876 + }, + { + "start": 52282.86, + "end": 52283.96, + "probability": 0.9408 + }, + { + "start": 52285.6, + "end": 52287.04, + "probability": 0.9954 + }, + { + "start": 52287.56, + "end": 52289.1, + "probability": 0.9973 + }, + { + "start": 52290.34, + "end": 52293.78, + "probability": 0.8386 + }, + { + "start": 52294.6, + "end": 52295.78, + "probability": 0.9873 + }, + { + "start": 52296.3, + "end": 52299.72, + "probability": 0.9958 + }, + { + "start": 52301.46, + "end": 52302.92, + "probability": 0.9952 + }, + { + "start": 52303.62, + "end": 52306.22, + "probability": 0.9969 + }, + { + "start": 52306.96, + "end": 52307.98, + "probability": 0.7488 + }, + { + "start": 52308.64, + "end": 52311.38, + "probability": 0.9974 + }, + { + "start": 52312.76, + "end": 52316.88, + "probability": 0.9875 + }, + { + "start": 52317.96, + "end": 52318.6, + "probability": 0.735 + }, + { + "start": 52319.82, + "end": 52322.24, + "probability": 0.788 + }, + { + "start": 52322.58, + "end": 52323.96, + "probability": 0.6851 + }, + { + "start": 52324.44, + "end": 52328.02, + "probability": 0.9507 + }, + { + "start": 52328.62, + "end": 52331.84, + "probability": 0.9233 + }, + { + "start": 52333.66, + "end": 52335.7, + "probability": 0.7016 + }, + { + "start": 52336.44, + "end": 52339.18, + "probability": 0.7465 + }, + { + "start": 52340.24, + "end": 52342.12, + "probability": 0.9368 + }, + { + "start": 52343.88, + "end": 52345.23, + "probability": 0.9163 + }, + { + "start": 52347.2, + "end": 52353.46, + "probability": 0.9896 + }, + { + "start": 52355.8, + "end": 52360.24, + "probability": 0.9851 + }, + { + "start": 52361.16, + "end": 52362.02, + "probability": 0.4331 + }, + { + "start": 52364.02, + "end": 52365.32, + "probability": 0.8696 + }, + { + "start": 52366.86, + "end": 52368.06, + "probability": 0.7967 + }, + { + "start": 52368.92, + "end": 52369.5, + "probability": 0.9271 + }, + { + "start": 52370.06, + "end": 52373.14, + "probability": 0.9576 + }, + { + "start": 52373.78, + "end": 52376.08, + "probability": 0.9654 + }, + { + "start": 52379.34, + "end": 52381.98, + "probability": 0.9277 + }, + { + "start": 52383.36, + "end": 52385.52, + "probability": 0.9976 + }, + { + "start": 52387.28, + "end": 52387.92, + "probability": 0.6685 + }, + { + "start": 52390.4, + "end": 52393.3, + "probability": 0.9773 + }, + { + "start": 52393.98, + "end": 52394.5, + "probability": 0.8447 + }, + { + "start": 52395.68, + "end": 52397.86, + "probability": 0.9514 + }, + { + "start": 52398.08, + "end": 52399.9, + "probability": 0.61 + }, + { + "start": 52400.82, + "end": 52403.48, + "probability": 0.9852 + }, + { + "start": 52404.66, + "end": 52407.68, + "probability": 0.7555 + }, + { + "start": 52408.32, + "end": 52410.94, + "probability": 0.9886 + }, + { + "start": 52411.0, + "end": 52414.26, + "probability": 0.9814 + }, + { + "start": 52415.6, + "end": 52420.98, + "probability": 0.998 + }, + { + "start": 52422.08, + "end": 52423.76, + "probability": 0.6711 + }, + { + "start": 52425.22, + "end": 52430.46, + "probability": 0.9961 + }, + { + "start": 52432.2, + "end": 52434.34, + "probability": 0.988 + }, + { + "start": 52436.3, + "end": 52438.08, + "probability": 0.9874 + }, + { + "start": 52438.9, + "end": 52440.26, + "probability": 0.9739 + }, + { + "start": 52441.42, + "end": 52442.48, + "probability": 0.9482 + }, + { + "start": 52443.24, + "end": 52448.34, + "probability": 0.9981 + }, + { + "start": 52449.54, + "end": 52451.66, + "probability": 0.9946 + }, + { + "start": 52452.74, + "end": 52456.06, + "probability": 0.952 + }, + { + "start": 52456.66, + "end": 52458.74, + "probability": 0.999 + }, + { + "start": 52459.42, + "end": 52460.0, + "probability": 0.8695 + }, + { + "start": 52460.52, + "end": 52461.56, + "probability": 0.9094 + }, + { + "start": 52462.2, + "end": 52463.34, + "probability": 0.979 + }, + { + "start": 52466.46, + "end": 52468.22, + "probability": 0.9724 + }, + { + "start": 52469.74, + "end": 52472.64, + "probability": 0.7744 + }, + { + "start": 52474.34, + "end": 52477.44, + "probability": 0.9941 + }, + { + "start": 52479.06, + "end": 52479.5, + "probability": 0.7153 + }, + { + "start": 52479.98, + "end": 52480.98, + "probability": 0.9516 + }, + { + "start": 52482.16, + "end": 52485.0, + "probability": 0.931 + }, + { + "start": 52485.54, + "end": 52486.58, + "probability": 0.7637 + }, + { + "start": 52487.46, + "end": 52488.3, + "probability": 0.829 + }, + { + "start": 52489.56, + "end": 52491.38, + "probability": 0.9275 + }, + { + "start": 52491.64, + "end": 52494.36, + "probability": 0.9951 + }, + { + "start": 52495.12, + "end": 52496.66, + "probability": 0.9161 + }, + { + "start": 52497.66, + "end": 52498.42, + "probability": 0.8121 + }, + { + "start": 52498.48, + "end": 52499.32, + "probability": 0.9506 + }, + { + "start": 52499.7, + "end": 52500.14, + "probability": 0.5423 + }, + { + "start": 52501.62, + "end": 52502.22, + "probability": 0.6036 + }, + { + "start": 52504.26, + "end": 52505.22, + "probability": 0.927 + }, + { + "start": 52506.36, + "end": 52511.16, + "probability": 0.9641 + }, + { + "start": 52513.0, + "end": 52514.84, + "probability": 0.6174 + }, + { + "start": 52515.84, + "end": 52516.26, + "probability": 0.8787 + }, + { + "start": 52518.42, + "end": 52521.56, + "probability": 0.9932 + }, + { + "start": 52522.44, + "end": 52523.39, + "probability": 0.9761 + }, + { + "start": 52524.36, + "end": 52525.9, + "probability": 0.9807 + }, + { + "start": 52526.12, + "end": 52528.76, + "probability": 0.9961 + }, + { + "start": 52529.68, + "end": 52533.06, + "probability": 0.88 + }, + { + "start": 52533.58, + "end": 52534.76, + "probability": 0.9357 + }, + { + "start": 52535.8, + "end": 52537.2, + "probability": 0.8916 + }, + { + "start": 52537.32, + "end": 52542.68, + "probability": 0.9771 + }, + { + "start": 52542.68, + "end": 52547.16, + "probability": 0.9956 + }, + { + "start": 52547.88, + "end": 52550.0, + "probability": 0.7296 + }, + { + "start": 52551.02, + "end": 52552.88, + "probability": 0.8909 + }, + { + "start": 52553.38, + "end": 52555.81, + "probability": 0.9905 + }, + { + "start": 52556.54, + "end": 52557.6, + "probability": 0.9565 + }, + { + "start": 52557.78, + "end": 52559.48, + "probability": 0.1791 + }, + { + "start": 52560.84, + "end": 52561.61, + "probability": 0.9658 + }, + { + "start": 52562.38, + "end": 52566.76, + "probability": 0.8466 + }, + { + "start": 52568.12, + "end": 52569.84, + "probability": 0.9963 + }, + { + "start": 52570.4, + "end": 52571.44, + "probability": 0.8675 + }, + { + "start": 52571.6, + "end": 52575.76, + "probability": 0.6724 + }, + { + "start": 52576.44, + "end": 52580.14, + "probability": 0.9805 + }, + { + "start": 52583.0, + "end": 52584.56, + "probability": 0.9653 + }, + { + "start": 52585.46, + "end": 52589.26, + "probability": 0.98 + }, + { + "start": 52589.9, + "end": 52591.24, + "probability": 0.9727 + }, + { + "start": 52592.52, + "end": 52595.96, + "probability": 0.8488 + }, + { + "start": 52596.48, + "end": 52599.06, + "probability": 0.9889 + }, + { + "start": 52599.16, + "end": 52600.3, + "probability": 0.9838 + }, + { + "start": 52601.22, + "end": 52602.72, + "probability": 0.9664 + }, + { + "start": 52603.7, + "end": 52607.18, + "probability": 0.9819 + }, + { + "start": 52607.7, + "end": 52609.96, + "probability": 0.9944 + }, + { + "start": 52610.56, + "end": 52611.98, + "probability": 0.7813 + }, + { + "start": 52612.82, + "end": 52614.54, + "probability": 0.9678 + }, + { + "start": 52616.32, + "end": 52619.76, + "probability": 0.9724 + }, + { + "start": 52620.56, + "end": 52623.8, + "probability": 0.9873 + }, + { + "start": 52625.24, + "end": 52631.12, + "probability": 0.999 + }, + { + "start": 52632.14, + "end": 52638.54, + "probability": 0.9984 + }, + { + "start": 52639.32, + "end": 52642.68, + "probability": 0.8272 + }, + { + "start": 52643.56, + "end": 52645.66, + "probability": 0.9985 + }, + { + "start": 52646.48, + "end": 52648.5, + "probability": 0.8369 + }, + { + "start": 52649.42, + "end": 52651.42, + "probability": 0.9792 + }, + { + "start": 52653.72, + "end": 52655.6, + "probability": 0.999 + }, + { + "start": 52657.1, + "end": 52660.14, + "probability": 0.9971 + }, + { + "start": 52661.32, + "end": 52662.16, + "probability": 0.7562 + }, + { + "start": 52663.08, + "end": 52663.2, + "probability": 0.2704 + }, + { + "start": 52663.32, + "end": 52664.66, + "probability": 0.922 + }, + { + "start": 52664.96, + "end": 52666.08, + "probability": 0.8318 + }, + { + "start": 52668.76, + "end": 52672.88, + "probability": 0.9503 + }, + { + "start": 52673.82, + "end": 52676.06, + "probability": 0.9691 + }, + { + "start": 52676.68, + "end": 52680.0, + "probability": 0.9936 + }, + { + "start": 52681.36, + "end": 52683.8, + "probability": 0.9929 + }, + { + "start": 52685.04, + "end": 52688.98, + "probability": 0.99 + }, + { + "start": 52689.78, + "end": 52691.08, + "probability": 0.7988 + }, + { + "start": 52691.54, + "end": 52695.92, + "probability": 0.9978 + }, + { + "start": 52696.54, + "end": 52698.1, + "probability": 0.9937 + }, + { + "start": 52703.24, + "end": 52704.44, + "probability": 0.9487 + }, + { + "start": 52705.18, + "end": 52706.9, + "probability": 0.9885 + }, + { + "start": 52708.3, + "end": 52709.3, + "probability": 0.8983 + }, + { + "start": 52709.86, + "end": 52711.12, + "probability": 0.9158 + }, + { + "start": 52712.16, + "end": 52715.34, + "probability": 0.9937 + }, + { + "start": 52715.52, + "end": 52719.0, + "probability": 0.9102 + }, + { + "start": 52719.68, + "end": 52722.58, + "probability": 0.9954 + }, + { + "start": 52723.32, + "end": 52723.84, + "probability": 0.8461 + }, + { + "start": 52727.7, + "end": 52731.78, + "probability": 0.979 + }, + { + "start": 52731.78, + "end": 52736.0, + "probability": 0.9976 + }, + { + "start": 52737.72, + "end": 52740.3, + "probability": 0.9929 + }, + { + "start": 52741.12, + "end": 52746.04, + "probability": 0.9925 + }, + { + "start": 52746.74, + "end": 52747.88, + "probability": 0.9605 + }, + { + "start": 52748.58, + "end": 52749.94, + "probability": 0.9771 + }, + { + "start": 52750.82, + "end": 52753.02, + "probability": 0.999 + }, + { + "start": 52755.84, + "end": 52757.8, + "probability": 0.9966 + }, + { + "start": 52759.1, + "end": 52763.42, + "probability": 0.9966 + }, + { + "start": 52764.46, + "end": 52764.68, + "probability": 0.3977 + }, + { + "start": 52764.9, + "end": 52767.16, + "probability": 0.8251 + }, + { + "start": 52767.38, + "end": 52767.56, + "probability": 0.6877 + }, + { + "start": 52767.6, + "end": 52768.02, + "probability": 0.6467 + }, + { + "start": 52769.22, + "end": 52771.46, + "probability": 0.9259 + }, + { + "start": 52773.76, + "end": 52776.44, + "probability": 0.9463 + }, + { + "start": 52776.44, + "end": 52780.74, + "probability": 0.9908 + }, + { + "start": 52783.62, + "end": 52787.1, + "probability": 0.9993 + }, + { + "start": 52788.2, + "end": 52791.12, + "probability": 0.8408 + }, + { + "start": 52791.92, + "end": 52792.76, + "probability": 0.9917 + }, + { + "start": 52793.4, + "end": 52794.42, + "probability": 0.985 + }, + { + "start": 52795.16, + "end": 52796.28, + "probability": 0.6662 + }, + { + "start": 52799.36, + "end": 52806.14, + "probability": 0.9663 + }, + { + "start": 52807.62, + "end": 52815.56, + "probability": 0.9742 + }, + { + "start": 52815.62, + "end": 52817.76, + "probability": 0.9991 + }, + { + "start": 52818.64, + "end": 52821.87, + "probability": 0.9929 + }, + { + "start": 52822.5, + "end": 52829.16, + "probability": 0.9971 + }, + { + "start": 52829.9, + "end": 52830.4, + "probability": 0.6859 + }, + { + "start": 52834.12, + "end": 52835.06, + "probability": 0.8618 + }, + { + "start": 52835.52, + "end": 52838.8, + "probability": 0.9915 + }, + { + "start": 52838.9, + "end": 52842.08, + "probability": 0.9976 + }, + { + "start": 52842.54, + "end": 52843.98, + "probability": 0.8804 + }, + { + "start": 52844.9, + "end": 52850.5, + "probability": 0.9646 + }, + { + "start": 52851.6, + "end": 52852.88, + "probability": 0.4488 + }, + { + "start": 52853.48, + "end": 52856.98, + "probability": 0.9883 + }, + { + "start": 52856.98, + "end": 52860.52, + "probability": 0.9647 + }, + { + "start": 52860.9, + "end": 52861.42, + "probability": 0.4358 + }, + { + "start": 52861.62, + "end": 52863.44, + "probability": 0.9969 + }, + { + "start": 52864.26, + "end": 52865.86, + "probability": 0.8532 + }, + { + "start": 52866.46, + "end": 52868.56, + "probability": 0.9881 + }, + { + "start": 52869.2, + "end": 52870.94, + "probability": 0.9993 + }, + { + "start": 52872.36, + "end": 52876.84, + "probability": 0.9972 + }, + { + "start": 52876.94, + "end": 52878.54, + "probability": 0.7415 + }, + { + "start": 52879.52, + "end": 52880.02, + "probability": 0.7527 + }, + { + "start": 52883.54, + "end": 52888.17, + "probability": 0.9729 + }, + { + "start": 52894.3, + "end": 52894.3, + "probability": 0.0217 + }, + { + "start": 52899.3, + "end": 52900.18, + "probability": 0.2646 + }, + { + "start": 52903.22, + "end": 52904.0, + "probability": 0.7229 + }, + { + "start": 52904.08, + "end": 52907.46, + "probability": 0.9742 + }, + { + "start": 52907.46, + "end": 52911.88, + "probability": 0.6359 + }, + { + "start": 52911.94, + "end": 52912.3, + "probability": 0.8368 + }, + { + "start": 52920.54, + "end": 52922.76, + "probability": 0.5569 + }, + { + "start": 52923.04, + "end": 52926.0, + "probability": 0.7133 + }, + { + "start": 52926.16, + "end": 52926.9, + "probability": 0.873 + }, + { + "start": 52926.96, + "end": 52927.78, + "probability": 0.8688 + }, + { + "start": 52927.86, + "end": 52928.6, + "probability": 0.7011 + }, + { + "start": 52929.5, + "end": 52931.22, + "probability": 0.9085 + }, + { + "start": 52931.34, + "end": 52932.18, + "probability": 0.9545 + }, + { + "start": 52932.58, + "end": 52933.34, + "probability": 0.8141 + }, + { + "start": 52933.52, + "end": 52935.08, + "probability": 0.9832 + }, + { + "start": 52935.18, + "end": 52935.92, + "probability": 0.9099 + }, + { + "start": 52936.02, + "end": 52937.14, + "probability": 0.8465 + }, + { + "start": 52937.86, + "end": 52940.48, + "probability": 0.6523 + }, + { + "start": 52942.0, + "end": 52949.28, + "probability": 0.7509 + }, + { + "start": 52949.28, + "end": 52957.52, + "probability": 0.6846 + }, + { + "start": 52961.14, + "end": 52961.78, + "probability": 0.4259 + }, + { + "start": 52965.3, + "end": 52966.42, + "probability": 0.8143 + }, + { + "start": 52983.94, + "end": 52984.18, + "probability": 0.0002 + }, + { + "start": 52984.18, + "end": 52990.86, + "probability": 0.7606 + }, + { + "start": 52996.44, + "end": 52999.74, + "probability": 0.6865 + }, + { + "start": 53003.3, + "end": 53003.66, + "probability": 0.658 + }, + { + "start": 53004.3, + "end": 53004.8, + "probability": 0.4365 + }, + { + "start": 53007.88, + "end": 53010.26, + "probability": 0.1087 + }, + { + "start": 53019.56, + "end": 53024.76, + "probability": 0.6556 + }, + { + "start": 53026.28, + "end": 53028.4, + "probability": 0.4653 + }, + { + "start": 53031.96, + "end": 53032.52, + "probability": 0.5732 + }, + { + "start": 53036.45, + "end": 53036.52, + "probability": 0.0009 + }, + { + "start": 53047.32, + "end": 53047.78, + "probability": 0.0423 + }, + { + "start": 53047.78, + "end": 53050.82, + "probability": 0.6316 + }, + { + "start": 53051.84, + "end": 53053.88, + "probability": 0.4806 + }, + { + "start": 53055.68, + "end": 53056.62, + "probability": 0.4208 + }, + { + "start": 53071.4, + "end": 53071.58, + "probability": 0.3944 + }, + { + "start": 53071.58, + "end": 53071.58, + "probability": 0.0993 + }, + { + "start": 53071.58, + "end": 53074.82, + "probability": 0.7108 + }, + { + "start": 53074.94, + "end": 53079.56, + "probability": 0.3516 + }, + { + "start": 53079.56, + "end": 53079.84, + "probability": 0.604 + }, + { + "start": 53094.64, + "end": 53096.7, + "probability": 0.2633 + }, + { + "start": 53097.78, + "end": 53098.74, + "probability": 0.9008 + }, + { + "start": 53099.84, + "end": 53100.72, + "probability": 0.6587 + }, + { + "start": 53101.24, + "end": 53101.48, + "probability": 0.3071 + }, + { + "start": 53102.84, + "end": 53104.16, + "probability": 0.5458 + }, + { + "start": 53106.8, + "end": 53108.34, + "probability": 0.0584 + }, + { + "start": 53115.56, + "end": 53117.72, + "probability": 0.655 + }, + { + "start": 53117.72, + "end": 53119.82, + "probability": 0.9927 + }, + { + "start": 53121.16, + "end": 53121.68, + "probability": 0.3324 + }, + { + "start": 53139.5, + "end": 53139.78, + "probability": 0.1526 + }, + { + "start": 53139.78, + "end": 53139.78, + "probability": 0.2996 + }, + { + "start": 53139.78, + "end": 53145.66, + "probability": 0.6319 + }, + { + "start": 53148.84, + "end": 53150.42, + "probability": 0.6484 + }, + { + "start": 53151.98, + "end": 53152.0, + "probability": 0.3364 + }, + { + "start": 53152.02, + "end": 53152.76, + "probability": 0.396 + }, + { + "start": 53164.98, + "end": 53165.84, + "probability": 0.0259 + }, + { + "start": 53165.88, + "end": 53166.92, + "probability": 0.2787 + }, + { + "start": 53167.06, + "end": 53167.7, + "probability": 0.561 + }, + { + "start": 53167.72, + "end": 53167.98, + "probability": 0.7866 + }, + { + "start": 53168.02, + "end": 53178.97, + "probability": 0.5928 + }, + { + "start": 53189.5, + "end": 53191.38, + "probability": 0.6921 + }, + { + "start": 53191.38, + "end": 53192.38, + "probability": 0.8033 + }, + { + "start": 53193.76, + "end": 53194.9, + "probability": 0.6235 + }, + { + "start": 53196.26, + "end": 53197.82, + "probability": 0.1859 + }, + { + "start": 53200.68, + "end": 53201.94, + "probability": 0.4148 + }, + { + "start": 53208.62, + "end": 53210.64, + "probability": 0.5227 + }, + { + "start": 53212.38, + "end": 53213.26, + "probability": 0.8948 + }, + { + "start": 53225.74, + "end": 53228.26, + "probability": 0.2281 + }, + { + "start": 53229.1, + "end": 53229.12, + "probability": 0.0133 + }, + { + "start": 53247.18, + "end": 53247.18, + "probability": 0.0852 + }, + { + "start": 53247.18, + "end": 53247.44, + "probability": 0.4159 + }, + { + "start": 53248.3, + "end": 53249.6, + "probability": 0.3748 + }, + { + "start": 53253.6, + "end": 53254.18, + "probability": 0.8766 + }, + { + "start": 53267.2, + "end": 53268.32, + "probability": 0.2495 + }, + { + "start": 53273.04, + "end": 53273.04, + "probability": 0.419 + }, + { + "start": 53273.04, + "end": 53274.68, + "probability": 0.1953 + }, + { + "start": 53275.08, + "end": 53276.02, + "probability": 0.4434 + }, + { + "start": 53277.96, + "end": 53280.72, + "probability": 0.0498 + }, + { + "start": 53280.94, + "end": 53281.4, + "probability": 0.3803 + }, + { + "start": 53281.76, + "end": 53282.16, + "probability": 0.3919 + }, + { + "start": 53282.88, + "end": 53284.04, + "probability": 0.8174 + }, + { + "start": 53284.32, + "end": 53286.32, + "probability": 0.2095 + }, + { + "start": 53288.88, + "end": 53290.38, + "probability": 0.7264 + }, + { + "start": 53292.86, + "end": 53294.46, + "probability": 0.6874 + }, + { + "start": 53296.14, + "end": 53297.78, + "probability": 0.9023 + }, + { + "start": 53299.64, + "end": 53301.62, + "probability": 0.6372 + }, + { + "start": 53315.98, + "end": 53315.98, + "probability": 0.1095 + }, + { + "start": 53315.98, + "end": 53317.1, + "probability": 0.6638 + }, + { + "start": 53317.68, + "end": 53318.46, + "probability": 0.2742 + }, + { + "start": 53318.58, + "end": 53321.12, + "probability": 0.8857 + }, + { + "start": 53321.96, + "end": 53323.42, + "probability": 0.7038 + }, + { + "start": 53325.6, + "end": 53326.1, + "probability": 0.4911 + }, + { + "start": 53340.08, + "end": 53340.08, + "probability": 0.0393 + }, + { + "start": 53340.08, + "end": 53342.62, + "probability": 0.6339 + }, + { + "start": 53342.74, + "end": 53345.02, + "probability": 0.9452 + }, + { + "start": 53347.48, + "end": 53365.16, + "probability": 0.3807 + }, + { + "start": 53365.16, + "end": 53368.7, + "probability": 0.6656 + }, + { + "start": 53369.38, + "end": 53370.86, + "probability": 0.8428 + }, + { + "start": 53371.4, + "end": 53372.36, + "probability": 0.8294 + }, + { + "start": 53373.12, + "end": 53373.7, + "probability": 0.5729 + }, + { + "start": 53386.16, + "end": 53386.26, + "probability": 0.021 + }, + { + "start": 53386.26, + "end": 53388.38, + "probability": 0.5997 + }, + { + "start": 53388.88, + "end": 53390.88, + "probability": 0.8898 + }, + { + "start": 53392.1, + "end": 53397.94, + "probability": 0.6372 + }, + { + "start": 53397.94, + "end": 53398.7, + "probability": 0.5223 + }, + { + "start": 53399.64, + "end": 53408.2, + "probability": 0.9678 + }, + { + "start": 53408.48, + "end": 53409.12, + "probability": 0.2922 + }, + { + "start": 53415.38, + "end": 53416.34, + "probability": 0.0296 + }, + { + "start": 53417.55, + "end": 53423.98, + "probability": 0.6954 + }, + { + "start": 53424.46, + "end": 53429.0, + "probability": 0.552 + }, + { + "start": 53433.3, + "end": 53433.86, + "probability": 0.3806 + }, + { + "start": 53435.28, + "end": 53437.6, + "probability": 0.782 + }, + { + "start": 53440.0, + "end": 53445.24, + "probability": 0.7318 + }, + { + "start": 53451.3, + "end": 53453.54, + "probability": 0.6911 + }, + { + "start": 53454.24, + "end": 53456.32, + "probability": 0.9437 + }, + { + "start": 53456.56, + "end": 53456.78, + "probability": 0.026 + }, + { + "start": 53457.56, + "end": 53458.54, + "probability": 0.0202 + }, + { + "start": 53464.42, + "end": 53468.02, + "probability": 0.5242 + }, + { + "start": 53469.5, + "end": 53470.68, + "probability": 0.6265 + }, + { + "start": 53471.44, + "end": 53472.12, + "probability": 0.4781 + }, + { + "start": 53473.08, + "end": 53475.52, + "probability": 0.4357 + }, + { + "start": 53485.52, + "end": 53487.38, + "probability": 0.7802 + }, + { + "start": 53487.56, + "end": 53488.04, + "probability": 0.9715 + }, + { + "start": 53488.58, + "end": 53489.78, + "probability": 0.7929 + }, + { + "start": 53491.16, + "end": 53511.12, + "probability": 0.7627 + }, + { + "start": 53511.12, + "end": 53511.12, + "probability": 0.1676 + }, + { + "start": 53511.12, + "end": 53512.98, + "probability": 0.6047 + }, + { + "start": 53513.1, + "end": 53514.6, + "probability": 0.7934 + }, + { + "start": 53514.6, + "end": 53521.66, + "probability": 0.7762 + }, + { + "start": 53523.08, + "end": 53526.12, + "probability": 0.6683 + }, + { + "start": 53532.1, + "end": 53533.78, + "probability": 0.786 + }, + { + "start": 53533.78, + "end": 53535.2, + "probability": 0.9878 + }, + { + "start": 53536.92, + "end": 53539.12, + "probability": 0.5907 + }, + { + "start": 53539.78, + "end": 53545.22, + "probability": 0.2986 + }, + { + "start": 53552.6, + "end": 53554.46, + "probability": 0.7141 + }, + { + "start": 53554.96, + "end": 53557.26, + "probability": 0.9922 + }, + { + "start": 53557.84, + "end": 53561.32, + "probability": 0.9409 + }, + { + "start": 53561.48, + "end": 53562.88, + "probability": 0.3359 + }, + { + "start": 53563.52, + "end": 53563.92, + "probability": 0.6626 + }, + { + "start": 53574.28, + "end": 53576.46, + "probability": 0.4813 + }, + { + "start": 53577.2, + "end": 53578.76, + "probability": 0.8745 + }, + { + "start": 53582.32, + "end": 53583.88, + "probability": 0.7629 + }, + { + "start": 53598.08, + "end": 53598.64, + "probability": 0.3745 + }, + { + "start": 53598.64, + "end": 53601.26, + "probability": 0.3527 + }, + { + "start": 53606.22, + "end": 53607.18, + "probability": 0.6447 + }, + { + "start": 53609.22, + "end": 53610.88, + "probability": 0.2644 + }, + { + "start": 53610.88, + "end": 53612.26, + "probability": 0.7117 + }, + { + "start": 53612.62, + "end": 53614.14, + "probability": 0.3611 + }, + { + "start": 53614.14, + "end": 53615.19, + "probability": 0.0824 + }, + { + "start": 53618.76, + "end": 53619.9, + "probability": 0.5104 + }, + { + "start": 53620.64, + "end": 53621.86, + "probability": 0.3162 + }, + { + "start": 53622.74, + "end": 53624.46, + "probability": 0.8212 + }, + { + "start": 53628.94, + "end": 53630.48, + "probability": 0.8062 + }, + { + "start": 53631.32, + "end": 53634.94, + "probability": 0.5836 + }, + { + "start": 53635.5, + "end": 53636.08, + "probability": 0.5616 + }, + { + "start": 53638.5, + "end": 53643.14, + "probability": 0.4005 + }, + { + "start": 53650.08, + "end": 53651.82, + "probability": 0.8197 + }, + { + "start": 53651.96, + "end": 53653.48, + "probability": 0.9021 + }, + { + "start": 53653.88, + "end": 53657.08, + "probability": 0.5743 + }, + { + "start": 53661.06, + "end": 53662.16, + "probability": 0.6297 + }, + { + "start": 53662.68, + "end": 53662.88, + "probability": 0.2319 + }, + { + "start": 53665.02, + "end": 53665.52, + "probability": 0.4485 + }, + { + "start": 53666.16, + "end": 53670.2, + "probability": 0.1619 + }, + { + "start": 53678.5, + "end": 53680.18, + "probability": 0.5386 + }, + { + "start": 53680.18, + "end": 53681.58, + "probability": 0.9577 + }, + { + "start": 53683.74, + "end": 53686.36, + "probability": 0.9054 + }, + { + "start": 53686.9, + "end": 53688.08, + "probability": 0.0391 + }, + { + "start": 53688.26, + "end": 53688.58, + "probability": 0.0431 + }, + { + "start": 53692.1, + "end": 53695.74, + "probability": 0.4829 + }, + { + "start": 53696.76, + "end": 53697.92, + "probability": 0.6306 + }, + { + "start": 53699.56, + "end": 53701.48, + "probability": 0.3766 + }, + { + "start": 53709.64, + "end": 53710.24, + "probability": 0.0839 + }, + { + "start": 53710.48, + "end": 53712.04, + "probability": 0.7266 + }, + { + "start": 53712.5, + "end": 53715.0, + "probability": 0.8904 + }, + { + "start": 53715.56, + "end": 53717.74, + "probability": 0.9099 + }, + { + "start": 53718.26, + "end": 53719.72, + "probability": 0.5152 + }, + { + "start": 53721.2, + "end": 53721.82, + "probability": 0.6215 + }, + { + "start": 53725.06, + "end": 53725.62, + "probability": 0.1181 + }, + { + "start": 53731.64, + "end": 53732.38, + "probability": 0.3982 + }, + { + "start": 53736.94, + "end": 53738.4, + "probability": 0.5094 + }, + { + "start": 53738.92, + "end": 53740.74, + "probability": 0.9097 + }, + { + "start": 53741.84, + "end": 53745.14, + "probability": 0.7133 + }, + { + "start": 53746.22, + "end": 53747.56, + "probability": 0.7653 + }, + { + "start": 53749.62, + "end": 53751.22, + "probability": 0.6194 + }, + { + "start": 53756.14, + "end": 53758.52, + "probability": 0.6526 + }, + { + "start": 53765.05, + "end": 53765.46, + "probability": 0.0986 + }, + { + "start": 53765.46, + "end": 53767.54, + "probability": 0.7102 + }, + { + "start": 53771.42, + "end": 53773.14, + "probability": 0.8928 + }, + { + "start": 53774.12, + "end": 53776.32, + "probability": 0.8555 + }, + { + "start": 53776.8, + "end": 53778.84, + "probability": 0.9985 + }, + { + "start": 53780.88, + "end": 53782.96, + "probability": 0.4966 + }, + { + "start": 53784.6, + "end": 53787.02, + "probability": 0.7486 + }, + { + "start": 53798.0, + "end": 53798.78, + "probability": 0.1489 + }, + { + "start": 53798.82, + "end": 53801.66, + "probability": 0.514 + }, + { + "start": 53802.62, + "end": 53804.06, + "probability": 0.9353 + }, + { + "start": 53804.18, + "end": 53806.48, + "probability": 0.9888 + }, + { + "start": 53808.88, + "end": 53810.0, + "probability": 0.6385 + }, + { + "start": 53810.02, + "end": 53810.62, + "probability": 0.9791 + }, + { + "start": 53814.1, + "end": 53816.6, + "probability": 0.0005 + }, + { + "start": 53820.92, + "end": 53821.58, + "probability": 0.0957 + }, + { + "start": 53822.84, + "end": 53826.04, + "probability": 0.472 + }, + { + "start": 53827.02, + "end": 53829.72, + "probability": 0.847 + }, + { + "start": 53834.7, + "end": 53836.72, + "probability": 0.6483 + }, + { + "start": 53837.04, + "end": 53838.26, + "probability": 0.9216 + }, + { + "start": 53838.44, + "end": 53839.24, + "probability": 0.7481 + }, + { + "start": 53839.94, + "end": 53841.18, + "probability": 0.9631 + }, + { + "start": 53843.2, + "end": 53843.68, + "probability": 0.2924 + }, + { + "start": 53846.68, + "end": 53846.94, + "probability": 0.8231 + }, + { + "start": 53854.14, + "end": 53857.38, + "probability": 0.6483 + }, + { + "start": 53857.92, + "end": 53858.51, + "probability": 0.5523 + }, + { + "start": 53859.38, + "end": 53859.7, + "probability": 0.9688 + }, + { + "start": 53865.36, + "end": 53866.18, + "probability": 0.5812 + }, + { + "start": 53866.54, + "end": 53867.03, + "probability": 0.0805 + }, + { + "start": 53867.42, + "end": 53867.7, + "probability": 0.2311 + }, + { + "start": 53868.6, + "end": 53869.06, + "probability": 0.8898 + }, + { + "start": 53870.48, + "end": 53871.38, + "probability": 0.4843 + }, + { + "start": 53871.5, + "end": 53871.87, + "probability": 0.3488 + }, + { + "start": 53872.28, + "end": 53872.67, + "probability": 0.2861 + }, + { + "start": 53874.54, + "end": 53875.1, + "probability": 0.3266 + }, + { + "start": 53876.04, + "end": 53876.75, + "probability": 0.1704 + }, + { + "start": 53879.52, + "end": 53880.02, + "probability": 0.6259 + }, + { + "start": 53881.22, + "end": 53881.65, + "probability": 0.5449 + }, + { + "start": 53884.34, + "end": 53884.34, + "probability": 0.0583 + }, + { + "start": 53884.34, + "end": 53884.34, + "probability": 0.1926 + }, + { + "start": 53884.34, + "end": 53884.54, + "probability": 0.2048 + }, + { + "start": 53886.66, + "end": 53887.06, + "probability": 0.9302 + }, + { + "start": 53888.8, + "end": 53889.82, + "probability": 0.7522 + }, + { + "start": 53890.12, + "end": 53890.76, + "probability": 0.4989 + }, + { + "start": 53891.04, + "end": 53891.48, + "probability": 0.0802 + }, + { + "start": 53891.66, + "end": 53892.42, + "probability": 0.4903 + }, + { + "start": 53892.64, + "end": 53893.23, + "probability": 0.5848 + }, + { + "start": 53897.38, + "end": 53897.82, + "probability": 0.8923 + }, + { + "start": 53899.52, + "end": 53900.24, + "probability": 0.6142 + }, + { + "start": 53900.32, + "end": 53900.83, + "probability": 0.5396 + }, + { + "start": 53901.04, + "end": 53901.6, + "probability": 0.3011 + }, + { + "start": 53904.72, + "end": 53905.0, + "probability": 0.0398 + }, + { + "start": 53907.32, + "end": 53907.76, + "probability": 0.8869 + }, + { + "start": 53909.36, + "end": 53909.92, + "probability": 0.5964 + }, + { + "start": 53910.06, + "end": 53910.59, + "probability": 0.2837 + }, + { + "start": 53910.78, + "end": 53911.05, + "probability": 0.3885 + }, + { + "start": 53911.52, + "end": 53912.01, + "probability": 0.3043 + }, + { + "start": 53912.3, + "end": 53912.65, + "probability": 0.3369 + }, + { + "start": 53913.02, + "end": 53913.3, + "probability": 0.4182 + }, + { + "start": 53913.92, + "end": 53914.32, + "probability": 0.0664 + }, + { + "start": 53914.52, + "end": 53914.99, + "probability": 0.402 + }, + { + "start": 53917.96, + "end": 53919.97, + "probability": 0.8087 + }, + { + "start": 53923.26, + "end": 53925.32, + "probability": 0.9409 + }, + { + "start": 53926.38, + "end": 53927.76, + "probability": 0.5593 + }, + { + "start": 53928.62, + "end": 53928.96, + "probability": 0.9564 + }, + { + "start": 53931.66, + "end": 53932.28, + "probability": 0.471 + }, + { + "start": 53933.54, + "end": 53934.84, + "probability": 0.0385 + }, + { + "start": 53936.58, + "end": 53938.64, + "probability": 0.4424 + }, + { + "start": 53939.44, + "end": 53940.01, + "probability": 0.1705 + }, + { + "start": 53940.98, + "end": 53941.86, + "probability": 0.9681 + }, + { + "start": 53944.52, + "end": 53945.74, + "probability": 0.8914 + }, + { + "start": 53945.94, + "end": 53946.76, + "probability": 0.4762 + }, + { + "start": 53947.82, + "end": 53948.31, + "probability": 0.2566 + }, + { + "start": 53948.68, + "end": 53952.6, + "probability": 0.0414 + }, + { + "start": 53952.76, + "end": 53953.36, + "probability": 0.0556 + }, + { + "start": 53954.88, + "end": 53955.8, + "probability": 0.2874 + }, + { + "start": 53959.72, + "end": 53967.64, + "probability": 0.0449 + }, + { + "start": 53970.12, + "end": 53970.22, + "probability": 0.0053 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54011.0, + "end": 54011.0, + "probability": 0.0 + }, + { + "start": 54014.64, + "end": 54014.64, + "probability": 0.0121 + }, + { + "start": 54014.64, + "end": 54015.2, + "probability": 0.187 + }, + { + "start": 54015.36, + "end": 54016.53, + "probability": 0.3364 + }, + { + "start": 54016.92, + "end": 54017.53, + "probability": 0.5615 + }, + { + "start": 54018.76, + "end": 54019.0, + "probability": 0.978 + }, + { + "start": 54020.9, + "end": 54021.74, + "probability": 0.6181 + }, + { + "start": 54023.8, + "end": 54024.7, + "probability": 0.0946 + }, + { + "start": 54025.8, + "end": 54026.32, + "probability": 0.4838 + }, + { + "start": 54027.1, + "end": 54027.92, + "probability": 0.5877 + }, + { + "start": 54028.64, + "end": 54029.12, + "probability": 0.5273 + }, + { + "start": 54030.68, + "end": 54031.12, + "probability": 0.9661 + }, + { + "start": 54032.9, + "end": 54034.38, + "probability": 0.6339 + }, + { + "start": 54035.3, + "end": 54035.4, + "probability": 0.1046 + }, + { + "start": 54036.08, + "end": 54036.7, + "probability": 0.1396 + }, + { + "start": 54038.06, + "end": 54039.42, + "probability": 0.4301 + }, + { + "start": 54041.38, + "end": 54042.04, + "probability": 0.4335 + }, + { + "start": 54042.84, + "end": 54043.41, + "probability": 0.4169 + }, + { + "start": 54045.44, + "end": 54046.06, + "probability": 0.1156 + }, + { + "start": 54047.16, + "end": 54048.12, + "probability": 0.335 + }, + { + "start": 54048.4, + "end": 54049.14, + "probability": 0.5229 + }, + { + "start": 54049.62, + "end": 54049.9, + "probability": 0.4705 + }, + { + "start": 54050.94, + "end": 54051.67, + "probability": 0.6245 + }, + { + "start": 54052.48, + "end": 54052.83, + "probability": 0.4129 + }, + { + "start": 54056.43, + "end": 54057.06, + "probability": 0.0423 + }, + { + "start": 54057.06, + "end": 54057.06, + "probability": 0.0848 + }, + { + "start": 54057.06, + "end": 54057.3, + "probability": 0.1994 + }, + { + "start": 54062.2, + "end": 54062.26, + "probability": 0.0955 + }, + { + "start": 54064.72, + "end": 54066.16, + "probability": 0.257 + }, + { + "start": 54067.1, + "end": 54068.14, + "probability": 0.3228 + }, + { + "start": 54070.38, + "end": 54070.38, + "probability": 0.013 + }, + { + "start": 54070.38, + "end": 54070.82, + "probability": 0.0704 + }, + { + "start": 54072.58, + "end": 54073.14, + "probability": 0.2923 + }, + { + "start": 54073.72, + "end": 54074.44, + "probability": 0.4372 + }, + { + "start": 54074.64, + "end": 54075.21, + "probability": 0.3252 + }, + { + "start": 54075.6, + "end": 54076.02, + "probability": 0.531 + }, + { + "start": 54076.42, + "end": 54077.42, + "probability": 0.049 + }, + { + "start": 54077.86, + "end": 54078.12, + "probability": 0.2248 + }, + { + "start": 54082.86, + "end": 54084.96, + "probability": 0.5007 + }, + { + "start": 54087.02, + "end": 54087.92, + "probability": 0.304 + }, + { + "start": 54088.0, + "end": 54088.56, + "probability": 0.2705 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.0, + "end": 54139.0, + "probability": 0.0 + }, + { + "start": 54139.12, + "end": 54139.42, + "probability": 0.0822 + }, + { + "start": 54139.54, + "end": 54140.0, + "probability": 0.0982 + }, + { + "start": 54140.04, + "end": 54140.53, + "probability": 0.2598 + }, + { + "start": 54141.04, + "end": 54141.31, + "probability": 0.2571 + }, + { + "start": 54141.7, + "end": 54142.16, + "probability": 0.4564 + }, + { + "start": 54143.0, + "end": 54144.92, + "probability": 0.4876 + }, + { + "start": 54146.08, + "end": 54146.36, + "probability": 0.7415 + }, + { + "start": 54148.6, + "end": 54150.52, + "probability": 0.4495 + }, + { + "start": 54152.62, + "end": 54153.64, + "probability": 0.5446 + }, + { + "start": 54155.1, + "end": 54155.42, + "probability": 0.4478 + }, + { + "start": 54156.62, + "end": 54157.26, + "probability": 0.445 + }, + { + "start": 54157.4, + "end": 54157.9, + "probability": 0.3775 + }, + { + "start": 54158.12, + "end": 54158.4, + "probability": 0.1939 + }, + { + "start": 54159.26, + "end": 54159.52, + "probability": 0.7333 + }, + { + "start": 54161.6, + "end": 54161.8, + "probability": 0.6977 + }, + { + "start": 54164.66, + "end": 54164.7, + "probability": 0.0447 + }, + { + "start": 54164.7, + "end": 54164.7, + "probability": 0.2234 + }, + { + "start": 54164.7, + "end": 54164.8, + "probability": 0.1129 + }, + { + "start": 54165.16, + "end": 54165.48, + "probability": 0.3257 + }, + { + "start": 54165.74, + "end": 54165.97, + "probability": 0.2944 + }, + { + "start": 54166.32, + "end": 54167.22, + "probability": 0.2623 + }, + { + "start": 54167.36, + "end": 54168.06, + "probability": 0.1705 + }, + { + "start": 54168.22, + "end": 54168.5, + "probability": 0.3323 + }, + { + "start": 54169.32, + "end": 54170.17, + "probability": 0.405 + }, + { + "start": 54171.08, + "end": 54172.43, + "probability": 0.4034 + }, + { + "start": 54175.74, + "end": 54176.04, + "probability": 0.0455 + }, + { + "start": 54176.04, + "end": 54176.32, + "probability": 0.2031 + }, + { + "start": 54176.44, + "end": 54177.0, + "probability": 0.2625 + }, + { + "start": 54178.56, + "end": 54179.69, + "probability": 0.3291 + }, + { + "start": 54182.32, + "end": 54183.09, + "probability": 0.4652 + }, + { + "start": 54183.4, + "end": 54184.8, + "probability": 0.1975 + }, + { + "start": 54185.6, + "end": 54185.8, + "probability": 0.4613 + }, + { + "start": 54186.4, + "end": 54187.22, + "probability": 0.3792 + }, + { + "start": 54188.72, + "end": 54189.24, + "probability": 0.4504 + }, + { + "start": 54190.02, + "end": 54190.62, + "probability": 0.4009 + }, + { + "start": 54191.88, + "end": 54192.32, + "probability": 0.0427 + }, + { + "start": 54192.32, + "end": 54192.48, + "probability": 0.2334 + }, + { + "start": 54192.7, + "end": 54193.13, + "probability": 0.4655 + }, + { + "start": 54193.36, + "end": 54193.74, + "probability": 0.3997 + }, + { + "start": 54194.12, + "end": 54194.8, + "probability": 0.2052 + }, + { + "start": 54196.54, + "end": 54198.12, + "probability": 0.5243 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54347.0, + "end": 54347.0, + "probability": 0.0 + }, + { + "start": 54360.18, + "end": 54360.32, + "probability": 0.3762 + }, + { + "start": 54360.32, + "end": 54361.48, + "probability": 0.7926 + }, + { + "start": 54362.08, + "end": 54363.26, + "probability": 0.2849 + }, + { + "start": 54364.04, + "end": 54365.9, + "probability": 0.9406 + }, + { + "start": 54367.64, + "end": 54370.44, + "probability": 0.8012 + }, + { + "start": 54373.1, + "end": 54375.4, + "probability": 0.6645 + }, + { + "start": 54376.34, + "end": 54378.18, + "probability": 0.989 + }, + { + "start": 54378.26, + "end": 54378.76, + "probability": 0.8232 + }, + { + "start": 54396.58, + "end": 54399.8, + "probability": 0.6404 + }, + { + "start": 54399.8, + "end": 54402.38, + "probability": 0.5279 + }, + { + "start": 54402.66, + "end": 54404.44, + "probability": 0.5788 + }, + { + "start": 54404.58, + "end": 54404.98, + "probability": 0.1168 + }, + { + "start": 54404.98, + "end": 54406.4, + "probability": 0.0743 + }, + { + "start": 54406.84, + "end": 54410.3, + "probability": 0.8734 + }, + { + "start": 54421.34, + "end": 54421.44, + "probability": 0.1016 + }, + { + "start": 54424.83, + "end": 54425.42, + "probability": 0.0357 + }, + { + "start": 54432.72, + "end": 54434.54, + "probability": 0.4809 + }, + { + "start": 54436.4, + "end": 54437.14, + "probability": 0.0355 + }, + { + "start": 54444.4, + "end": 54445.8, + "probability": 0.0834 + }, + { + "start": 54447.96, + "end": 54448.2, + "probability": 0.137 + }, + { + "start": 54454.6, + "end": 54455.38, + "probability": 0.0472 + }, + { + "start": 54457.5, + "end": 54460.76, + "probability": 0.2592 + }, + { + "start": 54460.76, + "end": 54463.6, + "probability": 0.0092 + }, + { + "start": 54464.26, + "end": 54465.5, + "probability": 0.0259 + }, + { + "start": 54465.86, + "end": 54471.84, + "probability": 0.1035 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.0, + "end": 54473.0, + "probability": 0.0 + }, + { + "start": 54473.14, + "end": 54473.14, + "probability": 0.0556 + }, + { + "start": 54473.14, + "end": 54473.14, + "probability": 0.0117 + }, + { + "start": 54473.14, + "end": 54473.14, + "probability": 0.4705 + }, + { + "start": 54473.14, + "end": 54475.08, + "probability": 0.9417 + }, + { + "start": 54475.34, + "end": 54477.14, + "probability": 0.9191 + }, + { + "start": 54477.18, + "end": 54477.6, + "probability": 0.3989 + }, + { + "start": 54478.04, + "end": 54478.16, + "probability": 0.7261 + }, + { + "start": 54478.88, + "end": 54481.96, + "probability": 0.9297 + }, + { + "start": 54482.32, + "end": 54486.36, + "probability": 0.76 + }, + { + "start": 54486.36, + "end": 54488.44, + "probability": 0.813 + }, + { + "start": 54488.96, + "end": 54491.08, + "probability": 0.9363 + }, + { + "start": 54491.52, + "end": 54492.2, + "probability": 0.7298 + }, + { + "start": 54492.38, + "end": 54495.42, + "probability": 0.979 + }, + { + "start": 54495.5, + "end": 54495.64, + "probability": 0.0532 + }, + { + "start": 54495.64, + "end": 54499.22, + "probability": 0.2855 + }, + { + "start": 54499.4, + "end": 54501.98, + "probability": 0.1475 + }, + { + "start": 54501.98, + "end": 54501.98, + "probability": 0.3027 + }, + { + "start": 54501.98, + "end": 54504.42, + "probability": 0.8224 + }, + { + "start": 54504.42, + "end": 54506.16, + "probability": 0.9545 + }, + { + "start": 54506.16, + "end": 54506.44, + "probability": 0.0 + }, + { + "start": 54507.82, + "end": 54508.62, + "probability": 0.0645 + }, + { + "start": 54510.78, + "end": 54513.42, + "probability": 0.9929 + }, + { + "start": 54513.6, + "end": 54515.56, + "probability": 0.9623 + }, + { + "start": 54515.78, + "end": 54517.92, + "probability": 0.8441 + }, + { + "start": 54518.84, + "end": 54520.38, + "probability": 0.7964 + }, + { + "start": 54520.42, + "end": 54521.38, + "probability": 0.9897 + }, + { + "start": 54522.04, + "end": 54524.76, + "probability": 0.5113 + }, + { + "start": 54524.86, + "end": 54526.14, + "probability": 0.5502 + }, + { + "start": 54526.28, + "end": 54528.2, + "probability": 0.5812 + }, + { + "start": 54528.74, + "end": 54530.56, + "probability": 0.8861 + }, + { + "start": 54530.56, + "end": 54533.34, + "probability": 0.8936 + }, + { + "start": 54533.44, + "end": 54537.7, + "probability": 0.7023 + }, + { + "start": 54537.7, + "end": 54541.2, + "probability": 0.9959 + }, + { + "start": 54541.2, + "end": 54544.88, + "probability": 0.9766 + }, + { + "start": 54544.88, + "end": 54548.44, + "probability": 0.9708 + }, + { + "start": 54549.01, + "end": 54552.58, + "probability": 0.7155 + }, + { + "start": 54552.62, + "end": 54554.86, + "probability": 0.7743 + }, + { + "start": 54554.96, + "end": 54555.38, + "probability": 0.7706 + }, + { + "start": 54555.48, + "end": 54557.5, + "probability": 0.7637 + }, + { + "start": 54557.96, + "end": 54560.6, + "probability": 0.7704 + }, + { + "start": 54560.66, + "end": 54563.08, + "probability": 0.9419 + }, + { + "start": 54563.46, + "end": 54565.1, + "probability": 0.8406 + }, + { + "start": 54565.52, + "end": 54566.42, + "probability": 0.3753 + }, + { + "start": 54566.46, + "end": 54567.42, + "probability": 0.9301 + }, + { + "start": 54567.72, + "end": 54568.2, + "probability": 0.7727 + }, + { + "start": 54568.5, + "end": 54569.02, + "probability": 0.7497 + }, + { + "start": 54571.06, + "end": 54576.28, + "probability": 0.7925 + }, + { + "start": 54576.82, + "end": 54578.12, + "probability": 0.7495 + }, + { + "start": 54580.46, + "end": 54581.2, + "probability": 0.667 + }, + { + "start": 54582.5, + "end": 54583.58, + "probability": 0.5294 + }, + { + "start": 54584.52, + "end": 54585.8, + "probability": 0.7814 + }, + { + "start": 54585.84, + "end": 54586.44, + "probability": 0.5853 + }, + { + "start": 54587.0, + "end": 54590.04, + "probability": 0.9771 + }, + { + "start": 54590.24, + "end": 54590.92, + "probability": 0.7317 + }, + { + "start": 54591.04, + "end": 54592.58, + "probability": 0.9717 + }, + { + "start": 54593.28, + "end": 54594.16, + "probability": 0.9441 + }, + { + "start": 54595.1, + "end": 54597.98, + "probability": 0.9254 + }, + { + "start": 54599.08, + "end": 54601.9, + "probability": 0.6353 + }, + { + "start": 54602.56, + "end": 54604.42, + "probability": 0.8076 + }, + { + "start": 54605.82, + "end": 54607.74, + "probability": 0.6868 + }, + { + "start": 54608.82, + "end": 54613.02, + "probability": 0.6782 + }, + { + "start": 54613.84, + "end": 54615.52, + "probability": 0.9463 + }, + { + "start": 54615.86, + "end": 54616.9, + "probability": 0.0398 + }, + { + "start": 54619.04, + "end": 54619.48, + "probability": 0.6878 + }, + { + "start": 54619.5, + "end": 54620.5, + "probability": 0.9354 + }, + { + "start": 54621.04, + "end": 54622.46, + "probability": 0.9309 + }, + { + "start": 54622.48, + "end": 54623.86, + "probability": 0.722 + }, + { + "start": 54623.98, + "end": 54626.26, + "probability": 0.9829 + }, + { + "start": 54626.92, + "end": 54627.72, + "probability": 0.652 + }, + { + "start": 54628.24, + "end": 54629.68, + "probability": 0.853 + }, + { + "start": 54631.28, + "end": 54631.9, + "probability": 0.6595 + }, + { + "start": 54632.04, + "end": 54635.46, + "probability": 0.8596 + }, + { + "start": 54637.04, + "end": 54638.9, + "probability": 0.9749 + }, + { + "start": 54646.98, + "end": 54649.36, + "probability": 0.8019 + }, + { + "start": 54650.08, + "end": 54650.68, + "probability": 0.3939 + }, + { + "start": 54653.36, + "end": 54655.44, + "probability": 0.5763 + }, + { + "start": 54655.74, + "end": 54657.88, + "probability": 0.0623 + }, + { + "start": 54661.68, + "end": 54662.82, + "probability": 0.877 + }, + { + "start": 54663.14, + "end": 54663.76, + "probability": 0.2929 + }, + { + "start": 54664.6, + "end": 54665.08, + "probability": 0.952 + }, + { + "start": 54665.54, + "end": 54666.94, + "probability": 0.5542 + }, + { + "start": 54667.68, + "end": 54669.18, + "probability": 0.6472 + }, + { + "start": 54669.9, + "end": 54672.14, + "probability": 0.0721 + }, + { + "start": 54673.12, + "end": 54676.96, + "probability": 0.5058 + }, + { + "start": 54677.12, + "end": 54678.32, + "probability": 0.3679 + }, + { + "start": 54678.48, + "end": 54678.6, + "probability": 0.8889 + }, + { + "start": 54679.6, + "end": 54681.48, + "probability": 0.2222 + }, + { + "start": 54682.0, + "end": 54683.46, + "probability": 0.6096 + }, + { + "start": 54683.64, + "end": 54684.36, + "probability": 0.2107 + }, + { + "start": 54686.3, + "end": 54687.0, + "probability": 0.8757 + }, + { + "start": 54688.68, + "end": 54689.84, + "probability": 0.7223 + }, + { + "start": 54690.82, + "end": 54691.42, + "probability": 0.6426 + }, + { + "start": 54691.5, + "end": 54692.22, + "probability": 0.6264 + }, + { + "start": 54693.2, + "end": 54693.48, + "probability": 0.936 + }, + { + "start": 54695.2, + "end": 54697.16, + "probability": 0.4833 + }, + { + "start": 54697.24, + "end": 54697.72, + "probability": 0.3559 + }, + { + "start": 54698.34, + "end": 54698.72, + "probability": 0.9041 + }, + { + "start": 54699.64, + "end": 54701.9, + "probability": 0.5454 + }, + { + "start": 54702.98, + "end": 54705.3, + "probability": 0.7199 + }, + { + "start": 54705.88, + "end": 54708.9, + "probability": 0.9789 + }, + { + "start": 54709.92, + "end": 54710.82, + "probability": 0.7005 + }, + { + "start": 54712.48, + "end": 54713.24, + "probability": 0.5144 + }, + { + "start": 54713.42, + "end": 54714.02, + "probability": 0.5982 + }, + { + "start": 54716.44, + "end": 54716.82, + "probability": 0.9333 + }, + { + "start": 54718.48, + "end": 54719.44, + "probability": 0.6947 + }, + { + "start": 54719.48, + "end": 54720.28, + "probability": 0.9254 + }, + { + "start": 54720.4, + "end": 54721.0, + "probability": 0.9722 + }, + { + "start": 54721.2, + "end": 54721.96, + "probability": 0.9937 + }, + { + "start": 54722.08, + "end": 54722.94, + "probability": 0.8569 + }, + { + "start": 54723.58, + "end": 54724.02, + "probability": 0.9641 + }, + { + "start": 54725.32, + "end": 54727.88, + "probability": 0.7989 + }, + { + "start": 54735.62, + "end": 54736.16, + "probability": 0.4979 + }, + { + "start": 54743.02, + "end": 54743.66, + "probability": 0.4838 + }, + { + "start": 54744.06, + "end": 54744.36, + "probability": 0.8758 + }, + { + "start": 54744.86, + "end": 54745.6, + "probability": 0.8201 + }, + { + "start": 54745.72, + "end": 54746.52, + "probability": 0.9805 + }, + { + "start": 54746.7, + "end": 54747.26, + "probability": 0.9785 + }, + { + "start": 54747.38, + "end": 54747.74, + "probability": 0.9622 + }, + { + "start": 54748.26, + "end": 54748.66, + "probability": 0.7403 + }, + { + "start": 54749.0, + "end": 54750.08, + "probability": 0.6598 + }, + { + "start": 54756.5, + "end": 54757.2, + "probability": 0.8051 + }, + { + "start": 54757.8, + "end": 54758.4, + "probability": 0.3982 + }, + { + "start": 54759.74, + "end": 54760.0, + "probability": 0.7202 + }, + { + "start": 54761.8, + "end": 54763.34, + "probability": 0.6166 + }, + { + "start": 54763.98, + "end": 54764.46, + "probability": 0.947 + }, + { + "start": 54766.02, + "end": 54767.22, + "probability": 0.3755 + }, + { + "start": 54768.16, + "end": 54768.6, + "probability": 0.9575 + }, + { + "start": 54772.08, + "end": 54772.82, + "probability": 0.0837 + }, + { + "start": 54774.16, + "end": 54778.18, + "probability": 0.3378 + }, + { + "start": 54779.42, + "end": 54780.44, + "probability": 0.899 + }, + { + "start": 54780.58, + "end": 54781.36, + "probability": 0.835 + }, + { + "start": 54781.58, + "end": 54782.6, + "probability": 0.7328 + }, + { + "start": 54782.64, + "end": 54783.34, + "probability": 0.6241 + }, + { + "start": 54783.76, + "end": 54784.72, + "probability": 0.5468 + }, + { + "start": 54784.86, + "end": 54785.5, + "probability": 0.7283 + }, + { + "start": 54785.84, + "end": 54786.4, + "probability": 0.714 + }, + { + "start": 54786.74, + "end": 54787.5, + "probability": 0.8153 + }, + { + "start": 54788.06, + "end": 54788.34, + "probability": 0.783 + }, + { + "start": 54790.52, + "end": 54791.54, + "probability": 0.5774 + }, + { + "start": 54793.4, + "end": 54794.24, + "probability": 0.6398 + }, + { + "start": 54796.28, + "end": 54797.12, + "probability": 0.9257 + }, + { + "start": 54798.26, + "end": 54798.94, + "probability": 0.9583 + }, + { + "start": 54799.3, + "end": 54800.02, + "probability": 0.8816 + }, + { + "start": 54800.92, + "end": 54801.26, + "probability": 0.9653 + }, + { + "start": 54803.0, + "end": 54805.18, + "probability": 0.8206 + }, + { + "start": 54806.58, + "end": 54807.32, + "probability": 0.9434 + }, + { + "start": 54808.48, + "end": 54808.92, + "probability": 0.9079 + }, + { + "start": 54810.04, + "end": 54810.42, + "probability": 0.8745 + }, + { + "start": 54811.52, + "end": 54812.38, + "probability": 0.7358 + }, + { + "start": 54812.58, + "end": 54812.94, + "probability": 0.8987 + }, + { + "start": 54813.26, + "end": 54813.74, + "probability": 0.5356 + }, + { + "start": 54814.14, + "end": 54814.62, + "probability": 0.9652 + }, + { + "start": 54814.68, + "end": 54815.24, + "probability": 0.8436 + }, + { + "start": 54815.28, + "end": 54815.84, + "probability": 0.7711 + }, + { + "start": 54815.92, + "end": 54816.62, + "probability": 0.9912 + }, + { + "start": 54816.68, + "end": 54817.3, + "probability": 0.6234 + }, + { + "start": 54817.88, + "end": 54818.84, + "probability": 0.5327 + }, + { + "start": 54819.5, + "end": 54819.9, + "probability": 0.7478 + }, + { + "start": 54822.08, + "end": 54823.0, + "probability": 0.7759 + }, + { + "start": 54823.04, + "end": 54823.78, + "probability": 0.8593 + }, + { + "start": 54823.82, + "end": 54824.52, + "probability": 0.8149 + }, + { + "start": 54824.6, + "end": 54825.56, + "probability": 0.5876 + }, + { + "start": 54826.02, + "end": 54827.06, + "probability": 0.9202 + }, + { + "start": 54827.94, + "end": 54828.32, + "probability": 0.9907 + }, + { + "start": 54830.34, + "end": 54831.04, + "probability": 0.8433 + }, + { + "start": 54831.74, + "end": 54832.02, + "probability": 0.9958 + }, + { + "start": 54833.34, + "end": 54835.24, + "probability": 0.8729 + }, + { + "start": 54835.32, + "end": 54836.04, + "probability": 0.492 + }, + { + "start": 54836.82, + "end": 54837.24, + "probability": 0.7094 + }, + { + "start": 54839.4, + "end": 54840.72, + "probability": 0.8109 + }, + { + "start": 54843.56, + "end": 54846.08, + "probability": 0.8442 + }, + { + "start": 54846.22, + "end": 54847.14, + "probability": 0.9596 + }, + { + "start": 54849.06, + "end": 54849.52, + "probability": 0.9841 + }, + { + "start": 54851.66, + "end": 54852.72, + "probability": 0.6576 + }, + { + "start": 54854.28, + "end": 54856.58, + "probability": 0.5595 + }, + { + "start": 54856.9, + "end": 54857.52, + "probability": 0.521 + }, + { + "start": 54858.28, + "end": 54858.74, + "probability": 0.8318 + }, + { + "start": 54860.0, + "end": 54862.42, + "probability": 0.7529 + }, + { + "start": 54862.92, + "end": 54863.34, + "probability": 0.5393 + }, + { + "start": 54865.64, + "end": 54866.52, + "probability": 0.087 + }, + { + "start": 54867.58, + "end": 54868.5, + "probability": 0.5736 + }, + { + "start": 54870.28, + "end": 54873.2, + "probability": 0.9081 + }, + { + "start": 54874.68, + "end": 54875.46, + "probability": 0.9811 + }, + { + "start": 54875.52, + "end": 54876.5, + "probability": 0.9132 + }, + { + "start": 54876.98, + "end": 54878.22, + "probability": 0.8789 + }, + { + "start": 54878.3, + "end": 54878.8, + "probability": 0.9491 + }, + { + "start": 54879.0, + "end": 54879.76, + "probability": 0.9832 + }, + { + "start": 54881.72, + "end": 54882.14, + "probability": 0.9349 + }, + { + "start": 54883.04, + "end": 54883.36, + "probability": 0.8686 + }, + { + "start": 54884.56, + "end": 54886.18, + "probability": 0.7938 + }, + { + "start": 54889.24, + "end": 54890.4, + "probability": 0.924 + }, + { + "start": 54890.98, + "end": 54891.96, + "probability": 0.9816 + }, + { + "start": 54892.08, + "end": 54892.66, + "probability": 0.9659 + }, + { + "start": 54892.84, + "end": 54893.6, + "probability": 0.614 + }, + { + "start": 54893.74, + "end": 54894.64, + "probability": 0.6613 + }, + { + "start": 54896.26, + "end": 54897.28, + "probability": 0.9813 + }, + { + "start": 54898.18, + "end": 54898.68, + "probability": 0.9548 + }, + { + "start": 54899.04, + "end": 54899.96, + "probability": 0.9124 + }, + { + "start": 54900.04, + "end": 54900.66, + "probability": 0.8647 + }, + { + "start": 54900.82, + "end": 54901.61, + "probability": 0.7866 + }, + { + "start": 54902.16, + "end": 54902.86, + "probability": 0.625 + }, + { + "start": 54904.28, + "end": 54904.36, + "probability": 0.6604 + }, + { + "start": 54905.66, + "end": 54908.16, + "probability": 0.9627 + }, + { + "start": 54909.44, + "end": 54910.3, + "probability": 0.4909 + }, + { + "start": 54910.4, + "end": 54911.1, + "probability": 0.9699 + }, + { + "start": 54911.3, + "end": 54911.92, + "probability": 0.6977 + }, + { + "start": 54912.9, + "end": 54915.64, + "probability": 0.7186 + }, + { + "start": 54916.88, + "end": 54917.5, + "probability": 0.656 + }, + { + "start": 54920.86, + "end": 54921.22, + "probability": 0.9436 + }, + { + "start": 54925.6, + "end": 54927.38, + "probability": 0.8234 + }, + { + "start": 54928.44, + "end": 54931.32, + "probability": 0.9398 + }, + { + "start": 54931.94, + "end": 54932.64, + "probability": 0.3582 + }, + { + "start": 54936.82, + "end": 54937.9, + "probability": 0.1904 + }, + { + "start": 54945.0, + "end": 54945.08, + "probability": 0.0161 + }, + { + "start": 54950.34, + "end": 54950.64, + "probability": 0.1019 + }, + { + "start": 54952.55, + "end": 54953.36, + "probability": 0.0824 + }, + { + "start": 54953.52, + "end": 54953.54, + "probability": 0.225 + }, + { + "start": 54953.54, + "end": 54954.22, + "probability": 0.2951 + }, + { + "start": 54954.34, + "end": 54954.4, + "probability": 0.1437 + }, + { + "start": 54954.4, + "end": 54954.42, + "probability": 0.1177 + }, + { + "start": 54968.04, + "end": 54972.58, + "probability": 0.3565 + }, + { + "start": 54975.78, + "end": 54978.32, + "probability": 0.9512 + }, + { + "start": 54983.96, + "end": 54986.5, + "probability": 0.8426 + }, + { + "start": 54987.26, + "end": 54988.64, + "probability": 0.6772 + }, + { + "start": 54991.58, + "end": 54992.32, + "probability": 0.9543 + }, + { + "start": 54993.86, + "end": 54994.54, + "probability": 0.2657 + }, + { + "start": 54994.76, + "end": 54995.64, + "probability": 0.3998 + }, + { + "start": 55000.04, + "end": 55001.2, + "probability": 0.4928 + }, + { + "start": 55001.72, + "end": 55002.7, + "probability": 0.824 + }, + { + "start": 55002.86, + "end": 55003.54, + "probability": 0.6134 + }, + { + "start": 55003.72, + "end": 55004.6, + "probability": 0.6568 + }, + { + "start": 55004.66, + "end": 55005.2, + "probability": 0.5855 + }, + { + "start": 55005.5, + "end": 55006.48, + "probability": 0.9217 + }, + { + "start": 55006.54, + "end": 55007.4, + "probability": 0.8699 + }, + { + "start": 55007.92, + "end": 55010.64, + "probability": 0.9491 + }, + { + "start": 55014.74, + "end": 55018.4, + "probability": 0.8654 + }, + { + "start": 55018.58, + "end": 55020.1, + "probability": 0.6248 + }, + { + "start": 55022.06, + "end": 55022.8, + "probability": 0.6372 + }, + { + "start": 55024.18, + "end": 55025.06, + "probability": 0.8862 + }, + { + "start": 55025.2, + "end": 55025.9, + "probability": 0.8814 + }, + { + "start": 55026.14, + "end": 55027.02, + "probability": 0.6534 + }, + { + "start": 55027.1, + "end": 55027.6, + "probability": 0.9744 + }, + { + "start": 55027.66, + "end": 55028.3, + "probability": 0.7179 + }, + { + "start": 55028.38, + "end": 55029.02, + "probability": 0.7205 + }, + { + "start": 55029.14, + "end": 55030.12, + "probability": 0.9779 + }, + { + "start": 55030.6, + "end": 55031.14, + "probability": 0.9769 + }, + { + "start": 55031.36, + "end": 55032.36, + "probability": 0.8641 + }, + { + "start": 55032.48, + "end": 55033.36, + "probability": 0.9173 + }, + { + "start": 55033.38, + "end": 55034.24, + "probability": 0.761 + }, + { + "start": 55034.34, + "end": 55035.24, + "probability": 0.832 + }, + { + "start": 55036.18, + "end": 55038.68, + "probability": 0.9789 + }, + { + "start": 55039.54, + "end": 55041.14, + "probability": 0.8737 + }, + { + "start": 55042.94, + "end": 55044.1, + "probability": 0.9408 + }, + { + "start": 55044.72, + "end": 55045.8, + "probability": 0.7228 + }, + { + "start": 55046.12, + "end": 55046.8, + "probability": 0.9185 + }, + { + "start": 55046.9, + "end": 55047.78, + "probability": 0.6129 + }, + { + "start": 55048.02, + "end": 55048.68, + "probability": 0.9818 + }, + { + "start": 55048.76, + "end": 55049.42, + "probability": 0.6734 + }, + { + "start": 55050.06, + "end": 55053.08, + "probability": 0.9666 + }, + { + "start": 55053.62, + "end": 55054.28, + "probability": 0.9035 + }, + { + "start": 55054.98, + "end": 55055.62, + "probability": 0.7708 + }, + { + "start": 55055.78, + "end": 55056.56, + "probability": 0.964 + }, + { + "start": 55056.68, + "end": 55057.38, + "probability": 0.9606 + }, + { + "start": 55057.52, + "end": 55058.36, + "probability": 0.9948 + }, + { + "start": 55058.46, + "end": 55059.24, + "probability": 0.9822 + }, + { + "start": 55059.38, + "end": 55060.44, + "probability": 0.7798 + }, + { + "start": 55061.4, + "end": 55062.76, + "probability": 0.8803 + }, + { + "start": 55062.92, + "end": 55063.46, + "probability": 0.8802 + }, + { + "start": 55063.62, + "end": 55064.3, + "probability": 0.9853 + }, + { + "start": 55064.52, + "end": 55064.88, + "probability": 0.9508 + }, + { + "start": 55065.48, + "end": 55067.96, + "probability": 0.9056 + }, + { + "start": 55069.36, + "end": 55070.1, + "probability": 0.8403 + }, + { + "start": 55070.34, + "end": 55070.56, + "probability": 0.6891 + }, + { + "start": 55070.92, + "end": 55071.52, + "probability": 0.9523 + }, + { + "start": 55071.64, + "end": 55072.06, + "probability": 0.8603 + }, + { + "start": 55072.26, + "end": 55073.06, + "probability": 0.7905 + }, + { + "start": 55073.3, + "end": 55074.12, + "probability": 0.7769 + }, + { + "start": 55076.36, + "end": 55077.2, + "probability": 0.9617 + }, + { + "start": 55079.08, + "end": 55081.74, + "probability": 0.9378 + }, + { + "start": 55083.74, + "end": 55086.48, + "probability": 0.7584 + }, + { + "start": 55088.68, + "end": 55091.52, + "probability": 0.994 + }, + { + "start": 55091.58, + "end": 55093.36, + "probability": 0.3449 + }, + { + "start": 55094.58, + "end": 55096.14, + "probability": 0.96 + }, + { + "start": 55097.56, + "end": 55098.86, + "probability": 0.6862 + }, + { + "start": 55107.46, + "end": 55107.46, + "probability": 0.0008 + }, + { + "start": 55113.22, + "end": 55113.98, + "probability": 0.1323 + }, + { + "start": 55115.12, + "end": 55115.44, + "probability": 0.0316 + }, + { + "start": 55117.56, + "end": 55118.0, + "probability": 0.0192 + }, + { + "start": 55118.62, + "end": 55119.24, + "probability": 0.0076 + }, + { + "start": 55119.8, + "end": 55123.3, + "probability": 0.0144 + }, + { + "start": 55123.3, + "end": 55128.92, + "probability": 0.1514 + }, + { + "start": 55130.02, + "end": 55130.16, + "probability": 0.1763 + }, + { + "start": 55208.0, + "end": 55208.0, + "probability": 0.0 + }, + { + "start": 55208.0, + "end": 55208.0, + "probability": 0.0 + }, + { + "start": 55208.0, + "end": 55208.0, + "probability": 0.0 + }, + { + "start": 55208.26, + "end": 55212.04, + "probability": 0.2259 + }, + { + "start": 55223.4, + "end": 55223.5, + "probability": 0.2783 + }, + { + "start": 55224.02, + "end": 55225.86, + "probability": 0.6202 + }, + { + "start": 55227.18, + "end": 55231.42, + "probability": 0.9882 + }, + { + "start": 55232.22, + "end": 55233.6, + "probability": 0.7278 + }, + { + "start": 55233.8, + "end": 55236.88, + "probability": 0.9888 + }, + { + "start": 55237.44, + "end": 55240.02, + "probability": 0.9507 + }, + { + "start": 55240.52, + "end": 55244.98, + "probability": 0.9463 + }, + { + "start": 55245.56, + "end": 55249.18, + "probability": 0.9913 + }, + { + "start": 55249.18, + "end": 55254.76, + "probability": 0.9962 + }, + { + "start": 55254.76, + "end": 55259.56, + "probability": 0.9984 + }, + { + "start": 55260.08, + "end": 55263.06, + "probability": 0.9929 + }, + { + "start": 55263.58, + "end": 55269.22, + "probability": 0.9701 + }, + { + "start": 55269.8, + "end": 55272.4, + "probability": 0.9819 + }, + { + "start": 55272.4, + "end": 55275.16, + "probability": 0.9655 + }, + { + "start": 55275.74, + "end": 55278.46, + "probability": 0.9335 + }, + { + "start": 55278.96, + "end": 55285.28, + "probability": 0.9932 + }, + { + "start": 55286.16, + "end": 55289.9, + "probability": 0.9786 + }, + { + "start": 55290.48, + "end": 55295.24, + "probability": 0.9818 + }, + { + "start": 55295.7, + "end": 55301.52, + "probability": 0.9756 + }, + { + "start": 55302.0, + "end": 55306.98, + "probability": 0.8004 + }, + { + "start": 55307.44, + "end": 55315.16, + "probability": 0.9729 + }, + { + "start": 55315.24, + "end": 55321.8, + "probability": 0.9734 + }, + { + "start": 55321.8, + "end": 55326.58, + "probability": 0.9943 + }, + { + "start": 55327.08, + "end": 55332.32, + "probability": 0.9673 + }, + { + "start": 55332.32, + "end": 55336.14, + "probability": 0.9791 + }, + { + "start": 55336.32, + "end": 55339.68, + "probability": 0.8736 + }, + { + "start": 55340.08, + "end": 55345.1, + "probability": 0.9718 + }, + { + "start": 55345.34, + "end": 55350.94, + "probability": 0.9795 + }, + { + "start": 55350.94, + "end": 55355.68, + "probability": 0.9966 + }, + { + "start": 55356.18, + "end": 55357.52, + "probability": 0.9777 + }, + { + "start": 55357.86, + "end": 55359.48, + "probability": 0.9844 + }, + { + "start": 55359.92, + "end": 55362.48, + "probability": 0.9924 + }, + { + "start": 55362.66, + "end": 55362.98, + "probability": 0.7964 + }, + { + "start": 55364.0, + "end": 55367.1, + "probability": 0.8169 + }, + { + "start": 55367.66, + "end": 55368.9, + "probability": 0.6876 + }, + { + "start": 55369.86, + "end": 55371.5, + "probability": 0.9424 + }, + { + "start": 55372.56, + "end": 55373.8, + "probability": 0.5667 + }, + { + "start": 55374.08, + "end": 55374.66, + "probability": 0.8447 + }, + { + "start": 55374.86, + "end": 55375.92, + "probability": 0.8588 + }, + { + "start": 55376.04, + "end": 55376.54, + "probability": 0.7658 + }, + { + "start": 55376.66, + "end": 55378.28, + "probability": 0.8831 + }, + { + "start": 55378.36, + "end": 55379.42, + "probability": 0.99 + }, + { + "start": 55380.84, + "end": 55381.62, + "probability": 0.7813 + }, + { + "start": 55382.36, + "end": 55382.78, + "probability": 0.8738 + }, + { + "start": 55384.04, + "end": 55384.68, + "probability": 0.9846 + }, + { + "start": 55388.56, + "end": 55391.06, + "probability": 0.6655 + }, + { + "start": 55392.56, + "end": 55393.46, + "probability": 0.9312 + }, + { + "start": 55394.44, + "end": 55394.68, + "probability": 0.9498 + }, + { + "start": 55396.08, + "end": 55397.34, + "probability": 0.7974 + }, + { + "start": 55398.84, + "end": 55404.5, + "probability": 0.6727 + }, + { + "start": 55405.68, + "end": 55406.58, + "probability": 0.7593 + }, + { + "start": 55406.7, + "end": 55407.4, + "probability": 0.3767 + }, + { + "start": 55407.58, + "end": 55408.42, + "probability": 0.8989 + }, + { + "start": 55408.73, + "end": 55412.3, + "probability": 0.9379 + }, + { + "start": 55413.84, + "end": 55414.58, + "probability": 0.8507 + }, + { + "start": 55414.7, + "end": 55416.11, + "probability": 0.7203 + }, + { + "start": 55417.1, + "end": 55421.38, + "probability": 0.9963 + }, + { + "start": 55422.42, + "end": 55424.46, + "probability": 0.4507 + }, + { + "start": 55424.78, + "end": 55426.84, + "probability": 0.902 + }, + { + "start": 55427.08, + "end": 55428.56, + "probability": 0.8175 + }, + { + "start": 55428.68, + "end": 55431.94, + "probability": 0.988 + }, + { + "start": 55432.14, + "end": 55434.2, + "probability": 0.7039 + }, + { + "start": 55434.44, + "end": 55438.3, + "probability": 0.9988 + }, + { + "start": 55439.18, + "end": 55440.22, + "probability": 0.8438 + }, + { + "start": 55440.82, + "end": 55442.88, + "probability": 0.9612 + }, + { + "start": 55444.1, + "end": 55444.64, + "probability": 0.7595 + }, + { + "start": 55444.76, + "end": 55445.98, + "probability": 0.979 + }, + { + "start": 55446.06, + "end": 55447.48, + "probability": 0.9331 + }, + { + "start": 55448.52, + "end": 55451.24, + "probability": 0.5024 + }, + { + "start": 55451.64, + "end": 55454.12, + "probability": 0.9316 + }, + { + "start": 55455.5, + "end": 55463.72, + "probability": 0.9847 + }, + { + "start": 55463.86, + "end": 55464.98, + "probability": 0.1369 + }, + { + "start": 55465.52, + "end": 55467.96, + "probability": 0.016 + }, + { + "start": 55469.26, + "end": 55469.4, + "probability": 0.006 + }, + { + "start": 55469.4, + "end": 55471.02, + "probability": 0.0261 + }, + { + "start": 55471.02, + "end": 55471.52, + "probability": 0.2079 + }, + { + "start": 55472.22, + "end": 55474.73, + "probability": 0.5235 + }, + { + "start": 55475.16, + "end": 55475.16, + "probability": 0.1522 + }, + { + "start": 55475.16, + "end": 55476.14, + "probability": 0.5775 + }, + { + "start": 55476.24, + "end": 55480.44, + "probability": 0.776 + }, + { + "start": 55480.44, + "end": 55484.52, + "probability": 0.9908 + }, + { + "start": 55484.66, + "end": 55485.4, + "probability": 0.8267 + }, + { + "start": 55485.52, + "end": 55486.3, + "probability": 0.9781 + }, + { + "start": 55486.46, + "end": 55493.04, + "probability": 0.9854 + }, + { + "start": 55494.14, + "end": 55495.3, + "probability": 0.6201 + }, + { + "start": 55495.5, + "end": 55496.44, + "probability": 0.8403 + }, + { + "start": 55496.68, + "end": 55498.22, + "probability": 0.7709 + }, + { + "start": 55499.02, + "end": 55500.42, + "probability": 0.9645 + }, + { + "start": 55500.66, + "end": 55501.66, + "probability": 0.9272 + }, + { + "start": 55502.14, + "end": 55504.06, + "probability": 0.9217 + }, + { + "start": 55504.56, + "end": 55509.16, + "probability": 0.9836 + }, + { + "start": 55509.26, + "end": 55511.96, + "probability": 0.8555 + }, + { + "start": 55512.32, + "end": 55515.92, + "probability": 0.9048 + }, + { + "start": 55517.7, + "end": 55520.06, + "probability": 0.9642 + }, + { + "start": 55520.66, + "end": 55522.5, + "probability": 0.9484 + }, + { + "start": 55522.94, + "end": 55524.46, + "probability": 0.8328 + }, + { + "start": 55524.48, + "end": 55526.12, + "probability": 0.9925 + }, + { + "start": 55526.78, + "end": 55527.94, + "probability": 0.8955 + }, + { + "start": 55528.36, + "end": 55530.16, + "probability": 0.9395 + }, + { + "start": 55530.36, + "end": 55531.02, + "probability": 0.7482 + }, + { + "start": 55531.2, + "end": 55531.94, + "probability": 0.954 + }, + { + "start": 55533.38, + "end": 55536.92, + "probability": 0.9829 + }, + { + "start": 55536.92, + "end": 55539.62, + "probability": 0.909 + }, + { + "start": 55539.72, + "end": 55540.44, + "probability": 0.8875 + }, + { + "start": 55541.68, + "end": 55542.86, + "probability": 0.8082 + }, + { + "start": 55543.92, + "end": 55545.3, + "probability": 0.8363 + }, + { + "start": 55545.78, + "end": 55546.54, + "probability": 0.951 + }, + { + "start": 55546.82, + "end": 55547.68, + "probability": 0.9808 + }, + { + "start": 55548.42, + "end": 55550.76, + "probability": 0.9807 + }, + { + "start": 55551.92, + "end": 55554.18, + "probability": 0.9639 + }, + { + "start": 55554.9, + "end": 55556.08, + "probability": 0.9686 + }, + { + "start": 55556.66, + "end": 55558.08, + "probability": 0.9214 + }, + { + "start": 55559.1, + "end": 55560.88, + "probability": 0.8748 + }, + { + "start": 55562.1, + "end": 55562.98, + "probability": 0.8311 + }, + { + "start": 55564.0, + "end": 55565.68, + "probability": 0.8511 + }, + { + "start": 55566.78, + "end": 55566.78, + "probability": 0.6356 + }, + { + "start": 55567.36, + "end": 55573.36, + "probability": 0.9968 + }, + { + "start": 55573.36, + "end": 55580.78, + "probability": 0.959 + }, + { + "start": 55581.4, + "end": 55582.3, + "probability": 0.934 + }, + { + "start": 55582.96, + "end": 55583.58, + "probability": 0.6901 + }, + { + "start": 55583.68, + "end": 55583.92, + "probability": 0.4687 + }, + { + "start": 55584.56, + "end": 55585.8, + "probability": 0.7844 + }, + { + "start": 55585.82, + "end": 55586.68, + "probability": 0.6877 + }, + { + "start": 55587.02, + "end": 55589.1, + "probability": 0.7184 + }, + { + "start": 55589.64, + "end": 55590.24, + "probability": 0.7608 + }, + { + "start": 55590.76, + "end": 55591.74, + "probability": 0.7329 + }, + { + "start": 55591.84, + "end": 55592.46, + "probability": 0.9813 + }, + { + "start": 55592.72, + "end": 55594.56, + "probability": 0.6697 + }, + { + "start": 55594.66, + "end": 55595.3, + "probability": 0.6826 + }, + { + "start": 55596.02, + "end": 55597.12, + "probability": 0.9372 + }, + { + "start": 55597.18, + "end": 55597.76, + "probability": 0.9359 + }, + { + "start": 55597.9, + "end": 55599.42, + "probability": 0.96 + }, + { + "start": 55599.86, + "end": 55600.4, + "probability": 0.9421 + }, + { + "start": 55601.52, + "end": 55603.08, + "probability": 0.924 + }, + { + "start": 55605.18, + "end": 55605.96, + "probability": 0.5122 + }, + { + "start": 55605.96, + "end": 55605.96, + "probability": 0.3598 + }, + { + "start": 55605.96, + "end": 55606.78, + "probability": 0.5469 + }, + { + "start": 55607.2, + "end": 55607.8, + "probability": 0.8612 + }, + { + "start": 55607.88, + "end": 55609.08, + "probability": 0.9019 + }, + { + "start": 55610.38, + "end": 55611.0, + "probability": 0.9132 + }, + { + "start": 55611.86, + "end": 55613.6, + "probability": 0.9169 + }, + { + "start": 55626.9, + "end": 55627.72, + "probability": 0.6623 + }, + { + "start": 55631.58, + "end": 55632.26, + "probability": 0.1979 + }, + { + "start": 55634.3, + "end": 55634.94, + "probability": 0.1342 + }, + { + "start": 55651.15, + "end": 55651.76, + "probability": 0.0831 + }, + { + "start": 55652.08, + "end": 55653.2, + "probability": 0.1164 + }, + { + "start": 55654.52, + "end": 55654.84, + "probability": 0.1457 + }, + { + "start": 55654.88, + "end": 55656.12, + "probability": 0.694 + }, + { + "start": 55657.24, + "end": 55658.4, + "probability": 0.7171 + }, + { + "start": 55658.42, + "end": 55658.5, + "probability": 0.2529 + }, + { + "start": 55658.52, + "end": 55659.64, + "probability": 0.7706 + }, + { + "start": 55659.8, + "end": 55662.12, + "probability": 0.6938 + }, + { + "start": 55663.27, + "end": 55664.46, + "probability": 0.9008 + }, + { + "start": 55664.54, + "end": 55665.12, + "probability": 0.8127 + }, + { + "start": 55665.72, + "end": 55668.38, + "probability": 0.9946 + }, + { + "start": 55668.9, + "end": 55669.74, + "probability": 0.7361 + }, + { + "start": 55670.6, + "end": 55671.64, + "probability": 0.8196 + }, + { + "start": 55672.3, + "end": 55675.26, + "probability": 0.9869 + }, + { + "start": 55675.46, + "end": 55678.44, + "probability": 0.9001 + }, + { + "start": 55679.58, + "end": 55681.74, + "probability": 0.824 + }, + { + "start": 55682.6, + "end": 55684.68, + "probability": 0.895 + }, + { + "start": 55686.08, + "end": 55690.04, + "probability": 0.9559 + }, + { + "start": 55691.1, + "end": 55692.16, + "probability": 0.9075 + }, + { + "start": 55692.26, + "end": 55693.94, + "probability": 0.9894 + }, + { + "start": 55693.98, + "end": 55695.58, + "probability": 0.168 + }, + { + "start": 55697.4, + "end": 55700.22, + "probability": 0.9917 + }, + { + "start": 55700.9, + "end": 55701.42, + "probability": 0.5462 + }, + { + "start": 55702.24, + "end": 55703.82, + "probability": 0.9547 + }, + { + "start": 55705.04, + "end": 55708.52, + "probability": 0.9771 + }, + { + "start": 55708.66, + "end": 55708.94, + "probability": 0.8668 + }, + { + "start": 55709.32, + "end": 55711.77, + "probability": 0.9855 + }, + { + "start": 55713.22, + "end": 55713.88, + "probability": 0.0185 + }, + { + "start": 55716.36, + "end": 55717.82, + "probability": 0.8573 + }, + { + "start": 55719.07, + "end": 55721.3, + "probability": 0.6939 + }, + { + "start": 55721.66, + "end": 55724.22, + "probability": 0.9755 + }, + { + "start": 55725.32, + "end": 55733.72, + "probability": 0.9712 + }, + { + "start": 55734.68, + "end": 55738.2, + "probability": 0.8587 + }, + { + "start": 55739.74, + "end": 55740.58, + "probability": 0.6453 + }, + { + "start": 55741.18, + "end": 55742.1, + "probability": 0.9951 + }, + { + "start": 55742.94, + "end": 55746.02, + "probability": 0.886 + }, + { + "start": 55746.58, + "end": 55747.74, + "probability": 0.9517 + }, + { + "start": 55749.22, + "end": 55749.96, + "probability": 0.4631 + }, + { + "start": 55750.5, + "end": 55752.64, + "probability": 0.7135 + }, + { + "start": 55753.28, + "end": 55753.74, + "probability": 0.594 + }, + { + "start": 55754.76, + "end": 55757.04, + "probability": 0.7259 + }, + { + "start": 55757.04, + "end": 55757.62, + "probability": 0.3683 + }, + { + "start": 55758.52, + "end": 55764.04, + "probability": 0.9927 + }, + { + "start": 55764.42, + "end": 55766.98, + "probability": 0.9919 + }, + { + "start": 55767.7, + "end": 55768.62, + "probability": 0.814 + }, + { + "start": 55768.76, + "end": 55773.74, + "probability": 0.9968 + }, + { + "start": 55775.48, + "end": 55778.86, + "probability": 0.9971 + }, + { + "start": 55778.98, + "end": 55783.14, + "probability": 0.9969 + }, + { + "start": 55784.5, + "end": 55786.66, + "probability": 0.9272 + }, + { + "start": 55787.44, + "end": 55791.06, + "probability": 0.993 + }, + { + "start": 55791.9, + "end": 55793.94, + "probability": 0.9985 + }, + { + "start": 55794.38, + "end": 55798.88, + "probability": 0.9956 + }, + { + "start": 55799.82, + "end": 55801.22, + "probability": 0.9995 + }, + { + "start": 55801.94, + "end": 55803.24, + "probability": 0.9972 + }, + { + "start": 55803.46, + "end": 55806.08, + "probability": 0.9976 + }, + { + "start": 55809.14, + "end": 55812.24, + "probability": 0.0341 + }, + { + "start": 55812.24, + "end": 55813.22, + "probability": 0.4436 + }, + { + "start": 55814.22, + "end": 55815.04, + "probability": 0.5932 + }, + { + "start": 55815.32, + "end": 55815.52, + "probability": 0.1676 + }, + { + "start": 55816.1, + "end": 55816.84, + "probability": 0.8408 + }, + { + "start": 55817.7, + "end": 55818.5, + "probability": 0.5825 + }, + { + "start": 55818.7, + "end": 55821.32, + "probability": 0.9889 + }, + { + "start": 55821.84, + "end": 55823.86, + "probability": 0.9666 + }, + { + "start": 55823.92, + "end": 55825.44, + "probability": 0.866 + }, + { + "start": 55826.24, + "end": 55828.96, + "probability": 0.9893 + }, + { + "start": 55829.16, + "end": 55830.26, + "probability": 0.769 + }, + { + "start": 55830.82, + "end": 55833.48, + "probability": 0.9634 + }, + { + "start": 55834.08, + "end": 55839.02, + "probability": 0.9814 + }, + { + "start": 55839.8, + "end": 55841.92, + "probability": 0.9867 + }, + { + "start": 55842.46, + "end": 55846.1, + "probability": 0.9989 + }, + { + "start": 55846.2, + "end": 55846.7, + "probability": 0.677 + }, + { + "start": 55846.78, + "end": 55847.72, + "probability": 0.5814 + }, + { + "start": 55848.36, + "end": 55849.84, + "probability": 0.9502 + }, + { + "start": 55850.68, + "end": 55855.88, + "probability": 0.997 + }, + { + "start": 55856.32, + "end": 55856.54, + "probability": 0.7171 + }, + { + "start": 55857.02, + "end": 55857.42, + "probability": 0.6998 + }, + { + "start": 55858.3, + "end": 55859.62, + "probability": 0.7846 + }, + { + "start": 55860.32, + "end": 55862.86, + "probability": 0.8962 + }, + { + "start": 55863.78, + "end": 55865.08, + "probability": 0.2331 + }, + { + "start": 55866.94, + "end": 55868.18, + "probability": 0.7608 + }, + { + "start": 55868.18, + "end": 55869.66, + "probability": 0.894 + }, + { + "start": 55871.24, + "end": 55872.68, + "probability": 0.6508 + }, + { + "start": 55872.86, + "end": 55873.42, + "probability": 0.6601 + }, + { + "start": 55873.8, + "end": 55875.28, + "probability": 0.9382 + }, + { + "start": 55875.84, + "end": 55878.86, + "probability": 0.9568 + }, + { + "start": 55880.1, + "end": 55881.5, + "probability": 0.9063 + }, + { + "start": 55881.98, + "end": 55882.76, + "probability": 0.965 + }, + { + "start": 55883.18, + "end": 55885.28, + "probability": 0.6889 + }, + { + "start": 55885.36, + "end": 55885.94, + "probability": 0.6063 + }, + { + "start": 55886.08, + "end": 55887.46, + "probability": 0.9127 + }, + { + "start": 55888.84, + "end": 55889.46, + "probability": 0.8984 + }, + { + "start": 55890.2, + "end": 55892.22, + "probability": 0.8175 + }, + { + "start": 55892.84, + "end": 55893.58, + "probability": 0.9654 + }, + { + "start": 55894.48, + "end": 55895.4, + "probability": 0.9847 + }, + { + "start": 55895.46, + "end": 55895.84, + "probability": 0.8953 + }, + { + "start": 55895.92, + "end": 55896.76, + "probability": 0.9331 + }, + { + "start": 55896.88, + "end": 55897.28, + "probability": 0.3225 + }, + { + "start": 55897.38, + "end": 55898.75, + "probability": 0.629 + }, + { + "start": 55900.64, + "end": 55902.16, + "probability": 0.8385 + }, + { + "start": 55902.92, + "end": 55903.58, + "probability": 0.9167 + }, + { + "start": 55904.56, + "end": 55905.98, + "probability": 0.9227 + }, + { + "start": 55907.54, + "end": 55908.86, + "probability": 0.9413 + }, + { + "start": 55909.7, + "end": 55911.54, + "probability": 0.9724 + }, + { + "start": 55913.22, + "end": 55916.7, + "probability": 0.7467 + }, + { + "start": 55917.3, + "end": 55918.56, + "probability": 0.8336 + }, + { + "start": 55918.64, + "end": 55919.14, + "probability": 0.8457 + }, + { + "start": 55919.22, + "end": 55920.44, + "probability": 0.9606 + }, + { + "start": 55920.5, + "end": 55920.8, + "probability": 0.6829 + }, + { + "start": 55920.94, + "end": 55921.64, + "probability": 0.9859 + }, + { + "start": 55922.92, + "end": 55923.6, + "probability": 0.9287 + }, + { + "start": 55924.54, + "end": 55927.56, + "probability": 0.6583 + }, + { + "start": 55928.42, + "end": 55931.52, + "probability": 0.9155 + }, + { + "start": 55932.48, + "end": 55933.02, + "probability": 0.5779 + }, + { + "start": 55934.14, + "end": 55935.44, + "probability": 0.7414 + }, + { + "start": 55935.76, + "end": 55936.44, + "probability": 0.9841 + }, + { + "start": 55936.5, + "end": 55937.46, + "probability": 0.9885 + }, + { + "start": 55937.56, + "end": 55938.0, + "probability": 0.8258 + }, + { + "start": 55938.74, + "end": 55940.94, + "probability": 0.5141 + }, + { + "start": 55941.0, + "end": 55942.2, + "probability": 0.8579 + }, + { + "start": 55943.06, + "end": 55943.9, + "probability": 0.918 + }, + { + "start": 55960.34, + "end": 55960.76, + "probability": 0.6354 + }, + { + "start": 55961.72, + "end": 55962.2, + "probability": 0.6879 + }, + { + "start": 55962.34, + "end": 55963.72, + "probability": 0.8802 + }, + { + "start": 55967.38, + "end": 55968.68, + "probability": 0.5795 + }, + { + "start": 55970.38, + "end": 55971.6, + "probability": 0.7893 + }, + { + "start": 55971.8, + "end": 55974.88, + "probability": 0.9171 + }, + { + "start": 55975.62, + "end": 55978.64, + "probability": 0.9018 + }, + { + "start": 55982.42, + "end": 55986.76, + "probability": 0.9529 + }, + { + "start": 55987.46, + "end": 55989.36, + "probability": 0.7981 + }, + { + "start": 55990.08, + "end": 55990.78, + "probability": 0.933 + }, + { + "start": 55991.81, + "end": 55998.9, + "probability": 0.9941 + }, + { + "start": 55999.66, + "end": 56004.0, + "probability": 0.9407 + }, + { + "start": 56004.38, + "end": 56006.26, + "probability": 0.8363 + }, + { + "start": 56006.52, + "end": 56009.66, + "probability": 0.9206 + }, + { + "start": 56010.92, + "end": 56017.0, + "probability": 0.9579 + }, + { + "start": 56018.3, + "end": 56020.15, + "probability": 0.7419 + }, + { + "start": 56021.28, + "end": 56023.23, + "probability": 0.9362 + }, + { + "start": 56024.4, + "end": 56026.0, + "probability": 0.912 + }, + { + "start": 56026.32, + "end": 56029.08, + "probability": 0.9871 + }, + { + "start": 56029.6, + "end": 56036.14, + "probability": 0.857 + }, + { + "start": 56038.26, + "end": 56041.94, + "probability": 0.874 + }, + { + "start": 56042.53, + "end": 56044.57, + "probability": 0.3106 + }, + { + "start": 56045.16, + "end": 56045.8, + "probability": 0.7576 + }, + { + "start": 56046.8, + "end": 56048.8, + "probability": 0.9768 + }, + { + "start": 56049.32, + "end": 56054.54, + "probability": 0.9096 + }, + { + "start": 56055.6, + "end": 56058.04, + "probability": 0.6322 + }, + { + "start": 56059.1, + "end": 56064.26, + "probability": 0.9552 + }, + { + "start": 56066.32, + "end": 56072.8, + "probability": 0.933 + }, + { + "start": 56074.1, + "end": 56075.05, + "probability": 0.9421 + }, + { + "start": 56076.72, + "end": 56079.06, + "probability": 0.9978 + }, + { + "start": 56079.68, + "end": 56081.97, + "probability": 0.7466 + }, + { + "start": 56082.66, + "end": 56083.46, + "probability": 0.8442 + }, + { + "start": 56083.92, + "end": 56087.86, + "probability": 0.8921 + }, + { + "start": 56088.0, + "end": 56093.56, + "probability": 0.9768 + }, + { + "start": 56095.36, + "end": 56096.34, + "probability": 0.8467 + }, + { + "start": 56097.2, + "end": 56102.68, + "probability": 0.9899 + }, + { + "start": 56102.72, + "end": 56108.04, + "probability": 0.9582 + }, + { + "start": 56108.86, + "end": 56113.6, + "probability": 0.9854 + }, + { + "start": 56113.66, + "end": 56114.32, + "probability": 0.9343 + }, + { + "start": 56114.98, + "end": 56118.06, + "probability": 0.6637 + }, + { + "start": 56118.38, + "end": 56119.24, + "probability": 0.8335 + }, + { + "start": 56119.6, + "end": 56122.02, + "probability": 0.7432 + }, + { + "start": 56122.28, + "end": 56123.88, + "probability": 0.7124 + }, + { + "start": 56123.96, + "end": 56126.18, + "probability": 0.9598 + }, + { + "start": 56127.3, + "end": 56128.06, + "probability": 0.7103 + }, + { + "start": 56128.66, + "end": 56131.74, + "probability": 0.9617 + }, + { + "start": 56131.92, + "end": 56136.66, + "probability": 0.7953 + }, + { + "start": 56136.66, + "end": 56138.73, + "probability": 0.8823 + }, + { + "start": 56139.84, + "end": 56144.54, + "probability": 0.9868 + }, + { + "start": 56144.64, + "end": 56148.84, + "probability": 0.8971 + }, + { + "start": 56149.24, + "end": 56149.62, + "probability": 0.8516 + }, + { + "start": 56149.98, + "end": 56153.3, + "probability": 0.964 + }, + { + "start": 56154.36, + "end": 56160.68, + "probability": 0.9373 + }, + { + "start": 56160.74, + "end": 56161.0, + "probability": 0.6136 + }, + { + "start": 56164.34, + "end": 56170.78, + "probability": 0.492 + }, + { + "start": 56171.4, + "end": 56171.4, + "probability": 0.1319 + }, + { + "start": 56171.4, + "end": 56172.76, + "probability": 0.6395 + }, + { + "start": 56173.54, + "end": 56175.96, + "probability": 0.7005 + }, + { + "start": 56176.28, + "end": 56177.96, + "probability": 0.7451 + }, + { + "start": 56180.06, + "end": 56184.44, + "probability": 0.9702 + }, + { + "start": 56185.48, + "end": 56188.36, + "probability": 0.988 + }, + { + "start": 56188.58, + "end": 56191.5, + "probability": 0.4944 + }, + { + "start": 56191.76, + "end": 56191.96, + "probability": 0.4927 + }, + { + "start": 56192.32, + "end": 56192.82, + "probability": 0.7427 + }, + { + "start": 56193.68, + "end": 56195.26, + "probability": 0.8662 + }, + { + "start": 56195.38, + "end": 56196.32, + "probability": 0.5606 + }, + { + "start": 56196.56, + "end": 56198.24, + "probability": 0.9526 + }, + { + "start": 56198.32, + "end": 56199.02, + "probability": 0.9067 + }, + { + "start": 56199.74, + "end": 56202.34, + "probability": 0.8156 + }, + { + "start": 56202.44, + "end": 56203.7, + "probability": 0.93 + }, + { + "start": 56205.12, + "end": 56206.16, + "probability": 0.6269 + }, + { + "start": 56206.94, + "end": 56208.36, + "probability": 0.0691 + }, + { + "start": 56208.78, + "end": 56208.88, + "probability": 0.4595 + }, + { + "start": 56210.6, + "end": 56211.58, + "probability": 0.8809 + }, + { + "start": 56213.94, + "end": 56214.24, + "probability": 0.5145 + }, + { + "start": 56214.78, + "end": 56216.3, + "probability": 0.52 + }, + { + "start": 56216.6, + "end": 56219.16, + "probability": 0.4306 + }, + { + "start": 56229.32, + "end": 56231.96, + "probability": 0.4458 + }, + { + "start": 56232.78, + "end": 56233.32, + "probability": 0.6142 + }, + { + "start": 56233.42, + "end": 56235.18, + "probability": 0.9578 + }, + { + "start": 56235.86, + "end": 56238.64, + "probability": 0.5288 + }, + { + "start": 56238.74, + "end": 56240.36, + "probability": 0.1796 + }, + { + "start": 56240.94, + "end": 56242.2, + "probability": 0.4011 + }, + { + "start": 56243.4, + "end": 56245.34, + "probability": 0.8571 + }, + { + "start": 56245.54, + "end": 56249.98, + "probability": 0.9165 + }, + { + "start": 56250.16, + "end": 56253.58, + "probability": 0.9616 + }, + { + "start": 56253.58, + "end": 56257.12, + "probability": 0.9994 + }, + { + "start": 56258.44, + "end": 56260.39, + "probability": 0.9333 + }, + { + "start": 56261.6, + "end": 56262.72, + "probability": 0.9919 + }, + { + "start": 56263.42, + "end": 56266.9, + "probability": 0.9973 + }, + { + "start": 56268.18, + "end": 56270.06, + "probability": 0.5191 + }, + { + "start": 56270.8, + "end": 56271.26, + "probability": 0.9797 + }, + { + "start": 56271.92, + "end": 56273.04, + "probability": 0.893 + }, + { + "start": 56273.66, + "end": 56278.08, + "probability": 0.9289 + }, + { + "start": 56279.56, + "end": 56281.34, + "probability": 0.8633 + }, + { + "start": 56282.86, + "end": 56284.62, + "probability": 0.9949 + }, + { + "start": 56285.64, + "end": 56288.36, + "probability": 0.9383 + }, + { + "start": 56289.22, + "end": 56290.5, + "probability": 0.9532 + }, + { + "start": 56291.12, + "end": 56293.26, + "probability": 0.9531 + }, + { + "start": 56294.7, + "end": 56296.82, + "probability": 0.9498 + }, + { + "start": 56297.5, + "end": 56301.16, + "probability": 0.9976 + }, + { + "start": 56301.62, + "end": 56303.7, + "probability": 0.9587 + }, + { + "start": 56304.8, + "end": 56306.18, + "probability": 0.9696 + }, + { + "start": 56306.24, + "end": 56307.59, + "probability": 0.9968 + }, + { + "start": 56308.92, + "end": 56309.92, + "probability": 0.9426 + }, + { + "start": 56311.4, + "end": 56315.66, + "probability": 0.9502 + }, + { + "start": 56316.64, + "end": 56317.86, + "probability": 0.7333 + }, + { + "start": 56317.86, + "end": 56318.53, + "probability": 0.5014 + }, + { + "start": 56319.57, + "end": 56323.48, + "probability": 0.9791 + }, + { + "start": 56323.66, + "end": 56324.06, + "probability": 0.9311 + }, + { + "start": 56324.78, + "end": 56327.62, + "probability": 0.989 + }, + { + "start": 56328.12, + "end": 56329.38, + "probability": 0.71 + }, + { + "start": 56330.56, + "end": 56333.72, + "probability": 0.9976 + }, + { + "start": 56333.72, + "end": 56337.98, + "probability": 0.9989 + }, + { + "start": 56338.5, + "end": 56339.65, + "probability": 0.9753 + }, + { + "start": 56340.8, + "end": 56341.72, + "probability": 0.9518 + }, + { + "start": 56343.3, + "end": 56344.88, + "probability": 0.9119 + }, + { + "start": 56345.06, + "end": 56347.4, + "probability": 0.9888 + }, + { + "start": 56347.56, + "end": 56349.18, + "probability": 0.945 + }, + { + "start": 56350.1, + "end": 56354.3, + "probability": 0.9956 + }, + { + "start": 56355.6, + "end": 56357.72, + "probability": 0.9392 + }, + { + "start": 56358.38, + "end": 56360.56, + "probability": 0.8276 + }, + { + "start": 56361.3, + "end": 56364.66, + "probability": 0.9336 + }, + { + "start": 56364.66, + "end": 56368.0, + "probability": 0.993 + }, + { + "start": 56369.54, + "end": 56371.4, + "probability": 0.9572 + }, + { + "start": 56371.96, + "end": 56374.9, + "probability": 0.7635 + }, + { + "start": 56375.04, + "end": 56376.06, + "probability": 0.8569 + }, + { + "start": 56376.62, + "end": 56381.97, + "probability": 0.8691 + }, + { + "start": 56382.96, + "end": 56383.94, + "probability": 0.8439 + }, + { + "start": 56384.06, + "end": 56387.0, + "probability": 0.9379 + }, + { + "start": 56387.86, + "end": 56389.1, + "probability": 0.9861 + }, + { + "start": 56389.72, + "end": 56393.14, + "probability": 0.9771 + }, + { + "start": 56393.92, + "end": 56394.87, + "probability": 0.998 + }, + { + "start": 56395.6, + "end": 56396.64, + "probability": 0.9642 + }, + { + "start": 56397.84, + "end": 56398.68, + "probability": 0.939 + }, + { + "start": 56399.42, + "end": 56404.3, + "probability": 0.9966 + }, + { + "start": 56404.32, + "end": 56404.9, + "probability": 0.7614 + }, + { + "start": 56404.92, + "end": 56407.46, + "probability": 0.9614 + }, + { + "start": 56408.26, + "end": 56410.96, + "probability": 0.9971 + }, + { + "start": 56411.56, + "end": 56415.67, + "probability": 0.9914 + }, + { + "start": 56416.0, + "end": 56416.98, + "probability": 0.6347 + }, + { + "start": 56417.12, + "end": 56417.26, + "probability": 0.708 + }, + { + "start": 56417.52, + "end": 56418.79, + "probability": 0.981 + }, + { + "start": 56419.4, + "end": 56421.64, + "probability": 0.8473 + }, + { + "start": 56421.96, + "end": 56423.78, + "probability": 0.896 + }, + { + "start": 56425.08, + "end": 56426.06, + "probability": 0.808 + }, + { + "start": 56426.64, + "end": 56429.34, + "probability": 0.2521 + }, + { + "start": 56430.2, + "end": 56432.34, + "probability": 0.0095 + }, + { + "start": 56432.72, + "end": 56433.58, + "probability": 0.3905 + }, + { + "start": 56433.76, + "end": 56436.16, + "probability": 0.3862 + }, + { + "start": 56436.24, + "end": 56438.34, + "probability": 0.6962 + }, + { + "start": 56438.4, + "end": 56438.94, + "probability": 0.2047 + }, + { + "start": 56440.08, + "end": 56441.58, + "probability": 0.6838 + }, + { + "start": 56441.84, + "end": 56447.02, + "probability": 0.275 + }, + { + "start": 56447.22, + "end": 56447.78, + "probability": 0.087 + }, + { + "start": 56448.4, + "end": 56449.06, + "probability": 0.3766 + }, + { + "start": 56449.32, + "end": 56452.32, + "probability": 0.5323 + }, + { + "start": 56452.48, + "end": 56454.13, + "probability": 0.5711 + }, + { + "start": 56454.36, + "end": 56463.0, + "probability": 0.9538 + }, + { + "start": 56463.88, + "end": 56465.12, + "probability": 0.618 + }, + { + "start": 56465.9, + "end": 56466.66, + "probability": 0.3209 + }, + { + "start": 56467.3, + "end": 56468.46, + "probability": 0.7825 + }, + { + "start": 56469.18, + "end": 56471.36, + "probability": 0.9126 + }, + { + "start": 56471.56, + "end": 56472.9, + "probability": 0.7295 + }, + { + "start": 56472.96, + "end": 56473.64, + "probability": 0.9599 + }, + { + "start": 56473.64, + "end": 56473.96, + "probability": 0.274 + }, + { + "start": 56474.89, + "end": 56475.92, + "probability": 0.404 + }, + { + "start": 56475.92, + "end": 56475.94, + "probability": 0.0021 + }, + { + "start": 56475.94, + "end": 56475.94, + "probability": 0.0244 + }, + { + "start": 56475.94, + "end": 56476.32, + "probability": 0.3363 + }, + { + "start": 56476.46, + "end": 56477.56, + "probability": 0.3225 + }, + { + "start": 56479.4, + "end": 56483.38, + "probability": 0.9536 + }, + { + "start": 56484.26, + "end": 56485.22, + "probability": 0.8238 + }, + { + "start": 56485.28, + "end": 56487.24, + "probability": 0.9629 + }, + { + "start": 56487.32, + "end": 56489.74, + "probability": 0.9946 + }, + { + "start": 56489.92, + "end": 56492.64, + "probability": 0.9963 + }, + { + "start": 56492.64, + "end": 56495.42, + "probability": 0.994 + }, + { + "start": 56495.88, + "end": 56499.9, + "probability": 0.9834 + }, + { + "start": 56500.12, + "end": 56501.62, + "probability": 0.8623 + }, + { + "start": 56501.8, + "end": 56504.42, + "probability": 0.9878 + }, + { + "start": 56504.94, + "end": 56508.94, + "probability": 0.9876 + }, + { + "start": 56509.4, + "end": 56513.92, + "probability": 0.9982 + }, + { + "start": 56514.54, + "end": 56517.86, + "probability": 0.8689 + }, + { + "start": 56517.86, + "end": 56520.58, + "probability": 0.9923 + }, + { + "start": 56521.08, + "end": 56521.92, + "probability": 0.5337 + }, + { + "start": 56522.42, + "end": 56525.6, + "probability": 0.9277 + }, + { + "start": 56526.04, + "end": 56526.3, + "probability": 0.7417 + }, + { + "start": 56526.44, + "end": 56526.8, + "probability": 0.8107 + }, + { + "start": 56527.02, + "end": 56529.68, + "probability": 0.9924 + }, + { + "start": 56530.24, + "end": 56533.0, + "probability": 0.9966 + }, + { + "start": 56533.52, + "end": 56534.58, + "probability": 0.9951 + }, + { + "start": 56535.36, + "end": 56537.58, + "probability": 0.8507 + }, + { + "start": 56538.26, + "end": 56543.14, + "probability": 0.95 + }, + { + "start": 56543.76, + "end": 56545.06, + "probability": 0.7164 + }, + { + "start": 56545.9, + "end": 56546.92, + "probability": 0.7972 + }, + { + "start": 56547.54, + "end": 56553.7, + "probability": 0.9915 + }, + { + "start": 56554.26, + "end": 56555.18, + "probability": 0.9283 + }, + { + "start": 56556.38, + "end": 56561.68, + "probability": 0.9926 + }, + { + "start": 56561.76, + "end": 56562.24, + "probability": 0.348 + }, + { + "start": 56562.32, + "end": 56565.76, + "probability": 0.9945 + }, + { + "start": 56566.28, + "end": 56569.56, + "probability": 0.9976 + }, + { + "start": 56569.68, + "end": 56569.78, + "probability": 0.8332 + }, + { + "start": 56570.4, + "end": 56573.12, + "probability": 0.9213 + }, + { + "start": 56573.5, + "end": 56574.68, + "probability": 0.4077 + }, + { + "start": 56576.06, + "end": 56576.14, + "probability": 0.1901 + }, + { + "start": 56576.14, + "end": 56576.3, + "probability": 0.5352 + }, + { + "start": 56576.36, + "end": 56577.32, + "probability": 0.9291 + }, + { + "start": 56577.44, + "end": 56578.56, + "probability": 0.9269 + }, + { + "start": 56580.02, + "end": 56580.58, + "probability": 0.1918 + }, + { + "start": 56580.58, + "end": 56581.23, + "probability": 0.4015 + }, + { + "start": 56582.0, + "end": 56583.54, + "probability": 0.0164 + }, + { + "start": 56583.54, + "end": 56584.14, + "probability": 0.1947 + }, + { + "start": 56584.5, + "end": 56584.82, + "probability": 0.2832 + }, + { + "start": 56585.44, + "end": 56585.84, + "probability": 0.2467 + }, + { + "start": 56586.12, + "end": 56587.48, + "probability": 0.1259 + }, + { + "start": 56587.92, + "end": 56590.7, + "probability": 0.6854 + }, + { + "start": 56591.18, + "end": 56591.4, + "probability": 0.8921 + }, + { + "start": 56591.54, + "end": 56593.1, + "probability": 0.7164 + }, + { + "start": 56593.18, + "end": 56593.5, + "probability": 0.6684 + }, + { + "start": 56593.56, + "end": 56594.36, + "probability": 0.7782 + }, + { + "start": 56595.36, + "end": 56598.68, + "probability": 0.9958 + }, + { + "start": 56598.68, + "end": 56604.72, + "probability": 0.9922 + }, + { + "start": 56604.88, + "end": 56605.62, + "probability": 0.8022 + }, + { + "start": 56607.18, + "end": 56607.9, + "probability": 0.624 + }, + { + "start": 56608.5, + "end": 56609.54, + "probability": 0.9629 + }, + { + "start": 56610.08, + "end": 56611.68, + "probability": 0.8735 + }, + { + "start": 56612.42, + "end": 56613.62, + "probability": 0.9937 + }, + { + "start": 56615.42, + "end": 56617.48, + "probability": 0.8495 + }, + { + "start": 56618.08, + "end": 56619.04, + "probability": 0.779 + }, + { + "start": 56619.12, + "end": 56622.24, + "probability": 0.9219 + }, + { + "start": 56622.52, + "end": 56625.48, + "probability": 0.9689 + }, + { + "start": 56626.52, + "end": 56627.26, + "probability": 0.5658 + }, + { + "start": 56627.9, + "end": 56628.78, + "probability": 0.9133 + }, + { + "start": 56629.44, + "end": 56632.4, + "probability": 0.8453 + }, + { + "start": 56633.14, + "end": 56634.64, + "probability": 0.9653 + }, + { + "start": 56635.18, + "end": 56635.8, + "probability": 0.8978 + }, + { + "start": 56636.24, + "end": 56637.08, + "probability": 0.9946 + }, + { + "start": 56637.44, + "end": 56641.16, + "probability": 0.9284 + }, + { + "start": 56641.62, + "end": 56643.34, + "probability": 0.9934 + }, + { + "start": 56643.66, + "end": 56644.31, + "probability": 0.7217 + }, + { + "start": 56644.72, + "end": 56647.26, + "probability": 0.9834 + }, + { + "start": 56648.18, + "end": 56649.06, + "probability": 0.7332 + }, + { + "start": 56649.34, + "end": 56652.86, + "probability": 0.8994 + }, + { + "start": 56653.04, + "end": 56654.86, + "probability": 0.9201 + }, + { + "start": 56655.52, + "end": 56657.68, + "probability": 0.8613 + }, + { + "start": 56658.3, + "end": 56661.64, + "probability": 0.5798 + }, + { + "start": 56662.3, + "end": 56663.0, + "probability": 0.2472 + }, + { + "start": 56663.78, + "end": 56665.56, + "probability": 0.858 + }, + { + "start": 56665.78, + "end": 56668.84, + "probability": 0.959 + }, + { + "start": 56669.84, + "end": 56670.58, + "probability": 0.3642 + }, + { + "start": 56670.62, + "end": 56674.98, + "probability": 0.8423 + }, + { + "start": 56675.28, + "end": 56676.34, + "probability": 0.6746 + }, + { + "start": 56677.18, + "end": 56682.54, + "probability": 0.813 + }, + { + "start": 56682.6, + "end": 56684.96, + "probability": 0.9206 + }, + { + "start": 56685.02, + "end": 56686.3, + "probability": 0.6754 + }, + { + "start": 56686.4, + "end": 56686.84, + "probability": 0.1399 + }, + { + "start": 56687.32, + "end": 56687.98, + "probability": 0.1235 + }, + { + "start": 56687.98, + "end": 56688.75, + "probability": 0.2583 + }, + { + "start": 56688.86, + "end": 56689.56, + "probability": 0.7955 + }, + { + "start": 56689.9, + "end": 56690.4, + "probability": 0.7952 + }, + { + "start": 56691.16, + "end": 56692.06, + "probability": 0.9695 + }, + { + "start": 56692.38, + "end": 56694.16, + "probability": 0.761 + }, + { + "start": 56694.36, + "end": 56695.74, + "probability": 0.9311 + }, + { + "start": 56696.0, + "end": 56697.28, + "probability": 0.9983 + }, + { + "start": 56697.46, + "end": 56698.22, + "probability": 0.5452 + }, + { + "start": 56698.58, + "end": 56700.23, + "probability": 0.9856 + }, + { + "start": 56700.8, + "end": 56703.78, + "probability": 0.8104 + }, + { + "start": 56703.86, + "end": 56704.38, + "probability": 0.7672 + }, + { + "start": 56704.98, + "end": 56708.46, + "probability": 0.8634 + }, + { + "start": 56710.52, + "end": 56712.16, + "probability": 0.7723 + }, + { + "start": 56712.94, + "end": 56714.14, + "probability": 0.999 + }, + { + "start": 56714.34, + "end": 56715.48, + "probability": 0.7395 + }, + { + "start": 56715.88, + "end": 56717.82, + "probability": 0.8174 + }, + { + "start": 56718.66, + "end": 56719.68, + "probability": 0.9332 + }, + { + "start": 56719.8, + "end": 56723.32, + "probability": 0.9447 + }, + { + "start": 56723.74, + "end": 56725.26, + "probability": 0.7835 + }, + { + "start": 56725.38, + "end": 56726.58, + "probability": 0.2851 + }, + { + "start": 56726.84, + "end": 56727.56, + "probability": 0.8797 + }, + { + "start": 56727.78, + "end": 56728.62, + "probability": 0.9474 + }, + { + "start": 56730.08, + "end": 56730.58, + "probability": 0.6916 + }, + { + "start": 56731.18, + "end": 56731.67, + "probability": 0.0337 + }, + { + "start": 56732.24, + "end": 56733.78, + "probability": 0.6714 + }, + { + "start": 56734.56, + "end": 56735.16, + "probability": 0.9341 + }, + { + "start": 56735.86, + "end": 56737.04, + "probability": 0.1185 + }, + { + "start": 56737.58, + "end": 56737.58, + "probability": 0.1229 + }, + { + "start": 56737.58, + "end": 56739.16, + "probability": 0.9263 + }, + { + "start": 56739.46, + "end": 56740.62, + "probability": 0.8249 + }, + { + "start": 56742.52, + "end": 56745.76, + "probability": 0.9385 + }, + { + "start": 56747.2, + "end": 56749.68, + "probability": 0.967 + }, + { + "start": 56751.06, + "end": 56755.06, + "probability": 0.8314 + }, + { + "start": 56756.12, + "end": 56758.6, + "probability": 0.8731 + }, + { + "start": 56758.72, + "end": 56760.74, + "probability": 0.9749 + }, + { + "start": 56761.24, + "end": 56763.64, + "probability": 0.9866 + }, + { + "start": 56764.1, + "end": 56766.34, + "probability": 0.9894 + }, + { + "start": 56766.9, + "end": 56770.44, + "probability": 0.9095 + }, + { + "start": 56771.14, + "end": 56774.14, + "probability": 0.9856 + }, + { + "start": 56774.8, + "end": 56777.52, + "probability": 0.9861 + }, + { + "start": 56779.12, + "end": 56781.08, + "probability": 0.9978 + }, + { + "start": 56782.42, + "end": 56785.14, + "probability": 0.9716 + }, + { + "start": 56786.0, + "end": 56787.16, + "probability": 0.9841 + }, + { + "start": 56788.16, + "end": 56792.64, + "probability": 0.9877 + }, + { + "start": 56793.4, + "end": 56796.44, + "probability": 0.9173 + }, + { + "start": 56798.21, + "end": 56798.28, + "probability": 0.0914 + }, + { + "start": 56798.66, + "end": 56801.6, + "probability": 0.9696 + }, + { + "start": 56803.72, + "end": 56803.9, + "probability": 0.0661 + }, + { + "start": 56803.9, + "end": 56804.88, + "probability": 0.9135 + }, + { + "start": 56805.84, + "end": 56807.4, + "probability": 0.8103 + }, + { + "start": 56807.88, + "end": 56809.44, + "probability": 0.7491 + }, + { + "start": 56810.24, + "end": 56810.26, + "probability": 0.0873 + }, + { + "start": 56810.28, + "end": 56812.28, + "probability": 0.812 + }, + { + "start": 56813.02, + "end": 56815.66, + "probability": 0.938 + }, + { + "start": 56816.38, + "end": 56817.78, + "probability": 0.8645 + }, + { + "start": 56818.1, + "end": 56819.96, + "probability": 0.8938 + }, + { + "start": 56820.14, + "end": 56823.06, + "probability": 0.9939 + }, + { + "start": 56823.6, + "end": 56825.38, + "probability": 0.9964 + }, + { + "start": 56826.18, + "end": 56827.44, + "probability": 0.9744 + }, + { + "start": 56828.18, + "end": 56829.66, + "probability": 0.9708 + }, + { + "start": 56830.26, + "end": 56831.42, + "probability": 0.6426 + }, + { + "start": 56831.82, + "end": 56832.8, + "probability": 0.9067 + }, + { + "start": 56833.16, + "end": 56835.42, + "probability": 0.6581 + }, + { + "start": 56835.98, + "end": 56838.88, + "probability": 0.9167 + }, + { + "start": 56839.32, + "end": 56840.46, + "probability": 0.773 + }, + { + "start": 56840.58, + "end": 56841.12, + "probability": 0.7047 + }, + { + "start": 56841.16, + "end": 56842.12, + "probability": 0.6883 + }, + { + "start": 56842.64, + "end": 56846.24, + "probability": 0.97 + }, + { + "start": 56846.46, + "end": 56848.46, + "probability": 0.8383 + }, + { + "start": 56849.0, + "end": 56850.44, + "probability": 0.9946 + }, + { + "start": 56850.7, + "end": 56852.98, + "probability": 0.222 + }, + { + "start": 56853.22, + "end": 56854.76, + "probability": 0.0322 + }, + { + "start": 56854.76, + "end": 56856.18, + "probability": 0.6915 + }, + { + "start": 56857.16, + "end": 56858.82, + "probability": 0.8395 + }, + { + "start": 56859.68, + "end": 56861.52, + "probability": 0.9146 + }, + { + "start": 56861.52, + "end": 56862.08, + "probability": 0.1351 + }, + { + "start": 56862.24, + "end": 56863.44, + "probability": 0.438 + }, + { + "start": 56863.52, + "end": 56865.92, + "probability": 0.8007 + }, + { + "start": 56866.0, + "end": 56866.88, + "probability": 0.7832 + }, + { + "start": 56867.28, + "end": 56867.88, + "probability": 0.814 + }, + { + "start": 56870.38, + "end": 56870.64, + "probability": 0.339 + }, + { + "start": 56870.8, + "end": 56874.06, + "probability": 0.7632 + }, + { + "start": 56874.96, + "end": 56876.86, + "probability": 0.7228 + }, + { + "start": 56877.46, + "end": 56880.12, + "probability": 0.528 + }, + { + "start": 56881.0, + "end": 56885.7, + "probability": 0.9448 + }, + { + "start": 56886.14, + "end": 56887.46, + "probability": 0.8943 + }, + { + "start": 56887.9, + "end": 56890.82, + "probability": 0.7136 + }, + { + "start": 56891.34, + "end": 56891.66, + "probability": 0.5018 + }, + { + "start": 56891.66, + "end": 56891.66, + "probability": 0.2456 + }, + { + "start": 56891.66, + "end": 56895.98, + "probability": 0.6416 + }, + { + "start": 56895.98, + "end": 56896.19, + "probability": 0.3461 + }, + { + "start": 56896.76, + "end": 56899.38, + "probability": 0.335 + }, + { + "start": 56900.88, + "end": 56901.64, + "probability": 0.0072 + }, + { + "start": 56902.0, + "end": 56902.0, + "probability": 0.0517 + }, + { + "start": 56902.0, + "end": 56902.0, + "probability": 0.2773 + }, + { + "start": 56902.0, + "end": 56902.0, + "probability": 0.0403 + }, + { + "start": 56902.0, + "end": 56902.0, + "probability": 0.2092 + }, + { + "start": 56902.0, + "end": 56902.0, + "probability": 0.1834 + }, + { + "start": 56902.0, + "end": 56907.34, + "probability": 0.8353 + }, + { + "start": 56908.0, + "end": 56909.56, + "probability": 0.8614 + }, + { + "start": 56910.14, + "end": 56911.76, + "probability": 0.9856 + }, + { + "start": 56912.22, + "end": 56915.2, + "probability": 0.9434 + }, + { + "start": 56915.64, + "end": 56918.9, + "probability": 0.8034 + }, + { + "start": 56918.96, + "end": 56920.7, + "probability": 0.998 + }, + { + "start": 56921.8, + "end": 56922.34, + "probability": 0.5506 + }, + { + "start": 56922.38, + "end": 56923.22, + "probability": 0.7927 + }, + { + "start": 56923.26, + "end": 56924.52, + "probability": 0.3876 + }, + { + "start": 56924.74, + "end": 56925.26, + "probability": 0.9238 + }, + { + "start": 56925.62, + "end": 56926.14, + "probability": 0.688 + }, + { + "start": 56926.48, + "end": 56927.74, + "probability": 0.9477 + }, + { + "start": 56927.86, + "end": 56929.82, + "probability": 0.8021 + }, + { + "start": 56930.02, + "end": 56931.14, + "probability": 0.9148 + }, + { + "start": 56932.3, + "end": 56935.36, + "probability": 0.8839 + }, + { + "start": 56937.26, + "end": 56938.88, + "probability": 0.9318 + }, + { + "start": 56939.56, + "end": 56940.16, + "probability": 0.2783 + }, + { + "start": 56941.72, + "end": 56942.16, + "probability": 0.0805 + }, + { + "start": 56942.16, + "end": 56942.94, + "probability": 0.3273 + }, + { + "start": 56943.24, + "end": 56943.4, + "probability": 0.1478 + }, + { + "start": 56943.78, + "end": 56944.12, + "probability": 0.3055 + }, + { + "start": 56945.1, + "end": 56945.32, + "probability": 0.7856 + }, + { + "start": 56946.34, + "end": 56947.02, + "probability": 0.6692 + }, + { + "start": 56947.58, + "end": 56948.5, + "probability": 0.1547 + }, + { + "start": 56962.82, + "end": 56963.12, + "probability": 0.9243 + }, + { + "start": 56968.36, + "end": 56969.95, + "probability": 0.0588 + }, + { + "start": 56974.53, + "end": 56975.97, + "probability": 0.0736 + }, + { + "start": 56977.06, + "end": 56979.6, + "probability": 0.0815 + }, + { + "start": 56981.38, + "end": 56985.8, + "probability": 0.1332 + }, + { + "start": 56997.74, + "end": 56999.42, + "probability": 0.0387 + }, + { + "start": 57001.76, + "end": 57003.44, + "probability": 0.0455 + }, + { + "start": 57003.44, + "end": 57004.68, + "probability": 0.3195 + }, + { + "start": 57004.78, + "end": 57005.34, + "probability": 0.027 + }, + { + "start": 57005.58, + "end": 57007.4, + "probability": 0.042 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57077.0, + "end": 57077.0, + "probability": 0.0 + }, + { + "start": 57078.42, + "end": 57079.75, + "probability": 0.0587 + }, + { + "start": 57080.18, + "end": 57080.63, + "probability": 0.3448 + }, + { + "start": 57080.92, + "end": 57081.72, + "probability": 0.3083 + }, + { + "start": 57081.86, + "end": 57082.4, + "probability": 0.3635 + }, + { + "start": 57083.18, + "end": 57083.6, + "probability": 0.6483 + }, + { + "start": 57085.3, + "end": 57085.98, + "probability": 0.7296 + }, + { + "start": 57086.7, + "end": 57086.96, + "probability": 0.9666 + }, + { + "start": 57088.78, + "end": 57089.52, + "probability": 0.751 + }, + { + "start": 57091.08, + "end": 57091.6, + "probability": 0.074 + }, + { + "start": 57092.56, + "end": 57092.74, + "probability": 0.616 + }, + { + "start": 57094.08, + "end": 57095.24, + "probability": 0.5927 + }, + { + "start": 57098.74, + "end": 57099.58, + "probability": 0.548 + }, + { + "start": 57099.7, + "end": 57101.22, + "probability": 0.4341 + }, + { + "start": 57101.8, + "end": 57102.44, + "probability": 0.4761 + }, + { + "start": 57103.58, + "end": 57103.96, + "probability": 0.6482 + }, + { + "start": 57105.96, + "end": 57107.56, + "probability": 0.4106 + }, + { + "start": 57108.46, + "end": 57108.86, + "probability": 0.9729 + }, + { + "start": 57110.88, + "end": 57113.18, + "probability": 0.5011 + }, + { + "start": 57114.52, + "end": 57115.28, + "probability": 0.5016 + }, + { + "start": 57117.56, + "end": 57117.96, + "probability": 0.059 + }, + { + "start": 57118.08, + "end": 57118.71, + "probability": 0.4737 + }, + { + "start": 57118.9, + "end": 57119.47, + "probability": 0.5225 + }, + { + "start": 57120.58, + "end": 57123.32, + "probability": 0.4427 + }, + { + "start": 57124.02, + "end": 57124.44, + "probability": 0.8813 + }, + { + "start": 57125.82, + "end": 57126.4, + "probability": 0.5193 + }, + { + "start": 57126.48, + "end": 57127.06, + "probability": 0.6312 + }, + { + "start": 57127.96, + "end": 57128.38, + "probability": 0.0373 + }, + { + "start": 57128.38, + "end": 57128.8, + "probability": 0.1629 + }, + { + "start": 57130.04, + "end": 57130.7, + "probability": 0.4317 + }, + { + "start": 57130.74, + "end": 57131.6, + "probability": 0.2311 + }, + { + "start": 57131.78, + "end": 57132.28, + "probability": 0.3061 + }, + { + "start": 57133.16, + "end": 57134.04, + "probability": 0.2693 + }, + { + "start": 57135.0, + "end": 57135.0, + "probability": 0.1018 + }, + { + "start": 57135.0, + "end": 57135.44, + "probability": 0.2497 + }, + { + "start": 57135.8, + "end": 57136.28, + "probability": 0.3456 + }, + { + "start": 57136.46, + "end": 57136.67, + "probability": 0.1912 + }, + { + "start": 57137.08, + "end": 57137.5, + "probability": 0.268 + }, + { + "start": 57140.6, + "end": 57140.88, + "probability": 0.035 + }, + { + "start": 57141.12, + "end": 57141.26, + "probability": 0.2133 + }, + { + "start": 57141.58, + "end": 57142.1, + "probability": 0.5793 + }, + { + "start": 57142.32, + "end": 57142.58, + "probability": 0.2931 + }, + { + "start": 57142.82, + "end": 57143.42, + "probability": 0.4568 + }, + { + "start": 57143.76, + "end": 57144.24, + "probability": 0.193 + }, + { + "start": 57148.98, + "end": 57149.0, + "probability": 0.0199 + }, + { + "start": 57149.0, + "end": 57149.28, + "probability": 0.2464 + }, + { + "start": 57149.62, + "end": 57150.01, + "probability": 0.365 + }, + { + "start": 57150.4, + "end": 57150.84, + "probability": 0.3332 + }, + { + "start": 57150.92, + "end": 57151.64, + "probability": 0.3999 + }, + { + "start": 57151.76, + "end": 57152.26, + "probability": 0.178 + }, + { + "start": 57154.48, + "end": 57157.38, + "probability": 0.6555 + }, + { + "start": 57158.94, + "end": 57159.7, + "probability": 0.5242 + }, + { + "start": 57159.86, + "end": 57160.0, + "probability": 0.2839 + }, + { + "start": 57160.64, + "end": 57160.99, + "probability": 0.2807 + }, + { + "start": 57163.42, + "end": 57163.52, + "probability": 0.0348 + }, + { + "start": 57163.54, + "end": 57163.54, + "probability": 0.1381 + }, + { + "start": 57163.54, + "end": 57163.68, + "probability": 0.1528 + }, + { + "start": 57163.72, + "end": 57164.23, + "probability": 0.2369 + }, + { + "start": 57166.44, + "end": 57166.84, + "probability": 0.0499 + }, + { + "start": 57166.98, + "end": 57167.42, + "probability": 0.1966 + }, + { + "start": 57167.48, + "end": 57167.9, + "probability": 0.2066 + }, + { + "start": 57168.14, + "end": 57168.21, + "probability": 0.251 + }, + { + "start": 57168.76, + "end": 57168.9, + "probability": 0.4447 + }, + { + "start": 57169.58, + "end": 57170.07, + "probability": 0.2251 + }, + { + "start": 57189.12, + "end": 57192.9, + "probability": 0.0382 + }, + { + "start": 57200.28, + "end": 57202.72, + "probability": 0.0196 + }, + { + "start": 57207.1, + "end": 57208.54, + "probability": 0.0041 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57270.0, + "end": 57270.0, + "probability": 0.0 + }, + { + "start": 57271.82, + "end": 57272.82, + "probability": 0.7721 + }, + { + "start": 57273.66, + "end": 57274.36, + "probability": 0.3475 + }, + { + "start": 57276.18, + "end": 57276.18, + "probability": 0.0511 + }, + { + "start": 57277.14, + "end": 57278.32, + "probability": 0.0001 + }, + { + "start": 57283.9, + "end": 57284.74, + "probability": 0.0596 + }, + { + "start": 57285.02, + "end": 57287.4, + "probability": 0.014 + }, + { + "start": 57314.0, + "end": 57314.46, + "probability": 0.0621 + } + ], + "segments_count": 20091, + "words_count": 95879, + "avg_words_per_segment": 4.7722, + "avg_segment_duration": 1.8487, + "avg_words_per_minute": 69.5728, + "plenum_id": "113791", + "duration": 82686.63, + "title": null, + "plenum_date": "2023-02-13" +} \ No newline at end of file