diff --git "a/1860/metadata.json" "b/1860/metadata.json" new file mode 100644--- /dev/null +++ "b/1860/metadata.json" @@ -0,0 +1,13812 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "1860", + "quality_score": 0.8667, + "per_segment_quality_scores": [ + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.48, + "end": 126.72, + "probability": 0.798 + }, + { + "start": 127.4, + "end": 134.14, + "probability": 0.7585 + }, + { + "start": 135.24, + "end": 135.5, + "probability": 0.7009 + }, + { + "start": 138.6, + "end": 142.7, + "probability": 0.9921 + }, + { + "start": 142.82, + "end": 145.47, + "probability": 0.8474 + }, + { + "start": 146.7, + "end": 148.56, + "probability": 0.5948 + }, + { + "start": 149.68, + "end": 150.1, + "probability": 0.4081 + }, + { + "start": 150.72, + "end": 154.58, + "probability": 0.9575 + }, + { + "start": 155.94, + "end": 158.7, + "probability": 0.9893 + }, + { + "start": 159.82, + "end": 164.04, + "probability": 0.9417 + }, + { + "start": 164.68, + "end": 169.46, + "probability": 0.9949 + }, + { + "start": 170.18, + "end": 174.92, + "probability": 0.8789 + }, + { + "start": 176.12, + "end": 178.36, + "probability": 0.9054 + }, + { + "start": 178.72, + "end": 181.6, + "probability": 0.9928 + }, + { + "start": 182.12, + "end": 183.72, + "probability": 0.9915 + }, + { + "start": 184.4, + "end": 186.74, + "probability": 0.9713 + }, + { + "start": 187.62, + "end": 188.14, + "probability": 0.8017 + }, + { + "start": 189.38, + "end": 190.44, + "probability": 0.8605 + }, + { + "start": 191.8, + "end": 192.1, + "probability": 0.5336 + }, + { + "start": 192.88, + "end": 197.9, + "probability": 0.965 + }, + { + "start": 198.84, + "end": 199.14, + "probability": 0.4458 + }, + { + "start": 199.8, + "end": 201.9, + "probability": 0.991 + }, + { + "start": 202.6, + "end": 203.64, + "probability": 0.9985 + }, + { + "start": 204.52, + "end": 210.36, + "probability": 0.981 + }, + { + "start": 212.12, + "end": 213.38, + "probability": 0.6871 + }, + { + "start": 214.14, + "end": 215.19, + "probability": 0.5728 + }, + { + "start": 216.58, + "end": 217.86, + "probability": 0.9116 + }, + { + "start": 217.94, + "end": 219.28, + "probability": 0.6482 + }, + { + "start": 219.36, + "end": 220.82, + "probability": 0.9773 + }, + { + "start": 220.86, + "end": 221.7, + "probability": 0.8646 + }, + { + "start": 222.4, + "end": 226.32, + "probability": 0.694 + }, + { + "start": 226.32, + "end": 227.82, + "probability": 0.6122 + }, + { + "start": 227.96, + "end": 228.7, + "probability": 0.5834 + }, + { + "start": 229.5, + "end": 232.9, + "probability": 0.2065 + }, + { + "start": 237.44, + "end": 245.94, + "probability": 0.2317 + }, + { + "start": 247.18, + "end": 249.6, + "probability": 0.3236 + }, + { + "start": 252.54, + "end": 258.78, + "probability": 0.0738 + }, + { + "start": 258.9, + "end": 260.06, + "probability": 0.0043 + }, + { + "start": 261.58, + "end": 263.68, + "probability": 0.0292 + }, + { + "start": 264.36, + "end": 264.36, + "probability": 0.0782 + }, + { + "start": 267.7, + "end": 267.7, + "probability": 0.0251 + }, + { + "start": 267.7, + "end": 270.2, + "probability": 0.0514 + }, + { + "start": 270.6, + "end": 274.12, + "probability": 0.0113 + }, + { + "start": 274.24, + "end": 275.34, + "probability": 0.0877 + }, + { + "start": 283.62, + "end": 283.72, + "probability": 0.0211 + }, + { + "start": 283.9, + "end": 287.12, + "probability": 0.0859 + }, + { + "start": 287.26, + "end": 287.26, + "probability": 0.0172 + }, + { + "start": 287.26, + "end": 288.16, + "probability": 0.0213 + }, + { + "start": 288.6, + "end": 288.6, + "probability": 0.2619 + }, + { + "start": 288.86, + "end": 289.56, + "probability": 0.0327 + }, + { + "start": 289.7, + "end": 289.98, + "probability": 0.0544 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.0, + "end": 290.0, + "probability": 0.0 + }, + { + "start": 290.14, + "end": 292.45, + "probability": 0.193 + }, + { + "start": 294.46, + "end": 300.06, + "probability": 0.8394 + }, + { + "start": 300.92, + "end": 302.42, + "probability": 0.7855 + }, + { + "start": 303.54, + "end": 305.08, + "probability": 0.7455 + }, + { + "start": 305.78, + "end": 309.22, + "probability": 0.2891 + }, + { + "start": 309.98, + "end": 313.88, + "probability": 0.9972 + }, + { + "start": 313.88, + "end": 319.58, + "probability": 0.9987 + }, + { + "start": 320.6, + "end": 323.58, + "probability": 0.7716 + }, + { + "start": 323.72, + "end": 325.7, + "probability": 0.9593 + }, + { + "start": 326.16, + "end": 331.66, + "probability": 0.9438 + }, + { + "start": 331.66, + "end": 335.26, + "probability": 0.9966 + }, + { + "start": 336.14, + "end": 340.06, + "probability": 0.9878 + }, + { + "start": 340.5, + "end": 342.52, + "probability": 0.8817 + }, + { + "start": 343.88, + "end": 344.46, + "probability": 0.4981 + }, + { + "start": 344.52, + "end": 345.34, + "probability": 0.9307 + }, + { + "start": 345.78, + "end": 348.82, + "probability": 0.9351 + }, + { + "start": 348.92, + "end": 352.22, + "probability": 0.964 + }, + { + "start": 354.39, + "end": 356.52, + "probability": 0.4868 + }, + { + "start": 357.42, + "end": 360.36, + "probability": 0.2949 + }, + { + "start": 361.48, + "end": 365.24, + "probability": 0.9977 + }, + { + "start": 366.34, + "end": 368.5, + "probability": 0.9816 + }, + { + "start": 369.32, + "end": 374.14, + "probability": 0.9807 + }, + { + "start": 375.38, + "end": 377.06, + "probability": 0.9917 + }, + { + "start": 378.14, + "end": 380.84, + "probability": 0.7402 + }, + { + "start": 382.6, + "end": 383.4, + "probability": 0.8973 + }, + { + "start": 383.9, + "end": 386.44, + "probability": 0.881 + }, + { + "start": 387.04, + "end": 387.26, + "probability": 0.8385 + }, + { + "start": 387.66, + "end": 389.08, + "probability": 0.75 + }, + { + "start": 389.7, + "end": 390.8, + "probability": 0.9699 + }, + { + "start": 391.52, + "end": 393.24, + "probability": 0.9952 + }, + { + "start": 394.38, + "end": 395.44, + "probability": 0.9185 + }, + { + "start": 395.72, + "end": 397.36, + "probability": 0.7843 + }, + { + "start": 397.46, + "end": 399.46, + "probability": 0.7615 + }, + { + "start": 400.44, + "end": 401.97, + "probability": 0.8864 + }, + { + "start": 403.5, + "end": 405.8, + "probability": 0.9962 + }, + { + "start": 405.86, + "end": 407.86, + "probability": 0.9133 + }, + { + "start": 409.22, + "end": 411.52, + "probability": 0.9325 + }, + { + "start": 411.52, + "end": 414.2, + "probability": 0.9973 + }, + { + "start": 416.66, + "end": 419.24, + "probability": 0.9163 + }, + { + "start": 419.52, + "end": 420.3, + "probability": 0.5459 + }, + { + "start": 421.26, + "end": 425.4, + "probability": 0.2213 + }, + { + "start": 425.4, + "end": 429.44, + "probability": 0.2609 + }, + { + "start": 429.78, + "end": 431.18, + "probability": 0.0286 + }, + { + "start": 431.36, + "end": 431.78, + "probability": 0.5008 + }, + { + "start": 431.84, + "end": 435.3, + "probability": 0.5942 + }, + { + "start": 438.54, + "end": 440.5, + "probability": 0.6492 + }, + { + "start": 441.08, + "end": 441.48, + "probability": 0.7311 + }, + { + "start": 441.9, + "end": 445.22, + "probability": 0.2765 + }, + { + "start": 446.8, + "end": 446.82, + "probability": 0.4508 + }, + { + "start": 446.82, + "end": 448.72, + "probability": 0.9472 + }, + { + "start": 450.1, + "end": 454.38, + "probability": 0.9595 + }, + { + "start": 454.52, + "end": 455.18, + "probability": 0.8723 + }, + { + "start": 456.52, + "end": 458.74, + "probability": 0.9159 + }, + { + "start": 459.78, + "end": 463.96, + "probability": 0.9407 + }, + { + "start": 465.18, + "end": 467.04, + "probability": 0.8897 + }, + { + "start": 467.9, + "end": 469.09, + "probability": 0.4984 + }, + { + "start": 469.52, + "end": 474.9, + "probability": 0.8386 + }, + { + "start": 474.9, + "end": 476.62, + "probability": 0.4696 + }, + { + "start": 477.22, + "end": 479.52, + "probability": 0.9756 + }, + { + "start": 479.68, + "end": 479.98, + "probability": 0.5265 + }, + { + "start": 480.02, + "end": 480.62, + "probability": 0.7416 + }, + { + "start": 480.82, + "end": 481.36, + "probability": 0.8969 + }, + { + "start": 481.68, + "end": 482.28, + "probability": 0.8531 + }, + { + "start": 482.72, + "end": 483.68, + "probability": 0.9342 + }, + { + "start": 484.2, + "end": 486.22, + "probability": 0.7746 + }, + { + "start": 486.84, + "end": 489.06, + "probability": 0.9537 + }, + { + "start": 489.72, + "end": 490.2, + "probability": 0.7546 + }, + { + "start": 491.58, + "end": 492.18, + "probability": 0.5333 + }, + { + "start": 492.67, + "end": 494.24, + "probability": 0.8144 + }, + { + "start": 494.36, + "end": 496.06, + "probability": 0.9886 + }, + { + "start": 496.28, + "end": 496.94, + "probability": 0.7552 + }, + { + "start": 497.64, + "end": 500.08, + "probability": 0.7608 + }, + { + "start": 500.58, + "end": 501.68, + "probability": 0.4925 + }, + { + "start": 502.26, + "end": 503.74, + "probability": 0.4183 + }, + { + "start": 504.78, + "end": 506.66, + "probability": 0.7854 + }, + { + "start": 506.8, + "end": 507.64, + "probability": 0.8893 + }, + { + "start": 507.72, + "end": 510.36, + "probability": 0.7631 + }, + { + "start": 510.44, + "end": 511.54, + "probability": 0.9653 + }, + { + "start": 512.08, + "end": 514.02, + "probability": 0.9101 + }, + { + "start": 514.2, + "end": 515.67, + "probability": 0.4897 + }, + { + "start": 516.54, + "end": 518.26, + "probability": 0.4955 + }, + { + "start": 519.34, + "end": 520.68, + "probability": 0.9038 + }, + { + "start": 520.98, + "end": 521.68, + "probability": 0.6382 + }, + { + "start": 522.62, + "end": 523.95, + "probability": 0.6953 + }, + { + "start": 525.32, + "end": 527.54, + "probability": 0.8577 + }, + { + "start": 527.64, + "end": 528.12, + "probability": 0.4265 + }, + { + "start": 528.68, + "end": 530.73, + "probability": 0.9954 + }, + { + "start": 531.42, + "end": 536.02, + "probability": 0.9874 + }, + { + "start": 536.16, + "end": 536.93, + "probability": 0.9031 + }, + { + "start": 537.38, + "end": 539.38, + "probability": 0.5489 + }, + { + "start": 539.4, + "end": 539.7, + "probability": 0.537 + }, + { + "start": 539.72, + "end": 540.56, + "probability": 0.7713 + }, + { + "start": 541.42, + "end": 544.66, + "probability": 0.8543 + }, + { + "start": 546.62, + "end": 547.4, + "probability": 0.2358 + }, + { + "start": 547.62, + "end": 549.52, + "probability": 0.2861 + }, + { + "start": 551.32, + "end": 553.82, + "probability": 0.6431 + }, + { + "start": 553.9, + "end": 554.4, + "probability": 0.701 + }, + { + "start": 554.52, + "end": 554.82, + "probability": 0.8394 + }, + { + "start": 555.02, + "end": 556.12, + "probability": 0.974 + }, + { + "start": 556.7, + "end": 558.84, + "probability": 0.9612 + }, + { + "start": 560.24, + "end": 560.95, + "probability": 0.9214 + }, + { + "start": 561.66, + "end": 562.62, + "probability": 0.7991 + }, + { + "start": 563.12, + "end": 563.44, + "probability": 0.2213 + }, + { + "start": 564.06, + "end": 565.02, + "probability": 0.6425 + }, + { + "start": 565.08, + "end": 566.36, + "probability": 0.9752 + }, + { + "start": 566.6, + "end": 567.52, + "probability": 0.7312 + }, + { + "start": 567.66, + "end": 568.11, + "probability": 0.9138 + }, + { + "start": 568.24, + "end": 569.54, + "probability": 0.8901 + }, + { + "start": 569.92, + "end": 570.2, + "probability": 0.8953 + }, + { + "start": 570.76, + "end": 572.5, + "probability": 0.7268 + }, + { + "start": 573.1, + "end": 574.28, + "probability": 0.5325 + }, + { + "start": 574.96, + "end": 575.16, + "probability": 0.8157 + }, + { + "start": 575.8, + "end": 577.06, + "probability": 0.5687 + }, + { + "start": 577.96, + "end": 580.02, + "probability": 0.7183 + }, + { + "start": 580.1, + "end": 582.02, + "probability": 0.9526 + }, + { + "start": 582.66, + "end": 584.32, + "probability": 0.5974 + }, + { + "start": 584.74, + "end": 586.36, + "probability": 0.8838 + }, + { + "start": 587.08, + "end": 587.78, + "probability": 0.7843 + }, + { + "start": 588.16, + "end": 589.13, + "probability": 0.8449 + }, + { + "start": 590.48, + "end": 591.45, + "probability": 0.9368 + }, + { + "start": 591.62, + "end": 594.84, + "probability": 0.9706 + }, + { + "start": 595.78, + "end": 597.12, + "probability": 0.8773 + }, + { + "start": 597.7, + "end": 598.9, + "probability": 0.9839 + }, + { + "start": 599.68, + "end": 600.7, + "probability": 0.9807 + }, + { + "start": 601.56, + "end": 603.46, + "probability": 0.6169 + }, + { + "start": 603.6, + "end": 604.4, + "probability": 0.8203 + }, + { + "start": 605.44, + "end": 607.92, + "probability": 0.7029 + }, + { + "start": 608.9, + "end": 610.28, + "probability": 0.7347 + }, + { + "start": 610.6, + "end": 612.62, + "probability": 0.3123 + }, + { + "start": 613.0, + "end": 613.36, + "probability": 0.83 + }, + { + "start": 614.56, + "end": 617.04, + "probability": 0.9972 + }, + { + "start": 617.94, + "end": 620.8, + "probability": 0.9009 + }, + { + "start": 620.98, + "end": 622.4, + "probability": 0.8201 + }, + { + "start": 622.96, + "end": 625.12, + "probability": 0.7142 + }, + { + "start": 626.16, + "end": 628.36, + "probability": 0.998 + }, + { + "start": 628.48, + "end": 630.46, + "probability": 0.9717 + }, + { + "start": 630.86, + "end": 632.2, + "probability": 0.6151 + }, + { + "start": 632.8, + "end": 636.24, + "probability": 0.924 + }, + { + "start": 636.88, + "end": 637.38, + "probability": 0.8371 + }, + { + "start": 638.32, + "end": 639.74, + "probability": 0.8006 + }, + { + "start": 640.32, + "end": 640.94, + "probability": 0.7585 + }, + { + "start": 641.8, + "end": 642.92, + "probability": 0.8826 + }, + { + "start": 643.9, + "end": 645.86, + "probability": 0.9362 + }, + { + "start": 645.92, + "end": 647.08, + "probability": 0.7806 + }, + { + "start": 647.36, + "end": 647.57, + "probability": 0.1484 + }, + { + "start": 649.34, + "end": 652.14, + "probability": 0.8248 + }, + { + "start": 653.68, + "end": 655.28, + "probability": 0.8097 + }, + { + "start": 655.36, + "end": 656.78, + "probability": 0.9158 + }, + { + "start": 657.0, + "end": 657.54, + "probability": 0.7335 + }, + { + "start": 657.72, + "end": 658.16, + "probability": 0.3315 + }, + { + "start": 658.92, + "end": 661.36, + "probability": 0.8351 + }, + { + "start": 662.5, + "end": 663.59, + "probability": 0.9624 + }, + { + "start": 664.08, + "end": 665.46, + "probability": 0.6102 + }, + { + "start": 665.5, + "end": 666.66, + "probability": 0.7384 + }, + { + "start": 666.7, + "end": 668.98, + "probability": 0.9587 + }, + { + "start": 669.3, + "end": 672.54, + "probability": 0.956 + }, + { + "start": 673.06, + "end": 674.46, + "probability": 0.8862 + }, + { + "start": 674.74, + "end": 675.98, + "probability": 0.8154 + }, + { + "start": 676.54, + "end": 680.38, + "probability": 0.9771 + }, + { + "start": 681.42, + "end": 688.0, + "probability": 0.5857 + }, + { + "start": 688.26, + "end": 688.62, + "probability": 0.3926 + }, + { + "start": 688.62, + "end": 688.66, + "probability": 0.3911 + }, + { + "start": 688.66, + "end": 691.58, + "probability": 0.6782 + }, + { + "start": 692.58, + "end": 692.93, + "probability": 0.0783 + }, + { + "start": 693.24, + "end": 695.38, + "probability": 0.1136 + }, + { + "start": 698.3, + "end": 698.88, + "probability": 0.8359 + }, + { + "start": 698.98, + "end": 698.98, + "probability": 0.0475 + }, + { + "start": 698.98, + "end": 699.18, + "probability": 0.2444 + }, + { + "start": 699.24, + "end": 699.88, + "probability": 0.0053 + }, + { + "start": 699.88, + "end": 700.59, + "probability": 0.5538 + }, + { + "start": 702.12, + "end": 703.88, + "probability": 0.739 + }, + { + "start": 704.12, + "end": 706.16, + "probability": 0.8219 + }, + { + "start": 707.04, + "end": 707.8, + "probability": 0.6947 + }, + { + "start": 707.8, + "end": 708.56, + "probability": 0.7511 + }, + { + "start": 708.64, + "end": 709.47, + "probability": 0.4741 + }, + { + "start": 709.86, + "end": 711.46, + "probability": 0.9372 + }, + { + "start": 712.04, + "end": 714.14, + "probability": 0.9033 + }, + { + "start": 714.4, + "end": 716.24, + "probability": 0.8943 + }, + { + "start": 717.08, + "end": 718.86, + "probability": 0.8101 + }, + { + "start": 719.5, + "end": 721.04, + "probability": 0.6711 + }, + { + "start": 722.12, + "end": 723.96, + "probability": 0.9696 + }, + { + "start": 724.86, + "end": 725.5, + "probability": 0.9794 + }, + { + "start": 726.18, + "end": 728.39, + "probability": 0.7334 + }, + { + "start": 728.82, + "end": 730.6, + "probability": 0.8847 + }, + { + "start": 731.54, + "end": 734.26, + "probability": 0.9823 + }, + { + "start": 734.78, + "end": 736.54, + "probability": 0.8261 + }, + { + "start": 737.32, + "end": 738.6, + "probability": 0.9768 + }, + { + "start": 739.0, + "end": 741.28, + "probability": 0.9936 + }, + { + "start": 741.9, + "end": 744.8, + "probability": 0.9106 + }, + { + "start": 744.86, + "end": 750.44, + "probability": 0.8884 + }, + { + "start": 751.32, + "end": 752.5, + "probability": 0.7009 + }, + { + "start": 753.24, + "end": 754.5, + "probability": 0.6157 + }, + { + "start": 755.0, + "end": 758.14, + "probability": 0.9203 + }, + { + "start": 758.62, + "end": 760.8, + "probability": 0.9447 + }, + { + "start": 761.52, + "end": 761.94, + "probability": 0.6886 + }, + { + "start": 762.88, + "end": 764.28, + "probability": 0.7834 + }, + { + "start": 765.58, + "end": 768.72, + "probability": 0.8916 + }, + { + "start": 769.16, + "end": 770.12, + "probability": 0.7598 + }, + { + "start": 770.6, + "end": 771.72, + "probability": 0.7521 + }, + { + "start": 771.8, + "end": 772.28, + "probability": 0.6638 + }, + { + "start": 772.28, + "end": 772.62, + "probability": 0.9022 + }, + { + "start": 773.5, + "end": 776.2, + "probability": 0.6613 + }, + { + "start": 776.8, + "end": 777.54, + "probability": 0.8742 + }, + { + "start": 777.56, + "end": 778.56, + "probability": 0.8093 + }, + { + "start": 779.0, + "end": 780.94, + "probability": 0.3206 + }, + { + "start": 780.94, + "end": 782.11, + "probability": 0.6179 + }, + { + "start": 784.68, + "end": 785.44, + "probability": 0.1866 + }, + { + "start": 785.44, + "end": 785.76, + "probability": 0.2076 + }, + { + "start": 785.9, + "end": 787.62, + "probability": 0.8568 + }, + { + "start": 787.88, + "end": 788.81, + "probability": 0.734 + }, + { + "start": 789.46, + "end": 790.9, + "probability": 0.7418 + }, + { + "start": 791.6, + "end": 791.96, + "probability": 0.799 + }, + { + "start": 792.04, + "end": 792.6, + "probability": 0.859 + }, + { + "start": 792.68, + "end": 793.16, + "probability": 0.6599 + }, + { + "start": 793.36, + "end": 795.46, + "probability": 0.9818 + }, + { + "start": 795.96, + "end": 796.68, + "probability": 0.8212 + }, + { + "start": 796.94, + "end": 798.28, + "probability": 0.6986 + }, + { + "start": 798.86, + "end": 801.24, + "probability": 0.7373 + }, + { + "start": 801.54, + "end": 804.22, + "probability": 0.9763 + }, + { + "start": 804.8, + "end": 807.22, + "probability": 0.9771 + }, + { + "start": 807.26, + "end": 809.22, + "probability": 0.8881 + }, + { + "start": 809.48, + "end": 810.88, + "probability": 0.981 + }, + { + "start": 811.4, + "end": 811.76, + "probability": 0.8339 + }, + { + "start": 813.64, + "end": 815.98, + "probability": 0.9702 + }, + { + "start": 816.46, + "end": 817.9, + "probability": 0.9951 + }, + { + "start": 818.82, + "end": 820.12, + "probability": 0.7559 + }, + { + "start": 820.94, + "end": 822.0, + "probability": 0.8733 + }, + { + "start": 822.6, + "end": 823.32, + "probability": 0.9637 + }, + { + "start": 823.42, + "end": 823.7, + "probability": 0.6134 + }, + { + "start": 824.16, + "end": 826.38, + "probability": 0.9544 + }, + { + "start": 826.56, + "end": 827.18, + "probability": 0.6424 + }, + { + "start": 828.18, + "end": 828.62, + "probability": 0.3913 + }, + { + "start": 828.88, + "end": 831.92, + "probability": 0.8398 + }, + { + "start": 832.56, + "end": 834.26, + "probability": 0.9711 + }, + { + "start": 834.54, + "end": 837.86, + "probability": 0.9457 + }, + { + "start": 838.18, + "end": 841.16, + "probability": 0.6642 + }, + { + "start": 841.36, + "end": 841.92, + "probability": 0.3684 + }, + { + "start": 842.04, + "end": 843.94, + "probability": 0.9326 + }, + { + "start": 844.0, + "end": 844.26, + "probability": 0.1566 + }, + { + "start": 844.38, + "end": 844.68, + "probability": 0.5784 + }, + { + "start": 844.74, + "end": 845.58, + "probability": 0.6648 + }, + { + "start": 845.62, + "end": 846.18, + "probability": 0.5156 + }, + { + "start": 846.58, + "end": 847.76, + "probability": 0.6755 + }, + { + "start": 847.78, + "end": 853.14, + "probability": 0.9762 + }, + { + "start": 853.9, + "end": 855.7, + "probability": 0.3741 + }, + { + "start": 856.4, + "end": 859.8, + "probability": 0.7336 + }, + { + "start": 859.9, + "end": 860.08, + "probability": 0.5139 + }, + { + "start": 860.2, + "end": 862.43, + "probability": 0.9866 + }, + { + "start": 862.84, + "end": 866.66, + "probability": 0.7851 + }, + { + "start": 866.82, + "end": 867.4, + "probability": 0.218 + }, + { + "start": 867.62, + "end": 868.14, + "probability": 0.5878 + }, + { + "start": 868.16, + "end": 869.52, + "probability": 0.6075 + }, + { + "start": 869.56, + "end": 871.18, + "probability": 0.9576 + }, + { + "start": 872.58, + "end": 872.76, + "probability": 0.0593 + }, + { + "start": 872.88, + "end": 872.88, + "probability": 0.0186 + }, + { + "start": 872.96, + "end": 873.2, + "probability": 0.6779 + }, + { + "start": 873.34, + "end": 876.28, + "probability": 0.4836 + }, + { + "start": 876.28, + "end": 880.26, + "probability": 0.6192 + }, + { + "start": 880.74, + "end": 881.37, + "probability": 0.8822 + }, + { + "start": 883.64, + "end": 885.5, + "probability": 0.9595 + }, + { + "start": 885.54, + "end": 885.72, + "probability": 0.9076 + }, + { + "start": 885.88, + "end": 886.92, + "probability": 0.7731 + }, + { + "start": 887.34, + "end": 890.84, + "probability": 0.8704 + }, + { + "start": 890.98, + "end": 891.64, + "probability": 0.7473 + }, + { + "start": 892.08, + "end": 892.42, + "probability": 0.9471 + }, + { + "start": 893.0, + "end": 895.54, + "probability": 0.762 + }, + { + "start": 896.32, + "end": 897.76, + "probability": 0.7339 + }, + { + "start": 898.8, + "end": 899.3, + "probability": 0.5845 + }, + { + "start": 899.42, + "end": 900.0, + "probability": 0.5108 + }, + { + "start": 900.2, + "end": 901.18, + "probability": 0.6681 + }, + { + "start": 901.68, + "end": 904.9, + "probability": 0.7077 + }, + { + "start": 905.4, + "end": 910.16, + "probability": 0.9914 + }, + { + "start": 910.5, + "end": 912.56, + "probability": 0.8382 + }, + { + "start": 913.46, + "end": 914.39, + "probability": 0.8109 + }, + { + "start": 915.78, + "end": 917.96, + "probability": 0.9839 + }, + { + "start": 918.58, + "end": 920.56, + "probability": 0.9562 + }, + { + "start": 921.64, + "end": 922.48, + "probability": 0.7896 + }, + { + "start": 923.02, + "end": 926.3, + "probability": 0.8579 + }, + { + "start": 927.2, + "end": 928.62, + "probability": 0.9757 + }, + { + "start": 928.7, + "end": 929.14, + "probability": 0.6606 + }, + { + "start": 929.24, + "end": 932.38, + "probability": 0.9666 + }, + { + "start": 932.9, + "end": 933.42, + "probability": 0.2331 + }, + { + "start": 933.58, + "end": 935.67, + "probability": 0.8113 + }, + { + "start": 936.66, + "end": 941.16, + "probability": 0.9752 + }, + { + "start": 941.98, + "end": 942.44, + "probability": 0.3326 + }, + { + "start": 943.52, + "end": 943.98, + "probability": 0.7627 + }, + { + "start": 944.76, + "end": 945.42, + "probability": 0.902 + }, + { + "start": 946.38, + "end": 949.36, + "probability": 0.931 + }, + { + "start": 949.52, + "end": 949.6, + "probability": 0.371 + }, + { + "start": 949.74, + "end": 950.08, + "probability": 0.811 + }, + { + "start": 950.4, + "end": 953.26, + "probability": 0.9113 + }, + { + "start": 953.48, + "end": 956.8, + "probability": 0.9535 + }, + { + "start": 958.08, + "end": 961.2, + "probability": 0.9927 + }, + { + "start": 962.42, + "end": 966.52, + "probability": 0.918 + }, + { + "start": 967.06, + "end": 967.84, + "probability": 0.8877 + }, + { + "start": 968.34, + "end": 969.42, + "probability": 0.5822 + }, + { + "start": 970.0, + "end": 970.82, + "probability": 0.928 + }, + { + "start": 971.72, + "end": 972.38, + "probability": 0.9739 + }, + { + "start": 973.0, + "end": 974.8, + "probability": 0.9292 + }, + { + "start": 974.9, + "end": 976.26, + "probability": 0.7927 + }, + { + "start": 976.3, + "end": 977.22, + "probability": 0.5701 + }, + { + "start": 978.3, + "end": 980.42, + "probability": 0.8464 + }, + { + "start": 981.24, + "end": 983.66, + "probability": 0.9364 + }, + { + "start": 984.68, + "end": 986.12, + "probability": 0.9801 + }, + { + "start": 986.74, + "end": 989.3, + "probability": 0.9347 + }, + { + "start": 989.46, + "end": 992.28, + "probability": 0.7191 + }, + { + "start": 992.46, + "end": 993.76, + "probability": 0.7595 + }, + { + "start": 995.58, + "end": 997.48, + "probability": 0.9172 + }, + { + "start": 997.92, + "end": 999.42, + "probability": 0.8357 + }, + { + "start": 1001.79, + "end": 1003.04, + "probability": 0.3541 + }, + { + "start": 1003.36, + "end": 1003.72, + "probability": 0.24 + }, + { + "start": 1003.72, + "end": 1004.12, + "probability": 0.3035 + }, + { + "start": 1004.86, + "end": 1005.24, + "probability": 0.7792 + }, + { + "start": 1006.44, + "end": 1007.72, + "probability": 0.8759 + }, + { + "start": 1008.58, + "end": 1011.11, + "probability": 0.8279 + }, + { + "start": 1012.26, + "end": 1012.93, + "probability": 0.4971 + }, + { + "start": 1013.52, + "end": 1015.66, + "probability": 0.8103 + }, + { + "start": 1016.12, + "end": 1017.56, + "probability": 0.8953 + }, + { + "start": 1017.9, + "end": 1020.2, + "probability": 0.83 + }, + { + "start": 1021.2, + "end": 1023.22, + "probability": 0.6599 + }, + { + "start": 1023.88, + "end": 1027.18, + "probability": 0.7959 + }, + { + "start": 1027.74, + "end": 1028.46, + "probability": 0.6564 + }, + { + "start": 1028.88, + "end": 1029.36, + "probability": 0.7101 + }, + { + "start": 1029.66, + "end": 1032.34, + "probability": 0.9364 + }, + { + "start": 1033.22, + "end": 1034.92, + "probability": 0.7399 + }, + { + "start": 1035.94, + "end": 1036.48, + "probability": 0.8562 + }, + { + "start": 1037.02, + "end": 1038.66, + "probability": 0.8988 + }, + { + "start": 1038.66, + "end": 1040.2, + "probability": 0.8633 + }, + { + "start": 1041.92, + "end": 1042.78, + "probability": 0.9906 + }, + { + "start": 1043.46, + "end": 1045.62, + "probability": 0.7762 + }, + { + "start": 1046.42, + "end": 1047.34, + "probability": 0.7078 + }, + { + "start": 1047.92, + "end": 1048.86, + "probability": 0.4918 + }, + { + "start": 1048.86, + "end": 1050.6, + "probability": 0.5546 + }, + { + "start": 1052.4, + "end": 1053.03, + "probability": 0.9471 + }, + { + "start": 1053.5, + "end": 1055.68, + "probability": 0.9863 + }, + { + "start": 1057.06, + "end": 1059.42, + "probability": 0.0665 + }, + { + "start": 1060.86, + "end": 1061.6, + "probability": 0.6742 + }, + { + "start": 1061.82, + "end": 1063.64, + "probability": 0.7064 + }, + { + "start": 1065.74, + "end": 1071.84, + "probability": 0.9799 + }, + { + "start": 1072.96, + "end": 1073.34, + "probability": 0.9194 + }, + { + "start": 1073.38, + "end": 1074.04, + "probability": 0.7035 + }, + { + "start": 1074.1, + "end": 1074.47, + "probability": 0.5663 + }, + { + "start": 1075.88, + "end": 1078.6, + "probability": 0.9474 + }, + { + "start": 1079.04, + "end": 1079.2, + "probability": 0.4032 + }, + { + "start": 1079.26, + "end": 1081.94, + "probability": 0.9862 + }, + { + "start": 1082.72, + "end": 1086.24, + "probability": 0.9783 + }, + { + "start": 1086.96, + "end": 1087.36, + "probability": 0.7729 + }, + { + "start": 1088.0, + "end": 1089.36, + "probability": 0.7422 + }, + { + "start": 1090.3, + "end": 1091.72, + "probability": 0.5664 + }, + { + "start": 1092.26, + "end": 1093.35, + "probability": 0.7034 + }, + { + "start": 1093.46, + "end": 1094.4, + "probability": 0.6414 + }, + { + "start": 1094.84, + "end": 1096.88, + "probability": 0.9842 + }, + { + "start": 1098.5, + "end": 1100.52, + "probability": 0.9583 + }, + { + "start": 1101.42, + "end": 1101.7, + "probability": 0.8155 + }, + { + "start": 1102.68, + "end": 1105.88, + "probability": 0.9134 + }, + { + "start": 1106.6, + "end": 1108.3, + "probability": 0.3914 + }, + { + "start": 1108.98, + "end": 1111.36, + "probability": 0.7551 + }, + { + "start": 1111.62, + "end": 1111.74, + "probability": 0.6753 + }, + { + "start": 1112.5, + "end": 1113.32, + "probability": 0.5339 + }, + { + "start": 1113.92, + "end": 1115.14, + "probability": 0.9839 + }, + { + "start": 1115.64, + "end": 1118.06, + "probability": 0.6558 + }, + { + "start": 1119.14, + "end": 1123.12, + "probability": 0.4983 + }, + { + "start": 1123.24, + "end": 1124.49, + "probability": 0.4184 + }, + { + "start": 1124.8, + "end": 1125.1, + "probability": 0.603 + }, + { + "start": 1126.02, + "end": 1129.18, + "probability": 0.8309 + }, + { + "start": 1129.86, + "end": 1133.92, + "probability": 0.6929 + }, + { + "start": 1134.92, + "end": 1136.9, + "probability": 0.7693 + }, + { + "start": 1138.02, + "end": 1139.42, + "probability": 0.5642 + }, + { + "start": 1139.62, + "end": 1141.0, + "probability": 0.6498 + }, + { + "start": 1141.82, + "end": 1142.9, + "probability": 0.5178 + }, + { + "start": 1142.96, + "end": 1143.68, + "probability": 0.843 + }, + { + "start": 1143.74, + "end": 1144.34, + "probability": 0.576 + }, + { + "start": 1144.38, + "end": 1144.86, + "probability": 0.9497 + }, + { + "start": 1145.98, + "end": 1148.73, + "probability": 0.8814 + }, + { + "start": 1149.04, + "end": 1150.54, + "probability": 0.8867 + }, + { + "start": 1152.36, + "end": 1153.82, + "probability": 0.8796 + }, + { + "start": 1155.0, + "end": 1157.44, + "probability": 0.6823 + }, + { + "start": 1157.9, + "end": 1162.54, + "probability": 0.9834 + }, + { + "start": 1163.28, + "end": 1165.22, + "probability": 0.9421 + }, + { + "start": 1165.36, + "end": 1169.5, + "probability": 0.7591 + }, + { + "start": 1169.86, + "end": 1170.78, + "probability": 0.8271 + }, + { + "start": 1171.06, + "end": 1172.12, + "probability": 0.6258 + }, + { + "start": 1172.5, + "end": 1174.62, + "probability": 0.812 + }, + { + "start": 1175.22, + "end": 1176.36, + "probability": 0.8348 + }, + { + "start": 1176.88, + "end": 1178.32, + "probability": 0.7669 + }, + { + "start": 1179.18, + "end": 1183.01, + "probability": 0.9832 + }, + { + "start": 1183.56, + "end": 1184.44, + "probability": 0.3983 + }, + { + "start": 1184.78, + "end": 1185.6, + "probability": 0.9644 + }, + { + "start": 1186.22, + "end": 1186.7, + "probability": 0.9381 + }, + { + "start": 1187.38, + "end": 1187.8, + "probability": 0.4133 + }, + { + "start": 1187.92, + "end": 1192.64, + "probability": 0.8948 + }, + { + "start": 1193.24, + "end": 1193.9, + "probability": 0.9889 + }, + { + "start": 1194.56, + "end": 1195.12, + "probability": 0.942 + }, + { + "start": 1196.18, + "end": 1199.72, + "probability": 0.0275 + }, + { + "start": 1200.16, + "end": 1200.16, + "probability": 0.1351 + }, + { + "start": 1200.16, + "end": 1203.9, + "probability": 0.8613 + }, + { + "start": 1204.42, + "end": 1205.46, + "probability": 0.8895 + }, + { + "start": 1206.42, + "end": 1208.04, + "probability": 0.834 + }, + { + "start": 1210.76, + "end": 1211.08, + "probability": 0.8298 + }, + { + "start": 1212.44, + "end": 1217.76, + "probability": 0.9568 + }, + { + "start": 1218.92, + "end": 1219.54, + "probability": 0.4739 + }, + { + "start": 1219.64, + "end": 1223.1, + "probability": 0.9353 + }, + { + "start": 1223.58, + "end": 1223.7, + "probability": 0.0304 + }, + { + "start": 1223.7, + "end": 1225.64, + "probability": 0.8462 + }, + { + "start": 1226.24, + "end": 1229.08, + "probability": 0.9913 + }, + { + "start": 1229.88, + "end": 1230.14, + "probability": 0.0558 + }, + { + "start": 1230.14, + "end": 1230.34, + "probability": 0.1535 + }, + { + "start": 1230.58, + "end": 1233.98, + "probability": 0.2736 + }, + { + "start": 1234.6, + "end": 1238.6, + "probability": 0.7827 + }, + { + "start": 1239.02, + "end": 1243.54, + "probability": 0.9877 + }, + { + "start": 1244.48, + "end": 1245.24, + "probability": 0.9801 + }, + { + "start": 1248.0, + "end": 1250.42, + "probability": 0.8965 + }, + { + "start": 1251.04, + "end": 1256.76, + "probability": 0.5394 + }, + { + "start": 1257.78, + "end": 1261.6, + "probability": 0.99 + }, + { + "start": 1262.2, + "end": 1262.94, + "probability": 0.7772 + }, + { + "start": 1263.94, + "end": 1264.92, + "probability": 0.9585 + }, + { + "start": 1265.32, + "end": 1269.4, + "probability": 0.118 + }, + { + "start": 1270.36, + "end": 1271.9, + "probability": 0.2601 + }, + { + "start": 1272.12, + "end": 1272.12, + "probability": 0.1267 + }, + { + "start": 1272.22, + "end": 1276.06, + "probability": 0.9456 + }, + { + "start": 1276.08, + "end": 1277.06, + "probability": 0.0323 + }, + { + "start": 1277.7, + "end": 1279.3, + "probability": 0.4944 + }, + { + "start": 1281.83, + "end": 1284.3, + "probability": 0.8882 + }, + { + "start": 1284.46, + "end": 1284.9, + "probability": 0.5896 + }, + { + "start": 1284.9, + "end": 1286.64, + "probability": 0.9299 + }, + { + "start": 1286.74, + "end": 1287.5, + "probability": 0.6749 + }, + { + "start": 1287.56, + "end": 1288.85, + "probability": 0.8214 + }, + { + "start": 1290.74, + "end": 1291.96, + "probability": 0.7981 + }, + { + "start": 1292.3, + "end": 1293.1, + "probability": 0.8547 + }, + { + "start": 1293.52, + "end": 1295.94, + "probability": 0.9248 + }, + { + "start": 1296.04, + "end": 1296.52, + "probability": 0.4043 + }, + { + "start": 1296.62, + "end": 1297.82, + "probability": 0.3735 + }, + { + "start": 1298.26, + "end": 1302.96, + "probability": 0.943 + }, + { + "start": 1303.38, + "end": 1306.16, + "probability": 0.7751 + }, + { + "start": 1306.62, + "end": 1308.02, + "probability": 0.9785 + }, + { + "start": 1308.7, + "end": 1312.18, + "probability": 0.9833 + }, + { + "start": 1312.72, + "end": 1313.32, + "probability": 0.8959 + }, + { + "start": 1314.06, + "end": 1314.76, + "probability": 0.9725 + }, + { + "start": 1315.64, + "end": 1317.84, + "probability": 0.9707 + }, + { + "start": 1318.66, + "end": 1319.84, + "probability": 0.7681 + }, + { + "start": 1322.34, + "end": 1323.52, + "probability": 0.0908 + }, + { + "start": 1323.52, + "end": 1325.24, + "probability": 0.9138 + }, + { + "start": 1326.7, + "end": 1330.2, + "probability": 0.9932 + }, + { + "start": 1331.18, + "end": 1335.38, + "probability": 0.8772 + }, + { + "start": 1336.94, + "end": 1338.76, + "probability": 0.9226 + }, + { + "start": 1340.68, + "end": 1341.58, + "probability": 0.9778 + }, + { + "start": 1342.1, + "end": 1343.56, + "probability": 0.8318 + }, + { + "start": 1343.78, + "end": 1344.16, + "probability": 0.6678 + }, + { + "start": 1344.8, + "end": 1345.16, + "probability": 0.9364 + }, + { + "start": 1346.8, + "end": 1347.68, + "probability": 0.8947 + }, + { + "start": 1350.2, + "end": 1352.62, + "probability": 0.7847 + }, + { + "start": 1353.5, + "end": 1355.5, + "probability": 0.8247 + }, + { + "start": 1356.1, + "end": 1357.72, + "probability": 0.8832 + }, + { + "start": 1358.44, + "end": 1359.68, + "probability": 0.4147 + }, + { + "start": 1360.2, + "end": 1360.52, + "probability": 0.3635 + }, + { + "start": 1360.58, + "end": 1365.16, + "probability": 0.8508 + }, + { + "start": 1365.64, + "end": 1366.54, + "probability": 0.6646 + }, + { + "start": 1367.28, + "end": 1370.2, + "probability": 0.6794 + }, + { + "start": 1370.24, + "end": 1371.68, + "probability": 0.4155 + }, + { + "start": 1372.26, + "end": 1373.77, + "probability": 0.408 + }, + { + "start": 1374.02, + "end": 1375.18, + "probability": 0.3524 + }, + { + "start": 1375.18, + "end": 1376.56, + "probability": 0.6217 + }, + { + "start": 1377.7, + "end": 1379.54, + "probability": 0.5726 + }, + { + "start": 1379.96, + "end": 1382.26, + "probability": 0.6309 + }, + { + "start": 1383.3, + "end": 1384.58, + "probability": 0.9692 + }, + { + "start": 1385.22, + "end": 1385.98, + "probability": 0.9625 + }, + { + "start": 1387.16, + "end": 1388.62, + "probability": 0.8807 + }, + { + "start": 1389.26, + "end": 1389.84, + "probability": 0.8855 + }, + { + "start": 1389.98, + "end": 1390.6, + "probability": 0.783 + }, + { + "start": 1391.98, + "end": 1394.9, + "probability": 0.939 + }, + { + "start": 1396.76, + "end": 1399.78, + "probability": 0.9946 + }, + { + "start": 1401.88, + "end": 1403.4, + "probability": 0.9608 + }, + { + "start": 1405.58, + "end": 1407.86, + "probability": 0.7379 + }, + { + "start": 1408.88, + "end": 1411.14, + "probability": 0.7885 + }, + { + "start": 1411.98, + "end": 1416.02, + "probability": 0.8933 + }, + { + "start": 1417.54, + "end": 1419.86, + "probability": 0.697 + }, + { + "start": 1422.64, + "end": 1424.06, + "probability": 0.6423 + }, + { + "start": 1425.24, + "end": 1426.06, + "probability": 0.8613 + }, + { + "start": 1430.12, + "end": 1431.5, + "probability": 0.9983 + }, + { + "start": 1432.36, + "end": 1433.42, + "probability": 0.7812 + }, + { + "start": 1434.6, + "end": 1435.64, + "probability": 0.876 + }, + { + "start": 1436.2, + "end": 1437.72, + "probability": 0.9109 + }, + { + "start": 1439.22, + "end": 1440.54, + "probability": 0.8564 + }, + { + "start": 1441.9, + "end": 1442.76, + "probability": 0.9385 + }, + { + "start": 1446.52, + "end": 1447.16, + "probability": 0.7966 + }, + { + "start": 1448.2, + "end": 1449.16, + "probability": 0.9263 + }, + { + "start": 1449.26, + "end": 1453.14, + "probability": 0.6761 + }, + { + "start": 1453.52, + "end": 1457.38, + "probability": 0.3931 + }, + { + "start": 1457.38, + "end": 1458.46, + "probability": 0.4289 + }, + { + "start": 1459.24, + "end": 1461.0, + "probability": 0.082 + }, + { + "start": 1461.44, + "end": 1462.14, + "probability": 0.8394 + }, + { + "start": 1463.4, + "end": 1466.54, + "probability": 0.9887 + }, + { + "start": 1468.36, + "end": 1471.32, + "probability": 0.8252 + }, + { + "start": 1471.92, + "end": 1474.84, + "probability": 0.774 + }, + { + "start": 1475.26, + "end": 1479.42, + "probability": 0.9408 + }, + { + "start": 1480.36, + "end": 1486.0, + "probability": 0.9749 + }, + { + "start": 1487.3, + "end": 1488.5, + "probability": 0.7982 + }, + { + "start": 1492.8, + "end": 1494.76, + "probability": 0.7134 + }, + { + "start": 1497.42, + "end": 1500.62, + "probability": 0.9887 + }, + { + "start": 1501.36, + "end": 1504.32, + "probability": 0.9163 + }, + { + "start": 1505.2, + "end": 1507.34, + "probability": 0.8538 + }, + { + "start": 1512.22, + "end": 1512.86, + "probability": 0.9873 + }, + { + "start": 1514.54, + "end": 1516.32, + "probability": 0.8063 + }, + { + "start": 1519.08, + "end": 1520.84, + "probability": 0.8161 + }, + { + "start": 1522.56, + "end": 1526.54, + "probability": 0.8345 + }, + { + "start": 1529.86, + "end": 1532.88, + "probability": 0.9591 + }, + { + "start": 1534.86, + "end": 1535.72, + "probability": 0.8729 + }, + { + "start": 1539.22, + "end": 1541.96, + "probability": 0.9775 + }, + { + "start": 1542.02, + "end": 1542.46, + "probability": 0.8036 + }, + { + "start": 1542.48, + "end": 1543.76, + "probability": 0.9187 + }, + { + "start": 1547.32, + "end": 1548.92, + "probability": 0.7212 + }, + { + "start": 1549.74, + "end": 1550.6, + "probability": 0.9727 + }, + { + "start": 1552.3, + "end": 1554.34, + "probability": 0.4924 + }, + { + "start": 1554.92, + "end": 1556.46, + "probability": 0.9634 + }, + { + "start": 1557.66, + "end": 1558.54, + "probability": 0.9838 + }, + { + "start": 1560.4, + "end": 1564.46, + "probability": 0.9962 + }, + { + "start": 1566.38, + "end": 1568.22, + "probability": 0.8256 + }, + { + "start": 1570.28, + "end": 1570.94, + "probability": 0.9453 + }, + { + "start": 1574.02, + "end": 1577.56, + "probability": 0.9202 + }, + { + "start": 1580.08, + "end": 1582.44, + "probability": 0.9727 + }, + { + "start": 1582.52, + "end": 1583.86, + "probability": 0.682 + }, + { + "start": 1583.88, + "end": 1584.68, + "probability": 0.7639 + }, + { + "start": 1585.28, + "end": 1586.86, + "probability": 0.6671 + }, + { + "start": 1588.36, + "end": 1591.08, + "probability": 0.9728 + }, + { + "start": 1591.2, + "end": 1592.46, + "probability": 0.9064 + }, + { + "start": 1593.98, + "end": 1596.04, + "probability": 0.9141 + }, + { + "start": 1596.78, + "end": 1597.54, + "probability": 0.9625 + }, + { + "start": 1599.72, + "end": 1600.68, + "probability": 0.6334 + }, + { + "start": 1602.4, + "end": 1603.52, + "probability": 0.9727 + }, + { + "start": 1605.9, + "end": 1612.8, + "probability": 0.9756 + }, + { + "start": 1613.7, + "end": 1615.48, + "probability": 0.9527 + }, + { + "start": 1616.76, + "end": 1618.44, + "probability": 0.7358 + }, + { + "start": 1618.58, + "end": 1619.24, + "probability": 0.9363 + }, + { + "start": 1620.79, + "end": 1624.84, + "probability": 0.844 + }, + { + "start": 1626.14, + "end": 1627.82, + "probability": 0.9813 + }, + { + "start": 1628.34, + "end": 1630.36, + "probability": 0.993 + }, + { + "start": 1631.02, + "end": 1631.64, + "probability": 0.8417 + }, + { + "start": 1632.22, + "end": 1633.16, + "probability": 0.7004 + }, + { + "start": 1636.64, + "end": 1637.22, + "probability": 0.8488 + }, + { + "start": 1638.02, + "end": 1639.0, + "probability": 0.7752 + }, + { + "start": 1639.82, + "end": 1643.24, + "probability": 0.775 + }, + { + "start": 1645.0, + "end": 1645.92, + "probability": 0.9831 + }, + { + "start": 1646.68, + "end": 1647.64, + "probability": 0.9757 + }, + { + "start": 1648.28, + "end": 1653.38, + "probability": 0.9346 + }, + { + "start": 1654.78, + "end": 1659.56, + "probability": 0.8728 + }, + { + "start": 1660.94, + "end": 1661.7, + "probability": 0.8457 + }, + { + "start": 1665.6, + "end": 1669.74, + "probability": 0.9672 + }, + { + "start": 1673.9, + "end": 1678.72, + "probability": 0.9335 + }, + { + "start": 1681.16, + "end": 1683.34, + "probability": 0.8333 + }, + { + "start": 1686.8, + "end": 1689.28, + "probability": 0.8711 + }, + { + "start": 1690.4, + "end": 1692.12, + "probability": 0.9843 + }, + { + "start": 1692.94, + "end": 1693.42, + "probability": 0.7471 + }, + { + "start": 1695.25, + "end": 1698.28, + "probability": 0.9064 + }, + { + "start": 1699.82, + "end": 1701.48, + "probability": 0.9526 + }, + { + "start": 1701.58, + "end": 1702.06, + "probability": 0.9111 + }, + { + "start": 1702.64, + "end": 1704.6, + "probability": 0.8776 + }, + { + "start": 1705.04, + "end": 1706.7, + "probability": 0.9973 + }, + { + "start": 1707.6, + "end": 1708.02, + "probability": 0.7092 + }, + { + "start": 1708.86, + "end": 1710.26, + "probability": 0.8192 + }, + { + "start": 1710.48, + "end": 1710.84, + "probability": 0.7928 + }, + { + "start": 1712.18, + "end": 1712.77, + "probability": 0.7778 + }, + { + "start": 1713.92, + "end": 1714.78, + "probability": 0.872 + }, + { + "start": 1715.76, + "end": 1719.38, + "probability": 0.7077 + }, + { + "start": 1720.76, + "end": 1721.52, + "probability": 0.9036 + }, + { + "start": 1722.42, + "end": 1723.38, + "probability": 0.9854 + }, + { + "start": 1723.88, + "end": 1724.14, + "probability": 0.9424 + }, + { + "start": 1725.12, + "end": 1727.32, + "probability": 0.9597 + }, + { + "start": 1728.24, + "end": 1730.12, + "probability": 0.8992 + }, + { + "start": 1730.48, + "end": 1732.56, + "probability": 0.9252 + }, + { + "start": 1733.08, + "end": 1736.4, + "probability": 0.8375 + }, + { + "start": 1737.42, + "end": 1737.8, + "probability": 0.1259 + }, + { + "start": 1739.39, + "end": 1742.64, + "probability": 0.8147 + }, + { + "start": 1742.82, + "end": 1746.76, + "probability": 0.7933 + }, + { + "start": 1747.3, + "end": 1748.03, + "probability": 0.8551 + }, + { + "start": 1748.92, + "end": 1749.58, + "probability": 0.05 + }, + { + "start": 1750.56, + "end": 1753.72, + "probability": 0.9934 + }, + { + "start": 1754.52, + "end": 1755.16, + "probability": 0.2607 + }, + { + "start": 1755.16, + "end": 1756.16, + "probability": 0.2608 + }, + { + "start": 1756.28, + "end": 1757.3, + "probability": 0.7371 + }, + { + "start": 1757.36, + "end": 1758.32, + "probability": 0.9016 + }, + { + "start": 1758.82, + "end": 1761.54, + "probability": 0.9225 + }, + { + "start": 1762.64, + "end": 1763.96, + "probability": 0.0205 + }, + { + "start": 1766.84, + "end": 1770.96, + "probability": 0.3449 + }, + { + "start": 1772.17, + "end": 1773.84, + "probability": 0.5695 + }, + { + "start": 1774.2, + "end": 1775.11, + "probability": 0.6981 + }, + { + "start": 1775.96, + "end": 1777.04, + "probability": 0.7086 + }, + { + "start": 1777.16, + "end": 1780.0, + "probability": 0.9985 + }, + { + "start": 1780.76, + "end": 1783.24, + "probability": 0.9187 + }, + { + "start": 1783.64, + "end": 1784.36, + "probability": 0.8774 + }, + { + "start": 1785.12, + "end": 1786.38, + "probability": 0.3996 + }, + { + "start": 1787.08, + "end": 1788.23, + "probability": 0.4983 + }, + { + "start": 1790.04, + "end": 1793.9, + "probability": 0.986 + }, + { + "start": 1793.98, + "end": 1794.46, + "probability": 0.4804 + }, + { + "start": 1794.62, + "end": 1796.37, + "probability": 0.6763 + }, + { + "start": 1797.0, + "end": 1797.12, + "probability": 0.8945 + }, + { + "start": 1798.24, + "end": 1798.68, + "probability": 0.9861 + }, + { + "start": 1799.28, + "end": 1799.74, + "probability": 0.9011 + }, + { + "start": 1799.84, + "end": 1801.54, + "probability": 0.9284 + }, + { + "start": 1802.24, + "end": 1804.78, + "probability": 0.9856 + }, + { + "start": 1804.78, + "end": 1810.24, + "probability": 0.9972 + }, + { + "start": 1810.74, + "end": 1811.56, + "probability": 0.6466 + }, + { + "start": 1811.84, + "end": 1812.34, + "probability": 0.793 + }, + { + "start": 1813.78, + "end": 1814.52, + "probability": 0.9343 + }, + { + "start": 1817.48, + "end": 1818.64, + "probability": 0.9034 + }, + { + "start": 1820.54, + "end": 1825.26, + "probability": 0.9659 + }, + { + "start": 1825.72, + "end": 1826.57, + "probability": 0.1763 + }, + { + "start": 1829.66, + "end": 1833.2, + "probability": 0.8795 + }, + { + "start": 1833.28, + "end": 1834.38, + "probability": 0.5744 + }, + { + "start": 1834.5, + "end": 1835.26, + "probability": 0.8067 + }, + { + "start": 1835.36, + "end": 1836.0, + "probability": 0.4947 + }, + { + "start": 1836.44, + "end": 1837.6, + "probability": 0.9771 + }, + { + "start": 1837.62, + "end": 1838.1, + "probability": 0.2844 + }, + { + "start": 1838.18, + "end": 1839.43, + "probability": 0.8608 + }, + { + "start": 1842.82, + "end": 1844.4, + "probability": 0.3654 + }, + { + "start": 1844.5, + "end": 1844.98, + "probability": 0.8381 + }, + { + "start": 1846.08, + "end": 1849.1, + "probability": 0.1788 + }, + { + "start": 1849.78, + "end": 1854.08, + "probability": 0.9444 + }, + { + "start": 1854.18, + "end": 1854.58, + "probability": 0.4213 + }, + { + "start": 1855.3, + "end": 1856.84, + "probability": 0.9906 + }, + { + "start": 1857.02, + "end": 1858.46, + "probability": 0.6191 + }, + { + "start": 1858.78, + "end": 1861.42, + "probability": 0.7747 + }, + { + "start": 1861.56, + "end": 1862.2, + "probability": 0.4592 + }, + { + "start": 1862.42, + "end": 1863.64, + "probability": 0.9765 + }, + { + "start": 1864.18, + "end": 1864.9, + "probability": 0.7862 + }, + { + "start": 1866.58, + "end": 1869.18, + "probability": 0.3545 + }, + { + "start": 1869.8, + "end": 1870.3, + "probability": 0.7795 + }, + { + "start": 1871.64, + "end": 1872.92, + "probability": 0.5655 + }, + { + "start": 1873.6, + "end": 1875.28, + "probability": 0.7888 + }, + { + "start": 1877.0, + "end": 1877.56, + "probability": 0.462 + }, + { + "start": 1878.14, + "end": 1878.98, + "probability": 0.8711 + }, + { + "start": 1879.1, + "end": 1882.6, + "probability": 0.7057 + }, + { + "start": 1884.44, + "end": 1887.28, + "probability": 0.789 + }, + { + "start": 1887.52, + "end": 1888.4, + "probability": 0.8667 + }, + { + "start": 1888.56, + "end": 1892.14, + "probability": 0.9574 + }, + { + "start": 1892.14, + "end": 1895.68, + "probability": 0.9794 + }, + { + "start": 1896.26, + "end": 1896.6, + "probability": 0.0308 + }, + { + "start": 1896.66, + "end": 1900.32, + "probability": 0.8306 + }, + { + "start": 1900.48, + "end": 1902.05, + "probability": 0.3739 + }, + { + "start": 1902.8, + "end": 1905.86, + "probability": 0.965 + }, + { + "start": 1906.38, + "end": 1909.0, + "probability": 0.9369 + }, + { + "start": 1909.4, + "end": 1911.44, + "probability": 0.9697 + }, + { + "start": 1911.86, + "end": 1913.73, + "probability": 0.5031 + }, + { + "start": 1914.58, + "end": 1916.86, + "probability": 0.9773 + }, + { + "start": 1917.04, + "end": 1918.24, + "probability": 0.6299 + }, + { + "start": 1918.36, + "end": 1918.5, + "probability": 0.6084 + }, + { + "start": 1920.32, + "end": 1920.72, + "probability": 0.4746 + }, + { + "start": 1921.22, + "end": 1922.03, + "probability": 0.7619 + }, + { + "start": 1922.3, + "end": 1922.83, + "probability": 0.9722 + }, + { + "start": 1923.62, + "end": 1924.48, + "probability": 0.2808 + }, + { + "start": 1924.56, + "end": 1924.66, + "probability": 0.3466 + }, + { + "start": 1924.78, + "end": 1925.58, + "probability": 0.7837 + }, + { + "start": 1926.5, + "end": 1926.94, + "probability": 0.6608 + }, + { + "start": 1928.2, + "end": 1929.44, + "probability": 0.6499 + }, + { + "start": 1930.16, + "end": 1933.56, + "probability": 0.6965 + }, + { + "start": 1933.78, + "end": 1937.58, + "probability": 0.5173 + }, + { + "start": 1938.12, + "end": 1943.2, + "probability": 0.778 + }, + { + "start": 1944.6, + "end": 1945.56, + "probability": 0.7784 + }, + { + "start": 1946.1, + "end": 1947.92, + "probability": 0.8983 + }, + { + "start": 1948.36, + "end": 1950.04, + "probability": 0.9879 + }, + { + "start": 1953.4, + "end": 1959.0, + "probability": 0.868 + }, + { + "start": 1960.68, + "end": 1961.28, + "probability": 0.5732 + }, + { + "start": 1962.16, + "end": 1962.94, + "probability": 0.4194 + }, + { + "start": 1963.94, + "end": 1964.78, + "probability": 0.5096 + }, + { + "start": 1964.96, + "end": 1966.08, + "probability": 0.9259 + }, + { + "start": 1966.22, + "end": 1966.76, + "probability": 0.7382 + }, + { + "start": 1967.66, + "end": 1968.48, + "probability": 0.917 + }, + { + "start": 1969.86, + "end": 1972.12, + "probability": 0.6885 + }, + { + "start": 1973.0, + "end": 1974.44, + "probability": 0.7086 + }, + { + "start": 1974.58, + "end": 1976.52, + "probability": 0.9798 + }, + { + "start": 1977.42, + "end": 1978.0, + "probability": 0.3103 + }, + { + "start": 1978.58, + "end": 1979.68, + "probability": 0.8224 + }, + { + "start": 1979.72, + "end": 1980.9, + "probability": 0.3104 + }, + { + "start": 1982.3, + "end": 1984.06, + "probability": 0.6025 + }, + { + "start": 1984.06, + "end": 1986.44, + "probability": 0.7333 + }, + { + "start": 1986.98, + "end": 1988.03, + "probability": 0.8918 + }, + { + "start": 1988.18, + "end": 1988.4, + "probability": 0.2472 + }, + { + "start": 1990.38, + "end": 1991.32, + "probability": 0.6022 + }, + { + "start": 1994.35, + "end": 1996.5, + "probability": 0.601 + }, + { + "start": 1996.82, + "end": 1997.94, + "probability": 0.8173 + }, + { + "start": 1999.36, + "end": 2002.53, + "probability": 0.9984 + }, + { + "start": 2003.12, + "end": 2004.58, + "probability": 0.9196 + }, + { + "start": 2005.22, + "end": 2006.76, + "probability": 0.9362 + }, + { + "start": 2007.42, + "end": 2010.76, + "probability": 0.7849 + }, + { + "start": 2011.74, + "end": 2014.68, + "probability": 0.7694 + }, + { + "start": 2015.86, + "end": 2019.44, + "probability": 0.9974 + }, + { + "start": 2020.34, + "end": 2025.2, + "probability": 0.9515 + }, + { + "start": 2025.52, + "end": 2025.72, + "probability": 0.7915 + }, + { + "start": 2026.24, + "end": 2028.02, + "probability": 0.8556 + }, + { + "start": 2028.34, + "end": 2030.12, + "probability": 0.9958 + }, + { + "start": 2030.6, + "end": 2031.04, + "probability": 0.2604 + }, + { + "start": 2031.04, + "end": 2036.22, + "probability": 0.7555 + }, + { + "start": 2037.22, + "end": 2043.08, + "probability": 0.477 + }, + { + "start": 2043.68, + "end": 2044.88, + "probability": 0.8665 + }, + { + "start": 2045.32, + "end": 2049.9, + "probability": 0.9888 + }, + { + "start": 2050.4, + "end": 2052.4, + "probability": 0.9222 + }, + { + "start": 2053.27, + "end": 2057.68, + "probability": 0.9651 + }, + { + "start": 2058.96, + "end": 2059.72, + "probability": 0.8723 + }, + { + "start": 2060.47, + "end": 2065.72, + "probability": 0.9215 + }, + { + "start": 2066.24, + "end": 2070.44, + "probability": 0.4592 + }, + { + "start": 2071.19, + "end": 2072.98, + "probability": 0.7841 + }, + { + "start": 2074.04, + "end": 2074.62, + "probability": 0.644 + }, + { + "start": 2075.44, + "end": 2075.94, + "probability": 0.706 + }, + { + "start": 2076.46, + "end": 2078.22, + "probability": 0.9481 + }, + { + "start": 2079.44, + "end": 2083.6, + "probability": 0.9819 + }, + { + "start": 2084.54, + "end": 2086.18, + "probability": 0.9775 + }, + { + "start": 2088.16, + "end": 2090.84, + "probability": 0.8301 + }, + { + "start": 2092.78, + "end": 2093.82, + "probability": 0.8208 + }, + { + "start": 2094.9, + "end": 2097.48, + "probability": 0.9211 + }, + { + "start": 2098.36, + "end": 2099.42, + "probability": 0.8465 + }, + { + "start": 2100.0, + "end": 2100.12, + "probability": 0.5266 + }, + { + "start": 2101.56, + "end": 2102.86, + "probability": 0.8198 + }, + { + "start": 2103.3, + "end": 2103.96, + "probability": 0.4858 + }, + { + "start": 2104.7, + "end": 2104.96, + "probability": 0.9254 + }, + { + "start": 2105.32, + "end": 2107.8, + "probability": 0.7847 + }, + { + "start": 2108.28, + "end": 2110.08, + "probability": 0.3474 + }, + { + "start": 2110.28, + "end": 2111.4, + "probability": 0.0215 + }, + { + "start": 2111.56, + "end": 2113.02, + "probability": 0.8169 + }, + { + "start": 2115.16, + "end": 2119.86, + "probability": 0.9586 + }, + { + "start": 2121.64, + "end": 2123.52, + "probability": 0.9956 + }, + { + "start": 2124.64, + "end": 2126.46, + "probability": 0.8861 + }, + { + "start": 2127.22, + "end": 2127.48, + "probability": 0.5539 + }, + { + "start": 2129.02, + "end": 2131.98, + "probability": 0.958 + }, + { + "start": 2133.8, + "end": 2134.42, + "probability": 0.6397 + }, + { + "start": 2135.28, + "end": 2136.08, + "probability": 0.2788 + }, + { + "start": 2137.52, + "end": 2138.54, + "probability": 0.8511 + }, + { + "start": 2139.58, + "end": 2142.38, + "probability": 0.9951 + }, + { + "start": 2144.44, + "end": 2146.56, + "probability": 0.9145 + }, + { + "start": 2147.96, + "end": 2150.94, + "probability": 0.5014 + }, + { + "start": 2151.84, + "end": 2155.6, + "probability": 0.9797 + }, + { + "start": 2156.4, + "end": 2157.2, + "probability": 0.8966 + }, + { + "start": 2159.34, + "end": 2160.22, + "probability": 0.9079 + }, + { + "start": 2162.86, + "end": 2165.54, + "probability": 0.9988 + }, + { + "start": 2166.56, + "end": 2167.38, + "probability": 0.9417 + }, + { + "start": 2169.84, + "end": 2170.3, + "probability": 0.9427 + }, + { + "start": 2171.0, + "end": 2172.12, + "probability": 0.9987 + }, + { + "start": 2173.24, + "end": 2175.22, + "probability": 0.9132 + }, + { + "start": 2177.3, + "end": 2179.98, + "probability": 0.9961 + }, + { + "start": 2180.94, + "end": 2182.46, + "probability": 0.9106 + }, + { + "start": 2184.04, + "end": 2186.74, + "probability": 0.9968 + }, + { + "start": 2188.86, + "end": 2191.44, + "probability": 0.9842 + }, + { + "start": 2191.44, + "end": 2195.52, + "probability": 0.968 + }, + { + "start": 2196.5, + "end": 2198.62, + "probability": 0.8768 + }, + { + "start": 2199.26, + "end": 2202.94, + "probability": 0.9937 + }, + { + "start": 2203.04, + "end": 2204.02, + "probability": 0.936 + }, + { + "start": 2204.4, + "end": 2205.38, + "probability": 0.7767 + }, + { + "start": 2206.84, + "end": 2209.14, + "probability": 0.6611 + }, + { + "start": 2210.02, + "end": 2211.0, + "probability": 0.599 + }, + { + "start": 2211.2, + "end": 2214.88, + "probability": 0.7089 + }, + { + "start": 2216.6, + "end": 2217.1, + "probability": 0.372 + }, + { + "start": 2219.2, + "end": 2220.84, + "probability": 0.9479 + }, + { + "start": 2223.36, + "end": 2224.34, + "probability": 0.8166 + }, + { + "start": 2224.84, + "end": 2226.54, + "probability": 0.8663 + }, + { + "start": 2227.56, + "end": 2229.12, + "probability": 0.9725 + }, + { + "start": 2232.3, + "end": 2233.64, + "probability": 0.8692 + }, + { + "start": 2235.7, + "end": 2238.36, + "probability": 0.9983 + }, + { + "start": 2239.22, + "end": 2244.42, + "probability": 0.9632 + }, + { + "start": 2245.0, + "end": 2247.26, + "probability": 0.7617 + }, + { + "start": 2247.3, + "end": 2248.12, + "probability": 0.7278 + }, + { + "start": 2249.32, + "end": 2250.2, + "probability": 0.9511 + }, + { + "start": 2252.58, + "end": 2254.18, + "probability": 0.7495 + }, + { + "start": 2256.08, + "end": 2257.12, + "probability": 0.9888 + }, + { + "start": 2257.94, + "end": 2259.34, + "probability": 0.8776 + }, + { + "start": 2260.44, + "end": 2262.3, + "probability": 0.917 + }, + { + "start": 2264.4, + "end": 2264.78, + "probability": 0.7768 + }, + { + "start": 2265.7, + "end": 2267.04, + "probability": 0.8913 + }, + { + "start": 2268.04, + "end": 2270.06, + "probability": 0.9359 + }, + { + "start": 2271.08, + "end": 2273.42, + "probability": 0.9691 + }, + { + "start": 2274.28, + "end": 2277.92, + "probability": 0.9269 + }, + { + "start": 2279.02, + "end": 2280.58, + "probability": 0.9429 + }, + { + "start": 2281.98, + "end": 2283.66, + "probability": 0.9908 + }, + { + "start": 2285.1, + "end": 2285.98, + "probability": 0.9094 + }, + { + "start": 2286.16, + "end": 2290.18, + "probability": 0.9089 + }, + { + "start": 2290.76, + "end": 2291.34, + "probability": 0.9933 + }, + { + "start": 2291.76, + "end": 2292.5, + "probability": 0.9043 + }, + { + "start": 2293.18, + "end": 2294.2, + "probability": 0.8139 + }, + { + "start": 2294.76, + "end": 2296.06, + "probability": 0.9755 + }, + { + "start": 2297.0, + "end": 2298.36, + "probability": 0.9775 + }, + { + "start": 2300.3, + "end": 2302.18, + "probability": 0.9541 + }, + { + "start": 2304.34, + "end": 2308.22, + "probability": 0.8875 + }, + { + "start": 2309.42, + "end": 2312.98, + "probability": 0.9554 + }, + { + "start": 2314.38, + "end": 2316.5, + "probability": 0.6502 + }, + { + "start": 2317.15, + "end": 2318.02, + "probability": 0.4719 + }, + { + "start": 2318.72, + "end": 2319.56, + "probability": 0.9491 + }, + { + "start": 2321.7, + "end": 2324.34, + "probability": 0.9611 + }, + { + "start": 2325.4, + "end": 2325.86, + "probability": 0.7996 + }, + { + "start": 2326.88, + "end": 2327.6, + "probability": 0.7943 + }, + { + "start": 2329.8, + "end": 2330.26, + "probability": 0.7729 + }, + { + "start": 2332.26, + "end": 2334.82, + "probability": 0.9204 + }, + { + "start": 2336.34, + "end": 2337.76, + "probability": 0.8345 + }, + { + "start": 2339.52, + "end": 2341.66, + "probability": 0.9628 + }, + { + "start": 2341.76, + "end": 2343.44, + "probability": 0.844 + }, + { + "start": 2345.02, + "end": 2347.12, + "probability": 0.9336 + }, + { + "start": 2348.42, + "end": 2349.34, + "probability": 0.9963 + }, + { + "start": 2351.04, + "end": 2353.72, + "probability": 0.7986 + }, + { + "start": 2355.1, + "end": 2357.64, + "probability": 0.6121 + }, + { + "start": 2359.36, + "end": 2362.01, + "probability": 0.9046 + }, + { + "start": 2363.34, + "end": 2366.8, + "probability": 0.9818 + }, + { + "start": 2367.28, + "end": 2368.67, + "probability": 0.8521 + }, + { + "start": 2369.58, + "end": 2370.36, + "probability": 0.4307 + }, + { + "start": 2371.5, + "end": 2373.52, + "probability": 0.978 + }, + { + "start": 2374.44, + "end": 2376.84, + "probability": 0.9514 + }, + { + "start": 2377.9, + "end": 2380.14, + "probability": 0.9517 + }, + { + "start": 2380.68, + "end": 2381.47, + "probability": 0.8091 + }, + { + "start": 2382.48, + "end": 2383.14, + "probability": 0.822 + }, + { + "start": 2383.42, + "end": 2386.81, + "probability": 0.9906 + }, + { + "start": 2387.64, + "end": 2389.42, + "probability": 0.8311 + }, + { + "start": 2390.18, + "end": 2392.2, + "probability": 0.9922 + }, + { + "start": 2392.48, + "end": 2393.08, + "probability": 0.7346 + }, + { + "start": 2393.12, + "end": 2393.82, + "probability": 0.9767 + }, + { + "start": 2394.2, + "end": 2395.48, + "probability": 0.7657 + }, + { + "start": 2395.96, + "end": 2396.86, + "probability": 0.4799 + }, + { + "start": 2397.86, + "end": 2398.52, + "probability": 0.5097 + }, + { + "start": 2398.76, + "end": 2399.36, + "probability": 0.3881 + }, + { + "start": 2400.04, + "end": 2401.08, + "probability": 0.8721 + }, + { + "start": 2401.88, + "end": 2402.76, + "probability": 0.8423 + }, + { + "start": 2403.84, + "end": 2403.92, + "probability": 0.4018 + }, + { + "start": 2403.98, + "end": 2404.44, + "probability": 0.0244 + }, + { + "start": 2404.44, + "end": 2405.58, + "probability": 0.4203 + }, + { + "start": 2405.78, + "end": 2406.56, + "probability": 0.8745 + }, + { + "start": 2407.0, + "end": 2408.5, + "probability": 0.8514 + }, + { + "start": 2409.52, + "end": 2412.14, + "probability": 0.9017 + }, + { + "start": 2413.6, + "end": 2414.59, + "probability": 0.1855 + }, + { + "start": 2415.28, + "end": 2416.97, + "probability": 0.9559 + }, + { + "start": 2418.6, + "end": 2421.82, + "probability": 0.8541 + }, + { + "start": 2422.88, + "end": 2425.14, + "probability": 0.9751 + }, + { + "start": 2426.16, + "end": 2427.0, + "probability": 0.9644 + }, + { + "start": 2428.66, + "end": 2433.2, + "probability": 0.7628 + }, + { + "start": 2434.3, + "end": 2436.1, + "probability": 0.9688 + }, + { + "start": 2437.02, + "end": 2440.34, + "probability": 0.8799 + }, + { + "start": 2441.12, + "end": 2442.84, + "probability": 0.8116 + }, + { + "start": 2442.94, + "end": 2443.28, + "probability": 0.4717 + }, + { + "start": 2443.32, + "end": 2444.32, + "probability": 0.8771 + }, + { + "start": 2444.48, + "end": 2445.0, + "probability": 0.6539 + }, + { + "start": 2445.78, + "end": 2446.98, + "probability": 0.2861 + }, + { + "start": 2447.26, + "end": 2448.08, + "probability": 0.8642 + }, + { + "start": 2448.56, + "end": 2448.98, + "probability": 0.3813 + }, + { + "start": 2449.72, + "end": 2450.32, + "probability": 0.1238 + }, + { + "start": 2450.4, + "end": 2450.86, + "probability": 0.7551 + }, + { + "start": 2451.22, + "end": 2452.24, + "probability": 0.5089 + }, + { + "start": 2452.3, + "end": 2454.54, + "probability": 0.0228 + }, + { + "start": 2455.24, + "end": 2457.6, + "probability": 0.2068 + }, + { + "start": 2458.42, + "end": 2459.96, + "probability": 0.5194 + }, + { + "start": 2461.5, + "end": 2462.68, + "probability": 0.9551 + }, + { + "start": 2464.04, + "end": 2465.6, + "probability": 0.9486 + }, + { + "start": 2466.48, + "end": 2470.32, + "probability": 0.9176 + }, + { + "start": 2470.88, + "end": 2472.0, + "probability": 0.9158 + }, + { + "start": 2472.96, + "end": 2477.53, + "probability": 0.9951 + }, + { + "start": 2478.32, + "end": 2479.44, + "probability": 0.7707 + }, + { + "start": 2479.84, + "end": 2481.0, + "probability": 0.9282 + }, + { + "start": 2481.04, + "end": 2481.5, + "probability": 0.5361 + }, + { + "start": 2481.56, + "end": 2484.16, + "probability": 0.7391 + }, + { + "start": 2484.82, + "end": 2485.8, + "probability": 0.819 + }, + { + "start": 2486.48, + "end": 2492.0, + "probability": 0.9971 + }, + { + "start": 2492.0, + "end": 2495.64, + "probability": 0.9945 + }, + { + "start": 2497.02, + "end": 2497.57, + "probability": 0.9746 + }, + { + "start": 2498.96, + "end": 2499.96, + "probability": 0.9966 + }, + { + "start": 2500.48, + "end": 2501.28, + "probability": 0.9802 + }, + { + "start": 2501.96, + "end": 2502.94, + "probability": 0.4927 + }, + { + "start": 2506.76, + "end": 2508.1, + "probability": 0.9281 + }, + { + "start": 2508.76, + "end": 2510.62, + "probability": 0.9517 + }, + { + "start": 2511.86, + "end": 2512.48, + "probability": 0.9234 + }, + { + "start": 2514.04, + "end": 2515.98, + "probability": 0.7162 + }, + { + "start": 2517.28, + "end": 2519.1, + "probability": 0.9993 + }, + { + "start": 2522.4, + "end": 2527.02, + "probability": 0.9979 + }, + { + "start": 2527.48, + "end": 2529.62, + "probability": 0.9729 + }, + { + "start": 2530.78, + "end": 2534.8, + "probability": 0.7333 + }, + { + "start": 2535.54, + "end": 2536.8, + "probability": 0.9861 + }, + { + "start": 2538.64, + "end": 2539.7, + "probability": 0.734 + }, + { + "start": 2541.38, + "end": 2543.64, + "probability": 0.8851 + }, + { + "start": 2544.6, + "end": 2547.0, + "probability": 0.7312 + }, + { + "start": 2547.38, + "end": 2548.67, + "probability": 0.959 + }, + { + "start": 2549.64, + "end": 2553.96, + "probability": 0.9888 + }, + { + "start": 2556.18, + "end": 2558.5, + "probability": 0.9856 + }, + { + "start": 2558.56, + "end": 2561.46, + "probability": 0.9242 + }, + { + "start": 2562.38, + "end": 2562.82, + "probability": 0.5706 + }, + { + "start": 2565.12, + "end": 2568.2, + "probability": 0.8452 + }, + { + "start": 2569.16, + "end": 2571.12, + "probability": 0.7737 + }, + { + "start": 2571.7, + "end": 2572.44, + "probability": 0.8131 + }, + { + "start": 2573.74, + "end": 2576.84, + "probability": 0.8223 + }, + { + "start": 2577.58, + "end": 2580.58, + "probability": 0.9742 + }, + { + "start": 2581.12, + "end": 2582.32, + "probability": 0.1591 + }, + { + "start": 2583.5, + "end": 2583.98, + "probability": 0.705 + }, + { + "start": 2585.66, + "end": 2594.74, + "probability": 0.7002 + }, + { + "start": 2595.14, + "end": 2595.6, + "probability": 0.95 + }, + { + "start": 2596.2, + "end": 2596.74, + "probability": 0.5494 + }, + { + "start": 2597.26, + "end": 2600.29, + "probability": 0.8219 + }, + { + "start": 2601.5, + "end": 2603.54, + "probability": 0.9089 + }, + { + "start": 2603.58, + "end": 2605.92, + "probability": 0.834 + }, + { + "start": 2607.24, + "end": 2609.83, + "probability": 0.9053 + }, + { + "start": 2610.84, + "end": 2612.58, + "probability": 0.6085 + }, + { + "start": 2614.24, + "end": 2615.44, + "probability": 0.9578 + }, + { + "start": 2615.54, + "end": 2616.88, + "probability": 0.7847 + }, + { + "start": 2617.0, + "end": 2617.6, + "probability": 0.9293 + }, + { + "start": 2618.04, + "end": 2619.66, + "probability": 0.9978 + }, + { + "start": 2620.5, + "end": 2622.94, + "probability": 0.89 + }, + { + "start": 2623.48, + "end": 2627.54, + "probability": 0.9837 + }, + { + "start": 2628.68, + "end": 2630.18, + "probability": 0.7538 + }, + { + "start": 2631.1, + "end": 2633.5, + "probability": 0.4721 + }, + { + "start": 2634.1, + "end": 2635.36, + "probability": 0.7083 + }, + { + "start": 2636.12, + "end": 2637.96, + "probability": 0.5268 + }, + { + "start": 2638.14, + "end": 2639.28, + "probability": 0.9696 + }, + { + "start": 2640.08, + "end": 2641.08, + "probability": 0.949 + }, + { + "start": 2642.66, + "end": 2644.56, + "probability": 0.9972 + }, + { + "start": 2646.3, + "end": 2647.56, + "probability": 0.9497 + }, + { + "start": 2648.1, + "end": 2649.54, + "probability": 0.8566 + }, + { + "start": 2649.68, + "end": 2650.18, + "probability": 0.3874 + }, + { + "start": 2651.02, + "end": 2654.96, + "probability": 0.9106 + }, + { + "start": 2655.56, + "end": 2658.8, + "probability": 0.6164 + }, + { + "start": 2659.06, + "end": 2661.02, + "probability": 0.9556 + }, + { + "start": 2661.88, + "end": 2664.26, + "probability": 0.9902 + }, + { + "start": 2665.4, + "end": 2666.96, + "probability": 0.6515 + }, + { + "start": 2667.92, + "end": 2669.34, + "probability": 0.9054 + }, + { + "start": 2669.44, + "end": 2670.58, + "probability": 0.5884 + }, + { + "start": 2671.14, + "end": 2672.36, + "probability": 0.9919 + }, + { + "start": 2674.1, + "end": 2675.62, + "probability": 0.9839 + }, + { + "start": 2675.92, + "end": 2676.54, + "probability": 0.691 + }, + { + "start": 2676.6, + "end": 2677.74, + "probability": 0.7275 + }, + { + "start": 2678.18, + "end": 2680.98, + "probability": 0.8555 + }, + { + "start": 2681.52, + "end": 2683.36, + "probability": 0.748 + }, + { + "start": 2684.1, + "end": 2689.18, + "probability": 0.9835 + }, + { + "start": 2689.82, + "end": 2692.04, + "probability": 0.9761 + }, + { + "start": 2692.46, + "end": 2696.72, + "probability": 0.983 + }, + { + "start": 2696.72, + "end": 2700.88, + "probability": 0.9985 + }, + { + "start": 2701.58, + "end": 2703.52, + "probability": 0.8167 + }, + { + "start": 2704.24, + "end": 2707.64, + "probability": 0.9844 + }, + { + "start": 2708.16, + "end": 2708.84, + "probability": 0.627 + }, + { + "start": 2709.44, + "end": 2710.96, + "probability": 0.8937 + }, + { + "start": 2711.12, + "end": 2715.46, + "probability": 0.9791 + }, + { + "start": 2716.16, + "end": 2717.72, + "probability": 0.9972 + }, + { + "start": 2718.68, + "end": 2720.34, + "probability": 0.7983 + }, + { + "start": 2720.54, + "end": 2721.12, + "probability": 0.7264 + }, + { + "start": 2721.52, + "end": 2722.9, + "probability": 0.9056 + }, + { + "start": 2723.36, + "end": 2724.76, + "probability": 0.9398 + }, + { + "start": 2724.96, + "end": 2725.44, + "probability": 0.8563 + }, + { + "start": 2725.52, + "end": 2727.1, + "probability": 0.8675 + }, + { + "start": 2727.98, + "end": 2728.96, + "probability": 0.7763 + }, + { + "start": 2729.02, + "end": 2730.43, + "probability": 0.9678 + }, + { + "start": 2731.12, + "end": 2734.38, + "probability": 0.973 + }, + { + "start": 2734.86, + "end": 2736.12, + "probability": 0.9825 + }, + { + "start": 2736.4, + "end": 2737.24, + "probability": 0.9568 + }, + { + "start": 2738.56, + "end": 2741.12, + "probability": 0.979 + }, + { + "start": 2742.5, + "end": 2744.86, + "probability": 0.9272 + }, + { + "start": 2745.64, + "end": 2747.76, + "probability": 0.9806 + }, + { + "start": 2749.06, + "end": 2750.42, + "probability": 0.975 + }, + { + "start": 2751.72, + "end": 2753.66, + "probability": 0.8027 + }, + { + "start": 2754.3, + "end": 2758.32, + "probability": 0.9827 + }, + { + "start": 2759.06, + "end": 2760.16, + "probability": 0.7829 + }, + { + "start": 2760.86, + "end": 2761.08, + "probability": 0.3457 + }, + { + "start": 2761.16, + "end": 2763.96, + "probability": 0.5285 + }, + { + "start": 2763.96, + "end": 2765.96, + "probability": 0.8684 + }, + { + "start": 2766.94, + "end": 2768.48, + "probability": 0.6588 + }, + { + "start": 2769.08, + "end": 2771.98, + "probability": 0.7721 + }, + { + "start": 2772.3, + "end": 2773.12, + "probability": 0.5378 + }, + { + "start": 2775.12, + "end": 2776.54, + "probability": 0.7684 + }, + { + "start": 2777.3, + "end": 2781.04, + "probability": 0.9925 + }, + { + "start": 2781.6, + "end": 2786.06, + "probability": 0.85 + }, + { + "start": 2786.18, + "end": 2787.98, + "probability": 0.7728 + }, + { + "start": 2788.28, + "end": 2793.5, + "probability": 0.9795 + }, + { + "start": 2793.6, + "end": 2797.64, + "probability": 0.9068 + }, + { + "start": 2798.1, + "end": 2800.94, + "probability": 0.7176 + }, + { + "start": 2801.42, + "end": 2804.66, + "probability": 0.1878 + }, + { + "start": 2804.86, + "end": 2805.7, + "probability": 0.2328 + }, + { + "start": 2808.29, + "end": 2809.58, + "probability": 0.8794 + }, + { + "start": 2810.28, + "end": 2813.2, + "probability": 0.9167 + }, + { + "start": 2813.26, + "end": 2814.21, + "probability": 0.9854 + }, + { + "start": 2815.1, + "end": 2817.62, + "probability": 0.817 + }, + { + "start": 2818.16, + "end": 2818.26, + "probability": 0.3674 + }, + { + "start": 2819.92, + "end": 2825.6, + "probability": 0.6664 + }, + { + "start": 2828.0, + "end": 2828.76, + "probability": 0.7891 + }, + { + "start": 2829.02, + "end": 2833.66, + "probability": 0.682 + }, + { + "start": 2834.36, + "end": 2839.54, + "probability": 0.9384 + }, + { + "start": 2840.22, + "end": 2841.26, + "probability": 0.8885 + }, + { + "start": 2841.66, + "end": 2844.4, + "probability": 0.9861 + }, + { + "start": 2845.52, + "end": 2849.62, + "probability": 0.947 + }, + { + "start": 2850.5, + "end": 2853.46, + "probability": 0.9794 + }, + { + "start": 2853.94, + "end": 2855.16, + "probability": 0.928 + }, + { + "start": 2856.2, + "end": 2859.28, + "probability": 0.9786 + }, + { + "start": 2859.32, + "end": 2861.28, + "probability": 0.9866 + }, + { + "start": 2861.72, + "end": 2866.12, + "probability": 0.9771 + }, + { + "start": 2866.12, + "end": 2873.78, + "probability": 0.9854 + }, + { + "start": 2874.56, + "end": 2875.29, + "probability": 0.9826 + }, + { + "start": 2875.62, + "end": 2877.44, + "probability": 0.9883 + }, + { + "start": 2877.54, + "end": 2878.06, + "probability": 0.7153 + }, + { + "start": 2879.1, + "end": 2883.7, + "probability": 0.5811 + }, + { + "start": 2883.76, + "end": 2884.3, + "probability": 0.7079 + }, + { + "start": 2884.44, + "end": 2884.58, + "probability": 0.4843 + }, + { + "start": 2884.8, + "end": 2887.32, + "probability": 0.7666 + }, + { + "start": 2887.9, + "end": 2891.24, + "probability": 0.9521 + }, + { + "start": 2891.34, + "end": 2895.26, + "probability": 0.7214 + }, + { + "start": 2895.82, + "end": 2896.54, + "probability": 0.953 + }, + { + "start": 2897.6, + "end": 2898.68, + "probability": 0.9961 + }, + { + "start": 2898.84, + "end": 2903.8, + "probability": 0.9761 + }, + { + "start": 2904.62, + "end": 2908.78, + "probability": 0.9521 + }, + { + "start": 2909.5, + "end": 2911.66, + "probability": 0.9951 + }, + { + "start": 2912.28, + "end": 2913.32, + "probability": 0.9262 + }, + { + "start": 2913.48, + "end": 2917.94, + "probability": 0.9945 + }, + { + "start": 2918.36, + "end": 2918.6, + "probability": 0.5225 + }, + { + "start": 2918.6, + "end": 2919.26, + "probability": 0.537 + }, + { + "start": 2919.66, + "end": 2921.1, + "probability": 0.9615 + }, + { + "start": 2921.72, + "end": 2922.88, + "probability": 0.9669 + }, + { + "start": 2923.42, + "end": 2926.86, + "probability": 0.9692 + }, + { + "start": 2927.24, + "end": 2929.18, + "probability": 0.9941 + }, + { + "start": 2930.07, + "end": 2933.5, + "probability": 0.9976 + }, + { + "start": 2934.38, + "end": 2935.78, + "probability": 0.9591 + }, + { + "start": 2935.88, + "end": 2938.68, + "probability": 0.931 + }, + { + "start": 2938.68, + "end": 2940.66, + "probability": 0.9904 + }, + { + "start": 2941.14, + "end": 2943.9, + "probability": 0.9974 + }, + { + "start": 2944.5, + "end": 2949.64, + "probability": 0.6665 + }, + { + "start": 2949.68, + "end": 2954.14, + "probability": 0.6558 + }, + { + "start": 2954.38, + "end": 2955.74, + "probability": 0.6441 + }, + { + "start": 2956.1, + "end": 2958.14, + "probability": 0.9922 + }, + { + "start": 2958.6, + "end": 2960.15, + "probability": 0.9902 + }, + { + "start": 2960.76, + "end": 2963.8, + "probability": 0.9939 + }, + { + "start": 2963.88, + "end": 2964.48, + "probability": 0.6662 + }, + { + "start": 2964.72, + "end": 2967.18, + "probability": 0.9444 + }, + { + "start": 2967.62, + "end": 2968.88, + "probability": 0.9616 + }, + { + "start": 2969.16, + "end": 2972.32, + "probability": 0.9888 + }, + { + "start": 2972.84, + "end": 2976.22, + "probability": 0.9274 + }, + { + "start": 2976.36, + "end": 2980.98, + "probability": 0.8965 + }, + { + "start": 2982.32, + "end": 2988.18, + "probability": 0.9924 + }, + { + "start": 2988.98, + "end": 2993.98, + "probability": 0.4844 + }, + { + "start": 2996.92, + "end": 2998.88, + "probability": 0.8341 + }, + { + "start": 2999.6, + "end": 3001.82, + "probability": 0.7959 + }, + { + "start": 3002.58, + "end": 3003.08, + "probability": 0.3195 + }, + { + "start": 3004.36, + "end": 3008.8, + "probability": 0.8622 + }, + { + "start": 3009.66, + "end": 3012.9, + "probability": 0.9944 + }, + { + "start": 3013.74, + "end": 3015.96, + "probability": 0.7984 + }, + { + "start": 3016.08, + "end": 3017.21, + "probability": 0.9457 + }, + { + "start": 3017.48, + "end": 3022.24, + "probability": 0.7671 + }, + { + "start": 3023.0, + "end": 3025.48, + "probability": 0.8453 + }, + { + "start": 3025.88, + "end": 3027.0, + "probability": 0.5267 + }, + { + "start": 3027.96, + "end": 3030.14, + "probability": 0.8344 + }, + { + "start": 3030.64, + "end": 3031.48, + "probability": 0.724 + }, + { + "start": 3031.6, + "end": 3032.2, + "probability": 0.6058 + }, + { + "start": 3032.28, + "end": 3037.68, + "probability": 0.9756 + }, + { + "start": 3038.52, + "end": 3041.26, + "probability": 0.479 + }, + { + "start": 3041.64, + "end": 3042.82, + "probability": 0.4641 + }, + { + "start": 3042.84, + "end": 3043.36, + "probability": 0.5858 + }, + { + "start": 3044.5, + "end": 3044.96, + "probability": 0.9502 + }, + { + "start": 3045.04, + "end": 3045.64, + "probability": 0.9384 + }, + { + "start": 3046.0, + "end": 3050.4, + "probability": 0.7314 + }, + { + "start": 3050.82, + "end": 3051.46, + "probability": 0.8005 + }, + { + "start": 3051.98, + "end": 3054.82, + "probability": 0.9319 + }, + { + "start": 3055.14, + "end": 3057.12, + "probability": 0.988 + }, + { + "start": 3057.52, + "end": 3057.92, + "probability": 0.2972 + }, + { + "start": 3058.36, + "end": 3059.42, + "probability": 0.1689 + }, + { + "start": 3059.74, + "end": 3061.58, + "probability": 0.6356 + }, + { + "start": 3062.18, + "end": 3065.36, + "probability": 0.2466 + }, + { + "start": 3066.0, + "end": 3068.38, + "probability": 0.9844 + }, + { + "start": 3068.8, + "end": 3069.72, + "probability": 0.7887 + }, + { + "start": 3069.94, + "end": 3070.58, + "probability": 0.5874 + }, + { + "start": 3071.14, + "end": 3071.62, + "probability": 0.4286 + }, + { + "start": 3071.86, + "end": 3072.58, + "probability": 0.9609 + }, + { + "start": 3072.92, + "end": 3073.72, + "probability": 0.9199 + }, + { + "start": 3074.26, + "end": 3075.38, + "probability": 0.8776 + }, + { + "start": 3075.8, + "end": 3077.2, + "probability": 0.9881 + }, + { + "start": 3077.92, + "end": 3078.96, + "probability": 0.6889 + }, + { + "start": 3079.02, + "end": 3081.84, + "probability": 0.9476 + }, + { + "start": 3081.86, + "end": 3082.5, + "probability": 0.9685 + }, + { + "start": 3083.32, + "end": 3085.1, + "probability": 0.9395 + }, + { + "start": 3085.58, + "end": 3087.94, + "probability": 0.993 + }, + { + "start": 3088.5, + "end": 3093.46, + "probability": 0.8687 + }, + { + "start": 3093.94, + "end": 3097.34, + "probability": 0.9927 + }, + { + "start": 3097.54, + "end": 3098.2, + "probability": 0.5475 + }, + { + "start": 3098.8, + "end": 3099.68, + "probability": 0.862 + }, + { + "start": 3100.28, + "end": 3102.1, + "probability": 0.8246 + }, + { + "start": 3102.64, + "end": 3105.68, + "probability": 0.9859 + }, + { + "start": 3106.18, + "end": 3108.1, + "probability": 0.9651 + }, + { + "start": 3108.58, + "end": 3110.08, + "probability": 0.9508 + }, + { + "start": 3110.64, + "end": 3112.94, + "probability": 0.9829 + }, + { + "start": 3116.16, + "end": 3116.92, + "probability": 0.498 + }, + { + "start": 3117.32, + "end": 3119.7, + "probability": 0.703 + }, + { + "start": 3120.06, + "end": 3126.28, + "probability": 0.9512 + }, + { + "start": 3126.7, + "end": 3130.2, + "probability": 0.9735 + }, + { + "start": 3130.8, + "end": 3134.04, + "probability": 0.7872 + }, + { + "start": 3134.04, + "end": 3136.72, + "probability": 0.9689 + }, + { + "start": 3137.28, + "end": 3141.78, + "probability": 0.998 + }, + { + "start": 3142.18, + "end": 3143.04, + "probability": 0.981 + }, + { + "start": 3143.46, + "end": 3144.3, + "probability": 0.7591 + }, + { + "start": 3144.98, + "end": 3146.7, + "probability": 0.6353 + }, + { + "start": 3147.14, + "end": 3149.6, + "probability": 0.9841 + }, + { + "start": 3149.68, + "end": 3150.28, + "probability": 0.2706 + }, + { + "start": 3150.36, + "end": 3150.71, + "probability": 0.8431 + }, + { + "start": 3150.9, + "end": 3151.56, + "probability": 0.9205 + }, + { + "start": 3151.9, + "end": 3152.44, + "probability": 0.9523 + }, + { + "start": 3152.78, + "end": 3154.32, + "probability": 0.9318 + }, + { + "start": 3154.72, + "end": 3155.48, + "probability": 0.7745 + }, + { + "start": 3155.78, + "end": 3158.96, + "probability": 0.7481 + }, + { + "start": 3159.22, + "end": 3159.97, + "probability": 0.9437 + }, + { + "start": 3160.18, + "end": 3160.94, + "probability": 0.9185 + }, + { + "start": 3161.24, + "end": 3161.58, + "probability": 0.0325 + }, + { + "start": 3162.1, + "end": 3162.26, + "probability": 0.4135 + }, + { + "start": 3162.26, + "end": 3162.76, + "probability": 0.8818 + }, + { + "start": 3163.14, + "end": 3163.77, + "probability": 0.9445 + }, + { + "start": 3164.52, + "end": 3166.38, + "probability": 0.9604 + }, + { + "start": 3166.46, + "end": 3169.82, + "probability": 0.9007 + }, + { + "start": 3169.96, + "end": 3171.54, + "probability": 0.995 + }, + { + "start": 3172.1, + "end": 3174.16, + "probability": 0.9554 + }, + { + "start": 3174.76, + "end": 3176.9, + "probability": 0.9826 + }, + { + "start": 3177.32, + "end": 3178.22, + "probability": 0.9942 + }, + { + "start": 3178.68, + "end": 3179.7, + "probability": 0.944 + }, + { + "start": 3180.1, + "end": 3181.01, + "probability": 0.9256 + }, + { + "start": 3181.48, + "end": 3188.04, + "probability": 0.9966 + }, + { + "start": 3189.82, + "end": 3191.38, + "probability": 0.9031 + }, + { + "start": 3191.9, + "end": 3193.96, + "probability": 0.9568 + }, + { + "start": 3194.58, + "end": 3196.22, + "probability": 0.9638 + }, + { + "start": 3196.32, + "end": 3200.02, + "probability": 0.8592 + }, + { + "start": 3200.1, + "end": 3202.2, + "probability": 0.8773 + }, + { + "start": 3203.02, + "end": 3205.44, + "probability": 0.9084 + }, + { + "start": 3206.04, + "end": 3207.78, + "probability": 0.9515 + }, + { + "start": 3212.05, + "end": 3213.7, + "probability": 0.7957 + }, + { + "start": 3214.54, + "end": 3219.98, + "probability": 0.987 + }, + { + "start": 3220.08, + "end": 3223.12, + "probability": 0.996 + }, + { + "start": 3223.12, + "end": 3227.7, + "probability": 0.6007 + }, + { + "start": 3228.2, + "end": 3230.24, + "probability": 0.9292 + }, + { + "start": 3230.66, + "end": 3231.82, + "probability": 0.7233 + }, + { + "start": 3232.8, + "end": 3233.56, + "probability": 0.7053 + }, + { + "start": 3234.08, + "end": 3237.6, + "probability": 0.8708 + }, + { + "start": 3238.24, + "end": 3243.4, + "probability": 0.8928 + }, + { + "start": 3243.78, + "end": 3244.44, + "probability": 0.4845 + }, + { + "start": 3245.22, + "end": 3247.52, + "probability": 0.8368 + }, + { + "start": 3247.98, + "end": 3250.06, + "probability": 0.8243 + }, + { + "start": 3250.22, + "end": 3250.7, + "probability": 0.8126 + }, + { + "start": 3251.32, + "end": 3253.78, + "probability": 0.9542 + }, + { + "start": 3253.88, + "end": 3254.4, + "probability": 0.4481 + }, + { + "start": 3254.46, + "end": 3255.04, + "probability": 0.8906 + }, + { + "start": 3255.53, + "end": 3258.44, + "probability": 0.8394 + }, + { + "start": 3259.94, + "end": 3260.72, + "probability": 0.6698 + }, + { + "start": 3261.1, + "end": 3262.88, + "probability": 0.7265 + }, + { + "start": 3264.24, + "end": 3271.12, + "probability": 0.9912 + }, + { + "start": 3272.78, + "end": 3278.5, + "probability": 0.9886 + }, + { + "start": 3279.72, + "end": 3280.9, + "probability": 0.9964 + }, + { + "start": 3281.94, + "end": 3287.16, + "probability": 0.807 + }, + { + "start": 3287.66, + "end": 3290.62, + "probability": 0.636 + }, + { + "start": 3290.9, + "end": 3297.76, + "probability": 0.8718 + }, + { + "start": 3298.26, + "end": 3300.86, + "probability": 0.6529 + }, + { + "start": 3301.86, + "end": 3307.52, + "probability": 0.891 + }, + { + "start": 3308.06, + "end": 3313.4, + "probability": 0.9617 + }, + { + "start": 3313.4, + "end": 3318.92, + "probability": 0.9772 + }, + { + "start": 3319.92, + "end": 3325.7, + "probability": 0.6617 + }, + { + "start": 3325.7, + "end": 3328.7, + "probability": 0.9866 + }, + { + "start": 3329.34, + "end": 3330.58, + "probability": 0.8438 + }, + { + "start": 3331.18, + "end": 3334.12, + "probability": 0.6654 + }, + { + "start": 3335.08, + "end": 3339.12, + "probability": 0.8515 + }, + { + "start": 3340.12, + "end": 3342.66, + "probability": 0.6237 + }, + { + "start": 3342.96, + "end": 3346.4, + "probability": 0.9703 + }, + { + "start": 3346.92, + "end": 3347.43, + "probability": 0.8185 + }, + { + "start": 3350.22, + "end": 3352.92, + "probability": 0.8308 + }, + { + "start": 3353.52, + "end": 3358.36, + "probability": 0.8837 + }, + { + "start": 3359.52, + "end": 3361.79, + "probability": 0.9956 + }, + { + "start": 3362.64, + "end": 3365.62, + "probability": 0.9387 + }, + { + "start": 3366.18, + "end": 3368.42, + "probability": 0.6321 + }, + { + "start": 3369.0, + "end": 3370.7, + "probability": 0.9692 + }, + { + "start": 3371.88, + "end": 3375.62, + "probability": 0.9877 + }, + { + "start": 3376.4, + "end": 3377.14, + "probability": 0.9682 + }, + { + "start": 3378.14, + "end": 3379.0, + "probability": 0.7673 + }, + { + "start": 3379.82, + "end": 3381.18, + "probability": 0.9761 + }, + { + "start": 3381.24, + "end": 3383.08, + "probability": 0.8622 + }, + { + "start": 3383.96, + "end": 3385.04, + "probability": 0.6658 + }, + { + "start": 3385.12, + "end": 3385.71, + "probability": 0.9773 + }, + { + "start": 3386.4, + "end": 3386.98, + "probability": 0.7739 + }, + { + "start": 3387.08, + "end": 3387.96, + "probability": 0.8432 + }, + { + "start": 3388.44, + "end": 3391.18, + "probability": 0.9238 + }, + { + "start": 3392.4, + "end": 3394.52, + "probability": 0.5946 + }, + { + "start": 3394.78, + "end": 3396.72, + "probability": 0.7416 + }, + { + "start": 3397.36, + "end": 3400.04, + "probability": 0.8439 + }, + { + "start": 3401.16, + "end": 3403.02, + "probability": 0.9292 + }, + { + "start": 3403.58, + "end": 3407.16, + "probability": 0.9877 + }, + { + "start": 3408.16, + "end": 3408.9, + "probability": 0.6403 + }, + { + "start": 3410.32, + "end": 3412.08, + "probability": 0.6775 + }, + { + "start": 3412.94, + "end": 3415.4, + "probability": 0.6692 + }, + { + "start": 3416.28, + "end": 3419.36, + "probability": 0.8392 + }, + { + "start": 3420.12, + "end": 3422.9, + "probability": 0.9201 + }, + { + "start": 3423.5, + "end": 3425.84, + "probability": 0.9592 + }, + { + "start": 3426.46, + "end": 3427.1, + "probability": 0.7285 + }, + { + "start": 3427.74, + "end": 3430.14, + "probability": 0.9097 + }, + { + "start": 3432.66, + "end": 3435.56, + "probability": 0.9377 + }, + { + "start": 3436.32, + "end": 3440.88, + "probability": 0.7558 + }, + { + "start": 3441.54, + "end": 3444.3, + "probability": 0.7745 + }, + { + "start": 3445.1, + "end": 3447.08, + "probability": 0.7543 + }, + { + "start": 3447.5, + "end": 3448.3, + "probability": 0.7238 + }, + { + "start": 3449.18, + "end": 3450.36, + "probability": 0.5315 + }, + { + "start": 3451.0, + "end": 3451.7, + "probability": 0.6225 + }, + { + "start": 3452.5, + "end": 3452.84, + "probability": 0.7724 + }, + { + "start": 3452.94, + "end": 3456.34, + "probability": 0.9637 + }, + { + "start": 3457.36, + "end": 3459.88, + "probability": 0.9111 + }, + { + "start": 3461.8, + "end": 3464.22, + "probability": 0.5907 + }, + { + "start": 3464.86, + "end": 3466.48, + "probability": 0.7234 + }, + { + "start": 3467.3, + "end": 3468.92, + "probability": 0.8534 + }, + { + "start": 3469.7, + "end": 3471.12, + "probability": 0.8381 + }, + { + "start": 3471.78, + "end": 3476.98, + "probability": 0.7117 + }, + { + "start": 3477.62, + "end": 3479.92, + "probability": 0.8609 + }, + { + "start": 3480.26, + "end": 3486.7, + "probability": 0.8993 + }, + { + "start": 3487.54, + "end": 3491.62, + "probability": 0.9972 + }, + { + "start": 3492.14, + "end": 3493.46, + "probability": 0.9803 + }, + { + "start": 3495.62, + "end": 3498.22, + "probability": 0.5934 + }, + { + "start": 3499.12, + "end": 3500.24, + "probability": 0.771 + }, + { + "start": 3501.2, + "end": 3506.04, + "probability": 0.6604 + }, + { + "start": 3507.3, + "end": 3510.8, + "probability": 0.691 + }, + { + "start": 3511.5, + "end": 3511.9, + "probability": 0.4922 + }, + { + "start": 3512.02, + "end": 3517.8, + "probability": 0.8208 + }, + { + "start": 3518.44, + "end": 3521.18, + "probability": 0.9767 + }, + { + "start": 3521.96, + "end": 3527.56, + "probability": 0.9937 + }, + { + "start": 3527.92, + "end": 3529.06, + "probability": 0.718 + }, + { + "start": 3529.48, + "end": 3531.34, + "probability": 0.7387 + }, + { + "start": 3532.08, + "end": 3534.06, + "probability": 0.6674 + }, + { + "start": 3534.46, + "end": 3537.8, + "probability": 0.8374 + }, + { + "start": 3539.08, + "end": 3543.2, + "probability": 0.9372 + }, + { + "start": 3543.78, + "end": 3544.9, + "probability": 0.7142 + }, + { + "start": 3545.78, + "end": 3546.72, + "probability": 0.8003 + }, + { + "start": 3547.04, + "end": 3548.12, + "probability": 0.8905 + }, + { + "start": 3548.62, + "end": 3550.58, + "probability": 0.8378 + }, + { + "start": 3551.52, + "end": 3558.12, + "probability": 0.8909 + }, + { + "start": 3558.48, + "end": 3560.22, + "probability": 0.7463 + }, + { + "start": 3560.78, + "end": 3566.02, + "probability": 0.7625 + }, + { + "start": 3566.68, + "end": 3567.29, + "probability": 0.9155 + }, + { + "start": 3569.3, + "end": 3570.18, + "probability": 0.6688 + }, + { + "start": 3571.02, + "end": 3571.54, + "probability": 0.6387 + }, + { + "start": 3572.34, + "end": 3572.94, + "probability": 0.7235 + }, + { + "start": 3573.54, + "end": 3574.78, + "probability": 0.9937 + }, + { + "start": 3575.54, + "end": 3577.1, + "probability": 0.8951 + }, + { + "start": 3577.46, + "end": 3581.38, + "probability": 0.8838 + }, + { + "start": 3581.7, + "end": 3584.16, + "probability": 0.726 + }, + { + "start": 3585.0, + "end": 3588.56, + "probability": 0.9698 + }, + { + "start": 3589.22, + "end": 3592.58, + "probability": 0.9894 + }, + { + "start": 3592.92, + "end": 3594.86, + "probability": 0.8953 + }, + { + "start": 3595.44, + "end": 3601.2, + "probability": 0.8006 + }, + { + "start": 3601.2, + "end": 3603.3, + "probability": 0.8381 + }, + { + "start": 3604.29, + "end": 3607.0, + "probability": 0.9648 + }, + { + "start": 3607.56, + "end": 3611.18, + "probability": 0.8503 + }, + { + "start": 3611.58, + "end": 3613.32, + "probability": 0.8086 + }, + { + "start": 3614.22, + "end": 3617.82, + "probability": 0.8972 + }, + { + "start": 3618.3, + "end": 3618.96, + "probability": 0.7346 + }, + { + "start": 3619.44, + "end": 3624.02, + "probability": 0.9728 + }, + { + "start": 3624.44, + "end": 3624.76, + "probability": 0.3793 + }, + { + "start": 3624.82, + "end": 3626.8, + "probability": 0.5521 + }, + { + "start": 3627.3, + "end": 3629.56, + "probability": 0.9785 + }, + { + "start": 3630.36, + "end": 3631.14, + "probability": 0.3447 + }, + { + "start": 3631.3, + "end": 3632.75, + "probability": 0.993 + }, + { + "start": 3633.39, + "end": 3635.15, + "probability": 0.7285 + }, + { + "start": 3635.5, + "end": 3636.37, + "probability": 0.7543 + }, + { + "start": 3637.12, + "end": 3638.48, + "probability": 0.9707 + }, + { + "start": 3639.04, + "end": 3642.78, + "probability": 0.8511 + }, + { + "start": 3643.2, + "end": 3647.7, + "probability": 0.8157 + }, + { + "start": 3647.78, + "end": 3648.22, + "probability": 0.895 + }, + { + "start": 3648.86, + "end": 3649.12, + "probability": 0.5379 + }, + { + "start": 3650.58, + "end": 3651.9, + "probability": 0.5179 + }, + { + "start": 3658.36, + "end": 3661.16, + "probability": 0.7019 + }, + { + "start": 3661.28, + "end": 3662.54, + "probability": 0.7259 + }, + { + "start": 3664.78, + "end": 3669.16, + "probability": 0.4749 + }, + { + "start": 3669.16, + "end": 3669.8, + "probability": 0.4141 + }, + { + "start": 3671.02, + "end": 3672.5, + "probability": 0.8146 + }, + { + "start": 3673.04, + "end": 3676.02, + "probability": 0.5056 + }, + { + "start": 3677.12, + "end": 3677.26, + "probability": 0.641 + }, + { + "start": 3677.26, + "end": 3677.26, + "probability": 0.083 + }, + { + "start": 3678.36, + "end": 3679.42, + "probability": 0.2999 + }, + { + "start": 3682.36, + "end": 3686.6, + "probability": 0.3862 + }, + { + "start": 3692.14, + "end": 3695.2, + "probability": 0.7603 + }, + { + "start": 3697.12, + "end": 3701.2, + "probability": 0.9011 + }, + { + "start": 3702.8, + "end": 3705.7, + "probability": 0.9744 + }, + { + "start": 3706.28, + "end": 3707.94, + "probability": 0.1831 + }, + { + "start": 3708.73, + "end": 3711.04, + "probability": 0.861 + }, + { + "start": 3711.88, + "end": 3714.36, + "probability": 0.9829 + }, + { + "start": 3716.22, + "end": 3717.52, + "probability": 0.9762 + }, + { + "start": 3718.74, + "end": 3719.98, + "probability": 0.9373 + }, + { + "start": 3720.76, + "end": 3725.04, + "probability": 0.9861 + }, + { + "start": 3725.72, + "end": 3726.34, + "probability": 0.8992 + }, + { + "start": 3727.9, + "end": 3729.24, + "probability": 0.9348 + }, + { + "start": 3731.34, + "end": 3735.5, + "probability": 0.9823 + }, + { + "start": 3736.46, + "end": 3738.38, + "probability": 0.9651 + }, + { + "start": 3738.9, + "end": 3740.0, + "probability": 0.9884 + }, + { + "start": 3740.88, + "end": 3743.68, + "probability": 0.9661 + }, + { + "start": 3745.0, + "end": 3746.48, + "probability": 0.9874 + }, + { + "start": 3747.74, + "end": 3750.06, + "probability": 0.5725 + }, + { + "start": 3752.07, + "end": 3753.9, + "probability": 0.4876 + }, + { + "start": 3754.5, + "end": 3755.16, + "probability": 0.7385 + }, + { + "start": 3756.22, + "end": 3757.42, + "probability": 0.9355 + }, + { + "start": 3758.48, + "end": 3759.88, + "probability": 0.6789 + }, + { + "start": 3760.46, + "end": 3762.18, + "probability": 0.9818 + }, + { + "start": 3763.06, + "end": 3764.54, + "probability": 0.9867 + }, + { + "start": 3765.28, + "end": 3765.96, + "probability": 0.7799 + }, + { + "start": 3766.67, + "end": 3768.3, + "probability": 0.908 + }, + { + "start": 3769.1, + "end": 3770.06, + "probability": 0.7895 + }, + { + "start": 3770.66, + "end": 3774.16, + "probability": 0.9761 + }, + { + "start": 3774.46, + "end": 3776.3, + "probability": 0.9875 + }, + { + "start": 3777.54, + "end": 3779.1, + "probability": 0.8859 + }, + { + "start": 3779.4, + "end": 3782.6, + "probability": 0.8462 + }, + { + "start": 3783.63, + "end": 3786.94, + "probability": 0.9684 + }, + { + "start": 3787.34, + "end": 3788.02, + "probability": 0.8067 + }, + { + "start": 3788.96, + "end": 3792.12, + "probability": 0.9597 + }, + { + "start": 3792.58, + "end": 3793.56, + "probability": 0.8396 + }, + { + "start": 3794.0, + "end": 3795.02, + "probability": 0.7653 + }, + { + "start": 3796.61, + "end": 3799.4, + "probability": 0.9611 + }, + { + "start": 3799.7, + "end": 3800.62, + "probability": 0.4195 + }, + { + "start": 3802.14, + "end": 3805.68, + "probability": 0.9572 + }, + { + "start": 3806.28, + "end": 3807.75, + "probability": 0.646 + }, + { + "start": 3808.48, + "end": 3809.74, + "probability": 0.3481 + }, + { + "start": 3810.04, + "end": 3810.68, + "probability": 0.5247 + }, + { + "start": 3811.06, + "end": 3811.64, + "probability": 0.6469 + }, + { + "start": 3811.68, + "end": 3814.78, + "probability": 0.5237 + }, + { + "start": 3815.42, + "end": 3820.14, + "probability": 0.0549 + }, + { + "start": 3820.24, + "end": 3820.52, + "probability": 0.4397 + }, + { + "start": 3820.52, + "end": 3821.38, + "probability": 0.0488 + }, + { + "start": 3821.38, + "end": 3821.38, + "probability": 0.6586 + }, + { + "start": 3821.38, + "end": 3821.74, + "probability": 0.158 + }, + { + "start": 3822.12, + "end": 3822.84, + "probability": 0.648 + }, + { + "start": 3823.6, + "end": 3825.5, + "probability": 0.7925 + }, + { + "start": 3825.56, + "end": 3826.24, + "probability": 0.6289 + }, + { + "start": 3827.44, + "end": 3828.6, + "probability": 0.876 + }, + { + "start": 3828.84, + "end": 3835.14, + "probability": 0.9782 + }, + { + "start": 3835.98, + "end": 3838.58, + "probability": 0.9971 + }, + { + "start": 3839.58, + "end": 3843.52, + "probability": 0.9885 + }, + { + "start": 3845.02, + "end": 3849.32, + "probability": 0.7403 + }, + { + "start": 3850.48, + "end": 3851.68, + "probability": 0.8691 + }, + { + "start": 3852.94, + "end": 3855.28, + "probability": 0.9852 + }, + { + "start": 3855.82, + "end": 3859.32, + "probability": 0.9882 + }, + { + "start": 3860.12, + "end": 3861.5, + "probability": 0.7456 + }, + { + "start": 3861.66, + "end": 3864.66, + "probability": 0.9766 + }, + { + "start": 3865.8, + "end": 3866.57, + "probability": 0.9375 + }, + { + "start": 3867.62, + "end": 3869.52, + "probability": 0.9927 + }, + { + "start": 3869.54, + "end": 3872.26, + "probability": 0.6654 + }, + { + "start": 3873.18, + "end": 3874.46, + "probability": 0.9666 + }, + { + "start": 3875.36, + "end": 3879.32, + "probability": 0.9976 + }, + { + "start": 3880.64, + "end": 3882.84, + "probability": 0.9009 + }, + { + "start": 3883.9, + "end": 3885.38, + "probability": 0.8118 + }, + { + "start": 3885.48, + "end": 3887.42, + "probability": 0.9919 + }, + { + "start": 3887.46, + "end": 3889.98, + "probability": 0.99 + }, + { + "start": 3891.12, + "end": 3892.7, + "probability": 0.9768 + }, + { + "start": 3893.62, + "end": 3895.14, + "probability": 0.9964 + }, + { + "start": 3895.74, + "end": 3897.88, + "probability": 0.9976 + }, + { + "start": 3898.56, + "end": 3900.98, + "probability": 0.8363 + }, + { + "start": 3901.71, + "end": 3908.0, + "probability": 0.9532 + }, + { + "start": 3908.54, + "end": 3910.16, + "probability": 0.9377 + }, + { + "start": 3910.8, + "end": 3911.54, + "probability": 0.7917 + }, + { + "start": 3912.9, + "end": 3913.88, + "probability": 0.9707 + }, + { + "start": 3915.38, + "end": 3916.38, + "probability": 0.9813 + }, + { + "start": 3917.46, + "end": 3918.37, + "probability": 0.9375 + }, + { + "start": 3919.36, + "end": 3922.34, + "probability": 0.9974 + }, + { + "start": 3923.04, + "end": 3926.28, + "probability": 0.9983 + }, + { + "start": 3927.42, + "end": 3931.28, + "probability": 0.737 + }, + { + "start": 3932.5, + "end": 3937.44, + "probability": 0.8688 + }, + { + "start": 3939.04, + "end": 3940.52, + "probability": 0.4755 + }, + { + "start": 3940.6, + "end": 3941.72, + "probability": 0.669 + }, + { + "start": 3943.16, + "end": 3946.04, + "probability": 0.9852 + }, + { + "start": 3946.04, + "end": 3949.06, + "probability": 0.8232 + }, + { + "start": 3949.78, + "end": 3953.06, + "probability": 0.4176 + }, + { + "start": 3953.52, + "end": 3954.5, + "probability": 0.71 + }, + { + "start": 3954.62, + "end": 3955.12, + "probability": 0.9391 + }, + { + "start": 3955.22, + "end": 3956.05, + "probability": 0.9849 + }, + { + "start": 3956.1, + "end": 3957.96, + "probability": 0.9831 + }, + { + "start": 3958.88, + "end": 3961.52, + "probability": 0.9906 + }, + { + "start": 3962.24, + "end": 3964.04, + "probability": 0.9686 + }, + { + "start": 3965.18, + "end": 3970.15, + "probability": 0.9978 + }, + { + "start": 3970.7, + "end": 3972.06, + "probability": 0.9431 + }, + { + "start": 3972.58, + "end": 3973.29, + "probability": 0.922 + }, + { + "start": 3973.48, + "end": 3974.08, + "probability": 0.7196 + }, + { + "start": 3974.18, + "end": 3975.46, + "probability": 0.9935 + }, + { + "start": 3976.02, + "end": 3978.21, + "probability": 0.9956 + }, + { + "start": 3978.72, + "end": 3980.0, + "probability": 0.8366 + }, + { + "start": 3980.84, + "end": 3983.0, + "probability": 0.8398 + }, + { + "start": 3983.34, + "end": 3985.96, + "probability": 0.9957 + }, + { + "start": 3986.44, + "end": 3993.12, + "probability": 0.9863 + }, + { + "start": 3994.88, + "end": 3996.72, + "probability": 0.8733 + }, + { + "start": 3997.08, + "end": 3999.86, + "probability": 0.8862 + }, + { + "start": 4000.56, + "end": 4005.04, + "probability": 0.9651 + }, + { + "start": 4007.24, + "end": 4013.72, + "probability": 0.9963 + }, + { + "start": 4014.24, + "end": 4016.6, + "probability": 0.96 + }, + { + "start": 4017.68, + "end": 4021.58, + "probability": 0.9985 + }, + { + "start": 4022.5, + "end": 4024.44, + "probability": 0.9053 + }, + { + "start": 4025.0, + "end": 4027.48, + "probability": 0.8464 + }, + { + "start": 4028.36, + "end": 4033.3, + "probability": 0.9941 + }, + { + "start": 4033.98, + "end": 4040.68, + "probability": 0.9784 + }, + { + "start": 4040.74, + "end": 4043.3, + "probability": 0.9111 + }, + { + "start": 4044.08, + "end": 4044.3, + "probability": 0.3595 + }, + { + "start": 4044.42, + "end": 4045.14, + "probability": 0.7286 + }, + { + "start": 4045.3, + "end": 4047.96, + "probability": 0.918 + }, + { + "start": 4048.52, + "end": 4051.08, + "probability": 0.895 + }, + { + "start": 4053.5, + "end": 4054.54, + "probability": 0.3436 + }, + { + "start": 4055.36, + "end": 4060.86, + "probability": 0.9553 + }, + { + "start": 4061.16, + "end": 4061.4, + "probability": 0.5313 + }, + { + "start": 4062.02, + "end": 4062.98, + "probability": 0.9365 + }, + { + "start": 4063.98, + "end": 4064.92, + "probability": 0.6883 + }, + { + "start": 4065.7, + "end": 4068.14, + "probability": 0.6625 + }, + { + "start": 4068.78, + "end": 4068.88, + "probability": 0.1557 + }, + { + "start": 4068.88, + "end": 4073.14, + "probability": 0.9714 + }, + { + "start": 4073.36, + "end": 4073.6, + "probability": 0.5528 + }, + { + "start": 4076.38, + "end": 4076.8, + "probability": 0.0549 + }, + { + "start": 4078.72, + "end": 4078.94, + "probability": 0.5367 + }, + { + "start": 4080.1, + "end": 4081.74, + "probability": 0.7357 + }, + { + "start": 4089.0, + "end": 4089.62, + "probability": 0.5177 + }, + { + "start": 4089.62, + "end": 4089.72, + "probability": 0.4816 + }, + { + "start": 4092.26, + "end": 4095.8, + "probability": 0.7878 + }, + { + "start": 4097.5, + "end": 4100.0, + "probability": 0.6926 + }, + { + "start": 4101.2, + "end": 4102.55, + "probability": 0.9095 + }, + { + "start": 4103.18, + "end": 4104.2, + "probability": 0.9695 + }, + { + "start": 4117.46, + "end": 4118.18, + "probability": 0.06 + }, + { + "start": 4118.18, + "end": 4118.18, + "probability": 0.014 + }, + { + "start": 4118.18, + "end": 4118.18, + "probability": 0.0759 + }, + { + "start": 4118.18, + "end": 4118.18, + "probability": 0.0622 + }, + { + "start": 4118.18, + "end": 4123.5, + "probability": 0.7286 + }, + { + "start": 4124.4, + "end": 4125.24, + "probability": 0.5784 + }, + { + "start": 4127.14, + "end": 4130.45, + "probability": 0.835 + }, + { + "start": 4133.1, + "end": 4134.7, + "probability": 0.8726 + }, + { + "start": 4136.26, + "end": 4136.36, + "probability": 0.9468 + }, + { + "start": 4137.24, + "end": 4137.8, + "probability": 0.5745 + }, + { + "start": 4139.82, + "end": 4142.8, + "probability": 0.7296 + }, + { + "start": 4144.02, + "end": 4146.09, + "probability": 0.9254 + }, + { + "start": 4148.12, + "end": 4149.86, + "probability": 0.4503 + }, + { + "start": 4151.48, + "end": 4157.26, + "probability": 0.9949 + }, + { + "start": 4157.36, + "end": 4160.08, + "probability": 0.6665 + }, + { + "start": 4161.26, + "end": 4162.28, + "probability": 0.8082 + }, + { + "start": 4162.44, + "end": 4164.5, + "probability": 0.99 + }, + { + "start": 4166.0, + "end": 4168.64, + "probability": 0.937 + }, + { + "start": 4169.36, + "end": 4170.64, + "probability": 0.9158 + }, + { + "start": 4171.72, + "end": 4176.17, + "probability": 0.9863 + }, + { + "start": 4176.5, + "end": 4177.3, + "probability": 0.9368 + }, + { + "start": 4177.52, + "end": 4178.4, + "probability": 0.9507 + }, + { + "start": 4178.86, + "end": 4179.92, + "probability": 0.7844 + }, + { + "start": 4180.74, + "end": 4182.06, + "probability": 0.9096 + }, + { + "start": 4182.12, + "end": 4185.82, + "probability": 0.0841 + }, + { + "start": 4185.86, + "end": 4187.46, + "probability": 0.9744 + }, + { + "start": 4188.48, + "end": 4190.48, + "probability": 0.8098 + }, + { + "start": 4191.3, + "end": 4192.1, + "probability": 0.619 + }, + { + "start": 4193.08, + "end": 4195.42, + "probability": 0.9951 + }, + { + "start": 4196.2, + "end": 4197.76, + "probability": 0.9053 + }, + { + "start": 4197.78, + "end": 4199.08, + "probability": 0.9987 + }, + { + "start": 4200.4, + "end": 4204.14, + "probability": 0.9956 + }, + { + "start": 4204.72, + "end": 4207.26, + "probability": 0.7643 + }, + { + "start": 4207.86, + "end": 4210.38, + "probability": 0.901 + }, + { + "start": 4211.04, + "end": 4214.32, + "probability": 0.8516 + }, + { + "start": 4214.4, + "end": 4217.27, + "probability": 0.9927 + }, + { + "start": 4219.3, + "end": 4220.78, + "probability": 0.4843 + }, + { + "start": 4220.8, + "end": 4225.9, + "probability": 0.981 + }, + { + "start": 4227.06, + "end": 4228.98, + "probability": 0.7922 + }, + { + "start": 4230.44, + "end": 4232.94, + "probability": 0.9977 + }, + { + "start": 4234.16, + "end": 4237.36, + "probability": 0.9365 + }, + { + "start": 4237.91, + "end": 4240.65, + "probability": 0.9653 + }, + { + "start": 4241.4, + "end": 4242.56, + "probability": 0.8243 + }, + { + "start": 4242.58, + "end": 4244.26, + "probability": 0.6643 + }, + { + "start": 4244.92, + "end": 4245.68, + "probability": 0.6421 + }, + { + "start": 4246.48, + "end": 4249.57, + "probability": 0.9961 + }, + { + "start": 4249.84, + "end": 4250.52, + "probability": 0.5807 + }, + { + "start": 4250.68, + "end": 4252.74, + "probability": 0.9525 + }, + { + "start": 4253.84, + "end": 4255.48, + "probability": 0.9501 + }, + { + "start": 4255.56, + "end": 4256.84, + "probability": 0.8583 + }, + { + "start": 4257.54, + "end": 4258.8, + "probability": 0.9551 + }, + { + "start": 4258.96, + "end": 4261.48, + "probability": 0.6159 + }, + { + "start": 4261.9, + "end": 4263.08, + "probability": 0.7455 + }, + { + "start": 4263.76, + "end": 4264.8, + "probability": 0.9224 + }, + { + "start": 4264.98, + "end": 4268.09, + "probability": 0.7057 + }, + { + "start": 4268.66, + "end": 4271.86, + "probability": 0.9963 + }, + { + "start": 4272.06, + "end": 4274.64, + "probability": 0.9777 + }, + { + "start": 4275.56, + "end": 4277.5, + "probability": 0.9116 + }, + { + "start": 4278.16, + "end": 4280.84, + "probability": 0.9341 + }, + { + "start": 4281.9, + "end": 4282.74, + "probability": 0.471 + }, + { + "start": 4283.46, + "end": 4287.88, + "probability": 0.9215 + }, + { + "start": 4288.04, + "end": 4288.26, + "probability": 0.353 + }, + { + "start": 4288.4, + "end": 4289.08, + "probability": 0.3707 + }, + { + "start": 4289.62, + "end": 4290.52, + "probability": 0.7637 + }, + { + "start": 4291.1, + "end": 4292.3, + "probability": 0.9331 + }, + { + "start": 4292.66, + "end": 4294.22, + "probability": 0.9257 + }, + { + "start": 4294.32, + "end": 4297.18, + "probability": 0.9925 + }, + { + "start": 4297.18, + "end": 4299.84, + "probability": 0.9927 + }, + { + "start": 4300.76, + "end": 4301.75, + "probability": 0.7626 + }, + { + "start": 4302.82, + "end": 4305.18, + "probability": 0.9841 + }, + { + "start": 4306.12, + "end": 4308.26, + "probability": 0.9795 + }, + { + "start": 4309.28, + "end": 4311.74, + "probability": 0.6436 + }, + { + "start": 4312.38, + "end": 4314.78, + "probability": 0.8745 + }, + { + "start": 4315.06, + "end": 4319.02, + "probability": 0.9601 + }, + { + "start": 4319.62, + "end": 4320.24, + "probability": 0.9366 + }, + { + "start": 4321.48, + "end": 4322.76, + "probability": 0.978 + }, + { + "start": 4322.92, + "end": 4326.34, + "probability": 0.9611 + }, + { + "start": 4326.84, + "end": 4333.72, + "probability": 0.8527 + }, + { + "start": 4333.8, + "end": 4334.99, + "probability": 0.9531 + }, + { + "start": 4335.36, + "end": 4335.64, + "probability": 0.3633 + }, + { + "start": 4335.76, + "end": 4336.04, + "probability": 0.3271 + }, + { + "start": 4336.5, + "end": 4337.48, + "probability": 0.3796 + }, + { + "start": 4337.58, + "end": 4338.04, + "probability": 0.6993 + }, + { + "start": 4338.98, + "end": 4339.72, + "probability": 0.4272 + }, + { + "start": 4340.98, + "end": 4342.22, + "probability": 0.8057 + }, + { + "start": 4342.4, + "end": 4344.88, + "probability": 0.9639 + }, + { + "start": 4345.2, + "end": 4347.06, + "probability": 0.9437 + }, + { + "start": 4348.06, + "end": 4349.2, + "probability": 0.9683 + }, + { + "start": 4349.28, + "end": 4351.58, + "probability": 0.984 + }, + { + "start": 4352.12, + "end": 4353.48, + "probability": 0.8216 + }, + { + "start": 4353.96, + "end": 4355.82, + "probability": 0.7804 + }, + { + "start": 4355.88, + "end": 4357.4, + "probability": 0.8925 + }, + { + "start": 4357.8, + "end": 4359.04, + "probability": 0.8454 + }, + { + "start": 4359.14, + "end": 4360.04, + "probability": 0.9921 + }, + { + "start": 4360.66, + "end": 4364.33, + "probability": 0.9973 + }, + { + "start": 4365.28, + "end": 4366.99, + "probability": 0.9746 + }, + { + "start": 4369.1, + "end": 4370.62, + "probability": 0.9935 + }, + { + "start": 4371.42, + "end": 4376.2, + "probability": 0.8608 + }, + { + "start": 4376.46, + "end": 4378.56, + "probability": 0.7735 + }, + { + "start": 4379.16, + "end": 4381.1, + "probability": 0.8597 + }, + { + "start": 4381.16, + "end": 4383.78, + "probability": 0.8435 + }, + { + "start": 4384.92, + "end": 4387.56, + "probability": 0.9324 + }, + { + "start": 4389.79, + "end": 4393.48, + "probability": 0.8301 + }, + { + "start": 4394.4, + "end": 4396.8, + "probability": 0.9231 + }, + { + "start": 4397.7, + "end": 4400.02, + "probability": 0.9987 + }, + { + "start": 4400.82, + "end": 4402.88, + "probability": 0.9754 + }, + { + "start": 4403.12, + "end": 4404.26, + "probability": 0.8291 + }, + { + "start": 4404.32, + "end": 4406.52, + "probability": 0.9401 + }, + { + "start": 4407.66, + "end": 4408.34, + "probability": 0.8942 + }, + { + "start": 4408.38, + "end": 4410.72, + "probability": 0.703 + }, + { + "start": 4411.2, + "end": 4411.86, + "probability": 0.9883 + }, + { + "start": 4412.52, + "end": 4414.5, + "probability": 0.8915 + }, + { + "start": 4415.34, + "end": 4416.22, + "probability": 0.6753 + }, + { + "start": 4416.94, + "end": 4418.86, + "probability": 0.9379 + }, + { + "start": 4419.46, + "end": 4421.89, + "probability": 0.8989 + }, + { + "start": 4422.72, + "end": 4424.15, + "probability": 0.9803 + }, + { + "start": 4425.34, + "end": 4428.26, + "probability": 0.5697 + }, + { + "start": 4428.94, + "end": 4431.94, + "probability": 0.7514 + }, + { + "start": 4431.96, + "end": 4434.26, + "probability": 0.2662 + }, + { + "start": 4435.06, + "end": 4437.94, + "probability": 0.2543 + }, + { + "start": 4454.04, + "end": 4455.1, + "probability": 0.3312 + }, + { + "start": 4456.62, + "end": 4456.72, + "probability": 0.6263 + }, + { + "start": 4456.72, + "end": 4457.82, + "probability": 0.499 + }, + { + "start": 4457.92, + "end": 4458.52, + "probability": 0.8782 + }, + { + "start": 4458.62, + "end": 4459.37, + "probability": 0.9348 + }, + { + "start": 4460.22, + "end": 4462.42, + "probability": 0.9961 + }, + { + "start": 4467.76, + "end": 4469.0, + "probability": 0.6634 + }, + { + "start": 4470.6, + "end": 4473.06, + "probability": 0.9885 + }, + { + "start": 4473.1, + "end": 4474.57, + "probability": 0.9868 + }, + { + "start": 4475.42, + "end": 4476.39, + "probability": 0.9695 + }, + { + "start": 4477.32, + "end": 4479.62, + "probability": 0.9967 + }, + { + "start": 4480.36, + "end": 4483.58, + "probability": 0.9816 + }, + { + "start": 4484.1, + "end": 4485.18, + "probability": 0.8559 + }, + { + "start": 4485.74, + "end": 4486.94, + "probability": 0.9897 + }, + { + "start": 4487.38, + "end": 4489.0, + "probability": 0.9354 + }, + { + "start": 4489.52, + "end": 4493.17, + "probability": 0.9973 + }, + { + "start": 4493.96, + "end": 4495.86, + "probability": 0.9783 + }, + { + "start": 4496.98, + "end": 4497.22, + "probability": 0.5076 + }, + { + "start": 4497.22, + "end": 4497.58, + "probability": 0.8666 + }, + { + "start": 4497.58, + "end": 4498.24, + "probability": 0.9798 + }, + { + "start": 4498.3, + "end": 4504.1, + "probability": 0.9923 + }, + { + "start": 4504.48, + "end": 4505.8, + "probability": 0.9304 + }, + { + "start": 4505.94, + "end": 4507.14, + "probability": 0.983 + }, + { + "start": 4507.62, + "end": 4509.36, + "probability": 0.8681 + }, + { + "start": 4510.38, + "end": 4513.62, + "probability": 0.9484 + }, + { + "start": 4514.08, + "end": 4516.98, + "probability": 0.9224 + }, + { + "start": 4517.38, + "end": 4519.55, + "probability": 0.9961 + }, + { + "start": 4520.88, + "end": 4523.6, + "probability": 0.9983 + }, + { + "start": 4524.34, + "end": 4525.28, + "probability": 0.9612 + }, + { + "start": 4526.12, + "end": 4526.92, + "probability": 0.679 + }, + { + "start": 4527.86, + "end": 4530.13, + "probability": 0.9771 + }, + { + "start": 4530.82, + "end": 4535.3, + "probability": 0.9773 + }, + { + "start": 4535.84, + "end": 4538.84, + "probability": 0.9763 + }, + { + "start": 4539.88, + "end": 4544.02, + "probability": 0.999 + }, + { + "start": 4544.84, + "end": 4548.54, + "probability": 0.9963 + }, + { + "start": 4549.16, + "end": 4550.4, + "probability": 0.8403 + }, + { + "start": 4551.14, + "end": 4551.98, + "probability": 0.9541 + }, + { + "start": 4552.36, + "end": 4554.1, + "probability": 0.998 + }, + { + "start": 4554.72, + "end": 4555.56, + "probability": 0.9431 + }, + { + "start": 4556.28, + "end": 4557.3, + "probability": 0.9851 + }, + { + "start": 4557.94, + "end": 4561.72, + "probability": 0.9002 + }, + { + "start": 4562.28, + "end": 4563.95, + "probability": 0.8717 + }, + { + "start": 4564.1, + "end": 4566.8, + "probability": 0.7782 + }, + { + "start": 4567.3, + "end": 4572.4, + "probability": 0.8669 + }, + { + "start": 4572.94, + "end": 4572.94, + "probability": 0.0116 + }, + { + "start": 4572.94, + "end": 4573.7, + "probability": 0.9235 + }, + { + "start": 4573.82, + "end": 4578.9, + "probability": 0.96 + }, + { + "start": 4579.04, + "end": 4580.06, + "probability": 0.8555 + }, + { + "start": 4580.48, + "end": 4583.12, + "probability": 0.9845 + }, + { + "start": 4584.28, + "end": 4584.76, + "probability": 0.9561 + }, + { + "start": 4585.76, + "end": 4587.34, + "probability": 0.997 + }, + { + "start": 4587.56, + "end": 4588.7, + "probability": 0.9952 + }, + { + "start": 4588.92, + "end": 4596.1, + "probability": 0.9919 + }, + { + "start": 4597.06, + "end": 4600.04, + "probability": 0.7429 + }, + { + "start": 4600.58, + "end": 4602.27, + "probability": 0.8658 + }, + { + "start": 4602.6, + "end": 4606.26, + "probability": 0.9056 + }, + { + "start": 4607.54, + "end": 4612.04, + "probability": 0.9409 + }, + { + "start": 4612.72, + "end": 4618.88, + "probability": 0.7852 + }, + { + "start": 4618.88, + "end": 4618.88, + "probability": 0.0938 + }, + { + "start": 4618.88, + "end": 4619.38, + "probability": 0.3395 + }, + { + "start": 4619.38, + "end": 4620.4, + "probability": 0.5728 + }, + { + "start": 4621.14, + "end": 4624.26, + "probability": 0.9596 + }, + { + "start": 4624.36, + "end": 4629.8, + "probability": 0.9677 + }, + { + "start": 4630.12, + "end": 4630.83, + "probability": 0.8116 + }, + { + "start": 4631.2, + "end": 4633.14, + "probability": 0.8765 + }, + { + "start": 4633.76, + "end": 4635.14, + "probability": 0.9961 + }, + { + "start": 4635.64, + "end": 4637.48, + "probability": 0.9237 + }, + { + "start": 4637.54, + "end": 4638.16, + "probability": 0.5098 + }, + { + "start": 4638.4, + "end": 4639.8, + "probability": 0.3819 + }, + { + "start": 4639.84, + "end": 4640.38, + "probability": 0.8101 + }, + { + "start": 4640.46, + "end": 4643.04, + "probability": 0.9941 + }, + { + "start": 4643.52, + "end": 4648.54, + "probability": 0.9541 + }, + { + "start": 4649.06, + "end": 4650.06, + "probability": 0.9797 + }, + { + "start": 4651.14, + "end": 4651.56, + "probability": 0.9186 + }, + { + "start": 4652.24, + "end": 4654.26, + "probability": 0.8647 + }, + { + "start": 4654.6, + "end": 4656.37, + "probability": 0.7849 + }, + { + "start": 4656.5, + "end": 4658.76, + "probability": 0.9491 + }, + { + "start": 4659.66, + "end": 4660.8, + "probability": 0.9675 + }, + { + "start": 4661.54, + "end": 4663.4, + "probability": 0.7094 + }, + { + "start": 4663.88, + "end": 4667.96, + "probability": 0.9976 + }, + { + "start": 4668.78, + "end": 4669.78, + "probability": 0.9932 + }, + { + "start": 4669.9, + "end": 4672.22, + "probability": 0.99 + }, + { + "start": 4672.86, + "end": 4674.02, + "probability": 0.7819 + }, + { + "start": 4674.6, + "end": 4677.3, + "probability": 0.963 + }, + { + "start": 4677.94, + "end": 4679.32, + "probability": 0.9025 + }, + { + "start": 4680.06, + "end": 4680.48, + "probability": 0.7798 + }, + { + "start": 4680.96, + "end": 4683.98, + "probability": 0.9976 + }, + { + "start": 4684.72, + "end": 4686.1, + "probability": 0.2255 + }, + { + "start": 4686.74, + "end": 4687.44, + "probability": 0.588 + }, + { + "start": 4687.84, + "end": 4688.82, + "probability": 0.6668 + }, + { + "start": 4692.58, + "end": 4693.9, + "probability": 0.3296 + }, + { + "start": 4696.22, + "end": 4700.3, + "probability": 0.5843 + }, + { + "start": 4700.82, + "end": 4702.52, + "probability": 0.8351 + }, + { + "start": 4702.74, + "end": 4703.74, + "probability": 0.0232 + }, + { + "start": 4704.12, + "end": 4705.98, + "probability": 0.4389 + }, + { + "start": 4707.24, + "end": 4710.18, + "probability": 0.634 + }, + { + "start": 4711.08, + "end": 4711.42, + "probability": 0.4027 + }, + { + "start": 4711.78, + "end": 4713.72, + "probability": 0.9604 + }, + { + "start": 4713.86, + "end": 4716.64, + "probability": 0.9869 + }, + { + "start": 4716.7, + "end": 4718.24, + "probability": 0.8382 + }, + { + "start": 4718.74, + "end": 4722.66, + "probability": 0.9498 + }, + { + "start": 4722.74, + "end": 4726.64, + "probability": 0.9025 + }, + { + "start": 4726.72, + "end": 4727.66, + "probability": 0.8466 + }, + { + "start": 4728.6, + "end": 4729.6, + "probability": 0.8494 + }, + { + "start": 4730.18, + "end": 4730.86, + "probability": 0.7307 + }, + { + "start": 4731.76, + "end": 4732.84, + "probability": 0.9738 + }, + { + "start": 4733.94, + "end": 4736.2, + "probability": 0.9033 + }, + { + "start": 4741.54, + "end": 4744.64, + "probability": 0.8984 + }, + { + "start": 4745.04, + "end": 4746.86, + "probability": 0.6855 + }, + { + "start": 4747.0, + "end": 4748.0, + "probability": 0.9973 + }, + { + "start": 4748.5, + "end": 4751.06, + "probability": 0.9957 + }, + { + "start": 4751.6, + "end": 4753.84, + "probability": 0.7979 + }, + { + "start": 4754.48, + "end": 4757.84, + "probability": 0.989 + }, + { + "start": 4758.42, + "end": 4759.66, + "probability": 0.5505 + }, + { + "start": 4759.72, + "end": 4763.16, + "probability": 0.5411 + }, + { + "start": 4763.66, + "end": 4763.88, + "probability": 0.2104 + }, + { + "start": 4763.88, + "end": 4766.88, + "probability": 0.0233 + }, + { + "start": 4767.82, + "end": 4770.06, + "probability": 0.6407 + }, + { + "start": 4770.5, + "end": 4773.1, + "probability": 0.9971 + }, + { + "start": 4773.1, + "end": 4773.76, + "probability": 0.5601 + }, + { + "start": 4773.76, + "end": 4774.28, + "probability": 0.8055 + }, + { + "start": 4774.36, + "end": 4778.68, + "probability": 0.9271 + }, + { + "start": 4779.46, + "end": 4785.3, + "probability": 0.7452 + }, + { + "start": 4785.86, + "end": 4790.26, + "probability": 0.9883 + }, + { + "start": 4790.92, + "end": 4792.14, + "probability": 0.9819 + }, + { + "start": 4792.2, + "end": 4793.76, + "probability": 0.7438 + }, + { + "start": 4794.06, + "end": 4796.54, + "probability": 0.8807 + }, + { + "start": 4796.66, + "end": 4799.7, + "probability": 0.949 + }, + { + "start": 4800.18, + "end": 4802.66, + "probability": 0.9753 + }, + { + "start": 4802.66, + "end": 4808.58, + "probability": 0.9534 + }, + { + "start": 4808.78, + "end": 4810.12, + "probability": 0.8575 + }, + { + "start": 4810.72, + "end": 4813.8, + "probability": 0.9947 + }, + { + "start": 4814.3, + "end": 4815.33, + "probability": 0.9702 + }, + { + "start": 4816.14, + "end": 4818.92, + "probability": 0.8261 + }, + { + "start": 4821.78, + "end": 4822.38, + "probability": 0.9575 + }, + { + "start": 4823.42, + "end": 4824.8, + "probability": 0.7151 + }, + { + "start": 4825.34, + "end": 4826.77, + "probability": 0.7487 + }, + { + "start": 4827.52, + "end": 4828.82, + "probability": 0.8352 + }, + { + "start": 4828.9, + "end": 4829.91, + "probability": 0.9009 + }, + { + "start": 4830.56, + "end": 4832.14, + "probability": 0.9593 + }, + { + "start": 4832.54, + "end": 4834.1, + "probability": 0.8724 + }, + { + "start": 4834.6, + "end": 4836.98, + "probability": 0.9848 + }, + { + "start": 4837.26, + "end": 4838.48, + "probability": 0.9883 + }, + { + "start": 4839.0, + "end": 4840.14, + "probability": 0.9731 + }, + { + "start": 4840.64, + "end": 4842.18, + "probability": 0.9987 + }, + { + "start": 4842.34, + "end": 4845.12, + "probability": 0.9678 + }, + { + "start": 4845.26, + "end": 4845.48, + "probability": 0.884 + }, + { + "start": 4845.68, + "end": 4847.36, + "probability": 0.7782 + }, + { + "start": 4848.54, + "end": 4851.56, + "probability": 0.9069 + }, + { + "start": 4852.52, + "end": 4853.14, + "probability": 0.5481 + }, + { + "start": 4853.82, + "end": 4855.78, + "probability": 0.7132 + }, + { + "start": 4856.5, + "end": 4858.42, + "probability": 0.8521 + }, + { + "start": 4858.56, + "end": 4860.34, + "probability": 0.2559 + }, + { + "start": 4860.56, + "end": 4861.26, + "probability": 0.7294 + }, + { + "start": 4861.4, + "end": 4862.32, + "probability": 0.7768 + }, + { + "start": 4862.32, + "end": 4863.04, + "probability": 0.7383 + }, + { + "start": 4863.26, + "end": 4864.58, + "probability": 0.6741 + }, + { + "start": 4865.14, + "end": 4866.32, + "probability": 0.8848 + }, + { + "start": 4866.9, + "end": 4868.78, + "probability": 0.9389 + }, + { + "start": 4868.9, + "end": 4871.9, + "probability": 0.9585 + }, + { + "start": 4872.6, + "end": 4877.5, + "probability": 0.7834 + }, + { + "start": 4878.6, + "end": 4879.88, + "probability": 0.5381 + }, + { + "start": 4880.48, + "end": 4882.9, + "probability": 0.8501 + }, + { + "start": 4884.54, + "end": 4887.82, + "probability": 0.6893 + }, + { + "start": 4887.82, + "end": 4888.3, + "probability": 0.7746 + }, + { + "start": 4905.44, + "end": 4907.58, + "probability": 0.5565 + }, + { + "start": 4908.6, + "end": 4911.8, + "probability": 0.9112 + }, + { + "start": 4912.86, + "end": 4913.62, + "probability": 0.864 + }, + { + "start": 4914.92, + "end": 4918.94, + "probability": 0.9909 + }, + { + "start": 4919.46, + "end": 4922.64, + "probability": 0.836 + }, + { + "start": 4923.86, + "end": 4928.76, + "probability": 0.9863 + }, + { + "start": 4930.06, + "end": 4932.02, + "probability": 0.9895 + }, + { + "start": 4932.38, + "end": 4934.92, + "probability": 0.8845 + }, + { + "start": 4935.34, + "end": 4936.58, + "probability": 0.7946 + }, + { + "start": 4936.78, + "end": 4937.78, + "probability": 0.9397 + }, + { + "start": 4938.02, + "end": 4938.56, + "probability": 0.9154 + }, + { + "start": 4939.14, + "end": 4941.82, + "probability": 0.9634 + }, + { + "start": 4943.7, + "end": 4944.64, + "probability": 0.8557 + }, + { + "start": 4945.18, + "end": 4949.0, + "probability": 0.8239 + }, + { + "start": 4949.88, + "end": 4954.94, + "probability": 0.7042 + }, + { + "start": 4955.54, + "end": 4957.28, + "probability": 0.7759 + }, + { + "start": 4957.82, + "end": 4958.34, + "probability": 0.9465 + }, + { + "start": 4959.82, + "end": 4961.84, + "probability": 0.7598 + }, + { + "start": 4962.42, + "end": 4965.72, + "probability": 0.908 + }, + { + "start": 4965.78, + "end": 4969.66, + "probability": 0.866 + }, + { + "start": 4970.04, + "end": 4970.4, + "probability": 0.9552 + }, + { + "start": 4971.52, + "end": 4973.48, + "probability": 0.9872 + }, + { + "start": 4974.14, + "end": 4975.16, + "probability": 0.7032 + }, + { + "start": 4975.68, + "end": 4976.46, + "probability": 0.732 + }, + { + "start": 4977.08, + "end": 4977.66, + "probability": 0.8525 + }, + { + "start": 4978.44, + "end": 4979.07, + "probability": 0.7993 + }, + { + "start": 4979.92, + "end": 4981.02, + "probability": 0.6831 + }, + { + "start": 4981.62, + "end": 4981.92, + "probability": 0.9468 + }, + { + "start": 4984.06, + "end": 4985.06, + "probability": 0.7559 + }, + { + "start": 4985.06, + "end": 4985.64, + "probability": 0.7916 + }, + { + "start": 4985.7, + "end": 4986.48, + "probability": 0.9591 + }, + { + "start": 4986.96, + "end": 4988.34, + "probability": 0.825 + }, + { + "start": 4988.6, + "end": 4989.32, + "probability": 0.9793 + }, + { + "start": 4989.62, + "end": 4990.4, + "probability": 0.992 + }, + { + "start": 4991.12, + "end": 4993.22, + "probability": 0.6831 + }, + { + "start": 4993.8, + "end": 4999.92, + "probability": 0.9637 + }, + { + "start": 5001.22, + "end": 5002.24, + "probability": 0.8666 + }, + { + "start": 5002.96, + "end": 5007.04, + "probability": 0.9719 + }, + { + "start": 5007.86, + "end": 5010.84, + "probability": 0.9438 + }, + { + "start": 5011.42, + "end": 5012.0, + "probability": 0.9288 + }, + { + "start": 5012.86, + "end": 5017.76, + "probability": 0.9795 + }, + { + "start": 5019.54, + "end": 5020.08, + "probability": 0.5239 + }, + { + "start": 5021.12, + "end": 5024.48, + "probability": 0.7221 + }, + { + "start": 5025.1, + "end": 5028.52, + "probability": 0.8306 + }, + { + "start": 5030.04, + "end": 5030.82, + "probability": 0.8776 + }, + { + "start": 5032.26, + "end": 5035.78, + "probability": 0.9712 + }, + { + "start": 5036.58, + "end": 5036.9, + "probability": 0.2744 + }, + { + "start": 5036.94, + "end": 5037.28, + "probability": 0.5747 + }, + { + "start": 5037.56, + "end": 5038.98, + "probability": 0.9226 + }, + { + "start": 5039.06, + "end": 5039.32, + "probability": 0.6177 + }, + { + "start": 5039.44, + "end": 5040.18, + "probability": 0.5552 + }, + { + "start": 5041.0, + "end": 5043.02, + "probability": 0.8907 + }, + { + "start": 5044.58, + "end": 5044.93, + "probability": 0.5033 + }, + { + "start": 5045.92, + "end": 5051.92, + "probability": 0.8893 + }, + { + "start": 5052.06, + "end": 5052.96, + "probability": 0.6808 + }, + { + "start": 5054.38, + "end": 5055.28, + "probability": 0.5998 + }, + { + "start": 5056.3, + "end": 5058.82, + "probability": 0.983 + }, + { + "start": 5058.82, + "end": 5063.44, + "probability": 0.9704 + }, + { + "start": 5063.9, + "end": 5064.8, + "probability": 0.7809 + }, + { + "start": 5065.74, + "end": 5067.1, + "probability": 0.6058 + }, + { + "start": 5068.16, + "end": 5071.4, + "probability": 0.8335 + }, + { + "start": 5071.56, + "end": 5072.96, + "probability": 0.7042 + }, + { + "start": 5073.74, + "end": 5074.3, + "probability": 0.8668 + }, + { + "start": 5075.74, + "end": 5079.74, + "probability": 0.8008 + }, + { + "start": 5080.48, + "end": 5081.82, + "probability": 0.8669 + }, + { + "start": 5082.28, + "end": 5083.86, + "probability": 0.9091 + }, + { + "start": 5084.18, + "end": 5085.46, + "probability": 0.8324 + }, + { + "start": 5086.0, + "end": 5086.76, + "probability": 0.7276 + }, + { + "start": 5087.3, + "end": 5090.08, + "probability": 0.988 + }, + { + "start": 5091.22, + "end": 5092.08, + "probability": 0.6572 + }, + { + "start": 5093.1, + "end": 5099.68, + "probability": 0.9211 + }, + { + "start": 5099.78, + "end": 5104.28, + "probability": 0.9934 + }, + { + "start": 5105.22, + "end": 5106.04, + "probability": 0.7883 + }, + { + "start": 5106.74, + "end": 5110.18, + "probability": 0.7368 + }, + { + "start": 5110.62, + "end": 5110.9, + "probability": 0.7922 + }, + { + "start": 5112.44, + "end": 5114.18, + "probability": 0.8366 + }, + { + "start": 5116.52, + "end": 5119.46, + "probability": 0.8765 + }, + { + "start": 5120.74, + "end": 5123.98, + "probability": 0.7358 + }, + { + "start": 5124.76, + "end": 5127.84, + "probability": 0.638 + }, + { + "start": 5129.66, + "end": 5133.0, + "probability": 0.4092 + }, + { + "start": 5133.5, + "end": 5133.84, + "probability": 0.8597 + }, + { + "start": 5135.64, + "end": 5135.86, + "probability": 0.7221 + }, + { + "start": 5136.92, + "end": 5137.6, + "probability": 0.8074 + }, + { + "start": 5138.64, + "end": 5144.0, + "probability": 0.9893 + }, + { + "start": 5145.14, + "end": 5146.54, + "probability": 0.9926 + }, + { + "start": 5147.26, + "end": 5150.12, + "probability": 0.9754 + }, + { + "start": 5151.04, + "end": 5155.0, + "probability": 0.9943 + }, + { + "start": 5155.0, + "end": 5159.44, + "probability": 0.9637 + }, + { + "start": 5160.7, + "end": 5161.4, + "probability": 0.6737 + }, + { + "start": 5161.66, + "end": 5167.42, + "probability": 0.9756 + }, + { + "start": 5167.66, + "end": 5172.06, + "probability": 0.9811 + }, + { + "start": 5173.3, + "end": 5175.82, + "probability": 0.983 + }, + { + "start": 5177.06, + "end": 5177.76, + "probability": 0.5144 + }, + { + "start": 5178.72, + "end": 5180.98, + "probability": 0.9727 + }, + { + "start": 5182.08, + "end": 5185.1, + "probability": 0.814 + }, + { + "start": 5186.36, + "end": 5190.12, + "probability": 0.8828 + }, + { + "start": 5190.8, + "end": 5194.64, + "probability": 0.8651 + }, + { + "start": 5196.38, + "end": 5197.28, + "probability": 0.1883 + }, + { + "start": 5198.0, + "end": 5200.88, + "probability": 0.7532 + }, + { + "start": 5201.62, + "end": 5203.56, + "probability": 0.3702 + }, + { + "start": 5204.38, + "end": 5205.62, + "probability": 0.8841 + }, + { + "start": 5206.32, + "end": 5208.02, + "probability": 0.9983 + }, + { + "start": 5208.46, + "end": 5213.36, + "probability": 0.9639 + }, + { + "start": 5214.02, + "end": 5214.79, + "probability": 0.8999 + }, + { + "start": 5215.52, + "end": 5217.58, + "probability": 0.7485 + }, + { + "start": 5217.98, + "end": 5221.4, + "probability": 0.9966 + }, + { + "start": 5222.26, + "end": 5223.7, + "probability": 0.7372 + }, + { + "start": 5224.88, + "end": 5228.12, + "probability": 0.988 + }, + { + "start": 5228.68, + "end": 5233.7, + "probability": 0.5115 + }, + { + "start": 5234.38, + "end": 5237.68, + "probability": 0.8328 + }, + { + "start": 5237.9, + "end": 5240.22, + "probability": 0.7722 + }, + { + "start": 5241.2, + "end": 5243.54, + "probability": 0.7923 + }, + { + "start": 5244.08, + "end": 5246.44, + "probability": 0.9832 + }, + { + "start": 5247.36, + "end": 5249.04, + "probability": 0.8802 + }, + { + "start": 5249.3, + "end": 5250.42, + "probability": 0.9759 + }, + { + "start": 5250.54, + "end": 5253.64, + "probability": 0.9919 + }, + { + "start": 5253.78, + "end": 5255.06, + "probability": 0.8952 + }, + { + "start": 5255.9, + "end": 5259.92, + "probability": 0.9763 + }, + { + "start": 5260.96, + "end": 5262.28, + "probability": 0.7913 + }, + { + "start": 5262.54, + "end": 5263.44, + "probability": 0.769 + }, + { + "start": 5263.6, + "end": 5264.62, + "probability": 0.8106 + }, + { + "start": 5265.1, + "end": 5266.5, + "probability": 0.9167 + }, + { + "start": 5266.98, + "end": 5268.72, + "probability": 0.9633 + }, + { + "start": 5268.88, + "end": 5274.0, + "probability": 0.9595 + }, + { + "start": 5274.48, + "end": 5276.86, + "probability": 0.9814 + }, + { + "start": 5277.38, + "end": 5281.56, + "probability": 0.8198 + }, + { + "start": 5282.08, + "end": 5284.54, + "probability": 0.8444 + }, + { + "start": 5285.1, + "end": 5286.28, + "probability": 0.6118 + }, + { + "start": 5286.4, + "end": 5288.18, + "probability": 0.9335 + }, + { + "start": 5288.52, + "end": 5291.54, + "probability": 0.9361 + }, + { + "start": 5291.64, + "end": 5293.38, + "probability": 0.9658 + }, + { + "start": 5293.86, + "end": 5296.38, + "probability": 0.9249 + }, + { + "start": 5296.64, + "end": 5297.84, + "probability": 0.9637 + }, + { + "start": 5298.68, + "end": 5301.86, + "probability": 0.8861 + }, + { + "start": 5301.92, + "end": 5303.0, + "probability": 0.152 + }, + { + "start": 5304.16, + "end": 5309.98, + "probability": 0.9384 + }, + { + "start": 5310.62, + "end": 5316.52, + "probability": 0.9933 + }, + { + "start": 5316.6, + "end": 5318.58, + "probability": 0.9308 + }, + { + "start": 5319.26, + "end": 5319.88, + "probability": 0.5528 + }, + { + "start": 5320.24, + "end": 5325.54, + "probability": 0.836 + }, + { + "start": 5326.54, + "end": 5333.1, + "probability": 0.9681 + }, + { + "start": 5333.18, + "end": 5334.56, + "probability": 0.7474 + }, + { + "start": 5334.68, + "end": 5336.06, + "probability": 0.8513 + }, + { + "start": 5336.24, + "end": 5339.48, + "probability": 0.9427 + }, + { + "start": 5340.16, + "end": 5341.42, + "probability": 0.854 + }, + { + "start": 5342.12, + "end": 5345.82, + "probability": 0.9742 + }, + { + "start": 5345.92, + "end": 5352.99, + "probability": 0.8445 + }, + { + "start": 5354.28, + "end": 5356.78, + "probability": 0.6615 + }, + { + "start": 5360.04, + "end": 5361.42, + "probability": 0.4254 + }, + { + "start": 5361.58, + "end": 5363.92, + "probability": 0.7094 + }, + { + "start": 5364.06, + "end": 5368.0, + "probability": 0.8476 + }, + { + "start": 5368.54, + "end": 5370.14, + "probability": 0.8765 + }, + { + "start": 5370.6, + "end": 5372.6, + "probability": 0.938 + }, + { + "start": 5377.01, + "end": 5379.9, + "probability": 0.7035 + }, + { + "start": 5380.28, + "end": 5380.52, + "probability": 0.6611 + }, + { + "start": 5380.9, + "end": 5381.1, + "probability": 0.0507 + }, + { + "start": 5381.1, + "end": 5381.38, + "probability": 0.7496 + }, + { + "start": 5382.26, + "end": 5383.8, + "probability": 0.8124 + }, + { + "start": 5383.84, + "end": 5386.3, + "probability": 0.9878 + }, + { + "start": 5388.5, + "end": 5389.18, + "probability": 0.446 + }, + { + "start": 5390.4, + "end": 5391.2, + "probability": 0.9642 + }, + { + "start": 5391.72, + "end": 5392.1, + "probability": 0.4386 + }, + { + "start": 5400.62, + "end": 5406.1, + "probability": 0.905 + }, + { + "start": 5407.98, + "end": 5411.8, + "probability": 0.9852 + }, + { + "start": 5412.14, + "end": 5413.4, + "probability": 0.8894 + }, + { + "start": 5413.48, + "end": 5417.64, + "probability": 0.6886 + }, + { + "start": 5417.76, + "end": 5419.4, + "probability": 0.6609 + }, + { + "start": 5419.88, + "end": 5420.14, + "probability": 0.68 + }, + { + "start": 5421.34, + "end": 5423.3, + "probability": 0.5585 + }, + { + "start": 5423.77, + "end": 5425.11, + "probability": 0.9678 + }, + { + "start": 5425.68, + "end": 5428.34, + "probability": 0.9871 + }, + { + "start": 5428.62, + "end": 5431.5, + "probability": 0.9851 + }, + { + "start": 5431.5, + "end": 5435.22, + "probability": 0.9874 + }, + { + "start": 5436.26, + "end": 5438.5, + "probability": 0.998 + }, + { + "start": 5439.68, + "end": 5444.16, + "probability": 0.9781 + }, + { + "start": 5444.16, + "end": 5446.84, + "probability": 0.8764 + }, + { + "start": 5446.92, + "end": 5447.8, + "probability": 0.8511 + }, + { + "start": 5447.94, + "end": 5448.08, + "probability": 0.8235 + }, + { + "start": 5448.78, + "end": 5451.22, + "probability": 0.9385 + }, + { + "start": 5452.02, + "end": 5456.04, + "probability": 0.9667 + }, + { + "start": 5456.2, + "end": 5457.08, + "probability": 0.6064 + }, + { + "start": 5457.84, + "end": 5462.02, + "probability": 0.9819 + }, + { + "start": 5463.18, + "end": 5468.9, + "probability": 0.9834 + }, + { + "start": 5468.98, + "end": 5470.38, + "probability": 0.9288 + }, + { + "start": 5471.58, + "end": 5474.26, + "probability": 0.8689 + }, + { + "start": 5475.08, + "end": 5477.36, + "probability": 0.8702 + }, + { + "start": 5477.88, + "end": 5480.72, + "probability": 0.9924 + }, + { + "start": 5481.38, + "end": 5485.08, + "probability": 0.9924 + }, + { + "start": 5486.16, + "end": 5488.52, + "probability": 0.9588 + }, + { + "start": 5489.58, + "end": 5491.36, + "probability": 0.6315 + }, + { + "start": 5491.88, + "end": 5493.38, + "probability": 0.7055 + }, + { + "start": 5494.18, + "end": 5495.3, + "probability": 0.7828 + }, + { + "start": 5495.3, + "end": 5496.18, + "probability": 0.4828 + }, + { + "start": 5496.58, + "end": 5498.68, + "probability": 0.9436 + }, + { + "start": 5499.94, + "end": 5501.88, + "probability": 0.3899 + }, + { + "start": 5502.02, + "end": 5502.16, + "probability": 0.9471 + }, + { + "start": 5502.3, + "end": 5505.46, + "probability": 0.908 + }, + { + "start": 5506.26, + "end": 5508.45, + "probability": 0.9955 + }, + { + "start": 5508.52, + "end": 5509.42, + "probability": 0.8678 + }, + { + "start": 5510.3, + "end": 5512.0, + "probability": 0.9644 + }, + { + "start": 5512.12, + "end": 5514.0, + "probability": 0.9774 + }, + { + "start": 5514.02, + "end": 5515.0, + "probability": 0.938 + }, + { + "start": 5515.72, + "end": 5516.9, + "probability": 0.719 + }, + { + "start": 5517.94, + "end": 5520.8, + "probability": 0.9924 + }, + { + "start": 5521.12, + "end": 5523.05, + "probability": 0.9004 + }, + { + "start": 5523.62, + "end": 5524.94, + "probability": 0.8619 + }, + { + "start": 5525.06, + "end": 5527.66, + "probability": 0.9902 + }, + { + "start": 5528.44, + "end": 5529.96, + "probability": 0.9245 + }, + { + "start": 5530.33, + "end": 5534.7, + "probability": 0.9774 + }, + { + "start": 5534.76, + "end": 5535.62, + "probability": 0.8941 + }, + { + "start": 5536.64, + "end": 5537.3, + "probability": 0.6092 + }, + { + "start": 5538.08, + "end": 5539.43, + "probability": 0.9893 + }, + { + "start": 5540.44, + "end": 5543.8, + "probability": 0.998 + }, + { + "start": 5544.26, + "end": 5546.86, + "probability": 0.9943 + }, + { + "start": 5547.5, + "end": 5552.28, + "probability": 0.9379 + }, + { + "start": 5552.28, + "end": 5557.0, + "probability": 0.783 + }, + { + "start": 5558.12, + "end": 5561.22, + "probability": 0.9954 + }, + { + "start": 5561.92, + "end": 5563.86, + "probability": 0.8617 + }, + { + "start": 5564.6, + "end": 5568.7, + "probability": 0.9992 + }, + { + "start": 5568.7, + "end": 5571.88, + "probability": 0.9978 + }, + { + "start": 5571.92, + "end": 5573.3, + "probability": 0.9834 + }, + { + "start": 5574.12, + "end": 5578.2, + "probability": 0.9717 + }, + { + "start": 5578.2, + "end": 5581.38, + "probability": 0.9344 + }, + { + "start": 5581.84, + "end": 5584.56, + "probability": 0.5779 + }, + { + "start": 5584.56, + "end": 5588.38, + "probability": 0.9109 + }, + { + "start": 5588.5, + "end": 5589.18, + "probability": 0.8294 + }, + { + "start": 5590.32, + "end": 5591.18, + "probability": 0.6048 + }, + { + "start": 5591.46, + "end": 5593.9, + "probability": 0.9913 + }, + { + "start": 5594.5, + "end": 5596.75, + "probability": 0.9226 + }, + { + "start": 5597.3, + "end": 5599.32, + "probability": 0.9854 + }, + { + "start": 5599.8, + "end": 5604.26, + "probability": 0.9272 + }, + { + "start": 5604.76, + "end": 5607.46, + "probability": 0.9905 + }, + { + "start": 5608.36, + "end": 5612.3, + "probability": 0.7789 + }, + { + "start": 5613.02, + "end": 5614.66, + "probability": 0.9894 + }, + { + "start": 5615.28, + "end": 5617.5, + "probability": 0.9632 + }, + { + "start": 5618.28, + "end": 5619.7, + "probability": 0.7334 + }, + { + "start": 5620.24, + "end": 5623.66, + "probability": 0.9824 + }, + { + "start": 5624.16, + "end": 5625.66, + "probability": 0.8582 + }, + { + "start": 5626.08, + "end": 5631.5, + "probability": 0.8789 + }, + { + "start": 5631.72, + "end": 5634.58, + "probability": 0.8343 + }, + { + "start": 5635.28, + "end": 5637.86, + "probability": 0.641 + }, + { + "start": 5638.68, + "end": 5639.46, + "probability": 0.4177 + }, + { + "start": 5639.46, + "end": 5641.36, + "probability": 0.7175 + }, + { + "start": 5641.56, + "end": 5642.32, + "probability": 0.5779 + }, + { + "start": 5642.62, + "end": 5643.24, + "probability": 0.8146 + }, + { + "start": 5643.3, + "end": 5644.74, + "probability": 0.8437 + }, + { + "start": 5644.8, + "end": 5647.18, + "probability": 0.8946 + }, + { + "start": 5647.72, + "end": 5652.02, + "probability": 0.9211 + }, + { + "start": 5652.72, + "end": 5653.08, + "probability": 0.8744 + }, + { + "start": 5654.62, + "end": 5655.4, + "probability": 0.8227 + }, + { + "start": 5655.52, + "end": 5656.76, + "probability": 0.8766 + }, + { + "start": 5656.92, + "end": 5659.86, + "probability": 0.9844 + }, + { + "start": 5660.38, + "end": 5661.14, + "probability": 0.8975 + }, + { + "start": 5661.26, + "end": 5662.04, + "probability": 0.8529 + }, + { + "start": 5662.54, + "end": 5664.68, + "probability": 0.7654 + }, + { + "start": 5664.92, + "end": 5668.68, + "probability": 0.9441 + }, + { + "start": 5669.26, + "end": 5670.1, + "probability": 0.7399 + }, + { + "start": 5670.18, + "end": 5671.22, + "probability": 0.664 + }, + { + "start": 5671.68, + "end": 5672.92, + "probability": 0.8715 + }, + { + "start": 5673.02, + "end": 5675.92, + "probability": 0.994 + }, + { + "start": 5677.24, + "end": 5678.46, + "probability": 0.5049 + }, + { + "start": 5678.46, + "end": 5678.46, + "probability": 0.285 + }, + { + "start": 5678.46, + "end": 5680.54, + "probability": 0.9457 + }, + { + "start": 5693.88, + "end": 5694.38, + "probability": 0.5037 + }, + { + "start": 5694.52, + "end": 5695.38, + "probability": 0.6133 + }, + { + "start": 5695.58, + "end": 5696.36, + "probability": 0.72 + }, + { + "start": 5696.46, + "end": 5699.97, + "probability": 0.7678 + }, + { + "start": 5700.6, + "end": 5703.76, + "probability": 0.9406 + }, + { + "start": 5703.86, + "end": 5704.4, + "probability": 0.9922 + }, + { + "start": 5705.24, + "end": 5705.68, + "probability": 0.7549 + }, + { + "start": 5705.68, + "end": 5706.26, + "probability": 0.6179 + }, + { + "start": 5706.7, + "end": 5708.7, + "probability": 0.8701 + }, + { + "start": 5708.84, + "end": 5711.76, + "probability": 0.9608 + }, + { + "start": 5712.46, + "end": 5715.14, + "probability": 0.9251 + }, + { + "start": 5715.24, + "end": 5716.18, + "probability": 0.6394 + }, + { + "start": 5716.38, + "end": 5717.98, + "probability": 0.9369 + }, + { + "start": 5718.06, + "end": 5719.54, + "probability": 0.9907 + }, + { + "start": 5720.2, + "end": 5720.86, + "probability": 0.9393 + }, + { + "start": 5722.02, + "end": 5724.23, + "probability": 0.6969 + }, + { + "start": 5725.34, + "end": 5726.9, + "probability": 0.9277 + }, + { + "start": 5727.59, + "end": 5729.11, + "probability": 0.9278 + }, + { + "start": 5729.46, + "end": 5731.16, + "probability": 0.6655 + }, + { + "start": 5732.14, + "end": 5732.56, + "probability": 0.6705 + }, + { + "start": 5733.16, + "end": 5734.72, + "probability": 0.7542 + }, + { + "start": 5735.24, + "end": 5735.58, + "probability": 0.5078 + }, + { + "start": 5736.22, + "end": 5739.38, + "probability": 0.9965 + }, + { + "start": 5740.54, + "end": 5741.27, + "probability": 0.6802 + }, + { + "start": 5741.78, + "end": 5744.54, + "probability": 0.7903 + }, + { + "start": 5744.58, + "end": 5745.34, + "probability": 0.7843 + }, + { + "start": 5745.74, + "end": 5746.38, + "probability": 0.7703 + }, + { + "start": 5747.78, + "end": 5749.1, + "probability": 0.9932 + }, + { + "start": 5749.22, + "end": 5753.46, + "probability": 0.9924 + }, + { + "start": 5754.02, + "end": 5755.58, + "probability": 0.8853 + }, + { + "start": 5755.72, + "end": 5756.3, + "probability": 0.5446 + }, + { + "start": 5756.42, + "end": 5762.62, + "probability": 0.6653 + }, + { + "start": 5763.38, + "end": 5765.24, + "probability": 0.5821 + }, + { + "start": 5765.56, + "end": 5767.26, + "probability": 0.6053 + }, + { + "start": 5769.28, + "end": 5770.58, + "probability": 0.7895 + }, + { + "start": 5771.14, + "end": 5772.88, + "probability": 0.8032 + }, + { + "start": 5772.88, + "end": 5773.96, + "probability": 0.6006 + }, + { + "start": 5774.1, + "end": 5775.3, + "probability": 0.4559 + }, + { + "start": 5775.32, + "end": 5777.12, + "probability": 0.1873 + }, + { + "start": 5782.6, + "end": 5788.54, + "probability": 0.8976 + }, + { + "start": 5788.88, + "end": 5789.82, + "probability": 0.6808 + }, + { + "start": 5789.96, + "end": 5793.58, + "probability": 0.7795 + }, + { + "start": 5793.82, + "end": 5794.8, + "probability": 0.6941 + }, + { + "start": 5794.94, + "end": 5796.85, + "probability": 0.768 + }, + { + "start": 5797.54, + "end": 5798.3, + "probability": 0.7695 + }, + { + "start": 5798.86, + "end": 5800.02, + "probability": 0.6629 + }, + { + "start": 5800.78, + "end": 5802.58, + "probability": 0.5116 + }, + { + "start": 5802.92, + "end": 5804.14, + "probability": 0.6154 + }, + { + "start": 5804.42, + "end": 5805.26, + "probability": 0.9021 + }, + { + "start": 5805.88, + "end": 5807.24, + "probability": 0.8011 + }, + { + "start": 5807.34, + "end": 5809.52, + "probability": 0.9727 + }, + { + "start": 5809.8, + "end": 5810.7, + "probability": 0.7281 + }, + { + "start": 5811.24, + "end": 5813.82, + "probability": 0.9917 + }, + { + "start": 5814.38, + "end": 5814.84, + "probability": 0.9343 + }, + { + "start": 5815.38, + "end": 5817.66, + "probability": 0.9685 + }, + { + "start": 5818.38, + "end": 5821.26, + "probability": 0.9592 + }, + { + "start": 5821.8, + "end": 5822.47, + "probability": 0.9464 + }, + { + "start": 5823.84, + "end": 5824.94, + "probability": 0.0976 + }, + { + "start": 5824.96, + "end": 5826.28, + "probability": 0.7042 + }, + { + "start": 5826.72, + "end": 5828.2, + "probability": 0.9611 + }, + { + "start": 5828.92, + "end": 5829.1, + "probability": 0.8695 + }, + { + "start": 5829.16, + "end": 5829.32, + "probability": 0.9491 + }, + { + "start": 5829.4, + "end": 5830.34, + "probability": 0.9722 + }, + { + "start": 5830.42, + "end": 5830.92, + "probability": 0.8391 + }, + { + "start": 5831.06, + "end": 5832.3, + "probability": 0.4659 + }, + { + "start": 5833.18, + "end": 5833.94, + "probability": 0.7441 + }, + { + "start": 5834.34, + "end": 5835.66, + "probability": 0.9077 + }, + { + "start": 5836.1, + "end": 5837.72, + "probability": 0.8356 + }, + { + "start": 5837.82, + "end": 5839.84, + "probability": 0.8488 + }, + { + "start": 5840.18, + "end": 5841.54, + "probability": 0.7849 + }, + { + "start": 5841.62, + "end": 5842.24, + "probability": 0.5908 + }, + { + "start": 5842.98, + "end": 5843.12, + "probability": 0.7957 + }, + { + "start": 5843.22, + "end": 5843.38, + "probability": 0.7534 + }, + { + "start": 5843.4, + "end": 5844.54, + "probability": 0.5565 + }, + { + "start": 5844.88, + "end": 5845.97, + "probability": 0.8706 + }, + { + "start": 5847.0, + "end": 5847.78, + "probability": 0.8484 + }, + { + "start": 5848.74, + "end": 5851.34, + "probability": 0.9285 + }, + { + "start": 5852.74, + "end": 5853.1, + "probability": 0.9133 + }, + { + "start": 5854.34, + "end": 5857.62, + "probability": 0.9635 + }, + { + "start": 5858.16, + "end": 5859.68, + "probability": 0.9736 + }, + { + "start": 5860.94, + "end": 5865.06, + "probability": 0.9919 + }, + { + "start": 5865.06, + "end": 5869.5, + "probability": 0.9801 + }, + { + "start": 5870.26, + "end": 5873.14, + "probability": 0.9945 + }, + { + "start": 5873.28, + "end": 5874.26, + "probability": 0.392 + }, + { + "start": 5874.26, + "end": 5875.08, + "probability": 0.7341 + }, + { + "start": 5875.5, + "end": 5879.58, + "probability": 0.9189 + }, + { + "start": 5879.9, + "end": 5883.2, + "probability": 0.8995 + }, + { + "start": 5884.46, + "end": 5887.54, + "probability": 0.9448 + }, + { + "start": 5887.96, + "end": 5889.58, + "probability": 0.7996 + }, + { + "start": 5890.5, + "end": 5894.18, + "probability": 0.988 + }, + { + "start": 5894.7, + "end": 5895.52, + "probability": 0.9835 + }, + { + "start": 5896.68, + "end": 5897.66, + "probability": 0.7871 + }, + { + "start": 5898.46, + "end": 5904.12, + "probability": 0.9928 + }, + { + "start": 5904.96, + "end": 5906.32, + "probability": 0.9869 + }, + { + "start": 5907.42, + "end": 5910.28, + "probability": 0.9949 + }, + { + "start": 5911.2, + "end": 5913.96, + "probability": 0.9977 + }, + { + "start": 5914.82, + "end": 5915.2, + "probability": 0.4937 + }, + { + "start": 5915.32, + "end": 5916.32, + "probability": 0.7114 + }, + { + "start": 5916.76, + "end": 5919.32, + "probability": 0.9903 + }, + { + "start": 5920.56, + "end": 5923.56, + "probability": 0.9217 + }, + { + "start": 5924.18, + "end": 5924.6, + "probability": 0.9895 + }, + { + "start": 5925.12, + "end": 5927.12, + "probability": 0.8748 + }, + { + "start": 5927.2, + "end": 5928.38, + "probability": 0.9612 + }, + { + "start": 5928.88, + "end": 5930.02, + "probability": 0.7239 + }, + { + "start": 5931.0, + "end": 5933.2, + "probability": 0.7925 + }, + { + "start": 5934.02, + "end": 5934.1, + "probability": 0.6735 + }, + { + "start": 5934.1, + "end": 5936.6, + "probability": 0.7434 + }, + { + "start": 5936.6, + "end": 5939.02, + "probability": 0.9885 + }, + { + "start": 5939.4, + "end": 5942.42, + "probability": 0.9788 + }, + { + "start": 5943.42, + "end": 5944.7, + "probability": 0.3356 + }, + { + "start": 5945.78, + "end": 5945.9, + "probability": 0.3923 + }, + { + "start": 5945.9, + "end": 5946.98, + "probability": 0.66 + }, + { + "start": 5947.1, + "end": 5947.68, + "probability": 0.5543 + }, + { + "start": 5948.1, + "end": 5949.58, + "probability": 0.8774 + }, + { + "start": 5950.42, + "end": 5950.92, + "probability": 0.8836 + }, + { + "start": 5951.06, + "end": 5951.76, + "probability": 0.8093 + }, + { + "start": 5951.9, + "end": 5955.28, + "probability": 0.7789 + }, + { + "start": 5955.9, + "end": 5957.8, + "probability": 0.3473 + }, + { + "start": 5958.2, + "end": 5959.34, + "probability": 0.5465 + }, + { + "start": 5959.86, + "end": 5962.4, + "probability": 0.9849 + }, + { + "start": 5962.88, + "end": 5963.88, + "probability": 0.4997 + }, + { + "start": 5964.14, + "end": 5965.5, + "probability": 0.9223 + }, + { + "start": 5966.06, + "end": 5967.22, + "probability": 0.8722 + }, + { + "start": 5967.54, + "end": 5968.46, + "probability": 0.5982 + }, + { + "start": 5969.4, + "end": 5969.68, + "probability": 0.2583 + }, + { + "start": 5972.56, + "end": 5976.8, + "probability": 0.6542 + }, + { + "start": 5976.8, + "end": 5983.9, + "probability": 0.9899 + }, + { + "start": 5984.64, + "end": 5984.94, + "probability": 0.9971 + }, + { + "start": 5985.74, + "end": 5986.88, + "probability": 0.7803 + }, + { + "start": 5988.0, + "end": 5989.46, + "probability": 0.7433 + }, + { + "start": 5990.46, + "end": 5992.46, + "probability": 0.953 + }, + { + "start": 5993.4, + "end": 5994.36, + "probability": 0.936 + }, + { + "start": 5995.76, + "end": 5998.18, + "probability": 0.7975 + }, + { + "start": 5998.88, + "end": 6003.92, + "probability": 0.9839 + }, + { + "start": 6003.92, + "end": 6008.8, + "probability": 0.9994 + }, + { + "start": 6009.6, + "end": 6011.68, + "probability": 0.821 + }, + { + "start": 6012.36, + "end": 6014.06, + "probability": 0.8988 + }, + { + "start": 6014.92, + "end": 6016.68, + "probability": 0.9758 + }, + { + "start": 6017.38, + "end": 6020.58, + "probability": 0.9136 + }, + { + "start": 6021.3, + "end": 6022.16, + "probability": 0.5183 + }, + { + "start": 6023.16, + "end": 6026.28, + "probability": 0.9941 + }, + { + "start": 6026.94, + "end": 6027.8, + "probability": 0.8949 + }, + { + "start": 6028.02, + "end": 6034.28, + "probability": 0.9572 + }, + { + "start": 6034.9, + "end": 6039.28, + "probability": 0.9741 + }, + { + "start": 6039.36, + "end": 6041.1, + "probability": 0.9773 + }, + { + "start": 6041.62, + "end": 6044.4, + "probability": 0.9932 + }, + { + "start": 6045.02, + "end": 6046.92, + "probability": 0.999 + }, + { + "start": 6047.8, + "end": 6052.38, + "probability": 0.9938 + }, + { + "start": 6052.52, + "end": 6053.44, + "probability": 0.9395 + }, + { + "start": 6059.26, + "end": 6060.52, + "probability": 0.9912 + }, + { + "start": 6063.66, + "end": 6065.94, + "probability": 0.8276 + }, + { + "start": 6066.52, + "end": 6071.17, + "probability": 0.933 + }, + { + "start": 6072.76, + "end": 6074.01, + "probability": 0.9831 + }, + { + "start": 6074.2, + "end": 6077.12, + "probability": 0.9972 + }, + { + "start": 6077.12, + "end": 6081.82, + "probability": 0.8909 + }, + { + "start": 6082.3, + "end": 6088.3, + "probability": 0.9973 + }, + { + "start": 6088.7, + "end": 6090.58, + "probability": 0.98 + }, + { + "start": 6091.16, + "end": 6097.68, + "probability": 0.9954 + }, + { + "start": 6098.08, + "end": 6100.58, + "probability": 0.9568 + }, + { + "start": 6101.04, + "end": 6102.25, + "probability": 0.741 + }, + { + "start": 6103.62, + "end": 6108.84, + "probability": 0.9785 + }, + { + "start": 6109.38, + "end": 6112.56, + "probability": 0.9939 + }, + { + "start": 6113.52, + "end": 6117.42, + "probability": 0.9759 + }, + { + "start": 6118.12, + "end": 6121.0, + "probability": 0.9739 + }, + { + "start": 6121.72, + "end": 6125.64, + "probability": 0.9863 + }, + { + "start": 6125.96, + "end": 6128.04, + "probability": 0.9747 + }, + { + "start": 6128.42, + "end": 6130.96, + "probability": 0.8985 + }, + { + "start": 6130.96, + "end": 6135.1, + "probability": 0.9678 + }, + { + "start": 6135.72, + "end": 6137.47, + "probability": 0.9485 + }, + { + "start": 6138.22, + "end": 6143.44, + "probability": 0.8894 + }, + { + "start": 6143.44, + "end": 6146.68, + "probability": 0.9961 + }, + { + "start": 6147.0, + "end": 6150.94, + "probability": 0.9997 + }, + { + "start": 6151.42, + "end": 6151.74, + "probability": 0.8304 + }, + { + "start": 6152.6, + "end": 6153.94, + "probability": 0.9924 + }, + { + "start": 6155.0, + "end": 6155.88, + "probability": 0.6586 + }, + { + "start": 6156.0, + "end": 6158.08, + "probability": 0.9937 + }, + { + "start": 6158.76, + "end": 6161.5, + "probability": 0.8429 + }, + { + "start": 6167.96, + "end": 6170.04, + "probability": 0.683 + }, + { + "start": 6170.32, + "end": 6170.94, + "probability": 0.5392 + }, + { + "start": 6171.06, + "end": 6175.44, + "probability": 0.9355 + }, + { + "start": 6176.06, + "end": 6180.42, + "probability": 0.9539 + }, + { + "start": 6181.64, + "end": 6183.18, + "probability": 0.9291 + }, + { + "start": 6184.68, + "end": 6185.16, + "probability": 0.0984 + }, + { + "start": 6185.28, + "end": 6189.36, + "probability": 0.9745 + }, + { + "start": 6189.98, + "end": 6190.9, + "probability": 0.9771 + }, + { + "start": 6194.24, + "end": 6198.12, + "probability": 0.9195 + }, + { + "start": 6199.0, + "end": 6200.66, + "probability": 0.7375 + }, + { + "start": 6201.12, + "end": 6203.64, + "probability": 0.8605 + }, + { + "start": 6204.64, + "end": 6206.18, + "probability": 0.9894 + }, + { + "start": 6206.3, + "end": 6207.88, + "probability": 0.7364 + }, + { + "start": 6208.56, + "end": 6210.36, + "probability": 0.9824 + }, + { + "start": 6210.54, + "end": 6211.84, + "probability": 0.9314 + }, + { + "start": 6211.96, + "end": 6215.6, + "probability": 0.8558 + }, + { + "start": 6215.6, + "end": 6218.5, + "probability": 0.9185 + }, + { + "start": 6218.64, + "end": 6224.95, + "probability": 0.9978 + }, + { + "start": 6225.12, + "end": 6225.44, + "probability": 0.4675 + }, + { + "start": 6225.56, + "end": 6228.26, + "probability": 0.9841 + }, + { + "start": 6228.44, + "end": 6231.7, + "probability": 0.9907 + }, + { + "start": 6231.7, + "end": 6237.64, + "probability": 0.9639 + }, + { + "start": 6237.92, + "end": 6238.62, + "probability": 0.6057 + }, + { + "start": 6238.8, + "end": 6243.08, + "probability": 0.9961 + }, + { + "start": 6243.82, + "end": 6244.68, + "probability": 0.8328 + }, + { + "start": 6244.76, + "end": 6246.7, + "probability": 0.7974 + }, + { + "start": 6246.86, + "end": 6248.28, + "probability": 0.93 + }, + { + "start": 6248.28, + "end": 6250.1, + "probability": 0.998 + }, + { + "start": 6251.24, + "end": 6253.36, + "probability": 0.9937 + }, + { + "start": 6254.1, + "end": 6255.68, + "probability": 0.8842 + }, + { + "start": 6256.12, + "end": 6259.18, + "probability": 0.9958 + }, + { + "start": 6259.32, + "end": 6262.7, + "probability": 0.5801 + }, + { + "start": 6262.7, + "end": 6265.3, + "probability": 0.9454 + }, + { + "start": 6266.74, + "end": 6267.48, + "probability": 0.7926 + }, + { + "start": 6267.77, + "end": 6269.0, + "probability": 0.9829 + }, + { + "start": 6269.04, + "end": 6270.04, + "probability": 0.5626 + }, + { + "start": 6270.1, + "end": 6275.96, + "probability": 0.9925 + }, + { + "start": 6276.14, + "end": 6280.98, + "probability": 0.7956 + }, + { + "start": 6281.12, + "end": 6287.0, + "probability": 0.9938 + }, + { + "start": 6287.68, + "end": 6290.9, + "probability": 0.9825 + }, + { + "start": 6291.66, + "end": 6293.0, + "probability": 0.9983 + }, + { + "start": 6293.1, + "end": 6294.1, + "probability": 0.8022 + }, + { + "start": 6294.16, + "end": 6294.84, + "probability": 0.8285 + }, + { + "start": 6294.92, + "end": 6295.84, + "probability": 0.8232 + }, + { + "start": 6297.94, + "end": 6298.26, + "probability": 0.0835 + }, + { + "start": 6299.08, + "end": 6303.36, + "probability": 0.357 + }, + { + "start": 6303.5, + "end": 6305.58, + "probability": 0.9872 + }, + { + "start": 6305.58, + "end": 6307.92, + "probability": 0.996 + }, + { + "start": 6308.86, + "end": 6311.12, + "probability": 0.9628 + }, + { + "start": 6311.98, + "end": 6312.84, + "probability": 0.9165 + }, + { + "start": 6313.22, + "end": 6316.86, + "probability": 0.9885 + }, + { + "start": 6317.24, + "end": 6318.44, + "probability": 0.9826 + }, + { + "start": 6319.02, + "end": 6321.64, + "probability": 0.9558 + }, + { + "start": 6321.9, + "end": 6324.4, + "probability": 0.9916 + }, + { + "start": 6324.4, + "end": 6325.14, + "probability": 0.2446 + }, + { + "start": 6325.14, + "end": 6325.72, + "probability": 0.859 + }, + { + "start": 6326.32, + "end": 6328.86, + "probability": 0.9232 + }, + { + "start": 6329.98, + "end": 6332.7, + "probability": 0.916 + }, + { + "start": 6333.16, + "end": 6334.02, + "probability": 0.9008 + }, + { + "start": 6334.36, + "end": 6335.32, + "probability": 0.9587 + }, + { + "start": 6335.76, + "end": 6336.4, + "probability": 0.9376 + }, + { + "start": 6336.8, + "end": 6337.67, + "probability": 0.9932 + }, + { + "start": 6337.92, + "end": 6338.44, + "probability": 0.3567 + }, + { + "start": 6338.6, + "end": 6341.38, + "probability": 0.9827 + }, + { + "start": 6341.82, + "end": 6344.44, + "probability": 0.9946 + }, + { + "start": 6344.6, + "end": 6344.92, + "probability": 0.8546 + }, + { + "start": 6344.96, + "end": 6345.18, + "probability": 0.9527 + }, + { + "start": 6345.24, + "end": 6348.2, + "probability": 0.7543 + }, + { + "start": 6348.2, + "end": 6352.64, + "probability": 0.9763 + }, + { + "start": 6353.4, + "end": 6354.68, + "probability": 0.9907 + }, + { + "start": 6354.76, + "end": 6357.66, + "probability": 0.9526 + }, + { + "start": 6357.7, + "end": 6361.0, + "probability": 0.965 + }, + { + "start": 6361.44, + "end": 6361.66, + "probability": 0.7176 + }, + { + "start": 6362.06, + "end": 6365.9, + "probability": 0.6003 + }, + { + "start": 6367.1, + "end": 6369.16, + "probability": 0.9971 + }, + { + "start": 6372.2, + "end": 6374.86, + "probability": 0.8549 + }, + { + "start": 6390.3, + "end": 6390.3, + "probability": 0.6768 + }, + { + "start": 6390.3, + "end": 6390.86, + "probability": 0.6694 + }, + { + "start": 6394.66, + "end": 6397.48, + "probability": 0.8311 + }, + { + "start": 6401.08, + "end": 6405.39, + "probability": 0.9927 + }, + { + "start": 6407.16, + "end": 6407.89, + "probability": 0.9336 + }, + { + "start": 6411.18, + "end": 6415.14, + "probability": 0.942 + }, + { + "start": 6416.06, + "end": 6419.32, + "probability": 0.9548 + }, + { + "start": 6420.14, + "end": 6420.8, + "probability": 0.9985 + }, + { + "start": 6422.1, + "end": 6422.88, + "probability": 0.7303 + }, + { + "start": 6425.04, + "end": 6429.12, + "probability": 0.967 + }, + { + "start": 6430.4, + "end": 6431.66, + "probability": 0.9956 + }, + { + "start": 6434.54, + "end": 6436.12, + "probability": 0.9585 + }, + { + "start": 6438.14, + "end": 6445.16, + "probability": 0.7474 + }, + { + "start": 6446.8, + "end": 6448.26, + "probability": 0.9635 + }, + { + "start": 6449.0, + "end": 6450.18, + "probability": 0.9979 + }, + { + "start": 6451.08, + "end": 6452.88, + "probability": 0.99 + }, + { + "start": 6453.9, + "end": 6455.46, + "probability": 0.7433 + }, + { + "start": 6456.78, + "end": 6459.7, + "probability": 0.9054 + }, + { + "start": 6461.04, + "end": 6462.8, + "probability": 0.7845 + }, + { + "start": 6464.18, + "end": 6464.74, + "probability": 0.983 + }, + { + "start": 6465.8, + "end": 6470.34, + "probability": 0.9802 + }, + { + "start": 6471.46, + "end": 6472.12, + "probability": 0.9399 + }, + { + "start": 6474.46, + "end": 6475.76, + "probability": 0.8824 + }, + { + "start": 6477.28, + "end": 6478.56, + "probability": 0.995 + }, + { + "start": 6481.9, + "end": 6488.26, + "probability": 0.9889 + }, + { + "start": 6491.1, + "end": 6492.08, + "probability": 0.9854 + }, + { + "start": 6493.66, + "end": 6495.62, + "probability": 0.989 + }, + { + "start": 6497.96, + "end": 6498.58, + "probability": 0.8792 + }, + { + "start": 6499.38, + "end": 6501.76, + "probability": 0.8297 + }, + { + "start": 6502.96, + "end": 6506.18, + "probability": 0.9863 + }, + { + "start": 6506.38, + "end": 6506.94, + "probability": 0.9061 + }, + { + "start": 6507.82, + "end": 6508.34, + "probability": 0.912 + }, + { + "start": 6509.4, + "end": 6510.3, + "probability": 0.8873 + }, + { + "start": 6512.78, + "end": 6513.88, + "probability": 0.7428 + }, + { + "start": 6516.1, + "end": 6517.14, + "probability": 0.9359 + }, + { + "start": 6518.5, + "end": 6522.08, + "probability": 0.9769 + }, + { + "start": 6524.16, + "end": 6525.0, + "probability": 0.7271 + }, + { + "start": 6525.6, + "end": 6526.98, + "probability": 0.8609 + }, + { + "start": 6527.24, + "end": 6528.16, + "probability": 0.9168 + }, + { + "start": 6529.22, + "end": 6530.54, + "probability": 0.9959 + }, + { + "start": 6532.5, + "end": 6534.58, + "probability": 0.8798 + }, + { + "start": 6537.9, + "end": 6544.2, + "probability": 0.8336 + }, + { + "start": 6545.26, + "end": 6549.72, + "probability": 0.9964 + }, + { + "start": 6551.08, + "end": 6553.56, + "probability": 0.9889 + }, + { + "start": 6554.28, + "end": 6556.7, + "probability": 0.9958 + }, + { + "start": 6557.28, + "end": 6557.44, + "probability": 0.8242 + }, + { + "start": 6559.58, + "end": 6560.46, + "probability": 0.3977 + }, + { + "start": 6560.48, + "end": 6563.28, + "probability": 0.9465 + }, + { + "start": 6563.74, + "end": 6566.16, + "probability": 0.9272 + }, + { + "start": 6567.34, + "end": 6570.08, + "probability": 0.6994 + }, + { + "start": 6571.06, + "end": 6572.76, + "probability": 0.9039 + }, + { + "start": 6574.7, + "end": 6575.18, + "probability": 0.509 + }, + { + "start": 6575.82, + "end": 6576.7, + "probability": 0.7634 + }, + { + "start": 6577.94, + "end": 6578.86, + "probability": 0.8711 + }, + { + "start": 6579.68, + "end": 6582.58, + "probability": 0.9221 + }, + { + "start": 6582.74, + "end": 6583.28, + "probability": 0.8851 + }, + { + "start": 6584.92, + "end": 6586.66, + "probability": 0.9811 + }, + { + "start": 6587.48, + "end": 6588.5, + "probability": 0.9969 + }, + { + "start": 6589.36, + "end": 6589.82, + "probability": 0.9578 + }, + { + "start": 6591.12, + "end": 6595.38, + "probability": 0.9198 + }, + { + "start": 6595.98, + "end": 6598.92, + "probability": 0.957 + }, + { + "start": 6600.4, + "end": 6602.34, + "probability": 0.6396 + }, + { + "start": 6603.9, + "end": 6607.42, + "probability": 0.9272 + }, + { + "start": 6608.2, + "end": 6609.58, + "probability": 0.9983 + }, + { + "start": 6610.84, + "end": 6611.62, + "probability": 0.7526 + }, + { + "start": 6613.24, + "end": 6615.96, + "probability": 0.7583 + }, + { + "start": 6617.68, + "end": 6619.18, + "probability": 0.5041 + }, + { + "start": 6620.56, + "end": 6622.22, + "probability": 0.6205 + }, + { + "start": 6623.36, + "end": 6628.04, + "probability": 0.9798 + }, + { + "start": 6629.44, + "end": 6633.32, + "probability": 0.9634 + }, + { + "start": 6634.94, + "end": 6636.12, + "probability": 0.927 + }, + { + "start": 6637.38, + "end": 6640.62, + "probability": 0.9375 + }, + { + "start": 6642.06, + "end": 6645.34, + "probability": 0.9869 + }, + { + "start": 6646.18, + "end": 6647.94, + "probability": 0.3302 + }, + { + "start": 6648.64, + "end": 6650.48, + "probability": 0.9067 + }, + { + "start": 6650.8, + "end": 6651.58, + "probability": 0.462 + }, + { + "start": 6651.64, + "end": 6654.88, + "probability": 0.9588 + }, + { + "start": 6655.32, + "end": 6656.22, + "probability": 0.4406 + }, + { + "start": 6658.28, + "end": 6659.6, + "probability": 0.9876 + }, + { + "start": 6660.44, + "end": 6662.34, + "probability": 0.5852 + }, + { + "start": 6662.38, + "end": 6666.52, + "probability": 0.9749 + }, + { + "start": 6666.68, + "end": 6666.9, + "probability": 0.7682 + }, + { + "start": 6667.6, + "end": 6669.28, + "probability": 0.9068 + }, + { + "start": 6670.72, + "end": 6674.68, + "probability": 0.8035 + }, + { + "start": 6675.72, + "end": 6677.24, + "probability": 0.8125 + }, + { + "start": 6688.14, + "end": 6691.1, + "probability": 0.7168 + }, + { + "start": 6692.92, + "end": 6696.82, + "probability": 0.8883 + }, + { + "start": 6698.78, + "end": 6700.95, + "probability": 0.9995 + }, + { + "start": 6702.2, + "end": 6702.86, + "probability": 0.9695 + }, + { + "start": 6703.86, + "end": 6706.6, + "probability": 0.9805 + }, + { + "start": 6707.88, + "end": 6712.58, + "probability": 0.9946 + }, + { + "start": 6713.1, + "end": 6715.94, + "probability": 0.7406 + }, + { + "start": 6716.62, + "end": 6719.28, + "probability": 0.7851 + }, + { + "start": 6721.14, + "end": 6728.74, + "probability": 0.9164 + }, + { + "start": 6729.36, + "end": 6733.44, + "probability": 0.6532 + }, + { + "start": 6733.44, + "end": 6737.58, + "probability": 0.8676 + }, + { + "start": 6737.8, + "end": 6741.92, + "probability": 0.8716 + }, + { + "start": 6742.78, + "end": 6743.62, + "probability": 0.5895 + }, + { + "start": 6744.02, + "end": 6749.46, + "probability": 0.7514 + }, + { + "start": 6749.46, + "end": 6753.88, + "probability": 0.9769 + }, + { + "start": 6755.36, + "end": 6757.92, + "probability": 0.9058 + }, + { + "start": 6758.44, + "end": 6761.14, + "probability": 0.9952 + }, + { + "start": 6762.0, + "end": 6766.02, + "probability": 0.9529 + }, + { + "start": 6766.34, + "end": 6769.4, + "probability": 0.9924 + }, + { + "start": 6770.02, + "end": 6773.36, + "probability": 0.9711 + }, + { + "start": 6774.98, + "end": 6777.92, + "probability": 0.9404 + }, + { + "start": 6778.1, + "end": 6778.96, + "probability": 0.8713 + }, + { + "start": 6783.24, + "end": 6783.72, + "probability": 0.6695 + }, + { + "start": 6784.28, + "end": 6787.72, + "probability": 0.9863 + }, + { + "start": 6788.54, + "end": 6793.96, + "probability": 0.7822 + }, + { + "start": 6794.62, + "end": 6796.5, + "probability": 0.5322 + }, + { + "start": 6797.36, + "end": 6799.08, + "probability": 0.8853 + }, + { + "start": 6800.96, + "end": 6806.42, + "probability": 0.8968 + }, + { + "start": 6807.7, + "end": 6811.88, + "probability": 0.992 + }, + { + "start": 6812.26, + "end": 6814.56, + "probability": 0.8253 + }, + { + "start": 6816.2, + "end": 6818.28, + "probability": 0.5528 + }, + { + "start": 6818.82, + "end": 6820.88, + "probability": 0.9784 + }, + { + "start": 6821.42, + "end": 6823.96, + "probability": 0.9948 + }, + { + "start": 6824.5, + "end": 6825.12, + "probability": 0.9416 + }, + { + "start": 6825.88, + "end": 6826.56, + "probability": 0.9604 + }, + { + "start": 6828.48, + "end": 6831.04, + "probability": 0.9448 + }, + { + "start": 6832.04, + "end": 6833.62, + "probability": 0.9148 + }, + { + "start": 6833.72, + "end": 6834.68, + "probability": 0.7945 + }, + { + "start": 6834.72, + "end": 6836.5, + "probability": 0.9952 + }, + { + "start": 6836.94, + "end": 6837.6, + "probability": 0.6497 + }, + { + "start": 6838.66, + "end": 6842.04, + "probability": 0.9672 + }, + { + "start": 6842.76, + "end": 6843.48, + "probability": 0.8702 + }, + { + "start": 6843.6, + "end": 6846.88, + "probability": 0.9351 + }, + { + "start": 6847.92, + "end": 6850.2, + "probability": 0.6996 + }, + { + "start": 6850.28, + "end": 6852.66, + "probability": 0.9722 + }, + { + "start": 6853.32, + "end": 6856.28, + "probability": 0.9655 + }, + { + "start": 6857.42, + "end": 6859.14, + "probability": 0.9095 + }, + { + "start": 6860.66, + "end": 6865.54, + "probability": 0.7534 + }, + { + "start": 6866.2, + "end": 6866.52, + "probability": 0.9133 + }, + { + "start": 6867.12, + "end": 6868.66, + "probability": 0.8195 + }, + { + "start": 6869.5, + "end": 6875.06, + "probability": 0.8468 + }, + { + "start": 6875.24, + "end": 6879.42, + "probability": 0.8156 + }, + { + "start": 6879.42, + "end": 6882.68, + "probability": 0.5024 + }, + { + "start": 6883.34, + "end": 6884.78, + "probability": 0.3691 + }, + { + "start": 6885.38, + "end": 6887.58, + "probability": 0.6036 + }, + { + "start": 6888.38, + "end": 6889.38, + "probability": 0.9569 + }, + { + "start": 6889.8, + "end": 6891.21, + "probability": 0.9542 + }, + { + "start": 6892.46, + "end": 6896.2, + "probability": 0.8954 + }, + { + "start": 6897.18, + "end": 6898.18, + "probability": 0.6445 + }, + { + "start": 6899.28, + "end": 6901.02, + "probability": 0.6549 + }, + { + "start": 6902.82, + "end": 6904.48, + "probability": 0.5292 + }, + { + "start": 6905.82, + "end": 6907.12, + "probability": 0.2722 + }, + { + "start": 6907.64, + "end": 6909.22, + "probability": 0.9788 + }, + { + "start": 6924.9, + "end": 6926.74, + "probability": 0.801 + }, + { + "start": 6928.96, + "end": 6933.42, + "probability": 0.7582 + }, + { + "start": 6934.94, + "end": 6938.28, + "probability": 0.9954 + }, + { + "start": 6938.78, + "end": 6940.28, + "probability": 0.9963 + }, + { + "start": 6940.98, + "end": 6941.72, + "probability": 0.7352 + }, + { + "start": 6941.82, + "end": 6946.14, + "probability": 0.843 + }, + { + "start": 6947.82, + "end": 6951.62, + "probability": 0.9161 + }, + { + "start": 6951.74, + "end": 6952.94, + "probability": 0.762 + }, + { + "start": 6953.84, + "end": 6956.44, + "probability": 0.7713 + }, + { + "start": 6957.42, + "end": 6957.96, + "probability": 0.5676 + }, + { + "start": 6958.68, + "end": 6963.42, + "probability": 0.967 + }, + { + "start": 6964.08, + "end": 6970.08, + "probability": 0.711 + }, + { + "start": 6970.56, + "end": 6972.7, + "probability": 0.9447 + }, + { + "start": 6973.06, + "end": 6974.24, + "probability": 0.9802 + }, + { + "start": 6975.5, + "end": 6977.42, + "probability": 0.8624 + }, + { + "start": 6977.96, + "end": 6979.42, + "probability": 0.7565 + }, + { + "start": 6980.24, + "end": 6986.48, + "probability": 0.7084 + }, + { + "start": 6987.08, + "end": 6988.2, + "probability": 0.8531 + }, + { + "start": 6988.48, + "end": 6989.62, + "probability": 0.9636 + }, + { + "start": 6989.96, + "end": 6991.12, + "probability": 0.9635 + }, + { + "start": 6991.3, + "end": 6992.06, + "probability": 0.8333 + }, + { + "start": 6992.46, + "end": 6994.76, + "probability": 0.4702 + }, + { + "start": 6995.04, + "end": 6997.58, + "probability": 0.5162 + }, + { + "start": 6999.32, + "end": 7001.56, + "probability": 0.9031 + }, + { + "start": 7002.42, + "end": 7004.64, + "probability": 0.6982 + }, + { + "start": 7005.22, + "end": 7007.18, + "probability": 0.9521 + }, + { + "start": 7007.88, + "end": 7011.58, + "probability": 0.6626 + }, + { + "start": 7012.98, + "end": 7016.62, + "probability": 0.865 + }, + { + "start": 7016.94, + "end": 7019.7, + "probability": 0.4565 + }, + { + "start": 7020.3, + "end": 7022.63, + "probability": 0.7536 + }, + { + "start": 7023.28, + "end": 7026.5, + "probability": 0.5519 + }, + { + "start": 7027.0, + "end": 7032.9, + "probability": 0.6097 + }, + { + "start": 7034.02, + "end": 7034.24, + "probability": 0.0205 + }, + { + "start": 7034.24, + "end": 7036.34, + "probability": 0.7104 + }, + { + "start": 7036.34, + "end": 7039.54, + "probability": 0.9954 + }, + { + "start": 7040.58, + "end": 7043.6, + "probability": 0.7789 + }, + { + "start": 7044.24, + "end": 7044.98, + "probability": 0.8231 + }, + { + "start": 7045.66, + "end": 7051.7, + "probability": 0.9181 + }, + { + "start": 7052.84, + "end": 7053.9, + "probability": 0.9136 + }, + { + "start": 7054.92, + "end": 7057.32, + "probability": 0.8418 + }, + { + "start": 7057.32, + "end": 7059.24, + "probability": 0.8354 + }, + { + "start": 7059.26, + "end": 7060.7, + "probability": 0.9892 + }, + { + "start": 7061.4, + "end": 7064.56, + "probability": 0.87 + }, + { + "start": 7065.6, + "end": 7066.7, + "probability": 0.6767 + }, + { + "start": 7067.18, + "end": 7069.42, + "probability": 0.9919 + }, + { + "start": 7070.52, + "end": 7073.26, + "probability": 0.7236 + }, + { + "start": 7074.02, + "end": 7077.52, + "probability": 0.8428 + }, + { + "start": 7078.22, + "end": 7080.44, + "probability": 0.5846 + }, + { + "start": 7081.0, + "end": 7083.54, + "probability": 0.2834 + }, + { + "start": 7084.46, + "end": 7086.8, + "probability": 0.9887 + }, + { + "start": 7087.12, + "end": 7089.2, + "probability": 0.9525 + }, + { + "start": 7089.64, + "end": 7092.36, + "probability": 0.9519 + }, + { + "start": 7092.86, + "end": 7093.86, + "probability": 0.1424 + }, + { + "start": 7093.98, + "end": 7096.12, + "probability": 0.691 + }, + { + "start": 7096.48, + "end": 7096.82, + "probability": 0.4161 + }, + { + "start": 7096.98, + "end": 7102.52, + "probability": 0.7854 + }, + { + "start": 7103.18, + "end": 7104.1, + "probability": 0.8221 + }, + { + "start": 7104.64, + "end": 7106.62, + "probability": 0.9397 + }, + { + "start": 7107.88, + "end": 7112.14, + "probability": 0.9755 + }, + { + "start": 7112.88, + "end": 7113.14, + "probability": 0.7837 + }, + { + "start": 7113.92, + "end": 7115.86, + "probability": 0.6992 + }, + { + "start": 7116.06, + "end": 7119.38, + "probability": 0.9822 + }, + { + "start": 7119.9, + "end": 7120.48, + "probability": 0.7232 + }, + { + "start": 7121.64, + "end": 7124.14, + "probability": 0.9983 + }, + { + "start": 7125.16, + "end": 7128.5, + "probability": 0.9607 + }, + { + "start": 7129.56, + "end": 7130.02, + "probability": 0.3331 + }, + { + "start": 7130.02, + "end": 7130.04, + "probability": 0.858 + }, + { + "start": 7130.04, + "end": 7130.6, + "probability": 0.7301 + }, + { + "start": 7131.22, + "end": 7133.28, + "probability": 0.8127 + }, + { + "start": 7134.66, + "end": 7138.06, + "probability": 0.9291 + }, + { + "start": 7138.44, + "end": 7139.56, + "probability": 0.9753 + }, + { + "start": 7139.8, + "end": 7140.82, + "probability": 0.9583 + }, + { + "start": 7141.58, + "end": 7143.69, + "probability": 0.9761 + }, + { + "start": 7144.96, + "end": 7146.8, + "probability": 0.9739 + }, + { + "start": 7147.68, + "end": 7149.78, + "probability": 0.534 + }, + { + "start": 7151.3, + "end": 7151.88, + "probability": 0.0918 + }, + { + "start": 7151.88, + "end": 7151.88, + "probability": 0.0486 + }, + { + "start": 7151.88, + "end": 7155.01, + "probability": 0.894 + }, + { + "start": 7156.02, + "end": 7158.22, + "probability": 0.8527 + }, + { + "start": 7158.58, + "end": 7161.64, + "probability": 0.9918 + }, + { + "start": 7162.16, + "end": 7162.8, + "probability": 0.8726 + }, + { + "start": 7164.98, + "end": 7169.7, + "probability": 0.9886 + }, + { + "start": 7170.04, + "end": 7170.42, + "probability": 0.8594 + }, + { + "start": 7171.48, + "end": 7173.66, + "probability": 0.9631 + }, + { + "start": 7174.16, + "end": 7177.08, + "probability": 0.9961 + }, + { + "start": 7178.3, + "end": 7181.08, + "probability": 0.9863 + }, + { + "start": 7182.46, + "end": 7183.24, + "probability": 0.8362 + }, + { + "start": 7184.04, + "end": 7185.18, + "probability": 0.8771 + }, + { + "start": 7186.64, + "end": 7189.34, + "probability": 0.998 + }, + { + "start": 7190.2, + "end": 7194.88, + "probability": 0.9793 + }, + { + "start": 7196.48, + "end": 7203.86, + "probability": 0.9884 + }, + { + "start": 7204.98, + "end": 7208.4, + "probability": 0.9327 + }, + { + "start": 7209.26, + "end": 7216.28, + "probability": 0.9672 + }, + { + "start": 7217.34, + "end": 7218.62, + "probability": 0.942 + }, + { + "start": 7219.5, + "end": 7222.84, + "probability": 0.9907 + }, + { + "start": 7223.32, + "end": 7225.0, + "probability": 0.9958 + }, + { + "start": 7225.34, + "end": 7228.42, + "probability": 0.9308 + }, + { + "start": 7229.18, + "end": 7230.88, + "probability": 0.9772 + }, + { + "start": 7232.18, + "end": 7233.97, + "probability": 0.9984 + }, + { + "start": 7234.46, + "end": 7236.16, + "probability": 0.6989 + }, + { + "start": 7236.26, + "end": 7238.7, + "probability": 0.8592 + }, + { + "start": 7239.6, + "end": 7243.26, + "probability": 0.9807 + }, + { + "start": 7244.4, + "end": 7246.02, + "probability": 0.7305 + }, + { + "start": 7246.96, + "end": 7249.5, + "probability": 0.971 + }, + { + "start": 7249.68, + "end": 7250.52, + "probability": 0.6928 + }, + { + "start": 7251.24, + "end": 7252.64, + "probability": 0.8223 + }, + { + "start": 7253.64, + "end": 7257.26, + "probability": 0.9991 + }, + { + "start": 7257.86, + "end": 7260.3, + "probability": 0.9647 + }, + { + "start": 7261.22, + "end": 7265.8, + "probability": 0.9897 + }, + { + "start": 7266.28, + "end": 7270.0, + "probability": 0.7988 + }, + { + "start": 7270.36, + "end": 7272.74, + "probability": 0.9805 + }, + { + "start": 7272.8, + "end": 7274.04, + "probability": 0.904 + }, + { + "start": 7275.66, + "end": 7278.52, + "probability": 0.9886 + }, + { + "start": 7279.22, + "end": 7283.1, + "probability": 0.9973 + }, + { + "start": 7283.76, + "end": 7285.78, + "probability": 0.9789 + }, + { + "start": 7286.7, + "end": 7288.54, + "probability": 0.4925 + }, + { + "start": 7288.94, + "end": 7292.06, + "probability": 0.8023 + }, + { + "start": 7293.1, + "end": 7293.76, + "probability": 0.8836 + }, + { + "start": 7294.34, + "end": 7294.88, + "probability": 0.9677 + }, + { + "start": 7296.1, + "end": 7302.52, + "probability": 0.9932 + }, + { + "start": 7303.48, + "end": 7310.34, + "probability": 0.9968 + }, + { + "start": 7310.84, + "end": 7313.96, + "probability": 0.8293 + }, + { + "start": 7314.04, + "end": 7314.5, + "probability": 0.5375 + }, + { + "start": 7315.14, + "end": 7318.2, + "probability": 0.9699 + }, + { + "start": 7319.54, + "end": 7321.62, + "probability": 0.9836 + }, + { + "start": 7321.84, + "end": 7323.06, + "probability": 0.9901 + }, + { + "start": 7323.12, + "end": 7324.22, + "probability": 0.8614 + }, + { + "start": 7325.18, + "end": 7328.6, + "probability": 0.9416 + }, + { + "start": 7328.66, + "end": 7329.04, + "probability": 0.6462 + }, + { + "start": 7329.62, + "end": 7331.46, + "probability": 0.9766 + }, + { + "start": 7332.26, + "end": 7332.8, + "probability": 0.7974 + }, + { + "start": 7332.96, + "end": 7334.96, + "probability": 0.7502 + }, + { + "start": 7335.78, + "end": 7339.02, + "probability": 0.7771 + }, + { + "start": 7339.98, + "end": 7341.18, + "probability": 0.8221 + }, + { + "start": 7342.16, + "end": 7344.18, + "probability": 0.9122 + }, + { + "start": 7345.1, + "end": 7346.1, + "probability": 0.9796 + }, + { + "start": 7346.74, + "end": 7348.34, + "probability": 0.5011 + }, + { + "start": 7349.0, + "end": 7351.16, + "probability": 0.8101 + }, + { + "start": 7352.04, + "end": 7352.56, + "probability": 0.1761 + } + ], + "segments_count": 2759, + "words_count": 13511, + "avg_words_per_segment": 4.8971, + "avg_segment_duration": 1.8841, + "avg_words_per_minute": 109.6889, + "plenum_id": "1860", + "duration": 7390.54, + "title": null, + "plenum_date": "2009-05-11" +} \ No newline at end of file