diff --git "a/11861/metadata.json" "b/11861/metadata.json" new file mode 100644--- /dev/null +++ "b/11861/metadata.json" @@ -0,0 +1,31832 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11861", + "quality_score": 0.8979, + "per_segment_quality_scores": [ + { + "start": 71.94, + "end": 72.22, + "probability": 0.1204 + }, + { + "start": 72.22, + "end": 75.9, + "probability": 0.9093 + }, + { + "start": 76.74, + "end": 80.92, + "probability": 0.8836 + }, + { + "start": 81.86, + "end": 84.64, + "probability": 0.996 + }, + { + "start": 84.9, + "end": 85.72, + "probability": 0.8564 + }, + { + "start": 86.46, + "end": 90.94, + "probability": 0.9858 + }, + { + "start": 92.74, + "end": 95.42, + "probability": 0.8148 + }, + { + "start": 96.62, + "end": 100.26, + "probability": 0.8451 + }, + { + "start": 100.92, + "end": 105.0, + "probability": 0.8777 + }, + { + "start": 105.58, + "end": 108.0, + "probability": 0.9771 + }, + { + "start": 108.82, + "end": 112.64, + "probability": 0.9663 + }, + { + "start": 113.3, + "end": 116.62, + "probability": 0.7858 + }, + { + "start": 117.46, + "end": 121.36, + "probability": 0.9538 + }, + { + "start": 122.2, + "end": 128.8, + "probability": 0.8687 + }, + { + "start": 129.62, + "end": 130.58, + "probability": 0.66 + }, + { + "start": 131.34, + "end": 136.12, + "probability": 0.9528 + }, + { + "start": 136.72, + "end": 141.74, + "probability": 0.6934 + }, + { + "start": 142.58, + "end": 142.94, + "probability": 0.7818 + }, + { + "start": 143.48, + "end": 143.98, + "probability": 0.7374 + }, + { + "start": 144.3, + "end": 144.75, + "probability": 0.186 + }, + { + "start": 145.34, + "end": 148.98, + "probability": 0.8966 + }, + { + "start": 149.98, + "end": 152.98, + "probability": 0.5737 + }, + { + "start": 153.18, + "end": 157.04, + "probability": 0.9969 + }, + { + "start": 157.9, + "end": 160.14, + "probability": 0.9965 + }, + { + "start": 160.72, + "end": 164.02, + "probability": 0.8872 + }, + { + "start": 164.76, + "end": 166.18, + "probability": 0.7939 + }, + { + "start": 166.8, + "end": 169.96, + "probability": 0.9637 + }, + { + "start": 170.84, + "end": 173.7, + "probability": 0.8761 + }, + { + "start": 174.46, + "end": 175.94, + "probability": 0.9523 + }, + { + "start": 176.64, + "end": 178.58, + "probability": 0.9956 + }, + { + "start": 179.46, + "end": 180.2, + "probability": 0.9382 + }, + { + "start": 180.92, + "end": 183.06, + "probability": 0.9863 + }, + { + "start": 183.06, + "end": 185.38, + "probability": 0.9985 + }, + { + "start": 187.37, + "end": 190.2, + "probability": 0.8447 + }, + { + "start": 190.9, + "end": 191.22, + "probability": 0.4623 + }, + { + "start": 191.26, + "end": 193.14, + "probability": 0.7292 + }, + { + "start": 193.22, + "end": 194.82, + "probability": 0.5962 + }, + { + "start": 194.86, + "end": 195.66, + "probability": 0.8415 + }, + { + "start": 196.16, + "end": 196.8, + "probability": 0.7707 + }, + { + "start": 197.76, + "end": 199.88, + "probability": 0.6475 + }, + { + "start": 203.62, + "end": 205.42, + "probability": 0.6197 + }, + { + "start": 206.4, + "end": 207.18, + "probability": 0.8487 + }, + { + "start": 207.26, + "end": 212.06, + "probability": 0.8925 + }, + { + "start": 212.22, + "end": 213.18, + "probability": 0.6599 + }, + { + "start": 213.3, + "end": 214.18, + "probability": 0.6929 + }, + { + "start": 214.66, + "end": 215.46, + "probability": 0.8898 + }, + { + "start": 215.5, + "end": 216.22, + "probability": 0.7429 + }, + { + "start": 216.28, + "end": 217.04, + "probability": 0.8147 + }, + { + "start": 217.36, + "end": 219.42, + "probability": 0.7144 + }, + { + "start": 219.72, + "end": 222.2, + "probability": 0.7749 + }, + { + "start": 223.55, + "end": 228.98, + "probability": 0.6543 + }, + { + "start": 229.88, + "end": 230.96, + "probability": 0.7095 + }, + { + "start": 231.28, + "end": 233.5, + "probability": 0.9926 + }, + { + "start": 233.82, + "end": 240.24, + "probability": 0.9531 + }, + { + "start": 240.64, + "end": 242.25, + "probability": 0.9917 + }, + { + "start": 242.74, + "end": 244.1, + "probability": 0.68 + }, + { + "start": 244.3, + "end": 247.0, + "probability": 0.9073 + }, + { + "start": 247.0, + "end": 250.28, + "probability": 0.8175 + }, + { + "start": 251.04, + "end": 253.58, + "probability": 0.9441 + }, + { + "start": 254.08, + "end": 258.6, + "probability": 0.9329 + }, + { + "start": 258.82, + "end": 260.88, + "probability": 0.9891 + }, + { + "start": 261.14, + "end": 262.94, + "probability": 0.9434 + }, + { + "start": 263.26, + "end": 267.38, + "probability": 0.9922 + }, + { + "start": 267.5, + "end": 268.02, + "probability": 0.7255 + }, + { + "start": 269.68, + "end": 272.6, + "probability": 0.7696 + }, + { + "start": 274.06, + "end": 275.42, + "probability": 0.726 + }, + { + "start": 276.44, + "end": 280.16, + "probability": 0.9672 + }, + { + "start": 280.82, + "end": 282.6, + "probability": 0.9967 + }, + { + "start": 283.72, + "end": 284.9, + "probability": 0.9229 + }, + { + "start": 285.8, + "end": 289.32, + "probability": 0.8169 + }, + { + "start": 289.86, + "end": 290.38, + "probability": 0.8743 + }, + { + "start": 291.5, + "end": 294.68, + "probability": 0.8781 + }, + { + "start": 295.3, + "end": 296.26, + "probability": 0.8818 + }, + { + "start": 297.44, + "end": 301.78, + "probability": 0.7998 + }, + { + "start": 302.64, + "end": 303.32, + "probability": 0.7806 + }, + { + "start": 303.9, + "end": 305.88, + "probability": 0.8394 + }, + { + "start": 306.52, + "end": 308.65, + "probability": 0.9172 + }, + { + "start": 309.34, + "end": 309.6, + "probability": 0.9643 + }, + { + "start": 309.74, + "end": 313.13, + "probability": 0.9849 + }, + { + "start": 313.8, + "end": 316.0, + "probability": 0.8955 + }, + { + "start": 316.98, + "end": 321.34, + "probability": 0.6563 + }, + { + "start": 321.86, + "end": 324.08, + "probability": 0.9077 + }, + { + "start": 325.14, + "end": 325.74, + "probability": 0.9402 + }, + { + "start": 325.88, + "end": 326.53, + "probability": 0.9135 + }, + { + "start": 326.86, + "end": 327.9, + "probability": 0.7086 + }, + { + "start": 328.02, + "end": 328.12, + "probability": 0.4635 + }, + { + "start": 328.26, + "end": 331.62, + "probability": 0.8812 + }, + { + "start": 332.02, + "end": 334.26, + "probability": 0.4663 + }, + { + "start": 335.84, + "end": 337.1, + "probability": 0.0356 + }, + { + "start": 337.1, + "end": 338.42, + "probability": 0.473 + }, + { + "start": 338.78, + "end": 340.22, + "probability": 0.7234 + }, + { + "start": 340.42, + "end": 344.4, + "probability": 0.8628 + }, + { + "start": 344.96, + "end": 345.5, + "probability": 0.6391 + }, + { + "start": 345.54, + "end": 346.53, + "probability": 0.9692 + }, + { + "start": 347.08, + "end": 347.8, + "probability": 0.7934 + }, + { + "start": 348.68, + "end": 349.63, + "probability": 0.8721 + }, + { + "start": 349.7, + "end": 352.5, + "probability": 0.9849 + }, + { + "start": 352.9, + "end": 356.74, + "probability": 0.9463 + }, + { + "start": 356.86, + "end": 357.89, + "probability": 0.511 + }, + { + "start": 358.12, + "end": 358.9, + "probability": 0.5556 + }, + { + "start": 358.94, + "end": 360.0, + "probability": 0.6159 + }, + { + "start": 360.08, + "end": 360.48, + "probability": 0.878 + }, + { + "start": 360.82, + "end": 361.54, + "probability": 0.3413 + }, + { + "start": 361.7, + "end": 366.72, + "probability": 0.9561 + }, + { + "start": 366.78, + "end": 367.32, + "probability": 0.3819 + }, + { + "start": 367.84, + "end": 372.8, + "probability": 0.9832 + }, + { + "start": 372.92, + "end": 374.24, + "probability": 0.8967 + }, + { + "start": 374.64, + "end": 377.08, + "probability": 0.9957 + }, + { + "start": 377.94, + "end": 379.48, + "probability": 0.9773 + }, + { + "start": 379.56, + "end": 379.84, + "probability": 0.5492 + }, + { + "start": 379.9, + "end": 382.96, + "probability": 0.9565 + }, + { + "start": 383.52, + "end": 387.28, + "probability": 0.9796 + }, + { + "start": 387.4, + "end": 389.12, + "probability": 0.9928 + }, + { + "start": 391.12, + "end": 392.34, + "probability": 0.3551 + }, + { + "start": 392.38, + "end": 394.5, + "probability": 0.4666 + }, + { + "start": 394.98, + "end": 395.44, + "probability": 0.5258 + }, + { + "start": 395.54, + "end": 397.4, + "probability": 0.6849 + }, + { + "start": 397.64, + "end": 399.84, + "probability": 0.1833 + }, + { + "start": 399.88, + "end": 399.9, + "probability": 0.2091 + }, + { + "start": 399.9, + "end": 401.26, + "probability": 0.9282 + }, + { + "start": 401.62, + "end": 402.92, + "probability": 0.6998 + }, + { + "start": 402.94, + "end": 405.5, + "probability": 0.9481 + }, + { + "start": 405.52, + "end": 406.02, + "probability": 0.374 + }, + { + "start": 406.02, + "end": 406.22, + "probability": 0.5692 + }, + { + "start": 406.26, + "end": 409.98, + "probability": 0.88 + }, + { + "start": 411.21, + "end": 414.8, + "probability": 0.9748 + }, + { + "start": 415.0, + "end": 415.94, + "probability": 0.8477 + }, + { + "start": 416.5, + "end": 417.86, + "probability": 0.5693 + }, + { + "start": 418.96, + "end": 420.06, + "probability": 0.9688 + }, + { + "start": 420.36, + "end": 424.1, + "probability": 0.944 + }, + { + "start": 424.5, + "end": 424.82, + "probability": 0.5686 + }, + { + "start": 425.08, + "end": 426.28, + "probability": 0.5738 + }, + { + "start": 426.46, + "end": 428.14, + "probability": 0.8608 + }, + { + "start": 428.26, + "end": 429.12, + "probability": 0.968 + }, + { + "start": 429.22, + "end": 430.23, + "probability": 0.7778 + }, + { + "start": 430.74, + "end": 437.2, + "probability": 0.9767 + }, + { + "start": 437.3, + "end": 438.08, + "probability": 0.6893 + }, + { + "start": 438.8, + "end": 440.52, + "probability": 0.5718 + }, + { + "start": 440.64, + "end": 443.97, + "probability": 0.9879 + }, + { + "start": 444.76, + "end": 448.28, + "probability": 0.9617 + }, + { + "start": 448.8, + "end": 449.98, + "probability": 0.9307 + }, + { + "start": 450.54, + "end": 456.2, + "probability": 0.9196 + }, + { + "start": 456.6, + "end": 460.51, + "probability": 0.8107 + }, + { + "start": 464.02, + "end": 466.44, + "probability": 0.2875 + }, + { + "start": 466.44, + "end": 466.54, + "probability": 0.3257 + }, + { + "start": 467.94, + "end": 468.76, + "probability": 0.3798 + }, + { + "start": 468.78, + "end": 471.04, + "probability": 0.5023 + }, + { + "start": 471.44, + "end": 471.52, + "probability": 0.117 + }, + { + "start": 471.52, + "end": 472.76, + "probability": 0.3194 + }, + { + "start": 472.86, + "end": 473.12, + "probability": 0.3964 + }, + { + "start": 473.22, + "end": 474.32, + "probability": 0.5882 + }, + { + "start": 474.94, + "end": 478.28, + "probability": 0.8315 + }, + { + "start": 478.66, + "end": 479.08, + "probability": 0.7429 + }, + { + "start": 479.52, + "end": 480.68, + "probability": 0.6672 + }, + { + "start": 480.84, + "end": 481.5, + "probability": 0.7437 + }, + { + "start": 481.82, + "end": 486.84, + "probability": 0.8893 + }, + { + "start": 487.5, + "end": 491.0, + "probability": 0.9891 + }, + { + "start": 491.48, + "end": 492.84, + "probability": 0.8922 + }, + { + "start": 493.58, + "end": 496.68, + "probability": 0.7827 + }, + { + "start": 497.18, + "end": 499.5, + "probability": 0.9781 + }, + { + "start": 499.86, + "end": 503.58, + "probability": 0.9668 + }, + { + "start": 503.66, + "end": 504.22, + "probability": 0.5423 + }, + { + "start": 504.36, + "end": 505.64, + "probability": 0.8644 + }, + { + "start": 507.24, + "end": 508.1, + "probability": 0.8047 + }, + { + "start": 508.26, + "end": 509.36, + "probability": 0.8361 + }, + { + "start": 509.48, + "end": 514.76, + "probability": 0.9508 + }, + { + "start": 515.7, + "end": 519.24, + "probability": 0.9823 + }, + { + "start": 520.62, + "end": 525.54, + "probability": 0.9939 + }, + { + "start": 527.82, + "end": 531.56, + "probability": 0.9876 + }, + { + "start": 531.56, + "end": 536.12, + "probability": 0.9943 + }, + { + "start": 536.12, + "end": 541.38, + "probability": 0.921 + }, + { + "start": 542.58, + "end": 548.98, + "probability": 0.7338 + }, + { + "start": 549.06, + "end": 551.78, + "probability": 0.9872 + }, + { + "start": 551.84, + "end": 552.86, + "probability": 0.88 + }, + { + "start": 555.0, + "end": 556.74, + "probability": 0.946 + }, + { + "start": 556.74, + "end": 560.74, + "probability": 0.8607 + }, + { + "start": 561.52, + "end": 564.22, + "probability": 0.9954 + }, + { + "start": 564.22, + "end": 568.0, + "probability": 0.9936 + }, + { + "start": 568.86, + "end": 572.12, + "probability": 0.9078 + }, + { + "start": 572.4, + "end": 574.84, + "probability": 0.8896 + }, + { + "start": 575.6, + "end": 577.9, + "probability": 0.9604 + }, + { + "start": 578.34, + "end": 579.36, + "probability": 0.9837 + }, + { + "start": 579.62, + "end": 582.26, + "probability": 0.9863 + }, + { + "start": 583.32, + "end": 586.06, + "probability": 0.9909 + }, + { + "start": 586.22, + "end": 590.48, + "probability": 0.7127 + }, + { + "start": 590.7, + "end": 591.86, + "probability": 0.9196 + }, + { + "start": 592.38, + "end": 593.86, + "probability": 0.5581 + }, + { + "start": 593.94, + "end": 598.36, + "probability": 0.932 + }, + { + "start": 600.44, + "end": 604.2, + "probability": 0.7913 + }, + { + "start": 604.8, + "end": 605.12, + "probability": 0.5917 + }, + { + "start": 605.3, + "end": 606.66, + "probability": 0.9121 + }, + { + "start": 606.92, + "end": 607.44, + "probability": 0.7341 + }, + { + "start": 607.46, + "end": 609.32, + "probability": 0.9373 + }, + { + "start": 611.12, + "end": 611.48, + "probability": 0.7044 + }, + { + "start": 611.7, + "end": 616.36, + "probability": 0.6737 + }, + { + "start": 616.92, + "end": 620.18, + "probability": 0.7657 + }, + { + "start": 620.72, + "end": 621.54, + "probability": 0.942 + }, + { + "start": 625.04, + "end": 629.58, + "probability": 0.8298 + }, + { + "start": 629.68, + "end": 632.4, + "probability": 0.816 + }, + { + "start": 632.44, + "end": 634.24, + "probability": 0.762 + }, + { + "start": 634.48, + "end": 637.18, + "probability": 0.99 + }, + { + "start": 638.24, + "end": 639.26, + "probability": 0.6956 + }, + { + "start": 639.54, + "end": 641.84, + "probability": 0.7578 + }, + { + "start": 641.84, + "end": 646.16, + "probability": 0.8536 + }, + { + "start": 648.52, + "end": 652.76, + "probability": 0.6534 + }, + { + "start": 653.38, + "end": 656.26, + "probability": 0.5623 + }, + { + "start": 657.1, + "end": 659.74, + "probability": 0.9536 + }, + { + "start": 659.84, + "end": 660.86, + "probability": 0.9463 + }, + { + "start": 661.36, + "end": 662.52, + "probability": 0.7443 + }, + { + "start": 662.7, + "end": 665.02, + "probability": 0.9547 + }, + { + "start": 665.2, + "end": 666.32, + "probability": 0.8064 + }, + { + "start": 666.74, + "end": 669.22, + "probability": 0.4008 + }, + { + "start": 669.42, + "end": 673.74, + "probability": 0.9753 + }, + { + "start": 674.34, + "end": 678.42, + "probability": 0.9379 + }, + { + "start": 678.96, + "end": 681.36, + "probability": 0.54 + }, + { + "start": 681.48, + "end": 683.4, + "probability": 0.5969 + }, + { + "start": 684.0, + "end": 685.76, + "probability": 0.7447 + }, + { + "start": 685.9, + "end": 689.06, + "probability": 0.7576 + }, + { + "start": 690.04, + "end": 694.24, + "probability": 0.941 + }, + { + "start": 694.6, + "end": 695.79, + "probability": 0.9863 + }, + { + "start": 696.88, + "end": 701.3, + "probability": 0.9443 + }, + { + "start": 702.18, + "end": 703.02, + "probability": 0.9675 + }, + { + "start": 704.68, + "end": 706.72, + "probability": 0.7654 + }, + { + "start": 707.24, + "end": 707.74, + "probability": 0.604 + }, + { + "start": 707.96, + "end": 709.82, + "probability": 0.8774 + }, + { + "start": 710.22, + "end": 713.08, + "probability": 0.9591 + }, + { + "start": 713.5, + "end": 715.82, + "probability": 0.8662 + }, + { + "start": 716.0, + "end": 719.32, + "probability": 0.8799 + }, + { + "start": 720.24, + "end": 722.76, + "probability": 0.7049 + }, + { + "start": 722.98, + "end": 727.88, + "probability": 0.9818 + }, + { + "start": 728.16, + "end": 728.8, + "probability": 0.6833 + }, + { + "start": 729.18, + "end": 729.42, + "probability": 0.9319 + }, + { + "start": 729.5, + "end": 736.88, + "probability": 0.998 + }, + { + "start": 737.64, + "end": 740.94, + "probability": 0.8582 + }, + { + "start": 741.5, + "end": 744.84, + "probability": 0.9104 + }, + { + "start": 745.0, + "end": 745.3, + "probability": 0.7521 + }, + { + "start": 745.54, + "end": 747.9, + "probability": 0.9237 + }, + { + "start": 748.36, + "end": 750.62, + "probability": 0.729 + }, + { + "start": 751.48, + "end": 754.44, + "probability": 0.8324 + }, + { + "start": 754.58, + "end": 757.76, + "probability": 0.6724 + }, + { + "start": 757.86, + "end": 759.46, + "probability": 0.974 + }, + { + "start": 762.3, + "end": 762.58, + "probability": 0.0644 + }, + { + "start": 762.58, + "end": 763.02, + "probability": 0.4028 + }, + { + "start": 763.02, + "end": 765.32, + "probability": 0.8078 + }, + { + "start": 766.22, + "end": 770.34, + "probability": 0.9906 + }, + { + "start": 770.48, + "end": 772.88, + "probability": 0.9004 + }, + { + "start": 773.74, + "end": 774.46, + "probability": 0.969 + }, + { + "start": 775.28, + "end": 777.82, + "probability": 0.9741 + }, + { + "start": 777.94, + "end": 779.46, + "probability": 0.9972 + }, + { + "start": 780.28, + "end": 784.98, + "probability": 0.9429 + }, + { + "start": 785.14, + "end": 786.18, + "probability": 0.9903 + }, + { + "start": 786.92, + "end": 789.62, + "probability": 0.89 + }, + { + "start": 791.38, + "end": 791.62, + "probability": 0.0434 + }, + { + "start": 792.04, + "end": 793.12, + "probability": 0.7669 + }, + { + "start": 793.2, + "end": 795.2, + "probability": 0.979 + }, + { + "start": 796.1, + "end": 798.64, + "probability": 0.8444 + }, + { + "start": 799.12, + "end": 800.72, + "probability": 0.6899 + }, + { + "start": 801.24, + "end": 803.14, + "probability": 0.8263 + }, + { + "start": 803.14, + "end": 803.28, + "probability": 0.4302 + }, + { + "start": 803.36, + "end": 804.2, + "probability": 0.9414 + }, + { + "start": 804.68, + "end": 806.38, + "probability": 0.9779 + }, + { + "start": 806.56, + "end": 808.4, + "probability": 0.8516 + }, + { + "start": 809.14, + "end": 810.26, + "probability": 0.777 + }, + { + "start": 810.78, + "end": 813.1, + "probability": 0.9489 + }, + { + "start": 813.9, + "end": 818.16, + "probability": 0.9312 + }, + { + "start": 819.36, + "end": 820.28, + "probability": 0.8102 + }, + { + "start": 820.42, + "end": 823.48, + "probability": 0.8324 + }, + { + "start": 823.48, + "end": 826.2, + "probability": 0.9943 + }, + { + "start": 826.84, + "end": 828.6, + "probability": 0.9983 + }, + { + "start": 829.88, + "end": 834.7, + "probability": 0.9891 + }, + { + "start": 834.9, + "end": 836.02, + "probability": 0.7407 + }, + { + "start": 836.1, + "end": 838.16, + "probability": 0.9858 + }, + { + "start": 838.58, + "end": 841.96, + "probability": 0.5389 + }, + { + "start": 842.5, + "end": 843.28, + "probability": 0.905 + }, + { + "start": 844.06, + "end": 845.96, + "probability": 0.9925 + }, + { + "start": 846.98, + "end": 849.0, + "probability": 0.9548 + }, + { + "start": 849.62, + "end": 850.84, + "probability": 0.9857 + }, + { + "start": 850.88, + "end": 851.58, + "probability": 0.395 + }, + { + "start": 851.68, + "end": 852.26, + "probability": 0.8374 + }, + { + "start": 852.34, + "end": 853.64, + "probability": 0.9144 + }, + { + "start": 854.04, + "end": 857.04, + "probability": 0.7538 + }, + { + "start": 857.74, + "end": 859.56, + "probability": 0.9945 + }, + { + "start": 859.98, + "end": 863.08, + "probability": 0.9943 + }, + { + "start": 863.76, + "end": 867.5, + "probability": 0.957 + }, + { + "start": 868.14, + "end": 869.2, + "probability": 0.8372 + }, + { + "start": 870.0, + "end": 872.58, + "probability": 0.9608 + }, + { + "start": 873.38, + "end": 876.46, + "probability": 0.9932 + }, + { + "start": 877.58, + "end": 878.68, + "probability": 0.5978 + }, + { + "start": 879.02, + "end": 880.18, + "probability": 0.9705 + }, + { + "start": 880.32, + "end": 881.16, + "probability": 0.7866 + }, + { + "start": 882.26, + "end": 882.7, + "probability": 0.7402 + }, + { + "start": 882.8, + "end": 885.22, + "probability": 0.8712 + }, + { + "start": 885.36, + "end": 886.34, + "probability": 0.9628 + }, + { + "start": 886.48, + "end": 891.48, + "probability": 0.9712 + }, + { + "start": 892.22, + "end": 894.06, + "probability": 0.9296 + }, + { + "start": 894.12, + "end": 896.18, + "probability": 0.9712 + }, + { + "start": 896.22, + "end": 897.48, + "probability": 0.8851 + }, + { + "start": 897.8, + "end": 898.1, + "probability": 0.7458 + }, + { + "start": 898.3, + "end": 900.78, + "probability": 0.9442 + }, + { + "start": 903.2, + "end": 904.82, + "probability": 0.8187 + }, + { + "start": 905.02, + "end": 908.5, + "probability": 0.9158 + }, + { + "start": 908.96, + "end": 909.56, + "probability": 0.7338 + }, + { + "start": 909.64, + "end": 910.66, + "probability": 0.7189 + }, + { + "start": 910.78, + "end": 912.16, + "probability": 0.3995 + }, + { + "start": 912.28, + "end": 913.22, + "probability": 0.9504 + }, + { + "start": 914.16, + "end": 915.8, + "probability": 0.293 + }, + { + "start": 915.8, + "end": 916.98, + "probability": 0.812 + }, + { + "start": 917.04, + "end": 917.84, + "probability": 0.8317 + }, + { + "start": 917.88, + "end": 919.5, + "probability": 0.9434 + }, + { + "start": 919.74, + "end": 920.22, + "probability": 0.4513 + }, + { + "start": 920.58, + "end": 923.36, + "probability": 0.6353 + }, + { + "start": 923.86, + "end": 924.56, + "probability": 0.9291 + }, + { + "start": 924.66, + "end": 925.02, + "probability": 0.4367 + }, + { + "start": 925.04, + "end": 925.88, + "probability": 0.9216 + }, + { + "start": 926.08, + "end": 927.24, + "probability": 0.5138 + }, + { + "start": 929.5, + "end": 931.24, + "probability": 0.9546 + }, + { + "start": 931.52, + "end": 932.3, + "probability": 0.6318 + }, + { + "start": 932.5, + "end": 932.88, + "probability": 0.7336 + }, + { + "start": 932.98, + "end": 933.86, + "probability": 0.8748 + }, + { + "start": 933.96, + "end": 938.38, + "probability": 0.8387 + }, + { + "start": 938.5, + "end": 941.66, + "probability": 0.6813 + }, + { + "start": 941.76, + "end": 943.2, + "probability": 0.8447 + }, + { + "start": 943.66, + "end": 944.14, + "probability": 0.413 + }, + { + "start": 944.14, + "end": 944.9, + "probability": 0.6033 + }, + { + "start": 944.9, + "end": 945.64, + "probability": 0.4095 + }, + { + "start": 945.74, + "end": 946.38, + "probability": 0.614 + }, + { + "start": 946.44, + "end": 947.12, + "probability": 0.6685 + }, + { + "start": 947.2, + "end": 951.92, + "probability": 0.7801 + }, + { + "start": 952.0, + "end": 952.98, + "probability": 0.5533 + }, + { + "start": 953.2, + "end": 954.66, + "probability": 0.7593 + }, + { + "start": 954.76, + "end": 955.08, + "probability": 0.6218 + }, + { + "start": 955.58, + "end": 958.28, + "probability": 0.9495 + }, + { + "start": 958.74, + "end": 960.06, + "probability": 0.8829 + }, + { + "start": 960.6, + "end": 961.02, + "probability": 0.4164 + }, + { + "start": 961.26, + "end": 964.56, + "probability": 0.981 + }, + { + "start": 964.62, + "end": 965.1, + "probability": 0.3877 + }, + { + "start": 965.34, + "end": 965.92, + "probability": 0.7898 + }, + { + "start": 965.98, + "end": 967.04, + "probability": 0.9875 + }, + { + "start": 967.38, + "end": 969.7, + "probability": 0.6647 + }, + { + "start": 970.26, + "end": 971.52, + "probability": 0.9484 + }, + { + "start": 971.84, + "end": 972.2, + "probability": 0.8583 + }, + { + "start": 972.28, + "end": 973.56, + "probability": 0.7146 + }, + { + "start": 974.02, + "end": 976.86, + "probability": 0.8635 + }, + { + "start": 977.38, + "end": 978.2, + "probability": 0.7182 + }, + { + "start": 978.74, + "end": 979.66, + "probability": 0.8372 + }, + { + "start": 979.72, + "end": 980.77, + "probability": 0.9896 + }, + { + "start": 981.0, + "end": 984.88, + "probability": 0.8009 + }, + { + "start": 985.28, + "end": 987.06, + "probability": 0.8822 + }, + { + "start": 987.52, + "end": 991.1, + "probability": 0.8835 + }, + { + "start": 991.52, + "end": 992.82, + "probability": 0.3153 + }, + { + "start": 993.12, + "end": 995.58, + "probability": 0.6667 + }, + { + "start": 995.9, + "end": 998.0, + "probability": 0.821 + }, + { + "start": 998.22, + "end": 999.18, + "probability": 0.9248 + }, + { + "start": 999.54, + "end": 1000.24, + "probability": 0.5794 + }, + { + "start": 1000.36, + "end": 1001.5, + "probability": 0.6601 + }, + { + "start": 1001.62, + "end": 1002.42, + "probability": 0.8107 + }, + { + "start": 1002.92, + "end": 1004.86, + "probability": 0.6706 + }, + { + "start": 1006.06, + "end": 1008.5, + "probability": 0.1761 + }, + { + "start": 1008.5, + "end": 1008.6, + "probability": 0.506 + }, + { + "start": 1009.28, + "end": 1013.46, + "probability": 0.6649 + }, + { + "start": 1014.44, + "end": 1015.26, + "probability": 0.9062 + }, + { + "start": 1016.58, + "end": 1018.64, + "probability": 0.7054 + }, + { + "start": 1018.8, + "end": 1020.38, + "probability": 0.9458 + }, + { + "start": 1021.3, + "end": 1026.1, + "probability": 0.9933 + }, + { + "start": 1026.1, + "end": 1030.14, + "probability": 0.977 + }, + { + "start": 1031.18, + "end": 1036.84, + "probability": 0.9958 + }, + { + "start": 1037.84, + "end": 1038.44, + "probability": 0.6636 + }, + { + "start": 1038.44, + "end": 1039.79, + "probability": 0.5213 + }, + { + "start": 1040.02, + "end": 1041.75, + "probability": 0.9474 + }, + { + "start": 1042.94, + "end": 1043.82, + "probability": 0.9691 + }, + { + "start": 1044.22, + "end": 1046.82, + "probability": 0.6602 + }, + { + "start": 1047.64, + "end": 1050.22, + "probability": 0.8434 + }, + { + "start": 1051.04, + "end": 1054.04, + "probability": 0.878 + }, + { + "start": 1054.78, + "end": 1056.96, + "probability": 0.7576 + }, + { + "start": 1057.5, + "end": 1058.98, + "probability": 0.8624 + }, + { + "start": 1059.4, + "end": 1065.16, + "probability": 0.8315 + }, + { + "start": 1065.74, + "end": 1068.22, + "probability": 0.9979 + }, + { + "start": 1068.22, + "end": 1071.54, + "probability": 0.9987 + }, + { + "start": 1072.22, + "end": 1075.96, + "probability": 0.8641 + }, + { + "start": 1076.18, + "end": 1079.22, + "probability": 0.9255 + }, + { + "start": 1079.34, + "end": 1083.28, + "probability": 0.9099 + }, + { + "start": 1083.7, + "end": 1085.2, + "probability": 0.7976 + }, + { + "start": 1085.9, + "end": 1087.22, + "probability": 0.7061 + }, + { + "start": 1087.32, + "end": 1089.22, + "probability": 0.9053 + }, + { + "start": 1089.44, + "end": 1092.8, + "probability": 0.9204 + }, + { + "start": 1093.26, + "end": 1096.58, + "probability": 0.8729 + }, + { + "start": 1097.78, + "end": 1100.06, + "probability": 0.9335 + }, + { + "start": 1100.18, + "end": 1105.54, + "probability": 0.9839 + }, + { + "start": 1106.0, + "end": 1111.48, + "probability": 0.9868 + }, + { + "start": 1111.72, + "end": 1112.32, + "probability": 0.4765 + }, + { + "start": 1115.11, + "end": 1118.72, + "probability": 0.8506 + }, + { + "start": 1119.72, + "end": 1123.42, + "probability": 0.7397 + }, + { + "start": 1125.01, + "end": 1131.82, + "probability": 0.5097 + }, + { + "start": 1132.12, + "end": 1133.62, + "probability": 0.6068 + }, + { + "start": 1134.34, + "end": 1137.86, + "probability": 0.9924 + }, + { + "start": 1138.56, + "end": 1144.48, + "probability": 0.9813 + }, + { + "start": 1145.56, + "end": 1147.12, + "probability": 0.8759 + }, + { + "start": 1147.6, + "end": 1151.18, + "probability": 0.8049 + }, + { + "start": 1151.56, + "end": 1152.42, + "probability": 0.8895 + }, + { + "start": 1152.72, + "end": 1153.64, + "probability": 0.5691 + }, + { + "start": 1154.04, + "end": 1157.28, + "probability": 0.9914 + }, + { + "start": 1157.46, + "end": 1159.82, + "probability": 0.8619 + }, + { + "start": 1160.64, + "end": 1161.26, + "probability": 0.4359 + }, + { + "start": 1161.74, + "end": 1165.12, + "probability": 0.7553 + }, + { + "start": 1165.28, + "end": 1165.9, + "probability": 0.9727 + }, + { + "start": 1165.9, + "end": 1168.94, + "probability": 0.9618 + }, + { + "start": 1168.98, + "end": 1169.6, + "probability": 0.9718 + }, + { + "start": 1170.46, + "end": 1171.62, + "probability": 0.7651 + }, + { + "start": 1171.78, + "end": 1173.56, + "probability": 0.9932 + }, + { + "start": 1174.28, + "end": 1174.88, + "probability": 0.7042 + }, + { + "start": 1175.22, + "end": 1177.82, + "probability": 0.9675 + }, + { + "start": 1178.24, + "end": 1180.76, + "probability": 0.8335 + }, + { + "start": 1181.34, + "end": 1183.13, + "probability": 0.9922 + }, + { + "start": 1184.1, + "end": 1188.12, + "probability": 0.9926 + }, + { + "start": 1188.4, + "end": 1189.38, + "probability": 0.4075 + }, + { + "start": 1189.76, + "end": 1192.86, + "probability": 0.9766 + }, + { + "start": 1193.42, + "end": 1196.22, + "probability": 0.9293 + }, + { + "start": 1197.37, + "end": 1202.12, + "probability": 0.9868 + }, + { + "start": 1202.84, + "end": 1203.72, + "probability": 0.5064 + }, + { + "start": 1203.94, + "end": 1206.82, + "probability": 0.5397 + }, + { + "start": 1206.9, + "end": 1207.7, + "probability": 0.5571 + }, + { + "start": 1207.76, + "end": 1209.42, + "probability": 0.9816 + }, + { + "start": 1209.84, + "end": 1210.42, + "probability": 0.8077 + }, + { + "start": 1211.04, + "end": 1215.0, + "probability": 0.3446 + }, + { + "start": 1215.5, + "end": 1218.58, + "probability": 0.97 + }, + { + "start": 1220.61, + "end": 1221.24, + "probability": 0.3341 + }, + { + "start": 1221.24, + "end": 1227.86, + "probability": 0.7171 + }, + { + "start": 1228.74, + "end": 1229.64, + "probability": 0.705 + }, + { + "start": 1230.64, + "end": 1231.06, + "probability": 0.4987 + }, + { + "start": 1231.22, + "end": 1232.6, + "probability": 0.8809 + }, + { + "start": 1232.8, + "end": 1234.06, + "probability": 0.8113 + }, + { + "start": 1234.56, + "end": 1236.3, + "probability": 0.9064 + }, + { + "start": 1236.32, + "end": 1237.9, + "probability": 0.9535 + }, + { + "start": 1238.6, + "end": 1243.86, + "probability": 0.9454 + }, + { + "start": 1244.44, + "end": 1249.48, + "probability": 0.8867 + }, + { + "start": 1249.7, + "end": 1250.22, + "probability": 0.8148 + }, + { + "start": 1250.78, + "end": 1252.96, + "probability": 0.7185 + }, + { + "start": 1255.08, + "end": 1259.7, + "probability": 0.6577 + }, + { + "start": 1260.7, + "end": 1264.66, + "probability": 0.9744 + }, + { + "start": 1267.52, + "end": 1270.16, + "probability": 0.9316 + }, + { + "start": 1270.7, + "end": 1275.72, + "probability": 0.9925 + }, + { + "start": 1276.38, + "end": 1276.74, + "probability": 0.541 + }, + { + "start": 1279.62, + "end": 1279.88, + "probability": 0.2211 + }, + { + "start": 1280.54, + "end": 1280.54, + "probability": 0.5325 + }, + { + "start": 1280.54, + "end": 1281.34, + "probability": 0.3761 + }, + { + "start": 1283.0, + "end": 1285.52, + "probability": 0.9384 + }, + { + "start": 1286.16, + "end": 1288.9, + "probability": 0.7376 + }, + { + "start": 1289.08, + "end": 1290.6, + "probability": 0.8606 + }, + { + "start": 1290.88, + "end": 1291.7, + "probability": 0.7458 + }, + { + "start": 1291.76, + "end": 1292.88, + "probability": 0.8328 + }, + { + "start": 1293.16, + "end": 1293.54, + "probability": 0.4027 + }, + { + "start": 1294.22, + "end": 1295.4, + "probability": 0.9473 + }, + { + "start": 1295.78, + "end": 1298.28, + "probability": 0.9887 + }, + { + "start": 1299.4, + "end": 1301.3, + "probability": 0.686 + }, + { + "start": 1301.32, + "end": 1302.84, + "probability": 0.9465 + }, + { + "start": 1305.61, + "end": 1308.32, + "probability": 0.9836 + }, + { + "start": 1308.54, + "end": 1309.88, + "probability": 0.8383 + }, + { + "start": 1310.62, + "end": 1310.82, + "probability": 0.3288 + }, + { + "start": 1310.92, + "end": 1312.9, + "probability": 0.8319 + }, + { + "start": 1313.16, + "end": 1316.04, + "probability": 0.78 + }, + { + "start": 1318.62, + "end": 1322.59, + "probability": 0.9954 + }, + { + "start": 1323.76, + "end": 1324.58, + "probability": 0.9543 + }, + { + "start": 1324.68, + "end": 1329.3, + "probability": 0.984 + }, + { + "start": 1330.12, + "end": 1331.64, + "probability": 0.6587 + }, + { + "start": 1331.68, + "end": 1332.06, + "probability": 0.5658 + }, + { + "start": 1332.28, + "end": 1337.88, + "probability": 0.99 + }, + { + "start": 1338.0, + "end": 1340.98, + "probability": 0.9878 + }, + { + "start": 1341.08, + "end": 1345.16, + "probability": 0.9876 + }, + { + "start": 1345.82, + "end": 1348.92, + "probability": 0.8187 + }, + { + "start": 1349.22, + "end": 1350.56, + "probability": 0.7277 + }, + { + "start": 1350.66, + "end": 1352.64, + "probability": 0.9448 + }, + { + "start": 1352.66, + "end": 1355.86, + "probability": 0.9867 + }, + { + "start": 1355.92, + "end": 1357.36, + "probability": 0.9217 + }, + { + "start": 1357.5, + "end": 1361.64, + "probability": 0.9909 + }, + { + "start": 1363.02, + "end": 1371.44, + "probability": 0.9912 + }, + { + "start": 1372.68, + "end": 1376.14, + "probability": 0.9663 + }, + { + "start": 1376.84, + "end": 1381.02, + "probability": 0.8334 + }, + { + "start": 1381.38, + "end": 1385.76, + "probability": 0.9549 + }, + { + "start": 1386.82, + "end": 1389.54, + "probability": 0.9277 + }, + { + "start": 1389.96, + "end": 1394.32, + "probability": 0.9883 + }, + { + "start": 1395.16, + "end": 1396.18, + "probability": 0.5509 + }, + { + "start": 1396.24, + "end": 1397.64, + "probability": 0.9751 + }, + { + "start": 1397.76, + "end": 1402.84, + "probability": 0.9565 + }, + { + "start": 1403.13, + "end": 1407.12, + "probability": 0.939 + }, + { + "start": 1408.02, + "end": 1417.58, + "probability": 0.8578 + }, + { + "start": 1417.82, + "end": 1420.29, + "probability": 0.6153 + }, + { + "start": 1421.14, + "end": 1422.62, + "probability": 0.7759 + }, + { + "start": 1423.04, + "end": 1426.35, + "probability": 0.8958 + }, + { + "start": 1426.48, + "end": 1428.86, + "probability": 0.8464 + }, + { + "start": 1429.18, + "end": 1430.86, + "probability": 0.8176 + }, + { + "start": 1431.28, + "end": 1431.58, + "probability": 0.5426 + }, + { + "start": 1431.72, + "end": 1437.48, + "probability": 0.9744 + }, + { + "start": 1437.52, + "end": 1438.34, + "probability": 0.8245 + }, + { + "start": 1438.67, + "end": 1442.68, + "probability": 0.795 + }, + { + "start": 1443.46, + "end": 1443.48, + "probability": 0.2441 + }, + { + "start": 1443.48, + "end": 1443.48, + "probability": 0.5593 + }, + { + "start": 1443.48, + "end": 1447.58, + "probability": 0.8982 + }, + { + "start": 1448.16, + "end": 1451.38, + "probability": 0.947 + }, + { + "start": 1451.38, + "end": 1453.9, + "probability": 0.9233 + }, + { + "start": 1456.92, + "end": 1458.54, + "probability": 0.6842 + }, + { + "start": 1458.84, + "end": 1460.73, + "probability": 0.6258 + }, + { + "start": 1461.12, + "end": 1464.31, + "probability": 0.9748 + }, + { + "start": 1465.2, + "end": 1466.82, + "probability": 0.4042 + }, + { + "start": 1467.04, + "end": 1471.38, + "probability": 0.6266 + }, + { + "start": 1472.15, + "end": 1475.74, + "probability": 0.5372 + }, + { + "start": 1475.78, + "end": 1482.51, + "probability": 0.949 + }, + { + "start": 1483.2, + "end": 1485.64, + "probability": 0.5671 + }, + { + "start": 1486.16, + "end": 1487.96, + "probability": 0.4813 + }, + { + "start": 1488.7, + "end": 1491.08, + "probability": 0.9569 + }, + { + "start": 1491.36, + "end": 1491.78, + "probability": 0.6828 + }, + { + "start": 1491.8, + "end": 1492.66, + "probability": 0.6698 + }, + { + "start": 1492.86, + "end": 1496.18, + "probability": 0.9134 + }, + { + "start": 1496.36, + "end": 1496.82, + "probability": 0.5059 + }, + { + "start": 1496.84, + "end": 1500.58, + "probability": 0.9946 + }, + { + "start": 1501.02, + "end": 1501.06, + "probability": 0.1003 + }, + { + "start": 1501.9, + "end": 1502.2, + "probability": 0.3062 + }, + { + "start": 1502.64, + "end": 1506.3, + "probability": 0.833 + }, + { + "start": 1506.64, + "end": 1507.32, + "probability": 0.4426 + }, + { + "start": 1507.34, + "end": 1507.48, + "probability": 0.4804 + }, + { + "start": 1507.54, + "end": 1508.12, + "probability": 0.8964 + }, + { + "start": 1508.44, + "end": 1509.24, + "probability": 0.8174 + }, + { + "start": 1509.62, + "end": 1510.64, + "probability": 0.7622 + }, + { + "start": 1510.68, + "end": 1512.89, + "probability": 0.6585 + }, + { + "start": 1513.6, + "end": 1515.94, + "probability": 0.9915 + }, + { + "start": 1516.06, + "end": 1518.44, + "probability": 0.7896 + }, + { + "start": 1518.54, + "end": 1519.76, + "probability": 0.139 + }, + { + "start": 1519.92, + "end": 1520.64, + "probability": 0.9673 + }, + { + "start": 1521.4, + "end": 1521.62, + "probability": 0.0594 + }, + { + "start": 1521.62, + "end": 1522.88, + "probability": 0.1559 + }, + { + "start": 1522.88, + "end": 1523.8, + "probability": 0.5315 + }, + { + "start": 1523.8, + "end": 1524.5, + "probability": 0.5657 + }, + { + "start": 1524.54, + "end": 1525.28, + "probability": 0.4987 + }, + { + "start": 1539.96, + "end": 1541.92, + "probability": 0.2108 + }, + { + "start": 1541.92, + "end": 1544.88, + "probability": 0.8183 + }, + { + "start": 1545.0, + "end": 1545.94, + "probability": 0.3972 + }, + { + "start": 1546.14, + "end": 1550.74, + "probability": 0.2273 + }, + { + "start": 1550.84, + "end": 1553.12, + "probability": 0.6032 + }, + { + "start": 1554.58, + "end": 1556.78, + "probability": 0.0297 + }, + { + "start": 1557.34, + "end": 1558.18, + "probability": 0.1174 + }, + { + "start": 1567.2, + "end": 1570.36, + "probability": 0.0787 + }, + { + "start": 1570.36, + "end": 1570.84, + "probability": 0.0447 + }, + { + "start": 1574.0, + "end": 1575.42, + "probability": 0.0152 + }, + { + "start": 1575.42, + "end": 1580.12, + "probability": 0.0326 + }, + { + "start": 1580.14, + "end": 1580.16, + "probability": 0.1104 + }, + { + "start": 1580.16, + "end": 1582.68, + "probability": 0.1046 + }, + { + "start": 1582.72, + "end": 1584.1, + "probability": 0.0368 + }, + { + "start": 1584.2, + "end": 1589.6, + "probability": 0.1096 + }, + { + "start": 1589.6, + "end": 1590.88, + "probability": 0.077 + }, + { + "start": 1592.3, + "end": 1593.32, + "probability": 0.3494 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.0, + "end": 1617.0, + "probability": 0.0 + }, + { + "start": 1617.14, + "end": 1618.62, + "probability": 0.6144 + }, + { + "start": 1620.12, + "end": 1623.78, + "probability": 0.969 + }, + { + "start": 1624.64, + "end": 1627.92, + "probability": 0.9596 + }, + { + "start": 1628.4, + "end": 1629.48, + "probability": 0.6203 + }, + { + "start": 1630.26, + "end": 1634.75, + "probability": 0.6938 + }, + { + "start": 1636.94, + "end": 1639.58, + "probability": 0.0797 + }, + { + "start": 1639.58, + "end": 1640.34, + "probability": 0.099 + }, + { + "start": 1640.96, + "end": 1643.4, + "probability": 0.9258 + }, + { + "start": 1643.78, + "end": 1645.52, + "probability": 0.9962 + }, + { + "start": 1646.4, + "end": 1650.64, + "probability": 0.8581 + }, + { + "start": 1651.8, + "end": 1655.32, + "probability": 0.8363 + }, + { + "start": 1656.42, + "end": 1661.0, + "probability": 0.6737 + }, + { + "start": 1662.36, + "end": 1665.5, + "probability": 0.4667 + }, + { + "start": 1666.18, + "end": 1668.16, + "probability": 0.988 + }, + { + "start": 1668.26, + "end": 1669.88, + "probability": 0.9753 + }, + { + "start": 1670.0, + "end": 1670.92, + "probability": 0.7598 + }, + { + "start": 1671.44, + "end": 1674.82, + "probability": 0.8417 + }, + { + "start": 1675.84, + "end": 1676.9, + "probability": 0.6746 + }, + { + "start": 1677.52, + "end": 1678.62, + "probability": 0.8001 + }, + { + "start": 1679.8, + "end": 1682.82, + "probability": 0.7041 + }, + { + "start": 1683.38, + "end": 1684.97, + "probability": 0.4084 + }, + { + "start": 1687.2, + "end": 1689.8, + "probability": 0.9981 + }, + { + "start": 1690.22, + "end": 1690.78, + "probability": 0.9468 + }, + { + "start": 1691.66, + "end": 1693.22, + "probability": 0.9927 + }, + { + "start": 1694.0, + "end": 1697.02, + "probability": 0.965 + }, + { + "start": 1697.72, + "end": 1700.92, + "probability": 0.9556 + }, + { + "start": 1701.46, + "end": 1703.78, + "probability": 0.8504 + }, + { + "start": 1704.46, + "end": 1708.98, + "probability": 0.9674 + }, + { + "start": 1709.58, + "end": 1715.1, + "probability": 0.9901 + }, + { + "start": 1715.58, + "end": 1718.16, + "probability": 0.9966 + }, + { + "start": 1718.54, + "end": 1723.08, + "probability": 0.9995 + }, + { + "start": 1723.28, + "end": 1724.08, + "probability": 0.9415 + }, + { + "start": 1724.24, + "end": 1724.88, + "probability": 0.5697 + }, + { + "start": 1725.04, + "end": 1728.8, + "probability": 0.7414 + }, + { + "start": 1729.26, + "end": 1730.06, + "probability": 0.4606 + }, + { + "start": 1730.34, + "end": 1734.72, + "probability": 0.8199 + }, + { + "start": 1735.16, + "end": 1736.5, + "probability": 0.8436 + }, + { + "start": 1737.06, + "end": 1740.38, + "probability": 0.9556 + }, + { + "start": 1740.56, + "end": 1744.78, + "probability": 0.7641 + }, + { + "start": 1745.68, + "end": 1746.4, + "probability": 0.7852 + }, + { + "start": 1746.48, + "end": 1747.16, + "probability": 0.5977 + }, + { + "start": 1747.24, + "end": 1752.04, + "probability": 0.9169 + }, + { + "start": 1752.14, + "end": 1753.72, + "probability": 0.7467 + }, + { + "start": 1753.86, + "end": 1755.16, + "probability": 0.7566 + }, + { + "start": 1756.22, + "end": 1761.24, + "probability": 0.8394 + }, + { + "start": 1762.32, + "end": 1762.95, + "probability": 0.877 + }, + { + "start": 1763.82, + "end": 1765.64, + "probability": 0.9751 + }, + { + "start": 1765.74, + "end": 1766.6, + "probability": 0.9243 + }, + { + "start": 1767.12, + "end": 1768.06, + "probability": 0.6163 + }, + { + "start": 1768.98, + "end": 1770.16, + "probability": 0.4427 + }, + { + "start": 1771.02, + "end": 1772.34, + "probability": 0.9578 + }, + { + "start": 1773.02, + "end": 1777.92, + "probability": 0.7064 + }, + { + "start": 1778.34, + "end": 1780.42, + "probability": 0.9198 + }, + { + "start": 1780.68, + "end": 1781.54, + "probability": 0.9154 + }, + { + "start": 1781.74, + "end": 1783.96, + "probability": 0.8413 + }, + { + "start": 1784.48, + "end": 1785.26, + "probability": 0.0645 + }, + { + "start": 1785.88, + "end": 1787.84, + "probability": 0.4791 + }, + { + "start": 1787.84, + "end": 1787.94, + "probability": 0.1664 + }, + { + "start": 1787.96, + "end": 1788.62, + "probability": 0.3975 + }, + { + "start": 1788.66, + "end": 1789.5, + "probability": 0.7237 + }, + { + "start": 1789.58, + "end": 1790.84, + "probability": 0.5525 + }, + { + "start": 1790.84, + "end": 1791.22, + "probability": 0.4987 + }, + { + "start": 1791.22, + "end": 1791.6, + "probability": 0.6559 + }, + { + "start": 1791.78, + "end": 1796.08, + "probability": 0.7198 + }, + { + "start": 1796.72, + "end": 1799.54, + "probability": 0.0654 + }, + { + "start": 1799.6, + "end": 1801.16, + "probability": 0.0771 + }, + { + "start": 1801.32, + "end": 1803.58, + "probability": 0.3575 + }, + { + "start": 1803.62, + "end": 1803.62, + "probability": 0.3135 + }, + { + "start": 1803.62, + "end": 1805.74, + "probability": 0.5433 + }, + { + "start": 1809.44, + "end": 1810.54, + "probability": 0.0411 + }, + { + "start": 1810.84, + "end": 1813.54, + "probability": 0.2942 + }, + { + "start": 1813.96, + "end": 1816.03, + "probability": 0.6151 + }, + { + "start": 1816.06, + "end": 1816.6, + "probability": 0.2311 + }, + { + "start": 1817.3, + "end": 1820.34, + "probability": 0.2177 + }, + { + "start": 1820.34, + "end": 1824.14, + "probability": 0.4304 + }, + { + "start": 1824.56, + "end": 1824.68, + "probability": 0.2369 + }, + { + "start": 1824.68, + "end": 1824.68, + "probability": 0.1578 + }, + { + "start": 1824.68, + "end": 1827.24, + "probability": 0.8439 + }, + { + "start": 1827.42, + "end": 1830.28, + "probability": 0.9676 + }, + { + "start": 1831.0, + "end": 1833.8, + "probability": 0.9907 + }, + { + "start": 1833.88, + "end": 1834.46, + "probability": 0.6553 + }, + { + "start": 1834.98, + "end": 1835.46, + "probability": 0.5753 + }, + { + "start": 1835.48, + "end": 1835.98, + "probability": 0.7898 + }, + { + "start": 1836.06, + "end": 1837.0, + "probability": 0.8159 + }, + { + "start": 1837.02, + "end": 1840.22, + "probability": 0.3904 + }, + { + "start": 1840.3, + "end": 1843.18, + "probability": 0.4634 + }, + { + "start": 1844.64, + "end": 1846.24, + "probability": 0.9067 + }, + { + "start": 1846.52, + "end": 1849.93, + "probability": 0.6143 + }, + { + "start": 1850.06, + "end": 1852.26, + "probability": 0.9854 + }, + { + "start": 1852.5, + "end": 1854.98, + "probability": 0.885 + }, + { + "start": 1855.68, + "end": 1856.86, + "probability": 0.483 + }, + { + "start": 1857.46, + "end": 1860.53, + "probability": 0.8062 + }, + { + "start": 1861.06, + "end": 1864.22, + "probability": 0.9919 + }, + { + "start": 1864.52, + "end": 1866.42, + "probability": 0.1918 + }, + { + "start": 1866.54, + "end": 1869.08, + "probability": 0.6016 + }, + { + "start": 1869.18, + "end": 1871.45, + "probability": 0.8493 + }, + { + "start": 1872.94, + "end": 1875.02, + "probability": 0.3621 + }, + { + "start": 1875.26, + "end": 1877.6, + "probability": 0.7857 + }, + { + "start": 1877.98, + "end": 1879.28, + "probability": 0.3155 + }, + { + "start": 1879.54, + "end": 1885.3, + "probability": 0.9422 + }, + { + "start": 1885.96, + "end": 1891.86, + "probability": 0.3303 + }, + { + "start": 1892.76, + "end": 1893.4, + "probability": 0.2239 + }, + { + "start": 1896.4, + "end": 1896.64, + "probability": 0.1848 + }, + { + "start": 1900.78, + "end": 1903.04, + "probability": 0.0923 + }, + { + "start": 1904.5, + "end": 1909.38, + "probability": 0.8641 + }, + { + "start": 1909.84, + "end": 1915.0, + "probability": 0.9006 + }, + { + "start": 1915.34, + "end": 1917.9, + "probability": 0.9961 + }, + { + "start": 1918.28, + "end": 1923.02, + "probability": 0.9824 + }, + { + "start": 1923.42, + "end": 1928.28, + "probability": 0.9487 + }, + { + "start": 1928.94, + "end": 1936.2, + "probability": 0.5721 + }, + { + "start": 1936.9, + "end": 1940.5, + "probability": 0.9961 + }, + { + "start": 1942.32, + "end": 1946.14, + "probability": 0.882 + }, + { + "start": 1946.32, + "end": 1948.12, + "probability": 0.7013 + }, + { + "start": 1948.62, + "end": 1953.44, + "probability": 0.8597 + }, + { + "start": 1955.22, + "end": 1958.92, + "probability": 0.7629 + }, + { + "start": 1959.26, + "end": 1961.58, + "probability": 0.8199 + }, + { + "start": 1962.18, + "end": 1964.06, + "probability": 0.946 + }, + { + "start": 1965.18, + "end": 1969.56, + "probability": 0.7629 + }, + { + "start": 1969.9, + "end": 1973.8, + "probability": 0.9316 + }, + { + "start": 1978.17, + "end": 1980.92, + "probability": 0.1189 + }, + { + "start": 1981.26, + "end": 1983.36, + "probability": 0.8326 + }, + { + "start": 1983.38, + "end": 1986.82, + "probability": 0.6554 + }, + { + "start": 1986.82, + "end": 1989.1, + "probability": 0.6707 + }, + { + "start": 1989.96, + "end": 1993.04, + "probability": 0.9619 + }, + { + "start": 1993.26, + "end": 1995.8, + "probability": 0.6548 + }, + { + "start": 1996.06, + "end": 1999.12, + "probability": 0.5711 + }, + { + "start": 1999.12, + "end": 2000.68, + "probability": 0.5665 + }, + { + "start": 2000.72, + "end": 2001.39, + "probability": 0.8628 + }, + { + "start": 2001.96, + "end": 2004.3, + "probability": 0.5916 + }, + { + "start": 2005.02, + "end": 2008.84, + "probability": 0.9872 + }, + { + "start": 2009.46, + "end": 2009.74, + "probability": 0.9806 + }, + { + "start": 2009.76, + "end": 2011.58, + "probability": 0.8491 + }, + { + "start": 2012.12, + "end": 2017.3, + "probability": 0.9866 + }, + { + "start": 2017.56, + "end": 2019.66, + "probability": 0.9385 + }, + { + "start": 2020.66, + "end": 2023.02, + "probability": 0.8638 + }, + { + "start": 2023.52, + "end": 2024.6, + "probability": 0.8484 + }, + { + "start": 2024.7, + "end": 2024.84, + "probability": 0.705 + }, + { + "start": 2025.15, + "end": 2025.22, + "probability": 0.8027 + }, + { + "start": 2025.22, + "end": 2027.12, + "probability": 0.6467 + }, + { + "start": 2027.7, + "end": 2030.36, + "probability": 0.7262 + }, + { + "start": 2030.82, + "end": 2032.9, + "probability": 0.352 + }, + { + "start": 2033.02, + "end": 2035.14, + "probability": 0.912 + }, + { + "start": 2035.68, + "end": 2037.1, + "probability": 0.5309 + }, + { + "start": 2037.74, + "end": 2041.28, + "probability": 0.8003 + }, + { + "start": 2041.7, + "end": 2042.1, + "probability": 0.7987 + }, + { + "start": 2042.14, + "end": 2043.08, + "probability": 0.8429 + }, + { + "start": 2043.18, + "end": 2044.94, + "probability": 0.9774 + }, + { + "start": 2045.28, + "end": 2046.93, + "probability": 0.9301 + }, + { + "start": 2047.42, + "end": 2048.29, + "probability": 0.9951 + }, + { + "start": 2050.1, + "end": 2055.48, + "probability": 0.0703 + }, + { + "start": 2055.72, + "end": 2055.98, + "probability": 0.0168 + }, + { + "start": 2055.98, + "end": 2057.96, + "probability": 0.6361 + }, + { + "start": 2058.28, + "end": 2059.43, + "probability": 0.5985 + }, + { + "start": 2060.44, + "end": 2061.2, + "probability": 0.7343 + }, + { + "start": 2062.46, + "end": 2066.2, + "probability": 0.8779 + }, + { + "start": 2066.86, + "end": 2072.62, + "probability": 0.9289 + }, + { + "start": 2073.62, + "end": 2075.95, + "probability": 0.9524 + }, + { + "start": 2076.04, + "end": 2077.52, + "probability": 0.769 + }, + { + "start": 2077.68, + "end": 2081.64, + "probability": 0.8494 + }, + { + "start": 2082.84, + "end": 2083.84, + "probability": 0.8755 + }, + { + "start": 2084.58, + "end": 2086.6, + "probability": 0.9759 + }, + { + "start": 2087.04, + "end": 2090.88, + "probability": 0.9634 + }, + { + "start": 2091.98, + "end": 2094.02, + "probability": 0.9683 + }, + { + "start": 2094.46, + "end": 2096.29, + "probability": 0.9963 + }, + { + "start": 2096.8, + "end": 2101.28, + "probability": 0.9277 + }, + { + "start": 2101.64, + "end": 2105.9, + "probability": 0.9482 + }, + { + "start": 2106.42, + "end": 2106.97, + "probability": 0.5777 + }, + { + "start": 2107.34, + "end": 2108.04, + "probability": 0.926 + }, + { + "start": 2108.74, + "end": 2110.27, + "probability": 0.7761 + }, + { + "start": 2111.1, + "end": 2111.56, + "probability": 0.6547 + }, + { + "start": 2111.72, + "end": 2113.74, + "probability": 0.6593 + }, + { + "start": 2114.1, + "end": 2116.56, + "probability": 0.857 + }, + { + "start": 2116.84, + "end": 2117.72, + "probability": 0.6582 + }, + { + "start": 2118.52, + "end": 2122.58, + "probability": 0.9829 + }, + { + "start": 2124.0, + "end": 2129.1, + "probability": 0.3841 + }, + { + "start": 2129.1, + "end": 2129.1, + "probability": 0.9329 + }, + { + "start": 2129.1, + "end": 2130.38, + "probability": 0.3722 + }, + { + "start": 2131.44, + "end": 2131.88, + "probability": 0.9625 + }, + { + "start": 2133.24, + "end": 2136.78, + "probability": 0.7082 + }, + { + "start": 2137.42, + "end": 2139.62, + "probability": 0.9489 + }, + { + "start": 2139.72, + "end": 2140.34, + "probability": 0.9493 + }, + { + "start": 2140.78, + "end": 2146.62, + "probability": 0.8762 + }, + { + "start": 2146.62, + "end": 2150.32, + "probability": 0.8398 + }, + { + "start": 2150.58, + "end": 2151.96, + "probability": 0.3636 + }, + { + "start": 2152.46, + "end": 2154.1, + "probability": 0.8792 + }, + { + "start": 2155.32, + "end": 2157.52, + "probability": 0.9429 + }, + { + "start": 2158.32, + "end": 2159.41, + "probability": 0.4595 + }, + { + "start": 2160.88, + "end": 2163.44, + "probability": 0.9407 + }, + { + "start": 2163.68, + "end": 2164.8, + "probability": 0.6573 + }, + { + "start": 2164.8, + "end": 2168.82, + "probability": 0.7374 + }, + { + "start": 2169.16, + "end": 2171.74, + "probability": 0.9758 + }, + { + "start": 2173.24, + "end": 2176.1, + "probability": 0.9284 + }, + { + "start": 2177.1, + "end": 2178.47, + "probability": 0.9615 + }, + { + "start": 2181.81, + "end": 2182.74, + "probability": 0.3178 + }, + { + "start": 2182.74, + "end": 2184.22, + "probability": 0.6559 + }, + { + "start": 2184.28, + "end": 2185.4, + "probability": 0.2952 + }, + { + "start": 2185.64, + "end": 2186.62, + "probability": 0.3147 + }, + { + "start": 2187.78, + "end": 2188.44, + "probability": 0.4606 + }, + { + "start": 2188.68, + "end": 2189.9, + "probability": 0.6777 + }, + { + "start": 2192.9, + "end": 2196.54, + "probability": 0.7113 + }, + { + "start": 2196.72, + "end": 2197.56, + "probability": 0.1488 + }, + { + "start": 2197.6, + "end": 2198.52, + "probability": 0.577 + }, + { + "start": 2198.84, + "end": 2200.86, + "probability": 0.9351 + }, + { + "start": 2201.0, + "end": 2201.76, + "probability": 0.5704 + }, + { + "start": 2202.18, + "end": 2205.4, + "probability": 0.7145 + }, + { + "start": 2205.88, + "end": 2208.02, + "probability": 0.9595 + }, + { + "start": 2208.62, + "end": 2210.44, + "probability": 0.4733 + }, + { + "start": 2210.74, + "end": 2212.06, + "probability": 0.6297 + }, + { + "start": 2212.48, + "end": 2213.36, + "probability": 0.7101 + }, + { + "start": 2213.38, + "end": 2214.56, + "probability": 0.6631 + }, + { + "start": 2214.94, + "end": 2216.2, + "probability": 0.6105 + }, + { + "start": 2216.36, + "end": 2217.76, + "probability": 0.7234 + }, + { + "start": 2218.32, + "end": 2220.58, + "probability": 0.6665 + }, + { + "start": 2220.7, + "end": 2221.24, + "probability": 0.2204 + }, + { + "start": 2221.42, + "end": 2223.59, + "probability": 0.906 + }, + { + "start": 2228.44, + "end": 2228.68, + "probability": 0.498 + }, + { + "start": 2228.78, + "end": 2230.64, + "probability": 0.6867 + }, + { + "start": 2230.76, + "end": 2236.15, + "probability": 0.9517 + }, + { + "start": 2236.72, + "end": 2237.49, + "probability": 0.9966 + }, + { + "start": 2238.4, + "end": 2240.24, + "probability": 0.6742 + }, + { + "start": 2240.62, + "end": 2244.94, + "probability": 0.9815 + }, + { + "start": 2245.26, + "end": 2251.82, + "probability": 0.9357 + }, + { + "start": 2252.24, + "end": 2254.22, + "probability": 0.494 + }, + { + "start": 2254.62, + "end": 2255.41, + "probability": 0.4224 + }, + { + "start": 2256.7, + "end": 2258.26, + "probability": 0.5931 + }, + { + "start": 2258.58, + "end": 2260.35, + "probability": 0.9691 + }, + { + "start": 2261.4, + "end": 2263.09, + "probability": 0.8535 + }, + { + "start": 2263.36, + "end": 2265.76, + "probability": 0.9056 + }, + { + "start": 2266.26, + "end": 2267.16, + "probability": 0.6103 + }, + { + "start": 2267.32, + "end": 2268.54, + "probability": 0.6782 + }, + { + "start": 2268.72, + "end": 2270.16, + "probability": 0.6789 + }, + { + "start": 2271.26, + "end": 2271.98, + "probability": 0.197 + }, + { + "start": 2272.38, + "end": 2272.38, + "probability": 0.7122 + }, + { + "start": 2272.38, + "end": 2274.41, + "probability": 0.1684 + }, + { + "start": 2274.94, + "end": 2275.88, + "probability": 0.3362 + }, + { + "start": 2275.9, + "end": 2276.54, + "probability": 0.4672 + }, + { + "start": 2276.72, + "end": 2277.42, + "probability": 0.5057 + }, + { + "start": 2277.42, + "end": 2280.46, + "probability": 0.6411 + }, + { + "start": 2280.86, + "end": 2283.8, + "probability": 0.4099 + }, + { + "start": 2284.2, + "end": 2286.22, + "probability": 0.9863 + }, + { + "start": 2286.84, + "end": 2289.38, + "probability": 0.928 + }, + { + "start": 2290.1, + "end": 2291.29, + "probability": 0.7085 + }, + { + "start": 2291.92, + "end": 2292.54, + "probability": 0.7787 + }, + { + "start": 2292.6, + "end": 2293.94, + "probability": 0.7519 + }, + { + "start": 2294.18, + "end": 2297.24, + "probability": 0.9368 + }, + { + "start": 2297.66, + "end": 2298.5, + "probability": 0.8488 + }, + { + "start": 2298.78, + "end": 2299.6, + "probability": 0.9458 + }, + { + "start": 2299.9, + "end": 2300.98, + "probability": 0.7129 + }, + { + "start": 2301.38, + "end": 2307.26, + "probability": 0.8547 + }, + { + "start": 2308.1, + "end": 2310.8, + "probability": 0.8201 + }, + { + "start": 2311.1, + "end": 2313.48, + "probability": 0.8323 + }, + { + "start": 2314.06, + "end": 2316.86, + "probability": 0.8955 + }, + { + "start": 2317.72, + "end": 2320.98, + "probability": 0.9975 + }, + { + "start": 2322.36, + "end": 2323.58, + "probability": 0.8066 + }, + { + "start": 2323.94, + "end": 2325.7, + "probability": 0.9572 + }, + { + "start": 2326.68, + "end": 2327.44, + "probability": 0.7591 + }, + { + "start": 2328.12, + "end": 2330.88, + "probability": 0.741 + }, + { + "start": 2332.88, + "end": 2333.86, + "probability": 0.0928 + }, + { + "start": 2334.22, + "end": 2336.28, + "probability": 0.236 + }, + { + "start": 2336.61, + "end": 2343.44, + "probability": 0.9899 + }, + { + "start": 2343.82, + "end": 2346.76, + "probability": 0.8757 + }, + { + "start": 2346.76, + "end": 2347.08, + "probability": 0.0339 + }, + { + "start": 2347.34, + "end": 2349.76, + "probability": 0.8228 + }, + { + "start": 2349.86, + "end": 2351.55, + "probability": 0.6536 + }, + { + "start": 2351.68, + "end": 2353.34, + "probability": 0.552 + }, + { + "start": 2353.46, + "end": 2355.56, + "probability": 0.8972 + }, + { + "start": 2356.2, + "end": 2356.72, + "probability": 0.5878 + }, + { + "start": 2358.27, + "end": 2359.32, + "probability": 0.0547 + }, + { + "start": 2359.48, + "end": 2360.34, + "probability": 0.472 + }, + { + "start": 2360.74, + "end": 2361.42, + "probability": 0.7266 + }, + { + "start": 2361.5, + "end": 2363.21, + "probability": 0.981 + }, + { + "start": 2363.9, + "end": 2365.54, + "probability": 0.718 + }, + { + "start": 2366.0, + "end": 2366.26, + "probability": 0.6576 + }, + { + "start": 2366.36, + "end": 2367.35, + "probability": 0.6987 + }, + { + "start": 2367.86, + "end": 2372.98, + "probability": 0.917 + }, + { + "start": 2373.06, + "end": 2374.12, + "probability": 0.7314 + }, + { + "start": 2374.22, + "end": 2376.44, + "probability": 0.5836 + }, + { + "start": 2376.46, + "end": 2376.88, + "probability": 0.4508 + }, + { + "start": 2376.96, + "end": 2377.58, + "probability": 0.6351 + }, + { + "start": 2379.88, + "end": 2380.56, + "probability": 0.4685 + }, + { + "start": 2381.7, + "end": 2383.3, + "probability": 0.238 + }, + { + "start": 2388.2, + "end": 2393.04, + "probability": 0.13 + }, + { + "start": 2393.6, + "end": 2393.74, + "probability": 0.0046 + }, + { + "start": 2393.74, + "end": 2393.74, + "probability": 0.0356 + }, + { + "start": 2393.74, + "end": 2393.86, + "probability": 0.0479 + }, + { + "start": 2393.86, + "end": 2393.86, + "probability": 0.1192 + }, + { + "start": 2393.86, + "end": 2397.38, + "probability": 0.5275 + }, + { + "start": 2397.76, + "end": 2399.86, + "probability": 0.9896 + }, + { + "start": 2399.98, + "end": 2401.48, + "probability": 0.9202 + }, + { + "start": 2401.82, + "end": 2402.46, + "probability": 0.6821 + }, + { + "start": 2402.64, + "end": 2404.54, + "probability": 0.9736 + }, + { + "start": 2405.32, + "end": 2406.66, + "probability": 0.2007 + }, + { + "start": 2406.74, + "end": 2407.48, + "probability": 0.5531 + }, + { + "start": 2409.26, + "end": 2411.26, + "probability": 0.1564 + }, + { + "start": 2412.16, + "end": 2416.28, + "probability": 0.2085 + }, + { + "start": 2417.02, + "end": 2420.72, + "probability": 0.4221 + }, + { + "start": 2421.82, + "end": 2424.38, + "probability": 0.3822 + }, + { + "start": 2424.7, + "end": 2427.88, + "probability": 0.9868 + }, + { + "start": 2427.88, + "end": 2429.69, + "probability": 0.8396 + }, + { + "start": 2430.46, + "end": 2431.06, + "probability": 0.7529 + }, + { + "start": 2431.76, + "end": 2432.32, + "probability": 0.0042 + }, + { + "start": 2435.42, + "end": 2435.74, + "probability": 0.1386 + }, + { + "start": 2435.74, + "end": 2435.74, + "probability": 0.1828 + }, + { + "start": 2435.74, + "end": 2436.44, + "probability": 0.0492 + }, + { + "start": 2438.72, + "end": 2439.9, + "probability": 0.8467 + }, + { + "start": 2440.08, + "end": 2441.9, + "probability": 0.9047 + }, + { + "start": 2442.38, + "end": 2444.24, + "probability": 0.9758 + }, + { + "start": 2444.64, + "end": 2446.44, + "probability": 0.7643 + }, + { + "start": 2447.09, + "end": 2451.52, + "probability": 0.4804 + }, + { + "start": 2451.52, + "end": 2454.97, + "probability": 0.8197 + }, + { + "start": 2455.42, + "end": 2459.44, + "probability": 0.9884 + }, + { + "start": 2459.96, + "end": 2460.98, + "probability": 0.7564 + }, + { + "start": 2461.24, + "end": 2466.32, + "probability": 0.9833 + }, + { + "start": 2466.74, + "end": 2467.44, + "probability": 0.5391 + }, + { + "start": 2467.52, + "end": 2468.28, + "probability": 0.7048 + }, + { + "start": 2468.34, + "end": 2469.36, + "probability": 0.9235 + }, + { + "start": 2469.76, + "end": 2472.56, + "probability": 0.9707 + }, + { + "start": 2472.96, + "end": 2473.18, + "probability": 0.5231 + }, + { + "start": 2475.76, + "end": 2478.08, + "probability": 0.3848 + }, + { + "start": 2478.28, + "end": 2478.42, + "probability": 0.1339 + }, + { + "start": 2478.58, + "end": 2483.28, + "probability": 0.5174 + }, + { + "start": 2483.48, + "end": 2487.52, + "probability": 0.7852 + }, + { + "start": 2487.82, + "end": 2490.13, + "probability": 0.2559 + }, + { + "start": 2491.9, + "end": 2493.07, + "probability": 0.7688 + }, + { + "start": 2495.1, + "end": 2496.24, + "probability": 0.75 + }, + { + "start": 2496.24, + "end": 2496.24, + "probability": 0.0987 + }, + { + "start": 2496.24, + "end": 2496.24, + "probability": 0.4398 + }, + { + "start": 2496.24, + "end": 2496.74, + "probability": 0.8176 + }, + { + "start": 2497.6, + "end": 2499.68, + "probability": 0.1136 + }, + { + "start": 2499.68, + "end": 2501.7, + "probability": 0.621 + }, + { + "start": 2502.0, + "end": 2502.0, + "probability": 0.1028 + }, + { + "start": 2502.0, + "end": 2503.78, + "probability": 0.7024 + }, + { + "start": 2504.06, + "end": 2505.54, + "probability": 0.7673 + }, + { + "start": 2505.86, + "end": 2510.0, + "probability": 0.8491 + }, + { + "start": 2510.7, + "end": 2513.18, + "probability": 0.7623 + }, + { + "start": 2513.38, + "end": 2518.92, + "probability": 0.7243 + }, + { + "start": 2523.7, + "end": 2525.72, + "probability": 0.7465 + }, + { + "start": 2526.44, + "end": 2529.7, + "probability": 0.5245 + }, + { + "start": 2530.54, + "end": 2531.4, + "probability": 0.0261 + }, + { + "start": 2533.7, + "end": 2534.56, + "probability": 0.6025 + }, + { + "start": 2535.02, + "end": 2536.44, + "probability": 0.6992 + }, + { + "start": 2536.66, + "end": 2539.5, + "probability": 0.9917 + }, + { + "start": 2540.06, + "end": 2543.8, + "probability": 0.8918 + }, + { + "start": 2544.36, + "end": 2545.7, + "probability": 0.9407 + }, + { + "start": 2546.1, + "end": 2549.04, + "probability": 0.9497 + }, + { + "start": 2550.36, + "end": 2551.72, + "probability": 0.592 + }, + { + "start": 2551.84, + "end": 2553.66, + "probability": 0.8471 + }, + { + "start": 2553.72, + "end": 2554.32, + "probability": 0.5028 + }, + { + "start": 2554.6, + "end": 2555.26, + "probability": 0.5382 + }, + { + "start": 2555.72, + "end": 2557.16, + "probability": 0.7546 + }, + { + "start": 2557.24, + "end": 2558.4, + "probability": 0.9499 + }, + { + "start": 2558.5, + "end": 2560.86, + "probability": 0.6415 + }, + { + "start": 2561.36, + "end": 2566.64, + "probability": 0.961 + }, + { + "start": 2566.64, + "end": 2571.44, + "probability": 0.8896 + }, + { + "start": 2571.8, + "end": 2576.0, + "probability": 0.8124 + }, + { + "start": 2576.32, + "end": 2577.37, + "probability": 0.858 + }, + { + "start": 2578.0, + "end": 2579.58, + "probability": 0.8604 + }, + { + "start": 2579.82, + "end": 2582.7, + "probability": 0.908 + }, + { + "start": 2582.92, + "end": 2585.8, + "probability": 0.7218 + }, + { + "start": 2585.86, + "end": 2588.74, + "probability": 0.9567 + }, + { + "start": 2588.74, + "end": 2592.4, + "probability": 0.9023 + }, + { + "start": 2592.86, + "end": 2595.82, + "probability": 0.9893 + }, + { + "start": 2595.82, + "end": 2598.72, + "probability": 0.9645 + }, + { + "start": 2599.2, + "end": 2599.82, + "probability": 0.6291 + }, + { + "start": 2599.92, + "end": 2603.18, + "probability": 0.9812 + }, + { + "start": 2603.18, + "end": 2606.86, + "probability": 0.9921 + }, + { + "start": 2607.2, + "end": 2609.96, + "probability": 0.9863 + }, + { + "start": 2610.4, + "end": 2611.24, + "probability": 0.9751 + }, + { + "start": 2612.26, + "end": 2615.28, + "probability": 0.9883 + }, + { + "start": 2615.82, + "end": 2620.84, + "probability": 0.9633 + }, + { + "start": 2621.0, + "end": 2625.08, + "probability": 0.9907 + }, + { + "start": 2625.26, + "end": 2630.32, + "probability": 0.9712 + }, + { + "start": 2630.54, + "end": 2631.58, + "probability": 0.8434 + }, + { + "start": 2632.07, + "end": 2634.28, + "probability": 0.8566 + }, + { + "start": 2634.5, + "end": 2637.66, + "probability": 0.8913 + }, + { + "start": 2637.74, + "end": 2639.4, + "probability": 0.841 + }, + { + "start": 2639.6, + "end": 2640.9, + "probability": 0.8054 + }, + { + "start": 2641.12, + "end": 2643.5, + "probability": 0.9644 + }, + { + "start": 2643.68, + "end": 2644.28, + "probability": 0.9175 + }, + { + "start": 2644.8, + "end": 2645.28, + "probability": 0.2724 + }, + { + "start": 2645.46, + "end": 2648.16, + "probability": 0.8063 + }, + { + "start": 2658.08, + "end": 2659.24, + "probability": 0.5577 + }, + { + "start": 2659.64, + "end": 2660.58, + "probability": 0.7543 + }, + { + "start": 2660.58, + "end": 2665.46, + "probability": 0.9834 + }, + { + "start": 2667.33, + "end": 2677.48, + "probability": 0.9482 + }, + { + "start": 2677.58, + "end": 2678.08, + "probability": 0.8309 + }, + { + "start": 2678.22, + "end": 2678.64, + "probability": 0.8603 + }, + { + "start": 2678.76, + "end": 2679.08, + "probability": 0.8052 + }, + { + "start": 2679.14, + "end": 2679.58, + "probability": 0.985 + }, + { + "start": 2679.58, + "end": 2680.8, + "probability": 0.7661 + }, + { + "start": 2681.52, + "end": 2688.46, + "probability": 0.893 + }, + { + "start": 2689.04, + "end": 2690.01, + "probability": 0.8738 + }, + { + "start": 2690.8, + "end": 2692.9, + "probability": 0.9791 + }, + { + "start": 2692.98, + "end": 2694.7, + "probability": 0.9924 + }, + { + "start": 2695.26, + "end": 2698.56, + "probability": 0.9552 + }, + { + "start": 2700.32, + "end": 2704.18, + "probability": 0.9319 + }, + { + "start": 2707.58, + "end": 2710.44, + "probability": 0.8995 + }, + { + "start": 2710.6, + "end": 2712.16, + "probability": 0.9276 + }, + { + "start": 2712.8, + "end": 2714.86, + "probability": 0.8203 + }, + { + "start": 2714.86, + "end": 2716.74, + "probability": 0.978 + }, + { + "start": 2716.86, + "end": 2718.84, + "probability": 0.8247 + }, + { + "start": 2718.96, + "end": 2721.1, + "probability": 0.8609 + }, + { + "start": 2721.36, + "end": 2723.59, + "probability": 0.665 + }, + { + "start": 2723.98, + "end": 2725.48, + "probability": 0.764 + }, + { + "start": 2726.06, + "end": 2730.46, + "probability": 0.519 + }, + { + "start": 2730.84, + "end": 2731.5, + "probability": 0.3165 + }, + { + "start": 2732.58, + "end": 2735.38, + "probability": 0.8139 + }, + { + "start": 2735.56, + "end": 2741.0, + "probability": 0.904 + }, + { + "start": 2741.3, + "end": 2741.84, + "probability": 0.8533 + }, + { + "start": 2741.92, + "end": 2746.7, + "probability": 0.9176 + }, + { + "start": 2746.76, + "end": 2748.48, + "probability": 0.9979 + }, + { + "start": 2748.56, + "end": 2749.68, + "probability": 0.8728 + }, + { + "start": 2749.96, + "end": 2751.34, + "probability": 0.4161 + }, + { + "start": 2751.34, + "end": 2754.82, + "probability": 0.6989 + }, + { + "start": 2754.82, + "end": 2755.16, + "probability": 0.4196 + }, + { + "start": 2755.7, + "end": 2756.78, + "probability": 0.6221 + }, + { + "start": 2756.82, + "end": 2759.56, + "probability": 0.8848 + }, + { + "start": 2759.72, + "end": 2760.72, + "probability": 0.7436 + }, + { + "start": 2760.86, + "end": 2763.0, + "probability": 0.86 + }, + { + "start": 2763.26, + "end": 2764.29, + "probability": 0.9946 + }, + { + "start": 2764.96, + "end": 2765.45, + "probability": 0.7817 + }, + { + "start": 2765.64, + "end": 2766.88, + "probability": 0.8518 + }, + { + "start": 2766.88, + "end": 2771.52, + "probability": 0.9819 + }, + { + "start": 2771.74, + "end": 2774.62, + "probability": 0.1136 + }, + { + "start": 2775.14, + "end": 2777.22, + "probability": 0.0189 + }, + { + "start": 2777.38, + "end": 2778.6, + "probability": 0.5174 + }, + { + "start": 2778.72, + "end": 2780.2, + "probability": 0.0522 + }, + { + "start": 2780.52, + "end": 2781.72, + "probability": 0.092 + }, + { + "start": 2781.88, + "end": 2782.22, + "probability": 0.1227 + }, + { + "start": 2782.38, + "end": 2783.62, + "probability": 0.7062 + }, + { + "start": 2783.94, + "end": 2786.22, + "probability": 0.9947 + }, + { + "start": 2787.22, + "end": 2788.48, + "probability": 0.8562 + }, + { + "start": 2788.66, + "end": 2790.0, + "probability": 0.6741 + }, + { + "start": 2790.08, + "end": 2790.92, + "probability": 0.7736 + }, + { + "start": 2790.98, + "end": 2792.58, + "probability": 0.6614 + }, + { + "start": 2792.92, + "end": 2793.64, + "probability": 0.9755 + }, + { + "start": 2793.72, + "end": 2794.26, + "probability": 0.6959 + }, + { + "start": 2794.38, + "end": 2795.86, + "probability": 0.7072 + }, + { + "start": 2796.12, + "end": 2796.82, + "probability": 0.6575 + }, + { + "start": 2796.92, + "end": 2797.52, + "probability": 0.7672 + }, + { + "start": 2797.64, + "end": 2798.24, + "probability": 0.9087 + }, + { + "start": 2798.34, + "end": 2799.5, + "probability": 0.9813 + }, + { + "start": 2800.66, + "end": 2802.82, + "probability": 0.6168 + }, + { + "start": 2802.82, + "end": 2804.14, + "probability": 0.8743 + }, + { + "start": 2804.2, + "end": 2804.88, + "probability": 0.76 + }, + { + "start": 2805.28, + "end": 2807.68, + "probability": 0.9054 + }, + { + "start": 2808.2, + "end": 2814.24, + "probability": 0.9108 + }, + { + "start": 2814.46, + "end": 2816.2, + "probability": 0.9443 + }, + { + "start": 2816.3, + "end": 2822.04, + "probability": 0.9436 + }, + { + "start": 2822.82, + "end": 2824.82, + "probability": 0.6826 + }, + { + "start": 2824.94, + "end": 2826.51, + "probability": 0.7744 + }, + { + "start": 2827.16, + "end": 2828.94, + "probability": 0.7939 + }, + { + "start": 2828.98, + "end": 2830.38, + "probability": 0.6241 + }, + { + "start": 2830.5, + "end": 2832.86, + "probability": 0.7437 + }, + { + "start": 2833.18, + "end": 2835.9, + "probability": 0.9453 + }, + { + "start": 2836.12, + "end": 2839.34, + "probability": 0.8469 + }, + { + "start": 2839.68, + "end": 2840.04, + "probability": 0.4854 + }, + { + "start": 2840.1, + "end": 2841.05, + "probability": 0.9713 + }, + { + "start": 2841.66, + "end": 2845.0, + "probability": 0.5336 + }, + { + "start": 2845.16, + "end": 2845.51, + "probability": 0.3596 + }, + { + "start": 2845.9, + "end": 2846.08, + "probability": 0.6621 + }, + { + "start": 2846.24, + "end": 2847.44, + "probability": 0.8234 + }, + { + "start": 2847.58, + "end": 2848.98, + "probability": 0.4645 + }, + { + "start": 2849.32, + "end": 2849.54, + "probability": 0.4913 + }, + { + "start": 2851.2, + "end": 2852.56, + "probability": 0.7546 + }, + { + "start": 2853.1, + "end": 2857.04, + "probability": 0.9836 + }, + { + "start": 2857.1, + "end": 2858.86, + "probability": 0.7671 + }, + { + "start": 2859.04, + "end": 2862.06, + "probability": 0.981 + }, + { + "start": 2862.24, + "end": 2863.4, + "probability": 0.849 + }, + { + "start": 2863.44, + "end": 2867.36, + "probability": 0.6996 + }, + { + "start": 2868.18, + "end": 2868.76, + "probability": 0.6642 + }, + { + "start": 2868.82, + "end": 2874.26, + "probability": 0.9656 + }, + { + "start": 2874.26, + "end": 2880.88, + "probability": 0.7881 + }, + { + "start": 2881.96, + "end": 2883.02, + "probability": 0.5993 + }, + { + "start": 2884.16, + "end": 2885.88, + "probability": 0.886 + }, + { + "start": 2885.98, + "end": 2887.0, + "probability": 0.6551 + }, + { + "start": 2887.08, + "end": 2889.26, + "probability": 0.509 + }, + { + "start": 2889.3, + "end": 2889.76, + "probability": 0.5033 + }, + { + "start": 2889.76, + "end": 2890.3, + "probability": 0.5029 + }, + { + "start": 2890.34, + "end": 2891.08, + "probability": 0.2797 + }, + { + "start": 2906.04, + "end": 2910.94, + "probability": 0.1885 + }, + { + "start": 2911.1, + "end": 2912.4, + "probability": 0.7633 + }, + { + "start": 2912.56, + "end": 2913.5, + "probability": 0.3023 + }, + { + "start": 2914.28, + "end": 2915.12, + "probability": 0.0945 + }, + { + "start": 2916.9, + "end": 2924.08, + "probability": 0.3846 + }, + { + "start": 2925.72, + "end": 2933.48, + "probability": 0.0717 + }, + { + "start": 2937.06, + "end": 2941.02, + "probability": 0.1383 + }, + { + "start": 2941.02, + "end": 2941.24, + "probability": 0.0923 + }, + { + "start": 2941.24, + "end": 2942.38, + "probability": 0.0644 + }, + { + "start": 2943.92, + "end": 2944.16, + "probability": 0.0377 + }, + { + "start": 2946.46, + "end": 2946.74, + "probability": 0.0885 + }, + { + "start": 2946.74, + "end": 2946.74, + "probability": 0.0584 + }, + { + "start": 2946.74, + "end": 2946.74, + "probability": 0.15 + }, + { + "start": 2946.74, + "end": 2948.88, + "probability": 0.3405 + }, + { + "start": 2949.16, + "end": 2953.3, + "probability": 0.9115 + }, + { + "start": 2953.42, + "end": 2955.2, + "probability": 0.7221 + }, + { + "start": 2956.48, + "end": 2958.98, + "probability": 0.2746 + }, + { + "start": 2959.0, + "end": 2959.0, + "probability": 0.0 + }, + { + "start": 2959.0, + "end": 2959.0, + "probability": 0.0 + }, + { + "start": 2959.0, + "end": 2959.0, + "probability": 0.0 + }, + { + "start": 2960.26, + "end": 2962.66, + "probability": 0.5193 + }, + { + "start": 2963.02, + "end": 2963.7, + "probability": 0.6027 + }, + { + "start": 2964.04, + "end": 2968.64, + "probability": 0.7943 + }, + { + "start": 2968.72, + "end": 2971.34, + "probability": 0.7403 + }, + { + "start": 2971.82, + "end": 2973.98, + "probability": 0.8462 + }, + { + "start": 2974.16, + "end": 2974.74, + "probability": 0.8074 + }, + { + "start": 2974.92, + "end": 2975.98, + "probability": 0.8937 + }, + { + "start": 2976.54, + "end": 2978.62, + "probability": 0.934 + }, + { + "start": 2979.22, + "end": 2980.32, + "probability": 0.5592 + }, + { + "start": 2980.38, + "end": 2981.5, + "probability": 0.9583 + }, + { + "start": 2982.02, + "end": 2982.24, + "probability": 0.3295 + }, + { + "start": 2982.3, + "end": 2986.56, + "probability": 0.9574 + }, + { + "start": 2987.08, + "end": 2988.26, + "probability": 0.8176 + }, + { + "start": 2988.46, + "end": 2990.38, + "probability": 0.9191 + }, + { + "start": 2990.42, + "end": 2992.46, + "probability": 0.9677 + }, + { + "start": 2992.78, + "end": 2994.36, + "probability": 0.9812 + }, + { + "start": 2994.96, + "end": 2996.95, + "probability": 0.7555 + }, + { + "start": 2997.76, + "end": 2999.0, + "probability": 0.6621 + }, + { + "start": 2999.0, + "end": 2999.46, + "probability": 0.5823 + }, + { + "start": 2999.54, + "end": 2999.72, + "probability": 0.6611 + }, + { + "start": 2999.8, + "end": 3000.62, + "probability": 0.904 + }, + { + "start": 3000.68, + "end": 3004.0, + "probability": 0.9806 + }, + { + "start": 3004.0, + "end": 3008.14, + "probability": 0.9287 + }, + { + "start": 3008.52, + "end": 3011.24, + "probability": 0.8401 + }, + { + "start": 3011.98, + "end": 3014.18, + "probability": 0.7981 + }, + { + "start": 3014.68, + "end": 3020.3, + "probability": 0.938 + }, + { + "start": 3020.56, + "end": 3021.38, + "probability": 0.9731 + }, + { + "start": 3021.5, + "end": 3025.15, + "probability": 0.9623 + }, + { + "start": 3025.32, + "end": 3025.32, + "probability": 0.3474 + }, + { + "start": 3025.32, + "end": 3026.34, + "probability": 0.3291 + }, + { + "start": 3026.36, + "end": 3027.4, + "probability": 0.7347 + }, + { + "start": 3027.48, + "end": 3028.05, + "probability": 0.0499 + }, + { + "start": 3028.12, + "end": 3030.4, + "probability": 0.801 + }, + { + "start": 3030.4, + "end": 3031.54, + "probability": 0.6484 + }, + { + "start": 3031.58, + "end": 3032.54, + "probability": 0.8736 + }, + { + "start": 3033.14, + "end": 3033.98, + "probability": 0.9208 + }, + { + "start": 3034.18, + "end": 3036.1, + "probability": 0.949 + }, + { + "start": 3036.24, + "end": 3036.6, + "probability": 0.3949 + }, + { + "start": 3036.66, + "end": 3038.64, + "probability": 0.652 + }, + { + "start": 3038.88, + "end": 3039.22, + "probability": 0.4311 + }, + { + "start": 3039.36, + "end": 3039.86, + "probability": 0.5273 + }, + { + "start": 3040.12, + "end": 3042.4, + "probability": 0.8882 + }, + { + "start": 3043.66, + "end": 3044.66, + "probability": 0.6875 + }, + { + "start": 3044.8, + "end": 3046.46, + "probability": 0.9697 + }, + { + "start": 3046.54, + "end": 3047.46, + "probability": 0.9844 + }, + { + "start": 3047.68, + "end": 3049.42, + "probability": 0.8784 + }, + { + "start": 3049.64, + "end": 3050.78, + "probability": 0.9148 + }, + { + "start": 3051.3, + "end": 3053.66, + "probability": 0.9966 + }, + { + "start": 3053.72, + "end": 3056.2, + "probability": 0.9902 + }, + { + "start": 3056.92, + "end": 3057.94, + "probability": 0.8491 + }, + { + "start": 3058.14, + "end": 3059.52, + "probability": 0.6408 + }, + { + "start": 3060.14, + "end": 3062.16, + "probability": 0.9838 + }, + { + "start": 3062.18, + "end": 3063.04, + "probability": 0.5708 + }, + { + "start": 3063.14, + "end": 3064.5, + "probability": 0.8956 + }, + { + "start": 3065.6, + "end": 3066.74, + "probability": 0.3991 + }, + { + "start": 3067.68, + "end": 3070.62, + "probability": 0.9595 + }, + { + "start": 3071.68, + "end": 3077.58, + "probability": 0.9865 + }, + { + "start": 3077.78, + "end": 3079.38, + "probability": 0.8608 + }, + { + "start": 3079.82, + "end": 3082.24, + "probability": 0.9451 + }, + { + "start": 3082.8, + "end": 3084.06, + "probability": 0.8152 + }, + { + "start": 3084.62, + "end": 3087.64, + "probability": 0.9883 + }, + { + "start": 3088.4, + "end": 3090.32, + "probability": 0.9921 + }, + { + "start": 3090.42, + "end": 3091.02, + "probability": 0.8978 + }, + { + "start": 3091.16, + "end": 3091.94, + "probability": 0.6722 + }, + { + "start": 3092.18, + "end": 3097.4, + "probability": 0.7898 + }, + { + "start": 3098.02, + "end": 3101.46, + "probability": 0.9741 + }, + { + "start": 3104.24, + "end": 3106.12, + "probability": 0.2497 + }, + { + "start": 3106.94, + "end": 3114.52, + "probability": 0.9871 + }, + { + "start": 3114.58, + "end": 3114.92, + "probability": 0.6008 + }, + { + "start": 3114.94, + "end": 3115.66, + "probability": 0.8792 + }, + { + "start": 3115.72, + "end": 3116.36, + "probability": 0.8274 + }, + { + "start": 3116.5, + "end": 3117.62, + "probability": 0.8382 + }, + { + "start": 3117.86, + "end": 3118.02, + "probability": 0.8938 + }, + { + "start": 3118.08, + "end": 3120.24, + "probability": 0.8157 + }, + { + "start": 3120.42, + "end": 3122.76, + "probability": 0.3787 + }, + { + "start": 3122.78, + "end": 3122.94, + "probability": 0.3473 + }, + { + "start": 3124.38, + "end": 3127.94, + "probability": 0.7301 + }, + { + "start": 3128.54, + "end": 3131.34, + "probability": 0.912 + }, + { + "start": 3131.34, + "end": 3135.76, + "probability": 0.959 + }, + { + "start": 3136.56, + "end": 3139.96, + "probability": 0.9028 + }, + { + "start": 3140.54, + "end": 3142.58, + "probability": 0.8991 + }, + { + "start": 3143.18, + "end": 3146.64, + "probability": 0.9354 + }, + { + "start": 3146.74, + "end": 3149.28, + "probability": 0.9327 + }, + { + "start": 3149.98, + "end": 3151.42, + "probability": 0.6617 + }, + { + "start": 3151.44, + "end": 3151.86, + "probability": 0.8937 + }, + { + "start": 3151.96, + "end": 3155.52, + "probability": 0.9663 + }, + { + "start": 3155.66, + "end": 3159.28, + "probability": 0.9758 + }, + { + "start": 3159.42, + "end": 3160.49, + "probability": 0.7231 + }, + { + "start": 3162.4, + "end": 3163.14, + "probability": 0.7519 + }, + { + "start": 3163.72, + "end": 3167.68, + "probability": 0.921 + }, + { + "start": 3168.3, + "end": 3168.6, + "probability": 0.0457 + }, + { + "start": 3168.6, + "end": 3169.88, + "probability": 0.7842 + }, + { + "start": 3169.94, + "end": 3172.2, + "probability": 0.9909 + }, + { + "start": 3172.84, + "end": 3173.22, + "probability": 0.5612 + }, + { + "start": 3173.26, + "end": 3176.92, + "probability": 0.9618 + }, + { + "start": 3177.06, + "end": 3181.36, + "probability": 0.9744 + }, + { + "start": 3182.52, + "end": 3183.64, + "probability": 0.684 + }, + { + "start": 3184.32, + "end": 3189.62, + "probability": 0.9894 + }, + { + "start": 3190.26, + "end": 3191.75, + "probability": 0.0721 + }, + { + "start": 3192.86, + "end": 3195.9, + "probability": 0.8881 + }, + { + "start": 3196.0, + "end": 3196.94, + "probability": 0.4239 + }, + { + "start": 3197.02, + "end": 3198.04, + "probability": 0.6742 + }, + { + "start": 3198.12, + "end": 3201.44, + "probability": 0.9733 + }, + { + "start": 3201.68, + "end": 3202.34, + "probability": 0.4884 + }, + { + "start": 3202.56, + "end": 3205.84, + "probability": 0.9268 + }, + { + "start": 3205.94, + "end": 3206.52, + "probability": 0.8708 + }, + { + "start": 3211.82, + "end": 3214.44, + "probability": 0.4319 + }, + { + "start": 3214.54, + "end": 3218.18, + "probability": 0.8328 + }, + { + "start": 3218.28, + "end": 3219.34, + "probability": 0.9238 + }, + { + "start": 3219.84, + "end": 3222.48, + "probability": 0.9712 + }, + { + "start": 3222.7, + "end": 3225.54, + "probability": 0.9922 + }, + { + "start": 3225.76, + "end": 3227.98, + "probability": 0.6855 + }, + { + "start": 3229.44, + "end": 3230.18, + "probability": 0.0329 + }, + { + "start": 3230.18, + "end": 3234.0, + "probability": 0.5866 + }, + { + "start": 3234.36, + "end": 3235.14, + "probability": 0.854 + }, + { + "start": 3235.78, + "end": 3237.62, + "probability": 0.2174 + }, + { + "start": 3238.54, + "end": 3239.1, + "probability": 0.0652 + }, + { + "start": 3239.52, + "end": 3239.78, + "probability": 0.6205 + }, + { + "start": 3243.01, + "end": 3244.04, + "probability": 0.6317 + }, + { + "start": 3245.08, + "end": 3248.44, + "probability": 0.9822 + }, + { + "start": 3248.44, + "end": 3251.82, + "probability": 0.9756 + }, + { + "start": 3253.34, + "end": 3255.78, + "probability": 0.8294 + }, + { + "start": 3256.62, + "end": 3259.9, + "probability": 0.8315 + }, + { + "start": 3260.44, + "end": 3261.68, + "probability": 0.9073 + }, + { + "start": 3262.76, + "end": 3265.2, + "probability": 0.9267 + }, + { + "start": 3265.24, + "end": 3266.18, + "probability": 0.9551 + }, + { + "start": 3267.24, + "end": 3269.42, + "probability": 0.8518 + }, + { + "start": 3269.56, + "end": 3270.14, + "probability": 0.8798 + }, + { + "start": 3271.74, + "end": 3274.46, + "probability": 0.7016 + }, + { + "start": 3275.36, + "end": 3277.14, + "probability": 0.9797 + }, + { + "start": 3277.44, + "end": 3278.62, + "probability": 0.5182 + }, + { + "start": 3278.7, + "end": 3280.48, + "probability": 0.6927 + }, + { + "start": 3281.58, + "end": 3285.66, + "probability": 0.8442 + }, + { + "start": 3286.52, + "end": 3287.7, + "probability": 0.8777 + }, + { + "start": 3288.96, + "end": 3289.82, + "probability": 0.9584 + }, + { + "start": 3290.24, + "end": 3291.0, + "probability": 0.841 + }, + { + "start": 3291.0, + "end": 3296.48, + "probability": 0.8909 + }, + { + "start": 3296.94, + "end": 3297.48, + "probability": 0.6872 + }, + { + "start": 3297.52, + "end": 3298.88, + "probability": 0.9672 + }, + { + "start": 3299.4, + "end": 3300.33, + "probability": 0.6972 + }, + { + "start": 3301.78, + "end": 3304.04, + "probability": 0.9421 + }, + { + "start": 3304.2, + "end": 3307.56, + "probability": 0.9932 + }, + { + "start": 3307.66, + "end": 3308.44, + "probability": 0.8381 + }, + { + "start": 3308.96, + "end": 3311.44, + "probability": 0.9941 + }, + { + "start": 3312.46, + "end": 3314.32, + "probability": 0.9608 + }, + { + "start": 3314.4, + "end": 3315.04, + "probability": 0.6314 + }, + { + "start": 3315.1, + "end": 3316.12, + "probability": 0.8001 + }, + { + "start": 3317.12, + "end": 3323.74, + "probability": 0.8028 + }, + { + "start": 3324.38, + "end": 3324.66, + "probability": 0.3224 + }, + { + "start": 3325.2, + "end": 3326.2, + "probability": 0.6342 + }, + { + "start": 3326.62, + "end": 3331.48, + "probability": 0.9445 + }, + { + "start": 3332.98, + "end": 3335.46, + "probability": 0.8433 + }, + { + "start": 3336.44, + "end": 3338.78, + "probability": 0.9701 + }, + { + "start": 3339.44, + "end": 3341.64, + "probability": 0.5433 + }, + { + "start": 3341.64, + "end": 3343.34, + "probability": 0.7539 + }, + { + "start": 3343.98, + "end": 3344.66, + "probability": 0.8602 + }, + { + "start": 3344.74, + "end": 3350.8, + "probability": 0.9621 + }, + { + "start": 3351.5, + "end": 3356.38, + "probability": 0.9079 + }, + { + "start": 3356.38, + "end": 3363.06, + "probability": 0.9988 + }, + { + "start": 3363.12, + "end": 3364.24, + "probability": 0.6283 + }, + { + "start": 3364.46, + "end": 3365.22, + "probability": 0.8501 + }, + { + "start": 3365.56, + "end": 3366.5, + "probability": 0.8552 + }, + { + "start": 3366.96, + "end": 3369.18, + "probability": 0.8315 + }, + { + "start": 3369.96, + "end": 3370.8, + "probability": 0.93 + }, + { + "start": 3370.92, + "end": 3371.64, + "probability": 0.728 + }, + { + "start": 3371.82, + "end": 3373.2, + "probability": 0.9901 + }, + { + "start": 3373.62, + "end": 3374.38, + "probability": 0.8933 + }, + { + "start": 3374.52, + "end": 3375.52, + "probability": 0.8095 + }, + { + "start": 3375.66, + "end": 3378.24, + "probability": 0.9784 + }, + { + "start": 3379.16, + "end": 3381.1, + "probability": 0.9283 + }, + { + "start": 3382.02, + "end": 3383.15, + "probability": 0.9956 + }, + { + "start": 3383.58, + "end": 3385.02, + "probability": 0.8711 + }, + { + "start": 3385.64, + "end": 3386.54, + "probability": 0.7085 + }, + { + "start": 3386.98, + "end": 3389.46, + "probability": 0.6397 + }, + { + "start": 3389.72, + "end": 3392.52, + "probability": 0.9785 + }, + { + "start": 3393.24, + "end": 3394.94, + "probability": 0.9902 + }, + { + "start": 3396.0, + "end": 3397.9, + "probability": 0.9944 + }, + { + "start": 3397.9, + "end": 3400.96, + "probability": 0.998 + }, + { + "start": 3401.56, + "end": 3403.38, + "probability": 0.9023 + }, + { + "start": 3404.1, + "end": 3405.22, + "probability": 0.9805 + }, + { + "start": 3405.92, + "end": 3406.9, + "probability": 0.9586 + }, + { + "start": 3407.52, + "end": 3408.32, + "probability": 0.9255 + }, + { + "start": 3408.42, + "end": 3410.6, + "probability": 0.765 + }, + { + "start": 3411.5, + "end": 3413.96, + "probability": 0.904 + }, + { + "start": 3414.9, + "end": 3420.86, + "probability": 0.9839 + }, + { + "start": 3421.72, + "end": 3422.0, + "probability": 0.5656 + }, + { + "start": 3422.06, + "end": 3425.56, + "probability": 0.9928 + }, + { + "start": 3426.0, + "end": 3427.64, + "probability": 0.7998 + }, + { + "start": 3427.88, + "end": 3429.46, + "probability": 0.8948 + }, + { + "start": 3429.84, + "end": 3430.94, + "probability": 0.7521 + }, + { + "start": 3431.18, + "end": 3434.72, + "probability": 0.9512 + }, + { + "start": 3435.18, + "end": 3436.26, + "probability": 0.9272 + }, + { + "start": 3436.82, + "end": 3437.18, + "probability": 0.5049 + }, + { + "start": 3437.28, + "end": 3438.66, + "probability": 0.8605 + }, + { + "start": 3438.96, + "end": 3439.36, + "probability": 0.835 + }, + { + "start": 3439.7, + "end": 3440.83, + "probability": 0.8698 + }, + { + "start": 3441.06, + "end": 3441.58, + "probability": 0.8902 + }, + { + "start": 3441.86, + "end": 3443.75, + "probability": 0.9316 + }, + { + "start": 3444.1, + "end": 3444.88, + "probability": 0.9729 + }, + { + "start": 3444.96, + "end": 3445.88, + "probability": 0.896 + }, + { + "start": 3446.18, + "end": 3446.9, + "probability": 0.8543 + }, + { + "start": 3448.0, + "end": 3449.92, + "probability": 0.9484 + }, + { + "start": 3450.08, + "end": 3451.22, + "probability": 0.9544 + }, + { + "start": 3451.94, + "end": 3453.86, + "probability": 0.9551 + }, + { + "start": 3454.3, + "end": 3456.0, + "probability": 0.9773 + }, + { + "start": 3456.06, + "end": 3456.7, + "probability": 0.6492 + }, + { + "start": 3456.9, + "end": 3459.18, + "probability": 0.9436 + }, + { + "start": 3459.68, + "end": 3461.78, + "probability": 0.8875 + }, + { + "start": 3463.02, + "end": 3464.7, + "probability": 0.9497 + }, + { + "start": 3465.96, + "end": 3468.52, + "probability": 0.8547 + }, + { + "start": 3469.38, + "end": 3472.02, + "probability": 0.9646 + }, + { + "start": 3474.22, + "end": 3478.3, + "probability": 0.9969 + }, + { + "start": 3478.3, + "end": 3481.82, + "probability": 0.9958 + }, + { + "start": 3482.34, + "end": 3484.34, + "probability": 0.9295 + }, + { + "start": 3484.84, + "end": 3485.12, + "probability": 0.4871 + }, + { + "start": 3485.16, + "end": 3488.22, + "probability": 0.9414 + }, + { + "start": 3488.96, + "end": 3491.2, + "probability": 0.6949 + }, + { + "start": 3494.08, + "end": 3496.84, + "probability": 0.7234 + }, + { + "start": 3496.92, + "end": 3498.1, + "probability": 0.6301 + }, + { + "start": 3498.3, + "end": 3498.78, + "probability": 0.0308 + }, + { + "start": 3498.92, + "end": 3499.62, + "probability": 0.7284 + }, + { + "start": 3499.88, + "end": 3502.07, + "probability": 0.8638 + }, + { + "start": 3502.44, + "end": 3503.9, + "probability": 0.9733 + }, + { + "start": 3504.42, + "end": 3506.6, + "probability": 0.7259 + }, + { + "start": 3506.78, + "end": 3510.7, + "probability": 0.9853 + }, + { + "start": 3511.5, + "end": 3513.64, + "probability": 0.8384 + }, + { + "start": 3514.4, + "end": 3515.56, + "probability": 0.8174 + }, + { + "start": 3516.14, + "end": 3519.74, + "probability": 0.9747 + }, + { + "start": 3521.24, + "end": 3523.1, + "probability": 0.9894 + }, + { + "start": 3523.53, + "end": 3526.33, + "probability": 0.8222 + }, + { + "start": 3526.86, + "end": 3529.12, + "probability": 0.853 + }, + { + "start": 3529.76, + "end": 3535.66, + "probability": 0.9868 + }, + { + "start": 3535.8, + "end": 3537.02, + "probability": 0.7109 + }, + { + "start": 3537.06, + "end": 3541.1, + "probability": 0.9864 + }, + { + "start": 3541.22, + "end": 3544.58, + "probability": 0.7666 + }, + { + "start": 3545.46, + "end": 3548.92, + "probability": 0.9614 + }, + { + "start": 3549.48, + "end": 3552.76, + "probability": 0.9949 + }, + { + "start": 3553.42, + "end": 3558.34, + "probability": 0.9331 + }, + { + "start": 3558.94, + "end": 3560.68, + "probability": 0.9768 + }, + { + "start": 3560.72, + "end": 3562.12, + "probability": 0.9871 + }, + { + "start": 3562.2, + "end": 3563.82, + "probability": 0.9747 + }, + { + "start": 3564.5, + "end": 3565.98, + "probability": 0.9406 + }, + { + "start": 3566.04, + "end": 3569.76, + "probability": 0.9973 + }, + { + "start": 3569.9, + "end": 3570.5, + "probability": 0.5712 + }, + { + "start": 3570.56, + "end": 3572.08, + "probability": 0.9886 + }, + { + "start": 3572.28, + "end": 3574.86, + "probability": 0.9207 + }, + { + "start": 3575.4, + "end": 3579.0, + "probability": 0.9822 + }, + { + "start": 3579.14, + "end": 3579.34, + "probability": 0.7766 + }, + { + "start": 3579.6, + "end": 3581.2, + "probability": 0.9261 + }, + { + "start": 3581.5, + "end": 3583.14, + "probability": 0.7382 + }, + { + "start": 3584.2, + "end": 3584.48, + "probability": 0.5506 + }, + { + "start": 3584.5, + "end": 3585.42, + "probability": 0.8849 + }, + { + "start": 3585.6, + "end": 3591.06, + "probability": 0.9556 + }, + { + "start": 3591.18, + "end": 3593.06, + "probability": 0.8629 + }, + { + "start": 3593.32, + "end": 3594.56, + "probability": 0.256 + }, + { + "start": 3594.68, + "end": 3596.54, + "probability": 0.6757 + }, + { + "start": 3596.78, + "end": 3597.24, + "probability": 0.3029 + }, + { + "start": 3597.3, + "end": 3597.8, + "probability": 0.5194 + }, + { + "start": 3597.82, + "end": 3598.4, + "probability": 0.4962 + }, + { + "start": 3598.46, + "end": 3599.04, + "probability": 0.3372 + }, + { + "start": 3602.44, + "end": 3602.5, + "probability": 0.3349 + }, + { + "start": 3611.32, + "end": 3611.96, + "probability": 0.1647 + }, + { + "start": 3615.12, + "end": 3621.0, + "probability": 0.8366 + }, + { + "start": 3621.14, + "end": 3622.82, + "probability": 0.866 + }, + { + "start": 3623.14, + "end": 3625.5, + "probability": 0.0313 + }, + { + "start": 3626.0, + "end": 3628.25, + "probability": 0.0976 + }, + { + "start": 3631.42, + "end": 3633.68, + "probability": 0.0384 + }, + { + "start": 3633.68, + "end": 3641.74, + "probability": 0.0317 + }, + { + "start": 3641.74, + "end": 3641.74, + "probability": 0.0262 + }, + { + "start": 3642.06, + "end": 3644.22, + "probability": 0.0888 + }, + { + "start": 3645.44, + "end": 3646.26, + "probability": 0.0425 + }, + { + "start": 3655.23, + "end": 3656.36, + "probability": 0.1405 + }, + { + "start": 3656.9, + "end": 3662.15, + "probability": 0.0376 + }, + { + "start": 3662.68, + "end": 3663.74, + "probability": 0.2977 + }, + { + "start": 3666.42, + "end": 3667.76, + "probability": 0.1648 + }, + { + "start": 3667.9, + "end": 3668.98, + "probability": 0.0222 + }, + { + "start": 3669.0, + "end": 3669.0, + "probability": 0.0 + }, + { + "start": 3669.0, + "end": 3669.0, + "probability": 0.0 + }, + { + "start": 3669.0, + "end": 3669.0, + "probability": 0.0 + }, + { + "start": 3669.0, + "end": 3669.0, + "probability": 0.0 + }, + { + "start": 3669.22, + "end": 3672.1, + "probability": 0.5126 + }, + { + "start": 3672.2, + "end": 3673.1, + "probability": 0.8131 + }, + { + "start": 3673.14, + "end": 3674.66, + "probability": 0.8961 + }, + { + "start": 3674.7, + "end": 3675.44, + "probability": 0.7301 + }, + { + "start": 3675.52, + "end": 3677.6, + "probability": 0.9556 + }, + { + "start": 3678.26, + "end": 3680.2, + "probability": 0.662 + }, + { + "start": 3680.86, + "end": 3682.54, + "probability": 0.7792 + }, + { + "start": 3683.0, + "end": 3684.04, + "probability": 0.6257 + }, + { + "start": 3684.66, + "end": 3685.6, + "probability": 0.3914 + }, + { + "start": 3685.9, + "end": 3687.74, + "probability": 0.6618 + }, + { + "start": 3690.26, + "end": 3693.86, + "probability": 0.5175 + }, + { + "start": 3695.92, + "end": 3697.32, + "probability": 0.6232 + }, + { + "start": 3697.92, + "end": 3698.8, + "probability": 0.4567 + }, + { + "start": 3698.92, + "end": 3700.54, + "probability": 0.6676 + }, + { + "start": 3701.14, + "end": 3703.28, + "probability": 0.6991 + }, + { + "start": 3704.6, + "end": 3709.12, + "probability": 0.9721 + }, + { + "start": 3709.92, + "end": 3712.18, + "probability": 0.2129 + }, + { + "start": 3712.18, + "end": 3714.82, + "probability": 0.9084 + }, + { + "start": 3716.02, + "end": 3722.48, + "probability": 0.9608 + }, + { + "start": 3723.54, + "end": 3729.14, + "probability": 0.9971 + }, + { + "start": 3734.2, + "end": 3735.8, + "probability": 0.8648 + }, + { + "start": 3736.82, + "end": 3738.6, + "probability": 0.8941 + }, + { + "start": 3739.22, + "end": 3739.86, + "probability": 0.7678 + }, + { + "start": 3740.12, + "end": 3741.86, + "probability": 0.9517 + }, + { + "start": 3741.88, + "end": 3743.18, + "probability": 0.9683 + }, + { + "start": 3743.66, + "end": 3744.24, + "probability": 0.7883 + }, + { + "start": 3744.42, + "end": 3745.48, + "probability": 0.9829 + }, + { + "start": 3745.66, + "end": 3746.8, + "probability": 0.9816 + }, + { + "start": 3747.44, + "end": 3751.18, + "probability": 0.8126 + }, + { + "start": 3752.76, + "end": 3756.84, + "probability": 0.9889 + }, + { + "start": 3759.2, + "end": 3762.63, + "probability": 0.9916 + }, + { + "start": 3763.4, + "end": 3766.58, + "probability": 0.9785 + }, + { + "start": 3767.64, + "end": 3770.36, + "probability": 0.8754 + }, + { + "start": 3772.86, + "end": 3776.58, + "probability": 0.9845 + }, + { + "start": 3777.26, + "end": 3779.48, + "probability": 0.8568 + }, + { + "start": 3780.18, + "end": 3783.62, + "probability": 0.72 + }, + { + "start": 3784.42, + "end": 3786.8, + "probability": 0.6737 + }, + { + "start": 3786.94, + "end": 3787.83, + "probability": 0.8862 + }, + { + "start": 3789.02, + "end": 3792.52, + "probability": 0.993 + }, + { + "start": 3793.22, + "end": 3793.86, + "probability": 0.8154 + }, + { + "start": 3793.88, + "end": 3798.02, + "probability": 0.9229 + }, + { + "start": 3799.58, + "end": 3803.48, + "probability": 0.9971 + }, + { + "start": 3804.7, + "end": 3809.4, + "probability": 0.9982 + }, + { + "start": 3810.86, + "end": 3815.28, + "probability": 0.9863 + }, + { + "start": 3815.28, + "end": 3817.66, + "probability": 0.9768 + }, + { + "start": 3817.74, + "end": 3818.38, + "probability": 0.777 + }, + { + "start": 3818.52, + "end": 3819.1, + "probability": 0.8375 + }, + { + "start": 3819.16, + "end": 3819.54, + "probability": 0.8353 + }, + { + "start": 3819.66, + "end": 3819.9, + "probability": 0.9307 + }, + { + "start": 3819.98, + "end": 3820.32, + "probability": 0.9883 + }, + { + "start": 3820.46, + "end": 3820.68, + "probability": 0.8846 + }, + { + "start": 3820.8, + "end": 3820.98, + "probability": 0.7816 + }, + { + "start": 3821.08, + "end": 3821.74, + "probability": 0.947 + }, + { + "start": 3821.8, + "end": 3822.24, + "probability": 0.9747 + }, + { + "start": 3822.3, + "end": 3823.48, + "probability": 0.9735 + }, + { + "start": 3824.02, + "end": 3826.12, + "probability": 0.9226 + }, + { + "start": 3826.98, + "end": 3833.08, + "probability": 0.9907 + }, + { + "start": 3833.52, + "end": 3838.78, + "probability": 0.9701 + }, + { + "start": 3838.84, + "end": 3840.72, + "probability": 0.7602 + }, + { + "start": 3842.96, + "end": 3846.18, + "probability": 0.6373 + }, + { + "start": 3846.82, + "end": 3853.5, + "probability": 0.9951 + }, + { + "start": 3854.52, + "end": 3859.0, + "probability": 0.9786 + }, + { + "start": 3859.0, + "end": 3864.56, + "probability": 0.9989 + }, + { + "start": 3865.48, + "end": 3867.48, + "probability": 0.8228 + }, + { + "start": 3868.26, + "end": 3873.0, + "probability": 0.9919 + }, + { + "start": 3873.62, + "end": 3878.8, + "probability": 0.9971 + }, + { + "start": 3878.8, + "end": 3884.68, + "probability": 0.9969 + }, + { + "start": 3885.68, + "end": 3886.76, + "probability": 0.7526 + }, + { + "start": 3886.82, + "end": 3888.5, + "probability": 0.9947 + }, + { + "start": 3888.68, + "end": 3890.8, + "probability": 0.9985 + }, + { + "start": 3893.19, + "end": 3899.32, + "probability": 0.9919 + }, + { + "start": 3899.33, + "end": 3903.02, + "probability": 0.9663 + }, + { + "start": 3903.7, + "end": 3908.48, + "probability": 0.9906 + }, + { + "start": 3908.96, + "end": 3912.64, + "probability": 0.9636 + }, + { + "start": 3913.54, + "end": 3914.26, + "probability": 0.7961 + }, + { + "start": 3914.4, + "end": 3919.58, + "probability": 0.9849 + }, + { + "start": 3919.64, + "end": 3921.2, + "probability": 0.9546 + }, + { + "start": 3921.38, + "end": 3922.82, + "probability": 0.646 + }, + { + "start": 3923.42, + "end": 3926.38, + "probability": 0.8784 + }, + { + "start": 3927.16, + "end": 3927.96, + "probability": 0.8105 + }, + { + "start": 3928.08, + "end": 3930.3, + "probability": 0.9817 + }, + { + "start": 3930.52, + "end": 3932.38, + "probability": 0.9565 + }, + { + "start": 3932.46, + "end": 3934.36, + "probability": 0.9355 + }, + { + "start": 3936.52, + "end": 3938.14, + "probability": 0.6421 + }, + { + "start": 3938.22, + "end": 3941.34, + "probability": 0.9512 + }, + { + "start": 3941.34, + "end": 3947.04, + "probability": 0.9978 + }, + { + "start": 3947.8, + "end": 3950.56, + "probability": 0.9806 + }, + { + "start": 3951.64, + "end": 3956.78, + "probability": 0.9504 + }, + { + "start": 3958.18, + "end": 3959.76, + "probability": 0.9342 + }, + { + "start": 3960.0, + "end": 3961.54, + "probability": 0.651 + }, + { + "start": 3961.7, + "end": 3970.24, + "probability": 0.9788 + }, + { + "start": 3970.94, + "end": 3973.45, + "probability": 0.8046 + }, + { + "start": 3974.3, + "end": 3977.08, + "probability": 0.9962 + }, + { + "start": 3977.78, + "end": 3983.22, + "probability": 0.9778 + }, + { + "start": 3984.02, + "end": 3987.08, + "probability": 0.9019 + }, + { + "start": 3988.28, + "end": 3989.62, + "probability": 0.7198 + }, + { + "start": 3990.24, + "end": 3994.72, + "probability": 0.7581 + }, + { + "start": 3995.38, + "end": 4001.16, + "probability": 0.966 + }, + { + "start": 4001.18, + "end": 4002.16, + "probability": 0.7212 + }, + { + "start": 4003.06, + "end": 4005.52, + "probability": 0.9629 + }, + { + "start": 4005.52, + "end": 4008.68, + "probability": 0.8228 + }, + { + "start": 4009.58, + "end": 4012.22, + "probability": 0.9273 + }, + { + "start": 4012.22, + "end": 4017.88, + "probability": 0.9492 + }, + { + "start": 4020.7, + "end": 4023.58, + "probability": 0.8357 + }, + { + "start": 4024.78, + "end": 4027.84, + "probability": 0.8682 + }, + { + "start": 4028.3, + "end": 4029.38, + "probability": 0.5803 + }, + { + "start": 4029.44, + "end": 4035.84, + "probability": 0.9279 + }, + { + "start": 4036.5, + "end": 4040.49, + "probability": 0.7459 + }, + { + "start": 4041.38, + "end": 4043.88, + "probability": 0.9986 + }, + { + "start": 4044.3, + "end": 4045.18, + "probability": 0.9995 + }, + { + "start": 4045.9, + "end": 4047.72, + "probability": 0.9927 + }, + { + "start": 4048.32, + "end": 4054.94, + "probability": 0.9812 + }, + { + "start": 4056.28, + "end": 4059.62, + "probability": 0.9725 + }, + { + "start": 4061.62, + "end": 4065.44, + "probability": 0.8269 + }, + { + "start": 4066.7, + "end": 4073.32, + "probability": 0.9341 + }, + { + "start": 4073.58, + "end": 4077.7, + "probability": 0.9468 + }, + { + "start": 4078.54, + "end": 4079.82, + "probability": 0.9834 + }, + { + "start": 4080.88, + "end": 4083.02, + "probability": 0.7398 + }, + { + "start": 4083.64, + "end": 4086.46, + "probability": 0.8656 + }, + { + "start": 4087.74, + "end": 4090.04, + "probability": 0.9424 + }, + { + "start": 4090.14, + "end": 4092.8, + "probability": 0.9922 + }, + { + "start": 4093.24, + "end": 4094.18, + "probability": 0.9805 + }, + { + "start": 4094.6, + "end": 4095.84, + "probability": 0.9622 + }, + { + "start": 4096.2, + "end": 4101.82, + "probability": 0.9937 + }, + { + "start": 4102.3, + "end": 4104.62, + "probability": 0.895 + }, + { + "start": 4107.46, + "end": 4109.06, + "probability": 0.865 + }, + { + "start": 4109.74, + "end": 4110.82, + "probability": 0.9692 + }, + { + "start": 4112.12, + "end": 4117.6, + "probability": 0.9794 + }, + { + "start": 4120.34, + "end": 4122.04, + "probability": 0.8855 + }, + { + "start": 4122.38, + "end": 4126.54, + "probability": 0.9951 + }, + { + "start": 4126.68, + "end": 4128.3, + "probability": 0.877 + }, + { + "start": 4129.0, + "end": 4133.58, + "probability": 0.9881 + }, + { + "start": 4134.0, + "end": 4135.4, + "probability": 0.956 + }, + { + "start": 4135.6, + "end": 4137.96, + "probability": 0.9011 + }, + { + "start": 4138.2, + "end": 4138.5, + "probability": 0.9548 + }, + { + "start": 4138.66, + "end": 4139.04, + "probability": 0.8741 + }, + { + "start": 4141.26, + "end": 4147.66, + "probability": 0.96 + }, + { + "start": 4147.66, + "end": 4151.56, + "probability": 0.9838 + }, + { + "start": 4152.06, + "end": 4159.94, + "probability": 0.9902 + }, + { + "start": 4160.88, + "end": 4167.92, + "probability": 0.947 + }, + { + "start": 4168.56, + "end": 4171.72, + "probability": 0.9965 + }, + { + "start": 4172.32, + "end": 4179.06, + "probability": 0.9858 + }, + { + "start": 4180.08, + "end": 4186.46, + "probability": 0.8594 + }, + { + "start": 4187.1, + "end": 4190.13, + "probability": 0.895 + }, + { + "start": 4191.56, + "end": 4194.24, + "probability": 0.9895 + }, + { + "start": 4194.72, + "end": 4196.74, + "probability": 0.6647 + }, + { + "start": 4197.26, + "end": 4203.48, + "probability": 0.9773 + }, + { + "start": 4204.02, + "end": 4204.14, + "probability": 0.2151 + }, + { + "start": 4204.24, + "end": 4211.16, + "probability": 0.9175 + }, + { + "start": 4211.56, + "end": 4212.32, + "probability": 0.5577 + }, + { + "start": 4213.0, + "end": 4214.58, + "probability": 0.8322 + }, + { + "start": 4214.66, + "end": 4215.2, + "probability": 0.7222 + }, + { + "start": 4216.22, + "end": 4218.06, + "probability": 0.9436 + }, + { + "start": 4218.2, + "end": 4219.84, + "probability": 0.9185 + }, + { + "start": 4222.71, + "end": 4225.22, + "probability": 0.6901 + }, + { + "start": 4225.82, + "end": 4232.92, + "probability": 0.7915 + }, + { + "start": 4233.52, + "end": 4238.56, + "probability": 0.9897 + }, + { + "start": 4239.3, + "end": 4242.12, + "probability": 0.9287 + }, + { + "start": 4243.28, + "end": 4246.6, + "probability": 0.9772 + }, + { + "start": 4247.42, + "end": 4251.0, + "probability": 0.9944 + }, + { + "start": 4251.04, + "end": 4251.82, + "probability": 0.8885 + }, + { + "start": 4252.18, + "end": 4254.64, + "probability": 0.6954 + }, + { + "start": 4254.72, + "end": 4255.26, + "probability": 0.7747 + }, + { + "start": 4255.64, + "end": 4257.6, + "probability": 0.9802 + }, + { + "start": 4258.4, + "end": 4265.24, + "probability": 0.9944 + }, + { + "start": 4265.84, + "end": 4269.48, + "probability": 0.9346 + }, + { + "start": 4269.92, + "end": 4275.13, + "probability": 0.9374 + }, + { + "start": 4275.64, + "end": 4278.14, + "probability": 0.8269 + }, + { + "start": 4278.76, + "end": 4279.76, + "probability": 0.7797 + }, + { + "start": 4279.94, + "end": 4281.14, + "probability": 0.8537 + }, + { + "start": 4281.22, + "end": 4282.75, + "probability": 0.9941 + }, + { + "start": 4282.88, + "end": 4285.3, + "probability": 0.7373 + }, + { + "start": 4285.4, + "end": 4287.04, + "probability": 0.4827 + }, + { + "start": 4287.8, + "end": 4290.54, + "probability": 0.8 + }, + { + "start": 4291.34, + "end": 4291.82, + "probability": 0.666 + }, + { + "start": 4291.98, + "end": 4292.64, + "probability": 0.8846 + }, + { + "start": 4292.84, + "end": 4294.24, + "probability": 0.9677 + }, + { + "start": 4294.38, + "end": 4294.92, + "probability": 0.562 + }, + { + "start": 4295.04, + "end": 4298.38, + "probability": 0.8575 + }, + { + "start": 4298.42, + "end": 4300.5, + "probability": 0.7656 + }, + { + "start": 4300.68, + "end": 4301.32, + "probability": 0.7735 + }, + { + "start": 4301.44, + "end": 4304.16, + "probability": 0.9824 + }, + { + "start": 4304.78, + "end": 4307.48, + "probability": 0.9917 + }, + { + "start": 4307.82, + "end": 4309.36, + "probability": 0.7609 + }, + { + "start": 4309.46, + "end": 4311.08, + "probability": 0.9263 + }, + { + "start": 4311.46, + "end": 4313.02, + "probability": 0.9941 + }, + { + "start": 4313.28, + "end": 4316.16, + "probability": 0.9256 + }, + { + "start": 4316.16, + "end": 4318.78, + "probability": 0.998 + }, + { + "start": 4319.18, + "end": 4320.74, + "probability": 0.9424 + }, + { + "start": 4320.74, + "end": 4322.58, + "probability": 0.8801 + }, + { + "start": 4322.66, + "end": 4323.2, + "probability": 0.5946 + }, + { + "start": 4323.36, + "end": 4323.58, + "probability": 0.64 + }, + { + "start": 4324.52, + "end": 4327.62, + "probability": 0.9947 + }, + { + "start": 4327.94, + "end": 4329.44, + "probability": 0.9521 + }, + { + "start": 4330.02, + "end": 4332.54, + "probability": 0.8243 + }, + { + "start": 4332.6, + "end": 4337.5, + "probability": 0.9978 + }, + { + "start": 4337.6, + "end": 4339.38, + "probability": 0.6336 + }, + { + "start": 4339.62, + "end": 4341.72, + "probability": 0.9458 + }, + { + "start": 4341.72, + "end": 4344.48, + "probability": 0.9883 + }, + { + "start": 4345.4, + "end": 4350.62, + "probability": 0.8643 + }, + { + "start": 4351.06, + "end": 4352.38, + "probability": 0.9824 + }, + { + "start": 4353.22, + "end": 4354.88, + "probability": 0.8089 + }, + { + "start": 4355.56, + "end": 4359.14, + "probability": 0.9811 + }, + { + "start": 4359.62, + "end": 4363.66, + "probability": 0.7723 + }, + { + "start": 4363.99, + "end": 4367.15, + "probability": 0.9902 + }, + { + "start": 4368.14, + "end": 4373.02, + "probability": 0.9907 + }, + { + "start": 4373.8, + "end": 4377.46, + "probability": 0.9773 + }, + { + "start": 4377.46, + "end": 4381.08, + "probability": 0.9987 + }, + { + "start": 4381.42, + "end": 4381.86, + "probability": 0.5193 + }, + { + "start": 4382.4, + "end": 4383.0, + "probability": 0.836 + }, + { + "start": 4383.18, + "end": 4385.74, + "probability": 0.8379 + }, + { + "start": 4385.78, + "end": 4387.21, + "probability": 0.4225 + }, + { + "start": 4387.54, + "end": 4388.56, + "probability": 0.7311 + }, + { + "start": 4388.96, + "end": 4390.8, + "probability": 0.7321 + }, + { + "start": 4390.84, + "end": 4391.28, + "probability": 0.5289 + }, + { + "start": 4391.3, + "end": 4394.08, + "probability": 0.5977 + }, + { + "start": 4394.2, + "end": 4399.06, + "probability": 0.7868 + }, + { + "start": 4399.5, + "end": 4400.8, + "probability": 0.6827 + }, + { + "start": 4400.92, + "end": 4401.92, + "probability": 0.8167 + }, + { + "start": 4402.8, + "end": 4403.8, + "probability": 0.7632 + }, + { + "start": 4403.94, + "end": 4405.48, + "probability": 0.9712 + }, + { + "start": 4405.64, + "end": 4411.38, + "probability": 0.7832 + }, + { + "start": 4411.68, + "end": 4412.38, + "probability": 0.6914 + }, + { + "start": 4412.68, + "end": 4413.38, + "probability": 0.7889 + }, + { + "start": 4413.52, + "end": 4413.9, + "probability": 0.7933 + }, + { + "start": 4414.34, + "end": 4417.08, + "probability": 0.903 + }, + { + "start": 4417.16, + "end": 4418.48, + "probability": 0.771 + }, + { + "start": 4418.6, + "end": 4422.9, + "probability": 0.9641 + }, + { + "start": 4423.04, + "end": 4423.7, + "probability": 0.7444 + }, + { + "start": 4424.16, + "end": 4428.3, + "probability": 0.9806 + }, + { + "start": 4429.32, + "end": 4432.84, + "probability": 0.9938 + }, + { + "start": 4432.88, + "end": 4433.6, + "probability": 0.9462 + }, + { + "start": 4433.74, + "end": 4434.38, + "probability": 0.7927 + }, + { + "start": 4434.54, + "end": 4440.38, + "probability": 0.8066 + }, + { + "start": 4440.48, + "end": 4445.9, + "probability": 0.8928 + }, + { + "start": 4447.66, + "end": 4449.44, + "probability": 0.7578 + }, + { + "start": 4450.2, + "end": 4453.96, + "probability": 0.8867 + }, + { + "start": 4455.02, + "end": 4456.56, + "probability": 0.4279 + }, + { + "start": 4457.22, + "end": 4458.18, + "probability": 0.8916 + }, + { + "start": 4458.56, + "end": 4459.34, + "probability": 0.4709 + }, + { + "start": 4459.74, + "end": 4462.82, + "probability": 0.7284 + }, + { + "start": 4463.46, + "end": 4465.86, + "probability": 0.8173 + }, + { + "start": 4466.34, + "end": 4470.1, + "probability": 0.7416 + }, + { + "start": 4470.1, + "end": 4473.34, + "probability": 0.9396 + }, + { + "start": 4474.06, + "end": 4474.16, + "probability": 0.5348 + }, + { + "start": 4474.3, + "end": 4474.98, + "probability": 0.6691 + }, + { + "start": 4475.12, + "end": 4476.68, + "probability": 0.9567 + }, + { + "start": 4477.46, + "end": 4479.96, + "probability": 0.8651 + }, + { + "start": 4480.76, + "end": 4486.24, + "probability": 0.8942 + }, + { + "start": 4486.86, + "end": 4490.2, + "probability": 0.9248 + }, + { + "start": 4490.94, + "end": 4496.62, + "probability": 0.9069 + }, + { + "start": 4497.08, + "end": 4503.72, + "probability": 0.9938 + }, + { + "start": 4503.92, + "end": 4504.4, + "probability": 0.5765 + }, + { + "start": 4504.5, + "end": 4507.06, + "probability": 0.919 + }, + { + "start": 4507.98, + "end": 4512.78, + "probability": 0.1502 + }, + { + "start": 4532.68, + "end": 4534.18, + "probability": 0.7894 + }, + { + "start": 4535.32, + "end": 4537.64, + "probability": 0.8116 + }, + { + "start": 4538.66, + "end": 4539.88, + "probability": 0.9483 + }, + { + "start": 4540.84, + "end": 4541.44, + "probability": 0.3374 + }, + { + "start": 4541.98, + "end": 4547.45, + "probability": 0.9681 + }, + { + "start": 4549.7, + "end": 4551.53, + "probability": 0.7545 + }, + { + "start": 4552.9, + "end": 4555.56, + "probability": 0.9415 + }, + { + "start": 4555.9, + "end": 4558.9, + "probability": 0.7839 + }, + { + "start": 4559.56, + "end": 4560.74, + "probability": 0.7198 + }, + { + "start": 4561.5, + "end": 4562.2, + "probability": 0.3994 + }, + { + "start": 4563.9, + "end": 4566.82, + "probability": 0.5834 + }, + { + "start": 4566.94, + "end": 4574.1, + "probability": 0.9465 + }, + { + "start": 4575.12, + "end": 4578.46, + "probability": 0.8571 + }, + { + "start": 4580.9, + "end": 4581.46, + "probability": 0.73 + }, + { + "start": 4582.58, + "end": 4585.16, + "probability": 0.7646 + }, + { + "start": 4586.68, + "end": 4592.8, + "probability": 0.9727 + }, + { + "start": 4592.88, + "end": 4595.48, + "probability": 0.9404 + }, + { + "start": 4596.76, + "end": 4598.5, + "probability": 0.9552 + }, + { + "start": 4598.94, + "end": 4601.58, + "probability": 0.9326 + }, + { + "start": 4602.56, + "end": 4604.24, + "probability": 0.8815 + }, + { + "start": 4606.42, + "end": 4611.18, + "probability": 0.996 + }, + { + "start": 4611.9, + "end": 4615.68, + "probability": 0.863 + }, + { + "start": 4616.62, + "end": 4617.62, + "probability": 0.8121 + }, + { + "start": 4619.42, + "end": 4620.57, + "probability": 0.7518 + }, + { + "start": 4622.16, + "end": 4625.52, + "probability": 0.9928 + }, + { + "start": 4625.6, + "end": 4626.68, + "probability": 0.7319 + }, + { + "start": 4628.32, + "end": 4633.74, + "probability": 0.9337 + }, + { + "start": 4635.14, + "end": 4640.66, + "probability": 0.9941 + }, + { + "start": 4643.04, + "end": 4646.36, + "probability": 0.9681 + }, + { + "start": 4647.28, + "end": 4648.62, + "probability": 0.6893 + }, + { + "start": 4649.38, + "end": 4651.48, + "probability": 0.9773 + }, + { + "start": 4653.11, + "end": 4659.12, + "probability": 0.8384 + }, + { + "start": 4660.4, + "end": 4665.84, + "probability": 0.9966 + }, + { + "start": 4668.18, + "end": 4670.04, + "probability": 0.9829 + }, + { + "start": 4670.78, + "end": 4672.88, + "probability": 0.9166 + }, + { + "start": 4679.56, + "end": 4680.48, + "probability": 0.1068 + }, + { + "start": 4682.74, + "end": 4684.84, + "probability": 0.762 + }, + { + "start": 4685.44, + "end": 4688.58, + "probability": 0.6726 + }, + { + "start": 4689.24, + "end": 4690.3, + "probability": 0.6146 + }, + { + "start": 4690.34, + "end": 4692.22, + "probability": 0.8081 + }, + { + "start": 4692.34, + "end": 4698.58, + "probability": 0.9232 + }, + { + "start": 4698.76, + "end": 4699.56, + "probability": 0.5306 + }, + { + "start": 4700.38, + "end": 4703.22, + "probability": 0.8489 + }, + { + "start": 4704.54, + "end": 4706.88, + "probability": 0.9961 + }, + { + "start": 4707.56, + "end": 4714.36, + "probability": 0.9893 + }, + { + "start": 4715.5, + "end": 4719.32, + "probability": 0.9822 + }, + { + "start": 4721.0, + "end": 4724.84, + "probability": 0.9803 + }, + { + "start": 4725.42, + "end": 4729.72, + "probability": 0.9741 + }, + { + "start": 4730.28, + "end": 4732.52, + "probability": 0.9742 + }, + { + "start": 4734.14, + "end": 4738.42, + "probability": 0.9603 + }, + { + "start": 4739.52, + "end": 4745.24, + "probability": 0.9925 + }, + { + "start": 4745.36, + "end": 4746.62, + "probability": 0.699 + }, + { + "start": 4747.14, + "end": 4751.33, + "probability": 0.9505 + }, + { + "start": 4752.02, + "end": 4755.12, + "probability": 0.9583 + }, + { + "start": 4756.22, + "end": 4758.22, + "probability": 0.6787 + }, + { + "start": 4759.04, + "end": 4762.64, + "probability": 0.8811 + }, + { + "start": 4762.64, + "end": 4767.2, + "probability": 0.9637 + }, + { + "start": 4768.9, + "end": 4769.9, + "probability": 0.7777 + }, + { + "start": 4770.88, + "end": 4776.88, + "probability": 0.9807 + }, + { + "start": 4776.88, + "end": 4780.96, + "probability": 0.9995 + }, + { + "start": 4781.7, + "end": 4786.86, + "probability": 0.9926 + }, + { + "start": 4787.54, + "end": 4792.96, + "probability": 0.8623 + }, + { + "start": 4794.14, + "end": 4796.2, + "probability": 0.6188 + }, + { + "start": 4797.28, + "end": 4800.28, + "probability": 0.639 + }, + { + "start": 4801.32, + "end": 4804.92, + "probability": 0.9791 + }, + { + "start": 4805.68, + "end": 4813.28, + "probability": 0.9408 + }, + { + "start": 4813.74, + "end": 4816.52, + "probability": 0.9175 + }, + { + "start": 4817.16, + "end": 4822.98, + "probability": 0.8411 + }, + { + "start": 4823.58, + "end": 4827.56, + "probability": 0.8702 + }, + { + "start": 4829.42, + "end": 4834.44, + "probability": 0.8847 + }, + { + "start": 4834.68, + "end": 4838.74, + "probability": 0.9552 + }, + { + "start": 4839.34, + "end": 4843.76, + "probability": 0.9531 + }, + { + "start": 4844.28, + "end": 4844.74, + "probability": 0.3522 + }, + { + "start": 4845.32, + "end": 4846.28, + "probability": 0.5679 + }, + { + "start": 4846.38, + "end": 4848.96, + "probability": 0.945 + }, + { + "start": 4849.96, + "end": 4851.04, + "probability": 0.8569 + }, + { + "start": 4851.06, + "end": 4858.04, + "probability": 0.6449 + }, + { + "start": 4858.74, + "end": 4863.72, + "probability": 0.9964 + }, + { + "start": 4864.9, + "end": 4864.9, + "probability": 0.0341 + }, + { + "start": 4865.22, + "end": 4865.46, + "probability": 0.0215 + }, + { + "start": 4865.46, + "end": 4866.1, + "probability": 0.384 + }, + { + "start": 4866.14, + "end": 4868.45, + "probability": 0.9659 + }, + { + "start": 4868.54, + "end": 4871.92, + "probability": 0.9539 + }, + { + "start": 4875.4, + "end": 4879.1, + "probability": 0.7781 + }, + { + "start": 4879.32, + "end": 4882.74, + "probability": 0.2957 + }, + { + "start": 4882.78, + "end": 4885.12, + "probability": 0.8354 + }, + { + "start": 4885.3, + "end": 4887.68, + "probability": 0.8413 + }, + { + "start": 4887.8, + "end": 4889.94, + "probability": 0.9852 + }, + { + "start": 4890.18, + "end": 4893.38, + "probability": 0.9434 + }, + { + "start": 4893.5, + "end": 4895.06, + "probability": 0.9274 + }, + { + "start": 4895.54, + "end": 4897.78, + "probability": 0.9118 + }, + { + "start": 4899.14, + "end": 4901.32, + "probability": 0.6971 + }, + { + "start": 4902.1, + "end": 4905.5, + "probability": 0.8679 + }, + { + "start": 4906.44, + "end": 4911.88, + "probability": 0.9766 + }, + { + "start": 4911.92, + "end": 4912.52, + "probability": 0.6292 + }, + { + "start": 4912.58, + "end": 4913.06, + "probability": 0.9249 + }, + { + "start": 4913.1, + "end": 4913.98, + "probability": 0.6224 + }, + { + "start": 4914.08, + "end": 4918.22, + "probability": 0.9698 + }, + { + "start": 4918.32, + "end": 4922.58, + "probability": 0.9915 + }, + { + "start": 4922.72, + "end": 4923.4, + "probability": 0.5079 + }, + { + "start": 4923.66, + "end": 4924.48, + "probability": 0.6509 + }, + { + "start": 4924.94, + "end": 4927.88, + "probability": 0.7575 + }, + { + "start": 4928.2, + "end": 4930.7, + "probability": 0.7053 + }, + { + "start": 4931.1, + "end": 4932.84, + "probability": 0.9388 + }, + { + "start": 4932.94, + "end": 4935.04, + "probability": 0.9627 + }, + { + "start": 4935.1, + "end": 4935.96, + "probability": 0.6632 + }, + { + "start": 4936.3, + "end": 4936.38, + "probability": 0.2611 + }, + { + "start": 4936.46, + "end": 4936.66, + "probability": 0.7274 + }, + { + "start": 4936.7, + "end": 4943.12, + "probability": 0.9604 + }, + { + "start": 4943.12, + "end": 4948.46, + "probability": 0.9529 + }, + { + "start": 4949.64, + "end": 4955.6, + "probability": 0.9538 + }, + { + "start": 4956.42, + "end": 4957.42, + "probability": 0.8276 + }, + { + "start": 4958.62, + "end": 4959.37, + "probability": 0.9388 + }, + { + "start": 4960.92, + "end": 4964.82, + "probability": 0.8716 + }, + { + "start": 4965.9, + "end": 4966.86, + "probability": 0.6956 + }, + { + "start": 4966.9, + "end": 4967.92, + "probability": 0.8835 + }, + { + "start": 4968.16, + "end": 4973.56, + "probability": 0.988 + }, + { + "start": 4975.16, + "end": 4977.08, + "probability": 0.9279 + }, + { + "start": 4977.12, + "end": 4981.64, + "probability": 0.858 + }, + { + "start": 4982.16, + "end": 4985.78, + "probability": 0.9716 + }, + { + "start": 4986.46, + "end": 4990.38, + "probability": 0.9966 + }, + { + "start": 4990.8, + "end": 4992.36, + "probability": 0.7861 + }, + { + "start": 4992.66, + "end": 4993.34, + "probability": 0.8269 + }, + { + "start": 4993.46, + "end": 4995.3, + "probability": 0.6939 + }, + { + "start": 4995.9, + "end": 4999.98, + "probability": 0.9293 + }, + { + "start": 5001.22, + "end": 5003.0, + "probability": 0.0382 + }, + { + "start": 5003.0, + "end": 5007.52, + "probability": 0.9272 + }, + { + "start": 5008.36, + "end": 5012.24, + "probability": 0.8571 + }, + { + "start": 5013.09, + "end": 5016.72, + "probability": 0.3384 + }, + { + "start": 5016.8, + "end": 5016.8, + "probability": 0.667 + }, + { + "start": 5016.8, + "end": 5017.21, + "probability": 0.6497 + }, + { + "start": 5018.04, + "end": 5019.82, + "probability": 0.8963 + }, + { + "start": 5022.1, + "end": 5025.42, + "probability": 0.584 + }, + { + "start": 5033.08, + "end": 5034.06, + "probability": 0.0411 + }, + { + "start": 5040.85, + "end": 5043.82, + "probability": 0.0274 + }, + { + "start": 5047.38, + "end": 5047.5, + "probability": 0.0089 + }, + { + "start": 5048.98, + "end": 5050.88, + "probability": 0.0116 + }, + { + "start": 5050.9, + "end": 5056.52, + "probability": 0.0969 + }, + { + "start": 5057.22, + "end": 5057.66, + "probability": 0.0812 + }, + { + "start": 5058.26, + "end": 5058.44, + "probability": 0.0855 + }, + { + "start": 5058.44, + "end": 5061.39, + "probability": 0.0773 + }, + { + "start": 5062.26, + "end": 5062.42, + "probability": 0.0061 + }, + { + "start": 5063.92, + "end": 5066.62, + "probability": 0.0262 + }, + { + "start": 5068.54, + "end": 5070.44, + "probability": 0.0414 + }, + { + "start": 5071.08, + "end": 5074.88, + "probability": 0.6315 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.0, + "end": 5100.0, + "probability": 0.0 + }, + { + "start": 5100.3, + "end": 5100.32, + "probability": 0.0909 + }, + { + "start": 5100.32, + "end": 5100.32, + "probability": 0.0285 + }, + { + "start": 5100.32, + "end": 5100.7, + "probability": 0.0337 + }, + { + "start": 5102.38, + "end": 5105.5, + "probability": 0.5554 + }, + { + "start": 5105.54, + "end": 5107.72, + "probability": 0.9725 + }, + { + "start": 5108.38, + "end": 5111.28, + "probability": 0.7598 + }, + { + "start": 5112.02, + "end": 5118.32, + "probability": 0.9434 + }, + { + "start": 5118.68, + "end": 5120.04, + "probability": 0.9786 + }, + { + "start": 5120.44, + "end": 5123.36, + "probability": 0.9963 + }, + { + "start": 5123.98, + "end": 5128.0, + "probability": 0.9524 + }, + { + "start": 5128.48, + "end": 5132.52, + "probability": 0.9973 + }, + { + "start": 5132.52, + "end": 5137.4, + "probability": 0.9945 + }, + { + "start": 5138.42, + "end": 5140.94, + "probability": 0.9995 + }, + { + "start": 5141.28, + "end": 5142.64, + "probability": 0.9163 + }, + { + "start": 5143.18, + "end": 5144.76, + "probability": 0.685 + }, + { + "start": 5145.54, + "end": 5152.98, + "probability": 0.8603 + }, + { + "start": 5152.98, + "end": 5157.48, + "probability": 0.998 + }, + { + "start": 5157.74, + "end": 5157.82, + "probability": 0.415 + }, + { + "start": 5157.9, + "end": 5158.04, + "probability": 0.7566 + }, + { + "start": 5158.08, + "end": 5161.66, + "probability": 0.9741 + }, + { + "start": 5162.9, + "end": 5164.72, + "probability": 0.9816 + }, + { + "start": 5165.56, + "end": 5169.8, + "probability": 0.9927 + }, + { + "start": 5170.56, + "end": 5171.72, + "probability": 0.9376 + }, + { + "start": 5171.8, + "end": 5173.1, + "probability": 0.8295 + }, + { + "start": 5173.52, + "end": 5176.2, + "probability": 0.9683 + }, + { + "start": 5177.44, + "end": 5182.4, + "probability": 0.9808 + }, + { + "start": 5183.08, + "end": 5185.1, + "probability": 0.6455 + }, + { + "start": 5185.26, + "end": 5186.16, + "probability": 0.4695 + }, + { + "start": 5186.42, + "end": 5187.62, + "probability": 0.8659 + }, + { + "start": 5187.74, + "end": 5188.3, + "probability": 0.8624 + }, + { + "start": 5188.36, + "end": 5189.34, + "probability": 0.9429 + }, + { + "start": 5189.46, + "end": 5190.6, + "probability": 0.8852 + }, + { + "start": 5190.82, + "end": 5192.2, + "probability": 0.9055 + }, + { + "start": 5192.86, + "end": 5197.0, + "probability": 0.9475 + }, + { + "start": 5197.9, + "end": 5198.06, + "probability": 0.0564 + }, + { + "start": 5198.06, + "end": 5203.66, + "probability": 0.9701 + }, + { + "start": 5204.43, + "end": 5208.13, + "probability": 0.8616 + }, + { + "start": 5208.72, + "end": 5210.84, + "probability": 0.9976 + }, + { + "start": 5210.84, + "end": 5214.94, + "probability": 0.9761 + }, + { + "start": 5215.8, + "end": 5221.2, + "probability": 0.992 + }, + { + "start": 5221.68, + "end": 5223.88, + "probability": 0.9912 + }, + { + "start": 5224.6, + "end": 5232.92, + "probability": 0.9956 + }, + { + "start": 5233.02, + "end": 5234.18, + "probability": 0.5746 + }, + { + "start": 5234.2, + "end": 5234.32, + "probability": 0.4856 + }, + { + "start": 5234.32, + "end": 5234.98, + "probability": 0.6967 + }, + { + "start": 5235.26, + "end": 5236.06, + "probability": 0.5798 + }, + { + "start": 5236.6, + "end": 5240.86, + "probability": 0.9882 + }, + { + "start": 5241.48, + "end": 5242.92, + "probability": 0.8081 + }, + { + "start": 5243.48, + "end": 5246.12, + "probability": 0.9913 + }, + { + "start": 5246.7, + "end": 5249.78, + "probability": 0.7681 + }, + { + "start": 5250.74, + "end": 5254.94, + "probability": 0.9905 + }, + { + "start": 5256.36, + "end": 5256.5, + "probability": 0.0235 + }, + { + "start": 5256.5, + "end": 5258.88, + "probability": 0.4167 + }, + { + "start": 5258.94, + "end": 5260.02, + "probability": 0.4929 + }, + { + "start": 5260.16, + "end": 5262.68, + "probability": 0.7821 + }, + { + "start": 5262.84, + "end": 5263.56, + "probability": 0.4043 + }, + { + "start": 5263.68, + "end": 5266.14, + "probability": 0.0451 + }, + { + "start": 5266.14, + "end": 5266.14, + "probability": 0.018 + }, + { + "start": 5266.14, + "end": 5266.14, + "probability": 0.2956 + }, + { + "start": 5266.14, + "end": 5266.14, + "probability": 0.1119 + }, + { + "start": 5266.14, + "end": 5266.52, + "probability": 0.0716 + }, + { + "start": 5267.16, + "end": 5268.58, + "probability": 0.4358 + }, + { + "start": 5268.58, + "end": 5269.52, + "probability": 0.0098 + }, + { + "start": 5269.52, + "end": 5269.52, + "probability": 0.4267 + }, + { + "start": 5269.52, + "end": 5269.52, + "probability": 0.4707 + }, + { + "start": 5269.52, + "end": 5273.54, + "probability": 0.9597 + }, + { + "start": 5273.62, + "end": 5274.79, + "probability": 0.7653 + }, + { + "start": 5275.36, + "end": 5276.28, + "probability": 0.0159 + }, + { + "start": 5276.28, + "end": 5279.74, + "probability": 0.9883 + }, + { + "start": 5280.16, + "end": 5282.34, + "probability": 0.9335 + }, + { + "start": 5282.54, + "end": 5283.36, + "probability": 0.7113 + }, + { + "start": 5283.46, + "end": 5284.35, + "probability": 0.936 + }, + { + "start": 5285.37, + "end": 5291.14, + "probability": 0.9912 + }, + { + "start": 5291.34, + "end": 5292.18, + "probability": 0.1771 + }, + { + "start": 5292.94, + "end": 5294.6, + "probability": 0.5158 + }, + { + "start": 5295.1, + "end": 5295.88, + "probability": 0.5128 + }, + { + "start": 5295.9, + "end": 5296.58, + "probability": 0.4811 + }, + { + "start": 5296.9, + "end": 5297.58, + "probability": 0.5629 + }, + { + "start": 5297.58, + "end": 5298.24, + "probability": 0.8016 + }, + { + "start": 5298.32, + "end": 5299.48, + "probability": 0.6278 + }, + { + "start": 5309.34, + "end": 5311.8, + "probability": 0.326 + }, + { + "start": 5311.8, + "end": 5312.64, + "probability": 0.3621 + }, + { + "start": 5312.64, + "end": 5313.72, + "probability": 0.1734 + }, + { + "start": 5314.3, + "end": 5318.44, + "probability": 0.5551 + }, + { + "start": 5318.82, + "end": 5321.8, + "probability": 0.959 + }, + { + "start": 5322.26, + "end": 5324.04, + "probability": 0.7104 + }, + { + "start": 5324.2, + "end": 5325.04, + "probability": 0.3294 + }, + { + "start": 5326.08, + "end": 5329.32, + "probability": 0.6254 + }, + { + "start": 5329.96, + "end": 5330.64, + "probability": 0.6904 + }, + { + "start": 5330.76, + "end": 5334.22, + "probability": 0.9785 + }, + { + "start": 5334.22, + "end": 5337.48, + "probability": 0.7918 + }, + { + "start": 5337.92, + "end": 5338.96, + "probability": 0.3866 + }, + { + "start": 5339.6, + "end": 5341.06, + "probability": 0.9416 + }, + { + "start": 5346.42, + "end": 5346.92, + "probability": 0.3066 + }, + { + "start": 5347.62, + "end": 5352.36, + "probability": 0.6134 + }, + { + "start": 5353.98, + "end": 5354.77, + "probability": 0.9275 + }, + { + "start": 5355.58, + "end": 5361.46, + "probability": 0.9829 + }, + { + "start": 5363.06, + "end": 5364.78, + "probability": 0.4376 + }, + { + "start": 5365.86, + "end": 5368.82, + "probability": 0.7235 + }, + { + "start": 5369.22, + "end": 5372.86, + "probability": 0.8691 + }, + { + "start": 5373.4, + "end": 5377.28, + "probability": 0.895 + }, + { + "start": 5377.44, + "end": 5381.5, + "probability": 0.7733 + }, + { + "start": 5382.76, + "end": 5384.19, + "probability": 0.8682 + }, + { + "start": 5384.74, + "end": 5391.08, + "probability": 0.7485 + }, + { + "start": 5392.0, + "end": 5396.16, + "probability": 0.8877 + }, + { + "start": 5397.46, + "end": 5399.64, + "probability": 0.7885 + }, + { + "start": 5400.4, + "end": 5406.02, + "probability": 0.9207 + }, + { + "start": 5406.66, + "end": 5408.36, + "probability": 0.9028 + }, + { + "start": 5409.46, + "end": 5411.18, + "probability": 0.8414 + }, + { + "start": 5412.2, + "end": 5415.14, + "probability": 0.861 + }, + { + "start": 5415.66, + "end": 5416.8, + "probability": 0.8411 + }, + { + "start": 5416.88, + "end": 5418.5, + "probability": 0.9451 + }, + { + "start": 5419.0, + "end": 5419.38, + "probability": 0.6801 + }, + { + "start": 5419.46, + "end": 5420.18, + "probability": 0.762 + }, + { + "start": 5420.82, + "end": 5421.52, + "probability": 0.8489 + }, + { + "start": 5421.8, + "end": 5423.26, + "probability": 0.9884 + }, + { + "start": 5423.6, + "end": 5429.4, + "probability": 0.9615 + }, + { + "start": 5429.86, + "end": 5432.86, + "probability": 0.8903 + }, + { + "start": 5433.32, + "end": 5434.26, + "probability": 0.5301 + }, + { + "start": 5434.32, + "end": 5435.16, + "probability": 0.6473 + }, + { + "start": 5435.52, + "end": 5435.92, + "probability": 0.5306 + }, + { + "start": 5435.96, + "end": 5437.38, + "probability": 0.9744 + }, + { + "start": 5437.9, + "end": 5438.52, + "probability": 0.899 + }, + { + "start": 5438.98, + "end": 5444.68, + "probability": 0.8507 + }, + { + "start": 5445.3, + "end": 5445.98, + "probability": 0.6958 + }, + { + "start": 5446.62, + "end": 5449.38, + "probability": 0.9453 + }, + { + "start": 5450.2, + "end": 5453.7, + "probability": 0.6907 + }, + { + "start": 5454.68, + "end": 5455.98, + "probability": 0.9193 + }, + { + "start": 5456.16, + "end": 5461.36, + "probability": 0.9325 + }, + { + "start": 5461.36, + "end": 5466.18, + "probability": 0.9709 + }, + { + "start": 5466.2, + "end": 5468.34, + "probability": 0.2545 + }, + { + "start": 5468.5, + "end": 5468.7, + "probability": 0.2281 + }, + { + "start": 5468.7, + "end": 5469.26, + "probability": 0.2782 + }, + { + "start": 5469.5, + "end": 5470.76, + "probability": 0.8098 + }, + { + "start": 5471.18, + "end": 5473.08, + "probability": 0.9834 + }, + { + "start": 5473.72, + "end": 5474.5, + "probability": 0.8613 + }, + { + "start": 5474.78, + "end": 5479.82, + "probability": 0.9681 + }, + { + "start": 5479.9, + "end": 5480.78, + "probability": 0.6495 + }, + { + "start": 5480.78, + "end": 5480.9, + "probability": 0.4699 + }, + { + "start": 5481.06, + "end": 5481.42, + "probability": 0.7566 + }, + { + "start": 5481.74, + "end": 5487.4, + "probability": 0.7819 + }, + { + "start": 5487.52, + "end": 5489.72, + "probability": 0.9499 + }, + { + "start": 5490.38, + "end": 5491.82, + "probability": 0.8489 + }, + { + "start": 5492.32, + "end": 5493.42, + "probability": 0.7857 + }, + { + "start": 5493.6, + "end": 5498.56, + "probability": 0.6777 + }, + { + "start": 5498.62, + "end": 5499.3, + "probability": 0.8407 + }, + { + "start": 5500.12, + "end": 5502.76, + "probability": 0.8523 + }, + { + "start": 5503.3, + "end": 5505.24, + "probability": 0.9219 + }, + { + "start": 5505.72, + "end": 5513.0, + "probability": 0.9354 + }, + { + "start": 5513.14, + "end": 5516.66, + "probability": 0.8339 + }, + { + "start": 5516.84, + "end": 5517.52, + "probability": 0.7787 + }, + { + "start": 5517.7, + "end": 5522.08, + "probability": 0.9614 + }, + { + "start": 5522.48, + "end": 5524.54, + "probability": 0.8218 + }, + { + "start": 5524.96, + "end": 5529.36, + "probability": 0.9916 + }, + { + "start": 5530.02, + "end": 5534.5, + "probability": 0.9483 + }, + { + "start": 5534.92, + "end": 5537.96, + "probability": 0.988 + }, + { + "start": 5538.62, + "end": 5539.16, + "probability": 0.5073 + }, + { + "start": 5539.42, + "end": 5540.42, + "probability": 0.5493 + }, + { + "start": 5540.48, + "end": 5544.5, + "probability": 0.9454 + }, + { + "start": 5544.56, + "end": 5545.38, + "probability": 0.5794 + }, + { + "start": 5545.42, + "end": 5546.12, + "probability": 0.5947 + }, + { + "start": 5546.2, + "end": 5547.6, + "probability": 0.6124 + }, + { + "start": 5550.15, + "end": 5551.22, + "probability": 0.5539 + }, + { + "start": 5551.22, + "end": 5554.2, + "probability": 0.6962 + }, + { + "start": 5554.2, + "end": 5559.66, + "probability": 0.7435 + }, + { + "start": 5559.94, + "end": 5562.42, + "probability": 0.8973 + }, + { + "start": 5562.76, + "end": 5564.66, + "probability": 0.9701 + }, + { + "start": 5564.86, + "end": 5566.82, + "probability": 0.7676 + }, + { + "start": 5567.06, + "end": 5570.26, + "probability": 0.9229 + }, + { + "start": 5571.44, + "end": 5575.82, + "probability": 0.6638 + }, + { + "start": 5576.4, + "end": 5577.98, + "probability": 0.8786 + }, + { + "start": 5578.22, + "end": 5579.04, + "probability": 0.8193 + }, + { + "start": 5579.36, + "end": 5580.7, + "probability": 0.6439 + }, + { + "start": 5580.84, + "end": 5582.26, + "probability": 0.3146 + }, + { + "start": 5582.5, + "end": 5585.02, + "probability": 0.8838 + }, + { + "start": 5585.14, + "end": 5593.1, + "probability": 0.9533 + }, + { + "start": 5593.34, + "end": 5595.02, + "probability": 0.9387 + }, + { + "start": 5595.3, + "end": 5596.46, + "probability": 0.9901 + }, + { + "start": 5597.04, + "end": 5597.94, + "probability": 0.9812 + }, + { + "start": 5598.0, + "end": 5600.5, + "probability": 0.94 + }, + { + "start": 5600.58, + "end": 5603.1, + "probability": 0.953 + }, + { + "start": 5603.18, + "end": 5604.34, + "probability": 0.6587 + }, + { + "start": 5604.38, + "end": 5605.24, + "probability": 0.9647 + }, + { + "start": 5605.26, + "end": 5607.44, + "probability": 0.9419 + }, + { + "start": 5608.38, + "end": 5609.08, + "probability": 0.4331 + }, + { + "start": 5609.38, + "end": 5609.92, + "probability": 0.5543 + }, + { + "start": 5610.04, + "end": 5616.34, + "probability": 0.9916 + }, + { + "start": 5616.38, + "end": 5616.86, + "probability": 0.4799 + }, + { + "start": 5617.2, + "end": 5619.72, + "probability": 0.6258 + }, + { + "start": 5620.1, + "end": 5622.13, + "probability": 0.7239 + }, + { + "start": 5622.7, + "end": 5624.14, + "probability": 0.9885 + }, + { + "start": 5624.24, + "end": 5629.08, + "probability": 0.6509 + }, + { + "start": 5629.44, + "end": 5630.68, + "probability": 0.7715 + }, + { + "start": 5631.18, + "end": 5633.66, + "probability": 0.8781 + }, + { + "start": 5634.16, + "end": 5637.46, + "probability": 0.5806 + }, + { + "start": 5637.84, + "end": 5641.02, + "probability": 0.9645 + }, + { + "start": 5641.78, + "end": 5642.04, + "probability": 0.858 + }, + { + "start": 5642.12, + "end": 5644.54, + "probability": 0.3666 + }, + { + "start": 5644.54, + "end": 5645.03, + "probability": 0.3792 + }, + { + "start": 5646.32, + "end": 5649.9, + "probability": 0.9133 + }, + { + "start": 5650.76, + "end": 5652.37, + "probability": 0.9036 + }, + { + "start": 5652.76, + "end": 5655.03, + "probability": 0.9032 + }, + { + "start": 5655.46, + "end": 5656.48, + "probability": 0.9595 + }, + { + "start": 5656.76, + "end": 5657.5, + "probability": 0.9879 + }, + { + "start": 5657.66, + "end": 5658.62, + "probability": 0.545 + }, + { + "start": 5658.7, + "end": 5660.34, + "probability": 0.8955 + }, + { + "start": 5660.68, + "end": 5662.7, + "probability": 0.8387 + }, + { + "start": 5662.76, + "end": 5663.48, + "probability": 0.6593 + }, + { + "start": 5663.76, + "end": 5664.48, + "probability": 0.8332 + }, + { + "start": 5664.68, + "end": 5668.52, + "probability": 0.9541 + }, + { + "start": 5668.78, + "end": 5669.85, + "probability": 0.875 + }, + { + "start": 5670.4, + "end": 5671.36, + "probability": 0.7257 + }, + { + "start": 5671.4, + "end": 5672.22, + "probability": 0.4531 + }, + { + "start": 5672.68, + "end": 5674.58, + "probability": 0.7996 + }, + { + "start": 5674.66, + "end": 5675.52, + "probability": 0.5427 + }, + { + "start": 5675.64, + "end": 5678.6, + "probability": 0.8566 + }, + { + "start": 5678.86, + "end": 5680.5, + "probability": 0.8769 + }, + { + "start": 5680.84, + "end": 5684.56, + "probability": 0.8505 + }, + { + "start": 5684.9, + "end": 5686.62, + "probability": 0.9937 + }, + { + "start": 5686.92, + "end": 5691.86, + "probability": 0.9931 + }, + { + "start": 5692.02, + "end": 5695.44, + "probability": 0.7982 + }, + { + "start": 5695.7, + "end": 5696.3, + "probability": 0.7122 + }, + { + "start": 5697.24, + "end": 5701.22, + "probability": 0.9132 + }, + { + "start": 5701.46, + "end": 5705.24, + "probability": 0.9878 + }, + { + "start": 5705.88, + "end": 5709.66, + "probability": 0.6836 + }, + { + "start": 5709.92, + "end": 5711.28, + "probability": 0.7456 + }, + { + "start": 5711.76, + "end": 5712.34, + "probability": 0.6973 + }, + { + "start": 5712.78, + "end": 5713.3, + "probability": 0.553 + }, + { + "start": 5713.3, + "end": 5713.92, + "probability": 0.6208 + }, + { + "start": 5713.98, + "end": 5715.62, + "probability": 0.8514 + }, + { + "start": 5715.8, + "end": 5717.1, + "probability": 0.9725 + }, + { + "start": 5717.58, + "end": 5717.88, + "probability": 0.6733 + }, + { + "start": 5718.26, + "end": 5719.02, + "probability": 0.886 + }, + { + "start": 5719.12, + "end": 5722.22, + "probability": 0.749 + }, + { + "start": 5722.88, + "end": 5726.8, + "probability": 0.968 + }, + { + "start": 5727.18, + "end": 5728.54, + "probability": 0.7577 + }, + { + "start": 5728.98, + "end": 5733.46, + "probability": 0.8867 + }, + { + "start": 5733.66, + "end": 5737.44, + "probability": 0.4001 + }, + { + "start": 5737.5, + "end": 5739.04, + "probability": 0.6051 + }, + { + "start": 5739.22, + "end": 5740.04, + "probability": 0.8655 + }, + { + "start": 5740.04, + "end": 5742.88, + "probability": 0.9634 + }, + { + "start": 5742.92, + "end": 5743.86, + "probability": 0.8222 + }, + { + "start": 5744.24, + "end": 5744.86, + "probability": 0.9581 + }, + { + "start": 5750.8, + "end": 5751.6, + "probability": 0.2796 + }, + { + "start": 5751.66, + "end": 5752.7, + "probability": 0.5444 + }, + { + "start": 5752.88, + "end": 5754.46, + "probability": 0.7297 + }, + { + "start": 5754.7, + "end": 5758.38, + "probability": 0.8082 + }, + { + "start": 5758.66, + "end": 5760.8, + "probability": 0.7354 + }, + { + "start": 5761.2, + "end": 5762.27, + "probability": 0.791 + }, + { + "start": 5765.06, + "end": 5766.66, + "probability": 0.2447 + }, + { + "start": 5767.56, + "end": 5768.26, + "probability": 0.4489 + }, + { + "start": 5772.46, + "end": 5776.56, + "probability": 0.8685 + }, + { + "start": 5778.04, + "end": 5781.82, + "probability": 0.9728 + }, + { + "start": 5783.32, + "end": 5787.98, + "probability": 0.9778 + }, + { + "start": 5789.08, + "end": 5792.32, + "probability": 0.735 + }, + { + "start": 5792.4, + "end": 5794.22, + "probability": 0.8293 + }, + { + "start": 5794.3, + "end": 5795.02, + "probability": 0.7914 + }, + { + "start": 5795.84, + "end": 5804.3, + "probability": 0.8168 + }, + { + "start": 5805.08, + "end": 5808.12, + "probability": 0.9635 + }, + { + "start": 5809.02, + "end": 5811.82, + "probability": 0.9797 + }, + { + "start": 5812.44, + "end": 5817.36, + "probability": 0.8129 + }, + { + "start": 5817.58, + "end": 5821.58, + "probability": 0.7318 + }, + { + "start": 5823.28, + "end": 5825.98, + "probability": 0.8994 + }, + { + "start": 5827.26, + "end": 5828.76, + "probability": 0.6465 + }, + { + "start": 5830.06, + "end": 5832.44, + "probability": 0.8561 + }, + { + "start": 5833.3, + "end": 5834.88, + "probability": 0.7656 + }, + { + "start": 5836.74, + "end": 5837.94, + "probability": 0.9756 + }, + { + "start": 5838.06, + "end": 5838.88, + "probability": 0.8253 + }, + { + "start": 5838.94, + "end": 5840.76, + "probability": 0.9954 + }, + { + "start": 5840.9, + "end": 5845.04, + "probability": 0.9854 + }, + { + "start": 5845.76, + "end": 5849.42, + "probability": 0.7687 + }, + { + "start": 5851.96, + "end": 5854.3, + "probability": 0.9922 + }, + { + "start": 5857.12, + "end": 5859.66, + "probability": 0.9944 + }, + { + "start": 5859.66, + "end": 5864.4, + "probability": 0.9875 + }, + { + "start": 5864.76, + "end": 5867.6, + "probability": 0.9519 + }, + { + "start": 5868.66, + "end": 5869.92, + "probability": 0.7839 + }, + { + "start": 5870.42, + "end": 5873.72, + "probability": 0.7882 + }, + { + "start": 5875.42, + "end": 5876.36, + "probability": 0.898 + }, + { + "start": 5878.88, + "end": 5879.2, + "probability": 0.6828 + }, + { + "start": 5879.26, + "end": 5879.78, + "probability": 0.8432 + }, + { + "start": 5879.86, + "end": 5883.0, + "probability": 0.9213 + }, + { + "start": 5884.16, + "end": 5885.92, + "probability": 0.9912 + }, + { + "start": 5885.98, + "end": 5886.8, + "probability": 0.9332 + }, + { + "start": 5886.9, + "end": 5890.92, + "probability": 0.9806 + }, + { + "start": 5891.8, + "end": 5893.34, + "probability": 0.9705 + }, + { + "start": 5893.98, + "end": 5894.58, + "probability": 0.9143 + }, + { + "start": 5898.56, + "end": 5901.82, + "probability": 0.9239 + }, + { + "start": 5902.74, + "end": 5905.12, + "probability": 0.7304 + }, + { + "start": 5906.58, + "end": 5907.02, + "probability": 0.9563 + }, + { + "start": 5907.14, + "end": 5907.86, + "probability": 0.8346 + }, + { + "start": 5907.94, + "end": 5913.52, + "probability": 0.9929 + }, + { + "start": 5913.52, + "end": 5918.78, + "probability": 0.9732 + }, + { + "start": 5920.78, + "end": 5924.12, + "probability": 0.8464 + }, + { + "start": 5925.72, + "end": 5928.08, + "probability": 0.8845 + }, + { + "start": 5929.5, + "end": 5933.92, + "probability": 0.9236 + }, + { + "start": 5934.08, + "end": 5934.28, + "probability": 0.3897 + }, + { + "start": 5934.38, + "end": 5936.22, + "probability": 0.782 + }, + { + "start": 5936.26, + "end": 5937.96, + "probability": 0.8024 + }, + { + "start": 5938.14, + "end": 5943.2, + "probability": 0.8573 + }, + { + "start": 5944.24, + "end": 5944.88, + "probability": 0.5139 + }, + { + "start": 5945.12, + "end": 5945.32, + "probability": 0.585 + }, + { + "start": 5945.34, + "end": 5947.9, + "probability": 0.9627 + }, + { + "start": 5948.0, + "end": 5949.05, + "probability": 0.976 + }, + { + "start": 5950.06, + "end": 5951.51, + "probability": 0.7974 + }, + { + "start": 5951.64, + "end": 5952.78, + "probability": 0.9734 + }, + { + "start": 5953.14, + "end": 5957.14, + "probability": 0.916 + }, + { + "start": 5958.2, + "end": 5959.64, + "probability": 0.8474 + }, + { + "start": 5961.44, + "end": 5962.88, + "probability": 0.894 + }, + { + "start": 5966.8, + "end": 5968.64, + "probability": 0.7754 + }, + { + "start": 5968.76, + "end": 5971.28, + "probability": 0.9388 + }, + { + "start": 5971.3, + "end": 5974.18, + "probability": 0.6239 + }, + { + "start": 5974.9, + "end": 5976.16, + "probability": 0.4383 + }, + { + "start": 5976.16, + "end": 5978.24, + "probability": 0.8428 + }, + { + "start": 5979.88, + "end": 5988.44, + "probability": 0.9786 + }, + { + "start": 5990.4, + "end": 5993.6, + "probability": 0.9922 + }, + { + "start": 5994.72, + "end": 5997.06, + "probability": 0.7812 + }, + { + "start": 5998.54, + "end": 6001.34, + "probability": 0.8734 + }, + { + "start": 6001.68, + "end": 6002.2, + "probability": 0.7097 + }, + { + "start": 6002.22, + "end": 6002.94, + "probability": 0.4968 + }, + { + "start": 6002.96, + "end": 6003.56, + "probability": 0.7112 + }, + { + "start": 6006.26, + "end": 6011.04, + "probability": 0.8997 + }, + { + "start": 6011.18, + "end": 6011.78, + "probability": 0.4119 + }, + { + "start": 6011.78, + "end": 6012.66, + "probability": 0.6524 + }, + { + "start": 6012.74, + "end": 6014.7, + "probability": 0.8465 + }, + { + "start": 6015.14, + "end": 6018.54, + "probability": 0.8765 + }, + { + "start": 6020.2, + "end": 6022.6, + "probability": 0.9026 + }, + { + "start": 6022.88, + "end": 6024.84, + "probability": 0.7398 + }, + { + "start": 6024.96, + "end": 6026.84, + "probability": 0.9861 + }, + { + "start": 6029.92, + "end": 6032.48, + "probability": 0.7613 + }, + { + "start": 6033.22, + "end": 6039.24, + "probability": 0.0765 + }, + { + "start": 6040.56, + "end": 6043.26, + "probability": 0.3199 + }, + { + "start": 6043.32, + "end": 6044.42, + "probability": 0.4735 + }, + { + "start": 6044.54, + "end": 6045.4, + "probability": 0.8198 + }, + { + "start": 6045.46, + "end": 6046.18, + "probability": 0.723 + }, + { + "start": 6046.36, + "end": 6048.46, + "probability": 0.7488 + }, + { + "start": 6048.58, + "end": 6049.9, + "probability": 0.8294 + }, + { + "start": 6050.28, + "end": 6051.02, + "probability": 0.8334 + }, + { + "start": 6052.02, + "end": 6056.02, + "probability": 0.6476 + }, + { + "start": 6056.12, + "end": 6056.86, + "probability": 0.7353 + }, + { + "start": 6056.86, + "end": 6058.94, + "probability": 0.6141 + }, + { + "start": 6058.94, + "end": 6062.26, + "probability": 0.6485 + }, + { + "start": 6063.16, + "end": 6070.56, + "probability": 0.941 + }, + { + "start": 6070.58, + "end": 6071.98, + "probability": 0.973 + }, + { + "start": 6073.12, + "end": 6075.98, + "probability": 0.9666 + }, + { + "start": 6076.04, + "end": 6077.8, + "probability": 0.9908 + }, + { + "start": 6077.86, + "end": 6078.72, + "probability": 0.6571 + }, + { + "start": 6079.6, + "end": 6081.92, + "probability": 0.6895 + }, + { + "start": 6082.96, + "end": 6086.7, + "probability": 0.9543 + }, + { + "start": 6088.38, + "end": 6090.36, + "probability": 0.9958 + }, + { + "start": 6091.8, + "end": 6092.6, + "probability": 0.5974 + }, + { + "start": 6092.76, + "end": 6093.8, + "probability": 0.966 + }, + { + "start": 6093.98, + "end": 6098.12, + "probability": 0.9816 + }, + { + "start": 6099.98, + "end": 6104.24, + "probability": 0.9915 + }, + { + "start": 6104.3, + "end": 6104.98, + "probability": 0.6334 + }, + { + "start": 6105.04, + "end": 6107.68, + "probability": 0.9572 + }, + { + "start": 6108.4, + "end": 6109.2, + "probability": 0.6897 + }, + { + "start": 6109.7, + "end": 6111.16, + "probability": 0.9715 + }, + { + "start": 6111.92, + "end": 6112.88, + "probability": 0.9792 + }, + { + "start": 6113.0, + "end": 6117.22, + "probability": 0.9642 + }, + { + "start": 6118.14, + "end": 6120.88, + "probability": 0.7093 + }, + { + "start": 6121.12, + "end": 6122.88, + "probability": 0.8868 + }, + { + "start": 6123.0, + "end": 6123.9, + "probability": 0.9697 + }, + { + "start": 6124.28, + "end": 6125.18, + "probability": 0.5547 + }, + { + "start": 6125.24, + "end": 6125.48, + "probability": 0.5532 + }, + { + "start": 6125.68, + "end": 6126.28, + "probability": 0.505 + }, + { + "start": 6126.34, + "end": 6128.72, + "probability": 0.7451 + }, + { + "start": 6128.78, + "end": 6129.34, + "probability": 0.9028 + }, + { + "start": 6130.58, + "end": 6131.48, + "probability": 0.8687 + }, + { + "start": 6132.72, + "end": 6135.26, + "probability": 0.5051 + }, + { + "start": 6137.72, + "end": 6138.2, + "probability": 0.3432 + }, + { + "start": 6138.62, + "end": 6141.75, + "probability": 0.8741 + }, + { + "start": 6142.36, + "end": 6143.32, + "probability": 0.6552 + }, + { + "start": 6143.4, + "end": 6144.0, + "probability": 0.8267 + }, + { + "start": 6144.06, + "end": 6144.82, + "probability": 0.638 + }, + { + "start": 6145.1, + "end": 6148.7, + "probability": 0.9365 + }, + { + "start": 6149.28, + "end": 6150.18, + "probability": 0.8579 + }, + { + "start": 6152.22, + "end": 6153.56, + "probability": 0.8579 + }, + { + "start": 6153.96, + "end": 6154.94, + "probability": 0.9537 + }, + { + "start": 6155.02, + "end": 6156.26, + "probability": 0.8711 + }, + { + "start": 6156.7, + "end": 6159.6, + "probability": 0.9599 + }, + { + "start": 6159.66, + "end": 6160.76, + "probability": 0.9616 + }, + { + "start": 6161.76, + "end": 6164.28, + "probability": 0.7648 + }, + { + "start": 6164.56, + "end": 6166.88, + "probability": 0.9089 + }, + { + "start": 6167.28, + "end": 6169.26, + "probability": 0.779 + }, + { + "start": 6169.54, + "end": 6171.46, + "probability": 0.7883 + }, + { + "start": 6171.62, + "end": 6172.66, + "probability": 0.5288 + }, + { + "start": 6176.22, + "end": 6178.88, + "probability": 0.7375 + }, + { + "start": 6179.54, + "end": 6180.86, + "probability": 0.4953 + }, + { + "start": 6181.98, + "end": 6183.4, + "probability": 0.9277 + }, + { + "start": 6183.58, + "end": 6185.36, + "probability": 0.8432 + }, + { + "start": 6185.8, + "end": 6186.86, + "probability": 0.8513 + }, + { + "start": 6187.14, + "end": 6188.44, + "probability": 0.9985 + }, + { + "start": 6189.32, + "end": 6191.46, + "probability": 0.9539 + }, + { + "start": 6192.06, + "end": 6193.04, + "probability": 0.9651 + }, + { + "start": 6193.98, + "end": 6194.84, + "probability": 0.939 + }, + { + "start": 6195.2, + "end": 6196.7, + "probability": 0.7915 + }, + { + "start": 6196.8, + "end": 6197.9, + "probability": 0.7973 + }, + { + "start": 6198.06, + "end": 6200.74, + "probability": 0.8442 + }, + { + "start": 6201.04, + "end": 6201.72, + "probability": 0.591 + }, + { + "start": 6201.76, + "end": 6202.96, + "probability": 0.8014 + }, + { + "start": 6203.38, + "end": 6205.4, + "probability": 0.7283 + }, + { + "start": 6205.5, + "end": 6207.52, + "probability": 0.788 + }, + { + "start": 6207.94, + "end": 6212.7, + "probability": 0.7883 + }, + { + "start": 6213.4, + "end": 6214.58, + "probability": 0.8621 + }, + { + "start": 6216.44, + "end": 6218.34, + "probability": 0.8374 + }, + { + "start": 6218.4, + "end": 6220.8, + "probability": 0.7992 + }, + { + "start": 6221.58, + "end": 6224.99, + "probability": 0.9347 + }, + { + "start": 6225.74, + "end": 6229.74, + "probability": 0.9487 + }, + { + "start": 6230.32, + "end": 6231.76, + "probability": 0.7405 + }, + { + "start": 6231.84, + "end": 6233.08, + "probability": 0.9645 + }, + { + "start": 6233.76, + "end": 6236.03, + "probability": 0.5959 + }, + { + "start": 6236.64, + "end": 6238.78, + "probability": 0.9434 + }, + { + "start": 6238.88, + "end": 6239.68, + "probability": 0.6697 + }, + { + "start": 6240.18, + "end": 6241.1, + "probability": 0.9868 + }, + { + "start": 6241.28, + "end": 6243.96, + "probability": 0.9321 + }, + { + "start": 6244.08, + "end": 6245.66, + "probability": 0.4352 + }, + { + "start": 6247.71, + "end": 6249.34, + "probability": 0.4956 + }, + { + "start": 6249.42, + "end": 6251.98, + "probability": 0.7682 + }, + { + "start": 6252.66, + "end": 6254.52, + "probability": 0.947 + }, + { + "start": 6254.82, + "end": 6256.74, + "probability": 0.8489 + }, + { + "start": 6256.88, + "end": 6259.24, + "probability": 0.9363 + }, + { + "start": 6259.62, + "end": 6261.86, + "probability": 0.9165 + }, + { + "start": 6262.62, + "end": 6263.76, + "probability": 0.7117 + }, + { + "start": 6264.02, + "end": 6265.38, + "probability": 0.6351 + }, + { + "start": 6266.08, + "end": 6269.64, + "probability": 0.8145 + }, + { + "start": 6270.22, + "end": 6272.86, + "probability": 0.9962 + }, + { + "start": 6273.82, + "end": 6275.88, + "probability": 0.6752 + }, + { + "start": 6276.64, + "end": 6281.58, + "probability": 0.9845 + }, + { + "start": 6281.58, + "end": 6285.88, + "probability": 0.9736 + }, + { + "start": 6286.62, + "end": 6288.89, + "probability": 0.9085 + }, + { + "start": 6289.4, + "end": 6290.03, + "probability": 0.9421 + }, + { + "start": 6290.8, + "end": 6291.46, + "probability": 0.7451 + }, + { + "start": 6291.5, + "end": 6292.02, + "probability": 0.5737 + }, + { + "start": 6292.3, + "end": 6292.54, + "probability": 0.4593 + }, + { + "start": 6292.62, + "end": 6295.62, + "probability": 0.9902 + }, + { + "start": 6295.8, + "end": 6296.94, + "probability": 0.9945 + }, + { + "start": 6297.62, + "end": 6301.64, + "probability": 0.6608 + }, + { + "start": 6302.04, + "end": 6303.42, + "probability": 0.6107 + }, + { + "start": 6304.48, + "end": 6308.04, + "probability": 0.7584 + }, + { + "start": 6308.32, + "end": 6308.66, + "probability": 0.0263 + }, + { + "start": 6310.0, + "end": 6312.06, + "probability": 0.0048 + }, + { + "start": 6313.64, + "end": 6317.34, + "probability": 0.0064 + }, + { + "start": 6317.34, + "end": 6317.56, + "probability": 0.0949 + }, + { + "start": 6317.7, + "end": 6317.7, + "probability": 0.0501 + }, + { + "start": 6317.7, + "end": 6319.84, + "probability": 0.5686 + }, + { + "start": 6320.48, + "end": 6325.56, + "probability": 0.6799 + }, + { + "start": 6326.18, + "end": 6329.86, + "probability": 0.9873 + }, + { + "start": 6330.14, + "end": 6330.98, + "probability": 0.3464 + }, + { + "start": 6331.08, + "end": 6331.48, + "probability": 0.7566 + }, + { + "start": 6331.6, + "end": 6332.06, + "probability": 0.1905 + }, + { + "start": 6332.14, + "end": 6334.14, + "probability": 0.9739 + }, + { + "start": 6334.98, + "end": 6338.36, + "probability": 0.9065 + }, + { + "start": 6339.46, + "end": 6341.3, + "probability": 0.967 + }, + { + "start": 6341.94, + "end": 6346.12, + "probability": 0.9307 + }, + { + "start": 6346.82, + "end": 6347.62, + "probability": 0.7252 + }, + { + "start": 6347.84, + "end": 6348.22, + "probability": 0.45 + }, + { + "start": 6348.28, + "end": 6348.98, + "probability": 0.8588 + }, + { + "start": 6349.3, + "end": 6349.3, + "probability": 0.0574 + }, + { + "start": 6350.68, + "end": 6352.28, + "probability": 0.34 + }, + { + "start": 6353.22, + "end": 6355.64, + "probability": 0.8835 + }, + { + "start": 6356.1, + "end": 6357.86, + "probability": 0.759 + }, + { + "start": 6357.94, + "end": 6359.22, + "probability": 0.9167 + }, + { + "start": 6361.82, + "end": 6364.88, + "probability": 0.9915 + }, + { + "start": 6364.88, + "end": 6367.58, + "probability": 0.8264 + }, + { + "start": 6367.66, + "end": 6369.73, + "probability": 0.9883 + }, + { + "start": 6370.04, + "end": 6371.26, + "probability": 0.5269 + }, + { + "start": 6371.34, + "end": 6371.9, + "probability": 0.5825 + }, + { + "start": 6372.02, + "end": 6372.66, + "probability": 0.6491 + }, + { + "start": 6373.02, + "end": 6373.64, + "probability": 0.7487 + }, + { + "start": 6373.74, + "end": 6374.62, + "probability": 0.5411 + }, + { + "start": 6377.08, + "end": 6377.16, + "probability": 0.3454 + }, + { + "start": 6380.28, + "end": 6384.86, + "probability": 0.022 + }, + { + "start": 6391.91, + "end": 6392.86, + "probability": 0.0284 + }, + { + "start": 6393.54, + "end": 6394.16, + "probability": 0.0297 + }, + { + "start": 6394.16, + "end": 6397.8, + "probability": 0.655 + }, + { + "start": 6398.28, + "end": 6403.6, + "probability": 0.9673 + }, + { + "start": 6404.2, + "end": 6406.32, + "probability": 0.9872 + }, + { + "start": 6409.76, + "end": 6410.4, + "probability": 0.0102 + }, + { + "start": 6410.66, + "end": 6413.18, + "probability": 0.7154 + }, + { + "start": 6413.32, + "end": 6416.1, + "probability": 0.7907 + }, + { + "start": 6429.06, + "end": 6430.98, + "probability": 0.5884 + }, + { + "start": 6431.38, + "end": 6432.84, + "probability": 0.1684 + }, + { + "start": 6435.42, + "end": 6443.46, + "probability": 0.9962 + }, + { + "start": 6443.7, + "end": 6446.86, + "probability": 0.8571 + }, + { + "start": 6447.1, + "end": 6447.64, + "probability": 0.5347 + }, + { + "start": 6447.72, + "end": 6448.22, + "probability": 0.6894 + }, + { + "start": 6448.76, + "end": 6450.9, + "probability": 0.9978 + }, + { + "start": 6450.9, + "end": 6456.04, + "probability": 0.998 + }, + { + "start": 6456.42, + "end": 6462.16, + "probability": 0.9891 + }, + { + "start": 6462.16, + "end": 6467.21, + "probability": 0.9866 + }, + { + "start": 6469.62, + "end": 6478.3, + "probability": 0.9605 + }, + { + "start": 6478.36, + "end": 6480.86, + "probability": 0.695 + }, + { + "start": 6481.28, + "end": 6482.82, + "probability": 0.8582 + }, + { + "start": 6483.48, + "end": 6486.24, + "probability": 0.9756 + }, + { + "start": 6486.28, + "end": 6489.46, + "probability": 0.9347 + }, + { + "start": 6489.96, + "end": 6493.52, + "probability": 0.9555 + }, + { + "start": 6494.34, + "end": 6497.12, + "probability": 0.8619 + }, + { + "start": 6497.12, + "end": 6501.3, + "probability": 0.7987 + }, + { + "start": 6501.38, + "end": 6505.62, + "probability": 0.9778 + }, + { + "start": 6505.62, + "end": 6509.98, + "probability": 0.9897 + }, + { + "start": 6511.04, + "end": 6511.24, + "probability": 0.2512 + }, + { + "start": 6511.4, + "end": 6513.68, + "probability": 0.924 + }, + { + "start": 6513.68, + "end": 6517.8, + "probability": 0.9946 + }, + { + "start": 6518.24, + "end": 6518.9, + "probability": 0.4398 + }, + { + "start": 6519.02, + "end": 6524.86, + "probability": 0.9911 + }, + { + "start": 6524.98, + "end": 6529.0, + "probability": 0.9902 + }, + { + "start": 6529.0, + "end": 6534.81, + "probability": 0.9907 + }, + { + "start": 6536.22, + "end": 6541.66, + "probability": 0.9779 + }, + { + "start": 6542.74, + "end": 6544.98, + "probability": 0.9839 + }, + { + "start": 6546.08, + "end": 6550.56, + "probability": 0.9919 + }, + { + "start": 6551.1, + "end": 6552.22, + "probability": 0.4896 + }, + { + "start": 6552.26, + "end": 6555.72, + "probability": 0.9822 + }, + { + "start": 6556.52, + "end": 6558.76, + "probability": 0.873 + }, + { + "start": 6558.8, + "end": 6561.82, + "probability": 0.9702 + }, + { + "start": 6562.36, + "end": 6566.14, + "probability": 0.9653 + }, + { + "start": 6566.36, + "end": 6568.06, + "probability": 0.9867 + }, + { + "start": 6568.38, + "end": 6571.5, + "probability": 0.9929 + }, + { + "start": 6572.34, + "end": 6576.52, + "probability": 0.991 + }, + { + "start": 6576.52, + "end": 6579.94, + "probability": 0.9972 + }, + { + "start": 6580.0, + "end": 6586.24, + "probability": 0.9181 + }, + { + "start": 6586.8, + "end": 6590.8, + "probability": 0.9972 + }, + { + "start": 6592.48, + "end": 6599.32, + "probability": 0.9812 + }, + { + "start": 6599.46, + "end": 6602.6, + "probability": 0.9312 + }, + { + "start": 6602.6, + "end": 6608.06, + "probability": 0.9628 + }, + { + "start": 6608.26, + "end": 6610.98, + "probability": 0.9616 + }, + { + "start": 6611.26, + "end": 6613.14, + "probability": 0.9591 + }, + { + "start": 6613.14, + "end": 6616.46, + "probability": 0.9775 + }, + { + "start": 6616.7, + "end": 6617.76, + "probability": 0.6542 + }, + { + "start": 6617.98, + "end": 6619.04, + "probability": 0.9253 + }, + { + "start": 6619.36, + "end": 6623.6, + "probability": 0.9896 + }, + { + "start": 6623.68, + "end": 6626.6, + "probability": 0.9587 + }, + { + "start": 6627.06, + "end": 6628.42, + "probability": 0.9838 + }, + { + "start": 6628.54, + "end": 6628.94, + "probability": 0.7919 + }, + { + "start": 6628.98, + "end": 6631.76, + "probability": 0.9041 + }, + { + "start": 6631.76, + "end": 6635.42, + "probability": 0.9979 + }, + { + "start": 6635.74, + "end": 6639.62, + "probability": 0.9719 + }, + { + "start": 6640.06, + "end": 6647.66, + "probability": 0.9836 + }, + { + "start": 6648.4, + "end": 6652.92, + "probability": 0.9932 + }, + { + "start": 6652.92, + "end": 6657.56, + "probability": 0.9891 + }, + { + "start": 6658.16, + "end": 6661.64, + "probability": 0.9964 + }, + { + "start": 6662.22, + "end": 6663.76, + "probability": 0.5915 + }, + { + "start": 6663.92, + "end": 6669.82, + "probability": 0.9592 + }, + { + "start": 6670.14, + "end": 6671.02, + "probability": 0.8404 + }, + { + "start": 6671.2, + "end": 6672.52, + "probability": 0.6375 + }, + { + "start": 6672.62, + "end": 6674.78, + "probability": 0.9948 + }, + { + "start": 6675.36, + "end": 6677.98, + "probability": 0.8934 + }, + { + "start": 6677.98, + "end": 6680.88, + "probability": 0.9949 + }, + { + "start": 6681.36, + "end": 6682.02, + "probability": 0.4724 + }, + { + "start": 6682.08, + "end": 6685.08, + "probability": 0.9956 + }, + { + "start": 6685.46, + "end": 6690.78, + "probability": 0.9839 + }, + { + "start": 6691.24, + "end": 6691.94, + "probability": 0.6199 + }, + { + "start": 6692.22, + "end": 6698.54, + "probability": 0.9259 + }, + { + "start": 6698.54, + "end": 6701.08, + "probability": 0.9941 + }, + { + "start": 6701.4, + "end": 6702.78, + "probability": 0.6683 + }, + { + "start": 6702.92, + "end": 6709.82, + "probability": 0.9248 + }, + { + "start": 6711.26, + "end": 6715.64, + "probability": 0.9632 + }, + { + "start": 6715.74, + "end": 6717.84, + "probability": 0.8792 + }, + { + "start": 6717.94, + "end": 6722.2, + "probability": 0.9568 + }, + { + "start": 6722.32, + "end": 6723.32, + "probability": 0.6323 + }, + { + "start": 6723.68, + "end": 6724.42, + "probability": 0.4971 + }, + { + "start": 6724.42, + "end": 6725.44, + "probability": 0.7192 + }, + { + "start": 6725.58, + "end": 6726.6, + "probability": 0.8149 + }, + { + "start": 6727.05, + "end": 6729.6, + "probability": 0.987 + }, + { + "start": 6729.6, + "end": 6735.6, + "probability": 0.9515 + }, + { + "start": 6735.9, + "end": 6740.3, + "probability": 0.8916 + }, + { + "start": 6740.5, + "end": 6742.68, + "probability": 0.9731 + }, + { + "start": 6742.98, + "end": 6745.64, + "probability": 0.9824 + }, + { + "start": 6745.96, + "end": 6747.42, + "probability": 0.7468 + }, + { + "start": 6747.8, + "end": 6751.28, + "probability": 0.9506 + }, + { + "start": 6751.46, + "end": 6756.48, + "probability": 0.6736 + }, + { + "start": 6756.48, + "end": 6760.76, + "probability": 0.989 + }, + { + "start": 6761.52, + "end": 6765.18, + "probability": 0.9967 + }, + { + "start": 6765.18, + "end": 6768.68, + "probability": 0.9724 + }, + { + "start": 6768.82, + "end": 6769.66, + "probability": 0.7702 + }, + { + "start": 6769.98, + "end": 6771.94, + "probability": 0.9945 + }, + { + "start": 6772.72, + "end": 6775.22, + "probability": 0.9957 + }, + { + "start": 6775.7, + "end": 6777.94, + "probability": 0.9951 + }, + { + "start": 6778.04, + "end": 6782.18, + "probability": 0.9822 + }, + { + "start": 6782.56, + "end": 6783.1, + "probability": 0.9683 + }, + { + "start": 6783.2, + "end": 6785.12, + "probability": 0.9755 + }, + { + "start": 6785.16, + "end": 6790.36, + "probability": 0.9971 + }, + { + "start": 6790.36, + "end": 6794.88, + "probability": 0.9991 + }, + { + "start": 6795.24, + "end": 6797.72, + "probability": 0.9932 + }, + { + "start": 6798.2, + "end": 6805.86, + "probability": 0.9985 + }, + { + "start": 6806.86, + "end": 6810.4, + "probability": 0.8564 + }, + { + "start": 6810.44, + "end": 6813.04, + "probability": 0.9878 + }, + { + "start": 6813.08, + "end": 6814.9, + "probability": 0.9932 + }, + { + "start": 6815.32, + "end": 6816.22, + "probability": 0.7135 + }, + { + "start": 6816.6, + "end": 6819.46, + "probability": 0.7854 + }, + { + "start": 6819.74, + "end": 6820.82, + "probability": 0.9374 + }, + { + "start": 6821.08, + "end": 6825.98, + "probability": 0.9782 + }, + { + "start": 6826.16, + "end": 6829.28, + "probability": 0.9949 + }, + { + "start": 6829.28, + "end": 6832.46, + "probability": 0.9782 + }, + { + "start": 6832.54, + "end": 6837.58, + "probability": 0.9977 + }, + { + "start": 6837.88, + "end": 6838.68, + "probability": 0.9481 + }, + { + "start": 6838.8, + "end": 6841.32, + "probability": 0.9266 + }, + { + "start": 6841.64, + "end": 6842.98, + "probability": 0.899 + }, + { + "start": 6843.1, + "end": 6845.58, + "probability": 0.981 + }, + { + "start": 6845.94, + "end": 6847.48, + "probability": 0.9625 + }, + { + "start": 6847.56, + "end": 6851.34, + "probability": 0.9607 + }, + { + "start": 6851.76, + "end": 6855.5, + "probability": 0.9909 + }, + { + "start": 6855.5, + "end": 6860.3, + "probability": 0.9603 + }, + { + "start": 6860.64, + "end": 6862.32, + "probability": 0.759 + }, + { + "start": 6862.9, + "end": 6866.86, + "probability": 0.9849 + }, + { + "start": 6867.5, + "end": 6869.88, + "probability": 0.6994 + }, + { + "start": 6871.46, + "end": 6873.12, + "probability": 0.9418 + }, + { + "start": 6873.24, + "end": 6874.86, + "probability": 0.9546 + }, + { + "start": 6874.9, + "end": 6875.8, + "probability": 0.7394 + }, + { + "start": 6875.86, + "end": 6876.7, + "probability": 0.7671 + }, + { + "start": 6877.0, + "end": 6877.78, + "probability": 0.9368 + }, + { + "start": 6877.9, + "end": 6878.68, + "probability": 0.9103 + }, + { + "start": 6878.84, + "end": 6883.32, + "probability": 0.9863 + }, + { + "start": 6883.52, + "end": 6884.1, + "probability": 0.9333 + }, + { + "start": 6884.54, + "end": 6886.4, + "probability": 0.9229 + }, + { + "start": 6886.66, + "end": 6888.85, + "probability": 0.5826 + }, + { + "start": 6897.25, + "end": 6901.48, + "probability": 0.7758 + }, + { + "start": 6902.52, + "end": 6905.14, + "probability": 0.9106 + }, + { + "start": 6906.22, + "end": 6907.76, + "probability": 0.7175 + }, + { + "start": 6908.28, + "end": 6912.32, + "probability": 0.9032 + }, + { + "start": 6914.96, + "end": 6920.1, + "probability": 0.7932 + }, + { + "start": 6921.8, + "end": 6925.42, + "probability": 0.8928 + }, + { + "start": 6925.52, + "end": 6926.0, + "probability": 0.7423 + }, + { + "start": 6926.16, + "end": 6926.74, + "probability": 0.3669 + }, + { + "start": 6926.84, + "end": 6931.32, + "probability": 0.89 + }, + { + "start": 6931.78, + "end": 6932.92, + "probability": 0.8422 + }, + { + "start": 6933.08, + "end": 6936.84, + "probability": 0.9784 + }, + { + "start": 6937.58, + "end": 6937.94, + "probability": 0.622 + }, + { + "start": 6938.12, + "end": 6939.58, + "probability": 0.9794 + }, + { + "start": 6939.72, + "end": 6940.94, + "probability": 0.8916 + }, + { + "start": 6941.88, + "end": 6944.15, + "probability": 0.7424 + }, + { + "start": 6944.76, + "end": 6944.96, + "probability": 0.0208 + }, + { + "start": 6944.96, + "end": 6947.77, + "probability": 0.8263 + }, + { + "start": 6948.14, + "end": 6950.15, + "probability": 0.752 + }, + { + "start": 6950.9, + "end": 6954.48, + "probability": 0.8764 + }, + { + "start": 6955.24, + "end": 6957.36, + "probability": 0.9987 + }, + { + "start": 6957.36, + "end": 6960.1, + "probability": 0.8467 + }, + { + "start": 6960.72, + "end": 6962.02, + "probability": 0.8028 + }, + { + "start": 6962.34, + "end": 6964.54, + "probability": 0.8195 + }, + { + "start": 6964.9, + "end": 6966.04, + "probability": 0.2867 + }, + { + "start": 6966.96, + "end": 6967.32, + "probability": 0.3153 + }, + { + "start": 6967.32, + "end": 6968.28, + "probability": 0.5488 + }, + { + "start": 6968.4, + "end": 6969.69, + "probability": 0.5316 + }, + { + "start": 6970.08, + "end": 6971.28, + "probability": 0.6617 + }, + { + "start": 6971.38, + "end": 6971.86, + "probability": 0.5612 + }, + { + "start": 6972.02, + "end": 6973.24, + "probability": 0.5097 + }, + { + "start": 6973.76, + "end": 6975.12, + "probability": 0.8038 + }, + { + "start": 6975.12, + "end": 6975.56, + "probability": 0.4898 + }, + { + "start": 6976.1, + "end": 6978.98, + "probability": 0.8574 + }, + { + "start": 6979.4, + "end": 6980.14, + "probability": 0.7499 + }, + { + "start": 6980.28, + "end": 6980.96, + "probability": 0.096 + }, + { + "start": 6981.06, + "end": 6981.54, + "probability": 0.536 + }, + { + "start": 6981.56, + "end": 6983.14, + "probability": 0.1391 + }, + { + "start": 6983.22, + "end": 6983.34, + "probability": 0.0979 + }, + { + "start": 6983.34, + "end": 6986.12, + "probability": 0.2325 + }, + { + "start": 6986.14, + "end": 6987.0, + "probability": 0.0045 + }, + { + "start": 6987.48, + "end": 6992.32, + "probability": 0.7011 + }, + { + "start": 6992.93, + "end": 6996.72, + "probability": 0.6407 + }, + { + "start": 6997.94, + "end": 6999.7, + "probability": 0.8125 + }, + { + "start": 6999.86, + "end": 7001.12, + "probability": 0.8705 + }, + { + "start": 7001.4, + "end": 7003.6, + "probability": 0.808 + }, + { + "start": 7004.06, + "end": 7006.3, + "probability": 0.8373 + }, + { + "start": 7007.04, + "end": 7007.42, + "probability": 0.7833 + }, + { + "start": 7007.5, + "end": 7012.12, + "probability": 0.9889 + }, + { + "start": 7012.18, + "end": 7014.78, + "probability": 0.9988 + }, + { + "start": 7015.34, + "end": 7017.27, + "probability": 0.9919 + }, + { + "start": 7017.82, + "end": 7020.84, + "probability": 0.9104 + }, + { + "start": 7021.24, + "end": 7021.84, + "probability": 0.7361 + }, + { + "start": 7022.46, + "end": 7023.1, + "probability": 0.4688 + }, + { + "start": 7023.2, + "end": 7029.08, + "probability": 0.9077 + }, + { + "start": 7029.22, + "end": 7029.32, + "probability": 0.7253 + }, + { + "start": 7029.42, + "end": 7031.04, + "probability": 0.9904 + }, + { + "start": 7031.28, + "end": 7033.89, + "probability": 0.9839 + }, + { + "start": 7037.18, + "end": 7037.48, + "probability": 0.4704 + }, + { + "start": 7037.58, + "end": 7038.1, + "probability": 0.2592 + }, + { + "start": 7038.44, + "end": 7039.32, + "probability": 0.431 + }, + { + "start": 7039.6, + "end": 7040.5, + "probability": 0.252 + }, + { + "start": 7052.44, + "end": 7055.22, + "probability": 0.4392 + }, + { + "start": 7056.06, + "end": 7059.68, + "probability": 0.4034 + }, + { + "start": 7059.72, + "end": 7060.74, + "probability": 0.5104 + }, + { + "start": 7061.28, + "end": 7065.62, + "probability": 0.8635 + }, + { + "start": 7066.28, + "end": 7069.16, + "probability": 0.6949 + }, + { + "start": 7069.36, + "end": 7075.42, + "probability": 0.981 + }, + { + "start": 7075.44, + "end": 7076.7, + "probability": 0.2953 + }, + { + "start": 7077.54, + "end": 7081.0, + "probability": 0.8706 + }, + { + "start": 7081.18, + "end": 7085.3, + "probability": 0.7682 + }, + { + "start": 7091.0, + "end": 7092.16, + "probability": 0.6224 + }, + { + "start": 7092.24, + "end": 7093.64, + "probability": 0.5769 + }, + { + "start": 7094.04, + "end": 7098.6, + "probability": 0.6559 + }, + { + "start": 7098.6, + "end": 7105.24, + "probability": 0.8949 + }, + { + "start": 7106.02, + "end": 7110.18, + "probability": 0.9888 + }, + { + "start": 7110.18, + "end": 7114.16, + "probability": 0.9371 + }, + { + "start": 7114.86, + "end": 7117.8, + "probability": 0.9155 + }, + { + "start": 7118.06, + "end": 7120.96, + "probability": 0.5436 + }, + { + "start": 7121.36, + "end": 7122.32, + "probability": 0.5997 + }, + { + "start": 7122.76, + "end": 7127.5, + "probability": 0.9917 + }, + { + "start": 7128.1, + "end": 7137.28, + "probability": 0.9659 + }, + { + "start": 7138.04, + "end": 7142.14, + "probability": 0.9311 + }, + { + "start": 7142.86, + "end": 7145.38, + "probability": 0.5728 + }, + { + "start": 7145.52, + "end": 7150.04, + "probability": 0.7235 + }, + { + "start": 7150.4, + "end": 7153.44, + "probability": 0.8309 + }, + { + "start": 7154.06, + "end": 7157.18, + "probability": 0.9545 + }, + { + "start": 7157.58, + "end": 7161.74, + "probability": 0.9537 + }, + { + "start": 7162.8, + "end": 7165.7, + "probability": 0.9017 + }, + { + "start": 7166.12, + "end": 7167.06, + "probability": 0.973 + }, + { + "start": 7167.16, + "end": 7168.18, + "probability": 0.9679 + }, + { + "start": 7168.28, + "end": 7169.3, + "probability": 0.8369 + }, + { + "start": 7169.72, + "end": 7171.72, + "probability": 0.7437 + }, + { + "start": 7172.14, + "end": 7177.16, + "probability": 0.9186 + }, + { + "start": 7177.84, + "end": 7181.62, + "probability": 0.7865 + }, + { + "start": 7182.14, + "end": 7187.34, + "probability": 0.8315 + }, + { + "start": 7187.5, + "end": 7189.08, + "probability": 0.8217 + }, + { + "start": 7189.62, + "end": 7192.88, + "probability": 0.7473 + }, + { + "start": 7192.88, + "end": 7199.54, + "probability": 0.9246 + }, + { + "start": 7200.33, + "end": 7209.22, + "probability": 0.9586 + }, + { + "start": 7209.76, + "end": 7214.36, + "probability": 0.9831 + }, + { + "start": 7214.36, + "end": 7220.48, + "probability": 0.867 + }, + { + "start": 7220.48, + "end": 7223.5, + "probability": 0.8882 + }, + { + "start": 7223.74, + "end": 7227.54, + "probability": 0.9875 + }, + { + "start": 7227.86, + "end": 7232.12, + "probability": 0.8599 + }, + { + "start": 7232.28, + "end": 7238.42, + "probability": 0.8507 + }, + { + "start": 7238.84, + "end": 7244.2, + "probability": 0.7812 + }, + { + "start": 7244.22, + "end": 7252.78, + "probability": 0.8799 + }, + { + "start": 7253.56, + "end": 7257.52, + "probability": 0.8267 + }, + { + "start": 7257.52, + "end": 7261.68, + "probability": 0.7559 + }, + { + "start": 7261.82, + "end": 7265.3, + "probability": 0.7133 + }, + { + "start": 7265.5, + "end": 7266.34, + "probability": 0.7836 + }, + { + "start": 7267.14, + "end": 7274.24, + "probability": 0.8957 + }, + { + "start": 7274.88, + "end": 7278.72, + "probability": 0.9146 + }, + { + "start": 7279.38, + "end": 7286.0, + "probability": 0.9016 + }, + { + "start": 7286.22, + "end": 7287.28, + "probability": 0.6808 + }, + { + "start": 7287.92, + "end": 7291.26, + "probability": 0.8828 + }, + { + "start": 7292.1, + "end": 7297.9, + "probability": 0.9854 + }, + { + "start": 7298.36, + "end": 7300.5, + "probability": 0.9852 + }, + { + "start": 7301.14, + "end": 7301.84, + "probability": 0.851 + }, + { + "start": 7301.86, + "end": 7304.0, + "probability": 0.5522 + }, + { + "start": 7304.24, + "end": 7311.08, + "probability": 0.7682 + }, + { + "start": 7313.98, + "end": 7316.18, + "probability": 0.8478 + }, + { + "start": 7316.36, + "end": 7317.42, + "probability": 0.7623 + }, + { + "start": 7317.9, + "end": 7319.02, + "probability": 0.8288 + }, + { + "start": 7319.26, + "end": 7320.3, + "probability": 0.781 + }, + { + "start": 7320.94, + "end": 7323.08, + "probability": 0.9147 + }, + { + "start": 7323.5, + "end": 7326.78, + "probability": 0.6759 + }, + { + "start": 7331.28, + "end": 7338.82, + "probability": 0.6677 + }, + { + "start": 7338.82, + "end": 7347.46, + "probability": 0.9344 + }, + { + "start": 7348.1, + "end": 7357.12, + "probability": 0.8664 + }, + { + "start": 7358.0, + "end": 7361.62, + "probability": 0.8372 + }, + { + "start": 7362.14, + "end": 7366.84, + "probability": 0.7782 + }, + { + "start": 7367.0, + "end": 7369.84, + "probability": 0.6867 + }, + { + "start": 7370.72, + "end": 7371.78, + "probability": 0.6642 + }, + { + "start": 7372.94, + "end": 7373.76, + "probability": 0.5777 + }, + { + "start": 7374.76, + "end": 7379.5, + "probability": 0.7783 + }, + { + "start": 7380.18, + "end": 7384.24, + "probability": 0.9907 + }, + { + "start": 7384.9, + "end": 7388.51, + "probability": 0.9841 + }, + { + "start": 7388.68, + "end": 7392.16, + "probability": 0.8275 + }, + { + "start": 7392.96, + "end": 7394.04, + "probability": 0.7642 + }, + { + "start": 7394.16, + "end": 7403.36, + "probability": 0.9869 + }, + { + "start": 7403.78, + "end": 7407.16, + "probability": 0.952 + }, + { + "start": 7408.64, + "end": 7409.0, + "probability": 0.7724 + }, + { + "start": 7409.06, + "end": 7414.96, + "probability": 0.7964 + }, + { + "start": 7414.96, + "end": 7420.94, + "probability": 0.8162 + }, + { + "start": 7421.36, + "end": 7423.1, + "probability": 0.8066 + }, + { + "start": 7424.04, + "end": 7426.64, + "probability": 0.9777 + }, + { + "start": 7427.1, + "end": 7431.24, + "probability": 0.9282 + }, + { + "start": 7431.46, + "end": 7438.78, + "probability": 0.8755 + }, + { + "start": 7439.42, + "end": 7443.22, + "probability": 0.7514 + }, + { + "start": 7443.22, + "end": 7448.02, + "probability": 0.8546 + }, + { + "start": 7448.14, + "end": 7448.64, + "probability": 0.8463 + }, + { + "start": 7449.46, + "end": 7451.96, + "probability": 0.8931 + }, + { + "start": 7452.14, + "end": 7455.78, + "probability": 0.7715 + }, + { + "start": 7455.94, + "end": 7457.1, + "probability": 0.7495 + }, + { + "start": 7477.42, + "end": 7480.18, + "probability": 0.7414 + }, + { + "start": 7481.64, + "end": 7484.86, + "probability": 0.9554 + }, + { + "start": 7484.96, + "end": 7488.56, + "probability": 0.9066 + }, + { + "start": 7489.36, + "end": 7491.36, + "probability": 0.9132 + }, + { + "start": 7496.26, + "end": 7496.98, + "probability": 0.4552 + }, + { + "start": 7497.18, + "end": 7499.2, + "probability": 0.4923 + }, + { + "start": 7499.4, + "end": 7501.3, + "probability": 0.2247 + }, + { + "start": 7502.32, + "end": 7502.58, + "probability": 0.5256 + }, + { + "start": 7502.72, + "end": 7503.12, + "probability": 0.922 + }, + { + "start": 7503.22, + "end": 7506.74, + "probability": 0.9839 + }, + { + "start": 7508.98, + "end": 7514.1, + "probability": 0.951 + }, + { + "start": 7514.64, + "end": 7515.56, + "probability": 0.7681 + }, + { + "start": 7516.7, + "end": 7517.54, + "probability": 0.7388 + }, + { + "start": 7520.56, + "end": 7520.84, + "probability": 0.6825 + }, + { + "start": 7520.88, + "end": 7523.96, + "probability": 0.9121 + }, + { + "start": 7524.04, + "end": 7524.48, + "probability": 0.7929 + }, + { + "start": 7524.58, + "end": 7526.04, + "probability": 0.9139 + }, + { + "start": 7526.64, + "end": 7528.56, + "probability": 0.9683 + }, + { + "start": 7529.52, + "end": 7534.3, + "probability": 0.8528 + }, + { + "start": 7535.29, + "end": 7538.61, + "probability": 0.9967 + }, + { + "start": 7539.74, + "end": 7543.86, + "probability": 0.978 + }, + { + "start": 7544.28, + "end": 7548.52, + "probability": 0.9934 + }, + { + "start": 7548.84, + "end": 7552.24, + "probability": 0.9658 + }, + { + "start": 7552.56, + "end": 7554.62, + "probability": 0.7708 + }, + { + "start": 7556.68, + "end": 7561.18, + "probability": 0.9443 + }, + { + "start": 7561.38, + "end": 7567.14, + "probability": 0.918 + }, + { + "start": 7567.26, + "end": 7570.22, + "probability": 0.9946 + }, + { + "start": 7570.76, + "end": 7576.92, + "probability": 0.9806 + }, + { + "start": 7576.92, + "end": 7580.62, + "probability": 0.8464 + }, + { + "start": 7580.62, + "end": 7582.84, + "probability": 0.9587 + }, + { + "start": 7582.9, + "end": 7585.24, + "probability": 0.8965 + }, + { + "start": 7585.98, + "end": 7591.24, + "probability": 0.9919 + }, + { + "start": 7591.24, + "end": 7595.66, + "probability": 0.9779 + }, + { + "start": 7596.18, + "end": 7599.8, + "probability": 0.9368 + }, + { + "start": 7603.34, + "end": 7605.84, + "probability": 0.6066 + }, + { + "start": 7606.24, + "end": 7609.08, + "probability": 0.964 + }, + { + "start": 7609.8, + "end": 7613.14, + "probability": 0.886 + }, + { + "start": 7613.34, + "end": 7617.46, + "probability": 0.8235 + }, + { + "start": 7617.95, + "end": 7621.34, + "probability": 0.9922 + }, + { + "start": 7621.34, + "end": 7624.92, + "probability": 0.7632 + }, + { + "start": 7626.0, + "end": 7626.7, + "probability": 0.6082 + }, + { + "start": 7626.88, + "end": 7628.9, + "probability": 0.8754 + }, + { + "start": 7629.22, + "end": 7632.2, + "probability": 0.9892 + }, + { + "start": 7632.28, + "end": 7635.62, + "probability": 0.9767 + }, + { + "start": 7635.68, + "end": 7637.86, + "probability": 0.8634 + }, + { + "start": 7638.32, + "end": 7639.26, + "probability": 0.5678 + }, + { + "start": 7639.28, + "end": 7642.2, + "probability": 0.9849 + }, + { + "start": 7642.2, + "end": 7645.06, + "probability": 0.665 + }, + { + "start": 7645.48, + "end": 7648.0, + "probability": 0.9342 + }, + { + "start": 7648.44, + "end": 7651.49, + "probability": 0.7912 + }, + { + "start": 7652.12, + "end": 7655.54, + "probability": 0.8048 + }, + { + "start": 7655.9, + "end": 7656.92, + "probability": 0.7526 + }, + { + "start": 7658.04, + "end": 7658.86, + "probability": 0.6107 + }, + { + "start": 7659.38, + "end": 7661.28, + "probability": 0.7771 + }, + { + "start": 7661.3, + "end": 7663.44, + "probability": 0.9155 + }, + { + "start": 7664.0, + "end": 7664.3, + "probability": 0.3227 + }, + { + "start": 7665.44, + "end": 7670.5, + "probability": 0.8735 + }, + { + "start": 7670.82, + "end": 7673.12, + "probability": 0.9663 + }, + { + "start": 7673.2, + "end": 7675.42, + "probability": 0.9198 + }, + { + "start": 7676.52, + "end": 7679.54, + "probability": 0.8953 + }, + { + "start": 7680.52, + "end": 7683.03, + "probability": 0.9866 + }, + { + "start": 7684.36, + "end": 7685.5, + "probability": 0.6441 + }, + { + "start": 7686.34, + "end": 7687.04, + "probability": 0.9234 + }, + { + "start": 7687.18, + "end": 7689.18, + "probability": 0.9105 + }, + { + "start": 7689.76, + "end": 7695.06, + "probability": 0.9609 + }, + { + "start": 7695.28, + "end": 7698.4, + "probability": 0.9534 + }, + { + "start": 7698.48, + "end": 7699.24, + "probability": 0.6916 + }, + { + "start": 7699.28, + "end": 7700.32, + "probability": 0.8354 + }, + { + "start": 7700.78, + "end": 7702.46, + "probability": 0.7457 + }, + { + "start": 7703.3, + "end": 7704.86, + "probability": 0.8898 + }, + { + "start": 7704.92, + "end": 7709.12, + "probability": 0.979 + }, + { + "start": 7709.14, + "end": 7714.7, + "probability": 0.8974 + }, + { + "start": 7714.86, + "end": 7715.66, + "probability": 0.8094 + }, + { + "start": 7715.72, + "end": 7716.36, + "probability": 0.9976 + }, + { + "start": 7716.98, + "end": 7717.62, + "probability": 0.4913 + }, + { + "start": 7717.68, + "end": 7718.24, + "probability": 0.8317 + }, + { + "start": 7718.28, + "end": 7720.0, + "probability": 0.8228 + }, + { + "start": 7720.1, + "end": 7720.68, + "probability": 0.6149 + }, + { + "start": 7720.78, + "end": 7721.82, + "probability": 0.3397 + }, + { + "start": 7722.46, + "end": 7722.46, + "probability": 0.0252 + }, + { + "start": 7723.04, + "end": 7724.48, + "probability": 0.1668 + }, + { + "start": 7724.66, + "end": 7725.56, + "probability": 0.2438 + }, + { + "start": 7725.86, + "end": 7728.18, + "probability": 0.4573 + }, + { + "start": 7728.36, + "end": 7729.5, + "probability": 0.0536 + }, + { + "start": 7729.74, + "end": 7730.58, + "probability": 0.2332 + }, + { + "start": 7731.97, + "end": 7732.88, + "probability": 0.0933 + }, + { + "start": 7732.94, + "end": 7734.56, + "probability": 0.8075 + }, + { + "start": 7736.5, + "end": 7737.55, + "probability": 0.0746 + }, + { + "start": 7738.04, + "end": 7740.45, + "probability": 0.2344 + }, + { + "start": 7743.37, + "end": 7744.09, + "probability": 0.0373 + }, + { + "start": 7746.06, + "end": 7749.14, + "probability": 0.1147 + }, + { + "start": 7749.14, + "end": 7750.83, + "probability": 0.2337 + }, + { + "start": 7751.48, + "end": 7753.22, + "probability": 0.188 + }, + { + "start": 7753.62, + "end": 7754.18, + "probability": 0.2115 + }, + { + "start": 7754.36, + "end": 7755.48, + "probability": 0.4749 + }, + { + "start": 7755.54, + "end": 7757.36, + "probability": 0.7006 + }, + { + "start": 7757.5, + "end": 7758.46, + "probability": 0.7209 + }, + { + "start": 7758.86, + "end": 7758.92, + "probability": 0.0013 + }, + { + "start": 7758.92, + "end": 7761.33, + "probability": 0.8599 + }, + { + "start": 7762.02, + "end": 7762.92, + "probability": 0.8746 + }, + { + "start": 7763.0, + "end": 7765.88, + "probability": 0.9066 + }, + { + "start": 7766.22, + "end": 7768.36, + "probability": 0.9641 + }, + { + "start": 7769.18, + "end": 7772.7, + "probability": 0.9172 + }, + { + "start": 7772.92, + "end": 7773.98, + "probability": 0.5594 + }, + { + "start": 7774.12, + "end": 7777.14, + "probability": 0.9154 + }, + { + "start": 7777.28, + "end": 7777.36, + "probability": 0.026 + }, + { + "start": 7777.36, + "end": 7779.68, + "probability": 0.79 + }, + { + "start": 7780.8, + "end": 7783.26, + "probability": 0.8643 + }, + { + "start": 7783.26, + "end": 7788.52, + "probability": 0.9248 + }, + { + "start": 7788.88, + "end": 7790.48, + "probability": 0.1141 + }, + { + "start": 7790.68, + "end": 7793.68, + "probability": 0.6709 + }, + { + "start": 7793.72, + "end": 7794.28, + "probability": 0.507 + }, + { + "start": 7794.36, + "end": 7795.08, + "probability": 0.7197 + }, + { + "start": 7803.32, + "end": 7809.94, + "probability": 0.011 + }, + { + "start": 7812.64, + "end": 7815.5, + "probability": 0.0732 + }, + { + "start": 7815.62, + "end": 7816.78, + "probability": 0.0407 + }, + { + "start": 7816.78, + "end": 7818.08, + "probability": 0.0893 + }, + { + "start": 7818.08, + "end": 7818.44, + "probability": 0.2568 + }, + { + "start": 7818.86, + "end": 7820.38, + "probability": 0.5046 + }, + { + "start": 7820.48, + "end": 7821.6, + "probability": 0.6007 + }, + { + "start": 7821.74, + "end": 7822.99, + "probability": 0.7987 + }, + { + "start": 7823.18, + "end": 7825.56, + "probability": 0.9868 + }, + { + "start": 7825.56, + "end": 7828.6, + "probability": 0.9978 + }, + { + "start": 7828.88, + "end": 7831.93, + "probability": 0.3342 + }, + { + "start": 7833.16, + "end": 7834.42, + "probability": 0.8186 + }, + { + "start": 7834.5, + "end": 7834.84, + "probability": 0.6018 + }, + { + "start": 7834.9, + "end": 7837.2, + "probability": 0.8781 + }, + { + "start": 7837.2, + "end": 7840.44, + "probability": 0.9966 + }, + { + "start": 7840.66, + "end": 7841.56, + "probability": 0.4516 + }, + { + "start": 7842.62, + "end": 7845.47, + "probability": 0.7613 + }, + { + "start": 7865.02, + "end": 7866.98, + "probability": 0.4521 + }, + { + "start": 7866.98, + "end": 7869.1, + "probability": 0.8822 + }, + { + "start": 7869.2, + "end": 7870.43, + "probability": 0.7463 + }, + { + "start": 7871.3, + "end": 7874.34, + "probability": 0.7729 + }, + { + "start": 7875.0, + "end": 7875.26, + "probability": 0.7568 + }, + { + "start": 7875.36, + "end": 7875.82, + "probability": 0.8214 + }, + { + "start": 7876.5, + "end": 7880.98, + "probability": 0.9884 + }, + { + "start": 7882.02, + "end": 7883.78, + "probability": 0.6407 + }, + { + "start": 7884.06, + "end": 7884.6, + "probability": 0.7223 + }, + { + "start": 7884.66, + "end": 7889.44, + "probability": 0.9902 + }, + { + "start": 7890.34, + "end": 7898.6, + "probability": 0.9761 + }, + { + "start": 7898.84, + "end": 7899.48, + "probability": 0.985 + }, + { + "start": 7900.24, + "end": 7902.04, + "probability": 0.9402 + }, + { + "start": 7902.2, + "end": 7904.18, + "probability": 0.9922 + }, + { + "start": 7904.86, + "end": 7907.89, + "probability": 0.879 + }, + { + "start": 7908.76, + "end": 7912.34, + "probability": 0.8113 + }, + { + "start": 7912.62, + "end": 7917.14, + "probability": 0.7364 + }, + { + "start": 7918.44, + "end": 7919.37, + "probability": 0.8337 + }, + { + "start": 7920.36, + "end": 7925.0, + "probability": 0.9781 + }, + { + "start": 7925.66, + "end": 7928.33, + "probability": 0.9121 + }, + { + "start": 7928.94, + "end": 7934.42, + "probability": 0.8669 + }, + { + "start": 7935.34, + "end": 7938.1, + "probability": 0.9878 + }, + { + "start": 7939.6, + "end": 7942.92, + "probability": 0.9973 + }, + { + "start": 7942.92, + "end": 7947.04, + "probability": 0.9852 + }, + { + "start": 7947.1, + "end": 7949.38, + "probability": 0.8586 + }, + { + "start": 7949.74, + "end": 7954.62, + "probability": 0.978 + }, + { + "start": 7955.14, + "end": 7958.24, + "probability": 0.7291 + }, + { + "start": 7958.8, + "end": 7963.42, + "probability": 0.9863 + }, + { + "start": 7964.08, + "end": 7967.12, + "probability": 0.9908 + }, + { + "start": 7967.12, + "end": 7972.62, + "probability": 0.9644 + }, + { + "start": 7972.8, + "end": 7974.78, + "probability": 0.7015 + }, + { + "start": 7974.9, + "end": 7975.9, + "probability": 0.7113 + }, + { + "start": 7976.5, + "end": 7978.62, + "probability": 0.9646 + }, + { + "start": 7978.82, + "end": 7979.44, + "probability": 0.9569 + }, + { + "start": 7979.56, + "end": 7980.18, + "probability": 0.7676 + }, + { + "start": 7980.84, + "end": 7984.12, + "probability": 0.9668 + }, + { + "start": 7985.22, + "end": 7989.7, + "probability": 0.9189 + }, + { + "start": 7990.48, + "end": 7991.22, + "probability": 0.529 + }, + { + "start": 7991.84, + "end": 7992.28, + "probability": 0.5141 + }, + { + "start": 7992.36, + "end": 7992.98, + "probability": 0.7938 + }, + { + "start": 7993.28, + "end": 7996.64, + "probability": 0.5216 + }, + { + "start": 7996.94, + "end": 7999.64, + "probability": 0.9502 + }, + { + "start": 7999.74, + "end": 8002.74, + "probability": 0.7886 + }, + { + "start": 8002.84, + "end": 8003.54, + "probability": 0.9654 + }, + { + "start": 8003.84, + "end": 8010.0, + "probability": 0.9666 + }, + { + "start": 8011.84, + "end": 8012.83, + "probability": 0.8365 + }, + { + "start": 8013.6, + "end": 8015.24, + "probability": 0.7982 + }, + { + "start": 8015.58, + "end": 8016.6, + "probability": 0.7583 + }, + { + "start": 8016.88, + "end": 8018.12, + "probability": 0.9385 + }, + { + "start": 8018.18, + "end": 8019.58, + "probability": 0.8473 + }, + { + "start": 8019.58, + "end": 8022.78, + "probability": 0.8187 + }, + { + "start": 8023.36, + "end": 8027.64, + "probability": 0.918 + }, + { + "start": 8028.3, + "end": 8030.26, + "probability": 0.9092 + }, + { + "start": 8030.78, + "end": 8035.78, + "probability": 0.8948 + }, + { + "start": 8036.3, + "end": 8039.73, + "probability": 0.9901 + }, + { + "start": 8041.24, + "end": 8046.02, + "probability": 0.8399 + }, + { + "start": 8046.22, + "end": 8049.72, + "probability": 0.5011 + }, + { + "start": 8050.42, + "end": 8053.32, + "probability": 0.9875 + }, + { + "start": 8054.34, + "end": 8055.06, + "probability": 0.5127 + }, + { + "start": 8056.04, + "end": 8058.78, + "probability": 0.9795 + }, + { + "start": 8059.42, + "end": 8060.84, + "probability": 0.6414 + }, + { + "start": 8060.9, + "end": 8061.48, + "probability": 0.7012 + }, + { + "start": 8061.92, + "end": 8062.52, + "probability": 0.5745 + }, + { + "start": 8062.58, + "end": 8064.36, + "probability": 0.5367 + }, + { + "start": 8065.0, + "end": 8067.34, + "probability": 0.6927 + }, + { + "start": 8068.42, + "end": 8070.38, + "probability": 0.8301 + }, + { + "start": 8071.06, + "end": 8074.4, + "probability": 0.8011 + }, + { + "start": 8074.86, + "end": 8077.5, + "probability": 0.9715 + }, + { + "start": 8077.98, + "end": 8078.76, + "probability": 0.9416 + }, + { + "start": 8079.64, + "end": 8081.99, + "probability": 0.9165 + }, + { + "start": 8082.96, + "end": 8087.5, + "probability": 0.6835 + }, + { + "start": 8087.74, + "end": 8087.96, + "probability": 0.7062 + }, + { + "start": 8088.72, + "end": 8090.76, + "probability": 0.5927 + }, + { + "start": 8090.84, + "end": 8093.36, + "probability": 0.8522 + }, + { + "start": 8093.36, + "end": 8094.32, + "probability": 0.8601 + }, + { + "start": 8099.7, + "end": 8103.72, + "probability": 0.9021 + }, + { + "start": 8105.38, + "end": 8107.0, + "probability": 0.042 + }, + { + "start": 8107.46, + "end": 8108.16, + "probability": 0.1927 + }, + { + "start": 8112.86, + "end": 8113.75, + "probability": 0.066 + }, + { + "start": 8114.96, + "end": 8116.32, + "probability": 0.0992 + }, + { + "start": 8117.26, + "end": 8118.16, + "probability": 0.2734 + }, + { + "start": 8136.26, + "end": 8138.54, + "probability": 0.6064 + }, + { + "start": 8139.4, + "end": 8142.4, + "probability": 0.6399 + }, + { + "start": 8143.82, + "end": 8155.5, + "probability": 0.9318 + }, + { + "start": 8155.72, + "end": 8163.98, + "probability": 0.9688 + }, + { + "start": 8164.62, + "end": 8166.64, + "probability": 0.7894 + }, + { + "start": 8167.64, + "end": 8169.34, + "probability": 0.8508 + }, + { + "start": 8169.5, + "end": 8171.76, + "probability": 0.9591 + }, + { + "start": 8172.28, + "end": 8176.7, + "probability": 0.9428 + }, + { + "start": 8177.3, + "end": 8181.38, + "probability": 0.9893 + }, + { + "start": 8182.42, + "end": 8187.58, + "probability": 0.9832 + }, + { + "start": 8188.16, + "end": 8192.26, + "probability": 0.9956 + }, + { + "start": 8193.0, + "end": 8197.26, + "probability": 0.9705 + }, + { + "start": 8198.0, + "end": 8202.87, + "probability": 0.9967 + }, + { + "start": 8204.3, + "end": 8205.34, + "probability": 0.8548 + }, + { + "start": 8205.8, + "end": 8211.54, + "probability": 0.9854 + }, + { + "start": 8211.96, + "end": 8215.13, + "probability": 0.9922 + }, + { + "start": 8215.8, + "end": 8217.7, + "probability": 0.9977 + }, + { + "start": 8219.71, + "end": 8224.56, + "probability": 0.9959 + }, + { + "start": 8224.56, + "end": 8228.46, + "probability": 0.9967 + }, + { + "start": 8229.04, + "end": 8232.64, + "probability": 0.9656 + }, + { + "start": 8232.9, + "end": 8235.14, + "probability": 0.9379 + }, + { + "start": 8235.54, + "end": 8237.34, + "probability": 0.9009 + }, + { + "start": 8237.76, + "end": 8238.92, + "probability": 0.9084 + }, + { + "start": 8240.0, + "end": 8242.92, + "probability": 0.9737 + }, + { + "start": 8243.42, + "end": 8247.32, + "probability": 0.7967 + }, + { + "start": 8247.82, + "end": 8250.18, + "probability": 0.8892 + }, + { + "start": 8251.02, + "end": 8253.58, + "probability": 0.9294 + }, + { + "start": 8254.14, + "end": 8255.05, + "probability": 0.4507 + }, + { + "start": 8256.26, + "end": 8263.14, + "probability": 0.9717 + }, + { + "start": 8263.96, + "end": 8269.68, + "probability": 0.9252 + }, + { + "start": 8270.38, + "end": 8270.98, + "probability": 0.7239 + }, + { + "start": 8271.48, + "end": 8275.52, + "probability": 0.9769 + }, + { + "start": 8275.6, + "end": 8277.41, + "probability": 0.8625 + }, + { + "start": 8277.92, + "end": 8279.24, + "probability": 0.8228 + }, + { + "start": 8279.94, + "end": 8281.24, + "probability": 0.9471 + }, + { + "start": 8281.9, + "end": 8287.72, + "probability": 0.9714 + }, + { + "start": 8287.92, + "end": 8289.36, + "probability": 0.6538 + }, + { + "start": 8289.52, + "end": 8290.2, + "probability": 0.3915 + }, + { + "start": 8290.78, + "end": 8292.46, + "probability": 0.9431 + }, + { + "start": 8293.02, + "end": 8296.18, + "probability": 0.8709 + }, + { + "start": 8296.84, + "end": 8303.46, + "probability": 0.9905 + }, + { + "start": 8303.46, + "end": 8306.92, + "probability": 0.9746 + }, + { + "start": 8308.46, + "end": 8310.92, + "probability": 0.5374 + }, + { + "start": 8311.7, + "end": 8313.02, + "probability": 0.8895 + }, + { + "start": 8313.26, + "end": 8319.14, + "probability": 0.963 + }, + { + "start": 8319.14, + "end": 8323.42, + "probability": 0.9927 + }, + { + "start": 8324.46, + "end": 8329.0, + "probability": 0.9808 + }, + { + "start": 8329.36, + "end": 8331.52, + "probability": 0.9918 + }, + { + "start": 8331.52, + "end": 8334.61, + "probability": 0.9971 + }, + { + "start": 8335.4, + "end": 8342.74, + "probability": 0.9092 + }, + { + "start": 8343.2, + "end": 8344.58, + "probability": 0.9731 + }, + { + "start": 8345.28, + "end": 8348.42, + "probability": 0.3135 + }, + { + "start": 8348.42, + "end": 8348.58, + "probability": 0.1647 + }, + { + "start": 8348.7, + "end": 8349.2, + "probability": 0.9664 + }, + { + "start": 8349.32, + "end": 8350.32, + "probability": 0.7961 + }, + { + "start": 8350.7, + "end": 8351.68, + "probability": 0.6548 + }, + { + "start": 8352.92, + "end": 8355.96, + "probability": 0.9575 + }, + { + "start": 8355.96, + "end": 8358.46, + "probability": 0.9907 + }, + { + "start": 8359.2, + "end": 8362.46, + "probability": 0.9338 + }, + { + "start": 8364.06, + "end": 8365.44, + "probability": 0.5066 + }, + { + "start": 8365.58, + "end": 8370.63, + "probability": 0.9905 + }, + { + "start": 8371.0, + "end": 8375.94, + "probability": 0.8785 + }, + { + "start": 8376.38, + "end": 8377.16, + "probability": 0.9582 + }, + { + "start": 8377.58, + "end": 8378.4, + "probability": 0.5975 + }, + { + "start": 8378.6, + "end": 8381.86, + "probability": 0.8538 + }, + { + "start": 8382.9, + "end": 8388.74, + "probability": 0.8291 + }, + { + "start": 8389.56, + "end": 8393.58, + "probability": 0.8556 + }, + { + "start": 8394.28, + "end": 8396.24, + "probability": 0.6859 + }, + { + "start": 8396.92, + "end": 8398.46, + "probability": 0.799 + }, + { + "start": 8398.64, + "end": 8400.82, + "probability": 0.8892 + }, + { + "start": 8401.36, + "end": 8405.4, + "probability": 0.9822 + }, + { + "start": 8405.82, + "end": 8408.06, + "probability": 0.9938 + }, + { + "start": 8409.6, + "end": 8411.02, + "probability": 0.8818 + }, + { + "start": 8411.72, + "end": 8417.96, + "probability": 0.9849 + }, + { + "start": 8418.12, + "end": 8418.5, + "probability": 0.7252 + }, + { + "start": 8418.86, + "end": 8420.44, + "probability": 0.7852 + }, + { + "start": 8420.56, + "end": 8423.7, + "probability": 0.8495 + }, + { + "start": 8423.78, + "end": 8425.96, + "probability": 0.5841 + }, + { + "start": 8426.2, + "end": 8427.32, + "probability": 0.6408 + }, + { + "start": 8427.46, + "end": 8431.96, + "probability": 0.4735 + }, + { + "start": 8433.42, + "end": 8433.42, + "probability": 0.1318 + }, + { + "start": 8433.42, + "end": 8435.44, + "probability": 0.4248 + }, + { + "start": 8435.64, + "end": 8437.5, + "probability": 0.8309 + }, + { + "start": 8438.83, + "end": 8442.15, + "probability": 0.8744 + }, + { + "start": 8446.54, + "end": 8447.04, + "probability": 0.3308 + }, + { + "start": 8447.04, + "end": 8447.61, + "probability": 0.2247 + }, + { + "start": 8448.0, + "end": 8448.56, + "probability": 0.2189 + }, + { + "start": 8449.08, + "end": 8452.92, + "probability": 0.743 + }, + { + "start": 8453.26, + "end": 8458.8, + "probability": 0.7657 + }, + { + "start": 8458.92, + "end": 8461.72, + "probability": 0.7541 + }, + { + "start": 8461.84, + "end": 8464.16, + "probability": 0.1383 + }, + { + "start": 8464.86, + "end": 8469.08, + "probability": 0.8526 + }, + { + "start": 8477.32, + "end": 8480.34, + "probability": 0.7637 + }, + { + "start": 8480.34, + "end": 8481.68, + "probability": 0.7577 + }, + { + "start": 8481.74, + "end": 8482.96, + "probability": 0.4956 + }, + { + "start": 8486.82, + "end": 8487.76, + "probability": 0.3751 + }, + { + "start": 8487.8, + "end": 8488.96, + "probability": 0.7094 + }, + { + "start": 8489.46, + "end": 8494.54, + "probability": 0.8632 + }, + { + "start": 8495.82, + "end": 8501.36, + "probability": 0.9219 + }, + { + "start": 8502.48, + "end": 8504.12, + "probability": 0.848 + }, + { + "start": 8504.9, + "end": 8509.8, + "probability": 0.9707 + }, + { + "start": 8511.1, + "end": 8513.61, + "probability": 0.6448 + }, + { + "start": 8514.18, + "end": 8519.28, + "probability": 0.9348 + }, + { + "start": 8520.2, + "end": 8522.24, + "probability": 0.9631 + }, + { + "start": 8523.4, + "end": 8524.92, + "probability": 0.9393 + }, + { + "start": 8525.3, + "end": 8525.54, + "probability": 0.3788 + }, + { + "start": 8525.58, + "end": 8527.0, + "probability": 0.9771 + }, + { + "start": 8527.08, + "end": 8528.76, + "probability": 0.9387 + }, + { + "start": 8529.56, + "end": 8532.24, + "probability": 0.6998 + }, + { + "start": 8532.58, + "end": 8534.64, + "probability": 0.767 + }, + { + "start": 8535.58, + "end": 8543.12, + "probability": 0.6646 + }, + { + "start": 8544.86, + "end": 8547.18, + "probability": 0.9674 + }, + { + "start": 8548.16, + "end": 8552.08, + "probability": 0.9954 + }, + { + "start": 8553.94, + "end": 8556.06, + "probability": 0.9995 + }, + { + "start": 8556.2, + "end": 8556.36, + "probability": 0.8947 + }, + { + "start": 8556.42, + "end": 8557.24, + "probability": 0.8688 + }, + { + "start": 8557.38, + "end": 8558.18, + "probability": 0.9908 + }, + { + "start": 8559.98, + "end": 8564.08, + "probability": 0.9613 + }, + { + "start": 8565.1, + "end": 8568.96, + "probability": 0.9766 + }, + { + "start": 8571.7, + "end": 8573.14, + "probability": 0.9019 + }, + { + "start": 8574.56, + "end": 8576.06, + "probability": 0.9846 + }, + { + "start": 8577.66, + "end": 8578.84, + "probability": 0.9241 + }, + { + "start": 8579.78, + "end": 8581.2, + "probability": 0.8092 + }, + { + "start": 8582.08, + "end": 8584.03, + "probability": 0.9778 + }, + { + "start": 8584.66, + "end": 8587.32, + "probability": 0.9911 + }, + { + "start": 8589.06, + "end": 8591.42, + "probability": 0.7733 + }, + { + "start": 8591.5, + "end": 8593.38, + "probability": 0.8603 + }, + { + "start": 8593.87, + "end": 8596.82, + "probability": 0.7764 + }, + { + "start": 8598.64, + "end": 8610.02, + "probability": 0.8903 + }, + { + "start": 8610.08, + "end": 8610.58, + "probability": 0.701 + }, + { + "start": 8610.74, + "end": 8611.32, + "probability": 0.69 + }, + { + "start": 8611.52, + "end": 8615.96, + "probability": 0.9517 + }, + { + "start": 8616.06, + "end": 8621.76, + "probability": 0.7876 + }, + { + "start": 8621.92, + "end": 8625.16, + "probability": 0.8261 + }, + { + "start": 8626.74, + "end": 8629.4, + "probability": 0.8716 + }, + { + "start": 8630.7, + "end": 8634.7, + "probability": 0.9844 + }, + { + "start": 8635.52, + "end": 8637.42, + "probability": 0.9284 + }, + { + "start": 8637.76, + "end": 8639.68, + "probability": 0.8631 + }, + { + "start": 8640.3, + "end": 8642.36, + "probability": 0.7791 + }, + { + "start": 8643.08, + "end": 8645.16, + "probability": 0.8274 + }, + { + "start": 8647.06, + "end": 8649.22, + "probability": 0.6644 + }, + { + "start": 8649.38, + "end": 8651.58, + "probability": 0.8554 + }, + { + "start": 8653.74, + "end": 8657.88, + "probability": 0.9957 + }, + { + "start": 8663.7, + "end": 8665.06, + "probability": 0.7101 + }, + { + "start": 8665.22, + "end": 8667.54, + "probability": 0.9598 + }, + { + "start": 8667.78, + "end": 8668.82, + "probability": 0.8687 + }, + { + "start": 8669.62, + "end": 8670.34, + "probability": 0.8219 + }, + { + "start": 8672.78, + "end": 8673.22, + "probability": 0.5606 + }, + { + "start": 8674.28, + "end": 8678.24, + "probability": 0.7947 + }, + { + "start": 8679.02, + "end": 8680.16, + "probability": 0.6599 + }, + { + "start": 8680.92, + "end": 8682.2, + "probability": 0.7666 + }, + { + "start": 8683.06, + "end": 8685.06, + "probability": 0.7485 + }, + { + "start": 8686.16, + "end": 8692.52, + "probability": 0.7774 + }, + { + "start": 8693.28, + "end": 8693.84, + "probability": 0.9448 + }, + { + "start": 8695.8, + "end": 8696.5, + "probability": 0.0351 + }, + { + "start": 8696.5, + "end": 8700.99, + "probability": 0.9992 + }, + { + "start": 8701.04, + "end": 8705.06, + "probability": 0.9992 + }, + { + "start": 8705.78, + "end": 8706.64, + "probability": 0.9072 + }, + { + "start": 8713.36, + "end": 8715.62, + "probability": 0.9976 + }, + { + "start": 8718.04, + "end": 8718.66, + "probability": 0.6499 + }, + { + "start": 8719.14, + "end": 8719.58, + "probability": 0.6574 + }, + { + "start": 8721.02, + "end": 8726.18, + "probability": 0.9382 + }, + { + "start": 8727.14, + "end": 8728.38, + "probability": 0.9581 + }, + { + "start": 8730.06, + "end": 8733.38, + "probability": 0.9722 + }, + { + "start": 8733.9, + "end": 8739.42, + "probability": 0.9348 + }, + { + "start": 8740.14, + "end": 8747.78, + "probability": 0.9452 + }, + { + "start": 8747.78, + "end": 8751.38, + "probability": 0.9987 + }, + { + "start": 8751.92, + "end": 8754.7, + "probability": 0.9625 + }, + { + "start": 8755.5, + "end": 8757.52, + "probability": 0.5394 + }, + { + "start": 8758.24, + "end": 8762.7, + "probability": 0.9902 + }, + { + "start": 8762.7, + "end": 8765.08, + "probability": 0.6124 + }, + { + "start": 8771.76, + "end": 8779.76, + "probability": 0.9923 + }, + { + "start": 8780.76, + "end": 8784.12, + "probability": 0.9951 + }, + { + "start": 8785.18, + "end": 8786.74, + "probability": 0.9164 + }, + { + "start": 8787.44, + "end": 8788.58, + "probability": 0.8822 + }, + { + "start": 8788.66, + "end": 8790.7, + "probability": 0.7629 + }, + { + "start": 8790.78, + "end": 8792.78, + "probability": 0.8618 + }, + { + "start": 8794.6, + "end": 8796.68, + "probability": 0.6281 + }, + { + "start": 8797.4, + "end": 8798.32, + "probability": 0.814 + }, + { + "start": 8799.02, + "end": 8800.46, + "probability": 0.7859 + }, + { + "start": 8800.46, + "end": 8801.36, + "probability": 0.9423 + }, + { + "start": 8801.86, + "end": 8804.36, + "probability": 0.9797 + }, + { + "start": 8805.48, + "end": 8806.18, + "probability": 0.7952 + }, + { + "start": 8806.52, + "end": 8808.48, + "probability": 0.8684 + }, + { + "start": 8808.48, + "end": 8808.86, + "probability": 0.4325 + }, + { + "start": 8808.9, + "end": 8815.54, + "probability": 0.7769 + }, + { + "start": 8816.51, + "end": 8822.94, + "probability": 0.9759 + }, + { + "start": 8822.96, + "end": 8825.26, + "probability": 0.7001 + }, + { + "start": 8827.44, + "end": 8829.18, + "probability": 0.9706 + }, + { + "start": 8831.5, + "end": 8833.34, + "probability": 0.9039 + }, + { + "start": 8833.48, + "end": 8836.32, + "probability": 0.8432 + }, + { + "start": 8836.68, + "end": 8838.92, + "probability": 0.9985 + }, + { + "start": 8839.02, + "end": 8841.32, + "probability": 0.8923 + }, + { + "start": 8842.68, + "end": 8843.82, + "probability": 0.7608 + }, + { + "start": 8844.0, + "end": 8845.94, + "probability": 0.8363 + }, + { + "start": 8846.06, + "end": 8848.58, + "probability": 0.151 + }, + { + "start": 8848.58, + "end": 8855.18, + "probability": 0.6831 + }, + { + "start": 8855.5, + "end": 8859.3, + "probability": 0.2471 + }, + { + "start": 8860.02, + "end": 8862.86, + "probability": 0.7193 + }, + { + "start": 8863.72, + "end": 8868.88, + "probability": 0.9446 + }, + { + "start": 8868.88, + "end": 8873.58, + "probability": 0.9946 + }, + { + "start": 8874.0, + "end": 8875.96, + "probability": 0.5139 + }, + { + "start": 8876.3, + "end": 8876.66, + "probability": 0.726 + }, + { + "start": 8877.98, + "end": 8878.7, + "probability": 0.7193 + }, + { + "start": 8880.48, + "end": 8886.62, + "probability": 0.8308 + }, + { + "start": 8888.26, + "end": 8892.36, + "probability": 0.7015 + }, + { + "start": 8900.44, + "end": 8901.68, + "probability": 0.574 + }, + { + "start": 8913.38, + "end": 8915.64, + "probability": 0.9889 + }, + { + "start": 8915.64, + "end": 8919.68, + "probability": 0.9961 + }, + { + "start": 8920.48, + "end": 8924.62, + "probability": 0.9964 + }, + { + "start": 8924.66, + "end": 8925.58, + "probability": 0.9678 + }, + { + "start": 8926.32, + "end": 8928.6, + "probability": 0.8475 + }, + { + "start": 8928.84, + "end": 8929.48, + "probability": 0.4489 + }, + { + "start": 8929.66, + "end": 8931.12, + "probability": 0.7668 + }, + { + "start": 8934.7, + "end": 8935.68, + "probability": 0.9525 + }, + { + "start": 8936.18, + "end": 8937.86, + "probability": 0.6631 + }, + { + "start": 8938.04, + "end": 8940.18, + "probability": 0.7424 + }, + { + "start": 8945.66, + "end": 8946.08, + "probability": 0.0164 + }, + { + "start": 8949.14, + "end": 8951.42, + "probability": 0.9543 + }, + { + "start": 8951.48, + "end": 8953.46, + "probability": 0.9285 + }, + { + "start": 8953.74, + "end": 8956.42, + "probability": 0.935 + }, + { + "start": 8957.22, + "end": 8959.3, + "probability": 0.9692 + }, + { + "start": 8959.96, + "end": 8963.52, + "probability": 0.998 + }, + { + "start": 8963.52, + "end": 8966.34, + "probability": 0.9408 + }, + { + "start": 8966.84, + "end": 8968.58, + "probability": 0.7255 + }, + { + "start": 8969.24, + "end": 8970.92, + "probability": 0.9116 + }, + { + "start": 8971.76, + "end": 8973.58, + "probability": 0.8888 + }, + { + "start": 8974.1, + "end": 8974.92, + "probability": 0.7585 + }, + { + "start": 8976.62, + "end": 8978.02, + "probability": 0.8165 + }, + { + "start": 8978.86, + "end": 8980.56, + "probability": 0.9823 + }, + { + "start": 8981.1, + "end": 8983.92, + "probability": 0.9913 + }, + { + "start": 8985.3, + "end": 8989.02, + "probability": 0.4698 + }, + { + "start": 8989.82, + "end": 8991.9, + "probability": 0.7233 + }, + { + "start": 8992.42, + "end": 8994.1, + "probability": 0.7543 + }, + { + "start": 8995.32, + "end": 8998.2, + "probability": 0.6575 + }, + { + "start": 8999.68, + "end": 9005.42, + "probability": 0.9077 + }, + { + "start": 9006.04, + "end": 9010.8, + "probability": 0.9928 + }, + { + "start": 9012.3, + "end": 9020.73, + "probability": 0.939 + }, + { + "start": 9021.98, + "end": 9024.7, + "probability": 0.9765 + }, + { + "start": 9026.1, + "end": 9032.0, + "probability": 0.9318 + }, + { + "start": 9032.5, + "end": 9033.3, + "probability": 0.6475 + }, + { + "start": 9034.42, + "end": 9036.34, + "probability": 0.9704 + }, + { + "start": 9037.04, + "end": 9038.92, + "probability": 0.8501 + }, + { + "start": 9040.54, + "end": 9041.24, + "probability": 0.5319 + }, + { + "start": 9042.12, + "end": 9046.38, + "probability": 0.9581 + }, + { + "start": 9047.84, + "end": 9049.9, + "probability": 0.7398 + }, + { + "start": 9050.1, + "end": 9054.12, + "probability": 0.9482 + }, + { + "start": 9054.4, + "end": 9056.3, + "probability": 0.9709 + }, + { + "start": 9056.96, + "end": 9057.64, + "probability": 0.9478 + }, + { + "start": 9058.88, + "end": 9062.3, + "probability": 0.9905 + }, + { + "start": 9063.82, + "end": 9067.48, + "probability": 0.8791 + }, + { + "start": 9068.42, + "end": 9072.12, + "probability": 0.9832 + }, + { + "start": 9072.12, + "end": 9076.8, + "probability": 0.9967 + }, + { + "start": 9078.58, + "end": 9079.3, + "probability": 0.845 + }, + { + "start": 9080.04, + "end": 9085.52, + "probability": 0.9926 + }, + { + "start": 9086.72, + "end": 9090.36, + "probability": 0.9857 + }, + { + "start": 9091.04, + "end": 9094.02, + "probability": 0.9476 + }, + { + "start": 9094.58, + "end": 9095.14, + "probability": 0.4912 + }, + { + "start": 9095.68, + "end": 9097.92, + "probability": 0.8199 + }, + { + "start": 9098.74, + "end": 9099.44, + "probability": 0.5553 + }, + { + "start": 9100.4, + "end": 9101.26, + "probability": 0.979 + }, + { + "start": 9102.28, + "end": 9102.98, + "probability": 0.9025 + }, + { + "start": 9103.68, + "end": 9106.6, + "probability": 0.9955 + }, + { + "start": 9107.42, + "end": 9111.16, + "probability": 0.8575 + }, + { + "start": 9111.62, + "end": 9112.94, + "probability": 0.833 + }, + { + "start": 9113.28, + "end": 9115.38, + "probability": 0.9875 + }, + { + "start": 9116.44, + "end": 9119.72, + "probability": 0.9631 + }, + { + "start": 9119.72, + "end": 9123.5, + "probability": 0.9847 + }, + { + "start": 9124.82, + "end": 9130.1, + "probability": 0.9229 + }, + { + "start": 9130.54, + "end": 9136.28, + "probability": 0.8376 + }, + { + "start": 9136.94, + "end": 9139.28, + "probability": 0.6497 + }, + { + "start": 9140.1, + "end": 9144.28, + "probability": 0.9453 + }, + { + "start": 9144.28, + "end": 9148.78, + "probability": 0.908 + }, + { + "start": 9149.24, + "end": 9149.68, + "probability": 0.6807 + }, + { + "start": 9150.48, + "end": 9156.16, + "probability": 0.8805 + }, + { + "start": 9157.24, + "end": 9160.38, + "probability": 0.9751 + }, + { + "start": 9161.3, + "end": 9165.7, + "probability": 0.8693 + }, + { + "start": 9166.12, + "end": 9166.68, + "probability": 0.9277 + }, + { + "start": 9168.08, + "end": 9171.64, + "probability": 0.9779 + }, + { + "start": 9172.44, + "end": 9177.78, + "probability": 0.9829 + }, + { + "start": 9179.46, + "end": 9180.48, + "probability": 0.6661 + }, + { + "start": 9181.06, + "end": 9182.5, + "probability": 0.917 + }, + { + "start": 9183.42, + "end": 9186.42, + "probability": 0.1198 + }, + { + "start": 9186.42, + "end": 9191.22, + "probability": 0.7656 + }, + { + "start": 9192.04, + "end": 9197.96, + "probability": 0.9951 + }, + { + "start": 9199.12, + "end": 9203.72, + "probability": 0.8807 + }, + { + "start": 9204.78, + "end": 9208.78, + "probability": 0.9852 + }, + { + "start": 9209.8, + "end": 9211.34, + "probability": 0.8721 + }, + { + "start": 9211.96, + "end": 9215.1, + "probability": 0.9975 + }, + { + "start": 9215.1, + "end": 9219.2, + "probability": 0.867 + }, + { + "start": 9219.54, + "end": 9222.3, + "probability": 0.9672 + }, + { + "start": 9223.82, + "end": 9224.42, + "probability": 0.7356 + }, + { + "start": 9225.54, + "end": 9228.24, + "probability": 0.9688 + }, + { + "start": 9228.72, + "end": 9230.24, + "probability": 0.8455 + }, + { + "start": 9230.76, + "end": 9232.48, + "probability": 0.9584 + }, + { + "start": 9233.52, + "end": 9239.82, + "probability": 0.943 + }, + { + "start": 9240.88, + "end": 9242.72, + "probability": 0.9785 + }, + { + "start": 9242.8, + "end": 9245.68, + "probability": 0.9945 + }, + { + "start": 9246.34, + "end": 9250.0, + "probability": 0.9878 + }, + { + "start": 9250.0, + "end": 9254.38, + "probability": 0.9945 + }, + { + "start": 9255.12, + "end": 9258.64, + "probability": 0.9799 + }, + { + "start": 9258.64, + "end": 9264.56, + "probability": 0.9523 + }, + { + "start": 9265.08, + "end": 9267.26, + "probability": 0.7803 + }, + { + "start": 9268.0, + "end": 9272.02, + "probability": 0.8627 + }, + { + "start": 9273.06, + "end": 9273.12, + "probability": 0.7935 + }, + { + "start": 9274.1, + "end": 9276.18, + "probability": 0.9658 + }, + { + "start": 9276.82, + "end": 9281.3, + "probability": 0.9906 + }, + { + "start": 9281.96, + "end": 9283.72, + "probability": 0.596 + }, + { + "start": 9284.58, + "end": 9286.06, + "probability": 0.9174 + }, + { + "start": 9286.7, + "end": 9289.82, + "probability": 0.959 + }, + { + "start": 9290.34, + "end": 9292.52, + "probability": 0.8834 + }, + { + "start": 9293.48, + "end": 9295.64, + "probability": 0.3734 + }, + { + "start": 9296.66, + "end": 9299.44, + "probability": 0.9902 + }, + { + "start": 9299.8, + "end": 9300.62, + "probability": 0.8789 + }, + { + "start": 9300.7, + "end": 9301.96, + "probability": 0.7955 + }, + { + "start": 9302.56, + "end": 9303.42, + "probability": 0.7382 + }, + { + "start": 9304.04, + "end": 9306.76, + "probability": 0.9874 + }, + { + "start": 9307.6, + "end": 9311.22, + "probability": 0.9712 + }, + { + "start": 9311.6, + "end": 9312.68, + "probability": 0.884 + }, + { + "start": 9313.04, + "end": 9314.78, + "probability": 0.9758 + }, + { + "start": 9316.14, + "end": 9318.74, + "probability": 0.998 + }, + { + "start": 9318.74, + "end": 9322.64, + "probability": 0.9968 + }, + { + "start": 9323.24, + "end": 9323.86, + "probability": 0.6856 + }, + { + "start": 9325.22, + "end": 9327.24, + "probability": 0.828 + }, + { + "start": 9328.3, + "end": 9333.0, + "probability": 0.7285 + }, + { + "start": 9333.68, + "end": 9337.48, + "probability": 0.9016 + }, + { + "start": 9337.48, + "end": 9342.5, + "probability": 0.9333 + }, + { + "start": 9343.42, + "end": 9350.58, + "probability": 0.98 + }, + { + "start": 9351.28, + "end": 9353.54, + "probability": 0.9546 + }, + { + "start": 9354.46, + "end": 9355.22, + "probability": 0.6706 + }, + { + "start": 9355.98, + "end": 9359.96, + "probability": 0.6432 + }, + { + "start": 9360.6, + "end": 9363.0, + "probability": 0.986 + }, + { + "start": 9363.98, + "end": 9364.58, + "probability": 0.8516 + }, + { + "start": 9364.98, + "end": 9369.86, + "probability": 0.9709 + }, + { + "start": 9369.86, + "end": 9374.72, + "probability": 0.9912 + }, + { + "start": 9375.6, + "end": 9380.62, + "probability": 0.98 + }, + { + "start": 9381.08, + "end": 9384.0, + "probability": 0.9014 + }, + { + "start": 9385.02, + "end": 9388.22, + "probability": 0.866 + }, + { + "start": 9388.78, + "end": 9390.8, + "probability": 0.8473 + }, + { + "start": 9391.94, + "end": 9401.04, + "probability": 0.9031 + }, + { + "start": 9403.28, + "end": 9404.34, + "probability": 0.6531 + }, + { + "start": 9404.9, + "end": 9406.2, + "probability": 0.9048 + }, + { + "start": 9407.28, + "end": 9408.96, + "probability": 0.8973 + }, + { + "start": 9410.06, + "end": 9415.64, + "probability": 0.8924 + }, + { + "start": 9440.65, + "end": 9443.98, + "probability": 0.8073 + }, + { + "start": 9445.4, + "end": 9446.7, + "probability": 0.832 + }, + { + "start": 9447.78, + "end": 9449.56, + "probability": 0.8674 + }, + { + "start": 9449.8, + "end": 9449.92, + "probability": 0.0124 + }, + { + "start": 9453.35, + "end": 9455.46, + "probability": 0.614 + }, + { + "start": 9456.56, + "end": 9458.8, + "probability": 0.7796 + }, + { + "start": 9461.22, + "end": 9462.56, + "probability": 0.9373 + }, + { + "start": 9464.18, + "end": 9469.56, + "probability": 0.9695 + }, + { + "start": 9469.68, + "end": 9472.44, + "probability": 0.8788 + }, + { + "start": 9472.78, + "end": 9474.22, + "probability": 0.8297 + }, + { + "start": 9477.62, + "end": 9477.74, + "probability": 0.2181 + }, + { + "start": 9477.76, + "end": 9478.9, + "probability": 0.9901 + }, + { + "start": 9479.14, + "end": 9483.32, + "probability": 0.9734 + }, + { + "start": 9484.76, + "end": 9487.36, + "probability": 0.9882 + }, + { + "start": 9488.9, + "end": 9490.4, + "probability": 0.9152 + }, + { + "start": 9491.9, + "end": 9492.68, + "probability": 0.7296 + }, + { + "start": 9493.82, + "end": 9499.94, + "probability": 0.98 + }, + { + "start": 9500.94, + "end": 9503.88, + "probability": 0.971 + }, + { + "start": 9503.98, + "end": 9508.28, + "probability": 0.8279 + }, + { + "start": 9509.1, + "end": 9511.5, + "probability": 0.9961 + }, + { + "start": 9513.08, + "end": 9516.06, + "probability": 0.998 + }, + { + "start": 9517.08, + "end": 9525.72, + "probability": 0.9722 + }, + { + "start": 9529.94, + "end": 9532.58, + "probability": 0.9834 + }, + { + "start": 9532.64, + "end": 9533.6, + "probability": 0.7772 + }, + { + "start": 9535.22, + "end": 9536.14, + "probability": 0.8911 + }, + { + "start": 9542.14, + "end": 9543.61, + "probability": 0.9106 + }, + { + "start": 9545.22, + "end": 9548.22, + "probability": 0.9895 + }, + { + "start": 9549.42, + "end": 9550.98, + "probability": 0.854 + }, + { + "start": 9551.9, + "end": 9554.44, + "probability": 0.8005 + }, + { + "start": 9554.5, + "end": 9556.2, + "probability": 0.6062 + }, + { + "start": 9556.28, + "end": 9560.26, + "probability": 0.9944 + }, + { + "start": 9560.32, + "end": 9563.2, + "probability": 0.7593 + }, + { + "start": 9563.7, + "end": 9566.06, + "probability": 0.7955 + }, + { + "start": 9569.76, + "end": 9571.0, + "probability": 0.8819 + }, + { + "start": 9573.18, + "end": 9574.1, + "probability": 0.9978 + }, + { + "start": 9577.18, + "end": 9578.6, + "probability": 0.7715 + }, + { + "start": 9579.66, + "end": 9582.98, + "probability": 0.778 + }, + { + "start": 9583.94, + "end": 9584.68, + "probability": 0.6888 + }, + { + "start": 9586.9, + "end": 9588.12, + "probability": 0.9906 + }, + { + "start": 9588.5, + "end": 9590.15, + "probability": 0.9877 + }, + { + "start": 9590.34, + "end": 9593.76, + "probability": 0.8676 + }, + { + "start": 9597.2, + "end": 9599.34, + "probability": 0.9976 + }, + { + "start": 9600.7, + "end": 9601.43, + "probability": 0.8674 + }, + { + "start": 9602.54, + "end": 9603.48, + "probability": 0.8219 + }, + { + "start": 9604.38, + "end": 9606.76, + "probability": 0.6326 + }, + { + "start": 9608.84, + "end": 9613.9, + "probability": 0.9688 + }, + { + "start": 9617.98, + "end": 9618.32, + "probability": 0.8666 + }, + { + "start": 9618.42, + "end": 9623.5, + "probability": 0.9525 + }, + { + "start": 9625.3, + "end": 9626.86, + "probability": 0.7397 + }, + { + "start": 9627.76, + "end": 9630.22, + "probability": 0.8285 + }, + { + "start": 9630.26, + "end": 9634.34, + "probability": 0.9647 + }, + { + "start": 9634.52, + "end": 9635.48, + "probability": 0.7863 + }, + { + "start": 9635.56, + "end": 9636.96, + "probability": 0.9121 + }, + { + "start": 9637.72, + "end": 9638.16, + "probability": 0.6795 + }, + { + "start": 9638.26, + "end": 9643.88, + "probability": 0.8814 + }, + { + "start": 9644.58, + "end": 9646.7, + "probability": 0.9309 + }, + { + "start": 9646.86, + "end": 9648.66, + "probability": 0.9299 + }, + { + "start": 9648.76, + "end": 9649.84, + "probability": 0.8114 + }, + { + "start": 9653.86, + "end": 9655.3, + "probability": 0.9915 + }, + { + "start": 9658.28, + "end": 9659.14, + "probability": 0.7957 + }, + { + "start": 9660.48, + "end": 9663.74, + "probability": 0.96 + }, + { + "start": 9664.84, + "end": 9672.2, + "probability": 0.9934 + }, + { + "start": 9672.46, + "end": 9673.52, + "probability": 0.6808 + }, + { + "start": 9673.72, + "end": 9676.0, + "probability": 0.7673 + }, + { + "start": 9678.98, + "end": 9681.06, + "probability": 0.9067 + }, + { + "start": 9681.26, + "end": 9686.66, + "probability": 0.996 + }, + { + "start": 9689.34, + "end": 9692.7, + "probability": 0.9808 + }, + { + "start": 9693.4, + "end": 9695.13, + "probability": 0.8423 + }, + { + "start": 9697.06, + "end": 9699.48, + "probability": 0.9141 + }, + { + "start": 9701.0, + "end": 9705.4, + "probability": 0.8076 + }, + { + "start": 9707.08, + "end": 9709.71, + "probability": 0.9295 + }, + { + "start": 9714.36, + "end": 9715.88, + "probability": 0.8279 + }, + { + "start": 9717.24, + "end": 9718.14, + "probability": 0.4978 + }, + { + "start": 9718.2, + "end": 9719.54, + "probability": 0.927 + }, + { + "start": 9720.44, + "end": 9721.26, + "probability": 0.9198 + }, + { + "start": 9721.38, + "end": 9724.58, + "probability": 0.9248 + }, + { + "start": 9726.46, + "end": 9729.86, + "probability": 0.9004 + }, + { + "start": 9730.2, + "end": 9731.78, + "probability": 0.8576 + }, + { + "start": 9732.26, + "end": 9734.49, + "probability": 0.667 + }, + { + "start": 9738.24, + "end": 9739.42, + "probability": 0.7951 + }, + { + "start": 9739.56, + "end": 9741.34, + "probability": 0.6375 + }, + { + "start": 9743.5, + "end": 9745.14, + "probability": 0.9395 + }, + { + "start": 9745.16, + "end": 9750.24, + "probability": 0.9819 + }, + { + "start": 9752.74, + "end": 9754.38, + "probability": 0.9109 + }, + { + "start": 9754.42, + "end": 9754.86, + "probability": 0.6057 + }, + { + "start": 9757.94, + "end": 9759.3, + "probability": 0.8782 + }, + { + "start": 9763.34, + "end": 9765.84, + "probability": 0.9245 + }, + { + "start": 9767.3, + "end": 9769.34, + "probability": 0.9924 + }, + { + "start": 9771.32, + "end": 9773.12, + "probability": 0.5766 + }, + { + "start": 9774.06, + "end": 9774.77, + "probability": 0.7713 + }, + { + "start": 9778.08, + "end": 9778.87, + "probability": 0.9346 + }, + { + "start": 9780.0, + "end": 9783.26, + "probability": 0.8622 + }, + { + "start": 9784.26, + "end": 9786.62, + "probability": 0.7483 + }, + { + "start": 9787.92, + "end": 9790.6, + "probability": 0.958 + }, + { + "start": 9792.66, + "end": 9795.56, + "probability": 0.956 + }, + { + "start": 9801.0, + "end": 9802.28, + "probability": 0.5555 + }, + { + "start": 9804.42, + "end": 9805.56, + "probability": 0.5808 + }, + { + "start": 9806.24, + "end": 9807.52, + "probability": 0.9498 + }, + { + "start": 9808.92, + "end": 9812.2, + "probability": 0.7248 + }, + { + "start": 9813.1, + "end": 9814.3, + "probability": 0.7503 + }, + { + "start": 9818.86, + "end": 9820.6, + "probability": 0.6377 + }, + { + "start": 9821.88, + "end": 9822.64, + "probability": 0.5835 + }, + { + "start": 9822.94, + "end": 9823.34, + "probability": 0.9023 + }, + { + "start": 9824.14, + "end": 9825.18, + "probability": 0.8319 + }, + { + "start": 9826.4, + "end": 9828.42, + "probability": 0.974 + }, + { + "start": 9828.56, + "end": 9832.76, + "probability": 0.9873 + }, + { + "start": 9834.94, + "end": 9837.18, + "probability": 0.9052 + }, + { + "start": 9837.26, + "end": 9837.92, + "probability": 0.6187 + }, + { + "start": 9837.94, + "end": 9838.82, + "probability": 0.8237 + }, + { + "start": 9839.0, + "end": 9839.85, + "probability": 0.5283 + }, + { + "start": 9845.16, + "end": 9845.76, + "probability": 0.5468 + }, + { + "start": 9848.8, + "end": 9850.92, + "probability": 0.9839 + }, + { + "start": 9851.02, + "end": 9854.06, + "probability": 0.9062 + }, + { + "start": 9854.22, + "end": 9855.34, + "probability": 0.9993 + }, + { + "start": 9856.24, + "end": 9857.56, + "probability": 0.7356 + }, + { + "start": 9859.2, + "end": 9861.9, + "probability": 0.9988 + }, + { + "start": 9862.36, + "end": 9863.3, + "probability": 0.8741 + }, + { + "start": 9865.58, + "end": 9868.08, + "probability": 0.9941 + }, + { + "start": 9870.3, + "end": 9872.41, + "probability": 0.9973 + }, + { + "start": 9873.54, + "end": 9874.59, + "probability": 0.9106 + }, + { + "start": 9874.78, + "end": 9876.42, + "probability": 0.7207 + }, + { + "start": 9876.9, + "end": 9878.12, + "probability": 0.6634 + }, + { + "start": 9882.04, + "end": 9882.9, + "probability": 0.6507 + }, + { + "start": 9885.32, + "end": 9887.16, + "probability": 0.5016 + }, + { + "start": 9891.26, + "end": 9894.26, + "probability": 0.6714 + }, + { + "start": 9895.3, + "end": 9897.08, + "probability": 0.923 + }, + { + "start": 9902.72, + "end": 9903.89, + "probability": 0.9351 + }, + { + "start": 9906.34, + "end": 9906.66, + "probability": 0.8848 + }, + { + "start": 9908.72, + "end": 9910.3, + "probability": 0.6516 + }, + { + "start": 9914.24, + "end": 9916.38, + "probability": 0.9219 + }, + { + "start": 9919.5, + "end": 9931.74, + "probability": 0.9758 + }, + { + "start": 9933.78, + "end": 9935.56, + "probability": 0.9917 + }, + { + "start": 9936.98, + "end": 9940.76, + "probability": 0.9875 + }, + { + "start": 9944.3, + "end": 9945.74, + "probability": 0.9338 + }, + { + "start": 9948.0, + "end": 9949.5, + "probability": 0.7749 + }, + { + "start": 9950.24, + "end": 9957.34, + "probability": 0.9308 + }, + { + "start": 9957.66, + "end": 9960.09, + "probability": 0.9835 + }, + { + "start": 9963.52, + "end": 9965.04, + "probability": 0.7294 + }, + { + "start": 9967.54, + "end": 9971.08, + "probability": 0.7123 + }, + { + "start": 9972.8, + "end": 9973.7, + "probability": 0.6803 + }, + { + "start": 9979.64, + "end": 9984.84, + "probability": 0.964 + }, + { + "start": 9989.3, + "end": 9990.48, + "probability": 0.6255 + }, + { + "start": 9996.22, + "end": 9997.06, + "probability": 0.7928 + }, + { + "start": 10000.0, + "end": 10000.9, + "probability": 0.7114 + }, + { + "start": 10002.6, + "end": 10003.48, + "probability": 0.8773 + }, + { + "start": 10003.72, + "end": 10003.72, + "probability": 0.7934 + }, + { + "start": 10004.16, + "end": 10007.74, + "probability": 0.9801 + }, + { + "start": 10009.48, + "end": 10011.28, + "probability": 0.6103 + }, + { + "start": 10012.36, + "end": 10014.76, + "probability": 0.7303 + }, + { + "start": 10016.86, + "end": 10020.4, + "probability": 0.8325 + }, + { + "start": 10020.84, + "end": 10023.08, + "probability": 0.9771 + }, + { + "start": 10025.02, + "end": 10025.52, + "probability": 0.4286 + }, + { + "start": 10025.66, + "end": 10027.54, + "probability": 0.8275 + }, + { + "start": 10028.3, + "end": 10029.3, + "probability": 0.6822 + }, + { + "start": 10033.68, + "end": 10037.32, + "probability": 0.9883 + }, + { + "start": 10038.3, + "end": 10040.52, + "probability": 0.9389 + }, + { + "start": 10042.76, + "end": 10043.72, + "probability": 0.9321 + }, + { + "start": 10044.24, + "end": 10044.84, + "probability": 0.9277 + }, + { + "start": 10046.22, + "end": 10046.74, + "probability": 0.5879 + }, + { + "start": 10048.12, + "end": 10049.06, + "probability": 0.9702 + }, + { + "start": 10051.0, + "end": 10051.84, + "probability": 0.5419 + }, + { + "start": 10053.08, + "end": 10054.28, + "probability": 0.7376 + }, + { + "start": 10054.82, + "end": 10058.25, + "probability": 0.9326 + }, + { + "start": 10059.36, + "end": 10061.05, + "probability": 0.6935 + }, + { + "start": 10064.04, + "end": 10065.16, + "probability": 0.9814 + }, + { + "start": 10066.04, + "end": 10070.12, + "probability": 0.9404 + }, + { + "start": 10076.56, + "end": 10077.62, + "probability": 0.7787 + }, + { + "start": 10077.76, + "end": 10078.54, + "probability": 0.9946 + }, + { + "start": 10078.94, + "end": 10083.62, + "probability": 0.932 + }, + { + "start": 10083.7, + "end": 10084.5, + "probability": 0.9204 + }, + { + "start": 10086.36, + "end": 10087.62, + "probability": 0.7988 + }, + { + "start": 10089.78, + "end": 10091.02, + "probability": 0.7116 + }, + { + "start": 10095.08, + "end": 10096.44, + "probability": 0.9739 + }, + { + "start": 10101.18, + "end": 10102.1, + "probability": 0.6588 + }, + { + "start": 10106.7, + "end": 10107.28, + "probability": 0.3097 + }, + { + "start": 10110.52, + "end": 10113.98, + "probability": 0.6581 + }, + { + "start": 10115.4, + "end": 10116.22, + "probability": 0.6342 + }, + { + "start": 10120.1, + "end": 10120.82, + "probability": 0.6089 + }, + { + "start": 10121.84, + "end": 10123.38, + "probability": 0.8839 + }, + { + "start": 10127.28, + "end": 10128.28, + "probability": 0.9097 + }, + { + "start": 10128.52, + "end": 10129.62, + "probability": 0.9128 + }, + { + "start": 10129.72, + "end": 10131.16, + "probability": 0.6895 + }, + { + "start": 10132.82, + "end": 10132.94, + "probability": 0.8616 + }, + { + "start": 10135.42, + "end": 10137.92, + "probability": 0.9554 + }, + { + "start": 10140.74, + "end": 10141.38, + "probability": 0.7755 + }, + { + "start": 10144.18, + "end": 10146.32, + "probability": 0.8627 + }, + { + "start": 10147.56, + "end": 10148.24, + "probability": 0.4053 + }, + { + "start": 10148.48, + "end": 10149.42, + "probability": 0.5749 + }, + { + "start": 10149.54, + "end": 10154.34, + "probability": 0.9909 + }, + { + "start": 10160.44, + "end": 10160.88, + "probability": 0.6625 + }, + { + "start": 10164.82, + "end": 10165.36, + "probability": 0.428 + }, + { + "start": 10168.78, + "end": 10170.64, + "probability": 0.9641 + }, + { + "start": 10173.78, + "end": 10175.0, + "probability": 0.9418 + }, + { + "start": 10178.38, + "end": 10179.24, + "probability": 0.96 + }, + { + "start": 10183.42, + "end": 10184.34, + "probability": 0.727 + }, + { + "start": 10186.56, + "end": 10187.86, + "probability": 0.9815 + }, + { + "start": 10190.12, + "end": 10192.5, + "probability": 0.9801 + }, + { + "start": 10192.58, + "end": 10193.88, + "probability": 0.9055 + }, + { + "start": 10195.08, + "end": 10196.42, + "probability": 0.8223 + }, + { + "start": 10200.9, + "end": 10203.02, + "probability": 0.791 + }, + { + "start": 10204.28, + "end": 10205.08, + "probability": 0.7246 + }, + { + "start": 10205.16, + "end": 10205.74, + "probability": 0.7265 + }, + { + "start": 10210.12, + "end": 10210.95, + "probability": 0.9276 + }, + { + "start": 10216.68, + "end": 10217.34, + "probability": 0.8662 + }, + { + "start": 10221.42, + "end": 10224.46, + "probability": 0.9845 + }, + { + "start": 10224.6, + "end": 10225.06, + "probability": 0.7466 + }, + { + "start": 10226.14, + "end": 10227.32, + "probability": 0.9826 + }, + { + "start": 10231.7, + "end": 10233.21, + "probability": 0.9927 + }, + { + "start": 10236.46, + "end": 10238.5, + "probability": 0.6536 + }, + { + "start": 10238.58, + "end": 10239.42, + "probability": 0.9363 + }, + { + "start": 10239.56, + "end": 10241.28, + "probability": 0.9768 + }, + { + "start": 10241.66, + "end": 10242.76, + "probability": 0.9858 + }, + { + "start": 10243.2, + "end": 10243.78, + "probability": 0.9345 + }, + { + "start": 10245.2, + "end": 10246.52, + "probability": 0.9547 + }, + { + "start": 10248.1, + "end": 10249.57, + "probability": 0.9692 + }, + { + "start": 10251.4, + "end": 10253.5, + "probability": 0.4847 + }, + { + "start": 10253.54, + "end": 10254.72, + "probability": 0.8021 + }, + { + "start": 10256.56, + "end": 10262.06, + "probability": 0.9264 + }, + { + "start": 10263.62, + "end": 10264.45, + "probability": 0.1884 + }, + { + "start": 10265.38, + "end": 10267.4, + "probability": 0.6303 + }, + { + "start": 10268.72, + "end": 10271.32, + "probability": 0.9702 + }, + { + "start": 10271.56, + "end": 10272.36, + "probability": 0.4999 + }, + { + "start": 10276.46, + "end": 10276.94, + "probability": 0.9036 + }, + { + "start": 10283.0, + "end": 10283.5, + "probability": 0.8761 + }, + { + "start": 10286.27, + "end": 10287.67, + "probability": 0.8675 + }, + { + "start": 10288.48, + "end": 10289.02, + "probability": 0.935 + }, + { + "start": 10290.78, + "end": 10291.68, + "probability": 0.869 + }, + { + "start": 10294.46, + "end": 10296.46, + "probability": 0.9868 + }, + { + "start": 10297.02, + "end": 10298.86, + "probability": 0.8968 + }, + { + "start": 10304.6, + "end": 10305.66, + "probability": 0.9574 + }, + { + "start": 10310.96, + "end": 10311.84, + "probability": 0.5617 + }, + { + "start": 10313.06, + "end": 10314.16, + "probability": 0.8143 + }, + { + "start": 10321.06, + "end": 10321.88, + "probability": 0.9022 + }, + { + "start": 10322.0, + "end": 10322.98, + "probability": 0.9224 + }, + { + "start": 10330.32, + "end": 10331.4, + "probability": 0.593 + }, + { + "start": 10333.06, + "end": 10333.78, + "probability": 0.8794 + }, + { + "start": 10337.54, + "end": 10338.24, + "probability": 0.5687 + }, + { + "start": 10340.62, + "end": 10341.86, + "probability": 0.7614 + }, + { + "start": 10347.28, + "end": 10347.34, + "probability": 0.4741 + }, + { + "start": 10350.28, + "end": 10354.34, + "probability": 0.9756 + }, + { + "start": 10354.42, + "end": 10355.64, + "probability": 0.9915 + }, + { + "start": 10359.28, + "end": 10359.72, + "probability": 0.7115 + }, + { + "start": 10362.58, + "end": 10365.84, + "probability": 0.9658 + }, + { + "start": 10368.7, + "end": 10371.44, + "probability": 0.9117 + }, + { + "start": 10372.88, + "end": 10374.44, + "probability": 0.8905 + }, + { + "start": 10377.96, + "end": 10381.26, + "probability": 0.8726 + }, + { + "start": 10382.94, + "end": 10386.42, + "probability": 0.6947 + }, + { + "start": 10387.2, + "end": 10388.16, + "probability": 0.3365 + }, + { + "start": 10393.08, + "end": 10393.98, + "probability": 0.3116 + }, + { + "start": 10395.06, + "end": 10395.8, + "probability": 0.6997 + }, + { + "start": 10397.18, + "end": 10398.18, + "probability": 0.9472 + }, + { + "start": 10399.02, + "end": 10400.44, + "probability": 0.8981 + }, + { + "start": 10403.44, + "end": 10404.52, + "probability": 0.8932 + }, + { + "start": 10406.34, + "end": 10407.91, + "probability": 0.9808 + }, + { + "start": 10410.62, + "end": 10412.5, + "probability": 0.5385 + }, + { + "start": 10414.66, + "end": 10415.6, + "probability": 0.8452 + }, + { + "start": 10419.14, + "end": 10420.28, + "probability": 0.727 + }, + { + "start": 10423.88, + "end": 10429.24, + "probability": 0.9956 + }, + { + "start": 10429.24, + "end": 10433.1, + "probability": 0.9761 + }, + { + "start": 10433.28, + "end": 10434.06, + "probability": 0.6557 + }, + { + "start": 10435.88, + "end": 10436.52, + "probability": 0.9113 + }, + { + "start": 10439.62, + "end": 10440.42, + "probability": 0.9888 + }, + { + "start": 10444.22, + "end": 10445.14, + "probability": 0.9612 + }, + { + "start": 10445.28, + "end": 10445.82, + "probability": 0.5609 + }, + { + "start": 10448.96, + "end": 10451.12, + "probability": 0.9963 + }, + { + "start": 10454.94, + "end": 10456.04, + "probability": 0.5225 + }, + { + "start": 10456.72, + "end": 10458.3, + "probability": 0.7071 + }, + { + "start": 10459.8, + "end": 10461.46, + "probability": 0.7833 + }, + { + "start": 10461.92, + "end": 10464.56, + "probability": 0.8814 + }, + { + "start": 10465.24, + "end": 10466.32, + "probability": 0.9886 + }, + { + "start": 10467.78, + "end": 10470.7, + "probability": 0.9772 + }, + { + "start": 10470.8, + "end": 10475.7, + "probability": 0.9273 + }, + { + "start": 10477.02, + "end": 10478.96, + "probability": 0.7822 + }, + { + "start": 10480.36, + "end": 10481.24, + "probability": 0.9524 + }, + { + "start": 10487.1, + "end": 10491.7, + "probability": 0.6406 + }, + { + "start": 10492.78, + "end": 10493.88, + "probability": 0.7288 + }, + { + "start": 10494.06, + "end": 10495.58, + "probability": 0.8879 + }, + { + "start": 10495.66, + "end": 10496.7, + "probability": 0.92 + }, + { + "start": 10496.78, + "end": 10498.78, + "probability": 0.8482 + }, + { + "start": 10500.02, + "end": 10502.2, + "probability": 0.863 + }, + { + "start": 10502.3, + "end": 10504.5, + "probability": 0.9926 + }, + { + "start": 10505.36, + "end": 10508.56, + "probability": 0.9134 + }, + { + "start": 10509.72, + "end": 10510.36, + "probability": 0.8682 + }, + { + "start": 10510.78, + "end": 10515.26, + "probability": 0.9553 + }, + { + "start": 10515.96, + "end": 10520.03, + "probability": 0.9817 + }, + { + "start": 10521.28, + "end": 10525.52, + "probability": 0.762 + }, + { + "start": 10526.36, + "end": 10529.12, + "probability": 0.9972 + }, + { + "start": 10530.8, + "end": 10531.76, + "probability": 0.9407 + }, + { + "start": 10532.74, + "end": 10536.1, + "probability": 0.991 + }, + { + "start": 10537.12, + "end": 10540.96, + "probability": 0.9883 + }, + { + "start": 10541.68, + "end": 10545.08, + "probability": 0.9623 + }, + { + "start": 10546.12, + "end": 10547.21, + "probability": 0.8224 + }, + { + "start": 10548.38, + "end": 10550.24, + "probability": 0.9257 + }, + { + "start": 10550.88, + "end": 10553.3, + "probability": 0.9898 + }, + { + "start": 10553.88, + "end": 10555.7, + "probability": 0.9228 + }, + { + "start": 10556.92, + "end": 10559.78, + "probability": 0.9913 + }, + { + "start": 10560.76, + "end": 10563.14, + "probability": 0.9831 + }, + { + "start": 10564.66, + "end": 10566.72, + "probability": 0.9459 + }, + { + "start": 10567.7, + "end": 10573.32, + "probability": 0.9203 + }, + { + "start": 10574.12, + "end": 10576.18, + "probability": 0.9883 + }, + { + "start": 10577.22, + "end": 10579.48, + "probability": 0.9971 + }, + { + "start": 10580.22, + "end": 10584.78, + "probability": 0.8658 + }, + { + "start": 10585.52, + "end": 10587.68, + "probability": 0.9824 + }, + { + "start": 10588.32, + "end": 10593.42, + "probability": 0.9677 + }, + { + "start": 10595.1, + "end": 10597.36, + "probability": 0.9863 + }, + { + "start": 10598.78, + "end": 10602.52, + "probability": 0.9685 + }, + { + "start": 10602.52, + "end": 10606.36, + "probability": 0.9965 + }, + { + "start": 10607.14, + "end": 10612.36, + "probability": 0.9885 + }, + { + "start": 10613.8, + "end": 10615.6, + "probability": 0.9834 + }, + { + "start": 10616.82, + "end": 10621.44, + "probability": 0.9952 + }, + { + "start": 10622.06, + "end": 10625.94, + "probability": 0.932 + }, + { + "start": 10627.04, + "end": 10628.64, + "probability": 0.956 + }, + { + "start": 10628.96, + "end": 10630.0, + "probability": 0.7545 + }, + { + "start": 10630.04, + "end": 10638.58, + "probability": 0.9935 + }, + { + "start": 10639.8, + "end": 10642.24, + "probability": 0.53 + }, + { + "start": 10642.28, + "end": 10646.4, + "probability": 0.8476 + }, + { + "start": 10646.9, + "end": 10649.58, + "probability": 0.735 + }, + { + "start": 10650.48, + "end": 10653.3, + "probability": 0.9945 + }, + { + "start": 10654.66, + "end": 10658.57, + "probability": 0.9838 + }, + { + "start": 10659.08, + "end": 10662.26, + "probability": 0.9873 + }, + { + "start": 10663.24, + "end": 10665.58, + "probability": 0.9967 + }, + { + "start": 10666.2, + "end": 10669.38, + "probability": 0.9985 + }, + { + "start": 10669.96, + "end": 10673.68, + "probability": 0.9644 + }, + { + "start": 10675.64, + "end": 10680.02, + "probability": 0.9972 + }, + { + "start": 10680.1, + "end": 10680.58, + "probability": 0.9178 + }, + { + "start": 10681.64, + "end": 10685.5, + "probability": 0.9868 + }, + { + "start": 10685.58, + "end": 10686.5, + "probability": 0.8329 + }, + { + "start": 10687.4, + "end": 10690.52, + "probability": 0.9939 + }, + { + "start": 10691.04, + "end": 10694.28, + "probability": 0.9301 + }, + { + "start": 10695.48, + "end": 10697.78, + "probability": 0.9806 + }, + { + "start": 10698.56, + "end": 10704.24, + "probability": 0.9939 + }, + { + "start": 10704.84, + "end": 10706.53, + "probability": 0.8621 + }, + { + "start": 10707.22, + "end": 10709.32, + "probability": 0.8136 + }, + { + "start": 10710.42, + "end": 10712.58, + "probability": 0.7437 + }, + { + "start": 10712.66, + "end": 10714.42, + "probability": 0.9587 + }, + { + "start": 10714.92, + "end": 10715.94, + "probability": 0.7814 + }, + { + "start": 10716.84, + "end": 10717.68, + "probability": 0.8481 + }, + { + "start": 10718.44, + "end": 10720.94, + "probability": 0.6666 + }, + { + "start": 10721.1, + "end": 10721.56, + "probability": 0.8806 + }, + { + "start": 10721.6, + "end": 10723.5, + "probability": 0.98 + }, + { + "start": 10724.26, + "end": 10730.34, + "probability": 0.9626 + }, + { + "start": 10730.86, + "end": 10733.26, + "probability": 0.9564 + }, + { + "start": 10734.48, + "end": 10735.62, + "probability": 0.6447 + }, + { + "start": 10736.56, + "end": 10740.76, + "probability": 0.9548 + }, + { + "start": 10741.2, + "end": 10742.46, + "probability": 0.9375 + }, + { + "start": 10743.14, + "end": 10748.16, + "probability": 0.8502 + }, + { + "start": 10748.16, + "end": 10752.98, + "probability": 0.9703 + }, + { + "start": 10753.1, + "end": 10756.74, + "probability": 0.9917 + }, + { + "start": 10756.74, + "end": 10759.73, + "probability": 0.9696 + }, + { + "start": 10760.36, + "end": 10765.6, + "probability": 0.9341 + }, + { + "start": 10765.92, + "end": 10767.98, + "probability": 0.8998 + }, + { + "start": 10769.08, + "end": 10771.86, + "probability": 0.9946 + }, + { + "start": 10772.68, + "end": 10776.14, + "probability": 0.9946 + }, + { + "start": 10777.12, + "end": 10779.8, + "probability": 0.8927 + }, + { + "start": 10780.74, + "end": 10784.3, + "probability": 0.9934 + }, + { + "start": 10784.38, + "end": 10785.22, + "probability": 0.8058 + }, + { + "start": 10785.72, + "end": 10788.54, + "probability": 0.9858 + }, + { + "start": 10789.72, + "end": 10793.5, + "probability": 0.9731 + }, + { + "start": 10793.5, + "end": 10797.52, + "probability": 0.9899 + }, + { + "start": 10798.32, + "end": 10799.86, + "probability": 0.9139 + }, + { + "start": 10800.38, + "end": 10802.73, + "probability": 0.9579 + }, + { + "start": 10803.34, + "end": 10806.22, + "probability": 0.9885 + }, + { + "start": 10807.88, + "end": 10812.0, + "probability": 0.9961 + }, + { + "start": 10813.06, + "end": 10817.38, + "probability": 0.7734 + }, + { + "start": 10818.38, + "end": 10822.58, + "probability": 0.9463 + }, + { + "start": 10823.18, + "end": 10825.78, + "probability": 0.9472 + }, + { + "start": 10826.24, + "end": 10830.7, + "probability": 0.9762 + }, + { + "start": 10831.52, + "end": 10834.04, + "probability": 0.8677 + }, + { + "start": 10834.58, + "end": 10838.74, + "probability": 0.9846 + }, + { + "start": 10839.32, + "end": 10844.5, + "probability": 0.9866 + }, + { + "start": 10845.54, + "end": 10847.8, + "probability": 0.936 + }, + { + "start": 10848.4, + "end": 10851.98, + "probability": 0.9794 + }, + { + "start": 10852.14, + "end": 10852.18, + "probability": 0.4747 + }, + { + "start": 10863.56, + "end": 10864.3, + "probability": 0.2632 + }, + { + "start": 10865.44, + "end": 10868.0, + "probability": 0.7978 + }, + { + "start": 10868.74, + "end": 10871.0, + "probability": 0.6591 + }, + { + "start": 10872.64, + "end": 10876.5, + "probability": 0.9949 + }, + { + "start": 10877.5, + "end": 10881.9, + "probability": 0.9923 + }, + { + "start": 10882.36, + "end": 10884.2, + "probability": 0.8506 + }, + { + "start": 10884.68, + "end": 10885.66, + "probability": 0.6175 + }, + { + "start": 10885.76, + "end": 10886.74, + "probability": 0.9831 + }, + { + "start": 10887.62, + "end": 10891.02, + "probability": 0.9145 + }, + { + "start": 10891.34, + "end": 10894.26, + "probability": 0.9079 + }, + { + "start": 10895.38, + "end": 10897.1, + "probability": 0.9698 + }, + { + "start": 10897.24, + "end": 10897.81, + "probability": 0.7269 + }, + { + "start": 10898.32, + "end": 10900.04, + "probability": 0.7316 + }, + { + "start": 10900.54, + "end": 10901.34, + "probability": 0.9152 + }, + { + "start": 10902.32, + "end": 10906.2, + "probability": 0.9893 + }, + { + "start": 10907.22, + "end": 10907.62, + "probability": 0.632 + }, + { + "start": 10907.64, + "end": 10909.78, + "probability": 0.8998 + }, + { + "start": 10910.32, + "end": 10912.26, + "probability": 0.9052 + }, + { + "start": 10912.78, + "end": 10914.03, + "probability": 0.9062 + }, + { + "start": 10914.82, + "end": 10918.04, + "probability": 0.9825 + }, + { + "start": 10918.16, + "end": 10921.14, + "probability": 0.9769 + }, + { + "start": 10922.76, + "end": 10926.02, + "probability": 0.9954 + }, + { + "start": 10926.12, + "end": 10927.49, + "probability": 0.6184 + }, + { + "start": 10928.42, + "end": 10930.98, + "probability": 0.9938 + }, + { + "start": 10931.1, + "end": 10932.3, + "probability": 0.8638 + }, + { + "start": 10933.14, + "end": 10935.98, + "probability": 0.993 + }, + { + "start": 10936.52, + "end": 10942.42, + "probability": 0.9681 + }, + { + "start": 10944.36, + "end": 10947.54, + "probability": 0.778 + }, + { + "start": 10948.14, + "end": 10952.18, + "probability": 0.9908 + }, + { + "start": 10953.16, + "end": 10955.0, + "probability": 0.9872 + }, + { + "start": 10955.58, + "end": 10957.3, + "probability": 0.592 + }, + { + "start": 10957.84, + "end": 10961.64, + "probability": 0.735 + }, + { + "start": 10961.64, + "end": 10966.1, + "probability": 0.8823 + }, + { + "start": 10966.94, + "end": 10970.2, + "probability": 0.9934 + }, + { + "start": 10971.68, + "end": 10976.34, + "probability": 0.9771 + }, + { + "start": 10976.48, + "end": 10976.92, + "probability": 0.7074 + }, + { + "start": 10978.16, + "end": 10980.92, + "probability": 0.8882 + }, + { + "start": 10981.76, + "end": 10985.88, + "probability": 0.9312 + }, + { + "start": 10987.18, + "end": 10987.84, + "probability": 0.7338 + }, + { + "start": 10988.0, + "end": 10988.1, + "probability": 0.5546 + }, + { + "start": 10988.28, + "end": 10989.3, + "probability": 0.7166 + }, + { + "start": 10989.66, + "end": 10993.42, + "probability": 0.9579 + }, + { + "start": 10994.04, + "end": 10995.42, + "probability": 0.9927 + }, + { + "start": 10996.92, + "end": 10998.86, + "probability": 0.8818 + }, + { + "start": 10999.92, + "end": 11001.58, + "probability": 0.9683 + }, + { + "start": 11001.7, + "end": 11005.34, + "probability": 0.7275 + }, + { + "start": 11005.72, + "end": 11007.88, + "probability": 0.8567 + }, + { + "start": 11008.88, + "end": 11011.36, + "probability": 0.9922 + }, + { + "start": 11011.74, + "end": 11015.8, + "probability": 0.9785 + }, + { + "start": 11017.0, + "end": 11018.54, + "probability": 0.7543 + }, + { + "start": 11019.68, + "end": 11021.6, + "probability": 0.9847 + }, + { + "start": 11021.6, + "end": 11024.47, + "probability": 0.9976 + }, + { + "start": 11024.56, + "end": 11026.1, + "probability": 0.9068 + }, + { + "start": 11027.24, + "end": 11028.2, + "probability": 0.9415 + }, + { + "start": 11028.36, + "end": 11031.18, + "probability": 0.9898 + }, + { + "start": 11031.24, + "end": 11035.04, + "probability": 0.9876 + }, + { + "start": 11036.06, + "end": 11036.64, + "probability": 0.9216 + }, + { + "start": 11036.72, + "end": 11037.44, + "probability": 0.9278 + }, + { + "start": 11037.92, + "end": 11041.08, + "probability": 0.9736 + }, + { + "start": 11042.44, + "end": 11045.74, + "probability": 0.9761 + }, + { + "start": 11046.18, + "end": 11047.34, + "probability": 0.6702 + }, + { + "start": 11048.28, + "end": 11052.78, + "probability": 0.9506 + }, + { + "start": 11053.8, + "end": 11056.66, + "probability": 0.998 + }, + { + "start": 11057.72, + "end": 11060.3, + "probability": 0.711 + }, + { + "start": 11060.3, + "end": 11060.66, + "probability": 0.5903 + }, + { + "start": 11061.2, + "end": 11063.78, + "probability": 0.9739 + }, + { + "start": 11064.84, + "end": 11065.7, + "probability": 0.7245 + }, + { + "start": 11066.18, + "end": 11067.9, + "probability": 0.9091 + }, + { + "start": 11068.62, + "end": 11071.16, + "probability": 0.9094 + }, + { + "start": 11071.16, + "end": 11074.42, + "probability": 0.9182 + }, + { + "start": 11075.42, + "end": 11077.54, + "probability": 0.9603 + }, + { + "start": 11078.48, + "end": 11081.64, + "probability": 0.6534 + }, + { + "start": 11082.1, + "end": 11084.62, + "probability": 0.9907 + }, + { + "start": 11085.42, + "end": 11086.4, + "probability": 0.9193 + }, + { + "start": 11087.08, + "end": 11087.92, + "probability": 0.2426 + }, + { + "start": 11089.2, + "end": 11090.98, + "probability": 0.9675 + }, + { + "start": 11090.98, + "end": 11094.24, + "probability": 0.9897 + }, + { + "start": 11094.4, + "end": 11095.78, + "probability": 0.9327 + }, + { + "start": 11096.66, + "end": 11099.94, + "probability": 0.9242 + }, + { + "start": 11100.14, + "end": 11103.4, + "probability": 0.9968 + }, + { + "start": 11103.88, + "end": 11107.66, + "probability": 0.9819 + }, + { + "start": 11109.4, + "end": 11112.52, + "probability": 0.9973 + }, + { + "start": 11113.28, + "end": 11114.82, + "probability": 0.9472 + }, + { + "start": 11114.9, + "end": 11116.44, + "probability": 0.9705 + }, + { + "start": 11116.86, + "end": 11119.96, + "probability": 0.8236 + }, + { + "start": 11120.34, + "end": 11121.36, + "probability": 0.7625 + }, + { + "start": 11121.58, + "end": 11122.1, + "probability": 0.9191 + }, + { + "start": 11122.54, + "end": 11124.96, + "probability": 0.7539 + }, + { + "start": 11125.6, + "end": 11126.34, + "probability": 0.9076 + }, + { + "start": 11127.38, + "end": 11128.56, + "probability": 0.8632 + }, + { + "start": 11129.32, + "end": 11132.36, + "probability": 0.945 + }, + { + "start": 11133.32, + "end": 11137.82, + "probability": 0.9937 + }, + { + "start": 11138.52, + "end": 11141.56, + "probability": 0.9967 + }, + { + "start": 11142.7, + "end": 11145.84, + "probability": 0.983 + }, + { + "start": 11147.48, + "end": 11150.78, + "probability": 0.6873 + }, + { + "start": 11151.48, + "end": 11155.18, + "probability": 0.9917 + }, + { + "start": 11155.24, + "end": 11155.96, + "probability": 0.8679 + }, + { + "start": 11156.28, + "end": 11157.07, + "probability": 0.9912 + }, + { + "start": 11158.2, + "end": 11161.6, + "probability": 0.9928 + }, + { + "start": 11161.6, + "end": 11163.86, + "probability": 0.8604 + }, + { + "start": 11165.16, + "end": 11169.68, + "probability": 0.9163 + }, + { + "start": 11169.78, + "end": 11170.8, + "probability": 0.8291 + }, + { + "start": 11171.92, + "end": 11175.66, + "probability": 0.9518 + }, + { + "start": 11175.66, + "end": 11179.82, + "probability": 0.9746 + }, + { + "start": 11180.82, + "end": 11184.16, + "probability": 0.8724 + }, + { + "start": 11184.6, + "end": 11186.24, + "probability": 0.9285 + }, + { + "start": 11187.0, + "end": 11187.24, + "probability": 0.5702 + }, + { + "start": 11187.28, + "end": 11187.84, + "probability": 0.973 + }, + { + "start": 11188.02, + "end": 11188.26, + "probability": 0.599 + }, + { + "start": 11188.3, + "end": 11189.94, + "probability": 0.9919 + }, + { + "start": 11190.32, + "end": 11197.26, + "probability": 0.9948 + }, + { + "start": 11198.86, + "end": 11200.58, + "probability": 0.7193 + }, + { + "start": 11201.16, + "end": 11201.16, + "probability": 0.4517 + }, + { + "start": 11201.16, + "end": 11206.26, + "probability": 0.9969 + }, + { + "start": 11207.1, + "end": 11209.66, + "probability": 0.9989 + }, + { + "start": 11209.8, + "end": 11210.44, + "probability": 0.9865 + }, + { + "start": 11211.9, + "end": 11214.88, + "probability": 0.9983 + }, + { + "start": 11215.52, + "end": 11216.82, + "probability": 0.9085 + }, + { + "start": 11217.9, + "end": 11223.24, + "probability": 0.9977 + }, + { + "start": 11223.24, + "end": 11229.44, + "probability": 0.998 + }, + { + "start": 11231.12, + "end": 11231.54, + "probability": 0.1813 + }, + { + "start": 11231.64, + "end": 11233.28, + "probability": 0.9377 + }, + { + "start": 11233.44, + "end": 11235.6, + "probability": 0.998 + }, + { + "start": 11236.3, + "end": 11237.8, + "probability": 0.741 + }, + { + "start": 11237.88, + "end": 11240.06, + "probability": 0.878 + }, + { + "start": 11240.18, + "end": 11240.84, + "probability": 0.9718 + }, + { + "start": 11240.92, + "end": 11241.84, + "probability": 0.9272 + }, + { + "start": 11242.76, + "end": 11245.3, + "probability": 0.9951 + }, + { + "start": 11245.3, + "end": 11249.14, + "probability": 0.9106 + }, + { + "start": 11249.64, + "end": 11251.9, + "probability": 0.9508 + }, + { + "start": 11252.64, + "end": 11253.6, + "probability": 0.7789 + }, + { + "start": 11254.32, + "end": 11255.56, + "probability": 0.662 + }, + { + "start": 11256.36, + "end": 11258.54, + "probability": 0.9927 + }, + { + "start": 11258.54, + "end": 11262.22, + "probability": 0.9446 + }, + { + "start": 11263.4, + "end": 11264.1, + "probability": 0.7045 + }, + { + "start": 11264.22, + "end": 11265.26, + "probability": 0.7669 + }, + { + "start": 11265.7, + "end": 11268.68, + "probability": 0.9937 + }, + { + "start": 11269.2, + "end": 11271.54, + "probability": 0.9971 + }, + { + "start": 11272.02, + "end": 11273.88, + "probability": 0.9929 + }, + { + "start": 11274.68, + "end": 11277.54, + "probability": 0.7806 + }, + { + "start": 11278.12, + "end": 11281.44, + "probability": 0.8888 + }, + { + "start": 11281.44, + "end": 11285.48, + "probability": 0.9908 + }, + { + "start": 11286.44, + "end": 11287.32, + "probability": 0.8535 + }, + { + "start": 11287.4, + "end": 11288.56, + "probability": 0.8926 + }, + { + "start": 11289.06, + "end": 11291.86, + "probability": 0.9917 + }, + { + "start": 11292.58, + "end": 11294.9, + "probability": 0.8736 + }, + { + "start": 11295.88, + "end": 11296.54, + "probability": 0.8831 + }, + { + "start": 11297.2, + "end": 11299.24, + "probability": 0.9508 + }, + { + "start": 11299.78, + "end": 11303.24, + "probability": 0.9943 + }, + { + "start": 11303.64, + "end": 11307.36, + "probability": 0.9903 + }, + { + "start": 11307.36, + "end": 11310.94, + "probability": 0.9987 + }, + { + "start": 11311.74, + "end": 11312.56, + "probability": 0.9318 + }, + { + "start": 11313.64, + "end": 11315.68, + "probability": 0.9982 + }, + { + "start": 11315.68, + "end": 11319.02, + "probability": 0.9909 + }, + { + "start": 11320.18, + "end": 11322.49, + "probability": 0.9676 + }, + { + "start": 11323.18, + "end": 11324.24, + "probability": 0.9961 + }, + { + "start": 11324.92, + "end": 11326.58, + "probability": 0.9973 + }, + { + "start": 11327.36, + "end": 11329.18, + "probability": 0.9765 + }, + { + "start": 11329.4, + "end": 11330.51, + "probability": 0.9838 + }, + { + "start": 11331.0, + "end": 11332.56, + "probability": 0.9837 + }, + { + "start": 11332.62, + "end": 11334.84, + "probability": 0.9971 + }, + { + "start": 11335.32, + "end": 11337.26, + "probability": 0.9316 + }, + { + "start": 11337.82, + "end": 11339.66, + "probability": 0.9055 + }, + { + "start": 11340.1, + "end": 11341.94, + "probability": 0.9734 + }, + { + "start": 11342.42, + "end": 11343.96, + "probability": 0.7539 + }, + { + "start": 11344.76, + "end": 11345.26, + "probability": 0.8458 + }, + { + "start": 11345.6, + "end": 11346.77, + "probability": 0.9054 + }, + { + "start": 11347.26, + "end": 11349.24, + "probability": 0.9511 + }, + { + "start": 11350.32, + "end": 11351.38, + "probability": 0.6753 + }, + { + "start": 11352.32, + "end": 11352.5, + "probability": 0.7581 + }, + { + "start": 11352.56, + "end": 11354.22, + "probability": 0.9491 + }, + { + "start": 11354.66, + "end": 11358.74, + "probability": 0.9653 + }, + { + "start": 11359.6, + "end": 11360.74, + "probability": 0.7011 + }, + { + "start": 11361.74, + "end": 11362.78, + "probability": 0.9771 + }, + { + "start": 11365.9, + "end": 11370.0, + "probability": 0.2842 + }, + { + "start": 11370.72, + "end": 11373.2, + "probability": 0.9601 + }, + { + "start": 11373.78, + "end": 11375.22, + "probability": 0.8905 + }, + { + "start": 11375.3, + "end": 11375.7, + "probability": 0.6343 + }, + { + "start": 11375.78, + "end": 11376.77, + "probability": 0.8392 + }, + { + "start": 11377.18, + "end": 11380.1, + "probability": 0.9922 + }, + { + "start": 11380.78, + "end": 11384.3, + "probability": 0.9891 + }, + { + "start": 11384.3, + "end": 11387.08, + "probability": 0.9913 + }, + { + "start": 11387.66, + "end": 11389.22, + "probability": 0.7526 + }, + { + "start": 11390.62, + "end": 11392.86, + "probability": 0.7179 + }, + { + "start": 11393.34, + "end": 11395.5, + "probability": 0.6258 + }, + { + "start": 11396.56, + "end": 11399.86, + "probability": 0.9661 + }, + { + "start": 11399.9, + "end": 11407.0, + "probability": 0.8076 + }, + { + "start": 11407.56, + "end": 11408.36, + "probability": 0.4673 + }, + { + "start": 11409.08, + "end": 11415.04, + "probability": 0.9085 + }, + { + "start": 11415.04, + "end": 11419.12, + "probability": 0.9878 + }, + { + "start": 11421.22, + "end": 11424.84, + "probability": 0.9968 + }, + { + "start": 11425.64, + "end": 11426.48, + "probability": 0.8665 + }, + { + "start": 11427.32, + "end": 11428.42, + "probability": 0.934 + }, + { + "start": 11429.58, + "end": 11435.82, + "probability": 0.9574 + }, + { + "start": 11436.44, + "end": 11438.06, + "probability": 0.9755 + }, + { + "start": 11439.04, + "end": 11446.3, + "probability": 0.9919 + }, + { + "start": 11446.82, + "end": 11449.28, + "probability": 0.98 + }, + { + "start": 11450.26, + "end": 11451.07, + "probability": 0.7537 + }, + { + "start": 11451.96, + "end": 11454.64, + "probability": 0.9857 + }, + { + "start": 11455.46, + "end": 11458.6, + "probability": 0.9631 + }, + { + "start": 11459.28, + "end": 11463.72, + "probability": 0.9309 + }, + { + "start": 11464.92, + "end": 11467.46, + "probability": 0.6788 + }, + { + "start": 11468.04, + "end": 11471.22, + "probability": 0.8572 + }, + { + "start": 11471.94, + "end": 11472.5, + "probability": 0.8557 + }, + { + "start": 11473.44, + "end": 11478.26, + "probability": 0.8882 + }, + { + "start": 11479.1, + "end": 11479.7, + "probability": 0.2671 + }, + { + "start": 11479.7, + "end": 11483.32, + "probability": 0.9648 + }, + { + "start": 11484.08, + "end": 11485.08, + "probability": 0.9091 + }, + { + "start": 11485.26, + "end": 11489.54, + "probability": 0.7764 + }, + { + "start": 11490.38, + "end": 11492.92, + "probability": 0.6481 + }, + { + "start": 11494.26, + "end": 11496.08, + "probability": 0.9443 + }, + { + "start": 11496.66, + "end": 11499.52, + "probability": 0.8804 + }, + { + "start": 11501.02, + "end": 11503.42, + "probability": 0.8115 + }, + { + "start": 11553.98, + "end": 11554.62, + "probability": 0.1136 + }, + { + "start": 11560.86, + "end": 11562.38, + "probability": 0.0345 + }, + { + "start": 11562.38, + "end": 11562.38, + "probability": 0.2029 + }, + { + "start": 11580.24, + "end": 11581.78, + "probability": 0.2002 + }, + { + "start": 11582.88, + "end": 11582.88, + "probability": 0.0004 + }, + { + "start": 11583.96, + "end": 11586.4, + "probability": 0.195 + }, + { + "start": 11587.44, + "end": 11589.5, + "probability": 0.4327 + }, + { + "start": 11589.88, + "end": 11590.16, + "probability": 0.0581 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.4212 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.4454 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.4595 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.4701 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.5306 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.1512 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.2085 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.0532 + }, + { + "start": 11590.16, + "end": 11590.16, + "probability": 0.1009 + }, + { + "start": 11590.16, + "end": 11591.21, + "probability": 0.4169 + }, + { + "start": 11602.1, + "end": 11603.76, + "probability": 0.7265 + }, + { + "start": 11605.0, + "end": 11606.44, + "probability": 0.8551 + }, + { + "start": 11606.54, + "end": 11608.44, + "probability": 0.7147 + }, + { + "start": 11609.0, + "end": 11609.98, + "probability": 0.6214 + }, + { + "start": 11611.92, + "end": 11612.94, + "probability": 0.7723 + }, + { + "start": 11615.16, + "end": 11615.98, + "probability": 0.9681 + }, + { + "start": 11616.2, + "end": 11617.68, + "probability": 0.6774 + }, + { + "start": 11617.78, + "end": 11618.1, + "probability": 0.8071 + }, + { + "start": 11618.16, + "end": 11620.02, + "probability": 0.9723 + }, + { + "start": 11621.1, + "end": 11624.06, + "probability": 0.815 + }, + { + "start": 11625.2, + "end": 11631.44, + "probability": 0.9611 + }, + { + "start": 11631.92, + "end": 11632.78, + "probability": 0.9474 + }, + { + "start": 11633.26, + "end": 11634.36, + "probability": 0.978 + }, + { + "start": 11635.08, + "end": 11638.04, + "probability": 0.9952 + }, + { + "start": 11639.04, + "end": 11641.46, + "probability": 0.9927 + }, + { + "start": 11641.6, + "end": 11642.54, + "probability": 0.633 + }, + { + "start": 11643.28, + "end": 11645.6, + "probability": 0.9963 + }, + { + "start": 11646.08, + "end": 11649.36, + "probability": 0.9917 + }, + { + "start": 11649.64, + "end": 11652.32, + "probability": 0.984 + }, + { + "start": 11652.54, + "end": 11654.81, + "probability": 0.7516 + }, + { + "start": 11655.58, + "end": 11657.87, + "probability": 0.9953 + }, + { + "start": 11659.62, + "end": 11661.48, + "probability": 0.8216 + }, + { + "start": 11662.36, + "end": 11665.24, + "probability": 0.9599 + }, + { + "start": 11665.46, + "end": 11665.84, + "probability": 0.8756 + }, + { + "start": 11665.9, + "end": 11666.58, + "probability": 0.8794 + }, + { + "start": 11666.84, + "end": 11667.68, + "probability": 0.7386 + }, + { + "start": 11668.14, + "end": 11669.54, + "probability": 0.736 + }, + { + "start": 11670.74, + "end": 11673.86, + "probability": 0.9142 + }, + { + "start": 11673.86, + "end": 11680.92, + "probability": 0.9658 + }, + { + "start": 11681.88, + "end": 11685.78, + "probability": 0.9974 + }, + { + "start": 11686.3, + "end": 11686.84, + "probability": 0.4487 + }, + { + "start": 11686.88, + "end": 11691.42, + "probability": 0.6078 + }, + { + "start": 11692.64, + "end": 11694.61, + "probability": 0.8215 + }, + { + "start": 11695.86, + "end": 11698.52, + "probability": 0.9517 + }, + { + "start": 11699.62, + "end": 11701.76, + "probability": 0.9893 + }, + { + "start": 11702.14, + "end": 11707.48, + "probability": 0.8368 + }, + { + "start": 11707.52, + "end": 11708.08, + "probability": 0.8307 + }, + { + "start": 11708.22, + "end": 11708.64, + "probability": 0.7515 + }, + { + "start": 11708.74, + "end": 11709.88, + "probability": 0.7975 + }, + { + "start": 11710.0, + "end": 11711.36, + "probability": 0.6498 + }, + { + "start": 11711.86, + "end": 11712.96, + "probability": 0.818 + }, + { + "start": 11713.16, + "end": 11713.94, + "probability": 0.5824 + }, + { + "start": 11714.4, + "end": 11717.0, + "probability": 0.9915 + }, + { + "start": 11717.24, + "end": 11717.52, + "probability": 0.7872 + }, + { + "start": 11717.7, + "end": 11718.7, + "probability": 0.723 + }, + { + "start": 11719.18, + "end": 11719.78, + "probability": 0.3172 + }, + { + "start": 11719.82, + "end": 11724.76, + "probability": 0.9904 + }, + { + "start": 11726.2, + "end": 11727.06, + "probability": 0.9591 + }, + { + "start": 11727.2, + "end": 11733.5, + "probability": 0.7733 + }, + { + "start": 11733.6, + "end": 11735.56, + "probability": 0.995 + }, + { + "start": 11735.56, + "end": 11738.86, + "probability": 0.9984 + }, + { + "start": 11740.9, + "end": 11742.6, + "probability": 0.9976 + }, + { + "start": 11743.4, + "end": 11744.84, + "probability": 0.6665 + }, + { + "start": 11745.5, + "end": 11752.4, + "probability": 0.815 + }, + { + "start": 11752.62, + "end": 11754.58, + "probability": 0.9371 + }, + { + "start": 11755.44, + "end": 11761.42, + "probability": 0.9835 + }, + { + "start": 11761.54, + "end": 11763.62, + "probability": 0.9854 + }, + { + "start": 11764.04, + "end": 11766.24, + "probability": 0.7817 + }, + { + "start": 11767.86, + "end": 11770.82, + "probability": 0.7936 + }, + { + "start": 11771.56, + "end": 11773.4, + "probability": 0.7972 + }, + { + "start": 11774.46, + "end": 11775.1, + "probability": 0.1288 + }, + { + "start": 11775.24, + "end": 11776.04, + "probability": 0.8236 + }, + { + "start": 11776.54, + "end": 11777.0, + "probability": 0.6567 + }, + { + "start": 11777.06, + "end": 11777.98, + "probability": 0.9038 + }, + { + "start": 11778.1, + "end": 11779.44, + "probability": 0.8599 + }, + { + "start": 11779.5, + "end": 11779.78, + "probability": 0.838 + }, + { + "start": 11779.88, + "end": 11782.78, + "probability": 0.908 + }, + { + "start": 11783.62, + "end": 11784.7, + "probability": 0.7344 + }, + { + "start": 11785.02, + "end": 11785.82, + "probability": 0.7023 + }, + { + "start": 11786.94, + "end": 11789.78, + "probability": 0.8292 + }, + { + "start": 11790.98, + "end": 11791.22, + "probability": 0.4717 + }, + { + "start": 11791.34, + "end": 11791.5, + "probability": 0.7491 + }, + { + "start": 11791.6, + "end": 11795.54, + "probability": 0.9184 + }, + { + "start": 11795.94, + "end": 11798.76, + "probability": 0.9901 + }, + { + "start": 11799.0, + "end": 11801.07, + "probability": 0.9053 + }, + { + "start": 11801.18, + "end": 11803.28, + "probability": 0.7584 + }, + { + "start": 11803.46, + "end": 11803.74, + "probability": 0.2477 + }, + { + "start": 11803.74, + "end": 11805.04, + "probability": 0.9186 + }, + { + "start": 11805.26, + "end": 11805.96, + "probability": 0.6167 + }, + { + "start": 11806.02, + "end": 11807.74, + "probability": 0.5359 + }, + { + "start": 11807.92, + "end": 11812.74, + "probability": 0.7626 + }, + { + "start": 11813.3, + "end": 11817.02, + "probability": 0.9092 + }, + { + "start": 11817.24, + "end": 11819.52, + "probability": 0.9004 + }, + { + "start": 11819.68, + "end": 11826.72, + "probability": 0.998 + }, + { + "start": 11826.88, + "end": 11828.84, + "probability": 0.8764 + }, + { + "start": 11829.78, + "end": 11834.18, + "probability": 0.9812 + }, + { + "start": 11834.38, + "end": 11835.86, + "probability": 0.8436 + }, + { + "start": 11836.26, + "end": 11838.32, + "probability": 0.9951 + }, + { + "start": 11838.54, + "end": 11839.74, + "probability": 0.9817 + }, + { + "start": 11839.82, + "end": 11843.8, + "probability": 0.8413 + }, + { + "start": 11844.12, + "end": 11848.68, + "probability": 0.8514 + }, + { + "start": 11848.84, + "end": 11850.46, + "probability": 0.6005 + }, + { + "start": 11850.6, + "end": 11853.3, + "probability": 0.965 + }, + { + "start": 11854.38, + "end": 11854.64, + "probability": 0.9144 + }, + { + "start": 11854.64, + "end": 11856.41, + "probability": 0.9961 + }, + { + "start": 11856.64, + "end": 11857.72, + "probability": 0.9142 + }, + { + "start": 11857.96, + "end": 11858.56, + "probability": 0.9623 + }, + { + "start": 11859.26, + "end": 11859.68, + "probability": 0.8833 + }, + { + "start": 11860.08, + "end": 11860.5, + "probability": 0.7465 + }, + { + "start": 11860.52, + "end": 11861.64, + "probability": 0.9033 + }, + { + "start": 11862.16, + "end": 11863.49, + "probability": 0.7756 + }, + { + "start": 11864.4, + "end": 11868.26, + "probability": 0.9749 + }, + { + "start": 11868.8, + "end": 11870.36, + "probability": 0.9973 + }, + { + "start": 11871.1, + "end": 11872.98, + "probability": 0.7984 + }, + { + "start": 11874.62, + "end": 11875.4, + "probability": 0.2433 + }, + { + "start": 11875.4, + "end": 11876.72, + "probability": 0.7074 + }, + { + "start": 11877.18, + "end": 11878.08, + "probability": 0.7831 + }, + { + "start": 11878.64, + "end": 11881.78, + "probability": 0.9831 + }, + { + "start": 11882.04, + "end": 11883.32, + "probability": 0.8442 + }, + { + "start": 11884.18, + "end": 11886.1, + "probability": 0.9829 + }, + { + "start": 11886.2, + "end": 11888.3, + "probability": 0.9837 + }, + { + "start": 11888.66, + "end": 11891.22, + "probability": 0.9795 + }, + { + "start": 11891.68, + "end": 11892.88, + "probability": 0.5953 + }, + { + "start": 11893.06, + "end": 11895.14, + "probability": 0.6315 + }, + { + "start": 11895.22, + "end": 11895.6, + "probability": 0.4431 + }, + { + "start": 11895.64, + "end": 11897.48, + "probability": 0.9182 + }, + { + "start": 11897.9, + "end": 11899.44, + "probability": 0.9904 + }, + { + "start": 11899.78, + "end": 11904.28, + "probability": 0.9559 + }, + { + "start": 11904.98, + "end": 11906.46, + "probability": 0.9682 + }, + { + "start": 11907.18, + "end": 11910.12, + "probability": 0.9021 + }, + { + "start": 11911.68, + "end": 11913.18, + "probability": 0.7232 + }, + { + "start": 11913.34, + "end": 11914.78, + "probability": 0.9969 + }, + { + "start": 11914.94, + "end": 11916.09, + "probability": 0.9897 + }, + { + "start": 11916.72, + "end": 11918.28, + "probability": 0.8959 + }, + { + "start": 11918.74, + "end": 11920.36, + "probability": 0.7313 + }, + { + "start": 11923.08, + "end": 11926.28, + "probability": 0.9579 + }, + { + "start": 11926.6, + "end": 11930.32, + "probability": 0.6682 + }, + { + "start": 11930.54, + "end": 11931.86, + "probability": 0.9809 + }, + { + "start": 11932.2, + "end": 11933.63, + "probability": 0.9816 + }, + { + "start": 11934.04, + "end": 11935.65, + "probability": 0.8325 + }, + { + "start": 11936.72, + "end": 11937.52, + "probability": 0.752 + }, + { + "start": 11937.74, + "end": 11938.86, + "probability": 0.906 + }, + { + "start": 11938.96, + "end": 11941.38, + "probability": 0.9893 + }, + { + "start": 11942.04, + "end": 11945.02, + "probability": 0.941 + }, + { + "start": 11945.02, + "end": 11949.34, + "probability": 0.9852 + }, + { + "start": 11950.18, + "end": 11950.88, + "probability": 0.4194 + }, + { + "start": 11951.56, + "end": 11955.76, + "probability": 0.9889 + }, + { + "start": 11955.98, + "end": 11957.32, + "probability": 0.8393 + }, + { + "start": 11957.74, + "end": 11958.48, + "probability": 0.9619 + }, + { + "start": 11958.68, + "end": 11959.18, + "probability": 0.6738 + }, + { + "start": 11959.22, + "end": 11960.74, + "probability": 0.9608 + }, + { + "start": 11961.38, + "end": 11966.14, + "probability": 0.9875 + }, + { + "start": 11966.14, + "end": 11971.92, + "probability": 0.8706 + }, + { + "start": 11972.3, + "end": 11974.22, + "probability": 0.8321 + }, + { + "start": 11974.62, + "end": 11976.36, + "probability": 0.8512 + }, + { + "start": 11976.72, + "end": 11976.9, + "probability": 0.3794 + }, + { + "start": 11977.04, + "end": 11978.8, + "probability": 0.8569 + }, + { + "start": 11979.28, + "end": 11981.56, + "probability": 0.905 + }, + { + "start": 11982.22, + "end": 11984.34, + "probability": 0.9871 + }, + { + "start": 11984.84, + "end": 11985.99, + "probability": 0.8823 + }, + { + "start": 11986.32, + "end": 11992.26, + "probability": 0.9847 + }, + { + "start": 11992.26, + "end": 11998.84, + "probability": 0.971 + }, + { + "start": 11999.12, + "end": 12004.88, + "probability": 0.9829 + }, + { + "start": 12005.5, + "end": 12007.54, + "probability": 0.8035 + }, + { + "start": 12007.92, + "end": 12016.08, + "probability": 0.9126 + }, + { + "start": 12016.56, + "end": 12021.54, + "probability": 0.993 + }, + { + "start": 12021.54, + "end": 12024.92, + "probability": 0.9917 + }, + { + "start": 12026.0, + "end": 12032.38, + "probability": 0.9878 + }, + { + "start": 12033.08, + "end": 12036.56, + "probability": 0.9988 + }, + { + "start": 12036.56, + "end": 12040.28, + "probability": 0.9889 + }, + { + "start": 12040.6, + "end": 12041.48, + "probability": 0.862 + }, + { + "start": 12041.9, + "end": 12043.62, + "probability": 0.8865 + }, + { + "start": 12044.16, + "end": 12047.54, + "probability": 0.964 + }, + { + "start": 12047.74, + "end": 12049.02, + "probability": 0.8732 + }, + { + "start": 12049.26, + "end": 12053.06, + "probability": 0.9461 + }, + { + "start": 12053.32, + "end": 12055.46, + "probability": 0.9251 + }, + { + "start": 12055.76, + "end": 12059.42, + "probability": 0.9485 + }, + { + "start": 12059.64, + "end": 12061.92, + "probability": 0.9806 + }, + { + "start": 12063.06, + "end": 12066.48, + "probability": 0.9578 + }, + { + "start": 12066.58, + "end": 12067.68, + "probability": 0.9814 + }, + { + "start": 12067.86, + "end": 12070.46, + "probability": 0.9894 + }, + { + "start": 12071.1, + "end": 12076.02, + "probability": 0.9964 + }, + { + "start": 12076.02, + "end": 12081.82, + "probability": 0.9773 + }, + { + "start": 12081.86, + "end": 12085.1, + "probability": 0.8548 + }, + { + "start": 12085.24, + "end": 12089.2, + "probability": 0.9756 + }, + { + "start": 12089.8, + "end": 12091.56, + "probability": 0.7212 + }, + { + "start": 12092.12, + "end": 12095.18, + "probability": 0.5147 + }, + { + "start": 12095.6, + "end": 12095.72, + "probability": 0.0287 + }, + { + "start": 12095.72, + "end": 12095.72, + "probability": 0.1378 + }, + { + "start": 12095.72, + "end": 12097.54, + "probability": 0.6372 + }, + { + "start": 12097.84, + "end": 12102.74, + "probability": 0.9554 + }, + { + "start": 12103.92, + "end": 12104.26, + "probability": 0.5919 + }, + { + "start": 12104.34, + "end": 12108.68, + "probability": 0.8872 + }, + { + "start": 12109.02, + "end": 12112.66, + "probability": 0.8696 + }, + { + "start": 12113.12, + "end": 12114.94, + "probability": 0.8672 + }, + { + "start": 12115.26, + "end": 12115.82, + "probability": 0.7741 + }, + { + "start": 12116.0, + "end": 12118.2, + "probability": 0.9647 + }, + { + "start": 12118.28, + "end": 12120.52, + "probability": 0.8424 + }, + { + "start": 12120.82, + "end": 12121.46, + "probability": 0.4821 + }, + { + "start": 12121.5, + "end": 12123.48, + "probability": 0.981 + }, + { + "start": 12126.56, + "end": 12126.56, + "probability": 0.8228 + }, + { + "start": 12127.16, + "end": 12129.83, + "probability": 0.6849 + }, + { + "start": 12131.1, + "end": 12134.0, + "probability": 0.9022 + }, + { + "start": 12134.84, + "end": 12138.76, + "probability": 0.8141 + }, + { + "start": 12140.02, + "end": 12141.04, + "probability": 0.733 + }, + { + "start": 12141.06, + "end": 12145.74, + "probability": 0.9846 + }, + { + "start": 12146.6, + "end": 12148.62, + "probability": 0.6667 + }, + { + "start": 12148.7, + "end": 12150.72, + "probability": 0.9033 + }, + { + "start": 12151.42, + "end": 12152.2, + "probability": 0.6792 + }, + { + "start": 12152.32, + "end": 12155.16, + "probability": 0.9973 + }, + { + "start": 12156.46, + "end": 12156.92, + "probability": 0.8503 + }, + { + "start": 12157.02, + "end": 12157.76, + "probability": 0.4988 + }, + { + "start": 12157.88, + "end": 12161.12, + "probability": 0.745 + }, + { + "start": 12161.28, + "end": 12163.7, + "probability": 0.7157 + }, + { + "start": 12164.32, + "end": 12168.76, + "probability": 0.9863 + }, + { + "start": 12168.96, + "end": 12170.14, + "probability": 0.7819 + }, + { + "start": 12170.34, + "end": 12171.2, + "probability": 0.7263 + }, + { + "start": 12171.22, + "end": 12171.92, + "probability": 0.9347 + }, + { + "start": 12172.18, + "end": 12173.78, + "probability": 0.8032 + }, + { + "start": 12174.24, + "end": 12175.3, + "probability": 0.9585 + }, + { + "start": 12175.52, + "end": 12176.36, + "probability": 0.5173 + }, + { + "start": 12176.38, + "end": 12177.68, + "probability": 0.733 + }, + { + "start": 12177.76, + "end": 12185.0, + "probability": 0.9671 + }, + { + "start": 12185.0, + "end": 12192.54, + "probability": 0.994 + }, + { + "start": 12192.98, + "end": 12194.11, + "probability": 0.9917 + }, + { + "start": 12194.74, + "end": 12198.58, + "probability": 0.95 + }, + { + "start": 12199.22, + "end": 12200.62, + "probability": 0.6487 + }, + { + "start": 12202.14, + "end": 12203.31, + "probability": 0.8005 + }, + { + "start": 12203.42, + "end": 12205.0, + "probability": 0.7741 + }, + { + "start": 12205.2, + "end": 12211.7, + "probability": 0.9851 + }, + { + "start": 12212.12, + "end": 12217.8, + "probability": 0.8975 + }, + { + "start": 12218.54, + "end": 12219.26, + "probability": 0.6366 + }, + { + "start": 12219.46, + "end": 12220.9, + "probability": 0.8267 + }, + { + "start": 12221.34, + "end": 12223.78, + "probability": 0.8159 + }, + { + "start": 12223.8, + "end": 12228.16, + "probability": 0.8344 + }, + { + "start": 12229.76, + "end": 12237.04, + "probability": 0.9674 + }, + { + "start": 12237.16, + "end": 12238.14, + "probability": 0.8517 + }, + { + "start": 12238.34, + "end": 12240.96, + "probability": 0.8457 + }, + { + "start": 12241.2, + "end": 12242.7, + "probability": 0.9473 + }, + { + "start": 12242.82, + "end": 12243.54, + "probability": 0.9363 + }, + { + "start": 12245.72, + "end": 12246.58, + "probability": 0.611 + }, + { + "start": 12247.76, + "end": 12249.22, + "probability": 0.8614 + }, + { + "start": 12249.42, + "end": 12252.74, + "probability": 0.9747 + }, + { + "start": 12253.1, + "end": 12256.22, + "probability": 0.8789 + }, + { + "start": 12256.46, + "end": 12257.24, + "probability": 0.6393 + }, + { + "start": 12257.34, + "end": 12261.16, + "probability": 0.8434 + }, + { + "start": 12261.16, + "end": 12265.22, + "probability": 0.9701 + }, + { + "start": 12266.14, + "end": 12270.46, + "probability": 0.9951 + }, + { + "start": 12270.86, + "end": 12271.94, + "probability": 0.6496 + }, + { + "start": 12272.32, + "end": 12273.6, + "probability": 0.9854 + }, + { + "start": 12273.8, + "end": 12275.54, + "probability": 0.6988 + }, + { + "start": 12275.92, + "end": 12279.08, + "probability": 0.9873 + }, + { + "start": 12279.4, + "end": 12281.86, + "probability": 0.9522 + }, + { + "start": 12281.88, + "end": 12282.74, + "probability": 0.547 + }, + { + "start": 12282.84, + "end": 12287.28, + "probability": 0.7674 + }, + { + "start": 12287.28, + "end": 12294.82, + "probability": 0.9978 + }, + { + "start": 12296.12, + "end": 12297.84, + "probability": 0.8948 + }, + { + "start": 12298.58, + "end": 12302.62, + "probability": 0.9894 + }, + { + "start": 12303.16, + "end": 12303.7, + "probability": 0.9263 + }, + { + "start": 12304.76, + "end": 12308.52, + "probability": 0.9648 + }, + { + "start": 12309.58, + "end": 12313.72, + "probability": 0.9019 + }, + { + "start": 12314.24, + "end": 12315.14, + "probability": 0.8956 + }, + { + "start": 12315.26, + "end": 12316.58, + "probability": 0.8769 + }, + { + "start": 12316.7, + "end": 12318.18, + "probability": 0.925 + }, + { + "start": 12318.64, + "end": 12319.38, + "probability": 0.5376 + }, + { + "start": 12319.78, + "end": 12322.45, + "probability": 0.9949 + }, + { + "start": 12322.84, + "end": 12324.76, + "probability": 0.7679 + }, + { + "start": 12324.9, + "end": 12330.38, + "probability": 0.9457 + }, + { + "start": 12330.86, + "end": 12331.82, + "probability": 0.3016 + }, + { + "start": 12331.94, + "end": 12332.84, + "probability": 0.2599 + }, + { + "start": 12332.86, + "end": 12333.18, + "probability": 0.5404 + }, + { + "start": 12333.26, + "end": 12334.66, + "probability": 0.8179 + }, + { + "start": 12335.1, + "end": 12338.42, + "probability": 0.8641 + }, + { + "start": 12338.76, + "end": 12342.32, + "probability": 0.9767 + }, + { + "start": 12342.32, + "end": 12347.48, + "probability": 0.892 + }, + { + "start": 12347.52, + "end": 12347.92, + "probability": 0.5919 + }, + { + "start": 12348.62, + "end": 12350.54, + "probability": 0.5377 + }, + { + "start": 12350.58, + "end": 12352.48, + "probability": 0.9338 + }, + { + "start": 12353.14, + "end": 12356.0, + "probability": 0.9414 + }, + { + "start": 12359.1, + "end": 12361.7, + "probability": 0.9429 + }, + { + "start": 12362.22, + "end": 12363.7, + "probability": 0.5379 + }, + { + "start": 12363.96, + "end": 12366.26, + "probability": 0.5847 + }, + { + "start": 12366.52, + "end": 12371.92, + "probability": 0.4591 + }, + { + "start": 12373.08, + "end": 12375.54, + "probability": 0.9424 + }, + { + "start": 12375.62, + "end": 12382.22, + "probability": 0.9443 + }, + { + "start": 12382.22, + "end": 12386.74, + "probability": 0.785 + }, + { + "start": 12387.63, + "end": 12391.0, + "probability": 0.791 + }, + { + "start": 12391.6, + "end": 12392.64, + "probability": 0.8372 + }, + { + "start": 12392.74, + "end": 12395.77, + "probability": 0.8699 + }, + { + "start": 12396.18, + "end": 12399.64, + "probability": 0.9882 + }, + { + "start": 12400.22, + "end": 12403.0, + "probability": 0.9972 + }, + { + "start": 12403.42, + "end": 12404.76, + "probability": 0.9878 + }, + { + "start": 12405.36, + "end": 12407.88, + "probability": 0.6678 + }, + { + "start": 12407.96, + "end": 12410.8, + "probability": 0.9636 + }, + { + "start": 12410.84, + "end": 12412.98, + "probability": 0.8794 + }, + { + "start": 12413.04, + "end": 12415.94, + "probability": 0.9255 + }, + { + "start": 12416.2, + "end": 12419.08, + "probability": 0.9261 + }, + { + "start": 12419.56, + "end": 12419.9, + "probability": 0.5376 + }, + { + "start": 12420.02, + "end": 12420.52, + "probability": 0.8479 + }, + { + "start": 12420.56, + "end": 12422.36, + "probability": 0.8142 + }, + { + "start": 12422.42, + "end": 12425.87, + "probability": 0.9723 + }, + { + "start": 12426.36, + "end": 12427.52, + "probability": 0.6589 + }, + { + "start": 12428.16, + "end": 12430.62, + "probability": 0.967 + }, + { + "start": 12431.14, + "end": 12432.38, + "probability": 0.971 + }, + { + "start": 12432.48, + "end": 12434.38, + "probability": 0.917 + }, + { + "start": 12434.74, + "end": 12437.64, + "probability": 0.9132 + }, + { + "start": 12438.0, + "end": 12438.44, + "probability": 0.7323 + }, + { + "start": 12438.48, + "end": 12441.94, + "probability": 0.9437 + }, + { + "start": 12442.44, + "end": 12443.28, + "probability": 0.6842 + }, + { + "start": 12443.44, + "end": 12445.98, + "probability": 0.8619 + }, + { + "start": 12446.16, + "end": 12448.62, + "probability": 0.6826 + }, + { + "start": 12448.62, + "end": 12452.08, + "probability": 0.9922 + }, + { + "start": 12452.38, + "end": 12453.42, + "probability": 0.9746 + }, + { + "start": 12454.16, + "end": 12455.26, + "probability": 0.9966 + }, + { + "start": 12455.98, + "end": 12459.4, + "probability": 0.9274 + }, + { + "start": 12459.82, + "end": 12461.84, + "probability": 0.9539 + }, + { + "start": 12461.9, + "end": 12464.22, + "probability": 0.8948 + }, + { + "start": 12464.3, + "end": 12464.69, + "probability": 0.8535 + }, + { + "start": 12465.32, + "end": 12465.64, + "probability": 0.6752 + }, + { + "start": 12465.84, + "end": 12466.3, + "probability": 0.8008 + }, + { + "start": 12466.46, + "end": 12467.42, + "probability": 0.8564 + }, + { + "start": 12467.58, + "end": 12470.02, + "probability": 0.6969 + }, + { + "start": 12470.02, + "end": 12471.2, + "probability": 0.6152 + }, + { + "start": 12471.38, + "end": 12472.15, + "probability": 0.8751 + }, + { + "start": 12472.62, + "end": 12477.76, + "probability": 0.9896 + }, + { + "start": 12478.1, + "end": 12481.7, + "probability": 0.9963 + }, + { + "start": 12481.88, + "end": 12483.1, + "probability": 0.7431 + }, + { + "start": 12483.16, + "end": 12485.26, + "probability": 0.9897 + }, + { + "start": 12485.36, + "end": 12486.7, + "probability": 0.9922 + }, + { + "start": 12487.06, + "end": 12488.16, + "probability": 0.4962 + }, + { + "start": 12488.8, + "end": 12492.62, + "probability": 0.9683 + }, + { + "start": 12493.08, + "end": 12495.64, + "probability": 0.8458 + }, + { + "start": 12495.8, + "end": 12500.08, + "probability": 0.9309 + }, + { + "start": 12500.4, + "end": 12506.3, + "probability": 0.9927 + }, + { + "start": 12506.6, + "end": 12507.36, + "probability": 0.9233 + }, + { + "start": 12507.46, + "end": 12508.62, + "probability": 0.9037 + }, + { + "start": 12508.9, + "end": 12512.42, + "probability": 0.8659 + }, + { + "start": 12512.52, + "end": 12513.36, + "probability": 0.9128 + }, + { + "start": 12513.4, + "end": 12515.72, + "probability": 0.9274 + }, + { + "start": 12516.12, + "end": 12518.39, + "probability": 0.9863 + }, + { + "start": 12518.46, + "end": 12519.38, + "probability": 0.9926 + }, + { + "start": 12519.94, + "end": 12520.76, + "probability": 0.9085 + }, + { + "start": 12521.0, + "end": 12524.88, + "probability": 0.9837 + }, + { + "start": 12525.24, + "end": 12530.6, + "probability": 0.996 + }, + { + "start": 12530.6, + "end": 12535.92, + "probability": 0.9907 + }, + { + "start": 12536.08, + "end": 12540.72, + "probability": 0.9741 + }, + { + "start": 12540.92, + "end": 12541.1, + "probability": 0.5933 + }, + { + "start": 12541.2, + "end": 12542.56, + "probability": 0.9334 + }, + { + "start": 12542.64, + "end": 12544.84, + "probability": 0.889 + }, + { + "start": 12545.0, + "end": 12545.74, + "probability": 0.6012 + }, + { + "start": 12545.8, + "end": 12547.96, + "probability": 0.9884 + }, + { + "start": 12548.06, + "end": 12550.9, + "probability": 0.9164 + }, + { + "start": 12551.06, + "end": 12552.64, + "probability": 0.8684 + }, + { + "start": 12552.8, + "end": 12556.06, + "probability": 0.8865 + }, + { + "start": 12556.16, + "end": 12557.66, + "probability": 0.9238 + }, + { + "start": 12557.8, + "end": 12559.44, + "probability": 0.9841 + }, + { + "start": 12559.58, + "end": 12561.27, + "probability": 0.7991 + }, + { + "start": 12561.72, + "end": 12562.76, + "probability": 0.1893 + }, + { + "start": 12562.82, + "end": 12564.38, + "probability": 0.8804 + }, + { + "start": 12564.6, + "end": 12564.96, + "probability": 0.3895 + }, + { + "start": 12565.16, + "end": 12571.82, + "probability": 0.9769 + }, + { + "start": 12571.9, + "end": 12574.7, + "probability": 0.9058 + }, + { + "start": 12574.86, + "end": 12575.46, + "probability": 0.5811 + }, + { + "start": 12575.66, + "end": 12580.34, + "probability": 0.996 + }, + { + "start": 12580.88, + "end": 12583.62, + "probability": 0.9979 + }, + { + "start": 12583.7, + "end": 12585.64, + "probability": 0.9985 + }, + { + "start": 12585.64, + "end": 12587.62, + "probability": 0.9881 + }, + { + "start": 12587.74, + "end": 12593.2, + "probability": 0.9507 + }, + { + "start": 12593.4, + "end": 12594.76, + "probability": 0.9922 + }, + { + "start": 12595.14, + "end": 12596.4, + "probability": 0.9727 + }, + { + "start": 12596.58, + "end": 12598.4, + "probability": 0.827 + }, + { + "start": 12598.44, + "end": 12601.3, + "probability": 0.9917 + }, + { + "start": 12601.4, + "end": 12603.72, + "probability": 0.9917 + }, + { + "start": 12603.72, + "end": 12606.74, + "probability": 0.8241 + }, + { + "start": 12607.08, + "end": 12609.16, + "probability": 0.9961 + }, + { + "start": 12609.34, + "end": 12609.62, + "probability": 0.3447 + }, + { + "start": 12609.7, + "end": 12612.14, + "probability": 0.9675 + }, + { + "start": 12612.28, + "end": 12614.62, + "probability": 0.9763 + }, + { + "start": 12614.66, + "end": 12615.64, + "probability": 0.4216 + }, + { + "start": 12616.02, + "end": 12618.36, + "probability": 0.9852 + }, + { + "start": 12622.84, + "end": 12624.12, + "probability": 0.5451 + }, + { + "start": 12624.18, + "end": 12626.94, + "probability": 0.9783 + }, + { + "start": 12627.16, + "end": 12627.44, + "probability": 0.9201 + }, + { + "start": 12629.68, + "end": 12632.28, + "probability": 0.905 + }, + { + "start": 12633.88, + "end": 12640.74, + "probability": 0.9744 + }, + { + "start": 12642.38, + "end": 12645.5, + "probability": 0.9964 + }, + { + "start": 12645.62, + "end": 12646.68, + "probability": 0.8446 + }, + { + "start": 12648.02, + "end": 12649.9, + "probability": 0.9648 + }, + { + "start": 12649.98, + "end": 12654.62, + "probability": 0.8714 + }, + { + "start": 12655.18, + "end": 12657.2, + "probability": 0.9471 + }, + { + "start": 12658.0, + "end": 12660.92, + "probability": 0.9581 + }, + { + "start": 12662.22, + "end": 12663.68, + "probability": 0.9767 + }, + { + "start": 12665.44, + "end": 12668.14, + "probability": 0.8892 + }, + { + "start": 12670.34, + "end": 12672.6, + "probability": 0.9944 + }, + { + "start": 12673.96, + "end": 12676.74, + "probability": 0.9961 + }, + { + "start": 12678.4, + "end": 12682.28, + "probability": 0.9956 + }, + { + "start": 12684.48, + "end": 12686.66, + "probability": 0.8968 + }, + { + "start": 12688.54, + "end": 12697.7, + "probability": 0.9874 + }, + { + "start": 12698.38, + "end": 12702.06, + "probability": 0.9375 + }, + { + "start": 12704.22, + "end": 12705.68, + "probability": 0.9731 + }, + { + "start": 12707.38, + "end": 12707.84, + "probability": 0.9399 + }, + { + "start": 12708.48, + "end": 12709.78, + "probability": 0.6674 + }, + { + "start": 12711.1, + "end": 12714.48, + "probability": 0.9991 + }, + { + "start": 12715.62, + "end": 12719.74, + "probability": 0.9888 + }, + { + "start": 12719.74, + "end": 12722.32, + "probability": 0.9711 + }, + { + "start": 12723.28, + "end": 12725.86, + "probability": 0.9888 + }, + { + "start": 12731.64, + "end": 12738.88, + "probability": 0.974 + }, + { + "start": 12740.14, + "end": 12747.86, + "probability": 0.9889 + }, + { + "start": 12747.86, + "end": 12753.42, + "probability": 0.9984 + }, + { + "start": 12754.82, + "end": 12760.22, + "probability": 0.8939 + }, + { + "start": 12762.44, + "end": 12766.18, + "probability": 0.734 + }, + { + "start": 12766.34, + "end": 12770.16, + "probability": 0.8504 + }, + { + "start": 12772.44, + "end": 12773.71, + "probability": 0.984 + }, + { + "start": 12775.3, + "end": 12779.0, + "probability": 0.9096 + }, + { + "start": 12781.94, + "end": 12785.1, + "probability": 0.9199 + }, + { + "start": 12786.66, + "end": 12789.08, + "probability": 0.7288 + }, + { + "start": 12789.84, + "end": 12796.64, + "probability": 0.9808 + }, + { + "start": 12796.78, + "end": 12800.46, + "probability": 0.9908 + }, + { + "start": 12801.46, + "end": 12804.28, + "probability": 0.9296 + }, + { + "start": 12808.72, + "end": 12808.82, + "probability": 0.3173 + }, + { + "start": 12808.82, + "end": 12809.86, + "probability": 0.8695 + }, + { + "start": 12810.1, + "end": 12811.36, + "probability": 0.3436 + }, + { + "start": 12811.36, + "end": 12812.38, + "probability": 0.3755 + }, + { + "start": 12812.42, + "end": 12813.06, + "probability": 0.9268 + }, + { + "start": 12814.0, + "end": 12814.1, + "probability": 0.0867 + }, + { + "start": 12814.84, + "end": 12817.48, + "probability": 0.3361 + }, + { + "start": 12817.76, + "end": 12819.02, + "probability": 0.8516 + }, + { + "start": 12819.06, + "end": 12821.7, + "probability": 0.879 + }, + { + "start": 12822.46, + "end": 12823.06, + "probability": 0.7557 + }, + { + "start": 12824.06, + "end": 12826.46, + "probability": 0.9082 + }, + { + "start": 12827.2, + "end": 12829.48, + "probability": 0.9916 + }, + { + "start": 12830.82, + "end": 12836.06, + "probability": 0.7488 + }, + { + "start": 12836.84, + "end": 12841.2, + "probability": 0.9834 + }, + { + "start": 12841.94, + "end": 12845.64, + "probability": 0.9808 + }, + { + "start": 12846.64, + "end": 12850.1, + "probability": 0.8956 + }, + { + "start": 12850.88, + "end": 12852.82, + "probability": 0.9783 + }, + { + "start": 12853.48, + "end": 12854.16, + "probability": 0.8256 + }, + { + "start": 12855.4, + "end": 12862.36, + "probability": 0.9443 + }, + { + "start": 12863.68, + "end": 12872.04, + "probability": 0.9785 + }, + { + "start": 12873.02, + "end": 12875.2, + "probability": 0.6683 + }, + { + "start": 12875.32, + "end": 12875.7, + "probability": 0.7763 + }, + { + "start": 12876.0, + "end": 12878.12, + "probability": 0.9587 + }, + { + "start": 12878.22, + "end": 12880.58, + "probability": 0.9637 + }, + { + "start": 12881.26, + "end": 12884.44, + "probability": 0.903 + }, + { + "start": 12902.18, + "end": 12903.68, + "probability": 0.65 + }, + { + "start": 12904.48, + "end": 12905.12, + "probability": 0.9377 + }, + { + "start": 12909.16, + "end": 12910.16, + "probability": 0.4423 + }, + { + "start": 12910.44, + "end": 12913.64, + "probability": 0.699 + }, + { + "start": 12915.08, + "end": 12917.28, + "probability": 0.8016 + }, + { + "start": 12918.52, + "end": 12920.58, + "probability": 0.9629 + }, + { + "start": 12921.02, + "end": 12921.74, + "probability": 0.793 + }, + { + "start": 12921.88, + "end": 12925.18, + "probability": 0.9834 + }, + { + "start": 12925.92, + "end": 12930.74, + "probability": 0.9976 + }, + { + "start": 12930.86, + "end": 12931.14, + "probability": 0.9669 + }, + { + "start": 12931.72, + "end": 12935.34, + "probability": 0.9252 + }, + { + "start": 12935.88, + "end": 12936.48, + "probability": 0.643 + }, + { + "start": 12936.68, + "end": 12941.12, + "probability": 0.9925 + }, + { + "start": 12941.72, + "end": 12942.9, + "probability": 0.7757 + }, + { + "start": 12943.0, + "end": 12946.26, + "probability": 0.9238 + }, + { + "start": 12946.26, + "end": 12949.72, + "probability": 0.9982 + }, + { + "start": 12950.24, + "end": 12952.96, + "probability": 0.9987 + }, + { + "start": 12954.02, + "end": 12956.08, + "probability": 0.9688 + }, + { + "start": 12956.18, + "end": 12957.84, + "probability": 0.9417 + }, + { + "start": 12958.0, + "end": 12960.32, + "probability": 0.9897 + }, + { + "start": 12960.68, + "end": 12963.18, + "probability": 0.9955 + }, + { + "start": 12964.46, + "end": 12964.9, + "probability": 0.8074 + }, + { + "start": 12965.12, + "end": 12967.34, + "probability": 0.655 + }, + { + "start": 12968.02, + "end": 12970.6, + "probability": 0.9907 + }, + { + "start": 12970.64, + "end": 12972.04, + "probability": 0.9813 + }, + { + "start": 12972.42, + "end": 12974.88, + "probability": 0.9886 + }, + { + "start": 12974.92, + "end": 12975.48, + "probability": 0.9121 + }, + { + "start": 12975.52, + "end": 12976.48, + "probability": 0.9526 + }, + { + "start": 12977.04, + "end": 12977.8, + "probability": 0.8911 + }, + { + "start": 12978.44, + "end": 12981.22, + "probability": 0.9924 + }, + { + "start": 12981.22, + "end": 12984.96, + "probability": 0.9963 + }, + { + "start": 12985.08, + "end": 12985.82, + "probability": 0.8146 + }, + { + "start": 12985.98, + "end": 12987.14, + "probability": 0.8306 + }, + { + "start": 12987.5, + "end": 12991.1, + "probability": 0.9282 + }, + { + "start": 12991.78, + "end": 12994.92, + "probability": 0.9895 + }, + { + "start": 12995.4, + "end": 12995.82, + "probability": 0.5191 + }, + { + "start": 12995.86, + "end": 12998.18, + "probability": 0.8391 + }, + { + "start": 12998.22, + "end": 13002.62, + "probability": 0.9354 + }, + { + "start": 13004.39, + "end": 13008.98, + "probability": 0.8157 + }, + { + "start": 13009.08, + "end": 13011.86, + "probability": 0.8851 + }, + { + "start": 13011.96, + "end": 13012.94, + "probability": 0.4045 + }, + { + "start": 13013.06, + "end": 13021.0, + "probability": 0.9784 + }, + { + "start": 13021.22, + "end": 13024.0, + "probability": 0.9634 + }, + { + "start": 13024.42, + "end": 13027.43, + "probability": 0.8734 + }, + { + "start": 13027.86, + "end": 13029.6, + "probability": 0.7068 + }, + { + "start": 13030.24, + "end": 13034.5, + "probability": 0.9442 + }, + { + "start": 13034.98, + "end": 13036.04, + "probability": 0.7576 + }, + { + "start": 13036.9, + "end": 13041.92, + "probability": 0.9963 + }, + { + "start": 13041.92, + "end": 13045.14, + "probability": 0.7873 + }, + { + "start": 13045.52, + "end": 13049.64, + "probability": 0.9939 + }, + { + "start": 13050.04, + "end": 13055.68, + "probability": 0.9689 + }, + { + "start": 13055.78, + "end": 13057.08, + "probability": 0.6636 + }, + { + "start": 13057.24, + "end": 13058.42, + "probability": 0.6997 + }, + { + "start": 13058.54, + "end": 13059.44, + "probability": 0.1515 + }, + { + "start": 13059.76, + "end": 13061.11, + "probability": 0.9566 + }, + { + "start": 13061.5, + "end": 13062.6, + "probability": 0.8092 + }, + { + "start": 13062.88, + "end": 13065.28, + "probability": 0.9801 + }, + { + "start": 13065.44, + "end": 13067.96, + "probability": 0.8004 + }, + { + "start": 13068.4, + "end": 13072.72, + "probability": 0.9747 + }, + { + "start": 13072.94, + "end": 13076.78, + "probability": 0.9939 + }, + { + "start": 13077.28, + "end": 13081.86, + "probability": 0.9544 + }, + { + "start": 13082.38, + "end": 13082.96, + "probability": 0.9259 + }, + { + "start": 13083.04, + "end": 13084.54, + "probability": 0.7387 + }, + { + "start": 13084.74, + "end": 13086.94, + "probability": 0.8303 + }, + { + "start": 13087.0, + "end": 13088.14, + "probability": 0.9121 + }, + { + "start": 13088.34, + "end": 13088.88, + "probability": 0.5195 + }, + { + "start": 13088.9, + "end": 13089.92, + "probability": 0.8609 + }, + { + "start": 13092.5, + "end": 13092.74, + "probability": 0.1172 + }, + { + "start": 13092.74, + "end": 13096.48, + "probability": 0.1798 + }, + { + "start": 13096.48, + "end": 13096.9, + "probability": 0.4387 + }, + { + "start": 13097.9, + "end": 13098.3, + "probability": 0.6427 + }, + { + "start": 13098.38, + "end": 13103.88, + "probability": 0.9216 + }, + { + "start": 13104.0, + "end": 13106.14, + "probability": 0.981 + }, + { + "start": 13106.78, + "end": 13107.94, + "probability": 0.7387 + }, + { + "start": 13108.44, + "end": 13113.7, + "probability": 0.9943 + }, + { + "start": 13114.18, + "end": 13119.14, + "probability": 0.9824 + }, + { + "start": 13119.66, + "end": 13121.56, + "probability": 0.9771 + }, + { + "start": 13122.14, + "end": 13122.78, + "probability": 0.4225 + }, + { + "start": 13122.82, + "end": 13123.28, + "probability": 0.4292 + }, + { + "start": 13123.38, + "end": 13128.32, + "probability": 0.8628 + }, + { + "start": 13128.6, + "end": 13129.4, + "probability": 0.862 + }, + { + "start": 13129.5, + "end": 13132.92, + "probability": 0.9562 + }, + { + "start": 13133.12, + "end": 13137.46, + "probability": 0.9875 + }, + { + "start": 13137.62, + "end": 13139.33, + "probability": 0.9778 + }, + { + "start": 13139.82, + "end": 13144.22, + "probability": 0.9404 + }, + { + "start": 13144.58, + "end": 13146.86, + "probability": 0.9948 + }, + { + "start": 13146.86, + "end": 13150.22, + "probability": 0.9915 + }, + { + "start": 13150.52, + "end": 13151.1, + "probability": 0.7513 + }, + { + "start": 13151.28, + "end": 13154.44, + "probability": 0.8289 + }, + { + "start": 13154.8, + "end": 13155.06, + "probability": 0.256 + }, + { + "start": 13155.06, + "end": 13157.04, + "probability": 0.8222 + }, + { + "start": 13157.08, + "end": 13160.26, + "probability": 0.9282 + }, + { + "start": 13160.36, + "end": 13161.1, + "probability": 0.4093 + }, + { + "start": 13161.14, + "end": 13165.08, + "probability": 0.7727 + }, + { + "start": 13171.4, + "end": 13174.98, + "probability": 0.7369 + }, + { + "start": 13175.74, + "end": 13177.12, + "probability": 0.8892 + }, + { + "start": 13178.06, + "end": 13181.2, + "probability": 0.5646 + }, + { + "start": 13182.54, + "end": 13185.54, + "probability": 0.9774 + }, + { + "start": 13186.02, + "end": 13186.98, + "probability": 0.4516 + }, + { + "start": 13187.1, + "end": 13189.4, + "probability": 0.6636 + }, + { + "start": 13190.32, + "end": 13192.4, + "probability": 0.6935 + }, + { + "start": 13192.62, + "end": 13195.9, + "probability": 0.7562 + }, + { + "start": 13196.7, + "end": 13200.26, + "probability": 0.8867 + }, + { + "start": 13201.02, + "end": 13201.69, + "probability": 0.9131 + }, + { + "start": 13202.32, + "end": 13204.36, + "probability": 0.7812 + }, + { + "start": 13204.82, + "end": 13207.88, + "probability": 0.9266 + }, + { + "start": 13208.4, + "end": 13209.06, + "probability": 0.6283 + }, + { + "start": 13209.9, + "end": 13211.35, + "probability": 0.9726 + }, + { + "start": 13212.3, + "end": 13218.92, + "probability": 0.8055 + }, + { + "start": 13220.04, + "end": 13222.06, + "probability": 0.9847 + }, + { + "start": 13222.74, + "end": 13225.93, + "probability": 0.9284 + }, + { + "start": 13227.16, + "end": 13230.14, + "probability": 0.9339 + }, + { + "start": 13230.28, + "end": 13233.22, + "probability": 0.804 + }, + { + "start": 13234.5, + "end": 13236.48, + "probability": 0.9812 + }, + { + "start": 13236.68, + "end": 13238.66, + "probability": 0.9708 + }, + { + "start": 13239.28, + "end": 13243.46, + "probability": 0.8233 + }, + { + "start": 13243.86, + "end": 13245.82, + "probability": 0.9875 + }, + { + "start": 13246.68, + "end": 13248.76, + "probability": 0.864 + }, + { + "start": 13250.02, + "end": 13253.5, + "probability": 0.9648 + }, + { + "start": 13255.12, + "end": 13257.9, + "probability": 0.9846 + }, + { + "start": 13257.9, + "end": 13260.84, + "probability": 0.9938 + }, + { + "start": 13261.46, + "end": 13264.34, + "probability": 0.8934 + }, + { + "start": 13266.18, + "end": 13269.82, + "probability": 0.9143 + }, + { + "start": 13270.52, + "end": 13274.72, + "probability": 0.9354 + }, + { + "start": 13275.14, + "end": 13276.86, + "probability": 0.9974 + }, + { + "start": 13277.74, + "end": 13279.98, + "probability": 0.9924 + }, + { + "start": 13280.22, + "end": 13282.1, + "probability": 0.9889 + }, + { + "start": 13282.58, + "end": 13283.36, + "probability": 0.9082 + }, + { + "start": 13283.8, + "end": 13285.3, + "probability": 0.9616 + }, + { + "start": 13285.86, + "end": 13287.86, + "probability": 0.9822 + }, + { + "start": 13288.7, + "end": 13290.7, + "probability": 0.8999 + }, + { + "start": 13291.18, + "end": 13292.18, + "probability": 0.9868 + }, + { + "start": 13293.16, + "end": 13298.14, + "probability": 0.9849 + }, + { + "start": 13298.3, + "end": 13299.18, + "probability": 0.9927 + }, + { + "start": 13299.92, + "end": 13302.04, + "probability": 0.9967 + }, + { + "start": 13302.18, + "end": 13304.46, + "probability": 0.9395 + }, + { + "start": 13305.58, + "end": 13308.38, + "probability": 0.9608 + }, + { + "start": 13309.0, + "end": 13315.88, + "probability": 0.8391 + }, + { + "start": 13316.4, + "end": 13316.8, + "probability": 0.3828 + }, + { + "start": 13317.38, + "end": 13320.36, + "probability": 0.7908 + }, + { + "start": 13321.42, + "end": 13325.58, + "probability": 0.7242 + }, + { + "start": 13326.08, + "end": 13334.72, + "probability": 0.9158 + }, + { + "start": 13335.68, + "end": 13337.28, + "probability": 0.9846 + }, + { + "start": 13338.24, + "end": 13344.9, + "probability": 0.9053 + }, + { + "start": 13346.92, + "end": 13348.55, + "probability": 0.7598 + }, + { + "start": 13349.18, + "end": 13351.66, + "probability": 0.9475 + }, + { + "start": 13352.34, + "end": 13354.16, + "probability": 0.6686 + }, + { + "start": 13354.72, + "end": 13357.88, + "probability": 0.5425 + }, + { + "start": 13358.8, + "end": 13360.92, + "probability": 0.8308 + }, + { + "start": 13361.32, + "end": 13361.6, + "probability": 0.742 + }, + { + "start": 13362.14, + "end": 13366.76, + "probability": 0.9771 + }, + { + "start": 13366.92, + "end": 13372.68, + "probability": 0.9733 + }, + { + "start": 13372.94, + "end": 13375.76, + "probability": 0.9825 + }, + { + "start": 13377.38, + "end": 13377.99, + "probability": 0.783 + }, + { + "start": 13379.32, + "end": 13384.08, + "probability": 0.9927 + }, + { + "start": 13385.08, + "end": 13389.76, + "probability": 0.8711 + }, + { + "start": 13390.2, + "end": 13390.4, + "probability": 0.4339 + }, + { + "start": 13390.64, + "end": 13391.7, + "probability": 0.8856 + }, + { + "start": 13391.98, + "end": 13393.66, + "probability": 0.6356 + }, + { + "start": 13394.02, + "end": 13396.04, + "probability": 0.607 + }, + { + "start": 13396.32, + "end": 13397.4, + "probability": 0.825 + }, + { + "start": 13402.96, + "end": 13406.0, + "probability": 0.7352 + }, + { + "start": 13406.34, + "end": 13406.9, + "probability": 0.7029 + }, + { + "start": 13407.68, + "end": 13411.49, + "probability": 0.9001 + }, + { + "start": 13412.98, + "end": 13416.04, + "probability": 0.2537 + }, + { + "start": 13416.44, + "end": 13417.88, + "probability": 0.171 + }, + { + "start": 13417.96, + "end": 13418.62, + "probability": 0.0534 + }, + { + "start": 13418.62, + "end": 13418.62, + "probability": 0.2284 + }, + { + "start": 13418.62, + "end": 13420.58, + "probability": 0.1809 + }, + { + "start": 13421.1, + "end": 13421.5, + "probability": 0.1344 + }, + { + "start": 13421.5, + "end": 13422.16, + "probability": 0.1288 + }, + { + "start": 13422.16, + "end": 13423.1, + "probability": 0.2667 + }, + { + "start": 13423.54, + "end": 13424.44, + "probability": 0.4298 + }, + { + "start": 13425.22, + "end": 13426.22, + "probability": 0.2179 + }, + { + "start": 13426.22, + "end": 13426.78, + "probability": 0.2781 + }, + { + "start": 13427.0, + "end": 13429.98, + "probability": 0.7002 + }, + { + "start": 13430.46, + "end": 13434.38, + "probability": 0.9521 + }, + { + "start": 13435.0, + "end": 13436.06, + "probability": 0.771 + }, + { + "start": 13436.16, + "end": 13439.34, + "probability": 0.8373 + }, + { + "start": 13439.86, + "end": 13441.22, + "probability": 0.8572 + }, + { + "start": 13441.3, + "end": 13442.08, + "probability": 0.46 + }, + { + "start": 13442.14, + "end": 13443.4, + "probability": 0.6362 + }, + { + "start": 13443.4, + "end": 13444.54, + "probability": 0.8041 + }, + { + "start": 13444.66, + "end": 13447.16, + "probability": 0.9932 + }, + { + "start": 13447.22, + "end": 13449.41, + "probability": 0.9102 + }, + { + "start": 13450.06, + "end": 13451.78, + "probability": 0.9731 + }, + { + "start": 13451.78, + "end": 13455.74, + "probability": 0.9955 + }, + { + "start": 13455.82, + "end": 13457.86, + "probability": 0.6107 + }, + { + "start": 13458.22, + "end": 13460.2, + "probability": 0.7399 + }, + { + "start": 13460.56, + "end": 13461.26, + "probability": 0.4638 + }, + { + "start": 13461.28, + "end": 13462.84, + "probability": 0.8721 + }, + { + "start": 13477.02, + "end": 13479.72, + "probability": 0.8782 + }, + { + "start": 13484.44, + "end": 13486.52, + "probability": 0.7715 + }, + { + "start": 13487.7, + "end": 13490.16, + "probability": 0.5913 + }, + { + "start": 13491.1, + "end": 13492.38, + "probability": 0.8315 + }, + { + "start": 13493.08, + "end": 13495.42, + "probability": 0.9338 + }, + { + "start": 13496.52, + "end": 13498.98, + "probability": 0.9672 + }, + { + "start": 13499.14, + "end": 13500.18, + "probability": 0.5375 + }, + { + "start": 13500.68, + "end": 13501.78, + "probability": 0.9307 + }, + { + "start": 13502.24, + "end": 13510.94, + "probability": 0.9593 + }, + { + "start": 13511.72, + "end": 13516.58, + "probability": 0.9616 + }, + { + "start": 13517.14, + "end": 13520.04, + "probability": 0.9937 + }, + { + "start": 13520.04, + "end": 13524.42, + "probability": 0.9784 + }, + { + "start": 13524.86, + "end": 13527.0, + "probability": 0.6636 + }, + { + "start": 13527.76, + "end": 13531.62, + "probability": 0.9806 + }, + { + "start": 13531.62, + "end": 13532.44, + "probability": 0.654 + }, + { + "start": 13533.08, + "end": 13534.23, + "probability": 0.9355 + }, + { + "start": 13534.66, + "end": 13537.76, + "probability": 0.7834 + }, + { + "start": 13538.24, + "end": 13539.35, + "probability": 0.8348 + }, + { + "start": 13539.96, + "end": 13540.8, + "probability": 0.9359 + }, + { + "start": 13540.92, + "end": 13541.96, + "probability": 0.9335 + }, + { + "start": 13542.16, + "end": 13543.0, + "probability": 0.5236 + }, + { + "start": 13543.4, + "end": 13545.64, + "probability": 0.9948 + }, + { + "start": 13546.14, + "end": 13548.16, + "probability": 0.9964 + }, + { + "start": 13548.54, + "end": 13552.4, + "probability": 0.9951 + }, + { + "start": 13552.94, + "end": 13555.16, + "probability": 0.729 + }, + { + "start": 13555.22, + "end": 13558.48, + "probability": 0.8623 + }, + { + "start": 13559.12, + "end": 13560.16, + "probability": 0.9658 + }, + { + "start": 13560.26, + "end": 13562.15, + "probability": 0.7554 + }, + { + "start": 13562.44, + "end": 13564.72, + "probability": 0.5835 + }, + { + "start": 13564.98, + "end": 13565.3, + "probability": 0.3902 + }, + { + "start": 13565.32, + "end": 13566.58, + "probability": 0.676 + }, + { + "start": 13566.78, + "end": 13570.58, + "probability": 0.9427 + }, + { + "start": 13570.88, + "end": 13571.94, + "probability": 0.464 + }, + { + "start": 13571.98, + "end": 13573.48, + "probability": 0.0914 + }, + { + "start": 13573.48, + "end": 13575.5, + "probability": 0.363 + }, + { + "start": 13578.36, + "end": 13578.78, + "probability": 0.055 + }, + { + "start": 13578.78, + "end": 13578.78, + "probability": 0.1155 + }, + { + "start": 13578.78, + "end": 13579.84, + "probability": 0.4663 + }, + { + "start": 13580.74, + "end": 13582.02, + "probability": 0.649 + }, + { + "start": 13583.4, + "end": 13584.26, + "probability": 0.8214 + }, + { + "start": 13584.32, + "end": 13589.3, + "probability": 0.8721 + }, + { + "start": 13589.84, + "end": 13590.7, + "probability": 0.7065 + }, + { + "start": 13591.32, + "end": 13593.2, + "probability": 0.954 + }, + { + "start": 13593.72, + "end": 13594.96, + "probability": 0.8894 + }, + { + "start": 13595.36, + "end": 13601.14, + "probability": 0.927 + }, + { + "start": 13601.54, + "end": 13605.06, + "probability": 0.9748 + }, + { + "start": 13605.48, + "end": 13606.42, + "probability": 0.9678 + }, + { + "start": 13607.42, + "end": 13607.92, + "probability": 0.9348 + }, + { + "start": 13608.42, + "end": 13609.06, + "probability": 0.9771 + }, + { + "start": 13609.38, + "end": 13609.96, + "probability": 0.8907 + }, + { + "start": 13610.28, + "end": 13612.18, + "probability": 0.8993 + }, + { + "start": 13612.44, + "end": 13615.66, + "probability": 0.9795 + }, + { + "start": 13616.3, + "end": 13617.8, + "probability": 0.9813 + }, + { + "start": 13618.38, + "end": 13619.22, + "probability": 0.7758 + }, + { + "start": 13619.4, + "end": 13620.02, + "probability": 0.7712 + }, + { + "start": 13620.46, + "end": 13620.96, + "probability": 0.515 + }, + { + "start": 13621.24, + "end": 13623.62, + "probability": 0.7939 + }, + { + "start": 13623.82, + "end": 13626.7, + "probability": 0.8359 + }, + { + "start": 13627.24, + "end": 13630.18, + "probability": 0.8039 + }, + { + "start": 13630.36, + "end": 13635.72, + "probability": 0.9753 + }, + { + "start": 13636.16, + "end": 13637.32, + "probability": 0.4465 + }, + { + "start": 13637.62, + "end": 13639.48, + "probability": 0.7217 + }, + { + "start": 13639.9, + "end": 13640.36, + "probability": 0.8262 + }, + { + "start": 13642.02, + "end": 13642.56, + "probability": 0.9443 + }, + { + "start": 13643.44, + "end": 13646.84, + "probability": 0.945 + }, + { + "start": 13647.32, + "end": 13648.24, + "probability": 0.7339 + }, + { + "start": 13648.6, + "end": 13649.92, + "probability": 0.7199 + }, + { + "start": 13650.26, + "end": 13652.18, + "probability": 0.999 + }, + { + "start": 13652.86, + "end": 13654.04, + "probability": 0.8362 + }, + { + "start": 13654.76, + "end": 13655.16, + "probability": 0.7673 + }, + { + "start": 13655.56, + "end": 13660.08, + "probability": 0.9871 + }, + { + "start": 13660.22, + "end": 13663.76, + "probability": 0.9862 + }, + { + "start": 13663.88, + "end": 13664.62, + "probability": 0.5254 + }, + { + "start": 13664.7, + "end": 13668.92, + "probability": 0.9488 + }, + { + "start": 13669.32, + "end": 13673.68, + "probability": 0.9133 + }, + { + "start": 13673.92, + "end": 13674.92, + "probability": 0.8468 + }, + { + "start": 13675.3, + "end": 13675.68, + "probability": 0.8173 + }, + { + "start": 13675.76, + "end": 13676.26, + "probability": 0.5772 + }, + { + "start": 13676.7, + "end": 13677.8, + "probability": 0.8914 + }, + { + "start": 13678.26, + "end": 13679.62, + "probability": 0.8835 + }, + { + "start": 13679.8, + "end": 13681.04, + "probability": 0.8872 + }, + { + "start": 13681.2, + "end": 13682.26, + "probability": 0.7476 + }, + { + "start": 13682.36, + "end": 13682.98, + "probability": 0.9544 + }, + { + "start": 13683.0, + "end": 13683.86, + "probability": 0.5084 + }, + { + "start": 13684.14, + "end": 13685.66, + "probability": 0.6128 + }, + { + "start": 13685.94, + "end": 13689.92, + "probability": 0.9256 + }, + { + "start": 13690.44, + "end": 13691.64, + "probability": 0.9469 + }, + { + "start": 13691.92, + "end": 13692.76, + "probability": 0.8823 + }, + { + "start": 13693.12, + "end": 13697.12, + "probability": 0.8163 + }, + { + "start": 13697.3, + "end": 13698.48, + "probability": 0.7274 + }, + { + "start": 13699.38, + "end": 13701.12, + "probability": 0.321 + }, + { + "start": 13701.72, + "end": 13705.94, + "probability": 0.5541 + }, + { + "start": 13706.78, + "end": 13707.62, + "probability": 0.0892 + }, + { + "start": 13707.77, + "end": 13709.02, + "probability": 0.1237 + }, + { + "start": 13710.05, + "end": 13713.54, + "probability": 0.4441 + }, + { + "start": 13713.56, + "end": 13713.56, + "probability": 0.0074 + }, + { + "start": 13713.56, + "end": 13718.15, + "probability": 0.9388 + }, + { + "start": 13718.3, + "end": 13719.2, + "probability": 0.8115 + }, + { + "start": 13719.36, + "end": 13722.7, + "probability": 0.994 + }, + { + "start": 13722.7, + "end": 13725.38, + "probability": 0.9701 + }, + { + "start": 13725.64, + "end": 13730.06, + "probability": 0.5466 + }, + { + "start": 13730.58, + "end": 13733.54, + "probability": 0.0185 + }, + { + "start": 13736.84, + "end": 13739.56, + "probability": 0.1784 + }, + { + "start": 13740.12, + "end": 13745.22, + "probability": 0.5094 + }, + { + "start": 13746.08, + "end": 13749.22, + "probability": 0.7263 + }, + { + "start": 13749.34, + "end": 13751.4, + "probability": 0.0128 + }, + { + "start": 13751.4, + "end": 13751.75, + "probability": 0.026 + }, + { + "start": 13752.94, + "end": 13753.88, + "probability": 0.2444 + }, + { + "start": 13755.14, + "end": 13756.02, + "probability": 0.0717 + }, + { + "start": 13756.02, + "end": 13756.5, + "probability": 0.0428 + }, + { + "start": 13759.24, + "end": 13760.38, + "probability": 0.0807 + }, + { + "start": 13760.92, + "end": 13762.3, + "probability": 0.1666 + }, + { + "start": 13765.26, + "end": 13769.78, + "probability": 0.0695 + }, + { + "start": 13771.8, + "end": 13772.42, + "probability": 0.0765 + }, + { + "start": 13772.42, + "end": 13775.14, + "probability": 0.1056 + }, + { + "start": 13776.0, + "end": 13776.36, + "probability": 0.0556 + }, + { + "start": 13777.81, + "end": 13778.95, + "probability": 0.2258 + }, + { + "start": 13784.94, + "end": 13785.52, + "probability": 0.0373 + }, + { + "start": 13785.52, + "end": 13786.73, + "probability": 0.0731 + }, + { + "start": 13788.34, + "end": 13788.94, + "probability": 0.0012 + }, + { + "start": 13796.88, + "end": 13797.44, + "probability": 0.0251 + }, + { + "start": 13797.44, + "end": 13797.74, + "probability": 0.0978 + }, + { + "start": 13797.74, + "end": 13797.78, + "probability": 0.0317 + }, + { + "start": 13797.78, + "end": 13798.12, + "probability": 0.0163 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.0, + "end": 13805.0, + "probability": 0.0 + }, + { + "start": 13805.22, + "end": 13805.24, + "probability": 0.1156 + }, + { + "start": 13805.24, + "end": 13806.54, + "probability": 0.1341 + }, + { + "start": 13807.44, + "end": 13809.28, + "probability": 0.7189 + }, + { + "start": 13810.04, + "end": 13812.01, + "probability": 0.8268 + }, + { + "start": 13813.16, + "end": 13821.88, + "probability": 0.9694 + }, + { + "start": 13823.22, + "end": 13824.7, + "probability": 0.8188 + }, + { + "start": 13825.74, + "end": 13827.46, + "probability": 0.9987 + }, + { + "start": 13829.14, + "end": 13830.7, + "probability": 0.7936 + }, + { + "start": 13832.28, + "end": 13835.6, + "probability": 0.9956 + }, + { + "start": 13835.6, + "end": 13839.52, + "probability": 0.9895 + }, + { + "start": 13840.92, + "end": 13843.92, + "probability": 0.8772 + }, + { + "start": 13845.1, + "end": 13846.47, + "probability": 0.9983 + }, + { + "start": 13847.3, + "end": 13852.94, + "probability": 0.9957 + }, + { + "start": 13854.32, + "end": 13858.24, + "probability": 0.8472 + }, + { + "start": 13859.16, + "end": 13861.44, + "probability": 0.9867 + }, + { + "start": 13861.56, + "end": 13864.32, + "probability": 0.9793 + }, + { + "start": 13865.0, + "end": 13866.66, + "probability": 0.9688 + }, + { + "start": 13867.5, + "end": 13875.64, + "probability": 0.9948 + }, + { + "start": 13876.18, + "end": 13879.48, + "probability": 0.8344 + }, + { + "start": 13879.62, + "end": 13881.52, + "probability": 0.9442 + }, + { + "start": 13881.76, + "end": 13887.08, + "probability": 0.7795 + }, + { + "start": 13887.68, + "end": 13888.1, + "probability": 0.6593 + }, + { + "start": 13888.22, + "end": 13889.0, + "probability": 0.7754 + }, + { + "start": 13889.46, + "end": 13890.08, + "probability": 0.9246 + }, + { + "start": 13890.18, + "end": 13890.78, + "probability": 0.7335 + }, + { + "start": 13890.92, + "end": 13892.28, + "probability": 0.972 + }, + { + "start": 13893.34, + "end": 13896.64, + "probability": 0.6965 + }, + { + "start": 13898.32, + "end": 13901.68, + "probability": 0.8225 + }, + { + "start": 13901.72, + "end": 13904.74, + "probability": 0.2027 + }, + { + "start": 13905.92, + "end": 13908.36, + "probability": 0.7512 + }, + { + "start": 13908.36, + "end": 13908.36, + "probability": 0.0766 + }, + { + "start": 13908.36, + "end": 13908.36, + "probability": 0.1299 + }, + { + "start": 13908.36, + "end": 13909.16, + "probability": 0.0814 + }, + { + "start": 13909.7, + "end": 13914.36, + "probability": 0.8898 + }, + { + "start": 13914.68, + "end": 13916.34, + "probability": 0.7973 + }, + { + "start": 13916.64, + "end": 13918.32, + "probability": 0.7576 + }, + { + "start": 13918.4, + "end": 13918.86, + "probability": 0.0495 + }, + { + "start": 13919.44, + "end": 13919.94, + "probability": 0.8865 + }, + { + "start": 13920.0, + "end": 13920.98, + "probability": 0.9075 + }, + { + "start": 13921.32, + "end": 13922.34, + "probability": 0.9053 + }, + { + "start": 13922.58, + "end": 13924.1, + "probability": 0.804 + }, + { + "start": 13924.14, + "end": 13924.76, + "probability": 0.8706 + }, + { + "start": 13924.8, + "end": 13925.84, + "probability": 0.9513 + }, + { + "start": 13926.26, + "end": 13928.52, + "probability": 0.9482 + }, + { + "start": 13929.12, + "end": 13933.84, + "probability": 0.9951 + }, + { + "start": 13934.78, + "end": 13937.26, + "probability": 0.8417 + }, + { + "start": 13938.42, + "end": 13939.5, + "probability": 0.8651 + }, + { + "start": 13939.76, + "end": 13941.32, + "probability": 0.4008 + }, + { + "start": 13941.38, + "end": 13942.6, + "probability": 0.7875 + }, + { + "start": 13943.3, + "end": 13945.4, + "probability": 0.8594 + }, + { + "start": 13945.82, + "end": 13946.94, + "probability": 0.9366 + }, + { + "start": 13947.22, + "end": 13947.88, + "probability": 0.4261 + }, + { + "start": 13950.52, + "end": 13955.16, + "probability": 0.8706 + }, + { + "start": 13955.78, + "end": 13957.04, + "probability": 0.9297 + }, + { + "start": 13957.3, + "end": 13958.82, + "probability": 0.9972 + }, + { + "start": 13959.7, + "end": 13963.1, + "probability": 0.9963 + }, + { + "start": 13963.16, + "end": 13964.0, + "probability": 0.7882 + }, + { + "start": 13964.24, + "end": 13964.92, + "probability": 0.9373 + }, + { + "start": 13965.06, + "end": 13965.9, + "probability": 0.8286 + }, + { + "start": 13965.9, + "end": 13967.16, + "probability": 0.9192 + }, + { + "start": 13967.3, + "end": 13969.26, + "probability": 0.9462 + }, + { + "start": 13969.82, + "end": 13972.92, + "probability": 0.8627 + }, + { + "start": 13973.76, + "end": 13979.39, + "probability": 0.9941 + }, + { + "start": 13979.84, + "end": 13980.82, + "probability": 0.7231 + }, + { + "start": 13980.98, + "end": 13983.22, + "probability": 0.9456 + }, + { + "start": 13983.64, + "end": 13984.82, + "probability": 0.7553 + }, + { + "start": 13985.16, + "end": 13986.88, + "probability": 0.9612 + }, + { + "start": 13987.0, + "end": 13988.0, + "probability": 0.8496 + }, + { + "start": 13988.52, + "end": 13996.98, + "probability": 0.9852 + }, + { + "start": 13997.7, + "end": 14000.33, + "probability": 0.1594 + }, + { + "start": 14000.38, + "end": 14001.18, + "probability": 0.6582 + }, + { + "start": 14001.24, + "end": 14002.24, + "probability": 0.4938 + }, + { + "start": 14002.48, + "end": 14003.34, + "probability": 0.8925 + }, + { + "start": 14003.7, + "end": 14005.63, + "probability": 0.9684 + }, + { + "start": 14006.28, + "end": 14006.92, + "probability": 0.6086 + }, + { + "start": 14007.2, + "end": 14014.92, + "probability": 0.9866 + }, + { + "start": 14016.02, + "end": 14020.7, + "probability": 0.869 + }, + { + "start": 14021.42, + "end": 14028.86, + "probability": 0.9882 + }, + { + "start": 14028.86, + "end": 14028.86, + "probability": 0.3975 + }, + { + "start": 14028.92, + "end": 14031.38, + "probability": 0.9683 + }, + { + "start": 14031.6, + "end": 14034.68, + "probability": 0.9835 + }, + { + "start": 14035.06, + "end": 14037.02, + "probability": 0.9137 + }, + { + "start": 14037.04, + "end": 14041.26, + "probability": 0.9331 + }, + { + "start": 14042.0, + "end": 14042.56, + "probability": 0.4263 + }, + { + "start": 14043.1, + "end": 14047.48, + "probability": 0.8216 + }, + { + "start": 14047.62, + "end": 14048.68, + "probability": 0.6708 + }, + { + "start": 14052.04, + "end": 14055.44, + "probability": 0.9043 + }, + { + "start": 14070.42, + "end": 14072.42, + "probability": 0.64 + }, + { + "start": 14077.76, + "end": 14079.88, + "probability": 0.8725 + }, + { + "start": 14080.22, + "end": 14082.38, + "probability": 0.74 + }, + { + "start": 14082.62, + "end": 14084.82, + "probability": 0.8403 + }, + { + "start": 14085.36, + "end": 14087.88, + "probability": 0.7705 + }, + { + "start": 14088.26, + "end": 14090.76, + "probability": 0.9959 + }, + { + "start": 14093.76, + "end": 14094.6, + "probability": 0.364 + }, + { + "start": 14095.64, + "end": 14097.68, + "probability": 0.9736 + }, + { + "start": 14100.06, + "end": 14101.76, + "probability": 0.9049 + }, + { + "start": 14103.58, + "end": 14107.64, + "probability": 0.7577 + }, + { + "start": 14108.24, + "end": 14110.36, + "probability": 0.9378 + }, + { + "start": 14111.14, + "end": 14120.26, + "probability": 0.918 + }, + { + "start": 14121.7, + "end": 14125.92, + "probability": 0.794 + }, + { + "start": 14126.82, + "end": 14129.44, + "probability": 0.55 + }, + { + "start": 14132.94, + "end": 14137.04, + "probability": 0.9694 + }, + { + "start": 14137.04, + "end": 14143.26, + "probability": 0.9424 + }, + { + "start": 14144.04, + "end": 14144.66, + "probability": 0.4275 + }, + { + "start": 14144.78, + "end": 14146.04, + "probability": 0.6413 + }, + { + "start": 14146.1, + "end": 14148.22, + "probability": 0.7219 + }, + { + "start": 14148.54, + "end": 14151.7, + "probability": 0.9633 + }, + { + "start": 14152.1, + "end": 14157.14, + "probability": 0.9711 + }, + { + "start": 14157.76, + "end": 14164.52, + "probability": 0.9856 + }, + { + "start": 14164.64, + "end": 14165.96, + "probability": 0.8931 + }, + { + "start": 14166.98, + "end": 14167.96, + "probability": 0.6975 + }, + { + "start": 14169.98, + "end": 14176.76, + "probability": 0.9194 + }, + { + "start": 14177.18, + "end": 14180.36, + "probability": 0.9523 + }, + { + "start": 14180.56, + "end": 14189.88, + "probability": 0.9591 + }, + { + "start": 14190.94, + "end": 14194.0, + "probability": 0.7546 + }, + { + "start": 14194.8, + "end": 14197.46, + "probability": 0.7115 + }, + { + "start": 14198.58, + "end": 14200.53, + "probability": 0.1254 + }, + { + "start": 14201.06, + "end": 14203.78, + "probability": 0.1561 + }, + { + "start": 14204.32, + "end": 14205.04, + "probability": 0.1147 + }, + { + "start": 14205.38, + "end": 14206.52, + "probability": 0.1703 + }, + { + "start": 14206.52, + "end": 14207.88, + "probability": 0.3836 + }, + { + "start": 14208.38, + "end": 14209.78, + "probability": 0.6814 + }, + { + "start": 14212.88, + "end": 14214.26, + "probability": 0.6991 + }, + { + "start": 14215.42, + "end": 14215.42, + "probability": 0.2186 + }, + { + "start": 14215.42, + "end": 14216.04, + "probability": 0.2356 + }, + { + "start": 14216.46, + "end": 14218.94, + "probability": 0.8658 + }, + { + "start": 14219.02, + "end": 14222.18, + "probability": 0.8971 + }, + { + "start": 14222.3, + "end": 14222.74, + "probability": 0.271 + }, + { + "start": 14222.88, + "end": 14229.5, + "probability": 0.9772 + }, + { + "start": 14229.58, + "end": 14235.78, + "probability": 0.9744 + }, + { + "start": 14236.02, + "end": 14237.02, + "probability": 0.7716 + }, + { + "start": 14239.56, + "end": 14240.44, + "probability": 0.29 + }, + { + "start": 14240.44, + "end": 14240.66, + "probability": 0.2956 + }, + { + "start": 14240.78, + "end": 14242.21, + "probability": 0.8572 + }, + { + "start": 14242.7, + "end": 14243.04, + "probability": 0.7329 + }, + { + "start": 14243.76, + "end": 14245.32, + "probability": 0.7948 + }, + { + "start": 14245.5, + "end": 14250.74, + "probability": 0.9981 + }, + { + "start": 14250.74, + "end": 14256.86, + "probability": 0.9556 + }, + { + "start": 14257.26, + "end": 14258.46, + "probability": 0.7429 + }, + { + "start": 14258.5, + "end": 14259.5, + "probability": 0.8542 + }, + { + "start": 14260.16, + "end": 14263.56, + "probability": 0.9927 + }, + { + "start": 14265.66, + "end": 14270.5, + "probability": 0.8673 + }, + { + "start": 14270.5, + "end": 14274.82, + "probability": 0.9925 + }, + { + "start": 14275.18, + "end": 14277.84, + "probability": 0.9096 + }, + { + "start": 14278.16, + "end": 14282.92, + "probability": 0.8853 + }, + { + "start": 14283.38, + "end": 14285.74, + "probability": 0.6553 + }, + { + "start": 14286.08, + "end": 14287.46, + "probability": 0.8516 + }, + { + "start": 14288.18, + "end": 14292.36, + "probability": 0.9678 + }, + { + "start": 14292.78, + "end": 14294.56, + "probability": 0.9936 + }, + { + "start": 14295.56, + "end": 14296.6, + "probability": 0.8951 + }, + { + "start": 14296.72, + "end": 14301.24, + "probability": 0.9232 + }, + { + "start": 14301.82, + "end": 14303.68, + "probability": 0.896 + }, + { + "start": 14303.74, + "end": 14307.14, + "probability": 0.8978 + }, + { + "start": 14307.7, + "end": 14309.52, + "probability": 0.1609 + }, + { + "start": 14309.52, + "end": 14310.08, + "probability": 0.1592 + }, + { + "start": 14310.64, + "end": 14311.46, + "probability": 0.515 + }, + { + "start": 14311.46, + "end": 14313.62, + "probability": 0.7311 + }, + { + "start": 14313.9, + "end": 14319.18, + "probability": 0.9552 + }, + { + "start": 14319.46, + "end": 14321.18, + "probability": 0.8139 + }, + { + "start": 14321.52, + "end": 14324.64, + "probability": 0.9569 + }, + { + "start": 14325.16, + "end": 14326.98, + "probability": 0.6471 + }, + { + "start": 14326.98, + "end": 14329.8, + "probability": 0.7397 + }, + { + "start": 14330.32, + "end": 14336.34, + "probability": 0.9076 + }, + { + "start": 14336.44, + "end": 14337.94, + "probability": 0.7027 + }, + { + "start": 14338.42, + "end": 14339.48, + "probability": 0.4971 + }, + { + "start": 14339.48, + "end": 14340.5, + "probability": 0.5735 + }, + { + "start": 14340.62, + "end": 14342.0, + "probability": 0.5814 + }, + { + "start": 14342.0, + "end": 14342.07, + "probability": 0.4152 + }, + { + "start": 14342.12, + "end": 14342.9, + "probability": 0.6914 + }, + { + "start": 14342.9, + "end": 14343.08, + "probability": 0.6495 + }, + { + "start": 14343.4, + "end": 14343.74, + "probability": 0.8346 + }, + { + "start": 14344.58, + "end": 14347.58, + "probability": 0.9741 + }, + { + "start": 14347.98, + "end": 14348.48, + "probability": 0.3746 + }, + { + "start": 14348.66, + "end": 14351.82, + "probability": 0.9767 + }, + { + "start": 14352.42, + "end": 14357.46, + "probability": 0.9109 + }, + { + "start": 14357.58, + "end": 14364.46, + "probability": 0.9683 + }, + { + "start": 14364.8, + "end": 14367.46, + "probability": 0.798 + }, + { + "start": 14368.52, + "end": 14369.76, + "probability": 0.5458 + }, + { + "start": 14369.92, + "end": 14371.82, + "probability": 0.9321 + }, + { + "start": 14371.86, + "end": 14372.28, + "probability": 0.1331 + }, + { + "start": 14372.3, + "end": 14373.62, + "probability": 0.8307 + }, + { + "start": 14373.64, + "end": 14374.12, + "probability": 0.587 + }, + { + "start": 14374.12, + "end": 14374.46, + "probability": 0.6473 + }, + { + "start": 14374.52, + "end": 14375.18, + "probability": 0.5515 + }, + { + "start": 14377.12, + "end": 14378.58, + "probability": 0.7543 + }, + { + "start": 14379.5, + "end": 14381.46, + "probability": 0.8464 + }, + { + "start": 14382.04, + "end": 14383.0, + "probability": 0.9321 + }, + { + "start": 14383.54, + "end": 14385.22, + "probability": 0.9868 + }, + { + "start": 14385.62, + "end": 14389.14, + "probability": 0.9009 + }, + { + "start": 14389.44, + "end": 14390.73, + "probability": 0.9941 + }, + { + "start": 14391.94, + "end": 14397.72, + "probability": 0.0966 + }, + { + "start": 14408.4, + "end": 14411.98, + "probability": 0.3996 + }, + { + "start": 14412.14, + "end": 14413.62, + "probability": 0.5196 + }, + { + "start": 14413.74, + "end": 14414.76, + "probability": 0.4289 + }, + { + "start": 14414.76, + "end": 14415.46, + "probability": 0.2338 + }, + { + "start": 14415.46, + "end": 14418.52, + "probability": 0.4414 + }, + { + "start": 14418.54, + "end": 14420.4, + "probability": 0.9919 + }, + { + "start": 14420.4, + "end": 14420.68, + "probability": 0.8966 + }, + { + "start": 14420.68, + "end": 14421.84, + "probability": 0.8675 + }, + { + "start": 14422.04, + "end": 14424.88, + "probability": 0.9486 + }, + { + "start": 14426.04, + "end": 14428.42, + "probability": 0.3833 + }, + { + "start": 14428.52, + "end": 14430.12, + "probability": 0.3076 + }, + { + "start": 14430.32, + "end": 14433.64, + "probability": 0.1888 + }, + { + "start": 14434.46, + "end": 14435.32, + "probability": 0.2157 + }, + { + "start": 14435.32, + "end": 14440.4, + "probability": 0.457 + }, + { + "start": 14441.48, + "end": 14445.24, + "probability": 0.4428 + }, + { + "start": 14445.64, + "end": 14446.24, + "probability": 0.2808 + }, + { + "start": 14446.46, + "end": 14448.16, + "probability": 0.5609 + }, + { + "start": 14448.52, + "end": 14450.64, + "probability": 0.9038 + }, + { + "start": 14450.68, + "end": 14452.0, + "probability": 0.7642 + }, + { + "start": 14452.0, + "end": 14453.7, + "probability": 0.9768 + }, + { + "start": 14453.7, + "end": 14457.2, + "probability": 0.6247 + }, + { + "start": 14457.74, + "end": 14463.92, + "probability": 0.9027 + }, + { + "start": 14463.98, + "end": 14464.48, + "probability": 0.4464 + }, + { + "start": 14464.64, + "end": 14464.9, + "probability": 0.3588 + }, + { + "start": 14465.0, + "end": 14467.5, + "probability": 0.6569 + }, + { + "start": 14467.7, + "end": 14472.48, + "probability": 0.706 + }, + { + "start": 14474.3, + "end": 14476.26, + "probability": 0.6214 + }, + { + "start": 14477.18, + "end": 14478.92, + "probability": 0.7538 + }, + { + "start": 14488.02, + "end": 14491.78, + "probability": 0.5794 + }, + { + "start": 14495.24, + "end": 14497.04, + "probability": 0.6279 + }, + { + "start": 14497.18, + "end": 14500.22, + "probability": 0.6498 + }, + { + "start": 14500.92, + "end": 14502.4, + "probability": 0.2885 + }, + { + "start": 14505.08, + "end": 14506.4, + "probability": 0.2712 + }, + { + "start": 14506.76, + "end": 14509.32, + "probability": 0.3611 + }, + { + "start": 14509.46, + "end": 14518.0, + "probability": 0.6485 + }, + { + "start": 14518.06, + "end": 14521.26, + "probability": 0.3226 + }, + { + "start": 14521.35, + "end": 14525.39, + "probability": 0.5054 + }, + { + "start": 14527.46, + "end": 14533.16, + "probability": 0.9976 + }, + { + "start": 14534.52, + "end": 14540.04, + "probability": 0.9801 + }, + { + "start": 14540.04, + "end": 14545.13, + "probability": 0.8092 + }, + { + "start": 14545.84, + "end": 14547.52, + "probability": 0.626 + }, + { + "start": 14547.52, + "end": 14548.72, + "probability": 0.4711 + }, + { + "start": 14548.78, + "end": 14549.06, + "probability": 0.6563 + }, + { + "start": 14549.12, + "end": 14549.9, + "probability": 0.6329 + }, + { + "start": 14550.0, + "end": 14553.24, + "probability": 0.376 + }, + { + "start": 14553.44, + "end": 14554.68, + "probability": 0.4236 + }, + { + "start": 14554.7, + "end": 14554.84, + "probability": 0.0616 + }, + { + "start": 14554.87, + "end": 14554.99, + "probability": 0.1351 + }, + { + "start": 14555.94, + "end": 14558.18, + "probability": 0.7675 + }, + { + "start": 14558.52, + "end": 14560.78, + "probability": 0.6774 + }, + { + "start": 14561.06, + "end": 14561.7, + "probability": 0.6588 + }, + { + "start": 14563.66, + "end": 14566.88, + "probability": 0.1757 + }, + { + "start": 14567.16, + "end": 14570.92, + "probability": 0.6174 + }, + { + "start": 14571.66, + "end": 14580.04, + "probability": 0.9717 + }, + { + "start": 14580.3, + "end": 14581.9, + "probability": 0.7131 + }, + { + "start": 14582.26, + "end": 14583.88, + "probability": 0.6803 + }, + { + "start": 14584.24, + "end": 14586.04, + "probability": 0.7426 + }, + { + "start": 14586.78, + "end": 14590.7, + "probability": 0.9263 + }, + { + "start": 14591.16, + "end": 14593.2, + "probability": 0.2157 + }, + { + "start": 14593.22, + "end": 14594.7, + "probability": 0.2398 + }, + { + "start": 14594.96, + "end": 14596.92, + "probability": 0.5439 + }, + { + "start": 14597.22, + "end": 14607.52, + "probability": 0.8633 + }, + { + "start": 14608.1, + "end": 14612.26, + "probability": 0.9569 + }, + { + "start": 14613.76, + "end": 14617.68, + "probability": 0.0211 + }, + { + "start": 14617.68, + "end": 14620.28, + "probability": 0.4389 + }, + { + "start": 14620.52, + "end": 14623.44, + "probability": 0.5645 + }, + { + "start": 14625.42, + "end": 14626.2, + "probability": 0.1272 + }, + { + "start": 14626.2, + "end": 14627.02, + "probability": 0.4926 + }, + { + "start": 14627.92, + "end": 14635.28, + "probability": 0.9907 + }, + { + "start": 14635.72, + "end": 14637.92, + "probability": 0.8495 + }, + { + "start": 14638.02, + "end": 14639.3, + "probability": 0.7804 + }, + { + "start": 14640.16, + "end": 14645.26, + "probability": 0.9409 + }, + { + "start": 14646.18, + "end": 14653.1, + "probability": 0.9872 + }, + { + "start": 14653.9, + "end": 14660.66, + "probability": 0.9181 + }, + { + "start": 14660.84, + "end": 14662.6, + "probability": 0.6509 + }, + { + "start": 14662.78, + "end": 14665.78, + "probability": 0.895 + }, + { + "start": 14666.18, + "end": 14671.4, + "probability": 0.9849 + }, + { + "start": 14671.4, + "end": 14676.34, + "probability": 0.9741 + }, + { + "start": 14676.8, + "end": 14680.28, + "probability": 0.9927 + }, + { + "start": 14680.8, + "end": 14682.98, + "probability": 0.9121 + }, + { + "start": 14683.3, + "end": 14685.12, + "probability": 0.85 + }, + { + "start": 14685.52, + "end": 14687.02, + "probability": 0.7672 + }, + { + "start": 14687.52, + "end": 14691.48, + "probability": 0.9635 + }, + { + "start": 14691.66, + "end": 14692.58, + "probability": 0.877 + }, + { + "start": 14692.66, + "end": 14694.48, + "probability": 0.9014 + }, + { + "start": 14694.54, + "end": 14697.08, + "probability": 0.7605 + }, + { + "start": 14697.68, + "end": 14699.54, + "probability": 0.7007 + }, + { + "start": 14699.84, + "end": 14701.96, + "probability": 0.9917 + }, + { + "start": 14702.34, + "end": 14706.66, + "probability": 0.7585 + }, + { + "start": 14707.06, + "end": 14711.22, + "probability": 0.7573 + }, + { + "start": 14711.86, + "end": 14714.22, + "probability": 0.8229 + }, + { + "start": 14714.78, + "end": 14716.3, + "probability": 0.8905 + }, + { + "start": 14716.58, + "end": 14719.88, + "probability": 0.8219 + }, + { + "start": 14720.24, + "end": 14723.44, + "probability": 0.9827 + }, + { + "start": 14723.8, + "end": 14727.02, + "probability": 0.8999 + }, + { + "start": 14727.56, + "end": 14728.9, + "probability": 0.8358 + }, + { + "start": 14729.52, + "end": 14731.4, + "probability": 0.9575 + }, + { + "start": 14732.76, + "end": 14734.08, + "probability": 0.9739 + }, + { + "start": 14734.88, + "end": 14735.98, + "probability": 0.717 + }, + { + "start": 14736.58, + "end": 14740.02, + "probability": 0.9807 + }, + { + "start": 14741.34, + "end": 14743.64, + "probability": 0.974 + }, + { + "start": 14744.24, + "end": 14746.62, + "probability": 0.9653 + }, + { + "start": 14747.32, + "end": 14748.32, + "probability": 0.9003 + }, + { + "start": 14748.52, + "end": 14748.62, + "probability": 0.0386 + }, + { + "start": 14748.74, + "end": 14749.6, + "probability": 0.9009 + }, + { + "start": 14750.04, + "end": 14751.7, + "probability": 0.7827 + }, + { + "start": 14752.12, + "end": 14753.7, + "probability": 0.9835 + }, + { + "start": 14754.0, + "end": 14755.56, + "probability": 0.7996 + }, + { + "start": 14755.7, + "end": 14759.84, + "probability": 0.9787 + }, + { + "start": 14760.06, + "end": 14762.68, + "probability": 0.8983 + }, + { + "start": 14762.68, + "end": 14765.28, + "probability": 0.8293 + }, + { + "start": 14765.34, + "end": 14767.12, + "probability": 0.5848 + }, + { + "start": 14767.54, + "end": 14768.76, + "probability": 0.8774 + }, + { + "start": 14769.6, + "end": 14774.5, + "probability": 0.963 + }, + { + "start": 14774.88, + "end": 14777.38, + "probability": 0.7383 + }, + { + "start": 14777.88, + "end": 14780.08, + "probability": 0.9842 + }, + { + "start": 14780.62, + "end": 14783.24, + "probability": 0.9406 + }, + { + "start": 14783.24, + "end": 14784.06, + "probability": 0.2604 + }, + { + "start": 14784.14, + "end": 14784.76, + "probability": 0.8151 + }, + { + "start": 14785.0, + "end": 14786.04, + "probability": 0.8775 + }, + { + "start": 14787.41, + "end": 14790.12, + "probability": 0.5455 + }, + { + "start": 14790.4, + "end": 14792.32, + "probability": 0.8032 + }, + { + "start": 14793.0, + "end": 14794.98, + "probability": 0.8917 + }, + { + "start": 14795.75, + "end": 14799.83, + "probability": 0.7852 + }, + { + "start": 14800.44, + "end": 14801.82, + "probability": 0.949 + }, + { + "start": 14802.42, + "end": 14803.8, + "probability": 0.9399 + }, + { + "start": 14804.26, + "end": 14805.3, + "probability": 0.9207 + }, + { + "start": 14805.7, + "end": 14810.46, + "probability": 0.9744 + }, + { + "start": 14811.22, + "end": 14813.7, + "probability": 0.7465 + }, + { + "start": 14814.14, + "end": 14815.66, + "probability": 0.7671 + }, + { + "start": 14816.14, + "end": 14817.46, + "probability": 0.9456 + }, + { + "start": 14817.84, + "end": 14819.06, + "probability": 0.7672 + }, + { + "start": 14819.22, + "end": 14822.3, + "probability": 0.5878 + }, + { + "start": 14822.78, + "end": 14824.34, + "probability": 0.6243 + }, + { + "start": 14824.68, + "end": 14826.04, + "probability": 0.8713 + }, + { + "start": 14826.3, + "end": 14827.94, + "probability": 0.7192 + }, + { + "start": 14828.72, + "end": 14832.06, + "probability": 0.6431 + }, + { + "start": 14832.3, + "end": 14833.7, + "probability": 0.9153 + }, + { + "start": 14834.02, + "end": 14836.78, + "probability": 0.7865 + }, + { + "start": 14836.88, + "end": 14837.75, + "probability": 0.9099 + }, + { + "start": 14838.22, + "end": 14841.52, + "probability": 0.6223 + }, + { + "start": 14842.26, + "end": 14843.52, + "probability": 0.7611 + }, + { + "start": 14844.12, + "end": 14848.78, + "probability": 0.7145 + }, + { + "start": 14849.34, + "end": 14852.42, + "probability": 0.9777 + }, + { + "start": 14852.42, + "end": 14855.74, + "probability": 0.8861 + }, + { + "start": 14856.04, + "end": 14857.21, + "probability": 0.5593 + }, + { + "start": 14857.76, + "end": 14860.65, + "probability": 0.9531 + }, + { + "start": 14861.18, + "end": 14865.2, + "probability": 0.9798 + }, + { + "start": 14865.96, + "end": 14868.61, + "probability": 0.9668 + }, + { + "start": 14869.64, + "end": 14870.79, + "probability": 0.1805 + }, + { + "start": 14871.4, + "end": 14873.7, + "probability": 0.3404 + }, + { + "start": 14874.06, + "end": 14874.74, + "probability": 0.0475 + }, + { + "start": 14874.74, + "end": 14874.74, + "probability": 0.4159 + }, + { + "start": 14874.74, + "end": 14875.36, + "probability": 0.1974 + }, + { + "start": 14875.84, + "end": 14878.34, + "probability": 0.325 + }, + { + "start": 14878.8, + "end": 14885.04, + "probability": 0.6284 + }, + { + "start": 14885.16, + "end": 14888.24, + "probability": 0.8762 + }, + { + "start": 14888.8, + "end": 14891.4, + "probability": 0.9482 + }, + { + "start": 14892.72, + "end": 14894.2, + "probability": 0.9865 + }, + { + "start": 14896.7, + "end": 14899.14, + "probability": 0.9954 + }, + { + "start": 14899.78, + "end": 14903.6, + "probability": 0.9458 + }, + { + "start": 14904.46, + "end": 14905.86, + "probability": 0.8243 + }, + { + "start": 14905.96, + "end": 14908.06, + "probability": 0.9222 + }, + { + "start": 14908.56, + "end": 14911.12, + "probability": 0.7146 + }, + { + "start": 14911.56, + "end": 14912.18, + "probability": 0.7757 + }, + { + "start": 14912.26, + "end": 14912.91, + "probability": 0.7178 + }, + { + "start": 14913.32, + "end": 14916.2, + "probability": 0.9658 + }, + { + "start": 14917.56, + "end": 14923.24, + "probability": 0.9598 + }, + { + "start": 14923.72, + "end": 14929.64, + "probability": 0.9535 + }, + { + "start": 14930.1, + "end": 14930.96, + "probability": 0.8026 + }, + { + "start": 14931.18, + "end": 14932.72, + "probability": 0.6674 + }, + { + "start": 14933.78, + "end": 14938.34, + "probability": 0.9909 + }, + { + "start": 14938.84, + "end": 14942.06, + "probability": 0.9914 + }, + { + "start": 14942.28, + "end": 14946.14, + "probability": 0.8884 + }, + { + "start": 14946.22, + "end": 14948.14, + "probability": 0.4278 + }, + { + "start": 14948.46, + "end": 14954.3, + "probability": 0.6925 + }, + { + "start": 14955.72, + "end": 14957.78, + "probability": 0.8543 + }, + { + "start": 14958.08, + "end": 14961.7, + "probability": 0.712 + }, + { + "start": 14961.98, + "end": 14964.76, + "probability": 0.8111 + }, + { + "start": 14964.88, + "end": 14966.2, + "probability": 0.9466 + }, + { + "start": 14966.26, + "end": 14971.42, + "probability": 0.7657 + }, + { + "start": 14971.5, + "end": 14972.48, + "probability": 0.8569 + }, + { + "start": 14972.72, + "end": 14973.08, + "probability": 0.4704 + }, + { + "start": 14973.1, + "end": 14973.46, + "probability": 0.7741 + }, + { + "start": 14973.58, + "end": 14975.44, + "probability": 0.8945 + }, + { + "start": 14975.9, + "end": 14979.82, + "probability": 0.8577 + }, + { + "start": 14979.94, + "end": 14983.42, + "probability": 0.7795 + }, + { + "start": 14984.1, + "end": 14985.62, + "probability": 0.8068 + }, + { + "start": 14985.72, + "end": 14990.6, + "probability": 0.9881 + }, + { + "start": 14990.74, + "end": 14993.56, + "probability": 0.9934 + }, + { + "start": 14993.78, + "end": 14996.86, + "probability": 0.9781 + }, + { + "start": 14997.4, + "end": 15000.38, + "probability": 0.7284 + }, + { + "start": 15000.9, + "end": 15003.32, + "probability": 0.901 + }, + { + "start": 15004.6, + "end": 15006.0, + "probability": 0.6579 + }, + { + "start": 15006.72, + "end": 15007.46, + "probability": 0.7379 + }, + { + "start": 15007.82, + "end": 15012.04, + "probability": 0.7681 + }, + { + "start": 15012.34, + "end": 15015.06, + "probability": 0.9263 + }, + { + "start": 15017.31, + "end": 15019.54, + "probability": 0.1968 + }, + { + "start": 15019.92, + "end": 15020.18, + "probability": 0.3789 + }, + { + "start": 15020.3, + "end": 15021.02, + "probability": 0.7454 + }, + { + "start": 15021.08, + "end": 15022.62, + "probability": 0.9653 + }, + { + "start": 15022.7, + "end": 15024.14, + "probability": 0.7749 + }, + { + "start": 15024.46, + "end": 15026.6, + "probability": 0.9258 + }, + { + "start": 15026.74, + "end": 15028.06, + "probability": 0.3415 + }, + { + "start": 15028.14, + "end": 15028.68, + "probability": 0.5987 + }, + { + "start": 15028.8, + "end": 15030.6, + "probability": 0.6342 + }, + { + "start": 15030.6, + "end": 15033.7, + "probability": 0.4619 + }, + { + "start": 15034.64, + "end": 15035.9, + "probability": 0.6379 + }, + { + "start": 15036.04, + "end": 15037.6, + "probability": 0.8026 + }, + { + "start": 15037.7, + "end": 15039.03, + "probability": 0.9048 + }, + { + "start": 15039.58, + "end": 15040.8, + "probability": 0.1688 + }, + { + "start": 15041.0, + "end": 15043.32, + "probability": 0.6254 + }, + { + "start": 15043.56, + "end": 15046.1, + "probability": 0.6756 + }, + { + "start": 15046.34, + "end": 15046.36, + "probability": 0.0463 + }, + { + "start": 15046.36, + "end": 15047.24, + "probability": 0.2147 + }, + { + "start": 15047.68, + "end": 15047.68, + "probability": 0.2289 + }, + { + "start": 15047.68, + "end": 15047.72, + "probability": 0.2397 + }, + { + "start": 15047.72, + "end": 15049.98, + "probability": 0.6662 + }, + { + "start": 15050.72, + "end": 15050.72, + "probability": 0.2997 + }, + { + "start": 15050.72, + "end": 15052.02, + "probability": 0.5646 + }, + { + "start": 15052.16, + "end": 15054.49, + "probability": 0.5649 + }, + { + "start": 15054.7, + "end": 15056.34, + "probability": 0.716 + }, + { + "start": 15056.46, + "end": 15058.46, + "probability": 0.7302 + }, + { + "start": 15058.54, + "end": 15060.02, + "probability": 0.4943 + }, + { + "start": 15062.32, + "end": 15062.52, + "probability": 0.5047 + }, + { + "start": 15062.96, + "end": 15064.32, + "probability": 0.5357 + }, + { + "start": 15064.44, + "end": 15066.86, + "probability": 0.8567 + }, + { + "start": 15067.46, + "end": 15072.23, + "probability": 0.9443 + }, + { + "start": 15072.3, + "end": 15073.54, + "probability": 0.6353 + }, + { + "start": 15074.32, + "end": 15075.34, + "probability": 0.0008 + }, + { + "start": 15078.28, + "end": 15078.74, + "probability": 0.0075 + }, + { + "start": 15078.74, + "end": 15078.74, + "probability": 0.2328 + }, + { + "start": 15078.74, + "end": 15078.76, + "probability": 0.0135 + }, + { + "start": 15078.76, + "end": 15079.32, + "probability": 0.5916 + }, + { + "start": 15079.42, + "end": 15079.42, + "probability": 0.5828 + }, + { + "start": 15079.42, + "end": 15079.68, + "probability": 0.3722 + }, + { + "start": 15079.78, + "end": 15081.78, + "probability": 0.8881 + }, + { + "start": 15082.04, + "end": 15082.24, + "probability": 0.7892 + }, + { + "start": 15082.38, + "end": 15085.16, + "probability": 0.9277 + }, + { + "start": 15085.48, + "end": 15086.72, + "probability": 0.9231 + }, + { + "start": 15087.3, + "end": 15089.24, + "probability": 0.8781 + }, + { + "start": 15090.18, + "end": 15093.54, + "probability": 0.4912 + }, + { + "start": 15093.64, + "end": 15094.08, + "probability": 0.5019 + }, + { + "start": 15094.3, + "end": 15097.18, + "probability": 0.7225 + }, + { + "start": 15097.34, + "end": 15099.4, + "probability": 0.8702 + }, + { + "start": 15099.48, + "end": 15101.42, + "probability": 0.6738 + }, + { + "start": 15101.98, + "end": 15103.34, + "probability": 0.8376 + }, + { + "start": 15103.88, + "end": 15111.46, + "probability": 0.9089 + }, + { + "start": 15111.48, + "end": 15113.88, + "probability": 0.5466 + }, + { + "start": 15114.02, + "end": 15116.76, + "probability": 0.9871 + }, + { + "start": 15117.42, + "end": 15119.5, + "probability": 0.9736 + }, + { + "start": 15119.56, + "end": 15125.46, + "probability": 0.9875 + }, + { + "start": 15125.5, + "end": 15126.8, + "probability": 0.6438 + }, + { + "start": 15126.82, + "end": 15127.4, + "probability": 0.8554 + }, + { + "start": 15127.76, + "end": 15128.8, + "probability": 0.9374 + }, + { + "start": 15129.08, + "end": 15130.9, + "probability": 0.946 + }, + { + "start": 15131.0, + "end": 15132.42, + "probability": 0.7668 + }, + { + "start": 15132.68, + "end": 15133.5, + "probability": 0.5452 + }, + { + "start": 15133.66, + "end": 15137.7, + "probability": 0.9745 + }, + { + "start": 15137.98, + "end": 15139.17, + "probability": 0.8855 + }, + { + "start": 15139.46, + "end": 15140.88, + "probability": 0.9478 + }, + { + "start": 15140.96, + "end": 15142.72, + "probability": 0.8202 + }, + { + "start": 15142.8, + "end": 15144.79, + "probability": 0.8799 + }, + { + "start": 15145.06, + "end": 15145.92, + "probability": 0.5819 + }, + { + "start": 15145.92, + "end": 15152.82, + "probability": 0.9002 + }, + { + "start": 15152.84, + "end": 15153.28, + "probability": 0.8665 + }, + { + "start": 15153.38, + "end": 15155.48, + "probability": 0.7559 + }, + { + "start": 15155.52, + "end": 15156.66, + "probability": 0.8098 + }, + { + "start": 15156.8, + "end": 15159.86, + "probability": 0.946 + }, + { + "start": 15162.66, + "end": 15163.74, + "probability": 0.7096 + }, + { + "start": 15163.98, + "end": 15165.2, + "probability": 0.7333 + }, + { + "start": 15165.22, + "end": 15166.76, + "probability": 0.6848 + }, + { + "start": 15166.96, + "end": 15167.64, + "probability": 0.9688 + }, + { + "start": 15167.88, + "end": 15172.68, + "probability": 0.6756 + }, + { + "start": 15173.28, + "end": 15176.66, + "probability": 0.9786 + }, + { + "start": 15177.12, + "end": 15179.32, + "probability": 0.8548 + }, + { + "start": 15179.5, + "end": 15180.14, + "probability": 0.5256 + }, + { + "start": 15180.56, + "end": 15184.18, + "probability": 0.9243 + }, + { + "start": 15185.3, + "end": 15186.96, + "probability": 0.7368 + }, + { + "start": 15186.96, + "end": 15188.02, + "probability": 0.512 + }, + { + "start": 15188.02, + "end": 15189.02, + "probability": 0.7249 + }, + { + "start": 15189.02, + "end": 15190.22, + "probability": 0.5083 + }, + { + "start": 15190.98, + "end": 15193.0, + "probability": 0.1011 + }, + { + "start": 15196.94, + "end": 15198.64, + "probability": 0.0222 + }, + { + "start": 15198.94, + "end": 15199.9, + "probability": 0.2119 + }, + { + "start": 15199.9, + "end": 15201.64, + "probability": 0.8102 + }, + { + "start": 15201.74, + "end": 15203.46, + "probability": 0.5149 + }, + { + "start": 15203.68, + "end": 15204.68, + "probability": 0.6531 + }, + { + "start": 15204.84, + "end": 15207.08, + "probability": 0.7839 + }, + { + "start": 15208.34, + "end": 15212.53, + "probability": 0.6651 + }, + { + "start": 15220.12, + "end": 15222.98, + "probability": 0.6186 + }, + { + "start": 15223.86, + "end": 15223.86, + "probability": 0.2062 + }, + { + "start": 15223.86, + "end": 15223.86, + "probability": 0.4699 + }, + { + "start": 15223.86, + "end": 15225.82, + "probability": 0.7358 + }, + { + "start": 15226.4, + "end": 15227.0, + "probability": 0.6223 + }, + { + "start": 15227.02, + "end": 15228.08, + "probability": 0.556 + }, + { + "start": 15228.8, + "end": 15230.24, + "probability": 0.8857 + }, + { + "start": 15230.98, + "end": 15234.6, + "probability": 0.6157 + }, + { + "start": 15234.7, + "end": 15237.74, + "probability": 0.9904 + }, + { + "start": 15237.9, + "end": 15239.3, + "probability": 0.9136 + }, + { + "start": 15239.68, + "end": 15242.5, + "probability": 0.7654 + }, + { + "start": 15242.65, + "end": 15246.96, + "probability": 0.9038 + }, + { + "start": 15247.16, + "end": 15248.34, + "probability": 0.8874 + }, + { + "start": 15248.38, + "end": 15249.66, + "probability": 0.5816 + }, + { + "start": 15249.88, + "end": 15251.56, + "probability": 0.6088 + }, + { + "start": 15251.58, + "end": 15255.4, + "probability": 0.6733 + }, + { + "start": 15255.64, + "end": 15257.02, + "probability": 0.7354 + }, + { + "start": 15257.02, + "end": 15257.98, + "probability": 0.8106 + }, + { + "start": 15258.08, + "end": 15260.57, + "probability": 0.9696 + }, + { + "start": 15260.94, + "end": 15261.24, + "probability": 0.9167 + }, + { + "start": 15261.24, + "end": 15263.42, + "probability": 0.7157 + }, + { + "start": 15263.5, + "end": 15266.48, + "probability": 0.9395 + }, + { + "start": 15266.64, + "end": 15267.06, + "probability": 0.5725 + }, + { + "start": 15267.64, + "end": 15268.64, + "probability": 0.7304 + }, + { + "start": 15273.48, + "end": 15276.68, + "probability": 0.6528 + }, + { + "start": 15277.81, + "end": 15284.08, + "probability": 0.1388 + }, + { + "start": 15284.08, + "end": 15288.68, + "probability": 0.533 + }, + { + "start": 15288.72, + "end": 15292.52, + "probability": 0.7069 + }, + { + "start": 15293.37, + "end": 15297.58, + "probability": 0.5438 + }, + { + "start": 15297.96, + "end": 15299.08, + "probability": 0.9609 + }, + { + "start": 15300.12, + "end": 15300.12, + "probability": 0.0531 + }, + { + "start": 15300.12, + "end": 15304.62, + "probability": 0.9106 + }, + { + "start": 15304.62, + "end": 15312.46, + "probability": 0.9287 + }, + { + "start": 15312.82, + "end": 15313.08, + "probability": 0.6043 + }, + { + "start": 15313.24, + "end": 15317.1, + "probability": 0.9456 + }, + { + "start": 15317.14, + "end": 15319.29, + "probability": 0.6532 + }, + { + "start": 15320.8, + "end": 15322.69, + "probability": 0.9048 + }, + { + "start": 15332.16, + "end": 15332.94, + "probability": 0.5371 + }, + { + "start": 15333.24, + "end": 15334.62, + "probability": 0.6715 + }, + { + "start": 15334.86, + "end": 15340.74, + "probability": 0.9883 + }, + { + "start": 15340.74, + "end": 15345.8, + "probability": 0.9985 + }, + { + "start": 15346.94, + "end": 15347.04, + "probability": 0.4288 + }, + { + "start": 15347.18, + "end": 15353.02, + "probability": 0.9966 + }, + { + "start": 15353.16, + "end": 15357.62, + "probability": 0.9863 + }, + { + "start": 15358.18, + "end": 15361.68, + "probability": 0.9968 + }, + { + "start": 15361.68, + "end": 15368.1, + "probability": 0.994 + }, + { + "start": 15368.96, + "end": 15372.56, + "probability": 0.9949 + }, + { + "start": 15372.56, + "end": 15376.78, + "probability": 0.9961 + }, + { + "start": 15377.68, + "end": 15380.04, + "probability": 0.7385 + }, + { + "start": 15380.72, + "end": 15384.52, + "probability": 0.9979 + }, + { + "start": 15385.66, + "end": 15388.08, + "probability": 0.9697 + }, + { + "start": 15388.8, + "end": 15392.88, + "probability": 0.9941 + }, + { + "start": 15393.64, + "end": 15395.78, + "probability": 0.8381 + }, + { + "start": 15396.38, + "end": 15399.32, + "probability": 0.9249 + }, + { + "start": 15399.84, + "end": 15403.32, + "probability": 0.9535 + }, + { + "start": 15403.42, + "end": 15405.02, + "probability": 0.9893 + }, + { + "start": 15405.64, + "end": 15406.42, + "probability": 0.6363 + }, + { + "start": 15407.2, + "end": 15410.12, + "probability": 0.9969 + }, + { + "start": 15410.96, + "end": 15414.0, + "probability": 0.9806 + }, + { + "start": 15414.56, + "end": 15416.06, + "probability": 0.9516 + }, + { + "start": 15416.72, + "end": 15420.34, + "probability": 0.9946 + }, + { + "start": 15420.5, + "end": 15422.82, + "probability": 0.8202 + }, + { + "start": 15423.5, + "end": 15428.46, + "probability": 0.9782 + }, + { + "start": 15428.46, + "end": 15433.88, + "probability": 0.9987 + }, + { + "start": 15433.88, + "end": 15439.08, + "probability": 0.9968 + }, + { + "start": 15439.14, + "end": 15442.48, + "probability": 0.8525 + }, + { + "start": 15443.14, + "end": 15446.22, + "probability": 0.9624 + }, + { + "start": 15446.66, + "end": 15449.84, + "probability": 0.8506 + }, + { + "start": 15450.44, + "end": 15455.74, + "probability": 0.985 + }, + { + "start": 15455.84, + "end": 15459.98, + "probability": 0.8213 + }, + { + "start": 15460.76, + "end": 15464.56, + "probability": 0.9621 + }, + { + "start": 15464.56, + "end": 15467.9, + "probability": 0.9941 + }, + { + "start": 15468.6, + "end": 15472.02, + "probability": 0.9889 + }, + { + "start": 15472.5, + "end": 15473.46, + "probability": 0.6145 + }, + { + "start": 15473.86, + "end": 15475.66, + "probability": 0.9159 + }, + { + "start": 15476.0, + "end": 15479.56, + "probability": 0.8943 + }, + { + "start": 15479.56, + "end": 15484.32, + "probability": 0.9773 + }, + { + "start": 15485.12, + "end": 15487.9, + "probability": 0.9979 + }, + { + "start": 15488.4, + "end": 15490.5, + "probability": 0.9974 + }, + { + "start": 15490.6, + "end": 15493.02, + "probability": 0.9972 + }, + { + "start": 15493.12, + "end": 15495.12, + "probability": 0.9225 + }, + { + "start": 15495.54, + "end": 15502.22, + "probability": 0.9924 + }, + { + "start": 15502.48, + "end": 15504.18, + "probability": 0.2727 + }, + { + "start": 15504.5, + "end": 15504.5, + "probability": 0.0322 + }, + { + "start": 15504.5, + "end": 15505.5, + "probability": 0.5448 + }, + { + "start": 15505.7, + "end": 15507.54, + "probability": 0.6917 + }, + { + "start": 15508.12, + "end": 15512.94, + "probability": 0.749 + }, + { + "start": 15513.9, + "end": 15516.7, + "probability": 0.938 + }, + { + "start": 15517.2, + "end": 15522.58, + "probability": 0.9897 + }, + { + "start": 15523.1, + "end": 15526.62, + "probability": 0.9871 + }, + { + "start": 15526.62, + "end": 15529.94, + "probability": 0.991 + }, + { + "start": 15530.26, + "end": 15531.47, + "probability": 0.5336 + }, + { + "start": 15531.92, + "end": 15532.56, + "probability": 0.8733 + }, + { + "start": 15533.2, + "end": 15534.98, + "probability": 0.8667 + }, + { + "start": 15535.2, + "end": 15536.54, + "probability": 0.9479 + }, + { + "start": 15537.44, + "end": 15541.42, + "probability": 0.9678 + }, + { + "start": 15541.42, + "end": 15545.62, + "probability": 0.759 + }, + { + "start": 15545.96, + "end": 15550.14, + "probability": 0.9938 + }, + { + "start": 15550.5, + "end": 15552.44, + "probability": 0.908 + }, + { + "start": 15552.6, + "end": 15555.02, + "probability": 0.9611 + }, + { + "start": 15555.32, + "end": 15560.5, + "probability": 0.9833 + }, + { + "start": 15560.5, + "end": 15564.6, + "probability": 0.6918 + }, + { + "start": 15564.72, + "end": 15568.6, + "probability": 0.9609 + }, + { + "start": 15568.68, + "end": 15569.36, + "probability": 0.7407 + }, + { + "start": 15569.48, + "end": 15570.7, + "probability": 0.8864 + }, + { + "start": 15571.04, + "end": 15571.94, + "probability": 0.9684 + }, + { + "start": 15572.08, + "end": 15572.46, + "probability": 0.5921 + }, + { + "start": 15572.9, + "end": 15575.38, + "probability": 0.7905 + }, + { + "start": 15575.88, + "end": 15577.26, + "probability": 0.813 + }, + { + "start": 15577.32, + "end": 15578.89, + "probability": 0.44 + }, + { + "start": 15580.54, + "end": 15585.64, + "probability": 0.9717 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.0745 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.4012 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.3849 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.4556 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.4044 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.5173 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.4444 + }, + { + "start": 15586.32, + "end": 15586.32, + "probability": 0.143 + }, + { + "start": 15586.32, + "end": 15586.98, + "probability": 0.5071 + }, + { + "start": 15586.98, + "end": 15588.56, + "probability": 0.6695 + }, + { + "start": 15588.56, + "end": 15589.34, + "probability": 0.6639 + }, + { + "start": 15589.34, + "end": 15591.6, + "probability": 0.543 + }, + { + "start": 15592.5, + "end": 15596.84, + "probability": 0.98 + }, + { + "start": 15605.28, + "end": 15608.52, + "probability": 0.5674 + }, + { + "start": 15616.34, + "end": 15618.42, + "probability": 0.6739 + }, + { + "start": 15620.02, + "end": 15626.84, + "probability": 0.9612 + }, + { + "start": 15627.98, + "end": 15632.74, + "probability": 0.9959 + }, + { + "start": 15636.36, + "end": 15639.2, + "probability": 0.5616 + }, + { + "start": 15639.38, + "end": 15640.86, + "probability": 0.7528 + }, + { + "start": 15641.16, + "end": 15642.4, + "probability": 0.8973 + }, + { + "start": 15642.62, + "end": 15643.8, + "probability": 0.8843 + }, + { + "start": 15644.42, + "end": 15648.36, + "probability": 0.7674 + }, + { + "start": 15649.1, + "end": 15652.52, + "probability": 0.9971 + }, + { + "start": 15652.83, + "end": 15656.44, + "probability": 0.4009 + }, + { + "start": 15656.44, + "end": 15657.47, + "probability": 0.7668 + }, + { + "start": 15658.88, + "end": 15669.08, + "probability": 0.8772 + }, + { + "start": 15669.32, + "end": 15670.9, + "probability": 0.4049 + }, + { + "start": 15672.44, + "end": 15675.5, + "probability": 0.9894 + }, + { + "start": 15676.74, + "end": 15679.26, + "probability": 0.9591 + }, + { + "start": 15679.46, + "end": 15681.02, + "probability": 0.8628 + }, + { + "start": 15681.14, + "end": 15681.84, + "probability": 0.8022 + }, + { + "start": 15682.04, + "end": 15685.76, + "probability": 0.9697 + }, + { + "start": 15686.64, + "end": 15688.08, + "probability": 0.9668 + }, + { + "start": 15688.26, + "end": 15689.06, + "probability": 0.8088 + }, + { + "start": 15689.36, + "end": 15690.84, + "probability": 0.9851 + }, + { + "start": 15691.04, + "end": 15691.96, + "probability": 0.98 + }, + { + "start": 15692.0, + "end": 15692.82, + "probability": 0.8314 + }, + { + "start": 15694.24, + "end": 15695.28, + "probability": 0.7048 + }, + { + "start": 15696.22, + "end": 15699.54, + "probability": 0.9521 + }, + { + "start": 15700.16, + "end": 15700.86, + "probability": 0.7547 + }, + { + "start": 15701.0, + "end": 15702.24, + "probability": 0.7542 + }, + { + "start": 15702.26, + "end": 15703.46, + "probability": 0.8013 + }, + { + "start": 15703.84, + "end": 15706.1, + "probability": 0.9888 + }, + { + "start": 15706.46, + "end": 15709.1, + "probability": 0.6165 + }, + { + "start": 15709.12, + "end": 15712.92, + "probability": 0.8706 + }, + { + "start": 15713.64, + "end": 15717.92, + "probability": 0.9278 + }, + { + "start": 15719.12, + "end": 15727.2, + "probability": 0.6214 + }, + { + "start": 15727.32, + "end": 15728.54, + "probability": 0.844 + }, + { + "start": 15729.34, + "end": 15732.14, + "probability": 0.3221 + }, + { + "start": 15732.28, + "end": 15738.12, + "probability": 0.974 + }, + { + "start": 15738.28, + "end": 15739.5, + "probability": 0.9188 + }, + { + "start": 15740.36, + "end": 15746.32, + "probability": 0.8295 + }, + { + "start": 15746.38, + "end": 15747.56, + "probability": 0.8791 + }, + { + "start": 15747.98, + "end": 15755.58, + "probability": 0.9981 + }, + { + "start": 15756.4, + "end": 15758.54, + "probability": 0.7079 + }, + { + "start": 15758.78, + "end": 15759.6, + "probability": 0.628 + }, + { + "start": 15759.74, + "end": 15760.3, + "probability": 0.3839 + }, + { + "start": 15760.42, + "end": 15763.64, + "probability": 0.9146 + }, + { + "start": 15764.58, + "end": 15765.81, + "probability": 0.9521 + }, + { + "start": 15766.52, + "end": 15768.26, + "probability": 0.9293 + }, + { + "start": 15769.08, + "end": 15773.36, + "probability": 0.9906 + }, + { + "start": 15773.9, + "end": 15775.7, + "probability": 0.8843 + }, + { + "start": 15776.42, + "end": 15780.34, + "probability": 0.9225 + }, + { + "start": 15781.24, + "end": 15782.98, + "probability": 0.748 + }, + { + "start": 15784.46, + "end": 15785.79, + "probability": 0.8691 + }, + { + "start": 15786.7, + "end": 15788.7, + "probability": 0.9705 + }, + { + "start": 15788.94, + "end": 15794.56, + "probability": 0.9557 + }, + { + "start": 15795.04, + "end": 15796.04, + "probability": 0.7438 + }, + { + "start": 15796.4, + "end": 15797.3, + "probability": 0.857 + }, + { + "start": 15798.08, + "end": 15799.68, + "probability": 0.9464 + }, + { + "start": 15800.06, + "end": 15801.36, + "probability": 0.9881 + }, + { + "start": 15801.52, + "end": 15802.2, + "probability": 0.9207 + }, + { + "start": 15802.32, + "end": 15803.26, + "probability": 0.8844 + }, + { + "start": 15803.46, + "end": 15804.06, + "probability": 0.9663 + }, + { + "start": 15804.26, + "end": 15804.86, + "probability": 0.3819 + }, + { + "start": 15805.52, + "end": 15806.56, + "probability": 0.6668 + }, + { + "start": 15806.66, + "end": 15807.88, + "probability": 0.902 + }, + { + "start": 15808.18, + "end": 15810.96, + "probability": 0.9893 + }, + { + "start": 15813.12, + "end": 15814.88, + "probability": 0.8997 + }, + { + "start": 15816.12, + "end": 15818.74, + "probability": 0.9567 + }, + { + "start": 15821.3, + "end": 15827.14, + "probability": 0.9966 + }, + { + "start": 15827.92, + "end": 15828.56, + "probability": 0.7391 + }, + { + "start": 15828.94, + "end": 15829.62, + "probability": 0.7215 + }, + { + "start": 15829.76, + "end": 15831.54, + "probability": 0.8508 + }, + { + "start": 15831.94, + "end": 15832.8, + "probability": 0.6322 + }, + { + "start": 15832.84, + "end": 15836.5, + "probability": 0.9714 + }, + { + "start": 15837.44, + "end": 15844.08, + "probability": 0.9803 + }, + { + "start": 15844.08, + "end": 15848.22, + "probability": 0.9984 + }, + { + "start": 15848.7, + "end": 15851.06, + "probability": 0.9857 + }, + { + "start": 15851.86, + "end": 15852.91, + "probability": 0.8833 + }, + { + "start": 15854.24, + "end": 15859.86, + "probability": 0.9635 + }, + { + "start": 15859.94, + "end": 15860.64, + "probability": 0.5313 + }, + { + "start": 15860.68, + "end": 15860.84, + "probability": 0.9526 + }, + { + "start": 15861.38, + "end": 15862.36, + "probability": 0.5436 + }, + { + "start": 15862.7, + "end": 15869.1, + "probability": 0.9563 + }, + { + "start": 15869.5, + "end": 15870.5, + "probability": 0.7618 + }, + { + "start": 15870.92, + "end": 15871.98, + "probability": 0.742 + }, + { + "start": 15872.5, + "end": 15875.74, + "probability": 0.6839 + }, + { + "start": 15876.34, + "end": 15879.68, + "probability": 0.9778 + }, + { + "start": 15879.74, + "end": 15880.53, + "probability": 0.9027 + }, + { + "start": 15881.4, + "end": 15883.22, + "probability": 0.7633 + }, + { + "start": 15883.26, + "end": 15885.54, + "probability": 0.8709 + }, + { + "start": 15885.88, + "end": 15886.62, + "probability": 0.5296 + }, + { + "start": 15886.64, + "end": 15888.36, + "probability": 0.8595 + }, + { + "start": 15905.24, + "end": 15907.38, + "probability": 0.6092 + }, + { + "start": 15912.14, + "end": 15913.48, + "probability": 0.6537 + }, + { + "start": 15915.76, + "end": 15917.42, + "probability": 0.8575 + }, + { + "start": 15917.68, + "end": 15920.38, + "probability": 0.5715 + }, + { + "start": 15920.46, + "end": 15924.14, + "probability": 0.9849 + }, + { + "start": 15924.78, + "end": 15929.38, + "probability": 0.9831 + }, + { + "start": 15929.96, + "end": 15932.86, + "probability": 0.9543 + }, + { + "start": 15934.08, + "end": 15935.76, + "probability": 0.6509 + }, + { + "start": 15937.26, + "end": 15937.8, + "probability": 0.5349 + }, + { + "start": 15937.84, + "end": 15939.02, + "probability": 0.8247 + }, + { + "start": 15939.12, + "end": 15942.46, + "probability": 0.6926 + }, + { + "start": 15943.7, + "end": 15945.93, + "probability": 0.8823 + }, + { + "start": 15946.06, + "end": 15948.0, + "probability": 0.5136 + }, + { + "start": 15948.06, + "end": 15951.9, + "probability": 0.6769 + }, + { + "start": 15951.96, + "end": 15953.18, + "probability": 0.9482 + }, + { + "start": 15953.48, + "end": 15960.22, + "probability": 0.9907 + }, + { + "start": 15960.84, + "end": 15961.94, + "probability": 0.8701 + }, + { + "start": 15962.2, + "end": 15965.42, + "probability": 0.9822 + }, + { + "start": 15965.7, + "end": 15969.7, + "probability": 0.9771 + }, + { + "start": 15969.96, + "end": 15972.28, + "probability": 0.9888 + }, + { + "start": 15972.62, + "end": 15974.48, + "probability": 0.9557 + }, + { + "start": 15975.5, + "end": 15978.74, + "probability": 0.9927 + }, + { + "start": 15979.24, + "end": 15983.38, + "probability": 0.9894 + }, + { + "start": 15984.2, + "end": 15987.78, + "probability": 0.9683 + }, + { + "start": 15988.46, + "end": 15989.4, + "probability": 0.9497 + }, + { + "start": 15989.86, + "end": 15990.94, + "probability": 0.5587 + }, + { + "start": 15991.14, + "end": 15992.46, + "probability": 0.2455 + }, + { + "start": 15992.62, + "end": 15994.22, + "probability": 0.9873 + }, + { + "start": 15994.42, + "end": 15999.84, + "probability": 0.9959 + }, + { + "start": 16000.92, + "end": 16005.7, + "probability": 0.7901 + }, + { + "start": 16005.92, + "end": 16006.42, + "probability": 0.9202 + }, + { + "start": 16006.44, + "end": 16013.7, + "probability": 0.9463 + }, + { + "start": 16014.3, + "end": 16018.22, + "probability": 0.9419 + }, + { + "start": 16019.24, + "end": 16019.28, + "probability": 0.752 + }, + { + "start": 16022.26, + "end": 16023.0, + "probability": 0.7824 + }, + { + "start": 16023.08, + "end": 16023.56, + "probability": 0.8834 + }, + { + "start": 16023.62, + "end": 16027.78, + "probability": 0.9313 + }, + { + "start": 16028.1, + "end": 16031.7, + "probability": 0.9805 + }, + { + "start": 16032.52, + "end": 16033.06, + "probability": 0.5913 + }, + { + "start": 16033.5, + "end": 16037.48, + "probability": 0.9302 + }, + { + "start": 16037.48, + "end": 16042.06, + "probability": 0.9417 + }, + { + "start": 16042.82, + "end": 16049.32, + "probability": 0.5427 + }, + { + "start": 16050.0, + "end": 16053.54, + "probability": 0.8594 + }, + { + "start": 16053.92, + "end": 16056.7, + "probability": 0.7878 + }, + { + "start": 16056.76, + "end": 16058.98, + "probability": 0.9135 + }, + { + "start": 16058.98, + "end": 16065.31, + "probability": 0.7654 + }, + { + "start": 16066.35, + "end": 16071.88, + "probability": 0.9043 + }, + { + "start": 16072.8, + "end": 16073.3, + "probability": 0.7217 + }, + { + "start": 16073.7, + "end": 16074.66, + "probability": 0.8821 + }, + { + "start": 16075.0, + "end": 16080.56, + "probability": 0.9504 + }, + { + "start": 16080.56, + "end": 16085.06, + "probability": 0.9591 + }, + { + "start": 16085.76, + "end": 16092.5, + "probability": 0.9959 + }, + { + "start": 16093.62, + "end": 16096.9, + "probability": 0.9955 + }, + { + "start": 16096.9, + "end": 16100.06, + "probability": 0.9922 + }, + { + "start": 16100.52, + "end": 16104.15, + "probability": 0.9951 + }, + { + "start": 16104.78, + "end": 16108.64, + "probability": 0.9974 + }, + { + "start": 16108.72, + "end": 16109.54, + "probability": 0.7571 + }, + { + "start": 16110.54, + "end": 16114.89, + "probability": 0.9702 + }, + { + "start": 16117.42, + "end": 16118.84, + "probability": 0.8731 + }, + { + "start": 16118.94, + "end": 16124.78, + "probability": 0.8398 + }, + { + "start": 16125.58, + "end": 16127.8, + "probability": 0.5538 + }, + { + "start": 16127.88, + "end": 16132.18, + "probability": 0.9742 + }, + { + "start": 16132.3, + "end": 16137.38, + "probability": 0.9509 + }, + { + "start": 16137.8, + "end": 16139.02, + "probability": 0.8705 + }, + { + "start": 16139.12, + "end": 16140.08, + "probability": 0.8465 + }, + { + "start": 16140.2, + "end": 16142.14, + "probability": 0.7524 + }, + { + "start": 16142.4, + "end": 16146.02, + "probability": 0.9902 + }, + { + "start": 16146.5, + "end": 16148.38, + "probability": 0.9832 + }, + { + "start": 16149.06, + "end": 16149.82, + "probability": 0.8271 + }, + { + "start": 16150.04, + "end": 16156.64, + "probability": 0.9496 + }, + { + "start": 16156.94, + "end": 16157.88, + "probability": 0.9378 + }, + { + "start": 16158.36, + "end": 16162.56, + "probability": 0.983 + }, + { + "start": 16163.08, + "end": 16165.16, + "probability": 0.9932 + }, + { + "start": 16165.24, + "end": 16168.3, + "probability": 0.8704 + }, + { + "start": 16168.46, + "end": 16169.6, + "probability": 0.8332 + }, + { + "start": 16169.82, + "end": 16171.74, + "probability": 0.7836 + }, + { + "start": 16171.8, + "end": 16172.48, + "probability": 0.8243 + }, + { + "start": 16173.4, + "end": 16174.68, + "probability": 0.8687 + }, + { + "start": 16174.76, + "end": 16177.58, + "probability": 0.8574 + }, + { + "start": 16177.98, + "end": 16179.9, + "probability": 0.9158 + }, + { + "start": 16180.16, + "end": 16181.34, + "probability": 0.897 + }, + { + "start": 16182.12, + "end": 16182.4, + "probability": 0.1912 + }, + { + "start": 16182.4, + "end": 16184.32, + "probability": 0.5802 + }, + { + "start": 16184.36, + "end": 16189.36, + "probability": 0.7439 + }, + { + "start": 16189.64, + "end": 16190.68, + "probability": 0.6731 + }, + { + "start": 16190.92, + "end": 16192.48, + "probability": 0.9634 + }, + { + "start": 16192.7, + "end": 16194.4, + "probability": 0.9729 + }, + { + "start": 16195.12, + "end": 16197.09, + "probability": 0.7979 + }, + { + "start": 16197.4, + "end": 16200.1, + "probability": 0.5589 + }, + { + "start": 16200.3, + "end": 16202.46, + "probability": 0.8054 + }, + { + "start": 16204.34, + "end": 16206.62, + "probability": 0.8926 + }, + { + "start": 16209.14, + "end": 16211.36, + "probability": 0.9385 + }, + { + "start": 16212.46, + "end": 16215.16, + "probability": 0.4805 + }, + { + "start": 16215.46, + "end": 16216.12, + "probability": 0.2919 + }, + { + "start": 16216.58, + "end": 16218.0, + "probability": 0.3723 + }, + { + "start": 16218.08, + "end": 16219.0, + "probability": 0.6128 + }, + { + "start": 16219.56, + "end": 16221.44, + "probability": 0.8137 + }, + { + "start": 16222.46, + "end": 16226.5, + "probability": 0.5283 + }, + { + "start": 16237.96, + "end": 16238.56, + "probability": 0.7048 + }, + { + "start": 16243.02, + "end": 16245.58, + "probability": 0.7301 + }, + { + "start": 16247.58, + "end": 16252.4, + "probability": 0.9596 + }, + { + "start": 16253.72, + "end": 16255.48, + "probability": 0.8964 + }, + { + "start": 16257.16, + "end": 16263.26, + "probability": 0.966 + }, + { + "start": 16264.82, + "end": 16271.42, + "probability": 0.9717 + }, + { + "start": 16271.42, + "end": 16275.9, + "probability": 0.9967 + }, + { + "start": 16276.1, + "end": 16280.72, + "probability": 0.9443 + }, + { + "start": 16280.86, + "end": 16281.9, + "probability": 0.5759 + }, + { + "start": 16282.82, + "end": 16286.98, + "probability": 0.9116 + }, + { + "start": 16288.62, + "end": 16293.08, + "probability": 0.5642 + }, + { + "start": 16293.64, + "end": 16297.34, + "probability": 0.6682 + }, + { + "start": 16298.99, + "end": 16304.48, + "probability": 0.907 + }, + { + "start": 16304.48, + "end": 16307.22, + "probability": 0.9595 + }, + { + "start": 16307.28, + "end": 16310.2, + "probability": 0.9602 + }, + { + "start": 16311.6, + "end": 16312.4, + "probability": 0.7712 + }, + { + "start": 16312.86, + "end": 16316.38, + "probability": 0.8128 + }, + { + "start": 16316.48, + "end": 16317.12, + "probability": 0.9374 + }, + { + "start": 16317.46, + "end": 16321.66, + "probability": 0.947 + }, + { + "start": 16322.8, + "end": 16327.27, + "probability": 0.9492 + }, + { + "start": 16328.72, + "end": 16332.0, + "probability": 0.9613 + }, + { + "start": 16332.72, + "end": 16334.46, + "probability": 0.9712 + }, + { + "start": 16335.08, + "end": 16338.84, + "probability": 0.9098 + }, + { + "start": 16340.04, + "end": 16342.68, + "probability": 0.9132 + }, + { + "start": 16342.8, + "end": 16343.58, + "probability": 0.7021 + }, + { + "start": 16343.68, + "end": 16344.64, + "probability": 0.7723 + }, + { + "start": 16345.84, + "end": 16348.16, + "probability": 0.9724 + }, + { + "start": 16349.3, + "end": 16351.36, + "probability": 0.9686 + }, + { + "start": 16353.88, + "end": 16355.56, + "probability": 0.817 + }, + { + "start": 16356.84, + "end": 16358.4, + "probability": 0.9347 + }, + { + "start": 16358.52, + "end": 16359.74, + "probability": 0.89 + }, + { + "start": 16360.18, + "end": 16362.32, + "probability": 0.9543 + }, + { + "start": 16363.26, + "end": 16368.36, + "probability": 0.9965 + }, + { + "start": 16368.98, + "end": 16370.44, + "probability": 0.7926 + }, + { + "start": 16371.2, + "end": 16373.82, + "probability": 0.9751 + }, + { + "start": 16374.28, + "end": 16375.91, + "probability": 0.938 + }, + { + "start": 16376.14, + "end": 16377.94, + "probability": 0.8316 + }, + { + "start": 16379.48, + "end": 16380.84, + "probability": 0.9626 + }, + { + "start": 16381.08, + "end": 16386.28, + "probability": 0.8745 + }, + { + "start": 16386.28, + "end": 16393.26, + "probability": 0.9501 + }, + { + "start": 16393.86, + "end": 16396.14, + "probability": 0.9904 + }, + { + "start": 16398.52, + "end": 16402.55, + "probability": 0.9189 + }, + { + "start": 16403.62, + "end": 16406.56, + "probability": 0.747 + }, + { + "start": 16407.22, + "end": 16410.24, + "probability": 0.9326 + }, + { + "start": 16410.24, + "end": 16417.16, + "probability": 0.9788 + }, + { + "start": 16418.46, + "end": 16422.74, + "probability": 0.9139 + }, + { + "start": 16425.7, + "end": 16426.82, + "probability": 0.6996 + }, + { + "start": 16428.3, + "end": 16433.06, + "probability": 0.9917 + }, + { + "start": 16433.06, + "end": 16436.34, + "probability": 0.9604 + }, + { + "start": 16436.48, + "end": 16436.82, + "probability": 0.7404 + }, + { + "start": 16438.5, + "end": 16440.64, + "probability": 0.9277 + }, + { + "start": 16441.62, + "end": 16442.46, + "probability": 0.5058 + }, + { + "start": 16443.06, + "end": 16444.14, + "probability": 0.755 + }, + { + "start": 16444.22, + "end": 16446.92, + "probability": 0.895 + }, + { + "start": 16447.06, + "end": 16450.4, + "probability": 0.8954 + }, + { + "start": 16450.48, + "end": 16453.86, + "probability": 0.9648 + }, + { + "start": 16454.3, + "end": 16457.68, + "probability": 0.9116 + }, + { + "start": 16458.16, + "end": 16464.84, + "probability": 0.9053 + }, + { + "start": 16465.02, + "end": 16467.98, + "probability": 0.9946 + }, + { + "start": 16467.98, + "end": 16470.58, + "probability": 0.8786 + }, + { + "start": 16470.78, + "end": 16472.56, + "probability": 0.9817 + }, + { + "start": 16472.88, + "end": 16475.24, + "probability": 0.9697 + }, + { + "start": 16475.42, + "end": 16476.14, + "probability": 0.9612 + }, + { + "start": 16476.34, + "end": 16477.48, + "probability": 0.6534 + }, + { + "start": 16477.88, + "end": 16478.62, + "probability": 0.7908 + }, + { + "start": 16478.78, + "end": 16481.72, + "probability": 0.8972 + }, + { + "start": 16481.82, + "end": 16482.1, + "probability": 0.7536 + }, + { + "start": 16483.56, + "end": 16485.46, + "probability": 0.9463 + }, + { + "start": 16485.6, + "end": 16487.36, + "probability": 0.9575 + }, + { + "start": 16505.44, + "end": 16505.76, + "probability": 0.6501 + }, + { + "start": 16510.12, + "end": 16510.64, + "probability": 0.3682 + }, + { + "start": 16514.1, + "end": 16514.66, + "probability": 0.4061 + }, + { + "start": 16514.66, + "end": 16517.02, + "probability": 0.6063 + }, + { + "start": 16517.84, + "end": 16520.31, + "probability": 0.9893 + }, + { + "start": 16521.32, + "end": 16523.68, + "probability": 0.9823 + }, + { + "start": 16525.68, + "end": 16528.8, + "probability": 0.981 + }, + { + "start": 16529.52, + "end": 16530.92, + "probability": 0.8732 + }, + { + "start": 16531.12, + "end": 16532.1, + "probability": 0.7964 + }, + { + "start": 16532.3, + "end": 16533.18, + "probability": 0.4691 + }, + { + "start": 16534.22, + "end": 16535.9, + "probability": 0.6931 + }, + { + "start": 16535.96, + "end": 16537.7, + "probability": 0.8806 + }, + { + "start": 16538.78, + "end": 16539.88, + "probability": 0.9619 + }, + { + "start": 16540.92, + "end": 16543.0, + "probability": 0.8315 + }, + { + "start": 16544.02, + "end": 16545.64, + "probability": 0.998 + }, + { + "start": 16546.44, + "end": 16547.26, + "probability": 0.9447 + }, + { + "start": 16547.36, + "end": 16548.48, + "probability": 0.9784 + }, + { + "start": 16549.72, + "end": 16553.08, + "probability": 0.9943 + }, + { + "start": 16553.62, + "end": 16554.74, + "probability": 0.8925 + }, + { + "start": 16554.88, + "end": 16556.48, + "probability": 0.9937 + }, + { + "start": 16558.16, + "end": 16559.18, + "probability": 0.9791 + }, + { + "start": 16560.36, + "end": 16561.62, + "probability": 0.5524 + }, + { + "start": 16562.29, + "end": 16565.8, + "probability": 0.8765 + }, + { + "start": 16566.0, + "end": 16568.9, + "probability": 0.7222 + }, + { + "start": 16568.98, + "end": 16570.78, + "probability": 0.8891 + }, + { + "start": 16570.82, + "end": 16572.95, + "probability": 0.9023 + }, + { + "start": 16574.5, + "end": 16574.78, + "probability": 0.5889 + }, + { + "start": 16575.06, + "end": 16575.34, + "probability": 0.2515 + }, + { + "start": 16575.38, + "end": 16576.6, + "probability": 0.9091 + }, + { + "start": 16576.64, + "end": 16583.06, + "probability": 0.8309 + }, + { + "start": 16583.94, + "end": 16587.82, + "probability": 0.8852 + }, + { + "start": 16588.46, + "end": 16591.2, + "probability": 0.8928 + }, + { + "start": 16592.18, + "end": 16594.94, + "probability": 0.9045 + }, + { + "start": 16595.56, + "end": 16596.22, + "probability": 0.703 + }, + { + "start": 16596.26, + "end": 16597.86, + "probability": 0.9872 + }, + { + "start": 16597.96, + "end": 16599.7, + "probability": 0.9779 + }, + { + "start": 16600.38, + "end": 16602.04, + "probability": 0.865 + }, + { + "start": 16602.42, + "end": 16605.58, + "probability": 0.8505 + }, + { + "start": 16606.46, + "end": 16608.38, + "probability": 0.9089 + }, + { + "start": 16608.46, + "end": 16611.42, + "probability": 0.9702 + }, + { + "start": 16611.42, + "end": 16613.61, + "probability": 0.9969 + }, + { + "start": 16614.18, + "end": 16615.6, + "probability": 0.9932 + }, + { + "start": 16615.68, + "end": 16616.96, + "probability": 0.8934 + }, + { + "start": 16617.98, + "end": 16618.96, + "probability": 0.8761 + }, + { + "start": 16619.38, + "end": 16622.18, + "probability": 0.9919 + }, + { + "start": 16622.38, + "end": 16623.04, + "probability": 0.6001 + }, + { + "start": 16624.36, + "end": 16625.33, + "probability": 0.9008 + }, + { + "start": 16626.12, + "end": 16626.55, + "probability": 0.9385 + }, + { + "start": 16626.78, + "end": 16627.67, + "probability": 0.6827 + }, + { + "start": 16627.9, + "end": 16629.73, + "probability": 0.9839 + }, + { + "start": 16630.28, + "end": 16635.7, + "probability": 0.8115 + }, + { + "start": 16635.86, + "end": 16636.08, + "probability": 0.4304 + }, + { + "start": 16636.12, + "end": 16637.22, + "probability": 0.8837 + }, + { + "start": 16637.4, + "end": 16637.82, + "probability": 0.7476 + }, + { + "start": 16638.54, + "end": 16639.56, + "probability": 0.9138 + }, + { + "start": 16639.62, + "end": 16642.46, + "probability": 0.9562 + }, + { + "start": 16642.68, + "end": 16645.72, + "probability": 0.9725 + }, + { + "start": 16646.1, + "end": 16647.24, + "probability": 0.8143 + }, + { + "start": 16647.92, + "end": 16650.5, + "probability": 0.9639 + }, + { + "start": 16650.5, + "end": 16650.92, + "probability": 0.8002 + }, + { + "start": 16652.02, + "end": 16654.24, + "probability": 0.9849 + }, + { + "start": 16654.84, + "end": 16657.22, + "probability": 0.9958 + }, + { + "start": 16657.36, + "end": 16659.0, + "probability": 0.9863 + }, + { + "start": 16659.96, + "end": 16662.12, + "probability": 0.9999 + }, + { + "start": 16662.18, + "end": 16666.92, + "probability": 0.9873 + }, + { + "start": 16667.0, + "end": 16667.64, + "probability": 0.8966 + }, + { + "start": 16667.74, + "end": 16670.16, + "probability": 0.9668 + }, + { + "start": 16671.2, + "end": 16672.36, + "probability": 0.9823 + }, + { + "start": 16672.54, + "end": 16676.0, + "probability": 0.6784 + }, + { + "start": 16676.18, + "end": 16677.79, + "probability": 0.8488 + }, + { + "start": 16678.48, + "end": 16679.62, + "probability": 0.5133 + }, + { + "start": 16679.7, + "end": 16683.63, + "probability": 0.9453 + }, + { + "start": 16683.84, + "end": 16685.56, + "probability": 0.9556 + }, + { + "start": 16685.72, + "end": 16686.07, + "probability": 0.697 + }, + { + "start": 16687.48, + "end": 16688.18, + "probability": 0.9553 + }, + { + "start": 16688.4, + "end": 16689.24, + "probability": 0.9234 + }, + { + "start": 16690.38, + "end": 16692.36, + "probability": 0.9766 + }, + { + "start": 16692.64, + "end": 16695.0, + "probability": 0.9121 + }, + { + "start": 16695.34, + "end": 16696.66, + "probability": 0.9658 + }, + { + "start": 16696.92, + "end": 16698.27, + "probability": 0.8498 + }, + { + "start": 16698.44, + "end": 16700.68, + "probability": 0.7945 + }, + { + "start": 16701.08, + "end": 16703.08, + "probability": 0.7774 + }, + { + "start": 16704.02, + "end": 16705.32, + "probability": 0.9243 + }, + { + "start": 16706.22, + "end": 16707.9, + "probability": 0.9763 + }, + { + "start": 16708.42, + "end": 16709.13, + "probability": 0.8428 + }, + { + "start": 16710.04, + "end": 16714.68, + "probability": 0.9836 + }, + { + "start": 16714.86, + "end": 16714.86, + "probability": 0.0417 + }, + { + "start": 16714.86, + "end": 16717.6, + "probability": 0.6436 + }, + { + "start": 16718.36, + "end": 16722.92, + "probability": 0.8543 + }, + { + "start": 16723.14, + "end": 16726.8, + "probability": 0.7291 + }, + { + "start": 16727.24, + "end": 16728.96, + "probability": 0.9348 + }, + { + "start": 16729.84, + "end": 16732.48, + "probability": 0.9907 + }, + { + "start": 16733.08, + "end": 16735.24, + "probability": 0.6602 + }, + { + "start": 16735.8, + "end": 16736.98, + "probability": 0.8496 + }, + { + "start": 16738.32, + "end": 16742.94, + "probability": 0.9919 + }, + { + "start": 16743.04, + "end": 16743.62, + "probability": 0.8909 + }, + { + "start": 16743.68, + "end": 16745.38, + "probability": 0.9426 + }, + { + "start": 16745.7, + "end": 16747.06, + "probability": 0.868 + }, + { + "start": 16747.12, + "end": 16753.2, + "probability": 0.9577 + }, + { + "start": 16753.72, + "end": 16756.54, + "probability": 0.9875 + }, + { + "start": 16757.2, + "end": 16757.92, + "probability": 0.5186 + }, + { + "start": 16758.1, + "end": 16758.84, + "probability": 0.9116 + }, + { + "start": 16758.96, + "end": 16760.56, + "probability": 0.9677 + }, + { + "start": 16760.74, + "end": 16761.14, + "probability": 0.6055 + }, + { + "start": 16761.26, + "end": 16762.88, + "probability": 0.5572 + }, + { + "start": 16763.64, + "end": 16765.42, + "probability": 0.9946 + }, + { + "start": 16766.06, + "end": 16767.48, + "probability": 0.962 + }, + { + "start": 16768.06, + "end": 16769.06, + "probability": 0.9849 + }, + { + "start": 16769.16, + "end": 16769.4, + "probability": 0.867 + }, + { + "start": 16769.48, + "end": 16771.74, + "probability": 0.9612 + }, + { + "start": 16772.66, + "end": 16773.1, + "probability": 0.3869 + }, + { + "start": 16773.22, + "end": 16773.4, + "probability": 0.7757 + }, + { + "start": 16773.5, + "end": 16777.24, + "probability": 0.9594 + }, + { + "start": 16777.24, + "end": 16780.72, + "probability": 0.8994 + }, + { + "start": 16781.88, + "end": 16784.04, + "probability": 0.7495 + }, + { + "start": 16784.1, + "end": 16786.26, + "probability": 0.9757 + }, + { + "start": 16786.74, + "end": 16791.16, + "probability": 0.9909 + }, + { + "start": 16791.7, + "end": 16795.93, + "probability": 0.9971 + }, + { + "start": 16796.8, + "end": 16798.22, + "probability": 0.9847 + }, + { + "start": 16798.3, + "end": 16799.1, + "probability": 0.9089 + }, + { + "start": 16799.54, + "end": 16800.6, + "probability": 0.9631 + }, + { + "start": 16800.78, + "end": 16802.95, + "probability": 0.9901 + }, + { + "start": 16803.32, + "end": 16805.66, + "probability": 0.9956 + }, + { + "start": 16805.66, + "end": 16807.98, + "probability": 0.9915 + }, + { + "start": 16808.06, + "end": 16810.68, + "probability": 0.9371 + }, + { + "start": 16811.18, + "end": 16811.84, + "probability": 0.7003 + }, + { + "start": 16811.96, + "end": 16813.05, + "probability": 0.9386 + }, + { + "start": 16813.72, + "end": 16815.56, + "probability": 0.9513 + }, + { + "start": 16816.18, + "end": 16818.36, + "probability": 0.749 + }, + { + "start": 16837.6, + "end": 16840.74, + "probability": 0.697 + }, + { + "start": 16842.04, + "end": 16845.1, + "probability": 0.9922 + }, + { + "start": 16845.1, + "end": 16848.52, + "probability": 0.9913 + }, + { + "start": 16848.78, + "end": 16854.4, + "probability": 0.9873 + }, + { + "start": 16855.42, + "end": 16858.78, + "probability": 0.6318 + }, + { + "start": 16858.96, + "end": 16861.94, + "probability": 0.903 + }, + { + "start": 16863.16, + "end": 16866.8, + "probability": 0.9844 + }, + { + "start": 16867.56, + "end": 16869.04, + "probability": 0.8311 + }, + { + "start": 16869.78, + "end": 16876.46, + "probability": 0.9723 + }, + { + "start": 16877.54, + "end": 16884.42, + "probability": 0.8288 + }, + { + "start": 16885.04, + "end": 16886.32, + "probability": 0.8173 + }, + { + "start": 16886.98, + "end": 16889.8, + "probability": 0.9901 + }, + { + "start": 16890.66, + "end": 16893.9, + "probability": 0.9991 + }, + { + "start": 16894.1, + "end": 16895.58, + "probability": 0.6549 + }, + { + "start": 16896.16, + "end": 16899.46, + "probability": 0.9793 + }, + { + "start": 16900.66, + "end": 16902.82, + "probability": 0.9391 + }, + { + "start": 16903.86, + "end": 16907.52, + "probability": 0.9873 + }, + { + "start": 16908.36, + "end": 16910.6, + "probability": 0.9733 + }, + { + "start": 16910.6, + "end": 16912.96, + "probability": 0.9995 + }, + { + "start": 16913.66, + "end": 16915.72, + "probability": 0.9404 + }, + { + "start": 16916.28, + "end": 16919.34, + "probability": 0.9756 + }, + { + "start": 16919.52, + "end": 16920.59, + "probability": 0.9054 + }, + { + "start": 16921.24, + "end": 16925.08, + "probability": 0.8738 + }, + { + "start": 16925.14, + "end": 16925.82, + "probability": 0.7703 + }, + { + "start": 16926.0, + "end": 16928.52, + "probability": 0.9964 + }, + { + "start": 16929.36, + "end": 16930.06, + "probability": 0.894 + }, + { + "start": 16931.2, + "end": 16932.76, + "probability": 0.8719 + }, + { + "start": 16932.84, + "end": 16933.86, + "probability": 0.5596 + }, + { + "start": 16934.18, + "end": 16935.06, + "probability": 0.1214 + }, + { + "start": 16935.46, + "end": 16936.18, + "probability": 0.3803 + }, + { + "start": 16936.34, + "end": 16937.4, + "probability": 0.4261 + }, + { + "start": 16938.16, + "end": 16938.89, + "probability": 0.2018 + }, + { + "start": 16939.28, + "end": 16942.3, + "probability": 0.9194 + }, + { + "start": 16942.36, + "end": 16946.2, + "probability": 0.9945 + }, + { + "start": 16946.54, + "end": 16948.8, + "probability": 0.9968 + }, + { + "start": 16949.24, + "end": 16951.17, + "probability": 0.9956 + }, + { + "start": 16951.42, + "end": 16952.46, + "probability": 0.8458 + }, + { + "start": 16952.86, + "end": 16956.1, + "probability": 0.9958 + }, + { + "start": 16956.28, + "end": 16957.08, + "probability": 0.754 + }, + { + "start": 16957.2, + "end": 16962.14, + "probability": 0.9092 + }, + { + "start": 16962.26, + "end": 16964.5, + "probability": 0.9316 + }, + { + "start": 16964.7, + "end": 16964.98, + "probability": 0.3451 + }, + { + "start": 16965.1, + "end": 16966.46, + "probability": 0.9223 + }, + { + "start": 16966.7, + "end": 16970.2, + "probability": 0.9331 + }, + { + "start": 16970.64, + "end": 16972.12, + "probability": 0.9419 + }, + { + "start": 16972.44, + "end": 16975.56, + "probability": 0.9663 + }, + { + "start": 16975.9, + "end": 16979.94, + "probability": 0.9755 + }, + { + "start": 16980.12, + "end": 16981.24, + "probability": 0.6171 + }, + { + "start": 16981.3, + "end": 16983.68, + "probability": 0.978 + }, + { + "start": 16984.02, + "end": 16985.72, + "probability": 0.9261 + }, + { + "start": 16985.74, + "end": 16988.76, + "probability": 0.9836 + }, + { + "start": 16989.1, + "end": 16989.96, + "probability": 0.8849 + }, + { + "start": 16990.16, + "end": 16993.8, + "probability": 0.9885 + }, + { + "start": 16994.1, + "end": 16994.96, + "probability": 0.8823 + }, + { + "start": 16995.22, + "end": 16999.52, + "probability": 0.9617 + }, + { + "start": 16999.76, + "end": 17004.04, + "probability": 0.9883 + }, + { + "start": 17004.24, + "end": 17006.36, + "probability": 0.9947 + }, + { + "start": 17006.36, + "end": 17008.82, + "probability": 0.996 + }, + { + "start": 17008.88, + "end": 17010.82, + "probability": 0.9247 + }, + { + "start": 17011.06, + "end": 17014.46, + "probability": 0.958 + }, + { + "start": 17015.02, + "end": 17015.46, + "probability": 0.4877 + }, + { + "start": 17016.1, + "end": 17016.99, + "probability": 0.9118 + }, + { + "start": 17017.58, + "end": 17018.63, + "probability": 0.8198 + }, + { + "start": 17018.76, + "end": 17019.94, + "probability": 0.937 + }, + { + "start": 17020.24, + "end": 17024.8, + "probability": 0.9887 + }, + { + "start": 17025.1, + "end": 17029.26, + "probability": 0.995 + }, + { + "start": 17029.42, + "end": 17032.94, + "probability": 0.9987 + }, + { + "start": 17033.22, + "end": 17037.5, + "probability": 0.9821 + }, + { + "start": 17037.58, + "end": 17039.94, + "probability": 0.9937 + }, + { + "start": 17040.08, + "end": 17043.0, + "probability": 0.9404 + }, + { + "start": 17043.36, + "end": 17045.62, + "probability": 0.9852 + }, + { + "start": 17045.94, + "end": 17046.78, + "probability": 0.8004 + }, + { + "start": 17046.98, + "end": 17049.8, + "probability": 0.9978 + }, + { + "start": 17049.8, + "end": 17052.38, + "probability": 0.995 + }, + { + "start": 17052.44, + "end": 17055.78, + "probability": 0.9966 + }, + { + "start": 17055.88, + "end": 17057.38, + "probability": 0.997 + }, + { + "start": 17057.46, + "end": 17062.28, + "probability": 0.8751 + }, + { + "start": 17062.28, + "end": 17065.6, + "probability": 0.998 + }, + { + "start": 17065.7, + "end": 17069.52, + "probability": 0.9692 + }, + { + "start": 17069.9, + "end": 17073.98, + "probability": 0.9976 + }, + { + "start": 17074.3, + "end": 17074.9, + "probability": 0.7812 + }, + { + "start": 17075.0, + "end": 17076.14, + "probability": 0.9886 + }, + { + "start": 17076.48, + "end": 17076.8, + "probability": 0.4902 + }, + { + "start": 17076.8, + "end": 17078.62, + "probability": 0.4859 + }, + { + "start": 17078.96, + "end": 17080.14, + "probability": 0.8097 + }, + { + "start": 17084.3, + "end": 17084.72, + "probability": 0.4965 + }, + { + "start": 17090.64, + "end": 17093.14, + "probability": 0.0605 + }, + { + "start": 17093.46, + "end": 17094.28, + "probability": 0.6733 + }, + { + "start": 17094.4, + "end": 17095.56, + "probability": 0.6413 + }, + { + "start": 17095.58, + "end": 17097.12, + "probability": 0.8809 + }, + { + "start": 17097.56, + "end": 17098.18, + "probability": 0.8058 + }, + { + "start": 17098.28, + "end": 17102.24, + "probability": 0.7756 + }, + { + "start": 17102.5, + "end": 17102.94, + "probability": 0.8531 + }, + { + "start": 17102.94, + "end": 17103.72, + "probability": 0.9025 + }, + { + "start": 17104.12, + "end": 17105.98, + "probability": 0.7531 + }, + { + "start": 17106.64, + "end": 17109.9, + "probability": 0.8894 + }, + { + "start": 17110.22, + "end": 17112.52, + "probability": 0.8669 + }, + { + "start": 17112.62, + "end": 17113.72, + "probability": 0.9731 + }, + { + "start": 17114.24, + "end": 17115.62, + "probability": 0.8921 + }, + { + "start": 17116.48, + "end": 17117.92, + "probability": 0.9693 + }, + { + "start": 17119.08, + "end": 17119.4, + "probability": 0.5662 + }, + { + "start": 17119.46, + "end": 17125.24, + "probability": 0.8612 + }, + { + "start": 17125.24, + "end": 17127.02, + "probability": 0.8919 + }, + { + "start": 17127.64, + "end": 17129.76, + "probability": 0.9492 + }, + { + "start": 17129.84, + "end": 17135.66, + "probability": 0.8969 + }, + { + "start": 17135.86, + "end": 17136.6, + "probability": 0.88 + }, + { + "start": 17136.7, + "end": 17139.72, + "probability": 0.9229 + }, + { + "start": 17140.82, + "end": 17142.26, + "probability": 0.5693 + }, + { + "start": 17142.42, + "end": 17143.74, + "probability": 0.6261 + }, + { + "start": 17144.36, + "end": 17150.44, + "probability": 0.9707 + }, + { + "start": 17150.88, + "end": 17153.28, + "probability": 0.9875 + }, + { + "start": 17153.82, + "end": 17154.76, + "probability": 0.7959 + }, + { + "start": 17155.62, + "end": 17161.3, + "probability": 0.9381 + }, + { + "start": 17162.02, + "end": 17166.94, + "probability": 0.9841 + }, + { + "start": 17167.7, + "end": 17171.16, + "probability": 0.5545 + }, + { + "start": 17171.24, + "end": 17176.18, + "probability": 0.7597 + }, + { + "start": 17176.42, + "end": 17178.4, + "probability": 0.9949 + }, + { + "start": 17178.48, + "end": 17184.36, + "probability": 0.9486 + }, + { + "start": 17184.36, + "end": 17187.96, + "probability": 0.7307 + }, + { + "start": 17188.4, + "end": 17192.16, + "probability": 0.9849 + }, + { + "start": 17192.84, + "end": 17195.1, + "probability": 0.9333 + }, + { + "start": 17195.52, + "end": 17199.36, + "probability": 0.8184 + }, + { + "start": 17200.22, + "end": 17204.62, + "probability": 0.7577 + }, + { + "start": 17205.02, + "end": 17207.6, + "probability": 0.9932 + }, + { + "start": 17208.5, + "end": 17214.14, + "probability": 0.9938 + }, + { + "start": 17214.22, + "end": 17214.96, + "probability": 0.5608 + }, + { + "start": 17215.06, + "end": 17216.38, + "probability": 0.4342 + }, + { + "start": 17216.6, + "end": 17218.06, + "probability": 0.8 + }, + { + "start": 17218.38, + "end": 17219.86, + "probability": 0.984 + }, + { + "start": 17219.92, + "end": 17221.14, + "probability": 0.5107 + }, + { + "start": 17221.36, + "end": 17222.96, + "probability": 0.7638 + }, + { + "start": 17223.02, + "end": 17224.56, + "probability": 0.9659 + }, + { + "start": 17225.02, + "end": 17229.24, + "probability": 0.9844 + }, + { + "start": 17229.48, + "end": 17232.76, + "probability": 0.7981 + }, + { + "start": 17232.96, + "end": 17235.9, + "probability": 0.9678 + }, + { + "start": 17235.9, + "end": 17240.1, + "probability": 0.8966 + }, + { + "start": 17240.14, + "end": 17241.28, + "probability": 0.9512 + }, + { + "start": 17241.76, + "end": 17242.51, + "probability": 0.5508 + }, + { + "start": 17243.4, + "end": 17246.41, + "probability": 0.9529 + }, + { + "start": 17246.92, + "end": 17249.06, + "probability": 0.987 + }, + { + "start": 17249.22, + "end": 17252.24, + "probability": 0.9963 + }, + { + "start": 17252.38, + "end": 17253.42, + "probability": 0.7674 + }, + { + "start": 17253.44, + "end": 17254.48, + "probability": 0.9626 + }, + { + "start": 17254.78, + "end": 17259.9, + "probability": 0.9922 + }, + { + "start": 17260.06, + "end": 17260.66, + "probability": 0.9575 + }, + { + "start": 17260.9, + "end": 17263.29, + "probability": 0.6716 + }, + { + "start": 17264.28, + "end": 17265.56, + "probability": 0.7576 + }, + { + "start": 17266.42, + "end": 17269.32, + "probability": 0.9875 + }, + { + "start": 17269.46, + "end": 17270.34, + "probability": 0.6165 + }, + { + "start": 17270.76, + "end": 17272.12, + "probability": 0.6155 + }, + { + "start": 17272.54, + "end": 17273.6, + "probability": 0.938 + }, + { + "start": 17273.6, + "end": 17275.18, + "probability": 0.9818 + }, + { + "start": 17275.5, + "end": 17276.98, + "probability": 0.9971 + }, + { + "start": 17277.24, + "end": 17278.84, + "probability": 0.5844 + }, + { + "start": 17279.34, + "end": 17282.24, + "probability": 0.9854 + }, + { + "start": 17282.7, + "end": 17285.02, + "probability": 0.8722 + }, + { + "start": 17285.1, + "end": 17286.64, + "probability": 0.695 + }, + { + "start": 17286.82, + "end": 17288.78, + "probability": 0.8519 + }, + { + "start": 17288.84, + "end": 17290.32, + "probability": 0.7498 + }, + { + "start": 17290.48, + "end": 17291.26, + "probability": 0.5834 + }, + { + "start": 17292.44, + "end": 17293.04, + "probability": 0.5496 + }, + { + "start": 17293.26, + "end": 17293.76, + "probability": 0.7093 + }, + { + "start": 17293.86, + "end": 17294.38, + "probability": 0.9776 + }, + { + "start": 17294.5, + "end": 17295.12, + "probability": 0.7982 + }, + { + "start": 17295.68, + "end": 17299.14, + "probability": 0.9995 + }, + { + "start": 17299.14, + "end": 17303.18, + "probability": 0.9814 + }, + { + "start": 17303.72, + "end": 17304.56, + "probability": 0.5863 + }, + { + "start": 17304.9, + "end": 17305.94, + "probability": 0.7978 + }, + { + "start": 17306.2, + "end": 17307.26, + "probability": 0.8704 + }, + { + "start": 17307.4, + "end": 17311.88, + "probability": 0.9788 + }, + { + "start": 17312.16, + "end": 17315.52, + "probability": 0.9708 + }, + { + "start": 17315.62, + "end": 17319.28, + "probability": 0.5941 + }, + { + "start": 17319.66, + "end": 17324.0, + "probability": 0.965 + }, + { + "start": 17324.02, + "end": 17324.98, + "probability": 0.765 + }, + { + "start": 17326.02, + "end": 17326.7, + "probability": 0.5263 + }, + { + "start": 17326.92, + "end": 17327.9, + "probability": 0.896 + }, + { + "start": 17328.26, + "end": 17331.66, + "probability": 0.6312 + }, + { + "start": 17340.06, + "end": 17341.3, + "probability": 0.5943 + }, + { + "start": 17341.38, + "end": 17341.98, + "probability": 0.3564 + }, + { + "start": 17342.14, + "end": 17345.36, + "probability": 0.721 + }, + { + "start": 17345.46, + "end": 17348.22, + "probability": 0.5889 + }, + { + "start": 17348.22, + "end": 17351.74, + "probability": 0.9907 + }, + { + "start": 17352.52, + "end": 17356.43, + "probability": 0.7764 + }, + { + "start": 17357.36, + "end": 17363.98, + "probability": 0.978 + }, + { + "start": 17366.15, + "end": 17366.64, + "probability": 0.0343 + }, + { + "start": 17366.64, + "end": 17367.2, + "probability": 0.5667 + }, + { + "start": 17367.48, + "end": 17368.94, + "probability": 0.4197 + }, + { + "start": 17369.04, + "end": 17370.66, + "probability": 0.5672 + }, + { + "start": 17370.8, + "end": 17372.26, + "probability": 0.6348 + }, + { + "start": 17372.84, + "end": 17373.28, + "probability": 0.3379 + }, + { + "start": 17373.28, + "end": 17378.52, + "probability": 0.8692 + }, + { + "start": 17378.86, + "end": 17381.58, + "probability": 0.9925 + }, + { + "start": 17383.54, + "end": 17384.18, + "probability": 0.5356 + }, + { + "start": 17385.06, + "end": 17386.92, + "probability": 0.6461 + }, + { + "start": 17387.3, + "end": 17389.46, + "probability": 0.9175 + }, + { + "start": 17389.8, + "end": 17390.62, + "probability": 0.1066 + }, + { + "start": 17391.02, + "end": 17395.28, + "probability": 0.9274 + }, + { + "start": 17396.18, + "end": 17401.7, + "probability": 0.6521 + }, + { + "start": 17401.8, + "end": 17403.99, + "probability": 0.849 + }, + { + "start": 17405.44, + "end": 17410.25, + "probability": 0.5246 + }, + { + "start": 17410.8, + "end": 17410.88, + "probability": 0.0303 + }, + { + "start": 17411.88, + "end": 17413.5, + "probability": 0.2293 + }, + { + "start": 17413.52, + "end": 17415.66, + "probability": 0.4393 + }, + { + "start": 17416.8, + "end": 17417.42, + "probability": 0.1454 + }, + { + "start": 17417.42, + "end": 17418.06, + "probability": 0.6066 + }, + { + "start": 17418.28, + "end": 17419.73, + "probability": 0.3058 + }, + { + "start": 17420.7, + "end": 17421.9, + "probability": 0.6788 + }, + { + "start": 17422.84, + "end": 17423.64, + "probability": 0.2463 + }, + { + "start": 17423.68, + "end": 17424.85, + "probability": 0.8381 + }, + { + "start": 17425.26, + "end": 17425.33, + "probability": 0.302 + }, + { + "start": 17425.74, + "end": 17431.24, + "probability": 0.8628 + }, + { + "start": 17431.26, + "end": 17431.56, + "probability": 0.5255 + }, + { + "start": 17431.64, + "end": 17435.96, + "probability": 0.7856 + }, + { + "start": 17436.28, + "end": 17438.96, + "probability": 0.9966 + }, + { + "start": 17439.38, + "end": 17440.34, + "probability": 0.8053 + }, + { + "start": 17440.5, + "end": 17442.7, + "probability": 0.8636 + }, + { + "start": 17443.06, + "end": 17443.44, + "probability": 0.7357 + }, + { + "start": 17443.52, + "end": 17445.3, + "probability": 0.9337 + }, + { + "start": 17445.7, + "end": 17448.36, + "probability": 0.9578 + }, + { + "start": 17448.42, + "end": 17449.62, + "probability": 0.6674 + }, + { + "start": 17450.34, + "end": 17455.56, + "probability": 0.9966 + }, + { + "start": 17456.02, + "end": 17461.44, + "probability": 0.9902 + }, + { + "start": 17461.98, + "end": 17464.59, + "probability": 0.9971 + }, + { + "start": 17466.12, + "end": 17472.42, + "probability": 0.9872 + }, + { + "start": 17472.42, + "end": 17476.46, + "probability": 0.9994 + }, + { + "start": 17477.28, + "end": 17477.92, + "probability": 0.6743 + }, + { + "start": 17478.38, + "end": 17480.76, + "probability": 0.6246 + }, + { + "start": 17480.88, + "end": 17485.36, + "probability": 0.4966 + }, + { + "start": 17485.5, + "end": 17487.46, + "probability": 0.7954 + }, + { + "start": 17488.1, + "end": 17490.8, + "probability": 0.951 + }, + { + "start": 17490.88, + "end": 17494.8, + "probability": 0.9768 + }, + { + "start": 17494.94, + "end": 17497.2, + "probability": 0.854 + }, + { + "start": 17497.62, + "end": 17497.84, + "probability": 0.6046 + }, + { + "start": 17498.04, + "end": 17499.24, + "probability": 0.9443 + }, + { + "start": 17499.46, + "end": 17505.48, + "probability": 0.9735 + }, + { + "start": 17505.98, + "end": 17506.7, + "probability": 0.9244 + }, + { + "start": 17506.7, + "end": 17509.06, + "probability": 0.9568 + }, + { + "start": 17509.48, + "end": 17516.58, + "probability": 0.9574 + }, + { + "start": 17516.74, + "end": 17519.0, + "probability": 0.9385 + }, + { + "start": 17519.26, + "end": 17520.08, + "probability": 0.6378 + }, + { + "start": 17520.5, + "end": 17522.22, + "probability": 0.9838 + }, + { + "start": 17522.46, + "end": 17523.48, + "probability": 0.65 + }, + { + "start": 17523.8, + "end": 17529.4, + "probability": 0.9831 + }, + { + "start": 17529.4, + "end": 17533.86, + "probability": 0.9971 + }, + { + "start": 17534.54, + "end": 17539.06, + "probability": 0.9912 + }, + { + "start": 17539.06, + "end": 17542.08, + "probability": 0.9848 + }, + { + "start": 17542.38, + "end": 17544.8, + "probability": 0.9802 + }, + { + "start": 17544.86, + "end": 17546.54, + "probability": 0.9854 + }, + { + "start": 17546.62, + "end": 17547.56, + "probability": 0.7467 + }, + { + "start": 17547.56, + "end": 17550.18, + "probability": 0.6777 + }, + { + "start": 17550.32, + "end": 17550.5, + "probability": 0.6452 + }, + { + "start": 17550.66, + "end": 17552.81, + "probability": 0.6148 + }, + { + "start": 17553.64, + "end": 17554.84, + "probability": 0.8833 + }, + { + "start": 17555.02, + "end": 17556.64, + "probability": 0.9709 + }, + { + "start": 17557.08, + "end": 17557.76, + "probability": 0.724 + }, + { + "start": 17557.76, + "end": 17563.74, + "probability": 0.9655 + }, + { + "start": 17564.08, + "end": 17567.08, + "probability": 0.8699 + }, + { + "start": 17567.64, + "end": 17570.08, + "probability": 0.9334 + }, + { + "start": 17570.2, + "end": 17575.18, + "probability": 0.9711 + }, + { + "start": 17575.18, + "end": 17580.04, + "probability": 0.8989 + }, + { + "start": 17580.72, + "end": 17583.4, + "probability": 0.6691 + }, + { + "start": 17583.9, + "end": 17589.5, + "probability": 0.9697 + }, + { + "start": 17589.7, + "end": 17593.38, + "probability": 0.9895 + }, + { + "start": 17593.72, + "end": 17595.98, + "probability": 0.8974 + }, + { + "start": 17596.16, + "end": 17596.68, + "probability": 0.8217 + }, + { + "start": 17596.8, + "end": 17602.18, + "probability": 0.9932 + }, + { + "start": 17602.34, + "end": 17605.98, + "probability": 0.9581 + }, + { + "start": 17606.5, + "end": 17610.74, + "probability": 0.9944 + }, + { + "start": 17612.04, + "end": 17618.2, + "probability": 0.7684 + }, + { + "start": 17618.96, + "end": 17619.88, + "probability": 0.2953 + }, + { + "start": 17620.16, + "end": 17626.04, + "probability": 0.9861 + }, + { + "start": 17626.78, + "end": 17627.18, + "probability": 0.6882 + }, + { + "start": 17627.28, + "end": 17630.55, + "probability": 0.8331 + }, + { + "start": 17630.98, + "end": 17632.42, + "probability": 0.8315 + }, + { + "start": 17632.54, + "end": 17637.82, + "probability": 0.9861 + }, + { + "start": 17638.02, + "end": 17639.76, + "probability": 0.9959 + }, + { + "start": 17640.24, + "end": 17644.4, + "probability": 0.8368 + }, + { + "start": 17644.98, + "end": 17647.42, + "probability": 0.922 + }, + { + "start": 17647.7, + "end": 17648.7, + "probability": 0.9747 + }, + { + "start": 17648.88, + "end": 17650.4, + "probability": 0.9786 + }, + { + "start": 17651.04, + "end": 17652.38, + "probability": 0.725 + }, + { + "start": 17652.42, + "end": 17658.0, + "probability": 0.8955 + }, + { + "start": 17658.24, + "end": 17662.16, + "probability": 0.9004 + }, + { + "start": 17662.26, + "end": 17665.82, + "probability": 0.9824 + }, + { + "start": 17666.0, + "end": 17669.38, + "probability": 0.9279 + }, + { + "start": 17669.42, + "end": 17673.18, + "probability": 0.7249 + }, + { + "start": 17673.5, + "end": 17673.86, + "probability": 0.6737 + }, + { + "start": 17673.94, + "end": 17674.54, + "probability": 0.4309 + }, + { + "start": 17674.54, + "end": 17680.66, + "probability": 0.9764 + }, + { + "start": 17680.88, + "end": 17688.2, + "probability": 0.9961 + }, + { + "start": 17688.54, + "end": 17689.0, + "probability": 0.8664 + }, + { + "start": 17689.02, + "end": 17695.84, + "probability": 0.9644 + }, + { + "start": 17695.94, + "end": 17698.29, + "probability": 0.8248 + }, + { + "start": 17701.62, + "end": 17703.02, + "probability": 0.8334 + }, + { + "start": 17703.2, + "end": 17707.66, + "probability": 0.9845 + }, + { + "start": 17708.5, + "end": 17709.52, + "probability": 0.478 + }, + { + "start": 17710.06, + "end": 17711.55, + "probability": 0.9875 + }, + { + "start": 17712.56, + "end": 17715.86, + "probability": 0.9025 + }, + { + "start": 17715.86, + "end": 17720.08, + "probability": 0.8816 + }, + { + "start": 17720.7, + "end": 17721.9, + "probability": 0.8365 + }, + { + "start": 17722.3, + "end": 17723.16, + "probability": 0.9089 + }, + { + "start": 17723.5, + "end": 17724.78, + "probability": 0.8023 + }, + { + "start": 17725.04, + "end": 17726.44, + "probability": 0.9365 + }, + { + "start": 17726.84, + "end": 17729.9, + "probability": 0.9981 + }, + { + "start": 17730.16, + "end": 17733.18, + "probability": 0.9842 + }, + { + "start": 17733.56, + "end": 17737.5, + "probability": 0.873 + }, + { + "start": 17738.1, + "end": 17741.28, + "probability": 0.9979 + }, + { + "start": 17741.28, + "end": 17745.02, + "probability": 0.9932 + }, + { + "start": 17745.26, + "end": 17746.28, + "probability": 0.8558 + }, + { + "start": 17746.72, + "end": 17747.5, + "probability": 0.6614 + }, + { + "start": 17747.68, + "end": 17752.86, + "probability": 0.9725 + }, + { + "start": 17754.32, + "end": 17756.96, + "probability": 0.9279 + }, + { + "start": 17757.18, + "end": 17762.22, + "probability": 0.9971 + }, + { + "start": 17762.76, + "end": 17765.98, + "probability": 0.9976 + }, + { + "start": 17765.98, + "end": 17770.38, + "probability": 0.9964 + }, + { + "start": 17770.58, + "end": 17773.2, + "probability": 0.9177 + }, + { + "start": 17773.52, + "end": 17774.82, + "probability": 0.7797 + }, + { + "start": 17774.92, + "end": 17775.6, + "probability": 0.8492 + }, + { + "start": 17775.72, + "end": 17778.84, + "probability": 0.9922 + }, + { + "start": 17779.14, + "end": 17780.18, + "probability": 0.9688 + }, + { + "start": 17780.4, + "end": 17781.84, + "probability": 0.985 + }, + { + "start": 17781.98, + "end": 17783.66, + "probability": 0.9023 + }, + { + "start": 17783.82, + "end": 17785.94, + "probability": 0.8677 + }, + { + "start": 17786.42, + "end": 17790.42, + "probability": 0.6719 + }, + { + "start": 17791.18, + "end": 17794.75, + "probability": 0.6795 + }, + { + "start": 17794.92, + "end": 17799.18, + "probability": 0.9486 + }, + { + "start": 17799.44, + "end": 17803.52, + "probability": 0.9731 + }, + { + "start": 17804.02, + "end": 17806.06, + "probability": 0.8643 + }, + { + "start": 17806.36, + "end": 17807.16, + "probability": 0.8497 + }, + { + "start": 17807.34, + "end": 17809.6, + "probability": 0.9136 + }, + { + "start": 17810.08, + "end": 17813.18, + "probability": 0.8862 + }, + { + "start": 17813.56, + "end": 17819.3, + "probability": 0.99 + }, + { + "start": 17819.54, + "end": 17820.74, + "probability": 0.9184 + }, + { + "start": 17821.2, + "end": 17822.54, + "probability": 0.8211 + }, + { + "start": 17823.08, + "end": 17827.64, + "probability": 0.9891 + }, + { + "start": 17827.64, + "end": 17832.38, + "probability": 0.9097 + }, + { + "start": 17833.92, + "end": 17840.69, + "probability": 0.9947 + }, + { + "start": 17841.2, + "end": 17844.18, + "probability": 0.995 + }, + { + "start": 17844.18, + "end": 17847.7, + "probability": 0.9725 + }, + { + "start": 17848.18, + "end": 17856.12, + "probability": 0.9299 + }, + { + "start": 17856.12, + "end": 17862.26, + "probability": 0.9959 + }, + { + "start": 17862.26, + "end": 17869.64, + "probability": 0.9834 + }, + { + "start": 17870.46, + "end": 17874.7, + "probability": 0.9971 + }, + { + "start": 17874.86, + "end": 17874.86, + "probability": 0.326 + }, + { + "start": 17874.98, + "end": 17879.98, + "probability": 0.9567 + }, + { + "start": 17879.98, + "end": 17887.02, + "probability": 0.9966 + }, + { + "start": 17887.14, + "end": 17888.14, + "probability": 0.4864 + }, + { + "start": 17888.2, + "end": 17890.94, + "probability": 0.9472 + }, + { + "start": 17890.94, + "end": 17895.9, + "probability": 0.9974 + }, + { + "start": 17896.18, + "end": 17896.96, + "probability": 0.9921 + }, + { + "start": 17897.7, + "end": 17899.46, + "probability": 0.8712 + }, + { + "start": 17899.54, + "end": 17903.22, + "probability": 0.9221 + }, + { + "start": 17904.56, + "end": 17906.02, + "probability": 0.8312 + }, + { + "start": 17906.14, + "end": 17911.32, + "probability": 0.9832 + }, + { + "start": 17911.68, + "end": 17917.68, + "probability": 0.9683 + }, + { + "start": 17917.78, + "end": 17922.14, + "probability": 0.9932 + }, + { + "start": 17922.14, + "end": 17927.12, + "probability": 0.9816 + }, + { + "start": 17927.36, + "end": 17930.36, + "probability": 0.8964 + }, + { + "start": 17930.68, + "end": 17934.94, + "probability": 0.9972 + }, + { + "start": 17935.38, + "end": 17936.79, + "probability": 0.998 + }, + { + "start": 17937.26, + "end": 17939.56, + "probability": 0.9666 + }, + { + "start": 17940.0, + "end": 17941.58, + "probability": 0.7546 + }, + { + "start": 17942.36, + "end": 17945.21, + "probability": 0.9925 + }, + { + "start": 17945.56, + "end": 17949.82, + "probability": 0.9064 + }, + { + "start": 17949.82, + "end": 17952.82, + "probability": 0.9944 + }, + { + "start": 17953.46, + "end": 17959.26, + "probability": 0.9932 + }, + { + "start": 17959.88, + "end": 17960.6, + "probability": 0.3867 + }, + { + "start": 17960.68, + "end": 17964.9, + "probability": 0.8838 + }, + { + "start": 17965.36, + "end": 17966.04, + "probability": 0.8276 + }, + { + "start": 17966.28, + "end": 17969.52, + "probability": 0.9641 + }, + { + "start": 17970.32, + "end": 17974.92, + "probability": 0.9517 + }, + { + "start": 17975.08, + "end": 17977.9, + "probability": 0.9516 + }, + { + "start": 17978.36, + "end": 17983.86, + "probability": 0.6479 + }, + { + "start": 17983.94, + "end": 17984.96, + "probability": 0.9294 + }, + { + "start": 17985.78, + "end": 17987.38, + "probability": 0.9798 + }, + { + "start": 17987.52, + "end": 17991.1, + "probability": 0.7662 + }, + { + "start": 17991.72, + "end": 17996.1, + "probability": 0.9515 + }, + { + "start": 17996.74, + "end": 17998.66, + "probability": 0.9955 + }, + { + "start": 17999.44, + "end": 18001.02, + "probability": 0.8986 + }, + { + "start": 18001.14, + "end": 18001.7, + "probability": 0.9487 + }, + { + "start": 18002.24, + "end": 18004.64, + "probability": 0.9956 + }, + { + "start": 18004.66, + "end": 18009.48, + "probability": 0.8403 + }, + { + "start": 18009.48, + "end": 18015.68, + "probability": 0.9987 + }, + { + "start": 18016.04, + "end": 18019.12, + "probability": 0.9961 + }, + { + "start": 18019.28, + "end": 18021.46, + "probability": 0.6668 + }, + { + "start": 18021.84, + "end": 18022.86, + "probability": 0.9597 + }, + { + "start": 18023.62, + "end": 18028.28, + "probability": 0.9895 + }, + { + "start": 18028.28, + "end": 18034.4, + "probability": 0.9977 + }, + { + "start": 18034.68, + "end": 18035.9, + "probability": 0.881 + }, + { + "start": 18036.56, + "end": 18040.64, + "probability": 0.9976 + }, + { + "start": 18040.72, + "end": 18041.36, + "probability": 0.7114 + }, + { + "start": 18041.64, + "end": 18047.1, + "probability": 0.9974 + }, + { + "start": 18047.1, + "end": 18053.96, + "probability": 0.9988 + }, + { + "start": 18054.36, + "end": 18056.3, + "probability": 0.8773 + }, + { + "start": 18056.48, + "end": 18057.6, + "probability": 0.7369 + }, + { + "start": 18057.82, + "end": 18061.62, + "probability": 0.9832 + }, + { + "start": 18061.62, + "end": 18064.86, + "probability": 0.9953 + }, + { + "start": 18065.08, + "end": 18066.0, + "probability": 0.3872 + }, + { + "start": 18066.16, + "end": 18068.37, + "probability": 0.9564 + }, + { + "start": 18069.04, + "end": 18075.04, + "probability": 0.9745 + }, + { + "start": 18075.06, + "end": 18079.58, + "probability": 0.7771 + }, + { + "start": 18079.64, + "end": 18080.49, + "probability": 0.7717 + }, + { + "start": 18083.78, + "end": 18083.98, + "probability": 0.433 + }, + { + "start": 18083.98, + "end": 18087.17, + "probability": 0.4761 + }, + { + "start": 18087.74, + "end": 18088.26, + "probability": 0.8529 + }, + { + "start": 18088.6, + "end": 18091.72, + "probability": 0.8052 + }, + { + "start": 18091.96, + "end": 18092.84, + "probability": 0.8596 + }, + { + "start": 18104.88, + "end": 18107.3, + "probability": 0.8343 + }, + { + "start": 18108.34, + "end": 18109.48, + "probability": 0.3408 + }, + { + "start": 18114.54, + "end": 18117.18, + "probability": 0.4765 + }, + { + "start": 18118.39, + "end": 18120.68, + "probability": 0.6803 + }, + { + "start": 18120.92, + "end": 18122.4, + "probability": 0.7293 + }, + { + "start": 18122.52, + "end": 18122.64, + "probability": 0.1556 + }, + { + "start": 18122.64, + "end": 18124.12, + "probability": 0.7325 + }, + { + "start": 18124.2, + "end": 18125.08, + "probability": 0.8328 + }, + { + "start": 18125.48, + "end": 18125.68, + "probability": 0.3317 + }, + { + "start": 18128.7, + "end": 18130.84, + "probability": 0.0679 + }, + { + "start": 18132.08, + "end": 18135.48, + "probability": 0.6147 + }, + { + "start": 18136.28, + "end": 18137.02, + "probability": 0.3483 + }, + { + "start": 18137.13, + "end": 18141.14, + "probability": 0.7552 + }, + { + "start": 18143.34, + "end": 18144.72, + "probability": 0.7133 + }, + { + "start": 18145.78, + "end": 18146.6, + "probability": 0.9035 + }, + { + "start": 18147.3, + "end": 18147.3, + "probability": 0.2765 + }, + { + "start": 18147.3, + "end": 18149.18, + "probability": 0.5037 + }, + { + "start": 18151.84, + "end": 18154.7, + "probability": 0.9386 + }, + { + "start": 18155.14, + "end": 18156.48, + "probability": 0.8183 + }, + { + "start": 18158.16, + "end": 18159.04, + "probability": 0.9712 + }, + { + "start": 18159.24, + "end": 18160.9, + "probability": 0.7354 + }, + { + "start": 18161.82, + "end": 18168.2, + "probability": 0.9451 + }, + { + "start": 18168.68, + "end": 18172.94, + "probability": 0.9987 + }, + { + "start": 18173.82, + "end": 18177.48, + "probability": 0.9641 + }, + { + "start": 18178.2, + "end": 18182.52, + "probability": 0.9404 + }, + { + "start": 18183.38, + "end": 18188.2, + "probability": 0.7079 + }, + { + "start": 18188.98, + "end": 18192.92, + "probability": 0.9033 + }, + { + "start": 18194.24, + "end": 18196.72, + "probability": 0.7644 + }, + { + "start": 18197.3, + "end": 18198.66, + "probability": 0.9171 + }, + { + "start": 18199.46, + "end": 18204.36, + "probability": 0.9051 + }, + { + "start": 18205.98, + "end": 18211.36, + "probability": 0.9307 + }, + { + "start": 18213.38, + "end": 18219.0, + "probability": 0.9688 + }, + { + "start": 18219.02, + "end": 18222.22, + "probability": 0.968 + }, + { + "start": 18223.4, + "end": 18225.96, + "probability": 0.8312 + }, + { + "start": 18226.48, + "end": 18229.1, + "probability": 0.73 + }, + { + "start": 18230.28, + "end": 18235.1, + "probability": 0.9146 + }, + { + "start": 18235.18, + "end": 18236.92, + "probability": 0.8655 + }, + { + "start": 18237.2, + "end": 18238.24, + "probability": 0.4329 + }, + { + "start": 18240.36, + "end": 18246.42, + "probability": 0.9474 + }, + { + "start": 18248.98, + "end": 18258.3, + "probability": 0.9834 + }, + { + "start": 18259.32, + "end": 18262.48, + "probability": 0.9795 + }, + { + "start": 18262.58, + "end": 18264.38, + "probability": 0.763 + }, + { + "start": 18264.48, + "end": 18270.7, + "probability": 0.9105 + }, + { + "start": 18271.4, + "end": 18274.9, + "probability": 0.7504 + }, + { + "start": 18276.86, + "end": 18278.02, + "probability": 0.924 + }, + { + "start": 18278.9, + "end": 18281.28, + "probability": 0.6441 + }, + { + "start": 18282.48, + "end": 18284.37, + "probability": 0.7966 + }, + { + "start": 18285.14, + "end": 18285.86, + "probability": 0.4334 + }, + { + "start": 18285.88, + "end": 18286.56, + "probability": 0.7517 + }, + { + "start": 18286.94, + "end": 18291.24, + "probability": 0.967 + }, + { + "start": 18291.24, + "end": 18295.96, + "probability": 0.9164 + }, + { + "start": 18296.46, + "end": 18298.46, + "probability": 0.257 + }, + { + "start": 18299.16, + "end": 18304.24, + "probability": 0.7449 + }, + { + "start": 18305.04, + "end": 18309.98, + "probability": 0.9149 + }, + { + "start": 18309.98, + "end": 18314.38, + "probability": 0.9188 + }, + { + "start": 18315.38, + "end": 18318.41, + "probability": 0.9827 + }, + { + "start": 18319.24, + "end": 18323.76, + "probability": 0.7803 + }, + { + "start": 18323.96, + "end": 18324.4, + "probability": 0.5629 + }, + { + "start": 18324.84, + "end": 18325.54, + "probability": 0.4689 + }, + { + "start": 18325.64, + "end": 18326.36, + "probability": 0.7074 + }, + { + "start": 18326.86, + "end": 18327.68, + "probability": 0.441 + }, + { + "start": 18328.08, + "end": 18328.54, + "probability": 0.558 + }, + { + "start": 18328.58, + "end": 18329.04, + "probability": 0.5483 + }, + { + "start": 18329.42, + "end": 18330.64, + "probability": 0.3889 + }, + { + "start": 18332.0, + "end": 18334.08, + "probability": 0.6907 + }, + { + "start": 18335.06, + "end": 18336.18, + "probability": 0.5683 + }, + { + "start": 18337.54, + "end": 18338.56, + "probability": 0.915 + }, + { + "start": 18339.4, + "end": 18342.44, + "probability": 0.8235 + }, + { + "start": 18343.26, + "end": 18345.46, + "probability": 0.8706 + }, + { + "start": 18345.98, + "end": 18351.18, + "probability": 0.9598 + }, + { + "start": 18351.7, + "end": 18357.46, + "probability": 0.8397 + }, + { + "start": 18357.92, + "end": 18361.34, + "probability": 0.9878 + }, + { + "start": 18361.34, + "end": 18365.74, + "probability": 0.9199 + }, + { + "start": 18367.36, + "end": 18372.88, + "probability": 0.9889 + }, + { + "start": 18372.88, + "end": 18377.62, + "probability": 0.9811 + }, + { + "start": 18378.56, + "end": 18382.26, + "probability": 0.7017 + }, + { + "start": 18382.8, + "end": 18387.22, + "probability": 0.8748 + }, + { + "start": 18387.78, + "end": 18391.5, + "probability": 0.9768 + }, + { + "start": 18392.58, + "end": 18393.06, + "probability": 0.5728 + }, + { + "start": 18393.12, + "end": 18393.68, + "probability": 0.8598 + }, + { + "start": 18393.74, + "end": 18396.36, + "probability": 0.8409 + }, + { + "start": 18396.84, + "end": 18398.14, + "probability": 0.8761 + }, + { + "start": 18400.44, + "end": 18401.54, + "probability": 0.8979 + }, + { + "start": 18402.16, + "end": 18403.4, + "probability": 0.9858 + }, + { + "start": 18404.18, + "end": 18406.0, + "probability": 0.7163 + }, + { + "start": 18406.36, + "end": 18411.92, + "probability": 0.7446 + }, + { + "start": 18412.44, + "end": 18415.12, + "probability": 0.9565 + }, + { + "start": 18415.5, + "end": 18417.52, + "probability": 0.9612 + }, + { + "start": 18417.96, + "end": 18418.92, + "probability": 0.9184 + }, + { + "start": 18419.28, + "end": 18420.2, + "probability": 0.9162 + }, + { + "start": 18420.66, + "end": 18423.06, + "probability": 0.9253 + }, + { + "start": 18423.44, + "end": 18427.36, + "probability": 0.9824 + }, + { + "start": 18427.36, + "end": 18431.1, + "probability": 0.9644 + }, + { + "start": 18431.46, + "end": 18431.98, + "probability": 0.763 + }, + { + "start": 18435.3, + "end": 18437.24, + "probability": 0.5946 + }, + { + "start": 18438.44, + "end": 18440.74, + "probability": 0.7484 + }, + { + "start": 18446.62, + "end": 18447.38, + "probability": 0.492 + }, + { + "start": 18456.88, + "end": 18457.82, + "probability": 0.6677 + }, + { + "start": 18461.96, + "end": 18463.54, + "probability": 0.682 + }, + { + "start": 18464.82, + "end": 18466.26, + "probability": 0.8846 + }, + { + "start": 18468.46, + "end": 18470.44, + "probability": 0.9965 + }, + { + "start": 18471.1, + "end": 18473.0, + "probability": 0.9597 + }, + { + "start": 18474.0, + "end": 18479.98, + "probability": 0.8792 + }, + { + "start": 18480.16, + "end": 18483.68, + "probability": 0.9941 + }, + { + "start": 18485.12, + "end": 18486.8, + "probability": 0.9613 + }, + { + "start": 18488.76, + "end": 18492.1, + "probability": 0.8905 + }, + { + "start": 18493.06, + "end": 18495.3, + "probability": 0.9099 + }, + { + "start": 18495.92, + "end": 18498.64, + "probability": 0.9156 + }, + { + "start": 18498.64, + "end": 18502.52, + "probability": 0.9148 + }, + { + "start": 18503.06, + "end": 18505.72, + "probability": 0.9566 + }, + { + "start": 18506.26, + "end": 18512.3, + "probability": 0.9966 + }, + { + "start": 18513.26, + "end": 18517.14, + "probability": 0.8208 + }, + { + "start": 18517.78, + "end": 18520.3, + "probability": 0.9219 + }, + { + "start": 18521.62, + "end": 18524.18, + "probability": 0.8819 + }, + { + "start": 18524.34, + "end": 18529.06, + "probability": 0.9591 + }, + { + "start": 18529.72, + "end": 18530.92, + "probability": 0.6913 + }, + { + "start": 18531.02, + "end": 18533.84, + "probability": 0.75 + }, + { + "start": 18534.32, + "end": 18535.68, + "probability": 0.905 + }, + { + "start": 18536.52, + "end": 18539.22, + "probability": 0.7339 + }, + { + "start": 18539.8, + "end": 18543.24, + "probability": 0.6382 + }, + { + "start": 18544.08, + "end": 18549.7, + "probability": 0.9826 + }, + { + "start": 18550.56, + "end": 18554.12, + "probability": 0.9404 + }, + { + "start": 18554.74, + "end": 18556.18, + "probability": 0.9951 + }, + { + "start": 18557.1, + "end": 18559.58, + "probability": 0.9728 + }, + { + "start": 18560.1, + "end": 18565.48, + "probability": 0.8208 + }, + { + "start": 18565.94, + "end": 18571.88, + "probability": 0.9783 + }, + { + "start": 18571.96, + "end": 18577.26, + "probability": 0.9647 + }, + { + "start": 18577.4, + "end": 18584.04, + "probability": 0.9926 + }, + { + "start": 18585.48, + "end": 18589.9, + "probability": 0.8625 + }, + { + "start": 18590.0, + "end": 18590.84, + "probability": 0.8197 + }, + { + "start": 18591.42, + "end": 18593.68, + "probability": 0.2408 + }, + { + "start": 18594.02, + "end": 18594.14, + "probability": 0.1044 + }, + { + "start": 18594.14, + "end": 18597.16, + "probability": 0.9729 + }, + { + "start": 18597.76, + "end": 18603.38, + "probability": 0.7795 + }, + { + "start": 18603.9, + "end": 18605.48, + "probability": 0.9006 + }, + { + "start": 18605.54, + "end": 18608.43, + "probability": 0.8052 + }, + { + "start": 18608.6, + "end": 18608.82, + "probability": 0.2201 + }, + { + "start": 18609.2, + "end": 18609.48, + "probability": 0.3538 + }, + { + "start": 18609.58, + "end": 18610.14, + "probability": 0.6785 + }, + { + "start": 18610.32, + "end": 18611.8, + "probability": 0.6564 + }, + { + "start": 18612.32, + "end": 18614.26, + "probability": 0.8088 + }, + { + "start": 18615.92, + "end": 18617.56, + "probability": 0.2915 + }, + { + "start": 18618.1, + "end": 18618.76, + "probability": 0.5277 + }, + { + "start": 18619.0, + "end": 18621.3, + "probability": 0.7249 + }, + { + "start": 18621.3, + "end": 18625.22, + "probability": 0.9356 + }, + { + "start": 18625.38, + "end": 18627.58, + "probability": 0.8328 + }, + { + "start": 18627.86, + "end": 18629.37, + "probability": 0.9108 + }, + { + "start": 18629.7, + "end": 18631.68, + "probability": 0.837 + }, + { + "start": 18632.34, + "end": 18633.16, + "probability": 0.3828 + }, + { + "start": 18633.2, + "end": 18633.82, + "probability": 0.5645 + }, + { + "start": 18633.96, + "end": 18636.22, + "probability": 0.2542 + }, + { + "start": 18636.4, + "end": 18637.28, + "probability": 0.5927 + }, + { + "start": 18637.42, + "end": 18638.56, + "probability": 0.6315 + }, + { + "start": 18639.12, + "end": 18640.28, + "probability": 0.6388 + }, + { + "start": 18640.36, + "end": 18644.0, + "probability": 0.723 + }, + { + "start": 18644.38, + "end": 18645.62, + "probability": 0.8572 + }, + { + "start": 18645.64, + "end": 18651.92, + "probability": 0.0138 + }, + { + "start": 18652.08, + "end": 18652.72, + "probability": 0.6344 + }, + { + "start": 18653.7, + "end": 18654.9, + "probability": 0.5747 + }, + { + "start": 18655.04, + "end": 18656.34, + "probability": 0.3847 + }, + { + "start": 18656.94, + "end": 18658.8, + "probability": 0.9871 + }, + { + "start": 18659.18, + "end": 18663.2, + "probability": 0.9085 + }, + { + "start": 18664.04, + "end": 18664.04, + "probability": 0.6956 + }, + { + "start": 18664.3, + "end": 18665.98, + "probability": 0.9214 + }, + { + "start": 18668.62, + "end": 18675.32, + "probability": 0.9667 + }, + { + "start": 18676.36, + "end": 18677.9, + "probability": 0.8516 + }, + { + "start": 18679.26, + "end": 18680.9, + "probability": 0.5945 + }, + { + "start": 18683.18, + "end": 18686.34, + "probability": 0.6816 + }, + { + "start": 18686.54, + "end": 18687.11, + "probability": 0.4896 + }, + { + "start": 18687.48, + "end": 18688.78, + "probability": 0.1353 + }, + { + "start": 18689.3, + "end": 18690.38, + "probability": 0.7059 + }, + { + "start": 18690.38, + "end": 18691.38, + "probability": 0.1463 + }, + { + "start": 18693.28, + "end": 18699.82, + "probability": 0.9048 + }, + { + "start": 18700.44, + "end": 18702.72, + "probability": 0.1302 + }, + { + "start": 18716.2, + "end": 18719.08, + "probability": 0.3734 + }, + { + "start": 18720.43, + "end": 18726.78, + "probability": 0.9163 + }, + { + "start": 18727.38, + "end": 18728.41, + "probability": 0.27 + }, + { + "start": 18728.6, + "end": 18731.54, + "probability": 0.9429 + }, + { + "start": 18732.12, + "end": 18732.66, + "probability": 0.7924 + }, + { + "start": 18733.06, + "end": 18737.54, + "probability": 0.9245 + }, + { + "start": 18738.22, + "end": 18739.28, + "probability": 0.598 + }, + { + "start": 18739.44, + "end": 18740.32, + "probability": 0.6154 + }, + { + "start": 18740.4, + "end": 18743.98, + "probability": 0.8707 + }, + { + "start": 18744.34, + "end": 18744.64, + "probability": 0.1513 + }, + { + "start": 18744.64, + "end": 18748.46, + "probability": 0.4852 + }, + { + "start": 18748.58, + "end": 18750.56, + "probability": 0.1949 + }, + { + "start": 18750.56, + "end": 18756.46, + "probability": 0.7252 + }, + { + "start": 18756.78, + "end": 18759.84, + "probability": 0.8373 + }, + { + "start": 18761.76, + "end": 18762.72, + "probability": 0.7254 + }, + { + "start": 18763.3, + "end": 18767.8, + "probability": 0.3694 + }, + { + "start": 18770.06, + "end": 18771.58, + "probability": 0.1521 + }, + { + "start": 18771.58, + "end": 18774.22, + "probability": 0.7966 + }, + { + "start": 18774.82, + "end": 18775.24, + "probability": 0.8157 + }, + { + "start": 18790.34, + "end": 18794.0, + "probability": 0.5405 + }, + { + "start": 18794.24, + "end": 18795.28, + "probability": 0.8184 + }, + { + "start": 18796.46, + "end": 18798.02, + "probability": 0.1252 + }, + { + "start": 18799.92, + "end": 18801.89, + "probability": 0.6278 + }, + { + "start": 18802.58, + "end": 18803.26, + "probability": 0.5894 + }, + { + "start": 18803.38, + "end": 18805.48, + "probability": 0.7758 + }, + { + "start": 18806.95, + "end": 18809.06, + "probability": 0.9473 + }, + { + "start": 18809.7, + "end": 18811.64, + "probability": 0.4391 + }, + { + "start": 18811.96, + "end": 18814.56, + "probability": 0.9874 + }, + { + "start": 18814.72, + "end": 18816.42, + "probability": 0.8904 + }, + { + "start": 18816.46, + "end": 18818.18, + "probability": 0.9814 + }, + { + "start": 18818.38, + "end": 18819.2, + "probability": 0.6367 + }, + { + "start": 18836.16, + "end": 18838.12, + "probability": 0.0242 + }, + { + "start": 18838.12, + "end": 18838.12, + "probability": 0.0679 + }, + { + "start": 18838.12, + "end": 18838.12, + "probability": 0.3239 + }, + { + "start": 18838.12, + "end": 18840.0, + "probability": 0.4191 + }, + { + "start": 18840.22, + "end": 18845.92, + "probability": 0.7841 + }, + { + "start": 18847.2, + "end": 18849.91, + "probability": 0.6788 + }, + { + "start": 18850.84, + "end": 18851.69, + "probability": 0.7025 + }, + { + "start": 18852.54, + "end": 18855.22, + "probability": 0.8634 + }, + { + "start": 18855.32, + "end": 18856.36, + "probability": 0.7925 + }, + { + "start": 18856.78, + "end": 18860.94, + "probability": 0.7892 + }, + { + "start": 18861.2, + "end": 18861.55, + "probability": 0.7539 + }, + { + "start": 18863.28, + "end": 18869.22, + "probability": 0.5733 + }, + { + "start": 18869.58, + "end": 18871.16, + "probability": 0.3845 + }, + { + "start": 18871.72, + "end": 18872.94, + "probability": 0.7221 + }, + { + "start": 18873.68, + "end": 18876.32, + "probability": 0.4645 + }, + { + "start": 18876.86, + "end": 18878.56, + "probability": 0.8087 + }, + { + "start": 18879.18, + "end": 18879.8, + "probability": 0.8659 + }, + { + "start": 18880.78, + "end": 18882.7, + "probability": 0.5002 + }, + { + "start": 18883.82, + "end": 18889.14, + "probability": 0.1637 + }, + { + "start": 18900.76, + "end": 18901.82, + "probability": 0.216 + }, + { + "start": 18902.36, + "end": 18906.14, + "probability": 0.8627 + }, + { + "start": 18906.34, + "end": 18909.82, + "probability": 0.7785 + }, + { + "start": 18909.88, + "end": 18917.08, + "probability": 0.7803 + }, + { + "start": 18917.2, + "end": 18918.42, + "probability": 0.6353 + }, + { + "start": 18924.32, + "end": 18929.1, + "probability": 0.6097 + }, + { + "start": 18929.24, + "end": 18932.36, + "probability": 0.6187 + }, + { + "start": 18933.78, + "end": 18934.24, + "probability": 0.4725 + }, + { + "start": 18934.24, + "end": 18936.63, + "probability": 0.2201 + }, + { + "start": 18937.94, + "end": 18938.1, + "probability": 0.4786 + }, + { + "start": 18938.42, + "end": 18943.46, + "probability": 0.8517 + }, + { + "start": 18943.96, + "end": 18944.7, + "probability": 0.7198 + }, + { + "start": 18948.34, + "end": 18950.8, + "probability": 0.5325 + }, + { + "start": 18954.75, + "end": 18958.08, + "probability": 0.3383 + }, + { + "start": 18958.36, + "end": 18960.46, + "probability": 0.1493 + }, + { + "start": 18960.98, + "end": 18962.78, + "probability": 0.7475 + }, + { + "start": 18962.92, + "end": 18964.04, + "probability": 0.9717 + }, + { + "start": 18980.5, + "end": 18983.4, + "probability": 0.7183 + }, + { + "start": 18983.7, + "end": 18985.46, + "probability": 0.7939 + }, + { + "start": 18985.54, + "end": 18988.64, + "probability": 0.8457 + }, + { + "start": 18989.74, + "end": 18990.96, + "probability": 0.8037 + }, + { + "start": 18991.76, + "end": 18993.7, + "probability": 0.55 + }, + { + "start": 18994.6, + "end": 18996.78, + "probability": 0.685 + }, + { + "start": 19005.46, + "end": 19005.46, + "probability": 0.2569 + }, + { + "start": 19005.46, + "end": 19007.73, + "probability": 0.5902 + }, + { + "start": 19009.62, + "end": 19012.06, + "probability": 0.7636 + }, + { + "start": 19012.12, + "end": 19016.98, + "probability": 0.874 + }, + { + "start": 19016.98, + "end": 19021.8, + "probability": 0.7765 + }, + { + "start": 19022.24, + "end": 19025.22, + "probability": 0.6434 + }, + { + "start": 19025.46, + "end": 19026.07, + "probability": 0.8292 + }, + { + "start": 19026.6, + "end": 19028.71, + "probability": 0.9429 + }, + { + "start": 19028.9, + "end": 19035.64, + "probability": 0.9837 + }, + { + "start": 19036.22, + "end": 19037.44, + "probability": 0.6824 + }, + { + "start": 19037.54, + "end": 19040.92, + "probability": 0.9412 + }, + { + "start": 19040.96, + "end": 19042.8, + "probability": 0.9221 + }, + { + "start": 19043.12, + "end": 19045.64, + "probability": 0.7051 + }, + { + "start": 19045.64, + "end": 19049.12, + "probability": 0.8643 + }, + { + "start": 19049.12, + "end": 19049.6, + "probability": 0.7392 + }, + { + "start": 19051.16, + "end": 19052.8, + "probability": 0.5789 + }, + { + "start": 19053.34, + "end": 19054.22, + "probability": 0.7551 + }, + { + "start": 19054.34, + "end": 19056.72, + "probability": 0.7123 + }, + { + "start": 19057.02, + "end": 19060.6, + "probability": 0.9552 + }, + { + "start": 19060.6, + "end": 19065.18, + "probability": 0.9957 + }, + { + "start": 19065.18, + "end": 19070.08, + "probability": 0.8477 + }, + { + "start": 19070.86, + "end": 19073.06, + "probability": 0.81 + }, + { + "start": 19073.32, + "end": 19078.62, + "probability": 0.9912 + }, + { + "start": 19079.68, + "end": 19081.68, + "probability": 0.8394 + }, + { + "start": 19082.62, + "end": 19082.64, + "probability": 0.0011 + }, + { + "start": 19083.24, + "end": 19086.82, + "probability": 0.749 + }, + { + "start": 19087.44, + "end": 19092.5, + "probability": 0.9762 + }, + { + "start": 19093.94, + "end": 19097.4, + "probability": 0.9905 + }, + { + "start": 19098.52, + "end": 19100.79, + "probability": 0.9609 + }, + { + "start": 19101.34, + "end": 19103.88, + "probability": 0.8219 + }, + { + "start": 19104.64, + "end": 19105.22, + "probability": 0.6401 + }, + { + "start": 19105.32, + "end": 19106.22, + "probability": 0.707 + }, + { + "start": 19108.08, + "end": 19108.36, + "probability": 0.4109 + }, + { + "start": 19109.2, + "end": 19111.28, + "probability": 0.9264 + }, + { + "start": 19111.36, + "end": 19111.86, + "probability": 0.5672 + }, + { + "start": 19111.86, + "end": 19112.4, + "probability": 0.3911 + }, + { + "start": 19112.46, + "end": 19115.52, + "probability": 0.6148 + }, + { + "start": 19115.68, + "end": 19116.62, + "probability": 0.8808 + }, + { + "start": 19117.66, + "end": 19119.26, + "probability": 0.5358 + }, + { + "start": 19120.24, + "end": 19125.04, + "probability": 0.8999 + }, + { + "start": 19126.5, + "end": 19128.8, + "probability": 0.4266 + }, + { + "start": 19130.02, + "end": 19131.94, + "probability": 0.9124 + }, + { + "start": 19132.72, + "end": 19133.84, + "probability": 0.9966 + }, + { + "start": 19136.0, + "end": 19137.14, + "probability": 0.7702 + }, + { + "start": 19137.24, + "end": 19137.74, + "probability": 0.61 + }, + { + "start": 19137.84, + "end": 19139.74, + "probability": 0.5056 + }, + { + "start": 19140.74, + "end": 19143.6, + "probability": 0.8955 + }, + { + "start": 19144.6, + "end": 19148.04, + "probability": 0.7182 + }, + { + "start": 19149.56, + "end": 19150.52, + "probability": 0.4864 + }, + { + "start": 19152.0, + "end": 19153.52, + "probability": 0.3781 + }, + { + "start": 19154.8, + "end": 19157.96, + "probability": 0.6857 + }, + { + "start": 19158.72, + "end": 19161.76, + "probability": 0.7981 + }, + { + "start": 19162.28, + "end": 19168.18, + "probability": 0.686 + }, + { + "start": 19169.6, + "end": 19172.18, + "probability": 0.9683 + }, + { + "start": 19175.24, + "end": 19175.24, + "probability": 0.5756 + }, + { + "start": 19175.24, + "end": 19177.78, + "probability": 0.7872 + }, + { + "start": 19178.42, + "end": 19183.32, + "probability": 0.9844 + }, + { + "start": 19183.32, + "end": 19188.36, + "probability": 0.8756 + }, + { + "start": 19188.86, + "end": 19191.12, + "probability": 0.9613 + }, + { + "start": 19192.06, + "end": 19192.88, + "probability": 0.6307 + }, + { + "start": 19193.46, + "end": 19194.5, + "probability": 0.8624 + }, + { + "start": 19195.26, + "end": 19198.28, + "probability": 0.8397 + }, + { + "start": 19204.84, + "end": 19206.48, + "probability": 0.6445 + }, + { + "start": 19206.64, + "end": 19207.88, + "probability": 0.7971 + }, + { + "start": 19207.92, + "end": 19208.54, + "probability": 0.1208 + }, + { + "start": 19208.64, + "end": 19209.92, + "probability": 0.8987 + }, + { + "start": 19209.96, + "end": 19216.04, + "probability": 0.989 + }, + { + "start": 19216.04, + "end": 19221.18, + "probability": 0.8957 + }, + { + "start": 19222.32, + "end": 19223.02, + "probability": 0.8267 + }, + { + "start": 19223.14, + "end": 19225.96, + "probability": 0.9954 + }, + { + "start": 19225.96, + "end": 19229.56, + "probability": 0.993 + }, + { + "start": 19230.74, + "end": 19231.64, + "probability": 0.9849 + }, + { + "start": 19236.32, + "end": 19239.74, + "probability": 0.9893 + }, + { + "start": 19240.68, + "end": 19243.25, + "probability": 0.8603 + }, + { + "start": 19243.54, + "end": 19247.1, + "probability": 0.859 + }, + { + "start": 19247.96, + "end": 19251.21, + "probability": 0.8485 + }, + { + "start": 19251.34, + "end": 19253.84, + "probability": 0.9581 + }, + { + "start": 19254.7, + "end": 19258.3, + "probability": 0.8288 + }, + { + "start": 19261.38, + "end": 19268.62, + "probability": 0.9941 + }, + { + "start": 19268.62, + "end": 19275.13, + "probability": 0.999 + }, + { + "start": 19275.44, + "end": 19279.06, + "probability": 0.9161 + }, + { + "start": 19279.84, + "end": 19280.3, + "probability": 0.4957 + }, + { + "start": 19280.42, + "end": 19283.64, + "probability": 0.9299 + }, + { + "start": 19283.64, + "end": 19287.92, + "probability": 0.83 + }, + { + "start": 19288.76, + "end": 19293.64, + "probability": 0.8958 + }, + { + "start": 19293.64, + "end": 19297.96, + "probability": 0.991 + }, + { + "start": 19297.96, + "end": 19304.35, + "probability": 0.9839 + }, + { + "start": 19306.28, + "end": 19308.48, + "probability": 0.6187 + }, + { + "start": 19309.7, + "end": 19311.14, + "probability": 0.1932 + }, + { + "start": 19311.64, + "end": 19311.64, + "probability": 0.1493 + }, + { + "start": 19311.64, + "end": 19312.4, + "probability": 0.4876 + }, + { + "start": 19312.4, + "end": 19314.52, + "probability": 0.5258 + }, + { + "start": 19315.12, + "end": 19317.4, + "probability": 0.6556 + }, + { + "start": 19327.86, + "end": 19330.22, + "probability": 0.929 + }, + { + "start": 19330.58, + "end": 19330.93, + "probability": 0.0329 + }, + { + "start": 19339.3, + "end": 19341.06, + "probability": 0.7151 + }, + { + "start": 19341.18, + "end": 19342.92, + "probability": 0.7274 + }, + { + "start": 19343.0, + "end": 19347.3, + "probability": 0.6598 + }, + { + "start": 19347.38, + "end": 19351.42, + "probability": 0.7765 + }, + { + "start": 19353.06, + "end": 19358.06, + "probability": 0.7347 + }, + { + "start": 19358.22, + "end": 19360.1, + "probability": 0.9897 + }, + { + "start": 19360.48, + "end": 19364.16, + "probability": 0.9847 + }, + { + "start": 19365.53, + "end": 19367.22, + "probability": 0.7182 + }, + { + "start": 19367.36, + "end": 19369.58, + "probability": 0.6005 + }, + { + "start": 19370.1, + "end": 19370.32, + "probability": 0.7953 + }, + { + "start": 19370.46, + "end": 19374.08, + "probability": 0.9817 + }, + { + "start": 19374.08, + "end": 19378.06, + "probability": 0.9821 + }, + { + "start": 19379.86, + "end": 19380.84, + "probability": 0.9417 + }, + { + "start": 19380.98, + "end": 19383.52, + "probability": 0.9719 + }, + { + "start": 19383.52, + "end": 19387.62, + "probability": 0.8938 + }, + { + "start": 19388.14, + "end": 19390.12, + "probability": 0.9624 + }, + { + "start": 19391.18, + "end": 19397.48, + "probability": 0.8363 + }, + { + "start": 19398.06, + "end": 19402.02, + "probability": 0.948 + }, + { + "start": 19403.02, + "end": 19404.2, + "probability": 0.4994 + }, + { + "start": 19405.02, + "end": 19407.36, + "probability": 0.9906 + }, + { + "start": 19407.36, + "end": 19410.76, + "probability": 0.9014 + }, + { + "start": 19411.68, + "end": 19414.44, + "probability": 0.905 + }, + { + "start": 19414.98, + "end": 19418.1, + "probability": 0.8379 + }, + { + "start": 19418.78, + "end": 19419.62, + "probability": 0.8857 + }, + { + "start": 19419.68, + "end": 19422.76, + "probability": 0.9373 + }, + { + "start": 19423.16, + "end": 19426.76, + "probability": 0.9734 + }, + { + "start": 19427.4, + "end": 19427.88, + "probability": 0.5569 + }, + { + "start": 19428.24, + "end": 19429.17, + "probability": 0.9915 + }, + { + "start": 19429.48, + "end": 19430.36, + "probability": 0.8838 + }, + { + "start": 19436.38, + "end": 19437.06, + "probability": 0.7117 + }, + { + "start": 19437.16, + "end": 19441.3, + "probability": 0.9745 + }, + { + "start": 19441.86, + "end": 19444.28, + "probability": 0.9109 + }, + { + "start": 19444.32, + "end": 19447.8, + "probability": 0.9926 + }, + { + "start": 19448.18, + "end": 19451.16, + "probability": 0.0693 + }, + { + "start": 19451.16, + "end": 19454.39, + "probability": 0.8564 + }, + { + "start": 19454.84, + "end": 19457.78, + "probability": 0.8318 + }, + { + "start": 19457.94, + "end": 19461.32, + "probability": 0.9618 + }, + { + "start": 19461.32, + "end": 19464.04, + "probability": 0.9639 + }, + { + "start": 19464.5, + "end": 19468.74, + "probability": 0.9868 + }, + { + "start": 19469.14, + "end": 19471.38, + "probability": 0.9879 + }, + { + "start": 19471.38, + "end": 19473.9, + "probability": 0.8014 + }, + { + "start": 19474.28, + "end": 19475.04, + "probability": 0.7362 + }, + { + "start": 19475.12, + "end": 19477.88, + "probability": 0.9954 + }, + { + "start": 19477.88, + "end": 19480.72, + "probability": 0.9946 + }, + { + "start": 19481.0, + "end": 19485.22, + "probability": 0.805 + }, + { + "start": 19485.8, + "end": 19489.44, + "probability": 0.991 + }, + { + "start": 19489.44, + "end": 19492.6, + "probability": 0.9932 + }, + { + "start": 19492.74, + "end": 19493.4, + "probability": 0.5643 + }, + { + "start": 19493.54, + "end": 19500.91, + "probability": 0.9905 + }, + { + "start": 19501.14, + "end": 19506.72, + "probability": 0.9949 + }, + { + "start": 19506.72, + "end": 19510.78, + "probability": 0.8613 + }, + { + "start": 19512.06, + "end": 19512.06, + "probability": 0.5261 + }, + { + "start": 19512.06, + "end": 19513.18, + "probability": 0.8077 + }, + { + "start": 19513.8, + "end": 19515.52, + "probability": 0.4717 + }, + { + "start": 19518.46, + "end": 19522.36, + "probability": 0.7475 + }, + { + "start": 19522.58, + "end": 19525.36, + "probability": 0.9519 + }, + { + "start": 19526.66, + "end": 19529.52, + "probability": 0.9972 + }, + { + "start": 19530.36, + "end": 19532.56, + "probability": 0.8159 + }, + { + "start": 19533.5, + "end": 19536.72, + "probability": 0.7836 + }, + { + "start": 19537.28, + "end": 19538.66, + "probability": 0.6064 + }, + { + "start": 19539.36, + "end": 19540.58, + "probability": 0.979 + }, + { + "start": 19541.14, + "end": 19543.84, + "probability": 0.9443 + }, + { + "start": 19544.44, + "end": 19546.8, + "probability": 0.9896 + }, + { + "start": 19547.9, + "end": 19549.08, + "probability": 0.73 + }, + { + "start": 19549.6, + "end": 19550.96, + "probability": 0.7625 + }, + { + "start": 19551.96, + "end": 19552.46, + "probability": 0.4274 + }, + { + "start": 19553.36, + "end": 19555.82, + "probability": 0.8324 + }, + { + "start": 19556.36, + "end": 19559.9, + "probability": 0.8611 + }, + { + "start": 19560.08, + "end": 19560.92, + "probability": 0.8231 + }, + { + "start": 19561.04, + "end": 19563.34, + "probability": 0.7131 + }, + { + "start": 19563.44, + "end": 19565.4, + "probability": 0.7332 + }, + { + "start": 19566.02, + "end": 19567.16, + "probability": 0.7664 + }, + { + "start": 19567.28, + "end": 19572.76, + "probability": 0.9766 + }, + { + "start": 19573.52, + "end": 19577.02, + "probability": 0.6106 + }, + { + "start": 19577.58, + "end": 19581.2, + "probability": 0.6297 + }, + { + "start": 19581.7, + "end": 19581.7, + "probability": 0.0905 + }, + { + "start": 19581.7, + "end": 19582.82, + "probability": 0.203 + }, + { + "start": 19584.04, + "end": 19587.42, + "probability": 0.9609 + }, + { + "start": 19587.42, + "end": 19590.96, + "probability": 0.8626 + }, + { + "start": 19591.94, + "end": 19594.25, + "probability": 0.8542 + }, + { + "start": 19594.9, + "end": 19598.54, + "probability": 0.1374 + }, + { + "start": 19598.58, + "end": 19599.1, + "probability": 0.7262 + }, + { + "start": 19599.7, + "end": 19600.14, + "probability": 0.6906 + }, + { + "start": 19600.4, + "end": 19601.32, + "probability": 0.7975 + }, + { + "start": 19601.76, + "end": 19602.2, + "probability": 0.5166 + }, + { + "start": 19602.88, + "end": 19604.2, + "probability": 0.8626 + }, + { + "start": 19604.42, + "end": 19607.26, + "probability": 0.9574 + }, + { + "start": 19607.26, + "end": 19608.12, + "probability": 0.888 + }, + { + "start": 19608.32, + "end": 19609.14, + "probability": 0.3556 + }, + { + "start": 19609.24, + "end": 19611.56, + "probability": 0.9907 + }, + { + "start": 19611.56, + "end": 19614.9, + "probability": 0.9937 + }, + { + "start": 19615.82, + "end": 19618.76, + "probability": 0.8803 + }, + { + "start": 19620.22, + "end": 19624.56, + "probability": 0.9458 + }, + { + "start": 19625.14, + "end": 19630.24, + "probability": 0.9744 + }, + { + "start": 19630.82, + "end": 19631.32, + "probability": 0.7767 + }, + { + "start": 19633.96, + "end": 19634.04, + "probability": 0.0179 + }, + { + "start": 19634.04, + "end": 19638.92, + "probability": 0.6717 + }, + { + "start": 19639.56, + "end": 19642.4, + "probability": 0.7956 + }, + { + "start": 19643.76, + "end": 19647.2, + "probability": 0.8998 + }, + { + "start": 19648.42, + "end": 19651.4, + "probability": 0.8319 + }, + { + "start": 19651.4, + "end": 19655.12, + "probability": 0.9869 + }, + { + "start": 19656.44, + "end": 19656.44, + "probability": 0.2495 + }, + { + "start": 19656.44, + "end": 19658.3, + "probability": 0.4817 + }, + { + "start": 19658.36, + "end": 19659.86, + "probability": 0.9014 + }, + { + "start": 19660.1, + "end": 19663.48, + "probability": 0.6314 + }, + { + "start": 19664.14, + "end": 19667.56, + "probability": 0.5764 + }, + { + "start": 19668.08, + "end": 19668.58, + "probability": 0.7261 + }, + { + "start": 19671.36, + "end": 19672.06, + "probability": 0.1311 + }, + { + "start": 19672.74, + "end": 19675.44, + "probability": 0.957 + }, + { + "start": 19675.54, + "end": 19676.48, + "probability": 0.7688 + }, + { + "start": 19676.98, + "end": 19679.4, + "probability": 0.9835 + }, + { + "start": 19680.27, + "end": 19683.66, + "probability": 0.9412 + }, + { + "start": 19684.24, + "end": 19687.14, + "probability": 0.793 + }, + { + "start": 19687.26, + "end": 19691.21, + "probability": 0.7693 + }, + { + "start": 19691.76, + "end": 19695.5, + "probability": 0.9676 + }, + { + "start": 19697.14, + "end": 19697.49, + "probability": 0.4691 + }, + { + "start": 19698.14, + "end": 19698.98, + "probability": 0.7031 + }, + { + "start": 19699.1, + "end": 19700.28, + "probability": 0.9355 + }, + { + "start": 19700.42, + "end": 19705.68, + "probability": 0.8273 + }, + { + "start": 19705.68, + "end": 19710.9, + "probability": 0.9921 + }, + { + "start": 19711.9, + "end": 19712.9, + "probability": 0.6401 + }, + { + "start": 19713.22, + "end": 19716.32, + "probability": 0.9971 + }, + { + "start": 19716.32, + "end": 19721.94, + "probability": 0.9876 + }, + { + "start": 19722.3, + "end": 19725.0, + "probability": 0.9681 + }, + { + "start": 19725.62, + "end": 19729.34, + "probability": 0.7939 + }, + { + "start": 19729.86, + "end": 19733.56, + "probability": 0.9896 + }, + { + "start": 19734.52, + "end": 19735.42, + "probability": 0.6982 + }, + { + "start": 19736.62, + "end": 19738.72, + "probability": 0.9545 + }, + { + "start": 19738.82, + "end": 19740.06, + "probability": 0.891 + }, + { + "start": 19740.6, + "end": 19741.9, + "probability": 0.8643 + }, + { + "start": 19742.6, + "end": 19746.88, + "probability": 0.7972 + }, + { + "start": 19746.88, + "end": 19750.04, + "probability": 0.9311 + }, + { + "start": 19750.52, + "end": 19752.58, + "probability": 0.9988 + }, + { + "start": 19753.06, + "end": 19753.98, + "probability": 0.8813 + }, + { + "start": 19754.04, + "end": 19756.62, + "probability": 0.8745 + }, + { + "start": 19756.74, + "end": 19759.96, + "probability": 0.8112 + }, + { + "start": 19760.06, + "end": 19761.04, + "probability": 0.9779 + }, + { + "start": 19761.6, + "end": 19764.3, + "probability": 0.6342 + }, + { + "start": 19764.56, + "end": 19765.8, + "probability": 0.9689 + }, + { + "start": 19766.28, + "end": 19767.46, + "probability": 0.992 + }, + { + "start": 19767.54, + "end": 19768.0, + "probability": 0.9033 + }, + { + "start": 19768.1, + "end": 19768.46, + "probability": 0.9753 + }, + { + "start": 19768.8, + "end": 19770.78, + "probability": 0.8989 + }, + { + "start": 19771.26, + "end": 19772.62, + "probability": 0.7027 + }, + { + "start": 19774.1, + "end": 19780.16, + "probability": 0.974 + }, + { + "start": 19780.26, + "end": 19786.2, + "probability": 0.9855 + }, + { + "start": 19786.8, + "end": 19790.1, + "probability": 0.9885 + }, + { + "start": 19790.76, + "end": 19793.44, + "probability": 0.5703 + }, + { + "start": 19793.96, + "end": 19796.33, + "probability": 0.9568 + }, + { + "start": 19797.6, + "end": 19802.18, + "probability": 0.9591 + }, + { + "start": 19802.32, + "end": 19803.78, + "probability": 0.9421 + }, + { + "start": 19804.26, + "end": 19807.04, + "probability": 0.9299 + }, + { + "start": 19807.92, + "end": 19811.24, + "probability": 0.5895 + }, + { + "start": 19812.04, + "end": 19817.02, + "probability": 0.9528 + }, + { + "start": 19817.22, + "end": 19819.62, + "probability": 0.9382 + }, + { + "start": 19820.18, + "end": 19820.52, + "probability": 0.7656 + }, + { + "start": 19821.26, + "end": 19822.34, + "probability": 0.7401 + }, + { + "start": 19822.48, + "end": 19823.47, + "probability": 0.955 + }, + { + "start": 19824.22, + "end": 19825.16, + "probability": 0.8616 + }, + { + "start": 19826.36, + "end": 19828.0, + "probability": 0.9216 + }, + { + "start": 19830.56, + "end": 19830.9, + "probability": 0.0031 + } + ], + "segments_count": 6363, + "words_count": 32162, + "avg_words_per_segment": 5.0545, + "avg_segment_duration": 2.3752, + "avg_words_per_minute": 96.2716, + "plenum_id": "11861", + "duration": 20044.54, + "title": null, + "plenum_date": "2011-01-26" +} \ No newline at end of file