diff --git "a/2588/metadata.json" "b/2588/metadata.json" new file mode 100644--- /dev/null +++ "b/2588/metadata.json" @@ -0,0 +1,28822 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "2588", + "quality_score": 0.9053, + "per_segment_quality_scores": [ + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 133.2, + "end": 135.42, + "probability": 0.8323 + }, + { + "start": 136.14, + "end": 137.18, + "probability": 0.9438 + }, + { + "start": 137.28, + "end": 139.26, + "probability": 0.8999 + }, + { + "start": 140.22, + "end": 141.88, + "probability": 0.6107 + }, + { + "start": 142.08, + "end": 144.56, + "probability": 0.5217 + }, + { + "start": 145.26, + "end": 148.16, + "probability": 0.8074 + }, + { + "start": 148.88, + "end": 153.94, + "probability": 0.9712 + }, + { + "start": 154.52, + "end": 159.42, + "probability": 0.9225 + }, + { + "start": 159.42, + "end": 159.78, + "probability": 0.5292 + }, + { + "start": 160.4, + "end": 162.1, + "probability": 0.8503 + }, + { + "start": 162.58, + "end": 168.7, + "probability": 0.9708 + }, + { + "start": 169.04, + "end": 169.68, + "probability": 0.9857 + }, + { + "start": 170.52, + "end": 175.56, + "probability": 0.9594 + }, + { + "start": 176.14, + "end": 176.44, + "probability": 0.4803 + }, + { + "start": 176.58, + "end": 179.32, + "probability": 0.8765 + }, + { + "start": 179.46, + "end": 183.06, + "probability": 0.929 + }, + { + "start": 183.62, + "end": 184.36, + "probability": 0.6814 + }, + { + "start": 184.46, + "end": 188.68, + "probability": 0.8732 + }, + { + "start": 189.24, + "end": 190.42, + "probability": 0.707 + }, + { + "start": 190.68, + "end": 193.52, + "probability": 0.9385 + }, + { + "start": 193.52, + "end": 197.06, + "probability": 0.9866 + }, + { + "start": 197.88, + "end": 200.98, + "probability": 0.7814 + }, + { + "start": 201.58, + "end": 202.86, + "probability": 0.6621 + }, + { + "start": 202.98, + "end": 209.76, + "probability": 0.9912 + }, + { + "start": 210.5, + "end": 213.46, + "probability": 0.9963 + }, + { + "start": 214.78, + "end": 215.14, + "probability": 0.731 + }, + { + "start": 215.28, + "end": 216.62, + "probability": 0.9565 + }, + { + "start": 216.66, + "end": 220.12, + "probability": 0.9915 + }, + { + "start": 228.62, + "end": 230.16, + "probability": 0.8675 + }, + { + "start": 230.74, + "end": 236.25, + "probability": 0.9727 + }, + { + "start": 236.68, + "end": 238.74, + "probability": 0.9437 + }, + { + "start": 239.52, + "end": 241.46, + "probability": 0.9769 + }, + { + "start": 242.0, + "end": 246.78, + "probability": 0.9099 + }, + { + "start": 247.3, + "end": 251.12, + "probability": 0.6517 + }, + { + "start": 251.94, + "end": 254.0, + "probability": 0.8064 + }, + { + "start": 254.6, + "end": 258.94, + "probability": 0.9207 + }, + { + "start": 259.84, + "end": 260.8, + "probability": 0.7304 + }, + { + "start": 262.34, + "end": 262.38, + "probability": 0.4173 + }, + { + "start": 262.38, + "end": 266.86, + "probability": 0.5519 + }, + { + "start": 267.5, + "end": 269.16, + "probability": 0.4258 + }, + { + "start": 269.84, + "end": 272.16, + "probability": 0.8412 + }, + { + "start": 272.9, + "end": 273.06, + "probability": 0.0135 + }, + { + "start": 273.06, + "end": 276.53, + "probability": 0.9289 + }, + { + "start": 277.24, + "end": 281.5, + "probability": 0.8708 + }, + { + "start": 282.04, + "end": 284.36, + "probability": 0.6132 + }, + { + "start": 285.0, + "end": 288.8, + "probability": 0.7414 + }, + { + "start": 288.8, + "end": 293.0, + "probability": 0.6342 + }, + { + "start": 293.74, + "end": 295.02, + "probability": 0.5492 + }, + { + "start": 297.18, + "end": 298.66, + "probability": 0.5487 + }, + { + "start": 300.36, + "end": 300.7, + "probability": 0.4647 + }, + { + "start": 301.94, + "end": 305.58, + "probability": 0.1663 + }, + { + "start": 306.34, + "end": 307.7, + "probability": 0.6262 + }, + { + "start": 308.68, + "end": 309.66, + "probability": 0.8296 + }, + { + "start": 309.7, + "end": 310.42, + "probability": 0.9223 + }, + { + "start": 310.5, + "end": 312.04, + "probability": 0.92 + }, + { + "start": 312.24, + "end": 314.02, + "probability": 0.595 + }, + { + "start": 314.72, + "end": 316.79, + "probability": 0.4941 + }, + { + "start": 318.1, + "end": 320.96, + "probability": 0.4799 + }, + { + "start": 323.98, + "end": 324.78, + "probability": 0.7681 + }, + { + "start": 325.3, + "end": 326.86, + "probability": 0.9747 + }, + { + "start": 327.24, + "end": 327.94, + "probability": 0.1947 + }, + { + "start": 335.72, + "end": 337.96, + "probability": 0.6735 + }, + { + "start": 342.36, + "end": 343.4, + "probability": 0.8542 + }, + { + "start": 343.9, + "end": 344.66, + "probability": 0.8205 + }, + { + "start": 345.22, + "end": 347.36, + "probability": 0.6884 + }, + { + "start": 348.56, + "end": 350.26, + "probability": 0.7478 + }, + { + "start": 350.44, + "end": 351.66, + "probability": 0.4519 + }, + { + "start": 351.66, + "end": 353.04, + "probability": 0.9618 + }, + { + "start": 353.78, + "end": 356.2, + "probability": 0.8481 + }, + { + "start": 356.86, + "end": 360.22, + "probability": 0.9709 + }, + { + "start": 360.22, + "end": 362.98, + "probability": 0.9889 + }, + { + "start": 363.54, + "end": 368.66, + "probability": 0.8449 + }, + { + "start": 368.86, + "end": 369.46, + "probability": 0.7305 + }, + { + "start": 370.02, + "end": 372.88, + "probability": 0.978 + }, + { + "start": 372.94, + "end": 373.4, + "probability": 0.6059 + }, + { + "start": 373.4, + "end": 376.32, + "probability": 0.9409 + }, + { + "start": 376.46, + "end": 379.38, + "probability": 0.9811 + }, + { + "start": 379.68, + "end": 380.0, + "probability": 0.3138 + }, + { + "start": 380.38, + "end": 382.76, + "probability": 0.4891 + }, + { + "start": 383.26, + "end": 384.29, + "probability": 0.9463 + }, + { + "start": 384.71, + "end": 385.25, + "probability": 0.5232 + }, + { + "start": 385.31, + "end": 388.47, + "probability": 0.8947 + }, + { + "start": 388.87, + "end": 393.97, + "probability": 0.949 + }, + { + "start": 394.01, + "end": 397.39, + "probability": 0.9646 + }, + { + "start": 397.89, + "end": 401.17, + "probability": 0.9881 + }, + { + "start": 401.17, + "end": 405.61, + "probability": 0.998 + }, + { + "start": 405.73, + "end": 406.71, + "probability": 0.3253 + }, + { + "start": 406.95, + "end": 407.95, + "probability": 0.6674 + }, + { + "start": 408.63, + "end": 410.17, + "probability": 0.8496 + }, + { + "start": 410.73, + "end": 410.99, + "probability": 0.8437 + }, + { + "start": 411.07, + "end": 415.03, + "probability": 0.959 + }, + { + "start": 415.79, + "end": 416.19, + "probability": 0.0801 + }, + { + "start": 416.56, + "end": 420.19, + "probability": 0.994 + }, + { + "start": 420.31, + "end": 421.47, + "probability": 0.9498 + }, + { + "start": 422.27, + "end": 423.23, + "probability": 0.9548 + }, + { + "start": 423.93, + "end": 427.03, + "probability": 0.9699 + }, + { + "start": 427.95, + "end": 431.03, + "probability": 0.9892 + }, + { + "start": 431.45, + "end": 433.99, + "probability": 0.7585 + }, + { + "start": 434.13, + "end": 434.71, + "probability": 0.5604 + }, + { + "start": 434.81, + "end": 435.27, + "probability": 0.4622 + }, + { + "start": 435.49, + "end": 435.93, + "probability": 0.6277 + }, + { + "start": 436.19, + "end": 436.73, + "probability": 0.7444 + }, + { + "start": 436.79, + "end": 437.83, + "probability": 0.5793 + }, + { + "start": 438.87, + "end": 439.73, + "probability": 0.8118 + }, + { + "start": 440.65, + "end": 441.91, + "probability": 0.3217 + }, + { + "start": 454.11, + "end": 456.07, + "probability": 0.4777 + }, + { + "start": 456.07, + "end": 458.17, + "probability": 0.8619 + }, + { + "start": 459.09, + "end": 460.09, + "probability": 0.3397 + }, + { + "start": 460.83, + "end": 461.57, + "probability": 0.0741 + }, + { + "start": 462.37, + "end": 465.67, + "probability": 0.3619 + }, + { + "start": 466.95, + "end": 470.19, + "probability": 0.4344 + }, + { + "start": 472.93, + "end": 473.75, + "probability": 0.0681 + }, + { + "start": 473.75, + "end": 474.27, + "probability": 0.1478 + }, + { + "start": 475.15, + "end": 477.07, + "probability": 0.0075 + }, + { + "start": 479.17, + "end": 481.41, + "probability": 0.0354 + }, + { + "start": 485.47, + "end": 486.15, + "probability": 0.0303 + }, + { + "start": 489.06, + "end": 490.19, + "probability": 0.0858 + }, + { + "start": 491.19, + "end": 496.72, + "probability": 0.0495 + }, + { + "start": 497.35, + "end": 500.11, + "probability": 0.1814 + }, + { + "start": 500.11, + "end": 500.25, + "probability": 0.1291 + }, + { + "start": 501.11, + "end": 501.21, + "probability": 0.0055 + }, + { + "start": 502.83, + "end": 504.42, + "probability": 0.055 + }, + { + "start": 504.51, + "end": 505.43, + "probability": 0.088 + }, + { + "start": 507.25, + "end": 507.25, + "probability": 0.5181 + }, + { + "start": 507.25, + "end": 507.25, + "probability": 0.1246 + }, + { + "start": 507.27, + "end": 507.27, + "probability": 0.0943 + }, + { + "start": 508.29, + "end": 509.31, + "probability": 0.3392 + }, + { + "start": 509.31, + "end": 509.31, + "probability": 0.1018 + }, + { + "start": 509.31, + "end": 509.31, + "probability": 0.0381 + }, + { + "start": 509.31, + "end": 509.45, + "probability": 0.0494 + }, + { + "start": 509.45, + "end": 509.81, + "probability": 0.0598 + }, + { + "start": 509.91, + "end": 509.97, + "probability": 0.0282 + }, + { + "start": 510.0, + "end": 510.0, + "probability": 0.0 + }, + { + "start": 510.0, + "end": 510.0, + "probability": 0.0 + }, + { + "start": 510.0, + "end": 510.0, + "probability": 0.0 + }, + { + "start": 510.0, + "end": 510.0, + "probability": 0.0 + }, + { + "start": 510.0, + "end": 510.0, + "probability": 0.0 + }, + { + "start": 510.24, + "end": 512.1, + "probability": 0.9371 + }, + { + "start": 512.3, + "end": 515.76, + "probability": 0.9588 + }, + { + "start": 515.86, + "end": 517.28, + "probability": 0.0334 + }, + { + "start": 517.52, + "end": 519.23, + "probability": 0.9043 + }, + { + "start": 519.84, + "end": 521.7, + "probability": 0.9854 + }, + { + "start": 522.26, + "end": 523.02, + "probability": 0.4293 + }, + { + "start": 524.0, + "end": 526.82, + "probability": 0.9905 + }, + { + "start": 527.94, + "end": 533.34, + "probability": 0.9154 + }, + { + "start": 533.64, + "end": 534.34, + "probability": 0.7572 + }, + { + "start": 535.08, + "end": 538.92, + "probability": 0.9783 + }, + { + "start": 539.06, + "end": 543.29, + "probability": 0.9898 + }, + { + "start": 543.52, + "end": 544.14, + "probability": 0.1769 + }, + { + "start": 544.38, + "end": 546.15, + "probability": 0.1674 + }, + { + "start": 546.84, + "end": 547.42, + "probability": 0.0838 + }, + { + "start": 547.52, + "end": 549.18, + "probability": 0.5383 + }, + { + "start": 549.44, + "end": 551.1, + "probability": 0.7498 + }, + { + "start": 551.38, + "end": 552.46, + "probability": 0.6128 + }, + { + "start": 552.66, + "end": 555.18, + "probability": 0.9042 + }, + { + "start": 555.64, + "end": 557.28, + "probability": 0.9927 + }, + { + "start": 557.9, + "end": 562.52, + "probability": 0.974 + }, + { + "start": 562.62, + "end": 564.78, + "probability": 0.9787 + }, + { + "start": 565.14, + "end": 565.56, + "probability": 0.6074 + }, + { + "start": 565.96, + "end": 569.7, + "probability": 0.9491 + }, + { + "start": 569.82, + "end": 570.32, + "probability": 0.7183 + }, + { + "start": 570.72, + "end": 572.8, + "probability": 0.6713 + }, + { + "start": 573.4, + "end": 574.84, + "probability": 0.8826 + }, + { + "start": 575.56, + "end": 576.32, + "probability": 0.6429 + }, + { + "start": 576.92, + "end": 578.04, + "probability": 0.8968 + }, + { + "start": 578.32, + "end": 579.26, + "probability": 0.7987 + }, + { + "start": 579.72, + "end": 585.98, + "probability": 0.9875 + }, + { + "start": 586.72, + "end": 589.92, + "probability": 0.948 + }, + { + "start": 590.48, + "end": 594.78, + "probability": 0.6666 + }, + { + "start": 594.88, + "end": 597.4, + "probability": 0.9867 + }, + { + "start": 597.84, + "end": 601.78, + "probability": 0.9875 + }, + { + "start": 602.06, + "end": 605.84, + "probability": 0.9932 + }, + { + "start": 606.2, + "end": 610.16, + "probability": 0.9969 + }, + { + "start": 610.76, + "end": 616.86, + "probability": 0.9543 + }, + { + "start": 616.86, + "end": 621.26, + "probability": 0.9606 + }, + { + "start": 622.2, + "end": 622.24, + "probability": 0.9307 + }, + { + "start": 622.96, + "end": 623.68, + "probability": 0.7649 + }, + { + "start": 623.74, + "end": 624.6, + "probability": 0.6674 + }, + { + "start": 624.66, + "end": 627.74, + "probability": 0.8764 + }, + { + "start": 627.96, + "end": 631.32, + "probability": 0.9971 + }, + { + "start": 631.66, + "end": 632.72, + "probability": 0.9827 + }, + { + "start": 632.76, + "end": 633.16, + "probability": 0.8825 + }, + { + "start": 633.22, + "end": 633.72, + "probability": 0.5806 + }, + { + "start": 633.72, + "end": 635.8, + "probability": 0.7968 + }, + { + "start": 636.38, + "end": 639.11, + "probability": 0.9774 + }, + { + "start": 639.24, + "end": 643.2, + "probability": 0.9904 + }, + { + "start": 643.9, + "end": 647.2, + "probability": 0.7419 + }, + { + "start": 647.72, + "end": 650.76, + "probability": 0.9303 + }, + { + "start": 650.86, + "end": 651.78, + "probability": 0.7324 + }, + { + "start": 651.9, + "end": 652.44, + "probability": 0.6511 + }, + { + "start": 652.74, + "end": 654.7, + "probability": 0.9729 + }, + { + "start": 655.4, + "end": 659.9, + "probability": 0.9889 + }, + { + "start": 659.98, + "end": 662.38, + "probability": 0.89 + }, + { + "start": 662.92, + "end": 666.32, + "probability": 0.9901 + }, + { + "start": 666.46, + "end": 668.06, + "probability": 0.988 + }, + { + "start": 668.56, + "end": 671.7, + "probability": 0.9324 + }, + { + "start": 671.86, + "end": 672.28, + "probability": 0.7737 + }, + { + "start": 672.32, + "end": 672.76, + "probability": 0.7152 + }, + { + "start": 673.06, + "end": 685.12, + "probability": 0.7178 + }, + { + "start": 687.92, + "end": 688.41, + "probability": 0.0491 + }, + { + "start": 689.68, + "end": 690.98, + "probability": 0.0862 + }, + { + "start": 691.88, + "end": 692.08, + "probability": 0.0392 + }, + { + "start": 695.64, + "end": 696.16, + "probability": 0.1818 + }, + { + "start": 699.52, + "end": 703.76, + "probability": 0.0538 + }, + { + "start": 703.94, + "end": 704.84, + "probability": 0.0609 + }, + { + "start": 704.84, + "end": 704.84, + "probability": 0.3459 + }, + { + "start": 708.8, + "end": 710.0, + "probability": 0.0363 + }, + { + "start": 710.12, + "end": 710.62, + "probability": 0.041 + }, + { + "start": 710.62, + "end": 711.5, + "probability": 0.0868 + }, + { + "start": 711.7, + "end": 712.18, + "probability": 0.03 + }, + { + "start": 712.18, + "end": 712.18, + "probability": 0.3262 + }, + { + "start": 712.18, + "end": 712.18, + "probability": 0.0388 + }, + { + "start": 712.18, + "end": 712.18, + "probability": 0.0914 + }, + { + "start": 712.18, + "end": 712.44, + "probability": 0.048 + }, + { + "start": 712.44, + "end": 712.83, + "probability": 0.259 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.0, + "end": 794.0, + "probability": 0.0 + }, + { + "start": 794.8, + "end": 794.9, + "probability": 0.1207 + }, + { + "start": 794.9, + "end": 794.9, + "probability": 0.1007 + }, + { + "start": 794.9, + "end": 795.53, + "probability": 0.2934 + }, + { + "start": 796.4, + "end": 798.82, + "probability": 0.7896 + }, + { + "start": 799.16, + "end": 799.62, + "probability": 0.4061 + }, + { + "start": 800.44, + "end": 803.86, + "probability": 0.9661 + }, + { + "start": 804.62, + "end": 805.36, + "probability": 0.7641 + }, + { + "start": 805.78, + "end": 806.84, + "probability": 0.5234 + }, + { + "start": 807.38, + "end": 808.4, + "probability": 0.6345 + }, + { + "start": 808.8, + "end": 812.88, + "probability": 0.9461 + }, + { + "start": 812.88, + "end": 815.94, + "probability": 0.8447 + }, + { + "start": 816.04, + "end": 816.28, + "probability": 0.9207 + }, + { + "start": 816.78, + "end": 819.54, + "probability": 0.7688 + }, + { + "start": 819.68, + "end": 820.58, + "probability": 0.8245 + }, + { + "start": 820.76, + "end": 821.42, + "probability": 0.9899 + }, + { + "start": 822.7, + "end": 823.6, + "probability": 0.8428 + }, + { + "start": 824.24, + "end": 825.1, + "probability": 0.9869 + }, + { + "start": 825.24, + "end": 825.52, + "probability": 0.5739 + }, + { + "start": 825.62, + "end": 826.62, + "probability": 0.9548 + }, + { + "start": 827.0, + "end": 827.86, + "probability": 0.5262 + }, + { + "start": 828.54, + "end": 832.22, + "probability": 0.9345 + }, + { + "start": 832.54, + "end": 834.56, + "probability": 0.9956 + }, + { + "start": 834.7, + "end": 837.32, + "probability": 0.9776 + }, + { + "start": 838.18, + "end": 839.04, + "probability": 0.8163 + }, + { + "start": 840.03, + "end": 843.54, + "probability": 0.7476 + }, + { + "start": 844.24, + "end": 845.08, + "probability": 0.6865 + }, + { + "start": 845.88, + "end": 849.42, + "probability": 0.7435 + }, + { + "start": 849.42, + "end": 851.98, + "probability": 0.9721 + }, + { + "start": 852.3, + "end": 854.37, + "probability": 0.9248 + }, + { + "start": 855.0, + "end": 857.4, + "probability": 0.8323 + }, + { + "start": 857.94, + "end": 860.96, + "probability": 0.8 + }, + { + "start": 861.68, + "end": 862.22, + "probability": 0.8903 + }, + { + "start": 862.94, + "end": 863.72, + "probability": 0.7376 + }, + { + "start": 864.36, + "end": 866.42, + "probability": 0.747 + }, + { + "start": 867.38, + "end": 872.62, + "probability": 0.9321 + }, + { + "start": 873.08, + "end": 877.62, + "probability": 0.9756 + }, + { + "start": 877.68, + "end": 878.56, + "probability": 0.7321 + }, + { + "start": 878.86, + "end": 880.88, + "probability": 0.4998 + }, + { + "start": 881.86, + "end": 883.94, + "probability": 0.813 + }, + { + "start": 884.5, + "end": 888.06, + "probability": 0.7894 + }, + { + "start": 888.64, + "end": 892.26, + "probability": 0.9056 + }, + { + "start": 896.06, + "end": 900.76, + "probability": 0.981 + }, + { + "start": 900.78, + "end": 901.67, + "probability": 0.4861 + }, + { + "start": 902.26, + "end": 902.9, + "probability": 0.2744 + }, + { + "start": 903.22, + "end": 905.32, + "probability": 0.8515 + }, + { + "start": 905.88, + "end": 907.82, + "probability": 0.8522 + }, + { + "start": 908.4, + "end": 909.1, + "probability": 0.4834 + }, + { + "start": 910.42, + "end": 912.54, + "probability": 0.9963 + }, + { + "start": 913.1, + "end": 914.62, + "probability": 0.9932 + }, + { + "start": 915.06, + "end": 916.94, + "probability": 0.8379 + }, + { + "start": 918.02, + "end": 922.66, + "probability": 0.9474 + }, + { + "start": 923.18, + "end": 924.48, + "probability": 0.6796 + }, + { + "start": 925.12, + "end": 926.18, + "probability": 0.9596 + }, + { + "start": 927.56, + "end": 928.62, + "probability": 0.3158 + }, + { + "start": 929.54, + "end": 932.0, + "probability": 0.755 + }, + { + "start": 932.82, + "end": 933.98, + "probability": 0.9382 + }, + { + "start": 934.54, + "end": 935.78, + "probability": 0.8599 + }, + { + "start": 935.94, + "end": 940.34, + "probability": 0.9581 + }, + { + "start": 940.44, + "end": 942.3, + "probability": 0.9531 + }, + { + "start": 942.52, + "end": 944.24, + "probability": 0.8736 + }, + { + "start": 944.48, + "end": 945.0, + "probability": 0.8433 + }, + { + "start": 945.78, + "end": 946.04, + "probability": 0.6826 + }, + { + "start": 946.24, + "end": 948.56, + "probability": 0.7499 + }, + { + "start": 948.92, + "end": 949.94, + "probability": 0.6654 + }, + { + "start": 950.22, + "end": 951.08, + "probability": 0.9444 + }, + { + "start": 951.62, + "end": 953.18, + "probability": 0.8511 + }, + { + "start": 954.0, + "end": 956.42, + "probability": 0.9365 + }, + { + "start": 956.94, + "end": 957.46, + "probability": 0.5106 + }, + { + "start": 957.98, + "end": 959.22, + "probability": 0.9972 + }, + { + "start": 959.82, + "end": 961.88, + "probability": 0.961 + }, + { + "start": 962.68, + "end": 963.54, + "probability": 0.735 + }, + { + "start": 964.52, + "end": 967.46, + "probability": 0.8618 + }, + { + "start": 968.08, + "end": 969.4, + "probability": 0.9142 + }, + { + "start": 970.16, + "end": 975.68, + "probability": 0.8907 + }, + { + "start": 975.82, + "end": 978.58, + "probability": 0.9971 + }, + { + "start": 979.12, + "end": 981.22, + "probability": 0.8229 + }, + { + "start": 981.56, + "end": 983.18, + "probability": 0.9274 + }, + { + "start": 983.58, + "end": 984.16, + "probability": 0.7217 + }, + { + "start": 984.78, + "end": 986.3, + "probability": 0.5178 + }, + { + "start": 986.82, + "end": 990.6, + "probability": 0.9522 + }, + { + "start": 991.28, + "end": 994.28, + "probability": 0.9286 + }, + { + "start": 994.44, + "end": 998.28, + "probability": 0.9958 + }, + { + "start": 998.28, + "end": 1000.05, + "probability": 0.9956 + }, + { + "start": 1000.82, + "end": 1002.34, + "probability": 0.788 + }, + { + "start": 1002.92, + "end": 1005.12, + "probability": 0.9788 + }, + { + "start": 1005.84, + "end": 1010.22, + "probability": 0.9386 + }, + { + "start": 1010.84, + "end": 1014.94, + "probability": 0.8231 + }, + { + "start": 1015.08, + "end": 1016.91, + "probability": 0.9253 + }, + { + "start": 1017.26, + "end": 1018.84, + "probability": 0.4736 + }, + { + "start": 1019.72, + "end": 1021.26, + "probability": 0.6134 + }, + { + "start": 1021.42, + "end": 1022.78, + "probability": 0.705 + }, + { + "start": 1023.26, + "end": 1026.0, + "probability": 0.1681 + }, + { + "start": 1026.6, + "end": 1028.92, + "probability": 0.8235 + }, + { + "start": 1029.48, + "end": 1032.32, + "probability": 0.9521 + }, + { + "start": 1033.26, + "end": 1036.74, + "probability": 0.6607 + }, + { + "start": 1037.12, + "end": 1038.58, + "probability": 0.9953 + }, + { + "start": 1042.7, + "end": 1043.58, + "probability": 0.4801 + }, + { + "start": 1044.38, + "end": 1045.66, + "probability": 0.8495 + }, + { + "start": 1045.74, + "end": 1046.92, + "probability": 0.78 + }, + { + "start": 1047.34, + "end": 1050.96, + "probability": 0.9384 + }, + { + "start": 1051.92, + "end": 1054.44, + "probability": 0.8089 + }, + { + "start": 1055.98, + "end": 1057.96, + "probability": 0.4452 + }, + { + "start": 1058.66, + "end": 1059.4, + "probability": 0.7478 + }, + { + "start": 1061.56, + "end": 1063.22, + "probability": 0.9268 + }, + { + "start": 1069.08, + "end": 1069.95, + "probability": 0.018 + }, + { + "start": 1072.32, + "end": 1072.56, + "probability": 0.1856 + }, + { + "start": 1072.96, + "end": 1074.76, + "probability": 0.5236 + }, + { + "start": 1076.9, + "end": 1077.6, + "probability": 0.6316 + }, + { + "start": 1077.64, + "end": 1080.74, + "probability": 0.8281 + }, + { + "start": 1081.06, + "end": 1083.58, + "probability": 0.9192 + }, + { + "start": 1084.24, + "end": 1085.24, + "probability": 0.4974 + }, + { + "start": 1086.1, + "end": 1087.58, + "probability": 0.6469 + }, + { + "start": 1087.7, + "end": 1089.06, + "probability": 0.9819 + }, + { + "start": 1090.16, + "end": 1096.44, + "probability": 0.9564 + }, + { + "start": 1097.08, + "end": 1098.19, + "probability": 0.4346 + }, + { + "start": 1107.5, + "end": 1109.66, + "probability": 0.4871 + }, + { + "start": 1111.26, + "end": 1111.76, + "probability": 0.3384 + }, + { + "start": 1119.56, + "end": 1122.7, + "probability": 0.8004 + }, + { + "start": 1123.24, + "end": 1123.86, + "probability": 0.6883 + }, + { + "start": 1125.98, + "end": 1130.28, + "probability": 0.8677 + }, + { + "start": 1130.86, + "end": 1133.92, + "probability": 0.7141 + }, + { + "start": 1135.28, + "end": 1138.96, + "probability": 0.7285 + }, + { + "start": 1139.7, + "end": 1143.96, + "probability": 0.8649 + }, + { + "start": 1144.92, + "end": 1145.8, + "probability": 0.8551 + }, + { + "start": 1146.42, + "end": 1148.96, + "probability": 0.9046 + }, + { + "start": 1149.5, + "end": 1152.54, + "probability": 0.8548 + }, + { + "start": 1153.48, + "end": 1155.56, + "probability": 0.9396 + }, + { + "start": 1156.02, + "end": 1158.6, + "probability": 0.9127 + }, + { + "start": 1161.63, + "end": 1165.7, + "probability": 0.9847 + }, + { + "start": 1165.7, + "end": 1169.14, + "probability": 0.9858 + }, + { + "start": 1171.3, + "end": 1174.72, + "probability": 0.96 + }, + { + "start": 1175.3, + "end": 1176.66, + "probability": 0.7431 + }, + { + "start": 1177.58, + "end": 1182.4, + "probability": 0.9539 + }, + { + "start": 1182.92, + "end": 1186.3, + "probability": 0.7179 + }, + { + "start": 1186.98, + "end": 1189.12, + "probability": 0.7972 + }, + { + "start": 1189.34, + "end": 1190.14, + "probability": 0.7296 + }, + { + "start": 1190.56, + "end": 1191.14, + "probability": 0.0987 + }, + { + "start": 1191.58, + "end": 1193.1, + "probability": 0.0251 + }, + { + "start": 1197.49, + "end": 1197.84, + "probability": 0.0351 + }, + { + "start": 1197.84, + "end": 1200.3, + "probability": 0.8695 + }, + { + "start": 1201.35, + "end": 1203.56, + "probability": 0.9591 + }, + { + "start": 1203.84, + "end": 1205.06, + "probability": 0.426 + }, + { + "start": 1205.22, + "end": 1208.84, + "probability": 0.9462 + }, + { + "start": 1209.36, + "end": 1212.12, + "probability": 0.9023 + }, + { + "start": 1212.28, + "end": 1214.12, + "probability": 0.9357 + }, + { + "start": 1214.52, + "end": 1216.4, + "probability": 0.9941 + }, + { + "start": 1216.94, + "end": 1222.48, + "probability": 0.9811 + }, + { + "start": 1223.24, + "end": 1227.76, + "probability": 0.9412 + }, + { + "start": 1228.88, + "end": 1233.0, + "probability": 0.5059 + }, + { + "start": 1233.68, + "end": 1236.22, + "probability": 0.9771 + }, + { + "start": 1237.56, + "end": 1240.94, + "probability": 0.7015 + }, + { + "start": 1241.1, + "end": 1244.36, + "probability": 0.9156 + }, + { + "start": 1244.96, + "end": 1245.67, + "probability": 0.8603 + }, + { + "start": 1246.5, + "end": 1250.98, + "probability": 0.9881 + }, + { + "start": 1251.78, + "end": 1255.06, + "probability": 0.831 + }, + { + "start": 1256.93, + "end": 1262.24, + "probability": 0.995 + }, + { + "start": 1262.88, + "end": 1267.96, + "probability": 0.9944 + }, + { + "start": 1268.06, + "end": 1271.82, + "probability": 0.8757 + }, + { + "start": 1272.38, + "end": 1277.0, + "probability": 0.9771 + }, + { + "start": 1282.3, + "end": 1283.76, + "probability": 0.6348 + }, + { + "start": 1284.62, + "end": 1290.56, + "probability": 0.8542 + }, + { + "start": 1290.96, + "end": 1295.34, + "probability": 0.998 + }, + { + "start": 1295.34, + "end": 1300.38, + "probability": 0.9924 + }, + { + "start": 1301.24, + "end": 1303.36, + "probability": 0.7326 + }, + { + "start": 1303.44, + "end": 1307.7, + "probability": 0.9762 + }, + { + "start": 1307.74, + "end": 1312.18, + "probability": 0.995 + }, + { + "start": 1312.76, + "end": 1314.62, + "probability": 0.7993 + }, + { + "start": 1315.08, + "end": 1315.76, + "probability": 0.9074 + }, + { + "start": 1316.04, + "end": 1320.64, + "probability": 0.9117 + }, + { + "start": 1320.64, + "end": 1325.48, + "probability": 0.9801 + }, + { + "start": 1326.2, + "end": 1327.2, + "probability": 0.2055 + }, + { + "start": 1327.2, + "end": 1330.2, + "probability": 0.9226 + }, + { + "start": 1330.32, + "end": 1333.72, + "probability": 0.4383 + }, + { + "start": 1333.82, + "end": 1337.18, + "probability": 0.9393 + }, + { + "start": 1337.38, + "end": 1338.78, + "probability": 0.5254 + }, + { + "start": 1339.36, + "end": 1343.66, + "probability": 0.9932 + }, + { + "start": 1343.8, + "end": 1344.48, + "probability": 0.6456 + }, + { + "start": 1345.3, + "end": 1347.93, + "probability": 0.767 + }, + { + "start": 1350.14, + "end": 1352.96, + "probability": 0.7437 + }, + { + "start": 1353.16, + "end": 1353.76, + "probability": 0.6543 + }, + { + "start": 1354.12, + "end": 1356.5, + "probability": 0.8124 + }, + { + "start": 1357.04, + "end": 1359.04, + "probability": 0.9865 + }, + { + "start": 1359.36, + "end": 1361.04, + "probability": 0.9565 + }, + { + "start": 1361.4, + "end": 1364.7, + "probability": 0.9546 + }, + { + "start": 1365.08, + "end": 1368.48, + "probability": 0.0602 + }, + { + "start": 1368.64, + "end": 1369.64, + "probability": 0.1873 + }, + { + "start": 1370.1, + "end": 1375.3, + "probability": 0.9448 + }, + { + "start": 1375.52, + "end": 1376.64, + "probability": 0.6087 + }, + { + "start": 1377.42, + "end": 1378.28, + "probability": 0.8314 + }, + { + "start": 1379.12, + "end": 1380.0, + "probability": 0.002 + }, + { + "start": 1381.92, + "end": 1382.42, + "probability": 0.2063 + }, + { + "start": 1382.42, + "end": 1382.58, + "probability": 0.2708 + }, + { + "start": 1382.58, + "end": 1384.56, + "probability": 0.9248 + }, + { + "start": 1384.72, + "end": 1385.4, + "probability": 0.6707 + }, + { + "start": 1385.68, + "end": 1386.3, + "probability": 0.2765 + }, + { + "start": 1386.7, + "end": 1387.3, + "probability": 0.9741 + }, + { + "start": 1387.86, + "end": 1388.2, + "probability": 0.9839 + }, + { + "start": 1389.24, + "end": 1391.93, + "probability": 0.8057 + }, + { + "start": 1392.0, + "end": 1392.61, + "probability": 0.9492 + }, + { + "start": 1399.52, + "end": 1400.4, + "probability": 0.5987 + }, + { + "start": 1400.7, + "end": 1405.84, + "probability": 0.9574 + }, + { + "start": 1407.3, + "end": 1408.72, + "probability": 0.4982 + }, + { + "start": 1408.88, + "end": 1409.94, + "probability": 0.7741 + }, + { + "start": 1410.04, + "end": 1412.74, + "probability": 0.9188 + }, + { + "start": 1415.78, + "end": 1417.1, + "probability": 0.7115 + }, + { + "start": 1417.46, + "end": 1418.58, + "probability": 0.732 + }, + { + "start": 1418.72, + "end": 1421.26, + "probability": 0.9359 + }, + { + "start": 1422.08, + "end": 1423.49, + "probability": 0.838 + }, + { + "start": 1425.3, + "end": 1427.84, + "probability": 0.9493 + }, + { + "start": 1428.0, + "end": 1428.24, + "probability": 0.6483 + }, + { + "start": 1428.76, + "end": 1433.44, + "probability": 0.9084 + }, + { + "start": 1433.64, + "end": 1435.46, + "probability": 0.9824 + }, + { + "start": 1436.18, + "end": 1437.14, + "probability": 0.0114 + }, + { + "start": 1438.0, + "end": 1438.71, + "probability": 0.1717 + }, + { + "start": 1439.66, + "end": 1442.34, + "probability": 0.5942 + }, + { + "start": 1442.7, + "end": 1445.86, + "probability": 0.5543 + }, + { + "start": 1447.28, + "end": 1449.66, + "probability": 0.6823 + }, + { + "start": 1449.68, + "end": 1449.72, + "probability": 0.1375 + }, + { + "start": 1449.72, + "end": 1453.28, + "probability": 0.8245 + }, + { + "start": 1453.82, + "end": 1454.82, + "probability": 0.9902 + }, + { + "start": 1455.46, + "end": 1457.34, + "probability": 0.8859 + }, + { + "start": 1457.56, + "end": 1458.72, + "probability": 0.5138 + }, + { + "start": 1459.36, + "end": 1462.36, + "probability": 0.8574 + }, + { + "start": 1463.0, + "end": 1468.72, + "probability": 0.9925 + }, + { + "start": 1469.14, + "end": 1470.32, + "probability": 0.8945 + }, + { + "start": 1471.22, + "end": 1472.38, + "probability": 0.7821 + }, + { + "start": 1472.42, + "end": 1473.17, + "probability": 0.9279 + }, + { + "start": 1475.56, + "end": 1479.26, + "probability": 0.963 + }, + { + "start": 1480.02, + "end": 1482.56, + "probability": 0.6564 + }, + { + "start": 1483.54, + "end": 1486.08, + "probability": 0.7076 + }, + { + "start": 1486.48, + "end": 1488.86, + "probability": 0.5934 + }, + { + "start": 1489.48, + "end": 1489.78, + "probability": 0.6962 + }, + { + "start": 1491.04, + "end": 1494.66, + "probability": 0.9961 + }, + { + "start": 1495.44, + "end": 1495.74, + "probability": 0.3385 + }, + { + "start": 1495.74, + "end": 1498.34, + "probability": 0.9917 + }, + { + "start": 1499.44, + "end": 1501.64, + "probability": 0.9077 + }, + { + "start": 1502.2, + "end": 1503.12, + "probability": 0.9467 + }, + { + "start": 1503.18, + "end": 1506.72, + "probability": 0.9147 + }, + { + "start": 1507.64, + "end": 1509.64, + "probability": 0.9805 + }, + { + "start": 1509.76, + "end": 1511.32, + "probability": 0.6071 + }, + { + "start": 1511.6, + "end": 1513.2, + "probability": 0.7702 + }, + { + "start": 1513.64, + "end": 1514.4, + "probability": 0.7905 + }, + { + "start": 1514.46, + "end": 1515.24, + "probability": 0.6512 + }, + { + "start": 1515.58, + "end": 1516.18, + "probability": 0.508 + }, + { + "start": 1516.62, + "end": 1518.54, + "probability": 0.9131 + }, + { + "start": 1519.12, + "end": 1520.1, + "probability": 0.5 + }, + { + "start": 1520.93, + "end": 1526.26, + "probability": 0.9295 + }, + { + "start": 1526.86, + "end": 1532.2, + "probability": 0.9495 + }, + { + "start": 1533.1, + "end": 1535.2, + "probability": 0.9668 + }, + { + "start": 1535.24, + "end": 1537.02, + "probability": 0.9137 + }, + { + "start": 1537.16, + "end": 1541.46, + "probability": 0.9185 + }, + { + "start": 1541.62, + "end": 1544.34, + "probability": 0.9958 + }, + { + "start": 1544.88, + "end": 1549.3, + "probability": 0.9976 + }, + { + "start": 1550.14, + "end": 1552.21, + "probability": 0.8867 + }, + { + "start": 1553.24, + "end": 1557.48, + "probability": 0.9118 + }, + { + "start": 1557.56, + "end": 1557.9, + "probability": 0.401 + }, + { + "start": 1558.42, + "end": 1559.34, + "probability": 0.7769 + }, + { + "start": 1560.58, + "end": 1562.4, + "probability": 0.6405 + }, + { + "start": 1570.56, + "end": 1571.38, + "probability": 0.4699 + }, + { + "start": 1571.94, + "end": 1572.98, + "probability": 0.5143 + }, + { + "start": 1573.72, + "end": 1574.28, + "probability": 0.8437 + }, + { + "start": 1574.76, + "end": 1576.86, + "probability": 0.9117 + }, + { + "start": 1576.86, + "end": 1580.08, + "probability": 0.9882 + }, + { + "start": 1580.76, + "end": 1580.88, + "probability": 0.7177 + }, + { + "start": 1581.06, + "end": 1582.84, + "probability": 0.5405 + }, + { + "start": 1583.26, + "end": 1584.94, + "probability": 0.882 + }, + { + "start": 1585.0, + "end": 1588.68, + "probability": 0.9943 + }, + { + "start": 1588.84, + "end": 1589.36, + "probability": 0.568 + }, + { + "start": 1589.98, + "end": 1590.48, + "probability": 0.6345 + }, + { + "start": 1590.52, + "end": 1590.76, + "probability": 0.513 + }, + { + "start": 1590.86, + "end": 1591.58, + "probability": 0.8132 + }, + { + "start": 1591.76, + "end": 1594.66, + "probability": 0.8486 + }, + { + "start": 1594.9, + "end": 1596.28, + "probability": 0.91 + }, + { + "start": 1597.02, + "end": 1600.48, + "probability": 0.594 + }, + { + "start": 1601.34, + "end": 1605.62, + "probability": 0.0296 + }, + { + "start": 1605.9, + "end": 1606.58, + "probability": 0.0395 + }, + { + "start": 1607.34, + "end": 1607.44, + "probability": 0.0476 + }, + { + "start": 1617.58, + "end": 1619.52, + "probability": 0.2068 + }, + { + "start": 1619.52, + "end": 1620.76, + "probability": 0.1847 + }, + { + "start": 1621.3, + "end": 1621.94, + "probability": 0.5794 + }, + { + "start": 1622.44, + "end": 1622.86, + "probability": 0.5929 + }, + { + "start": 1632.8, + "end": 1638.06, + "probability": 0.6373 + }, + { + "start": 1638.1, + "end": 1638.56, + "probability": 0.0931 + }, + { + "start": 1638.96, + "end": 1643.76, + "probability": 0.7783 + }, + { + "start": 1644.18, + "end": 1644.84, + "probability": 0.607 + }, + { + "start": 1645.64, + "end": 1648.56, + "probability": 0.1656 + }, + { + "start": 1651.99, + "end": 1656.04, + "probability": 0.8362 + }, + { + "start": 1656.12, + "end": 1661.52, + "probability": 0.8872 + }, + { + "start": 1662.26, + "end": 1663.04, + "probability": 0.6411 + }, + { + "start": 1663.08, + "end": 1665.94, + "probability": 0.9905 + }, + { + "start": 1666.3, + "end": 1667.62, + "probability": 0.1667 + }, + { + "start": 1667.76, + "end": 1670.68, + "probability": 0.8808 + }, + { + "start": 1670.68, + "end": 1672.12, + "probability": 0.0124 + }, + { + "start": 1672.12, + "end": 1674.96, + "probability": 0.3256 + }, + { + "start": 1676.1, + "end": 1677.94, + "probability": 0.5429 + }, + { + "start": 1677.94, + "end": 1678.26, + "probability": 0.4682 + }, + { + "start": 1678.78, + "end": 1680.61, + "probability": 0.5469 + }, + { + "start": 1683.02, + "end": 1685.72, + "probability": 0.3809 + }, + { + "start": 1691.86, + "end": 1695.76, + "probability": 0.1269 + }, + { + "start": 1699.94, + "end": 1701.9, + "probability": 0.306 + }, + { + "start": 1703.78, + "end": 1706.28, + "probability": 0.0036 + }, + { + "start": 1708.41, + "end": 1710.08, + "probability": 0.7363 + }, + { + "start": 1710.78, + "end": 1711.7, + "probability": 0.5979 + }, + { + "start": 1716.46, + "end": 1717.02, + "probability": 0.4426 + }, + { + "start": 1722.1, + "end": 1722.6, + "probability": 0.334 + }, + { + "start": 1723.76, + "end": 1727.9, + "probability": 0.561 + }, + { + "start": 1731.01, + "end": 1733.88, + "probability": 0.6672 + }, + { + "start": 1734.32, + "end": 1734.38, + "probability": 0.0225 + }, + { + "start": 1734.38, + "end": 1734.38, + "probability": 0.2424 + }, + { + "start": 1734.4, + "end": 1735.38, + "probability": 0.761 + }, + { + "start": 1736.2, + "end": 1740.5, + "probability": 0.9471 + }, + { + "start": 1740.68, + "end": 1743.92, + "probability": 0.7373 + }, + { + "start": 1744.7, + "end": 1745.8, + "probability": 0.8679 + }, + { + "start": 1746.28, + "end": 1752.28, + "probability": 0.753 + }, + { + "start": 1753.36, + "end": 1755.2, + "probability": 0.7585 + }, + { + "start": 1755.4, + "end": 1759.76, + "probability": 0.9561 + }, + { + "start": 1760.24, + "end": 1761.62, + "probability": 0.9133 + }, + { + "start": 1762.0, + "end": 1763.96, + "probability": 0.9336 + }, + { + "start": 1764.72, + "end": 1765.82, + "probability": 0.5663 + }, + { + "start": 1766.34, + "end": 1767.2, + "probability": 0.9891 + }, + { + "start": 1767.9, + "end": 1769.1, + "probability": 0.9612 + }, + { + "start": 1769.54, + "end": 1771.32, + "probability": 0.953 + }, + { + "start": 1771.44, + "end": 1774.4, + "probability": 0.9839 + }, + { + "start": 1776.7, + "end": 1785.2, + "probability": 0.9797 + }, + { + "start": 1785.26, + "end": 1793.5, + "probability": 0.8745 + }, + { + "start": 1793.74, + "end": 1794.84, + "probability": 0.9612 + }, + { + "start": 1795.6, + "end": 1797.08, + "probability": 0.943 + }, + { + "start": 1797.48, + "end": 1798.22, + "probability": 0.8517 + }, + { + "start": 1798.62, + "end": 1799.78, + "probability": 0.7895 + }, + { + "start": 1800.12, + "end": 1804.34, + "probability": 0.8382 + }, + { + "start": 1805.02, + "end": 1811.14, + "probability": 0.9567 + }, + { + "start": 1811.7, + "end": 1813.52, + "probability": 0.9158 + }, + { + "start": 1813.88, + "end": 1817.32, + "probability": 0.5871 + }, + { + "start": 1817.98, + "end": 1821.06, + "probability": 0.9393 + }, + { + "start": 1821.72, + "end": 1824.16, + "probability": 0.9631 + }, + { + "start": 1824.9, + "end": 1826.46, + "probability": 0.9524 + }, + { + "start": 1827.1, + "end": 1832.88, + "probability": 0.9286 + }, + { + "start": 1833.18, + "end": 1833.71, + "probability": 0.9897 + }, + { + "start": 1834.24, + "end": 1834.63, + "probability": 0.8338 + }, + { + "start": 1835.06, + "end": 1838.2, + "probability": 0.9684 + }, + { + "start": 1838.76, + "end": 1841.48, + "probability": 0.9988 + }, + { + "start": 1842.2, + "end": 1845.76, + "probability": 0.9845 + }, + { + "start": 1846.46, + "end": 1849.6, + "probability": 0.937 + }, + { + "start": 1850.28, + "end": 1852.24, + "probability": 0.958 + }, + { + "start": 1852.92, + "end": 1854.78, + "probability": 0.909 + }, + { + "start": 1855.86, + "end": 1856.7, + "probability": 0.9681 + }, + { + "start": 1857.24, + "end": 1858.54, + "probability": 0.9736 + }, + { + "start": 1859.14, + "end": 1860.98, + "probability": 0.8111 + }, + { + "start": 1861.48, + "end": 1865.18, + "probability": 0.9006 + }, + { + "start": 1865.32, + "end": 1866.06, + "probability": 0.9925 + }, + { + "start": 1866.6, + "end": 1867.64, + "probability": 0.9775 + }, + { + "start": 1867.72, + "end": 1870.06, + "probability": 0.8236 + }, + { + "start": 1870.7, + "end": 1874.92, + "probability": 0.9883 + }, + { + "start": 1875.14, + "end": 1875.38, + "probability": 0.6276 + }, + { + "start": 1875.78, + "end": 1877.54, + "probability": 0.9476 + }, + { + "start": 1877.62, + "end": 1878.55, + "probability": 0.6671 + }, + { + "start": 1879.12, + "end": 1879.88, + "probability": 0.676 + }, + { + "start": 1881.66, + "end": 1882.76, + "probability": 0.44 + }, + { + "start": 1882.98, + "end": 1887.08, + "probability": 0.9342 + }, + { + "start": 1887.34, + "end": 1887.86, + "probability": 0.8584 + }, + { + "start": 1888.94, + "end": 1895.7, + "probability": 0.9985 + }, + { + "start": 1896.62, + "end": 1897.98, + "probability": 0.7672 + }, + { + "start": 1898.1, + "end": 1902.6, + "probability": 0.98 + }, + { + "start": 1902.74, + "end": 1903.52, + "probability": 0.5397 + }, + { + "start": 1903.58, + "end": 1904.3, + "probability": 0.6703 + }, + { + "start": 1904.62, + "end": 1908.1, + "probability": 0.9723 + }, + { + "start": 1908.4, + "end": 1911.98, + "probability": 0.8227 + }, + { + "start": 1911.98, + "end": 1916.16, + "probability": 0.9737 + }, + { + "start": 1916.64, + "end": 1917.62, + "probability": 0.9154 + }, + { + "start": 1917.76, + "end": 1922.74, + "probability": 0.9599 + }, + { + "start": 1922.84, + "end": 1924.66, + "probability": 0.9923 + }, + { + "start": 1924.92, + "end": 1928.56, + "probability": 0.9439 + }, + { + "start": 1929.16, + "end": 1931.02, + "probability": 0.7512 + }, + { + "start": 1931.18, + "end": 1931.66, + "probability": 0.8799 + }, + { + "start": 1931.72, + "end": 1933.1, + "probability": 0.8218 + }, + { + "start": 1933.56, + "end": 1936.08, + "probability": 0.9575 + }, + { + "start": 1936.08, + "end": 1939.62, + "probability": 0.9212 + }, + { + "start": 1939.82, + "end": 1941.16, + "probability": 0.9063 + }, + { + "start": 1941.7, + "end": 1946.54, + "probability": 0.9878 + }, + { + "start": 1946.88, + "end": 1947.31, + "probability": 0.7613 + }, + { + "start": 1948.48, + "end": 1951.1, + "probability": 0.9297 + }, + { + "start": 1951.56, + "end": 1951.96, + "probability": 0.6407 + }, + { + "start": 1952.04, + "end": 1952.56, + "probability": 0.9755 + }, + { + "start": 1952.74, + "end": 1953.36, + "probability": 0.7613 + }, + { + "start": 1953.5, + "end": 1955.26, + "probability": 0.9313 + }, + { + "start": 1955.68, + "end": 1957.3, + "probability": 0.9372 + }, + { + "start": 1957.78, + "end": 1960.88, + "probability": 0.6437 + }, + { + "start": 1961.36, + "end": 1967.12, + "probability": 0.9745 + }, + { + "start": 1967.44, + "end": 1970.18, + "probability": 0.986 + }, + { + "start": 1970.18, + "end": 1972.7, + "probability": 0.9442 + }, + { + "start": 1973.22, + "end": 1979.5, + "probability": 0.931 + }, + { + "start": 1979.96, + "end": 1981.64, + "probability": 0.9637 + }, + { + "start": 1982.36, + "end": 1985.92, + "probability": 0.8099 + }, + { + "start": 1987.08, + "end": 1989.28, + "probability": 0.7245 + }, + { + "start": 1990.12, + "end": 1994.54, + "probability": 0.8987 + }, + { + "start": 1995.34, + "end": 1996.94, + "probability": 0.9825 + }, + { + "start": 1997.76, + "end": 2000.04, + "probability": 0.7513 + }, + { + "start": 2000.38, + "end": 2003.92, + "probability": 0.999 + }, + { + "start": 2004.04, + "end": 2008.82, + "probability": 0.9971 + }, + { + "start": 2008.9, + "end": 2010.3, + "probability": 0.9741 + }, + { + "start": 2011.0, + "end": 2015.5, + "probability": 0.9854 + }, + { + "start": 2015.9, + "end": 2018.4, + "probability": 0.505 + }, + { + "start": 2018.42, + "end": 2018.88, + "probability": 0.599 + }, + { + "start": 2020.24, + "end": 2021.1, + "probability": 0.4202 + }, + { + "start": 2029.96, + "end": 2029.96, + "probability": 0.2513 + }, + { + "start": 2029.96, + "end": 2030.54, + "probability": 0.4536 + }, + { + "start": 2030.72, + "end": 2032.18, + "probability": 0.7597 + }, + { + "start": 2032.3, + "end": 2032.76, + "probability": 0.5017 + }, + { + "start": 2032.86, + "end": 2033.98, + "probability": 0.6892 + }, + { + "start": 2035.02, + "end": 2037.22, + "probability": 0.8393 + }, + { + "start": 2037.78, + "end": 2038.68, + "probability": 0.9087 + }, + { + "start": 2039.46, + "end": 2041.1, + "probability": 0.9116 + }, + { + "start": 2041.34, + "end": 2047.7, + "probability": 0.9953 + }, + { + "start": 2048.34, + "end": 2050.0, + "probability": 0.9692 + }, + { + "start": 2051.12, + "end": 2053.6, + "probability": 0.9966 + }, + { + "start": 2053.6, + "end": 2056.04, + "probability": 0.8414 + }, + { + "start": 2056.72, + "end": 2058.3, + "probability": 0.5205 + }, + { + "start": 2059.04, + "end": 2065.08, + "probability": 0.9941 + }, + { + "start": 2065.08, + "end": 2069.68, + "probability": 0.9616 + }, + { + "start": 2070.5, + "end": 2072.98, + "probability": 0.941 + }, + { + "start": 2073.14, + "end": 2077.48, + "probability": 0.9143 + }, + { + "start": 2077.62, + "end": 2081.26, + "probability": 0.9819 + }, + { + "start": 2081.26, + "end": 2086.2, + "probability": 0.9803 + }, + { + "start": 2086.82, + "end": 2088.36, + "probability": 0.9211 + }, + { + "start": 2089.64, + "end": 2092.32, + "probability": 0.9561 + }, + { + "start": 2094.83, + "end": 2097.66, + "probability": 0.9896 + }, + { + "start": 2097.84, + "end": 2098.7, + "probability": 0.1159 + }, + { + "start": 2099.3, + "end": 2102.48, + "probability": 0.9867 + }, + { + "start": 2102.68, + "end": 2103.65, + "probability": 0.8689 + }, + { + "start": 2104.52, + "end": 2107.56, + "probability": 0.9852 + }, + { + "start": 2108.18, + "end": 2109.06, + "probability": 0.9698 + }, + { + "start": 2109.74, + "end": 2111.72, + "probability": 0.8656 + }, + { + "start": 2112.14, + "end": 2114.4, + "probability": 0.9943 + }, + { + "start": 2115.06, + "end": 2115.62, + "probability": 0.8783 + }, + { + "start": 2115.76, + "end": 2119.82, + "probability": 0.9952 + }, + { + "start": 2120.35, + "end": 2123.34, + "probability": 0.7457 + }, + { + "start": 2123.48, + "end": 2126.64, + "probability": 0.9329 + }, + { + "start": 2127.48, + "end": 2130.78, + "probability": 0.9915 + }, + { + "start": 2130.9, + "end": 2135.5, + "probability": 0.9459 + }, + { + "start": 2136.34, + "end": 2137.48, + "probability": 0.9802 + }, + { + "start": 2137.54, + "end": 2139.78, + "probability": 0.9076 + }, + { + "start": 2139.94, + "end": 2140.6, + "probability": 0.747 + }, + { + "start": 2140.62, + "end": 2141.0, + "probability": 0.9034 + }, + { + "start": 2141.12, + "end": 2141.88, + "probability": 0.91 + }, + { + "start": 2142.62, + "end": 2144.06, + "probability": 0.8068 + }, + { + "start": 2144.24, + "end": 2147.1, + "probability": 0.6255 + }, + { + "start": 2147.76, + "end": 2150.36, + "probability": 0.9602 + }, + { + "start": 2150.98, + "end": 2153.34, + "probability": 0.6737 + }, + { + "start": 2154.26, + "end": 2156.22, + "probability": 0.9791 + }, + { + "start": 2156.74, + "end": 2156.94, + "probability": 0.645 + }, + { + "start": 2157.82, + "end": 2160.46, + "probability": 0.4635 + }, + { + "start": 2160.56, + "end": 2163.3, + "probability": 0.6417 + }, + { + "start": 2163.44, + "end": 2163.92, + "probability": 0.2963 + }, + { + "start": 2164.0, + "end": 2164.56, + "probability": 0.7033 + }, + { + "start": 2164.92, + "end": 2166.08, + "probability": 0.7298 + }, + { + "start": 2180.3, + "end": 2182.54, + "probability": 0.0582 + }, + { + "start": 2182.54, + "end": 2183.36, + "probability": 0.1954 + }, + { + "start": 2184.02, + "end": 2187.18, + "probability": 0.217 + }, + { + "start": 2188.1, + "end": 2193.4, + "probability": 0.4645 + }, + { + "start": 2195.92, + "end": 2198.24, + "probability": 0.1731 + }, + { + "start": 2198.28, + "end": 2199.66, + "probability": 0.031 + }, + { + "start": 2200.74, + "end": 2202.04, + "probability": 0.1647 + }, + { + "start": 2206.98, + "end": 2207.74, + "probability": 0.032 + }, + { + "start": 2209.62, + "end": 2212.9, + "probability": 0.0631 + }, + { + "start": 2213.46, + "end": 2213.74, + "probability": 0.0331 + }, + { + "start": 2215.1, + "end": 2216.56, + "probability": 0.123 + }, + { + "start": 2216.76, + "end": 2221.33, + "probability": 0.0353 + }, + { + "start": 2224.55, + "end": 2225.13, + "probability": 0.0331 + }, + { + "start": 2225.84, + "end": 2230.96, + "probability": 0.1337 + }, + { + "start": 2231.68, + "end": 2231.78, + "probability": 0.3348 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2240.0, + "end": 2240.0, + "probability": 0.0 + }, + { + "start": 2242.08, + "end": 2245.9, + "probability": 0.9041 + }, + { + "start": 2247.16, + "end": 2250.52, + "probability": 0.6826 + }, + { + "start": 2251.64, + "end": 2259.64, + "probability": 0.8168 + }, + { + "start": 2260.26, + "end": 2262.32, + "probability": 0.2139 + }, + { + "start": 2262.82, + "end": 2263.32, + "probability": 0.9623 + }, + { + "start": 2263.38, + "end": 2266.2, + "probability": 0.643 + }, + { + "start": 2266.62, + "end": 2267.21, + "probability": 0.6853 + }, + { + "start": 2268.06, + "end": 2270.1, + "probability": 0.9229 + }, + { + "start": 2270.84, + "end": 2273.86, + "probability": 0.8748 + }, + { + "start": 2274.96, + "end": 2276.2, + "probability": 0.0391 + }, + { + "start": 2277.4, + "end": 2277.74, + "probability": 0.6038 + }, + { + "start": 2278.94, + "end": 2280.57, + "probability": 0.0588 + }, + { + "start": 2286.24, + "end": 2286.24, + "probability": 0.3249 + }, + { + "start": 2286.24, + "end": 2286.24, + "probability": 0.0963 + }, + { + "start": 2286.24, + "end": 2286.24, + "probability": 0.1962 + }, + { + "start": 2286.24, + "end": 2286.24, + "probability": 0.3269 + }, + { + "start": 2286.24, + "end": 2286.24, + "probability": 0.1245 + }, + { + "start": 2286.24, + "end": 2290.54, + "probability": 0.6936 + }, + { + "start": 2293.08, + "end": 2293.92, + "probability": 0.3001 + }, + { + "start": 2295.08, + "end": 2296.94, + "probability": 0.7373 + }, + { + "start": 2297.82, + "end": 2300.76, + "probability": 0.5734 + }, + { + "start": 2302.1, + "end": 2305.38, + "probability": 0.7382 + }, + { + "start": 2305.38, + "end": 2309.18, + "probability": 0.8235 + }, + { + "start": 2311.24, + "end": 2312.3, + "probability": 0.9639 + }, + { + "start": 2312.46, + "end": 2316.38, + "probability": 0.9978 + }, + { + "start": 2316.86, + "end": 2319.94, + "probability": 0.7124 + }, + { + "start": 2321.24, + "end": 2324.6, + "probability": 0.8668 + }, + { + "start": 2326.52, + "end": 2327.84, + "probability": 0.9894 + }, + { + "start": 2328.88, + "end": 2330.26, + "probability": 0.9844 + }, + { + "start": 2331.08, + "end": 2335.58, + "probability": 0.967 + }, + { + "start": 2336.42, + "end": 2337.66, + "probability": 0.6864 + }, + { + "start": 2338.86, + "end": 2342.3, + "probability": 0.9985 + }, + { + "start": 2342.72, + "end": 2343.8, + "probability": 0.8965 + }, + { + "start": 2343.96, + "end": 2345.52, + "probability": 0.659 + }, + { + "start": 2346.16, + "end": 2347.78, + "probability": 0.9828 + }, + { + "start": 2349.68, + "end": 2351.2, + "probability": 0.8286 + }, + { + "start": 2352.56, + "end": 2358.4, + "probability": 0.9857 + }, + { + "start": 2358.52, + "end": 2359.1, + "probability": 0.8189 + }, + { + "start": 2359.54, + "end": 2360.58, + "probability": 0.8733 + }, + { + "start": 2360.7, + "end": 2361.14, + "probability": 0.83 + }, + { + "start": 2363.16, + "end": 2364.52, + "probability": 0.8387 + }, + { + "start": 2365.68, + "end": 2367.98, + "probability": 0.9899 + }, + { + "start": 2369.06, + "end": 2370.66, + "probability": 0.9718 + }, + { + "start": 2370.86, + "end": 2372.4, + "probability": 0.9968 + }, + { + "start": 2372.42, + "end": 2373.88, + "probability": 0.9923 + }, + { + "start": 2375.64, + "end": 2377.23, + "probability": 0.9861 + }, + { + "start": 2379.52, + "end": 2382.52, + "probability": 0.9982 + }, + { + "start": 2384.32, + "end": 2387.66, + "probability": 0.99 + }, + { + "start": 2389.0, + "end": 2391.85, + "probability": 0.9625 + }, + { + "start": 2392.16, + "end": 2392.56, + "probability": 0.4065 + }, + { + "start": 2394.5, + "end": 2396.58, + "probability": 0.999 + }, + { + "start": 2398.62, + "end": 2400.04, + "probability": 0.6691 + }, + { + "start": 2400.16, + "end": 2402.73, + "probability": 0.9365 + }, + { + "start": 2403.34, + "end": 2406.4, + "probability": 0.9901 + }, + { + "start": 2407.78, + "end": 2408.42, + "probability": 0.4303 + }, + { + "start": 2408.6, + "end": 2409.32, + "probability": 0.8664 + }, + { + "start": 2411.4, + "end": 2413.63, + "probability": 0.9779 + }, + { + "start": 2414.46, + "end": 2418.86, + "probability": 0.9336 + }, + { + "start": 2421.08, + "end": 2421.6, + "probability": 0.8942 + }, + { + "start": 2422.5, + "end": 2425.44, + "probability": 0.9739 + }, + { + "start": 2426.4, + "end": 2428.08, + "probability": 0.8481 + }, + { + "start": 2429.34, + "end": 2431.04, + "probability": 0.7915 + }, + { + "start": 2432.66, + "end": 2433.86, + "probability": 0.5408 + }, + { + "start": 2433.98, + "end": 2434.08, + "probability": 0.4876 + }, + { + "start": 2434.08, + "end": 2436.26, + "probability": 0.8522 + }, + { + "start": 2436.83, + "end": 2441.46, + "probability": 0.7156 + }, + { + "start": 2442.86, + "end": 2446.22, + "probability": 0.8303 + }, + { + "start": 2446.84, + "end": 2450.68, + "probability": 0.9956 + }, + { + "start": 2450.94, + "end": 2452.46, + "probability": 0.9653 + }, + { + "start": 2453.84, + "end": 2455.68, + "probability": 0.8887 + }, + { + "start": 2457.42, + "end": 2461.66, + "probability": 0.9873 + }, + { + "start": 2462.08, + "end": 2464.58, + "probability": 0.6741 + }, + { + "start": 2466.34, + "end": 2469.12, + "probability": 0.967 + }, + { + "start": 2470.66, + "end": 2473.6, + "probability": 0.9814 + }, + { + "start": 2474.3, + "end": 2476.04, + "probability": 0.9882 + }, + { + "start": 2477.42, + "end": 2479.34, + "probability": 0.9673 + }, + { + "start": 2479.6, + "end": 2479.92, + "probability": 0.5858 + }, + { + "start": 2480.22, + "end": 2482.16, + "probability": 0.9767 + }, + { + "start": 2482.26, + "end": 2483.08, + "probability": 0.9588 + }, + { + "start": 2484.0, + "end": 2485.84, + "probability": 0.9549 + }, + { + "start": 2485.96, + "end": 2488.79, + "probability": 0.9896 + }, + { + "start": 2490.04, + "end": 2490.92, + "probability": 0.6923 + }, + { + "start": 2492.26, + "end": 2493.86, + "probability": 0.9691 + }, + { + "start": 2493.96, + "end": 2495.58, + "probability": 0.9649 + }, + { + "start": 2496.1, + "end": 2498.32, + "probability": 0.9937 + }, + { + "start": 2498.7, + "end": 2499.06, + "probability": 0.9869 + }, + { + "start": 2499.34, + "end": 2500.3, + "probability": 0.9539 + }, + { + "start": 2500.9, + "end": 2503.3, + "probability": 0.8765 + }, + { + "start": 2504.22, + "end": 2506.66, + "probability": 0.8292 + }, + { + "start": 2507.58, + "end": 2509.3, + "probability": 0.8957 + }, + { + "start": 2509.46, + "end": 2510.8, + "probability": 0.9937 + }, + { + "start": 2511.58, + "end": 2515.16, + "probability": 0.9976 + }, + { + "start": 2516.66, + "end": 2518.98, + "probability": 0.8115 + }, + { + "start": 2519.14, + "end": 2520.38, + "probability": 0.7809 + }, + { + "start": 2520.76, + "end": 2521.9, + "probability": 0.7853 + }, + { + "start": 2522.36, + "end": 2525.72, + "probability": 0.8444 + }, + { + "start": 2526.6, + "end": 2528.02, + "probability": 0.998 + }, + { + "start": 2528.08, + "end": 2530.08, + "probability": 0.9532 + }, + { + "start": 2530.78, + "end": 2531.4, + "probability": 0.5392 + }, + { + "start": 2532.04, + "end": 2532.39, + "probability": 0.791 + }, + { + "start": 2533.2, + "end": 2533.48, + "probability": 0.9672 + }, + { + "start": 2533.58, + "end": 2534.68, + "probability": 0.8271 + }, + { + "start": 2534.76, + "end": 2536.0, + "probability": 0.9288 + }, + { + "start": 2536.04, + "end": 2538.18, + "probability": 0.9546 + }, + { + "start": 2539.44, + "end": 2542.68, + "probability": 0.9705 + }, + { + "start": 2544.16, + "end": 2546.48, + "probability": 0.8563 + }, + { + "start": 2547.68, + "end": 2548.1, + "probability": 0.9626 + }, + { + "start": 2548.16, + "end": 2548.94, + "probability": 0.6857 + }, + { + "start": 2549.14, + "end": 2553.38, + "probability": 0.991 + }, + { + "start": 2554.46, + "end": 2556.5, + "probability": 0.9988 + }, + { + "start": 2557.32, + "end": 2560.98, + "probability": 0.9913 + }, + { + "start": 2561.46, + "end": 2562.9, + "probability": 0.9393 + }, + { + "start": 2563.32, + "end": 2564.72, + "probability": 0.8702 + }, + { + "start": 2564.8, + "end": 2567.56, + "probability": 0.9869 + }, + { + "start": 2568.0, + "end": 2570.94, + "probability": 0.853 + }, + { + "start": 2571.5, + "end": 2574.26, + "probability": 0.9917 + }, + { + "start": 2574.26, + "end": 2578.02, + "probability": 0.9875 + }, + { + "start": 2578.42, + "end": 2579.58, + "probability": 0.9105 + }, + { + "start": 2580.38, + "end": 2583.28, + "probability": 0.4211 + }, + { + "start": 2583.86, + "end": 2589.1, + "probability": 0.9049 + }, + { + "start": 2589.52, + "end": 2595.52, + "probability": 0.9368 + }, + { + "start": 2596.14, + "end": 2596.76, + "probability": 0.7285 + }, + { + "start": 2597.6, + "end": 2598.64, + "probability": 0.5834 + }, + { + "start": 2599.02, + "end": 2600.16, + "probability": 0.6828 + }, + { + "start": 2600.28, + "end": 2601.88, + "probability": 0.5451 + }, + { + "start": 2602.26, + "end": 2603.78, + "probability": 0.2943 + }, + { + "start": 2605.65, + "end": 2607.36, + "probability": 0.4367 + }, + { + "start": 2608.1, + "end": 2608.62, + "probability": 0.0348 + }, + { + "start": 2608.84, + "end": 2608.98, + "probability": 0.0419 + }, + { + "start": 2608.98, + "end": 2613.22, + "probability": 0.0536 + }, + { + "start": 2613.68, + "end": 2614.42, + "probability": 0.1129 + }, + { + "start": 2616.88, + "end": 2617.18, + "probability": 0.0508 + }, + { + "start": 2617.98, + "end": 2619.94, + "probability": 0.0127 + }, + { + "start": 2621.0, + "end": 2623.52, + "probability": 0.0501 + }, + { + "start": 2623.64, + "end": 2624.76, + "probability": 0.1552 + }, + { + "start": 2626.68, + "end": 2628.02, + "probability": 0.0326 + }, + { + "start": 2628.16, + "end": 2628.8, + "probability": 0.0172 + }, + { + "start": 2688.1, + "end": 2688.96, + "probability": 0.1652 + }, + { + "start": 2691.52, + "end": 2693.08, + "probability": 0.0742 + }, + { + "start": 2695.6, + "end": 2698.65, + "probability": 0.0407 + }, + { + "start": 2701.84, + "end": 2701.98, + "probability": 0.0068 + }, + { + "start": 2704.2, + "end": 2706.36, + "probability": 0.0515 + }, + { + "start": 2716.7, + "end": 2717.66, + "probability": 0.0747 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.0, + "end": 2808.0, + "probability": 0.0 + }, + { + "start": 2808.2, + "end": 2808.68, + "probability": 0.0139 + }, + { + "start": 2808.68, + "end": 2808.68, + "probability": 0.0711 + }, + { + "start": 2808.68, + "end": 2808.68, + "probability": 0.1375 + }, + { + "start": 2808.68, + "end": 2808.9, + "probability": 0.177 + }, + { + "start": 2808.9, + "end": 2808.94, + "probability": 0.067 + }, + { + "start": 2808.94, + "end": 2811.46, + "probability": 0.0956 + }, + { + "start": 2814.76, + "end": 2817.96, + "probability": 0.4934 + }, + { + "start": 2818.98, + "end": 2819.68, + "probability": 0.8899 + }, + { + "start": 2821.24, + "end": 2823.76, + "probability": 0.9342 + }, + { + "start": 2824.4, + "end": 2825.18, + "probability": 0.8972 + }, + { + "start": 2826.18, + "end": 2829.14, + "probability": 0.8994 + }, + { + "start": 2830.12, + "end": 2834.88, + "probability": 0.9855 + }, + { + "start": 2835.58, + "end": 2839.34, + "probability": 0.7786 + }, + { + "start": 2839.88, + "end": 2841.48, + "probability": 0.998 + }, + { + "start": 2841.56, + "end": 2844.38, + "probability": 0.9455 + }, + { + "start": 2845.04, + "end": 2846.1, + "probability": 0.9961 + }, + { + "start": 2847.4, + "end": 2849.85, + "probability": 0.9951 + }, + { + "start": 2850.38, + "end": 2850.92, + "probability": 0.3928 + }, + { + "start": 2851.06, + "end": 2852.02, + "probability": 0.9065 + }, + { + "start": 2857.23, + "end": 2859.6, + "probability": 0.4307 + }, + { + "start": 2860.4, + "end": 2862.86, + "probability": 0.6358 + }, + { + "start": 2863.3, + "end": 2864.38, + "probability": 0.281 + }, + { + "start": 2865.06, + "end": 2867.37, + "probability": 0.9327 + }, + { + "start": 2868.04, + "end": 2869.94, + "probability": 0.6874 + }, + { + "start": 2870.16, + "end": 2871.48, + "probability": 0.53 + }, + { + "start": 2872.86, + "end": 2876.6, + "probability": 0.8466 + }, + { + "start": 2881.64, + "end": 2884.62, + "probability": 0.9697 + }, + { + "start": 2884.82, + "end": 2886.86, + "probability": 0.8143 + }, + { + "start": 2888.6, + "end": 2890.34, + "probability": 0.9992 + }, + { + "start": 2891.2, + "end": 2893.46, + "probability": 0.9221 + }, + { + "start": 2894.38, + "end": 2894.88, + "probability": 0.8059 + }, + { + "start": 2896.04, + "end": 2898.86, + "probability": 0.9111 + }, + { + "start": 2899.14, + "end": 2901.34, + "probability": 0.7567 + }, + { + "start": 2919.68, + "end": 2919.94, + "probability": 0.2717 + }, + { + "start": 2919.94, + "end": 2921.66, + "probability": 0.6095 + }, + { + "start": 2922.84, + "end": 2926.66, + "probability": 0.866 + }, + { + "start": 2927.7, + "end": 2928.5, + "probability": 0.9329 + }, + { + "start": 2930.58, + "end": 2932.16, + "probability": 0.8389 + }, + { + "start": 2933.2, + "end": 2934.04, + "probability": 0.7188 + }, + { + "start": 2935.28, + "end": 2938.54, + "probability": 0.1648 + }, + { + "start": 2938.54, + "end": 2938.8, + "probability": 0.0225 + }, + { + "start": 2939.56, + "end": 2940.02, + "probability": 0.5145 + }, + { + "start": 2940.98, + "end": 2942.34, + "probability": 0.7376 + }, + { + "start": 2942.68, + "end": 2943.8, + "probability": 0.6898 + }, + { + "start": 2948.04, + "end": 2952.64, + "probability": 0.8183 + }, + { + "start": 2953.36, + "end": 2957.02, + "probability": 0.9885 + }, + { + "start": 2958.14, + "end": 2958.84, + "probability": 0.0832 + }, + { + "start": 2959.68, + "end": 2959.7, + "probability": 0.047 + }, + { + "start": 2959.7, + "end": 2959.7, + "probability": 0.1309 + }, + { + "start": 2959.7, + "end": 2961.0, + "probability": 0.9072 + }, + { + "start": 2962.52, + "end": 2964.74, + "probability": 0.9943 + }, + { + "start": 2965.53, + "end": 2970.4, + "probability": 0.7411 + }, + { + "start": 2971.84, + "end": 2974.42, + "probability": 0.7863 + }, + { + "start": 2975.3, + "end": 2976.66, + "probability": 0.8215 + }, + { + "start": 2977.62, + "end": 2978.72, + "probability": 0.1283 + }, + { + "start": 2979.58, + "end": 2981.06, + "probability": 0.5106 + }, + { + "start": 2981.6, + "end": 2982.03, + "probability": 0.8362 + }, + { + "start": 2982.84, + "end": 2984.54, + "probability": 0.8509 + }, + { + "start": 2986.18, + "end": 2988.88, + "probability": 0.9501 + }, + { + "start": 2990.0, + "end": 2994.48, + "probability": 0.7578 + }, + { + "start": 2995.44, + "end": 2996.76, + "probability": 0.9658 + }, + { + "start": 2997.78, + "end": 2998.44, + "probability": 0.7853 + }, + { + "start": 2999.6, + "end": 3001.36, + "probability": 0.4941 + }, + { + "start": 3002.34, + "end": 3003.25, + "probability": 0.9937 + }, + { + "start": 3004.0, + "end": 3006.68, + "probability": 0.9873 + }, + { + "start": 3008.3, + "end": 3009.46, + "probability": 0.972 + }, + { + "start": 3010.34, + "end": 3010.66, + "probability": 0.7125 + }, + { + "start": 3011.84, + "end": 3016.88, + "probability": 0.8888 + }, + { + "start": 3018.56, + "end": 3019.2, + "probability": 0.4829 + }, + { + "start": 3019.86, + "end": 3023.12, + "probability": 0.8523 + }, + { + "start": 3024.52, + "end": 3033.86, + "probability": 0.9794 + }, + { + "start": 3035.12, + "end": 3036.98, + "probability": 0.6984 + }, + { + "start": 3037.16, + "end": 3040.06, + "probability": 0.874 + }, + { + "start": 3040.62, + "end": 3040.97, + "probability": 0.7992 + }, + { + "start": 3042.74, + "end": 3045.2, + "probability": 0.6493 + }, + { + "start": 3046.16, + "end": 3048.76, + "probability": 0.7764 + }, + { + "start": 3049.38, + "end": 3051.58, + "probability": 0.9712 + }, + { + "start": 3052.24, + "end": 3053.17, + "probability": 0.9907 + }, + { + "start": 3054.28, + "end": 3056.02, + "probability": 0.962 + }, + { + "start": 3057.8, + "end": 3060.06, + "probability": 0.9764 + }, + { + "start": 3061.8, + "end": 3063.64, + "probability": 0.6499 + }, + { + "start": 3067.44, + "end": 3068.8, + "probability": 0.9482 + }, + { + "start": 3069.82, + "end": 3070.98, + "probability": 0.6774 + }, + { + "start": 3071.92, + "end": 3073.76, + "probability": 0.8743 + }, + { + "start": 3075.18, + "end": 3077.82, + "probability": 0.6826 + }, + { + "start": 3078.08, + "end": 3080.58, + "probability": 0.9213 + }, + { + "start": 3080.6, + "end": 3085.62, + "probability": 0.9948 + }, + { + "start": 3085.78, + "end": 3086.78, + "probability": 0.779 + }, + { + "start": 3088.06, + "end": 3094.38, + "probability": 0.5004 + }, + { + "start": 3097.48, + "end": 3098.68, + "probability": 0.7236 + }, + { + "start": 3099.66, + "end": 3100.94, + "probability": 0.7987 + }, + { + "start": 3101.62, + "end": 3103.4, + "probability": 0.8697 + }, + { + "start": 3104.98, + "end": 3106.92, + "probability": 0.9901 + }, + { + "start": 3107.86, + "end": 3108.4, + "probability": 0.6637 + }, + { + "start": 3108.54, + "end": 3109.9, + "probability": 0.8214 + }, + { + "start": 3110.38, + "end": 3112.74, + "probability": 0.986 + }, + { + "start": 3113.7, + "end": 3116.06, + "probability": 0.8748 + }, + { + "start": 3116.62, + "end": 3121.08, + "probability": 0.6585 + }, + { + "start": 3121.94, + "end": 3125.96, + "probability": 0.791 + }, + { + "start": 3125.96, + "end": 3130.9, + "probability": 0.9896 + }, + { + "start": 3131.7, + "end": 3132.76, + "probability": 0.8407 + }, + { + "start": 3134.04, + "end": 3135.54, + "probability": 0.6931 + }, + { + "start": 3136.7, + "end": 3138.04, + "probability": 0.9636 + }, + { + "start": 3138.26, + "end": 3138.91, + "probability": 0.9021 + }, + { + "start": 3139.26, + "end": 3140.3, + "probability": 0.7562 + }, + { + "start": 3140.62, + "end": 3141.26, + "probability": 0.7387 + }, + { + "start": 3142.76, + "end": 3145.2, + "probability": 0.4063 + }, + { + "start": 3147.06, + "end": 3147.85, + "probability": 0.0243 + }, + { + "start": 3149.5, + "end": 3152.82, + "probability": 0.8943 + }, + { + "start": 3153.88, + "end": 3157.11, + "probability": 0.9271 + }, + { + "start": 3157.74, + "end": 3160.02, + "probability": 0.7949 + }, + { + "start": 3161.36, + "end": 3163.86, + "probability": 0.868 + }, + { + "start": 3164.42, + "end": 3168.24, + "probability": 0.8311 + }, + { + "start": 3169.02, + "end": 3171.64, + "probability": 0.6528 + }, + { + "start": 3172.38, + "end": 3174.0, + "probability": 0.9658 + }, + { + "start": 3174.78, + "end": 3177.0, + "probability": 0.825 + }, + { + "start": 3178.66, + "end": 3180.94, + "probability": 0.9702 + }, + { + "start": 3181.6, + "end": 3182.42, + "probability": 0.6612 + }, + { + "start": 3183.2, + "end": 3183.36, + "probability": 0.494 + }, + { + "start": 3183.88, + "end": 3187.24, + "probability": 0.9231 + }, + { + "start": 3188.24, + "end": 3190.84, + "probability": 0.9834 + }, + { + "start": 3191.56, + "end": 3193.96, + "probability": 0.6827 + }, + { + "start": 3194.36, + "end": 3197.4, + "probability": 0.6935 + }, + { + "start": 3199.16, + "end": 3199.86, + "probability": 0.6276 + }, + { + "start": 3200.46, + "end": 3201.48, + "probability": 0.736 + }, + { + "start": 3202.4, + "end": 3205.68, + "probability": 0.7919 + }, + { + "start": 3206.98, + "end": 3211.76, + "probability": 0.9873 + }, + { + "start": 3212.64, + "end": 3214.34, + "probability": 0.9919 + }, + { + "start": 3215.06, + "end": 3216.16, + "probability": 0.9449 + }, + { + "start": 3217.86, + "end": 3219.66, + "probability": 0.8229 + }, + { + "start": 3221.0, + "end": 3226.8, + "probability": 0.8316 + }, + { + "start": 3228.58, + "end": 3230.74, + "probability": 0.751 + }, + { + "start": 3233.08, + "end": 3239.96, + "probability": 0.9014 + }, + { + "start": 3241.64, + "end": 3242.44, + "probability": 0.4196 + }, + { + "start": 3242.76, + "end": 3245.12, + "probability": 0.7432 + }, + { + "start": 3271.92, + "end": 3274.32, + "probability": 0.7375 + }, + { + "start": 3275.84, + "end": 3278.94, + "probability": 0.9974 + }, + { + "start": 3279.56, + "end": 3280.74, + "probability": 0.9961 + }, + { + "start": 3281.78, + "end": 3282.6, + "probability": 0.8509 + }, + { + "start": 3283.44, + "end": 3283.74, + "probability": 0.9792 + }, + { + "start": 3284.46, + "end": 3285.48, + "probability": 0.7674 + }, + { + "start": 3287.22, + "end": 3289.32, + "probability": 0.5099 + }, + { + "start": 3290.56, + "end": 3291.26, + "probability": 0.9297 + }, + { + "start": 3292.26, + "end": 3293.0, + "probability": 0.88 + }, + { + "start": 3294.82, + "end": 3296.66, + "probability": 0.8818 + }, + { + "start": 3298.02, + "end": 3300.16, + "probability": 0.9551 + }, + { + "start": 3301.64, + "end": 3303.1, + "probability": 0.995 + }, + { + "start": 3304.66, + "end": 3305.62, + "probability": 0.8633 + }, + { + "start": 3306.26, + "end": 3308.88, + "probability": 0.9712 + }, + { + "start": 3309.88, + "end": 3311.9, + "probability": 0.8447 + }, + { + "start": 3313.6, + "end": 3318.04, + "probability": 0.8226 + }, + { + "start": 3319.5, + "end": 3319.6, + "probability": 0.6115 + }, + { + "start": 3319.68, + "end": 3321.64, + "probability": 0.9629 + }, + { + "start": 3324.98, + "end": 3329.26, + "probability": 0.9272 + }, + { + "start": 3330.18, + "end": 3334.04, + "probability": 0.8096 + }, + { + "start": 3334.38, + "end": 3335.02, + "probability": 0.9438 + }, + { + "start": 3335.1, + "end": 3335.62, + "probability": 0.7326 + }, + { + "start": 3336.08, + "end": 3336.96, + "probability": 0.9863 + }, + { + "start": 3338.96, + "end": 3343.02, + "probability": 0.9979 + }, + { + "start": 3343.6, + "end": 3345.0, + "probability": 0.7285 + }, + { + "start": 3346.52, + "end": 3347.4, + "probability": 0.5965 + }, + { + "start": 3348.16, + "end": 3348.9, + "probability": 0.7099 + }, + { + "start": 3349.8, + "end": 3351.08, + "probability": 0.9831 + }, + { + "start": 3351.7, + "end": 3353.54, + "probability": 0.9985 + }, + { + "start": 3355.78, + "end": 3357.73, + "probability": 0.9985 + }, + { + "start": 3358.78, + "end": 3359.32, + "probability": 0.8899 + }, + { + "start": 3360.36, + "end": 3362.92, + "probability": 0.8032 + }, + { + "start": 3363.46, + "end": 3365.9, + "probability": 0.9415 + }, + { + "start": 3367.18, + "end": 3369.42, + "probability": 0.956 + }, + { + "start": 3370.56, + "end": 3376.86, + "probability": 0.9836 + }, + { + "start": 3377.04, + "end": 3378.03, + "probability": 0.9802 + }, + { + "start": 3378.62, + "end": 3382.36, + "probability": 0.9796 + }, + { + "start": 3383.4, + "end": 3383.86, + "probability": 0.739 + }, + { + "start": 3385.14, + "end": 3387.39, + "probability": 0.9258 + }, + { + "start": 3387.54, + "end": 3388.34, + "probability": 0.8623 + }, + { + "start": 3388.66, + "end": 3390.66, + "probability": 0.7684 + }, + { + "start": 3393.1, + "end": 3394.86, + "probability": 0.9954 + }, + { + "start": 3395.74, + "end": 3397.44, + "probability": 0.9248 + }, + { + "start": 3398.0, + "end": 3399.3, + "probability": 0.9734 + }, + { + "start": 3400.38, + "end": 3402.09, + "probability": 0.9807 + }, + { + "start": 3404.8, + "end": 3405.66, + "probability": 0.8241 + }, + { + "start": 3407.74, + "end": 3410.2, + "probability": 0.9988 + }, + { + "start": 3412.76, + "end": 3414.68, + "probability": 0.8929 + }, + { + "start": 3415.88, + "end": 3416.86, + "probability": 0.93 + }, + { + "start": 3418.4, + "end": 3420.44, + "probability": 0.9966 + }, + { + "start": 3422.04, + "end": 3423.18, + "probability": 0.9917 + }, + { + "start": 3424.14, + "end": 3425.0, + "probability": 0.7453 + }, + { + "start": 3426.46, + "end": 3435.44, + "probability": 0.9738 + }, + { + "start": 3436.58, + "end": 3437.3, + "probability": 0.8078 + }, + { + "start": 3440.2, + "end": 3443.18, + "probability": 0.9622 + }, + { + "start": 3445.46, + "end": 3452.98, + "probability": 0.9913 + }, + { + "start": 3453.1, + "end": 3454.96, + "probability": 0.9934 + }, + { + "start": 3455.32, + "end": 3456.56, + "probability": 0.9092 + }, + { + "start": 3457.12, + "end": 3458.04, + "probability": 0.6028 + }, + { + "start": 3459.62, + "end": 3465.1, + "probability": 0.8519 + }, + { + "start": 3465.36, + "end": 3466.94, + "probability": 0.9992 + }, + { + "start": 3467.88, + "end": 3468.7, + "probability": 0.9783 + }, + { + "start": 3470.98, + "end": 3471.88, + "probability": 0.8262 + }, + { + "start": 3472.48, + "end": 3473.48, + "probability": 0.8162 + }, + { + "start": 3475.16, + "end": 3476.86, + "probability": 0.885 + }, + { + "start": 3478.58, + "end": 3481.64, + "probability": 0.9758 + }, + { + "start": 3484.96, + "end": 3486.18, + "probability": 0.6373 + }, + { + "start": 3486.82, + "end": 3488.26, + "probability": 0.9951 + }, + { + "start": 3489.1, + "end": 3492.66, + "probability": 0.9756 + }, + { + "start": 3493.22, + "end": 3495.9, + "probability": 0.9871 + }, + { + "start": 3496.3, + "end": 3500.56, + "probability": 0.9744 + }, + { + "start": 3500.58, + "end": 3500.82, + "probability": 0.6537 + }, + { + "start": 3501.96, + "end": 3503.7, + "probability": 0.6488 + }, + { + "start": 3504.18, + "end": 3507.06, + "probability": 0.8861 + }, + { + "start": 3534.82, + "end": 3535.46, + "probability": 0.6065 + }, + { + "start": 3536.16, + "end": 3536.96, + "probability": 0.7906 + }, + { + "start": 3538.8, + "end": 3542.45, + "probability": 0.6259 + }, + { + "start": 3545.88, + "end": 3546.58, + "probability": 0.912 + }, + { + "start": 3549.39, + "end": 3553.0, + "probability": 0.9928 + }, + { + "start": 3553.92, + "end": 3554.8, + "probability": 0.9979 + }, + { + "start": 3555.58, + "end": 3556.1, + "probability": 0.7681 + }, + { + "start": 3556.88, + "end": 3557.52, + "probability": 0.6239 + }, + { + "start": 3558.88, + "end": 3559.84, + "probability": 0.565 + }, + { + "start": 3560.44, + "end": 3561.68, + "probability": 0.9984 + }, + { + "start": 3562.72, + "end": 3563.4, + "probability": 0.7256 + }, + { + "start": 3564.28, + "end": 3565.22, + "probability": 0.5949 + }, + { + "start": 3566.34, + "end": 3569.1, + "probability": 0.9944 + }, + { + "start": 3569.5, + "end": 3572.38, + "probability": 0.9813 + }, + { + "start": 3572.58, + "end": 3573.71, + "probability": 0.7913 + }, + { + "start": 3574.64, + "end": 3576.32, + "probability": 0.9935 + }, + { + "start": 3576.88, + "end": 3577.78, + "probability": 0.9897 + }, + { + "start": 3578.8, + "end": 3583.22, + "probability": 0.9766 + }, + { + "start": 3584.58, + "end": 3586.1, + "probability": 0.5045 + }, + { + "start": 3586.78, + "end": 3587.32, + "probability": 0.2929 + }, + { + "start": 3587.96, + "end": 3588.68, + "probability": 0.7803 + }, + { + "start": 3589.46, + "end": 3591.2, + "probability": 0.6802 + }, + { + "start": 3591.3, + "end": 3592.24, + "probability": 0.9157 + }, + { + "start": 3592.9, + "end": 3594.04, + "probability": 0.8903 + }, + { + "start": 3594.16, + "end": 3597.62, + "probability": 0.8281 + }, + { + "start": 3599.1, + "end": 3601.28, + "probability": 0.7705 + }, + { + "start": 3603.02, + "end": 3603.96, + "probability": 0.9988 + }, + { + "start": 3604.56, + "end": 3606.52, + "probability": 0.9733 + }, + { + "start": 3607.14, + "end": 3609.54, + "probability": 0.9389 + }, + { + "start": 3610.8, + "end": 3612.24, + "probability": 0.4786 + }, + { + "start": 3612.34, + "end": 3612.9, + "probability": 0.7503 + }, + { + "start": 3613.3, + "end": 3618.08, + "probability": 0.956 + }, + { + "start": 3618.66, + "end": 3620.22, + "probability": 0.9983 + }, + { + "start": 3622.2, + "end": 3626.12, + "probability": 0.8829 + }, + { + "start": 3627.24, + "end": 3627.84, + "probability": 0.9771 + }, + { + "start": 3628.9, + "end": 3629.74, + "probability": 0.9313 + }, + { + "start": 3631.2, + "end": 3634.44, + "probability": 0.9962 + }, + { + "start": 3635.38, + "end": 3637.26, + "probability": 0.998 + }, + { + "start": 3637.46, + "end": 3639.54, + "probability": 0.857 + }, + { + "start": 3640.86, + "end": 3641.76, + "probability": 0.7417 + }, + { + "start": 3645.18, + "end": 3648.58, + "probability": 0.9956 + }, + { + "start": 3648.88, + "end": 3649.82, + "probability": 0.8647 + }, + { + "start": 3650.28, + "end": 3653.8, + "probability": 0.9447 + }, + { + "start": 3654.26, + "end": 3656.34, + "probability": 0.7351 + }, + { + "start": 3657.1, + "end": 3659.48, + "probability": 0.6585 + }, + { + "start": 3660.76, + "end": 3662.86, + "probability": 0.9695 + }, + { + "start": 3663.94, + "end": 3665.98, + "probability": 0.7576 + }, + { + "start": 3667.3, + "end": 3668.52, + "probability": 0.5963 + }, + { + "start": 3670.58, + "end": 3673.2, + "probability": 0.9518 + }, + { + "start": 3674.14, + "end": 3675.42, + "probability": 0.88 + }, + { + "start": 3676.66, + "end": 3677.48, + "probability": 0.8463 + }, + { + "start": 3678.44, + "end": 3679.38, + "probability": 0.9731 + }, + { + "start": 3680.04, + "end": 3682.58, + "probability": 0.7652 + }, + { + "start": 3683.56, + "end": 3686.12, + "probability": 0.8004 + }, + { + "start": 3686.82, + "end": 3690.04, + "probability": 0.994 + }, + { + "start": 3690.04, + "end": 3692.48, + "probability": 0.837 + }, + { + "start": 3693.64, + "end": 3695.44, + "probability": 0.9261 + }, + { + "start": 3695.96, + "end": 3698.54, + "probability": 0.9636 + }, + { + "start": 3698.98, + "end": 3703.0, + "probability": 0.9897 + }, + { + "start": 3703.08, + "end": 3703.43, + "probability": 0.9029 + }, + { + "start": 3704.22, + "end": 3706.82, + "probability": 0.9168 + }, + { + "start": 3707.26, + "end": 3710.38, + "probability": 0.9859 + }, + { + "start": 3711.0, + "end": 3712.16, + "probability": 0.7822 + }, + { + "start": 3712.46, + "end": 3713.46, + "probability": 0.972 + }, + { + "start": 3713.52, + "end": 3715.44, + "probability": 0.931 + }, + { + "start": 3715.96, + "end": 3716.44, + "probability": 0.5965 + }, + { + "start": 3717.04, + "end": 3719.22, + "probability": 0.9649 + }, + { + "start": 3719.36, + "end": 3720.06, + "probability": 0.7277 + }, + { + "start": 3722.22, + "end": 3727.04, + "probability": 0.5291 + }, + { + "start": 3728.08, + "end": 3730.0, + "probability": 0.7631 + }, + { + "start": 3730.92, + "end": 3731.96, + "probability": 0.5526 + }, + { + "start": 3732.2, + "end": 3734.18, + "probability": 0.7833 + }, + { + "start": 3734.24, + "end": 3735.74, + "probability": 0.8124 + }, + { + "start": 3735.82, + "end": 3736.81, + "probability": 0.9597 + }, + { + "start": 3737.58, + "end": 3742.34, + "probability": 0.7847 + }, + { + "start": 3742.64, + "end": 3744.08, + "probability": 0.561 + }, + { + "start": 3744.6, + "end": 3745.62, + "probability": 0.301 + }, + { + "start": 3745.62, + "end": 3745.86, + "probability": 0.5059 + }, + { + "start": 3746.9, + "end": 3749.7, + "probability": 0.5353 + }, + { + "start": 3752.48, + "end": 3752.7, + "probability": 0.354 + }, + { + "start": 3753.06, + "end": 3754.7, + "probability": 0.9192 + }, + { + "start": 3760.8, + "end": 3767.22, + "probability": 0.1332 + }, + { + "start": 3773.66, + "end": 3775.64, + "probability": 0.3848 + }, + { + "start": 3775.84, + "end": 3778.05, + "probability": 0.6102 + }, + { + "start": 3778.18, + "end": 3780.34, + "probability": 0.7324 + }, + { + "start": 3780.72, + "end": 3782.72, + "probability": 0.6398 + }, + { + "start": 3783.68, + "end": 3784.36, + "probability": 0.4355 + }, + { + "start": 3784.5, + "end": 3785.9, + "probability": 0.6942 + }, + { + "start": 3785.96, + "end": 3787.64, + "probability": 0.9145 + }, + { + "start": 3788.18, + "end": 3790.28, + "probability": 0.6354 + }, + { + "start": 3790.88, + "end": 3791.92, + "probability": 0.4461 + }, + { + "start": 3792.0, + "end": 3793.18, + "probability": 0.254 + }, + { + "start": 3793.36, + "end": 3794.82, + "probability": 0.7555 + }, + { + "start": 3795.14, + "end": 3798.04, + "probability": 0.8699 + }, + { + "start": 3798.06, + "end": 3799.64, + "probability": 0.5699 + }, + { + "start": 3799.66, + "end": 3800.46, + "probability": 0.9025 + }, + { + "start": 3800.64, + "end": 3815.58, + "probability": 0.357 + }, + { + "start": 3816.54, + "end": 3818.5, + "probability": 0.5893 + }, + { + "start": 3819.48, + "end": 3820.04, + "probability": 0.7055 + }, + { + "start": 3820.36, + "end": 3821.43, + "probability": 0.7505 + }, + { + "start": 3822.08, + "end": 3823.92, + "probability": 0.8582 + }, + { + "start": 3824.32, + "end": 3827.22, + "probability": 0.8025 + }, + { + "start": 3827.88, + "end": 3829.8, + "probability": 0.8232 + }, + { + "start": 3832.86, + "end": 3833.58, + "probability": 0.7616 + }, + { + "start": 3833.89, + "end": 3839.08, + "probability": 0.9589 + }, + { + "start": 3839.14, + "end": 3840.14, + "probability": 0.9884 + }, + { + "start": 3840.82, + "end": 3843.48, + "probability": 0.9897 + }, + { + "start": 3844.1, + "end": 3845.35, + "probability": 0.8276 + }, + { + "start": 3846.1, + "end": 3846.26, + "probability": 0.2481 + }, + { + "start": 3846.26, + "end": 3847.12, + "probability": 0.1903 + }, + { + "start": 3847.18, + "end": 3849.0, + "probability": 0.7563 + }, + { + "start": 3849.6, + "end": 3851.9, + "probability": 0.874 + }, + { + "start": 3852.76, + "end": 3856.86, + "probability": 0.9798 + }, + { + "start": 3857.44, + "end": 3860.84, + "probability": 0.4871 + }, + { + "start": 3861.84, + "end": 3863.14, + "probability": 0.1801 + }, + { + "start": 3863.98, + "end": 3866.78, + "probability": 0.937 + }, + { + "start": 3868.64, + "end": 3874.46, + "probability": 0.9652 + }, + { + "start": 3874.58, + "end": 3875.2, + "probability": 0.8843 + }, + { + "start": 3876.48, + "end": 3880.74, + "probability": 0.6957 + }, + { + "start": 3880.94, + "end": 3881.64, + "probability": 0.8893 + }, + { + "start": 3882.14, + "end": 3884.44, + "probability": 0.9939 + }, + { + "start": 3884.86, + "end": 3887.82, + "probability": 0.9838 + }, + { + "start": 3888.6, + "end": 3893.68, + "probability": 0.9895 + }, + { + "start": 3894.1, + "end": 3898.12, + "probability": 0.9786 + }, + { + "start": 3898.98, + "end": 3903.92, + "probability": 0.9829 + }, + { + "start": 3904.42, + "end": 3909.56, + "probability": 0.9612 + }, + { + "start": 3910.7, + "end": 3913.34, + "probability": 0.9874 + }, + { + "start": 3913.34, + "end": 3917.32, + "probability": 0.995 + }, + { + "start": 3917.88, + "end": 3921.5, + "probability": 0.9951 + }, + { + "start": 3921.96, + "end": 3923.6, + "probability": 0.9706 + }, + { + "start": 3924.46, + "end": 3925.68, + "probability": 0.6279 + }, + { + "start": 3925.78, + "end": 3926.54, + "probability": 0.7259 + }, + { + "start": 3926.62, + "end": 3929.86, + "probability": 0.9827 + }, + { + "start": 3930.46, + "end": 3934.12, + "probability": 0.9183 + }, + { + "start": 3934.76, + "end": 3936.98, + "probability": 0.9976 + }, + { + "start": 3937.9, + "end": 3938.9, + "probability": 0.5944 + }, + { + "start": 3939.32, + "end": 3939.92, + "probability": 0.6096 + }, + { + "start": 3939.96, + "end": 3944.14, + "probability": 0.9772 + }, + { + "start": 3945.0, + "end": 3948.4, + "probability": 0.956 + }, + { + "start": 3948.4, + "end": 3954.4, + "probability": 0.9878 + }, + { + "start": 3955.48, + "end": 3958.28, + "probability": 0.9437 + }, + { + "start": 3959.3, + "end": 3959.86, + "probability": 0.6455 + }, + { + "start": 3960.04, + "end": 3962.6, + "probability": 0.9878 + }, + { + "start": 3963.2, + "end": 3966.14, + "probability": 0.9796 + }, + { + "start": 3966.96, + "end": 3968.68, + "probability": 0.6536 + }, + { + "start": 3969.62, + "end": 3971.68, + "probability": 0.9009 + }, + { + "start": 3972.58, + "end": 3974.34, + "probability": 0.9686 + }, + { + "start": 3974.48, + "end": 3975.1, + "probability": 0.9104 + }, + { + "start": 3975.24, + "end": 3976.68, + "probability": 0.7 + }, + { + "start": 3976.78, + "end": 3978.84, + "probability": 0.9941 + }, + { + "start": 3979.64, + "end": 3984.34, + "probability": 0.9861 + }, + { + "start": 3984.71, + "end": 3992.02, + "probability": 0.989 + }, + { + "start": 3993.46, + "end": 3996.44, + "probability": 0.9738 + }, + { + "start": 3996.44, + "end": 3999.96, + "probability": 0.996 + }, + { + "start": 4000.12, + "end": 4001.78, + "probability": 0.9819 + }, + { + "start": 4002.58, + "end": 4003.0, + "probability": 0.7341 + }, + { + "start": 4003.04, + "end": 4006.08, + "probability": 0.9795 + }, + { + "start": 4006.64, + "end": 4009.32, + "probability": 0.9675 + }, + { + "start": 4010.08, + "end": 4013.34, + "probability": 0.9536 + }, + { + "start": 4014.2, + "end": 4017.18, + "probability": 0.906 + }, + { + "start": 4017.98, + "end": 4020.9, + "probability": 0.9932 + }, + { + "start": 4021.18, + "end": 4023.16, + "probability": 0.9812 + }, + { + "start": 4023.72, + "end": 4028.78, + "probability": 0.9727 + }, + { + "start": 4029.32, + "end": 4031.78, + "probability": 0.9754 + }, + { + "start": 4032.5, + "end": 4032.84, + "probability": 0.502 + }, + { + "start": 4032.96, + "end": 4033.84, + "probability": 0.5774 + }, + { + "start": 4034.32, + "end": 4037.2, + "probability": 0.9648 + }, + { + "start": 4037.78, + "end": 4041.98, + "probability": 0.8761 + }, + { + "start": 4042.4, + "end": 4044.3, + "probability": 0.9439 + }, + { + "start": 4045.12, + "end": 4046.2, + "probability": 0.8153 + }, + { + "start": 4047.14, + "end": 4048.71, + "probability": 0.9526 + }, + { + "start": 4049.5, + "end": 4050.04, + "probability": 0.4314 + }, + { + "start": 4050.14, + "end": 4050.2, + "probability": 0.0748 + }, + { + "start": 4050.26, + "end": 4050.36, + "probability": 0.3328 + }, + { + "start": 4050.64, + "end": 4052.58, + "probability": 0.8578 + }, + { + "start": 4053.74, + "end": 4053.74, + "probability": 0.0088 + }, + { + "start": 4053.74, + "end": 4055.34, + "probability": 0.1433 + }, + { + "start": 4056.16, + "end": 4060.6, + "probability": 0.9356 + }, + { + "start": 4061.82, + "end": 4062.66, + "probability": 0.9054 + }, + { + "start": 4063.58, + "end": 4066.82, + "probability": 0.883 + }, + { + "start": 4067.38, + "end": 4070.26, + "probability": 0.6536 + }, + { + "start": 4070.94, + "end": 4075.52, + "probability": 0.9064 + }, + { + "start": 4075.9, + "end": 4076.6, + "probability": 0.787 + }, + { + "start": 4077.22, + "end": 4080.28, + "probability": 0.9367 + }, + { + "start": 4080.36, + "end": 4081.5, + "probability": 0.9548 + }, + { + "start": 4081.56, + "end": 4083.76, + "probability": 0.9474 + }, + { + "start": 4084.4, + "end": 4087.88, + "probability": 0.9742 + }, + { + "start": 4088.01, + "end": 4089.78, + "probability": 0.8393 + }, + { + "start": 4090.2, + "end": 4091.14, + "probability": 0.8226 + }, + { + "start": 4091.26, + "end": 4093.22, + "probability": 0.921 + }, + { + "start": 4093.68, + "end": 4096.4, + "probability": 0.9657 + }, + { + "start": 4096.4, + "end": 4098.86, + "probability": 0.9131 + }, + { + "start": 4099.08, + "end": 4100.73, + "probability": 0.902 + }, + { + "start": 4101.08, + "end": 4103.24, + "probability": 0.7474 + }, + { + "start": 4104.46, + "end": 4105.3, + "probability": 0.6457 + }, + { + "start": 4105.84, + "end": 4106.92, + "probability": 0.6208 + }, + { + "start": 4107.84, + "end": 4107.94, + "probability": 0.6916 + }, + { + "start": 4108.52, + "end": 4111.14, + "probability": 0.901 + }, + { + "start": 4111.86, + "end": 4112.56, + "probability": 0.7881 + }, + { + "start": 4113.94, + "end": 4116.9, + "probability": 0.9497 + }, + { + "start": 4117.5, + "end": 4119.24, + "probability": 0.8383 + }, + { + "start": 4119.82, + "end": 4121.72, + "probability": 0.7086 + }, + { + "start": 4122.46, + "end": 4124.68, + "probability": 0.7499 + }, + { + "start": 4125.96, + "end": 4126.6, + "probability": 0.6861 + }, + { + "start": 4126.76, + "end": 4127.06, + "probability": 0.6422 + }, + { + "start": 4127.38, + "end": 4130.94, + "probability": 0.824 + }, + { + "start": 4131.48, + "end": 4132.52, + "probability": 0.7136 + }, + { + "start": 4133.54, + "end": 4136.72, + "probability": 0.9964 + }, + { + "start": 4137.34, + "end": 4138.24, + "probability": 0.5186 + }, + { + "start": 4138.4, + "end": 4139.06, + "probability": 0.9303 + }, + { + "start": 4139.16, + "end": 4144.44, + "probability": 0.9801 + }, + { + "start": 4144.5, + "end": 4145.06, + "probability": 0.5281 + }, + { + "start": 4145.18, + "end": 4146.44, + "probability": 0.9258 + }, + { + "start": 4147.3, + "end": 4151.29, + "probability": 0.9902 + }, + { + "start": 4151.84, + "end": 4153.9, + "probability": 0.8032 + }, + { + "start": 4154.36, + "end": 4156.76, + "probability": 0.9146 + }, + { + "start": 4157.7, + "end": 4159.76, + "probability": 0.9932 + }, + { + "start": 4160.66, + "end": 4163.76, + "probability": 0.84 + }, + { + "start": 4163.8, + "end": 4164.22, + "probability": 0.7434 + }, + { + "start": 4164.48, + "end": 4165.3, + "probability": 0.951 + }, + { + "start": 4165.7, + "end": 4167.74, + "probability": 0.8833 + }, + { + "start": 4168.42, + "end": 4169.68, + "probability": 0.9549 + }, + { + "start": 4169.78, + "end": 4170.32, + "probability": 0.447 + }, + { + "start": 4170.38, + "end": 4172.36, + "probability": 0.7701 + }, + { + "start": 4172.86, + "end": 4172.88, + "probability": 0.1092 + }, + { + "start": 4172.88, + "end": 4174.82, + "probability": 0.9907 + }, + { + "start": 4175.28, + "end": 4179.04, + "probability": 0.9209 + }, + { + "start": 4179.38, + "end": 4180.24, + "probability": 0.6959 + }, + { + "start": 4180.76, + "end": 4182.48, + "probability": 0.5061 + }, + { + "start": 4183.16, + "end": 4184.38, + "probability": 0.866 + }, + { + "start": 4184.96, + "end": 4187.18, + "probability": 0.9938 + }, + { + "start": 4187.58, + "end": 4189.36, + "probability": 0.9859 + }, + { + "start": 4190.76, + "end": 4193.16, + "probability": 0.655 + }, + { + "start": 4193.2, + "end": 4195.3, + "probability": 0.6493 + }, + { + "start": 4195.6, + "end": 4195.9, + "probability": 0.8347 + }, + { + "start": 4196.3, + "end": 4197.36, + "probability": 0.9548 + }, + { + "start": 4197.88, + "end": 4198.9, + "probability": 0.6188 + }, + { + "start": 4198.9, + "end": 4199.82, + "probability": 0.7137 + }, + { + "start": 4199.92, + "end": 4200.92, + "probability": 0.8954 + }, + { + "start": 4201.02, + "end": 4202.32, + "probability": 0.9935 + }, + { + "start": 4202.72, + "end": 4203.0, + "probability": 0.3405 + }, + { + "start": 4203.0, + "end": 4203.1, + "probability": 0.4667 + }, + { + "start": 4203.26, + "end": 4203.64, + "probability": 0.7621 + }, + { + "start": 4203.64, + "end": 4204.02, + "probability": 0.4329 + }, + { + "start": 4204.02, + "end": 4205.2, + "probability": 0.4543 + }, + { + "start": 4206.9, + "end": 4206.9, + "probability": 0.0327 + }, + { + "start": 4206.9, + "end": 4208.02, + "probability": 0.6173 + }, + { + "start": 4208.38, + "end": 4210.26, + "probability": 0.7843 + }, + { + "start": 4210.3, + "end": 4211.36, + "probability": 0.9696 + }, + { + "start": 4211.68, + "end": 4212.32, + "probability": 0.7648 + }, + { + "start": 4212.46, + "end": 4212.64, + "probability": 0.1361 + }, + { + "start": 4212.64, + "end": 4214.2, + "probability": 0.9253 + }, + { + "start": 4214.44, + "end": 4215.04, + "probability": 0.4592 + }, + { + "start": 4215.22, + "end": 4216.22, + "probability": 0.994 + }, + { + "start": 4216.8, + "end": 4219.62, + "probability": 0.8138 + }, + { + "start": 4221.0, + "end": 4221.46, + "probability": 0.8345 + }, + { + "start": 4222.22, + "end": 4224.56, + "probability": 0.8405 + }, + { + "start": 4225.02, + "end": 4226.08, + "probability": 0.9388 + }, + { + "start": 4226.38, + "end": 4228.74, + "probability": 0.8168 + }, + { + "start": 4228.88, + "end": 4232.21, + "probability": 0.6851 + }, + { + "start": 4232.82, + "end": 4234.74, + "probability": 0.9512 + }, + { + "start": 4235.14, + "end": 4235.82, + "probability": 0.9657 + }, + { + "start": 4235.98, + "end": 4237.32, + "probability": 0.9318 + }, + { + "start": 4237.88, + "end": 4239.86, + "probability": 0.8582 + }, + { + "start": 4240.36, + "end": 4241.0, + "probability": 0.6422 + }, + { + "start": 4241.34, + "end": 4244.76, + "probability": 0.9308 + }, + { + "start": 4245.56, + "end": 4250.16, + "probability": 0.9609 + }, + { + "start": 4250.58, + "end": 4251.36, + "probability": 0.0005 + }, + { + "start": 4252.78, + "end": 4252.98, + "probability": 0.0211 + }, + { + "start": 4252.98, + "end": 4252.98, + "probability": 0.4641 + }, + { + "start": 4252.98, + "end": 4255.9, + "probability": 0.8186 + }, + { + "start": 4256.02, + "end": 4258.28, + "probability": 0.1072 + }, + { + "start": 4259.24, + "end": 4259.52, + "probability": 0.0195 + }, + { + "start": 4265.28, + "end": 4266.04, + "probability": 0.442 + }, + { + "start": 4266.34, + "end": 4269.14, + "probability": 0.2937 + }, + { + "start": 4269.18, + "end": 4269.9, + "probability": 0.1498 + }, + { + "start": 4277.04, + "end": 4278.06, + "probability": 0.3327 + }, + { + "start": 4295.2, + "end": 4297.34, + "probability": 0.8017 + }, + { + "start": 4297.72, + "end": 4300.5, + "probability": 0.8484 + }, + { + "start": 4301.04, + "end": 4301.96, + "probability": 0.4994 + }, + { + "start": 4302.14, + "end": 4302.64, + "probability": 0.6774 + }, + { + "start": 4302.9, + "end": 4303.24, + "probability": 0.7351 + }, + { + "start": 4303.26, + "end": 4303.76, + "probability": 0.7719 + }, + { + "start": 4321.1, + "end": 4323.62, + "probability": 0.691 + }, + { + "start": 4324.26, + "end": 4326.84, + "probability": 0.3004 + }, + { + "start": 4328.1, + "end": 4329.82, + "probability": 0.1116 + }, + { + "start": 4331.0, + "end": 4331.84, + "probability": 0.3139 + }, + { + "start": 4333.48, + "end": 4336.46, + "probability": 0.1206 + }, + { + "start": 4336.96, + "end": 4338.2, + "probability": 0.0451 + }, + { + "start": 4338.26, + "end": 4338.92, + "probability": 0.115 + }, + { + "start": 4341.34, + "end": 4342.98, + "probability": 0.0086 + }, + { + "start": 4344.1, + "end": 4344.1, + "probability": 0.0726 + }, + { + "start": 4344.1, + "end": 4348.96, + "probability": 0.0785 + }, + { + "start": 4348.96, + "end": 4350.88, + "probability": 0.0784 + }, + { + "start": 4352.0, + "end": 4352.0, + "probability": 0.0 + }, + { + "start": 4352.0, + "end": 4352.0, + "probability": 0.0 + }, + { + "start": 4352.0, + "end": 4352.0, + "probability": 0.0 + }, + { + "start": 4352.0, + "end": 4352.0, + "probability": 0.0 + }, + { + "start": 4352.22, + "end": 4352.38, + "probability": 0.0492 + }, + { + "start": 4352.38, + "end": 4352.38, + "probability": 0.0392 + }, + { + "start": 4352.38, + "end": 4352.38, + "probability": 0.0728 + }, + { + "start": 4352.38, + "end": 4352.38, + "probability": 0.0727 + }, + { + "start": 4352.38, + "end": 4357.78, + "probability": 0.6451 + }, + { + "start": 4358.75, + "end": 4360.3, + "probability": 0.7158 + }, + { + "start": 4360.38, + "end": 4360.68, + "probability": 0.8501 + }, + { + "start": 4361.2, + "end": 4361.74, + "probability": 0.459 + }, + { + "start": 4362.22, + "end": 4363.62, + "probability": 0.7925 + }, + { + "start": 4363.82, + "end": 4367.96, + "probability": 0.9784 + }, + { + "start": 4368.82, + "end": 4372.7, + "probability": 0.9288 + }, + { + "start": 4373.22, + "end": 4374.26, + "probability": 0.6442 + }, + { + "start": 4374.46, + "end": 4375.26, + "probability": 0.308 + }, + { + "start": 4375.38, + "end": 4377.1, + "probability": 0.6539 + }, + { + "start": 4377.12, + "end": 4378.28, + "probability": 0.6419 + }, + { + "start": 4379.06, + "end": 4382.3, + "probability": 0.6071 + }, + { + "start": 4382.82, + "end": 4383.6, + "probability": 0.8533 + }, + { + "start": 4383.8, + "end": 4390.12, + "probability": 0.9587 + }, + { + "start": 4390.22, + "end": 4390.8, + "probability": 0.6631 + }, + { + "start": 4393.12, + "end": 4395.1, + "probability": 0.8738 + }, + { + "start": 4395.46, + "end": 4396.68, + "probability": 0.906 + }, + { + "start": 4400.2, + "end": 4401.56, + "probability": 0.864 + }, + { + "start": 4401.72, + "end": 4402.6, + "probability": 0.5319 + }, + { + "start": 4402.82, + "end": 4404.32, + "probability": 0.9816 + }, + { + "start": 4404.42, + "end": 4405.48, + "probability": 0.7204 + }, + { + "start": 4405.86, + "end": 4407.15, + "probability": 0.1224 + }, + { + "start": 4407.68, + "end": 4410.36, + "probability": 0.9836 + }, + { + "start": 4411.06, + "end": 4413.4, + "probability": 0.0002 + }, + { + "start": 4416.0, + "end": 4416.38, + "probability": 0.1595 + }, + { + "start": 4416.38, + "end": 4416.38, + "probability": 0.093 + }, + { + "start": 4416.38, + "end": 4416.38, + "probability": 0.0487 + }, + { + "start": 4416.48, + "end": 4418.28, + "probability": 0.5456 + }, + { + "start": 4419.2, + "end": 4422.64, + "probability": 0.0472 + }, + { + "start": 4423.72, + "end": 4423.92, + "probability": 0.0143 + }, + { + "start": 4423.92, + "end": 4423.92, + "probability": 0.0762 + }, + { + "start": 4423.92, + "end": 4423.92, + "probability": 0.2682 + }, + { + "start": 4423.92, + "end": 4425.4, + "probability": 0.1565 + }, + { + "start": 4425.4, + "end": 4429.1, + "probability": 0.6237 + }, + { + "start": 4430.12, + "end": 4430.4, + "probability": 0.1442 + }, + { + "start": 4431.48, + "end": 4431.52, + "probability": 0.5194 + }, + { + "start": 4431.52, + "end": 4434.46, + "probability": 0.9011 + }, + { + "start": 4434.46, + "end": 4438.08, + "probability": 0.7751 + }, + { + "start": 4438.64, + "end": 4439.6, + "probability": 0.7869 + }, + { + "start": 4440.53, + "end": 4443.34, + "probability": 0.699 + }, + { + "start": 4443.92, + "end": 4444.28, + "probability": 0.9524 + }, + { + "start": 4445.0, + "end": 4445.06, + "probability": 0.7983 + }, + { + "start": 4445.37, + "end": 4449.4, + "probability": 0.6729 + }, + { + "start": 4449.88, + "end": 4454.54, + "probability": 0.5498 + }, + { + "start": 4455.0, + "end": 4457.64, + "probability": 0.9146 + }, + { + "start": 4457.98, + "end": 4458.14, + "probability": 0.5247 + }, + { + "start": 4459.12, + "end": 4460.28, + "probability": 0.7393 + }, + { + "start": 4462.36, + "end": 4463.64, + "probability": 0.7173 + }, + { + "start": 4465.26, + "end": 4466.02, + "probability": 0.775 + }, + { + "start": 4468.6, + "end": 4470.32, + "probability": 0.9984 + }, + { + "start": 4471.68, + "end": 4476.44, + "probability": 0.9249 + }, + { + "start": 4478.76, + "end": 4484.64, + "probability": 0.9975 + }, + { + "start": 4487.8, + "end": 4490.14, + "probability": 0.9337 + }, + { + "start": 4491.88, + "end": 4494.28, + "probability": 0.9939 + }, + { + "start": 4495.2, + "end": 4496.86, + "probability": 0.9976 + }, + { + "start": 4498.64, + "end": 4505.16, + "probability": 0.999 + }, + { + "start": 4506.02, + "end": 4511.4, + "probability": 0.995 + }, + { + "start": 4513.16, + "end": 4513.7, + "probability": 0.963 + }, + { + "start": 4516.1, + "end": 4516.84, + "probability": 0.7506 + }, + { + "start": 4520.68, + "end": 4522.12, + "probability": 0.9961 + }, + { + "start": 4522.98, + "end": 4527.36, + "probability": 0.9974 + }, + { + "start": 4529.52, + "end": 4531.26, + "probability": 0.9791 + }, + { + "start": 4532.12, + "end": 4533.5, + "probability": 0.9963 + }, + { + "start": 4534.86, + "end": 4536.3, + "probability": 0.9702 + }, + { + "start": 4538.62, + "end": 4540.38, + "probability": 0.9355 + }, + { + "start": 4541.56, + "end": 4543.86, + "probability": 0.9819 + }, + { + "start": 4545.12, + "end": 4548.06, + "probability": 0.9644 + }, + { + "start": 4549.6, + "end": 4551.54, + "probability": 0.9268 + }, + { + "start": 4553.04, + "end": 4556.02, + "probability": 0.9969 + }, + { + "start": 4557.78, + "end": 4559.42, + "probability": 0.8202 + }, + { + "start": 4560.04, + "end": 4567.04, + "probability": 0.9984 + }, + { + "start": 4568.42, + "end": 4571.2, + "probability": 0.9887 + }, + { + "start": 4572.38, + "end": 4572.82, + "probability": 0.9863 + }, + { + "start": 4576.84, + "end": 4577.6, + "probability": 0.8627 + }, + { + "start": 4579.46, + "end": 4580.74, + "probability": 0.9678 + }, + { + "start": 4582.48, + "end": 4583.44, + "probability": 0.8527 + }, + { + "start": 4584.38, + "end": 4586.34, + "probability": 0.9506 + }, + { + "start": 4589.02, + "end": 4589.82, + "probability": 0.9683 + }, + { + "start": 4591.18, + "end": 4592.72, + "probability": 0.8471 + }, + { + "start": 4593.62, + "end": 4595.44, + "probability": 0.9971 + }, + { + "start": 4596.96, + "end": 4599.88, + "probability": 0.995 + }, + { + "start": 4601.24, + "end": 4604.98, + "probability": 0.9915 + }, + { + "start": 4606.02, + "end": 4607.6, + "probability": 0.9517 + }, + { + "start": 4608.44, + "end": 4609.07, + "probability": 0.9292 + }, + { + "start": 4610.44, + "end": 4611.22, + "probability": 0.9774 + }, + { + "start": 4611.76, + "end": 4612.74, + "probability": 0.9778 + }, + { + "start": 4614.02, + "end": 4614.22, + "probability": 0.1466 + }, + { + "start": 4614.42, + "end": 4616.92, + "probability": 0.7622 + }, + { + "start": 4617.2, + "end": 4618.86, + "probability": 0.8781 + }, + { + "start": 4620.22, + "end": 4624.34, + "probability": 0.9887 + }, + { + "start": 4624.88, + "end": 4626.92, + "probability": 0.823 + }, + { + "start": 4627.58, + "end": 4629.46, + "probability": 0.6289 + }, + { + "start": 4630.0, + "end": 4631.58, + "probability": 0.8875 + }, + { + "start": 4634.7, + "end": 4637.32, + "probability": 0.9754 + }, + { + "start": 4638.06, + "end": 4640.12, + "probability": 0.7838 + }, + { + "start": 4640.94, + "end": 4643.72, + "probability": 0.9977 + }, + { + "start": 4643.78, + "end": 4651.38, + "probability": 0.9678 + }, + { + "start": 4652.88, + "end": 4656.92, + "probability": 0.998 + }, + { + "start": 4656.92, + "end": 4663.4, + "probability": 0.9914 + }, + { + "start": 4663.78, + "end": 4664.18, + "probability": 0.836 + }, + { + "start": 4665.16, + "end": 4665.44, + "probability": 0.6647 + }, + { + "start": 4666.0, + "end": 4670.08, + "probability": 0.979 + }, + { + "start": 4671.58, + "end": 4672.65, + "probability": 0.9992 + }, + { + "start": 4674.26, + "end": 4675.62, + "probability": 0.9849 + }, + { + "start": 4679.54, + "end": 4683.94, + "probability": 0.9985 + }, + { + "start": 4685.1, + "end": 4686.54, + "probability": 0.9545 + }, + { + "start": 4686.68, + "end": 4688.54, + "probability": 0.7404 + }, + { + "start": 4691.0, + "end": 4693.62, + "probability": 0.9969 + }, + { + "start": 4695.14, + "end": 4696.92, + "probability": 0.9966 + }, + { + "start": 4698.22, + "end": 4699.4, + "probability": 0.8276 + }, + { + "start": 4700.38, + "end": 4705.68, + "probability": 0.9983 + }, + { + "start": 4706.92, + "end": 4708.04, + "probability": 0.9883 + }, + { + "start": 4710.8, + "end": 4712.3, + "probability": 0.9302 + }, + { + "start": 4714.62, + "end": 4717.7, + "probability": 0.8812 + }, + { + "start": 4718.3, + "end": 4719.26, + "probability": 0.837 + }, + { + "start": 4720.8, + "end": 4722.2, + "probability": 0.996 + }, + { + "start": 4723.56, + "end": 4725.1, + "probability": 0.7667 + }, + { + "start": 4726.16, + "end": 4729.7, + "probability": 0.9868 + }, + { + "start": 4731.34, + "end": 4733.66, + "probability": 0.939 + }, + { + "start": 4735.2, + "end": 4737.86, + "probability": 0.9956 + }, + { + "start": 4738.64, + "end": 4740.18, + "probability": 0.4694 + }, + { + "start": 4740.46, + "end": 4742.34, + "probability": 0.9235 + }, + { + "start": 4743.12, + "end": 4746.42, + "probability": 0.7079 + }, + { + "start": 4746.94, + "end": 4748.24, + "probability": 0.999 + }, + { + "start": 4748.92, + "end": 4752.24, + "probability": 0.9964 + }, + { + "start": 4753.38, + "end": 4754.84, + "probability": 0.9908 + }, + { + "start": 4757.7, + "end": 4758.7, + "probability": 0.7613 + }, + { + "start": 4762.12, + "end": 4762.64, + "probability": 0.8975 + }, + { + "start": 4763.6, + "end": 4767.34, + "probability": 0.9813 + }, + { + "start": 4767.86, + "end": 4769.68, + "probability": 0.9891 + }, + { + "start": 4772.18, + "end": 4777.23, + "probability": 0.9578 + }, + { + "start": 4779.88, + "end": 4782.74, + "probability": 0.9712 + }, + { + "start": 4783.18, + "end": 4789.96, + "probability": 0.724 + }, + { + "start": 4793.26, + "end": 4793.76, + "probability": 0.6482 + }, + { + "start": 4793.84, + "end": 4794.8, + "probability": 0.7883 + }, + { + "start": 4795.06, + "end": 4796.72, + "probability": 0.9884 + }, + { + "start": 4797.06, + "end": 4798.5, + "probability": 0.9646 + }, + { + "start": 4799.46, + "end": 4802.72, + "probability": 0.999 + }, + { + "start": 4804.48, + "end": 4811.56, + "probability": 0.999 + }, + { + "start": 4812.44, + "end": 4813.76, + "probability": 0.8274 + }, + { + "start": 4814.8, + "end": 4816.6, + "probability": 0.9336 + }, + { + "start": 4817.32, + "end": 4818.46, + "probability": 0.9648 + }, + { + "start": 4820.86, + "end": 4822.3, + "probability": 0.9969 + }, + { + "start": 4822.82, + "end": 4824.26, + "probability": 0.8375 + }, + { + "start": 4824.98, + "end": 4827.56, + "probability": 0.9778 + }, + { + "start": 4830.22, + "end": 4832.98, + "probability": 0.9318 + }, + { + "start": 4833.94, + "end": 4835.4, + "probability": 0.7587 + }, + { + "start": 4836.54, + "end": 4840.24, + "probability": 0.9965 + }, + { + "start": 4843.92, + "end": 4847.74, + "probability": 0.9467 + }, + { + "start": 4851.0, + "end": 4852.86, + "probability": 0.7793 + }, + { + "start": 4855.76, + "end": 4857.88, + "probability": 0.8069 + }, + { + "start": 4860.04, + "end": 4862.14, + "probability": 0.9637 + }, + { + "start": 4863.5, + "end": 4867.36, + "probability": 0.7638 + }, + { + "start": 4867.94, + "end": 4871.72, + "probability": 0.984 + }, + { + "start": 4873.34, + "end": 4873.94, + "probability": 0.198 + }, + { + "start": 4874.64, + "end": 4876.04, + "probability": 0.9517 + }, + { + "start": 4877.54, + "end": 4878.8, + "probability": 0.8863 + }, + { + "start": 4880.06, + "end": 4881.4, + "probability": 0.848 + }, + { + "start": 4884.42, + "end": 4888.04, + "probability": 0.952 + }, + { + "start": 4889.26, + "end": 4890.66, + "probability": 0.9953 + }, + { + "start": 4891.5, + "end": 4895.02, + "probability": 0.9909 + }, + { + "start": 4896.76, + "end": 4898.1, + "probability": 0.9858 + }, + { + "start": 4900.74, + "end": 4901.14, + "probability": 0.6348 + }, + { + "start": 4902.88, + "end": 4905.86, + "probability": 0.9945 + }, + { + "start": 4909.06, + "end": 4911.88, + "probability": 0.6452 + }, + { + "start": 4912.48, + "end": 4913.26, + "probability": 0.6324 + }, + { + "start": 4915.5, + "end": 4916.88, + "probability": 0.9945 + }, + { + "start": 4917.98, + "end": 4918.56, + "probability": 0.9978 + }, + { + "start": 4919.2, + "end": 4920.38, + "probability": 0.9141 + }, + { + "start": 4921.06, + "end": 4922.22, + "probability": 0.7535 + }, + { + "start": 4923.62, + "end": 4924.94, + "probability": 0.9879 + }, + { + "start": 4927.34, + "end": 4928.66, + "probability": 0.7746 + }, + { + "start": 4932.06, + "end": 4933.2, + "probability": 0.8106 + }, + { + "start": 4934.78, + "end": 4935.46, + "probability": 0.7313 + }, + { + "start": 4935.68, + "end": 4937.72, + "probability": 0.9095 + }, + { + "start": 4938.18, + "end": 4939.6, + "probability": 0.9373 + }, + { + "start": 4941.0, + "end": 4942.44, + "probability": 0.9644 + }, + { + "start": 4944.68, + "end": 4944.96, + "probability": 0.6615 + }, + { + "start": 4946.68, + "end": 4950.54, + "probability": 0.9972 + }, + { + "start": 4952.68, + "end": 4953.56, + "probability": 0.9995 + }, + { + "start": 4955.22, + "end": 4955.92, + "probability": 0.9968 + }, + { + "start": 4957.84, + "end": 4960.72, + "probability": 0.8077 + }, + { + "start": 4961.6, + "end": 4962.12, + "probability": 0.8395 + }, + { + "start": 4964.42, + "end": 4968.16, + "probability": 0.9185 + }, + { + "start": 4968.82, + "end": 4970.62, + "probability": 0.6681 + }, + { + "start": 4973.26, + "end": 4976.12, + "probability": 0.7692 + }, + { + "start": 4976.68, + "end": 4981.08, + "probability": 0.9879 + }, + { + "start": 4984.0, + "end": 4986.22, + "probability": 0.8596 + }, + { + "start": 4988.1, + "end": 4989.3, + "probability": 0.996 + }, + { + "start": 4990.9, + "end": 4992.58, + "probability": 0.9884 + }, + { + "start": 4993.84, + "end": 4995.9, + "probability": 0.9926 + }, + { + "start": 4997.38, + "end": 5000.64, + "probability": 0.999 + }, + { + "start": 5000.84, + "end": 5003.98, + "probability": 0.9972 + }, + { + "start": 5006.5, + "end": 5007.54, + "probability": 0.9594 + }, + { + "start": 5009.54, + "end": 5012.64, + "probability": 0.9985 + }, + { + "start": 5014.72, + "end": 5021.16, + "probability": 0.9969 + }, + { + "start": 5023.3, + "end": 5027.52, + "probability": 0.9947 + }, + { + "start": 5029.06, + "end": 5031.52, + "probability": 0.9961 + }, + { + "start": 5032.08, + "end": 5033.4, + "probability": 0.7335 + }, + { + "start": 5035.92, + "end": 5038.72, + "probability": 0.9976 + }, + { + "start": 5040.8, + "end": 5043.64, + "probability": 0.9952 + }, + { + "start": 5045.34, + "end": 5047.94, + "probability": 0.8547 + }, + { + "start": 5050.6, + "end": 5055.58, + "probability": 0.9959 + }, + { + "start": 5056.7, + "end": 5057.84, + "probability": 0.6676 + }, + { + "start": 5059.0, + "end": 5061.66, + "probability": 0.9961 + }, + { + "start": 5062.38, + "end": 5065.16, + "probability": 0.9766 + }, + { + "start": 5068.4, + "end": 5069.22, + "probability": 0.7462 + }, + { + "start": 5070.5, + "end": 5071.29, + "probability": 0.9861 + }, + { + "start": 5072.4, + "end": 5073.66, + "probability": 0.9888 + }, + { + "start": 5076.34, + "end": 5077.26, + "probability": 0.9767 + }, + { + "start": 5078.58, + "end": 5079.18, + "probability": 0.9961 + }, + { + "start": 5080.46, + "end": 5082.04, + "probability": 0.9967 + }, + { + "start": 5082.96, + "end": 5085.72, + "probability": 0.9986 + }, + { + "start": 5086.74, + "end": 5089.58, + "probability": 0.9751 + }, + { + "start": 5091.4, + "end": 5095.14, + "probability": 0.9354 + }, + { + "start": 5096.66, + "end": 5097.46, + "probability": 0.9512 + }, + { + "start": 5099.28, + "end": 5101.22, + "probability": 0.8625 + }, + { + "start": 5102.02, + "end": 5102.58, + "probability": 0.9758 + }, + { + "start": 5103.76, + "end": 5105.16, + "probability": 0.754 + }, + { + "start": 5106.46, + "end": 5107.76, + "probability": 0.9933 + }, + { + "start": 5108.7, + "end": 5114.6, + "probability": 0.9872 + }, + { + "start": 5115.28, + "end": 5116.26, + "probability": 0.965 + }, + { + "start": 5117.74, + "end": 5118.88, + "probability": 0.9985 + }, + { + "start": 5119.52, + "end": 5120.42, + "probability": 0.6875 + }, + { + "start": 5121.44, + "end": 5122.3, + "probability": 0.9094 + }, + { + "start": 5123.46, + "end": 5124.42, + "probability": 0.9828 + }, + { + "start": 5126.86, + "end": 5127.5, + "probability": 0.8543 + }, + { + "start": 5128.02, + "end": 5131.88, + "probability": 0.9979 + }, + { + "start": 5132.08, + "end": 5135.04, + "probability": 0.8462 + }, + { + "start": 5135.14, + "end": 5137.3, + "probability": 0.7957 + }, + { + "start": 5138.12, + "end": 5139.2, + "probability": 0.5395 + }, + { + "start": 5140.48, + "end": 5143.18, + "probability": 0.9253 + }, + { + "start": 5145.1, + "end": 5147.5, + "probability": 0.7859 + }, + { + "start": 5148.88, + "end": 5152.02, + "probability": 0.994 + }, + { + "start": 5153.76, + "end": 5160.7, + "probability": 0.9889 + }, + { + "start": 5160.82, + "end": 5161.58, + "probability": 0.7867 + }, + { + "start": 5163.04, + "end": 5163.98, + "probability": 0.9517 + }, + { + "start": 5164.78, + "end": 5166.82, + "probability": 0.9826 + }, + { + "start": 5167.74, + "end": 5170.44, + "probability": 0.9734 + }, + { + "start": 5170.98, + "end": 5172.04, + "probability": 0.9973 + }, + { + "start": 5174.04, + "end": 5179.28, + "probability": 0.9757 + }, + { + "start": 5181.74, + "end": 5182.46, + "probability": 0.8161 + }, + { + "start": 5183.8, + "end": 5185.0, + "probability": 0.4201 + }, + { + "start": 5186.18, + "end": 5187.1, + "probability": 0.7983 + }, + { + "start": 5189.14, + "end": 5190.22, + "probability": 0.957 + }, + { + "start": 5192.12, + "end": 5192.85, + "probability": 0.9328 + }, + { + "start": 5197.58, + "end": 5198.98, + "probability": 0.7747 + }, + { + "start": 5199.94, + "end": 5205.02, + "probability": 0.9568 + }, + { + "start": 5206.26, + "end": 5212.0, + "probability": 0.9905 + }, + { + "start": 5213.24, + "end": 5215.51, + "probability": 0.3463 + }, + { + "start": 5220.66, + "end": 5223.08, + "probability": 0.9156 + }, + { + "start": 5224.18, + "end": 5228.66, + "probability": 0.9757 + }, + { + "start": 5229.2, + "end": 5230.52, + "probability": 0.9816 + }, + { + "start": 5231.3, + "end": 5233.06, + "probability": 0.9336 + }, + { + "start": 5233.74, + "end": 5234.4, + "probability": 0.6756 + }, + { + "start": 5236.68, + "end": 5239.76, + "probability": 0.9792 + }, + { + "start": 5240.66, + "end": 5242.78, + "probability": 0.8415 + }, + { + "start": 5244.16, + "end": 5249.36, + "probability": 0.9353 + }, + { + "start": 5251.04, + "end": 5251.72, + "probability": 0.6489 + }, + { + "start": 5253.02, + "end": 5255.86, + "probability": 0.9824 + }, + { + "start": 5256.58, + "end": 5258.88, + "probability": 0.9752 + }, + { + "start": 5261.52, + "end": 5264.64, + "probability": 0.9989 + }, + { + "start": 5265.64, + "end": 5268.2, + "probability": 0.9963 + }, + { + "start": 5270.44, + "end": 5275.66, + "probability": 0.9727 + }, + { + "start": 5275.8, + "end": 5278.24, + "probability": 0.7504 + }, + { + "start": 5279.4, + "end": 5281.32, + "probability": 0.7875 + }, + { + "start": 5282.94, + "end": 5287.38, + "probability": 0.9545 + }, + { + "start": 5288.94, + "end": 5290.06, + "probability": 0.99 + }, + { + "start": 5292.06, + "end": 5292.77, + "probability": 0.9365 + }, + { + "start": 5293.68, + "end": 5296.04, + "probability": 0.9717 + }, + { + "start": 5298.88, + "end": 5301.62, + "probability": 0.9757 + }, + { + "start": 5302.32, + "end": 5304.9, + "probability": 0.9958 + }, + { + "start": 5307.88, + "end": 5309.1, + "probability": 0.6749 + }, + { + "start": 5309.44, + "end": 5310.7, + "probability": 0.6216 + }, + { + "start": 5310.78, + "end": 5311.28, + "probability": 0.9063 + }, + { + "start": 5313.58, + "end": 5314.12, + "probability": 0.8724 + }, + { + "start": 5315.52, + "end": 5316.36, + "probability": 0.9888 + }, + { + "start": 5317.2, + "end": 5318.66, + "probability": 0.9928 + }, + { + "start": 5319.88, + "end": 5323.38, + "probability": 0.9988 + }, + { + "start": 5323.4, + "end": 5327.54, + "probability": 0.9696 + }, + { + "start": 5327.7, + "end": 5328.0, + "probability": 0.582 + }, + { + "start": 5329.42, + "end": 5330.74, + "probability": 0.8517 + }, + { + "start": 5332.68, + "end": 5333.34, + "probability": 0.8635 + }, + { + "start": 5335.02, + "end": 5341.3, + "probability": 0.9966 + }, + { + "start": 5342.94, + "end": 5344.68, + "probability": 0.7847 + }, + { + "start": 5344.98, + "end": 5345.86, + "probability": 0.9044 + }, + { + "start": 5347.28, + "end": 5350.17, + "probability": 0.9825 + }, + { + "start": 5351.74, + "end": 5353.1, + "probability": 0.9741 + }, + { + "start": 5354.28, + "end": 5355.48, + "probability": 0.7877 + }, + { + "start": 5358.26, + "end": 5359.72, + "probability": 0.7687 + }, + { + "start": 5360.8, + "end": 5361.58, + "probability": 0.8903 + }, + { + "start": 5362.3, + "end": 5362.9, + "probability": 0.9834 + }, + { + "start": 5363.74, + "end": 5365.06, + "probability": 0.9724 + }, + { + "start": 5371.78, + "end": 5372.94, + "probability": 0.5818 + }, + { + "start": 5374.04, + "end": 5375.96, + "probability": 0.999 + }, + { + "start": 5376.94, + "end": 5382.36, + "probability": 0.9972 + }, + { + "start": 5382.51, + "end": 5385.99, + "probability": 0.9987 + }, + { + "start": 5386.52, + "end": 5390.24, + "probability": 0.9988 + }, + { + "start": 5391.48, + "end": 5392.96, + "probability": 0.963 + }, + { + "start": 5393.78, + "end": 5395.76, + "probability": 0.7627 + }, + { + "start": 5396.7, + "end": 5401.3, + "probability": 0.9867 + }, + { + "start": 5402.2, + "end": 5402.7, + "probability": 0.8417 + }, + { + "start": 5405.6, + "end": 5406.92, + "probability": 0.4076 + }, + { + "start": 5409.2, + "end": 5412.38, + "probability": 0.9981 + }, + { + "start": 5414.48, + "end": 5416.2, + "probability": 0.9843 + }, + { + "start": 5416.76, + "end": 5417.54, + "probability": 0.7485 + }, + { + "start": 5419.48, + "end": 5421.48, + "probability": 0.8448 + }, + { + "start": 5421.6, + "end": 5422.22, + "probability": 0.8588 + }, + { + "start": 5422.34, + "end": 5423.84, + "probability": 0.7043 + }, + { + "start": 5423.84, + "end": 5424.82, + "probability": 0.7455 + }, + { + "start": 5427.42, + "end": 5429.58, + "probability": 0.9711 + }, + { + "start": 5430.48, + "end": 5432.65, + "probability": 0.9886 + }, + { + "start": 5433.92, + "end": 5436.78, + "probability": 0.9537 + }, + { + "start": 5437.82, + "end": 5438.42, + "probability": 0.8283 + }, + { + "start": 5440.1, + "end": 5445.24, + "probability": 0.9974 + }, + { + "start": 5449.3, + "end": 5450.2, + "probability": 0.884 + }, + { + "start": 5451.54, + "end": 5453.24, + "probability": 0.9885 + }, + { + "start": 5456.32, + "end": 5456.86, + "probability": 0.795 + }, + { + "start": 5457.64, + "end": 5460.88, + "probability": 0.9966 + }, + { + "start": 5463.96, + "end": 5467.64, + "probability": 0.9249 + }, + { + "start": 5469.14, + "end": 5473.04, + "probability": 0.8245 + }, + { + "start": 5474.86, + "end": 5478.32, + "probability": 0.9198 + }, + { + "start": 5478.9, + "end": 5479.58, + "probability": 0.8611 + }, + { + "start": 5482.04, + "end": 5483.92, + "probability": 0.9072 + }, + { + "start": 5484.18, + "end": 5484.8, + "probability": 0.8695 + }, + { + "start": 5484.92, + "end": 5488.92, + "probability": 0.8784 + }, + { + "start": 5490.04, + "end": 5491.58, + "probability": 0.7915 + }, + { + "start": 5492.72, + "end": 5493.64, + "probability": 0.9847 + }, + { + "start": 5495.14, + "end": 5499.86, + "probability": 0.9917 + }, + { + "start": 5502.42, + "end": 5504.04, + "probability": 0.7105 + }, + { + "start": 5504.6, + "end": 5506.62, + "probability": 0.9984 + }, + { + "start": 5507.44, + "end": 5509.7, + "probability": 0.9325 + }, + { + "start": 5510.7, + "end": 5512.76, + "probability": 0.9862 + }, + { + "start": 5515.06, + "end": 5515.7, + "probability": 0.7954 + }, + { + "start": 5515.82, + "end": 5519.26, + "probability": 0.9943 + }, + { + "start": 5520.62, + "end": 5521.24, + "probability": 0.8028 + }, + { + "start": 5522.86, + "end": 5524.4, + "probability": 0.9574 + }, + { + "start": 5527.58, + "end": 5529.2, + "probability": 0.9889 + }, + { + "start": 5531.62, + "end": 5531.92, + "probability": 0.9677 + }, + { + "start": 5532.78, + "end": 5533.76, + "probability": 0.9207 + }, + { + "start": 5536.0, + "end": 5537.54, + "probability": 0.9907 + }, + { + "start": 5538.06, + "end": 5539.28, + "probability": 0.8728 + }, + { + "start": 5541.3, + "end": 5545.76, + "probability": 0.9984 + }, + { + "start": 5548.7, + "end": 5552.8, + "probability": 0.9949 + }, + { + "start": 5553.1, + "end": 5554.58, + "probability": 0.9243 + }, + { + "start": 5555.16, + "end": 5556.94, + "probability": 0.9845 + }, + { + "start": 5558.42, + "end": 5560.1, + "probability": 0.7557 + }, + { + "start": 5560.88, + "end": 5561.64, + "probability": 0.9329 + }, + { + "start": 5563.76, + "end": 5564.72, + "probability": 0.9775 + }, + { + "start": 5565.3, + "end": 5565.98, + "probability": 0.8849 + }, + { + "start": 5569.5, + "end": 5570.18, + "probability": 0.8851 + }, + { + "start": 5570.86, + "end": 5571.98, + "probability": 0.998 + }, + { + "start": 5573.5, + "end": 5575.38, + "probability": 0.8701 + }, + { + "start": 5576.32, + "end": 5577.66, + "probability": 0.9629 + }, + { + "start": 5579.38, + "end": 5580.6, + "probability": 0.9829 + }, + { + "start": 5583.84, + "end": 5584.84, + "probability": 0.9607 + }, + { + "start": 5585.78, + "end": 5586.91, + "probability": 0.9081 + }, + { + "start": 5588.66, + "end": 5591.4, + "probability": 0.829 + }, + { + "start": 5592.36, + "end": 5595.78, + "probability": 0.9911 + }, + { + "start": 5597.36, + "end": 5600.86, + "probability": 0.8765 + }, + { + "start": 5602.08, + "end": 5602.88, + "probability": 0.6706 + }, + { + "start": 5604.52, + "end": 5605.22, + "probability": 0.8419 + }, + { + "start": 5606.98, + "end": 5607.38, + "probability": 0.9753 + }, + { + "start": 5609.42, + "end": 5610.22, + "probability": 0.9888 + }, + { + "start": 5611.14, + "end": 5613.4, + "probability": 0.9294 + }, + { + "start": 5614.24, + "end": 5616.1, + "probability": 0.9756 + }, + { + "start": 5617.5, + "end": 5618.36, + "probability": 0.8384 + }, + { + "start": 5623.92, + "end": 5624.62, + "probability": 0.9279 + }, + { + "start": 5626.36, + "end": 5628.48, + "probability": 0.978 + }, + { + "start": 5631.86, + "end": 5634.54, + "probability": 0.9665 + }, + { + "start": 5635.32, + "end": 5635.56, + "probability": 0.8334 + }, + { + "start": 5636.14, + "end": 5637.12, + "probability": 0.7098 + }, + { + "start": 5637.58, + "end": 5642.44, + "probability": 0.9708 + }, + { + "start": 5643.0, + "end": 5649.5, + "probability": 0.0421 + }, + { + "start": 5649.5, + "end": 5652.52, + "probability": 0.4925 + }, + { + "start": 5652.8, + "end": 5653.96, + "probability": 0.466 + }, + { + "start": 5654.34, + "end": 5658.53, + "probability": 0.7696 + }, + { + "start": 5659.28, + "end": 5662.7, + "probability": 0.8223 + }, + { + "start": 5662.84, + "end": 5664.18, + "probability": 0.7584 + }, + { + "start": 5665.0, + "end": 5666.36, + "probability": 0.8832 + }, + { + "start": 5666.84, + "end": 5668.12, + "probability": 0.8247 + }, + { + "start": 5668.28, + "end": 5670.6, + "probability": 0.3199 + }, + { + "start": 5670.96, + "end": 5673.18, + "probability": 0.9057 + }, + { + "start": 5675.62, + "end": 5679.0, + "probability": 0.9121 + }, + { + "start": 5679.0, + "end": 5679.02, + "probability": 0.4382 + }, + { + "start": 5679.02, + "end": 5681.34, + "probability": 0.8398 + }, + { + "start": 5681.42, + "end": 5683.06, + "probability": 0.8535 + }, + { + "start": 5683.96, + "end": 5687.34, + "probability": 0.8573 + }, + { + "start": 5687.94, + "end": 5689.14, + "probability": 0.782 + }, + { + "start": 5689.88, + "end": 5695.86, + "probability": 0.9794 + }, + { + "start": 5696.04, + "end": 5697.36, + "probability": 0.8665 + }, + { + "start": 5698.2, + "end": 5699.62, + "probability": 0.9639 + }, + { + "start": 5700.16, + "end": 5708.98, + "probability": 0.8025 + }, + { + "start": 5709.44, + "end": 5715.74, + "probability": 0.7985 + }, + { + "start": 5716.38, + "end": 5720.38, + "probability": 0.9617 + }, + { + "start": 5721.04, + "end": 5726.16, + "probability": 0.9965 + }, + { + "start": 5726.6, + "end": 5728.76, + "probability": 0.9977 + }, + { + "start": 5729.16, + "end": 5730.06, + "probability": 0.8336 + }, + { + "start": 5731.18, + "end": 5734.65, + "probability": 0.8739 + }, + { + "start": 5737.5, + "end": 5739.54, + "probability": 0.9885 + }, + { + "start": 5740.18, + "end": 5743.18, + "probability": 0.885 + }, + { + "start": 5744.1, + "end": 5747.42, + "probability": 0.9338 + }, + { + "start": 5747.86, + "end": 5749.12, + "probability": 0.8511 + }, + { + "start": 5749.48, + "end": 5751.74, + "probability": 0.9094 + }, + { + "start": 5752.72, + "end": 5754.72, + "probability": 0.7067 + }, + { + "start": 5754.82, + "end": 5755.98, + "probability": 0.9305 + }, + { + "start": 5756.46, + "end": 5762.04, + "probability": 0.9819 + }, + { + "start": 5762.9, + "end": 5763.81, + "probability": 0.8813 + }, + { + "start": 5764.68, + "end": 5767.38, + "probability": 0.7888 + }, + { + "start": 5768.06, + "end": 5768.52, + "probability": 0.5126 + }, + { + "start": 5769.36, + "end": 5770.8, + "probability": 0.8173 + }, + { + "start": 5771.26, + "end": 5774.78, + "probability": 0.9746 + }, + { + "start": 5774.78, + "end": 5777.6, + "probability": 0.9391 + }, + { + "start": 5778.06, + "end": 5778.86, + "probability": 0.9038 + }, + { + "start": 5779.14, + "end": 5780.26, + "probability": 0.981 + }, + { + "start": 5781.04, + "end": 5783.82, + "probability": 0.9624 + }, + { + "start": 5784.48, + "end": 5784.58, + "probability": 0.0011 + }, + { + "start": 5787.7, + "end": 5790.36, + "probability": 0.1938 + }, + { + "start": 5791.06, + "end": 5792.82, + "probability": 0.6849 + }, + { + "start": 5792.94, + "end": 5795.9, + "probability": 0.9208 + }, + { + "start": 5795.96, + "end": 5798.66, + "probability": 0.7951 + }, + { + "start": 5798.66, + "end": 5801.56, + "probability": 0.9986 + }, + { + "start": 5802.68, + "end": 5805.38, + "probability": 0.7857 + }, + { + "start": 5806.26, + "end": 5807.14, + "probability": 0.8854 + }, + { + "start": 5808.68, + "end": 5810.54, + "probability": 0.958 + }, + { + "start": 5811.98, + "end": 5815.78, + "probability": 0.9642 + }, + { + "start": 5816.32, + "end": 5817.54, + "probability": 0.8595 + }, + { + "start": 5818.24, + "end": 5821.16, + "probability": 0.9732 + }, + { + "start": 5822.28, + "end": 5823.98, + "probability": 0.2682 + }, + { + "start": 5823.98, + "end": 5827.24, + "probability": 0.273 + }, + { + "start": 5827.36, + "end": 5828.78, + "probability": 0.6277 + }, + { + "start": 5828.86, + "end": 5828.86, + "probability": 0.219 + }, + { + "start": 5828.92, + "end": 5829.62, + "probability": 0.6584 + }, + { + "start": 5830.94, + "end": 5836.44, + "probability": 0.8733 + }, + { + "start": 5837.26, + "end": 5837.8, + "probability": 0.6503 + }, + { + "start": 5837.82, + "end": 5838.4, + "probability": 0.6276 + }, + { + "start": 5838.52, + "end": 5841.9, + "probability": 0.9932 + }, + { + "start": 5841.94, + "end": 5843.56, + "probability": 0.8211 + }, + { + "start": 5843.9, + "end": 5844.5, + "probability": 0.4542 + }, + { + "start": 5844.5, + "end": 5845.02, + "probability": 0.4177 + }, + { + "start": 5845.48, + "end": 5847.32, + "probability": 0.8969 + }, + { + "start": 5847.32, + "end": 5850.84, + "probability": 0.8154 + }, + { + "start": 5851.18, + "end": 5852.58, + "probability": 0.6273 + }, + { + "start": 5853.36, + "end": 5855.15, + "probability": 0.7626 + }, + { + "start": 5855.9, + "end": 5862.9, + "probability": 0.965 + }, + { + "start": 5863.08, + "end": 5870.78, + "probability": 0.9434 + }, + { + "start": 5871.7, + "end": 5872.28, + "probability": 0.8554 + }, + { + "start": 5874.92, + "end": 5876.26, + "probability": 0.7169 + }, + { + "start": 5876.78, + "end": 5878.64, + "probability": 0.7737 + }, + { + "start": 5879.22, + "end": 5883.86, + "probability": 0.7776 + }, + { + "start": 5883.86, + "end": 5887.3, + "probability": 0.9972 + }, + { + "start": 5887.98, + "end": 5891.26, + "probability": 0.9585 + }, + { + "start": 5891.32, + "end": 5892.96, + "probability": 0.8388 + }, + { + "start": 5893.48, + "end": 5894.0, + "probability": 0.8816 + }, + { + "start": 5895.54, + "end": 5898.26, + "probability": 0.9182 + }, + { + "start": 5898.74, + "end": 5899.52, + "probability": 0.4455 + }, + { + "start": 5899.64, + "end": 5902.5, + "probability": 0.9221 + }, + { + "start": 5902.92, + "end": 5903.5, + "probability": 0.7283 + }, + { + "start": 5903.68, + "end": 5905.16, + "probability": 0.9741 + }, + { + "start": 5905.56, + "end": 5907.86, + "probability": 0.9137 + }, + { + "start": 5908.82, + "end": 5911.38, + "probability": 0.9187 + }, + { + "start": 5911.5, + "end": 5914.08, + "probability": 0.2586 + }, + { + "start": 5915.42, + "end": 5920.96, + "probability": 0.9685 + }, + { + "start": 5921.14, + "end": 5925.12, + "probability": 0.9766 + }, + { + "start": 5926.08, + "end": 5927.36, + "probability": 0.4648 + }, + { + "start": 5928.14, + "end": 5929.36, + "probability": 0.9081 + }, + { + "start": 5929.98, + "end": 5931.84, + "probability": 0.9767 + }, + { + "start": 5931.98, + "end": 5934.14, + "probability": 0.7483 + }, + { + "start": 5934.24, + "end": 5936.04, + "probability": 0.9508 + }, + { + "start": 5936.28, + "end": 5939.36, + "probability": 0.6205 + }, + { + "start": 5940.28, + "end": 5945.4, + "probability": 0.7902 + }, + { + "start": 5946.18, + "end": 5948.6, + "probability": 0.9503 + }, + { + "start": 5949.94, + "end": 5951.96, + "probability": 0.6746 + }, + { + "start": 5953.66, + "end": 5957.04, + "probability": 0.5952 + }, + { + "start": 5957.06, + "end": 5960.94, + "probability": 0.9207 + }, + { + "start": 5961.56, + "end": 5962.6, + "probability": 0.9764 + }, + { + "start": 5962.76, + "end": 5965.8, + "probability": 0.3457 + }, + { + "start": 5966.34, + "end": 5969.26, + "probability": 0.9198 + }, + { + "start": 5970.06, + "end": 5972.66, + "probability": 0.8224 + }, + { + "start": 5973.42, + "end": 5975.79, + "probability": 0.998 + }, + { + "start": 5976.48, + "end": 5978.96, + "probability": 0.9968 + }, + { + "start": 5979.22, + "end": 5982.71, + "probability": 0.8359 + }, + { + "start": 5983.38, + "end": 5987.92, + "probability": 0.9903 + }, + { + "start": 5988.48, + "end": 5991.56, + "probability": 0.9479 + }, + { + "start": 5992.6, + "end": 5992.82, + "probability": 0.7416 + }, + { + "start": 5992.86, + "end": 5993.95, + "probability": 0.948 + }, + { + "start": 5994.36, + "end": 5996.72, + "probability": 0.8493 + }, + { + "start": 5997.48, + "end": 5998.64, + "probability": 0.9889 + }, + { + "start": 5999.24, + "end": 6000.28, + "probability": 0.9812 + }, + { + "start": 6000.94, + "end": 6006.4, + "probability": 0.9589 + }, + { + "start": 6006.94, + "end": 6009.64, + "probability": 0.8693 + }, + { + "start": 6010.34, + "end": 6010.72, + "probability": 0.9109 + }, + { + "start": 6010.86, + "end": 6013.5, + "probability": 0.981 + }, + { + "start": 6014.38, + "end": 6015.12, + "probability": 0.8645 + }, + { + "start": 6016.06, + "end": 6019.36, + "probability": 0.9877 + }, + { + "start": 6020.08, + "end": 6027.14, + "probability": 0.9635 + }, + { + "start": 6028.08, + "end": 6030.04, + "probability": 0.884 + }, + { + "start": 6030.62, + "end": 6031.07, + "probability": 0.9386 + }, + { + "start": 6031.52, + "end": 6032.42, + "probability": 0.8342 + }, + { + "start": 6032.68, + "end": 6034.09, + "probability": 0.9845 + }, + { + "start": 6035.16, + "end": 6038.54, + "probability": 0.9607 + }, + { + "start": 6038.86, + "end": 6039.54, + "probability": 0.9573 + }, + { + "start": 6040.9, + "end": 6042.0, + "probability": 0.7813 + }, + { + "start": 6042.52, + "end": 6043.84, + "probability": 0.6059 + }, + { + "start": 6044.5, + "end": 6045.38, + "probability": 0.9702 + }, + { + "start": 6045.46, + "end": 6047.4, + "probability": 0.9919 + }, + { + "start": 6048.06, + "end": 6052.2, + "probability": 0.9924 + }, + { + "start": 6053.04, + "end": 6054.74, + "probability": 0.6635 + }, + { + "start": 6055.42, + "end": 6059.5, + "probability": 0.9819 + }, + { + "start": 6060.62, + "end": 6061.36, + "probability": 0.6229 + }, + { + "start": 6062.06, + "end": 6065.94, + "probability": 0.9879 + }, + { + "start": 6067.38, + "end": 6069.0, + "probability": 0.998 + }, + { + "start": 6069.54, + "end": 6070.26, + "probability": 0.947 + }, + { + "start": 6071.86, + "end": 6077.2, + "probability": 0.9819 + }, + { + "start": 6078.28, + "end": 6082.1, + "probability": 0.9966 + }, + { + "start": 6082.84, + "end": 6084.41, + "probability": 0.9782 + }, + { + "start": 6085.2, + "end": 6088.61, + "probability": 0.9796 + }, + { + "start": 6089.56, + "end": 6091.48, + "probability": 0.9143 + }, + { + "start": 6092.12, + "end": 6093.54, + "probability": 0.749 + }, + { + "start": 6093.98, + "end": 6094.37, + "probability": 0.5662 + }, + { + "start": 6095.2, + "end": 6098.92, + "probability": 0.9647 + }, + { + "start": 6099.46, + "end": 6101.96, + "probability": 0.9939 + }, + { + "start": 6102.92, + "end": 6104.34, + "probability": 0.9985 + }, + { + "start": 6104.9, + "end": 6105.58, + "probability": 0.8321 + }, + { + "start": 6105.74, + "end": 6106.74, + "probability": 0.9767 + }, + { + "start": 6107.18, + "end": 6109.66, + "probability": 0.9979 + }, + { + "start": 6110.04, + "end": 6113.76, + "probability": 0.9904 + }, + { + "start": 6114.3, + "end": 6115.46, + "probability": 0.9412 + }, + { + "start": 6115.56, + "end": 6116.82, + "probability": 0.9909 + }, + { + "start": 6117.26, + "end": 6118.56, + "probability": 0.9622 + }, + { + "start": 6119.0, + "end": 6120.4, + "probability": 0.8741 + }, + { + "start": 6121.13, + "end": 6122.36, + "probability": 0.4961 + }, + { + "start": 6123.02, + "end": 6123.72, + "probability": 0.6884 + }, + { + "start": 6124.72, + "end": 6125.54, + "probability": 0.9008 + }, + { + "start": 6126.7, + "end": 6129.18, + "probability": 0.9915 + }, + { + "start": 6130.02, + "end": 6132.36, + "probability": 0.9924 + }, + { + "start": 6132.78, + "end": 6133.74, + "probability": 0.9945 + }, + { + "start": 6133.9, + "end": 6134.86, + "probability": 0.9949 + }, + { + "start": 6135.18, + "end": 6136.04, + "probability": 0.9548 + }, + { + "start": 6136.18, + "end": 6137.88, + "probability": 0.9046 + }, + { + "start": 6138.84, + "end": 6141.26, + "probability": 0.994 + }, + { + "start": 6141.46, + "end": 6142.52, + "probability": 0.9894 + }, + { + "start": 6143.08, + "end": 6148.42, + "probability": 0.9776 + }, + { + "start": 6148.86, + "end": 6149.94, + "probability": 0.9971 + }, + { + "start": 6150.86, + "end": 6153.48, + "probability": 0.505 + }, + { + "start": 6154.24, + "end": 6156.78, + "probability": 0.6258 + }, + { + "start": 6156.82, + "end": 6157.28, + "probability": 0.6983 + }, + { + "start": 6158.14, + "end": 6161.02, + "probability": 0.9928 + }, + { + "start": 6161.32, + "end": 6163.62, + "probability": 0.768 + }, + { + "start": 6164.04, + "end": 6167.67, + "probability": 0.9976 + }, + { + "start": 6167.7, + "end": 6170.36, + "probability": 0.8316 + }, + { + "start": 6170.42, + "end": 6173.56, + "probability": 0.9966 + }, + { + "start": 6173.64, + "end": 6176.86, + "probability": 0.8849 + }, + { + "start": 6176.9, + "end": 6178.28, + "probability": 0.6417 + }, + { + "start": 6178.68, + "end": 6180.8, + "probability": 0.8008 + }, + { + "start": 6181.66, + "end": 6182.3, + "probability": 0.5745 + }, + { + "start": 6183.28, + "end": 6185.04, + "probability": 0.83 + }, + { + "start": 6186.72, + "end": 6189.54, + "probability": 0.9778 + }, + { + "start": 6189.84, + "end": 6192.6, + "probability": 0.8558 + }, + { + "start": 6193.16, + "end": 6198.24, + "probability": 0.9934 + }, + { + "start": 6199.02, + "end": 6200.84, + "probability": 0.8495 + }, + { + "start": 6202.4, + "end": 6206.2, + "probability": 0.9954 + }, + { + "start": 6206.5, + "end": 6210.26, + "probability": 0.9849 + }, + { + "start": 6211.78, + "end": 6214.5, + "probability": 0.9543 + }, + { + "start": 6214.64, + "end": 6215.26, + "probability": 0.8615 + }, + { + "start": 6216.02, + "end": 6217.68, + "probability": 0.6026 + }, + { + "start": 6218.34, + "end": 6219.18, + "probability": 0.8278 + }, + { + "start": 6219.92, + "end": 6224.32, + "probability": 0.7097 + }, + { + "start": 6224.42, + "end": 6225.72, + "probability": 0.8978 + }, + { + "start": 6226.5, + "end": 6234.6, + "probability": 0.9927 + }, + { + "start": 6235.14, + "end": 6236.5, + "probability": 0.7607 + }, + { + "start": 6236.66, + "end": 6237.29, + "probability": 0.7934 + }, + { + "start": 6239.96, + "end": 6243.16, + "probability": 0.7849 + }, + { + "start": 6243.24, + "end": 6243.34, + "probability": 0.3126 + }, + { + "start": 6243.44, + "end": 6245.58, + "probability": 0.9546 + }, + { + "start": 6245.95, + "end": 6249.04, + "probability": 0.6116 + }, + { + "start": 6249.78, + "end": 6252.26, + "probability": 0.9943 + }, + { + "start": 6252.26, + "end": 6253.48, + "probability": 0.9617 + }, + { + "start": 6254.54, + "end": 6255.12, + "probability": 0.06 + }, + { + "start": 6255.24, + "end": 6257.38, + "probability": 0.9482 + }, + { + "start": 6257.8, + "end": 6261.08, + "probability": 0.8945 + }, + { + "start": 6261.76, + "end": 6265.72, + "probability": 0.9343 + }, + { + "start": 6269.1, + "end": 6269.7, + "probability": 0.3021 + }, + { + "start": 6269.9, + "end": 6269.9, + "probability": 0.1102 + }, + { + "start": 6269.9, + "end": 6270.66, + "probability": 0.4247 + }, + { + "start": 6270.76, + "end": 6273.66, + "probability": 0.9938 + }, + { + "start": 6274.27, + "end": 6279.8, + "probability": 0.9886 + }, + { + "start": 6279.8, + "end": 6283.08, + "probability": 0.996 + }, + { + "start": 6284.0, + "end": 6291.62, + "probability": 0.9106 + }, + { + "start": 6292.16, + "end": 6295.86, + "probability": 0.9053 + }, + { + "start": 6296.5, + "end": 6299.38, + "probability": 0.9342 + }, + { + "start": 6299.52, + "end": 6302.12, + "probability": 0.9793 + }, + { + "start": 6302.6, + "end": 6304.99, + "probability": 0.8958 + }, + { + "start": 6305.28, + "end": 6307.02, + "probability": 0.9561 + }, + { + "start": 6307.4, + "end": 6311.88, + "probability": 0.7659 + }, + { + "start": 6312.9, + "end": 6313.34, + "probability": 0.3321 + }, + { + "start": 6313.44, + "end": 6319.24, + "probability": 0.7818 + }, + { + "start": 6319.36, + "end": 6320.84, + "probability": 0.6822 + }, + { + "start": 6323.69, + "end": 6328.58, + "probability": 0.9392 + }, + { + "start": 6329.44, + "end": 6332.1, + "probability": 0.7314 + }, + { + "start": 6332.2, + "end": 6335.64, + "probability": 0.7927 + }, + { + "start": 6335.66, + "end": 6340.82, + "probability": 0.8649 + }, + { + "start": 6340.82, + "end": 6342.52, + "probability": 0.9575 + }, + { + "start": 6343.02, + "end": 6343.86, + "probability": 0.9896 + }, + { + "start": 6343.98, + "end": 6345.02, + "probability": 0.8562 + }, + { + "start": 6345.62, + "end": 6346.44, + "probability": 0.9691 + }, + { + "start": 6346.5, + "end": 6350.3, + "probability": 0.93 + }, + { + "start": 6350.3, + "end": 6354.38, + "probability": 0.9646 + }, + { + "start": 6354.6, + "end": 6355.52, + "probability": 0.8347 + }, + { + "start": 6356.02, + "end": 6359.24, + "probability": 0.929 + }, + { + "start": 6359.3, + "end": 6364.08, + "probability": 0.9036 + }, + { + "start": 6364.72, + "end": 6365.34, + "probability": 0.7444 + }, + { + "start": 6369.86, + "end": 6370.84, + "probability": 0.7154 + }, + { + "start": 6371.26, + "end": 6372.02, + "probability": 0.5974 + }, + { + "start": 6372.18, + "end": 6373.24, + "probability": 0.4837 + }, + { + "start": 6373.24, + "end": 6373.36, + "probability": 0.3426 + }, + { + "start": 6373.96, + "end": 6375.42, + "probability": 0.6966 + }, + { + "start": 6375.58, + "end": 6377.0, + "probability": 0.7988 + }, + { + "start": 6377.66, + "end": 6381.07, + "probability": 0.9003 + }, + { + "start": 6381.62, + "end": 6383.32, + "probability": 0.9457 + }, + { + "start": 6383.44, + "end": 6383.74, + "probability": 0.8408 + }, + { + "start": 6384.64, + "end": 6386.26, + "probability": 0.9191 + }, + { + "start": 6386.68, + "end": 6390.44, + "probability": 0.8487 + }, + { + "start": 6391.2, + "end": 6392.24, + "probability": 0.4703 + }, + { + "start": 6392.76, + "end": 6396.0, + "probability": 0.6018 + }, + { + "start": 6396.52, + "end": 6400.62, + "probability": 0.9965 + }, + { + "start": 6400.72, + "end": 6401.4, + "probability": 0.9988 + }, + { + "start": 6402.5, + "end": 6404.42, + "probability": 0.9584 + }, + { + "start": 6404.8, + "end": 6405.18, + "probability": 0.9598 + }, + { + "start": 6405.78, + "end": 6406.42, + "probability": 0.8691 + }, + { + "start": 6407.36, + "end": 6409.13, + "probability": 0.5259 + }, + { + "start": 6410.44, + "end": 6414.32, + "probability": 0.6316 + }, + { + "start": 6414.48, + "end": 6417.38, + "probability": 0.9856 + }, + { + "start": 6418.66, + "end": 6420.1, + "probability": 0.9871 + }, + { + "start": 6420.74, + "end": 6420.74, + "probability": 0.3524 + }, + { + "start": 6420.74, + "end": 6421.96, + "probability": 0.9495 + }, + { + "start": 6422.04, + "end": 6422.5, + "probability": 0.4258 + }, + { + "start": 6423.74, + "end": 6425.12, + "probability": 0.757 + }, + { + "start": 6425.36, + "end": 6429.0, + "probability": 0.8665 + }, + { + "start": 6429.2, + "end": 6430.1, + "probability": 0.8141 + }, + { + "start": 6431.24, + "end": 6434.96, + "probability": 0.998 + }, + { + "start": 6435.56, + "end": 6437.72, + "probability": 0.9893 + }, + { + "start": 6438.54, + "end": 6439.98, + "probability": 0.8667 + }, + { + "start": 6440.12, + "end": 6442.94, + "probability": 0.9579 + }, + { + "start": 6443.94, + "end": 6447.76, + "probability": 0.8843 + }, + { + "start": 6448.24, + "end": 6449.56, + "probability": 0.9907 + }, + { + "start": 6449.66, + "end": 6451.26, + "probability": 0.7401 + }, + { + "start": 6451.26, + "end": 6452.82, + "probability": 0.9763 + }, + { + "start": 6453.28, + "end": 6457.92, + "probability": 0.9974 + }, + { + "start": 6458.46, + "end": 6463.82, + "probability": 0.9343 + }, + { + "start": 6463.82, + "end": 6467.44, + "probability": 0.9585 + }, + { + "start": 6467.78, + "end": 6469.26, + "probability": 0.8804 + }, + { + "start": 6470.22, + "end": 6474.82, + "probability": 0.6645 + }, + { + "start": 6474.82, + "end": 6477.68, + "probability": 0.9038 + }, + { + "start": 6478.14, + "end": 6480.21, + "probability": 0.8404 + }, + { + "start": 6480.3, + "end": 6482.76, + "probability": 0.8713 + }, + { + "start": 6482.8, + "end": 6483.46, + "probability": 0.601 + }, + { + "start": 6483.72, + "end": 6483.98, + "probability": 0.6835 + }, + { + "start": 6484.5, + "end": 6486.02, + "probability": 0.951 + }, + { + "start": 6486.54, + "end": 6487.68, + "probability": 0.9799 + }, + { + "start": 6487.98, + "end": 6488.96, + "probability": 0.8579 + }, + { + "start": 6489.02, + "end": 6489.34, + "probability": 0.3975 + }, + { + "start": 6490.0, + "end": 6494.64, + "probability": 0.9911 + }, + { + "start": 6494.8, + "end": 6497.32, + "probability": 0.8699 + }, + { + "start": 6497.38, + "end": 6497.7, + "probability": 0.8782 + }, + { + "start": 6497.88, + "end": 6498.38, + "probability": 0.603 + }, + { + "start": 6499.2, + "end": 6500.74, + "probability": 0.953 + }, + { + "start": 6501.38, + "end": 6503.92, + "probability": 0.8809 + }, + { + "start": 6504.46, + "end": 6506.4, + "probability": 0.9912 + }, + { + "start": 6506.48, + "end": 6507.35, + "probability": 0.9113 + }, + { + "start": 6507.62, + "end": 6512.5, + "probability": 0.7883 + }, + { + "start": 6512.96, + "end": 6515.48, + "probability": 0.3729 + }, + { + "start": 6515.48, + "end": 6517.48, + "probability": 0.6889 + }, + { + "start": 6517.9, + "end": 6520.3, + "probability": 0.9909 + }, + { + "start": 6520.38, + "end": 6521.92, + "probability": 0.9755 + }, + { + "start": 6522.02, + "end": 6524.74, + "probability": 0.964 + }, + { + "start": 6524.8, + "end": 6527.42, + "probability": 0.9629 + }, + { + "start": 6527.58, + "end": 6529.1, + "probability": 0.9877 + }, + { + "start": 6529.98, + "end": 6530.54, + "probability": 0.6649 + }, + { + "start": 6530.8, + "end": 6534.48, + "probability": 0.9897 + }, + { + "start": 6535.23, + "end": 6538.06, + "probability": 0.9228 + }, + { + "start": 6538.6, + "end": 6539.26, + "probability": 0.8718 + }, + { + "start": 6539.28, + "end": 6542.4, + "probability": 0.8547 + }, + { + "start": 6542.58, + "end": 6545.66, + "probability": 0.8715 + }, + { + "start": 6546.42, + "end": 6548.96, + "probability": 0.9897 + }, + { + "start": 6549.32, + "end": 6551.68, + "probability": 0.9863 + }, + { + "start": 6551.96, + "end": 6556.16, + "probability": 0.9909 + }, + { + "start": 6556.66, + "end": 6560.58, + "probability": 0.9659 + }, + { + "start": 6561.0, + "end": 6562.74, + "probability": 0.9531 + }, + { + "start": 6562.98, + "end": 6563.96, + "probability": 0.9982 + }, + { + "start": 6564.72, + "end": 6566.54, + "probability": 0.9742 + }, + { + "start": 6567.08, + "end": 6567.84, + "probability": 0.5181 + }, + { + "start": 6567.84, + "end": 6569.56, + "probability": 0.9852 + }, + { + "start": 6569.68, + "end": 6570.64, + "probability": 0.8555 + }, + { + "start": 6571.28, + "end": 6575.34, + "probability": 0.9946 + }, + { + "start": 6575.34, + "end": 6580.18, + "probability": 0.9961 + }, + { + "start": 6580.34, + "end": 6580.68, + "probability": 0.7627 + }, + { + "start": 6581.08, + "end": 6582.88, + "probability": 0.93 + }, + { + "start": 6583.26, + "end": 6586.18, + "probability": 0.9021 + }, + { + "start": 6586.42, + "end": 6587.44, + "probability": 0.1621 + }, + { + "start": 6590.22, + "end": 6592.74, + "probability": 0.8613 + }, + { + "start": 6593.1, + "end": 6597.24, + "probability": 0.6932 + }, + { + "start": 6598.62, + "end": 6599.64, + "probability": 0.1618 + }, + { + "start": 6600.06, + "end": 6600.16, + "probability": 0.1486 + }, + { + "start": 6600.16, + "end": 6600.42, + "probability": 0.4243 + }, + { + "start": 6600.56, + "end": 6600.98, + "probability": 0.9305 + }, + { + "start": 6601.16, + "end": 6603.7, + "probability": 0.9677 + }, + { + "start": 6603.72, + "end": 6605.64, + "probability": 0.6175 + }, + { + "start": 6606.02, + "end": 6606.36, + "probability": 0.7753 + }, + { + "start": 6607.62, + "end": 6608.8, + "probability": 0.8651 + }, + { + "start": 6609.42, + "end": 6612.26, + "probability": 0.9751 + }, + { + "start": 6612.9, + "end": 6614.3, + "probability": 0.6311 + }, + { + "start": 6615.46, + "end": 6617.22, + "probability": 0.9758 + }, + { + "start": 6618.28, + "end": 6623.23, + "probability": 0.6315 + }, + { + "start": 6625.04, + "end": 6628.4, + "probability": 0.9736 + }, + { + "start": 6628.76, + "end": 6629.78, + "probability": 0.9976 + }, + { + "start": 6630.5, + "end": 6634.56, + "probability": 0.9888 + }, + { + "start": 6635.3, + "end": 6638.18, + "probability": 0.9772 + }, + { + "start": 6638.26, + "end": 6642.68, + "probability": 0.9966 + }, + { + "start": 6644.4, + "end": 6647.06, + "probability": 0.5041 + }, + { + "start": 6647.52, + "end": 6652.2, + "probability": 0.9902 + }, + { + "start": 6652.36, + "end": 6653.44, + "probability": 0.4216 + }, + { + "start": 6653.64, + "end": 6656.46, + "probability": 0.8569 + }, + { + "start": 6656.8, + "end": 6657.7, + "probability": 0.3243 + }, + { + "start": 6658.42, + "end": 6659.96, + "probability": 0.8685 + }, + { + "start": 6660.36, + "end": 6661.82, + "probability": 0.9425 + }, + { + "start": 6661.98, + "end": 6662.2, + "probability": 0.7295 + }, + { + "start": 6662.4, + "end": 6663.34, + "probability": 0.8932 + }, + { + "start": 6663.44, + "end": 6665.8, + "probability": 0.9917 + }, + { + "start": 6666.6, + "end": 6670.42, + "probability": 0.925 + }, + { + "start": 6671.24, + "end": 6672.8, + "probability": 0.9331 + }, + { + "start": 6672.84, + "end": 6673.36, + "probability": 0.8502 + }, + { + "start": 6674.42, + "end": 6674.9, + "probability": 0.7338 + }, + { + "start": 6675.76, + "end": 6676.02, + "probability": 0.8757 + }, + { + "start": 6677.42, + "end": 6680.58, + "probability": 0.8472 + }, + { + "start": 6681.54, + "end": 6683.51, + "probability": 0.9954 + }, + { + "start": 6683.76, + "end": 6684.3, + "probability": 0.5516 + }, + { + "start": 6684.34, + "end": 6685.32, + "probability": 0.7454 + }, + { + "start": 6685.8, + "end": 6689.28, + "probability": 0.8438 + }, + { + "start": 6689.4, + "end": 6690.5, + "probability": 0.795 + }, + { + "start": 6691.54, + "end": 6696.38, + "probability": 0.9623 + }, + { + "start": 6696.72, + "end": 6698.92, + "probability": 0.9961 + }, + { + "start": 6699.6, + "end": 6701.1, + "probability": 0.8744 + }, + { + "start": 6701.2, + "end": 6702.35, + "probability": 0.8457 + }, + { + "start": 6703.18, + "end": 6704.92, + "probability": 0.9897 + }, + { + "start": 6705.4, + "end": 6706.68, + "probability": 0.9174 + }, + { + "start": 6706.68, + "end": 6709.72, + "probability": 0.9925 + }, + { + "start": 6709.86, + "end": 6714.98, + "probability": 0.999 + }, + { + "start": 6715.84, + "end": 6716.16, + "probability": 0.9998 + }, + { + "start": 6716.7, + "end": 6718.14, + "probability": 0.991 + }, + { + "start": 6718.64, + "end": 6719.3, + "probability": 0.6186 + }, + { + "start": 6720.18, + "end": 6720.9, + "probability": 0.9669 + }, + { + "start": 6721.82, + "end": 6722.72, + "probability": 0.9283 + }, + { + "start": 6723.98, + "end": 6724.94, + "probability": 0.7556 + }, + { + "start": 6725.72, + "end": 6728.2, + "probability": 0.8843 + }, + { + "start": 6729.18, + "end": 6731.9, + "probability": 0.8391 + }, + { + "start": 6732.48, + "end": 6733.76, + "probability": 0.7259 + }, + { + "start": 6735.06, + "end": 6737.58, + "probability": 0.3227 + }, + { + "start": 6738.36, + "end": 6743.18, + "probability": 0.8354 + }, + { + "start": 6743.84, + "end": 6745.5, + "probability": 0.9547 + }, + { + "start": 6746.14, + "end": 6747.44, + "probability": 0.9472 + }, + { + "start": 6748.08, + "end": 6748.9, + "probability": 0.7782 + }, + { + "start": 6749.52, + "end": 6751.42, + "probability": 0.9395 + }, + { + "start": 6752.28, + "end": 6754.48, + "probability": 0.9835 + }, + { + "start": 6754.88, + "end": 6759.68, + "probability": 0.9941 + }, + { + "start": 6760.0, + "end": 6764.57, + "probability": 0.9932 + }, + { + "start": 6764.9, + "end": 6768.76, + "probability": 0.8608 + }, + { + "start": 6769.4, + "end": 6771.24, + "probability": 0.5871 + }, + { + "start": 6772.02, + "end": 6778.78, + "probability": 0.9031 + }, + { + "start": 6779.22, + "end": 6779.8, + "probability": 0.7686 + }, + { + "start": 6780.8, + "end": 6782.56, + "probability": 0.6591 + }, + { + "start": 6783.16, + "end": 6785.94, + "probability": 0.9739 + }, + { + "start": 6786.64, + "end": 6788.5, + "probability": 0.9526 + }, + { + "start": 6789.34, + "end": 6790.74, + "probability": 0.7329 + }, + { + "start": 6791.52, + "end": 6796.12, + "probability": 0.8944 + }, + { + "start": 6796.74, + "end": 6800.2, + "probability": 0.9915 + }, + { + "start": 6800.42, + "end": 6803.34, + "probability": 0.9399 + }, + { + "start": 6803.98, + "end": 6806.04, + "probability": 0.9624 + }, + { + "start": 6806.58, + "end": 6808.32, + "probability": 0.8896 + }, + { + "start": 6809.34, + "end": 6810.16, + "probability": 0.6055 + }, + { + "start": 6811.46, + "end": 6813.24, + "probability": 0.8334 + }, + { + "start": 6814.4, + "end": 6816.5, + "probability": 0.979 + }, + { + "start": 6817.36, + "end": 6818.1, + "probability": 0.6669 + }, + { + "start": 6818.18, + "end": 6820.32, + "probability": 0.7558 + }, + { + "start": 6820.38, + "end": 6820.66, + "probability": 0.7872 + }, + { + "start": 6820.74, + "end": 6821.1, + "probability": 0.7515 + }, + { + "start": 6821.36, + "end": 6821.86, + "probability": 0.801 + }, + { + "start": 6822.66, + "end": 6825.18, + "probability": 0.9478 + }, + { + "start": 6825.96, + "end": 6827.47, + "probability": 0.9649 + }, + { + "start": 6829.24, + "end": 6832.0, + "probability": 0.9375 + }, + { + "start": 6832.6, + "end": 6835.72, + "probability": 0.6232 + }, + { + "start": 6836.52, + "end": 6837.51, + "probability": 0.8479 + }, + { + "start": 6837.96, + "end": 6838.76, + "probability": 0.8308 + }, + { + "start": 6839.27, + "end": 6843.08, + "probability": 0.9865 + }, + { + "start": 6843.12, + "end": 6843.62, + "probability": 0.5948 + }, + { + "start": 6844.18, + "end": 6845.76, + "probability": 0.967 + }, + { + "start": 6846.34, + "end": 6849.46, + "probability": 0.7221 + }, + { + "start": 6849.56, + "end": 6850.52, + "probability": 0.4576 + }, + { + "start": 6850.72, + "end": 6851.16, + "probability": 0.5301 + }, + { + "start": 6851.58, + "end": 6852.42, + "probability": 0.675 + }, + { + "start": 6852.8, + "end": 6853.2, + "probability": 0.8495 + }, + { + "start": 6853.72, + "end": 6854.86, + "probability": 0.637 + }, + { + "start": 6854.98, + "end": 6856.12, + "probability": 0.7096 + }, + { + "start": 6856.56, + "end": 6859.06, + "probability": 0.9885 + }, + { + "start": 6860.44, + "end": 6862.18, + "probability": 0.8941 + }, + { + "start": 6863.68, + "end": 6866.52, + "probability": 0.9976 + }, + { + "start": 6866.56, + "end": 6867.02, + "probability": 0.9274 + }, + { + "start": 6868.1, + "end": 6868.7, + "probability": 0.9618 + }, + { + "start": 6868.86, + "end": 6871.1, + "probability": 0.7297 + }, + { + "start": 6871.16, + "end": 6873.52, + "probability": 0.8638 + }, + { + "start": 6874.42, + "end": 6875.14, + "probability": 0.8652 + }, + { + "start": 6875.86, + "end": 6879.2, + "probability": 0.8854 + }, + { + "start": 6879.72, + "end": 6885.68, + "probability": 0.9152 + }, + { + "start": 6886.16, + "end": 6886.48, + "probability": 0.9886 + }, + { + "start": 6887.18, + "end": 6887.98, + "probability": 0.8084 + }, + { + "start": 6888.68, + "end": 6891.02, + "probability": 0.9922 + }, + { + "start": 6892.46, + "end": 6892.56, + "probability": 0.0857 + }, + { + "start": 6892.56, + "end": 6893.4, + "probability": 0.7485 + }, + { + "start": 6893.5, + "end": 6895.32, + "probability": 0.9504 + }, + { + "start": 6895.48, + "end": 6897.66, + "probability": 0.8124 + }, + { + "start": 6898.1, + "end": 6898.53, + "probability": 0.6729 + }, + { + "start": 6899.76, + "end": 6900.22, + "probability": 0.7456 + }, + { + "start": 6900.88, + "end": 6907.18, + "probability": 0.6662 + }, + { + "start": 6907.26, + "end": 6907.26, + "probability": 0.3562 + }, + { + "start": 6907.26, + "end": 6908.12, + "probability": 0.048 + }, + { + "start": 6908.22, + "end": 6911.56, + "probability": 0.8634 + }, + { + "start": 6912.0, + "end": 6913.58, + "probability": 0.9946 + }, + { + "start": 6914.24, + "end": 6916.2, + "probability": 0.9573 + }, + { + "start": 6917.48, + "end": 6918.38, + "probability": 0.6606 + }, + { + "start": 6918.94, + "end": 6922.0, + "probability": 0.9825 + }, + { + "start": 6922.06, + "end": 6926.44, + "probability": 0.9815 + }, + { + "start": 6926.96, + "end": 6930.54, + "probability": 0.981 + }, + { + "start": 6930.98, + "end": 6934.24, + "probability": 0.9917 + }, + { + "start": 6934.4, + "end": 6936.38, + "probability": 0.5734 + }, + { + "start": 6936.84, + "end": 6939.66, + "probability": 0.8259 + }, + { + "start": 6940.28, + "end": 6942.52, + "probability": 0.5976 + }, + { + "start": 6943.22, + "end": 6943.92, + "probability": 0.9304 + }, + { + "start": 6945.34, + "end": 6946.02, + "probability": 0.864 + }, + { + "start": 6946.56, + "end": 6949.14, + "probability": 0.9201 + }, + { + "start": 6949.86, + "end": 6951.18, + "probability": 0.6238 + }, + { + "start": 6952.2, + "end": 6952.72, + "probability": 0.2756 + }, + { + "start": 6953.04, + "end": 6955.92, + "probability": 0.6651 + }, + { + "start": 6956.4, + "end": 6958.32, + "probability": 0.9746 + }, + { + "start": 6959.04, + "end": 6960.54, + "probability": 0.9853 + }, + { + "start": 6961.54, + "end": 6964.7, + "probability": 0.8229 + }, + { + "start": 6965.58, + "end": 6968.96, + "probability": 0.9944 + }, + { + "start": 6969.68, + "end": 6973.74, + "probability": 0.7691 + }, + { + "start": 6974.16, + "end": 6974.82, + "probability": 0.8862 + }, + { + "start": 6975.2, + "end": 6976.32, + "probability": 0.5021 + }, + { + "start": 6976.84, + "end": 6978.62, + "probability": 0.7775 + }, + { + "start": 6979.32, + "end": 6981.0, + "probability": 0.5077 + }, + { + "start": 6981.94, + "end": 6984.32, + "probability": 0.8266 + }, + { + "start": 6985.48, + "end": 6986.5, + "probability": 0.7356 + }, + { + "start": 6986.62, + "end": 6989.02, + "probability": 0.9751 + }, + { + "start": 6990.08, + "end": 6991.84, + "probability": 0.9622 + }, + { + "start": 6992.86, + "end": 6994.22, + "probability": 0.9584 + }, + { + "start": 6994.8, + "end": 6996.66, + "probability": 0.9796 + }, + { + "start": 6997.1, + "end": 6997.68, + "probability": 0.9733 + }, + { + "start": 6997.86, + "end": 6999.19, + "probability": 0.5276 + }, + { + "start": 7000.56, + "end": 7001.08, + "probability": 0.8594 + }, + { + "start": 7001.54, + "end": 7004.98, + "probability": 0.976 + }, + { + "start": 7005.6, + "end": 7008.12, + "probability": 0.9771 + }, + { + "start": 7008.68, + "end": 7012.6, + "probability": 0.8752 + }, + { + "start": 7013.32, + "end": 7014.57, + "probability": 0.7455 + }, + { + "start": 7015.44, + "end": 7017.32, + "probability": 0.8302 + }, + { + "start": 7018.62, + "end": 7019.52, + "probability": 0.8778 + }, + { + "start": 7020.0, + "end": 7021.86, + "probability": 0.9807 + }, + { + "start": 7022.14, + "end": 7023.8, + "probability": 0.9753 + }, + { + "start": 7024.42, + "end": 7028.22, + "probability": 0.9973 + }, + { + "start": 7028.22, + "end": 7031.06, + "probability": 0.9104 + }, + { + "start": 7031.76, + "end": 7032.1, + "probability": 0.6021 + }, + { + "start": 7032.14, + "end": 7032.68, + "probability": 0.7454 + }, + { + "start": 7032.98, + "end": 7035.18, + "probability": 0.9905 + }, + { + "start": 7036.12, + "end": 7040.6, + "probability": 0.9058 + }, + { + "start": 7041.44, + "end": 7047.04, + "probability": 0.6988 + }, + { + "start": 7047.84, + "end": 7050.28, + "probability": 0.8115 + }, + { + "start": 7050.36, + "end": 7051.5, + "probability": 0.8065 + }, + { + "start": 7052.76, + "end": 7053.36, + "probability": 0.9305 + }, + { + "start": 7055.12, + "end": 7059.88, + "probability": 0.6673 + }, + { + "start": 7060.62, + "end": 7064.28, + "probability": 0.8976 + }, + { + "start": 7065.34, + "end": 7068.56, + "probability": 0.8069 + }, + { + "start": 7069.4, + "end": 7070.54, + "probability": 0.701 + }, + { + "start": 7070.86, + "end": 7071.82, + "probability": 0.8438 + }, + { + "start": 7072.04, + "end": 7075.48, + "probability": 0.593 + }, + { + "start": 7075.62, + "end": 7075.8, + "probability": 0.1556 + }, + { + "start": 7075.88, + "end": 7076.98, + "probability": 0.957 + }, + { + "start": 7077.6, + "end": 7077.84, + "probability": 0.5634 + }, + { + "start": 7077.98, + "end": 7079.62, + "probability": 0.9211 + }, + { + "start": 7080.12, + "end": 7082.26, + "probability": 0.9613 + }, + { + "start": 7082.36, + "end": 7083.18, + "probability": 0.774 + }, + { + "start": 7083.64, + "end": 7086.06, + "probability": 0.9955 + }, + { + "start": 7087.5, + "end": 7089.6, + "probability": 0.9581 + }, + { + "start": 7090.56, + "end": 7095.42, + "probability": 0.8943 + }, + { + "start": 7095.44, + "end": 7098.08, + "probability": 0.9604 + }, + { + "start": 7098.56, + "end": 7098.8, + "probability": 0.2532 + }, + { + "start": 7098.84, + "end": 7099.5, + "probability": 0.6961 + }, + { + "start": 7099.66, + "end": 7101.88, + "probability": 0.9331 + }, + { + "start": 7102.8, + "end": 7103.36, + "probability": 0.2433 + }, + { + "start": 7104.42, + "end": 7107.66, + "probability": 0.859 + }, + { + "start": 7108.34, + "end": 7109.98, + "probability": 0.8737 + }, + { + "start": 7110.68, + "end": 7112.86, + "probability": 0.8701 + }, + { + "start": 7113.38, + "end": 7113.98, + "probability": 0.4211 + }, + { + "start": 7114.2, + "end": 7116.48, + "probability": 0.8817 + }, + { + "start": 7116.58, + "end": 7117.25, + "probability": 0.9434 + }, + { + "start": 7117.82, + "end": 7119.18, + "probability": 0.9635 + }, + { + "start": 7119.58, + "end": 7120.72, + "probability": 0.9399 + }, + { + "start": 7121.16, + "end": 7124.86, + "probability": 0.9835 + }, + { + "start": 7125.42, + "end": 7126.0, + "probability": 0.4964 + }, + { + "start": 7126.38, + "end": 7129.08, + "probability": 0.9971 + }, + { + "start": 7129.52, + "end": 7130.78, + "probability": 0.4827 + }, + { + "start": 7130.88, + "end": 7131.72, + "probability": 0.5502 + }, + { + "start": 7131.92, + "end": 7132.46, + "probability": 0.697 + }, + { + "start": 7132.52, + "end": 7133.18, + "probability": 0.4199 + }, + { + "start": 7133.4, + "end": 7137.2, + "probability": 0.9943 + }, + { + "start": 7137.26, + "end": 7137.68, + "probability": 0.846 + }, + { + "start": 7138.78, + "end": 7140.94, + "probability": 0.3581 + }, + { + "start": 7141.74, + "end": 7142.26, + "probability": 0.3306 + }, + { + "start": 7142.36, + "end": 7145.0, + "probability": 0.9258 + }, + { + "start": 7145.06, + "end": 7145.54, + "probability": 0.9281 + }, + { + "start": 7145.6, + "end": 7146.34, + "probability": 0.9094 + }, + { + "start": 7146.36, + "end": 7147.98, + "probability": 0.5025 + }, + { + "start": 7149.2, + "end": 7150.72, + "probability": 0.9913 + }, + { + "start": 7151.8, + "end": 7152.86, + "probability": 0.9688 + }, + { + "start": 7153.76, + "end": 7157.4, + "probability": 0.7892 + }, + { + "start": 7158.14, + "end": 7159.42, + "probability": 0.9155 + }, + { + "start": 7159.72, + "end": 7161.38, + "probability": 0.7718 + }, + { + "start": 7163.4, + "end": 7166.32, + "probability": 0.8086 + }, + { + "start": 7167.18, + "end": 7169.78, + "probability": 0.6614 + }, + { + "start": 7170.08, + "end": 7171.44, + "probability": 0.9344 + }, + { + "start": 7171.6, + "end": 7173.52, + "probability": 0.853 + }, + { + "start": 7174.64, + "end": 7177.56, + "probability": 0.9944 + }, + { + "start": 7178.58, + "end": 7181.94, + "probability": 0.9125 + }, + { + "start": 7182.18, + "end": 7183.06, + "probability": 0.7336 + }, + { + "start": 7184.02, + "end": 7185.68, + "probability": 0.9897 + }, + { + "start": 7186.28, + "end": 7189.2, + "probability": 0.5419 + }, + { + "start": 7189.22, + "end": 7190.86, + "probability": 0.8085 + }, + { + "start": 7191.4, + "end": 7194.04, + "probability": 0.9267 + }, + { + "start": 7194.82, + "end": 7198.08, + "probability": 0.9912 + }, + { + "start": 7198.9, + "end": 7201.02, + "probability": 0.9817 + }, + { + "start": 7202.48, + "end": 7204.08, + "probability": 0.9592 + }, + { + "start": 7205.04, + "end": 7206.04, + "probability": 0.8101 + }, + { + "start": 7206.16, + "end": 7210.54, + "probability": 0.7588 + }, + { + "start": 7210.7, + "end": 7211.26, + "probability": 0.9555 + }, + { + "start": 7212.34, + "end": 7215.56, + "probability": 0.9402 + }, + { + "start": 7216.16, + "end": 7218.38, + "probability": 0.7511 + }, + { + "start": 7218.98, + "end": 7220.9, + "probability": 0.8783 + }, + { + "start": 7221.8, + "end": 7223.16, + "probability": 0.6846 + }, + { + "start": 7223.7, + "end": 7223.9, + "probability": 0.9844 + }, + { + "start": 7225.58, + "end": 7228.45, + "probability": 0.8827 + }, + { + "start": 7229.98, + "end": 7233.1, + "probability": 0.9481 + }, + { + "start": 7233.88, + "end": 7235.3, + "probability": 0.6136 + }, + { + "start": 7236.32, + "end": 7238.32, + "probability": 0.8314 + }, + { + "start": 7239.08, + "end": 7240.12, + "probability": 0.572 + }, + { + "start": 7240.38, + "end": 7244.08, + "probability": 0.7389 + }, + { + "start": 7248.12, + "end": 7248.14, + "probability": 0.0514 + }, + { + "start": 7248.14, + "end": 7248.62, + "probability": 0.2655 + }, + { + "start": 7250.12, + "end": 7252.47, + "probability": 0.6733 + }, + { + "start": 7253.78, + "end": 7255.78, + "probability": 0.668 + }, + { + "start": 7256.76, + "end": 7257.0, + "probability": 0.6689 + }, + { + "start": 7257.64, + "end": 7258.32, + "probability": 0.9748 + }, + { + "start": 7261.34, + "end": 7261.94, + "probability": 0.499 + }, + { + "start": 7262.7, + "end": 7263.68, + "probability": 0.5941 + }, + { + "start": 7264.72, + "end": 7268.12, + "probability": 0.9865 + }, + { + "start": 7268.66, + "end": 7269.42, + "probability": 0.9223 + }, + { + "start": 7270.82, + "end": 7272.48, + "probability": 0.971 + }, + { + "start": 7273.4, + "end": 7275.32, + "probability": 0.9871 + }, + { + "start": 7275.74, + "end": 7279.54, + "probability": 0.6461 + }, + { + "start": 7279.98, + "end": 7280.88, + "probability": 0.2323 + }, + { + "start": 7281.46, + "end": 7284.16, + "probability": 0.5437 + }, + { + "start": 7284.24, + "end": 7288.22, + "probability": 0.9911 + }, + { + "start": 7288.8, + "end": 7289.68, + "probability": 0.972 + }, + { + "start": 7290.4, + "end": 7294.88, + "probability": 0.8838 + }, + { + "start": 7295.86, + "end": 7299.82, + "probability": 0.8321 + }, + { + "start": 7299.98, + "end": 7303.28, + "probability": 0.9418 + }, + { + "start": 7304.04, + "end": 7306.4, + "probability": 0.9766 + }, + { + "start": 7307.22, + "end": 7312.11, + "probability": 0.8618 + }, + { + "start": 7312.42, + "end": 7313.54, + "probability": 0.6438 + }, + { + "start": 7314.38, + "end": 7316.28, + "probability": 0.7702 + }, + { + "start": 7316.36, + "end": 7317.52, + "probability": 0.8008 + }, + { + "start": 7318.12, + "end": 7320.92, + "probability": 0.9854 + }, + { + "start": 7322.1, + "end": 7325.12, + "probability": 0.7018 + }, + { + "start": 7325.12, + "end": 7331.74, + "probability": 0.9851 + }, + { + "start": 7332.2, + "end": 7334.62, + "probability": 0.9983 + }, + { + "start": 7336.24, + "end": 7337.6, + "probability": 0.7181 + }, + { + "start": 7338.14, + "end": 7338.64, + "probability": 0.7115 + }, + { + "start": 7339.2, + "end": 7341.1, + "probability": 0.9785 + }, + { + "start": 7341.82, + "end": 7344.3, + "probability": 0.7517 + }, + { + "start": 7344.44, + "end": 7346.9, + "probability": 0.9321 + }, + { + "start": 7347.1, + "end": 7347.38, + "probability": 0.8268 + }, + { + "start": 7347.78, + "end": 7349.48, + "probability": 0.6566 + }, + { + "start": 7349.92, + "end": 7351.78, + "probability": 0.8727 + }, + { + "start": 7357.98, + "end": 7360.62, + "probability": 0.1905 + }, + { + "start": 7361.71, + "end": 7366.76, + "probability": 0.1655 + }, + { + "start": 7367.8, + "end": 7372.94, + "probability": 0.1035 + }, + { + "start": 7399.86, + "end": 7400.52, + "probability": 0.1945 + }, + { + "start": 7403.94, + "end": 7408.42, + "probability": 0.9861 + }, + { + "start": 7409.64, + "end": 7412.56, + "probability": 0.9668 + }, + { + "start": 7413.78, + "end": 7415.21, + "probability": 0.9316 + }, + { + "start": 7416.98, + "end": 7420.3, + "probability": 0.9984 + }, + { + "start": 7421.36, + "end": 7425.45, + "probability": 0.9922 + }, + { + "start": 7427.14, + "end": 7427.98, + "probability": 0.597 + }, + { + "start": 7428.42, + "end": 7435.16, + "probability": 0.9696 + }, + { + "start": 7436.94, + "end": 7437.58, + "probability": 0.6567 + }, + { + "start": 7438.58, + "end": 7440.56, + "probability": 0.9503 + }, + { + "start": 7441.7, + "end": 7443.2, + "probability": 0.9824 + }, + { + "start": 7444.68, + "end": 7447.64, + "probability": 0.9912 + }, + { + "start": 7448.78, + "end": 7451.5, + "probability": 0.8447 + }, + { + "start": 7452.24, + "end": 7452.87, + "probability": 0.7598 + }, + { + "start": 7454.08, + "end": 7457.68, + "probability": 0.9896 + }, + { + "start": 7458.94, + "end": 7463.34, + "probability": 0.9915 + }, + { + "start": 7465.0, + "end": 7465.54, + "probability": 0.9312 + }, + { + "start": 7466.52, + "end": 7467.92, + "probability": 0.8799 + }, + { + "start": 7467.98, + "end": 7468.7, + "probability": 0.6755 + }, + { + "start": 7468.96, + "end": 7471.2, + "probability": 0.7993 + }, + { + "start": 7471.84, + "end": 7472.52, + "probability": 0.4963 + }, + { + "start": 7473.0, + "end": 7474.14, + "probability": 0.9963 + }, + { + "start": 7475.02, + "end": 7476.86, + "probability": 0.7725 + }, + { + "start": 7477.8, + "end": 7479.8, + "probability": 0.9565 + }, + { + "start": 7480.66, + "end": 7484.3, + "probability": 0.8652 + }, + { + "start": 7484.76, + "end": 7489.58, + "probability": 0.9873 + }, + { + "start": 7490.44, + "end": 7492.1, + "probability": 0.994 + }, + { + "start": 7492.76, + "end": 7493.86, + "probability": 0.8152 + }, + { + "start": 7494.62, + "end": 7495.82, + "probability": 0.9041 + }, + { + "start": 7496.6, + "end": 7497.44, + "probability": 0.9414 + }, + { + "start": 7498.06, + "end": 7500.14, + "probability": 0.9869 + }, + { + "start": 7501.1, + "end": 7503.86, + "probability": 0.8621 + }, + { + "start": 7505.26, + "end": 7505.9, + "probability": 0.7503 + }, + { + "start": 7507.16, + "end": 7509.68, + "probability": 0.9971 + }, + { + "start": 7509.84, + "end": 7511.42, + "probability": 0.9887 + }, + { + "start": 7513.02, + "end": 7515.26, + "probability": 0.7683 + }, + { + "start": 7516.82, + "end": 7518.62, + "probability": 0.9521 + }, + { + "start": 7519.68, + "end": 7520.38, + "probability": 0.9288 + }, + { + "start": 7520.98, + "end": 7521.9, + "probability": 0.8806 + }, + { + "start": 7523.22, + "end": 7529.04, + "probability": 0.9537 + }, + { + "start": 7529.94, + "end": 7530.68, + "probability": 0.7885 + }, + { + "start": 7531.74, + "end": 7535.39, + "probability": 0.9839 + }, + { + "start": 7536.3, + "end": 7538.7, + "probability": 0.855 + }, + { + "start": 7539.36, + "end": 7544.72, + "probability": 0.9911 + }, + { + "start": 7545.38, + "end": 7551.2, + "probability": 0.996 + }, + { + "start": 7552.04, + "end": 7553.88, + "probability": 0.9914 + }, + { + "start": 7554.52, + "end": 7556.58, + "probability": 0.998 + }, + { + "start": 7557.96, + "end": 7559.72, + "probability": 0.9846 + }, + { + "start": 7560.86, + "end": 7562.08, + "probability": 0.7797 + }, + { + "start": 7562.2, + "end": 7565.54, + "probability": 0.9889 + }, + { + "start": 7566.34, + "end": 7566.84, + "probability": 0.523 + }, + { + "start": 7567.9, + "end": 7570.12, + "probability": 0.7208 + }, + { + "start": 7570.92, + "end": 7572.22, + "probability": 0.8914 + }, + { + "start": 7573.92, + "end": 7575.46, + "probability": 0.7856 + }, + { + "start": 7576.84, + "end": 7578.6, + "probability": 0.982 + }, + { + "start": 7579.68, + "end": 7581.52, + "probability": 0.8698 + }, + { + "start": 7582.46, + "end": 7583.3, + "probability": 0.9634 + }, + { + "start": 7585.04, + "end": 7588.58, + "probability": 0.9712 + }, + { + "start": 7589.38, + "end": 7590.22, + "probability": 0.998 + }, + { + "start": 7591.1, + "end": 7595.38, + "probability": 0.9468 + }, + { + "start": 7595.86, + "end": 7597.42, + "probability": 0.9927 + }, + { + "start": 7597.5, + "end": 7598.52, + "probability": 0.6451 + }, + { + "start": 7598.64, + "end": 7599.9, + "probability": 0.915 + }, + { + "start": 7600.78, + "end": 7601.66, + "probability": 0.9821 + }, + { + "start": 7603.78, + "end": 7605.2, + "probability": 0.9766 + }, + { + "start": 7606.76, + "end": 7608.76, + "probability": 0.9727 + }, + { + "start": 7610.4, + "end": 7612.84, + "probability": 0.8671 + }, + { + "start": 7613.98, + "end": 7615.0, + "probability": 0.83 + }, + { + "start": 7616.14, + "end": 7620.62, + "probability": 0.9913 + }, + { + "start": 7621.68, + "end": 7623.4, + "probability": 0.8613 + }, + { + "start": 7624.0, + "end": 7625.08, + "probability": 0.6925 + }, + { + "start": 7625.16, + "end": 7626.34, + "probability": 0.7959 + }, + { + "start": 7626.54, + "end": 7628.04, + "probability": 0.9746 + }, + { + "start": 7628.94, + "end": 7634.24, + "probability": 0.9991 + }, + { + "start": 7634.76, + "end": 7638.48, + "probability": 0.9393 + }, + { + "start": 7639.24, + "end": 7644.7, + "probability": 0.889 + }, + { + "start": 7644.96, + "end": 7647.48, + "probability": 0.9268 + }, + { + "start": 7647.54, + "end": 7648.1, + "probability": 0.6932 + }, + { + "start": 7648.12, + "end": 7648.48, + "probability": 0.688 + }, + { + "start": 7648.64, + "end": 7649.09, + "probability": 0.8714 + }, + { + "start": 7650.1, + "end": 7650.54, + "probability": 0.9673 + }, + { + "start": 7650.66, + "end": 7651.29, + "probability": 0.9281 + }, + { + "start": 7651.52, + "end": 7652.21, + "probability": 0.8239 + }, + { + "start": 7654.1, + "end": 7657.52, + "probability": 0.9805 + }, + { + "start": 7658.08, + "end": 7661.84, + "probability": 0.8982 + }, + { + "start": 7662.58, + "end": 7664.18, + "probability": 0.4996 + }, + { + "start": 7665.2, + "end": 7665.9, + "probability": 0.7756 + }, + { + "start": 7666.08, + "end": 7671.93, + "probability": 0.8665 + }, + { + "start": 7673.06, + "end": 7674.28, + "probability": 0.9961 + }, + { + "start": 7675.02, + "end": 7677.18, + "probability": 0.9932 + }, + { + "start": 7677.86, + "end": 7679.4, + "probability": 0.862 + }, + { + "start": 7679.48, + "end": 7682.05, + "probability": 0.9901 + }, + { + "start": 7682.88, + "end": 7683.52, + "probability": 0.5848 + }, + { + "start": 7684.76, + "end": 7686.18, + "probability": 0.9854 + }, + { + "start": 7687.22, + "end": 7691.56, + "probability": 0.7404 + }, + { + "start": 7691.76, + "end": 7694.06, + "probability": 0.7233 + }, + { + "start": 7694.66, + "end": 7696.68, + "probability": 0.7503 + }, + { + "start": 7697.98, + "end": 7703.12, + "probability": 0.6565 + }, + { + "start": 7703.4, + "end": 7705.33, + "probability": 0.9529 + }, + { + "start": 7706.76, + "end": 7709.38, + "probability": 0.9414 + }, + { + "start": 7710.5, + "end": 7713.06, + "probability": 0.6592 + }, + { + "start": 7714.08, + "end": 7716.82, + "probability": 0.9908 + }, + { + "start": 7716.82, + "end": 7720.06, + "probability": 0.9909 + }, + { + "start": 7722.22, + "end": 7725.84, + "probability": 0.9797 + }, + { + "start": 7726.3, + "end": 7727.2, + "probability": 0.8433 + }, + { + "start": 7727.52, + "end": 7729.92, + "probability": 0.9807 + }, + { + "start": 7730.68, + "end": 7734.24, + "probability": 0.9881 + }, + { + "start": 7734.92, + "end": 7739.11, + "probability": 0.988 + }, + { + "start": 7739.3, + "end": 7739.73, + "probability": 0.6418 + }, + { + "start": 7740.12, + "end": 7742.68, + "probability": 0.8328 + }, + { + "start": 7743.34, + "end": 7744.08, + "probability": 0.8248 + }, + { + "start": 7745.22, + "end": 7746.5, + "probability": 0.4788 + }, + { + "start": 7746.62, + "end": 7747.96, + "probability": 0.8792 + }, + { + "start": 7748.14, + "end": 7750.52, + "probability": 0.6943 + }, + { + "start": 7751.92, + "end": 7755.42, + "probability": 0.9419 + }, + { + "start": 7756.92, + "end": 7757.76, + "probability": 0.5326 + }, + { + "start": 7758.66, + "end": 7759.02, + "probability": 0.743 + }, + { + "start": 7760.44, + "end": 7763.34, + "probability": 0.9797 + }, + { + "start": 7764.32, + "end": 7766.3, + "probability": 0.9953 + }, + { + "start": 7767.4, + "end": 7768.49, + "probability": 0.9395 + }, + { + "start": 7769.3, + "end": 7770.54, + "probability": 0.9227 + }, + { + "start": 7771.4, + "end": 7773.76, + "probability": 0.9707 + }, + { + "start": 7775.24, + "end": 7779.42, + "probability": 0.8896 + }, + { + "start": 7780.14, + "end": 7781.4, + "probability": 0.9289 + }, + { + "start": 7782.3, + "end": 7785.05, + "probability": 0.4861 + }, + { + "start": 7786.6, + "end": 7788.3, + "probability": 0.9264 + }, + { + "start": 7789.16, + "end": 7790.14, + "probability": 0.9668 + }, + { + "start": 7791.34, + "end": 7792.74, + "probability": 0.8752 + }, + { + "start": 7793.42, + "end": 7795.08, + "probability": 0.6557 + }, + { + "start": 7795.84, + "end": 7798.06, + "probability": 0.9326 + }, + { + "start": 7800.14, + "end": 7801.92, + "probability": 0.8989 + }, + { + "start": 7802.56, + "end": 7808.08, + "probability": 0.9662 + }, + { + "start": 7809.32, + "end": 7810.18, + "probability": 0.9514 + }, + { + "start": 7811.66, + "end": 7816.02, + "probability": 0.9567 + }, + { + "start": 7816.7, + "end": 7817.92, + "probability": 0.7648 + }, + { + "start": 7818.58, + "end": 7820.58, + "probability": 0.8894 + }, + { + "start": 7821.26, + "end": 7822.18, + "probability": 0.991 + }, + { + "start": 7823.56, + "end": 7825.54, + "probability": 0.9176 + }, + { + "start": 7825.72, + "end": 7826.98, + "probability": 0.999 + }, + { + "start": 7828.16, + "end": 7833.14, + "probability": 0.9922 + }, + { + "start": 7834.26, + "end": 7835.74, + "probability": 0.9484 + }, + { + "start": 7836.84, + "end": 7840.8, + "probability": 0.9934 + }, + { + "start": 7841.62, + "end": 7842.54, + "probability": 0.9541 + }, + { + "start": 7843.48, + "end": 7844.9, + "probability": 0.847 + }, + { + "start": 7845.48, + "end": 7847.66, + "probability": 0.9937 + }, + { + "start": 7848.64, + "end": 7850.22, + "probability": 0.9319 + }, + { + "start": 7851.24, + "end": 7854.58, + "probability": 0.9515 + }, + { + "start": 7855.36, + "end": 7857.4, + "probability": 0.9209 + }, + { + "start": 7857.98, + "end": 7859.27, + "probability": 0.7834 + }, + { + "start": 7859.98, + "end": 7863.64, + "probability": 0.9739 + }, + { + "start": 7864.42, + "end": 7866.98, + "probability": 0.9545 + }, + { + "start": 7868.86, + "end": 7869.63, + "probability": 0.6163 + }, + { + "start": 7871.18, + "end": 7872.38, + "probability": 0.8638 + }, + { + "start": 7873.62, + "end": 7875.72, + "probability": 0.9944 + }, + { + "start": 7877.3, + "end": 7880.04, + "probability": 0.6682 + }, + { + "start": 7880.88, + "end": 7884.62, + "probability": 0.6296 + }, + { + "start": 7885.36, + "end": 7886.06, + "probability": 0.8829 + }, + { + "start": 7887.24, + "end": 7888.96, + "probability": 0.7007 + }, + { + "start": 7889.42, + "end": 7892.46, + "probability": 0.5769 + }, + { + "start": 7893.56, + "end": 7895.08, + "probability": 0.6831 + }, + { + "start": 7895.7, + "end": 7896.66, + "probability": 0.7074 + }, + { + "start": 7897.36, + "end": 7898.72, + "probability": 0.9844 + }, + { + "start": 7899.04, + "end": 7901.18, + "probability": 0.9926 + }, + { + "start": 7901.3, + "end": 7903.32, + "probability": 0.6438 + }, + { + "start": 7905.32, + "end": 7907.94, + "probability": 0.8064 + }, + { + "start": 7907.94, + "end": 7910.68, + "probability": 0.7874 + }, + { + "start": 7910.76, + "end": 7912.24, + "probability": 0.9621 + }, + { + "start": 7912.96, + "end": 7913.48, + "probability": 0.718 + }, + { + "start": 7914.12, + "end": 7917.6, + "probability": 0.8448 + }, + { + "start": 7918.5, + "end": 7922.04, + "probability": 0.927 + }, + { + "start": 7922.94, + "end": 7928.4, + "probability": 0.7439 + }, + { + "start": 7929.08, + "end": 7931.14, + "probability": 0.8419 + }, + { + "start": 7932.76, + "end": 7933.04, + "probability": 0.921 + }, + { + "start": 7934.76, + "end": 7938.59, + "probability": 0.9485 + }, + { + "start": 7939.12, + "end": 7939.6, + "probability": 0.4482 + }, + { + "start": 7940.92, + "end": 7944.62, + "probability": 0.9477 + }, + { + "start": 7945.88, + "end": 7947.92, + "probability": 0.5377 + }, + { + "start": 7948.66, + "end": 7949.6, + "probability": 0.3725 + }, + { + "start": 7950.38, + "end": 7951.68, + "probability": 0.6934 + }, + { + "start": 7953.1, + "end": 7954.06, + "probability": 0.8314 + }, + { + "start": 7954.8, + "end": 7955.68, + "probability": 0.6518 + }, + { + "start": 7956.66, + "end": 7959.02, + "probability": 0.8726 + }, + { + "start": 7959.76, + "end": 7960.62, + "probability": 0.8828 + }, + { + "start": 7961.64, + "end": 7963.62, + "probability": 0.8945 + }, + { + "start": 7964.94, + "end": 7966.84, + "probability": 0.86 + }, + { + "start": 7967.36, + "end": 7968.02, + "probability": 0.8838 + }, + { + "start": 7968.98, + "end": 7970.86, + "probability": 0.5267 + }, + { + "start": 7972.1, + "end": 7973.08, + "probability": 0.2772 + }, + { + "start": 7973.08, + "end": 7974.64, + "probability": 0.3653 + }, + { + "start": 7976.16, + "end": 7977.2, + "probability": 0.707 + }, + { + "start": 7977.98, + "end": 7982.42, + "probability": 0.9426 + }, + { + "start": 7983.84, + "end": 7985.58, + "probability": 0.7361 + }, + { + "start": 7986.62, + "end": 7988.88, + "probability": 0.7697 + }, + { + "start": 7989.64, + "end": 7995.1, + "probability": 0.9932 + }, + { + "start": 7995.86, + "end": 7998.5, + "probability": 0.9988 + }, + { + "start": 7999.6, + "end": 8000.51, + "probability": 0.9598 + }, + { + "start": 8001.32, + "end": 8003.62, + "probability": 0.9827 + }, + { + "start": 8004.66, + "end": 8006.12, + "probability": 0.9335 + }, + { + "start": 8007.48, + "end": 8011.02, + "probability": 0.9381 + }, + { + "start": 8011.76, + "end": 8012.94, + "probability": 0.8718 + }, + { + "start": 8013.44, + "end": 8015.18, + "probability": 0.6146 + }, + { + "start": 8015.24, + "end": 8019.54, + "probability": 0.9636 + }, + { + "start": 8020.48, + "end": 8024.54, + "probability": 0.9685 + }, + { + "start": 8024.84, + "end": 8025.84, + "probability": 0.1677 + }, + { + "start": 8025.9, + "end": 8028.0, + "probability": 0.7632 + }, + { + "start": 8029.34, + "end": 8031.48, + "probability": 0.9913 + }, + { + "start": 8031.66, + "end": 8032.68, + "probability": 0.6651 + }, + { + "start": 8033.78, + "end": 8036.94, + "probability": 0.907 + }, + { + "start": 8037.74, + "end": 8042.54, + "probability": 0.9129 + }, + { + "start": 8043.08, + "end": 8046.62, + "probability": 0.9338 + }, + { + "start": 8048.1, + "end": 8052.2, + "probability": 0.835 + }, + { + "start": 8052.96, + "end": 8053.82, + "probability": 0.7294 + }, + { + "start": 8053.94, + "end": 8056.58, + "probability": 0.9484 + }, + { + "start": 8057.34, + "end": 8060.2, + "probability": 0.8253 + }, + { + "start": 8065.2, + "end": 8068.18, + "probability": 0.8279 + }, + { + "start": 8068.3, + "end": 8068.44, + "probability": 0.0211 + }, + { + "start": 8069.02, + "end": 8070.88, + "probability": 0.6084 + }, + { + "start": 8071.68, + "end": 8071.8, + "probability": 0.7127 + }, + { + "start": 8071.8, + "end": 8072.7, + "probability": 0.4166 + }, + { + "start": 8073.88, + "end": 8075.06, + "probability": 0.8536 + }, + { + "start": 8075.62, + "end": 8080.66, + "probability": 0.9754 + }, + { + "start": 8081.36, + "end": 8084.2, + "probability": 0.8225 + }, + { + "start": 8084.9, + "end": 8085.99, + "probability": 0.9099 + }, + { + "start": 8086.86, + "end": 8091.3, + "probability": 0.9884 + }, + { + "start": 8091.88, + "end": 8097.94, + "probability": 0.9587 + }, + { + "start": 8098.5, + "end": 8101.62, + "probability": 0.7712 + }, + { + "start": 8102.2, + "end": 8103.84, + "probability": 0.4947 + }, + { + "start": 8104.36, + "end": 8108.86, + "probability": 0.8156 + }, + { + "start": 8109.38, + "end": 8111.7, + "probability": 0.9753 + }, + { + "start": 8112.16, + "end": 8113.2, + "probability": 0.613 + }, + { + "start": 8113.26, + "end": 8117.98, + "probability": 0.9796 + }, + { + "start": 8118.66, + "end": 8119.22, + "probability": 0.702 + }, + { + "start": 8120.28, + "end": 8123.5, + "probability": 0.9856 + }, + { + "start": 8124.28, + "end": 8128.68, + "probability": 0.443 + }, + { + "start": 8129.42, + "end": 8131.66, + "probability": 0.6279 + }, + { + "start": 8131.88, + "end": 8134.26, + "probability": 0.4485 + }, + { + "start": 8135.64, + "end": 8137.96, + "probability": 0.8541 + }, + { + "start": 8148.4, + "end": 8152.8, + "probability": 0.6617 + }, + { + "start": 8153.88, + "end": 8155.02, + "probability": 0.7516 + }, + { + "start": 8155.14, + "end": 8156.22, + "probability": 0.7257 + }, + { + "start": 8156.34, + "end": 8157.42, + "probability": 0.7118 + }, + { + "start": 8157.84, + "end": 8158.38, + "probability": 0.6767 + }, + { + "start": 8158.96, + "end": 8160.4, + "probability": 0.3833 + }, + { + "start": 8161.08, + "end": 8163.24, + "probability": 0.1218 + }, + { + "start": 8164.0, + "end": 8167.8, + "probability": 0.1752 + }, + { + "start": 8167.82, + "end": 8168.78, + "probability": 0.2323 + }, + { + "start": 8168.78, + "end": 8170.04, + "probability": 0.4459 + }, + { + "start": 8173.96, + "end": 8176.68, + "probability": 0.8162 + }, + { + "start": 8181.5, + "end": 8181.8, + "probability": 0.4984 + }, + { + "start": 8182.1, + "end": 8188.64, + "probability": 0.9856 + }, + { + "start": 8190.22, + "end": 8192.98, + "probability": 0.9594 + }, + { + "start": 8193.24, + "end": 8194.47, + "probability": 0.9495 + }, + { + "start": 8197.64, + "end": 8199.32, + "probability": 0.9666 + }, + { + "start": 8202.24, + "end": 8203.66, + "probability": 0.8547 + }, + { + "start": 8203.72, + "end": 8204.92, + "probability": 0.5263 + }, + { + "start": 8204.98, + "end": 8205.68, + "probability": 0.9364 + }, + { + "start": 8205.98, + "end": 8207.74, + "probability": 0.9541 + }, + { + "start": 8209.18, + "end": 8212.44, + "probability": 0.9746 + }, + { + "start": 8213.72, + "end": 8216.0, + "probability": 0.998 + }, + { + "start": 8217.76, + "end": 8221.76, + "probability": 0.9318 + }, + { + "start": 8223.12, + "end": 8223.74, + "probability": 0.988 + }, + { + "start": 8226.36, + "end": 8228.44, + "probability": 0.7141 + }, + { + "start": 8230.6, + "end": 8234.06, + "probability": 0.9779 + }, + { + "start": 8236.96, + "end": 8238.34, + "probability": 0.6835 + }, + { + "start": 8241.48, + "end": 8244.24, + "probability": 0.994 + }, + { + "start": 8244.4, + "end": 8247.92, + "probability": 0.895 + }, + { + "start": 8249.14, + "end": 8250.04, + "probability": 0.5991 + }, + { + "start": 8250.94, + "end": 8252.4, + "probability": 0.9053 + }, + { + "start": 8255.0, + "end": 8258.72, + "probability": 0.7481 + }, + { + "start": 8259.46, + "end": 8261.3, + "probability": 0.8682 + }, + { + "start": 8262.88, + "end": 8263.94, + "probability": 0.9775 + }, + { + "start": 8265.32, + "end": 8267.86, + "probability": 0.9956 + }, + { + "start": 8270.26, + "end": 8276.88, + "probability": 0.9917 + }, + { + "start": 8279.24, + "end": 8281.92, + "probability": 0.8496 + }, + { + "start": 8284.62, + "end": 8288.04, + "probability": 0.3475 + }, + { + "start": 8288.66, + "end": 8290.04, + "probability": 0.6968 + }, + { + "start": 8293.02, + "end": 8295.26, + "probability": 0.6053 + }, + { + "start": 8296.26, + "end": 8298.76, + "probability": 0.9961 + }, + { + "start": 8301.68, + "end": 8303.69, + "probability": 0.8795 + }, + { + "start": 8304.86, + "end": 8306.98, + "probability": 0.9309 + }, + { + "start": 8309.16, + "end": 8309.94, + "probability": 0.3724 + }, + { + "start": 8311.64, + "end": 8312.88, + "probability": 0.977 + }, + { + "start": 8312.94, + "end": 8313.7, + "probability": 0.9735 + }, + { + "start": 8316.76, + "end": 8319.3, + "probability": 0.3123 + }, + { + "start": 8320.58, + "end": 8323.9, + "probability": 0.7505 + }, + { + "start": 8324.06, + "end": 8325.14, + "probability": 0.7989 + }, + { + "start": 8325.58, + "end": 8330.34, + "probability": 0.9719 + }, + { + "start": 8332.66, + "end": 8333.2, + "probability": 0.2779 + }, + { + "start": 8335.8, + "end": 8336.7, + "probability": 0.9018 + }, + { + "start": 8337.68, + "end": 8341.06, + "probability": 0.8665 + }, + { + "start": 8343.38, + "end": 8345.14, + "probability": 0.929 + }, + { + "start": 8347.36, + "end": 8348.46, + "probability": 0.9816 + }, + { + "start": 8348.82, + "end": 8349.44, + "probability": 0.9662 + }, + { + "start": 8350.83, + "end": 8354.18, + "probability": 0.9843 + }, + { + "start": 8356.95, + "end": 8360.5, + "probability": 0.9989 + }, + { + "start": 8361.82, + "end": 8362.5, + "probability": 0.9673 + }, + { + "start": 8364.02, + "end": 8365.72, + "probability": 0.9977 + }, + { + "start": 8366.24, + "end": 8367.12, + "probability": 0.9829 + }, + { + "start": 8368.7, + "end": 8372.28, + "probability": 0.9937 + }, + { + "start": 8373.66, + "end": 8374.58, + "probability": 0.828 + }, + { + "start": 8375.84, + "end": 8378.36, + "probability": 0.9495 + }, + { + "start": 8381.84, + "end": 8387.06, + "probability": 0.9865 + }, + { + "start": 8387.92, + "end": 8388.88, + "probability": 0.763 + }, + { + "start": 8389.1, + "end": 8391.41, + "probability": 0.4058 + }, + { + "start": 8391.94, + "end": 8394.76, + "probability": 0.7498 + }, + { + "start": 8396.84, + "end": 8398.82, + "probability": 0.9813 + }, + { + "start": 8400.76, + "end": 8403.84, + "probability": 0.6982 + }, + { + "start": 8404.48, + "end": 8406.2, + "probability": 0.7869 + }, + { + "start": 8408.68, + "end": 8411.1, + "probability": 0.9891 + }, + { + "start": 8414.6, + "end": 8415.94, + "probability": 0.9995 + }, + { + "start": 8416.9, + "end": 8418.62, + "probability": 0.9692 + }, + { + "start": 8419.28, + "end": 8420.28, + "probability": 0.8503 + }, + { + "start": 8420.86, + "end": 8421.5, + "probability": 0.7998 + }, + { + "start": 8422.12, + "end": 8423.9, + "probability": 0.9771 + }, + { + "start": 8424.58, + "end": 8425.1, + "probability": 0.8116 + }, + { + "start": 8426.08, + "end": 8427.48, + "probability": 0.582 + }, + { + "start": 8428.1, + "end": 8429.72, + "probability": 0.967 + }, + { + "start": 8433.82, + "end": 8436.86, + "probability": 0.9985 + }, + { + "start": 8436.86, + "end": 8440.82, + "probability": 0.9988 + }, + { + "start": 8444.34, + "end": 8447.42, + "probability": 0.9695 + }, + { + "start": 8448.5, + "end": 8451.74, + "probability": 0.9681 + }, + { + "start": 8453.74, + "end": 8454.98, + "probability": 0.8318 + }, + { + "start": 8456.5, + "end": 8458.58, + "probability": 0.8954 + }, + { + "start": 8459.98, + "end": 8462.32, + "probability": 0.8798 + }, + { + "start": 8463.48, + "end": 8466.28, + "probability": 0.9739 + }, + { + "start": 8467.42, + "end": 8471.74, + "probability": 0.9454 + }, + { + "start": 8472.52, + "end": 8473.38, + "probability": 0.6679 + }, + { + "start": 8476.32, + "end": 8477.52, + "probability": 0.6862 + }, + { + "start": 8479.3, + "end": 8480.7, + "probability": 0.8578 + }, + { + "start": 8481.1, + "end": 8482.92, + "probability": 0.9094 + }, + { + "start": 8483.36, + "end": 8484.98, + "probability": 0.537 + }, + { + "start": 8487.86, + "end": 8489.86, + "probability": 0.9438 + }, + { + "start": 8490.66, + "end": 8491.28, + "probability": 0.8024 + }, + { + "start": 8492.26, + "end": 8493.26, + "probability": 0.7048 + }, + { + "start": 8493.4, + "end": 8494.42, + "probability": 0.98 + }, + { + "start": 8494.76, + "end": 8495.38, + "probability": 0.8669 + }, + { + "start": 8495.56, + "end": 8496.64, + "probability": 0.7186 + }, + { + "start": 8497.04, + "end": 8499.88, + "probability": 0.9961 + }, + { + "start": 8504.52, + "end": 8504.62, + "probability": 0.1281 + }, + { + "start": 8504.62, + "end": 8505.14, + "probability": 0.501 + }, + { + "start": 8505.3, + "end": 8507.76, + "probability": 0.8228 + }, + { + "start": 8508.96, + "end": 8509.98, + "probability": 0.9822 + }, + { + "start": 8514.42, + "end": 8516.06, + "probability": 0.1502 + }, + { + "start": 8516.1, + "end": 8517.8, + "probability": 0.7964 + }, + { + "start": 8518.24, + "end": 8520.76, + "probability": 0.6627 + }, + { + "start": 8520.86, + "end": 8521.42, + "probability": 0.9476 + }, + { + "start": 8522.96, + "end": 8523.96, + "probability": 0.6101 + }, + { + "start": 8524.38, + "end": 8525.34, + "probability": 0.8627 + }, + { + "start": 8526.78, + "end": 8529.82, + "probability": 0.9932 + }, + { + "start": 8531.08, + "end": 8531.76, + "probability": 0.636 + }, + { + "start": 8532.9, + "end": 8534.03, + "probability": 0.9963 + }, + { + "start": 8535.02, + "end": 8535.76, + "probability": 0.999 + }, + { + "start": 8536.74, + "end": 8537.24, + "probability": 0.7655 + }, + { + "start": 8538.16, + "end": 8542.82, + "probability": 0.9913 + }, + { + "start": 8543.36, + "end": 8547.46, + "probability": 0.9613 + }, + { + "start": 8547.8, + "end": 8549.84, + "probability": 0.878 + }, + { + "start": 8552.28, + "end": 8555.06, + "probability": 0.6721 + }, + { + "start": 8555.44, + "end": 8560.98, + "probability": 0.9888 + }, + { + "start": 8561.02, + "end": 8562.4, + "probability": 0.9058 + }, + { + "start": 8563.48, + "end": 8564.48, + "probability": 0.9921 + }, + { + "start": 8565.08, + "end": 8567.92, + "probability": 0.9986 + }, + { + "start": 8568.72, + "end": 8570.4, + "probability": 0.999 + }, + { + "start": 8573.62, + "end": 8575.42, + "probability": 0.9893 + }, + { + "start": 8575.54, + "end": 8578.78, + "probability": 0.9918 + }, + { + "start": 8579.82, + "end": 8583.02, + "probability": 0.8531 + }, + { + "start": 8583.64, + "end": 8586.26, + "probability": 0.9714 + }, + { + "start": 8586.82, + "end": 8588.54, + "probability": 0.9719 + }, + { + "start": 8588.76, + "end": 8592.08, + "probability": 0.9839 + }, + { + "start": 8592.42, + "end": 8593.78, + "probability": 0.8607 + }, + { + "start": 8593.88, + "end": 8596.48, + "probability": 0.8862 + }, + { + "start": 8596.84, + "end": 8598.92, + "probability": 0.981 + }, + { + "start": 8599.54, + "end": 8602.3, + "probability": 0.8514 + }, + { + "start": 8604.58, + "end": 8605.38, + "probability": 0.748 + }, + { + "start": 8605.88, + "end": 8606.76, + "probability": 0.9541 + }, + { + "start": 8607.7, + "end": 8609.74, + "probability": 0.7704 + }, + { + "start": 8609.92, + "end": 8610.92, + "probability": 0.7187 + }, + { + "start": 8611.28, + "end": 8612.54, + "probability": 0.9593 + }, + { + "start": 8612.9, + "end": 8614.36, + "probability": 0.9272 + }, + { + "start": 8615.7, + "end": 8621.2, + "probability": 0.9849 + }, + { + "start": 8621.28, + "end": 8621.56, + "probability": 0.7329 + }, + { + "start": 8623.24, + "end": 8624.08, + "probability": 0.4822 + }, + { + "start": 8624.08, + "end": 8625.8, + "probability": 0.8593 + }, + { + "start": 8647.16, + "end": 8648.3, + "probability": 0.7025 + }, + { + "start": 8649.66, + "end": 8654.62, + "probability": 0.9241 + }, + { + "start": 8655.6, + "end": 8656.4, + "probability": 0.591 + }, + { + "start": 8658.36, + "end": 8659.0, + "probability": 0.9646 + }, + { + "start": 8660.6, + "end": 8663.36, + "probability": 0.9604 + }, + { + "start": 8664.68, + "end": 8669.22, + "probability": 0.9535 + }, + { + "start": 8670.7, + "end": 8674.02, + "probability": 0.4985 + }, + { + "start": 8674.1, + "end": 8675.5, + "probability": 0.9545 + }, + { + "start": 8676.98, + "end": 8677.27, + "probability": 0.8691 + }, + { + "start": 8680.12, + "end": 8688.46, + "probability": 0.9801 + }, + { + "start": 8689.28, + "end": 8690.58, + "probability": 0.8428 + }, + { + "start": 8694.66, + "end": 8695.38, + "probability": 0.7432 + }, + { + "start": 8698.68, + "end": 8700.52, + "probability": 0.6971 + }, + { + "start": 8701.26, + "end": 8702.84, + "probability": 0.7151 + }, + { + "start": 8703.94, + "end": 8705.96, + "probability": 0.7533 + }, + { + "start": 8707.12, + "end": 8708.04, + "probability": 0.9404 + }, + { + "start": 8709.58, + "end": 8711.34, + "probability": 0.9792 + }, + { + "start": 8712.58, + "end": 8715.52, + "probability": 0.9193 + }, + { + "start": 8716.62, + "end": 8716.62, + "probability": 0.0019 + }, + { + "start": 8718.52, + "end": 8721.62, + "probability": 0.9875 + }, + { + "start": 8723.02, + "end": 8728.52, + "probability": 0.9857 + }, + { + "start": 8729.62, + "end": 8730.84, + "probability": 0.9607 + }, + { + "start": 8732.48, + "end": 8734.94, + "probability": 0.9936 + }, + { + "start": 8735.04, + "end": 8737.26, + "probability": 0.9666 + }, + { + "start": 8737.78, + "end": 8742.72, + "probability": 0.9957 + }, + { + "start": 8743.32, + "end": 8744.2, + "probability": 0.5641 + }, + { + "start": 8745.16, + "end": 8749.3, + "probability": 0.5723 + }, + { + "start": 8752.58, + "end": 8757.62, + "probability": 0.9783 + }, + { + "start": 8758.18, + "end": 8763.98, + "probability": 0.8357 + }, + { + "start": 8765.6, + "end": 8767.4, + "probability": 0.4508 + }, + { + "start": 8768.42, + "end": 8775.8, + "probability": 0.9877 + }, + { + "start": 8777.88, + "end": 8780.14, + "probability": 0.8979 + }, + { + "start": 8780.74, + "end": 8781.16, + "probability": 0.8252 + }, + { + "start": 8781.78, + "end": 8786.64, + "probability": 0.9734 + }, + { + "start": 8787.08, + "end": 8788.06, + "probability": 0.7529 + }, + { + "start": 8789.32, + "end": 8791.89, + "probability": 0.8307 + }, + { + "start": 8792.38, + "end": 8793.7, + "probability": 0.2936 + }, + { + "start": 8795.48, + "end": 8797.64, + "probability": 0.6891 + }, + { + "start": 8800.0, + "end": 8804.5, + "probability": 0.995 + }, + { + "start": 8805.68, + "end": 8807.6, + "probability": 0.9467 + }, + { + "start": 8808.62, + "end": 8814.54, + "probability": 0.9783 + }, + { + "start": 8814.88, + "end": 8815.6, + "probability": 0.792 + }, + { + "start": 8816.12, + "end": 8818.08, + "probability": 0.7437 + }, + { + "start": 8819.36, + "end": 8819.74, + "probability": 0.9803 + }, + { + "start": 8820.56, + "end": 8825.96, + "probability": 0.9701 + }, + { + "start": 8827.62, + "end": 8830.08, + "probability": 0.9184 + }, + { + "start": 8831.94, + "end": 8832.98, + "probability": 0.9641 + }, + { + "start": 8833.4, + "end": 8835.72, + "probability": 0.9536 + }, + { + "start": 8835.94, + "end": 8836.32, + "probability": 0.8243 + }, + { + "start": 8836.98, + "end": 8838.16, + "probability": 0.9316 + }, + { + "start": 8838.38, + "end": 8846.78, + "probability": 0.8688 + }, + { + "start": 8846.78, + "end": 8850.56, + "probability": 0.7041 + }, + { + "start": 8852.24, + "end": 8854.92, + "probability": 0.9583 + }, + { + "start": 8855.02, + "end": 8857.18, + "probability": 0.7637 + }, + { + "start": 8857.26, + "end": 8857.76, + "probability": 0.9082 + }, + { + "start": 8858.4, + "end": 8859.9, + "probability": 0.7858 + }, + { + "start": 8860.56, + "end": 8861.84, + "probability": 0.9805 + }, + { + "start": 8862.64, + "end": 8863.7, + "probability": 0.9822 + }, + { + "start": 8864.9, + "end": 8867.36, + "probability": 0.3885 + }, + { + "start": 8868.36, + "end": 8868.36, + "probability": 0.4431 + }, + { + "start": 8868.36, + "end": 8871.18, + "probability": 0.8356 + }, + { + "start": 8872.22, + "end": 8874.5, + "probability": 0.9139 + }, + { + "start": 8875.68, + "end": 8879.76, + "probability": 0.8643 + }, + { + "start": 8880.0, + "end": 8887.3, + "probability": 0.9917 + }, + { + "start": 8887.98, + "end": 8890.64, + "probability": 0.9943 + }, + { + "start": 8891.5, + "end": 8896.8, + "probability": 0.9974 + }, + { + "start": 8897.52, + "end": 8899.42, + "probability": 0.5046 + }, + { + "start": 8899.68, + "end": 8903.12, + "probability": 0.7974 + }, + { + "start": 8903.42, + "end": 8905.5, + "probability": 0.8989 + }, + { + "start": 8907.12, + "end": 8907.12, + "probability": 0.1569 + }, + { + "start": 8910.54, + "end": 8914.3, + "probability": 0.8923 + }, + { + "start": 8915.48, + "end": 8916.9, + "probability": 0.6752 + }, + { + "start": 8917.48, + "end": 8918.72, + "probability": 0.9309 + }, + { + "start": 8919.08, + "end": 8922.44, + "probability": 0.8159 + }, + { + "start": 8923.08, + "end": 8923.97, + "probability": 0.9272 + }, + { + "start": 8924.88, + "end": 8927.72, + "probability": 0.9175 + }, + { + "start": 8927.76, + "end": 8928.72, + "probability": 0.9403 + }, + { + "start": 8928.92, + "end": 8932.52, + "probability": 0.9907 + }, + { + "start": 8932.52, + "end": 8936.2, + "probability": 0.8975 + }, + { + "start": 8936.2, + "end": 8936.64, + "probability": 0.6503 + }, + { + "start": 8938.39, + "end": 8944.84, + "probability": 0.7042 + }, + { + "start": 8945.02, + "end": 8946.63, + "probability": 0.9346 + }, + { + "start": 8946.88, + "end": 8948.28, + "probability": 0.7621 + }, + { + "start": 8948.88, + "end": 8952.26, + "probability": 0.1484 + }, + { + "start": 8952.26, + "end": 8952.74, + "probability": 0.3764 + }, + { + "start": 8953.02, + "end": 8954.44, + "probability": 0.8919 + }, + { + "start": 8955.5, + "end": 8956.54, + "probability": 0.9919 + }, + { + "start": 8956.56, + "end": 8959.12, + "probability": 0.6819 + }, + { + "start": 8959.6, + "end": 8961.4, + "probability": 0.9375 + }, + { + "start": 8961.8, + "end": 8962.48, + "probability": 0.936 + }, + { + "start": 8963.24, + "end": 8964.96, + "probability": 0.986 + }, + { + "start": 8965.1, + "end": 8967.96, + "probability": 0.9905 + }, + { + "start": 8968.4, + "end": 8969.5, + "probability": 0.9689 + }, + { + "start": 8969.86, + "end": 8970.58, + "probability": 0.9459 + }, + { + "start": 8970.64, + "end": 8972.62, + "probability": 0.8494 + }, + { + "start": 8972.7, + "end": 8973.16, + "probability": 0.7178 + }, + { + "start": 8974.1, + "end": 8976.76, + "probability": 0.9763 + }, + { + "start": 8978.2, + "end": 8978.74, + "probability": 0.044 + }, + { + "start": 8978.74, + "end": 8978.88, + "probability": 0.1328 + }, + { + "start": 8979.3, + "end": 8980.38, + "probability": 0.5215 + }, + { + "start": 8980.56, + "end": 8981.12, + "probability": 0.7604 + }, + { + "start": 8981.66, + "end": 8982.9, + "probability": 0.9883 + }, + { + "start": 8984.0, + "end": 8985.86, + "probability": 0.9832 + }, + { + "start": 8986.54, + "end": 8987.28, + "probability": 0.9591 + }, + { + "start": 8988.18, + "end": 8991.3, + "probability": 0.9861 + }, + { + "start": 8992.12, + "end": 8992.66, + "probability": 0.5839 + }, + { + "start": 8993.22, + "end": 8996.44, + "probability": 0.8804 + }, + { + "start": 8996.76, + "end": 8997.62, + "probability": 0.9046 + }, + { + "start": 8997.76, + "end": 8998.26, + "probability": 0.7517 + }, + { + "start": 8998.74, + "end": 8999.86, + "probability": 0.251 + }, + { + "start": 9000.48, + "end": 9003.06, + "probability": 0.5605 + }, + { + "start": 9005.36, + "end": 9006.32, + "probability": 0.2577 + }, + { + "start": 9009.52, + "end": 9010.36, + "probability": 0.0238 + }, + { + "start": 9011.32, + "end": 9011.32, + "probability": 0.0135 + }, + { + "start": 9011.32, + "end": 9012.02, + "probability": 0.2267 + }, + { + "start": 9012.02, + "end": 9012.26, + "probability": 0.4109 + }, + { + "start": 9021.74, + "end": 9021.9, + "probability": 0.0048 + }, + { + "start": 9021.9, + "end": 9022.92, + "probability": 0.7262 + }, + { + "start": 9023.56, + "end": 9025.56, + "probability": 0.8517 + }, + { + "start": 9026.6, + "end": 9029.9, + "probability": 0.9854 + }, + { + "start": 9030.8, + "end": 9032.0, + "probability": 0.8984 + }, + { + "start": 9032.16, + "end": 9035.48, + "probability": 0.9647 + }, + { + "start": 9035.48, + "end": 9040.14, + "probability": 0.7612 + }, + { + "start": 9040.64, + "end": 9042.7, + "probability": 0.9966 + }, + { + "start": 9043.0, + "end": 9043.8, + "probability": 0.9255 + }, + { + "start": 9043.88, + "end": 9046.62, + "probability": 0.951 + }, + { + "start": 9047.42, + "end": 9051.22, + "probability": 0.9794 + }, + { + "start": 9052.44, + "end": 9057.52, + "probability": 0.9972 + }, + { + "start": 9059.26, + "end": 9063.29, + "probability": 0.9771 + }, + { + "start": 9064.64, + "end": 9066.84, + "probability": 0.859 + }, + { + "start": 9067.7, + "end": 9069.78, + "probability": 0.9762 + }, + { + "start": 9070.3, + "end": 9072.28, + "probability": 0.7477 + }, + { + "start": 9073.68, + "end": 9074.46, + "probability": 0.7329 + }, + { + "start": 9075.2, + "end": 9077.6, + "probability": 0.9958 + }, + { + "start": 9078.32, + "end": 9080.36, + "probability": 0.9972 + }, + { + "start": 9082.56, + "end": 9085.84, + "probability": 0.9972 + }, + { + "start": 9087.3, + "end": 9089.18, + "probability": 0.9966 + }, + { + "start": 9089.7, + "end": 9091.28, + "probability": 0.9753 + }, + { + "start": 9092.68, + "end": 9095.5, + "probability": 0.9992 + }, + { + "start": 9096.3, + "end": 9096.8, + "probability": 0.5014 + }, + { + "start": 9097.78, + "end": 9104.72, + "probability": 0.9971 + }, + { + "start": 9105.58, + "end": 9108.98, + "probability": 0.9939 + }, + { + "start": 9110.72, + "end": 9116.34, + "probability": 0.9964 + }, + { + "start": 9117.32, + "end": 9119.7, + "probability": 0.9943 + }, + { + "start": 9120.1, + "end": 9123.58, + "probability": 0.9984 + }, + { + "start": 9124.14, + "end": 9125.36, + "probability": 0.996 + }, + { + "start": 9127.64, + "end": 9132.42, + "probability": 0.9287 + }, + { + "start": 9133.0, + "end": 9139.18, + "probability": 0.9965 + }, + { + "start": 9139.18, + "end": 9145.16, + "probability": 0.9998 + }, + { + "start": 9145.5, + "end": 9149.88, + "probability": 0.9967 + }, + { + "start": 9150.68, + "end": 9151.32, + "probability": 0.9896 + }, + { + "start": 9154.1, + "end": 9157.28, + "probability": 0.9972 + }, + { + "start": 9157.28, + "end": 9161.24, + "probability": 0.9339 + }, + { + "start": 9161.52, + "end": 9164.38, + "probability": 0.8243 + }, + { + "start": 9165.34, + "end": 9168.28, + "probability": 0.8768 + }, + { + "start": 9170.36, + "end": 9173.92, + "probability": 0.9954 + }, + { + "start": 9175.48, + "end": 9180.88, + "probability": 0.9852 + }, + { + "start": 9181.32, + "end": 9181.98, + "probability": 0.6616 + }, + { + "start": 9183.1, + "end": 9186.86, + "probability": 0.9949 + }, + { + "start": 9187.54, + "end": 9191.4, + "probability": 0.9882 + }, + { + "start": 9192.82, + "end": 9196.8, + "probability": 0.9993 + }, + { + "start": 9197.64, + "end": 9203.4, + "probability": 0.9966 + }, + { + "start": 9204.16, + "end": 9207.86, + "probability": 0.9961 + }, + { + "start": 9208.4, + "end": 9209.46, + "probability": 0.8967 + }, + { + "start": 9210.04, + "end": 9211.86, + "probability": 0.9861 + }, + { + "start": 9212.7, + "end": 9217.8, + "probability": 0.9635 + }, + { + "start": 9218.52, + "end": 9222.78, + "probability": 0.9912 + }, + { + "start": 9222.78, + "end": 9226.52, + "probability": 0.9912 + }, + { + "start": 9227.0, + "end": 9230.5, + "probability": 0.886 + }, + { + "start": 9231.9, + "end": 9236.34, + "probability": 0.9728 + }, + { + "start": 9237.16, + "end": 9237.84, + "probability": 0.8151 + }, + { + "start": 9238.8, + "end": 9242.82, + "probability": 0.9986 + }, + { + "start": 9243.8, + "end": 9246.34, + "probability": 0.9956 + }, + { + "start": 9247.96, + "end": 9251.08, + "probability": 0.9019 + }, + { + "start": 9251.46, + "end": 9252.46, + "probability": 0.8407 + }, + { + "start": 9252.88, + "end": 9254.5, + "probability": 0.7402 + }, + { + "start": 9255.2, + "end": 9259.64, + "probability": 0.976 + }, + { + "start": 9260.98, + "end": 9262.36, + "probability": 0.9905 + }, + { + "start": 9263.42, + "end": 9266.52, + "probability": 0.9967 + }, + { + "start": 9266.52, + "end": 9271.78, + "probability": 0.9988 + }, + { + "start": 9272.7, + "end": 9274.28, + "probability": 0.7989 + }, + { + "start": 9275.08, + "end": 9277.78, + "probability": 0.9931 + }, + { + "start": 9278.36, + "end": 9280.42, + "probability": 0.8742 + }, + { + "start": 9281.34, + "end": 9283.0, + "probability": 0.7526 + }, + { + "start": 9283.62, + "end": 9289.58, + "probability": 0.9723 + }, + { + "start": 9291.14, + "end": 9296.04, + "probability": 0.9749 + }, + { + "start": 9297.16, + "end": 9300.14, + "probability": 0.9458 + }, + { + "start": 9301.18, + "end": 9303.48, + "probability": 0.9977 + }, + { + "start": 9304.2, + "end": 9305.49, + "probability": 0.896 + }, + { + "start": 9306.32, + "end": 9308.78, + "probability": 0.9738 + }, + { + "start": 9309.5, + "end": 9315.12, + "probability": 0.9979 + }, + { + "start": 9316.02, + "end": 9316.36, + "probability": 0.9534 + }, + { + "start": 9316.9, + "end": 9318.56, + "probability": 0.956 + }, + { + "start": 9319.46, + "end": 9325.36, + "probability": 0.9978 + }, + { + "start": 9327.9, + "end": 9328.54, + "probability": 0.8511 + }, + { + "start": 9330.18, + "end": 9333.94, + "probability": 0.9932 + }, + { + "start": 9335.0, + "end": 9338.7, + "probability": 0.978 + }, + { + "start": 9339.0, + "end": 9340.44, + "probability": 0.0983 + }, + { + "start": 9341.0, + "end": 9342.34, + "probability": 0.9644 + }, + { + "start": 9343.08, + "end": 9344.54, + "probability": 0.3609 + }, + { + "start": 9344.82, + "end": 9344.92, + "probability": 0.0812 + }, + { + "start": 9345.2, + "end": 9346.63, + "probability": 0.7534 + }, + { + "start": 9347.66, + "end": 9348.7, + "probability": 0.9904 + }, + { + "start": 9349.9, + "end": 9353.54, + "probability": 0.0318 + }, + { + "start": 9355.62, + "end": 9355.8, + "probability": 0.0167 + }, + { + "start": 9357.18, + "end": 9357.24, + "probability": 0.0051 + }, + { + "start": 9550.4, + "end": 9552.06, + "probability": 0.1785 + }, + { + "start": 9554.64, + "end": 9556.1, + "probability": 0.3221 + }, + { + "start": 9556.64, + "end": 9558.32, + "probability": 0.6125 + }, + { + "start": 9560.22, + "end": 9560.88, + "probability": 0.4636 + }, + { + "start": 9560.88, + "end": 9562.48, + "probability": 0.9384 + }, + { + "start": 9563.4, + "end": 9564.22, + "probability": 0.885 + }, + { + "start": 9564.5, + "end": 9565.34, + "probability": 0.8877 + }, + { + "start": 9566.24, + "end": 9567.62, + "probability": 0.5814 + }, + { + "start": 9568.3, + "end": 9571.38, + "probability": 0.9112 + }, + { + "start": 9573.88, + "end": 9575.52, + "probability": 0.7699 + }, + { + "start": 9575.66, + "end": 9580.88, + "probability": 0.692 + }, + { + "start": 9582.54, + "end": 9586.3, + "probability": 0.8879 + }, + { + "start": 9587.4, + "end": 9590.44, + "probability": 0.7383 + }, + { + "start": 9591.06, + "end": 9592.64, + "probability": 0.9156 + }, + { + "start": 9593.66, + "end": 9594.76, + "probability": 0.9652 + }, + { + "start": 9595.8, + "end": 9598.3, + "probability": 0.8602 + }, + { + "start": 9599.42, + "end": 9600.78, + "probability": 0.869 + }, + { + "start": 9600.9, + "end": 9603.56, + "probability": 0.7039 + }, + { + "start": 9604.4, + "end": 9605.86, + "probability": 0.9586 + }, + { + "start": 9606.82, + "end": 9610.29, + "probability": 0.9524 + }, + { + "start": 9611.62, + "end": 9613.68, + "probability": 0.8846 + }, + { + "start": 9614.9, + "end": 9615.1, + "probability": 0.4953 + }, + { + "start": 9615.24, + "end": 9617.1, + "probability": 0.9009 + }, + { + "start": 9617.26, + "end": 9620.43, + "probability": 0.4213 + }, + { + "start": 9622.46, + "end": 9623.84, + "probability": 0.9698 + }, + { + "start": 9626.38, + "end": 9628.52, + "probability": 0.7335 + }, + { + "start": 9630.02, + "end": 9630.48, + "probability": 0.7945 + }, + { + "start": 9631.86, + "end": 9633.86, + "probability": 0.9917 + }, + { + "start": 9634.98, + "end": 9636.8, + "probability": 0.996 + }, + { + "start": 9638.12, + "end": 9639.06, + "probability": 0.9481 + }, + { + "start": 9639.98, + "end": 9641.61, + "probability": 0.7822 + }, + { + "start": 9641.76, + "end": 9645.92, + "probability": 0.8359 + }, + { + "start": 9647.12, + "end": 9650.9, + "probability": 0.7476 + }, + { + "start": 9651.94, + "end": 9653.08, + "probability": 0.9807 + }, + { + "start": 9653.24, + "end": 9658.9, + "probability": 0.9752 + }, + { + "start": 9659.1, + "end": 9660.08, + "probability": 0.7396 + }, + { + "start": 9660.94, + "end": 9662.66, + "probability": 0.7405 + }, + { + "start": 9664.22, + "end": 9664.84, + "probability": 0.4949 + }, + { + "start": 9666.22, + "end": 9666.98, + "probability": 0.1522 + }, + { + "start": 9668.08, + "end": 9669.36, + "probability": 0.7964 + }, + { + "start": 9671.44, + "end": 9673.7, + "probability": 0.9749 + }, + { + "start": 9674.74, + "end": 9676.26, + "probability": 0.9299 + }, + { + "start": 9676.48, + "end": 9678.84, + "probability": 0.9408 + }, + { + "start": 9679.4, + "end": 9681.18, + "probability": 0.9242 + }, + { + "start": 9682.22, + "end": 9684.6, + "probability": 0.976 + }, + { + "start": 9685.38, + "end": 9688.8, + "probability": 0.7339 + }, + { + "start": 9689.52, + "end": 9692.21, + "probability": 0.9526 + }, + { + "start": 9693.0, + "end": 9694.36, + "probability": 0.9956 + }, + { + "start": 9694.88, + "end": 9697.42, + "probability": 0.8853 + }, + { + "start": 9698.16, + "end": 9699.64, + "probability": 0.5153 + }, + { + "start": 9699.96, + "end": 9700.8, + "probability": 0.4916 + }, + { + "start": 9701.78, + "end": 9702.56, + "probability": 0.4848 + }, + { + "start": 9702.62, + "end": 9703.08, + "probability": 0.8631 + }, + { + "start": 9703.36, + "end": 9705.24, + "probability": 0.9615 + }, + { + "start": 9705.28, + "end": 9708.02, + "probability": 0.9865 + }, + { + "start": 9709.96, + "end": 9710.82, + "probability": 0.7093 + }, + { + "start": 9711.96, + "end": 9713.3, + "probability": 0.9562 + }, + { + "start": 9713.38, + "end": 9716.56, + "probability": 0.9866 + }, + { + "start": 9717.36, + "end": 9720.08, + "probability": 0.5359 + }, + { + "start": 9720.6, + "end": 9721.38, + "probability": 0.7328 + }, + { + "start": 9722.46, + "end": 9722.9, + "probability": 0.9334 + }, + { + "start": 9724.44, + "end": 9726.92, + "probability": 0.9956 + }, + { + "start": 9728.18, + "end": 9730.36, + "probability": 0.998 + }, + { + "start": 9730.98, + "end": 9733.38, + "probability": 0.9797 + }, + { + "start": 9733.5, + "end": 9738.68, + "probability": 0.773 + }, + { + "start": 9738.8, + "end": 9740.3, + "probability": 0.7253 + }, + { + "start": 9740.82, + "end": 9743.16, + "probability": 0.8075 + }, + { + "start": 9743.82, + "end": 9745.4, + "probability": 0.8038 + }, + { + "start": 9745.88, + "end": 9749.68, + "probability": 0.7987 + }, + { + "start": 9750.14, + "end": 9752.82, + "probability": 0.9888 + }, + { + "start": 9753.22, + "end": 9754.92, + "probability": 0.98 + }, + { + "start": 9756.1, + "end": 9761.04, + "probability": 0.967 + }, + { + "start": 9761.56, + "end": 9763.55, + "probability": 0.9993 + }, + { + "start": 9765.2, + "end": 9768.4, + "probability": 0.9723 + }, + { + "start": 9770.3, + "end": 9774.96, + "probability": 0.9932 + }, + { + "start": 9775.72, + "end": 9777.14, + "probability": 0.551 + }, + { + "start": 9777.14, + "end": 9778.64, + "probability": 0.8765 + }, + { + "start": 9778.96, + "end": 9780.68, + "probability": 0.5712 + }, + { + "start": 9781.12, + "end": 9783.08, + "probability": 0.9417 + }, + { + "start": 9784.4, + "end": 9785.12, + "probability": 0.8281 + }, + { + "start": 9785.46, + "end": 9786.6, + "probability": 0.8742 + }, + { + "start": 9786.94, + "end": 9790.0, + "probability": 0.9413 + }, + { + "start": 9790.96, + "end": 9792.2, + "probability": 0.8664 + }, + { + "start": 9792.38, + "end": 9796.24, + "probability": 0.711 + }, + { + "start": 9796.76, + "end": 9799.02, + "probability": 0.9772 + }, + { + "start": 9799.82, + "end": 9802.16, + "probability": 0.9908 + }, + { + "start": 9802.88, + "end": 9803.62, + "probability": 0.7981 + }, + { + "start": 9804.18, + "end": 9806.82, + "probability": 0.7766 + }, + { + "start": 9807.32, + "end": 9813.6, + "probability": 0.8574 + }, + { + "start": 9814.42, + "end": 9816.11, + "probability": 0.9756 + }, + { + "start": 9816.48, + "end": 9821.84, + "probability": 0.9937 + }, + { + "start": 9823.36, + "end": 9824.02, + "probability": 0.6112 + }, + { + "start": 9824.06, + "end": 9826.62, + "probability": 0.9162 + }, + { + "start": 9826.74, + "end": 9829.22, + "probability": 0.9531 + }, + { + "start": 9830.2, + "end": 9833.43, + "probability": 0.7196 + }, + { + "start": 9833.9, + "end": 9837.1, + "probability": 0.6841 + }, + { + "start": 9837.76, + "end": 9840.9, + "probability": 0.8085 + }, + { + "start": 9841.02, + "end": 9843.56, + "probability": 0.8306 + }, + { + "start": 9843.7, + "end": 9844.36, + "probability": 0.9552 + }, + { + "start": 9844.9, + "end": 9848.0, + "probability": 0.9089 + }, + { + "start": 9848.48, + "end": 9855.46, + "probability": 0.6943 + }, + { + "start": 9855.78, + "end": 9856.5, + "probability": 0.9824 + }, + { + "start": 9856.98, + "end": 9858.26, + "probability": 0.6794 + }, + { + "start": 9859.0, + "end": 9862.48, + "probability": 0.9495 + }, + { + "start": 9863.22, + "end": 9866.44, + "probability": 0.9883 + }, + { + "start": 9866.88, + "end": 9868.16, + "probability": 0.8421 + }, + { + "start": 9868.54, + "end": 9871.24, + "probability": 0.9671 + }, + { + "start": 9871.58, + "end": 9873.1, + "probability": 0.7077 + }, + { + "start": 9873.14, + "end": 9874.72, + "probability": 0.9152 + }, + { + "start": 9875.26, + "end": 9876.0, + "probability": 0.6464 + }, + { + "start": 9876.06, + "end": 9876.83, + "probability": 0.8483 + }, + { + "start": 9877.4, + "end": 9878.88, + "probability": 0.7829 + }, + { + "start": 9878.96, + "end": 9879.62, + "probability": 0.8763 + }, + { + "start": 9879.96, + "end": 9881.2, + "probability": 0.7988 + }, + { + "start": 9881.4, + "end": 9883.2, + "probability": 0.8174 + }, + { + "start": 9883.9, + "end": 9884.86, + "probability": 0.7015 + }, + { + "start": 9885.76, + "end": 9887.22, + "probability": 0.6201 + }, + { + "start": 9888.34, + "end": 9892.46, + "probability": 0.4704 + }, + { + "start": 9892.88, + "end": 9895.28, + "probability": 0.7173 + }, + { + "start": 9896.08, + "end": 9896.4, + "probability": 0.4641 + }, + { + "start": 9897.16, + "end": 9897.58, + "probability": 0.365 + }, + { + "start": 9897.64, + "end": 9898.84, + "probability": 0.8577 + }, + { + "start": 9899.28, + "end": 9904.6, + "probability": 0.8904 + }, + { + "start": 9905.12, + "end": 9906.02, + "probability": 0.9306 + }, + { + "start": 9906.84, + "end": 9908.54, + "probability": 0.9949 + }, + { + "start": 9909.28, + "end": 9910.24, + "probability": 0.8032 + }, + { + "start": 9910.42, + "end": 9911.66, + "probability": 0.9971 + }, + { + "start": 9912.24, + "end": 9915.52, + "probability": 0.8306 + }, + { + "start": 9916.1, + "end": 9918.36, + "probability": 0.97 + }, + { + "start": 9918.86, + "end": 9919.82, + "probability": 0.9551 + }, + { + "start": 9919.92, + "end": 9920.12, + "probability": 0.7113 + }, + { + "start": 9920.14, + "end": 9920.4, + "probability": 0.7914 + }, + { + "start": 9920.5, + "end": 9922.22, + "probability": 0.6586 + }, + { + "start": 9922.5, + "end": 9923.02, + "probability": 0.835 + }, + { + "start": 9923.32, + "end": 9924.5, + "probability": 0.5785 + }, + { + "start": 9924.98, + "end": 9927.18, + "probability": 0.9251 + }, + { + "start": 9927.72, + "end": 9927.96, + "probability": 0.5635 + }, + { + "start": 9928.4, + "end": 9929.8, + "probability": 0.5959 + }, + { + "start": 9930.38, + "end": 9932.32, + "probability": 0.7974 + }, + { + "start": 9932.74, + "end": 9935.0, + "probability": 0.6271 + }, + { + "start": 9935.22, + "end": 9936.16, + "probability": 0.2255 + }, + { + "start": 9936.62, + "end": 9937.12, + "probability": 0.4676 + }, + { + "start": 9940.12, + "end": 9942.76, + "probability": 0.3352 + }, + { + "start": 9944.2, + "end": 9946.1, + "probability": 0.15 + }, + { + "start": 9946.48, + "end": 9948.2, + "probability": 0.337 + }, + { + "start": 9948.66, + "end": 9950.42, + "probability": 0.2139 + }, + { + "start": 9951.81, + "end": 9955.66, + "probability": 0.2638 + }, + { + "start": 9955.9, + "end": 9956.82, + "probability": 0.9858 + }, + { + "start": 9956.96, + "end": 9957.59, + "probability": 0.4152 + }, + { + "start": 9958.5, + "end": 9961.52, + "probability": 0.9639 + }, + { + "start": 9961.96, + "end": 9963.6, + "probability": 0.7428 + }, + { + "start": 9963.8, + "end": 9964.16, + "probability": 0.8837 + }, + { + "start": 9964.42, + "end": 9965.0, + "probability": 0.5368 + }, + { + "start": 9965.08, + "end": 9966.6, + "probability": 0.9357 + }, + { + "start": 9966.7, + "end": 9966.8, + "probability": 0.2822 + }, + { + "start": 9967.18, + "end": 9968.6, + "probability": 0.6387 + }, + { + "start": 9984.04, + "end": 9984.72, + "probability": 0.6197 + }, + { + "start": 9984.84, + "end": 9985.49, + "probability": 0.9893 + }, + { + "start": 9986.58, + "end": 9988.14, + "probability": 0.3193 + }, + { + "start": 9988.4, + "end": 9991.86, + "probability": 0.6631 + }, + { + "start": 9992.56, + "end": 9997.34, + "probability": 0.4514 + }, + { + "start": 9998.16, + "end": 10002.58, + "probability": 0.1459 + }, + { + "start": 10003.22, + "end": 10004.4, + "probability": 0.0636 + }, + { + "start": 10004.46, + "end": 10005.26, + "probability": 0.0116 + }, + { + "start": 10005.84, + "end": 10005.84, + "probability": 0.1626 + }, + { + "start": 10005.86, + "end": 10006.54, + "probability": 0.6201 + }, + { + "start": 10007.54, + "end": 10009.26, + "probability": 0.662 + }, + { + "start": 10009.96, + "end": 10012.62, + "probability": 0.6583 + }, + { + "start": 10013.54, + "end": 10017.04, + "probability": 0.9143 + }, + { + "start": 10017.04, + "end": 10020.66, + "probability": 0.9817 + }, + { + "start": 10021.48, + "end": 10024.82, + "probability": 0.9578 + }, + { + "start": 10025.54, + "end": 10028.68, + "probability": 0.9983 + }, + { + "start": 10028.68, + "end": 10031.98, + "probability": 0.9989 + }, + { + "start": 10032.38, + "end": 10034.86, + "probability": 0.9931 + }, + { + "start": 10034.94, + "end": 10035.74, + "probability": 0.9964 + }, + { + "start": 10036.9, + "end": 10038.08, + "probability": 0.9768 + }, + { + "start": 10038.9, + "end": 10040.22, + "probability": 0.8901 + }, + { + "start": 10040.72, + "end": 10042.34, + "probability": 0.924 + }, + { + "start": 10043.28, + "end": 10048.94, + "probability": 0.8017 + }, + { + "start": 10049.76, + "end": 10053.42, + "probability": 0.9968 + }, + { + "start": 10053.42, + "end": 10056.9, + "probability": 0.9982 + }, + { + "start": 10057.38, + "end": 10060.18, + "probability": 0.9924 + }, + { + "start": 10060.7, + "end": 10061.96, + "probability": 0.7561 + }, + { + "start": 10062.52, + "end": 10070.3, + "probability": 0.9944 + }, + { + "start": 10070.84, + "end": 10074.2, + "probability": 0.978 + }, + { + "start": 10075.03, + "end": 10079.84, + "probability": 0.9872 + }, + { + "start": 10080.5, + "end": 10083.32, + "probability": 0.9807 + }, + { + "start": 10083.74, + "end": 10085.08, + "probability": 0.987 + }, + { + "start": 10085.48, + "end": 10087.04, + "probability": 0.9876 + }, + { + "start": 10087.32, + "end": 10092.76, + "probability": 0.8795 + }, + { + "start": 10093.34, + "end": 10098.02, + "probability": 0.8595 + }, + { + "start": 10098.36, + "end": 10100.22, + "probability": 0.9548 + }, + { + "start": 10101.34, + "end": 10102.72, + "probability": 0.9779 + }, + { + "start": 10103.22, + "end": 10105.66, + "probability": 0.909 + }, + { + "start": 10105.66, + "end": 10109.42, + "probability": 0.9242 + }, + { + "start": 10109.94, + "end": 10113.62, + "probability": 0.9983 + }, + { + "start": 10113.62, + "end": 10117.84, + "probability": 0.9955 + }, + { + "start": 10118.72, + "end": 10121.12, + "probability": 0.9718 + }, + { + "start": 10121.48, + "end": 10125.56, + "probability": 0.9919 + }, + { + "start": 10126.36, + "end": 10128.52, + "probability": 0.9949 + }, + { + "start": 10129.02, + "end": 10132.22, + "probability": 0.9419 + }, + { + "start": 10132.34, + "end": 10136.78, + "probability": 0.9603 + }, + { + "start": 10137.12, + "end": 10137.68, + "probability": 0.7416 + }, + { + "start": 10137.82, + "end": 10139.36, + "probability": 0.6747 + }, + { + "start": 10140.12, + "end": 10140.8, + "probability": 0.9582 + }, + { + "start": 10140.86, + "end": 10144.84, + "probability": 0.9932 + }, + { + "start": 10145.5, + "end": 10152.42, + "probability": 0.9717 + }, + { + "start": 10152.42, + "end": 10156.38, + "probability": 0.9729 + }, + { + "start": 10156.94, + "end": 10159.8, + "probability": 0.9342 + }, + { + "start": 10160.44, + "end": 10163.7, + "probability": 0.9857 + }, + { + "start": 10164.42, + "end": 10167.84, + "probability": 0.9342 + }, + { + "start": 10167.84, + "end": 10171.86, + "probability": 0.8384 + }, + { + "start": 10172.52, + "end": 10176.76, + "probability": 0.8986 + }, + { + "start": 10177.8, + "end": 10182.58, + "probability": 0.9807 + }, + { + "start": 10183.16, + "end": 10183.52, + "probability": 0.5418 + }, + { + "start": 10184.62, + "end": 10186.84, + "probability": 0.9941 + }, + { + "start": 10186.94, + "end": 10187.22, + "probability": 0.7501 + }, + { + "start": 10187.28, + "end": 10188.26, + "probability": 0.9698 + }, + { + "start": 10188.72, + "end": 10190.36, + "probability": 0.9051 + }, + { + "start": 10190.66, + "end": 10194.08, + "probability": 0.9652 + }, + { + "start": 10194.4, + "end": 10197.22, + "probability": 0.9822 + }, + { + "start": 10197.88, + "end": 10198.38, + "probability": 0.9482 + }, + { + "start": 10198.4, + "end": 10200.74, + "probability": 0.7699 + }, + { + "start": 10201.14, + "end": 10204.92, + "probability": 0.9868 + }, + { + "start": 10206.64, + "end": 10206.98, + "probability": 0.5814 + }, + { + "start": 10207.66, + "end": 10209.08, + "probability": 0.9874 + }, + { + "start": 10209.66, + "end": 10211.74, + "probability": 0.9757 + }, + { + "start": 10212.52, + "end": 10215.46, + "probability": 0.8796 + }, + { + "start": 10216.02, + "end": 10217.58, + "probability": 0.988 + }, + { + "start": 10218.08, + "end": 10219.82, + "probability": 0.9727 + }, + { + "start": 10220.18, + "end": 10221.18, + "probability": 0.9344 + }, + { + "start": 10221.74, + "end": 10223.74, + "probability": 0.8813 + }, + { + "start": 10224.8, + "end": 10225.48, + "probability": 0.9122 + }, + { + "start": 10226.08, + "end": 10226.62, + "probability": 0.9633 + }, + { + "start": 10226.9, + "end": 10228.12, + "probability": 0.8307 + }, + { + "start": 10228.2, + "end": 10229.36, + "probability": 0.9199 + }, + { + "start": 10229.78, + "end": 10231.24, + "probability": 0.9819 + }, + { + "start": 10231.58, + "end": 10234.22, + "probability": 0.9946 + }, + { + "start": 10234.9, + "end": 10238.48, + "probability": 0.9985 + }, + { + "start": 10238.48, + "end": 10243.04, + "probability": 0.999 + }, + { + "start": 10244.36, + "end": 10246.08, + "probability": 0.9993 + }, + { + "start": 10246.62, + "end": 10250.86, + "probability": 0.8465 + }, + { + "start": 10251.62, + "end": 10255.32, + "probability": 0.9722 + }, + { + "start": 10255.32, + "end": 10257.5, + "probability": 0.9849 + }, + { + "start": 10258.28, + "end": 10259.82, + "probability": 0.841 + }, + { + "start": 10260.4, + "end": 10263.44, + "probability": 0.9767 + }, + { + "start": 10264.54, + "end": 10265.6, + "probability": 0.9381 + }, + { + "start": 10266.2, + "end": 10267.88, + "probability": 0.9572 + }, + { + "start": 10268.48, + "end": 10270.3, + "probability": 0.9647 + }, + { + "start": 10270.5, + "end": 10270.86, + "probability": 0.6381 + }, + { + "start": 10271.68, + "end": 10273.78, + "probability": 0.9268 + }, + { + "start": 10273.96, + "end": 10274.48, + "probability": 0.9081 + }, + { + "start": 10275.06, + "end": 10278.38, + "probability": 0.9893 + }, + { + "start": 10278.96, + "end": 10281.14, + "probability": 0.9909 + }, + { + "start": 10281.54, + "end": 10283.64, + "probability": 0.9676 + }, + { + "start": 10284.16, + "end": 10284.86, + "probability": 0.777 + }, + { + "start": 10285.68, + "end": 10288.0, + "probability": 0.9517 + }, + { + "start": 10288.66, + "end": 10289.86, + "probability": 0.7441 + }, + { + "start": 10291.04, + "end": 10294.62, + "probability": 0.9666 + }, + { + "start": 10295.2, + "end": 10296.42, + "probability": 0.9514 + }, + { + "start": 10297.1, + "end": 10298.7, + "probability": 0.9673 + }, + { + "start": 10299.42, + "end": 10301.96, + "probability": 0.9854 + }, + { + "start": 10302.12, + "end": 10302.42, + "probability": 0.6246 + }, + { + "start": 10303.08, + "end": 10303.7, + "probability": 0.3844 + }, + { + "start": 10303.76, + "end": 10305.2, + "probability": 0.6886 + }, + { + "start": 10309.64, + "end": 10311.58, + "probability": 0.5917 + }, + { + "start": 10317.18, + "end": 10322.32, + "probability": 0.928 + }, + { + "start": 10323.06, + "end": 10325.16, + "probability": 0.8747 + }, + { + "start": 10325.66, + "end": 10326.56, + "probability": 0.2603 + }, + { + "start": 10331.64, + "end": 10334.02, + "probability": 0.6624 + }, + { + "start": 10336.52, + "end": 10337.98, + "probability": 0.203 + }, + { + "start": 10338.98, + "end": 10342.78, + "probability": 0.9909 + }, + { + "start": 10343.84, + "end": 10345.5, + "probability": 0.9431 + }, + { + "start": 10346.4, + "end": 10347.12, + "probability": 0.3575 + }, + { + "start": 10348.24, + "end": 10352.72, + "probability": 0.9004 + }, + { + "start": 10353.44, + "end": 10354.42, + "probability": 0.9787 + }, + { + "start": 10354.56, + "end": 10359.48, + "probability": 0.9912 + }, + { + "start": 10360.68, + "end": 10367.18, + "probability": 0.9313 + }, + { + "start": 10368.28, + "end": 10369.5, + "probability": 0.6656 + }, + { + "start": 10369.94, + "end": 10371.08, + "probability": 0.9951 + }, + { + "start": 10372.26, + "end": 10377.6, + "probability": 0.8799 + }, + { + "start": 10378.24, + "end": 10378.76, + "probability": 0.9432 + }, + { + "start": 10379.98, + "end": 10381.2, + "probability": 0.9647 + }, + { + "start": 10381.72, + "end": 10385.78, + "probability": 0.9889 + }, + { + "start": 10386.66, + "end": 10390.18, + "probability": 0.7535 + }, + { + "start": 10392.08, + "end": 10394.6, + "probability": 0.8848 + }, + { + "start": 10395.14, + "end": 10396.06, + "probability": 0.9236 + }, + { + "start": 10396.14, + "end": 10396.63, + "probability": 0.7046 + }, + { + "start": 10397.04, + "end": 10398.93, + "probability": 0.9569 + }, + { + "start": 10399.56, + "end": 10403.24, + "probability": 0.9378 + }, + { + "start": 10404.06, + "end": 10405.58, + "probability": 0.9971 + }, + { + "start": 10405.7, + "end": 10409.72, + "probability": 0.6643 + }, + { + "start": 10410.22, + "end": 10412.38, + "probability": 0.8048 + }, + { + "start": 10413.14, + "end": 10416.62, + "probability": 0.9878 + }, + { + "start": 10417.54, + "end": 10417.54, + "probability": 0.7095 + }, + { + "start": 10419.38, + "end": 10420.1, + "probability": 0.7543 + }, + { + "start": 10421.22, + "end": 10424.42, + "probability": 0.8491 + }, + { + "start": 10425.16, + "end": 10426.07, + "probability": 0.6082 + }, + { + "start": 10426.46, + "end": 10429.6, + "probability": 0.5433 + }, + { + "start": 10429.9, + "end": 10431.24, + "probability": 0.8678 + }, + { + "start": 10431.36, + "end": 10432.42, + "probability": 0.7369 + }, + { + "start": 10433.32, + "end": 10435.7, + "probability": 0.9901 + }, + { + "start": 10436.58, + "end": 10438.24, + "probability": 0.9564 + }, + { + "start": 10439.04, + "end": 10442.04, + "probability": 0.699 + }, + { + "start": 10443.14, + "end": 10446.95, + "probability": 0.8296 + }, + { + "start": 10447.84, + "end": 10450.86, + "probability": 0.9948 + }, + { + "start": 10451.5, + "end": 10452.8, + "probability": 0.9858 + }, + { + "start": 10453.88, + "end": 10456.1, + "probability": 0.9473 + }, + { + "start": 10456.1, + "end": 10459.54, + "probability": 0.9897 + }, + { + "start": 10460.38, + "end": 10462.44, + "probability": 0.7664 + }, + { + "start": 10463.18, + "end": 10465.5, + "probability": 0.9175 + }, + { + "start": 10466.14, + "end": 10468.26, + "probability": 0.9287 + }, + { + "start": 10468.86, + "end": 10471.06, + "probability": 0.9456 + }, + { + "start": 10471.66, + "end": 10477.36, + "probability": 0.9799 + }, + { + "start": 10478.64, + "end": 10482.7, + "probability": 0.996 + }, + { + "start": 10483.48, + "end": 10484.52, + "probability": 0.9596 + }, + { + "start": 10485.46, + "end": 10488.06, + "probability": 0.9963 + }, + { + "start": 10490.26, + "end": 10493.42, + "probability": 0.9824 + }, + { + "start": 10494.5, + "end": 10500.28, + "probability": 0.9829 + }, + { + "start": 10501.16, + "end": 10503.92, + "probability": 0.4709 + }, + { + "start": 10505.18, + "end": 10509.16, + "probability": 0.9951 + }, + { + "start": 10510.26, + "end": 10512.04, + "probability": 0.962 + }, + { + "start": 10512.68, + "end": 10514.22, + "probability": 0.7492 + }, + { + "start": 10515.12, + "end": 10518.68, + "probability": 0.8994 + }, + { + "start": 10518.78, + "end": 10520.48, + "probability": 0.8977 + }, + { + "start": 10521.2, + "end": 10523.9, + "probability": 0.6699 + }, + { + "start": 10524.5, + "end": 10525.38, + "probability": 0.7397 + }, + { + "start": 10525.5, + "end": 10527.38, + "probability": 0.79 + }, + { + "start": 10528.16, + "end": 10531.32, + "probability": 0.8292 + }, + { + "start": 10532.36, + "end": 10536.04, + "probability": 0.9416 + }, + { + "start": 10536.62, + "end": 10537.88, + "probability": 0.9443 + }, + { + "start": 10537.98, + "end": 10539.1, + "probability": 0.7496 + }, + { + "start": 10539.56, + "end": 10540.64, + "probability": 0.9325 + }, + { + "start": 10540.8, + "end": 10543.16, + "probability": 0.6712 + }, + { + "start": 10544.48, + "end": 10548.74, + "probability": 0.5889 + }, + { + "start": 10549.62, + "end": 10555.82, + "probability": 0.7075 + }, + { + "start": 10556.34, + "end": 10558.48, + "probability": 0.7195 + }, + { + "start": 10559.22, + "end": 10563.42, + "probability": 0.6849 + }, + { + "start": 10564.06, + "end": 10565.22, + "probability": 0.8993 + }, + { + "start": 10565.38, + "end": 10568.6, + "probability": 0.9644 + }, + { + "start": 10569.58, + "end": 10572.02, + "probability": 0.9146 + }, + { + "start": 10572.92, + "end": 10574.72, + "probability": 0.9967 + }, + { + "start": 10575.72, + "end": 10580.12, + "probability": 0.989 + }, + { + "start": 10580.74, + "end": 10581.71, + "probability": 0.3992 + }, + { + "start": 10582.3, + "end": 10588.1, + "probability": 0.6525 + }, + { + "start": 10588.1, + "end": 10593.34, + "probability": 0.7754 + }, + { + "start": 10594.38, + "end": 10598.16, + "probability": 0.6979 + }, + { + "start": 10599.32, + "end": 10601.88, + "probability": 0.984 + }, + { + "start": 10602.4, + "end": 10604.46, + "probability": 0.9855 + }, + { + "start": 10605.02, + "end": 10606.82, + "probability": 0.8822 + }, + { + "start": 10607.52, + "end": 10609.5, + "probability": 0.5254 + }, + { + "start": 10610.36, + "end": 10613.26, + "probability": 0.9665 + }, + { + "start": 10614.12, + "end": 10617.82, + "probability": 0.9246 + }, + { + "start": 10618.82, + "end": 10619.46, + "probability": 0.8111 + }, + { + "start": 10620.64, + "end": 10621.98, + "probability": 0.2955 + }, + { + "start": 10622.78, + "end": 10625.12, + "probability": 0.9472 + }, + { + "start": 10625.7, + "end": 10628.4, + "probability": 0.9584 + }, + { + "start": 10629.1, + "end": 10630.01, + "probability": 0.9819 + }, + { + "start": 10630.38, + "end": 10631.04, + "probability": 0.6761 + }, + { + "start": 10632.78, + "end": 10636.42, + "probability": 0.9705 + }, + { + "start": 10637.04, + "end": 10638.04, + "probability": 0.9116 + }, + { + "start": 10639.52, + "end": 10643.14, + "probability": 0.9347 + }, + { + "start": 10646.45, + "end": 10650.76, + "probability": 0.9211 + }, + { + "start": 10651.6, + "end": 10655.54, + "probability": 0.7117 + }, + { + "start": 10655.62, + "end": 10657.72, + "probability": 0.9886 + }, + { + "start": 10658.12, + "end": 10661.0, + "probability": 0.9917 + }, + { + "start": 10661.38, + "end": 10664.2, + "probability": 0.9805 + }, + { + "start": 10664.64, + "end": 10665.3, + "probability": 0.7302 + }, + { + "start": 10666.1, + "end": 10667.96, + "probability": 0.7597 + }, + { + "start": 10669.3, + "end": 10672.48, + "probability": 0.8173 + }, + { + "start": 10672.94, + "end": 10679.28, + "probability": 0.9868 + }, + { + "start": 10679.78, + "end": 10682.66, + "probability": 0.9777 + }, + { + "start": 10684.9, + "end": 10687.56, + "probability": 0.6738 + }, + { + "start": 10688.22, + "end": 10691.36, + "probability": 0.9966 + }, + { + "start": 10691.86, + "end": 10693.36, + "probability": 0.9807 + }, + { + "start": 10693.54, + "end": 10694.12, + "probability": 0.5953 + }, + { + "start": 10694.66, + "end": 10699.04, + "probability": 0.9285 + }, + { + "start": 10699.62, + "end": 10702.6, + "probability": 0.9803 + }, + { + "start": 10702.8, + "end": 10706.26, + "probability": 0.9731 + }, + { + "start": 10706.36, + "end": 10708.06, + "probability": 0.8762 + }, + { + "start": 10708.66, + "end": 10709.84, + "probability": 0.984 + }, + { + "start": 10709.92, + "end": 10711.32, + "probability": 0.9887 + }, + { + "start": 10711.9, + "end": 10715.6, + "probability": 0.9927 + }, + { + "start": 10716.3, + "end": 10719.8, + "probability": 0.9932 + }, + { + "start": 10720.26, + "end": 10726.76, + "probability": 0.8976 + }, + { + "start": 10727.42, + "end": 10732.42, + "probability": 0.8326 + }, + { + "start": 10733.35, + "end": 10735.64, + "probability": 0.9872 + }, + { + "start": 10736.64, + "end": 10738.04, + "probability": 0.7949 + }, + { + "start": 10739.0, + "end": 10746.14, + "probability": 0.916 + }, + { + "start": 10746.54, + "end": 10748.85, + "probability": 0.9263 + }, + { + "start": 10749.92, + "end": 10752.6, + "probability": 0.9816 + }, + { + "start": 10753.1, + "end": 10759.16, + "probability": 0.9858 + }, + { + "start": 10759.46, + "end": 10760.14, + "probability": 0.5378 + }, + { + "start": 10760.58, + "end": 10761.89, + "probability": 0.6405 + }, + { + "start": 10786.76, + "end": 10789.02, + "probability": 0.6627 + }, + { + "start": 10789.74, + "end": 10790.4, + "probability": 0.8201 + }, + { + "start": 10793.26, + "end": 10795.16, + "probability": 0.8096 + }, + { + "start": 10796.32, + "end": 10801.81, + "probability": 0.9883 + }, + { + "start": 10802.52, + "end": 10803.52, + "probability": 0.956 + }, + { + "start": 10804.08, + "end": 10805.76, + "probability": 0.9941 + }, + { + "start": 10806.98, + "end": 10808.72, + "probability": 0.8337 + }, + { + "start": 10808.84, + "end": 10810.52, + "probability": 0.9858 + }, + { + "start": 10810.6, + "end": 10811.08, + "probability": 0.9388 + }, + { + "start": 10811.3, + "end": 10811.97, + "probability": 0.9504 + }, + { + "start": 10812.64, + "end": 10813.72, + "probability": 0.7615 + }, + { + "start": 10814.02, + "end": 10816.04, + "probability": 0.8311 + }, + { + "start": 10817.3, + "end": 10818.9, + "probability": 0.9817 + }, + { + "start": 10819.62, + "end": 10822.8, + "probability": 0.9785 + }, + { + "start": 10823.68, + "end": 10825.34, + "probability": 0.957 + }, + { + "start": 10826.52, + "end": 10829.58, + "probability": 0.9467 + }, + { + "start": 10830.38, + "end": 10831.74, + "probability": 0.9823 + }, + { + "start": 10832.92, + "end": 10835.42, + "probability": 0.9787 + }, + { + "start": 10836.04, + "end": 10838.28, + "probability": 0.9718 + }, + { + "start": 10839.56, + "end": 10841.02, + "probability": 0.9733 + }, + { + "start": 10842.46, + "end": 10844.26, + "probability": 0.9966 + }, + { + "start": 10845.02, + "end": 10847.18, + "probability": 0.8465 + }, + { + "start": 10848.58, + "end": 10851.88, + "probability": 0.9226 + }, + { + "start": 10853.32, + "end": 10854.34, + "probability": 0.7068 + }, + { + "start": 10855.62, + "end": 10856.7, + "probability": 0.8807 + }, + { + "start": 10857.34, + "end": 10859.36, + "probability": 0.9384 + }, + { + "start": 10860.18, + "end": 10861.38, + "probability": 0.9929 + }, + { + "start": 10863.14, + "end": 10866.02, + "probability": 0.9333 + }, + { + "start": 10866.58, + "end": 10867.66, + "probability": 0.9414 + }, + { + "start": 10869.56, + "end": 10870.42, + "probability": 0.9114 + }, + { + "start": 10870.94, + "end": 10872.98, + "probability": 0.9499 + }, + { + "start": 10875.06, + "end": 10876.44, + "probability": 0.9644 + }, + { + "start": 10878.58, + "end": 10881.12, + "probability": 0.9479 + }, + { + "start": 10882.38, + "end": 10883.14, + "probability": 0.9719 + }, + { + "start": 10883.96, + "end": 10884.74, + "probability": 0.7485 + }, + { + "start": 10885.64, + "end": 10886.7, + "probability": 0.9958 + }, + { + "start": 10886.76, + "end": 10888.98, + "probability": 0.9705 + }, + { + "start": 10890.38, + "end": 10892.72, + "probability": 0.983 + }, + { + "start": 10894.82, + "end": 10897.18, + "probability": 0.9174 + }, + { + "start": 10899.26, + "end": 10899.8, + "probability": 0.9159 + }, + { + "start": 10900.54, + "end": 10901.52, + "probability": 0.8166 + }, + { + "start": 10902.58, + "end": 10903.62, + "probability": 0.3953 + }, + { + "start": 10905.9, + "end": 10911.56, + "probability": 0.8815 + }, + { + "start": 10911.6, + "end": 10913.2, + "probability": 0.7873 + }, + { + "start": 10914.48, + "end": 10917.32, + "probability": 0.7804 + }, + { + "start": 10917.4, + "end": 10918.94, + "probability": 0.9956 + }, + { + "start": 10920.44, + "end": 10923.64, + "probability": 0.923 + }, + { + "start": 10923.72, + "end": 10924.68, + "probability": 0.7826 + }, + { + "start": 10925.24, + "end": 10926.04, + "probability": 0.9276 + }, + { + "start": 10926.58, + "end": 10929.76, + "probability": 0.9598 + }, + { + "start": 10930.82, + "end": 10932.26, + "probability": 0.9618 + }, + { + "start": 10933.52, + "end": 10936.06, + "probability": 0.9819 + }, + { + "start": 10937.88, + "end": 10939.74, + "probability": 0.9668 + }, + { + "start": 10941.28, + "end": 10946.36, + "probability": 0.9758 + }, + { + "start": 10947.3, + "end": 10950.86, + "probability": 0.5355 + }, + { + "start": 10951.86, + "end": 10953.16, + "probability": 0.9073 + }, + { + "start": 10953.76, + "end": 10955.96, + "probability": 0.9789 + }, + { + "start": 10957.28, + "end": 10958.3, + "probability": 0.9285 + }, + { + "start": 10959.76, + "end": 10962.52, + "probability": 0.9061 + }, + { + "start": 10962.52, + "end": 10964.58, + "probability": 0.9437 + }, + { + "start": 10967.74, + "end": 10968.8, + "probability": 0.551 + }, + { + "start": 10969.9, + "end": 10971.56, + "probability": 0.6942 + }, + { + "start": 10974.28, + "end": 10977.04, + "probability": 0.6786 + }, + { + "start": 10977.56, + "end": 10980.16, + "probability": 0.9023 + }, + { + "start": 10981.46, + "end": 10982.52, + "probability": 0.811 + }, + { + "start": 10983.58, + "end": 10984.08, + "probability": 0.4245 + }, + { + "start": 10985.78, + "end": 10986.76, + "probability": 0.7986 + }, + { + "start": 10987.86, + "end": 10988.52, + "probability": 0.7235 + }, + { + "start": 10993.75, + "end": 10996.76, + "probability": 0.8335 + }, + { + "start": 10997.0, + "end": 10998.22, + "probability": 0.9033 + }, + { + "start": 10999.16, + "end": 11001.88, + "probability": 0.9891 + }, + { + "start": 11002.2, + "end": 11002.7, + "probability": 0.9724 + }, + { + "start": 11003.5, + "end": 11007.16, + "probability": 0.9744 + }, + { + "start": 11009.24, + "end": 11011.32, + "probability": 0.9434 + }, + { + "start": 11012.3, + "end": 11013.4, + "probability": 0.8618 + }, + { + "start": 11013.5, + "end": 11014.5, + "probability": 0.9067 + }, + { + "start": 11015.24, + "end": 11016.84, + "probability": 0.8143 + }, + { + "start": 11017.42, + "end": 11021.4, + "probability": 0.7643 + }, + { + "start": 11022.28, + "end": 11024.28, + "probability": 0.7308 + }, + { + "start": 11025.34, + "end": 11027.15, + "probability": 0.9457 + }, + { + "start": 11028.48, + "end": 11032.04, + "probability": 0.9854 + }, + { + "start": 11032.2, + "end": 11033.79, + "probability": 0.9277 + }, + { + "start": 11036.02, + "end": 11037.46, + "probability": 0.6182 + }, + { + "start": 11038.26, + "end": 11040.04, + "probability": 0.8333 + }, + { + "start": 11040.74, + "end": 11043.84, + "probability": 0.9907 + }, + { + "start": 11045.48, + "end": 11047.12, + "probability": 0.8657 + }, + { + "start": 11047.74, + "end": 11048.76, + "probability": 0.9912 + }, + { + "start": 11049.12, + "end": 11051.76, + "probability": 0.8316 + }, + { + "start": 11052.8, + "end": 11054.36, + "probability": 0.6365 + }, + { + "start": 11054.9, + "end": 11058.62, + "probability": 0.8221 + }, + { + "start": 11060.66, + "end": 11064.14, + "probability": 0.9883 + }, + { + "start": 11067.34, + "end": 11068.2, + "probability": 0.6617 + }, + { + "start": 11069.46, + "end": 11071.02, + "probability": 0.9111 + }, + { + "start": 11071.16, + "end": 11073.43, + "probability": 0.7047 + }, + { + "start": 11074.1, + "end": 11075.18, + "probability": 0.8015 + }, + { + "start": 11075.5, + "end": 11076.98, + "probability": 0.7567 + }, + { + "start": 11076.98, + "end": 11078.1, + "probability": 0.808 + }, + { + "start": 11079.0, + "end": 11080.5, + "probability": 0.5938 + }, + { + "start": 11081.82, + "end": 11083.38, + "probability": 0.9735 + }, + { + "start": 11085.72, + "end": 11088.56, + "probability": 0.9519 + }, + { + "start": 11089.66, + "end": 11092.76, + "probability": 0.9477 + }, + { + "start": 11093.42, + "end": 11093.94, + "probability": 0.8838 + }, + { + "start": 11094.42, + "end": 11097.08, + "probability": 0.9919 + }, + { + "start": 11097.86, + "end": 11098.54, + "probability": 0.7439 + }, + { + "start": 11099.2, + "end": 11101.3, + "probability": 0.9891 + }, + { + "start": 11103.4, + "end": 11104.08, + "probability": 0.9406 + }, + { + "start": 11104.62, + "end": 11105.96, + "probability": 0.96 + }, + { + "start": 11107.24, + "end": 11107.98, + "probability": 0.7525 + }, + { + "start": 11108.5, + "end": 11108.82, + "probability": 0.9407 + }, + { + "start": 11109.34, + "end": 11110.74, + "probability": 0.9724 + }, + { + "start": 11111.76, + "end": 11111.84, + "probability": 0.3304 + }, + { + "start": 11112.18, + "end": 11113.5, + "probability": 0.6552 + }, + { + "start": 11113.64, + "end": 11119.46, + "probability": 0.9291 + }, + { + "start": 11122.46, + "end": 11123.52, + "probability": 0.9994 + }, + { + "start": 11124.6, + "end": 11125.88, + "probability": 0.7578 + }, + { + "start": 11126.74, + "end": 11128.84, + "probability": 0.685 + }, + { + "start": 11129.88, + "end": 11135.46, + "probability": 0.7372 + }, + { + "start": 11136.34, + "end": 11137.56, + "probability": 0.8503 + }, + { + "start": 11139.06, + "end": 11141.52, + "probability": 0.9925 + }, + { + "start": 11141.62, + "end": 11142.52, + "probability": 0.5089 + }, + { + "start": 11143.28, + "end": 11147.72, + "probability": 0.7435 + }, + { + "start": 11148.56, + "end": 11149.28, + "probability": 0.8657 + }, + { + "start": 11149.42, + "end": 11149.52, + "probability": 0.7908 + }, + { + "start": 11151.62, + "end": 11152.12, + "probability": 0.9233 + }, + { + "start": 11152.2, + "end": 11153.14, + "probability": 0.2723 + }, + { + "start": 11153.38, + "end": 11156.04, + "probability": 0.5726 + }, + { + "start": 11156.74, + "end": 11157.96, + "probability": 0.9627 + }, + { + "start": 11158.52, + "end": 11160.54, + "probability": 0.9069 + }, + { + "start": 11160.88, + "end": 11162.32, + "probability": 0.7086 + }, + { + "start": 11162.92, + "end": 11165.8, + "probability": 0.9405 + }, + { + "start": 11166.2, + "end": 11167.27, + "probability": 0.868 + }, + { + "start": 11168.54, + "end": 11169.68, + "probability": 0.9502 + }, + { + "start": 11170.22, + "end": 11174.94, + "probability": 0.8163 + }, + { + "start": 11175.56, + "end": 11179.08, + "probability": 0.9351 + }, + { + "start": 11180.42, + "end": 11181.48, + "probability": 0.7007 + }, + { + "start": 11182.76, + "end": 11183.16, + "probability": 0.5386 + }, + { + "start": 11183.96, + "end": 11188.38, + "probability": 0.8061 + }, + { + "start": 11189.36, + "end": 11190.18, + "probability": 0.881 + }, + { + "start": 11190.22, + "end": 11193.38, + "probability": 0.979 + }, + { + "start": 11193.42, + "end": 11194.52, + "probability": 0.6007 + }, + { + "start": 11194.66, + "end": 11196.82, + "probability": 0.85 + }, + { + "start": 11198.38, + "end": 11201.18, + "probability": 0.9678 + }, + { + "start": 11202.52, + "end": 11204.0, + "probability": 0.8119 + }, + { + "start": 11204.62, + "end": 11206.06, + "probability": 0.8449 + }, + { + "start": 11206.5, + "end": 11211.28, + "probability": 0.9834 + }, + { + "start": 11211.48, + "end": 11213.96, + "probability": 0.9224 + }, + { + "start": 11214.28, + "end": 11215.14, + "probability": 0.946 + }, + { + "start": 11215.58, + "end": 11216.34, + "probability": 0.7874 + }, + { + "start": 11216.6, + "end": 11217.44, + "probability": 0.8194 + }, + { + "start": 11217.9, + "end": 11218.9, + "probability": 0.9868 + }, + { + "start": 11219.3, + "end": 11220.25, + "probability": 0.987 + }, + { + "start": 11220.96, + "end": 11222.12, + "probability": 0.6697 + }, + { + "start": 11222.82, + "end": 11225.18, + "probability": 0.9715 + }, + { + "start": 11226.84, + "end": 11231.24, + "probability": 0.9543 + }, + { + "start": 11232.38, + "end": 11234.34, + "probability": 0.7091 + }, + { + "start": 11236.0, + "end": 11239.5, + "probability": 0.9866 + }, + { + "start": 11239.74, + "end": 11241.9, + "probability": 0.9917 + }, + { + "start": 11241.96, + "end": 11242.48, + "probability": 0.9661 + }, + { + "start": 11244.4, + "end": 11247.9, + "probability": 0.9932 + }, + { + "start": 11248.0, + "end": 11249.4, + "probability": 0.8939 + }, + { + "start": 11250.12, + "end": 11253.5, + "probability": 0.8488 + }, + { + "start": 11253.6, + "end": 11255.27, + "probability": 0.9854 + }, + { + "start": 11255.82, + "end": 11256.3, + "probability": 0.7776 + }, + { + "start": 11256.96, + "end": 11259.42, + "probability": 0.9446 + }, + { + "start": 11259.88, + "end": 11262.54, + "probability": 0.9974 + }, + { + "start": 11262.64, + "end": 11267.3, + "probability": 0.9704 + }, + { + "start": 11267.66, + "end": 11267.94, + "probability": 0.7584 + }, + { + "start": 11268.86, + "end": 11269.3, + "probability": 0.5203 + }, + { + "start": 11269.58, + "end": 11271.23, + "probability": 0.5384 + }, + { + "start": 11307.88, + "end": 11307.9, + "probability": 0.113 + }, + { + "start": 11307.9, + "end": 11309.42, + "probability": 0.5556 + }, + { + "start": 11310.2, + "end": 11311.64, + "probability": 0.633 + }, + { + "start": 11312.46, + "end": 11316.88, + "probability": 0.9738 + }, + { + "start": 11317.5, + "end": 11318.98, + "probability": 0.9081 + }, + { + "start": 11319.36, + "end": 11321.94, + "probability": 0.749 + }, + { + "start": 11322.02, + "end": 11328.5, + "probability": 0.8932 + }, + { + "start": 11328.66, + "end": 11329.2, + "probability": 0.3985 + }, + { + "start": 11330.08, + "end": 11333.58, + "probability": 0.8652 + }, + { + "start": 11334.16, + "end": 11336.92, + "probability": 0.9973 + }, + { + "start": 11338.54, + "end": 11342.1, + "probability": 0.8766 + }, + { + "start": 11343.0, + "end": 11348.74, + "probability": 0.9513 + }, + { + "start": 11348.92, + "end": 11350.22, + "probability": 0.8261 + }, + { + "start": 11350.62, + "end": 11354.94, + "probability": 0.9848 + }, + { + "start": 11355.06, + "end": 11356.88, + "probability": 0.5544 + }, + { + "start": 11356.88, + "end": 11357.6, + "probability": 0.6212 + }, + { + "start": 11358.02, + "end": 11359.48, + "probability": 0.7771 + }, + { + "start": 11360.82, + "end": 11363.96, + "probability": 0.9248 + }, + { + "start": 11364.4, + "end": 11367.78, + "probability": 0.9523 + }, + { + "start": 11368.36, + "end": 11370.1, + "probability": 0.9083 + }, + { + "start": 11370.86, + "end": 11375.32, + "probability": 0.9788 + }, + { + "start": 11375.94, + "end": 11379.32, + "probability": 0.9536 + }, + { + "start": 11379.7, + "end": 11380.1, + "probability": 0.5061 + }, + { + "start": 11380.3, + "end": 11380.86, + "probability": 0.7995 + }, + { + "start": 11380.96, + "end": 11383.34, + "probability": 0.9713 + }, + { + "start": 11383.52, + "end": 11385.66, + "probability": 0.924 + }, + { + "start": 11386.3, + "end": 11389.2, + "probability": 0.9951 + }, + { + "start": 11389.6, + "end": 11391.08, + "probability": 0.9961 + }, + { + "start": 11391.9, + "end": 11396.44, + "probability": 0.8278 + }, + { + "start": 11396.44, + "end": 11399.68, + "probability": 0.9661 + }, + { + "start": 11399.68, + "end": 11404.5, + "probability": 0.9814 + }, + { + "start": 11405.18, + "end": 11405.58, + "probability": 0.6602 + }, + { + "start": 11406.06, + "end": 11407.94, + "probability": 0.8599 + }, + { + "start": 11408.04, + "end": 11408.64, + "probability": 0.5834 + }, + { + "start": 11409.02, + "end": 11410.66, + "probability": 0.8698 + }, + { + "start": 11411.1, + "end": 11414.04, + "probability": 0.8983 + }, + { + "start": 11414.6, + "end": 11417.96, + "probability": 0.9719 + }, + { + "start": 11418.5, + "end": 11418.76, + "probability": 0.7869 + }, + { + "start": 11418.76, + "end": 11418.98, + "probability": 0.9619 + }, + { + "start": 11419.08, + "end": 11422.82, + "probability": 0.9964 + }, + { + "start": 11423.74, + "end": 11424.58, + "probability": 0.5386 + }, + { + "start": 11425.26, + "end": 11426.32, + "probability": 0.947 + }, + { + "start": 11426.52, + "end": 11427.42, + "probability": 0.965 + }, + { + "start": 11427.8, + "end": 11433.38, + "probability": 0.9051 + }, + { + "start": 11433.5, + "end": 11435.98, + "probability": 0.9733 + }, + { + "start": 11436.5, + "end": 11439.36, + "probability": 0.9049 + }, + { + "start": 11440.02, + "end": 11440.64, + "probability": 0.8896 + }, + { + "start": 11440.76, + "end": 11442.0, + "probability": 0.9858 + }, + { + "start": 11442.38, + "end": 11442.7, + "probability": 0.7349 + }, + { + "start": 11442.78, + "end": 11443.89, + "probability": 0.8324 + }, + { + "start": 11444.18, + "end": 11446.25, + "probability": 0.9847 + }, + { + "start": 11446.86, + "end": 11449.52, + "probability": 0.9907 + }, + { + "start": 11449.64, + "end": 11451.3, + "probability": 0.8766 + }, + { + "start": 11451.86, + "end": 11453.31, + "probability": 0.8679 + }, + { + "start": 11453.98, + "end": 11454.84, + "probability": 0.8708 + }, + { + "start": 11455.02, + "end": 11455.7, + "probability": 0.7586 + }, + { + "start": 11455.76, + "end": 11456.82, + "probability": 0.6069 + }, + { + "start": 11457.4, + "end": 11461.47, + "probability": 0.8582 + }, + { + "start": 11462.38, + "end": 11463.7, + "probability": 0.9182 + }, + { + "start": 11464.16, + "end": 11466.29, + "probability": 0.6833 + }, + { + "start": 11467.56, + "end": 11469.1, + "probability": 0.9509 + }, + { + "start": 11469.72, + "end": 11470.83, + "probability": 0.9479 + }, + { + "start": 11471.48, + "end": 11473.24, + "probability": 0.9823 + }, + { + "start": 11473.48, + "end": 11479.34, + "probability": 0.832 + }, + { + "start": 11479.5, + "end": 11481.86, + "probability": 0.9944 + }, + { + "start": 11482.12, + "end": 11482.9, + "probability": 0.8311 + }, + { + "start": 11483.3, + "end": 11484.08, + "probability": 0.5464 + }, + { + "start": 11484.56, + "end": 11486.78, + "probability": 0.9786 + }, + { + "start": 11487.24, + "end": 11489.24, + "probability": 0.9149 + }, + { + "start": 11489.3, + "end": 11490.24, + "probability": 0.9225 + }, + { + "start": 11490.76, + "end": 11492.14, + "probability": 0.9816 + }, + { + "start": 11492.7, + "end": 11495.34, + "probability": 0.9784 + }, + { + "start": 11495.44, + "end": 11496.44, + "probability": 0.9562 + }, + { + "start": 11497.04, + "end": 11499.22, + "probability": 0.9547 + }, + { + "start": 11499.74, + "end": 11502.1, + "probability": 0.7562 + }, + { + "start": 11502.78, + "end": 11504.53, + "probability": 0.9217 + }, + { + "start": 11504.9, + "end": 11507.51, + "probability": 0.9534 + }, + { + "start": 11508.04, + "end": 11509.2, + "probability": 0.9502 + }, + { + "start": 11509.4, + "end": 11510.8, + "probability": 0.9296 + }, + { + "start": 11511.08, + "end": 11513.56, + "probability": 0.7871 + }, + { + "start": 11513.68, + "end": 11514.9, + "probability": 0.9446 + }, + { + "start": 11515.42, + "end": 11516.84, + "probability": 0.795 + }, + { + "start": 11516.98, + "end": 11519.26, + "probability": 0.8613 + }, + { + "start": 11520.34, + "end": 11525.76, + "probability": 0.9398 + }, + { + "start": 11526.06, + "end": 11527.32, + "probability": 0.9282 + }, + { + "start": 11527.44, + "end": 11532.8, + "probability": 0.7589 + }, + { + "start": 11533.36, + "end": 11535.76, + "probability": 0.9617 + }, + { + "start": 11536.4, + "end": 11537.28, + "probability": 0.6642 + }, + { + "start": 11537.9, + "end": 11539.56, + "probability": 0.9845 + }, + { + "start": 11540.28, + "end": 11541.14, + "probability": 0.781 + }, + { + "start": 11541.26, + "end": 11541.9, + "probability": 0.4706 + }, + { + "start": 11542.08, + "end": 11543.52, + "probability": 0.9883 + }, + { + "start": 11544.12, + "end": 11548.18, + "probability": 0.994 + }, + { + "start": 11548.96, + "end": 11552.26, + "probability": 0.9347 + }, + { + "start": 11552.8, + "end": 11555.74, + "probability": 0.9727 + }, + { + "start": 11556.36, + "end": 11558.49, + "probability": 0.4169 + }, + { + "start": 11559.04, + "end": 11559.32, + "probability": 0.4267 + }, + { + "start": 11559.42, + "end": 11562.18, + "probability": 0.8412 + }, + { + "start": 11562.58, + "end": 11563.72, + "probability": 0.9743 + }, + { + "start": 11563.96, + "end": 11564.68, + "probability": 0.668 + }, + { + "start": 11564.9, + "end": 11565.74, + "probability": 0.7538 + }, + { + "start": 11566.04, + "end": 11567.69, + "probability": 0.9871 + }, + { + "start": 11568.2, + "end": 11571.1, + "probability": 0.9951 + }, + { + "start": 11571.28, + "end": 11576.1, + "probability": 0.8636 + }, + { + "start": 11576.54, + "end": 11580.4, + "probability": 0.989 + }, + { + "start": 11580.74, + "end": 11583.54, + "probability": 0.9956 + }, + { + "start": 11583.84, + "end": 11585.46, + "probability": 0.978 + }, + { + "start": 11586.38, + "end": 11588.52, + "probability": 0.9036 + }, + { + "start": 11589.02, + "end": 11590.38, + "probability": 0.9654 + }, + { + "start": 11590.6, + "end": 11591.26, + "probability": 0.871 + }, + { + "start": 11591.42, + "end": 11593.1, + "probability": 0.9934 + }, + { + "start": 11593.94, + "end": 11595.88, + "probability": 0.9806 + }, + { + "start": 11596.68, + "end": 11597.66, + "probability": 0.9692 + }, + { + "start": 11597.82, + "end": 11597.96, + "probability": 0.4785 + }, + { + "start": 11598.32, + "end": 11600.14, + "probability": 0.9786 + }, + { + "start": 11600.44, + "end": 11602.92, + "probability": 0.9119 + }, + { + "start": 11603.72, + "end": 11604.14, + "probability": 0.6952 + }, + { + "start": 11605.16, + "end": 11605.82, + "probability": 0.9273 + }, + { + "start": 11605.92, + "end": 11607.0, + "probability": 0.9952 + }, + { + "start": 11607.08, + "end": 11607.38, + "probability": 0.7935 + }, + { + "start": 11607.76, + "end": 11608.24, + "probability": 0.9261 + }, + { + "start": 11608.48, + "end": 11608.78, + "probability": 0.9713 + }, + { + "start": 11609.06, + "end": 11609.92, + "probability": 0.8503 + }, + { + "start": 11615.87, + "end": 11619.68, + "probability": 0.9747 + }, + { + "start": 11620.56, + "end": 11621.82, + "probability": 0.6693 + }, + { + "start": 11622.12, + "end": 11623.62, + "probability": 0.6943 + }, + { + "start": 11624.18, + "end": 11625.0, + "probability": 0.8555 + }, + { + "start": 11625.96, + "end": 11626.96, + "probability": 0.8887 + }, + { + "start": 11627.22, + "end": 11630.26, + "probability": 0.8654 + }, + { + "start": 11630.34, + "end": 11633.92, + "probability": 0.6122 + }, + { + "start": 11633.96, + "end": 11637.5, + "probability": 0.874 + }, + { + "start": 11637.84, + "end": 11638.66, + "probability": 0.5038 + }, + { + "start": 11639.22, + "end": 11641.56, + "probability": 0.98 + }, + { + "start": 11643.58, + "end": 11645.94, + "probability": 0.9995 + }, + { + "start": 11646.72, + "end": 11651.58, + "probability": 0.9792 + }, + { + "start": 11652.1, + "end": 11655.32, + "probability": 0.765 + }, + { + "start": 11655.84, + "end": 11656.16, + "probability": 0.7429 + }, + { + "start": 11656.26, + "end": 11657.54, + "probability": 0.8209 + }, + { + "start": 11657.88, + "end": 11660.82, + "probability": 0.938 + }, + { + "start": 11661.34, + "end": 11663.38, + "probability": 0.9795 + }, + { + "start": 11663.44, + "end": 11669.14, + "probability": 0.8748 + }, + { + "start": 11669.22, + "end": 11669.46, + "probability": 0.7177 + }, + { + "start": 11669.56, + "end": 11671.56, + "probability": 0.8998 + }, + { + "start": 11671.94, + "end": 11673.44, + "probability": 0.9893 + }, + { + "start": 11674.82, + "end": 11678.86, + "probability": 0.9572 + }, + { + "start": 11679.58, + "end": 11680.58, + "probability": 0.6538 + }, + { + "start": 11680.68, + "end": 11682.16, + "probability": 0.8765 + }, + { + "start": 11682.6, + "end": 11687.86, + "probability": 0.8813 + }, + { + "start": 11689.16, + "end": 11692.06, + "probability": 0.919 + }, + { + "start": 11692.46, + "end": 11694.92, + "probability": 0.9342 + }, + { + "start": 11694.92, + "end": 11699.24, + "probability": 0.9961 + }, + { + "start": 11699.72, + "end": 11701.48, + "probability": 0.7459 + }, + { + "start": 11701.6, + "end": 11702.28, + "probability": 0.6564 + }, + { + "start": 11703.2, + "end": 11704.38, + "probability": 0.8816 + }, + { + "start": 11704.68, + "end": 11706.9, + "probability": 0.7624 + }, + { + "start": 11706.94, + "end": 11709.82, + "probability": 0.8704 + }, + { + "start": 11709.96, + "end": 11711.2, + "probability": 0.8841 + }, + { + "start": 11711.64, + "end": 11713.02, + "probability": 0.9045 + }, + { + "start": 11713.02, + "end": 11715.4, + "probability": 0.9927 + }, + { + "start": 11715.78, + "end": 11717.06, + "probability": 0.7579 + }, + { + "start": 11717.3, + "end": 11719.36, + "probability": 0.9766 + }, + { + "start": 11720.0, + "end": 11723.75, + "probability": 0.8535 + }, + { + "start": 11723.94, + "end": 11725.0, + "probability": 0.9679 + }, + { + "start": 11725.08, + "end": 11725.32, + "probability": 0.7012 + }, + { + "start": 11725.42, + "end": 11727.64, + "probability": 0.9169 + }, + { + "start": 11727.7, + "end": 11731.06, + "probability": 0.8787 + }, + { + "start": 11731.62, + "end": 11732.3, + "probability": 0.6162 + }, + { + "start": 11732.68, + "end": 11735.84, + "probability": 0.7945 + }, + { + "start": 11736.62, + "end": 11738.94, + "probability": 0.9451 + }, + { + "start": 11739.32, + "end": 11743.5, + "probability": 0.6481 + }, + { + "start": 11744.78, + "end": 11746.38, + "probability": 0.9971 + }, + { + "start": 11746.38, + "end": 11749.38, + "probability": 0.979 + }, + { + "start": 11749.96, + "end": 11752.5, + "probability": 0.9609 + }, + { + "start": 11752.68, + "end": 11755.66, + "probability": 0.812 + }, + { + "start": 11755.96, + "end": 11757.58, + "probability": 0.9432 + }, + { + "start": 11757.72, + "end": 11758.06, + "probability": 0.3043 + }, + { + "start": 11758.56, + "end": 11760.5, + "probability": 0.9442 + }, + { + "start": 11760.5, + "end": 11763.52, + "probability": 0.9501 + }, + { + "start": 11763.96, + "end": 11766.56, + "probability": 0.947 + }, + { + "start": 11766.98, + "end": 11767.86, + "probability": 0.9727 + }, + { + "start": 11768.3, + "end": 11773.71, + "probability": 0.9614 + }, + { + "start": 11774.34, + "end": 11777.64, + "probability": 0.7627 + }, + { + "start": 11778.28, + "end": 11780.6, + "probability": 0.9756 + }, + { + "start": 11780.98, + "end": 11781.66, + "probability": 0.773 + }, + { + "start": 11782.1, + "end": 11783.34, + "probability": 0.9761 + }, + { + "start": 11784.06, + "end": 11785.96, + "probability": 0.8394 + }, + { + "start": 11787.06, + "end": 11791.36, + "probability": 0.708 + }, + { + "start": 11794.64, + "end": 11797.08, + "probability": 0.8178 + }, + { + "start": 11797.72, + "end": 11798.68, + "probability": 0.5846 + }, + { + "start": 11799.14, + "end": 11800.12, + "probability": 0.6348 + }, + { + "start": 11800.48, + "end": 11802.22, + "probability": 0.9531 + }, + { + "start": 11802.26, + "end": 11804.16, + "probability": 0.9746 + }, + { + "start": 11804.74, + "end": 11807.2, + "probability": 0.7859 + }, + { + "start": 11807.9, + "end": 11811.9, + "probability": 0.9038 + }, + { + "start": 11812.06, + "end": 11813.16, + "probability": 0.7721 + }, + { + "start": 11813.62, + "end": 11815.14, + "probability": 0.9705 + }, + { + "start": 11815.14, + "end": 11819.44, + "probability": 0.9873 + }, + { + "start": 11819.56, + "end": 11820.64, + "probability": 0.8047 + }, + { + "start": 11820.74, + "end": 11821.06, + "probability": 0.946 + }, + { + "start": 11821.88, + "end": 11822.58, + "probability": 0.5354 + }, + { + "start": 11823.44, + "end": 11823.54, + "probability": 0.53 + }, + { + "start": 11823.72, + "end": 11823.94, + "probability": 0.7899 + }, + { + "start": 11824.08, + "end": 11824.51, + "probability": 0.9542 + }, + { + "start": 11825.16, + "end": 11826.32, + "probability": 0.9624 + }, + { + "start": 11826.42, + "end": 11828.2, + "probability": 0.9839 + }, + { + "start": 11828.56, + "end": 11831.76, + "probability": 0.7917 + }, + { + "start": 11832.32, + "end": 11835.88, + "probability": 0.9763 + }, + { + "start": 11836.12, + "end": 11836.32, + "probability": 0.8351 + }, + { + "start": 11837.16, + "end": 11840.56, + "probability": 0.5833 + }, + { + "start": 11841.02, + "end": 11844.66, + "probability": 0.9075 + }, + { + "start": 11844.8, + "end": 11848.66, + "probability": 0.9567 + }, + { + "start": 11848.66, + "end": 11852.51, + "probability": 0.8111 + }, + { + "start": 11853.6, + "end": 11855.02, + "probability": 0.8315 + }, + { + "start": 11855.78, + "end": 11859.7, + "probability": 0.6676 + }, + { + "start": 11860.1, + "end": 11863.56, + "probability": 0.7072 + }, + { + "start": 11863.86, + "end": 11867.66, + "probability": 0.6525 + }, + { + "start": 11868.26, + "end": 11870.62, + "probability": 0.958 + }, + { + "start": 11870.7, + "end": 11871.28, + "probability": 0.8816 + }, + { + "start": 11871.62, + "end": 11874.5, + "probability": 0.9696 + }, + { + "start": 11874.5, + "end": 11877.26, + "probability": 0.9419 + }, + { + "start": 11877.72, + "end": 11879.16, + "probability": 0.5972 + }, + { + "start": 11879.38, + "end": 11883.44, + "probability": 0.8527 + }, + { + "start": 11884.18, + "end": 11887.16, + "probability": 0.9495 + }, + { + "start": 11887.54, + "end": 11889.7, + "probability": 0.979 + }, + { + "start": 11890.2, + "end": 11894.46, + "probability": 0.8692 + }, + { + "start": 11894.78, + "end": 11896.08, + "probability": 0.0035 + }, + { + "start": 11898.2, + "end": 11900.18, + "probability": 0.993 + }, + { + "start": 11901.95, + "end": 11904.92, + "probability": 0.929 + }, + { + "start": 11929.46, + "end": 11930.08, + "probability": 0.5802 + }, + { + "start": 11930.08, + "end": 11930.6, + "probability": 0.7262 + }, + { + "start": 11938.1, + "end": 11938.66, + "probability": 0.5229 + }, + { + "start": 11940.92, + "end": 11942.96, + "probability": 0.7034 + }, + { + "start": 11947.12, + "end": 11949.16, + "probability": 0.6256 + }, + { + "start": 11950.18, + "end": 11953.93, + "probability": 0.9956 + }, + { + "start": 11956.1, + "end": 11960.12, + "probability": 0.9912 + }, + { + "start": 11961.6, + "end": 11967.34, + "probability": 0.9109 + }, + { + "start": 11967.6, + "end": 11970.26, + "probability": 0.9295 + }, + { + "start": 11970.82, + "end": 11972.2, + "probability": 0.7521 + }, + { + "start": 11972.84, + "end": 11974.74, + "probability": 0.9979 + }, + { + "start": 11974.94, + "end": 11976.22, + "probability": 0.8675 + }, + { + "start": 11976.34, + "end": 11980.68, + "probability": 0.9856 + }, + { + "start": 11980.9, + "end": 11981.66, + "probability": 0.9476 + }, + { + "start": 11981.96, + "end": 11982.48, + "probability": 0.9752 + }, + { + "start": 11982.6, + "end": 11983.19, + "probability": 0.9529 + }, + { + "start": 11983.94, + "end": 11986.28, + "probability": 0.446 + }, + { + "start": 11986.46, + "end": 11989.76, + "probability": 0.9792 + }, + { + "start": 11990.84, + "end": 11993.2, + "probability": 0.8394 + }, + { + "start": 11993.98, + "end": 11998.14, + "probability": 0.9115 + }, + { + "start": 11998.96, + "end": 11999.74, + "probability": 0.9226 + }, + { + "start": 12000.82, + "end": 12003.0, + "probability": 0.9933 + }, + { + "start": 12008.88, + "end": 12010.54, + "probability": 0.9922 + }, + { + "start": 12011.76, + "end": 12018.46, + "probability": 0.6335 + }, + { + "start": 12020.12, + "end": 12021.4, + "probability": 0.793 + }, + { + "start": 12023.02, + "end": 12025.88, + "probability": 0.8813 + }, + { + "start": 12027.24, + "end": 12028.64, + "probability": 0.7613 + }, + { + "start": 12031.93, + "end": 12035.82, + "probability": 0.5061 + }, + { + "start": 12036.56, + "end": 12040.58, + "probability": 0.9773 + }, + { + "start": 12042.04, + "end": 12044.64, + "probability": 0.8004 + }, + { + "start": 12044.84, + "end": 12047.7, + "probability": 0.8226 + }, + { + "start": 12049.46, + "end": 12052.92, + "probability": 0.8982 + }, + { + "start": 12052.96, + "end": 12058.1, + "probability": 0.9182 + }, + { + "start": 12058.18, + "end": 12059.3, + "probability": 0.9995 + }, + { + "start": 12060.18, + "end": 12062.86, + "probability": 0.9697 + }, + { + "start": 12064.06, + "end": 12067.36, + "probability": 0.958 + }, + { + "start": 12067.9, + "end": 12069.38, + "probability": 0.9705 + }, + { + "start": 12069.58, + "end": 12071.4, + "probability": 0.9791 + }, + { + "start": 12071.66, + "end": 12071.98, + "probability": 0.9625 + }, + { + "start": 12072.66, + "end": 12075.16, + "probability": 0.999 + }, + { + "start": 12075.96, + "end": 12077.92, + "probability": 0.9916 + }, + { + "start": 12078.04, + "end": 12078.97, + "probability": 0.9012 + }, + { + "start": 12079.16, + "end": 12082.78, + "probability": 0.9933 + }, + { + "start": 12086.44, + "end": 12088.34, + "probability": 0.952 + }, + { + "start": 12090.34, + "end": 12092.16, + "probability": 0.906 + }, + { + "start": 12093.06, + "end": 12093.9, + "probability": 0.6498 + }, + { + "start": 12094.46, + "end": 12097.58, + "probability": 0.9841 + }, + { + "start": 12098.06, + "end": 12101.14, + "probability": 0.6438 + }, + { + "start": 12101.9, + "end": 12106.24, + "probability": 0.6449 + }, + { + "start": 12107.6, + "end": 12109.6, + "probability": 0.9766 + }, + { + "start": 12109.7, + "end": 12112.66, + "probability": 0.987 + }, + { + "start": 12112.66, + "end": 12116.9, + "probability": 0.998 + }, + { + "start": 12118.1, + "end": 12118.68, + "probability": 0.6826 + }, + { + "start": 12118.94, + "end": 12126.54, + "probability": 0.7933 + }, + { + "start": 12126.88, + "end": 12130.06, + "probability": 0.9511 + }, + { + "start": 12131.08, + "end": 12134.46, + "probability": 0.6883 + }, + { + "start": 12134.9, + "end": 12136.78, + "probability": 0.9167 + }, + { + "start": 12137.96, + "end": 12141.92, + "probability": 0.9513 + }, + { + "start": 12144.24, + "end": 12147.52, + "probability": 0.9861 + }, + { + "start": 12147.88, + "end": 12148.4, + "probability": 0.5647 + }, + { + "start": 12153.82, + "end": 12157.62, + "probability": 0.8717 + }, + { + "start": 12158.0, + "end": 12160.84, + "probability": 0.9701 + }, + { + "start": 12161.72, + "end": 12164.72, + "probability": 0.9873 + }, + { + "start": 12168.92, + "end": 12171.31, + "probability": 0.9136 + }, + { + "start": 12173.2, + "end": 12174.16, + "probability": 0.8424 + }, + { + "start": 12175.26, + "end": 12182.1, + "probability": 0.9778 + }, + { + "start": 12183.44, + "end": 12188.32, + "probability": 0.9751 + }, + { + "start": 12188.84, + "end": 12192.68, + "probability": 0.9866 + }, + { + "start": 12193.23, + "end": 12198.3, + "probability": 0.9953 + }, + { + "start": 12198.52, + "end": 12202.02, + "probability": 0.9951 + }, + { + "start": 12202.94, + "end": 12207.4, + "probability": 0.999 + }, + { + "start": 12207.58, + "end": 12213.94, + "probability": 0.9976 + }, + { + "start": 12214.1, + "end": 12214.34, + "probability": 0.9277 + }, + { + "start": 12217.28, + "end": 12217.8, + "probability": 0.6707 + }, + { + "start": 12218.48, + "end": 12223.16, + "probability": 0.7814 + }, + { + "start": 12223.82, + "end": 12227.82, + "probability": 0.9188 + }, + { + "start": 12229.0, + "end": 12230.34, + "probability": 0.9922 + }, + { + "start": 12232.16, + "end": 12235.46, + "probability": 0.8377 + }, + { + "start": 12236.06, + "end": 12236.93, + "probability": 0.922 + }, + { + "start": 12238.4, + "end": 12238.8, + "probability": 0.5272 + }, + { + "start": 12239.12, + "end": 12239.76, + "probability": 0.9283 + }, + { + "start": 12239.84, + "end": 12240.76, + "probability": 0.8624 + }, + { + "start": 12241.04, + "end": 12244.28, + "probability": 0.9342 + }, + { + "start": 12244.52, + "end": 12246.78, + "probability": 0.6871 + }, + { + "start": 12247.86, + "end": 12250.78, + "probability": 0.9849 + }, + { + "start": 12252.1, + "end": 12257.02, + "probability": 0.9729 + }, + { + "start": 12257.02, + "end": 12261.92, + "probability": 0.7593 + }, + { + "start": 12262.88, + "end": 12268.54, + "probability": 0.8341 + }, + { + "start": 12268.76, + "end": 12274.32, + "probability": 0.6859 + }, + { + "start": 12274.8, + "end": 12282.82, + "probability": 0.8235 + }, + { + "start": 12283.18, + "end": 12284.26, + "probability": 0.7123 + }, + { + "start": 12284.52, + "end": 12285.24, + "probability": 0.7964 + }, + { + "start": 12286.18, + "end": 12289.36, + "probability": 0.9924 + }, + { + "start": 12290.8, + "end": 12297.5, + "probability": 0.9417 + }, + { + "start": 12298.0, + "end": 12303.06, + "probability": 0.978 + }, + { + "start": 12303.22, + "end": 12308.94, + "probability": 0.999 + }, + { + "start": 12310.54, + "end": 12317.18, + "probability": 0.9465 + }, + { + "start": 12317.26, + "end": 12318.64, + "probability": 0.8938 + }, + { + "start": 12320.14, + "end": 12322.1, + "probability": 0.7505 + }, + { + "start": 12322.18, + "end": 12322.74, + "probability": 0.7251 + }, + { + "start": 12323.04, + "end": 12325.98, + "probability": 0.669 + }, + { + "start": 12326.14, + "end": 12331.6, + "probability": 0.9818 + }, + { + "start": 12332.6, + "end": 12339.62, + "probability": 0.8286 + }, + { + "start": 12340.14, + "end": 12342.58, + "probability": 0.998 + }, + { + "start": 12342.74, + "end": 12346.36, + "probability": 0.9988 + }, + { + "start": 12349.74, + "end": 12355.2, + "probability": 0.9944 + }, + { + "start": 12355.2, + "end": 12360.4, + "probability": 0.9742 + }, + { + "start": 12360.64, + "end": 12364.14, + "probability": 0.8184 + }, + { + "start": 12364.6, + "end": 12370.68, + "probability": 0.7632 + }, + { + "start": 12371.2, + "end": 12373.34, + "probability": 0.9407 + }, + { + "start": 12373.56, + "end": 12377.38, + "probability": 0.846 + }, + { + "start": 12377.86, + "end": 12380.66, + "probability": 0.967 + }, + { + "start": 12381.24, + "end": 12385.34, + "probability": 0.5311 + }, + { + "start": 12386.02, + "end": 12393.02, + "probability": 0.5445 + }, + { + "start": 12393.44, + "end": 12395.06, + "probability": 0.887 + }, + { + "start": 12395.36, + "end": 12400.58, + "probability": 0.8675 + }, + { + "start": 12401.24, + "end": 12404.22, + "probability": 0.9955 + }, + { + "start": 12404.44, + "end": 12407.38, + "probability": 0.9316 + }, + { + "start": 12407.5, + "end": 12413.4, + "probability": 0.5866 + }, + { + "start": 12413.4, + "end": 12415.68, + "probability": 0.6371 + }, + { + "start": 12416.7, + "end": 12422.22, + "probability": 0.9815 + }, + { + "start": 12425.08, + "end": 12427.7, + "probability": 0.9599 + }, + { + "start": 12428.1, + "end": 12430.96, + "probability": 0.9932 + }, + { + "start": 12431.26, + "end": 12435.78, + "probability": 0.9679 + }, + { + "start": 12437.28, + "end": 12440.52, + "probability": 0.9681 + }, + { + "start": 12441.96, + "end": 12443.24, + "probability": 0.9849 + }, + { + "start": 12443.36, + "end": 12447.7, + "probability": 0.9928 + }, + { + "start": 12450.62, + "end": 12454.26, + "probability": 0.8431 + }, + { + "start": 12454.54, + "end": 12458.6, + "probability": 0.6591 + }, + { + "start": 12458.98, + "end": 12465.38, + "probability": 0.9785 + }, + { + "start": 12465.76, + "end": 12467.5, + "probability": 0.9525 + }, + { + "start": 12467.58, + "end": 12468.6, + "probability": 0.9746 + }, + { + "start": 12469.7, + "end": 12473.62, + "probability": 0.9867 + }, + { + "start": 12473.88, + "end": 12474.68, + "probability": 0.9691 + }, + { + "start": 12475.04, + "end": 12476.74, + "probability": 0.5902 + }, + { + "start": 12477.84, + "end": 12481.46, + "probability": 0.96 + }, + { + "start": 12482.2, + "end": 12485.16, + "probability": 0.6953 + }, + { + "start": 12485.82, + "end": 12488.96, + "probability": 0.9421 + }, + { + "start": 12491.68, + "end": 12493.22, + "probability": 0.6716 + }, + { + "start": 12493.68, + "end": 12497.82, + "probability": 0.756 + }, + { + "start": 12497.82, + "end": 12503.88, + "probability": 0.9958 + }, + { + "start": 12504.3, + "end": 12504.96, + "probability": 0.6642 + }, + { + "start": 12505.7, + "end": 12508.26, + "probability": 0.8987 + }, + { + "start": 12508.82, + "end": 12512.84, + "probability": 0.9927 + }, + { + "start": 12513.36, + "end": 12514.32, + "probability": 0.999 + }, + { + "start": 12515.38, + "end": 12518.5, + "probability": 0.913 + }, + { + "start": 12518.82, + "end": 12522.24, + "probability": 0.9772 + }, + { + "start": 12523.16, + "end": 12524.98, + "probability": 0.9116 + }, + { + "start": 12526.02, + "end": 12528.04, + "probability": 0.3732 + }, + { + "start": 12528.84, + "end": 12533.26, + "probability": 0.9771 + }, + { + "start": 12533.52, + "end": 12534.06, + "probability": 0.8122 + }, + { + "start": 12535.04, + "end": 12539.24, + "probability": 0.9907 + }, + { + "start": 12539.24, + "end": 12545.36, + "probability": 0.6196 + }, + { + "start": 12546.21, + "end": 12550.2, + "probability": 0.9536 + }, + { + "start": 12550.26, + "end": 12555.82, + "probability": 0.4369 + }, + { + "start": 12556.14, + "end": 12556.69, + "probability": 0.4447 + }, + { + "start": 12561.08, + "end": 12564.3, + "probability": 0.9981 + }, + { + "start": 12564.3, + "end": 12567.0, + "probability": 0.9979 + }, + { + "start": 12567.14, + "end": 12574.16, + "probability": 0.9294 + }, + { + "start": 12574.22, + "end": 12575.4, + "probability": 0.9823 + }, + { + "start": 12576.38, + "end": 12579.46, + "probability": 0.9841 + }, + { + "start": 12579.52, + "end": 12580.18, + "probability": 0.9529 + }, + { + "start": 12580.3, + "end": 12581.34, + "probability": 0.9968 + }, + { + "start": 12581.98, + "end": 12583.2, + "probability": 0.6138 + }, + { + "start": 12583.78, + "end": 12585.22, + "probability": 0.992 + }, + { + "start": 12586.0, + "end": 12589.04, + "probability": 0.9754 + }, + { + "start": 12589.18, + "end": 12589.36, + "probability": 0.8605 + }, + { + "start": 12589.8, + "end": 12592.94, + "probability": 0.9102 + }, + { + "start": 12593.72, + "end": 12597.89, + "probability": 0.9958 + }, + { + "start": 12599.18, + "end": 12600.88, + "probability": 0.98 + }, + { + "start": 12601.0, + "end": 12604.62, + "probability": 0.9891 + }, + { + "start": 12606.44, + "end": 12610.62, + "probability": 0.9096 + }, + { + "start": 12611.08, + "end": 12615.1, + "probability": 0.7493 + }, + { + "start": 12615.2, + "end": 12616.1, + "probability": 0.6703 + }, + { + "start": 12616.3, + "end": 12617.44, + "probability": 0.8535 + }, + { + "start": 12618.46, + "end": 12620.3, + "probability": 0.8721 + }, + { + "start": 12620.48, + "end": 12623.94, + "probability": 0.9911 + }, + { + "start": 12624.62, + "end": 12626.06, + "probability": 0.8571 + }, + { + "start": 12626.6, + "end": 12628.38, + "probability": 0.9982 + }, + { + "start": 12628.5, + "end": 12631.08, + "probability": 0.9853 + }, + { + "start": 12631.2, + "end": 12633.2, + "probability": 0.9872 + }, + { + "start": 12633.9, + "end": 12636.52, + "probability": 0.6366 + }, + { + "start": 12636.86, + "end": 12639.94, + "probability": 0.8818 + }, + { + "start": 12640.94, + "end": 12643.76, + "probability": 0.9492 + }, + { + "start": 12645.38, + "end": 12647.92, + "probability": 0.9741 + }, + { + "start": 12648.12, + "end": 12649.24, + "probability": 0.7319 + }, + { + "start": 12650.24, + "end": 12654.36, + "probability": 0.7267 + }, + { + "start": 12654.44, + "end": 12656.42, + "probability": 0.6466 + }, + { + "start": 12656.56, + "end": 12656.88, + "probability": 0.6247 + }, + { + "start": 12657.96, + "end": 12658.88, + "probability": 0.4304 + }, + { + "start": 12659.42, + "end": 12661.64, + "probability": 0.8648 + }, + { + "start": 12662.8, + "end": 12662.94, + "probability": 0.3573 + }, + { + "start": 12662.94, + "end": 12663.67, + "probability": 0.8059 + }, + { + "start": 12665.16, + "end": 12665.6, + "probability": 0.2395 + }, + { + "start": 12668.04, + "end": 12669.3, + "probability": 0.6544 + }, + { + "start": 12672.2, + "end": 12673.66, + "probability": 0.7783 + }, + { + "start": 12674.8, + "end": 12675.62, + "probability": 0.7979 + }, + { + "start": 12675.88, + "end": 12679.67, + "probability": 0.9712 + }, + { + "start": 12686.12, + "end": 12688.62, + "probability": 0.651 + }, + { + "start": 12690.02, + "end": 12690.92, + "probability": 0.8264 + }, + { + "start": 12692.04, + "end": 12698.24, + "probability": 0.9718 + }, + { + "start": 12698.9, + "end": 12701.86, + "probability": 0.8462 + }, + { + "start": 12702.64, + "end": 12706.0, + "probability": 0.9874 + }, + { + "start": 12706.58, + "end": 12707.34, + "probability": 0.7369 + }, + { + "start": 12707.38, + "end": 12708.9, + "probability": 0.8958 + }, + { + "start": 12709.0, + "end": 12709.48, + "probability": 0.8773 + }, + { + "start": 12709.78, + "end": 12713.46, + "probability": 0.7989 + }, + { + "start": 12713.96, + "end": 12715.34, + "probability": 0.8663 + }, + { + "start": 12715.92, + "end": 12719.18, + "probability": 0.9719 + }, + { + "start": 12720.76, + "end": 12723.18, + "probability": 0.9865 + }, + { + "start": 12724.32, + "end": 12726.0, + "probability": 0.8804 + }, + { + "start": 12726.2, + "end": 12727.86, + "probability": 0.8838 + }, + { + "start": 12728.0, + "end": 12728.68, + "probability": 0.7977 + }, + { + "start": 12728.8, + "end": 12731.38, + "probability": 0.9869 + }, + { + "start": 12732.02, + "end": 12734.94, + "probability": 0.998 + }, + { + "start": 12735.52, + "end": 12737.94, + "probability": 0.9875 + }, + { + "start": 12738.48, + "end": 12746.88, + "probability": 0.9638 + }, + { + "start": 12747.52, + "end": 12751.78, + "probability": 0.9881 + }, + { + "start": 12752.54, + "end": 12757.12, + "probability": 0.9833 + }, + { + "start": 12757.12, + "end": 12761.78, + "probability": 0.9917 + }, + { + "start": 12762.3, + "end": 12762.86, + "probability": 0.6961 + }, + { + "start": 12763.06, + "end": 12763.44, + "probability": 0.8855 + }, + { + "start": 12763.52, + "end": 12765.82, + "probability": 0.9946 + }, + { + "start": 12766.54, + "end": 12768.86, + "probability": 0.9917 + }, + { + "start": 12769.5, + "end": 12771.18, + "probability": 0.8859 + }, + { + "start": 12774.39, + "end": 12776.25, + "probability": 0.8411 + }, + { + "start": 12777.6, + "end": 12780.24, + "probability": 0.9639 + }, + { + "start": 12781.14, + "end": 12783.76, + "probability": 0.9965 + }, + { + "start": 12784.22, + "end": 12786.44, + "probability": 0.5016 + }, + { + "start": 12787.78, + "end": 12790.86, + "probability": 0.6826 + }, + { + "start": 12791.22, + "end": 12792.28, + "probability": 0.192 + }, + { + "start": 12792.56, + "end": 12794.44, + "probability": 0.894 + }, + { + "start": 12795.3, + "end": 12795.56, + "probability": 0.2647 + }, + { + "start": 12796.08, + "end": 12797.02, + "probability": 0.9838 + }, + { + "start": 12798.26, + "end": 12798.98, + "probability": 0.8307 + }, + { + "start": 12799.68, + "end": 12802.26, + "probability": 0.9738 + }, + { + "start": 12802.74, + "end": 12807.1, + "probability": 0.9558 + }, + { + "start": 12807.24, + "end": 12810.36, + "probability": 0.9907 + }, + { + "start": 12810.36, + "end": 12813.46, + "probability": 0.9995 + }, + { + "start": 12813.98, + "end": 12817.24, + "probability": 0.9956 + }, + { + "start": 12818.08, + "end": 12820.72, + "probability": 0.9917 + }, + { + "start": 12821.32, + "end": 12821.94, + "probability": 0.5089 + }, + { + "start": 12821.98, + "end": 12824.9, + "probability": 0.9933 + }, + { + "start": 12825.2, + "end": 12826.8, + "probability": 0.5785 + }, + { + "start": 12826.98, + "end": 12828.12, + "probability": 0.9092 + }, + { + "start": 12828.58, + "end": 12831.24, + "probability": 0.9852 + }, + { + "start": 12832.16, + "end": 12834.0, + "probability": 0.9705 + }, + { + "start": 12836.02, + "end": 12838.94, + "probability": 0.5312 + }, + { + "start": 12839.14, + "end": 12843.82, + "probability": 0.8412 + }, + { + "start": 12843.9, + "end": 12847.74, + "probability": 0.8249 + }, + { + "start": 12848.88, + "end": 12849.6, + "probability": 0.9253 + }, + { + "start": 12850.42, + "end": 12851.49, + "probability": 0.8931 + }, + { + "start": 12851.8, + "end": 12853.08, + "probability": 0.8677 + }, + { + "start": 12853.74, + "end": 12854.9, + "probability": 0.9858 + }, + { + "start": 12855.46, + "end": 12858.42, + "probability": 0.9546 + }, + { + "start": 12858.52, + "end": 12860.34, + "probability": 0.9966 + }, + { + "start": 12860.76, + "end": 12863.47, + "probability": 0.0452 + }, + { + "start": 12864.02, + "end": 12864.08, + "probability": 0.5188 + }, + { + "start": 12864.22, + "end": 12865.04, + "probability": 0.8948 + }, + { + "start": 12865.16, + "end": 12866.76, + "probability": 0.8785 + }, + { + "start": 12867.14, + "end": 12868.8, + "probability": 0.46 + }, + { + "start": 12869.36, + "end": 12873.9, + "probability": 0.8225 + }, + { + "start": 12874.84, + "end": 12877.82, + "probability": 0.981 + }, + { + "start": 12877.98, + "end": 12880.52, + "probability": 0.9127 + }, + { + "start": 12880.84, + "end": 12884.32, + "probability": 0.9899 + }, + { + "start": 12884.7, + "end": 12886.99, + "probability": 0.981 + }, + { + "start": 12887.6, + "end": 12889.24, + "probability": 0.9605 + }, + { + "start": 12890.12, + "end": 12890.78, + "probability": 0.5517 + }, + { + "start": 12890.84, + "end": 12896.26, + "probability": 0.6172 + }, + { + "start": 12896.36, + "end": 12896.66, + "probability": 0.6746 + }, + { + "start": 12896.92, + "end": 12898.22, + "probability": 0.8905 + }, + { + "start": 12898.54, + "end": 12898.58, + "probability": 0.1257 + }, + { + "start": 12898.58, + "end": 12899.62, + "probability": 0.669 + }, + { + "start": 12900.0, + "end": 12902.84, + "probability": 0.5622 + }, + { + "start": 12903.1, + "end": 12903.32, + "probability": 0.3411 + }, + { + "start": 12903.46, + "end": 12904.02, + "probability": 0.6059 + }, + { + "start": 12904.46, + "end": 12905.5, + "probability": 0.1211 + }, + { + "start": 12906.02, + "end": 12907.88, + "probability": 0.8298 + }, + { + "start": 12908.34, + "end": 12909.88, + "probability": 0.5842 + }, + { + "start": 12910.38, + "end": 12911.96, + "probability": 0.7492 + }, + { + "start": 12912.42, + "end": 12916.56, + "probability": 0.9683 + }, + { + "start": 12916.76, + "end": 12922.0, + "probability": 0.7516 + }, + { + "start": 12922.1, + "end": 12923.44, + "probability": 0.9818 + }, + { + "start": 12923.54, + "end": 12923.84, + "probability": 0.5705 + }, + { + "start": 12924.4, + "end": 12927.56, + "probability": 0.9745 + }, + { + "start": 12927.68, + "end": 12928.93, + "probability": 0.8765 + }, + { + "start": 12929.76, + "end": 12931.13, + "probability": 0.9814 + }, + { + "start": 12932.0, + "end": 12932.78, + "probability": 0.7364 + }, + { + "start": 12933.08, + "end": 12934.84, + "probability": 0.9845 + }, + { + "start": 12935.54, + "end": 12937.8, + "probability": 0.9692 + }, + { + "start": 12938.82, + "end": 12942.6, + "probability": 0.5554 + }, + { + "start": 12942.7, + "end": 12944.88, + "probability": 0.9277 + }, + { + "start": 12944.96, + "end": 12946.08, + "probability": 0.4358 + }, + { + "start": 12946.9, + "end": 12949.02, + "probability": 0.9907 + }, + { + "start": 12949.56, + "end": 12955.46, + "probability": 0.842 + }, + { + "start": 12955.72, + "end": 12956.52, + "probability": 0.7932 + }, + { + "start": 12956.94, + "end": 12964.16, + "probability": 0.9042 + }, + { + "start": 12965.18, + "end": 12967.06, + "probability": 0.28 + }, + { + "start": 12967.06, + "end": 12969.62, + "probability": 0.9094 + }, + { + "start": 12969.72, + "end": 12970.86, + "probability": 0.9821 + }, + { + "start": 12971.2, + "end": 12975.04, + "probability": 0.9945 + }, + { + "start": 12976.98, + "end": 12980.62, + "probability": 0.9876 + }, + { + "start": 12980.62, + "end": 12983.7, + "probability": 0.6026 + }, + { + "start": 12984.92, + "end": 12986.38, + "probability": 0.8195 + }, + { + "start": 12986.66, + "end": 12991.45, + "probability": 0.9902 + }, + { + "start": 12992.28, + "end": 12994.3, + "probability": 0.849 + }, + { + "start": 12994.86, + "end": 12997.7, + "probability": 0.7586 + }, + { + "start": 12998.36, + "end": 12999.64, + "probability": 0.8544 + }, + { + "start": 13000.14, + "end": 13006.32, + "probability": 0.9106 + }, + { + "start": 13006.64, + "end": 13008.4, + "probability": 0.7778 + }, + { + "start": 13008.68, + "end": 13011.56, + "probability": 0.9918 + }, + { + "start": 13011.98, + "end": 13016.0, + "probability": 0.8734 + }, + { + "start": 13016.56, + "end": 13019.6, + "probability": 0.8662 + }, + { + "start": 13020.34, + "end": 13021.32, + "probability": 0.7639 + }, + { + "start": 13022.24, + "end": 13023.9, + "probability": 0.9705 + }, + { + "start": 13025.14, + "end": 13026.22, + "probability": 0.874 + }, + { + "start": 13026.84, + "end": 13029.18, + "probability": 0.7559 + }, + { + "start": 13030.23, + "end": 13034.06, + "probability": 0.7517 + }, + { + "start": 13034.93, + "end": 13035.46, + "probability": 0.7971 + }, + { + "start": 13035.82, + "end": 13037.28, + "probability": 0.1725 + }, + { + "start": 13037.28, + "end": 13039.32, + "probability": 0.9227 + }, + { + "start": 13040.24, + "end": 13041.46, + "probability": 0.6963 + }, + { + "start": 13041.54, + "end": 13046.18, + "probability": 0.7568 + }, + { + "start": 13046.54, + "end": 13050.5, + "probability": 0.8373 + }, + { + "start": 13050.74, + "end": 13054.04, + "probability": 0.9268 + }, + { + "start": 13054.18, + "end": 13055.6, + "probability": 0.0328 + }, + { + "start": 13058.96, + "end": 13063.3, + "probability": 0.9695 + }, + { + "start": 13063.3, + "end": 13068.6, + "probability": 0.9376 + }, + { + "start": 13068.92, + "end": 13072.92, + "probability": 0.2291 + }, + { + "start": 13072.92, + "end": 13075.64, + "probability": 0.9948 + }, + { + "start": 13077.62, + "end": 13081.24, + "probability": 0.7838 + }, + { + "start": 13081.5, + "end": 13087.54, + "probability": 0.7215 + }, + { + "start": 13087.64, + "end": 13091.42, + "probability": 0.988 + }, + { + "start": 13092.14, + "end": 13096.34, + "probability": 0.9516 + }, + { + "start": 13096.64, + "end": 13097.38, + "probability": 0.5367 + }, + { + "start": 13097.92, + "end": 13100.62, + "probability": 0.5393 + }, + { + "start": 13101.04, + "end": 13107.34, + "probability": 0.9875 + }, + { + "start": 13107.9, + "end": 13108.18, + "probability": 0.8638 + }, + { + "start": 13108.78, + "end": 13113.06, + "probability": 0.8811 + }, + { + "start": 13113.82, + "end": 13117.62, + "probability": 0.9618 + }, + { + "start": 13118.28, + "end": 13119.94, + "probability": 0.8914 + }, + { + "start": 13122.58, + "end": 13126.96, + "probability": 0.1639 + }, + { + "start": 13127.02, + "end": 13129.44, + "probability": 0.9846 + }, + { + "start": 13129.76, + "end": 13133.02, + "probability": 0.9552 + }, + { + "start": 13133.36, + "end": 13136.07, + "probability": 0.9831 + }, + { + "start": 13136.64, + "end": 13138.32, + "probability": 0.5648 + }, + { + "start": 13139.26, + "end": 13145.36, + "probability": 0.9586 + }, + { + "start": 13146.02, + "end": 13146.64, + "probability": 0.7056 + }, + { + "start": 13147.36, + "end": 13149.0, + "probability": 0.8547 + }, + { + "start": 13150.1, + "end": 13152.16, + "probability": 0.9941 + }, + { + "start": 13152.6, + "end": 13154.92, + "probability": 0.9958 + }, + { + "start": 13155.36, + "end": 13160.48, + "probability": 0.9657 + }, + { + "start": 13160.92, + "end": 13163.48, + "probability": 0.7148 + }, + { + "start": 13163.52, + "end": 13166.0, + "probability": 0.9265 + }, + { + "start": 13166.38, + "end": 13169.04, + "probability": 0.9502 + }, + { + "start": 13169.32, + "end": 13174.34, + "probability": 0.9755 + }, + { + "start": 13175.04, + "end": 13175.62, + "probability": 0.6862 + }, + { + "start": 13176.44, + "end": 13177.12, + "probability": 0.9302 + }, + { + "start": 13177.8, + "end": 13179.2, + "probability": 0.9846 + }, + { + "start": 13180.18, + "end": 13185.64, + "probability": 0.9856 + }, + { + "start": 13185.68, + "end": 13186.91, + "probability": 0.8242 + }, + { + "start": 13187.1, + "end": 13188.18, + "probability": 0.7502 + }, + { + "start": 13188.6, + "end": 13190.06, + "probability": 0.84 + }, + { + "start": 13190.62, + "end": 13192.02, + "probability": 0.8464 + }, + { + "start": 13193.02, + "end": 13195.26, + "probability": 0.9568 + }, + { + "start": 13195.88, + "end": 13196.32, + "probability": 0.9528 + }, + { + "start": 13198.96, + "end": 13204.02, + "probability": 0.0762 + }, + { + "start": 13204.32, + "end": 13207.18, + "probability": 0.8652 + }, + { + "start": 13209.3, + "end": 13210.84, + "probability": 0.9044 + }, + { + "start": 13211.5, + "end": 13213.56, + "probability": 0.9893 + }, + { + "start": 13214.16, + "end": 13217.28, + "probability": 0.8885 + }, + { + "start": 13217.72, + "end": 13218.92, + "probability": 0.9574 + }, + { + "start": 13219.84, + "end": 13221.38, + "probability": 0.8996 + }, + { + "start": 13222.12, + "end": 13227.36, + "probability": 0.9968 + }, + { + "start": 13227.76, + "end": 13229.16, + "probability": 0.9821 + }, + { + "start": 13229.94, + "end": 13235.07, + "probability": 0.8311 + }, + { + "start": 13235.72, + "end": 13237.38, + "probability": 0.8837 + }, + { + "start": 13237.94, + "end": 13242.1, + "probability": 0.9923 + }, + { + "start": 13242.1, + "end": 13245.9, + "probability": 0.9968 + }, + { + "start": 13246.4, + "end": 13250.64, + "probability": 0.9817 + }, + { + "start": 13251.42, + "end": 13255.4, + "probability": 0.9956 + }, + { + "start": 13255.96, + "end": 13256.63, + "probability": 0.9171 + }, + { + "start": 13256.82, + "end": 13258.56, + "probability": 0.9941 + }, + { + "start": 13259.08, + "end": 13261.45, + "probability": 0.7317 + }, + { + "start": 13261.9, + "end": 13264.86, + "probability": 0.9906 + }, + { + "start": 13265.22, + "end": 13267.32, + "probability": 0.0909 + }, + { + "start": 13269.4, + "end": 13269.4, + "probability": 0.0278 + }, + { + "start": 13270.46, + "end": 13270.58, + "probability": 0.6377 + }, + { + "start": 13271.26, + "end": 13272.22, + "probability": 0.7601 + }, + { + "start": 13273.56, + "end": 13278.02, + "probability": 0.9865 + }, + { + "start": 13278.58, + "end": 13280.1, + "probability": 0.3256 + }, + { + "start": 13283.76, + "end": 13289.22, + "probability": 0.0593 + }, + { + "start": 13289.22, + "end": 13293.61, + "probability": 0.8975 + }, + { + "start": 13294.24, + "end": 13296.3, + "probability": 0.823 + }, + { + "start": 13296.36, + "end": 13297.36, + "probability": 0.7056 + }, + { + "start": 13297.74, + "end": 13299.04, + "probability": 0.6116 + }, + { + "start": 13299.56, + "end": 13301.84, + "probability": 0.3198 + }, + { + "start": 13302.22, + "end": 13306.66, + "probability": 0.996 + }, + { + "start": 13308.1, + "end": 13310.16, + "probability": 0.9673 + }, + { + "start": 13310.74, + "end": 13316.26, + "probability": 0.9669 + }, + { + "start": 13316.8, + "end": 13318.22, + "probability": 0.9092 + }, + { + "start": 13318.84, + "end": 13322.92, + "probability": 0.9969 + }, + { + "start": 13323.86, + "end": 13325.32, + "probability": 0.8953 + }, + { + "start": 13325.88, + "end": 13327.88, + "probability": 0.8861 + }, + { + "start": 13328.12, + "end": 13330.24, + "probability": 0.5657 + }, + { + "start": 13330.58, + "end": 13333.02, + "probability": 0.9233 + }, + { + "start": 13333.28, + "end": 13335.24, + "probability": 0.9491 + }, + { + "start": 13335.66, + "end": 13337.5, + "probability": 0.9979 + }, + { + "start": 13337.62, + "end": 13338.12, + "probability": 0.4932 + }, + { + "start": 13338.64, + "end": 13342.08, + "probability": 0.9785 + }, + { + "start": 13342.52, + "end": 13344.86, + "probability": 0.9368 + }, + { + "start": 13345.14, + "end": 13351.66, + "probability": 0.9642 + }, + { + "start": 13351.8, + "end": 13353.06, + "probability": 0.8513 + }, + { + "start": 13353.96, + "end": 13356.78, + "probability": 0.1065 + }, + { + "start": 13356.78, + "end": 13361.04, + "probability": 0.2299 + }, + { + "start": 13361.04, + "end": 13361.8, + "probability": 0.0129 + }, + { + "start": 13362.04, + "end": 13364.38, + "probability": 0.9268 + }, + { + "start": 13364.76, + "end": 13367.94, + "probability": 0.9919 + }, + { + "start": 13372.76, + "end": 13375.38, + "probability": 0.8059 + }, + { + "start": 13375.72, + "end": 13380.78, + "probability": 0.9945 + }, + { + "start": 13380.78, + "end": 13385.0, + "probability": 0.9812 + }, + { + "start": 13385.42, + "end": 13389.86, + "probability": 0.3551 + }, + { + "start": 13390.7, + "end": 13394.32, + "probability": 0.9948 + }, + { + "start": 13395.14, + "end": 13397.36, + "probability": 0.9699 + }, + { + "start": 13397.9, + "end": 13399.82, + "probability": 0.9861 + }, + { + "start": 13400.74, + "end": 13401.92, + "probability": 0.8521 + }, + { + "start": 13402.04, + "end": 13404.44, + "probability": 0.8392 + }, + { + "start": 13405.2, + "end": 13409.2, + "probability": 0.6373 + }, + { + "start": 13409.34, + "end": 13410.64, + "probability": 0.8098 + }, + { + "start": 13411.0, + "end": 13415.7, + "probability": 0.9845 + }, + { + "start": 13416.32, + "end": 13417.67, + "probability": 0.981 + }, + { + "start": 13418.12, + "end": 13418.88, + "probability": 0.9253 + }, + { + "start": 13419.08, + "end": 13423.44, + "probability": 0.9978 + }, + { + "start": 13423.58, + "end": 13424.58, + "probability": 0.7615 + }, + { + "start": 13424.72, + "end": 13427.46, + "probability": 0.7247 + }, + { + "start": 13430.56, + "end": 13433.7, + "probability": 0.8905 + }, + { + "start": 13434.96, + "end": 13437.06, + "probability": 0.9153 + }, + { + "start": 13437.56, + "end": 13442.16, + "probability": 0.9741 + }, + { + "start": 13443.53, + "end": 13447.23, + "probability": 0.9984 + }, + { + "start": 13452.32, + "end": 13454.48, + "probability": 0.1264 + }, + { + "start": 13455.12, + "end": 13456.0, + "probability": 0.6726 + }, + { + "start": 13456.68, + "end": 13457.36, + "probability": 0.7335 + }, + { + "start": 13458.0, + "end": 13462.62, + "probability": 0.9954 + }, + { + "start": 13462.62, + "end": 13466.94, + "probability": 0.9988 + }, + { + "start": 13467.38, + "end": 13468.24, + "probability": 0.8728 + }, + { + "start": 13468.4, + "end": 13468.94, + "probability": 0.7112 + }, + { + "start": 13470.62, + "end": 13474.62, + "probability": 0.9934 + }, + { + "start": 13475.5, + "end": 13476.16, + "probability": 0.5642 + }, + { + "start": 13477.12, + "end": 13481.7, + "probability": 0.9552 + }, + { + "start": 13482.04, + "end": 13483.6, + "probability": 0.9358 + }, + { + "start": 13483.82, + "end": 13485.28, + "probability": 0.9885 + }, + { + "start": 13485.56, + "end": 13488.18, + "probability": 0.7104 + }, + { + "start": 13488.42, + "end": 13491.76, + "probability": 0.7449 + }, + { + "start": 13491.76, + "end": 13493.46, + "probability": 0.1709 + }, + { + "start": 13495.06, + "end": 13498.8, + "probability": 0.8652 + }, + { + "start": 13499.78, + "end": 13503.09, + "probability": 0.895 + }, + { + "start": 13503.68, + "end": 13507.22, + "probability": 0.9912 + }, + { + "start": 13507.38, + "end": 13508.56, + "probability": 0.6535 + }, + { + "start": 13509.3, + "end": 13511.18, + "probability": 0.9176 + }, + { + "start": 13511.18, + "end": 13513.6, + "probability": 0.7551 + }, + { + "start": 13513.76, + "end": 13515.7, + "probability": 0.6661 + }, + { + "start": 13516.82, + "end": 13518.4, + "probability": 0.6747 + }, + { + "start": 13518.62, + "end": 13521.6, + "probability": 0.9658 + }, + { + "start": 13522.04, + "end": 13523.46, + "probability": 0.9783 + }, + { + "start": 13523.66, + "end": 13524.14, + "probability": 0.9107 + }, + { + "start": 13524.28, + "end": 13525.7, + "probability": 0.9287 + }, + { + "start": 13526.72, + "end": 13529.64, + "probability": 0.9501 + }, + { + "start": 13530.47, + "end": 13532.32, + "probability": 0.8967 + }, + { + "start": 13532.68, + "end": 13534.12, + "probability": 0.9523 + }, + { + "start": 13534.6, + "end": 13537.61, + "probability": 0.9904 + }, + { + "start": 13538.26, + "end": 13539.82, + "probability": 0.9949 + }, + { + "start": 13542.5, + "end": 13543.36, + "probability": 0.9745 + }, + { + "start": 13543.85, + "end": 13552.48, + "probability": 0.9916 + }, + { + "start": 13552.56, + "end": 13553.8, + "probability": 0.834 + }, + { + "start": 13554.08, + "end": 13554.22, + "probability": 0.731 + }, + { + "start": 13554.84, + "end": 13555.3, + "probability": 0.7601 + }, + { + "start": 13556.86, + "end": 13560.92, + "probability": 0.9418 + }, + { + "start": 13561.14, + "end": 13562.68, + "probability": 0.8844 + }, + { + "start": 13563.06, + "end": 13569.2, + "probability": 0.9798 + }, + { + "start": 13569.2, + "end": 13573.72, + "probability": 0.9921 + }, + { + "start": 13573.98, + "end": 13574.5, + "probability": 0.7673 + }, + { + "start": 13575.56, + "end": 13577.03, + "probability": 0.702 + }, + { + "start": 13577.26, + "end": 13578.76, + "probability": 0.8232 + }, + { + "start": 13580.24, + "end": 13582.44, + "probability": 0.6677 + }, + { + "start": 13583.9, + "end": 13584.46, + "probability": 0.4675 + }, + { + "start": 13597.16, + "end": 13597.34, + "probability": 0.3603 + }, + { + "start": 13597.36, + "end": 13597.96, + "probability": 0.5251 + }, + { + "start": 13598.46, + "end": 13599.2, + "probability": 0.8267 + }, + { + "start": 13599.28, + "end": 13600.26, + "probability": 0.7549 + }, + { + "start": 13600.3, + "end": 13602.98, + "probability": 0.9709 + }, + { + "start": 13606.26, + "end": 13612.76, + "probability": 0.9419 + }, + { + "start": 13614.66, + "end": 13616.4, + "probability": 0.7825 + }, + { + "start": 13617.48, + "end": 13622.0, + "probability": 0.8231 + }, + { + "start": 13623.08, + "end": 13624.74, + "probability": 0.9891 + }, + { + "start": 13626.07, + "end": 13627.78, + "probability": 0.9865 + }, + { + "start": 13627.84, + "end": 13633.58, + "probability": 0.988 + }, + { + "start": 13633.58, + "end": 13638.28, + "probability": 0.9905 + }, + { + "start": 13638.88, + "end": 13639.54, + "probability": 0.7496 + }, + { + "start": 13642.34, + "end": 13642.8, + "probability": 0.6755 + }, + { + "start": 13646.38, + "end": 13651.16, + "probability": 0.8874 + }, + { + "start": 13652.4, + "end": 13656.62, + "probability": 0.9367 + }, + { + "start": 13657.28, + "end": 13660.7, + "probability": 0.8611 + }, + { + "start": 13662.12, + "end": 13665.9, + "probability": 0.9689 + }, + { + "start": 13667.1, + "end": 13667.68, + "probability": 0.7429 + }, + { + "start": 13669.14, + "end": 13670.5, + "probability": 0.7428 + }, + { + "start": 13672.02, + "end": 13675.2, + "probability": 0.9661 + }, + { + "start": 13675.4, + "end": 13676.58, + "probability": 0.8622 + }, + { + "start": 13677.82, + "end": 13678.92, + "probability": 0.4474 + }, + { + "start": 13680.42, + "end": 13683.08, + "probability": 0.976 + }, + { + "start": 13686.01, + "end": 13688.16, + "probability": 0.8094 + }, + { + "start": 13688.62, + "end": 13691.88, + "probability": 0.5844 + }, + { + "start": 13692.82, + "end": 13693.8, + "probability": 0.7708 + }, + { + "start": 13694.78, + "end": 13696.22, + "probability": 0.9985 + }, + { + "start": 13696.82, + "end": 13699.9, + "probability": 0.856 + }, + { + "start": 13700.7, + "end": 13701.66, + "probability": 0.8019 + }, + { + "start": 13702.18, + "end": 13703.52, + "probability": 0.4963 + }, + { + "start": 13704.98, + "end": 13708.0, + "probability": 0.674 + }, + { + "start": 13709.42, + "end": 13712.22, + "probability": 0.9686 + }, + { + "start": 13712.26, + "end": 13715.42, + "probability": 0.989 + }, + { + "start": 13716.9, + "end": 13718.64, + "probability": 0.7833 + }, + { + "start": 13719.98, + "end": 13721.16, + "probability": 0.978 + }, + { + "start": 13723.62, + "end": 13726.9, + "probability": 0.979 + }, + { + "start": 13727.7, + "end": 13728.78, + "probability": 0.8622 + }, + { + "start": 13729.08, + "end": 13730.98, + "probability": 0.9191 + }, + { + "start": 13732.18, + "end": 13732.55, + "probability": 0.9746 + }, + { + "start": 13734.84, + "end": 13736.4, + "probability": 0.9454 + }, + { + "start": 13737.1, + "end": 13739.6, + "probability": 0.9706 + }, + { + "start": 13739.72, + "end": 13740.22, + "probability": 0.7283 + }, + { + "start": 13740.6, + "end": 13741.77, + "probability": 0.9755 + }, + { + "start": 13742.58, + "end": 13743.76, + "probability": 0.9794 + }, + { + "start": 13745.28, + "end": 13747.0, + "probability": 0.5596 + }, + { + "start": 13747.6, + "end": 13756.34, + "probability": 0.8595 + }, + { + "start": 13756.64, + "end": 13758.34, + "probability": 0.7972 + }, + { + "start": 13758.46, + "end": 13758.66, + "probability": 0.5721 + }, + { + "start": 13758.7, + "end": 13759.24, + "probability": 0.8523 + }, + { + "start": 13760.9, + "end": 13762.82, + "probability": 0.9626 + }, + { + "start": 13762.88, + "end": 13763.36, + "probability": 0.4563 + }, + { + "start": 13763.68, + "end": 13766.12, + "probability": 0.9272 + }, + { + "start": 13767.02, + "end": 13769.98, + "probability": 0.9341 + }, + { + "start": 13770.92, + "end": 13771.86, + "probability": 0.8876 + }, + { + "start": 13772.5, + "end": 13775.52, + "probability": 0.8235 + }, + { + "start": 13776.0, + "end": 13778.02, + "probability": 0.9725 + }, + { + "start": 13778.26, + "end": 13782.96, + "probability": 0.9894 + }, + { + "start": 13783.96, + "end": 13784.76, + "probability": 0.8142 + }, + { + "start": 13786.54, + "end": 13791.7, + "probability": 0.9976 + }, + { + "start": 13791.7, + "end": 13794.3, + "probability": 0.991 + }, + { + "start": 13795.02, + "end": 13798.34, + "probability": 0.9091 + }, + { + "start": 13802.6, + "end": 13806.3, + "probability": 0.7244 + }, + { + "start": 13806.48, + "end": 13807.02, + "probability": 0.8865 + }, + { + "start": 13807.26, + "end": 13807.72, + "probability": 0.8784 + }, + { + "start": 13808.06, + "end": 13808.74, + "probability": 0.7145 + }, + { + "start": 13809.2, + "end": 13811.57, + "probability": 0.8146 + }, + { + "start": 13813.06, + "end": 13814.46, + "probability": 0.933 + }, + { + "start": 13815.56, + "end": 13819.1, + "probability": 0.6649 + }, + { + "start": 13819.1, + "end": 13822.76, + "probability": 0.8931 + }, + { + "start": 13823.8, + "end": 13826.46, + "probability": 0.9896 + }, + { + "start": 13827.02, + "end": 13829.54, + "probability": 0.8721 + }, + { + "start": 13829.74, + "end": 13832.78, + "probability": 0.9546 + }, + { + "start": 13833.76, + "end": 13834.78, + "probability": 0.7599 + }, + { + "start": 13835.38, + "end": 13836.48, + "probability": 0.8159 + }, + { + "start": 13836.72, + "end": 13838.3, + "probability": 0.6263 + }, + { + "start": 13838.94, + "end": 13842.72, + "probability": 0.8223 + }, + { + "start": 13843.04, + "end": 13846.46, + "probability": 0.9658 + }, + { + "start": 13847.2, + "end": 13847.88, + "probability": 0.973 + }, + { + "start": 13848.7, + "end": 13852.82, + "probability": 0.9607 + }, + { + "start": 13853.32, + "end": 13858.04, + "probability": 0.964 + }, + { + "start": 13858.64, + "end": 13859.82, + "probability": 0.8782 + }, + { + "start": 13860.78, + "end": 13865.08, + "probability": 0.9414 + }, + { + "start": 13866.02, + "end": 13870.68, + "probability": 0.9786 + }, + { + "start": 13871.12, + "end": 13872.6, + "probability": 0.9668 + }, + { + "start": 13872.6, + "end": 13872.7, + "probability": 0.6254 + }, + { + "start": 13873.54, + "end": 13874.44, + "probability": 0.8397 + }, + { + "start": 13874.62, + "end": 13875.5, + "probability": 0.7167 + }, + { + "start": 13875.58, + "end": 13875.8, + "probability": 0.2372 + }, + { + "start": 13876.44, + "end": 13877.16, + "probability": 0.8518 + }, + { + "start": 13877.82, + "end": 13881.56, + "probability": 0.9353 + }, + { + "start": 13882.26, + "end": 13883.9, + "probability": 0.9285 + }, + { + "start": 13884.46, + "end": 13888.5, + "probability": 0.9828 + }, + { + "start": 13889.54, + "end": 13892.14, + "probability": 0.9937 + }, + { + "start": 13892.88, + "end": 13894.96, + "probability": 0.7047 + }, + { + "start": 13897.02, + "end": 13903.6, + "probability": 0.9941 + }, + { + "start": 13904.3, + "end": 13907.42, + "probability": 0.9888 + }, + { + "start": 13907.52, + "end": 13910.94, + "probability": 0.9717 + }, + { + "start": 13911.84, + "end": 13914.16, + "probability": 0.8503 + }, + { + "start": 13915.0, + "end": 13917.14, + "probability": 0.9619 + }, + { + "start": 13918.74, + "end": 13922.06, + "probability": 0.8667 + }, + { + "start": 13922.76, + "end": 13925.06, + "probability": 0.9761 + }, + { + "start": 13925.36, + "end": 13925.58, + "probability": 0.5471 + }, + { + "start": 13925.58, + "end": 13925.98, + "probability": 0.6128 + }, + { + "start": 13926.36, + "end": 13927.84, + "probability": 0.7549 + }, + { + "start": 13928.54, + "end": 13930.66, + "probability": 0.9107 + }, + { + "start": 13931.14, + "end": 13932.1, + "probability": 0.9298 + }, + { + "start": 13932.22, + "end": 13933.4, + "probability": 0.3864 + }, + { + "start": 13933.62, + "end": 13934.46, + "probability": 0.9215 + }, + { + "start": 13934.54, + "end": 13935.92, + "probability": 0.9795 + }, + { + "start": 13936.7, + "end": 13938.46, + "probability": 0.7284 + }, + { + "start": 13938.6, + "end": 13939.42, + "probability": 0.8529 + }, + { + "start": 13939.64, + "end": 13940.68, + "probability": 0.9432 + }, + { + "start": 13940.88, + "end": 13941.14, + "probability": 0.6168 + }, + { + "start": 13941.22, + "end": 13941.7, + "probability": 0.6959 + }, + { + "start": 13941.76, + "end": 13942.02, + "probability": 0.8243 + }, + { + "start": 13942.28, + "end": 13943.02, + "probability": 0.7308 + }, + { + "start": 13943.06, + "end": 13946.44, + "probability": 0.751 + }, + { + "start": 13946.44, + "end": 13948.22, + "probability": 0.9951 + }, + { + "start": 13949.76, + "end": 13951.16, + "probability": 0.8365 + }, + { + "start": 13951.7, + "end": 13953.48, + "probability": 0.9788 + }, + { + "start": 13953.84, + "end": 13954.92, + "probability": 0.8879 + }, + { + "start": 13955.46, + "end": 13956.37, + "probability": 0.3927 + }, + { + "start": 13956.62, + "end": 13959.04, + "probability": 0.9008 + }, + { + "start": 13959.72, + "end": 13965.04, + "probability": 0.9392 + }, + { + "start": 13966.12, + "end": 13968.32, + "probability": 0.9756 + }, + { + "start": 13969.08, + "end": 13970.24, + "probability": 0.8139 + }, + { + "start": 13970.4, + "end": 13971.88, + "probability": 0.9972 + }, + { + "start": 13971.98, + "end": 13972.62, + "probability": 0.8541 + }, + { + "start": 13973.78, + "end": 13976.33, + "probability": 0.9568 + }, + { + "start": 13977.2, + "end": 13978.88, + "probability": 0.9727 + }, + { + "start": 13979.02, + "end": 13979.74, + "probability": 0.7226 + }, + { + "start": 13980.18, + "end": 13983.86, + "probability": 0.9739 + }, + { + "start": 13984.22, + "end": 13985.0, + "probability": 0.734 + }, + { + "start": 13985.3, + "end": 13986.36, + "probability": 0.9971 + }, + { + "start": 13987.32, + "end": 13989.56, + "probability": 0.9967 + }, + { + "start": 13991.14, + "end": 13993.2, + "probability": 0.9851 + }, + { + "start": 13993.46, + "end": 13996.06, + "probability": 0.825 + }, + { + "start": 13996.72, + "end": 13999.72, + "probability": 0.7157 + }, + { + "start": 14000.36, + "end": 14004.08, + "probability": 0.9341 + }, + { + "start": 14004.34, + "end": 14006.94, + "probability": 0.6794 + }, + { + "start": 14008.08, + "end": 14010.19, + "probability": 0.9085 + }, + { + "start": 14011.8, + "end": 14012.76, + "probability": 0.9289 + }, + { + "start": 14012.92, + "end": 14013.82, + "probability": 0.5033 + }, + { + "start": 14013.9, + "end": 14015.62, + "probability": 0.8209 + }, + { + "start": 14016.6, + "end": 14018.07, + "probability": 0.9873 + }, + { + "start": 14018.4, + "end": 14021.3, + "probability": 0.9961 + }, + { + "start": 14021.64, + "end": 14025.08, + "probability": 0.9562 + }, + { + "start": 14026.96, + "end": 14028.78, + "probability": 0.951 + }, + { + "start": 14029.06, + "end": 14030.68, + "probability": 0.7596 + }, + { + "start": 14030.84, + "end": 14033.36, + "probability": 0.995 + }, + { + "start": 14033.84, + "end": 14035.06, + "probability": 0.7745 + }, + { + "start": 14036.28, + "end": 14039.04, + "probability": 0.9942 + }, + { + "start": 14039.74, + "end": 14041.32, + "probability": 0.6872 + }, + { + "start": 14042.26, + "end": 14044.7, + "probability": 0.9543 + }, + { + "start": 14044.86, + "end": 14047.46, + "probability": 0.982 + }, + { + "start": 14048.02, + "end": 14050.16, + "probability": 0.9092 + }, + { + "start": 14050.34, + "end": 14051.42, + "probability": 0.9185 + }, + { + "start": 14052.0, + "end": 14052.58, + "probability": 0.7649 + }, + { + "start": 14052.88, + "end": 14053.22, + "probability": 0.4955 + }, + { + "start": 14053.38, + "end": 14054.64, + "probability": 0.9342 + }, + { + "start": 14054.88, + "end": 14056.68, + "probability": 0.9585 + }, + { + "start": 14057.94, + "end": 14060.56, + "probability": 0.9539 + }, + { + "start": 14060.74, + "end": 14062.4, + "probability": 0.8457 + }, + { + "start": 14063.18, + "end": 14064.6, + "probability": 0.5915 + }, + { + "start": 14065.16, + "end": 14068.44, + "probability": 0.7067 + }, + { + "start": 14070.46, + "end": 14072.32, + "probability": 0.9932 + }, + { + "start": 14073.12, + "end": 14073.7, + "probability": 0.915 + }, + { + "start": 14074.26, + "end": 14076.62, + "probability": 0.8908 + }, + { + "start": 14077.56, + "end": 14080.18, + "probability": 0.9716 + }, + { + "start": 14080.74, + "end": 14084.4, + "probability": 0.6686 + }, + { + "start": 14085.4, + "end": 14089.88, + "probability": 0.9207 + }, + { + "start": 14089.94, + "end": 14091.36, + "probability": 0.9185 + }, + { + "start": 14093.1, + "end": 14094.08, + "probability": 0.9561 + }, + { + "start": 14094.8, + "end": 14096.7, + "probability": 0.8394 + }, + { + "start": 14098.66, + "end": 14101.58, + "probability": 0.9164 + }, + { + "start": 14101.64, + "end": 14104.33, + "probability": 0.9506 + }, + { + "start": 14104.7, + "end": 14105.72, + "probability": 0.9771 + }, + { + "start": 14106.06, + "end": 14107.02, + "probability": 0.5138 + }, + { + "start": 14107.18, + "end": 14108.4, + "probability": 0.7417 + }, + { + "start": 14109.24, + "end": 14110.04, + "probability": 0.979 + }, + { + "start": 14110.06, + "end": 14110.36, + "probability": 0.7326 + }, + { + "start": 14110.56, + "end": 14113.02, + "probability": 0.93 + }, + { + "start": 14113.16, + "end": 14115.0, + "probability": 0.8647 + }, + { + "start": 14115.8, + "end": 14117.24, + "probability": 0.9603 + }, + { + "start": 14117.44, + "end": 14118.82, + "probability": 0.8274 + }, + { + "start": 14119.64, + "end": 14120.3, + "probability": 0.9515 + }, + { + "start": 14120.34, + "end": 14121.14, + "probability": 0.9822 + }, + { + "start": 14121.78, + "end": 14123.26, + "probability": 0.9943 + }, + { + "start": 14124.2, + "end": 14125.52, + "probability": 0.998 + }, + { + "start": 14126.2, + "end": 14129.15, + "probability": 0.6792 + }, + { + "start": 14129.98, + "end": 14130.92, + "probability": 0.8582 + }, + { + "start": 14131.48, + "end": 14132.44, + "probability": 0.9528 + }, + { + "start": 14132.82, + "end": 14139.14, + "probability": 0.989 + }, + { + "start": 14139.58, + "end": 14144.06, + "probability": 0.7081 + }, + { + "start": 14144.16, + "end": 14144.98, + "probability": 0.5759 + }, + { + "start": 14145.18, + "end": 14145.66, + "probability": 0.7379 + }, + { + "start": 14146.48, + "end": 14147.1, + "probability": 0.575 + }, + { + "start": 14152.38, + "end": 14154.5, + "probability": 0.7799 + }, + { + "start": 14157.08, + "end": 14158.28, + "probability": 0.7021 + }, + { + "start": 14158.4, + "end": 14159.42, + "probability": 0.5079 + }, + { + "start": 14159.54, + "end": 14161.64, + "probability": 0.9701 + }, + { + "start": 14164.54, + "end": 14169.74, + "probability": 0.8413 + }, + { + "start": 14169.74, + "end": 14172.84, + "probability": 0.7944 + }, + { + "start": 14173.52, + "end": 14173.7, + "probability": 0.0241 + }, + { + "start": 14174.2, + "end": 14174.2, + "probability": 0.3828 + }, + { + "start": 14174.2, + "end": 14176.54, + "probability": 0.9447 + }, + { + "start": 14176.54, + "end": 14180.44, + "probability": 0.7825 + }, + { + "start": 14180.62, + "end": 14182.26, + "probability": 0.4941 + }, + { + "start": 14183.08, + "end": 14184.02, + "probability": 0.5309 + }, + { + "start": 14184.06, + "end": 14184.3, + "probability": 0.7823 + }, + { + "start": 14185.42, + "end": 14185.96, + "probability": 0.6084 + }, + { + "start": 14186.64, + "end": 14188.5, + "probability": 0.4097 + }, + { + "start": 14189.62, + "end": 14190.52, + "probability": 0.8566 + }, + { + "start": 14209.38, + "end": 14210.36, + "probability": 0.7297 + }, + { + "start": 14211.3, + "end": 14213.14, + "probability": 0.8427 + }, + { + "start": 14214.74, + "end": 14219.06, + "probability": 0.8993 + }, + { + "start": 14220.2, + "end": 14225.16, + "probability": 0.9761 + }, + { + "start": 14226.78, + "end": 14228.08, + "probability": 0.5344 + }, + { + "start": 14232.82, + "end": 14233.08, + "probability": 0.4947 + }, + { + "start": 14233.78, + "end": 14234.38, + "probability": 0.4917 + }, + { + "start": 14235.1, + "end": 14236.6, + "probability": 0.0947 + }, + { + "start": 14237.1, + "end": 14238.16, + "probability": 0.8794 + }, + { + "start": 14242.76, + "end": 14243.66, + "probability": 0.5657 + }, + { + "start": 14244.15, + "end": 14246.9, + "probability": 0.957 + }, + { + "start": 14247.36, + "end": 14248.34, + "probability": 0.999 + }, + { + "start": 14248.92, + "end": 14252.6, + "probability": 0.792 + }, + { + "start": 14253.24, + "end": 14256.56, + "probability": 0.8358 + }, + { + "start": 14256.86, + "end": 14258.04, + "probability": 0.317 + }, + { + "start": 14258.12, + "end": 14259.2, + "probability": 0.9943 + }, + { + "start": 14259.28, + "end": 14261.06, + "probability": 0.9727 + }, + { + "start": 14262.48, + "end": 14264.22, + "probability": 0.9088 + }, + { + "start": 14264.86, + "end": 14266.56, + "probability": 0.9968 + }, + { + "start": 14267.48, + "end": 14273.34, + "probability": 0.9172 + }, + { + "start": 14273.46, + "end": 14274.58, + "probability": 0.5406 + }, + { + "start": 14274.94, + "end": 14280.0, + "probability": 0.9623 + }, + { + "start": 14281.52, + "end": 14284.9, + "probability": 0.9557 + }, + { + "start": 14285.04, + "end": 14288.86, + "probability": 0.9952 + }, + { + "start": 14289.66, + "end": 14290.76, + "probability": 0.9377 + }, + { + "start": 14290.86, + "end": 14292.74, + "probability": 0.7398 + }, + { + "start": 14293.88, + "end": 14296.78, + "probability": 0.8878 + }, + { + "start": 14297.74, + "end": 14299.46, + "probability": 0.9741 + }, + { + "start": 14300.78, + "end": 14304.94, + "probability": 0.844 + }, + { + "start": 14305.06, + "end": 14306.18, + "probability": 0.7105 + }, + { + "start": 14308.12, + "end": 14308.8, + "probability": 0.9915 + }, + { + "start": 14309.44, + "end": 14311.0, + "probability": 0.7873 + }, + { + "start": 14311.96, + "end": 14314.66, + "probability": 0.928 + }, + { + "start": 14315.98, + "end": 14317.46, + "probability": 0.9764 + }, + { + "start": 14318.42, + "end": 14320.14, + "probability": 0.9928 + }, + { + "start": 14321.34, + "end": 14322.94, + "probability": 0.9058 + }, + { + "start": 14323.92, + "end": 14324.97, + "probability": 0.9341 + }, + { + "start": 14327.0, + "end": 14328.0, + "probability": 0.6142 + }, + { + "start": 14329.3, + "end": 14333.06, + "probability": 0.9961 + }, + { + "start": 14333.22, + "end": 14337.5, + "probability": 0.8132 + }, + { + "start": 14338.5, + "end": 14341.5, + "probability": 0.968 + }, + { + "start": 14341.66, + "end": 14343.1, + "probability": 0.7895 + }, + { + "start": 14343.22, + "end": 14344.0, + "probability": 0.878 + }, + { + "start": 14344.14, + "end": 14345.62, + "probability": 0.9943 + }, + { + "start": 14345.88, + "end": 14347.36, + "probability": 0.9988 + }, + { + "start": 14348.14, + "end": 14351.44, + "probability": 0.9888 + }, + { + "start": 14352.52, + "end": 14354.58, + "probability": 0.7243 + }, + { + "start": 14354.78, + "end": 14356.66, + "probability": 0.5479 + }, + { + "start": 14358.34, + "end": 14360.16, + "probability": 0.7959 + }, + { + "start": 14360.26, + "end": 14366.66, + "probability": 0.8701 + }, + { + "start": 14366.84, + "end": 14367.2, + "probability": 0.6725 + }, + { + "start": 14368.44, + "end": 14369.44, + "probability": 0.9531 + }, + { + "start": 14370.16, + "end": 14372.52, + "probability": 0.9856 + }, + { + "start": 14374.14, + "end": 14376.14, + "probability": 0.9331 + }, + { + "start": 14376.42, + "end": 14379.5, + "probability": 0.9974 + }, + { + "start": 14380.38, + "end": 14383.42, + "probability": 0.9583 + }, + { + "start": 14385.26, + "end": 14387.54, + "probability": 0.9901 + }, + { + "start": 14388.44, + "end": 14389.66, + "probability": 0.5664 + }, + { + "start": 14390.1, + "end": 14393.66, + "probability": 0.9274 + }, + { + "start": 14395.22, + "end": 14396.9, + "probability": 0.9896 + }, + { + "start": 14397.04, + "end": 14398.02, + "probability": 0.6448 + }, + { + "start": 14398.04, + "end": 14399.7, + "probability": 0.989 + }, + { + "start": 14400.94, + "end": 14402.7, + "probability": 0.9341 + }, + { + "start": 14402.7, + "end": 14404.9, + "probability": 0.9932 + }, + { + "start": 14405.88, + "end": 14409.12, + "probability": 0.929 + }, + { + "start": 14409.72, + "end": 14412.54, + "probability": 0.9558 + }, + { + "start": 14414.34, + "end": 14418.52, + "probability": 0.9903 + }, + { + "start": 14419.22, + "end": 14420.24, + "probability": 0.9282 + }, + { + "start": 14426.58, + "end": 14428.92, + "probability": 0.8633 + }, + { + "start": 14429.92, + "end": 14432.3, + "probability": 0.9965 + }, + { + "start": 14432.3, + "end": 14437.16, + "probability": 0.9424 + }, + { + "start": 14437.24, + "end": 14441.68, + "probability": 0.8973 + }, + { + "start": 14444.94, + "end": 14446.52, + "probability": 0.819 + }, + { + "start": 14448.32, + "end": 14450.96, + "probability": 0.9888 + }, + { + "start": 14452.08, + "end": 14453.38, + "probability": 0.7558 + }, + { + "start": 14454.82, + "end": 14455.84, + "probability": 0.9144 + }, + { + "start": 14455.94, + "end": 14457.26, + "probability": 0.8264 + }, + { + "start": 14457.44, + "end": 14458.02, + "probability": 0.7924 + }, + { + "start": 14458.84, + "end": 14460.06, + "probability": 0.8576 + }, + { + "start": 14460.62, + "end": 14462.18, + "probability": 0.7578 + }, + { + "start": 14462.46, + "end": 14463.06, + "probability": 0.8115 + }, + { + "start": 14464.6, + "end": 14466.72, + "probability": 0.8934 + }, + { + "start": 14467.5, + "end": 14468.52, + "probability": 0.9582 + }, + { + "start": 14468.64, + "end": 14470.36, + "probability": 0.9551 + }, + { + "start": 14472.8, + "end": 14473.78, + "probability": 0.9172 + }, + { + "start": 14474.36, + "end": 14475.1, + "probability": 0.8934 + }, + { + "start": 14476.5, + "end": 14478.16, + "probability": 0.9036 + }, + { + "start": 14485.4, + "end": 14486.2, + "probability": 0.6708 + }, + { + "start": 14487.78, + "end": 14490.52, + "probability": 0.8608 + }, + { + "start": 14491.56, + "end": 14491.76, + "probability": 0.5432 + }, + { + "start": 14491.82, + "end": 14492.44, + "probability": 0.8587 + }, + { + "start": 14492.5, + "end": 14495.18, + "probability": 0.9895 + }, + { + "start": 14496.52, + "end": 14497.4, + "probability": 0.9418 + }, + { + "start": 14499.34, + "end": 14499.72, + "probability": 0.9565 + }, + { + "start": 14500.62, + "end": 14500.92, + "probability": 0.9135 + }, + { + "start": 14500.94, + "end": 14503.44, + "probability": 0.9941 + }, + { + "start": 14506.6, + "end": 14508.7, + "probability": 0.9878 + }, + { + "start": 14509.96, + "end": 14511.06, + "probability": 0.9915 + }, + { + "start": 14512.22, + "end": 14513.16, + "probability": 0.5002 + }, + { + "start": 14514.14, + "end": 14517.08, + "probability": 0.9919 + }, + { + "start": 14518.0, + "end": 14520.4, + "probability": 0.8372 + }, + { + "start": 14521.04, + "end": 14523.04, + "probability": 0.9253 + }, + { + "start": 14524.3, + "end": 14525.06, + "probability": 0.8907 + }, + { + "start": 14526.02, + "end": 14528.52, + "probability": 0.8485 + }, + { + "start": 14529.26, + "end": 14530.18, + "probability": 0.9275 + }, + { + "start": 14531.98, + "end": 14537.52, + "probability": 0.9977 + }, + { + "start": 14538.96, + "end": 14542.46, + "probability": 0.9575 + }, + { + "start": 14543.0, + "end": 14544.22, + "probability": 0.6284 + }, + { + "start": 14545.9, + "end": 14546.92, + "probability": 0.7117 + }, + { + "start": 14546.94, + "end": 14552.16, + "probability": 0.9691 + }, + { + "start": 14554.4, + "end": 14560.48, + "probability": 0.9883 + }, + { + "start": 14560.48, + "end": 14563.66, + "probability": 0.66 + }, + { + "start": 14564.04, + "end": 14566.22, + "probability": 0.9927 + }, + { + "start": 14567.14, + "end": 14569.68, + "probability": 0.9048 + }, + { + "start": 14569.86, + "end": 14572.4, + "probability": 0.9794 + }, + { + "start": 14572.56, + "end": 14574.0, + "probability": 0.7667 + }, + { + "start": 14574.98, + "end": 14576.76, + "probability": 0.9963 + }, + { + "start": 14577.32, + "end": 14581.08, + "probability": 0.9996 + }, + { + "start": 14581.88, + "end": 14585.28, + "probability": 0.984 + }, + { + "start": 14585.66, + "end": 14586.48, + "probability": 0.8273 + }, + { + "start": 14586.84, + "end": 14587.9, + "probability": 0.7969 + }, + { + "start": 14587.98, + "end": 14588.7, + "probability": 0.8364 + }, + { + "start": 14588.82, + "end": 14589.74, + "probability": 0.9089 + }, + { + "start": 14591.8, + "end": 14592.14, + "probability": 0.853 + }, + { + "start": 14592.28, + "end": 14593.24, + "probability": 0.9469 + }, + { + "start": 14593.3, + "end": 14596.62, + "probability": 0.9687 + }, + { + "start": 14597.68, + "end": 14599.22, + "probability": 0.9444 + }, + { + "start": 14599.8, + "end": 14602.18, + "probability": 0.8892 + }, + { + "start": 14602.84, + "end": 14606.72, + "probability": 0.7344 + }, + { + "start": 14606.8, + "end": 14608.56, + "probability": 0.7088 + }, + { + "start": 14609.74, + "end": 14613.2, + "probability": 0.9795 + }, + { + "start": 14615.84, + "end": 14617.48, + "probability": 0.9768 + }, + { + "start": 14618.36, + "end": 14618.7, + "probability": 0.3589 + }, + { + "start": 14618.8, + "end": 14620.82, + "probability": 0.9562 + }, + { + "start": 14621.0, + "end": 14623.88, + "probability": 0.9713 + }, + { + "start": 14623.96, + "end": 14627.56, + "probability": 0.0345 + }, + { + "start": 14627.76, + "end": 14632.7, + "probability": 0.8129 + }, + { + "start": 14633.64, + "end": 14634.66, + "probability": 0.9233 + }, + { + "start": 14635.1, + "end": 14637.92, + "probability": 0.7001 + }, + { + "start": 14639.04, + "end": 14640.86, + "probability": 0.9156 + }, + { + "start": 14641.7, + "end": 14643.64, + "probability": 0.6012 + }, + { + "start": 14644.32, + "end": 14647.14, + "probability": 0.9831 + }, + { + "start": 14647.96, + "end": 14648.88, + "probability": 0.9885 + }, + { + "start": 14648.98, + "end": 14649.88, + "probability": 0.8976 + }, + { + "start": 14650.26, + "end": 14652.12, + "probability": 0.4391 + }, + { + "start": 14654.9, + "end": 14655.38, + "probability": 0.8767 + }, + { + "start": 14655.48, + "end": 14656.06, + "probability": 0.6606 + }, + { + "start": 14656.16, + "end": 14657.26, + "probability": 0.9297 + }, + { + "start": 14657.28, + "end": 14657.93, + "probability": 0.8435 + }, + { + "start": 14660.04, + "end": 14663.88, + "probability": 0.7785 + }, + { + "start": 14665.34, + "end": 14668.38, + "probability": 0.892 + }, + { + "start": 14669.44, + "end": 14672.24, + "probability": 0.8842 + }, + { + "start": 14672.82, + "end": 14673.52, + "probability": 0.9005 + }, + { + "start": 14675.44, + "end": 14677.08, + "probability": 0.6061 + }, + { + "start": 14677.9, + "end": 14679.72, + "probability": 0.9294 + }, + { + "start": 14681.22, + "end": 14681.96, + "probability": 0.6391 + }, + { + "start": 14682.84, + "end": 14684.34, + "probability": 0.69 + }, + { + "start": 14686.22, + "end": 14686.8, + "probability": 0.8633 + }, + { + "start": 14687.78, + "end": 14688.74, + "probability": 0.6465 + }, + { + "start": 14689.48, + "end": 14694.6, + "probability": 0.9932 + }, + { + "start": 14695.94, + "end": 14698.22, + "probability": 0.9204 + }, + { + "start": 14698.96, + "end": 14702.78, + "probability": 0.9975 + }, + { + "start": 14702.78, + "end": 14706.68, + "probability": 0.9989 + }, + { + "start": 14707.62, + "end": 14709.34, + "probability": 0.9522 + }, + { + "start": 14709.74, + "end": 14711.48, + "probability": 0.9364 + }, + { + "start": 14712.34, + "end": 14712.96, + "probability": 0.8627 + }, + { + "start": 14713.6, + "end": 14714.42, + "probability": 0.8348 + }, + { + "start": 14715.48, + "end": 14716.18, + "probability": 0.6013 + }, + { + "start": 14717.86, + "end": 14722.38, + "probability": 0.9844 + }, + { + "start": 14722.38, + "end": 14725.44, + "probability": 0.9268 + }, + { + "start": 14726.88, + "end": 14729.58, + "probability": 0.5166 + }, + { + "start": 14730.44, + "end": 14731.54, + "probability": 0.6159 + }, + { + "start": 14732.6, + "end": 14734.74, + "probability": 0.971 + }, + { + "start": 14736.14, + "end": 14737.14, + "probability": 0.6659 + }, + { + "start": 14738.4, + "end": 14738.94, + "probability": 0.9299 + }, + { + "start": 14739.54, + "end": 14740.34, + "probability": 0.8766 + }, + { + "start": 14741.06, + "end": 14741.92, + "probability": 0.9642 + }, + { + "start": 14742.96, + "end": 14749.72, + "probability": 0.9875 + }, + { + "start": 14750.7, + "end": 14752.24, + "probability": 0.8621 + }, + { + "start": 14753.24, + "end": 14754.6, + "probability": 0.978 + }, + { + "start": 14755.94, + "end": 14757.94, + "probability": 0.968 + }, + { + "start": 14758.86, + "end": 14760.16, + "probability": 0.9825 + }, + { + "start": 14761.2, + "end": 14764.04, + "probability": 0.8895 + }, + { + "start": 14764.64, + "end": 14767.42, + "probability": 0.828 + }, + { + "start": 14769.34, + "end": 14770.42, + "probability": 0.998 + }, + { + "start": 14771.4, + "end": 14773.21, + "probability": 0.9986 + }, + { + "start": 14774.08, + "end": 14775.62, + "probability": 0.9863 + }, + { + "start": 14776.3, + "end": 14776.82, + "probability": 0.9027 + }, + { + "start": 14777.38, + "end": 14777.56, + "probability": 0.9231 + }, + { + "start": 14778.16, + "end": 14779.52, + "probability": 0.9927 + }, + { + "start": 14780.48, + "end": 14782.32, + "probability": 0.9828 + }, + { + "start": 14783.2, + "end": 14783.4, + "probability": 0.4939 + }, + { + "start": 14783.98, + "end": 14785.06, + "probability": 0.4569 + }, + { + "start": 14785.1, + "end": 14785.64, + "probability": 0.6952 + }, + { + "start": 14786.54, + "end": 14788.1, + "probability": 0.802 + }, + { + "start": 14788.16, + "end": 14789.24, + "probability": 0.9033 + }, + { + "start": 14789.64, + "end": 14790.32, + "probability": 0.9588 + }, + { + "start": 14790.38, + "end": 14791.14, + "probability": 0.7847 + }, + { + "start": 14791.24, + "end": 14796.0, + "probability": 0.9915 + }, + { + "start": 14797.78, + "end": 14798.22, + "probability": 0.5657 + }, + { + "start": 14798.98, + "end": 14801.86, + "probability": 0.9775 + }, + { + "start": 14802.02, + "end": 14803.99, + "probability": 0.9609 + }, + { + "start": 14804.64, + "end": 14806.08, + "probability": 0.9189 + }, + { + "start": 14806.46, + "end": 14807.72, + "probability": 0.9927 + }, + { + "start": 14807.84, + "end": 14812.96, + "probability": 0.9932 + }, + { + "start": 14814.08, + "end": 14815.3, + "probability": 0.7261 + }, + { + "start": 14817.32, + "end": 14817.6, + "probability": 0.9275 + }, + { + "start": 14817.96, + "end": 14820.68, + "probability": 0.8292 + }, + { + "start": 14820.8, + "end": 14821.5, + "probability": 0.4109 + }, + { + "start": 14823.6, + "end": 14825.16, + "probability": 0.9153 + }, + { + "start": 14827.24, + "end": 14829.74, + "probability": 0.7563 + }, + { + "start": 14831.62, + "end": 14835.14, + "probability": 0.9988 + }, + { + "start": 14836.8, + "end": 14838.98, + "probability": 0.7494 + }, + { + "start": 14839.48, + "end": 14841.26, + "probability": 0.622 + }, + { + "start": 14841.36, + "end": 14844.81, + "probability": 0.7696 + }, + { + "start": 14845.68, + "end": 14846.34, + "probability": 0.8796 + }, + { + "start": 14847.5, + "end": 14847.96, + "probability": 0.9607 + }, + { + "start": 14849.38, + "end": 14853.4, + "probability": 0.929 + }, + { + "start": 14854.66, + "end": 14858.06, + "probability": 0.7999 + }, + { + "start": 14858.06, + "end": 14861.68, + "probability": 0.9465 + }, + { + "start": 14862.14, + "end": 14864.36, + "probability": 0.948 + }, + { + "start": 14865.66, + "end": 14866.86, + "probability": 0.9834 + }, + { + "start": 14866.9, + "end": 14871.08, + "probability": 0.9141 + }, + { + "start": 14874.38, + "end": 14874.9, + "probability": 0.6611 + }, + { + "start": 14876.28, + "end": 14876.4, + "probability": 0.6523 + }, + { + "start": 14877.54, + "end": 14878.56, + "probability": 0.7935 + }, + { + "start": 14878.66, + "end": 14881.64, + "probability": 0.8088 + }, + { + "start": 14882.92, + "end": 14884.26, + "probability": 0.9846 + }, + { + "start": 14888.0, + "end": 14888.7, + "probability": 0.1054 + }, + { + "start": 14888.7, + "end": 14894.72, + "probability": 0.9155 + }, + { + "start": 14896.8, + "end": 14899.32, + "probability": 0.995 + }, + { + "start": 14900.54, + "end": 14905.32, + "probability": 0.9946 + }, + { + "start": 14907.34, + "end": 14909.1, + "probability": 0.8088 + }, + { + "start": 14909.58, + "end": 14910.4, + "probability": 0.8389 + }, + { + "start": 14910.48, + "end": 14911.88, + "probability": 0.9638 + }, + { + "start": 14912.3, + "end": 14912.78, + "probability": 0.7249 + }, + { + "start": 14913.86, + "end": 14916.94, + "probability": 0.916 + }, + { + "start": 14917.26, + "end": 14918.3, + "probability": 0.7167 + }, + { + "start": 14918.82, + "end": 14919.64, + "probability": 0.8339 + }, + { + "start": 14920.57, + "end": 14921.34, + "probability": 0.7121 + }, + { + "start": 14921.98, + "end": 14922.42, + "probability": 0.6836 + }, + { + "start": 14923.58, + "end": 14925.94, + "probability": 0.9313 + }, + { + "start": 14927.02, + "end": 14927.5, + "probability": 0.8643 + }, + { + "start": 14929.12, + "end": 14932.28, + "probability": 0.9347 + }, + { + "start": 14932.28, + "end": 14933.38, + "probability": 0.203 + }, + { + "start": 14933.44, + "end": 14933.7, + "probability": 0.5306 + }, + { + "start": 14934.36, + "end": 14938.56, + "probability": 0.9962 + }, + { + "start": 14939.46, + "end": 14940.94, + "probability": 0.9904 + }, + { + "start": 14941.0, + "end": 14943.22, + "probability": 0.8789 + }, + { + "start": 14944.26, + "end": 14945.68, + "probability": 0.4473 + }, + { + "start": 14945.82, + "end": 14946.28, + "probability": 0.9834 + }, + { + "start": 14946.34, + "end": 14946.8, + "probability": 0.7792 + }, + { + "start": 14947.0, + "end": 14948.28, + "probability": 0.8311 + }, + { + "start": 14949.88, + "end": 14950.68, + "probability": 0.89 + }, + { + "start": 14950.84, + "end": 14954.46, + "probability": 0.9867 + }, + { + "start": 14955.5, + "end": 14956.26, + "probability": 0.9551 + }, + { + "start": 14957.08, + "end": 14960.58, + "probability": 0.9877 + }, + { + "start": 14961.58, + "end": 14963.03, + "probability": 0.8328 + }, + { + "start": 14964.24, + "end": 14965.8, + "probability": 0.9912 + }, + { + "start": 14966.84, + "end": 14966.84, + "probability": 0.9624 + }, + { + "start": 14967.44, + "end": 14969.08, + "probability": 0.6201 + }, + { + "start": 14970.18, + "end": 14970.88, + "probability": 0.504 + }, + { + "start": 14970.88, + "end": 14971.58, + "probability": 0.7317 + }, + { + "start": 14972.29, + "end": 14974.3, + "probability": 0.7103 + }, + { + "start": 14974.5, + "end": 14975.96, + "probability": 0.9001 + }, + { + "start": 14976.42, + "end": 14977.5, + "probability": 0.9572 + }, + { + "start": 14978.06, + "end": 14980.2, + "probability": 0.995 + }, + { + "start": 14981.04, + "end": 14981.88, + "probability": 0.9929 + }, + { + "start": 14984.1, + "end": 14987.02, + "probability": 0.9879 + }, + { + "start": 14988.34, + "end": 14990.54, + "probability": 0.9896 + }, + { + "start": 14991.24, + "end": 14991.98, + "probability": 0.9594 + }, + { + "start": 14992.06, + "end": 14993.5, + "probability": 0.9969 + }, + { + "start": 14993.84, + "end": 14996.04, + "probability": 0.7657 + }, + { + "start": 14996.46, + "end": 14997.92, + "probability": 0.8864 + }, + { + "start": 14998.56, + "end": 14999.1, + "probability": 0.3982 + }, + { + "start": 14999.24, + "end": 14999.94, + "probability": 0.7977 + }, + { + "start": 15000.38, + "end": 15002.64, + "probability": 0.8833 + }, + { + "start": 15003.62, + "end": 15005.36, + "probability": 0.3885 + }, + { + "start": 15005.42, + "end": 15005.5, + "probability": 0.5925 + }, + { + "start": 15005.62, + "end": 15007.74, + "probability": 0.9584 + }, + { + "start": 15008.16, + "end": 15009.08, + "probability": 0.6628 + }, + { + "start": 15010.88, + "end": 15012.94, + "probability": 0.98 + }, + { + "start": 15013.48, + "end": 15015.24, + "probability": 0.9164 + }, + { + "start": 15016.92, + "end": 15018.56, + "probability": 0.8209 + }, + { + "start": 15018.92, + "end": 15019.1, + "probability": 0.6722 + }, + { + "start": 15019.22, + "end": 15020.34, + "probability": 0.9377 + }, + { + "start": 15020.58, + "end": 15021.82, + "probability": 0.757 + }, + { + "start": 15022.38, + "end": 15022.98, + "probability": 0.754 + }, + { + "start": 15023.64, + "end": 15024.46, + "probability": 0.8715 + }, + { + "start": 15024.82, + "end": 15026.88, + "probability": 0.9941 + }, + { + "start": 15027.48, + "end": 15028.14, + "probability": 0.9952 + }, + { + "start": 15028.78, + "end": 15029.14, + "probability": 0.9774 + }, + { + "start": 15030.1, + "end": 15033.26, + "probability": 0.9241 + }, + { + "start": 15033.82, + "end": 15039.86, + "probability": 0.7201 + }, + { + "start": 15041.1, + "end": 15043.1, + "probability": 0.9741 + }, + { + "start": 15044.14, + "end": 15048.26, + "probability": 0.9746 + }, + { + "start": 15048.34, + "end": 15049.6, + "probability": 0.78 + }, + { + "start": 15049.7, + "end": 15050.84, + "probability": 0.9325 + }, + { + "start": 15052.7, + "end": 15053.92, + "probability": 0.9984 + }, + { + "start": 15055.18, + "end": 15059.1, + "probability": 0.9951 + }, + { + "start": 15059.24, + "end": 15060.94, + "probability": 0.815 + }, + { + "start": 15061.9, + "end": 15065.86, + "probability": 0.9849 + }, + { + "start": 15065.9, + "end": 15068.5, + "probability": 0.9683 + }, + { + "start": 15068.9, + "end": 15069.3, + "probability": 0.5923 + }, + { + "start": 15069.38, + "end": 15072.88, + "probability": 0.9915 + }, + { + "start": 15072.88, + "end": 15076.28, + "probability": 0.7265 + }, + { + "start": 15076.28, + "end": 15081.48, + "probability": 0.998 + }, + { + "start": 15082.56, + "end": 15083.78, + "probability": 0.9897 + }, + { + "start": 15084.82, + "end": 15088.2, + "probability": 0.9838 + }, + { + "start": 15089.48, + "end": 15090.86, + "probability": 0.8953 + }, + { + "start": 15091.52, + "end": 15092.98, + "probability": 0.9951 + }, + { + "start": 15093.5, + "end": 15094.22, + "probability": 0.6552 + }, + { + "start": 15094.58, + "end": 15094.96, + "probability": 0.8201 + }, + { + "start": 15095.54, + "end": 15095.98, + "probability": 0.5378 + }, + { + "start": 15096.08, + "end": 15097.66, + "probability": 0.8473 + }, + { + "start": 15098.8, + "end": 15101.06, + "probability": 0.9473 + }, + { + "start": 15102.32, + "end": 15105.86, + "probability": 0.9958 + }, + { + "start": 15111.3, + "end": 15114.42, + "probability": 0.6099 + }, + { + "start": 15116.6, + "end": 15116.92, + "probability": 0.6314 + }, + { + "start": 15118.5, + "end": 15121.4, + "probability": 0.6637 + }, + { + "start": 15125.94, + "end": 15127.26, + "probability": 0.5696 + }, + { + "start": 15132.58, + "end": 15137.28, + "probability": 0.8095 + }, + { + "start": 15138.1, + "end": 15138.86, + "probability": 0.7853 + }, + { + "start": 15138.96, + "end": 15140.48, + "probability": 0.9709 + }, + { + "start": 15140.64, + "end": 15142.74, + "probability": 0.842 + }, + { + "start": 15142.82, + "end": 15143.84, + "probability": 0.9266 + }, + { + "start": 15144.04, + "end": 15147.54, + "probability": 0.9788 + }, + { + "start": 15148.22, + "end": 15149.86, + "probability": 0.9329 + }, + { + "start": 15150.5, + "end": 15154.39, + "probability": 0.912 + }, + { + "start": 15154.94, + "end": 15158.86, + "probability": 0.9891 + }, + { + "start": 15159.4, + "end": 15163.83, + "probability": 0.9797 + }, + { + "start": 15163.96, + "end": 15168.81, + "probability": 0.9411 + }, + { + "start": 15169.32, + "end": 15173.68, + "probability": 0.7972 + }, + { + "start": 15174.78, + "end": 15177.58, + "probability": 0.8094 + }, + { + "start": 15177.58, + "end": 15179.9, + "probability": 0.9402 + }, + { + "start": 15181.02, + "end": 15184.22, + "probability": 0.8659 + }, + { + "start": 15187.88, + "end": 15189.26, + "probability": 0.7975 + }, + { + "start": 15189.44, + "end": 15191.6, + "probability": 0.9861 + }, + { + "start": 15192.22, + "end": 15194.44, + "probability": 0.6128 + }, + { + "start": 15194.56, + "end": 15195.16, + "probability": 0.9249 + }, + { + "start": 15195.18, + "end": 15197.0, + "probability": 0.7944 + }, + { + "start": 15197.76, + "end": 15200.64, + "probability": 0.8833 + }, + { + "start": 15201.4, + "end": 15202.02, + "probability": 0.5287 + }, + { + "start": 15202.14, + "end": 15203.14, + "probability": 0.7853 + }, + { + "start": 15203.18, + "end": 15206.14, + "probability": 0.8545 + }, + { + "start": 15206.64, + "end": 15208.6, + "probability": 0.7354 + }, + { + "start": 15208.8, + "end": 15209.16, + "probability": 0.3347 + }, + { + "start": 15209.2, + "end": 15211.3, + "probability": 0.575 + }, + { + "start": 15211.48, + "end": 15211.83, + "probability": 0.8476 + }, + { + "start": 15214.2, + "end": 15218.02, + "probability": 0.6783 + }, + { + "start": 15219.34, + "end": 15219.96, + "probability": 0.9122 + }, + { + "start": 15220.42, + "end": 15223.94, + "probability": 0.8139 + }, + { + "start": 15224.96, + "end": 15228.7, + "probability": 0.9061 + }, + { + "start": 15229.66, + "end": 15235.36, + "probability": 0.9656 + }, + { + "start": 15236.1, + "end": 15236.48, + "probability": 0.4464 + }, + { + "start": 15236.52, + "end": 15240.62, + "probability": 0.9861 + }, + { + "start": 15240.82, + "end": 15243.46, + "probability": 0.9544 + }, + { + "start": 15244.24, + "end": 15247.82, + "probability": 0.8254 + }, + { + "start": 15249.94, + "end": 15251.12, + "probability": 0.4102 + }, + { + "start": 15251.12, + "end": 15253.44, + "probability": 0.9894 + }, + { + "start": 15253.8, + "end": 15262.84, + "probability": 0.9813 + }, + { + "start": 15263.24, + "end": 15267.02, + "probability": 0.6745 + }, + { + "start": 15267.32, + "end": 15268.58, + "probability": 0.8158 + }, + { + "start": 15269.28, + "end": 15272.32, + "probability": 0.9971 + }, + { + "start": 15272.42, + "end": 15275.46, + "probability": 0.8944 + }, + { + "start": 15276.0, + "end": 15277.12, + "probability": 0.8272 + }, + { + "start": 15277.66, + "end": 15282.58, + "probability": 0.8788 + }, + { + "start": 15284.02, + "end": 15286.56, + "probability": 0.9036 + }, + { + "start": 15286.82, + "end": 15290.82, + "probability": 0.9714 + }, + { + "start": 15291.22, + "end": 15294.28, + "probability": 0.9849 + }, + { + "start": 15294.28, + "end": 15297.24, + "probability": 0.9924 + }, + { + "start": 15297.28, + "end": 15297.84, + "probability": 0.6914 + }, + { + "start": 15298.02, + "end": 15299.9, + "probability": 0.5182 + }, + { + "start": 15300.22, + "end": 15302.92, + "probability": 0.9893 + }, + { + "start": 15302.92, + "end": 15307.5, + "probability": 0.9939 + }, + { + "start": 15308.02, + "end": 15309.56, + "probability": 0.9307 + }, + { + "start": 15310.66, + "end": 15311.0, + "probability": 0.6912 + }, + { + "start": 15311.04, + "end": 15313.36, + "probability": 0.9474 + }, + { + "start": 15313.52, + "end": 15313.58, + "probability": 0.9189 + }, + { + "start": 15314.54, + "end": 15315.62, + "probability": 0.1422 + }, + { + "start": 15316.26, + "end": 15319.6, + "probability": 0.8724 + }, + { + "start": 15320.54, + "end": 15321.88, + "probability": 0.3749 + }, + { + "start": 15322.66, + "end": 15327.3, + "probability": 0.9939 + }, + { + "start": 15328.16, + "end": 15329.68, + "probability": 0.9221 + }, + { + "start": 15329.8, + "end": 15330.24, + "probability": 0.8561 + }, + { + "start": 15330.42, + "end": 15334.0, + "probability": 0.7878 + }, + { + "start": 15334.36, + "end": 15337.44, + "probability": 0.8775 + }, + { + "start": 15337.58, + "end": 15340.18, + "probability": 0.9677 + }, + { + "start": 15341.4, + "end": 15347.82, + "probability": 0.9882 + }, + { + "start": 15348.68, + "end": 15352.0, + "probability": 0.744 + }, + { + "start": 15352.2, + "end": 15354.7, + "probability": 0.9973 + }, + { + "start": 15354.7, + "end": 15357.68, + "probability": 0.9868 + }, + { + "start": 15358.98, + "end": 15364.16, + "probability": 0.9934 + }, + { + "start": 15365.42, + "end": 15370.54, + "probability": 0.9953 + }, + { + "start": 15371.36, + "end": 15373.02, + "probability": 0.9443 + }, + { + "start": 15373.5, + "end": 15379.76, + "probability": 0.9863 + }, + { + "start": 15380.48, + "end": 15382.92, + "probability": 0.8564 + }, + { + "start": 15383.5, + "end": 15386.92, + "probability": 0.6965 + }, + { + "start": 15387.32, + "end": 15389.1, + "probability": 0.9787 + }, + { + "start": 15389.68, + "end": 15391.9, + "probability": 0.9666 + }, + { + "start": 15391.94, + "end": 15392.3, + "probability": 0.4904 + }, + { + "start": 15392.38, + "end": 15393.14, + "probability": 0.5863 + }, + { + "start": 15394.1, + "end": 15396.52, + "probability": 0.8743 + }, + { + "start": 15396.6, + "end": 15397.4, + "probability": 0.8744 + }, + { + "start": 15397.92, + "end": 15399.88, + "probability": 0.9795 + }, + { + "start": 15400.46, + "end": 15405.74, + "probability": 0.9967 + }, + { + "start": 15405.74, + "end": 15411.54, + "probability": 0.889 + }, + { + "start": 15412.38, + "end": 15413.42, + "probability": 0.7603 + }, + { + "start": 15413.54, + "end": 15414.18, + "probability": 0.8905 + }, + { + "start": 15414.28, + "end": 15415.16, + "probability": 0.8612 + }, + { + "start": 15415.24, + "end": 15417.16, + "probability": 0.9331 + }, + { + "start": 15417.52, + "end": 15420.78, + "probability": 0.9973 + }, + { + "start": 15421.44, + "end": 15424.24, + "probability": 0.9956 + }, + { + "start": 15424.4, + "end": 15428.06, + "probability": 0.9235 + }, + { + "start": 15428.22, + "end": 15428.96, + "probability": 0.7944 + }, + { + "start": 15429.02, + "end": 15429.82, + "probability": 0.7855 + }, + { + "start": 15429.94, + "end": 15431.14, + "probability": 0.857 + }, + { + "start": 15431.88, + "end": 15433.54, + "probability": 0.9832 + }, + { + "start": 15433.68, + "end": 15439.17, + "probability": 0.9604 + }, + { + "start": 15439.78, + "end": 15442.22, + "probability": 0.9662 + }, + { + "start": 15443.28, + "end": 15444.34, + "probability": 0.8211 + }, + { + "start": 15445.0, + "end": 15447.14, + "probability": 0.9904 + }, + { + "start": 15447.24, + "end": 15450.32, + "probability": 0.9924 + }, + { + "start": 15450.8, + "end": 15451.82, + "probability": 0.9585 + }, + { + "start": 15452.22, + "end": 15454.62, + "probability": 0.9983 + }, + { + "start": 15455.8, + "end": 15458.4, + "probability": 0.9284 + }, + { + "start": 15459.1, + "end": 15459.82, + "probability": 0.7824 + }, + { + "start": 15461.24, + "end": 15466.68, + "probability": 0.9862 + }, + { + "start": 15466.88, + "end": 15470.24, + "probability": 0.9838 + }, + { + "start": 15471.2, + "end": 15475.22, + "probability": 0.8883 + }, + { + "start": 15476.16, + "end": 15477.46, + "probability": 0.9973 + }, + { + "start": 15477.66, + "end": 15479.8, + "probability": 0.8564 + }, + { + "start": 15479.88, + "end": 15480.66, + "probability": 0.956 + }, + { + "start": 15481.8, + "end": 15483.51, + "probability": 0.9969 + }, + { + "start": 15484.42, + "end": 15486.02, + "probability": 0.7477 + }, + { + "start": 15486.34, + "end": 15488.58, + "probability": 0.9953 + }, + { + "start": 15489.52, + "end": 15489.68, + "probability": 0.343 + }, + { + "start": 15489.76, + "end": 15493.72, + "probability": 0.9581 + }, + { + "start": 15494.1, + "end": 15496.86, + "probability": 0.7232 + }, + { + "start": 15496.86, + "end": 15499.82, + "probability": 0.9913 + }, + { + "start": 15500.36, + "end": 15503.68, + "probability": 0.99 + }, + { + "start": 15503.72, + "end": 15505.84, + "probability": 0.6885 + }, + { + "start": 15505.92, + "end": 15507.18, + "probability": 0.9476 + }, + { + "start": 15507.86, + "end": 15508.9, + "probability": 0.5214 + }, + { + "start": 15509.0, + "end": 15510.24, + "probability": 0.7086 + }, + { + "start": 15510.38, + "end": 15511.58, + "probability": 0.8655 + }, + { + "start": 15512.08, + "end": 15512.5, + "probability": 0.6287 + }, + { + "start": 15512.56, + "end": 15513.22, + "probability": 0.6547 + }, + { + "start": 15513.5, + "end": 15513.96, + "probability": 0.3936 + }, + { + "start": 15514.12, + "end": 15517.34, + "probability": 0.8764 + }, + { + "start": 15517.34, + "end": 15521.56, + "probability": 0.9808 + }, + { + "start": 15521.62, + "end": 15523.49, + "probability": 0.8198 + }, + { + "start": 15525.14, + "end": 15526.9, + "probability": 0.7368 + }, + { + "start": 15527.46, + "end": 15528.4, + "probability": 0.8234 + }, + { + "start": 15529.26, + "end": 15532.99, + "probability": 0.9563 + }, + { + "start": 15533.68, + "end": 15534.5, + "probability": 0.8989 + }, + { + "start": 15534.56, + "end": 15540.32, + "probability": 0.9947 + }, + { + "start": 15547.18, + "end": 15550.24, + "probability": 0.9963 + }, + { + "start": 15550.36, + "end": 15552.2, + "probability": 0.9079 + }, + { + "start": 15552.64, + "end": 15554.84, + "probability": 0.7485 + }, + { + "start": 15555.3, + "end": 15556.64, + "probability": 0.9655 + }, + { + "start": 15557.12, + "end": 15557.88, + "probability": 0.6624 + }, + { + "start": 15558.0, + "end": 15560.56, + "probability": 0.9663 + }, + { + "start": 15560.8, + "end": 15561.94, + "probability": 0.9637 + }, + { + "start": 15562.22, + "end": 15563.64, + "probability": 0.9009 + }, + { + "start": 15564.34, + "end": 15568.17, + "probability": 0.503 + }, + { + "start": 15569.36, + "end": 15574.72, + "probability": 0.9792 + }, + { + "start": 15575.28, + "end": 15577.5, + "probability": 0.916 + }, + { + "start": 15578.48, + "end": 15583.88, + "probability": 0.9944 + }, + { + "start": 15584.46, + "end": 15586.48, + "probability": 0.8962 + }, + { + "start": 15587.32, + "end": 15588.2, + "probability": 0.735 + }, + { + "start": 15588.66, + "end": 15591.3, + "probability": 0.9823 + }, + { + "start": 15592.54, + "end": 15593.38, + "probability": 0.7822 + }, + { + "start": 15593.78, + "end": 15596.24, + "probability": 0.9573 + }, + { + "start": 15596.86, + "end": 15599.92, + "probability": 0.9791 + }, + { + "start": 15600.44, + "end": 15601.2, + "probability": 0.8279 + }, + { + "start": 15601.24, + "end": 15606.9, + "probability": 0.8901 + }, + { + "start": 15607.34, + "end": 15607.64, + "probability": 0.5255 + }, + { + "start": 15607.74, + "end": 15610.02, + "probability": 0.9667 + }, + { + "start": 15610.02, + "end": 15613.56, + "probability": 0.9756 + }, + { + "start": 15613.78, + "end": 15614.62, + "probability": 0.6534 + }, + { + "start": 15615.14, + "end": 15619.56, + "probability": 0.8989 + }, + { + "start": 15620.34, + "end": 15621.46, + "probability": 0.5454 + }, + { + "start": 15622.32, + "end": 15627.18, + "probability": 0.8807 + }, + { + "start": 15627.48, + "end": 15631.08, + "probability": 0.9014 + }, + { + "start": 15631.56, + "end": 15636.14, + "probability": 0.9833 + }, + { + "start": 15636.28, + "end": 15638.84, + "probability": 0.7817 + }, + { + "start": 15639.96, + "end": 15644.84, + "probability": 0.9531 + }, + { + "start": 15645.24, + "end": 15649.02, + "probability": 0.9919 + }, + { + "start": 15650.22, + "end": 15652.76, + "probability": 0.9688 + }, + { + "start": 15652.88, + "end": 15658.22, + "probability": 0.8631 + }, + { + "start": 15658.38, + "end": 15662.96, + "probability": 0.9612 + }, + { + "start": 15663.48, + "end": 15667.34, + "probability": 0.9641 + }, + { + "start": 15667.78, + "end": 15669.7, + "probability": 0.9909 + }, + { + "start": 15669.74, + "end": 15672.14, + "probability": 0.9151 + }, + { + "start": 15673.28, + "end": 15674.22, + "probability": 0.8856 + }, + { + "start": 15674.3, + "end": 15675.62, + "probability": 0.9165 + }, + { + "start": 15675.72, + "end": 15676.28, + "probability": 0.8977 + }, + { + "start": 15676.4, + "end": 15677.74, + "probability": 0.9878 + }, + { + "start": 15678.26, + "end": 15679.63, + "probability": 0.7925 + }, + { + "start": 15679.68, + "end": 15682.08, + "probability": 0.9628 + }, + { + "start": 15682.32, + "end": 15684.7, + "probability": 0.7894 + }, + { + "start": 15684.7, + "end": 15689.94, + "probability": 0.9941 + }, + { + "start": 15690.12, + "end": 15694.86, + "probability": 0.9937 + }, + { + "start": 15694.96, + "end": 15695.96, + "probability": 0.9914 + }, + { + "start": 15696.86, + "end": 15697.7, + "probability": 0.995 + }, + { + "start": 15698.0, + "end": 15699.3, + "probability": 0.9854 + }, + { + "start": 15700.2, + "end": 15706.46, + "probability": 0.8243 + }, + { + "start": 15707.22, + "end": 15711.18, + "probability": 0.7201 + }, + { + "start": 15712.36, + "end": 15715.06, + "probability": 0.6991 + }, + { + "start": 15715.24, + "end": 15715.34, + "probability": 0.2584 + }, + { + "start": 15715.44, + "end": 15715.84, + "probability": 0.8821 + }, + { + "start": 15715.94, + "end": 15717.97, + "probability": 0.9909 + }, + { + "start": 15718.22, + "end": 15722.14, + "probability": 0.9323 + }, + { + "start": 15722.48, + "end": 15725.76, + "probability": 0.6052 + }, + { + "start": 15725.96, + "end": 15726.68, + "probability": 0.3723 + }, + { + "start": 15726.76, + "end": 15727.72, + "probability": 0.7445 + }, + { + "start": 15728.34, + "end": 15731.48, + "probability": 0.7408 + }, + { + "start": 15732.54, + "end": 15733.8, + "probability": 0.5664 + }, + { + "start": 15734.3, + "end": 15735.12, + "probability": 0.9139 + }, + { + "start": 15735.82, + "end": 15742.66, + "probability": 0.9897 + }, + { + "start": 15743.14, + "end": 15745.4, + "probability": 0.9918 + }, + { + "start": 15745.46, + "end": 15746.18, + "probability": 0.8245 + }, + { + "start": 15746.2, + "end": 15750.16, + "probability": 0.9824 + }, + { + "start": 15750.16, + "end": 15753.58, + "probability": 0.9993 + }, + { + "start": 15754.14, + "end": 15755.8, + "probability": 0.7587 + }, + { + "start": 15756.54, + "end": 15757.44, + "probability": 0.7552 + }, + { + "start": 15757.58, + "end": 15758.4, + "probability": 0.8416 + }, + { + "start": 15758.48, + "end": 15761.5, + "probability": 0.9092 + }, + { + "start": 15761.5, + "end": 15764.02, + "probability": 0.921 + }, + { + "start": 15765.7, + "end": 15771.54, + "probability": 0.9971 + }, + { + "start": 15772.24, + "end": 15775.62, + "probability": 0.9963 + }, + { + "start": 15776.42, + "end": 15781.0, + "probability": 0.9951 + }, + { + "start": 15781.06, + "end": 15785.38, + "probability": 0.9983 + }, + { + "start": 15785.84, + "end": 15787.16, + "probability": 0.9953 + }, + { + "start": 15788.16, + "end": 15790.6, + "probability": 0.7601 + }, + { + "start": 15790.72, + "end": 15792.28, + "probability": 0.9873 + }, + { + "start": 15793.62, + "end": 15797.74, + "probability": 0.8323 + }, + { + "start": 15797.96, + "end": 15800.94, + "probability": 0.8984 + }, + { + "start": 15801.28, + "end": 15804.56, + "probability": 0.9387 + }, + { + "start": 15805.1, + "end": 15805.54, + "probability": 0.6588 + }, + { + "start": 15805.78, + "end": 15808.83, + "probability": 0.9803 + }, + { + "start": 15809.56, + "end": 15811.82, + "probability": 0.9814 + }, + { + "start": 15811.88, + "end": 15815.16, + "probability": 0.9267 + }, + { + "start": 15816.22, + "end": 15818.52, + "probability": 0.9155 + }, + { + "start": 15819.42, + "end": 15820.06, + "probability": 0.9966 + }, + { + "start": 15820.62, + "end": 15821.72, + "probability": 0.9965 + }, + { + "start": 15822.36, + "end": 15823.16, + "probability": 0.9509 + }, + { + "start": 15823.98, + "end": 15824.66, + "probability": 0.875 + }, + { + "start": 15824.74, + "end": 15825.8, + "probability": 0.9879 + }, + { + "start": 15825.94, + "end": 15827.08, + "probability": 0.8938 + }, + { + "start": 15828.06, + "end": 15830.7, + "probability": 0.9987 + }, + { + "start": 15830.8, + "end": 15832.96, + "probability": 0.9744 + }, + { + "start": 15832.96, + "end": 15837.06, + "probability": 0.9911 + }, + { + "start": 15837.72, + "end": 15838.54, + "probability": 0.8166 + }, + { + "start": 15838.9, + "end": 15846.82, + "probability": 0.9968 + }, + { + "start": 15847.24, + "end": 15847.82, + "probability": 0.7391 + }, + { + "start": 15848.28, + "end": 15848.76, + "probability": 0.5456 + }, + { + "start": 15848.88, + "end": 15850.8, + "probability": 0.1759 + }, + { + "start": 15870.58, + "end": 15872.86, + "probability": 0.5796 + }, + { + "start": 15873.92, + "end": 15874.7, + "probability": 0.819 + }, + { + "start": 15875.7, + "end": 15876.8, + "probability": 0.9808 + }, + { + "start": 15877.42, + "end": 15884.5, + "probability": 0.8881 + }, + { + "start": 15886.76, + "end": 15887.4, + "probability": 0.6546 + }, + { + "start": 15887.44, + "end": 15894.24, + "probability": 0.9951 + }, + { + "start": 15895.52, + "end": 15895.9, + "probability": 0.4546 + }, + { + "start": 15895.98, + "end": 15896.4, + "probability": 0.432 + }, + { + "start": 15896.4, + "end": 15902.16, + "probability": 0.8276 + }, + { + "start": 15903.76, + "end": 15904.42, + "probability": 0.8655 + }, + { + "start": 15904.54, + "end": 15904.58, + "probability": 0.3181 + }, + { + "start": 15904.58, + "end": 15907.26, + "probability": 0.8141 + }, + { + "start": 15907.32, + "end": 15908.18, + "probability": 0.9865 + }, + { + "start": 15908.96, + "end": 15913.2, + "probability": 0.9985 + }, + { + "start": 15914.6, + "end": 15917.62, + "probability": 0.8542 + }, + { + "start": 15917.84, + "end": 15919.22, + "probability": 0.5925 + }, + { + "start": 15919.44, + "end": 15921.08, + "probability": 0.7587 + }, + { + "start": 15923.2, + "end": 15923.84, + "probability": 0.4223 + }, + { + "start": 15924.0, + "end": 15924.81, + "probability": 0.6011 + }, + { + "start": 15925.0, + "end": 15927.92, + "probability": 0.9856 + }, + { + "start": 15929.7, + "end": 15929.94, + "probability": 0.5537 + }, + { + "start": 15930.1, + "end": 15930.82, + "probability": 0.6279 + }, + { + "start": 15930.9, + "end": 15934.34, + "probability": 0.9543 + }, + { + "start": 15934.42, + "end": 15935.44, + "probability": 0.9209 + }, + { + "start": 15938.44, + "end": 15940.54, + "probability": 0.5647 + }, + { + "start": 15940.92, + "end": 15941.84, + "probability": 0.6425 + }, + { + "start": 15942.11, + "end": 15944.6, + "probability": 0.7318 + }, + { + "start": 15946.22, + "end": 15948.52, + "probability": 0.9926 + }, + { + "start": 15949.9, + "end": 15952.88, + "probability": 0.9889 + }, + { + "start": 15954.06, + "end": 15957.0, + "probability": 0.9915 + }, + { + "start": 15958.04, + "end": 15959.56, + "probability": 0.6805 + }, + { + "start": 15961.86, + "end": 15964.66, + "probability": 0.7608 + }, + { + "start": 15965.38, + "end": 15967.08, + "probability": 0.6632 + }, + { + "start": 15968.75, + "end": 15970.36, + "probability": 0.932 + }, + { + "start": 15970.58, + "end": 15974.72, + "probability": 0.9261 + }, + { + "start": 15975.18, + "end": 15976.98, + "probability": 0.9251 + }, + { + "start": 15977.74, + "end": 15978.41, + "probability": 0.9954 + }, + { + "start": 15978.86, + "end": 15979.55, + "probability": 0.9854 + }, + { + "start": 15980.0, + "end": 15981.1, + "probability": 0.8331 + }, + { + "start": 15981.3, + "end": 15981.6, + "probability": 0.7839 + }, + { + "start": 15981.72, + "end": 15982.04, + "probability": 0.8052 + }, + { + "start": 15982.04, + "end": 15982.22, + "probability": 0.2693 + }, + { + "start": 15982.44, + "end": 15983.6, + "probability": 0.967 + }, + { + "start": 15983.98, + "end": 15984.4, + "probability": 0.6809 + }, + { + "start": 15984.76, + "end": 15986.02, + "probability": 0.2493 + }, + { + "start": 15986.86, + "end": 15988.74, + "probability": 0.7889 + }, + { + "start": 15989.06, + "end": 15989.86, + "probability": 0.7564 + }, + { + "start": 15992.7, + "end": 15994.32, + "probability": 0.1307 + }, + { + "start": 15995.15, + "end": 15997.78, + "probability": 0.723 + }, + { + "start": 15997.94, + "end": 15999.54, + "probability": 0.5587 + }, + { + "start": 16000.36, + "end": 16002.62, + "probability": 0.1864 + }, + { + "start": 16002.82, + "end": 16003.6, + "probability": 0.0046 + }, + { + "start": 16004.5, + "end": 16004.6, + "probability": 0.234 + }, + { + "start": 16006.88, + "end": 16007.16, + "probability": 0.0107 + }, + { + "start": 16007.16, + "end": 16008.88, + "probability": 0.4206 + }, + { + "start": 16008.9, + "end": 16010.56, + "probability": 0.6022 + }, + { + "start": 16010.96, + "end": 16012.22, + "probability": 0.5618 + }, + { + "start": 16012.9, + "end": 16013.77, + "probability": 0.7213 + }, + { + "start": 16014.28, + "end": 16015.42, + "probability": 0.7012 + }, + { + "start": 16016.12, + "end": 16017.5, + "probability": 0.6368 + }, + { + "start": 16019.36, + "end": 16025.64, + "probability": 0.2454 + }, + { + "start": 16026.2, + "end": 16026.62, + "probability": 0.2486 + }, + { + "start": 16028.28, + "end": 16029.14, + "probability": 0.3447 + }, + { + "start": 16029.48, + "end": 16031.38, + "probability": 0.0174 + }, + { + "start": 16032.22, + "end": 16038.04, + "probability": 0.9907 + }, + { + "start": 16038.28, + "end": 16039.16, + "probability": 0.0932 + }, + { + "start": 16039.2, + "end": 16039.46, + "probability": 0.0042 + }, + { + "start": 16039.8, + "end": 16040.5, + "probability": 0.4494 + }, + { + "start": 16040.7, + "end": 16042.02, + "probability": 0.9888 + }, + { + "start": 16042.62, + "end": 16043.74, + "probability": 0.4954 + }, + { + "start": 16044.54, + "end": 16045.44, + "probability": 0.7964 + }, + { + "start": 16045.52, + "end": 16046.54, + "probability": 0.896 + }, + { + "start": 16046.64, + "end": 16049.25, + "probability": 0.9004 + }, + { + "start": 16049.92, + "end": 16055.3, + "probability": 0.8892 + }, + { + "start": 16056.34, + "end": 16060.1, + "probability": 0.9522 + }, + { + "start": 16061.34, + "end": 16062.2, + "probability": 0.8469 + }, + { + "start": 16064.9, + "end": 16067.22, + "probability": 0.9924 + }, + { + "start": 16067.34, + "end": 16068.14, + "probability": 0.9331 + }, + { + "start": 16068.18, + "end": 16068.78, + "probability": 0.8635 + }, + { + "start": 16068.94, + "end": 16071.02, + "probability": 0.8997 + }, + { + "start": 16071.64, + "end": 16073.36, + "probability": 0.9665 + }, + { + "start": 16074.3, + "end": 16075.62, + "probability": 0.9958 + }, + { + "start": 16076.22, + "end": 16077.12, + "probability": 0.8394 + }, + { + "start": 16077.28, + "end": 16077.8, + "probability": 0.9021 + }, + { + "start": 16077.98, + "end": 16080.22, + "probability": 0.6565 + }, + { + "start": 16081.12, + "end": 16084.1, + "probability": 0.8527 + }, + { + "start": 16084.62, + "end": 16084.94, + "probability": 0.5619 + }, + { + "start": 16085.84, + "end": 16089.56, + "probability": 0.9733 + }, + { + "start": 16089.62, + "end": 16090.24, + "probability": 0.4626 + }, + { + "start": 16090.7, + "end": 16092.24, + "probability": 0.7575 + }, + { + "start": 16092.8, + "end": 16092.92, + "probability": 0.8301 + }, + { + "start": 16093.0, + "end": 16093.6, + "probability": 0.6188 + }, + { + "start": 16093.92, + "end": 16095.16, + "probability": 0.6383 + }, + { + "start": 16096.48, + "end": 16098.32, + "probability": 0.9506 + }, + { + "start": 16098.9, + "end": 16100.1, + "probability": 0.9475 + }, + { + "start": 16102.98, + "end": 16106.12, + "probability": 0.989 + }, + { + "start": 16106.82, + "end": 16108.02, + "probability": 0.9847 + }, + { + "start": 16108.2, + "end": 16111.78, + "probability": 0.9937 + }, + { + "start": 16112.24, + "end": 16114.3, + "probability": 0.8395 + }, + { + "start": 16114.4, + "end": 16115.76, + "probability": 0.9972 + }, + { + "start": 16117.02, + "end": 16118.96, + "probability": 0.998 + }, + { + "start": 16119.94, + "end": 16125.42, + "probability": 0.9966 + }, + { + "start": 16128.04, + "end": 16129.56, + "probability": 0.8921 + }, + { + "start": 16129.98, + "end": 16130.78, + "probability": 0.7978 + }, + { + "start": 16130.92, + "end": 16132.42, + "probability": 0.9824 + }, + { + "start": 16133.52, + "end": 16133.78, + "probability": 0.9837 + }, + { + "start": 16135.48, + "end": 16136.66, + "probability": 0.9063 + }, + { + "start": 16137.26, + "end": 16138.2, + "probability": 0.9494 + }, + { + "start": 16138.48, + "end": 16139.02, + "probability": 0.74 + }, + { + "start": 16139.42, + "end": 16140.62, + "probability": 0.9602 + }, + { + "start": 16140.76, + "end": 16141.54, + "probability": 0.8213 + }, + { + "start": 16142.24, + "end": 16143.45, + "probability": 0.9867 + }, + { + "start": 16144.26, + "end": 16145.46, + "probability": 0.9907 + }, + { + "start": 16145.82, + "end": 16146.3, + "probability": 0.8775 + }, + { + "start": 16146.36, + "end": 16146.92, + "probability": 0.8531 + }, + { + "start": 16146.98, + "end": 16147.58, + "probability": 0.7161 + }, + { + "start": 16148.26, + "end": 16150.96, + "probability": 0.9819 + }, + { + "start": 16151.58, + "end": 16155.72, + "probability": 0.3405 + }, + { + "start": 16155.72, + "end": 16157.64, + "probability": 0.5225 + }, + { + "start": 16161.7, + "end": 16161.94, + "probability": 0.9028 + }, + { + "start": 16162.06, + "end": 16162.66, + "probability": 0.5336 + }, + { + "start": 16162.76, + "end": 16163.24, + "probability": 0.6041 + }, + { + "start": 16163.54, + "end": 16164.84, + "probability": 0.9532 + }, + { + "start": 16164.94, + "end": 16165.72, + "probability": 0.6697 + }, + { + "start": 16166.36, + "end": 16171.6, + "probability": 0.8818 + }, + { + "start": 16172.3, + "end": 16175.66, + "probability": 0.9873 + }, + { + "start": 16175.86, + "end": 16181.24, + "probability": 0.9954 + }, + { + "start": 16181.74, + "end": 16182.84, + "probability": 0.9015 + }, + { + "start": 16183.56, + "end": 16185.28, + "probability": 0.9119 + }, + { + "start": 16185.82, + "end": 16189.44, + "probability": 0.9863 + }, + { + "start": 16191.44, + "end": 16194.56, + "probability": 0.8372 + }, + { + "start": 16195.26, + "end": 16198.26, + "probability": 0.7303 + }, + { + "start": 16199.86, + "end": 16201.14, + "probability": 0.9067 + }, + { + "start": 16202.04, + "end": 16203.1, + "probability": 0.9271 + }, + { + "start": 16203.94, + "end": 16204.52, + "probability": 0.9878 + }, + { + "start": 16205.86, + "end": 16209.04, + "probability": 0.8541 + }, + { + "start": 16210.44, + "end": 16211.82, + "probability": 0.9961 + }, + { + "start": 16215.32, + "end": 16217.76, + "probability": 0.8957 + }, + { + "start": 16217.82, + "end": 16218.64, + "probability": 0.9497 + }, + { + "start": 16225.28, + "end": 16227.16, + "probability": 0.9362 + }, + { + "start": 16227.22, + "end": 16234.16, + "probability": 0.9759 + }, + { + "start": 16234.24, + "end": 16235.14, + "probability": 0.862 + }, + { + "start": 16237.16, + "end": 16237.66, + "probability": 0.4036 + }, + { + "start": 16237.66, + "end": 16238.18, + "probability": 0.8353 + }, + { + "start": 16238.8, + "end": 16239.92, + "probability": 0.7717 + }, + { + "start": 16240.32, + "end": 16240.68, + "probability": 0.6994 + }, + { + "start": 16241.16, + "end": 16241.5, + "probability": 0.8499 + }, + { + "start": 16241.88, + "end": 16242.96, + "probability": 0.9119 + }, + { + "start": 16243.36, + "end": 16243.74, + "probability": 0.6941 + }, + { + "start": 16243.82, + "end": 16247.04, + "probability": 0.7233 + }, + { + "start": 16247.04, + "end": 16253.14, + "probability": 0.6334 + }, + { + "start": 16253.28, + "end": 16254.56, + "probability": 0.9849 + }, + { + "start": 16254.82, + "end": 16256.4, + "probability": 0.921 + }, + { + "start": 16258.44, + "end": 16263.18, + "probability": 0.9448 + }, + { + "start": 16265.26, + "end": 16267.48, + "probability": 0.8341 + }, + { + "start": 16269.62, + "end": 16270.64, + "probability": 0.69 + }, + { + "start": 16271.44, + "end": 16272.6, + "probability": 0.9229 + }, + { + "start": 16273.62, + "end": 16274.84, + "probability": 0.9878 + }, + { + "start": 16274.9, + "end": 16275.42, + "probability": 0.7315 + }, + { + "start": 16275.48, + "end": 16279.68, + "probability": 0.9847 + }, + { + "start": 16280.46, + "end": 16283.52, + "probability": 0.8683 + }, + { + "start": 16284.2, + "end": 16286.1, + "probability": 0.9993 + }, + { + "start": 16286.64, + "end": 16289.74, + "probability": 0.9419 + }, + { + "start": 16289.74, + "end": 16291.8, + "probability": 0.9961 + }, + { + "start": 16292.34, + "end": 16293.74, + "probability": 0.5264 + }, + { + "start": 16293.8, + "end": 16294.28, + "probability": 0.9485 + }, + { + "start": 16295.0, + "end": 16296.14, + "probability": 0.995 + }, + { + "start": 16297.0, + "end": 16297.84, + "probability": 0.8298 + }, + { + "start": 16298.36, + "end": 16299.48, + "probability": 0.5021 + }, + { + "start": 16299.6, + "end": 16299.96, + "probability": 0.621 + }, + { + "start": 16300.06, + "end": 16303.08, + "probability": 0.959 + }, + { + "start": 16304.98, + "end": 16306.5, + "probability": 0.9709 + }, + { + "start": 16307.2, + "end": 16309.48, + "probability": 0.9963 + }, + { + "start": 16309.56, + "end": 16310.76, + "probability": 0.7563 + }, + { + "start": 16311.76, + "end": 16312.96, + "probability": 0.9821 + }, + { + "start": 16313.76, + "end": 16315.42, + "probability": 0.7432 + }, + { + "start": 16315.86, + "end": 16317.3, + "probability": 0.8867 + }, + { + "start": 16317.32, + "end": 16321.02, + "probability": 0.9814 + }, + { + "start": 16321.04, + "end": 16321.84, + "probability": 0.7841 + }, + { + "start": 16322.9, + "end": 16323.32, + "probability": 0.6139 + }, + { + "start": 16323.98, + "end": 16324.82, + "probability": 0.797 + }, + { + "start": 16325.56, + "end": 16329.34, + "probability": 0.9518 + }, + { + "start": 16329.98, + "end": 16331.02, + "probability": 0.9571 + }, + { + "start": 16331.12, + "end": 16333.42, + "probability": 0.8444 + }, + { + "start": 16334.2, + "end": 16334.56, + "probability": 0.0324 + }, + { + "start": 16334.56, + "end": 16334.72, + "probability": 0.4163 + }, + { + "start": 16334.72, + "end": 16337.62, + "probability": 0.8897 + }, + { + "start": 16338.7, + "end": 16339.14, + "probability": 0.7339 + }, + { + "start": 16340.52, + "end": 16341.62, + "probability": 0.9803 + }, + { + "start": 16342.2, + "end": 16342.32, + "probability": 0.4631 + }, + { + "start": 16342.32, + "end": 16345.52, + "probability": 0.8477 + }, + { + "start": 16347.1, + "end": 16348.74, + "probability": 0.9251 + }, + { + "start": 16350.1, + "end": 16351.96, + "probability": 0.747 + }, + { + "start": 16352.04, + "end": 16353.8, + "probability": 0.9686 + }, + { + "start": 16354.64, + "end": 16356.7, + "probability": 0.8566 + }, + { + "start": 16357.34, + "end": 16357.83, + "probability": 0.6425 + }, + { + "start": 16358.5, + "end": 16362.58, + "probability": 0.9301 + }, + { + "start": 16363.18, + "end": 16366.24, + "probability": 0.9874 + }, + { + "start": 16367.74, + "end": 16369.62, + "probability": 0.9806 + }, + { + "start": 16369.98, + "end": 16371.94, + "probability": 0.9772 + }, + { + "start": 16372.58, + "end": 16374.58, + "probability": 0.9797 + }, + { + "start": 16374.92, + "end": 16375.8, + "probability": 0.8867 + }, + { + "start": 16375.92, + "end": 16376.22, + "probability": 0.9313 + }, + { + "start": 16376.3, + "end": 16379.2, + "probability": 0.7076 + }, + { + "start": 16379.78, + "end": 16382.06, + "probability": 0.7761 + }, + { + "start": 16383.96, + "end": 16388.32, + "probability": 0.7407 + }, + { + "start": 16388.32, + "end": 16391.02, + "probability": 0.8625 + }, + { + "start": 16391.12, + "end": 16392.68, + "probability": 0.8772 + }, + { + "start": 16393.26, + "end": 16394.6, + "probability": 0.9943 + }, + { + "start": 16395.06, + "end": 16395.93, + "probability": 0.9956 + }, + { + "start": 16396.76, + "end": 16398.94, + "probability": 0.8366 + }, + { + "start": 16399.8, + "end": 16399.88, + "probability": 0.3372 + }, + { + "start": 16400.02, + "end": 16400.02, + "probability": 0.5036 + }, + { + "start": 16400.02, + "end": 16401.9, + "probability": 0.9109 + }, + { + "start": 16402.12, + "end": 16404.06, + "probability": 0.6509 + }, + { + "start": 16404.14, + "end": 16405.18, + "probability": 0.5166 + }, + { + "start": 16405.24, + "end": 16406.58, + "probability": 0.9438 + }, + { + "start": 16407.14, + "end": 16407.74, + "probability": 0.8551 + }, + { + "start": 16407.86, + "end": 16408.62, + "probability": 0.9602 + }, + { + "start": 16408.74, + "end": 16409.64, + "probability": 0.7413 + }, + { + "start": 16410.02, + "end": 16410.86, + "probability": 0.9461 + }, + { + "start": 16411.68, + "end": 16412.1, + "probability": 0.2734 + }, + { + "start": 16412.2, + "end": 16414.54, + "probability": 0.6746 + }, + { + "start": 16414.8, + "end": 16415.74, + "probability": 0.7419 + }, + { + "start": 16416.26, + "end": 16419.26, + "probability": 0.9755 + }, + { + "start": 16420.24, + "end": 16421.36, + "probability": 0.5879 + }, + { + "start": 16421.36, + "end": 16421.6, + "probability": 0.4885 + }, + { + "start": 16421.62, + "end": 16422.26, + "probability": 0.8987 + }, + { + "start": 16422.38, + "end": 16423.06, + "probability": 0.9493 + }, + { + "start": 16423.56, + "end": 16424.66, + "probability": 0.9926 + }, + { + "start": 16425.26, + "end": 16428.02, + "probability": 0.8826 + }, + { + "start": 16428.06, + "end": 16430.8, + "probability": 0.9922 + }, + { + "start": 16431.06, + "end": 16432.24, + "probability": 0.72 + }, + { + "start": 16432.62, + "end": 16432.62, + "probability": 0.016 + }, + { + "start": 16432.62, + "end": 16432.72, + "probability": 0.2893 + }, + { + "start": 16433.44, + "end": 16434.64, + "probability": 0.8261 + }, + { + "start": 16435.02, + "end": 16436.08, + "probability": 0.9834 + }, + { + "start": 16436.96, + "end": 16440.92, + "probability": 0.9507 + }, + { + "start": 16441.36, + "end": 16442.7, + "probability": 0.9112 + }, + { + "start": 16443.74, + "end": 16444.92, + "probability": 0.7551 + }, + { + "start": 16448.24, + "end": 16448.24, + "probability": 0.0787 + }, + { + "start": 16448.24, + "end": 16448.24, + "probability": 0.0511 + }, + { + "start": 16448.24, + "end": 16450.06, + "probability": 0.4311 + }, + { + "start": 16450.24, + "end": 16450.7, + "probability": 0.7331 + }, + { + "start": 16451.34, + "end": 16452.7, + "probability": 0.702 + }, + { + "start": 16452.74, + "end": 16453.66, + "probability": 0.9882 + }, + { + "start": 16454.18, + "end": 16454.4, + "probability": 0.2402 + }, + { + "start": 16454.5, + "end": 16454.98, + "probability": 0.4242 + }, + { + "start": 16456.24, + "end": 16458.68, + "probability": 0.9862 + }, + { + "start": 16459.65, + "end": 16462.6, + "probability": 0.5713 + }, + { + "start": 16462.66, + "end": 16465.74, + "probability": 0.8418 + }, + { + "start": 16465.86, + "end": 16467.44, + "probability": 0.9812 + }, + { + "start": 16468.42, + "end": 16470.08, + "probability": 0.7714 + }, + { + "start": 16470.36, + "end": 16471.44, + "probability": 0.7045 + }, + { + "start": 16471.64, + "end": 16473.02, + "probability": 0.5986 + }, + { + "start": 16473.18, + "end": 16474.64, + "probability": 0.9617 + }, + { + "start": 16474.64, + "end": 16477.1, + "probability": 0.9705 + }, + { + "start": 16477.66, + "end": 16479.3, + "probability": 0.6765 + }, + { + "start": 16479.54, + "end": 16481.32, + "probability": 0.1355 + }, + { + "start": 16481.32, + "end": 16488.4, + "probability": 0.9496 + }, + { + "start": 16489.0, + "end": 16491.5, + "probability": 0.9964 + }, + { + "start": 16492.64, + "end": 16492.74, + "probability": 0.7078 + }, + { + "start": 16492.84, + "end": 16493.56, + "probability": 0.9498 + }, + { + "start": 16493.62, + "end": 16496.08, + "probability": 0.9765 + }, + { + "start": 16496.54, + "end": 16501.9, + "probability": 0.9973 + }, + { + "start": 16502.44, + "end": 16505.98, + "probability": 0.4459 + }, + { + "start": 16506.58, + "end": 16507.96, + "probability": 0.7526 + }, + { + "start": 16508.5, + "end": 16509.3, + "probability": 0.8401 + }, + { + "start": 16509.38, + "end": 16509.84, + "probability": 0.4308 + }, + { + "start": 16510.22, + "end": 16513.18, + "probability": 0.9673 + }, + { + "start": 16513.18, + "end": 16516.94, + "probability": 0.988 + }, + { + "start": 16517.66, + "end": 16518.14, + "probability": 0.9165 + }, + { + "start": 16518.7, + "end": 16523.66, + "probability": 0.9785 + }, + { + "start": 16523.66, + "end": 16526.84, + "probability": 0.9907 + }, + { + "start": 16527.74, + "end": 16531.9, + "probability": 0.9888 + }, + { + "start": 16532.42, + "end": 16533.32, + "probability": 0.9915 + }, + { + "start": 16535.68, + "end": 16537.5, + "probability": 0.5103 + }, + { + "start": 16537.66, + "end": 16538.58, + "probability": 0.6459 + }, + { + "start": 16538.9, + "end": 16541.42, + "probability": 0.7826 + }, + { + "start": 16541.54, + "end": 16542.36, + "probability": 0.7839 + }, + { + "start": 16542.44, + "end": 16543.48, + "probability": 0.7666 + }, + { + "start": 16543.8, + "end": 16544.68, + "probability": 0.9631 + }, + { + "start": 16544.78, + "end": 16546.9, + "probability": 0.9705 + }, + { + "start": 16547.24, + "end": 16548.42, + "probability": 0.9162 + }, + { + "start": 16548.82, + "end": 16551.46, + "probability": 0.9553 + }, + { + "start": 16551.7, + "end": 16552.59, + "probability": 0.8044 + }, + { + "start": 16553.04, + "end": 16553.22, + "probability": 0.7743 + }, + { + "start": 16553.28, + "end": 16555.14, + "probability": 0.8021 + }, + { + "start": 16556.0, + "end": 16556.0, + "probability": 0.8374 + }, + { + "start": 16556.64, + "end": 16558.64, + "probability": 0.9778 + }, + { + "start": 16579.18, + "end": 16579.18, + "probability": 0.2244 + }, + { + "start": 16579.18, + "end": 16581.14, + "probability": 0.7175 + }, + { + "start": 16582.82, + "end": 16584.78, + "probability": 0.9921 + }, + { + "start": 16588.18, + "end": 16597.98, + "probability": 0.9698 + }, + { + "start": 16599.2, + "end": 16603.6, + "probability": 0.8499 + }, + { + "start": 16604.96, + "end": 16607.4, + "probability": 0.9736 + }, + { + "start": 16609.28, + "end": 16610.54, + "probability": 0.9453 + }, + { + "start": 16612.92, + "end": 16615.02, + "probability": 0.9569 + }, + { + "start": 16617.0, + "end": 16617.64, + "probability": 0.9402 + }, + { + "start": 16619.68, + "end": 16620.7, + "probability": 0.9868 + }, + { + "start": 16623.96, + "end": 16625.22, + "probability": 0.9431 + }, + { + "start": 16625.94, + "end": 16633.18, + "probability": 0.9974 + }, + { + "start": 16635.24, + "end": 16635.86, + "probability": 0.8627 + }, + { + "start": 16637.76, + "end": 16640.48, + "probability": 0.9967 + }, + { + "start": 16641.64, + "end": 16644.9, + "probability": 0.9909 + }, + { + "start": 16645.42, + "end": 16647.66, + "probability": 0.9946 + }, + { + "start": 16648.78, + "end": 16649.64, + "probability": 0.9402 + }, + { + "start": 16651.48, + "end": 16652.94, + "probability": 0.7616 + }, + { + "start": 16654.12, + "end": 16654.3, + "probability": 0.9714 + }, + { + "start": 16655.56, + "end": 16657.12, + "probability": 0.9868 + }, + { + "start": 16658.94, + "end": 16660.28, + "probability": 0.9607 + }, + { + "start": 16660.86, + "end": 16662.4, + "probability": 0.9765 + }, + { + "start": 16664.08, + "end": 16665.38, + "probability": 0.8607 + }, + { + "start": 16666.92, + "end": 16668.02, + "probability": 0.9907 + }, + { + "start": 16669.84, + "end": 16671.04, + "probability": 0.8066 + }, + { + "start": 16671.2, + "end": 16673.38, + "probability": 0.9486 + }, + { + "start": 16674.36, + "end": 16675.18, + "probability": 0.9747 + }, + { + "start": 16676.08, + "end": 16677.1, + "probability": 0.698 + }, + { + "start": 16678.02, + "end": 16679.04, + "probability": 0.9512 + }, + { + "start": 16679.12, + "end": 16682.8, + "probability": 0.7517 + }, + { + "start": 16683.78, + "end": 16685.4, + "probability": 0.8448 + }, + { + "start": 16685.4, + "end": 16686.49, + "probability": 0.8026 + }, + { + "start": 16687.18, + "end": 16688.8, + "probability": 0.9129 + }, + { + "start": 16689.46, + "end": 16692.1, + "probability": 0.9727 + }, + { + "start": 16694.7, + "end": 16697.2, + "probability": 0.9829 + }, + { + "start": 16699.59, + "end": 16701.76, + "probability": 0.2467 + }, + { + "start": 16702.24, + "end": 16704.4, + "probability": 0.9635 + }, + { + "start": 16705.06, + "end": 16707.4, + "probability": 0.9959 + }, + { + "start": 16707.4, + "end": 16710.86, + "probability": 0.9828 + }, + { + "start": 16712.98, + "end": 16714.42, + "probability": 0.7875 + }, + { + "start": 16715.94, + "end": 16720.16, + "probability": 0.9904 + }, + { + "start": 16721.0, + "end": 16724.72, + "probability": 0.9918 + }, + { + "start": 16725.6, + "end": 16727.5, + "probability": 0.9974 + }, + { + "start": 16728.9, + "end": 16729.2, + "probability": 0.5828 + }, + { + "start": 16730.38, + "end": 16731.68, + "probability": 0.9561 + }, + { + "start": 16732.56, + "end": 16733.9, + "probability": 0.9681 + }, + { + "start": 16734.98, + "end": 16736.06, + "probability": 0.9984 + }, + { + "start": 16736.88, + "end": 16739.14, + "probability": 0.999 + }, + { + "start": 16740.44, + "end": 16741.3, + "probability": 0.8199 + }, + { + "start": 16742.46, + "end": 16742.8, + "probability": 0.9795 + }, + { + "start": 16743.92, + "end": 16745.78, + "probability": 0.9817 + }, + { + "start": 16746.26, + "end": 16747.9, + "probability": 0.7591 + }, + { + "start": 16748.38, + "end": 16748.82, + "probability": 0.7732 + }, + { + "start": 16749.98, + "end": 16751.04, + "probability": 0.6796 + }, + { + "start": 16751.14, + "end": 16752.9, + "probability": 0.5409 + }, + { + "start": 16753.06, + "end": 16753.62, + "probability": 0.0587 + }, + { + "start": 16753.62, + "end": 16754.2, + "probability": 0.3071 + }, + { + "start": 16754.46, + "end": 16755.26, + "probability": 0.244 + }, + { + "start": 16756.42, + "end": 16758.18, + "probability": 0.7949 + }, + { + "start": 16758.86, + "end": 16761.34, + "probability": 0.869 + }, + { + "start": 16762.58, + "end": 16764.54, + "probability": 0.9824 + }, + { + "start": 16764.6, + "end": 16764.82, + "probability": 0.829 + }, + { + "start": 16765.52, + "end": 16771.08, + "probability": 0.9932 + }, + { + "start": 16771.96, + "end": 16774.44, + "probability": 0.9962 + }, + { + "start": 16775.0, + "end": 16779.68, + "probability": 0.9217 + }, + { + "start": 16781.24, + "end": 16781.7, + "probability": 0.605 + }, + { + "start": 16781.76, + "end": 16782.88, + "probability": 0.6786 + }, + { + "start": 16784.08, + "end": 16787.08, + "probability": 0.9123 + }, + { + "start": 16787.52, + "end": 16788.3, + "probability": 0.5232 + }, + { + "start": 16788.5, + "end": 16789.98, + "probability": 0.6916 + }, + { + "start": 16790.97, + "end": 16792.65, + "probability": 0.8705 + }, + { + "start": 16793.58, + "end": 16796.14, + "probability": 0.9835 + }, + { + "start": 16796.8, + "end": 16800.04, + "probability": 0.9844 + }, + { + "start": 16801.08, + "end": 16804.8, + "probability": 0.9805 + }, + { + "start": 16805.78, + "end": 16808.69, + "probability": 0.8528 + }, + { + "start": 16809.96, + "end": 16811.44, + "probability": 0.9882 + }, + { + "start": 16811.58, + "end": 16815.1, + "probability": 0.989 + }, + { + "start": 16815.1, + "end": 16821.06, + "probability": 0.9939 + }, + { + "start": 16821.5, + "end": 16821.7, + "probability": 0.6296 + }, + { + "start": 16822.3, + "end": 16823.12, + "probability": 0.3902 + }, + { + "start": 16823.68, + "end": 16825.7, + "probability": 0.578 + }, + { + "start": 16825.96, + "end": 16826.48, + "probability": 0.7563 + }, + { + "start": 16827.06, + "end": 16829.08, + "probability": 0.9973 + }, + { + "start": 16830.3, + "end": 16835.34, + "probability": 0.97 + }, + { + "start": 16835.34, + "end": 16838.34, + "probability": 0.9282 + }, + { + "start": 16838.86, + "end": 16839.98, + "probability": 0.0307 + }, + { + "start": 16841.82, + "end": 16842.46, + "probability": 0.0356 + }, + { + "start": 16842.66, + "end": 16843.12, + "probability": 0.2683 + }, + { + "start": 16843.22, + "end": 16846.72, + "probability": 0.6968 + }, + { + "start": 16846.88, + "end": 16847.54, + "probability": 0.4428 + }, + { + "start": 16847.58, + "end": 16848.52, + "probability": 0.9622 + }, + { + "start": 16848.78, + "end": 16852.84, + "probability": 0.7151 + }, + { + "start": 16853.62, + "end": 16854.3, + "probability": 0.811 + }, + { + "start": 16854.5, + "end": 16855.58, + "probability": 0.9128 + }, + { + "start": 16855.78, + "end": 16858.74, + "probability": 0.9655 + }, + { + "start": 16859.84, + "end": 16863.18, + "probability": 0.998 + }, + { + "start": 16863.34, + "end": 16864.5, + "probability": 0.5633 + }, + { + "start": 16866.38, + "end": 16871.12, + "probability": 0.9595 + }, + { + "start": 16871.26, + "end": 16872.1, + "probability": 0.3661 + }, + { + "start": 16872.22, + "end": 16875.68, + "probability": 0.9992 + }, + { + "start": 16876.74, + "end": 16879.82, + "probability": 0.9949 + }, + { + "start": 16880.04, + "end": 16881.46, + "probability": 0.8765 + }, + { + "start": 16881.94, + "end": 16882.46, + "probability": 0.5483 + }, + { + "start": 16882.92, + "end": 16885.5, + "probability": 0.848 + }, + { + "start": 16885.58, + "end": 16889.86, + "probability": 0.9861 + }, + { + "start": 16890.26, + "end": 16891.78, + "probability": 0.748 + }, + { + "start": 16893.18, + "end": 16894.0, + "probability": 0.888 + }, + { + "start": 16894.06, + "end": 16894.82, + "probability": 0.964 + }, + { + "start": 16895.0, + "end": 16895.5, + "probability": 0.765 + }, + { + "start": 16896.12, + "end": 16897.9, + "probability": 0.9946 + }, + { + "start": 16898.7, + "end": 16899.52, + "probability": 0.8602 + }, + { + "start": 16900.4, + "end": 16901.84, + "probability": 0.7736 + }, + { + "start": 16903.32, + "end": 16904.48, + "probability": 0.7958 + }, + { + "start": 16905.26, + "end": 16907.42, + "probability": 0.9985 + }, + { + "start": 16908.04, + "end": 16910.42, + "probability": 0.9979 + }, + { + "start": 16912.24, + "end": 16915.18, + "probability": 0.7832 + }, + { + "start": 16917.16, + "end": 16919.18, + "probability": 0.9961 + }, + { + "start": 16919.84, + "end": 16920.88, + "probability": 0.9744 + }, + { + "start": 16922.0, + "end": 16922.76, + "probability": 0.9877 + }, + { + "start": 16923.66, + "end": 16928.06, + "probability": 0.9965 + }, + { + "start": 16928.52, + "end": 16929.7, + "probability": 0.9956 + }, + { + "start": 16930.86, + "end": 16934.04, + "probability": 0.9585 + }, + { + "start": 16935.5, + "end": 16936.54, + "probability": 0.9558 + }, + { + "start": 16938.54, + "end": 16939.08, + "probability": 0.6763 + }, + { + "start": 16940.14, + "end": 16941.36, + "probability": 0.3997 + }, + { + "start": 16944.92, + "end": 16947.84, + "probability": 0.9976 + }, + { + "start": 16949.9, + "end": 16952.86, + "probability": 0.8792 + }, + { + "start": 16953.68, + "end": 16955.6, + "probability": 0.992 + }, + { + "start": 16956.62, + "end": 16959.52, + "probability": 0.9852 + }, + { + "start": 16959.52, + "end": 16962.34, + "probability": 0.9802 + }, + { + "start": 16963.84, + "end": 16969.5, + "probability": 0.9975 + }, + { + "start": 16970.38, + "end": 16971.9, + "probability": 0.8774 + }, + { + "start": 16972.48, + "end": 16975.04, + "probability": 0.9509 + }, + { + "start": 16975.58, + "end": 16977.78, + "probability": 0.9937 + }, + { + "start": 16979.3, + "end": 16982.34, + "probability": 0.8136 + }, + { + "start": 16983.04, + "end": 16985.38, + "probability": 0.868 + }, + { + "start": 16986.48, + "end": 16987.5, + "probability": 0.8493 + }, + { + "start": 16987.8, + "end": 16992.06, + "probability": 0.9779 + }, + { + "start": 16993.14, + "end": 16994.76, + "probability": 0.9386 + }, + { + "start": 16995.7, + "end": 16998.52, + "probability": 0.9895 + }, + { + "start": 16998.98, + "end": 17002.36, + "probability": 0.9525 + }, + { + "start": 17004.88, + "end": 17005.62, + "probability": 0.8604 + }, + { + "start": 17007.42, + "end": 17008.88, + "probability": 0.9461 + }, + { + "start": 17011.2, + "end": 17012.26, + "probability": 0.8496 + }, + { + "start": 17013.88, + "end": 17016.25, + "probability": 0.9745 + }, + { + "start": 17016.86, + "end": 17017.58, + "probability": 0.7608 + }, + { + "start": 17017.7, + "end": 17020.68, + "probability": 0.9249 + }, + { + "start": 17024.12, + "end": 17026.6, + "probability": 0.9818 + }, + { + "start": 17027.4, + "end": 17029.32, + "probability": 0.952 + }, + { + "start": 17030.52, + "end": 17033.86, + "probability": 0.9489 + }, + { + "start": 17036.3, + "end": 17036.52, + "probability": 0.597 + }, + { + "start": 17036.58, + "end": 17037.56, + "probability": 0.8079 + }, + { + "start": 17037.88, + "end": 17041.16, + "probability": 0.9151 + }, + { + "start": 17044.24, + "end": 17047.2, + "probability": 0.6986 + }, + { + "start": 17047.98, + "end": 17051.1, + "probability": 0.9834 + }, + { + "start": 17051.78, + "end": 17053.16, + "probability": 0.952 + }, + { + "start": 17054.38, + "end": 17057.06, + "probability": 0.9807 + }, + { + "start": 17059.2, + "end": 17062.22, + "probability": 0.9946 + }, + { + "start": 17063.02, + "end": 17066.54, + "probability": 0.9795 + }, + { + "start": 17067.48, + "end": 17069.32, + "probability": 0.995 + }, + { + "start": 17071.14, + "end": 17075.54, + "probability": 0.9937 + }, + { + "start": 17075.54, + "end": 17080.48, + "probability": 0.9983 + }, + { + "start": 17081.76, + "end": 17084.42, + "probability": 0.9509 + }, + { + "start": 17084.9, + "end": 17087.1, + "probability": 0.0041 + }, + { + "start": 17114.18, + "end": 17117.26, + "probability": 0.994 + }, + { + "start": 17118.32, + "end": 17120.93, + "probability": 0.9307 + }, + { + "start": 17122.06, + "end": 17124.82, + "probability": 0.9897 + }, + { + "start": 17126.68, + "end": 17130.1, + "probability": 0.9951 + }, + { + "start": 17131.06, + "end": 17134.28, + "probability": 0.9945 + }, + { + "start": 17135.54, + "end": 17136.42, + "probability": 0.8786 + }, + { + "start": 17138.72, + "end": 17142.6, + "probability": 0.9287 + }, + { + "start": 17144.0, + "end": 17145.94, + "probability": 0.9874 + }, + { + "start": 17147.26, + "end": 17149.84, + "probability": 0.9953 + }, + { + "start": 17151.16, + "end": 17154.3, + "probability": 0.9844 + }, + { + "start": 17155.54, + "end": 17158.52, + "probability": 0.9942 + }, + { + "start": 17161.16, + "end": 17163.26, + "probability": 0.8317 + }, + { + "start": 17164.68, + "end": 17167.47, + "probability": 0.9937 + }, + { + "start": 17168.56, + "end": 17169.76, + "probability": 0.967 + }, + { + "start": 17170.58, + "end": 17171.74, + "probability": 0.9518 + }, + { + "start": 17173.16, + "end": 17174.92, + "probability": 0.9776 + }, + { + "start": 17175.86, + "end": 17176.98, + "probability": 0.9916 + }, + { + "start": 17178.54, + "end": 17180.02, + "probability": 0.9556 + }, + { + "start": 17181.54, + "end": 17183.1, + "probability": 0.9894 + }, + { + "start": 17184.38, + "end": 17191.02, + "probability": 0.9631 + }, + { + "start": 17191.64, + "end": 17193.9, + "probability": 0.9957 + }, + { + "start": 17194.84, + "end": 17195.92, + "probability": 0.9966 + }, + { + "start": 17197.48, + "end": 17199.74, + "probability": 0.9902 + }, + { + "start": 17200.46, + "end": 17201.86, + "probability": 0.9974 + }, + { + "start": 17202.64, + "end": 17204.67, + "probability": 0.917 + }, + { + "start": 17204.7, + "end": 17207.9, + "probability": 0.9978 + }, + { + "start": 17209.74, + "end": 17211.3, + "probability": 0.8497 + }, + { + "start": 17212.34, + "end": 17218.14, + "probability": 0.894 + }, + { + "start": 17218.18, + "end": 17222.38, + "probability": 0.9444 + }, + { + "start": 17222.98, + "end": 17223.46, + "probability": 0.6811 + }, + { + "start": 17224.36, + "end": 17225.62, + "probability": 0.9612 + }, + { + "start": 17225.98, + "end": 17226.96, + "probability": 0.7411 + }, + { + "start": 17227.2, + "end": 17227.68, + "probability": 0.7781 + }, + { + "start": 17228.48, + "end": 17229.26, + "probability": 0.6382 + }, + { + "start": 17233.31, + "end": 17234.04, + "probability": 0.9332 + }, + { + "start": 17234.68, + "end": 17238.9, + "probability": 0.7734 + }, + { + "start": 17240.14, + "end": 17241.92, + "probability": 0.8307 + }, + { + "start": 17244.58, + "end": 17245.78, + "probability": 0.8853 + }, + { + "start": 17245.88, + "end": 17247.52, + "probability": 0.9753 + }, + { + "start": 17249.52, + "end": 17251.0, + "probability": 0.5219 + }, + { + "start": 17251.2, + "end": 17253.2, + "probability": 0.9491 + }, + { + "start": 17254.32, + "end": 17255.5, + "probability": 0.8863 + }, + { + "start": 17258.64, + "end": 17262.82, + "probability": 0.9582 + }, + { + "start": 17263.44, + "end": 17267.68, + "probability": 0.9423 + }, + { + "start": 17268.56, + "end": 17273.3, + "probability": 0.9152 + }, + { + "start": 17273.3, + "end": 17277.1, + "probability": 0.9968 + }, + { + "start": 17277.22, + "end": 17280.66, + "probability": 0.918 + }, + { + "start": 17281.28, + "end": 17287.02, + "probability": 0.9832 + }, + { + "start": 17287.74, + "end": 17290.12, + "probability": 0.9215 + }, + { + "start": 17290.98, + "end": 17299.4, + "probability": 0.9764 + }, + { + "start": 17300.6, + "end": 17304.1, + "probability": 0.9746 + }, + { + "start": 17306.42, + "end": 17306.82, + "probability": 0.8353 + }, + { + "start": 17308.48, + "end": 17308.98, + "probability": 0.6686 + }, + { + "start": 17310.62, + "end": 17315.4, + "probability": 0.9432 + }, + { + "start": 17320.74, + "end": 17323.7, + "probability": 0.2817 + }, + { + "start": 17324.16, + "end": 17325.48, + "probability": 0.5654 + }, + { + "start": 17327.04, + "end": 17329.7, + "probability": 0.4061 + }, + { + "start": 17330.5, + "end": 17331.02, + "probability": 0.6754 + }, + { + "start": 17331.34, + "end": 17332.04, + "probability": 0.6679 + }, + { + "start": 17332.12, + "end": 17332.84, + "probability": 0.8072 + }, + { + "start": 17333.24, + "end": 17333.82, + "probability": 0.9066 + }, + { + "start": 17335.4, + "end": 17337.66, + "probability": 0.0851 + }, + { + "start": 17340.32, + "end": 17341.88, + "probability": 0.3215 + }, + { + "start": 17343.06, + "end": 17345.22, + "probability": 0.0468 + }, + { + "start": 17345.22, + "end": 17345.22, + "probability": 0.1646 + }, + { + "start": 17345.22, + "end": 17345.5, + "probability": 0.7257 + }, + { + "start": 17345.5, + "end": 17348.54, + "probability": 0.4497 + }, + { + "start": 17349.32, + "end": 17350.62, + "probability": 0.8538 + }, + { + "start": 17351.78, + "end": 17352.86, + "probability": 0.658 + }, + { + "start": 17353.72, + "end": 17358.02, + "probability": 0.9872 + }, + { + "start": 17363.48, + "end": 17364.28, + "probability": 0.0906 + }, + { + "start": 17368.47, + "end": 17370.84, + "probability": 0.1428 + }, + { + "start": 17374.16, + "end": 17374.26, + "probability": 0.186 + }, + { + "start": 17374.78, + "end": 17375.76, + "probability": 0.0016 + }, + { + "start": 17378.0, + "end": 17378.04, + "probability": 0.0005 + }, + { + "start": 17381.84, + "end": 17385.62, + "probability": 0.0612 + }, + { + "start": 17386.48, + "end": 17386.62, + "probability": 0.1267 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17578.34, + "end": 17578.34, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17965.0, + "end": 17965.0, + "probability": 0.0 + }, + { + "start": 17993.0, + "end": 17993.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18018.0, + "end": 18018.0, + "probability": 0.0 + }, + { + "start": 18043.0, + "end": 18043.0, + "probability": 0.0 + }, + { + "start": 18043.0, + "end": 18043.0, + "probability": 0.0 + }, + { + "start": 18043.0, + "end": 18043.0, + "probability": 0.0 + }, + { + "start": 18043.0, + "end": 18043.0, + "probability": 0.0 + }, + { + "start": 18043.0, + "end": 18043.0, + "probability": 0.0 + }, + { + "start": 18043.0, + "end": 18043.0, + "probability": 0.0 + }, + { + "start": 18043.0, + "end": 18043.0, + "probability": 0.0 + }, + { + "start": 18070.0, + "end": 18070.0, + "probability": 0.0 + }, + { + "start": 18070.0, + "end": 18070.0, + "probability": 0.0 + }, + { + "start": 18070.0, + "end": 18070.0, + "probability": 0.0 + }, + { + "start": 18070.0, + "end": 18070.0, + "probability": 0.0 + }, + { + "start": 18070.0, + "end": 18070.0, + "probability": 0.0 + }, + { + "start": 18070.0, + "end": 18070.0, + "probability": 0.0 + } + ], + "segments_count": 5761, + "words_count": 29234, + "avg_words_per_segment": 5.0745, + "avg_segment_duration": 2.072, + "avg_words_per_minute": 99.7842, + "plenum_id": "2588", + "duration": 17578.34, + "title": null, + "plenum_date": "2009-06-17" +} \ No newline at end of file