diff --git "a/40897/metadata.json" "b/40897/metadata.json" new file mode 100644--- /dev/null +++ "b/40897/metadata.json" @@ -0,0 +1,42397 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "40897", + "quality_score": 0.8957, + "per_segment_quality_scores": [ + { + "start": 56.74, + "end": 62.2, + "probability": 0.0188 + }, + { + "start": 62.2, + "end": 63.99, + "probability": 0.0081 + }, + { + "start": 70.22, + "end": 70.9, + "probability": 0.1393 + }, + { + "start": 71.46, + "end": 71.94, + "probability": 0.2145 + }, + { + "start": 72.9, + "end": 75.86, + "probability": 0.0976 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.24, + "end": 121.24, + "probability": 0.0566 + }, + { + "start": 121.24, + "end": 124.12, + "probability": 0.9851 + }, + { + "start": 141.68, + "end": 142.5, + "probability": 0.7623 + }, + { + "start": 143.08, + "end": 144.94, + "probability": 0.9951 + }, + { + "start": 145.04, + "end": 146.02, + "probability": 0.8695 + }, + { + "start": 146.5, + "end": 147.38, + "probability": 0.6739 + }, + { + "start": 147.48, + "end": 149.74, + "probability": 0.9315 + }, + { + "start": 151.2, + "end": 151.5, + "probability": 0.0121 + }, + { + "start": 151.5, + "end": 156.5, + "probability": 0.7761 + }, + { + "start": 161.64, + "end": 165.86, + "probability": 0.8738 + }, + { + "start": 166.78, + "end": 169.72, + "probability": 0.5857 + }, + { + "start": 169.72, + "end": 174.44, + "probability": 0.9845 + }, + { + "start": 174.44, + "end": 175.54, + "probability": 0.2761 + }, + { + "start": 176.08, + "end": 180.74, + "probability": 0.9517 + }, + { + "start": 180.86, + "end": 182.9, + "probability": 0.2835 + }, + { + "start": 183.4, + "end": 184.96, + "probability": 0.8268 + }, + { + "start": 185.24, + "end": 186.76, + "probability": 0.8263 + }, + { + "start": 186.96, + "end": 191.07, + "probability": 0.8914 + }, + { + "start": 191.18, + "end": 191.8, + "probability": 0.6903 + }, + { + "start": 193.9, + "end": 197.16, + "probability": 0.9973 + }, + { + "start": 198.48, + "end": 198.96, + "probability": 0.861 + }, + { + "start": 199.1, + "end": 203.76, + "probability": 0.9857 + }, + { + "start": 203.76, + "end": 208.42, + "probability": 0.9851 + }, + { + "start": 209.02, + "end": 211.18, + "probability": 0.7383 + }, + { + "start": 212.74, + "end": 215.5, + "probability": 0.8025 + }, + { + "start": 215.72, + "end": 216.72, + "probability": 0.8453 + }, + { + "start": 217.44, + "end": 220.82, + "probability": 0.9575 + }, + { + "start": 220.82, + "end": 223.96, + "probability": 0.7078 + }, + { + "start": 224.58, + "end": 227.66, + "probability": 0.9952 + }, + { + "start": 228.36, + "end": 231.32, + "probability": 0.8325 + }, + { + "start": 231.38, + "end": 231.74, + "probability": 0.7103 + }, + { + "start": 244.6, + "end": 247.26, + "probability": 0.4155 + }, + { + "start": 247.26, + "end": 248.3, + "probability": 0.7163 + }, + { + "start": 249.69, + "end": 251.53, + "probability": 0.9473 + }, + { + "start": 252.42, + "end": 253.6, + "probability": 0.3554 + }, + { + "start": 254.22, + "end": 255.5, + "probability": 0.9714 + }, + { + "start": 256.56, + "end": 257.22, + "probability": 0.7584 + }, + { + "start": 259.9, + "end": 264.62, + "probability": 0.9624 + }, + { + "start": 264.62, + "end": 270.36, + "probability": 0.9461 + }, + { + "start": 272.76, + "end": 274.64, + "probability": 0.9785 + }, + { + "start": 276.98, + "end": 285.54, + "probability": 0.9811 + }, + { + "start": 288.36, + "end": 292.02, + "probability": 0.999 + }, + { + "start": 293.94, + "end": 295.06, + "probability": 0.9971 + }, + { + "start": 297.04, + "end": 298.0, + "probability": 0.9453 + }, + { + "start": 300.02, + "end": 301.78, + "probability": 0.9951 + }, + { + "start": 303.54, + "end": 307.6, + "probability": 0.9962 + }, + { + "start": 310.22, + "end": 311.58, + "probability": 0.8045 + }, + { + "start": 312.12, + "end": 313.52, + "probability": 0.962 + }, + { + "start": 314.84, + "end": 317.22, + "probability": 0.9297 + }, + { + "start": 317.84, + "end": 320.22, + "probability": 0.9927 + }, + { + "start": 322.46, + "end": 323.74, + "probability": 0.9302 + }, + { + "start": 325.9, + "end": 326.68, + "probability": 0.3267 + }, + { + "start": 327.82, + "end": 332.04, + "probability": 0.8084 + }, + { + "start": 333.62, + "end": 335.8, + "probability": 0.9167 + }, + { + "start": 337.3, + "end": 341.26, + "probability": 0.8772 + }, + { + "start": 342.98, + "end": 344.4, + "probability": 0.8592 + }, + { + "start": 345.38, + "end": 346.36, + "probability": 0.6214 + }, + { + "start": 348.22, + "end": 349.28, + "probability": 0.8946 + }, + { + "start": 349.84, + "end": 351.76, + "probability": 0.9303 + }, + { + "start": 352.88, + "end": 353.78, + "probability": 0.9885 + }, + { + "start": 354.86, + "end": 356.08, + "probability": 0.9897 + }, + { + "start": 356.9, + "end": 359.06, + "probability": 0.9879 + }, + { + "start": 361.08, + "end": 362.28, + "probability": 0.9733 + }, + { + "start": 364.06, + "end": 366.06, + "probability": 0.902 + }, + { + "start": 367.42, + "end": 371.6, + "probability": 0.8097 + }, + { + "start": 372.22, + "end": 376.62, + "probability": 0.839 + }, + { + "start": 376.62, + "end": 378.42, + "probability": 0.9922 + }, + { + "start": 379.1, + "end": 381.04, + "probability": 0.6262 + }, + { + "start": 384.08, + "end": 386.88, + "probability": 0.9956 + }, + { + "start": 387.18, + "end": 391.88, + "probability": 0.9875 + }, + { + "start": 392.4, + "end": 394.02, + "probability": 0.9678 + }, + { + "start": 395.38, + "end": 397.14, + "probability": 0.9982 + }, + { + "start": 398.62, + "end": 399.44, + "probability": 0.9868 + }, + { + "start": 401.26, + "end": 404.94, + "probability": 0.9853 + }, + { + "start": 405.18, + "end": 406.4, + "probability": 0.8304 + }, + { + "start": 407.66, + "end": 409.98, + "probability": 0.9974 + }, + { + "start": 410.1, + "end": 410.98, + "probability": 0.5974 + }, + { + "start": 411.32, + "end": 413.24, + "probability": 0.992 + }, + { + "start": 414.6, + "end": 420.38, + "probability": 0.9949 + }, + { + "start": 420.9, + "end": 424.62, + "probability": 0.9359 + }, + { + "start": 424.62, + "end": 427.7, + "probability": 0.9983 + }, + { + "start": 428.8, + "end": 431.14, + "probability": 0.9999 + }, + { + "start": 432.2, + "end": 435.6, + "probability": 0.9939 + }, + { + "start": 435.78, + "end": 436.76, + "probability": 0.9263 + }, + { + "start": 438.56, + "end": 439.54, + "probability": 0.9832 + }, + { + "start": 439.69, + "end": 440.75, + "probability": 0.863 + }, + { + "start": 442.56, + "end": 445.8, + "probability": 0.975 + }, + { + "start": 448.84, + "end": 449.64, + "probability": 0.5125 + }, + { + "start": 451.22, + "end": 453.54, + "probability": 0.8796 + }, + { + "start": 453.6, + "end": 455.06, + "probability": 0.9632 + }, + { + "start": 455.1, + "end": 456.06, + "probability": 0.9561 + }, + { + "start": 456.32, + "end": 457.56, + "probability": 0.364 + }, + { + "start": 458.34, + "end": 462.16, + "probability": 0.7799 + }, + { + "start": 463.2, + "end": 468.73, + "probability": 0.8261 + }, + { + "start": 469.84, + "end": 471.32, + "probability": 0.8457 + }, + { + "start": 471.62, + "end": 475.58, + "probability": 0.9646 + }, + { + "start": 476.4, + "end": 482.34, + "probability": 0.8639 + }, + { + "start": 482.98, + "end": 486.74, + "probability": 0.8236 + }, + { + "start": 487.52, + "end": 490.9, + "probability": 0.9468 + }, + { + "start": 492.12, + "end": 496.12, + "probability": 0.8113 + }, + { + "start": 496.52, + "end": 497.86, + "probability": 0.9622 + }, + { + "start": 498.74, + "end": 501.54, + "probability": 0.9932 + }, + { + "start": 501.68, + "end": 502.94, + "probability": 0.9971 + }, + { + "start": 503.84, + "end": 505.46, + "probability": 0.936 + }, + { + "start": 506.38, + "end": 507.9, + "probability": 0.9951 + }, + { + "start": 508.9, + "end": 512.22, + "probability": 0.999 + }, + { + "start": 513.62, + "end": 516.3, + "probability": 0.9157 + }, + { + "start": 516.86, + "end": 517.3, + "probability": 0.8419 + }, + { + "start": 517.88, + "end": 519.5, + "probability": 0.919 + }, + { + "start": 520.36, + "end": 522.72, + "probability": 0.819 + }, + { + "start": 523.32, + "end": 524.35, + "probability": 0.3371 + }, + { + "start": 525.48, + "end": 529.52, + "probability": 0.9158 + }, + { + "start": 530.24, + "end": 531.32, + "probability": 0.9103 + }, + { + "start": 532.28, + "end": 533.6, + "probability": 0.8993 + }, + { + "start": 535.08, + "end": 538.92, + "probability": 0.9888 + }, + { + "start": 538.92, + "end": 542.32, + "probability": 0.7857 + }, + { + "start": 542.56, + "end": 543.44, + "probability": 0.472 + }, + { + "start": 544.4, + "end": 547.62, + "probability": 0.9843 + }, + { + "start": 547.62, + "end": 552.64, + "probability": 0.9919 + }, + { + "start": 553.54, + "end": 555.44, + "probability": 0.9535 + }, + { + "start": 556.3, + "end": 561.96, + "probability": 0.9982 + }, + { + "start": 563.54, + "end": 566.16, + "probability": 0.7816 + }, + { + "start": 566.48, + "end": 567.34, + "probability": 0.8529 + }, + { + "start": 568.23, + "end": 572.42, + "probability": 0.7916 + }, + { + "start": 573.16, + "end": 573.96, + "probability": 0.8089 + }, + { + "start": 574.84, + "end": 575.86, + "probability": 0.7813 + }, + { + "start": 577.16, + "end": 577.66, + "probability": 0.9315 + }, + { + "start": 577.72, + "end": 577.9, + "probability": 0.6774 + }, + { + "start": 578.0, + "end": 578.92, + "probability": 0.8997 + }, + { + "start": 579.32, + "end": 580.82, + "probability": 0.8358 + }, + { + "start": 581.98, + "end": 584.34, + "probability": 0.9889 + }, + { + "start": 585.3, + "end": 586.64, + "probability": 0.6331 + }, + { + "start": 587.48, + "end": 588.92, + "probability": 0.9939 + }, + { + "start": 589.58, + "end": 591.84, + "probability": 0.9216 + }, + { + "start": 593.0, + "end": 596.96, + "probability": 0.9077 + }, + { + "start": 597.52, + "end": 598.22, + "probability": 0.7747 + }, + { + "start": 599.06, + "end": 599.98, + "probability": 0.7185 + }, + { + "start": 601.0, + "end": 601.78, + "probability": 0.8202 + }, + { + "start": 602.42, + "end": 603.66, + "probability": 0.7337 + }, + { + "start": 603.84, + "end": 607.8, + "probability": 0.9857 + }, + { + "start": 608.1, + "end": 608.82, + "probability": 0.9668 + }, + { + "start": 609.9, + "end": 610.96, + "probability": 0.9791 + }, + { + "start": 611.82, + "end": 612.81, + "probability": 0.9524 + }, + { + "start": 614.24, + "end": 614.86, + "probability": 0.3617 + }, + { + "start": 615.78, + "end": 618.76, + "probability": 0.8881 + }, + { + "start": 619.22, + "end": 619.83, + "probability": 0.9268 + }, + { + "start": 620.18, + "end": 620.62, + "probability": 0.9 + }, + { + "start": 620.66, + "end": 623.08, + "probability": 0.6902 + }, + { + "start": 623.84, + "end": 627.22, + "probability": 0.9934 + }, + { + "start": 627.86, + "end": 631.4, + "probability": 0.9229 + }, + { + "start": 631.44, + "end": 634.82, + "probability": 0.9178 + }, + { + "start": 635.2, + "end": 638.84, + "probability": 0.9382 + }, + { + "start": 639.02, + "end": 639.84, + "probability": 0.8631 + }, + { + "start": 640.24, + "end": 641.64, + "probability": 0.7656 + }, + { + "start": 642.62, + "end": 643.26, + "probability": 0.4695 + }, + { + "start": 644.12, + "end": 646.14, + "probability": 0.9401 + }, + { + "start": 646.46, + "end": 647.2, + "probability": 0.981 + }, + { + "start": 648.46, + "end": 649.34, + "probability": 0.961 + }, + { + "start": 650.02, + "end": 650.48, + "probability": 0.9523 + }, + { + "start": 650.58, + "end": 651.31, + "probability": 0.9683 + }, + { + "start": 651.72, + "end": 653.12, + "probability": 0.9734 + }, + { + "start": 653.42, + "end": 654.18, + "probability": 0.9457 + }, + { + "start": 655.32, + "end": 658.04, + "probability": 0.9048 + }, + { + "start": 658.22, + "end": 659.42, + "probability": 0.9573 + }, + { + "start": 660.48, + "end": 666.04, + "probability": 0.9946 + }, + { + "start": 666.6, + "end": 670.18, + "probability": 0.7278 + }, + { + "start": 670.98, + "end": 673.2, + "probability": 0.7374 + }, + { + "start": 673.32, + "end": 673.94, + "probability": 0.9816 + }, + { + "start": 675.08, + "end": 676.64, + "probability": 0.9888 + }, + { + "start": 677.7, + "end": 679.1, + "probability": 0.5163 + }, + { + "start": 679.16, + "end": 681.66, + "probability": 0.957 + }, + { + "start": 682.96, + "end": 684.54, + "probability": 0.8672 + }, + { + "start": 685.66, + "end": 687.59, + "probability": 0.9781 + }, + { + "start": 688.26, + "end": 690.08, + "probability": 0.9824 + }, + { + "start": 691.36, + "end": 693.58, + "probability": 0.9487 + }, + { + "start": 694.54, + "end": 695.92, + "probability": 0.8652 + }, + { + "start": 696.4, + "end": 697.62, + "probability": 0.823 + }, + { + "start": 697.8, + "end": 698.56, + "probability": 0.7177 + }, + { + "start": 698.62, + "end": 698.94, + "probability": 0.9308 + }, + { + "start": 700.16, + "end": 701.8, + "probability": 0.8436 + }, + { + "start": 702.88, + "end": 703.84, + "probability": 0.7519 + }, + { + "start": 704.7, + "end": 704.86, + "probability": 0.8896 + }, + { + "start": 705.64, + "end": 708.4, + "probability": 0.9587 + }, + { + "start": 709.0, + "end": 712.08, + "probability": 0.8513 + }, + { + "start": 712.72, + "end": 714.28, + "probability": 0.7398 + }, + { + "start": 714.98, + "end": 716.7, + "probability": 0.6077 + }, + { + "start": 717.44, + "end": 717.9, + "probability": 0.4569 + }, + { + "start": 717.9, + "end": 719.16, + "probability": 0.9911 + }, + { + "start": 720.14, + "end": 722.88, + "probability": 0.9155 + }, + { + "start": 723.98, + "end": 724.98, + "probability": 0.6025 + }, + { + "start": 725.58, + "end": 727.16, + "probability": 0.9119 + }, + { + "start": 727.28, + "end": 729.14, + "probability": 0.9218 + }, + { + "start": 729.92, + "end": 730.64, + "probability": 0.9287 + }, + { + "start": 730.86, + "end": 734.72, + "probability": 0.8044 + }, + { + "start": 734.8, + "end": 735.64, + "probability": 0.8595 + }, + { + "start": 736.62, + "end": 740.9, + "probability": 0.9783 + }, + { + "start": 741.5, + "end": 743.02, + "probability": 0.6598 + }, + { + "start": 743.7, + "end": 744.74, + "probability": 0.807 + }, + { + "start": 745.84, + "end": 747.82, + "probability": 0.9678 + }, + { + "start": 747.9, + "end": 749.84, + "probability": 0.7744 + }, + { + "start": 750.0, + "end": 750.72, + "probability": 0.4359 + }, + { + "start": 751.28, + "end": 754.68, + "probability": 0.9382 + }, + { + "start": 755.56, + "end": 760.16, + "probability": 0.989 + }, + { + "start": 760.81, + "end": 767.88, + "probability": 0.882 + }, + { + "start": 768.7, + "end": 772.4, + "probability": 0.6324 + }, + { + "start": 772.84, + "end": 775.59, + "probability": 0.9638 + }, + { + "start": 776.16, + "end": 779.02, + "probability": 0.8763 + }, + { + "start": 779.9, + "end": 783.96, + "probability": 0.6632 + }, + { + "start": 784.02, + "end": 785.06, + "probability": 0.4342 + }, + { + "start": 786.0, + "end": 786.18, + "probability": 0.1541 + }, + { + "start": 786.86, + "end": 787.22, + "probability": 0.9741 + }, + { + "start": 788.12, + "end": 790.04, + "probability": 0.6996 + }, + { + "start": 790.14, + "end": 792.1, + "probability": 0.9066 + }, + { + "start": 792.22, + "end": 795.15, + "probability": 0.8921 + }, + { + "start": 796.28, + "end": 798.7, + "probability": 0.9431 + }, + { + "start": 799.42, + "end": 800.18, + "probability": 0.6794 + }, + { + "start": 801.24, + "end": 802.3, + "probability": 0.9776 + }, + { + "start": 803.0, + "end": 805.4, + "probability": 0.915 + }, + { + "start": 806.44, + "end": 811.74, + "probability": 0.8635 + }, + { + "start": 812.46, + "end": 816.18, + "probability": 0.9962 + }, + { + "start": 816.5, + "end": 817.04, + "probability": 0.7749 + }, + { + "start": 817.12, + "end": 817.48, + "probability": 0.6592 + }, + { + "start": 817.98, + "end": 819.08, + "probability": 0.8191 + }, + { + "start": 819.9, + "end": 820.24, + "probability": 0.4614 + }, + { + "start": 821.26, + "end": 825.04, + "probability": 0.7554 + }, + { + "start": 826.06, + "end": 827.38, + "probability": 0.874 + }, + { + "start": 827.44, + "end": 828.0, + "probability": 0.827 + }, + { + "start": 828.16, + "end": 828.9, + "probability": 0.792 + }, + { + "start": 828.98, + "end": 829.68, + "probability": 0.8971 + }, + { + "start": 831.42, + "end": 836.76, + "probability": 0.8604 + }, + { + "start": 837.78, + "end": 841.08, + "probability": 0.7639 + }, + { + "start": 841.96, + "end": 844.78, + "probability": 0.7652 + }, + { + "start": 845.12, + "end": 846.3, + "probability": 0.9698 + }, + { + "start": 846.52, + "end": 847.47, + "probability": 0.8761 + }, + { + "start": 847.96, + "end": 848.34, + "probability": 0.497 + }, + { + "start": 849.48, + "end": 850.78, + "probability": 0.9705 + }, + { + "start": 850.86, + "end": 852.92, + "probability": 0.9115 + }, + { + "start": 853.98, + "end": 854.56, + "probability": 0.8707 + }, + { + "start": 855.3, + "end": 858.36, + "probability": 0.9243 + }, + { + "start": 859.12, + "end": 860.76, + "probability": 0.9904 + }, + { + "start": 861.52, + "end": 863.04, + "probability": 0.6664 + }, + { + "start": 863.86, + "end": 868.46, + "probability": 0.7257 + }, + { + "start": 868.62, + "end": 869.32, + "probability": 0.8843 + }, + { + "start": 870.16, + "end": 872.14, + "probability": 0.9194 + }, + { + "start": 872.9, + "end": 874.68, + "probability": 0.8435 + }, + { + "start": 875.14, + "end": 875.9, + "probability": 0.9864 + }, + { + "start": 876.3, + "end": 876.86, + "probability": 0.6525 + }, + { + "start": 877.34, + "end": 879.42, + "probability": 0.9963 + }, + { + "start": 879.68, + "end": 880.84, + "probability": 0.8229 + }, + { + "start": 881.2, + "end": 889.36, + "probability": 0.9938 + }, + { + "start": 889.36, + "end": 895.52, + "probability": 0.9972 + }, + { + "start": 895.92, + "end": 896.84, + "probability": 0.81 + }, + { + "start": 897.38, + "end": 898.44, + "probability": 0.9443 + }, + { + "start": 898.88, + "end": 899.78, + "probability": 0.7941 + }, + { + "start": 899.84, + "end": 900.46, + "probability": 0.5532 + }, + { + "start": 900.82, + "end": 902.88, + "probability": 0.9919 + }, + { + "start": 903.36, + "end": 904.1, + "probability": 0.8755 + }, + { + "start": 905.06, + "end": 907.38, + "probability": 0.852 + }, + { + "start": 907.56, + "end": 911.18, + "probability": 0.7176 + }, + { + "start": 912.36, + "end": 915.6, + "probability": 0.9824 + }, + { + "start": 915.68, + "end": 916.32, + "probability": 0.5569 + }, + { + "start": 917.12, + "end": 917.54, + "probability": 0.9897 + }, + { + "start": 922.4, + "end": 922.92, + "probability": 0.6486 + }, + { + "start": 922.92, + "end": 924.0, + "probability": 0.8019 + }, + { + "start": 924.06, + "end": 924.16, + "probability": 0.4082 + }, + { + "start": 924.24, + "end": 924.78, + "probability": 0.459 + }, + { + "start": 925.04, + "end": 926.46, + "probability": 0.3192 + }, + { + "start": 926.92, + "end": 927.96, + "probability": 0.3475 + }, + { + "start": 928.06, + "end": 928.4, + "probability": 0.0535 + }, + { + "start": 928.64, + "end": 928.94, + "probability": 0.7441 + }, + { + "start": 929.0, + "end": 929.38, + "probability": 0.8303 + }, + { + "start": 929.44, + "end": 931.4, + "probability": 0.8746 + }, + { + "start": 931.4, + "end": 931.88, + "probability": 0.1605 + }, + { + "start": 931.88, + "end": 933.18, + "probability": 0.5348 + }, + { + "start": 933.38, + "end": 937.34, + "probability": 0.9683 + }, + { + "start": 937.66, + "end": 938.1, + "probability": 0.2073 + }, + { + "start": 938.52, + "end": 939.58, + "probability": 0.6073 + }, + { + "start": 939.96, + "end": 941.2, + "probability": 0.6626 + }, + { + "start": 941.28, + "end": 941.82, + "probability": 0.7282 + }, + { + "start": 942.0, + "end": 943.98, + "probability": 0.9492 + }, + { + "start": 944.0, + "end": 945.78, + "probability": 0.8599 + }, + { + "start": 945.9, + "end": 946.22, + "probability": 0.6893 + }, + { + "start": 947.16, + "end": 947.5, + "probability": 0.1858 + }, + { + "start": 947.6, + "end": 951.56, + "probability": 0.8927 + }, + { + "start": 951.98, + "end": 957.0, + "probability": 0.8624 + }, + { + "start": 957.0, + "end": 964.94, + "probability": 0.8898 + }, + { + "start": 965.42, + "end": 966.48, + "probability": 0.56 + }, + { + "start": 966.62, + "end": 967.04, + "probability": 0.5178 + }, + { + "start": 968.0, + "end": 968.0, + "probability": 0.272 + }, + { + "start": 968.0, + "end": 971.14, + "probability": 0.9386 + }, + { + "start": 972.38, + "end": 972.8, + "probability": 0.7205 + }, + { + "start": 973.04, + "end": 973.78, + "probability": 0.8344 + }, + { + "start": 974.58, + "end": 976.02, + "probability": 0.8792 + }, + { + "start": 980.4, + "end": 982.39, + "probability": 0.9823 + }, + { + "start": 984.12, + "end": 984.92, + "probability": 0.6688 + }, + { + "start": 985.58, + "end": 987.16, + "probability": 0.9966 + }, + { + "start": 988.46, + "end": 989.18, + "probability": 0.9855 + }, + { + "start": 990.06, + "end": 990.92, + "probability": 0.9933 + }, + { + "start": 992.2, + "end": 994.42, + "probability": 0.9963 + }, + { + "start": 994.98, + "end": 996.08, + "probability": 0.9902 + }, + { + "start": 997.06, + "end": 998.04, + "probability": 0.9008 + }, + { + "start": 998.9, + "end": 1000.08, + "probability": 0.5807 + }, + { + "start": 1000.92, + "end": 1002.76, + "probability": 0.8044 + }, + { + "start": 1003.9, + "end": 1005.92, + "probability": 0.8475 + }, + { + "start": 1006.54, + "end": 1007.92, + "probability": 0.9933 + }, + { + "start": 1008.38, + "end": 1009.08, + "probability": 0.9728 + }, + { + "start": 1009.56, + "end": 1011.68, + "probability": 0.7056 + }, + { + "start": 1012.4, + "end": 1015.64, + "probability": 0.9935 + }, + { + "start": 1016.22, + "end": 1017.02, + "probability": 0.9206 + }, + { + "start": 1019.8, + "end": 1022.5, + "probability": 0.8002 + }, + { + "start": 1023.36, + "end": 1024.34, + "probability": 0.7433 + }, + { + "start": 1024.94, + "end": 1025.3, + "probability": 0.522 + }, + { + "start": 1026.56, + "end": 1027.46, + "probability": 0.9052 + }, + { + "start": 1028.32, + "end": 1032.5, + "probability": 0.9433 + }, + { + "start": 1034.04, + "end": 1034.54, + "probability": 0.8722 + }, + { + "start": 1035.26, + "end": 1035.68, + "probability": 0.7967 + }, + { + "start": 1036.22, + "end": 1037.14, + "probability": 0.7864 + }, + { + "start": 1038.18, + "end": 1040.18, + "probability": 0.8844 + }, + { + "start": 1040.7, + "end": 1041.24, + "probability": 0.8557 + }, + { + "start": 1042.44, + "end": 1045.24, + "probability": 0.9984 + }, + { + "start": 1046.14, + "end": 1047.72, + "probability": 0.9971 + }, + { + "start": 1048.68, + "end": 1050.06, + "probability": 0.9966 + }, + { + "start": 1050.96, + "end": 1055.14, + "probability": 0.9888 + }, + { + "start": 1056.14, + "end": 1057.64, + "probability": 0.8186 + }, + { + "start": 1058.42, + "end": 1059.58, + "probability": 0.9353 + }, + { + "start": 1060.8, + "end": 1062.84, + "probability": 0.9531 + }, + { + "start": 1064.02, + "end": 1064.48, + "probability": 0.7746 + }, + { + "start": 1065.36, + "end": 1068.54, + "probability": 0.8999 + }, + { + "start": 1068.8, + "end": 1070.1, + "probability": 0.9583 + }, + { + "start": 1070.82, + "end": 1072.02, + "probability": 0.9839 + }, + { + "start": 1072.68, + "end": 1074.7, + "probability": 0.6751 + }, + { + "start": 1075.72, + "end": 1078.04, + "probability": 0.7474 + }, + { + "start": 1078.56, + "end": 1079.58, + "probability": 0.9597 + }, + { + "start": 1081.7, + "end": 1083.02, + "probability": 0.9091 + }, + { + "start": 1083.54, + "end": 1084.64, + "probability": 0.9774 + }, + { + "start": 1085.38, + "end": 1086.82, + "probability": 0.9861 + }, + { + "start": 1087.38, + "end": 1088.27, + "probability": 0.9492 + }, + { + "start": 1089.18, + "end": 1090.64, + "probability": 0.9859 + }, + { + "start": 1091.34, + "end": 1093.24, + "probability": 0.8238 + }, + { + "start": 1093.8, + "end": 1095.06, + "probability": 0.8002 + }, + { + "start": 1095.62, + "end": 1097.62, + "probability": 0.911 + }, + { + "start": 1098.3, + "end": 1099.25, + "probability": 0.9932 + }, + { + "start": 1099.6, + "end": 1100.4, + "probability": 0.9973 + }, + { + "start": 1100.62, + "end": 1101.32, + "probability": 0.9971 + }, + { + "start": 1102.4, + "end": 1106.54, + "probability": 0.9082 + }, + { + "start": 1106.94, + "end": 1109.28, + "probability": 0.9895 + }, + { + "start": 1110.32, + "end": 1112.18, + "probability": 0.9296 + }, + { + "start": 1113.34, + "end": 1114.18, + "probability": 0.8745 + }, + { + "start": 1114.56, + "end": 1115.12, + "probability": 0.8828 + }, + { + "start": 1115.36, + "end": 1118.7, + "probability": 0.9973 + }, + { + "start": 1118.78, + "end": 1119.34, + "probability": 0.8962 + }, + { + "start": 1119.8, + "end": 1121.32, + "probability": 0.5668 + }, + { + "start": 1121.42, + "end": 1123.86, + "probability": 0.9919 + }, + { + "start": 1124.9, + "end": 1125.88, + "probability": 0.878 + }, + { + "start": 1127.4, + "end": 1127.52, + "probability": 0.5113 + }, + { + "start": 1127.54, + "end": 1128.94, + "probability": 0.8989 + }, + { + "start": 1129.1, + "end": 1130.72, + "probability": 0.9377 + }, + { + "start": 1130.84, + "end": 1131.46, + "probability": 0.8988 + }, + { + "start": 1131.96, + "end": 1132.54, + "probability": 0.8921 + }, + { + "start": 1132.82, + "end": 1133.56, + "probability": 0.9101 + }, + { + "start": 1134.14, + "end": 1136.34, + "probability": 0.9811 + }, + { + "start": 1137.56, + "end": 1137.6, + "probability": 0.0511 + }, + { + "start": 1137.6, + "end": 1138.56, + "probability": 0.501 + }, + { + "start": 1139.1, + "end": 1142.78, + "probability": 0.9898 + }, + { + "start": 1142.78, + "end": 1146.64, + "probability": 0.7935 + }, + { + "start": 1148.0, + "end": 1148.94, + "probability": 0.9071 + }, + { + "start": 1149.26, + "end": 1151.92, + "probability": 0.9972 + }, + { + "start": 1152.16, + "end": 1152.9, + "probability": 0.7815 + }, + { + "start": 1153.82, + "end": 1155.48, + "probability": 0.7157 + }, + { + "start": 1156.28, + "end": 1158.04, + "probability": 0.9731 + }, + { + "start": 1159.18, + "end": 1161.94, + "probability": 0.9917 + }, + { + "start": 1162.52, + "end": 1163.72, + "probability": 0.9992 + }, + { + "start": 1164.42, + "end": 1166.46, + "probability": 0.9797 + }, + { + "start": 1168.02, + "end": 1170.44, + "probability": 0.8246 + }, + { + "start": 1171.0, + "end": 1171.36, + "probability": 0.8484 + }, + { + "start": 1172.04, + "end": 1173.88, + "probability": 0.9635 + }, + { + "start": 1176.42, + "end": 1177.72, + "probability": 0.581 + }, + { + "start": 1177.78, + "end": 1178.86, + "probability": 0.3148 + }, + { + "start": 1179.36, + "end": 1182.05, + "probability": 0.9508 + }, + { + "start": 1182.34, + "end": 1185.16, + "probability": 0.9907 + }, + { + "start": 1185.22, + "end": 1186.22, + "probability": 0.6927 + }, + { + "start": 1186.56, + "end": 1190.48, + "probability": 0.8508 + }, + { + "start": 1190.96, + "end": 1191.86, + "probability": 0.843 + }, + { + "start": 1191.96, + "end": 1194.52, + "probability": 0.9905 + }, + { + "start": 1194.76, + "end": 1195.2, + "probability": 0.7602 + }, + { + "start": 1195.32, + "end": 1198.14, + "probability": 0.747 + }, + { + "start": 1198.22, + "end": 1199.34, + "probability": 0.962 + }, + { + "start": 1199.46, + "end": 1202.5, + "probability": 0.9878 + }, + { + "start": 1203.18, + "end": 1204.66, + "probability": 0.9308 + }, + { + "start": 1205.48, + "end": 1208.44, + "probability": 0.9683 + }, + { + "start": 1209.42, + "end": 1212.32, + "probability": 0.9884 + }, + { + "start": 1212.64, + "end": 1213.64, + "probability": 0.8689 + }, + { + "start": 1214.14, + "end": 1216.46, + "probability": 0.9991 + }, + { + "start": 1216.8, + "end": 1218.14, + "probability": 0.932 + }, + { + "start": 1218.68, + "end": 1221.44, + "probability": 0.995 + }, + { + "start": 1221.84, + "end": 1222.89, + "probability": 0.6924 + }, + { + "start": 1223.26, + "end": 1225.18, + "probability": 0.9066 + }, + { + "start": 1225.9, + "end": 1226.1, + "probability": 0.6456 + }, + { + "start": 1226.28, + "end": 1226.86, + "probability": 0.8341 + }, + { + "start": 1227.16, + "end": 1228.82, + "probability": 0.5104 + }, + { + "start": 1228.92, + "end": 1231.02, + "probability": 0.5011 + }, + { + "start": 1231.6, + "end": 1233.18, + "probability": 0.821 + }, + { + "start": 1233.24, + "end": 1234.6, + "probability": 0.8876 + }, + { + "start": 1234.96, + "end": 1236.88, + "probability": 0.5555 + }, + { + "start": 1237.32, + "end": 1238.02, + "probability": 0.3229 + }, + { + "start": 1238.34, + "end": 1238.44, + "probability": 0.5468 + }, + { + "start": 1238.7, + "end": 1239.88, + "probability": 0.9561 + }, + { + "start": 1240.34, + "end": 1241.58, + "probability": 0.8439 + }, + { + "start": 1241.98, + "end": 1244.26, + "probability": 0.9807 + }, + { + "start": 1244.26, + "end": 1247.08, + "probability": 0.9435 + }, + { + "start": 1247.38, + "end": 1248.58, + "probability": 0.9634 + }, + { + "start": 1248.96, + "end": 1249.82, + "probability": 0.9642 + }, + { + "start": 1250.26, + "end": 1250.66, + "probability": 0.9067 + }, + { + "start": 1250.7, + "end": 1251.14, + "probability": 0.8928 + }, + { + "start": 1251.2, + "end": 1252.12, + "probability": 0.8887 + }, + { + "start": 1252.2, + "end": 1252.64, + "probability": 0.8632 + }, + { + "start": 1252.72, + "end": 1254.08, + "probability": 0.6969 + }, + { + "start": 1254.36, + "end": 1255.24, + "probability": 0.9743 + }, + { + "start": 1255.86, + "end": 1256.72, + "probability": 0.9353 + }, + { + "start": 1257.1, + "end": 1259.8, + "probability": 0.9224 + }, + { + "start": 1259.8, + "end": 1262.08, + "probability": 0.3369 + }, + { + "start": 1262.24, + "end": 1266.22, + "probability": 0.9546 + }, + { + "start": 1266.92, + "end": 1269.24, + "probability": 0.9878 + }, + { + "start": 1269.34, + "end": 1270.46, + "probability": 0.6855 + }, + { + "start": 1270.62, + "end": 1272.86, + "probability": 0.9865 + }, + { + "start": 1273.08, + "end": 1273.58, + "probability": 0.4935 + }, + { + "start": 1273.58, + "end": 1274.2, + "probability": 0.9435 + }, + { + "start": 1274.56, + "end": 1275.96, + "probability": 0.981 + }, + { + "start": 1276.18, + "end": 1279.16, + "probability": 0.763 + }, + { + "start": 1279.4, + "end": 1281.84, + "probability": 0.8876 + }, + { + "start": 1282.3, + "end": 1283.68, + "probability": 0.9902 + }, + { + "start": 1283.94, + "end": 1284.38, + "probability": 0.3565 + }, + { + "start": 1284.88, + "end": 1287.22, + "probability": 0.9092 + }, + { + "start": 1288.02, + "end": 1288.92, + "probability": 0.3561 + }, + { + "start": 1289.06, + "end": 1290.06, + "probability": 0.8778 + }, + { + "start": 1290.36, + "end": 1294.58, + "probability": 0.813 + }, + { + "start": 1295.14, + "end": 1296.12, + "probability": 0.9453 + }, + { + "start": 1296.4, + "end": 1298.02, + "probability": 0.9639 + }, + { + "start": 1298.16, + "end": 1301.2, + "probability": 0.642 + }, + { + "start": 1301.2, + "end": 1302.39, + "probability": 0.9155 + }, + { + "start": 1303.26, + "end": 1303.62, + "probability": 0.7467 + }, + { + "start": 1304.72, + "end": 1306.28, + "probability": 0.7044 + }, + { + "start": 1306.76, + "end": 1307.6, + "probability": 0.5104 + }, + { + "start": 1307.66, + "end": 1308.1, + "probability": 0.8875 + }, + { + "start": 1308.14, + "end": 1308.48, + "probability": 0.4192 + }, + { + "start": 1308.54, + "end": 1309.88, + "probability": 0.9351 + }, + { + "start": 1309.94, + "end": 1310.78, + "probability": 0.7949 + }, + { + "start": 1311.44, + "end": 1312.36, + "probability": 0.7135 + }, + { + "start": 1312.68, + "end": 1313.32, + "probability": 0.6913 + }, + { + "start": 1313.44, + "end": 1315.16, + "probability": 0.9297 + }, + { + "start": 1315.22, + "end": 1315.76, + "probability": 0.3424 + }, + { + "start": 1315.84, + "end": 1316.36, + "probability": 0.6843 + }, + { + "start": 1316.56, + "end": 1317.98, + "probability": 0.8915 + }, + { + "start": 1318.8, + "end": 1321.74, + "probability": 0.8885 + }, + { + "start": 1322.2, + "end": 1323.7, + "probability": 0.7488 + }, + { + "start": 1323.96, + "end": 1326.4, + "probability": 0.5066 + }, + { + "start": 1327.22, + "end": 1328.58, + "probability": 0.7722 + }, + { + "start": 1329.06, + "end": 1332.82, + "probability": 0.7994 + }, + { + "start": 1333.38, + "end": 1335.28, + "probability": 0.9413 + }, + { + "start": 1335.86, + "end": 1338.74, + "probability": 0.9515 + }, + { + "start": 1339.0, + "end": 1339.42, + "probability": 0.6538 + }, + { + "start": 1339.76, + "end": 1339.88, + "probability": 0.1507 + }, + { + "start": 1340.3, + "end": 1345.64, + "probability": 0.9481 + }, + { + "start": 1345.68, + "end": 1345.78, + "probability": 0.4922 + }, + { + "start": 1345.8, + "end": 1346.22, + "probability": 0.6616 + }, + { + "start": 1346.28, + "end": 1348.2, + "probability": 0.9435 + }, + { + "start": 1348.26, + "end": 1348.84, + "probability": 0.8186 + }, + { + "start": 1349.14, + "end": 1350.38, + "probability": 0.7537 + }, + { + "start": 1351.02, + "end": 1352.68, + "probability": 0.9775 + }, + { + "start": 1353.06, + "end": 1354.18, + "probability": 0.7059 + }, + { + "start": 1354.24, + "end": 1354.92, + "probability": 0.6638 + }, + { + "start": 1355.28, + "end": 1356.3, + "probability": 0.6065 + }, + { + "start": 1356.48, + "end": 1360.2, + "probability": 0.9881 + }, + { + "start": 1360.4, + "end": 1360.84, + "probability": 0.9648 + }, + { + "start": 1361.72, + "end": 1366.06, + "probability": 0.8403 + }, + { + "start": 1367.84, + "end": 1371.16, + "probability": 0.7896 + }, + { + "start": 1371.58, + "end": 1371.7, + "probability": 0.4597 + }, + { + "start": 1371.78, + "end": 1374.95, + "probability": 0.5693 + }, + { + "start": 1375.36, + "end": 1377.64, + "probability": 0.6063 + }, + { + "start": 1377.78, + "end": 1380.02, + "probability": 0.9779 + }, + { + "start": 1380.28, + "end": 1382.74, + "probability": 0.9904 + }, + { + "start": 1382.9, + "end": 1384.42, + "probability": 0.6007 + }, + { + "start": 1385.2, + "end": 1388.86, + "probability": 0.9738 + }, + { + "start": 1389.54, + "end": 1389.98, + "probability": 0.9183 + }, + { + "start": 1390.16, + "end": 1390.86, + "probability": 0.7036 + }, + { + "start": 1390.98, + "end": 1391.64, + "probability": 0.6702 + }, + { + "start": 1391.74, + "end": 1394.82, + "probability": 0.8201 + }, + { + "start": 1395.18, + "end": 1397.04, + "probability": 0.9063 + }, + { + "start": 1397.26, + "end": 1398.1, + "probability": 0.8067 + }, + { + "start": 1398.44, + "end": 1399.82, + "probability": 0.8469 + }, + { + "start": 1400.54, + "end": 1402.8, + "probability": 0.9237 + }, + { + "start": 1403.38, + "end": 1405.38, + "probability": 0.8167 + }, + { + "start": 1405.76, + "end": 1409.12, + "probability": 0.9163 + }, + { + "start": 1409.14, + "end": 1409.84, + "probability": 0.3593 + }, + { + "start": 1410.26, + "end": 1411.64, + "probability": 0.4934 + }, + { + "start": 1412.04, + "end": 1417.26, + "probability": 0.9888 + }, + { + "start": 1418.12, + "end": 1419.34, + "probability": 0.721 + }, + { + "start": 1419.88, + "end": 1421.2, + "probability": 0.9291 + }, + { + "start": 1421.86, + "end": 1423.98, + "probability": 0.8209 + }, + { + "start": 1424.14, + "end": 1425.56, + "probability": 0.9806 + }, + { + "start": 1425.72, + "end": 1427.24, + "probability": 0.984 + }, + { + "start": 1427.78, + "end": 1431.34, + "probability": 0.8584 + }, + { + "start": 1431.46, + "end": 1432.94, + "probability": 0.8539 + }, + { + "start": 1433.2, + "end": 1434.22, + "probability": 0.9343 + }, + { + "start": 1434.64, + "end": 1436.18, + "probability": 0.9927 + }, + { + "start": 1436.52, + "end": 1437.98, + "probability": 0.7782 + }, + { + "start": 1438.28, + "end": 1440.52, + "probability": 0.9818 + }, + { + "start": 1440.72, + "end": 1441.99, + "probability": 0.9827 + }, + { + "start": 1442.3, + "end": 1446.14, + "probability": 0.9915 + }, + { + "start": 1446.62, + "end": 1448.18, + "probability": 0.4939 + }, + { + "start": 1448.58, + "end": 1453.06, + "probability": 0.8124 + }, + { + "start": 1453.1, + "end": 1455.14, + "probability": 0.885 + }, + { + "start": 1455.38, + "end": 1455.52, + "probability": 0.6129 + }, + { + "start": 1455.54, + "end": 1459.78, + "probability": 0.9766 + }, + { + "start": 1460.2, + "end": 1461.12, + "probability": 0.7455 + }, + { + "start": 1461.58, + "end": 1462.52, + "probability": 0.717 + }, + { + "start": 1462.7, + "end": 1464.94, + "probability": 0.8726 + }, + { + "start": 1465.24, + "end": 1467.5, + "probability": 0.9792 + }, + { + "start": 1467.6, + "end": 1468.74, + "probability": 0.9732 + }, + { + "start": 1469.02, + "end": 1470.86, + "probability": 0.99 + }, + { + "start": 1470.94, + "end": 1471.34, + "probability": 0.4372 + }, + { + "start": 1471.56, + "end": 1472.92, + "probability": 0.9568 + }, + { + "start": 1473.8, + "end": 1474.38, + "probability": 0.6637 + }, + { + "start": 1474.74, + "end": 1476.08, + "probability": 0.9359 + }, + { + "start": 1476.62, + "end": 1477.5, + "probability": 0.9429 + }, + { + "start": 1477.56, + "end": 1479.26, + "probability": 0.6058 + }, + { + "start": 1479.4, + "end": 1479.96, + "probability": 0.6872 + }, + { + "start": 1480.06, + "end": 1482.06, + "probability": 0.8892 + }, + { + "start": 1482.2, + "end": 1483.63, + "probability": 0.9277 + }, + { + "start": 1483.98, + "end": 1485.1, + "probability": 0.9887 + }, + { + "start": 1485.28, + "end": 1487.24, + "probability": 0.9346 + }, + { + "start": 1487.62, + "end": 1490.5, + "probability": 0.9728 + }, + { + "start": 1490.88, + "end": 1492.02, + "probability": 0.6652 + }, + { + "start": 1492.26, + "end": 1493.07, + "probability": 0.9596 + }, + { + "start": 1494.64, + "end": 1496.08, + "probability": 0.9795 + }, + { + "start": 1496.08, + "end": 1497.38, + "probability": 0.0855 + }, + { + "start": 1497.44, + "end": 1501.82, + "probability": 0.6978 + }, + { + "start": 1502.26, + "end": 1503.17, + "probability": 0.9683 + }, + { + "start": 1503.48, + "end": 1505.1, + "probability": 0.6402 + }, + { + "start": 1505.34, + "end": 1507.3, + "probability": 0.4843 + }, + { + "start": 1508.54, + "end": 1509.99, + "probability": 0.6553 + }, + { + "start": 1510.14, + "end": 1512.04, + "probability": 0.8537 + }, + { + "start": 1513.46, + "end": 1517.62, + "probability": 0.9724 + }, + { + "start": 1517.76, + "end": 1518.84, + "probability": 0.7853 + }, + { + "start": 1518.92, + "end": 1521.14, + "probability": 0.6862 + }, + { + "start": 1521.7, + "end": 1523.16, + "probability": 0.8033 + }, + { + "start": 1523.22, + "end": 1523.98, + "probability": 0.9205 + }, + { + "start": 1524.82, + "end": 1525.34, + "probability": 0.7628 + }, + { + "start": 1525.44, + "end": 1528.06, + "probability": 0.9829 + }, + { + "start": 1529.86, + "end": 1530.35, + "probability": 0.8745 + }, + { + "start": 1530.5, + "end": 1531.78, + "probability": 0.8364 + }, + { + "start": 1531.92, + "end": 1533.15, + "probability": 0.7057 + }, + { + "start": 1533.38, + "end": 1534.82, + "probability": 0.9529 + }, + { + "start": 1534.94, + "end": 1538.82, + "probability": 0.9622 + }, + { + "start": 1539.28, + "end": 1539.96, + "probability": 0.9002 + }, + { + "start": 1540.04, + "end": 1540.38, + "probability": 0.8669 + }, + { + "start": 1540.64, + "end": 1542.26, + "probability": 0.7851 + }, + { + "start": 1542.56, + "end": 1545.34, + "probability": 0.9255 + }, + { + "start": 1547.22, + "end": 1551.4, + "probability": 0.751 + }, + { + "start": 1551.72, + "end": 1552.8, + "probability": 0.8005 + }, + { + "start": 1553.62, + "end": 1554.28, + "probability": 0.5722 + }, + { + "start": 1554.36, + "end": 1555.0, + "probability": 0.6429 + }, + { + "start": 1555.1, + "end": 1557.12, + "probability": 0.6542 + }, + { + "start": 1557.12, + "end": 1560.48, + "probability": 0.7393 + }, + { + "start": 1560.6, + "end": 1561.74, + "probability": 0.8498 + }, + { + "start": 1561.76, + "end": 1562.52, + "probability": 0.8439 + }, + { + "start": 1562.92, + "end": 1564.52, + "probability": 0.6418 + }, + { + "start": 1565.02, + "end": 1566.14, + "probability": 0.5104 + }, + { + "start": 1566.38, + "end": 1570.1, + "probability": 0.9638 + }, + { + "start": 1570.78, + "end": 1572.0, + "probability": 0.7295 + }, + { + "start": 1572.56, + "end": 1574.36, + "probability": 0.9697 + }, + { + "start": 1574.66, + "end": 1578.48, + "probability": 0.9493 + }, + { + "start": 1578.8, + "end": 1580.58, + "probability": 0.8312 + }, + { + "start": 1581.02, + "end": 1584.36, + "probability": 0.8742 + }, + { + "start": 1585.08, + "end": 1587.26, + "probability": 0.959 + }, + { + "start": 1587.54, + "end": 1588.4, + "probability": 0.9727 + }, + { + "start": 1588.98, + "end": 1589.2, + "probability": 0.5688 + }, + { + "start": 1589.24, + "end": 1590.3, + "probability": 0.9805 + }, + { + "start": 1590.34, + "end": 1591.36, + "probability": 0.9444 + }, + { + "start": 1591.76, + "end": 1593.2, + "probability": 0.5231 + }, + { + "start": 1593.54, + "end": 1595.82, + "probability": 0.9724 + }, + { + "start": 1596.34, + "end": 1597.74, + "probability": 0.9951 + }, + { + "start": 1597.86, + "end": 1602.42, + "probability": 0.8849 + }, + { + "start": 1602.76, + "end": 1605.12, + "probability": 0.9946 + }, + { + "start": 1605.44, + "end": 1607.26, + "probability": 0.9266 + }, + { + "start": 1607.56, + "end": 1608.24, + "probability": 0.6356 + }, + { + "start": 1608.3, + "end": 1610.24, + "probability": 0.6574 + }, + { + "start": 1610.24, + "end": 1613.44, + "probability": 0.9819 + }, + { + "start": 1613.78, + "end": 1615.28, + "probability": 0.8989 + }, + { + "start": 1615.64, + "end": 1616.42, + "probability": 0.6412 + }, + { + "start": 1616.46, + "end": 1616.98, + "probability": 0.52 + }, + { + "start": 1617.28, + "end": 1619.56, + "probability": 0.9014 + }, + { + "start": 1621.06, + "end": 1621.22, + "probability": 0.2468 + }, + { + "start": 1621.22, + "end": 1622.61, + "probability": 0.6522 + }, + { + "start": 1622.86, + "end": 1627.18, + "probability": 0.9663 + }, + { + "start": 1627.22, + "end": 1628.32, + "probability": 0.8923 + }, + { + "start": 1629.56, + "end": 1632.28, + "probability": 0.988 + }, + { + "start": 1632.28, + "end": 1634.64, + "probability": 0.9876 + }, + { + "start": 1634.7, + "end": 1636.88, + "probability": 0.9823 + }, + { + "start": 1637.7, + "end": 1641.1, + "probability": 0.9413 + }, + { + "start": 1641.66, + "end": 1642.24, + "probability": 0.8832 + }, + { + "start": 1642.36, + "end": 1644.84, + "probability": 0.916 + }, + { + "start": 1662.46, + "end": 1664.54, + "probability": 0.7869 + }, + { + "start": 1666.64, + "end": 1674.08, + "probability": 0.9688 + }, + { + "start": 1674.2, + "end": 1676.14, + "probability": 0.9414 + }, + { + "start": 1676.28, + "end": 1678.32, + "probability": 0.9983 + }, + { + "start": 1679.26, + "end": 1686.02, + "probability": 0.995 + }, + { + "start": 1686.72, + "end": 1689.7, + "probability": 0.9633 + }, + { + "start": 1690.46, + "end": 1691.78, + "probability": 0.6702 + }, + { + "start": 1692.3, + "end": 1698.32, + "probability": 0.9618 + }, + { + "start": 1699.32, + "end": 1700.36, + "probability": 0.6504 + }, + { + "start": 1700.6, + "end": 1703.04, + "probability": 0.92 + }, + { + "start": 1703.04, + "end": 1711.22, + "probability": 0.821 + }, + { + "start": 1712.22, + "end": 1715.94, + "probability": 0.7793 + }, + { + "start": 1717.16, + "end": 1722.52, + "probability": 0.9884 + }, + { + "start": 1722.52, + "end": 1729.88, + "probability": 0.9967 + }, + { + "start": 1729.88, + "end": 1735.54, + "probability": 0.9515 + }, + { + "start": 1736.22, + "end": 1738.7, + "probability": 0.9917 + }, + { + "start": 1739.24, + "end": 1740.96, + "probability": 0.216 + }, + { + "start": 1742.14, + "end": 1743.08, + "probability": 0.6404 + }, + { + "start": 1743.82, + "end": 1748.82, + "probability": 0.879 + }, + { + "start": 1749.8, + "end": 1751.1, + "probability": 0.6451 + }, + { + "start": 1751.28, + "end": 1751.52, + "probability": 0.3803 + }, + { + "start": 1751.56, + "end": 1753.14, + "probability": 0.8438 + }, + { + "start": 1753.56, + "end": 1755.32, + "probability": 0.9661 + }, + { + "start": 1755.34, + "end": 1758.66, + "probability": 0.9897 + }, + { + "start": 1759.2, + "end": 1760.64, + "probability": 0.5531 + }, + { + "start": 1761.38, + "end": 1766.86, + "probability": 0.9618 + }, + { + "start": 1768.16, + "end": 1772.36, + "probability": 0.8658 + }, + { + "start": 1772.44, + "end": 1773.46, + "probability": 0.8939 + }, + { + "start": 1774.04, + "end": 1774.92, + "probability": 0.394 + }, + { + "start": 1775.92, + "end": 1779.7, + "probability": 0.9836 + }, + { + "start": 1779.88, + "end": 1780.68, + "probability": 0.9274 + }, + { + "start": 1781.06, + "end": 1783.06, + "probability": 0.9567 + }, + { + "start": 1783.14, + "end": 1786.26, + "probability": 0.6922 + }, + { + "start": 1787.68, + "end": 1792.66, + "probability": 0.9632 + }, + { + "start": 1794.1, + "end": 1798.94, + "probability": 0.9145 + }, + { + "start": 1800.5, + "end": 1802.14, + "probability": 0.9733 + }, + { + "start": 1802.86, + "end": 1805.38, + "probability": 0.9946 + }, + { + "start": 1806.0, + "end": 1809.58, + "probability": 0.9792 + }, + { + "start": 1811.06, + "end": 1817.58, + "probability": 0.9962 + }, + { + "start": 1817.58, + "end": 1826.02, + "probability": 0.9635 + }, + { + "start": 1826.74, + "end": 1828.22, + "probability": 0.9896 + }, + { + "start": 1828.78, + "end": 1831.86, + "probability": 0.8936 + }, + { + "start": 1832.38, + "end": 1838.4, + "probability": 0.9611 + }, + { + "start": 1839.74, + "end": 1840.12, + "probability": 0.1202 + }, + { + "start": 1840.12, + "end": 1841.82, + "probability": 0.9111 + }, + { + "start": 1842.78, + "end": 1843.52, + "probability": 0.8387 + }, + { + "start": 1844.24, + "end": 1846.62, + "probability": 0.9103 + }, + { + "start": 1847.4, + "end": 1848.92, + "probability": 0.777 + }, + { + "start": 1849.62, + "end": 1852.48, + "probability": 0.7844 + }, + { + "start": 1853.16, + "end": 1854.6, + "probability": 0.9572 + }, + { + "start": 1855.38, + "end": 1855.6, + "probability": 0.088 + }, + { + "start": 1855.6, + "end": 1857.0, + "probability": 0.9161 + }, + { + "start": 1857.58, + "end": 1860.3, + "probability": 0.9502 + }, + { + "start": 1860.46, + "end": 1861.68, + "probability": 0.0362 + }, + { + "start": 1861.72, + "end": 1867.62, + "probability": 0.999 + }, + { + "start": 1867.62, + "end": 1872.46, + "probability": 0.9973 + }, + { + "start": 1872.9, + "end": 1877.56, + "probability": 0.979 + }, + { + "start": 1878.44, + "end": 1881.24, + "probability": 0.6802 + }, + { + "start": 1882.42, + "end": 1888.12, + "probability": 0.7806 + }, + { + "start": 1888.76, + "end": 1889.76, + "probability": 0.8182 + }, + { + "start": 1890.14, + "end": 1892.62, + "probability": 0.431 + }, + { + "start": 1892.64, + "end": 1897.36, + "probability": 0.9179 + }, + { + "start": 1897.94, + "end": 1899.26, + "probability": 0.1862 + }, + { + "start": 1899.72, + "end": 1903.58, + "probability": 0.9144 + }, + { + "start": 1903.74, + "end": 1905.32, + "probability": 0.991 + }, + { + "start": 1906.98, + "end": 1909.76, + "probability": 0.9894 + }, + { + "start": 1910.4, + "end": 1912.1, + "probability": 0.5355 + }, + { + "start": 1913.04, + "end": 1915.6, + "probability": 0.8872 + }, + { + "start": 1916.58, + "end": 1916.86, + "probability": 0.537 + }, + { + "start": 1916.88, + "end": 1924.2, + "probability": 0.9896 + }, + { + "start": 1924.98, + "end": 1926.0, + "probability": 0.9971 + }, + { + "start": 1927.22, + "end": 1930.06, + "probability": 0.9886 + }, + { + "start": 1931.16, + "end": 1931.96, + "probability": 0.752 + }, + { + "start": 1932.2, + "end": 1938.7, + "probability": 0.9957 + }, + { + "start": 1939.28, + "end": 1942.12, + "probability": 0.9842 + }, + { + "start": 1942.7, + "end": 1946.9, + "probability": 0.9887 + }, + { + "start": 1947.98, + "end": 1951.4, + "probability": 0.8749 + }, + { + "start": 1951.4, + "end": 1954.66, + "probability": 0.997 + }, + { + "start": 1955.8, + "end": 1959.08, + "probability": 0.9519 + }, + { + "start": 1959.58, + "end": 1963.26, + "probability": 0.9423 + }, + { + "start": 1964.26, + "end": 1970.06, + "probability": 0.9783 + }, + { + "start": 1970.9, + "end": 1979.06, + "probability": 0.9897 + }, + { + "start": 1979.58, + "end": 1982.1, + "probability": 0.94 + }, + { + "start": 1982.88, + "end": 1987.62, + "probability": 0.866 + }, + { + "start": 1988.34, + "end": 1989.04, + "probability": 0.9402 + }, + { + "start": 1989.66, + "end": 1994.98, + "probability": 0.9885 + }, + { + "start": 1995.45, + "end": 1999.82, + "probability": 0.9844 + }, + { + "start": 2000.56, + "end": 2005.86, + "probability": 0.9866 + }, + { + "start": 2005.86, + "end": 2011.4, + "probability": 0.9475 + }, + { + "start": 2012.46, + "end": 2013.52, + "probability": 0.7708 + }, + { + "start": 2014.24, + "end": 2015.64, + "probability": 0.9282 + }, + { + "start": 2016.68, + "end": 2018.62, + "probability": 0.3657 + }, + { + "start": 2019.36, + "end": 2024.16, + "probability": 0.7142 + }, + { + "start": 2024.51, + "end": 2030.72, + "probability": 0.9325 + }, + { + "start": 2031.44, + "end": 2032.64, + "probability": 0.2822 + }, + { + "start": 2033.54, + "end": 2037.4, + "probability": 0.9496 + }, + { + "start": 2038.66, + "end": 2039.92, + "probability": 0.9146 + }, + { + "start": 2040.54, + "end": 2046.26, + "probability": 0.9076 + }, + { + "start": 2047.02, + "end": 2050.88, + "probability": 0.9966 + }, + { + "start": 2051.8, + "end": 2054.78, + "probability": 0.9644 + }, + { + "start": 2055.6, + "end": 2058.18, + "probability": 0.7098 + }, + { + "start": 2059.44, + "end": 2064.8, + "probability": 0.9663 + }, + { + "start": 2065.08, + "end": 2065.64, + "probability": 0.78 + }, + { + "start": 2066.76, + "end": 2070.66, + "probability": 0.9907 + }, + { + "start": 2072.04, + "end": 2077.94, + "probability": 0.8049 + }, + { + "start": 2084.94, + "end": 2085.12, + "probability": 0.3694 + }, + { + "start": 2085.12, + "end": 2089.58, + "probability": 0.8969 + }, + { + "start": 2089.68, + "end": 2092.24, + "probability": 0.98 + }, + { + "start": 2093.24, + "end": 2095.32, + "probability": 0.9305 + }, + { + "start": 2095.44, + "end": 2098.82, + "probability": 0.9867 + }, + { + "start": 2099.88, + "end": 2102.28, + "probability": 0.7798 + }, + { + "start": 2103.08, + "end": 2107.0, + "probability": 0.9326 + }, + { + "start": 2119.54, + "end": 2121.28, + "probability": 0.9521 + }, + { + "start": 2122.98, + "end": 2124.8, + "probability": 0.5808 + }, + { + "start": 2125.02, + "end": 2125.02, + "probability": 0.6201 + }, + { + "start": 2125.02, + "end": 2126.16, + "probability": 0.6584 + }, + { + "start": 2126.3, + "end": 2127.6, + "probability": 0.6479 + }, + { + "start": 2129.92, + "end": 2131.66, + "probability": 0.983 + }, + { + "start": 2132.4, + "end": 2134.86, + "probability": 0.9877 + }, + { + "start": 2135.5, + "end": 2138.24, + "probability": 0.9822 + }, + { + "start": 2138.5, + "end": 2139.54, + "probability": 0.6992 + }, + { + "start": 2139.66, + "end": 2140.3, + "probability": 0.6357 + }, + { + "start": 2140.94, + "end": 2144.86, + "probability": 0.9677 + }, + { + "start": 2145.1, + "end": 2147.58, + "probability": 0.9709 + }, + { + "start": 2148.28, + "end": 2149.32, + "probability": 0.8235 + }, + { + "start": 2149.92, + "end": 2150.82, + "probability": 0.7127 + }, + { + "start": 2150.96, + "end": 2152.7, + "probability": 0.9034 + }, + { + "start": 2153.36, + "end": 2154.74, + "probability": 0.9852 + }, + { + "start": 2154.94, + "end": 2156.08, + "probability": 0.9915 + }, + { + "start": 2157.04, + "end": 2160.08, + "probability": 0.9824 + }, + { + "start": 2160.36, + "end": 2161.32, + "probability": 0.8304 + }, + { + "start": 2161.38, + "end": 2163.09, + "probability": 0.9927 + }, + { + "start": 2164.2, + "end": 2165.61, + "probability": 0.9158 + }, + { + "start": 2166.53, + "end": 2167.66, + "probability": 0.8108 + }, + { + "start": 2167.99, + "end": 2169.09, + "probability": 0.9755 + }, + { + "start": 2169.21, + "end": 2170.13, + "probability": 0.8809 + }, + { + "start": 2170.53, + "end": 2174.09, + "probability": 0.9256 + }, + { + "start": 2174.21, + "end": 2175.57, + "probability": 0.9208 + }, + { + "start": 2175.83, + "end": 2179.01, + "probability": 0.9758 + }, + { + "start": 2179.73, + "end": 2182.85, + "probability": 0.8264 + }, + { + "start": 2183.77, + "end": 2186.41, + "probability": 0.749 + }, + { + "start": 2186.77, + "end": 2189.67, + "probability": 0.6356 + }, + { + "start": 2190.07, + "end": 2190.45, + "probability": 0.3585 + }, + { + "start": 2190.53, + "end": 2191.1, + "probability": 0.6051 + }, + { + "start": 2191.55, + "end": 2194.19, + "probability": 0.9625 + }, + { + "start": 2194.21, + "end": 2195.85, + "probability": 0.9425 + }, + { + "start": 2195.97, + "end": 2197.19, + "probability": 0.631 + }, + { + "start": 2197.35, + "end": 2199.73, + "probability": 0.8795 + }, + { + "start": 2199.85, + "end": 2201.87, + "probability": 0.7015 + }, + { + "start": 2203.15, + "end": 2205.23, + "probability": 0.4971 + }, + { + "start": 2205.31, + "end": 2207.89, + "probability": 0.8778 + }, + { + "start": 2207.97, + "end": 2209.09, + "probability": 0.7511 + }, + { + "start": 2209.17, + "end": 2209.83, + "probability": 0.566 + }, + { + "start": 2210.05, + "end": 2214.89, + "probability": 0.9723 + }, + { + "start": 2214.89, + "end": 2218.47, + "probability": 0.9819 + }, + { + "start": 2219.99, + "end": 2221.25, + "probability": 0.7088 + }, + { + "start": 2221.55, + "end": 2222.39, + "probability": 0.8746 + }, + { + "start": 2222.75, + "end": 2224.91, + "probability": 0.9958 + }, + { + "start": 2224.97, + "end": 2225.69, + "probability": 0.7653 + }, + { + "start": 2226.25, + "end": 2227.99, + "probability": 0.998 + }, + { + "start": 2228.33, + "end": 2229.05, + "probability": 0.0541 + }, + { + "start": 2229.53, + "end": 2232.23, + "probability": 0.5828 + }, + { + "start": 2232.61, + "end": 2235.21, + "probability": 0.9942 + }, + { + "start": 2235.29, + "end": 2236.19, + "probability": 0.5982 + }, + { + "start": 2236.85, + "end": 2237.79, + "probability": 0.9633 + }, + { + "start": 2237.79, + "end": 2239.15, + "probability": 0.4948 + }, + { + "start": 2239.17, + "end": 2239.47, + "probability": 0.4218 + }, + { + "start": 2239.49, + "end": 2239.69, + "probability": 0.401 + }, + { + "start": 2239.85, + "end": 2240.37, + "probability": 0.5757 + }, + { + "start": 2240.45, + "end": 2241.09, + "probability": 0.5144 + }, + { + "start": 2241.19, + "end": 2243.71, + "probability": 0.6074 + }, + { + "start": 2244.41, + "end": 2246.43, + "probability": 0.8851 + }, + { + "start": 2246.53, + "end": 2247.63, + "probability": 0.8468 + }, + { + "start": 2247.71, + "end": 2251.55, + "probability": 0.7373 + }, + { + "start": 2251.55, + "end": 2254.07, + "probability": 0.9843 + }, + { + "start": 2254.77, + "end": 2255.27, + "probability": 0.6775 + }, + { + "start": 2255.35, + "end": 2255.71, + "probability": 0.7834 + }, + { + "start": 2255.83, + "end": 2256.95, + "probability": 0.8462 + }, + { + "start": 2256.99, + "end": 2260.97, + "probability": 0.9036 + }, + { + "start": 2261.47, + "end": 2262.85, + "probability": 0.9553 + }, + { + "start": 2262.93, + "end": 2264.64, + "probability": 0.9927 + }, + { + "start": 2265.75, + "end": 2266.63, + "probability": 0.6978 + }, + { + "start": 2267.11, + "end": 2268.37, + "probability": 0.8945 + }, + { + "start": 2269.01, + "end": 2270.43, + "probability": 0.9272 + }, + { + "start": 2271.03, + "end": 2271.27, + "probability": 0.3202 + }, + { + "start": 2271.27, + "end": 2273.69, + "probability": 0.9822 + }, + { + "start": 2274.41, + "end": 2276.61, + "probability": 0.5623 + }, + { + "start": 2277.23, + "end": 2278.15, + "probability": 0.7909 + }, + { + "start": 2278.31, + "end": 2279.01, + "probability": 0.8501 + }, + { + "start": 2279.09, + "end": 2280.21, + "probability": 0.9304 + }, + { + "start": 2281.53, + "end": 2282.75, + "probability": 0.9358 + }, + { + "start": 2282.97, + "end": 2285.77, + "probability": 0.496 + }, + { + "start": 2286.23, + "end": 2290.33, + "probability": 0.978 + }, + { + "start": 2290.33, + "end": 2294.89, + "probability": 0.9937 + }, + { + "start": 2295.39, + "end": 2296.61, + "probability": 0.8571 + }, + { + "start": 2297.01, + "end": 2297.95, + "probability": 0.8906 + }, + { + "start": 2297.97, + "end": 2298.91, + "probability": 0.7056 + }, + { + "start": 2300.09, + "end": 2302.33, + "probability": 0.9361 + }, + { + "start": 2302.39, + "end": 2303.73, + "probability": 0.6894 + }, + { + "start": 2305.19, + "end": 2306.47, + "probability": 0.7664 + }, + { + "start": 2306.59, + "end": 2309.55, + "probability": 0.9216 + }, + { + "start": 2309.75, + "end": 2314.31, + "probability": 0.9438 + }, + { + "start": 2314.39, + "end": 2316.24, + "probability": 0.6455 + }, + { + "start": 2316.81, + "end": 2320.07, + "probability": 0.7275 + }, + { + "start": 2320.51, + "end": 2321.01, + "probability": 0.799 + }, + { + "start": 2321.19, + "end": 2323.27, + "probability": 0.8845 + }, + { + "start": 2323.43, + "end": 2323.75, + "probability": 0.4525 + }, + { + "start": 2323.89, + "end": 2325.05, + "probability": 0.7099 + }, + { + "start": 2325.77, + "end": 2331.43, + "probability": 0.9316 + }, + { + "start": 2332.13, + "end": 2334.07, + "probability": 0.8577 + }, + { + "start": 2334.55, + "end": 2336.33, + "probability": 0.8714 + }, + { + "start": 2336.97, + "end": 2339.37, + "probability": 0.5663 + }, + { + "start": 2339.47, + "end": 2341.85, + "probability": 0.7007 + }, + { + "start": 2342.19, + "end": 2342.68, + "probability": 0.564 + }, + { + "start": 2343.07, + "end": 2348.01, + "probability": 0.0245 + }, + { + "start": 2371.67, + "end": 2376.73, + "probability": 0.7567 + }, + { + "start": 2377.63, + "end": 2379.83, + "probability": 0.7989 + }, + { + "start": 2380.31, + "end": 2382.15, + "probability": 0.8125 + }, + { + "start": 2382.53, + "end": 2383.03, + "probability": 0.6299 + }, + { + "start": 2383.39, + "end": 2384.53, + "probability": 0.7842 + }, + { + "start": 2384.65, + "end": 2389.05, + "probability": 0.6218 + }, + { + "start": 2390.45, + "end": 2391.91, + "probability": 0.6813 + }, + { + "start": 2392.13, + "end": 2392.81, + "probability": 0.8151 + }, + { + "start": 2392.91, + "end": 2393.66, + "probability": 0.4939 + }, + { + "start": 2394.05, + "end": 2395.77, + "probability": 0.9906 + }, + { + "start": 2396.03, + "end": 2397.56, + "probability": 0.7163 + }, + { + "start": 2398.13, + "end": 2401.74, + "probability": 0.9106 + }, + { + "start": 2402.69, + "end": 2407.09, + "probability": 0.736 + }, + { + "start": 2407.09, + "end": 2409.23, + "probability": 0.7521 + }, + { + "start": 2409.83, + "end": 2411.15, + "probability": 0.9456 + }, + { + "start": 2411.49, + "end": 2412.13, + "probability": 0.705 + }, + { + "start": 2412.43, + "end": 2416.03, + "probability": 0.8718 + }, + { + "start": 2416.31, + "end": 2421.67, + "probability": 0.6787 + }, + { + "start": 2422.13, + "end": 2424.27, + "probability": 0.6902 + }, + { + "start": 2424.47, + "end": 2428.05, + "probability": 0.8499 + }, + { + "start": 2428.05, + "end": 2433.61, + "probability": 0.895 + }, + { + "start": 2433.69, + "end": 2438.25, + "probability": 0.7041 + }, + { + "start": 2439.07, + "end": 2444.6, + "probability": 0.9648 + }, + { + "start": 2445.23, + "end": 2446.59, + "probability": 0.7523 + }, + { + "start": 2447.39, + "end": 2454.23, + "probability": 0.9879 + }, + { + "start": 2454.35, + "end": 2456.09, + "probability": 0.9971 + }, + { + "start": 2456.59, + "end": 2460.49, + "probability": 0.8212 + }, + { + "start": 2460.89, + "end": 2462.85, + "probability": 0.8998 + }, + { + "start": 2463.39, + "end": 2464.43, + "probability": 0.9257 + }, + { + "start": 2464.47, + "end": 2466.83, + "probability": 0.8687 + }, + { + "start": 2467.13, + "end": 2468.31, + "probability": 0.8801 + }, + { + "start": 2468.45, + "end": 2472.27, + "probability": 0.962 + }, + { + "start": 2472.27, + "end": 2477.81, + "probability": 0.6486 + }, + { + "start": 2479.25, + "end": 2481.53, + "probability": 0.5067 + }, + { + "start": 2481.65, + "end": 2482.15, + "probability": 0.7327 + }, + { + "start": 2482.57, + "end": 2484.63, + "probability": 0.9347 + }, + { + "start": 2484.65, + "end": 2485.33, + "probability": 0.9845 + }, + { + "start": 2487.79, + "end": 2489.59, + "probability": 0.9514 + }, + { + "start": 2489.67, + "end": 2492.2, + "probability": 0.6086 + }, + { + "start": 2492.79, + "end": 2492.95, + "probability": 0.2503 + }, + { + "start": 2493.95, + "end": 2497.95, + "probability": 0.915 + }, + { + "start": 2498.55, + "end": 2500.57, + "probability": 0.6023 + }, + { + "start": 2500.91, + "end": 2502.89, + "probability": 0.5325 + }, + { + "start": 2502.99, + "end": 2505.49, + "probability": 0.9676 + }, + { + "start": 2505.63, + "end": 2506.75, + "probability": 0.8654 + }, + { + "start": 2506.93, + "end": 2507.97, + "probability": 0.7569 + }, + { + "start": 2508.45, + "end": 2508.45, + "probability": 0.542 + }, + { + "start": 2509.21, + "end": 2510.61, + "probability": 0.8854 + }, + { + "start": 2510.87, + "end": 2512.93, + "probability": 0.884 + }, + { + "start": 2514.69, + "end": 2516.09, + "probability": 0.2611 + }, + { + "start": 2516.17, + "end": 2516.25, + "probability": 0.8086 + }, + { + "start": 2516.85, + "end": 2518.79, + "probability": 0.6825 + }, + { + "start": 2519.47, + "end": 2519.89, + "probability": 0.0297 + }, + { + "start": 2519.89, + "end": 2522.35, + "probability": 0.9857 + }, + { + "start": 2523.49, + "end": 2525.05, + "probability": 0.9668 + }, + { + "start": 2525.17, + "end": 2530.11, + "probability": 0.9083 + }, + { + "start": 2530.27, + "end": 2531.23, + "probability": 0.9153 + }, + { + "start": 2531.51, + "end": 2533.29, + "probability": 0.727 + }, + { + "start": 2533.61, + "end": 2536.07, + "probability": 0.7422 + }, + { + "start": 2536.37, + "end": 2537.81, + "probability": 0.798 + }, + { + "start": 2537.87, + "end": 2539.45, + "probability": 0.927 + }, + { + "start": 2540.07, + "end": 2541.03, + "probability": 0.7433 + }, + { + "start": 2541.55, + "end": 2543.27, + "probability": 0.9147 + }, + { + "start": 2544.89, + "end": 2546.62, + "probability": 0.9907 + }, + { + "start": 2547.37, + "end": 2550.32, + "probability": 0.8826 + }, + { + "start": 2550.35, + "end": 2552.95, + "probability": 0.9937 + }, + { + "start": 2553.45, + "end": 2555.47, + "probability": 0.9564 + }, + { + "start": 2555.87, + "end": 2556.86, + "probability": 0.9548 + }, + { + "start": 2557.41, + "end": 2558.18, + "probability": 0.9915 + }, + { + "start": 2558.71, + "end": 2560.35, + "probability": 0.8629 + }, + { + "start": 2560.69, + "end": 2563.27, + "probability": 0.9299 + }, + { + "start": 2563.39, + "end": 2564.17, + "probability": 0.8489 + }, + { + "start": 2564.31, + "end": 2565.79, + "probability": 0.9134 + }, + { + "start": 2565.81, + "end": 2569.43, + "probability": 0.7076 + }, + { + "start": 2569.53, + "end": 2572.37, + "probability": 0.8867 + }, + { + "start": 2572.77, + "end": 2574.99, + "probability": 0.9743 + }, + { + "start": 2575.41, + "end": 2576.73, + "probability": 0.5597 + }, + { + "start": 2577.61, + "end": 2580.61, + "probability": 0.6867 + }, + { + "start": 2580.65, + "end": 2581.17, + "probability": 0.6718 + }, + { + "start": 2581.19, + "end": 2582.89, + "probability": 0.6772 + }, + { + "start": 2582.95, + "end": 2583.71, + "probability": 0.9681 + }, + { + "start": 2583.79, + "end": 2585.23, + "probability": 0.6281 + }, + { + "start": 2585.69, + "end": 2587.97, + "probability": 0.8481 + }, + { + "start": 2588.35, + "end": 2589.25, + "probability": 0.9434 + }, + { + "start": 2589.69, + "end": 2592.79, + "probability": 0.9561 + }, + { + "start": 2593.05, + "end": 2593.51, + "probability": 0.272 + }, + { + "start": 2593.59, + "end": 2594.61, + "probability": 0.8783 + }, + { + "start": 2595.01, + "end": 2598.25, + "probability": 0.854 + }, + { + "start": 2598.49, + "end": 2599.55, + "probability": 0.9469 + }, + { + "start": 2599.67, + "end": 2601.23, + "probability": 0.3533 + }, + { + "start": 2602.51, + "end": 2606.87, + "probability": 0.4237 + }, + { + "start": 2607.97, + "end": 2609.84, + "probability": 0.3786 + }, + { + "start": 2610.47, + "end": 2611.25, + "probability": 0.7737 + }, + { + "start": 2611.33, + "end": 2612.81, + "probability": 0.8861 + }, + { + "start": 2612.87, + "end": 2615.01, + "probability": 0.7094 + }, + { + "start": 2615.99, + "end": 2616.47, + "probability": 0.918 + }, + { + "start": 2616.79, + "end": 2619.59, + "probability": 0.8051 + }, + { + "start": 2620.03, + "end": 2620.81, + "probability": 0.5534 + }, + { + "start": 2621.35, + "end": 2622.45, + "probability": 0.8902 + }, + { + "start": 2623.15, + "end": 2623.41, + "probability": 0.6645 + }, + { + "start": 2623.47, + "end": 2624.01, + "probability": 0.8546 + }, + { + "start": 2624.07, + "end": 2625.01, + "probability": 0.8875 + }, + { + "start": 2625.37, + "end": 2626.35, + "probability": 0.8438 + }, + { + "start": 2626.47, + "end": 2627.79, + "probability": 0.5449 + }, + { + "start": 2628.51, + "end": 2629.85, + "probability": 0.9296 + }, + { + "start": 2629.93, + "end": 2630.51, + "probability": 0.7553 + }, + { + "start": 2631.11, + "end": 2632.65, + "probability": 0.5878 + }, + { + "start": 2632.77, + "end": 2634.73, + "probability": 0.501 + }, + { + "start": 2636.13, + "end": 2636.79, + "probability": 0.8701 + }, + { + "start": 2636.93, + "end": 2639.15, + "probability": 0.7 + }, + { + "start": 2639.93, + "end": 2640.11, + "probability": 0.7842 + }, + { + "start": 2641.07, + "end": 2642.63, + "probability": 0.6281 + }, + { + "start": 2643.45, + "end": 2644.77, + "probability": 0.9858 + }, + { + "start": 2645.07, + "end": 2646.05, + "probability": 0.4205 + }, + { + "start": 2646.35, + "end": 2647.05, + "probability": 0.717 + }, + { + "start": 2647.19, + "end": 2649.59, + "probability": 0.6919 + }, + { + "start": 2650.23, + "end": 2651.85, + "probability": 0.7861 + }, + { + "start": 2652.67, + "end": 2653.63, + "probability": 0.942 + }, + { + "start": 2654.35, + "end": 2655.47, + "probability": 0.8111 + }, + { + "start": 2655.95, + "end": 2656.79, + "probability": 0.4987 + }, + { + "start": 2657.43, + "end": 2657.65, + "probability": 0.4586 + }, + { + "start": 2658.35, + "end": 2659.41, + "probability": 0.731 + }, + { + "start": 2660.31, + "end": 2662.15, + "probability": 0.5926 + }, + { + "start": 2662.21, + "end": 2662.63, + "probability": 0.6706 + }, + { + "start": 2662.67, + "end": 2663.25, + "probability": 0.9408 + }, + { + "start": 2663.29, + "end": 2664.67, + "probability": 0.9169 + }, + { + "start": 2665.11, + "end": 2667.59, + "probability": 0.9438 + }, + { + "start": 2668.07, + "end": 2669.89, + "probability": 0.8656 + }, + { + "start": 2670.45, + "end": 2672.11, + "probability": 0.9329 + }, + { + "start": 2672.11, + "end": 2673.41, + "probability": 0.9834 + }, + { + "start": 2674.19, + "end": 2675.53, + "probability": 0.8255 + }, + { + "start": 2675.65, + "end": 2679.16, + "probability": 0.7674 + }, + { + "start": 2679.55, + "end": 2679.69, + "probability": 0.1171 + }, + { + "start": 2680.93, + "end": 2683.33, + "probability": 0.8649 + }, + { + "start": 2685.01, + "end": 2689.29, + "probability": 0.0374 + }, + { + "start": 2690.29, + "end": 2696.25, + "probability": 0.6049 + }, + { + "start": 2696.81, + "end": 2697.29, + "probability": 0.8104 + }, + { + "start": 2697.79, + "end": 2698.2, + "probability": 0.8428 + }, + { + "start": 2699.01, + "end": 2699.59, + "probability": 0.7204 + }, + { + "start": 2699.65, + "end": 2702.11, + "probability": 0.9568 + }, + { + "start": 2702.25, + "end": 2703.23, + "probability": 0.4406 + }, + { + "start": 2703.23, + "end": 2703.97, + "probability": 0.7068 + }, + { + "start": 2704.35, + "end": 2707.81, + "probability": 0.6685 + }, + { + "start": 2707.81, + "end": 2711.47, + "probability": 0.8925 + }, + { + "start": 2711.61, + "end": 2712.91, + "probability": 0.6479 + }, + { + "start": 2713.89, + "end": 2716.51, + "probability": 0.7223 + }, + { + "start": 2717.31, + "end": 2719.51, + "probability": 0.96 + }, + { + "start": 2720.07, + "end": 2724.07, + "probability": 0.7809 + }, + { + "start": 2724.31, + "end": 2725.77, + "probability": 0.9427 + }, + { + "start": 2725.87, + "end": 2727.53, + "probability": 0.7486 + }, + { + "start": 2727.57, + "end": 2728.23, + "probability": 0.9621 + }, + { + "start": 2728.29, + "end": 2729.63, + "probability": 0.7237 + }, + { + "start": 2729.99, + "end": 2731.09, + "probability": 0.9163 + }, + { + "start": 2731.17, + "end": 2731.61, + "probability": 0.9351 + }, + { + "start": 2731.71, + "end": 2732.29, + "probability": 0.9502 + }, + { + "start": 2733.35, + "end": 2734.55, + "probability": 0.8504 + }, + { + "start": 2734.69, + "end": 2737.09, + "probability": 0.5704 + }, + { + "start": 2737.13, + "end": 2740.13, + "probability": 0.7866 + }, + { + "start": 2740.25, + "end": 2743.07, + "probability": 0.9443 + }, + { + "start": 2743.39, + "end": 2743.63, + "probability": 0.2654 + }, + { + "start": 2743.63, + "end": 2745.77, + "probability": 0.7265 + }, + { + "start": 2745.91, + "end": 2748.83, + "probability": 0.567 + }, + { + "start": 2749.33, + "end": 2751.01, + "probability": 0.9954 + }, + { + "start": 2751.09, + "end": 2752.49, + "probability": 0.7505 + }, + { + "start": 2752.95, + "end": 2757.61, + "probability": 0.7825 + }, + { + "start": 2757.61, + "end": 2759.15, + "probability": 0.8048 + }, + { + "start": 2759.49, + "end": 2760.43, + "probability": 0.778 + }, + { + "start": 2760.51, + "end": 2760.97, + "probability": 0.499 + }, + { + "start": 2761.59, + "end": 2762.77, + "probability": 0.7875 + }, + { + "start": 2762.97, + "end": 2763.47, + "probability": 0.5894 + }, + { + "start": 2763.63, + "end": 2764.97, + "probability": 0.931 + }, + { + "start": 2765.46, + "end": 2768.19, + "probability": 0.9446 + }, + { + "start": 2768.87, + "end": 2772.47, + "probability": 0.7025 + }, + { + "start": 2772.51, + "end": 2773.35, + "probability": 0.6654 + }, + { + "start": 2773.39, + "end": 2773.59, + "probability": 0.8195 + }, + { + "start": 2773.63, + "end": 2774.07, + "probability": 0.9756 + }, + { + "start": 2774.23, + "end": 2776.46, + "probability": 0.8218 + }, + { + "start": 2777.95, + "end": 2780.81, + "probability": 0.9907 + }, + { + "start": 2781.39, + "end": 2783.98, + "probability": 0.5659 + }, + { + "start": 2784.97, + "end": 2787.61, + "probability": 0.7292 + }, + { + "start": 2788.01, + "end": 2789.85, + "probability": 0.7556 + }, + { + "start": 2789.95, + "end": 2791.37, + "probability": 0.9725 + }, + { + "start": 2791.61, + "end": 2794.27, + "probability": 0.4709 + }, + { + "start": 2794.99, + "end": 2797.07, + "probability": 0.9756 + }, + { + "start": 2797.45, + "end": 2799.57, + "probability": 0.9381 + }, + { + "start": 2799.85, + "end": 2801.13, + "probability": 0.8314 + }, + { + "start": 2801.51, + "end": 2802.53, + "probability": 0.8699 + }, + { + "start": 2803.39, + "end": 2803.51, + "probability": 0.0005 + }, + { + "start": 2803.51, + "end": 2805.87, + "probability": 0.5382 + }, + { + "start": 2806.25, + "end": 2807.59, + "probability": 0.9069 + }, + { + "start": 2807.91, + "end": 2809.95, + "probability": 0.5223 + }, + { + "start": 2810.15, + "end": 2811.53, + "probability": 0.8045 + }, + { + "start": 2812.43, + "end": 2813.35, + "probability": 0.6473 + }, + { + "start": 2813.75, + "end": 2815.25, + "probability": 0.3913 + }, + { + "start": 2815.41, + "end": 2816.33, + "probability": 0.9218 + }, + { + "start": 2826.79, + "end": 2828.87, + "probability": 0.055 + }, + { + "start": 2832.23, + "end": 2832.99, + "probability": 0.195 + }, + { + "start": 2833.89, + "end": 2834.07, + "probability": 0.0205 + }, + { + "start": 2835.73, + "end": 2837.43, + "probability": 0.0228 + }, + { + "start": 2839.13, + "end": 2842.41, + "probability": 0.7345 + }, + { + "start": 2843.31, + "end": 2844.41, + "probability": 0.8714 + }, + { + "start": 2844.59, + "end": 2848.18, + "probability": 0.7122 + }, + { + "start": 2848.65, + "end": 2852.53, + "probability": 0.9282 + }, + { + "start": 2853.25, + "end": 2856.11, + "probability": 0.9604 + }, + { + "start": 2857.21, + "end": 2859.33, + "probability": 0.9839 + }, + { + "start": 2859.45, + "end": 2860.73, + "probability": 0.9661 + }, + { + "start": 2861.01, + "end": 2863.47, + "probability": 0.905 + }, + { + "start": 2864.49, + "end": 2868.39, + "probability": 0.8267 + }, + { + "start": 2870.15, + "end": 2873.71, + "probability": 0.9868 + }, + { + "start": 2873.85, + "end": 2875.47, + "probability": 0.6465 + }, + { + "start": 2875.57, + "end": 2876.73, + "probability": 0.647 + }, + { + "start": 2877.81, + "end": 2880.11, + "probability": 0.6431 + }, + { + "start": 2880.21, + "end": 2882.16, + "probability": 0.9548 + }, + { + "start": 2883.83, + "end": 2887.97, + "probability": 0.9866 + }, + { + "start": 2888.23, + "end": 2889.85, + "probability": 0.8258 + }, + { + "start": 2889.85, + "end": 2891.53, + "probability": 0.7691 + }, + { + "start": 2891.59, + "end": 2892.55, + "probability": 0.0357 + }, + { + "start": 2892.81, + "end": 2896.29, + "probability": 0.9895 + }, + { + "start": 2897.59, + "end": 2899.15, + "probability": 0.028 + }, + { + "start": 2900.85, + "end": 2903.59, + "probability": 0.0606 + }, + { + "start": 2905.07, + "end": 2905.17, + "probability": 0.0323 + }, + { + "start": 2905.17, + "end": 2907.18, + "probability": 0.6923 + }, + { + "start": 2908.91, + "end": 2909.81, + "probability": 0.998 + }, + { + "start": 2911.17, + "end": 2913.45, + "probability": 0.8276 + }, + { + "start": 2914.83, + "end": 2918.65, + "probability": 0.9878 + }, + { + "start": 2920.73, + "end": 2922.75, + "probability": 0.993 + }, + { + "start": 2924.23, + "end": 2924.77, + "probability": 0.5458 + }, + { + "start": 2925.99, + "end": 2928.93, + "probability": 0.8995 + }, + { + "start": 2928.97, + "end": 2929.83, + "probability": 0.9315 + }, + { + "start": 2929.95, + "end": 2931.92, + "probability": 0.9953 + }, + { + "start": 2933.53, + "end": 2935.89, + "probability": 0.9712 + }, + { + "start": 2937.77, + "end": 2940.01, + "probability": 0.8472 + }, + { + "start": 2940.75, + "end": 2942.33, + "probability": 0.9819 + }, + { + "start": 2942.63, + "end": 2945.27, + "probability": 0.9719 + }, + { + "start": 2946.31, + "end": 2950.69, + "probability": 0.849 + }, + { + "start": 2952.03, + "end": 2957.99, + "probability": 0.9447 + }, + { + "start": 2958.13, + "end": 2960.91, + "probability": 0.9966 + }, + { + "start": 2961.05, + "end": 2963.81, + "probability": 0.9881 + }, + { + "start": 2964.59, + "end": 2966.93, + "probability": 0.9937 + }, + { + "start": 2966.93, + "end": 2969.21, + "probability": 0.9688 + }, + { + "start": 2969.33, + "end": 2971.17, + "probability": 0.9176 + }, + { + "start": 2972.69, + "end": 2974.07, + "probability": 0.855 + }, + { + "start": 2975.55, + "end": 2980.13, + "probability": 0.8338 + }, + { + "start": 2981.07, + "end": 2983.97, + "probability": 0.8033 + }, + { + "start": 2984.53, + "end": 2986.93, + "probability": 0.8291 + }, + { + "start": 2988.55, + "end": 2991.87, + "probability": 0.7858 + }, + { + "start": 2992.87, + "end": 2997.21, + "probability": 0.8629 + }, + { + "start": 2998.05, + "end": 3001.41, + "probability": 0.9607 + }, + { + "start": 3001.41, + "end": 3007.73, + "probability": 0.9666 + }, + { + "start": 3008.47, + "end": 3011.61, + "probability": 0.6241 + }, + { + "start": 3013.61, + "end": 3015.95, + "probability": 0.9808 + }, + { + "start": 3017.05, + "end": 3018.47, + "probability": 0.2552 + }, + { + "start": 3018.47, + "end": 3019.95, + "probability": 0.7495 + }, + { + "start": 3020.29, + "end": 3021.67, + "probability": 0.887 + }, + { + "start": 3021.85, + "end": 3025.57, + "probability": 0.0905 + }, + { + "start": 3025.61, + "end": 3025.83, + "probability": 0.3109 + }, + { + "start": 3026.33, + "end": 3027.49, + "probability": 0.1647 + }, + { + "start": 3027.83, + "end": 3030.39, + "probability": 0.2394 + }, + { + "start": 3031.11, + "end": 3033.15, + "probability": 0.4192 + }, + { + "start": 3033.87, + "end": 3036.07, + "probability": 0.9524 + }, + { + "start": 3036.63, + "end": 3037.41, + "probability": 0.9448 + }, + { + "start": 3037.95, + "end": 3038.85, + "probability": 0.5092 + }, + { + "start": 3039.81, + "end": 3041.23, + "probability": 0.8305 + }, + { + "start": 3041.53, + "end": 3042.27, + "probability": 0.9473 + }, + { + "start": 3042.61, + "end": 3045.85, + "probability": 0.8901 + }, + { + "start": 3046.15, + "end": 3046.17, + "probability": 0.3014 + }, + { + "start": 3046.31, + "end": 3046.83, + "probability": 0.6338 + }, + { + "start": 3046.95, + "end": 3047.51, + "probability": 0.5663 + }, + { + "start": 3047.65, + "end": 3051.23, + "probability": 0.9643 + }, + { + "start": 3052.97, + "end": 3053.55, + "probability": 0.5253 + }, + { + "start": 3053.55, + "end": 3055.13, + "probability": 0.9253 + }, + { + "start": 3055.19, + "end": 3056.27, + "probability": 0.7146 + }, + { + "start": 3056.51, + "end": 3057.53, + "probability": 0.864 + }, + { + "start": 3057.65, + "end": 3062.37, + "probability": 0.98 + }, + { + "start": 3062.39, + "end": 3062.85, + "probability": 0.8738 + }, + { + "start": 3063.05, + "end": 3063.26, + "probability": 0.4106 + }, + { + "start": 3064.27, + "end": 3066.41, + "probability": 0.5514 + }, + { + "start": 3066.41, + "end": 3067.21, + "probability": 0.159 + }, + { + "start": 3068.27, + "end": 3070.09, + "probability": 0.7302 + }, + { + "start": 3070.15, + "end": 3071.19, + "probability": 0.7616 + }, + { + "start": 3071.35, + "end": 3076.49, + "probability": 0.412 + }, + { + "start": 3077.71, + "end": 3078.09, + "probability": 0.4985 + }, + { + "start": 3078.09, + "end": 3078.77, + "probability": 0.7432 + }, + { + "start": 3079.99, + "end": 3086.51, + "probability": 0.8373 + }, + { + "start": 3089.51, + "end": 3090.81, + "probability": 0.9151 + }, + { + "start": 3094.01, + "end": 3096.27, + "probability": 0.9664 + }, + { + "start": 3096.31, + "end": 3097.05, + "probability": 0.7923 + }, + { + "start": 3097.23, + "end": 3100.63, + "probability": 0.9854 + }, + { + "start": 3100.71, + "end": 3103.15, + "probability": 0.9714 + }, + { + "start": 3104.19, + "end": 3106.78, + "probability": 0.984 + }, + { + "start": 3108.77, + "end": 3111.87, + "probability": 0.9995 + }, + { + "start": 3112.73, + "end": 3115.0, + "probability": 0.9969 + }, + { + "start": 3115.07, + "end": 3121.11, + "probability": 0.9918 + }, + { + "start": 3122.95, + "end": 3125.83, + "probability": 0.9834 + }, + { + "start": 3127.23, + "end": 3131.99, + "probability": 0.968 + }, + { + "start": 3132.23, + "end": 3134.91, + "probability": 0.835 + }, + { + "start": 3135.41, + "end": 3136.63, + "probability": 0.587 + }, + { + "start": 3137.29, + "end": 3138.55, + "probability": 0.8821 + }, + { + "start": 3140.25, + "end": 3144.63, + "probability": 0.9627 + }, + { + "start": 3146.13, + "end": 3149.05, + "probability": 0.7788 + }, + { + "start": 3149.23, + "end": 3149.97, + "probability": 0.9501 + }, + { + "start": 3152.05, + "end": 3155.7, + "probability": 0.9024 + }, + { + "start": 3155.85, + "end": 3158.17, + "probability": 0.9209 + }, + { + "start": 3159.15, + "end": 3160.05, + "probability": 0.5041 + }, + { + "start": 3160.05, + "end": 3162.41, + "probability": 0.8533 + }, + { + "start": 3163.73, + "end": 3167.59, + "probability": 0.956 + }, + { + "start": 3168.27, + "end": 3169.55, + "probability": 0.9915 + }, + { + "start": 3169.71, + "end": 3175.79, + "probability": 0.9923 + }, + { + "start": 3176.73, + "end": 3182.27, + "probability": 0.9385 + }, + { + "start": 3182.31, + "end": 3184.41, + "probability": 0.8101 + }, + { + "start": 3185.35, + "end": 3188.57, + "probability": 0.9785 + }, + { + "start": 3190.49, + "end": 3197.19, + "probability": 0.8096 + }, + { + "start": 3201.03, + "end": 3205.03, + "probability": 0.8106 + }, + { + "start": 3205.03, + "end": 3208.79, + "probability": 0.8502 + }, + { + "start": 3211.63, + "end": 3212.99, + "probability": 0.9562 + }, + { + "start": 3213.65, + "end": 3219.09, + "probability": 0.9954 + }, + { + "start": 3219.63, + "end": 3221.63, + "probability": 0.9635 + }, + { + "start": 3222.17, + "end": 3226.93, + "probability": 0.9954 + }, + { + "start": 3228.27, + "end": 3229.21, + "probability": 0.8254 + }, + { + "start": 3229.37, + "end": 3231.21, + "probability": 0.9921 + }, + { + "start": 3231.37, + "end": 3232.65, + "probability": 0.8555 + }, + { + "start": 3232.69, + "end": 3237.25, + "probability": 0.9739 + }, + { + "start": 3237.33, + "end": 3238.07, + "probability": 0.9351 + }, + { + "start": 3238.13, + "end": 3239.09, + "probability": 0.8325 + }, + { + "start": 3240.15, + "end": 3241.89, + "probability": 0.9807 + }, + { + "start": 3245.07, + "end": 3245.95, + "probability": 0.8956 + }, + { + "start": 3247.21, + "end": 3248.13, + "probability": 0.847 + }, + { + "start": 3248.91, + "end": 3252.13, + "probability": 0.9972 + }, + { + "start": 3253.65, + "end": 3255.17, + "probability": 0.9979 + }, + { + "start": 3255.95, + "end": 3259.29, + "probability": 0.9683 + }, + { + "start": 3259.61, + "end": 3261.03, + "probability": 0.5151 + }, + { + "start": 3261.83, + "end": 3267.69, + "probability": 0.8733 + }, + { + "start": 3270.25, + "end": 3274.21, + "probability": 0.7273 + }, + { + "start": 3274.37, + "end": 3275.37, + "probability": 0.9751 + }, + { + "start": 3276.41, + "end": 3277.67, + "probability": 0.9937 + }, + { + "start": 3277.67, + "end": 3279.85, + "probability": 0.9814 + }, + { + "start": 3280.01, + "end": 3281.43, + "probability": 0.7361 + }, + { + "start": 3283.09, + "end": 3285.71, + "probability": 0.9405 + }, + { + "start": 3287.19, + "end": 3290.68, + "probability": 0.9891 + }, + { + "start": 3292.65, + "end": 3292.91, + "probability": 0.5746 + }, + { + "start": 3293.01, + "end": 3295.45, + "probability": 0.9208 + }, + { + "start": 3295.51, + "end": 3296.87, + "probability": 0.9462 + }, + { + "start": 3296.95, + "end": 3298.37, + "probability": 0.9218 + }, + { + "start": 3299.39, + "end": 3300.33, + "probability": 0.9177 + }, + { + "start": 3300.39, + "end": 3301.01, + "probability": 0.7593 + }, + { + "start": 3301.09, + "end": 3301.79, + "probability": 0.8087 + }, + { + "start": 3302.01, + "end": 3303.81, + "probability": 0.9823 + }, + { + "start": 3304.17, + "end": 3306.35, + "probability": 0.9922 + }, + { + "start": 3309.09, + "end": 3310.57, + "probability": 0.9902 + }, + { + "start": 3312.53, + "end": 3314.17, + "probability": 0.9927 + }, + { + "start": 3315.15, + "end": 3318.93, + "probability": 0.8802 + }, + { + "start": 3320.13, + "end": 3322.13, + "probability": 0.9097 + }, + { + "start": 3322.25, + "end": 3326.53, + "probability": 0.9978 + }, + { + "start": 3326.53, + "end": 3332.21, + "probability": 0.991 + }, + { + "start": 3333.19, + "end": 3335.33, + "probability": 0.9648 + }, + { + "start": 3336.43, + "end": 3336.95, + "probability": 0.926 + }, + { + "start": 3337.33, + "end": 3339.01, + "probability": 0.9907 + }, + { + "start": 3340.47, + "end": 3342.57, + "probability": 0.9972 + }, + { + "start": 3343.33, + "end": 3347.61, + "probability": 0.9696 + }, + { + "start": 3348.37, + "end": 3348.97, + "probability": 0.8899 + }, + { + "start": 3350.71, + "end": 3351.93, + "probability": 0.7682 + }, + { + "start": 3353.57, + "end": 3354.91, + "probability": 0.8456 + }, + { + "start": 3355.57, + "end": 3357.73, + "probability": 0.9919 + }, + { + "start": 3358.73, + "end": 3360.75, + "probability": 0.8246 + }, + { + "start": 3361.91, + "end": 3365.41, + "probability": 0.9833 + }, + { + "start": 3367.39, + "end": 3369.45, + "probability": 0.9965 + }, + { + "start": 3371.97, + "end": 3377.17, + "probability": 0.975 + }, + { + "start": 3378.41, + "end": 3379.55, + "probability": 0.8903 + }, + { + "start": 3379.69, + "end": 3379.99, + "probability": 0.1937 + }, + { + "start": 3380.21, + "end": 3382.53, + "probability": 0.6211 + }, + { + "start": 3383.51, + "end": 3386.61, + "probability": 0.7932 + }, + { + "start": 3387.45, + "end": 3394.49, + "probability": 0.9929 + }, + { + "start": 3396.65, + "end": 3398.37, + "probability": 0.9471 + }, + { + "start": 3399.69, + "end": 3401.31, + "probability": 0.8424 + }, + { + "start": 3403.07, + "end": 3406.21, + "probability": 0.9863 + }, + { + "start": 3408.41, + "end": 3409.25, + "probability": 0.4981 + }, + { + "start": 3411.25, + "end": 3417.15, + "probability": 0.9922 + }, + { + "start": 3417.25, + "end": 3418.04, + "probability": 0.6963 + }, + { + "start": 3418.95, + "end": 3420.07, + "probability": 0.843 + }, + { + "start": 3420.37, + "end": 3423.31, + "probability": 0.9796 + }, + { + "start": 3423.75, + "end": 3425.21, + "probability": 0.9724 + }, + { + "start": 3426.13, + "end": 3427.19, + "probability": 0.7367 + }, + { + "start": 3427.29, + "end": 3429.09, + "probability": 0.9822 + }, + { + "start": 3430.23, + "end": 3432.19, + "probability": 0.9095 + }, + { + "start": 3432.19, + "end": 3436.29, + "probability": 0.9985 + }, + { + "start": 3438.55, + "end": 3441.15, + "probability": 0.9619 + }, + { + "start": 3442.87, + "end": 3446.75, + "probability": 0.8071 + }, + { + "start": 3447.21, + "end": 3448.23, + "probability": 0.9953 + }, + { + "start": 3448.37, + "end": 3449.19, + "probability": 0.9357 + }, + { + "start": 3450.35, + "end": 3451.17, + "probability": 0.9261 + }, + { + "start": 3452.59, + "end": 3455.83, + "probability": 0.9449 + }, + { + "start": 3457.55, + "end": 3458.97, + "probability": 0.98 + }, + { + "start": 3460.27, + "end": 3461.57, + "probability": 0.9895 + }, + { + "start": 3462.83, + "end": 3463.97, + "probability": 0.8333 + }, + { + "start": 3465.09, + "end": 3465.89, + "probability": 0.95 + }, + { + "start": 3467.09, + "end": 3469.47, + "probability": 0.9743 + }, + { + "start": 3470.15, + "end": 3471.17, + "probability": 0.9351 + }, + { + "start": 3473.03, + "end": 3477.93, + "probability": 0.9909 + }, + { + "start": 3479.15, + "end": 3481.61, + "probability": 0.9214 + }, + { + "start": 3483.15, + "end": 3489.03, + "probability": 0.9987 + }, + { + "start": 3489.15, + "end": 3491.47, + "probability": 0.9823 + }, + { + "start": 3492.49, + "end": 3494.91, + "probability": 0.895 + }, + { + "start": 3496.29, + "end": 3502.41, + "probability": 0.9966 + }, + { + "start": 3502.47, + "end": 3504.11, + "probability": 0.9873 + }, + { + "start": 3504.21, + "end": 3505.97, + "probability": 0.9917 + }, + { + "start": 3508.77, + "end": 3510.17, + "probability": 0.968 + }, + { + "start": 3511.27, + "end": 3513.29, + "probability": 0.9714 + }, + { + "start": 3514.39, + "end": 3514.79, + "probability": 0.6985 + }, + { + "start": 3514.87, + "end": 3518.55, + "probability": 0.9463 + }, + { + "start": 3518.89, + "end": 3519.37, + "probability": 0.319 + }, + { + "start": 3520.49, + "end": 3526.17, + "probability": 0.8752 + }, + { + "start": 3527.21, + "end": 3528.95, + "probability": 0.9747 + }, + { + "start": 3529.85, + "end": 3535.07, + "probability": 0.9445 + }, + { + "start": 3536.79, + "end": 3541.95, + "probability": 0.9598 + }, + { + "start": 3542.55, + "end": 3548.09, + "probability": 0.9166 + }, + { + "start": 3548.17, + "end": 3551.95, + "probability": 0.9038 + }, + { + "start": 3553.61, + "end": 3554.73, + "probability": 0.9535 + }, + { + "start": 3556.63, + "end": 3559.53, + "probability": 0.9738 + }, + { + "start": 3560.57, + "end": 3566.57, + "probability": 0.9705 + }, + { + "start": 3567.17, + "end": 3568.51, + "probability": 0.9561 + }, + { + "start": 3569.97, + "end": 3571.21, + "probability": 0.9026 + }, + { + "start": 3571.35, + "end": 3577.23, + "probability": 0.9848 + }, + { + "start": 3577.23, + "end": 3579.59, + "probability": 0.9718 + }, + { + "start": 3580.83, + "end": 3581.85, + "probability": 0.8863 + }, + { + "start": 3583.01, + "end": 3584.55, + "probability": 0.9521 + }, + { + "start": 3585.29, + "end": 3588.23, + "probability": 0.9324 + }, + { + "start": 3589.13, + "end": 3590.67, + "probability": 0.984 + }, + { + "start": 3590.85, + "end": 3592.65, + "probability": 0.9873 + }, + { + "start": 3592.73, + "end": 3595.49, + "probability": 0.8806 + }, + { + "start": 3596.39, + "end": 3598.65, + "probability": 0.9319 + }, + { + "start": 3601.11, + "end": 3601.95, + "probability": 0.9408 + }, + { + "start": 3603.29, + "end": 3606.45, + "probability": 0.9787 + }, + { + "start": 3607.05, + "end": 3610.89, + "probability": 0.9858 + }, + { + "start": 3611.81, + "end": 3616.69, + "probability": 0.9745 + }, + { + "start": 3617.45, + "end": 3623.17, + "probability": 0.8909 + }, + { + "start": 3623.63, + "end": 3624.61, + "probability": 0.9915 + }, + { + "start": 3625.51, + "end": 3627.73, + "probability": 0.9301 + }, + { + "start": 3628.59, + "end": 3638.19, + "probability": 0.9653 + }, + { + "start": 3639.07, + "end": 3643.77, + "probability": 0.9501 + }, + { + "start": 3644.53, + "end": 3646.3, + "probability": 0.8086 + }, + { + "start": 3647.25, + "end": 3650.21, + "probability": 0.9938 + }, + { + "start": 3650.79, + "end": 3655.53, + "probability": 0.9813 + }, + { + "start": 3655.93, + "end": 3656.47, + "probability": 0.7954 + }, + { + "start": 3656.99, + "end": 3658.99, + "probability": 0.7829 + }, + { + "start": 3659.21, + "end": 3662.27, + "probability": 0.5915 + }, + { + "start": 3662.37, + "end": 3662.65, + "probability": 0.4021 + }, + { + "start": 3663.05, + "end": 3664.81, + "probability": 0.7606 + }, + { + "start": 3665.65, + "end": 3668.29, + "probability": 0.9441 + }, + { + "start": 3669.01, + "end": 3672.33, + "probability": 0.855 + }, + { + "start": 3672.39, + "end": 3673.59, + "probability": 0.4073 + }, + { + "start": 3675.62, + "end": 3679.63, + "probability": 0.7217 + }, + { + "start": 3679.99, + "end": 3684.21, + "probability": 0.963 + }, + { + "start": 3687.88, + "end": 3688.87, + "probability": 0.0037 + }, + { + "start": 3688.87, + "end": 3688.87, + "probability": 0.0767 + }, + { + "start": 3688.87, + "end": 3691.35, + "probability": 0.3672 + }, + { + "start": 3692.07, + "end": 3694.17, + "probability": 0.9394 + }, + { + "start": 3695.99, + "end": 3697.39, + "probability": 0.9082 + }, + { + "start": 3697.45, + "end": 3699.21, + "probability": 0.7577 + }, + { + "start": 3700.37, + "end": 3701.95, + "probability": 0.5691 + }, + { + "start": 3703.61, + "end": 3708.59, + "probability": 0.8678 + }, + { + "start": 3709.47, + "end": 3712.99, + "probability": 0.998 + }, + { + "start": 3713.61, + "end": 3719.21, + "probability": 0.9988 + }, + { + "start": 3720.97, + "end": 3722.43, + "probability": 0.7938 + }, + { + "start": 3722.95, + "end": 3723.77, + "probability": 0.8621 + }, + { + "start": 3724.73, + "end": 3725.47, + "probability": 0.9491 + }, + { + "start": 3726.15, + "end": 3728.57, + "probability": 0.9083 + }, + { + "start": 3729.15, + "end": 3731.39, + "probability": 0.8899 + }, + { + "start": 3732.11, + "end": 3734.09, + "probability": 0.9452 + }, + { + "start": 3734.31, + "end": 3736.05, + "probability": 0.7285 + }, + { + "start": 3736.61, + "end": 3739.53, + "probability": 0.9894 + }, + { + "start": 3740.17, + "end": 3742.29, + "probability": 0.8165 + }, + { + "start": 3743.09, + "end": 3743.39, + "probability": 0.7388 + }, + { + "start": 3743.97, + "end": 3747.71, + "probability": 0.9512 + }, + { + "start": 3748.07, + "end": 3749.39, + "probability": 0.9617 + }, + { + "start": 3749.99, + "end": 3755.15, + "probability": 0.9858 + }, + { + "start": 3755.67, + "end": 3757.39, + "probability": 0.7388 + }, + { + "start": 3757.57, + "end": 3758.33, + "probability": 0.5215 + }, + { + "start": 3758.65, + "end": 3761.03, + "probability": 0.803 + }, + { + "start": 3761.37, + "end": 3764.47, + "probability": 0.9788 + }, + { + "start": 3765.67, + "end": 3766.71, + "probability": 0.9221 + }, + { + "start": 3766.81, + "end": 3770.09, + "probability": 0.847 + }, + { + "start": 3770.31, + "end": 3771.19, + "probability": 0.7665 + }, + { + "start": 3771.63, + "end": 3774.85, + "probability": 0.9956 + }, + { + "start": 3775.01, + "end": 3775.87, + "probability": 0.9972 + }, + { + "start": 3776.83, + "end": 3783.45, + "probability": 0.8262 + }, + { + "start": 3784.35, + "end": 3785.43, + "probability": 0.989 + }, + { + "start": 3786.93, + "end": 3789.03, + "probability": 0.9757 + }, + { + "start": 3789.85, + "end": 3791.31, + "probability": 0.8921 + }, + { + "start": 3791.65, + "end": 3797.83, + "probability": 0.9936 + }, + { + "start": 3798.05, + "end": 3799.15, + "probability": 0.7471 + }, + { + "start": 3799.31, + "end": 3800.87, + "probability": 0.7291 + }, + { + "start": 3801.37, + "end": 3804.39, + "probability": 0.9248 + }, + { + "start": 3804.95, + "end": 3809.03, + "probability": 0.9873 + }, + { + "start": 3809.49, + "end": 3810.37, + "probability": 0.649 + }, + { + "start": 3810.51, + "end": 3811.39, + "probability": 0.6111 + }, + { + "start": 3811.43, + "end": 3812.11, + "probability": 0.4926 + }, + { + "start": 3812.63, + "end": 3817.41, + "probability": 0.999 + }, + { + "start": 3817.41, + "end": 3820.65, + "probability": 0.7072 + }, + { + "start": 3820.89, + "end": 3820.95, + "probability": 0.5503 + }, + { + "start": 3821.07, + "end": 3821.25, + "probability": 0.3363 + }, + { + "start": 3821.41, + "end": 3821.41, + "probability": 0.2454 + }, + { + "start": 3821.41, + "end": 3824.31, + "probability": 0.9968 + }, + { + "start": 3824.47, + "end": 3829.27, + "probability": 0.8822 + }, + { + "start": 3829.85, + "end": 3830.81, + "probability": 0.3871 + }, + { + "start": 3830.89, + "end": 3833.91, + "probability": 0.7842 + }, + { + "start": 3834.25, + "end": 3835.02, + "probability": 0.6185 + }, + { + "start": 3835.57, + "end": 3841.53, + "probability": 0.9775 + }, + { + "start": 3841.77, + "end": 3842.35, + "probability": 0.845 + }, + { + "start": 3842.47, + "end": 3848.09, + "probability": 0.9465 + }, + { + "start": 3848.31, + "end": 3850.63, + "probability": 0.9979 + }, + { + "start": 3851.03, + "end": 3857.65, + "probability": 0.9973 + }, + { + "start": 3858.33, + "end": 3860.29, + "probability": 0.8467 + }, + { + "start": 3860.75, + "end": 3863.89, + "probability": 0.9916 + }, + { + "start": 3863.91, + "end": 3866.33, + "probability": 0.998 + }, + { + "start": 3867.01, + "end": 3873.29, + "probability": 0.9867 + }, + { + "start": 3873.97, + "end": 3880.09, + "probability": 0.9948 + }, + { + "start": 3880.33, + "end": 3881.29, + "probability": 0.6663 + }, + { + "start": 3881.81, + "end": 3883.17, + "probability": 0.8567 + }, + { + "start": 3883.39, + "end": 3890.55, + "probability": 0.9775 + }, + { + "start": 3890.99, + "end": 3892.69, + "probability": 0.991 + }, + { + "start": 3893.07, + "end": 3896.79, + "probability": 0.9849 + }, + { + "start": 3897.33, + "end": 3903.31, + "probability": 0.9958 + }, + { + "start": 3903.47, + "end": 3903.81, + "probability": 0.5117 + }, + { + "start": 3903.95, + "end": 3904.87, + "probability": 0.9839 + }, + { + "start": 3905.81, + "end": 3908.95, + "probability": 0.9707 + }, + { + "start": 3910.53, + "end": 3915.03, + "probability": 0.9291 + }, + { + "start": 3916.05, + "end": 3919.71, + "probability": 0.9689 + }, + { + "start": 3920.69, + "end": 3921.49, + "probability": 0.7552 + }, + { + "start": 3922.49, + "end": 3924.16, + "probability": 0.937 + }, + { + "start": 3925.05, + "end": 3927.91, + "probability": 0.6563 + }, + { + "start": 3928.51, + "end": 3931.75, + "probability": 0.9859 + }, + { + "start": 3932.31, + "end": 3935.37, + "probability": 0.7028 + }, + { + "start": 3935.45, + "end": 3936.79, + "probability": 0.989 + }, + { + "start": 3937.91, + "end": 3939.65, + "probability": 0.998 + }, + { + "start": 3940.59, + "end": 3944.21, + "probability": 0.9971 + }, + { + "start": 3944.85, + "end": 3945.83, + "probability": 0.8115 + }, + { + "start": 3946.61, + "end": 3951.79, + "probability": 0.6696 + }, + { + "start": 3952.73, + "end": 3956.63, + "probability": 0.6912 + }, + { + "start": 3956.75, + "end": 3957.31, + "probability": 0.1786 + }, + { + "start": 3957.89, + "end": 3961.01, + "probability": 0.9521 + }, + { + "start": 3962.43, + "end": 3965.05, + "probability": 0.9779 + }, + { + "start": 3965.97, + "end": 3968.33, + "probability": 0.9561 + }, + { + "start": 3969.72, + "end": 3973.01, + "probability": 0.979 + }, + { + "start": 3973.09, + "end": 3974.25, + "probability": 0.9424 + }, + { + "start": 3974.85, + "end": 3975.01, + "probability": 0.6985 + }, + { + "start": 3975.07, + "end": 3976.33, + "probability": 0.7481 + }, + { + "start": 3976.77, + "end": 3979.57, + "probability": 0.9523 + }, + { + "start": 3979.99, + "end": 3982.33, + "probability": 0.9276 + }, + { + "start": 3983.25, + "end": 3984.71, + "probability": 0.8411 + }, + { + "start": 3984.75, + "end": 3987.21, + "probability": 0.9003 + }, + { + "start": 3987.85, + "end": 3989.25, + "probability": 0.9526 + }, + { + "start": 3989.79, + "end": 3992.33, + "probability": 0.9197 + }, + { + "start": 3992.75, + "end": 3994.95, + "probability": 0.9976 + }, + { + "start": 3995.37, + "end": 3997.61, + "probability": 0.994 + }, + { + "start": 3997.61, + "end": 4001.87, + "probability": 0.9917 + }, + { + "start": 4001.89, + "end": 4002.89, + "probability": 0.9785 + }, + { + "start": 4003.33, + "end": 4006.37, + "probability": 0.7003 + }, + { + "start": 4007.01, + "end": 4009.87, + "probability": 0.9668 + }, + { + "start": 4010.49, + "end": 4012.77, + "probability": 0.8806 + }, + { + "start": 4013.23, + "end": 4017.83, + "probability": 0.99 + }, + { + "start": 4018.31, + "end": 4022.19, + "probability": 0.9901 + }, + { + "start": 4022.71, + "end": 4023.55, + "probability": 0.677 + }, + { + "start": 4024.33, + "end": 4028.15, + "probability": 0.9985 + }, + { + "start": 4028.27, + "end": 4029.29, + "probability": 0.9888 + }, + { + "start": 4029.73, + "end": 4030.99, + "probability": 0.9933 + }, + { + "start": 4031.43, + "end": 4038.89, + "probability": 0.939 + }, + { + "start": 4039.45, + "end": 4041.41, + "probability": 0.737 + }, + { + "start": 4041.89, + "end": 4043.91, + "probability": 0.8439 + }, + { + "start": 4044.55, + "end": 4046.27, + "probability": 0.9603 + }, + { + "start": 4046.73, + "end": 4048.09, + "probability": 0.9042 + }, + { + "start": 4048.31, + "end": 4049.93, + "probability": 0.7108 + }, + { + "start": 4050.13, + "end": 4051.23, + "probability": 0.8038 + }, + { + "start": 4051.57, + "end": 4055.21, + "probability": 0.8816 + }, + { + "start": 4055.79, + "end": 4059.11, + "probability": 0.9899 + }, + { + "start": 4059.11, + "end": 4061.81, + "probability": 0.9902 + }, + { + "start": 4062.29, + "end": 4065.21, + "probability": 0.9806 + }, + { + "start": 4067.91, + "end": 4068.91, + "probability": 0.9092 + }, + { + "start": 4070.43, + "end": 4072.27, + "probability": 0.84 + }, + { + "start": 4073.01, + "end": 4078.47, + "probability": 0.9318 + }, + { + "start": 4080.05, + "end": 4084.73, + "probability": 0.9747 + }, + { + "start": 4086.13, + "end": 4092.13, + "probability": 0.6864 + }, + { + "start": 4092.13, + "end": 4096.05, + "probability": 0.9605 + }, + { + "start": 4096.45, + "end": 4097.83, + "probability": 0.7821 + }, + { + "start": 4098.19, + "end": 4099.35, + "probability": 0.975 + }, + { + "start": 4100.35, + "end": 4101.41, + "probability": 0.9214 + }, + { + "start": 4102.15, + "end": 4105.33, + "probability": 0.8176 + }, + { + "start": 4105.43, + "end": 4108.39, + "probability": 0.996 + }, + { + "start": 4108.39, + "end": 4113.23, + "probability": 0.9644 + }, + { + "start": 4113.69, + "end": 4113.93, + "probability": 0.4709 + }, + { + "start": 4114.21, + "end": 4119.29, + "probability": 0.881 + }, + { + "start": 4119.61, + "end": 4124.51, + "probability": 0.9617 + }, + { + "start": 4125.03, + "end": 4126.23, + "probability": 0.9565 + }, + { + "start": 4126.41, + "end": 4129.71, + "probability": 0.9985 + }, + { + "start": 4130.29, + "end": 4131.39, + "probability": 0.9532 + }, + { + "start": 4132.01, + "end": 4134.45, + "probability": 0.9961 + }, + { + "start": 4135.01, + "end": 4135.81, + "probability": 0.9602 + }, + { + "start": 4136.51, + "end": 4137.17, + "probability": 0.9067 + }, + { + "start": 4137.65, + "end": 4140.83, + "probability": 0.9924 + }, + { + "start": 4141.41, + "end": 4143.43, + "probability": 0.9814 + }, + { + "start": 4143.75, + "end": 4144.83, + "probability": 0.901 + }, + { + "start": 4145.01, + "end": 4146.57, + "probability": 0.619 + }, + { + "start": 4146.65, + "end": 4147.95, + "probability": 0.7773 + }, + { + "start": 4148.29, + "end": 4148.53, + "probability": 0.4955 + }, + { + "start": 4148.59, + "end": 4149.17, + "probability": 0.6576 + }, + { + "start": 4149.25, + "end": 4151.57, + "probability": 0.8792 + }, + { + "start": 4151.99, + "end": 4152.83, + "probability": 0.4579 + }, + { + "start": 4153.29, + "end": 4154.27, + "probability": 0.9507 + }, + { + "start": 4154.41, + "end": 4155.49, + "probability": 0.7203 + }, + { + "start": 4155.57, + "end": 4157.71, + "probability": 0.9026 + }, + { + "start": 4158.05, + "end": 4160.31, + "probability": 0.6751 + }, + { + "start": 4160.69, + "end": 4161.22, + "probability": 0.9834 + }, + { + "start": 4161.69, + "end": 4164.09, + "probability": 0.9646 + }, + { + "start": 4164.57, + "end": 4166.31, + "probability": 0.981 + }, + { + "start": 4166.57, + "end": 4169.01, + "probability": 0.7997 + }, + { + "start": 4169.23, + "end": 4171.27, + "probability": 0.9814 + }, + { + "start": 4171.31, + "end": 4171.99, + "probability": 0.8466 + }, + { + "start": 4172.33, + "end": 4173.89, + "probability": 0.8546 + }, + { + "start": 4174.05, + "end": 4174.17, + "probability": 0.0802 + }, + { + "start": 4174.27, + "end": 4175.23, + "probability": 0.837 + }, + { + "start": 4175.39, + "end": 4179.11, + "probability": 0.9381 + }, + { + "start": 4179.43, + "end": 4179.99, + "probability": 0.9259 + }, + { + "start": 4180.09, + "end": 4182.52, + "probability": 0.9858 + }, + { + "start": 4182.95, + "end": 4183.79, + "probability": 0.8422 + }, + { + "start": 4183.95, + "end": 4184.45, + "probability": 0.7979 + }, + { + "start": 4184.77, + "end": 4185.91, + "probability": 0.8164 + }, + { + "start": 4185.95, + "end": 4188.53, + "probability": 0.9906 + }, + { + "start": 4189.11, + "end": 4190.01, + "probability": 0.9756 + }, + { + "start": 4190.87, + "end": 4192.17, + "probability": 0.8022 + }, + { + "start": 4194.33, + "end": 4195.87, + "probability": 0.8848 + }, + { + "start": 4196.55, + "end": 4197.99, + "probability": 0.9106 + }, + { + "start": 4198.33, + "end": 4200.09, + "probability": 0.9746 + }, + { + "start": 4200.93, + "end": 4202.05, + "probability": 0.9841 + }, + { + "start": 4202.15, + "end": 4203.05, + "probability": 0.8984 + }, + { + "start": 4203.19, + "end": 4204.13, + "probability": 0.9623 + }, + { + "start": 4204.25, + "end": 4204.97, + "probability": 0.8348 + }, + { + "start": 4204.97, + "end": 4205.83, + "probability": 0.8787 + }, + { + "start": 4206.19, + "end": 4207.93, + "probability": 0.9013 + }, + { + "start": 4208.37, + "end": 4209.31, + "probability": 0.6975 + }, + { + "start": 4209.43, + "end": 4211.33, + "probability": 0.9976 + }, + { + "start": 4211.45, + "end": 4214.49, + "probability": 0.7035 + }, + { + "start": 4214.93, + "end": 4215.61, + "probability": 0.6785 + }, + { + "start": 4215.81, + "end": 4216.39, + "probability": 0.7083 + }, + { + "start": 4216.89, + "end": 4217.25, + "probability": 0.4734 + }, + { + "start": 4217.97, + "end": 4222.75, + "probability": 0.6606 + }, + { + "start": 4223.13, + "end": 4229.23, + "probability": 0.881 + }, + { + "start": 4229.29, + "end": 4230.35, + "probability": 0.4069 + }, + { + "start": 4230.35, + "end": 4231.71, + "probability": 0.7217 + }, + { + "start": 4232.39, + "end": 4233.53, + "probability": 0.6744 + }, + { + "start": 4234.35, + "end": 4236.89, + "probability": 0.9977 + }, + { + "start": 4237.05, + "end": 4243.95, + "probability": 0.9842 + }, + { + "start": 4244.07, + "end": 4245.51, + "probability": 0.8171 + }, + { + "start": 4245.69, + "end": 4245.93, + "probability": 0.5496 + }, + { + "start": 4245.93, + "end": 4247.09, + "probability": 0.8448 + }, + { + "start": 4247.39, + "end": 4248.29, + "probability": 0.7968 + }, + { + "start": 4248.41, + "end": 4251.32, + "probability": 0.8855 + }, + { + "start": 4251.63, + "end": 4254.11, + "probability": 0.9046 + }, + { + "start": 4254.63, + "end": 4257.53, + "probability": 0.8541 + }, + { + "start": 4258.03, + "end": 4260.43, + "probability": 0.8425 + }, + { + "start": 4262.47, + "end": 4265.23, + "probability": 0.9119 + }, + { + "start": 4265.71, + "end": 4267.07, + "probability": 0.6923 + }, + { + "start": 4268.11, + "end": 4269.79, + "probability": 0.8864 + }, + { + "start": 4269.95, + "end": 4270.39, + "probability": 0.9139 + }, + { + "start": 4270.49, + "end": 4274.27, + "probability": 0.9524 + }, + { + "start": 4275.03, + "end": 4277.91, + "probability": 0.9645 + }, + { + "start": 4277.91, + "end": 4280.61, + "probability": 0.9974 + }, + { + "start": 4281.07, + "end": 4284.75, + "probability": 0.7427 + }, + { + "start": 4285.31, + "end": 4292.23, + "probability": 0.988 + }, + { + "start": 4294.14, + "end": 4298.99, + "probability": 0.9961 + }, + { + "start": 4299.15, + "end": 4300.71, + "probability": 0.5567 + }, + { + "start": 4301.37, + "end": 4304.57, + "probability": 0.9432 + }, + { + "start": 4305.09, + "end": 4307.17, + "probability": 0.9542 + }, + { + "start": 4307.69, + "end": 4308.87, + "probability": 0.9755 + }, + { + "start": 4309.19, + "end": 4312.21, + "probability": 0.9946 + }, + { + "start": 4312.55, + "end": 4312.99, + "probability": 0.8377 + }, + { + "start": 4313.45, + "end": 4314.18, + "probability": 0.6029 + }, + { + "start": 4315.21, + "end": 4316.74, + "probability": 0.8239 + }, + { + "start": 4317.19, + "end": 4318.71, + "probability": 0.9871 + }, + { + "start": 4318.81, + "end": 4319.73, + "probability": 0.6658 + }, + { + "start": 4319.79, + "end": 4320.91, + "probability": 0.8658 + }, + { + "start": 4321.01, + "end": 4323.31, + "probability": 0.9888 + }, + { + "start": 4323.73, + "end": 4324.64, + "probability": 0.7294 + }, + { + "start": 4325.49, + "end": 4329.69, + "probability": 0.9465 + }, + { + "start": 4330.21, + "end": 4333.89, + "probability": 0.9876 + }, + { + "start": 4334.53, + "end": 4339.97, + "probability": 0.9849 + }, + { + "start": 4339.99, + "end": 4343.87, + "probability": 0.9891 + }, + { + "start": 4344.15, + "end": 4344.37, + "probability": 0.6134 + }, + { + "start": 4344.97, + "end": 4347.11, + "probability": 0.6092 + }, + { + "start": 4347.19, + "end": 4349.85, + "probability": 0.9526 + }, + { + "start": 4349.85, + "end": 4354.21, + "probability": 0.8981 + }, + { + "start": 4354.29, + "end": 4356.27, + "probability": 0.5701 + }, + { + "start": 4365.13, + "end": 4366.17, + "probability": 0.6914 + }, + { + "start": 4367.55, + "end": 4368.97, + "probability": 0.4287 + }, + { + "start": 4369.11, + "end": 4372.69, + "probability": 0.8401 + }, + { + "start": 4373.89, + "end": 4375.63, + "probability": 0.9535 + }, + { + "start": 4377.33, + "end": 4382.95, + "probability": 0.9902 + }, + { + "start": 4384.05, + "end": 4386.53, + "probability": 0.9705 + }, + { + "start": 4388.57, + "end": 4389.33, + "probability": 0.9224 + }, + { + "start": 4389.89, + "end": 4390.35, + "probability": 0.6366 + }, + { + "start": 4392.53, + "end": 4394.53, + "probability": 0.8074 + }, + { + "start": 4396.01, + "end": 4397.81, + "probability": 0.9454 + }, + { + "start": 4399.17, + "end": 4403.61, + "probability": 0.9451 + }, + { + "start": 4405.75, + "end": 4409.41, + "probability": 0.9724 + }, + { + "start": 4410.65, + "end": 4413.99, + "probability": 0.9878 + }, + { + "start": 4415.59, + "end": 4416.97, + "probability": 0.9964 + }, + { + "start": 4417.85, + "end": 4419.35, + "probability": 0.9551 + }, + { + "start": 4421.23, + "end": 4423.87, + "probability": 0.9578 + }, + { + "start": 4425.73, + "end": 4427.19, + "probability": 0.8889 + }, + { + "start": 4430.05, + "end": 4431.17, + "probability": 0.8749 + }, + { + "start": 4432.15, + "end": 4435.13, + "probability": 0.8422 + }, + { + "start": 4436.49, + "end": 4438.05, + "probability": 0.9773 + }, + { + "start": 4439.61, + "end": 4440.83, + "probability": 0.9318 + }, + { + "start": 4442.55, + "end": 4444.93, + "probability": 0.9895 + }, + { + "start": 4445.95, + "end": 4450.21, + "probability": 0.9918 + }, + { + "start": 4450.35, + "end": 4451.93, + "probability": 0.5916 + }, + { + "start": 4452.07, + "end": 4456.09, + "probability": 0.9956 + }, + { + "start": 4456.17, + "end": 4457.79, + "probability": 0.7397 + }, + { + "start": 4458.45, + "end": 4461.65, + "probability": 0.9133 + }, + { + "start": 4461.77, + "end": 4463.78, + "probability": 0.8823 + }, + { + "start": 4464.29, + "end": 4466.33, + "probability": 0.9038 + }, + { + "start": 4466.63, + "end": 4467.39, + "probability": 0.9286 + }, + { + "start": 4467.41, + "end": 4469.11, + "probability": 0.2339 + }, + { + "start": 4469.11, + "end": 4470.39, + "probability": 0.689 + }, + { + "start": 4470.55, + "end": 4473.55, + "probability": 0.807 + }, + { + "start": 4473.75, + "end": 4474.79, + "probability": 0.6852 + }, + { + "start": 4477.08, + "end": 4477.89, + "probability": 0.4242 + }, + { + "start": 4477.93, + "end": 4480.99, + "probability": 0.8846 + }, + { + "start": 4481.17, + "end": 4483.49, + "probability": 0.8711 + }, + { + "start": 4483.73, + "end": 4483.89, + "probability": 0.4278 + }, + { + "start": 4484.89, + "end": 4485.9, + "probability": 0.0162 + }, + { + "start": 4486.17, + "end": 4486.63, + "probability": 0.9078 + }, + { + "start": 4486.69, + "end": 4487.77, + "probability": 0.8829 + }, + { + "start": 4487.87, + "end": 4489.37, + "probability": 0.7904 + }, + { + "start": 4491.21, + "end": 4495.34, + "probability": 0.9363 + }, + { + "start": 4496.53, + "end": 4499.11, + "probability": 0.874 + }, + { + "start": 4499.99, + "end": 4501.19, + "probability": 0.9667 + }, + { + "start": 4501.37, + "end": 4503.39, + "probability": 0.9729 + }, + { + "start": 4503.57, + "end": 4504.01, + "probability": 0.9569 + }, + { + "start": 4504.51, + "end": 4505.23, + "probability": 0.9898 + }, + { + "start": 4505.83, + "end": 4509.59, + "probability": 0.9816 + }, + { + "start": 4510.71, + "end": 4511.97, + "probability": 0.3732 + }, + { + "start": 4513.17, + "end": 4514.67, + "probability": 0.9792 + }, + { + "start": 4515.65, + "end": 4517.23, + "probability": 0.9779 + }, + { + "start": 4519.03, + "end": 4522.11, + "probability": 0.8209 + }, + { + "start": 4522.21, + "end": 4523.97, + "probability": 0.8913 + }, + { + "start": 4524.15, + "end": 4524.55, + "probability": 0.8341 + }, + { + "start": 4525.55, + "end": 4528.37, + "probability": 0.6764 + }, + { + "start": 4528.45, + "end": 4531.83, + "probability": 0.8297 + }, + { + "start": 4532.99, + "end": 4536.61, + "probability": 0.8743 + }, + { + "start": 4537.63, + "end": 4539.19, + "probability": 0.9489 + }, + { + "start": 4539.91, + "end": 4543.36, + "probability": 0.9578 + }, + { + "start": 4544.27, + "end": 4545.89, + "probability": 0.7891 + }, + { + "start": 4546.81, + "end": 4549.05, + "probability": 0.7734 + }, + { + "start": 4549.63, + "end": 4551.55, + "probability": 0.8973 + }, + { + "start": 4551.79, + "end": 4553.93, + "probability": 0.9668 + }, + { + "start": 4555.07, + "end": 4561.11, + "probability": 0.9768 + }, + { + "start": 4561.11, + "end": 4566.73, + "probability": 0.9285 + }, + { + "start": 4566.73, + "end": 4568.05, + "probability": 0.8809 + }, + { + "start": 4570.31, + "end": 4573.99, + "probability": 0.9915 + }, + { + "start": 4575.55, + "end": 4577.6, + "probability": 0.4364 + }, + { + "start": 4578.79, + "end": 4579.07, + "probability": 0.3408 + }, + { + "start": 4579.07, + "end": 4581.03, + "probability": 0.8167 + }, + { + "start": 4581.83, + "end": 4583.69, + "probability": 0.9567 + }, + { + "start": 4583.71, + "end": 4584.77, + "probability": 0.7573 + }, + { + "start": 4586.25, + "end": 4588.25, + "probability": 0.9675 + }, + { + "start": 4588.33, + "end": 4592.04, + "probability": 0.8325 + }, + { + "start": 4592.29, + "end": 4593.39, + "probability": 0.8415 + }, + { + "start": 4593.55, + "end": 4597.11, + "probability": 0.9006 + }, + { + "start": 4598.19, + "end": 4601.37, + "probability": 0.8666 + }, + { + "start": 4601.45, + "end": 4604.37, + "probability": 0.7143 + }, + { + "start": 4605.53, + "end": 4608.77, + "probability": 0.8252 + }, + { + "start": 4608.89, + "end": 4609.89, + "probability": 0.4615 + }, + { + "start": 4611.27, + "end": 4613.33, + "probability": 0.8184 + }, + { + "start": 4613.49, + "end": 4617.47, + "probability": 0.9397 + }, + { + "start": 4617.71, + "end": 4620.19, + "probability": 0.9937 + }, + { + "start": 4620.83, + "end": 4622.97, + "probability": 0.9894 + }, + { + "start": 4622.97, + "end": 4626.97, + "probability": 0.9731 + }, + { + "start": 4627.59, + "end": 4630.65, + "probability": 0.5835 + }, + { + "start": 4630.75, + "end": 4631.03, + "probability": 0.8882 + }, + { + "start": 4631.07, + "end": 4633.07, + "probability": 0.8521 + }, + { + "start": 4633.07, + "end": 4634.33, + "probability": 0.3374 + }, + { + "start": 4634.37, + "end": 4634.69, + "probability": 0.7434 + }, + { + "start": 4634.99, + "end": 4639.67, + "probability": 0.9064 + }, + { + "start": 4639.98, + "end": 4644.21, + "probability": 0.8802 + }, + { + "start": 4644.35, + "end": 4645.11, + "probability": 0.075 + }, + { + "start": 4645.89, + "end": 4649.73, + "probability": 0.7858 + }, + { + "start": 4650.11, + "end": 4654.52, + "probability": 0.8579 + }, + { + "start": 4655.96, + "end": 4658.89, + "probability": 0.9871 + }, + { + "start": 4659.07, + "end": 4660.22, + "probability": 0.7771 + }, + { + "start": 4660.57, + "end": 4662.93, + "probability": 0.1313 + }, + { + "start": 4663.01, + "end": 4665.35, + "probability": 0.5931 + }, + { + "start": 4666.07, + "end": 4669.57, + "probability": 0.9621 + }, + { + "start": 4669.65, + "end": 4671.59, + "probability": 0.9807 + }, + { + "start": 4674.01, + "end": 4676.33, + "probability": 0.9136 + }, + { + "start": 4676.45, + "end": 4677.03, + "probability": 0.5951 + }, + { + "start": 4677.13, + "end": 4680.87, + "probability": 0.9605 + }, + { + "start": 4680.93, + "end": 4683.25, + "probability": 0.9585 + }, + { + "start": 4684.45, + "end": 4686.07, + "probability": 0.9328 + }, + { + "start": 4686.11, + "end": 4687.77, + "probability": 0.5446 + }, + { + "start": 4687.87, + "end": 4690.59, + "probability": 0.8906 + }, + { + "start": 4691.35, + "end": 4693.17, + "probability": 0.8414 + }, + { + "start": 4694.83, + "end": 4695.75, + "probability": 0.3839 + }, + { + "start": 4697.11, + "end": 4697.37, + "probability": 0.0037 + }, + { + "start": 4697.63, + "end": 4698.91, + "probability": 0.7075 + }, + { + "start": 4701.67, + "end": 4706.43, + "probability": 0.9924 + }, + { + "start": 4706.43, + "end": 4709.53, + "probability": 0.9976 + }, + { + "start": 4709.67, + "end": 4710.81, + "probability": 0.9736 + }, + { + "start": 4711.09, + "end": 4714.55, + "probability": 0.9968 + }, + { + "start": 4716.29, + "end": 4718.29, + "probability": 0.8283 + }, + { + "start": 4718.63, + "end": 4720.15, + "probability": 0.8337 + }, + { + "start": 4722.27, + "end": 4723.33, + "probability": 0.9759 + }, + { + "start": 4724.05, + "end": 4725.71, + "probability": 0.9932 + }, + { + "start": 4726.43, + "end": 4728.57, + "probability": 0.9113 + }, + { + "start": 4728.85, + "end": 4729.07, + "probability": 0.4387 + }, + { + "start": 4729.09, + "end": 4734.57, + "probability": 0.8634 + }, + { + "start": 4736.11, + "end": 4736.61, + "probability": 0.814 + }, + { + "start": 4736.77, + "end": 4737.41, + "probability": 0.7381 + }, + { + "start": 4737.51, + "end": 4738.69, + "probability": 0.9543 + }, + { + "start": 4739.57, + "end": 4740.75, + "probability": 0.8518 + }, + { + "start": 4741.35, + "end": 4744.55, + "probability": 0.9517 + }, + { + "start": 4746.35, + "end": 4747.91, + "probability": 0.7979 + }, + { + "start": 4748.55, + "end": 4749.85, + "probability": 0.8242 + }, + { + "start": 4750.67, + "end": 4754.41, + "probability": 0.8864 + }, + { + "start": 4754.97, + "end": 4755.41, + "probability": 0.8516 + }, + { + "start": 4757.29, + "end": 4760.55, + "probability": 0.9914 + }, + { + "start": 4761.15, + "end": 4765.79, + "probability": 0.909 + }, + { + "start": 4767.33, + "end": 4773.93, + "probability": 0.9915 + }, + { + "start": 4774.13, + "end": 4775.47, + "probability": 0.8035 + }, + { + "start": 4775.91, + "end": 4778.45, + "probability": 0.7417 + }, + { + "start": 4779.41, + "end": 4780.63, + "probability": 0.7322 + }, + { + "start": 4781.49, + "end": 4782.29, + "probability": 0.5099 + }, + { + "start": 4782.39, + "end": 4783.28, + "probability": 0.7109 + }, + { + "start": 4783.83, + "end": 4784.45, + "probability": 0.7516 + }, + { + "start": 4784.47, + "end": 4785.34, + "probability": 0.9426 + }, + { + "start": 4788.29, + "end": 4793.63, + "probability": 0.9934 + }, + { + "start": 4793.93, + "end": 4794.39, + "probability": 0.6432 + }, + { + "start": 4794.47, + "end": 4794.79, + "probability": 0.9281 + }, + { + "start": 4794.91, + "end": 4795.45, + "probability": 0.3277 + }, + { + "start": 4795.55, + "end": 4797.47, + "probability": 0.9841 + }, + { + "start": 4797.93, + "end": 4798.97, + "probability": 0.8164 + }, + { + "start": 4802.07, + "end": 4805.47, + "probability": 0.9659 + }, + { + "start": 4805.75, + "end": 4806.65, + "probability": 0.9797 + }, + { + "start": 4806.87, + "end": 4808.43, + "probability": 0.7509 + }, + { + "start": 4808.69, + "end": 4810.33, + "probability": 0.8962 + }, + { + "start": 4811.11, + "end": 4813.41, + "probability": 0.9796 + }, + { + "start": 4814.25, + "end": 4815.18, + "probability": 0.9149 + }, + { + "start": 4816.77, + "end": 4818.31, + "probability": 0.8918 + }, + { + "start": 4818.87, + "end": 4820.17, + "probability": 0.8466 + }, + { + "start": 4820.21, + "end": 4822.28, + "probability": 0.9878 + }, + { + "start": 4823.03, + "end": 4825.25, + "probability": 0.4404 + }, + { + "start": 4825.45, + "end": 4825.83, + "probability": 0.9307 + }, + { + "start": 4825.83, + "end": 4826.77, + "probability": 0.0086 + }, + { + "start": 4826.77, + "end": 4827.13, + "probability": 0.8611 + }, + { + "start": 4827.21, + "end": 4828.69, + "probability": 0.9939 + }, + { + "start": 4830.05, + "end": 4830.33, + "probability": 0.3916 + }, + { + "start": 4830.35, + "end": 4832.37, + "probability": 0.9953 + }, + { + "start": 4832.39, + "end": 4832.81, + "probability": 0.4467 + }, + { + "start": 4832.87, + "end": 4833.45, + "probability": 0.75 + }, + { + "start": 4836.27, + "end": 4839.37, + "probability": 0.9636 + }, + { + "start": 4840.45, + "end": 4842.44, + "probability": 0.9756 + }, + { + "start": 4843.67, + "end": 4846.65, + "probability": 0.9443 + }, + { + "start": 4847.93, + "end": 4849.95, + "probability": 0.7435 + }, + { + "start": 4851.71, + "end": 4852.89, + "probability": 0.5865 + }, + { + "start": 4853.53, + "end": 4856.43, + "probability": 0.9752 + }, + { + "start": 4856.49, + "end": 4857.65, + "probability": 0.9587 + }, + { + "start": 4859.23, + "end": 4861.71, + "probability": 0.7657 + }, + { + "start": 4863.25, + "end": 4866.69, + "probability": 0.6248 + }, + { + "start": 4867.85, + "end": 4868.79, + "probability": 0.9549 + }, + { + "start": 4869.57, + "end": 4873.29, + "probability": 0.9506 + }, + { + "start": 4873.81, + "end": 4874.41, + "probability": 0.9514 + }, + { + "start": 4874.95, + "end": 4877.33, + "probability": 0.9752 + }, + { + "start": 4877.95, + "end": 4878.97, + "probability": 0.9587 + }, + { + "start": 4879.61, + "end": 4883.23, + "probability": 0.9804 + }, + { + "start": 4883.39, + "end": 4884.59, + "probability": 0.9328 + }, + { + "start": 4884.75, + "end": 4885.49, + "probability": 0.8815 + }, + { + "start": 4885.53, + "end": 4886.27, + "probability": 0.9614 + }, + { + "start": 4886.87, + "end": 4888.81, + "probability": 0.9695 + }, + { + "start": 4888.81, + "end": 4889.47, + "probability": 0.2991 + }, + { + "start": 4889.55, + "end": 4890.29, + "probability": 0.5233 + }, + { + "start": 4890.47, + "end": 4892.09, + "probability": 0.9891 + }, + { + "start": 4893.93, + "end": 4896.23, + "probability": 0.9977 + }, + { + "start": 4896.31, + "end": 4900.03, + "probability": 0.9948 + }, + { + "start": 4901.07, + "end": 4905.35, + "probability": 0.995 + }, + { + "start": 4906.57, + "end": 4907.81, + "probability": 0.9615 + }, + { + "start": 4908.23, + "end": 4909.79, + "probability": 0.8194 + }, + { + "start": 4911.09, + "end": 4912.83, + "probability": 0.694 + }, + { + "start": 4913.91, + "end": 4916.35, + "probability": 0.9381 + }, + { + "start": 4918.19, + "end": 4920.79, + "probability": 0.9627 + }, + { + "start": 4922.31, + "end": 4925.41, + "probability": 0.7833 + }, + { + "start": 4927.01, + "end": 4929.55, + "probability": 0.9199 + }, + { + "start": 4929.75, + "end": 4931.55, + "probability": 0.8688 + }, + { + "start": 4932.67, + "end": 4937.29, + "probability": 0.995 + }, + { + "start": 4938.29, + "end": 4942.39, + "probability": 0.9956 + }, + { + "start": 4943.11, + "end": 4945.41, + "probability": 0.7678 + }, + { + "start": 4946.47, + "end": 4947.77, + "probability": 0.869 + }, + { + "start": 4948.89, + "end": 4951.39, + "probability": 0.9335 + }, + { + "start": 4951.45, + "end": 4952.75, + "probability": 0.9478 + }, + { + "start": 4954.21, + "end": 4955.25, + "probability": 0.8992 + }, + { + "start": 4956.07, + "end": 4957.13, + "probability": 0.9859 + }, + { + "start": 4958.27, + "end": 4960.57, + "probability": 0.9876 + }, + { + "start": 4962.49, + "end": 4963.81, + "probability": 0.5742 + }, + { + "start": 4964.97, + "end": 4967.59, + "probability": 0.9941 + }, + { + "start": 4967.77, + "end": 4969.15, + "probability": 0.8743 + }, + { + "start": 4970.09, + "end": 4971.69, + "probability": 0.7683 + }, + { + "start": 4972.49, + "end": 4976.93, + "probability": 0.9819 + }, + { + "start": 4977.97, + "end": 4979.89, + "probability": 0.934 + }, + { + "start": 4979.99, + "end": 4982.01, + "probability": 0.9967 + }, + { + "start": 4982.49, + "end": 4984.77, + "probability": 0.9776 + }, + { + "start": 4984.83, + "end": 4986.27, + "probability": 0.8305 + }, + { + "start": 4989.43, + "end": 4992.11, + "probability": 0.9927 + }, + { + "start": 4993.55, + "end": 4997.59, + "probability": 0.7127 + }, + { + "start": 4998.11, + "end": 5001.17, + "probability": 0.9946 + }, + { + "start": 5001.63, + "end": 5003.97, + "probability": 0.9705 + }, + { + "start": 5005.53, + "end": 5008.23, + "probability": 0.9541 + }, + { + "start": 5009.27, + "end": 5010.77, + "probability": 0.9556 + }, + { + "start": 5010.93, + "end": 5012.31, + "probability": 0.6836 + }, + { + "start": 5012.39, + "end": 5013.63, + "probability": 0.9801 + }, + { + "start": 5014.33, + "end": 5016.13, + "probability": 0.8334 + }, + { + "start": 5017.11, + "end": 5019.01, + "probability": 0.9616 + }, + { + "start": 5019.79, + "end": 5022.1, + "probability": 0.8715 + }, + { + "start": 5022.91, + "end": 5024.37, + "probability": 0.9832 + }, + { + "start": 5024.41, + "end": 5026.37, + "probability": 0.9713 + }, + { + "start": 5026.95, + "end": 5029.37, + "probability": 0.946 + }, + { + "start": 5030.35, + "end": 5031.61, + "probability": 0.7235 + }, + { + "start": 5033.27, + "end": 5034.8, + "probability": 0.9968 + }, + { + "start": 5040.19, + "end": 5041.75, + "probability": 0.8657 + }, + { + "start": 5042.85, + "end": 5044.07, + "probability": 0.9924 + }, + { + "start": 5045.89, + "end": 5049.83, + "probability": 0.6396 + }, + { + "start": 5051.59, + "end": 5053.39, + "probability": 0.9987 + }, + { + "start": 5053.51, + "end": 5055.17, + "probability": 0.9885 + }, + { + "start": 5055.25, + "end": 5055.83, + "probability": 0.913 + }, + { + "start": 5055.93, + "end": 5056.57, + "probability": 0.9233 + }, + { + "start": 5057.13, + "end": 5057.67, + "probability": 0.778 + }, + { + "start": 5058.55, + "end": 5060.83, + "probability": 0.9662 + }, + { + "start": 5060.83, + "end": 5063.21, + "probability": 0.8938 + }, + { + "start": 5065.19, + "end": 5066.07, + "probability": 0.9819 + }, + { + "start": 5066.07, + "end": 5067.53, + "probability": 0.9755 + }, + { + "start": 5067.67, + "end": 5068.35, + "probability": 0.9755 + }, + { + "start": 5068.43, + "end": 5069.09, + "probability": 0.7471 + }, + { + "start": 5069.75, + "end": 5071.37, + "probability": 0.9576 + }, + { + "start": 5071.67, + "end": 5073.75, + "probability": 0.9585 + }, + { + "start": 5075.27, + "end": 5076.57, + "probability": 0.0215 + }, + { + "start": 5078.49, + "end": 5080.13, + "probability": 0.9656 + }, + { + "start": 5080.91, + "end": 5082.75, + "probability": 0.9766 + }, + { + "start": 5084.85, + "end": 5086.93, + "probability": 0.9988 + }, + { + "start": 5086.97, + "end": 5087.61, + "probability": 0.834 + }, + { + "start": 5087.69, + "end": 5089.85, + "probability": 0.9786 + }, + { + "start": 5090.93, + "end": 5096.27, + "probability": 0.9504 + }, + { + "start": 5097.77, + "end": 5100.33, + "probability": 0.9998 + }, + { + "start": 5101.81, + "end": 5105.39, + "probability": 0.9951 + }, + { + "start": 5106.07, + "end": 5110.39, + "probability": 0.9854 + }, + { + "start": 5111.55, + "end": 5113.05, + "probability": 0.7596 + }, + { + "start": 5113.83, + "end": 5118.67, + "probability": 0.9927 + }, + { + "start": 5118.77, + "end": 5119.33, + "probability": 0.4943 + }, + { + "start": 5119.43, + "end": 5121.67, + "probability": 0.938 + }, + { + "start": 5122.31, + "end": 5124.81, + "probability": 0.8026 + }, + { + "start": 5126.41, + "end": 5132.37, + "probability": 0.9618 + }, + { + "start": 5132.51, + "end": 5132.99, + "probability": 0.7395 + }, + { + "start": 5133.03, + "end": 5134.09, + "probability": 0.8089 + }, + { + "start": 5134.79, + "end": 5137.07, + "probability": 0.6906 + }, + { + "start": 5139.15, + "end": 5139.49, + "probability": 0.5438 + }, + { + "start": 5139.83, + "end": 5141.17, + "probability": 0.8132 + }, + { + "start": 5141.31, + "end": 5142.29, + "probability": 0.8124 + }, + { + "start": 5142.41, + "end": 5142.91, + "probability": 0.7115 + }, + { + "start": 5143.57, + "end": 5144.63, + "probability": 0.9784 + }, + { + "start": 5145.61, + "end": 5147.78, + "probability": 0.9822 + }, + { + "start": 5148.37, + "end": 5148.93, + "probability": 0.7512 + }, + { + "start": 5149.01, + "end": 5149.72, + "probability": 0.7987 + }, + { + "start": 5150.97, + "end": 5154.83, + "probability": 0.9977 + }, + { + "start": 5154.93, + "end": 5157.53, + "probability": 0.9951 + }, + { + "start": 5160.61, + "end": 5163.45, + "probability": 0.735 + }, + { + "start": 5163.61, + "end": 5168.01, + "probability": 0.9976 + }, + { + "start": 5169.59, + "end": 5172.63, + "probability": 0.9299 + }, + { + "start": 5173.43, + "end": 5175.09, + "probability": 0.9229 + }, + { + "start": 5176.15, + "end": 5177.51, + "probability": 0.7219 + }, + { + "start": 5179.53, + "end": 5181.03, + "probability": 0.9569 + }, + { + "start": 5181.73, + "end": 5184.37, + "probability": 0.9937 + }, + { + "start": 5185.65, + "end": 5186.77, + "probability": 0.9552 + }, + { + "start": 5186.81, + "end": 5191.13, + "probability": 0.8496 + }, + { + "start": 5191.17, + "end": 5195.65, + "probability": 0.9971 + }, + { + "start": 5196.45, + "end": 5197.63, + "probability": 0.8911 + }, + { + "start": 5199.01, + "end": 5200.71, + "probability": 0.9876 + }, + { + "start": 5201.27, + "end": 5201.87, + "probability": 0.6129 + }, + { + "start": 5203.75, + "end": 5205.05, + "probability": 0.8223 + }, + { + "start": 5205.23, + "end": 5208.71, + "probability": 0.9196 + }, + { + "start": 5208.87, + "end": 5209.69, + "probability": 0.7139 + }, + { + "start": 5210.35, + "end": 5212.51, + "probability": 0.9815 + }, + { + "start": 5213.73, + "end": 5215.21, + "probability": 0.9951 + }, + { + "start": 5216.49, + "end": 5217.87, + "probability": 0.9957 + }, + { + "start": 5218.33, + "end": 5220.09, + "probability": 0.9895 + }, + { + "start": 5220.51, + "end": 5223.41, + "probability": 0.8897 + }, + { + "start": 5223.91, + "end": 5224.91, + "probability": 0.4869 + }, + { + "start": 5226.35, + "end": 5227.61, + "probability": 0.9944 + }, + { + "start": 5227.73, + "end": 5228.53, + "probability": 0.9932 + }, + { + "start": 5229.03, + "end": 5230.71, + "probability": 0.9853 + }, + { + "start": 5230.79, + "end": 5231.89, + "probability": 0.9019 + }, + { + "start": 5232.55, + "end": 5235.83, + "probability": 0.9733 + }, + { + "start": 5235.91, + "end": 5236.87, + "probability": 0.9907 + }, + { + "start": 5236.97, + "end": 5237.69, + "probability": 0.9827 + }, + { + "start": 5237.73, + "end": 5238.51, + "probability": 0.9072 + }, + { + "start": 5238.83, + "end": 5240.61, + "probability": 0.9067 + }, + { + "start": 5241.27, + "end": 5243.33, + "probability": 0.9417 + }, + { + "start": 5243.45, + "end": 5244.45, + "probability": 0.9417 + }, + { + "start": 5244.55, + "end": 5245.05, + "probability": 0.7296 + }, + { + "start": 5245.11, + "end": 5245.85, + "probability": 0.8501 + }, + { + "start": 5246.89, + "end": 5248.39, + "probability": 0.8939 + }, + { + "start": 5249.81, + "end": 5250.37, + "probability": 0.8152 + }, + { + "start": 5252.23, + "end": 5254.15, + "probability": 0.998 + }, + { + "start": 5255.23, + "end": 5258.35, + "probability": 0.9988 + }, + { + "start": 5258.83, + "end": 5263.03, + "probability": 0.9989 + }, + { + "start": 5264.79, + "end": 5266.67, + "probability": 0.9933 + }, + { + "start": 5267.99, + "end": 5268.95, + "probability": 0.978 + }, + { + "start": 5269.15, + "end": 5273.51, + "probability": 0.9349 + }, + { + "start": 5273.51, + "end": 5276.61, + "probability": 0.9935 + }, + { + "start": 5277.17, + "end": 5278.35, + "probability": 0.848 + }, + { + "start": 5279.41, + "end": 5280.31, + "probability": 0.7654 + }, + { + "start": 5281.37, + "end": 5282.02, + "probability": 0.9436 + }, + { + "start": 5283.13, + "end": 5283.69, + "probability": 0.6651 + }, + { + "start": 5283.79, + "end": 5284.33, + "probability": 0.9271 + }, + { + "start": 5284.63, + "end": 5287.43, + "probability": 0.9639 + }, + { + "start": 5288.85, + "end": 5291.97, + "probability": 0.9816 + }, + { + "start": 5293.17, + "end": 5294.47, + "probability": 0.9258 + }, + { + "start": 5295.09, + "end": 5298.09, + "probability": 0.7584 + }, + { + "start": 5298.39, + "end": 5299.99, + "probability": 0.8034 + }, + { + "start": 5301.43, + "end": 5303.99, + "probability": 0.9601 + }, + { + "start": 5304.11, + "end": 5307.77, + "probability": 0.9896 + }, + { + "start": 5308.43, + "end": 5309.2, + "probability": 0.9576 + }, + { + "start": 5309.49, + "end": 5310.39, + "probability": 0.8493 + }, + { + "start": 5310.87, + "end": 5312.53, + "probability": 0.9781 + }, + { + "start": 5313.37, + "end": 5316.39, + "probability": 0.8354 + }, + { + "start": 5318.01, + "end": 5322.45, + "probability": 0.9761 + }, + { + "start": 5322.97, + "end": 5323.91, + "probability": 0.7682 + }, + { + "start": 5327.27, + "end": 5330.77, + "probability": 0.8322 + }, + { + "start": 5331.93, + "end": 5333.86, + "probability": 0.8267 + }, + { + "start": 5335.29, + "end": 5338.77, + "probability": 0.942 + }, + { + "start": 5339.53, + "end": 5340.59, + "probability": 0.7302 + }, + { + "start": 5341.57, + "end": 5342.93, + "probability": 0.9483 + }, + { + "start": 5343.51, + "end": 5346.47, + "probability": 0.901 + }, + { + "start": 5346.67, + "end": 5347.13, + "probability": 0.7672 + }, + { + "start": 5347.39, + "end": 5349.39, + "probability": 0.6079 + }, + { + "start": 5349.49, + "end": 5353.2, + "probability": 0.4836 + }, + { + "start": 5354.05, + "end": 5355.35, + "probability": 0.5929 + }, + { + "start": 5356.51, + "end": 5358.77, + "probability": 0.7968 + }, + { + "start": 5358.79, + "end": 5364.33, + "probability": 0.9281 + }, + { + "start": 5365.03, + "end": 5368.17, + "probability": 0.5439 + }, + { + "start": 5368.31, + "end": 5369.03, + "probability": 0.9283 + }, + { + "start": 5377.53, + "end": 5378.63, + "probability": 0.6098 + }, + { + "start": 5379.23, + "end": 5382.05, + "probability": 0.6556 + }, + { + "start": 5383.39, + "end": 5388.01, + "probability": 0.9811 + }, + { + "start": 5391.59, + "end": 5392.96, + "probability": 0.946 + }, + { + "start": 5393.69, + "end": 5395.37, + "probability": 0.9798 + }, + { + "start": 5395.47, + "end": 5398.29, + "probability": 0.9968 + }, + { + "start": 5398.79, + "end": 5405.05, + "probability": 0.9956 + }, + { + "start": 5405.47, + "end": 5407.77, + "probability": 0.9937 + }, + { + "start": 5408.55, + "end": 5410.41, + "probability": 0.723 + }, + { + "start": 5411.39, + "end": 5414.13, + "probability": 0.994 + }, + { + "start": 5415.29, + "end": 5417.87, + "probability": 0.7568 + }, + { + "start": 5417.87, + "end": 5420.89, + "probability": 0.9409 + }, + { + "start": 5421.61, + "end": 5422.81, + "probability": 0.795 + }, + { + "start": 5424.65, + "end": 5427.81, + "probability": 0.9725 + }, + { + "start": 5427.85, + "end": 5429.09, + "probability": 0.934 + }, + { + "start": 5430.01, + "end": 5435.89, + "probability": 0.9359 + }, + { + "start": 5437.71, + "end": 5441.25, + "probability": 0.9951 + }, + { + "start": 5442.63, + "end": 5443.15, + "probability": 0.8208 + }, + { + "start": 5443.25, + "end": 5444.27, + "probability": 0.9994 + }, + { + "start": 5445.59, + "end": 5449.67, + "probability": 0.9941 + }, + { + "start": 5451.65, + "end": 5455.99, + "probability": 0.9907 + }, + { + "start": 5456.51, + "end": 5458.13, + "probability": 0.9297 + }, + { + "start": 5458.75, + "end": 5461.37, + "probability": 0.9993 + }, + { + "start": 5462.55, + "end": 5465.19, + "probability": 0.7845 + }, + { + "start": 5466.01, + "end": 5470.09, + "probability": 0.9727 + }, + { + "start": 5471.29, + "end": 5475.61, + "probability": 0.9954 + }, + { + "start": 5476.51, + "end": 5477.77, + "probability": 0.8259 + }, + { + "start": 5478.73, + "end": 5480.35, + "probability": 0.9706 + }, + { + "start": 5481.89, + "end": 5486.83, + "probability": 0.9919 + }, + { + "start": 5487.57, + "end": 5495.43, + "probability": 0.9795 + }, + { + "start": 5497.39, + "end": 5499.21, + "probability": 0.8332 + }, + { + "start": 5499.81, + "end": 5500.53, + "probability": 0.7977 + }, + { + "start": 5500.59, + "end": 5501.49, + "probability": 0.4013 + }, + { + "start": 5501.51, + "end": 5502.09, + "probability": 0.8617 + }, + { + "start": 5502.39, + "end": 5503.63, + "probability": 0.9358 + }, + { + "start": 5505.31, + "end": 5506.99, + "probability": 0.9558 + }, + { + "start": 5507.27, + "end": 5510.75, + "probability": 0.8334 + }, + { + "start": 5512.65, + "end": 5514.75, + "probability": 0.999 + }, + { + "start": 5515.05, + "end": 5515.19, + "probability": 0.5645 + }, + { + "start": 5515.35, + "end": 5517.69, + "probability": 0.967 + }, + { + "start": 5518.63, + "end": 5520.65, + "probability": 0.8857 + }, + { + "start": 5522.49, + "end": 5526.07, + "probability": 0.8762 + }, + { + "start": 5527.27, + "end": 5529.17, + "probability": 0.7968 + }, + { + "start": 5530.8, + "end": 5531.93, + "probability": 0.4981 + }, + { + "start": 5531.93, + "end": 5534.97, + "probability": 0.8586 + }, + { + "start": 5535.61, + "end": 5537.35, + "probability": 0.8398 + }, + { + "start": 5537.41, + "end": 5541.95, + "probability": 0.9595 + }, + { + "start": 5543.21, + "end": 5544.03, + "probability": 0.82 + }, + { + "start": 5544.59, + "end": 5545.93, + "probability": 0.9678 + }, + { + "start": 5546.95, + "end": 5551.07, + "probability": 0.9424 + }, + { + "start": 5551.23, + "end": 5553.13, + "probability": 0.9719 + }, + { + "start": 5553.79, + "end": 5554.67, + "probability": 0.743 + }, + { + "start": 5555.43, + "end": 5557.89, + "probability": 0.994 + }, + { + "start": 5558.93, + "end": 5562.17, + "probability": 0.9977 + }, + { + "start": 5563.05, + "end": 5564.67, + "probability": 0.7435 + }, + { + "start": 5565.37, + "end": 5568.19, + "probability": 0.7217 + }, + { + "start": 5569.01, + "end": 5571.89, + "probability": 0.9473 + }, + { + "start": 5574.39, + "end": 5579.37, + "probability": 0.9817 + }, + { + "start": 5580.33, + "end": 5582.01, + "probability": 0.9917 + }, + { + "start": 5582.03, + "end": 5582.29, + "probability": 0.7273 + }, + { + "start": 5583.15, + "end": 5584.61, + "probability": 0.6685 + }, + { + "start": 5585.21, + "end": 5587.33, + "probability": 0.9078 + }, + { + "start": 5610.23, + "end": 5612.47, + "probability": 0.6804 + }, + { + "start": 5613.91, + "end": 5617.87, + "probability": 0.9823 + }, + { + "start": 5619.23, + "end": 5620.49, + "probability": 0.9845 + }, + { + "start": 5620.71, + "end": 5621.95, + "probability": 0.9646 + }, + { + "start": 5622.13, + "end": 5623.07, + "probability": 0.9539 + }, + { + "start": 5623.89, + "end": 5627.21, + "probability": 0.9541 + }, + { + "start": 5627.21, + "end": 5631.01, + "probability": 0.991 + }, + { + "start": 5631.69, + "end": 5636.67, + "probability": 0.9422 + }, + { + "start": 5637.09, + "end": 5638.19, + "probability": 0.8143 + }, + { + "start": 5638.41, + "end": 5639.21, + "probability": 0.7008 + }, + { + "start": 5639.61, + "end": 5641.11, + "probability": 0.978 + }, + { + "start": 5641.33, + "end": 5641.95, + "probability": 0.8969 + }, + { + "start": 5642.75, + "end": 5645.32, + "probability": 0.6036 + }, + { + "start": 5646.15, + "end": 5649.27, + "probability": 0.99 + }, + { + "start": 5650.11, + "end": 5650.69, + "probability": 0.6655 + }, + { + "start": 5650.97, + "end": 5651.59, + "probability": 0.7969 + }, + { + "start": 5651.77, + "end": 5653.23, + "probability": 0.8446 + }, + { + "start": 5653.65, + "end": 5654.75, + "probability": 0.8276 + }, + { + "start": 5654.75, + "end": 5655.87, + "probability": 0.9767 + }, + { + "start": 5656.85, + "end": 5658.27, + "probability": 0.9785 + }, + { + "start": 5658.31, + "end": 5659.23, + "probability": 0.8651 + }, + { + "start": 5659.33, + "end": 5660.33, + "probability": 0.9075 + }, + { + "start": 5660.89, + "end": 5663.1, + "probability": 0.9945 + }, + { + "start": 5663.41, + "end": 5664.35, + "probability": 0.7672 + }, + { + "start": 5665.47, + "end": 5666.6, + "probability": 0.993 + }, + { + "start": 5666.97, + "end": 5668.91, + "probability": 0.9237 + }, + { + "start": 5669.03, + "end": 5669.47, + "probability": 0.989 + }, + { + "start": 5669.53, + "end": 5669.97, + "probability": 0.8995 + }, + { + "start": 5670.01, + "end": 5670.71, + "probability": 0.8991 + }, + { + "start": 5671.21, + "end": 5673.15, + "probability": 0.7948 + }, + { + "start": 5673.63, + "end": 5675.01, + "probability": 0.8421 + }, + { + "start": 5675.69, + "end": 5677.71, + "probability": 0.9797 + }, + { + "start": 5678.15, + "end": 5678.67, + "probability": 0.9153 + }, + { + "start": 5678.73, + "end": 5679.21, + "probability": 0.9391 + }, + { + "start": 5679.27, + "end": 5680.09, + "probability": 0.9442 + }, + { + "start": 5680.43, + "end": 5683.35, + "probability": 0.972 + }, + { + "start": 5683.73, + "end": 5686.79, + "probability": 0.9935 + }, + { + "start": 5687.19, + "end": 5688.26, + "probability": 0.9758 + }, + { + "start": 5688.63, + "end": 5690.07, + "probability": 0.9956 + }, + { + "start": 5690.55, + "end": 5695.11, + "probability": 0.9924 + }, + { + "start": 5695.55, + "end": 5696.25, + "probability": 0.9038 + }, + { + "start": 5696.37, + "end": 5696.99, + "probability": 0.9613 + }, + { + "start": 5697.15, + "end": 5699.21, + "probability": 0.8796 + }, + { + "start": 5699.77, + "end": 5703.65, + "probability": 0.9351 + }, + { + "start": 5704.23, + "end": 5706.19, + "probability": 0.7153 + }, + { + "start": 5706.93, + "end": 5710.63, + "probability": 0.9795 + }, + { + "start": 5710.79, + "end": 5711.29, + "probability": 0.9615 + }, + { + "start": 5711.33, + "end": 5711.83, + "probability": 0.9655 + }, + { + "start": 5711.97, + "end": 5713.21, + "probability": 0.6885 + }, + { + "start": 5713.83, + "end": 5714.63, + "probability": 0.9121 + }, + { + "start": 5714.75, + "end": 5715.45, + "probability": 0.6262 + }, + { + "start": 5715.55, + "end": 5719.19, + "probability": 0.9592 + }, + { + "start": 5719.37, + "end": 5720.35, + "probability": 0.6835 + }, + { + "start": 5720.69, + "end": 5722.19, + "probability": 0.9487 + }, + { + "start": 5722.99, + "end": 5726.83, + "probability": 0.9938 + }, + { + "start": 5727.41, + "end": 5728.51, + "probability": 0.7483 + }, + { + "start": 5728.57, + "end": 5729.91, + "probability": 0.9204 + }, + { + "start": 5730.31, + "end": 5730.87, + "probability": 0.8331 + }, + { + "start": 5730.91, + "end": 5732.65, + "probability": 0.9919 + }, + { + "start": 5733.25, + "end": 5735.53, + "probability": 0.9844 + }, + { + "start": 5736.39, + "end": 5740.07, + "probability": 0.8988 + }, + { + "start": 5740.75, + "end": 5742.45, + "probability": 0.9221 + }, + { + "start": 5742.93, + "end": 5745.42, + "probability": 0.9807 + }, + { + "start": 5745.87, + "end": 5748.85, + "probability": 0.9868 + }, + { + "start": 5749.39, + "end": 5750.88, + "probability": 0.9987 + }, + { + "start": 5751.55, + "end": 5752.91, + "probability": 0.7631 + }, + { + "start": 5753.75, + "end": 5756.39, + "probability": 0.9577 + }, + { + "start": 5757.05, + "end": 5759.62, + "probability": 0.9814 + }, + { + "start": 5760.65, + "end": 5762.09, + "probability": 0.8386 + }, + { + "start": 5762.57, + "end": 5766.89, + "probability": 0.9643 + }, + { + "start": 5767.23, + "end": 5768.79, + "probability": 0.918 + }, + { + "start": 5768.95, + "end": 5772.03, + "probability": 0.9672 + }, + { + "start": 5772.37, + "end": 5777.83, + "probability": 0.9677 + }, + { + "start": 5778.23, + "end": 5780.27, + "probability": 0.9595 + }, + { + "start": 5780.71, + "end": 5782.75, + "probability": 0.9722 + }, + { + "start": 5783.35, + "end": 5786.71, + "probability": 0.9971 + }, + { + "start": 5786.83, + "end": 5787.83, + "probability": 0.9111 + }, + { + "start": 5788.03, + "end": 5788.41, + "probability": 0.6935 + }, + { + "start": 5788.49, + "end": 5790.17, + "probability": 0.8868 + }, + { + "start": 5790.41, + "end": 5791.77, + "probability": 0.932 + }, + { + "start": 5791.89, + "end": 5792.51, + "probability": 0.8506 + }, + { + "start": 5792.93, + "end": 5797.03, + "probability": 0.9534 + }, + { + "start": 5797.17, + "end": 5797.85, + "probability": 0.7569 + }, + { + "start": 5798.49, + "end": 5799.61, + "probability": 0.6592 + }, + { + "start": 5800.39, + "end": 5801.19, + "probability": 0.8055 + }, + { + "start": 5801.73, + "end": 5804.71, + "probability": 0.8687 + }, + { + "start": 5805.87, + "end": 5807.95, + "probability": 0.9591 + }, + { + "start": 5837.45, + "end": 5839.15, + "probability": 0.5599 + }, + { + "start": 5840.39, + "end": 5841.79, + "probability": 0.7778 + }, + { + "start": 5842.89, + "end": 5844.35, + "probability": 0.6881 + }, + { + "start": 5845.29, + "end": 5846.53, + "probability": 0.9699 + }, + { + "start": 5847.55, + "end": 5850.43, + "probability": 0.8605 + }, + { + "start": 5851.29, + "end": 5852.13, + "probability": 0.9708 + }, + { + "start": 5853.53, + "end": 5855.85, + "probability": 0.4536 + }, + { + "start": 5857.15, + "end": 5858.77, + "probability": 0.8035 + }, + { + "start": 5860.21, + "end": 5863.33, + "probability": 0.8882 + }, + { + "start": 5864.61, + "end": 5866.65, + "probability": 0.8585 + }, + { + "start": 5869.27, + "end": 5872.05, + "probability": 0.7635 + }, + { + "start": 5873.25, + "end": 5876.53, + "probability": 0.9869 + }, + { + "start": 5877.31, + "end": 5878.09, + "probability": 0.5081 + }, + { + "start": 5879.31, + "end": 5882.91, + "probability": 0.7854 + }, + { + "start": 5883.61, + "end": 5885.01, + "probability": 0.945 + }, + { + "start": 5885.23, + "end": 5886.47, + "probability": 0.9683 + }, + { + "start": 5887.59, + "end": 5888.3, + "probability": 0.9476 + }, + { + "start": 5889.61, + "end": 5892.85, + "probability": 0.9766 + }, + { + "start": 5894.15, + "end": 5897.33, + "probability": 0.8677 + }, + { + "start": 5898.15, + "end": 5899.09, + "probability": 0.957 + }, + { + "start": 5899.63, + "end": 5903.25, + "probability": 0.7661 + }, + { + "start": 5904.71, + "end": 5906.21, + "probability": 0.9416 + }, + { + "start": 5907.13, + "end": 5910.57, + "probability": 0.9774 + }, + { + "start": 5911.93, + "end": 5913.06, + "probability": 0.9871 + }, + { + "start": 5914.49, + "end": 5916.59, + "probability": 0.9961 + }, + { + "start": 5918.11, + "end": 5919.19, + "probability": 0.9967 + }, + { + "start": 5920.35, + "end": 5922.45, + "probability": 0.72 + }, + { + "start": 5923.15, + "end": 5924.13, + "probability": 0.7015 + }, + { + "start": 5924.35, + "end": 5926.08, + "probability": 0.78 + }, + { + "start": 5926.73, + "end": 5927.9, + "probability": 0.9807 + }, + { + "start": 5928.59, + "end": 5930.27, + "probability": 0.9838 + }, + { + "start": 5930.35, + "end": 5933.15, + "probability": 0.9875 + }, + { + "start": 5934.03, + "end": 5935.63, + "probability": 0.833 + }, + { + "start": 5936.71, + "end": 5938.05, + "probability": 0.7149 + }, + { + "start": 5939.15, + "end": 5941.57, + "probability": 0.9598 + }, + { + "start": 5942.81, + "end": 5944.67, + "probability": 0.7656 + }, + { + "start": 5945.77, + "end": 5946.49, + "probability": 0.7515 + }, + { + "start": 5947.87, + "end": 5954.17, + "probability": 0.9136 + }, + { + "start": 5955.03, + "end": 5956.27, + "probability": 0.999 + }, + { + "start": 5957.73, + "end": 5960.99, + "probability": 0.8674 + }, + { + "start": 5961.65, + "end": 5962.69, + "probability": 0.9509 + }, + { + "start": 5964.65, + "end": 5966.98, + "probability": 0.9713 + }, + { + "start": 5967.83, + "end": 5971.41, + "probability": 0.9773 + }, + { + "start": 5973.29, + "end": 5974.95, + "probability": 0.7426 + }, + { + "start": 5977.43, + "end": 5980.23, + "probability": 0.9958 + }, + { + "start": 5981.63, + "end": 5983.57, + "probability": 0.9727 + }, + { + "start": 5984.39, + "end": 5986.25, + "probability": 0.9987 + }, + { + "start": 5988.29, + "end": 5989.63, + "probability": 0.8629 + }, + { + "start": 5991.11, + "end": 5992.09, + "probability": 0.9888 + }, + { + "start": 5992.61, + "end": 5995.35, + "probability": 0.9718 + }, + { + "start": 5996.99, + "end": 6001.07, + "probability": 0.8477 + }, + { + "start": 6002.13, + "end": 6003.39, + "probability": 0.7308 + }, + { + "start": 6004.59, + "end": 6008.75, + "probability": 0.881 + }, + { + "start": 6009.35, + "end": 6011.43, + "probability": 0.7684 + }, + { + "start": 6012.21, + "end": 6014.67, + "probability": 0.808 + }, + { + "start": 6015.49, + "end": 6016.43, + "probability": 0.6793 + }, + { + "start": 6017.13, + "end": 6020.21, + "probability": 0.9771 + }, + { + "start": 6020.83, + "end": 6023.45, + "probability": 0.6605 + }, + { + "start": 6024.23, + "end": 6028.59, + "probability": 0.9645 + }, + { + "start": 6028.59, + "end": 6028.69, + "probability": 0.6037 + }, + { + "start": 6029.21, + "end": 6030.25, + "probability": 0.9736 + }, + { + "start": 6031.77, + "end": 6032.23, + "probability": 0.9274 + }, + { + "start": 6032.29, + "end": 6033.03, + "probability": 0.6549 + }, + { + "start": 6033.11, + "end": 6033.81, + "probability": 0.5285 + }, + { + "start": 6034.05, + "end": 6035.63, + "probability": 0.8049 + }, + { + "start": 6035.79, + "end": 6036.17, + "probability": 0.7234 + }, + { + "start": 6036.83, + "end": 6039.63, + "probability": 0.4312 + }, + { + "start": 6040.35, + "end": 6040.93, + "probability": 0.6622 + }, + { + "start": 6040.99, + "end": 6041.85, + "probability": 0.7102 + }, + { + "start": 6041.89, + "end": 6042.82, + "probability": 0.8486 + }, + { + "start": 6043.29, + "end": 6044.11, + "probability": 0.5779 + }, + { + "start": 6044.21, + "end": 6044.7, + "probability": 0.8717 + }, + { + "start": 6045.65, + "end": 6048.33, + "probability": 0.9576 + }, + { + "start": 6048.89, + "end": 6052.83, + "probability": 0.8504 + }, + { + "start": 6053.91, + "end": 6057.73, + "probability": 0.868 + }, + { + "start": 6057.99, + "end": 6059.07, + "probability": 0.6346 + }, + { + "start": 6059.59, + "end": 6062.29, + "probability": 0.9779 + }, + { + "start": 6062.69, + "end": 6064.37, + "probability": 0.8176 + }, + { + "start": 6064.67, + "end": 6066.93, + "probability": 0.7578 + }, + { + "start": 6067.09, + "end": 6074.73, + "probability": 0.9941 + }, + { + "start": 6075.15, + "end": 6079.11, + "probability": 0.9176 + }, + { + "start": 6079.33, + "end": 6079.95, + "probability": 0.8202 + }, + { + "start": 6080.41, + "end": 6082.39, + "probability": 0.9667 + }, + { + "start": 6083.13, + "end": 6084.33, + "probability": 0.5812 + }, + { + "start": 6084.49, + "end": 6086.27, + "probability": 0.9871 + }, + { + "start": 6089.43, + "end": 6090.03, + "probability": 0.5766 + }, + { + "start": 6090.05, + "end": 6090.31, + "probability": 0.8666 + }, + { + "start": 6106.29, + "end": 6108.43, + "probability": 0.5125 + }, + { + "start": 6109.51, + "end": 6110.57, + "probability": 0.9203 + }, + { + "start": 6111.43, + "end": 6112.87, + "probability": 0.9943 + }, + { + "start": 6114.15, + "end": 6117.17, + "probability": 0.9862 + }, + { + "start": 6118.67, + "end": 6122.23, + "probability": 0.972 + }, + { + "start": 6122.87, + "end": 6123.82, + "probability": 0.9814 + }, + { + "start": 6124.71, + "end": 6125.05, + "probability": 0.3711 + }, + { + "start": 6128.37, + "end": 6129.61, + "probability": 0.775 + }, + { + "start": 6131.33, + "end": 6131.71, + "probability": 0.6005 + }, + { + "start": 6131.95, + "end": 6137.29, + "probability": 0.995 + }, + { + "start": 6138.27, + "end": 6139.77, + "probability": 0.8949 + }, + { + "start": 6139.91, + "end": 6145.41, + "probability": 0.9573 + }, + { + "start": 6145.41, + "end": 6148.91, + "probability": 0.9183 + }, + { + "start": 6149.61, + "end": 6151.65, + "probability": 0.9214 + }, + { + "start": 6152.95, + "end": 6153.85, + "probability": 0.7327 + }, + { + "start": 6153.89, + "end": 6158.45, + "probability": 0.6949 + }, + { + "start": 6159.25, + "end": 6163.63, + "probability": 0.9697 + }, + { + "start": 6164.71, + "end": 6169.51, + "probability": 0.9948 + }, + { + "start": 6170.99, + "end": 6173.77, + "probability": 0.6071 + }, + { + "start": 6174.43, + "end": 6177.05, + "probability": 0.9982 + }, + { + "start": 6178.07, + "end": 6179.93, + "probability": 0.9858 + }, + { + "start": 6181.05, + "end": 6187.13, + "probability": 0.9506 + }, + { + "start": 6187.29, + "end": 6189.59, + "probability": 0.9008 + }, + { + "start": 6190.81, + "end": 6193.71, + "probability": 0.8417 + }, + { + "start": 6195.55, + "end": 6199.69, + "probability": 0.6462 + }, + { + "start": 6201.03, + "end": 6204.23, + "probability": 0.9199 + }, + { + "start": 6204.67, + "end": 6206.13, + "probability": 0.7442 + }, + { + "start": 6207.49, + "end": 6208.45, + "probability": 0.9388 + }, + { + "start": 6209.15, + "end": 6212.77, + "probability": 0.9751 + }, + { + "start": 6212.77, + "end": 6217.15, + "probability": 0.9968 + }, + { + "start": 6217.79, + "end": 6221.25, + "probability": 0.9641 + }, + { + "start": 6222.29, + "end": 6225.37, + "probability": 0.9845 + }, + { + "start": 6225.97, + "end": 6235.23, + "probability": 0.9788 + }, + { + "start": 6236.45, + "end": 6241.41, + "probability": 0.9374 + }, + { + "start": 6242.15, + "end": 6247.01, + "probability": 0.9909 + }, + { + "start": 6247.17, + "end": 6248.35, + "probability": 0.8822 + }, + { + "start": 6249.95, + "end": 6252.21, + "probability": 0.8625 + }, + { + "start": 6254.15, + "end": 6257.91, + "probability": 0.9779 + }, + { + "start": 6257.97, + "end": 6259.57, + "probability": 0.9802 + }, + { + "start": 6261.79, + "end": 6263.17, + "probability": 0.9336 + }, + { + "start": 6263.41, + "end": 6266.25, + "probability": 0.8068 + }, + { + "start": 6266.37, + "end": 6267.81, + "probability": 0.2426 + }, + { + "start": 6268.47, + "end": 6269.51, + "probability": 0.6756 + }, + { + "start": 6270.37, + "end": 6275.63, + "probability": 0.9742 + }, + { + "start": 6276.33, + "end": 6278.93, + "probability": 0.9814 + }, + { + "start": 6279.61, + "end": 6281.67, + "probability": 0.7723 + }, + { + "start": 6282.31, + "end": 6285.15, + "probability": 0.9315 + }, + { + "start": 6285.81, + "end": 6287.11, + "probability": 0.8204 + }, + { + "start": 6287.85, + "end": 6290.21, + "probability": 0.9255 + }, + { + "start": 6291.37, + "end": 6294.85, + "probability": 0.7313 + }, + { + "start": 6294.87, + "end": 6294.89, + "probability": 0.4218 + }, + { + "start": 6294.89, + "end": 6295.27, + "probability": 0.65 + }, + { + "start": 6295.51, + "end": 6296.27, + "probability": 0.9386 + }, + { + "start": 6296.81, + "end": 6302.69, + "probability": 0.8941 + }, + { + "start": 6304.29, + "end": 6306.69, + "probability": 0.6537 + }, + { + "start": 6307.01, + "end": 6308.21, + "probability": 0.3554 + }, + { + "start": 6308.67, + "end": 6310.28, + "probability": 0.9414 + }, + { + "start": 6310.71, + "end": 6313.34, + "probability": 0.5432 + }, + { + "start": 6313.83, + "end": 6314.91, + "probability": 0.8027 + }, + { + "start": 6315.74, + "end": 6318.43, + "probability": 0.4934 + }, + { + "start": 6319.51, + "end": 6322.53, + "probability": 0.9914 + }, + { + "start": 6323.47, + "end": 6325.25, + "probability": 0.9734 + }, + { + "start": 6325.77, + "end": 6328.85, + "probability": 0.9974 + }, + { + "start": 6329.99, + "end": 6332.65, + "probability": 0.8878 + }, + { + "start": 6333.01, + "end": 6335.91, + "probability": 0.9766 + }, + { + "start": 6336.45, + "end": 6342.59, + "probability": 0.8838 + }, + { + "start": 6342.87, + "end": 6345.71, + "probability": 0.9516 + }, + { + "start": 6345.95, + "end": 6346.47, + "probability": 0.8553 + }, + { + "start": 6346.75, + "end": 6347.57, + "probability": 0.5408 + }, + { + "start": 6347.79, + "end": 6349.69, + "probability": 0.7988 + }, + { + "start": 6349.73, + "end": 6350.05, + "probability": 0.8553 + }, + { + "start": 6380.85, + "end": 6382.37, + "probability": 0.6649 + }, + { + "start": 6383.41, + "end": 6387.11, + "probability": 0.1905 + }, + { + "start": 6388.99, + "end": 6392.41, + "probability": 0.9474 + }, + { + "start": 6392.41, + "end": 6395.79, + "probability": 0.9962 + }, + { + "start": 6396.51, + "end": 6399.29, + "probability": 0.9493 + }, + { + "start": 6400.35, + "end": 6402.69, + "probability": 0.848 + }, + { + "start": 6403.73, + "end": 6406.73, + "probability": 0.8411 + }, + { + "start": 6407.85, + "end": 6411.51, + "probability": 0.8724 + }, + { + "start": 6412.19, + "end": 6414.57, + "probability": 0.8658 + }, + { + "start": 6415.67, + "end": 6416.03, + "probability": 0.2704 + }, + { + "start": 6416.05, + "end": 6416.71, + "probability": 0.9066 + }, + { + "start": 6417.11, + "end": 6419.85, + "probability": 0.9033 + }, + { + "start": 6419.93, + "end": 6422.25, + "probability": 0.8306 + }, + { + "start": 6422.39, + "end": 6426.91, + "probability": 0.939 + }, + { + "start": 6427.23, + "end": 6430.29, + "probability": 0.9526 + }, + { + "start": 6431.17, + "end": 6432.57, + "probability": 0.5891 + }, + { + "start": 6432.75, + "end": 6438.39, + "probability": 0.952 + }, + { + "start": 6439.39, + "end": 6443.39, + "probability": 0.8158 + }, + { + "start": 6443.39, + "end": 6446.99, + "probability": 0.9705 + }, + { + "start": 6447.13, + "end": 6447.57, + "probability": 0.8801 + }, + { + "start": 6447.65, + "end": 6448.55, + "probability": 0.9358 + }, + { + "start": 6449.49, + "end": 6452.15, + "probability": 0.8689 + }, + { + "start": 6452.15, + "end": 6455.95, + "probability": 0.8857 + }, + { + "start": 6456.05, + "end": 6457.11, + "probability": 0.8393 + }, + { + "start": 6458.35, + "end": 6462.27, + "probability": 0.9539 + }, + { + "start": 6462.27, + "end": 6467.61, + "probability": 0.8338 + }, + { + "start": 6468.49, + "end": 6472.37, + "probability": 0.6865 + }, + { + "start": 6473.53, + "end": 6477.69, + "probability": 0.9673 + }, + { + "start": 6478.53, + "end": 6480.05, + "probability": 0.923 + }, + { + "start": 6480.55, + "end": 6482.71, + "probability": 0.8496 + }, + { + "start": 6482.81, + "end": 6483.93, + "probability": 0.748 + }, + { + "start": 6484.15, + "end": 6485.49, + "probability": 0.5784 + }, + { + "start": 6486.81, + "end": 6490.77, + "probability": 0.9722 + }, + { + "start": 6491.43, + "end": 6493.05, + "probability": 0.8737 + }, + { + "start": 6493.11, + "end": 6495.27, + "probability": 0.989 + }, + { + "start": 6495.63, + "end": 6498.05, + "probability": 0.8886 + }, + { + "start": 6498.65, + "end": 6501.85, + "probability": 0.9751 + }, + { + "start": 6501.87, + "end": 6503.61, + "probability": 0.9907 + }, + { + "start": 6504.67, + "end": 6508.45, + "probability": 0.9979 + }, + { + "start": 6509.01, + "end": 6510.31, + "probability": 0.9954 + }, + { + "start": 6511.35, + "end": 6515.13, + "probability": 0.9873 + }, + { + "start": 6516.23, + "end": 6520.79, + "probability": 0.9707 + }, + { + "start": 6521.75, + "end": 6523.27, + "probability": 0.9426 + }, + { + "start": 6523.65, + "end": 6525.41, + "probability": 0.931 + }, + { + "start": 6525.79, + "end": 6527.13, + "probability": 0.9435 + }, + { + "start": 6527.27, + "end": 6529.17, + "probability": 0.9129 + }, + { + "start": 6530.01, + "end": 6530.17, + "probability": 0.4966 + }, + { + "start": 6530.33, + "end": 6530.69, + "probability": 0.8702 + }, + { + "start": 6530.79, + "end": 6531.67, + "probability": 0.6955 + }, + { + "start": 6532.07, + "end": 6536.05, + "probability": 0.9163 + }, + { + "start": 6536.05, + "end": 6539.81, + "probability": 0.9928 + }, + { + "start": 6539.89, + "end": 6542.95, + "probability": 0.9934 + }, + { + "start": 6543.25, + "end": 6545.11, + "probability": 0.9615 + }, + { + "start": 6546.05, + "end": 6546.73, + "probability": 0.7609 + }, + { + "start": 6546.85, + "end": 6549.17, + "probability": 0.9386 + }, + { + "start": 6549.21, + "end": 6550.23, + "probability": 0.7824 + }, + { + "start": 6551.11, + "end": 6553.63, + "probability": 0.9158 + }, + { + "start": 6553.83, + "end": 6557.05, + "probability": 0.9738 + }, + { + "start": 6557.55, + "end": 6560.17, + "probability": 0.9966 + }, + { + "start": 6560.45, + "end": 6561.48, + "probability": 0.9634 + }, + { + "start": 6562.27, + "end": 6564.39, + "probability": 0.5981 + }, + { + "start": 6565.05, + "end": 6568.17, + "probability": 0.8986 + }, + { + "start": 6568.39, + "end": 6572.87, + "probability": 0.9663 + }, + { + "start": 6572.93, + "end": 6573.69, + "probability": 0.5662 + }, + { + "start": 6573.77, + "end": 6579.07, + "probability": 0.8358 + }, + { + "start": 6579.39, + "end": 6579.93, + "probability": 0.4544 + }, + { + "start": 6580.43, + "end": 6580.45, + "probability": 0.1255 + }, + { + "start": 6580.55, + "end": 6581.07, + "probability": 0.8634 + }, + { + "start": 6581.17, + "end": 6584.63, + "probability": 0.9482 + }, + { + "start": 6585.07, + "end": 6589.61, + "probability": 0.5649 + }, + { + "start": 6589.61, + "end": 6594.33, + "probability": 0.5902 + }, + { + "start": 6594.57, + "end": 6594.91, + "probability": 0.7492 + }, + { + "start": 6595.33, + "end": 6596.81, + "probability": 0.5167 + }, + { + "start": 6596.97, + "end": 6599.01, + "probability": 0.9106 + }, + { + "start": 6599.13, + "end": 6599.23, + "probability": 0.8997 + }, + { + "start": 6612.43, + "end": 6612.43, + "probability": 0.1555 + }, + { + "start": 6612.43, + "end": 6612.43, + "probability": 0.1488 + }, + { + "start": 6612.43, + "end": 6612.43, + "probability": 0.0096 + }, + { + "start": 6612.43, + "end": 6612.43, + "probability": 0.0246 + }, + { + "start": 6612.43, + "end": 6612.43, + "probability": 0.0788 + }, + { + "start": 6612.43, + "end": 6612.43, + "probability": 0.1284 + }, + { + "start": 6642.75, + "end": 6645.25, + "probability": 0.6559 + }, + { + "start": 6646.23, + "end": 6649.11, + "probability": 0.6665 + }, + { + "start": 6649.17, + "end": 6649.85, + "probability": 0.8236 + }, + { + "start": 6650.47, + "end": 6653.79, + "probability": 0.9958 + }, + { + "start": 6653.79, + "end": 6656.17, + "probability": 0.7434 + }, + { + "start": 6656.77, + "end": 6657.54, + "probability": 0.7295 + }, + { + "start": 6658.03, + "end": 6662.03, + "probability": 0.8656 + }, + { + "start": 6662.05, + "end": 6666.65, + "probability": 0.9956 + }, + { + "start": 6667.31, + "end": 6670.65, + "probability": 0.9878 + }, + { + "start": 6671.51, + "end": 6672.73, + "probability": 0.8614 + }, + { + "start": 6672.91, + "end": 6674.27, + "probability": 0.9976 + }, + { + "start": 6674.43, + "end": 6676.27, + "probability": 0.9789 + }, + { + "start": 6676.45, + "end": 6677.79, + "probability": 0.9121 + }, + { + "start": 6678.63, + "end": 6679.03, + "probability": 0.7119 + }, + { + "start": 6679.09, + "end": 6680.39, + "probability": 0.9623 + }, + { + "start": 6680.47, + "end": 6685.33, + "probability": 0.8234 + }, + { + "start": 6685.73, + "end": 6686.57, + "probability": 0.9329 + }, + { + "start": 6686.93, + "end": 6687.79, + "probability": 0.9145 + }, + { + "start": 6688.27, + "end": 6688.81, + "probability": 0.9675 + }, + { + "start": 6688.87, + "end": 6689.79, + "probability": 0.8867 + }, + { + "start": 6689.81, + "end": 6691.75, + "probability": 0.7435 + }, + { + "start": 6691.75, + "end": 6695.69, + "probability": 0.9873 + }, + { + "start": 6696.63, + "end": 6697.75, + "probability": 0.453 + }, + { + "start": 6698.81, + "end": 6699.4, + "probability": 0.9243 + }, + { + "start": 6699.75, + "end": 6700.85, + "probability": 0.9365 + }, + { + "start": 6700.93, + "end": 6702.21, + "probability": 0.8958 + }, + { + "start": 6702.35, + "end": 6706.99, + "probability": 0.98 + }, + { + "start": 6707.55, + "end": 6710.17, + "probability": 0.9954 + }, + { + "start": 6710.59, + "end": 6712.33, + "probability": 0.7348 + }, + { + "start": 6713.19, + "end": 6714.11, + "probability": 0.6189 + }, + { + "start": 6715.35, + "end": 6716.83, + "probability": 0.7652 + }, + { + "start": 6717.87, + "end": 6718.91, + "probability": 0.9812 + }, + { + "start": 6719.01, + "end": 6719.95, + "probability": 0.9287 + }, + { + "start": 6720.25, + "end": 6721.81, + "probability": 0.9955 + }, + { + "start": 6721.93, + "end": 6727.04, + "probability": 0.862 + }, + { + "start": 6727.89, + "end": 6731.79, + "probability": 0.8742 + }, + { + "start": 6732.41, + "end": 6733.05, + "probability": 0.6917 + }, + { + "start": 6733.31, + "end": 6738.13, + "probability": 0.948 + }, + { + "start": 6738.63, + "end": 6742.65, + "probability": 0.906 + }, + { + "start": 6744.11, + "end": 6747.05, + "probability": 0.641 + }, + { + "start": 6747.49, + "end": 6748.39, + "probability": 0.8197 + }, + { + "start": 6748.75, + "end": 6750.31, + "probability": 0.9856 + }, + { + "start": 6750.45, + "end": 6753.47, + "probability": 0.943 + }, + { + "start": 6753.47, + "end": 6756.83, + "probability": 0.9811 + }, + { + "start": 6757.37, + "end": 6760.05, + "probability": 0.8329 + }, + { + "start": 6760.49, + "end": 6762.81, + "probability": 0.8481 + }, + { + "start": 6763.03, + "end": 6764.39, + "probability": 0.9877 + }, + { + "start": 6764.55, + "end": 6765.07, + "probability": 0.526 + }, + { + "start": 6765.51, + "end": 6766.38, + "probability": 0.9535 + }, + { + "start": 6766.59, + "end": 6768.99, + "probability": 0.6623 + }, + { + "start": 6769.45, + "end": 6770.49, + "probability": 0.8323 + }, + { + "start": 6770.89, + "end": 6776.51, + "probability": 0.8257 + }, + { + "start": 6776.57, + "end": 6779.51, + "probability": 0.8892 + }, + { + "start": 6779.99, + "end": 6781.99, + "probability": 0.922 + }, + { + "start": 6782.29, + "end": 6783.35, + "probability": 0.7785 + }, + { + "start": 6783.47, + "end": 6786.65, + "probability": 0.9837 + }, + { + "start": 6786.93, + "end": 6788.81, + "probability": 0.9714 + }, + { + "start": 6789.21, + "end": 6789.81, + "probability": 0.7458 + }, + { + "start": 6790.13, + "end": 6790.53, + "probability": 0.8206 + }, + { + "start": 6790.59, + "end": 6793.27, + "probability": 0.9765 + }, + { + "start": 6793.69, + "end": 6794.55, + "probability": 0.4191 + }, + { + "start": 6794.89, + "end": 6795.77, + "probability": 0.6694 + }, + { + "start": 6796.15, + "end": 6798.63, + "probability": 0.6665 + }, + { + "start": 6798.67, + "end": 6801.95, + "probability": 0.9338 + }, + { + "start": 6802.25, + "end": 6806.41, + "probability": 0.9863 + }, + { + "start": 6807.11, + "end": 6810.81, + "probability": 0.9854 + }, + { + "start": 6810.81, + "end": 6811.76, + "probability": 0.5001 + }, + { + "start": 6811.81, + "end": 6813.17, + "probability": 0.6516 + }, + { + "start": 6816.29, + "end": 6817.11, + "probability": 0.539 + }, + { + "start": 6817.25, + "end": 6820.87, + "probability": 0.9923 + }, + { + "start": 6821.03, + "end": 6821.77, + "probability": 0.7354 + }, + { + "start": 6822.11, + "end": 6823.93, + "probability": 0.9994 + }, + { + "start": 6824.01, + "end": 6827.97, + "probability": 0.8787 + }, + { + "start": 6828.17, + "end": 6829.03, + "probability": 0.918 + }, + { + "start": 6829.17, + "end": 6829.59, + "probability": 0.6169 + }, + { + "start": 6830.61, + "end": 6831.97, + "probability": 0.4914 + }, + { + "start": 6832.05, + "end": 6833.93, + "probability": 0.8232 + }, + { + "start": 6858.69, + "end": 6861.07, + "probability": 0.609 + }, + { + "start": 6862.11, + "end": 6868.59, + "probability": 0.976 + }, + { + "start": 6868.59, + "end": 6876.27, + "probability": 0.9644 + }, + { + "start": 6877.85, + "end": 6879.37, + "probability": 0.9722 + }, + { + "start": 6881.23, + "end": 6885.57, + "probability": 0.9891 + }, + { + "start": 6886.17, + "end": 6887.27, + "probability": 0.8096 + }, + { + "start": 6888.17, + "end": 6894.33, + "probability": 0.9409 + }, + { + "start": 6894.91, + "end": 6895.58, + "probability": 0.9385 + }, + { + "start": 6897.19, + "end": 6899.93, + "probability": 0.8177 + }, + { + "start": 6901.53, + "end": 6904.37, + "probability": 0.9696 + }, + { + "start": 6905.47, + "end": 6908.89, + "probability": 0.9561 + }, + { + "start": 6910.01, + "end": 6910.93, + "probability": 0.5886 + }, + { + "start": 6910.93, + "end": 6911.65, + "probability": 0.937 + }, + { + "start": 6912.67, + "end": 6913.81, + "probability": 0.5757 + }, + { + "start": 6914.39, + "end": 6914.95, + "probability": 0.4539 + }, + { + "start": 6915.87, + "end": 6917.97, + "probability": 0.9056 + }, + { + "start": 6918.77, + "end": 6923.81, + "probability": 0.9373 + }, + { + "start": 6924.67, + "end": 6927.19, + "probability": 0.8802 + }, + { + "start": 6928.77, + "end": 6933.91, + "probability": 0.9889 + }, + { + "start": 6934.81, + "end": 6937.59, + "probability": 0.9541 + }, + { + "start": 6938.35, + "end": 6939.49, + "probability": 0.794 + }, + { + "start": 6939.87, + "end": 6940.66, + "probability": 0.7799 + }, + { + "start": 6941.81, + "end": 6943.65, + "probability": 0.7315 + }, + { + "start": 6944.11, + "end": 6947.57, + "probability": 0.9393 + }, + { + "start": 6948.91, + "end": 6950.97, + "probability": 0.7413 + }, + { + "start": 6952.59, + "end": 6955.93, + "probability": 0.8657 + }, + { + "start": 6956.03, + "end": 6957.33, + "probability": 0.9263 + }, + { + "start": 6958.43, + "end": 6962.59, + "probability": 0.9536 + }, + { + "start": 6963.23, + "end": 6965.99, + "probability": 0.8285 + }, + { + "start": 6967.47, + "end": 6970.49, + "probability": 0.939 + }, + { + "start": 6971.21, + "end": 6976.29, + "probability": 0.9797 + }, + { + "start": 6977.45, + "end": 6979.59, + "probability": 0.6162 + }, + { + "start": 6980.25, + "end": 6982.95, + "probability": 0.7915 + }, + { + "start": 6983.47, + "end": 6987.45, + "probability": 0.9886 + }, + { + "start": 6988.45, + "end": 6992.95, + "probability": 0.793 + }, + { + "start": 6993.83, + "end": 6995.33, + "probability": 0.6152 + }, + { + "start": 6995.77, + "end": 7004.67, + "probability": 0.9476 + }, + { + "start": 7004.81, + "end": 7005.51, + "probability": 0.726 + }, + { + "start": 7005.63, + "end": 7005.93, + "probability": 0.7489 + }, + { + "start": 7006.13, + "end": 7006.69, + "probability": 0.7937 + }, + { + "start": 7006.95, + "end": 7008.09, + "probability": 0.7939 + }, + { + "start": 7008.59, + "end": 7010.69, + "probability": 0.8488 + }, + { + "start": 7011.15, + "end": 7011.83, + "probability": 0.8286 + }, + { + "start": 7012.37, + "end": 7012.67, + "probability": 0.492 + }, + { + "start": 7014.25, + "end": 7018.93, + "probability": 0.8542 + }, + { + "start": 7019.41, + "end": 7020.27, + "probability": 0.4835 + }, + { + "start": 7020.29, + "end": 7022.75, + "probability": 0.8848 + }, + { + "start": 7022.93, + "end": 7025.15, + "probability": 0.9375 + }, + { + "start": 7025.25, + "end": 7027.43, + "probability": 0.8241 + }, + { + "start": 7028.35, + "end": 7030.05, + "probability": 0.9453 + }, + { + "start": 7030.11, + "end": 7032.39, + "probability": 0.2426 + }, + { + "start": 7032.39, + "end": 7036.49, + "probability": 0.9924 + }, + { + "start": 7036.87, + "end": 7043.93, + "probability": 0.9291 + }, + { + "start": 7044.63, + "end": 7045.25, + "probability": 0.774 + }, + { + "start": 7046.39, + "end": 7048.25, + "probability": 0.6347 + }, + { + "start": 7049.03, + "end": 7051.95, + "probability": 0.9727 + }, + { + "start": 7052.69, + "end": 7053.29, + "probability": 0.8085 + }, + { + "start": 7054.39, + "end": 7058.15, + "probability": 0.994 + }, + { + "start": 7059.57, + "end": 7059.71, + "probability": 0.6559 + }, + { + "start": 7059.81, + "end": 7060.45, + "probability": 0.449 + }, + { + "start": 7061.19, + "end": 7063.05, + "probability": 0.6826 + }, + { + "start": 7064.63, + "end": 7066.05, + "probability": 0.9032 + }, + { + "start": 7066.11, + "end": 7067.94, + "probability": 0.9126 + }, + { + "start": 7068.49, + "end": 7069.13, + "probability": 0.6317 + }, + { + "start": 7072.07, + "end": 7072.87, + "probability": 0.5636 + }, + { + "start": 7073.83, + "end": 7075.67, + "probability": 0.5651 + }, + { + "start": 7087.25, + "end": 7087.75, + "probability": 0.3499 + }, + { + "start": 7087.93, + "end": 7088.49, + "probability": 0.5016 + }, + { + "start": 7088.55, + "end": 7089.43, + "probability": 0.6628 + }, + { + "start": 7089.65, + "end": 7091.53, + "probability": 0.9766 + }, + { + "start": 7091.53, + "end": 7095.31, + "probability": 0.9988 + }, + { + "start": 7095.41, + "end": 7098.91, + "probability": 0.9602 + }, + { + "start": 7099.49, + "end": 7102.25, + "probability": 0.6968 + }, + { + "start": 7102.35, + "end": 7104.03, + "probability": 0.6651 + }, + { + "start": 7105.05, + "end": 7107.15, + "probability": 0.9359 + }, + { + "start": 7108.27, + "end": 7112.61, + "probability": 0.9463 + }, + { + "start": 7113.39, + "end": 7114.17, + "probability": 0.9337 + }, + { + "start": 7114.25, + "end": 7114.97, + "probability": 0.8253 + }, + { + "start": 7115.01, + "end": 7117.41, + "probability": 0.9943 + }, + { + "start": 7118.21, + "end": 7119.05, + "probability": 0.6806 + }, + { + "start": 7120.13, + "end": 7124.39, + "probability": 0.8657 + }, + { + "start": 7124.47, + "end": 7125.07, + "probability": 0.5582 + }, + { + "start": 7125.13, + "end": 7126.05, + "probability": 0.8008 + }, + { + "start": 7126.11, + "end": 7129.81, + "probability": 0.988 + }, + { + "start": 7129.81, + "end": 7132.69, + "probability": 0.8359 + }, + { + "start": 7132.87, + "end": 7136.25, + "probability": 0.9512 + }, + { + "start": 7136.59, + "end": 7145.17, + "probability": 0.909 + }, + { + "start": 7146.23, + "end": 7148.21, + "probability": 0.7274 + }, + { + "start": 7148.51, + "end": 7150.89, + "probability": 0.7549 + }, + { + "start": 7151.47, + "end": 7153.41, + "probability": 0.7943 + }, + { + "start": 7154.11, + "end": 7156.61, + "probability": 0.832 + }, + { + "start": 7157.11, + "end": 7157.88, + "probability": 0.3172 + }, + { + "start": 7158.27, + "end": 7158.87, + "probability": 0.4005 + }, + { + "start": 7159.41, + "end": 7162.83, + "probability": 0.9521 + }, + { + "start": 7163.15, + "end": 7165.73, + "probability": 0.9128 + }, + { + "start": 7165.85, + "end": 7166.55, + "probability": 0.6816 + }, + { + "start": 7166.61, + "end": 7167.07, + "probability": 0.9148 + }, + { + "start": 7167.25, + "end": 7167.85, + "probability": 0.7064 + }, + { + "start": 7168.29, + "end": 7169.77, + "probability": 0.4236 + }, + { + "start": 7169.81, + "end": 7170.47, + "probability": 0.8145 + }, + { + "start": 7170.47, + "end": 7171.35, + "probability": 0.7783 + }, + { + "start": 7171.47, + "end": 7174.69, + "probability": 0.5718 + }, + { + "start": 7175.13, + "end": 7179.19, + "probability": 0.9171 + }, + { + "start": 7180.19, + "end": 7182.81, + "probability": 0.6788 + }, + { + "start": 7182.93, + "end": 7183.63, + "probability": 0.8767 + }, + { + "start": 7183.75, + "end": 7184.33, + "probability": 0.9249 + }, + { + "start": 7184.51, + "end": 7184.97, + "probability": 0.8525 + }, + { + "start": 7185.05, + "end": 7185.77, + "probability": 0.9086 + }, + { + "start": 7186.09, + "end": 7186.59, + "probability": 0.7761 + }, + { + "start": 7186.69, + "end": 7192.61, + "probability": 0.9388 + }, + { + "start": 7193.37, + "end": 7196.45, + "probability": 0.9005 + }, + { + "start": 7197.33, + "end": 7205.33, + "probability": 0.9719 + }, + { + "start": 7205.36, + "end": 7210.77, + "probability": 0.9769 + }, + { + "start": 7211.97, + "end": 7215.15, + "probability": 0.7816 + }, + { + "start": 7215.57, + "end": 7219.75, + "probability": 0.789 + }, + { + "start": 7219.75, + "end": 7224.33, + "probability": 0.9766 + }, + { + "start": 7225.17, + "end": 7228.27, + "probability": 0.8393 + }, + { + "start": 7228.55, + "end": 7232.15, + "probability": 0.9878 + }, + { + "start": 7232.91, + "end": 7234.91, + "probability": 0.0315 + }, + { + "start": 7234.91, + "end": 7236.57, + "probability": 0.6528 + }, + { + "start": 7236.83, + "end": 7237.46, + "probability": 0.7568 + }, + { + "start": 7238.13, + "end": 7244.21, + "probability": 0.8578 + }, + { + "start": 7244.53, + "end": 7248.85, + "probability": 0.9346 + }, + { + "start": 7248.99, + "end": 7250.79, + "probability": 0.8365 + }, + { + "start": 7251.55, + "end": 7253.25, + "probability": 0.7142 + }, + { + "start": 7254.09, + "end": 7256.95, + "probability": 0.953 + }, + { + "start": 7257.47, + "end": 7259.81, + "probability": 0.8464 + }, + { + "start": 7259.89, + "end": 7261.46, + "probability": 0.8826 + }, + { + "start": 7261.59, + "end": 7264.61, + "probability": 0.6773 + }, + { + "start": 7264.67, + "end": 7270.63, + "probability": 0.9578 + }, + { + "start": 7271.03, + "end": 7275.25, + "probability": 0.9115 + }, + { + "start": 7275.45, + "end": 7280.39, + "probability": 0.9462 + }, + { + "start": 7280.61, + "end": 7283.71, + "probability": 0.9119 + }, + { + "start": 7284.63, + "end": 7291.07, + "probability": 0.978 + }, + { + "start": 7291.21, + "end": 7294.97, + "probability": 0.9594 + }, + { + "start": 7295.11, + "end": 7300.53, + "probability": 0.9917 + }, + { + "start": 7300.67, + "end": 7305.11, + "probability": 0.9746 + }, + { + "start": 7305.77, + "end": 7309.41, + "probability": 0.8623 + }, + { + "start": 7309.49, + "end": 7310.01, + "probability": 0.7681 + }, + { + "start": 7310.61, + "end": 7311.39, + "probability": 0.7459 + }, + { + "start": 7311.49, + "end": 7313.71, + "probability": 0.9844 + }, + { + "start": 7313.83, + "end": 7315.51, + "probability": 0.9436 + }, + { + "start": 7316.43, + "end": 7319.77, + "probability": 0.97 + }, + { + "start": 7320.03, + "end": 7325.25, + "probability": 0.9293 + }, + { + "start": 7325.69, + "end": 7327.71, + "probability": 0.767 + }, + { + "start": 7327.71, + "end": 7329.69, + "probability": 0.6489 + }, + { + "start": 7330.13, + "end": 7330.77, + "probability": 0.9286 + }, + { + "start": 7330.83, + "end": 7333.53, + "probability": 0.9435 + }, + { + "start": 7334.17, + "end": 7335.01, + "probability": 0.3732 + }, + { + "start": 7335.15, + "end": 7336.53, + "probability": 0.9434 + }, + { + "start": 7336.91, + "end": 7338.99, + "probability": 0.8179 + }, + { + "start": 7339.07, + "end": 7340.36, + "probability": 0.512 + }, + { + "start": 7341.07, + "end": 7344.09, + "probability": 0.8998 + }, + { + "start": 7344.19, + "end": 7345.67, + "probability": 0.9639 + }, + { + "start": 7345.69, + "end": 7347.37, + "probability": 0.9576 + }, + { + "start": 7347.65, + "end": 7351.17, + "probability": 0.9922 + }, + { + "start": 7351.35, + "end": 7358.23, + "probability": 0.9968 + }, + { + "start": 7358.43, + "end": 7359.83, + "probability": 0.7678 + }, + { + "start": 7360.03, + "end": 7360.23, + "probability": 0.8117 + }, + { + "start": 7360.45, + "end": 7361.09, + "probability": 0.7742 + }, + { + "start": 7362.45, + "end": 7364.8, + "probability": 0.739 + }, + { + "start": 7380.05, + "end": 7380.97, + "probability": 0.527 + }, + { + "start": 7381.03, + "end": 7381.03, + "probability": 0.4507 + }, + { + "start": 7381.03, + "end": 7381.97, + "probability": 0.7788 + }, + { + "start": 7382.11, + "end": 7383.01, + "probability": 0.5213 + }, + { + "start": 7383.83, + "end": 7384.43, + "probability": 0.7834 + }, + { + "start": 7385.35, + "end": 7386.95, + "probability": 0.9839 + }, + { + "start": 7387.61, + "end": 7393.03, + "probability": 0.9699 + }, + { + "start": 7393.57, + "end": 7399.19, + "probability": 0.9971 + }, + { + "start": 7399.71, + "end": 7403.47, + "probability": 0.9984 + }, + { + "start": 7403.49, + "end": 7406.73, + "probability": 0.994 + }, + { + "start": 7407.31, + "end": 7410.89, + "probability": 0.9194 + }, + { + "start": 7411.47, + "end": 7412.59, + "probability": 0.7418 + }, + { + "start": 7412.63, + "end": 7414.09, + "probability": 0.7697 + }, + { + "start": 7414.55, + "end": 7422.17, + "probability": 0.976 + }, + { + "start": 7422.97, + "end": 7425.27, + "probability": 0.9983 + }, + { + "start": 7425.83, + "end": 7427.67, + "probability": 0.9963 + }, + { + "start": 7427.87, + "end": 7430.17, + "probability": 0.9926 + }, + { + "start": 7430.63, + "end": 7433.91, + "probability": 0.9933 + }, + { + "start": 7434.49, + "end": 7435.75, + "probability": 0.9245 + }, + { + "start": 7436.15, + "end": 7440.47, + "probability": 0.9958 + }, + { + "start": 7441.19, + "end": 7445.13, + "probability": 0.9896 + }, + { + "start": 7445.63, + "end": 7448.59, + "probability": 0.9978 + }, + { + "start": 7449.55, + "end": 7450.75, + "probability": 0.9102 + }, + { + "start": 7450.87, + "end": 7452.07, + "probability": 0.6494 + }, + { + "start": 7452.17, + "end": 7456.93, + "probability": 0.9725 + }, + { + "start": 7457.29, + "end": 7459.71, + "probability": 0.9633 + }, + { + "start": 7460.55, + "end": 7464.27, + "probability": 0.9837 + }, + { + "start": 7464.79, + "end": 7468.53, + "probability": 0.9252 + }, + { + "start": 7469.15, + "end": 7470.09, + "probability": 0.9224 + }, + { + "start": 7470.61, + "end": 7474.37, + "probability": 0.999 + }, + { + "start": 7474.55, + "end": 7474.89, + "probability": 0.3494 + }, + { + "start": 7474.99, + "end": 7478.45, + "probability": 0.8901 + }, + { + "start": 7479.19, + "end": 7480.93, + "probability": 0.9989 + }, + { + "start": 7481.29, + "end": 7482.69, + "probability": 0.995 + }, + { + "start": 7483.03, + "end": 7485.59, + "probability": 0.9926 + }, + { + "start": 7486.03, + "end": 7488.35, + "probability": 0.9905 + }, + { + "start": 7488.93, + "end": 7490.51, + "probability": 0.9725 + }, + { + "start": 7491.13, + "end": 7494.69, + "probability": 0.9767 + }, + { + "start": 7494.69, + "end": 7499.69, + "probability": 0.8875 + }, + { + "start": 7500.07, + "end": 7500.15, + "probability": 0.089 + }, + { + "start": 7500.23, + "end": 7500.81, + "probability": 0.8174 + }, + { + "start": 7500.93, + "end": 7501.71, + "probability": 0.8064 + }, + { + "start": 7501.77, + "end": 7503.75, + "probability": 0.8613 + }, + { + "start": 7504.39, + "end": 7505.75, + "probability": 0.7465 + }, + { + "start": 7506.11, + "end": 7510.87, + "probability": 0.944 + }, + { + "start": 7511.73, + "end": 7514.75, + "probability": 0.9622 + }, + { + "start": 7515.05, + "end": 7516.57, + "probability": 0.6377 + }, + { + "start": 7516.63, + "end": 7518.31, + "probability": 0.8243 + }, + { + "start": 7519.13, + "end": 7524.73, + "probability": 0.969 + }, + { + "start": 7525.21, + "end": 7527.45, + "probability": 0.9768 + }, + { + "start": 7527.89, + "end": 7529.03, + "probability": 0.9814 + }, + { + "start": 7529.15, + "end": 7529.87, + "probability": 0.9622 + }, + { + "start": 7529.95, + "end": 7530.69, + "probability": 0.9147 + }, + { + "start": 7531.07, + "end": 7534.32, + "probability": 0.8797 + }, + { + "start": 7535.15, + "end": 7537.05, + "probability": 0.8725 + }, + { + "start": 7537.45, + "end": 7539.85, + "probability": 0.9273 + }, + { + "start": 7540.75, + "end": 7544.85, + "probability": 0.9945 + }, + { + "start": 7545.23, + "end": 7551.27, + "probability": 0.9791 + }, + { + "start": 7551.45, + "end": 7556.05, + "probability": 0.8734 + }, + { + "start": 7556.11, + "end": 7561.79, + "probability": 0.9822 + }, + { + "start": 7562.57, + "end": 7562.57, + "probability": 0.1742 + }, + { + "start": 7562.75, + "end": 7563.67, + "probability": 0.566 + }, + { + "start": 7563.69, + "end": 7568.41, + "probability": 0.9844 + }, + { + "start": 7568.81, + "end": 7571.55, + "probability": 0.9808 + }, + { + "start": 7572.55, + "end": 7574.07, + "probability": 0.8569 + }, + { + "start": 7574.67, + "end": 7576.01, + "probability": 0.9021 + }, + { + "start": 7576.09, + "end": 7579.01, + "probability": 0.7459 + }, + { + "start": 7579.01, + "end": 7581.29, + "probability": 0.7361 + }, + { + "start": 7581.29, + "end": 7583.81, + "probability": 0.9762 + }, + { + "start": 7585.55, + "end": 7585.55, + "probability": 0.1011 + }, + { + "start": 7585.55, + "end": 7585.55, + "probability": 0.4608 + }, + { + "start": 7585.55, + "end": 7585.55, + "probability": 0.2442 + }, + { + "start": 7585.55, + "end": 7585.55, + "probability": 0.1259 + }, + { + "start": 7585.55, + "end": 7590.27, + "probability": 0.7634 + }, + { + "start": 7590.27, + "end": 7593.71, + "probability": 0.9531 + }, + { + "start": 7593.91, + "end": 7595.87, + "probability": 0.8654 + }, + { + "start": 7596.05, + "end": 7598.21, + "probability": 0.7707 + }, + { + "start": 7598.35, + "end": 7598.35, + "probability": 0.0361 + }, + { + "start": 7598.35, + "end": 7601.61, + "probability": 0.8387 + }, + { + "start": 7601.67, + "end": 7603.35, + "probability": 0.4999 + }, + { + "start": 7606.69, + "end": 7606.69, + "probability": 0.0675 + }, + { + "start": 7606.69, + "end": 7612.67, + "probability": 0.9834 + }, + { + "start": 7612.77, + "end": 7615.05, + "probability": 0.6915 + }, + { + "start": 7615.13, + "end": 7615.73, + "probability": 0.7644 + }, + { + "start": 7616.09, + "end": 7616.77, + "probability": 0.5989 + }, + { + "start": 7616.83, + "end": 7620.75, + "probability": 0.8405 + }, + { + "start": 7639.29, + "end": 7641.43, + "probability": 0.6074 + }, + { + "start": 7642.33, + "end": 7643.45, + "probability": 0.3536 + }, + { + "start": 7643.53, + "end": 7644.25, + "probability": 0.8056 + }, + { + "start": 7644.99, + "end": 7646.05, + "probability": 0.1406 + }, + { + "start": 7646.17, + "end": 7648.19, + "probability": 0.9941 + }, + { + "start": 7648.19, + "end": 7649.01, + "probability": 0.4919 + }, + { + "start": 7650.33, + "end": 7652.23, + "probability": 0.7258 + }, + { + "start": 7652.55, + "end": 7654.35, + "probability": 0.4725 + }, + { + "start": 7654.61, + "end": 7655.19, + "probability": 0.2595 + }, + { + "start": 7655.19, + "end": 7655.93, + "probability": 0.0032 + }, + { + "start": 7656.23, + "end": 7662.33, + "probability": 0.7387 + }, + { + "start": 7662.57, + "end": 7663.13, + "probability": 0.3424 + }, + { + "start": 7664.71, + "end": 7665.85, + "probability": 0.0846 + }, + { + "start": 7665.85, + "end": 7665.93, + "probability": 0.3598 + }, + { + "start": 7666.49, + "end": 7667.05, + "probability": 0.5845 + }, + { + "start": 7667.57, + "end": 7670.45, + "probability": 0.2573 + }, + { + "start": 7670.75, + "end": 7672.47, + "probability": 0.022 + }, + { + "start": 7672.71, + "end": 7676.35, + "probability": 0.1706 + }, + { + "start": 7677.99, + "end": 7677.99, + "probability": 0.0916 + }, + { + "start": 7677.99, + "end": 7677.99, + "probability": 0.052 + }, + { + "start": 7677.99, + "end": 7677.99, + "probability": 0.1868 + }, + { + "start": 7677.99, + "end": 7681.59, + "probability": 0.642 + }, + { + "start": 7681.64, + "end": 7687.57, + "probability": 0.8491 + }, + { + "start": 7687.69, + "end": 7688.57, + "probability": 0.6623 + }, + { + "start": 7688.57, + "end": 7694.15, + "probability": 0.9818 + }, + { + "start": 7695.33, + "end": 7703.05, + "probability": 0.9965 + }, + { + "start": 7704.07, + "end": 7707.65, + "probability": 0.9949 + }, + { + "start": 7709.39, + "end": 7710.23, + "probability": 0.5189 + }, + { + "start": 7713.43, + "end": 7716.69, + "probability": 0.7995 + }, + { + "start": 7716.69, + "end": 7720.21, + "probability": 0.9939 + }, + { + "start": 7721.87, + "end": 7723.37, + "probability": 0.9973 + }, + { + "start": 7724.47, + "end": 7729.51, + "probability": 0.9978 + }, + { + "start": 7732.35, + "end": 7737.07, + "probability": 0.6549 + }, + { + "start": 7738.21, + "end": 7741.23, + "probability": 0.6886 + }, + { + "start": 7742.63, + "end": 7744.85, + "probability": 0.9915 + }, + { + "start": 7744.85, + "end": 7747.41, + "probability": 0.9932 + }, + { + "start": 7749.05, + "end": 7751.05, + "probability": 0.9797 + }, + { + "start": 7751.11, + "end": 7752.31, + "probability": 0.8092 + }, + { + "start": 7752.37, + "end": 7753.67, + "probability": 0.866 + }, + { + "start": 7753.79, + "end": 7754.71, + "probability": 0.7857 + }, + { + "start": 7755.39, + "end": 7760.79, + "probability": 0.9475 + }, + { + "start": 7762.13, + "end": 7763.55, + "probability": 0.8847 + }, + { + "start": 7764.39, + "end": 7773.39, + "probability": 0.9806 + }, + { + "start": 7775.09, + "end": 7779.69, + "probability": 0.5126 + }, + { + "start": 7780.57, + "end": 7781.45, + "probability": 0.4236 + }, + { + "start": 7781.65, + "end": 7783.17, + "probability": 0.6948 + }, + { + "start": 7783.67, + "end": 7785.8, + "probability": 0.8934 + }, + { + "start": 7786.29, + "end": 7790.11, + "probability": 0.9305 + }, + { + "start": 7792.53, + "end": 7795.01, + "probability": 0.9965 + }, + { + "start": 7796.51, + "end": 7800.17, + "probability": 0.8448 + }, + { + "start": 7801.39, + "end": 7806.33, + "probability": 0.9281 + }, + { + "start": 7806.55, + "end": 7809.95, + "probability": 0.9946 + }, + { + "start": 7812.83, + "end": 7815.97, + "probability": 0.8253 + }, + { + "start": 7817.13, + "end": 7821.02, + "probability": 0.9893 + }, + { + "start": 7821.67, + "end": 7829.29, + "probability": 0.9723 + }, + { + "start": 7829.69, + "end": 7832.83, + "probability": 0.9871 + }, + { + "start": 7833.29, + "end": 7835.51, + "probability": 0.9559 + }, + { + "start": 7835.65, + "end": 7836.96, + "probability": 0.8987 + }, + { + "start": 7837.53, + "end": 7838.45, + "probability": 0.3525 + }, + { + "start": 7838.53, + "end": 7840.11, + "probability": 0.684 + }, + { + "start": 7840.15, + "end": 7840.33, + "probability": 0.4069 + }, + { + "start": 7840.41, + "end": 7843.91, + "probability": 0.7673 + }, + { + "start": 7844.27, + "end": 7850.13, + "probability": 0.9695 + }, + { + "start": 7850.71, + "end": 7856.99, + "probability": 0.973 + }, + { + "start": 7857.19, + "end": 7857.75, + "probability": 0.6517 + }, + { + "start": 7858.63, + "end": 7859.73, + "probability": 0.4505 + }, + { + "start": 7860.03, + "end": 7862.57, + "probability": 0.4746 + }, + { + "start": 7862.89, + "end": 7864.09, + "probability": 0.8544 + }, + { + "start": 7869.77, + "end": 7870.15, + "probability": 0.114 + }, + { + "start": 7871.51, + "end": 7872.41, + "probability": 0.0818 + }, + { + "start": 7873.07, + "end": 7873.83, + "probability": 0.3041 + }, + { + "start": 7876.29, + "end": 7878.53, + "probability": 0.2705 + }, + { + "start": 7884.79, + "end": 7885.45, + "probability": 0.1486 + }, + { + "start": 7885.61, + "end": 7888.41, + "probability": 0.6299 + }, + { + "start": 7888.99, + "end": 7890.73, + "probability": 0.0805 + }, + { + "start": 7891.11, + "end": 7892.59, + "probability": 0.1917 + }, + { + "start": 7893.81, + "end": 7895.25, + "probability": 0.7175 + }, + { + "start": 7897.31, + "end": 7899.83, + "probability": 0.6661 + }, + { + "start": 7900.25, + "end": 7903.15, + "probability": 0.438 + }, + { + "start": 7908.87, + "end": 7909.95, + "probability": 0.4539 + }, + { + "start": 7911.89, + "end": 7913.23, + "probability": 0.1059 + }, + { + "start": 7913.23, + "end": 7914.39, + "probability": 0.1835 + }, + { + "start": 7916.34, + "end": 7918.49, + "probability": 0.1009 + }, + { + "start": 7918.49, + "end": 7920.77, + "probability": 0.0506 + }, + { + "start": 7920.86, + "end": 7922.17, + "probability": 0.0082 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.0, + "end": 7991.0, + "probability": 0.0 + }, + { + "start": 7991.12, + "end": 7991.42, + "probability": 0.1058 + }, + { + "start": 7991.42, + "end": 7991.42, + "probability": 0.0212 + }, + { + "start": 7991.42, + "end": 7991.42, + "probability": 0.0957 + }, + { + "start": 7991.42, + "end": 7994.6, + "probability": 0.1686 + }, + { + "start": 7995.1, + "end": 7996.44, + "probability": 0.8564 + }, + { + "start": 7996.68, + "end": 7997.66, + "probability": 0.9697 + }, + { + "start": 7998.58, + "end": 8001.46, + "probability": 0.746 + }, + { + "start": 8002.94, + "end": 8004.18, + "probability": 0.6749 + }, + { + "start": 8005.18, + "end": 8010.02, + "probability": 0.9764 + }, + { + "start": 8010.94, + "end": 8012.48, + "probability": 0.7184 + }, + { + "start": 8013.62, + "end": 8015.46, + "probability": 0.987 + }, + { + "start": 8016.54, + "end": 8017.38, + "probability": 0.9047 + }, + { + "start": 8018.28, + "end": 8020.24, + "probability": 0.9944 + }, + { + "start": 8020.38, + "end": 8024.7, + "probability": 0.9599 + }, + { + "start": 8025.72, + "end": 8027.34, + "probability": 0.8965 + }, + { + "start": 8028.88, + "end": 8031.36, + "probability": 0.9875 + }, + { + "start": 8032.12, + "end": 8035.44, + "probability": 0.946 + }, + { + "start": 8036.98, + "end": 8039.58, + "probability": 0.9954 + }, + { + "start": 8040.52, + "end": 8041.24, + "probability": 0.7297 + }, + { + "start": 8041.28, + "end": 8042.24, + "probability": 0.7119 + }, + { + "start": 8042.32, + "end": 8043.34, + "probability": 0.9561 + }, + { + "start": 8043.9, + "end": 8047.38, + "probability": 0.9214 + }, + { + "start": 8048.44, + "end": 8049.18, + "probability": 0.6699 + }, + { + "start": 8050.26, + "end": 8057.42, + "probability": 0.8657 + }, + { + "start": 8058.24, + "end": 8062.58, + "probability": 0.6118 + }, + { + "start": 8063.98, + "end": 8063.98, + "probability": 0.0272 + }, + { + "start": 8063.98, + "end": 8064.7, + "probability": 0.5695 + }, + { + "start": 8065.08, + "end": 8065.22, + "probability": 0.6544 + }, + { + "start": 8066.14, + "end": 8066.32, + "probability": 0.2203 + }, + { + "start": 8066.32, + "end": 8067.45, + "probability": 0.7658 + }, + { + "start": 8069.2, + "end": 8071.86, + "probability": 0.7846 + }, + { + "start": 8073.0, + "end": 8073.08, + "probability": 0.7969 + }, + { + "start": 8073.14, + "end": 8074.0, + "probability": 0.855 + }, + { + "start": 8074.14, + "end": 8077.0, + "probability": 0.9641 + }, + { + "start": 8079.06, + "end": 8079.96, + "probability": 0.6552 + }, + { + "start": 8080.54, + "end": 8081.5, + "probability": 0.9401 + }, + { + "start": 8083.74, + "end": 8090.78, + "probability": 0.9904 + }, + { + "start": 8092.24, + "end": 8098.84, + "probability": 0.9959 + }, + { + "start": 8099.78, + "end": 8101.84, + "probability": 0.8856 + }, + { + "start": 8102.68, + "end": 8105.84, + "probability": 0.9099 + }, + { + "start": 8106.74, + "end": 8115.36, + "probability": 0.9253 + }, + { + "start": 8116.82, + "end": 8118.9, + "probability": 0.9269 + }, + { + "start": 8119.98, + "end": 8122.16, + "probability": 0.9396 + }, + { + "start": 8122.96, + "end": 8124.86, + "probability": 0.9498 + }, + { + "start": 8125.04, + "end": 8125.82, + "probability": 0.9113 + }, + { + "start": 8126.02, + "end": 8129.7, + "probability": 0.9277 + }, + { + "start": 8130.4, + "end": 8134.4, + "probability": 0.994 + }, + { + "start": 8136.88, + "end": 8138.04, + "probability": 0.8502 + }, + { + "start": 8139.5, + "end": 8140.98, + "probability": 0.9561 + }, + { + "start": 8142.42, + "end": 8148.62, + "probability": 0.9736 + }, + { + "start": 8151.86, + "end": 8154.62, + "probability": 0.862 + }, + { + "start": 8155.92, + "end": 8157.26, + "probability": 0.7882 + }, + { + "start": 8157.4, + "end": 8159.48, + "probability": 0.9491 + }, + { + "start": 8159.56, + "end": 8160.96, + "probability": 0.9032 + }, + { + "start": 8161.04, + "end": 8161.76, + "probability": 0.7337 + }, + { + "start": 8162.68, + "end": 8164.12, + "probability": 0.99 + }, + { + "start": 8168.0, + "end": 8172.62, + "probability": 0.9933 + }, + { + "start": 8174.36, + "end": 8176.72, + "probability": 0.999 + }, + { + "start": 8177.9, + "end": 8177.9, + "probability": 0.5576 + }, + { + "start": 8178.54, + "end": 8180.84, + "probability": 0.9787 + }, + { + "start": 8182.14, + "end": 8189.9, + "probability": 0.9851 + }, + { + "start": 8191.14, + "end": 8192.88, + "probability": 0.9844 + }, + { + "start": 8194.28, + "end": 8196.7, + "probability": 0.9979 + }, + { + "start": 8199.36, + "end": 8201.82, + "probability": 0.9683 + }, + { + "start": 8202.12, + "end": 8203.1, + "probability": 0.5494 + }, + { + "start": 8203.22, + "end": 8204.82, + "probability": 0.7191 + }, + { + "start": 8207.0, + "end": 8211.01, + "probability": 0.9393 + }, + { + "start": 8211.84, + "end": 8215.78, + "probability": 0.9939 + }, + { + "start": 8216.9, + "end": 8218.4, + "probability": 0.8557 + }, + { + "start": 8218.5, + "end": 8222.04, + "probability": 0.9095 + }, + { + "start": 8222.12, + "end": 8222.9, + "probability": 0.7077 + }, + { + "start": 8223.62, + "end": 8224.66, + "probability": 0.7429 + }, + { + "start": 8226.1, + "end": 8227.52, + "probability": 0.9541 + }, + { + "start": 8228.78, + "end": 8231.88, + "probability": 0.8467 + }, + { + "start": 8234.64, + "end": 8239.72, + "probability": 0.8998 + }, + { + "start": 8241.72, + "end": 8244.28, + "probability": 0.8384 + }, + { + "start": 8244.82, + "end": 8245.82, + "probability": 0.9711 + }, + { + "start": 8246.4, + "end": 8247.48, + "probability": 0.9756 + }, + { + "start": 8248.34, + "end": 8250.18, + "probability": 0.968 + }, + { + "start": 8250.94, + "end": 8251.93, + "probability": 0.9553 + }, + { + "start": 8252.64, + "end": 8255.14, + "probability": 0.7703 + }, + { + "start": 8256.2, + "end": 8259.12, + "probability": 0.9731 + }, + { + "start": 8259.72, + "end": 8265.26, + "probability": 0.9861 + }, + { + "start": 8265.76, + "end": 8268.06, + "probability": 0.9911 + }, + { + "start": 8268.82, + "end": 8273.1, + "probability": 0.9827 + }, + { + "start": 8274.42, + "end": 8276.46, + "probability": 0.897 + }, + { + "start": 8277.56, + "end": 8279.74, + "probability": 0.7841 + }, + { + "start": 8282.58, + "end": 8288.42, + "probability": 0.9476 + }, + { + "start": 8290.12, + "end": 8290.82, + "probability": 0.7531 + }, + { + "start": 8291.56, + "end": 8292.74, + "probability": 0.709 + }, + { + "start": 8294.02, + "end": 8295.22, + "probability": 0.993 + }, + { + "start": 8295.3, + "end": 8296.46, + "probability": 0.946 + }, + { + "start": 8296.66, + "end": 8300.18, + "probability": 0.9966 + }, + { + "start": 8301.36, + "end": 8302.28, + "probability": 0.5025 + }, + { + "start": 8302.92, + "end": 8307.44, + "probability": 0.9128 + }, + { + "start": 8309.07, + "end": 8312.72, + "probability": 0.9717 + }, + { + "start": 8313.52, + "end": 8314.76, + "probability": 0.9805 + }, + { + "start": 8315.32, + "end": 8316.02, + "probability": 0.7085 + }, + { + "start": 8317.24, + "end": 8322.34, + "probability": 0.9547 + }, + { + "start": 8323.08, + "end": 8325.52, + "probability": 0.8875 + }, + { + "start": 8326.26, + "end": 8328.74, + "probability": 0.9963 + }, + { + "start": 8329.76, + "end": 8336.14, + "probability": 0.9971 + }, + { + "start": 8337.1, + "end": 8339.34, + "probability": 0.9658 + }, + { + "start": 8339.42, + "end": 8341.14, + "probability": 0.8561 + }, + { + "start": 8341.78, + "end": 8345.7, + "probability": 0.7914 + }, + { + "start": 8346.42, + "end": 8346.42, + "probability": 0.0641 + }, + { + "start": 8346.42, + "end": 8352.04, + "probability": 0.9755 + }, + { + "start": 8353.26, + "end": 8358.78, + "probability": 0.9915 + }, + { + "start": 8358.78, + "end": 8364.22, + "probability": 0.9876 + }, + { + "start": 8365.9, + "end": 8369.32, + "probability": 0.9927 + }, + { + "start": 8370.26, + "end": 8372.46, + "probability": 0.7679 + }, + { + "start": 8372.68, + "end": 8373.16, + "probability": 0.2831 + }, + { + "start": 8375.36, + "end": 8377.4, + "probability": 0.9499 + }, + { + "start": 8377.5, + "end": 8380.92, + "probability": 0.9964 + }, + { + "start": 8382.08, + "end": 8383.36, + "probability": 0.7482 + }, + { + "start": 8383.52, + "end": 8387.06, + "probability": 0.959 + }, + { + "start": 8387.7, + "end": 8391.14, + "probability": 0.986 + }, + { + "start": 8392.06, + "end": 8393.66, + "probability": 0.9241 + }, + { + "start": 8394.42, + "end": 8396.54, + "probability": 0.9826 + }, + { + "start": 8397.14, + "end": 8402.72, + "probability": 0.999 + }, + { + "start": 8402.72, + "end": 8405.92, + "probability": 0.957 + }, + { + "start": 8408.1, + "end": 8408.8, + "probability": 0.3396 + }, + { + "start": 8410.04, + "end": 8411.4, + "probability": 0.7842 + }, + { + "start": 8413.1, + "end": 8415.3, + "probability": 0.9958 + }, + { + "start": 8418.06, + "end": 8420.64, + "probability": 0.9948 + }, + { + "start": 8420.64, + "end": 8426.56, + "probability": 0.9882 + }, + { + "start": 8427.66, + "end": 8432.48, + "probability": 0.9784 + }, + { + "start": 8432.48, + "end": 8436.6, + "probability": 0.9183 + }, + { + "start": 8438.14, + "end": 8440.68, + "probability": 0.9717 + }, + { + "start": 8441.92, + "end": 8445.04, + "probability": 0.9925 + }, + { + "start": 8447.28, + "end": 8449.24, + "probability": 0.7503 + }, + { + "start": 8450.92, + "end": 8453.8, + "probability": 0.9813 + }, + { + "start": 8454.8, + "end": 8464.5, + "probability": 0.9528 + }, + { + "start": 8465.44, + "end": 8468.38, + "probability": 0.9733 + }, + { + "start": 8469.56, + "end": 8472.38, + "probability": 0.5036 + }, + { + "start": 8473.08, + "end": 8477.32, + "probability": 0.9653 + }, + { + "start": 8478.12, + "end": 8479.1, + "probability": 0.7005 + }, + { + "start": 8479.24, + "end": 8483.48, + "probability": 0.9882 + }, + { + "start": 8483.58, + "end": 8484.86, + "probability": 0.7181 + }, + { + "start": 8485.3, + "end": 8487.82, + "probability": 0.951 + }, + { + "start": 8489.94, + "end": 8493.54, + "probability": 0.9817 + }, + { + "start": 8493.54, + "end": 8497.5, + "probability": 0.997 + }, + { + "start": 8498.48, + "end": 8503.02, + "probability": 0.9988 + }, + { + "start": 8503.02, + "end": 8510.46, + "probability": 0.9697 + }, + { + "start": 8512.96, + "end": 8517.8, + "probability": 0.9824 + }, + { + "start": 8518.0, + "end": 8518.92, + "probability": 0.6595 + }, + { + "start": 8520.12, + "end": 8523.02, + "probability": 0.9944 + }, + { + "start": 8523.84, + "end": 8524.74, + "probability": 0.9429 + }, + { + "start": 8526.02, + "end": 8528.02, + "probability": 0.9905 + }, + { + "start": 8529.28, + "end": 8533.62, + "probability": 0.9982 + }, + { + "start": 8534.3, + "end": 8538.4, + "probability": 0.999 + }, + { + "start": 8540.22, + "end": 8542.6, + "probability": 0.8088 + }, + { + "start": 8544.54, + "end": 8549.18, + "probability": 0.9957 + }, + { + "start": 8549.82, + "end": 8553.94, + "probability": 0.9937 + }, + { + "start": 8553.94, + "end": 8557.56, + "probability": 0.9984 + }, + { + "start": 8558.68, + "end": 8561.08, + "probability": 0.9995 + }, + { + "start": 8562.04, + "end": 8564.7, + "probability": 0.9966 + }, + { + "start": 8565.6, + "end": 8566.76, + "probability": 0.9636 + }, + { + "start": 8566.84, + "end": 8572.48, + "probability": 0.9951 + }, + { + "start": 8572.54, + "end": 8573.54, + "probability": 0.5934 + }, + { + "start": 8574.88, + "end": 8576.24, + "probability": 0.8277 + }, + { + "start": 8576.3, + "end": 8581.02, + "probability": 0.9857 + }, + { + "start": 8582.76, + "end": 8586.86, + "probability": 0.9818 + }, + { + "start": 8588.42, + "end": 8591.82, + "probability": 0.9971 + }, + { + "start": 8593.14, + "end": 8596.44, + "probability": 0.9979 + }, + { + "start": 8598.58, + "end": 8600.81, + "probability": 0.9839 + }, + { + "start": 8603.12, + "end": 8604.78, + "probability": 0.9983 + }, + { + "start": 8605.58, + "end": 8610.0, + "probability": 0.9563 + }, + { + "start": 8610.96, + "end": 8612.18, + "probability": 0.2943 + }, + { + "start": 8612.7, + "end": 8613.64, + "probability": 0.1652 + }, + { + "start": 8617.66, + "end": 8617.72, + "probability": 0.0001 + }, + { + "start": 8619.08, + "end": 8619.32, + "probability": 0.1896 + }, + { + "start": 8619.56, + "end": 8620.08, + "probability": 0.2784 + }, + { + "start": 8620.28, + "end": 8621.8, + "probability": 0.854 + }, + { + "start": 8622.44, + "end": 8625.84, + "probability": 0.9757 + }, + { + "start": 8626.58, + "end": 8628.17, + "probability": 0.9619 + }, + { + "start": 8628.76, + "end": 8631.8, + "probability": 0.9829 + }, + { + "start": 8632.38, + "end": 8636.08, + "probability": 0.9816 + }, + { + "start": 8636.08, + "end": 8638.96, + "probability": 0.9563 + }, + { + "start": 8638.96, + "end": 8639.43, + "probability": 0.4279 + }, + { + "start": 8640.44, + "end": 8643.08, + "probability": 0.8933 + }, + { + "start": 8643.18, + "end": 8643.84, + "probability": 0.9021 + }, + { + "start": 8644.22, + "end": 8644.64, + "probability": 0.9756 + }, + { + "start": 8645.22, + "end": 8647.66, + "probability": 0.6471 + }, + { + "start": 8647.94, + "end": 8648.38, + "probability": 0.5512 + }, + { + "start": 8648.5, + "end": 8649.78, + "probability": 0.9469 + }, + { + "start": 8650.36, + "end": 8652.34, + "probability": 0.502 + }, + { + "start": 8652.56, + "end": 8654.48, + "probability": 0.6471 + }, + { + "start": 8654.48, + "end": 8656.12, + "probability": 0.0529 + }, + { + "start": 8656.24, + "end": 8657.1, + "probability": 0.2428 + }, + { + "start": 8657.18, + "end": 8658.24, + "probability": 0.5018 + }, + { + "start": 8658.51, + "end": 8662.28, + "probability": 0.8543 + }, + { + "start": 8662.76, + "end": 8663.58, + "probability": 0.551 + }, + { + "start": 8663.58, + "end": 8664.84, + "probability": 0.6466 + }, + { + "start": 8664.84, + "end": 8666.94, + "probability": 0.9839 + }, + { + "start": 8667.98, + "end": 8668.47, + "probability": 0.7607 + }, + { + "start": 8668.68, + "end": 8669.91, + "probability": 0.8716 + }, + { + "start": 8670.56, + "end": 8674.62, + "probability": 0.9907 + }, + { + "start": 8675.73, + "end": 8678.25, + "probability": 0.3473 + }, + { + "start": 8678.56, + "end": 8681.72, + "probability": 0.6956 + }, + { + "start": 8681.96, + "end": 8683.38, + "probability": 0.0254 + }, + { + "start": 8683.8, + "end": 8688.88, + "probability": 0.9033 + }, + { + "start": 8688.88, + "end": 8690.48, + "probability": 0.7938 + }, + { + "start": 8690.86, + "end": 8692.12, + "probability": 0.8868 + }, + { + "start": 8693.46, + "end": 8696.38, + "probability": 0.9806 + }, + { + "start": 8697.32, + "end": 8703.4, + "probability": 0.9979 + }, + { + "start": 8703.4, + "end": 8709.34, + "probability": 0.9966 + }, + { + "start": 8710.14, + "end": 8711.02, + "probability": 0.4373 + }, + { + "start": 8712.3, + "end": 8714.88, + "probability": 0.9958 + }, + { + "start": 8715.6, + "end": 8716.96, + "probability": 0.982 + }, + { + "start": 8718.12, + "end": 8719.46, + "probability": 0.9982 + }, + { + "start": 8721.26, + "end": 8722.22, + "probability": 0.7134 + }, + { + "start": 8723.08, + "end": 8724.63, + "probability": 0.8924 + }, + { + "start": 8728.5, + "end": 8731.84, + "probability": 0.985 + }, + { + "start": 8732.92, + "end": 8734.72, + "probability": 0.5704 + }, + { + "start": 8736.1, + "end": 8736.82, + "probability": 0.7386 + }, + { + "start": 8738.56, + "end": 8744.44, + "probability": 0.6935 + }, + { + "start": 8744.62, + "end": 8746.23, + "probability": 0.8882 + }, + { + "start": 8747.24, + "end": 8752.34, + "probability": 0.7756 + }, + { + "start": 8752.34, + "end": 8756.28, + "probability": 0.9747 + }, + { + "start": 8756.72, + "end": 8759.84, + "probability": 0.9814 + }, + { + "start": 8760.78, + "end": 8761.84, + "probability": 0.7492 + }, + { + "start": 8761.84, + "end": 8766.88, + "probability": 0.7882 + }, + { + "start": 8767.46, + "end": 8771.62, + "probability": 0.9884 + }, + { + "start": 8772.76, + "end": 8773.18, + "probability": 0.4534 + }, + { + "start": 8776.3, + "end": 8776.84, + "probability": 0.6347 + }, + { + "start": 8780.68, + "end": 8781.36, + "probability": 0.3432 + }, + { + "start": 8781.4, + "end": 8786.06, + "probability": 0.5296 + }, + { + "start": 8786.54, + "end": 8789.82, + "probability": 0.8244 + }, + { + "start": 8790.14, + "end": 8792.8, + "probability": 0.8036 + }, + { + "start": 8793.4, + "end": 8796.08, + "probability": 0.981 + }, + { + "start": 8797.36, + "end": 8797.82, + "probability": 0.9753 + }, + { + "start": 8812.74, + "end": 8813.72, + "probability": 0.5929 + }, + { + "start": 8814.42, + "end": 8816.6, + "probability": 0.6426 + }, + { + "start": 8822.04, + "end": 8825.48, + "probability": 0.5879 + }, + { + "start": 8827.04, + "end": 8829.04, + "probability": 0.8501 + }, + { + "start": 8830.02, + "end": 8830.44, + "probability": 0.9131 + }, + { + "start": 8831.8, + "end": 8832.78, + "probability": 0.6435 + }, + { + "start": 8833.6, + "end": 8838.54, + "probability": 0.901 + }, + { + "start": 8840.48, + "end": 8844.36, + "probability": 0.8792 + }, + { + "start": 8846.6, + "end": 8850.78, + "probability": 0.6694 + }, + { + "start": 8851.84, + "end": 8853.7, + "probability": 0.9543 + }, + { + "start": 8855.08, + "end": 8855.88, + "probability": 0.9107 + }, + { + "start": 8856.5, + "end": 8859.92, + "probability": 0.7047 + }, + { + "start": 8860.48, + "end": 8863.84, + "probability": 0.7822 + }, + { + "start": 8864.5, + "end": 8866.48, + "probability": 0.8921 + }, + { + "start": 8867.14, + "end": 8867.64, + "probability": 0.9884 + }, + { + "start": 8868.34, + "end": 8869.24, + "probability": 0.9834 + }, + { + "start": 8870.16, + "end": 8871.36, + "probability": 0.9448 + }, + { + "start": 8872.62, + "end": 8873.7, + "probability": 0.973 + }, + { + "start": 8876.18, + "end": 8877.52, + "probability": 0.9289 + }, + { + "start": 8878.18, + "end": 8879.58, + "probability": 0.811 + }, + { + "start": 8880.28, + "end": 8880.78, + "probability": 0.948 + }, + { + "start": 8881.94, + "end": 8883.08, + "probability": 0.7086 + }, + { + "start": 8884.8, + "end": 8885.64, + "probability": 0.2935 + }, + { + "start": 8887.96, + "end": 8889.0, + "probability": 0.2653 + }, + { + "start": 8890.42, + "end": 8893.44, + "probability": 0.7321 + }, + { + "start": 8894.4, + "end": 8896.48, + "probability": 0.5602 + }, + { + "start": 8899.56, + "end": 8901.7, + "probability": 0.9248 + }, + { + "start": 8903.24, + "end": 8904.84, + "probability": 0.6996 + }, + { + "start": 8906.68, + "end": 8907.0, + "probability": 0.6214 + }, + { + "start": 8907.78, + "end": 8908.82, + "probability": 0.8069 + }, + { + "start": 8909.54, + "end": 8911.64, + "probability": 0.9363 + }, + { + "start": 8912.32, + "end": 8914.52, + "probability": 0.9407 + }, + { + "start": 8915.66, + "end": 8917.7, + "probability": 0.5969 + }, + { + "start": 8919.3, + "end": 8920.22, + "probability": 0.8371 + }, + { + "start": 8921.02, + "end": 8922.0, + "probability": 0.8316 + }, + { + "start": 8923.16, + "end": 8923.64, + "probability": 0.9665 + }, + { + "start": 8924.96, + "end": 8925.82, + "probability": 0.8258 + }, + { + "start": 8928.44, + "end": 8930.12, + "probability": 0.9151 + }, + { + "start": 8931.1, + "end": 8931.64, + "probability": 0.9743 + }, + { + "start": 8932.48, + "end": 8933.64, + "probability": 0.8637 + }, + { + "start": 8935.34, + "end": 8937.18, + "probability": 0.5581 + }, + { + "start": 8938.08, + "end": 8940.34, + "probability": 0.9902 + }, + { + "start": 8941.32, + "end": 8943.64, + "probability": 0.9435 + }, + { + "start": 8944.94, + "end": 8946.8, + "probability": 0.7067 + }, + { + "start": 8948.89, + "end": 8952.38, + "probability": 0.8511 + }, + { + "start": 8953.82, + "end": 8957.74, + "probability": 0.7385 + }, + { + "start": 8959.02, + "end": 8961.02, + "probability": 0.8557 + }, + { + "start": 8962.62, + "end": 8964.66, + "probability": 0.9227 + }, + { + "start": 8966.38, + "end": 8968.14, + "probability": 0.7957 + }, + { + "start": 8968.94, + "end": 8971.08, + "probability": 0.8137 + }, + { + "start": 8971.9, + "end": 8972.4, + "probability": 0.9883 + }, + { + "start": 8973.72, + "end": 8974.82, + "probability": 0.9272 + }, + { + "start": 8975.86, + "end": 8978.46, + "probability": 0.6747 + }, + { + "start": 8979.34, + "end": 8981.48, + "probability": 0.9557 + }, + { + "start": 8982.28, + "end": 8984.44, + "probability": 0.9734 + }, + { + "start": 8985.66, + "end": 8988.04, + "probability": 0.7017 + }, + { + "start": 8990.06, + "end": 8992.78, + "probability": 0.7756 + }, + { + "start": 8993.46, + "end": 8993.92, + "probability": 0.9831 + }, + { + "start": 8994.52, + "end": 8996.22, + "probability": 0.9336 + }, + { + "start": 8998.42, + "end": 9000.42, + "probability": 0.9932 + }, + { + "start": 9001.28, + "end": 9001.7, + "probability": 0.979 + }, + { + "start": 9003.98, + "end": 9004.74, + "probability": 0.7398 + }, + { + "start": 9005.84, + "end": 9006.78, + "probability": 0.9429 + }, + { + "start": 9007.38, + "end": 9008.34, + "probability": 0.9637 + }, + { + "start": 9008.98, + "end": 9011.12, + "probability": 0.9761 + }, + { + "start": 9011.7, + "end": 9012.16, + "probability": 0.9189 + }, + { + "start": 9013.12, + "end": 9014.14, + "probability": 0.8293 + }, + { + "start": 9015.34, + "end": 9015.78, + "probability": 0.9948 + }, + { + "start": 9017.04, + "end": 9017.9, + "probability": 0.9886 + }, + { + "start": 9018.62, + "end": 9018.98, + "probability": 0.9948 + }, + { + "start": 9019.52, + "end": 9020.3, + "probability": 0.9888 + }, + { + "start": 9021.76, + "end": 9023.8, + "probability": 0.9866 + }, + { + "start": 9024.78, + "end": 9031.12, + "probability": 0.9819 + }, + { + "start": 9031.94, + "end": 9034.4, + "probability": 0.728 + }, + { + "start": 9036.48, + "end": 9039.5, + "probability": 0.7859 + }, + { + "start": 9040.8, + "end": 9044.04, + "probability": 0.9452 + }, + { + "start": 9045.38, + "end": 9048.02, + "probability": 0.9554 + }, + { + "start": 9050.76, + "end": 9053.7, + "probability": 0.8513 + }, + { + "start": 9054.82, + "end": 9058.08, + "probability": 0.9675 + }, + { + "start": 9058.74, + "end": 9060.44, + "probability": 0.9282 + }, + { + "start": 9062.64, + "end": 9065.38, + "probability": 0.8733 + }, + { + "start": 9067.26, + "end": 9069.92, + "probability": 0.8746 + }, + { + "start": 9070.84, + "end": 9072.76, + "probability": 0.9523 + }, + { + "start": 9075.06, + "end": 9077.76, + "probability": 0.9766 + }, + { + "start": 9079.56, + "end": 9082.2, + "probability": 0.9121 + }, + { + "start": 9083.88, + "end": 9084.74, + "probability": 0.9603 + }, + { + "start": 9085.32, + "end": 9086.26, + "probability": 0.9161 + }, + { + "start": 9088.04, + "end": 9088.42, + "probability": 0.9426 + }, + { + "start": 9089.98, + "end": 9090.92, + "probability": 0.5694 + }, + { + "start": 9091.86, + "end": 9094.12, + "probability": 0.8464 + }, + { + "start": 9095.72, + "end": 9098.6, + "probability": 0.9827 + }, + { + "start": 9099.6, + "end": 9101.44, + "probability": 0.9827 + }, + { + "start": 9102.26, + "end": 9102.64, + "probability": 0.9269 + }, + { + "start": 9103.84, + "end": 9104.72, + "probability": 0.6475 + }, + { + "start": 9105.8, + "end": 9107.1, + "probability": 0.9399 + }, + { + "start": 9107.66, + "end": 9108.52, + "probability": 0.9043 + }, + { + "start": 9109.68, + "end": 9112.08, + "probability": 0.9819 + }, + { + "start": 9113.42, + "end": 9115.98, + "probability": 0.551 + }, + { + "start": 9116.7, + "end": 9117.0, + "probability": 0.9863 + }, + { + "start": 9122.58, + "end": 9124.3, + "probability": 0.5696 + }, + { + "start": 9125.56, + "end": 9127.58, + "probability": 0.7591 + }, + { + "start": 9128.58, + "end": 9130.88, + "probability": 0.815 + }, + { + "start": 9131.66, + "end": 9134.02, + "probability": 0.9257 + }, + { + "start": 9135.34, + "end": 9138.32, + "probability": 0.9821 + }, + { + "start": 9139.06, + "end": 9141.52, + "probability": 0.9243 + }, + { + "start": 9142.26, + "end": 9142.7, + "probability": 0.9756 + }, + { + "start": 9143.66, + "end": 9144.64, + "probability": 0.8723 + }, + { + "start": 9147.36, + "end": 9148.6, + "probability": 0.6332 + }, + { + "start": 9149.54, + "end": 9149.92, + "probability": 0.9631 + }, + { + "start": 9150.72, + "end": 9156.0, + "probability": 0.834 + }, + { + "start": 9157.86, + "end": 9159.96, + "probability": 0.9284 + }, + { + "start": 9161.46, + "end": 9164.56, + "probability": 0.927 + }, + { + "start": 9165.68, + "end": 9168.2, + "probability": 0.8962 + }, + { + "start": 9171.18, + "end": 9173.92, + "probability": 0.7847 + }, + { + "start": 9175.64, + "end": 9177.88, + "probability": 0.8229 + }, + { + "start": 9178.94, + "end": 9181.48, + "probability": 0.8236 + }, + { + "start": 9182.12, + "end": 9182.62, + "probability": 0.9751 + }, + { + "start": 9183.22, + "end": 9184.4, + "probability": 0.9467 + }, + { + "start": 9187.04, + "end": 9190.6, + "probability": 0.7915 + }, + { + "start": 9192.24, + "end": 9194.78, + "probability": 0.928 + }, + { + "start": 9195.56, + "end": 9197.96, + "probability": 0.8652 + }, + { + "start": 9200.48, + "end": 9204.5, + "probability": 0.6937 + }, + { + "start": 9205.06, + "end": 9208.08, + "probability": 0.8561 + }, + { + "start": 9209.6, + "end": 9211.84, + "probability": 0.957 + }, + { + "start": 9212.84, + "end": 9215.4, + "probability": 0.9235 + }, + { + "start": 9216.1, + "end": 9218.52, + "probability": 0.9657 + }, + { + "start": 9219.58, + "end": 9221.48, + "probability": 0.9836 + }, + { + "start": 9222.84, + "end": 9223.3, + "probability": 0.9917 + }, + { + "start": 9223.82, + "end": 9224.88, + "probability": 0.7613 + }, + { + "start": 9226.0, + "end": 9228.18, + "probability": 0.9353 + }, + { + "start": 9229.3, + "end": 9234.96, + "probability": 0.8834 + }, + { + "start": 9235.94, + "end": 9238.28, + "probability": 0.9487 + }, + { + "start": 9239.72, + "end": 9241.86, + "probability": 0.9875 + }, + { + "start": 9243.62, + "end": 9245.38, + "probability": 0.9497 + }, + { + "start": 9246.54, + "end": 9248.82, + "probability": 0.9672 + }, + { + "start": 9249.84, + "end": 9252.14, + "probability": 0.7781 + }, + { + "start": 9255.16, + "end": 9257.24, + "probability": 0.8804 + }, + { + "start": 9258.08, + "end": 9259.36, + "probability": 0.5393 + }, + { + "start": 9260.2, + "end": 9260.52, + "probability": 0.7947 + }, + { + "start": 9263.62, + "end": 9266.06, + "probability": 0.4594 + }, + { + "start": 9266.16, + "end": 9270.0, + "probability": 0.9855 + }, + { + "start": 9270.84, + "end": 9271.48, + "probability": 0.2857 + }, + { + "start": 9272.86, + "end": 9275.02, + "probability": 0.4977 + }, + { + "start": 9276.44, + "end": 9277.18, + "probability": 0.4925 + }, + { + "start": 9278.66, + "end": 9279.74, + "probability": 0.5248 + }, + { + "start": 9281.14, + "end": 9283.52, + "probability": 0.8864 + }, + { + "start": 9284.6, + "end": 9286.68, + "probability": 0.9878 + }, + { + "start": 9288.5, + "end": 9291.18, + "probability": 0.9387 + }, + { + "start": 9291.86, + "end": 9295.34, + "probability": 0.9816 + }, + { + "start": 9296.6, + "end": 9299.14, + "probability": 0.982 + }, + { + "start": 9300.04, + "end": 9302.3, + "probability": 0.9015 + }, + { + "start": 9303.82, + "end": 9307.32, + "probability": 0.6466 + }, + { + "start": 9308.1, + "end": 9310.6, + "probability": 0.9661 + }, + { + "start": 9311.72, + "end": 9314.12, + "probability": 0.9881 + }, + { + "start": 9316.06, + "end": 9318.46, + "probability": 0.9868 + }, + { + "start": 9320.26, + "end": 9324.28, + "probability": 0.9896 + }, + { + "start": 9325.44, + "end": 9327.74, + "probability": 0.9424 + }, + { + "start": 9328.5, + "end": 9330.28, + "probability": 0.8532 + }, + { + "start": 9331.76, + "end": 9334.34, + "probability": 0.6699 + }, + { + "start": 9335.5, + "end": 9336.68, + "probability": 0.5316 + }, + { + "start": 9340.04, + "end": 9341.3, + "probability": 0.693 + }, + { + "start": 9343.08, + "end": 9345.26, + "probability": 0.8673 + }, + { + "start": 9346.68, + "end": 9348.7, + "probability": 0.9727 + }, + { + "start": 9350.06, + "end": 9351.92, + "probability": 0.9891 + }, + { + "start": 9353.0, + "end": 9355.38, + "probability": 0.9814 + }, + { + "start": 9356.62, + "end": 9358.74, + "probability": 0.8992 + }, + { + "start": 9359.88, + "end": 9361.26, + "probability": 0.7863 + }, + { + "start": 9367.66, + "end": 9368.54, + "probability": 0.4826 + }, + { + "start": 9369.9, + "end": 9372.58, + "probability": 0.8731 + }, + { + "start": 9374.06, + "end": 9374.86, + "probability": 0.9854 + }, + { + "start": 9377.72, + "end": 9378.54, + "probability": 0.6539 + }, + { + "start": 9379.6, + "end": 9381.46, + "probability": 0.8574 + }, + { + "start": 9382.7, + "end": 9384.64, + "probability": 0.9559 + }, + { + "start": 9386.14, + "end": 9387.88, + "probability": 0.941 + }, + { + "start": 9390.78, + "end": 9391.78, + "probability": 0.6381 + }, + { + "start": 9391.96, + "end": 9394.1, + "probability": 0.9742 + }, + { + "start": 9394.26, + "end": 9399.12, + "probability": 0.9502 + }, + { + "start": 9401.16, + "end": 9402.39, + "probability": 0.8579 + }, + { + "start": 9402.88, + "end": 9406.2, + "probability": 0.7767 + }, + { + "start": 9406.64, + "end": 9407.43, + "probability": 0.833 + }, + { + "start": 9407.7, + "end": 9408.98, + "probability": 0.5128 + }, + { + "start": 9409.0, + "end": 9413.9, + "probability": 0.9647 + }, + { + "start": 9413.9, + "end": 9419.54, + "probability": 0.9891 + }, + { + "start": 9420.46, + "end": 9422.4, + "probability": 0.9601 + }, + { + "start": 9422.76, + "end": 9425.28, + "probability": 0.7876 + }, + { + "start": 9450.12, + "end": 9454.88, + "probability": 0.8224 + }, + { + "start": 9455.1, + "end": 9456.34, + "probability": 0.9574 + }, + { + "start": 9469.72, + "end": 9472.6, + "probability": 0.9685 + }, + { + "start": 9473.5, + "end": 9473.66, + "probability": 0.1548 + }, + { + "start": 9475.78, + "end": 9475.96, + "probability": 0.05 + }, + { + "start": 9476.24, + "end": 9476.98, + "probability": 0.7875 + }, + { + "start": 9481.11, + "end": 9483.58, + "probability": 0.4603 + }, + { + "start": 9484.22, + "end": 9484.22, + "probability": 0.1493 + }, + { + "start": 9484.22, + "end": 9484.9, + "probability": 0.0894 + }, + { + "start": 9488.36, + "end": 9493.58, + "probability": 0.1275 + }, + { + "start": 9494.32, + "end": 9496.2, + "probability": 0.5059 + }, + { + "start": 9496.22, + "end": 9498.96, + "probability": 0.8674 + }, + { + "start": 9499.02, + "end": 9500.2, + "probability": 0.5747 + }, + { + "start": 9500.26, + "end": 9501.98, + "probability": 0.8648 + }, + { + "start": 9502.02, + "end": 9503.66, + "probability": 0.967 + }, + { + "start": 9504.68, + "end": 9504.96, + "probability": 0.4289 + }, + { + "start": 9504.96, + "end": 9506.2, + "probability": 0.4613 + }, + { + "start": 9506.7, + "end": 9507.1, + "probability": 0.5456 + }, + { + "start": 9507.34, + "end": 9512.02, + "probability": 0.9253 + }, + { + "start": 9513.08, + "end": 9517.66, + "probability": 0.8223 + }, + { + "start": 9518.7, + "end": 9522.1, + "probability": 0.9943 + }, + { + "start": 9522.98, + "end": 9523.86, + "probability": 0.653 + }, + { + "start": 9523.96, + "end": 9524.64, + "probability": 0.8382 + }, + { + "start": 9524.7, + "end": 9525.74, + "probability": 0.7406 + }, + { + "start": 9526.28, + "end": 9527.82, + "probability": 0.0778 + }, + { + "start": 9532.68, + "end": 9533.9, + "probability": 0.0254 + }, + { + "start": 9541.4, + "end": 9541.7, + "probability": 0.1878 + }, + { + "start": 9541.7, + "end": 9544.98, + "probability": 0.3582 + }, + { + "start": 9545.22, + "end": 9547.98, + "probability": 0.7426 + }, + { + "start": 9548.74, + "end": 9551.64, + "probability": 0.9712 + }, + { + "start": 9551.8, + "end": 9556.02, + "probability": 0.9119 + }, + { + "start": 9556.36, + "end": 9557.34, + "probability": 0.7732 + }, + { + "start": 9557.84, + "end": 9558.64, + "probability": 0.9049 + }, + { + "start": 9558.74, + "end": 9559.58, + "probability": 0.7102 + }, + { + "start": 9566.66, + "end": 9568.42, + "probability": 0.5487 + }, + { + "start": 9569.4, + "end": 9572.86, + "probability": 0.18 + }, + { + "start": 9573.4, + "end": 9578.6, + "probability": 0.6217 + }, + { + "start": 9579.54, + "end": 9581.92, + "probability": 0.9173 + }, + { + "start": 9581.96, + "end": 9582.26, + "probability": 0.7878 + }, + { + "start": 9582.46, + "end": 9583.56, + "probability": 0.4997 + }, + { + "start": 9583.6, + "end": 9583.82, + "probability": 0.0955 + }, + { + "start": 9583.9, + "end": 9584.88, + "probability": 0.3796 + }, + { + "start": 9585.8, + "end": 9590.76, + "probability": 0.86 + }, + { + "start": 9590.96, + "end": 9592.5, + "probability": 0.4181 + }, + { + "start": 9592.64, + "end": 9597.18, + "probability": 0.9712 + }, + { + "start": 9598.3, + "end": 9598.98, + "probability": 0.7485 + }, + { + "start": 9599.12, + "end": 9599.64, + "probability": 0.6595 + }, + { + "start": 9599.76, + "end": 9599.86, + "probability": 0.5581 + }, + { + "start": 9605.34, + "end": 9606.08, + "probability": 0.4177 + }, + { + "start": 9607.1, + "end": 9608.7, + "probability": 0.1265 + }, + { + "start": 9611.44, + "end": 9613.88, + "probability": 0.1661 + }, + { + "start": 9613.88, + "end": 9615.7, + "probability": 0.1835 + }, + { + "start": 9618.48, + "end": 9622.76, + "probability": 0.5696 + }, + { + "start": 9624.24, + "end": 9628.28, + "probability": 0.5654 + }, + { + "start": 9628.46, + "end": 9632.15, + "probability": 0.9937 + }, + { + "start": 9633.32, + "end": 9635.7, + "probability": 0.8938 + }, + { + "start": 9635.7, + "end": 9637.96, + "probability": 0.9971 + }, + { + "start": 9638.08, + "end": 9642.46, + "probability": 0.7358 + }, + { + "start": 9642.56, + "end": 9643.2, + "probability": 0.3325 + }, + { + "start": 9643.22, + "end": 9643.5, + "probability": 0.4803 + }, + { + "start": 9643.62, + "end": 9645.08, + "probability": 0.6692 + }, + { + "start": 9645.14, + "end": 9646.61, + "probability": 0.7304 + }, + { + "start": 9647.2, + "end": 9649.24, + "probability": 0.4875 + }, + { + "start": 9650.52, + "end": 9653.42, + "probability": 0.5522 + }, + { + "start": 9654.56, + "end": 9656.04, + "probability": 0.8758 + }, + { + "start": 9656.08, + "end": 9658.58, + "probability": 0.9712 + }, + { + "start": 9658.58, + "end": 9661.54, + "probability": 0.8859 + }, + { + "start": 9661.56, + "end": 9662.3, + "probability": 0.6835 + }, + { + "start": 9667.86, + "end": 9669.26, + "probability": 0.9712 + }, + { + "start": 9669.34, + "end": 9670.16, + "probability": 0.8188 + }, + { + "start": 9670.24, + "end": 9670.92, + "probability": 0.8292 + }, + { + "start": 9674.62, + "end": 9675.86, + "probability": 0.7269 + }, + { + "start": 9675.9, + "end": 9675.9, + "probability": 0.4015 + }, + { + "start": 9675.9, + "end": 9677.0, + "probability": 0.9814 + }, + { + "start": 9677.04, + "end": 9677.34, + "probability": 0.5606 + }, + { + "start": 9677.34, + "end": 9678.52, + "probability": 0.9521 + }, + { + "start": 9678.6, + "end": 9680.7, + "probability": 0.9801 + }, + { + "start": 9681.52, + "end": 9686.32, + "probability": 0.96 + }, + { + "start": 9686.32, + "end": 9690.84, + "probability": 0.9717 + }, + { + "start": 9691.3, + "end": 9692.76, + "probability": 0.9271 + }, + { + "start": 9693.9, + "end": 9698.4, + "probability": 0.0419 + }, + { + "start": 9698.72, + "end": 9699.42, + "probability": 0.2811 + }, + { + "start": 9701.54, + "end": 9703.22, + "probability": 0.5926 + }, + { + "start": 9703.74, + "end": 9705.86, + "probability": 0.9876 + }, + { + "start": 9705.96, + "end": 9706.68, + "probability": 0.7129 + }, + { + "start": 9706.74, + "end": 9709.42, + "probability": 0.8627 + }, + { + "start": 9709.94, + "end": 9712.86, + "probability": 0.8286 + }, + { + "start": 9713.02, + "end": 9715.32, + "probability": 0.0628 + }, + { + "start": 9715.36, + "end": 9717.12, + "probability": 0.4837 + }, + { + "start": 9717.32, + "end": 9720.14, + "probability": 0.7791 + }, + { + "start": 9720.28, + "end": 9723.5, + "probability": 0.9363 + }, + { + "start": 9723.5, + "end": 9726.38, + "probability": 0.9917 + }, + { + "start": 9726.8, + "end": 9731.7, + "probability": 0.8298 + }, + { + "start": 9731.7, + "end": 9736.22, + "probability": 0.9849 + }, + { + "start": 9736.82, + "end": 9737.9, + "probability": 0.9793 + }, + { + "start": 9738.0, + "end": 9739.02, + "probability": 0.8955 + }, + { + "start": 9739.1, + "end": 9743.26, + "probability": 0.6903 + }, + { + "start": 9743.5, + "end": 9744.78, + "probability": 0.8983 + }, + { + "start": 9745.02, + "end": 9745.36, + "probability": 0.7002 + }, + { + "start": 9748.92, + "end": 9752.04, + "probability": 0.828 + }, + { + "start": 9753.02, + "end": 9753.82, + "probability": 0.8052 + }, + { + "start": 9753.82, + "end": 9760.75, + "probability": 0.9739 + }, + { + "start": 9760.86, + "end": 9765.64, + "probability": 0.9012 + }, + { + "start": 9765.94, + "end": 9767.9, + "probability": 0.1066 + }, + { + "start": 9768.16, + "end": 9769.28, + "probability": 0.6664 + }, + { + "start": 9769.54, + "end": 9774.8, + "probability": 0.9866 + }, + { + "start": 9774.92, + "end": 9775.68, + "probability": 0.631 + }, + { + "start": 9777.52, + "end": 9780.52, + "probability": 0.5853 + }, + { + "start": 9781.36, + "end": 9783.76, + "probability": 0.9948 + }, + { + "start": 9783.76, + "end": 9786.34, + "probability": 0.9923 + }, + { + "start": 9787.1, + "end": 9792.38, + "probability": 0.9841 + }, + { + "start": 9792.38, + "end": 9797.04, + "probability": 0.9709 + }, + { + "start": 9797.62, + "end": 9800.24, + "probability": 0.9945 + }, + { + "start": 9800.24, + "end": 9803.66, + "probability": 0.9966 + }, + { + "start": 9804.22, + "end": 9807.74, + "probability": 0.9984 + }, + { + "start": 9807.74, + "end": 9811.86, + "probability": 0.9838 + }, + { + "start": 9812.38, + "end": 9815.06, + "probability": 0.9663 + }, + { + "start": 9815.46, + "end": 9817.46, + "probability": 0.9893 + }, + { + "start": 9818.14, + "end": 9822.54, + "probability": 0.9923 + }, + { + "start": 9822.54, + "end": 9827.7, + "probability": 0.9863 + }, + { + "start": 9827.7, + "end": 9832.88, + "probability": 0.9873 + }, + { + "start": 9833.6, + "end": 9837.0, + "probability": 0.8636 + }, + { + "start": 9837.94, + "end": 9841.32, + "probability": 0.9956 + }, + { + "start": 9841.32, + "end": 9845.76, + "probability": 0.9896 + }, + { + "start": 9846.14, + "end": 9847.58, + "probability": 0.95 + }, + { + "start": 9848.06, + "end": 9850.4, + "probability": 0.9623 + }, + { + "start": 9850.88, + "end": 9852.34, + "probability": 0.9942 + }, + { + "start": 9852.48, + "end": 9854.7, + "probability": 0.9768 + }, + { + "start": 9855.36, + "end": 9859.18, + "probability": 0.9904 + }, + { + "start": 9859.74, + "end": 9860.28, + "probability": 0.9216 + }, + { + "start": 9860.36, + "end": 9861.06, + "probability": 0.803 + }, + { + "start": 9861.16, + "end": 9867.64, + "probability": 0.988 + }, + { + "start": 9869.02, + "end": 9872.0, + "probability": 0.895 + }, + { + "start": 9873.14, + "end": 9875.68, + "probability": 0.969 + }, + { + "start": 9875.94, + "end": 9882.96, + "probability": 0.9934 + }, + { + "start": 9883.24, + "end": 9883.8, + "probability": 0.7541 + }, + { + "start": 9883.88, + "end": 9884.34, + "probability": 0.9515 + }, + { + "start": 9884.44, + "end": 9884.92, + "probability": 0.5153 + }, + { + "start": 9885.3, + "end": 9886.54, + "probability": 0.9226 + }, + { + "start": 9886.92, + "end": 9890.27, + "probability": 0.9214 + }, + { + "start": 9891.29, + "end": 9895.33, + "probability": 0.999 + }, + { + "start": 9895.9, + "end": 9902.68, + "probability": 0.9975 + }, + { + "start": 9903.16, + "end": 9907.2, + "probability": 0.9886 + }, + { + "start": 9908.34, + "end": 9912.02, + "probability": 0.9953 + }, + { + "start": 9912.6, + "end": 9913.28, + "probability": 0.703 + }, + { + "start": 9913.58, + "end": 9914.14, + "probability": 0.9161 + }, + { + "start": 9914.6, + "end": 9916.28, + "probability": 0.9574 + }, + { + "start": 9916.64, + "end": 9922.4, + "probability": 0.986 + }, + { + "start": 9923.06, + "end": 9924.52, + "probability": 0.8065 + }, + { + "start": 9924.56, + "end": 9925.02, + "probability": 0.4854 + }, + { + "start": 9925.14, + "end": 9925.3, + "probability": 0.4819 + }, + { + "start": 9925.38, + "end": 9926.24, + "probability": 0.95 + }, + { + "start": 9926.4, + "end": 9929.78, + "probability": 0.9377 + }, + { + "start": 9930.78, + "end": 9931.42, + "probability": 0.9373 + }, + { + "start": 9931.74, + "end": 9936.34, + "probability": 0.9536 + }, + { + "start": 9936.86, + "end": 9941.28, + "probability": 0.9124 + }, + { + "start": 9941.68, + "end": 9946.08, + "probability": 0.9717 + }, + { + "start": 9946.36, + "end": 9949.48, + "probability": 0.9962 + }, + { + "start": 9950.08, + "end": 9953.64, + "probability": 0.9574 + }, + { + "start": 9954.82, + "end": 9958.84, + "probability": 0.9976 + }, + { + "start": 9959.84, + "end": 9961.1, + "probability": 0.4968 + }, + { + "start": 9961.22, + "end": 9962.18, + "probability": 0.8777 + }, + { + "start": 9962.24, + "end": 9964.9, + "probability": 0.6954 + }, + { + "start": 9964.9, + "end": 9967.06, + "probability": 0.7538 + }, + { + "start": 9968.03, + "end": 9974.17, + "probability": 0.9535 + }, + { + "start": 9974.42, + "end": 9979.16, + "probability": 0.9871 + }, + { + "start": 9979.2, + "end": 9980.72, + "probability": 0.9188 + }, + { + "start": 9981.46, + "end": 9984.24, + "probability": 0.9835 + }, + { + "start": 9984.44, + "end": 9986.6, + "probability": 0.88 + }, + { + "start": 9987.22, + "end": 9992.56, + "probability": 0.9656 + }, + { + "start": 9992.92, + "end": 9996.94, + "probability": 0.9896 + }, + { + "start": 9997.58, + "end": 9998.28, + "probability": 0.6302 + }, + { + "start": 9998.52, + "end": 9999.0, + "probability": 0.9188 + }, + { + "start": 9999.14, + "end": 10002.24, + "probability": 0.9478 + }, + { + "start": 10002.6, + "end": 10003.8, + "probability": 0.9782 + }, + { + "start": 10003.92, + "end": 10006.56, + "probability": 0.9503 + }, + { + "start": 10007.04, + "end": 10013.41, + "probability": 0.9841 + }, + { + "start": 10014.7, + "end": 10015.34, + "probability": 0.6798 + }, + { + "start": 10015.86, + "end": 10019.46, + "probability": 0.928 + }, + { + "start": 10019.56, + "end": 10023.56, + "probability": 0.9626 + }, + { + "start": 10023.6, + "end": 10026.8, + "probability": 0.9727 + }, + { + "start": 10026.98, + "end": 10027.82, + "probability": 0.8337 + }, + { + "start": 10027.92, + "end": 10028.18, + "probability": 0.4392 + }, + { + "start": 10028.3, + "end": 10031.46, + "probability": 0.7759 + }, + { + "start": 10031.46, + "end": 10035.26, + "probability": 0.9868 + }, + { + "start": 10035.46, + "end": 10037.56, + "probability": 0.9644 + }, + { + "start": 10039.0, + "end": 10039.5, + "probability": 0.8545 + }, + { + "start": 10039.6, + "end": 10040.38, + "probability": 0.9387 + }, + { + "start": 10040.42, + "end": 10045.48, + "probability": 0.8624 + }, + { + "start": 10046.28, + "end": 10048.12, + "probability": 0.5849 + }, + { + "start": 10048.22, + "end": 10050.08, + "probability": 0.9932 + }, + { + "start": 10050.42, + "end": 10053.72, + "probability": 0.5788 + }, + { + "start": 10054.1, + "end": 10055.8, + "probability": 0.9217 + }, + { + "start": 10056.04, + "end": 10060.16, + "probability": 0.9528 + }, + { + "start": 10060.16, + "end": 10064.2, + "probability": 0.9404 + }, + { + "start": 10065.08, + "end": 10067.24, + "probability": 0.6706 + }, + { + "start": 10068.32, + "end": 10072.78, + "probability": 0.9902 + }, + { + "start": 10072.78, + "end": 10077.26, + "probability": 0.9872 + }, + { + "start": 10077.26, + "end": 10081.85, + "probability": 0.9945 + }, + { + "start": 10082.84, + "end": 10087.0, + "probability": 0.9185 + }, + { + "start": 10087.12, + "end": 10092.24, + "probability": 0.3987 + }, + { + "start": 10093.04, + "end": 10096.72, + "probability": 0.4002 + }, + { + "start": 10097.98, + "end": 10098.75, + "probability": 0.6763 + }, + { + "start": 10100.59, + "end": 10102.68, + "probability": 0.7768 + }, + { + "start": 10104.0, + "end": 10105.14, + "probability": 0.7403 + }, + { + "start": 10107.16, + "end": 10108.4, + "probability": 0.9111 + }, + { + "start": 10108.92, + "end": 10109.3, + "probability": 0.9103 + }, + { + "start": 10109.84, + "end": 10110.18, + "probability": 0.5626 + }, + { + "start": 10110.28, + "end": 10111.0, + "probability": 0.725 + }, + { + "start": 10111.04, + "end": 10114.6, + "probability": 0.8288 + }, + { + "start": 10115.76, + "end": 10120.86, + "probability": 0.9883 + }, + { + "start": 10120.92, + "end": 10122.52, + "probability": 0.6905 + }, + { + "start": 10123.26, + "end": 10125.6, + "probability": 0.9394 + }, + { + "start": 10125.72, + "end": 10127.66, + "probability": 0.9107 + }, + { + "start": 10129.1, + "end": 10133.12, + "probability": 0.9807 + }, + { + "start": 10133.12, + "end": 10136.64, + "probability": 0.9998 + }, + { + "start": 10136.64, + "end": 10140.78, + "probability": 0.9966 + }, + { + "start": 10141.38, + "end": 10142.6, + "probability": 0.7294 + }, + { + "start": 10142.74, + "end": 10146.76, + "probability": 0.9026 + }, + { + "start": 10147.86, + "end": 10153.6, + "probability": 0.9921 + }, + { + "start": 10153.8, + "end": 10156.82, + "probability": 0.7375 + }, + { + "start": 10157.26, + "end": 10158.72, + "probability": 0.5901 + }, + { + "start": 10159.48, + "end": 10161.52, + "probability": 0.8818 + }, + { + "start": 10161.68, + "end": 10162.46, + "probability": 0.8844 + }, + { + "start": 10162.52, + "end": 10166.8, + "probability": 0.9329 + }, + { + "start": 10167.52, + "end": 10170.74, + "probability": 0.9877 + }, + { + "start": 10170.85, + "end": 10174.44, + "probability": 0.9797 + }, + { + "start": 10174.98, + "end": 10175.44, + "probability": 0.9135 + }, + { + "start": 10176.06, + "end": 10178.7, + "probability": 0.999 + }, + { + "start": 10178.7, + "end": 10182.44, + "probability": 0.9702 + }, + { + "start": 10183.84, + "end": 10184.98, + "probability": 0.9993 + }, + { + "start": 10185.62, + "end": 10190.62, + "probability": 0.9801 + }, + { + "start": 10191.16, + "end": 10193.88, + "probability": 0.9981 + }, + { + "start": 10194.1, + "end": 10196.24, + "probability": 0.9444 + }, + { + "start": 10196.84, + "end": 10201.44, + "probability": 0.9385 + }, + { + "start": 10201.98, + "end": 10203.46, + "probability": 0.8198 + }, + { + "start": 10203.68, + "end": 10208.16, + "probability": 0.9993 + }, + { + "start": 10208.16, + "end": 10212.5, + "probability": 0.6891 + }, + { + "start": 10213.84, + "end": 10214.44, + "probability": 0.8088 + }, + { + "start": 10214.5, + "end": 10220.2, + "probability": 0.6746 + }, + { + "start": 10220.92, + "end": 10223.14, + "probability": 0.9352 + }, + { + "start": 10223.76, + "end": 10228.94, + "probability": 0.9734 + }, + { + "start": 10229.66, + "end": 10235.3, + "probability": 0.9888 + }, + { + "start": 10235.36, + "end": 10237.9, + "probability": 0.6605 + }, + { + "start": 10238.16, + "end": 10240.1, + "probability": 0.5361 + }, + { + "start": 10240.76, + "end": 10242.88, + "probability": 0.8427 + }, + { + "start": 10243.76, + "end": 10244.96, + "probability": 0.9899 + }, + { + "start": 10245.08, + "end": 10246.16, + "probability": 0.5081 + }, + { + "start": 10246.22, + "end": 10248.28, + "probability": 0.9049 + }, + { + "start": 10249.5, + "end": 10250.68, + "probability": 0.8425 + }, + { + "start": 10251.08, + "end": 10257.16, + "probability": 0.9556 + }, + { + "start": 10259.5, + "end": 10261.42, + "probability": 0.9785 + }, + { + "start": 10261.96, + "end": 10263.64, + "probability": 0.8955 + }, + { + "start": 10265.04, + "end": 10265.92, + "probability": 0.4912 + }, + { + "start": 10266.62, + "end": 10270.22, + "probability": 0.9628 + }, + { + "start": 10270.74, + "end": 10273.21, + "probability": 0.9642 + }, + { + "start": 10273.68, + "end": 10277.8, + "probability": 0.965 + }, + { + "start": 10277.94, + "end": 10282.52, + "probability": 0.8361 + }, + { + "start": 10282.6, + "end": 10284.9, + "probability": 0.8404 + }, + { + "start": 10285.18, + "end": 10288.42, + "probability": 0.9969 + }, + { + "start": 10290.58, + "end": 10291.62, + "probability": 0.8801 + }, + { + "start": 10291.7, + "end": 10293.72, + "probability": 0.8933 + }, + { + "start": 10293.76, + "end": 10294.63, + "probability": 0.87 + }, + { + "start": 10295.48, + "end": 10299.88, + "probability": 0.9008 + }, + { + "start": 10300.5, + "end": 10303.16, + "probability": 0.9416 + }, + { + "start": 10303.2, + "end": 10304.0, + "probability": 0.6486 + }, + { + "start": 10304.08, + "end": 10304.84, + "probability": 0.6849 + }, + { + "start": 10305.44, + "end": 10306.48, + "probability": 0.7999 + }, + { + "start": 10306.64, + "end": 10308.28, + "probability": 0.8587 + }, + { + "start": 10308.78, + "end": 10310.38, + "probability": 0.9812 + }, + { + "start": 10311.14, + "end": 10312.06, + "probability": 0.9012 + }, + { + "start": 10312.88, + "end": 10317.02, + "probability": 0.9563 + }, + { + "start": 10317.02, + "end": 10322.52, + "probability": 0.975 + }, + { + "start": 10322.62, + "end": 10325.32, + "probability": 0.9633 + }, + { + "start": 10325.72, + "end": 10328.36, + "probability": 0.8381 + }, + { + "start": 10328.36, + "end": 10331.85, + "probability": 0.8538 + }, + { + "start": 10332.52, + "end": 10333.98, + "probability": 0.6653 + }, + { + "start": 10334.44, + "end": 10339.8, + "probability": 0.8899 + }, + { + "start": 10339.9, + "end": 10343.84, + "probability": 0.9575 + }, + { + "start": 10344.28, + "end": 10349.52, + "probability": 0.9819 + }, + { + "start": 10349.52, + "end": 10356.78, + "probability": 0.9306 + }, + { + "start": 10357.72, + "end": 10358.51, + "probability": 0.8979 + }, + { + "start": 10358.64, + "end": 10362.04, + "probability": 0.9872 + }, + { + "start": 10362.18, + "end": 10364.44, + "probability": 0.8285 + }, + { + "start": 10364.92, + "end": 10369.82, + "probability": 0.9707 + }, + { + "start": 10370.42, + "end": 10378.1, + "probability": 0.9967 + }, + { + "start": 10378.24, + "end": 10380.7, + "probability": 0.9901 + }, + { + "start": 10380.92, + "end": 10382.04, + "probability": 0.6681 + }, + { + "start": 10382.6, + "end": 10385.48, + "probability": 0.9181 + }, + { + "start": 10385.64, + "end": 10389.38, + "probability": 0.9971 + }, + { + "start": 10391.16, + "end": 10393.76, + "probability": 0.0251 + }, + { + "start": 10393.88, + "end": 10394.62, + "probability": 0.0746 + }, + { + "start": 10394.62, + "end": 10394.62, + "probability": 0.4921 + }, + { + "start": 10394.62, + "end": 10396.16, + "probability": 0.2009 + }, + { + "start": 10396.68, + "end": 10397.82, + "probability": 0.6978 + }, + { + "start": 10397.9, + "end": 10402.42, + "probability": 0.993 + }, + { + "start": 10402.42, + "end": 10407.78, + "probability": 0.9939 + }, + { + "start": 10407.78, + "end": 10413.54, + "probability": 0.9987 + }, + { + "start": 10413.8, + "end": 10413.92, + "probability": 0.4222 + }, + { + "start": 10414.06, + "end": 10414.92, + "probability": 0.4533 + }, + { + "start": 10414.98, + "end": 10416.1, + "probability": 0.7384 + }, + { + "start": 10417.08, + "end": 10420.54, + "probability": 0.9966 + }, + { + "start": 10420.54, + "end": 10424.14, + "probability": 0.9972 + }, + { + "start": 10424.84, + "end": 10426.94, + "probability": 0.9949 + }, + { + "start": 10426.94, + "end": 10430.5, + "probability": 0.9985 + }, + { + "start": 10431.26, + "end": 10433.94, + "probability": 0.4708 + }, + { + "start": 10434.28, + "end": 10439.0, + "probability": 0.9686 + }, + { + "start": 10439.48, + "end": 10442.14, + "probability": 0.9035 + }, + { + "start": 10443.18, + "end": 10446.72, + "probability": 0.9 + }, + { + "start": 10447.7, + "end": 10453.76, + "probability": 0.7953 + }, + { + "start": 10453.88, + "end": 10458.86, + "probability": 0.938 + }, + { + "start": 10459.1, + "end": 10460.3, + "probability": 0.9617 + }, + { + "start": 10460.9, + "end": 10462.56, + "probability": 0.8627 + }, + { + "start": 10462.9, + "end": 10464.22, + "probability": 0.5575 + }, + { + "start": 10464.5, + "end": 10467.44, + "probability": 0.9683 + }, + { + "start": 10468.5, + "end": 10474.86, + "probability": 0.7145 + }, + { + "start": 10474.86, + "end": 10480.86, + "probability": 0.941 + }, + { + "start": 10482.14, + "end": 10483.98, + "probability": 0.9664 + }, + { + "start": 10484.46, + "end": 10486.88, + "probability": 0.9912 + }, + { + "start": 10487.02, + "end": 10491.94, + "probability": 0.8471 + }, + { + "start": 10492.68, + "end": 10499.22, + "probability": 0.9951 + }, + { + "start": 10499.34, + "end": 10500.78, + "probability": 0.984 + }, + { + "start": 10500.8, + "end": 10505.68, + "probability": 0.9977 + }, + { + "start": 10506.42, + "end": 10509.36, + "probability": 0.8822 + }, + { + "start": 10509.96, + "end": 10512.82, + "probability": 0.9851 + }, + { + "start": 10513.74, + "end": 10514.36, + "probability": 0.3827 + }, + { + "start": 10515.12, + "end": 10518.36, + "probability": 0.9639 + }, + { + "start": 10518.7, + "end": 10523.14, + "probability": 0.8262 + }, + { + "start": 10523.62, + "end": 10530.18, + "probability": 0.9441 + }, + { + "start": 10530.66, + "end": 10535.12, + "probability": 0.8707 + }, + { + "start": 10535.2, + "end": 10539.42, + "probability": 0.8769 + }, + { + "start": 10539.92, + "end": 10544.9, + "probability": 0.9732 + }, + { + "start": 10545.94, + "end": 10546.76, + "probability": 0.7295 + }, + { + "start": 10546.88, + "end": 10549.32, + "probability": 0.9121 + }, + { + "start": 10549.44, + "end": 10553.9, + "probability": 0.9575 + }, + { + "start": 10556.18, + "end": 10560.22, + "probability": 0.9904 + }, + { + "start": 10560.36, + "end": 10563.68, + "probability": 0.9626 + }, + { + "start": 10563.86, + "end": 10569.18, + "probability": 0.9963 + }, + { + "start": 10571.42, + "end": 10575.82, + "probability": 0.9751 + }, + { + "start": 10575.82, + "end": 10579.04, + "probability": 0.9817 + }, + { + "start": 10579.18, + "end": 10582.06, + "probability": 0.8149 + }, + { + "start": 10582.56, + "end": 10585.16, + "probability": 0.9952 + }, + { + "start": 10585.84, + "end": 10586.5, + "probability": 0.9728 + }, + { + "start": 10588.74, + "end": 10591.4, + "probability": 0.9967 + }, + { + "start": 10592.34, + "end": 10595.64, + "probability": 0.943 + }, + { + "start": 10595.7, + "end": 10598.06, + "probability": 0.9922 + }, + { + "start": 10598.92, + "end": 10602.52, + "probability": 0.8082 + }, + { + "start": 10602.52, + "end": 10606.36, + "probability": 0.9915 + }, + { + "start": 10607.06, + "end": 10610.26, + "probability": 0.9974 + }, + { + "start": 10610.98, + "end": 10613.3, + "probability": 0.9936 + }, + { + "start": 10613.3, + "end": 10616.52, + "probability": 0.9274 + }, + { + "start": 10617.4, + "end": 10621.88, + "probability": 0.979 + }, + { + "start": 10622.0, + "end": 10625.04, + "probability": 0.9144 + }, + { + "start": 10625.2, + "end": 10628.82, + "probability": 0.9606 + }, + { + "start": 10628.98, + "end": 10630.98, + "probability": 0.9769 + }, + { + "start": 10631.04, + "end": 10631.14, + "probability": 0.958 + }, + { + "start": 10631.84, + "end": 10633.34, + "probability": 0.3048 + }, + { + "start": 10633.5, + "end": 10636.72, + "probability": 0.8297 + }, + { + "start": 10638.53, + "end": 10642.8, + "probability": 0.744 + }, + { + "start": 10642.8, + "end": 10646.82, + "probability": 0.8763 + }, + { + "start": 10647.8, + "end": 10651.64, + "probability": 0.9973 + }, + { + "start": 10651.78, + "end": 10653.8, + "probability": 0.8013 + }, + { + "start": 10653.88, + "end": 10658.3, + "probability": 0.8668 + }, + { + "start": 10659.4, + "end": 10663.34, + "probability": 0.9116 + }, + { + "start": 10664.16, + "end": 10668.0, + "probability": 0.7534 + }, + { + "start": 10668.0, + "end": 10671.32, + "probability": 0.973 + }, + { + "start": 10671.74, + "end": 10673.32, + "probability": 0.857 + }, + { + "start": 10673.5, + "end": 10674.62, + "probability": 0.9168 + }, + { + "start": 10674.78, + "end": 10677.62, + "probability": 0.9006 + }, + { + "start": 10678.3, + "end": 10680.98, + "probability": 0.9469 + }, + { + "start": 10681.04, + "end": 10685.96, + "probability": 0.9556 + }, + { + "start": 10686.06, + "end": 10687.28, + "probability": 0.7354 + }, + { + "start": 10687.36, + "end": 10691.02, + "probability": 0.9823 + }, + { + "start": 10691.76, + "end": 10696.66, + "probability": 0.9781 + }, + { + "start": 10696.66, + "end": 10701.52, + "probability": 0.9855 + }, + { + "start": 10702.0, + "end": 10705.18, + "probability": 0.9949 + }, + { + "start": 10705.18, + "end": 10709.2, + "probability": 0.998 + }, + { + "start": 10709.54, + "end": 10714.78, + "probability": 0.9565 + }, + { + "start": 10715.22, + "end": 10723.36, + "probability": 0.9913 + }, + { + "start": 10723.58, + "end": 10724.24, + "probability": 0.8774 + }, + { + "start": 10724.32, + "end": 10725.8, + "probability": 0.9172 + }, + { + "start": 10725.96, + "end": 10729.46, + "probability": 0.9785 + }, + { + "start": 10730.56, + "end": 10733.88, + "probability": 0.9868 + }, + { + "start": 10733.92, + "end": 10735.88, + "probability": 0.9932 + }, + { + "start": 10736.52, + "end": 10737.28, + "probability": 0.8428 + }, + { + "start": 10737.34, + "end": 10738.02, + "probability": 0.8852 + }, + { + "start": 10738.08, + "end": 10740.08, + "probability": 0.9252 + }, + { + "start": 10740.22, + "end": 10743.3, + "probability": 0.9787 + }, + { + "start": 10744.12, + "end": 10749.56, + "probability": 0.8853 + }, + { + "start": 10751.34, + "end": 10755.94, + "probability": 0.9873 + }, + { + "start": 10756.12, + "end": 10761.5, + "probability": 0.9928 + }, + { + "start": 10761.62, + "end": 10766.82, + "probability": 0.8823 + }, + { + "start": 10767.16, + "end": 10769.7, + "probability": 0.95 + }, + { + "start": 10770.66, + "end": 10773.48, + "probability": 0.7598 + }, + { + "start": 10773.48, + "end": 10778.26, + "probability": 0.9229 + }, + { + "start": 10778.36, + "end": 10781.0, + "probability": 0.9021 + }, + { + "start": 10781.32, + "end": 10782.0, + "probability": 0.8106 + }, + { + "start": 10782.1, + "end": 10784.92, + "probability": 0.9266 + }, + { + "start": 10785.36, + "end": 10785.98, + "probability": 0.4786 + }, + { + "start": 10786.08, + "end": 10790.0, + "probability": 0.9502 + }, + { + "start": 10790.82, + "end": 10795.58, + "probability": 0.2554 + }, + { + "start": 10795.96, + "end": 10796.14, + "probability": 0.5241 + }, + { + "start": 10796.4, + "end": 10798.66, + "probability": 0.9959 + }, + { + "start": 10798.72, + "end": 10798.78, + "probability": 0.2197 + }, + { + "start": 10798.78, + "end": 10799.38, + "probability": 0.0084 + }, + { + "start": 10799.38, + "end": 10801.74, + "probability": 0.9164 + }, + { + "start": 10801.86, + "end": 10803.48, + "probability": 0.9872 + }, + { + "start": 10803.5, + "end": 10806.76, + "probability": 0.9159 + }, + { + "start": 10806.76, + "end": 10806.84, + "probability": 0.4734 + }, + { + "start": 10806.84, + "end": 10807.62, + "probability": 0.5622 + }, + { + "start": 10807.72, + "end": 10809.22, + "probability": 0.4262 + }, + { + "start": 10809.22, + "end": 10810.13, + "probability": 0.4905 + }, + { + "start": 10810.48, + "end": 10813.92, + "probability": 0.9849 + }, + { + "start": 10815.44, + "end": 10816.39, + "probability": 0.633 + }, + { + "start": 10816.62, + "end": 10819.46, + "probability": 0.837 + }, + { + "start": 10819.5, + "end": 10819.56, + "probability": 0.0967 + }, + { + "start": 10819.56, + "end": 10820.88, + "probability": 0.3469 + }, + { + "start": 10821.66, + "end": 10822.32, + "probability": 0.711 + }, + { + "start": 10822.4, + "end": 10824.78, + "probability": 0.7412 + }, + { + "start": 10828.34, + "end": 10831.96, + "probability": 0.0813 + }, + { + "start": 10833.2, + "end": 10833.94, + "probability": 0.018 + }, + { + "start": 10838.86, + "end": 10838.94, + "probability": 0.0691 + }, + { + "start": 10839.5, + "end": 10843.06, + "probability": 0.1187 + }, + { + "start": 10843.08, + "end": 10846.62, + "probability": 0.056 + }, + { + "start": 10847.64, + "end": 10848.5, + "probability": 0.0002 + }, + { + "start": 10848.5, + "end": 10849.78, + "probability": 0.0801 + }, + { + "start": 10849.78, + "end": 10851.94, + "probability": 0.1164 + }, + { + "start": 10852.7, + "end": 10855.6, + "probability": 0.019 + }, + { + "start": 10855.64, + "end": 10857.54, + "probability": 0.0749 + }, + { + "start": 10858.48, + "end": 10859.72, + "probability": 0.0691 + }, + { + "start": 10859.72, + "end": 10861.41, + "probability": 0.0365 + }, + { + "start": 10863.6, + "end": 10864.64, + "probability": 0.0798 + }, + { + "start": 10865.7, + "end": 10867.0, + "probability": 0.2075 + }, + { + "start": 10867.0, + "end": 10868.56, + "probability": 0.0306 + }, + { + "start": 10868.56, + "end": 10871.98, + "probability": 0.0921 + }, + { + "start": 10874.92, + "end": 10875.94, + "probability": 0.0861 + }, + { + "start": 10878.14, + "end": 10881.7, + "probability": 0.0105 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.0, + "end": 10882.0, + "probability": 0.0 + }, + { + "start": 10882.22, + "end": 10884.08, + "probability": 0.3835 + }, + { + "start": 10884.26, + "end": 10885.68, + "probability": 0.9553 + }, + { + "start": 10885.68, + "end": 10885.68, + "probability": 0.0307 + }, + { + "start": 10885.9, + "end": 10887.2, + "probability": 0.5753 + }, + { + "start": 10887.2, + "end": 10888.28, + "probability": 0.6486 + }, + { + "start": 10888.3, + "end": 10889.18, + "probability": 0.7262 + }, + { + "start": 10889.24, + "end": 10889.96, + "probability": 0.5014 + }, + { + "start": 10890.22, + "end": 10891.64, + "probability": 0.9924 + }, + { + "start": 10891.92, + "end": 10893.88, + "probability": 0.9066 + }, + { + "start": 10894.0, + "end": 10897.2, + "probability": 0.7893 + }, + { + "start": 10897.32, + "end": 10897.32, + "probability": 0.0313 + }, + { + "start": 10897.4, + "end": 10900.0, + "probability": 0.9808 + }, + { + "start": 10900.24, + "end": 10900.48, + "probability": 0.8435 + }, + { + "start": 10900.6, + "end": 10901.0, + "probability": 0.2427 + }, + { + "start": 10901.34, + "end": 10901.74, + "probability": 0.7046 + }, + { + "start": 10901.96, + "end": 10903.56, + "probability": 0.4612 + }, + { + "start": 10903.66, + "end": 10906.04, + "probability": 0.9585 + }, + { + "start": 10906.08, + "end": 10907.21, + "probability": 0.5 + }, + { + "start": 10908.5, + "end": 10908.66, + "probability": 0.0407 + }, + { + "start": 10908.66, + "end": 10911.24, + "probability": 0.8192 + }, + { + "start": 10911.32, + "end": 10912.53, + "probability": 0.7684 + }, + { + "start": 10912.8, + "end": 10913.86, + "probability": 0.8159 + }, + { + "start": 10913.88, + "end": 10914.88, + "probability": 0.8102 + }, + { + "start": 10914.88, + "end": 10916.12, + "probability": 0.2093 + }, + { + "start": 10932.14, + "end": 10934.24, + "probability": 0.9673 + }, + { + "start": 10935.56, + "end": 10937.34, + "probability": 0.0473 + }, + { + "start": 10937.34, + "end": 10939.08, + "probability": 0.1773 + }, + { + "start": 10939.32, + "end": 10939.32, + "probability": 0.0987 + }, + { + "start": 10939.4, + "end": 10941.04, + "probability": 0.0557 + }, + { + "start": 10941.04, + "end": 10943.02, + "probability": 0.1206 + }, + { + "start": 10944.1, + "end": 10952.62, + "probability": 0.1207 + }, + { + "start": 10953.8, + "end": 10956.3, + "probability": 0.1962 + }, + { + "start": 10957.56, + "end": 10961.7, + "probability": 0.0079 + }, + { + "start": 10961.7, + "end": 10962.08, + "probability": 0.0383 + }, + { + "start": 10962.08, + "end": 10963.74, + "probability": 0.0364 + }, + { + "start": 10963.74, + "end": 10964.16, + "probability": 0.0188 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.0, + "end": 11007.0, + "probability": 0.0 + }, + { + "start": 11007.4, + "end": 11007.4, + "probability": 0.0633 + }, + { + "start": 11007.4, + "end": 11007.4, + "probability": 0.0834 + }, + { + "start": 11007.4, + "end": 11009.72, + "probability": 0.4592 + }, + { + "start": 11010.32, + "end": 11013.29, + "probability": 0.7034 + }, + { + "start": 11013.64, + "end": 11016.88, + "probability": 0.9658 + }, + { + "start": 11017.72, + "end": 11026.34, + "probability": 0.9954 + }, + { + "start": 11026.42, + "end": 11026.8, + "probability": 0.6212 + }, + { + "start": 11026.88, + "end": 11028.26, + "probability": 0.8938 + }, + { + "start": 11028.64, + "end": 11032.96, + "probability": 0.9832 + }, + { + "start": 11033.72, + "end": 11039.94, + "probability": 0.9976 + }, + { + "start": 11040.18, + "end": 11041.44, + "probability": 0.8916 + }, + { + "start": 11042.1, + "end": 11044.33, + "probability": 0.9941 + }, + { + "start": 11044.92, + "end": 11048.92, + "probability": 0.9336 + }, + { + "start": 11049.9, + "end": 11055.04, + "probability": 0.9846 + }, + { + "start": 11055.48, + "end": 11059.62, + "probability": 0.9934 + }, + { + "start": 11059.88, + "end": 11067.44, + "probability": 0.9849 + }, + { + "start": 11067.7, + "end": 11068.7, + "probability": 0.7864 + }, + { + "start": 11068.8, + "end": 11069.35, + "probability": 0.9556 + }, + { + "start": 11070.06, + "end": 11073.16, + "probability": 0.9623 + }, + { + "start": 11073.32, + "end": 11079.52, + "probability": 0.9917 + }, + { + "start": 11079.94, + "end": 11080.46, + "probability": 0.8427 + }, + { + "start": 11080.56, + "end": 11083.74, + "probability": 0.9925 + }, + { + "start": 11084.2, + "end": 11089.86, + "probability": 0.9894 + }, + { + "start": 11090.02, + "end": 11093.96, + "probability": 0.8982 + }, + { + "start": 11093.96, + "end": 11096.92, + "probability": 0.8154 + }, + { + "start": 11097.02, + "end": 11097.52, + "probability": 0.7153 + }, + { + "start": 11097.9, + "end": 11099.44, + "probability": 0.6917 + }, + { + "start": 11099.72, + "end": 11100.74, + "probability": 0.7017 + }, + { + "start": 11100.82, + "end": 11102.65, + "probability": 0.9134 + }, + { + "start": 11104.44, + "end": 11106.52, + "probability": 0.804 + }, + { + "start": 11107.52, + "end": 11111.58, + "probability": 0.5882 + }, + { + "start": 11117.92, + "end": 11121.14, + "probability": 0.3618 + }, + { + "start": 11122.08, + "end": 11123.04, + "probability": 0.7709 + }, + { + "start": 11125.1, + "end": 11125.84, + "probability": 0.86 + }, + { + "start": 11125.96, + "end": 11127.14, + "probability": 0.9792 + }, + { + "start": 11127.28, + "end": 11129.76, + "probability": 0.8913 + }, + { + "start": 11130.58, + "end": 11130.64, + "probability": 0.0589 + }, + { + "start": 11130.64, + "end": 11138.02, + "probability": 0.8096 + }, + { + "start": 11138.8, + "end": 11141.84, + "probability": 0.9956 + }, + { + "start": 11142.5, + "end": 11145.24, + "probability": 0.9358 + }, + { + "start": 11145.8, + "end": 11148.98, + "probability": 0.9792 + }, + { + "start": 11149.5, + "end": 11152.37, + "probability": 0.9761 + }, + { + "start": 11153.04, + "end": 11155.12, + "probability": 0.9685 + }, + { + "start": 11156.6, + "end": 11158.38, + "probability": 0.7793 + }, + { + "start": 11158.44, + "end": 11160.9, + "probability": 0.9888 + }, + { + "start": 11161.32, + "end": 11165.32, + "probability": 0.9852 + }, + { + "start": 11165.42, + "end": 11169.6, + "probability": 0.9701 + }, + { + "start": 11169.78, + "end": 11171.66, + "probability": 0.9449 + }, + { + "start": 11172.06, + "end": 11176.86, + "probability": 0.8342 + }, + { + "start": 11177.7, + "end": 11179.82, + "probability": 0.963 + }, + { + "start": 11180.48, + "end": 11183.46, + "probability": 0.9897 + }, + { + "start": 11183.46, + "end": 11190.46, + "probability": 0.871 + }, + { + "start": 11190.46, + "end": 11194.98, + "probability": 0.9697 + }, + { + "start": 11195.82, + "end": 11197.06, + "probability": 0.9954 + }, + { + "start": 11197.64, + "end": 11199.38, + "probability": 0.9974 + }, + { + "start": 11199.46, + "end": 11200.1, + "probability": 0.7092 + }, + { + "start": 11200.16, + "end": 11202.26, + "probability": 0.8964 + }, + { + "start": 11203.1, + "end": 11204.72, + "probability": 0.5259 + }, + { + "start": 11204.72, + "end": 11207.72, + "probability": 0.915 + }, + { + "start": 11207.8, + "end": 11211.74, + "probability": 0.9885 + }, + { + "start": 11211.74, + "end": 11216.22, + "probability": 0.9658 + }, + { + "start": 11217.78, + "end": 11223.32, + "probability": 0.9932 + }, + { + "start": 11223.44, + "end": 11225.3, + "probability": 0.8257 + }, + { + "start": 11226.4, + "end": 11231.26, + "probability": 0.9934 + }, + { + "start": 11232.22, + "end": 11234.06, + "probability": 0.9897 + }, + { + "start": 11234.24, + "end": 11235.5, + "probability": 0.539 + }, + { + "start": 11235.93, + "end": 11238.94, + "probability": 0.8315 + }, + { + "start": 11239.44, + "end": 11240.62, + "probability": 0.4876 + }, + { + "start": 11240.64, + "end": 11245.06, + "probability": 0.8781 + }, + { + "start": 11245.28, + "end": 11246.34, + "probability": 0.7224 + }, + { + "start": 11246.4, + "end": 11248.76, + "probability": 0.8015 + }, + { + "start": 11248.92, + "end": 11250.1, + "probability": 0.7693 + }, + { + "start": 11250.12, + "end": 11250.92, + "probability": 0.9414 + }, + { + "start": 11251.52, + "end": 11257.56, + "probability": 0.9961 + }, + { + "start": 11258.62, + "end": 11263.94, + "probability": 0.9986 + }, + { + "start": 11264.84, + "end": 11268.14, + "probability": 0.9602 + }, + { + "start": 11268.58, + "end": 11269.56, + "probability": 0.9251 + }, + { + "start": 11269.7, + "end": 11275.64, + "probability": 0.8076 + }, + { + "start": 11276.6, + "end": 11280.22, + "probability": 0.9788 + }, + { + "start": 11281.62, + "end": 11284.6, + "probability": 0.8656 + }, + { + "start": 11285.68, + "end": 11287.14, + "probability": 0.8541 + }, + { + "start": 11287.22, + "end": 11290.8, + "probability": 0.9912 + }, + { + "start": 11291.64, + "end": 11294.9, + "probability": 0.9619 + }, + { + "start": 11295.66, + "end": 11297.78, + "probability": 0.8923 + }, + { + "start": 11298.64, + "end": 11300.84, + "probability": 0.9807 + }, + { + "start": 11301.0, + "end": 11304.36, + "probability": 0.8189 + }, + { + "start": 11305.48, + "end": 11311.46, + "probability": 0.9911 + }, + { + "start": 11312.5, + "end": 11313.18, + "probability": 0.3426 + }, + { + "start": 11313.6, + "end": 11316.34, + "probability": 0.5588 + }, + { + "start": 11316.34, + "end": 11316.36, + "probability": 0.2627 + }, + { + "start": 11316.36, + "end": 11317.17, + "probability": 0.625 + }, + { + "start": 11317.42, + "end": 11318.5, + "probability": 0.8392 + }, + { + "start": 11319.44, + "end": 11322.3, + "probability": 0.9503 + }, + { + "start": 11322.88, + "end": 11324.44, + "probability": 0.8789 + }, + { + "start": 11325.02, + "end": 11326.38, + "probability": 0.6884 + }, + { + "start": 11326.44, + "end": 11330.96, + "probability": 0.9576 + }, + { + "start": 11332.8, + "end": 11337.34, + "probability": 0.9983 + }, + { + "start": 11337.34, + "end": 11341.74, + "probability": 0.986 + }, + { + "start": 11341.74, + "end": 11346.24, + "probability": 0.9917 + }, + { + "start": 11346.36, + "end": 11347.92, + "probability": 0.7682 + }, + { + "start": 11348.24, + "end": 11349.86, + "probability": 0.8534 + }, + { + "start": 11349.92, + "end": 11350.88, + "probability": 0.644 + }, + { + "start": 11351.86, + "end": 11351.86, + "probability": 0.3895 + }, + { + "start": 11351.86, + "end": 11353.1, + "probability": 0.8584 + }, + { + "start": 11353.14, + "end": 11354.84, + "probability": 0.5943 + }, + { + "start": 11354.86, + "end": 11355.82, + "probability": 0.5823 + }, + { + "start": 11355.82, + "end": 11360.24, + "probability": 0.9193 + }, + { + "start": 11360.24, + "end": 11364.66, + "probability": 0.7426 + }, + { + "start": 11365.28, + "end": 11365.66, + "probability": 0.6245 + }, + { + "start": 11365.66, + "end": 11367.04, + "probability": 0.7551 + }, + { + "start": 11367.7, + "end": 11370.08, + "probability": 0.8798 + }, + { + "start": 11370.14, + "end": 11370.66, + "probability": 0.9243 + }, + { + "start": 11371.02, + "end": 11372.9, + "probability": 0.8639 + }, + { + "start": 11373.98, + "end": 11377.8, + "probability": 0.8282 + }, + { + "start": 11381.36, + "end": 11382.96, + "probability": 0.5329 + }, + { + "start": 11385.16, + "end": 11391.4, + "probability": 0.9917 + }, + { + "start": 11392.12, + "end": 11393.16, + "probability": 0.6346 + }, + { + "start": 11393.94, + "end": 11400.64, + "probability": 0.9162 + }, + { + "start": 11400.96, + "end": 11402.3, + "probability": 0.9681 + }, + { + "start": 11403.12, + "end": 11405.42, + "probability": 0.7973 + }, + { + "start": 11406.04, + "end": 11408.16, + "probability": 0.681 + }, + { + "start": 11409.06, + "end": 11414.28, + "probability": 0.8381 + }, + { + "start": 11414.32, + "end": 11416.58, + "probability": 0.7518 + }, + { + "start": 11417.36, + "end": 11422.46, + "probability": 0.9326 + }, + { + "start": 11423.24, + "end": 11425.72, + "probability": 0.9517 + }, + { + "start": 11426.26, + "end": 11426.86, + "probability": 0.8161 + }, + { + "start": 11427.78, + "end": 11431.64, + "probability": 0.7332 + }, + { + "start": 11432.47, + "end": 11435.82, + "probability": 0.6483 + }, + { + "start": 11436.74, + "end": 11440.7, + "probability": 0.856 + }, + { + "start": 11441.78, + "end": 11442.54, + "probability": 0.5952 + }, + { + "start": 11443.08, + "end": 11444.12, + "probability": 0.3058 + }, + { + "start": 11444.28, + "end": 11445.3, + "probability": 0.8478 + }, + { + "start": 11446.24, + "end": 11449.86, + "probability": 0.7807 + }, + { + "start": 11449.86, + "end": 11452.67, + "probability": 0.7935 + }, + { + "start": 11453.36, + "end": 11454.64, + "probability": 0.9838 + }, + { + "start": 11455.42, + "end": 11457.16, + "probability": 0.8778 + }, + { + "start": 11457.22, + "end": 11462.9, + "probability": 0.8088 + }, + { + "start": 11463.46, + "end": 11464.84, + "probability": 0.9526 + }, + { + "start": 11465.16, + "end": 11466.1, + "probability": 0.5124 + }, + { + "start": 11466.54, + "end": 11469.62, + "probability": 0.6608 + }, + { + "start": 11470.12, + "end": 11471.44, + "probability": 0.7579 + }, + { + "start": 11472.26, + "end": 11473.23, + "probability": 0.9521 + }, + { + "start": 11474.3, + "end": 11476.3, + "probability": 0.6219 + }, + { + "start": 11476.46, + "end": 11480.32, + "probability": 0.5531 + }, + { + "start": 11480.64, + "end": 11481.7, + "probability": 0.7542 + }, + { + "start": 11482.46, + "end": 11483.22, + "probability": 0.9362 + }, + { + "start": 11483.66, + "end": 11484.98, + "probability": 0.8501 + }, + { + "start": 11485.04, + "end": 11488.22, + "probability": 0.9762 + }, + { + "start": 11488.76, + "end": 11488.9, + "probability": 0.1478 + }, + { + "start": 11489.42, + "end": 11490.36, + "probability": 0.5151 + }, + { + "start": 11490.42, + "end": 11490.92, + "probability": 0.6715 + }, + { + "start": 11491.32, + "end": 11492.32, + "probability": 0.6132 + }, + { + "start": 11492.36, + "end": 11493.54, + "probability": 0.8058 + }, + { + "start": 11494.08, + "end": 11494.74, + "probability": 0.6373 + }, + { + "start": 11494.88, + "end": 11495.74, + "probability": 0.0623 + }, + { + "start": 11495.74, + "end": 11496.62, + "probability": 0.2396 + }, + { + "start": 11496.7, + "end": 11499.68, + "probability": 0.5055 + }, + { + "start": 11501.06, + "end": 11502.56, + "probability": 0.7534 + }, + { + "start": 11502.62, + "end": 11503.16, + "probability": 0.0157 + }, + { + "start": 11503.16, + "end": 11503.26, + "probability": 0.2828 + }, + { + "start": 11503.72, + "end": 11505.58, + "probability": 0.752 + }, + { + "start": 11505.64, + "end": 11506.46, + "probability": 0.8577 + }, + { + "start": 11506.94, + "end": 11507.98, + "probability": 0.4823 + }, + { + "start": 11508.02, + "end": 11510.96, + "probability": 0.878 + }, + { + "start": 11511.54, + "end": 11512.9, + "probability": 0.8991 + }, + { + "start": 11512.94, + "end": 11513.73, + "probability": 0.9459 + }, + { + "start": 11514.18, + "end": 11515.02, + "probability": 0.3146 + }, + { + "start": 11515.4, + "end": 11518.02, + "probability": 0.7141 + }, + { + "start": 11518.36, + "end": 11519.44, + "probability": 0.8359 + }, + { + "start": 11519.68, + "end": 11522.02, + "probability": 0.9685 + }, + { + "start": 11522.7, + "end": 11525.02, + "probability": 0.8682 + }, + { + "start": 11525.88, + "end": 11529.66, + "probability": 0.9244 + }, + { + "start": 11529.72, + "end": 11531.02, + "probability": 0.7692 + }, + { + "start": 11531.32, + "end": 11531.97, + "probability": 0.7225 + }, + { + "start": 11532.52, + "end": 11534.74, + "probability": 0.5777 + }, + { + "start": 11536.0, + "end": 11537.99, + "probability": 0.4912 + }, + { + "start": 11539.32, + "end": 11541.98, + "probability": 0.5861 + }, + { + "start": 11542.12, + "end": 11544.18, + "probability": 0.7217 + }, + { + "start": 11544.28, + "end": 11544.82, + "probability": 0.6364 + }, + { + "start": 11545.08, + "end": 11545.36, + "probability": 0.8248 + }, + { + "start": 11545.44, + "end": 11546.56, + "probability": 0.901 + }, + { + "start": 11547.06, + "end": 11547.52, + "probability": 0.8395 + }, + { + "start": 11547.52, + "end": 11548.52, + "probability": 0.5776 + }, + { + "start": 11548.52, + "end": 11549.32, + "probability": 0.6693 + }, + { + "start": 11549.42, + "end": 11551.6, + "probability": 0.8454 + }, + { + "start": 11551.82, + "end": 11552.75, + "probability": 0.9696 + }, + { + "start": 11553.24, + "end": 11557.16, + "probability": 0.9386 + }, + { + "start": 11557.24, + "end": 11557.74, + "probability": 0.9738 + }, + { + "start": 11557.8, + "end": 11558.52, + "probability": 0.4372 + }, + { + "start": 11560.32, + "end": 11560.6, + "probability": 0.1416 + }, + { + "start": 11560.6, + "end": 11561.42, + "probability": 0.6268 + }, + { + "start": 11561.84, + "end": 11563.62, + "probability": 0.7861 + }, + { + "start": 11563.86, + "end": 11564.58, + "probability": 0.944 + }, + { + "start": 11565.06, + "end": 11566.0, + "probability": 0.9706 + }, + { + "start": 11566.32, + "end": 11567.3, + "probability": 0.4546 + }, + { + "start": 11567.82, + "end": 11568.96, + "probability": 0.6212 + }, + { + "start": 11568.98, + "end": 11569.19, + "probability": 0.2546 + }, + { + "start": 11569.68, + "end": 11572.3, + "probability": 0.8961 + }, + { + "start": 11573.5, + "end": 11574.54, + "probability": 0.923 + }, + { + "start": 11574.94, + "end": 11575.82, + "probability": 0.5048 + }, + { + "start": 11575.88, + "end": 11577.14, + "probability": 0.5596 + }, + { + "start": 11577.6, + "end": 11578.02, + "probability": 0.5675 + }, + { + "start": 11578.56, + "end": 11581.3, + "probability": 0.376 + }, + { + "start": 11581.44, + "end": 11581.44, + "probability": 0.0008 + }, + { + "start": 11581.44, + "end": 11581.44, + "probability": 0.3447 + }, + { + "start": 11581.44, + "end": 11581.74, + "probability": 0.0138 + }, + { + "start": 11582.02, + "end": 11583.28, + "probability": 0.7622 + }, + { + "start": 11583.86, + "end": 11584.92, + "probability": 0.5262 + }, + { + "start": 11585.24, + "end": 11587.24, + "probability": 0.6843 + }, + { + "start": 11587.84, + "end": 11589.52, + "probability": 0.5307 + }, + { + "start": 11589.92, + "end": 11592.7, + "probability": 0.7808 + }, + { + "start": 11592.86, + "end": 11594.12, + "probability": 0.955 + }, + { + "start": 11594.9, + "end": 11597.14, + "probability": 0.7059 + }, + { + "start": 11597.54, + "end": 11598.44, + "probability": 0.9733 + }, + { + "start": 11598.5, + "end": 11598.92, + "probability": 0.7645 + }, + { + "start": 11599.02, + "end": 11600.54, + "probability": 0.8128 + }, + { + "start": 11600.98, + "end": 11601.6, + "probability": 0.9163 + }, + { + "start": 11604.14, + "end": 11604.44, + "probability": 0.442 + }, + { + "start": 11604.44, + "end": 11606.92, + "probability": 0.5367 + }, + { + "start": 11607.36, + "end": 11609.16, + "probability": 0.9144 + }, + { + "start": 11609.84, + "end": 11614.5, + "probability": 0.9825 + }, + { + "start": 11614.78, + "end": 11615.16, + "probability": 0.6085 + }, + { + "start": 11615.24, + "end": 11616.02, + "probability": 0.7272 + }, + { + "start": 11616.38, + "end": 11617.48, + "probability": 0.9624 + }, + { + "start": 11617.62, + "end": 11618.99, + "probability": 0.3586 + }, + { + "start": 11619.5, + "end": 11620.34, + "probability": 0.8616 + }, + { + "start": 11620.4, + "end": 11621.66, + "probability": 0.8952 + }, + { + "start": 11621.86, + "end": 11622.5, + "probability": 0.8619 + }, + { + "start": 11622.88, + "end": 11624.28, + "probability": 0.9564 + }, + { + "start": 11624.74, + "end": 11626.5, + "probability": 0.9858 + }, + { + "start": 11626.94, + "end": 11628.1, + "probability": 0.8845 + }, + { + "start": 11628.52, + "end": 11629.96, + "probability": 0.8024 + }, + { + "start": 11630.4, + "end": 11633.36, + "probability": 0.7749 + }, + { + "start": 11633.86, + "end": 11634.78, + "probability": 0.8908 + }, + { + "start": 11636.12, + "end": 11638.18, + "probability": 0.6149 + }, + { + "start": 11638.36, + "end": 11639.54, + "probability": 0.7969 + }, + { + "start": 11639.82, + "end": 11640.62, + "probability": 0.8308 + }, + { + "start": 11640.64, + "end": 11640.86, + "probability": 0.7095 + }, + { + "start": 11640.86, + "end": 11641.22, + "probability": 0.3157 + }, + { + "start": 11641.34, + "end": 11641.8, + "probability": 0.5043 + }, + { + "start": 11641.94, + "end": 11644.14, + "probability": 0.7329 + }, + { + "start": 11644.24, + "end": 11647.26, + "probability": 0.965 + }, + { + "start": 11647.54, + "end": 11648.58, + "probability": 0.2694 + }, + { + "start": 11649.36, + "end": 11651.4, + "probability": 0.3175 + }, + { + "start": 11651.4, + "end": 11653.33, + "probability": 0.8423 + }, + { + "start": 11653.78, + "end": 11656.1, + "probability": 0.9512 + }, + { + "start": 11656.36, + "end": 11657.38, + "probability": 0.6442 + }, + { + "start": 11658.04, + "end": 11659.82, + "probability": 0.6687 + }, + { + "start": 11659.96, + "end": 11663.12, + "probability": 0.906 + }, + { + "start": 11663.42, + "end": 11669.14, + "probability": 0.978 + }, + { + "start": 11669.38, + "end": 11669.75, + "probability": 0.0313 + }, + { + "start": 11669.78, + "end": 11669.82, + "probability": 0.5764 + }, + { + "start": 11669.82, + "end": 11671.78, + "probability": 0.6167 + }, + { + "start": 11671.84, + "end": 11672.3, + "probability": 0.3212 + }, + { + "start": 11672.3, + "end": 11673.99, + "probability": 0.5245 + }, + { + "start": 11674.18, + "end": 11674.46, + "probability": 0.2023 + }, + { + "start": 11674.48, + "end": 11675.2, + "probability": 0.6359 + }, + { + "start": 11675.32, + "end": 11676.1, + "probability": 0.5172 + }, + { + "start": 11676.26, + "end": 11678.64, + "probability": 0.3137 + }, + { + "start": 11678.64, + "end": 11682.2, + "probability": 0.8618 + }, + { + "start": 11682.26, + "end": 11682.98, + "probability": 0.7671 + }, + { + "start": 11683.24, + "end": 11684.14, + "probability": 0.96 + }, + { + "start": 11684.3, + "end": 11685.8, + "probability": 0.503 + }, + { + "start": 11685.88, + "end": 11686.22, + "probability": 0.3562 + }, + { + "start": 11686.68, + "end": 11687.96, + "probability": 0.3443 + }, + { + "start": 11687.96, + "end": 11689.23, + "probability": 0.8269 + }, + { + "start": 11689.48, + "end": 11690.48, + "probability": 0.5454 + }, + { + "start": 11690.6, + "end": 11690.76, + "probability": 0.5733 + }, + { + "start": 11690.84, + "end": 11693.8, + "probability": 0.4753 + }, + { + "start": 11693.8, + "end": 11694.72, + "probability": 0.3909 + }, + { + "start": 11694.8, + "end": 11696.02, + "probability": 0.9489 + }, + { + "start": 11696.48, + "end": 11697.56, + "probability": 0.8638 + }, + { + "start": 11698.1, + "end": 11701.22, + "probability": 0.9016 + }, + { + "start": 11701.36, + "end": 11702.32, + "probability": 0.8424 + }, + { + "start": 11702.78, + "end": 11704.26, + "probability": 0.7517 + }, + { + "start": 11704.58, + "end": 11706.54, + "probability": 0.7634 + }, + { + "start": 11706.6, + "end": 11706.66, + "probability": 0.3611 + }, + { + "start": 11706.66, + "end": 11707.18, + "probability": 0.008 + }, + { + "start": 11707.28, + "end": 11707.78, + "probability": 0.911 + }, + { + "start": 11708.34, + "end": 11709.84, + "probability": 0.3662 + }, + { + "start": 11710.12, + "end": 11713.09, + "probability": 0.6348 + }, + { + "start": 11713.36, + "end": 11717.58, + "probability": 0.7892 + }, + { + "start": 11718.12, + "end": 11719.0, + "probability": 0.2055 + }, + { + "start": 11719.0, + "end": 11719.66, + "probability": 0.4924 + }, + { + "start": 11719.66, + "end": 11719.66, + "probability": 0.3666 + }, + { + "start": 11719.66, + "end": 11721.41, + "probability": 0.7652 + }, + { + "start": 11721.88, + "end": 11722.7, + "probability": 0.8761 + }, + { + "start": 11723.04, + "end": 11724.72, + "probability": 0.9835 + }, + { + "start": 11724.72, + "end": 11726.3, + "probability": 0.7736 + }, + { + "start": 11726.3, + "end": 11728.06, + "probability": 0.4997 + }, + { + "start": 11728.44, + "end": 11729.92, + "probability": 0.7205 + }, + { + "start": 11729.92, + "end": 11730.4, + "probability": 0.5692 + }, + { + "start": 11730.44, + "end": 11731.48, + "probability": 0.7566 + }, + { + "start": 11731.64, + "end": 11734.28, + "probability": 0.676 + }, + { + "start": 11734.28, + "end": 11735.12, + "probability": 0.5709 + }, + { + "start": 11735.18, + "end": 11736.86, + "probability": 0.3255 + }, + { + "start": 11736.94, + "end": 11737.3, + "probability": 0.7218 + }, + { + "start": 11737.3, + "end": 11738.19, + "probability": 0.0818 + }, + { + "start": 11738.8, + "end": 11740.56, + "probability": 0.8467 + }, + { + "start": 11741.36, + "end": 11742.26, + "probability": 0.6782 + }, + { + "start": 11742.28, + "end": 11744.2, + "probability": 0.8368 + }, + { + "start": 11750.26, + "end": 11750.72, + "probability": 0.9237 + }, + { + "start": 11751.22, + "end": 11751.26, + "probability": 0.1821 + }, + { + "start": 11755.64, + "end": 11756.34, + "probability": 0.1197 + }, + { + "start": 11757.02, + "end": 11761.93, + "probability": 0.4319 + }, + { + "start": 11762.2, + "end": 11762.68, + "probability": 0.5496 + }, + { + "start": 11763.12, + "end": 11763.22, + "probability": 0.9424 + }, + { + "start": 11763.44, + "end": 11765.2, + "probability": 0.9941 + }, + { + "start": 11765.22, + "end": 11770.9, + "probability": 0.9963 + }, + { + "start": 11772.38, + "end": 11774.74, + "probability": 0.8992 + }, + { + "start": 11774.86, + "end": 11777.24, + "probability": 0.9937 + }, + { + "start": 11777.46, + "end": 11778.06, + "probability": 0.7283 + }, + { + "start": 11779.0, + "end": 11784.24, + "probability": 0.8761 + }, + { + "start": 11784.94, + "end": 11789.2, + "probability": 0.9172 + }, + { + "start": 11789.32, + "end": 11791.96, + "probability": 0.9168 + }, + { + "start": 11792.72, + "end": 11793.02, + "probability": 0.42 + }, + { + "start": 11793.08, + "end": 11797.82, + "probability": 0.9272 + }, + { + "start": 11798.42, + "end": 11801.36, + "probability": 0.9764 + }, + { + "start": 11801.82, + "end": 11803.32, + "probability": 0.9214 + }, + { + "start": 11803.54, + "end": 11806.05, + "probability": 0.4841 + }, + { + "start": 11807.34, + "end": 11811.46, + "probability": 0.8481 + }, + { + "start": 11812.74, + "end": 11816.12, + "probability": 0.9233 + }, + { + "start": 11816.78, + "end": 11819.0, + "probability": 0.9799 + }, + { + "start": 11820.02, + "end": 11820.4, + "probability": 0.4771 + }, + { + "start": 11820.5, + "end": 11823.5, + "probability": 0.8271 + }, + { + "start": 11823.72, + "end": 11824.6, + "probability": 0.488 + }, + { + "start": 11825.48, + "end": 11829.18, + "probability": 0.7477 + }, + { + "start": 11829.26, + "end": 11831.89, + "probability": 0.9878 + }, + { + "start": 11832.86, + "end": 11833.1, + "probability": 0.2499 + }, + { + "start": 11833.4, + "end": 11833.98, + "probability": 0.4335 + }, + { + "start": 11834.06, + "end": 11834.34, + "probability": 0.263 + }, + { + "start": 11835.08, + "end": 11835.5, + "probability": 0.918 + }, + { + "start": 11836.82, + "end": 11839.96, + "probability": 0.6998 + }, + { + "start": 11840.56, + "end": 11843.26, + "probability": 0.6669 + }, + { + "start": 11843.62, + "end": 11843.98, + "probability": 0.7819 + }, + { + "start": 11844.08, + "end": 11846.88, + "probability": 0.9855 + }, + { + "start": 11846.88, + "end": 11850.08, + "probability": 0.9792 + }, + { + "start": 11850.4, + "end": 11852.96, + "probability": 0.7764 + }, + { + "start": 11853.76, + "end": 11857.9, + "probability": 0.9382 + }, + { + "start": 11857.98, + "end": 11858.8, + "probability": 0.8064 + }, + { + "start": 11859.32, + "end": 11861.52, + "probability": 0.7942 + }, + { + "start": 11861.6, + "end": 11863.1, + "probability": 0.9832 + }, + { + "start": 11863.54, + "end": 11866.04, + "probability": 0.9068 + }, + { + "start": 11866.42, + "end": 11870.1, + "probability": 0.9973 + }, + { + "start": 11870.16, + "end": 11871.62, + "probability": 0.7597 + }, + { + "start": 11872.3, + "end": 11876.0, + "probability": 0.9769 + }, + { + "start": 11876.4, + "end": 11878.26, + "probability": 0.9741 + }, + { + "start": 11879.08, + "end": 11882.16, + "probability": 0.9865 + }, + { + "start": 11882.28, + "end": 11884.46, + "probability": 0.9163 + }, + { + "start": 11884.56, + "end": 11886.24, + "probability": 0.9858 + }, + { + "start": 11886.34, + "end": 11887.89, + "probability": 0.9912 + }, + { + "start": 11888.36, + "end": 11890.93, + "probability": 0.9907 + }, + { + "start": 11891.52, + "end": 11895.26, + "probability": 0.9062 + }, + { + "start": 11895.76, + "end": 11895.96, + "probability": 0.663 + }, + { + "start": 11896.06, + "end": 11896.8, + "probability": 0.809 + }, + { + "start": 11897.02, + "end": 11899.26, + "probability": 0.9961 + }, + { + "start": 11900.87, + "end": 11902.88, + "probability": 0.8579 + }, + { + "start": 11903.48, + "end": 11907.16, + "probability": 0.8704 + }, + { + "start": 11907.62, + "end": 11910.18, + "probability": 0.9825 + }, + { + "start": 11910.18, + "end": 11914.82, + "probability": 0.9897 + }, + { + "start": 11915.02, + "end": 11915.28, + "probability": 0.7182 + }, + { + "start": 11915.68, + "end": 11916.32, + "probability": 0.8761 + }, + { + "start": 11917.22, + "end": 11918.14, + "probability": 0.8549 + }, + { + "start": 11918.2, + "end": 11918.72, + "probability": 0.7888 + }, + { + "start": 11918.94, + "end": 11919.56, + "probability": 0.7585 + }, + { + "start": 11919.64, + "end": 11923.0, + "probability": 0.9211 + }, + { + "start": 11929.44, + "end": 11932.94, + "probability": 0.1636 + }, + { + "start": 11942.7, + "end": 11942.7, + "probability": 0.166 + }, + { + "start": 11954.1, + "end": 11955.78, + "probability": 0.4404 + }, + { + "start": 11956.68, + "end": 11958.0, + "probability": 0.9782 + }, + { + "start": 11958.08, + "end": 11958.66, + "probability": 0.8813 + }, + { + "start": 11958.74, + "end": 11960.78, + "probability": 0.9958 + }, + { + "start": 11960.88, + "end": 11962.48, + "probability": 0.9424 + }, + { + "start": 11963.58, + "end": 11963.78, + "probability": 0.6552 + }, + { + "start": 11963.96, + "end": 11964.7, + "probability": 0.9641 + }, + { + "start": 11964.86, + "end": 11968.8, + "probability": 0.9683 + }, + { + "start": 11969.72, + "end": 11973.12, + "probability": 0.9985 + }, + { + "start": 11973.12, + "end": 11976.12, + "probability": 0.9823 + }, + { + "start": 11976.42, + "end": 11979.94, + "probability": 0.9504 + }, + { + "start": 11981.96, + "end": 11985.5, + "probability": 0.947 + }, + { + "start": 11986.76, + "end": 11988.04, + "probability": 0.6703 + }, + { + "start": 11989.46, + "end": 11993.96, + "probability": 0.8461 + }, + { + "start": 11993.96, + "end": 11995.62, + "probability": 0.926 + }, + { + "start": 11996.26, + "end": 12000.38, + "probability": 0.8475 + }, + { + "start": 12001.12, + "end": 12004.7, + "probability": 0.6437 + }, + { + "start": 12005.42, + "end": 12007.9, + "probability": 0.922 + }, + { + "start": 12008.74, + "end": 12011.76, + "probability": 0.9916 + }, + { + "start": 12011.76, + "end": 12015.06, + "probability": 0.9935 + }, + { + "start": 12015.56, + "end": 12016.9, + "probability": 0.7662 + }, + { + "start": 12017.22, + "end": 12019.62, + "probability": 0.9955 + }, + { + "start": 12019.76, + "end": 12022.64, + "probability": 0.7375 + }, + { + "start": 12022.96, + "end": 12023.88, + "probability": 0.7591 + }, + { + "start": 12024.28, + "end": 12027.16, + "probability": 0.9761 + }, + { + "start": 12027.42, + "end": 12028.98, + "probability": 0.7947 + }, + { + "start": 12029.2, + "end": 12034.24, + "probability": 0.872 + }, + { + "start": 12034.42, + "end": 12035.52, + "probability": 0.7026 + }, + { + "start": 12035.96, + "end": 12037.76, + "probability": 0.9705 + }, + { + "start": 12037.9, + "end": 12040.54, + "probability": 0.9398 + }, + { + "start": 12040.78, + "end": 12043.06, + "probability": 0.9949 + }, + { + "start": 12043.74, + "end": 12048.86, + "probability": 0.9401 + }, + { + "start": 12048.86, + "end": 12049.46, + "probability": 0.5202 + }, + { + "start": 12050.48, + "end": 12051.96, + "probability": 0.7025 + }, + { + "start": 12052.24, + "end": 12054.04, + "probability": 0.9841 + }, + { + "start": 12054.2, + "end": 12054.94, + "probability": 0.5675 + }, + { + "start": 12055.34, + "end": 12059.82, + "probability": 0.9724 + }, + { + "start": 12060.44, + "end": 12063.02, + "probability": 0.9941 + }, + { + "start": 12063.02, + "end": 12065.64, + "probability": 0.8545 + }, + { + "start": 12066.12, + "end": 12067.72, + "probability": 0.9821 + }, + { + "start": 12068.36, + "end": 12074.82, + "probability": 0.994 + }, + { + "start": 12075.36, + "end": 12077.02, + "probability": 0.9771 + }, + { + "start": 12077.38, + "end": 12081.56, + "probability": 0.9892 + }, + { + "start": 12082.4, + "end": 12086.4, + "probability": 0.9811 + }, + { + "start": 12086.54, + "end": 12090.98, + "probability": 0.9979 + }, + { + "start": 12091.1, + "end": 12091.68, + "probability": 0.8535 + }, + { + "start": 12091.74, + "end": 12092.4, + "probability": 0.9823 + }, + { + "start": 12092.7, + "end": 12093.58, + "probability": 0.9266 + }, + { + "start": 12093.98, + "end": 12095.96, + "probability": 0.9875 + }, + { + "start": 12096.04, + "end": 12097.2, + "probability": 0.857 + }, + { + "start": 12097.66, + "end": 12098.64, + "probability": 0.9803 + }, + { + "start": 12098.84, + "end": 12099.88, + "probability": 0.9648 + }, + { + "start": 12100.56, + "end": 12102.0, + "probability": 0.9194 + }, + { + "start": 12102.1, + "end": 12103.4, + "probability": 0.9955 + }, + { + "start": 12103.46, + "end": 12105.16, + "probability": 0.9954 + }, + { + "start": 12105.56, + "end": 12109.14, + "probability": 0.9984 + }, + { + "start": 12109.44, + "end": 12110.56, + "probability": 0.9744 + }, + { + "start": 12110.64, + "end": 12111.78, + "probability": 0.987 + }, + { + "start": 12111.84, + "end": 12114.36, + "probability": 0.9888 + }, + { + "start": 12114.72, + "end": 12118.54, + "probability": 0.9563 + }, + { + "start": 12119.26, + "end": 12120.94, + "probability": 0.9751 + }, + { + "start": 12122.4, + "end": 12128.08, + "probability": 0.991 + }, + { + "start": 12128.08, + "end": 12130.92, + "probability": 0.9934 + }, + { + "start": 12131.48, + "end": 12132.72, + "probability": 0.9766 + }, + { + "start": 12132.92, + "end": 12135.72, + "probability": 0.9641 + }, + { + "start": 12135.72, + "end": 12139.2, + "probability": 0.8395 + }, + { + "start": 12139.68, + "end": 12143.24, + "probability": 0.8691 + }, + { + "start": 12143.36, + "end": 12144.0, + "probability": 0.7463 + }, + { + "start": 12144.12, + "end": 12144.78, + "probability": 0.6873 + }, + { + "start": 12144.98, + "end": 12147.46, + "probability": 0.9263 + }, + { + "start": 12147.46, + "end": 12149.5, + "probability": 0.9946 + }, + { + "start": 12149.56, + "end": 12151.06, + "probability": 0.8576 + }, + { + "start": 12151.34, + "end": 12152.06, + "probability": 0.8864 + }, + { + "start": 12152.12, + "end": 12153.74, + "probability": 0.793 + }, + { + "start": 12154.2, + "end": 12156.96, + "probability": 0.9659 + }, + { + "start": 12157.76, + "end": 12157.88, + "probability": 0.7451 + }, + { + "start": 12158.08, + "end": 12162.62, + "probability": 0.9896 + }, + { + "start": 12163.1, + "end": 12164.0, + "probability": 0.5156 + }, + { + "start": 12164.12, + "end": 12165.08, + "probability": 0.9431 + }, + { + "start": 12165.18, + "end": 12165.9, + "probability": 0.9722 + }, + { + "start": 12165.98, + "end": 12166.7, + "probability": 0.8107 + }, + { + "start": 12166.76, + "end": 12167.4, + "probability": 0.8074 + }, + { + "start": 12167.72, + "end": 12172.32, + "probability": 0.993 + }, + { + "start": 12172.32, + "end": 12176.4, + "probability": 0.9985 + }, + { + "start": 12176.4, + "end": 12180.64, + "probability": 0.9104 + }, + { + "start": 12180.9, + "end": 12181.8, + "probability": 0.8836 + }, + { + "start": 12181.88, + "end": 12182.18, + "probability": 0.6893 + }, + { + "start": 12182.32, + "end": 12184.36, + "probability": 0.5953 + }, + { + "start": 12184.86, + "end": 12187.46, + "probability": 0.9777 + }, + { + "start": 12187.86, + "end": 12190.62, + "probability": 0.9682 + }, + { + "start": 12190.74, + "end": 12192.02, + "probability": 0.887 + }, + { + "start": 12192.34, + "end": 12197.7, + "probability": 0.9981 + }, + { + "start": 12197.94, + "end": 12198.42, + "probability": 0.544 + }, + { + "start": 12199.06, + "end": 12199.86, + "probability": 0.6288 + }, + { + "start": 12200.1, + "end": 12201.42, + "probability": 0.9006 + }, + { + "start": 12202.46, + "end": 12208.11, + "probability": 0.8343 + }, + { + "start": 12214.84, + "end": 12216.82, + "probability": 0.459 + }, + { + "start": 12218.8, + "end": 12221.52, + "probability": 0.9744 + }, + { + "start": 12222.4, + "end": 12226.3, + "probability": 0.9881 + }, + { + "start": 12227.68, + "end": 12229.38, + "probability": 0.9987 + }, + { + "start": 12230.22, + "end": 12233.58, + "probability": 0.9915 + }, + { + "start": 12234.6, + "end": 12235.5, + "probability": 0.9626 + }, + { + "start": 12236.96, + "end": 12240.2, + "probability": 0.9798 + }, + { + "start": 12241.48, + "end": 12242.08, + "probability": 0.3656 + }, + { + "start": 12243.1, + "end": 12245.06, + "probability": 0.9851 + }, + { + "start": 12245.82, + "end": 12248.02, + "probability": 0.9968 + }, + { + "start": 12248.62, + "end": 12252.22, + "probability": 0.9803 + }, + { + "start": 12252.74, + "end": 12254.06, + "probability": 0.9733 + }, + { + "start": 12256.45, + "end": 12257.77, + "probability": 0.4852 + }, + { + "start": 12258.64, + "end": 12261.04, + "probability": 0.9786 + }, + { + "start": 12261.6, + "end": 12262.94, + "probability": 0.9799 + }, + { + "start": 12263.18, + "end": 12264.68, + "probability": 0.9743 + }, + { + "start": 12264.76, + "end": 12270.1, + "probability": 0.9907 + }, + { + "start": 12271.16, + "end": 12276.36, + "probability": 0.9976 + }, + { + "start": 12277.12, + "end": 12279.78, + "probability": 0.992 + }, + { + "start": 12279.86, + "end": 12283.54, + "probability": 0.9917 + }, + { + "start": 12284.22, + "end": 12289.46, + "probability": 0.9797 + }, + { + "start": 12290.84, + "end": 12292.98, + "probability": 0.9883 + }, + { + "start": 12293.22, + "end": 12296.1, + "probability": 0.9974 + }, + { + "start": 12296.48, + "end": 12298.02, + "probability": 0.9233 + }, + { + "start": 12298.48, + "end": 12299.26, + "probability": 0.9372 + }, + { + "start": 12299.7, + "end": 12303.5, + "probability": 0.998 + }, + { + "start": 12303.78, + "end": 12304.34, + "probability": 0.9728 + }, + { + "start": 12304.68, + "end": 12306.04, + "probability": 0.9915 + }, + { + "start": 12306.16, + "end": 12309.48, + "probability": 0.9246 + }, + { + "start": 12309.62, + "end": 12312.56, + "probability": 0.8915 + }, + { + "start": 12312.88, + "end": 12315.44, + "probability": 0.9719 + }, + { + "start": 12315.52, + "end": 12321.9, + "probability": 0.9175 + }, + { + "start": 12322.2, + "end": 12322.68, + "probability": 0.8906 + }, + { + "start": 12323.64, + "end": 12326.17, + "probability": 0.9103 + }, + { + "start": 12326.82, + "end": 12328.82, + "probability": 0.929 + }, + { + "start": 12328.92, + "end": 12329.9, + "probability": 0.8341 + }, + { + "start": 12330.26, + "end": 12332.48, + "probability": 0.9341 + }, + { + "start": 12332.58, + "end": 12333.3, + "probability": 0.6588 + }, + { + "start": 12333.38, + "end": 12335.72, + "probability": 0.9414 + }, + { + "start": 12335.76, + "end": 12337.86, + "probability": 0.9938 + }, + { + "start": 12338.16, + "end": 12339.22, + "probability": 0.9898 + }, + { + "start": 12339.92, + "end": 12341.74, + "probability": 0.9915 + }, + { + "start": 12341.78, + "end": 12345.2, + "probability": 0.9819 + }, + { + "start": 12345.62, + "end": 12352.26, + "probability": 0.964 + }, + { + "start": 12352.98, + "end": 12354.76, + "probability": 0.5481 + }, + { + "start": 12355.7, + "end": 12359.08, + "probability": 0.9971 + }, + { + "start": 12359.54, + "end": 12362.84, + "probability": 0.9769 + }, + { + "start": 12362.84, + "end": 12367.48, + "probability": 0.9946 + }, + { + "start": 12367.48, + "end": 12371.8, + "probability": 0.997 + }, + { + "start": 12371.84, + "end": 12373.08, + "probability": 0.8074 + }, + { + "start": 12373.14, + "end": 12376.78, + "probability": 0.9108 + }, + { + "start": 12376.84, + "end": 12377.86, + "probability": 0.875 + }, + { + "start": 12378.24, + "end": 12379.86, + "probability": 0.9456 + }, + { + "start": 12380.32, + "end": 12384.36, + "probability": 0.8351 + }, + { + "start": 12385.16, + "end": 12387.1, + "probability": 0.9873 + }, + { + "start": 12387.66, + "end": 12390.52, + "probability": 0.9581 + }, + { + "start": 12390.62, + "end": 12391.52, + "probability": 0.9708 + }, + { + "start": 12391.56, + "end": 12394.0, + "probability": 0.9827 + }, + { + "start": 12395.14, + "end": 12398.26, + "probability": 0.9944 + }, + { + "start": 12398.46, + "end": 12403.58, + "probability": 0.9268 + }, + { + "start": 12403.82, + "end": 12404.06, + "probability": 0.6971 + }, + { + "start": 12404.08, + "end": 12404.56, + "probability": 0.3021 + }, + { + "start": 12404.76, + "end": 12408.28, + "probability": 0.9453 + }, + { + "start": 12408.82, + "end": 12410.62, + "probability": 0.9959 + }, + { + "start": 12410.86, + "end": 12412.42, + "probability": 0.9738 + }, + { + "start": 12412.72, + "end": 12414.54, + "probability": 0.8665 + }, + { + "start": 12414.88, + "end": 12417.64, + "probability": 0.9641 + }, + { + "start": 12417.86, + "end": 12418.2, + "probability": 0.7703 + }, + { + "start": 12418.34, + "end": 12419.16, + "probability": 0.8495 + }, + { + "start": 12419.4, + "end": 12421.2, + "probability": 0.5017 + }, + { + "start": 12421.72, + "end": 12424.5, + "probability": 0.7529 + }, + { + "start": 12430.92, + "end": 12434.52, + "probability": 0.5814 + }, + { + "start": 12435.73, + "end": 12440.3, + "probability": 0.9873 + }, + { + "start": 12441.14, + "end": 12443.84, + "probability": 0.838 + }, + { + "start": 12444.2, + "end": 12445.64, + "probability": 0.9831 + }, + { + "start": 12446.66, + "end": 12450.3, + "probability": 0.9583 + }, + { + "start": 12451.3, + "end": 12455.98, + "probability": 0.7646 + }, + { + "start": 12457.32, + "end": 12460.94, + "probability": 0.895 + }, + { + "start": 12461.7, + "end": 12463.38, + "probability": 0.8201 + }, + { + "start": 12464.06, + "end": 12468.04, + "probability": 0.9897 + }, + { + "start": 12468.62, + "end": 12473.5, + "probability": 0.9425 + }, + { + "start": 12474.52, + "end": 12475.66, + "probability": 0.6729 + }, + { + "start": 12476.18, + "end": 12479.68, + "probability": 0.9775 + }, + { + "start": 12481.7, + "end": 12482.44, + "probability": 0.8661 + }, + { + "start": 12482.54, + "end": 12483.38, + "probability": 0.7334 + }, + { + "start": 12483.5, + "end": 12484.34, + "probability": 0.9308 + }, + { + "start": 12484.4, + "end": 12487.84, + "probability": 0.9928 + }, + { + "start": 12487.92, + "end": 12489.5, + "probability": 0.9895 + }, + { + "start": 12489.66, + "end": 12490.06, + "probability": 0.8061 + }, + { + "start": 12490.22, + "end": 12490.66, + "probability": 0.8935 + }, + { + "start": 12492.0, + "end": 12497.58, + "probability": 0.9668 + }, + { + "start": 12497.66, + "end": 12502.02, + "probability": 0.9969 + }, + { + "start": 12502.22, + "end": 12505.76, + "probability": 0.6942 + }, + { + "start": 12506.7, + "end": 12511.54, + "probability": 0.9825 + }, + { + "start": 12512.62, + "end": 12513.48, + "probability": 0.6299 + }, + { + "start": 12513.7, + "end": 12515.34, + "probability": 0.9524 + }, + { + "start": 12515.36, + "end": 12517.78, + "probability": 0.9543 + }, + { + "start": 12518.46, + "end": 12522.8, + "probability": 0.9962 + }, + { + "start": 12522.8, + "end": 12527.05, + "probability": 0.9953 + }, + { + "start": 12527.88, + "end": 12528.85, + "probability": 0.5234 + }, + { + "start": 12530.44, + "end": 12531.16, + "probability": 0.6583 + }, + { + "start": 12531.82, + "end": 12533.18, + "probability": 0.8278 + }, + { + "start": 12533.82, + "end": 12538.1, + "probability": 0.9945 + }, + { + "start": 12539.26, + "end": 12540.18, + "probability": 0.8212 + }, + { + "start": 12540.56, + "end": 12543.5, + "probability": 0.9727 + }, + { + "start": 12543.62, + "end": 12547.04, + "probability": 0.9836 + }, + { + "start": 12547.94, + "end": 12551.2, + "probability": 0.8189 + }, + { + "start": 12551.46, + "end": 12552.39, + "probability": 0.9853 + }, + { + "start": 12552.54, + "end": 12553.3, + "probability": 0.9446 + }, + { + "start": 12553.44, + "end": 12554.2, + "probability": 0.5032 + }, + { + "start": 12554.32, + "end": 12556.72, + "probability": 0.79 + }, + { + "start": 12557.76, + "end": 12563.78, + "probability": 0.9694 + }, + { + "start": 12564.6, + "end": 12566.16, + "probability": 0.7915 + }, + { + "start": 12566.86, + "end": 12571.82, + "probability": 0.9784 + }, + { + "start": 12571.92, + "end": 12575.24, + "probability": 0.99 + }, + { + "start": 12576.18, + "end": 12579.94, + "probability": 0.987 + }, + { + "start": 12580.64, + "end": 12584.42, + "probability": 0.9885 + }, + { + "start": 12585.22, + "end": 12589.02, + "probability": 0.9769 + }, + { + "start": 12589.16, + "end": 12591.56, + "probability": 0.9165 + }, + { + "start": 12591.56, + "end": 12593.8, + "probability": 0.9976 + }, + { + "start": 12594.2, + "end": 12595.64, + "probability": 0.9866 + }, + { + "start": 12596.38, + "end": 12598.78, + "probability": 0.9559 + }, + { + "start": 12600.02, + "end": 12601.84, + "probability": 0.6405 + }, + { + "start": 12602.82, + "end": 12606.64, + "probability": 0.9939 + }, + { + "start": 12606.88, + "end": 12608.44, + "probability": 0.9329 + }, + { + "start": 12609.0, + "end": 12611.42, + "probability": 0.8986 + }, + { + "start": 12612.66, + "end": 12616.5, + "probability": 0.9918 + }, + { + "start": 12616.72, + "end": 12620.3, + "probability": 0.9951 + }, + { + "start": 12620.3, + "end": 12622.62, + "probability": 0.9995 + }, + { + "start": 12622.68, + "end": 12628.4, + "probability": 0.9946 + }, + { + "start": 12629.76, + "end": 12632.26, + "probability": 0.9917 + }, + { + "start": 12632.26, + "end": 12636.06, + "probability": 0.998 + }, + { + "start": 12636.84, + "end": 12642.06, + "probability": 0.9563 + }, + { + "start": 12642.54, + "end": 12643.14, + "probability": 0.6195 + }, + { + "start": 12643.28, + "end": 12643.84, + "probability": 0.7589 + }, + { + "start": 12645.18, + "end": 12646.36, + "probability": 0.9879 + }, + { + "start": 12646.92, + "end": 12649.84, + "probability": 0.8321 + }, + { + "start": 12650.8, + "end": 12653.78, + "probability": 0.9605 + }, + { + "start": 12654.58, + "end": 12655.76, + "probability": 0.9972 + }, + { + "start": 12655.84, + "end": 12656.6, + "probability": 0.7706 + }, + { + "start": 12656.68, + "end": 12658.16, + "probability": 0.97 + }, + { + "start": 12658.7, + "end": 12661.84, + "probability": 0.9888 + }, + { + "start": 12662.22, + "end": 12662.6, + "probability": 0.8103 + }, + { + "start": 12662.68, + "end": 12663.5, + "probability": 0.8473 + }, + { + "start": 12664.22, + "end": 12665.92, + "probability": 0.8586 + }, + { + "start": 12669.28, + "end": 12671.44, + "probability": 0.6243 + }, + { + "start": 12671.62, + "end": 12673.08, + "probability": 0.4926 + }, + { + "start": 12673.12, + "end": 12675.0, + "probability": 0.5568 + }, + { + "start": 12675.02, + "end": 12677.38, + "probability": 0.3513 + }, + { + "start": 12677.76, + "end": 12679.6, + "probability": 0.6182 + }, + { + "start": 12683.52, + "end": 12683.9, + "probability": 0.094 + }, + { + "start": 12685.32, + "end": 12687.16, + "probability": 0.5106 + }, + { + "start": 12687.2, + "end": 12689.88, + "probability": 0.9641 + }, + { + "start": 12689.88, + "end": 12692.26, + "probability": 0.9816 + }, + { + "start": 12693.22, + "end": 12694.12, + "probability": 0.8815 + }, + { + "start": 12695.32, + "end": 12696.54, + "probability": 0.9757 + }, + { + "start": 12696.62, + "end": 12697.62, + "probability": 0.9317 + }, + { + "start": 12698.77, + "end": 12702.56, + "probability": 0.8287 + }, + { + "start": 12703.26, + "end": 12707.04, + "probability": 0.9979 + }, + { + "start": 12707.72, + "end": 12712.58, + "probability": 0.8071 + }, + { + "start": 12713.7, + "end": 12716.64, + "probability": 0.0592 + }, + { + "start": 12717.76, + "end": 12718.28, + "probability": 0.267 + }, + { + "start": 12718.32, + "end": 12718.4, + "probability": 0.0589 + }, + { + "start": 12718.4, + "end": 12718.4, + "probability": 0.24 + }, + { + "start": 12718.4, + "end": 12718.4, + "probability": 0.0485 + }, + { + "start": 12718.54, + "end": 12721.22, + "probability": 0.733 + }, + { + "start": 12721.26, + "end": 12721.26, + "probability": 0.0547 + }, + { + "start": 12721.58, + "end": 12722.58, + "probability": 0.0226 + }, + { + "start": 12724.32, + "end": 12729.46, + "probability": 0.7735 + }, + { + "start": 12729.62, + "end": 12730.48, + "probability": 0.6548 + }, + { + "start": 12730.58, + "end": 12732.12, + "probability": 0.4389 + }, + { + "start": 12732.3, + "end": 12733.58, + "probability": 0.9409 + }, + { + "start": 12733.62, + "end": 12733.9, + "probability": 0.4233 + }, + { + "start": 12733.9, + "end": 12735.44, + "probability": 0.8823 + }, + { + "start": 12735.46, + "end": 12737.8, + "probability": 0.7745 + }, + { + "start": 12739.54, + "end": 12740.3, + "probability": 0.785 + }, + { + "start": 12742.36, + "end": 12743.24, + "probability": 0.2932 + }, + { + "start": 12744.78, + "end": 12748.24, + "probability": 0.9347 + }, + { + "start": 12748.86, + "end": 12750.82, + "probability": 0.8738 + }, + { + "start": 12751.16, + "end": 12754.3, + "probability": 0.6372 + }, + { + "start": 12755.1, + "end": 12756.43, + "probability": 0.2418 + }, + { + "start": 12756.72, + "end": 12758.62, + "probability": 0.8228 + }, + { + "start": 12759.58, + "end": 12762.46, + "probability": 0.8715 + }, + { + "start": 12763.1, + "end": 12763.3, + "probability": 0.6845 + }, + { + "start": 12763.4, + "end": 12764.08, + "probability": 0.5329 + }, + { + "start": 12764.14, + "end": 12764.84, + "probability": 0.5035 + }, + { + "start": 12764.96, + "end": 12766.66, + "probability": 0.7876 + }, + { + "start": 12766.84, + "end": 12767.82, + "probability": 0.7543 + }, + { + "start": 12767.92, + "end": 12769.18, + "probability": 0.9214 + }, + { + "start": 12769.6, + "end": 12772.38, + "probability": 0.8047 + }, + { + "start": 12772.46, + "end": 12772.89, + "probability": 0.9152 + }, + { + "start": 12773.06, + "end": 12776.02, + "probability": 0.948 + }, + { + "start": 12776.26, + "end": 12779.5, + "probability": 0.9964 + }, + { + "start": 12780.32, + "end": 12784.88, + "probability": 0.9968 + }, + { + "start": 12785.36, + "end": 12787.74, + "probability": 0.9949 + }, + { + "start": 12788.32, + "end": 12792.62, + "probability": 0.9946 + }, + { + "start": 12793.18, + "end": 12794.7, + "probability": 0.7829 + }, + { + "start": 12794.82, + "end": 12795.9, + "probability": 0.8307 + }, + { + "start": 12795.98, + "end": 12797.44, + "probability": 0.6252 + }, + { + "start": 12798.12, + "end": 12802.18, + "probability": 0.6034 + }, + { + "start": 12802.42, + "end": 12804.34, + "probability": 0.8663 + }, + { + "start": 12804.92, + "end": 12807.64, + "probability": 0.9846 + }, + { + "start": 12808.1, + "end": 12812.64, + "probability": 0.9964 + }, + { + "start": 12813.26, + "end": 12816.84, + "probability": 0.8495 + }, + { + "start": 12817.66, + "end": 12819.14, + "probability": 0.9351 + }, + { + "start": 12819.56, + "end": 12820.88, + "probability": 0.8913 + }, + { + "start": 12821.36, + "end": 12824.26, + "probability": 0.9296 + }, + { + "start": 12824.74, + "end": 12825.36, + "probability": 0.8691 + }, + { + "start": 12825.4, + "end": 12827.97, + "probability": 0.8239 + }, + { + "start": 12828.88, + "end": 12830.78, + "probability": 0.9124 + }, + { + "start": 12831.28, + "end": 12835.18, + "probability": 0.9885 + }, + { + "start": 12835.58, + "end": 12836.98, + "probability": 0.9145 + }, + { + "start": 12837.32, + "end": 12837.86, + "probability": 0.723 + }, + { + "start": 12838.08, + "end": 12841.72, + "probability": 0.7324 + }, + { + "start": 12841.94, + "end": 12845.28, + "probability": 0.8962 + }, + { + "start": 12845.72, + "end": 12846.82, + "probability": 0.8188 + }, + { + "start": 12847.28, + "end": 12848.24, + "probability": 0.8333 + }, + { + "start": 12848.32, + "end": 12850.3, + "probability": 0.9922 + }, + { + "start": 12850.68, + "end": 12854.42, + "probability": 0.981 + }, + { + "start": 12854.88, + "end": 12857.86, + "probability": 0.9785 + }, + { + "start": 12858.32, + "end": 12861.06, + "probability": 0.7577 + }, + { + "start": 12861.38, + "end": 12862.94, + "probability": 0.9893 + }, + { + "start": 12863.82, + "end": 12870.6, + "probability": 0.9917 + }, + { + "start": 12870.66, + "end": 12874.44, + "probability": 0.9604 + }, + { + "start": 12875.02, + "end": 12877.34, + "probability": 0.6679 + }, + { + "start": 12877.8, + "end": 12878.04, + "probability": 0.6857 + }, + { + "start": 12878.14, + "end": 12879.5, + "probability": 0.9722 + }, + { + "start": 12879.58, + "end": 12883.68, + "probability": 0.6648 + }, + { + "start": 12884.12, + "end": 12884.74, + "probability": 0.5643 + }, + { + "start": 12885.02, + "end": 12886.54, + "probability": 0.7435 + }, + { + "start": 12886.66, + "end": 12887.44, + "probability": 0.878 + }, + { + "start": 12887.52, + "end": 12887.86, + "probability": 0.558 + }, + { + "start": 12888.58, + "end": 12889.76, + "probability": 0.7847 + }, + { + "start": 12889.76, + "end": 12893.74, + "probability": 0.9768 + }, + { + "start": 12894.5, + "end": 12895.86, + "probability": 0.951 + }, + { + "start": 12895.96, + "end": 12899.04, + "probability": 0.9699 + }, + { + "start": 12899.06, + "end": 12900.32, + "probability": 0.8839 + }, + { + "start": 12900.48, + "end": 12900.82, + "probability": 0.8535 + }, + { + "start": 12902.14, + "end": 12905.74, + "probability": 0.7504 + }, + { + "start": 12906.14, + "end": 12906.52, + "probability": 0.8573 + }, + { + "start": 12906.7, + "end": 12908.82, + "probability": 0.9819 + }, + { + "start": 12909.06, + "end": 12910.01, + "probability": 0.8494 + }, + { + "start": 12910.38, + "end": 12910.86, + "probability": 0.7811 + }, + { + "start": 12911.3, + "end": 12913.2, + "probability": 0.7565 + }, + { + "start": 12913.28, + "end": 12916.66, + "probability": 0.9689 + }, + { + "start": 12916.74, + "end": 12919.12, + "probability": 0.8868 + }, + { + "start": 12919.4, + "end": 12921.76, + "probability": 0.7202 + }, + { + "start": 12921.88, + "end": 12927.18, + "probability": 0.861 + }, + { + "start": 12927.22, + "end": 12932.48, + "probability": 0.9921 + }, + { + "start": 12933.34, + "end": 12934.12, + "probability": 0.1169 + }, + { + "start": 12934.92, + "end": 12939.88, + "probability": 0.8477 + }, + { + "start": 12940.42, + "end": 12941.7, + "probability": 0.4183 + }, + { + "start": 12942.82, + "end": 12948.62, + "probability": 0.9756 + }, + { + "start": 12948.68, + "end": 12949.5, + "probability": 0.3599 + }, + { + "start": 12949.66, + "end": 12950.29, + "probability": 0.835 + }, + { + "start": 12951.54, + "end": 12953.94, + "probability": 0.2992 + }, + { + "start": 12955.71, + "end": 12955.83, + "probability": 0.2003 + }, + { + "start": 12956.34, + "end": 12957.04, + "probability": 0.037 + }, + { + "start": 12957.24, + "end": 12958.2, + "probability": 0.6915 + }, + { + "start": 12958.3, + "end": 12959.62, + "probability": 0.9944 + }, + { + "start": 12959.7, + "end": 12961.42, + "probability": 0.9946 + }, + { + "start": 12961.84, + "end": 12965.86, + "probability": 0.9414 + }, + { + "start": 12966.68, + "end": 12967.46, + "probability": 0.7126 + }, + { + "start": 12968.12, + "end": 12970.06, + "probability": 0.7115 + }, + { + "start": 12970.16, + "end": 12972.68, + "probability": 0.8954 + }, + { + "start": 12973.84, + "end": 12976.52, + "probability": 0.9534 + }, + { + "start": 12976.65, + "end": 12976.72, + "probability": 0.583 + }, + { + "start": 12976.72, + "end": 12979.18, + "probability": 0.7266 + }, + { + "start": 12979.24, + "end": 12980.26, + "probability": 0.9495 + }, + { + "start": 12981.18, + "end": 12982.86, + "probability": 0.4942 + }, + { + "start": 12982.86, + "end": 12984.64, + "probability": 0.8379 + }, + { + "start": 12985.02, + "end": 12985.56, + "probability": 0.6023 + }, + { + "start": 12986.16, + "end": 12986.66, + "probability": 0.4994 + }, + { + "start": 12986.7, + "end": 12989.79, + "probability": 0.5734 + }, + { + "start": 12990.34, + "end": 12991.46, + "probability": 0.4931 + }, + { + "start": 12991.48, + "end": 12993.6, + "probability": 0.8778 + }, + { + "start": 12993.68, + "end": 12994.32, + "probability": 0.8896 + }, + { + "start": 12995.1, + "end": 12996.62, + "probability": 0.8432 + }, + { + "start": 12996.7, + "end": 13001.02, + "probability": 0.9265 + }, + { + "start": 13001.12, + "end": 13002.04, + "probability": 0.9698 + }, + { + "start": 13002.5, + "end": 13006.68, + "probability": 0.9708 + }, + { + "start": 13007.2, + "end": 13007.63, + "probability": 0.9028 + }, + { + "start": 13008.0, + "end": 13010.48, + "probability": 0.817 + }, + { + "start": 13010.62, + "end": 13011.12, + "probability": 0.9711 + }, + { + "start": 13011.74, + "end": 13013.92, + "probability": 0.9857 + }, + { + "start": 13014.12, + "end": 13015.08, + "probability": 0.6368 + }, + { + "start": 13015.16, + "end": 13015.79, + "probability": 0.9323 + }, + { + "start": 13016.44, + "end": 13017.32, + "probability": 0.9485 + }, + { + "start": 13017.66, + "end": 13018.98, + "probability": 0.6132 + }, + { + "start": 13019.3, + "end": 13020.58, + "probability": 0.9697 + }, + { + "start": 13020.76, + "end": 13021.48, + "probability": 0.61 + }, + { + "start": 13022.04, + "end": 13023.76, + "probability": 0.8748 + }, + { + "start": 13023.98, + "end": 13027.74, + "probability": 0.943 + }, + { + "start": 13027.74, + "end": 13031.36, + "probability": 0.8406 + }, + { + "start": 13032.78, + "end": 13036.3, + "probability": 0.9941 + }, + { + "start": 13037.12, + "end": 13037.96, + "probability": 0.853 + }, + { + "start": 13038.2, + "end": 13039.7, + "probability": 0.8477 + }, + { + "start": 13040.04, + "end": 13041.98, + "probability": 0.9761 + }, + { + "start": 13042.6, + "end": 13044.74, + "probability": 0.9845 + }, + { + "start": 13044.78, + "end": 13045.84, + "probability": 0.9653 + }, + { + "start": 13046.2, + "end": 13047.36, + "probability": 0.606 + }, + { + "start": 13047.46, + "end": 13048.76, + "probability": 0.8525 + }, + { + "start": 13049.22, + "end": 13053.14, + "probability": 0.958 + }, + { + "start": 13053.3, + "end": 13054.17, + "probability": 0.981 + }, + { + "start": 13055.06, + "end": 13056.34, + "probability": 0.9512 + }, + { + "start": 13056.48, + "end": 13057.74, + "probability": 0.9588 + }, + { + "start": 13058.0, + "end": 13062.58, + "probability": 0.9644 + }, + { + "start": 13062.92, + "end": 13063.91, + "probability": 0.9546 + }, + { + "start": 13064.66, + "end": 13066.84, + "probability": 0.9899 + }, + { + "start": 13067.54, + "end": 13069.38, + "probability": 0.8237 + }, + { + "start": 13069.9, + "end": 13070.88, + "probability": 0.933 + }, + { + "start": 13071.4, + "end": 13074.48, + "probability": 0.9707 + }, + { + "start": 13075.14, + "end": 13076.2, + "probability": 0.9516 + }, + { + "start": 13076.36, + "end": 13079.36, + "probability": 0.9901 + }, + { + "start": 13079.78, + "end": 13083.24, + "probability": 0.9956 + }, + { + "start": 13083.24, + "end": 13087.66, + "probability": 0.9962 + }, + { + "start": 13088.44, + "end": 13091.7, + "probability": 0.965 + }, + { + "start": 13092.24, + "end": 13097.9, + "probability": 0.9485 + }, + { + "start": 13098.34, + "end": 13099.0, + "probability": 0.6567 + }, + { + "start": 13099.12, + "end": 13100.54, + "probability": 0.8679 + }, + { + "start": 13101.06, + "end": 13102.78, + "probability": 0.8991 + }, + { + "start": 13103.38, + "end": 13108.2, + "probability": 0.9456 + }, + { + "start": 13108.92, + "end": 13113.68, + "probability": 0.9911 + }, + { + "start": 13114.36, + "end": 13116.34, + "probability": 0.896 + }, + { + "start": 13116.6, + "end": 13119.06, + "probability": 0.7618 + }, + { + "start": 13119.06, + "end": 13120.22, + "probability": 0.7289 + }, + { + "start": 13121.24, + "end": 13124.84, + "probability": 0.9473 + }, + { + "start": 13124.9, + "end": 13131.42, + "probability": 0.9937 + }, + { + "start": 13131.88, + "end": 13136.24, + "probability": 0.9844 + }, + { + "start": 13136.58, + "end": 13138.42, + "probability": 0.9568 + }, + { + "start": 13138.72, + "end": 13139.48, + "probability": 0.907 + }, + { + "start": 13139.76, + "end": 13140.66, + "probability": 0.5939 + }, + { + "start": 13140.76, + "end": 13145.5, + "probability": 0.8917 + }, + { + "start": 13145.96, + "end": 13148.58, + "probability": 0.9824 + }, + { + "start": 13149.28, + "end": 13150.94, + "probability": 0.6765 + }, + { + "start": 13152.73, + "end": 13153.34, + "probability": 0.0316 + }, + { + "start": 13153.42, + "end": 13154.36, + "probability": 0.0302 + }, + { + "start": 13155.52, + "end": 13156.32, + "probability": 0.1535 + }, + { + "start": 13157.12, + "end": 13161.7, + "probability": 0.7307 + }, + { + "start": 13161.78, + "end": 13163.08, + "probability": 0.0421 + }, + { + "start": 13163.16, + "end": 13163.3, + "probability": 0.0479 + }, + { + "start": 13163.3, + "end": 13165.88, + "probability": 0.9792 + }, + { + "start": 13166.94, + "end": 13167.54, + "probability": 0.0605 + }, + { + "start": 13167.58, + "end": 13170.02, + "probability": 0.2153 + }, + { + "start": 13170.48, + "end": 13171.06, + "probability": 0.155 + }, + { + "start": 13172.14, + "end": 13175.68, + "probability": 0.2886 + }, + { + "start": 13177.34, + "end": 13178.38, + "probability": 0.623 + }, + { + "start": 13181.96, + "end": 13184.66, + "probability": 0.5878 + }, + { + "start": 13184.68, + "end": 13186.1, + "probability": 0.6658 + }, + { + "start": 13186.32, + "end": 13187.89, + "probability": 0.9878 + }, + { + "start": 13188.22, + "end": 13189.61, + "probability": 0.7788 + }, + { + "start": 13190.48, + "end": 13193.28, + "probability": 0.1376 + }, + { + "start": 13193.92, + "end": 13193.92, + "probability": 0.008 + }, + { + "start": 13195.42, + "end": 13196.2, + "probability": 0.0488 + }, + { + "start": 13197.16, + "end": 13197.48, + "probability": 0.0157 + }, + { + "start": 13197.48, + "end": 13197.48, + "probability": 0.0436 + }, + { + "start": 13197.48, + "end": 13197.48, + "probability": 0.0507 + }, + { + "start": 13197.48, + "end": 13198.02, + "probability": 0.1385 + }, + { + "start": 13198.02, + "end": 13199.72, + "probability": 0.8931 + }, + { + "start": 13200.5, + "end": 13203.12, + "probability": 0.9507 + }, + { + "start": 13203.36, + "end": 13204.4, + "probability": 0.8194 + }, + { + "start": 13204.54, + "end": 13206.02, + "probability": 0.9092 + }, + { + "start": 13206.48, + "end": 13208.8, + "probability": 0.9895 + }, + { + "start": 13209.12, + "end": 13210.98, + "probability": 0.7279 + }, + { + "start": 13211.28, + "end": 13213.24, + "probability": 0.7489 + }, + { + "start": 13213.24, + "end": 13214.8, + "probability": 0.0133 + }, + { + "start": 13214.8, + "end": 13214.8, + "probability": 0.1976 + }, + { + "start": 13214.8, + "end": 13216.56, + "probability": 0.6626 + }, + { + "start": 13217.6, + "end": 13220.7, + "probability": 0.8123 + }, + { + "start": 13221.38, + "end": 13225.5, + "probability": 0.9958 + }, + { + "start": 13225.5, + "end": 13229.64, + "probability": 0.9459 + }, + { + "start": 13230.74, + "end": 13233.76, + "probability": 0.938 + }, + { + "start": 13234.18, + "end": 13236.18, + "probability": 0.9121 + }, + { + "start": 13236.6, + "end": 13238.72, + "probability": 0.9871 + }, + { + "start": 13239.44, + "end": 13240.91, + "probability": 0.51 + }, + { + "start": 13241.3, + "end": 13241.7, + "probability": 0.1102 + }, + { + "start": 13241.82, + "end": 13242.57, + "probability": 0.7536 + }, + { + "start": 13242.94, + "end": 13243.54, + "probability": 0.3882 + }, + { + "start": 13243.54, + "end": 13244.98, + "probability": 0.4045 + }, + { + "start": 13245.6, + "end": 13246.92, + "probability": 0.9699 + }, + { + "start": 13247.52, + "end": 13251.36, + "probability": 0.7303 + }, + { + "start": 13251.54, + "end": 13253.24, + "probability": 0.2033 + }, + { + "start": 13255.44, + "end": 13256.02, + "probability": 0.0537 + }, + { + "start": 13256.02, + "end": 13258.68, + "probability": 0.9306 + }, + { + "start": 13259.28, + "end": 13262.32, + "probability": 0.7514 + }, + { + "start": 13263.12, + "end": 13263.52, + "probability": 0.3275 + }, + { + "start": 13263.52, + "end": 13264.66, + "probability": 0.4246 + }, + { + "start": 13265.58, + "end": 13266.56, + "probability": 0.3386 + }, + { + "start": 13267.04, + "end": 13269.24, + "probability": 0.3632 + }, + { + "start": 13269.66, + "end": 13269.66, + "probability": 0.2699 + }, + { + "start": 13269.66, + "end": 13271.26, + "probability": 0.8354 + }, + { + "start": 13272.6, + "end": 13278.96, + "probability": 0.9413 + }, + { + "start": 13279.52, + "end": 13282.3, + "probability": 0.9105 + }, + { + "start": 13282.78, + "end": 13285.96, + "probability": 0.9854 + }, + { + "start": 13286.52, + "end": 13288.44, + "probability": 0.9033 + }, + { + "start": 13289.18, + "end": 13290.94, + "probability": 0.8148 + }, + { + "start": 13291.18, + "end": 13293.22, + "probability": 0.8704 + }, + { + "start": 13293.76, + "end": 13295.94, + "probability": 0.9224 + }, + { + "start": 13296.12, + "end": 13297.02, + "probability": 0.9793 + }, + { + "start": 13298.44, + "end": 13302.18, + "probability": 0.6559 + }, + { + "start": 13302.36, + "end": 13305.04, + "probability": 0.5627 + }, + { + "start": 13305.8, + "end": 13305.8, + "probability": 0.2075 + }, + { + "start": 13305.8, + "end": 13305.8, + "probability": 0.068 + }, + { + "start": 13305.8, + "end": 13306.98, + "probability": 0.6984 + }, + { + "start": 13307.12, + "end": 13310.4, + "probability": 0.9869 + }, + { + "start": 13310.4, + "end": 13313.85, + "probability": 0.9863 + }, + { + "start": 13314.96, + "end": 13317.58, + "probability": 0.9976 + }, + { + "start": 13317.6, + "end": 13318.68, + "probability": 0.7585 + }, + { + "start": 13319.34, + "end": 13321.18, + "probability": 0.7299 + }, + { + "start": 13321.78, + "end": 13329.56, + "probability": 0.9777 + }, + { + "start": 13329.56, + "end": 13336.82, + "probability": 0.9486 + }, + { + "start": 13337.22, + "end": 13340.06, + "probability": 0.9398 + }, + { + "start": 13340.68, + "end": 13341.57, + "probability": 0.9497 + }, + { + "start": 13342.86, + "end": 13345.26, + "probability": 0.9399 + }, + { + "start": 13346.48, + "end": 13347.06, + "probability": 0.8987 + }, + { + "start": 13347.06, + "end": 13347.62, + "probability": 0.409 + }, + { + "start": 13347.7, + "end": 13350.78, + "probability": 0.9885 + }, + { + "start": 13351.14, + "end": 13352.78, + "probability": 0.9907 + }, + { + "start": 13353.38, + "end": 13357.14, + "probability": 0.9978 + }, + { + "start": 13357.38, + "end": 13362.14, + "probability": 0.9663 + }, + { + "start": 13362.5, + "end": 13362.96, + "probability": 0.8536 + }, + { + "start": 13363.04, + "end": 13364.24, + "probability": 0.9553 + }, + { + "start": 13364.64, + "end": 13366.02, + "probability": 0.9539 + }, + { + "start": 13366.64, + "end": 13368.62, + "probability": 0.9972 + }, + { + "start": 13368.62, + "end": 13371.24, + "probability": 0.9978 + }, + { + "start": 13371.58, + "end": 13373.72, + "probability": 0.9544 + }, + { + "start": 13374.1, + "end": 13376.0, + "probability": 0.8656 + }, + { + "start": 13376.4, + "end": 13378.4, + "probability": 0.9521 + }, + { + "start": 13378.68, + "end": 13379.22, + "probability": 0.7715 + }, + { + "start": 13379.4, + "end": 13380.92, + "probability": 0.8766 + }, + { + "start": 13381.74, + "end": 13386.62, + "probability": 0.8254 + }, + { + "start": 13386.96, + "end": 13388.96, + "probability": 0.8448 + }, + { + "start": 13389.06, + "end": 13389.5, + "probability": 0.7664 + }, + { + "start": 13390.18, + "end": 13391.1, + "probability": 0.7033 + }, + { + "start": 13391.74, + "end": 13392.88, + "probability": 0.7713 + }, + { + "start": 13393.78, + "end": 13397.88, + "probability": 0.8472 + }, + { + "start": 13398.16, + "end": 13399.41, + "probability": 0.6863 + }, + { + "start": 13400.64, + "end": 13401.04, + "probability": 0.8259 + }, + { + "start": 13401.12, + "end": 13403.82, + "probability": 0.9532 + }, + { + "start": 13404.32, + "end": 13407.05, + "probability": 0.9951 + }, + { + "start": 13407.3, + "end": 13408.2, + "probability": 0.9858 + }, + { + "start": 13408.98, + "end": 13410.64, + "probability": 0.979 + }, + { + "start": 13410.96, + "end": 13411.76, + "probability": 0.6388 + }, + { + "start": 13412.16, + "end": 13414.24, + "probability": 0.901 + }, + { + "start": 13414.72, + "end": 13415.36, + "probability": 0.7563 + }, + { + "start": 13415.36, + "end": 13418.9, + "probability": 0.938 + }, + { + "start": 13419.16, + "end": 13419.36, + "probability": 0.1004 + }, + { + "start": 13419.52, + "end": 13424.76, + "probability": 0.8862 + }, + { + "start": 13424.76, + "end": 13426.74, + "probability": 0.9008 + }, + { + "start": 13426.76, + "end": 13427.22, + "probability": 0.3526 + }, + { + "start": 13427.22, + "end": 13428.32, + "probability": 0.834 + }, + { + "start": 13428.68, + "end": 13432.33, + "probability": 0.6783 + }, + { + "start": 13432.98, + "end": 13433.0, + "probability": 0.0539 + }, + { + "start": 13433.04, + "end": 13435.22, + "probability": 0.7407 + }, + { + "start": 13435.28, + "end": 13436.6, + "probability": 0.8853 + }, + { + "start": 13436.6, + "end": 13439.14, + "probability": 0.9849 + }, + { + "start": 13439.38, + "end": 13439.92, + "probability": 0.9946 + }, + { + "start": 13440.5, + "end": 13443.8, + "probability": 0.999 + }, + { + "start": 13443.8, + "end": 13447.36, + "probability": 0.9181 + }, + { + "start": 13448.38, + "end": 13451.66, + "probability": 0.989 + }, + { + "start": 13451.84, + "end": 13452.58, + "probability": 0.8103 + }, + { + "start": 13452.8, + "end": 13456.54, + "probability": 0.8813 + }, + { + "start": 13456.96, + "end": 13457.24, + "probability": 0.0423 + }, + { + "start": 13457.24, + "end": 13458.24, + "probability": 0.6647 + }, + { + "start": 13458.28, + "end": 13460.22, + "probability": 0.9909 + }, + { + "start": 13460.34, + "end": 13463.02, + "probability": 0.9909 + }, + { + "start": 13463.68, + "end": 13466.78, + "probability": 0.9579 + }, + { + "start": 13467.38, + "end": 13470.02, + "probability": 0.9981 + }, + { + "start": 13470.08, + "end": 13474.52, + "probability": 0.9871 + }, + { + "start": 13474.9, + "end": 13475.46, + "probability": 0.751 + }, + { + "start": 13475.68, + "end": 13477.52, + "probability": 0.9197 + }, + { + "start": 13477.52, + "end": 13480.62, + "probability": 0.898 + }, + { + "start": 13480.82, + "end": 13484.12, + "probability": 0.9958 + }, + { + "start": 13484.6, + "end": 13486.56, + "probability": 0.9507 + }, + { + "start": 13486.8, + "end": 13489.0, + "probability": 0.9944 + }, + { + "start": 13489.26, + "end": 13491.68, + "probability": 0.9863 + }, + { + "start": 13491.68, + "end": 13495.16, + "probability": 0.8356 + }, + { + "start": 13495.3, + "end": 13498.36, + "probability": 0.9418 + }, + { + "start": 13498.5, + "end": 13498.88, + "probability": 0.6307 + }, + { + "start": 13498.96, + "end": 13501.92, + "probability": 0.9082 + }, + { + "start": 13502.32, + "end": 13504.54, + "probability": 0.9461 + }, + { + "start": 13504.94, + "end": 13506.88, + "probability": 0.9685 + }, + { + "start": 13507.3, + "end": 13508.0, + "probability": 0.7358 + }, + { + "start": 13508.3, + "end": 13510.6, + "probability": 0.9899 + }, + { + "start": 13510.76, + "end": 13512.88, + "probability": 0.8965 + }, + { + "start": 13513.02, + "end": 13514.88, + "probability": 0.8847 + }, + { + "start": 13515.2, + "end": 13518.4, + "probability": 0.9963 + }, + { + "start": 13518.5, + "end": 13520.94, + "probability": 0.9281 + }, + { + "start": 13521.3, + "end": 13524.68, + "probability": 0.9512 + }, + { + "start": 13525.0, + "end": 13527.28, + "probability": 0.9848 + }, + { + "start": 13527.58, + "end": 13530.24, + "probability": 0.9912 + }, + { + "start": 13530.36, + "end": 13533.3, + "probability": 0.9849 + }, + { + "start": 13534.32, + "end": 13535.74, + "probability": 0.8771 + }, + { + "start": 13536.24, + "end": 13536.74, + "probability": 0.3124 + }, + { + "start": 13536.84, + "end": 13540.98, + "probability": 0.9666 + }, + { + "start": 13541.14, + "end": 13542.22, + "probability": 0.981 + }, + { + "start": 13542.58, + "end": 13543.56, + "probability": 0.9734 + }, + { + "start": 13543.64, + "end": 13545.92, + "probability": 0.9563 + }, + { + "start": 13546.14, + "end": 13549.6, + "probability": 0.9422 + }, + { + "start": 13549.76, + "end": 13551.94, + "probability": 0.989 + }, + { + "start": 13552.12, + "end": 13553.4, + "probability": 0.9398 + }, + { + "start": 13553.68, + "end": 13555.9, + "probability": 0.7595 + }, + { + "start": 13556.42, + "end": 13558.0, + "probability": 0.9963 + }, + { + "start": 13558.1, + "end": 13561.68, + "probability": 0.9915 + }, + { + "start": 13562.2, + "end": 13565.68, + "probability": 0.998 + }, + { + "start": 13565.92, + "end": 13567.7, + "probability": 0.9952 + }, + { + "start": 13568.08, + "end": 13568.9, + "probability": 0.7347 + }, + { + "start": 13569.24, + "end": 13570.14, + "probability": 0.9809 + }, + { + "start": 13570.46, + "end": 13573.56, + "probability": 0.9917 + }, + { + "start": 13573.86, + "end": 13575.74, + "probability": 0.9572 + }, + { + "start": 13575.82, + "end": 13580.42, + "probability": 0.996 + }, + { + "start": 13580.8, + "end": 13581.22, + "probability": 0.2885 + }, + { + "start": 13581.46, + "end": 13582.64, + "probability": 0.7769 + }, + { + "start": 13582.76, + "end": 13586.24, + "probability": 0.8971 + }, + { + "start": 13586.48, + "end": 13587.56, + "probability": 0.9816 + }, + { + "start": 13587.66, + "end": 13591.2, + "probability": 0.998 + }, + { + "start": 13591.64, + "end": 13595.26, + "probability": 0.9953 + }, + { + "start": 13595.62, + "end": 13597.78, + "probability": 0.998 + }, + { + "start": 13598.04, + "end": 13599.52, + "probability": 0.9327 + }, + { + "start": 13599.76, + "end": 13600.7, + "probability": 0.9584 + }, + { + "start": 13600.94, + "end": 13601.64, + "probability": 0.8689 + }, + { + "start": 13601.84, + "end": 13602.96, + "probability": 0.7846 + }, + { + "start": 13603.14, + "end": 13604.16, + "probability": 0.6513 + }, + { + "start": 13604.4, + "end": 13605.36, + "probability": 0.9038 + }, + { + "start": 13605.6, + "end": 13607.74, + "probability": 0.7309 + }, + { + "start": 13607.82, + "end": 13608.66, + "probability": 0.9003 + }, + { + "start": 13608.9, + "end": 13610.88, + "probability": 0.9528 + }, + { + "start": 13611.36, + "end": 13613.5, + "probability": 0.9409 + }, + { + "start": 13614.3, + "end": 13616.04, + "probability": 0.9985 + }, + { + "start": 13616.44, + "end": 13617.54, + "probability": 0.9326 + }, + { + "start": 13617.92, + "end": 13620.76, + "probability": 0.9965 + }, + { + "start": 13621.08, + "end": 13622.36, + "probability": 0.9078 + }, + { + "start": 13623.06, + "end": 13623.94, + "probability": 0.9868 + }, + { + "start": 13624.2, + "end": 13626.58, + "probability": 0.9814 + }, + { + "start": 13626.58, + "end": 13629.0, + "probability": 0.6742 + }, + { + "start": 13629.24, + "end": 13632.9, + "probability": 0.9759 + }, + { + "start": 13633.02, + "end": 13635.38, + "probability": 0.949 + }, + { + "start": 13635.82, + "end": 13638.14, + "probability": 0.9976 + }, + { + "start": 13638.68, + "end": 13641.32, + "probability": 0.9884 + }, + { + "start": 13641.32, + "end": 13644.68, + "probability": 0.9842 + }, + { + "start": 13645.08, + "end": 13648.26, + "probability": 0.9707 + }, + { + "start": 13648.28, + "end": 13650.76, + "probability": 0.9829 + }, + { + "start": 13651.04, + "end": 13652.14, + "probability": 0.966 + }, + { + "start": 13652.6, + "end": 13654.54, + "probability": 0.8187 + }, + { + "start": 13654.76, + "end": 13655.68, + "probability": 0.7163 + }, + { + "start": 13657.24, + "end": 13657.92, + "probability": 0.8303 + }, + { + "start": 13658.34, + "end": 13659.96, + "probability": 0.9338 + }, + { + "start": 13660.64, + "end": 13662.49, + "probability": 0.6499 + }, + { + "start": 13663.08, + "end": 13665.46, + "probability": 0.9552 + }, + { + "start": 13666.44, + "end": 13667.48, + "probability": 0.8531 + }, + { + "start": 13674.52, + "end": 13675.56, + "probability": 0.2364 + }, + { + "start": 13677.02, + "end": 13679.38, + "probability": 0.9084 + }, + { + "start": 13679.62, + "end": 13681.28, + "probability": 0.987 + }, + { + "start": 13682.04, + "end": 13683.04, + "probability": 0.9499 + }, + { + "start": 13683.8, + "end": 13685.0, + "probability": 0.9155 + }, + { + "start": 13685.56, + "end": 13688.88, + "probability": 0.9749 + }, + { + "start": 13689.04, + "end": 13692.6, + "probability": 0.9503 + }, + { + "start": 13693.28, + "end": 13699.4, + "probability": 0.9962 + }, + { + "start": 13700.26, + "end": 13701.48, + "probability": 0.8306 + }, + { + "start": 13701.56, + "end": 13709.7, + "probability": 0.9912 + }, + { + "start": 13710.2, + "end": 13712.54, + "probability": 0.9855 + }, + { + "start": 13715.86, + "end": 13718.82, + "probability": 0.998 + }, + { + "start": 13720.28, + "end": 13722.14, + "probability": 0.9956 + }, + { + "start": 13724.02, + "end": 13726.64, + "probability": 0.8306 + }, + { + "start": 13728.14, + "end": 13730.64, + "probability": 0.9038 + }, + { + "start": 13730.76, + "end": 13732.58, + "probability": 0.9374 + }, + { + "start": 13732.64, + "end": 13734.16, + "probability": 0.8328 + }, + { + "start": 13735.18, + "end": 13736.62, + "probability": 0.844 + }, + { + "start": 13736.9, + "end": 13737.64, + "probability": 0.5445 + }, + { + "start": 13738.0, + "end": 13742.54, + "probability": 0.7489 + }, + { + "start": 13744.22, + "end": 13746.99, + "probability": 0.9076 + }, + { + "start": 13747.68, + "end": 13749.4, + "probability": 0.7964 + }, + { + "start": 13749.46, + "end": 13751.36, + "probability": 0.9823 + }, + { + "start": 13751.54, + "end": 13754.3, + "probability": 0.8857 + }, + { + "start": 13755.32, + "end": 13756.42, + "probability": 0.9922 + }, + { + "start": 13758.5, + "end": 13764.32, + "probability": 0.9687 + }, + { + "start": 13764.5, + "end": 13766.08, + "probability": 0.988 + }, + { + "start": 13767.4, + "end": 13774.12, + "probability": 0.8664 + }, + { + "start": 13774.88, + "end": 13780.74, + "probability": 0.9572 + }, + { + "start": 13782.44, + "end": 13783.8, + "probability": 0.8801 + }, + { + "start": 13785.54, + "end": 13791.82, + "probability": 0.8243 + }, + { + "start": 13794.46, + "end": 13796.23, + "probability": 0.8871 + }, + { + "start": 13797.1, + "end": 13800.98, + "probability": 0.9661 + }, + { + "start": 13801.08, + "end": 13803.14, + "probability": 0.6175 + }, + { + "start": 13803.62, + "end": 13804.74, + "probability": 0.6326 + }, + { + "start": 13804.92, + "end": 13807.1, + "probability": 0.694 + }, + { + "start": 13807.64, + "end": 13810.06, + "probability": 0.797 + }, + { + "start": 13810.42, + "end": 13811.94, + "probability": 0.8728 + }, + { + "start": 13812.5, + "end": 13816.42, + "probability": 0.869 + }, + { + "start": 13816.82, + "end": 13818.1, + "probability": 0.4308 + }, + { + "start": 13818.64, + "end": 13821.3, + "probability": 0.8806 + }, + { + "start": 13821.34, + "end": 13822.0, + "probability": 0.9032 + }, + { + "start": 13822.5, + "end": 13825.6, + "probability": 0.8687 + }, + { + "start": 13826.9, + "end": 13829.86, + "probability": 0.8498 + }, + { + "start": 13830.9, + "end": 13833.92, + "probability": 0.4302 + }, + { + "start": 13833.98, + "end": 13839.14, + "probability": 0.923 + }, + { + "start": 13839.26, + "end": 13840.32, + "probability": 0.4998 + }, + { + "start": 13840.82, + "end": 13841.84, + "probability": 0.7376 + }, + { + "start": 13843.12, + "end": 13843.84, + "probability": 0.8609 + }, + { + "start": 13844.6, + "end": 13846.4, + "probability": 0.9335 + }, + { + "start": 13846.5, + "end": 13847.2, + "probability": 0.7843 + }, + { + "start": 13847.22, + "end": 13848.24, + "probability": 0.9273 + }, + { + "start": 13848.68, + "end": 13849.62, + "probability": 0.9194 + }, + { + "start": 13849.82, + "end": 13851.24, + "probability": 0.9822 + }, + { + "start": 13851.3, + "end": 13852.66, + "probability": 0.9812 + }, + { + "start": 13853.02, + "end": 13857.78, + "probability": 0.9836 + }, + { + "start": 13858.22, + "end": 13859.34, + "probability": 0.746 + }, + { + "start": 13859.9, + "end": 13861.76, + "probability": 0.98 + }, + { + "start": 13862.54, + "end": 13862.86, + "probability": 0.954 + }, + { + "start": 13865.3, + "end": 13866.36, + "probability": 0.8541 + }, + { + "start": 13867.44, + "end": 13873.42, + "probability": 0.9926 + }, + { + "start": 13874.06, + "end": 13877.16, + "probability": 0.9885 + }, + { + "start": 13878.2, + "end": 13878.82, + "probability": 0.5977 + }, + { + "start": 13878.9, + "end": 13880.98, + "probability": 0.8159 + }, + { + "start": 13882.22, + "end": 13885.6, + "probability": 0.9604 + }, + { + "start": 13886.26, + "end": 13887.81, + "probability": 0.9507 + }, + { + "start": 13894.84, + "end": 13895.68, + "probability": 0.4947 + }, + { + "start": 13895.8, + "end": 13895.8, + "probability": 0.3658 + }, + { + "start": 13895.8, + "end": 13896.54, + "probability": 0.7808 + }, + { + "start": 13896.72, + "end": 13902.2, + "probability": 0.9927 + }, + { + "start": 13902.78, + "end": 13902.78, + "probability": 0.0728 + }, + { + "start": 13902.78, + "end": 13907.88, + "probability": 0.7193 + }, + { + "start": 13908.6, + "end": 13913.12, + "probability": 0.9742 + }, + { + "start": 13913.7, + "end": 13914.3, + "probability": 0.9445 + }, + { + "start": 13914.5, + "end": 13916.64, + "probability": 0.9465 + }, + { + "start": 13917.12, + "end": 13919.32, + "probability": 0.9807 + }, + { + "start": 13919.8, + "end": 13921.27, + "probability": 0.7009 + }, + { + "start": 13921.76, + "end": 13922.62, + "probability": 0.8398 + }, + { + "start": 13923.18, + "end": 13925.92, + "probability": 0.9951 + }, + { + "start": 13926.48, + "end": 13927.5, + "probability": 0.9265 + }, + { + "start": 13927.66, + "end": 13930.6, + "probability": 0.9882 + }, + { + "start": 13931.76, + "end": 13931.76, + "probability": 0.7076 + }, + { + "start": 13932.08, + "end": 13933.46, + "probability": 0.6108 + }, + { + "start": 13933.5, + "end": 13934.06, + "probability": 0.9372 + }, + { + "start": 13934.26, + "end": 13934.98, + "probability": 0.6341 + }, + { + "start": 13935.06, + "end": 13937.38, + "probability": 0.9675 + }, + { + "start": 13937.7, + "end": 13941.46, + "probability": 0.9981 + }, + { + "start": 13941.86, + "end": 13944.78, + "probability": 0.9736 + }, + { + "start": 13945.84, + "end": 13949.0, + "probability": 0.7664 + }, + { + "start": 13949.5, + "end": 13953.12, + "probability": 0.9546 + }, + { + "start": 13953.78, + "end": 13959.54, + "probability": 0.7581 + }, + { + "start": 13960.06, + "end": 13964.12, + "probability": 0.9409 + }, + { + "start": 13964.6, + "end": 13964.7, + "probability": 0.3255 + }, + { + "start": 13964.96, + "end": 13966.92, + "probability": 0.965 + }, + { + "start": 13967.38, + "end": 13969.18, + "probability": 0.9481 + }, + { + "start": 13969.32, + "end": 13972.42, + "probability": 0.9565 + }, + { + "start": 13973.24, + "end": 13977.4, + "probability": 0.9724 + }, + { + "start": 13977.7, + "end": 13979.74, + "probability": 0.9525 + }, + { + "start": 13980.22, + "end": 13980.36, + "probability": 0.6317 + }, + { + "start": 13980.7, + "end": 13982.06, + "probability": 0.9885 + }, + { + "start": 13982.34, + "end": 13986.48, + "probability": 0.9808 + }, + { + "start": 13986.92, + "end": 13991.54, + "probability": 0.9817 + }, + { + "start": 13991.62, + "end": 13994.98, + "probability": 0.9963 + }, + { + "start": 13998.08, + "end": 14000.54, + "probability": 0.9979 + }, + { + "start": 14000.68, + "end": 14000.78, + "probability": 0.4048 + }, + { + "start": 14001.0, + "end": 14004.26, + "probability": 0.9901 + }, + { + "start": 14004.52, + "end": 14005.08, + "probability": 0.8841 + }, + { + "start": 14005.16, + "end": 14007.28, + "probability": 0.9547 + }, + { + "start": 14007.58, + "end": 14008.46, + "probability": 0.8258 + }, + { + "start": 14008.72, + "end": 14010.82, + "probability": 0.7118 + }, + { + "start": 14011.1, + "end": 14013.02, + "probability": 0.9818 + }, + { + "start": 14013.14, + "end": 14014.48, + "probability": 0.9343 + }, + { + "start": 14014.66, + "end": 14016.16, + "probability": 0.8018 + }, + { + "start": 14016.46, + "end": 14018.36, + "probability": 0.9759 + }, + { + "start": 14018.48, + "end": 14020.22, + "probability": 0.8983 + }, + { + "start": 14020.58, + "end": 14024.72, + "probability": 0.9928 + }, + { + "start": 14025.0, + "end": 14026.02, + "probability": 0.9641 + }, + { + "start": 14026.54, + "end": 14030.96, + "probability": 0.9961 + }, + { + "start": 14031.14, + "end": 14034.48, + "probability": 0.949 + }, + { + "start": 14035.62, + "end": 14037.02, + "probability": 0.8222 + }, + { + "start": 14037.58, + "end": 14040.14, + "probability": 0.9814 + }, + { + "start": 14041.04, + "end": 14044.46, + "probability": 0.7428 + }, + { + "start": 14045.0, + "end": 14046.58, + "probability": 0.9888 + }, + { + "start": 14046.98, + "end": 14049.6, + "probability": 0.9896 + }, + { + "start": 14049.9, + "end": 14053.03, + "probability": 0.9819 + }, + { + "start": 14053.48, + "end": 14055.64, + "probability": 0.9918 + }, + { + "start": 14055.98, + "end": 14058.86, + "probability": 0.998 + }, + { + "start": 14059.26, + "end": 14060.84, + "probability": 0.9932 + }, + { + "start": 14061.18, + "end": 14063.62, + "probability": 0.9869 + }, + { + "start": 14064.46, + "end": 14067.74, + "probability": 0.9759 + }, + { + "start": 14067.88, + "end": 14069.68, + "probability": 0.9976 + }, + { + "start": 14070.06, + "end": 14072.4, + "probability": 0.8694 + }, + { + "start": 14072.7, + "end": 14073.94, + "probability": 0.9822 + }, + { + "start": 14074.32, + "end": 14075.02, + "probability": 0.9829 + }, + { + "start": 14075.34, + "end": 14076.48, + "probability": 0.9855 + }, + { + "start": 14076.9, + "end": 14077.8, + "probability": 0.9902 + }, + { + "start": 14078.04, + "end": 14079.16, + "probability": 0.9172 + }, + { + "start": 14079.74, + "end": 14081.4, + "probability": 0.9014 + }, + { + "start": 14081.78, + "end": 14082.9, + "probability": 0.9127 + }, + { + "start": 14082.96, + "end": 14084.42, + "probability": 0.8801 + }, + { + "start": 14085.04, + "end": 14090.76, + "probability": 0.9915 + }, + { + "start": 14091.4, + "end": 14092.58, + "probability": 0.7144 + }, + { + "start": 14093.4, + "end": 14095.84, + "probability": 0.9075 + }, + { + "start": 14095.84, + "end": 14099.04, + "probability": 0.9368 + }, + { + "start": 14099.5, + "end": 14100.3, + "probability": 0.3785 + }, + { + "start": 14100.3, + "end": 14101.42, + "probability": 0.8625 + }, + { + "start": 14102.2, + "end": 14103.08, + "probability": 0.8895 + }, + { + "start": 14104.0, + "end": 14109.86, + "probability": 0.9768 + }, + { + "start": 14110.24, + "end": 14112.88, + "probability": 0.9983 + }, + { + "start": 14113.14, + "end": 14115.5, + "probability": 0.9595 + }, + { + "start": 14115.74, + "end": 14117.38, + "probability": 0.9561 + }, + { + "start": 14117.78, + "end": 14122.92, + "probability": 0.977 + }, + { + "start": 14123.06, + "end": 14125.96, + "probability": 0.9969 + }, + { + "start": 14126.18, + "end": 14128.76, + "probability": 0.9921 + }, + { + "start": 14129.14, + "end": 14130.88, + "probability": 0.9529 + }, + { + "start": 14131.12, + "end": 14132.68, + "probability": 0.9951 + }, + { + "start": 14133.08, + "end": 14133.4, + "probability": 0.7911 + }, + { + "start": 14133.74, + "end": 14134.56, + "probability": 0.8239 + }, + { + "start": 14135.46, + "end": 14136.92, + "probability": 0.9117 + }, + { + "start": 14137.78, + "end": 14138.7, + "probability": 0.5024 + }, + { + "start": 14138.74, + "end": 14139.98, + "probability": 0.8611 + }, + { + "start": 14140.68, + "end": 14141.2, + "probability": 0.7555 + }, + { + "start": 14142.28, + "end": 14148.62, + "probability": 0.9888 + }, + { + "start": 14149.24, + "end": 14149.28, + "probability": 0.0269 + }, + { + "start": 14155.72, + "end": 14159.8, + "probability": 0.8619 + }, + { + "start": 14161.1, + "end": 14163.26, + "probability": 0.2523 + }, + { + "start": 14167.14, + "end": 14170.88, + "probability": 0.2159 + }, + { + "start": 14171.9, + "end": 14171.9, + "probability": 0.2085 + }, + { + "start": 14171.9, + "end": 14173.44, + "probability": 0.6085 + }, + { + "start": 14173.86, + "end": 14179.64, + "probability": 0.9985 + }, + { + "start": 14179.64, + "end": 14187.22, + "probability": 0.9981 + }, + { + "start": 14187.74, + "end": 14189.08, + "probability": 0.8373 + }, + { + "start": 14190.42, + "end": 14194.0, + "probability": 0.7879 + }, + { + "start": 14195.28, + "end": 14197.54, + "probability": 0.8213 + }, + { + "start": 14198.34, + "end": 14203.74, + "probability": 0.986 + }, + { + "start": 14203.92, + "end": 14208.42, + "probability": 0.9937 + }, + { + "start": 14209.82, + "end": 14211.3, + "probability": 0.9878 + }, + { + "start": 14212.24, + "end": 14214.72, + "probability": 0.8645 + }, + { + "start": 14215.44, + "end": 14216.76, + "probability": 0.7989 + }, + { + "start": 14216.92, + "end": 14223.46, + "probability": 0.9753 + }, + { + "start": 14224.34, + "end": 14225.06, + "probability": 0.5079 + }, + { + "start": 14225.68, + "end": 14228.88, + "probability": 0.9969 + }, + { + "start": 14229.88, + "end": 14231.54, + "probability": 0.9989 + }, + { + "start": 14232.18, + "end": 14240.58, + "probability": 0.994 + }, + { + "start": 14240.58, + "end": 14245.36, + "probability": 0.999 + }, + { + "start": 14245.36, + "end": 14250.84, + "probability": 0.9998 + }, + { + "start": 14251.4, + "end": 14253.66, + "probability": 0.8237 + }, + { + "start": 14254.16, + "end": 14254.46, + "probability": 0.3373 + }, + { + "start": 14254.76, + "end": 14258.96, + "probability": 0.994 + }, + { + "start": 14259.86, + "end": 14260.88, + "probability": 0.9958 + }, + { + "start": 14261.96, + "end": 14263.64, + "probability": 0.8384 + }, + { + "start": 14264.4, + "end": 14264.89, + "probability": 0.9473 + }, + { + "start": 14265.1, + "end": 14265.94, + "probability": 0.9564 + }, + { + "start": 14266.06, + "end": 14267.56, + "probability": 0.9183 + }, + { + "start": 14268.22, + "end": 14272.48, + "probability": 0.9759 + }, + { + "start": 14272.52, + "end": 14273.6, + "probability": 0.671 + }, + { + "start": 14273.72, + "end": 14276.86, + "probability": 0.9966 + }, + { + "start": 14277.34, + "end": 14279.96, + "probability": 0.7891 + }, + { + "start": 14281.16, + "end": 14285.94, + "probability": 0.9965 + }, + { + "start": 14286.02, + "end": 14286.94, + "probability": 0.8269 + }, + { + "start": 14287.54, + "end": 14288.46, + "probability": 0.8983 + }, + { + "start": 14289.0, + "end": 14289.9, + "probability": 0.9732 + }, + { + "start": 14291.18, + "end": 14292.38, + "probability": 0.9751 + }, + { + "start": 14292.48, + "end": 14292.66, + "probability": 0.7697 + }, + { + "start": 14292.72, + "end": 14294.76, + "probability": 0.9763 + }, + { + "start": 14295.12, + "end": 14296.32, + "probability": 0.9927 + }, + { + "start": 14296.88, + "end": 14299.32, + "probability": 0.9761 + }, + { + "start": 14299.46, + "end": 14300.16, + "probability": 0.8005 + }, + { + "start": 14300.56, + "end": 14302.7, + "probability": 0.9569 + }, + { + "start": 14302.78, + "end": 14303.36, + "probability": 0.8903 + }, + { + "start": 14303.86, + "end": 14307.72, + "probability": 0.8237 + }, + { + "start": 14308.14, + "end": 14311.62, + "probability": 0.7935 + }, + { + "start": 14312.18, + "end": 14313.62, + "probability": 0.8758 + }, + { + "start": 14314.3, + "end": 14315.72, + "probability": 0.9023 + }, + { + "start": 14316.04, + "end": 14321.66, + "probability": 0.9694 + }, + { + "start": 14322.46, + "end": 14326.94, + "probability": 0.9165 + }, + { + "start": 14327.86, + "end": 14328.82, + "probability": 0.6057 + }, + { + "start": 14329.0, + "end": 14332.08, + "probability": 0.8982 + }, + { + "start": 14332.88, + "end": 14335.52, + "probability": 0.9641 + }, + { + "start": 14336.1, + "end": 14338.3, + "probability": 0.9966 + }, + { + "start": 14338.88, + "end": 14339.86, + "probability": 0.9419 + }, + { + "start": 14340.68, + "end": 14343.48, + "probability": 0.8481 + }, + { + "start": 14345.2, + "end": 14350.54, + "probability": 0.9401 + }, + { + "start": 14351.3, + "end": 14351.54, + "probability": 0.8167 + }, + { + "start": 14351.6, + "end": 14355.46, + "probability": 0.9907 + }, + { + "start": 14355.54, + "end": 14356.72, + "probability": 0.6052 + }, + { + "start": 14356.72, + "end": 14356.96, + "probability": 0.3512 + }, + { + "start": 14357.28, + "end": 14362.14, + "probability": 0.9993 + }, + { + "start": 14362.96, + "end": 14367.82, + "probability": 0.9938 + }, + { + "start": 14368.54, + "end": 14372.3, + "probability": 0.9881 + }, + { + "start": 14372.84, + "end": 14375.72, + "probability": 0.9839 + }, + { + "start": 14376.08, + "end": 14376.44, + "probability": 0.8574 + }, + { + "start": 14377.1, + "end": 14377.74, + "probability": 0.8384 + }, + { + "start": 14378.8, + "end": 14381.38, + "probability": 0.7263 + }, + { + "start": 14381.8, + "end": 14383.42, + "probability": 0.8789 + }, + { + "start": 14384.94, + "end": 14386.3, + "probability": 0.8392 + }, + { + "start": 14387.85, + "end": 14390.88, + "probability": 0.894 + }, + { + "start": 14391.84, + "end": 14392.98, + "probability": 0.873 + }, + { + "start": 14393.9, + "end": 14395.34, + "probability": 0.9712 + }, + { + "start": 14396.28, + "end": 14397.14, + "probability": 0.7725 + }, + { + "start": 14398.46, + "end": 14399.0, + "probability": 0.4041 + }, + { + "start": 14399.08, + "end": 14399.56, + "probability": 0.5408 + }, + { + "start": 14400.06, + "end": 14402.44, + "probability": 0.7447 + }, + { + "start": 14402.86, + "end": 14404.58, + "probability": 0.3961 + }, + { + "start": 14404.84, + "end": 14405.1, + "probability": 0.4098 + }, + { + "start": 14405.24, + "end": 14405.3, + "probability": 0.1904 + }, + { + "start": 14405.3, + "end": 14405.3, + "probability": 0.4532 + }, + { + "start": 14405.3, + "end": 14408.48, + "probability": 0.5209 + }, + { + "start": 14410.0, + "end": 14411.86, + "probability": 0.9702 + }, + { + "start": 14412.76, + "end": 14416.86, + "probability": 0.5876 + }, + { + "start": 14418.46, + "end": 14424.4, + "probability": 0.9966 + }, + { + "start": 14425.5, + "end": 14427.02, + "probability": 0.5651 + }, + { + "start": 14428.16, + "end": 14428.8, + "probability": 0.8126 + }, + { + "start": 14429.52, + "end": 14433.8, + "probability": 0.9524 + }, + { + "start": 14434.82, + "end": 14437.32, + "probability": 0.9553 + }, + { + "start": 14439.46, + "end": 14439.56, + "probability": 0.9321 + }, + { + "start": 14440.42, + "end": 14446.12, + "probability": 0.9645 + }, + { + "start": 14448.2, + "end": 14450.34, + "probability": 0.8607 + }, + { + "start": 14451.18, + "end": 14452.92, + "probability": 0.991 + }, + { + "start": 14453.3, + "end": 14454.1, + "probability": 0.9361 + }, + { + "start": 14455.68, + "end": 14461.52, + "probability": 0.8784 + }, + { + "start": 14462.2, + "end": 14463.48, + "probability": 0.928 + }, + { + "start": 14464.26, + "end": 14465.16, + "probability": 0.8959 + }, + { + "start": 14465.84, + "end": 14468.84, + "probability": 0.9712 + }, + { + "start": 14469.4, + "end": 14470.38, + "probability": 0.9869 + }, + { + "start": 14471.24, + "end": 14475.1, + "probability": 0.958 + }, + { + "start": 14475.62, + "end": 14478.14, + "probability": 0.5948 + }, + { + "start": 14479.1, + "end": 14479.86, + "probability": 0.7059 + }, + { + "start": 14480.92, + "end": 14483.32, + "probability": 0.7251 + }, + { + "start": 14484.12, + "end": 14486.56, + "probability": 0.8738 + }, + { + "start": 14488.0, + "end": 14490.04, + "probability": 0.3009 + }, + { + "start": 14491.2, + "end": 14494.66, + "probability": 0.8354 + }, + { + "start": 14498.44, + "end": 14499.72, + "probability": 0.7477 + }, + { + "start": 14499.78, + "end": 14501.08, + "probability": 0.9184 + }, + { + "start": 14502.06, + "end": 14508.18, + "probability": 0.9191 + }, + { + "start": 14508.78, + "end": 14510.76, + "probability": 0.9875 + }, + { + "start": 14511.66, + "end": 14514.1, + "probability": 0.842 + }, + { + "start": 14516.32, + "end": 14518.58, + "probability": 0.6829 + }, + { + "start": 14519.32, + "end": 14523.98, + "probability": 0.9941 + }, + { + "start": 14524.56, + "end": 14532.7, + "probability": 0.9837 + }, + { + "start": 14533.1, + "end": 14535.26, + "probability": 0.8439 + }, + { + "start": 14535.86, + "end": 14538.94, + "probability": 0.8996 + }, + { + "start": 14539.18, + "end": 14540.5, + "probability": 0.6522 + }, + { + "start": 14541.64, + "end": 14542.56, + "probability": 0.706 + }, + { + "start": 14543.5, + "end": 14543.84, + "probability": 0.2767 + }, + { + "start": 14544.58, + "end": 14545.72, + "probability": 0.5948 + }, + { + "start": 14546.76, + "end": 14556.5, + "probability": 0.9971 + }, + { + "start": 14557.46, + "end": 14563.62, + "probability": 0.9821 + }, + { + "start": 14564.38, + "end": 14567.76, + "probability": 0.7013 + }, + { + "start": 14569.74, + "end": 14574.02, + "probability": 0.9963 + }, + { + "start": 14574.02, + "end": 14579.5, + "probability": 0.9615 + }, + { + "start": 14580.12, + "end": 14581.62, + "probability": 0.7246 + }, + { + "start": 14582.48, + "end": 14586.32, + "probability": 0.6049 + }, + { + "start": 14587.52, + "end": 14590.74, + "probability": 0.9504 + }, + { + "start": 14591.42, + "end": 14592.94, + "probability": 0.8886 + }, + { + "start": 14593.5, + "end": 14597.96, + "probability": 0.9536 + }, + { + "start": 14598.46, + "end": 14598.72, + "probability": 0.8126 + }, + { + "start": 14599.14, + "end": 14599.72, + "probability": 0.882 + }, + { + "start": 14600.84, + "end": 14601.84, + "probability": 0.227 + }, + { + "start": 14602.2, + "end": 14603.66, + "probability": 0.9039 + }, + { + "start": 14605.22, + "end": 14606.66, + "probability": 0.9791 + }, + { + "start": 14609.18, + "end": 14610.06, + "probability": 0.077 + }, + { + "start": 14610.76, + "end": 14611.04, + "probability": 0.4025 + }, + { + "start": 14612.3, + "end": 14612.4, + "probability": 0.0029 + }, + { + "start": 14612.5, + "end": 14612.6, + "probability": 0.2656 + }, + { + "start": 14612.74, + "end": 14613.84, + "probability": 0.5836 + }, + { + "start": 14614.86, + "end": 14615.38, + "probability": 0.7557 + }, + { + "start": 14615.42, + "end": 14618.18, + "probability": 0.7409 + }, + { + "start": 14619.6, + "end": 14621.28, + "probability": 0.1553 + }, + { + "start": 14622.78, + "end": 14622.94, + "probability": 0.2363 + }, + { + "start": 14622.94, + "end": 14623.88, + "probability": 0.1652 + }, + { + "start": 14628.36, + "end": 14629.06, + "probability": 0.0681 + }, + { + "start": 14629.18, + "end": 14629.99, + "probability": 0.2116 + }, + { + "start": 14630.99, + "end": 14633.6, + "probability": 0.835 + }, + { + "start": 14635.58, + "end": 14638.02, + "probability": 0.6266 + }, + { + "start": 14638.02, + "end": 14640.58, + "probability": 0.9287 + }, + { + "start": 14642.08, + "end": 14644.42, + "probability": 0.9606 + }, + { + "start": 14644.52, + "end": 14645.08, + "probability": 0.5904 + }, + { + "start": 14646.16, + "end": 14647.56, + "probability": 0.5006 + }, + { + "start": 14647.7, + "end": 14650.1, + "probability": 0.971 + }, + { + "start": 14650.32, + "end": 14653.42, + "probability": 0.9574 + }, + { + "start": 14653.64, + "end": 14654.28, + "probability": 0.9427 + }, + { + "start": 14654.44, + "end": 14656.86, + "probability": 0.9976 + }, + { + "start": 14657.38, + "end": 14659.84, + "probability": 0.9557 + }, + { + "start": 14660.58, + "end": 14664.72, + "probability": 0.9911 + }, + { + "start": 14665.84, + "end": 14667.06, + "probability": 0.8314 + }, + { + "start": 14667.48, + "end": 14671.64, + "probability": 0.4455 + }, + { + "start": 14671.64, + "end": 14673.22, + "probability": 0.5107 + }, + { + "start": 14673.3, + "end": 14674.28, + "probability": 0.5046 + }, + { + "start": 14674.28, + "end": 14676.38, + "probability": 0.6809 + }, + { + "start": 14676.84, + "end": 14677.28, + "probability": 0.7409 + }, + { + "start": 14677.42, + "end": 14678.36, + "probability": 0.5729 + }, + { + "start": 14678.42, + "end": 14679.06, + "probability": 0.8169 + }, + { + "start": 14679.66, + "end": 14680.6, + "probability": 0.9487 + }, + { + "start": 14681.6, + "end": 14682.22, + "probability": 0.8847 + }, + { + "start": 14682.3, + "end": 14683.22, + "probability": 0.6049 + }, + { + "start": 14683.4, + "end": 14684.22, + "probability": 0.8652 + }, + { + "start": 14685.3, + "end": 14687.08, + "probability": 0.7535 + }, + { + "start": 14687.66, + "end": 14691.04, + "probability": 0.4792 + }, + { + "start": 14691.54, + "end": 14692.74, + "probability": 0.0384 + }, + { + "start": 14692.74, + "end": 14692.74, + "probability": 0.0131 + }, + { + "start": 14692.74, + "end": 14693.32, + "probability": 0.0647 + }, + { + "start": 14693.54, + "end": 14694.54, + "probability": 0.5855 + }, + { + "start": 14695.28, + "end": 14696.88, + "probability": 0.9845 + }, + { + "start": 14698.16, + "end": 14700.84, + "probability": 0.94 + }, + { + "start": 14701.6, + "end": 14702.72, + "probability": 0.7494 + }, + { + "start": 14703.42, + "end": 14704.84, + "probability": 0.7986 + }, + { + "start": 14706.04, + "end": 14707.44, + "probability": 0.8149 + }, + { + "start": 14708.9, + "end": 14710.3, + "probability": 0.8533 + }, + { + "start": 14711.28, + "end": 14712.64, + "probability": 0.7402 + }, + { + "start": 14712.82, + "end": 14713.06, + "probability": 0.8997 + }, + { + "start": 14713.98, + "end": 14717.38, + "probability": 0.9859 + }, + { + "start": 14717.96, + "end": 14718.94, + "probability": 0.9412 + }, + { + "start": 14719.64, + "end": 14721.94, + "probability": 0.9913 + }, + { + "start": 14723.46, + "end": 14723.58, + "probability": 0.3529 + }, + { + "start": 14723.76, + "end": 14727.44, + "probability": 0.5265 + }, + { + "start": 14727.46, + "end": 14728.22, + "probability": 0.7487 + }, + { + "start": 14728.78, + "end": 14729.82, + "probability": 0.7177 + }, + { + "start": 14730.2, + "end": 14732.08, + "probability": 0.9022 + }, + { + "start": 14732.32, + "end": 14732.36, + "probability": 0.7075 + }, + { + "start": 14732.92, + "end": 14734.58, + "probability": 0.9971 + }, + { + "start": 14735.66, + "end": 14736.84, + "probability": 0.9721 + }, + { + "start": 14737.2, + "end": 14738.02, + "probability": 0.5421 + }, + { + "start": 14738.52, + "end": 14739.44, + "probability": 0.687 + }, + { + "start": 14740.14, + "end": 14740.36, + "probability": 0.9766 + }, + { + "start": 14740.5, + "end": 14741.08, + "probability": 0.9543 + }, + { + "start": 14741.54, + "end": 14742.0, + "probability": 0.7804 + }, + { + "start": 14742.08, + "end": 14742.5, + "probability": 0.9029 + }, + { + "start": 14742.92, + "end": 14746.16, + "probability": 0.9935 + }, + { + "start": 14746.9, + "end": 14748.0, + "probability": 0.9495 + }, + { + "start": 14749.06, + "end": 14749.92, + "probability": 0.8473 + }, + { + "start": 14750.12, + "end": 14750.82, + "probability": 0.8987 + }, + { + "start": 14750.86, + "end": 14753.7, + "probability": 0.7772 + }, + { + "start": 14753.7, + "end": 14756.92, + "probability": 0.9126 + }, + { + "start": 14756.94, + "end": 14759.06, + "probability": 0.9775 + }, + { + "start": 14759.3, + "end": 14761.2, + "probability": 0.1806 + }, + { + "start": 14761.24, + "end": 14761.34, + "probability": 0.0994 + }, + { + "start": 14761.34, + "end": 14761.34, + "probability": 0.0469 + }, + { + "start": 14761.34, + "end": 14763.48, + "probability": 0.6626 + }, + { + "start": 14763.88, + "end": 14765.88, + "probability": 0.7551 + }, + { + "start": 14766.94, + "end": 14769.58, + "probability": 0.9548 + }, + { + "start": 14769.72, + "end": 14770.07, + "probability": 0.8057 + }, + { + "start": 14770.66, + "end": 14773.38, + "probability": 0.9291 + }, + { + "start": 14773.38, + "end": 14773.62, + "probability": 0.6478 + }, + { + "start": 14774.26, + "end": 14774.76, + "probability": 0.9482 + }, + { + "start": 14775.96, + "end": 14776.47, + "probability": 0.9102 + }, + { + "start": 14776.9, + "end": 14779.12, + "probability": 0.8711 + }, + { + "start": 14779.9, + "end": 14781.3, + "probability": 0.7165 + }, + { + "start": 14781.84, + "end": 14783.33, + "probability": 0.9847 + }, + { + "start": 14785.08, + "end": 14789.0, + "probability": 0.994 + }, + { + "start": 14789.7, + "end": 14791.98, + "probability": 0.6718 + }, + { + "start": 14792.62, + "end": 14795.68, + "probability": 0.9458 + }, + { + "start": 14796.86, + "end": 14797.54, + "probability": 0.8244 + }, + { + "start": 14798.36, + "end": 14800.12, + "probability": 0.7239 + }, + { + "start": 14801.26, + "end": 14803.38, + "probability": 0.9828 + }, + { + "start": 14804.18, + "end": 14804.66, + "probability": 0.9698 + }, + { + "start": 14805.8, + "end": 14805.98, + "probability": 0.7086 + }, + { + "start": 14806.1, + "end": 14806.96, + "probability": 0.8444 + }, + { + "start": 14807.06, + "end": 14809.24, + "probability": 0.6172 + }, + { + "start": 14809.36, + "end": 14809.64, + "probability": 0.4343 + }, + { + "start": 14810.92, + "end": 14813.6, + "probability": 0.9746 + }, + { + "start": 14813.84, + "end": 14814.66, + "probability": 0.7343 + }, + { + "start": 14815.82, + "end": 14817.18, + "probability": 0.2219 + }, + { + "start": 14819.08, + "end": 14821.0, + "probability": 0.9585 + }, + { + "start": 14821.0, + "end": 14823.42, + "probability": 0.8954 + }, + { + "start": 14823.52, + "end": 14824.69, + "probability": 0.5788 + }, + { + "start": 14825.0, + "end": 14825.4, + "probability": 0.5719 + }, + { + "start": 14826.56, + "end": 14826.96, + "probability": 0.7254 + }, + { + "start": 14827.02, + "end": 14828.98, + "probability": 0.9644 + }, + { + "start": 14828.98, + "end": 14830.4, + "probability": 0.903 + }, + { + "start": 14831.5, + "end": 14835.64, + "probability": 0.9749 + }, + { + "start": 14837.28, + "end": 14840.9, + "probability": 0.8444 + }, + { + "start": 14841.44, + "end": 14842.08, + "probability": 0.7747 + }, + { + "start": 14842.54, + "end": 14845.58, + "probability": 0.9209 + }, + { + "start": 14846.44, + "end": 14848.36, + "probability": 0.9956 + }, + { + "start": 14848.36, + "end": 14851.16, + "probability": 0.9974 + }, + { + "start": 14852.42, + "end": 14853.55, + "probability": 0.4431 + }, + { + "start": 14854.55, + "end": 14857.6, + "probability": 0.7148 + }, + { + "start": 14858.34, + "end": 14860.18, + "probability": 0.9324 + }, + { + "start": 14861.32, + "end": 14863.72, + "probability": 0.9445 + }, + { + "start": 14864.1, + "end": 14864.26, + "probability": 0.4271 + }, + { + "start": 14864.36, + "end": 14864.88, + "probability": 0.9623 + }, + { + "start": 14865.06, + "end": 14867.0, + "probability": 0.8053 + }, + { + "start": 14867.42, + "end": 14868.62, + "probability": 0.219 + }, + { + "start": 14868.68, + "end": 14869.12, + "probability": 0.7176 + }, + { + "start": 14869.24, + "end": 14869.74, + "probability": 0.8789 + }, + { + "start": 14871.04, + "end": 14872.32, + "probability": 0.522 + }, + { + "start": 14873.08, + "end": 14873.08, + "probability": 0.064 + }, + { + "start": 14873.08, + "end": 14874.04, + "probability": 0.6635 + }, + { + "start": 14874.16, + "end": 14875.02, + "probability": 0.5851 + }, + { + "start": 14875.16, + "end": 14877.12, + "probability": 0.586 + }, + { + "start": 14877.84, + "end": 14878.72, + "probability": 0.9819 + }, + { + "start": 14879.24, + "end": 14881.28, + "probability": 0.5963 + }, + { + "start": 14881.42, + "end": 14882.44, + "probability": 0.0892 + }, + { + "start": 14882.44, + "end": 14882.44, + "probability": 0.1607 + }, + { + "start": 14882.44, + "end": 14884.2, + "probability": 0.6396 + }, + { + "start": 14884.28, + "end": 14887.38, + "probability": 0.9675 + }, + { + "start": 14887.62, + "end": 14888.3, + "probability": 0.6779 + }, + { + "start": 14888.46, + "end": 14889.8, + "probability": 0.6669 + }, + { + "start": 14889.92, + "end": 14890.84, + "probability": 0.9577 + }, + { + "start": 14890.94, + "end": 14892.54, + "probability": 0.8521 + }, + { + "start": 14892.62, + "end": 14892.62, + "probability": 0.0921 + }, + { + "start": 14892.62, + "end": 14893.04, + "probability": 0.6426 + }, + { + "start": 14893.64, + "end": 14895.56, + "probability": 0.9631 + }, + { + "start": 14895.92, + "end": 14896.88, + "probability": 0.9225 + }, + { + "start": 14897.38, + "end": 14900.36, + "probability": 0.5469 + }, + { + "start": 14900.48, + "end": 14901.27, + "probability": 0.7955 + }, + { + "start": 14901.88, + "end": 14902.9, + "probability": 0.8823 + }, + { + "start": 14903.82, + "end": 14906.7, + "probability": 0.7595 + }, + { + "start": 14907.4, + "end": 14911.12, + "probability": 0.9731 + }, + { + "start": 14911.32, + "end": 14912.06, + "probability": 0.9907 + }, + { + "start": 14912.84, + "end": 14914.28, + "probability": 0.9748 + }, + { + "start": 14914.4, + "end": 14915.06, + "probability": 0.5017 + }, + { + "start": 14915.14, + "end": 14915.72, + "probability": 0.5042 + }, + { + "start": 14916.28, + "end": 14918.16, + "probability": 0.6656 + }, + { + "start": 14918.22, + "end": 14918.98, + "probability": 0.542 + }, + { + "start": 14919.56, + "end": 14920.03, + "probability": 0.294 + }, + { + "start": 14920.48, + "end": 14922.12, + "probability": 0.8152 + }, + { + "start": 14922.24, + "end": 14923.44, + "probability": 0.6998 + }, + { + "start": 14924.62, + "end": 14926.28, + "probability": 0.7511 + }, + { + "start": 14927.42, + "end": 14928.6, + "probability": 0.9589 + }, + { + "start": 14930.24, + "end": 14931.7, + "probability": 0.5084 + }, + { + "start": 14946.84, + "end": 14947.96, + "probability": 0.5502 + }, + { + "start": 14948.76, + "end": 14950.46, + "probability": 0.785 + }, + { + "start": 14952.56, + "end": 14954.86, + "probability": 0.8455 + }, + { + "start": 14956.16, + "end": 14959.9, + "probability": 0.9807 + }, + { + "start": 14961.1, + "end": 14963.6, + "probability": 0.7865 + }, + { + "start": 14964.48, + "end": 14965.86, + "probability": 0.8863 + }, + { + "start": 14967.18, + "end": 14968.22, + "probability": 0.7056 + }, + { + "start": 14969.0, + "end": 14970.68, + "probability": 0.9351 + }, + { + "start": 14971.5, + "end": 14972.92, + "probability": 0.9703 + }, + { + "start": 14973.8, + "end": 14974.64, + "probability": 0.9701 + }, + { + "start": 14975.58, + "end": 14979.86, + "probability": 0.9788 + }, + { + "start": 14981.68, + "end": 14981.98, + "probability": 0.8218 + }, + { + "start": 14982.74, + "end": 14985.32, + "probability": 0.929 + }, + { + "start": 14986.0, + "end": 14986.36, + "probability": 0.9494 + }, + { + "start": 14987.76, + "end": 14989.14, + "probability": 0.6987 + }, + { + "start": 14990.52, + "end": 14995.48, + "probability": 0.8974 + }, + { + "start": 14996.58, + "end": 14997.62, + "probability": 0.8487 + }, + { + "start": 14998.28, + "end": 15001.63, + "probability": 0.98 + }, + { + "start": 15002.76, + "end": 15003.82, + "probability": 0.9849 + }, + { + "start": 15004.58, + "end": 15006.2, + "probability": 0.99 + }, + { + "start": 15008.0, + "end": 15011.64, + "probability": 0.8916 + }, + { + "start": 15012.72, + "end": 15015.04, + "probability": 0.9463 + }, + { + "start": 15016.14, + "end": 15018.24, + "probability": 0.6008 + }, + { + "start": 15018.38, + "end": 15020.24, + "probability": 0.9971 + }, + { + "start": 15022.18, + "end": 15022.68, + "probability": 0.4356 + }, + { + "start": 15024.46, + "end": 15026.54, + "probability": 0.9966 + }, + { + "start": 15027.2, + "end": 15028.66, + "probability": 0.9948 + }, + { + "start": 15029.68, + "end": 15032.46, + "probability": 0.9937 + }, + { + "start": 15033.34, + "end": 15035.46, + "probability": 0.9978 + }, + { + "start": 15036.12, + "end": 15039.16, + "probability": 0.9927 + }, + { + "start": 15039.66, + "end": 15048.66, + "probability": 0.9752 + }, + { + "start": 15050.48, + "end": 15051.56, + "probability": 0.4793 + }, + { + "start": 15053.48, + "end": 15053.83, + "probability": 0.6626 + }, + { + "start": 15054.82, + "end": 15056.46, + "probability": 0.6971 + }, + { + "start": 15057.32, + "end": 15057.87, + "probability": 0.9341 + }, + { + "start": 15059.02, + "end": 15062.78, + "probability": 0.8037 + }, + { + "start": 15063.56, + "end": 15068.66, + "probability": 0.9723 + }, + { + "start": 15069.26, + "end": 15070.52, + "probability": 0.8438 + }, + { + "start": 15071.06, + "end": 15071.66, + "probability": 0.7832 + }, + { + "start": 15072.14, + "end": 15073.94, + "probability": 0.4619 + }, + { + "start": 15075.1, + "end": 15080.0, + "probability": 0.6823 + }, + { + "start": 15081.6, + "end": 15084.12, + "probability": 0.734 + }, + { + "start": 15084.94, + "end": 15086.27, + "probability": 0.9336 + }, + { + "start": 15086.66, + "end": 15087.72, + "probability": 0.6894 + }, + { + "start": 15088.16, + "end": 15089.12, + "probability": 0.9331 + }, + { + "start": 15090.22, + "end": 15091.7, + "probability": 0.8727 + }, + { + "start": 15092.64, + "end": 15095.84, + "probability": 0.9944 + }, + { + "start": 15096.5, + "end": 15098.98, + "probability": 0.9769 + }, + { + "start": 15099.78, + "end": 15100.78, + "probability": 0.5939 + }, + { + "start": 15101.66, + "end": 15104.32, + "probability": 0.974 + }, + { + "start": 15104.84, + "end": 15106.12, + "probability": 0.9827 + }, + { + "start": 15108.46, + "end": 15109.14, + "probability": 0.9014 + }, + { + "start": 15110.1, + "end": 15114.48, + "probability": 0.9771 + }, + { + "start": 15116.0, + "end": 15118.24, + "probability": 0.9957 + }, + { + "start": 15118.9, + "end": 15119.74, + "probability": 0.8534 + }, + { + "start": 15120.82, + "end": 15124.56, + "probability": 0.9913 + }, + { + "start": 15126.26, + "end": 15129.1, + "probability": 0.9766 + }, + { + "start": 15129.8, + "end": 15133.2, + "probability": 0.7241 + }, + { + "start": 15133.98, + "end": 15138.22, + "probability": 0.9779 + }, + { + "start": 15139.12, + "end": 15139.32, + "probability": 0.6211 + }, + { + "start": 15139.88, + "end": 15140.66, + "probability": 0.8721 + }, + { + "start": 15141.36, + "end": 15142.16, + "probability": 0.7787 + }, + { + "start": 15142.56, + "end": 15143.1, + "probability": 0.9108 + }, + { + "start": 15143.88, + "end": 15144.36, + "probability": 0.8669 + }, + { + "start": 15144.66, + "end": 15146.16, + "probability": 0.9253 + }, + { + "start": 15146.82, + "end": 15148.18, + "probability": 0.8875 + }, + { + "start": 15149.24, + "end": 15150.74, + "probability": 0.8493 + }, + { + "start": 15151.86, + "end": 15154.54, + "probability": 0.8943 + }, + { + "start": 15155.26, + "end": 15161.2, + "probability": 0.96 + }, + { + "start": 15161.86, + "end": 15165.82, + "probability": 0.9951 + }, + { + "start": 15166.4, + "end": 15168.14, + "probability": 0.984 + }, + { + "start": 15168.88, + "end": 15171.0, + "probability": 0.9934 + }, + { + "start": 15171.32, + "end": 15175.12, + "probability": 0.9878 + }, + { + "start": 15175.64, + "end": 15177.26, + "probability": 0.9602 + }, + { + "start": 15177.58, + "end": 15177.8, + "probability": 0.7093 + }, + { + "start": 15178.62, + "end": 15179.32, + "probability": 0.727 + }, + { + "start": 15179.5, + "end": 15180.58, + "probability": 0.5607 + }, + { + "start": 15183.56, + "end": 15185.52, + "probability": 0.0955 + }, + { + "start": 15190.26, + "end": 15192.02, + "probability": 0.6479 + }, + { + "start": 15192.72, + "end": 15195.64, + "probability": 0.1462 + }, + { + "start": 15199.44, + "end": 15202.26, + "probability": 0.6183 + }, + { + "start": 15203.84, + "end": 15208.28, + "probability": 0.992 + }, + { + "start": 15208.82, + "end": 15211.86, + "probability": 0.9978 + }, + { + "start": 15213.14, + "end": 15215.74, + "probability": 0.9964 + }, + { + "start": 15215.96, + "end": 15216.16, + "probability": 0.684 + }, + { + "start": 15216.22, + "end": 15217.66, + "probability": 0.7455 + }, + { + "start": 15218.9, + "end": 15221.68, + "probability": 0.9793 + }, + { + "start": 15222.52, + "end": 15223.86, + "probability": 0.9282 + }, + { + "start": 15224.68, + "end": 15227.34, + "probability": 0.9962 + }, + { + "start": 15228.24, + "end": 15229.48, + "probability": 0.9205 + }, + { + "start": 15229.86, + "end": 15231.64, + "probability": 0.9965 + }, + { + "start": 15232.3, + "end": 15236.3, + "probability": 0.9993 + }, + { + "start": 15236.3, + "end": 15239.78, + "probability": 0.9763 + }, + { + "start": 15240.8, + "end": 15241.4, + "probability": 0.6008 + }, + { + "start": 15241.58, + "end": 15242.66, + "probability": 0.9813 + }, + { + "start": 15242.76, + "end": 15247.46, + "probability": 0.9873 + }, + { + "start": 15248.58, + "end": 15252.46, + "probability": 0.8267 + }, + { + "start": 15253.18, + "end": 15256.2, + "probability": 0.9883 + }, + { + "start": 15258.08, + "end": 15260.26, + "probability": 0.96 + }, + { + "start": 15261.34, + "end": 15263.24, + "probability": 0.9984 + }, + { + "start": 15263.68, + "end": 15264.22, + "probability": 0.3257 + }, + { + "start": 15264.24, + "end": 15271.42, + "probability": 0.9072 + }, + { + "start": 15272.32, + "end": 15274.16, + "probability": 0.9386 + }, + { + "start": 15274.76, + "end": 15276.18, + "probability": 0.9777 + }, + { + "start": 15276.72, + "end": 15279.84, + "probability": 0.9468 + }, + { + "start": 15280.84, + "end": 15283.09, + "probability": 0.9088 + }, + { + "start": 15284.42, + "end": 15287.36, + "probability": 0.9032 + }, + { + "start": 15287.94, + "end": 15292.94, + "probability": 0.4986 + }, + { + "start": 15293.58, + "end": 15296.82, + "probability": 0.9604 + }, + { + "start": 15297.6, + "end": 15298.92, + "probability": 0.8534 + }, + { + "start": 15299.46, + "end": 15301.22, + "probability": 0.9336 + }, + { + "start": 15301.64, + "end": 15304.08, + "probability": 0.9817 + }, + { + "start": 15304.08, + "end": 15308.42, + "probability": 0.9694 + }, + { + "start": 15308.64, + "end": 15309.92, + "probability": 0.9181 + }, + { + "start": 15310.28, + "end": 15313.21, + "probability": 0.9883 + }, + { + "start": 15314.12, + "end": 15318.82, + "probability": 0.9941 + }, + { + "start": 15319.44, + "end": 15319.9, + "probability": 0.7349 + }, + { + "start": 15321.28, + "end": 15322.88, + "probability": 0.9965 + }, + { + "start": 15323.54, + "end": 15327.38, + "probability": 0.9683 + }, + { + "start": 15327.96, + "end": 15331.36, + "probability": 0.8003 + }, + { + "start": 15331.42, + "end": 15332.14, + "probability": 0.8944 + }, + { + "start": 15332.22, + "end": 15332.47, + "probability": 0.9109 + }, + { + "start": 15332.6, + "end": 15337.16, + "probability": 0.8618 + }, + { + "start": 15337.9, + "end": 15339.96, + "probability": 0.871 + }, + { + "start": 15340.02, + "end": 15342.56, + "probability": 0.988 + }, + { + "start": 15342.56, + "end": 15346.92, + "probability": 0.9907 + }, + { + "start": 15347.02, + "end": 15349.99, + "probability": 0.9727 + }, + { + "start": 15350.16, + "end": 15354.18, + "probability": 0.9796 + }, + { + "start": 15354.52, + "end": 15356.04, + "probability": 0.9681 + }, + { + "start": 15356.04, + "end": 15359.44, + "probability": 0.9508 + }, + { + "start": 15359.86, + "end": 15360.98, + "probability": 0.9317 + }, + { + "start": 15361.34, + "end": 15362.54, + "probability": 0.9658 + }, + { + "start": 15363.32, + "end": 15366.5, + "probability": 0.9814 + }, + { + "start": 15366.88, + "end": 15370.26, + "probability": 0.8621 + }, + { + "start": 15370.26, + "end": 15374.16, + "probability": 0.9945 + }, + { + "start": 15374.78, + "end": 15375.72, + "probability": 0.7844 + }, + { + "start": 15375.74, + "end": 15377.26, + "probability": 0.9221 + }, + { + "start": 15377.5, + "end": 15380.34, + "probability": 0.9877 + }, + { + "start": 15381.5, + "end": 15381.7, + "probability": 0.4805 + }, + { + "start": 15382.3, + "end": 15383.56, + "probability": 0.9971 + }, + { + "start": 15384.62, + "end": 15389.14, + "probability": 0.969 + }, + { + "start": 15389.14, + "end": 15391.06, + "probability": 0.9977 + }, + { + "start": 15391.16, + "end": 15393.1, + "probability": 0.9963 + }, + { + "start": 15393.16, + "end": 15393.92, + "probability": 0.9769 + }, + { + "start": 15395.3, + "end": 15399.74, + "probability": 0.7599 + }, + { + "start": 15400.24, + "end": 15406.08, + "probability": 0.9521 + }, + { + "start": 15406.54, + "end": 15408.8, + "probability": 0.8092 + }, + { + "start": 15410.34, + "end": 15411.08, + "probability": 0.9243 + }, + { + "start": 15412.98, + "end": 15414.04, + "probability": 0.9327 + }, + { + "start": 15414.96, + "end": 15417.08, + "probability": 0.9897 + }, + { + "start": 15418.02, + "end": 15418.8, + "probability": 0.9743 + }, + { + "start": 15420.02, + "end": 15422.77, + "probability": 0.9743 + }, + { + "start": 15424.94, + "end": 15430.52, + "probability": 0.9659 + }, + { + "start": 15430.52, + "end": 15434.9, + "probability": 0.9091 + }, + { + "start": 15435.74, + "end": 15436.48, + "probability": 0.7107 + }, + { + "start": 15436.66, + "end": 15437.88, + "probability": 0.9316 + }, + { + "start": 15437.98, + "end": 15440.58, + "probability": 0.9819 + }, + { + "start": 15441.62, + "end": 15447.22, + "probability": 0.935 + }, + { + "start": 15447.24, + "end": 15449.54, + "probability": 0.9717 + }, + { + "start": 15449.58, + "end": 15453.6, + "probability": 0.9589 + }, + { + "start": 15454.02, + "end": 15454.92, + "probability": 0.5396 + }, + { + "start": 15455.06, + "end": 15455.74, + "probability": 0.772 + }, + { + "start": 15455.84, + "end": 15456.98, + "probability": 0.8857 + }, + { + "start": 15458.18, + "end": 15459.8, + "probability": 0.9627 + }, + { + "start": 15459.96, + "end": 15462.06, + "probability": 0.6131 + }, + { + "start": 15462.74, + "end": 15465.94, + "probability": 0.9868 + }, + { + "start": 15467.34, + "end": 15467.34, + "probability": 0.4338 + }, + { + "start": 15467.36, + "end": 15469.12, + "probability": 0.6981 + }, + { + "start": 15469.64, + "end": 15471.74, + "probability": 0.9922 + }, + { + "start": 15473.12, + "end": 15474.16, + "probability": 0.9374 + }, + { + "start": 15476.82, + "end": 15482.1, + "probability": 0.9893 + }, + { + "start": 15482.42, + "end": 15484.62, + "probability": 0.9811 + }, + { + "start": 15484.64, + "end": 15488.36, + "probability": 0.9977 + }, + { + "start": 15488.68, + "end": 15490.32, + "probability": 0.8922 + }, + { + "start": 15491.74, + "end": 15492.96, + "probability": 0.8556 + }, + { + "start": 15493.56, + "end": 15495.28, + "probability": 0.8455 + }, + { + "start": 15495.8, + "end": 15499.52, + "probability": 0.9248 + }, + { + "start": 15499.72, + "end": 15501.54, + "probability": 0.8682 + }, + { + "start": 15502.06, + "end": 15502.68, + "probability": 0.9748 + }, + { + "start": 15503.64, + "end": 15507.52, + "probability": 0.9794 + }, + { + "start": 15508.02, + "end": 15511.7, + "probability": 0.9572 + }, + { + "start": 15511.84, + "end": 15512.18, + "probability": 0.6948 + }, + { + "start": 15512.94, + "end": 15513.6, + "probability": 0.7267 + }, + { + "start": 15514.74, + "end": 15516.4, + "probability": 0.8852 + }, + { + "start": 15517.82, + "end": 15518.18, + "probability": 0.3321 + }, + { + "start": 15518.3, + "end": 15519.84, + "probability": 0.9661 + }, + { + "start": 15520.22, + "end": 15520.65, + "probability": 0.9412 + }, + { + "start": 15520.96, + "end": 15521.7, + "probability": 0.9284 + }, + { + "start": 15524.66, + "end": 15526.67, + "probability": 0.8088 + }, + { + "start": 15528.34, + "end": 15529.06, + "probability": 0.787 + }, + { + "start": 15532.78, + "end": 15534.72, + "probability": 0.5617 + }, + { + "start": 15535.84, + "end": 15536.26, + "probability": 0.7006 + }, + { + "start": 15536.36, + "end": 15541.52, + "probability": 0.9038 + }, + { + "start": 15541.86, + "end": 15542.88, + "probability": 0.6919 + }, + { + "start": 15543.76, + "end": 15548.44, + "probability": 0.9158 + }, + { + "start": 15549.26, + "end": 15553.54, + "probability": 0.809 + }, + { + "start": 15553.54, + "end": 15554.12, + "probability": 0.3723 + }, + { + "start": 15554.84, + "end": 15556.44, + "probability": 0.4744 + }, + { + "start": 15557.24, + "end": 15558.5, + "probability": 0.8807 + }, + { + "start": 15558.68, + "end": 15559.39, + "probability": 0.7749 + }, + { + "start": 15559.92, + "end": 15562.1, + "probability": 0.8747 + }, + { + "start": 15562.8, + "end": 15564.5, + "probability": 0.5121 + }, + { + "start": 15564.56, + "end": 15569.0, + "probability": 0.9561 + }, + { + "start": 15570.4, + "end": 15575.12, + "probability": 0.9714 + }, + { + "start": 15575.36, + "end": 15576.12, + "probability": 0.7461 + }, + { + "start": 15576.78, + "end": 15579.56, + "probability": 0.8395 + }, + { + "start": 15580.0, + "end": 15583.64, + "probability": 0.9522 + }, + { + "start": 15585.34, + "end": 15587.76, + "probability": 0.5122 + }, + { + "start": 15589.22, + "end": 15589.36, + "probability": 0.4843 + }, + { + "start": 15590.54, + "end": 15594.76, + "probability": 0.9045 + }, + { + "start": 15596.02, + "end": 15598.78, + "probability": 0.9306 + }, + { + "start": 15600.0, + "end": 15602.12, + "probability": 0.9346 + }, + { + "start": 15603.02, + "end": 15604.5, + "probability": 0.98 + }, + { + "start": 15605.74, + "end": 15610.0, + "probability": 0.9634 + }, + { + "start": 15610.22, + "end": 15611.58, + "probability": 0.7044 + }, + { + "start": 15613.04, + "end": 15616.44, + "probability": 0.9881 + }, + { + "start": 15617.32, + "end": 15620.18, + "probability": 0.8176 + }, + { + "start": 15621.04, + "end": 15623.16, + "probability": 0.7272 + }, + { + "start": 15623.9, + "end": 15624.76, + "probability": 0.942 + }, + { + "start": 15624.96, + "end": 15625.7, + "probability": 0.8973 + }, + { + "start": 15626.04, + "end": 15626.8, + "probability": 0.8679 + }, + { + "start": 15627.0, + "end": 15627.9, + "probability": 0.7671 + }, + { + "start": 15628.1, + "end": 15630.14, + "probability": 0.9162 + }, + { + "start": 15630.22, + "end": 15631.04, + "probability": 0.8147 + }, + { + "start": 15632.64, + "end": 15635.8, + "probability": 0.4921 + }, + { + "start": 15635.9, + "end": 15636.38, + "probability": 0.4437 + }, + { + "start": 15636.88, + "end": 15638.64, + "probability": 0.7245 + }, + { + "start": 15639.42, + "end": 15643.86, + "probability": 0.9707 + }, + { + "start": 15643.9, + "end": 15644.58, + "probability": 0.6452 + }, + { + "start": 15645.06, + "end": 15646.02, + "probability": 0.6763 + }, + { + "start": 15647.18, + "end": 15649.38, + "probability": 0.4709 + }, + { + "start": 15651.84, + "end": 15653.13, + "probability": 0.9116 + }, + { + "start": 15655.02, + "end": 15659.96, + "probability": 0.2138 + }, + { + "start": 15661.25, + "end": 15665.66, + "probability": 0.2177 + }, + { + "start": 15665.82, + "end": 15666.52, + "probability": 0.2915 + }, + { + "start": 15667.62, + "end": 15671.23, + "probability": 0.8005 + }, + { + "start": 15673.28, + "end": 15675.22, + "probability": 0.9824 + }, + { + "start": 15676.36, + "end": 15677.64, + "probability": 0.9316 + }, + { + "start": 15679.08, + "end": 15680.62, + "probability": 0.7323 + }, + { + "start": 15681.56, + "end": 15682.58, + "probability": 0.9624 + }, + { + "start": 15682.6, + "end": 15683.29, + "probability": 0.7338 + }, + { + "start": 15683.62, + "end": 15690.54, + "probability": 0.8379 + }, + { + "start": 15692.14, + "end": 15696.56, + "probability": 0.9977 + }, + { + "start": 15697.2, + "end": 15699.86, + "probability": 0.9526 + }, + { + "start": 15700.96, + "end": 15704.2, + "probability": 0.959 + }, + { + "start": 15704.8, + "end": 15710.38, + "probability": 0.932 + }, + { + "start": 15710.94, + "end": 15712.92, + "probability": 0.7261 + }, + { + "start": 15713.4, + "end": 15714.6, + "probability": 0.3115 + }, + { + "start": 15714.72, + "end": 15715.66, + "probability": 0.8091 + }, + { + "start": 15715.94, + "end": 15718.98, + "probability": 0.8702 + }, + { + "start": 15719.48, + "end": 15721.16, + "probability": 0.7566 + }, + { + "start": 15721.86, + "end": 15722.66, + "probability": 0.9758 + }, + { + "start": 15722.82, + "end": 15725.0, + "probability": 0.9744 + }, + { + "start": 15727.0, + "end": 15730.52, + "probability": 0.6267 + }, + { + "start": 15730.56, + "end": 15736.98, + "probability": 0.9641 + }, + { + "start": 15737.82, + "end": 15743.82, + "probability": 0.66 + }, + { + "start": 15744.22, + "end": 15744.92, + "probability": 0.7229 + }, + { + "start": 15745.64, + "end": 15745.64, + "probability": 0.0362 + }, + { + "start": 15745.64, + "end": 15749.62, + "probability": 0.6033 + }, + { + "start": 15750.1, + "end": 15750.1, + "probability": 0.0776 + }, + { + "start": 15750.64, + "end": 15752.3, + "probability": 0.3607 + }, + { + "start": 15752.56, + "end": 15758.02, + "probability": 0.5558 + }, + { + "start": 15758.22, + "end": 15763.77, + "probability": 0.7149 + }, + { + "start": 15764.94, + "end": 15766.19, + "probability": 0.4042 + }, + { + "start": 15766.52, + "end": 15770.2, + "probability": 0.6461 + }, + { + "start": 15771.12, + "end": 15774.28, + "probability": 0.887 + }, + { + "start": 15774.82, + "end": 15778.74, + "probability": 0.9294 + }, + { + "start": 15779.38, + "end": 15780.52, + "probability": 0.6626 + }, + { + "start": 15782.24, + "end": 15785.16, + "probability": 0.8135 + }, + { + "start": 15785.44, + "end": 15785.7, + "probability": 0.4848 + }, + { + "start": 15785.86, + "end": 15787.01, + "probability": 0.998 + }, + { + "start": 15787.62, + "end": 15789.0, + "probability": 0.9868 + }, + { + "start": 15789.7, + "end": 15796.5, + "probability": 0.996 + }, + { + "start": 15796.68, + "end": 15797.38, + "probability": 0.8252 + }, + { + "start": 15797.48, + "end": 15798.14, + "probability": 0.8591 + }, + { + "start": 15798.3, + "end": 15800.48, + "probability": 0.4827 + }, + { + "start": 15800.64, + "end": 15801.24, + "probability": 0.7579 + }, + { + "start": 15802.14, + "end": 15804.3, + "probability": 0.8017 + }, + { + "start": 15804.4, + "end": 15805.86, + "probability": 0.979 + }, + { + "start": 15806.38, + "end": 15808.32, + "probability": 0.9631 + }, + { + "start": 15809.66, + "end": 15810.78, + "probability": 0.9383 + }, + { + "start": 15810.98, + "end": 15815.78, + "probability": 0.9989 + }, + { + "start": 15816.02, + "end": 15820.22, + "probability": 0.9974 + }, + { + "start": 15820.38, + "end": 15822.02, + "probability": 0.9785 + }, + { + "start": 15823.1, + "end": 15824.38, + "probability": 0.4519 + }, + { + "start": 15824.78, + "end": 15829.31, + "probability": 0.2141 + }, + { + "start": 15830.58, + "end": 15835.26, + "probability": 0.9951 + }, + { + "start": 15836.25, + "end": 15838.13, + "probability": 0.1463 + }, + { + "start": 15838.78, + "end": 15841.98, + "probability": 0.2163 + }, + { + "start": 15845.18, + "end": 15845.26, + "probability": 0.1998 + }, + { + "start": 15845.26, + "end": 15845.54, + "probability": 0.0343 + }, + { + "start": 15846.88, + "end": 15852.74, + "probability": 0.6934 + }, + { + "start": 15852.96, + "end": 15854.1, + "probability": 0.8711 + }, + { + "start": 15854.8, + "end": 15856.78, + "probability": 0.9186 + }, + { + "start": 15858.2, + "end": 15859.42, + "probability": 0.9453 + }, + { + "start": 15859.62, + "end": 15863.62, + "probability": 0.9984 + }, + { + "start": 15863.88, + "end": 15864.82, + "probability": 0.4094 + }, + { + "start": 15864.98, + "end": 15866.23, + "probability": 0.9834 + }, + { + "start": 15866.8, + "end": 15868.25, + "probability": 0.9759 + }, + { + "start": 15868.92, + "end": 15871.08, + "probability": 0.9173 + }, + { + "start": 15871.54, + "end": 15877.9, + "probability": 0.9731 + }, + { + "start": 15878.22, + "end": 15880.42, + "probability": 0.9417 + }, + { + "start": 15880.48, + "end": 15882.64, + "probability": 0.6738 + }, + { + "start": 15882.74, + "end": 15883.23, + "probability": 0.9856 + }, + { + "start": 15883.74, + "end": 15885.07, + "probability": 0.9423 + }, + { + "start": 15885.36, + "end": 15888.38, + "probability": 0.9933 + }, + { + "start": 15888.7, + "end": 15890.14, + "probability": 0.9458 + }, + { + "start": 15890.18, + "end": 15892.74, + "probability": 0.9963 + }, + { + "start": 15892.98, + "end": 15893.78, + "probability": 0.7826 + }, + { + "start": 15893.84, + "end": 15894.78, + "probability": 0.6776 + }, + { + "start": 15894.86, + "end": 15895.82, + "probability": 0.7887 + }, + { + "start": 15895.9, + "end": 15896.4, + "probability": 0.8036 + }, + { + "start": 15897.12, + "end": 15900.98, + "probability": 0.9488 + }, + { + "start": 15901.56, + "end": 15904.02, + "probability": 0.9622 + }, + { + "start": 15904.34, + "end": 15905.22, + "probability": 0.9368 + }, + { + "start": 15905.36, + "end": 15906.54, + "probability": 0.9239 + }, + { + "start": 15906.62, + "end": 15907.5, + "probability": 0.6477 + }, + { + "start": 15907.72, + "end": 15910.78, + "probability": 0.8506 + }, + { + "start": 15911.38, + "end": 15914.7, + "probability": 0.7405 + }, + { + "start": 15915.04, + "end": 15919.28, + "probability": 0.9237 + }, + { + "start": 15919.62, + "end": 15920.64, + "probability": 0.9216 + }, + { + "start": 15920.66, + "end": 15921.12, + "probability": 0.5558 + }, + { + "start": 15921.74, + "end": 15924.64, + "probability": 0.8844 + }, + { + "start": 15924.82, + "end": 15927.4, + "probability": 0.8564 + }, + { + "start": 15927.5, + "end": 15933.02, + "probability": 0.9551 + }, + { + "start": 15933.32, + "end": 15935.62, + "probability": 0.6891 + }, + { + "start": 15936.22, + "end": 15940.56, + "probability": 0.952 + }, + { + "start": 15941.54, + "end": 15943.1, + "probability": 0.9832 + }, + { + "start": 15943.96, + "end": 15946.54, + "probability": 0.7393 + }, + { + "start": 15947.74, + "end": 15949.68, + "probability": 0.9972 + }, + { + "start": 15949.9, + "end": 15951.22, + "probability": 0.9692 + }, + { + "start": 15951.36, + "end": 15952.14, + "probability": 0.6118 + }, + { + "start": 15952.72, + "end": 15953.86, + "probability": 0.7977 + }, + { + "start": 15954.36, + "end": 15957.54, + "probability": 0.9917 + }, + { + "start": 15958.18, + "end": 15961.61, + "probability": 0.8352 + }, + { + "start": 15964.06, + "end": 15964.46, + "probability": 0.1232 + }, + { + "start": 15965.4, + "end": 15970.22, + "probability": 0.8494 + }, + { + "start": 15970.62, + "end": 15973.68, + "probability": 0.9653 + }, + { + "start": 15974.84, + "end": 15975.16, + "probability": 0.7732 + }, + { + "start": 15976.18, + "end": 15977.3, + "probability": 0.9717 + }, + { + "start": 15977.84, + "end": 15982.66, + "probability": 0.9731 + }, + { + "start": 15982.66, + "end": 15985.02, + "probability": 0.9736 + }, + { + "start": 15985.44, + "end": 15989.17, + "probability": 0.9955 + }, + { + "start": 15989.74, + "end": 15993.22, + "probability": 0.9155 + }, + { + "start": 15993.76, + "end": 15995.36, + "probability": 0.5494 + }, + { + "start": 15995.54, + "end": 15997.58, + "probability": 0.8581 + }, + { + "start": 15997.8, + "end": 15999.16, + "probability": 0.9602 + }, + { + "start": 16000.9, + "end": 16003.38, + "probability": 0.6895 + }, + { + "start": 16004.18, + "end": 16005.16, + "probability": 0.8257 + }, + { + "start": 16005.66, + "end": 16007.82, + "probability": 0.9896 + }, + { + "start": 16008.08, + "end": 16009.16, + "probability": 0.9618 + }, + { + "start": 16009.6, + "end": 16013.16, + "probability": 0.9686 + }, + { + "start": 16013.16, + "end": 16015.6, + "probability": 0.9996 + }, + { + "start": 16016.42, + "end": 16017.96, + "probability": 0.7888 + }, + { + "start": 16018.12, + "end": 16019.5, + "probability": 0.8102 + }, + { + "start": 16019.58, + "end": 16020.4, + "probability": 0.9296 + }, + { + "start": 16021.16, + "end": 16021.94, + "probability": 0.9326 + }, + { + "start": 16022.48, + "end": 16023.4, + "probability": 0.5883 + }, + { + "start": 16023.82, + "end": 16024.38, + "probability": 0.877 + }, + { + "start": 16024.74, + "end": 16028.52, + "probability": 0.9984 + }, + { + "start": 16028.52, + "end": 16034.46, + "probability": 0.9934 + }, + { + "start": 16035.12, + "end": 16036.78, + "probability": 0.8767 + }, + { + "start": 16037.28, + "end": 16039.38, + "probability": 0.9923 + }, + { + "start": 16039.5, + "end": 16040.07, + "probability": 0.9442 + }, + { + "start": 16040.14, + "end": 16041.2, + "probability": 0.835 + }, + { + "start": 16041.54, + "end": 16043.0, + "probability": 0.8944 + }, + { + "start": 16043.34, + "end": 16046.46, + "probability": 0.83 + }, + { + "start": 16046.94, + "end": 16049.46, + "probability": 0.9926 + }, + { + "start": 16049.74, + "end": 16051.4, + "probability": 0.9674 + }, + { + "start": 16052.22, + "end": 16055.6, + "probability": 0.9845 + }, + { + "start": 16056.14, + "end": 16056.14, + "probability": 0.1441 + }, + { + "start": 16056.14, + "end": 16057.92, + "probability": 0.9618 + }, + { + "start": 16059.08, + "end": 16063.92, + "probability": 0.8804 + }, + { + "start": 16064.22, + "end": 16065.28, + "probability": 0.3955 + }, + { + "start": 16065.76, + "end": 16068.0, + "probability": 0.9952 + }, + { + "start": 16068.64, + "end": 16072.24, + "probability": 0.835 + }, + { + "start": 16072.74, + "end": 16076.8, + "probability": 0.9917 + }, + { + "start": 16077.12, + "end": 16079.94, + "probability": 0.9923 + }, + { + "start": 16080.56, + "end": 16081.1, + "probability": 0.5634 + }, + { + "start": 16081.86, + "end": 16084.58, + "probability": 0.99 + }, + { + "start": 16085.44, + "end": 16089.96, + "probability": 0.948 + }, + { + "start": 16090.4, + "end": 16094.32, + "probability": 0.9626 + }, + { + "start": 16094.46, + "end": 16095.24, + "probability": 0.7593 + }, + { + "start": 16095.76, + "end": 16099.46, + "probability": 0.9463 + }, + { + "start": 16099.84, + "end": 16101.54, + "probability": 0.9917 + }, + { + "start": 16101.84, + "end": 16102.66, + "probability": 0.481 + }, + { + "start": 16103.0, + "end": 16105.04, + "probability": 0.6644 + }, + { + "start": 16105.64, + "end": 16108.94, + "probability": 0.9986 + }, + { + "start": 16109.72, + "end": 16114.05, + "probability": 0.991 + }, + { + "start": 16114.38, + "end": 16114.78, + "probability": 0.8891 + }, + { + "start": 16115.22, + "end": 16115.78, + "probability": 0.6595 + }, + { + "start": 16115.88, + "end": 16117.88, + "probability": 0.8864 + }, + { + "start": 16118.0, + "end": 16119.36, + "probability": 0.8161 + }, + { + "start": 16119.48, + "end": 16122.44, + "probability": 0.722 + }, + { + "start": 16122.76, + "end": 16125.52, + "probability": 0.9795 + }, + { + "start": 16126.4, + "end": 16129.6, + "probability": 0.9925 + }, + { + "start": 16129.96, + "end": 16130.52, + "probability": 0.5532 + }, + { + "start": 16130.8, + "end": 16131.58, + "probability": 0.8206 + }, + { + "start": 16131.88, + "end": 16133.6, + "probability": 0.7954 + }, + { + "start": 16134.14, + "end": 16135.7, + "probability": 0.7375 + }, + { + "start": 16136.22, + "end": 16136.6, + "probability": 0.6653 + }, + { + "start": 16137.86, + "end": 16138.45, + "probability": 0.9463 + }, + { + "start": 16139.64, + "end": 16139.96, + "probability": 0.9937 + }, + { + "start": 16140.84, + "end": 16146.94, + "probability": 0.9702 + }, + { + "start": 16147.11, + "end": 16149.72, + "probability": 0.4795 + }, + { + "start": 16150.56, + "end": 16153.68, + "probability": 0.937 + }, + { + "start": 16154.9, + "end": 16155.46, + "probability": 0.7952 + }, + { + "start": 16156.14, + "end": 16158.16, + "probability": 0.7842 + }, + { + "start": 16160.04, + "end": 16162.76, + "probability": 0.9724 + }, + { + "start": 16164.06, + "end": 16168.58, + "probability": 0.6974 + }, + { + "start": 16180.2, + "end": 16181.14, + "probability": 0.4849 + }, + { + "start": 16181.84, + "end": 16182.52, + "probability": 0.8007 + }, + { + "start": 16182.58, + "end": 16184.96, + "probability": 0.9983 + }, + { + "start": 16184.96, + "end": 16188.12, + "probability": 0.9933 + }, + { + "start": 16188.36, + "end": 16189.72, + "probability": 0.9471 + }, + { + "start": 16189.92, + "end": 16190.04, + "probability": 0.8021 + }, + { + "start": 16191.24, + "end": 16193.77, + "probability": 0.9528 + }, + { + "start": 16198.9, + "end": 16200.04, + "probability": 0.9104 + }, + { + "start": 16200.12, + "end": 16201.48, + "probability": 0.884 + }, + { + "start": 16201.64, + "end": 16201.86, + "probability": 0.6332 + }, + { + "start": 16201.9, + "end": 16203.48, + "probability": 0.9702 + }, + { + "start": 16204.1, + "end": 16205.35, + "probability": 0.9736 + }, + { + "start": 16206.6, + "end": 16207.94, + "probability": 0.758 + }, + { + "start": 16208.54, + "end": 16215.86, + "probability": 0.9736 + }, + { + "start": 16217.04, + "end": 16221.06, + "probability": 0.9845 + }, + { + "start": 16221.14, + "end": 16221.52, + "probability": 0.4759 + }, + { + "start": 16221.68, + "end": 16223.22, + "probability": 0.881 + }, + { + "start": 16223.46, + "end": 16224.16, + "probability": 0.9074 + }, + { + "start": 16225.0, + "end": 16225.62, + "probability": 0.9883 + }, + { + "start": 16226.36, + "end": 16227.4, + "probability": 0.9854 + }, + { + "start": 16228.16, + "end": 16229.14, + "probability": 0.809 + }, + { + "start": 16229.6, + "end": 16231.96, + "probability": 0.9602 + }, + { + "start": 16232.38, + "end": 16233.04, + "probability": 0.9165 + }, + { + "start": 16233.1, + "end": 16234.58, + "probability": 0.8133 + }, + { + "start": 16235.5, + "end": 16236.98, + "probability": 0.9655 + }, + { + "start": 16237.24, + "end": 16237.38, + "probability": 0.563 + }, + { + "start": 16237.54, + "end": 16238.02, + "probability": 0.9114 + }, + { + "start": 16238.28, + "end": 16240.83, + "probability": 0.9731 + }, + { + "start": 16241.5, + "end": 16244.26, + "probability": 0.9568 + }, + { + "start": 16244.58, + "end": 16245.52, + "probability": 0.6008 + }, + { + "start": 16245.66, + "end": 16246.56, + "probability": 0.6509 + }, + { + "start": 16246.86, + "end": 16248.32, + "probability": 0.8949 + }, + { + "start": 16249.3, + "end": 16251.78, + "probability": 0.8668 + }, + { + "start": 16252.38, + "end": 16253.46, + "probability": 0.8535 + }, + { + "start": 16254.64, + "end": 16256.86, + "probability": 0.9933 + }, + { + "start": 16257.66, + "end": 16258.33, + "probability": 0.9087 + }, + { + "start": 16259.2, + "end": 16263.36, + "probability": 0.8903 + }, + { + "start": 16264.26, + "end": 16265.98, + "probability": 0.5555 + }, + { + "start": 16266.49, + "end": 16270.98, + "probability": 0.7167 + }, + { + "start": 16272.14, + "end": 16274.96, + "probability": 0.7442 + }, + { + "start": 16274.98, + "end": 16277.58, + "probability": 0.5716 + }, + { + "start": 16278.18, + "end": 16278.5, + "probability": 0.6337 + }, + { + "start": 16279.16, + "end": 16279.7, + "probability": 0.413 + }, + { + "start": 16280.2, + "end": 16285.52, + "probability": 0.7924 + }, + { + "start": 16285.52, + "end": 16285.98, + "probability": 0.5031 + }, + { + "start": 16286.12, + "end": 16292.44, + "probability": 0.8669 + }, + { + "start": 16292.56, + "end": 16293.96, + "probability": 0.9043 + }, + { + "start": 16295.28, + "end": 16295.62, + "probability": 0.7944 + }, + { + "start": 16295.76, + "end": 16296.3, + "probability": 0.7994 + }, + { + "start": 16296.38, + "end": 16297.36, + "probability": 0.9964 + }, + { + "start": 16297.88, + "end": 16298.79, + "probability": 0.9858 + }, + { + "start": 16299.54, + "end": 16302.42, + "probability": 0.894 + }, + { + "start": 16303.42, + "end": 16306.0, + "probability": 0.7354 + }, + { + "start": 16306.78, + "end": 16308.22, + "probability": 0.9061 + }, + { + "start": 16308.3, + "end": 16308.74, + "probability": 0.8426 + }, + { + "start": 16308.86, + "end": 16312.92, + "probability": 0.98 + }, + { + "start": 16313.66, + "end": 16315.68, + "probability": 0.9979 + }, + { + "start": 16316.08, + "end": 16320.48, + "probability": 0.9901 + }, + { + "start": 16320.66, + "end": 16321.86, + "probability": 0.3957 + }, + { + "start": 16322.02, + "end": 16322.94, + "probability": 0.7816 + }, + { + "start": 16323.02, + "end": 16324.92, + "probability": 0.6265 + }, + { + "start": 16325.96, + "end": 16326.32, + "probability": 0.554 + }, + { + "start": 16326.62, + "end": 16327.08, + "probability": 0.137 + }, + { + "start": 16327.2, + "end": 16328.64, + "probability": 0.9834 + }, + { + "start": 16329.7, + "end": 16332.6, + "probability": 0.9605 + }, + { + "start": 16333.28, + "end": 16335.7, + "probability": 0.9604 + }, + { + "start": 16335.82, + "end": 16337.12, + "probability": 0.9124 + }, + { + "start": 16337.92, + "end": 16339.94, + "probability": 0.9877 + }, + { + "start": 16341.24, + "end": 16343.1, + "probability": 0.7722 + }, + { + "start": 16343.82, + "end": 16344.06, + "probability": 0.4697 + }, + { + "start": 16344.18, + "end": 16349.26, + "probability": 0.9915 + }, + { + "start": 16350.06, + "end": 16351.22, + "probability": 0.9465 + }, + { + "start": 16351.56, + "end": 16355.8, + "probability": 0.9093 + }, + { + "start": 16356.38, + "end": 16357.06, + "probability": 0.6172 + }, + { + "start": 16357.18, + "end": 16357.58, + "probability": 0.8986 + }, + { + "start": 16357.64, + "end": 16358.38, + "probability": 0.8831 + }, + { + "start": 16358.44, + "end": 16359.72, + "probability": 0.5132 + }, + { + "start": 16360.0, + "end": 16360.41, + "probability": 0.8735 + }, + { + "start": 16361.42, + "end": 16366.72, + "probability": 0.978 + }, + { + "start": 16367.24, + "end": 16369.76, + "probability": 0.9937 + }, + { + "start": 16369.92, + "end": 16371.06, + "probability": 0.6929 + }, + { + "start": 16372.08, + "end": 16373.68, + "probability": 0.8026 + }, + { + "start": 16374.08, + "end": 16376.1, + "probability": 0.9963 + }, + { + "start": 16376.74, + "end": 16379.2, + "probability": 0.9194 + }, + { + "start": 16379.2, + "end": 16382.74, + "probability": 0.7595 + }, + { + "start": 16383.12, + "end": 16384.22, + "probability": 0.7583 + }, + { + "start": 16385.0, + "end": 16385.14, + "probability": 0.3962 + }, + { + "start": 16385.64, + "end": 16386.48, + "probability": 0.6935 + }, + { + "start": 16386.9, + "end": 16388.26, + "probability": 0.9771 + }, + { + "start": 16389.1, + "end": 16390.91, + "probability": 0.8923 + }, + { + "start": 16391.26, + "end": 16392.24, + "probability": 0.477 + }, + { + "start": 16392.5, + "end": 16394.36, + "probability": 0.835 + }, + { + "start": 16394.96, + "end": 16398.18, + "probability": 0.9647 + }, + { + "start": 16398.64, + "end": 16402.56, + "probability": 0.9044 + }, + { + "start": 16402.94, + "end": 16405.02, + "probability": 0.9408 + }, + { + "start": 16405.2, + "end": 16405.38, + "probability": 0.8121 + }, + { + "start": 16405.94, + "end": 16406.52, + "probability": 0.892 + }, + { + "start": 16407.9, + "end": 16410.0, + "probability": 0.8577 + }, + { + "start": 16410.64, + "end": 16411.8, + "probability": 0.6914 + }, + { + "start": 16412.74, + "end": 16416.08, + "probability": 0.5837 + }, + { + "start": 16417.18, + "end": 16417.7, + "probability": 0.0942 + }, + { + "start": 16421.62, + "end": 16423.96, + "probability": 0.7074 + }, + { + "start": 16424.08, + "end": 16424.78, + "probability": 0.8482 + }, + { + "start": 16424.94, + "end": 16426.42, + "probability": 0.7221 + }, + { + "start": 16426.92, + "end": 16428.12, + "probability": 0.6879 + }, + { + "start": 16432.3, + "end": 16434.1, + "probability": 0.6961 + }, + { + "start": 16434.72, + "end": 16436.16, + "probability": 0.5766 + }, + { + "start": 16437.44, + "end": 16439.0, + "probability": 0.4209 + }, + { + "start": 16439.06, + "end": 16440.74, + "probability": 0.8685 + }, + { + "start": 16440.84, + "end": 16442.1, + "probability": 0.8228 + }, + { + "start": 16442.43, + "end": 16445.8, + "probability": 0.8445 + }, + { + "start": 16446.6, + "end": 16447.5, + "probability": 0.915 + }, + { + "start": 16448.04, + "end": 16449.87, + "probability": 0.9937 + }, + { + "start": 16450.66, + "end": 16452.62, + "probability": 0.9849 + }, + { + "start": 16453.48, + "end": 16455.65, + "probability": 0.9349 + }, + { + "start": 16456.3, + "end": 16456.96, + "probability": 0.8798 + }, + { + "start": 16458.08, + "end": 16460.76, + "probability": 0.9812 + }, + { + "start": 16461.64, + "end": 16462.24, + "probability": 0.9885 + }, + { + "start": 16462.82, + "end": 16466.0, + "probability": 0.9998 + }, + { + "start": 16466.8, + "end": 16467.9, + "probability": 0.7496 + }, + { + "start": 16468.32, + "end": 16469.48, + "probability": 0.6419 + }, + { + "start": 16469.52, + "end": 16469.9, + "probability": 0.4303 + }, + { + "start": 16470.0, + "end": 16470.78, + "probability": 0.9104 + }, + { + "start": 16471.1, + "end": 16471.38, + "probability": 0.2795 + }, + { + "start": 16471.58, + "end": 16472.74, + "probability": 0.8221 + }, + { + "start": 16473.02, + "end": 16474.16, + "probability": 0.9368 + }, + { + "start": 16474.26, + "end": 16479.08, + "probability": 0.8291 + }, + { + "start": 16479.76, + "end": 16481.74, + "probability": 0.3395 + }, + { + "start": 16482.88, + "end": 16485.42, + "probability": 0.8982 + }, + { + "start": 16486.12, + "end": 16486.96, + "probability": 0.8444 + }, + { + "start": 16487.86, + "end": 16493.3, + "probability": 0.9778 + }, + { + "start": 16494.02, + "end": 16497.08, + "probability": 0.9568 + }, + { + "start": 16499.3, + "end": 16501.92, + "probability": 0.9584 + }, + { + "start": 16502.08, + "end": 16504.82, + "probability": 0.8671 + }, + { + "start": 16505.74, + "end": 16506.46, + "probability": 0.8182 + }, + { + "start": 16506.98, + "end": 16511.56, + "probability": 0.9833 + }, + { + "start": 16511.56, + "end": 16514.42, + "probability": 0.9547 + }, + { + "start": 16516.44, + "end": 16518.94, + "probability": 0.816 + }, + { + "start": 16521.22, + "end": 16529.96, + "probability": 0.9995 + }, + { + "start": 16530.02, + "end": 16530.2, + "probability": 0.2901 + }, + { + "start": 16530.2, + "end": 16532.24, + "probability": 0.9819 + }, + { + "start": 16533.72, + "end": 16536.5, + "probability": 0.9817 + }, + { + "start": 16537.24, + "end": 16538.34, + "probability": 0.8126 + }, + { + "start": 16539.24, + "end": 16542.12, + "probability": 0.8855 + }, + { + "start": 16544.46, + "end": 16545.07, + "probability": 0.9639 + }, + { + "start": 16545.24, + "end": 16546.38, + "probability": 0.9286 + }, + { + "start": 16546.42, + "end": 16548.26, + "probability": 0.6553 + }, + { + "start": 16548.48, + "end": 16551.14, + "probability": 0.8818 + }, + { + "start": 16553.02, + "end": 16554.8, + "probability": 0.9992 + }, + { + "start": 16555.86, + "end": 16557.02, + "probability": 0.9683 + }, + { + "start": 16557.78, + "end": 16558.82, + "probability": 0.7217 + }, + { + "start": 16560.1, + "end": 16560.87, + "probability": 0.5589 + }, + { + "start": 16562.16, + "end": 16564.12, + "probability": 0.8636 + }, + { + "start": 16565.34, + "end": 16570.16, + "probability": 0.9734 + }, + { + "start": 16570.18, + "end": 16570.67, + "probability": 0.9468 + }, + { + "start": 16571.44, + "end": 16573.88, + "probability": 0.9883 + }, + { + "start": 16573.9, + "end": 16578.0, + "probability": 0.7334 + }, + { + "start": 16578.08, + "end": 16581.16, + "probability": 0.7485 + }, + { + "start": 16581.16, + "end": 16587.0, + "probability": 0.9953 + }, + { + "start": 16587.1, + "end": 16587.88, + "probability": 0.7462 + }, + { + "start": 16588.34, + "end": 16591.06, + "probability": 0.9979 + }, + { + "start": 16591.06, + "end": 16594.14, + "probability": 0.9237 + }, + { + "start": 16595.94, + "end": 16599.22, + "probability": 0.7271 + }, + { + "start": 16599.8, + "end": 16600.84, + "probability": 0.9407 + }, + { + "start": 16601.48, + "end": 16605.56, + "probability": 0.8001 + }, + { + "start": 16605.66, + "end": 16612.7, + "probability": 0.8782 + }, + { + "start": 16612.84, + "end": 16613.06, + "probability": 0.6622 + }, + { + "start": 16613.78, + "end": 16614.6, + "probability": 0.9618 + }, + { + "start": 16615.58, + "end": 16617.16, + "probability": 0.798 + }, + { + "start": 16618.04, + "end": 16618.86, + "probability": 0.417 + }, + { + "start": 16631.96, + "end": 16634.64, + "probability": 0.7123 + }, + { + "start": 16635.28, + "end": 16639.02, + "probability": 0.6687 + }, + { + "start": 16640.12, + "end": 16648.9, + "probability": 0.9478 + }, + { + "start": 16650.98, + "end": 16656.94, + "probability": 0.9761 + }, + { + "start": 16658.84, + "end": 16663.4, + "probability": 0.9172 + }, + { + "start": 16663.8, + "end": 16667.64, + "probability": 0.9951 + }, + { + "start": 16668.78, + "end": 16673.46, + "probability": 0.9956 + }, + { + "start": 16674.12, + "end": 16677.03, + "probability": 0.9678 + }, + { + "start": 16677.34, + "end": 16679.1, + "probability": 0.9826 + }, + { + "start": 16679.34, + "end": 16680.54, + "probability": 0.5458 + }, + { + "start": 16681.42, + "end": 16684.98, + "probability": 0.9615 + }, + { + "start": 16685.92, + "end": 16687.7, + "probability": 0.974 + }, + { + "start": 16687.88, + "end": 16689.42, + "probability": 0.9726 + }, + { + "start": 16689.52, + "end": 16691.99, + "probability": 0.9949 + }, + { + "start": 16693.66, + "end": 16697.86, + "probability": 0.9953 + }, + { + "start": 16699.52, + "end": 16701.0, + "probability": 0.627 + }, + { + "start": 16701.34, + "end": 16704.02, + "probability": 0.9286 + }, + { + "start": 16704.86, + "end": 16706.12, + "probability": 0.8438 + }, + { + "start": 16706.64, + "end": 16711.54, + "probability": 0.9795 + }, + { + "start": 16711.76, + "end": 16714.26, + "probability": 0.959 + }, + { + "start": 16715.0, + "end": 16718.84, + "probability": 0.8959 + }, + { + "start": 16719.54, + "end": 16725.14, + "probability": 0.9908 + }, + { + "start": 16725.14, + "end": 16731.02, + "probability": 0.9992 + }, + { + "start": 16731.24, + "end": 16732.6, + "probability": 0.8724 + }, + { + "start": 16733.46, + "end": 16734.5, + "probability": 0.817 + }, + { + "start": 16734.56, + "end": 16737.18, + "probability": 0.9656 + }, + { + "start": 16737.66, + "end": 16743.06, + "probability": 0.9874 + }, + { + "start": 16743.6, + "end": 16745.02, + "probability": 0.8635 + }, + { + "start": 16745.14, + "end": 16748.4, + "probability": 0.9988 + }, + { + "start": 16748.4, + "end": 16754.46, + "probability": 0.9604 + }, + { + "start": 16755.24, + "end": 16758.3, + "probability": 0.9637 + }, + { + "start": 16758.86, + "end": 16760.94, + "probability": 0.9993 + }, + { + "start": 16762.26, + "end": 16763.06, + "probability": 0.7557 + }, + { + "start": 16763.18, + "end": 16764.58, + "probability": 0.9898 + }, + { + "start": 16764.68, + "end": 16768.0, + "probability": 0.9784 + }, + { + "start": 16768.88, + "end": 16776.26, + "probability": 0.9852 + }, + { + "start": 16776.92, + "end": 16781.58, + "probability": 0.8626 + }, + { + "start": 16782.14, + "end": 16784.18, + "probability": 0.7923 + }, + { + "start": 16784.72, + "end": 16785.92, + "probability": 0.9365 + }, + { + "start": 16786.56, + "end": 16792.06, + "probability": 0.9873 + }, + { + "start": 16793.26, + "end": 16794.84, + "probability": 0.8764 + }, + { + "start": 16795.18, + "end": 16795.86, + "probability": 0.9415 + }, + { + "start": 16795.92, + "end": 16797.45, + "probability": 0.9987 + }, + { + "start": 16798.24, + "end": 16798.52, + "probability": 0.7665 + }, + { + "start": 16798.72, + "end": 16803.78, + "probability": 0.9974 + }, + { + "start": 16804.06, + "end": 16805.32, + "probability": 0.631 + }, + { + "start": 16805.54, + "end": 16806.22, + "probability": 0.743 + }, + { + "start": 16806.38, + "end": 16808.98, + "probability": 0.9679 + }, + { + "start": 16809.4, + "end": 16811.99, + "probability": 0.964 + }, + { + "start": 16812.48, + "end": 16818.1, + "probability": 0.9899 + }, + { + "start": 16818.66, + "end": 16821.96, + "probability": 0.9697 + }, + { + "start": 16822.1, + "end": 16824.39, + "probability": 0.5222 + }, + { + "start": 16825.24, + "end": 16831.8, + "probability": 0.9753 + }, + { + "start": 16832.36, + "end": 16837.04, + "probability": 0.9821 + }, + { + "start": 16837.22, + "end": 16840.28, + "probability": 0.9738 + }, + { + "start": 16840.4, + "end": 16845.08, + "probability": 0.9634 + }, + { + "start": 16845.32, + "end": 16850.64, + "probability": 0.9839 + }, + { + "start": 16851.32, + "end": 16855.62, + "probability": 0.9398 + }, + { + "start": 16855.86, + "end": 16859.52, + "probability": 0.9612 + }, + { + "start": 16860.02, + "end": 16864.38, + "probability": 0.9917 + }, + { + "start": 16864.5, + "end": 16867.98, + "probability": 0.9946 + }, + { + "start": 16868.02, + "end": 16869.66, + "probability": 0.9373 + }, + { + "start": 16869.66, + "end": 16873.28, + "probability": 0.9881 + }, + { + "start": 16873.98, + "end": 16877.82, + "probability": 0.9351 + }, + { + "start": 16878.4, + "end": 16886.84, + "probability": 0.923 + }, + { + "start": 16887.08, + "end": 16888.58, + "probability": 0.8247 + }, + { + "start": 16888.8, + "end": 16891.9, + "probability": 0.9909 + }, + { + "start": 16892.26, + "end": 16895.0, + "probability": 0.9946 + }, + { + "start": 16895.24, + "end": 16896.22, + "probability": 0.8038 + }, + { + "start": 16896.64, + "end": 16899.55, + "probability": 0.8571 + }, + { + "start": 16900.78, + "end": 16905.14, + "probability": 0.9445 + }, + { + "start": 16905.46, + "end": 16908.55, + "probability": 0.885 + }, + { + "start": 16909.06, + "end": 16911.58, + "probability": 0.8948 + }, + { + "start": 16911.68, + "end": 16913.5, + "probability": 0.7985 + }, + { + "start": 16913.94, + "end": 16915.4, + "probability": 0.8491 + }, + { + "start": 16915.56, + "end": 16916.02, + "probability": 0.501 + }, + { + "start": 16916.64, + "end": 16921.0, + "probability": 0.9923 + }, + { + "start": 16921.42, + "end": 16923.66, + "probability": 0.991 + }, + { + "start": 16924.52, + "end": 16926.84, + "probability": 0.8921 + }, + { + "start": 16927.3, + "end": 16930.26, + "probability": 0.9396 + }, + { + "start": 16930.46, + "end": 16931.66, + "probability": 0.8848 + }, + { + "start": 16932.2, + "end": 16937.04, + "probability": 0.9795 + }, + { + "start": 16937.24, + "end": 16942.0, + "probability": 0.9601 + }, + { + "start": 16942.0, + "end": 16944.62, + "probability": 0.9875 + }, + { + "start": 16945.98, + "end": 16946.28, + "probability": 0.6732 + }, + { + "start": 16946.8, + "end": 16950.92, + "probability": 0.993 + }, + { + "start": 16950.92, + "end": 16954.08, + "probability": 0.9318 + }, + { + "start": 16954.52, + "end": 16955.2, + "probability": 0.7174 + }, + { + "start": 16955.3, + "end": 16957.64, + "probability": 0.9964 + }, + { + "start": 16958.02, + "end": 16962.2, + "probability": 0.9983 + }, + { + "start": 16962.36, + "end": 16967.96, + "probability": 0.9974 + }, + { + "start": 16968.22, + "end": 16970.9, + "probability": 0.9855 + }, + { + "start": 16971.58, + "end": 16972.68, + "probability": 0.929 + }, + { + "start": 16973.38, + "end": 16979.54, + "probability": 0.8829 + }, + { + "start": 16980.58, + "end": 16980.94, + "probability": 0.4996 + }, + { + "start": 16982.14, + "end": 16983.28, + "probability": 0.8656 + }, + { + "start": 16983.9, + "end": 16987.06, + "probability": 0.9758 + }, + { + "start": 16987.64, + "end": 16993.64, + "probability": 0.9663 + }, + { + "start": 16994.2, + "end": 16996.32, + "probability": 0.9968 + }, + { + "start": 16997.52, + "end": 17004.58, + "probability": 0.9871 + }, + { + "start": 17004.8, + "end": 17011.84, + "probability": 0.9927 + }, + { + "start": 17012.22, + "end": 17015.18, + "probability": 0.9802 + }, + { + "start": 17015.78, + "end": 17016.96, + "probability": 0.8835 + }, + { + "start": 17017.02, + "end": 17020.12, + "probability": 0.9691 + }, + { + "start": 17020.62, + "end": 17022.16, + "probability": 0.8862 + }, + { + "start": 17022.54, + "end": 17023.34, + "probability": 0.9512 + }, + { + "start": 17023.6, + "end": 17027.88, + "probability": 0.9235 + }, + { + "start": 17027.88, + "end": 17031.22, + "probability": 0.9778 + }, + { + "start": 17031.42, + "end": 17036.8, + "probability": 0.9744 + }, + { + "start": 17037.44, + "end": 17042.36, + "probability": 0.9937 + }, + { + "start": 17042.94, + "end": 17047.84, + "probability": 0.9777 + }, + { + "start": 17048.16, + "end": 17048.66, + "probability": 0.6136 + }, + { + "start": 17049.2, + "end": 17053.57, + "probability": 0.9891 + }, + { + "start": 17054.46, + "end": 17060.94, + "probability": 0.9938 + }, + { + "start": 17061.88, + "end": 17062.94, + "probability": 0.6401 + }, + { + "start": 17063.6, + "end": 17064.62, + "probability": 0.8562 + }, + { + "start": 17064.66, + "end": 17065.62, + "probability": 0.8248 + }, + { + "start": 17065.94, + "end": 17071.1, + "probability": 0.9702 + }, + { + "start": 17071.2, + "end": 17072.16, + "probability": 0.6499 + }, + { + "start": 17073.1, + "end": 17080.18, + "probability": 0.9807 + }, + { + "start": 17081.22, + "end": 17083.36, + "probability": 0.9937 + }, + { + "start": 17083.92, + "end": 17088.04, + "probability": 0.8322 + }, + { + "start": 17088.04, + "end": 17091.7, + "probability": 0.8516 + }, + { + "start": 17092.36, + "end": 17094.74, + "probability": 0.8984 + }, + { + "start": 17095.2, + "end": 17096.3, + "probability": 0.8409 + }, + { + "start": 17096.4, + "end": 17096.92, + "probability": 0.8668 + }, + { + "start": 17097.0, + "end": 17099.22, + "probability": 0.9121 + }, + { + "start": 17099.34, + "end": 17100.94, + "probability": 0.9862 + }, + { + "start": 17101.56, + "end": 17102.6, + "probability": 0.8598 + }, + { + "start": 17102.76, + "end": 17107.18, + "probability": 0.9702 + }, + { + "start": 17107.8, + "end": 17113.4, + "probability": 0.9792 + }, + { + "start": 17114.14, + "end": 17119.92, + "probability": 0.979 + }, + { + "start": 17120.76, + "end": 17128.76, + "probability": 0.911 + }, + { + "start": 17129.24, + "end": 17131.9, + "probability": 0.9928 + }, + { + "start": 17132.1, + "end": 17133.12, + "probability": 0.8051 + }, + { + "start": 17133.2, + "end": 17135.22, + "probability": 0.9756 + }, + { + "start": 17137.2, + "end": 17142.66, + "probability": 0.9799 + }, + { + "start": 17143.16, + "end": 17144.28, + "probability": 0.877 + }, + { + "start": 17146.38, + "end": 17148.76, + "probability": 0.5188 + }, + { + "start": 17149.5, + "end": 17150.74, + "probability": 0.8641 + }, + { + "start": 17151.58, + "end": 17151.9, + "probability": 0.5389 + }, + { + "start": 17152.54, + "end": 17158.28, + "probability": 0.7944 + }, + { + "start": 17163.32, + "end": 17165.78, + "probability": 0.9008 + }, + { + "start": 17165.88, + "end": 17170.44, + "probability": 0.8815 + }, + { + "start": 17171.36, + "end": 17174.84, + "probability": 0.9949 + }, + { + "start": 17174.84, + "end": 17179.2, + "probability": 0.9963 + }, + { + "start": 17179.66, + "end": 17181.88, + "probability": 0.8906 + }, + { + "start": 17182.38, + "end": 17182.52, + "probability": 0.0559 + }, + { + "start": 17182.52, + "end": 17182.88, + "probability": 0.78 + }, + { + "start": 17183.0, + "end": 17183.52, + "probability": 0.8813 + }, + { + "start": 17183.58, + "end": 17186.54, + "probability": 0.9603 + }, + { + "start": 17186.74, + "end": 17189.25, + "probability": 0.9813 + }, + { + "start": 17190.36, + "end": 17195.82, + "probability": 0.9832 + }, + { + "start": 17196.0, + "end": 17201.66, + "probability": 0.9954 + }, + { + "start": 17202.68, + "end": 17205.8, + "probability": 0.9294 + }, + { + "start": 17206.5, + "end": 17212.64, + "probability": 0.9543 + }, + { + "start": 17213.16, + "end": 17215.28, + "probability": 0.993 + }, + { + "start": 17215.5, + "end": 17216.94, + "probability": 0.7641 + }, + { + "start": 17217.72, + "end": 17222.58, + "probability": 0.9369 + }, + { + "start": 17223.0, + "end": 17225.56, + "probability": 0.9506 + }, + { + "start": 17226.12, + "end": 17228.4, + "probability": 0.8921 + }, + { + "start": 17228.74, + "end": 17234.1, + "probability": 0.9909 + }, + { + "start": 17234.7, + "end": 17239.8, + "probability": 0.9831 + }, + { + "start": 17239.9, + "end": 17244.42, + "probability": 0.9956 + }, + { + "start": 17244.98, + "end": 17249.66, + "probability": 0.9937 + }, + { + "start": 17250.36, + "end": 17256.68, + "probability": 0.9719 + }, + { + "start": 17256.96, + "end": 17262.76, + "probability": 0.8703 + }, + { + "start": 17264.59, + "end": 17269.28, + "probability": 0.9875 + }, + { + "start": 17269.88, + "end": 17271.7, + "probability": 0.7963 + }, + { + "start": 17272.32, + "end": 17273.98, + "probability": 0.9744 + }, + { + "start": 17274.38, + "end": 17277.66, + "probability": 0.8425 + }, + { + "start": 17277.82, + "end": 17278.14, + "probability": 0.8445 + }, + { + "start": 17279.26, + "end": 17282.8, + "probability": 0.9303 + }, + { + "start": 17284.62, + "end": 17287.04, + "probability": 0.7927 + }, + { + "start": 17287.94, + "end": 17288.58, + "probability": 0.7278 + }, + { + "start": 17288.6, + "end": 17292.1, + "probability": 0.9766 + }, + { + "start": 17292.16, + "end": 17294.86, + "probability": 0.802 + }, + { + "start": 17295.5, + "end": 17298.7, + "probability": 0.4006 + }, + { + "start": 17299.42, + "end": 17301.32, + "probability": 0.9347 + }, + { + "start": 17303.14, + "end": 17306.54, + "probability": 0.8549 + }, + { + "start": 17306.86, + "end": 17307.66, + "probability": 0.5879 + }, + { + "start": 17307.72, + "end": 17308.34, + "probability": 0.7134 + }, + { + "start": 17309.16, + "end": 17311.96, + "probability": 0.0231 + }, + { + "start": 17313.54, + "end": 17315.8, + "probability": 0.0541 + }, + { + "start": 17316.84, + "end": 17317.32, + "probability": 0.0042 + }, + { + "start": 17320.04, + "end": 17321.64, + "probability": 0.0549 + }, + { + "start": 17322.26, + "end": 17322.88, + "probability": 0.0064 + }, + { + "start": 17324.19, + "end": 17327.46, + "probability": 0.5948 + }, + { + "start": 17327.58, + "end": 17335.6, + "probability": 0.128 + }, + { + "start": 17337.2, + "end": 17343.12, + "probability": 0.1024 + }, + { + "start": 17343.12, + "end": 17343.52, + "probability": 0.0234 + }, + { + "start": 17343.52, + "end": 17345.57, + "probability": 0.1124 + }, + { + "start": 17349.06, + "end": 17350.4, + "probability": 0.0326 + }, + { + "start": 17350.6, + "end": 17354.3, + "probability": 0.0425 + }, + { + "start": 17354.3, + "end": 17356.5, + "probability": 0.0505 + }, + { + "start": 17356.5, + "end": 17356.5, + "probability": 0.0206 + }, + { + "start": 17357.86, + "end": 17360.18, + "probability": 0.2271 + }, + { + "start": 17363.08, + "end": 17365.2, + "probability": 0.0689 + }, + { + "start": 17365.3, + "end": 17366.84, + "probability": 0.2651 + }, + { + "start": 17369.44, + "end": 17372.0, + "probability": 0.0541 + }, + { + "start": 17372.0, + "end": 17372.36, + "probability": 0.1291 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.0, + "end": 17384.0, + "probability": 0.0 + }, + { + "start": 17384.36, + "end": 17385.28, + "probability": 0.575 + }, + { + "start": 17385.46, + "end": 17388.52, + "probability": 0.5596 + }, + { + "start": 17388.7, + "end": 17392.08, + "probability": 0.914 + }, + { + "start": 17392.08, + "end": 17396.84, + "probability": 0.938 + }, + { + "start": 17397.1, + "end": 17397.92, + "probability": 0.8896 + }, + { + "start": 17398.04, + "end": 17404.44, + "probability": 0.9777 + }, + { + "start": 17404.54, + "end": 17408.32, + "probability": 0.6131 + }, + { + "start": 17408.32, + "end": 17412.28, + "probability": 0.9632 + }, + { + "start": 17412.4, + "end": 17415.38, + "probability": 0.7213 + }, + { + "start": 17415.48, + "end": 17425.18, + "probability": 0.92 + }, + { + "start": 17425.62, + "end": 17427.64, + "probability": 0.9174 + }, + { + "start": 17427.7, + "end": 17428.5, + "probability": 0.8454 + }, + { + "start": 17428.62, + "end": 17430.54, + "probability": 0.8629 + }, + { + "start": 17431.34, + "end": 17435.64, + "probability": 0.9681 + }, + { + "start": 17436.6, + "end": 17441.84, + "probability": 0.9311 + }, + { + "start": 17449.64, + "end": 17450.58, + "probability": 0.656 + }, + { + "start": 17451.84, + "end": 17453.44, + "probability": 0.7353 + }, + { + "start": 17454.12, + "end": 17458.7, + "probability": 0.9921 + }, + { + "start": 17458.7, + "end": 17464.06, + "probability": 0.6344 + }, + { + "start": 17465.82, + "end": 17466.58, + "probability": 0.9139 + }, + { + "start": 17467.54, + "end": 17472.64, + "probability": 0.9892 + }, + { + "start": 17473.22, + "end": 17474.88, + "probability": 0.7375 + }, + { + "start": 17475.8, + "end": 17478.56, + "probability": 0.1283 + }, + { + "start": 17479.66, + "end": 17480.86, + "probability": 0.7887 + }, + { + "start": 17481.14, + "end": 17481.46, + "probability": 0.1747 + }, + { + "start": 17481.48, + "end": 17484.44, + "probability": 0.975 + }, + { + "start": 17484.44, + "end": 17488.42, + "probability": 0.8995 + }, + { + "start": 17489.18, + "end": 17489.96, + "probability": 0.6231 + }, + { + "start": 17490.08, + "end": 17500.42, + "probability": 0.9795 + }, + { + "start": 17500.5, + "end": 17501.4, + "probability": 0.7863 + }, + { + "start": 17502.72, + "end": 17508.12, + "probability": 0.9193 + }, + { + "start": 17508.62, + "end": 17508.78, + "probability": 0.484 + }, + { + "start": 17508.88, + "end": 17509.72, + "probability": 0.906 + }, + { + "start": 17509.76, + "end": 17511.34, + "probability": 0.9023 + }, + { + "start": 17512.36, + "end": 17516.0, + "probability": 0.9032 + }, + { + "start": 17516.88, + "end": 17520.22, + "probability": 0.9849 + }, + { + "start": 17520.38, + "end": 17521.49, + "probability": 0.9902 + }, + { + "start": 17522.66, + "end": 17526.66, + "probability": 0.9731 + }, + { + "start": 17527.35, + "end": 17530.8, + "probability": 0.9963 + }, + { + "start": 17530.8, + "end": 17535.84, + "probability": 0.9326 + }, + { + "start": 17535.94, + "end": 17537.42, + "probability": 0.938 + }, + { + "start": 17538.42, + "end": 17540.74, + "probability": 0.8328 + }, + { + "start": 17541.32, + "end": 17542.46, + "probability": 0.9617 + }, + { + "start": 17543.64, + "end": 17547.86, + "probability": 0.9609 + }, + { + "start": 17548.54, + "end": 17549.24, + "probability": 0.7068 + }, + { + "start": 17549.32, + "end": 17554.34, + "probability": 0.9521 + }, + { + "start": 17554.34, + "end": 17557.96, + "probability": 0.9894 + }, + { + "start": 17558.74, + "end": 17559.3, + "probability": 0.8119 + }, + { + "start": 17559.38, + "end": 17560.1, + "probability": 0.6944 + }, + { + "start": 17560.22, + "end": 17564.62, + "probability": 0.9937 + }, + { + "start": 17564.62, + "end": 17568.16, + "probability": 0.8656 + }, + { + "start": 17569.2, + "end": 17569.6, + "probability": 0.6468 + }, + { + "start": 17570.22, + "end": 17572.62, + "probability": 0.934 + }, + { + "start": 17572.86, + "end": 17578.24, + "probability": 0.9761 + }, + { + "start": 17578.28, + "end": 17578.78, + "probability": 0.9607 + }, + { + "start": 17578.88, + "end": 17580.92, + "probability": 0.9141 + }, + { + "start": 17581.52, + "end": 17585.14, + "probability": 0.9943 + }, + { + "start": 17585.68, + "end": 17586.64, + "probability": 0.9576 + }, + { + "start": 17586.7, + "end": 17588.92, + "probability": 0.9845 + }, + { + "start": 17589.04, + "end": 17589.82, + "probability": 0.8524 + }, + { + "start": 17590.64, + "end": 17594.4, + "probability": 0.6581 + }, + { + "start": 17594.56, + "end": 17596.46, + "probability": 0.7884 + }, + { + "start": 17597.18, + "end": 17602.94, + "probability": 0.9919 + }, + { + "start": 17604.02, + "end": 17609.09, + "probability": 0.9961 + }, + { + "start": 17610.22, + "end": 17612.58, + "probability": 0.9486 + }, + { + "start": 17613.88, + "end": 17616.44, + "probability": 0.8385 + }, + { + "start": 17617.02, + "end": 17618.16, + "probability": 0.9906 + }, + { + "start": 17618.3, + "end": 17624.23, + "probability": 0.9953 + }, + { + "start": 17625.36, + "end": 17631.4, + "probability": 0.9963 + }, + { + "start": 17631.92, + "end": 17635.14, + "probability": 0.9931 + }, + { + "start": 17635.66, + "end": 17637.42, + "probability": 0.8297 + }, + { + "start": 17638.16, + "end": 17639.96, + "probability": 0.8349 + }, + { + "start": 17640.06, + "end": 17641.32, + "probability": 0.9476 + }, + { + "start": 17641.6, + "end": 17648.66, + "probability": 0.9543 + }, + { + "start": 17649.74, + "end": 17650.9, + "probability": 0.646 + }, + { + "start": 17651.02, + "end": 17653.4, + "probability": 0.9773 + }, + { + "start": 17655.16, + "end": 17656.16, + "probability": 0.8433 + }, + { + "start": 17656.36, + "end": 17657.7, + "probability": 0.8903 + }, + { + "start": 17657.82, + "end": 17662.11, + "probability": 0.9724 + }, + { + "start": 17662.46, + "end": 17664.64, + "probability": 0.9683 + }, + { + "start": 17665.4, + "end": 17668.98, + "probability": 0.9683 + }, + { + "start": 17668.98, + "end": 17672.88, + "probability": 0.995 + }, + { + "start": 17674.04, + "end": 17675.87, + "probability": 0.9982 + }, + { + "start": 17676.78, + "end": 17680.28, + "probability": 0.9979 + }, + { + "start": 17680.28, + "end": 17684.26, + "probability": 0.9995 + }, + { + "start": 17684.56, + "end": 17685.5, + "probability": 0.9733 + }, + { + "start": 17685.6, + "end": 17686.74, + "probability": 0.9462 + }, + { + "start": 17686.92, + "end": 17688.06, + "probability": 0.8828 + }, + { + "start": 17688.92, + "end": 17694.12, + "probability": 0.9709 + }, + { + "start": 17694.66, + "end": 17697.0, + "probability": 0.7537 + }, + { + "start": 17697.58, + "end": 17701.82, + "probability": 0.9872 + }, + { + "start": 17702.4, + "end": 17703.98, + "probability": 0.9761 + }, + { + "start": 17703.98, + "end": 17706.96, + "probability": 0.9844 + }, + { + "start": 17707.18, + "end": 17708.48, + "probability": 0.822 + }, + { + "start": 17708.52, + "end": 17709.96, + "probability": 0.8972 + }, + { + "start": 17710.4, + "end": 17710.52, + "probability": 0.3883 + }, + { + "start": 17710.62, + "end": 17711.56, + "probability": 0.6643 + }, + { + "start": 17711.7, + "end": 17713.86, + "probability": 0.6636 + }, + { + "start": 17714.62, + "end": 17716.92, + "probability": 0.7593 + }, + { + "start": 17717.46, + "end": 17720.04, + "probability": 0.9637 + }, + { + "start": 17720.18, + "end": 17722.6, + "probability": 0.891 + }, + { + "start": 17723.22, + "end": 17724.56, + "probability": 0.7413 + }, + { + "start": 17725.74, + "end": 17728.52, + "probability": 0.9768 + }, + { + "start": 17729.34, + "end": 17730.98, + "probability": 0.9914 + }, + { + "start": 17732.02, + "end": 17734.8, + "probability": 0.7499 + }, + { + "start": 17735.72, + "end": 17742.18, + "probability": 0.984 + }, + { + "start": 17743.28, + "end": 17747.12, + "probability": 0.9883 + }, + { + "start": 17747.76, + "end": 17753.58, + "probability": 0.9597 + }, + { + "start": 17754.2, + "end": 17755.14, + "probability": 0.7179 + }, + { + "start": 17755.26, + "end": 17760.02, + "probability": 0.9699 + }, + { + "start": 17761.16, + "end": 17762.88, + "probability": 0.7626 + }, + { + "start": 17763.02, + "end": 17765.54, + "probability": 0.9915 + }, + { + "start": 17765.7, + "end": 17767.46, + "probability": 0.4929 + }, + { + "start": 17768.76, + "end": 17772.66, + "probability": 0.96 + }, + { + "start": 17773.16, + "end": 17774.32, + "probability": 0.8732 + }, + { + "start": 17774.56, + "end": 17774.56, + "probability": 0.7907 + }, + { + "start": 17775.16, + "end": 17778.84, + "probability": 0.9889 + }, + { + "start": 17780.48, + "end": 17782.16, + "probability": 0.7664 + }, + { + "start": 17782.3, + "end": 17784.66, + "probability": 0.6816 + }, + { + "start": 17796.64, + "end": 17797.26, + "probability": 0.579 + }, + { + "start": 17797.86, + "end": 17798.06, + "probability": 0.4924 + }, + { + "start": 17798.06, + "end": 17799.42, + "probability": 0.7408 + }, + { + "start": 17800.58, + "end": 17803.86, + "probability": 0.9787 + }, + { + "start": 17803.86, + "end": 17807.03, + "probability": 0.9922 + }, + { + "start": 17807.08, + "end": 17808.12, + "probability": 0.9016 + }, + { + "start": 17808.26, + "end": 17811.86, + "probability": 0.9991 + }, + { + "start": 17812.22, + "end": 17815.94, + "probability": 0.9947 + }, + { + "start": 17816.44, + "end": 17820.72, + "probability": 0.6627 + }, + { + "start": 17821.12, + "end": 17823.17, + "probability": 0.9956 + }, + { + "start": 17823.38, + "end": 17824.6, + "probability": 0.8531 + }, + { + "start": 17825.2, + "end": 17829.26, + "probability": 0.7593 + }, + { + "start": 17830.12, + "end": 17833.86, + "probability": 0.9395 + }, + { + "start": 17833.86, + "end": 17839.18, + "probability": 0.9935 + }, + { + "start": 17839.44, + "end": 17840.06, + "probability": 0.6799 + }, + { + "start": 17840.18, + "end": 17843.78, + "probability": 0.9893 + }, + { + "start": 17844.08, + "end": 17846.24, + "probability": 0.9871 + }, + { + "start": 17846.24, + "end": 17850.37, + "probability": 0.9985 + }, + { + "start": 17850.62, + "end": 17853.48, + "probability": 0.743 + }, + { + "start": 17853.48, + "end": 17853.48, + "probability": 0.5574 + }, + { + "start": 17853.48, + "end": 17854.11, + "probability": 0.4834 + }, + { + "start": 17854.64, + "end": 17855.92, + "probability": 0.916 + }, + { + "start": 17856.38, + "end": 17857.8, + "probability": 0.8907 + }, + { + "start": 17857.9, + "end": 17859.96, + "probability": 0.7529 + }, + { + "start": 17861.58, + "end": 17862.56, + "probability": 0.7496 + }, + { + "start": 17862.76, + "end": 17863.98, + "probability": 0.9065 + }, + { + "start": 17864.32, + "end": 17867.2, + "probability": 0.9227 + }, + { + "start": 17867.26, + "end": 17868.66, + "probability": 0.8818 + }, + { + "start": 17869.36, + "end": 17874.42, + "probability": 0.9624 + }, + { + "start": 17874.86, + "end": 17876.2, + "probability": 0.7287 + }, + { + "start": 17876.2, + "end": 17876.38, + "probability": 0.3454 + }, + { + "start": 17876.56, + "end": 17879.02, + "probability": 0.9121 + }, + { + "start": 17879.36, + "end": 17882.86, + "probability": 0.9423 + }, + { + "start": 17883.98, + "end": 17888.3, + "probability": 0.967 + }, + { + "start": 17888.3, + "end": 17889.18, + "probability": 0.0325 + }, + { + "start": 17889.34, + "end": 17890.02, + "probability": 0.6341 + }, + { + "start": 17890.88, + "end": 17891.48, + "probability": 0.4166 + }, + { + "start": 17891.74, + "end": 17892.62, + "probability": 0.6807 + }, + { + "start": 17892.68, + "end": 17893.38, + "probability": 0.9846 + }, + { + "start": 17893.44, + "end": 17894.12, + "probability": 0.7802 + }, + { + "start": 17894.22, + "end": 17895.5, + "probability": 0.993 + }, + { + "start": 17895.78, + "end": 17901.4, + "probability": 0.9933 + }, + { + "start": 17901.46, + "end": 17902.92, + "probability": 0.8826 + }, + { + "start": 17902.94, + "end": 17908.48, + "probability": 0.9684 + }, + { + "start": 17908.48, + "end": 17911.34, + "probability": 0.958 + }, + { + "start": 17911.8, + "end": 17913.82, + "probability": 0.984 + }, + { + "start": 17914.64, + "end": 17914.9, + "probability": 0.4901 + }, + { + "start": 17914.92, + "end": 17916.26, + "probability": 0.9229 + }, + { + "start": 17916.54, + "end": 17917.14, + "probability": 0.6916 + }, + { + "start": 17917.22, + "end": 17919.24, + "probability": 0.9593 + }, + { + "start": 17919.8, + "end": 17924.26, + "probability": 0.9933 + }, + { + "start": 17924.36, + "end": 17925.98, + "probability": 0.9795 + }, + { + "start": 17926.42, + "end": 17927.44, + "probability": 0.9844 + }, + { + "start": 17927.56, + "end": 17930.22, + "probability": 0.9392 + }, + { + "start": 17930.22, + "end": 17932.98, + "probability": 0.9664 + }, + { + "start": 17933.56, + "end": 17938.06, + "probability": 0.9478 + }, + { + "start": 17938.06, + "end": 17941.0, + "probability": 0.9986 + }, + { + "start": 17941.52, + "end": 17943.44, + "probability": 0.967 + }, + { + "start": 17943.64, + "end": 17947.24, + "probability": 0.9932 + }, + { + "start": 17947.66, + "end": 17949.43, + "probability": 0.9841 + }, + { + "start": 17950.12, + "end": 17952.82, + "probability": 0.9512 + }, + { + "start": 17953.22, + "end": 17958.02, + "probability": 0.9885 + }, + { + "start": 17958.02, + "end": 17962.22, + "probability": 0.9989 + }, + { + "start": 17962.68, + "end": 17964.48, + "probability": 0.9819 + }, + { + "start": 17964.66, + "end": 17965.94, + "probability": 0.7409 + }, + { + "start": 17966.26, + "end": 17968.12, + "probability": 0.8215 + }, + { + "start": 17968.66, + "end": 17969.3, + "probability": 0.8999 + }, + { + "start": 17969.52, + "end": 17971.17, + "probability": 0.4893 + }, + { + "start": 17972.02, + "end": 17977.74, + "probability": 0.9917 + }, + { + "start": 17977.74, + "end": 17981.26, + "probability": 0.988 + }, + { + "start": 17981.26, + "end": 17985.46, + "probability": 0.9329 + }, + { + "start": 17986.28, + "end": 17988.06, + "probability": 0.4252 + }, + { + "start": 17988.1, + "end": 17989.88, + "probability": 0.865 + }, + { + "start": 17990.1, + "end": 17990.84, + "probability": 0.7191 + }, + { + "start": 17990.92, + "end": 17991.36, + "probability": 0.6639 + }, + { + "start": 17991.78, + "end": 17992.74, + "probability": 0.9009 + }, + { + "start": 17993.36, + "end": 17995.24, + "probability": 0.7126 + }, + { + "start": 17995.76, + "end": 17999.3, + "probability": 0.9878 + }, + { + "start": 17999.62, + "end": 18004.44, + "probability": 0.9751 + }, + { + "start": 18005.34, + "end": 18009.08, + "probability": 0.958 + }, + { + "start": 18009.2, + "end": 18009.4, + "probability": 0.6893 + }, + { + "start": 18009.78, + "end": 18010.24, + "probability": 0.0226 + }, + { + "start": 18013.48, + "end": 18016.94, + "probability": 0.0741 + }, + { + "start": 18017.1, + "end": 18018.38, + "probability": 0.3928 + }, + { + "start": 18022.14, + "end": 18024.1, + "probability": 0.971 + }, + { + "start": 18024.3, + "end": 18025.36, + "probability": 0.8219 + }, + { + "start": 18025.68, + "end": 18028.72, + "probability": 0.9795 + }, + { + "start": 18028.72, + "end": 18031.46, + "probability": 0.8143 + }, + { + "start": 18031.88, + "end": 18033.06, + "probability": 0.8025 + }, + { + "start": 18033.22, + "end": 18036.44, + "probability": 0.9756 + }, + { + "start": 18036.5, + "end": 18037.86, + "probability": 0.9263 + }, + { + "start": 18037.98, + "end": 18039.4, + "probability": 0.8943 + }, + { + "start": 18039.6, + "end": 18040.96, + "probability": 0.917 + }, + { + "start": 18041.94, + "end": 18047.28, + "probability": 0.895 + }, + { + "start": 18047.3, + "end": 18048.26, + "probability": 0.9248 + }, + { + "start": 18048.28, + "end": 18048.92, + "probability": 0.1049 + }, + { + "start": 18051.71, + "end": 18055.0, + "probability": 0.1596 + }, + { + "start": 18055.14, + "end": 18056.38, + "probability": 0.9373 + }, + { + "start": 18056.52, + "end": 18057.3, + "probability": 0.6725 + }, + { + "start": 18057.6, + "end": 18061.88, + "probability": 0.9685 + }, + { + "start": 18062.1, + "end": 18063.22, + "probability": 0.9124 + }, + { + "start": 18063.28, + "end": 18064.22, + "probability": 0.6135 + }, + { + "start": 18064.28, + "end": 18065.57, + "probability": 0.8112 + }, + { + "start": 18065.8, + "end": 18071.1, + "probability": 0.9957 + }, + { + "start": 18071.28, + "end": 18073.8, + "probability": 0.9906 + }, + { + "start": 18073.8, + "end": 18078.3, + "probability": 0.992 + }, + { + "start": 18078.48, + "end": 18080.62, + "probability": 0.9812 + }, + { + "start": 18081.12, + "end": 18083.6, + "probability": 0.9066 + }, + { + "start": 18083.64, + "end": 18091.12, + "probability": 0.7876 + }, + { + "start": 18092.92, + "end": 18094.42, + "probability": 0.7232 + }, + { + "start": 18094.44, + "end": 18097.12, + "probability": 0.8491 + }, + { + "start": 18097.12, + "end": 18101.08, + "probability": 0.9659 + }, + { + "start": 18101.14, + "end": 18102.08, + "probability": 0.5389 + }, + { + "start": 18110.08, + "end": 18111.58, + "probability": 0.6901 + }, + { + "start": 18111.7, + "end": 18113.76, + "probability": 0.8309 + }, + { + "start": 18114.68, + "end": 18115.3, + "probability": 0.4755 + }, + { + "start": 18115.7, + "end": 18116.22, + "probability": 0.673 + }, + { + "start": 18116.26, + "end": 18118.2, + "probability": 0.9961 + }, + { + "start": 18118.28, + "end": 18119.1, + "probability": 0.9119 + }, + { + "start": 18119.14, + "end": 18119.44, + "probability": 0.4695 + }, + { + "start": 18119.5, + "end": 18120.34, + "probability": 0.9935 + }, + { + "start": 18122.11, + "end": 18127.1, + "probability": 0.9897 + }, + { + "start": 18128.24, + "end": 18131.2, + "probability": 0.9985 + }, + { + "start": 18132.36, + "end": 18134.76, + "probability": 0.9832 + }, + { + "start": 18135.46, + "end": 18137.76, + "probability": 0.9097 + }, + { + "start": 18138.32, + "end": 18143.22, + "probability": 0.63 + }, + { + "start": 18144.04, + "end": 18146.34, + "probability": 0.0104 + }, + { + "start": 18146.34, + "end": 18146.34, + "probability": 0.0669 + }, + { + "start": 18146.34, + "end": 18150.48, + "probability": 0.655 + }, + { + "start": 18150.62, + "end": 18151.38, + "probability": 0.5208 + }, + { + "start": 18151.48, + "end": 18152.6, + "probability": 0.887 + }, + { + "start": 18152.7, + "end": 18158.78, + "probability": 0.6873 + }, + { + "start": 18158.78, + "end": 18159.36, + "probability": 0.7982 + }, + { + "start": 18159.84, + "end": 18159.86, + "probability": 0.0457 + }, + { + "start": 18160.1, + "end": 18161.7, + "probability": 0.9651 + }, + { + "start": 18161.86, + "end": 18163.59, + "probability": 0.6841 + }, + { + "start": 18164.06, + "end": 18166.56, + "probability": 0.9948 + }, + { + "start": 18166.74, + "end": 18168.98, + "probability": 0.7526 + }, + { + "start": 18169.52, + "end": 18171.18, + "probability": 0.9862 + }, + { + "start": 18172.08, + "end": 18176.48, + "probability": 0.7385 + }, + { + "start": 18177.3, + "end": 18183.52, + "probability": 0.9321 + }, + { + "start": 18183.52, + "end": 18188.9, + "probability": 0.9912 + }, + { + "start": 18189.18, + "end": 18190.52, + "probability": 0.9497 + }, + { + "start": 18190.74, + "end": 18191.98, + "probability": 0.8818 + }, + { + "start": 18192.08, + "end": 18192.88, + "probability": 0.6048 + }, + { + "start": 18193.38, + "end": 18196.88, + "probability": 0.9976 + }, + { + "start": 18197.38, + "end": 18201.18, + "probability": 0.8809 + }, + { + "start": 18201.56, + "end": 18202.16, + "probability": 0.9885 + }, + { + "start": 18203.4, + "end": 18204.08, + "probability": 0.0854 + }, + { + "start": 18204.7, + "end": 18205.92, + "probability": 0.1012 + }, + { + "start": 18205.92, + "end": 18208.48, + "probability": 0.7723 + }, + { + "start": 18208.72, + "end": 18210.7, + "probability": 0.4916 + }, + { + "start": 18210.98, + "end": 18213.96, + "probability": 0.9092 + }, + { + "start": 18213.96, + "end": 18217.78, + "probability": 0.8164 + }, + { + "start": 18218.66, + "end": 18222.0, + "probability": 0.7205 + }, + { + "start": 18222.08, + "end": 18223.28, + "probability": 0.5967 + }, + { + "start": 18223.28, + "end": 18227.32, + "probability": 0.7612 + }, + { + "start": 18228.1, + "end": 18228.12, + "probability": 0.0624 + }, + { + "start": 18228.12, + "end": 18233.54, + "probability": 0.9761 + }, + { + "start": 18234.06, + "end": 18237.38, + "probability": 0.8823 + }, + { + "start": 18237.9, + "end": 18241.1, + "probability": 0.9961 + }, + { + "start": 18241.3, + "end": 18246.66, + "probability": 0.983 + }, + { + "start": 18247.04, + "end": 18249.1, + "probability": 0.9711 + }, + { + "start": 18249.34, + "end": 18250.31, + "probability": 0.8887 + }, + { + "start": 18250.46, + "end": 18251.58, + "probability": 0.4224 + }, + { + "start": 18251.86, + "end": 18256.56, + "probability": 0.9813 + }, + { + "start": 18256.66, + "end": 18257.56, + "probability": 0.8261 + }, + { + "start": 18257.8, + "end": 18260.04, + "probability": 0.5651 + }, + { + "start": 18260.22, + "end": 18262.9, + "probability": 0.9526 + }, + { + "start": 18263.0, + "end": 18263.82, + "probability": 0.6197 + }, + { + "start": 18272.9, + "end": 18272.9, + "probability": 0.0658 + }, + { + "start": 18272.9, + "end": 18272.9, + "probability": 0.3575 + }, + { + "start": 18272.9, + "end": 18273.12, + "probability": 0.1794 + }, + { + "start": 18273.12, + "end": 18273.16, + "probability": 0.3015 + }, + { + "start": 18273.16, + "end": 18273.66, + "probability": 0.0411 + }, + { + "start": 18273.66, + "end": 18273.66, + "probability": 0.1309 + }, + { + "start": 18273.66, + "end": 18273.8, + "probability": 0.029 + }, + { + "start": 18299.8, + "end": 18302.48, + "probability": 0.7506 + }, + { + "start": 18303.02, + "end": 18305.68, + "probability": 0.6365 + }, + { + "start": 18306.26, + "end": 18308.86, + "probability": 0.899 + }, + { + "start": 18309.5, + "end": 18311.3, + "probability": 0.8809 + }, + { + "start": 18311.78, + "end": 18316.32, + "probability": 0.9728 + }, + { + "start": 18317.06, + "end": 18319.26, + "probability": 0.9663 + }, + { + "start": 18319.82, + "end": 18321.82, + "probability": 0.9824 + }, + { + "start": 18322.44, + "end": 18324.1, + "probability": 0.9609 + }, + { + "start": 18324.84, + "end": 18330.94, + "probability": 0.9731 + }, + { + "start": 18331.62, + "end": 18337.3, + "probability": 0.8601 + }, + { + "start": 18337.92, + "end": 18338.54, + "probability": 0.5906 + }, + { + "start": 18338.68, + "end": 18345.28, + "probability": 0.9824 + }, + { + "start": 18345.99, + "end": 18348.88, + "probability": 0.9204 + }, + { + "start": 18349.62, + "end": 18355.58, + "probability": 0.6737 + }, + { + "start": 18357.72, + "end": 18363.34, + "probability": 0.9873 + }, + { + "start": 18363.74, + "end": 18364.96, + "probability": 0.7698 + }, + { + "start": 18365.44, + "end": 18366.02, + "probability": 0.8551 + }, + { + "start": 18366.58, + "end": 18367.32, + "probability": 0.8573 + }, + { + "start": 18367.94, + "end": 18369.76, + "probability": 0.6862 + }, + { + "start": 18370.38, + "end": 18373.88, + "probability": 0.8216 + }, + { + "start": 18374.06, + "end": 18377.08, + "probability": 0.9791 + }, + { + "start": 18377.46, + "end": 18378.12, + "probability": 0.7792 + }, + { + "start": 18378.18, + "end": 18378.6, + "probability": 0.7694 + }, + { + "start": 18378.64, + "end": 18379.54, + "probability": 0.6095 + }, + { + "start": 18379.54, + "end": 18381.0, + "probability": 0.6137 + }, + { + "start": 18381.4, + "end": 18387.12, + "probability": 0.7785 + }, + { + "start": 18387.58, + "end": 18388.77, + "probability": 0.9633 + }, + { + "start": 18389.18, + "end": 18390.62, + "probability": 0.7066 + }, + { + "start": 18391.16, + "end": 18393.0, + "probability": 0.9446 + }, + { + "start": 18393.36, + "end": 18394.3, + "probability": 0.7541 + }, + { + "start": 18394.5, + "end": 18396.06, + "probability": 0.8617 + }, + { + "start": 18396.18, + "end": 18397.44, + "probability": 0.9896 + }, + { + "start": 18398.32, + "end": 18399.66, + "probability": 0.9644 + }, + { + "start": 18400.34, + "end": 18404.06, + "probability": 0.7796 + }, + { + "start": 18405.06, + "end": 18407.36, + "probability": 0.7604 + }, + { + "start": 18408.12, + "end": 18411.18, + "probability": 0.8345 + }, + { + "start": 18412.4, + "end": 18413.12, + "probability": 0.7987 + }, + { + "start": 18413.32, + "end": 18414.24, + "probability": 0.9523 + }, + { + "start": 18414.32, + "end": 18415.34, + "probability": 0.9367 + }, + { + "start": 18415.56, + "end": 18417.16, + "probability": 0.9828 + }, + { + "start": 18417.74, + "end": 18419.36, + "probability": 0.8767 + }, + { + "start": 18420.0, + "end": 18423.32, + "probability": 0.8836 + }, + { + "start": 18423.4, + "end": 18425.54, + "probability": 0.874 + }, + { + "start": 18425.76, + "end": 18427.28, + "probability": 0.9657 + }, + { + "start": 18427.68, + "end": 18429.2, + "probability": 0.8113 + }, + { + "start": 18429.76, + "end": 18436.92, + "probability": 0.8647 + }, + { + "start": 18436.96, + "end": 18442.34, + "probability": 0.9774 + }, + { + "start": 18442.54, + "end": 18444.2, + "probability": 0.9324 + }, + { + "start": 18445.08, + "end": 18447.5, + "probability": 0.8356 + }, + { + "start": 18448.26, + "end": 18449.46, + "probability": 0.8994 + }, + { + "start": 18449.84, + "end": 18450.32, + "probability": 0.9006 + }, + { + "start": 18450.96, + "end": 18452.02, + "probability": 0.6791 + }, + { + "start": 18452.46, + "end": 18453.42, + "probability": 0.586 + }, + { + "start": 18454.26, + "end": 18455.9, + "probability": 0.6841 + }, + { + "start": 18456.84, + "end": 18459.58, + "probability": 0.8774 + }, + { + "start": 18460.38, + "end": 18462.2, + "probability": 0.7886 + }, + { + "start": 18462.4, + "end": 18465.76, + "probability": 0.9075 + }, + { + "start": 18466.24, + "end": 18470.56, + "probability": 0.7524 + }, + { + "start": 18470.94, + "end": 18474.2, + "probability": 0.9251 + }, + { + "start": 18474.4, + "end": 18474.68, + "probability": 0.8722 + }, + { + "start": 18475.76, + "end": 18476.68, + "probability": 0.6139 + }, + { + "start": 18477.29, + "end": 18479.9, + "probability": 0.7408 + }, + { + "start": 18479.92, + "end": 18480.7, + "probability": 0.698 + }, + { + "start": 18480.7, + "end": 18483.0, + "probability": 0.6739 + }, + { + "start": 18499.1, + "end": 18500.32, + "probability": 0.5313 + }, + { + "start": 18501.08, + "end": 18503.98, + "probability": 0.9659 + }, + { + "start": 18504.5, + "end": 18506.52, + "probability": 0.7528 + }, + { + "start": 18506.56, + "end": 18508.22, + "probability": 0.9189 + }, + { + "start": 18508.38, + "end": 18509.4, + "probability": 0.8126 + }, + { + "start": 18509.78, + "end": 18511.14, + "probability": 0.9369 + }, + { + "start": 18511.24, + "end": 18512.1, + "probability": 0.7257 + }, + { + "start": 18512.22, + "end": 18513.42, + "probability": 0.7788 + }, + { + "start": 18513.9, + "end": 18516.22, + "probability": 0.9976 + }, + { + "start": 18516.66, + "end": 18518.7, + "probability": 0.7723 + }, + { + "start": 18519.32, + "end": 18521.02, + "probability": 0.9517 + }, + { + "start": 18521.14, + "end": 18521.6, + "probability": 0.6651 + }, + { + "start": 18521.6, + "end": 18521.74, + "probability": 0.4314 + }, + { + "start": 18521.76, + "end": 18522.38, + "probability": 0.9713 + }, + { + "start": 18522.48, + "end": 18523.12, + "probability": 0.7177 + }, + { + "start": 18523.38, + "end": 18525.34, + "probability": 0.6392 + }, + { + "start": 18525.94, + "end": 18526.52, + "probability": 0.8547 + }, + { + "start": 18526.98, + "end": 18527.56, + "probability": 0.9582 + }, + { + "start": 18527.7, + "end": 18529.2, + "probability": 0.9832 + }, + { + "start": 18529.58, + "end": 18530.54, + "probability": 0.8904 + }, + { + "start": 18530.79, + "end": 18533.26, + "probability": 0.9397 + }, + { + "start": 18533.3, + "end": 18534.52, + "probability": 0.9517 + }, + { + "start": 18534.68, + "end": 18535.44, + "probability": 0.7874 + }, + { + "start": 18535.66, + "end": 18539.04, + "probability": 0.9616 + }, + { + "start": 18539.3, + "end": 18539.82, + "probability": 0.4979 + }, + { + "start": 18540.32, + "end": 18541.02, + "probability": 0.776 + }, + { + "start": 18541.6, + "end": 18542.3, + "probability": 0.905 + }, + { + "start": 18543.46, + "end": 18545.86, + "probability": 0.9831 + }, + { + "start": 18546.0, + "end": 18547.19, + "probability": 0.9441 + }, + { + "start": 18547.52, + "end": 18548.72, + "probability": 0.9897 + }, + { + "start": 18549.0, + "end": 18550.2, + "probability": 0.9526 + }, + { + "start": 18550.76, + "end": 18554.01, + "probability": 0.8407 + }, + { + "start": 18554.42, + "end": 18555.76, + "probability": 0.9056 + }, + { + "start": 18556.2, + "end": 18556.58, + "probability": 0.5041 + }, + { + "start": 18556.74, + "end": 18556.8, + "probability": 0.7347 + }, + { + "start": 18556.9, + "end": 18558.98, + "probability": 0.9283 + }, + { + "start": 18559.14, + "end": 18560.12, + "probability": 0.8715 + }, + { + "start": 18560.36, + "end": 18562.24, + "probability": 0.9595 + }, + { + "start": 18562.4, + "end": 18562.66, + "probability": 0.6549 + }, + { + "start": 18562.8, + "end": 18564.86, + "probability": 0.7876 + }, + { + "start": 18564.86, + "end": 18566.56, + "probability": 0.9885 + }, + { + "start": 18566.62, + "end": 18567.72, + "probability": 0.8906 + }, + { + "start": 18568.94, + "end": 18571.14, + "probability": 0.9745 + }, + { + "start": 18571.28, + "end": 18573.34, + "probability": 0.9869 + }, + { + "start": 18573.64, + "end": 18577.9, + "probability": 0.8059 + }, + { + "start": 18578.34, + "end": 18579.14, + "probability": 0.979 + }, + { + "start": 18579.96, + "end": 18580.94, + "probability": 0.8769 + }, + { + "start": 18581.04, + "end": 18582.3, + "probability": 0.9729 + }, + { + "start": 18582.72, + "end": 18587.56, + "probability": 0.988 + }, + { + "start": 18587.98, + "end": 18589.1, + "probability": 0.5241 + }, + { + "start": 18589.36, + "end": 18590.02, + "probability": 0.6785 + }, + { + "start": 18590.26, + "end": 18594.7, + "probability": 0.8368 + }, + { + "start": 18595.02, + "end": 18597.56, + "probability": 0.99 + }, + { + "start": 18597.8, + "end": 18600.6, + "probability": 0.9885 + }, + { + "start": 18600.84, + "end": 18602.86, + "probability": 0.9136 + }, + { + "start": 18602.94, + "end": 18604.08, + "probability": 0.7247 + }, + { + "start": 18604.12, + "end": 18606.7, + "probability": 0.9709 + }, + { + "start": 18606.88, + "end": 18610.98, + "probability": 0.9854 + }, + { + "start": 18610.98, + "end": 18613.86, + "probability": 0.8727 + }, + { + "start": 18614.2, + "end": 18617.4, + "probability": 0.938 + }, + { + "start": 18617.8, + "end": 18618.86, + "probability": 0.9312 + }, + { + "start": 18619.08, + "end": 18619.44, + "probability": 0.5404 + }, + { + "start": 18619.76, + "end": 18622.7, + "probability": 0.8525 + }, + { + "start": 18623.04, + "end": 18623.18, + "probability": 0.0905 + }, + { + "start": 18623.18, + "end": 18626.02, + "probability": 0.8506 + }, + { + "start": 18626.28, + "end": 18628.2, + "probability": 0.6924 + }, + { + "start": 18628.72, + "end": 18628.8, + "probability": 0.385 + }, + { + "start": 18628.96, + "end": 18629.14, + "probability": 0.7352 + }, + { + "start": 18629.42, + "end": 18631.2, + "probability": 0.97 + }, + { + "start": 18631.48, + "end": 18633.99, + "probability": 0.9605 + }, + { + "start": 18635.74, + "end": 18637.06, + "probability": 0.237 + }, + { + "start": 18637.2, + "end": 18637.3, + "probability": 0.0283 + }, + { + "start": 18637.3, + "end": 18637.58, + "probability": 0.2994 + }, + { + "start": 18637.84, + "end": 18638.8, + "probability": 0.6057 + }, + { + "start": 18638.96, + "end": 18639.18, + "probability": 0.3692 + }, + { + "start": 18640.26, + "end": 18642.38, + "probability": 0.6999 + }, + { + "start": 18642.56, + "end": 18644.73, + "probability": 0.4311 + }, + { + "start": 18645.68, + "end": 18646.5, + "probability": 0.2563 + }, + { + "start": 18649.06, + "end": 18650.38, + "probability": 0.7376 + }, + { + "start": 18651.1, + "end": 18651.7, + "probability": 0.5022 + }, + { + "start": 18653.56, + "end": 18656.76, + "probability": 0.0244 + }, + { + "start": 18657.28, + "end": 18657.38, + "probability": 0.6636 + }, + { + "start": 18658.96, + "end": 18659.56, + "probability": 0.6686 + }, + { + "start": 18659.8, + "end": 18660.6, + "probability": 0.8636 + }, + { + "start": 18661.04, + "end": 18663.08, + "probability": 0.9383 + }, + { + "start": 18664.08, + "end": 18668.32, + "probability": 0.9893 + }, + { + "start": 18669.06, + "end": 18673.78, + "probability": 0.9978 + }, + { + "start": 18674.38, + "end": 18677.0, + "probability": 0.9595 + }, + { + "start": 18677.64, + "end": 18684.22, + "probability": 0.9609 + }, + { + "start": 18684.22, + "end": 18684.96, + "probability": 0.9771 + }, + { + "start": 18685.9, + "end": 18686.14, + "probability": 0.5651 + }, + { + "start": 18686.28, + "end": 18688.46, + "probability": 0.0523 + }, + { + "start": 18688.46, + "end": 18688.46, + "probability": 0.1744 + }, + { + "start": 18688.46, + "end": 18689.52, + "probability": 0.5662 + }, + { + "start": 18689.58, + "end": 18692.72, + "probability": 0.5301 + }, + { + "start": 18692.8, + "end": 18694.16, + "probability": 0.8674 + }, + { + "start": 18694.86, + "end": 18701.12, + "probability": 0.9365 + }, + { + "start": 18701.46, + "end": 18704.56, + "probability": 0.5246 + }, + { + "start": 18704.58, + "end": 18705.4, + "probability": 0.9888 + }, + { + "start": 18705.74, + "end": 18706.86, + "probability": 0.9825 + }, + { + "start": 18707.58, + "end": 18709.08, + "probability": 0.8048 + }, + { + "start": 18709.16, + "end": 18709.86, + "probability": 0.7705 + }, + { + "start": 18710.08, + "end": 18711.56, + "probability": 0.9541 + }, + { + "start": 18711.62, + "end": 18713.76, + "probability": 0.9819 + }, + { + "start": 18714.04, + "end": 18717.78, + "probability": 0.8734 + }, + { + "start": 18718.42, + "end": 18723.3, + "probability": 0.9933 + }, + { + "start": 18723.66, + "end": 18727.78, + "probability": 0.9897 + }, + { + "start": 18727.9, + "end": 18729.48, + "probability": 0.9934 + }, + { + "start": 18730.1, + "end": 18732.7, + "probability": 0.9518 + }, + { + "start": 18733.46, + "end": 18735.87, + "probability": 0.8778 + }, + { + "start": 18736.86, + "end": 18741.28, + "probability": 0.9748 + }, + { + "start": 18743.04, + "end": 18745.32, + "probability": 0.924 + }, + { + "start": 18745.9, + "end": 18746.8, + "probability": 0.6113 + }, + { + "start": 18747.04, + "end": 18750.32, + "probability": 0.6613 + }, + { + "start": 18750.66, + "end": 18753.6, + "probability": 0.8611 + }, + { + "start": 18754.12, + "end": 18755.35, + "probability": 0.8481 + }, + { + "start": 18755.92, + "end": 18761.58, + "probability": 0.9924 + }, + { + "start": 18761.64, + "end": 18763.22, + "probability": 0.9745 + }, + { + "start": 18763.52, + "end": 18768.08, + "probability": 0.9006 + }, + { + "start": 18768.48, + "end": 18769.02, + "probability": 0.949 + }, + { + "start": 18769.67, + "end": 18770.97, + "probability": 0.9937 + }, + { + "start": 18771.2, + "end": 18774.98, + "probability": 0.9917 + }, + { + "start": 18775.42, + "end": 18776.26, + "probability": 0.9476 + }, + { + "start": 18776.48, + "end": 18777.16, + "probability": 0.9721 + }, + { + "start": 18777.32, + "end": 18778.24, + "probability": 0.9201 + }, + { + "start": 18778.64, + "end": 18780.02, + "probability": 0.703 + }, + { + "start": 18780.46, + "end": 18783.74, + "probability": 0.9954 + }, + { + "start": 18784.06, + "end": 18785.98, + "probability": 0.9893 + }, + { + "start": 18786.64, + "end": 18789.84, + "probability": 0.9696 + }, + { + "start": 18790.42, + "end": 18792.98, + "probability": 0.9927 + }, + { + "start": 18793.34, + "end": 18794.34, + "probability": 0.866 + }, + { + "start": 18794.66, + "end": 18799.12, + "probability": 0.9224 + }, + { + "start": 18799.24, + "end": 18801.88, + "probability": 0.9778 + }, + { + "start": 18802.4, + "end": 18804.76, + "probability": 0.953 + }, + { + "start": 18805.38, + "end": 18807.68, + "probability": 0.9268 + }, + { + "start": 18808.06, + "end": 18813.0, + "probability": 0.9406 + }, + { + "start": 18813.24, + "end": 18813.48, + "probability": 0.7148 + }, + { + "start": 18813.96, + "end": 18816.5, + "probability": 0.5124 + }, + { + "start": 18816.88, + "end": 18817.18, + "probability": 0.5762 + }, + { + "start": 18820.38, + "end": 18826.62, + "probability": 0.782 + }, + { + "start": 18826.66, + "end": 18827.1, + "probability": 0.2507 + }, + { + "start": 18827.36, + "end": 18827.56, + "probability": 0.3008 + }, + { + "start": 18827.62, + "end": 18827.98, + "probability": 0.3028 + }, + { + "start": 18828.02, + "end": 18829.04, + "probability": 0.5478 + }, + { + "start": 18829.54, + "end": 18833.76, + "probability": 0.6891 + }, + { + "start": 18833.82, + "end": 18837.04, + "probability": 0.764 + }, + { + "start": 18837.04, + "end": 18839.82, + "probability": 0.4828 + }, + { + "start": 18839.86, + "end": 18842.26, + "probability": 0.8395 + }, + { + "start": 18842.26, + "end": 18845.64, + "probability": 0.7035 + }, + { + "start": 18845.8, + "end": 18847.48, + "probability": 0.4652 + }, + { + "start": 18847.56, + "end": 18848.28, + "probability": 0.1315 + }, + { + "start": 18848.28, + "end": 18848.6, + "probability": 0.1883 + }, + { + "start": 18848.6, + "end": 18849.24, + "probability": 0.3563 + }, + { + "start": 18855.49, + "end": 18859.01, + "probability": 0.0755 + }, + { + "start": 18860.52, + "end": 18862.88, + "probability": 0.151 + }, + { + "start": 18863.86, + "end": 18864.84, + "probability": 0.0826 + }, + { + "start": 18864.92, + "end": 18867.86, + "probability": 0.411 + }, + { + "start": 18868.04, + "end": 18870.22, + "probability": 0.8686 + }, + { + "start": 18871.02, + "end": 18873.42, + "probability": 0.8977 + }, + { + "start": 18874.06, + "end": 18876.54, + "probability": 0.3813 + }, + { + "start": 18877.32, + "end": 18879.0, + "probability": 0.4929 + }, + { + "start": 18879.08, + "end": 18882.78, + "probability": 0.765 + }, + { + "start": 18882.92, + "end": 18885.62, + "probability": 0.7127 + }, + { + "start": 18885.68, + "end": 18888.12, + "probability": 0.2703 + }, + { + "start": 18889.54, + "end": 18891.48, + "probability": 0.932 + }, + { + "start": 18892.06, + "end": 18892.4, + "probability": 0.8199 + }, + { + "start": 18892.86, + "end": 18893.04, + "probability": 0.1013 + }, + { + "start": 18894.4, + "end": 18894.52, + "probability": 0.5067 + }, + { + "start": 18903.36, + "end": 18903.96, + "probability": 0.005 + }, + { + "start": 18909.76, + "end": 18915.24, + "probability": 0.0288 + }, + { + "start": 18916.26, + "end": 18917.78, + "probability": 0.4239 + }, + { + "start": 18918.32, + "end": 18919.74, + "probability": 0.767 + }, + { + "start": 18919.86, + "end": 18922.02, + "probability": 0.8223 + }, + { + "start": 18922.2, + "end": 18922.7, + "probability": 0.4053 + }, + { + "start": 18922.76, + "end": 18922.86, + "probability": 0.8085 + }, + { + "start": 18923.16, + "end": 18923.54, + "probability": 0.8495 + }, + { + "start": 18924.0, + "end": 18927.28, + "probability": 0.9465 + }, + { + "start": 18927.34, + "end": 18928.92, + "probability": 0.0724 + }, + { + "start": 18929.2, + "end": 18930.5, + "probability": 0.9445 + }, + { + "start": 18931.2, + "end": 18935.78, + "probability": 0.8642 + }, + { + "start": 18935.78, + "end": 18935.94, + "probability": 0.9124 + }, + { + "start": 18949.9, + "end": 18950.76, + "probability": 0.7222 + }, + { + "start": 18950.88, + "end": 18951.68, + "probability": 0.6663 + }, + { + "start": 18951.74, + "end": 18955.4, + "probability": 0.9864 + }, + { + "start": 18955.4, + "end": 18961.24, + "probability": 0.7604 + }, + { + "start": 18961.24, + "end": 18965.66, + "probability": 0.9957 + }, + { + "start": 18966.44, + "end": 18966.76, + "probability": 0.451 + }, + { + "start": 18966.86, + "end": 18968.78, + "probability": 0.9863 + }, + { + "start": 18968.78, + "end": 18971.78, + "probability": 0.9037 + }, + { + "start": 18972.54, + "end": 18974.86, + "probability": 0.99 + }, + { + "start": 18974.94, + "end": 18978.82, + "probability": 0.9502 + }, + { + "start": 18979.0, + "end": 18980.0, + "probability": 0.8564 + }, + { + "start": 18980.5, + "end": 18983.78, + "probability": 0.9768 + }, + { + "start": 18984.58, + "end": 18987.26, + "probability": 0.7333 + }, + { + "start": 18987.36, + "end": 18987.56, + "probability": 0.3531 + }, + { + "start": 18987.66, + "end": 18990.06, + "probability": 0.9907 + }, + { + "start": 18990.06, + "end": 18993.22, + "probability": 0.836 + }, + { + "start": 18993.54, + "end": 18994.36, + "probability": 0.5587 + }, + { + "start": 18994.94, + "end": 18996.44, + "probability": 0.7618 + }, + { + "start": 18996.54, + "end": 18999.66, + "probability": 0.8628 + }, + { + "start": 18999.66, + "end": 19002.18, + "probability": 0.9855 + }, + { + "start": 19002.82, + "end": 19006.38, + "probability": 0.8876 + }, + { + "start": 19006.52, + "end": 19007.08, + "probability": 0.9052 + }, + { + "start": 19007.2, + "end": 19007.48, + "probability": 0.5316 + }, + { + "start": 19007.54, + "end": 19008.6, + "probability": 0.9718 + }, + { + "start": 19008.66, + "end": 19008.96, + "probability": 0.8843 + }, + { + "start": 19009.02, + "end": 19009.34, + "probability": 0.7157 + }, + { + "start": 19009.44, + "end": 19010.6, + "probability": 0.8233 + }, + { + "start": 19010.72, + "end": 19012.22, + "probability": 0.943 + }, + { + "start": 19012.94, + "end": 19014.18, + "probability": 0.9619 + }, + { + "start": 19015.08, + "end": 19017.92, + "probability": 0.9131 + }, + { + "start": 19018.02, + "end": 19020.4, + "probability": 0.9563 + }, + { + "start": 19021.18, + "end": 19021.72, + "probability": 0.3256 + }, + { + "start": 19021.74, + "end": 19025.26, + "probability": 0.9456 + }, + { + "start": 19025.26, + "end": 19029.92, + "probability": 0.8929 + }, + { + "start": 19030.32, + "end": 19032.06, + "probability": 0.8743 + }, + { + "start": 19032.4, + "end": 19032.88, + "probability": 0.5506 + }, + { + "start": 19032.88, + "end": 19036.7, + "probability": 0.9823 + }, + { + "start": 19036.7, + "end": 19040.46, + "probability": 0.9441 + }, + { + "start": 19041.32, + "end": 19043.46, + "probability": 0.9814 + }, + { + "start": 19043.46, + "end": 19045.92, + "probability": 0.9939 + }, + { + "start": 19046.52, + "end": 19047.38, + "probability": 0.8169 + }, + { + "start": 19047.52, + "end": 19049.14, + "probability": 0.9832 + }, + { + "start": 19049.54, + "end": 19053.62, + "probability": 0.8975 + }, + { + "start": 19054.42, + "end": 19055.0, + "probability": 0.51 + }, + { + "start": 19055.14, + "end": 19058.04, + "probability": 0.9188 + }, + { + "start": 19058.08, + "end": 19058.76, + "probability": 0.9414 + }, + { + "start": 19059.56, + "end": 19061.9, + "probability": 0.7463 + }, + { + "start": 19061.9, + "end": 19064.5, + "probability": 0.9941 + }, + { + "start": 19064.92, + "end": 19066.96, + "probability": 0.9883 + }, + { + "start": 19066.96, + "end": 19069.22, + "probability": 0.9987 + }, + { + "start": 19069.3, + "end": 19070.36, + "probability": 0.8469 + }, + { + "start": 19070.96, + "end": 19073.62, + "probability": 0.9971 + }, + { + "start": 19074.28, + "end": 19077.92, + "probability": 0.9412 + }, + { + "start": 19079.06, + "end": 19083.1, + "probability": 0.9669 + }, + { + "start": 19083.46, + "end": 19086.9, + "probability": 0.9885 + }, + { + "start": 19087.42, + "end": 19089.3, + "probability": 0.9983 + }, + { + "start": 19089.92, + "end": 19090.96, + "probability": 0.9472 + }, + { + "start": 19091.2, + "end": 19092.08, + "probability": 0.661 + }, + { + "start": 19092.18, + "end": 19094.7, + "probability": 0.9814 + }, + { + "start": 19094.84, + "end": 19097.28, + "probability": 0.9897 + }, + { + "start": 19097.8, + "end": 19100.74, + "probability": 0.7689 + }, + { + "start": 19102.52, + "end": 19105.84, + "probability": 0.9856 + }, + { + "start": 19105.94, + "end": 19109.38, + "probability": 0.9902 + }, + { + "start": 19110.44, + "end": 19111.23, + "probability": 0.7944 + }, + { + "start": 19111.6, + "end": 19113.68, + "probability": 0.2743 + }, + { + "start": 19113.74, + "end": 19114.52, + "probability": 0.7373 + }, + { + "start": 19114.74, + "end": 19116.8, + "probability": 0.6331 + }, + { + "start": 19117.2, + "end": 19118.13, + "probability": 0.8234 + }, + { + "start": 19119.06, + "end": 19119.5, + "probability": 0.7737 + }, + { + "start": 19120.92, + "end": 19122.38, + "probability": 0.5978 + }, + { + "start": 19124.2, + "end": 19125.92, + "probability": 0.9446 + }, + { + "start": 19126.94, + "end": 19141.2, + "probability": 0.8311 + }, + { + "start": 19146.42, + "end": 19147.42, + "probability": 0.4955 + }, + { + "start": 19147.82, + "end": 19148.06, + "probability": 0.549 + }, + { + "start": 19148.06, + "end": 19149.36, + "probability": 0.7345 + }, + { + "start": 19149.66, + "end": 19155.0, + "probability": 0.937 + }, + { + "start": 19156.14, + "end": 19159.87, + "probability": 0.996 + }, + { + "start": 19160.3, + "end": 19163.74, + "probability": 0.9199 + }, + { + "start": 19164.72, + "end": 19166.04, + "probability": 0.9761 + }, + { + "start": 19166.16, + "end": 19167.3, + "probability": 0.9564 + }, + { + "start": 19167.64, + "end": 19171.66, + "probability": 0.9941 + }, + { + "start": 19172.68, + "end": 19174.86, + "probability": 0.9971 + }, + { + "start": 19176.1, + "end": 19178.88, + "probability": 0.9797 + }, + { + "start": 19178.98, + "end": 19182.48, + "probability": 0.9836 + }, + { + "start": 19183.94, + "end": 19187.56, + "probability": 0.9722 + }, + { + "start": 19188.02, + "end": 19191.24, + "probability": 0.9857 + }, + { + "start": 19192.16, + "end": 19192.5, + "probability": 0.95 + }, + { + "start": 19195.42, + "end": 19196.04, + "probability": 0.4618 + }, + { + "start": 19196.14, + "end": 19199.22, + "probability": 0.818 + }, + { + "start": 19199.3, + "end": 19202.28, + "probability": 0.8799 + }, + { + "start": 19202.84, + "end": 19204.38, + "probability": 0.9508 + }, + { + "start": 19205.82, + "end": 19208.72, + "probability": 0.9316 + }, + { + "start": 19210.22, + "end": 19212.22, + "probability": 0.9868 + }, + { + "start": 19212.72, + "end": 19213.64, + "probability": 0.5061 + }, + { + "start": 19213.8, + "end": 19214.88, + "probability": 0.6964 + }, + { + "start": 19214.94, + "end": 19218.34, + "probability": 0.9985 + }, + { + "start": 19218.94, + "end": 19220.52, + "probability": 0.9406 + }, + { + "start": 19221.04, + "end": 19223.74, + "probability": 0.937 + }, + { + "start": 19225.04, + "end": 19229.49, + "probability": 0.9714 + }, + { + "start": 19230.06, + "end": 19231.54, + "probability": 0.7049 + }, + { + "start": 19232.32, + "end": 19237.5, + "probability": 0.9585 + }, + { + "start": 19237.5, + "end": 19242.48, + "probability": 0.9953 + }, + { + "start": 19244.14, + "end": 19246.58, + "probability": 0.9227 + }, + { + "start": 19247.48, + "end": 19253.02, + "probability": 0.9829 + }, + { + "start": 19254.26, + "end": 19256.56, + "probability": 0.9656 + }, + { + "start": 19258.12, + "end": 19261.68, + "probability": 0.9873 + }, + { + "start": 19262.26, + "end": 19269.22, + "probability": 0.9836 + }, + { + "start": 19270.44, + "end": 19273.26, + "probability": 0.8668 + }, + { + "start": 19274.78, + "end": 19282.32, + "probability": 0.9978 + }, + { + "start": 19284.6, + "end": 19293.9, + "probability": 0.9708 + }, + { + "start": 19296.14, + "end": 19301.06, + "probability": 0.9708 + }, + { + "start": 19301.74, + "end": 19303.38, + "probability": 0.9819 + }, + { + "start": 19304.72, + "end": 19309.2, + "probability": 0.9716 + }, + { + "start": 19310.2, + "end": 19316.56, + "probability": 0.9814 + }, + { + "start": 19317.74, + "end": 19323.68, + "probability": 0.9104 + }, + { + "start": 19323.68, + "end": 19330.02, + "probability": 0.9786 + }, + { + "start": 19331.02, + "end": 19334.7, + "probability": 0.9974 + }, + { + "start": 19335.66, + "end": 19342.96, + "probability": 0.991 + }, + { + "start": 19344.44, + "end": 19346.68, + "probability": 0.9627 + }, + { + "start": 19347.56, + "end": 19350.82, + "probability": 0.9546 + }, + { + "start": 19352.0, + "end": 19355.48, + "probability": 0.9905 + }, + { + "start": 19357.36, + "end": 19358.26, + "probability": 0.9698 + }, + { + "start": 19359.16, + "end": 19362.08, + "probability": 0.9826 + }, + { + "start": 19362.86, + "end": 19364.46, + "probability": 0.8305 + }, + { + "start": 19366.2, + "end": 19367.36, + "probability": 0.9858 + }, + { + "start": 19368.8, + "end": 19372.46, + "probability": 0.8362 + }, + { + "start": 19373.48, + "end": 19375.94, + "probability": 0.9731 + }, + { + "start": 19376.68, + "end": 19382.14, + "probability": 0.9916 + }, + { + "start": 19382.9, + "end": 19386.16, + "probability": 0.9989 + }, + { + "start": 19386.46, + "end": 19388.24, + "probability": 0.999 + }, + { + "start": 19388.76, + "end": 19389.42, + "probability": 0.4406 + }, + { + "start": 19389.68, + "end": 19393.0, + "probability": 0.9976 + }, + { + "start": 19394.28, + "end": 19395.79, + "probability": 0.6791 + }, + { + "start": 19396.58, + "end": 19398.36, + "probability": 0.9769 + }, + { + "start": 19398.94, + "end": 19403.66, + "probability": 0.9812 + }, + { + "start": 19405.3, + "end": 19408.4, + "probability": 0.9519 + }, + { + "start": 19409.34, + "end": 19412.06, + "probability": 0.7545 + }, + { + "start": 19413.06, + "end": 19416.4, + "probability": 0.9561 + }, + { + "start": 19416.64, + "end": 19422.34, + "probability": 0.9965 + }, + { + "start": 19423.68, + "end": 19425.08, + "probability": 0.8376 + }, + { + "start": 19425.96, + "end": 19432.68, + "probability": 0.9637 + }, + { + "start": 19434.48, + "end": 19437.86, + "probability": 0.9773 + }, + { + "start": 19438.4, + "end": 19439.19, + "probability": 0.8474 + }, + { + "start": 19439.94, + "end": 19443.92, + "probability": 0.9905 + }, + { + "start": 19443.92, + "end": 19449.3, + "probability": 0.9553 + }, + { + "start": 19450.16, + "end": 19452.08, + "probability": 0.8631 + }, + { + "start": 19452.16, + "end": 19456.22, + "probability": 0.9504 + }, + { + "start": 19457.22, + "end": 19460.5, + "probability": 0.9644 + }, + { + "start": 19461.18, + "end": 19465.46, + "probability": 0.9971 + }, + { + "start": 19465.96, + "end": 19468.06, + "probability": 0.9295 + }, + { + "start": 19468.72, + "end": 19472.06, + "probability": 0.9974 + }, + { + "start": 19472.3, + "end": 19473.36, + "probability": 0.6699 + }, + { + "start": 19473.76, + "end": 19474.48, + "probability": 0.8859 + }, + { + "start": 19474.56, + "end": 19475.46, + "probability": 0.8587 + }, + { + "start": 19475.8, + "end": 19479.24, + "probability": 0.9847 + }, + { + "start": 19479.24, + "end": 19482.54, + "probability": 0.9925 + }, + { + "start": 19482.68, + "end": 19486.88, + "probability": 0.9737 + }, + { + "start": 19487.42, + "end": 19489.98, + "probability": 0.9474 + }, + { + "start": 19490.36, + "end": 19491.06, + "probability": 0.6819 + }, + { + "start": 19494.16, + "end": 19498.16, + "probability": 0.888 + }, + { + "start": 19498.26, + "end": 19498.66, + "probability": 0.4336 + }, + { + "start": 19499.46, + "end": 19502.18, + "probability": 0.6168 + }, + { + "start": 19502.26, + "end": 19503.32, + "probability": 0.952 + }, + { + "start": 19504.22, + "end": 19505.96, + "probability": 0.7779 + }, + { + "start": 19506.22, + "end": 19511.78, + "probability": 0.5792 + }, + { + "start": 19512.08, + "end": 19512.68, + "probability": 0.1114 + }, + { + "start": 19512.68, + "end": 19513.36, + "probability": 0.0887 + }, + { + "start": 19513.54, + "end": 19514.18, + "probability": 0.4084 + }, + { + "start": 19514.32, + "end": 19514.76, + "probability": 0.6472 + }, + { + "start": 19514.78, + "end": 19515.32, + "probability": 0.7691 + }, + { + "start": 19531.56, + "end": 19531.56, + "probability": 0.0045 + }, + { + "start": 19531.56, + "end": 19534.16, + "probability": 0.4551 + }, + { + "start": 19534.16, + "end": 19534.6, + "probability": 0.7539 + }, + { + "start": 19535.4, + "end": 19537.48, + "probability": 0.6789 + }, + { + "start": 19537.72, + "end": 19539.95, + "probability": 0.5107 + }, + { + "start": 19540.92, + "end": 19542.88, + "probability": 0.2923 + }, + { + "start": 19542.9, + "end": 19543.82, + "probability": 0.7699 + }, + { + "start": 19550.98, + "end": 19555.38, + "probability": 0.0295 + }, + { + "start": 19556.54, + "end": 19557.46, + "probability": 0.1333 + }, + { + "start": 19560.2, + "end": 19563.06, + "probability": 0.605 + }, + { + "start": 19563.12, + "end": 19566.52, + "probability": 0.691 + }, + { + "start": 19567.1, + "end": 19569.52, + "probability": 0.959 + }, + { + "start": 19569.52, + "end": 19571.3, + "probability": 0.9736 + }, + { + "start": 19571.4, + "end": 19571.82, + "probability": 0.4658 + }, + { + "start": 19571.88, + "end": 19575.48, + "probability": 0.9232 + }, + { + "start": 19575.56, + "end": 19577.86, + "probability": 0.9853 + }, + { + "start": 19578.7, + "end": 19579.28, + "probability": 0.8299 + }, + { + "start": 19581.06, + "end": 19582.58, + "probability": 0.498 + }, + { + "start": 19582.7, + "end": 19584.06, + "probability": 0.7022 + }, + { + "start": 19584.06, + "end": 19585.62, + "probability": 0.8406 + }, + { + "start": 19585.72, + "end": 19590.59, + "probability": 0.9136 + }, + { + "start": 19590.68, + "end": 19594.8, + "probability": 0.7573 + }, + { + "start": 19595.34, + "end": 19596.66, + "probability": 0.1369 + }, + { + "start": 19596.94, + "end": 19597.98, + "probability": 0.1869 + }, + { + "start": 19598.1, + "end": 19599.74, + "probability": 0.7678 + }, + { + "start": 19599.88, + "end": 19600.3, + "probability": 0.3591 + }, + { + "start": 19600.76, + "end": 19603.62, + "probability": 0.7062 + }, + { + "start": 19605.02, + "end": 19606.0, + "probability": 0.5679 + }, + { + "start": 19617.22, + "end": 19617.82, + "probability": 0.351 + }, + { + "start": 19617.9, + "end": 19620.12, + "probability": 0.9379 + }, + { + "start": 19623.92, + "end": 19625.32, + "probability": 0.6188 + }, + { + "start": 19625.36, + "end": 19626.52, + "probability": 0.4795 + }, + { + "start": 19626.58, + "end": 19627.94, + "probability": 0.5552 + }, + { + "start": 19628.08, + "end": 19632.92, + "probability": 0.9069 + }, + { + "start": 19634.04, + "end": 19635.14, + "probability": 0.1518 + }, + { + "start": 19635.54, + "end": 19636.68, + "probability": 0.8352 + }, + { + "start": 19637.04, + "end": 19639.15, + "probability": 0.7015 + }, + { + "start": 19639.7, + "end": 19641.18, + "probability": 0.6769 + }, + { + "start": 19641.36, + "end": 19642.76, + "probability": 0.9938 + }, + { + "start": 19643.02, + "end": 19648.4, + "probability": 0.9843 + }, + { + "start": 19649.06, + "end": 19652.06, + "probability": 0.5171 + }, + { + "start": 19652.78, + "end": 19655.08, + "probability": 0.0404 + }, + { + "start": 19655.6, + "end": 19657.92, + "probability": 0.8659 + }, + { + "start": 19658.58, + "end": 19661.6, + "probability": 0.5726 + }, + { + "start": 19661.76, + "end": 19663.62, + "probability": 0.9618 + }, + { + "start": 19664.38, + "end": 19664.38, + "probability": 0.3194 + }, + { + "start": 19665.14, + "end": 19668.0, + "probability": 0.4533 + }, + { + "start": 19668.78, + "end": 19670.96, + "probability": 0.6885 + }, + { + "start": 19671.54, + "end": 19672.2, + "probability": 0.2056 + }, + { + "start": 19672.25, + "end": 19674.98, + "probability": 0.6988 + }, + { + "start": 19675.48, + "end": 19679.96, + "probability": 0.6718 + }, + { + "start": 19680.06, + "end": 19680.32, + "probability": 0.1503 + }, + { + "start": 19681.0, + "end": 19682.72, + "probability": 0.603 + }, + { + "start": 19682.76, + "end": 19683.88, + "probability": 0.5246 + }, + { + "start": 19684.5, + "end": 19688.46, + "probability": 0.5358 + }, + { + "start": 19688.46, + "end": 19690.0, + "probability": 0.1004 + }, + { + "start": 19690.38, + "end": 19691.86, + "probability": 0.9016 + }, + { + "start": 19692.44, + "end": 19694.78, + "probability": 0.8557 + }, + { + "start": 19694.84, + "end": 19696.72, + "probability": 0.7474 + }, + { + "start": 19696.8, + "end": 19697.92, + "probability": 0.7043 + }, + { + "start": 19698.0, + "end": 19698.54, + "probability": 0.5017 + }, + { + "start": 19699.4, + "end": 19702.48, + "probability": 0.714 + }, + { + "start": 19702.56, + "end": 19703.42, + "probability": 0.7188 + }, + { + "start": 19704.46, + "end": 19705.13, + "probability": 0.8513 + }, + { + "start": 19706.0, + "end": 19706.52, + "probability": 0.5697 + }, + { + "start": 19707.16, + "end": 19708.18, + "probability": 0.7622 + }, + { + "start": 19708.32, + "end": 19709.32, + "probability": 0.7955 + }, + { + "start": 19709.38, + "end": 19711.76, + "probability": 0.9912 + }, + { + "start": 19711.76, + "end": 19714.52, + "probability": 0.9765 + }, + { + "start": 19716.1, + "end": 19718.54, + "probability": 0.4743 + }, + { + "start": 19719.68, + "end": 19723.42, + "probability": 0.9328 + }, + { + "start": 19723.42, + "end": 19725.48, + "probability": 0.9901 + }, + { + "start": 19725.64, + "end": 19726.76, + "probability": 0.7786 + }, + { + "start": 19726.9, + "end": 19729.18, + "probability": 0.9915 + }, + { + "start": 19729.18, + "end": 19732.58, + "probability": 0.9775 + }, + { + "start": 19733.04, + "end": 19734.98, + "probability": 0.9926 + }, + { + "start": 19735.74, + "end": 19736.54, + "probability": 0.8445 + }, + { + "start": 19736.7, + "end": 19741.8, + "probability": 0.96 + }, + { + "start": 19742.12, + "end": 19746.08, + "probability": 0.981 + }, + { + "start": 19746.64, + "end": 19748.64, + "probability": 0.5722 + }, + { + "start": 19748.92, + "end": 19750.56, + "probability": 0.7454 + }, + { + "start": 19750.9, + "end": 19754.09, + "probability": 0.8899 + }, + { + "start": 19756.02, + "end": 19758.44, + "probability": 0.8938 + }, + { + "start": 19758.44, + "end": 19761.84, + "probability": 0.9992 + }, + { + "start": 19762.34, + "end": 19766.0, + "probability": 0.9905 + }, + { + "start": 19766.4, + "end": 19771.52, + "probability": 0.9772 + }, + { + "start": 19772.5, + "end": 19775.96, + "probability": 0.8532 + }, + { + "start": 19776.16, + "end": 19781.32, + "probability": 0.9922 + }, + { + "start": 19781.8, + "end": 19785.54, + "probability": 0.9982 + }, + { + "start": 19785.84, + "end": 19790.12, + "probability": 0.9944 + }, + { + "start": 19790.92, + "end": 19793.14, + "probability": 0.8501 + }, + { + "start": 19793.18, + "end": 19795.96, + "probability": 0.9913 + }, + { + "start": 19796.42, + "end": 19796.54, + "probability": 0.5681 + }, + { + "start": 19796.6, + "end": 19798.08, + "probability": 0.7264 + }, + { + "start": 19798.12, + "end": 19799.82, + "probability": 0.7809 + }, + { + "start": 19799.92, + "end": 19800.82, + "probability": 0.5517 + }, + { + "start": 19800.96, + "end": 19801.58, + "probability": 0.5582 + }, + { + "start": 19804.98, + "end": 19807.64, + "probability": 0.9062 + }, + { + "start": 19811.56, + "end": 19812.94, + "probability": 0.8626 + }, + { + "start": 19829.12, + "end": 19829.94, + "probability": 0.6994 + }, + { + "start": 19830.02, + "end": 19833.0, + "probability": 0.9939 + }, + { + "start": 19833.0, + "end": 19834.94, + "probability": 0.9939 + }, + { + "start": 19835.04, + "end": 19836.2, + "probability": 0.9873 + }, + { + "start": 19836.58, + "end": 19840.84, + "probability": 0.9409 + }, + { + "start": 19840.92, + "end": 19842.26, + "probability": 0.5674 + }, + { + "start": 19842.4, + "end": 19845.96, + "probability": 0.9987 + }, + { + "start": 19845.96, + "end": 19850.88, + "probability": 0.9985 + }, + { + "start": 19851.04, + "end": 19861.04, + "probability": 0.9526 + }, + { + "start": 19861.69, + "end": 19866.04, + "probability": 0.9979 + }, + { + "start": 19866.62, + "end": 19869.46, + "probability": 0.9989 + }, + { + "start": 19869.58, + "end": 19870.7, + "probability": 0.9076 + }, + { + "start": 19872.26, + "end": 19878.6, + "probability": 0.9977 + }, + { + "start": 19878.6, + "end": 19885.28, + "probability": 0.9034 + }, + { + "start": 19885.52, + "end": 19887.52, + "probability": 0.9935 + }, + { + "start": 19888.36, + "end": 19889.42, + "probability": 0.7668 + }, + { + "start": 19889.54, + "end": 19890.42, + "probability": 0.9116 + }, + { + "start": 19890.5, + "end": 19891.42, + "probability": 0.9229 + }, + { + "start": 19892.72, + "end": 19895.98, + "probability": 0.9927 + }, + { + "start": 19897.3, + "end": 19901.58, + "probability": 0.7472 + }, + { + "start": 19902.78, + "end": 19908.12, + "probability": 0.9821 + }, + { + "start": 19908.12, + "end": 19917.62, + "probability": 0.9969 + }, + { + "start": 19917.62, + "end": 19923.5, + "probability": 0.9834 + }, + { + "start": 19924.02, + "end": 19925.88, + "probability": 0.9872 + }, + { + "start": 19927.1, + "end": 19929.9, + "probability": 0.3721 + }, + { + "start": 19930.48, + "end": 19931.3, + "probability": 0.7528 + }, + { + "start": 19931.38, + "end": 19932.06, + "probability": 0.6728 + }, + { + "start": 19933.3, + "end": 19935.3, + "probability": 0.609 + }, + { + "start": 19935.48, + "end": 19935.58, + "probability": 0.0292 + }, + { + "start": 19936.0, + "end": 19936.0, + "probability": 0.3312 + }, + { + "start": 19936.0, + "end": 19940.54, + "probability": 0.9858 + }, + { + "start": 19940.54, + "end": 19943.9, + "probability": 0.9995 + }, + { + "start": 19944.24, + "end": 19944.9, + "probability": 0.7472 + }, + { + "start": 19945.06, + "end": 19946.66, + "probability": 0.9613 + }, + { + "start": 19947.1, + "end": 19949.02, + "probability": 0.968 + }, + { + "start": 19949.2, + "end": 19951.44, + "probability": 0.9842 + }, + { + "start": 19951.94, + "end": 19952.96, + "probability": 0.9064 + }, + { + "start": 19953.08, + "end": 19953.7, + "probability": 0.8132 + }, + { + "start": 19954.06, + "end": 19956.36, + "probability": 0.9891 + }, + { + "start": 19956.78, + "end": 19960.48, + "probability": 0.9797 + }, + { + "start": 19961.1, + "end": 19962.78, + "probability": 0.9536 + }, + { + "start": 19963.14, + "end": 19966.03, + "probability": 0.9904 + }, + { + "start": 19966.88, + "end": 19968.88, + "probability": 0.908 + }, + { + "start": 19968.88, + "end": 19973.0, + "probability": 0.9965 + }, + { + "start": 19973.22, + "end": 19974.42, + "probability": 0.8709 + }, + { + "start": 19975.12, + "end": 19976.38, + "probability": 0.7755 + }, + { + "start": 19976.58, + "end": 19977.92, + "probability": 0.7727 + }, + { + "start": 19979.32, + "end": 19980.96, + "probability": 0.8958 + }, + { + "start": 19981.1, + "end": 19981.84, + "probability": 0.7021 + }, + { + "start": 19982.38, + "end": 19982.46, + "probability": 0.7398 + }, + { + "start": 19982.46, + "end": 19984.41, + "probability": 0.8318 + }, + { + "start": 19984.64, + "end": 19985.44, + "probability": 0.8926 + }, + { + "start": 19985.58, + "end": 19987.61, + "probability": 0.9956 + }, + { + "start": 19987.9, + "end": 19989.79, + "probability": 0.9941 + }, + { + "start": 19990.06, + "end": 19993.36, + "probability": 0.9971 + }, + { + "start": 19994.0, + "end": 19998.02, + "probability": 0.4916 + }, + { + "start": 19998.26, + "end": 19999.82, + "probability": 0.4428 + }, + { + "start": 20000.4, + "end": 20001.69, + "probability": 0.9823 + }, + { + "start": 20002.16, + "end": 20004.8, + "probability": 0.849 + }, + { + "start": 20005.3, + "end": 20005.66, + "probability": 0.5648 + }, + { + "start": 20005.7, + "end": 20006.48, + "probability": 0.8061 + }, + { + "start": 20006.62, + "end": 20009.26, + "probability": 0.573 + }, + { + "start": 20009.72, + "end": 20012.3, + "probability": 0.986 + }, + { + "start": 20012.46, + "end": 20013.82, + "probability": 0.9958 + }, + { + "start": 20013.94, + "end": 20015.6, + "probability": 0.8315 + }, + { + "start": 20015.94, + "end": 20019.04, + "probability": 0.9971 + }, + { + "start": 20020.04, + "end": 20020.66, + "probability": 0.9254 + }, + { + "start": 20021.76, + "end": 20023.56, + "probability": 0.9983 + }, + { + "start": 20024.28, + "end": 20025.28, + "probability": 0.9245 + }, + { + "start": 20025.58, + "end": 20030.24, + "probability": 0.9644 + }, + { + "start": 20030.78, + "end": 20032.94, + "probability": 0.7744 + }, + { + "start": 20034.28, + "end": 20038.18, + "probability": 0.9707 + }, + { + "start": 20038.28, + "end": 20038.85, + "probability": 0.8667 + }, + { + "start": 20039.36, + "end": 20040.76, + "probability": 0.9939 + }, + { + "start": 20041.98, + "end": 20044.9, + "probability": 0.8183 + }, + { + "start": 20045.58, + "end": 20050.04, + "probability": 0.8956 + }, + { + "start": 20050.88, + "end": 20052.48, + "probability": 0.7156 + }, + { + "start": 20052.66, + "end": 20056.18, + "probability": 0.9047 + }, + { + "start": 20056.44, + "end": 20058.66, + "probability": 0.9761 + }, + { + "start": 20059.24, + "end": 20060.76, + "probability": 0.6943 + }, + { + "start": 20061.06, + "end": 20062.46, + "probability": 0.7432 + }, + { + "start": 20062.64, + "end": 20064.98, + "probability": 0.8877 + }, + { + "start": 20066.18, + "end": 20067.56, + "probability": 0.9768 + }, + { + "start": 20067.68, + "end": 20068.3, + "probability": 0.8112 + }, + { + "start": 20068.56, + "end": 20071.08, + "probability": 0.9919 + }, + { + "start": 20071.74, + "end": 20072.3, + "probability": 0.9342 + }, + { + "start": 20072.4, + "end": 20075.24, + "probability": 0.9659 + }, + { + "start": 20076.36, + "end": 20080.18, + "probability": 0.9871 + }, + { + "start": 20080.38, + "end": 20082.66, + "probability": 0.9971 + }, + { + "start": 20083.14, + "end": 20084.34, + "probability": 0.5963 + }, + { + "start": 20084.48, + "end": 20088.76, + "probability": 0.996 + }, + { + "start": 20088.96, + "end": 20089.56, + "probability": 0.8503 + }, + { + "start": 20089.96, + "end": 20096.78, + "probability": 0.9932 + }, + { + "start": 20096.78, + "end": 20101.2, + "probability": 0.9956 + }, + { + "start": 20101.54, + "end": 20103.04, + "probability": 0.7805 + }, + { + "start": 20103.78, + "end": 20109.19, + "probability": 0.9304 + }, + { + "start": 20109.74, + "end": 20111.86, + "probability": 0.8639 + }, + { + "start": 20112.16, + "end": 20114.6, + "probability": 0.9746 + }, + { + "start": 20114.7, + "end": 20115.38, + "probability": 0.6618 + }, + { + "start": 20115.48, + "end": 20116.06, + "probability": 0.503 + }, + { + "start": 20116.76, + "end": 20119.46, + "probability": 0.9776 + }, + { + "start": 20120.06, + "end": 20124.28, + "probability": 0.9694 + }, + { + "start": 20124.86, + "end": 20127.78, + "probability": 0.5855 + }, + { + "start": 20128.58, + "end": 20130.72, + "probability": 0.7412 + }, + { + "start": 20130.84, + "end": 20132.16, + "probability": 0.9071 + }, + { + "start": 20132.68, + "end": 20135.32, + "probability": 0.998 + }, + { + "start": 20136.12, + "end": 20138.94, + "probability": 0.7838 + }, + { + "start": 20139.46, + "end": 20139.98, + "probability": 0.5933 + }, + { + "start": 20140.16, + "end": 20147.12, + "probability": 0.9438 + }, + { + "start": 20147.92, + "end": 20153.9, + "probability": 0.8324 + }, + { + "start": 20154.44, + "end": 20158.4, + "probability": 0.8015 + }, + { + "start": 20158.76, + "end": 20160.62, + "probability": 0.9634 + }, + { + "start": 20161.26, + "end": 20162.36, + "probability": 0.9657 + }, + { + "start": 20163.02, + "end": 20167.52, + "probability": 0.9937 + }, + { + "start": 20167.96, + "end": 20168.9, + "probability": 0.9865 + }, + { + "start": 20169.06, + "end": 20170.02, + "probability": 0.9863 + }, + { + "start": 20170.14, + "end": 20170.38, + "probability": 0.6818 + }, + { + "start": 20170.82, + "end": 20173.58, + "probability": 0.9951 + }, + { + "start": 20173.84, + "end": 20174.72, + "probability": 0.8419 + }, + { + "start": 20174.94, + "end": 20175.32, + "probability": 0.1273 + }, + { + "start": 20175.36, + "end": 20175.62, + "probability": 0.2167 + }, + { + "start": 20175.78, + "end": 20176.18, + "probability": 0.5983 + }, + { + "start": 20176.18, + "end": 20178.62, + "probability": 0.8995 + }, + { + "start": 20178.72, + "end": 20183.2, + "probability": 0.7465 + }, + { + "start": 20183.22, + "end": 20186.24, + "probability": 0.3338 + }, + { + "start": 20186.56, + "end": 20187.06, + "probability": 0.469 + }, + { + "start": 20187.66, + "end": 20188.86, + "probability": 0.739 + }, + { + "start": 20189.18, + "end": 20190.78, + "probability": 0.5765 + }, + { + "start": 20190.9, + "end": 20191.44, + "probability": 0.6879 + }, + { + "start": 20191.46, + "end": 20192.04, + "probability": 0.7547 + }, + { + "start": 20192.78, + "end": 20193.4, + "probability": 0.0045 + }, + { + "start": 20206.14, + "end": 20206.36, + "probability": 0.103 + }, + { + "start": 20206.36, + "end": 20208.66, + "probability": 0.5437 + }, + { + "start": 20208.8, + "end": 20210.9, + "probability": 0.8821 + }, + { + "start": 20210.98, + "end": 20216.44, + "probability": 0.9538 + }, + { + "start": 20216.48, + "end": 20217.12, + "probability": 0.8276 + }, + { + "start": 20218.32, + "end": 20219.04, + "probability": 0.0055 + }, + { + "start": 20221.98, + "end": 20226.56, + "probability": 0.1475 + }, + { + "start": 20226.56, + "end": 20228.72, + "probability": 0.0422 + }, + { + "start": 20228.98, + "end": 20229.84, + "probability": 0.0905 + }, + { + "start": 20233.64, + "end": 20235.82, + "probability": 0.4348 + }, + { + "start": 20235.96, + "end": 20236.06, + "probability": 0.6584 + }, + { + "start": 20236.36, + "end": 20238.88, + "probability": 0.7669 + }, + { + "start": 20240.08, + "end": 20241.32, + "probability": 0.0981 + }, + { + "start": 20241.84, + "end": 20246.16, + "probability": 0.8218 + }, + { + "start": 20246.58, + "end": 20247.06, + "probability": 0.3358 + }, + { + "start": 20247.1, + "end": 20247.48, + "probability": 0.4842 + }, + { + "start": 20247.86, + "end": 20249.06, + "probability": 0.8674 + }, + { + "start": 20249.16, + "end": 20252.26, + "probability": 0.7881 + }, + { + "start": 20253.06, + "end": 20256.04, + "probability": 0.962 + }, + { + "start": 20256.12, + "end": 20257.26, + "probability": 0.0686 + }, + { + "start": 20258.04, + "end": 20259.08, + "probability": 0.731 + }, + { + "start": 20259.84, + "end": 20260.88, + "probability": 0.9118 + }, + { + "start": 20261.08, + "end": 20263.56, + "probability": 0.7532 + }, + { + "start": 20263.74, + "end": 20264.86, + "probability": 0.7861 + }, + { + "start": 20265.04, + "end": 20265.4, + "probability": 0.8859 + }, + { + "start": 20269.54, + "end": 20270.76, + "probability": 0.8738 + }, + { + "start": 20270.9, + "end": 20272.06, + "probability": 0.5061 + }, + { + "start": 20272.12, + "end": 20274.54, + "probability": 0.9478 + }, + { + "start": 20282.26, + "end": 20283.78, + "probability": 0.6921 + }, + { + "start": 20284.38, + "end": 20285.64, + "probability": 0.2834 + }, + { + "start": 20285.64, + "end": 20287.6, + "probability": 0.8377 + }, + { + "start": 20287.86, + "end": 20290.72, + "probability": 0.2779 + }, + { + "start": 20291.22, + "end": 20293.46, + "probability": 0.9858 + }, + { + "start": 20293.94, + "end": 20297.32, + "probability": 0.8019 + }, + { + "start": 20297.44, + "end": 20298.58, + "probability": 0.4904 + }, + { + "start": 20299.0, + "end": 20301.52, + "probability": 0.9858 + }, + { + "start": 20301.52, + "end": 20303.58, + "probability": 0.9883 + }, + { + "start": 20304.62, + "end": 20307.24, + "probability": 0.9723 + }, + { + "start": 20308.14, + "end": 20311.84, + "probability": 0.9878 + }, + { + "start": 20311.84, + "end": 20315.28, + "probability": 0.9896 + }, + { + "start": 20315.78, + "end": 20319.66, + "probability": 0.9973 + }, + { + "start": 20320.48, + "end": 20323.54, + "probability": 0.8894 + }, + { + "start": 20323.64, + "end": 20325.28, + "probability": 0.7997 + }, + { + "start": 20325.82, + "end": 20328.02, + "probability": 0.8868 + }, + { + "start": 20329.04, + "end": 20329.22, + "probability": 0.4103 + }, + { + "start": 20329.38, + "end": 20332.36, + "probability": 0.9987 + }, + { + "start": 20333.32, + "end": 20333.88, + "probability": 0.2703 + }, + { + "start": 20334.12, + "end": 20335.76, + "probability": 0.9976 + }, + { + "start": 20335.76, + "end": 20339.32, + "probability": 0.8898 + }, + { + "start": 20339.36, + "end": 20342.52, + "probability": 0.9825 + }, + { + "start": 20342.52, + "end": 20344.9, + "probability": 0.9995 + }, + { + "start": 20345.44, + "end": 20347.56, + "probability": 0.9905 + }, + { + "start": 20348.52, + "end": 20352.28, + "probability": 0.98 + }, + { + "start": 20352.28, + "end": 20355.68, + "probability": 0.9953 + }, + { + "start": 20356.32, + "end": 20359.92, + "probability": 0.9976 + }, + { + "start": 20360.4, + "end": 20364.62, + "probability": 0.9975 + }, + { + "start": 20365.36, + "end": 20367.9, + "probability": 0.9958 + }, + { + "start": 20367.9, + "end": 20370.42, + "probability": 0.9903 + }, + { + "start": 20371.12, + "end": 20371.82, + "probability": 0.7001 + }, + { + "start": 20372.38, + "end": 20375.08, + "probability": 0.9927 + }, + { + "start": 20375.08, + "end": 20377.4, + "probability": 0.9982 + }, + { + "start": 20378.36, + "end": 20380.14, + "probability": 0.8785 + }, + { + "start": 20380.14, + "end": 20382.42, + "probability": 0.9939 + }, + { + "start": 20383.08, + "end": 20385.54, + "probability": 0.9775 + }, + { + "start": 20386.22, + "end": 20387.62, + "probability": 0.7358 + }, + { + "start": 20387.62, + "end": 20389.44, + "probability": 0.954 + }, + { + "start": 20389.54, + "end": 20390.76, + "probability": 0.9432 + }, + { + "start": 20391.28, + "end": 20394.56, + "probability": 0.9926 + }, + { + "start": 20394.71, + "end": 20398.88, + "probability": 0.9949 + }, + { + "start": 20399.56, + "end": 20403.19, + "probability": 0.9938 + }, + { + "start": 20403.64, + "end": 20407.86, + "probability": 0.9766 + }, + { + "start": 20408.36, + "end": 20410.52, + "probability": 0.994 + }, + { + "start": 20411.28, + "end": 20415.26, + "probability": 0.9844 + }, + { + "start": 20415.26, + "end": 20420.18, + "probability": 0.9891 + }, + { + "start": 20421.4, + "end": 20422.46, + "probability": 0.6975 + }, + { + "start": 20423.0, + "end": 20423.7, + "probability": 0.8638 + }, + { + "start": 20424.14, + "end": 20426.6, + "probability": 0.9784 + }, + { + "start": 20427.36, + "end": 20429.04, + "probability": 0.805 + }, + { + "start": 20429.28, + "end": 20430.36, + "probability": 0.8903 + }, + { + "start": 20430.56, + "end": 20433.26, + "probability": 0.774 + }, + { + "start": 20433.82, + "end": 20436.06, + "probability": 0.9083 + }, + { + "start": 20436.42, + "end": 20437.92, + "probability": 0.755 + }, + { + "start": 20438.22, + "end": 20438.66, + "probability": 0.5677 + }, + { + "start": 20438.74, + "end": 20439.78, + "probability": 0.7114 + }, + { + "start": 20439.9, + "end": 20440.13, + "probability": 0.8894 + }, + { + "start": 20441.56, + "end": 20442.1, + "probability": 0.6888 + }, + { + "start": 20442.62, + "end": 20443.7, + "probability": 0.9315 + }, + { + "start": 20444.58, + "end": 20445.22, + "probability": 0.8806 + }, + { + "start": 20445.84, + "end": 20446.82, + "probability": 0.9845 + }, + { + "start": 20447.84, + "end": 20448.58, + "probability": 0.5128 + }, + { + "start": 20449.38, + "end": 20449.46, + "probability": 0.3483 + }, + { + "start": 20449.46, + "end": 20450.86, + "probability": 0.8123 + }, + { + "start": 20453.02, + "end": 20453.06, + "probability": 0.0002 + }, + { + "start": 20453.6, + "end": 20453.7, + "probability": 0.0452 + }, + { + "start": 20453.7, + "end": 20456.16, + "probability": 0.9281 + }, + { + "start": 20460.12, + "end": 20461.3, + "probability": 0.6816 + }, + { + "start": 20462.04, + "end": 20463.02, + "probability": 0.8875 + }, + { + "start": 20463.68, + "end": 20464.96, + "probability": 0.739 + }, + { + "start": 20465.62, + "end": 20467.9, + "probability": 0.9443 + }, + { + "start": 20468.48, + "end": 20469.76, + "probability": 0.939 + }, + { + "start": 20470.96, + "end": 20473.12, + "probability": 0.9198 + }, + { + "start": 20473.96, + "end": 20475.04, + "probability": 0.0366 + }, + { + "start": 20476.42, + "end": 20479.1, + "probability": 0.2159 + }, + { + "start": 20484.35, + "end": 20486.88, + "probability": 0.3487 + }, + { + "start": 20487.4, + "end": 20488.96, + "probability": 0.1546 + }, + { + "start": 20488.98, + "end": 20490.06, + "probability": 0.154 + }, + { + "start": 20490.62, + "end": 20491.66, + "probability": 0.0615 + }, + { + "start": 20491.66, + "end": 20492.71, + "probability": 0.0422 + }, + { + "start": 20493.86, + "end": 20496.36, + "probability": 0.3477 + }, + { + "start": 20497.0, + "end": 20498.92, + "probability": 0.0308 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20587.0, + "end": 20587.0, + "probability": 0.0 + }, + { + "start": 20588.26, + "end": 20588.26, + "probability": 0.0081 + }, + { + "start": 20588.26, + "end": 20590.18, + "probability": 0.4267 + }, + { + "start": 20590.3, + "end": 20590.3, + "probability": 0.0975 + }, + { + "start": 20590.3, + "end": 20591.46, + "probability": 0.6634 + }, + { + "start": 20591.64, + "end": 20594.55, + "probability": 0.4948 + }, + { + "start": 20597.64, + "end": 20599.34, + "probability": 0.396 + }, + { + "start": 20599.48, + "end": 20603.08, + "probability": 0.3799 + }, + { + "start": 20603.08, + "end": 20604.74, + "probability": 0.7806 + }, + { + "start": 20605.66, + "end": 20606.58, + "probability": 0.7619 + }, + { + "start": 20606.73, + "end": 20608.99, + "probability": 0.7269 + }, + { + "start": 20609.24, + "end": 20614.2, + "probability": 0.9683 + }, + { + "start": 20618.88, + "end": 20619.52, + "probability": 0.5461 + }, + { + "start": 20619.58, + "end": 20621.32, + "probability": 0.7096 + }, + { + "start": 20621.34, + "end": 20621.6, + "probability": 0.3236 + }, + { + "start": 20623.16, + "end": 20625.94, + "probability": 0.7346 + }, + { + "start": 20625.98, + "end": 20626.28, + "probability": 0.5445 + }, + { + "start": 20626.62, + "end": 20626.64, + "probability": 0.3383 + }, + { + "start": 20626.76, + "end": 20626.84, + "probability": 0.1453 + }, + { + "start": 20627.0, + "end": 20627.23, + "probability": 0.1898 + }, + { + "start": 20627.82, + "end": 20629.02, + "probability": 0.1624 + }, + { + "start": 20631.36, + "end": 20631.96, + "probability": 0.0797 + }, + { + "start": 20631.96, + "end": 20632.96, + "probability": 0.122 + }, + { + "start": 20632.96, + "end": 20636.38, + "probability": 0.5265 + }, + { + "start": 20637.25, + "end": 20639.6, + "probability": 0.6131 + }, + { + "start": 20639.66, + "end": 20640.14, + "probability": 0.7251 + }, + { + "start": 20641.12, + "end": 20641.76, + "probability": 0.8382 + }, + { + "start": 20658.78, + "end": 20664.72, + "probability": 0.2224 + }, + { + "start": 20665.54, + "end": 20666.18, + "probability": 0.0617 + }, + { + "start": 20666.18, + "end": 20666.28, + "probability": 0.0115 + }, + { + "start": 20666.58, + "end": 20669.4, + "probability": 0.6984 + }, + { + "start": 20669.62, + "end": 20671.08, + "probability": 0.084 + }, + { + "start": 20671.76, + "end": 20672.32, + "probability": 0.0385 + }, + { + "start": 20672.32, + "end": 20673.52, + "probability": 0.0597 + }, + { + "start": 20674.46, + "end": 20675.38, + "probability": 0.1386 + }, + { + "start": 20676.08, + "end": 20678.3, + "probability": 0.0288 + }, + { + "start": 20681.24, + "end": 20686.34, + "probability": 0.1678 + }, + { + "start": 20687.42, + "end": 20687.52, + "probability": 0.0135 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.0, + "end": 20718.0, + "probability": 0.0 + }, + { + "start": 20718.08, + "end": 20718.74, + "probability": 0.2612 + }, + { + "start": 20720.1, + "end": 20723.18, + "probability": 0.5117 + }, + { + "start": 20724.38, + "end": 20726.42, + "probability": 0.6738 + }, + { + "start": 20726.7, + "end": 20728.48, + "probability": 0.7513 + }, + { + "start": 20729.3, + "end": 20732.46, + "probability": 0.8839 + }, + { + "start": 20733.64, + "end": 20738.78, + "probability": 0.8033 + }, + { + "start": 20739.84, + "end": 20741.47, + "probability": 0.9528 + }, + { + "start": 20742.63, + "end": 20746.72, + "probability": 0.9946 + }, + { + "start": 20746.98, + "end": 20750.3, + "probability": 0.9951 + }, + { + "start": 20750.38, + "end": 20753.9, + "probability": 0.9795 + }, + { + "start": 20753.9, + "end": 20756.72, + "probability": 0.9963 + }, + { + "start": 20757.1, + "end": 20760.18, + "probability": 0.9787 + }, + { + "start": 20761.85, + "end": 20766.62, + "probability": 0.8467 + }, + { + "start": 20766.66, + "end": 20768.4, + "probability": 0.9985 + }, + { + "start": 20769.48, + "end": 20770.78, + "probability": 0.8062 + }, + { + "start": 20771.04, + "end": 20776.6, + "probability": 0.9965 + }, + { + "start": 20776.68, + "end": 20779.02, + "probability": 0.897 + }, + { + "start": 20779.82, + "end": 20780.98, + "probability": 0.7024 + }, + { + "start": 20781.74, + "end": 20785.0, + "probability": 0.9944 + }, + { + "start": 20785.0, + "end": 20788.42, + "probability": 0.9847 + }, + { + "start": 20789.16, + "end": 20793.18, + "probability": 0.9745 + }, + { + "start": 20793.78, + "end": 20798.84, + "probability": 0.9701 + }, + { + "start": 20799.44, + "end": 20801.16, + "probability": 0.8445 + }, + { + "start": 20802.28, + "end": 20805.16, + "probability": 0.9916 + }, + { + "start": 20805.16, + "end": 20809.52, + "probability": 0.9839 + }, + { + "start": 20810.18, + "end": 20812.48, + "probability": 0.9705 + }, + { + "start": 20812.78, + "end": 20816.06, + "probability": 0.7898 + }, + { + "start": 20816.18, + "end": 20819.88, + "probability": 0.9823 + }, + { + "start": 20820.52, + "end": 20823.74, + "probability": 0.9213 + }, + { + "start": 20824.3, + "end": 20828.67, + "probability": 0.8742 + }, + { + "start": 20828.72, + "end": 20832.86, + "probability": 0.9732 + }, + { + "start": 20833.64, + "end": 20839.5, + "probability": 0.9091 + }, + { + "start": 20839.5, + "end": 20844.52, + "probability": 0.8908 + }, + { + "start": 20845.22, + "end": 20847.34, + "probability": 0.9261 + }, + { + "start": 20847.54, + "end": 20849.0, + "probability": 0.9905 + }, + { + "start": 20849.88, + "end": 20852.91, + "probability": 0.9591 + }, + { + "start": 20853.74, + "end": 20854.72, + "probability": 0.6511 + }, + { + "start": 20855.38, + "end": 20855.8, + "probability": 0.5315 + }, + { + "start": 20855.84, + "end": 20858.98, + "probability": 0.9932 + }, + { + "start": 20859.78, + "end": 20863.5, + "probability": 0.9922 + }, + { + "start": 20863.5, + "end": 20867.5, + "probability": 0.9941 + }, + { + "start": 20867.68, + "end": 20868.85, + "probability": 0.9735 + }, + { + "start": 20869.92, + "end": 20870.92, + "probability": 0.8267 + }, + { + "start": 20871.04, + "end": 20876.62, + "probability": 0.9212 + }, + { + "start": 20876.75, + "end": 20882.18, + "probability": 0.9853 + }, + { + "start": 20883.44, + "end": 20884.92, + "probability": 0.7065 + }, + { + "start": 20885.02, + "end": 20888.32, + "probability": 0.8864 + }, + { + "start": 20888.7, + "end": 20890.74, + "probability": 0.978 + }, + { + "start": 20890.98, + "end": 20892.55, + "probability": 0.4312 + }, + { + "start": 20892.9, + "end": 20893.58, + "probability": 0.9198 + }, + { + "start": 20894.02, + "end": 20896.18, + "probability": 0.6571 + }, + { + "start": 20896.82, + "end": 20897.9, + "probability": 0.6592 + }, + { + "start": 20899.52, + "end": 20902.28, + "probability": 0.8144 + }, + { + "start": 20919.48, + "end": 20919.74, + "probability": 0.308 + }, + { + "start": 20919.86, + "end": 20921.32, + "probability": 0.6626 + }, + { + "start": 20922.08, + "end": 20923.48, + "probability": 0.7649 + }, + { + "start": 20923.82, + "end": 20924.94, + "probability": 0.8951 + }, + { + "start": 20925.18, + "end": 20931.58, + "probability": 0.9712 + }, + { + "start": 20932.06, + "end": 20933.3, + "probability": 0.7473 + }, + { + "start": 20934.36, + "end": 20939.04, + "probability": 0.949 + }, + { + "start": 20939.26, + "end": 20940.33, + "probability": 0.9331 + }, + { + "start": 20941.62, + "end": 20942.7, + "probability": 0.9885 + }, + { + "start": 20942.94, + "end": 20943.8, + "probability": 0.8057 + }, + { + "start": 20943.98, + "end": 20948.08, + "probability": 0.9561 + }, + { + "start": 20948.92, + "end": 20953.72, + "probability": 0.9714 + }, + { + "start": 20954.4, + "end": 20956.7, + "probability": 0.9396 + }, + { + "start": 20957.32, + "end": 20960.14, + "probability": 0.9497 + }, + { + "start": 20961.56, + "end": 20964.36, + "probability": 0.2754 + }, + { + "start": 20967.32, + "end": 20968.44, + "probability": 0.0117 + }, + { + "start": 20968.44, + "end": 20968.62, + "probability": 0.3446 + }, + { + "start": 20968.62, + "end": 20973.1, + "probability": 0.0724 + }, + { + "start": 20973.22, + "end": 20974.0, + "probability": 0.3337 + }, + { + "start": 20975.22, + "end": 20975.78, + "probability": 0.2036 + }, + { + "start": 20976.24, + "end": 20977.56, + "probability": 0.4462 + }, + { + "start": 20977.78, + "end": 20978.27, + "probability": 0.322 + }, + { + "start": 20980.02, + "end": 20980.22, + "probability": 0.0108 + }, + { + "start": 20980.22, + "end": 20981.9, + "probability": 0.7366 + }, + { + "start": 20982.48, + "end": 20983.8, + "probability": 0.5435 + }, + { + "start": 20983.96, + "end": 20985.68, + "probability": 0.8215 + }, + { + "start": 20986.02, + "end": 20989.62, + "probability": 0.8881 + }, + { + "start": 20989.74, + "end": 20991.0, + "probability": 0.6378 + }, + { + "start": 20991.24, + "end": 20992.14, + "probability": 0.6695 + }, + { + "start": 20992.26, + "end": 20997.18, + "probability": 0.8604 + }, + { + "start": 20998.0, + "end": 20999.9, + "probability": 0.9312 + }, + { + "start": 21001.14, + "end": 21002.06, + "probability": 0.7125 + }, + { + "start": 21002.6, + "end": 21003.28, + "probability": 0.7256 + }, + { + "start": 21003.4, + "end": 21003.92, + "probability": 0.046 + }, + { + "start": 21004.06, + "end": 21004.72, + "probability": 0.4551 + }, + { + "start": 21004.72, + "end": 21005.06, + "probability": 0.1341 + }, + { + "start": 21005.06, + "end": 21006.44, + "probability": 0.2598 + }, + { + "start": 21006.58, + "end": 21007.16, + "probability": 0.6182 + }, + { + "start": 21009.3, + "end": 21011.58, + "probability": 0.709 + }, + { + "start": 21011.66, + "end": 21013.18, + "probability": 0.7209 + }, + { + "start": 21013.26, + "end": 21013.4, + "probability": 0.4963 + }, + { + "start": 21013.62, + "end": 21014.36, + "probability": 0.0642 + }, + { + "start": 21014.96, + "end": 21014.96, + "probability": 0.0138 + }, + { + "start": 21014.96, + "end": 21014.96, + "probability": 0.2891 + }, + { + "start": 21014.96, + "end": 21015.6, + "probability": 0.2841 + }, + { + "start": 21015.82, + "end": 21018.22, + "probability": 0.2674 + }, + { + "start": 21018.4, + "end": 21018.64, + "probability": 0.2875 + }, + { + "start": 21018.84, + "end": 21019.9, + "probability": 0.1196 + }, + { + "start": 21020.04, + "end": 21021.4, + "probability": 0.5228 + }, + { + "start": 21021.62, + "end": 21025.5, + "probability": 0.3616 + }, + { + "start": 21025.64, + "end": 21029.04, + "probability": 0.3774 + }, + { + "start": 21029.68, + "end": 21029.76, + "probability": 0.0217 + }, + { + "start": 21030.02, + "end": 21030.36, + "probability": 0.0274 + }, + { + "start": 21030.54, + "end": 21034.12, + "probability": 0.402 + }, + { + "start": 21034.3, + "end": 21035.26, + "probability": 0.4124 + }, + { + "start": 21035.36, + "end": 21038.3, + "probability": 0.2289 + }, + { + "start": 21038.4, + "end": 21039.62, + "probability": 0.5019 + }, + { + "start": 21039.86, + "end": 21040.56, + "probability": 0.0016 + }, + { + "start": 21040.56, + "end": 21043.04, + "probability": 0.3828 + }, + { + "start": 21043.42, + "end": 21043.42, + "probability": 0.6922 + }, + { + "start": 21043.42, + "end": 21045.46, + "probability": 0.5138 + }, + { + "start": 21045.72, + "end": 21052.26, + "probability": 0.2364 + }, + { + "start": 21052.26, + "end": 21054.34, + "probability": 0.4823 + }, + { + "start": 21057.98, + "end": 21058.6, + "probability": 0.2571 + }, + { + "start": 21061.17, + "end": 21061.24, + "probability": 0.1041 + }, + { + "start": 21061.24, + "end": 21061.24, + "probability": 0.0518 + }, + { + "start": 21061.24, + "end": 21061.24, + "probability": 0.1303 + }, + { + "start": 21061.24, + "end": 21061.24, + "probability": 0.096 + }, + { + "start": 21061.24, + "end": 21063.06, + "probability": 0.2387 + }, + { + "start": 21063.66, + "end": 21067.66, + "probability": 0.8149 + }, + { + "start": 21068.62, + "end": 21069.92, + "probability": 0.9031 + }, + { + "start": 21070.86, + "end": 21075.04, + "probability": 0.7956 + }, + { + "start": 21075.04, + "end": 21078.48, + "probability": 0.9858 + }, + { + "start": 21079.06, + "end": 21082.16, + "probability": 0.7281 + }, + { + "start": 21082.7, + "end": 21085.32, + "probability": 0.7656 + }, + { + "start": 21085.64, + "end": 21089.96, + "probability": 0.6781 + }, + { + "start": 21090.16, + "end": 21090.94, + "probability": 0.4932 + }, + { + "start": 21091.32, + "end": 21092.48, + "probability": 0.81 + }, + { + "start": 21092.86, + "end": 21094.32, + "probability": 0.7404 + }, + { + "start": 21094.32, + "end": 21096.34, + "probability": 0.94 + }, + { + "start": 21096.44, + "end": 21097.0, + "probability": 0.7715 + }, + { + "start": 21097.02, + "end": 21097.56, + "probability": 0.3461 + }, + { + "start": 21097.72, + "end": 21099.16, + "probability": 0.7172 + }, + { + "start": 21099.5, + "end": 21101.44, + "probability": 0.7021 + }, + { + "start": 21101.48, + "end": 21104.38, + "probability": 0.8039 + }, + { + "start": 21104.52, + "end": 21105.48, + "probability": 0.809 + }, + { + "start": 21105.62, + "end": 21106.66, + "probability": 0.1038 + }, + { + "start": 21106.68, + "end": 21107.34, + "probability": 0.1152 + }, + { + "start": 21107.62, + "end": 21108.56, + "probability": 0.3616 + }, + { + "start": 21108.56, + "end": 21109.1, + "probability": 0.783 + }, + { + "start": 21109.1, + "end": 21113.8, + "probability": 0.876 + }, + { + "start": 21114.28, + "end": 21116.06, + "probability": 0.7747 + }, + { + "start": 21116.18, + "end": 21116.56, + "probability": 0.5026 + }, + { + "start": 21116.58, + "end": 21118.28, + "probability": 0.9778 + }, + { + "start": 21118.58, + "end": 21120.41, + "probability": 0.8517 + }, + { + "start": 21120.58, + "end": 21121.56, + "probability": 0.6342 + }, + { + "start": 21121.72, + "end": 21127.38, + "probability": 0.9395 + }, + { + "start": 21127.48, + "end": 21128.11, + "probability": 0.6566 + }, + { + "start": 21128.64, + "end": 21129.18, + "probability": 0.7721 + }, + { + "start": 21129.46, + "end": 21130.08, + "probability": 0.5796 + }, + { + "start": 21130.16, + "end": 21131.98, + "probability": 0.81 + }, + { + "start": 21132.06, + "end": 21133.4, + "probability": 0.9094 + }, + { + "start": 21133.72, + "end": 21134.32, + "probability": 0.5939 + }, + { + "start": 21135.3, + "end": 21136.46, + "probability": 0.8908 + }, + { + "start": 21137.45, + "end": 21139.96, + "probability": 0.9544 + }, + { + "start": 21140.58, + "end": 21141.32, + "probability": 0.838 + }, + { + "start": 21142.08, + "end": 21143.72, + "probability": 0.6477 + }, + { + "start": 21144.34, + "end": 21144.76, + "probability": 0.6073 + }, + { + "start": 21145.66, + "end": 21147.0, + "probability": 0.8423 + }, + { + "start": 21147.34, + "end": 21147.44, + "probability": 0.2613 + }, + { + "start": 21147.64, + "end": 21148.24, + "probability": 0.879 + }, + { + "start": 21152.18, + "end": 21171.02, + "probability": 0.7423 + }, + { + "start": 21172.88, + "end": 21177.06, + "probability": 0.6111 + }, + { + "start": 21178.48, + "end": 21181.38, + "probability": 0.9908 + }, + { + "start": 21181.56, + "end": 21182.9, + "probability": 0.9131 + }, + { + "start": 21184.32, + "end": 21189.06, + "probability": 0.8196 + }, + { + "start": 21190.32, + "end": 21192.48, + "probability": 0.9598 + }, + { + "start": 21192.82, + "end": 21193.02, + "probability": 0.4658 + }, + { + "start": 21193.14, + "end": 21193.54, + "probability": 0.9169 + }, + { + "start": 21193.6, + "end": 21194.04, + "probability": 0.6055 + }, + { + "start": 21194.1, + "end": 21195.16, + "probability": 0.7192 + }, + { + "start": 21195.2, + "end": 21196.56, + "probability": 0.9892 + }, + { + "start": 21197.06, + "end": 21200.24, + "probability": 0.9912 + }, + { + "start": 21201.0, + "end": 21204.54, + "probability": 0.9962 + }, + { + "start": 21204.84, + "end": 21205.78, + "probability": 0.9937 + }, + { + "start": 21207.16, + "end": 21209.5, + "probability": 0.6351 + }, + { + "start": 21210.26, + "end": 21211.7, + "probability": 0.4892 + }, + { + "start": 21211.84, + "end": 21214.92, + "probability": 0.9603 + }, + { + "start": 21215.26, + "end": 21218.68, + "probability": 0.9934 + }, + { + "start": 21219.16, + "end": 21222.64, + "probability": 0.9916 + }, + { + "start": 21222.7, + "end": 21227.64, + "probability": 0.9924 + }, + { + "start": 21227.9, + "end": 21229.92, + "probability": 0.9927 + }, + { + "start": 21229.98, + "end": 21231.76, + "probability": 0.9543 + }, + { + "start": 21231.8, + "end": 21233.56, + "probability": 0.9895 + }, + { + "start": 21234.06, + "end": 21236.38, + "probability": 0.9258 + }, + { + "start": 21236.58, + "end": 21242.04, + "probability": 0.9788 + }, + { + "start": 21242.5, + "end": 21247.26, + "probability": 0.9778 + }, + { + "start": 21247.26, + "end": 21250.88, + "probability": 0.959 + }, + { + "start": 21251.2, + "end": 21253.92, + "probability": 0.9961 + }, + { + "start": 21253.92, + "end": 21256.5, + "probability": 0.9995 + }, + { + "start": 21256.68, + "end": 21258.12, + "probability": 0.9985 + }, + { + "start": 21258.62, + "end": 21259.18, + "probability": 0.9744 + }, + { + "start": 21259.48, + "end": 21259.97, + "probability": 0.8262 + }, + { + "start": 21260.16, + "end": 21260.76, + "probability": 0.6295 + }, + { + "start": 21261.12, + "end": 21263.06, + "probability": 0.9824 + }, + { + "start": 21263.5, + "end": 21264.0, + "probability": 0.7008 + }, + { + "start": 21264.06, + "end": 21266.84, + "probability": 0.9692 + }, + { + "start": 21266.9, + "end": 21267.64, + "probability": 0.731 + }, + { + "start": 21267.98, + "end": 21270.6, + "probability": 0.9272 + }, + { + "start": 21270.92, + "end": 21276.48, + "probability": 0.9553 + }, + { + "start": 21277.24, + "end": 21280.38, + "probability": 0.9799 + }, + { + "start": 21280.9, + "end": 21283.28, + "probability": 0.9783 + }, + { + "start": 21283.38, + "end": 21284.88, + "probability": 0.8078 + }, + { + "start": 21285.24, + "end": 21287.0, + "probability": 0.7303 + }, + { + "start": 21287.06, + "end": 21288.1, + "probability": 0.8735 + }, + { + "start": 21288.28, + "end": 21290.62, + "probability": 0.9263 + }, + { + "start": 21290.68, + "end": 21292.94, + "probability": 0.9561 + }, + { + "start": 21293.26, + "end": 21293.86, + "probability": 0.7011 + }, + { + "start": 21294.3, + "end": 21298.82, + "probability": 0.9858 + }, + { + "start": 21299.4, + "end": 21303.22, + "probability": 0.9937 + }, + { + "start": 21303.88, + "end": 21308.12, + "probability": 0.9814 + }, + { + "start": 21308.32, + "end": 21308.91, + "probability": 0.8252 + }, + { + "start": 21309.38, + "end": 21311.84, + "probability": 0.7362 + }, + { + "start": 21311.92, + "end": 21312.28, + "probability": 0.4994 + }, + { + "start": 21312.32, + "end": 21315.04, + "probability": 0.9487 + }, + { + "start": 21315.68, + "end": 21319.38, + "probability": 0.999 + }, + { + "start": 21319.54, + "end": 21320.76, + "probability": 0.9976 + }, + { + "start": 21320.96, + "end": 21322.38, + "probability": 0.938 + }, + { + "start": 21322.66, + "end": 21325.26, + "probability": 0.9907 + }, + { + "start": 21325.34, + "end": 21328.8, + "probability": 0.9688 + }, + { + "start": 21328.88, + "end": 21330.5, + "probability": 0.9886 + }, + { + "start": 21330.86, + "end": 21336.92, + "probability": 0.821 + }, + { + "start": 21336.94, + "end": 21339.48, + "probability": 0.9808 + }, + { + "start": 21339.86, + "end": 21342.2, + "probability": 0.998 + }, + { + "start": 21342.5, + "end": 21343.92, + "probability": 0.9592 + }, + { + "start": 21344.24, + "end": 21344.72, + "probability": 0.5934 + }, + { + "start": 21344.8, + "end": 21346.78, + "probability": 0.9926 + }, + { + "start": 21347.12, + "end": 21348.74, + "probability": 0.9355 + }, + { + "start": 21349.42, + "end": 21351.1, + "probability": 0.9633 + }, + { + "start": 21351.34, + "end": 21351.54, + "probability": 0.8457 + }, + { + "start": 21352.1, + "end": 21354.06, + "probability": 0.8625 + }, + { + "start": 21354.36, + "end": 21354.82, + "probability": 0.2744 + }, + { + "start": 21354.84, + "end": 21358.5, + "probability": 0.9725 + }, + { + "start": 21358.5, + "end": 21361.18, + "probability": 0.6595 + }, + { + "start": 21361.18, + "end": 21363.78, + "probability": 0.0819 + }, + { + "start": 21363.86, + "end": 21364.02, + "probability": 0.3881 + }, + { + "start": 21364.32, + "end": 21364.74, + "probability": 0.5549 + }, + { + "start": 21364.78, + "end": 21365.72, + "probability": 0.7771 + }, + { + "start": 21367.52, + "end": 21369.52, + "probability": 0.1644 + }, + { + "start": 21375.3, + "end": 21375.3, + "probability": 0.0172 + }, + { + "start": 21375.3, + "end": 21375.3, + "probability": 0.0199 + }, + { + "start": 21375.3, + "end": 21375.3, + "probability": 0.0947 + }, + { + "start": 21380.7, + "end": 21381.64, + "probability": 0.2318 + }, + { + "start": 21381.64, + "end": 21383.48, + "probability": 0.6067 + }, + { + "start": 21383.54, + "end": 21384.52, + "probability": 0.7155 + }, + { + "start": 21385.68, + "end": 21390.72, + "probability": 0.8967 + }, + { + "start": 21390.84, + "end": 21394.32, + "probability": 0.8598 + }, + { + "start": 21395.06, + "end": 21397.54, + "probability": 0.9155 + }, + { + "start": 21397.62, + "end": 21399.6, + "probability": 0.4395 + }, + { + "start": 21400.16, + "end": 21402.5, + "probability": 0.5372 + }, + { + "start": 21403.06, + "end": 21405.2, + "probability": 0.7762 + }, + { + "start": 21405.3, + "end": 21407.26, + "probability": 0.502 + }, + { + "start": 21407.86, + "end": 21408.42, + "probability": 0.9064 + }, + { + "start": 21410.59, + "end": 21412.42, + "probability": 0.7883 + }, + { + "start": 21412.8, + "end": 21415.3, + "probability": 0.6366 + }, + { + "start": 21416.52, + "end": 21418.18, + "probability": 0.9453 + }, + { + "start": 21418.2, + "end": 21419.72, + "probability": 0.9486 + }, + { + "start": 21419.72, + "end": 21420.8, + "probability": 0.9614 + }, + { + "start": 21428.52, + "end": 21428.58, + "probability": 0.2859 + }, + { + "start": 21428.58, + "end": 21432.38, + "probability": 0.5778 + }, + { + "start": 21433.32, + "end": 21435.32, + "probability": 0.6715 + }, + { + "start": 21435.9, + "end": 21437.44, + "probability": 0.8313 + }, + { + "start": 21437.88, + "end": 21440.58, + "probability": 0.9326 + }, + { + "start": 21441.12, + "end": 21442.44, + "probability": 0.3381 + }, + { + "start": 21442.46, + "end": 21443.38, + "probability": 0.6523 + }, + { + "start": 21444.78, + "end": 21445.46, + "probability": 0.011 + }, + { + "start": 21445.62, + "end": 21446.04, + "probability": 0.8684 + }, + { + "start": 21446.14, + "end": 21448.54, + "probability": 0.8959 + }, + { + "start": 21449.02, + "end": 21451.02, + "probability": 0.9554 + }, + { + "start": 21451.14, + "end": 21453.08, + "probability": 0.9278 + }, + { + "start": 21453.48, + "end": 21456.62, + "probability": 0.8336 + }, + { + "start": 21457.14, + "end": 21457.8, + "probability": 0.0369 + }, + { + "start": 21458.02, + "end": 21463.64, + "probability": 0.9176 + }, + { + "start": 21464.08, + "end": 21466.04, + "probability": 0.9963 + }, + { + "start": 21470.42, + "end": 21474.68, + "probability": 0.9937 + }, + { + "start": 21474.68, + "end": 21479.98, + "probability": 0.9803 + }, + { + "start": 21480.32, + "end": 21482.42, + "probability": 0.8629 + }, + { + "start": 21482.76, + "end": 21483.64, + "probability": 0.9558 + }, + { + "start": 21483.8, + "end": 21484.48, + "probability": 0.715 + }, + { + "start": 21484.62, + "end": 21486.54, + "probability": 0.7658 + }, + { + "start": 21486.68, + "end": 21488.2, + "probability": 0.7565 + }, + { + "start": 21488.64, + "end": 21492.7, + "probability": 0.9355 + }, + { + "start": 21493.02, + "end": 21496.1, + "probability": 0.99 + }, + { + "start": 21496.1, + "end": 21500.44, + "probability": 0.9984 + }, + { + "start": 21501.28, + "end": 21503.9, + "probability": 0.9977 + }, + { + "start": 21504.52, + "end": 21506.18, + "probability": 0.9905 + }, + { + "start": 21506.24, + "end": 21510.5, + "probability": 0.991 + }, + { + "start": 21510.94, + "end": 21514.74, + "probability": 0.8244 + }, + { + "start": 21515.18, + "end": 21518.22, + "probability": 0.9883 + }, + { + "start": 21518.22, + "end": 21521.96, + "probability": 0.8906 + }, + { + "start": 21522.44, + "end": 21524.14, + "probability": 0.7502 + }, + { + "start": 21524.68, + "end": 21526.32, + "probability": 0.9712 + }, + { + "start": 21526.36, + "end": 21531.1, + "probability": 0.9897 + }, + { + "start": 21531.66, + "end": 21534.28, + "probability": 0.9697 + }, + { + "start": 21534.28, + "end": 21538.02, + "probability": 0.9739 + }, + { + "start": 21538.18, + "end": 21539.08, + "probability": 0.7366 + }, + { + "start": 21539.56, + "end": 21539.72, + "probability": 0.3262 + }, + { + "start": 21539.82, + "end": 21540.06, + "probability": 0.8157 + }, + { + "start": 21540.2, + "end": 21540.84, + "probability": 0.6139 + }, + { + "start": 21541.2, + "end": 21546.66, + "probability": 0.7635 + }, + { + "start": 21547.12, + "end": 21547.6, + "probability": 0.6115 + }, + { + "start": 21547.7, + "end": 21550.88, + "probability": 0.8338 + }, + { + "start": 21551.3, + "end": 21553.84, + "probability": 0.9966 + }, + { + "start": 21553.84, + "end": 21558.18, + "probability": 0.9971 + }, + { + "start": 21558.52, + "end": 21558.96, + "probability": 0.7526 + }, + { + "start": 21559.74, + "end": 21560.34, + "probability": 0.6501 + }, + { + "start": 21560.46, + "end": 21560.74, + "probability": 0.5108 + }, + { + "start": 21560.82, + "end": 21561.78, + "probability": 0.6472 + }, + { + "start": 21561.92, + "end": 21562.72, + "probability": 0.598 + }, + { + "start": 21562.9, + "end": 21565.9, + "probability": 0.7224 + }, + { + "start": 21568.34, + "end": 21568.58, + "probability": 0.2189 + }, + { + "start": 21568.58, + "end": 21571.86, + "probability": 0.8197 + }, + { + "start": 21571.86, + "end": 21576.24, + "probability": 0.659 + }, + { + "start": 21577.92, + "end": 21579.52, + "probability": 0.1605 + }, + { + "start": 21579.76, + "end": 21580.26, + "probability": 0.2803 + }, + { + "start": 21580.32, + "end": 21580.58, + "probability": 0.851 + }, + { + "start": 21584.8, + "end": 21586.32, + "probability": 0.6221 + }, + { + "start": 21588.73, + "end": 21591.6, + "probability": 0.6893 + }, + { + "start": 21592.8, + "end": 21594.9, + "probability": 0.8597 + }, + { + "start": 21595.58, + "end": 21596.58, + "probability": 0.8682 + }, + { + "start": 21596.72, + "end": 21598.79, + "probability": 0.917 + }, + { + "start": 21599.7, + "end": 21601.14, + "probability": 0.7993 + }, + { + "start": 21602.1, + "end": 21602.36, + "probability": 0.4626 + }, + { + "start": 21604.02, + "end": 21604.38, + "probability": 0.0525 + }, + { + "start": 21604.38, + "end": 21604.48, + "probability": 0.0315 + }, + { + "start": 21606.18, + "end": 21607.48, + "probability": 0.6329 + }, + { + "start": 21610.0, + "end": 21610.96, + "probability": 0.1492 + }, + { + "start": 21617.26, + "end": 21617.85, + "probability": 0.1257 + }, + { + "start": 21626.7, + "end": 21627.9, + "probability": 0.1263 + }, + { + "start": 21628.02, + "end": 21628.06, + "probability": 0.3562 + }, + { + "start": 21628.18, + "end": 21630.0, + "probability": 0.7312 + }, + { + "start": 21630.7, + "end": 21632.82, + "probability": 0.9441 + }, + { + "start": 21633.5, + "end": 21637.64, + "probability": 0.8032 + }, + { + "start": 21637.76, + "end": 21640.28, + "probability": 0.7876 + }, + { + "start": 21640.54, + "end": 21641.48, + "probability": 0.8445 + }, + { + "start": 21641.74, + "end": 21644.48, + "probability": 0.531 + }, + { + "start": 21644.64, + "end": 21646.32, + "probability": 0.812 + }, + { + "start": 21646.82, + "end": 21647.14, + "probability": 0.9264 + }, + { + "start": 21647.82, + "end": 21647.96, + "probability": 0.1679 + }, + { + "start": 21649.38, + "end": 21649.66, + "probability": 0.3696 + }, + { + "start": 21651.01, + "end": 21653.52, + "probability": 0.9834 + }, + { + "start": 21653.76, + "end": 21657.02, + "probability": 0.6697 + }, + { + "start": 21657.58, + "end": 21659.1, + "probability": 0.8908 + }, + { + "start": 21659.7, + "end": 21660.87, + "probability": 0.5913 + }, + { + "start": 21661.6, + "end": 21662.86, + "probability": 0.877 + }, + { + "start": 21663.4, + "end": 21667.72, + "probability": 0.949 + }, + { + "start": 21667.92, + "end": 21668.24, + "probability": 0.5651 + }, + { + "start": 21668.3, + "end": 21668.4, + "probability": 0.4117 + }, + { + "start": 21669.52, + "end": 21670.24, + "probability": 0.9342 + }, + { + "start": 21670.34, + "end": 21671.24, + "probability": 0.9591 + }, + { + "start": 21671.86, + "end": 21672.18, + "probability": 0.356 + }, + { + "start": 21672.5, + "end": 21676.16, + "probability": 0.422 + }, + { + "start": 21676.62, + "end": 21677.22, + "probability": 0.2034 + }, + { + "start": 21677.22, + "end": 21677.82, + "probability": 0.4704 + }, + { + "start": 21677.9, + "end": 21678.82, + "probability": 0.9844 + }, + { + "start": 21679.14, + "end": 21679.32, + "probability": 0.5251 + }, + { + "start": 21680.7, + "end": 21681.82, + "probability": 0.4189 + }, + { + "start": 21682.18, + "end": 21683.58, + "probability": 0.3877 + }, + { + "start": 21683.62, + "end": 21686.42, + "probability": 0.4281 + }, + { + "start": 21686.56, + "end": 21689.04, + "probability": 0.0797 + }, + { + "start": 21689.06, + "end": 21691.72, + "probability": 0.5946 + }, + { + "start": 21692.1, + "end": 21694.96, + "probability": 0.9506 + }, + { + "start": 21695.68, + "end": 21695.68, + "probability": 0.1425 + }, + { + "start": 21695.68, + "end": 21700.28, + "probability": 0.654 + }, + { + "start": 21700.7, + "end": 21701.58, + "probability": 0.6567 + }, + { + "start": 21701.68, + "end": 21702.58, + "probability": 0.6215 + }, + { + "start": 21703.64, + "end": 21703.92, + "probability": 0.7146 + }, + { + "start": 21704.16, + "end": 21705.5, + "probability": 0.8715 + }, + { + "start": 21705.88, + "end": 21706.88, + "probability": 0.951 + }, + { + "start": 21707.0, + "end": 21713.08, + "probability": 0.86 + }, + { + "start": 21713.78, + "end": 21714.58, + "probability": 0.9144 + }, + { + "start": 21714.7, + "end": 21716.52, + "probability": 0.4055 + }, + { + "start": 21717.18, + "end": 21719.2, + "probability": 0.5845 + }, + { + "start": 21719.42, + "end": 21722.0, + "probability": 0.4417 + }, + { + "start": 21722.52, + "end": 21724.32, + "probability": 0.939 + }, + { + "start": 21724.8, + "end": 21725.52, + "probability": 0.8298 + }, + { + "start": 21725.9, + "end": 21727.66, + "probability": 0.9224 + }, + { + "start": 21728.16, + "end": 21730.48, + "probability": 0.4442 + }, + { + "start": 21730.58, + "end": 21731.86, + "probability": 0.8334 + }, + { + "start": 21732.5, + "end": 21733.18, + "probability": 0.8054 + }, + { + "start": 21734.46, + "end": 21736.5, + "probability": 0.9758 + }, + { + "start": 21736.94, + "end": 21741.22, + "probability": 0.8937 + }, + { + "start": 21741.78, + "end": 21745.68, + "probability": 0.9778 + }, + { + "start": 21746.16, + "end": 21748.72, + "probability": 0.8964 + }, + { + "start": 21749.4, + "end": 21752.64, + "probability": 0.9775 + }, + { + "start": 21752.98, + "end": 21755.84, + "probability": 0.8637 + }, + { + "start": 21756.06, + "end": 21757.98, + "probability": 0.9871 + }, + { + "start": 21758.52, + "end": 21762.06, + "probability": 0.6667 + }, + { + "start": 21762.52, + "end": 21762.92, + "probability": 0.5844 + }, + { + "start": 21763.54, + "end": 21765.58, + "probability": 0.5676 + }, + { + "start": 21766.16, + "end": 21766.72, + "probability": 0.1531 + }, + { + "start": 21766.74, + "end": 21768.31, + "probability": 0.4245 + }, + { + "start": 21768.6, + "end": 21769.84, + "probability": 0.8622 + }, + { + "start": 21769.92, + "end": 21770.62, + "probability": 0.6653 + }, + { + "start": 21770.8, + "end": 21771.9, + "probability": 0.8845 + }, + { + "start": 21771.97, + "end": 21774.9, + "probability": 0.8995 + }, + { + "start": 21776.46, + "end": 21779.18, + "probability": 0.3223 + }, + { + "start": 21779.7, + "end": 21780.83, + "probability": 0.0127 + }, + { + "start": 21781.96, + "end": 21783.22, + "probability": 0.4623 + }, + { + "start": 21784.18, + "end": 21784.76, + "probability": 0.6464 + }, + { + "start": 21785.42, + "end": 21788.56, + "probability": 0.994 + }, + { + "start": 21789.56, + "end": 21790.78, + "probability": 0.9873 + }, + { + "start": 21791.44, + "end": 21794.28, + "probability": 0.9845 + }, + { + "start": 21794.86, + "end": 21797.02, + "probability": 0.9287 + }, + { + "start": 21797.54, + "end": 21801.38, + "probability": 0.9399 + }, + { + "start": 21801.46, + "end": 21801.9, + "probability": 0.6199 + }, + { + "start": 21802.0, + "end": 21805.12, + "probability": 0.9946 + }, + { + "start": 21805.12, + "end": 21809.14, + "probability": 0.9915 + }, + { + "start": 21809.24, + "end": 21816.32, + "probability": 0.9766 + }, + { + "start": 21816.5, + "end": 21819.6, + "probability": 0.9576 + }, + { + "start": 21819.8, + "end": 21821.26, + "probability": 0.9062 + }, + { + "start": 21821.86, + "end": 21826.94, + "probability": 0.9531 + }, + { + "start": 21827.3, + "end": 21829.0, + "probability": 0.9945 + }, + { + "start": 21829.1, + "end": 21830.3, + "probability": 0.834 + }, + { + "start": 21830.4, + "end": 21833.37, + "probability": 0.9954 + }, + { + "start": 21833.7, + "end": 21836.02, + "probability": 0.9525 + }, + { + "start": 21836.44, + "end": 21839.78, + "probability": 0.9162 + }, + { + "start": 21839.96, + "end": 21841.26, + "probability": 0.9961 + }, + { + "start": 21842.1, + "end": 21846.68, + "probability": 0.9943 + }, + { + "start": 21847.84, + "end": 21850.08, + "probability": 0.781 + }, + { + "start": 21850.52, + "end": 21854.48, + "probability": 0.9925 + }, + { + "start": 21854.48, + "end": 21855.98, + "probability": 0.8368 + }, + { + "start": 21856.56, + "end": 21864.02, + "probability": 0.9697 + }, + { + "start": 21864.78, + "end": 21867.54, + "probability": 0.6797 + }, + { + "start": 21867.66, + "end": 21872.78, + "probability": 0.9317 + }, + { + "start": 21873.58, + "end": 21874.98, + "probability": 0.6699 + }, + { + "start": 21875.52, + "end": 21877.38, + "probability": 0.8144 + }, + { + "start": 21878.28, + "end": 21884.28, + "probability": 0.9725 + }, + { + "start": 21884.46, + "end": 21885.4, + "probability": 0.6163 + }, + { + "start": 21885.48, + "end": 21886.46, + "probability": 0.8683 + }, + { + "start": 21886.9, + "end": 21890.22, + "probability": 0.8372 + }, + { + "start": 21891.4, + "end": 21895.12, + "probability": 0.9701 + }, + { + "start": 21895.64, + "end": 21896.84, + "probability": 0.8773 + }, + { + "start": 21896.84, + "end": 21897.28, + "probability": 0.6734 + }, + { + "start": 21900.6, + "end": 21902.76, + "probability": 0.7569 + }, + { + "start": 21903.28, + "end": 21904.64, + "probability": 0.9502 + }, + { + "start": 21905.68, + "end": 21907.08, + "probability": 0.7361 + }, + { + "start": 21907.79, + "end": 21910.88, + "probability": 0.8942 + }, + { + "start": 21911.06, + "end": 21912.24, + "probability": 0.9867 + }, + { + "start": 21912.64, + "end": 21915.66, + "probability": 0.9924 + }, + { + "start": 21916.08, + "end": 21918.2, + "probability": 0.9481 + }, + { + "start": 21918.74, + "end": 21921.06, + "probability": 0.9565 + }, + { + "start": 21922.92, + "end": 21923.08, + "probability": 0.0814 + }, + { + "start": 21923.08, + "end": 21923.76, + "probability": 0.8835 + }, + { + "start": 21923.86, + "end": 21924.98, + "probability": 0.8087 + }, + { + "start": 21925.1, + "end": 21925.28, + "probability": 0.0884 + }, + { + "start": 21925.28, + "end": 21927.04, + "probability": 0.9513 + }, + { + "start": 21927.08, + "end": 21933.38, + "probability": 0.9993 + }, + { + "start": 21933.38, + "end": 21939.12, + "probability": 0.9987 + }, + { + "start": 21939.56, + "end": 21940.12, + "probability": 0.5569 + }, + { + "start": 21940.78, + "end": 21944.22, + "probability": 0.9731 + }, + { + "start": 21945.12, + "end": 21947.76, + "probability": 0.7356 + }, + { + "start": 21947.84, + "end": 21948.53, + "probability": 0.0604 + }, + { + "start": 21948.82, + "end": 21953.18, + "probability": 0.9963 + }, + { + "start": 21953.3, + "end": 21956.52, + "probability": 0.7986 + }, + { + "start": 21956.94, + "end": 21960.84, + "probability": 0.9656 + }, + { + "start": 21961.1, + "end": 21963.96, + "probability": 0.1065 + }, + { + "start": 21964.58, + "end": 21969.12, + "probability": 0.7515 + }, + { + "start": 21970.6, + "end": 21973.24, + "probability": 0.857 + }, + { + "start": 21973.38, + "end": 21974.08, + "probability": 0.9622 + }, + { + "start": 21974.1, + "end": 21977.56, + "probability": 0.8289 + }, + { + "start": 21977.58, + "end": 21977.6, + "probability": 0.5551 + }, + { + "start": 21977.6, + "end": 21981.64, + "probability": 0.9474 + }, + { + "start": 21981.66, + "end": 21983.36, + "probability": 0.9235 + }, + { + "start": 21983.43, + "end": 21984.88, + "probability": 0.3251 + }, + { + "start": 21984.88, + "end": 21985.52, + "probability": 0.7023 + }, + { + "start": 21985.68, + "end": 21986.24, + "probability": 0.8701 + }, + { + "start": 21986.38, + "end": 21986.78, + "probability": 0.8158 + }, + { + "start": 21986.88, + "end": 21990.76, + "probability": 0.9966 + }, + { + "start": 21991.44, + "end": 21995.6, + "probability": 0.9785 + }, + { + "start": 21996.54, + "end": 21998.12, + "probability": 0.8545 + }, + { + "start": 21998.28, + "end": 21998.84, + "probability": 0.8585 + }, + { + "start": 21999.16, + "end": 21999.52, + "probability": 0.7504 + }, + { + "start": 21999.72, + "end": 22001.98, + "probability": 0.963 + }, + { + "start": 22002.06, + "end": 22003.32, + "probability": 0.8455 + }, + { + "start": 22003.44, + "end": 22003.64, + "probability": 0.6438 + }, + { + "start": 22003.86, + "end": 22005.51, + "probability": 0.5804 + }, + { + "start": 22005.78, + "end": 22009.04, + "probability": 0.9062 + }, + { + "start": 22009.82, + "end": 22013.54, + "probability": 0.9625 + }, + { + "start": 22013.54, + "end": 22017.12, + "probability": 0.7873 + }, + { + "start": 22017.24, + "end": 22018.4, + "probability": 0.6803 + }, + { + "start": 22018.7, + "end": 22019.14, + "probability": 0.1607 + }, + { + "start": 22019.16, + "end": 22019.52, + "probability": 0.4157 + }, + { + "start": 22019.52, + "end": 22020.0, + "probability": 0.744 + }, + { + "start": 22023.0, + "end": 22023.46, + "probability": 0.8667 + }, + { + "start": 22033.96, + "end": 22036.02, + "probability": 0.0505 + }, + { + "start": 22036.31, + "end": 22039.76, + "probability": 0.5394 + }, + { + "start": 22039.98, + "end": 22040.44, + "probability": 0.6013 + }, + { + "start": 22041.06, + "end": 22042.46, + "probability": 0.9797 + }, + { + "start": 22042.54, + "end": 22045.34, + "probability": 0.9175 + }, + { + "start": 22046.04, + "end": 22048.04, + "probability": 0.6285 + }, + { + "start": 22048.48, + "end": 22048.78, + "probability": 0.4506 + }, + { + "start": 22051.32, + "end": 22055.82, + "probability": 0.0509 + }, + { + "start": 22059.64, + "end": 22060.24, + "probability": 0.0349 + }, + { + "start": 22062.62, + "end": 22063.6, + "probability": 0.131 + }, + { + "start": 22064.62, + "end": 22066.84, + "probability": 0.4726 + }, + { + "start": 22067.32, + "end": 22070.9, + "probability": 0.6948 + }, + { + "start": 22071.5, + "end": 22073.9, + "probability": 0.8838 + }, + { + "start": 22074.52, + "end": 22077.16, + "probability": 0.9749 + }, + { + "start": 22077.44, + "end": 22079.24, + "probability": 0.8463 + }, + { + "start": 22079.98, + "end": 22082.08, + "probability": 0.9005 + }, + { + "start": 22082.5, + "end": 22083.8, + "probability": 0.709 + }, + { + "start": 22083.92, + "end": 22084.58, + "probability": 0.8306 + }, + { + "start": 22085.02, + "end": 22088.66, + "probability": 0.985 + }, + { + "start": 22091.38, + "end": 22093.15, + "probability": 0.8965 + }, + { + "start": 22096.86, + "end": 22099.1, + "probability": 0.6344 + }, + { + "start": 22099.94, + "end": 22105.88, + "probability": 0.8389 + }, + { + "start": 22106.34, + "end": 22107.42, + "probability": 0.9465 + }, + { + "start": 22108.0, + "end": 22108.84, + "probability": 0.7476 + }, + { + "start": 22109.18, + "end": 22112.86, + "probability": 0.9836 + }, + { + "start": 22113.3, + "end": 22114.34, + "probability": 0.95 + }, + { + "start": 22114.72, + "end": 22115.2, + "probability": 0.8172 + }, + { + "start": 22115.34, + "end": 22115.7, + "probability": 0.5639 + }, + { + "start": 22116.08, + "end": 22116.84, + "probability": 0.7611 + }, + { + "start": 22117.28, + "end": 22117.54, + "probability": 0.5006 + }, + { + "start": 22118.14, + "end": 22119.36, + "probability": 0.794 + }, + { + "start": 22119.4, + "end": 22120.52, + "probability": 0.8932 + }, + { + "start": 22120.6, + "end": 22122.14, + "probability": 0.407 + }, + { + "start": 22123.08, + "end": 22126.74, + "probability": 0.1665 + }, + { + "start": 22126.92, + "end": 22128.68, + "probability": 0.6194 + }, + { + "start": 22129.24, + "end": 22129.32, + "probability": 0.2853 + }, + { + "start": 22129.32, + "end": 22131.28, + "probability": 0.7347 + }, + { + "start": 22131.82, + "end": 22133.92, + "probability": 0.9889 + }, + { + "start": 22134.28, + "end": 22134.87, + "probability": 0.6963 + }, + { + "start": 22135.54, + "end": 22136.59, + "probability": 0.9165 + }, + { + "start": 22137.22, + "end": 22137.86, + "probability": 0.0303 + }, + { + "start": 22137.86, + "end": 22139.54, + "probability": 0.984 + }, + { + "start": 22139.92, + "end": 22145.08, + "probability": 0.9785 + }, + { + "start": 22145.44, + "end": 22147.06, + "probability": 0.8826 + }, + { + "start": 22147.48, + "end": 22155.14, + "probability": 0.9634 + }, + { + "start": 22155.6, + "end": 22158.7, + "probability": 0.6631 + }, + { + "start": 22158.82, + "end": 22160.62, + "probability": 0.9804 + }, + { + "start": 22161.0, + "end": 22162.14, + "probability": 0.5092 + }, + { + "start": 22162.28, + "end": 22166.24, + "probability": 0.9961 + }, + { + "start": 22166.24, + "end": 22170.62, + "probability": 0.9623 + }, + { + "start": 22170.94, + "end": 22171.36, + "probability": 0.727 + }, + { + "start": 22171.42, + "end": 22172.7, + "probability": 0.7045 + }, + { + "start": 22173.18, + "end": 22175.96, + "probability": 0.8401 + }, + { + "start": 22176.34, + "end": 22177.12, + "probability": 0.7172 + }, + { + "start": 22177.98, + "end": 22179.56, + "probability": 0.9681 + }, + { + "start": 22179.86, + "end": 22183.14, + "probability": 0.9092 + }, + { + "start": 22183.14, + "end": 22187.1, + "probability": 0.9974 + }, + { + "start": 22187.18, + "end": 22189.72, + "probability": 0.8561 + }, + { + "start": 22190.06, + "end": 22196.68, + "probability": 0.9922 + }, + { + "start": 22196.98, + "end": 22200.62, + "probability": 0.9811 + }, + { + "start": 22200.98, + "end": 22202.28, + "probability": 0.9004 + }, + { + "start": 22203.14, + "end": 22204.2, + "probability": 0.5135 + }, + { + "start": 22204.2, + "end": 22206.88, + "probability": 0.746 + }, + { + "start": 22207.5, + "end": 22211.71, + "probability": 0.2089 + }, + { + "start": 22211.92, + "end": 22211.92, + "probability": 0.1886 + }, + { + "start": 22211.92, + "end": 22212.58, + "probability": 0.487 + }, + { + "start": 22213.2, + "end": 22213.2, + "probability": 0.067 + }, + { + "start": 22213.2, + "end": 22214.74, + "probability": 0.4894 + }, + { + "start": 22215.6, + "end": 22216.12, + "probability": 0.8111 + }, + { + "start": 22217.18, + "end": 22219.2, + "probability": 0.7457 + }, + { + "start": 22219.28, + "end": 22220.14, + "probability": 0.5713 + }, + { + "start": 22220.24, + "end": 22221.3, + "probability": 0.7691 + }, + { + "start": 22221.72, + "end": 22224.66, + "probability": 0.9554 + }, + { + "start": 22224.76, + "end": 22225.58, + "probability": 0.3697 + }, + { + "start": 22225.62, + "end": 22227.84, + "probability": 0.9521 + }, + { + "start": 22228.26, + "end": 22233.14, + "probability": 0.9926 + }, + { + "start": 22233.52, + "end": 22235.82, + "probability": 0.971 + }, + { + "start": 22236.24, + "end": 22237.42, + "probability": 0.998 + }, + { + "start": 22237.48, + "end": 22238.0, + "probability": 0.8061 + }, + { + "start": 22238.6, + "end": 22239.06, + "probability": 0.5872 + }, + { + "start": 22239.18, + "end": 22241.86, + "probability": 0.8574 + }, + { + "start": 22242.42, + "end": 22244.48, + "probability": 0.7465 + }, + { + "start": 22244.78, + "end": 22246.1, + "probability": 0.0759 + }, + { + "start": 22246.82, + "end": 22249.46, + "probability": 0.981 + }, + { + "start": 22249.96, + "end": 22249.96, + "probability": 0.4064 + }, + { + "start": 22249.96, + "end": 22252.18, + "probability": 0.9885 + }, + { + "start": 22252.46, + "end": 22254.9, + "probability": 0.765 + }, + { + "start": 22254.98, + "end": 22255.66, + "probability": 0.9438 + }, + { + "start": 22256.64, + "end": 22257.86, + "probability": 0.9281 + }, + { + "start": 22258.64, + "end": 22260.56, + "probability": 0.7613 + }, + { + "start": 22266.8, + "end": 22267.1, + "probability": 0.3559 + }, + { + "start": 22267.1, + "end": 22267.6, + "probability": 0.6126 + }, + { + "start": 22269.08, + "end": 22270.8, + "probability": 0.5544 + }, + { + "start": 22272.1, + "end": 22273.13, + "probability": 0.8817 + }, + { + "start": 22274.28, + "end": 22280.54, + "probability": 0.9681 + }, + { + "start": 22281.62, + "end": 22281.94, + "probability": 0.7012 + }, + { + "start": 22282.08, + "end": 22285.26, + "probability": 0.9812 + }, + { + "start": 22285.32, + "end": 22287.16, + "probability": 0.9958 + }, + { + "start": 22287.88, + "end": 22291.16, + "probability": 0.8173 + }, + { + "start": 22291.82, + "end": 22294.66, + "probability": 0.9846 + }, + { + "start": 22295.74, + "end": 22300.44, + "probability": 0.7861 + }, + { + "start": 22300.8, + "end": 22301.8, + "probability": 0.9819 + }, + { + "start": 22301.92, + "end": 22303.26, + "probability": 0.958 + }, + { + "start": 22303.84, + "end": 22306.84, + "probability": 0.9749 + }, + { + "start": 22308.16, + "end": 22309.82, + "probability": 0.9966 + }, + { + "start": 22309.92, + "end": 22310.88, + "probability": 0.925 + }, + { + "start": 22311.14, + "end": 22312.54, + "probability": 0.9873 + }, + { + "start": 22312.62, + "end": 22314.0, + "probability": 0.8844 + }, + { + "start": 22314.12, + "end": 22315.78, + "probability": 0.8904 + }, + { + "start": 22317.96, + "end": 22318.64, + "probability": 0.9834 + }, + { + "start": 22319.42, + "end": 22322.12, + "probability": 0.8596 + }, + { + "start": 22322.3, + "end": 22325.5, + "probability": 0.9619 + }, + { + "start": 22326.76, + "end": 22329.96, + "probability": 0.9611 + }, + { + "start": 22331.02, + "end": 22334.08, + "probability": 0.9258 + }, + { + "start": 22335.44, + "end": 22339.28, + "probability": 0.9518 + }, + { + "start": 22339.46, + "end": 22340.84, + "probability": 0.8163 + }, + { + "start": 22340.94, + "end": 22342.88, + "probability": 0.9462 + }, + { + "start": 22342.88, + "end": 22345.38, + "probability": 0.9952 + }, + { + "start": 22346.14, + "end": 22349.28, + "probability": 0.9943 + }, + { + "start": 22350.08, + "end": 22352.64, + "probability": 0.9148 + }, + { + "start": 22353.04, + "end": 22355.95, + "probability": 0.9895 + }, + { + "start": 22356.82, + "end": 22361.2, + "probability": 0.7958 + }, + { + "start": 22361.32, + "end": 22362.62, + "probability": 0.9855 + }, + { + "start": 22363.4, + "end": 22366.22, + "probability": 0.8104 + }, + { + "start": 22366.92, + "end": 22368.18, + "probability": 0.9565 + }, + { + "start": 22368.42, + "end": 22371.12, + "probability": 0.9725 + }, + { + "start": 22372.26, + "end": 22374.84, + "probability": 0.9735 + }, + { + "start": 22375.0, + "end": 22377.0, + "probability": 0.9403 + }, + { + "start": 22378.12, + "end": 22380.58, + "probability": 0.9547 + }, + { + "start": 22380.66, + "end": 22380.9, + "probability": 0.6819 + }, + { + "start": 22381.7, + "end": 22383.31, + "probability": 0.6874 + }, + { + "start": 22384.2, + "end": 22386.58, + "probability": 0.6609 + }, + { + "start": 22387.5, + "end": 22388.88, + "probability": 0.5985 + }, + { + "start": 22389.26, + "end": 22390.36, + "probability": 0.6975 + }, + { + "start": 22391.18, + "end": 22392.96, + "probability": 0.8546 + }, + { + "start": 22393.58, + "end": 22395.2, + "probability": 0.1175 + }, + { + "start": 22396.26, + "end": 22397.26, + "probability": 0.1252 + }, + { + "start": 22416.1, + "end": 22416.66, + "probability": 0.2845 + }, + { + "start": 22418.7, + "end": 22419.26, + "probability": 0.214 + }, + { + "start": 22419.7, + "end": 22419.77, + "probability": 0.4616 + }, + { + "start": 22421.47, + "end": 22423.66, + "probability": 0.9893 + }, + { + "start": 22424.1, + "end": 22425.48, + "probability": 0.9805 + }, + { + "start": 22425.6, + "end": 22425.72, + "probability": 0.8395 + }, + { + "start": 22426.16, + "end": 22428.66, + "probability": 0.7178 + }, + { + "start": 22428.76, + "end": 22430.14, + "probability": 0.9738 + }, + { + "start": 22430.64, + "end": 22432.28, + "probability": 0.9635 + }, + { + "start": 22432.92, + "end": 22435.2, + "probability": 0.9873 + }, + { + "start": 22435.48, + "end": 22438.06, + "probability": 0.9955 + }, + { + "start": 22438.6, + "end": 22440.92, + "probability": 0.7301 + }, + { + "start": 22441.66, + "end": 22442.92, + "probability": 0.9331 + }, + { + "start": 22443.04, + "end": 22443.46, + "probability": 0.7699 + }, + { + "start": 22443.56, + "end": 22444.44, + "probability": 0.9717 + }, + { + "start": 22445.18, + "end": 22446.14, + "probability": 0.9728 + }, + { + "start": 22449.28, + "end": 22450.9, + "probability": 0.9675 + }, + { + "start": 22451.04, + "end": 22451.06, + "probability": 0.0414 + }, + { + "start": 22451.06, + "end": 22452.82, + "probability": 0.9595 + }, + { + "start": 22452.9, + "end": 22453.84, + "probability": 0.637 + }, + { + "start": 22454.38, + "end": 22454.92, + "probability": 0.6986 + }, + { + "start": 22455.0, + "end": 22458.36, + "probability": 0.9385 + }, + { + "start": 22458.52, + "end": 22459.38, + "probability": 0.9052 + }, + { + "start": 22459.48, + "end": 22461.38, + "probability": 0.9498 + }, + { + "start": 22462.04, + "end": 22466.46, + "probability": 0.7726 + }, + { + "start": 22467.16, + "end": 22467.16, + "probability": 0.0239 + }, + { + "start": 22467.16, + "end": 22471.32, + "probability": 0.9479 + }, + { + "start": 22472.02, + "end": 22474.26, + "probability": 0.9898 + }, + { + "start": 22474.38, + "end": 22478.36, + "probability": 0.7159 + }, + { + "start": 22479.38, + "end": 22482.02, + "probability": 0.2297 + }, + { + "start": 22482.14, + "end": 22486.42, + "probability": 0.9697 + }, + { + "start": 22487.36, + "end": 22491.62, + "probability": 0.9927 + }, + { + "start": 22491.74, + "end": 22493.32, + "probability": 0.663 + }, + { + "start": 22493.8, + "end": 22495.52, + "probability": 0.9645 + }, + { + "start": 22496.18, + "end": 22498.62, + "probability": 0.7396 + }, + { + "start": 22499.4, + "end": 22499.58, + "probability": 0.5321 + }, + { + "start": 22500.44, + "end": 22504.02, + "probability": 0.9106 + }, + { + "start": 22505.03, + "end": 22508.34, + "probability": 0.8879 + }, + { + "start": 22508.62, + "end": 22508.94, + "probability": 0.4415 + }, + { + "start": 22509.02, + "end": 22510.06, + "probability": 0.5763 + }, + { + "start": 22510.42, + "end": 22510.74, + "probability": 0.5413 + }, + { + "start": 22511.14, + "end": 22513.21, + "probability": 0.9787 + }, + { + "start": 22513.86, + "end": 22516.16, + "probability": 0.1433 + }, + { + "start": 22517.56, + "end": 22517.78, + "probability": 0.0256 + }, + { + "start": 22517.78, + "end": 22521.68, + "probability": 0.6028 + }, + { + "start": 22522.14, + "end": 22526.58, + "probability": 0.9741 + }, + { + "start": 22527.12, + "end": 22528.47, + "probability": 0.7853 + }, + { + "start": 22529.68, + "end": 22530.88, + "probability": 0.4335 + }, + { + "start": 22531.72, + "end": 22533.7, + "probability": 0.9095 + }, + { + "start": 22534.14, + "end": 22534.84, + "probability": 0.9499 + }, + { + "start": 22534.9, + "end": 22535.39, + "probability": 0.5921 + }, + { + "start": 22535.6, + "end": 22536.22, + "probability": 0.6938 + }, + { + "start": 22537.06, + "end": 22539.92, + "probability": 0.953 + }, + { + "start": 22539.94, + "end": 22540.38, + "probability": 0.609 + }, + { + "start": 22540.84, + "end": 22543.28, + "probability": 0.8638 + }, + { + "start": 22543.66, + "end": 22547.58, + "probability": 0.9617 + }, + { + "start": 22548.04, + "end": 22548.78, + "probability": 0.9567 + }, + { + "start": 22549.16, + "end": 22550.9, + "probability": 0.8115 + }, + { + "start": 22551.7, + "end": 22553.14, + "probability": 0.634 + }, + { + "start": 22554.34, + "end": 22554.9, + "probability": 0.6951 + }, + { + "start": 22555.9, + "end": 22557.71, + "probability": 0.5986 + }, + { + "start": 22558.83, + "end": 22560.94, + "probability": 0.8772 + }, + { + "start": 22562.02, + "end": 22565.51, + "probability": 0.4988 + }, + { + "start": 22566.94, + "end": 22568.06, + "probability": 0.0413 + }, + { + "start": 22568.2, + "end": 22571.86, + "probability": 0.6635 + }, + { + "start": 22573.16, + "end": 22573.16, + "probability": 0.4055 + }, + { + "start": 22573.2, + "end": 22574.26, + "probability": 0.9158 + }, + { + "start": 22574.32, + "end": 22576.46, + "probability": 0.942 + }, + { + "start": 22576.5, + "end": 22578.2, + "probability": 0.9701 + }, + { + "start": 22578.34, + "end": 22580.54, + "probability": 0.9341 + }, + { + "start": 22581.7, + "end": 22585.44, + "probability": 0.7687 + }, + { + "start": 22586.38, + "end": 22592.46, + "probability": 0.9538 + }, + { + "start": 22592.46, + "end": 22596.36, + "probability": 0.9624 + }, + { + "start": 22596.76, + "end": 22598.38, + "probability": 0.9919 + }, + { + "start": 22598.48, + "end": 22598.96, + "probability": 0.9106 + }, + { + "start": 22600.12, + "end": 22600.63, + "probability": 0.9308 + }, + { + "start": 22600.84, + "end": 22601.22, + "probability": 0.8002 + }, + { + "start": 22601.28, + "end": 22602.3, + "probability": 0.981 + }, + { + "start": 22602.36, + "end": 22611.68, + "probability": 0.978 + }, + { + "start": 22612.06, + "end": 22613.14, + "probability": 0.9277 + }, + { + "start": 22613.8, + "end": 22617.0, + "probability": 0.6323 + }, + { + "start": 22617.38, + "end": 22624.7, + "probability": 0.8757 + }, + { + "start": 22625.24, + "end": 22631.98, + "probability": 0.8546 + }, + { + "start": 22632.4, + "end": 22638.36, + "probability": 0.9263 + }, + { + "start": 22639.48, + "end": 22639.56, + "probability": 0.1993 + }, + { + "start": 22640.55, + "end": 22642.84, + "probability": 0.7609 + }, + { + "start": 22643.46, + "end": 22644.16, + "probability": 0.8499 + }, + { + "start": 22644.9, + "end": 22646.26, + "probability": 0.4632 + }, + { + "start": 22646.32, + "end": 22648.6, + "probability": 0.8225 + }, + { + "start": 22649.6, + "end": 22652.8, + "probability": 0.5519 + }, + { + "start": 22654.14, + "end": 22654.94, + "probability": 0.9123 + }, + { + "start": 22655.36, + "end": 22656.96, + "probability": 0.3375 + }, + { + "start": 22657.06, + "end": 22658.36, + "probability": 0.8344 + }, + { + "start": 22659.28, + "end": 22659.8, + "probability": 0.6304 + }, + { + "start": 22660.38, + "end": 22661.58, + "probability": 0.9414 + }, + { + "start": 22662.26, + "end": 22663.74, + "probability": 0.6039 + }, + { + "start": 22663.82, + "end": 22665.2, + "probability": 0.7977 + }, + { + "start": 22665.36, + "end": 22666.5, + "probability": 0.9031 + }, + { + "start": 22667.0, + "end": 22667.18, + "probability": 0.6514 + }, + { + "start": 22667.22, + "end": 22668.62, + "probability": 0.9524 + }, + { + "start": 22670.64, + "end": 22672.74, + "probability": 0.9389 + }, + { + "start": 22673.34, + "end": 22674.8, + "probability": 0.8305 + }, + { + "start": 22675.8, + "end": 22677.82, + "probability": 0.9795 + }, + { + "start": 22678.26, + "end": 22680.56, + "probability": 0.8733 + }, + { + "start": 22681.68, + "end": 22683.2, + "probability": 0.894 + }, + { + "start": 22683.94, + "end": 22685.22, + "probability": 0.9479 + }, + { + "start": 22685.9, + "end": 22688.22, + "probability": 0.9172 + }, + { + "start": 22688.84, + "end": 22689.88, + "probability": 0.8713 + }, + { + "start": 22690.02, + "end": 22691.86, + "probability": 0.8481 + }, + { + "start": 22691.94, + "end": 22692.86, + "probability": 0.9699 + }, + { + "start": 22693.42, + "end": 22693.76, + "probability": 0.7257 + }, + { + "start": 22694.18, + "end": 22695.4, + "probability": 0.9906 + }, + { + "start": 22695.5, + "end": 22701.24, + "probability": 0.9042 + }, + { + "start": 22701.66, + "end": 22703.42, + "probability": 0.728 + }, + { + "start": 22703.94, + "end": 22704.34, + "probability": 0.9323 + }, + { + "start": 22705.46, + "end": 22708.58, + "probability": 0.9883 + }, + { + "start": 22710.94, + "end": 22713.0, + "probability": 0.8377 + }, + { + "start": 22713.38, + "end": 22715.38, + "probability": 0.9668 + }, + { + "start": 22715.48, + "end": 22717.12, + "probability": 0.9966 + }, + { + "start": 22719.24, + "end": 22720.8, + "probability": 0.939 + }, + { + "start": 22720.9, + "end": 22721.72, + "probability": 0.9739 + }, + { + "start": 22722.4, + "end": 22723.74, + "probability": 0.709 + }, + { + "start": 22724.9, + "end": 22727.4, + "probability": 0.8824 + }, + { + "start": 22727.52, + "end": 22728.36, + "probability": 0.8546 + }, + { + "start": 22728.62, + "end": 22729.4, + "probability": 0.952 + }, + { + "start": 22729.52, + "end": 22730.74, + "probability": 0.5541 + }, + { + "start": 22731.86, + "end": 22734.32, + "probability": 0.7728 + }, + { + "start": 22737.43, + "end": 22739.58, + "probability": 0.8351 + }, + { + "start": 22740.18, + "end": 22741.84, + "probability": 0.7602 + }, + { + "start": 22742.52, + "end": 22745.62, + "probability": 0.9585 + }, + { + "start": 22746.84, + "end": 22747.8, + "probability": 0.6019 + }, + { + "start": 22749.8, + "end": 22753.06, + "probability": 0.9971 + }, + { + "start": 22753.32, + "end": 22755.38, + "probability": 0.9956 + }, + { + "start": 22756.58, + "end": 22758.3, + "probability": 0.8765 + }, + { + "start": 22758.86, + "end": 22760.82, + "probability": 0.9774 + }, + { + "start": 22761.04, + "end": 22761.68, + "probability": 0.6915 + }, + { + "start": 22761.94, + "end": 22763.62, + "probability": 0.8664 + }, + { + "start": 22763.62, + "end": 22764.12, + "probability": 0.5785 + }, + { + "start": 22764.52, + "end": 22765.32, + "probability": 0.6564 + }, + { + "start": 22765.48, + "end": 22768.84, + "probability": 0.9264 + }, + { + "start": 22768.88, + "end": 22770.02, + "probability": 0.7479 + }, + { + "start": 22770.12, + "end": 22770.88, + "probability": 0.4862 + }, + { + "start": 22771.92, + "end": 22773.7, + "probability": 0.6164 + }, + { + "start": 22773.9, + "end": 22776.42, + "probability": 0.8827 + }, + { + "start": 22777.04, + "end": 22779.14, + "probability": 0.494 + }, + { + "start": 22779.92, + "end": 22781.28, + "probability": 0.017 + }, + { + "start": 22781.8, + "end": 22782.6, + "probability": 0.533 + }, + { + "start": 22782.6, + "end": 22783.18, + "probability": 0.6021 + }, + { + "start": 22783.86, + "end": 22784.4, + "probability": 0.654 + }, + { + "start": 22786.48, + "end": 22786.68, + "probability": 0.9253 + }, + { + "start": 22805.05, + "end": 22807.16, + "probability": 0.2426 + }, + { + "start": 22809.04, + "end": 22809.04, + "probability": 0.0249 + }, + { + "start": 22809.04, + "end": 22809.34, + "probability": 0.0092 + }, + { + "start": 22809.34, + "end": 22810.1, + "probability": 0.5203 + }, + { + "start": 22810.2, + "end": 22811.9, + "probability": 0.5488 + }, + { + "start": 22812.98, + "end": 22813.48, + "probability": 0.1622 + }, + { + "start": 22817.48, + "end": 22820.28, + "probability": 0.1289 + }, + { + "start": 22824.86, + "end": 22826.54, + "probability": 0.1592 + }, + { + "start": 22827.24, + "end": 22827.32, + "probability": 0.068 + }, + { + "start": 22828.04, + "end": 22828.26, + "probability": 0.0865 + }, + { + "start": 22828.26, + "end": 22829.58, + "probability": 0.095 + }, + { + "start": 22829.94, + "end": 22830.52, + "probability": 0.3443 + }, + { + "start": 22836.12, + "end": 22836.5, + "probability": 0.1332 + }, + { + "start": 22839.0, + "end": 22839.44, + "probability": 0.0747 + }, + { + "start": 22839.92, + "end": 22840.14, + "probability": 0.0132 + }, + { + "start": 22840.14, + "end": 22842.42, + "probability": 0.0445 + }, + { + "start": 22842.9, + "end": 22843.0, + "probability": 0.1892 + }, + { + "start": 22843.0, + "end": 22843.8, + "probability": 0.264 + }, + { + "start": 22844.46, + "end": 22845.4, + "probability": 0.0672 + }, + { + "start": 22848.82, + "end": 22851.1, + "probability": 0.099 + }, + { + "start": 22852.34, + "end": 22853.1, + "probability": 0.0306 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22877.0, + "end": 22877.0, + "probability": 0.0 + }, + { + "start": 22878.41, + "end": 22881.56, + "probability": 0.1607 + }, + { + "start": 22882.18, + "end": 22887.08, + "probability": 0.062 + }, + { + "start": 22898.58, + "end": 22898.62, + "probability": 0.0305 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23000.0, + "end": 23000.0, + "probability": 0.0 + }, + { + "start": 23024.68, + "end": 23029.1, + "probability": 0.9708 + }, + { + "start": 23029.1, + "end": 23034.7, + "probability": 0.9425 + }, + { + "start": 23035.2, + "end": 23036.88, + "probability": 0.71 + }, + { + "start": 23037.3, + "end": 23041.1, + "probability": 0.9927 + }, + { + "start": 23041.86, + "end": 23045.5, + "probability": 0.8691 + }, + { + "start": 23046.2, + "end": 23048.64, + "probability": 0.8916 + }, + { + "start": 23049.96, + "end": 23053.7, + "probability": 0.9908 + }, + { + "start": 23056.36, + "end": 23058.26, + "probability": 0.9138 + }, + { + "start": 23059.32, + "end": 23060.64, + "probability": 0.6724 + }, + { + "start": 23060.72, + "end": 23063.18, + "probability": 0.826 + }, + { + "start": 23063.7, + "end": 23065.45, + "probability": 0.9169 + }, + { + "start": 23065.7, + "end": 23071.7, + "probability": 0.8521 + }, + { + "start": 23071.76, + "end": 23075.08, + "probability": 0.93 + }, + { + "start": 23075.46, + "end": 23078.0, + "probability": 0.9019 + }, + { + "start": 23079.36, + "end": 23084.56, + "probability": 0.77 + }, + { + "start": 23085.06, + "end": 23090.8, + "probability": 0.9437 + }, + { + "start": 23090.8, + "end": 23097.92, + "probability": 0.9932 + }, + { + "start": 23098.48, + "end": 23098.96, + "probability": 0.9404 + }, + { + "start": 23100.2, + "end": 23103.8, + "probability": 0.7159 + }, + { + "start": 23103.92, + "end": 23105.32, + "probability": 0.9988 + }, + { + "start": 23106.08, + "end": 23107.7, + "probability": 0.7734 + }, + { + "start": 23107.86, + "end": 23109.7, + "probability": 0.7741 + }, + { + "start": 23109.96, + "end": 23113.2, + "probability": 0.4525 + }, + { + "start": 23115.24, + "end": 23117.1, + "probability": 0.849 + }, + { + "start": 23118.3, + "end": 23120.5, + "probability": 0.0264 + }, + { + "start": 23134.12, + "end": 23134.73, + "probability": 0.0007 + }, + { + "start": 23135.04, + "end": 23136.6, + "probability": 0.3559 + }, + { + "start": 23136.72, + "end": 23137.84, + "probability": 0.7193 + }, + { + "start": 23138.38, + "end": 23139.2, + "probability": 0.9849 + }, + { + "start": 23139.46, + "end": 23140.52, + "probability": 0.996 + }, + { + "start": 23141.38, + "end": 23142.24, + "probability": 0.8219 + }, + { + "start": 23143.48, + "end": 23144.34, + "probability": 0.5872 + }, + { + "start": 23144.96, + "end": 23145.38, + "probability": 0.5889 + }, + { + "start": 23145.42, + "end": 23145.8, + "probability": 0.6354 + }, + { + "start": 23145.82, + "end": 23145.98, + "probability": 0.4461 + }, + { + "start": 23147.52, + "end": 23150.4, + "probability": 0.35 + }, + { + "start": 23159.38, + "end": 23159.98, + "probability": 0.0902 + }, + { + "start": 23159.98, + "end": 23161.46, + "probability": 0.5662 + }, + { + "start": 23161.48, + "end": 23161.72, + "probability": 0.0466 + }, + { + "start": 23161.82, + "end": 23163.68, + "probability": 0.4857 + }, + { + "start": 23163.74, + "end": 23167.32, + "probability": 0.7151 + }, + { + "start": 23167.86, + "end": 23170.88, + "probability": 0.0306 + }, + { + "start": 23170.88, + "end": 23170.88, + "probability": 0.2737 + }, + { + "start": 23170.88, + "end": 23172.96, + "probability": 0.7959 + }, + { + "start": 23173.64, + "end": 23175.4, + "probability": 0.967 + }, + { + "start": 23175.88, + "end": 23176.4, + "probability": 0.8086 + }, + { + "start": 23182.8, + "end": 23183.22, + "probability": 0.3071 + }, + { + "start": 23183.32, + "end": 23187.54, + "probability": 0.8002 + }, + { + "start": 23187.6, + "end": 23187.9, + "probability": 0.6738 + }, + { + "start": 23187.98, + "end": 23188.62, + "probability": 0.9078 + }, + { + "start": 23188.78, + "end": 23192.36, + "probability": 0.8093 + }, + { + "start": 23192.58, + "end": 23193.18, + "probability": 0.8538 + }, + { + "start": 23193.2, + "end": 23193.72, + "probability": 0.8145 + }, + { + "start": 23194.88, + "end": 23196.54, + "probability": 0.8872 + }, + { + "start": 23196.62, + "end": 23198.16, + "probability": 0.7875 + }, + { + "start": 23198.72, + "end": 23201.2, + "probability": 0.973 + }, + { + "start": 23201.38, + "end": 23206.8, + "probability": 0.9691 + }, + { + "start": 23207.24, + "end": 23209.74, + "probability": 0.9966 + }, + { + "start": 23209.74, + "end": 23213.66, + "probability": 0.9967 + }, + { + "start": 23213.74, + "end": 23215.81, + "probability": 0.953 + }, + { + "start": 23216.24, + "end": 23217.62, + "probability": 0.9135 + }, + { + "start": 23217.82, + "end": 23218.24, + "probability": 0.7639 + }, + { + "start": 23218.8, + "end": 23220.92, + "probability": 0.6997 + }, + { + "start": 23221.74, + "end": 23222.46, + "probability": 0.313 + }, + { + "start": 23222.46, + "end": 23223.72, + "probability": 0.8934 + }, + { + "start": 23223.9, + "end": 23226.0, + "probability": 0.6716 + }, + { + "start": 23226.22, + "end": 23227.4, + "probability": 0.102 + }, + { + "start": 23227.66, + "end": 23229.76, + "probability": 0.8609 + }, + { + "start": 23229.94, + "end": 23231.82, + "probability": 0.8854 + }, + { + "start": 23232.1, + "end": 23233.88, + "probability": 0.7056 + }, + { + "start": 23233.92, + "end": 23234.5, + "probability": 0.5056 + }, + { + "start": 23235.16, + "end": 23237.04, + "probability": 0.4836 + }, + { + "start": 23237.5, + "end": 23238.56, + "probability": 0.534 + }, + { + "start": 23239.08, + "end": 23239.5, + "probability": 0.9427 + }, + { + "start": 23240.02, + "end": 23243.8, + "probability": 0.8394 + }, + { + "start": 23244.36, + "end": 23245.04, + "probability": 0.6988 + }, + { + "start": 23250.46, + "end": 23252.02, + "probability": 0.546 + }, + { + "start": 23252.58, + "end": 23252.7, + "probability": 0.0525 + }, + { + "start": 23253.46, + "end": 23257.02, + "probability": 0.6439 + }, + { + "start": 23257.48, + "end": 23258.24, + "probability": 0.9305 + }, + { + "start": 23258.34, + "end": 23259.86, + "probability": 0.9957 + }, + { + "start": 23260.66, + "end": 23265.26, + "probability": 0.9834 + }, + { + "start": 23266.42, + "end": 23270.4, + "probability": 0.9783 + }, + { + "start": 23271.08, + "end": 23274.58, + "probability": 0.9762 + }, + { + "start": 23275.2, + "end": 23276.06, + "probability": 0.8648 + }, + { + "start": 23277.04, + "end": 23280.54, + "probability": 0.9826 + }, + { + "start": 23281.18, + "end": 23282.94, + "probability": 0.8661 + }, + { + "start": 23283.06, + "end": 23283.58, + "probability": 0.3662 + }, + { + "start": 23283.74, + "end": 23290.68, + "probability": 0.9913 + }, + { + "start": 23292.0, + "end": 23296.9, + "probability": 0.9233 + }, + { + "start": 23297.42, + "end": 23301.96, + "probability": 0.9389 + }, + { + "start": 23302.76, + "end": 23305.82, + "probability": 0.9916 + }, + { + "start": 23306.02, + "end": 23309.54, + "probability": 0.9927 + }, + { + "start": 23310.1, + "end": 23312.52, + "probability": 0.9972 + }, + { + "start": 23313.06, + "end": 23316.56, + "probability": 0.9766 + }, + { + "start": 23317.08, + "end": 23320.3, + "probability": 0.9825 + }, + { + "start": 23320.96, + "end": 23322.0, + "probability": 0.5772 + }, + { + "start": 23322.12, + "end": 23324.88, + "probability": 0.8425 + }, + { + "start": 23324.92, + "end": 23326.4, + "probability": 0.9724 + }, + { + "start": 23327.0, + "end": 23328.84, + "probability": 0.9977 + }, + { + "start": 23330.44, + "end": 23333.02, + "probability": 0.9752 + }, + { + "start": 23333.02, + "end": 23336.08, + "probability": 0.9985 + }, + { + "start": 23336.74, + "end": 23340.28, + "probability": 0.999 + }, + { + "start": 23341.8, + "end": 23344.64, + "probability": 0.9941 + }, + { + "start": 23345.54, + "end": 23350.34, + "probability": 0.9532 + }, + { + "start": 23350.34, + "end": 23355.76, + "probability": 0.9879 + }, + { + "start": 23355.82, + "end": 23357.5, + "probability": 0.321 + }, + { + "start": 23358.02, + "end": 23360.04, + "probability": 0.9414 + }, + { + "start": 23360.98, + "end": 23361.56, + "probability": 0.5312 + }, + { + "start": 23361.7, + "end": 23362.18, + "probability": 0.882 + }, + { + "start": 23362.26, + "end": 23363.86, + "probability": 0.9941 + }, + { + "start": 23363.98, + "end": 23365.62, + "probability": 0.817 + }, + { + "start": 23366.14, + "end": 23367.58, + "probability": 0.9883 + }, + { + "start": 23367.7, + "end": 23369.9, + "probability": 0.7165 + }, + { + "start": 23370.16, + "end": 23372.28, + "probability": 0.9362 + }, + { + "start": 23373.02, + "end": 23375.9, + "probability": 0.8597 + }, + { + "start": 23376.56, + "end": 23379.54, + "probability": 0.9746 + }, + { + "start": 23380.16, + "end": 23382.88, + "probability": 0.979 + }, + { + "start": 23383.52, + "end": 23384.96, + "probability": 0.6812 + }, + { + "start": 23385.0, + "end": 23387.16, + "probability": 0.9392 + }, + { + "start": 23387.64, + "end": 23388.48, + "probability": 0.821 + }, + { + "start": 23389.52, + "end": 23392.5, + "probability": 0.9937 + }, + { + "start": 23393.26, + "end": 23395.6, + "probability": 0.9905 + }, + { + "start": 23395.88, + "end": 23400.38, + "probability": 0.995 + }, + { + "start": 23401.24, + "end": 23403.68, + "probability": 0.9983 + }, + { + "start": 23403.68, + "end": 23409.4, + "probability": 0.8612 + }, + { + "start": 23410.26, + "end": 23412.54, + "probability": 0.8744 + }, + { + "start": 23412.66, + "end": 23414.08, + "probability": 0.9825 + }, + { + "start": 23414.84, + "end": 23420.12, + "probability": 0.9943 + }, + { + "start": 23420.64, + "end": 23421.08, + "probability": 0.7609 + }, + { + "start": 23423.14, + "end": 23426.34, + "probability": 0.6398 + }, + { + "start": 23426.54, + "end": 23428.98, + "probability": 0.5222 + }, + { + "start": 23429.68, + "end": 23431.12, + "probability": 0.8574 + }, + { + "start": 23431.22, + "end": 23435.28, + "probability": 0.802 + }, + { + "start": 23435.46, + "end": 23438.16, + "probability": 0.1555 + }, + { + "start": 23438.18, + "end": 23438.56, + "probability": 0.625 + }, + { + "start": 23438.56, + "end": 23439.2, + "probability": 0.7733 + }, + { + "start": 23455.12, + "end": 23455.12, + "probability": 0.0062 + }, + { + "start": 23455.12, + "end": 23457.6, + "probability": 0.5902 + }, + { + "start": 23457.72, + "end": 23459.82, + "probability": 0.856 + }, + { + "start": 23460.0, + "end": 23460.8, + "probability": 0.9902 + }, + { + "start": 23461.54, + "end": 23463.92, + "probability": 0.7776 + }, + { + "start": 23465.84, + "end": 23470.08, + "probability": 0.0462 + }, + { + "start": 23480.86, + "end": 23480.86, + "probability": 0.0435 + }, + { + "start": 23480.86, + "end": 23483.46, + "probability": 0.4471 + }, + { + "start": 23483.54, + "end": 23483.78, + "probability": 0.3189 + }, + { + "start": 23483.94, + "end": 23485.7, + "probability": 0.1777 + }, + { + "start": 23485.72, + "end": 23486.62, + "probability": 0.368 + }, + { + "start": 23486.9, + "end": 23490.32, + "probability": 0.7837 + }, + { + "start": 23490.88, + "end": 23493.08, + "probability": 0.9805 + }, + { + "start": 23493.94, + "end": 23495.14, + "probability": 0.7902 + }, + { + "start": 23495.9, + "end": 23496.44, + "probability": 0.7118 + }, + { + "start": 23498.18, + "end": 23498.68, + "probability": 0.5693 + }, + { + "start": 23499.44, + "end": 23500.44, + "probability": 0.6923 + }, + { + "start": 23505.12, + "end": 23506.02, + "probability": 0.553 + }, + { + "start": 23506.16, + "end": 23509.56, + "probability": 0.5882 + }, + { + "start": 23509.56, + "end": 23512.58, + "probability": 0.9653 + }, + { + "start": 23513.22, + "end": 23513.84, + "probability": 0.7255 + }, + { + "start": 23513.96, + "end": 23517.78, + "probability": 0.8163 + }, + { + "start": 23518.34, + "end": 23519.38, + "probability": 0.5813 + }, + { + "start": 23520.0, + "end": 23521.24, + "probability": 0.9312 + }, + { + "start": 23521.58, + "end": 23522.92, + "probability": 0.812 + }, + { + "start": 23523.4, + "end": 23523.92, + "probability": 0.7298 + }, + { + "start": 23524.02, + "end": 23524.96, + "probability": 0.6503 + }, + { + "start": 23525.26, + "end": 23527.46, + "probability": 0.9303 + }, + { + "start": 23528.44, + "end": 23532.56, + "probability": 0.9948 + }, + { + "start": 23533.18, + "end": 23536.58, + "probability": 0.9932 + }, + { + "start": 23537.42, + "end": 23540.04, + "probability": 0.5576 + }, + { + "start": 23540.18, + "end": 23543.3, + "probability": 0.856 + }, + { + "start": 23543.84, + "end": 23547.76, + "probability": 0.9967 + }, + { + "start": 23547.86, + "end": 23548.78, + "probability": 0.8353 + }, + { + "start": 23548.86, + "end": 23550.02, + "probability": 0.6481 + }, + { + "start": 23550.74, + "end": 23553.5, + "probability": 0.9635 + }, + { + "start": 23554.1, + "end": 23559.56, + "probability": 0.9951 + }, + { + "start": 23560.38, + "end": 23562.06, + "probability": 0.9626 + }, + { + "start": 23562.42, + "end": 23567.14, + "probability": 0.9871 + }, + { + "start": 23567.2, + "end": 23568.9, + "probability": 0.9934 + }, + { + "start": 23569.8, + "end": 23574.1, + "probability": 0.995 + }, + { + "start": 23574.1, + "end": 23577.54, + "probability": 0.9886 + }, + { + "start": 23578.16, + "end": 23582.78, + "probability": 0.992 + }, + { + "start": 23583.28, + "end": 23586.88, + "probability": 0.7511 + }, + { + "start": 23587.56, + "end": 23588.64, + "probability": 0.6343 + }, + { + "start": 23589.3, + "end": 23590.9, + "probability": 0.6414 + }, + { + "start": 23591.52, + "end": 23592.56, + "probability": 0.9653 + }, + { + "start": 23592.58, + "end": 23593.1, + "probability": 0.9742 + }, + { + "start": 23593.2, + "end": 23593.92, + "probability": 0.834 + }, + { + "start": 23593.96, + "end": 23594.44, + "probability": 0.9874 + }, + { + "start": 23594.52, + "end": 23595.08, + "probability": 0.8899 + }, + { + "start": 23595.24, + "end": 23595.58, + "probability": 0.7012 + }, + { + "start": 23595.72, + "end": 23596.2, + "probability": 0.1994 + }, + { + "start": 23596.28, + "end": 23596.72, + "probability": 0.9173 + }, + { + "start": 23597.04, + "end": 23597.94, + "probability": 0.6656 + }, + { + "start": 23598.04, + "end": 23598.86, + "probability": 0.6225 + }, + { + "start": 23598.9, + "end": 23601.1, + "probability": 0.9628 + }, + { + "start": 23601.36, + "end": 23603.52, + "probability": 0.923 + }, + { + "start": 23603.64, + "end": 23608.78, + "probability": 0.9878 + }, + { + "start": 23609.12, + "end": 23613.46, + "probability": 0.9684 + }, + { + "start": 23613.46, + "end": 23616.02, + "probability": 0.9866 + }, + { + "start": 23616.62, + "end": 23617.18, + "probability": 0.4951 + }, + { + "start": 23617.54, + "end": 23621.3, + "probability": 0.8108 + }, + { + "start": 23621.48, + "end": 23621.98, + "probability": 0.7783 + }, + { + "start": 23622.08, + "end": 23624.9, + "probability": 0.9673 + }, + { + "start": 23624.9, + "end": 23626.96, + "probability": 0.996 + }, + { + "start": 23627.3, + "end": 23627.48, + "probability": 0.2931 + }, + { + "start": 23627.88, + "end": 23628.56, + "probability": 0.5499 + }, + { + "start": 23628.62, + "end": 23634.9, + "probability": 0.5793 + }, + { + "start": 23634.9, + "end": 23635.82, + "probability": 0.6264 + }, + { + "start": 23636.1, + "end": 23636.56, + "probability": 0.8102 + }, + { + "start": 23636.86, + "end": 23637.1, + "probability": 0.8608 + }, + { + "start": 23637.58, + "end": 23639.64, + "probability": 0.7464 + }, + { + "start": 23640.2, + "end": 23641.74, + "probability": 0.8615 + }, + { + "start": 23641.8, + "end": 23643.64, + "probability": 0.8923 + }, + { + "start": 23643.76, + "end": 23644.54, + "probability": 0.84 + }, + { + "start": 23646.69, + "end": 23651.12, + "probability": 0.623 + }, + { + "start": 23651.96, + "end": 23654.8, + "probability": 0.5017 + }, + { + "start": 23654.86, + "end": 23654.98, + "probability": 0.2319 + }, + { + "start": 23654.98, + "end": 23655.2, + "probability": 0.6848 + }, + { + "start": 23655.92, + "end": 23657.24, + "probability": 0.8266 + }, + { + "start": 23657.54, + "end": 23660.62, + "probability": 0.6781 + }, + { + "start": 23661.57, + "end": 23667.78, + "probability": 0.8133 + }, + { + "start": 23668.5, + "end": 23671.04, + "probability": 0.0843 + }, + { + "start": 23671.6, + "end": 23672.16, + "probability": 0.6299 + }, + { + "start": 23672.22, + "end": 23673.72, + "probability": 0.6946 + }, + { + "start": 23675.92, + "end": 23678.58, + "probability": 0.6185 + }, + { + "start": 23679.02, + "end": 23680.98, + "probability": 0.6 + }, + { + "start": 23682.88, + "end": 23687.0, + "probability": 0.9929 + }, + { + "start": 23687.06, + "end": 23688.48, + "probability": 0.8677 + }, + { + "start": 23689.08, + "end": 23690.06, + "probability": 0.565 + }, + { + "start": 23690.18, + "end": 23694.58, + "probability": 0.8096 + }, + { + "start": 23695.56, + "end": 23696.18, + "probability": 0.9392 + }, + { + "start": 23697.0, + "end": 23699.39, + "probability": 0.6011 + }, + { + "start": 23699.86, + "end": 23702.94, + "probability": 0.9124 + }, + { + "start": 23703.56, + "end": 23706.04, + "probability": 0.9104 + }, + { + "start": 23706.94, + "end": 23709.58, + "probability": 0.9338 + }, + { + "start": 23709.76, + "end": 23710.4, + "probability": 0.7965 + }, + { + "start": 23710.86, + "end": 23712.9, + "probability": 0.9868 + }, + { + "start": 23713.28, + "end": 23715.68, + "probability": 0.9968 + }, + { + "start": 23716.24, + "end": 23718.88, + "probability": 0.9416 + }, + { + "start": 23719.7, + "end": 23722.62, + "probability": 0.8361 + }, + { + "start": 23724.28, + "end": 23727.67, + "probability": 0.5935 + }, + { + "start": 23728.38, + "end": 23729.38, + "probability": 0.7978 + }, + { + "start": 23730.6, + "end": 23730.88, + "probability": 0.1327 + }, + { + "start": 23731.4, + "end": 23731.44, + "probability": 0.1086 + }, + { + "start": 23731.9, + "end": 23737.86, + "probability": 0.9541 + }, + { + "start": 23737.98, + "end": 23738.82, + "probability": 0.9927 + }, + { + "start": 23739.62, + "end": 23744.1, + "probability": 0.9802 + }, + { + "start": 23744.48, + "end": 23745.56, + "probability": 0.3615 + }, + { + "start": 23746.02, + "end": 23746.78, + "probability": 0.7634 + }, + { + "start": 23747.12, + "end": 23748.48, + "probability": 0.0983 + }, + { + "start": 23749.12, + "end": 23749.96, + "probability": 0.8833 + }, + { + "start": 23753.02, + "end": 23754.02, + "probability": 0.9313 + }, + { + "start": 23754.24, + "end": 23757.56, + "probability": 0.7675 + }, + { + "start": 23757.78, + "end": 23760.88, + "probability": 0.9891 + }, + { + "start": 23761.4, + "end": 23764.72, + "probability": 0.6526 + }, + { + "start": 23765.84, + "end": 23766.36, + "probability": 0.5193 + }, + { + "start": 23766.48, + "end": 23768.14, + "probability": 0.8379 + }, + { + "start": 23768.48, + "end": 23770.42, + "probability": 0.9242 + }, + { + "start": 23770.94, + "end": 23773.08, + "probability": 0.9778 + }, + { + "start": 23773.44, + "end": 23776.02, + "probability": 0.9945 + }, + { + "start": 23776.56, + "end": 23777.92, + "probability": 0.9382 + }, + { + "start": 23778.04, + "end": 23779.5, + "probability": 0.9971 + }, + { + "start": 23779.66, + "end": 23782.08, + "probability": 0.9521 + }, + { + "start": 23782.4, + "end": 23782.92, + "probability": 0.7957 + }, + { + "start": 23784.06, + "end": 23785.64, + "probability": 0.0897 + }, + { + "start": 23785.74, + "end": 23786.6, + "probability": 0.6355 + }, + { + "start": 23786.62, + "end": 23787.34, + "probability": 0.562 + }, + { + "start": 23787.66, + "end": 23789.94, + "probability": 0.9436 + }, + { + "start": 23791.48, + "end": 23791.94, + "probability": 0.8159 + }, + { + "start": 23792.78, + "end": 23796.45, + "probability": 0.9437 + }, + { + "start": 23797.04, + "end": 23798.26, + "probability": 0.7982 + }, + { + "start": 23799.88, + "end": 23801.44, + "probability": 0.7402 + }, + { + "start": 23802.92, + "end": 23803.56, + "probability": 0.1149 + }, + { + "start": 23803.56, + "end": 23803.56, + "probability": 0.1774 + }, + { + "start": 23803.56, + "end": 23804.26, + "probability": 0.7071 + }, + { + "start": 23804.78, + "end": 23805.72, + "probability": 0.3415 + }, + { + "start": 23806.42, + "end": 23806.8, + "probability": 0.4423 + }, + { + "start": 23807.02, + "end": 23812.1, + "probability": 0.9402 + }, + { + "start": 23812.14, + "end": 23813.7, + "probability": 0.1378 + }, + { + "start": 23813.72, + "end": 23814.88, + "probability": 0.6639 + }, + { + "start": 23815.6, + "end": 23816.6, + "probability": 0.4967 + }, + { + "start": 23817.12, + "end": 23817.68, + "probability": 0.5079 + }, + { + "start": 23817.76, + "end": 23818.14, + "probability": 0.4477 + }, + { + "start": 23819.72, + "end": 23821.52, + "probability": 0.124 + }, + { + "start": 23830.9, + "end": 23831.54, + "probability": 0.2102 + }, + { + "start": 23832.18, + "end": 23837.22, + "probability": 0.6296 + }, + { + "start": 23837.38, + "end": 23839.24, + "probability": 0.0686 + }, + { + "start": 23840.46, + "end": 23845.48, + "probability": 0.5451 + }, + { + "start": 23846.72, + "end": 23847.76, + "probability": 0.1119 + }, + { + "start": 23847.76, + "end": 23847.84, + "probability": 0.0994 + }, + { + "start": 23848.18, + "end": 23853.58, + "probability": 0.0205 + }, + { + "start": 23853.72, + "end": 23856.88, + "probability": 0.1749 + }, + { + "start": 23857.06, + "end": 23860.06, + "probability": 0.0708 + }, + { + "start": 23861.36, + "end": 23863.18, + "probability": 0.1094 + }, + { + "start": 23863.32, + "end": 23864.22, + "probability": 0.0851 + }, + { + "start": 23865.54, + "end": 23865.8, + "probability": 0.0024 + }, + { + "start": 23870.32, + "end": 23873.72, + "probability": 0.0687 + }, + { + "start": 23967.22, + "end": 23967.22, + "probability": 0.0 + }, + { + "start": 23967.22, + "end": 23967.22, + "probability": 0.0 + }, + { + "start": 23967.22, + "end": 23967.22, + "probability": 0.0 + }, + { + "start": 23967.22, + "end": 23967.22, + "probability": 0.0 + }, + { + "start": 23967.22, + "end": 23967.22, + "probability": 0.0 + }, + { + "start": 23967.22, + "end": 23967.22, + "probability": 0.0 + }, + { + "start": 23967.22, + "end": 23967.22, + "probability": 0.0 + } + ], + "segments_count": 8476, + "words_count": 42110, + "avg_words_per_segment": 4.9681, + "avg_segment_duration": 2.088, + "avg_words_per_minute": 105.419, + "plenum_id": "40897", + "duration": 23967.22, + "title": null, + "plenum_date": "2014-12-01" +} \ No newline at end of file