diff --git "a/41475/metadata.json" "b/41475/metadata.json" new file mode 100644--- /dev/null +++ "b/41475/metadata.json" @@ -0,0 +1,33862 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "41475", + "quality_score": 0.8725, + "per_segment_quality_scores": [ + { + "start": 43.46, + "end": 46.72, + "probability": 0.079 + }, + { + "start": 54.3, + "end": 58.7, + "probability": 0.0553 + }, + { + "start": 60.77, + "end": 65.32, + "probability": 0.1168 + }, + { + "start": 66.31, + "end": 66.93, + "probability": 0.1254 + }, + { + "start": 67.6, + "end": 71.0, + "probability": 0.0956 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 135.5, + "end": 137.02, + "probability": 0.0746 + }, + { + "start": 137.02, + "end": 139.64, + "probability": 0.0682 + }, + { + "start": 143.14, + "end": 145.12, + "probability": 0.0568 + }, + { + "start": 145.16, + "end": 148.5, + "probability": 0.1197 + }, + { + "start": 148.5, + "end": 149.36, + "probability": 0.0909 + }, + { + "start": 151.95, + "end": 152.53, + "probability": 0.0614 + }, + { + "start": 155.24, + "end": 158.12, + "probability": 0.0279 + }, + { + "start": 171.7, + "end": 174.44, + "probability": 0.007 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 277.06, + "probability": 0.9704 + }, + { + "start": 277.54, + "end": 277.98, + "probability": 0.969 + }, + { + "start": 283.02, + "end": 286.66, + "probability": 0.6474 + }, + { + "start": 287.44, + "end": 291.12, + "probability": 0.9766 + }, + { + "start": 291.82, + "end": 292.32, + "probability": 0.9227 + }, + { + "start": 293.14, + "end": 294.2, + "probability": 0.8999 + }, + { + "start": 294.22, + "end": 296.3, + "probability": 0.5011 + }, + { + "start": 296.68, + "end": 300.84, + "probability": 0.9906 + }, + { + "start": 302.56, + "end": 304.0, + "probability": 0.943 + }, + { + "start": 305.22, + "end": 308.6, + "probability": 0.9863 + }, + { + "start": 309.22, + "end": 310.5, + "probability": 0.9963 + }, + { + "start": 310.84, + "end": 316.46, + "probability": 0.996 + }, + { + "start": 316.98, + "end": 319.46, + "probability": 0.9969 + }, + { + "start": 319.94, + "end": 324.86, + "probability": 0.9977 + }, + { + "start": 325.64, + "end": 326.42, + "probability": 0.9155 + }, + { + "start": 326.54, + "end": 330.24, + "probability": 0.9975 + }, + { + "start": 331.4, + "end": 335.84, + "probability": 0.9889 + }, + { + "start": 336.44, + "end": 338.48, + "probability": 0.9674 + }, + { + "start": 339.22, + "end": 340.38, + "probability": 0.9437 + }, + { + "start": 340.54, + "end": 344.66, + "probability": 0.9932 + }, + { + "start": 345.38, + "end": 346.54, + "probability": 0.3516 + }, + { + "start": 347.08, + "end": 348.48, + "probability": 0.9414 + }, + { + "start": 349.52, + "end": 352.72, + "probability": 0.9227 + }, + { + "start": 353.48, + "end": 355.8, + "probability": 0.9718 + }, + { + "start": 356.44, + "end": 358.24, + "probability": 0.9744 + }, + { + "start": 359.02, + "end": 360.42, + "probability": 0.9908 + }, + { + "start": 361.12, + "end": 365.22, + "probability": 0.9775 + }, + { + "start": 365.3, + "end": 369.14, + "probability": 0.9964 + }, + { + "start": 370.22, + "end": 375.4, + "probability": 0.9734 + }, + { + "start": 376.08, + "end": 381.84, + "probability": 0.9989 + }, + { + "start": 381.94, + "end": 385.14, + "probability": 0.9478 + }, + { + "start": 385.54, + "end": 391.16, + "probability": 0.9973 + }, + { + "start": 392.62, + "end": 394.24, + "probability": 0.9969 + }, + { + "start": 394.8, + "end": 398.6, + "probability": 0.8754 + }, + { + "start": 399.3, + "end": 400.35, + "probability": 0.7485 + }, + { + "start": 401.64, + "end": 402.9, + "probability": 0.6831 + }, + { + "start": 404.1, + "end": 405.82, + "probability": 0.585 + }, + { + "start": 405.88, + "end": 408.58, + "probability": 0.9131 + }, + { + "start": 409.0, + "end": 411.46, + "probability": 0.9839 + }, + { + "start": 411.94, + "end": 412.34, + "probability": 0.8994 + }, + { + "start": 413.7, + "end": 417.68, + "probability": 0.9733 + }, + { + "start": 417.68, + "end": 420.44, + "probability": 0.9658 + }, + { + "start": 420.62, + "end": 420.96, + "probability": 0.4932 + }, + { + "start": 421.06, + "end": 421.46, + "probability": 0.7163 + }, + { + "start": 421.96, + "end": 423.08, + "probability": 0.9026 + }, + { + "start": 423.76, + "end": 427.14, + "probability": 0.9844 + }, + { + "start": 427.24, + "end": 430.58, + "probability": 0.9133 + }, + { + "start": 431.04, + "end": 433.34, + "probability": 0.9987 + }, + { + "start": 433.84, + "end": 438.52, + "probability": 0.9974 + }, + { + "start": 439.38, + "end": 441.4, + "probability": 0.594 + }, + { + "start": 441.54, + "end": 444.28, + "probability": 0.8541 + }, + { + "start": 444.74, + "end": 447.38, + "probability": 0.9565 + }, + { + "start": 447.86, + "end": 449.9, + "probability": 0.9775 + }, + { + "start": 450.82, + "end": 451.72, + "probability": 0.892 + }, + { + "start": 452.48, + "end": 454.6, + "probability": 0.6589 + }, + { + "start": 458.78, + "end": 462.14, + "probability": 0.9939 + }, + { + "start": 462.9, + "end": 466.8, + "probability": 0.8421 + }, + { + "start": 468.1, + "end": 470.52, + "probability": 0.9985 + }, + { + "start": 471.04, + "end": 474.18, + "probability": 0.9956 + }, + { + "start": 475.08, + "end": 477.18, + "probability": 0.6527 + }, + { + "start": 478.34, + "end": 480.0, + "probability": 0.9929 + }, + { + "start": 480.62, + "end": 482.52, + "probability": 0.3647 + }, + { + "start": 483.24, + "end": 483.52, + "probability": 0.9206 + }, + { + "start": 483.54, + "end": 486.66, + "probability": 0.9778 + }, + { + "start": 486.72, + "end": 492.1, + "probability": 0.9488 + }, + { + "start": 492.16, + "end": 493.12, + "probability": 0.8425 + }, + { + "start": 493.9, + "end": 497.0, + "probability": 0.9978 + }, + { + "start": 497.38, + "end": 498.9, + "probability": 0.9624 + }, + { + "start": 499.24, + "end": 501.39, + "probability": 0.7912 + }, + { + "start": 501.82, + "end": 503.08, + "probability": 0.6963 + }, + { + "start": 503.16, + "end": 503.24, + "probability": 0.1463 + }, + { + "start": 503.24, + "end": 504.06, + "probability": 0.4897 + }, + { + "start": 504.5, + "end": 506.04, + "probability": 0.7816 + }, + { + "start": 506.28, + "end": 508.44, + "probability": 0.9736 + }, + { + "start": 508.62, + "end": 509.6, + "probability": 0.76 + }, + { + "start": 509.6, + "end": 511.2, + "probability": 0.8962 + }, + { + "start": 511.5, + "end": 511.92, + "probability": 0.7956 + }, + { + "start": 512.12, + "end": 515.31, + "probability": 0.9645 + }, + { + "start": 515.7, + "end": 515.8, + "probability": 0.7202 + }, + { + "start": 516.48, + "end": 516.96, + "probability": 0.8743 + }, + { + "start": 517.1, + "end": 517.94, + "probability": 0.7674 + }, + { + "start": 518.34, + "end": 519.86, + "probability": 0.6951 + }, + { + "start": 520.0, + "end": 523.28, + "probability": 0.9644 + }, + { + "start": 523.66, + "end": 524.18, + "probability": 0.9489 + }, + { + "start": 524.34, + "end": 524.76, + "probability": 0.6525 + }, + { + "start": 524.92, + "end": 526.02, + "probability": 0.9933 + }, + { + "start": 526.56, + "end": 527.48, + "probability": 0.998 + }, + { + "start": 528.52, + "end": 532.5, + "probability": 0.9185 + }, + { + "start": 533.0, + "end": 537.42, + "probability": 0.9915 + }, + { + "start": 537.86, + "end": 538.86, + "probability": 0.9862 + }, + { + "start": 539.5, + "end": 542.48, + "probability": 0.9927 + }, + { + "start": 542.54, + "end": 543.26, + "probability": 0.6722 + }, + { + "start": 543.96, + "end": 544.44, + "probability": 0.7728 + }, + { + "start": 544.52, + "end": 545.64, + "probability": 0.8386 + }, + { + "start": 545.92, + "end": 546.56, + "probability": 0.7103 + }, + { + "start": 547.02, + "end": 549.38, + "probability": 0.9073 + }, + { + "start": 549.5, + "end": 550.16, + "probability": 0.8463 + }, + { + "start": 550.56, + "end": 554.46, + "probability": 0.9225 + }, + { + "start": 555.4, + "end": 558.86, + "probability": 0.9135 + }, + { + "start": 559.44, + "end": 563.64, + "probability": 0.9176 + }, + { + "start": 564.22, + "end": 566.84, + "probability": 0.9704 + }, + { + "start": 567.12, + "end": 568.2, + "probability": 0.9744 + }, + { + "start": 569.48, + "end": 570.26, + "probability": 0.8339 + }, + { + "start": 570.34, + "end": 572.54, + "probability": 0.9915 + }, + { + "start": 572.6, + "end": 575.98, + "probability": 0.9861 + }, + { + "start": 576.58, + "end": 580.96, + "probability": 0.9764 + }, + { + "start": 581.5, + "end": 581.88, + "probability": 0.9066 + }, + { + "start": 582.18, + "end": 583.98, + "probability": 0.9145 + }, + { + "start": 585.08, + "end": 586.78, + "probability": 0.9956 + }, + { + "start": 586.88, + "end": 588.6, + "probability": 0.7355 + }, + { + "start": 588.68, + "end": 590.94, + "probability": 0.7979 + }, + { + "start": 591.36, + "end": 592.58, + "probability": 0.9263 + }, + { + "start": 592.7, + "end": 594.6, + "probability": 0.8499 + }, + { + "start": 595.0, + "end": 595.52, + "probability": 0.811 + }, + { + "start": 596.02, + "end": 596.38, + "probability": 0.7495 + }, + { + "start": 596.44, + "end": 597.08, + "probability": 0.8502 + }, + { + "start": 597.14, + "end": 599.7, + "probability": 0.9766 + }, + { + "start": 600.06, + "end": 600.46, + "probability": 0.3947 + }, + { + "start": 600.5, + "end": 602.14, + "probability": 0.9841 + }, + { + "start": 602.78, + "end": 606.78, + "probability": 0.9831 + }, + { + "start": 607.32, + "end": 609.1, + "probability": 0.978 + }, + { + "start": 609.48, + "end": 609.48, + "probability": 0.0012 + }, + { + "start": 609.48, + "end": 610.4, + "probability": 0.8628 + }, + { + "start": 610.92, + "end": 611.5, + "probability": 0.7951 + }, + { + "start": 611.56, + "end": 612.26, + "probability": 0.3775 + }, + { + "start": 612.54, + "end": 612.98, + "probability": 0.0264 + }, + { + "start": 612.98, + "end": 613.54, + "probability": 0.6315 + }, + { + "start": 613.72, + "end": 614.54, + "probability": 0.8706 + }, + { + "start": 614.84, + "end": 616.0, + "probability": 0.9756 + }, + { + "start": 616.14, + "end": 617.26, + "probability": 0.7633 + }, + { + "start": 617.58, + "end": 619.12, + "probability": 0.7492 + }, + { + "start": 619.72, + "end": 620.68, + "probability": 0.8145 + }, + { + "start": 621.42, + "end": 623.72, + "probability": 0.9875 + }, + { + "start": 624.24, + "end": 628.8, + "probability": 0.9611 + }, + { + "start": 629.1, + "end": 631.22, + "probability": 0.9495 + }, + { + "start": 631.64, + "end": 632.02, + "probability": 0.4921 + }, + { + "start": 632.18, + "end": 635.88, + "probability": 0.9792 + }, + { + "start": 636.32, + "end": 638.08, + "probability": 0.967 + }, + { + "start": 638.46, + "end": 639.32, + "probability": 0.5966 + }, + { + "start": 639.66, + "end": 641.26, + "probability": 0.9862 + }, + { + "start": 641.82, + "end": 644.48, + "probability": 0.9736 + }, + { + "start": 644.86, + "end": 645.64, + "probability": 0.9913 + }, + { + "start": 645.8, + "end": 646.56, + "probability": 0.7497 + }, + { + "start": 647.06, + "end": 649.94, + "probability": 0.89 + }, + { + "start": 650.56, + "end": 651.33, + "probability": 0.9567 + }, + { + "start": 652.32, + "end": 654.36, + "probability": 0.7174 + }, + { + "start": 654.46, + "end": 655.04, + "probability": 0.9794 + }, + { + "start": 655.7, + "end": 657.12, + "probability": 0.8939 + }, + { + "start": 657.4, + "end": 659.46, + "probability": 0.981 + }, + { + "start": 660.04, + "end": 664.0, + "probability": 0.9637 + }, + { + "start": 664.5, + "end": 665.22, + "probability": 0.8164 + }, + { + "start": 665.62, + "end": 666.2, + "probability": 0.683 + }, + { + "start": 666.52, + "end": 670.22, + "probability": 0.9025 + }, + { + "start": 670.28, + "end": 675.12, + "probability": 0.9731 + }, + { + "start": 675.12, + "end": 681.22, + "probability": 0.9274 + }, + { + "start": 681.66, + "end": 683.01, + "probability": 0.9869 + }, + { + "start": 685.7, + "end": 686.6, + "probability": 0.6054 + }, + { + "start": 686.8, + "end": 686.8, + "probability": 0.1757 + }, + { + "start": 686.8, + "end": 686.8, + "probability": 0.7704 + }, + { + "start": 686.8, + "end": 686.8, + "probability": 0.7199 + }, + { + "start": 686.8, + "end": 687.68, + "probability": 0.6852 + }, + { + "start": 687.74, + "end": 688.04, + "probability": 0.6036 + }, + { + "start": 688.08, + "end": 689.34, + "probability": 0.9647 + }, + { + "start": 689.52, + "end": 693.48, + "probability": 0.9692 + }, + { + "start": 694.22, + "end": 695.14, + "probability": 0.574 + }, + { + "start": 695.16, + "end": 696.1, + "probability": 0.2831 + }, + { + "start": 696.1, + "end": 698.26, + "probability": 0.7429 + }, + { + "start": 698.3, + "end": 698.4, + "probability": 0.2448 + }, + { + "start": 698.4, + "end": 699.19, + "probability": 0.1344 + }, + { + "start": 699.96, + "end": 702.68, + "probability": 0.9217 + }, + { + "start": 702.94, + "end": 703.36, + "probability": 0.0715 + }, + { + "start": 703.36, + "end": 703.94, + "probability": 0.7192 + }, + { + "start": 704.5, + "end": 707.72, + "probability": 0.7487 + }, + { + "start": 708.42, + "end": 709.66, + "probability": 0.3318 + }, + { + "start": 709.66, + "end": 709.66, + "probability": 0.712 + }, + { + "start": 709.66, + "end": 710.84, + "probability": 0.6255 + }, + { + "start": 710.88, + "end": 711.7, + "probability": 0.6709 + }, + { + "start": 711.7, + "end": 711.84, + "probability": 0.4594 + }, + { + "start": 712.46, + "end": 712.72, + "probability": 0.0524 + }, + { + "start": 712.78, + "end": 713.5, + "probability": 0.5358 + }, + { + "start": 713.52, + "end": 715.04, + "probability": 0.981 + }, + { + "start": 716.08, + "end": 716.68, + "probability": 0.2792 + }, + { + "start": 716.68, + "end": 717.66, + "probability": 0.227 + }, + { + "start": 718.3, + "end": 720.78, + "probability": 0.5894 + }, + { + "start": 721.22, + "end": 723.5, + "probability": 0.7213 + }, + { + "start": 723.84, + "end": 723.88, + "probability": 0.712 + }, + { + "start": 723.88, + "end": 723.88, + "probability": 0.1128 + }, + { + "start": 723.88, + "end": 725.3, + "probability": 0.5931 + }, + { + "start": 725.36, + "end": 727.34, + "probability": 0.1622 + }, + { + "start": 727.34, + "end": 727.34, + "probability": 0.0046 + }, + { + "start": 727.34, + "end": 728.2, + "probability": 0.8055 + }, + { + "start": 728.58, + "end": 729.48, + "probability": 0.6889 + }, + { + "start": 729.48, + "end": 730.34, + "probability": 0.1024 + }, + { + "start": 730.34, + "end": 731.17, + "probability": 0.289 + }, + { + "start": 731.56, + "end": 733.9, + "probability": 0.9045 + }, + { + "start": 734.26, + "end": 736.32, + "probability": 0.9462 + }, + { + "start": 736.56, + "end": 739.44, + "probability": 0.9976 + }, + { + "start": 739.76, + "end": 741.6, + "probability": 0.8543 + }, + { + "start": 741.62, + "end": 742.86, + "probability": 0.1992 + }, + { + "start": 742.98, + "end": 744.5, + "probability": 0.9854 + }, + { + "start": 744.58, + "end": 746.62, + "probability": 0.3758 + }, + { + "start": 746.8, + "end": 747.18, + "probability": 0.3405 + }, + { + "start": 747.18, + "end": 748.84, + "probability": 0.9434 + }, + { + "start": 749.38, + "end": 749.56, + "probability": 0.1721 + }, + { + "start": 749.58, + "end": 752.93, + "probability": 0.511 + }, + { + "start": 753.14, + "end": 754.64, + "probability": 0.9471 + }, + { + "start": 754.7, + "end": 754.7, + "probability": 0.4553 + }, + { + "start": 754.76, + "end": 755.1, + "probability": 0.8303 + }, + { + "start": 755.54, + "end": 760.44, + "probability": 0.4705 + }, + { + "start": 761.04, + "end": 761.96, + "probability": 0.1801 + }, + { + "start": 761.96, + "end": 761.96, + "probability": 0.2466 + }, + { + "start": 761.96, + "end": 761.96, + "probability": 0.34 + }, + { + "start": 761.96, + "end": 761.96, + "probability": 0.0635 + }, + { + "start": 761.96, + "end": 765.4, + "probability": 0.86 + }, + { + "start": 765.4, + "end": 765.64, + "probability": 0.1594 + }, + { + "start": 765.64, + "end": 765.64, + "probability": 0.013 + }, + { + "start": 765.64, + "end": 767.97, + "probability": 0.6257 + }, + { + "start": 768.6, + "end": 772.88, + "probability": 0.6931 + }, + { + "start": 773.16, + "end": 773.16, + "probability": 0.1684 + }, + { + "start": 773.16, + "end": 774.61, + "probability": 0.8206 + }, + { + "start": 774.86, + "end": 777.1, + "probability": 0.7185 + }, + { + "start": 777.26, + "end": 778.84, + "probability": 0.7094 + }, + { + "start": 778.92, + "end": 779.04, + "probability": 0.3229 + }, + { + "start": 779.06, + "end": 779.06, + "probability": 0.1278 + }, + { + "start": 779.08, + "end": 779.24, + "probability": 0.4303 + }, + { + "start": 779.24, + "end": 781.84, + "probability": 0.9626 + }, + { + "start": 782.38, + "end": 783.33, + "probability": 0.8726 + }, + { + "start": 783.72, + "end": 785.16, + "probability": 0.5141 + }, + { + "start": 786.28, + "end": 788.74, + "probability": 0.9895 + }, + { + "start": 789.16, + "end": 791.58, + "probability": 0.9596 + }, + { + "start": 792.1, + "end": 794.46, + "probability": 0.2439 + }, + { + "start": 795.02, + "end": 797.76, + "probability": 0.9904 + }, + { + "start": 798.02, + "end": 798.78, + "probability": 0.2394 + }, + { + "start": 799.76, + "end": 800.38, + "probability": 0.0085 + }, + { + "start": 800.54, + "end": 800.62, + "probability": 0.1677 + }, + { + "start": 800.62, + "end": 801.42, + "probability": 0.5817 + }, + { + "start": 801.8, + "end": 806.16, + "probability": 0.8245 + }, + { + "start": 806.58, + "end": 807.72, + "probability": 0.9543 + }, + { + "start": 807.96, + "end": 809.8, + "probability": 0.7131 + }, + { + "start": 809.8, + "end": 812.42, + "probability": 0.9424 + }, + { + "start": 812.58, + "end": 813.16, + "probability": 0.5234 + }, + { + "start": 813.24, + "end": 816.58, + "probability": 0.8569 + }, + { + "start": 816.68, + "end": 817.44, + "probability": 0.9274 + }, + { + "start": 817.56, + "end": 820.96, + "probability": 0.9749 + }, + { + "start": 821.04, + "end": 822.74, + "probability": 0.8885 + }, + { + "start": 823.42, + "end": 825.98, + "probability": 0.8098 + }, + { + "start": 826.62, + "end": 831.3, + "probability": 0.9897 + }, + { + "start": 831.34, + "end": 832.6, + "probability": 0.8804 + }, + { + "start": 833.32, + "end": 836.04, + "probability": 0.8973 + }, + { + "start": 836.08, + "end": 840.16, + "probability": 0.9874 + }, + { + "start": 840.88, + "end": 841.98, + "probability": 0.8078 + }, + { + "start": 842.36, + "end": 843.78, + "probability": 0.9707 + }, + { + "start": 843.88, + "end": 844.26, + "probability": 0.6462 + }, + { + "start": 844.32, + "end": 844.8, + "probability": 0.2688 + }, + { + "start": 845.1, + "end": 846.96, + "probability": 0.8393 + }, + { + "start": 863.36, + "end": 863.64, + "probability": 0.4664 + }, + { + "start": 863.86, + "end": 866.08, + "probability": 0.6717 + }, + { + "start": 866.58, + "end": 868.22, + "probability": 0.833 + }, + { + "start": 868.3, + "end": 868.96, + "probability": 0.9558 + }, + { + "start": 869.24, + "end": 873.58, + "probability": 0.9706 + }, + { + "start": 873.58, + "end": 878.72, + "probability": 0.9025 + }, + { + "start": 881.36, + "end": 882.18, + "probability": 0.5039 + }, + { + "start": 882.8, + "end": 885.48, + "probability": 0.9878 + }, + { + "start": 887.02, + "end": 888.64, + "probability": 0.6401 + }, + { + "start": 891.1, + "end": 892.16, + "probability": 0.8677 + }, + { + "start": 894.28, + "end": 898.98, + "probability": 0.9546 + }, + { + "start": 900.74, + "end": 901.74, + "probability": 0.8833 + }, + { + "start": 903.38, + "end": 904.04, + "probability": 0.9629 + }, + { + "start": 905.68, + "end": 906.64, + "probability": 0.7066 + }, + { + "start": 906.66, + "end": 908.9, + "probability": 0.9789 + }, + { + "start": 908.9, + "end": 911.68, + "probability": 0.9941 + }, + { + "start": 911.94, + "end": 913.4, + "probability": 0.9719 + }, + { + "start": 916.8, + "end": 918.04, + "probability": 0.9989 + }, + { + "start": 918.76, + "end": 919.62, + "probability": 0.8228 + }, + { + "start": 919.78, + "end": 922.68, + "probability": 0.9885 + }, + { + "start": 922.68, + "end": 926.26, + "probability": 0.766 + }, + { + "start": 927.8, + "end": 932.04, + "probability": 0.7892 + }, + { + "start": 933.58, + "end": 936.74, + "probability": 0.8595 + }, + { + "start": 937.4, + "end": 938.48, + "probability": 0.9901 + }, + { + "start": 939.18, + "end": 940.88, + "probability": 0.8752 + }, + { + "start": 941.98, + "end": 944.86, + "probability": 0.8876 + }, + { + "start": 945.66, + "end": 949.2, + "probability": 0.9566 + }, + { + "start": 949.84, + "end": 950.86, + "probability": 0.8983 + }, + { + "start": 951.54, + "end": 957.25, + "probability": 0.9717 + }, + { + "start": 958.92, + "end": 964.82, + "probability": 0.9305 + }, + { + "start": 965.86, + "end": 967.52, + "probability": 0.8665 + }, + { + "start": 968.92, + "end": 971.06, + "probability": 0.9781 + }, + { + "start": 972.06, + "end": 972.9, + "probability": 0.973 + }, + { + "start": 973.28, + "end": 976.59, + "probability": 0.9852 + }, + { + "start": 976.72, + "end": 977.74, + "probability": 0.98 + }, + { + "start": 978.16, + "end": 980.1, + "probability": 0.9936 + }, + { + "start": 981.74, + "end": 982.96, + "probability": 0.6712 + }, + { + "start": 983.12, + "end": 985.88, + "probability": 0.9899 + }, + { + "start": 987.3, + "end": 988.68, + "probability": 0.9778 + }, + { + "start": 989.08, + "end": 990.94, + "probability": 0.9071 + }, + { + "start": 991.94, + "end": 992.78, + "probability": 0.9873 + }, + { + "start": 993.56, + "end": 994.44, + "probability": 0.8582 + }, + { + "start": 994.8, + "end": 1000.58, + "probability": 0.991 + }, + { + "start": 1001.54, + "end": 1003.58, + "probability": 0.9443 + }, + { + "start": 1004.46, + "end": 1007.04, + "probability": 0.9971 + }, + { + "start": 1008.1, + "end": 1012.24, + "probability": 0.9111 + }, + { + "start": 1012.98, + "end": 1013.7, + "probability": 0.5795 + }, + { + "start": 1014.96, + "end": 1016.62, + "probability": 0.9414 + }, + { + "start": 1017.06, + "end": 1021.32, + "probability": 0.9473 + }, + { + "start": 1021.48, + "end": 1023.3, + "probability": 0.9516 + }, + { + "start": 1023.92, + "end": 1025.64, + "probability": 0.8568 + }, + { + "start": 1026.62, + "end": 1028.4, + "probability": 0.9688 + }, + { + "start": 1029.34, + "end": 1031.32, + "probability": 0.9648 + }, + { + "start": 1032.02, + "end": 1033.24, + "probability": 0.9373 + }, + { + "start": 1034.2, + "end": 1035.4, + "probability": 0.9518 + }, + { + "start": 1035.48, + "end": 1039.04, + "probability": 0.9788 + }, + { + "start": 1039.18, + "end": 1041.32, + "probability": 0.9303 + }, + { + "start": 1041.44, + "end": 1042.24, + "probability": 0.8096 + }, + { + "start": 1042.64, + "end": 1044.64, + "probability": 0.952 + }, + { + "start": 1045.48, + "end": 1046.74, + "probability": 0.9714 + }, + { + "start": 1046.82, + "end": 1051.4, + "probability": 0.9456 + }, + { + "start": 1051.4, + "end": 1054.34, + "probability": 0.9517 + }, + { + "start": 1055.14, + "end": 1056.06, + "probability": 0.8704 + }, + { + "start": 1057.88, + "end": 1059.64, + "probability": 0.6287 + }, + { + "start": 1059.76, + "end": 1061.04, + "probability": 0.7565 + }, + { + "start": 1061.2, + "end": 1061.64, + "probability": 0.5113 + }, + { + "start": 1061.66, + "end": 1063.36, + "probability": 0.9336 + }, + { + "start": 1065.18, + "end": 1065.98, + "probability": 0.7551 + }, + { + "start": 1066.12, + "end": 1067.06, + "probability": 0.8869 + }, + { + "start": 1067.22, + "end": 1070.74, + "probability": 0.8679 + }, + { + "start": 1071.28, + "end": 1072.28, + "probability": 0.8552 + }, + { + "start": 1072.32, + "end": 1075.33, + "probability": 0.6588 + }, + { + "start": 1076.38, + "end": 1079.7, + "probability": 0.9913 + }, + { + "start": 1080.3, + "end": 1083.44, + "probability": 0.9886 + }, + { + "start": 1084.16, + "end": 1085.82, + "probability": 0.3614 + }, + { + "start": 1086.18, + "end": 1086.18, + "probability": 0.4078 + }, + { + "start": 1086.28, + "end": 1086.74, + "probability": 0.5088 + }, + { + "start": 1086.76, + "end": 1088.1, + "probability": 0.8032 + }, + { + "start": 1088.22, + "end": 1089.02, + "probability": 0.94 + }, + { + "start": 1089.12, + "end": 1091.02, + "probability": 0.5558 + }, + { + "start": 1092.0, + "end": 1094.82, + "probability": 0.9921 + }, + { + "start": 1095.56, + "end": 1097.54, + "probability": 0.9729 + }, + { + "start": 1098.3, + "end": 1100.58, + "probability": 0.9492 + }, + { + "start": 1101.56, + "end": 1103.81, + "probability": 0.9985 + }, + { + "start": 1104.58, + "end": 1111.54, + "probability": 0.6648 + }, + { + "start": 1112.22, + "end": 1121.92, + "probability": 0.9704 + }, + { + "start": 1122.78, + "end": 1123.0, + "probability": 0.6702 + }, + { + "start": 1123.04, + "end": 1123.64, + "probability": 0.2212 + }, + { + "start": 1123.76, + "end": 1128.04, + "probability": 0.7501 + }, + { + "start": 1128.22, + "end": 1129.84, + "probability": 0.4646 + }, + { + "start": 1130.48, + "end": 1133.34, + "probability": 0.7681 + }, + { + "start": 1133.34, + "end": 1136.52, + "probability": 0.8525 + }, + { + "start": 1136.98, + "end": 1138.9, + "probability": 0.671 + }, + { + "start": 1138.96, + "end": 1139.76, + "probability": 0.8867 + }, + { + "start": 1140.18, + "end": 1141.58, + "probability": 0.9883 + }, + { + "start": 1141.84, + "end": 1143.86, + "probability": 0.8752 + }, + { + "start": 1144.06, + "end": 1146.56, + "probability": 0.9941 + }, + { + "start": 1146.64, + "end": 1147.85, + "probability": 0.7913 + }, + { + "start": 1148.44, + "end": 1150.46, + "probability": 0.9931 + }, + { + "start": 1151.76, + "end": 1152.6, + "probability": 0.7322 + }, + { + "start": 1152.7, + "end": 1154.12, + "probability": 0.415 + }, + { + "start": 1154.32, + "end": 1157.82, + "probability": 0.8336 + }, + { + "start": 1157.88, + "end": 1160.2, + "probability": 0.9709 + }, + { + "start": 1161.32, + "end": 1165.7, + "probability": 0.5727 + }, + { + "start": 1165.7, + "end": 1169.66, + "probability": 0.9229 + }, + { + "start": 1169.8, + "end": 1170.68, + "probability": 0.4985 + }, + { + "start": 1170.94, + "end": 1172.08, + "probability": 0.8785 + }, + { + "start": 1172.16, + "end": 1173.02, + "probability": 0.8296 + }, + { + "start": 1173.18, + "end": 1175.94, + "probability": 0.782 + }, + { + "start": 1176.04, + "end": 1177.16, + "probability": 0.9249 + }, + { + "start": 1177.94, + "end": 1179.1, + "probability": 0.9854 + }, + { + "start": 1179.1, + "end": 1181.04, + "probability": 0.9907 + }, + { + "start": 1181.46, + "end": 1186.36, + "probability": 0.9679 + }, + { + "start": 1187.36, + "end": 1189.22, + "probability": 0.9137 + }, + { + "start": 1189.34, + "end": 1190.32, + "probability": 0.3245 + }, + { + "start": 1191.38, + "end": 1193.68, + "probability": 0.774 + }, + { + "start": 1195.2, + "end": 1197.36, + "probability": 0.9458 + }, + { + "start": 1198.32, + "end": 1200.27, + "probability": 0.8726 + }, + { + "start": 1200.92, + "end": 1203.12, + "probability": 0.9907 + }, + { + "start": 1203.18, + "end": 1208.1, + "probability": 0.9725 + }, + { + "start": 1208.36, + "end": 1212.4, + "probability": 0.867 + }, + { + "start": 1212.62, + "end": 1214.72, + "probability": 0.915 + }, + { + "start": 1215.6, + "end": 1216.86, + "probability": 0.6471 + }, + { + "start": 1217.16, + "end": 1217.92, + "probability": 0.9233 + }, + { + "start": 1218.14, + "end": 1220.82, + "probability": 0.7869 + }, + { + "start": 1222.24, + "end": 1223.14, + "probability": 0.6818 + }, + { + "start": 1223.32, + "end": 1224.18, + "probability": 0.6761 + }, + { + "start": 1224.74, + "end": 1225.58, + "probability": 0.4106 + }, + { + "start": 1226.18, + "end": 1229.36, + "probability": 0.9934 + }, + { + "start": 1229.36, + "end": 1231.92, + "probability": 0.4403 + }, + { + "start": 1232.4, + "end": 1234.36, + "probability": 0.9907 + }, + { + "start": 1234.64, + "end": 1236.22, + "probability": 0.363 + }, + { + "start": 1237.04, + "end": 1238.44, + "probability": 0.9551 + }, + { + "start": 1239.5, + "end": 1239.88, + "probability": 0.7337 + }, + { + "start": 1239.92, + "end": 1240.46, + "probability": 0.6742 + }, + { + "start": 1240.54, + "end": 1243.42, + "probability": 0.8271 + }, + { + "start": 1243.88, + "end": 1246.0, + "probability": 0.8118 + }, + { + "start": 1246.1, + "end": 1247.48, + "probability": 0.4447 + }, + { + "start": 1247.6, + "end": 1248.53, + "probability": 0.9199 + }, + { + "start": 1249.06, + "end": 1250.21, + "probability": 0.8516 + }, + { + "start": 1250.38, + "end": 1251.64, + "probability": 0.8734 + }, + { + "start": 1251.74, + "end": 1253.92, + "probability": 0.722 + }, + { + "start": 1254.22, + "end": 1254.52, + "probability": 0.3543 + }, + { + "start": 1257.3, + "end": 1257.3, + "probability": 0.1464 + }, + { + "start": 1257.3, + "end": 1257.3, + "probability": 0.0219 + }, + { + "start": 1257.78, + "end": 1259.94, + "probability": 0.6873 + }, + { + "start": 1260.36, + "end": 1260.98, + "probability": 0.5143 + }, + { + "start": 1261.28, + "end": 1263.82, + "probability": 0.8401 + }, + { + "start": 1264.34, + "end": 1266.16, + "probability": 0.9633 + }, + { + "start": 1266.84, + "end": 1268.18, + "probability": 0.5883 + }, + { + "start": 1268.34, + "end": 1271.64, + "probability": 0.6972 + }, + { + "start": 1272.34, + "end": 1273.1, + "probability": 0.8704 + }, + { + "start": 1273.12, + "end": 1273.94, + "probability": 0.7436 + }, + { + "start": 1274.28, + "end": 1275.22, + "probability": 0.8784 + }, + { + "start": 1275.34, + "end": 1275.8, + "probability": 0.8792 + }, + { + "start": 1275.92, + "end": 1275.92, + "probability": 0.2069 + }, + { + "start": 1275.92, + "end": 1276.82, + "probability": 0.5516 + }, + { + "start": 1278.02, + "end": 1280.98, + "probability": 0.9006 + }, + { + "start": 1281.7, + "end": 1283.14, + "probability": 0.977 + }, + { + "start": 1283.76, + "end": 1286.6, + "probability": 0.9403 + }, + { + "start": 1286.9, + "end": 1291.3, + "probability": 0.9639 + }, + { + "start": 1291.38, + "end": 1292.38, + "probability": 0.6578 + }, + { + "start": 1292.68, + "end": 1294.72, + "probability": 0.9038 + }, + { + "start": 1295.73, + "end": 1296.1, + "probability": 0.0226 + }, + { + "start": 1296.1, + "end": 1297.96, + "probability": 0.891 + }, + { + "start": 1298.3, + "end": 1300.68, + "probability": 0.8574 + }, + { + "start": 1300.74, + "end": 1302.38, + "probability": 0.6284 + }, + { + "start": 1302.38, + "end": 1304.32, + "probability": 0.4904 + }, + { + "start": 1304.8, + "end": 1306.74, + "probability": 0.7785 + }, + { + "start": 1306.74, + "end": 1308.08, + "probability": 0.536 + }, + { + "start": 1308.16, + "end": 1309.48, + "probability": 0.8629 + }, + { + "start": 1309.58, + "end": 1310.1, + "probability": 0.7277 + }, + { + "start": 1310.24, + "end": 1310.78, + "probability": 0.6191 + }, + { + "start": 1310.82, + "end": 1311.72, + "probability": 0.7341 + }, + { + "start": 1312.04, + "end": 1313.68, + "probability": 0.9041 + }, + { + "start": 1315.64, + "end": 1315.96, + "probability": 0.3596 + }, + { + "start": 1315.96, + "end": 1315.96, + "probability": 0.2858 + }, + { + "start": 1315.96, + "end": 1316.3, + "probability": 0.108 + }, + { + "start": 1316.36, + "end": 1318.82, + "probability": 0.8441 + }, + { + "start": 1319.44, + "end": 1321.16, + "probability": 0.7585 + }, + { + "start": 1321.4, + "end": 1322.42, + "probability": 0.9286 + }, + { + "start": 1322.5, + "end": 1322.74, + "probability": 0.6424 + }, + { + "start": 1322.84, + "end": 1323.68, + "probability": 0.8928 + }, + { + "start": 1323.76, + "end": 1324.6, + "probability": 0.952 + }, + { + "start": 1324.76, + "end": 1325.66, + "probability": 0.599 + }, + { + "start": 1325.68, + "end": 1326.38, + "probability": 0.6014 + }, + { + "start": 1326.84, + "end": 1327.68, + "probability": 0.4342 + }, + { + "start": 1327.78, + "end": 1328.8, + "probability": 0.5282 + }, + { + "start": 1329.22, + "end": 1329.76, + "probability": 0.6229 + }, + { + "start": 1329.88, + "end": 1333.72, + "probability": 0.9643 + }, + { + "start": 1333.76, + "end": 1335.52, + "probability": 0.821 + }, + { + "start": 1335.62, + "end": 1337.58, + "probability": 0.978 + }, + { + "start": 1338.14, + "end": 1338.9, + "probability": 0.9267 + }, + { + "start": 1339.46, + "end": 1340.23, + "probability": 0.7329 + }, + { + "start": 1340.82, + "end": 1345.84, + "probability": 0.9036 + }, + { + "start": 1346.26, + "end": 1347.04, + "probability": 0.9365 + }, + { + "start": 1347.22, + "end": 1349.1, + "probability": 0.6431 + }, + { + "start": 1349.34, + "end": 1349.94, + "probability": 0.768 + }, + { + "start": 1354.17, + "end": 1354.56, + "probability": 0.2399 + }, + { + "start": 1354.56, + "end": 1354.56, + "probability": 0.0949 + }, + { + "start": 1354.56, + "end": 1356.84, + "probability": 0.5027 + }, + { + "start": 1356.84, + "end": 1359.72, + "probability": 0.9839 + }, + { + "start": 1360.28, + "end": 1362.06, + "probability": 0.5979 + }, + { + "start": 1362.12, + "end": 1363.9, + "probability": 0.9915 + }, + { + "start": 1364.14, + "end": 1366.85, + "probability": 0.9852 + }, + { + "start": 1366.96, + "end": 1369.16, + "probability": 0.81 + }, + { + "start": 1369.86, + "end": 1371.2, + "probability": 0.9729 + }, + { + "start": 1374.5, + "end": 1374.76, + "probability": 0.6714 + }, + { + "start": 1374.86, + "end": 1376.3, + "probability": 0.7059 + }, + { + "start": 1376.34, + "end": 1377.3, + "probability": 0.3274 + }, + { + "start": 1377.3, + "end": 1377.65, + "probability": 0.4721 + }, + { + "start": 1377.98, + "end": 1378.96, + "probability": 0.8491 + }, + { + "start": 1379.5, + "end": 1381.14, + "probability": 0.9189 + }, + { + "start": 1381.94, + "end": 1383.32, + "probability": 0.7352 + }, + { + "start": 1384.88, + "end": 1386.34, + "probability": 0.7751 + }, + { + "start": 1387.6, + "end": 1387.94, + "probability": 0.351 + }, + { + "start": 1388.04, + "end": 1392.78, + "probability": 0.864 + }, + { + "start": 1393.64, + "end": 1394.14, + "probability": 0.7319 + }, + { + "start": 1394.2, + "end": 1394.84, + "probability": 0.8385 + }, + { + "start": 1394.94, + "end": 1398.04, + "probability": 0.7879 + }, + { + "start": 1398.18, + "end": 1398.9, + "probability": 0.6236 + }, + { + "start": 1399.18, + "end": 1399.68, + "probability": 0.4916 + }, + { + "start": 1402.16, + "end": 1404.06, + "probability": 0.8625 + }, + { + "start": 1406.06, + "end": 1406.94, + "probability": 0.7246 + }, + { + "start": 1407.02, + "end": 1410.52, + "probability": 0.9458 + }, + { + "start": 1410.8, + "end": 1414.82, + "probability": 0.9692 + }, + { + "start": 1415.46, + "end": 1417.28, + "probability": 0.9442 + }, + { + "start": 1418.08, + "end": 1421.06, + "probability": 0.5533 + }, + { + "start": 1422.42, + "end": 1425.28, + "probability": 0.9602 + }, + { + "start": 1426.7, + "end": 1431.52, + "probability": 0.9517 + }, + { + "start": 1431.72, + "end": 1433.46, + "probability": 0.9223 + }, + { + "start": 1435.08, + "end": 1436.09, + "probability": 0.9478 + }, + { + "start": 1440.0, + "end": 1440.66, + "probability": 0.5812 + }, + { + "start": 1441.8, + "end": 1442.76, + "probability": 0.9412 + }, + { + "start": 1442.98, + "end": 1446.24, + "probability": 0.7134 + }, + { + "start": 1446.36, + "end": 1448.3, + "probability": 0.7179 + }, + { + "start": 1449.46, + "end": 1450.53, + "probability": 0.9771 + }, + { + "start": 1451.78, + "end": 1454.32, + "probability": 0.9963 + }, + { + "start": 1455.46, + "end": 1457.1, + "probability": 0.6847 + }, + { + "start": 1457.28, + "end": 1457.8, + "probability": 0.3103 + }, + { + "start": 1457.86, + "end": 1458.92, + "probability": 0.6183 + }, + { + "start": 1459.12, + "end": 1461.18, + "probability": 0.5229 + }, + { + "start": 1462.28, + "end": 1465.44, + "probability": 0.9961 + }, + { + "start": 1466.28, + "end": 1468.12, + "probability": 0.8965 + }, + { + "start": 1468.84, + "end": 1471.32, + "probability": 0.8575 + }, + { + "start": 1471.32, + "end": 1474.68, + "probability": 0.8965 + }, + { + "start": 1475.22, + "end": 1477.06, + "probability": 0.9807 + }, + { + "start": 1477.96, + "end": 1479.2, + "probability": 0.8959 + }, + { + "start": 1479.4, + "end": 1481.1, + "probability": 0.6428 + }, + { + "start": 1482.94, + "end": 1484.2, + "probability": 0.319 + }, + { + "start": 1484.2, + "end": 1485.94, + "probability": 0.1231 + }, + { + "start": 1485.94, + "end": 1488.0, + "probability": 0.976 + }, + { + "start": 1489.02, + "end": 1490.76, + "probability": 0.7003 + }, + { + "start": 1490.88, + "end": 1493.88, + "probability": 0.875 + }, + { + "start": 1494.38, + "end": 1495.52, + "probability": 0.6216 + }, + { + "start": 1495.74, + "end": 1495.96, + "probability": 0.6694 + }, + { + "start": 1496.3, + "end": 1496.38, + "probability": 0.1278 + }, + { + "start": 1496.38, + "end": 1497.86, + "probability": 0.9736 + }, + { + "start": 1502.0, + "end": 1502.56, + "probability": 0.7228 + }, + { + "start": 1503.94, + "end": 1505.41, + "probability": 0.8661 + }, + { + "start": 1506.74, + "end": 1511.74, + "probability": 0.8725 + }, + { + "start": 1512.68, + "end": 1516.5, + "probability": 0.9802 + }, + { + "start": 1516.5, + "end": 1519.84, + "probability": 0.9775 + }, + { + "start": 1521.06, + "end": 1524.12, + "probability": 0.7478 + }, + { + "start": 1525.1, + "end": 1530.02, + "probability": 0.9821 + }, + { + "start": 1531.36, + "end": 1533.08, + "probability": 0.4343 + }, + { + "start": 1533.18, + "end": 1534.92, + "probability": 0.9951 + }, + { + "start": 1536.14, + "end": 1540.12, + "probability": 0.9722 + }, + { + "start": 1540.26, + "end": 1541.2, + "probability": 0.7314 + }, + { + "start": 1541.96, + "end": 1547.18, + "probability": 0.9901 + }, + { + "start": 1547.82, + "end": 1549.52, + "probability": 0.7806 + }, + { + "start": 1550.2, + "end": 1554.64, + "probability": 0.9425 + }, + { + "start": 1555.22, + "end": 1558.2, + "probability": 0.9823 + }, + { + "start": 1558.58, + "end": 1560.72, + "probability": 0.9907 + }, + { + "start": 1561.3, + "end": 1568.68, + "probability": 0.9676 + }, + { + "start": 1569.44, + "end": 1572.78, + "probability": 0.3552 + }, + { + "start": 1572.92, + "end": 1578.18, + "probability": 0.9368 + }, + { + "start": 1578.18, + "end": 1583.0, + "probability": 0.9945 + }, + { + "start": 1583.26, + "end": 1586.18, + "probability": 0.5005 + }, + { + "start": 1586.18, + "end": 1586.93, + "probability": 0.3752 + }, + { + "start": 1587.36, + "end": 1588.76, + "probability": 0.8561 + }, + { + "start": 1589.46, + "end": 1591.9, + "probability": 0.9247 + }, + { + "start": 1591.94, + "end": 1592.62, + "probability": 0.7458 + }, + { + "start": 1602.9, + "end": 1603.88, + "probability": 0.697 + }, + { + "start": 1604.5, + "end": 1606.42, + "probability": 0.8121 + }, + { + "start": 1607.52, + "end": 1610.92, + "probability": 0.979 + }, + { + "start": 1610.92, + "end": 1614.26, + "probability": 0.984 + }, + { + "start": 1615.04, + "end": 1617.6, + "probability": 0.9213 + }, + { + "start": 1620.02, + "end": 1621.1, + "probability": 0.9734 + }, + { + "start": 1621.22, + "end": 1622.28, + "probability": 0.998 + }, + { + "start": 1622.74, + "end": 1625.46, + "probability": 0.8951 + }, + { + "start": 1625.62, + "end": 1625.66, + "probability": 0.7066 + }, + { + "start": 1625.66, + "end": 1625.72, + "probability": 0.347 + }, + { + "start": 1625.72, + "end": 1626.28, + "probability": 0.5011 + }, + { + "start": 1626.54, + "end": 1627.4, + "probability": 0.6421 + }, + { + "start": 1628.82, + "end": 1631.16, + "probability": 0.678 + }, + { + "start": 1632.18, + "end": 1632.3, + "probability": 0.6037 + }, + { + "start": 1632.3, + "end": 1633.64, + "probability": 0.9351 + }, + { + "start": 1635.14, + "end": 1636.86, + "probability": 0.9819 + }, + { + "start": 1637.72, + "end": 1641.02, + "probability": 0.7676 + }, + { + "start": 1641.72, + "end": 1643.92, + "probability": 0.782 + }, + { + "start": 1644.54, + "end": 1650.38, + "probability": 0.9846 + }, + { + "start": 1650.38, + "end": 1654.74, + "probability": 0.9937 + }, + { + "start": 1655.8, + "end": 1657.08, + "probability": 0.9002 + }, + { + "start": 1657.28, + "end": 1661.6, + "probability": 0.9956 + }, + { + "start": 1662.2, + "end": 1665.18, + "probability": 0.7558 + }, + { + "start": 1665.86, + "end": 1666.92, + "probability": 0.8299 + }, + { + "start": 1667.4, + "end": 1669.96, + "probability": 0.941 + }, + { + "start": 1670.24, + "end": 1672.16, + "probability": 0.9893 + }, + { + "start": 1672.64, + "end": 1676.02, + "probability": 0.9834 + }, + { + "start": 1676.22, + "end": 1681.56, + "probability": 0.9883 + }, + { + "start": 1683.44, + "end": 1683.88, + "probability": 0.6967 + }, + { + "start": 1684.14, + "end": 1686.16, + "probability": 0.9597 + }, + { + "start": 1686.22, + "end": 1687.4, + "probability": 0.963 + }, + { + "start": 1687.54, + "end": 1690.92, + "probability": 0.9092 + }, + { + "start": 1691.04, + "end": 1691.3, + "probability": 0.3429 + }, + { + "start": 1691.34, + "end": 1691.74, + "probability": 0.7604 + }, + { + "start": 1691.86, + "end": 1697.22, + "probability": 0.9713 + }, + { + "start": 1697.38, + "end": 1699.71, + "probability": 0.9982 + }, + { + "start": 1700.42, + "end": 1705.34, + "probability": 0.9875 + }, + { + "start": 1706.38, + "end": 1709.88, + "probability": 0.9986 + }, + { + "start": 1710.04, + "end": 1715.48, + "probability": 0.9969 + }, + { + "start": 1715.48, + "end": 1719.54, + "probability": 0.9995 + }, + { + "start": 1720.48, + "end": 1722.16, + "probability": 0.6627 + }, + { + "start": 1722.24, + "end": 1723.66, + "probability": 0.8098 + }, + { + "start": 1723.82, + "end": 1724.7, + "probability": 0.8626 + }, + { + "start": 1724.82, + "end": 1726.8, + "probability": 0.9403 + }, + { + "start": 1726.96, + "end": 1728.5, + "probability": 0.9121 + }, + { + "start": 1728.56, + "end": 1729.12, + "probability": 0.6434 + }, + { + "start": 1729.78, + "end": 1731.44, + "probability": 0.8776 + }, + { + "start": 1732.34, + "end": 1741.68, + "probability": 0.9581 + }, + { + "start": 1741.68, + "end": 1747.7, + "probability": 0.9978 + }, + { + "start": 1748.86, + "end": 1751.24, + "probability": 0.9827 + }, + { + "start": 1751.26, + "end": 1751.86, + "probability": 0.7332 + }, + { + "start": 1752.18, + "end": 1753.84, + "probability": 0.6434 + }, + { + "start": 1754.5, + "end": 1756.4, + "probability": 0.9753 + }, + { + "start": 1756.46, + "end": 1761.36, + "probability": 0.9906 + }, + { + "start": 1761.86, + "end": 1764.1, + "probability": 0.9897 + }, + { + "start": 1764.3, + "end": 1769.28, + "probability": 0.9786 + }, + { + "start": 1769.28, + "end": 1774.6, + "probability": 0.9766 + }, + { + "start": 1774.86, + "end": 1776.14, + "probability": 0.9897 + }, + { + "start": 1776.24, + "end": 1777.94, + "probability": 0.8624 + }, + { + "start": 1778.34, + "end": 1782.1, + "probability": 0.9698 + }, + { + "start": 1783.22, + "end": 1784.32, + "probability": 0.9653 + }, + { + "start": 1784.4, + "end": 1784.76, + "probability": 0.8551 + }, + { + "start": 1784.84, + "end": 1789.0, + "probability": 0.9924 + }, + { + "start": 1790.66, + "end": 1794.22, + "probability": 0.9836 + }, + { + "start": 1795.52, + "end": 1796.34, + "probability": 0.8223 + }, + { + "start": 1796.36, + "end": 1796.76, + "probability": 0.6802 + }, + { + "start": 1796.86, + "end": 1797.53, + "probability": 0.9541 + }, + { + "start": 1798.4, + "end": 1799.9, + "probability": 0.9619 + }, + { + "start": 1801.02, + "end": 1803.4, + "probability": 0.8071 + }, + { + "start": 1803.46, + "end": 1805.06, + "probability": 0.7176 + }, + { + "start": 1807.76, + "end": 1810.62, + "probability": 0.7269 + }, + { + "start": 1811.94, + "end": 1816.24, + "probability": 0.3474 + }, + { + "start": 1829.32, + "end": 1830.04, + "probability": 0.5047 + }, + { + "start": 1830.16, + "end": 1831.44, + "probability": 0.9441 + }, + { + "start": 1835.58, + "end": 1836.7, + "probability": 0.7046 + }, + { + "start": 1838.14, + "end": 1839.12, + "probability": 0.9604 + }, + { + "start": 1839.26, + "end": 1842.38, + "probability": 0.9711 + }, + { + "start": 1844.34, + "end": 1845.36, + "probability": 0.7782 + }, + { + "start": 1847.36, + "end": 1848.53, + "probability": 0.645 + }, + { + "start": 1851.42, + "end": 1855.94, + "probability": 0.9486 + }, + { + "start": 1856.76, + "end": 1857.38, + "probability": 0.975 + }, + { + "start": 1859.3, + "end": 1864.3, + "probability": 0.9993 + }, + { + "start": 1865.6, + "end": 1867.64, + "probability": 0.9924 + }, + { + "start": 1869.3, + "end": 1871.04, + "probability": 0.9823 + }, + { + "start": 1872.22, + "end": 1875.98, + "probability": 0.9792 + }, + { + "start": 1877.0, + "end": 1877.84, + "probability": 0.3794 + }, + { + "start": 1877.84, + "end": 1880.6, + "probability": 0.909 + }, + { + "start": 1882.33, + "end": 1886.74, + "probability": 0.9863 + }, + { + "start": 1887.44, + "end": 1891.28, + "probability": 0.832 + }, + { + "start": 1891.9, + "end": 1892.22, + "probability": 0.8009 + }, + { + "start": 1892.38, + "end": 1894.24, + "probability": 0.998 + }, + { + "start": 1894.32, + "end": 1895.02, + "probability": 0.9819 + }, + { + "start": 1895.72, + "end": 1896.42, + "probability": 0.7241 + }, + { + "start": 1898.32, + "end": 1900.84, + "probability": 0.825 + }, + { + "start": 1901.02, + "end": 1906.5, + "probability": 0.7229 + }, + { + "start": 1906.5, + "end": 1910.26, + "probability": 0.9988 + }, + { + "start": 1911.26, + "end": 1912.76, + "probability": 0.8946 + }, + { + "start": 1913.34, + "end": 1914.6, + "probability": 0.5444 + }, + { + "start": 1915.62, + "end": 1922.84, + "probability": 0.9768 + }, + { + "start": 1925.29, + "end": 1929.04, + "probability": 0.8881 + }, + { + "start": 1929.14, + "end": 1929.74, + "probability": 0.7021 + }, + { + "start": 1930.1, + "end": 1932.56, + "probability": 0.9746 + }, + { + "start": 1933.88, + "end": 1938.72, + "probability": 0.9688 + }, + { + "start": 1938.84, + "end": 1939.64, + "probability": 0.6982 + }, + { + "start": 1939.7, + "end": 1943.52, + "probability": 0.9478 + }, + { + "start": 1943.64, + "end": 1947.8, + "probability": 0.9963 + }, + { + "start": 1947.92, + "end": 1948.76, + "probability": 0.9712 + }, + { + "start": 1948.94, + "end": 1950.28, + "probability": 0.4815 + }, + { + "start": 1950.6, + "end": 1954.26, + "probability": 0.9989 + }, + { + "start": 1954.94, + "end": 1956.58, + "probability": 0.98 + }, + { + "start": 1956.58, + "end": 1960.9, + "probability": 0.863 + }, + { + "start": 1961.18, + "end": 1962.02, + "probability": 0.7241 + }, + { + "start": 1962.22, + "end": 1962.7, + "probability": 0.5417 + }, + { + "start": 1963.0, + "end": 1963.65, + "probability": 0.9447 + }, + { + "start": 1964.02, + "end": 1964.92, + "probability": 0.666 + }, + { + "start": 1965.64, + "end": 1968.9, + "probability": 0.8945 + }, + { + "start": 1969.36, + "end": 1972.12, + "probability": 0.8323 + }, + { + "start": 1973.09, + "end": 1975.96, + "probability": 0.8809 + }, + { + "start": 1975.96, + "end": 1979.06, + "probability": 0.9307 + }, + { + "start": 1979.78, + "end": 1982.04, + "probability": 0.8362 + }, + { + "start": 1982.84, + "end": 1985.14, + "probability": 0.9841 + }, + { + "start": 1985.68, + "end": 1985.88, + "probability": 0.1958 + }, + { + "start": 1986.26, + "end": 1987.24, + "probability": 0.7925 + }, + { + "start": 1987.46, + "end": 1990.58, + "probability": 0.9606 + }, + { + "start": 1991.0, + "end": 1993.14, + "probability": 0.855 + }, + { + "start": 1993.14, + "end": 1995.42, + "probability": 0.989 + }, + { + "start": 1995.7, + "end": 1996.86, + "probability": 0.99 + }, + { + "start": 1997.58, + "end": 1999.9, + "probability": 0.9165 + }, + { + "start": 2000.44, + "end": 2001.28, + "probability": 0.592 + }, + { + "start": 2001.5, + "end": 2004.8, + "probability": 0.9028 + }, + { + "start": 2005.0, + "end": 2007.98, + "probability": 0.998 + }, + { + "start": 2008.4, + "end": 2008.54, + "probability": 0.7612 + }, + { + "start": 2009.62, + "end": 2011.86, + "probability": 0.8686 + }, + { + "start": 2012.3, + "end": 2012.74, + "probability": 0.4857 + }, + { + "start": 2012.84, + "end": 2015.25, + "probability": 0.918 + }, + { + "start": 2015.7, + "end": 2019.8, + "probability": 0.9927 + }, + { + "start": 2020.32, + "end": 2026.32, + "probability": 0.8549 + }, + { + "start": 2026.7, + "end": 2029.66, + "probability": 0.9258 + }, + { + "start": 2030.12, + "end": 2032.56, + "probability": 0.9984 + }, + { + "start": 2043.12, + "end": 2043.34, + "probability": 0.1313 + }, + { + "start": 2043.34, + "end": 2043.34, + "probability": 0.1256 + }, + { + "start": 2043.34, + "end": 2043.34, + "probability": 0.2555 + }, + { + "start": 2043.34, + "end": 2045.0, + "probability": 0.683 + }, + { + "start": 2045.72, + "end": 2047.25, + "probability": 0.7723 + }, + { + "start": 2047.6, + "end": 2047.9, + "probability": 0.3343 + }, + { + "start": 2047.96, + "end": 2049.26, + "probability": 0.8477 + }, + { + "start": 2052.1, + "end": 2054.62, + "probability": 0.9588 + }, + { + "start": 2070.72, + "end": 2070.96, + "probability": 0.6777 + }, + { + "start": 2071.0, + "end": 2072.18, + "probability": 0.7439 + }, + { + "start": 2072.42, + "end": 2073.52, + "probability": 0.9466 + }, + { + "start": 2073.74, + "end": 2078.5, + "probability": 0.9297 + }, + { + "start": 2078.58, + "end": 2081.74, + "probability": 0.9946 + }, + { + "start": 2082.54, + "end": 2085.03, + "probability": 0.9338 + }, + { + "start": 2085.16, + "end": 2089.32, + "probability": 0.9595 + }, + { + "start": 2090.26, + "end": 2091.0, + "probability": 0.6906 + }, + { + "start": 2091.42, + "end": 2094.68, + "probability": 0.8906 + }, + { + "start": 2095.42, + "end": 2096.52, + "probability": 0.8755 + }, + { + "start": 2096.58, + "end": 2098.04, + "probability": 0.8457 + }, + { + "start": 2098.42, + "end": 2100.96, + "probability": 0.9907 + }, + { + "start": 2101.96, + "end": 2105.06, + "probability": 0.9577 + }, + { + "start": 2105.72, + "end": 2107.86, + "probability": 0.9473 + }, + { + "start": 2108.0, + "end": 2110.56, + "probability": 0.9261 + }, + { + "start": 2111.1, + "end": 2112.66, + "probability": 0.9875 + }, + { + "start": 2114.18, + "end": 2116.06, + "probability": 0.9799 + }, + { + "start": 2117.02, + "end": 2118.88, + "probability": 0.9007 + }, + { + "start": 2119.14, + "end": 2120.4, + "probability": 0.8828 + }, + { + "start": 2120.48, + "end": 2125.56, + "probability": 0.9552 + }, + { + "start": 2125.76, + "end": 2128.28, + "probability": 0.7395 + }, + { + "start": 2129.83, + "end": 2132.13, + "probability": 0.9294 + }, + { + "start": 2132.26, + "end": 2136.42, + "probability": 0.9048 + }, + { + "start": 2138.54, + "end": 2142.18, + "probability": 0.9788 + }, + { + "start": 2142.72, + "end": 2146.32, + "probability": 0.8072 + }, + { + "start": 2147.1, + "end": 2149.22, + "probability": 0.9758 + }, + { + "start": 2149.32, + "end": 2150.0, + "probability": 0.1359 + }, + { + "start": 2151.5, + "end": 2151.86, + "probability": 0.4092 + }, + { + "start": 2152.06, + "end": 2155.78, + "probability": 0.9613 + }, + { + "start": 2156.58, + "end": 2157.84, + "probability": 0.8203 + }, + { + "start": 2158.0, + "end": 2161.0, + "probability": 0.0559 + }, + { + "start": 2161.0, + "end": 2161.0, + "probability": 0.0643 + }, + { + "start": 2161.0, + "end": 2161.0, + "probability": 0.1179 + }, + { + "start": 2161.0, + "end": 2164.08, + "probability": 0.6633 + }, + { + "start": 2165.98, + "end": 2168.0, + "probability": 0.549 + }, + { + "start": 2168.04, + "end": 2168.8, + "probability": 0.013 + }, + { + "start": 2169.52, + "end": 2171.16, + "probability": 0.5222 + }, + { + "start": 2171.56, + "end": 2171.56, + "probability": 0.1818 + }, + { + "start": 2171.56, + "end": 2171.96, + "probability": 0.1169 + }, + { + "start": 2172.74, + "end": 2173.78, + "probability": 0.9526 + }, + { + "start": 2174.96, + "end": 2177.1, + "probability": 0.9752 + }, + { + "start": 2177.3, + "end": 2178.38, + "probability": 0.9302 + }, + { + "start": 2179.18, + "end": 2183.38, + "probability": 0.9891 + }, + { + "start": 2184.18, + "end": 2185.58, + "probability": 0.9911 + }, + { + "start": 2185.68, + "end": 2186.79, + "probability": 0.9491 + }, + { + "start": 2188.12, + "end": 2189.74, + "probability": 0.6108 + }, + { + "start": 2190.2, + "end": 2193.76, + "probability": 0.8116 + }, + { + "start": 2195.16, + "end": 2197.4, + "probability": 0.9937 + }, + { + "start": 2197.46, + "end": 2198.58, + "probability": 0.715 + }, + { + "start": 2200.16, + "end": 2202.84, + "probability": 0.9783 + }, + { + "start": 2204.78, + "end": 2206.92, + "probability": 0.918 + }, + { + "start": 2207.12, + "end": 2208.28, + "probability": 0.823 + }, + { + "start": 2208.38, + "end": 2210.46, + "probability": 0.9202 + }, + { + "start": 2210.82, + "end": 2211.74, + "probability": 0.6479 + }, + { + "start": 2212.0, + "end": 2214.52, + "probability": 0.82 + }, + { + "start": 2215.2, + "end": 2217.76, + "probability": 0.9775 + }, + { + "start": 2217.88, + "end": 2222.74, + "probability": 0.9934 + }, + { + "start": 2223.36, + "end": 2224.68, + "probability": 0.998 + }, + { + "start": 2227.18, + "end": 2230.12, + "probability": 0.9768 + }, + { + "start": 2230.12, + "end": 2232.78, + "probability": 0.9832 + }, + { + "start": 2232.88, + "end": 2233.72, + "probability": 0.6167 + }, + { + "start": 2234.28, + "end": 2237.18, + "probability": 0.7405 + }, + { + "start": 2238.06, + "end": 2239.9, + "probability": 0.9449 + }, + { + "start": 2241.52, + "end": 2242.78, + "probability": 0.5407 + }, + { + "start": 2243.52, + "end": 2246.41, + "probability": 0.9937 + }, + { + "start": 2248.4, + "end": 2251.6, + "probability": 0.8837 + }, + { + "start": 2251.68, + "end": 2252.48, + "probability": 0.8671 + }, + { + "start": 2252.96, + "end": 2254.96, + "probability": 0.9458 + }, + { + "start": 2255.08, + "end": 2256.54, + "probability": 0.819 + }, + { + "start": 2256.68, + "end": 2258.66, + "probability": 0.7803 + }, + { + "start": 2258.72, + "end": 2260.96, + "probability": 0.9565 + }, + { + "start": 2262.06, + "end": 2265.68, + "probability": 0.936 + }, + { + "start": 2267.62, + "end": 2271.76, + "probability": 0.9628 + }, + { + "start": 2273.04, + "end": 2275.98, + "probability": 0.8214 + }, + { + "start": 2276.86, + "end": 2278.2, + "probability": 0.8559 + }, + { + "start": 2278.8, + "end": 2280.8, + "probability": 0.9454 + }, + { + "start": 2281.42, + "end": 2283.12, + "probability": 0.9897 + }, + { + "start": 2283.68, + "end": 2286.5, + "probability": 0.8716 + }, + { + "start": 2287.4, + "end": 2288.06, + "probability": 0.7167 + }, + { + "start": 2288.58, + "end": 2289.84, + "probability": 0.4998 + }, + { + "start": 2291.4, + "end": 2292.66, + "probability": 0.8314 + }, + { + "start": 2292.74, + "end": 2294.14, + "probability": 0.8887 + }, + { + "start": 2294.22, + "end": 2294.76, + "probability": 0.7048 + }, + { + "start": 2294.9, + "end": 2297.62, + "probability": 0.7111 + }, + { + "start": 2298.28, + "end": 2300.26, + "probability": 0.8016 + }, + { + "start": 2300.66, + "end": 2301.88, + "probability": 0.9712 + }, + { + "start": 2302.64, + "end": 2303.94, + "probability": 0.9775 + }, + { + "start": 2306.0, + "end": 2306.64, + "probability": 0.7184 + }, + { + "start": 2306.84, + "end": 2310.34, + "probability": 0.9899 + }, + { + "start": 2311.28, + "end": 2313.94, + "probability": 0.8061 + }, + { + "start": 2314.14, + "end": 2316.96, + "probability": 0.979 + }, + { + "start": 2317.12, + "end": 2317.24, + "probability": 0.4348 + }, + { + "start": 2317.96, + "end": 2319.98, + "probability": 0.8848 + }, + { + "start": 2320.22, + "end": 2320.46, + "probability": 0.41 + }, + { + "start": 2321.02, + "end": 2322.87, + "probability": 0.9498 + }, + { + "start": 2323.22, + "end": 2324.2, + "probability": 0.9758 + }, + { + "start": 2324.42, + "end": 2325.02, + "probability": 0.9 + }, + { + "start": 2326.02, + "end": 2326.46, + "probability": 0.6816 + }, + { + "start": 2326.46, + "end": 2328.14, + "probability": 0.9131 + }, + { + "start": 2328.22, + "end": 2330.06, + "probability": 0.9841 + }, + { + "start": 2330.88, + "end": 2333.66, + "probability": 0.8858 + }, + { + "start": 2334.28, + "end": 2336.8, + "probability": 0.959 + }, + { + "start": 2338.34, + "end": 2341.82, + "probability": 0.9238 + }, + { + "start": 2342.24, + "end": 2347.16, + "probability": 0.9943 + }, + { + "start": 2347.66, + "end": 2349.22, + "probability": 0.9985 + }, + { + "start": 2349.74, + "end": 2350.9, + "probability": 0.9923 + }, + { + "start": 2350.98, + "end": 2352.6, + "probability": 0.998 + }, + { + "start": 2352.7, + "end": 2354.56, + "probability": 0.8997 + }, + { + "start": 2354.7, + "end": 2355.62, + "probability": 0.9238 + }, + { + "start": 2355.72, + "end": 2356.16, + "probability": 0.8815 + }, + { + "start": 2356.42, + "end": 2358.66, + "probability": 0.7105 + }, + { + "start": 2359.04, + "end": 2361.34, + "probability": 0.8362 + }, + { + "start": 2361.52, + "end": 2363.52, + "probability": 0.9297 + }, + { + "start": 2382.84, + "end": 2384.54, + "probability": 0.8745 + }, + { + "start": 2387.74, + "end": 2388.92, + "probability": 0.7816 + }, + { + "start": 2389.88, + "end": 2391.28, + "probability": 0.8305 + }, + { + "start": 2392.36, + "end": 2396.24, + "probability": 0.9927 + }, + { + "start": 2397.58, + "end": 2401.52, + "probability": 0.5863 + }, + { + "start": 2402.66, + "end": 2403.24, + "probability": 0.8799 + }, + { + "start": 2403.92, + "end": 2407.66, + "probability": 0.8628 + }, + { + "start": 2409.32, + "end": 2411.28, + "probability": 0.8149 + }, + { + "start": 2412.1, + "end": 2413.92, + "probability": 0.9482 + }, + { + "start": 2414.1, + "end": 2415.96, + "probability": 0.9531 + }, + { + "start": 2416.04, + "end": 2417.25, + "probability": 0.8542 + }, + { + "start": 2417.52, + "end": 2419.7, + "probability": 0.8214 + }, + { + "start": 2420.24, + "end": 2422.22, + "probability": 0.9319 + }, + { + "start": 2423.18, + "end": 2424.16, + "probability": 0.7054 + }, + { + "start": 2425.42, + "end": 2426.28, + "probability": 0.9224 + }, + { + "start": 2426.38, + "end": 2429.02, + "probability": 0.9927 + }, + { + "start": 2429.7, + "end": 2430.34, + "probability": 0.615 + }, + { + "start": 2431.74, + "end": 2434.26, + "probability": 0.9905 + }, + { + "start": 2434.82, + "end": 2437.86, + "probability": 0.9982 + }, + { + "start": 2438.42, + "end": 2439.88, + "probability": 0.9305 + }, + { + "start": 2440.04, + "end": 2441.26, + "probability": 0.5521 + }, + { + "start": 2441.38, + "end": 2443.02, + "probability": 0.9657 + }, + { + "start": 2443.88, + "end": 2446.74, + "probability": 0.6573 + }, + { + "start": 2446.92, + "end": 2450.04, + "probability": 0.9886 + }, + { + "start": 2450.58, + "end": 2457.2, + "probability": 0.9964 + }, + { + "start": 2457.8, + "end": 2459.24, + "probability": 0.8967 + }, + { + "start": 2460.56, + "end": 2464.22, + "probability": 0.861 + }, + { + "start": 2464.5, + "end": 2465.26, + "probability": 0.7985 + }, + { + "start": 2465.28, + "end": 2466.04, + "probability": 0.8733 + }, + { + "start": 2466.14, + "end": 2467.4, + "probability": 0.9211 + }, + { + "start": 2467.4, + "end": 2471.12, + "probability": 0.8095 + }, + { + "start": 2471.16, + "end": 2474.4, + "probability": 0.9899 + }, + { + "start": 2476.4, + "end": 2478.46, + "probability": 0.8331 + }, + { + "start": 2478.48, + "end": 2479.24, + "probability": 0.656 + }, + { + "start": 2479.36, + "end": 2484.1, + "probability": 0.7004 + }, + { + "start": 2484.44, + "end": 2484.96, + "probability": 0.2779 + }, + { + "start": 2485.48, + "end": 2486.46, + "probability": 0.5755 + }, + { + "start": 2486.66, + "end": 2490.56, + "probability": 0.9734 + }, + { + "start": 2491.02, + "end": 2493.72, + "probability": 0.8903 + }, + { + "start": 2493.9, + "end": 2495.7, + "probability": 0.8542 + }, + { + "start": 2496.14, + "end": 2496.58, + "probability": 0.8838 + }, + { + "start": 2496.68, + "end": 2498.88, + "probability": 0.8299 + }, + { + "start": 2498.9, + "end": 2504.82, + "probability": 0.9929 + }, + { + "start": 2505.16, + "end": 2511.38, + "probability": 0.8877 + }, + { + "start": 2511.48, + "end": 2512.14, + "probability": 0.7375 + }, + { + "start": 2512.8, + "end": 2513.38, + "probability": 0.6922 + }, + { + "start": 2513.7, + "end": 2519.84, + "probability": 0.9558 + }, + { + "start": 2519.9, + "end": 2520.92, + "probability": 0.8068 + }, + { + "start": 2521.46, + "end": 2527.38, + "probability": 0.9301 + }, + { + "start": 2528.84, + "end": 2532.98, + "probability": 0.9714 + }, + { + "start": 2532.98, + "end": 2537.5, + "probability": 0.9206 + }, + { + "start": 2537.84, + "end": 2539.74, + "probability": 0.995 + }, + { + "start": 2540.12, + "end": 2541.3, + "probability": 0.9551 + }, + { + "start": 2541.42, + "end": 2544.62, + "probability": 0.9034 + }, + { + "start": 2544.88, + "end": 2546.24, + "probability": 0.9961 + }, + { + "start": 2548.0, + "end": 2550.16, + "probability": 0.7366 + }, + { + "start": 2550.8, + "end": 2554.16, + "probability": 0.6939 + }, + { + "start": 2554.62, + "end": 2556.6, + "probability": 0.7115 + }, + { + "start": 2557.08, + "end": 2558.36, + "probability": 0.98 + }, + { + "start": 2558.58, + "end": 2565.02, + "probability": 0.9732 + }, + { + "start": 2565.1, + "end": 2566.92, + "probability": 0.9971 + }, + { + "start": 2568.12, + "end": 2569.83, + "probability": 0.9624 + }, + { + "start": 2570.16, + "end": 2572.18, + "probability": 0.9858 + }, + { + "start": 2572.44, + "end": 2574.0, + "probability": 0.7258 + }, + { + "start": 2574.08, + "end": 2577.98, + "probability": 0.9744 + }, + { + "start": 2578.44, + "end": 2580.56, + "probability": 0.9699 + }, + { + "start": 2581.08, + "end": 2582.09, + "probability": 0.9419 + }, + { + "start": 2582.46, + "end": 2585.76, + "probability": 0.9436 + }, + { + "start": 2585.9, + "end": 2588.72, + "probability": 0.9909 + }, + { + "start": 2588.78, + "end": 2591.26, + "probability": 0.944 + }, + { + "start": 2591.26, + "end": 2594.18, + "probability": 0.8415 + }, + { + "start": 2594.26, + "end": 2594.84, + "probability": 0.5416 + }, + { + "start": 2594.94, + "end": 2596.5, + "probability": 0.7984 + }, + { + "start": 2596.94, + "end": 2597.2, + "probability": 0.7654 + }, + { + "start": 2598.14, + "end": 2598.86, + "probability": 0.5664 + }, + { + "start": 2598.96, + "end": 2600.24, + "probability": 0.8245 + }, + { + "start": 2600.54, + "end": 2604.58, + "probability": 0.9832 + }, + { + "start": 2604.72, + "end": 2605.25, + "probability": 0.9902 + }, + { + "start": 2605.58, + "end": 2611.5, + "probability": 0.969 + }, + { + "start": 2611.94, + "end": 2612.82, + "probability": 0.8154 + }, + { + "start": 2612.98, + "end": 2613.18, + "probability": 0.6831 + }, + { + "start": 2613.52, + "end": 2615.58, + "probability": 0.9067 + }, + { + "start": 2616.63, + "end": 2619.3, + "probability": 0.9832 + }, + { + "start": 2619.38, + "end": 2621.5, + "probability": 0.9577 + }, + { + "start": 2622.46, + "end": 2624.18, + "probability": 0.8527 + }, + { + "start": 2644.4, + "end": 2645.92, + "probability": 0.7304 + }, + { + "start": 2647.32, + "end": 2649.78, + "probability": 0.7922 + }, + { + "start": 2651.28, + "end": 2655.77, + "probability": 0.9681 + }, + { + "start": 2656.62, + "end": 2658.46, + "probability": 0.9909 + }, + { + "start": 2658.74, + "end": 2660.14, + "probability": 0.9116 + }, + { + "start": 2661.12, + "end": 2665.9, + "probability": 0.9846 + }, + { + "start": 2666.94, + "end": 2668.42, + "probability": 0.9475 + }, + { + "start": 2669.18, + "end": 2673.76, + "probability": 0.9878 + }, + { + "start": 2674.68, + "end": 2677.46, + "probability": 0.9366 + }, + { + "start": 2678.0, + "end": 2682.54, + "probability": 0.9806 + }, + { + "start": 2683.2, + "end": 2688.2, + "probability": 0.9867 + }, + { + "start": 2690.7, + "end": 2693.46, + "probability": 0.9682 + }, + { + "start": 2694.96, + "end": 2695.94, + "probability": 0.8613 + }, + { + "start": 2696.88, + "end": 2700.2, + "probability": 0.9968 + }, + { + "start": 2701.06, + "end": 2706.74, + "probability": 0.9661 + }, + { + "start": 2707.9, + "end": 2709.66, + "probability": 0.7653 + }, + { + "start": 2710.24, + "end": 2711.18, + "probability": 0.9443 + }, + { + "start": 2711.78, + "end": 2714.52, + "probability": 0.9778 + }, + { + "start": 2715.22, + "end": 2717.46, + "probability": 0.9974 + }, + { + "start": 2718.5, + "end": 2719.96, + "probability": 0.9468 + }, + { + "start": 2721.08, + "end": 2724.24, + "probability": 0.9945 + }, + { + "start": 2724.82, + "end": 2726.54, + "probability": 0.8449 + }, + { + "start": 2727.26, + "end": 2729.26, + "probability": 0.9382 + }, + { + "start": 2729.92, + "end": 2735.96, + "probability": 0.9349 + }, + { + "start": 2736.76, + "end": 2740.94, + "probability": 0.9877 + }, + { + "start": 2741.7, + "end": 2744.04, + "probability": 0.7194 + }, + { + "start": 2745.38, + "end": 2747.88, + "probability": 0.9754 + }, + { + "start": 2748.76, + "end": 2755.34, + "probability": 0.9844 + }, + { + "start": 2755.34, + "end": 2758.5, + "probability": 0.9968 + }, + { + "start": 2758.78, + "end": 2759.66, + "probability": 0.9606 + }, + { + "start": 2760.14, + "end": 2761.08, + "probability": 0.9841 + }, + { + "start": 2761.72, + "end": 2762.5, + "probability": 0.9784 + }, + { + "start": 2763.02, + "end": 2766.28, + "probability": 0.7347 + }, + { + "start": 2766.76, + "end": 2768.54, + "probability": 0.9907 + }, + { + "start": 2769.56, + "end": 2772.32, + "probability": 0.9919 + }, + { + "start": 2773.06, + "end": 2777.98, + "probability": 0.9596 + }, + { + "start": 2779.06, + "end": 2782.38, + "probability": 0.8623 + }, + { + "start": 2783.06, + "end": 2785.34, + "probability": 0.9932 + }, + { + "start": 2786.32, + "end": 2790.28, + "probability": 0.9963 + }, + { + "start": 2791.28, + "end": 2792.28, + "probability": 0.8217 + }, + { + "start": 2792.86, + "end": 2794.76, + "probability": 0.9643 + }, + { + "start": 2795.38, + "end": 2798.42, + "probability": 0.9455 + }, + { + "start": 2799.12, + "end": 2801.26, + "probability": 0.9677 + }, + { + "start": 2801.96, + "end": 2804.66, + "probability": 0.9963 + }, + { + "start": 2806.24, + "end": 2811.28, + "probability": 0.9702 + }, + { + "start": 2811.38, + "end": 2812.55, + "probability": 0.8859 + }, + { + "start": 2812.7, + "end": 2813.51, + "probability": 0.8299 + }, + { + "start": 2814.7, + "end": 2819.16, + "probability": 0.9925 + }, + { + "start": 2819.78, + "end": 2821.16, + "probability": 0.4464 + }, + { + "start": 2821.76, + "end": 2821.8, + "probability": 0.0605 + }, + { + "start": 2821.8, + "end": 2822.36, + "probability": 0.3249 + }, + { + "start": 2822.42, + "end": 2823.36, + "probability": 0.8026 + }, + { + "start": 2823.82, + "end": 2824.98, + "probability": 0.9307 + }, + { + "start": 2825.06, + "end": 2825.65, + "probability": 0.8129 + }, + { + "start": 2826.48, + "end": 2827.84, + "probability": 0.6662 + }, + { + "start": 2828.3, + "end": 2830.88, + "probability": 0.9697 + }, + { + "start": 2831.02, + "end": 2833.08, + "probability": 0.8459 + }, + { + "start": 2833.2, + "end": 2835.48, + "probability": 0.9875 + }, + { + "start": 2835.48, + "end": 2838.32, + "probability": 0.9704 + }, + { + "start": 2840.56, + "end": 2842.42, + "probability": 0.8028 + }, + { + "start": 2843.04, + "end": 2847.38, + "probability": 0.9944 + }, + { + "start": 2848.16, + "end": 2851.72, + "probability": 0.8461 + }, + { + "start": 2851.78, + "end": 2854.06, + "probability": 0.3366 + }, + { + "start": 2854.2, + "end": 2856.48, + "probability": 0.9839 + }, + { + "start": 2856.8, + "end": 2861.52, + "probability": 0.9935 + }, + { + "start": 2862.14, + "end": 2862.26, + "probability": 0.0742 + }, + { + "start": 2862.26, + "end": 2862.26, + "probability": 0.3212 + }, + { + "start": 2862.26, + "end": 2863.6, + "probability": 0.8151 + }, + { + "start": 2863.64, + "end": 2865.42, + "probability": 0.828 + }, + { + "start": 2865.5, + "end": 2868.06, + "probability": 0.8109 + }, + { + "start": 2868.72, + "end": 2869.78, + "probability": 0.9213 + }, + { + "start": 2870.9, + "end": 2872.8, + "probability": 0.2877 + }, + { + "start": 2873.92, + "end": 2874.0, + "probability": 0.0566 + }, + { + "start": 2874.0, + "end": 2874.22, + "probability": 0.0181 + }, + { + "start": 2874.22, + "end": 2877.52, + "probability": 0.7749 + }, + { + "start": 2877.66, + "end": 2878.22, + "probability": 0.6756 + }, + { + "start": 2878.34, + "end": 2879.48, + "probability": 0.7451 + }, + { + "start": 2879.6, + "end": 2881.1, + "probability": 0.8997 + }, + { + "start": 2881.34, + "end": 2886.12, + "probability": 0.0581 + }, + { + "start": 2886.12, + "end": 2886.12, + "probability": 0.0739 + }, + { + "start": 2886.12, + "end": 2886.12, + "probability": 0.0323 + }, + { + "start": 2886.12, + "end": 2887.89, + "probability": 0.707 + }, + { + "start": 2888.7, + "end": 2890.2, + "probability": 0.9535 + }, + { + "start": 2890.62, + "end": 2891.06, + "probability": 0.7267 + }, + { + "start": 2891.14, + "end": 2891.84, + "probability": 0.7916 + }, + { + "start": 2891.86, + "end": 2892.8, + "probability": 0.607 + }, + { + "start": 2893.34, + "end": 2895.52, + "probability": 0.9331 + }, + { + "start": 2896.18, + "end": 2899.44, + "probability": 0.7899 + }, + { + "start": 2901.1, + "end": 2902.64, + "probability": 0.8298 + }, + { + "start": 2914.52, + "end": 2914.98, + "probability": 0.4935 + }, + { + "start": 2915.2, + "end": 2915.94, + "probability": 0.9663 + }, + { + "start": 2917.26, + "end": 2918.18, + "probability": 0.7586 + }, + { + "start": 2918.9, + "end": 2919.72, + "probability": 0.7317 + }, + { + "start": 2920.96, + "end": 2921.42, + "probability": 0.9802 + }, + { + "start": 2922.3, + "end": 2925.49, + "probability": 0.8662 + }, + { + "start": 2927.44, + "end": 2930.5, + "probability": 0.9482 + }, + { + "start": 2932.3, + "end": 2934.56, + "probability": 0.9292 + }, + { + "start": 2936.38, + "end": 2938.98, + "probability": 0.921 + }, + { + "start": 2940.06, + "end": 2945.12, + "probability": 0.7669 + }, + { + "start": 2945.68, + "end": 2946.58, + "probability": 0.6437 + }, + { + "start": 2947.38, + "end": 2951.54, + "probability": 0.9966 + }, + { + "start": 2952.64, + "end": 2954.52, + "probability": 0.7008 + }, + { + "start": 2955.2, + "end": 2959.46, + "probability": 0.8585 + }, + { + "start": 2960.22, + "end": 2960.68, + "probability": 0.8882 + }, + { + "start": 2960.72, + "end": 2961.64, + "probability": 0.9334 + }, + { + "start": 2961.7, + "end": 2962.34, + "probability": 0.9115 + }, + { + "start": 2962.36, + "end": 2963.62, + "probability": 0.9399 + }, + { + "start": 2964.82, + "end": 2967.9, + "probability": 0.879 + }, + { + "start": 2968.4, + "end": 2969.72, + "probability": 0.9614 + }, + { + "start": 2970.02, + "end": 2973.08, + "probability": 0.973 + }, + { + "start": 2973.7, + "end": 2976.52, + "probability": 0.9918 + }, + { + "start": 2977.66, + "end": 2978.14, + "probability": 0.8655 + }, + { + "start": 2979.2, + "end": 2980.36, + "probability": 0.9632 + }, + { + "start": 2981.22, + "end": 2982.5, + "probability": 0.9811 + }, + { + "start": 2983.56, + "end": 2987.9, + "probability": 0.8253 + }, + { + "start": 2989.1, + "end": 2989.8, + "probability": 0.9644 + }, + { + "start": 2989.94, + "end": 2993.34, + "probability": 0.9839 + }, + { + "start": 2994.06, + "end": 2995.48, + "probability": 0.9536 + }, + { + "start": 2996.6, + "end": 2999.32, + "probability": 0.9473 + }, + { + "start": 3000.24, + "end": 3002.14, + "probability": 0.9875 + }, + { + "start": 3003.52, + "end": 3004.58, + "probability": 0.9 + }, + { + "start": 3004.94, + "end": 3011.72, + "probability": 0.9419 + }, + { + "start": 3012.44, + "end": 3013.78, + "probability": 0.959 + }, + { + "start": 3014.66, + "end": 3016.74, + "probability": 0.9865 + }, + { + "start": 3016.74, + "end": 3020.98, + "probability": 0.9984 + }, + { + "start": 3022.18, + "end": 3024.42, + "probability": 0.9851 + }, + { + "start": 3026.3, + "end": 3030.2, + "probability": 0.873 + }, + { + "start": 3031.82, + "end": 3033.1, + "probability": 0.9507 + }, + { + "start": 3033.78, + "end": 3036.66, + "probability": 0.99 + }, + { + "start": 3037.94, + "end": 3039.04, + "probability": 0.5684 + }, + { + "start": 3040.22, + "end": 3044.24, + "probability": 0.9409 + }, + { + "start": 3045.06, + "end": 3046.52, + "probability": 0.9961 + }, + { + "start": 3047.04, + "end": 3048.26, + "probability": 0.8588 + }, + { + "start": 3050.46, + "end": 3053.66, + "probability": 0.896 + }, + { + "start": 3055.22, + "end": 3058.86, + "probability": 0.9388 + }, + { + "start": 3058.86, + "end": 3062.34, + "probability": 0.9134 + }, + { + "start": 3063.08, + "end": 3064.08, + "probability": 0.957 + }, + { + "start": 3065.14, + "end": 3066.34, + "probability": 0.8424 + }, + { + "start": 3067.66, + "end": 3070.56, + "probability": 0.7367 + }, + { + "start": 3071.74, + "end": 3072.4, + "probability": 0.9449 + }, + { + "start": 3072.48, + "end": 3073.86, + "probability": 0.7152 + }, + { + "start": 3073.88, + "end": 3075.22, + "probability": 0.6662 + }, + { + "start": 3075.86, + "end": 3079.26, + "probability": 0.4693 + }, + { + "start": 3079.42, + "end": 3080.0, + "probability": 0.2271 + }, + { + "start": 3080.02, + "end": 3081.76, + "probability": 0.219 + }, + { + "start": 3082.26, + "end": 3087.38, + "probability": 0.3826 + }, + { + "start": 3087.56, + "end": 3089.4, + "probability": 0.168 + }, + { + "start": 3089.52, + "end": 3090.36, + "probability": 0.4084 + }, + { + "start": 3090.54, + "end": 3091.87, + "probability": 0.6763 + }, + { + "start": 3092.18, + "end": 3094.62, + "probability": 0.5591 + }, + { + "start": 3094.62, + "end": 3095.78, + "probability": 0.8015 + }, + { + "start": 3096.02, + "end": 3097.08, + "probability": 0.4574 + }, + { + "start": 3097.08, + "end": 3099.48, + "probability": 0.4354 + }, + { + "start": 3099.66, + "end": 3100.32, + "probability": 0.4347 + }, + { + "start": 3101.62, + "end": 3102.22, + "probability": 0.0109 + }, + { + "start": 3104.9, + "end": 3105.62, + "probability": 0.0127 + }, + { + "start": 3107.0, + "end": 3108.82, + "probability": 0.1013 + }, + { + "start": 3108.98, + "end": 3109.22, + "probability": 0.0278 + }, + { + "start": 3109.22, + "end": 3111.0, + "probability": 0.2157 + }, + { + "start": 3111.42, + "end": 3117.42, + "probability": 0.092 + }, + { + "start": 3119.22, + "end": 3120.64, + "probability": 0.5393 + }, + { + "start": 3122.9, + "end": 3123.82, + "probability": 0.2723 + }, + { + "start": 3124.94, + "end": 3125.96, + "probability": 0.015 + }, + { + "start": 3126.92, + "end": 3128.52, + "probability": 0.075 + }, + { + "start": 3128.68, + "end": 3133.28, + "probability": 0.0506 + }, + { + "start": 3133.68, + "end": 3134.44, + "probability": 0.2254 + }, + { + "start": 3135.84, + "end": 3139.16, + "probability": 0.1624 + }, + { + "start": 3140.39, + "end": 3142.28, + "probability": 0.2928 + }, + { + "start": 3142.4, + "end": 3143.1, + "probability": 0.166 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.1, + "end": 3161.66, + "probability": 0.069 + }, + { + "start": 3161.92, + "end": 3163.64, + "probability": 0.0558 + }, + { + "start": 3163.98, + "end": 3166.51, + "probability": 0.2521 + }, + { + "start": 3166.86, + "end": 3167.82, + "probability": 0.4736 + }, + { + "start": 3168.44, + "end": 3169.82, + "probability": 0.0994 + }, + { + "start": 3169.82, + "end": 3173.86, + "probability": 0.6121 + }, + { + "start": 3174.04, + "end": 3174.88, + "probability": 0.082 + }, + { + "start": 3175.4, + "end": 3177.2, + "probability": 0.9016 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.0, + "end": 3283.0, + "probability": 0.0 + }, + { + "start": 3283.38, + "end": 3283.76, + "probability": 0.0412 + }, + { + "start": 3283.92, + "end": 3283.94, + "probability": 0.0242 + }, + { + "start": 3283.94, + "end": 3286.12, + "probability": 0.038 + }, + { + "start": 3286.78, + "end": 3287.36, + "probability": 0.2947 + }, + { + "start": 3287.8, + "end": 3288.08, + "probability": 0.3125 + }, + { + "start": 3288.76, + "end": 3289.8, + "probability": 0.3578 + }, + { + "start": 3291.92, + "end": 3293.34, + "probability": 0.2358 + }, + { + "start": 3293.34, + "end": 3294.5, + "probability": 0.0958 + }, + { + "start": 3296.18, + "end": 3296.82, + "probability": 0.1566 + }, + { + "start": 3296.84, + "end": 3298.74, + "probability": 0.2011 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.0, + "end": 3707.0, + "probability": 0.0 + }, + { + "start": 3707.12, + "end": 3707.58, + "probability": 0.088 + }, + { + "start": 3709.32, + "end": 3712.3, + "probability": 0.8031 + }, + { + "start": 3712.84, + "end": 3715.0, + "probability": 0.8848 + }, + { + "start": 3715.66, + "end": 3716.9, + "probability": 0.9731 + }, + { + "start": 3717.68, + "end": 3719.54, + "probability": 0.9728 + }, + { + "start": 3719.66, + "end": 3721.12, + "probability": 0.9452 + }, + { + "start": 3721.98, + "end": 3722.38, + "probability": 0.7214 + }, + { + "start": 3722.44, + "end": 3726.22, + "probability": 0.9563 + }, + { + "start": 3726.38, + "end": 3727.44, + "probability": 0.8993 + }, + { + "start": 3728.56, + "end": 3731.74, + "probability": 0.9951 + }, + { + "start": 3731.74, + "end": 3735.8, + "probability": 0.9673 + }, + { + "start": 3736.72, + "end": 3740.54, + "probability": 0.9336 + }, + { + "start": 3741.02, + "end": 3745.84, + "probability": 0.9304 + }, + { + "start": 3746.68, + "end": 3750.28, + "probability": 0.9688 + }, + { + "start": 3750.78, + "end": 3751.9, + "probability": 0.7374 + }, + { + "start": 3752.04, + "end": 3756.02, + "probability": 0.5853 + }, + { + "start": 3756.12, + "end": 3757.5, + "probability": 0.9307 + }, + { + "start": 3757.52, + "end": 3758.46, + "probability": 0.8201 + }, + { + "start": 3758.98, + "end": 3759.8, + "probability": 0.8312 + }, + { + "start": 3760.0, + "end": 3763.54, + "probability": 0.9735 + }, + { + "start": 3764.44, + "end": 3768.52, + "probability": 0.9628 + }, + { + "start": 3768.56, + "end": 3770.94, + "probability": 0.988 + }, + { + "start": 3771.36, + "end": 3772.48, + "probability": 0.9514 + }, + { + "start": 3772.5, + "end": 3772.8, + "probability": 0.62 + }, + { + "start": 3772.88, + "end": 3773.78, + "probability": 0.9482 + }, + { + "start": 3773.88, + "end": 3775.04, + "probability": 0.7059 + }, + { + "start": 3775.24, + "end": 3775.92, + "probability": 0.8093 + }, + { + "start": 3777.08, + "end": 3777.7, + "probability": 0.2577 + }, + { + "start": 3778.58, + "end": 3781.96, + "probability": 0.368 + }, + { + "start": 3784.86, + "end": 3787.26, + "probability": 0.9793 + }, + { + "start": 3788.0, + "end": 3792.32, + "probability": 0.9493 + }, + { + "start": 3792.46, + "end": 3793.3, + "probability": 0.8682 + }, + { + "start": 3793.52, + "end": 3794.0, + "probability": 0.9233 + }, + { + "start": 3794.46, + "end": 3796.24, + "probability": 0.9963 + }, + { + "start": 3796.34, + "end": 3797.18, + "probability": 0.9927 + }, + { + "start": 3797.64, + "end": 3799.9, + "probability": 0.939 + }, + { + "start": 3800.44, + "end": 3802.14, + "probability": 0.7172 + }, + { + "start": 3802.54, + "end": 3805.64, + "probability": 0.7058 + }, + { + "start": 3806.24, + "end": 3806.56, + "probability": 0.4071 + }, + { + "start": 3806.64, + "end": 3807.62, + "probability": 0.9814 + }, + { + "start": 3807.72, + "end": 3809.54, + "probability": 0.9837 + }, + { + "start": 3809.8, + "end": 3812.3, + "probability": 0.842 + }, + { + "start": 3812.46, + "end": 3813.8, + "probability": 0.653 + }, + { + "start": 3814.48, + "end": 3818.08, + "probability": 0.9834 + }, + { + "start": 3818.6, + "end": 3818.78, + "probability": 0.9526 + }, + { + "start": 3818.88, + "end": 3821.3, + "probability": 0.9597 + }, + { + "start": 3821.3, + "end": 3821.3, + "probability": 0.2817 + }, + { + "start": 3821.3, + "end": 3822.16, + "probability": 0.6086 + }, + { + "start": 3822.22, + "end": 3824.8, + "probability": 0.9625 + }, + { + "start": 3824.8, + "end": 3825.32, + "probability": 0.8394 + }, + { + "start": 3826.08, + "end": 3828.61, + "probability": 0.8646 + }, + { + "start": 3831.18, + "end": 3831.18, + "probability": 0.2761 + }, + { + "start": 3831.18, + "end": 3834.28, + "probability": 0.6783 + }, + { + "start": 3834.32, + "end": 3834.78, + "probability": 0.5778 + }, + { + "start": 3835.08, + "end": 3837.26, + "probability": 0.1632 + }, + { + "start": 3837.28, + "end": 3838.07, + "probability": 0.1182 + }, + { + "start": 3840.42, + "end": 3841.96, + "probability": 0.0877 + }, + { + "start": 3842.74, + "end": 3842.82, + "probability": 0.1118 + }, + { + "start": 3842.82, + "end": 3842.82, + "probability": 0.1215 + }, + { + "start": 3842.82, + "end": 3842.82, + "probability": 0.0233 + }, + { + "start": 3842.82, + "end": 3844.88, + "probability": 0.5427 + }, + { + "start": 3845.02, + "end": 3845.51, + "probability": 0.4235 + }, + { + "start": 3846.78, + "end": 3847.54, + "probability": 0.3913 + }, + { + "start": 3847.54, + "end": 3847.54, + "probability": 0.0697 + }, + { + "start": 3847.54, + "end": 3848.47, + "probability": 0.6179 + }, + { + "start": 3848.74, + "end": 3851.5, + "probability": 0.7269 + }, + { + "start": 3851.94, + "end": 3853.36, + "probability": 0.2723 + }, + { + "start": 3853.72, + "end": 3855.58, + "probability": 0.6533 + }, + { + "start": 3855.62, + "end": 3856.5, + "probability": 0.9624 + }, + { + "start": 3856.74, + "end": 3856.74, + "probability": 0.1766 + }, + { + "start": 3856.74, + "end": 3856.74, + "probability": 0.0495 + }, + { + "start": 3856.74, + "end": 3857.16, + "probability": 0.7101 + }, + { + "start": 3857.22, + "end": 3857.74, + "probability": 0.8706 + }, + { + "start": 3857.84, + "end": 3860.16, + "probability": 0.9092 + }, + { + "start": 3860.42, + "end": 3861.62, + "probability": 0.9406 + }, + { + "start": 3861.62, + "end": 3864.88, + "probability": 0.2532 + }, + { + "start": 3865.4, + "end": 3866.48, + "probability": 0.7717 + }, + { + "start": 3867.46, + "end": 3869.04, + "probability": 0.8748 + }, + { + "start": 3870.2, + "end": 3872.4, + "probability": 0.9725 + }, + { + "start": 3873.5, + "end": 3876.04, + "probability": 0.937 + }, + { + "start": 3876.7, + "end": 3879.74, + "probability": 0.9832 + }, + { + "start": 3880.14, + "end": 3881.32, + "probability": 0.8496 + }, + { + "start": 3881.64, + "end": 3884.28, + "probability": 0.9438 + }, + { + "start": 3884.34, + "end": 3884.96, + "probability": 0.4197 + }, + { + "start": 3885.04, + "end": 3885.94, + "probability": 0.4257 + }, + { + "start": 3886.42, + "end": 3889.7, + "probability": 0.913 + }, + { + "start": 3889.82, + "end": 3892.78, + "probability": 0.9766 + }, + { + "start": 3893.88, + "end": 3894.52, + "probability": 0.8127 + }, + { + "start": 3895.76, + "end": 3897.46, + "probability": 0.9833 + }, + { + "start": 3898.14, + "end": 3901.06, + "probability": 0.9005 + }, + { + "start": 3901.38, + "end": 3904.34, + "probability": 0.9886 + }, + { + "start": 3904.34, + "end": 3907.08, + "probability": 0.9807 + }, + { + "start": 3907.2, + "end": 3907.54, + "probability": 0.5728 + }, + { + "start": 3908.55, + "end": 3910.88, + "probability": 0.151 + }, + { + "start": 3910.9, + "end": 3911.92, + "probability": 0.1649 + }, + { + "start": 3911.92, + "end": 3911.92, + "probability": 0.1498 + }, + { + "start": 3911.92, + "end": 3911.92, + "probability": 0.5486 + }, + { + "start": 3911.92, + "end": 3912.4, + "probability": 0.502 + }, + { + "start": 3912.4, + "end": 3913.7, + "probability": 0.8008 + }, + { + "start": 3913.82, + "end": 3915.86, + "probability": 0.5965 + }, + { + "start": 3916.26, + "end": 3917.86, + "probability": 0.7196 + }, + { + "start": 3918.02, + "end": 3921.08, + "probability": 0.9966 + }, + { + "start": 3921.08, + "end": 3925.16, + "probability": 0.9477 + }, + { + "start": 3925.78, + "end": 3929.08, + "probability": 0.8405 + }, + { + "start": 3929.22, + "end": 3930.06, + "probability": 0.9513 + }, + { + "start": 3930.5, + "end": 3931.66, + "probability": 0.8371 + }, + { + "start": 3931.7, + "end": 3932.46, + "probability": 0.7353 + }, + { + "start": 3932.86, + "end": 3934.98, + "probability": 0.9663 + }, + { + "start": 3935.02, + "end": 3937.04, + "probability": 0.9364 + }, + { + "start": 3937.12, + "end": 3937.6, + "probability": 0.6701 + }, + { + "start": 3937.76, + "end": 3938.04, + "probability": 0.3782 + }, + { + "start": 3938.1, + "end": 3938.56, + "probability": 0.4169 + }, + { + "start": 3938.98, + "end": 3940.91, + "probability": 0.5264 + }, + { + "start": 3942.9, + "end": 3943.06, + "probability": 0.2883 + }, + { + "start": 3943.06, + "end": 3943.16, + "probability": 0.0848 + }, + { + "start": 3943.16, + "end": 3943.16, + "probability": 0.1431 + }, + { + "start": 3943.22, + "end": 3943.88, + "probability": 0.1072 + }, + { + "start": 3943.96, + "end": 3950.4, + "probability": 0.9627 + }, + { + "start": 3950.44, + "end": 3951.2, + "probability": 0.7667 + }, + { + "start": 3951.26, + "end": 3954.14, + "probability": 0.9852 + }, + { + "start": 3956.07, + "end": 3959.22, + "probability": 0.8451 + }, + { + "start": 3959.28, + "end": 3959.82, + "probability": 0.5104 + }, + { + "start": 3959.86, + "end": 3961.56, + "probability": 0.8616 + }, + { + "start": 3973.42, + "end": 3974.66, + "probability": 0.7334 + }, + { + "start": 3975.5, + "end": 3976.74, + "probability": 0.9651 + }, + { + "start": 3977.02, + "end": 3977.4, + "probability": 0.6199 + }, + { + "start": 3977.48, + "end": 3979.52, + "probability": 0.9622 + }, + { + "start": 3980.18, + "end": 3982.12, + "probability": 0.8852 + }, + { + "start": 3982.8, + "end": 3984.32, + "probability": 0.2598 + }, + { + "start": 3984.58, + "end": 3984.76, + "probability": 0.1843 + }, + { + "start": 3984.76, + "end": 3986.21, + "probability": 0.7419 + }, + { + "start": 3987.04, + "end": 3987.6, + "probability": 0.0766 + }, + { + "start": 3987.64, + "end": 3988.9, + "probability": 0.8302 + }, + { + "start": 3988.9, + "end": 3990.48, + "probability": 0.9421 + }, + { + "start": 3990.56, + "end": 3996.46, + "probability": 0.9935 + }, + { + "start": 3996.68, + "end": 3998.52, + "probability": 0.8627 + }, + { + "start": 3999.4, + "end": 4000.5, + "probability": 0.6439 + }, + { + "start": 4001.76, + "end": 4005.6, + "probability": 0.991 + }, + { + "start": 4006.04, + "end": 4008.52, + "probability": 0.653 + }, + { + "start": 4008.62, + "end": 4009.16, + "probability": 0.8225 + }, + { + "start": 4009.66, + "end": 4012.22, + "probability": 0.8246 + }, + { + "start": 4012.34, + "end": 4016.8, + "probability": 0.7667 + }, + { + "start": 4017.54, + "end": 4019.54, + "probability": 0.8821 + }, + { + "start": 4020.6, + "end": 4024.08, + "probability": 0.9973 + }, + { + "start": 4024.88, + "end": 4027.18, + "probability": 0.998 + }, + { + "start": 4028.06, + "end": 4028.96, + "probability": 0.8322 + }, + { + "start": 4029.96, + "end": 4031.12, + "probability": 0.0245 + }, + { + "start": 4031.29, + "end": 4031.64, + "probability": 0.1383 + }, + { + "start": 4031.64, + "end": 4033.5, + "probability": 0.7327 + }, + { + "start": 4033.78, + "end": 4035.38, + "probability": 0.9372 + }, + { + "start": 4035.88, + "end": 4037.38, + "probability": 0.9159 + }, + { + "start": 4037.46, + "end": 4038.86, + "probability": 0.8069 + }, + { + "start": 4039.24, + "end": 4039.56, + "probability": 0.7154 + }, + { + "start": 4039.6, + "end": 4043.32, + "probability": 0.986 + }, + { + "start": 4043.82, + "end": 4045.08, + "probability": 0.6882 + }, + { + "start": 4045.64, + "end": 4048.96, + "probability": 0.7955 + }, + { + "start": 4049.56, + "end": 4053.12, + "probability": 0.9945 + }, + { + "start": 4053.12, + "end": 4056.14, + "probability": 0.9928 + }, + { + "start": 4057.24, + "end": 4057.76, + "probability": 0.8672 + }, + { + "start": 4057.9, + "end": 4059.16, + "probability": 0.9031 + }, + { + "start": 4059.4, + "end": 4060.22, + "probability": 0.7636 + }, + { + "start": 4060.78, + "end": 4064.22, + "probability": 0.9785 + }, + { + "start": 4065.2, + "end": 4066.38, + "probability": 0.9941 + }, + { + "start": 4066.54, + "end": 4067.06, + "probability": 0.6628 + }, + { + "start": 4067.7, + "end": 4071.96, + "probability": 0.978 + }, + { + "start": 4072.68, + "end": 4073.52, + "probability": 0.9519 + }, + { + "start": 4073.62, + "end": 4074.6, + "probability": 0.9706 + }, + { + "start": 4075.38, + "end": 4080.08, + "probability": 0.9974 + }, + { + "start": 4080.68, + "end": 4084.22, + "probability": 0.5861 + }, + { + "start": 4086.88, + "end": 4087.78, + "probability": 0.1923 + }, + { + "start": 4087.78, + "end": 4087.78, + "probability": 0.3694 + }, + { + "start": 4087.78, + "end": 4087.78, + "probability": 0.4085 + }, + { + "start": 4087.78, + "end": 4088.46, + "probability": 0.445 + }, + { + "start": 4088.84, + "end": 4088.84, + "probability": 0.0079 + }, + { + "start": 4088.84, + "end": 4090.98, + "probability": 0.7232 + }, + { + "start": 4091.26, + "end": 4093.02, + "probability": 0.959 + }, + { + "start": 4093.38, + "end": 4100.2, + "probability": 0.6345 + }, + { + "start": 4100.76, + "end": 4103.68, + "probability": 0.9299 + }, + { + "start": 4104.26, + "end": 4105.4, + "probability": 0.892 + }, + { + "start": 4105.68, + "end": 4105.68, + "probability": 0.2425 + }, + { + "start": 4105.68, + "end": 4105.68, + "probability": 0.2475 + }, + { + "start": 4105.68, + "end": 4106.42, + "probability": 0.3631 + }, + { + "start": 4106.66, + "end": 4107.4, + "probability": 0.1972 + }, + { + "start": 4107.56, + "end": 4108.36, + "probability": 0.933 + }, + { + "start": 4108.58, + "end": 4113.78, + "probability": 0.831 + }, + { + "start": 4114.42, + "end": 4116.74, + "probability": 0.7179 + }, + { + "start": 4117.26, + "end": 4118.52, + "probability": 0.8806 + }, + { + "start": 4119.24, + "end": 4122.66, + "probability": 0.9919 + }, + { + "start": 4122.74, + "end": 4123.58, + "probability": 0.9178 + }, + { + "start": 4124.16, + "end": 4127.2, + "probability": 0.9678 + }, + { + "start": 4127.88, + "end": 4128.0, + "probability": 0.0958 + }, + { + "start": 4128.0, + "end": 4129.62, + "probability": 0.7493 + }, + { + "start": 4130.38, + "end": 4134.92, + "probability": 0.9871 + }, + { + "start": 4134.92, + "end": 4138.54, + "probability": 0.9972 + }, + { + "start": 4138.98, + "end": 4140.04, + "probability": 0.8099 + }, + { + "start": 4140.58, + "end": 4143.26, + "probability": 0.8763 + }, + { + "start": 4143.26, + "end": 4143.75, + "probability": 0.132 + }, + { + "start": 4143.82, + "end": 4144.04, + "probability": 0.1082 + }, + { + "start": 4144.04, + "end": 4144.26, + "probability": 0.2897 + }, + { + "start": 4144.26, + "end": 4145.28, + "probability": 0.678 + }, + { + "start": 4145.96, + "end": 4146.4, + "probability": 0.7048 + }, + { + "start": 4146.5, + "end": 4148.1, + "probability": 0.9268 + }, + { + "start": 4148.36, + "end": 4149.1, + "probability": 0.6218 + }, + { + "start": 4149.18, + "end": 4150.56, + "probability": 0.7812 + }, + { + "start": 4150.72, + "end": 4152.44, + "probability": 0.8311 + }, + { + "start": 4152.6, + "end": 4154.51, + "probability": 0.7668 + }, + { + "start": 4154.58, + "end": 4155.34, + "probability": 0.8115 + }, + { + "start": 4155.7, + "end": 4156.68, + "probability": 0.7218 + }, + { + "start": 4156.74, + "end": 4157.64, + "probability": 0.3721 + }, + { + "start": 4157.74, + "end": 4158.42, + "probability": 0.8974 + }, + { + "start": 4158.5, + "end": 4159.78, + "probability": 0.9705 + }, + { + "start": 4159.94, + "end": 4161.66, + "probability": 0.9843 + }, + { + "start": 4162.0, + "end": 4163.64, + "probability": 0.9882 + }, + { + "start": 4164.06, + "end": 4165.6, + "probability": 0.8862 + }, + { + "start": 4166.12, + "end": 4169.96, + "probability": 0.8347 + }, + { + "start": 4170.36, + "end": 4171.77, + "probability": 0.8444 + }, + { + "start": 4172.06, + "end": 4173.82, + "probability": 0.9293 + }, + { + "start": 4174.6, + "end": 4176.62, + "probability": 0.9256 + }, + { + "start": 4176.62, + "end": 4179.3, + "probability": 0.6837 + }, + { + "start": 4179.4, + "end": 4182.42, + "probability": 0.944 + }, + { + "start": 4182.5, + "end": 4184.1, + "probability": 0.7114 + }, + { + "start": 4184.1, + "end": 4184.1, + "probability": 0.6788 + }, + { + "start": 4184.2, + "end": 4186.22, + "probability": 0.9951 + }, + { + "start": 4186.56, + "end": 4186.6, + "probability": 0.6992 + }, + { + "start": 4186.72, + "end": 4188.12, + "probability": 0.7341 + }, + { + "start": 4188.2, + "end": 4192.3, + "probability": 0.9891 + }, + { + "start": 4192.8, + "end": 4194.44, + "probability": 0.9898 + }, + { + "start": 4195.2, + "end": 4196.28, + "probability": 0.7737 + }, + { + "start": 4196.78, + "end": 4197.58, + "probability": 0.5034 + }, + { + "start": 4197.96, + "end": 4200.32, + "probability": 0.9974 + }, + { + "start": 4200.84, + "end": 4203.24, + "probability": 0.905 + }, + { + "start": 4203.28, + "end": 4206.6, + "probability": 0.9525 + }, + { + "start": 4207.22, + "end": 4207.78, + "probability": 0.1156 + }, + { + "start": 4207.8, + "end": 4207.8, + "probability": 0.3842 + }, + { + "start": 4207.8, + "end": 4208.6, + "probability": 0.4806 + }, + { + "start": 4208.94, + "end": 4210.1, + "probability": 0.962 + }, + { + "start": 4210.86, + "end": 4213.2, + "probability": 0.958 + }, + { + "start": 4213.62, + "end": 4216.74, + "probability": 0.9907 + }, + { + "start": 4216.82, + "end": 4217.3, + "probability": 0.9546 + }, + { + "start": 4217.38, + "end": 4218.24, + "probability": 0.7707 + }, + { + "start": 4218.62, + "end": 4220.48, + "probability": 0.9721 + }, + { + "start": 4220.9, + "end": 4223.52, + "probability": 0.9933 + }, + { + "start": 4223.52, + "end": 4226.88, + "probability": 0.9879 + }, + { + "start": 4227.28, + "end": 4230.3, + "probability": 0.9846 + }, + { + "start": 4230.4, + "end": 4232.62, + "probability": 0.9771 + }, + { + "start": 4233.18, + "end": 4236.3, + "probability": 0.513 + }, + { + "start": 4236.3, + "end": 4237.72, + "probability": 0.5515 + }, + { + "start": 4238.88, + "end": 4238.88, + "probability": 0.0755 + }, + { + "start": 4238.88, + "end": 4238.88, + "probability": 0.0183 + }, + { + "start": 4238.88, + "end": 4238.88, + "probability": 0.0258 + }, + { + "start": 4238.88, + "end": 4238.88, + "probability": 0.3283 + }, + { + "start": 4238.88, + "end": 4238.88, + "probability": 0.2508 + }, + { + "start": 4238.88, + "end": 4240.04, + "probability": 0.0701 + }, + { + "start": 4240.22, + "end": 4240.54, + "probability": 0.3481 + }, + { + "start": 4240.6, + "end": 4241.22, + "probability": 0.1266 + }, + { + "start": 4241.58, + "end": 4243.76, + "probability": 0.3656 + }, + { + "start": 4244.58, + "end": 4244.98, + "probability": 0.0831 + }, + { + "start": 4244.98, + "end": 4246.98, + "probability": 0.2483 + }, + { + "start": 4247.52, + "end": 4249.08, + "probability": 0.1021 + }, + { + "start": 4249.22, + "end": 4251.58, + "probability": 0.1944 + }, + { + "start": 4252.74, + "end": 4254.36, + "probability": 0.0637 + }, + { + "start": 4257.88, + "end": 4259.14, + "probability": 0.2073 + }, + { + "start": 4259.6, + "end": 4262.98, + "probability": 0.4386 + }, + { + "start": 4262.98, + "end": 4265.08, + "probability": 0.2625 + }, + { + "start": 4265.52, + "end": 4267.2, + "probability": 0.668 + }, + { + "start": 4267.36, + "end": 4267.72, + "probability": 0.9788 + }, + { + "start": 4268.78, + "end": 4269.32, + "probability": 0.8331 + }, + { + "start": 4269.68, + "end": 4272.52, + "probability": 0.9657 + }, + { + "start": 4273.57, + "end": 4275.94, + "probability": 0.902 + }, + { + "start": 4276.0, + "end": 4277.72, + "probability": 0.9799 + }, + { + "start": 4278.1, + "end": 4282.4, + "probability": 0.9475 + }, + { + "start": 4282.94, + "end": 4285.91, + "probability": 0.9336 + }, + { + "start": 4286.12, + "end": 4292.02, + "probability": 0.866 + }, + { + "start": 4292.28, + "end": 4294.04, + "probability": 0.9834 + }, + { + "start": 4294.26, + "end": 4297.8, + "probability": 0.9943 + }, + { + "start": 4297.88, + "end": 4298.26, + "probability": 0.994 + }, + { + "start": 4299.38, + "end": 4302.7, + "probability": 0.8618 + }, + { + "start": 4303.34, + "end": 4308.52, + "probability": 0.9185 + }, + { + "start": 4308.88, + "end": 4313.38, + "probability": 0.9927 + }, + { + "start": 4314.16, + "end": 4314.2, + "probability": 0.0002 + }, + { + "start": 4314.82, + "end": 4315.0, + "probability": 0.0227 + }, + { + "start": 4315.0, + "end": 4315.36, + "probability": 0.3306 + }, + { + "start": 4315.38, + "end": 4316.28, + "probability": 0.8369 + }, + { + "start": 4316.38, + "end": 4318.14, + "probability": 0.7621 + }, + { + "start": 4318.5, + "end": 4320.28, + "probability": 0.896 + }, + { + "start": 4320.68, + "end": 4321.66, + "probability": 0.8152 + }, + { + "start": 4321.84, + "end": 4322.84, + "probability": 0.9159 + }, + { + "start": 4323.02, + "end": 4327.08, + "probability": 0.9973 + }, + { + "start": 4327.48, + "end": 4331.6, + "probability": 0.9861 + }, + { + "start": 4331.98, + "end": 4333.06, + "probability": 0.7484 + }, + { + "start": 4333.24, + "end": 4336.64, + "probability": 0.9637 + }, + { + "start": 4336.64, + "end": 4340.52, + "probability": 0.9982 + }, + { + "start": 4340.78, + "end": 4341.88, + "probability": 0.9568 + }, + { + "start": 4342.02, + "end": 4342.92, + "probability": 0.8686 + }, + { + "start": 4343.3, + "end": 4344.44, + "probability": 0.854 + }, + { + "start": 4344.54, + "end": 4349.5, + "probability": 0.9825 + }, + { + "start": 4349.96, + "end": 4352.4, + "probability": 0.9966 + }, + { + "start": 4352.78, + "end": 4353.34, + "probability": 0.5669 + }, + { + "start": 4353.42, + "end": 4355.44, + "probability": 0.9939 + }, + { + "start": 4355.68, + "end": 4359.44, + "probability": 0.9971 + }, + { + "start": 4359.82, + "end": 4362.5, + "probability": 0.5491 + }, + { + "start": 4362.82, + "end": 4367.56, + "probability": 0.9951 + }, + { + "start": 4367.94, + "end": 4370.78, + "probability": 0.9892 + }, + { + "start": 4370.78, + "end": 4373.94, + "probability": 0.9974 + }, + { + "start": 4374.0, + "end": 4376.62, + "probability": 0.9984 + }, + { + "start": 4376.62, + "end": 4379.06, + "probability": 0.9974 + }, + { + "start": 4379.56, + "end": 4381.64, + "probability": 0.934 + }, + { + "start": 4382.68, + "end": 4384.96, + "probability": 0.957 + }, + { + "start": 4385.26, + "end": 4389.68, + "probability": 0.9975 + }, + { + "start": 4389.68, + "end": 4394.56, + "probability": 0.9994 + }, + { + "start": 4394.92, + "end": 4398.0, + "probability": 0.9819 + }, + { + "start": 4398.38, + "end": 4402.62, + "probability": 0.9976 + }, + { + "start": 4403.14, + "end": 4406.74, + "probability": 0.9989 + }, + { + "start": 4406.74, + "end": 4409.42, + "probability": 0.9995 + }, + { + "start": 4409.8, + "end": 4411.72, + "probability": 0.9536 + }, + { + "start": 4412.18, + "end": 4412.9, + "probability": 0.6919 + }, + { + "start": 4412.96, + "end": 4416.32, + "probability": 0.9606 + }, + { + "start": 4416.78, + "end": 4419.34, + "probability": 0.9913 + }, + { + "start": 4419.38, + "end": 4423.22, + "probability": 0.3622 + }, + { + "start": 4423.4, + "end": 4426.96, + "probability": 0.9878 + }, + { + "start": 4427.32, + "end": 4429.82, + "probability": 0.9935 + }, + { + "start": 4430.28, + "end": 4432.34, + "probability": 0.9453 + }, + { + "start": 4432.4, + "end": 4433.56, + "probability": 0.9181 + }, + { + "start": 4433.78, + "end": 4434.94, + "probability": 0.9849 + }, + { + "start": 4435.08, + "end": 4437.7, + "probability": 0.9435 + }, + { + "start": 4437.9, + "end": 4440.46, + "probability": 0.9948 + }, + { + "start": 4440.88, + "end": 4441.58, + "probability": 0.8395 + }, + { + "start": 4441.66, + "end": 4444.55, + "probability": 0.8968 + }, + { + "start": 4444.8, + "end": 4448.72, + "probability": 0.9937 + }, + { + "start": 4449.12, + "end": 4453.94, + "probability": 0.9977 + }, + { + "start": 4454.22, + "end": 4459.34, + "probability": 0.8939 + }, + { + "start": 4459.68, + "end": 4460.26, + "probability": 0.8044 + }, + { + "start": 4460.5, + "end": 4464.71, + "probability": 0.4923 + }, + { + "start": 4465.18, + "end": 4468.4, + "probability": 0.525 + }, + { + "start": 4468.5, + "end": 4469.06, + "probability": 0.5786 + }, + { + "start": 4469.28, + "end": 4470.9, + "probability": 0.7237 + }, + { + "start": 4474.14, + "end": 4475.0, + "probability": 0.4802 + }, + { + "start": 4475.14, + "end": 4476.46, + "probability": 0.8967 + }, + { + "start": 4476.48, + "end": 4476.8, + "probability": 0.8885 + }, + { + "start": 4477.7, + "end": 4480.5, + "probability": 0.9038 + }, + { + "start": 4481.18, + "end": 4482.44, + "probability": 0.6462 + }, + { + "start": 4484.18, + "end": 4487.0, + "probability": 0.9211 + }, + { + "start": 4487.58, + "end": 4488.06, + "probability": 0.8889 + }, + { + "start": 4488.22, + "end": 4488.56, + "probability": 0.7515 + }, + { + "start": 4489.36, + "end": 4491.35, + "probability": 0.9639 + }, + { + "start": 4492.04, + "end": 4495.29, + "probability": 0.9618 + }, + { + "start": 4496.22, + "end": 4498.3, + "probability": 0.981 + }, + { + "start": 4498.88, + "end": 4500.7, + "probability": 0.9972 + }, + { + "start": 4501.54, + "end": 4503.5, + "probability": 0.9859 + }, + { + "start": 4504.06, + "end": 4505.9, + "probability": 0.9898 + }, + { + "start": 4507.14, + "end": 4508.6, + "probability": 0.8667 + }, + { + "start": 4509.0, + "end": 4510.54, + "probability": 0.9069 + }, + { + "start": 4510.62, + "end": 4511.3, + "probability": 0.7228 + }, + { + "start": 4511.98, + "end": 4514.92, + "probability": 0.9736 + }, + { + "start": 4515.56, + "end": 4519.66, + "probability": 0.9932 + }, + { + "start": 4519.78, + "end": 4524.7, + "probability": 0.9271 + }, + { + "start": 4525.28, + "end": 4525.96, + "probability": 0.8196 + }, + { + "start": 4526.54, + "end": 4527.32, + "probability": 0.8716 + }, + { + "start": 4528.0, + "end": 4529.66, + "probability": 0.9827 + }, + { + "start": 4530.18, + "end": 4535.04, + "probability": 0.9979 + }, + { + "start": 4535.52, + "end": 4539.48, + "probability": 0.9251 + }, + { + "start": 4540.82, + "end": 4541.04, + "probability": 0.8815 + }, + { + "start": 4542.24, + "end": 4544.11, + "probability": 0.7362 + }, + { + "start": 4544.7, + "end": 4545.82, + "probability": 0.945 + }, + { + "start": 4546.38, + "end": 4548.16, + "probability": 0.9947 + }, + { + "start": 4549.1, + "end": 4549.96, + "probability": 0.9828 + }, + { + "start": 4551.16, + "end": 4552.06, + "probability": 0.8999 + }, + { + "start": 4553.08, + "end": 4555.36, + "probability": 0.994 + }, + { + "start": 4555.82, + "end": 4556.86, + "probability": 0.99 + }, + { + "start": 4557.4, + "end": 4560.83, + "probability": 0.5288 + }, + { + "start": 4561.56, + "end": 4564.22, + "probability": 0.8958 + }, + { + "start": 4564.9, + "end": 4567.56, + "probability": 0.9302 + }, + { + "start": 4568.04, + "end": 4570.42, + "probability": 0.9478 + }, + { + "start": 4571.88, + "end": 4573.18, + "probability": 0.4042 + }, + { + "start": 4573.74, + "end": 4576.7, + "probability": 0.9897 + }, + { + "start": 4577.56, + "end": 4579.92, + "probability": 0.7692 + }, + { + "start": 4580.4, + "end": 4581.4, + "probability": 0.8223 + }, + { + "start": 4581.48, + "end": 4584.72, + "probability": 0.9589 + }, + { + "start": 4585.14, + "end": 4587.9, + "probability": 0.9577 + }, + { + "start": 4589.2, + "end": 4589.98, + "probability": 0.8683 + }, + { + "start": 4590.6, + "end": 4594.98, + "probability": 0.9868 + }, + { + "start": 4596.46, + "end": 4598.2, + "probability": 0.945 + }, + { + "start": 4599.2, + "end": 4600.2, + "probability": 0.9585 + }, + { + "start": 4600.72, + "end": 4601.81, + "probability": 0.9925 + }, + { + "start": 4602.62, + "end": 4603.58, + "probability": 0.9959 + }, + { + "start": 4616.07, + "end": 4617.08, + "probability": 0.98 + }, + { + "start": 4617.08, + "end": 4617.08, + "probability": 0.0419 + }, + { + "start": 4617.08, + "end": 4617.08, + "probability": 0.134 + }, + { + "start": 4617.08, + "end": 4617.08, + "probability": 0.0382 + }, + { + "start": 4617.08, + "end": 4617.68, + "probability": 0.0494 + }, + { + "start": 4618.42, + "end": 4620.3, + "probability": 0.9477 + }, + { + "start": 4621.5, + "end": 4623.58, + "probability": 0.8096 + }, + { + "start": 4624.16, + "end": 4628.02, + "probability": 0.9868 + }, + { + "start": 4628.82, + "end": 4631.02, + "probability": 0.9946 + }, + { + "start": 4631.54, + "end": 4634.0, + "probability": 0.908 + }, + { + "start": 4634.62, + "end": 4637.2, + "probability": 0.9331 + }, + { + "start": 4638.72, + "end": 4642.9, + "probability": 0.9958 + }, + { + "start": 4643.66, + "end": 4646.68, + "probability": 0.9897 + }, + { + "start": 4648.32, + "end": 4649.54, + "probability": 0.9976 + }, + { + "start": 4650.42, + "end": 4655.82, + "probability": 0.9784 + }, + { + "start": 4659.08, + "end": 4661.44, + "probability": 0.9028 + }, + { + "start": 4662.32, + "end": 4662.6, + "probability": 0.3055 + }, + { + "start": 4662.6, + "end": 4664.36, + "probability": 0.7542 + }, + { + "start": 4664.46, + "end": 4666.4, + "probability": 0.7672 + }, + { + "start": 4667.02, + "end": 4668.94, + "probability": 0.9353 + }, + { + "start": 4680.87, + "end": 4683.76, + "probability": 0.5738 + }, + { + "start": 4684.66, + "end": 4685.6, + "probability": 0.6961 + }, + { + "start": 4685.7, + "end": 4686.68, + "probability": 0.7254 + }, + { + "start": 4687.0, + "end": 4690.92, + "probability": 0.9622 + }, + { + "start": 4691.38, + "end": 4692.0, + "probability": 0.8143 + }, + { + "start": 4692.12, + "end": 4692.91, + "probability": 0.9756 + }, + { + "start": 4692.96, + "end": 4697.24, + "probability": 0.9274 + }, + { + "start": 4697.32, + "end": 4698.76, + "probability": 0.965 + }, + { + "start": 4699.28, + "end": 4702.44, + "probability": 0.9979 + }, + { + "start": 4702.44, + "end": 4707.62, + "probability": 0.9868 + }, + { + "start": 4707.78, + "end": 4710.22, + "probability": 0.9941 + }, + { + "start": 4710.34, + "end": 4711.88, + "probability": 0.999 + }, + { + "start": 4712.44, + "end": 4716.68, + "probability": 0.9738 + }, + { + "start": 4716.8, + "end": 4718.06, + "probability": 0.6034 + }, + { + "start": 4719.18, + "end": 4720.18, + "probability": 0.8897 + }, + { + "start": 4721.3, + "end": 4724.8, + "probability": 0.8469 + }, + { + "start": 4724.86, + "end": 4726.62, + "probability": 0.9902 + }, + { + "start": 4727.4, + "end": 4734.86, + "probability": 0.9716 + }, + { + "start": 4735.38, + "end": 4737.6, + "probability": 0.6775 + }, + { + "start": 4737.68, + "end": 4738.58, + "probability": 0.6514 + }, + { + "start": 4738.72, + "end": 4742.24, + "probability": 0.9866 + }, + { + "start": 4742.4, + "end": 4743.42, + "probability": 0.9103 + }, + { + "start": 4743.54, + "end": 4747.18, + "probability": 0.9563 + }, + { + "start": 4748.28, + "end": 4752.06, + "probability": 0.8876 + }, + { + "start": 4752.22, + "end": 4753.66, + "probability": 0.8824 + }, + { + "start": 4753.74, + "end": 4757.72, + "probability": 0.9717 + }, + { + "start": 4758.3, + "end": 4759.3, + "probability": 0.8953 + }, + { + "start": 4759.36, + "end": 4760.3, + "probability": 0.9567 + }, + { + "start": 4760.36, + "end": 4761.62, + "probability": 0.918 + }, + { + "start": 4761.82, + "end": 4766.8, + "probability": 0.9963 + }, + { + "start": 4770.24, + "end": 4776.34, + "probability": 0.745 + }, + { + "start": 4777.2, + "end": 4781.74, + "probability": 0.9939 + }, + { + "start": 4782.66, + "end": 4786.22, + "probability": 0.9868 + }, + { + "start": 4787.56, + "end": 4794.66, + "probability": 0.9546 + }, + { + "start": 4795.22, + "end": 4796.87, + "probability": 0.6734 + }, + { + "start": 4797.7, + "end": 4800.86, + "probability": 0.7943 + }, + { + "start": 4801.38, + "end": 4804.58, + "probability": 0.9971 + }, + { + "start": 4804.86, + "end": 4809.78, + "probability": 0.9487 + }, + { + "start": 4810.06, + "end": 4811.06, + "probability": 0.8398 + }, + { + "start": 4811.16, + "end": 4812.18, + "probability": 0.5831 + }, + { + "start": 4812.5, + "end": 4816.66, + "probability": 0.9971 + }, + { + "start": 4816.96, + "end": 4819.8, + "probability": 0.9807 + }, + { + "start": 4820.48, + "end": 4823.72, + "probability": 0.9255 + }, + { + "start": 4824.42, + "end": 4828.52, + "probability": 0.8015 + }, + { + "start": 4829.08, + "end": 4830.16, + "probability": 0.7919 + }, + { + "start": 4830.5, + "end": 4834.42, + "probability": 0.9354 + }, + { + "start": 4835.1, + "end": 4836.4, + "probability": 0.6464 + }, + { + "start": 4836.72, + "end": 4842.26, + "probability": 0.9761 + }, + { + "start": 4842.5, + "end": 4843.28, + "probability": 0.699 + }, + { + "start": 4843.38, + "end": 4846.96, + "probability": 0.9846 + }, + { + "start": 4847.28, + "end": 4851.16, + "probability": 0.9868 + }, + { + "start": 4851.5, + "end": 4855.4, + "probability": 0.9912 + }, + { + "start": 4855.44, + "end": 4859.8, + "probability": 0.9985 + }, + { + "start": 4860.5, + "end": 4862.66, + "probability": 0.7802 + }, + { + "start": 4862.76, + "end": 4863.6, + "probability": 0.8286 + }, + { + "start": 4863.7, + "end": 4868.46, + "probability": 0.9931 + }, + { + "start": 4868.46, + "end": 4871.56, + "probability": 0.9977 + }, + { + "start": 4871.9, + "end": 4873.1, + "probability": 0.938 + }, + { + "start": 4873.22, + "end": 4876.54, + "probability": 0.978 + }, + { + "start": 4876.96, + "end": 4878.34, + "probability": 0.5617 + }, + { + "start": 4878.8, + "end": 4882.6, + "probability": 0.9691 + }, + { + "start": 4882.82, + "end": 4883.6, + "probability": 0.9163 + }, + { + "start": 4884.0, + "end": 4888.26, + "probability": 0.9838 + }, + { + "start": 4888.94, + "end": 4891.6, + "probability": 0.8635 + }, + { + "start": 4892.3, + "end": 4896.8, + "probability": 0.9927 + }, + { + "start": 4896.84, + "end": 4897.06, + "probability": 0.6964 + }, + { + "start": 4897.1, + "end": 4901.98, + "probability": 0.8612 + }, + { + "start": 4901.98, + "end": 4906.36, + "probability": 0.9945 + }, + { + "start": 4907.28, + "end": 4909.28, + "probability": 0.8054 + }, + { + "start": 4909.96, + "end": 4912.64, + "probability": 0.7383 + }, + { + "start": 4913.26, + "end": 4915.96, + "probability": 0.7865 + }, + { + "start": 4928.96, + "end": 4930.52, + "probability": 0.9419 + }, + { + "start": 4935.26, + "end": 4938.2, + "probability": 0.8394 + }, + { + "start": 4939.42, + "end": 4940.7, + "probability": 0.8716 + }, + { + "start": 4941.74, + "end": 4945.88, + "probability": 0.9021 + }, + { + "start": 4945.94, + "end": 4948.62, + "probability": 0.9746 + }, + { + "start": 4949.74, + "end": 4950.72, + "probability": 0.8063 + }, + { + "start": 4951.9, + "end": 4956.3, + "probability": 0.9878 + }, + { + "start": 4957.68, + "end": 4959.96, + "probability": 0.978 + }, + { + "start": 4960.54, + "end": 4961.48, + "probability": 0.7848 + }, + { + "start": 4962.78, + "end": 4970.48, + "probability": 0.7954 + }, + { + "start": 4970.48, + "end": 4978.24, + "probability": 0.9988 + }, + { + "start": 4979.44, + "end": 4982.24, + "probability": 0.8268 + }, + { + "start": 4983.16, + "end": 4984.7, + "probability": 0.9296 + }, + { + "start": 4985.3, + "end": 4988.82, + "probability": 0.9725 + }, + { + "start": 4989.8, + "end": 4992.16, + "probability": 0.9953 + }, + { + "start": 4993.08, + "end": 4995.4, + "probability": 0.959 + }, + { + "start": 4995.84, + "end": 4996.76, + "probability": 0.5784 + }, + { + "start": 4997.18, + "end": 5000.52, + "probability": 0.9902 + }, + { + "start": 5001.5, + "end": 5002.34, + "probability": 0.8107 + }, + { + "start": 5002.5, + "end": 5003.48, + "probability": 0.9578 + }, + { + "start": 5003.76, + "end": 5005.54, + "probability": 0.9941 + }, + { + "start": 5006.06, + "end": 5009.32, + "probability": 0.9689 + }, + { + "start": 5010.34, + "end": 5013.18, + "probability": 0.9639 + }, + { + "start": 5014.08, + "end": 5016.86, + "probability": 0.9807 + }, + { + "start": 5017.26, + "end": 5018.32, + "probability": 0.7637 + }, + { + "start": 5019.16, + "end": 5024.74, + "probability": 0.9783 + }, + { + "start": 5025.16, + "end": 5028.86, + "probability": 0.912 + }, + { + "start": 5029.74, + "end": 5034.84, + "probability": 0.9867 + }, + { + "start": 5037.32, + "end": 5042.36, + "probability": 0.9901 + }, + { + "start": 5043.24, + "end": 5048.22, + "probability": 0.9925 + }, + { + "start": 5048.6, + "end": 5050.88, + "probability": 0.8307 + }, + { + "start": 5051.56, + "end": 5051.72, + "probability": 0.2542 + }, + { + "start": 5051.84, + "end": 5054.68, + "probability": 0.9839 + }, + { + "start": 5054.68, + "end": 5059.0, + "probability": 0.9982 + }, + { + "start": 5060.2, + "end": 5061.62, + "probability": 0.8648 + }, + { + "start": 5062.24, + "end": 5065.78, + "probability": 0.9848 + }, + { + "start": 5066.66, + "end": 5068.28, + "probability": 0.9963 + }, + { + "start": 5069.34, + "end": 5073.18, + "probability": 0.998 + }, + { + "start": 5075.77, + "end": 5077.06, + "probability": 0.1391 + }, + { + "start": 5077.68, + "end": 5078.5, + "probability": 0.972 + }, + { + "start": 5080.08, + "end": 5086.94, + "probability": 0.9186 + }, + { + "start": 5087.78, + "end": 5091.12, + "probability": 0.988 + }, + { + "start": 5092.08, + "end": 5093.16, + "probability": 0.9758 + }, + { + "start": 5093.58, + "end": 5097.34, + "probability": 0.9894 + }, + { + "start": 5097.84, + "end": 5098.96, + "probability": 0.8805 + }, + { + "start": 5099.34, + "end": 5100.8, + "probability": 0.988 + }, + { + "start": 5101.68, + "end": 5105.5, + "probability": 0.9751 + }, + { + "start": 5106.68, + "end": 5109.37, + "probability": 0.8201 + }, + { + "start": 5109.72, + "end": 5112.85, + "probability": 0.9808 + }, + { + "start": 5112.98, + "end": 5114.72, + "probability": 0.9053 + }, + { + "start": 5115.14, + "end": 5121.94, + "probability": 0.9691 + }, + { + "start": 5123.26, + "end": 5125.0, + "probability": 0.7949 + }, + { + "start": 5125.84, + "end": 5131.72, + "probability": 0.9788 + }, + { + "start": 5132.14, + "end": 5135.72, + "probability": 0.9702 + }, + { + "start": 5137.18, + "end": 5137.32, + "probability": 0.2508 + }, + { + "start": 5137.32, + "end": 5140.54, + "probability": 0.4779 + }, + { + "start": 5140.58, + "end": 5142.46, + "probability": 0.6556 + }, + { + "start": 5143.26, + "end": 5148.3, + "probability": 0.9922 + }, + { + "start": 5148.86, + "end": 5153.08, + "probability": 0.9942 + }, + { + "start": 5153.5, + "end": 5158.4, + "probability": 0.9922 + }, + { + "start": 5158.68, + "end": 5158.98, + "probability": 0.787 + }, + { + "start": 5159.56, + "end": 5161.36, + "probability": 0.7305 + }, + { + "start": 5162.16, + "end": 5164.22, + "probability": 0.8945 + }, + { + "start": 5165.26, + "end": 5166.48, + "probability": 0.6402 + }, + { + "start": 5168.2, + "end": 5168.62, + "probability": 0.9583 + }, + { + "start": 5168.68, + "end": 5170.18, + "probability": 0.859 + }, + { + "start": 5170.24, + "end": 5170.94, + "probability": 0.4505 + }, + { + "start": 5171.54, + "end": 5173.96, + "probability": 0.8616 + }, + { + "start": 5174.14, + "end": 5175.24, + "probability": 0.5388 + }, + { + "start": 5176.32, + "end": 5178.3, + "probability": 0.8616 + }, + { + "start": 5179.54, + "end": 5183.56, + "probability": 0.8044 + }, + { + "start": 5184.06, + "end": 5185.02, + "probability": 0.7709 + }, + { + "start": 5185.74, + "end": 5187.52, + "probability": 0.8318 + }, + { + "start": 5188.22, + "end": 5189.12, + "probability": 0.8544 + }, + { + "start": 5189.82, + "end": 5193.7, + "probability": 0.8821 + }, + { + "start": 5194.34, + "end": 5200.1, + "probability": 0.9935 + }, + { + "start": 5201.3, + "end": 5205.94, + "probability": 0.9438 + }, + { + "start": 5206.9, + "end": 5213.98, + "probability": 0.9702 + }, + { + "start": 5215.56, + "end": 5216.38, + "probability": 0.7028 + }, + { + "start": 5216.52, + "end": 5218.7, + "probability": 0.9829 + }, + { + "start": 5219.34, + "end": 5221.58, + "probability": 0.9429 + }, + { + "start": 5222.36, + "end": 5224.23, + "probability": 0.9508 + }, + { + "start": 5224.92, + "end": 5226.6, + "probability": 0.9156 + }, + { + "start": 5227.7, + "end": 5228.88, + "probability": 0.937 + }, + { + "start": 5229.74, + "end": 5233.0, + "probability": 0.9775 + }, + { + "start": 5233.12, + "end": 5233.8, + "probability": 0.6746 + }, + { + "start": 5233.88, + "end": 5234.98, + "probability": 0.9618 + }, + { + "start": 5235.62, + "end": 5238.36, + "probability": 0.9449 + }, + { + "start": 5238.82, + "end": 5240.46, + "probability": 0.9045 + }, + { + "start": 5240.98, + "end": 5247.46, + "probability": 0.8917 + }, + { + "start": 5248.12, + "end": 5251.96, + "probability": 0.9943 + }, + { + "start": 5252.88, + "end": 5253.92, + "probability": 0.9901 + }, + { + "start": 5254.76, + "end": 5257.66, + "probability": 0.9826 + }, + { + "start": 5258.22, + "end": 5259.3, + "probability": 0.9301 + }, + { + "start": 5259.68, + "end": 5259.98, + "probability": 0.8955 + }, + { + "start": 5260.06, + "end": 5264.29, + "probability": 0.9902 + }, + { + "start": 5264.62, + "end": 5266.34, + "probability": 0.9781 + }, + { + "start": 5267.74, + "end": 5270.84, + "probability": 0.8404 + }, + { + "start": 5271.26, + "end": 5272.54, + "probability": 0.948 + }, + { + "start": 5273.58, + "end": 5274.34, + "probability": 0.7462 + }, + { + "start": 5274.5, + "end": 5276.14, + "probability": 0.8864 + }, + { + "start": 5276.26, + "end": 5279.02, + "probability": 0.9525 + }, + { + "start": 5279.24, + "end": 5280.42, + "probability": 0.6626 + }, + { + "start": 5281.18, + "end": 5283.41, + "probability": 0.9877 + }, + { + "start": 5284.26, + "end": 5286.8, + "probability": 0.9683 + }, + { + "start": 5287.5, + "end": 5288.84, + "probability": 0.9262 + }, + { + "start": 5289.72, + "end": 5295.36, + "probability": 0.8642 + }, + { + "start": 5295.62, + "end": 5296.34, + "probability": 0.9466 + }, + { + "start": 5297.2, + "end": 5299.44, + "probability": 0.8002 + }, + { + "start": 5299.56, + "end": 5300.9, + "probability": 0.8037 + }, + { + "start": 5301.58, + "end": 5305.98, + "probability": 0.7682 + }, + { + "start": 5307.26, + "end": 5312.74, + "probability": 0.9563 + }, + { + "start": 5314.04, + "end": 5317.82, + "probability": 0.952 + }, + { + "start": 5317.94, + "end": 5318.78, + "probability": 0.7488 + }, + { + "start": 5319.08, + "end": 5321.48, + "probability": 0.7364 + }, + { + "start": 5321.6, + "end": 5326.28, + "probability": 0.861 + }, + { + "start": 5326.64, + "end": 5327.44, + "probability": 0.8388 + }, + { + "start": 5328.32, + "end": 5332.74, + "probability": 0.9401 + }, + { + "start": 5333.8, + "end": 5337.22, + "probability": 0.9931 + }, + { + "start": 5337.28, + "end": 5339.93, + "probability": 0.9854 + }, + { + "start": 5341.52, + "end": 5342.01, + "probability": 0.71 + }, + { + "start": 5343.4, + "end": 5344.02, + "probability": 0.6846 + }, + { + "start": 5344.16, + "end": 5347.98, + "probability": 0.9709 + }, + { + "start": 5348.36, + "end": 5351.16, + "probability": 0.9512 + }, + { + "start": 5351.38, + "end": 5354.94, + "probability": 0.9969 + }, + { + "start": 5355.16, + "end": 5360.42, + "probability": 0.9932 + }, + { + "start": 5360.92, + "end": 5365.34, + "probability": 0.9884 + }, + { + "start": 5365.42, + "end": 5366.02, + "probability": 0.8316 + }, + { + "start": 5366.28, + "end": 5368.2, + "probability": 0.7353 + }, + { + "start": 5368.4, + "end": 5368.66, + "probability": 0.8091 + }, + { + "start": 5371.66, + "end": 5373.14, + "probability": 0.0285 + }, + { + "start": 5373.56, + "end": 5374.32, + "probability": 0.4897 + }, + { + "start": 5374.32, + "end": 5375.82, + "probability": 0.3208 + }, + { + "start": 5375.9, + "end": 5377.76, + "probability": 0.3761 + }, + { + "start": 5377.9, + "end": 5382.72, + "probability": 0.7719 + }, + { + "start": 5383.32, + "end": 5384.06, + "probability": 0.6165 + }, + { + "start": 5384.88, + "end": 5385.27, + "probability": 0.4319 + }, + { + "start": 5385.88, + "end": 5390.08, + "probability": 0.4445 + }, + { + "start": 5390.84, + "end": 5395.1, + "probability": 0.8002 + }, + { + "start": 5395.96, + "end": 5398.52, + "probability": 0.998 + }, + { + "start": 5399.8, + "end": 5403.26, + "probability": 0.9912 + }, + { + "start": 5403.98, + "end": 5412.04, + "probability": 0.9962 + }, + { + "start": 5412.96, + "end": 5413.72, + "probability": 0.628 + }, + { + "start": 5415.02, + "end": 5417.28, + "probability": 0.9882 + }, + { + "start": 5418.0, + "end": 5421.34, + "probability": 0.9258 + }, + { + "start": 5421.98, + "end": 5424.5, + "probability": 0.9965 + }, + { + "start": 5425.3, + "end": 5432.64, + "probability": 0.9417 + }, + { + "start": 5433.2, + "end": 5437.72, + "probability": 0.9823 + }, + { + "start": 5438.56, + "end": 5439.28, + "probability": 0.6402 + }, + { + "start": 5439.68, + "end": 5443.2, + "probability": 0.7459 + }, + { + "start": 5443.2, + "end": 5446.1, + "probability": 0.9376 + }, + { + "start": 5446.88, + "end": 5449.68, + "probability": 0.9957 + }, + { + "start": 5450.52, + "end": 5452.94, + "probability": 0.7463 + }, + { + "start": 5453.92, + "end": 5458.44, + "probability": 0.9932 + }, + { + "start": 5459.42, + "end": 5460.18, + "probability": 0.768 + }, + { + "start": 5460.32, + "end": 5465.48, + "probability": 0.7498 + }, + { + "start": 5465.48, + "end": 5470.6, + "probability": 0.9899 + }, + { + "start": 5470.86, + "end": 5476.42, + "probability": 0.9094 + }, + { + "start": 5476.8, + "end": 5477.42, + "probability": 0.3524 + }, + { + "start": 5477.84, + "end": 5482.9, + "probability": 0.9951 + }, + { + "start": 5483.42, + "end": 5489.14, + "probability": 0.9985 + }, + { + "start": 5489.88, + "end": 5491.24, + "probability": 0.8054 + }, + { + "start": 5492.26, + "end": 5494.64, + "probability": 0.6675 + }, + { + "start": 5495.06, + "end": 5498.7, + "probability": 0.9597 + }, + { + "start": 5498.7, + "end": 5504.32, + "probability": 0.9712 + }, + { + "start": 5505.56, + "end": 5509.1, + "probability": 0.9852 + }, + { + "start": 5509.1, + "end": 5514.28, + "probability": 0.9969 + }, + { + "start": 5515.54, + "end": 5519.16, + "probability": 0.958 + }, + { + "start": 5519.6, + "end": 5523.62, + "probability": 0.9761 + }, + { + "start": 5524.32, + "end": 5526.72, + "probability": 0.9958 + }, + { + "start": 5526.72, + "end": 5530.28, + "probability": 0.9987 + }, + { + "start": 5531.04, + "end": 5534.28, + "probability": 0.9906 + }, + { + "start": 5534.36, + "end": 5536.32, + "probability": 0.9845 + }, + { + "start": 5537.12, + "end": 5540.18, + "probability": 0.9967 + }, + { + "start": 5540.26, + "end": 5541.6, + "probability": 0.9755 + }, + { + "start": 5541.72, + "end": 5542.68, + "probability": 0.8818 + }, + { + "start": 5543.2, + "end": 5545.82, + "probability": 0.9948 + }, + { + "start": 5546.46, + "end": 5550.85, + "probability": 0.9956 + }, + { + "start": 5552.4, + "end": 5556.24, + "probability": 0.99 + }, + { + "start": 5556.62, + "end": 5562.93, + "probability": 0.9801 + }, + { + "start": 5563.6, + "end": 5564.0, + "probability": 0.5225 + }, + { + "start": 5564.76, + "end": 5569.18, + "probability": 0.9961 + }, + { + "start": 5569.58, + "end": 5571.24, + "probability": 0.9589 + }, + { + "start": 5571.62, + "end": 5575.38, + "probability": 0.9258 + }, + { + "start": 5575.82, + "end": 5579.46, + "probability": 0.9844 + }, + { + "start": 5579.76, + "end": 5583.46, + "probability": 0.991 + }, + { + "start": 5583.46, + "end": 5587.22, + "probability": 0.9985 + }, + { + "start": 5587.8, + "end": 5587.84, + "probability": 0.1722 + }, + { + "start": 5587.84, + "end": 5592.56, + "probability": 0.8628 + }, + { + "start": 5593.8, + "end": 5594.9, + "probability": 0.8205 + }, + { + "start": 5595.12, + "end": 5595.8, + "probability": 0.9236 + }, + { + "start": 5596.24, + "end": 5598.48, + "probability": 0.9963 + }, + { + "start": 5598.96, + "end": 5600.54, + "probability": 0.8345 + }, + { + "start": 5601.52, + "end": 5607.22, + "probability": 0.9258 + }, + { + "start": 5608.04, + "end": 5614.36, + "probability": 0.9721 + }, + { + "start": 5614.46, + "end": 5615.3, + "probability": 0.8302 + }, + { + "start": 5615.74, + "end": 5617.52, + "probability": 0.9739 + }, + { + "start": 5617.9, + "end": 5621.9, + "probability": 0.9793 + }, + { + "start": 5622.26, + "end": 5629.52, + "probability": 0.9854 + }, + { + "start": 5629.98, + "end": 5633.06, + "probability": 0.976 + }, + { + "start": 5634.1, + "end": 5636.21, + "probability": 0.7073 + }, + { + "start": 5636.74, + "end": 5639.18, + "probability": 0.8161 + }, + { + "start": 5639.92, + "end": 5642.5, + "probability": 0.9783 + }, + { + "start": 5661.1, + "end": 5663.06, + "probability": 0.5887 + }, + { + "start": 5663.96, + "end": 5666.06, + "probability": 0.8088 + }, + { + "start": 5667.02, + "end": 5670.16, + "probability": 0.6412 + }, + { + "start": 5671.29, + "end": 5676.7, + "probability": 0.8523 + }, + { + "start": 5676.72, + "end": 5677.28, + "probability": 0.8693 + }, + { + "start": 5678.04, + "end": 5679.28, + "probability": 0.8004 + }, + { + "start": 5680.02, + "end": 5683.52, + "probability": 0.9792 + }, + { + "start": 5684.26, + "end": 5689.12, + "probability": 0.9993 + }, + { + "start": 5690.12, + "end": 5694.08, + "probability": 0.7009 + }, + { + "start": 5695.76, + "end": 5699.18, + "probability": 0.9385 + }, + { + "start": 5700.0, + "end": 5701.74, + "probability": 0.8198 + }, + { + "start": 5703.28, + "end": 5705.54, + "probability": 0.9766 + }, + { + "start": 5707.44, + "end": 5712.94, + "probability": 0.9824 + }, + { + "start": 5713.14, + "end": 5713.54, + "probability": 0.3153 + }, + { + "start": 5714.92, + "end": 5716.64, + "probability": 0.9679 + }, + { + "start": 5717.84, + "end": 5721.68, + "probability": 0.7182 + }, + { + "start": 5722.52, + "end": 5726.12, + "probability": 0.8607 + }, + { + "start": 5727.0, + "end": 5729.26, + "probability": 0.6797 + }, + { + "start": 5730.8, + "end": 5732.86, + "probability": 0.6733 + }, + { + "start": 5733.72, + "end": 5736.62, + "probability": 0.9666 + }, + { + "start": 5736.74, + "end": 5737.18, + "probability": 0.9657 + }, + { + "start": 5737.54, + "end": 5740.24, + "probability": 0.8313 + }, + { + "start": 5741.16, + "end": 5745.72, + "probability": 0.9741 + }, + { + "start": 5746.08, + "end": 5747.38, + "probability": 0.9419 + }, + { + "start": 5747.76, + "end": 5748.78, + "probability": 0.7353 + }, + { + "start": 5749.94, + "end": 5754.66, + "probability": 0.9783 + }, + { + "start": 5755.36, + "end": 5759.86, + "probability": 0.9232 + }, + { + "start": 5760.4, + "end": 5763.38, + "probability": 0.9558 + }, + { + "start": 5763.8, + "end": 5764.3, + "probability": 0.7385 + }, + { + "start": 5764.42, + "end": 5765.02, + "probability": 0.8074 + }, + { + "start": 5765.68, + "end": 5769.2, + "probability": 0.8176 + }, + { + "start": 5769.6, + "end": 5771.52, + "probability": 0.8826 + }, + { + "start": 5771.9, + "end": 5773.34, + "probability": 0.9318 + }, + { + "start": 5773.62, + "end": 5778.94, + "probability": 0.981 + }, + { + "start": 5779.48, + "end": 5783.38, + "probability": 0.8953 + }, + { + "start": 5783.94, + "end": 5786.7, + "probability": 0.7106 + }, + { + "start": 5787.24, + "end": 5788.04, + "probability": 0.591 + }, + { + "start": 5788.54, + "end": 5788.88, + "probability": 0.6658 + }, + { + "start": 5789.56, + "end": 5790.26, + "probability": 0.5122 + }, + { + "start": 5790.72, + "end": 5793.0, + "probability": 0.8423 + }, + { + "start": 5793.6, + "end": 5794.8, + "probability": 0.9906 + }, + { + "start": 5795.2, + "end": 5796.4, + "probability": 0.9474 + }, + { + "start": 5796.94, + "end": 5801.9, + "probability": 0.9388 + }, + { + "start": 5802.08, + "end": 5803.3, + "probability": 0.9341 + }, + { + "start": 5803.78, + "end": 5805.6, + "probability": 0.8145 + }, + { + "start": 5806.02, + "end": 5808.34, + "probability": 0.7455 + }, + { + "start": 5808.42, + "end": 5811.62, + "probability": 0.7146 + }, + { + "start": 5811.84, + "end": 5813.28, + "probability": 0.6603 + }, + { + "start": 5813.48, + "end": 5815.6, + "probability": 0.9651 + }, + { + "start": 5815.96, + "end": 5819.92, + "probability": 0.6839 + }, + { + "start": 5820.14, + "end": 5822.56, + "probability": 0.9878 + }, + { + "start": 5822.74, + "end": 5827.52, + "probability": 0.7813 + }, + { + "start": 5827.56, + "end": 5828.74, + "probability": 0.7837 + }, + { + "start": 5829.06, + "end": 5829.68, + "probability": 0.5302 + }, + { + "start": 5829.86, + "end": 5831.26, + "probability": 0.9854 + }, + { + "start": 5831.44, + "end": 5834.16, + "probability": 0.9402 + }, + { + "start": 5834.62, + "end": 5836.44, + "probability": 0.9441 + }, + { + "start": 5836.78, + "end": 5838.76, + "probability": 0.9758 + }, + { + "start": 5839.48, + "end": 5841.7, + "probability": 0.9258 + }, + { + "start": 5842.06, + "end": 5846.98, + "probability": 0.968 + }, + { + "start": 5847.24, + "end": 5848.26, + "probability": 0.6724 + }, + { + "start": 5848.8, + "end": 5853.98, + "probability": 0.6751 + }, + { + "start": 5854.32, + "end": 5856.43, + "probability": 0.8618 + }, + { + "start": 5857.5, + "end": 5860.08, + "probability": 0.8049 + }, + { + "start": 5860.32, + "end": 5860.72, + "probability": 0.4369 + }, + { + "start": 5861.48, + "end": 5861.5, + "probability": 0.2719 + }, + { + "start": 5861.5, + "end": 5862.98, + "probability": 0.5355 + }, + { + "start": 5863.12, + "end": 5865.18, + "probability": 0.7793 + }, + { + "start": 5866.32, + "end": 5866.84, + "probability": 0.6968 + }, + { + "start": 5868.08, + "end": 5869.72, + "probability": 0.9364 + }, + { + "start": 5873.5, + "end": 5875.74, + "probability": 0.773 + }, + { + "start": 5877.46, + "end": 5879.88, + "probability": 0.9468 + }, + { + "start": 5880.66, + "end": 5882.16, + "probability": 0.7856 + }, + { + "start": 5895.55, + "end": 5899.5, + "probability": 0.7153 + }, + { + "start": 5902.1, + "end": 5904.28, + "probability": 0.9836 + }, + { + "start": 5906.22, + "end": 5910.08, + "probability": 0.9597 + }, + { + "start": 5912.8, + "end": 5913.94, + "probability": 0.981 + }, + { + "start": 5915.86, + "end": 5917.86, + "probability": 0.7592 + }, + { + "start": 5920.1, + "end": 5923.0, + "probability": 0.9839 + }, + { + "start": 5926.38, + "end": 5927.84, + "probability": 0.8377 + }, + { + "start": 5929.34, + "end": 5930.66, + "probability": 0.7128 + }, + { + "start": 5932.9, + "end": 5937.46, + "probability": 0.899 + }, + { + "start": 5940.56, + "end": 5942.8, + "probability": 0.6022 + }, + { + "start": 5945.12, + "end": 5945.92, + "probability": 0.5969 + }, + { + "start": 5947.84, + "end": 5949.08, + "probability": 0.8293 + }, + { + "start": 5951.0, + "end": 5953.48, + "probability": 0.9756 + }, + { + "start": 5954.54, + "end": 5957.8, + "probability": 0.9873 + }, + { + "start": 5959.1, + "end": 5960.5, + "probability": 0.8726 + }, + { + "start": 5962.26, + "end": 5965.36, + "probability": 0.9875 + }, + { + "start": 5967.98, + "end": 5968.6, + "probability": 0.8574 + }, + { + "start": 5969.4, + "end": 5973.78, + "probability": 0.9867 + }, + { + "start": 5975.1, + "end": 5977.06, + "probability": 0.9878 + }, + { + "start": 5977.86, + "end": 5979.06, + "probability": 0.8819 + }, + { + "start": 5979.7, + "end": 5983.1, + "probability": 0.9836 + }, + { + "start": 5984.82, + "end": 5988.9, + "probability": 0.9273 + }, + { + "start": 5990.5, + "end": 5991.42, + "probability": 0.9057 + }, + { + "start": 5992.48, + "end": 5994.04, + "probability": 0.9858 + }, + { + "start": 5994.78, + "end": 5995.74, + "probability": 0.939 + }, + { + "start": 5996.34, + "end": 6002.82, + "probability": 0.9766 + }, + { + "start": 6003.8, + "end": 6004.64, + "probability": 0.9438 + }, + { + "start": 6005.72, + "end": 6008.04, + "probability": 0.9879 + }, + { + "start": 6009.76, + "end": 6013.62, + "probability": 0.9958 + }, + { + "start": 6014.44, + "end": 6019.0, + "probability": 0.98 + }, + { + "start": 6020.2, + "end": 6021.28, + "probability": 0.9442 + }, + { + "start": 6022.42, + "end": 6024.52, + "probability": 0.9928 + }, + { + "start": 6025.44, + "end": 6026.76, + "probability": 0.8558 + }, + { + "start": 6028.2, + "end": 6031.38, + "probability": 0.8917 + }, + { + "start": 6032.84, + "end": 6034.88, + "probability": 0.9779 + }, + { + "start": 6036.52, + "end": 6037.68, + "probability": 0.9797 + }, + { + "start": 6039.36, + "end": 6040.28, + "probability": 0.7703 + }, + { + "start": 6042.1, + "end": 6044.88, + "probability": 0.7049 + }, + { + "start": 6046.06, + "end": 6047.18, + "probability": 0.7957 + }, + { + "start": 6048.62, + "end": 6049.79, + "probability": 0.5361 + }, + { + "start": 6053.22, + "end": 6055.4, + "probability": 0.9893 + }, + { + "start": 6056.52, + "end": 6058.58, + "probability": 0.685 + }, + { + "start": 6059.76, + "end": 6061.52, + "probability": 0.8412 + }, + { + "start": 6062.94, + "end": 6064.56, + "probability": 0.9979 + }, + { + "start": 6065.82, + "end": 6069.91, + "probability": 0.9888 + }, + { + "start": 6073.64, + "end": 6075.58, + "probability": 0.6288 + }, + { + "start": 6076.7, + "end": 6081.22, + "probability": 0.9951 + }, + { + "start": 6082.04, + "end": 6085.72, + "probability": 0.9211 + }, + { + "start": 6086.56, + "end": 6088.3, + "probability": 0.9939 + }, + { + "start": 6089.34, + "end": 6090.08, + "probability": 0.8975 + }, + { + "start": 6091.22, + "end": 6092.96, + "probability": 0.9968 + }, + { + "start": 6094.46, + "end": 6096.54, + "probability": 0.7522 + }, + { + "start": 6097.54, + "end": 6098.38, + "probability": 0.711 + }, + { + "start": 6099.32, + "end": 6102.72, + "probability": 0.8865 + }, + { + "start": 6103.34, + "end": 6107.54, + "probability": 0.9764 + }, + { + "start": 6108.56, + "end": 6111.04, + "probability": 0.9852 + }, + { + "start": 6111.4, + "end": 6112.45, + "probability": 0.5555 + }, + { + "start": 6112.92, + "end": 6113.18, + "probability": 0.4914 + }, + { + "start": 6113.38, + "end": 6117.56, + "probability": 0.9839 + }, + { + "start": 6117.56, + "end": 6121.58, + "probability": 0.9983 + }, + { + "start": 6122.28, + "end": 6125.28, + "probability": 0.9756 + }, + { + "start": 6125.38, + "end": 6125.64, + "probability": 0.8073 + }, + { + "start": 6125.74, + "end": 6127.56, + "probability": 0.5414 + }, + { + "start": 6127.68, + "end": 6130.0, + "probability": 0.9011 + }, + { + "start": 6131.08, + "end": 6133.24, + "probability": 0.9583 + }, + { + "start": 6144.92, + "end": 6145.62, + "probability": 0.6931 + }, + { + "start": 6146.8, + "end": 6148.44, + "probability": 0.7791 + }, + { + "start": 6149.64, + "end": 6152.54, + "probability": 0.9282 + }, + { + "start": 6153.68, + "end": 6157.26, + "probability": 0.9312 + }, + { + "start": 6158.62, + "end": 6160.9, + "probability": 0.7554 + }, + { + "start": 6162.32, + "end": 6163.21, + "probability": 0.8758 + }, + { + "start": 6164.32, + "end": 6165.8, + "probability": 0.7438 + }, + { + "start": 6165.98, + "end": 6166.98, + "probability": 0.6869 + }, + { + "start": 6167.06, + "end": 6170.12, + "probability": 0.9866 + }, + { + "start": 6170.36, + "end": 6175.46, + "probability": 0.9492 + }, + { + "start": 6176.32, + "end": 6178.76, + "probability": 0.9724 + }, + { + "start": 6179.36, + "end": 6181.46, + "probability": 0.7497 + }, + { + "start": 6182.36, + "end": 6187.12, + "probability": 0.8017 + }, + { + "start": 6187.5, + "end": 6190.42, + "probability": 0.8306 + }, + { + "start": 6191.1, + "end": 6192.78, + "probability": 0.9484 + }, + { + "start": 6193.48, + "end": 6196.02, + "probability": 0.768 + }, + { + "start": 6196.62, + "end": 6197.12, + "probability": 0.8509 + }, + { + "start": 6197.74, + "end": 6200.6, + "probability": 0.9789 + }, + { + "start": 6201.26, + "end": 6204.94, + "probability": 0.8353 + }, + { + "start": 6204.94, + "end": 6208.64, + "probability": 0.9926 + }, + { + "start": 6209.12, + "end": 6211.48, + "probability": 0.8613 + }, + { + "start": 6211.52, + "end": 6212.24, + "probability": 0.9164 + }, + { + "start": 6212.64, + "end": 6213.34, + "probability": 0.8931 + }, + { + "start": 6213.38, + "end": 6214.3, + "probability": 0.8658 + }, + { + "start": 6214.7, + "end": 6220.42, + "probability": 0.4536 + }, + { + "start": 6221.73, + "end": 6223.44, + "probability": 0.8374 + }, + { + "start": 6224.16, + "end": 6225.38, + "probability": 0.9068 + }, + { + "start": 6225.7, + "end": 6227.94, + "probability": 0.936 + }, + { + "start": 6228.32, + "end": 6232.64, + "probability": 0.8164 + }, + { + "start": 6233.22, + "end": 6239.22, + "probability": 0.9613 + }, + { + "start": 6239.78, + "end": 6240.39, + "probability": 0.5063 + }, + { + "start": 6241.1, + "end": 6241.86, + "probability": 0.9543 + }, + { + "start": 6242.02, + "end": 6242.74, + "probability": 0.9067 + }, + { + "start": 6242.82, + "end": 6245.84, + "probability": 0.4276 + }, + { + "start": 6246.62, + "end": 6248.24, + "probability": 0.7061 + }, + { + "start": 6248.8, + "end": 6255.34, + "probability": 0.772 + }, + { + "start": 6255.72, + "end": 6257.44, + "probability": 0.6416 + }, + { + "start": 6257.86, + "end": 6261.04, + "probability": 0.8529 + }, + { + "start": 6261.76, + "end": 6263.86, + "probability": 0.6548 + }, + { + "start": 6264.76, + "end": 6266.4, + "probability": 0.7385 + }, + { + "start": 6267.02, + "end": 6268.45, + "probability": 0.8163 + }, + { + "start": 6269.1, + "end": 6271.0, + "probability": 0.9836 + }, + { + "start": 6271.3, + "end": 6275.24, + "probability": 0.9922 + }, + { + "start": 6275.76, + "end": 6279.52, + "probability": 0.9948 + }, + { + "start": 6279.52, + "end": 6284.74, + "probability": 0.9027 + }, + { + "start": 6285.3, + "end": 6290.16, + "probability": 0.9977 + }, + { + "start": 6290.56, + "end": 6292.64, + "probability": 0.9341 + }, + { + "start": 6292.7, + "end": 6293.36, + "probability": 0.7204 + }, + { + "start": 6293.88, + "end": 6295.3, + "probability": 0.9635 + }, + { + "start": 6295.46, + "end": 6296.12, + "probability": 0.6703 + }, + { + "start": 6296.74, + "end": 6297.92, + "probability": 0.6127 + }, + { + "start": 6299.12, + "end": 6300.9, + "probability": 0.3606 + }, + { + "start": 6301.4, + "end": 6303.65, + "probability": 0.9286 + }, + { + "start": 6304.48, + "end": 6306.88, + "probability": 0.989 + }, + { + "start": 6307.36, + "end": 6310.22, + "probability": 0.8825 + }, + { + "start": 6310.68, + "end": 6312.08, + "probability": 0.953 + }, + { + "start": 6312.1, + "end": 6317.06, + "probability": 0.8898 + }, + { + "start": 6317.12, + "end": 6317.62, + "probability": 0.5594 + }, + { + "start": 6318.26, + "end": 6319.14, + "probability": 0.4729 + }, + { + "start": 6319.51, + "end": 6321.26, + "probability": 0.2277 + }, + { + "start": 6321.98, + "end": 6322.16, + "probability": 0.3568 + }, + { + "start": 6322.26, + "end": 6323.18, + "probability": 0.8093 + }, + { + "start": 6323.22, + "end": 6323.76, + "probability": 0.9461 + }, + { + "start": 6323.8, + "end": 6324.66, + "probability": 0.9376 + }, + { + "start": 6324.98, + "end": 6325.32, + "probability": 0.5718 + }, + { + "start": 6325.54, + "end": 6326.48, + "probability": 0.885 + }, + { + "start": 6326.7, + "end": 6329.82, + "probability": 0.991 + }, + { + "start": 6330.1, + "end": 6331.24, + "probability": 0.8768 + }, + { + "start": 6331.38, + "end": 6335.14, + "probability": 0.8341 + }, + { + "start": 6335.58, + "end": 6336.92, + "probability": 0.7972 + }, + { + "start": 6337.38, + "end": 6338.2, + "probability": 0.658 + }, + { + "start": 6341.7, + "end": 6343.46, + "probability": 0.337 + }, + { + "start": 6343.96, + "end": 6344.22, + "probability": 0.0443 + }, + { + "start": 6344.46, + "end": 6344.64, + "probability": 0.4206 + }, + { + "start": 6344.78, + "end": 6346.1, + "probability": 0.2362 + }, + { + "start": 6346.56, + "end": 6347.25, + "probability": 0.345 + }, + { + "start": 6347.78, + "end": 6348.46, + "probability": 0.7314 + }, + { + "start": 6348.48, + "end": 6350.66, + "probability": 0.799 + }, + { + "start": 6351.08, + "end": 6352.5, + "probability": 0.7786 + }, + { + "start": 6352.6, + "end": 6355.52, + "probability": 0.9303 + }, + { + "start": 6355.56, + "end": 6356.0, + "probability": 0.8558 + }, + { + "start": 6356.42, + "end": 6358.32, + "probability": 0.9326 + }, + { + "start": 6358.88, + "end": 6360.92, + "probability": 0.9858 + }, + { + "start": 6361.0, + "end": 6361.52, + "probability": 0.3774 + }, + { + "start": 6361.56, + "end": 6363.4, + "probability": 0.9674 + }, + { + "start": 6376.92, + "end": 6378.31, + "probability": 0.9719 + }, + { + "start": 6379.16, + "end": 6382.96, + "probability": 0.837 + }, + { + "start": 6383.8, + "end": 6384.5, + "probability": 0.8434 + }, + { + "start": 6385.86, + "end": 6391.26, + "probability": 0.9505 + }, + { + "start": 6392.22, + "end": 6396.2, + "probability": 0.3855 + }, + { + "start": 6396.2, + "end": 6397.04, + "probability": 0.2516 + }, + { + "start": 6398.84, + "end": 6400.16, + "probability": 0.9253 + }, + { + "start": 6401.74, + "end": 6404.04, + "probability": 0.7942 + }, + { + "start": 6405.76, + "end": 6407.7, + "probability": 0.9907 + }, + { + "start": 6408.76, + "end": 6411.04, + "probability": 0.9744 + }, + { + "start": 6412.26, + "end": 6416.32, + "probability": 0.967 + }, + { + "start": 6416.8, + "end": 6418.08, + "probability": 0.937 + }, + { + "start": 6418.44, + "end": 6419.78, + "probability": 0.7224 + }, + { + "start": 6421.64, + "end": 6422.28, + "probability": 0.6825 + }, + { + "start": 6423.52, + "end": 6430.72, + "probability": 0.8317 + }, + { + "start": 6430.76, + "end": 6431.54, + "probability": 0.8556 + }, + { + "start": 6432.42, + "end": 6435.26, + "probability": 0.9856 + }, + { + "start": 6436.4, + "end": 6440.36, + "probability": 0.9766 + }, + { + "start": 6441.64, + "end": 6443.92, + "probability": 0.8428 + }, + { + "start": 6444.96, + "end": 6446.14, + "probability": 0.9773 + }, + { + "start": 6447.62, + "end": 6449.94, + "probability": 0.8979 + }, + { + "start": 6450.7, + "end": 6452.96, + "probability": 0.9431 + }, + { + "start": 6455.14, + "end": 6456.86, + "probability": 0.7347 + }, + { + "start": 6457.96, + "end": 6460.16, + "probability": 0.7961 + }, + { + "start": 6461.02, + "end": 6461.84, + "probability": 0.9834 + }, + { + "start": 6462.5, + "end": 6464.87, + "probability": 0.2408 + }, + { + "start": 6464.96, + "end": 6465.22, + "probability": 0.5022 + }, + { + "start": 6465.24, + "end": 6465.84, + "probability": 0.7483 + }, + { + "start": 6465.86, + "end": 6467.66, + "probability": 0.9199 + }, + { + "start": 6467.66, + "end": 6468.58, + "probability": 0.3911 + }, + { + "start": 6469.04, + "end": 6470.42, + "probability": 0.5589 + }, + { + "start": 6470.66, + "end": 6472.8, + "probability": 0.6635 + }, + { + "start": 6472.82, + "end": 6477.78, + "probability": 0.9692 + }, + { + "start": 6479.06, + "end": 6485.94, + "probability": 0.9297 + }, + { + "start": 6486.88, + "end": 6489.02, + "probability": 0.7056 + }, + { + "start": 6490.16, + "end": 6493.26, + "probability": 0.6226 + }, + { + "start": 6495.58, + "end": 6503.12, + "probability": 0.958 + }, + { + "start": 6505.44, + "end": 6507.52, + "probability": 0.9258 + }, + { + "start": 6507.96, + "end": 6511.18, + "probability": 0.6727 + }, + { + "start": 6511.96, + "end": 6514.44, + "probability": 0.746 + }, + { + "start": 6514.46, + "end": 6515.92, + "probability": 0.3462 + }, + { + "start": 6516.24, + "end": 6517.54, + "probability": 0.9088 + }, + { + "start": 6518.04, + "end": 6519.48, + "probability": 0.9966 + }, + { + "start": 6520.94, + "end": 6523.52, + "probability": 0.9905 + }, + { + "start": 6526.34, + "end": 6528.24, + "probability": 0.8266 + }, + { + "start": 6529.13, + "end": 6531.56, + "probability": 0.7656 + }, + { + "start": 6532.34, + "end": 6532.99, + "probability": 0.8462 + }, + { + "start": 6534.22, + "end": 6535.72, + "probability": 0.3152 + }, + { + "start": 6535.94, + "end": 6536.88, + "probability": 0.8245 + }, + { + "start": 6536.9, + "end": 6537.78, + "probability": 0.762 + }, + { + "start": 6537.98, + "end": 6538.43, + "probability": 0.6772 + }, + { + "start": 6538.72, + "end": 6540.12, + "probability": 0.9609 + }, + { + "start": 6540.66, + "end": 6543.68, + "probability": 0.5558 + }, + { + "start": 6544.62, + "end": 6545.82, + "probability": 0.2136 + }, + { + "start": 6546.08, + "end": 6549.64, + "probability": 0.9612 + }, + { + "start": 6549.76, + "end": 6551.94, + "probability": 0.7963 + }, + { + "start": 6552.04, + "end": 6556.28, + "probability": 0.274 + }, + { + "start": 6557.08, + "end": 6557.94, + "probability": 0.0412 + }, + { + "start": 6559.48, + "end": 6560.38, + "probability": 0.7725 + }, + { + "start": 6561.3, + "end": 6562.44, + "probability": 0.8016 + }, + { + "start": 6562.48, + "end": 6565.22, + "probability": 0.811 + }, + { + "start": 6565.78, + "end": 6567.2, + "probability": 0.9365 + }, + { + "start": 6567.94, + "end": 6570.7, + "probability": 0.9594 + }, + { + "start": 6570.86, + "end": 6571.58, + "probability": 0.6643 + }, + { + "start": 6572.34, + "end": 6572.86, + "probability": 0.9961 + }, + { + "start": 6573.76, + "end": 6576.1, + "probability": 0.833 + }, + { + "start": 6576.66, + "end": 6577.98, + "probability": 0.8446 + }, + { + "start": 6579.12, + "end": 6582.94, + "probability": 0.9553 + }, + { + "start": 6582.94, + "end": 6588.16, + "probability": 0.9844 + }, + { + "start": 6588.82, + "end": 6590.25, + "probability": 0.8945 + }, + { + "start": 6594.26, + "end": 6597.34, + "probability": 0.8937 + }, + { + "start": 6597.88, + "end": 6601.76, + "probability": 0.7496 + }, + { + "start": 6602.74, + "end": 6604.7, + "probability": 0.9827 + }, + { + "start": 6605.3, + "end": 6608.1, + "probability": 0.9953 + }, + { + "start": 6608.84, + "end": 6610.84, + "probability": 0.9967 + }, + { + "start": 6611.84, + "end": 6615.44, + "probability": 0.8739 + }, + { + "start": 6615.46, + "end": 6616.44, + "probability": 0.8915 + }, + { + "start": 6617.56, + "end": 6618.86, + "probability": 0.9839 + }, + { + "start": 6619.04, + "end": 6620.16, + "probability": 0.9976 + }, + { + "start": 6621.2, + "end": 6623.58, + "probability": 0.8922 + }, + { + "start": 6624.72, + "end": 6625.22, + "probability": 0.5249 + }, + { + "start": 6625.6, + "end": 6627.52, + "probability": 0.7489 + }, + { + "start": 6628.4, + "end": 6630.22, + "probability": 0.806 + }, + { + "start": 6630.22, + "end": 6630.76, + "probability": 0.6694 + }, + { + "start": 6631.64, + "end": 6633.62, + "probability": 0.6965 + }, + { + "start": 6634.92, + "end": 6636.36, + "probability": 0.8017 + }, + { + "start": 6637.04, + "end": 6638.09, + "probability": 0.9875 + }, + { + "start": 6638.68, + "end": 6639.1, + "probability": 0.8654 + }, + { + "start": 6639.6, + "end": 6641.54, + "probability": 0.6071 + }, + { + "start": 6642.16, + "end": 6643.95, + "probability": 0.9626 + }, + { + "start": 6645.38, + "end": 6646.52, + "probability": 0.9885 + }, + { + "start": 6647.46, + "end": 6650.26, + "probability": 0.6543 + }, + { + "start": 6652.87, + "end": 6653.4, + "probability": 0.1133 + }, + { + "start": 6653.48, + "end": 6654.54, + "probability": 0.4952 + }, + { + "start": 6654.72, + "end": 6656.62, + "probability": 0.5118 + }, + { + "start": 6656.84, + "end": 6657.9, + "probability": 0.7517 + }, + { + "start": 6659.39, + "end": 6661.4, + "probability": 0.7353 + }, + { + "start": 6661.7, + "end": 6663.02, + "probability": 0.288 + }, + { + "start": 6663.02, + "end": 6663.7, + "probability": 0.2933 + }, + { + "start": 6664.64, + "end": 6664.86, + "probability": 0.7664 + }, + { + "start": 6665.66, + "end": 6665.96, + "probability": 0.8264 + }, + { + "start": 6666.02, + "end": 6666.66, + "probability": 0.954 + }, + { + "start": 6666.7, + "end": 6670.64, + "probability": 0.8176 + }, + { + "start": 6681.44, + "end": 6682.58, + "probability": 0.5035 + }, + { + "start": 6683.9, + "end": 6685.52, + "probability": 0.8086 + }, + { + "start": 6686.3, + "end": 6687.04, + "probability": 0.7283 + }, + { + "start": 6688.76, + "end": 6690.7, + "probability": 0.6419 + }, + { + "start": 6691.92, + "end": 6698.22, + "probability": 0.6837 + }, + { + "start": 6699.38, + "end": 6701.24, + "probability": 0.9615 + }, + { + "start": 6701.48, + "end": 6709.39, + "probability": 0.9336 + }, + { + "start": 6710.58, + "end": 6711.4, + "probability": 0.6614 + }, + { + "start": 6713.66, + "end": 6714.7, + "probability": 0.999 + }, + { + "start": 6717.38, + "end": 6720.4, + "probability": 0.8963 + }, + { + "start": 6722.3, + "end": 6726.84, + "probability": 0.5106 + }, + { + "start": 6728.08, + "end": 6730.32, + "probability": 0.8483 + }, + { + "start": 6731.82, + "end": 6733.6, + "probability": 0.3596 + }, + { + "start": 6734.18, + "end": 6736.12, + "probability": 0.9611 + }, + { + "start": 6737.16, + "end": 6741.6, + "probability": 0.9941 + }, + { + "start": 6742.84, + "end": 6746.2, + "probability": 0.9767 + }, + { + "start": 6747.42, + "end": 6751.16, + "probability": 0.9824 + }, + { + "start": 6753.54, + "end": 6755.36, + "probability": 0.9201 + }, + { + "start": 6756.04, + "end": 6760.18, + "probability": 0.9683 + }, + { + "start": 6761.3, + "end": 6763.82, + "probability": 0.8362 + }, + { + "start": 6763.9, + "end": 6765.48, + "probability": 0.7632 + }, + { + "start": 6766.18, + "end": 6769.42, + "probability": 0.7227 + }, + { + "start": 6770.64, + "end": 6770.74, + "probability": 0.5838 + }, + { + "start": 6770.74, + "end": 6774.5, + "probability": 0.9023 + }, + { + "start": 6774.74, + "end": 6776.94, + "probability": 0.8638 + }, + { + "start": 6777.78, + "end": 6779.22, + "probability": 0.725 + }, + { + "start": 6779.76, + "end": 6781.96, + "probability": 0.7793 + }, + { + "start": 6782.66, + "end": 6784.84, + "probability": 0.8921 + }, + { + "start": 6786.38, + "end": 6792.48, + "probability": 0.9738 + }, + { + "start": 6792.48, + "end": 6796.88, + "probability": 0.8988 + }, + { + "start": 6797.84, + "end": 6798.78, + "probability": 0.787 + }, + { + "start": 6799.7, + "end": 6800.4, + "probability": 0.6592 + }, + { + "start": 6802.48, + "end": 6807.8, + "probability": 0.9937 + }, + { + "start": 6809.5, + "end": 6810.44, + "probability": 0.8957 + }, + { + "start": 6810.48, + "end": 6813.6, + "probability": 0.7912 + }, + { + "start": 6813.68, + "end": 6814.38, + "probability": 0.4426 + }, + { + "start": 6815.02, + "end": 6815.84, + "probability": 0.7456 + }, + { + "start": 6815.92, + "end": 6817.62, + "probability": 0.9888 + }, + { + "start": 6818.66, + "end": 6821.65, + "probability": 0.9229 + }, + { + "start": 6822.84, + "end": 6824.5, + "probability": 0.9888 + }, + { + "start": 6824.54, + "end": 6827.68, + "probability": 0.9831 + }, + { + "start": 6828.24, + "end": 6832.18, + "probability": 0.9541 + }, + { + "start": 6833.0, + "end": 6835.66, + "probability": 0.8789 + }, + { + "start": 6837.52, + "end": 6845.22, + "probability": 0.7995 + }, + { + "start": 6845.82, + "end": 6847.62, + "probability": 0.904 + }, + { + "start": 6848.32, + "end": 6850.16, + "probability": 0.7638 + }, + { + "start": 6850.68, + "end": 6852.24, + "probability": 0.7712 + }, + { + "start": 6853.52, + "end": 6858.04, + "probability": 0.9358 + }, + { + "start": 6859.3, + "end": 6868.12, + "probability": 0.974 + }, + { + "start": 6868.4, + "end": 6870.66, + "probability": 0.6717 + }, + { + "start": 6870.68, + "end": 6873.94, + "probability": 0.7203 + }, + { + "start": 6874.16, + "end": 6875.62, + "probability": 0.6606 + }, + { + "start": 6875.78, + "end": 6877.96, + "probability": 0.67 + }, + { + "start": 6878.42, + "end": 6879.86, + "probability": 0.8853 + }, + { + "start": 6881.02, + "end": 6886.18, + "probability": 0.9159 + }, + { + "start": 6886.58, + "end": 6891.2, + "probability": 0.9159 + }, + { + "start": 6891.62, + "end": 6892.06, + "probability": 0.6986 + }, + { + "start": 6892.4, + "end": 6894.52, + "probability": 0.5024 + }, + { + "start": 6895.6, + "end": 6899.06, + "probability": 0.9328 + }, + { + "start": 6899.58, + "end": 6902.02, + "probability": 0.9265 + }, + { + "start": 6902.02, + "end": 6903.18, + "probability": 0.8697 + }, + { + "start": 6904.66, + "end": 6907.84, + "probability": 0.9236 + }, + { + "start": 6920.39, + "end": 6921.02, + "probability": 0.1604 + }, + { + "start": 6921.02, + "end": 6921.02, + "probability": 0.16 + }, + { + "start": 6921.02, + "end": 6921.02, + "probability": 0.2266 + }, + { + "start": 6921.02, + "end": 6921.02, + "probability": 0.1053 + }, + { + "start": 6921.02, + "end": 6921.02, + "probability": 0.0057 + }, + { + "start": 6921.02, + "end": 6921.74, + "probability": 0.2976 + }, + { + "start": 6922.9, + "end": 6925.46, + "probability": 0.7194 + }, + { + "start": 6925.46, + "end": 6925.98, + "probability": 0.3171 + }, + { + "start": 6926.04, + "end": 6927.06, + "probability": 0.7507 + }, + { + "start": 6927.14, + "end": 6930.28, + "probability": 0.9783 + }, + { + "start": 6930.62, + "end": 6930.86, + "probability": 0.8351 + }, + { + "start": 6930.94, + "end": 6933.28, + "probability": 0.9755 + }, + { + "start": 6933.98, + "end": 6936.24, + "probability": 0.9895 + }, + { + "start": 6936.36, + "end": 6937.26, + "probability": 0.9858 + }, + { + "start": 6937.44, + "end": 6938.66, + "probability": 0.989 + }, + { + "start": 6938.96, + "end": 6940.2, + "probability": 0.8558 + }, + { + "start": 6940.76, + "end": 6941.52, + "probability": 0.5451 + }, + { + "start": 6941.86, + "end": 6947.54, + "probability": 0.9544 + }, + { + "start": 6947.82, + "end": 6949.4, + "probability": 0.8834 + }, + { + "start": 6950.2, + "end": 6951.14, + "probability": 0.9303 + }, + { + "start": 6951.76, + "end": 6953.54, + "probability": 0.998 + }, + { + "start": 6953.54, + "end": 6956.28, + "probability": 0.996 + }, + { + "start": 6956.34, + "end": 6960.54, + "probability": 0.9815 + }, + { + "start": 6960.54, + "end": 6964.38, + "probability": 0.9214 + }, + { + "start": 6964.9, + "end": 6966.54, + "probability": 0.9377 + }, + { + "start": 6966.64, + "end": 6966.8, + "probability": 0.7305 + }, + { + "start": 6966.92, + "end": 6969.44, + "probability": 0.9286 + }, + { + "start": 6969.98, + "end": 6972.62, + "probability": 0.9067 + }, + { + "start": 6972.7, + "end": 6973.86, + "probability": 0.4579 + }, + { + "start": 6973.92, + "end": 6974.8, + "probability": 0.9135 + }, + { + "start": 6974.96, + "end": 6975.98, + "probability": 0.7441 + }, + { + "start": 6976.42, + "end": 6979.66, + "probability": 0.8984 + }, + { + "start": 6979.9, + "end": 6980.5, + "probability": 0.629 + }, + { + "start": 6980.54, + "end": 6981.4, + "probability": 0.8733 + }, + { + "start": 6981.44, + "end": 6983.64, + "probability": 0.9321 + }, + { + "start": 6984.32, + "end": 6987.38, + "probability": 0.8026 + }, + { + "start": 6988.1, + "end": 6990.48, + "probability": 0.9638 + }, + { + "start": 6990.56, + "end": 6997.02, + "probability": 0.856 + }, + { + "start": 6997.96, + "end": 6998.96, + "probability": 0.8588 + }, + { + "start": 6999.8, + "end": 7005.2, + "probability": 0.9692 + }, + { + "start": 7005.32, + "end": 7008.11, + "probability": 0.9975 + }, + { + "start": 7008.74, + "end": 7010.62, + "probability": 0.9548 + }, + { + "start": 7011.14, + "end": 7012.2, + "probability": 0.4791 + }, + { + "start": 7012.32, + "end": 7013.78, + "probability": 0.865 + }, + { + "start": 7013.9, + "end": 7016.22, + "probability": 0.8217 + }, + { + "start": 7016.52, + "end": 7018.06, + "probability": 0.8548 + }, + { + "start": 7018.18, + "end": 7018.76, + "probability": 0.7637 + }, + { + "start": 7018.86, + "end": 7019.2, + "probability": 0.3604 + }, + { + "start": 7019.6, + "end": 7021.74, + "probability": 0.7504 + }, + { + "start": 7021.78, + "end": 7022.82, + "probability": 0.5639 + }, + { + "start": 7022.92, + "end": 7023.78, + "probability": 0.7295 + }, + { + "start": 7024.14, + "end": 7025.1, + "probability": 0.9676 + }, + { + "start": 7025.36, + "end": 7029.94, + "probability": 0.7747 + }, + { + "start": 7030.02, + "end": 7031.32, + "probability": 0.8331 + }, + { + "start": 7031.98, + "end": 7033.38, + "probability": 0.749 + }, + { + "start": 7034.06, + "end": 7038.58, + "probability": 0.9926 + }, + { + "start": 7038.58, + "end": 7042.18, + "probability": 0.9985 + }, + { + "start": 7042.34, + "end": 7044.76, + "probability": 0.9983 + }, + { + "start": 7044.76, + "end": 7047.58, + "probability": 0.998 + }, + { + "start": 7048.22, + "end": 7052.38, + "probability": 0.9775 + }, + { + "start": 7052.44, + "end": 7053.56, + "probability": 0.9627 + }, + { + "start": 7053.86, + "end": 7056.3, + "probability": 0.9703 + }, + { + "start": 7057.1, + "end": 7060.88, + "probability": 0.9863 + }, + { + "start": 7061.16, + "end": 7070.28, + "probability": 0.9907 + }, + { + "start": 7071.08, + "end": 7074.24, + "probability": 0.9985 + }, + { + "start": 7074.24, + "end": 7078.62, + "probability": 0.6312 + }, + { + "start": 7079.14, + "end": 7084.12, + "probability": 0.9938 + }, + { + "start": 7084.46, + "end": 7091.46, + "probability": 0.9848 + }, + { + "start": 7091.82, + "end": 7096.7, + "probability": 0.9887 + }, + { + "start": 7096.8, + "end": 7101.92, + "probability": 0.9389 + }, + { + "start": 7101.92, + "end": 7108.06, + "probability": 0.9924 + }, + { + "start": 7108.36, + "end": 7110.08, + "probability": 0.9954 + }, + { + "start": 7110.36, + "end": 7111.54, + "probability": 0.9517 + }, + { + "start": 7112.02, + "end": 7115.84, + "probability": 0.8298 + }, + { + "start": 7116.24, + "end": 7119.46, + "probability": 0.9844 + }, + { + "start": 7119.66, + "end": 7120.16, + "probability": 0.7575 + }, + { + "start": 7120.94, + "end": 7122.8, + "probability": 0.9985 + }, + { + "start": 7122.98, + "end": 7123.68, + "probability": 0.7316 + }, + { + "start": 7123.78, + "end": 7127.26, + "probability": 0.9888 + }, + { + "start": 7127.38, + "end": 7127.74, + "probability": 0.7001 + }, + { + "start": 7128.18, + "end": 7130.86, + "probability": 0.9601 + }, + { + "start": 7130.94, + "end": 7134.06, + "probability": 0.7182 + }, + { + "start": 7134.72, + "end": 7136.7, + "probability": 0.6099 + }, + { + "start": 7137.26, + "end": 7137.92, + "probability": 0.5493 + }, + { + "start": 7139.5, + "end": 7141.62, + "probability": 0.853 + }, + { + "start": 7143.2, + "end": 7144.02, + "probability": 0.7069 + }, + { + "start": 7144.54, + "end": 7146.1, + "probability": 0.9486 + }, + { + "start": 7154.26, + "end": 7155.0, + "probability": 0.7258 + }, + { + "start": 7155.16, + "end": 7155.98, + "probability": 0.8561 + }, + { + "start": 7156.2, + "end": 7157.7, + "probability": 0.8958 + }, + { + "start": 7157.84, + "end": 7159.1, + "probability": 0.7462 + }, + { + "start": 7160.44, + "end": 7163.24, + "probability": 0.9659 + }, + { + "start": 7164.2, + "end": 7166.26, + "probability": 0.9985 + }, + { + "start": 7166.3, + "end": 7166.68, + "probability": 0.4008 + }, + { + "start": 7166.68, + "end": 7172.02, + "probability": 0.9951 + }, + { + "start": 7172.78, + "end": 7173.56, + "probability": 0.7723 + }, + { + "start": 7175.22, + "end": 7178.5, + "probability": 0.7799 + }, + { + "start": 7179.44, + "end": 7184.58, + "probability": 0.8095 + }, + { + "start": 7186.8, + "end": 7187.94, + "probability": 0.8515 + }, + { + "start": 7188.6, + "end": 7193.84, + "probability": 0.9241 + }, + { + "start": 7195.44, + "end": 7197.38, + "probability": 0.1554 + }, + { + "start": 7197.48, + "end": 7200.02, + "probability": 0.36 + }, + { + "start": 7200.12, + "end": 7200.22, + "probability": 0.405 + }, + { + "start": 7202.04, + "end": 7203.02, + "probability": 0.701 + }, + { + "start": 7203.44, + "end": 7205.02, + "probability": 0.7463 + }, + { + "start": 7205.16, + "end": 7208.4, + "probability": 0.356 + }, + { + "start": 7208.84, + "end": 7211.94, + "probability": 0.2548 + }, + { + "start": 7213.28, + "end": 7215.54, + "probability": 0.695 + }, + { + "start": 7216.16, + "end": 7219.08, + "probability": 0.7205 + }, + { + "start": 7219.64, + "end": 7221.86, + "probability": 0.6192 + }, + { + "start": 7222.54, + "end": 7223.06, + "probability": 0.0368 + }, + { + "start": 7223.12, + "end": 7228.08, + "probability": 0.9384 + }, + { + "start": 7230.12, + "end": 7233.44, + "probability": 0.7955 + }, + { + "start": 7234.18, + "end": 7237.86, + "probability": 0.9391 + }, + { + "start": 7238.0, + "end": 7239.66, + "probability": 0.9711 + }, + { + "start": 7242.26, + "end": 7245.82, + "probability": 0.9857 + }, + { + "start": 7246.48, + "end": 7248.44, + "probability": 0.9489 + }, + { + "start": 7248.6, + "end": 7251.2, + "probability": 0.9961 + }, + { + "start": 7251.82, + "end": 7253.28, + "probability": 0.7147 + }, + { + "start": 7254.22, + "end": 7257.74, + "probability": 0.8064 + }, + { + "start": 7258.42, + "end": 7259.93, + "probability": 0.9963 + }, + { + "start": 7260.1, + "end": 7262.32, + "probability": 0.7896 + }, + { + "start": 7263.06, + "end": 7264.44, + "probability": 0.9229 + }, + { + "start": 7265.4, + "end": 7268.56, + "probability": 0.9991 + }, + { + "start": 7269.32, + "end": 7272.48, + "probability": 0.9726 + }, + { + "start": 7273.22, + "end": 7275.12, + "probability": 0.9501 + }, + { + "start": 7276.68, + "end": 7279.04, + "probability": 0.9883 + }, + { + "start": 7279.18, + "end": 7282.72, + "probability": 0.8327 + }, + { + "start": 7282.8, + "end": 7284.06, + "probability": 0.994 + }, + { + "start": 7284.16, + "end": 7284.54, + "probability": 0.3931 + }, + { + "start": 7284.62, + "end": 7286.14, + "probability": 0.6882 + }, + { + "start": 7286.2, + "end": 7288.44, + "probability": 0.9662 + }, + { + "start": 7288.84, + "end": 7290.24, + "probability": 0.9574 + }, + { + "start": 7290.7, + "end": 7292.99, + "probability": 0.9504 + }, + { + "start": 7295.5, + "end": 7295.98, + "probability": 0.9433 + }, + { + "start": 7296.08, + "end": 7297.5, + "probability": 0.9073 + }, + { + "start": 7297.94, + "end": 7299.64, + "probability": 0.794 + }, + { + "start": 7299.7, + "end": 7301.24, + "probability": 0.9575 + }, + { + "start": 7301.38, + "end": 7301.96, + "probability": 0.7908 + }, + { + "start": 7303.24, + "end": 7304.64, + "probability": 0.6095 + }, + { + "start": 7304.8, + "end": 7305.28, + "probability": 0.6779 + }, + { + "start": 7305.34, + "end": 7306.9, + "probability": 0.9092 + }, + { + "start": 7307.5, + "end": 7309.8, + "probability": 0.92 + }, + { + "start": 7311.02, + "end": 7317.16, + "probability": 0.978 + }, + { + "start": 7317.66, + "end": 7319.96, + "probability": 0.8034 + }, + { + "start": 7321.3, + "end": 7323.64, + "probability": 0.9754 + }, + { + "start": 7324.08, + "end": 7325.12, + "probability": 0.7897 + }, + { + "start": 7326.34, + "end": 7328.12, + "probability": 0.9209 + }, + { + "start": 7330.9, + "end": 7333.22, + "probability": 0.9841 + }, + { + "start": 7333.22, + "end": 7339.36, + "probability": 0.9648 + }, + { + "start": 7339.56, + "end": 7340.02, + "probability": 0.5074 + }, + { + "start": 7340.06, + "end": 7341.6, + "probability": 0.9327 + }, + { + "start": 7342.26, + "end": 7344.56, + "probability": 0.9946 + }, + { + "start": 7344.6, + "end": 7345.16, + "probability": 0.687 + }, + { + "start": 7345.3, + "end": 7346.06, + "probability": 0.6182 + }, + { + "start": 7346.1, + "end": 7348.1, + "probability": 0.8014 + }, + { + "start": 7348.62, + "end": 7350.6, + "probability": 0.9023 + }, + { + "start": 7351.26, + "end": 7355.36, + "probability": 0.9495 + }, + { + "start": 7355.62, + "end": 7356.56, + "probability": 0.8651 + }, + { + "start": 7356.64, + "end": 7361.14, + "probability": 0.9747 + }, + { + "start": 7361.7, + "end": 7364.0, + "probability": 0.7668 + }, + { + "start": 7366.14, + "end": 7369.76, + "probability": 0.922 + }, + { + "start": 7370.76, + "end": 7370.76, + "probability": 0.2021 + }, + { + "start": 7370.78, + "end": 7372.8, + "probability": 0.9519 + }, + { + "start": 7373.76, + "end": 7378.72, + "probability": 0.9982 + }, + { + "start": 7379.28, + "end": 7382.18, + "probability": 0.8015 + }, + { + "start": 7382.8, + "end": 7384.51, + "probability": 0.9817 + }, + { + "start": 7385.5, + "end": 7387.0, + "probability": 0.903 + }, + { + "start": 7387.04, + "end": 7387.3, + "probability": 0.7221 + }, + { + "start": 7387.74, + "end": 7389.56, + "probability": 0.7148 + }, + { + "start": 7389.66, + "end": 7391.86, + "probability": 0.9609 + }, + { + "start": 7392.26, + "end": 7392.9, + "probability": 0.3918 + }, + { + "start": 7392.92, + "end": 7395.48, + "probability": 0.9774 + }, + { + "start": 7400.64, + "end": 7402.76, + "probability": 0.5457 + }, + { + "start": 7403.98, + "end": 7410.83, + "probability": 0.9648 + }, + { + "start": 7411.44, + "end": 7416.24, + "probability": 0.9985 + }, + { + "start": 7416.32, + "end": 7418.02, + "probability": 0.9583 + }, + { + "start": 7419.68, + "end": 7419.84, + "probability": 0.1856 + }, + { + "start": 7421.8, + "end": 7423.2, + "probability": 0.1417 + }, + { + "start": 7423.6, + "end": 7425.74, + "probability": 0.9854 + }, + { + "start": 7425.84, + "end": 7427.82, + "probability": 0.1162 + }, + { + "start": 7428.16, + "end": 7428.78, + "probability": 0.394 + }, + { + "start": 7429.42, + "end": 7430.24, + "probability": 0.9922 + }, + { + "start": 7430.36, + "end": 7431.06, + "probability": 0.7965 + }, + { + "start": 7431.26, + "end": 7439.96, + "probability": 0.994 + }, + { + "start": 7441.0, + "end": 7445.5, + "probability": 0.9711 + }, + { + "start": 7446.04, + "end": 7447.28, + "probability": 0.6967 + }, + { + "start": 7447.82, + "end": 7453.44, + "probability": 0.9889 + }, + { + "start": 7455.26, + "end": 7464.42, + "probability": 0.9556 + }, + { + "start": 7466.36, + "end": 7469.18, + "probability": 0.978 + }, + { + "start": 7470.42, + "end": 7471.8, + "probability": 0.9987 + }, + { + "start": 7472.76, + "end": 7474.4, + "probability": 0.8901 + }, + { + "start": 7474.6, + "end": 7475.18, + "probability": 0.793 + }, + { + "start": 7475.64, + "end": 7477.18, + "probability": 0.9985 + }, + { + "start": 7477.66, + "end": 7481.28, + "probability": 0.9961 + }, + { + "start": 7481.28, + "end": 7485.34, + "probability": 0.9941 + }, + { + "start": 7486.3, + "end": 7488.6, + "probability": 0.882 + }, + { + "start": 7488.98, + "end": 7490.76, + "probability": 0.9291 + }, + { + "start": 7491.3, + "end": 7493.53, + "probability": 0.9229 + }, + { + "start": 7494.6, + "end": 7495.39, + "probability": 0.9224 + }, + { + "start": 7496.52, + "end": 7497.78, + "probability": 0.9824 + }, + { + "start": 7498.7, + "end": 7501.4, + "probability": 0.991 + }, + { + "start": 7501.46, + "end": 7505.36, + "probability": 0.9257 + }, + { + "start": 7505.92, + "end": 7507.85, + "probability": 0.7953 + }, + { + "start": 7508.22, + "end": 7509.76, + "probability": 0.9814 + }, + { + "start": 7510.92, + "end": 7514.56, + "probability": 0.8765 + }, + { + "start": 7515.0, + "end": 7517.44, + "probability": 0.9154 + }, + { + "start": 7517.7, + "end": 7520.88, + "probability": 0.804 + }, + { + "start": 7521.52, + "end": 7522.32, + "probability": 0.7473 + }, + { + "start": 7522.46, + "end": 7522.64, + "probability": 0.4735 + }, + { + "start": 7522.68, + "end": 7523.12, + "probability": 0.7269 + }, + { + "start": 7523.56, + "end": 7524.42, + "probability": 0.743 + }, + { + "start": 7524.66, + "end": 7525.34, + "probability": 0.8128 + }, + { + "start": 7525.46, + "end": 7527.53, + "probability": 0.9876 + }, + { + "start": 7528.44, + "end": 7532.48, + "probability": 0.9869 + }, + { + "start": 7533.4, + "end": 7534.92, + "probability": 0.9951 + }, + { + "start": 7535.76, + "end": 7536.76, + "probability": 0.9203 + }, + { + "start": 7536.94, + "end": 7537.84, + "probability": 0.9688 + }, + { + "start": 7538.52, + "end": 7541.42, + "probability": 0.9932 + }, + { + "start": 7542.64, + "end": 7543.16, + "probability": 0.9273 + }, + { + "start": 7543.98, + "end": 7545.12, + "probability": 0.9427 + }, + { + "start": 7545.66, + "end": 7546.98, + "probability": 0.9401 + }, + { + "start": 7547.76, + "end": 7548.52, + "probability": 0.7361 + }, + { + "start": 7548.68, + "end": 7548.86, + "probability": 0.5682 + }, + { + "start": 7548.92, + "end": 7549.82, + "probability": 0.9604 + }, + { + "start": 7550.26, + "end": 7554.0, + "probability": 0.9714 + }, + { + "start": 7554.0, + "end": 7558.26, + "probability": 0.9634 + }, + { + "start": 7559.36, + "end": 7561.92, + "probability": 0.934 + }, + { + "start": 7562.58, + "end": 7564.02, + "probability": 0.9678 + }, + { + "start": 7564.56, + "end": 7567.86, + "probability": 0.9639 + }, + { + "start": 7568.38, + "end": 7569.44, + "probability": 0.9279 + }, + { + "start": 7569.52, + "end": 7570.66, + "probability": 0.9857 + }, + { + "start": 7570.74, + "end": 7575.16, + "probability": 0.9947 + }, + { + "start": 7575.16, + "end": 7579.92, + "probability": 0.9607 + }, + { + "start": 7580.22, + "end": 7582.0, + "probability": 0.9839 + }, + { + "start": 7584.72, + "end": 7588.28, + "probability": 0.9961 + }, + { + "start": 7588.7, + "end": 7589.68, + "probability": 0.9573 + }, + { + "start": 7590.08, + "end": 7591.04, + "probability": 0.939 + }, + { + "start": 7593.43, + "end": 7596.09, + "probability": 0.884 + }, + { + "start": 7596.86, + "end": 7599.0, + "probability": 0.9373 + }, + { + "start": 7599.46, + "end": 7600.22, + "probability": 0.9162 + }, + { + "start": 7600.3, + "end": 7601.28, + "probability": 0.6917 + }, + { + "start": 7601.38, + "end": 7604.34, + "probability": 0.8657 + }, + { + "start": 7604.7, + "end": 7605.6, + "probability": 0.8124 + }, + { + "start": 7605.7, + "end": 7606.84, + "probability": 0.9883 + }, + { + "start": 7607.44, + "end": 7609.91, + "probability": 0.9873 + }, + { + "start": 7610.4, + "end": 7611.36, + "probability": 0.9387 + }, + { + "start": 7611.5, + "end": 7612.88, + "probability": 0.7952 + }, + { + "start": 7613.18, + "end": 7615.66, + "probability": 0.9988 + }, + { + "start": 7616.26, + "end": 7618.9, + "probability": 0.9829 + }, + { + "start": 7619.48, + "end": 7621.26, + "probability": 0.8588 + }, + { + "start": 7621.92, + "end": 7625.84, + "probability": 0.9111 + }, + { + "start": 7626.8, + "end": 7630.94, + "probability": 0.9684 + }, + { + "start": 7631.76, + "end": 7633.56, + "probability": 0.7012 + }, + { + "start": 7633.8, + "end": 7636.7, + "probability": 0.8467 + }, + { + "start": 7637.26, + "end": 7637.54, + "probability": 0.3369 + }, + { + "start": 7637.64, + "end": 7640.1, + "probability": 0.9982 + }, + { + "start": 7640.6, + "end": 7644.6, + "probability": 0.7975 + }, + { + "start": 7645.04, + "end": 7647.46, + "probability": 0.9867 + }, + { + "start": 7648.5, + "end": 7651.52, + "probability": 0.9901 + }, + { + "start": 7652.16, + "end": 7656.02, + "probability": 0.8185 + }, + { + "start": 7656.02, + "end": 7656.12, + "probability": 0.514 + }, + { + "start": 7657.08, + "end": 7658.68, + "probability": 0.9771 + }, + { + "start": 7659.6, + "end": 7660.42, + "probability": 0.8045 + }, + { + "start": 7660.72, + "end": 7661.79, + "probability": 0.9883 + }, + { + "start": 7662.08, + "end": 7663.38, + "probability": 0.9883 + }, + { + "start": 7664.16, + "end": 7667.02, + "probability": 0.8867 + }, + { + "start": 7667.42, + "end": 7669.5, + "probability": 0.8389 + }, + { + "start": 7669.58, + "end": 7670.94, + "probability": 0.9982 + }, + { + "start": 7671.5, + "end": 7673.08, + "probability": 0.998 + }, + { + "start": 7673.58, + "end": 7677.35, + "probability": 0.9365 + }, + { + "start": 7678.56, + "end": 7683.26, + "probability": 0.9886 + }, + { + "start": 7683.56, + "end": 7684.0, + "probability": 0.6649 + }, + { + "start": 7684.18, + "end": 7685.04, + "probability": 0.7381 + }, + { + "start": 7685.16, + "end": 7686.93, + "probability": 0.9813 + }, + { + "start": 7687.68, + "end": 7689.54, + "probability": 0.9233 + }, + { + "start": 7690.34, + "end": 7691.82, + "probability": 0.9768 + }, + { + "start": 7692.16, + "end": 7693.02, + "probability": 0.9861 + }, + { + "start": 7693.14, + "end": 7693.96, + "probability": 0.9299 + }, + { + "start": 7694.38, + "end": 7695.32, + "probability": 0.9106 + }, + { + "start": 7695.62, + "end": 7698.38, + "probability": 0.9881 + }, + { + "start": 7698.42, + "end": 7699.22, + "probability": 0.849 + }, + { + "start": 7699.84, + "end": 7702.46, + "probability": 0.7007 + }, + { + "start": 7702.96, + "end": 7705.32, + "probability": 0.9712 + }, + { + "start": 7705.66, + "end": 7706.86, + "probability": 0.988 + }, + { + "start": 7706.92, + "end": 7709.52, + "probability": 0.8843 + }, + { + "start": 7709.64, + "end": 7713.84, + "probability": 0.9817 + }, + { + "start": 7714.8, + "end": 7716.38, + "probability": 0.9719 + }, + { + "start": 7717.0, + "end": 7718.48, + "probability": 0.9777 + }, + { + "start": 7718.92, + "end": 7723.02, + "probability": 0.996 + }, + { + "start": 7724.84, + "end": 7727.1, + "probability": 0.8052 + }, + { + "start": 7727.1, + "end": 7727.36, + "probability": 0.7901 + }, + { + "start": 7727.4, + "end": 7731.66, + "probability": 0.931 + }, + { + "start": 7731.98, + "end": 7733.56, + "probability": 0.9914 + }, + { + "start": 7733.98, + "end": 7735.32, + "probability": 0.9806 + }, + { + "start": 7735.8, + "end": 7736.2, + "probability": 0.7161 + }, + { + "start": 7736.7, + "end": 7738.84, + "probability": 0.9785 + }, + { + "start": 7738.94, + "end": 7743.82, + "probability": 0.982 + }, + { + "start": 7744.8, + "end": 7746.57, + "probability": 0.8583 + }, + { + "start": 7747.08, + "end": 7753.98, + "probability": 0.8971 + }, + { + "start": 7754.94, + "end": 7755.82, + "probability": 0.0562 + }, + { + "start": 7757.12, + "end": 7757.74, + "probability": 0.6036 + }, + { + "start": 7758.96, + "end": 7761.32, + "probability": 0.4669 + }, + { + "start": 7762.5, + "end": 7765.52, + "probability": 0.8651 + }, + { + "start": 7766.46, + "end": 7771.0, + "probability": 0.9365 + }, + { + "start": 7772.24, + "end": 7775.8, + "probability": 0.9822 + }, + { + "start": 7776.58, + "end": 7781.92, + "probability": 0.9896 + }, + { + "start": 7782.66, + "end": 7783.54, + "probability": 0.6625 + }, + { + "start": 7786.58, + "end": 7788.32, + "probability": 0.5411 + }, + { + "start": 7788.68, + "end": 7797.86, + "probability": 0.9673 + }, + { + "start": 7799.1, + "end": 7800.86, + "probability": 0.8822 + }, + { + "start": 7801.72, + "end": 7804.5, + "probability": 0.8568 + }, + { + "start": 7805.14, + "end": 7807.08, + "probability": 0.915 + }, + { + "start": 7807.82, + "end": 7817.66, + "probability": 0.9939 + }, + { + "start": 7818.22, + "end": 7820.7, + "probability": 0.9951 + }, + { + "start": 7821.24, + "end": 7822.02, + "probability": 0.913 + }, + { + "start": 7822.58, + "end": 7824.58, + "probability": 0.9777 + }, + { + "start": 7825.34, + "end": 7829.28, + "probability": 0.9113 + }, + { + "start": 7829.94, + "end": 7830.62, + "probability": 0.6077 + }, + { + "start": 7831.34, + "end": 7834.66, + "probability": 0.8477 + }, + { + "start": 7835.86, + "end": 7844.42, + "probability": 0.9958 + }, + { + "start": 7844.42, + "end": 7850.8, + "probability": 0.9961 + }, + { + "start": 7852.12, + "end": 7854.16, + "probability": 0.8197 + }, + { + "start": 7855.92, + "end": 7857.94, + "probability": 0.7652 + }, + { + "start": 7858.34, + "end": 7859.86, + "probability": 0.8151 + }, + { + "start": 7859.96, + "end": 7860.56, + "probability": 0.7945 + }, + { + "start": 7860.7, + "end": 7864.34, + "probability": 0.9612 + }, + { + "start": 7864.46, + "end": 7864.8, + "probability": 0.5234 + }, + { + "start": 7864.98, + "end": 7865.58, + "probability": 0.7559 + }, + { + "start": 7866.4, + "end": 7867.34, + "probability": 0.6069 + }, + { + "start": 7867.9, + "end": 7869.28, + "probability": 0.9861 + }, + { + "start": 7870.02, + "end": 7871.32, + "probability": 0.5538 + }, + { + "start": 7872.18, + "end": 7872.18, + "probability": 0.3994 + }, + { + "start": 7872.44, + "end": 7882.16, + "probability": 0.8304 + }, + { + "start": 7883.24, + "end": 7884.92, + "probability": 0.7803 + }, + { + "start": 7886.18, + "end": 7888.42, + "probability": 0.9438 + }, + { + "start": 7889.06, + "end": 7893.39, + "probability": 0.8069 + }, + { + "start": 7894.64, + "end": 7899.6, + "probability": 0.7074 + }, + { + "start": 7901.06, + "end": 7903.74, + "probability": 0.9708 + }, + { + "start": 7905.0, + "end": 7908.72, + "probability": 0.9832 + }, + { + "start": 7909.48, + "end": 7911.56, + "probability": 0.9795 + }, + { + "start": 7914.68, + "end": 7916.16, + "probability": 0.6356 + }, + { + "start": 7917.0, + "end": 7922.88, + "probability": 0.7028 + }, + { + "start": 7923.44, + "end": 7925.88, + "probability": 0.983 + }, + { + "start": 7926.4, + "end": 7927.34, + "probability": 0.9961 + }, + { + "start": 7927.9, + "end": 7931.24, + "probability": 0.9838 + }, + { + "start": 7931.7, + "end": 7936.74, + "probability": 0.9942 + }, + { + "start": 7937.24, + "end": 7940.86, + "probability": 0.9963 + }, + { + "start": 7941.86, + "end": 7947.42, + "probability": 0.9248 + }, + { + "start": 7948.22, + "end": 7949.86, + "probability": 0.8579 + }, + { + "start": 7950.0, + "end": 7951.96, + "probability": 0.9102 + }, + { + "start": 7952.06, + "end": 7952.72, + "probability": 0.6656 + }, + { + "start": 7953.58, + "end": 7958.1, + "probability": 0.9894 + }, + { + "start": 7958.7, + "end": 7963.64, + "probability": 0.991 + }, + { + "start": 7963.8, + "end": 7967.16, + "probability": 0.933 + }, + { + "start": 7967.76, + "end": 7973.96, + "probability": 0.974 + }, + { + "start": 7974.5, + "end": 7976.66, + "probability": 0.9019 + }, + { + "start": 7977.26, + "end": 7977.9, + "probability": 0.6319 + }, + { + "start": 7978.02, + "end": 7978.76, + "probability": 0.7044 + }, + { + "start": 7978.84, + "end": 7980.72, + "probability": 0.855 + }, + { + "start": 7981.42, + "end": 7982.96, + "probability": 0.993 + }, + { + "start": 7986.7, + "end": 7991.18, + "probability": 0.7451 + }, + { + "start": 7999.82, + "end": 8004.94, + "probability": 0.9932 + }, + { + "start": 8006.5, + "end": 8008.76, + "probability": 0.5702 + }, + { + "start": 8008.98, + "end": 8012.14, + "probability": 0.9927 + }, + { + "start": 8013.64, + "end": 8015.84, + "probability": 0.984 + }, + { + "start": 8016.06, + "end": 8018.41, + "probability": 0.1137 + }, + { + "start": 8019.36, + "end": 8020.14, + "probability": 0.1594 + }, + { + "start": 8021.06, + "end": 8022.4, + "probability": 0.5504 + }, + { + "start": 8022.48, + "end": 8023.06, + "probability": 0.3922 + }, + { + "start": 8023.06, + "end": 8023.52, + "probability": 0.7331 + }, + { + "start": 8023.7, + "end": 8027.0, + "probability": 0.8384 + }, + { + "start": 8027.16, + "end": 8031.34, + "probability": 0.9907 + }, + { + "start": 8034.0, + "end": 8036.66, + "probability": 0.9296 + }, + { + "start": 8036.84, + "end": 8038.86, + "probability": 0.715 + }, + { + "start": 8039.86, + "end": 8043.0, + "probability": 0.9622 + }, + { + "start": 8044.24, + "end": 8049.7, + "probability": 0.419 + }, + { + "start": 8051.11, + "end": 8058.06, + "probability": 0.9976 + }, + { + "start": 8058.82, + "end": 8060.46, + "probability": 0.9221 + }, + { + "start": 8060.56, + "end": 8062.5, + "probability": 0.9919 + }, + { + "start": 8062.92, + "end": 8063.98, + "probability": 0.9511 + }, + { + "start": 8064.32, + "end": 8064.86, + "probability": 0.4057 + }, + { + "start": 8065.02, + "end": 8066.32, + "probability": 0.9451 + }, + { + "start": 8066.86, + "end": 8068.99, + "probability": 0.8089 + }, + { + "start": 8069.04, + "end": 8072.08, + "probability": 0.8438 + }, + { + "start": 8073.38, + "end": 8073.45, + "probability": 0.0414 + }, + { + "start": 8074.74, + "end": 8076.92, + "probability": 0.2213 + }, + { + "start": 8077.94, + "end": 8085.16, + "probability": 0.9883 + }, + { + "start": 8085.28, + "end": 8086.02, + "probability": 0.8965 + }, + { + "start": 8086.24, + "end": 8088.74, + "probability": 0.95 + }, + { + "start": 8089.38, + "end": 8092.16, + "probability": 0.8838 + }, + { + "start": 8093.58, + "end": 8098.94, + "probability": 0.7627 + }, + { + "start": 8099.66, + "end": 8101.2, + "probability": 0.4305 + }, + { + "start": 8101.88, + "end": 8104.04, + "probability": 0.9835 + }, + { + "start": 8104.36, + "end": 8105.18, + "probability": 0.4917 + }, + { + "start": 8105.22, + "end": 8105.58, + "probability": 0.7782 + }, + { + "start": 8105.66, + "end": 8106.18, + "probability": 0.7753 + }, + { + "start": 8106.32, + "end": 8106.74, + "probability": 0.7396 + }, + { + "start": 8109.14, + "end": 8111.28, + "probability": 0.6457 + }, + { + "start": 8113.02, + "end": 8113.4, + "probability": 0.5822 + }, + { + "start": 8114.44, + "end": 8118.5, + "probability": 0.9222 + }, + { + "start": 8118.68, + "end": 8119.36, + "probability": 0.928 + }, + { + "start": 8119.46, + "end": 8120.66, + "probability": 0.789 + }, + { + "start": 8122.02, + "end": 8122.9, + "probability": 0.9404 + }, + { + "start": 8123.3, + "end": 8124.4, + "probability": 0.9789 + }, + { + "start": 8124.54, + "end": 8125.2, + "probability": 0.8184 + }, + { + "start": 8125.56, + "end": 8126.9, + "probability": 0.9568 + }, + { + "start": 8128.3, + "end": 8128.5, + "probability": 0.4495 + }, + { + "start": 8128.58, + "end": 8129.46, + "probability": 0.8893 + }, + { + "start": 8129.48, + "end": 8130.92, + "probability": 0.5587 + }, + { + "start": 8131.1, + "end": 8131.46, + "probability": 0.7697 + }, + { + "start": 8131.88, + "end": 8132.5, + "probability": 0.2838 + }, + { + "start": 8132.82, + "end": 8133.22, + "probability": 0.8573 + }, + { + "start": 8134.06, + "end": 8137.12, + "probability": 0.9959 + }, + { + "start": 8137.88, + "end": 8139.96, + "probability": 0.9974 + }, + { + "start": 8140.9, + "end": 8144.82, + "probability": 0.9945 + }, + { + "start": 8146.42, + "end": 8147.92, + "probability": 0.8981 + }, + { + "start": 8148.62, + "end": 8149.6, + "probability": 0.9811 + }, + { + "start": 8149.66, + "end": 8150.72, + "probability": 0.9756 + }, + { + "start": 8150.76, + "end": 8151.84, + "probability": 0.9768 + }, + { + "start": 8151.9, + "end": 8153.18, + "probability": 0.9751 + }, + { + "start": 8153.84, + "end": 8157.52, + "probability": 0.9755 + }, + { + "start": 8157.9, + "end": 8158.5, + "probability": 0.7734 + }, + { + "start": 8159.36, + "end": 8162.38, + "probability": 0.9715 + }, + { + "start": 8162.78, + "end": 8163.27, + "probability": 0.9851 + }, + { + "start": 8164.3, + "end": 8167.22, + "probability": 0.9717 + }, + { + "start": 8167.66, + "end": 8169.26, + "probability": 0.9939 + }, + { + "start": 8170.42, + "end": 8172.73, + "probability": 0.9956 + }, + { + "start": 8173.94, + "end": 8175.84, + "probability": 0.7956 + }, + { + "start": 8176.92, + "end": 8178.38, + "probability": 0.842 + }, + { + "start": 8179.96, + "end": 8182.18, + "probability": 0.9666 + }, + { + "start": 8182.84, + "end": 8184.56, + "probability": 0.9948 + }, + { + "start": 8184.64, + "end": 8187.34, + "probability": 0.8724 + }, + { + "start": 8188.44, + "end": 8189.88, + "probability": 0.9959 + }, + { + "start": 8190.28, + "end": 8193.52, + "probability": 0.9927 + }, + { + "start": 8193.66, + "end": 8195.0, + "probability": 0.9085 + }, + { + "start": 8196.16, + "end": 8198.26, + "probability": 0.9941 + }, + { + "start": 8198.36, + "end": 8199.32, + "probability": 0.887 + }, + { + "start": 8199.4, + "end": 8200.3, + "probability": 0.9338 + }, + { + "start": 8200.46, + "end": 8203.22, + "probability": 0.8645 + }, + { + "start": 8203.62, + "end": 8205.6, + "probability": 0.945 + }, + { + "start": 8205.66, + "end": 8207.85, + "probability": 0.9987 + }, + { + "start": 8208.64, + "end": 8209.98, + "probability": 0.9702 + }, + { + "start": 8211.3, + "end": 8215.22, + "probability": 0.9893 + }, + { + "start": 8216.34, + "end": 8218.32, + "probability": 0.9695 + }, + { + "start": 8219.32, + "end": 8219.84, + "probability": 0.2946 + }, + { + "start": 8220.04, + "end": 8221.52, + "probability": 0.8501 + }, + { + "start": 8221.74, + "end": 8223.24, + "probability": 0.8325 + }, + { + "start": 8223.62, + "end": 8225.58, + "probability": 0.9491 + }, + { + "start": 8225.66, + "end": 8226.12, + "probability": 0.8705 + }, + { + "start": 8226.22, + "end": 8226.66, + "probability": 0.8782 + }, + { + "start": 8226.7, + "end": 8227.1, + "probability": 0.5161 + }, + { + "start": 8227.1, + "end": 8228.02, + "probability": 0.8244 + }, + { + "start": 8228.46, + "end": 8231.8, + "probability": 0.9697 + }, + { + "start": 8231.8, + "end": 8233.96, + "probability": 0.9662 + }, + { + "start": 8234.78, + "end": 8238.04, + "probability": 0.9933 + }, + { + "start": 8238.1, + "end": 8239.3, + "probability": 0.8895 + }, + { + "start": 8239.4, + "end": 8241.34, + "probability": 0.9725 + }, + { + "start": 8242.16, + "end": 8244.92, + "probability": 0.8822 + }, + { + "start": 8245.48, + "end": 8248.36, + "probability": 0.9912 + }, + { + "start": 8249.3, + "end": 8252.96, + "probability": 0.9943 + }, + { + "start": 8253.36, + "end": 8253.96, + "probability": 0.6903 + }, + { + "start": 8254.72, + "end": 8258.06, + "probability": 0.9774 + }, + { + "start": 8258.8, + "end": 8260.12, + "probability": 0.8725 + }, + { + "start": 8260.38, + "end": 8260.8, + "probability": 0.8508 + }, + { + "start": 8260.84, + "end": 8261.88, + "probability": 0.9779 + }, + { + "start": 8262.08, + "end": 8263.6, + "probability": 0.9573 + }, + { + "start": 8264.16, + "end": 8266.78, + "probability": 0.9154 + }, + { + "start": 8267.82, + "end": 8268.82, + "probability": 0.6624 + }, + { + "start": 8268.86, + "end": 8273.36, + "probability": 0.9479 + }, + { + "start": 8273.68, + "end": 8276.09, + "probability": 0.917 + }, + { + "start": 8276.82, + "end": 8282.22, + "probability": 0.9716 + }, + { + "start": 8282.74, + "end": 8283.92, + "probability": 0.611 + }, + { + "start": 8284.48, + "end": 8288.1, + "probability": 0.9976 + }, + { + "start": 8288.86, + "end": 8289.92, + "probability": 0.9203 + }, + { + "start": 8290.0, + "end": 8290.54, + "probability": 0.9454 + }, + { + "start": 8290.64, + "end": 8293.58, + "probability": 0.9944 + }, + { + "start": 8293.72, + "end": 8296.14, + "probability": 0.997 + }, + { + "start": 8296.14, + "end": 8299.46, + "probability": 0.9059 + }, + { + "start": 8299.5, + "end": 8303.26, + "probability": 0.9289 + }, + { + "start": 8303.64, + "end": 8305.64, + "probability": 0.8692 + }, + { + "start": 8305.9, + "end": 8307.08, + "probability": 0.7558 + }, + { + "start": 8307.16, + "end": 8310.44, + "probability": 0.895 + }, + { + "start": 8310.44, + "end": 8314.28, + "probability": 0.9834 + }, + { + "start": 8314.62, + "end": 8316.5, + "probability": 0.8225 + }, + { + "start": 8316.58, + "end": 8319.04, + "probability": 0.9768 + }, + { + "start": 8319.3, + "end": 8320.94, + "probability": 0.9902 + }, + { + "start": 8321.18, + "end": 8321.56, + "probability": 0.8671 + }, + { + "start": 8321.9, + "end": 8324.86, + "probability": 0.6655 + }, + { + "start": 8324.96, + "end": 8326.7, + "probability": 0.986 + }, + { + "start": 8327.62, + "end": 8330.88, + "probability": 0.8301 + }, + { + "start": 8331.24, + "end": 8331.92, + "probability": 0.4146 + }, + { + "start": 8332.12, + "end": 8334.22, + "probability": 0.8931 + }, + { + "start": 8334.26, + "end": 8335.16, + "probability": 0.5022 + }, + { + "start": 8335.94, + "end": 8337.08, + "probability": 0.8496 + }, + { + "start": 8342.32, + "end": 8345.02, + "probability": 0.6883 + }, + { + "start": 8345.86, + "end": 8348.52, + "probability": 0.9398 + }, + { + "start": 8349.26, + "end": 8354.46, + "probability": 0.9843 + }, + { + "start": 8354.46, + "end": 8359.34, + "probability": 0.9417 + }, + { + "start": 8360.54, + "end": 8362.36, + "probability": 0.9502 + }, + { + "start": 8363.16, + "end": 8363.96, + "probability": 0.6141 + }, + { + "start": 8364.04, + "end": 8366.92, + "probability": 0.9771 + }, + { + "start": 8366.92, + "end": 8370.72, + "probability": 0.8793 + }, + { + "start": 8370.88, + "end": 8377.36, + "probability": 0.89 + }, + { + "start": 8377.96, + "end": 8383.36, + "probability": 0.9894 + }, + { + "start": 8383.86, + "end": 8385.66, + "probability": 0.8437 + }, + { + "start": 8385.8, + "end": 8389.16, + "probability": 0.9632 + }, + { + "start": 8390.6, + "end": 8393.7, + "probability": 0.9114 + }, + { + "start": 8393.84, + "end": 8395.44, + "probability": 0.8054 + }, + { + "start": 8395.6, + "end": 8399.82, + "probability": 0.9618 + }, + { + "start": 8400.66, + "end": 8404.32, + "probability": 0.9567 + }, + { + "start": 8404.9, + "end": 8406.14, + "probability": 0.7567 + }, + { + "start": 8406.36, + "end": 8410.84, + "probability": 0.9897 + }, + { + "start": 8411.24, + "end": 8415.66, + "probability": 0.9965 + }, + { + "start": 8416.44, + "end": 8419.7, + "probability": 0.9976 + }, + { + "start": 8419.78, + "end": 8420.88, + "probability": 0.7703 + }, + { + "start": 8421.68, + "end": 8425.54, + "probability": 0.9977 + }, + { + "start": 8425.54, + "end": 8429.06, + "probability": 0.9907 + }, + { + "start": 8430.18, + "end": 8431.58, + "probability": 0.9432 + }, + { + "start": 8431.68, + "end": 8433.64, + "probability": 0.9088 + }, + { + "start": 8433.74, + "end": 8434.62, + "probability": 0.8841 + }, + { + "start": 8434.94, + "end": 8436.44, + "probability": 0.9597 + }, + { + "start": 8437.14, + "end": 8441.76, + "probability": 0.9985 + }, + { + "start": 8442.7, + "end": 8444.24, + "probability": 0.9297 + }, + { + "start": 8445.32, + "end": 8452.42, + "probability": 0.9746 + }, + { + "start": 8454.24, + "end": 8458.14, + "probability": 0.997 + }, + { + "start": 8458.24, + "end": 8458.78, + "probability": 0.8607 + }, + { + "start": 8459.1, + "end": 8459.76, + "probability": 0.7183 + }, + { + "start": 8460.46, + "end": 8461.62, + "probability": 0.9722 + }, + { + "start": 8463.08, + "end": 8469.76, + "probability": 0.9658 + }, + { + "start": 8469.76, + "end": 8475.48, + "probability": 0.9686 + }, + { + "start": 8475.96, + "end": 8477.16, + "probability": 0.9796 + }, + { + "start": 8478.56, + "end": 8479.84, + "probability": 0.9089 + }, + { + "start": 8480.84, + "end": 8484.12, + "probability": 0.8722 + }, + { + "start": 8484.78, + "end": 8486.28, + "probability": 0.8434 + }, + { + "start": 8486.84, + "end": 8492.74, + "probability": 0.9897 + }, + { + "start": 8493.32, + "end": 8496.76, + "probability": 0.9829 + }, + { + "start": 8497.96, + "end": 8499.26, + "probability": 0.9537 + }, + { + "start": 8500.0, + "end": 8502.32, + "probability": 0.9953 + }, + { + "start": 8503.46, + "end": 8504.96, + "probability": 0.9092 + }, + { + "start": 8506.16, + "end": 8508.0, + "probability": 0.9709 + }, + { + "start": 8509.08, + "end": 8513.06, + "probability": 0.9895 + }, + { + "start": 8513.36, + "end": 8514.52, + "probability": 0.9239 + }, + { + "start": 8514.9, + "end": 8515.44, + "probability": 0.4536 + }, + { + "start": 8515.54, + "end": 8518.56, + "probability": 0.6648 + }, + { + "start": 8518.66, + "end": 8519.8, + "probability": 0.9016 + }, + { + "start": 8520.1, + "end": 8521.36, + "probability": 0.9782 + }, + { + "start": 8521.44, + "end": 8522.3, + "probability": 0.9838 + }, + { + "start": 8522.3, + "end": 8523.48, + "probability": 0.995 + }, + { + "start": 8523.6, + "end": 8524.64, + "probability": 0.8776 + }, + { + "start": 8524.66, + "end": 8526.02, + "probability": 0.8268 + }, + { + "start": 8527.0, + "end": 8529.76, + "probability": 0.9677 + }, + { + "start": 8530.28, + "end": 8531.6, + "probability": 0.8164 + }, + { + "start": 8532.6, + "end": 8535.66, + "probability": 0.8868 + }, + { + "start": 8536.0, + "end": 8539.44, + "probability": 0.9576 + }, + { + "start": 8540.22, + "end": 8544.78, + "probability": 0.9929 + }, + { + "start": 8544.94, + "end": 8546.7, + "probability": 0.9154 + }, + { + "start": 8547.34, + "end": 8549.64, + "probability": 0.7915 + }, + { + "start": 8550.78, + "end": 8552.28, + "probability": 0.8285 + }, + { + "start": 8552.78, + "end": 8557.3, + "probability": 0.9396 + }, + { + "start": 8557.84, + "end": 8560.68, + "probability": 0.9049 + }, + { + "start": 8561.32, + "end": 8563.5, + "probability": 0.6191 + }, + { + "start": 8564.04, + "end": 8565.64, + "probability": 0.9712 + }, + { + "start": 8566.12, + "end": 8567.66, + "probability": 0.9829 + }, + { + "start": 8567.74, + "end": 8572.1, + "probability": 0.9663 + }, + { + "start": 8572.82, + "end": 8575.33, + "probability": 0.9559 + }, + { + "start": 8575.7, + "end": 8578.34, + "probability": 0.988 + }, + { + "start": 8578.42, + "end": 8580.98, + "probability": 0.7827 + }, + { + "start": 8581.64, + "end": 8582.34, + "probability": 0.8081 + }, + { + "start": 8582.96, + "end": 8589.19, + "probability": 0.9407 + }, + { + "start": 8589.58, + "end": 8589.86, + "probability": 0.6868 + }, + { + "start": 8590.0, + "end": 8591.07, + "probability": 0.9102 + }, + { + "start": 8591.8, + "end": 8592.58, + "probability": 0.9877 + }, + { + "start": 8593.28, + "end": 8593.85, + "probability": 0.9758 + }, + { + "start": 8595.12, + "end": 8595.74, + "probability": 0.9695 + }, + { + "start": 8596.54, + "end": 8599.78, + "probability": 0.9976 + }, + { + "start": 8599.78, + "end": 8603.2, + "probability": 0.9986 + }, + { + "start": 8603.46, + "end": 8604.04, + "probability": 0.8042 + }, + { + "start": 8604.48, + "end": 8605.66, + "probability": 0.987 + }, + { + "start": 8606.26, + "end": 8607.48, + "probability": 0.5818 + }, + { + "start": 8607.96, + "end": 8610.38, + "probability": 0.7777 + }, + { + "start": 8611.1, + "end": 8615.88, + "probability": 0.9521 + }, + { + "start": 8617.66, + "end": 8619.66, + "probability": 0.6208 + }, + { + "start": 8620.44, + "end": 8624.82, + "probability": 0.8808 + }, + { + "start": 8627.34, + "end": 8630.0, + "probability": 0.8616 + }, + { + "start": 8630.28, + "end": 8632.66, + "probability": 0.7516 + }, + { + "start": 8633.2, + "end": 8635.22, + "probability": 0.6051 + }, + { + "start": 8636.28, + "end": 8636.88, + "probability": 0.1494 + }, + { + "start": 8636.88, + "end": 8636.88, + "probability": 0.0887 + }, + { + "start": 8636.88, + "end": 8636.88, + "probability": 0.1507 + }, + { + "start": 8636.88, + "end": 8638.48, + "probability": 0.3195 + }, + { + "start": 8639.74, + "end": 8645.06, + "probability": 0.9819 + }, + { + "start": 8645.98, + "end": 8651.48, + "probability": 0.9377 + }, + { + "start": 8651.58, + "end": 8652.88, + "probability": 0.4536 + }, + { + "start": 8652.98, + "end": 8653.8, + "probability": 0.6022 + }, + { + "start": 8655.06, + "end": 8657.64, + "probability": 0.9857 + }, + { + "start": 8657.68, + "end": 8659.3, + "probability": 0.8142 + }, + { + "start": 8659.44, + "end": 8660.24, + "probability": 0.6187 + }, + { + "start": 8660.4, + "end": 8661.44, + "probability": 0.9614 + }, + { + "start": 8661.6, + "end": 8663.82, + "probability": 0.9909 + }, + { + "start": 8664.92, + "end": 8673.08, + "probability": 0.9772 + }, + { + "start": 8673.14, + "end": 8677.22, + "probability": 0.996 + }, + { + "start": 8677.74, + "end": 8679.02, + "probability": 0.8783 + }, + { + "start": 8679.18, + "end": 8681.69, + "probability": 0.9364 + }, + { + "start": 8683.52, + "end": 8684.72, + "probability": 0.59 + }, + { + "start": 8684.74, + "end": 8687.48, + "probability": 0.6245 + }, + { + "start": 8687.94, + "end": 8690.44, + "probability": 0.605 + }, + { + "start": 8690.56, + "end": 8691.94, + "probability": 0.564 + }, + { + "start": 8692.02, + "end": 8693.92, + "probability": 0.9084 + }, + { + "start": 8694.7, + "end": 8696.02, + "probability": 0.9484 + }, + { + "start": 8697.02, + "end": 8697.26, + "probability": 0.8378 + }, + { + "start": 8697.34, + "end": 8701.24, + "probability": 0.9109 + }, + { + "start": 8702.13, + "end": 8705.67, + "probability": 0.9985 + }, + { + "start": 8706.5, + "end": 8708.94, + "probability": 0.8943 + }, + { + "start": 8709.02, + "end": 8711.82, + "probability": 0.9978 + }, + { + "start": 8713.36, + "end": 8715.58, + "probability": 0.9193 + }, + { + "start": 8716.28, + "end": 8718.06, + "probability": 0.8835 + }, + { + "start": 8718.14, + "end": 8719.14, + "probability": 0.8065 + }, + { + "start": 8719.2, + "end": 8719.72, + "probability": 0.6878 + }, + { + "start": 8719.88, + "end": 8722.52, + "probability": 0.7726 + }, + { + "start": 8724.02, + "end": 8725.12, + "probability": 0.7618 + }, + { + "start": 8725.28, + "end": 8729.22, + "probability": 0.9507 + }, + { + "start": 8730.26, + "end": 8737.06, + "probability": 0.9051 + }, + { + "start": 8738.26, + "end": 8740.8, + "probability": 0.5859 + }, + { + "start": 8741.76, + "end": 8745.72, + "probability": 0.9932 + }, + { + "start": 8745.72, + "end": 8748.44, + "probability": 0.9989 + }, + { + "start": 8748.68, + "end": 8755.34, + "probability": 0.9876 + }, + { + "start": 8755.42, + "end": 8757.66, + "probability": 0.9928 + }, + { + "start": 8758.36, + "end": 8762.1, + "probability": 0.9644 + }, + { + "start": 8762.56, + "end": 8763.56, + "probability": 0.995 + }, + { + "start": 8764.4, + "end": 8765.32, + "probability": 0.8211 + }, + { + "start": 8765.64, + "end": 8767.37, + "probability": 0.7515 + }, + { + "start": 8767.74, + "end": 8770.78, + "probability": 0.9102 + }, + { + "start": 8770.78, + "end": 8774.06, + "probability": 0.9819 + }, + { + "start": 8775.22, + "end": 8777.42, + "probability": 0.9833 + }, + { + "start": 8777.54, + "end": 8782.62, + "probability": 0.9089 + }, + { + "start": 8783.78, + "end": 8784.2, + "probability": 0.0098 + }, + { + "start": 8784.2, + "end": 8788.32, + "probability": 0.9683 + }, + { + "start": 8789.02, + "end": 8790.0, + "probability": 0.8253 + }, + { + "start": 8790.64, + "end": 8792.44, + "probability": 0.935 + }, + { + "start": 8792.96, + "end": 8800.96, + "probability": 0.98 + }, + { + "start": 8801.42, + "end": 8805.7, + "probability": 0.9811 + }, + { + "start": 8806.92, + "end": 8810.04, + "probability": 0.6814 + }, + { + "start": 8810.52, + "end": 8813.82, + "probability": 0.9822 + }, + { + "start": 8814.0, + "end": 8816.29, + "probability": 0.9922 + }, + { + "start": 8817.56, + "end": 8821.52, + "probability": 0.7986 + }, + { + "start": 8823.12, + "end": 8824.78, + "probability": 0.5363 + }, + { + "start": 8824.78, + "end": 8824.78, + "probability": 0.5088 + }, + { + "start": 8825.26, + "end": 8828.9, + "probability": 0.8458 + }, + { + "start": 8828.9, + "end": 8829.18, + "probability": 0.8381 + }, + { + "start": 8829.3, + "end": 8831.08, + "probability": 0.9692 + }, + { + "start": 8831.16, + "end": 8835.9, + "probability": 0.7355 + }, + { + "start": 8841.84, + "end": 8843.02, + "probability": 0.9169 + }, + { + "start": 8845.92, + "end": 8848.58, + "probability": 0.7324 + }, + { + "start": 8849.88, + "end": 8851.43, + "probability": 0.9964 + }, + { + "start": 8853.3, + "end": 8857.8, + "probability": 0.9873 + }, + { + "start": 8858.72, + "end": 8860.52, + "probability": 0.871 + }, + { + "start": 8861.42, + "end": 8862.26, + "probability": 0.9902 + }, + { + "start": 8862.84, + "end": 8864.98, + "probability": 0.9863 + }, + { + "start": 8865.96, + "end": 8866.76, + "probability": 0.8984 + }, + { + "start": 8867.44, + "end": 8868.38, + "probability": 0.9604 + }, + { + "start": 8869.44, + "end": 8869.68, + "probability": 0.5015 + }, + { + "start": 8869.9, + "end": 8873.18, + "probability": 0.9772 + }, + { + "start": 8873.64, + "end": 8875.42, + "probability": 0.9852 + }, + { + "start": 8875.82, + "end": 8877.7, + "probability": 0.9971 + }, + { + "start": 8877.96, + "end": 8879.88, + "probability": 0.9935 + }, + { + "start": 8880.12, + "end": 8880.28, + "probability": 0.4334 + }, + { + "start": 8880.46, + "end": 8881.08, + "probability": 0.8583 + }, + { + "start": 8881.2, + "end": 8883.66, + "probability": 0.988 + }, + { + "start": 8883.66, + "end": 8885.38, + "probability": 0.9943 + }, + { + "start": 8886.46, + "end": 8888.74, + "probability": 0.9651 + }, + { + "start": 8889.44, + "end": 8892.52, + "probability": 0.8997 + }, + { + "start": 8892.9, + "end": 8896.8, + "probability": 0.9797 + }, + { + "start": 8897.42, + "end": 8898.98, + "probability": 0.7981 + }, + { + "start": 8899.6, + "end": 8902.32, + "probability": 0.9961 + }, + { + "start": 8903.14, + "end": 8907.71, + "probability": 0.9869 + }, + { + "start": 8908.78, + "end": 8912.02, + "probability": 0.9835 + }, + { + "start": 8912.1, + "end": 8913.26, + "probability": 0.8282 + }, + { + "start": 8913.8, + "end": 8914.58, + "probability": 0.7604 + }, + { + "start": 8914.6, + "end": 8915.18, + "probability": 0.5738 + }, + { + "start": 8915.4, + "end": 8918.18, + "probability": 0.9471 + }, + { + "start": 8918.2, + "end": 8918.62, + "probability": 0.5049 + }, + { + "start": 8918.8, + "end": 8921.26, + "probability": 0.9274 + }, + { + "start": 8922.24, + "end": 8923.78, + "probability": 0.2864 + }, + { + "start": 8923.82, + "end": 8924.16, + "probability": 0.8862 + }, + { + "start": 8924.34, + "end": 8925.6, + "probability": 0.6855 + }, + { + "start": 8925.7, + "end": 8926.0, + "probability": 0.7686 + }, + { + "start": 8926.0, + "end": 8926.48, + "probability": 0.4869 + }, + { + "start": 8926.6, + "end": 8928.64, + "probability": 0.9861 + }, + { + "start": 8928.76, + "end": 8930.34, + "probability": 0.741 + }, + { + "start": 8930.46, + "end": 8931.53, + "probability": 0.9023 + }, + { + "start": 8932.98, + "end": 8936.32, + "probability": 0.9922 + }, + { + "start": 8936.6, + "end": 8939.58, + "probability": 0.9728 + }, + { + "start": 8939.64, + "end": 8941.34, + "probability": 0.9279 + }, + { + "start": 8942.12, + "end": 8946.68, + "probability": 0.9912 + }, + { + "start": 8947.14, + "end": 8948.58, + "probability": 0.7188 + }, + { + "start": 8949.18, + "end": 8950.64, + "probability": 0.4881 + }, + { + "start": 8950.64, + "end": 8952.24, + "probability": 0.7034 + }, + { + "start": 8952.32, + "end": 8956.38, + "probability": 0.405 + }, + { + "start": 8956.38, + "end": 8958.88, + "probability": 0.6826 + }, + { + "start": 8958.92, + "end": 8959.54, + "probability": 0.5156 + }, + { + "start": 8959.58, + "end": 8962.78, + "probability": 0.9428 + }, + { + "start": 8963.16, + "end": 8964.38, + "probability": 0.8615 + }, + { + "start": 8964.42, + "end": 8965.52, + "probability": 0.7103 + }, + { + "start": 8965.78, + "end": 8966.8, + "probability": 0.6474 + }, + { + "start": 8966.88, + "end": 8969.42, + "probability": 0.9872 + }, + { + "start": 8969.42, + "end": 8973.26, + "probability": 0.8361 + }, + { + "start": 8973.52, + "end": 8974.88, + "probability": 0.7656 + }, + { + "start": 8975.7, + "end": 8978.54, + "probability": 0.8323 + }, + { + "start": 8979.36, + "end": 8980.82, + "probability": 0.9746 + }, + { + "start": 8981.76, + "end": 8982.5, + "probability": 0.9781 + }, + { + "start": 8983.46, + "end": 8986.48, + "probability": 0.4997 + }, + { + "start": 8986.62, + "end": 8989.34, + "probability": 0.5928 + }, + { + "start": 8990.06, + "end": 8991.52, + "probability": 0.9477 + }, + { + "start": 8994.68, + "end": 8995.3, + "probability": 0.7871 + }, + { + "start": 8995.34, + "end": 8996.7, + "probability": 0.7818 + }, + { + "start": 8997.16, + "end": 8998.42, + "probability": 0.98 + }, + { + "start": 8998.74, + "end": 9001.16, + "probability": 0.9704 + }, + { + "start": 9001.44, + "end": 9007.5, + "probability": 0.9725 + }, + { + "start": 9007.98, + "end": 9011.82, + "probability": 0.9971 + }, + { + "start": 9012.1, + "end": 9017.12, + "probability": 0.9378 + }, + { + "start": 9017.4, + "end": 9018.47, + "probability": 0.7804 + }, + { + "start": 9018.84, + "end": 9022.98, + "probability": 0.787 + }, + { + "start": 9023.1, + "end": 9024.16, + "probability": 0.9727 + }, + { + "start": 9024.36, + "end": 9027.5, + "probability": 0.9225 + }, + { + "start": 9027.7, + "end": 9032.3, + "probability": 0.9924 + }, + { + "start": 9032.58, + "end": 9034.22, + "probability": 0.9979 + }, + { + "start": 9034.84, + "end": 9035.44, + "probability": 0.8334 + }, + { + "start": 9035.54, + "end": 9036.56, + "probability": 0.8433 + }, + { + "start": 9036.6, + "end": 9038.36, + "probability": 0.1273 + }, + { + "start": 9038.7, + "end": 9038.82, + "probability": 0.3658 + }, + { + "start": 9038.82, + "end": 9039.16, + "probability": 0.5111 + }, + { + "start": 9039.28, + "end": 9039.98, + "probability": 0.5068 + }, + { + "start": 9040.12, + "end": 9042.54, + "probability": 0.9465 + }, + { + "start": 9042.54, + "end": 9042.6, + "probability": 0.3848 + }, + { + "start": 9042.6, + "end": 9043.92, + "probability": 0.7981 + }, + { + "start": 9044.08, + "end": 9045.14, + "probability": 0.4394 + }, + { + "start": 9045.24, + "end": 9048.16, + "probability": 0.8018 + }, + { + "start": 9048.28, + "end": 9048.8, + "probability": 0.4077 + }, + { + "start": 9048.96, + "end": 9050.92, + "probability": 0.7853 + }, + { + "start": 9051.16, + "end": 9052.44, + "probability": 0.8999 + }, + { + "start": 9052.72, + "end": 9053.3, + "probability": 0.6673 + }, + { + "start": 9053.32, + "end": 9054.86, + "probability": 0.9754 + }, + { + "start": 9055.1, + "end": 9055.22, + "probability": 0.2637 + }, + { + "start": 9055.26, + "end": 9055.94, + "probability": 0.5007 + }, + { + "start": 9056.6, + "end": 9060.8, + "probability": 0.9707 + }, + { + "start": 9061.26, + "end": 9063.79, + "probability": 0.8918 + }, + { + "start": 9064.16, + "end": 9066.24, + "probability": 0.6217 + }, + { + "start": 9066.72, + "end": 9070.48, + "probability": 0.9697 + }, + { + "start": 9070.66, + "end": 9072.9, + "probability": 0.9854 + }, + { + "start": 9073.18, + "end": 9074.46, + "probability": 0.9425 + }, + { + "start": 9074.66, + "end": 9075.6, + "probability": 0.9648 + }, + { + "start": 9075.66, + "end": 9078.02, + "probability": 0.7862 + }, + { + "start": 9078.2, + "end": 9078.85, + "probability": 0.6845 + }, + { + "start": 9079.18, + "end": 9080.2, + "probability": 0.9529 + }, + { + "start": 9080.48, + "end": 9081.62, + "probability": 0.9635 + }, + { + "start": 9082.5, + "end": 9083.12, + "probability": 0.4983 + }, + { + "start": 9083.26, + "end": 9083.78, + "probability": 0.6297 + }, + { + "start": 9083.88, + "end": 9085.56, + "probability": 0.8629 + }, + { + "start": 9085.72, + "end": 9088.76, + "probability": 0.9445 + }, + { + "start": 9089.02, + "end": 9092.06, + "probability": 0.9896 + }, + { + "start": 9092.3, + "end": 9094.32, + "probability": 0.9526 + }, + { + "start": 9094.52, + "end": 9096.5, + "probability": 0.9893 + }, + { + "start": 9096.78, + "end": 9097.3, + "probability": 0.7004 + }, + { + "start": 9097.32, + "end": 9098.16, + "probability": 0.8665 + }, + { + "start": 9098.32, + "end": 9099.74, + "probability": 0.9954 + }, + { + "start": 9099.94, + "end": 9103.0, + "probability": 0.8386 + }, + { + "start": 9103.02, + "end": 9103.36, + "probability": 0.489 + }, + { + "start": 9103.76, + "end": 9104.47, + "probability": 0.752 + }, + { + "start": 9104.6, + "end": 9104.68, + "probability": 0.279 + }, + { + "start": 9104.68, + "end": 9104.68, + "probability": 0.122 + }, + { + "start": 9104.74, + "end": 9107.88, + "probability": 0.9673 + }, + { + "start": 9107.9, + "end": 9111.1, + "probability": 0.9848 + }, + { + "start": 9111.32, + "end": 9114.62, + "probability": 0.7866 + }, + { + "start": 9114.62, + "end": 9117.94, + "probability": 0.8509 + }, + { + "start": 9118.16, + "end": 9121.86, + "probability": 0.879 + }, + { + "start": 9122.08, + "end": 9123.08, + "probability": 0.9649 + }, + { + "start": 9123.16, + "end": 9123.32, + "probability": 0.5315 + }, + { + "start": 9123.38, + "end": 9125.82, + "probability": 0.9629 + }, + { + "start": 9125.92, + "end": 9126.54, + "probability": 0.2594 + }, + { + "start": 9126.54, + "end": 9127.98, + "probability": 0.5242 + }, + { + "start": 9128.1, + "end": 9129.82, + "probability": 0.9691 + }, + { + "start": 9129.96, + "end": 9131.0, + "probability": 0.9154 + }, + { + "start": 9131.32, + "end": 9137.12, + "probability": 0.9814 + }, + { + "start": 9139.66, + "end": 9140.86, + "probability": 0.9779 + }, + { + "start": 9144.18, + "end": 9145.18, + "probability": 0.6221 + }, + { + "start": 9146.38, + "end": 9147.08, + "probability": 0.8939 + }, + { + "start": 9147.6, + "end": 9148.52, + "probability": 0.6714 + }, + { + "start": 9150.14, + "end": 9154.8, + "probability": 0.9641 + }, + { + "start": 9155.56, + "end": 9158.14, + "probability": 0.9485 + }, + { + "start": 9159.0, + "end": 9163.22, + "probability": 0.9888 + }, + { + "start": 9163.22, + "end": 9165.96, + "probability": 0.8342 + }, + { + "start": 9166.66, + "end": 9172.24, + "probability": 0.9912 + }, + { + "start": 9173.12, + "end": 9173.44, + "probability": 0.5744 + }, + { + "start": 9173.5, + "end": 9177.9, + "probability": 0.9916 + }, + { + "start": 9178.54, + "end": 9179.4, + "probability": 0.9648 + }, + { + "start": 9180.08, + "end": 9182.1, + "probability": 0.9422 + }, + { + "start": 9183.46, + "end": 9184.28, + "probability": 0.7982 + }, + { + "start": 9184.88, + "end": 9188.54, + "probability": 0.7454 + }, + { + "start": 9188.6, + "end": 9188.74, + "probability": 0.8387 + }, + { + "start": 9189.86, + "end": 9190.58, + "probability": 0.7 + }, + { + "start": 9191.46, + "end": 9196.26, + "probability": 0.9856 + }, + { + "start": 9196.26, + "end": 9200.48, + "probability": 0.9984 + }, + { + "start": 9201.3, + "end": 9203.44, + "probability": 0.7839 + }, + { + "start": 9204.14, + "end": 9209.22, + "probability": 0.9944 + }, + { + "start": 9212.02, + "end": 9212.02, + "probability": 0.0771 + }, + { + "start": 9212.02, + "end": 9214.5, + "probability": 0.9261 + }, + { + "start": 9215.24, + "end": 9217.28, + "probability": 0.9888 + }, + { + "start": 9217.9, + "end": 9223.3, + "probability": 0.9202 + }, + { + "start": 9224.28, + "end": 9225.54, + "probability": 0.739 + }, + { + "start": 9226.42, + "end": 9229.46, + "probability": 0.994 + }, + { + "start": 9230.1, + "end": 9234.04, + "probability": 0.9942 + }, + { + "start": 9234.52, + "end": 9238.04, + "probability": 0.7867 + }, + { + "start": 9238.46, + "end": 9239.22, + "probability": 0.8416 + }, + { + "start": 9240.26, + "end": 9244.06, + "probability": 0.9813 + }, + { + "start": 9245.18, + "end": 9247.48, + "probability": 0.9971 + }, + { + "start": 9248.28, + "end": 9251.12, + "probability": 0.7928 + }, + { + "start": 9251.16, + "end": 9251.92, + "probability": 0.8704 + }, + { + "start": 9253.08, + "end": 9255.38, + "probability": 0.7872 + }, + { + "start": 9256.04, + "end": 9256.86, + "probability": 0.5657 + }, + { + "start": 9257.42, + "end": 9260.26, + "probability": 0.9801 + }, + { + "start": 9261.02, + "end": 9261.78, + "probability": 0.6694 + }, + { + "start": 9262.68, + "end": 9264.26, + "probability": 0.6293 + }, + { + "start": 9264.74, + "end": 9271.28, + "probability": 0.7726 + }, + { + "start": 9271.76, + "end": 9276.04, + "probability": 0.9662 + }, + { + "start": 9277.02, + "end": 9281.02, + "probability": 0.978 + }, + { + "start": 9282.28, + "end": 9289.36, + "probability": 0.9841 + }, + { + "start": 9289.76, + "end": 9290.56, + "probability": 0.8896 + }, + { + "start": 9291.16, + "end": 9295.72, + "probability": 0.9971 + }, + { + "start": 9296.86, + "end": 9300.12, + "probability": 0.9937 + }, + { + "start": 9301.0, + "end": 9302.36, + "probability": 0.926 + }, + { + "start": 9302.7, + "end": 9304.34, + "probability": 0.9446 + }, + { + "start": 9304.7, + "end": 9306.52, + "probability": 0.9654 + }, + { + "start": 9307.12, + "end": 9311.88, + "probability": 0.9964 + }, + { + "start": 9312.74, + "end": 9316.74, + "probability": 0.9831 + }, + { + "start": 9317.4, + "end": 9319.84, + "probability": 0.9168 + }, + { + "start": 9320.68, + "end": 9323.02, + "probability": 0.8481 + }, + { + "start": 9323.02, + "end": 9325.88, + "probability": 0.7954 + }, + { + "start": 9326.28, + "end": 9328.24, + "probability": 0.9832 + }, + { + "start": 9329.2, + "end": 9331.04, + "probability": 0.8358 + }, + { + "start": 9331.54, + "end": 9334.6, + "probability": 0.9929 + }, + { + "start": 9334.6, + "end": 9337.62, + "probability": 0.9697 + }, + { + "start": 9337.7, + "end": 9338.04, + "probability": 0.9399 + }, + { + "start": 9338.82, + "end": 9342.54, + "probability": 0.9402 + }, + { + "start": 9343.18, + "end": 9347.64, + "probability": 0.6436 + }, + { + "start": 9348.16, + "end": 9352.08, + "probability": 0.981 + }, + { + "start": 9352.5, + "end": 9354.82, + "probability": 0.8418 + }, + { + "start": 9355.66, + "end": 9357.86, + "probability": 0.9966 + }, + { + "start": 9358.48, + "end": 9362.22, + "probability": 0.7462 + }, + { + "start": 9362.82, + "end": 9363.52, + "probability": 0.8591 + }, + { + "start": 9364.36, + "end": 9367.54, + "probability": 0.997 + }, + { + "start": 9368.24, + "end": 9368.92, + "probability": 0.7295 + }, + { + "start": 9369.04, + "end": 9371.28, + "probability": 0.8568 + }, + { + "start": 9371.78, + "end": 9373.94, + "probability": 0.9605 + }, + { + "start": 9374.54, + "end": 9377.44, + "probability": 0.9486 + }, + { + "start": 9378.14, + "end": 9382.74, + "probability": 0.9739 + }, + { + "start": 9383.36, + "end": 9384.64, + "probability": 0.9974 + }, + { + "start": 9385.68, + "end": 9388.12, + "probability": 0.8535 + }, + { + "start": 9388.8, + "end": 9392.26, + "probability": 0.7942 + }, + { + "start": 9392.26, + "end": 9393.9, + "probability": 0.8578 + }, + { + "start": 9394.4, + "end": 9396.22, + "probability": 0.9954 + }, + { + "start": 9396.38, + "end": 9396.7, + "probability": 0.6018 + }, + { + "start": 9396.92, + "end": 9401.78, + "probability": 0.9977 + }, + { + "start": 9402.74, + "end": 9404.34, + "probability": 0.7047 + }, + { + "start": 9404.86, + "end": 9407.66, + "probability": 0.9412 + }, + { + "start": 9407.82, + "end": 9412.12, + "probability": 0.9575 + }, + { + "start": 9412.64, + "end": 9416.68, + "probability": 0.959 + }, + { + "start": 9417.14, + "end": 9419.8, + "probability": 0.9931 + }, + { + "start": 9420.28, + "end": 9423.72, + "probability": 0.985 + }, + { + "start": 9423.72, + "end": 9427.1, + "probability": 0.9752 + }, + { + "start": 9428.06, + "end": 9428.46, + "probability": 0.7729 + }, + { + "start": 9428.8, + "end": 9430.68, + "probability": 0.8585 + }, + { + "start": 9431.26, + "end": 9432.92, + "probability": 0.5556 + }, + { + "start": 9433.7, + "end": 9435.5, + "probability": 0.7472 + }, + { + "start": 9435.84, + "end": 9436.36, + "probability": 0.755 + }, + { + "start": 9445.22, + "end": 9446.04, + "probability": 0.6348 + }, + { + "start": 9446.14, + "end": 9447.02, + "probability": 0.9465 + }, + { + "start": 9447.26, + "end": 9449.58, + "probability": 0.9558 + }, + { + "start": 9450.34, + "end": 9451.4, + "probability": 0.6017 + }, + { + "start": 9451.82, + "end": 9456.02, + "probability": 0.9588 + }, + { + "start": 9456.24, + "end": 9458.5, + "probability": 0.7993 + }, + { + "start": 9458.86, + "end": 9461.96, + "probability": 0.8204 + }, + { + "start": 9462.08, + "end": 9462.9, + "probability": 0.6365 + }, + { + "start": 9463.64, + "end": 9464.7, + "probability": 0.9525 + }, + { + "start": 9464.76, + "end": 9465.4, + "probability": 0.8239 + }, + { + "start": 9465.52, + "end": 9466.44, + "probability": 0.8592 + }, + { + "start": 9466.86, + "end": 9467.78, + "probability": 0.8385 + }, + { + "start": 9467.96, + "end": 9468.97, + "probability": 0.9951 + }, + { + "start": 9469.36, + "end": 9473.34, + "probability": 0.8757 + }, + { + "start": 9485.48, + "end": 9485.88, + "probability": 0.9797 + }, + { + "start": 9496.98, + "end": 9497.5, + "probability": 0.1255 + }, + { + "start": 9497.5, + "end": 9500.16, + "probability": 0.0556 + }, + { + "start": 9500.16, + "end": 9500.62, + "probability": 0.0252 + }, + { + "start": 9500.62, + "end": 9508.04, + "probability": 0.2394 + }, + { + "start": 9508.04, + "end": 9509.48, + "probability": 0.0746 + }, + { + "start": 9509.48, + "end": 9509.74, + "probability": 0.0987 + }, + { + "start": 9512.66, + "end": 9512.66, + "probability": 0.0619 + }, + { + "start": 9512.66, + "end": 9515.24, + "probability": 0.0435 + }, + { + "start": 9516.02, + "end": 9520.08, + "probability": 0.0835 + }, + { + "start": 9522.77, + "end": 9525.74, + "probability": 0.0587 + }, + { + "start": 9526.5, + "end": 9528.46, + "probability": 0.0091 + }, + { + "start": 9530.3, + "end": 9532.18, + "probability": 0.0565 + }, + { + "start": 9532.18, + "end": 9532.18, + "probability": 0.1032 + }, + { + "start": 9532.3, + "end": 9533.78, + "probability": 0.0573 + }, + { + "start": 9533.78, + "end": 9534.48, + "probability": 0.0937 + }, + { + "start": 9534.48, + "end": 9535.02, + "probability": 0.2864 + }, + { + "start": 9535.56, + "end": 9536.22, + "probability": 0.0495 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.0, + "end": 9537.0, + "probability": 0.0 + }, + { + "start": 9537.26, + "end": 9538.66, + "probability": 0.0212 + }, + { + "start": 9538.66, + "end": 9540.72, + "probability": 0.1 + }, + { + "start": 9541.04, + "end": 9542.28, + "probability": 0.5971 + }, + { + "start": 9542.56, + "end": 9542.56, + "probability": 0.1271 + }, + { + "start": 9542.56, + "end": 9544.76, + "probability": 0.2642 + }, + { + "start": 9544.94, + "end": 9548.06, + "probability": 0.1427 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.0, + "end": 9658.0, + "probability": 0.0 + }, + { + "start": 9658.23, + "end": 9662.08, + "probability": 0.0973 + }, + { + "start": 9662.92, + "end": 9662.92, + "probability": 0.0282 + }, + { + "start": 9665.16, + "end": 9666.48, + "probability": 0.1646 + }, + { + "start": 9666.58, + "end": 9667.22, + "probability": 0.0094 + }, + { + "start": 9667.92, + "end": 9668.46, + "probability": 0.1439 + }, + { + "start": 9668.84, + "end": 9673.12, + "probability": 0.0916 + }, + { + "start": 9673.18, + "end": 9674.62, + "probability": 0.2989 + }, + { + "start": 9674.62, + "end": 9678.06, + "probability": 0.3388 + }, + { + "start": 9678.06, + "end": 9679.06, + "probability": 0.6769 + }, + { + "start": 9679.06, + "end": 9682.26, + "probability": 0.0633 + }, + { + "start": 9682.26, + "end": 9684.38, + "probability": 0.0479 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.0, + "end": 9782.0, + "probability": 0.0 + }, + { + "start": 9782.16, + "end": 9782.8, + "probability": 0.5412 + }, + { + "start": 9783.52, + "end": 9786.68, + "probability": 0.2241 + }, + { + "start": 9786.68, + "end": 9787.56, + "probability": 0.7108 + }, + { + "start": 9787.56, + "end": 9789.08, + "probability": 0.9106 + }, + { + "start": 9789.6, + "end": 9791.0, + "probability": 0.9294 + }, + { + "start": 9791.5, + "end": 9794.12, + "probability": 0.7894 + }, + { + "start": 9794.12, + "end": 9795.33, + "probability": 0.7189 + }, + { + "start": 9795.68, + "end": 9795.8, + "probability": 0.2977 + }, + { + "start": 9795.8, + "end": 9797.06, + "probability": 0.6049 + }, + { + "start": 9797.7, + "end": 9800.58, + "probability": 0.9882 + }, + { + "start": 9800.62, + "end": 9801.16, + "probability": 0.2108 + }, + { + "start": 9801.28, + "end": 9803.88, + "probability": 0.8518 + }, + { + "start": 9803.88, + "end": 9808.18, + "probability": 0.6727 + }, + { + "start": 9808.24, + "end": 9809.1, + "probability": 0.6683 + }, + { + "start": 9809.1, + "end": 9814.22, + "probability": 0.807 + }, + { + "start": 9814.22, + "end": 9814.48, + "probability": 0.2906 + }, + { + "start": 9815.02, + "end": 9815.76, + "probability": 0.0255 + }, + { + "start": 9815.76, + "end": 9816.92, + "probability": 0.7483 + }, + { + "start": 9817.0, + "end": 9818.76, + "probability": 0.3823 + }, + { + "start": 9819.12, + "end": 9820.48, + "probability": 0.8877 + }, + { + "start": 9820.58, + "end": 9821.9, + "probability": 0.8105 + }, + { + "start": 9822.02, + "end": 9822.88, + "probability": 0.6913 + }, + { + "start": 9822.98, + "end": 9824.32, + "probability": 0.7126 + }, + { + "start": 9824.34, + "end": 9825.48, + "probability": 0.9223 + }, + { + "start": 9826.14, + "end": 9828.54, + "probability": 0.9957 + }, + { + "start": 9828.68, + "end": 9829.24, + "probability": 0.2814 + }, + { + "start": 9829.28, + "end": 9830.48, + "probability": 0.702 + }, + { + "start": 9830.48, + "end": 9832.56, + "probability": 0.7994 + }, + { + "start": 9832.64, + "end": 9833.73, + "probability": 0.8101 + }, + { + "start": 9834.76, + "end": 9839.3, + "probability": 0.9883 + }, + { + "start": 9839.3, + "end": 9842.74, + "probability": 0.9977 + }, + { + "start": 9842.92, + "end": 9844.84, + "probability": 0.9912 + }, + { + "start": 9845.18, + "end": 9850.61, + "probability": 0.6993 + }, + { + "start": 9851.9, + "end": 9854.24, + "probability": 0.3328 + }, + { + "start": 9854.62, + "end": 9854.62, + "probability": 0.0532 + }, + { + "start": 9854.62, + "end": 9854.62, + "probability": 0.1611 + }, + { + "start": 9854.62, + "end": 9856.82, + "probability": 0.7633 + }, + { + "start": 9856.98, + "end": 9858.48, + "probability": 0.9934 + }, + { + "start": 9859.16, + "end": 9862.12, + "probability": 0.9908 + }, + { + "start": 9862.6, + "end": 9864.02, + "probability": 0.734 + }, + { + "start": 9864.08, + "end": 9865.5, + "probability": 0.9039 + }, + { + "start": 9865.58, + "end": 9868.42, + "probability": 0.9692 + }, + { + "start": 9868.66, + "end": 9873.86, + "probability": 0.9902 + }, + { + "start": 9874.22, + "end": 9875.56, + "probability": 0.9803 + }, + { + "start": 9875.7, + "end": 9880.7, + "probability": 0.7487 + }, + { + "start": 9880.7, + "end": 9880.96, + "probability": 0.0534 + }, + { + "start": 9880.98, + "end": 9881.26, + "probability": 0.1817 + }, + { + "start": 9881.26, + "end": 9882.03, + "probability": 0.9316 + }, + { + "start": 9882.82, + "end": 9882.82, + "probability": 0.3845 + }, + { + "start": 9882.88, + "end": 9882.92, + "probability": 0.4392 + }, + { + "start": 9882.92, + "end": 9884.44, + "probability": 0.3145 + }, + { + "start": 9884.5, + "end": 9887.56, + "probability": 0.1282 + }, + { + "start": 9889.58, + "end": 9890.9, + "probability": 0.0477 + }, + { + "start": 9890.9, + "end": 9890.9, + "probability": 0.3178 + }, + { + "start": 9890.9, + "end": 9891.32, + "probability": 0.3961 + }, + { + "start": 9891.44, + "end": 9893.3, + "probability": 0.6279 + }, + { + "start": 9893.52, + "end": 9898.06, + "probability": 0.8901 + }, + { + "start": 9898.82, + "end": 9899.64, + "probability": 0.0313 + }, + { + "start": 9899.64, + "end": 9899.64, + "probability": 0.1323 + }, + { + "start": 9899.64, + "end": 9899.64, + "probability": 0.0249 + }, + { + "start": 9899.64, + "end": 9900.04, + "probability": 0.3043 + }, + { + "start": 9900.48, + "end": 9901.43, + "probability": 0.6802 + }, + { + "start": 9901.74, + "end": 9903.86, + "probability": 0.4592 + }, + { + "start": 9903.98, + "end": 9905.54, + "probability": 0.695 + }, + { + "start": 9905.7, + "end": 9907.28, + "probability": 0.81 + }, + { + "start": 9907.48, + "end": 9910.72, + "probability": 0.9678 + }, + { + "start": 9910.84, + "end": 9912.76, + "probability": 0.9878 + }, + { + "start": 9912.98, + "end": 9915.19, + "probability": 0.9429 + }, + { + "start": 9915.44, + "end": 9915.76, + "probability": 0.3266 + }, + { + "start": 9915.76, + "end": 9919.72, + "probability": 0.8926 + }, + { + "start": 9920.2, + "end": 9920.26, + "probability": 0.0059 + }, + { + "start": 9920.26, + "end": 9920.26, + "probability": 0.0272 + }, + { + "start": 9920.26, + "end": 9921.24, + "probability": 0.6712 + }, + { + "start": 9921.78, + "end": 9923.04, + "probability": 0.6685 + }, + { + "start": 9923.14, + "end": 9924.48, + "probability": 0.0354 + }, + { + "start": 9924.82, + "end": 9926.96, + "probability": 0.8765 + }, + { + "start": 9927.48, + "end": 9930.52, + "probability": 0.1354 + }, + { + "start": 9930.88, + "end": 9931.26, + "probability": 0.0053 + }, + { + "start": 9931.26, + "end": 9931.67, + "probability": 0.2958 + }, + { + "start": 9932.87, + "end": 9932.94, + "probability": 0.5243 + }, + { + "start": 9933.12, + "end": 9934.49, + "probability": 0.6908 + }, + { + "start": 9934.76, + "end": 9935.06, + "probability": 0.779 + }, + { + "start": 9935.5, + "end": 9935.5, + "probability": 0.7954 + }, + { + "start": 9936.08, + "end": 9940.92, + "probability": 0.9886 + }, + { + "start": 9941.3, + "end": 9942.24, + "probability": 0.9492 + }, + { + "start": 9942.9, + "end": 9943.52, + "probability": 0.0836 + }, + { + "start": 9943.52, + "end": 9943.86, + "probability": 0.1679 + }, + { + "start": 9944.2, + "end": 9945.18, + "probability": 0.3301 + }, + { + "start": 9945.18, + "end": 9945.3, + "probability": 0.4574 + }, + { + "start": 9945.3, + "end": 9948.12, + "probability": 0.3659 + }, + { + "start": 9948.52, + "end": 9948.98, + "probability": 0.3877 + }, + { + "start": 9949.18, + "end": 9952.03, + "probability": 0.615 + }, + { + "start": 9952.24, + "end": 9952.28, + "probability": 0.2617 + }, + { + "start": 9953.06, + "end": 9953.36, + "probability": 0.0129 + }, + { + "start": 9953.36, + "end": 9953.78, + "probability": 0.1092 + }, + { + "start": 9953.78, + "end": 9953.78, + "probability": 0.1424 + }, + { + "start": 9953.78, + "end": 9954.2, + "probability": 0.1721 + }, + { + "start": 9954.46, + "end": 9958.42, + "probability": 0.9641 + }, + { + "start": 9958.42, + "end": 9962.0, + "probability": 0.9347 + }, + { + "start": 9962.38, + "end": 9962.38, + "probability": 0.1219 + }, + { + "start": 9962.38, + "end": 9965.6, + "probability": 0.4171 + }, + { + "start": 9965.9, + "end": 9967.28, + "probability": 0.8382 + }, + { + "start": 9967.62, + "end": 9969.08, + "probability": 0.5562 + }, + { + "start": 9969.46, + "end": 9971.86, + "probability": 0.8812 + }, + { + "start": 9971.88, + "end": 9973.04, + "probability": 0.7138 + }, + { + "start": 9973.24, + "end": 9974.58, + "probability": 0.8916 + }, + { + "start": 9974.78, + "end": 9974.78, + "probability": 0.0284 + }, + { + "start": 9974.78, + "end": 9975.88, + "probability": 0.86 + }, + { + "start": 9976.28, + "end": 9978.1, + "probability": 0.8015 + }, + { + "start": 9978.52, + "end": 9980.5, + "probability": 0.9392 + }, + { + "start": 9980.52, + "end": 9984.48, + "probability": 0.9588 + }, + { + "start": 9984.48, + "end": 9987.78, + "probability": 0.9353 + }, + { + "start": 9988.06, + "end": 9988.3, + "probability": 0.0279 + }, + { + "start": 9988.3, + "end": 9988.5, + "probability": 0.4881 + }, + { + "start": 9988.5, + "end": 9990.6, + "probability": 0.5809 + }, + { + "start": 9991.88, + "end": 9993.38, + "probability": 0.3244 + }, + { + "start": 9993.38, + "end": 9995.9, + "probability": 0.5667 + }, + { + "start": 9996.5, + "end": 9999.4, + "probability": 0.5015 + }, + { + "start": 10000.3, + "end": 10001.06, + "probability": 0.602 + }, + { + "start": 10001.16, + "end": 10002.18, + "probability": 0.8821 + }, + { + "start": 10002.4, + "end": 10005.54, + "probability": 0.9462 + }, + { + "start": 10005.74, + "end": 10007.66, + "probability": 0.9987 + }, + { + "start": 10008.08, + "end": 10009.0, + "probability": 0.5107 + }, + { + "start": 10011.8, + "end": 10011.8, + "probability": 0.0381 + }, + { + "start": 10011.8, + "end": 10016.96, + "probability": 0.9937 + }, + { + "start": 10017.08, + "end": 10018.2, + "probability": 0.7742 + }, + { + "start": 10018.38, + "end": 10021.04, + "probability": 0.9532 + }, + { + "start": 10021.26, + "end": 10021.84, + "probability": 0.0869 + }, + { + "start": 10022.0, + "end": 10022.36, + "probability": 0.0112 + }, + { + "start": 10023.0, + "end": 10023.22, + "probability": 0.058 + }, + { + "start": 10023.22, + "end": 10024.48, + "probability": 0.8843 + }, + { + "start": 10024.6, + "end": 10025.24, + "probability": 0.7448 + }, + { + "start": 10025.32, + "end": 10029.14, + "probability": 0.9378 + }, + { + "start": 10029.2, + "end": 10032.62, + "probability": 0.7911 + }, + { + "start": 10032.62, + "end": 10033.06, + "probability": 0.4087 + }, + { + "start": 10033.2, + "end": 10033.28, + "probability": 0.0363 + }, + { + "start": 10033.28, + "end": 10036.06, + "probability": 0.9067 + }, + { + "start": 10036.52, + "end": 10038.66, + "probability": 0.8653 + }, + { + "start": 10039.18, + "end": 10040.02, + "probability": 0.1594 + }, + { + "start": 10040.02, + "end": 10044.7, + "probability": 0.6296 + }, + { + "start": 10044.8, + "end": 10045.94, + "probability": 0.6892 + }, + { + "start": 10046.56, + "end": 10051.22, + "probability": 0.9658 + }, + { + "start": 10051.26, + "end": 10052.16, + "probability": 0.7345 + }, + { + "start": 10052.32, + "end": 10053.38, + "probability": 0.5793 + }, + { + "start": 10053.7, + "end": 10054.46, + "probability": 0.753 + }, + { + "start": 10054.46, + "end": 10055.81, + "probability": 0.9983 + }, + { + "start": 10056.04, + "end": 10057.15, + "probability": 0.9946 + }, + { + "start": 10058.2, + "end": 10058.86, + "probability": 0.131 + }, + { + "start": 10058.86, + "end": 10058.96, + "probability": 0.0072 + }, + { + "start": 10058.96, + "end": 10060.04, + "probability": 0.258 + }, + { + "start": 10060.6, + "end": 10062.86, + "probability": 0.5324 + }, + { + "start": 10063.02, + "end": 10063.02, + "probability": 0.1997 + }, + { + "start": 10063.04, + "end": 10065.1, + "probability": 0.2358 + }, + { + "start": 10067.28, + "end": 10068.66, + "probability": 0.2985 + }, + { + "start": 10068.66, + "end": 10068.66, + "probability": 0.0156 + }, + { + "start": 10068.66, + "end": 10068.66, + "probability": 0.0551 + }, + { + "start": 10068.66, + "end": 10070.38, + "probability": 0.4297 + }, + { + "start": 10070.4, + "end": 10072.28, + "probability": 0.4957 + }, + { + "start": 10072.5, + "end": 10072.54, + "probability": 0.2111 + }, + { + "start": 10072.54, + "end": 10072.54, + "probability": 0.5826 + }, + { + "start": 10072.62, + "end": 10073.92, + "probability": 0.8957 + }, + { + "start": 10074.06, + "end": 10078.92, + "probability": 0.664 + }, + { + "start": 10079.0, + "end": 10079.63, + "probability": 0.8649 + }, + { + "start": 10079.84, + "end": 10081.8, + "probability": 0.8549 + }, + { + "start": 10082.02, + "end": 10084.02, + "probability": 0.9977 + }, + { + "start": 10084.32, + "end": 10086.02, + "probability": 0.9851 + }, + { + "start": 10086.02, + "end": 10086.76, + "probability": 0.0801 + }, + { + "start": 10086.76, + "end": 10087.68, + "probability": 0.2441 + }, + { + "start": 10087.78, + "end": 10089.9, + "probability": 0.5917 + }, + { + "start": 10090.22, + "end": 10092.52, + "probability": 0.1343 + }, + { + "start": 10092.72, + "end": 10093.94, + "probability": 0.8831 + }, + { + "start": 10094.02, + "end": 10094.02, + "probability": 0.9416 + }, + { + "start": 10094.02, + "end": 10095.18, + "probability": 0.5874 + }, + { + "start": 10095.3, + "end": 10099.02, + "probability": 0.1951 + }, + { + "start": 10099.2, + "end": 10099.2, + "probability": 0.0889 + }, + { + "start": 10099.32, + "end": 10101.96, + "probability": 0.9361 + }, + { + "start": 10101.96, + "end": 10104.96, + "probability": 0.7545 + }, + { + "start": 10105.08, + "end": 10105.42, + "probability": 0.2129 + }, + { + "start": 10105.44, + "end": 10105.5, + "probability": 0.044 + }, + { + "start": 10105.5, + "end": 10108.06, + "probability": 0.6031 + }, + { + "start": 10108.42, + "end": 10110.16, + "probability": 0.8022 + }, + { + "start": 10110.32, + "end": 10110.62, + "probability": 0.7087 + }, + { + "start": 10110.66, + "end": 10112.78, + "probability": 0.9938 + }, + { + "start": 10112.78, + "end": 10113.56, + "probability": 0.48 + }, + { + "start": 10113.64, + "end": 10113.86, + "probability": 0.0784 + }, + { + "start": 10113.86, + "end": 10114.44, + "probability": 0.2861 + }, + { + "start": 10115.12, + "end": 10116.96, + "probability": 0.5551 + }, + { + "start": 10117.24, + "end": 10120.48, + "probability": 0.8903 + }, + { + "start": 10120.88, + "end": 10122.72, + "probability": 0.7105 + }, + { + "start": 10122.78, + "end": 10123.26, + "probability": 0.304 + }, + { + "start": 10123.26, + "end": 10124.14, + "probability": 0.1184 + }, + { + "start": 10124.24, + "end": 10124.26, + "probability": 0.0604 + }, + { + "start": 10124.28, + "end": 10127.48, + "probability": 0.5623 + }, + { + "start": 10127.94, + "end": 10127.94, + "probability": 0.2283 + }, + { + "start": 10128.14, + "end": 10128.5, + "probability": 0.3027 + }, + { + "start": 10128.58, + "end": 10129.44, + "probability": 0.5062 + }, + { + "start": 10129.56, + "end": 10130.12, + "probability": 0.8275 + }, + { + "start": 10130.46, + "end": 10132.08, + "probability": 0.8473 + }, + { + "start": 10132.14, + "end": 10133.42, + "probability": 0.7249 + }, + { + "start": 10134.44, + "end": 10136.4, + "probability": 0.0632 + }, + { + "start": 10136.4, + "end": 10136.4, + "probability": 0.1945 + }, + { + "start": 10136.4, + "end": 10137.38, + "probability": 0.1209 + }, + { + "start": 10139.54, + "end": 10140.48, + "probability": 0.6301 + }, + { + "start": 10140.86, + "end": 10146.88, + "probability": 0.9963 + }, + { + "start": 10147.22, + "end": 10151.1, + "probability": 0.9696 + }, + { + "start": 10151.22, + "end": 10152.38, + "probability": 0.9819 + }, + { + "start": 10152.94, + "end": 10156.54, + "probability": 0.9945 + }, + { + "start": 10157.08, + "end": 10158.66, + "probability": 0.9417 + }, + { + "start": 10158.92, + "end": 10160.16, + "probability": 0.8236 + }, + { + "start": 10160.62, + "end": 10162.3, + "probability": 0.9973 + }, + { + "start": 10162.76, + "end": 10167.39, + "probability": 0.979 + }, + { + "start": 10167.44, + "end": 10167.74, + "probability": 0.4081 + }, + { + "start": 10167.9, + "end": 10171.22, + "probability": 0.967 + }, + { + "start": 10171.3, + "end": 10172.38, + "probability": 0.5769 + }, + { + "start": 10172.38, + "end": 10176.66, + "probability": 0.9832 + }, + { + "start": 10177.06, + "end": 10179.26, + "probability": 0.9113 + }, + { + "start": 10179.88, + "end": 10181.52, + "probability": 0.8977 + }, + { + "start": 10181.62, + "end": 10186.38, + "probability": 0.975 + }, + { + "start": 10187.54, + "end": 10191.2, + "probability": 0.5734 + }, + { + "start": 10191.84, + "end": 10192.64, + "probability": 0.6862 + }, + { + "start": 10193.2, + "end": 10196.12, + "probability": 0.9696 + }, + { + "start": 10196.28, + "end": 10198.8, + "probability": 0.9536 + }, + { + "start": 10200.02, + "end": 10201.08, + "probability": 0.8083 + }, + { + "start": 10201.2, + "end": 10202.24, + "probability": 0.7266 + }, + { + "start": 10202.48, + "end": 10203.56, + "probability": 0.6029 + }, + { + "start": 10203.58, + "end": 10204.66, + "probability": 0.6497 + }, + { + "start": 10206.1, + "end": 10207.38, + "probability": 0.9342 + }, + { + "start": 10207.96, + "end": 10209.86, + "probability": 0.7822 + }, + { + "start": 10210.06, + "end": 10213.38, + "probability": 0.965 + }, + { + "start": 10213.46, + "end": 10215.24, + "probability": 0.9874 + }, + { + "start": 10216.72, + "end": 10221.56, + "probability": 0.8884 + }, + { + "start": 10222.26, + "end": 10226.14, + "probability": 0.9848 + }, + { + "start": 10227.26, + "end": 10228.24, + "probability": 0.7122 + }, + { + "start": 10228.66, + "end": 10230.06, + "probability": 0.8038 + }, + { + "start": 10230.22, + "end": 10231.32, + "probability": 0.945 + }, + { + "start": 10231.58, + "end": 10233.86, + "probability": 0.992 + }, + { + "start": 10234.0, + "end": 10238.64, + "probability": 0.9962 + }, + { + "start": 10239.02, + "end": 10240.1, + "probability": 0.6682 + }, + { + "start": 10240.72, + "end": 10243.48, + "probability": 0.6583 + }, + { + "start": 10243.64, + "end": 10243.8, + "probability": 0.7119 + }, + { + "start": 10243.94, + "end": 10244.96, + "probability": 0.8984 + }, + { + "start": 10245.18, + "end": 10251.1, + "probability": 0.9479 + }, + { + "start": 10251.84, + "end": 10253.74, + "probability": 0.9754 + }, + { + "start": 10254.14, + "end": 10256.76, + "probability": 0.9932 + }, + { + "start": 10257.78, + "end": 10258.65, + "probability": 0.7897 + }, + { + "start": 10259.36, + "end": 10264.0, + "probability": 0.9893 + }, + { + "start": 10264.64, + "end": 10265.24, + "probability": 0.7177 + }, + { + "start": 10265.32, + "end": 10267.42, + "probability": 0.9912 + }, + { + "start": 10267.56, + "end": 10269.5, + "probability": 0.9706 + }, + { + "start": 10269.84, + "end": 10271.94, + "probability": 0.9346 + }, + { + "start": 10272.0, + "end": 10274.96, + "probability": 0.6523 + }, + { + "start": 10275.62, + "end": 10277.74, + "probability": 0.7924 + }, + { + "start": 10279.16, + "end": 10280.32, + "probability": 0.3799 + }, + { + "start": 10280.42, + "end": 10282.96, + "probability": 0.7439 + }, + { + "start": 10282.96, + "end": 10285.58, + "probability": 0.083 + }, + { + "start": 10285.58, + "end": 10285.58, + "probability": 0.0554 + }, + { + "start": 10285.58, + "end": 10288.14, + "probability": 0.4172 + }, + { + "start": 10288.76, + "end": 10292.28, + "probability": 0.9865 + }, + { + "start": 10292.5, + "end": 10292.82, + "probability": 0.6744 + }, + { + "start": 10292.9, + "end": 10293.54, + "probability": 0.7601 + }, + { + "start": 10293.74, + "end": 10298.1, + "probability": 0.9539 + }, + { + "start": 10299.08, + "end": 10303.1, + "probability": 0.9792 + }, + { + "start": 10303.34, + "end": 10305.26, + "probability": 0.9941 + }, + { + "start": 10305.54, + "end": 10307.26, + "probability": 0.7975 + }, + { + "start": 10307.74, + "end": 10311.22, + "probability": 0.8583 + }, + { + "start": 10311.74, + "end": 10311.74, + "probability": 0.0592 + }, + { + "start": 10311.74, + "end": 10313.84, + "probability": 0.8641 + }, + { + "start": 10314.4, + "end": 10314.52, + "probability": 0.2222 + }, + { + "start": 10314.52, + "end": 10317.14, + "probability": 0.8414 + }, + { + "start": 10317.22, + "end": 10320.8, + "probability": 0.155 + }, + { + "start": 10320.8, + "end": 10321.74, + "probability": 0.0394 + }, + { + "start": 10321.74, + "end": 10322.2, + "probability": 0.038 + }, + { + "start": 10322.73, + "end": 10323.38, + "probability": 0.61 + }, + { + "start": 10323.38, + "end": 10324.52, + "probability": 0.5917 + }, + { + "start": 10324.6, + "end": 10325.82, + "probability": 0.9907 + }, + { + "start": 10327.08, + "end": 10334.44, + "probability": 0.9947 + }, + { + "start": 10335.26, + "end": 10337.6, + "probability": 0.8881 + }, + { + "start": 10337.96, + "end": 10339.6, + "probability": 0.9961 + }, + { + "start": 10339.7, + "end": 10340.08, + "probability": 0.7636 + }, + { + "start": 10340.34, + "end": 10341.36, + "probability": 0.9463 + }, + { + "start": 10341.44, + "end": 10342.46, + "probability": 0.9209 + }, + { + "start": 10342.8, + "end": 10346.22, + "probability": 0.9792 + }, + { + "start": 10346.36, + "end": 10346.58, + "probability": 0.7901 + }, + { + "start": 10346.66, + "end": 10347.8, + "probability": 0.7798 + }, + { + "start": 10347.86, + "end": 10350.76, + "probability": 0.8997 + }, + { + "start": 10350.84, + "end": 10352.82, + "probability": 0.9394 + }, + { + "start": 10352.94, + "end": 10354.88, + "probability": 0.9011 + }, + { + "start": 10355.24, + "end": 10360.56, + "probability": 0.9834 + }, + { + "start": 10360.82, + "end": 10366.41, + "probability": 0.9889 + }, + { + "start": 10366.7, + "end": 10369.78, + "probability": 0.7277 + }, + { + "start": 10370.12, + "end": 10370.14, + "probability": 0.6802 + }, + { + "start": 10370.28, + "end": 10370.54, + "probability": 0.8711 + }, + { + "start": 10370.64, + "end": 10375.04, + "probability": 0.9732 + }, + { + "start": 10375.12, + "end": 10376.1, + "probability": 0.7413 + }, + { + "start": 10376.4, + "end": 10378.08, + "probability": 0.7502 + }, + { + "start": 10378.16, + "end": 10378.94, + "probability": 0.9568 + }, + { + "start": 10379.02, + "end": 10380.06, + "probability": 0.8947 + }, + { + "start": 10380.25, + "end": 10382.18, + "probability": 0.0697 + }, + { + "start": 10382.18, + "end": 10385.02, + "probability": 0.9498 + }, + { + "start": 10385.86, + "end": 10387.38, + "probability": 0.24 + }, + { + "start": 10387.72, + "end": 10389.76, + "probability": 0.7508 + }, + { + "start": 10389.76, + "end": 10389.76, + "probability": 0.0084 + }, + { + "start": 10389.76, + "end": 10390.66, + "probability": 0.3037 + }, + { + "start": 10390.66, + "end": 10392.82, + "probability": 0.3208 + }, + { + "start": 10392.86, + "end": 10394.2, + "probability": 0.5108 + }, + { + "start": 10394.24, + "end": 10395.18, + "probability": 0.531 + }, + { + "start": 10395.18, + "end": 10395.56, + "probability": 0.1851 + }, + { + "start": 10396.32, + "end": 10396.96, + "probability": 0.002 + }, + { + "start": 10397.16, + "end": 10397.2, + "probability": 0.0159 + }, + { + "start": 10397.2, + "end": 10399.06, + "probability": 0.85 + }, + { + "start": 10399.06, + "end": 10399.24, + "probability": 0.4271 + }, + { + "start": 10399.26, + "end": 10400.24, + "probability": 0.6295 + }, + { + "start": 10400.32, + "end": 10400.88, + "probability": 0.8744 + }, + { + "start": 10400.96, + "end": 10404.52, + "probability": 0.3705 + }, + { + "start": 10405.16, + "end": 10405.16, + "probability": 0.0945 + }, + { + "start": 10405.16, + "end": 10405.5, + "probability": 0.3565 + }, + { + "start": 10405.64, + "end": 10406.66, + "probability": 0.1513 + }, + { + "start": 10406.96, + "end": 10408.72, + "probability": 0.5767 + }, + { + "start": 10408.96, + "end": 10410.02, + "probability": 0.4972 + }, + { + "start": 10410.32, + "end": 10410.78, + "probability": 0.058 + }, + { + "start": 10411.49, + "end": 10415.77, + "probability": 0.3523 + }, + { + "start": 10416.26, + "end": 10421.28, + "probability": 0.1553 + }, + { + "start": 10421.36, + "end": 10421.36, + "probability": 0.1876 + }, + { + "start": 10421.36, + "end": 10421.48, + "probability": 0.1486 + }, + { + "start": 10421.48, + "end": 10421.48, + "probability": 0.2696 + }, + { + "start": 10421.48, + "end": 10421.48, + "probability": 0.2242 + }, + { + "start": 10421.48, + "end": 10422.56, + "probability": 0.3584 + }, + { + "start": 10422.56, + "end": 10423.64, + "probability": 0.6286 + }, + { + "start": 10424.14, + "end": 10426.44, + "probability": 0.7136 + }, + { + "start": 10426.62, + "end": 10427.62, + "probability": 0.6425 + }, + { + "start": 10427.98, + "end": 10429.76, + "probability": 0.3169 + }, + { + "start": 10429.76, + "end": 10432.96, + "probability": 0.6985 + }, + { + "start": 10432.96, + "end": 10433.88, + "probability": 0.1398 + }, + { + "start": 10433.88, + "end": 10437.86, + "probability": 0.7086 + }, + { + "start": 10437.86, + "end": 10438.2, + "probability": 0.1138 + }, + { + "start": 10438.28, + "end": 10439.36, + "probability": 0.797 + }, + { + "start": 10439.88, + "end": 10444.1, + "probability": 0.8504 + }, + { + "start": 10444.32, + "end": 10446.3, + "probability": 0.7373 + }, + { + "start": 10446.3, + "end": 10447.56, + "probability": 0.116 + }, + { + "start": 10447.6, + "end": 10447.6, + "probability": 0.4107 + }, + { + "start": 10447.6, + "end": 10450.4, + "probability": 0.8394 + }, + { + "start": 10450.4, + "end": 10451.67, + "probability": 0.9199 + }, + { + "start": 10452.06, + "end": 10453.32, + "probability": 0.8442 + }, + { + "start": 10453.34, + "end": 10454.04, + "probability": 0.624 + }, + { + "start": 10454.04, + "end": 10457.81, + "probability": 0.6682 + }, + { + "start": 10458.14, + "end": 10460.4, + "probability": 0.9929 + }, + { + "start": 10460.46, + "end": 10460.48, + "probability": 0.0063 + }, + { + "start": 10460.48, + "end": 10463.22, + "probability": 0.4546 + }, + { + "start": 10463.9, + "end": 10463.9, + "probability": 0.0745 + }, + { + "start": 10463.9, + "end": 10467.48, + "probability": 0.4179 + }, + { + "start": 10467.84, + "end": 10472.28, + "probability": 0.8432 + }, + { + "start": 10472.28, + "end": 10474.4, + "probability": 0.8431 + }, + { + "start": 10476.0, + "end": 10476.0, + "probability": 0.109 + }, + { + "start": 10476.0, + "end": 10477.0, + "probability": 0.3735 + }, + { + "start": 10477.12, + "end": 10479.26, + "probability": 0.8553 + }, + { + "start": 10479.46, + "end": 10480.52, + "probability": 0.6426 + }, + { + "start": 10480.52, + "end": 10481.4, + "probability": 0.2197 + }, + { + "start": 10481.54, + "end": 10484.62, + "probability": 0.6116 + }, + { + "start": 10484.74, + "end": 10487.06, + "probability": 0.3783 + }, + { + "start": 10487.7, + "end": 10488.04, + "probability": 0.0261 + }, + { + "start": 10488.04, + "end": 10488.12, + "probability": 0.2005 + }, + { + "start": 10488.28, + "end": 10488.32, + "probability": 0.4541 + }, + { + "start": 10488.32, + "end": 10489.72, + "probability": 0.4715 + }, + { + "start": 10489.94, + "end": 10493.18, + "probability": 0.1945 + }, + { + "start": 10494.08, + "end": 10494.64, + "probability": 0.0377 + }, + { + "start": 10494.64, + "end": 10494.64, + "probability": 0.0299 + }, + { + "start": 10494.64, + "end": 10494.64, + "probability": 0.1714 + }, + { + "start": 10494.64, + "end": 10495.66, + "probability": 0.1198 + }, + { + "start": 10495.72, + "end": 10499.22, + "probability": 0.9823 + }, + { + "start": 10499.88, + "end": 10503.48, + "probability": 0.7403 + }, + { + "start": 10503.92, + "end": 10506.34, + "probability": 0.7923 + }, + { + "start": 10506.6, + "end": 10506.96, + "probability": 0.1827 + }, + { + "start": 10507.18, + "end": 10508.94, + "probability": 0.2501 + }, + { + "start": 10510.14, + "end": 10513.3, + "probability": 0.9967 + }, + { + "start": 10513.36, + "end": 10515.26, + "probability": 0.8086 + }, + { + "start": 10515.38, + "end": 10516.12, + "probability": 0.2249 + }, + { + "start": 10516.8, + "end": 10521.78, + "probability": 0.8783 + }, + { + "start": 10521.82, + "end": 10523.66, + "probability": 0.9381 + }, + { + "start": 10524.06, + "end": 10525.69, + "probability": 0.9824 + }, + { + "start": 10525.96, + "end": 10530.76, + "probability": 0.9366 + }, + { + "start": 10531.58, + "end": 10533.68, + "probability": 0.8444 + }, + { + "start": 10534.54, + "end": 10535.17, + "probability": 0.2417 + }, + { + "start": 10535.68, + "end": 10538.9, + "probability": 0.8431 + }, + { + "start": 10538.98, + "end": 10539.58, + "probability": 0.6929 + }, + { + "start": 10540.94, + "end": 10545.16, + "probability": 0.8029 + }, + { + "start": 10545.38, + "end": 10546.52, + "probability": 0.8008 + }, + { + "start": 10547.28, + "end": 10549.96, + "probability": 0.5464 + }, + { + "start": 10551.28, + "end": 10552.4, + "probability": 0.6861 + }, + { + "start": 10552.82, + "end": 10553.96, + "probability": 0.6303 + }, + { + "start": 10555.7, + "end": 10558.48, + "probability": 0.0983 + }, + { + "start": 10559.98, + "end": 10565.7, + "probability": 0.0838 + }, + { + "start": 10568.42, + "end": 10569.02, + "probability": 0.041 + }, + { + "start": 10569.92, + "end": 10569.92, + "probability": 0.0358 + }, + { + "start": 10569.92, + "end": 10569.92, + "probability": 0.7162 + }, + { + "start": 10569.92, + "end": 10569.92, + "probability": 0.755 + }, + { + "start": 10569.92, + "end": 10572.32, + "probability": 0.2335 + }, + { + "start": 10572.62, + "end": 10575.78, + "probability": 0.8999 + }, + { + "start": 10575.82, + "end": 10577.7, + "probability": 0.75 + }, + { + "start": 10577.86, + "end": 10581.82, + "probability": 0.9688 + }, + { + "start": 10581.92, + "end": 10582.3, + "probability": 0.2146 + }, + { + "start": 10583.26, + "end": 10583.74, + "probability": 0.1172 + }, + { + "start": 10583.74, + "end": 10584.18, + "probability": 0.6253 + }, + { + "start": 10584.22, + "end": 10587.22, + "probability": 0.873 + }, + { + "start": 10588.0, + "end": 10590.94, + "probability": 0.9736 + }, + { + "start": 10591.54, + "end": 10594.34, + "probability": 0.7077 + }, + { + "start": 10594.74, + "end": 10596.66, + "probability": 0.8683 + }, + { + "start": 10596.76, + "end": 10598.96, + "probability": 0.7795 + }, + { + "start": 10598.96, + "end": 10602.66, + "probability": 0.6065 + }, + { + "start": 10603.46, + "end": 10605.8, + "probability": 0.8593 + }, + { + "start": 10607.22, + "end": 10609.26, + "probability": 0.7563 + }, + { + "start": 10609.42, + "end": 10611.82, + "probability": 0.7644 + }, + { + "start": 10612.84, + "end": 10615.6, + "probability": 0.624 + }, + { + "start": 10615.84, + "end": 10615.84, + "probability": 0.6383 + }, + { + "start": 10615.84, + "end": 10616.42, + "probability": 0.6288 + }, + { + "start": 10616.74, + "end": 10617.82, + "probability": 0.803 + }, + { + "start": 10618.24, + "end": 10619.47, + "probability": 0.6934 + }, + { + "start": 10619.54, + "end": 10619.61, + "probability": 0.1277 + }, + { + "start": 10620.22, + "end": 10621.82, + "probability": 0.0807 + }, + { + "start": 10622.22, + "end": 10622.22, + "probability": 0.1843 + }, + { + "start": 10622.36, + "end": 10624.89, + "probability": 0.6786 + }, + { + "start": 10627.96, + "end": 10627.96, + "probability": 0.1954 + }, + { + "start": 10627.96, + "end": 10629.8, + "probability": 0.1575 + }, + { + "start": 10629.86, + "end": 10632.85, + "probability": 0.9915 + }, + { + "start": 10633.34, + "end": 10634.48, + "probability": 0.468 + }, + { + "start": 10634.48, + "end": 10635.32, + "probability": 0.5929 + }, + { + "start": 10635.56, + "end": 10639.32, + "probability": 0.888 + }, + { + "start": 10641.74, + "end": 10643.9, + "probability": 0.8688 + }, + { + "start": 10644.86, + "end": 10647.22, + "probability": 0.7866 + }, + { + "start": 10648.06, + "end": 10649.3, + "probability": 0.9831 + }, + { + "start": 10650.36, + "end": 10654.42, + "probability": 0.9945 + }, + { + "start": 10655.0, + "end": 10660.26, + "probability": 0.9843 + }, + { + "start": 10660.5, + "end": 10664.14, + "probability": 0.9932 + }, + { + "start": 10664.62, + "end": 10667.9, + "probability": 0.9798 + }, + { + "start": 10668.12, + "end": 10668.96, + "probability": 0.9811 + }, + { + "start": 10669.24, + "end": 10670.1, + "probability": 0.9741 + }, + { + "start": 10670.22, + "end": 10671.4, + "probability": 0.8013 + }, + { + "start": 10672.14, + "end": 10673.88, + "probability": 0.9899 + }, + { + "start": 10674.2, + "end": 10676.52, + "probability": 0.9968 + }, + { + "start": 10678.64, + "end": 10680.92, + "probability": 0.9986 + }, + { + "start": 10681.28, + "end": 10684.54, + "probability": 0.9949 + }, + { + "start": 10684.92, + "end": 10687.42, + "probability": 0.9039 + }, + { + "start": 10687.98, + "end": 10690.82, + "probability": 0.8911 + }, + { + "start": 10691.3, + "end": 10693.42, + "probability": 0.9936 + }, + { + "start": 10693.62, + "end": 10699.4, + "probability": 0.9969 + }, + { + "start": 10699.72, + "end": 10702.54, + "probability": 0.9508 + }, + { + "start": 10702.82, + "end": 10705.86, + "probability": 0.8049 + }, + { + "start": 10705.96, + "end": 10710.76, + "probability": 0.9839 + }, + { + "start": 10710.76, + "end": 10716.1, + "probability": 0.9946 + }, + { + "start": 10716.18, + "end": 10718.76, + "probability": 0.8855 + }, + { + "start": 10719.08, + "end": 10719.62, + "probability": 0.8483 + }, + { + "start": 10720.22, + "end": 10721.38, + "probability": 0.7859 + }, + { + "start": 10721.82, + "end": 10723.22, + "probability": 0.8242 + }, + { + "start": 10723.28, + "end": 10724.26, + "probability": 0.9731 + }, + { + "start": 10724.42, + "end": 10724.94, + "probability": 0.7884 + }, + { + "start": 10725.26, + "end": 10728.88, + "probability": 0.9964 + }, + { + "start": 10729.18, + "end": 10730.96, + "probability": 0.9517 + }, + { + "start": 10731.34, + "end": 10734.24, + "probability": 0.9634 + }, + { + "start": 10734.56, + "end": 10735.6, + "probability": 0.8692 + }, + { + "start": 10735.88, + "end": 10738.26, + "probability": 0.6784 + }, + { + "start": 10738.74, + "end": 10740.9, + "probability": 0.6213 + }, + { + "start": 10741.44, + "end": 10745.08, + "probability": 0.9952 + }, + { + "start": 10745.26, + "end": 10746.32, + "probability": 0.736 + }, + { + "start": 10746.5, + "end": 10747.34, + "probability": 0.9636 + }, + { + "start": 10747.48, + "end": 10748.22, + "probability": 0.5894 + }, + { + "start": 10748.46, + "end": 10749.52, + "probability": 0.4614 + }, + { + "start": 10749.98, + "end": 10752.4, + "probability": 0.9637 + }, + { + "start": 10752.88, + "end": 10755.87, + "probability": 0.9971 + }, + { + "start": 10756.18, + "end": 10757.44, + "probability": 0.7335 + }, + { + "start": 10757.46, + "end": 10758.46, + "probability": 0.9351 + }, + { + "start": 10758.7, + "end": 10760.12, + "probability": 0.9852 + }, + { + "start": 10760.4, + "end": 10762.98, + "probability": 0.9909 + }, + { + "start": 10762.98, + "end": 10766.26, + "probability": 0.9961 + }, + { + "start": 10766.8, + "end": 10768.28, + "probability": 0.9882 + }, + { + "start": 10768.54, + "end": 10770.7, + "probability": 0.9965 + }, + { + "start": 10771.36, + "end": 10771.82, + "probability": 0.9703 + }, + { + "start": 10771.88, + "end": 10773.84, + "probability": 0.9566 + }, + { + "start": 10774.34, + "end": 10778.56, + "probability": 0.9258 + }, + { + "start": 10778.8, + "end": 10780.02, + "probability": 0.9815 + }, + { + "start": 10780.2, + "end": 10781.52, + "probability": 0.988 + }, + { + "start": 10781.58, + "end": 10785.98, + "probability": 0.9953 + }, + { + "start": 10786.26, + "end": 10787.4, + "probability": 0.9122 + }, + { + "start": 10787.6, + "end": 10788.91, + "probability": 0.9861 + }, + { + "start": 10789.14, + "end": 10793.2, + "probability": 0.9967 + }, + { + "start": 10793.62, + "end": 10795.48, + "probability": 0.9934 + }, + { + "start": 10795.68, + "end": 10796.9, + "probability": 0.9727 + }, + { + "start": 10797.04, + "end": 10801.2, + "probability": 0.9949 + }, + { + "start": 10801.66, + "end": 10803.8, + "probability": 0.9983 + }, + { + "start": 10804.5, + "end": 10807.24, + "probability": 0.8582 + }, + { + "start": 10807.44, + "end": 10809.48, + "probability": 0.8242 + }, + { + "start": 10809.64, + "end": 10811.76, + "probability": 0.9631 + }, + { + "start": 10812.12, + "end": 10814.32, + "probability": 0.9862 + }, + { + "start": 10814.64, + "end": 10816.44, + "probability": 0.9617 + }, + { + "start": 10816.7, + "end": 10818.6, + "probability": 0.9873 + }, + { + "start": 10818.7, + "end": 10819.58, + "probability": 0.898 + }, + { + "start": 10819.82, + "end": 10820.52, + "probability": 0.9044 + }, + { + "start": 10821.52, + "end": 10822.16, + "probability": 0.3852 + }, + { + "start": 10822.16, + "end": 10822.32, + "probability": 0.1204 + }, + { + "start": 10822.32, + "end": 10825.04, + "probability": 0.7229 + }, + { + "start": 10825.2, + "end": 10827.48, + "probability": 0.876 + }, + { + "start": 10827.62, + "end": 10829.84, + "probability": 0.9963 + }, + { + "start": 10830.6, + "end": 10833.46, + "probability": 0.6581 + }, + { + "start": 10838.65, + "end": 10840.27, + "probability": 0.5988 + }, + { + "start": 10842.0, + "end": 10843.68, + "probability": 0.7668 + }, + { + "start": 10843.78, + "end": 10847.14, + "probability": 0.9948 + }, + { + "start": 10847.14, + "end": 10850.88, + "probability": 0.9594 + }, + { + "start": 10851.46, + "end": 10854.62, + "probability": 0.7002 + }, + { + "start": 10855.26, + "end": 10859.38, + "probability": 0.9796 + }, + { + "start": 10859.68, + "end": 10861.64, + "probability": 0.8299 + }, + { + "start": 10862.22, + "end": 10866.84, + "probability": 0.994 + }, + { + "start": 10867.2, + "end": 10868.72, + "probability": 0.7339 + }, + { + "start": 10869.34, + "end": 10871.62, + "probability": 0.9909 + }, + { + "start": 10871.62, + "end": 10875.68, + "probability": 0.9862 + }, + { + "start": 10876.16, + "end": 10876.98, + "probability": 0.5037 + }, + { + "start": 10877.14, + "end": 10879.12, + "probability": 0.9893 + }, + { + "start": 10879.28, + "end": 10882.98, + "probability": 0.9536 + }, + { + "start": 10883.92, + "end": 10887.58, + "probability": 0.3952 + }, + { + "start": 10888.1, + "end": 10889.06, + "probability": 0.04 + }, + { + "start": 10889.06, + "end": 10890.46, + "probability": 0.0632 + }, + { + "start": 10890.66, + "end": 10891.24, + "probability": 0.0831 + }, + { + "start": 10891.36, + "end": 10891.44, + "probability": 0.0647 + }, + { + "start": 10891.44, + "end": 10894.34, + "probability": 0.6929 + }, + { + "start": 10894.64, + "end": 10900.54, + "probability": 0.6197 + }, + { + "start": 10901.42, + "end": 10903.1, + "probability": 0.8292 + }, + { + "start": 10903.42, + "end": 10907.0, + "probability": 0.7202 + }, + { + "start": 10907.58, + "end": 10908.66, + "probability": 0.7466 + }, + { + "start": 10909.22, + "end": 10913.68, + "probability": 0.9416 + }, + { + "start": 10914.12, + "end": 10915.49, + "probability": 0.9946 + }, + { + "start": 10916.62, + "end": 10919.52, + "probability": 0.9836 + }, + { + "start": 10920.16, + "end": 10923.28, + "probability": 0.7081 + }, + { + "start": 10923.94, + "end": 10925.5, + "probability": 0.9042 + }, + { + "start": 10925.94, + "end": 10927.22, + "probability": 0.9746 + }, + { + "start": 10927.6, + "end": 10929.7, + "probability": 0.9858 + }, + { + "start": 10930.02, + "end": 10931.42, + "probability": 0.9972 + }, + { + "start": 10931.8, + "end": 10933.56, + "probability": 0.8992 + }, + { + "start": 10934.7, + "end": 10935.28, + "probability": 0.7156 + }, + { + "start": 10936.62, + "end": 10938.94, + "probability": 0.8613 + }, + { + "start": 10939.54, + "end": 10940.5, + "probability": 0.9253 + }, + { + "start": 10940.8, + "end": 10941.04, + "probability": 0.8526 + }, + { + "start": 10941.16, + "end": 10945.26, + "probability": 0.9015 + }, + { + "start": 10945.82, + "end": 10947.24, + "probability": 0.7699 + }, + { + "start": 10949.84, + "end": 10950.8, + "probability": 0.8577 + }, + { + "start": 10952.22, + "end": 10953.44, + "probability": 0.0277 + }, + { + "start": 10953.44, + "end": 10953.54, + "probability": 0.0469 + }, + { + "start": 10953.54, + "end": 10953.54, + "probability": 0.1065 + }, + { + "start": 10953.54, + "end": 10955.24, + "probability": 0.3343 + }, + { + "start": 10955.24, + "end": 10956.74, + "probability": 0.5512 + }, + { + "start": 10956.96, + "end": 10959.24, + "probability": 0.6139 + }, + { + "start": 10960.6, + "end": 10961.68, + "probability": 0.6684 + }, + { + "start": 10962.04, + "end": 10964.02, + "probability": 0.6989 + }, + { + "start": 10964.28, + "end": 10964.48, + "probability": 0.0535 + }, + { + "start": 10964.48, + "end": 10965.64, + "probability": 0.6733 + }, + { + "start": 10966.24, + "end": 10970.8, + "probability": 0.8963 + }, + { + "start": 10971.48, + "end": 10973.88, + "probability": 0.8174 + }, + { + "start": 10974.42, + "end": 10977.85, + "probability": 0.9893 + }, + { + "start": 10978.78, + "end": 10979.42, + "probability": 0.907 + }, + { + "start": 10979.8, + "end": 10980.17, + "probability": 0.912 + }, + { + "start": 10981.64, + "end": 10981.8, + "probability": 0.2918 + }, + { + "start": 10981.82, + "end": 10983.39, + "probability": 0.345 + }, + { + "start": 10983.92, + "end": 10984.82, + "probability": 0.8316 + }, + { + "start": 10985.08, + "end": 10988.18, + "probability": 0.9031 + }, + { + "start": 10988.56, + "end": 10990.86, + "probability": 0.8324 + }, + { + "start": 10991.4, + "end": 10992.3, + "probability": 0.8366 + }, + { + "start": 10992.42, + "end": 10996.38, + "probability": 0.8289 + }, + { + "start": 10997.3, + "end": 10997.94, + "probability": 0.9725 + }, + { + "start": 11005.64, + "end": 11007.72, + "probability": 0.7017 + }, + { + "start": 11014.42, + "end": 11014.68, + "probability": 0.1281 + }, + { + "start": 11015.84, + "end": 11016.9, + "probability": 0.3571 + }, + { + "start": 11018.66, + "end": 11022.8, + "probability": 0.9182 + }, + { + "start": 11023.78, + "end": 11028.8, + "probability": 0.9939 + }, + { + "start": 11029.64, + "end": 11031.34, + "probability": 0.8197 + }, + { + "start": 11031.48, + "end": 11033.14, + "probability": 0.9587 + }, + { + "start": 11033.16, + "end": 11033.42, + "probability": 0.7768 + }, + { + "start": 11033.42, + "end": 11034.08, + "probability": 0.6197 + }, + { + "start": 11035.12, + "end": 11035.8, + "probability": 0.7494 + }, + { + "start": 11036.38, + "end": 11037.6, + "probability": 0.8454 + }, + { + "start": 11038.92, + "end": 11042.72, + "probability": 0.7835 + }, + { + "start": 11043.34, + "end": 11047.78, + "probability": 0.9706 + }, + { + "start": 11049.22, + "end": 11049.28, + "probability": 0.1321 + }, + { + "start": 11049.28, + "end": 11052.44, + "probability": 0.9805 + }, + { + "start": 11052.44, + "end": 11056.1, + "probability": 0.9933 + }, + { + "start": 11058.04, + "end": 11061.18, + "probability": 0.7321 + }, + { + "start": 11061.74, + "end": 11063.98, + "probability": 0.9227 + }, + { + "start": 11064.06, + "end": 11064.86, + "probability": 0.7965 + }, + { + "start": 11064.94, + "end": 11065.6, + "probability": 0.9625 + }, + { + "start": 11065.68, + "end": 11067.56, + "probability": 0.9126 + }, + { + "start": 11067.92, + "end": 11071.58, + "probability": 0.9584 + }, + { + "start": 11072.3, + "end": 11076.22, + "probability": 0.7562 + }, + { + "start": 11076.92, + "end": 11080.4, + "probability": 0.9775 + }, + { + "start": 11080.82, + "end": 11082.91, + "probability": 0.9932 + }, + { + "start": 11083.76, + "end": 11088.02, + "probability": 0.9827 + }, + { + "start": 11088.56, + "end": 11091.78, + "probability": 0.8024 + }, + { + "start": 11091.78, + "end": 11094.58, + "probability": 0.999 + }, + { + "start": 11095.14, + "end": 11098.98, + "probability": 0.9482 + }, + { + "start": 11099.94, + "end": 11102.02, + "probability": 0.8533 + }, + { + "start": 11102.98, + "end": 11108.44, + "probability": 0.9985 + }, + { + "start": 11108.88, + "end": 11111.9, + "probability": 0.9292 + }, + { + "start": 11112.04, + "end": 11113.58, + "probability": 0.915 + }, + { + "start": 11113.82, + "end": 11115.14, + "probability": 0.7629 + }, + { + "start": 11115.62, + "end": 11117.94, + "probability": 0.9479 + }, + { + "start": 11118.1, + "end": 11120.4, + "probability": 0.9575 + }, + { + "start": 11120.88, + "end": 11121.54, + "probability": 0.2443 + }, + { + "start": 11121.54, + "end": 11121.9, + "probability": 0.8449 + }, + { + "start": 11122.14, + "end": 11123.64, + "probability": 0.9967 + }, + { + "start": 11124.14, + "end": 11126.96, + "probability": 0.9975 + }, + { + "start": 11126.96, + "end": 11132.7, + "probability": 0.9963 + }, + { + "start": 11133.22, + "end": 11134.66, + "probability": 0.9474 + }, + { + "start": 11135.18, + "end": 11138.06, + "probability": 0.9871 + }, + { + "start": 11138.36, + "end": 11139.04, + "probability": 0.9377 + }, + { + "start": 11139.22, + "end": 11140.44, + "probability": 0.6394 + }, + { + "start": 11141.22, + "end": 11144.5, + "probability": 0.2431 + }, + { + "start": 11145.56, + "end": 11147.3, + "probability": 0.2412 + }, + { + "start": 11147.32, + "end": 11147.94, + "probability": 0.1192 + }, + { + "start": 11147.94, + "end": 11152.34, + "probability": 0.3791 + }, + { + "start": 11152.58, + "end": 11156.94, + "probability": 0.9559 + }, + { + "start": 11156.98, + "end": 11158.94, + "probability": 0.7645 + }, + { + "start": 11159.28, + "end": 11160.96, + "probability": 0.9712 + }, + { + "start": 11161.48, + "end": 11165.96, + "probability": 0.9963 + }, + { + "start": 11166.28, + "end": 11169.18, + "probability": 0.9969 + }, + { + "start": 11169.66, + "end": 11171.98, + "probability": 0.9481 + }, + { + "start": 11172.92, + "end": 11175.12, + "probability": 0.6836 + }, + { + "start": 11175.24, + "end": 11177.28, + "probability": 0.6269 + }, + { + "start": 11177.56, + "end": 11180.18, + "probability": 0.8274 + }, + { + "start": 11180.84, + "end": 11181.62, + "probability": 0.847 + }, + { + "start": 11191.06, + "end": 11193.14, + "probability": 0.6417 + }, + { + "start": 11194.98, + "end": 11196.7, + "probability": 0.952 + }, + { + "start": 11197.86, + "end": 11201.56, + "probability": 0.987 + }, + { + "start": 11202.38, + "end": 11203.04, + "probability": 0.9949 + }, + { + "start": 11203.78, + "end": 11204.46, + "probability": 0.9984 + }, + { + "start": 11205.38, + "end": 11209.5, + "probability": 0.9801 + }, + { + "start": 11210.9, + "end": 11211.26, + "probability": 0.5239 + }, + { + "start": 11211.36, + "end": 11212.21, + "probability": 0.9912 + }, + { + "start": 11212.64, + "end": 11213.78, + "probability": 0.9349 + }, + { + "start": 11214.32, + "end": 11215.29, + "probability": 0.9978 + }, + { + "start": 11216.34, + "end": 11220.68, + "probability": 0.9989 + }, + { + "start": 11222.34, + "end": 11224.4, + "probability": 0.7999 + }, + { + "start": 11224.62, + "end": 11226.98, + "probability": 0.984 + }, + { + "start": 11228.18, + "end": 11228.88, + "probability": 0.3717 + }, + { + "start": 11229.46, + "end": 11230.94, + "probability": 0.8538 + }, + { + "start": 11232.14, + "end": 11233.98, + "probability": 0.9062 + }, + { + "start": 11235.3, + "end": 11239.17, + "probability": 0.8669 + }, + { + "start": 11239.2, + "end": 11241.86, + "probability": 0.9987 + }, + { + "start": 11242.76, + "end": 11244.76, + "probability": 0.9744 + }, + { + "start": 11246.4, + "end": 11250.48, + "probability": 0.9958 + }, + { + "start": 11251.36, + "end": 11251.98, + "probability": 0.8729 + }, + { + "start": 11252.8, + "end": 11254.08, + "probability": 0.8887 + }, + { + "start": 11254.62, + "end": 11255.56, + "probability": 0.9805 + }, + { + "start": 11256.44, + "end": 11258.2, + "probability": 0.9987 + }, + { + "start": 11259.08, + "end": 11259.88, + "probability": 0.8201 + }, + { + "start": 11260.7, + "end": 11261.76, + "probability": 0.9507 + }, + { + "start": 11261.9, + "end": 11262.75, + "probability": 0.9861 + }, + { + "start": 11262.88, + "end": 11267.06, + "probability": 0.999 + }, + { + "start": 11268.44, + "end": 11271.24, + "probability": 0.6052 + }, + { + "start": 11271.88, + "end": 11273.69, + "probability": 0.8075 + }, + { + "start": 11274.02, + "end": 11275.02, + "probability": 0.9824 + }, + { + "start": 11275.16, + "end": 11276.76, + "probability": 0.9518 + }, + { + "start": 11277.58, + "end": 11278.9, + "probability": 0.9312 + }, + { + "start": 11280.14, + "end": 11281.9, + "probability": 0.9891 + }, + { + "start": 11282.86, + "end": 11285.3, + "probability": 0.9058 + }, + { + "start": 11285.86, + "end": 11289.22, + "probability": 0.5459 + }, + { + "start": 11290.38, + "end": 11293.7, + "probability": 0.9285 + }, + { + "start": 11294.94, + "end": 11296.62, + "probability": 0.8589 + }, + { + "start": 11297.52, + "end": 11297.8, + "probability": 0.9605 + }, + { + "start": 11298.48, + "end": 11299.8, + "probability": 0.9976 + }, + { + "start": 11300.86, + "end": 11302.28, + "probability": 0.8768 + }, + { + "start": 11302.8, + "end": 11304.4, + "probability": 0.9154 + }, + { + "start": 11305.28, + "end": 11306.32, + "probability": 0.9736 + }, + { + "start": 11307.86, + "end": 11308.28, + "probability": 0.9552 + }, + { + "start": 11309.84, + "end": 11315.24, + "probability": 0.9816 + }, + { + "start": 11315.8, + "end": 11316.54, + "probability": 0.8539 + }, + { + "start": 11317.62, + "end": 11323.18, + "probability": 0.9941 + }, + { + "start": 11323.24, + "end": 11325.52, + "probability": 0.9608 + }, + { + "start": 11326.2, + "end": 11330.68, + "probability": 0.666 + }, + { + "start": 11332.16, + "end": 11333.68, + "probability": 0.7698 + }, + { + "start": 11333.82, + "end": 11335.16, + "probability": 0.0592 + }, + { + "start": 11335.24, + "end": 11335.5, + "probability": 0.4093 + }, + { + "start": 11335.5, + "end": 11337.02, + "probability": 0.0714 + }, + { + "start": 11337.44, + "end": 11339.9, + "probability": 0.8579 + }, + { + "start": 11339.96, + "end": 11344.84, + "probability": 0.9929 + }, + { + "start": 11345.04, + "end": 11345.58, + "probability": 0.5863 + }, + { + "start": 11346.18, + "end": 11347.18, + "probability": 0.7702 + }, + { + "start": 11347.28, + "end": 11348.3, + "probability": 0.918 + }, + { + "start": 11348.42, + "end": 11349.16, + "probability": 0.7369 + }, + { + "start": 11349.56, + "end": 11350.23, + "probability": 0.9888 + }, + { + "start": 11350.96, + "end": 11355.88, + "probability": 0.7278 + }, + { + "start": 11356.06, + "end": 11357.06, + "probability": 0.999 + }, + { + "start": 11359.22, + "end": 11362.5, + "probability": 0.6672 + }, + { + "start": 11363.06, + "end": 11365.18, + "probability": 0.6199 + }, + { + "start": 11366.08, + "end": 11369.64, + "probability": 0.9806 + }, + { + "start": 11369.64, + "end": 11374.66, + "probability": 0.9795 + }, + { + "start": 11376.54, + "end": 11379.18, + "probability": 0.9351 + }, + { + "start": 11379.64, + "end": 11381.18, + "probability": 0.9133 + }, + { + "start": 11381.32, + "end": 11381.66, + "probability": 0.5583 + }, + { + "start": 11381.66, + "end": 11382.14, + "probability": 0.3343 + }, + { + "start": 11382.22, + "end": 11383.04, + "probability": 0.3854 + }, + { + "start": 11383.04, + "end": 11386.36, + "probability": 0.6471 + }, + { + "start": 11386.36, + "end": 11390.28, + "probability": 0.9714 + }, + { + "start": 11390.34, + "end": 11394.16, + "probability": 0.8348 + }, + { + "start": 11394.24, + "end": 11395.48, + "probability": 0.8594 + }, + { + "start": 11397.12, + "end": 11399.7, + "probability": 0.9734 + }, + { + "start": 11400.48, + "end": 11404.02, + "probability": 0.8727 + }, + { + "start": 11404.58, + "end": 11407.74, + "probability": 0.9947 + }, + { + "start": 11407.74, + "end": 11407.8, + "probability": 0.4804 + }, + { + "start": 11408.0, + "end": 11408.22, + "probability": 0.8105 + }, + { + "start": 11408.6, + "end": 11409.56, + "probability": 0.4722 + }, + { + "start": 11409.66, + "end": 11411.16, + "probability": 0.6587 + }, + { + "start": 11411.26, + "end": 11411.36, + "probability": 0.6606 + }, + { + "start": 11411.36, + "end": 11414.18, + "probability": 0.9365 + }, + { + "start": 11414.9, + "end": 11416.36, + "probability": 0.8972 + }, + { + "start": 11417.56, + "end": 11418.32, + "probability": 0.9155 + }, + { + "start": 11419.06, + "end": 11419.68, + "probability": 0.706 + }, + { + "start": 11420.04, + "end": 11426.12, + "probability": 0.9965 + }, + { + "start": 11426.46, + "end": 11429.8, + "probability": 0.9249 + }, + { + "start": 11430.58, + "end": 11434.2, + "probability": 0.9902 + }, + { + "start": 11435.02, + "end": 11436.96, + "probability": 0.8705 + }, + { + "start": 11437.44, + "end": 11439.28, + "probability": 0.8031 + }, + { + "start": 11439.68, + "end": 11443.02, + "probability": 0.8135 + }, + { + "start": 11443.72, + "end": 11444.82, + "probability": 0.5654 + }, + { + "start": 11445.0, + "end": 11448.22, + "probability": 0.9338 + }, + { + "start": 11448.32, + "end": 11449.18, + "probability": 0.8258 + }, + { + "start": 11449.94, + "end": 11451.98, + "probability": 0.8932 + }, + { + "start": 11459.42, + "end": 11459.76, + "probability": 0.6439 + }, + { + "start": 11459.8, + "end": 11462.44, + "probability": 0.9277 + }, + { + "start": 11463.18, + "end": 11466.06, + "probability": 0.6999 + }, + { + "start": 11466.16, + "end": 11467.42, + "probability": 0.7615 + }, + { + "start": 11468.36, + "end": 11469.56, + "probability": 0.7433 + }, + { + "start": 11469.98, + "end": 11471.82, + "probability": 0.9421 + }, + { + "start": 11472.64, + "end": 11474.7, + "probability": 0.9825 + }, + { + "start": 11475.46, + "end": 11478.76, + "probability": 0.8027 + }, + { + "start": 11479.94, + "end": 11482.0, + "probability": 0.9224 + }, + { + "start": 11482.88, + "end": 11488.3, + "probability": 0.986 + }, + { + "start": 11488.72, + "end": 11489.3, + "probability": 0.9624 + }, + { + "start": 11489.4, + "end": 11492.68, + "probability": 0.9958 + }, + { + "start": 11493.06, + "end": 11496.66, + "probability": 0.9979 + }, + { + "start": 11497.3, + "end": 11500.08, + "probability": 0.7575 + }, + { + "start": 11500.1, + "end": 11501.2, + "probability": 0.9275 + }, + { + "start": 11501.32, + "end": 11504.26, + "probability": 0.8218 + }, + { + "start": 11504.7, + "end": 11504.9, + "probability": 0.6912 + }, + { + "start": 11505.52, + "end": 11506.53, + "probability": 0.9956 + }, + { + "start": 11506.74, + "end": 11510.7, + "probability": 0.9458 + }, + { + "start": 11510.96, + "end": 11512.76, + "probability": 0.987 + }, + { + "start": 11513.34, + "end": 11516.14, + "probability": 0.8765 + }, + { + "start": 11516.42, + "end": 11517.91, + "probability": 0.9935 + }, + { + "start": 11518.42, + "end": 11521.0, + "probability": 0.9919 + }, + { + "start": 11521.1, + "end": 11523.72, + "probability": 0.9932 + }, + { + "start": 11524.12, + "end": 11524.68, + "probability": 0.8019 + }, + { + "start": 11524.74, + "end": 11525.52, + "probability": 0.88 + }, + { + "start": 11525.86, + "end": 11527.38, + "probability": 0.8836 + }, + { + "start": 11527.46, + "end": 11528.92, + "probability": 0.9846 + }, + { + "start": 11529.3, + "end": 11529.74, + "probability": 0.7958 + }, + { + "start": 11529.84, + "end": 11530.54, + "probability": 0.909 + }, + { + "start": 11530.84, + "end": 11532.98, + "probability": 0.8739 + }, + { + "start": 11533.08, + "end": 11533.48, + "probability": 0.7658 + }, + { + "start": 11533.84, + "end": 11534.8, + "probability": 0.9526 + }, + { + "start": 11534.92, + "end": 11536.24, + "probability": 0.9331 + }, + { + "start": 11536.7, + "end": 11537.72, + "probability": 0.938 + }, + { + "start": 11538.54, + "end": 11541.48, + "probability": 0.8752 + }, + { + "start": 11541.92, + "end": 11542.98, + "probability": 0.7762 + }, + { + "start": 11543.18, + "end": 11544.74, + "probability": 0.725 + }, + { + "start": 11548.62, + "end": 11549.04, + "probability": 0.7252 + }, + { + "start": 11550.04, + "end": 11550.56, + "probability": 0.6603 + }, + { + "start": 11552.14, + "end": 11552.9, + "probability": 0.0428 + }, + { + "start": 11553.08, + "end": 11553.78, + "probability": 0.1496 + }, + { + "start": 11554.62, + "end": 11556.52, + "probability": 0.0421 + }, + { + "start": 11556.74, + "end": 11563.54, + "probability": 0.2163 + }, + { + "start": 11566.46, + "end": 11567.4, + "probability": 0.1281 + }, + { + "start": 11568.34, + "end": 11574.28, + "probability": 0.2388 + }, + { + "start": 11574.9, + "end": 11579.1, + "probability": 0.1814 + }, + { + "start": 11579.38, + "end": 11579.38, + "probability": 0.0304 + }, + { + "start": 11582.28, + "end": 11583.14, + "probability": 0.0227 + }, + { + "start": 11583.24, + "end": 11593.67, + "probability": 0.0216 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11638.0, + "end": 11638.0, + "probability": 0.0 + }, + { + "start": 11652.16, + "end": 11655.82, + "probability": 0.05 + }, + { + "start": 11655.9, + "end": 11658.48, + "probability": 0.0902 + }, + { + "start": 11659.39, + "end": 11663.77, + "probability": 0.0409 + }, + { + "start": 11663.96, + "end": 11664.56, + "probability": 0.0551 + }, + { + "start": 11666.76, + "end": 11667.42, + "probability": 0.2114 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.0, + "end": 11819.0, + "probability": 0.0 + }, + { + "start": 11819.3, + "end": 11819.3, + "probability": 0.0607 + }, + { + "start": 11819.3, + "end": 11819.3, + "probability": 0.0441 + }, + { + "start": 11819.3, + "end": 11819.3, + "probability": 0.0306 + }, + { + "start": 11819.3, + "end": 11819.3, + "probability": 0.1026 + }, + { + "start": 11819.3, + "end": 11819.76, + "probability": 0.0567 + }, + { + "start": 11819.76, + "end": 11821.7, + "probability": 0.3872 + }, + { + "start": 11822.46, + "end": 11823.36, + "probability": 0.5825 + }, + { + "start": 11825.9, + "end": 11828.72, + "probability": 0.7197 + }, + { + "start": 11829.2, + "end": 11831.98, + "probability": 0.4857 + }, + { + "start": 11831.98, + "end": 11832.97, + "probability": 0.6093 + }, + { + "start": 11833.32, + "end": 11835.6, + "probability": 0.8197 + }, + { + "start": 11835.64, + "end": 11840.68, + "probability": 0.9166 + }, + { + "start": 11841.34, + "end": 11842.62, + "probability": 0.887 + }, + { + "start": 11844.52, + "end": 11849.56, + "probability": 0.9966 + }, + { + "start": 11851.22, + "end": 11855.2, + "probability": 0.777 + }, + { + "start": 11856.3, + "end": 11857.06, + "probability": 0.5362 + }, + { + "start": 11857.18, + "end": 11859.8, + "probability": 0.7487 + }, + { + "start": 11860.26, + "end": 11863.18, + "probability": 0.827 + }, + { + "start": 11864.14, + "end": 11867.4, + "probability": 0.6794 + }, + { + "start": 11868.86, + "end": 11871.76, + "probability": 0.4817 + }, + { + "start": 11872.42, + "end": 11875.8, + "probability": 0.9587 + }, + { + "start": 11876.38, + "end": 11881.72, + "probability": 0.7528 + }, + { + "start": 11882.48, + "end": 11887.02, + "probability": 0.8098 + }, + { + "start": 11889.24, + "end": 11893.2, + "probability": 0.639 + }, + { + "start": 11894.64, + "end": 11895.3, + "probability": 0.6241 + }, + { + "start": 11896.24, + "end": 11898.06, + "probability": 0.974 + }, + { + "start": 11898.64, + "end": 11900.61, + "probability": 0.9868 + }, + { + "start": 11901.3, + "end": 11902.44, + "probability": 0.964 + }, + { + "start": 11903.02, + "end": 11907.96, + "probability": 0.9747 + }, + { + "start": 11908.76, + "end": 11911.72, + "probability": 0.8366 + }, + { + "start": 11912.22, + "end": 11913.8, + "probability": 0.8136 + }, + { + "start": 11914.44, + "end": 11917.16, + "probability": 0.9296 + }, + { + "start": 11918.0, + "end": 11920.48, + "probability": 0.9689 + }, + { + "start": 11921.5, + "end": 11926.16, + "probability": 0.9937 + }, + { + "start": 11926.96, + "end": 11930.4, + "probability": 0.9962 + }, + { + "start": 11930.46, + "end": 11931.48, + "probability": 0.9902 + }, + { + "start": 11932.62, + "end": 11935.06, + "probability": 0.8761 + }, + { + "start": 11936.26, + "end": 11937.92, + "probability": 0.5837 + }, + { + "start": 11938.0, + "end": 11940.02, + "probability": 0.8447 + }, + { + "start": 11940.02, + "end": 11942.64, + "probability": 0.8507 + }, + { + "start": 11943.08, + "end": 11945.18, + "probability": 0.8972 + }, + { + "start": 11946.04, + "end": 11947.22, + "probability": 0.8602 + }, + { + "start": 11947.8, + "end": 11949.84, + "probability": 0.8495 + }, + { + "start": 11951.2, + "end": 11952.6, + "probability": 0.7825 + }, + { + "start": 11953.98, + "end": 11957.52, + "probability": 0.6074 + }, + { + "start": 11957.52, + "end": 11960.62, + "probability": 0.9543 + }, + { + "start": 11961.2, + "end": 11962.86, + "probability": 0.9692 + }, + { + "start": 11963.52, + "end": 11965.44, + "probability": 0.9897 + }, + { + "start": 11965.6, + "end": 11966.79, + "probability": 0.9879 + }, + { + "start": 11967.14, + "end": 11968.86, + "probability": 0.9842 + }, + { + "start": 11969.52, + "end": 11971.2, + "probability": 0.9926 + }, + { + "start": 11971.34, + "end": 11972.16, + "probability": 0.9937 + }, + { + "start": 11972.26, + "end": 11973.04, + "probability": 0.9646 + }, + { + "start": 11973.36, + "end": 11974.54, + "probability": 0.9937 + }, + { + "start": 11974.62, + "end": 11976.3, + "probability": 0.9893 + }, + { + "start": 11976.7, + "end": 11977.6, + "probability": 0.8127 + }, + { + "start": 11977.98, + "end": 11980.18, + "probability": 0.7672 + }, + { + "start": 11980.2, + "end": 11980.52, + "probability": 0.8263 + }, + { + "start": 11982.04, + "end": 11983.26, + "probability": 0.967 + }, + { + "start": 11984.04, + "end": 11986.34, + "probability": 0.934 + }, + { + "start": 11987.34, + "end": 11991.32, + "probability": 0.9968 + }, + { + "start": 11992.24, + "end": 11993.0, + "probability": 0.5814 + }, + { + "start": 11993.1, + "end": 11993.44, + "probability": 0.4779 + }, + { + "start": 11993.92, + "end": 11995.38, + "probability": 0.4458 + }, + { + "start": 11995.5, + "end": 11996.22, + "probability": 0.9805 + }, + { + "start": 11997.0, + "end": 11997.8, + "probability": 0.9029 + }, + { + "start": 11997.86, + "end": 12003.72, + "probability": 0.9531 + }, + { + "start": 12004.18, + "end": 12009.22, + "probability": 0.9907 + }, + { + "start": 12009.34, + "end": 12010.76, + "probability": 0.9625 + }, + { + "start": 12011.2, + "end": 12012.82, + "probability": 0.9866 + }, + { + "start": 12013.4, + "end": 12014.86, + "probability": 0.7909 + }, + { + "start": 12015.12, + "end": 12018.94, + "probability": 0.9684 + }, + { + "start": 12019.24, + "end": 12022.48, + "probability": 0.9957 + }, + { + "start": 12023.36, + "end": 12024.3, + "probability": 0.8483 + }, + { + "start": 12024.52, + "end": 12027.7, + "probability": 0.9369 + }, + { + "start": 12028.1, + "end": 12030.88, + "probability": 0.9893 + }, + { + "start": 12030.88, + "end": 12032.82, + "probability": 0.9676 + }, + { + "start": 12033.46, + "end": 12034.37, + "probability": 0.8843 + }, + { + "start": 12035.54, + "end": 12037.2, + "probability": 0.9628 + }, + { + "start": 12037.64, + "end": 12039.02, + "probability": 0.9795 + }, + { + "start": 12040.16, + "end": 12042.48, + "probability": 0.8362 + }, + { + "start": 12042.58, + "end": 12047.04, + "probability": 0.989 + }, + { + "start": 12047.58, + "end": 12049.06, + "probability": 0.9246 + }, + { + "start": 12049.26, + "end": 12052.46, + "probability": 0.8223 + }, + { + "start": 12054.88, + "end": 12055.79, + "probability": 0.003 + }, + { + "start": 12056.36, + "end": 12056.78, + "probability": 0.6533 + }, + { + "start": 12057.44, + "end": 12059.06, + "probability": 0.9486 + }, + { + "start": 12059.1, + "end": 12060.52, + "probability": 0.8463 + }, + { + "start": 12061.28, + "end": 12067.24, + "probability": 0.978 + }, + { + "start": 12067.54, + "end": 12069.74, + "probability": 0.9442 + }, + { + "start": 12070.42, + "end": 12071.08, + "probability": 0.8881 + }, + { + "start": 12071.2, + "end": 12072.14, + "probability": 0.7874 + }, + { + "start": 12072.64, + "end": 12073.28, + "probability": 0.8577 + }, + { + "start": 12073.48, + "end": 12073.92, + "probability": 0.0754 + }, + { + "start": 12074.8, + "end": 12076.86, + "probability": 0.691 + }, + { + "start": 12077.48, + "end": 12078.48, + "probability": 0.8933 + }, + { + "start": 12079.04, + "end": 12082.08, + "probability": 0.8613 + }, + { + "start": 12082.96, + "end": 12085.9, + "probability": 0.9837 + }, + { + "start": 12086.12, + "end": 12088.08, + "probability": 0.9915 + }, + { + "start": 12089.02, + "end": 12089.82, + "probability": 0.2197 + }, + { + "start": 12090.86, + "end": 12094.24, + "probability": 0.8422 + }, + { + "start": 12095.61, + "end": 12098.1, + "probability": 0.7038 + }, + { + "start": 12099.44, + "end": 12100.55, + "probability": 0.8987 + }, + { + "start": 12101.76, + "end": 12103.1, + "probability": 0.8277 + }, + { + "start": 12104.78, + "end": 12109.76, + "probability": 0.9778 + }, + { + "start": 12110.26, + "end": 12111.98, + "probability": 0.9556 + }, + { + "start": 12112.4, + "end": 12115.46, + "probability": 0.9141 + }, + { + "start": 12115.76, + "end": 12119.92, + "probability": 0.913 + }, + { + "start": 12120.06, + "end": 12121.38, + "probability": 0.9867 + }, + { + "start": 12121.68, + "end": 12122.36, + "probability": 0.8444 + }, + { + "start": 12122.46, + "end": 12123.5, + "probability": 0.9094 + }, + { + "start": 12124.12, + "end": 12125.92, + "probability": 0.9256 + }, + { + "start": 12127.7, + "end": 12132.02, + "probability": 0.8549 + }, + { + "start": 12132.34, + "end": 12135.34, + "probability": 0.8431 + }, + { + "start": 12135.64, + "end": 12138.18, + "probability": 0.9923 + }, + { + "start": 12139.08, + "end": 12141.02, + "probability": 0.9749 + }, + { + "start": 12141.16, + "end": 12142.52, + "probability": 0.8169 + }, + { + "start": 12142.62, + "end": 12143.84, + "probability": 0.6326 + }, + { + "start": 12144.24, + "end": 12147.66, + "probability": 0.9099 + }, + { + "start": 12148.48, + "end": 12152.58, + "probability": 0.9146 + }, + { + "start": 12153.6, + "end": 12154.84, + "probability": 0.9896 + }, + { + "start": 12156.42, + "end": 12156.86, + "probability": 0.1874 + }, + { + "start": 12157.28, + "end": 12159.42, + "probability": 0.5658 + }, + { + "start": 12159.48, + "end": 12159.52, + "probability": 0.4343 + }, + { + "start": 12159.58, + "end": 12160.96, + "probability": 0.5167 + }, + { + "start": 12161.06, + "end": 12163.76, + "probability": 0.9629 + }, + { + "start": 12164.06, + "end": 12164.3, + "probability": 0.4683 + }, + { + "start": 12164.42, + "end": 12165.46, + "probability": 0.9858 + }, + { + "start": 12165.76, + "end": 12166.7, + "probability": 0.9872 + }, + { + "start": 12167.8, + "end": 12169.4, + "probability": 0.8314 + }, + { + "start": 12169.96, + "end": 12170.96, + "probability": 0.9979 + }, + { + "start": 12171.5, + "end": 12172.88, + "probability": 0.9631 + }, + { + "start": 12174.08, + "end": 12176.98, + "probability": 0.9909 + }, + { + "start": 12176.98, + "end": 12181.28, + "probability": 0.9792 + }, + { + "start": 12182.46, + "end": 12183.6, + "probability": 0.887 + }, + { + "start": 12183.86, + "end": 12184.84, + "probability": 0.8664 + }, + { + "start": 12184.98, + "end": 12185.56, + "probability": 0.8724 + }, + { + "start": 12185.64, + "end": 12186.84, + "probability": 0.8663 + }, + { + "start": 12186.88, + "end": 12187.54, + "probability": 0.9048 + }, + { + "start": 12187.6, + "end": 12192.14, + "probability": 0.8577 + }, + { + "start": 12192.4, + "end": 12193.42, + "probability": 0.975 + }, + { + "start": 12194.18, + "end": 12195.6, + "probability": 0.8657 + }, + { + "start": 12196.06, + "end": 12199.24, + "probability": 0.7444 + }, + { + "start": 12199.8, + "end": 12201.0, + "probability": 0.978 + }, + { + "start": 12202.4, + "end": 12203.44, + "probability": 0.9301 + }, + { + "start": 12204.36, + "end": 12207.2, + "probability": 0.8616 + }, + { + "start": 12207.28, + "end": 12207.88, + "probability": 0.7332 + }, + { + "start": 12208.02, + "end": 12211.56, + "probability": 0.9253 + }, + { + "start": 12211.98, + "end": 12215.04, + "probability": 0.8284 + }, + { + "start": 12215.16, + "end": 12220.13, + "probability": 0.9941 + }, + { + "start": 12220.72, + "end": 12226.26, + "probability": 0.9751 + }, + { + "start": 12226.26, + "end": 12231.88, + "probability": 0.9041 + }, + { + "start": 12231.88, + "end": 12233.94, + "probability": 0.98 + }, + { + "start": 12234.24, + "end": 12235.06, + "probability": 0.6234 + }, + { + "start": 12235.14, + "end": 12237.38, + "probability": 0.8514 + }, + { + "start": 12237.74, + "end": 12240.06, + "probability": 0.9961 + }, + { + "start": 12240.06, + "end": 12242.92, + "probability": 0.9967 + }, + { + "start": 12243.3, + "end": 12246.84, + "probability": 0.9919 + }, + { + "start": 12247.14, + "end": 12249.42, + "probability": 0.9954 + }, + { + "start": 12250.04, + "end": 12251.42, + "probability": 0.842 + }, + { + "start": 12252.2, + "end": 12252.4, + "probability": 0.6976 + }, + { + "start": 12252.52, + "end": 12255.86, + "probability": 0.8879 + }, + { + "start": 12256.32, + "end": 12257.16, + "probability": 0.9194 + }, + { + "start": 12258.24, + "end": 12259.52, + "probability": 0.7281 + }, + { + "start": 12259.56, + "end": 12264.34, + "probability": 0.8362 + }, + { + "start": 12265.26, + "end": 12266.78, + "probability": 0.9332 + }, + { + "start": 12267.8, + "end": 12269.68, + "probability": 0.9897 + }, + { + "start": 12269.92, + "end": 12272.18, + "probability": 0.9005 + }, + { + "start": 12275.2, + "end": 12276.37, + "probability": 0.6962 + }, + { + "start": 12277.28, + "end": 12280.26, + "probability": 0.9231 + }, + { + "start": 12280.74, + "end": 12283.56, + "probability": 0.9795 + }, + { + "start": 12284.16, + "end": 12286.56, + "probability": 0.7481 + }, + { + "start": 12287.46, + "end": 12288.8, + "probability": 0.9453 + }, + { + "start": 12289.58, + "end": 12291.74, + "probability": 0.9921 + }, + { + "start": 12292.34, + "end": 12294.24, + "probability": 0.9778 + }, + { + "start": 12294.28, + "end": 12296.04, + "probability": 0.9793 + }, + { + "start": 12296.86, + "end": 12298.86, + "probability": 0.9513 + }, + { + "start": 12299.06, + "end": 12301.6, + "probability": 0.9836 + }, + { + "start": 12302.06, + "end": 12304.76, + "probability": 0.994 + }, + { + "start": 12305.22, + "end": 12309.0, + "probability": 0.9971 + }, + { + "start": 12309.58, + "end": 12313.32, + "probability": 0.9647 + }, + { + "start": 12313.44, + "end": 12315.46, + "probability": 0.9555 + }, + { + "start": 12316.02, + "end": 12316.3, + "probability": 0.5217 + }, + { + "start": 12316.3, + "end": 12318.66, + "probability": 0.9638 + }, + { + "start": 12319.52, + "end": 12320.87, + "probability": 0.7567 + }, + { + "start": 12321.26, + "end": 12322.22, + "probability": 0.6799 + }, + { + "start": 12322.92, + "end": 12324.72, + "probability": 0.9648 + }, + { + "start": 12325.02, + "end": 12327.2, + "probability": 0.9131 + }, + { + "start": 12327.98, + "end": 12329.1, + "probability": 0.7938 + }, + { + "start": 12335.3, + "end": 12335.82, + "probability": 0.3051 + }, + { + "start": 12335.9, + "end": 12339.94, + "probability": 0.8671 + }, + { + "start": 12340.12, + "end": 12344.16, + "probability": 0.8708 + }, + { + "start": 12344.48, + "end": 12345.06, + "probability": 0.5342 + }, + { + "start": 12345.24, + "end": 12345.66, + "probability": 0.9593 + }, + { + "start": 12346.98, + "end": 12347.28, + "probability": 0.9366 + }, + { + "start": 12348.23, + "end": 12350.2, + "probability": 0.77 + }, + { + "start": 12360.94, + "end": 12361.62, + "probability": 0.6789 + }, + { + "start": 12362.86, + "end": 12365.9, + "probability": 0.768 + }, + { + "start": 12368.52, + "end": 12370.4, + "probability": 0.9809 + }, + { + "start": 12372.32, + "end": 12375.68, + "probability": 0.9915 + }, + { + "start": 12377.9, + "end": 12383.14, + "probability": 0.5003 + }, + { + "start": 12384.28, + "end": 12385.8, + "probability": 0.9536 + }, + { + "start": 12385.94, + "end": 12386.55, + "probability": 0.9761 + }, + { + "start": 12386.74, + "end": 12388.82, + "probability": 0.6151 + }, + { + "start": 12389.42, + "end": 12398.04, + "probability": 0.9946 + }, + { + "start": 12399.78, + "end": 12403.32, + "probability": 0.9748 + }, + { + "start": 12404.64, + "end": 12408.06, + "probability": 0.9956 + }, + { + "start": 12408.24, + "end": 12410.5, + "probability": 0.9805 + }, + { + "start": 12411.52, + "end": 12415.08, + "probability": 0.9872 + }, + { + "start": 12416.0, + "end": 12419.78, + "probability": 0.8471 + }, + { + "start": 12421.56, + "end": 12423.84, + "probability": 0.9972 + }, + { + "start": 12425.44, + "end": 12427.12, + "probability": 0.9858 + }, + { + "start": 12428.56, + "end": 12430.98, + "probability": 0.6057 + }, + { + "start": 12431.66, + "end": 12431.9, + "probability": 0.7914 + }, + { + "start": 12433.22, + "end": 12439.3, + "probability": 0.9876 + }, + { + "start": 12440.58, + "end": 12443.52, + "probability": 0.9876 + }, + { + "start": 12443.52, + "end": 12447.0, + "probability": 0.9348 + }, + { + "start": 12448.24, + "end": 12454.3, + "probability": 0.9981 + }, + { + "start": 12455.48, + "end": 12457.74, + "probability": 0.9799 + }, + { + "start": 12458.8, + "end": 12462.78, + "probability": 0.9995 + }, + { + "start": 12464.06, + "end": 12466.86, + "probability": 0.9507 + }, + { + "start": 12467.92, + "end": 12468.62, + "probability": 0.9256 + }, + { + "start": 12469.26, + "end": 12474.21, + "probability": 0.9995 + }, + { + "start": 12474.98, + "end": 12476.96, + "probability": 0.97 + }, + { + "start": 12477.62, + "end": 12478.5, + "probability": 0.8037 + }, + { + "start": 12479.32, + "end": 12480.74, + "probability": 0.9583 + }, + { + "start": 12480.86, + "end": 12483.24, + "probability": 0.9861 + }, + { + "start": 12484.78, + "end": 12489.79, + "probability": 0.969 + }, + { + "start": 12490.74, + "end": 12493.08, + "probability": 0.863 + }, + { + "start": 12493.74, + "end": 12494.1, + "probability": 0.9926 + }, + { + "start": 12495.32, + "end": 12500.52, + "probability": 0.902 + }, + { + "start": 12501.48, + "end": 12503.72, + "probability": 0.9579 + }, + { + "start": 12504.64, + "end": 12507.04, + "probability": 0.9999 + }, + { + "start": 12507.7, + "end": 12511.52, + "probability": 0.9988 + }, + { + "start": 12512.98, + "end": 12519.48, + "probability": 0.9927 + }, + { + "start": 12520.66, + "end": 12521.92, + "probability": 0.9774 + }, + { + "start": 12522.5, + "end": 12523.18, + "probability": 0.9783 + }, + { + "start": 12524.3, + "end": 12525.44, + "probability": 0.9509 + }, + { + "start": 12526.06, + "end": 12530.96, + "probability": 0.9921 + }, + { + "start": 12531.88, + "end": 12533.2, + "probability": 0.8315 + }, + { + "start": 12533.9, + "end": 12535.32, + "probability": 0.9736 + }, + { + "start": 12535.64, + "end": 12545.08, + "probability": 0.9957 + }, + { + "start": 12546.08, + "end": 12548.56, + "probability": 0.9291 + }, + { + "start": 12549.9, + "end": 12554.6, + "probability": 0.9964 + }, + { + "start": 12555.6, + "end": 12557.12, + "probability": 0.9554 + }, + { + "start": 12557.86, + "end": 12563.19, + "probability": 0.9946 + }, + { + "start": 12563.3, + "end": 12567.44, + "probability": 0.9985 + }, + { + "start": 12568.82, + "end": 12572.04, + "probability": 0.9953 + }, + { + "start": 12573.34, + "end": 12575.76, + "probability": 0.988 + }, + { + "start": 12577.62, + "end": 12582.3, + "probability": 0.8677 + }, + { + "start": 12583.22, + "end": 12586.6, + "probability": 0.9866 + }, + { + "start": 12587.7, + "end": 12594.32, + "probability": 0.9709 + }, + { + "start": 12594.4, + "end": 12595.87, + "probability": 0.8002 + }, + { + "start": 12596.14, + "end": 12599.64, + "probability": 0.8931 + }, + { + "start": 12600.54, + "end": 12601.96, + "probability": 0.9572 + }, + { + "start": 12602.56, + "end": 12604.1, + "probability": 0.9264 + }, + { + "start": 12604.26, + "end": 12607.14, + "probability": 0.9803 + }, + { + "start": 12608.62, + "end": 12610.38, + "probability": 0.8965 + }, + { + "start": 12611.12, + "end": 12616.54, + "probability": 0.9061 + }, + { + "start": 12616.54, + "end": 12620.92, + "probability": 0.9957 + }, + { + "start": 12621.82, + "end": 12623.6, + "probability": 0.9272 + }, + { + "start": 12625.14, + "end": 12625.96, + "probability": 0.9602 + }, + { + "start": 12626.44, + "end": 12628.18, + "probability": 0.9888 + }, + { + "start": 12628.24, + "end": 12628.72, + "probability": 0.2028 + }, + { + "start": 12628.78, + "end": 12629.22, + "probability": 0.8768 + }, + { + "start": 12629.26, + "end": 12630.24, + "probability": 0.9434 + }, + { + "start": 12630.88, + "end": 12633.9, + "probability": 0.9717 + }, + { + "start": 12634.66, + "end": 12638.26, + "probability": 0.9906 + }, + { + "start": 12638.56, + "end": 12639.74, + "probability": 0.9344 + }, + { + "start": 12640.8, + "end": 12646.84, + "probability": 0.9895 + }, + { + "start": 12647.72, + "end": 12650.64, + "probability": 0.999 + }, + { + "start": 12651.52, + "end": 12653.34, + "probability": 0.7833 + }, + { + "start": 12654.2, + "end": 12660.36, + "probability": 0.9565 + }, + { + "start": 12661.22, + "end": 12668.16, + "probability": 0.9725 + }, + { + "start": 12668.24, + "end": 12672.84, + "probability": 0.9927 + }, + { + "start": 12673.5, + "end": 12674.36, + "probability": 0.9471 + }, + { + "start": 12674.6, + "end": 12675.34, + "probability": 0.7449 + }, + { + "start": 12675.76, + "end": 12680.14, + "probability": 0.9637 + }, + { + "start": 12680.14, + "end": 12685.8, + "probability": 0.9292 + }, + { + "start": 12687.52, + "end": 12691.34, + "probability": 0.9285 + }, + { + "start": 12692.84, + "end": 12698.12, + "probability": 0.9929 + }, + { + "start": 12698.66, + "end": 12703.74, + "probability": 0.9992 + }, + { + "start": 12705.1, + "end": 12705.82, + "probability": 0.9297 + }, + { + "start": 12706.64, + "end": 12710.82, + "probability": 0.9635 + }, + { + "start": 12711.76, + "end": 12718.34, + "probability": 0.9971 + }, + { + "start": 12718.5, + "end": 12719.36, + "probability": 0.8014 + }, + { + "start": 12720.16, + "end": 12725.14, + "probability": 0.9958 + }, + { + "start": 12726.14, + "end": 12729.36, + "probability": 0.9889 + }, + { + "start": 12730.52, + "end": 12735.42, + "probability": 0.9951 + }, + { + "start": 12736.36, + "end": 12737.26, + "probability": 0.521 + }, + { + "start": 12738.34, + "end": 12739.78, + "probability": 0.6276 + }, + { + "start": 12740.48, + "end": 12743.28, + "probability": 0.6889 + }, + { + "start": 12743.98, + "end": 12746.02, + "probability": 0.899 + }, + { + "start": 12746.92, + "end": 12749.7, + "probability": 0.9924 + }, + { + "start": 12750.4, + "end": 12752.56, + "probability": 0.7486 + }, + { + "start": 12754.72, + "end": 12757.72, + "probability": 0.8408 + }, + { + "start": 12758.26, + "end": 12760.5, + "probability": 0.8698 + }, + { + "start": 12761.1, + "end": 12763.48, + "probability": 0.9202 + }, + { + "start": 12763.96, + "end": 12772.94, + "probability": 0.9846 + }, + { + "start": 12772.94, + "end": 12780.8, + "probability": 0.9995 + }, + { + "start": 12780.8, + "end": 12787.34, + "probability": 0.9983 + }, + { + "start": 12788.24, + "end": 12791.64, + "probability": 0.9886 + }, + { + "start": 12792.34, + "end": 12795.2, + "probability": 0.9937 + }, + { + "start": 12795.66, + "end": 12802.96, + "probability": 0.9894 + }, + { + "start": 12803.9, + "end": 12805.16, + "probability": 0.9736 + }, + { + "start": 12805.82, + "end": 12808.38, + "probability": 0.9484 + }, + { + "start": 12809.0, + "end": 12810.84, + "probability": 0.9986 + }, + { + "start": 12812.16, + "end": 12815.16, + "probability": 0.9792 + }, + { + "start": 12815.76, + "end": 12818.56, + "probability": 0.9829 + }, + { + "start": 12819.62, + "end": 12822.84, + "probability": 0.9454 + }, + { + "start": 12823.52, + "end": 12829.58, + "probability": 0.9543 + }, + { + "start": 12830.22, + "end": 12831.84, + "probability": 0.9609 + }, + { + "start": 12832.28, + "end": 12836.8, + "probability": 0.9246 + }, + { + "start": 12836.8, + "end": 12841.64, + "probability": 0.9985 + }, + { + "start": 12842.62, + "end": 12844.52, + "probability": 0.9173 + }, + { + "start": 12845.16, + "end": 12846.11, + "probability": 0.959 + }, + { + "start": 12846.88, + "end": 12847.54, + "probability": 0.9598 + }, + { + "start": 12849.82, + "end": 12853.6, + "probability": 0.9985 + }, + { + "start": 12854.5, + "end": 12855.56, + "probability": 0.706 + }, + { + "start": 12856.8, + "end": 12860.72, + "probability": 0.9043 + }, + { + "start": 12862.09, + "end": 12865.2, + "probability": 0.9954 + }, + { + "start": 12865.72, + "end": 12866.82, + "probability": 0.6553 + }, + { + "start": 12866.86, + "end": 12869.62, + "probability": 0.885 + }, + { + "start": 12870.1, + "end": 12875.02, + "probability": 0.9724 + }, + { + "start": 12875.02, + "end": 12880.22, + "probability": 0.9596 + }, + { + "start": 12881.48, + "end": 12883.92, + "probability": 0.9033 + }, + { + "start": 12884.66, + "end": 12886.96, + "probability": 0.963 + }, + { + "start": 12887.58, + "end": 12888.7, + "probability": 0.9497 + }, + { + "start": 12889.24, + "end": 12891.76, + "probability": 0.6844 + }, + { + "start": 12892.42, + "end": 12894.78, + "probability": 0.8378 + }, + { + "start": 12895.42, + "end": 12899.12, + "probability": 0.9324 + }, + { + "start": 12899.82, + "end": 12904.76, + "probability": 0.9956 + }, + { + "start": 12904.76, + "end": 12910.5, + "probability": 0.9775 + }, + { + "start": 12911.14, + "end": 12914.26, + "probability": 0.9851 + }, + { + "start": 12914.88, + "end": 12919.4, + "probability": 0.9957 + }, + { + "start": 12919.76, + "end": 12926.38, + "probability": 0.9902 + }, + { + "start": 12926.42, + "end": 12934.34, + "probability": 0.9984 + }, + { + "start": 12935.2, + "end": 12936.38, + "probability": 0.9028 + }, + { + "start": 12937.92, + "end": 12940.02, + "probability": 0.9888 + }, + { + "start": 12940.74, + "end": 12945.3, + "probability": 0.9909 + }, + { + "start": 12945.94, + "end": 12949.86, + "probability": 0.9902 + }, + { + "start": 12950.68, + "end": 12953.48, + "probability": 0.9997 + }, + { + "start": 12954.02, + "end": 12958.02, + "probability": 0.9446 + }, + { + "start": 12958.68, + "end": 12959.34, + "probability": 0.6247 + }, + { + "start": 12959.92, + "end": 12961.22, + "probability": 0.9531 + }, + { + "start": 12962.18, + "end": 12963.96, + "probability": 0.9944 + }, + { + "start": 12964.68, + "end": 12970.22, + "probability": 0.9824 + }, + { + "start": 12970.82, + "end": 12971.94, + "probability": 0.8732 + }, + { + "start": 12972.48, + "end": 12974.38, + "probability": 0.9932 + }, + { + "start": 12974.94, + "end": 12980.4, + "probability": 0.995 + }, + { + "start": 12981.16, + "end": 12987.26, + "probability": 0.9932 + }, + { + "start": 12987.26, + "end": 12994.68, + "probability": 0.9717 + }, + { + "start": 12995.12, + "end": 12996.64, + "probability": 0.9636 + }, + { + "start": 12997.88, + "end": 13000.42, + "probability": 0.9656 + }, + { + "start": 13000.94, + "end": 13004.26, + "probability": 0.991 + }, + { + "start": 13004.98, + "end": 13010.18, + "probability": 0.9947 + }, + { + "start": 13010.18, + "end": 13016.64, + "probability": 0.9988 + }, + { + "start": 13016.64, + "end": 13023.26, + "probability": 0.9905 + }, + { + "start": 13024.24, + "end": 13025.3, + "probability": 0.8507 + }, + { + "start": 13026.28, + "end": 13028.02, + "probability": 0.7345 + }, + { + "start": 13028.9, + "end": 13034.26, + "probability": 0.9563 + }, + { + "start": 13034.26, + "end": 13040.6, + "probability": 0.9939 + }, + { + "start": 13041.44, + "end": 13047.54, + "probability": 0.9977 + }, + { + "start": 13048.74, + "end": 13052.18, + "probability": 0.9862 + }, + { + "start": 13053.22, + "end": 13056.78, + "probability": 0.998 + }, + { + "start": 13057.49, + "end": 13057.84, + "probability": 0.3059 + }, + { + "start": 13058.54, + "end": 13059.28, + "probability": 0.5343 + }, + { + "start": 13060.0, + "end": 13062.52, + "probability": 0.9846 + }, + { + "start": 13063.08, + "end": 13065.7, + "probability": 0.9975 + }, + { + "start": 13066.16, + "end": 13071.36, + "probability": 0.9906 + }, + { + "start": 13071.9, + "end": 13075.08, + "probability": 0.9971 + }, + { + "start": 13075.08, + "end": 13078.46, + "probability": 0.9878 + }, + { + "start": 13078.86, + "end": 13082.02, + "probability": 0.9971 + }, + { + "start": 13082.48, + "end": 13085.96, + "probability": 0.9985 + }, + { + "start": 13086.46, + "end": 13087.74, + "probability": 0.9785 + }, + { + "start": 13088.62, + "end": 13091.12, + "probability": 0.9945 + }, + { + "start": 13091.12, + "end": 13093.98, + "probability": 0.9394 + }, + { + "start": 13094.74, + "end": 13097.66, + "probability": 0.9987 + }, + { + "start": 13098.05, + "end": 13102.4, + "probability": 0.9958 + }, + { + "start": 13103.2, + "end": 13104.56, + "probability": 0.6957 + }, + { + "start": 13105.28, + "end": 13107.26, + "probability": 0.9686 + }, + { + "start": 13107.8, + "end": 13112.3, + "probability": 0.9971 + }, + { + "start": 13113.02, + "end": 13115.52, + "probability": 0.839 + }, + { + "start": 13116.04, + "end": 13124.56, + "probability": 0.9969 + }, + { + "start": 13125.1, + "end": 13128.16, + "probability": 0.9458 + }, + { + "start": 13128.16, + "end": 13131.66, + "probability": 0.9901 + }, + { + "start": 13132.08, + "end": 13136.66, + "probability": 0.9886 + }, + { + "start": 13137.72, + "end": 13139.02, + "probability": 0.954 + }, + { + "start": 13140.28, + "end": 13141.6, + "probability": 0.8347 + }, + { + "start": 13142.4, + "end": 13143.3, + "probability": 0.9673 + }, + { + "start": 13144.06, + "end": 13146.8, + "probability": 0.9832 + }, + { + "start": 13147.3, + "end": 13148.8, + "probability": 0.9835 + }, + { + "start": 13148.84, + "end": 13151.4, + "probability": 0.9982 + }, + { + "start": 13152.46, + "end": 13156.48, + "probability": 0.9956 + }, + { + "start": 13156.48, + "end": 13160.88, + "probability": 0.9802 + }, + { + "start": 13161.56, + "end": 13163.96, + "probability": 0.9966 + }, + { + "start": 13164.82, + "end": 13165.76, + "probability": 0.5117 + }, + { + "start": 13166.58, + "end": 13171.38, + "probability": 0.9864 + }, + { + "start": 13171.38, + "end": 13175.86, + "probability": 0.9976 + }, + { + "start": 13176.46, + "end": 13183.56, + "probability": 0.9946 + }, + { + "start": 13183.56, + "end": 13187.9, + "probability": 0.9802 + }, + { + "start": 13188.38, + "end": 13188.96, + "probability": 0.5678 + }, + { + "start": 13189.7, + "end": 13190.98, + "probability": 0.8944 + }, + { + "start": 13191.58, + "end": 13193.64, + "probability": 0.9537 + }, + { + "start": 13194.24, + "end": 13196.26, + "probability": 0.9237 + }, + { + "start": 13196.66, + "end": 13198.74, + "probability": 0.8448 + }, + { + "start": 13199.02, + "end": 13205.04, + "probability": 0.9556 + }, + { + "start": 13205.34, + "end": 13210.66, + "probability": 0.9893 + }, + { + "start": 13211.18, + "end": 13213.6, + "probability": 0.5731 + }, + { + "start": 13213.8, + "end": 13216.76, + "probability": 0.9951 + }, + { + "start": 13216.98, + "end": 13218.24, + "probability": 0.708 + }, + { + "start": 13218.36, + "end": 13221.56, + "probability": 0.905 + }, + { + "start": 13222.54, + "end": 13223.86, + "probability": 0.807 + }, + { + "start": 13224.06, + "end": 13224.78, + "probability": 0.2723 + }, + { + "start": 13226.28, + "end": 13227.84, + "probability": 0.4199 + }, + { + "start": 13228.02, + "end": 13229.5, + "probability": 0.9258 + }, + { + "start": 13231.52, + "end": 13234.92, + "probability": 0.9299 + }, + { + "start": 13236.24, + "end": 13236.98, + "probability": 0.6669 + }, + { + "start": 13237.08, + "end": 13240.3, + "probability": 0.9634 + }, + { + "start": 13240.34, + "end": 13241.61, + "probability": 0.9971 + }, + { + "start": 13242.42, + "end": 13242.86, + "probability": 0.6734 + }, + { + "start": 13243.02, + "end": 13250.12, + "probability": 0.9414 + }, + { + "start": 13250.84, + "end": 13252.19, + "probability": 0.7578 + }, + { + "start": 13252.46, + "end": 13253.4, + "probability": 0.7453 + }, + { + "start": 13254.95, + "end": 13259.82, + "probability": 0.8701 + }, + { + "start": 13259.9, + "end": 13261.02, + "probability": 0.7628 + }, + { + "start": 13261.1, + "end": 13261.6, + "probability": 0.8604 + }, + { + "start": 13264.52, + "end": 13266.2, + "probability": 0.3521 + }, + { + "start": 13266.72, + "end": 13267.22, + "probability": 0.6898 + }, + { + "start": 13268.46, + "end": 13271.36, + "probability": 0.7154 + }, + { + "start": 13272.34, + "end": 13275.18, + "probability": 0.3801 + }, + { + "start": 13275.8, + "end": 13278.5, + "probability": 0.765 + }, + { + "start": 13278.56, + "end": 13280.52, + "probability": 0.9671 + }, + { + "start": 13281.12, + "end": 13281.86, + "probability": 0.9709 + }, + { + "start": 13282.08, + "end": 13283.22, + "probability": 0.8855 + }, + { + "start": 13283.82, + "end": 13285.54, + "probability": 0.2496 + }, + { + "start": 13285.54, + "end": 13285.54, + "probability": 0.353 + }, + { + "start": 13285.54, + "end": 13286.59, + "probability": 0.3653 + }, + { + "start": 13287.44, + "end": 13287.82, + "probability": 0.2314 + }, + { + "start": 13287.82, + "end": 13291.08, + "probability": 0.6168 + }, + { + "start": 13291.22, + "end": 13293.32, + "probability": 0.936 + }, + { + "start": 13309.8, + "end": 13309.84, + "probability": 0.1298 + }, + { + "start": 13323.5, + "end": 13324.66, + "probability": 0.5164 + }, + { + "start": 13324.76, + "end": 13327.34, + "probability": 0.6282 + }, + { + "start": 13327.96, + "end": 13330.52, + "probability": 0.8279 + }, + { + "start": 13330.64, + "end": 13330.7, + "probability": 0.4075 + }, + { + "start": 13330.76, + "end": 13331.6, + "probability": 0.8572 + }, + { + "start": 13331.7, + "end": 13332.06, + "probability": 0.7415 + }, + { + "start": 13332.06, + "end": 13333.04, + "probability": 0.7874 + }, + { + "start": 13333.12, + "end": 13334.48, + "probability": 0.5528 + }, + { + "start": 13334.78, + "end": 13335.2, + "probability": 0.7065 + }, + { + "start": 13336.24, + "end": 13338.68, + "probability": 0.8107 + }, + { + "start": 13340.04, + "end": 13346.72, + "probability": 0.9714 + }, + { + "start": 13348.74, + "end": 13352.9, + "probability": 0.9781 + }, + { + "start": 13354.12, + "end": 13357.56, + "probability": 0.939 + }, + { + "start": 13358.52, + "end": 13360.14, + "probability": 0.9375 + }, + { + "start": 13361.66, + "end": 13364.0, + "probability": 0.8153 + }, + { + "start": 13365.5, + "end": 13372.38, + "probability": 0.9723 + }, + { + "start": 13374.24, + "end": 13375.86, + "probability": 0.8178 + }, + { + "start": 13376.96, + "end": 13379.34, + "probability": 0.9891 + }, + { + "start": 13381.04, + "end": 13383.18, + "probability": 0.8883 + }, + { + "start": 13383.78, + "end": 13387.76, + "probability": 0.9971 + }, + { + "start": 13387.85, + "end": 13391.66, + "probability": 0.9877 + }, + { + "start": 13394.36, + "end": 13399.24, + "probability": 0.9974 + }, + { + "start": 13400.82, + "end": 13404.18, + "probability": 0.9964 + }, + { + "start": 13404.92, + "end": 13405.92, + "probability": 0.3513 + }, + { + "start": 13406.78, + "end": 13407.56, + "probability": 0.6062 + }, + { + "start": 13408.18, + "end": 13411.12, + "probability": 0.9814 + }, + { + "start": 13413.96, + "end": 13419.94, + "probability": 0.9857 + }, + { + "start": 13420.84, + "end": 13427.3, + "probability": 0.9914 + }, + { + "start": 13428.56, + "end": 13430.32, + "probability": 0.9974 + }, + { + "start": 13431.26, + "end": 13436.53, + "probability": 0.9966 + }, + { + "start": 13436.92, + "end": 13442.12, + "probability": 0.9981 + }, + { + "start": 13443.48, + "end": 13447.36, + "probability": 0.9872 + }, + { + "start": 13450.4, + "end": 13452.44, + "probability": 0.9423 + }, + { + "start": 13453.48, + "end": 13456.66, + "probability": 0.914 + }, + { + "start": 13457.72, + "end": 13459.06, + "probability": 0.9194 + }, + { + "start": 13460.28, + "end": 13461.52, + "probability": 0.9788 + }, + { + "start": 13463.32, + "end": 13465.04, + "probability": 0.9597 + }, + { + "start": 13465.98, + "end": 13467.02, + "probability": 0.349 + }, + { + "start": 13468.1, + "end": 13471.42, + "probability": 0.8655 + }, + { + "start": 13472.3, + "end": 13473.16, + "probability": 0.7209 + }, + { + "start": 13474.76, + "end": 13479.56, + "probability": 0.9161 + }, + { + "start": 13480.94, + "end": 13484.14, + "probability": 0.8707 + }, + { + "start": 13485.06, + "end": 13490.98, + "probability": 0.955 + }, + { + "start": 13492.14, + "end": 13495.44, + "probability": 0.9161 + }, + { + "start": 13496.2, + "end": 13498.38, + "probability": 0.9775 + }, + { + "start": 13499.06, + "end": 13500.28, + "probability": 0.9768 + }, + { + "start": 13502.12, + "end": 13503.76, + "probability": 0.9751 + }, + { + "start": 13504.28, + "end": 13505.16, + "probability": 0.9768 + }, + { + "start": 13505.94, + "end": 13507.82, + "probability": 0.9777 + }, + { + "start": 13508.68, + "end": 13509.5, + "probability": 0.9393 + }, + { + "start": 13511.08, + "end": 13511.86, + "probability": 0.5663 + }, + { + "start": 13512.58, + "end": 13515.64, + "probability": 0.9367 + }, + { + "start": 13516.3, + "end": 13518.24, + "probability": 0.9952 + }, + { + "start": 13519.34, + "end": 13522.42, + "probability": 0.9346 + }, + { + "start": 13524.58, + "end": 13529.56, + "probability": 0.8774 + }, + { + "start": 13530.14, + "end": 13532.12, + "probability": 0.9443 + }, + { + "start": 13533.66, + "end": 13536.66, + "probability": 0.9854 + }, + { + "start": 13537.7, + "end": 13539.16, + "probability": 0.7263 + }, + { + "start": 13540.04, + "end": 13541.48, + "probability": 0.7469 + }, + { + "start": 13542.02, + "end": 13543.84, + "probability": 0.955 + }, + { + "start": 13546.06, + "end": 13549.02, + "probability": 0.9935 + }, + { + "start": 13550.52, + "end": 13553.72, + "probability": 0.9943 + }, + { + "start": 13554.94, + "end": 13556.88, + "probability": 0.7639 + }, + { + "start": 13559.4, + "end": 13560.82, + "probability": 0.963 + }, + { + "start": 13561.62, + "end": 13562.86, + "probability": 0.9487 + }, + { + "start": 13563.2, + "end": 13565.36, + "probability": 0.9534 + }, + { + "start": 13566.08, + "end": 13567.9, + "probability": 0.9744 + }, + { + "start": 13568.78, + "end": 13573.7, + "probability": 0.6406 + }, + { + "start": 13574.7, + "end": 13577.36, + "probability": 0.6483 + }, + { + "start": 13578.36, + "end": 13582.67, + "probability": 0.8606 + }, + { + "start": 13582.76, + "end": 13585.1, + "probability": 0.9101 + }, + { + "start": 13586.34, + "end": 13587.32, + "probability": 0.9492 + }, + { + "start": 13588.52, + "end": 13590.78, + "probability": 0.965 + }, + { + "start": 13591.64, + "end": 13593.42, + "probability": 0.1905 + }, + { + "start": 13593.82, + "end": 13596.32, + "probability": 0.8318 + }, + { + "start": 13598.14, + "end": 13600.8, + "probability": 0.9738 + }, + { + "start": 13602.26, + "end": 13603.56, + "probability": 0.6669 + }, + { + "start": 13605.24, + "end": 13606.04, + "probability": 0.8237 + }, + { + "start": 13606.32, + "end": 13607.52, + "probability": 0.7968 + }, + { + "start": 13607.64, + "end": 13611.66, + "probability": 0.9948 + }, + { + "start": 13614.36, + "end": 13618.26, + "probability": 0.9883 + }, + { + "start": 13619.4, + "end": 13621.76, + "probability": 0.7776 + }, + { + "start": 13622.74, + "end": 13625.5, + "probability": 0.9712 + }, + { + "start": 13627.26, + "end": 13631.34, + "probability": 0.9906 + }, + { + "start": 13632.0, + "end": 13634.32, + "probability": 0.9974 + }, + { + "start": 13634.98, + "end": 13636.66, + "probability": 0.8665 + }, + { + "start": 13637.68, + "end": 13641.98, + "probability": 0.9807 + }, + { + "start": 13642.52, + "end": 13643.22, + "probability": 0.7161 + }, + { + "start": 13643.8, + "end": 13644.28, + "probability": 0.9136 + }, + { + "start": 13644.96, + "end": 13646.44, + "probability": 0.991 + }, + { + "start": 13647.62, + "end": 13649.26, + "probability": 0.9155 + }, + { + "start": 13650.06, + "end": 13652.88, + "probability": 0.9837 + }, + { + "start": 13652.88, + "end": 13656.1, + "probability": 0.9949 + }, + { + "start": 13657.54, + "end": 13658.66, + "probability": 0.6513 + }, + { + "start": 13659.18, + "end": 13661.68, + "probability": 0.9963 + }, + { + "start": 13662.4, + "end": 13663.44, + "probability": 0.8979 + }, + { + "start": 13664.22, + "end": 13671.28, + "probability": 0.6448 + }, + { + "start": 13674.28, + "end": 13676.9, + "probability": 0.9982 + }, + { + "start": 13677.94, + "end": 13680.7, + "probability": 0.989 + }, + { + "start": 13681.92, + "end": 13684.5, + "probability": 0.7645 + }, + { + "start": 13685.72, + "end": 13689.44, + "probability": 0.9921 + }, + { + "start": 13689.8, + "end": 13690.9, + "probability": 0.8474 + }, + { + "start": 13692.56, + "end": 13693.36, + "probability": 0.7623 + }, + { + "start": 13694.22, + "end": 13695.18, + "probability": 0.969 + }, + { + "start": 13695.96, + "end": 13697.24, + "probability": 0.7831 + }, + { + "start": 13698.66, + "end": 13700.12, + "probability": 0.7323 + }, + { + "start": 13701.02, + "end": 13702.42, + "probability": 0.7066 + }, + { + "start": 13703.44, + "end": 13704.46, + "probability": 0.8338 + }, + { + "start": 13705.34, + "end": 13706.36, + "probability": 0.606 + }, + { + "start": 13707.36, + "end": 13708.08, + "probability": 0.5962 + }, + { + "start": 13709.26, + "end": 13710.48, + "probability": 0.7132 + }, + { + "start": 13711.68, + "end": 13713.0, + "probability": 0.9043 + }, + { + "start": 13713.98, + "end": 13715.0, + "probability": 0.8171 + }, + { + "start": 13715.96, + "end": 13717.06, + "probability": 0.8089 + }, + { + "start": 13718.3, + "end": 13719.62, + "probability": 0.7226 + }, + { + "start": 13720.16, + "end": 13720.54, + "probability": 0.8173 + }, + { + "start": 13720.66, + "end": 13721.44, + "probability": 0.7925 + }, + { + "start": 13721.54, + "end": 13725.18, + "probability": 0.8982 + }, + { + "start": 13725.54, + "end": 13725.58, + "probability": 0.6401 + }, + { + "start": 13725.68, + "end": 13725.94, + "probability": 0.4865 + }, + { + "start": 13726.68, + "end": 13730.14, + "probability": 0.8457 + }, + { + "start": 13730.98, + "end": 13733.82, + "probability": 0.6783 + }, + { + "start": 13734.72, + "end": 13738.96, + "probability": 0.9818 + }, + { + "start": 13739.74, + "end": 13744.32, + "probability": 0.4259 + }, + { + "start": 13745.52, + "end": 13749.82, + "probability": 0.7465 + }, + { + "start": 13750.74, + "end": 13754.9, + "probability": 0.72 + }, + { + "start": 13755.64, + "end": 13759.9, + "probability": 0.5317 + }, + { + "start": 13760.92, + "end": 13762.94, + "probability": 0.5868 + }, + { + "start": 13763.58, + "end": 13766.1, + "probability": 0.9605 + }, + { + "start": 13767.12, + "end": 13768.34, + "probability": 0.5697 + }, + { + "start": 13768.92, + "end": 13771.32, + "probability": 0.712 + }, + { + "start": 13772.3, + "end": 13776.14, + "probability": 0.721 + }, + { + "start": 13777.02, + "end": 13780.8, + "probability": 0.5899 + }, + { + "start": 13781.36, + "end": 13785.44, + "probability": 0.9816 + }, + { + "start": 13786.06, + "end": 13789.84, + "probability": 0.7505 + }, + { + "start": 13790.66, + "end": 13794.5, + "probability": 0.7383 + }, + { + "start": 13795.28, + "end": 13800.0, + "probability": 0.9128 + }, + { + "start": 13800.8, + "end": 13804.58, + "probability": 0.9594 + }, + { + "start": 13805.2, + "end": 13809.56, + "probability": 0.98 + }, + { + "start": 13810.52, + "end": 13814.78, + "probability": 0.3712 + }, + { + "start": 13815.48, + "end": 13816.08, + "probability": 0.3986 + }, + { + "start": 13816.9, + "end": 13818.94, + "probability": 0.7419 + }, + { + "start": 13819.74, + "end": 13820.54, + "probability": 0.4129 + }, + { + "start": 13820.6, + "end": 13821.34, + "probability": 0.7519 + }, + { + "start": 13821.84, + "end": 13823.52, + "probability": 0.8364 + }, + { + "start": 13824.0, + "end": 13824.92, + "probability": 0.7441 + }, + { + "start": 13824.92, + "end": 13826.4, + "probability": 0.8508 + }, + { + "start": 13827.08, + "end": 13829.42, + "probability": 0.9014 + }, + { + "start": 13830.8, + "end": 13833.82, + "probability": 0.5695 + }, + { + "start": 13834.5, + "end": 13837.58, + "probability": 0.4269 + }, + { + "start": 13838.38, + "end": 13840.02, + "probability": 0.7094 + }, + { + "start": 13840.58, + "end": 13842.28, + "probability": 0.4935 + }, + { + "start": 13842.98, + "end": 13846.66, + "probability": 0.8095 + }, + { + "start": 13847.24, + "end": 13848.6, + "probability": 0.4621 + }, + { + "start": 13849.64, + "end": 13851.12, + "probability": 0.1873 + }, + { + "start": 13851.7, + "end": 13854.92, + "probability": 0.5273 + }, + { + "start": 13855.52, + "end": 13860.1, + "probability": 0.5083 + }, + { + "start": 13860.78, + "end": 13865.16, + "probability": 0.8467 + }, + { + "start": 13865.84, + "end": 13866.4, + "probability": 0.5913 + }, + { + "start": 13868.64, + "end": 13869.58, + "probability": 0.5126 + }, + { + "start": 13871.16, + "end": 13872.02, + "probability": 0.7092 + }, + { + "start": 13872.54, + "end": 13874.18, + "probability": 0.5242 + }, + { + "start": 13875.54, + "end": 13876.76, + "probability": 0.6252 + }, + { + "start": 13877.5, + "end": 13880.46, + "probability": 0.9182 + }, + { + "start": 13881.16, + "end": 13882.66, + "probability": 0.9784 + }, + { + "start": 13884.0, + "end": 13886.84, + "probability": 0.841 + }, + { + "start": 13887.56, + "end": 13888.5, + "probability": 0.7641 + }, + { + "start": 13889.34, + "end": 13892.28, + "probability": 0.2843 + }, + { + "start": 13892.98, + "end": 13893.74, + "probability": 0.3964 + }, + { + "start": 13893.88, + "end": 13894.82, + "probability": 0.8275 + }, + { + "start": 13894.88, + "end": 13897.5, + "probability": 0.6912 + }, + { + "start": 13898.18, + "end": 13901.04, + "probability": 0.4909 + }, + { + "start": 13901.84, + "end": 13906.7, + "probability": 0.8737 + }, + { + "start": 13906.94, + "end": 13910.58, + "probability": 0.979 + }, + { + "start": 13911.36, + "end": 13917.08, + "probability": 0.7858 + }, + { + "start": 13918.56, + "end": 13921.38, + "probability": 0.9275 + }, + { + "start": 13922.5, + "end": 13925.3, + "probability": 0.9397 + }, + { + "start": 13926.6, + "end": 13928.58, + "probability": 0.956 + }, + { + "start": 13930.18, + "end": 13933.06, + "probability": 0.979 + }, + { + "start": 13935.78, + "end": 13936.84, + "probability": 0.9913 + }, + { + "start": 13937.42, + "end": 13938.78, + "probability": 0.9823 + }, + { + "start": 13941.14, + "end": 13941.8, + "probability": 0.7688 + }, + { + "start": 13943.86, + "end": 13944.28, + "probability": 0.6532 + }, + { + "start": 13944.28, + "end": 13945.18, + "probability": 0.882 + }, + { + "start": 13946.02, + "end": 13952.6, + "probability": 0.9187 + }, + { + "start": 13953.12, + "end": 13956.38, + "probability": 0.7961 + }, + { + "start": 13957.3, + "end": 13958.8, + "probability": 0.7572 + }, + { + "start": 13959.32, + "end": 13960.42, + "probability": 0.7195 + }, + { + "start": 13961.54, + "end": 13963.56, + "probability": 0.9646 + }, + { + "start": 13964.08, + "end": 13966.1, + "probability": 0.9423 + }, + { + "start": 13967.96, + "end": 13968.84, + "probability": 0.988 + }, + { + "start": 13969.14, + "end": 13970.26, + "probability": 0.988 + }, + { + "start": 13970.7, + "end": 13971.58, + "probability": 0.9544 + }, + { + "start": 13973.12, + "end": 13977.56, + "probability": 0.9642 + }, + { + "start": 13978.54, + "end": 13981.12, + "probability": 0.951 + }, + { + "start": 13982.34, + "end": 13983.9, + "probability": 0.8597 + }, + { + "start": 13984.06, + "end": 13986.86, + "probability": 0.9724 + }, + { + "start": 13987.44, + "end": 13989.94, + "probability": 0.9091 + }, + { + "start": 13990.32, + "end": 13993.66, + "probability": 0.9562 + }, + { + "start": 13994.06, + "end": 13999.7, + "probability": 0.758 + }, + { + "start": 14000.08, + "end": 14001.4, + "probability": 0.6834 + }, + { + "start": 14002.48, + "end": 14003.0, + "probability": 0.8253 + }, + { + "start": 14004.2, + "end": 14007.3, + "probability": 0.8639 + }, + { + "start": 14008.3, + "end": 14010.34, + "probability": 0.9849 + }, + { + "start": 14011.28, + "end": 14014.12, + "probability": 0.9336 + }, + { + "start": 14015.06, + "end": 14018.8, + "probability": 0.9907 + }, + { + "start": 14019.72, + "end": 14024.02, + "probability": 0.9776 + }, + { + "start": 14025.14, + "end": 14027.08, + "probability": 0.9688 + }, + { + "start": 14028.4, + "end": 14029.74, + "probability": 0.7538 + }, + { + "start": 14030.52, + "end": 14031.88, + "probability": 0.9385 + }, + { + "start": 14032.36, + "end": 14036.0, + "probability": 0.9941 + }, + { + "start": 14036.16, + "end": 14037.14, + "probability": 0.9961 + }, + { + "start": 14038.22, + "end": 14040.2, + "probability": 0.9876 + }, + { + "start": 14041.34, + "end": 14044.8, + "probability": 0.9725 + }, + { + "start": 14045.6, + "end": 14046.5, + "probability": 0.8973 + }, + { + "start": 14047.2, + "end": 14050.74, + "probability": 0.8788 + }, + { + "start": 14051.34, + "end": 14051.71, + "probability": 0.6779 + }, + { + "start": 14052.58, + "end": 14053.96, + "probability": 0.7474 + }, + { + "start": 14055.28, + "end": 14059.76, + "probability": 0.9854 + }, + { + "start": 14060.5, + "end": 14062.74, + "probability": 0.9491 + }, + { + "start": 14063.56, + "end": 14068.18, + "probability": 0.8877 + }, + { + "start": 14069.04, + "end": 14070.58, + "probability": 0.7972 + }, + { + "start": 14071.96, + "end": 14075.82, + "probability": 0.8919 + }, + { + "start": 14077.08, + "end": 14078.04, + "probability": 0.9092 + }, + { + "start": 14078.6, + "end": 14081.48, + "probability": 0.9902 + }, + { + "start": 14082.02, + "end": 14085.24, + "probability": 0.8897 + }, + { + "start": 14086.26, + "end": 14090.9, + "probability": 0.8799 + }, + { + "start": 14091.88, + "end": 14094.32, + "probability": 0.9546 + }, + { + "start": 14094.98, + "end": 14099.9, + "probability": 0.986 + }, + { + "start": 14100.38, + "end": 14106.1, + "probability": 0.9491 + }, + { + "start": 14107.94, + "end": 14110.0, + "probability": 0.7618 + }, + { + "start": 14110.88, + "end": 14112.8, + "probability": 0.992 + }, + { + "start": 14113.36, + "end": 14114.82, + "probability": 0.9995 + }, + { + "start": 14115.54, + "end": 14117.64, + "probability": 0.993 + }, + { + "start": 14118.42, + "end": 14120.82, + "probability": 0.9864 + }, + { + "start": 14121.34, + "end": 14122.62, + "probability": 0.9889 + }, + { + "start": 14123.5, + "end": 14125.86, + "probability": 0.8962 + }, + { + "start": 14126.66, + "end": 14129.42, + "probability": 0.8352 + }, + { + "start": 14130.42, + "end": 14135.88, + "probability": 0.9942 + }, + { + "start": 14136.9, + "end": 14142.14, + "probability": 0.9791 + }, + { + "start": 14142.68, + "end": 14145.66, + "probability": 0.9998 + }, + { + "start": 14146.28, + "end": 14148.9, + "probability": 0.6084 + }, + { + "start": 14149.48, + "end": 14151.3, + "probability": 0.9824 + }, + { + "start": 14151.92, + "end": 14153.88, + "probability": 0.9624 + }, + { + "start": 14154.2, + "end": 14154.66, + "probability": 0.816 + }, + { + "start": 14155.46, + "end": 14157.88, + "probability": 0.738 + }, + { + "start": 14158.46, + "end": 14162.04, + "probability": 0.583 + }, + { + "start": 14162.04, + "end": 14164.04, + "probability": 0.4954 + }, + { + "start": 14164.54, + "end": 14165.18, + "probability": 0.89 + }, + { + "start": 14165.32, + "end": 14165.86, + "probability": 0.9259 + }, + { + "start": 14166.0, + "end": 14167.96, + "probability": 0.8385 + }, + { + "start": 14169.41, + "end": 14171.26, + "probability": 0.6735 + }, + { + "start": 14172.5, + "end": 14173.68, + "probability": 0.9867 + }, + { + "start": 14174.44, + "end": 14175.5, + "probability": 0.7854 + }, + { + "start": 14179.64, + "end": 14179.94, + "probability": 0.6656 + }, + { + "start": 14180.66, + "end": 14182.08, + "probability": 0.6807 + }, + { + "start": 14182.22, + "end": 14184.22, + "probability": 0.9438 + }, + { + "start": 14184.74, + "end": 14186.98, + "probability": 0.9604 + }, + { + "start": 14187.9, + "end": 14188.76, + "probability": 0.9023 + }, + { + "start": 14192.46, + "end": 14194.5, + "probability": 0.6763 + }, + { + "start": 14195.04, + "end": 14195.38, + "probability": 0.8655 + }, + { + "start": 14196.74, + "end": 14200.06, + "probability": 0.7899 + }, + { + "start": 14200.14, + "end": 14202.02, + "probability": 0.6283 + }, + { + "start": 14203.5, + "end": 14203.94, + "probability": 0.1073 + }, + { + "start": 14216.88, + "end": 14218.03, + "probability": 0.6035 + }, + { + "start": 14218.5, + "end": 14221.9, + "probability": 0.9875 + }, + { + "start": 14223.16, + "end": 14226.54, + "probability": 0.8346 + }, + { + "start": 14228.32, + "end": 14231.04, + "probability": 0.9617 + }, + { + "start": 14232.66, + "end": 14237.18, + "probability": 0.9809 + }, + { + "start": 14238.6, + "end": 14242.78, + "probability": 0.6581 + }, + { + "start": 14242.78, + "end": 14247.88, + "probability": 0.9355 + }, + { + "start": 14249.1, + "end": 14251.68, + "probability": 0.9604 + }, + { + "start": 14253.24, + "end": 14254.82, + "probability": 0.9582 + }, + { + "start": 14255.46, + "end": 14258.6, + "probability": 0.5414 + }, + { + "start": 14259.54, + "end": 14262.7, + "probability": 0.7393 + }, + { + "start": 14263.84, + "end": 14264.66, + "probability": 0.8417 + }, + { + "start": 14265.32, + "end": 14267.68, + "probability": 0.9852 + }, + { + "start": 14269.56, + "end": 14275.12, + "probability": 0.9693 + }, + { + "start": 14276.74, + "end": 14278.4, + "probability": 0.8142 + }, + { + "start": 14279.96, + "end": 14281.7, + "probability": 0.6719 + }, + { + "start": 14283.34, + "end": 14287.74, + "probability": 0.8358 + }, + { + "start": 14287.74, + "end": 14294.06, + "probability": 0.7443 + }, + { + "start": 14296.04, + "end": 14296.96, + "probability": 0.8593 + }, + { + "start": 14297.9, + "end": 14298.94, + "probability": 0.7594 + }, + { + "start": 14299.38, + "end": 14304.64, + "probability": 0.9641 + }, + { + "start": 14306.44, + "end": 14307.24, + "probability": 0.7215 + }, + { + "start": 14307.92, + "end": 14311.5, + "probability": 0.5792 + }, + { + "start": 14312.48, + "end": 14313.2, + "probability": 0.8337 + }, + { + "start": 14314.0, + "end": 14315.88, + "probability": 0.7561 + }, + { + "start": 14316.7, + "end": 14320.16, + "probability": 0.7814 + }, + { + "start": 14321.08, + "end": 14322.54, + "probability": 0.5146 + }, + { + "start": 14323.98, + "end": 14325.7, + "probability": 0.281 + }, + { + "start": 14327.34, + "end": 14330.84, + "probability": 0.7212 + }, + { + "start": 14331.64, + "end": 14334.48, + "probability": 0.8295 + }, + { + "start": 14335.08, + "end": 14336.64, + "probability": 0.79 + }, + { + "start": 14337.56, + "end": 14342.4, + "probability": 0.7675 + }, + { + "start": 14344.06, + "end": 14345.72, + "probability": 0.99 + }, + { + "start": 14346.58, + "end": 14347.24, + "probability": 0.8136 + }, + { + "start": 14349.54, + "end": 14351.76, + "probability": 0.7342 + }, + { + "start": 14352.58, + "end": 14353.74, + "probability": 0.8604 + }, + { + "start": 14354.28, + "end": 14355.9, + "probability": 0.9915 + }, + { + "start": 14357.0, + "end": 14360.56, + "probability": 0.6623 + }, + { + "start": 14361.3, + "end": 14362.68, + "probability": 0.9435 + }, + { + "start": 14363.54, + "end": 14367.8, + "probability": 0.6553 + }, + { + "start": 14369.72, + "end": 14375.62, + "probability": 0.8573 + }, + { + "start": 14379.24, + "end": 14380.7, + "probability": 0.9254 + }, + { + "start": 14382.2, + "end": 14384.14, + "probability": 0.509 + }, + { + "start": 14386.26, + "end": 14387.66, + "probability": 0.4015 + }, + { + "start": 14388.14, + "end": 14389.6, + "probability": 0.9397 + }, + { + "start": 14390.14, + "end": 14397.44, + "probability": 0.6555 + }, + { + "start": 14399.2, + "end": 14405.58, + "probability": 0.7372 + }, + { + "start": 14407.3, + "end": 14409.7, + "probability": 0.9683 + }, + { + "start": 14411.26, + "end": 14412.67, + "probability": 0.875 + }, + { + "start": 14413.18, + "end": 14415.32, + "probability": 0.9071 + }, + { + "start": 14416.66, + "end": 14418.48, + "probability": 0.9748 + }, + { + "start": 14421.26, + "end": 14423.56, + "probability": 0.5093 + }, + { + "start": 14425.04, + "end": 14429.06, + "probability": 0.7102 + }, + { + "start": 14430.84, + "end": 14438.7, + "probability": 0.983 + }, + { + "start": 14441.88, + "end": 14446.86, + "probability": 0.9482 + }, + { + "start": 14447.52, + "end": 14450.3, + "probability": 0.7189 + }, + { + "start": 14453.12, + "end": 14454.16, + "probability": 0.8329 + }, + { + "start": 14454.84, + "end": 14455.98, + "probability": 0.5743 + }, + { + "start": 14457.64, + "end": 14460.02, + "probability": 0.7995 + }, + { + "start": 14463.38, + "end": 14464.9, + "probability": 0.8001 + }, + { + "start": 14468.5, + "end": 14472.58, + "probability": 0.8576 + }, + { + "start": 14473.86, + "end": 14475.68, + "probability": 0.6611 + }, + { + "start": 14478.82, + "end": 14484.84, + "probability": 0.5914 + }, + { + "start": 14485.62, + "end": 14487.7, + "probability": 0.5804 + }, + { + "start": 14488.92, + "end": 14489.82, + "probability": 0.8257 + }, + { + "start": 14491.62, + "end": 14498.32, + "probability": 0.9717 + }, + { + "start": 14499.44, + "end": 14504.52, + "probability": 0.8738 + }, + { + "start": 14505.86, + "end": 14506.62, + "probability": 0.8982 + }, + { + "start": 14507.42, + "end": 14508.9, + "probability": 0.6453 + }, + { + "start": 14510.34, + "end": 14511.27, + "probability": 0.6492 + }, + { + "start": 14512.24, + "end": 14513.28, + "probability": 0.8516 + }, + { + "start": 14515.72, + "end": 14516.66, + "probability": 0.877 + }, + { + "start": 14516.92, + "end": 14518.1, + "probability": 0.9729 + }, + { + "start": 14520.36, + "end": 14522.56, + "probability": 0.9482 + }, + { + "start": 14523.72, + "end": 14524.68, + "probability": 0.3704 + }, + { + "start": 14526.06, + "end": 14527.44, + "probability": 0.6258 + }, + { + "start": 14528.0, + "end": 14530.44, + "probability": 0.663 + }, + { + "start": 14533.96, + "end": 14535.38, + "probability": 0.685 + }, + { + "start": 14536.96, + "end": 14539.14, + "probability": 0.8413 + }, + { + "start": 14539.72, + "end": 14541.28, + "probability": 0.6686 + }, + { + "start": 14542.84, + "end": 14546.91, + "probability": 0.9382 + }, + { + "start": 14548.82, + "end": 14550.32, + "probability": 0.6527 + }, + { + "start": 14552.24, + "end": 14556.18, + "probability": 0.8167 + }, + { + "start": 14557.9, + "end": 14560.28, + "probability": 0.4977 + }, + { + "start": 14561.42, + "end": 14564.92, + "probability": 0.8467 + }, + { + "start": 14567.96, + "end": 14571.24, + "probability": 0.9747 + }, + { + "start": 14574.04, + "end": 14576.24, + "probability": 0.8413 + }, + { + "start": 14577.7, + "end": 14579.06, + "probability": 0.9253 + }, + { + "start": 14580.58, + "end": 14581.92, + "probability": 0.7129 + }, + { + "start": 14583.86, + "end": 14590.26, + "probability": 0.8796 + }, + { + "start": 14593.4, + "end": 14595.44, + "probability": 0.8036 + }, + { + "start": 14596.28, + "end": 14597.36, + "probability": 0.9089 + }, + { + "start": 14598.22, + "end": 14601.28, + "probability": 0.633 + }, + { + "start": 14603.14, + "end": 14604.14, + "probability": 0.7693 + }, + { + "start": 14605.18, + "end": 14605.96, + "probability": 0.9584 + }, + { + "start": 14608.32, + "end": 14609.9, + "probability": 0.853 + }, + { + "start": 14611.04, + "end": 14611.98, + "probability": 0.8693 + }, + { + "start": 14613.52, + "end": 14616.22, + "probability": 0.52 + }, + { + "start": 14624.98, + "end": 14628.36, + "probability": 0.8929 + }, + { + "start": 14629.1, + "end": 14629.38, + "probability": 0.6448 + }, + { + "start": 14631.7, + "end": 14633.28, + "probability": 0.8841 + }, + { + "start": 14635.92, + "end": 14640.06, + "probability": 0.7054 + }, + { + "start": 14640.98, + "end": 14645.5, + "probability": 0.7866 + }, + { + "start": 14646.62, + "end": 14650.58, + "probability": 0.8257 + }, + { + "start": 14651.68, + "end": 14652.7, + "probability": 0.6542 + }, + { + "start": 14654.24, + "end": 14656.78, + "probability": 0.9603 + }, + { + "start": 14656.92, + "end": 14657.46, + "probability": 0.7365 + }, + { + "start": 14657.58, + "end": 14658.3, + "probability": 0.8442 + }, + { + "start": 14659.04, + "end": 14661.4, + "probability": 0.7415 + }, + { + "start": 14663.18, + "end": 14666.84, + "probability": 0.854 + }, + { + "start": 14668.32, + "end": 14669.54, + "probability": 0.9453 + }, + { + "start": 14671.22, + "end": 14673.43, + "probability": 0.8433 + }, + { + "start": 14674.4, + "end": 14677.72, + "probability": 0.9731 + }, + { + "start": 14680.36, + "end": 14682.76, + "probability": 0.876 + }, + { + "start": 14683.74, + "end": 14687.86, + "probability": 0.9919 + }, + { + "start": 14689.22, + "end": 14691.2, + "probability": 0.7718 + }, + { + "start": 14692.24, + "end": 14693.5, + "probability": 0.8171 + }, + { + "start": 14693.94, + "end": 14694.65, + "probability": 0.8862 + }, + { + "start": 14696.86, + "end": 14701.26, + "probability": 0.9834 + }, + { + "start": 14701.96, + "end": 14703.95, + "probability": 0.9678 + }, + { + "start": 14705.78, + "end": 14708.02, + "probability": 0.8055 + }, + { + "start": 14708.44, + "end": 14709.4, + "probability": 0.7373 + }, + { + "start": 14709.48, + "end": 14710.16, + "probability": 0.6074 + }, + { + "start": 14711.46, + "end": 14712.7, + "probability": 0.7558 + }, + { + "start": 14714.76, + "end": 14720.7, + "probability": 0.9663 + }, + { + "start": 14721.88, + "end": 14723.28, + "probability": 0.9844 + }, + { + "start": 14724.18, + "end": 14725.1, + "probability": 0.7605 + }, + { + "start": 14725.34, + "end": 14726.58, + "probability": 0.6872 + }, + { + "start": 14727.06, + "end": 14731.9, + "probability": 0.3954 + }, + { + "start": 14731.98, + "end": 14736.5, + "probability": 0.5595 + }, + { + "start": 14736.68, + "end": 14738.16, + "probability": 0.4128 + }, + { + "start": 14738.62, + "end": 14739.96, + "probability": 0.8512 + }, + { + "start": 14741.22, + "end": 14742.34, + "probability": 0.6728 + }, + { + "start": 14742.34, + "end": 14743.1, + "probability": 0.8714 + }, + { + "start": 14743.54, + "end": 14745.96, + "probability": 0.6126 + }, + { + "start": 14746.38, + "end": 14748.2, + "probability": 0.673 + }, + { + "start": 14750.68, + "end": 14752.64, + "probability": 0.8657 + }, + { + "start": 14753.1, + "end": 14753.54, + "probability": 0.5682 + }, + { + "start": 14753.66, + "end": 14759.4, + "probability": 0.9521 + }, + { + "start": 14759.54, + "end": 14760.42, + "probability": 0.8884 + }, + { + "start": 14760.5, + "end": 14761.16, + "probability": 0.9503 + }, + { + "start": 14761.86, + "end": 14763.44, + "probability": 0.6575 + }, + { + "start": 14766.12, + "end": 14772.2, + "probability": 0.9799 + }, + { + "start": 14774.38, + "end": 14776.6, + "probability": 0.5996 + }, + { + "start": 14777.2, + "end": 14778.56, + "probability": 0.426 + }, + { + "start": 14778.56, + "end": 14778.77, + "probability": 0.7108 + }, + { + "start": 14779.62, + "end": 14779.7, + "probability": 0.0113 + }, + { + "start": 14779.7, + "end": 14780.42, + "probability": 0.6693 + }, + { + "start": 14780.48, + "end": 14781.2, + "probability": 0.7279 + }, + { + "start": 14781.62, + "end": 14781.72, + "probability": 0.2985 + }, + { + "start": 14781.88, + "end": 14784.38, + "probability": 0.8128 + }, + { + "start": 14785.74, + "end": 14787.76, + "probability": 0.859 + }, + { + "start": 14789.7, + "end": 14792.32, + "probability": 0.5482 + }, + { + "start": 14793.5, + "end": 14796.12, + "probability": 0.9024 + }, + { + "start": 14797.52, + "end": 14800.44, + "probability": 0.8552 + }, + { + "start": 14801.99, + "end": 14804.02, + "probability": 0.802 + }, + { + "start": 14805.72, + "end": 14808.76, + "probability": 0.5664 + }, + { + "start": 14809.58, + "end": 14810.78, + "probability": 0.7203 + }, + { + "start": 14810.94, + "end": 14811.8, + "probability": 0.8541 + }, + { + "start": 14813.4, + "end": 14815.0, + "probability": 0.7891 + }, + { + "start": 14817.06, + "end": 14818.28, + "probability": 0.8531 + }, + { + "start": 14819.68, + "end": 14821.96, + "probability": 0.9853 + }, + { + "start": 14822.58, + "end": 14824.72, + "probability": 0.6636 + }, + { + "start": 14825.36, + "end": 14828.5, + "probability": 0.8542 + }, + { + "start": 14830.4, + "end": 14830.66, + "probability": 0.7933 + }, + { + "start": 14833.76, + "end": 14834.7, + "probability": 0.9631 + }, + { + "start": 14834.84, + "end": 14840.1, + "probability": 0.9686 + }, + { + "start": 14844.22, + "end": 14846.54, + "probability": 0.6232 + }, + { + "start": 14849.46, + "end": 14851.46, + "probability": 0.7951 + }, + { + "start": 14853.48, + "end": 14857.34, + "probability": 0.8842 + }, + { + "start": 14859.06, + "end": 14861.35, + "probability": 0.7504 + }, + { + "start": 14863.04, + "end": 14864.16, + "probability": 0.5159 + }, + { + "start": 14865.14, + "end": 14871.24, + "probability": 0.9749 + }, + { + "start": 14873.5, + "end": 14873.98, + "probability": 0.9437 + }, + { + "start": 14875.9, + "end": 14883.46, + "probability": 0.9443 + }, + { + "start": 14885.06, + "end": 14886.04, + "probability": 0.9187 + }, + { + "start": 14887.88, + "end": 14888.12, + "probability": 0.458 + }, + { + "start": 14888.46, + "end": 14889.06, + "probability": 0.5069 + }, + { + "start": 14889.16, + "end": 14891.96, + "probability": 0.9156 + }, + { + "start": 14892.06, + "end": 14892.78, + "probability": 0.6712 + }, + { + "start": 14893.9, + "end": 14895.8, + "probability": 0.6374 + }, + { + "start": 14897.8, + "end": 14899.52, + "probability": 0.7983 + }, + { + "start": 14900.38, + "end": 14904.72, + "probability": 0.9624 + }, + { + "start": 14905.74, + "end": 14907.44, + "probability": 0.9689 + }, + { + "start": 14907.62, + "end": 14909.18, + "probability": 0.7505 + }, + { + "start": 14910.94, + "end": 14912.1, + "probability": 0.6599 + }, + { + "start": 14912.6, + "end": 14913.86, + "probability": 0.9509 + }, + { + "start": 14914.3, + "end": 14916.42, + "probability": 0.9398 + }, + { + "start": 14916.9, + "end": 14918.34, + "probability": 0.7852 + }, + { + "start": 14918.8, + "end": 14920.68, + "probability": 0.8004 + }, + { + "start": 14922.52, + "end": 14924.56, + "probability": 0.9583 + }, + { + "start": 14925.24, + "end": 14927.3, + "probability": 0.9904 + }, + { + "start": 14927.84, + "end": 14939.9, + "probability": 0.9839 + }, + { + "start": 14940.68, + "end": 14942.36, + "probability": 0.9609 + }, + { + "start": 14942.9, + "end": 14944.7, + "probability": 0.7831 + }, + { + "start": 14945.4, + "end": 14946.18, + "probability": 0.5918 + }, + { + "start": 14948.22, + "end": 14948.88, + "probability": 0.6799 + }, + { + "start": 14949.02, + "end": 14953.04, + "probability": 0.8557 + }, + { + "start": 14953.44, + "end": 14958.74, + "probability": 0.7465 + }, + { + "start": 14960.68, + "end": 14964.38, + "probability": 0.5783 + }, + { + "start": 14965.2, + "end": 14965.98, + "probability": 0.4375 + }, + { + "start": 14967.04, + "end": 14970.6, + "probability": 0.0229 + }, + { + "start": 14972.14, + "end": 14974.2, + "probability": 0.0455 + }, + { + "start": 14974.64, + "end": 14977.14, + "probability": 0.2304 + }, + { + "start": 14977.78, + "end": 14977.96, + "probability": 0.6497 + }, + { + "start": 14979.68, + "end": 14981.6, + "probability": 0.4788 + }, + { + "start": 14982.93, + "end": 14987.8, + "probability": 0.9981 + }, + { + "start": 14989.06, + "end": 14990.02, + "probability": 0.7375 + }, + { + "start": 14991.22, + "end": 14992.52, + "probability": 0.9497 + }, + { + "start": 14993.12, + "end": 14994.9, + "probability": 0.9919 + }, + { + "start": 14996.22, + "end": 14997.52, + "probability": 0.9352 + }, + { + "start": 14998.44, + "end": 15001.88, + "probability": 0.6076 + }, + { + "start": 15002.44, + "end": 15003.96, + "probability": 0.7232 + }, + { + "start": 15013.18, + "end": 15014.36, + "probability": 0.7344 + }, + { + "start": 15015.3, + "end": 15015.98, + "probability": 0.1931 + }, + { + "start": 15017.12, + "end": 15021.32, + "probability": 0.9213 + }, + { + "start": 15022.62, + "end": 15026.16, + "probability": 0.9751 + }, + { + "start": 15027.64, + "end": 15032.46, + "probability": 0.9402 + }, + { + "start": 15033.4, + "end": 15035.68, + "probability": 0.7408 + }, + { + "start": 15035.9, + "end": 15038.72, + "probability": 0.7715 + }, + { + "start": 15043.04, + "end": 15044.0, + "probability": 0.5502 + }, + { + "start": 15045.5, + "end": 15046.32, + "probability": 0.7953 + }, + { + "start": 15048.8, + "end": 15049.88, + "probability": 0.7883 + }, + { + "start": 15051.76, + "end": 15055.14, + "probability": 0.8706 + }, + { + "start": 15055.74, + "end": 15059.78, + "probability": 0.6735 + }, + { + "start": 15061.5, + "end": 15065.8, + "probability": 0.9779 + }, + { + "start": 15067.3, + "end": 15067.76, + "probability": 0.6282 + }, + { + "start": 15069.82, + "end": 15070.58, + "probability": 0.7343 + }, + { + "start": 15072.06, + "end": 15075.82, + "probability": 0.9603 + }, + { + "start": 15076.44, + "end": 15077.68, + "probability": 0.9962 + }, + { + "start": 15079.74, + "end": 15080.76, + "probability": 0.1822 + }, + { + "start": 15082.36, + "end": 15085.76, + "probability": 0.9026 + }, + { + "start": 15086.76, + "end": 15090.98, + "probability": 0.6153 + }, + { + "start": 15092.16, + "end": 15093.52, + "probability": 0.6603 + }, + { + "start": 15094.64, + "end": 15098.34, + "probability": 0.9302 + }, + { + "start": 15099.02, + "end": 15100.22, + "probability": 0.8199 + }, + { + "start": 15100.98, + "end": 15103.36, + "probability": 0.9455 + }, + { + "start": 15104.52, + "end": 15105.52, + "probability": 0.8617 + }, + { + "start": 15106.38, + "end": 15106.78, + "probability": 0.8829 + }, + { + "start": 15107.6, + "end": 15108.76, + "probability": 0.7955 + }, + { + "start": 15110.02, + "end": 15114.0, + "probability": 0.6094 + }, + { + "start": 15115.54, + "end": 15118.8, + "probability": 0.9618 + }, + { + "start": 15119.72, + "end": 15122.76, + "probability": 0.9531 + }, + { + "start": 15123.28, + "end": 15124.2, + "probability": 0.8916 + }, + { + "start": 15125.12, + "end": 15126.36, + "probability": 0.9718 + }, + { + "start": 15127.84, + "end": 15129.12, + "probability": 0.7653 + }, + { + "start": 15130.14, + "end": 15132.18, + "probability": 0.8118 + }, + { + "start": 15132.26, + "end": 15133.66, + "probability": 0.7387 + }, + { + "start": 15133.74, + "end": 15134.44, + "probability": 0.8319 + }, + { + "start": 15136.0, + "end": 15139.86, + "probability": 0.8623 + }, + { + "start": 15140.46, + "end": 15141.56, + "probability": 0.5839 + }, + { + "start": 15141.76, + "end": 15149.36, + "probability": 0.8524 + }, + { + "start": 15150.34, + "end": 15153.8, + "probability": 0.7739 + }, + { + "start": 15154.98, + "end": 15157.2, + "probability": 0.8339 + }, + { + "start": 15158.68, + "end": 15161.08, + "probability": 0.7025 + }, + { + "start": 15161.96, + "end": 15163.38, + "probability": 0.9489 + }, + { + "start": 15164.96, + "end": 15169.32, + "probability": 0.9497 + }, + { + "start": 15169.36, + "end": 15172.7, + "probability": 0.987 + }, + { + "start": 15173.68, + "end": 15174.52, + "probability": 0.6598 + }, + { + "start": 15176.1, + "end": 15178.38, + "probability": 0.9589 + }, + { + "start": 15179.56, + "end": 15182.42, + "probability": 0.7847 + }, + { + "start": 15183.82, + "end": 15185.3, + "probability": 0.7482 + }, + { + "start": 15186.46, + "end": 15187.46, + "probability": 0.8754 + }, + { + "start": 15188.04, + "end": 15192.88, + "probability": 0.8931 + }, + { + "start": 15194.66, + "end": 15196.8, + "probability": 0.7286 + }, + { + "start": 15197.64, + "end": 15201.04, + "probability": 0.963 + }, + { + "start": 15202.78, + "end": 15206.74, + "probability": 0.9426 + }, + { + "start": 15207.64, + "end": 15208.24, + "probability": 0.8927 + }, + { + "start": 15209.1, + "end": 15211.4, + "probability": 0.9673 + }, + { + "start": 15213.68, + "end": 15218.78, + "probability": 0.7437 + }, + { + "start": 15219.66, + "end": 15220.9, + "probability": 0.9861 + }, + { + "start": 15222.22, + "end": 15223.16, + "probability": 0.9092 + }, + { + "start": 15223.9, + "end": 15227.84, + "probability": 0.9556 + }, + { + "start": 15228.44, + "end": 15233.48, + "probability": 0.9532 + }, + { + "start": 15234.24, + "end": 15235.56, + "probability": 0.9906 + }, + { + "start": 15236.14, + "end": 15237.9, + "probability": 0.7094 + }, + { + "start": 15238.76, + "end": 15241.06, + "probability": 0.838 + }, + { + "start": 15242.16, + "end": 15244.1, + "probability": 0.7322 + }, + { + "start": 15246.16, + "end": 15249.1, + "probability": 0.9858 + }, + { + "start": 15249.96, + "end": 15252.66, + "probability": 0.9355 + }, + { + "start": 15253.92, + "end": 15259.96, + "probability": 0.9526 + }, + { + "start": 15260.86, + "end": 15262.66, + "probability": 0.9692 + }, + { + "start": 15263.34, + "end": 15264.53, + "probability": 0.9805 + }, + { + "start": 15266.14, + "end": 15268.02, + "probability": 0.9343 + }, + { + "start": 15270.14, + "end": 15270.84, + "probability": 0.9958 + }, + { + "start": 15278.08, + "end": 15278.9, + "probability": 0.8904 + }, + { + "start": 15280.14, + "end": 15280.24, + "probability": 0.5753 + }, + { + "start": 15283.3, + "end": 15286.54, + "probability": 0.9824 + }, + { + "start": 15286.78, + "end": 15292.36, + "probability": 0.9297 + }, + { + "start": 15293.54, + "end": 15294.9, + "probability": 0.96 + }, + { + "start": 15296.16, + "end": 15305.14, + "probability": 0.9579 + }, + { + "start": 15305.36, + "end": 15306.12, + "probability": 0.7704 + }, + { + "start": 15307.4, + "end": 15309.7, + "probability": 0.8963 + }, + { + "start": 15310.92, + "end": 15313.48, + "probability": 0.8832 + }, + { + "start": 15314.56, + "end": 15316.54, + "probability": 0.9755 + }, + { + "start": 15318.2, + "end": 15322.64, + "probability": 0.8747 + }, + { + "start": 15323.6, + "end": 15325.6, + "probability": 0.7306 + }, + { + "start": 15326.08, + "end": 15329.84, + "probability": 0.9757 + }, + { + "start": 15330.5, + "end": 15334.8, + "probability": 0.6496 + }, + { + "start": 15335.7, + "end": 15339.26, + "probability": 0.7993 + }, + { + "start": 15339.26, + "end": 15342.32, + "probability": 0.8374 + }, + { + "start": 15342.98, + "end": 15347.8, + "probability": 0.7151 + }, + { + "start": 15348.52, + "end": 15355.72, + "probability": 0.9553 + }, + { + "start": 15356.5, + "end": 15356.78, + "probability": 0.3323 + }, + { + "start": 15358.36, + "end": 15361.8, + "probability": 0.966 + }, + { + "start": 15362.5, + "end": 15368.3, + "probability": 0.9505 + }, + { + "start": 15368.84, + "end": 15373.44, + "probability": 0.0917 + }, + { + "start": 15374.4, + "end": 15376.3, + "probability": 0.8684 + }, + { + "start": 15379.5, + "end": 15380.74, + "probability": 0.5526 + }, + { + "start": 15381.8, + "end": 15384.12, + "probability": 0.9558 + }, + { + "start": 15385.24, + "end": 15387.32, + "probability": 0.5599 + }, + { + "start": 15387.9, + "end": 15388.7, + "probability": 0.8093 + }, + { + "start": 15389.76, + "end": 15392.02, + "probability": 0.7515 + }, + { + "start": 15392.74, + "end": 15394.64, + "probability": 0.8247 + }, + { + "start": 15396.3, + "end": 15396.9, + "probability": 0.9316 + }, + { + "start": 15397.68, + "end": 15400.74, + "probability": 0.7854 + }, + { + "start": 15401.64, + "end": 15410.28, + "probability": 0.7485 + }, + { + "start": 15411.68, + "end": 15420.36, + "probability": 0.7587 + }, + { + "start": 15420.38, + "end": 15421.34, + "probability": 0.584 + }, + { + "start": 15421.48, + "end": 15422.06, + "probability": 0.4756 + }, + { + "start": 15423.22, + "end": 15424.76, + "probability": 0.8993 + }, + { + "start": 15425.36, + "end": 15426.7, + "probability": 0.7349 + }, + { + "start": 15427.34, + "end": 15427.96, + "probability": 0.9234 + }, + { + "start": 15428.72, + "end": 15430.3, + "probability": 0.9555 + }, + { + "start": 15431.3, + "end": 15434.02, + "probability": 0.9675 + }, + { + "start": 15434.54, + "end": 15437.34, + "probability": 0.8406 + }, + { + "start": 15437.8, + "end": 15442.54, + "probability": 0.9712 + }, + { + "start": 15442.98, + "end": 15444.6, + "probability": 0.9761 + }, + { + "start": 15445.04, + "end": 15446.1, + "probability": 0.6618 + }, + { + "start": 15446.64, + "end": 15448.14, + "probability": 0.7794 + }, + { + "start": 15448.88, + "end": 15450.68, + "probability": 0.8431 + }, + { + "start": 15451.36, + "end": 15454.24, + "probability": 0.9656 + }, + { + "start": 15454.9, + "end": 15455.0, + "probability": 0.661 + }, + { + "start": 15455.82, + "end": 15457.16, + "probability": 0.9502 + }, + { + "start": 15457.64, + "end": 15459.2, + "probability": 0.9574 + }, + { + "start": 15459.62, + "end": 15460.86, + "probability": 0.8976 + }, + { + "start": 15461.04, + "end": 15462.48, + "probability": 0.9971 + }, + { + "start": 15463.72, + "end": 15467.52, + "probability": 0.9602 + }, + { + "start": 15468.38, + "end": 15471.64, + "probability": 0.9113 + }, + { + "start": 15472.42, + "end": 15473.42, + "probability": 0.5004 + }, + { + "start": 15473.62, + "end": 15476.36, + "probability": 0.8335 + }, + { + "start": 15476.54, + "end": 15476.92, + "probability": 0.805 + }, + { + "start": 15477.06, + "end": 15477.54, + "probability": 0.5887 + }, + { + "start": 15477.54, + "end": 15479.34, + "probability": 0.9868 + }, + { + "start": 15480.48, + "end": 15482.04, + "probability": 0.625 + }, + { + "start": 15482.66, + "end": 15483.52, + "probability": 0.2358 + }, + { + "start": 15485.9, + "end": 15486.82, + "probability": 0.8008 + }, + { + "start": 15487.04, + "end": 15487.8, + "probability": 0.756 + }, + { + "start": 15487.9, + "end": 15489.04, + "probability": 0.8877 + }, + { + "start": 15489.6, + "end": 15492.54, + "probability": 0.8838 + }, + { + "start": 15493.02, + "end": 15494.14, + "probability": 0.5165 + }, + { + "start": 15494.24, + "end": 15495.58, + "probability": 0.9821 + }, + { + "start": 15496.22, + "end": 15500.06, + "probability": 0.8852 + }, + { + "start": 15500.26, + "end": 15502.3, + "probability": 0.9595 + }, + { + "start": 15503.18, + "end": 15504.4, + "probability": 0.8995 + }, + { + "start": 15504.54, + "end": 15504.99, + "probability": 0.6601 + }, + { + "start": 15507.36, + "end": 15510.88, + "probability": 0.9517 + }, + { + "start": 15511.64, + "end": 15515.32, + "probability": 0.9731 + }, + { + "start": 15515.42, + "end": 15519.4, + "probability": 0.9961 + }, + { + "start": 15520.02, + "end": 15522.1, + "probability": 0.9858 + }, + { + "start": 15522.92, + "end": 15524.78, + "probability": 0.9731 + }, + { + "start": 15525.8, + "end": 15527.98, + "probability": 0.8571 + }, + { + "start": 15528.6, + "end": 15530.18, + "probability": 0.9976 + }, + { + "start": 15530.82, + "end": 15533.92, + "probability": 0.8997 + }, + { + "start": 15534.44, + "end": 15535.88, + "probability": 0.9736 + }, + { + "start": 15536.2, + "end": 15537.52, + "probability": 0.9572 + }, + { + "start": 15537.84, + "end": 15541.02, + "probability": 0.7195 + }, + { + "start": 15541.74, + "end": 15543.28, + "probability": 0.9484 + }, + { + "start": 15543.82, + "end": 15548.02, + "probability": 0.8363 + }, + { + "start": 15548.92, + "end": 15550.84, + "probability": 0.9841 + }, + { + "start": 15552.5, + "end": 15555.24, + "probability": 0.9788 + }, + { + "start": 15556.32, + "end": 15562.06, + "probability": 0.978 + }, + { + "start": 15563.34, + "end": 15564.12, + "probability": 0.8087 + }, + { + "start": 15564.66, + "end": 15566.1, + "probability": 0.7432 + }, + { + "start": 15566.62, + "end": 15568.62, + "probability": 0.9932 + }, + { + "start": 15569.16, + "end": 15570.1, + "probability": 0.7799 + }, + { + "start": 15570.14, + "end": 15570.92, + "probability": 0.8882 + }, + { + "start": 15571.78, + "end": 15578.5, + "probability": 0.9946 + }, + { + "start": 15578.76, + "end": 15579.96, + "probability": 0.6792 + }, + { + "start": 15580.78, + "end": 15581.75, + "probability": 0.8612 + }, + { + "start": 15582.64, + "end": 15583.86, + "probability": 0.8611 + }, + { + "start": 15584.02, + "end": 15584.84, + "probability": 0.8516 + }, + { + "start": 15584.94, + "end": 15585.26, + "probability": 0.713 + }, + { + "start": 15585.68, + "end": 15586.24, + "probability": 0.9224 + }, + { + "start": 15586.32, + "end": 15590.72, + "probability": 0.8431 + }, + { + "start": 15591.16, + "end": 15592.64, + "probability": 0.9326 + }, + { + "start": 15592.74, + "end": 15594.14, + "probability": 0.8787 + }, + { + "start": 15594.38, + "end": 15596.3, + "probability": 0.8794 + }, + { + "start": 15596.52, + "end": 15597.59, + "probability": 0.8152 + }, + { + "start": 15598.48, + "end": 15600.24, + "probability": 0.8639 + }, + { + "start": 15601.1, + "end": 15603.96, + "probability": 0.8221 + }, + { + "start": 15604.5, + "end": 15605.02, + "probability": 0.1284 + }, + { + "start": 15605.02, + "end": 15609.22, + "probability": 0.7583 + }, + { + "start": 15609.66, + "end": 15610.46, + "probability": 0.7464 + }, + { + "start": 15611.0, + "end": 15613.22, + "probability": 0.9718 + }, + { + "start": 15613.74, + "end": 15615.04, + "probability": 0.6761 + }, + { + "start": 15615.86, + "end": 15620.6, + "probability": 0.5513 + }, + { + "start": 15620.98, + "end": 15630.04, + "probability": 0.9863 + }, + { + "start": 15630.82, + "end": 15633.22, + "probability": 0.9842 + }, + { + "start": 15633.7, + "end": 15634.56, + "probability": 0.9907 + }, + { + "start": 15635.44, + "end": 15636.12, + "probability": 0.3915 + }, + { + "start": 15637.26, + "end": 15640.28, + "probability": 0.9268 + }, + { + "start": 15640.84, + "end": 15645.86, + "probability": 0.9662 + }, + { + "start": 15646.76, + "end": 15647.4, + "probability": 0.9055 + }, + { + "start": 15648.02, + "end": 15651.62, + "probability": 0.8853 + }, + { + "start": 15652.24, + "end": 15654.4, + "probability": 0.7742 + }, + { + "start": 15655.22, + "end": 15656.18, + "probability": 0.8782 + }, + { + "start": 15663.96, + "end": 15665.16, + "probability": 0.5214 + }, + { + "start": 15667.51, + "end": 15672.46, + "probability": 0.6108 + }, + { + "start": 15672.46, + "end": 15676.03, + "probability": 0.9601 + }, + { + "start": 15677.32, + "end": 15678.12, + "probability": 0.9463 + }, + { + "start": 15679.66, + "end": 15682.2, + "probability": 0.9708 + }, + { + "start": 15682.9, + "end": 15683.72, + "probability": 0.9781 + }, + { + "start": 15684.72, + "end": 15686.59, + "probability": 0.9811 + }, + { + "start": 15686.86, + "end": 15689.72, + "probability": 0.8087 + }, + { + "start": 15690.32, + "end": 15690.94, + "probability": 0.6559 + }, + { + "start": 15691.62, + "end": 15692.5, + "probability": 0.9274 + }, + { + "start": 15692.98, + "end": 15693.66, + "probability": 0.3178 + }, + { + "start": 15693.78, + "end": 15696.4, + "probability": 0.3011 + }, + { + "start": 15696.82, + "end": 15698.84, + "probability": 0.834 + }, + { + "start": 15699.14, + "end": 15699.76, + "probability": 0.0903 + }, + { + "start": 15699.76, + "end": 15701.18, + "probability": 0.9504 + }, + { + "start": 15701.24, + "end": 15701.28, + "probability": 0.2449 + }, + { + "start": 15701.44, + "end": 15703.13, + "probability": 0.9742 + }, + { + "start": 15703.56, + "end": 15704.36, + "probability": 0.3017 + }, + { + "start": 15704.42, + "end": 15705.26, + "probability": 0.7697 + }, + { + "start": 15705.38, + "end": 15706.62, + "probability": 0.9761 + }, + { + "start": 15706.72, + "end": 15708.76, + "probability": 0.7573 + }, + { + "start": 15708.88, + "end": 15709.34, + "probability": 0.7507 + }, + { + "start": 15710.14, + "end": 15711.74, + "probability": 0.257 + }, + { + "start": 15711.96, + "end": 15712.64, + "probability": 0.8629 + }, + { + "start": 15712.96, + "end": 15714.74, + "probability": 0.7512 + }, + { + "start": 15714.8, + "end": 15715.98, + "probability": 0.9628 + }, + { + "start": 15719.06, + "end": 15722.94, + "probability": 0.8972 + }, + { + "start": 15723.96, + "end": 15726.92, + "probability": 0.6688 + }, + { + "start": 15727.94, + "end": 15730.5, + "probability": 0.9805 + }, + { + "start": 15731.44, + "end": 15733.36, + "probability": 0.5764 + }, + { + "start": 15736.17, + "end": 15738.94, + "probability": 0.9004 + }, + { + "start": 15741.58, + "end": 15742.44, + "probability": 0.9971 + }, + { + "start": 15743.72, + "end": 15745.84, + "probability": 0.6853 + }, + { + "start": 15747.3, + "end": 15749.94, + "probability": 0.9294 + }, + { + "start": 15751.44, + "end": 15752.98, + "probability": 0.9916 + }, + { + "start": 15754.4, + "end": 15755.2, + "probability": 0.7257 + }, + { + "start": 15756.06, + "end": 15757.1, + "probability": 0.6555 + }, + { + "start": 15758.32, + "end": 15761.94, + "probability": 0.659 + }, + { + "start": 15764.6, + "end": 15766.84, + "probability": 0.9196 + }, + { + "start": 15767.92, + "end": 15768.74, + "probability": 0.9424 + }, + { + "start": 15768.82, + "end": 15770.5, + "probability": 0.9912 + }, + { + "start": 15770.94, + "end": 15771.74, + "probability": 0.9146 + }, + { + "start": 15771.84, + "end": 15777.34, + "probability": 0.8826 + }, + { + "start": 15777.46, + "end": 15778.46, + "probability": 0.9677 + }, + { + "start": 15779.2, + "end": 15782.16, + "probability": 0.9909 + }, + { + "start": 15782.24, + "end": 15784.08, + "probability": 0.8512 + }, + { + "start": 15784.68, + "end": 15785.86, + "probability": 0.8107 + }, + { + "start": 15786.54, + "end": 15789.22, + "probability": 0.9817 + }, + { + "start": 15789.28, + "end": 15790.1, + "probability": 0.7439 + }, + { + "start": 15790.38, + "end": 15791.77, + "probability": 0.9814 + }, + { + "start": 15792.32, + "end": 15796.1, + "probability": 0.9276 + }, + { + "start": 15796.94, + "end": 15801.14, + "probability": 0.8435 + }, + { + "start": 15801.22, + "end": 15803.48, + "probability": 0.8447 + }, + { + "start": 15803.68, + "end": 15804.52, + "probability": 0.6442 + }, + { + "start": 15804.86, + "end": 15805.56, + "probability": 0.9037 + }, + { + "start": 15805.78, + "end": 15806.32, + "probability": 0.8374 + }, + { + "start": 15806.46, + "end": 15808.22, + "probability": 0.4752 + }, + { + "start": 15809.08, + "end": 15813.02, + "probability": 0.4523 + }, + { + "start": 15814.22, + "end": 15815.9, + "probability": 0.7981 + }, + { + "start": 15816.04, + "end": 15819.66, + "probability": 0.7401 + }, + { + "start": 15820.16, + "end": 15820.88, + "probability": 0.9458 + }, + { + "start": 15821.34, + "end": 15823.94, + "probability": 0.9061 + }, + { + "start": 15824.3, + "end": 15827.87, + "probability": 0.8565 + }, + { + "start": 15828.52, + "end": 15829.34, + "probability": 0.0704 + }, + { + "start": 15830.46, + "end": 15833.14, + "probability": 0.9038 + }, + { + "start": 15833.62, + "end": 15835.63, + "probability": 0.5934 + }, + { + "start": 15836.16, + "end": 15837.98, + "probability": 0.9684 + }, + { + "start": 15838.48, + "end": 15843.82, + "probability": 0.9911 + }, + { + "start": 15844.62, + "end": 15846.98, + "probability": 0.9468 + }, + { + "start": 15847.26, + "end": 15851.9, + "probability": 0.9583 + }, + { + "start": 15852.2, + "end": 15854.76, + "probability": 0.9729 + }, + { + "start": 15855.84, + "end": 15861.68, + "probability": 0.0501 + }, + { + "start": 15863.62, + "end": 15867.92, + "probability": 0.8316 + }, + { + "start": 15869.28, + "end": 15869.88, + "probability": 0.5866 + }, + { + "start": 15870.84, + "end": 15877.2, + "probability": 0.9471 + }, + { + "start": 15877.96, + "end": 15881.2, + "probability": 0.9075 + }, + { + "start": 15881.94, + "end": 15883.3, + "probability": 0.9913 + }, + { + "start": 15883.38, + "end": 15884.12, + "probability": 0.7476 + }, + { + "start": 15884.22, + "end": 15889.54, + "probability": 0.98 + }, + { + "start": 15889.66, + "end": 15893.74, + "probability": 0.9332 + }, + { + "start": 15894.28, + "end": 15895.06, + "probability": 0.7443 + }, + { + "start": 15895.58, + "end": 15898.6, + "probability": 0.7489 + }, + { + "start": 15900.14, + "end": 15902.24, + "probability": 0.5828 + }, + { + "start": 15903.5, + "end": 15907.78, + "probability": 0.9883 + }, + { + "start": 15907.94, + "end": 15908.22, + "probability": 0.4836 + }, + { + "start": 15910.3, + "end": 15911.94, + "probability": 0.9771 + }, + { + "start": 15913.24, + "end": 15918.0, + "probability": 0.9342 + }, + { + "start": 15919.62, + "end": 15921.24, + "probability": 0.9097 + }, + { + "start": 15921.56, + "end": 15922.7, + "probability": 0.7591 + }, + { + "start": 15922.78, + "end": 15924.86, + "probability": 0.7964 + }, + { + "start": 15924.98, + "end": 15925.98, + "probability": 0.5322 + }, + { + "start": 15926.08, + "end": 15928.28, + "probability": 0.8569 + }, + { + "start": 15928.46, + "end": 15930.32, + "probability": 0.6832 + }, + { + "start": 15930.82, + "end": 15931.59, + "probability": 0.6938 + }, + { + "start": 15932.02, + "end": 15932.98, + "probability": 0.5898 + }, + { + "start": 15933.14, + "end": 15936.52, + "probability": 0.9068 + }, + { + "start": 15937.52, + "end": 15939.42, + "probability": 0.9531 + }, + { + "start": 15941.56, + "end": 15942.56, + "probability": 0.7912 + }, + { + "start": 15943.36, + "end": 15944.76, + "probability": 0.03 + }, + { + "start": 15953.52, + "end": 15953.9, + "probability": 0.0363 + }, + { + "start": 15955.72, + "end": 15956.28, + "probability": 0.0517 + }, + { + "start": 15956.28, + "end": 15956.28, + "probability": 0.0689 + }, + { + "start": 15956.28, + "end": 15956.28, + "probability": 0.3803 + }, + { + "start": 15956.28, + "end": 15958.7, + "probability": 0.6377 + }, + { + "start": 15959.74, + "end": 15962.38, + "probability": 0.896 + }, + { + "start": 15963.22, + "end": 15964.64, + "probability": 0.9822 + }, + { + "start": 15965.36, + "end": 15968.3, + "probability": 0.6705 + }, + { + "start": 15968.36, + "end": 15968.6, + "probability": 0.7848 + }, + { + "start": 15968.68, + "end": 15968.78, + "probability": 0.7061 + }, + { + "start": 15968.96, + "end": 15973.78, + "probability": 0.8549 + }, + { + "start": 15973.84, + "end": 15974.98, + "probability": 0.6338 + }, + { + "start": 15975.14, + "end": 15976.2, + "probability": 0.9572 + }, + { + "start": 15976.78, + "end": 15977.02, + "probability": 0.2135 + }, + { + "start": 15977.44, + "end": 15977.94, + "probability": 0.6061 + }, + { + "start": 15978.06, + "end": 15978.06, + "probability": 0.3683 + }, + { + "start": 15978.06, + "end": 15978.24, + "probability": 0.5024 + }, + { + "start": 15978.62, + "end": 15979.4, + "probability": 0.7299 + }, + { + "start": 15979.5, + "end": 15979.98, + "probability": 0.4951 + }, + { + "start": 15980.18, + "end": 15982.66, + "probability": 0.5 + }, + { + "start": 15982.76, + "end": 15985.38, + "probability": 0.5249 + }, + { + "start": 15985.62, + "end": 15987.04, + "probability": 0.6675 + }, + { + "start": 15987.43, + "end": 15987.56, + "probability": 0.17 + }, + { + "start": 15987.72, + "end": 15990.02, + "probability": 0.9097 + }, + { + "start": 15990.08, + "end": 15991.3, + "probability": 0.9252 + }, + { + "start": 15991.78, + "end": 15993.76, + "probability": 0.9712 + }, + { + "start": 15993.86, + "end": 15995.32, + "probability": 0.9916 + }, + { + "start": 15995.48, + "end": 15995.8, + "probability": 0.5584 + }, + { + "start": 15995.9, + "end": 15999.56, + "probability": 0.922 + }, + { + "start": 15999.72, + "end": 16000.14, + "probability": 0.8906 + }, + { + "start": 16000.6, + "end": 16002.6, + "probability": 0.9069 + }, + { + "start": 16002.98, + "end": 16005.58, + "probability": 0.949 + }, + { + "start": 16006.14, + "end": 16008.74, + "probability": 0.9672 + }, + { + "start": 16008.84, + "end": 16010.4, + "probability": 0.3082 + }, + { + "start": 16010.42, + "end": 16013.29, + "probability": 0.856 + }, + { + "start": 16013.8, + "end": 16015.22, + "probability": 0.9565 + }, + { + "start": 16016.98, + "end": 16016.98, + "probability": 0.1092 + }, + { + "start": 16016.98, + "end": 16017.58, + "probability": 0.6344 + }, + { + "start": 16017.58, + "end": 16019.02, + "probability": 0.6925 + }, + { + "start": 16019.2, + "end": 16022.04, + "probability": 0.679 + }, + { + "start": 16022.5, + "end": 16023.94, + "probability": 0.5138 + }, + { + "start": 16024.76, + "end": 16026.1, + "probability": 0.9974 + }, + { + "start": 16026.28, + "end": 16027.88, + "probability": 0.904 + }, + { + "start": 16027.96, + "end": 16029.02, + "probability": 0.7358 + }, + { + "start": 16029.12, + "end": 16032.44, + "probability": 0.9291 + }, + { + "start": 16032.48, + "end": 16033.04, + "probability": 0.47 + }, + { + "start": 16033.4, + "end": 16034.96, + "probability": 0.7659 + }, + { + "start": 16035.04, + "end": 16036.28, + "probability": 0.7997 + }, + { + "start": 16036.34, + "end": 16037.12, + "probability": 0.6578 + }, + { + "start": 16041.76, + "end": 16044.36, + "probability": 0.6214 + }, + { + "start": 16044.92, + "end": 16047.2, + "probability": 0.5856 + }, + { + "start": 16047.48, + "end": 16048.42, + "probability": 0.1716 + }, + { + "start": 16051.62, + "end": 16053.34, + "probability": 0.2322 + }, + { + "start": 16054.44, + "end": 16056.92, + "probability": 0.5351 + }, + { + "start": 16056.94, + "end": 16057.8, + "probability": 0.6709 + }, + { + "start": 16057.94, + "end": 16058.16, + "probability": 0.6212 + }, + { + "start": 16058.3, + "end": 16062.14, + "probability": 0.7876 + }, + { + "start": 16062.32, + "end": 16063.78, + "probability": 0.4953 + }, + { + "start": 16063.92, + "end": 16065.17, + "probability": 0.8244 + }, + { + "start": 16065.41, + "end": 16067.35, + "probability": 0.5717 + }, + { + "start": 16067.35, + "end": 16067.73, + "probability": 0.0739 + }, + { + "start": 16067.93, + "end": 16069.27, + "probability": 0.8636 + }, + { + "start": 16069.35, + "end": 16071.27, + "probability": 0.9935 + }, + { + "start": 16071.33, + "end": 16074.51, + "probability": 0.8756 + }, + { + "start": 16074.51, + "end": 16074.97, + "probability": 0.027 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24952.0, + "end": 24952.0, + "probability": 0.0 + }, + { + "start": 24966.72, + "end": 24969.52, + "probability": 0.849 + }, + { + "start": 24971.68, + "end": 24976.68, + "probability": 0.7845 + }, + { + "start": 24976.8, + "end": 24977.66, + "probability": 0.6613 + }, + { + "start": 24977.84, + "end": 24978.28, + "probability": 0.8771 + }, + { + "start": 24978.46, + "end": 24983.62, + "probability": 0.9805 + }, + { + "start": 24983.62, + "end": 24987.94, + "probability": 0.9539 + }, + { + "start": 24988.88, + "end": 24993.26, + "probability": 0.6561 + }, + { + "start": 24993.84, + "end": 24996.94, + "probability": 0.9703 + }, + { + "start": 24997.82, + "end": 24998.48, + "probability": 0.5664 + }, + { + "start": 24998.52, + "end": 24999.94, + "probability": 0.7891 + }, + { + "start": 25000.06, + "end": 25001.18, + "probability": 0.6229 + }, + { + "start": 25001.28, + "end": 25003.04, + "probability": 0.9655 + }, + { + "start": 25003.62, + "end": 25005.16, + "probability": 0.9575 + }, + { + "start": 25005.82, + "end": 25008.54, + "probability": 0.925 + }, + { + "start": 25008.8, + "end": 25009.66, + "probability": 0.7652 + }, + { + "start": 25009.72, + "end": 25010.34, + "probability": 0.3334 + }, + { + "start": 25011.36, + "end": 25011.5, + "probability": 0.7595 + }, + { + "start": 25011.96, + "end": 25014.58, + "probability": 0.9312 + }, + { + "start": 25014.94, + "end": 25016.08, + "probability": 0.9209 + }, + { + "start": 25016.32, + "end": 25016.96, + "probability": 0.8563 + }, + { + "start": 25017.4, + "end": 25017.92, + "probability": 0.9254 + }, + { + "start": 25018.28, + "end": 25021.3, + "probability": 0.8965 + }, + { + "start": 25021.3, + "end": 25025.32, + "probability": 0.8442 + }, + { + "start": 25025.44, + "end": 25025.56, + "probability": 0.6866 + }, + { + "start": 25026.46, + "end": 25028.6, + "probability": 0.7492 + }, + { + "start": 25029.6, + "end": 25034.18, + "probability": 0.9755 + }, + { + "start": 25034.74, + "end": 25035.38, + "probability": 0.5461 + }, + { + "start": 25035.9, + "end": 25036.82, + "probability": 0.0186 + }, + { + "start": 25036.82, + "end": 25038.4, + "probability": 0.3317 + }, + { + "start": 25050.62, + "end": 25053.46, + "probability": 0.691 + }, + { + "start": 25055.0, + "end": 25059.54, + "probability": 0.9957 + }, + { + "start": 25060.36, + "end": 25063.32, + "probability": 0.8695 + }, + { + "start": 25064.76, + "end": 25066.8, + "probability": 0.8758 + }, + { + "start": 25068.22, + "end": 25074.38, + "probability": 0.9812 + }, + { + "start": 25074.58, + "end": 25078.32, + "probability": 0.8441 + }, + { + "start": 25079.54, + "end": 25081.32, + "probability": 0.6214 + }, + { + "start": 25082.3, + "end": 25086.22, + "probability": 0.9906 + }, + { + "start": 25086.8, + "end": 25088.3, + "probability": 0.8545 + }, + { + "start": 25088.94, + "end": 25091.48, + "probability": 0.9969 + }, + { + "start": 25092.14, + "end": 25093.6, + "probability": 0.9318 + }, + { + "start": 25095.18, + "end": 25097.5, + "probability": 0.7207 + }, + { + "start": 25097.56, + "end": 25102.54, + "probability": 0.9946 + }, + { + "start": 25105.06, + "end": 25108.3, + "probability": 0.9963 + }, + { + "start": 25109.62, + "end": 25112.16, + "probability": 0.9993 + }, + { + "start": 25113.92, + "end": 25116.48, + "probability": 0.9167 + }, + { + "start": 25116.64, + "end": 25119.26, + "probability": 0.7504 + }, + { + "start": 25119.36, + "end": 25122.28, + "probability": 0.9053 + }, + { + "start": 25123.7, + "end": 25124.68, + "probability": 0.9917 + }, + { + "start": 25127.56, + "end": 25130.04, + "probability": 0.9985 + }, + { + "start": 25130.9, + "end": 25133.45, + "probability": 0.8669 + }, + { + "start": 25134.86, + "end": 25136.1, + "probability": 0.6217 + }, + { + "start": 25136.72, + "end": 25137.62, + "probability": 0.9435 + }, + { + "start": 25138.36, + "end": 25143.3, + "probability": 0.8478 + }, + { + "start": 25144.0, + "end": 25146.36, + "probability": 0.9969 + }, + { + "start": 25146.94, + "end": 25151.38, + "probability": 0.9825 + }, + { + "start": 25151.68, + "end": 25156.76, + "probability": 0.9941 + }, + { + "start": 25158.83, + "end": 25160.36, + "probability": 0.998 + }, + { + "start": 25163.42, + "end": 25164.46, + "probability": 0.9065 + }, + { + "start": 25166.88, + "end": 25169.24, + "probability": 0.9156 + }, + { + "start": 25171.36, + "end": 25172.96, + "probability": 0.9356 + }, + { + "start": 25173.92, + "end": 25175.74, + "probability": 0.9671 + }, + { + "start": 25176.44, + "end": 25179.68, + "probability": 0.9797 + }, + { + "start": 25181.74, + "end": 25183.32, + "probability": 0.9914 + }, + { + "start": 25183.6, + "end": 25184.96, + "probability": 0.9515 + }, + { + "start": 25186.42, + "end": 25189.98, + "probability": 0.9988 + }, + { + "start": 25190.14, + "end": 25197.46, + "probability": 0.9142 + }, + { + "start": 25197.92, + "end": 25199.06, + "probability": 0.9121 + }, + { + "start": 25201.2, + "end": 25204.3, + "probability": 0.9679 + }, + { + "start": 25205.46, + "end": 25206.98, + "probability": 0.9302 + }, + { + "start": 25207.74, + "end": 25208.86, + "probability": 0.9971 + }, + { + "start": 25212.7, + "end": 25214.96, + "probability": 0.9851 + }, + { + "start": 25215.56, + "end": 25218.4, + "probability": 0.9734 + }, + { + "start": 25218.4, + "end": 25222.3, + "probability": 0.7494 + }, + { + "start": 25222.66, + "end": 25222.92, + "probability": 0.7987 + }, + { + "start": 25223.5, + "end": 25224.86, + "probability": 0.3401 + }, + { + "start": 25225.52, + "end": 25231.38, + "probability": 0.9737 + }, + { + "start": 25231.82, + "end": 25232.86, + "probability": 0.8972 + }, + { + "start": 25233.78, + "end": 25237.81, + "probability": 0.9272 + }, + { + "start": 25238.26, + "end": 25241.14, + "probability": 0.978 + }, + { + "start": 25241.16, + "end": 25247.14, + "probability": 0.9814 + }, + { + "start": 25249.62, + "end": 25252.24, + "probability": 0.9902 + }, + { + "start": 25253.22, + "end": 25255.54, + "probability": 0.9651 + }, + { + "start": 25256.7, + "end": 25259.4, + "probability": 0.9755 + }, + { + "start": 25259.56, + "end": 25262.74, + "probability": 0.8589 + }, + { + "start": 25263.16, + "end": 25263.9, + "probability": 0.9456 + }, + { + "start": 25264.04, + "end": 25270.68, + "probability": 0.8755 + }, + { + "start": 25271.24, + "end": 25273.96, + "probability": 0.9205 + }, + { + "start": 25274.62, + "end": 25281.32, + "probability": 0.896 + }, + { + "start": 25283.64, + "end": 25287.02, + "probability": 0.7194 + }, + { + "start": 25287.58, + "end": 25288.8, + "probability": 0.7809 + }, + { + "start": 25289.26, + "end": 25293.82, + "probability": 0.989 + }, + { + "start": 25295.86, + "end": 25300.08, + "probability": 0.7603 + }, + { + "start": 25300.76, + "end": 25303.44, + "probability": 0.9568 + }, + { + "start": 25303.98, + "end": 25308.28, + "probability": 0.991 + }, + { + "start": 25308.28, + "end": 25312.58, + "probability": 0.8576 + }, + { + "start": 25313.4, + "end": 25315.28, + "probability": 0.9982 + }, + { + "start": 25316.02, + "end": 25320.42, + "probability": 0.9832 + }, + { + "start": 25320.42, + "end": 25324.72, + "probability": 0.9836 + }, + { + "start": 25325.38, + "end": 25328.12, + "probability": 0.9896 + }, + { + "start": 25328.7, + "end": 25332.32, + "probability": 0.7143 + }, + { + "start": 25332.76, + "end": 25338.6, + "probability": 0.9525 + }, + { + "start": 25338.6, + "end": 25346.06, + "probability": 0.9944 + }, + { + "start": 25346.66, + "end": 25350.08, + "probability": 0.8216 + }, + { + "start": 25350.08, + "end": 25353.96, + "probability": 0.9432 + }, + { + "start": 25354.98, + "end": 25360.32, + "probability": 0.9876 + }, + { + "start": 25360.8, + "end": 25361.94, + "probability": 0.8682 + }, + { + "start": 25362.36, + "end": 25363.58, + "probability": 0.9821 + }, + { + "start": 25363.98, + "end": 25367.4, + "probability": 0.9407 + }, + { + "start": 25368.64, + "end": 25371.31, + "probability": 0.9917 + }, + { + "start": 25372.84, + "end": 25374.86, + "probability": 0.4546 + }, + { + "start": 25376.46, + "end": 25383.94, + "probability": 0.9868 + }, + { + "start": 25384.14, + "end": 25385.09, + "probability": 0.8582 + }, + { + "start": 25385.64, + "end": 25388.02, + "probability": 0.6318 + }, + { + "start": 25388.32, + "end": 25388.66, + "probability": 0.3371 + }, + { + "start": 25390.7, + "end": 25392.14, + "probability": 0.5613 + }, + { + "start": 25392.16, + "end": 25392.34, + "probability": 0.4554 + }, + { + "start": 25392.34, + "end": 25394.18, + "probability": 0.9678 + }, + { + "start": 25394.96, + "end": 25395.97, + "probability": 0.9886 + }, + { + "start": 25396.28, + "end": 25397.44, + "probability": 0.8927 + }, + { + "start": 25399.4, + "end": 25402.28, + "probability": 0.1444 + }, + { + "start": 25402.58, + "end": 25402.88, + "probability": 0.012 + }, + { + "start": 25404.48, + "end": 25404.82, + "probability": 0.0245 + }, + { + "start": 25404.82, + "end": 25404.94, + "probability": 0.0578 + }, + { + "start": 25404.94, + "end": 25405.12, + "probability": 0.143 + }, + { + "start": 25405.12, + "end": 25407.82, + "probability": 0.3417 + }, + { + "start": 25408.08, + "end": 25411.26, + "probability": 0.5378 + }, + { + "start": 25412.64, + "end": 25413.13, + "probability": 0.1315 + }, + { + "start": 25413.42, + "end": 25413.92, + "probability": 0.1222 + }, + { + "start": 25414.48, + "end": 25415.3, + "probability": 0.0154 + }, + { + "start": 25416.54, + "end": 25419.42, + "probability": 0.6353 + }, + { + "start": 25419.66, + "end": 25421.42, + "probability": 0.754 + }, + { + "start": 25421.98, + "end": 25424.18, + "probability": 0.8463 + }, + { + "start": 25425.24, + "end": 25428.1, + "probability": 0.9844 + }, + { + "start": 25428.1, + "end": 25433.2, + "probability": 0.9844 + }, + { + "start": 25434.78, + "end": 25439.64, + "probability": 0.9684 + }, + { + "start": 25440.46, + "end": 25442.38, + "probability": 0.998 + }, + { + "start": 25442.66, + "end": 25444.7, + "probability": 0.7531 + }, + { + "start": 25445.16, + "end": 25447.24, + "probability": 0.9619 + }, + { + "start": 25447.78, + "end": 25455.02, + "probability": 0.9607 + }, + { + "start": 25455.02, + "end": 25457.18, + "probability": 0.6123 + }, + { + "start": 25458.84, + "end": 25460.38, + "probability": 0.7195 + }, + { + "start": 25460.5, + "end": 25465.4, + "probability": 0.8744 + }, + { + "start": 25466.6, + "end": 25472.54, + "probability": 0.8059 + }, + { + "start": 25473.22, + "end": 25473.22, + "probability": 0.8535 + }, + { + "start": 25476.36, + "end": 25479.94, + "probability": 0.9981 + }, + { + "start": 25480.7, + "end": 25482.7, + "probability": 0.7624 + }, + { + "start": 25484.28, + "end": 25488.02, + "probability": 0.9619 + }, + { + "start": 25489.62, + "end": 25492.76, + "probability": 0.9984 + }, + { + "start": 25493.06, + "end": 25495.8, + "probability": 0.2326 + }, + { + "start": 25499.06, + "end": 25499.92, + "probability": 0.0164 + }, + { + "start": 25509.76, + "end": 25512.26, + "probability": 0.7292 + }, + { + "start": 25512.44, + "end": 25514.14, + "probability": 0.9642 + }, + { + "start": 25514.22, + "end": 25515.88, + "probability": 0.8246 + }, + { + "start": 25521.06, + "end": 25526.0, + "probability": 0.701 + }, + { + "start": 25526.65, + "end": 25529.4, + "probability": 0.7584 + }, + { + "start": 25529.52, + "end": 25532.14, + "probability": 0.7019 + }, + { + "start": 25533.45, + "end": 25536.36, + "probability": 0.6984 + }, + { + "start": 25536.88, + "end": 25539.94, + "probability": 0.8665 + }, + { + "start": 25540.7, + "end": 25542.04, + "probability": 0.9695 + }, + { + "start": 25542.12, + "end": 25544.78, + "probability": 0.7578 + }, + { + "start": 25544.88, + "end": 25547.0, + "probability": 0.9775 + }, + { + "start": 25548.38, + "end": 25551.74, + "probability": 0.9737 + }, + { + "start": 25551.74, + "end": 25555.16, + "probability": 0.9904 + }, + { + "start": 25555.56, + "end": 25558.62, + "probability": 0.7963 + }, + { + "start": 25558.7, + "end": 25561.12, + "probability": 0.838 + }, + { + "start": 25561.7, + "end": 25567.96, + "probability": 0.9087 + }, + { + "start": 25568.34, + "end": 25569.08, + "probability": 0.6209 + }, + { + "start": 25570.8, + "end": 25571.86, + "probability": 0.7269 + }, + { + "start": 25571.9, + "end": 25573.68, + "probability": 0.5329 + }, + { + "start": 25575.74, + "end": 25577.38, + "probability": 0.4509 + }, + { + "start": 25578.36, + "end": 25580.26, + "probability": 0.6558 + }, + { + "start": 25580.36, + "end": 25581.22, + "probability": 0.0075 + }, + { + "start": 25582.3, + "end": 25584.46, + "probability": 0.683 + }, + { + "start": 25584.7, + "end": 25585.52, + "probability": 0.6422 + }, + { + "start": 25585.68, + "end": 25586.12, + "probability": 0.5004 + }, + { + "start": 25586.18, + "end": 25589.06, + "probability": 0.9005 + }, + { + "start": 25589.36, + "end": 25590.31, + "probability": 0.8946 + }, + { + "start": 25590.98, + "end": 25591.59, + "probability": 0.8032 + }, + { + "start": 25593.02, + "end": 25593.96, + "probability": 0.813 + }, + { + "start": 25593.96, + "end": 25595.3, + "probability": 0.8911 + }, + { + "start": 25596.14, + "end": 25597.44, + "probability": 0.3775 + }, + { + "start": 25598.44, + "end": 25600.74, + "probability": 0.7999 + }, + { + "start": 25600.78, + "end": 25603.54, + "probability": 0.967 + }, + { + "start": 25604.38, + "end": 25606.86, + "probability": 0.7738 + }, + { + "start": 25607.46, + "end": 25608.72, + "probability": 0.8846 + }, + { + "start": 25608.8, + "end": 25609.9, + "probability": 0.6493 + }, + { + "start": 25610.16, + "end": 25610.34, + "probability": 0.4799 + }, + { + "start": 25611.28, + "end": 25612.72, + "probability": 0.0353 + }, + { + "start": 25612.72, + "end": 25614.02, + "probability": 0.2866 + }, + { + "start": 25616.64, + "end": 25616.76, + "probability": 0.4513 + }, + { + "start": 25617.58, + "end": 25619.81, + "probability": 0.5474 + }, + { + "start": 25632.56, + "end": 25636.32, + "probability": 0.7764 + }, + { + "start": 25636.5, + "end": 25639.0, + "probability": 0.9905 + }, + { + "start": 25639.82, + "end": 25643.12, + "probability": 0.9969 + }, + { + "start": 25643.82, + "end": 25647.3, + "probability": 0.9951 + }, + { + "start": 25647.8, + "end": 25648.88, + "probability": 0.9924 + }, + { + "start": 25650.14, + "end": 25650.74, + "probability": 0.8264 + }, + { + "start": 25651.26, + "end": 25652.38, + "probability": 0.9907 + }, + { + "start": 25653.12, + "end": 25658.66, + "probability": 0.9851 + }, + { + "start": 25658.66, + "end": 25661.82, + "probability": 0.9976 + }, + { + "start": 25662.34, + "end": 25663.34, + "probability": 0.722 + }, + { + "start": 25663.88, + "end": 25666.56, + "probability": 0.7479 + }, + { + "start": 25666.56, + "end": 25670.06, + "probability": 0.9899 + }, + { + "start": 25670.5, + "end": 25672.04, + "probability": 0.9971 + }, + { + "start": 25672.44, + "end": 25673.92, + "probability": 0.9944 + }, + { + "start": 25674.46, + "end": 25677.5, + "probability": 0.9739 + }, + { + "start": 25679.5, + "end": 25686.17, + "probability": 0.9647 + }, + { + "start": 25686.38, + "end": 25688.54, + "probability": 0.5057 + }, + { + "start": 25688.8, + "end": 25690.46, + "probability": 0.6419 + }, + { + "start": 25690.58, + "end": 25692.9, + "probability": 0.8782 + }, + { + "start": 25696.54, + "end": 25699.22, + "probability": 0.9946 + }, + { + "start": 25700.4, + "end": 25702.12, + "probability": 0.8285 + }, + { + "start": 25703.36, + "end": 25704.72, + "probability": 0.6709 + }, + { + "start": 25707.42, + "end": 25708.28, + "probability": 0.953 + }, + { + "start": 25709.54, + "end": 25710.42, + "probability": 0.4375 + }, + { + "start": 25710.66, + "end": 25710.96, + "probability": 0.9755 + }, + { + "start": 25711.6, + "end": 25711.98, + "probability": 0.9044 + }, + { + "start": 25712.24, + "end": 25712.24, + "probability": 0.4919 + }, + { + "start": 25712.58, + "end": 25713.06, + "probability": 0.7536 + }, + { + "start": 25714.48, + "end": 25715.56, + "probability": 0.9979 + }, + { + "start": 25716.68, + "end": 25717.18, + "probability": 0.6194 + }, + { + "start": 25717.28, + "end": 25717.86, + "probability": 0.3063 + }, + { + "start": 25717.9, + "end": 25720.0, + "probability": 0.6095 + }, + { + "start": 25720.28, + "end": 25721.24, + "probability": 0.7361 + }, + { + "start": 25721.36, + "end": 25722.3, + "probability": 0.8039 + }, + { + "start": 25723.06, + "end": 25728.6, + "probability": 0.9451 + }, + { + "start": 25728.6, + "end": 25731.72, + "probability": 0.9937 + }, + { + "start": 25731.86, + "end": 25735.94, + "probability": 0.9172 + }, + { + "start": 25735.94, + "end": 25737.24, + "probability": 0.9163 + }, + { + "start": 25737.78, + "end": 25740.06, + "probability": 0.2802 + }, + { + "start": 25741.26, + "end": 25741.36, + "probability": 0.3481 + }, + { + "start": 25743.56, + "end": 25745.58, + "probability": 0.5897 + }, + { + "start": 25745.58, + "end": 25747.36, + "probability": 0.9534 + }, + { + "start": 25747.84, + "end": 25749.86, + "probability": 0.8867 + }, + { + "start": 25749.94, + "end": 25753.12, + "probability": 0.9871 + }, + { + "start": 25753.2, + "end": 25754.13, + "probability": 0.4956 + }, + { + "start": 25754.98, + "end": 25758.9, + "probability": 0.7935 + }, + { + "start": 25758.9, + "end": 25763.0, + "probability": 0.9917 + }, + { + "start": 25763.16, + "end": 25765.58, + "probability": 0.95 + }, + { + "start": 25766.0, + "end": 25768.42, + "probability": 0.8291 + }, + { + "start": 25768.74, + "end": 25771.8, + "probability": 0.8245 + }, + { + "start": 25771.9, + "end": 25772.9, + "probability": 0.9495 + }, + { + "start": 25773.5, + "end": 25777.36, + "probability": 0.9036 + }, + { + "start": 25777.78, + "end": 25780.14, + "probability": 0.9652 + }, + { + "start": 25780.48, + "end": 25785.63, + "probability": 0.937 + }, + { + "start": 25786.08, + "end": 25789.34, + "probability": 0.8906 + }, + { + "start": 25789.34, + "end": 25791.9, + "probability": 0.8908 + }, + { + "start": 25792.12, + "end": 25795.28, + "probability": 0.9121 + }, + { + "start": 25795.42, + "end": 25798.84, + "probability": 0.7958 + }, + { + "start": 25799.7, + "end": 25800.42, + "probability": 0.6348 + }, + { + "start": 25800.52, + "end": 25802.7, + "probability": 0.818 + }, + { + "start": 25803.2, + "end": 25809.84, + "probability": 0.9558 + }, + { + "start": 25809.84, + "end": 25812.98, + "probability": 0.9971 + }, + { + "start": 25813.04, + "end": 25813.86, + "probability": 0.5132 + }, + { + "start": 25814.04, + "end": 25814.76, + "probability": 0.0631 + }, + { + "start": 25814.76, + "end": 25820.26, + "probability": 0.6866 + }, + { + "start": 25820.82, + "end": 25821.24, + "probability": 0.718 + }, + { + "start": 25821.96, + "end": 25823.92, + "probability": 0.9202 + }, + { + "start": 25825.04, + "end": 25826.34, + "probability": 0.6753 + }, + { + "start": 25826.58, + "end": 25830.16, + "probability": 0.681 + }, + { + "start": 25831.18, + "end": 25834.42, + "probability": 0.9826 + }, + { + "start": 25834.7, + "end": 25837.32, + "probability": 0.6196 + }, + { + "start": 25838.12, + "end": 25840.72, + "probability": 0.8416 + }, + { + "start": 25841.3, + "end": 25842.96, + "probability": 0.9878 + }, + { + "start": 25843.36, + "end": 25843.98, + "probability": 0.858 + }, + { + "start": 25844.18, + "end": 25845.08, + "probability": 0.8012 + }, + { + "start": 25845.28, + "end": 25847.18, + "probability": 0.7346 + }, + { + "start": 25847.62, + "end": 25850.86, + "probability": 0.7938 + }, + { + "start": 25851.24, + "end": 25852.12, + "probability": 0.6279 + }, + { + "start": 25852.52, + "end": 25853.44, + "probability": 0.7426 + }, + { + "start": 25853.88, + "end": 25855.18, + "probability": 0.9119 + }, + { + "start": 25855.28, + "end": 25855.76, + "probability": 0.6449 + }, + { + "start": 25855.88, + "end": 25856.66, + "probability": 0.821 + }, + { + "start": 25856.78, + "end": 25858.2, + "probability": 0.7454 + }, + { + "start": 25859.0, + "end": 25859.98, + "probability": 0.6673 + }, + { + "start": 25860.06, + "end": 25860.34, + "probability": 0.6971 + }, + { + "start": 25861.2, + "end": 25863.76, + "probability": 0.9937 + }, + { + "start": 25863.82, + "end": 25867.16, + "probability": 0.9616 + }, + { + "start": 25867.64, + "end": 25872.48, + "probability": 0.938 + }, + { + "start": 25873.08, + "end": 25874.3, + "probability": 0.7981 + }, + { + "start": 25874.62, + "end": 25875.42, + "probability": 0.8794 + }, + { + "start": 25875.68, + "end": 25878.54, + "probability": 0.8009 + }, + { + "start": 25879.88, + "end": 25880.68, + "probability": 0.6698 + }, + { + "start": 25881.38, + "end": 25883.16, + "probability": 0.7751 + }, + { + "start": 25883.28, + "end": 25884.56, + "probability": 0.9281 + }, + { + "start": 25885.44, + "end": 25886.84, + "probability": 0.6104 + }, + { + "start": 25887.56, + "end": 25893.38, + "probability": 0.9268 + }, + { + "start": 25893.98, + "end": 25895.96, + "probability": 0.97 + }, + { + "start": 25896.02, + "end": 25901.66, + "probability": 0.8923 + }, + { + "start": 25902.0, + "end": 25904.94, + "probability": 0.976 + }, + { + "start": 25905.42, + "end": 25908.44, + "probability": 0.5993 + }, + { + "start": 25908.5, + "end": 25908.5, + "probability": 0.0807 + }, + { + "start": 25908.5, + "end": 25910.46, + "probability": 0.9628 + }, + { + "start": 25910.54, + "end": 25911.68, + "probability": 0.7196 + }, + { + "start": 25912.08, + "end": 25912.66, + "probability": 0.0584 + }, + { + "start": 25913.31, + "end": 25915.98, + "probability": 0.8489 + }, + { + "start": 25916.08, + "end": 25916.66, + "probability": 0.6117 + }, + { + "start": 25916.86, + "end": 25918.26, + "probability": 0.6363 + }, + { + "start": 25918.62, + "end": 25919.8, + "probability": 0.9646 + }, + { + "start": 25920.18, + "end": 25921.48, + "probability": 0.9226 + }, + { + "start": 25921.52, + "end": 25923.34, + "probability": 0.6188 + }, + { + "start": 25923.42, + "end": 25929.84, + "probability": 0.6047 + }, + { + "start": 25930.06, + "end": 25931.84, + "probability": 0.831 + }, + { + "start": 25932.0, + "end": 25933.52, + "probability": 0.4991 + }, + { + "start": 25933.58, + "end": 25934.5, + "probability": 0.5174 + }, + { + "start": 25935.38, + "end": 25939.6, + "probability": 0.9814 + }, + { + "start": 25939.92, + "end": 25941.18, + "probability": 0.9306 + }, + { + "start": 25941.62, + "end": 25942.44, + "probability": 0.8757 + }, + { + "start": 25942.5, + "end": 25945.1, + "probability": 0.9976 + }, + { + "start": 25945.28, + "end": 25946.9, + "probability": 0.9782 + }, + { + "start": 25947.2, + "end": 25953.56, + "probability": 0.7515 + }, + { + "start": 25953.7, + "end": 25955.04, + "probability": 0.995 + }, + { + "start": 25955.12, + "end": 25962.58, + "probability": 0.5646 + }, + { + "start": 25962.74, + "end": 25963.86, + "probability": 0.4354 + }, + { + "start": 25964.94, + "end": 25965.82, + "probability": 0.8853 + }, + { + "start": 25965.86, + "end": 25969.12, + "probability": 0.627 + }, + { + "start": 25970.42, + "end": 25972.4, + "probability": 0.9858 + }, + { + "start": 25973.5, + "end": 25974.34, + "probability": 0.6318 + }, + { + "start": 25974.64, + "end": 25976.06, + "probability": 0.9956 + }, + { + "start": 25976.14, + "end": 25977.06, + "probability": 0.8994 + }, + { + "start": 25977.56, + "end": 25978.44, + "probability": 0.6182 + }, + { + "start": 25978.5, + "end": 25979.58, + "probability": 0.7743 + }, + { + "start": 25979.66, + "end": 25981.12, + "probability": 0.9457 + }, + { + "start": 25981.64, + "end": 25987.06, + "probability": 0.7686 + }, + { + "start": 25987.54, + "end": 25988.16, + "probability": 0.5965 + }, + { + "start": 25988.34, + "end": 25990.06, + "probability": 0.7715 + }, + { + "start": 25990.46, + "end": 25991.94, + "probability": 0.7669 + }, + { + "start": 25992.86, + "end": 25996.52, + "probability": 0.8161 + }, + { + "start": 25996.7, + "end": 25997.34, + "probability": 0.5628 + }, + { + "start": 25997.7, + "end": 25998.68, + "probability": 0.978 + }, + { + "start": 25998.76, + "end": 26000.6, + "probability": 0.8099 + }, + { + "start": 26000.6, + "end": 26004.8, + "probability": 0.5542 + }, + { + "start": 26004.82, + "end": 26005.66, + "probability": 0.8718 + }, + { + "start": 26006.08, + "end": 26008.3, + "probability": 0.8806 + }, + { + "start": 26008.64, + "end": 26009.8, + "probability": 0.8015 + }, + { + "start": 26010.3, + "end": 26011.98, + "probability": 0.8906 + }, + { + "start": 26013.12, + "end": 26014.88, + "probability": 0.9165 + }, + { + "start": 26015.0, + "end": 26015.42, + "probability": 0.9001 + }, + { + "start": 26015.8, + "end": 26016.54, + "probability": 0.5047 + }, + { + "start": 26016.62, + "end": 26021.06, + "probability": 0.7884 + }, + { + "start": 26021.1, + "end": 26022.1, + "probability": 0.6007 + }, + { + "start": 26022.2, + "end": 26023.2, + "probability": 0.9899 + }, + { + "start": 26027.76, + "end": 26028.56, + "probability": 0.6979 + }, + { + "start": 26028.78, + "end": 26029.32, + "probability": 0.5823 + }, + { + "start": 26029.4, + "end": 26030.1, + "probability": 0.8813 + }, + { + "start": 26030.56, + "end": 26031.56, + "probability": 0.4785 + }, + { + "start": 26032.26, + "end": 26035.11, + "probability": 0.778 + }, + { + "start": 26035.48, + "end": 26037.94, + "probability": 0.89 + }, + { + "start": 26037.94, + "end": 26040.16, + "probability": 0.6934 + }, + { + "start": 26040.7, + "end": 26041.62, + "probability": 0.948 + }, + { + "start": 26041.7, + "end": 26043.12, + "probability": 0.8682 + }, + { + "start": 26043.7, + "end": 26046.82, + "probability": 0.4917 + }, + { + "start": 26046.9, + "end": 26048.48, + "probability": 0.8607 + }, + { + "start": 26049.18, + "end": 26054.0, + "probability": 0.9836 + }, + { + "start": 26054.06, + "end": 26054.7, + "probability": 0.9482 + }, + { + "start": 26054.78, + "end": 26055.68, + "probability": 0.9377 + }, + { + "start": 26056.1, + "end": 26057.24, + "probability": 0.9626 + }, + { + "start": 26057.3, + "end": 26058.4, + "probability": 0.9788 + }, + { + "start": 26058.54, + "end": 26061.0, + "probability": 0.7641 + }, + { + "start": 26061.82, + "end": 26064.34, + "probability": 0.7898 + }, + { + "start": 26065.44, + "end": 26068.98, + "probability": 0.8608 + }, + { + "start": 26069.3, + "end": 26070.64, + "probability": 0.7097 + }, + { + "start": 26071.0, + "end": 26073.66, + "probability": 0.8176 + }, + { + "start": 26073.74, + "end": 26075.14, + "probability": 0.741 + }, + { + "start": 26075.2, + "end": 26077.59, + "probability": 0.9821 + }, + { + "start": 26077.64, + "end": 26079.26, + "probability": 0.8872 + }, + { + "start": 26079.66, + "end": 26081.14, + "probability": 0.9968 + }, + { + "start": 26083.0, + "end": 26083.4, + "probability": 0.0452 + }, + { + "start": 26083.4, + "end": 26084.34, + "probability": 0.59 + }, + { + "start": 26084.48, + "end": 26086.2, + "probability": 0.748 + }, + { + "start": 26086.3, + "end": 26087.54, + "probability": 0.8894 + }, + { + "start": 26088.08, + "end": 26088.54, + "probability": 0.6304 + }, + { + "start": 26088.66, + "end": 26089.57, + "probability": 0.7269 + }, + { + "start": 26089.64, + "end": 26093.34, + "probability": 0.8453 + }, + { + "start": 26093.65, + "end": 26096.42, + "probability": 0.5299 + }, + { + "start": 26096.52, + "end": 26098.36, + "probability": 0.5401 + }, + { + "start": 26098.82, + "end": 26101.38, + "probability": 0.7674 + }, + { + "start": 26101.74, + "end": 26103.94, + "probability": 0.6466 + }, + { + "start": 26105.23, + "end": 26107.02, + "probability": 0.9191 + }, + { + "start": 26108.22, + "end": 26110.74, + "probability": 0.8865 + }, + { + "start": 26110.94, + "end": 26113.42, + "probability": 0.689 + }, + { + "start": 26113.48, + "end": 26118.58, + "probability": 0.6556 + }, + { + "start": 26118.92, + "end": 26119.86, + "probability": 0.8968 + }, + { + "start": 26120.52, + "end": 26121.82, + "probability": 0.771 + }, + { + "start": 26122.36, + "end": 26122.86, + "probability": 0.8577 + }, + { + "start": 26123.84, + "end": 26124.48, + "probability": 0.7393 + }, + { + "start": 26126.78, + "end": 26127.48, + "probability": 0.3636 + }, + { + "start": 26128.44, + "end": 26131.08, + "probability": 0.8223 + }, + { + "start": 26131.22, + "end": 26135.78, + "probability": 0.8737 + }, + { + "start": 26136.3, + "end": 26136.82, + "probability": 0.8626 + }, + { + "start": 26137.66, + "end": 26139.18, + "probability": 0.6552 + }, + { + "start": 26139.62, + "end": 26141.42, + "probability": 0.5982 + }, + { + "start": 26142.32, + "end": 26142.52, + "probability": 0.95 + }, + { + "start": 26143.68, + "end": 26144.18, + "probability": 0.0121 + }, + { + "start": 26149.58, + "end": 26150.8, + "probability": 0.0033 + }, + { + "start": 26151.92, + "end": 26155.98, + "probability": 0.6038 + }, + { + "start": 26158.28, + "end": 26160.46, + "probability": 0.5619 + }, + { + "start": 26160.46, + "end": 26161.38, + "probability": 0.04 + }, + { + "start": 26161.9, + "end": 26163.68, + "probability": 0.1962 + }, + { + "start": 26163.68, + "end": 26164.06, + "probability": 0.6938 + }, + { + "start": 26164.6, + "end": 26165.08, + "probability": 0.817 + }, + { + "start": 26167.2, + "end": 26169.96, + "probability": 0.8915 + }, + { + "start": 26170.66, + "end": 26172.84, + "probability": 0.98 + }, + { + "start": 26173.04, + "end": 26175.96, + "probability": 0.8291 + }, + { + "start": 26176.92, + "end": 26177.28, + "probability": 0.7826 + }, + { + "start": 26181.56, + "end": 26188.5, + "probability": 0.7408 + }, + { + "start": 26189.52, + "end": 26192.32, + "probability": 0.995 + }, + { + "start": 26193.24, + "end": 26194.32, + "probability": 0.8782 + }, + { + "start": 26195.14, + "end": 26201.08, + "probability": 0.9772 + }, + { + "start": 26201.8, + "end": 26203.84, + "probability": 0.9961 + }, + { + "start": 26204.44, + "end": 26208.08, + "probability": 0.9797 + }, + { + "start": 26209.7, + "end": 26212.88, + "probability": 0.7832 + }, + { + "start": 26213.72, + "end": 26216.1, + "probability": 0.9866 + }, + { + "start": 26216.62, + "end": 26217.62, + "probability": 0.9443 + }, + { + "start": 26218.9, + "end": 26221.22, + "probability": 0.9785 + }, + { + "start": 26223.22, + "end": 26223.82, + "probability": 0.2808 + }, + { + "start": 26224.4, + "end": 26225.98, + "probability": 0.968 + }, + { + "start": 26226.6, + "end": 26231.76, + "probability": 0.9597 + }, + { + "start": 26232.64, + "end": 26237.64, + "probability": 0.9355 + }, + { + "start": 26237.64, + "end": 26241.12, + "probability": 0.9845 + }, + { + "start": 26242.12, + "end": 26244.76, + "probability": 0.8735 + }, + { + "start": 26245.4, + "end": 26247.82, + "probability": 0.9437 + }, + { + "start": 26248.4, + "end": 26251.24, + "probability": 0.7352 + }, + { + "start": 26252.86, + "end": 26255.3, + "probability": 0.978 + }, + { + "start": 26256.04, + "end": 26259.08, + "probability": 0.8824 + }, + { + "start": 26260.82, + "end": 26266.24, + "probability": 0.9751 + }, + { + "start": 26267.48, + "end": 26269.64, + "probability": 0.6758 + }, + { + "start": 26269.8, + "end": 26275.12, + "probability": 0.962 + }, + { + "start": 26276.18, + "end": 26278.74, + "probability": 0.9387 + }, + { + "start": 26279.44, + "end": 26284.7, + "probability": 0.7247 + }, + { + "start": 26285.69, + "end": 26288.9, + "probability": 0.9525 + }, + { + "start": 26289.48, + "end": 26291.9, + "probability": 0.9226 + }, + { + "start": 26293.02, + "end": 26296.34, + "probability": 0.9961 + }, + { + "start": 26297.44, + "end": 26301.02, + "probability": 0.5556 + }, + { + "start": 26301.6, + "end": 26307.38, + "probability": 0.9967 + }, + { + "start": 26307.84, + "end": 26308.88, + "probability": 0.5895 + }, + { + "start": 26310.22, + "end": 26312.66, + "probability": 0.9971 + }, + { + "start": 26313.24, + "end": 26318.38, + "probability": 0.8772 + }, + { + "start": 26318.86, + "end": 26321.68, + "probability": 0.9062 + }, + { + "start": 26322.24, + "end": 26323.49, + "probability": 0.8643 + }, + { + "start": 26324.02, + "end": 26324.76, + "probability": 0.7121 + }, + { + "start": 26325.3, + "end": 26326.26, + "probability": 0.8097 + }, + { + "start": 26326.66, + "end": 26329.9, + "probability": 0.9906 + }, + { + "start": 26330.64, + "end": 26334.3, + "probability": 0.9778 + }, + { + "start": 26334.3, + "end": 26337.68, + "probability": 0.8765 + }, + { + "start": 26338.14, + "end": 26340.48, + "probability": 0.8939 + }, + { + "start": 26340.8, + "end": 26342.62, + "probability": 0.8687 + }, + { + "start": 26343.14, + "end": 26344.92, + "probability": 0.6768 + }, + { + "start": 26345.46, + "end": 26346.86, + "probability": 0.9697 + }, + { + "start": 26346.96, + "end": 26348.42, + "probability": 0.9396 + }, + { + "start": 26350.25, + "end": 26351.78, + "probability": 0.5063 + }, + { + "start": 26351.78, + "end": 26352.04, + "probability": 0.787 + }, + { + "start": 26352.46, + "end": 26353.84, + "probability": 0.888 + }, + { + "start": 26353.88, + "end": 26355.42, + "probability": 0.9546 + }, + { + "start": 26355.88, + "end": 26357.68, + "probability": 0.9881 + }, + { + "start": 26358.04, + "end": 26359.68, + "probability": 0.9672 + }, + { + "start": 26360.16, + "end": 26361.6, + "probability": 0.9448 + }, + { + "start": 26361.7, + "end": 26363.14, + "probability": 0.9805 + }, + { + "start": 26363.64, + "end": 26364.48, + "probability": 0.7743 + }, + { + "start": 26364.6, + "end": 26366.1, + "probability": 0.8575 + }, + { + "start": 26367.0, + "end": 26372.04, + "probability": 0.905 + }, + { + "start": 26372.46, + "end": 26374.12, + "probability": 0.9891 + }, + { + "start": 26375.32, + "end": 26377.4, + "probability": 0.9922 + }, + { + "start": 26378.0, + "end": 26380.54, + "probability": 0.9958 + }, + { + "start": 26381.06, + "end": 26384.26, + "probability": 0.9955 + }, + { + "start": 26384.84, + "end": 26385.98, + "probability": 0.9141 + }, + { + "start": 26387.74, + "end": 26387.74, + "probability": 0.3172 + }, + { + "start": 26387.74, + "end": 26388.62, + "probability": 0.6462 + }, + { + "start": 26388.66, + "end": 26391.94, + "probability": 0.8173 + }, + { + "start": 26392.12, + "end": 26394.66, + "probability": 0.6679 + }, + { + "start": 26395.14, + "end": 26399.04, + "probability": 0.9753 + }, + { + "start": 26399.08, + "end": 26400.72, + "probability": 0.9437 + }, + { + "start": 26410.68, + "end": 26414.96, + "probability": 0.9976 + }, + { + "start": 26414.96, + "end": 26417.84, + "probability": 0.69 + }, + { + "start": 26417.9, + "end": 26420.6, + "probability": 0.9922 + }, + { + "start": 26421.2, + "end": 26422.24, + "probability": 0.9387 + }, + { + "start": 26422.32, + "end": 26423.83, + "probability": 0.6861 + }, + { + "start": 26424.08, + "end": 26427.12, + "probability": 0.9574 + }, + { + "start": 26427.82, + "end": 26430.06, + "probability": 0.9703 + }, + { + "start": 26430.56, + "end": 26432.38, + "probability": 0.899 + }, + { + "start": 26433.4, + "end": 26436.18, + "probability": 0.8007 + }, + { + "start": 26436.56, + "end": 26439.94, + "probability": 0.9614 + }, + { + "start": 26440.1, + "end": 26441.26, + "probability": 0.2453 + }, + { + "start": 26441.52, + "end": 26441.82, + "probability": 0.615 + }, + { + "start": 26441.9, + "end": 26444.56, + "probability": 0.9784 + }, + { + "start": 26445.0, + "end": 26447.86, + "probability": 0.9965 + }, + { + "start": 26447.86, + "end": 26450.42, + "probability": 0.9984 + }, + { + "start": 26450.98, + "end": 26453.06, + "probability": 0.6902 + }, + { + "start": 26453.5, + "end": 26455.06, + "probability": 0.9636 + }, + { + "start": 26455.54, + "end": 26462.58, + "probability": 0.9912 + }, + { + "start": 26463.04, + "end": 26465.98, + "probability": 0.998 + }, + { + "start": 26466.6, + "end": 26468.84, + "probability": 0.7738 + }, + { + "start": 26469.5, + "end": 26472.12, + "probability": 0.9904 + }, + { + "start": 26472.64, + "end": 26477.44, + "probability": 0.9803 + }, + { + "start": 26477.78, + "end": 26478.46, + "probability": 0.738 + }, + { + "start": 26478.6, + "end": 26480.52, + "probability": 0.75 + }, + { + "start": 26482.6, + "end": 26483.22, + "probability": 0.4153 + }, + { + "start": 26485.18, + "end": 26486.54, + "probability": 0.1693 + }, + { + "start": 26489.4, + "end": 26491.84, + "probability": 0.1868 + }, + { + "start": 26492.52, + "end": 26495.12, + "probability": 0.9375 + }, + { + "start": 26495.28, + "end": 26495.64, + "probability": 0.8999 + }, + { + "start": 26497.36, + "end": 26497.86, + "probability": 0.4094 + }, + { + "start": 26499.88, + "end": 26501.74, + "probability": 0.8999 + }, + { + "start": 26506.8, + "end": 26507.66, + "probability": 0.6686 + }, + { + "start": 26508.98, + "end": 26510.1, + "probability": 0.7085 + }, + { + "start": 26510.98, + "end": 26511.54, + "probability": 0.9801 + }, + { + "start": 26513.3, + "end": 26514.0, + "probability": 0.8378 + }, + { + "start": 26515.82, + "end": 26519.42, + "probability": 0.9712 + }, + { + "start": 26521.4, + "end": 26524.1, + "probability": 0.5061 + }, + { + "start": 26525.28, + "end": 26530.5, + "probability": 0.9202 + }, + { + "start": 26530.5, + "end": 26536.04, + "probability": 0.6045 + }, + { + "start": 26536.78, + "end": 26538.34, + "probability": 0.614 + }, + { + "start": 26538.46, + "end": 26540.7, + "probability": 0.7617 + }, + { + "start": 26541.8, + "end": 26542.43, + "probability": 0.7119 + }, + { + "start": 26543.52, + "end": 26546.34, + "probability": 0.9736 + }, + { + "start": 26546.36, + "end": 26547.28, + "probability": 0.4288 + }, + { + "start": 26550.41, + "end": 26551.34, + "probability": 0.0498 + }, + { + "start": 26551.34, + "end": 26551.7, + "probability": 0.0651 + }, + { + "start": 26552.4, + "end": 26556.34, + "probability": 0.9489 + }, + { + "start": 26557.1, + "end": 26561.38, + "probability": 0.9084 + }, + { + "start": 26563.34, + "end": 26564.24, + "probability": 0.7106 + }, + { + "start": 26564.3, + "end": 26564.72, + "probability": 0.7099 + }, + { + "start": 26564.92, + "end": 26565.52, + "probability": 0.3146 + }, + { + "start": 26566.45, + "end": 26568.08, + "probability": 0.88 + }, + { + "start": 26568.42, + "end": 26569.7, + "probability": 0.8633 + }, + { + "start": 26569.7, + "end": 26571.7, + "probability": 0.9096 + }, + { + "start": 26572.06, + "end": 26575.2, + "probability": 0.9725 + }, + { + "start": 26576.22, + "end": 26577.1, + "probability": 0.8996 + }, + { + "start": 26577.7, + "end": 26578.14, + "probability": 0.8902 + }, + { + "start": 26579.24, + "end": 26582.34, + "probability": 0.7546 + }, + { + "start": 26583.22, + "end": 26586.76, + "probability": 0.8389 + }, + { + "start": 26587.2, + "end": 26589.86, + "probability": 0.8916 + }, + { + "start": 26590.32, + "end": 26591.2, + "probability": 0.9363 + }, + { + "start": 26591.36, + "end": 26592.1, + "probability": 0.8233 + }, + { + "start": 26592.32, + "end": 26592.76, + "probability": 0.508 + }, + { + "start": 26593.34, + "end": 26596.78, + "probability": 0.8646 + }, + { + "start": 26597.3, + "end": 26600.26, + "probability": 0.9851 + }, + { + "start": 26600.68, + "end": 26603.68, + "probability": 0.8991 + }, + { + "start": 26604.88, + "end": 26607.86, + "probability": 0.7509 + }, + { + "start": 26608.5, + "end": 26610.82, + "probability": 0.9697 + }, + { + "start": 26612.24, + "end": 26616.16, + "probability": 0.9766 + }, + { + "start": 26616.54, + "end": 26616.56, + "probability": 0.2353 + }, + { + "start": 26616.56, + "end": 26617.04, + "probability": 0.5334 + }, + { + "start": 26617.14, + "end": 26617.32, + "probability": 0.6934 + }, + { + "start": 26617.4, + "end": 26620.1, + "probability": 0.8391 + }, + { + "start": 26620.2, + "end": 26622.04, + "probability": 0.969 + }, + { + "start": 26622.18, + "end": 26626.78, + "probability": 0.9746 + }, + { + "start": 26626.92, + "end": 26628.18, + "probability": 0.9021 + }, + { + "start": 26628.52, + "end": 26629.54, + "probability": 0.7232 + }, + { + "start": 26629.64, + "end": 26631.08, + "probability": 0.6598 + }, + { + "start": 26631.08, + "end": 26632.46, + "probability": 0.5289 + }, + { + "start": 26633.14, + "end": 26636.92, + "probability": 0.9621 + }, + { + "start": 26637.58, + "end": 26639.16, + "probability": 0.8433 + }, + { + "start": 26639.24, + "end": 26642.2, + "probability": 0.958 + }, + { + "start": 26642.74, + "end": 26642.96, + "probability": 0.4543 + }, + { + "start": 26642.96, + "end": 26644.36, + "probability": 0.855 + }, + { + "start": 26645.12, + "end": 26648.28, + "probability": 0.7104 + }, + { + "start": 26648.36, + "end": 26650.0, + "probability": 0.6907 + }, + { + "start": 26650.56, + "end": 26650.96, + "probability": 0.7544 + }, + { + "start": 26654.1, + "end": 26658.28, + "probability": 0.9733 + }, + { + "start": 26658.9, + "end": 26660.16, + "probability": 0.6666 + }, + { + "start": 26660.2, + "end": 26660.8, + "probability": 0.8853 + }, + { + "start": 26660.9, + "end": 26666.38, + "probability": 0.9812 + }, + { + "start": 26667.14, + "end": 26669.08, + "probability": 0.9492 + }, + { + "start": 26669.28, + "end": 26672.86, + "probability": 0.5896 + }, + { + "start": 26672.96, + "end": 26673.62, + "probability": 0.3418 + }, + { + "start": 26673.88, + "end": 26675.24, + "probability": 0.9956 + }, + { + "start": 26675.34, + "end": 26676.54, + "probability": 0.9943 + }, + { + "start": 26676.8, + "end": 26677.76, + "probability": 0.9889 + }, + { + "start": 26678.58, + "end": 26681.22, + "probability": 0.1479 + }, + { + "start": 26682.26, + "end": 26685.16, + "probability": 0.1612 + }, + { + "start": 26687.76, + "end": 26687.9, + "probability": 0.0502 + }, + { + "start": 26687.9, + "end": 26687.9, + "probability": 0.023 + }, + { + "start": 26687.9, + "end": 26687.9, + "probability": 0.0426 + }, + { + "start": 26687.9, + "end": 26687.9, + "probability": 0.0237 + }, + { + "start": 26687.9, + "end": 26689.1, + "probability": 0.7274 + }, + { + "start": 26689.98, + "end": 26690.58, + "probability": 0.3693 + }, + { + "start": 26695.9, + "end": 26696.0, + "probability": 0.025 + }, + { + "start": 26696.0, + "end": 26696.0, + "probability": 0.0321 + }, + { + "start": 26696.0, + "end": 26697.7, + "probability": 0.6654 + }, + { + "start": 26698.66, + "end": 26701.3, + "probability": 0.9792 + }, + { + "start": 26701.36, + "end": 26702.46, + "probability": 0.6778 + }, + { + "start": 26703.18, + "end": 26704.72, + "probability": 0.8494 + }, + { + "start": 26705.78, + "end": 26706.6, + "probability": 0.9275 + }, + { + "start": 26706.8, + "end": 26709.46, + "probability": 0.9669 + }, + { + "start": 26709.96, + "end": 26711.4, + "probability": 0.7911 + }, + { + "start": 26711.46, + "end": 26712.42, + "probability": 0.7468 + }, + { + "start": 26712.48, + "end": 26712.94, + "probability": 0.6982 + }, + { + "start": 26713.64, + "end": 26715.02, + "probability": 0.5278 + }, + { + "start": 26715.38, + "end": 26715.62, + "probability": 0.6439 + }, + { + "start": 26715.76, + "end": 26717.72, + "probability": 0.9387 + }, + { + "start": 26717.78, + "end": 26720.6, + "probability": 0.5157 + }, + { + "start": 26720.8, + "end": 26721.96, + "probability": 0.9552 + }, + { + "start": 26722.72, + "end": 26724.26, + "probability": 0.6731 + }, + { + "start": 26724.9, + "end": 26726.38, + "probability": 0.9138 + }, + { + "start": 26731.22, + "end": 26733.36, + "probability": 0.923 + }, + { + "start": 26739.87, + "end": 26740.95, + "probability": 0.2609 + }, + { + "start": 26741.66, + "end": 26742.1, + "probability": 0.3586 + }, + { + "start": 26742.76, + "end": 26744.7, + "probability": 0.8527 + }, + { + "start": 26744.82, + "end": 26746.6, + "probability": 0.4703 + }, + { + "start": 26746.84, + "end": 26748.78, + "probability": 0.916 + }, + { + "start": 26749.88, + "end": 26753.8, + "probability": 0.7493 + }, + { + "start": 26754.0, + "end": 26755.8, + "probability": 0.7586 + }, + { + "start": 26755.8, + "end": 26757.4, + "probability": 0.7697 + }, + { + "start": 26757.5, + "end": 26757.86, + "probability": 0.4961 + }, + { + "start": 26757.94, + "end": 26762.04, + "probability": 0.6744 + }, + { + "start": 26762.56, + "end": 26765.7, + "probability": 0.8579 + }, + { + "start": 26765.98, + "end": 26767.16, + "probability": 0.4734 + }, + { + "start": 26768.6, + "end": 26769.92, + "probability": 0.8345 + }, + { + "start": 26770.76, + "end": 26777.67, + "probability": 0.9988 + }, + { + "start": 26778.56, + "end": 26781.36, + "probability": 0.9958 + }, + { + "start": 26781.36, + "end": 26786.7, + "probability": 0.9886 + }, + { + "start": 26788.86, + "end": 26791.0, + "probability": 0.9194 + }, + { + "start": 26791.74, + "end": 26793.74, + "probability": 0.9327 + }, + { + "start": 26794.02, + "end": 26794.16, + "probability": 0.4054 + }, + { + "start": 26794.22, + "end": 26794.48, + "probability": 0.712 + }, + { + "start": 26794.5, + "end": 26795.94, + "probability": 0.8657 + }, + { + "start": 26796.58, + "end": 26798.28, + "probability": 0.9016 + }, + { + "start": 26798.9, + "end": 26803.08, + "probability": 0.8873 + }, + { + "start": 26803.88, + "end": 26806.16, + "probability": 0.804 + }, + { + "start": 26806.54, + "end": 26809.48, + "probability": 0.9701 + }, + { + "start": 26810.02, + "end": 26814.28, + "probability": 0.9905 + }, + { + "start": 26814.28, + "end": 26817.58, + "probability": 0.8508 + }, + { + "start": 26817.8, + "end": 26819.33, + "probability": 0.9756 + }, + { + "start": 26819.56, + "end": 26823.1, + "probability": 0.8138 + }, + { + "start": 26824.04, + "end": 26825.9, + "probability": 0.9955 + }, + { + "start": 26826.2, + "end": 26828.58, + "probability": 0.9948 + }, + { + "start": 26828.64, + "end": 26829.82, + "probability": 0.9482 + }, + { + "start": 26829.86, + "end": 26830.46, + "probability": 0.9606 + }, + { + "start": 26830.52, + "end": 26831.08, + "probability": 0.9335 + }, + { + "start": 26831.18, + "end": 26831.96, + "probability": 0.9592 + }, + { + "start": 26833.18, + "end": 26838.36, + "probability": 0.9874 + }, + { + "start": 26838.9, + "end": 26841.2, + "probability": 0.8828 + }, + { + "start": 26842.2, + "end": 26843.18, + "probability": 0.8172 + }, + { + "start": 26844.36, + "end": 26849.3, + "probability": 0.9909 + }, + { + "start": 26850.32, + "end": 26850.58, + "probability": 0.5329 + }, + { + "start": 26850.8, + "end": 26851.54, + "probability": 0.7369 + }, + { + "start": 26851.6, + "end": 26852.9, + "probability": 0.9642 + }, + { + "start": 26853.0, + "end": 26854.44, + "probability": 0.9479 + }, + { + "start": 26856.72, + "end": 26859.02, + "probability": 0.9823 + }, + { + "start": 26859.94, + "end": 26862.8, + "probability": 0.9025 + }, + { + "start": 26864.34, + "end": 26871.1, + "probability": 0.6932 + }, + { + "start": 26871.2, + "end": 26871.66, + "probability": 0.851 + }, + { + "start": 26878.12, + "end": 26881.4, + "probability": 0.6594 + }, + { + "start": 26882.78, + "end": 26887.9, + "probability": 0.9807 + }, + { + "start": 26888.92, + "end": 26891.04, + "probability": 0.6952 + }, + { + "start": 26891.14, + "end": 26892.26, + "probability": 0.9899 + }, + { + "start": 26892.6, + "end": 26893.4, + "probability": 0.9229 + }, + { + "start": 26893.62, + "end": 26893.98, + "probability": 0.7025 + }, + { + "start": 26894.12, + "end": 26902.52, + "probability": 0.8352 + }, + { + "start": 26903.16, + "end": 26906.14, + "probability": 0.7598 + }, + { + "start": 26906.78, + "end": 26909.38, + "probability": 0.7516 + }, + { + "start": 26910.08, + "end": 26910.72, + "probability": 0.7446 + }, + { + "start": 26910.8, + "end": 26912.46, + "probability": 0.897 + }, + { + "start": 26912.5, + "end": 26914.17, + "probability": 0.981 + }, + { + "start": 26914.58, + "end": 26916.89, + "probability": 0.9893 + }, + { + "start": 26919.41, + "end": 26921.71, + "probability": 0.9929 + }, + { + "start": 26922.3, + "end": 26922.98, + "probability": 0.6983 + }, + { + "start": 26923.04, + "end": 26926.3, + "probability": 0.9793 + }, + { + "start": 26926.92, + "end": 26928.62, + "probability": 0.8708 + }, + { + "start": 26929.12, + "end": 26932.72, + "probability": 0.9917 + }, + { + "start": 26932.72, + "end": 26937.8, + "probability": 0.987 + }, + { + "start": 26938.58, + "end": 26939.66, + "probability": 0.9995 + }, + { + "start": 26940.26, + "end": 26944.84, + "probability": 0.9968 + }, + { + "start": 26944.84, + "end": 26948.78, + "probability": 0.9889 + }, + { + "start": 26949.06, + "end": 26949.98, + "probability": 0.9695 + }, + { + "start": 26951.88, + "end": 26953.66, + "probability": 0.9907 + }, + { + "start": 26954.38, + "end": 26955.54, + "probability": 0.9111 + }, + { + "start": 26956.58, + "end": 26957.7, + "probability": 0.9622 + }, + { + "start": 26958.4, + "end": 26959.22, + "probability": 0.9722 + }, + { + "start": 26961.08, + "end": 26962.46, + "probability": 0.9491 + }, + { + "start": 26963.24, + "end": 26963.42, + "probability": 0.9604 + }, + { + "start": 26965.76, + "end": 26972.88, + "probability": 0.9912 + }, + { + "start": 26974.1, + "end": 26978.02, + "probability": 0.9578 + }, + { + "start": 26979.48, + "end": 26981.04, + "probability": 0.7342 + }, + { + "start": 26981.06, + "end": 26983.58, + "probability": 0.9888 + }, + { + "start": 26983.58, + "end": 26986.46, + "probability": 0.9839 + }, + { + "start": 26987.36, + "end": 26988.02, + "probability": 0.6588 + }, + { + "start": 26988.48, + "end": 26995.42, + "probability": 0.9743 + }, + { + "start": 26996.24, + "end": 26999.02, + "probability": 0.9708 + }, + { + "start": 26999.12, + "end": 27000.12, + "probability": 0.741 + }, + { + "start": 27000.2, + "end": 27002.88, + "probability": 0.987 + }, + { + "start": 27004.26, + "end": 27005.62, + "probability": 0.558 + }, + { + "start": 27007.02, + "end": 27009.42, + "probability": 0.6445 + }, + { + "start": 27010.14, + "end": 27011.12, + "probability": 0.6476 + }, + { + "start": 27011.18, + "end": 27013.96, + "probability": 0.8967 + }, + { + "start": 27013.96, + "end": 27016.04, + "probability": 0.9792 + }, + { + "start": 27016.96, + "end": 27018.98, + "probability": 0.9438 + }, + { + "start": 27019.6, + "end": 27021.36, + "probability": 0.7966 + }, + { + "start": 27021.5, + "end": 27022.54, + "probability": 0.9215 + }, + { + "start": 27022.78, + "end": 27025.62, + "probability": 0.931 + }, + { + "start": 27025.76, + "end": 27027.98, + "probability": 0.9894 + }, + { + "start": 27028.42, + "end": 27031.14, + "probability": 0.9902 + }, + { + "start": 27031.84, + "end": 27034.28, + "probability": 0.4545 + }, + { + "start": 27035.0, + "end": 27036.7, + "probability": 0.9812 + }, + { + "start": 27037.44, + "end": 27042.22, + "probability": 0.99 + }, + { + "start": 27042.22, + "end": 27048.34, + "probability": 0.9823 + }, + { + "start": 27050.22, + "end": 27050.6, + "probability": 0.526 + }, + { + "start": 27053.08, + "end": 27053.86, + "probability": 0.8099 + }, + { + "start": 27054.66, + "end": 27055.66, + "probability": 0.677 + }, + { + "start": 27057.26, + "end": 27064.08, + "probability": 0.9919 + }, + { + "start": 27064.94, + "end": 27070.56, + "probability": 0.9919 + }, + { + "start": 27070.58, + "end": 27074.54, + "probability": 0.9943 + }, + { + "start": 27075.0, + "end": 27077.54, + "probability": 0.8212 + }, + { + "start": 27078.78, + "end": 27081.78, + "probability": 0.9257 + }, + { + "start": 27082.32, + "end": 27084.84, + "probability": 0.4132 + }, + { + "start": 27085.06, + "end": 27088.5, + "probability": 0.9396 + }, + { + "start": 27088.5, + "end": 27092.42, + "probability": 0.7894 + }, + { + "start": 27093.0, + "end": 27094.08, + "probability": 0.998 + }, + { + "start": 27095.26, + "end": 27098.46, + "probability": 0.8146 + }, + { + "start": 27098.78, + "end": 27099.96, + "probability": 0.9648 + }, + { + "start": 27100.02, + "end": 27101.1, + "probability": 0.9902 + }, + { + "start": 27101.92, + "end": 27104.59, + "probability": 0.968 + }, + { + "start": 27105.2, + "end": 27107.02, + "probability": 0.9963 + }, + { + "start": 27108.36, + "end": 27109.56, + "probability": 0.8811 + }, + { + "start": 27110.54, + "end": 27112.0, + "probability": 0.9292 + }, + { + "start": 27112.26, + "end": 27114.8, + "probability": 0.9189 + }, + { + "start": 27114.9, + "end": 27116.84, + "probability": 0.998 + }, + { + "start": 27118.22, + "end": 27124.3, + "probability": 0.903 + }, + { + "start": 27124.96, + "end": 27125.74, + "probability": 0.7652 + }, + { + "start": 27125.84, + "end": 27127.02, + "probability": 0.9113 + }, + { + "start": 27127.1, + "end": 27128.38, + "probability": 0.9899 + }, + { + "start": 27129.32, + "end": 27130.22, + "probability": 0.9285 + }, + { + "start": 27130.76, + "end": 27131.78, + "probability": 0.7134 + }, + { + "start": 27132.94, + "end": 27133.5, + "probability": 0.9236 + }, + { + "start": 27135.1, + "end": 27137.02, + "probability": 0.9497 + }, + { + "start": 27137.88, + "end": 27140.7, + "probability": 0.9943 + }, + { + "start": 27140.74, + "end": 27143.28, + "probability": 0.831 + }, + { + "start": 27144.12, + "end": 27146.18, + "probability": 0.8958 + }, + { + "start": 27146.72, + "end": 27149.64, + "probability": 0.9325 + }, + { + "start": 27150.92, + "end": 27151.9, + "probability": 0.2927 + }, + { + "start": 27155.16, + "end": 27156.1, + "probability": 0.9138 + }, + { + "start": 27156.32, + "end": 27161.16, + "probability": 0.9931 + }, + { + "start": 27162.5, + "end": 27165.16, + "probability": 0.9204 + }, + { + "start": 27165.5, + "end": 27166.22, + "probability": 0.9708 + }, + { + "start": 27166.52, + "end": 27167.28, + "probability": 0.9397 + }, + { + "start": 27167.32, + "end": 27168.04, + "probability": 0.9896 + }, + { + "start": 27168.06, + "end": 27170.48, + "probability": 0.9091 + }, + { + "start": 27171.14, + "end": 27171.3, + "probability": 0.7096 + }, + { + "start": 27171.34, + "end": 27173.02, + "probability": 0.9708 + }, + { + "start": 27174.54, + "end": 27177.08, + "probability": 0.8854 + }, + { + "start": 27178.54, + "end": 27182.18, + "probability": 0.6189 + }, + { + "start": 27182.42, + "end": 27184.14, + "probability": 0.9954 + }, + { + "start": 27184.58, + "end": 27186.62, + "probability": 0.9873 + }, + { + "start": 27187.32, + "end": 27188.44, + "probability": 0.9496 + }, + { + "start": 27188.44, + "end": 27191.94, + "probability": 0.9236 + }, + { + "start": 27192.16, + "end": 27194.94, + "probability": 0.9245 + }, + { + "start": 27194.98, + "end": 27195.04, + "probability": 0.4699 + }, + { + "start": 27195.06, + "end": 27196.38, + "probability": 0.9941 + }, + { + "start": 27197.22, + "end": 27201.02, + "probability": 0.8789 + }, + { + "start": 27201.96, + "end": 27204.68, + "probability": 0.9782 + }, + { + "start": 27205.36, + "end": 27207.14, + "probability": 0.8781 + }, + { + "start": 27207.72, + "end": 27208.08, + "probability": 0.585 + }, + { + "start": 27208.36, + "end": 27210.68, + "probability": 0.988 + }, + { + "start": 27211.5, + "end": 27213.72, + "probability": 0.9084 + }, + { + "start": 27214.5, + "end": 27216.52, + "probability": 0.7762 + }, + { + "start": 27217.24, + "end": 27217.86, + "probability": 0.6943 + }, + { + "start": 27217.92, + "end": 27218.32, + "probability": 0.7491 + }, + { + "start": 27218.42, + "end": 27220.38, + "probability": 0.7491 + }, + { + "start": 27220.78, + "end": 27223.12, + "probability": 0.8418 + }, + { + "start": 27224.2, + "end": 27226.64, + "probability": 0.9697 + }, + { + "start": 27228.26, + "end": 27229.46, + "probability": 0.8974 + }, + { + "start": 27230.8, + "end": 27232.34, + "probability": 0.7459 + }, + { + "start": 27233.14, + "end": 27234.68, + "probability": 0.93 + }, + { + "start": 27235.1, + "end": 27238.28, + "probability": 0.9954 + }, + { + "start": 27239.08, + "end": 27242.78, + "probability": 0.9945 + }, + { + "start": 27243.32, + "end": 27248.74, + "probability": 0.996 + }, + { + "start": 27249.32, + "end": 27253.6, + "probability": 0.9898 + }, + { + "start": 27253.68, + "end": 27255.0, + "probability": 0.8679 + }, + { + "start": 27255.7, + "end": 27259.62, + "probability": 0.9878 + }, + { + "start": 27263.5, + "end": 27263.58, + "probability": 0.0655 + }, + { + "start": 27263.58, + "end": 27263.58, + "probability": 0.0962 + }, + { + "start": 27263.58, + "end": 27266.9, + "probability": 0.6999 + }, + { + "start": 27266.96, + "end": 27267.42, + "probability": 0.1879 + }, + { + "start": 27267.78, + "end": 27269.18, + "probability": 0.8013 + }, + { + "start": 27269.92, + "end": 27272.28, + "probability": 0.4134 + }, + { + "start": 27272.48, + "end": 27273.44, + "probability": 0.2276 + }, + { + "start": 27273.44, + "end": 27274.86, + "probability": 0.6675 + }, + { + "start": 27274.86, + "end": 27276.42, + "probability": 0.4465 + }, + { + "start": 27277.98, + "end": 27279.02, + "probability": 0.605 + }, + { + "start": 27279.54, + "end": 27285.72, + "probability": 0.8711 + }, + { + "start": 27287.16, + "end": 27287.16, + "probability": 0.0498 + }, + { + "start": 27287.16, + "end": 27287.4, + "probability": 0.3703 + }, + { + "start": 27287.8, + "end": 27290.62, + "probability": 0.8501 + }, + { + "start": 27290.84, + "end": 27293.9, + "probability": 0.9937 + }, + { + "start": 27293.9, + "end": 27296.36, + "probability": 0.9946 + }, + { + "start": 27296.88, + "end": 27298.32, + "probability": 0.9971 + }, + { + "start": 27299.04, + "end": 27299.04, + "probability": 0.0344 + }, + { + "start": 27299.04, + "end": 27303.18, + "probability": 0.6561 + }, + { + "start": 27303.92, + "end": 27308.86, + "probability": 0.9939 + }, + { + "start": 27308.86, + "end": 27314.44, + "probability": 0.8316 + }, + { + "start": 27315.14, + "end": 27318.52, + "probability": 0.9885 + }, + { + "start": 27319.06, + "end": 27322.58, + "probability": 0.9797 + }, + { + "start": 27325.16, + "end": 27333.74, + "probability": 0.7158 + }, + { + "start": 27334.14, + "end": 27339.56, + "probability": 0.9797 + }, + { + "start": 27340.18, + "end": 27345.5, + "probability": 0.9961 + }, + { + "start": 27345.98, + "end": 27348.9, + "probability": 0.7356 + }, + { + "start": 27349.5, + "end": 27354.98, + "probability": 0.7729 + }, + { + "start": 27355.16, + "end": 27356.56, + "probability": 0.7732 + }, + { + "start": 27356.84, + "end": 27356.94, + "probability": 0.0649 + }, + { + "start": 27356.94, + "end": 27356.94, + "probability": 0.234 + }, + { + "start": 27356.94, + "end": 27359.26, + "probability": 0.8335 + }, + { + "start": 27359.78, + "end": 27359.9, + "probability": 0.0617 + }, + { + "start": 27359.9, + "end": 27362.8, + "probability": 0.9194 + }, + { + "start": 27363.5, + "end": 27367.56, + "probability": 0.1139 + }, + { + "start": 27367.56, + "end": 27367.74, + "probability": 0.4438 + }, + { + "start": 27368.2, + "end": 27370.46, + "probability": 0.3053 + }, + { + "start": 27370.86, + "end": 27370.86, + "probability": 0.3808 + }, + { + "start": 27370.86, + "end": 27371.94, + "probability": 0.5644 + }, + { + "start": 27372.28, + "end": 27372.36, + "probability": 0.3529 + }, + { + "start": 27372.36, + "end": 27377.0, + "probability": 0.0226 + }, + { + "start": 27377.52, + "end": 27377.76, + "probability": 0.05 + }, + { + "start": 27377.76, + "end": 27377.76, + "probability": 0.1125 + }, + { + "start": 27377.76, + "end": 27380.86, + "probability": 0.7441 + }, + { + "start": 27381.6, + "end": 27382.54, + "probability": 0.8513 + }, + { + "start": 27382.86, + "end": 27384.0, + "probability": 0.9827 + }, + { + "start": 27384.32, + "end": 27384.52, + "probability": 0.015 + }, + { + "start": 27384.52, + "end": 27386.82, + "probability": 0.8151 + }, + { + "start": 27387.34, + "end": 27390.12, + "probability": 0.9888 + }, + { + "start": 27390.62, + "end": 27394.9, + "probability": 0.9908 + }, + { + "start": 27394.9, + "end": 27400.78, + "probability": 0.988 + }, + { + "start": 27401.4, + "end": 27403.9, + "probability": 0.9986 + }, + { + "start": 27404.36, + "end": 27405.48, + "probability": 0.9583 + }, + { + "start": 27406.46, + "end": 27407.7, + "probability": 0.7842 + }, + { + "start": 27408.26, + "end": 27410.94, + "probability": 0.8198 + }, + { + "start": 27411.28, + "end": 27413.86, + "probability": 0.9028 + }, + { + "start": 27414.22, + "end": 27419.58, + "probability": 0.7547 + }, + { + "start": 27419.58, + "end": 27423.74, + "probability": 0.9827 + }, + { + "start": 27424.22, + "end": 27425.9, + "probability": 0.8037 + }, + { + "start": 27426.1, + "end": 27428.96, + "probability": 0.9154 + }, + { + "start": 27428.98, + "end": 27428.98, + "probability": 0.3168 + }, + { + "start": 27428.98, + "end": 27429.46, + "probability": 0.8131 + }, + { + "start": 27429.84, + "end": 27432.18, + "probability": 0.6367 + }, + { + "start": 27432.28, + "end": 27433.14, + "probability": 0.4211 + }, + { + "start": 27433.66, + "end": 27439.34, + "probability": 0.8605 + }, + { + "start": 27439.8, + "end": 27441.96, + "probability": 0.8403 + }, + { + "start": 27443.03, + "end": 27445.78, + "probability": 0.9734 + }, + { + "start": 27446.06, + "end": 27447.28, + "probability": 0.2518 + }, + { + "start": 27447.3, + "end": 27449.68, + "probability": 0.2542 + }, + { + "start": 27451.2, + "end": 27453.04, + "probability": 0.8146 + }, + { + "start": 27453.2, + "end": 27453.46, + "probability": 0.3665 + }, + { + "start": 27453.48, + "end": 27454.9, + "probability": 0.6863 + }, + { + "start": 27455.12, + "end": 27459.08, + "probability": 0.8276 + }, + { + "start": 27459.56, + "end": 27460.82, + "probability": 0.7546 + }, + { + "start": 27461.4, + "end": 27462.36, + "probability": 0.7843 + }, + { + "start": 27463.48, + "end": 27466.94, + "probability": 0.7754 + }, + { + "start": 27467.02, + "end": 27467.88, + "probability": 0.4422 + }, + { + "start": 27468.08, + "end": 27469.94, + "probability": 0.317 + }, + { + "start": 27469.96, + "end": 27470.56, + "probability": 0.7067 + }, + { + "start": 27470.64, + "end": 27471.8, + "probability": 0.7936 + }, + { + "start": 27472.18, + "end": 27473.7, + "probability": 0.8245 + }, + { + "start": 27473.98, + "end": 27475.44, + "probability": 0.9865 + }, + { + "start": 27475.54, + "end": 27476.5, + "probability": 0.5749 + }, + { + "start": 27476.54, + "end": 27479.44, + "probability": 0.9501 + }, + { + "start": 27479.62, + "end": 27480.86, + "probability": 0.6172 + }, + { + "start": 27481.46, + "end": 27482.4, + "probability": 0.697 + }, + { + "start": 27483.94, + "end": 27486.18, + "probability": 0.7996 + }, + { + "start": 27486.86, + "end": 27487.42, + "probability": 0.7591 + }, + { + "start": 27489.7, + "end": 27493.52, + "probability": 0.556 + }, + { + "start": 27494.5, + "end": 27494.94, + "probability": 0.476 + }, + { + "start": 27494.94, + "end": 27496.02, + "probability": 0.5531 + }, + { + "start": 27496.56, + "end": 27497.72, + "probability": 0.5537 + }, + { + "start": 27498.5, + "end": 27500.32, + "probability": 0.507 + }, + { + "start": 27501.16, + "end": 27503.42, + "probability": 0.5012 + }, + { + "start": 27504.14, + "end": 27504.92, + "probability": 0.0069 + }, + { + "start": 27504.98, + "end": 27506.24, + "probability": 0.165 + }, + { + "start": 27506.24, + "end": 27506.96, + "probability": 0.1358 + }, + { + "start": 27507.02, + "end": 27512.22, + "probability": 0.6779 + }, + { + "start": 27512.72, + "end": 27516.82, + "probability": 0.9541 + }, + { + "start": 27517.14, + "end": 27518.26, + "probability": 0.7034 + }, + { + "start": 27518.62, + "end": 27519.46, + "probability": 0.8496 + }, + { + "start": 27519.62, + "end": 27520.82, + "probability": 0.6633 + }, + { + "start": 27520.92, + "end": 27521.6, + "probability": 0.2824 + }, + { + "start": 27521.96, + "end": 27523.7, + "probability": 0.7375 + }, + { + "start": 27523.82, + "end": 27524.78, + "probability": 0.9943 + }, + { + "start": 27524.92, + "end": 27525.16, + "probability": 0.3167 + }, + { + "start": 27525.34, + "end": 27526.62, + "probability": 0.4302 + }, + { + "start": 27527.04, + "end": 27527.7, + "probability": 0.7437 + }, + { + "start": 27528.48, + "end": 27528.68, + "probability": 0.6462 + }, + { + "start": 27528.88, + "end": 27528.94, + "probability": 0.724 + }, + { + "start": 27528.94, + "end": 27529.9, + "probability": 0.7968 + }, + { + "start": 27530.16, + "end": 27534.42, + "probability": 0.4132 + }, + { + "start": 27534.5, + "end": 27535.58, + "probability": 0.9385 + }, + { + "start": 27535.84, + "end": 27536.24, + "probability": 0.3264 + }, + { + "start": 27536.28, + "end": 27537.02, + "probability": 0.5488 + }, + { + "start": 27537.28, + "end": 27540.64, + "probability": 0.9513 + }, + { + "start": 27540.76, + "end": 27542.8, + "probability": 0.6346 + }, + { + "start": 27543.3, + "end": 27545.42, + "probability": 0.0401 + }, + { + "start": 27545.42, + "end": 27546.76, + "probability": 0.7285 + }, + { + "start": 27548.67, + "end": 27550.26, + "probability": 0.8109 + }, + { + "start": 27550.34, + "end": 27552.04, + "probability": 0.3603 + }, + { + "start": 27552.12, + "end": 27552.92, + "probability": 0.9007 + }, + { + "start": 27552.92, + "end": 27553.8, + "probability": 0.5757 + }, + { + "start": 27553.88, + "end": 27555.78, + "probability": 0.9531 + }, + { + "start": 27555.8, + "end": 27559.04, + "probability": 0.97 + }, + { + "start": 27559.18, + "end": 27560.9, + "probability": 0.5866 + }, + { + "start": 27561.46, + "end": 27564.5, + "probability": 0.9329 + }, + { + "start": 27564.5, + "end": 27569.0, + "probability": 0.9464 + }, + { + "start": 27569.06, + "end": 27572.08, + "probability": 0.9448 + }, + { + "start": 27572.08, + "end": 27573.04, + "probability": 0.7515 + }, + { + "start": 27573.56, + "end": 27573.74, + "probability": 0.2121 + }, + { + "start": 27573.74, + "end": 27575.68, + "probability": 0.34 + }, + { + "start": 27576.12, + "end": 27577.16, + "probability": 0.1887 + }, + { + "start": 27577.16, + "end": 27578.42, + "probability": 0.7509 + }, + { + "start": 27578.66, + "end": 27581.7, + "probability": 0.7163 + }, + { + "start": 27581.98, + "end": 27584.96, + "probability": 0.7297 + }, + { + "start": 27585.14, + "end": 27586.26, + "probability": 0.7657 + }, + { + "start": 27586.54, + "end": 27588.58, + "probability": 0.931 + }, + { + "start": 27588.92, + "end": 27590.46, + "probability": 0.8323 + }, + { + "start": 27590.82, + "end": 27592.88, + "probability": 0.7881 + }, + { + "start": 27592.98, + "end": 27596.8, + "probability": 0.6517 + }, + { + "start": 27597.0, + "end": 27597.3, + "probability": 0.2819 + }, + { + "start": 27597.46, + "end": 27598.56, + "probability": 0.1217 + }, + { + "start": 27598.9, + "end": 27599.74, + "probability": 0.7352 + }, + { + "start": 27599.9, + "end": 27601.92, + "probability": 0.7277 + }, + { + "start": 27602.14, + "end": 27603.26, + "probability": 0.7884 + }, + { + "start": 27612.38, + "end": 27613.52, + "probability": 0.3457 + }, + { + "start": 27615.38, + "end": 27616.28, + "probability": 0.6763 + }, + { + "start": 27618.1, + "end": 27618.26, + "probability": 0.4643 + }, + { + "start": 27618.98, + "end": 27619.62, + "probability": 0.4659 + }, + { + "start": 27619.62, + "end": 27623.72, + "probability": 0.6626 + }, + { + "start": 27623.72, + "end": 27624.02, + "probability": 0.1293 + }, + { + "start": 27624.02, + "end": 27624.7, + "probability": 0.6745 + }, + { + "start": 27625.02, + "end": 27628.82, + "probability": 0.8623 + }, + { + "start": 27628.92, + "end": 27629.68, + "probability": 0.5412 + }, + { + "start": 27630.16, + "end": 27631.5, + "probability": 0.5181 + }, + { + "start": 27632.22, + "end": 27637.08, + "probability": 0.9912 + }, + { + "start": 27637.46, + "end": 27638.24, + "probability": 0.6187 + }, + { + "start": 27640.46, + "end": 27642.1, + "probability": 0.6818 + }, + { + "start": 27643.41, + "end": 27646.0, + "probability": 0.6962 + }, + { + "start": 27646.4, + "end": 27649.8, + "probability": 0.9869 + }, + { + "start": 27650.3, + "end": 27651.78, + "probability": 0.6687 + }, + { + "start": 27651.86, + "end": 27653.02, + "probability": 0.7646 + }, + { + "start": 27653.34, + "end": 27656.0, + "probability": 0.9958 + }, + { + "start": 27656.38, + "end": 27657.66, + "probability": 0.8994 + }, + { + "start": 27657.98, + "end": 27659.42, + "probability": 0.8162 + }, + { + "start": 27660.44, + "end": 27662.24, + "probability": 0.7199 + }, + { + "start": 27662.94, + "end": 27663.38, + "probability": 0.9525 + }, + { + "start": 27663.52, + "end": 27665.24, + "probability": 0.9917 + }, + { + "start": 27665.34, + "end": 27668.62, + "probability": 0.8914 + }, + { + "start": 27669.98, + "end": 27673.48, + "probability": 0.9891 + }, + { + "start": 27674.74, + "end": 27676.01, + "probability": 0.8333 + }, + { + "start": 27676.96, + "end": 27678.08, + "probability": 0.9728 + }, + { + "start": 27678.62, + "end": 27679.97, + "probability": 0.7727 + }, + { + "start": 27682.12, + "end": 27684.7, + "probability": 0.9969 + }, + { + "start": 27685.34, + "end": 27688.74, + "probability": 0.9985 + }, + { + "start": 27688.74, + "end": 27692.1, + "probability": 0.8809 + }, + { + "start": 27692.38, + "end": 27693.22, + "probability": 0.0946 + }, + { + "start": 27693.22, + "end": 27694.02, + "probability": 0.3777 + }, + { + "start": 27694.16, + "end": 27695.57, + "probability": 0.7033 + }, + { + "start": 27696.68, + "end": 27697.8, + "probability": 0.9612 + }, + { + "start": 27698.04, + "end": 27698.14, + "probability": 0.1014 + }, + { + "start": 27698.88, + "end": 27699.28, + "probability": 0.181 + }, + { + "start": 27699.28, + "end": 27700.88, + "probability": 0.6027 + }, + { + "start": 27701.28, + "end": 27702.32, + "probability": 0.7789 + }, + { + "start": 27702.66, + "end": 27704.17, + "probability": 0.61 + }, + { + "start": 27706.88, + "end": 27709.18, + "probability": 0.2395 + }, + { + "start": 27709.9, + "end": 27711.72, + "probability": 0.5896 + }, + { + "start": 27712.1, + "end": 27713.28, + "probability": 0.7258 + }, + { + "start": 27715.0, + "end": 27719.2, + "probability": 0.9049 + }, + { + "start": 27719.74, + "end": 27724.02, + "probability": 0.8381 + }, + { + "start": 27724.12, + "end": 27724.72, + "probability": 0.8175 + }, + { + "start": 27724.86, + "end": 27725.8, + "probability": 0.587 + }, + { + "start": 27725.9, + "end": 27729.32, + "probability": 0.9878 + }, + { + "start": 27729.58, + "end": 27731.02, + "probability": 0.5986 + }, + { + "start": 27732.6, + "end": 27735.34, + "probability": 0.9878 + }, + { + "start": 27735.7, + "end": 27738.24, + "probability": 0.9741 + }, + { + "start": 27738.48, + "end": 27739.92, + "probability": 0.9946 + }, + { + "start": 27741.12, + "end": 27741.12, + "probability": 0.2451 + }, + { + "start": 27741.12, + "end": 27742.02, + "probability": 0.9693 + }, + { + "start": 27742.2, + "end": 27745.06, + "probability": 0.9824 + }, + { + "start": 27745.06, + "end": 27748.84, + "probability": 0.9826 + }, + { + "start": 27748.94, + "end": 27749.38, + "probability": 0.2357 + }, + { + "start": 27749.54, + "end": 27752.5, + "probability": 0.8424 + }, + { + "start": 27753.46, + "end": 27758.5, + "probability": 0.981 + }, + { + "start": 27759.02, + "end": 27760.4, + "probability": 0.8168 + }, + { + "start": 27761.82, + "end": 27765.22, + "probability": 0.98 + }, + { + "start": 27765.22, + "end": 27769.74, + "probability": 0.9982 + }, + { + "start": 27771.06, + "end": 27774.28, + "probability": 0.7388 + }, + { + "start": 27774.84, + "end": 27776.64, + "probability": 0.9343 + }, + { + "start": 27778.0, + "end": 27779.02, + "probability": 0.7754 + }, + { + "start": 27779.1, + "end": 27783.6, + "probability": 0.8658 + }, + { + "start": 27784.04, + "end": 27786.08, + "probability": 0.9937 + }, + { + "start": 27787.18, + "end": 27790.86, + "probability": 0.9877 + }, + { + "start": 27791.18, + "end": 27795.24, + "probability": 0.9333 + }, + { + "start": 27796.18, + "end": 27798.6, + "probability": 0.552 + }, + { + "start": 27799.24, + "end": 27801.46, + "probability": 0.9391 + }, + { + "start": 27802.12, + "end": 27803.7, + "probability": 0.9844 + }, + { + "start": 27804.34, + "end": 27805.14, + "probability": 0.9129 + }, + { + "start": 27806.34, + "end": 27808.0, + "probability": 0.9863 + }, + { + "start": 27808.0, + "end": 27811.96, + "probability": 0.9951 + }, + { + "start": 27812.3, + "end": 27817.34, + "probability": 0.9932 + }, + { + "start": 27818.16, + "end": 27819.62, + "probability": 0.8395 + }, + { + "start": 27819.76, + "end": 27823.12, + "probability": 0.9961 + }, + { + "start": 27823.36, + "end": 27826.92, + "probability": 0.962 + }, + { + "start": 27827.24, + "end": 27827.8, + "probability": 0.6697 + }, + { + "start": 27828.46, + "end": 27829.04, + "probability": 0.2143 + }, + { + "start": 27829.04, + "end": 27830.34, + "probability": 0.53 + }, + { + "start": 27830.4, + "end": 27832.86, + "probability": 0.7887 + }, + { + "start": 27832.98, + "end": 27834.36, + "probability": 0.9744 + }, + { + "start": 27834.42, + "end": 27835.28, + "probability": 0.7249 + }, + { + "start": 27835.92, + "end": 27837.14, + "probability": 0.5534 + }, + { + "start": 27837.4, + "end": 27838.84, + "probability": 0.9619 + }, + { + "start": 27839.7, + "end": 27840.65, + "probability": 0.1276 + } + ], + "segments_count": 6769, + "words_count": 32766, + "avg_words_per_segment": 4.8406, + "avg_segment_duration": 1.9913, + "avg_words_per_minute": 70.5176, + "plenum_id": "41475", + "duration": 27878.99, + "title": null, + "plenum_date": "2015-01-21" +} \ No newline at end of file