diff --git "a/3912/metadata.json" "b/3912/metadata.json" new file mode 100644--- /dev/null +++ "b/3912/metadata.json" @@ -0,0 +1,11857 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "3912", + "quality_score": 0.885, + "per_segment_quality_scores": [ + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.0, + "end": 244.0, + "probability": 0.0 + }, + { + "start": 244.18, + "end": 244.18, + "probability": 0.017 + }, + { + "start": 244.18, + "end": 245.06, + "probability": 0.3388 + }, + { + "start": 245.52, + "end": 247.68, + "probability": 0.7933 + }, + { + "start": 247.96, + "end": 248.7, + "probability": 0.875 + }, + { + "start": 249.08, + "end": 251.3, + "probability": 0.752 + }, + { + "start": 251.66, + "end": 254.52, + "probability": 0.9663 + }, + { + "start": 254.94, + "end": 261.16, + "probability": 0.8131 + }, + { + "start": 261.28, + "end": 262.4, + "probability": 0.7353 + }, + { + "start": 263.28, + "end": 266.12, + "probability": 0.5086 + }, + { + "start": 267.28, + "end": 274.92, + "probability": 0.8943 + }, + { + "start": 275.9, + "end": 276.04, + "probability": 0.0417 + }, + { + "start": 276.1, + "end": 279.32, + "probability": 0.9965 + }, + { + "start": 279.76, + "end": 284.0, + "probability": 0.9631 + }, + { + "start": 284.48, + "end": 287.26, + "probability": 0.7768 + }, + { + "start": 287.82, + "end": 293.24, + "probability": 0.9902 + }, + { + "start": 293.68, + "end": 295.16, + "probability": 0.9863 + }, + { + "start": 295.74, + "end": 298.78, + "probability": 0.8418 + }, + { + "start": 299.3, + "end": 301.44, + "probability": 0.9579 + }, + { + "start": 302.14, + "end": 306.6, + "probability": 0.9285 + }, + { + "start": 306.98, + "end": 307.08, + "probability": 0.3828 + }, + { + "start": 308.04, + "end": 309.1, + "probability": 0.681 + }, + { + "start": 309.44, + "end": 310.95, + "probability": 0.9139 + }, + { + "start": 312.22, + "end": 313.02, + "probability": 0.5603 + }, + { + "start": 314.32, + "end": 317.14, + "probability": 0.9806 + }, + { + "start": 317.76, + "end": 319.56, + "probability": 0.8492 + }, + { + "start": 320.16, + "end": 328.28, + "probability": 0.9952 + }, + { + "start": 328.34, + "end": 330.9, + "probability": 0.9864 + }, + { + "start": 331.02, + "end": 331.68, + "probability": 0.6522 + }, + { + "start": 332.78, + "end": 333.5, + "probability": 0.5798 + }, + { + "start": 335.66, + "end": 336.42, + "probability": 0.9525 + }, + { + "start": 337.34, + "end": 339.92, + "probability": 0.667 + }, + { + "start": 340.6, + "end": 342.49, + "probability": 0.9924 + }, + { + "start": 343.08, + "end": 345.64, + "probability": 0.8381 + }, + { + "start": 346.3, + "end": 350.16, + "probability": 0.5547 + }, + { + "start": 350.16, + "end": 354.1, + "probability": 0.9253 + }, + { + "start": 355.94, + "end": 356.76, + "probability": 0.9592 + }, + { + "start": 358.08, + "end": 361.12, + "probability": 0.979 + }, + { + "start": 362.76, + "end": 368.84, + "probability": 0.7195 + }, + { + "start": 368.88, + "end": 369.36, + "probability": 0.8809 + }, + { + "start": 370.02, + "end": 373.38, + "probability": 0.9971 + }, + { + "start": 374.26, + "end": 376.22, + "probability": 0.9867 + }, + { + "start": 376.74, + "end": 377.88, + "probability": 0.7822 + }, + { + "start": 378.42, + "end": 379.82, + "probability": 0.9951 + }, + { + "start": 379.94, + "end": 381.11, + "probability": 0.647 + }, + { + "start": 382.04, + "end": 385.1, + "probability": 0.8853 + }, + { + "start": 386.48, + "end": 387.38, + "probability": 0.9658 + }, + { + "start": 388.02, + "end": 389.61, + "probability": 0.7141 + }, + { + "start": 391.58, + "end": 396.12, + "probability": 0.9955 + }, + { + "start": 397.06, + "end": 399.02, + "probability": 0.8549 + }, + { + "start": 399.7, + "end": 400.64, + "probability": 0.9125 + }, + { + "start": 401.54, + "end": 402.78, + "probability": 0.8441 + }, + { + "start": 402.86, + "end": 403.56, + "probability": 0.9907 + }, + { + "start": 404.88, + "end": 407.72, + "probability": 0.9949 + }, + { + "start": 408.36, + "end": 409.24, + "probability": 0.9114 + }, + { + "start": 410.22, + "end": 413.32, + "probability": 0.7739 + }, + { + "start": 413.88, + "end": 415.68, + "probability": 0.9894 + }, + { + "start": 416.18, + "end": 418.16, + "probability": 0.9596 + }, + { + "start": 419.54, + "end": 420.39, + "probability": 0.9846 + }, + { + "start": 421.12, + "end": 422.98, + "probability": 0.9629 + }, + { + "start": 423.7, + "end": 423.84, + "probability": 0.8086 + }, + { + "start": 424.8, + "end": 426.1, + "probability": 0.4192 + }, + { + "start": 426.86, + "end": 428.36, + "probability": 0.9733 + }, + { + "start": 428.44, + "end": 429.24, + "probability": 0.795 + }, + { + "start": 429.72, + "end": 432.23, + "probability": 0.9948 + }, + { + "start": 433.0, + "end": 435.04, + "probability": 0.8717 + }, + { + "start": 435.76, + "end": 438.74, + "probability": 0.9794 + }, + { + "start": 439.6, + "end": 440.1, + "probability": 0.7162 + }, + { + "start": 440.18, + "end": 442.82, + "probability": 0.9914 + }, + { + "start": 443.7, + "end": 444.32, + "probability": 0.8804 + }, + { + "start": 444.86, + "end": 447.16, + "probability": 0.9781 + }, + { + "start": 447.76, + "end": 449.24, + "probability": 0.9968 + }, + { + "start": 449.84, + "end": 451.7, + "probability": 0.9957 + }, + { + "start": 452.42, + "end": 453.56, + "probability": 0.9209 + }, + { + "start": 455.14, + "end": 458.4, + "probability": 0.8372 + }, + { + "start": 458.96, + "end": 460.5, + "probability": 0.7582 + }, + { + "start": 461.14, + "end": 463.34, + "probability": 0.9922 + }, + { + "start": 463.34, + "end": 466.54, + "probability": 0.9995 + }, + { + "start": 467.42, + "end": 467.86, + "probability": 0.9448 + }, + { + "start": 468.58, + "end": 470.16, + "probability": 0.9975 + }, + { + "start": 470.8, + "end": 475.3, + "probability": 0.9912 + }, + { + "start": 476.34, + "end": 476.92, + "probability": 0.6835 + }, + { + "start": 477.7, + "end": 481.42, + "probability": 0.7531 + }, + { + "start": 481.62, + "end": 481.8, + "probability": 0.2531 + }, + { + "start": 481.92, + "end": 487.04, + "probability": 0.9844 + }, + { + "start": 489.78, + "end": 495.22, + "probability": 0.7887 + }, + { + "start": 495.82, + "end": 498.22, + "probability": 0.8732 + }, + { + "start": 498.62, + "end": 501.8, + "probability": 0.9091 + }, + { + "start": 502.44, + "end": 505.94, + "probability": 0.9706 + }, + { + "start": 507.02, + "end": 510.36, + "probability": 0.8041 + }, + { + "start": 511.72, + "end": 512.62, + "probability": 0.7569 + }, + { + "start": 513.54, + "end": 515.2, + "probability": 0.8356 + }, + { + "start": 515.56, + "end": 516.4, + "probability": 0.6704 + }, + { + "start": 516.46, + "end": 517.3, + "probability": 0.7252 + }, + { + "start": 517.4, + "end": 517.84, + "probability": 0.3277 + }, + { + "start": 518.38, + "end": 519.98, + "probability": 0.6632 + }, + { + "start": 520.86, + "end": 521.64, + "probability": 0.9191 + }, + { + "start": 522.12, + "end": 523.14, + "probability": 0.9487 + }, + { + "start": 523.14, + "end": 523.74, + "probability": 0.3061 + }, + { + "start": 524.14, + "end": 525.6, + "probability": 0.8941 + }, + { + "start": 526.4, + "end": 527.02, + "probability": 0.307 + }, + { + "start": 527.16, + "end": 530.96, + "probability": 0.936 + }, + { + "start": 531.82, + "end": 533.82, + "probability": 0.9867 + }, + { + "start": 534.52, + "end": 537.2, + "probability": 0.9726 + }, + { + "start": 538.52, + "end": 539.22, + "probability": 0.345 + }, + { + "start": 539.28, + "end": 542.68, + "probability": 0.7739 + }, + { + "start": 543.18, + "end": 544.18, + "probability": 0.9002 + }, + { + "start": 545.12, + "end": 546.54, + "probability": 0.8322 + }, + { + "start": 547.3, + "end": 549.4, + "probability": 0.9328 + }, + { + "start": 550.6, + "end": 551.58, + "probability": 0.9807 + }, + { + "start": 552.76, + "end": 553.84, + "probability": 0.9104 + }, + { + "start": 553.92, + "end": 554.36, + "probability": 0.8474 + }, + { + "start": 554.46, + "end": 556.46, + "probability": 0.9843 + }, + { + "start": 557.32, + "end": 557.5, + "probability": 0.1102 + }, + { + "start": 558.1, + "end": 560.92, + "probability": 0.9654 + }, + { + "start": 562.08, + "end": 563.38, + "probability": 0.9941 + }, + { + "start": 563.92, + "end": 565.02, + "probability": 0.9998 + }, + { + "start": 565.7, + "end": 566.84, + "probability": 0.9808 + }, + { + "start": 567.72, + "end": 568.48, + "probability": 0.6016 + }, + { + "start": 569.22, + "end": 570.26, + "probability": 0.7227 + }, + { + "start": 571.78, + "end": 574.6, + "probability": 0.9948 + }, + { + "start": 574.68, + "end": 576.62, + "probability": 0.8861 + }, + { + "start": 577.2, + "end": 579.36, + "probability": 0.967 + }, + { + "start": 579.98, + "end": 581.52, + "probability": 0.924 + }, + { + "start": 582.24, + "end": 583.74, + "probability": 0.98 + }, + { + "start": 584.34, + "end": 586.7, + "probability": 0.9977 + }, + { + "start": 587.3, + "end": 591.18, + "probability": 0.9718 + }, + { + "start": 592.6, + "end": 594.56, + "probability": 0.8062 + }, + { + "start": 595.44, + "end": 598.52, + "probability": 0.9916 + }, + { + "start": 599.08, + "end": 600.58, + "probability": 0.9969 + }, + { + "start": 601.34, + "end": 603.36, + "probability": 0.9966 + }, + { + "start": 603.92, + "end": 604.6, + "probability": 0.6589 + }, + { + "start": 605.3, + "end": 606.76, + "probability": 0.9603 + }, + { + "start": 607.76, + "end": 609.26, + "probability": 0.9124 + }, + { + "start": 609.96, + "end": 615.86, + "probability": 0.9617 + }, + { + "start": 616.78, + "end": 617.5, + "probability": 0.8604 + }, + { + "start": 618.56, + "end": 622.3, + "probability": 0.9377 + }, + { + "start": 624.08, + "end": 628.58, + "probability": 0.9154 + }, + { + "start": 629.66, + "end": 631.8, + "probability": 0.8791 + }, + { + "start": 632.44, + "end": 633.39, + "probability": 0.8828 + }, + { + "start": 634.1, + "end": 637.14, + "probability": 0.9432 + }, + { + "start": 637.78, + "end": 638.96, + "probability": 0.995 + }, + { + "start": 639.64, + "end": 640.58, + "probability": 0.7416 + }, + { + "start": 640.62, + "end": 642.84, + "probability": 0.9793 + }, + { + "start": 643.0, + "end": 643.3, + "probability": 0.8617 + }, + { + "start": 644.06, + "end": 647.38, + "probability": 0.9629 + }, + { + "start": 647.84, + "end": 651.14, + "probability": 0.9819 + }, + { + "start": 651.38, + "end": 655.48, + "probability": 0.9915 + }, + { + "start": 656.0, + "end": 657.96, + "probability": 0.9762 + }, + { + "start": 658.68, + "end": 659.16, + "probability": 0.8342 + }, + { + "start": 660.28, + "end": 662.46, + "probability": 0.9389 + }, + { + "start": 664.02, + "end": 665.1, + "probability": 0.8269 + }, + { + "start": 665.28, + "end": 666.48, + "probability": 0.9521 + }, + { + "start": 666.56, + "end": 668.02, + "probability": 0.9624 + }, + { + "start": 668.56, + "end": 672.88, + "probability": 0.9769 + }, + { + "start": 672.98, + "end": 674.68, + "probability": 0.9627 + }, + { + "start": 675.38, + "end": 678.4, + "probability": 0.9806 + }, + { + "start": 678.96, + "end": 682.72, + "probability": 0.9907 + }, + { + "start": 682.86, + "end": 683.94, + "probability": 0.9931 + }, + { + "start": 684.92, + "end": 685.74, + "probability": 0.8236 + }, + { + "start": 686.38, + "end": 687.32, + "probability": 0.7301 + }, + { + "start": 688.5, + "end": 689.92, + "probability": 0.0001 + }, + { + "start": 691.54, + "end": 692.46, + "probability": 0.6302 + }, + { + "start": 693.4, + "end": 695.18, + "probability": 0.7999 + }, + { + "start": 695.74, + "end": 698.72, + "probability": 0.9279 + }, + { + "start": 699.28, + "end": 704.52, + "probability": 0.7701 + }, + { + "start": 706.02, + "end": 710.22, + "probability": 0.7023 + }, + { + "start": 711.36, + "end": 712.98, + "probability": 0.9725 + }, + { + "start": 713.66, + "end": 714.68, + "probability": 0.7411 + }, + { + "start": 715.46, + "end": 717.18, + "probability": 0.9915 + }, + { + "start": 717.48, + "end": 718.12, + "probability": 0.9541 + }, + { + "start": 718.9, + "end": 721.5, + "probability": 0.9907 + }, + { + "start": 722.06, + "end": 725.86, + "probability": 0.9837 + }, + { + "start": 726.92, + "end": 729.06, + "probability": 0.8122 + }, + { + "start": 729.3, + "end": 729.7, + "probability": 0.7324 + }, + { + "start": 730.22, + "end": 732.48, + "probability": 0.5107 + }, + { + "start": 733.16, + "end": 734.08, + "probability": 0.733 + }, + { + "start": 734.54, + "end": 738.7, + "probability": 0.7079 + }, + { + "start": 739.06, + "end": 739.56, + "probability": 0.7247 + }, + { + "start": 739.78, + "end": 740.12, + "probability": 0.9373 + }, + { + "start": 740.42, + "end": 741.23, + "probability": 0.9938 + }, + { + "start": 748.7, + "end": 748.7, + "probability": 0.0664 + }, + { + "start": 748.7, + "end": 748.72, + "probability": 0.0533 + }, + { + "start": 748.72, + "end": 748.72, + "probability": 0.0789 + }, + { + "start": 748.72, + "end": 748.72, + "probability": 0.3172 + }, + { + "start": 758.38, + "end": 759.6, + "probability": 0.7546 + }, + { + "start": 760.2, + "end": 762.0, + "probability": 0.9933 + }, + { + "start": 763.36, + "end": 764.04, + "probability": 0.9625 + }, + { + "start": 766.12, + "end": 766.64, + "probability": 0.7532 + }, + { + "start": 768.34, + "end": 775.82, + "probability": 0.9901 + }, + { + "start": 775.82, + "end": 780.96, + "probability": 0.9837 + }, + { + "start": 782.44, + "end": 788.46, + "probability": 0.991 + }, + { + "start": 790.68, + "end": 792.32, + "probability": 0.9954 + }, + { + "start": 794.8, + "end": 796.2, + "probability": 0.9087 + }, + { + "start": 797.3, + "end": 801.94, + "probability": 0.8842 + }, + { + "start": 803.4, + "end": 805.34, + "probability": 0.99 + }, + { + "start": 806.38, + "end": 807.72, + "probability": 0.9958 + }, + { + "start": 808.98, + "end": 809.38, + "probability": 0.855 + }, + { + "start": 810.98, + "end": 811.96, + "probability": 0.7502 + }, + { + "start": 813.0, + "end": 816.36, + "probability": 0.9884 + }, + { + "start": 818.82, + "end": 821.68, + "probability": 0.993 + }, + { + "start": 821.68, + "end": 827.23, + "probability": 0.969 + }, + { + "start": 828.92, + "end": 830.4, + "probability": 0.9923 + }, + { + "start": 831.18, + "end": 831.98, + "probability": 0.832 + }, + { + "start": 833.56, + "end": 835.04, + "probability": 0.9756 + }, + { + "start": 835.22, + "end": 839.3, + "probability": 0.9794 + }, + { + "start": 841.82, + "end": 845.32, + "probability": 0.5244 + }, + { + "start": 846.48, + "end": 847.7, + "probability": 0.8379 + }, + { + "start": 848.86, + "end": 851.34, + "probability": 0.952 + }, + { + "start": 851.92, + "end": 852.9, + "probability": 0.8202 + }, + { + "start": 853.8, + "end": 856.25, + "probability": 0.9121 + }, + { + "start": 857.24, + "end": 858.18, + "probability": 0.9341 + }, + { + "start": 859.58, + "end": 861.6, + "probability": 0.9388 + }, + { + "start": 862.48, + "end": 864.16, + "probability": 0.9787 + }, + { + "start": 867.08, + "end": 872.42, + "probability": 0.7991 + }, + { + "start": 873.08, + "end": 874.8, + "probability": 0.8931 + }, + { + "start": 875.56, + "end": 876.22, + "probability": 0.8561 + }, + { + "start": 876.98, + "end": 878.62, + "probability": 0.8308 + }, + { + "start": 879.14, + "end": 880.1, + "probability": 0.9001 + }, + { + "start": 881.36, + "end": 882.8, + "probability": 0.9694 + }, + { + "start": 882.98, + "end": 883.64, + "probability": 0.8755 + }, + { + "start": 883.78, + "end": 884.76, + "probability": 0.8786 + }, + { + "start": 885.72, + "end": 886.34, + "probability": 0.9585 + }, + { + "start": 887.44, + "end": 888.91, + "probability": 0.9819 + }, + { + "start": 889.02, + "end": 890.64, + "probability": 0.8918 + }, + { + "start": 892.02, + "end": 893.22, + "probability": 0.7402 + }, + { + "start": 894.5, + "end": 897.04, + "probability": 0.8969 + }, + { + "start": 898.56, + "end": 899.58, + "probability": 0.5049 + }, + { + "start": 899.64, + "end": 903.38, + "probability": 0.9712 + }, + { + "start": 903.38, + "end": 903.48, + "probability": 0.9016 + }, + { + "start": 904.32, + "end": 905.0, + "probability": 0.7188 + }, + { + "start": 908.42, + "end": 909.2, + "probability": 0.9501 + }, + { + "start": 910.8, + "end": 912.98, + "probability": 0.9613 + }, + { + "start": 914.8, + "end": 917.32, + "probability": 0.9597 + }, + { + "start": 920.2, + "end": 924.68, + "probability": 0.9982 + }, + { + "start": 924.68, + "end": 927.88, + "probability": 0.7867 + }, + { + "start": 928.24, + "end": 929.06, + "probability": 0.8712 + }, + { + "start": 932.1, + "end": 936.39, + "probability": 0.9982 + }, + { + "start": 936.48, + "end": 938.32, + "probability": 0.7655 + }, + { + "start": 939.68, + "end": 942.64, + "probability": 0.7592 + }, + { + "start": 943.34, + "end": 945.36, + "probability": 0.777 + }, + { + "start": 945.8, + "end": 948.0, + "probability": 0.7679 + }, + { + "start": 949.48, + "end": 951.58, + "probability": 0.946 + }, + { + "start": 953.32, + "end": 956.26, + "probability": 0.9832 + }, + { + "start": 956.68, + "end": 962.01, + "probability": 0.9556 + }, + { + "start": 963.02, + "end": 968.42, + "probability": 0.7841 + }, + { + "start": 970.92, + "end": 972.66, + "probability": 0.5577 + }, + { + "start": 973.42, + "end": 974.47, + "probability": 0.9811 + }, + { + "start": 975.54, + "end": 977.26, + "probability": 0.9992 + }, + { + "start": 978.28, + "end": 980.66, + "probability": 0.9763 + }, + { + "start": 982.12, + "end": 984.12, + "probability": 0.9668 + }, + { + "start": 985.14, + "end": 989.34, + "probability": 0.9891 + }, + { + "start": 989.94, + "end": 993.08, + "probability": 0.9911 + }, + { + "start": 993.6, + "end": 994.54, + "probability": 0.9984 + }, + { + "start": 994.76, + "end": 997.52, + "probability": 0.4597 + }, + { + "start": 997.66, + "end": 1000.64, + "probability": 0.9766 + }, + { + "start": 1000.78, + "end": 1002.68, + "probability": 0.947 + }, + { + "start": 1002.88, + "end": 1004.12, + "probability": 0.3926 + }, + { + "start": 1007.21, + "end": 1008.8, + "probability": 0.7263 + }, + { + "start": 1009.08, + "end": 1009.94, + "probability": 0.9124 + }, + { + "start": 1011.2, + "end": 1013.0, + "probability": 0.9272 + }, + { + "start": 1013.4, + "end": 1014.95, + "probability": 0.9505 + }, + { + "start": 1015.88, + "end": 1016.94, + "probability": 0.8576 + }, + { + "start": 1016.98, + "end": 1019.32, + "probability": 0.9722 + }, + { + "start": 1020.68, + "end": 1022.36, + "probability": 0.064 + }, + { + "start": 1022.96, + "end": 1025.1, + "probability": 0.4138 + }, + { + "start": 1025.5, + "end": 1027.32, + "probability": 0.7545 + }, + { + "start": 1028.94, + "end": 1030.84, + "probability": 0.8461 + }, + { + "start": 1031.46, + "end": 1032.4, + "probability": 0.8049 + }, + { + "start": 1032.54, + "end": 1034.82, + "probability": 0.7998 + }, + { + "start": 1035.38, + "end": 1037.13, + "probability": 0.7014 + }, + { + "start": 1039.2, + "end": 1042.26, + "probability": 0.9785 + }, + { + "start": 1042.26, + "end": 1045.72, + "probability": 0.9959 + }, + { + "start": 1046.26, + "end": 1048.44, + "probability": 0.9574 + }, + { + "start": 1049.28, + "end": 1049.94, + "probability": 0.9494 + }, + { + "start": 1051.58, + "end": 1051.98, + "probability": 0.3809 + }, + { + "start": 1053.4, + "end": 1055.68, + "probability": 0.6514 + }, + { + "start": 1056.86, + "end": 1057.36, + "probability": 0.7659 + }, + { + "start": 1058.04, + "end": 1059.28, + "probability": 0.9941 + }, + { + "start": 1059.9, + "end": 1064.7, + "probability": 0.9842 + }, + { + "start": 1066.2, + "end": 1070.04, + "probability": 0.9929 + }, + { + "start": 1070.74, + "end": 1075.08, + "probability": 0.98 + }, + { + "start": 1075.76, + "end": 1076.62, + "probability": 0.8592 + }, + { + "start": 1077.1, + "end": 1081.72, + "probability": 0.9984 + }, + { + "start": 1082.46, + "end": 1084.78, + "probability": 0.9521 + }, + { + "start": 1086.46, + "end": 1087.44, + "probability": 0.9183 + }, + { + "start": 1088.48, + "end": 1093.68, + "probability": 0.9716 + }, + { + "start": 1094.58, + "end": 1095.64, + "probability": 0.6952 + }, + { + "start": 1096.62, + "end": 1100.2, + "probability": 0.9801 + }, + { + "start": 1100.76, + "end": 1102.86, + "probability": 0.7887 + }, + { + "start": 1104.42, + "end": 1106.42, + "probability": 0.9927 + }, + { + "start": 1106.66, + "end": 1108.16, + "probability": 0.9312 + }, + { + "start": 1110.02, + "end": 1110.46, + "probability": 0.9562 + }, + { + "start": 1110.56, + "end": 1111.2, + "probability": 0.7423 + }, + { + "start": 1111.26, + "end": 1111.72, + "probability": 0.9974 + }, + { + "start": 1111.76, + "end": 1112.4, + "probability": 0.8437 + }, + { + "start": 1113.44, + "end": 1114.84, + "probability": 0.9292 + }, + { + "start": 1115.12, + "end": 1118.5, + "probability": 0.9874 + }, + { + "start": 1119.48, + "end": 1121.92, + "probability": 0.9002 + }, + { + "start": 1122.76, + "end": 1126.54, + "probability": 0.9922 + }, + { + "start": 1127.84, + "end": 1133.06, + "probability": 0.9968 + }, + { + "start": 1134.1, + "end": 1137.02, + "probability": 0.9856 + }, + { + "start": 1137.38, + "end": 1141.04, + "probability": 0.9985 + }, + { + "start": 1141.98, + "end": 1144.5, + "probability": 0.9974 + }, + { + "start": 1144.74, + "end": 1145.98, + "probability": 0.9284 + }, + { + "start": 1146.36, + "end": 1149.52, + "probability": 0.8429 + }, + { + "start": 1151.98, + "end": 1153.78, + "probability": 0.8667 + }, + { + "start": 1154.56, + "end": 1155.68, + "probability": 0.9814 + }, + { + "start": 1156.87, + "end": 1159.9, + "probability": 0.9908 + }, + { + "start": 1161.56, + "end": 1164.64, + "probability": 0.9881 + }, + { + "start": 1165.4, + "end": 1168.34, + "probability": 0.9992 + }, + { + "start": 1169.02, + "end": 1171.7, + "probability": 0.9975 + }, + { + "start": 1171.9, + "end": 1175.56, + "probability": 0.9947 + }, + { + "start": 1176.9, + "end": 1182.22, + "probability": 0.9871 + }, + { + "start": 1182.96, + "end": 1185.5, + "probability": 0.9038 + }, + { + "start": 1187.38, + "end": 1191.34, + "probability": 0.9932 + }, + { + "start": 1192.52, + "end": 1198.7, + "probability": 0.9883 + }, + { + "start": 1199.62, + "end": 1202.22, + "probability": 0.9357 + }, + { + "start": 1203.12, + "end": 1204.98, + "probability": 0.8135 + }, + { + "start": 1205.16, + "end": 1206.94, + "probability": 0.9981 + }, + { + "start": 1207.52, + "end": 1210.34, + "probability": 0.9912 + }, + { + "start": 1211.24, + "end": 1212.18, + "probability": 0.9932 + }, + { + "start": 1213.0, + "end": 1214.2, + "probability": 0.9878 + }, + { + "start": 1214.36, + "end": 1215.18, + "probability": 0.9908 + }, + { + "start": 1216.72, + "end": 1218.04, + "probability": 0.9989 + }, + { + "start": 1218.6, + "end": 1221.0, + "probability": 0.9587 + }, + { + "start": 1222.14, + "end": 1222.76, + "probability": 0.7178 + }, + { + "start": 1224.12, + "end": 1226.4, + "probability": 0.9545 + }, + { + "start": 1227.56, + "end": 1233.84, + "probability": 0.9881 + }, + { + "start": 1233.84, + "end": 1237.76, + "probability": 0.9991 + }, + { + "start": 1239.02, + "end": 1240.66, + "probability": 0.8748 + }, + { + "start": 1241.18, + "end": 1243.34, + "probability": 0.9831 + }, + { + "start": 1244.32, + "end": 1246.78, + "probability": 0.9992 + }, + { + "start": 1247.92, + "end": 1249.08, + "probability": 0.9303 + }, + { + "start": 1249.7, + "end": 1251.08, + "probability": 0.9683 + }, + { + "start": 1251.6, + "end": 1255.92, + "probability": 0.9851 + }, + { + "start": 1256.5, + "end": 1259.66, + "probability": 0.9534 + }, + { + "start": 1260.48, + "end": 1263.16, + "probability": 0.9738 + }, + { + "start": 1264.24, + "end": 1268.56, + "probability": 0.9928 + }, + { + "start": 1268.76, + "end": 1274.26, + "probability": 0.9897 + }, + { + "start": 1275.48, + "end": 1277.98, + "probability": 0.5004 + }, + { + "start": 1278.9, + "end": 1280.72, + "probability": 0.4512 + }, + { + "start": 1281.32, + "end": 1281.88, + "probability": 0.8269 + }, + { + "start": 1282.04, + "end": 1282.76, + "probability": 0.9946 + }, + { + "start": 1283.3, + "end": 1287.56, + "probability": 0.9852 + }, + { + "start": 1288.22, + "end": 1289.16, + "probability": 0.7681 + }, + { + "start": 1289.34, + "end": 1289.9, + "probability": 0.8423 + }, + { + "start": 1290.44, + "end": 1293.38, + "probability": 0.9697 + }, + { + "start": 1293.94, + "end": 1294.64, + "probability": 0.7293 + }, + { + "start": 1295.32, + "end": 1298.92, + "probability": 0.998 + }, + { + "start": 1300.1, + "end": 1301.98, + "probability": 0.9944 + }, + { + "start": 1302.96, + "end": 1307.24, + "probability": 0.999 + }, + { + "start": 1307.82, + "end": 1310.72, + "probability": 0.9973 + }, + { + "start": 1311.28, + "end": 1313.08, + "probability": 0.921 + }, + { + "start": 1313.86, + "end": 1315.82, + "probability": 0.9166 + }, + { + "start": 1316.66, + "end": 1319.0, + "probability": 0.993 + }, + { + "start": 1319.58, + "end": 1322.2, + "probability": 0.98 + }, + { + "start": 1322.84, + "end": 1323.62, + "probability": 0.614 + }, + { + "start": 1324.12, + "end": 1326.34, + "probability": 0.9924 + }, + { + "start": 1326.94, + "end": 1327.24, + "probability": 0.8559 + }, + { + "start": 1327.96, + "end": 1328.52, + "probability": 0.5272 + }, + { + "start": 1328.7, + "end": 1333.64, + "probability": 0.6263 + }, + { + "start": 1333.8, + "end": 1335.12, + "probability": 0.706 + }, + { + "start": 1358.26, + "end": 1360.72, + "probability": 0.5771 + }, + { + "start": 1363.16, + "end": 1367.44, + "probability": 0.9453 + }, + { + "start": 1368.38, + "end": 1369.96, + "probability": 0.309 + }, + { + "start": 1371.22, + "end": 1376.84, + "probability": 0.9868 + }, + { + "start": 1377.38, + "end": 1381.9, + "probability": 0.5971 + }, + { + "start": 1383.16, + "end": 1387.8, + "probability": 0.9974 + }, + { + "start": 1389.64, + "end": 1392.56, + "probability": 0.9903 + }, + { + "start": 1392.56, + "end": 1396.36, + "probability": 0.988 + }, + { + "start": 1398.8, + "end": 1401.02, + "probability": 0.9729 + }, + { + "start": 1402.4, + "end": 1404.52, + "probability": 0.9157 + }, + { + "start": 1405.28, + "end": 1409.88, + "probability": 0.979 + }, + { + "start": 1413.69, + "end": 1417.68, + "probability": 0.3277 + }, + { + "start": 1417.68, + "end": 1421.52, + "probability": 0.9683 + }, + { + "start": 1422.14, + "end": 1423.62, + "probability": 0.9969 + }, + { + "start": 1424.58, + "end": 1426.14, + "probability": 0.8494 + }, + { + "start": 1429.02, + "end": 1433.62, + "probability": 0.9627 + }, + { + "start": 1434.92, + "end": 1436.72, + "probability": 0.6902 + }, + { + "start": 1438.12, + "end": 1440.7, + "probability": 0.9749 + }, + { + "start": 1442.16, + "end": 1445.32, + "probability": 0.5895 + }, + { + "start": 1445.8, + "end": 1449.54, + "probability": 0.7981 + }, + { + "start": 1450.76, + "end": 1456.2, + "probability": 0.9946 + }, + { + "start": 1458.68, + "end": 1461.86, + "probability": 0.8318 + }, + { + "start": 1462.2, + "end": 1463.62, + "probability": 0.9989 + }, + { + "start": 1465.56, + "end": 1466.93, + "probability": 0.9897 + }, + { + "start": 1470.64, + "end": 1475.16, + "probability": 0.7697 + }, + { + "start": 1475.44, + "end": 1476.46, + "probability": 0.8158 + }, + { + "start": 1477.06, + "end": 1478.12, + "probability": 0.8545 + }, + { + "start": 1478.76, + "end": 1479.06, + "probability": 0.4884 + }, + { + "start": 1481.14, + "end": 1485.04, + "probability": 0.8868 + }, + { + "start": 1485.78, + "end": 1487.94, + "probability": 0.9976 + }, + { + "start": 1488.8, + "end": 1489.04, + "probability": 0.8792 + }, + { + "start": 1489.74, + "end": 1490.9, + "probability": 0.9008 + }, + { + "start": 1491.7, + "end": 1494.3, + "probability": 0.9867 + }, + { + "start": 1496.08, + "end": 1498.72, + "probability": 0.8409 + }, + { + "start": 1500.0, + "end": 1502.6, + "probability": 0.9373 + }, + { + "start": 1503.72, + "end": 1506.8, + "probability": 0.7168 + }, + { + "start": 1508.14, + "end": 1509.82, + "probability": 0.9885 + }, + { + "start": 1510.9, + "end": 1515.72, + "probability": 0.9299 + }, + { + "start": 1517.18, + "end": 1519.1, + "probability": 0.9965 + }, + { + "start": 1520.2, + "end": 1521.2, + "probability": 0.7835 + }, + { + "start": 1521.96, + "end": 1523.52, + "probability": 0.9982 + }, + { + "start": 1524.12, + "end": 1525.8, + "probability": 0.9329 + }, + { + "start": 1527.4, + "end": 1529.44, + "probability": 0.9902 + }, + { + "start": 1529.74, + "end": 1530.06, + "probability": 0.4518 + }, + { + "start": 1530.1, + "end": 1530.52, + "probability": 0.8073 + }, + { + "start": 1530.84, + "end": 1531.2, + "probability": 0.9025 + }, + { + "start": 1533.06, + "end": 1533.36, + "probability": 0.9679 + }, + { + "start": 1534.38, + "end": 1539.2, + "probability": 0.9783 + }, + { + "start": 1541.56, + "end": 1544.1, + "probability": 0.0512 + }, + { + "start": 1544.54, + "end": 1548.82, + "probability": 0.9915 + }, + { + "start": 1551.46, + "end": 1554.92, + "probability": 0.7615 + }, + { + "start": 1555.52, + "end": 1556.76, + "probability": 0.8924 + }, + { + "start": 1557.3, + "end": 1560.1, + "probability": 0.613 + }, + { + "start": 1561.58, + "end": 1563.96, + "probability": 0.5285 + }, + { + "start": 1564.96, + "end": 1566.58, + "probability": 0.823 + }, + { + "start": 1569.36, + "end": 1569.8, + "probability": 0.013 + }, + { + "start": 1570.34, + "end": 1572.3, + "probability": 0.5545 + }, + { + "start": 1573.06, + "end": 1574.74, + "probability": 0.7042 + }, + { + "start": 1574.76, + "end": 1576.36, + "probability": 0.6518 + }, + { + "start": 1577.88, + "end": 1580.4, + "probability": 0.9956 + }, + { + "start": 1581.92, + "end": 1583.28, + "probability": 0.9769 + }, + { + "start": 1583.82, + "end": 1586.14, + "probability": 0.9744 + }, + { + "start": 1588.64, + "end": 1590.52, + "probability": 0.3091 + }, + { + "start": 1590.78, + "end": 1591.1, + "probability": 0.5699 + }, + { + "start": 1591.36, + "end": 1591.86, + "probability": 0.7714 + }, + { + "start": 1592.36, + "end": 1594.52, + "probability": 0.3032 + }, + { + "start": 1595.02, + "end": 1599.44, + "probability": 0.9457 + }, + { + "start": 1600.7, + "end": 1602.26, + "probability": 0.9692 + }, + { + "start": 1602.72, + "end": 1604.58, + "probability": 0.9216 + }, + { + "start": 1605.02, + "end": 1606.94, + "probability": 0.9684 + }, + { + "start": 1608.38, + "end": 1608.72, + "probability": 0.526 + }, + { + "start": 1608.72, + "end": 1610.2, + "probability": 0.0631 + }, + { + "start": 1610.88, + "end": 1615.14, + "probability": 0.9029 + }, + { + "start": 1615.96, + "end": 1616.42, + "probability": 0.9193 + }, + { + "start": 1617.58, + "end": 1621.1, + "probability": 0.849 + }, + { + "start": 1622.02, + "end": 1627.48, + "probability": 0.8447 + }, + { + "start": 1627.48, + "end": 1632.9, + "probability": 0.8504 + }, + { + "start": 1633.92, + "end": 1635.13, + "probability": 0.9136 + }, + { + "start": 1635.38, + "end": 1639.54, + "probability": 0.9266 + }, + { + "start": 1642.27, + "end": 1644.56, + "probability": 0.767 + }, + { + "start": 1645.6, + "end": 1645.74, + "probability": 0.3011 + }, + { + "start": 1645.74, + "end": 1650.22, + "probability": 0.8346 + }, + { + "start": 1650.22, + "end": 1652.9, + "probability": 0.9987 + }, + { + "start": 1653.04, + "end": 1653.99, + "probability": 0.9985 + }, + { + "start": 1655.04, + "end": 1657.49, + "probability": 0.9591 + }, + { + "start": 1658.16, + "end": 1660.08, + "probability": 0.9758 + }, + { + "start": 1660.82, + "end": 1663.18, + "probability": 0.9911 + }, + { + "start": 1664.38, + "end": 1669.82, + "probability": 0.9831 + }, + { + "start": 1670.94, + "end": 1671.9, + "probability": 0.8976 + }, + { + "start": 1672.4, + "end": 1673.55, + "probability": 0.8384 + }, + { + "start": 1676.26, + "end": 1676.94, + "probability": 0.9012 + }, + { + "start": 1677.56, + "end": 1680.38, + "probability": 0.7997 + }, + { + "start": 1682.98, + "end": 1686.38, + "probability": 0.9935 + }, + { + "start": 1687.16, + "end": 1687.62, + "probability": 0.9163 + }, + { + "start": 1689.44, + "end": 1693.9, + "probability": 0.9479 + }, + { + "start": 1694.42, + "end": 1696.0, + "probability": 0.8772 + }, + { + "start": 1696.52, + "end": 1699.47, + "probability": 0.9553 + }, + { + "start": 1700.14, + "end": 1704.1, + "probability": 0.8842 + }, + { + "start": 1704.52, + "end": 1710.46, + "probability": 0.9972 + }, + { + "start": 1710.98, + "end": 1712.32, + "probability": 0.8059 + }, + { + "start": 1715.2, + "end": 1716.6, + "probability": 0.7734 + }, + { + "start": 1719.52, + "end": 1722.86, + "probability": 0.9312 + }, + { + "start": 1724.38, + "end": 1730.26, + "probability": 0.9598 + }, + { + "start": 1731.88, + "end": 1734.32, + "probability": 0.9839 + }, + { + "start": 1735.64, + "end": 1738.16, + "probability": 0.4887 + }, + { + "start": 1738.3, + "end": 1738.72, + "probability": 0.7715 + }, + { + "start": 1738.94, + "end": 1741.19, + "probability": 0.7513 + }, + { + "start": 1742.62, + "end": 1746.42, + "probability": 0.6536 + }, + { + "start": 1747.26, + "end": 1753.2, + "probability": 0.6869 + }, + { + "start": 1753.9, + "end": 1755.31, + "probability": 0.981 + }, + { + "start": 1755.88, + "end": 1757.68, + "probability": 0.9971 + }, + { + "start": 1758.44, + "end": 1758.92, + "probability": 0.9105 + }, + { + "start": 1760.06, + "end": 1764.06, + "probability": 0.9443 + }, + { + "start": 1766.06, + "end": 1767.9, + "probability": 0.1087 + }, + { + "start": 1768.36, + "end": 1768.84, + "probability": 0.7739 + }, + { + "start": 1770.62, + "end": 1771.1, + "probability": 0.7089 + }, + { + "start": 1771.1, + "end": 1776.12, + "probability": 0.9836 + }, + { + "start": 1776.27, + "end": 1783.0, + "probability": 0.9965 + }, + { + "start": 1783.86, + "end": 1786.52, + "probability": 0.7665 + }, + { + "start": 1787.76, + "end": 1790.94, + "probability": 0.9966 + }, + { + "start": 1791.2, + "end": 1793.0, + "probability": 0.765 + }, + { + "start": 1794.26, + "end": 1798.24, + "probability": 0.9894 + }, + { + "start": 1800.48, + "end": 1801.82, + "probability": 0.7502 + }, + { + "start": 1802.48, + "end": 1807.74, + "probability": 0.8913 + }, + { + "start": 1808.7, + "end": 1809.76, + "probability": 0.9627 + }, + { + "start": 1810.5, + "end": 1813.92, + "probability": 0.9896 + }, + { + "start": 1814.54, + "end": 1816.82, + "probability": 0.8735 + }, + { + "start": 1818.32, + "end": 1818.74, + "probability": 0.1029 + }, + { + "start": 1820.16, + "end": 1821.32, + "probability": 0.8225 + }, + { + "start": 1822.96, + "end": 1824.32, + "probability": 0.9966 + }, + { + "start": 1825.44, + "end": 1828.22, + "probability": 0.9712 + }, + { + "start": 1829.62, + "end": 1834.84, + "probability": 0.6718 + }, + { + "start": 1835.4, + "end": 1838.06, + "probability": 0.9756 + }, + { + "start": 1838.94, + "end": 1840.54, + "probability": 0.0482 + }, + { + "start": 1842.4, + "end": 1843.46, + "probability": 0.7776 + }, + { + "start": 1844.22, + "end": 1844.32, + "probability": 0.0102 + }, + { + "start": 1846.89, + "end": 1848.88, + "probability": 0.4348 + }, + { + "start": 1848.92, + "end": 1849.34, + "probability": 0.9362 + }, + { + "start": 1851.38, + "end": 1852.52, + "probability": 0.9458 + }, + { + "start": 1854.28, + "end": 1856.4, + "probability": 0.9172 + }, + { + "start": 1857.94, + "end": 1861.36, + "probability": 0.9904 + }, + { + "start": 1863.4, + "end": 1867.92, + "probability": 0.8525 + }, + { + "start": 1870.48, + "end": 1873.28, + "probability": 0.9941 + }, + { + "start": 1873.66, + "end": 1875.6, + "probability": 0.9839 + }, + { + "start": 1877.2, + "end": 1878.98, + "probability": 0.0136 + }, + { + "start": 1882.18, + "end": 1883.16, + "probability": 0.1002 + }, + { + "start": 1883.16, + "end": 1883.34, + "probability": 0.04 + }, + { + "start": 1883.34, + "end": 1885.54, + "probability": 0.2306 + }, + { + "start": 1885.92, + "end": 1887.72, + "probability": 0.706 + }, + { + "start": 1888.76, + "end": 1889.92, + "probability": 0.5118 + }, + { + "start": 1889.92, + "end": 1890.84, + "probability": 0.9238 + }, + { + "start": 1892.8, + "end": 1893.64, + "probability": 0.8178 + }, + { + "start": 1895.02, + "end": 1896.04, + "probability": 0.2255 + }, + { + "start": 1897.96, + "end": 1899.1, + "probability": 0.58 + }, + { + "start": 1899.94, + "end": 1905.38, + "probability": 0.9787 + }, + { + "start": 1905.96, + "end": 1906.5, + "probability": 0.8523 + }, + { + "start": 1907.32, + "end": 1910.94, + "probability": 0.9285 + }, + { + "start": 1912.52, + "end": 1913.84, + "probability": 0.9258 + }, + { + "start": 1915.24, + "end": 1917.74, + "probability": 0.9536 + }, + { + "start": 1918.42, + "end": 1921.66, + "probability": 0.9401 + }, + { + "start": 1922.82, + "end": 1923.56, + "probability": 0.4241 + }, + { + "start": 1923.56, + "end": 1924.06, + "probability": 0.9196 + }, + { + "start": 1924.26, + "end": 1925.4, + "probability": 0.4254 + }, + { + "start": 1925.54, + "end": 1927.22, + "probability": 0.8907 + }, + { + "start": 1927.42, + "end": 1929.58, + "probability": 0.6638 + }, + { + "start": 1930.56, + "end": 1931.44, + "probability": 0.9554 + }, + { + "start": 1931.62, + "end": 1932.16, + "probability": 0.8663 + }, + { + "start": 1932.36, + "end": 1934.18, + "probability": 0.9876 + }, + { + "start": 1934.74, + "end": 1935.82, + "probability": 0.9185 + }, + { + "start": 1935.88, + "end": 1937.04, + "probability": 0.0304 + }, + { + "start": 1937.04, + "end": 1938.44, + "probability": 0.4239 + }, + { + "start": 1938.88, + "end": 1938.94, + "probability": 0.0409 + }, + { + "start": 1938.94, + "end": 1941.56, + "probability": 0.9209 + }, + { + "start": 1942.74, + "end": 1944.98, + "probability": 0.9856 + }, + { + "start": 1945.68, + "end": 1947.76, + "probability": 0.9102 + }, + { + "start": 1948.28, + "end": 1949.42, + "probability": 0.9836 + }, + { + "start": 1950.0, + "end": 1953.62, + "probability": 0.8941 + }, + { + "start": 1953.62, + "end": 1957.06, + "probability": 0.9404 + }, + { + "start": 1957.52, + "end": 1958.18, + "probability": 0.9166 + }, + { + "start": 1958.64, + "end": 1959.76, + "probability": 0.9217 + }, + { + "start": 1960.28, + "end": 1962.9, + "probability": 0.9541 + }, + { + "start": 1963.72, + "end": 1967.56, + "probability": 0.9567 + }, + { + "start": 1968.14, + "end": 1971.86, + "probability": 0.9749 + }, + { + "start": 1973.84, + "end": 1975.2, + "probability": 0.7559 + }, + { + "start": 1975.64, + "end": 1980.26, + "probability": 0.9786 + }, + { + "start": 1980.98, + "end": 1984.48, + "probability": 0.9645 + }, + { + "start": 1985.44, + "end": 1985.54, + "probability": 0.112 + }, + { + "start": 1986.04, + "end": 1986.22, + "probability": 0.0643 + }, + { + "start": 1986.22, + "end": 1987.82, + "probability": 0.2919 + }, + { + "start": 1988.02, + "end": 1989.02, + "probability": 0.2748 + }, + { + "start": 1989.26, + "end": 1989.26, + "probability": 0.121 + }, + { + "start": 1989.26, + "end": 1990.54, + "probability": 0.8938 + }, + { + "start": 1991.43, + "end": 1991.64, + "probability": 0.8078 + }, + { + "start": 1991.64, + "end": 1993.02, + "probability": 0.8679 + }, + { + "start": 1994.04, + "end": 1994.44, + "probability": 0.8934 + }, + { + "start": 1995.44, + "end": 1996.54, + "probability": 0.9655 + }, + { + "start": 1997.08, + "end": 1998.44, + "probability": 0.9089 + }, + { + "start": 1998.62, + "end": 2000.86, + "probability": 0.8285 + }, + { + "start": 2002.0, + "end": 2002.78, + "probability": 0.2654 + }, + { + "start": 2002.8, + "end": 2005.74, + "probability": 0.9302 + }, + { + "start": 2006.68, + "end": 2007.22, + "probability": 0.7651 + }, + { + "start": 2007.38, + "end": 2010.5, + "probability": 0.8828 + }, + { + "start": 2011.08, + "end": 2011.98, + "probability": 0.7402 + }, + { + "start": 2012.54, + "end": 2014.26, + "probability": 0.7565 + }, + { + "start": 2015.0, + "end": 2018.98, + "probability": 0.9049 + }, + { + "start": 2019.54, + "end": 2021.68, + "probability": 0.756 + }, + { + "start": 2022.2, + "end": 2022.92, + "probability": 0.9436 + }, + { + "start": 2022.92, + "end": 2023.58, + "probability": 0.1202 + }, + { + "start": 2024.14, + "end": 2026.88, + "probability": 0.9758 + }, + { + "start": 2028.06, + "end": 2030.58, + "probability": 0.9819 + }, + { + "start": 2032.76, + "end": 2033.38, + "probability": 0.0778 + }, + { + "start": 2033.38, + "end": 2034.54, + "probability": 0.4669 + }, + { + "start": 2034.68, + "end": 2034.8, + "probability": 0.0144 + }, + { + "start": 2034.8, + "end": 2034.8, + "probability": 0.8022 + }, + { + "start": 2034.8, + "end": 2038.93, + "probability": 0.9343 + }, + { + "start": 2039.62, + "end": 2042.12, + "probability": 0.0813 + }, + { + "start": 2042.34, + "end": 2042.83, + "probability": 0.3141 + }, + { + "start": 2043.9, + "end": 2045.06, + "probability": 0.6822 + }, + { + "start": 2045.58, + "end": 2048.88, + "probability": 0.862 + }, + { + "start": 2050.2, + "end": 2052.22, + "probability": 0.2009 + }, + { + "start": 2052.22, + "end": 2053.48, + "probability": 0.8366 + }, + { + "start": 2053.8, + "end": 2054.08, + "probability": 0.8924 + }, + { + "start": 2054.74, + "end": 2056.12, + "probability": 0.937 + }, + { + "start": 2056.84, + "end": 2061.04, + "probability": 0.8856 + }, + { + "start": 2061.08, + "end": 2062.98, + "probability": 0.9626 + }, + { + "start": 2063.62, + "end": 2065.82, + "probability": 0.7806 + }, + { + "start": 2066.66, + "end": 2069.96, + "probability": 0.9585 + }, + { + "start": 2071.02, + "end": 2073.34, + "probability": 0.5346 + }, + { + "start": 2073.48, + "end": 2074.08, + "probability": 0.9983 + }, + { + "start": 2075.1, + "end": 2075.66, + "probability": 0.6324 + }, + { + "start": 2076.06, + "end": 2077.18, + "probability": 0.6255 + }, + { + "start": 2077.84, + "end": 2078.68, + "probability": 0.0834 + }, + { + "start": 2078.96, + "end": 2082.92, + "probability": 0.2407 + }, + { + "start": 2083.0, + "end": 2083.56, + "probability": 0.5553 + }, + { + "start": 2083.7, + "end": 2087.46, + "probability": 0.7902 + }, + { + "start": 2088.54, + "end": 2090.34, + "probability": 0.9651 + }, + { + "start": 2090.48, + "end": 2091.88, + "probability": 0.9692 + }, + { + "start": 2092.54, + "end": 2094.02, + "probability": 0.9638 + }, + { + "start": 2094.84, + "end": 2095.91, + "probability": 0.9613 + }, + { + "start": 2096.64, + "end": 2098.5, + "probability": 0.986 + }, + { + "start": 2099.32, + "end": 2104.8, + "probability": 0.8953 + }, + { + "start": 2105.6, + "end": 2107.86, + "probability": 0.9922 + }, + { + "start": 2108.8, + "end": 2110.62, + "probability": 0.9986 + }, + { + "start": 2110.72, + "end": 2111.14, + "probability": 0.7019 + }, + { + "start": 2111.16, + "end": 2114.28, + "probability": 0.9645 + }, + { + "start": 2116.32, + "end": 2117.26, + "probability": 0.8708 + }, + { + "start": 2118.52, + "end": 2121.54, + "probability": 0.7074 + }, + { + "start": 2122.36, + "end": 2125.08, + "probability": 0.9554 + }, + { + "start": 2125.32, + "end": 2125.98, + "probability": 0.9507 + }, + { + "start": 2126.62, + "end": 2127.36, + "probability": 0.8848 + }, + { + "start": 2127.98, + "end": 2131.16, + "probability": 0.7498 + }, + { + "start": 2131.6, + "end": 2135.02, + "probability": 0.9564 + }, + { + "start": 2135.16, + "end": 2136.05, + "probability": 0.9846 + }, + { + "start": 2137.26, + "end": 2138.18, + "probability": 0.9511 + }, + { + "start": 2139.76, + "end": 2140.74, + "probability": 0.6393 + }, + { + "start": 2141.28, + "end": 2143.8, + "probability": 0.9828 + }, + { + "start": 2144.54, + "end": 2148.0, + "probability": 0.9962 + }, + { + "start": 2148.8, + "end": 2149.7, + "probability": 0.7722 + }, + { + "start": 2150.52, + "end": 2153.26, + "probability": 0.766 + }, + { + "start": 2153.98, + "end": 2155.14, + "probability": 0.5237 + }, + { + "start": 2155.86, + "end": 2156.86, + "probability": 0.9945 + }, + { + "start": 2157.96, + "end": 2161.5, + "probability": 0.9946 + }, + { + "start": 2162.32, + "end": 2162.78, + "probability": 0.9349 + }, + { + "start": 2163.26, + "end": 2169.54, + "probability": 0.9945 + }, + { + "start": 2170.28, + "end": 2174.42, + "probability": 0.8171 + }, + { + "start": 2174.96, + "end": 2177.34, + "probability": 0.8296 + }, + { + "start": 2177.9, + "end": 2179.3, + "probability": 0.8153 + }, + { + "start": 2180.0, + "end": 2181.84, + "probability": 0.9908 + }, + { + "start": 2182.6, + "end": 2184.02, + "probability": 0.9939 + }, + { + "start": 2185.52, + "end": 2186.84, + "probability": 0.9216 + }, + { + "start": 2186.86, + "end": 2188.12, + "probability": 0.5069 + }, + { + "start": 2188.38, + "end": 2189.16, + "probability": 0.5719 + }, + { + "start": 2189.74, + "end": 2191.32, + "probability": 0.8966 + }, + { + "start": 2191.62, + "end": 2192.22, + "probability": 0.6375 + }, + { + "start": 2192.62, + "end": 2195.8, + "probability": 0.8289 + }, + { + "start": 2196.86, + "end": 2197.8, + "probability": 0.9714 + }, + { + "start": 2198.52, + "end": 2199.24, + "probability": 0.0183 + }, + { + "start": 2204.38, + "end": 2204.98, + "probability": 0.0407 + }, + { + "start": 2204.98, + "end": 2204.98, + "probability": 0.331 + }, + { + "start": 2204.98, + "end": 2206.22, + "probability": 0.9764 + }, + { + "start": 2206.62, + "end": 2208.06, + "probability": 0.8528 + }, + { + "start": 2208.18, + "end": 2208.64, + "probability": 0.9193 + }, + { + "start": 2208.72, + "end": 2210.7, + "probability": 0.8798 + }, + { + "start": 2210.74, + "end": 2211.28, + "probability": 0.2602 + }, + { + "start": 2211.32, + "end": 2214.18, + "probability": 0.9186 + }, + { + "start": 2214.28, + "end": 2215.06, + "probability": 0.8272 + }, + { + "start": 2215.24, + "end": 2217.92, + "probability": 0.9012 + }, + { + "start": 2218.14, + "end": 2220.44, + "probability": 0.9958 + }, + { + "start": 2221.84, + "end": 2222.08, + "probability": 0.0484 + }, + { + "start": 2223.68, + "end": 2224.64, + "probability": 0.0406 + }, + { + "start": 2224.64, + "end": 2224.88, + "probability": 0.7563 + }, + { + "start": 2225.36, + "end": 2227.28, + "probability": 0.1516 + }, + { + "start": 2228.02, + "end": 2231.63, + "probability": 0.7146 + }, + { + "start": 2232.82, + "end": 2233.52, + "probability": 0.661 + }, + { + "start": 2234.2, + "end": 2236.39, + "probability": 0.8138 + }, + { + "start": 2237.18, + "end": 2237.72, + "probability": 0.6411 + }, + { + "start": 2238.86, + "end": 2240.86, + "probability": 0.9614 + }, + { + "start": 2240.94, + "end": 2242.34, + "probability": 0.9439 + }, + { + "start": 2242.44, + "end": 2242.76, + "probability": 0.7901 + }, + { + "start": 2243.56, + "end": 2244.92, + "probability": 0.9857 + }, + { + "start": 2245.24, + "end": 2246.54, + "probability": 0.9741 + }, + { + "start": 2246.82, + "end": 2249.96, + "probability": 0.9762 + }, + { + "start": 2250.92, + "end": 2255.73, + "probability": 0.8595 + }, + { + "start": 2256.44, + "end": 2259.42, + "probability": 0.7713 + }, + { + "start": 2260.2, + "end": 2263.5, + "probability": 0.8953 + }, + { + "start": 2263.5, + "end": 2267.4, + "probability": 0.7623 + }, + { + "start": 2268.15, + "end": 2268.74, + "probability": 0.9152 + }, + { + "start": 2269.1, + "end": 2272.94, + "probability": 0.9941 + }, + { + "start": 2273.3, + "end": 2275.14, + "probability": 0.9986 + }, + { + "start": 2276.02, + "end": 2277.16, + "probability": 0.8036 + }, + { + "start": 2277.28, + "end": 2279.02, + "probability": 0.8373 + }, + { + "start": 2279.22, + "end": 2282.62, + "probability": 0.9744 + }, + { + "start": 2283.08, + "end": 2286.46, + "probability": 0.8384 + }, + { + "start": 2287.1, + "end": 2287.6, + "probability": 0.4358 + }, + { + "start": 2288.92, + "end": 2290.88, + "probability": 0.9937 + }, + { + "start": 2291.0, + "end": 2292.28, + "probability": 0.8549 + }, + { + "start": 2292.86, + "end": 2293.68, + "probability": 0.7632 + }, + { + "start": 2293.88, + "end": 2294.88, + "probability": 0.9845 + }, + { + "start": 2295.46, + "end": 2297.24, + "probability": 0.8791 + }, + { + "start": 2297.4, + "end": 2298.08, + "probability": 0.5104 + }, + { + "start": 2298.74, + "end": 2299.18, + "probability": 0.67 + }, + { + "start": 2299.82, + "end": 2300.8, + "probability": 0.007 + }, + { + "start": 2300.92, + "end": 2303.52, + "probability": 0.3866 + }, + { + "start": 2304.1, + "end": 2304.1, + "probability": 0.7271 + }, + { + "start": 2304.1, + "end": 2307.1, + "probability": 0.7021 + }, + { + "start": 2307.48, + "end": 2309.5, + "probability": 0.9481 + }, + { + "start": 2310.68, + "end": 2311.24, + "probability": 0.3941 + }, + { + "start": 2312.08, + "end": 2313.1, + "probability": 0.2508 + }, + { + "start": 2313.14, + "end": 2313.62, + "probability": 0.5183 + }, + { + "start": 2314.16, + "end": 2316.48, + "probability": 0.8 + }, + { + "start": 2317.04, + "end": 2317.7, + "probability": 0.9641 + }, + { + "start": 2317.84, + "end": 2323.16, + "probability": 0.9502 + }, + { + "start": 2323.74, + "end": 2326.3, + "probability": 0.8995 + }, + { + "start": 2326.82, + "end": 2329.4, + "probability": 0.9858 + }, + { + "start": 2330.14, + "end": 2330.74, + "probability": 0.466 + }, + { + "start": 2331.38, + "end": 2333.42, + "probability": 0.9836 + }, + { + "start": 2334.62, + "end": 2337.76, + "probability": 0.9978 + }, + { + "start": 2338.36, + "end": 2340.36, + "probability": 0.9636 + }, + { + "start": 2340.56, + "end": 2343.3, + "probability": 0.8618 + }, + { + "start": 2344.9, + "end": 2346.1, + "probability": 0.9127 + }, + { + "start": 2346.28, + "end": 2348.62, + "probability": 0.9001 + }, + { + "start": 2349.14, + "end": 2353.64, + "probability": 0.9795 + }, + { + "start": 2354.74, + "end": 2358.8, + "probability": 0.8237 + }, + { + "start": 2359.82, + "end": 2362.38, + "probability": 0.9419 + }, + { + "start": 2363.08, + "end": 2363.86, + "probability": 0.8546 + }, + { + "start": 2364.42, + "end": 2366.06, + "probability": 0.9887 + }, + { + "start": 2367.3, + "end": 2370.98, + "probability": 0.9879 + }, + { + "start": 2372.08, + "end": 2374.36, + "probability": 0.9404 + }, + { + "start": 2374.54, + "end": 2375.43, + "probability": 0.8979 + }, + { + "start": 2375.82, + "end": 2377.04, + "probability": 0.7457 + }, + { + "start": 2378.16, + "end": 2382.28, + "probability": 0.6005 + }, + { + "start": 2382.86, + "end": 2384.25, + "probability": 0.9771 + }, + { + "start": 2385.3, + "end": 2386.42, + "probability": 0.3767 + }, + { + "start": 2386.42, + "end": 2387.42, + "probability": 0.1356 + }, + { + "start": 2387.6, + "end": 2389.0, + "probability": 0.3238 + }, + { + "start": 2389.14, + "end": 2390.73, + "probability": 0.668 + }, + { + "start": 2391.5, + "end": 2392.24, + "probability": 0.2629 + }, + { + "start": 2392.24, + "end": 2397.04, + "probability": 0.1042 + }, + { + "start": 2397.66, + "end": 2397.78, + "probability": 0.3075 + }, + { + "start": 2397.8, + "end": 2398.68, + "probability": 0.0494 + }, + { + "start": 2398.68, + "end": 2399.12, + "probability": 0.2027 + }, + { + "start": 2399.24, + "end": 2404.42, + "probability": 0.0277 + }, + { + "start": 2404.42, + "end": 2404.74, + "probability": 0.5053 + }, + { + "start": 2407.86, + "end": 2409.04, + "probability": 0.2526 + }, + { + "start": 2409.64, + "end": 2409.64, + "probability": 0.7655 + }, + { + "start": 2409.64, + "end": 2410.7, + "probability": 0.8667 + }, + { + "start": 2410.7, + "end": 2412.74, + "probability": 0.6752 + }, + { + "start": 2412.74, + "end": 2414.22, + "probability": 0.3998 + }, + { + "start": 2415.14, + "end": 2415.14, + "probability": 0.0262 + }, + { + "start": 2415.14, + "end": 2415.14, + "probability": 0.2036 + }, + { + "start": 2415.14, + "end": 2415.14, + "probability": 0.0493 + }, + { + "start": 2415.14, + "end": 2415.14, + "probability": 0.0529 + }, + { + "start": 2415.14, + "end": 2415.14, + "probability": 0.0074 + }, + { + "start": 2415.14, + "end": 2415.14, + "probability": 0.0248 + }, + { + "start": 2415.14, + "end": 2415.14, + "probability": 0.2652 + }, + { + "start": 2415.14, + "end": 2418.52, + "probability": 0.5519 + }, + { + "start": 2419.14, + "end": 2420.36, + "probability": 0.2423 + }, + { + "start": 2421.76, + "end": 2427.4, + "probability": 0.9452 + }, + { + "start": 2427.6, + "end": 2428.41, + "probability": 0.8783 + }, + { + "start": 2429.26, + "end": 2433.1, + "probability": 0.9832 + }, + { + "start": 2433.18, + "end": 2433.84, + "probability": 0.7675 + }, + { + "start": 2433.92, + "end": 2436.3, + "probability": 0.998 + }, + { + "start": 2438.16, + "end": 2440.4, + "probability": 0.8884 + }, + { + "start": 2441.84, + "end": 2444.62, + "probability": 0.9687 + }, + { + "start": 2445.42, + "end": 2448.56, + "probability": 0.9769 + }, + { + "start": 2448.98, + "end": 2450.7, + "probability": 0.926 + }, + { + "start": 2451.34, + "end": 2453.7, + "probability": 0.9297 + }, + { + "start": 2454.7, + "end": 2458.64, + "probability": 0.9487 + }, + { + "start": 2459.06, + "end": 2460.82, + "probability": 0.9471 + }, + { + "start": 2461.64, + "end": 2463.6, + "probability": 0.9961 + }, + { + "start": 2464.04, + "end": 2467.02, + "probability": 0.9538 + }, + { + "start": 2467.14, + "end": 2467.94, + "probability": 0.9336 + }, + { + "start": 2469.04, + "end": 2470.79, + "probability": 0.9695 + }, + { + "start": 2471.64, + "end": 2472.76, + "probability": 0.7863 + }, + { + "start": 2474.1, + "end": 2477.44, + "probability": 0.8221 + }, + { + "start": 2477.82, + "end": 2478.94, + "probability": 0.8196 + }, + { + "start": 2479.12, + "end": 2480.4, + "probability": 0.8712 + }, + { + "start": 2481.5, + "end": 2484.12, + "probability": 0.7492 + }, + { + "start": 2484.26, + "end": 2486.24, + "probability": 0.9678 + }, + { + "start": 2487.02, + "end": 2492.46, + "probability": 0.9907 + }, + { + "start": 2493.62, + "end": 2494.28, + "probability": 0.4969 + }, + { + "start": 2495.2, + "end": 2497.5, + "probability": 0.9645 + }, + { + "start": 2497.58, + "end": 2501.5, + "probability": 0.8521 + }, + { + "start": 2501.9, + "end": 2503.66, + "probability": 0.8729 + }, + { + "start": 2504.38, + "end": 2506.34, + "probability": 0.5343 + }, + { + "start": 2507.52, + "end": 2511.46, + "probability": 0.9591 + }, + { + "start": 2512.14, + "end": 2514.86, + "probability": 0.9289 + }, + { + "start": 2515.0, + "end": 2515.3, + "probability": 0.7887 + }, + { + "start": 2515.92, + "end": 2516.6, + "probability": 0.6794 + }, + { + "start": 2516.82, + "end": 2518.78, + "probability": 0.9609 + }, + { + "start": 2519.82, + "end": 2524.0, + "probability": 0.8104 + }, + { + "start": 2524.46, + "end": 2525.82, + "probability": 0.976 + }, + { + "start": 2526.38, + "end": 2527.5, + "probability": 0.9644 + }, + { + "start": 2528.18, + "end": 2529.66, + "probability": 0.7681 + }, + { + "start": 2530.38, + "end": 2534.86, + "probability": 0.888 + }, + { + "start": 2535.38, + "end": 2536.98, + "probability": 0.9912 + }, + { + "start": 2537.12, + "end": 2537.47, + "probability": 0.304 + }, + { + "start": 2537.6, + "end": 2538.26, + "probability": 0.7149 + }, + { + "start": 2538.76, + "end": 2539.24, + "probability": 0.2292 + }, + { + "start": 2539.26, + "end": 2544.4, + "probability": 0.9608 + }, + { + "start": 2544.4, + "end": 2548.78, + "probability": 0.9247 + }, + { + "start": 2549.32, + "end": 2550.72, + "probability": 0.9034 + }, + { + "start": 2552.28, + "end": 2552.88, + "probability": 0.7129 + }, + { + "start": 2554.68, + "end": 2558.56, + "probability": 0.1048 + }, + { + "start": 2561.0, + "end": 2564.6, + "probability": 0.6727 + }, + { + "start": 2565.94, + "end": 2568.9, + "probability": 0.9048 + }, + { + "start": 2570.0, + "end": 2570.68, + "probability": 0.7678 + }, + { + "start": 2571.12, + "end": 2572.6, + "probability": 0.9949 + }, + { + "start": 2572.7, + "end": 2574.1, + "probability": 0.9977 + }, + { + "start": 2574.66, + "end": 2577.4, + "probability": 0.8042 + }, + { + "start": 2578.1, + "end": 2580.4, + "probability": 0.883 + }, + { + "start": 2581.16, + "end": 2582.88, + "probability": 0.7128 + }, + { + "start": 2583.48, + "end": 2585.52, + "probability": 0.8589 + }, + { + "start": 2586.06, + "end": 2588.92, + "probability": 0.9446 + }, + { + "start": 2589.94, + "end": 2592.54, + "probability": 0.864 + }, + { + "start": 2593.1, + "end": 2595.0, + "probability": 0.9347 + }, + { + "start": 2595.08, + "end": 2597.88, + "probability": 0.9607 + }, + { + "start": 2598.62, + "end": 2603.46, + "probability": 0.6665 + }, + { + "start": 2603.88, + "end": 2605.02, + "probability": 0.4974 + }, + { + "start": 2605.68, + "end": 2605.88, + "probability": 0.8411 + }, + { + "start": 2606.0, + "end": 2607.78, + "probability": 0.8968 + }, + { + "start": 2608.39, + "end": 2610.08, + "probability": 0.9806 + }, + { + "start": 2610.18, + "end": 2611.36, + "probability": 0.99 + }, + { + "start": 2611.54, + "end": 2612.04, + "probability": 0.8801 + }, + { + "start": 2612.1, + "end": 2613.4, + "probability": 0.7988 + }, + { + "start": 2616.36, + "end": 2616.5, + "probability": 0.2826 + }, + { + "start": 2619.12, + "end": 2620.3, + "probability": 0.1073 + }, + { + "start": 2620.58, + "end": 2620.76, + "probability": 0.0342 + }, + { + "start": 2620.76, + "end": 2623.18, + "probability": 0.6709 + }, + { + "start": 2623.7, + "end": 2624.28, + "probability": 0.1847 + }, + { + "start": 2625.12, + "end": 2626.8, + "probability": 0.2449 + }, + { + "start": 2627.34, + "end": 2631.26, + "probability": 0.0393 + }, + { + "start": 2631.9, + "end": 2634.24, + "probability": 0.0183 + }, + { + "start": 2635.0, + "end": 2637.92, + "probability": 0.7917 + }, + { + "start": 2638.6, + "end": 2640.54, + "probability": 0.985 + }, + { + "start": 2641.32, + "end": 2641.38, + "probability": 0.0916 + }, + { + "start": 2641.5, + "end": 2642.08, + "probability": 0.8275 + }, + { + "start": 2642.12, + "end": 2643.9, + "probability": 0.924 + }, + { + "start": 2643.94, + "end": 2645.68, + "probability": 0.863 + }, + { + "start": 2646.28, + "end": 2647.26, + "probability": 0.9959 + }, + { + "start": 2648.26, + "end": 2650.08, + "probability": 0.9961 + }, + { + "start": 2650.22, + "end": 2651.04, + "probability": 0.9946 + }, + { + "start": 2651.16, + "end": 2652.32, + "probability": 0.7242 + }, + { + "start": 2652.48, + "end": 2653.2, + "probability": 0.8798 + }, + { + "start": 2653.48, + "end": 2654.7, + "probability": 0.9802 + }, + { + "start": 2655.6, + "end": 2656.9, + "probability": 0.9868 + }, + { + "start": 2657.4, + "end": 2657.58, + "probability": 0.0574 + }, + { + "start": 2657.64, + "end": 2660.92, + "probability": 0.6442 + }, + { + "start": 2661.32, + "end": 2666.0, + "probability": 0.9985 + }, + { + "start": 2666.44, + "end": 2667.7, + "probability": 0.8394 + }, + { + "start": 2668.34, + "end": 2669.92, + "probability": 0.9451 + }, + { + "start": 2670.32, + "end": 2672.34, + "probability": 0.9648 + }, + { + "start": 2673.56, + "end": 2675.29, + "probability": 0.9885 + }, + { + "start": 2676.08, + "end": 2677.16, + "probability": 0.832 + }, + { + "start": 2677.24, + "end": 2677.59, + "probability": 0.9655 + }, + { + "start": 2678.5, + "end": 2680.98, + "probability": 0.9765 + }, + { + "start": 2681.34, + "end": 2682.72, + "probability": 0.7998 + }, + { + "start": 2682.84, + "end": 2683.38, + "probability": 0.8087 + }, + { + "start": 2683.96, + "end": 2686.86, + "probability": 0.985 + }, + { + "start": 2687.32, + "end": 2690.74, + "probability": 0.995 + }, + { + "start": 2690.98, + "end": 2692.8, + "probability": 0.9844 + }, + { + "start": 2692.86, + "end": 2695.97, + "probability": 0.9912 + }, + { + "start": 2696.44, + "end": 2697.22, + "probability": 0.8782 + }, + { + "start": 2697.32, + "end": 2698.72, + "probability": 0.938 + }, + { + "start": 2698.84, + "end": 2700.92, + "probability": 0.9072 + }, + { + "start": 2701.82, + "end": 2702.92, + "probability": 0.8588 + }, + { + "start": 2703.5, + "end": 2704.38, + "probability": 0.9122 + }, + { + "start": 2704.98, + "end": 2706.6, + "probability": 0.9736 + }, + { + "start": 2706.74, + "end": 2707.22, + "probability": 0.5894 + }, + { + "start": 2707.28, + "end": 2708.54, + "probability": 0.7415 + }, + { + "start": 2708.86, + "end": 2711.08, + "probability": 0.163 + }, + { + "start": 2711.64, + "end": 2712.42, + "probability": 0.0064 + }, + { + "start": 2732.06, + "end": 2734.52, + "probability": 0.6867 + }, + { + "start": 2735.38, + "end": 2737.14, + "probability": 0.9219 + }, + { + "start": 2737.36, + "end": 2738.78, + "probability": 0.6833 + }, + { + "start": 2739.12, + "end": 2739.84, + "probability": 0.8909 + }, + { + "start": 2740.58, + "end": 2744.92, + "probability": 0.5343 + }, + { + "start": 2745.76, + "end": 2748.08, + "probability": 0.6245 + }, + { + "start": 2749.06, + "end": 2752.46, + "probability": 0.8233 + }, + { + "start": 2753.82, + "end": 2755.3, + "probability": 0.7898 + }, + { + "start": 2755.38, + "end": 2756.08, + "probability": 0.7707 + }, + { + "start": 2756.24, + "end": 2756.88, + "probability": 0.8087 + }, + { + "start": 2757.0, + "end": 2758.0, + "probability": 0.6409 + }, + { + "start": 2758.08, + "end": 2758.54, + "probability": 0.835 + }, + { + "start": 2759.4, + "end": 2760.14, + "probability": 0.9545 + }, + { + "start": 2761.26, + "end": 2767.44, + "probability": 0.9697 + }, + { + "start": 2767.7, + "end": 2770.34, + "probability": 0.9676 + }, + { + "start": 2770.9, + "end": 2772.34, + "probability": 0.9437 + }, + { + "start": 2772.76, + "end": 2776.62, + "probability": 0.9016 + }, + { + "start": 2777.26, + "end": 2778.1, + "probability": 0.7876 + }, + { + "start": 2778.88, + "end": 2779.2, + "probability": 0.7678 + }, + { + "start": 2779.6, + "end": 2782.6, + "probability": 0.9097 + }, + { + "start": 2783.04, + "end": 2783.98, + "probability": 0.6265 + }, + { + "start": 2784.74, + "end": 2786.8, + "probability": 0.7993 + }, + { + "start": 2786.98, + "end": 2788.13, + "probability": 0.6396 + }, + { + "start": 2789.0, + "end": 2792.68, + "probability": 0.9963 + }, + { + "start": 2793.04, + "end": 2795.48, + "probability": 0.8937 + }, + { + "start": 2796.22, + "end": 2798.74, + "probability": 0.8334 + }, + { + "start": 2799.38, + "end": 2802.0, + "probability": 0.5767 + }, + { + "start": 2802.86, + "end": 2803.22, + "probability": 0.5572 + }, + { + "start": 2803.58, + "end": 2808.88, + "probability": 0.8325 + }, + { + "start": 2809.86, + "end": 2811.8, + "probability": 0.7851 + }, + { + "start": 2812.46, + "end": 2814.8, + "probability": 0.4773 + }, + { + "start": 2815.36, + "end": 2819.66, + "probability": 0.7978 + }, + { + "start": 2820.37, + "end": 2821.66, + "probability": 0.9638 + }, + { + "start": 2822.9, + "end": 2826.4, + "probability": 0.9312 + }, + { + "start": 2826.6, + "end": 2826.82, + "probability": 0.6126 + }, + { + "start": 2827.56, + "end": 2829.88, + "probability": 0.6874 + }, + { + "start": 2831.26, + "end": 2833.42, + "probability": 0.9904 + }, + { + "start": 2834.04, + "end": 2836.84, + "probability": 0.996 + }, + { + "start": 2836.88, + "end": 2838.44, + "probability": 0.8221 + }, + { + "start": 2838.64, + "end": 2840.9, + "probability": 0.7573 + }, + { + "start": 2841.38, + "end": 2841.66, + "probability": 0.4192 + }, + { + "start": 2842.26, + "end": 2842.26, + "probability": 0.6858 + }, + { + "start": 2842.32, + "end": 2843.24, + "probability": 0.8879 + }, + { + "start": 2844.5, + "end": 2845.32, + "probability": 0.5142 + }, + { + "start": 2847.0, + "end": 2849.5, + "probability": 0.665 + }, + { + "start": 2849.86, + "end": 2853.18, + "probability": 0.0452 + }, + { + "start": 2853.26, + "end": 2853.7, + "probability": 0.4425 + }, + { + "start": 2854.84, + "end": 2858.62, + "probability": 0.8461 + }, + { + "start": 2859.16, + "end": 2860.02, + "probability": 0.7508 + }, + { + "start": 2860.48, + "end": 2864.36, + "probability": 0.9968 + }, + { + "start": 2864.74, + "end": 2865.0, + "probability": 0.8771 + }, + { + "start": 2865.62, + "end": 2866.16, + "probability": 0.6381 + }, + { + "start": 2866.6, + "end": 2867.9, + "probability": 0.8385 + }, + { + "start": 2868.84, + "end": 2871.74, + "probability": 0.9548 + }, + { + "start": 2872.3, + "end": 2874.02, + "probability": 0.6516 + }, + { + "start": 2874.78, + "end": 2874.78, + "probability": 0.6518 + }, + { + "start": 2874.78, + "end": 2878.44, + "probability": 0.98 + }, + { + "start": 2878.44, + "end": 2882.0, + "probability": 0.9697 + }, + { + "start": 2882.06, + "end": 2883.9, + "probability": 0.9709 + }, + { + "start": 2884.18, + "end": 2885.38, + "probability": 0.6642 + }, + { + "start": 2886.0, + "end": 2886.5, + "probability": 0.8099 + }, + { + "start": 2887.7, + "end": 2888.4, + "probability": 0.8503 + }, + { + "start": 2888.72, + "end": 2889.14, + "probability": 0.5708 + }, + { + "start": 2889.3, + "end": 2890.6, + "probability": 0.8745 + }, + { + "start": 2893.86, + "end": 2893.94, + "probability": 0.1145 + }, + { + "start": 2893.94, + "end": 2893.94, + "probability": 0.0749 + }, + { + "start": 2893.94, + "end": 2896.88, + "probability": 0.752 + }, + { + "start": 2897.98, + "end": 2899.44, + "probability": 0.5129 + }, + { + "start": 2899.48, + "end": 2900.22, + "probability": 0.1787 + }, + { + "start": 2900.96, + "end": 2901.04, + "probability": 0.1114 + }, + { + "start": 2902.0, + "end": 2903.66, + "probability": 0.7589 + }, + { + "start": 2905.28, + "end": 2905.82, + "probability": 0.6569 + }, + { + "start": 2906.36, + "end": 2906.98, + "probability": 0.8132 + }, + { + "start": 2907.34, + "end": 2908.26, + "probability": 0.8115 + }, + { + "start": 2908.4, + "end": 2910.14, + "probability": 0.9421 + }, + { + "start": 2910.14, + "end": 2910.92, + "probability": 0.766 + }, + { + "start": 2911.06, + "end": 2911.88, + "probability": 0.4918 + }, + { + "start": 2912.38, + "end": 2912.56, + "probability": 0.4705 + }, + { + "start": 2913.48, + "end": 2914.16, + "probability": 0.3467 + }, + { + "start": 2914.2, + "end": 2915.1, + "probability": 0.3472 + }, + { + "start": 2915.1, + "end": 2915.46, + "probability": 0.4252 + }, + { + "start": 2915.6, + "end": 2917.94, + "probability": 0.6776 + }, + { + "start": 2918.66, + "end": 2919.48, + "probability": 0.8625 + }, + { + "start": 2919.64, + "end": 2924.04, + "probability": 0.9752 + }, + { + "start": 2924.6, + "end": 2927.88, + "probability": 0.869 + }, + { + "start": 2931.7, + "end": 2935.44, + "probability": 0.6512 + }, + { + "start": 2936.06, + "end": 2939.24, + "probability": 0.782 + }, + { + "start": 2939.84, + "end": 2940.34, + "probability": 0.7184 + }, + { + "start": 2941.08, + "end": 2941.32, + "probability": 0.4825 + }, + { + "start": 2941.6, + "end": 2944.38, + "probability": 0.947 + }, + { + "start": 2944.94, + "end": 2951.54, + "probability": 0.8029 + }, + { + "start": 2951.9, + "end": 2951.9, + "probability": 0.0032 + }, + { + "start": 2958.18, + "end": 2959.26, + "probability": 0.353 + }, + { + "start": 2959.26, + "end": 2961.26, + "probability": 0.5659 + }, + { + "start": 2962.16, + "end": 2965.88, + "probability": 0.9182 + }, + { + "start": 2966.02, + "end": 2966.38, + "probability": 0.8313 + }, + { + "start": 2966.66, + "end": 2968.64, + "probability": 0.5714 + }, + { + "start": 2968.72, + "end": 2969.22, + "probability": 0.7082 + }, + { + "start": 2969.3, + "end": 2969.8, + "probability": 0.6248 + }, + { + "start": 2969.88, + "end": 2970.52, + "probability": 0.3458 + }, + { + "start": 2985.5, + "end": 2985.82, + "probability": 0.1591 + }, + { + "start": 2985.87, + "end": 2986.58, + "probability": 0.2644 + }, + { + "start": 2987.42, + "end": 2987.88, + "probability": 0.532 + }, + { + "start": 2988.0, + "end": 2990.5, + "probability": 0.8259 + }, + { + "start": 2990.5, + "end": 2996.26, + "probability": 0.9654 + }, + { + "start": 2996.72, + "end": 3000.66, + "probability": 0.9941 + }, + { + "start": 3001.08, + "end": 3002.37, + "probability": 0.9606 + }, + { + "start": 3003.42, + "end": 3004.0, + "probability": 0.6678 + }, + { + "start": 3004.36, + "end": 3005.62, + "probability": 0.9883 + }, + { + "start": 3006.56, + "end": 3010.96, + "probability": 0.8989 + }, + { + "start": 3011.74, + "end": 3015.6, + "probability": 0.1924 + }, + { + "start": 3016.54, + "end": 3018.64, + "probability": 0.5396 + }, + { + "start": 3019.52, + "end": 3019.52, + "probability": 0.2268 + }, + { + "start": 3019.52, + "end": 3022.04, + "probability": 0.6895 + }, + { + "start": 3022.6, + "end": 3023.92, + "probability": 0.5926 + }, + { + "start": 3039.14, + "end": 3039.14, + "probability": 0.3693 + }, + { + "start": 3039.14, + "end": 3039.86, + "probability": 0.5146 + }, + { + "start": 3039.88, + "end": 3041.16, + "probability": 0.6996 + }, + { + "start": 3041.24, + "end": 3042.16, + "probability": 0.8018 + }, + { + "start": 3042.28, + "end": 3042.6, + "probability": 0.7331 + }, + { + "start": 3042.64, + "end": 3043.38, + "probability": 0.9791 + }, + { + "start": 3044.1, + "end": 3045.56, + "probability": 0.8877 + }, + { + "start": 3046.46, + "end": 3049.24, + "probability": 0.9644 + }, + { + "start": 3049.24, + "end": 3051.98, + "probability": 0.9777 + }, + { + "start": 3052.06, + "end": 3056.64, + "probability": 0.8639 + }, + { + "start": 3056.94, + "end": 3057.8, + "probability": 0.0153 + }, + { + "start": 3058.48, + "end": 3060.36, + "probability": 0.5543 + }, + { + "start": 3061.28, + "end": 3062.7, + "probability": 0.5907 + }, + { + "start": 3063.02, + "end": 3067.86, + "probability": 0.2523 + }, + { + "start": 3067.86, + "end": 3067.86, + "probability": 0.0321 + }, + { + "start": 3067.86, + "end": 3069.66, + "probability": 0.8676 + }, + { + "start": 3069.7, + "end": 3071.42, + "probability": 0.9971 + }, + { + "start": 3071.94, + "end": 3073.06, + "probability": 0.8953 + }, + { + "start": 3073.14, + "end": 3074.86, + "probability": 0.9963 + }, + { + "start": 3075.02, + "end": 3076.64, + "probability": 0.9698 + }, + { + "start": 3078.64, + "end": 3081.76, + "probability": 0.8528 + }, + { + "start": 3081.88, + "end": 3082.9, + "probability": 0.9244 + }, + { + "start": 3083.1, + "end": 3087.36, + "probability": 0.9001 + }, + { + "start": 3088.14, + "end": 3088.36, + "probability": 0.786 + }, + { + "start": 3088.88, + "end": 3089.42, + "probability": 0.5444 + }, + { + "start": 3089.66, + "end": 3091.62, + "probability": 0.8847 + }, + { + "start": 3092.06, + "end": 3094.28, + "probability": 0.7896 + }, + { + "start": 3095.26, + "end": 3096.04, + "probability": 0.8608 + }, + { + "start": 3096.52, + "end": 3097.41, + "probability": 0.7189 + }, + { + "start": 3097.7, + "end": 3099.26, + "probability": 0.8881 + }, + { + "start": 3099.78, + "end": 3101.3, + "probability": 0.953 + }, + { + "start": 3102.12, + "end": 3106.54, + "probability": 0.9686 + }, + { + "start": 3107.84, + "end": 3108.24, + "probability": 0.6174 + }, + { + "start": 3108.64, + "end": 3110.24, + "probability": 0.4634 + }, + { + "start": 3110.46, + "end": 3111.78, + "probability": 0.2895 + }, + { + "start": 3112.76, + "end": 3115.24, + "probability": 0.8489 + }, + { + "start": 3115.78, + "end": 3116.32, + "probability": 0.519 + }, + { + "start": 3116.9, + "end": 3119.62, + "probability": 0.1775 + }, + { + "start": 3120.2, + "end": 3121.94, + "probability": 0.316 + }, + { + "start": 3122.56, + "end": 3124.26, + "probability": 0.6572 + }, + { + "start": 3126.21, + "end": 3127.9, + "probability": 0.2016 + }, + { + "start": 3127.94, + "end": 3129.82, + "probability": 0.8211 + }, + { + "start": 3130.58, + "end": 3134.22, + "probability": 0.1024 + }, + { + "start": 3134.24, + "end": 3134.24, + "probability": 0.2444 + }, + { + "start": 3134.68, + "end": 3136.4, + "probability": 0.7608 + }, + { + "start": 3136.52, + "end": 3136.54, + "probability": 0.0668 + }, + { + "start": 3136.54, + "end": 3139.02, + "probability": 0.9065 + }, + { + "start": 3139.5, + "end": 3141.92, + "probability": 0.9806 + }, + { + "start": 3142.56, + "end": 3144.97, + "probability": 0.9572 + }, + { + "start": 3145.36, + "end": 3149.96, + "probability": 0.9049 + }, + { + "start": 3150.56, + "end": 3156.38, + "probability": 0.9956 + }, + { + "start": 3157.16, + "end": 3160.24, + "probability": 0.8582 + }, + { + "start": 3169.12, + "end": 3170.04, + "probability": 0.5952 + }, + { + "start": 3170.88, + "end": 3171.72, + "probability": 0.8955 + }, + { + "start": 3173.58, + "end": 3173.98, + "probability": 0.8409 + }, + { + "start": 3175.28, + "end": 3177.88, + "probability": 0.9913 + }, + { + "start": 3179.74, + "end": 3183.28, + "probability": 0.9919 + }, + { + "start": 3184.78, + "end": 3185.08, + "probability": 0.3625 + }, + { + "start": 3187.77, + "end": 3191.89, + "probability": 0.847 + }, + { + "start": 3193.6, + "end": 3200.26, + "probability": 0.2886 + }, + { + "start": 3201.46, + "end": 3202.5, + "probability": 0.8203 + }, + { + "start": 3203.2, + "end": 3205.06, + "probability": 0.7903 + }, + { + "start": 3205.88, + "end": 3208.57, + "probability": 0.8055 + }, + { + "start": 3210.04, + "end": 3212.2, + "probability": 0.9694 + }, + { + "start": 3213.36, + "end": 3214.26, + "probability": 0.7042 + }, + { + "start": 3215.4, + "end": 3219.3, + "probability": 0.9738 + }, + { + "start": 3222.42, + "end": 3224.26, + "probability": 0.728 + }, + { + "start": 3225.38, + "end": 3227.72, + "probability": 0.9946 + }, + { + "start": 3227.78, + "end": 3230.04, + "probability": 0.7885 + }, + { + "start": 3232.94, + "end": 3235.3, + "probability": 0.9893 + }, + { + "start": 3236.96, + "end": 3238.72, + "probability": 0.9982 + }, + { + "start": 3240.08, + "end": 3241.98, + "probability": 0.998 + }, + { + "start": 3243.24, + "end": 3245.6, + "probability": 0.8794 + }, + { + "start": 3247.2, + "end": 3249.7, + "probability": 0.8551 + }, + { + "start": 3254.34, + "end": 3256.6, + "probability": 0.876 + }, + { + "start": 3259.18, + "end": 3259.66, + "probability": 0.4166 + }, + { + "start": 3261.6, + "end": 3262.1, + "probability": 0.8699 + }, + { + "start": 3263.78, + "end": 3267.74, + "probability": 0.8298 + }, + { + "start": 3269.1, + "end": 3272.44, + "probability": 0.8965 + }, + { + "start": 3275.42, + "end": 3276.92, + "probability": 0.8276 + }, + { + "start": 3278.0, + "end": 3279.18, + "probability": 0.4542 + }, + { + "start": 3284.94, + "end": 3287.16, + "probability": 0.4973 + }, + { + "start": 3287.3, + "end": 3289.44, + "probability": 0.7415 + }, + { + "start": 3290.2, + "end": 3291.21, + "probability": 0.5365 + }, + { + "start": 3292.06, + "end": 3296.0, + "probability": 0.9731 + }, + { + "start": 3296.34, + "end": 3298.0, + "probability": 0.0632 + }, + { + "start": 3298.24, + "end": 3300.23, + "probability": 0.7114 + }, + { + "start": 3301.99, + "end": 3303.99, + "probability": 0.9759 + }, + { + "start": 3305.22, + "end": 3306.14, + "probability": 0.5196 + }, + { + "start": 3309.86, + "end": 3315.34, + "probability": 0.9486 + }, + { + "start": 3317.1, + "end": 3318.8, + "probability": 0.9939 + }, + { + "start": 3318.88, + "end": 3321.8, + "probability": 0.978 + }, + { + "start": 3321.96, + "end": 3322.7, + "probability": 0.6034 + }, + { + "start": 3322.86, + "end": 3323.96, + "probability": 0.8028 + }, + { + "start": 3324.88, + "end": 3324.92, + "probability": 0.3568 + }, + { + "start": 3324.92, + "end": 3330.28, + "probability": 0.9879 + }, + { + "start": 3332.32, + "end": 3339.08, + "probability": 0.9857 + }, + { + "start": 3340.16, + "end": 3343.36, + "probability": 0.9976 + }, + { + "start": 3345.12, + "end": 3345.94, + "probability": 0.9944 + }, + { + "start": 3346.64, + "end": 3348.38, + "probability": 0.8123 + }, + { + "start": 3351.16, + "end": 3353.34, + "probability": 0.8772 + }, + { + "start": 3354.94, + "end": 3359.44, + "probability": 0.9778 + }, + { + "start": 3360.22, + "end": 3363.18, + "probability": 0.5991 + }, + { + "start": 3364.88, + "end": 3367.46, + "probability": 0.8632 + }, + { + "start": 3369.43, + "end": 3374.9, + "probability": 0.9888 + }, + { + "start": 3376.12, + "end": 3378.58, + "probability": 0.5295 + }, + { + "start": 3380.08, + "end": 3381.7, + "probability": 0.951 + }, + { + "start": 3385.02, + "end": 3387.12, + "probability": 0.9564 + }, + { + "start": 3387.98, + "end": 3389.68, + "probability": 0.8625 + }, + { + "start": 3390.8, + "end": 3391.98, + "probability": 0.0791 + }, + { + "start": 3391.98, + "end": 3396.7, + "probability": 0.6821 + }, + { + "start": 3399.28, + "end": 3399.64, + "probability": 0.9863 + }, + { + "start": 3400.9, + "end": 3402.62, + "probability": 0.9764 + }, + { + "start": 3404.28, + "end": 3411.54, + "probability": 0.9488 + }, + { + "start": 3414.8, + "end": 3415.34, + "probability": 0.9544 + }, + { + "start": 3417.04, + "end": 3418.0, + "probability": 0.9844 + }, + { + "start": 3418.96, + "end": 3423.66, + "probability": 0.6965 + }, + { + "start": 3425.52, + "end": 3429.4, + "probability": 0.9686 + }, + { + "start": 3430.8, + "end": 3432.14, + "probability": 0.9463 + }, + { + "start": 3433.58, + "end": 3434.88, + "probability": 0.7054 + }, + { + "start": 3436.16, + "end": 3437.48, + "probability": 0.9852 + }, + { + "start": 3439.28, + "end": 3441.32, + "probability": 0.9014 + }, + { + "start": 3442.74, + "end": 3447.2, + "probability": 0.7617 + }, + { + "start": 3447.48, + "end": 3448.26, + "probability": 0.5179 + }, + { + "start": 3449.16, + "end": 3450.48, + "probability": 0.6684 + }, + { + "start": 3451.5, + "end": 3456.44, + "probability": 0.9673 + }, + { + "start": 3456.96, + "end": 3460.62, + "probability": 0.9048 + }, + { + "start": 3461.28, + "end": 3463.76, + "probability": 0.9335 + }, + { + "start": 3464.46, + "end": 3465.42, + "probability": 0.9521 + }, + { + "start": 3466.14, + "end": 3467.56, + "probability": 0.974 + }, + { + "start": 3469.16, + "end": 3473.66, + "probability": 0.8566 + }, + { + "start": 3475.8, + "end": 3476.98, + "probability": 0.9795 + }, + { + "start": 3477.6, + "end": 3478.6, + "probability": 0.9438 + }, + { + "start": 3480.14, + "end": 3481.6, + "probability": 0.9884 + }, + { + "start": 3482.12, + "end": 3483.0, + "probability": 0.8769 + }, + { + "start": 3483.92, + "end": 3486.14, + "probability": 0.9372 + }, + { + "start": 3486.98, + "end": 3489.88, + "probability": 0.9517 + }, + { + "start": 3491.5, + "end": 3492.23, + "probability": 0.9738 + }, + { + "start": 3494.96, + "end": 3497.5, + "probability": 0.629 + }, + { + "start": 3498.88, + "end": 3501.7, + "probability": 0.9941 + }, + { + "start": 3502.32, + "end": 3504.2, + "probability": 0.8627 + }, + { + "start": 3505.76, + "end": 3508.78, + "probability": 0.6611 + }, + { + "start": 3509.98, + "end": 3512.22, + "probability": 0.9199 + }, + { + "start": 3513.2, + "end": 3515.36, + "probability": 0.9997 + }, + { + "start": 3517.4, + "end": 3520.04, + "probability": 0.9932 + }, + { + "start": 3521.4, + "end": 3525.68, + "probability": 0.9977 + }, + { + "start": 3526.62, + "end": 3526.94, + "probability": 0.9833 + }, + { + "start": 3528.14, + "end": 3528.98, + "probability": 0.929 + }, + { + "start": 3530.82, + "end": 3534.5, + "probability": 0.8036 + }, + { + "start": 3535.88, + "end": 3537.24, + "probability": 0.7431 + }, + { + "start": 3538.7, + "end": 3540.1, + "probability": 0.7049 + }, + { + "start": 3541.04, + "end": 3541.92, + "probability": 0.9639 + }, + { + "start": 3542.6, + "end": 3545.88, + "probability": 0.9912 + }, + { + "start": 3547.2, + "end": 3549.4, + "probability": 0.8876 + }, + { + "start": 3550.26, + "end": 3553.58, + "probability": 0.9027 + }, + { + "start": 3554.54, + "end": 3557.56, + "probability": 0.964 + }, + { + "start": 3557.66, + "end": 3558.54, + "probability": 0.7442 + }, + { + "start": 3559.02, + "end": 3560.08, + "probability": 0.931 + }, + { + "start": 3561.14, + "end": 3563.1, + "probability": 0.9863 + }, + { + "start": 3564.58, + "end": 3566.64, + "probability": 0.8774 + }, + { + "start": 3567.58, + "end": 3569.57, + "probability": 0.9624 + }, + { + "start": 3570.44, + "end": 3575.3, + "probability": 0.957 + }, + { + "start": 3576.18, + "end": 3577.74, + "probability": 0.9709 + }, + { + "start": 3578.68, + "end": 3580.26, + "probability": 0.8986 + }, + { + "start": 3580.26, + "end": 3584.64, + "probability": 0.9785 + }, + { + "start": 3585.08, + "end": 3585.76, + "probability": 0.992 + }, + { + "start": 3586.5, + "end": 3588.26, + "probability": 0.9738 + }, + { + "start": 3590.52, + "end": 3591.64, + "probability": 0.7814 + }, + { + "start": 3592.94, + "end": 3593.84, + "probability": 0.8179 + }, + { + "start": 3595.46, + "end": 3596.8, + "probability": 0.9963 + }, + { + "start": 3598.32, + "end": 3599.12, + "probability": 0.9335 + }, + { + "start": 3600.12, + "end": 3601.98, + "probability": 0.9658 + }, + { + "start": 3604.04, + "end": 3606.82, + "probability": 0.9664 + }, + { + "start": 3609.52, + "end": 3611.61, + "probability": 0.9966 + }, + { + "start": 3613.38, + "end": 3615.96, + "probability": 0.7643 + }, + { + "start": 3617.56, + "end": 3618.68, + "probability": 0.8739 + }, + { + "start": 3619.7, + "end": 3620.84, + "probability": 0.944 + }, + { + "start": 3622.4, + "end": 3626.54, + "probability": 0.9673 + }, + { + "start": 3627.88, + "end": 3632.02, + "probability": 0.9553 + }, + { + "start": 3633.24, + "end": 3635.56, + "probability": 0.4898 + }, + { + "start": 3636.28, + "end": 3637.22, + "probability": 0.716 + }, + { + "start": 3638.08, + "end": 3640.42, + "probability": 0.8192 + }, + { + "start": 3643.36, + "end": 3645.31, + "probability": 0.9852 + }, + { + "start": 3646.78, + "end": 3652.72, + "probability": 0.9794 + }, + { + "start": 3653.98, + "end": 3657.72, + "probability": 0.7808 + }, + { + "start": 3657.72, + "end": 3662.02, + "probability": 0.9224 + }, + { + "start": 3663.94, + "end": 3665.22, + "probability": 0.8154 + }, + { + "start": 3666.1, + "end": 3667.86, + "probability": 0.9902 + }, + { + "start": 3669.26, + "end": 3670.12, + "probability": 0.8311 + }, + { + "start": 3671.36, + "end": 3672.56, + "probability": 0.9928 + }, + { + "start": 3673.08, + "end": 3673.92, + "probability": 0.9735 + }, + { + "start": 3674.78, + "end": 3678.1, + "probability": 0.9581 + }, + { + "start": 3679.94, + "end": 3680.64, + "probability": 0.5653 + }, + { + "start": 3683.56, + "end": 3684.0, + "probability": 0.9521 + }, + { + "start": 3684.56, + "end": 3685.3, + "probability": 0.9114 + }, + { + "start": 3686.5, + "end": 3692.68, + "probability": 0.5645 + }, + { + "start": 3693.54, + "end": 3694.2, + "probability": 0.6386 + }, + { + "start": 3695.42, + "end": 3696.66, + "probability": 0.9761 + }, + { + "start": 3697.76, + "end": 3698.34, + "probability": 0.8974 + }, + { + "start": 3699.94, + "end": 3700.82, + "probability": 0.8844 + }, + { + "start": 3701.94, + "end": 3703.02, + "probability": 0.7986 + }, + { + "start": 3704.34, + "end": 3706.1, + "probability": 0.8869 + }, + { + "start": 3707.54, + "end": 3709.92, + "probability": 0.9603 + }, + { + "start": 3710.64, + "end": 3712.08, + "probability": 0.9961 + }, + { + "start": 3712.86, + "end": 3717.52, + "probability": 0.9709 + }, + { + "start": 3719.28, + "end": 3720.4, + "probability": 0.9568 + }, + { + "start": 3721.14, + "end": 3722.58, + "probability": 0.7521 + }, + { + "start": 3724.38, + "end": 3725.1, + "probability": 0.9895 + }, + { + "start": 3726.66, + "end": 3728.22, + "probability": 0.7977 + }, + { + "start": 3728.76, + "end": 3729.82, + "probability": 0.7846 + }, + { + "start": 3732.08, + "end": 3736.98, + "probability": 0.9937 + }, + { + "start": 3739.3, + "end": 3741.52, + "probability": 0.8742 + }, + { + "start": 3742.68, + "end": 3745.31, + "probability": 0.9653 + }, + { + "start": 3746.6, + "end": 3749.98, + "probability": 0.989 + }, + { + "start": 3750.62, + "end": 3753.72, + "probability": 0.9329 + }, + { + "start": 3754.32, + "end": 3758.42, + "probability": 0.995 + }, + { + "start": 3759.86, + "end": 3761.7, + "probability": 0.9442 + }, + { + "start": 3762.28, + "end": 3763.7, + "probability": 0.6086 + }, + { + "start": 3764.94, + "end": 3766.02, + "probability": 0.6814 + }, + { + "start": 3767.42, + "end": 3768.16, + "probability": 0.9421 + }, + { + "start": 3769.38, + "end": 3770.3, + "probability": 0.9961 + }, + { + "start": 3771.9, + "end": 3774.68, + "probability": 0.937 + }, + { + "start": 3776.28, + "end": 3776.68, + "probability": 0.7247 + }, + { + "start": 3778.3, + "end": 3783.7, + "probability": 0.9946 + }, + { + "start": 3785.78, + "end": 3786.76, + "probability": 0.9532 + }, + { + "start": 3788.3, + "end": 3791.44, + "probability": 0.9868 + }, + { + "start": 3793.9, + "end": 3795.84, + "probability": 0.9622 + }, + { + "start": 3797.24, + "end": 3798.58, + "probability": 0.6702 + }, + { + "start": 3799.14, + "end": 3805.16, + "probability": 0.8032 + }, + { + "start": 3807.76, + "end": 3809.66, + "probability": 0.9902 + }, + { + "start": 3811.1, + "end": 3815.46, + "probability": 0.9945 + }, + { + "start": 3815.98, + "end": 3818.8, + "probability": 0.7537 + }, + { + "start": 3819.88, + "end": 3822.7, + "probability": 0.5032 + }, + { + "start": 3836.94, + "end": 3837.3, + "probability": 0.0756 + }, + { + "start": 3838.98, + "end": 3839.38, + "probability": 0.0514 + }, + { + "start": 3839.8, + "end": 3840.36, + "probability": 0.5739 + }, + { + "start": 3840.5, + "end": 3841.35, + "probability": 0.6784 + }, + { + "start": 3841.74, + "end": 3842.8, + "probability": 0.7769 + }, + { + "start": 3843.18, + "end": 3844.22, + "probability": 0.9137 + }, + { + "start": 3844.32, + "end": 3844.76, + "probability": 0.9712 + }, + { + "start": 3846.4, + "end": 3848.12, + "probability": 0.9555 + }, + { + "start": 3849.71, + "end": 3850.7, + "probability": 0.9824 + }, + { + "start": 3851.56, + "end": 3856.14, + "probability": 0.9891 + }, + { + "start": 3856.66, + "end": 3858.34, + "probability": 0.8223 + }, + { + "start": 3858.84, + "end": 3860.2, + "probability": 0.7964 + }, + { + "start": 3860.74, + "end": 3861.74, + "probability": 0.9642 + }, + { + "start": 3862.74, + "end": 3863.24, + "probability": 0.6116 + }, + { + "start": 3865.27, + "end": 3869.82, + "probability": 0.9424 + }, + { + "start": 3870.78, + "end": 3874.26, + "probability": 0.9981 + }, + { + "start": 3875.24, + "end": 3875.62, + "probability": 0.629 + }, + { + "start": 3876.6, + "end": 3879.9, + "probability": 0.6717 + }, + { + "start": 3880.86, + "end": 3882.5, + "probability": 0.5792 + }, + { + "start": 3883.7, + "end": 3885.12, + "probability": 0.9788 + }, + { + "start": 3885.4, + "end": 3886.18, + "probability": 0.9727 + }, + { + "start": 3886.56, + "end": 3890.98, + "probability": 0.9624 + }, + { + "start": 3891.28, + "end": 3893.38, + "probability": 0.9658 + }, + { + "start": 3894.0, + "end": 3894.86, + "probability": 0.6518 + }, + { + "start": 3895.4, + "end": 3898.62, + "probability": 0.9872 + }, + { + "start": 3898.74, + "end": 3901.22, + "probability": 0.9727 + }, + { + "start": 3902.44, + "end": 3904.2, + "probability": 0.9976 + }, + { + "start": 3905.24, + "end": 3906.04, + "probability": 0.8469 + }, + { + "start": 3908.08, + "end": 3909.44, + "probability": 0.9985 + }, + { + "start": 3910.44, + "end": 3911.82, + "probability": 0.9705 + }, + { + "start": 3913.12, + "end": 3914.74, + "probability": 0.9726 + }, + { + "start": 3915.6, + "end": 3916.92, + "probability": 0.9911 + }, + { + "start": 3918.06, + "end": 3920.86, + "probability": 0.9417 + }, + { + "start": 3921.92, + "end": 3922.76, + "probability": 0.9531 + }, + { + "start": 3925.52, + "end": 3930.92, + "probability": 0.9821 + }, + { + "start": 3931.74, + "end": 3932.96, + "probability": 0.9934 + }, + { + "start": 3934.04, + "end": 3936.96, + "probability": 0.9982 + }, + { + "start": 3938.12, + "end": 3941.5, + "probability": 0.9902 + }, + { + "start": 3942.64, + "end": 3946.8, + "probability": 0.9563 + }, + { + "start": 3947.78, + "end": 3950.94, + "probability": 0.9775 + }, + { + "start": 3952.22, + "end": 3952.59, + "probability": 0.366 + }, + { + "start": 3953.6, + "end": 3954.08, + "probability": 0.6384 + }, + { + "start": 3954.36, + "end": 3954.72, + "probability": 0.6893 + }, + { + "start": 3954.8, + "end": 3955.98, + "probability": 0.8932 + }, + { + "start": 3957.58, + "end": 3959.6, + "probability": 0.9459 + }, + { + "start": 3960.92, + "end": 3962.16, + "probability": 0.8783 + }, + { + "start": 3962.78, + "end": 3963.62, + "probability": 0.6304 + }, + { + "start": 3964.32, + "end": 3967.94, + "probability": 0.9746 + }, + { + "start": 3968.02, + "end": 3969.7, + "probability": 0.9892 + }, + { + "start": 3970.06, + "end": 3971.7, + "probability": 0.2472 + }, + { + "start": 3971.82, + "end": 3973.08, + "probability": 0.3641 + }, + { + "start": 3973.76, + "end": 3977.32, + "probability": 0.6467 + }, + { + "start": 3977.44, + "end": 3978.8, + "probability": 0.549 + }, + { + "start": 3979.3, + "end": 3980.94, + "probability": 0.9409 + }, + { + "start": 3987.4, + "end": 3988.84, + "probability": 0.5658 + }, + { + "start": 3989.06, + "end": 3990.6, + "probability": 0.9822 + }, + { + "start": 3990.66, + "end": 3991.04, + "probability": 0.9727 + }, + { + "start": 3992.69, + "end": 3994.6, + "probability": 0.7535 + }, + { + "start": 3994.76, + "end": 3995.82, + "probability": 0.9967 + }, + { + "start": 3996.78, + "end": 3997.4, + "probability": 0.1452 + }, + { + "start": 3998.74, + "end": 3999.02, + "probability": 0.7613 + }, + { + "start": 4000.22, + "end": 4005.24, + "probability": 0.9232 + }, + { + "start": 4005.26, + "end": 4006.2, + "probability": 0.8168 + }, + { + "start": 4008.24, + "end": 4009.83, + "probability": 0.4291 + }, + { + "start": 4011.46, + "end": 4012.38, + "probability": 0.8203 + }, + { + "start": 4012.94, + "end": 4015.66, + "probability": 0.973 + }, + { + "start": 4015.9, + "end": 4016.6, + "probability": 0.7732 + }, + { + "start": 4017.54, + "end": 4025.38, + "probability": 0.9205 + }, + { + "start": 4026.04, + "end": 4028.54, + "probability": 0.1063 + }, + { + "start": 4029.0, + "end": 4030.46, + "probability": 0.355 + }, + { + "start": 4030.7, + "end": 4032.08, + "probability": 0.7199 + }, + { + "start": 4033.22, + "end": 4034.02, + "probability": 0.742 + }, + { + "start": 4035.14, + "end": 4037.84, + "probability": 0.9548 + }, + { + "start": 4039.22, + "end": 4040.24, + "probability": 0.7157 + }, + { + "start": 4041.5, + "end": 4042.42, + "probability": 0.9938 + }, + { + "start": 4043.28, + "end": 4043.56, + "probability": 0.9814 + }, + { + "start": 4045.76, + "end": 4048.18, + "probability": 0.9974 + }, + { + "start": 4049.48, + "end": 4051.04, + "probability": 0.9958 + }, + { + "start": 4052.52, + "end": 4055.35, + "probability": 0.9961 + }, + { + "start": 4056.18, + "end": 4057.8, + "probability": 0.9175 + }, + { + "start": 4058.76, + "end": 4060.26, + "probability": 0.8243 + }, + { + "start": 4060.9, + "end": 4062.34, + "probability": 0.8818 + }, + { + "start": 4063.46, + "end": 4064.26, + "probability": 0.9536 + }, + { + "start": 4065.2, + "end": 4066.96, + "probability": 0.9502 + }, + { + "start": 4068.36, + "end": 4070.6, + "probability": 0.8443 + }, + { + "start": 4070.64, + "end": 4074.46, + "probability": 0.8049 + }, + { + "start": 4074.74, + "end": 4078.68, + "probability": 0.9839 + }, + { + "start": 4079.64, + "end": 4080.52, + "probability": 0.9858 + }, + { + "start": 4081.9, + "end": 4086.52, + "probability": 0.9946 + }, + { + "start": 4088.12, + "end": 4091.78, + "probability": 0.5512 + }, + { + "start": 4092.68, + "end": 4095.33, + "probability": 0.9954 + }, + { + "start": 4095.64, + "end": 4096.36, + "probability": 0.9607 + }, + { + "start": 4097.48, + "end": 4099.6, + "probability": 0.9629 + }, + { + "start": 4101.34, + "end": 4103.34, + "probability": 0.9341 + }, + { + "start": 4105.0, + "end": 4107.26, + "probability": 0.9815 + }, + { + "start": 4107.6, + "end": 4110.4, + "probability": 0.9764 + }, + { + "start": 4110.54, + "end": 4111.2, + "probability": 0.8579 + }, + { + "start": 4112.6, + "end": 4114.88, + "probability": 0.9958 + }, + { + "start": 4116.1, + "end": 4116.45, + "probability": 0.1119 + }, + { + "start": 4117.38, + "end": 4120.98, + "probability": 0.9907 + }, + { + "start": 4123.09, + "end": 4123.44, + "probability": 0.0412 + }, + { + "start": 4123.66, + "end": 4124.18, + "probability": 0.0077 + }, + { + "start": 4125.42, + "end": 4125.78, + "probability": 0.5633 + }, + { + "start": 4127.09, + "end": 4129.78, + "probability": 0.7475 + }, + { + "start": 4130.42, + "end": 4132.84, + "probability": 0.9725 + }, + { + "start": 4133.38, + "end": 4136.38, + "probability": 0.9761 + }, + { + "start": 4137.06, + "end": 4138.86, + "probability": 0.9282 + }, + { + "start": 4139.44, + "end": 4141.04, + "probability": 0.9839 + }, + { + "start": 4142.34, + "end": 4144.66, + "probability": 0.9335 + }, + { + "start": 4145.58, + "end": 4149.08, + "probability": 0.9287 + }, + { + "start": 4149.62, + "end": 4151.16, + "probability": 0.8254 + }, + { + "start": 4151.72, + "end": 4153.1, + "probability": 0.9581 + }, + { + "start": 4153.6, + "end": 4159.44, + "probability": 0.9708 + }, + { + "start": 4159.96, + "end": 4164.66, + "probability": 0.985 + }, + { + "start": 4164.66, + "end": 4165.72, + "probability": 0.6411 + }, + { + "start": 4166.2, + "end": 4167.8, + "probability": 0.9357 + }, + { + "start": 4167.96, + "end": 4169.6, + "probability": 0.7684 + }, + { + "start": 4169.68, + "end": 4169.98, + "probability": 0.4123 + }, + { + "start": 4169.98, + "end": 4170.48, + "probability": 0.7048 + }, + { + "start": 4171.62, + "end": 4175.33, + "probability": 0.7603 + }, + { + "start": 4175.78, + "end": 4178.0, + "probability": 0.9604 + }, + { + "start": 4178.88, + "end": 4181.08, + "probability": 0.862 + }, + { + "start": 4181.26, + "end": 4181.8, + "probability": 0.6972 + }, + { + "start": 4192.72, + "end": 4197.16, + "probability": 0.9779 + }, + { + "start": 4197.34, + "end": 4198.56, + "probability": 0.8076 + }, + { + "start": 4198.88, + "end": 4200.32, + "probability": 0.9185 + }, + { + "start": 4200.78, + "end": 4202.4, + "probability": 0.8171 + }, + { + "start": 4202.96, + "end": 4204.18, + "probability": 0.9659 + }, + { + "start": 4204.9, + "end": 4206.82, + "probability": 0.6899 + }, + { + "start": 4207.72, + "end": 4209.54, + "probability": 0.9966 + }, + { + "start": 4210.24, + "end": 4212.21, + "probability": 0.8307 + }, + { + "start": 4213.48, + "end": 4213.52, + "probability": 0.3047 + }, + { + "start": 4215.16, + "end": 4217.02, + "probability": 0.9329 + }, + { + "start": 4217.1, + "end": 4218.86, + "probability": 0.9852 + }, + { + "start": 4218.98, + "end": 4221.68, + "probability": 0.856 + }, + { + "start": 4222.48, + "end": 4225.44, + "probability": 0.8397 + }, + { + "start": 4235.25, + "end": 4237.9, + "probability": 0.8777 + }, + { + "start": 4238.57, + "end": 4241.29, + "probability": 0.9725 + }, + { + "start": 4242.99, + "end": 4244.11, + "probability": 0.5557 + }, + { + "start": 4244.42, + "end": 4245.49, + "probability": 0.8071 + }, + { + "start": 4245.59, + "end": 4248.43, + "probability": 0.9883 + }, + { + "start": 4252.05, + "end": 4253.57, + "probability": 0.773 + }, + { + "start": 4254.61, + "end": 4257.31, + "probability": 0.9285 + }, + { + "start": 4258.51, + "end": 4259.87, + "probability": 0.7225 + }, + { + "start": 4260.13, + "end": 4262.75, + "probability": 0.9094 + }, + { + "start": 4262.93, + "end": 4263.35, + "probability": 0.915 + }, + { + "start": 4263.55, + "end": 4264.15, + "probability": 0.8591 + }, + { + "start": 4265.09, + "end": 4268.67, + "probability": 0.9951 + }, + { + "start": 4272.89, + "end": 4275.09, + "probability": 0.7656 + }, + { + "start": 4278.17, + "end": 4279.53, + "probability": 0.8288 + }, + { + "start": 4279.73, + "end": 4280.31, + "probability": 0.7417 + }, + { + "start": 4281.63, + "end": 4282.61, + "probability": 0.9595 + }, + { + "start": 4285.19, + "end": 4288.53, + "probability": 0.7969 + }, + { + "start": 4290.29, + "end": 4291.59, + "probability": 0.7639 + }, + { + "start": 4292.41, + "end": 4292.85, + "probability": 0.6812 + }, + { + "start": 4293.03, + "end": 4295.34, + "probability": 0.9186 + }, + { + "start": 4297.31, + "end": 4298.53, + "probability": 0.4988 + }, + { + "start": 4299.93, + "end": 4301.73, + "probability": 0.7625 + }, + { + "start": 4304.37, + "end": 4306.95, + "probability": 0.9421 + }, + { + "start": 4307.75, + "end": 4308.37, + "probability": 0.5009 + }, + { + "start": 4309.35, + "end": 4312.93, + "probability": 0.9984 + }, + { + "start": 4313.67, + "end": 4314.01, + "probability": 0.998 + }, + { + "start": 4314.71, + "end": 4316.33, + "probability": 0.7787 + }, + { + "start": 4318.85, + "end": 4321.13, + "probability": 0.9895 + }, + { + "start": 4321.36, + "end": 4323.69, + "probability": 0.996 + }, + { + "start": 4324.95, + "end": 4327.49, + "probability": 0.8872 + }, + { + "start": 4328.95, + "end": 4331.87, + "probability": 0.9614 + }, + { + "start": 4332.13, + "end": 4332.87, + "probability": 0.6676 + }, + { + "start": 4333.85, + "end": 4334.95, + "probability": 0.8073 + }, + { + "start": 4337.17, + "end": 4339.85, + "probability": 0.9884 + }, + { + "start": 4340.85, + "end": 4342.67, + "probability": 0.9749 + }, + { + "start": 4343.03, + "end": 4343.93, + "probability": 0.6708 + }, + { + "start": 4347.42, + "end": 4349.41, + "probability": 0.8241 + }, + { + "start": 4350.31, + "end": 4352.09, + "probability": 0.7191 + }, + { + "start": 4352.65, + "end": 4354.47, + "probability": 0.9912 + }, + { + "start": 4354.53, + "end": 4355.44, + "probability": 0.8677 + }, + { + "start": 4355.63, + "end": 4356.75, + "probability": 0.9694 + }, + { + "start": 4358.41, + "end": 4361.71, + "probability": 0.9896 + }, + { + "start": 4362.05, + "end": 4363.67, + "probability": 0.001 + }, + { + "start": 4364.25, + "end": 4365.77, + "probability": 0.6805 + }, + { + "start": 4366.99, + "end": 4370.21, + "probability": 0.9433 + }, + { + "start": 4370.47, + "end": 4372.87, + "probability": 0.9956 + }, + { + "start": 4374.13, + "end": 4380.73, + "probability": 0.9944 + }, + { + "start": 4381.51, + "end": 4383.59, + "probability": 0.9648 + }, + { + "start": 4383.73, + "end": 4384.13, + "probability": 0.384 + }, + { + "start": 4384.33, + "end": 4385.75, + "probability": 0.9917 + }, + { + "start": 4386.17, + "end": 4386.49, + "probability": 0.3863 + }, + { + "start": 4386.65, + "end": 4389.17, + "probability": 0.8857 + }, + { + "start": 4389.77, + "end": 4392.35, + "probability": 0.5979 + }, + { + "start": 4393.55, + "end": 4398.49, + "probability": 0.4963 + }, + { + "start": 4401.61, + "end": 4402.57, + "probability": 0.5869 + }, + { + "start": 4404.71, + "end": 4406.47, + "probability": 0.5398 + }, + { + "start": 4408.17, + "end": 4412.77, + "probability": 0.8937 + }, + { + "start": 4413.65, + "end": 4417.51, + "probability": 0.8862 + }, + { + "start": 4417.69, + "end": 4418.67, + "probability": 0.906 + }, + { + "start": 4419.97, + "end": 4420.73, + "probability": 0.9114 + }, + { + "start": 4423.28, + "end": 4428.75, + "probability": 0.8539 + }, + { + "start": 4429.31, + "end": 4431.21, + "probability": 0.6788 + }, + { + "start": 4431.93, + "end": 4432.69, + "probability": 0.8778 + }, + { + "start": 4433.17, + "end": 4434.57, + "probability": 0.965 + }, + { + "start": 4435.13, + "end": 4435.99, + "probability": 0.999 + }, + { + "start": 4437.53, + "end": 4439.15, + "probability": 0.9992 + }, + { + "start": 4439.45, + "end": 4442.03, + "probability": 0.9646 + }, + { + "start": 4442.03, + "end": 4444.49, + "probability": 0.9158 + }, + { + "start": 4445.41, + "end": 4449.13, + "probability": 0.999 + }, + { + "start": 4449.13, + "end": 4451.21, + "probability": 0.9443 + }, + { + "start": 4451.31, + "end": 4455.55, + "probability": 0.7923 + }, + { + "start": 4456.21, + "end": 4457.61, + "probability": 0.9917 + }, + { + "start": 4458.15, + "end": 4459.71, + "probability": 0.9411 + }, + { + "start": 4459.81, + "end": 4463.13, + "probability": 0.9948 + }, + { + "start": 4463.65, + "end": 4464.61, + "probability": 0.9511 + }, + { + "start": 4465.81, + "end": 4466.3, + "probability": 0.874 + }, + { + "start": 4467.63, + "end": 4469.03, + "probability": 0.987 + }, + { + "start": 4470.05, + "end": 4473.59, + "probability": 0.8376 + }, + { + "start": 4475.21, + "end": 4479.49, + "probability": 0.9693 + }, + { + "start": 4480.17, + "end": 4482.21, + "probability": 0.9429 + }, + { + "start": 4482.85, + "end": 4484.37, + "probability": 0.9988 + }, + { + "start": 4486.55, + "end": 4487.79, + "probability": 0.9994 + }, + { + "start": 4488.99, + "end": 4491.69, + "probability": 0.8191 + }, + { + "start": 4493.61, + "end": 4496.49, + "probability": 0.9769 + }, + { + "start": 4496.75, + "end": 4498.47, + "probability": 0.9977 + }, + { + "start": 4498.83, + "end": 4500.41, + "probability": 0.9955 + }, + { + "start": 4500.65, + "end": 4505.09, + "probability": 0.9827 + }, + { + "start": 4506.23, + "end": 4506.57, + "probability": 0.8033 + }, + { + "start": 4507.21, + "end": 4509.59, + "probability": 0.8962 + }, + { + "start": 4510.49, + "end": 4518.51, + "probability": 0.887 + }, + { + "start": 4519.5, + "end": 4523.47, + "probability": 0.9382 + }, + { + "start": 4524.23, + "end": 4526.55, + "probability": 0.7435 + }, + { + "start": 4528.17, + "end": 4530.83, + "probability": 0.8958 + }, + { + "start": 4531.19, + "end": 4532.99, + "probability": 0.9651 + }, + { + "start": 4534.05, + "end": 4535.73, + "probability": 0.9136 + }, + { + "start": 4536.59, + "end": 4538.07, + "probability": 0.9658 + }, + { + "start": 4539.13, + "end": 4543.09, + "probability": 0.8151 + }, + { + "start": 4543.13, + "end": 4547.25, + "probability": 0.7849 + }, + { + "start": 4547.93, + "end": 4549.83, + "probability": 0.9821 + }, + { + "start": 4551.77, + "end": 4552.49, + "probability": 0.7916 + }, + { + "start": 4553.93, + "end": 4555.43, + "probability": 0.9702 + }, + { + "start": 4556.39, + "end": 4557.73, + "probability": 0.9487 + }, + { + "start": 4558.57, + "end": 4561.09, + "probability": 0.9955 + }, + { + "start": 4561.31, + "end": 4562.09, + "probability": 0.9519 + }, + { + "start": 4562.95, + "end": 4569.17, + "probability": 0.9029 + }, + { + "start": 4569.53, + "end": 4574.51, + "probability": 0.9112 + }, + { + "start": 4574.59, + "end": 4578.29, + "probability": 0.9982 + }, + { + "start": 4579.29, + "end": 4579.95, + "probability": 0.8297 + }, + { + "start": 4581.87, + "end": 4582.33, + "probability": 0.7491 + }, + { + "start": 4583.57, + "end": 4583.67, + "probability": 0.4118 + }, + { + "start": 4586.92, + "end": 4588.99, + "probability": 0.9519 + }, + { + "start": 4589.09, + "end": 4590.79, + "probability": 0.9219 + }, + { + "start": 4591.67, + "end": 4593.95, + "probability": 0.8599 + }, + { + "start": 4600.25, + "end": 4601.73, + "probability": 0.7434 + }, + { + "start": 4601.79, + "end": 4602.71, + "probability": 0.6011 + }, + { + "start": 4602.73, + "end": 4603.77, + "probability": 0.8233 + }, + { + "start": 4604.63, + "end": 4607.79, + "probability": 0.9839 + }, + { + "start": 4608.41, + "end": 4609.11, + "probability": 0.9684 + }, + { + "start": 4610.63, + "end": 4610.89, + "probability": 0.9819 + }, + { + "start": 4611.85, + "end": 4612.79, + "probability": 0.9958 + }, + { + "start": 4613.35, + "end": 4613.97, + "probability": 0.9071 + }, + { + "start": 4615.05, + "end": 4615.97, + "probability": 0.9949 + }, + { + "start": 4616.33, + "end": 4618.35, + "probability": 0.9971 + }, + { + "start": 4618.85, + "end": 4619.73, + "probability": 0.8035 + }, + { + "start": 4620.73, + "end": 4625.27, + "probability": 0.9776 + }, + { + "start": 4625.97, + "end": 4630.69, + "probability": 0.9929 + }, + { + "start": 4631.17, + "end": 4635.01, + "probability": 0.9983 + }, + { + "start": 4635.27, + "end": 4635.77, + "probability": 0.9126 + }, + { + "start": 4636.27, + "end": 4638.11, + "probability": 0.0425 + }, + { + "start": 4638.58, + "end": 4640.31, + "probability": 0.5873 + }, + { + "start": 4640.43, + "end": 4641.99, + "probability": 0.9946 + }, + { + "start": 4642.23, + "end": 4643.19, + "probability": 0.8872 + }, + { + "start": 4643.25, + "end": 4644.33, + "probability": 0.992 + }, + { + "start": 4646.49, + "end": 4647.51, + "probability": 0.9453 + }, + { + "start": 4647.79, + "end": 4648.49, + "probability": 0.9761 + }, + { + "start": 4648.57, + "end": 4650.69, + "probability": 0.9784 + }, + { + "start": 4650.77, + "end": 4651.84, + "probability": 0.5488 + }, + { + "start": 4653.05, + "end": 4655.91, + "probability": 0.9429 + }, + { + "start": 4656.63, + "end": 4657.15, + "probability": 0.7689 + }, + { + "start": 4658.63, + "end": 4660.95, + "probability": 0.478 + }, + { + "start": 4662.07, + "end": 4664.18, + "probability": 0.2463 + }, + { + "start": 4664.83, + "end": 4665.59, + "probability": 0.9163 + }, + { + "start": 4665.67, + "end": 4668.0, + "probability": 0.9411 + }, + { + "start": 4668.67, + "end": 4669.07, + "probability": 0.9612 + }, + { + "start": 4669.25, + "end": 4671.87, + "probability": 0.9941 + }, + { + "start": 4672.19, + "end": 4672.86, + "probability": 0.7274 + }, + { + "start": 4673.55, + "end": 4675.91, + "probability": 0.7998 + }, + { + "start": 4676.73, + "end": 4678.13, + "probability": 0.9179 + }, + { + "start": 4678.81, + "end": 4681.31, + "probability": 0.8221 + }, + { + "start": 4682.11, + "end": 4683.49, + "probability": 0.984 + }, + { + "start": 4683.87, + "end": 4684.71, + "probability": 0.8286 + }, + { + "start": 4688.11, + "end": 4688.67, + "probability": 0.0028 + }, + { + "start": 4689.19, + "end": 4689.67, + "probability": 0.1104 + }, + { + "start": 4690.15, + "end": 4692.33, + "probability": 0.8799 + }, + { + "start": 4692.49, + "end": 4695.91, + "probability": 0.5515 + }, + { + "start": 4696.07, + "end": 4699.23, + "probability": 0.9011 + }, + { + "start": 4700.16, + "end": 4704.85, + "probability": 0.5375 + }, + { + "start": 4705.63, + "end": 4708.13, + "probability": 0.7146 + }, + { + "start": 4708.73, + "end": 4712.01, + "probability": 0.9836 + }, + { + "start": 4713.27, + "end": 4716.71, + "probability": 0.9784 + }, + { + "start": 4717.85, + "end": 4719.89, + "probability": 0.7106 + }, + { + "start": 4723.3, + "end": 4724.35, + "probability": 0.05 + }, + { + "start": 4724.35, + "end": 4724.91, + "probability": 0.041 + }, + { + "start": 4725.55, + "end": 4729.01, + "probability": 0.413 + }, + { + "start": 4729.03, + "end": 4731.09, + "probability": 0.4212 + }, + { + "start": 4731.37, + "end": 4733.07, + "probability": 0.7031 + }, + { + "start": 4735.95, + "end": 4738.89, + "probability": 0.8884 + }, + { + "start": 4738.95, + "end": 4741.53, + "probability": 0.7499 + }, + { + "start": 4742.25, + "end": 4743.79, + "probability": 0.8883 + }, + { + "start": 4744.19, + "end": 4747.51, + "probability": 0.8786 + }, + { + "start": 4747.89, + "end": 4747.89, + "probability": 0.0161 + }, + { + "start": 4747.89, + "end": 4748.59, + "probability": 0.3703 + }, + { + "start": 4748.81, + "end": 4749.29, + "probability": 0.5717 + }, + { + "start": 4749.35, + "end": 4751.45, + "probability": 0.7338 + }, + { + "start": 4752.11, + "end": 4752.77, + "probability": 0.9937 + }, + { + "start": 4753.61, + "end": 4753.77, + "probability": 0.6827 + }, + { + "start": 4754.53, + "end": 4758.48, + "probability": 0.9842 + }, + { + "start": 4759.25, + "end": 4759.99, + "probability": 0.991 + }, + { + "start": 4760.93, + "end": 4762.43, + "probability": 0.9933 + }, + { + "start": 4763.47, + "end": 4764.51, + "probability": 0.9479 + }, + { + "start": 4766.81, + "end": 4769.89, + "probability": 0.9805 + }, + { + "start": 4770.91, + "end": 4773.43, + "probability": 0.9939 + }, + { + "start": 4773.57, + "end": 4774.65, + "probability": 0.9009 + }, + { + "start": 4776.01, + "end": 4777.39, + "probability": 0.3771 + }, + { + "start": 4779.71, + "end": 4780.81, + "probability": 0.9106 + }, + { + "start": 4781.62, + "end": 4784.41, + "probability": 0.9514 + }, + { + "start": 4784.53, + "end": 4786.43, + "probability": 0.9336 + }, + { + "start": 4786.47, + "end": 4787.83, + "probability": 0.6384 + }, + { + "start": 4791.39, + "end": 4792.23, + "probability": 0.9858 + }, + { + "start": 4793.41, + "end": 4794.01, + "probability": 0.7867 + }, + { + "start": 4796.11, + "end": 4799.01, + "probability": 0.8362 + }, + { + "start": 4799.68, + "end": 4801.38, + "probability": 0.5502 + }, + { + "start": 4805.41, + "end": 4809.23, + "probability": 0.2861 + }, + { + "start": 4809.55, + "end": 4811.55, + "probability": 0.9147 + }, + { + "start": 4811.73, + "end": 4812.33, + "probability": 0.6404 + }, + { + "start": 4812.49, + "end": 4814.23, + "probability": 0.9455 + }, + { + "start": 4815.15, + "end": 4817.35, + "probability": 0.9757 + }, + { + "start": 4818.71, + "end": 4825.25, + "probability": 0.9585 + }, + { + "start": 4828.85, + "end": 4830.17, + "probability": 0.9146 + }, + { + "start": 4830.37, + "end": 4834.35, + "probability": 0.9334 + }, + { + "start": 4834.39, + "end": 4836.84, + "probability": 0.9965 + }, + { + "start": 4838.33, + "end": 4838.93, + "probability": 0.9938 + }, + { + "start": 4839.89, + "end": 4842.13, + "probability": 0.866 + }, + { + "start": 4843.83, + "end": 4846.27, + "probability": 0.5097 + }, + { + "start": 4846.33, + "end": 4849.47, + "probability": 0.565 + }, + { + "start": 4849.57, + "end": 4852.95, + "probability": 0.6292 + }, + { + "start": 4852.97, + "end": 4854.45, + "probability": 0.6591 + }, + { + "start": 4857.17, + "end": 4860.91, + "probability": 0.8335 + }, + { + "start": 4861.31, + "end": 4865.49, + "probability": 0.902 + }, + { + "start": 4865.57, + "end": 4866.77, + "probability": 0.8545 + }, + { + "start": 4867.25, + "end": 4868.09, + "probability": 0.8969 + }, + { + "start": 4869.1, + "end": 4871.87, + "probability": 0.5423 + }, + { + "start": 4872.27, + "end": 4874.89, + "probability": 0.7001 + }, + { + "start": 4875.61, + "end": 4878.63, + "probability": 0.9893 + }, + { + "start": 4879.37, + "end": 4880.8, + "probability": 0.9878 + }, + { + "start": 4881.97, + "end": 4883.47, + "probability": 0.9972 + }, + { + "start": 4885.25, + "end": 4885.67, + "probability": 0.8035 + }, + { + "start": 4886.47, + "end": 4889.09, + "probability": 0.9991 + }, + { + "start": 4889.87, + "end": 4893.49, + "probability": 0.9605 + }, + { + "start": 4893.55, + "end": 4895.65, + "probability": 0.96 + }, + { + "start": 4895.67, + "end": 4896.43, + "probability": 0.8963 + }, + { + "start": 4897.03, + "end": 4897.47, + "probability": 0.9025 + }, + { + "start": 4899.57, + "end": 4901.41, + "probability": 0.6736 + }, + { + "start": 4902.05, + "end": 4905.35, + "probability": 0.6763 + }, + { + "start": 4905.65, + "end": 4907.13, + "probability": 0.4826 + }, + { + "start": 4908.01, + "end": 4908.23, + "probability": 0.2372 + }, + { + "start": 4908.23, + "end": 4909.01, + "probability": 0.6957 + }, + { + "start": 4910.09, + "end": 4914.43, + "probability": 0.6704 + }, + { + "start": 4914.97, + "end": 4917.17, + "probability": 0.6533 + }, + { + "start": 4917.23, + "end": 4920.13, + "probability": 0.8552 + }, + { + "start": 4920.15, + "end": 4920.41, + "probability": 0.6127 + }, + { + "start": 4920.59, + "end": 4922.33, + "probability": 0.7683 + }, + { + "start": 4922.43, + "end": 4924.95, + "probability": 0.4744 + }, + { + "start": 4925.39, + "end": 4925.91, + "probability": 0.0175 + }, + { + "start": 4929.21, + "end": 4930.87, + "probability": 0.627 + }, + { + "start": 4931.51, + "end": 4932.59, + "probability": 0.8759 + }, + { + "start": 4932.65, + "end": 4936.27, + "probability": 0.9816 + }, + { + "start": 4938.21, + "end": 4938.93, + "probability": 0.7991 + }, + { + "start": 4940.07, + "end": 4940.25, + "probability": 0.5032 + }, + { + "start": 4940.25, + "end": 4940.45, + "probability": 0.1206 + }, + { + "start": 4941.21, + "end": 4943.63, + "probability": 0.9963 + }, + { + "start": 4946.75, + "end": 4947.13, + "probability": 0.0793 + }, + { + "start": 4947.13, + "end": 4947.55, + "probability": 0.1611 + }, + { + "start": 4948.57, + "end": 4952.07, + "probability": 0.191 + }, + { + "start": 4952.87, + "end": 4954.05, + "probability": 0.8269 + }, + { + "start": 4954.93, + "end": 4957.05, + "probability": 0.5536 + }, + { + "start": 4958.19, + "end": 4961.31, + "probability": 0.7289 + }, + { + "start": 4961.93, + "end": 4962.99, + "probability": 0.8719 + }, + { + "start": 4963.89, + "end": 4967.61, + "probability": 0.9808 + }, + { + "start": 4968.13, + "end": 4969.51, + "probability": 0.9978 + }, + { + "start": 4970.59, + "end": 4970.91, + "probability": 0.9742 + }, + { + "start": 4971.75, + "end": 4972.73, + "probability": 0.9838 + }, + { + "start": 4973.27, + "end": 4974.83, + "probability": 0.9834 + }, + { + "start": 4975.13, + "end": 4977.48, + "probability": 0.803 + }, + { + "start": 4978.11, + "end": 4980.89, + "probability": 0.9951 + }, + { + "start": 4981.07, + "end": 4981.25, + "probability": 0.3316 + }, + { + "start": 4981.37, + "end": 4985.17, + "probability": 0.7747 + }, + { + "start": 4985.89, + "end": 4987.73, + "probability": 0.9827 + }, + { + "start": 4988.47, + "end": 4988.75, + "probability": 0.6195 + }, + { + "start": 4988.87, + "end": 4992.41, + "probability": 0.9483 + }, + { + "start": 4992.61, + "end": 4994.47, + "probability": 0.9906 + }, + { + "start": 4994.95, + "end": 4995.53, + "probability": 0.7061 + }, + { + "start": 4996.77, + "end": 4996.77, + "probability": 0.0001 + }, + { + "start": 4997.79, + "end": 4998.55, + "probability": 0.2947 + }, + { + "start": 4998.83, + "end": 5002.57, + "probability": 0.9429 + }, + { + "start": 5003.77, + "end": 5006.01, + "probability": 0.5978 + }, + { + "start": 5006.09, + "end": 5010.06, + "probability": 0.9751 + }, + { + "start": 5011.37, + "end": 5014.47, + "probability": 0.9944 + }, + { + "start": 5015.35, + "end": 5017.05, + "probability": 0.4958 + }, + { + "start": 5017.17, + "end": 5018.32, + "probability": 0.1313 + }, + { + "start": 5019.86, + "end": 5020.83, + "probability": 0.1763 + }, + { + "start": 5020.83, + "end": 5022.27, + "probability": 0.7885 + }, + { + "start": 5022.95, + "end": 5024.33, + "probability": 0.9715 + }, + { + "start": 5025.35, + "end": 5026.05, + "probability": 0.8705 + }, + { + "start": 5026.71, + "end": 5026.93, + "probability": 0.7574 + }, + { + "start": 5027.67, + "end": 5029.25, + "probability": 0.9899 + }, + { + "start": 5030.45, + "end": 5034.43, + "probability": 0.5858 + }, + { + "start": 5034.75, + "end": 5034.82, + "probability": 0.6816 + }, + { + "start": 5034.93, + "end": 5037.81, + "probability": 0.945 + }, + { + "start": 5038.81, + "end": 5041.83, + "probability": 0.3252 + }, + { + "start": 5043.87, + "end": 5044.59, + "probability": 0.7182 + }, + { + "start": 5044.85, + "end": 5046.09, + "probability": 0.3388 + }, + { + "start": 5046.39, + "end": 5048.01, + "probability": 0.4558 + }, + { + "start": 5049.63, + "end": 5051.91, + "probability": 0.6036 + }, + { + "start": 5052.45, + "end": 5054.01, + "probability": 0.9878 + }, + { + "start": 5055.25, + "end": 5056.19, + "probability": 0.3708 + }, + { + "start": 5057.29, + "end": 5058.16, + "probability": 0.0706 + }, + { + "start": 5058.97, + "end": 5060.81, + "probability": 0.552 + }, + { + "start": 5061.21, + "end": 5062.25, + "probability": 0.5381 + }, + { + "start": 5062.45, + "end": 5062.51, + "probability": 0.1915 + }, + { + "start": 5062.51, + "end": 5063.17, + "probability": 0.5151 + }, + { + "start": 5065.51, + "end": 5066.39, + "probability": 0.9654 + }, + { + "start": 5066.43, + "end": 5068.49, + "probability": 0.9555 + }, + { + "start": 5068.95, + "end": 5069.11, + "probability": 0.0457 + }, + { + "start": 5069.19, + "end": 5072.99, + "probability": 0.1233 + }, + { + "start": 5072.99, + "end": 5074.43, + "probability": 0.102 + }, + { + "start": 5074.47, + "end": 5079.39, + "probability": 0.6162 + }, + { + "start": 5079.39, + "end": 5082.33, + "probability": 0.7558 + }, + { + "start": 5082.43, + "end": 5088.09, + "probability": 0.9871 + }, + { + "start": 5088.55, + "end": 5089.07, + "probability": 0.9112 + }, + { + "start": 5089.21, + "end": 5089.85, + "probability": 0.9495 + }, + { + "start": 5090.21, + "end": 5091.55, + "probability": 0.7826 + }, + { + "start": 5091.59, + "end": 5092.99, + "probability": 0.8965 + }, + { + "start": 5093.01, + "end": 5093.71, + "probability": 0.7904 + }, + { + "start": 5094.11, + "end": 5095.55, + "probability": 0.9966 + }, + { + "start": 5097.23, + "end": 5099.35, + "probability": 0.8319 + }, + { + "start": 5100.05, + "end": 5103.59, + "probability": 0.9962 + }, + { + "start": 5103.75, + "end": 5107.01, + "probability": 0.9899 + }, + { + "start": 5107.67, + "end": 5108.45, + "probability": 0.9876 + }, + { + "start": 5109.11, + "end": 5109.61, + "probability": 0.9947 + }, + { + "start": 5111.67, + "end": 5114.37, + "probability": 0.8848 + }, + { + "start": 5115.57, + "end": 5122.33, + "probability": 0.9741 + }, + { + "start": 5123.15, + "end": 5124.37, + "probability": 0.9361 + }, + { + "start": 5124.93, + "end": 5124.93, + "probability": 0.8198 + }, + { + "start": 5125.49, + "end": 5126.61, + "probability": 0.9942 + }, + { + "start": 5126.73, + "end": 5127.89, + "probability": 0.9902 + }, + { + "start": 5128.37, + "end": 5129.49, + "probability": 0.7855 + }, + { + "start": 5130.47, + "end": 5134.51, + "probability": 0.9956 + }, + { + "start": 5137.61, + "end": 5138.55, + "probability": 0.875 + }, + { + "start": 5138.87, + "end": 5139.73, + "probability": 0.8112 + }, + { + "start": 5140.19, + "end": 5143.27, + "probability": 0.9954 + }, + { + "start": 5143.39, + "end": 5146.35, + "probability": 0.9201 + }, + { + "start": 5148.41, + "end": 5151.63, + "probability": 0.993 + }, + { + "start": 5152.43, + "end": 5153.87, + "probability": 0.8903 + }, + { + "start": 5154.55, + "end": 5156.41, + "probability": 0.9854 + }, + { + "start": 5157.09, + "end": 5158.39, + "probability": 0.9278 + }, + { + "start": 5159.09, + "end": 5163.29, + "probability": 0.9983 + }, + { + "start": 5163.85, + "end": 5166.41, + "probability": 0.9762 + }, + { + "start": 5167.17, + "end": 5167.31, + "probability": 0.644 + }, + { + "start": 5167.33, + "end": 5167.61, + "probability": 0.7249 + }, + { + "start": 5167.71, + "end": 5169.23, + "probability": 0.9723 + }, + { + "start": 5169.33, + "end": 5170.23, + "probability": 0.6816 + }, + { + "start": 5170.37, + "end": 5171.21, + "probability": 0.767 + }, + { + "start": 5171.81, + "end": 5172.49, + "probability": 0.9636 + }, + { + "start": 5173.55, + "end": 5174.73, + "probability": 0.5723 + }, + { + "start": 5175.73, + "end": 5178.19, + "probability": 0.9268 + }, + { + "start": 5180.53, + "end": 5181.29, + "probability": 0.7594 + }, + { + "start": 5182.53, + "end": 5183.79, + "probability": 0.7418 + }, + { + "start": 5185.11, + "end": 5188.99, + "probability": 0.9207 + }, + { + "start": 5190.21, + "end": 5190.27, + "probability": 0.0018 + }, + { + "start": 5193.09, + "end": 5194.91, + "probability": 0.9878 + }, + { + "start": 5195.43, + "end": 5197.39, + "probability": 0.9412 + }, + { + "start": 5198.69, + "end": 5203.63, + "probability": 0.9964 + }, + { + "start": 5204.37, + "end": 5210.91, + "probability": 0.9875 + }, + { + "start": 5212.21, + "end": 5214.55, + "probability": 0.994 + }, + { + "start": 5215.39, + "end": 5217.47, + "probability": 0.9966 + }, + { + "start": 5218.07, + "end": 5223.63, + "probability": 0.9103 + }, + { + "start": 5223.81, + "end": 5225.19, + "probability": 0.9976 + }, + { + "start": 5227.0, + "end": 5232.27, + "probability": 0.9579 + }, + { + "start": 5232.59, + "end": 5235.31, + "probability": 0.9059 + }, + { + "start": 5235.69, + "end": 5237.73, + "probability": 0.9351 + }, + { + "start": 5238.03, + "end": 5239.12, + "probability": 0.998 + }, + { + "start": 5239.95, + "end": 5240.67, + "probability": 0.1038 + }, + { + "start": 5241.27, + "end": 5242.21, + "probability": 0.4487 + }, + { + "start": 5242.99, + "end": 5246.09, + "probability": 0.7569 + }, + { + "start": 5246.81, + "end": 5250.18, + "probability": 0.9956 + }, + { + "start": 5250.75, + "end": 5253.21, + "probability": 0.6359 + }, + { + "start": 5253.67, + "end": 5255.03, + "probability": 0.8389 + }, + { + "start": 5255.29, + "end": 5256.57, + "probability": 0.9235 + }, + { + "start": 5256.87, + "end": 5259.03, + "probability": 0.9438 + }, + { + "start": 5259.17, + "end": 5259.89, + "probability": 0.7347 + }, + { + "start": 5259.99, + "end": 5260.71, + "probability": 0.8315 + }, + { + "start": 5260.89, + "end": 5262.35, + "probability": 0.4925 + }, + { + "start": 5262.39, + "end": 5263.21, + "probability": 0.8042 + }, + { + "start": 5263.57, + "end": 5265.07, + "probability": 0.4798 + }, + { + "start": 5265.25, + "end": 5269.55, + "probability": 0.2992 + }, + { + "start": 5269.59, + "end": 5270.27, + "probability": 0.949 + }, + { + "start": 5270.39, + "end": 5272.05, + "probability": 0.9556 + }, + { + "start": 5272.39, + "end": 5273.37, + "probability": 0.995 + }, + { + "start": 5274.25, + "end": 5276.41, + "probability": 0.9675 + }, + { + "start": 5277.15, + "end": 5278.85, + "probability": 0.9791 + }, + { + "start": 5280.27, + "end": 5281.97, + "probability": 0.0726 + }, + { + "start": 5282.99, + "end": 5284.49, + "probability": 0.892 + }, + { + "start": 5284.71, + "end": 5285.64, + "probability": 0.893 + }, + { + "start": 5286.61, + "end": 5288.15, + "probability": 0.8878 + }, + { + "start": 5289.71, + "end": 5291.05, + "probability": 0.6571 + }, + { + "start": 5291.31, + "end": 5294.41, + "probability": 0.9781 + }, + { + "start": 5296.45, + "end": 5299.59, + "probability": 0.663 + }, + { + "start": 5300.39, + "end": 5304.61, + "probability": 0.9373 + }, + { + "start": 5305.41, + "end": 5307.17, + "probability": 0.9302 + }, + { + "start": 5307.81, + "end": 5308.63, + "probability": 0.9839 + }, + { + "start": 5309.65, + "end": 5310.75, + "probability": 0.9925 + }, + { + "start": 5311.29, + "end": 5313.99, + "probability": 0.8846 + }, + { + "start": 5314.51, + "end": 5316.79, + "probability": 0.9956 + }, + { + "start": 5319.09, + "end": 5323.13, + "probability": 0.3828 + }, + { + "start": 5323.77, + "end": 5325.61, + "probability": 0.695 + }, + { + "start": 5326.51, + "end": 5330.19, + "probability": 0.9875 + }, + { + "start": 5330.51, + "end": 5331.15, + "probability": 0.7535 + }, + { + "start": 5331.99, + "end": 5332.21, + "probability": 0.8615 + }, + { + "start": 5332.83, + "end": 5333.61, + "probability": 0.9934 + }, + { + "start": 5335.01, + "end": 5339.17, + "probability": 0.6689 + }, + { + "start": 5340.47, + "end": 5340.83, + "probability": 0.0058 + }, + { + "start": 5341.41, + "end": 5342.65, + "probability": 0.8558 + }, + { + "start": 5343.29, + "end": 5344.35, + "probability": 0.9067 + }, + { + "start": 5344.65, + "end": 5346.09, + "probability": 0.9962 + }, + { + "start": 5346.55, + "end": 5349.37, + "probability": 0.9943 + }, + { + "start": 5349.85, + "end": 5351.89, + "probability": 0.7903 + }, + { + "start": 5352.25, + "end": 5355.63, + "probability": 0.8964 + }, + { + "start": 5356.11, + "end": 5362.77, + "probability": 0.9704 + }, + { + "start": 5364.13, + "end": 5365.03, + "probability": 0.6385 + }, + { + "start": 5365.31, + "end": 5365.87, + "probability": 0.6035 + }, + { + "start": 5365.89, + "end": 5367.71, + "probability": 0.9012 + }, + { + "start": 5368.56, + "end": 5372.37, + "probability": 0.8593 + }, + { + "start": 5372.97, + "end": 5374.2, + "probability": 0.9602 + }, + { + "start": 5374.77, + "end": 5376.95, + "probability": 0.9915 + }, + { + "start": 5377.57, + "end": 5378.37, + "probability": 0.5129 + }, + { + "start": 5378.79, + "end": 5379.83, + "probability": 0.4182 + }, + { + "start": 5381.27, + "end": 5382.79, + "probability": 0.8549 + }, + { + "start": 5383.59, + "end": 5384.77, + "probability": 0.9287 + }, + { + "start": 5386.61, + "end": 5386.95, + "probability": 0.9585 + }, + { + "start": 5387.87, + "end": 5389.25, + "probability": 0.9376 + }, + { + "start": 5390.51, + "end": 5391.35, + "probability": 0.929 + }, + { + "start": 5392.69, + "end": 5392.91, + "probability": 0.8911 + }, + { + "start": 5394.09, + "end": 5396.59, + "probability": 0.91 + }, + { + "start": 5398.69, + "end": 5399.01, + "probability": 0.0092 + }, + { + "start": 5399.01, + "end": 5399.53, + "probability": 0.3198 + }, + { + "start": 5399.79, + "end": 5402.49, + "probability": 0.9917 + }, + { + "start": 5403.21, + "end": 5404.41, + "probability": 0.9993 + }, + { + "start": 5405.37, + "end": 5407.01, + "probability": 0.9926 + }, + { + "start": 5407.59, + "end": 5410.21, + "probability": 0.8062 + }, + { + "start": 5410.49, + "end": 5413.55, + "probability": 0.9975 + }, + { + "start": 5413.93, + "end": 5416.67, + "probability": 0.9968 + }, + { + "start": 5416.71, + "end": 5418.87, + "probability": 0.9309 + }, + { + "start": 5419.05, + "end": 5419.71, + "probability": 0.9425 + }, + { + "start": 5422.07, + "end": 5422.89, + "probability": 0.6626 + }, + { + "start": 5424.89, + "end": 5428.51, + "probability": 0.9901 + }, + { + "start": 5428.57, + "end": 5429.83, + "probability": 0.842 + }, + { + "start": 5429.91, + "end": 5432.83, + "probability": 0.8895 + }, + { + "start": 5433.63, + "end": 5434.41, + "probability": 0.9993 + }, + { + "start": 5435.37, + "end": 5437.61, + "probability": 0.9942 + }, + { + "start": 5439.29, + "end": 5439.91, + "probability": 0.9652 + }, + { + "start": 5441.33, + "end": 5442.73, + "probability": 0.8253 + }, + { + "start": 5445.27, + "end": 5446.81, + "probability": 0.4632 + }, + { + "start": 5450.01, + "end": 5450.89, + "probability": 0.9917 + }, + { + "start": 5453.15, + "end": 5453.81, + "probability": 0.864 + }, + { + "start": 5454.81, + "end": 5455.45, + "probability": 0.9778 + }, + { + "start": 5456.31, + "end": 5459.39, + "probability": 0.9055 + }, + { + "start": 5460.19, + "end": 5462.29, + "probability": 0.867 + }, + { + "start": 5463.17, + "end": 5465.61, + "probability": 0.9467 + }, + { + "start": 5467.11, + "end": 5468.83, + "probability": 0.8179 + }, + { + "start": 5470.07, + "end": 5472.03, + "probability": 0.9901 + }, + { + "start": 5472.87, + "end": 5473.95, + "probability": 0.7215 + }, + { + "start": 5474.51, + "end": 5475.01, + "probability": 0.2686 + }, + { + "start": 5476.01, + "end": 5476.11, + "probability": 0.2596 + }, + { + "start": 5476.11, + "end": 5476.11, + "probability": 0.4251 + }, + { + "start": 5476.11, + "end": 5477.05, + "probability": 0.263 + }, + { + "start": 5477.35, + "end": 5477.35, + "probability": 0.2268 + }, + { + "start": 5477.35, + "end": 5478.77, + "probability": 0.4485 + }, + { + "start": 5478.87, + "end": 5479.03, + "probability": 0.1187 + }, + { + "start": 5479.93, + "end": 5480.55, + "probability": 0.5012 + }, + { + "start": 5480.83, + "end": 5481.85, + "probability": 0.7152 + }, + { + "start": 5481.99, + "end": 5483.13, + "probability": 0.267 + }, + { + "start": 5483.29, + "end": 5484.45, + "probability": 0.875 + }, + { + "start": 5486.12, + "end": 5488.85, + "probability": 0.8866 + }, + { + "start": 5490.17, + "end": 5493.41, + "probability": 0.9597 + }, + { + "start": 5494.45, + "end": 5495.04, + "probability": 0.6811 + }, + { + "start": 5495.43, + "end": 5496.13, + "probability": 0.9497 + }, + { + "start": 5496.63, + "end": 5497.37, + "probability": 0.9823 + }, + { + "start": 5498.29, + "end": 5499.71, + "probability": 0.8316 + }, + { + "start": 5500.23, + "end": 5501.23, + "probability": 0.0727 + }, + { + "start": 5501.37, + "end": 5503.14, + "probability": 0.7545 + }, + { + "start": 5503.15, + "end": 5504.58, + "probability": 0.8449 + }, + { + "start": 5505.19, + "end": 5507.93, + "probability": 0.7836 + }, + { + "start": 5508.39, + "end": 5510.25, + "probability": 0.9278 + }, + { + "start": 5510.41, + "end": 5511.63, + "probability": 0.8781 + }, + { + "start": 5511.79, + "end": 5513.43, + "probability": 0.8433 + }, + { + "start": 5513.59, + "end": 5514.23, + "probability": 0.502 + }, + { + "start": 5514.29, + "end": 5515.21, + "probability": 0.8956 + }, + { + "start": 5515.51, + "end": 5516.76, + "probability": 0.9692 + }, + { + "start": 5517.53, + "end": 5520.35, + "probability": 0.9954 + }, + { + "start": 5523.33, + "end": 5523.87, + "probability": 0.9913 + }, + { + "start": 5524.63, + "end": 5526.91, + "probability": 0.9852 + }, + { + "start": 5528.11, + "end": 5528.79, + "probability": 0.9988 + }, + { + "start": 5529.73, + "end": 5531.33, + "probability": 0.9903 + }, + { + "start": 5531.49, + "end": 5531.77, + "probability": 0.7041 + }, + { + "start": 5532.33, + "end": 5533.71, + "probability": 0.9962 + }, + { + "start": 5534.39, + "end": 5536.53, + "probability": 0.9828 + }, + { + "start": 5538.71, + "end": 5540.61, + "probability": 0.9683 + }, + { + "start": 5540.71, + "end": 5542.83, + "probability": 0.9893 + }, + { + "start": 5543.67, + "end": 5546.13, + "probability": 0.8322 + }, + { + "start": 5546.79, + "end": 5547.79, + "probability": 0.9646 + }, + { + "start": 5549.69, + "end": 5550.49, + "probability": 0.4964 + }, + { + "start": 5551.91, + "end": 5552.34, + "probability": 0.9048 + }, + { + "start": 5553.83, + "end": 5555.15, + "probability": 0.987 + }, + { + "start": 5555.39, + "end": 5557.59, + "probability": 0.9146 + }, + { + "start": 5558.55, + "end": 5559.91, + "probability": 0.9238 + }, + { + "start": 5560.55, + "end": 5562.95, + "probability": 0.9695 + }, + { + "start": 5565.29, + "end": 5565.29, + "probability": 0.9595 + }, + { + "start": 5566.33, + "end": 5573.13, + "probability": 0.9979 + }, + { + "start": 5574.65, + "end": 5577.15, + "probability": 0.73 + }, + { + "start": 5577.77, + "end": 5579.53, + "probability": 0.7349 + }, + { + "start": 5579.53, + "end": 5580.19, + "probability": 0.8564 + }, + { + "start": 5580.25, + "end": 5582.71, + "probability": 0.7688 + }, + { + "start": 5583.77, + "end": 5585.33, + "probability": 0.0246 + }, + { + "start": 5585.97, + "end": 5586.37, + "probability": 0.0299 + }, + { + "start": 5586.37, + "end": 5586.83, + "probability": 0.2914 + }, + { + "start": 5587.25, + "end": 5588.31, + "probability": 0.7332 + }, + { + "start": 5589.01, + "end": 5592.07, + "probability": 0.6791 + }, + { + "start": 5592.21, + "end": 5594.13, + "probability": 0.9072 + }, + { + "start": 5596.45, + "end": 5597.93, + "probability": 0.9731 + }, + { + "start": 5598.77, + "end": 5601.91, + "probability": 0.9792 + }, + { + "start": 5603.55, + "end": 5604.41, + "probability": 0.9242 + }, + { + "start": 5607.75, + "end": 5610.13, + "probability": 0.9813 + }, + { + "start": 5610.21, + "end": 5611.53, + "probability": 0.9239 + }, + { + "start": 5611.69, + "end": 5613.19, + "probability": 0.8538 + }, + { + "start": 5613.37, + "end": 5614.05, + "probability": 0.8961 + }, + { + "start": 5615.83, + "end": 5616.37, + "probability": 0.9995 + }, + { + "start": 5617.09, + "end": 5619.97, + "probability": 0.8279 + }, + { + "start": 5621.49, + "end": 5622.33, + "probability": 0.802 + }, + { + "start": 5623.03, + "end": 5626.17, + "probability": 0.9875 + }, + { + "start": 5626.31, + "end": 5627.55, + "probability": 0.8639 + }, + { + "start": 5627.89, + "end": 5628.66, + "probability": 0.8359 + }, + { + "start": 5629.57, + "end": 5632.83, + "probability": 0.9396 + }, + { + "start": 5634.51, + "end": 5636.01, + "probability": 0.9952 + }, + { + "start": 5637.35, + "end": 5639.55, + "probability": 0.1616 + }, + { + "start": 5639.55, + "end": 5640.11, + "probability": 0.3985 + }, + { + "start": 5640.51, + "end": 5641.69, + "probability": 0.8749 + }, + { + "start": 5642.25, + "end": 5644.45, + "probability": 0.9229 + }, + { + "start": 5645.59, + "end": 5646.95, + "probability": 0.8888 + }, + { + "start": 5647.03, + "end": 5648.49, + "probability": 0.8156 + }, + { + "start": 5648.91, + "end": 5651.15, + "probability": 0.9405 + }, + { + "start": 5651.49, + "end": 5653.13, + "probability": 0.9967 + }, + { + "start": 5653.67, + "end": 5654.77, + "probability": 0.9949 + }, + { + "start": 5655.57, + "end": 5657.21, + "probability": 0.9911 + }, + { + "start": 5657.31, + "end": 5657.83, + "probability": 0.767 + }, + { + "start": 5658.15, + "end": 5659.57, + "probability": 0.9741 + }, + { + "start": 5660.73, + "end": 5661.89, + "probability": 0.549 + }, + { + "start": 5662.73, + "end": 5666.95, + "probability": 0.9995 + }, + { + "start": 5667.07, + "end": 5668.67, + "probability": 0.7922 + }, + { + "start": 5668.81, + "end": 5669.43, + "probability": 0.8083 + }, + { + "start": 5669.55, + "end": 5670.53, + "probability": 0.9085 + }, + { + "start": 5671.17, + "end": 5674.73, + "probability": 0.9874 + }, + { + "start": 5675.37, + "end": 5676.73, + "probability": 0.8135 + }, + { + "start": 5676.91, + "end": 5679.79, + "probability": 0.9949 + }, + { + "start": 5680.09, + "end": 5680.57, + "probability": 0.6472 + }, + { + "start": 5681.59, + "end": 5683.29, + "probability": 0.9714 + }, + { + "start": 5684.09, + "end": 5684.9, + "probability": 0.9709 + }, + { + "start": 5687.28, + "end": 5688.09, + "probability": 0.985 + }, + { + "start": 5689.59, + "end": 5691.63, + "probability": 0.9776 + }, + { + "start": 5692.41, + "end": 5693.81, + "probability": 0.9948 + }, + { + "start": 5694.11, + "end": 5695.37, + "probability": 0.9954 + }, + { + "start": 5695.53, + "end": 5696.51, + "probability": 0.8867 + }, + { + "start": 5696.87, + "end": 5699.07, + "probability": 0.9962 + }, + { + "start": 5699.69, + "end": 5700.13, + "probability": 0.9371 + }, + { + "start": 5701.49, + "end": 5702.74, + "probability": 0.9988 + }, + { + "start": 5703.45, + "end": 5704.19, + "probability": 0.9575 + }, + { + "start": 5704.27, + "end": 5707.83, + "probability": 0.9856 + }, + { + "start": 5708.91, + "end": 5710.75, + "probability": 0.9824 + }, + { + "start": 5712.17, + "end": 5712.95, + "probability": 0.7642 + }, + { + "start": 5713.57, + "end": 5715.15, + "probability": 0.8843 + }, + { + "start": 5715.79, + "end": 5717.21, + "probability": 0.8137 + }, + { + "start": 5717.85, + "end": 5719.39, + "probability": 0.9438 + }, + { + "start": 5721.03, + "end": 5723.71, + "probability": 0.1684 + }, + { + "start": 5724.95, + "end": 5726.53, + "probability": 0.7518 + }, + { + "start": 5727.55, + "end": 5729.85, + "probability": 0.9147 + }, + { + "start": 5730.01, + "end": 5731.35, + "probability": 0.613 + }, + { + "start": 5732.21, + "end": 5736.31, + "probability": 0.863 + }, + { + "start": 5736.93, + "end": 5739.69, + "probability": 0.8694 + }, + { + "start": 5740.69, + "end": 5741.65, + "probability": 0.9221 + }, + { + "start": 5742.55, + "end": 5744.09, + "probability": 0.9972 + }, + { + "start": 5746.25, + "end": 5747.03, + "probability": 0.8979 + }, + { + "start": 5747.09, + "end": 5747.57, + "probability": 0.5309 + }, + { + "start": 5747.69, + "end": 5748.01, + "probability": 0.8132 + }, + { + "start": 5748.49, + "end": 5749.41, + "probability": 0.9201 + }, + { + "start": 5751.09, + "end": 5753.83, + "probability": 0.8461 + }, + { + "start": 5754.27, + "end": 5756.09, + "probability": 0.9784 + }, + { + "start": 5756.71, + "end": 5759.47, + "probability": 0.9976 + }, + { + "start": 5761.11, + "end": 5762.69, + "probability": 0.9437 + }, + { + "start": 5763.39, + "end": 5764.83, + "probability": 0.9644 + }, + { + "start": 5764.95, + "end": 5765.5, + "probability": 0.9893 + }, + { + "start": 5765.77, + "end": 5766.01, + "probability": 0.9359 + }, + { + "start": 5767.39, + "end": 5768.43, + "probability": 0.9917 + }, + { + "start": 5768.93, + "end": 5770.07, + "probability": 0.7376 + }, + { + "start": 5772.05, + "end": 5773.37, + "probability": 0.9212 + }, + { + "start": 5773.47, + "end": 5776.39, + "probability": 0.9956 + }, + { + "start": 5777.09, + "end": 5778.13, + "probability": 0.0529 + }, + { + "start": 5779.37, + "end": 5780.69, + "probability": 0.9585 + }, + { + "start": 5783.13, + "end": 5784.77, + "probability": 0.985 + }, + { + "start": 5785.91, + "end": 5787.03, + "probability": 0.9772 + }, + { + "start": 5788.81, + "end": 5791.03, + "probability": 0.9653 + }, + { + "start": 5791.63, + "end": 5791.95, + "probability": 0.9893 + }, + { + "start": 5795.85, + "end": 5797.25, + "probability": 0.834 + }, + { + "start": 5797.29, + "end": 5797.65, + "probability": 0.3875 + }, + { + "start": 5799.09, + "end": 5800.79, + "probability": 0.5999 + }, + { + "start": 5800.87, + "end": 5801.75, + "probability": 0.1422 + }, + { + "start": 5801.75, + "end": 5803.05, + "probability": 0.9209 + }, + { + "start": 5803.57, + "end": 5804.47, + "probability": 0.6606 + }, + { + "start": 5804.69, + "end": 5806.37, + "probability": 0.9075 + }, + { + "start": 5806.63, + "end": 5808.11, + "probability": 0.971 + }, + { + "start": 5808.21, + "end": 5810.31, + "probability": 0.7278 + }, + { + "start": 5810.87, + "end": 5813.69, + "probability": 0.6333 + }, + { + "start": 5813.69, + "end": 5814.57, + "probability": 0.7414 + }, + { + "start": 5815.83, + "end": 5818.79, + "probability": 0.733 + }, + { + "start": 5818.99, + "end": 5821.21, + "probability": 0.9315 + }, + { + "start": 5822.29, + "end": 5825.2, + "probability": 0.8717 + }, + { + "start": 5825.67, + "end": 5827.57, + "probability": 0.7476 + }, + { + "start": 5827.93, + "end": 5827.93, + "probability": 0.1209 + }, + { + "start": 5828.79, + "end": 5829.91, + "probability": 0.9638 + }, + { + "start": 5830.25, + "end": 5831.13, + "probability": 0.9255 + }, + { + "start": 5832.03, + "end": 5832.89, + "probability": 0.7146 + }, + { + "start": 5832.99, + "end": 5834.11, + "probability": 0.9544 + }, + { + "start": 5834.51, + "end": 5835.67, + "probability": 0.9909 + }, + { + "start": 5836.65, + "end": 5836.89, + "probability": 0.8093 + }, + { + "start": 5837.83, + "end": 5838.76, + "probability": 0.8755 + }, + { + "start": 5838.81, + "end": 5842.13, + "probability": 0.9979 + }, + { + "start": 5842.85, + "end": 5843.87, + "probability": 0.5407 + }, + { + "start": 5844.39, + "end": 5846.43, + "probability": 0.9697 + }, + { + "start": 5846.95, + "end": 5850.57, + "probability": 0.9799 + }, + { + "start": 5852.55, + "end": 5855.63, + "probability": 0.8347 + }, + { + "start": 5856.61, + "end": 5858.61, + "probability": 0.907 + }, + { + "start": 5858.87, + "end": 5864.37, + "probability": 0.9368 + }, + { + "start": 5864.37, + "end": 5864.41, + "probability": 0.3076 + }, + { + "start": 5864.73, + "end": 5869.61, + "probability": 0.8503 + }, + { + "start": 5869.91, + "end": 5870.87, + "probability": 0.8631 + }, + { + "start": 5871.03, + "end": 5872.03, + "probability": 0.5414 + }, + { + "start": 5872.25, + "end": 5874.95, + "probability": 0.9609 + }, + { + "start": 5875.67, + "end": 5880.37, + "probability": 0.8563 + }, + { + "start": 5880.47, + "end": 5882.47, + "probability": 0.3669 + }, + { + "start": 5883.41, + "end": 5884.47, + "probability": 0.8399 + }, + { + "start": 5884.63, + "end": 5885.69, + "probability": 0.6203 + }, + { + "start": 5885.69, + "end": 5885.73, + "probability": 0.3305 + }, + { + "start": 5885.73, + "end": 5885.83, + "probability": 0.113 + }, + { + "start": 5885.83, + "end": 5886.95, + "probability": 0.7366 + }, + { + "start": 5887.09, + "end": 5890.67, + "probability": 0.9216 + }, + { + "start": 5891.81, + "end": 5893.15, + "probability": 0.2516 + }, + { + "start": 5893.43, + "end": 5893.83, + "probability": 0.3781 + }, + { + "start": 5894.29, + "end": 5896.83, + "probability": 0.6981 + }, + { + "start": 5896.95, + "end": 5898.55, + "probability": 0.8588 + }, + { + "start": 5898.55, + "end": 5898.91, + "probability": 0.5962 + }, + { + "start": 5899.13, + "end": 5900.83, + "probability": 0.6477 + }, + { + "start": 5900.91, + "end": 5903.55, + "probability": 0.4081 + }, + { + "start": 5903.71, + "end": 5904.39, + "probability": 0.8649 + }, + { + "start": 5905.13, + "end": 5906.05, + "probability": 0.8509 + }, + { + "start": 5906.19, + "end": 5907.41, + "probability": 0.0819 + }, + { + "start": 5908.27, + "end": 5910.73, + "probability": 0.7998 + }, + { + "start": 5913.37, + "end": 5913.83, + "probability": 0.9756 + }, + { + "start": 5914.43, + "end": 5917.41, + "probability": 0.7932 + }, + { + "start": 5918.19, + "end": 5918.81, + "probability": 0.4489 + }, + { + "start": 5919.21, + "end": 5924.63, + "probability": 0.6102 + }, + { + "start": 5926.17, + "end": 5928.35, + "probability": 0.8574 + }, + { + "start": 5928.57, + "end": 5929.95, + "probability": 0.7713 + }, + { + "start": 5930.03, + "end": 5931.09, + "probability": 0.6232 + }, + { + "start": 5931.13, + "end": 5931.93, + "probability": 0.5566 + }, + { + "start": 5934.11, + "end": 5934.97, + "probability": 0.7002 + }, + { + "start": 5934.97, + "end": 5934.97, + "probability": 0.011 + }, + { + "start": 5934.97, + "end": 5934.97, + "probability": 0.1319 + }, + { + "start": 5934.97, + "end": 5936.47, + "probability": 0.5111 + }, + { + "start": 5936.71, + "end": 5937.99, + "probability": 0.8615 + }, + { + "start": 5938.19, + "end": 5938.75, + "probability": 0.6382 + }, + { + "start": 5938.75, + "end": 5940.19, + "probability": 0.4888 + }, + { + "start": 5940.67, + "end": 5944.23, + "probability": 0.9684 + }, + { + "start": 5944.23, + "end": 5946.67, + "probability": 0.9277 + }, + { + "start": 5946.91, + "end": 5948.23, + "probability": 0.618 + }, + { + "start": 5948.45, + "end": 5951.67, + "probability": 0.9698 + }, + { + "start": 5951.69, + "end": 5952.21, + "probability": 0.8887 + }, + { + "start": 5953.63, + "end": 5954.89, + "probability": 0.7611 + }, + { + "start": 5957.79, + "end": 5957.85, + "probability": 0.0847 + }, + { + "start": 5960.65, + "end": 5962.41, + "probability": 0.9939 + }, + { + "start": 5963.03, + "end": 5963.23, + "probability": 0.9781 + }, + { + "start": 5964.43, + "end": 5967.53, + "probability": 0.9968 + }, + { + "start": 5968.39, + "end": 5970.61, + "probability": 0.9802 + }, + { + "start": 5971.27, + "end": 5976.27, + "probability": 0.9937 + }, + { + "start": 5977.73, + "end": 5979.27, + "probability": 0.9976 + }, + { + "start": 5980.61, + "end": 5981.11, + "probability": 0.9508 + }, + { + "start": 5981.81, + "end": 5982.39, + "probability": 0.9875 + }, + { + "start": 5983.09, + "end": 5984.21, + "probability": 0.9775 + }, + { + "start": 5985.27, + "end": 5986.05, + "probability": 0.8118 + }, + { + "start": 5986.55, + "end": 5988.65, + "probability": 0.6766 + }, + { + "start": 5989.85, + "end": 5991.95, + "probability": 0.8561 + }, + { + "start": 5992.03, + "end": 5992.61, + "probability": 0.6621 + }, + { + "start": 5992.71, + "end": 5993.07, + "probability": 0.0961 + }, + { + "start": 5994.21, + "end": 5995.27, + "probability": 0.7208 + }, + { + "start": 5995.29, + "end": 5996.85, + "probability": 0.8204 + }, + { + "start": 5997.03, + "end": 6001.53, + "probability": 0.9567 + }, + { + "start": 6002.03, + "end": 6005.31, + "probability": 0.8931 + }, + { + "start": 6005.39, + "end": 6007.09, + "probability": 0.9683 + }, + { + "start": 6007.59, + "end": 6011.61, + "probability": 0.9746 + }, + { + "start": 6012.09, + "end": 6013.13, + "probability": 0.9883 + }, + { + "start": 6013.93, + "end": 6016.83, + "probability": 0.9328 + }, + { + "start": 6017.21, + "end": 6018.49, + "probability": 0.6689 + }, + { + "start": 6018.87, + "end": 6022.37, + "probability": 0.7521 + }, + { + "start": 6022.89, + "end": 6024.29, + "probability": 0.989 + }, + { + "start": 6025.45, + "end": 6026.01, + "probability": 0.5652 + }, + { + "start": 6026.51, + "end": 6030.19, + "probability": 0.7717 + }, + { + "start": 6030.73, + "end": 6032.49, + "probability": 0.9742 + }, + { + "start": 6033.93, + "end": 6034.07, + "probability": 0.1948 + }, + { + "start": 6035.11, + "end": 6036.53, + "probability": 0.6391 + }, + { + "start": 6037.05, + "end": 6040.93, + "probability": 0.7487 + }, + { + "start": 6041.65, + "end": 6042.01, + "probability": 0.8156 + }, + { + "start": 6042.65, + "end": 6044.03, + "probability": 0.7529 + }, + { + "start": 6044.83, + "end": 6046.91, + "probability": 0.9917 + }, + { + "start": 6047.45, + "end": 6049.69, + "probability": 0.9627 + }, + { + "start": 6051.17, + "end": 6052.49, + "probability": 0.9858 + }, + { + "start": 6053.03, + "end": 6053.81, + "probability": 0.8904 + }, + { + "start": 6054.29, + "end": 6055.65, + "probability": 0.6835 + }, + { + "start": 6055.73, + "end": 6055.93, + "probability": 0.7301 + }, + { + "start": 6056.03, + "end": 6059.93, + "probability": 0.9824 + }, + { + "start": 6061.03, + "end": 6061.56, + "probability": 0.5235 + }, + { + "start": 6062.73, + "end": 6064.41, + "probability": 0.835 + }, + { + "start": 6064.67, + "end": 6064.85, + "probability": 0.6682 + }, + { + "start": 6065.47, + "end": 6066.43, + "probability": 0.7284 + }, + { + "start": 6067.39, + "end": 6068.93, + "probability": 0.9517 + }, + { + "start": 6070.51, + "end": 6073.93, + "probability": 0.995 + }, + { + "start": 6074.06, + "end": 6074.31, + "probability": 0.3401 + }, + { + "start": 6074.59, + "end": 6074.77, + "probability": 0.3393 + }, + { + "start": 6074.93, + "end": 6075.14, + "probability": 0.6084 + }, + { + "start": 6075.57, + "end": 6077.11, + "probability": 0.9039 + }, + { + "start": 6078.73, + "end": 6080.45, + "probability": 0.9468 + }, + { + "start": 6082.77, + "end": 6083.43, + "probability": 0.9755 + }, + { + "start": 6088.19, + "end": 6090.05, + "probability": 0.6853 + }, + { + "start": 6090.59, + "end": 6092.59, + "probability": 0.7625 + }, + { + "start": 6093.13, + "end": 6096.47, + "probability": 0.9911 + }, + { + "start": 6096.47, + "end": 6099.15, + "probability": 0.9578 + }, + { + "start": 6100.11, + "end": 6100.45, + "probability": 0.5786 + }, + { + "start": 6100.95, + "end": 6101.79, + "probability": 0.918 + }, + { + "start": 6102.13, + "end": 6103.35, + "probability": 0.9818 + }, + { + "start": 6104.71, + "end": 6106.83, + "probability": 0.8352 + }, + { + "start": 6107.47, + "end": 6108.19, + "probability": 0.89 + }, + { + "start": 6108.87, + "end": 6109.35, + "probability": 0.392 + }, + { + "start": 6109.59, + "end": 6110.29, + "probability": 0.6621 + }, + { + "start": 6110.87, + "end": 6113.81, + "probability": 0.9655 + }, + { + "start": 6114.57, + "end": 6116.07, + "probability": 0.9518 + }, + { + "start": 6117.67, + "end": 6119.85, + "probability": 0.8585 + }, + { + "start": 6120.47, + "end": 6120.47, + "probability": 0.0244 + }, + { + "start": 6122.29, + "end": 6123.25, + "probability": 0.6902 + }, + { + "start": 6124.35, + "end": 6126.64, + "probability": 0.0347 + }, + { + "start": 6126.91, + "end": 6126.91, + "probability": 0.1738 + }, + { + "start": 6128.65, + "end": 6129.29, + "probability": 0.6684 + }, + { + "start": 6132.93, + "end": 6134.21, + "probability": 0.7739 + }, + { + "start": 6134.75, + "end": 6138.53, + "probability": 0.0928 + }, + { + "start": 6138.53, + "end": 6140.39, + "probability": 0.2626 + }, + { + "start": 6140.51, + "end": 6140.75, + "probability": 0.0913 + }, + { + "start": 6143.35, + "end": 6146.17, + "probability": 0.6198 + }, + { + "start": 6154.99, + "end": 6155.99, + "probability": 0.5197 + }, + { + "start": 6156.25, + "end": 6156.25, + "probability": 0.0085 + }, + { + "start": 6156.25, + "end": 6156.25, + "probability": 0.0069 + }, + { + "start": 6159.61, + "end": 6161.87, + "probability": 0.0225 + }, + { + "start": 6162.11, + "end": 6163.41, + "probability": 0.0486 + }, + { + "start": 6164.59, + "end": 6168.45, + "probability": 0.0215 + }, + { + "start": 6169.63, + "end": 6171.81, + "probability": 0.0402 + }, + { + "start": 6171.81, + "end": 6172.09, + "probability": 0.0195 + }, + { + "start": 6172.37, + "end": 6173.13, + "probability": 0.0327 + }, + { + "start": 6174.93, + "end": 6176.65, + "probability": 0.3266 + }, + { + "start": 6176.65, + "end": 6176.65, + "probability": 0.0187 + }, + { + "start": 6177.07, + "end": 6177.63, + "probability": 0.1878 + }, + { + "start": 6177.63, + "end": 6179.21, + "probability": 0.1241 + }, + { + "start": 6179.61, + "end": 6181.3, + "probability": 0.1598 + }, + { + "start": 6185.94, + "end": 6189.61, + "probability": 0.0213 + }, + { + "start": 6189.61, + "end": 6190.29, + "probability": 0.1247 + }, + { + "start": 6191.03, + "end": 6193.79, + "probability": 0.0841 + }, + { + "start": 6193.79, + "end": 6196.17, + "probability": 0.0347 + }, + { + "start": 6197.09, + "end": 6198.27, + "probability": 0.091 + }, + { + "start": 6198.57, + "end": 6198.97, + "probability": 0.1889 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.0, + "end": 6199.0, + "probability": 0.0 + }, + { + "start": 6199.16, + "end": 6200.05, + "probability": 0.4922 + }, + { + "start": 6202.0, + "end": 6203.18, + "probability": 0.2232 + }, + { + "start": 6203.48, + "end": 6207.92, + "probability": 0.5916 + }, + { + "start": 6208.14, + "end": 6211.1, + "probability": 0.99 + }, + { + "start": 6211.46, + "end": 6213.59, + "probability": 0.4837 + }, + { + "start": 6214.6, + "end": 6215.78, + "probability": 0.7182 + }, + { + "start": 6215.86, + "end": 6216.48, + "probability": 0.5145 + }, + { + "start": 6216.62, + "end": 6217.44, + "probability": 0.3054 + }, + { + "start": 6217.86, + "end": 6219.1, + "probability": 0.4424 + }, + { + "start": 6219.24, + "end": 6221.22, + "probability": 0.9836 + }, + { + "start": 6221.68, + "end": 6224.6, + "probability": 0.6292 + }, + { + "start": 6224.9, + "end": 6225.7, + "probability": 0.9017 + }, + { + "start": 6226.2, + "end": 6228.52, + "probability": 0.7101 + }, + { + "start": 6230.08, + "end": 6234.43, + "probability": 0.6654 + }, + { + "start": 6237.16, + "end": 6238.06, + "probability": 0.3427 + }, + { + "start": 6238.66, + "end": 6241.5, + "probability": 0.242 + }, + { + "start": 6241.5, + "end": 6241.5, + "probability": 0.0625 + }, + { + "start": 6241.5, + "end": 6241.88, + "probability": 0.4872 + }, + { + "start": 6241.96, + "end": 6244.64, + "probability": 0.8975 + }, + { + "start": 6244.82, + "end": 6245.82, + "probability": 0.3939 + }, + { + "start": 6246.0, + "end": 6246.38, + "probability": 0.3734 + }, + { + "start": 6247.06, + "end": 6247.98, + "probability": 0.6551 + }, + { + "start": 6248.74, + "end": 6249.14, + "probability": 0.1022 + }, + { + "start": 6249.14, + "end": 6249.52, + "probability": 0.5103 + }, + { + "start": 6249.72, + "end": 6251.78, + "probability": 0.9946 + }, + { + "start": 6252.58, + "end": 6258.06, + "probability": 0.7091 + }, + { + "start": 6258.72, + "end": 6259.82, + "probability": 0.2336 + }, + { + "start": 6262.26, + "end": 6263.74, + "probability": 0.8865 + }, + { + "start": 6265.8, + "end": 6267.26, + "probability": 0.5415 + }, + { + "start": 6268.32, + "end": 6269.68, + "probability": 0.833 + }, + { + "start": 6272.08, + "end": 6272.42, + "probability": 0.9077 + }, + { + "start": 6273.26, + "end": 6273.7, + "probability": 0.5486 + }, + { + "start": 6274.34, + "end": 6275.1, + "probability": 0.8951 + }, + { + "start": 6276.2, + "end": 6277.56, + "probability": 0.7581 + }, + { + "start": 6277.9, + "end": 6280.62, + "probability": 0.9734 + }, + { + "start": 6281.06, + "end": 6283.52, + "probability": 0.3725 + }, + { + "start": 6283.96, + "end": 6285.04, + "probability": 0.0165 + }, + { + "start": 6285.04, + "end": 6285.04, + "probability": 0.3066 + }, + { + "start": 6285.04, + "end": 6285.04, + "probability": 0.358 + }, + { + "start": 6285.04, + "end": 6285.68, + "probability": 0.3907 + }, + { + "start": 6285.98, + "end": 6286.1, + "probability": 0.3081 + }, + { + "start": 6289.34, + "end": 6289.6, + "probability": 0.1666 + }, + { + "start": 6294.16, + "end": 6296.34, + "probability": 0.188 + }, + { + "start": 6297.14, + "end": 6298.44, + "probability": 0.4614 + }, + { + "start": 6299.22, + "end": 6300.82, + "probability": 0.5481 + }, + { + "start": 6301.14, + "end": 6302.4, + "probability": 0.7627 + }, + { + "start": 6304.5, + "end": 6304.74, + "probability": 0.3977 + }, + { + "start": 6305.36, + "end": 6308.11, + "probability": 0.4812 + }, + { + "start": 6308.66, + "end": 6309.24, + "probability": 0.8517 + }, + { + "start": 6309.92, + "end": 6311.14, + "probability": 0.6509 + }, + { + "start": 6311.94, + "end": 6312.76, + "probability": 0.8801 + }, + { + "start": 6312.76, + "end": 6313.3, + "probability": 0.7346 + }, + { + "start": 6314.0, + "end": 6315.24, + "probability": 0.2257 + }, + { + "start": 6315.46, + "end": 6316.12, + "probability": 0.3433 + }, + { + "start": 6316.22, + "end": 6317.1, + "probability": 0.7202 + }, + { + "start": 6317.82, + "end": 6324.92, + "probability": 0.9051 + }, + { + "start": 6325.82, + "end": 6329.47, + "probability": 0.9985 + }, + { + "start": 6329.8, + "end": 6330.72, + "probability": 0.766 + }, + { + "start": 6331.64, + "end": 6336.38, + "probability": 0.9586 + }, + { + "start": 6336.56, + "end": 6336.9, + "probability": 0.5696 + }, + { + "start": 6337.68, + "end": 6339.66, + "probability": 0.9705 + }, + { + "start": 6340.66, + "end": 6341.56, + "probability": 0.8121 + }, + { + "start": 6349.34, + "end": 6349.62, + "probability": 0.0427 + }, + { + "start": 6349.62, + "end": 6349.62, + "probability": 0.14 + }, + { + "start": 6349.62, + "end": 6351.67, + "probability": 0.282 + }, + { + "start": 6352.6, + "end": 6353.58, + "probability": 0.1796 + }, + { + "start": 6353.72, + "end": 6356.42, + "probability": 0.6309 + }, + { + "start": 6356.7, + "end": 6358.3, + "probability": 0.5932 + }, + { + "start": 6359.12, + "end": 6361.94, + "probability": 0.6509 + }, + { + "start": 6362.56, + "end": 6364.28, + "probability": 0.9976 + }, + { + "start": 6364.68, + "end": 6368.26, + "probability": 0.9733 + }, + { + "start": 6370.05, + "end": 6371.8, + "probability": 0.4212 + }, + { + "start": 6372.96, + "end": 6372.96, + "probability": 0.0611 + }, + { + "start": 6372.96, + "end": 6372.96, + "probability": 0.0163 + }, + { + "start": 6372.96, + "end": 6374.2, + "probability": 0.8079 + }, + { + "start": 6374.24, + "end": 6375.12, + "probability": 0.9839 + }, + { + "start": 6375.34, + "end": 6375.68, + "probability": 0.7276 + }, + { + "start": 6375.74, + "end": 6379.38, + "probability": 0.9523 + }, + { + "start": 6379.82, + "end": 6380.24, + "probability": 0.7832 + }, + { + "start": 6381.28, + "end": 6385.34, + "probability": 0.8621 + }, + { + "start": 6386.1, + "end": 6389.9, + "probability": 0.9863 + }, + { + "start": 6390.26, + "end": 6392.94, + "probability": 0.8886 + }, + { + "start": 6393.14, + "end": 6395.12, + "probability": 0.8218 + }, + { + "start": 6395.3, + "end": 6397.14, + "probability": 0.9979 + }, + { + "start": 6397.48, + "end": 6397.48, + "probability": 0.8984 + }, + { + "start": 6398.14, + "end": 6400.2, + "probability": 0.8671 + }, + { + "start": 6401.12, + "end": 6405.47, + "probability": 0.9456 + }, + { + "start": 6406.44, + "end": 6406.44, + "probability": 0.5887 + }, + { + "start": 6406.58, + "end": 6408.67, + "probability": 0.7988 + }, + { + "start": 6408.98, + "end": 6410.9, + "probability": 0.7874 + }, + { + "start": 6411.04, + "end": 6412.28, + "probability": 0.9509 + }, + { + "start": 6412.42, + "end": 6416.58, + "probability": 0.9988 + }, + { + "start": 6417.26, + "end": 6418.14, + "probability": 0.6205 + }, + { + "start": 6418.62, + "end": 6421.88, + "probability": 0.6616 + }, + { + "start": 6421.88, + "end": 6422.46, + "probability": 0.5383 + }, + { + "start": 6422.46, + "end": 6423.34, + "probability": 0.6975 + }, + { + "start": 6423.44, + "end": 6425.82, + "probability": 0.9762 + }, + { + "start": 6426.84, + "end": 6429.98, + "probability": 0.8308 + }, + { + "start": 6430.7, + "end": 6432.26, + "probability": 0.7369 + }, + { + "start": 6433.1, + "end": 6433.66, + "probability": 0.5707 + }, + { + "start": 6433.8, + "end": 6435.56, + "probability": 0.8188 + }, + { + "start": 6436.1, + "end": 6439.06, + "probability": 0.8391 + }, + { + "start": 6440.16, + "end": 6440.6, + "probability": 0.8036 + }, + { + "start": 6440.64, + "end": 6444.54, + "probability": 0.9746 + }, + { + "start": 6444.54, + "end": 6448.06, + "probability": 0.9838 + }, + { + "start": 6448.36, + "end": 6450.28, + "probability": 0.9667 + }, + { + "start": 6450.96, + "end": 6452.56, + "probability": 0.9869 + }, + { + "start": 6453.08, + "end": 6456.02, + "probability": 0.9884 + }, + { + "start": 6456.7, + "end": 6457.28, + "probability": 0.9785 + }, + { + "start": 6457.64, + "end": 6458.5, + "probability": 0.8299 + }, + { + "start": 6458.84, + "end": 6459.5, + "probability": 0.7241 + }, + { + "start": 6459.6, + "end": 6463.04, + "probability": 0.5971 + }, + { + "start": 6464.18, + "end": 6467.02, + "probability": 0.6673 + }, + { + "start": 6467.56, + "end": 6469.36, + "probability": 0.9729 + }, + { + "start": 6470.06, + "end": 6471.28, + "probability": 0.5545 + }, + { + "start": 6472.18, + "end": 6475.01, + "probability": 0.9119 + }, + { + "start": 6477.06, + "end": 6477.34, + "probability": 0.092 + }, + { + "start": 6477.34, + "end": 6481.22, + "probability": 0.8049 + }, + { + "start": 6482.22, + "end": 6482.8, + "probability": 0.7537 + }, + { + "start": 6483.4, + "end": 6487.16, + "probability": 0.9478 + }, + { + "start": 6487.68, + "end": 6493.38, + "probability": 0.8795 + }, + { + "start": 6493.9, + "end": 6496.84, + "probability": 0.896 + }, + { + "start": 6497.34, + "end": 6498.18, + "probability": 0.9021 + }, + { + "start": 6498.64, + "end": 6499.56, + "probability": 0.7708 + }, + { + "start": 6499.74, + "end": 6501.58, + "probability": 0.6669 + }, + { + "start": 6502.22, + "end": 6502.98, + "probability": 0.632 + }, + { + "start": 6504.4, + "end": 6507.96, + "probability": 0.928 + }, + { + "start": 6508.4, + "end": 6509.86, + "probability": 0.898 + }, + { + "start": 6510.64, + "end": 6514.92, + "probability": 0.6119 + }, + { + "start": 6515.04, + "end": 6515.14, + "probability": 0.4461 + }, + { + "start": 6515.18, + "end": 6515.34, + "probability": 0.2687 + }, + { + "start": 6515.48, + "end": 6519.2, + "probability": 0.938 + }, + { + "start": 6519.62, + "end": 6521.51, + "probability": 0.952 + }, + { + "start": 6521.9, + "end": 6522.64, + "probability": 0.6884 + }, + { + "start": 6523.28, + "end": 6523.9, + "probability": 0.7494 + }, + { + "start": 6524.0, + "end": 6525.99, + "probability": 0.7463 + }, + { + "start": 6526.56, + "end": 6531.84, + "probability": 0.9246 + }, + { + "start": 6532.8, + "end": 6534.46, + "probability": 0.969 + }, + { + "start": 6534.94, + "end": 6536.62, + "probability": 0.9956 + }, + { + "start": 6537.68, + "end": 6538.5, + "probability": 0.7288 + }, + { + "start": 6538.96, + "end": 6540.11, + "probability": 0.8396 + }, + { + "start": 6540.44, + "end": 6541.06, + "probability": 0.7421 + }, + { + "start": 6541.14, + "end": 6541.82, + "probability": 0.3672 + }, + { + "start": 6541.92, + "end": 6542.62, + "probability": 0.4515 + }, + { + "start": 6543.16, + "end": 6544.88, + "probability": 0.1344 + }, + { + "start": 6545.28, + "end": 6546.04, + "probability": 0.1117 + }, + { + "start": 6548.17, + "end": 6555.6, + "probability": 0.9858 + }, + { + "start": 6555.6, + "end": 6561.38, + "probability": 0.8703 + }, + { + "start": 6561.5, + "end": 6562.38, + "probability": 0.8079 + }, + { + "start": 6563.04, + "end": 6565.42, + "probability": 0.9556 + }, + { + "start": 6566.18, + "end": 6567.24, + "probability": 0.8293 + }, + { + "start": 6567.94, + "end": 6570.0, + "probability": 0.9308 + }, + { + "start": 6571.44, + "end": 6574.0, + "probability": 0.5582 + }, + { + "start": 6574.88, + "end": 6575.42, + "probability": 0.6315 + }, + { + "start": 6576.26, + "end": 6576.44, + "probability": 0.4947 + }, + { + "start": 6576.44, + "end": 6579.64, + "probability": 0.8567 + }, + { + "start": 6581.02, + "end": 6585.0, + "probability": 0.6663 + }, + { + "start": 6585.48, + "end": 6589.06, + "probability": 0.986 + }, + { + "start": 6590.52, + "end": 6594.34, + "probability": 0.8607 + }, + { + "start": 6594.42, + "end": 6595.3, + "probability": 0.8633 + }, + { + "start": 6595.88, + "end": 6597.78, + "probability": 0.6584 + }, + { + "start": 6598.38, + "end": 6600.66, + "probability": 0.609 + }, + { + "start": 6601.62, + "end": 6604.2, + "probability": 0.741 + }, + { + "start": 6604.96, + "end": 6609.26, + "probability": 0.9169 + }, + { + "start": 6609.94, + "end": 6611.44, + "probability": 0.9868 + }, + { + "start": 6611.72, + "end": 6613.51, + "probability": 0.767 + }, + { + "start": 6614.1, + "end": 6615.18, + "probability": 0.7165 + }, + { + "start": 6615.24, + "end": 6615.78, + "probability": 0.3615 + }, + { + "start": 6632.52, + "end": 6634.4, + "probability": 0.5428 + }, + { + "start": 6634.42, + "end": 6637.36, + "probability": 0.9006 + }, + { + "start": 6637.36, + "end": 6641.3, + "probability": 0.9928 + }, + { + "start": 6641.74, + "end": 6642.04, + "probability": 0.4312 + }, + { + "start": 6642.98, + "end": 6647.36, + "probability": 0.9689 + }, + { + "start": 6648.26, + "end": 6649.4, + "probability": 0.9709 + }, + { + "start": 6649.98, + "end": 6651.18, + "probability": 0.5191 + }, + { + "start": 6651.56, + "end": 6653.64, + "probability": 0.7561 + }, + { + "start": 6656.71, + "end": 6659.06, + "probability": 0.7546 + }, + { + "start": 6659.46, + "end": 6660.53, + "probability": 0.5432 + }, + { + "start": 6661.04, + "end": 6663.84, + "probability": 0.9814 + }, + { + "start": 6664.06, + "end": 6665.3, + "probability": 0.3416 + }, + { + "start": 6665.4, + "end": 6668.64, + "probability": 0.6195 + }, + { + "start": 6669.3, + "end": 6671.56, + "probability": 0.6219 + }, + { + "start": 6672.08, + "end": 6672.18, + "probability": 0.7471 + }, + { + "start": 6673.66, + "end": 6674.52, + "probability": 0.2323 + }, + { + "start": 6675.88, + "end": 6677.8, + "probability": 0.8525 + }, + { + "start": 6681.64, + "end": 6681.76, + "probability": 0.0027 + }, + { + "start": 12487.0, + "end": 12487.0, + "probability": 0.0 + }, + { + "start": 12508.0, + "end": 12508.0, + "probability": 0.0 + }, + { + "start": 12508.0, + "end": 12508.0, + "probability": 0.0 + }, + { + "start": 12702.0, + "end": 12702.0, + "probability": 0.0 + }, + { + "start": 12702.0, + "end": 12702.0, + "probability": 0.0 + }, + { + "start": 12702.0, + "end": 12702.0, + "probability": 0.0 + }, + { + "start": 12702.0, + "end": 12702.0, + "probability": 0.0 + }, + { + "start": 12702.0, + "end": 12702.0, + "probability": 0.0 + }, + { + "start": 12702.0, + "end": 12702.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12720.0, + "end": 12720.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12759.0, + "end": 12759.0, + "probability": 0.0 + }, + { + "start": 12780.0, + "end": 12780.0, + "probability": 0.0 + }, + { + "start": 12780.0, + "end": 12780.0, + "probability": 0.0 + }, + { + "start": 12780.0, + "end": 12780.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12797.0, + "end": 12797.0, + "probability": 0.0 + }, + { + "start": 12821.0, + "end": 12821.0, + "probability": 0.0 + }, + { + "start": 12821.0, + "end": 12821.0, + "probability": 0.0 + }, + { + "start": 12821.0, + "end": 12821.0, + "probability": 0.0 + }, + { + "start": 12821.0, + "end": 12821.0, + "probability": 0.0 + }, + { + "start": 12821.0, + "end": 12821.0, + "probability": 0.0 + }, + { + "start": 12821.0, + "end": 12821.0, + "probability": 0.0 + }, + { + "start": 12821.0, + "end": 12821.0, + "probability": 0.0 + }, + { + "start": 12838.0, + "end": 12838.0, + "probability": 0.0 + }, + { + "start": 12838.0, + "end": 12838.0, + "probability": 0.0 + } + ], + "segments_count": 2368, + "words_count": 11376, + "avg_words_per_segment": 4.8041, + "avg_segment_duration": 1.8674, + "avg_words_per_minute": 99.4635, + "plenum_id": "3912", + "duration": 6862.42, + "title": null, + "plenum_date": "2009-09-02" +} \ No newline at end of file