diff --git "a/52608/metadata.json" "b/52608/metadata.json" new file mode 100644--- /dev/null +++ "b/52608/metadata.json" @@ -0,0 +1,11067 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "52608", + "quality_score": 0.8772, + "per_segment_quality_scores": [ + { + "start": 53.52, + "end": 54.58, + "probability": 0.2196 + }, + { + "start": 54.78, + "end": 55.84, + "probability": 0.8902 + }, + { + "start": 56.2, + "end": 57.22, + "probability": 0.7107 + }, + { + "start": 57.78, + "end": 59.42, + "probability": 0.6872 + }, + { + "start": 60.06, + "end": 64.64, + "probability": 0.9531 + }, + { + "start": 64.78, + "end": 68.38, + "probability": 0.5329 + }, + { + "start": 68.8, + "end": 73.8, + "probability": 0.6067 + }, + { + "start": 73.8, + "end": 77.92, + "probability": 0.7756 + }, + { + "start": 78.54, + "end": 81.26, + "probability": 0.4556 + }, + { + "start": 81.82, + "end": 81.92, + "probability": 0.0021 + }, + { + "start": 93.88, + "end": 94.66, + "probability": 0.02 + }, + { + "start": 95.4, + "end": 95.86, + "probability": 0.0727 + }, + { + "start": 98.06, + "end": 101.0, + "probability": 0.0549 + }, + { + "start": 101.62, + "end": 104.06, + "probability": 0.0108 + }, + { + "start": 104.66, + "end": 105.3, + "probability": 0.0693 + }, + { + "start": 106.16, + "end": 110.92, + "probability": 0.0255 + }, + { + "start": 111.48, + "end": 115.74, + "probability": 0.0401 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.0, + "end": 143.0, + "probability": 0.0 + }, + { + "start": 143.64, + "end": 143.8, + "probability": 0.0278 + }, + { + "start": 143.8, + "end": 143.8, + "probability": 0.086 + }, + { + "start": 143.8, + "end": 146.04, + "probability": 0.5905 + }, + { + "start": 146.46, + "end": 147.58, + "probability": 0.7093 + }, + { + "start": 147.72, + "end": 148.74, + "probability": 0.7892 + }, + { + "start": 149.86, + "end": 154.8, + "probability": 0.9916 + }, + { + "start": 155.94, + "end": 161.78, + "probability": 0.9677 + }, + { + "start": 162.38, + "end": 165.38, + "probability": 0.9297 + }, + { + "start": 166.34, + "end": 169.2, + "probability": 0.994 + }, + { + "start": 169.6, + "end": 172.54, + "probability": 0.973 + }, + { + "start": 172.74, + "end": 174.86, + "probability": 0.9519 + }, + { + "start": 175.94, + "end": 181.68, + "probability": 0.9956 + }, + { + "start": 182.04, + "end": 188.88, + "probability": 0.9964 + }, + { + "start": 189.66, + "end": 190.1, + "probability": 0.704 + }, + { + "start": 192.2, + "end": 192.86, + "probability": 0.1131 + }, + { + "start": 193.82, + "end": 193.82, + "probability": 0.2829 + }, + { + "start": 193.82, + "end": 194.46, + "probability": 0.8293 + }, + { + "start": 194.62, + "end": 197.96, + "probability": 0.9766 + }, + { + "start": 198.08, + "end": 200.96, + "probability": 0.8271 + }, + { + "start": 207.58, + "end": 209.92, + "probability": 0.9624 + }, + { + "start": 210.58, + "end": 213.22, + "probability": 0.9155 + }, + { + "start": 219.62, + "end": 221.24, + "probability": 0.4831 + }, + { + "start": 223.68, + "end": 224.16, + "probability": 0.8901 + }, + { + "start": 224.72, + "end": 227.32, + "probability": 0.9109 + }, + { + "start": 228.48, + "end": 232.54, + "probability": 0.9755 + }, + { + "start": 233.58, + "end": 234.44, + "probability": 0.5142 + }, + { + "start": 235.58, + "end": 236.98, + "probability": 0.8306 + }, + { + "start": 238.76, + "end": 243.82, + "probability": 0.9946 + }, + { + "start": 246.02, + "end": 246.68, + "probability": 0.7668 + }, + { + "start": 247.56, + "end": 251.02, + "probability": 0.9587 + }, + { + "start": 252.42, + "end": 258.94, + "probability": 0.993 + }, + { + "start": 259.72, + "end": 262.86, + "probability": 0.9602 + }, + { + "start": 263.76, + "end": 267.68, + "probability": 0.7936 + }, + { + "start": 268.34, + "end": 271.06, + "probability": 0.9662 + }, + { + "start": 272.0, + "end": 273.08, + "probability": 0.7455 + }, + { + "start": 274.56, + "end": 277.14, + "probability": 0.9919 + }, + { + "start": 277.84, + "end": 281.72, + "probability": 0.9669 + }, + { + "start": 282.56, + "end": 284.1, + "probability": 0.7488 + }, + { + "start": 284.18, + "end": 288.0, + "probability": 0.9977 + }, + { + "start": 288.68, + "end": 291.6, + "probability": 0.9946 + }, + { + "start": 292.22, + "end": 293.56, + "probability": 0.9369 + }, + { + "start": 293.88, + "end": 294.92, + "probability": 0.9316 + }, + { + "start": 295.34, + "end": 296.38, + "probability": 0.9629 + }, + { + "start": 296.76, + "end": 298.44, + "probability": 0.933 + }, + { + "start": 298.88, + "end": 300.51, + "probability": 0.8672 + }, + { + "start": 301.02, + "end": 303.36, + "probability": 0.8973 + }, + { + "start": 303.68, + "end": 303.78, + "probability": 0.7861 + }, + { + "start": 304.3, + "end": 306.0, + "probability": 0.877 + }, + { + "start": 306.18, + "end": 307.56, + "probability": 0.8305 + }, + { + "start": 307.64, + "end": 308.0, + "probability": 0.6195 + }, + { + "start": 308.02, + "end": 308.52, + "probability": 0.6918 + }, + { + "start": 309.02, + "end": 309.64, + "probability": 0.752 + }, + { + "start": 309.9, + "end": 311.5, + "probability": 0.7843 + }, + { + "start": 312.84, + "end": 315.62, + "probability": 0.6564 + }, + { + "start": 316.32, + "end": 318.62, + "probability": 0.9972 + }, + { + "start": 318.66, + "end": 322.18, + "probability": 0.9974 + }, + { + "start": 322.18, + "end": 325.62, + "probability": 0.999 + }, + { + "start": 325.72, + "end": 329.5, + "probability": 0.8402 + }, + { + "start": 329.6, + "end": 330.78, + "probability": 0.7287 + }, + { + "start": 331.28, + "end": 334.44, + "probability": 0.9861 + }, + { + "start": 334.94, + "end": 337.26, + "probability": 0.9448 + }, + { + "start": 337.88, + "end": 342.26, + "probability": 0.9333 + }, + { + "start": 342.98, + "end": 345.86, + "probability": 0.9333 + }, + { + "start": 346.46, + "end": 347.12, + "probability": 0.4881 + }, + { + "start": 347.2, + "end": 349.38, + "probability": 0.8386 + }, + { + "start": 349.88, + "end": 352.1, + "probability": 0.6903 + }, + { + "start": 352.44, + "end": 356.32, + "probability": 0.8496 + }, + { + "start": 356.54, + "end": 359.46, + "probability": 0.0324 + }, + { + "start": 359.46, + "end": 359.46, + "probability": 0.0403 + }, + { + "start": 359.46, + "end": 359.46, + "probability": 0.145 + }, + { + "start": 359.46, + "end": 363.82, + "probability": 0.8989 + }, + { + "start": 364.84, + "end": 364.9, + "probability": 0.0162 + }, + { + "start": 364.9, + "end": 365.81, + "probability": 0.7028 + }, + { + "start": 366.22, + "end": 371.2, + "probability": 0.9194 + }, + { + "start": 371.72, + "end": 377.04, + "probability": 0.7861 + }, + { + "start": 377.58, + "end": 379.02, + "probability": 0.9429 + }, + { + "start": 379.62, + "end": 381.6, + "probability": 0.9966 + }, + { + "start": 381.6, + "end": 384.9, + "probability": 0.9979 + }, + { + "start": 385.68, + "end": 387.86, + "probability": 0.8163 + }, + { + "start": 388.48, + "end": 393.68, + "probability": 0.9596 + }, + { + "start": 394.2, + "end": 396.42, + "probability": 0.4551 + }, + { + "start": 396.94, + "end": 398.3, + "probability": 0.8846 + }, + { + "start": 398.68, + "end": 402.04, + "probability": 0.9629 + }, + { + "start": 402.18, + "end": 402.66, + "probability": 0.6772 + }, + { + "start": 402.7, + "end": 404.12, + "probability": 0.8162 + }, + { + "start": 404.2, + "end": 404.92, + "probability": 0.7104 + }, + { + "start": 405.12, + "end": 409.52, + "probability": 0.9463 + }, + { + "start": 409.98, + "end": 410.62, + "probability": 0.8367 + }, + { + "start": 410.72, + "end": 413.52, + "probability": 0.8133 + }, + { + "start": 414.1, + "end": 417.5, + "probability": 0.9451 + }, + { + "start": 417.92, + "end": 419.8, + "probability": 0.8897 + }, + { + "start": 420.34, + "end": 422.72, + "probability": 0.8983 + }, + { + "start": 422.72, + "end": 425.72, + "probability": 0.9927 + }, + { + "start": 425.78, + "end": 427.54, + "probability": 0.9274 + }, + { + "start": 427.98, + "end": 428.06, + "probability": 0.4547 + }, + { + "start": 428.06, + "end": 428.4, + "probability": 0.6587 + }, + { + "start": 428.46, + "end": 434.52, + "probability": 0.9922 + }, + { + "start": 434.58, + "end": 435.38, + "probability": 0.9692 + }, + { + "start": 435.88, + "end": 437.22, + "probability": 0.8391 + }, + { + "start": 438.02, + "end": 440.5, + "probability": 0.8975 + }, + { + "start": 440.88, + "end": 441.9, + "probability": 0.8357 + }, + { + "start": 442.04, + "end": 442.68, + "probability": 0.6948 + }, + { + "start": 443.82, + "end": 444.92, + "probability": 0.6624 + }, + { + "start": 445.22, + "end": 447.92, + "probability": 0.9952 + }, + { + "start": 448.58, + "end": 451.58, + "probability": 0.8565 + }, + { + "start": 451.78, + "end": 453.92, + "probability": 0.886 + }, + { + "start": 454.12, + "end": 454.34, + "probability": 0.3533 + }, + { + "start": 454.48, + "end": 455.66, + "probability": 0.9769 + }, + { + "start": 456.2, + "end": 457.34, + "probability": 0.6981 + }, + { + "start": 457.48, + "end": 458.5, + "probability": 0.8251 + }, + { + "start": 458.98, + "end": 461.48, + "probability": 0.1969 + }, + { + "start": 463.58, + "end": 466.62, + "probability": 0.4155 + }, + { + "start": 466.64, + "end": 468.15, + "probability": 0.7066 + }, + { + "start": 470.46, + "end": 476.76, + "probability": 0.8331 + }, + { + "start": 477.42, + "end": 477.42, + "probability": 0.0901 + }, + { + "start": 477.42, + "end": 478.84, + "probability": 0.9702 + }, + { + "start": 478.86, + "end": 483.14, + "probability": 0.9463 + }, + { + "start": 483.38, + "end": 486.12, + "probability": 0.9709 + }, + { + "start": 486.72, + "end": 490.7, + "probability": 0.6185 + }, + { + "start": 490.8, + "end": 493.06, + "probability": 0.7854 + }, + { + "start": 493.1, + "end": 493.68, + "probability": 0.729 + }, + { + "start": 493.74, + "end": 494.36, + "probability": 0.7818 + }, + { + "start": 494.36, + "end": 495.04, + "probability": 0.5836 + }, + { + "start": 495.06, + "end": 496.76, + "probability": 0.9782 + }, + { + "start": 501.62, + "end": 502.38, + "probability": 0.6976 + }, + { + "start": 502.46, + "end": 503.38, + "probability": 0.7408 + }, + { + "start": 503.46, + "end": 503.96, + "probability": 0.6725 + }, + { + "start": 504.26, + "end": 508.06, + "probability": 0.9287 + }, + { + "start": 508.18, + "end": 509.94, + "probability": 0.7834 + }, + { + "start": 510.4, + "end": 513.2, + "probability": 0.9849 + }, + { + "start": 513.22, + "end": 514.2, + "probability": 0.9364 + }, + { + "start": 514.64, + "end": 515.16, + "probability": 0.2107 + }, + { + "start": 515.18, + "end": 516.0, + "probability": 0.3716 + }, + { + "start": 516.12, + "end": 517.38, + "probability": 0.7981 + }, + { + "start": 517.38, + "end": 518.22, + "probability": 0.739 + }, + { + "start": 518.28, + "end": 518.91, + "probability": 0.2288 + }, + { + "start": 520.32, + "end": 522.21, + "probability": 0.4775 + }, + { + "start": 523.32, + "end": 525.84, + "probability": 0.9603 + }, + { + "start": 526.48, + "end": 528.12, + "probability": 0.5188 + }, + { + "start": 528.82, + "end": 531.36, + "probability": 0.4942 + }, + { + "start": 532.66, + "end": 539.14, + "probability": 0.9435 + }, + { + "start": 539.88, + "end": 540.44, + "probability": 0.2939 + }, + { + "start": 540.44, + "end": 543.28, + "probability": 0.7841 + }, + { + "start": 544.08, + "end": 545.04, + "probability": 0.7377 + }, + { + "start": 546.82, + "end": 547.88, + "probability": 0.8079 + }, + { + "start": 548.42, + "end": 553.44, + "probability": 0.9595 + }, + { + "start": 554.3, + "end": 555.48, + "probability": 0.9248 + }, + { + "start": 555.88, + "end": 557.84, + "probability": 0.9556 + }, + { + "start": 557.98, + "end": 558.68, + "probability": 0.7235 + }, + { + "start": 559.16, + "end": 560.42, + "probability": 0.9738 + }, + { + "start": 560.94, + "end": 566.58, + "probability": 0.9425 + }, + { + "start": 566.58, + "end": 571.38, + "probability": 0.9362 + }, + { + "start": 571.82, + "end": 574.14, + "probability": 0.9491 + }, + { + "start": 574.7, + "end": 579.48, + "probability": 0.7476 + }, + { + "start": 580.08, + "end": 582.02, + "probability": 0.8398 + }, + { + "start": 582.38, + "end": 583.0, + "probability": 0.7328 + }, + { + "start": 583.42, + "end": 586.94, + "probability": 0.9747 + }, + { + "start": 587.6, + "end": 595.8, + "probability": 0.9574 + }, + { + "start": 596.48, + "end": 598.17, + "probability": 0.9017 + }, + { + "start": 598.74, + "end": 605.76, + "probability": 0.9925 + }, + { + "start": 605.9, + "end": 608.96, + "probability": 0.9757 + }, + { + "start": 609.58, + "end": 611.06, + "probability": 0.5708 + }, + { + "start": 611.6, + "end": 612.12, + "probability": 0.9382 + }, + { + "start": 613.28, + "end": 615.48, + "probability": 0.7229 + }, + { + "start": 616.06, + "end": 618.38, + "probability": 0.905 + }, + { + "start": 620.24, + "end": 622.84, + "probability": 0.8988 + }, + { + "start": 635.74, + "end": 637.94, + "probability": 0.6745 + }, + { + "start": 639.62, + "end": 640.9, + "probability": 0.9025 + }, + { + "start": 641.44, + "end": 644.4, + "probability": 0.9918 + }, + { + "start": 645.56, + "end": 648.66, + "probability": 0.9968 + }, + { + "start": 649.72, + "end": 654.78, + "probability": 0.9884 + }, + { + "start": 654.86, + "end": 656.14, + "probability": 0.9967 + }, + { + "start": 656.72, + "end": 657.4, + "probability": 0.4517 + }, + { + "start": 658.52, + "end": 659.15, + "probability": 0.7571 + }, + { + "start": 660.92, + "end": 667.56, + "probability": 0.9812 + }, + { + "start": 667.56, + "end": 674.52, + "probability": 0.9775 + }, + { + "start": 677.12, + "end": 682.96, + "probability": 0.996 + }, + { + "start": 683.18, + "end": 685.04, + "probability": 0.7018 + }, + { + "start": 685.12, + "end": 688.98, + "probability": 0.9968 + }, + { + "start": 689.18, + "end": 694.89, + "probability": 0.9969 + }, + { + "start": 697.14, + "end": 700.94, + "probability": 0.9941 + }, + { + "start": 700.94, + "end": 706.2, + "probability": 0.9966 + }, + { + "start": 707.3, + "end": 709.76, + "probability": 0.9595 + }, + { + "start": 710.22, + "end": 713.54, + "probability": 0.9547 + }, + { + "start": 713.66, + "end": 715.86, + "probability": 0.6136 + }, + { + "start": 716.3, + "end": 720.42, + "probability": 0.9941 + }, + { + "start": 720.54, + "end": 722.54, + "probability": 0.9834 + }, + { + "start": 723.02, + "end": 724.88, + "probability": 0.9912 + }, + { + "start": 725.58, + "end": 727.28, + "probability": 0.6664 + }, + { + "start": 727.54, + "end": 728.16, + "probability": 0.7379 + }, + { + "start": 728.44, + "end": 729.06, + "probability": 0.5804 + }, + { + "start": 729.54, + "end": 731.46, + "probability": 0.9313 + }, + { + "start": 731.72, + "end": 733.76, + "probability": 0.9819 + }, + { + "start": 734.2, + "end": 735.84, + "probability": 0.9799 + }, + { + "start": 736.16, + "end": 736.94, + "probability": 0.7775 + }, + { + "start": 737.04, + "end": 739.48, + "probability": 0.895 + }, + { + "start": 740.02, + "end": 743.86, + "probability": 0.8056 + }, + { + "start": 744.04, + "end": 747.24, + "probability": 0.7559 + }, + { + "start": 747.4, + "end": 748.82, + "probability": 0.9766 + }, + { + "start": 749.52, + "end": 749.84, + "probability": 0.6716 + }, + { + "start": 750.3, + "end": 752.9, + "probability": 0.9763 + }, + { + "start": 753.44, + "end": 754.5, + "probability": 0.6433 + }, + { + "start": 754.56, + "end": 755.08, + "probability": 0.7499 + }, + { + "start": 755.1, + "end": 755.42, + "probability": 0.7161 + }, + { + "start": 755.92, + "end": 756.58, + "probability": 0.6026 + }, + { + "start": 756.74, + "end": 758.12, + "probability": 0.9665 + }, + { + "start": 764.46, + "end": 765.54, + "probability": 0.848 + }, + { + "start": 766.72, + "end": 770.04, + "probability": 0.9792 + }, + { + "start": 771.42, + "end": 773.52, + "probability": 0.9519 + }, + { + "start": 776.18, + "end": 779.12, + "probability": 0.9613 + }, + { + "start": 780.46, + "end": 782.24, + "probability": 0.9406 + }, + { + "start": 783.8, + "end": 785.22, + "probability": 0.8582 + }, + { + "start": 786.82, + "end": 788.22, + "probability": 0.9844 + }, + { + "start": 789.42, + "end": 793.58, + "probability": 0.9602 + }, + { + "start": 795.24, + "end": 795.78, + "probability": 0.6242 + }, + { + "start": 795.94, + "end": 799.64, + "probability": 0.9559 + }, + { + "start": 801.18, + "end": 801.22, + "probability": 0.0378 + }, + { + "start": 801.22, + "end": 801.85, + "probability": 0.0105 + }, + { + "start": 803.7, + "end": 804.58, + "probability": 0.269 + }, + { + "start": 806.24, + "end": 810.22, + "probability": 0.0333 + }, + { + "start": 811.22, + "end": 813.3, + "probability": 0.2001 + }, + { + "start": 814.44, + "end": 817.12, + "probability": 0.126 + }, + { + "start": 818.02, + "end": 819.36, + "probability": 0.1754 + }, + { + "start": 820.12, + "end": 820.9, + "probability": 0.531 + }, + { + "start": 821.56, + "end": 826.6, + "probability": 0.2411 + }, + { + "start": 827.02, + "end": 830.48, + "probability": 0.181 + }, + { + "start": 832.18, + "end": 834.04, + "probability": 0.6861 + }, + { + "start": 834.56, + "end": 839.22, + "probability": 0.8187 + }, + { + "start": 841.54, + "end": 844.98, + "probability": 0.637 + }, + { + "start": 846.16, + "end": 847.44, + "probability": 0.8181 + }, + { + "start": 847.58, + "end": 848.54, + "probability": 0.8806 + }, + { + "start": 848.66, + "end": 849.96, + "probability": 0.8465 + }, + { + "start": 850.38, + "end": 852.73, + "probability": 0.9443 + }, + { + "start": 853.3, + "end": 855.52, + "probability": 0.9818 + }, + { + "start": 855.82, + "end": 858.64, + "probability": 0.8955 + }, + { + "start": 858.96, + "end": 860.62, + "probability": 0.7761 + }, + { + "start": 861.9, + "end": 866.3, + "probability": 0.9556 + }, + { + "start": 866.3, + "end": 870.34, + "probability": 0.9546 + }, + { + "start": 871.2, + "end": 874.14, + "probability": 0.9792 + }, + { + "start": 874.86, + "end": 876.71, + "probability": 0.765 + }, + { + "start": 877.58, + "end": 881.92, + "probability": 0.7725 + }, + { + "start": 882.54, + "end": 886.64, + "probability": 0.989 + }, + { + "start": 887.34, + "end": 887.9, + "probability": 0.6145 + }, + { + "start": 888.1, + "end": 892.3, + "probability": 0.9813 + }, + { + "start": 892.3, + "end": 895.28, + "probability": 0.6467 + }, + { + "start": 895.7, + "end": 898.46, + "probability": 0.9922 + }, + { + "start": 898.78, + "end": 900.28, + "probability": 0.9895 + }, + { + "start": 900.96, + "end": 903.38, + "probability": 0.4967 + }, + { + "start": 904.5, + "end": 906.88, + "probability": 0.7631 + }, + { + "start": 907.46, + "end": 908.26, + "probability": 0.5753 + }, + { + "start": 908.78, + "end": 909.82, + "probability": 0.9599 + }, + { + "start": 910.56, + "end": 911.94, + "probability": 0.9084 + }, + { + "start": 912.64, + "end": 913.72, + "probability": 0.7222 + }, + { + "start": 914.28, + "end": 917.82, + "probability": 0.9863 + }, + { + "start": 918.4, + "end": 922.84, + "probability": 0.9937 + }, + { + "start": 923.48, + "end": 925.24, + "probability": 0.9674 + }, + { + "start": 925.86, + "end": 931.54, + "probability": 0.9724 + }, + { + "start": 932.08, + "end": 935.38, + "probability": 0.9671 + }, + { + "start": 935.44, + "end": 939.92, + "probability": 0.9248 + }, + { + "start": 940.52, + "end": 944.04, + "probability": 0.8945 + }, + { + "start": 944.78, + "end": 946.3, + "probability": 0.2336 + }, + { + "start": 946.64, + "end": 949.52, + "probability": 0.988 + }, + { + "start": 950.02, + "end": 953.06, + "probability": 0.996 + }, + { + "start": 953.1, + "end": 958.7, + "probability": 0.999 + }, + { + "start": 959.48, + "end": 961.3, + "probability": 0.6708 + }, + { + "start": 961.46, + "end": 963.46, + "probability": 0.9104 + }, + { + "start": 963.48, + "end": 964.92, + "probability": 0.945 + }, + { + "start": 973.36, + "end": 974.0, + "probability": 0.5244 + }, + { + "start": 974.08, + "end": 975.12, + "probability": 0.6095 + }, + { + "start": 975.28, + "end": 982.08, + "probability": 0.8499 + }, + { + "start": 982.88, + "end": 984.12, + "probability": 0.9175 + }, + { + "start": 985.18, + "end": 989.76, + "probability": 0.7076 + }, + { + "start": 990.36, + "end": 993.8, + "probability": 0.9859 + }, + { + "start": 993.82, + "end": 1000.76, + "probability": 0.99 + }, + { + "start": 1001.22, + "end": 1010.46, + "probability": 0.996 + }, + { + "start": 1011.02, + "end": 1012.42, + "probability": 0.8883 + }, + { + "start": 1012.58, + "end": 1013.7, + "probability": 0.9495 + }, + { + "start": 1013.72, + "end": 1014.6, + "probability": 0.8641 + }, + { + "start": 1015.44, + "end": 1016.8, + "probability": 0.9768 + }, + { + "start": 1016.92, + "end": 1017.8, + "probability": 0.7724 + }, + { + "start": 1018.32, + "end": 1022.86, + "probability": 0.994 + }, + { + "start": 1023.5, + "end": 1029.5, + "probability": 0.9792 + }, + { + "start": 1029.72, + "end": 1032.64, + "probability": 0.9346 + }, + { + "start": 1033.18, + "end": 1037.36, + "probability": 0.9767 + }, + { + "start": 1037.94, + "end": 1045.36, + "probability": 0.9776 + }, + { + "start": 1045.98, + "end": 1053.29, + "probability": 0.1253 + }, + { + "start": 1054.48, + "end": 1054.48, + "probability": 0.006 + }, + { + "start": 1055.66, + "end": 1059.12, + "probability": 0.3276 + }, + { + "start": 1060.48, + "end": 1065.6, + "probability": 0.0491 + }, + { + "start": 1067.58, + "end": 1072.66, + "probability": 0.1727 + }, + { + "start": 1072.66, + "end": 1078.46, + "probability": 0.0436 + }, + { + "start": 1079.41, + "end": 1081.84, + "probability": 0.4699 + }, + { + "start": 1081.94, + "end": 1083.84, + "probability": 0.8628 + }, + { + "start": 1084.02, + "end": 1085.34, + "probability": 0.7303 + }, + { + "start": 1085.78, + "end": 1088.52, + "probability": 0.7886 + }, + { + "start": 1089.18, + "end": 1091.08, + "probability": 0.96 + }, + { + "start": 1091.88, + "end": 1094.18, + "probability": 0.9117 + }, + { + "start": 1095.2, + "end": 1096.1, + "probability": 0.7504 + }, + { + "start": 1096.82, + "end": 1098.5, + "probability": 0.9625 + }, + { + "start": 1099.34, + "end": 1099.98, + "probability": 0.9592 + }, + { + "start": 1100.08, + "end": 1100.68, + "probability": 0.7816 + }, + { + "start": 1100.78, + "end": 1102.2, + "probability": 0.9932 + }, + { + "start": 1103.0, + "end": 1105.34, + "probability": 0.9325 + }, + { + "start": 1105.4, + "end": 1107.54, + "probability": 0.6052 + }, + { + "start": 1108.08, + "end": 1110.34, + "probability": 0.917 + }, + { + "start": 1111.34, + "end": 1113.0, + "probability": 0.6654 + }, + { + "start": 1113.88, + "end": 1115.15, + "probability": 0.8488 + }, + { + "start": 1115.24, + "end": 1115.34, + "probability": 0.442 + }, + { + "start": 1115.34, + "end": 1116.26, + "probability": 0.3465 + }, + { + "start": 1116.32, + "end": 1118.24, + "probability": 0.6259 + }, + { + "start": 1118.88, + "end": 1121.66, + "probability": 0.9269 + }, + { + "start": 1122.34, + "end": 1128.66, + "probability": 0.9793 + }, + { + "start": 1128.7, + "end": 1129.9, + "probability": 0.6516 + }, + { + "start": 1130.52, + "end": 1132.08, + "probability": 0.8936 + }, + { + "start": 1133.04, + "end": 1134.64, + "probability": 0.8535 + }, + { + "start": 1134.74, + "end": 1136.44, + "probability": 0.9278 + }, + { + "start": 1137.02, + "end": 1137.34, + "probability": 0.5019 + }, + { + "start": 1137.42, + "end": 1140.24, + "probability": 0.9619 + }, + { + "start": 1141.5, + "end": 1144.34, + "probability": 0.9445 + }, + { + "start": 1144.34, + "end": 1147.86, + "probability": 0.9736 + }, + { + "start": 1148.0, + "end": 1149.44, + "probability": 0.8776 + }, + { + "start": 1149.5, + "end": 1150.08, + "probability": 0.8429 + }, + { + "start": 1150.16, + "end": 1151.76, + "probability": 0.6572 + }, + { + "start": 1152.6, + "end": 1155.5, + "probability": 0.8803 + }, + { + "start": 1156.06, + "end": 1159.38, + "probability": 0.8271 + }, + { + "start": 1159.9, + "end": 1161.6, + "probability": 0.7633 + }, + { + "start": 1162.26, + "end": 1166.1, + "probability": 0.8492 + }, + { + "start": 1166.24, + "end": 1167.12, + "probability": 0.4765 + }, + { + "start": 1167.18, + "end": 1167.74, + "probability": 0.6841 + }, + { + "start": 1168.18, + "end": 1169.18, + "probability": 0.9559 + }, + { + "start": 1169.3, + "end": 1170.06, + "probability": 0.5268 + }, + { + "start": 1170.48, + "end": 1171.02, + "probability": 0.3273 + }, + { + "start": 1171.12, + "end": 1172.38, + "probability": 0.7618 + }, + { + "start": 1173.14, + "end": 1177.34, + "probability": 0.9976 + }, + { + "start": 1177.82, + "end": 1179.98, + "probability": 0.994 + }, + { + "start": 1180.52, + "end": 1184.68, + "probability": 0.9891 + }, + { + "start": 1185.26, + "end": 1188.94, + "probability": 0.9751 + }, + { + "start": 1189.68, + "end": 1192.78, + "probability": 0.9976 + }, + { + "start": 1193.3, + "end": 1195.58, + "probability": 0.6145 + }, + { + "start": 1196.1, + "end": 1200.48, + "probability": 0.9871 + }, + { + "start": 1201.14, + "end": 1203.38, + "probability": 0.9912 + }, + { + "start": 1203.52, + "end": 1206.22, + "probability": 0.9987 + }, + { + "start": 1207.32, + "end": 1211.9, + "probability": 0.9829 + }, + { + "start": 1212.92, + "end": 1215.48, + "probability": 0.9571 + }, + { + "start": 1216.06, + "end": 1219.86, + "probability": 0.9941 + }, + { + "start": 1219.86, + "end": 1224.92, + "probability": 0.9959 + }, + { + "start": 1225.42, + "end": 1230.74, + "probability": 0.9968 + }, + { + "start": 1231.24, + "end": 1231.56, + "probability": 0.6972 + }, + { + "start": 1231.74, + "end": 1236.38, + "probability": 0.9625 + }, + { + "start": 1236.52, + "end": 1236.8, + "probability": 0.7111 + }, + { + "start": 1237.18, + "end": 1239.26, + "probability": 0.7136 + }, + { + "start": 1239.72, + "end": 1241.88, + "probability": 0.951 + }, + { + "start": 1242.06, + "end": 1242.58, + "probability": 0.7331 + }, + { + "start": 1243.52, + "end": 1245.16, + "probability": 0.7316 + }, + { + "start": 1252.96, + "end": 1253.52, + "probability": 0.4764 + }, + { + "start": 1256.68, + "end": 1257.9, + "probability": 0.7173 + }, + { + "start": 1259.0, + "end": 1262.94, + "probability": 0.829 + }, + { + "start": 1264.04, + "end": 1267.04, + "probability": 0.9915 + }, + { + "start": 1267.04, + "end": 1270.82, + "probability": 0.9611 + }, + { + "start": 1271.88, + "end": 1272.92, + "probability": 0.6804 + }, + { + "start": 1273.58, + "end": 1277.66, + "probability": 0.9956 + }, + { + "start": 1277.7, + "end": 1283.72, + "probability": 0.962 + }, + { + "start": 1284.46, + "end": 1286.48, + "probability": 0.508 + }, + { + "start": 1286.6, + "end": 1287.4, + "probability": 0.7431 + }, + { + "start": 1287.6, + "end": 1291.4, + "probability": 0.9755 + }, + { + "start": 1291.4, + "end": 1293.44, + "probability": 0.9437 + }, + { + "start": 1294.62, + "end": 1297.72, + "probability": 0.9648 + }, + { + "start": 1298.46, + "end": 1301.38, + "probability": 0.9273 + }, + { + "start": 1302.64, + "end": 1305.54, + "probability": 0.801 + }, + { + "start": 1306.18, + "end": 1312.48, + "probability": 0.9743 + }, + { + "start": 1313.28, + "end": 1314.83, + "probability": 0.9705 + }, + { + "start": 1315.06, + "end": 1315.72, + "probability": 0.9644 + }, + { + "start": 1315.84, + "end": 1316.16, + "probability": 0.6929 + }, + { + "start": 1316.32, + "end": 1320.5, + "probability": 0.9659 + }, + { + "start": 1321.24, + "end": 1324.64, + "probability": 0.9976 + }, + { + "start": 1325.12, + "end": 1326.54, + "probability": 0.9984 + }, + { + "start": 1327.16, + "end": 1330.2, + "probability": 0.9341 + }, + { + "start": 1330.82, + "end": 1334.72, + "probability": 0.9914 + }, + { + "start": 1335.84, + "end": 1338.06, + "probability": 0.9486 + }, + { + "start": 1339.12, + "end": 1342.28, + "probability": 0.9554 + }, + { + "start": 1342.66, + "end": 1345.42, + "probability": 0.9933 + }, + { + "start": 1346.02, + "end": 1349.52, + "probability": 0.9856 + }, + { + "start": 1350.0, + "end": 1352.36, + "probability": 0.9653 + }, + { + "start": 1352.36, + "end": 1355.7, + "probability": 0.9495 + }, + { + "start": 1356.3, + "end": 1359.08, + "probability": 0.8988 + }, + { + "start": 1359.7, + "end": 1363.32, + "probability": 0.8859 + }, + { + "start": 1364.28, + "end": 1365.78, + "probability": 0.9038 + }, + { + "start": 1365.94, + "end": 1366.98, + "probability": 0.9333 + }, + { + "start": 1367.46, + "end": 1369.42, + "probability": 0.9338 + }, + { + "start": 1369.68, + "end": 1372.76, + "probability": 0.9745 + }, + { + "start": 1373.46, + "end": 1375.28, + "probability": 0.8439 + }, + { + "start": 1375.52, + "end": 1377.78, + "probability": 0.8387 + }, + { + "start": 1377.82, + "end": 1379.76, + "probability": 0.9614 + }, + { + "start": 1380.26, + "end": 1384.1, + "probability": 0.976 + }, + { + "start": 1384.1, + "end": 1386.98, + "probability": 0.8265 + }, + { + "start": 1387.42, + "end": 1391.86, + "probability": 0.9834 + }, + { + "start": 1392.72, + "end": 1393.82, + "probability": 0.6355 + }, + { + "start": 1394.3, + "end": 1395.64, + "probability": 0.5091 + }, + { + "start": 1395.76, + "end": 1397.58, + "probability": 0.5948 + }, + { + "start": 1398.06, + "end": 1398.98, + "probability": 0.6215 + }, + { + "start": 1399.3, + "end": 1401.54, + "probability": 0.9476 + }, + { + "start": 1405.9, + "end": 1407.36, + "probability": 0.512 + }, + { + "start": 1408.42, + "end": 1409.42, + "probability": 0.757 + }, + { + "start": 1409.6, + "end": 1410.72, + "probability": 0.7355 + }, + { + "start": 1410.82, + "end": 1418.1, + "probability": 0.9961 + }, + { + "start": 1418.82, + "end": 1424.16, + "probability": 0.9946 + }, + { + "start": 1424.16, + "end": 1427.62, + "probability": 0.9985 + }, + { + "start": 1427.74, + "end": 1435.42, + "probability": 0.995 + }, + { + "start": 1436.52, + "end": 1442.34, + "probability": 0.9984 + }, + { + "start": 1442.34, + "end": 1446.2, + "probability": 0.9995 + }, + { + "start": 1446.7, + "end": 1451.92, + "probability": 0.9971 + }, + { + "start": 1453.02, + "end": 1454.08, + "probability": 0.4639 + }, + { + "start": 1454.22, + "end": 1458.9, + "probability": 0.9818 + }, + { + "start": 1458.94, + "end": 1462.72, + "probability": 0.9827 + }, + { + "start": 1463.84, + "end": 1470.52, + "probability": 0.9978 + }, + { + "start": 1471.08, + "end": 1477.22, + "probability": 0.9965 + }, + { + "start": 1477.4, + "end": 1481.92, + "probability": 0.8932 + }, + { + "start": 1482.66, + "end": 1486.12, + "probability": 0.8582 + }, + { + "start": 1486.76, + "end": 1489.32, + "probability": 0.9617 + }, + { + "start": 1489.92, + "end": 1496.22, + "probability": 0.9821 + }, + { + "start": 1496.66, + "end": 1499.68, + "probability": 0.7637 + }, + { + "start": 1500.06, + "end": 1503.12, + "probability": 0.9897 + }, + { + "start": 1503.66, + "end": 1505.18, + "probability": 0.7611 + }, + { + "start": 1505.56, + "end": 1506.26, + "probability": 0.8679 + }, + { + "start": 1506.6, + "end": 1513.14, + "probability": 0.9808 + }, + { + "start": 1513.28, + "end": 1515.86, + "probability": 0.9648 + }, + { + "start": 1516.68, + "end": 1520.6, + "probability": 0.6798 + }, + { + "start": 1521.1, + "end": 1523.9, + "probability": 0.9878 + }, + { + "start": 1523.9, + "end": 1527.4, + "probability": 0.9777 + }, + { + "start": 1527.64, + "end": 1532.9, + "probability": 0.8069 + }, + { + "start": 1533.06, + "end": 1535.08, + "probability": 0.7801 + }, + { + "start": 1535.52, + "end": 1536.56, + "probability": 0.9788 + }, + { + "start": 1536.84, + "end": 1538.48, + "probability": 0.9878 + }, + { + "start": 1538.86, + "end": 1541.6, + "probability": 0.9906 + }, + { + "start": 1542.38, + "end": 1544.72, + "probability": 0.5485 + }, + { + "start": 1544.86, + "end": 1546.36, + "probability": 0.7739 + }, + { + "start": 1546.48, + "end": 1546.98, + "probability": 0.616 + }, + { + "start": 1547.02, + "end": 1548.8, + "probability": 0.8698 + }, + { + "start": 1552.66, + "end": 1555.34, + "probability": 0.9536 + }, + { + "start": 1556.12, + "end": 1558.76, + "probability": 0.9786 + }, + { + "start": 1560.24, + "end": 1562.84, + "probability": 0.712 + }, + { + "start": 1563.5, + "end": 1567.58, + "probability": 0.9846 + }, + { + "start": 1567.7, + "end": 1568.66, + "probability": 0.91 + }, + { + "start": 1568.76, + "end": 1571.82, + "probability": 0.9495 + }, + { + "start": 1573.26, + "end": 1575.48, + "probability": 0.2345 + }, + { + "start": 1575.6, + "end": 1577.72, + "probability": 0.73 + }, + { + "start": 1577.88, + "end": 1581.74, + "probability": 0.751 + }, + { + "start": 1581.88, + "end": 1582.62, + "probability": 0.6051 + }, + { + "start": 1583.48, + "end": 1587.34, + "probability": 0.4885 + }, + { + "start": 1588.16, + "end": 1590.08, + "probability": 0.5804 + }, + { + "start": 1590.92, + "end": 1593.78, + "probability": 0.1614 + }, + { + "start": 1594.74, + "end": 1598.74, + "probability": 0.894 + }, + { + "start": 1599.0, + "end": 1599.48, + "probability": 0.2804 + }, + { + "start": 1600.2, + "end": 1601.3, + "probability": 0.6147 + }, + { + "start": 1602.48, + "end": 1603.91, + "probability": 0.7508 + }, + { + "start": 1604.94, + "end": 1609.7, + "probability": 0.8848 + }, + { + "start": 1610.74, + "end": 1615.02, + "probability": 0.9578 + }, + { + "start": 1616.19, + "end": 1617.98, + "probability": 0.8482 + }, + { + "start": 1618.54, + "end": 1621.02, + "probability": 0.6479 + }, + { + "start": 1621.76, + "end": 1625.24, + "probability": 0.9813 + }, + { + "start": 1625.94, + "end": 1632.78, + "probability": 0.9238 + }, + { + "start": 1633.62, + "end": 1635.64, + "probability": 0.7344 + }, + { + "start": 1636.42, + "end": 1639.34, + "probability": 0.9929 + }, + { + "start": 1640.06, + "end": 1642.88, + "probability": 0.9945 + }, + { + "start": 1643.06, + "end": 1647.9, + "probability": 0.9938 + }, + { + "start": 1648.52, + "end": 1651.58, + "probability": 0.9406 + }, + { + "start": 1652.48, + "end": 1653.36, + "probability": 0.4765 + }, + { + "start": 1653.76, + "end": 1656.3, + "probability": 0.0329 + }, + { + "start": 1656.67, + "end": 1660.38, + "probability": 0.0416 + }, + { + "start": 1660.38, + "end": 1663.28, + "probability": 0.1013 + }, + { + "start": 1663.52, + "end": 1664.6, + "probability": 0.3065 + }, + { + "start": 1664.72, + "end": 1667.9, + "probability": 0.4706 + }, + { + "start": 1668.12, + "end": 1668.14, + "probability": 0.158 + }, + { + "start": 1668.14, + "end": 1668.5, + "probability": 0.393 + }, + { + "start": 1668.7, + "end": 1669.44, + "probability": 0.4256 + }, + { + "start": 1669.44, + "end": 1670.1, + "probability": 0.6888 + }, + { + "start": 1670.1, + "end": 1671.48, + "probability": 0.4257 + }, + { + "start": 1671.9, + "end": 1675.0, + "probability": 0.7265 + }, + { + "start": 1675.88, + "end": 1677.84, + "probability": 0.3137 + }, + { + "start": 1679.38, + "end": 1682.08, + "probability": 0.8735 + }, + { + "start": 1682.72, + "end": 1683.58, + "probability": 0.7326 + }, + { + "start": 1684.36, + "end": 1684.92, + "probability": 0.9067 + }, + { + "start": 1685.98, + "end": 1688.58, + "probability": 0.9726 + }, + { + "start": 1689.42, + "end": 1691.32, + "probability": 0.9821 + }, + { + "start": 1692.2, + "end": 1694.72, + "probability": 0.9201 + }, + { + "start": 1694.84, + "end": 1697.4, + "probability": 0.9829 + }, + { + "start": 1698.5, + "end": 1699.12, + "probability": 0.4632 + }, + { + "start": 1699.66, + "end": 1703.5, + "probability": 0.6382 + }, + { + "start": 1704.12, + "end": 1709.32, + "probability": 0.6775 + }, + { + "start": 1710.62, + "end": 1714.94, + "probability": 0.9504 + }, + { + "start": 1716.04, + "end": 1718.14, + "probability": 0.6314 + }, + { + "start": 1718.88, + "end": 1720.68, + "probability": 0.9523 + }, + { + "start": 1720.88, + "end": 1722.78, + "probability": 0.5337 + }, + { + "start": 1723.78, + "end": 1726.8, + "probability": 0.9714 + }, + { + "start": 1727.44, + "end": 1731.52, + "probability": 0.3736 + }, + { + "start": 1732.96, + "end": 1735.48, + "probability": 0.9672 + }, + { + "start": 1737.52, + "end": 1737.64, + "probability": 0.5715 + }, + { + "start": 1738.4, + "end": 1738.5, + "probability": 0.3303 + }, + { + "start": 1740.82, + "end": 1741.84, + "probability": 0.6786 + }, + { + "start": 1742.28, + "end": 1742.92, + "probability": 0.6637 + }, + { + "start": 1743.32, + "end": 1748.2, + "probability": 0.8972 + }, + { + "start": 1750.06, + "end": 1750.77, + "probability": 0.6082 + }, + { + "start": 1751.5, + "end": 1753.2, + "probability": 0.9412 + }, + { + "start": 1753.82, + "end": 1756.54, + "probability": 0.7584 + }, + { + "start": 1756.68, + "end": 1757.3, + "probability": 0.6612 + }, + { + "start": 1757.94, + "end": 1761.4, + "probability": 0.9094 + }, + { + "start": 1761.98, + "end": 1762.76, + "probability": 0.6545 + }, + { + "start": 1765.44, + "end": 1768.04, + "probability": 0.598 + }, + { + "start": 1769.0, + "end": 1769.88, + "probability": 0.7793 + }, + { + "start": 1770.52, + "end": 1773.36, + "probability": 0.897 + }, + { + "start": 1773.82, + "end": 1777.16, + "probability": 0.7532 + }, + { + "start": 1777.7, + "end": 1778.46, + "probability": 0.9263 + }, + { + "start": 1779.36, + "end": 1780.86, + "probability": 0.9797 + }, + { + "start": 1781.82, + "end": 1783.78, + "probability": 0.6689 + }, + { + "start": 1784.36, + "end": 1785.02, + "probability": 0.6063 + }, + { + "start": 1785.72, + "end": 1786.5, + "probability": 0.9475 + }, + { + "start": 1786.82, + "end": 1790.88, + "probability": 0.9802 + }, + { + "start": 1791.38, + "end": 1792.68, + "probability": 0.6233 + }, + { + "start": 1793.9, + "end": 1798.58, + "probability": 0.7223 + }, + { + "start": 1798.68, + "end": 1799.23, + "probability": 0.4133 + }, + { + "start": 1800.02, + "end": 1802.62, + "probability": 0.7402 + }, + { + "start": 1804.06, + "end": 1808.38, + "probability": 0.9004 + }, + { + "start": 1808.48, + "end": 1808.5, + "probability": 0.3544 + }, + { + "start": 1808.5, + "end": 1809.3, + "probability": 0.8033 + }, + { + "start": 1809.36, + "end": 1815.5, + "probability": 0.8318 + }, + { + "start": 1816.3, + "end": 1816.68, + "probability": 0.4786 + }, + { + "start": 1817.3, + "end": 1819.2, + "probability": 0.6148 + }, + { + "start": 1819.28, + "end": 1820.56, + "probability": 0.5854 + }, + { + "start": 1821.26, + "end": 1821.76, + "probability": 0.6 + }, + { + "start": 1821.88, + "end": 1823.92, + "probability": 0.7009 + }, + { + "start": 1824.72, + "end": 1826.94, + "probability": 0.5944 + }, + { + "start": 1828.6, + "end": 1831.84, + "probability": 0.8099 + }, + { + "start": 1832.96, + "end": 1835.26, + "probability": 0.903 + }, + { + "start": 1836.24, + "end": 1839.04, + "probability": 0.946 + }, + { + "start": 1840.18, + "end": 1840.84, + "probability": 0.9832 + }, + { + "start": 1841.78, + "end": 1845.14, + "probability": 0.7568 + }, + { + "start": 1846.34, + "end": 1847.8, + "probability": 0.5942 + }, + { + "start": 1848.52, + "end": 1850.9, + "probability": 0.9557 + }, + { + "start": 1852.14, + "end": 1855.42, + "probability": 0.8685 + }, + { + "start": 1856.24, + "end": 1861.88, + "probability": 0.7988 + }, + { + "start": 1862.04, + "end": 1862.48, + "probability": 0.8417 + }, + { + "start": 1862.64, + "end": 1863.14, + "probability": 0.2669 + }, + { + "start": 1865.08, + "end": 1867.14, + "probability": 0.7873 + }, + { + "start": 1867.62, + "end": 1869.5, + "probability": 0.8575 + }, + { + "start": 1870.1, + "end": 1871.71, + "probability": 0.905 + }, + { + "start": 1872.42, + "end": 1876.52, + "probability": 0.7364 + }, + { + "start": 1877.68, + "end": 1879.1, + "probability": 0.9593 + }, + { + "start": 1879.16, + "end": 1881.74, + "probability": 0.9004 + }, + { + "start": 1882.56, + "end": 1883.24, + "probability": 0.4726 + }, + { + "start": 1883.8, + "end": 1885.28, + "probability": 0.7567 + }, + { + "start": 1885.48, + "end": 1886.72, + "probability": 0.751 + }, + { + "start": 1887.04, + "end": 1888.78, + "probability": 0.9349 + }, + { + "start": 1889.18, + "end": 1893.04, + "probability": 0.8804 + }, + { + "start": 1893.7, + "end": 1893.88, + "probability": 0.0368 + }, + { + "start": 1894.1, + "end": 1894.66, + "probability": 0.3226 + }, + { + "start": 1894.94, + "end": 1897.06, + "probability": 0.7838 + }, + { + "start": 1897.42, + "end": 1898.78, + "probability": 0.4196 + }, + { + "start": 1898.96, + "end": 1899.26, + "probability": 0.5493 + }, + { + "start": 1899.86, + "end": 1900.38, + "probability": 0.8221 + }, + { + "start": 1900.46, + "end": 1901.04, + "probability": 0.9183 + }, + { + "start": 1901.42, + "end": 1904.22, + "probability": 0.9263 + }, + { + "start": 1904.58, + "end": 1906.0, + "probability": 0.8695 + }, + { + "start": 1907.2, + "end": 1908.32, + "probability": 0.8273 + }, + { + "start": 1908.8, + "end": 1912.26, + "probability": 0.8381 + }, + { + "start": 1912.98, + "end": 1913.56, + "probability": 0.6097 + }, + { + "start": 1913.64, + "end": 1916.72, + "probability": 0.9177 + }, + { + "start": 1917.18, + "end": 1919.5, + "probability": 0.9559 + }, + { + "start": 1921.72, + "end": 1921.88, + "probability": 0.0567 + }, + { + "start": 1921.88, + "end": 1924.5, + "probability": 0.5012 + }, + { + "start": 1924.88, + "end": 1926.12, + "probability": 0.5885 + }, + { + "start": 1929.28, + "end": 1932.02, + "probability": 0.1329 + }, + { + "start": 1932.02, + "end": 1932.02, + "probability": 0.1059 + }, + { + "start": 1932.02, + "end": 1932.02, + "probability": 0.0975 + }, + { + "start": 1932.02, + "end": 1932.86, + "probability": 0.2014 + }, + { + "start": 1941.22, + "end": 1945.68, + "probability": 0.042 + }, + { + "start": 1949.66, + "end": 1951.9, + "probability": 0.4124 + }, + { + "start": 1951.9, + "end": 1952.86, + "probability": 0.4241 + }, + { + "start": 1953.6, + "end": 1957.42, + "probability": 0.0616 + }, + { + "start": 1957.42, + "end": 1959.24, + "probability": 0.0751 + }, + { + "start": 1961.36, + "end": 1963.26, + "probability": 0.1604 + }, + { + "start": 1965.32, + "end": 1967.52, + "probability": 0.0432 + }, + { + "start": 1967.52, + "end": 1967.52, + "probability": 0.2835 + }, + { + "start": 1969.04, + "end": 1971.58, + "probability": 0.1998 + }, + { + "start": 1976.56, + "end": 1977.22, + "probability": 0.0466 + }, + { + "start": 1978.3, + "end": 1979.45, + "probability": 0.0714 + }, + { + "start": 1979.5, + "end": 1979.5, + "probability": 0.0177 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.0, + "end": 2019.0, + "probability": 0.0 + }, + { + "start": 2019.68, + "end": 2022.32, + "probability": 0.0108 + }, + { + "start": 2023.34, + "end": 2026.8, + "probability": 0.2438 + }, + { + "start": 2028.62, + "end": 2030.32, + "probability": 0.0474 + }, + { + "start": 2031.62, + "end": 2037.16, + "probability": 0.2404 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.0, + "end": 2142.0, + "probability": 0.0 + }, + { + "start": 2142.12, + "end": 2142.24, + "probability": 0.0058 + }, + { + "start": 2142.28, + "end": 2142.36, + "probability": 0.0273 + }, + { + "start": 2142.36, + "end": 2142.36, + "probability": 0.0172 + }, + { + "start": 2142.36, + "end": 2142.36, + "probability": 0.0216 + }, + { + "start": 2142.36, + "end": 2142.36, + "probability": 0.0132 + }, + { + "start": 2142.36, + "end": 2142.36, + "probability": 0.0329 + }, + { + "start": 2142.36, + "end": 2142.83, + "probability": 0.1124 + }, + { + "start": 2143.84, + "end": 2145.02, + "probability": 0.6417 + }, + { + "start": 2145.78, + "end": 2148.96, + "probability": 0.9404 + }, + { + "start": 2149.06, + "end": 2149.7, + "probability": 0.8363 + }, + { + "start": 2150.16, + "end": 2153.36, + "probability": 0.9438 + }, + { + "start": 2154.0, + "end": 2155.3, + "probability": 0.9336 + }, + { + "start": 2155.36, + "end": 2159.94, + "probability": 0.9827 + }, + { + "start": 2160.38, + "end": 2162.15, + "probability": 0.9212 + }, + { + "start": 2162.96, + "end": 2164.52, + "probability": 0.9114 + }, + { + "start": 2164.68, + "end": 2167.96, + "probability": 0.9873 + }, + { + "start": 2168.34, + "end": 2172.06, + "probability": 0.9941 + }, + { + "start": 2172.46, + "end": 2174.76, + "probability": 0.9366 + }, + { + "start": 2175.6, + "end": 2179.5, + "probability": 0.989 + }, + { + "start": 2179.96, + "end": 2183.48, + "probability": 0.9946 + }, + { + "start": 2183.9, + "end": 2185.7, + "probability": 0.8303 + }, + { + "start": 2186.44, + "end": 2189.72, + "probability": 0.9399 + }, + { + "start": 2190.06, + "end": 2194.42, + "probability": 0.9915 + }, + { + "start": 2194.9, + "end": 2195.92, + "probability": 0.9679 + }, + { + "start": 2196.0, + "end": 2197.0, + "probability": 0.8974 + }, + { + "start": 2197.4, + "end": 2199.78, + "probability": 0.986 + }, + { + "start": 2200.28, + "end": 2201.94, + "probability": 0.6754 + }, + { + "start": 2203.16, + "end": 2208.8, + "probability": 0.9686 + }, + { + "start": 2209.04, + "end": 2209.14, + "probability": 0.6729 + }, + { + "start": 2209.74, + "end": 2210.1, + "probability": 0.848 + }, + { + "start": 2212.14, + "end": 2214.14, + "probability": 0.7551 + }, + { + "start": 2214.32, + "end": 2216.56, + "probability": 0.8493 + }, + { + "start": 2218.12, + "end": 2218.7, + "probability": 0.6138 + }, + { + "start": 2218.72, + "end": 2219.68, + "probability": 0.6191 + }, + { + "start": 2220.24, + "end": 2220.92, + "probability": 0.8483 + }, + { + "start": 2221.4, + "end": 2225.5, + "probability": 0.8832 + }, + { + "start": 2226.18, + "end": 2227.14, + "probability": 0.8884 + }, + { + "start": 2228.26, + "end": 2230.74, + "probability": 0.9491 + }, + { + "start": 2230.82, + "end": 2231.76, + "probability": 0.9201 + }, + { + "start": 2231.88, + "end": 2238.0, + "probability": 0.946 + }, + { + "start": 2238.2, + "end": 2239.74, + "probability": 0.7068 + }, + { + "start": 2241.16, + "end": 2243.08, + "probability": 0.9912 + }, + { + "start": 2243.5, + "end": 2247.44, + "probability": 0.9963 + }, + { + "start": 2248.22, + "end": 2252.06, + "probability": 0.9956 + }, + { + "start": 2252.18, + "end": 2258.58, + "probability": 0.9907 + }, + { + "start": 2258.76, + "end": 2260.16, + "probability": 0.6967 + }, + { + "start": 2260.26, + "end": 2261.08, + "probability": 0.6279 + }, + { + "start": 2261.14, + "end": 2261.96, + "probability": 0.9632 + }, + { + "start": 2262.24, + "end": 2263.84, + "probability": 0.9334 + }, + { + "start": 2264.4, + "end": 2268.7, + "probability": 0.7952 + }, + { + "start": 2268.82, + "end": 2273.8, + "probability": 0.9958 + }, + { + "start": 2274.58, + "end": 2276.48, + "probability": 0.9602 + }, + { + "start": 2276.5, + "end": 2277.66, + "probability": 0.9471 + }, + { + "start": 2278.34, + "end": 2280.48, + "probability": 0.9945 + }, + { + "start": 2280.52, + "end": 2286.26, + "probability": 0.9554 + }, + { + "start": 2286.76, + "end": 2289.86, + "probability": 0.0839 + }, + { + "start": 2289.86, + "end": 2290.91, + "probability": 0.5629 + }, + { + "start": 2291.2, + "end": 2292.4, + "probability": 0.3017 + }, + { + "start": 2292.96, + "end": 2294.16, + "probability": 0.8039 + }, + { + "start": 2294.2, + "end": 2297.46, + "probability": 0.9764 + }, + { + "start": 2298.04, + "end": 2299.6, + "probability": 0.7886 + }, + { + "start": 2300.36, + "end": 2305.22, + "probability": 0.9769 + }, + { + "start": 2305.68, + "end": 2306.26, + "probability": 0.7137 + }, + { + "start": 2306.6, + "end": 2307.3, + "probability": 0.9261 + }, + { + "start": 2307.62, + "end": 2308.32, + "probability": 0.7483 + }, + { + "start": 2308.76, + "end": 2310.26, + "probability": 0.9858 + }, + { + "start": 2310.3, + "end": 2312.02, + "probability": 0.9944 + }, + { + "start": 2312.82, + "end": 2314.74, + "probability": 0.7453 + }, + { + "start": 2315.0, + "end": 2316.68, + "probability": 0.6672 + }, + { + "start": 2316.99, + "end": 2318.74, + "probability": 0.8727 + }, + { + "start": 2324.18, + "end": 2327.52, + "probability": 0.8579 + }, + { + "start": 2328.96, + "end": 2331.74, + "probability": 0.997 + }, + { + "start": 2332.34, + "end": 2336.52, + "probability": 0.9652 + }, + { + "start": 2336.88, + "end": 2337.42, + "probability": 0.9515 + }, + { + "start": 2337.64, + "end": 2339.38, + "probability": 0.8812 + }, + { + "start": 2340.1, + "end": 2341.3, + "probability": 0.999 + }, + { + "start": 2341.82, + "end": 2349.02, + "probability": 0.8989 + }, + { + "start": 2349.02, + "end": 2353.76, + "probability": 0.9966 + }, + { + "start": 2354.54, + "end": 2357.56, + "probability": 0.9984 + }, + { + "start": 2357.56, + "end": 2362.1, + "probability": 0.9924 + }, + { + "start": 2362.24, + "end": 2363.12, + "probability": 0.7284 + }, + { + "start": 2363.54, + "end": 2364.98, + "probability": 0.7382 + }, + { + "start": 2365.08, + "end": 2367.74, + "probability": 0.6929 + }, + { + "start": 2368.64, + "end": 2371.94, + "probability": 0.9839 + }, + { + "start": 2372.82, + "end": 2375.96, + "probability": 0.939 + }, + { + "start": 2376.32, + "end": 2379.14, + "probability": 0.955 + }, + { + "start": 2379.26, + "end": 2380.54, + "probability": 0.6983 + }, + { + "start": 2381.0, + "end": 2382.04, + "probability": 0.847 + }, + { + "start": 2382.9, + "end": 2385.5, + "probability": 0.9028 + }, + { + "start": 2385.96, + "end": 2386.84, + "probability": 0.9405 + }, + { + "start": 2387.22, + "end": 2392.08, + "probability": 0.9315 + }, + { + "start": 2392.94, + "end": 2395.3, + "probability": 0.7569 + }, + { + "start": 2396.36, + "end": 2397.1, + "probability": 0.9485 + }, + { + "start": 2398.18, + "end": 2401.3, + "probability": 0.9377 + }, + { + "start": 2401.82, + "end": 2403.76, + "probability": 0.995 + }, + { + "start": 2403.9, + "end": 2407.58, + "probability": 0.9883 + }, + { + "start": 2408.12, + "end": 2411.48, + "probability": 0.9967 + }, + { + "start": 2411.9, + "end": 2412.64, + "probability": 0.7548 + }, + { + "start": 2412.84, + "end": 2417.02, + "probability": 0.9592 + }, + { + "start": 2417.02, + "end": 2419.9, + "probability": 0.9778 + }, + { + "start": 2420.46, + "end": 2423.56, + "probability": 0.8666 + }, + { + "start": 2424.06, + "end": 2426.26, + "probability": 0.7647 + }, + { + "start": 2426.66, + "end": 2428.14, + "probability": 0.8677 + }, + { + "start": 2428.56, + "end": 2430.68, + "probability": 0.7498 + }, + { + "start": 2430.92, + "end": 2431.26, + "probability": 0.7135 + }, + { + "start": 2431.82, + "end": 2433.98, + "probability": 0.6888 + }, + { + "start": 2434.08, + "end": 2436.28, + "probability": 0.9297 + }, + { + "start": 2436.44, + "end": 2438.38, + "probability": 0.6476 + }, + { + "start": 2439.2, + "end": 2443.02, + "probability": 0.6668 + }, + { + "start": 2444.82, + "end": 2446.22, + "probability": 0.897 + }, + { + "start": 2446.96, + "end": 2447.44, + "probability": 0.7718 + }, + { + "start": 2448.12, + "end": 2450.54, + "probability": 0.681 + }, + { + "start": 2451.14, + "end": 2457.64, + "probability": 0.9924 + }, + { + "start": 2458.38, + "end": 2459.56, + "probability": 0.8367 + }, + { + "start": 2460.5, + "end": 2463.24, + "probability": 0.998 + }, + { + "start": 2463.92, + "end": 2464.96, + "probability": 0.8072 + }, + { + "start": 2465.78, + "end": 2467.06, + "probability": 0.9688 + }, + { + "start": 2467.82, + "end": 2469.6, + "probability": 0.6879 + }, + { + "start": 2470.38, + "end": 2472.72, + "probability": 0.7648 + }, + { + "start": 2473.28, + "end": 2476.32, + "probability": 0.9644 + }, + { + "start": 2477.36, + "end": 2478.28, + "probability": 0.9586 + }, + { + "start": 2479.4, + "end": 2480.52, + "probability": 0.9734 + }, + { + "start": 2481.74, + "end": 2482.82, + "probability": 0.9861 + }, + { + "start": 2483.4, + "end": 2484.76, + "probability": 0.9972 + }, + { + "start": 2485.52, + "end": 2487.54, + "probability": 0.9071 + }, + { + "start": 2488.24, + "end": 2489.72, + "probability": 0.9971 + }, + { + "start": 2490.84, + "end": 2492.86, + "probability": 0.7837 + }, + { + "start": 2493.36, + "end": 2500.44, + "probability": 0.9653 + }, + { + "start": 2501.68, + "end": 2505.18, + "probability": 0.9844 + }, + { + "start": 2505.58, + "end": 2506.78, + "probability": 0.9775 + }, + { + "start": 2507.9, + "end": 2508.58, + "probability": 0.9148 + }, + { + "start": 2509.76, + "end": 2514.04, + "probability": 0.9714 + }, + { + "start": 2514.78, + "end": 2516.06, + "probability": 0.9275 + }, + { + "start": 2517.1, + "end": 2519.98, + "probability": 0.9607 + }, + { + "start": 2520.52, + "end": 2524.54, + "probability": 0.9549 + }, + { + "start": 2524.94, + "end": 2530.12, + "probability": 0.9728 + }, + { + "start": 2530.12, + "end": 2533.32, + "probability": 0.9061 + }, + { + "start": 2533.92, + "end": 2537.46, + "probability": 0.9919 + }, + { + "start": 2538.64, + "end": 2539.84, + "probability": 0.7714 + }, + { + "start": 2541.38, + "end": 2544.36, + "probability": 0.7822 + }, + { + "start": 2545.18, + "end": 2547.5, + "probability": 0.9165 + }, + { + "start": 2547.6, + "end": 2548.6, + "probability": 0.9645 + }, + { + "start": 2548.68, + "end": 2550.08, + "probability": 0.7481 + }, + { + "start": 2550.38, + "end": 2552.38, + "probability": 0.9752 + }, + { + "start": 2552.52, + "end": 2552.98, + "probability": 0.7798 + }, + { + "start": 2553.36, + "end": 2555.06, + "probability": 0.9233 + }, + { + "start": 2555.16, + "end": 2556.6, + "probability": 0.8764 + }, + { + "start": 2556.68, + "end": 2557.08, + "probability": 0.6016 + }, + { + "start": 2557.12, + "end": 2557.46, + "probability": 0.7817 + }, + { + "start": 2557.6, + "end": 2561.94, + "probability": 0.9053 + }, + { + "start": 2563.98, + "end": 2566.6, + "probability": 0.6683 + }, + { + "start": 2566.96, + "end": 2568.1, + "probability": 0.6825 + }, + { + "start": 2568.24, + "end": 2571.96, + "probability": 0.8257 + }, + { + "start": 2572.7, + "end": 2575.8, + "probability": 0.9746 + }, + { + "start": 2576.74, + "end": 2578.74, + "probability": 0.8901 + }, + { + "start": 2579.66, + "end": 2581.12, + "probability": 0.7605 + }, + { + "start": 2581.86, + "end": 2582.7, + "probability": 0.7007 + }, + { + "start": 2584.08, + "end": 2584.8, + "probability": 0.756 + }, + { + "start": 2584.96, + "end": 2586.46, + "probability": 0.8917 + }, + { + "start": 2586.6, + "end": 2587.7, + "probability": 0.9893 + }, + { + "start": 2587.98, + "end": 2589.7, + "probability": 0.9946 + }, + { + "start": 2590.52, + "end": 2594.54, + "probability": 0.9839 + }, + { + "start": 2595.1, + "end": 2600.42, + "probability": 0.9855 + }, + { + "start": 2601.14, + "end": 2603.28, + "probability": 0.7964 + }, + { + "start": 2604.7, + "end": 2605.98, + "probability": 0.9456 + }, + { + "start": 2606.1, + "end": 2612.15, + "probability": 0.9824 + }, + { + "start": 2613.34, + "end": 2617.22, + "probability": 0.9961 + }, + { + "start": 2617.62, + "end": 2619.86, + "probability": 0.9755 + }, + { + "start": 2619.88, + "end": 2621.92, + "probability": 0.7985 + }, + { + "start": 2622.54, + "end": 2626.72, + "probability": 0.9907 + }, + { + "start": 2626.92, + "end": 2627.98, + "probability": 0.9746 + }, + { + "start": 2628.0, + "end": 2629.86, + "probability": 0.9697 + }, + { + "start": 2630.38, + "end": 2632.82, + "probability": 0.9207 + }, + { + "start": 2633.14, + "end": 2635.54, + "probability": 0.908 + }, + { + "start": 2636.04, + "end": 2642.52, + "probability": 0.8927 + }, + { + "start": 2643.52, + "end": 2645.86, + "probability": 0.7036 + }, + { + "start": 2646.72, + "end": 2648.28, + "probability": 0.5898 + }, + { + "start": 2648.36, + "end": 2648.66, + "probability": 0.609 + }, + { + "start": 2648.7, + "end": 2649.66, + "probability": 0.6634 + }, + { + "start": 2649.86, + "end": 2654.3, + "probability": 0.9878 + }, + { + "start": 2655.08, + "end": 2656.02, + "probability": 0.8937 + }, + { + "start": 2656.7, + "end": 2657.36, + "probability": 0.7251 + }, + { + "start": 2657.96, + "end": 2660.98, + "probability": 0.8911 + }, + { + "start": 2662.2, + "end": 2665.08, + "probability": 0.813 + }, + { + "start": 2666.06, + "end": 2668.84, + "probability": 0.9849 + }, + { + "start": 2668.84, + "end": 2671.92, + "probability": 0.9961 + }, + { + "start": 2672.02, + "end": 2672.68, + "probability": 0.8884 + }, + { + "start": 2673.74, + "end": 2674.88, + "probability": 0.6946 + }, + { + "start": 2674.94, + "end": 2675.88, + "probability": 0.742 + }, + { + "start": 2675.94, + "end": 2681.0, + "probability": 0.9204 + }, + { + "start": 2681.84, + "end": 2686.82, + "probability": 0.9847 + }, + { + "start": 2686.94, + "end": 2690.08, + "probability": 0.8209 + }, + { + "start": 2690.82, + "end": 2691.87, + "probability": 0.5421 + }, + { + "start": 2692.38, + "end": 2696.94, + "probability": 0.9598 + }, + { + "start": 2696.94, + "end": 2699.82, + "probability": 0.9227 + }, + { + "start": 2700.0, + "end": 2700.56, + "probability": 0.6455 + }, + { + "start": 2700.72, + "end": 2701.26, + "probability": 0.7542 + }, + { + "start": 2702.26, + "end": 2703.42, + "probability": 0.9364 + }, + { + "start": 2703.5, + "end": 2705.8, + "probability": 0.9302 + }, + { + "start": 2705.88, + "end": 2707.04, + "probability": 0.9893 + }, + { + "start": 2707.76, + "end": 2710.48, + "probability": 0.9983 + }, + { + "start": 2711.04, + "end": 2715.88, + "probability": 0.9774 + }, + { + "start": 2716.12, + "end": 2717.28, + "probability": 0.6466 + }, + { + "start": 2717.34, + "end": 2717.74, + "probability": 0.8628 + }, + { + "start": 2718.02, + "end": 2718.24, + "probability": 0.5193 + }, + { + "start": 2718.98, + "end": 2720.7, + "probability": 0.5408 + }, + { + "start": 2720.86, + "end": 2722.32, + "probability": 0.8912 + }, + { + "start": 2722.36, + "end": 2722.8, + "probability": 0.6644 + }, + { + "start": 2723.02, + "end": 2725.48, + "probability": 0.9561 + }, + { + "start": 2727.34, + "end": 2728.42, + "probability": 0.6295 + }, + { + "start": 2729.5, + "end": 2731.28, + "probability": 0.5221 + }, + { + "start": 2732.48, + "end": 2740.02, + "probability": 0.9546 + }, + { + "start": 2740.02, + "end": 2747.98, + "probability": 0.9123 + }, + { + "start": 2749.1, + "end": 2751.82, + "probability": 0.9819 + }, + { + "start": 2753.52, + "end": 2757.34, + "probability": 0.9779 + }, + { + "start": 2758.58, + "end": 2761.82, + "probability": 0.9879 + }, + { + "start": 2762.42, + "end": 2763.88, + "probability": 0.9841 + }, + { + "start": 2764.44, + "end": 2765.98, + "probability": 0.77 + }, + { + "start": 2767.14, + "end": 2770.46, + "probability": 0.9637 + }, + { + "start": 2771.72, + "end": 2774.56, + "probability": 0.9857 + }, + { + "start": 2775.28, + "end": 2779.36, + "probability": 0.9951 + }, + { + "start": 2781.28, + "end": 2782.76, + "probability": 0.8128 + }, + { + "start": 2783.92, + "end": 2785.58, + "probability": 0.858 + }, + { + "start": 2786.12, + "end": 2788.64, + "probability": 0.6799 + }, + { + "start": 2789.5, + "end": 2792.84, + "probability": 0.9914 + }, + { + "start": 2793.82, + "end": 2795.54, + "probability": 0.8136 + }, + { + "start": 2796.66, + "end": 2799.08, + "probability": 0.9985 + }, + { + "start": 2800.02, + "end": 2801.16, + "probability": 0.9604 + }, + { + "start": 2801.24, + "end": 2806.28, + "probability": 0.7192 + }, + { + "start": 2807.22, + "end": 2808.68, + "probability": 0.6532 + }, + { + "start": 2809.72, + "end": 2813.08, + "probability": 0.9829 + }, + { + "start": 2813.08, + "end": 2816.82, + "probability": 0.9583 + }, + { + "start": 2816.92, + "end": 2817.28, + "probability": 0.7707 + }, + { + "start": 2817.7, + "end": 2820.12, + "probability": 0.9539 + }, + { + "start": 2820.78, + "end": 2823.36, + "probability": 0.7319 + }, + { + "start": 2830.76, + "end": 2834.66, + "probability": 0.8023 + }, + { + "start": 2836.12, + "end": 2838.12, + "probability": 0.5273 + }, + { + "start": 2839.04, + "end": 2842.6, + "probability": 0.9789 + }, + { + "start": 2843.68, + "end": 2846.55, + "probability": 0.9959 + }, + { + "start": 2847.36, + "end": 2848.56, + "probability": 0.8308 + }, + { + "start": 2849.12, + "end": 2850.28, + "probability": 0.8843 + }, + { + "start": 2850.86, + "end": 2853.9, + "probability": 0.9661 + }, + { + "start": 2854.78, + "end": 2856.2, + "probability": 0.7463 + }, + { + "start": 2856.58, + "end": 2857.26, + "probability": 0.8447 + }, + { + "start": 2857.46, + "end": 2859.71, + "probability": 0.9525 + }, + { + "start": 2860.52, + "end": 2860.88, + "probability": 0.7006 + }, + { + "start": 2861.54, + "end": 2866.62, + "probability": 0.956 + }, + { + "start": 2867.5, + "end": 2869.08, + "probability": 0.9484 + }, + { + "start": 2869.64, + "end": 2871.58, + "probability": 0.9769 + }, + { + "start": 2872.72, + "end": 2874.34, + "probability": 0.9883 + }, + { + "start": 2874.76, + "end": 2877.22, + "probability": 0.998 + }, + { + "start": 2877.68, + "end": 2881.46, + "probability": 0.9549 + }, + { + "start": 2882.6, + "end": 2885.3, + "probability": 0.6995 + }, + { + "start": 2885.44, + "end": 2887.06, + "probability": 0.9402 + }, + { + "start": 2888.24, + "end": 2889.12, + "probability": 0.8392 + }, + { + "start": 2890.7, + "end": 2893.08, + "probability": 0.7614 + }, + { + "start": 2897.08, + "end": 2898.72, + "probability": 0.9769 + }, + { + "start": 2898.78, + "end": 2901.96, + "probability": 0.537 + }, + { + "start": 2902.42, + "end": 2905.54, + "probability": 0.981 + }, + { + "start": 2906.04, + "end": 2910.08, + "probability": 0.6837 + }, + { + "start": 2911.08, + "end": 2912.98, + "probability": 0.7603 + }, + { + "start": 2913.14, + "end": 2916.2, + "probability": 0.9648 + }, + { + "start": 2917.02, + "end": 2919.52, + "probability": 0.7847 + }, + { + "start": 2920.12, + "end": 2922.58, + "probability": 0.7716 + }, + { + "start": 2937.04, + "end": 2938.68, + "probability": 0.7855 + }, + { + "start": 2938.84, + "end": 2941.9, + "probability": 0.9559 + }, + { + "start": 2942.66, + "end": 2942.98, + "probability": 0.6251 + }, + { + "start": 2943.86, + "end": 2944.8, + "probability": 0.9057 + }, + { + "start": 2945.18, + "end": 2946.18, + "probability": 0.948 + }, + { + "start": 2947.12, + "end": 2952.44, + "probability": 0.9971 + }, + { + "start": 2953.28, + "end": 2953.9, + "probability": 0.8622 + }, + { + "start": 2957.11, + "end": 2960.8, + "probability": 0.882 + }, + { + "start": 2960.98, + "end": 2961.68, + "probability": 0.7969 + }, + { + "start": 2961.84, + "end": 2963.82, + "probability": 0.9023 + }, + { + "start": 2964.1, + "end": 2965.5, + "probability": 0.9163 + }, + { + "start": 2966.56, + "end": 2968.04, + "probability": 0.4732 + }, + { + "start": 2968.32, + "end": 2968.44, + "probability": 0.4203 + }, + { + "start": 2968.44, + "end": 2968.86, + "probability": 0.7881 + }, + { + "start": 2969.28, + "end": 2970.32, + "probability": 0.8639 + }, + { + "start": 2970.7, + "end": 2971.64, + "probability": 0.7391 + }, + { + "start": 2973.4, + "end": 2974.26, + "probability": 0.7381 + }, + { + "start": 2975.08, + "end": 2977.68, + "probability": 0.9336 + }, + { + "start": 2978.04, + "end": 2979.1, + "probability": 0.8106 + }, + { + "start": 2979.48, + "end": 2982.14, + "probability": 0.922 + }, + { + "start": 2982.82, + "end": 2985.56, + "probability": 0.9364 + }, + { + "start": 2986.74, + "end": 2987.88, + "probability": 0.8414 + }, + { + "start": 2988.72, + "end": 2991.84, + "probability": 0.899 + }, + { + "start": 2992.8, + "end": 2993.54, + "probability": 0.8749 + }, + { + "start": 2994.52, + "end": 2996.92, + "probability": 0.6494 + }, + { + "start": 2997.58, + "end": 3000.72, + "probability": 0.7373 + }, + { + "start": 3001.38, + "end": 3001.4, + "probability": 0.6069 + }, + { + "start": 3001.4, + "end": 3004.86, + "probability": 0.8669 + }, + { + "start": 3005.4, + "end": 3006.38, + "probability": 0.7571 + }, + { + "start": 3007.32, + "end": 3008.22, + "probability": 0.8083 + }, + { + "start": 3009.94, + "end": 3013.28, + "probability": 0.9892 + }, + { + "start": 3013.54, + "end": 3015.94, + "probability": 0.9679 + }, + { + "start": 3017.06, + "end": 3019.38, + "probability": 0.9921 + }, + { + "start": 3021.0, + "end": 3023.54, + "probability": 0.7289 + }, + { + "start": 3024.34, + "end": 3025.94, + "probability": 0.9951 + }, + { + "start": 3026.74, + "end": 3029.54, + "probability": 0.6089 + }, + { + "start": 3030.0, + "end": 3032.04, + "probability": 0.7499 + }, + { + "start": 3032.62, + "end": 3034.06, + "probability": 0.6332 + }, + { + "start": 3034.7, + "end": 3038.0, + "probability": 0.8774 + }, + { + "start": 3038.44, + "end": 3040.88, + "probability": 0.7866 + }, + { + "start": 3041.82, + "end": 3043.22, + "probability": 0.4996 + }, + { + "start": 3044.06, + "end": 3046.3, + "probability": 0.8761 + }, + { + "start": 3049.1, + "end": 3050.14, + "probability": 0.8496 + }, + { + "start": 3050.8, + "end": 3054.84, + "probability": 0.8213 + }, + { + "start": 3055.6, + "end": 3057.86, + "probability": 0.979 + }, + { + "start": 3058.66, + "end": 3060.55, + "probability": 0.8042 + }, + { + "start": 3061.8, + "end": 3064.08, + "probability": 0.8706 + }, + { + "start": 3065.06, + "end": 3068.34, + "probability": 0.8157 + }, + { + "start": 3068.98, + "end": 3071.08, + "probability": 0.8125 + }, + { + "start": 3072.6, + "end": 3075.44, + "probability": 0.625 + }, + { + "start": 3075.68, + "end": 3077.22, + "probability": 0.9589 + }, + { + "start": 3077.7, + "end": 3078.57, + "probability": 0.6991 + }, + { + "start": 3080.04, + "end": 3081.88, + "probability": 0.8876 + }, + { + "start": 3083.4, + "end": 3085.52, + "probability": 0.9635 + }, + { + "start": 3085.96, + "end": 3087.32, + "probability": 0.9486 + }, + { + "start": 3087.98, + "end": 3089.84, + "probability": 0.8096 + }, + { + "start": 3090.28, + "end": 3090.88, + "probability": 0.6805 + }, + { + "start": 3091.04, + "end": 3092.98, + "probability": 0.8849 + }, + { + "start": 3093.52, + "end": 3095.86, + "probability": 0.9282 + }, + { + "start": 3096.92, + "end": 3098.18, + "probability": 0.6808 + }, + { + "start": 3098.28, + "end": 3098.98, + "probability": 0.7468 + }, + { + "start": 3099.22, + "end": 3100.46, + "probability": 0.9673 + }, + { + "start": 3100.94, + "end": 3101.52, + "probability": 0.5866 + }, + { + "start": 3101.96, + "end": 3104.34, + "probability": 0.9349 + }, + { + "start": 3105.1, + "end": 3107.64, + "probability": 0.9745 + }, + { + "start": 3108.34, + "end": 3110.6, + "probability": 0.9716 + }, + { + "start": 3111.64, + "end": 3116.78, + "probability": 0.9687 + }, + { + "start": 3117.62, + "end": 3123.42, + "probability": 0.7364 + }, + { + "start": 3123.52, + "end": 3124.22, + "probability": 0.7704 + }, + { + "start": 3124.76, + "end": 3125.34, + "probability": 0.823 + }, + { + "start": 3126.96, + "end": 3130.22, + "probability": 0.7948 + }, + { + "start": 3131.12, + "end": 3135.46, + "probability": 0.5305 + }, + { + "start": 3136.14, + "end": 3137.54, + "probability": 0.8613 + }, + { + "start": 3138.68, + "end": 3139.44, + "probability": 0.9785 + }, + { + "start": 3140.52, + "end": 3141.6, + "probability": 0.7992 + }, + { + "start": 3142.42, + "end": 3143.02, + "probability": 0.7166 + }, + { + "start": 3143.78, + "end": 3146.68, + "probability": 0.9933 + }, + { + "start": 3149.9, + "end": 3150.44, + "probability": 0.8501 + }, + { + "start": 3150.5, + "end": 3155.44, + "probability": 0.9762 + }, + { + "start": 3156.36, + "end": 3157.36, + "probability": 0.8005 + }, + { + "start": 3158.02, + "end": 3158.86, + "probability": 0.8832 + }, + { + "start": 3159.84, + "end": 3161.68, + "probability": 0.8895 + }, + { + "start": 3162.62, + "end": 3163.28, + "probability": 0.7095 + }, + { + "start": 3163.84, + "end": 3165.1, + "probability": 0.9201 + }, + { + "start": 3166.02, + "end": 3168.18, + "probability": 0.9803 + }, + { + "start": 3169.04, + "end": 3173.26, + "probability": 0.9594 + }, + { + "start": 3173.62, + "end": 3174.54, + "probability": 0.7204 + }, + { + "start": 3175.28, + "end": 3177.06, + "probability": 0.8059 + }, + { + "start": 3178.2, + "end": 3180.82, + "probability": 0.9727 + }, + { + "start": 3181.84, + "end": 3186.04, + "probability": 0.8963 + }, + { + "start": 3187.02, + "end": 3187.1, + "probability": 0.4324 + }, + { + "start": 3187.22, + "end": 3188.78, + "probability": 0.6667 + }, + { + "start": 3189.2, + "end": 3191.02, + "probability": 0.7594 + }, + { + "start": 3191.7, + "end": 3195.23, + "probability": 0.9087 + }, + { + "start": 3196.02, + "end": 3199.0, + "probability": 0.7105 + }, + { + "start": 3199.4, + "end": 3201.62, + "probability": 0.9391 + }, + { + "start": 3202.4, + "end": 3204.96, + "probability": 0.7676 + }, + { + "start": 3206.42, + "end": 3209.48, + "probability": 0.6981 + }, + { + "start": 3210.88, + "end": 3213.0, + "probability": 0.9521 + }, + { + "start": 3213.4, + "end": 3215.28, + "probability": 0.6979 + }, + { + "start": 3216.2, + "end": 3218.8, + "probability": 0.9688 + }, + { + "start": 3220.44, + "end": 3223.54, + "probability": 0.8681 + }, + { + "start": 3225.56, + "end": 3227.34, + "probability": 0.9844 + }, + { + "start": 3229.56, + "end": 3231.74, + "probability": 0.998 + }, + { + "start": 3232.24, + "end": 3233.62, + "probability": 0.8197 + }, + { + "start": 3234.98, + "end": 3238.14, + "probability": 0.9719 + }, + { + "start": 3239.2, + "end": 3239.94, + "probability": 0.9638 + }, + { + "start": 3240.76, + "end": 3244.0, + "probability": 0.7464 + }, + { + "start": 3244.66, + "end": 3245.52, + "probability": 0.8909 + }, + { + "start": 3246.52, + "end": 3248.36, + "probability": 0.6704 + }, + { + "start": 3249.36, + "end": 3250.52, + "probability": 0.901 + }, + { + "start": 3251.38, + "end": 3254.97, + "probability": 0.8761 + }, + { + "start": 3255.2, + "end": 3259.74, + "probability": 0.8209 + }, + { + "start": 3260.36, + "end": 3262.86, + "probability": 0.331 + }, + { + "start": 3263.82, + "end": 3266.0, + "probability": 0.571 + }, + { + "start": 3267.5, + "end": 3272.98, + "probability": 0.9612 + }, + { + "start": 3273.62, + "end": 3274.88, + "probability": 0.7907 + }, + { + "start": 3275.7, + "end": 3277.42, + "probability": 0.6676 + }, + { + "start": 3277.96, + "end": 3283.8, + "probability": 0.9813 + }, + { + "start": 3284.84, + "end": 3286.46, + "probability": 0.8187 + }, + { + "start": 3286.98, + "end": 3289.82, + "probability": 0.9978 + }, + { + "start": 3291.62, + "end": 3292.0, + "probability": 0.8242 + }, + { + "start": 3292.34, + "end": 3292.84, + "probability": 0.8881 + }, + { + "start": 3293.06, + "end": 3297.0, + "probability": 0.9701 + }, + { + "start": 3297.82, + "end": 3302.76, + "probability": 0.98 + }, + { + "start": 3303.9, + "end": 3305.66, + "probability": 0.9694 + }, + { + "start": 3306.86, + "end": 3309.12, + "probability": 0.9963 + }, + { + "start": 3309.5, + "end": 3311.12, + "probability": 0.933 + }, + { + "start": 3312.66, + "end": 3316.92, + "probability": 0.9873 + }, + { + "start": 3317.66, + "end": 3320.56, + "probability": 0.9751 + }, + { + "start": 3320.92, + "end": 3324.6, + "probability": 0.9584 + }, + { + "start": 3325.64, + "end": 3328.98, + "probability": 0.7988 + }, + { + "start": 3329.82, + "end": 3331.02, + "probability": 0.9978 + }, + { + "start": 3332.02, + "end": 3333.4, + "probability": 0.6886 + }, + { + "start": 3333.92, + "end": 3337.52, + "probability": 0.7608 + }, + { + "start": 3337.92, + "end": 3340.7, + "probability": 0.9881 + }, + { + "start": 3340.7, + "end": 3343.58, + "probability": 0.9949 + }, + { + "start": 3344.96, + "end": 3345.42, + "probability": 0.7945 + }, + { + "start": 3346.16, + "end": 3347.12, + "probability": 0.6869 + }, + { + "start": 3347.62, + "end": 3351.94, + "probability": 0.984 + }, + { + "start": 3352.58, + "end": 3353.28, + "probability": 0.8386 + }, + { + "start": 3353.82, + "end": 3357.88, + "probability": 0.9854 + }, + { + "start": 3359.0, + "end": 3359.56, + "probability": 0.4079 + }, + { + "start": 3360.16, + "end": 3362.7, + "probability": 0.9952 + }, + { + "start": 3363.62, + "end": 3367.0, + "probability": 0.9675 + }, + { + "start": 3368.26, + "end": 3371.94, + "probability": 0.9204 + }, + { + "start": 3372.6, + "end": 3375.42, + "probability": 0.6999 + }, + { + "start": 3376.12, + "end": 3377.18, + "probability": 0.93 + }, + { + "start": 3378.34, + "end": 3378.64, + "probability": 0.788 + }, + { + "start": 3379.18, + "end": 3384.96, + "probability": 0.8308 + }, + { + "start": 3385.22, + "end": 3386.32, + "probability": 0.8933 + }, + { + "start": 3390.44, + "end": 3391.42, + "probability": 0.9526 + }, + { + "start": 3392.54, + "end": 3394.42, + "probability": 0.938 + }, + { + "start": 3395.44, + "end": 3396.48, + "probability": 0.9118 + }, + { + "start": 3396.96, + "end": 3400.14, + "probability": 0.8897 + }, + { + "start": 3400.88, + "end": 3402.26, + "probability": 0.7089 + }, + { + "start": 3403.16, + "end": 3406.22, + "probability": 0.7993 + }, + { + "start": 3407.06, + "end": 3410.5, + "probability": 0.9546 + }, + { + "start": 3411.08, + "end": 3412.52, + "probability": 0.7333 + }, + { + "start": 3413.42, + "end": 3413.8, + "probability": 0.5817 + }, + { + "start": 3415.84, + "end": 3417.34, + "probability": 0.7368 + }, + { + "start": 3419.16, + "end": 3419.94, + "probability": 0.5384 + }, + { + "start": 3420.82, + "end": 3423.24, + "probability": 0.9142 + }, + { + "start": 3424.02, + "end": 3427.46, + "probability": 0.9951 + }, + { + "start": 3428.2, + "end": 3430.22, + "probability": 0.9966 + }, + { + "start": 3431.34, + "end": 3433.6, + "probability": 0.7235 + }, + { + "start": 3434.32, + "end": 3435.08, + "probability": 0.6371 + }, + { + "start": 3435.94, + "end": 3436.52, + "probability": 0.7236 + }, + { + "start": 3436.7, + "end": 3439.38, + "probability": 0.7861 + }, + { + "start": 3440.14, + "end": 3440.98, + "probability": 0.7816 + }, + { + "start": 3441.32, + "end": 3443.58, + "probability": 0.7697 + }, + { + "start": 3443.58, + "end": 3445.76, + "probability": 0.8702 + }, + { + "start": 3445.92, + "end": 3446.43, + "probability": 0.9927 + }, + { + "start": 3448.02, + "end": 3450.46, + "probability": 0.9925 + }, + { + "start": 3450.82, + "end": 3451.44, + "probability": 0.8439 + }, + { + "start": 3452.36, + "end": 3456.84, + "probability": 0.9704 + }, + { + "start": 3457.62, + "end": 3462.44, + "probability": 0.9161 + }, + { + "start": 3463.0, + "end": 3465.9, + "probability": 0.9961 + }, + { + "start": 3465.94, + "end": 3483.88, + "probability": 0.9977 + }, + { + "start": 3483.92, + "end": 3484.7, + "probability": 0.6839 + }, + { + "start": 3485.48, + "end": 3487.84, + "probability": 0.9583 + }, + { + "start": 3487.96, + "end": 3488.48, + "probability": 0.3749 + }, + { + "start": 3488.5, + "end": 3491.9, + "probability": 0.9321 + }, + { + "start": 3495.22, + "end": 3496.06, + "probability": 0.9322 + }, + { + "start": 3500.22, + "end": 3501.94, + "probability": 0.8788 + }, + { + "start": 3502.3, + "end": 3502.98, + "probability": 0.3036 + }, + { + "start": 3509.98, + "end": 3513.78, + "probability": 0.782 + }, + { + "start": 3514.66, + "end": 3515.78, + "probability": 0.8322 + }, + { + "start": 3516.68, + "end": 3517.18, + "probability": 0.7985 + }, + { + "start": 3517.84, + "end": 3519.13, + "probability": 0.6362 + }, + { + "start": 3520.14, + "end": 3522.46, + "probability": 0.9912 + }, + { + "start": 3522.96, + "end": 3523.98, + "probability": 0.6813 + }, + { + "start": 3525.06, + "end": 3527.58, + "probability": 0.9304 + }, + { + "start": 3528.32, + "end": 3532.78, + "probability": 0.8142 + }, + { + "start": 3533.6, + "end": 3536.3, + "probability": 0.9976 + }, + { + "start": 3536.44, + "end": 3537.0, + "probability": 0.4999 + }, + { + "start": 3538.06, + "end": 3542.28, + "probability": 0.9976 + }, + { + "start": 3542.68, + "end": 3545.88, + "probability": 0.9644 + }, + { + "start": 3547.0, + "end": 3548.5, + "probability": 0.7404 + }, + { + "start": 3549.66, + "end": 3551.38, + "probability": 0.7648 + }, + { + "start": 3551.78, + "end": 3554.12, + "probability": 0.9324 + }, + { + "start": 3555.24, + "end": 3557.85, + "probability": 0.9668 + }, + { + "start": 3560.14, + "end": 3567.74, + "probability": 0.947 + }, + { + "start": 3569.04, + "end": 3572.3, + "probability": 0.9855 + }, + { + "start": 3573.18, + "end": 3574.1, + "probability": 0.6925 + }, + { + "start": 3574.74, + "end": 3578.32, + "probability": 0.8725 + }, + { + "start": 3579.06, + "end": 3583.14, + "probability": 0.8821 + }, + { + "start": 3584.16, + "end": 3590.14, + "probability": 0.6818 + }, + { + "start": 3591.58, + "end": 3591.64, + "probability": 0.7687 + }, + { + "start": 3591.88, + "end": 3593.22, + "probability": 0.8082 + }, + { + "start": 3593.44, + "end": 3596.1, + "probability": 0.8241 + }, + { + "start": 3597.54, + "end": 3601.92, + "probability": 0.9736 + }, + { + "start": 3601.92, + "end": 3606.26, + "probability": 0.9347 + }, + { + "start": 3606.46, + "end": 3607.34, + "probability": 0.8933 + }, + { + "start": 3609.62, + "end": 3610.58, + "probability": 0.6798 + }, + { + "start": 3610.7, + "end": 3611.26, + "probability": 0.7875 + }, + { + "start": 3611.4, + "end": 3612.22, + "probability": 0.9339 + }, + { + "start": 3612.64, + "end": 3616.8, + "probability": 0.9699 + }, + { + "start": 3617.0, + "end": 3617.76, + "probability": 0.9548 + }, + { + "start": 3619.48, + "end": 3624.48, + "probability": 0.9571 + }, + { + "start": 3624.94, + "end": 3627.38, + "probability": 0.722 + }, + { + "start": 3627.42, + "end": 3627.78, + "probability": 0.7975 + }, + { + "start": 3628.4, + "end": 3633.38, + "probability": 0.9902 + }, + { + "start": 3633.6, + "end": 3637.34, + "probability": 0.877 + }, + { + "start": 3637.42, + "end": 3637.94, + "probability": 0.9759 + }, + { + "start": 3639.14, + "end": 3642.42, + "probability": 0.9619 + }, + { + "start": 3642.42, + "end": 3646.68, + "probability": 0.9834 + }, + { + "start": 3647.18, + "end": 3647.98, + "probability": 0.8691 + }, + { + "start": 3648.92, + "end": 3649.7, + "probability": 0.9711 + }, + { + "start": 3650.8, + "end": 3651.66, + "probability": 0.7161 + }, + { + "start": 3651.74, + "end": 3655.91, + "probability": 0.9305 + }, + { + "start": 3656.96, + "end": 3663.1, + "probability": 0.9957 + }, + { + "start": 3664.1, + "end": 3665.05, + "probability": 0.4589 + }, + { + "start": 3665.26, + "end": 3668.42, + "probability": 0.8862 + }, + { + "start": 3669.26, + "end": 3670.0, + "probability": 0.9439 + }, + { + "start": 3670.04, + "end": 3670.44, + "probability": 0.7053 + }, + { + "start": 3670.48, + "end": 3673.9, + "probability": 0.9201 + }, + { + "start": 3674.88, + "end": 3675.8, + "probability": 0.9645 + }, + { + "start": 3675.96, + "end": 3676.6, + "probability": 0.787 + }, + { + "start": 3676.68, + "end": 3679.54, + "probability": 0.8983 + }, + { + "start": 3679.96, + "end": 3683.92, + "probability": 0.6543 + }, + { + "start": 3683.98, + "end": 3685.76, + "probability": 0.9612 + }, + { + "start": 3686.48, + "end": 3688.58, + "probability": 0.9895 + }, + { + "start": 3689.22, + "end": 3690.88, + "probability": 0.9878 + }, + { + "start": 3691.02, + "end": 3691.74, + "probability": 0.9385 + }, + { + "start": 3691.88, + "end": 3693.04, + "probability": 0.9939 + }, + { + "start": 3693.96, + "end": 3695.08, + "probability": 0.9559 + }, + { + "start": 3696.02, + "end": 3699.36, + "probability": 0.9469 + }, + { + "start": 3700.12, + "end": 3700.9, + "probability": 0.9786 + }, + { + "start": 3701.54, + "end": 3702.66, + "probability": 0.881 + }, + { + "start": 3703.26, + "end": 3706.74, + "probability": 0.9792 + }, + { + "start": 3706.82, + "end": 3709.8, + "probability": 0.9529 + }, + { + "start": 3710.04, + "end": 3710.72, + "probability": 0.9737 + }, + { + "start": 3710.82, + "end": 3713.2, + "probability": 0.7377 + }, + { + "start": 3713.2, + "end": 3714.98, + "probability": 0.7277 + }, + { + "start": 3715.04, + "end": 3717.58, + "probability": 0.9746 + }, + { + "start": 3717.68, + "end": 3718.3, + "probability": 0.4038 + }, + { + "start": 3719.66, + "end": 3721.6, + "probability": 0.8673 + }, + { + "start": 3722.08, + "end": 3724.82, + "probability": 0.8176 + }, + { + "start": 3724.86, + "end": 3726.12, + "probability": 0.8923 + }, + { + "start": 3726.66, + "end": 3727.8, + "probability": 0.9972 + }, + { + "start": 3728.36, + "end": 3731.58, + "probability": 0.995 + }, + { + "start": 3731.88, + "end": 3733.82, + "probability": 0.9888 + }, + { + "start": 3733.9, + "end": 3735.06, + "probability": 0.6293 + }, + { + "start": 3736.52, + "end": 3738.78, + "probability": 0.582 + }, + { + "start": 3738.78, + "end": 3741.22, + "probability": 0.8365 + }, + { + "start": 3741.22, + "end": 3742.28, + "probability": 0.9871 + }, + { + "start": 3744.36, + "end": 3744.66, + "probability": 0.722 + }, + { + "start": 3744.72, + "end": 3748.22, + "probability": 0.9948 + }, + { + "start": 3749.24, + "end": 3749.9, + "probability": 0.9265 + }, + { + "start": 3750.46, + "end": 3750.96, + "probability": 0.9197 + }, + { + "start": 3751.84, + "end": 3752.34, + "probability": 0.7463 + }, + { + "start": 3753.06, + "end": 3756.36, + "probability": 0.9109 + }, + { + "start": 3756.52, + "end": 3760.9, + "probability": 0.9946 + }, + { + "start": 3761.62, + "end": 3762.44, + "probability": 0.9282 + }, + { + "start": 3762.54, + "end": 3762.6, + "probability": 0.564 + }, + { + "start": 3762.72, + "end": 3764.8, + "probability": 0.9008 + }, + { + "start": 3765.46, + "end": 3766.88, + "probability": 0.988 + }, + { + "start": 3767.0, + "end": 3771.93, + "probability": 0.9859 + }, + { + "start": 3773.22, + "end": 3778.8, + "probability": 0.9512 + }, + { + "start": 3778.8, + "end": 3781.54, + "probability": 0.9941 + }, + { + "start": 3782.62, + "end": 3784.5, + "probability": 0.9507 + }, + { + "start": 3784.56, + "end": 3785.08, + "probability": 0.7929 + }, + { + "start": 3785.26, + "end": 3789.26, + "probability": 0.9613 + }, + { + "start": 3789.32, + "end": 3790.72, + "probability": 0.9076 + }, + { + "start": 3791.76, + "end": 3792.28, + "probability": 0.9852 + }, + { + "start": 3793.26, + "end": 3795.94, + "probability": 0.9397 + }, + { + "start": 3796.24, + "end": 3798.48, + "probability": 0.8613 + }, + { + "start": 3798.54, + "end": 3801.02, + "probability": 0.9608 + }, + { + "start": 3802.32, + "end": 3804.76, + "probability": 0.9678 + }, + { + "start": 3805.84, + "end": 3811.74, + "probability": 0.9818 + }, + { + "start": 3811.76, + "end": 3812.9, + "probability": 0.6118 + }, + { + "start": 3829.82, + "end": 3831.28, + "probability": 0.6298 + }, + { + "start": 3832.32, + "end": 3836.86, + "probability": 0.7967 + }, + { + "start": 3838.44, + "end": 3840.0, + "probability": 0.4566 + }, + { + "start": 3841.02, + "end": 3842.92, + "probability": 0.9911 + }, + { + "start": 3843.66, + "end": 3846.86, + "probability": 0.8267 + }, + { + "start": 3847.62, + "end": 3849.72, + "probability": 0.981 + }, + { + "start": 3850.52, + "end": 3852.5, + "probability": 0.97 + }, + { + "start": 3853.18, + "end": 3854.8, + "probability": 0.9301 + }, + { + "start": 3855.3, + "end": 3856.62, + "probability": 0.9668 + }, + { + "start": 3856.86, + "end": 3859.36, + "probability": 0.9989 + }, + { + "start": 3859.98, + "end": 3865.22, + "probability": 0.5492 + }, + { + "start": 3865.82, + "end": 3873.28, + "probability": 0.5473 + }, + { + "start": 3873.74, + "end": 3875.52, + "probability": 0.8214 + }, + { + "start": 3875.88, + "end": 3877.96, + "probability": 0.9605 + }, + { + "start": 3878.5, + "end": 3879.54, + "probability": 0.9892 + }, + { + "start": 3880.52, + "end": 3880.96, + "probability": 0.9713 + }, + { + "start": 3882.2, + "end": 3884.98, + "probability": 0.7906 + }, + { + "start": 3884.98, + "end": 3888.38, + "probability": 0.8993 + }, + { + "start": 3888.96, + "end": 3891.28, + "probability": 0.8037 + }, + { + "start": 3891.38, + "end": 3898.48, + "probability": 0.6028 + }, + { + "start": 3899.14, + "end": 3902.68, + "probability": 0.9213 + }, + { + "start": 3903.5, + "end": 3905.4, + "probability": 0.9506 + }, + { + "start": 3906.6, + "end": 3910.44, + "probability": 0.979 + }, + { + "start": 3911.6, + "end": 3915.48, + "probability": 0.9421 + }, + { + "start": 3935.82, + "end": 3937.46, + "probability": 0.5569 + }, + { + "start": 3937.92, + "end": 3940.1, + "probability": 0.8718 + }, + { + "start": 3940.86, + "end": 3943.4, + "probability": 0.7993 + }, + { + "start": 3944.9, + "end": 3948.06, + "probability": 0.992 + }, + { + "start": 3948.72, + "end": 3952.7, + "probability": 0.9751 + }, + { + "start": 3952.7, + "end": 3955.7, + "probability": 0.9917 + }, + { + "start": 3956.84, + "end": 3957.24, + "probability": 0.7146 + }, + { + "start": 3957.32, + "end": 3958.1, + "probability": 0.6843 + }, + { + "start": 3958.3, + "end": 3962.62, + "probability": 0.9933 + }, + { + "start": 3963.81, + "end": 3967.76, + "probability": 0.9432 + }, + { + "start": 3968.72, + "end": 3970.74, + "probability": 0.9784 + }, + { + "start": 3972.28, + "end": 3977.36, + "probability": 0.9895 + }, + { + "start": 3978.46, + "end": 3982.94, + "probability": 0.9944 + }, + { + "start": 3982.94, + "end": 3985.5, + "probability": 0.9467 + }, + { + "start": 3986.56, + "end": 3987.16, + "probability": 0.4001 + }, + { + "start": 3987.3, + "end": 3988.52, + "probability": 0.4749 + }, + { + "start": 3988.72, + "end": 3990.96, + "probability": 0.846 + }, + { + "start": 3991.12, + "end": 3992.72, + "probability": 0.9117 + }, + { + "start": 3992.84, + "end": 3996.02, + "probability": 0.8898 + }, + { + "start": 3996.64, + "end": 3999.82, + "probability": 0.9977 + }, + { + "start": 4000.02, + "end": 4003.4, + "probability": 0.9229 + }, + { + "start": 4003.5, + "end": 4005.08, + "probability": 0.9664 + }, + { + "start": 4005.24, + "end": 4005.94, + "probability": 0.6308 + }, + { + "start": 4006.54, + "end": 4008.4, + "probability": 0.992 + }, + { + "start": 4009.34, + "end": 4011.34, + "probability": 0.9455 + }, + { + "start": 4012.74, + "end": 4013.8, + "probability": 0.9254 + }, + { + "start": 4014.2, + "end": 4015.52, + "probability": 0.9519 + }, + { + "start": 4015.64, + "end": 4018.9, + "probability": 0.8769 + }, + { + "start": 4020.58, + "end": 4022.08, + "probability": 0.776 + }, + { + "start": 4022.98, + "end": 4026.56, + "probability": 0.9915 + }, + { + "start": 4026.56, + "end": 4031.04, + "probability": 0.9979 + }, + { + "start": 4031.86, + "end": 4033.04, + "probability": 0.7177 + }, + { + "start": 4033.7, + "end": 4035.88, + "probability": 0.9929 + }, + { + "start": 4036.04, + "end": 4036.72, + "probability": 0.8448 + }, + { + "start": 4036.74, + "end": 4039.9, + "probability": 0.9988 + }, + { + "start": 4041.78, + "end": 4043.1, + "probability": 0.534 + }, + { + "start": 4043.48, + "end": 4047.2, + "probability": 0.989 + }, + { + "start": 4048.16, + "end": 4053.26, + "probability": 0.989 + }, + { + "start": 4054.02, + "end": 4059.46, + "probability": 0.9961 + }, + { + "start": 4059.46, + "end": 4063.62, + "probability": 0.9661 + }, + { + "start": 4067.12, + "end": 4071.44, + "probability": 0.9312 + }, + { + "start": 4072.32, + "end": 4076.5, + "probability": 0.9327 + }, + { + "start": 4076.64, + "end": 4077.2, + "probability": 0.9045 + }, + { + "start": 4077.32, + "end": 4078.02, + "probability": 0.6389 + }, + { + "start": 4078.72, + "end": 4080.03, + "probability": 0.9917 + }, + { + "start": 4080.14, + "end": 4082.98, + "probability": 0.9932 + }, + { + "start": 4083.18, + "end": 4084.1, + "probability": 0.5453 + }, + { + "start": 4084.22, + "end": 4086.04, + "probability": 0.9218 + }, + { + "start": 4087.74, + "end": 4090.78, + "probability": 0.9945 + }, + { + "start": 4092.42, + "end": 4096.06, + "probability": 0.9886 + }, + { + "start": 4097.02, + "end": 4100.86, + "probability": 0.7248 + }, + { + "start": 4101.92, + "end": 4105.72, + "probability": 0.9893 + }, + { + "start": 4105.72, + "end": 4108.92, + "probability": 0.865 + }, + { + "start": 4109.06, + "end": 4111.82, + "probability": 0.9924 + }, + { + "start": 4112.74, + "end": 4113.54, + "probability": 0.8314 + }, + { + "start": 4115.28, + "end": 4118.38, + "probability": 0.8346 + }, + { + "start": 4119.26, + "end": 4124.06, + "probability": 0.9895 + }, + { + "start": 4125.34, + "end": 4127.96, + "probability": 0.9951 + }, + { + "start": 4128.5, + "end": 4131.14, + "probability": 0.9928 + }, + { + "start": 4131.32, + "end": 4134.5, + "probability": 0.942 + }, + { + "start": 4135.5, + "end": 4138.04, + "probability": 0.96 + }, + { + "start": 4138.34, + "end": 4140.96, + "probability": 0.7496 + }, + { + "start": 4141.38, + "end": 4142.82, + "probability": 0.9565 + }, + { + "start": 4143.24, + "end": 4145.4, + "probability": 0.9991 + }, + { + "start": 4146.2, + "end": 4149.64, + "probability": 0.9847 + }, + { + "start": 4150.4, + "end": 4155.48, + "probability": 0.9941 + }, + { + "start": 4155.48, + "end": 4162.28, + "probability": 0.992 + }, + { + "start": 4162.28, + "end": 4166.24, + "probability": 0.9927 + }, + { + "start": 4167.26, + "end": 4169.42, + "probability": 0.7318 + }, + { + "start": 4169.98, + "end": 4171.88, + "probability": 0.9786 + }, + { + "start": 4172.7, + "end": 4173.58, + "probability": 0.918 + }, + { + "start": 4173.64, + "end": 4174.76, + "probability": 0.9211 + }, + { + "start": 4174.84, + "end": 4178.92, + "probability": 0.8388 + }, + { + "start": 4179.9, + "end": 4180.78, + "probability": 0.851 + }, + { + "start": 4180.9, + "end": 4181.34, + "probability": 0.4301 + }, + { + "start": 4181.52, + "end": 4183.3, + "probability": 0.8708 + }, + { + "start": 4183.42, + "end": 4184.3, + "probability": 0.8483 + }, + { + "start": 4184.5, + "end": 4191.52, + "probability": 0.9542 + }, + { + "start": 4192.52, + "end": 4194.18, + "probability": 0.9438 + }, + { + "start": 4194.76, + "end": 4199.42, + "probability": 0.9931 + }, + { + "start": 4199.9, + "end": 4207.78, + "probability": 0.9932 + }, + { + "start": 4207.78, + "end": 4214.1, + "probability": 0.9603 + }, + { + "start": 4214.7, + "end": 4219.18, + "probability": 0.9296 + }, + { + "start": 4219.8, + "end": 4222.98, + "probability": 0.9646 + }, + { + "start": 4223.52, + "end": 4226.78, + "probability": 0.9922 + }, + { + "start": 4226.78, + "end": 4229.86, + "probability": 0.9982 + }, + { + "start": 4230.3, + "end": 4232.82, + "probability": 0.9958 + }, + { + "start": 4233.42, + "end": 4237.78, + "probability": 0.9875 + }, + { + "start": 4238.16, + "end": 4242.2, + "probability": 0.9232 + }, + { + "start": 4242.74, + "end": 4247.32, + "probability": 0.9968 + }, + { + "start": 4247.72, + "end": 4250.5, + "probability": 0.9941 + }, + { + "start": 4250.94, + "end": 4251.94, + "probability": 0.9117 + }, + { + "start": 4252.58, + "end": 4255.06, + "probability": 0.9214 + }, + { + "start": 4255.44, + "end": 4258.76, + "probability": 0.9872 + }, + { + "start": 4258.76, + "end": 4261.34, + "probability": 0.9989 + }, + { + "start": 4261.98, + "end": 4262.64, + "probability": 0.7297 + }, + { + "start": 4262.78, + "end": 4267.26, + "probability": 0.9917 + }, + { + "start": 4267.9, + "end": 4270.3, + "probability": 0.8276 + }, + { + "start": 4270.4, + "end": 4272.42, + "probability": 0.901 + }, + { + "start": 4272.44, + "end": 4276.08, + "probability": 0.9261 + }, + { + "start": 4276.8, + "end": 4282.3, + "probability": 0.9949 + }, + { + "start": 4282.3, + "end": 4287.02, + "probability": 0.9941 + }, + { + "start": 4287.1, + "end": 4287.56, + "probability": 0.8667 + }, + { + "start": 4288.96, + "end": 4289.34, + "probability": 0.4724 + }, + { + "start": 4289.42, + "end": 4291.31, + "probability": 0.6071 + }, + { + "start": 4292.08, + "end": 4292.78, + "probability": 0.3461 + }, + { + "start": 4293.44, + "end": 4293.92, + "probability": 0.8624 + }, + { + "start": 4296.52, + "end": 4296.98, + "probability": 0.0207 + }, + { + "start": 4298.26, + "end": 4299.16, + "probability": 0.0082 + }, + { + "start": 4300.68, + "end": 4303.44, + "probability": 0.3833 + }, + { + "start": 4311.16, + "end": 4312.62, + "probability": 0.549 + }, + { + "start": 4312.86, + "end": 4313.62, + "probability": 0.5182 + }, + { + "start": 4313.7, + "end": 4314.14, + "probability": 0.911 + }, + { + "start": 4314.24, + "end": 4316.0, + "probability": 0.6939 + }, + { + "start": 4316.32, + "end": 4316.62, + "probability": 0.7873 + }, + { + "start": 4317.52, + "end": 4318.86, + "probability": 0.5795 + }, + { + "start": 4319.04, + "end": 4319.7, + "probability": 0.8499 + }, + { + "start": 4321.02, + "end": 4321.98, + "probability": 0.6972 + }, + { + "start": 4322.24, + "end": 4324.74, + "probability": 0.9789 + }, + { + "start": 4325.98, + "end": 4326.48, + "probability": 0.3661 + }, + { + "start": 4326.52, + "end": 4326.88, + "probability": 0.8491 + }, + { + "start": 4327.0, + "end": 4336.8, + "probability": 0.9825 + }, + { + "start": 4338.04, + "end": 4340.6, + "probability": 0.9951 + }, + { + "start": 4341.46, + "end": 4346.58, + "probability": 0.9937 + }, + { + "start": 4346.86, + "end": 4348.9, + "probability": 0.797 + }, + { + "start": 4350.4, + "end": 4350.8, + "probability": 0.7789 + }, + { + "start": 4351.56, + "end": 4352.1, + "probability": 0.7425 + }, + { + "start": 4353.2, + "end": 4354.26, + "probability": 0.6633 + }, + { + "start": 4354.46, + "end": 4355.96, + "probability": 0.9285 + }, + { + "start": 4356.04, + "end": 4361.64, + "probability": 0.9136 + }, + { + "start": 4362.74, + "end": 4365.16, + "probability": 0.9631 + }, + { + "start": 4366.08, + "end": 4371.58, + "probability": 0.9956 + }, + { + "start": 4374.0, + "end": 4375.5, + "probability": 0.7131 + }, + { + "start": 4375.7, + "end": 4376.42, + "probability": 0.5862 + }, + { + "start": 4376.46, + "end": 4379.0, + "probability": 0.7416 + }, + { + "start": 4379.74, + "end": 4383.38, + "probability": 0.9524 + }, + { + "start": 4384.16, + "end": 4385.34, + "probability": 0.7 + }, + { + "start": 4385.92, + "end": 4392.1, + "probability": 0.9688 + }, + { + "start": 4393.5, + "end": 4393.52, + "probability": 0.26 + }, + { + "start": 4394.12, + "end": 4395.82, + "probability": 0.9585 + }, + { + "start": 4396.34, + "end": 4399.24, + "probability": 0.8962 + }, + { + "start": 4400.76, + "end": 4403.62, + "probability": 0.6098 + }, + { + "start": 4404.68, + "end": 4405.52, + "probability": 0.9855 + }, + { + "start": 4407.96, + "end": 4408.46, + "probability": 0.4304 + }, + { + "start": 4409.34, + "end": 4411.26, + "probability": 0.6866 + }, + { + "start": 4413.75, + "end": 4421.56, + "probability": 0.9507 + }, + { + "start": 4422.42, + "end": 4423.68, + "probability": 0.7335 + }, + { + "start": 4428.52, + "end": 4433.1, + "probability": 0.6665 + }, + { + "start": 4434.04, + "end": 4435.28, + "probability": 0.8112 + }, + { + "start": 4436.18, + "end": 4443.24, + "probability": 0.9868 + }, + { + "start": 4443.46, + "end": 4444.84, + "probability": 0.9956 + }, + { + "start": 4445.66, + "end": 4446.5, + "probability": 0.8246 + }, + { + "start": 4447.16, + "end": 4448.46, + "probability": 0.7722 + }, + { + "start": 4448.68, + "end": 4450.26, + "probability": 0.9044 + }, + { + "start": 4451.24, + "end": 4456.98, + "probability": 0.981 + }, + { + "start": 4457.2, + "end": 4458.2, + "probability": 0.677 + }, + { + "start": 4458.3, + "end": 4460.2, + "probability": 0.5244 + }, + { + "start": 4460.46, + "end": 4461.62, + "probability": 0.8371 + }, + { + "start": 4461.96, + "end": 4463.02, + "probability": 0.9175 + }, + { + "start": 4463.48, + "end": 4465.0, + "probability": 0.8987 + }, + { + "start": 4466.1, + "end": 4468.62, + "probability": 0.6896 + }, + { + "start": 4469.62, + "end": 4474.1, + "probability": 0.9428 + }, + { + "start": 4475.64, + "end": 4477.08, + "probability": 0.7204 + }, + { + "start": 4478.68, + "end": 4480.96, + "probability": 0.7861 + }, + { + "start": 4482.5, + "end": 4483.6, + "probability": 0.0453 + }, + { + "start": 4485.52, + "end": 4486.86, + "probability": 0.746 + }, + { + "start": 4487.1, + "end": 4491.34, + "probability": 0.7759 + }, + { + "start": 4492.62, + "end": 4496.66, + "probability": 0.9543 + }, + { + "start": 4497.74, + "end": 4499.94, + "probability": 0.8692 + }, + { + "start": 4499.96, + "end": 4500.5, + "probability": 0.6855 + }, + { + "start": 4500.56, + "end": 4501.38, + "probability": 0.5871 + }, + { + "start": 4502.5, + "end": 4507.32, + "probability": 0.9902 + }, + { + "start": 4508.78, + "end": 4511.9, + "probability": 0.9786 + }, + { + "start": 4512.7, + "end": 4514.08, + "probability": 0.9314 + }, + { + "start": 4515.52, + "end": 4516.46, + "probability": 0.9353 + }, + { + "start": 4517.12, + "end": 4519.74, + "probability": 0.8676 + }, + { + "start": 4520.98, + "end": 4522.32, + "probability": 0.2644 + }, + { + "start": 4523.76, + "end": 4525.48, + "probability": 0.9982 + }, + { + "start": 4526.2, + "end": 4527.2, + "probability": 0.6641 + }, + { + "start": 4529.6, + "end": 4532.98, + "probability": 0.9261 + }, + { + "start": 4534.18, + "end": 4535.24, + "probability": 0.7563 + }, + { + "start": 4536.66, + "end": 4541.3, + "probability": 0.8737 + }, + { + "start": 4543.82, + "end": 4549.2, + "probability": 0.9741 + }, + { + "start": 4549.28, + "end": 4553.24, + "probability": 0.7151 + }, + { + "start": 4553.3, + "end": 4556.36, + "probability": 0.9586 + }, + { + "start": 4557.56, + "end": 4559.44, + "probability": 0.5951 + }, + { + "start": 4559.94, + "end": 4562.88, + "probability": 0.886 + }, + { + "start": 4563.08, + "end": 4565.18, + "probability": 0.9393 + }, + { + "start": 4565.7, + "end": 4566.82, + "probability": 0.9868 + }, + { + "start": 4567.46, + "end": 4568.04, + "probability": 0.476 + }, + { + "start": 4568.88, + "end": 4572.14, + "probability": 0.9854 + }, + { + "start": 4572.96, + "end": 4573.48, + "probability": 0.9087 + }, + { + "start": 4574.06, + "end": 4575.48, + "probability": 0.9517 + }, + { + "start": 4576.06, + "end": 4577.9, + "probability": 0.8774 + }, + { + "start": 4578.42, + "end": 4582.08, + "probability": 0.9462 + }, + { + "start": 4583.54, + "end": 4583.78, + "probability": 0.511 + }, + { + "start": 4584.54, + "end": 4586.98, + "probability": 0.9885 + }, + { + "start": 4587.04, + "end": 4591.62, + "probability": 0.983 + }, + { + "start": 4592.0, + "end": 4592.58, + "probability": 0.3999 + }, + { + "start": 4593.02, + "end": 4593.12, + "probability": 0.4418 + }, + { + "start": 4594.86, + "end": 4595.36, + "probability": 0.3157 + }, + { + "start": 4597.06, + "end": 4599.36, + "probability": 0.8874 + }, + { + "start": 4599.6, + "end": 4600.64, + "probability": 0.6784 + }, + { + "start": 4600.7, + "end": 4603.14, + "probability": 0.9844 + }, + { + "start": 4603.68, + "end": 4606.38, + "probability": 0.8167 + }, + { + "start": 4609.78, + "end": 4614.86, + "probability": 0.7519 + }, + { + "start": 4625.24, + "end": 4635.9, + "probability": 0.0154 + }, + { + "start": 4636.46, + "end": 4638.24, + "probability": 0.6184 + }, + { + "start": 4640.26, + "end": 4640.4, + "probability": 0.0 + }, + { + "start": 4643.34, + "end": 4644.14, + "probability": 0.0184 + }, + { + "start": 4644.96, + "end": 4645.24, + "probability": 0.0365 + }, + { + "start": 4647.66, + "end": 4649.9, + "probability": 0.0458 + }, + { + "start": 4650.74, + "end": 4654.9, + "probability": 0.0714 + }, + { + "start": 4655.46, + "end": 4657.4, + "probability": 0.0479 + }, + { + "start": 4666.8, + "end": 4668.88, + "probability": 0.0521 + }, + { + "start": 4669.84, + "end": 4671.24, + "probability": 0.2282 + }, + { + "start": 4674.35, + "end": 4677.84, + "probability": 0.1112 + }, + { + "start": 4677.84, + "end": 4679.2, + "probability": 0.0306 + }, + { + "start": 4681.32, + "end": 4682.7, + "probability": 0.0557 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4692.0, + "end": 4692.0, + "probability": 0.0 + }, + { + "start": 4693.46, + "end": 4693.64, + "probability": 0.2569 + }, + { + "start": 4693.64, + "end": 4694.72, + "probability": 0.3058 + }, + { + "start": 4695.62, + "end": 4702.44, + "probability": 0.8062 + }, + { + "start": 4702.8, + "end": 4706.28, + "probability": 0.9143 + }, + { + "start": 4707.08, + "end": 4707.52, + "probability": 0.6397 + }, + { + "start": 4707.8, + "end": 4708.2, + "probability": 0.566 + }, + { + "start": 4709.86, + "end": 4714.04, + "probability": 0.9972 + }, + { + "start": 4715.02, + "end": 4724.62, + "probability": 0.8516 + }, + { + "start": 4726.36, + "end": 4728.1, + "probability": 0.9985 + }, + { + "start": 4728.96, + "end": 4729.68, + "probability": 0.9119 + }, + { + "start": 4731.18, + "end": 4733.6, + "probability": 0.9312 + }, + { + "start": 4735.26, + "end": 4737.18, + "probability": 0.8938 + }, + { + "start": 4738.18, + "end": 4739.54, + "probability": 0.7915 + }, + { + "start": 4740.82, + "end": 4742.62, + "probability": 0.9396 + }, + { + "start": 4744.14, + "end": 4746.94, + "probability": 0.8071 + }, + { + "start": 4747.94, + "end": 4748.94, + "probability": 0.7371 + }, + { + "start": 4749.0, + "end": 4752.88, + "probability": 0.9719 + }, + { + "start": 4754.0, + "end": 4754.9, + "probability": 0.9266 + }, + { + "start": 4755.94, + "end": 4759.02, + "probability": 0.8746 + }, + { + "start": 4759.6, + "end": 4760.42, + "probability": 0.9698 + }, + { + "start": 4761.0, + "end": 4763.88, + "probability": 0.8402 + }, + { + "start": 4764.56, + "end": 4767.26, + "probability": 0.8007 + }, + { + "start": 4767.84, + "end": 4773.22, + "probability": 0.8781 + }, + { + "start": 4773.22, + "end": 4777.36, + "probability": 0.9486 + }, + { + "start": 4777.82, + "end": 4780.0, + "probability": 0.979 + }, + { + "start": 4781.06, + "end": 4782.95, + "probability": 0.8258 + }, + { + "start": 4784.6, + "end": 4786.76, + "probability": 0.9466 + }, + { + "start": 4787.32, + "end": 4791.58, + "probability": 0.9896 + }, + { + "start": 4792.46, + "end": 4793.4, + "probability": 0.3977 + }, + { + "start": 4793.64, + "end": 4795.12, + "probability": 0.993 + }, + { + "start": 4795.76, + "end": 4796.76, + "probability": 0.7188 + }, + { + "start": 4797.6, + "end": 4799.88, + "probability": 0.8988 + }, + { + "start": 4800.56, + "end": 4802.34, + "probability": 0.9438 + }, + { + "start": 4802.96, + "end": 4807.88, + "probability": 0.9932 + }, + { + "start": 4808.42, + "end": 4810.48, + "probability": 0.9665 + }, + { + "start": 4810.94, + "end": 4815.6, + "probability": 0.9722 + }, + { + "start": 4816.26, + "end": 4819.96, + "probability": 0.924 + }, + { + "start": 4820.52, + "end": 4822.36, + "probability": 0.9233 + }, + { + "start": 4822.96, + "end": 4827.06, + "probability": 0.9391 + }, + { + "start": 4827.62, + "end": 4837.42, + "probability": 0.9444 + }, + { + "start": 4838.08, + "end": 4842.24, + "probability": 0.9781 + }, + { + "start": 4843.16, + "end": 4845.3, + "probability": 0.9915 + }, + { + "start": 4845.52, + "end": 4847.1, + "probability": 0.9377 + }, + { + "start": 4847.96, + "end": 4849.52, + "probability": 0.8243 + }, + { + "start": 4849.56, + "end": 4851.1, + "probability": 0.8149 + }, + { + "start": 4851.12, + "end": 4852.36, + "probability": 0.6474 + }, + { + "start": 4852.84, + "end": 4852.94, + "probability": 0.1978 + }, + { + "start": 4853.02, + "end": 4853.44, + "probability": 0.8119 + }, + { + "start": 4853.58, + "end": 4854.26, + "probability": 0.6671 + }, + { + "start": 4854.36, + "end": 4856.18, + "probability": 0.9471 + }, + { + "start": 4856.66, + "end": 4859.88, + "probability": 0.9789 + }, + { + "start": 4860.26, + "end": 4861.28, + "probability": 0.9985 + }, + { + "start": 4861.34, + "end": 4863.68, + "probability": 0.9836 + }, + { + "start": 4863.86, + "end": 4864.58, + "probability": 0.9269 + }, + { + "start": 4864.66, + "end": 4866.9, + "probability": 0.9175 + }, + { + "start": 4867.42, + "end": 4870.08, + "probability": 0.8446 + }, + { + "start": 4870.66, + "end": 4873.06, + "probability": 0.721 + }, + { + "start": 4873.56, + "end": 4875.44, + "probability": 0.7915 + }, + { + "start": 4875.52, + "end": 4877.44, + "probability": 0.9977 + }, + { + "start": 4877.92, + "end": 4883.6, + "probability": 0.9946 + }, + { + "start": 4884.04, + "end": 4890.08, + "probability": 0.994 + }, + { + "start": 4890.24, + "end": 4891.92, + "probability": 0.824 + }, + { + "start": 4893.44, + "end": 4899.48, + "probability": 0.9597 + }, + { + "start": 4900.06, + "end": 4900.32, + "probability": 0.8473 + }, + { + "start": 4901.36, + "end": 4901.94, + "probability": 0.8392 + }, + { + "start": 4903.42, + "end": 4905.22, + "probability": 0.9808 + }, + { + "start": 4907.18, + "end": 4908.62, + "probability": 0.9821 + }, + { + "start": 4910.24, + "end": 4912.46, + "probability": 0.8263 + }, + { + "start": 4928.9, + "end": 4929.64, + "probability": 0.0191 + }, + { + "start": 4929.64, + "end": 4930.46, + "probability": 0.6132 + }, + { + "start": 4931.81, + "end": 4932.4, + "probability": 0.0759 + }, + { + "start": 4939.74, + "end": 4942.9, + "probability": 0.7961 + }, + { + "start": 4943.82, + "end": 4948.16, + "probability": 0.9976 + }, + { + "start": 4949.78, + "end": 4950.54, + "probability": 0.7885 + }, + { + "start": 4954.1, + "end": 4955.58, + "probability": 0.6813 + }, + { + "start": 4956.06, + "end": 4963.62, + "probability": 0.1366 + }, + { + "start": 4965.31, + "end": 4966.82, + "probability": 0.0343 + }, + { + "start": 4967.98, + "end": 4968.14, + "probability": 0.085 + }, + { + "start": 4968.7, + "end": 4972.1, + "probability": 0.6016 + }, + { + "start": 4972.6, + "end": 4975.96, + "probability": 0.8132 + }, + { + "start": 4977.24, + "end": 4979.38, + "probability": 0.8208 + }, + { + "start": 4979.48, + "end": 4981.65, + "probability": 0.1775 + }, + { + "start": 4985.74, + "end": 4985.74, + "probability": 0.0353 + }, + { + "start": 4985.74, + "end": 4987.28, + "probability": 0.4596 + }, + { + "start": 4988.48, + "end": 4991.32, + "probability": 0.0497 + }, + { + "start": 4991.32, + "end": 4995.14, + "probability": 0.1687 + }, + { + "start": 4995.82, + "end": 4998.46, + "probability": 0.6128 + }, + { + "start": 5000.76, + "end": 5003.06, + "probability": 0.0836 + }, + { + "start": 5003.06, + "end": 5004.44, + "probability": 0.0774 + }, + { + "start": 5004.44, + "end": 5005.4, + "probability": 0.1888 + }, + { + "start": 5005.46, + "end": 5010.5, + "probability": 0.1669 + }, + { + "start": 5011.28, + "end": 5011.98, + "probability": 0.1346 + }, + { + "start": 5013.72, + "end": 5018.36, + "probability": 0.1878 + }, + { + "start": 5018.4, + "end": 5019.32, + "probability": 0.0444 + }, + { + "start": 5019.54, + "end": 5022.64, + "probability": 0.2381 + }, + { + "start": 5023.46, + "end": 5026.98, + "probability": 0.2103 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5027.0, + "end": 5027.0, + "probability": 0.0 + }, + { + "start": 5028.82, + "end": 5033.12, + "probability": 0.1058 + }, + { + "start": 5034.64, + "end": 5037.25, + "probability": 0.1329 + }, + { + "start": 5038.02, + "end": 5038.66, + "probability": 0.1232 + }, + { + "start": 5039.47, + "end": 5046.4, + "probability": 0.0268 + }, + { + "start": 5047.18, + "end": 5051.1, + "probability": 0.0241 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5163.0, + "end": 5163.0, + "probability": 0.0 + }, + { + "start": 5173.64, + "end": 5176.82, + "probability": 0.0344 + }, + { + "start": 5189.74, + "end": 5190.64, + "probability": 0.1175 + }, + { + "start": 5191.28, + "end": 5196.6, + "probability": 0.3964 + }, + { + "start": 5197.86, + "end": 5198.9, + "probability": 0.0729 + }, + { + "start": 5200.8, + "end": 5203.44, + "probability": 0.0626 + }, + { + "start": 5204.58, + "end": 5209.16, + "probability": 0.1195 + }, + { + "start": 5209.62, + "end": 5210.82, + "probability": 0.0142 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.0, + "end": 5302.0, + "probability": 0.0 + }, + { + "start": 5302.18, + "end": 5305.52, + "probability": 0.9484 + }, + { + "start": 5306.88, + "end": 5311.46, + "probability": 0.898 + }, + { + "start": 5312.14, + "end": 5317.64, + "probability": 0.9967 + }, + { + "start": 5318.7, + "end": 5324.14, + "probability": 0.9967 + }, + { + "start": 5324.7, + "end": 5329.32, + "probability": 0.9924 + }, + { + "start": 5329.46, + "end": 5330.36, + "probability": 0.7466 + }, + { + "start": 5330.96, + "end": 5333.6, + "probability": 0.8611 + }, + { + "start": 5334.4, + "end": 5335.24, + "probability": 0.9095 + }, + { + "start": 5336.0, + "end": 5338.6, + "probability": 0.8787 + }, + { + "start": 5339.54, + "end": 5340.56, + "probability": 0.9145 + }, + { + "start": 5341.26, + "end": 5341.5, + "probability": 0.9246 + }, + { + "start": 5342.36, + "end": 5348.78, + "probability": 0.9041 + }, + { + "start": 5349.4, + "end": 5350.84, + "probability": 0.8181 + }, + { + "start": 5351.04, + "end": 5352.88, + "probability": 0.9884 + }, + { + "start": 5353.16, + "end": 5353.56, + "probability": 0.8588 + }, + { + "start": 5353.74, + "end": 5356.46, + "probability": 0.9885 + }, + { + "start": 5357.54, + "end": 5358.74, + "probability": 0.9966 + }, + { + "start": 5359.3, + "end": 5359.82, + "probability": 0.9787 + }, + { + "start": 5360.52, + "end": 5361.22, + "probability": 0.8514 + }, + { + "start": 5361.5, + "end": 5364.48, + "probability": 0.9838 + }, + { + "start": 5364.6, + "end": 5366.9, + "probability": 0.999 + }, + { + "start": 5367.06, + "end": 5367.9, + "probability": 0.9567 + }, + { + "start": 5368.58, + "end": 5372.14, + "probability": 0.9537 + }, + { + "start": 5372.56, + "end": 5372.96, + "probability": 0.7255 + }, + { + "start": 5374.5, + "end": 5374.9, + "probability": 0.6084 + }, + { + "start": 5375.02, + "end": 5376.34, + "probability": 0.863 + }, + { + "start": 5376.5, + "end": 5379.24, + "probability": 0.7189 + }, + { + "start": 5390.7, + "end": 5390.7, + "probability": 0.007 + }, + { + "start": 5390.7, + "end": 5390.7, + "probability": 0.1713 + }, + { + "start": 5390.7, + "end": 5390.7, + "probability": 0.0425 + }, + { + "start": 5390.7, + "end": 5391.18, + "probability": 0.3846 + }, + { + "start": 5397.0, + "end": 5397.18, + "probability": 0.1729 + }, + { + "start": 5397.24, + "end": 5398.06, + "probability": 0.5052 + }, + { + "start": 5398.2, + "end": 5399.1, + "probability": 0.567 + }, + { + "start": 5401.92, + "end": 5402.8, + "probability": 0.9102 + }, + { + "start": 5408.44, + "end": 5408.94, + "probability": 0.9595 + }, + { + "start": 5416.62, + "end": 5417.54, + "probability": 0.345 + }, + { + "start": 5417.76, + "end": 5418.78, + "probability": 0.6064 + }, + { + "start": 5421.26, + "end": 5423.44, + "probability": 0.8389 + }, + { + "start": 5424.18, + "end": 5426.24, + "probability": 0.9661 + }, + { + "start": 5426.5, + "end": 5430.56, + "probability": 0.9413 + }, + { + "start": 5430.56, + "end": 5434.32, + "probability": 0.972 + }, + { + "start": 5435.18, + "end": 5442.62, + "probability": 0.8896 + }, + { + "start": 5442.88, + "end": 5443.5, + "probability": 0.6091 + }, + { + "start": 5444.44, + "end": 5453.1, + "probability": 0.9678 + }, + { + "start": 5454.82, + "end": 5454.92, + "probability": 0.4728 + }, + { + "start": 5456.52, + "end": 5460.58, + "probability": 0.9218 + }, + { + "start": 5461.48, + "end": 5462.8, + "probability": 0.898 + }, + { + "start": 5464.02, + "end": 5468.14, + "probability": 0.6786 + }, + { + "start": 5468.82, + "end": 5469.58, + "probability": 0.9089 + }, + { + "start": 5469.76, + "end": 5470.08, + "probability": 0.5934 + }, + { + "start": 5470.32, + "end": 5471.17, + "probability": 0.8319 + }, + { + "start": 5471.4, + "end": 5473.6, + "probability": 0.9124 + }, + { + "start": 5474.26, + "end": 5476.58, + "probability": 0.9957 + }, + { + "start": 5479.36, + "end": 5482.86, + "probability": 0.9692 + }, + { + "start": 5482.96, + "end": 5484.72, + "probability": 0.8417 + }, + { + "start": 5485.92, + "end": 5487.06, + "probability": 0.822 + }, + { + "start": 5488.86, + "end": 5492.06, + "probability": 0.9285 + }, + { + "start": 5493.32, + "end": 5496.76, + "probability": 0.981 + }, + { + "start": 5497.94, + "end": 5500.72, + "probability": 0.6687 + }, + { + "start": 5500.88, + "end": 5502.88, + "probability": 0.6884 + }, + { + "start": 5503.0, + "end": 5503.86, + "probability": 0.9316 + }, + { + "start": 5503.92, + "end": 5504.44, + "probability": 0.2768 + }, + { + "start": 5505.44, + "end": 5507.82, + "probability": 0.8974 + }, + { + "start": 5508.84, + "end": 5510.94, + "probability": 0.8449 + }, + { + "start": 5511.56, + "end": 5512.66, + "probability": 0.8469 + }, + { + "start": 5513.94, + "end": 5518.2, + "probability": 0.9351 + }, + { + "start": 5518.26, + "end": 5519.36, + "probability": 0.902 + }, + { + "start": 5519.46, + "end": 5521.38, + "probability": 0.8167 + }, + { + "start": 5521.86, + "end": 5523.54, + "probability": 0.6989 + }, + { + "start": 5523.64, + "end": 5524.04, + "probability": 0.7608 + }, + { + "start": 5524.34, + "end": 5525.1, + "probability": 0.8665 + }, + { + "start": 5525.18, + "end": 5525.94, + "probability": 0.8652 + }, + { + "start": 5525.98, + "end": 5528.24, + "probability": 0.79 + }, + { + "start": 5529.02, + "end": 5531.5, + "probability": 0.7426 + }, + { + "start": 5532.06, + "end": 5533.68, + "probability": 0.9966 + }, + { + "start": 5537.14, + "end": 5538.44, + "probability": 0.0425 + }, + { + "start": 5541.06, + "end": 5543.3, + "probability": 0.0925 + }, + { + "start": 5545.19, + "end": 5547.07, + "probability": 0.9849 + }, + { + "start": 5547.8, + "end": 5548.96, + "probability": 0.9408 + }, + { + "start": 5548.98, + "end": 5550.76, + "probability": 0.8872 + }, + { + "start": 5550.9, + "end": 5553.88, + "probability": 0.9949 + }, + { + "start": 5554.3, + "end": 5556.46, + "probability": 0.9618 + }, + { + "start": 5556.56, + "end": 5557.06, + "probability": 0.2907 + }, + { + "start": 5557.46, + "end": 5560.78, + "probability": 0.58 + }, + { + "start": 5561.0, + "end": 5561.92, + "probability": 0.6512 + }, + { + "start": 5562.18, + "end": 5562.88, + "probability": 0.8166 + }, + { + "start": 5563.08, + "end": 5564.37, + "probability": 0.9336 + }, + { + "start": 5564.88, + "end": 5569.3, + "probability": 0.9764 + }, + { + "start": 5569.64, + "end": 5570.62, + "probability": 0.8057 + }, + { + "start": 5570.64, + "end": 5572.14, + "probability": 0.9941 + }, + { + "start": 5572.74, + "end": 5575.92, + "probability": 0.9639 + }, + { + "start": 5576.62, + "end": 5578.54, + "probability": 0.662 + }, + { + "start": 5578.72, + "end": 5579.94, + "probability": 0.7083 + }, + { + "start": 5580.04, + "end": 5582.86, + "probability": 0.7382 + }, + { + "start": 5582.92, + "end": 5584.08, + "probability": 0.8861 + }, + { + "start": 5584.24, + "end": 5585.54, + "probability": 0.9108 + }, + { + "start": 5586.4, + "end": 5587.1, + "probability": 0.5283 + }, + { + "start": 5587.1, + "end": 5587.88, + "probability": 0.8518 + }, + { + "start": 5588.58, + "end": 5589.32, + "probability": 0.6065 + }, + { + "start": 5590.74, + "end": 5592.72, + "probability": 0.9457 + }, + { + "start": 5593.32, + "end": 5595.46, + "probability": 0.8911 + }, + { + "start": 5595.66, + "end": 5596.48, + "probability": 0.7158 + }, + { + "start": 5596.52, + "end": 5597.22, + "probability": 0.6984 + }, + { + "start": 5597.64, + "end": 5600.32, + "probability": 0.9127 + }, + { + "start": 5600.5, + "end": 5601.7, + "probability": 0.9143 + }, + { + "start": 5601.86, + "end": 5602.96, + "probability": 0.9185 + }, + { + "start": 5602.96, + "end": 5604.6, + "probability": 0.7422 + }, + { + "start": 5604.92, + "end": 5608.22, + "probability": 0.7297 + }, + { + "start": 5608.34, + "end": 5608.58, + "probability": 0.7806 + }, + { + "start": 5608.66, + "end": 5609.7, + "probability": 0.6169 + }, + { + "start": 5610.08, + "end": 5611.02, + "probability": 0.9379 + }, + { + "start": 5611.02, + "end": 5611.54, + "probability": 0.7146 + }, + { + "start": 5611.58, + "end": 5614.12, + "probability": 0.9424 + }, + { + "start": 5614.38, + "end": 5614.72, + "probability": 0.4819 + }, + { + "start": 5614.98, + "end": 5616.34, + "probability": 0.6539 + }, + { + "start": 5616.84, + "end": 5618.06, + "probability": 0.8908 + }, + { + "start": 5622.1, + "end": 5622.8, + "probability": 0.524 + }, + { + "start": 5624.42, + "end": 5624.52, + "probability": 0.7744 + }, + { + "start": 5625.18, + "end": 5626.22, + "probability": 0.4427 + }, + { + "start": 5628.06, + "end": 5628.44, + "probability": 0.7609 + }, + { + "start": 5629.76, + "end": 5631.22, + "probability": 0.7684 + }, + { + "start": 5632.38, + "end": 5632.7, + "probability": 0.2219 + }, + { + "start": 5633.74, + "end": 5635.26, + "probability": 0.9007 + }, + { + "start": 5647.52, + "end": 5648.62, + "probability": 0.6232 + }, + { + "start": 5649.92, + "end": 5650.78, + "probability": 0.8861 + }, + { + "start": 5652.54, + "end": 5653.6, + "probability": 0.854 + }, + { + "start": 5653.78, + "end": 5657.22, + "probability": 0.9653 + }, + { + "start": 5658.16, + "end": 5660.44, + "probability": 0.9925 + }, + { + "start": 5661.22, + "end": 5664.5, + "probability": 0.95 + }, + { + "start": 5665.48, + "end": 5668.9, + "probability": 0.9402 + }, + { + "start": 5669.76, + "end": 5670.83, + "probability": 0.9991 + }, + { + "start": 5671.68, + "end": 5676.18, + "probability": 0.9772 + }, + { + "start": 5679.28, + "end": 5681.78, + "probability": 0.9957 + }, + { + "start": 5682.82, + "end": 5685.04, + "probability": 0.9714 + }, + { + "start": 5685.84, + "end": 5688.68, + "probability": 0.9961 + }, + { + "start": 5689.98, + "end": 5692.6, + "probability": 0.9225 + }, + { + "start": 5692.78, + "end": 5695.42, + "probability": 0.7917 + }, + { + "start": 5696.14, + "end": 5697.48, + "probability": 0.8905 + }, + { + "start": 5698.86, + "end": 5700.54, + "probability": 0.9926 + }, + { + "start": 5702.32, + "end": 5707.76, + "probability": 0.9879 + }, + { + "start": 5708.66, + "end": 5710.2, + "probability": 0.793 + }, + { + "start": 5711.24, + "end": 5713.56, + "probability": 0.9851 + }, + { + "start": 5714.08, + "end": 5715.56, + "probability": 0.7295 + }, + { + "start": 5715.58, + "end": 5718.94, + "probability": 0.9831 + }, + { + "start": 5719.98, + "end": 5721.86, + "probability": 0.9917 + }, + { + "start": 5722.76, + "end": 5724.62, + "probability": 0.9982 + }, + { + "start": 5725.28, + "end": 5728.7, + "probability": 0.9993 + }, + { + "start": 5729.74, + "end": 5731.1, + "probability": 0.9141 + }, + { + "start": 5731.8, + "end": 5733.18, + "probability": 0.9893 + }, + { + "start": 5734.38, + "end": 5736.36, + "probability": 0.7583 + }, + { + "start": 5737.08, + "end": 5739.3, + "probability": 0.9766 + }, + { + "start": 5739.94, + "end": 5740.82, + "probability": 0.8871 + }, + { + "start": 5741.66, + "end": 5743.59, + "probability": 0.9966 + }, + { + "start": 5744.18, + "end": 5745.14, + "probability": 0.837 + }, + { + "start": 5745.84, + "end": 5747.64, + "probability": 0.9904 + }, + { + "start": 5749.34, + "end": 5749.96, + "probability": 0.5019 + }, + { + "start": 5750.62, + "end": 5753.48, + "probability": 0.9834 + }, + { + "start": 5754.18, + "end": 5756.06, + "probability": 0.8087 + }, + { + "start": 5756.88, + "end": 5759.28, + "probability": 0.8452 + }, + { + "start": 5760.34, + "end": 5763.97, + "probability": 0.999 + }, + { + "start": 5766.32, + "end": 5770.18, + "probability": 0.9963 + }, + { + "start": 5770.88, + "end": 5774.78, + "probability": 0.9935 + }, + { + "start": 5775.36, + "end": 5777.18, + "probability": 0.965 + }, + { + "start": 5777.22, + "end": 5778.5, + "probability": 0.9775 + }, + { + "start": 5780.5, + "end": 5781.66, + "probability": 0.8835 + }, + { + "start": 5782.26, + "end": 5787.72, + "probability": 0.9063 + }, + { + "start": 5788.92, + "end": 5793.52, + "probability": 0.98 + }, + { + "start": 5794.34, + "end": 5796.12, + "probability": 0.4576 + }, + { + "start": 5796.7, + "end": 5800.84, + "probability": 0.988 + }, + { + "start": 5802.6, + "end": 5805.3, + "probability": 0.9931 + }, + { + "start": 5806.14, + "end": 5808.04, + "probability": 0.8497 + }, + { + "start": 5808.94, + "end": 5810.38, + "probability": 0.8137 + }, + { + "start": 5810.56, + "end": 5814.14, + "probability": 0.9611 + }, + { + "start": 5815.46, + "end": 5816.84, + "probability": 0.9031 + }, + { + "start": 5817.88, + "end": 5821.36, + "probability": 0.9385 + }, + { + "start": 5822.08, + "end": 5822.52, + "probability": 0.7511 + }, + { + "start": 5823.42, + "end": 5824.04, + "probability": 0.8333 + }, + { + "start": 5826.58, + "end": 5829.48, + "probability": 0.7283 + }, + { + "start": 5831.48, + "end": 5832.76, + "probability": 0.9939 + }, + { + "start": 5846.88, + "end": 5848.84, + "probability": 0.6079 + }, + { + "start": 5849.78, + "end": 5852.86, + "probability": 0.6786 + }, + { + "start": 5853.16, + "end": 5853.72, + "probability": 0.7823 + }, + { + "start": 5853.82, + "end": 5856.42, + "probability": 0.9629 + }, + { + "start": 5856.52, + "end": 5856.92, + "probability": 0.6216 + }, + { + "start": 5857.66, + "end": 5858.32, + "probability": 0.5748 + }, + { + "start": 5858.88, + "end": 5859.34, + "probability": 0.8824 + }, + { + "start": 5860.4, + "end": 5865.47, + "probability": 0.577 + }, + { + "start": 5865.64, + "end": 5866.24, + "probability": 0.8323 + }, + { + "start": 5866.28, + "end": 5868.82, + "probability": 0.961 + }, + { + "start": 5869.42, + "end": 5872.21, + "probability": 0.8342 + }, + { + "start": 5873.42, + "end": 5877.95, + "probability": 0.9915 + }, + { + "start": 5878.34, + "end": 5880.26, + "probability": 0.6776 + }, + { + "start": 5881.12, + "end": 5882.74, + "probability": 0.4889 + }, + { + "start": 5882.88, + "end": 5883.22, + "probability": 0.6634 + }, + { + "start": 5883.3, + "end": 5884.8, + "probability": 0.7924 + }, + { + "start": 5884.84, + "end": 5887.64, + "probability": 0.8818 + }, + { + "start": 5888.32, + "end": 5891.7, + "probability": 0.9677 + }, + { + "start": 5891.88, + "end": 5893.32, + "probability": 0.9937 + }, + { + "start": 5894.12, + "end": 5894.86, + "probability": 0.8576 + }, + { + "start": 5895.82, + "end": 5898.16, + "probability": 0.9629 + }, + { + "start": 5898.26, + "end": 5898.92, + "probability": 0.8893 + }, + { + "start": 5899.3, + "end": 5899.86, + "probability": 0.7126 + }, + { + "start": 5900.1, + "end": 5901.98, + "probability": 0.9792 + }, + { + "start": 5902.32, + "end": 5903.18, + "probability": 0.7728 + }, + { + "start": 5903.84, + "end": 5906.36, + "probability": 0.9877 + }, + { + "start": 5907.1, + "end": 5909.86, + "probability": 0.7734 + }, + { + "start": 5909.9, + "end": 5910.68, + "probability": 0.5241 + }, + { + "start": 5911.08, + "end": 5911.42, + "probability": 0.1742 + }, + { + "start": 5911.48, + "end": 5912.86, + "probability": 0.9244 + }, + { + "start": 5913.18, + "end": 5913.9, + "probability": 0.9467 + }, + { + "start": 5914.04, + "end": 5916.16, + "probability": 0.9969 + }, + { + "start": 5916.58, + "end": 5919.25, + "probability": 0.7264 + }, + { + "start": 5920.62, + "end": 5922.44, + "probability": 0.6984 + }, + { + "start": 5922.44, + "end": 5924.41, + "probability": 0.9954 + }, + { + "start": 5924.94, + "end": 5926.05, + "probability": 0.8996 + }, + { + "start": 5926.54, + "end": 5927.3, + "probability": 0.8682 + }, + { + "start": 5927.53, + "end": 5928.68, + "probability": 0.6596 + }, + { + "start": 5928.72, + "end": 5930.54, + "probability": 0.8153 + }, + { + "start": 5930.84, + "end": 5932.04, + "probability": 0.9217 + }, + { + "start": 5933.78, + "end": 5933.94, + "probability": 0.0054 + }, + { + "start": 5933.94, + "end": 5934.95, + "probability": 0.6572 + }, + { + "start": 5935.08, + "end": 5935.86, + "probability": 0.6528 + }, + { + "start": 5936.04, + "end": 5937.94, + "probability": 0.9797 + }, + { + "start": 5938.5, + "end": 5941.44, + "probability": 0.9311 + }, + { + "start": 5942.44, + "end": 5945.48, + "probability": 0.6638 + }, + { + "start": 5946.0, + "end": 5950.86, + "probability": 0.999 + }, + { + "start": 5951.82, + "end": 5957.28, + "probability": 0.9963 + }, + { + "start": 5957.68, + "end": 5959.54, + "probability": 0.9995 + }, + { + "start": 5960.16, + "end": 5963.53, + "probability": 0.9531 + }, + { + "start": 5963.98, + "end": 5965.88, + "probability": 0.8298 + }, + { + "start": 5966.4, + "end": 5967.22, + "probability": 0.6904 + }, + { + "start": 5967.36, + "end": 5971.98, + "probability": 0.906 + }, + { + "start": 5972.08, + "end": 5973.82, + "probability": 0.8047 + }, + { + "start": 5974.28, + "end": 5974.72, + "probability": 0.7571 + }, + { + "start": 5974.82, + "end": 5975.64, + "probability": 0.9679 + }, + { + "start": 5976.72, + "end": 5980.44, + "probability": 0.9854 + }, + { + "start": 5980.64, + "end": 5984.14, + "probability": 0.8284 + }, + { + "start": 5984.22, + "end": 5985.88, + "probability": 0.7535 + }, + { + "start": 5986.68, + "end": 5990.82, + "probability": 0.7775 + }, + { + "start": 5991.06, + "end": 5992.58, + "probability": 0.347 + }, + { + "start": 5992.64, + "end": 5993.94, + "probability": 0.9846 + }, + { + "start": 5994.38, + "end": 5997.34, + "probability": 0.7266 + }, + { + "start": 5997.34, + "end": 6000.52, + "probability": 0.9519 + }, + { + "start": 6001.34, + "end": 6003.74, + "probability": 0.9922 + }, + { + "start": 6004.1, + "end": 6004.5, + "probability": 0.3244 + }, + { + "start": 6004.56, + "end": 6005.5, + "probability": 0.7393 + }, + { + "start": 6005.76, + "end": 6007.0, + "probability": 0.9148 + }, + { + "start": 6007.72, + "end": 6012.5, + "probability": 0.9849 + }, + { + "start": 6013.0, + "end": 6015.22, + "probability": 0.9956 + }, + { + "start": 6015.7, + "end": 6020.88, + "probability": 0.9658 + }, + { + "start": 6020.88, + "end": 6024.96, + "probability": 0.9173 + }, + { + "start": 6025.88, + "end": 6028.18, + "probability": 0.9864 + }, + { + "start": 6028.32, + "end": 6031.42, + "probability": 0.9932 + }, + { + "start": 6031.44, + "end": 6035.47, + "probability": 0.9933 + }, + { + "start": 6036.02, + "end": 6037.06, + "probability": 0.7817 + }, + { + "start": 6037.1, + "end": 6038.3, + "probability": 0.8405 + }, + { + "start": 6038.46, + "end": 6040.7, + "probability": 0.6133 + }, + { + "start": 6040.96, + "end": 6044.12, + "probability": 0.8688 + }, + { + "start": 6044.56, + "end": 6045.78, + "probability": 0.7847 + }, + { + "start": 6046.0, + "end": 6046.48, + "probability": 0.5101 + }, + { + "start": 6046.58, + "end": 6050.1, + "probability": 0.7416 + }, + { + "start": 6050.56, + "end": 6052.36, + "probability": 0.9552 + }, + { + "start": 6052.5, + "end": 6054.22, + "probability": 0.9958 + }, + { + "start": 6054.66, + "end": 6056.28, + "probability": 0.3443 + }, + { + "start": 6056.28, + "end": 6057.76, + "probability": 0.2837 + }, + { + "start": 6059.24, + "end": 6060.08, + "probability": 0.2394 + }, + { + "start": 6060.18, + "end": 6063.16, + "probability": 0.9906 + }, + { + "start": 6063.54, + "end": 6065.5, + "probability": 0.5016 + }, + { + "start": 6066.36, + "end": 6071.22, + "probability": 0.9865 + }, + { + "start": 6071.5, + "end": 6073.54, + "probability": 0.8636 + }, + { + "start": 6073.98, + "end": 6077.0, + "probability": 0.8862 + }, + { + "start": 6077.42, + "end": 6079.44, + "probability": 0.8402 + }, + { + "start": 6079.52, + "end": 6081.34, + "probability": 0.9006 + }, + { + "start": 6081.82, + "end": 6083.42, + "probability": 0.9172 + }, + { + "start": 6083.58, + "end": 6085.26, + "probability": 0.9913 + }, + { + "start": 6085.54, + "end": 6087.76, + "probability": 0.8562 + }, + { + "start": 6088.04, + "end": 6088.96, + "probability": 0.7674 + }, + { + "start": 6089.14, + "end": 6090.9, + "probability": 0.9034 + }, + { + "start": 6091.0, + "end": 6092.5, + "probability": 0.8875 + }, + { + "start": 6093.1, + "end": 6095.28, + "probability": 0.9541 + }, + { + "start": 6095.58, + "end": 6095.74, + "probability": 0.8331 + }, + { + "start": 6096.96, + "end": 6097.68, + "probability": 0.8089 + }, + { + "start": 6099.92, + "end": 6102.54, + "probability": 0.6006 + }, + { + "start": 6103.64, + "end": 6103.96, + "probability": 0.4066 + }, + { + "start": 6105.4, + "end": 6106.54, + "probability": 0.4812 + }, + { + "start": 6107.08, + "end": 6107.48, + "probability": 0.0207 + }, + { + "start": 6108.06, + "end": 6108.6, + "probability": 0.6198 + }, + { + "start": 6109.74, + "end": 6110.1, + "probability": 0.749 + }, + { + "start": 6132.8, + "end": 6132.8, + "probability": 0.0338 + }, + { + "start": 6132.8, + "end": 6135.56, + "probability": 0.6393 + }, + { + "start": 6136.58, + "end": 6137.26, + "probability": 0.8905 + }, + { + "start": 6137.4, + "end": 6140.98, + "probability": 0.9834 + }, + { + "start": 6142.0, + "end": 6147.8, + "probability": 0.9349 + }, + { + "start": 6149.3, + "end": 6154.61, + "probability": 0.9975 + }, + { + "start": 6155.84, + "end": 6159.38, + "probability": 0.9775 + }, + { + "start": 6160.48, + "end": 6163.18, + "probability": 0.98 + }, + { + "start": 6163.8, + "end": 6168.66, + "probability": 0.9839 + }, + { + "start": 6169.76, + "end": 6173.24, + "probability": 0.9833 + }, + { + "start": 6175.2, + "end": 6176.64, + "probability": 0.6594 + }, + { + "start": 6177.34, + "end": 6179.56, + "probability": 0.8498 + }, + { + "start": 6179.66, + "end": 6186.3, + "probability": 0.8223 + }, + { + "start": 6186.3, + "end": 6194.12, + "probability": 0.9769 + }, + { + "start": 6194.66, + "end": 6198.9, + "probability": 0.998 + }, + { + "start": 6199.74, + "end": 6204.1, + "probability": 0.9774 + }, + { + "start": 6204.76, + "end": 6206.92, + "probability": 0.9961 + }, + { + "start": 6208.3, + "end": 6212.64, + "probability": 0.9858 + }, + { + "start": 6214.12, + "end": 6216.38, + "probability": 0.9399 + }, + { + "start": 6217.24, + "end": 6220.42, + "probability": 0.7432 + }, + { + "start": 6221.16, + "end": 6223.8, + "probability": 0.9781 + }, + { + "start": 6223.8, + "end": 6226.98, + "probability": 0.9979 + }, + { + "start": 6228.1, + "end": 6230.76, + "probability": 0.9969 + }, + { + "start": 6230.81, + "end": 6236.1, + "probability": 0.7594 + }, + { + "start": 6236.16, + "end": 6239.76, + "probability": 0.9818 + }, + { + "start": 6240.66, + "end": 6242.54, + "probability": 0.9829 + }, + { + "start": 6243.16, + "end": 6244.26, + "probability": 0.9447 + }, + { + "start": 6244.68, + "end": 6250.56, + "probability": 0.7897 + }, + { + "start": 6251.44, + "end": 6253.7, + "probability": 0.9795 + }, + { + "start": 6254.58, + "end": 6256.8, + "probability": 0.9955 + }, + { + "start": 6257.18, + "end": 6259.44, + "probability": 0.9762 + }, + { + "start": 6259.88, + "end": 6261.38, + "probability": 0.6441 + }, + { + "start": 6262.2, + "end": 6263.82, + "probability": 0.762 + }, + { + "start": 6264.98, + "end": 6265.58, + "probability": 0.8781 + }, + { + "start": 6266.58, + "end": 6267.78, + "probability": 0.8678 + }, + { + "start": 6269.56, + "end": 6270.24, + "probability": 0.111 + }, + { + "start": 6271.44, + "end": 6272.06, + "probability": 0.506 + }, + { + "start": 6273.18, + "end": 6274.2, + "probability": 0.4092 + }, + { + "start": 6274.78, + "end": 6275.48, + "probability": 0.5915 + }, + { + "start": 6276.42, + "end": 6277.66, + "probability": 0.8237 + }, + { + "start": 6279.72, + "end": 6281.64, + "probability": 0.8992 + }, + { + "start": 6284.86, + "end": 6286.3, + "probability": 0.8601 + }, + { + "start": 6287.68, + "end": 6287.92, + "probability": 0.8887 + }, + { + "start": 6289.98, + "end": 6290.7, + "probability": 0.8971 + }, + { + "start": 6291.88, + "end": 6292.86, + "probability": 0.9576 + }, + { + "start": 6294.42, + "end": 6295.28, + "probability": 0.789 + }, + { + "start": 6299.12, + "end": 6299.94, + "probability": 0.7893 + }, + { + "start": 6300.94, + "end": 6301.76, + "probability": 0.8081 + }, + { + "start": 6303.4, + "end": 6304.3, + "probability": 0.4282 + }, + { + "start": 6305.86, + "end": 6306.64, + "probability": 0.8888 + }, + { + "start": 6307.68, + "end": 6308.1, + "probability": 0.5607 + }, + { + "start": 6309.6, + "end": 6310.18, + "probability": 0.4877 + }, + { + "start": 6310.48, + "end": 6311.2, + "probability": 0.7945 + }, + { + "start": 6311.82, + "end": 6312.08, + "probability": 0.7256 + }, + { + "start": 6313.86, + "end": 6316.8, + "probability": 0.1508 + }, + { + "start": 6317.96, + "end": 6318.22, + "probability": 0.0301 + }, + { + "start": 6335.06, + "end": 6335.88, + "probability": 0.2037 + }, + { + "start": 6337.08, + "end": 6340.52, + "probability": 0.9953 + }, + { + "start": 6341.68, + "end": 6343.84, + "probability": 0.9648 + }, + { + "start": 6344.82, + "end": 6346.42, + "probability": 0.9805 + }, + { + "start": 6346.58, + "end": 6349.12, + "probability": 0.9847 + }, + { + "start": 6349.3, + "end": 6350.18, + "probability": 0.8979 + }, + { + "start": 6350.38, + "end": 6350.92, + "probability": 0.9746 + }, + { + "start": 6351.68, + "end": 6353.48, + "probability": 0.8152 + }, + { + "start": 6354.3, + "end": 6356.5, + "probability": 0.7306 + }, + { + "start": 6357.6, + "end": 6359.48, + "probability": 0.7551 + }, + { + "start": 6361.16, + "end": 6362.76, + "probability": 0.9962 + }, + { + "start": 6364.5, + "end": 6366.32, + "probability": 0.9531 + }, + { + "start": 6370.54, + "end": 6373.26, + "probability": 0.75 + }, + { + "start": 6375.52, + "end": 6377.48, + "probability": 0.9982 + }, + { + "start": 6380.5, + "end": 6382.8, + "probability": 0.9948 + }, + { + "start": 6383.46, + "end": 6388.1, + "probability": 0.9991 + }, + { + "start": 6389.18, + "end": 6390.24, + "probability": 0.999 + }, + { + "start": 6391.46, + "end": 6393.14, + "probability": 0.985 + }, + { + "start": 6394.72, + "end": 6397.2, + "probability": 0.9268 + }, + { + "start": 6398.02, + "end": 6399.2, + "probability": 0.7937 + }, + { + "start": 6400.46, + "end": 6401.22, + "probability": 0.9026 + }, + { + "start": 6401.48, + "end": 6401.78, + "probability": 0.2798 + }, + { + "start": 6401.8, + "end": 6402.7, + "probability": 0.9153 + }, + { + "start": 6402.74, + "end": 6406.3, + "probability": 0.9842 + }, + { + "start": 6406.4, + "end": 6407.46, + "probability": 0.6494 + }, + { + "start": 6408.18, + "end": 6410.18, + "probability": 0.9982 + }, + { + "start": 6411.24, + "end": 6412.88, + "probability": 0.964 + }, + { + "start": 6414.26, + "end": 6417.18, + "probability": 0.968 + }, + { + "start": 6418.5, + "end": 6419.4, + "probability": 0.9663 + }, + { + "start": 6419.62, + "end": 6421.58, + "probability": 0.9091 + }, + { + "start": 6421.64, + "end": 6422.44, + "probability": 0.6758 + }, + { + "start": 6422.84, + "end": 6423.02, + "probability": 0.1052 + }, + { + "start": 6423.75, + "end": 6425.76, + "probability": 0.9918 + }, + { + "start": 6426.38, + "end": 6427.24, + "probability": 0.9382 + }, + { + "start": 6428.22, + "end": 6429.42, + "probability": 0.9954 + }, + { + "start": 6430.16, + "end": 6433.08, + "probability": 0.9973 + }, + { + "start": 6434.0, + "end": 6437.74, + "probability": 0.9958 + }, + { + "start": 6438.34, + "end": 6441.03, + "probability": 0.9795 + }, + { + "start": 6441.74, + "end": 6444.02, + "probability": 0.9626 + }, + { + "start": 6445.08, + "end": 6448.02, + "probability": 0.8383 + }, + { + "start": 6449.58, + "end": 6451.6, + "probability": 0.9976 + }, + { + "start": 6451.72, + "end": 6453.7, + "probability": 0.832 + }, + { + "start": 6454.34, + "end": 6456.44, + "probability": 0.995 + }, + { + "start": 6456.56, + "end": 6459.6, + "probability": 0.9921 + }, + { + "start": 6459.7, + "end": 6461.84, + "probability": 0.9971 + }, + { + "start": 6461.9, + "end": 6462.68, + "probability": 0.8868 + }, + { + "start": 6462.96, + "end": 6464.32, + "probability": 0.6985 + }, + { + "start": 6464.42, + "end": 6468.4, + "probability": 0.8257 + }, + { + "start": 6468.4, + "end": 6472.98, + "probability": 0.9891 + }, + { + "start": 6473.36, + "end": 6477.16, + "probability": 0.9989 + }, + { + "start": 6477.54, + "end": 6480.9, + "probability": 0.9321 + }, + { + "start": 6481.0, + "end": 6481.74, + "probability": 0.7839 + }, + { + "start": 6482.26, + "end": 6483.3, + "probability": 0.9895 + }, + { + "start": 6484.14, + "end": 6485.11, + "probability": 0.9973 + }, + { + "start": 6485.34, + "end": 6486.44, + "probability": 0.9393 + }, + { + "start": 6486.58, + "end": 6487.28, + "probability": 0.805 + }, + { + "start": 6487.66, + "end": 6489.48, + "probability": 0.9898 + }, + { + "start": 6489.56, + "end": 6491.66, + "probability": 0.8697 + }, + { + "start": 6492.16, + "end": 6498.46, + "probability": 0.9924 + }, + { + "start": 6498.9, + "end": 6500.84, + "probability": 0.9419 + }, + { + "start": 6500.96, + "end": 6505.3, + "probability": 0.9927 + }, + { + "start": 6505.66, + "end": 6507.68, + "probability": 0.9869 + }, + { + "start": 6508.08, + "end": 6508.42, + "probability": 0.6847 + }, + { + "start": 6508.82, + "end": 6509.3, + "probability": 0.7231 + }, + { + "start": 6509.96, + "end": 6510.16, + "probability": 0.4388 + }, + { + "start": 6510.2, + "end": 6510.64, + "probability": 0.8422 + }, + { + "start": 6510.66, + "end": 6515.3, + "probability": 0.9893 + }, + { + "start": 6515.54, + "end": 6515.98, + "probability": 0.7186 + }, + { + "start": 6516.08, + "end": 6518.44, + "probability": 0.9409 + }, + { + "start": 6519.54, + "end": 6522.5, + "probability": 0.9242 + }, + { + "start": 6523.24, + "end": 6524.74, + "probability": 0.9784 + }, + { + "start": 6525.74, + "end": 6526.82, + "probability": 0.6838 + }, + { + "start": 6527.94, + "end": 6530.28, + "probability": 0.9441 + }, + { + "start": 6531.36, + "end": 6539.23, + "probability": 0.969 + }, + { + "start": 6539.82, + "end": 6541.1, + "probability": 0.9049 + }, + { + "start": 6541.48, + "end": 6542.08, + "probability": 0.9615 + }, + { + "start": 6542.78, + "end": 6543.7, + "probability": 0.689 + }, + { + "start": 6545.93, + "end": 6550.78, + "probability": 0.8739 + }, + { + "start": 6552.8, + "end": 6555.6, + "probability": 0.9971 + }, + { + "start": 6556.5, + "end": 6557.64, + "probability": 0.6515 + }, + { + "start": 6559.66, + "end": 6560.5, + "probability": 0.8357 + }, + { + "start": 6562.4, + "end": 6565.86, + "probability": 0.9419 + }, + { + "start": 6567.02, + "end": 6569.72, + "probability": 0.9727 + }, + { + "start": 6570.86, + "end": 6572.64, + "probability": 0.8984 + }, + { + "start": 6573.42, + "end": 6574.84, + "probability": 0.5598 + }, + { + "start": 6576.64, + "end": 6578.16, + "probability": 0.7509 + }, + { + "start": 6579.72, + "end": 6584.8, + "probability": 0.995 + }, + { + "start": 6585.74, + "end": 6590.08, + "probability": 0.9669 + }, + { + "start": 6590.68, + "end": 6592.74, + "probability": 0.802 + }, + { + "start": 6593.7, + "end": 6594.54, + "probability": 0.6431 + }, + { + "start": 6595.24, + "end": 6598.08, + "probability": 0.8091 + }, + { + "start": 6598.64, + "end": 6599.72, + "probability": 0.7498 + }, + { + "start": 6600.74, + "end": 6602.46, + "probability": 0.6145 + }, + { + "start": 6602.96, + "end": 6603.66, + "probability": 0.71 + }, + { + "start": 6604.7, + "end": 6605.86, + "probability": 0.9889 + }, + { + "start": 6606.3, + "end": 6607.76, + "probability": 0.8499 + }, + { + "start": 6608.2, + "end": 6610.44, + "probability": 0.9941 + }, + { + "start": 6611.2, + "end": 6611.2, + "probability": 0.3044 + }, + { + "start": 6611.2, + "end": 6614.32, + "probability": 0.8981 + }, + { + "start": 6614.98, + "end": 6617.72, + "probability": 0.9555 + }, + { + "start": 6617.92, + "end": 6618.48, + "probability": 0.8896 + }, + { + "start": 6619.58, + "end": 6620.92, + "probability": 0.9377 + }, + { + "start": 6621.8, + "end": 6626.08, + "probability": 0.9648 + }, + { + "start": 6626.64, + "end": 6627.9, + "probability": 0.5264 + }, + { + "start": 6628.88, + "end": 6632.4, + "probability": 0.9863 + }, + { + "start": 6632.64, + "end": 6632.8, + "probability": 0.4859 + }, + { + "start": 6633.22, + "end": 6633.8, + "probability": 0.9418 + }, + { + "start": 6634.26, + "end": 6638.88, + "probability": 0.9673 + }, + { + "start": 6639.08, + "end": 6639.44, + "probability": 0.4139 + }, + { + "start": 6639.82, + "end": 6645.18, + "probability": 0.9819 + }, + { + "start": 6645.86, + "end": 6647.86, + "probability": 0.9943 + }, + { + "start": 6648.24, + "end": 6650.86, + "probability": 0.9938 + }, + { + "start": 6651.54, + "end": 6653.2, + "probability": 0.9803 + }, + { + "start": 6654.24, + "end": 6658.52, + "probability": 0.9603 + }, + { + "start": 6659.82, + "end": 6663.26, + "probability": 0.9659 + }, + { + "start": 6663.44, + "end": 6664.22, + "probability": 0.6517 + }, + { + "start": 6664.62, + "end": 6666.74, + "probability": 0.9922 + }, + { + "start": 6667.58, + "end": 6668.48, + "probability": 0.9814 + }, + { + "start": 6669.1, + "end": 6670.18, + "probability": 0.6385 + }, + { + "start": 6670.2, + "end": 6671.22, + "probability": 0.916 + }, + { + "start": 6671.34, + "end": 6672.0, + "probability": 0.9288 + }, + { + "start": 6672.18, + "end": 6673.64, + "probability": 0.7211 + }, + { + "start": 6674.34, + "end": 6678.38, + "probability": 0.1363 + }, + { + "start": 6678.38, + "end": 6681.26, + "probability": 0.0844 + }, + { + "start": 6681.26, + "end": 6684.0, + "probability": 0.2195 + }, + { + "start": 6686.88, + "end": 6690.14, + "probability": 0.0447 + }, + { + "start": 6690.18, + "end": 6692.58, + "probability": 0.1588 + }, + { + "start": 6692.58, + "end": 6693.28, + "probability": 0.4462 + }, + { + "start": 6694.7, + "end": 6696.68, + "probability": 0.9252 + }, + { + "start": 6696.94, + "end": 6697.18, + "probability": 0.3085 + }, + { + "start": 6697.74, + "end": 6700.85, + "probability": 0.431 + }, + { + "start": 6701.42, + "end": 6704.72, + "probability": 0.9523 + }, + { + "start": 6704.82, + "end": 6710.2, + "probability": 0.7486 + }, + { + "start": 6710.3, + "end": 6710.56, + "probability": 0.4006 + }, + { + "start": 6710.92, + "end": 6712.1, + "probability": 0.4291 + }, + { + "start": 6712.74, + "end": 6714.22, + "probability": 0.7005 + }, + { + "start": 6714.28, + "end": 6715.16, + "probability": 0.9154 + }, + { + "start": 6715.62, + "end": 6717.88, + "probability": 0.2609 + }, + { + "start": 6717.94, + "end": 6718.38, + "probability": 0.4709 + }, + { + "start": 6718.72, + "end": 6720.28, + "probability": 0.6653 + }, + { + "start": 6720.42, + "end": 6722.64, + "probability": 0.8027 + }, + { + "start": 6722.7, + "end": 6723.72, + "probability": 0.5465 + }, + { + "start": 6724.98, + "end": 6728.74, + "probability": 0.9146 + }, + { + "start": 6729.66, + "end": 6730.64, + "probability": 0.9277 + }, + { + "start": 6731.22, + "end": 6732.78, + "probability": 0.6907 + }, + { + "start": 6734.39, + "end": 6737.98, + "probability": 0.8285 + }, + { + "start": 6738.46, + "end": 6743.48, + "probability": 0.9561 + }, + { + "start": 6744.3, + "end": 6746.92, + "probability": 0.536 + }, + { + "start": 6747.06, + "end": 6749.9, + "probability": 0.521 + }, + { + "start": 6750.68, + "end": 6751.76, + "probability": 0.523 + }, + { + "start": 6752.14, + "end": 6753.02, + "probability": 0.6943 + }, + { + "start": 6753.04, + "end": 6753.88, + "probability": 0.6602 + }, + { + "start": 6753.88, + "end": 6755.42, + "probability": 0.9507 + }, + { + "start": 6756.08, + "end": 6760.5, + "probability": 0.1261 + }, + { + "start": 6770.88, + "end": 6771.72, + "probability": 0.006 + }, + { + "start": 6771.72, + "end": 6771.72, + "probability": 0.0117 + }, + { + "start": 6771.72, + "end": 6771.72, + "probability": 0.3859 + }, + { + "start": 6771.72, + "end": 6771.72, + "probability": 0.3363 + }, + { + "start": 6771.72, + "end": 6773.72, + "probability": 0.5332 + }, + { + "start": 6773.92, + "end": 6779.27, + "probability": 0.8359 + }, + { + "start": 6780.7, + "end": 6782.06, + "probability": 0.3917 + }, + { + "start": 6782.74, + "end": 6783.32, + "probability": 0.6361 + }, + { + "start": 6784.06, + "end": 6784.42, + "probability": 0.6372 + }, + { + "start": 6784.62, + "end": 6787.82, + "probability": 0.6356 + }, + { + "start": 6788.26, + "end": 6790.34, + "probability": 0.9697 + }, + { + "start": 6790.4, + "end": 6792.3, + "probability": 0.9161 + }, + { + "start": 6792.8, + "end": 6794.64, + "probability": 0.697 + }, + { + "start": 6795.56, + "end": 6797.02, + "probability": 0.4964 + }, + { + "start": 6797.5, + "end": 6797.86, + "probability": 0.0705 + } + ], + "segments_count": 2210, + "words_count": 10938, + "avg_words_per_segment": 4.9493, + "avg_segment_duration": 2.1113, + "avg_words_per_minute": 93.9478, + "plenum_id": "52608", + "duration": 6985.58, + "title": null, + "plenum_date": "2016-06-06" +} \ No newline at end of file