diff --git "a/40212/metadata.json" "b/40212/metadata.json" new file mode 100644--- /dev/null +++ "b/40212/metadata.json" @@ -0,0 +1,11817 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "40212", + "quality_score": 0.9077, + "per_segment_quality_scores": [ + { + "start": 65.84, + "end": 66.3, + "probability": 0.0664 + }, + { + "start": 66.74, + "end": 66.94, + "probability": 0.1239 + }, + { + "start": 67.94, + "end": 67.94, + "probability": 0.135 + }, + { + "start": 68.08, + "end": 68.08, + "probability": 0.077 + }, + { + "start": 68.3, + "end": 68.62, + "probability": 0.0714 + }, + { + "start": 68.62, + "end": 70.2, + "probability": 0.8145 + }, + { + "start": 70.74, + "end": 72.68, + "probability": 0.6298 + }, + { + "start": 72.68, + "end": 73.91, + "probability": 0.8572 + }, + { + "start": 74.2, + "end": 75.72, + "probability": 0.7086 + }, + { + "start": 75.9, + "end": 77.38, + "probability": 0.9284 + }, + { + "start": 77.9, + "end": 78.1, + "probability": 0.1448 + }, + { + "start": 78.92, + "end": 82.96, + "probability": 0.0501 + }, + { + "start": 84.04, + "end": 87.7, + "probability": 0.7897 + }, + { + "start": 89.68, + "end": 94.34, + "probability": 0.9919 + }, + { + "start": 94.34, + "end": 99.66, + "probability": 0.6638 + }, + { + "start": 99.94, + "end": 103.44, + "probability": 0.9744 + }, + { + "start": 104.48, + "end": 106.32, + "probability": 0.8962 + }, + { + "start": 106.96, + "end": 107.62, + "probability": 0.7538 + }, + { + "start": 108.76, + "end": 112.4, + "probability": 0.944 + }, + { + "start": 113.78, + "end": 123.94, + "probability": 0.9824 + }, + { + "start": 124.74, + "end": 126.44, + "probability": 0.9808 + }, + { + "start": 127.42, + "end": 128.62, + "probability": 0.7288 + }, + { + "start": 129.78, + "end": 134.82, + "probability": 0.8722 + }, + { + "start": 136.72, + "end": 139.44, + "probability": 0.8151 + }, + { + "start": 141.82, + "end": 144.34, + "probability": 0.5457 + }, + { + "start": 146.1, + "end": 147.37, + "probability": 0.4173 + }, + { + "start": 148.24, + "end": 149.58, + "probability": 0.9547 + }, + { + "start": 150.4, + "end": 151.2, + "probability": 0.9389 + }, + { + "start": 152.16, + "end": 154.44, + "probability": 0.925 + }, + { + "start": 154.84, + "end": 157.76, + "probability": 0.5944 + }, + { + "start": 157.92, + "end": 158.46, + "probability": 0.3983 + }, + { + "start": 158.54, + "end": 159.02, + "probability": 0.7164 + }, + { + "start": 159.1, + "end": 163.92, + "probability": 0.8618 + }, + { + "start": 164.86, + "end": 167.5, + "probability": 0.8722 + }, + { + "start": 169.68, + "end": 170.54, + "probability": 0.7907 + }, + { + "start": 171.1, + "end": 173.48, + "probability": 0.6393 + }, + { + "start": 174.06, + "end": 175.3, + "probability": 0.8505 + }, + { + "start": 176.1, + "end": 177.62, + "probability": 0.8722 + }, + { + "start": 177.8, + "end": 181.66, + "probability": 0.7664 + }, + { + "start": 182.2, + "end": 189.1, + "probability": 0.987 + }, + { + "start": 189.28, + "end": 191.74, + "probability": 0.5774 + }, + { + "start": 191.74, + "end": 192.58, + "probability": 0.5307 + }, + { + "start": 192.94, + "end": 194.46, + "probability": 0.8452 + }, + { + "start": 194.68, + "end": 198.06, + "probability": 0.7514 + }, + { + "start": 198.8, + "end": 201.92, + "probability": 0.9769 + }, + { + "start": 202.06, + "end": 204.46, + "probability": 0.5719 + }, + { + "start": 205.22, + "end": 207.3, + "probability": 0.9808 + }, + { + "start": 208.6, + "end": 209.18, + "probability": 0.6008 + }, + { + "start": 209.18, + "end": 209.72, + "probability": 0.6449 + }, + { + "start": 210.14, + "end": 210.46, + "probability": 0.289 + }, + { + "start": 210.74, + "end": 211.24, + "probability": 0.949 + }, + { + "start": 211.3, + "end": 211.62, + "probability": 0.5847 + }, + { + "start": 211.72, + "end": 211.98, + "probability": 0.3919 + }, + { + "start": 212.52, + "end": 213.36, + "probability": 0.0797 + }, + { + "start": 213.36, + "end": 213.82, + "probability": 0.6936 + }, + { + "start": 213.94, + "end": 216.02, + "probability": 0.7475 + }, + { + "start": 216.18, + "end": 216.82, + "probability": 0.4361 + }, + { + "start": 216.86, + "end": 220.0, + "probability": 0.8112 + }, + { + "start": 220.74, + "end": 221.3, + "probability": 0.4371 + }, + { + "start": 221.3, + "end": 223.38, + "probability": 0.6239 + }, + { + "start": 224.64, + "end": 227.62, + "probability": 0.5842 + }, + { + "start": 230.27, + "end": 233.16, + "probability": 0.9513 + }, + { + "start": 234.0, + "end": 240.76, + "probability": 0.6467 + }, + { + "start": 241.86, + "end": 247.44, + "probability": 0.957 + }, + { + "start": 247.44, + "end": 250.08, + "probability": 0.993 + }, + { + "start": 250.5, + "end": 254.24, + "probability": 0.9785 + }, + { + "start": 254.72, + "end": 260.68, + "probability": 0.8362 + }, + { + "start": 261.34, + "end": 262.44, + "probability": 0.8514 + }, + { + "start": 263.06, + "end": 264.28, + "probability": 0.523 + }, + { + "start": 264.82, + "end": 266.41, + "probability": 0.9427 + }, + { + "start": 267.24, + "end": 272.7, + "probability": 0.9656 + }, + { + "start": 273.44, + "end": 277.86, + "probability": 0.9836 + }, + { + "start": 277.98, + "end": 279.65, + "probability": 0.6387 + }, + { + "start": 280.62, + "end": 280.78, + "probability": 0.2536 + }, + { + "start": 280.78, + "end": 283.18, + "probability": 0.6551 + }, + { + "start": 283.62, + "end": 284.7, + "probability": 0.7586 + }, + { + "start": 285.3, + "end": 287.52, + "probability": 0.8587 + }, + { + "start": 287.78, + "end": 291.62, + "probability": 0.9871 + }, + { + "start": 291.88, + "end": 292.12, + "probability": 0.5302 + }, + { + "start": 292.4, + "end": 294.57, + "probability": 0.7864 + }, + { + "start": 294.8, + "end": 296.58, + "probability": 0.5783 + }, + { + "start": 296.72, + "end": 297.16, + "probability": 0.4264 + }, + { + "start": 297.18, + "end": 298.6, + "probability": 0.8764 + }, + { + "start": 305.28, + "end": 305.64, + "probability": 0.1644 + }, + { + "start": 306.84, + "end": 308.1, + "probability": 0.3947 + }, + { + "start": 308.98, + "end": 311.98, + "probability": 0.7774 + }, + { + "start": 311.98, + "end": 315.38, + "probability": 0.9583 + }, + { + "start": 315.56, + "end": 315.84, + "probability": 0.4303 + }, + { + "start": 316.58, + "end": 320.96, + "probability": 0.7754 + }, + { + "start": 321.88, + "end": 326.09, + "probability": 0.5136 + }, + { + "start": 326.78, + "end": 330.86, + "probability": 0.7847 + }, + { + "start": 331.64, + "end": 333.22, + "probability": 0.5955 + }, + { + "start": 333.4, + "end": 337.24, + "probability": 0.9865 + }, + { + "start": 337.86, + "end": 339.34, + "probability": 0.7871 + }, + { + "start": 340.0, + "end": 345.72, + "probability": 0.9834 + }, + { + "start": 346.38, + "end": 351.26, + "probability": 0.6353 + }, + { + "start": 352.0, + "end": 353.46, + "probability": 0.9331 + }, + { + "start": 354.08, + "end": 355.0, + "probability": 0.5456 + }, + { + "start": 355.12, + "end": 358.96, + "probability": 0.9838 + }, + { + "start": 358.96, + "end": 361.66, + "probability": 0.9449 + }, + { + "start": 362.14, + "end": 366.6, + "probability": 0.9531 + }, + { + "start": 367.34, + "end": 370.3, + "probability": 0.8763 + }, + { + "start": 371.24, + "end": 375.82, + "probability": 0.7729 + }, + { + "start": 376.12, + "end": 376.68, + "probability": 0.4472 + }, + { + "start": 377.1, + "end": 377.84, + "probability": 0.8595 + }, + { + "start": 378.26, + "end": 385.6, + "probability": 0.7782 + }, + { + "start": 385.74, + "end": 386.2, + "probability": 0.9304 + }, + { + "start": 386.5, + "end": 388.6, + "probability": 0.7416 + }, + { + "start": 388.76, + "end": 390.2, + "probability": 0.7766 + }, + { + "start": 390.26, + "end": 390.84, + "probability": 0.5232 + }, + { + "start": 390.92, + "end": 392.18, + "probability": 0.8451 + }, + { + "start": 397.86, + "end": 399.66, + "probability": 0.725 + }, + { + "start": 400.7, + "end": 403.28, + "probability": 0.9883 + }, + { + "start": 403.28, + "end": 406.18, + "probability": 0.9528 + }, + { + "start": 407.5, + "end": 409.38, + "probability": 0.9961 + }, + { + "start": 410.34, + "end": 411.22, + "probability": 0.5887 + }, + { + "start": 412.0, + "end": 415.92, + "probability": 0.9589 + }, + { + "start": 416.4, + "end": 418.04, + "probability": 0.9922 + }, + { + "start": 418.3, + "end": 423.9, + "probability": 0.7764 + }, + { + "start": 424.02, + "end": 428.78, + "probability": 0.956 + }, + { + "start": 429.68, + "end": 435.18, + "probability": 0.8217 + }, + { + "start": 436.78, + "end": 441.62, + "probability": 0.9502 + }, + { + "start": 442.14, + "end": 445.02, + "probability": 0.9478 + }, + { + "start": 445.5, + "end": 446.82, + "probability": 0.8824 + }, + { + "start": 446.96, + "end": 447.96, + "probability": 0.6341 + }, + { + "start": 448.46, + "end": 451.54, + "probability": 0.7808 + }, + { + "start": 452.44, + "end": 455.8, + "probability": 0.8213 + }, + { + "start": 456.3, + "end": 458.06, + "probability": 0.9808 + }, + { + "start": 458.22, + "end": 465.46, + "probability": 0.897 + }, + { + "start": 465.8, + "end": 467.86, + "probability": 0.994 + }, + { + "start": 468.14, + "end": 468.26, + "probability": 0.2746 + }, + { + "start": 468.36, + "end": 471.06, + "probability": 0.9939 + }, + { + "start": 471.38, + "end": 472.94, + "probability": 0.8157 + }, + { + "start": 473.24, + "end": 476.3, + "probability": 0.8385 + }, + { + "start": 476.46, + "end": 476.56, + "probability": 0.5723 + }, + { + "start": 477.56, + "end": 479.2, + "probability": 0.9385 + }, + { + "start": 479.9, + "end": 482.6, + "probability": 0.8875 + }, + { + "start": 483.16, + "end": 484.88, + "probability": 0.834 + }, + { + "start": 485.04, + "end": 485.78, + "probability": 0.9862 + }, + { + "start": 486.1, + "end": 488.02, + "probability": 0.862 + }, + { + "start": 488.16, + "end": 489.74, + "probability": 0.8813 + }, + { + "start": 489.88, + "end": 490.42, + "probability": 0.5775 + }, + { + "start": 490.46, + "end": 491.72, + "probability": 0.9771 + }, + { + "start": 492.98, + "end": 494.8, + "probability": 0.5758 + }, + { + "start": 495.68, + "end": 498.98, + "probability": 0.9189 + }, + { + "start": 499.46, + "end": 500.38, + "probability": 0.5804 + }, + { + "start": 500.42, + "end": 501.08, + "probability": 0.8861 + }, + { + "start": 501.14, + "end": 502.9, + "probability": 0.9266 + }, + { + "start": 503.46, + "end": 506.12, + "probability": 0.9875 + }, + { + "start": 506.94, + "end": 508.6, + "probability": 0.5297 + }, + { + "start": 509.12, + "end": 514.1, + "probability": 0.9805 + }, + { + "start": 514.14, + "end": 516.72, + "probability": 0.8966 + }, + { + "start": 517.32, + "end": 518.92, + "probability": 0.9181 + }, + { + "start": 519.04, + "end": 520.18, + "probability": 0.6849 + }, + { + "start": 520.64, + "end": 522.22, + "probability": 0.8991 + }, + { + "start": 522.36, + "end": 522.8, + "probability": 0.9269 + }, + { + "start": 523.48, + "end": 526.72, + "probability": 0.7574 + }, + { + "start": 527.6, + "end": 529.6, + "probability": 0.5111 + }, + { + "start": 529.7, + "end": 532.42, + "probability": 0.853 + }, + { + "start": 532.42, + "end": 535.7, + "probability": 0.7839 + }, + { + "start": 536.04, + "end": 538.4, + "probability": 0.9471 + }, + { + "start": 539.04, + "end": 541.32, + "probability": 0.951 + }, + { + "start": 541.32, + "end": 543.34, + "probability": 0.8878 + }, + { + "start": 544.2, + "end": 546.5, + "probability": 0.9919 + }, + { + "start": 546.5, + "end": 549.24, + "probability": 0.9626 + }, + { + "start": 549.8, + "end": 551.76, + "probability": 0.847 + }, + { + "start": 551.76, + "end": 554.08, + "probability": 0.8849 + }, + { + "start": 554.62, + "end": 558.4, + "probability": 0.9813 + }, + { + "start": 559.08, + "end": 561.24, + "probability": 0.9704 + }, + { + "start": 561.24, + "end": 563.56, + "probability": 0.9236 + }, + { + "start": 564.24, + "end": 566.24, + "probability": 0.9583 + }, + { + "start": 566.32, + "end": 570.48, + "probability": 0.7807 + }, + { + "start": 571.04, + "end": 573.4, + "probability": 0.9451 + }, + { + "start": 573.4, + "end": 576.56, + "probability": 0.9824 + }, + { + "start": 577.2, + "end": 581.3, + "probability": 0.9081 + }, + { + "start": 581.94, + "end": 582.54, + "probability": 0.6122 + }, + { + "start": 582.58, + "end": 584.28, + "probability": 0.8444 + }, + { + "start": 584.36, + "end": 587.48, + "probability": 0.8631 + }, + { + "start": 587.48, + "end": 591.22, + "probability": 0.9601 + }, + { + "start": 591.66, + "end": 594.34, + "probability": 0.9779 + }, + { + "start": 594.34, + "end": 597.28, + "probability": 0.8328 + }, + { + "start": 597.74, + "end": 598.24, + "probability": 0.8373 + }, + { + "start": 598.74, + "end": 600.72, + "probability": 0.9624 + }, + { + "start": 600.82, + "end": 602.54, + "probability": 0.6891 + }, + { + "start": 603.42, + "end": 606.52, + "probability": 0.938 + }, + { + "start": 606.62, + "end": 610.14, + "probability": 0.9837 + }, + { + "start": 610.72, + "end": 614.58, + "probability": 0.8987 + }, + { + "start": 614.72, + "end": 616.08, + "probability": 0.6973 + }, + { + "start": 616.14, + "end": 616.66, + "probability": 0.5547 + }, + { + "start": 616.84, + "end": 619.98, + "probability": 0.9471 + }, + { + "start": 620.16, + "end": 622.54, + "probability": 0.8155 + }, + { + "start": 622.64, + "end": 626.02, + "probability": 0.9956 + }, + { + "start": 626.02, + "end": 628.06, + "probability": 0.9639 + }, + { + "start": 628.18, + "end": 630.33, + "probability": 0.9655 + }, + { + "start": 631.5, + "end": 632.24, + "probability": 0.883 + }, + { + "start": 632.3, + "end": 633.24, + "probability": 0.9765 + }, + { + "start": 633.42, + "end": 634.4, + "probability": 0.4723 + }, + { + "start": 634.66, + "end": 635.02, + "probability": 0.8672 + }, + { + "start": 635.2, + "end": 636.32, + "probability": 0.5939 + }, + { + "start": 636.62, + "end": 640.6, + "probability": 0.9861 + }, + { + "start": 641.38, + "end": 644.62, + "probability": 0.9717 + }, + { + "start": 644.62, + "end": 647.46, + "probability": 0.7927 + }, + { + "start": 647.88, + "end": 649.69, + "probability": 0.9797 + }, + { + "start": 650.64, + "end": 653.26, + "probability": 0.8173 + }, + { + "start": 653.68, + "end": 655.32, + "probability": 0.9059 + }, + { + "start": 655.72, + "end": 658.75, + "probability": 0.9802 + }, + { + "start": 658.84, + "end": 661.46, + "probability": 0.7622 + }, + { + "start": 662.42, + "end": 665.08, + "probability": 0.6547 + }, + { + "start": 666.48, + "end": 670.5, + "probability": 0.9596 + }, + { + "start": 670.5, + "end": 672.84, + "probability": 0.7497 + }, + { + "start": 673.44, + "end": 677.3, + "probability": 0.9083 + }, + { + "start": 677.3, + "end": 680.26, + "probability": 0.9773 + }, + { + "start": 681.3, + "end": 685.28, + "probability": 0.9336 + }, + { + "start": 685.28, + "end": 688.52, + "probability": 0.8217 + }, + { + "start": 689.4, + "end": 693.64, + "probability": 0.9622 + }, + { + "start": 694.2, + "end": 697.7, + "probability": 0.9921 + }, + { + "start": 697.74, + "end": 698.96, + "probability": 0.9839 + }, + { + "start": 699.6, + "end": 700.32, + "probability": 0.7855 + }, + { + "start": 700.38, + "end": 701.2, + "probability": 0.7086 + }, + { + "start": 701.58, + "end": 705.34, + "probability": 0.8007 + }, + { + "start": 705.88, + "end": 707.68, + "probability": 0.7817 + }, + { + "start": 707.92, + "end": 708.28, + "probability": 0.8147 + }, + { + "start": 708.6, + "end": 710.9, + "probability": 0.9132 + }, + { + "start": 711.34, + "end": 713.72, + "probability": 0.6242 + }, + { + "start": 713.82, + "end": 715.8, + "probability": 0.7109 + }, + { + "start": 723.48, + "end": 724.98, + "probability": 0.5649 + }, + { + "start": 726.48, + "end": 728.86, + "probability": 0.7548 + }, + { + "start": 730.08, + "end": 731.5, + "probability": 0.9211 + }, + { + "start": 733.06, + "end": 736.88, + "probability": 0.8173 + }, + { + "start": 738.14, + "end": 738.8, + "probability": 0.8212 + }, + { + "start": 739.1, + "end": 740.02, + "probability": 0.9178 + }, + { + "start": 740.16, + "end": 746.56, + "probability": 0.9802 + }, + { + "start": 746.64, + "end": 747.54, + "probability": 0.515 + }, + { + "start": 747.7, + "end": 748.72, + "probability": 0.9853 + }, + { + "start": 749.24, + "end": 749.98, + "probability": 0.4494 + }, + { + "start": 751.54, + "end": 751.95, + "probability": 0.9424 + }, + { + "start": 753.26, + "end": 758.06, + "probability": 0.696 + }, + { + "start": 759.46, + "end": 762.38, + "probability": 0.6084 + }, + { + "start": 763.0, + "end": 766.84, + "probability": 0.8496 + }, + { + "start": 767.6, + "end": 769.14, + "probability": 0.9941 + }, + { + "start": 770.1, + "end": 772.66, + "probability": 0.9498 + }, + { + "start": 773.8, + "end": 776.73, + "probability": 0.9465 + }, + { + "start": 777.28, + "end": 779.4, + "probability": 0.6227 + }, + { + "start": 779.64, + "end": 781.2, + "probability": 0.8359 + }, + { + "start": 781.8, + "end": 782.64, + "probability": 0.5905 + }, + { + "start": 783.04, + "end": 785.02, + "probability": 0.9176 + }, + { + "start": 785.8, + "end": 789.7, + "probability": 0.9102 + }, + { + "start": 790.28, + "end": 791.12, + "probability": 0.4702 + }, + { + "start": 791.18, + "end": 792.38, + "probability": 0.9763 + }, + { + "start": 792.48, + "end": 795.3, + "probability": 0.6111 + }, + { + "start": 796.22, + "end": 802.78, + "probability": 0.9355 + }, + { + "start": 803.14, + "end": 803.4, + "probability": 0.8236 + }, + { + "start": 804.96, + "end": 806.7, + "probability": 0.5624 + }, + { + "start": 806.78, + "end": 810.92, + "probability": 0.8835 + }, + { + "start": 816.38, + "end": 817.64, + "probability": 0.9468 + }, + { + "start": 818.4, + "end": 825.14, + "probability": 0.9932 + }, + { + "start": 825.26, + "end": 826.02, + "probability": 0.9424 + }, + { + "start": 827.04, + "end": 832.28, + "probability": 0.9507 + }, + { + "start": 833.04, + "end": 837.0, + "probability": 0.9912 + }, + { + "start": 838.14, + "end": 841.16, + "probability": 0.8226 + }, + { + "start": 842.24, + "end": 845.02, + "probability": 0.9967 + }, + { + "start": 846.16, + "end": 848.36, + "probability": 0.7393 + }, + { + "start": 849.48, + "end": 855.98, + "probability": 0.9577 + }, + { + "start": 856.74, + "end": 863.82, + "probability": 0.9355 + }, + { + "start": 864.6, + "end": 865.6, + "probability": 0.9709 + }, + { + "start": 866.04, + "end": 869.82, + "probability": 0.9827 + }, + { + "start": 870.38, + "end": 872.8, + "probability": 0.9946 + }, + { + "start": 873.76, + "end": 876.68, + "probability": 0.994 + }, + { + "start": 876.8, + "end": 877.34, + "probability": 0.8701 + }, + { + "start": 877.5, + "end": 878.24, + "probability": 0.8085 + }, + { + "start": 878.84, + "end": 880.44, + "probability": 0.6412 + }, + { + "start": 881.3, + "end": 883.94, + "probability": 0.9897 + }, + { + "start": 884.06, + "end": 887.88, + "probability": 0.9705 + }, + { + "start": 889.18, + "end": 890.34, + "probability": 0.8981 + }, + { + "start": 890.44, + "end": 892.0, + "probability": 0.9705 + }, + { + "start": 892.18, + "end": 894.24, + "probability": 0.9801 + }, + { + "start": 894.84, + "end": 897.92, + "probability": 0.7799 + }, + { + "start": 899.06, + "end": 902.82, + "probability": 0.9209 + }, + { + "start": 903.42, + "end": 909.32, + "probability": 0.9685 + }, + { + "start": 909.9, + "end": 915.9, + "probability": 0.9945 + }, + { + "start": 916.08, + "end": 917.88, + "probability": 0.9435 + }, + { + "start": 918.58, + "end": 920.1, + "probability": 0.9915 + }, + { + "start": 920.26, + "end": 920.5, + "probability": 0.7524 + }, + { + "start": 921.98, + "end": 924.2, + "probability": 0.5627 + }, + { + "start": 924.24, + "end": 927.98, + "probability": 0.976 + }, + { + "start": 928.16, + "end": 930.43, + "probability": 0.8579 + }, + { + "start": 931.52, + "end": 932.7, + "probability": 0.9866 + }, + { + "start": 932.88, + "end": 934.76, + "probability": 0.8587 + }, + { + "start": 935.58, + "end": 938.32, + "probability": 0.8067 + }, + { + "start": 938.36, + "end": 939.82, + "probability": 0.9639 + }, + { + "start": 940.14, + "end": 941.76, + "probability": 0.7841 + }, + { + "start": 941.98, + "end": 942.86, + "probability": 0.9329 + }, + { + "start": 942.92, + "end": 944.6, + "probability": 0.7984 + }, + { + "start": 945.24, + "end": 949.06, + "probability": 0.9595 + }, + { + "start": 949.06, + "end": 951.5, + "probability": 0.642 + }, + { + "start": 951.58, + "end": 952.6, + "probability": 0.9135 + }, + { + "start": 954.06, + "end": 955.86, + "probability": 0.9298 + }, + { + "start": 956.0, + "end": 957.92, + "probability": 0.9872 + }, + { + "start": 958.4, + "end": 959.12, + "probability": 0.9093 + }, + { + "start": 959.22, + "end": 959.9, + "probability": 0.9426 + }, + { + "start": 959.96, + "end": 960.98, + "probability": 0.9238 + }, + { + "start": 961.08, + "end": 961.92, + "probability": 0.8664 + }, + { + "start": 962.5, + "end": 963.36, + "probability": 0.4931 + }, + { + "start": 964.03, + "end": 965.88, + "probability": 0.6636 + }, + { + "start": 966.14, + "end": 966.92, + "probability": 0.7301 + }, + { + "start": 967.06, + "end": 969.38, + "probability": 0.877 + }, + { + "start": 969.7, + "end": 974.74, + "probability": 0.6639 + }, + { + "start": 974.78, + "end": 976.38, + "probability": 0.8304 + }, + { + "start": 976.8, + "end": 977.26, + "probability": 0.8606 + }, + { + "start": 977.4, + "end": 978.98, + "probability": 0.9723 + }, + { + "start": 979.06, + "end": 985.16, + "probability": 0.9919 + }, + { + "start": 985.38, + "end": 987.0, + "probability": 0.6939 + }, + { + "start": 987.02, + "end": 987.88, + "probability": 0.9038 + }, + { + "start": 987.96, + "end": 988.84, + "probability": 0.6266 + }, + { + "start": 989.14, + "end": 993.58, + "probability": 0.9253 + }, + { + "start": 993.88, + "end": 994.94, + "probability": 0.982 + }, + { + "start": 995.06, + "end": 995.82, + "probability": 0.9781 + }, + { + "start": 995.92, + "end": 999.44, + "probability": 0.9951 + }, + { + "start": 999.76, + "end": 1000.88, + "probability": 0.7145 + }, + { + "start": 1001.82, + "end": 1005.42, + "probability": 0.9916 + }, + { + "start": 1005.7, + "end": 1009.21, + "probability": 0.9971 + }, + { + "start": 1009.54, + "end": 1009.94, + "probability": 0.8181 + }, + { + "start": 1011.24, + "end": 1012.68, + "probability": 0.7959 + }, + { + "start": 1012.76, + "end": 1014.66, + "probability": 0.7321 + }, + { + "start": 1015.1, + "end": 1016.82, + "probability": 0.9522 + }, + { + "start": 1018.74, + "end": 1020.44, + "probability": 0.7353 + }, + { + "start": 1021.04, + "end": 1024.6, + "probability": 0.7773 + }, + { + "start": 1024.78, + "end": 1025.77, + "probability": 0.947 + }, + { + "start": 1026.32, + "end": 1029.04, + "probability": 0.9139 + }, + { + "start": 1029.4, + "end": 1031.67, + "probability": 0.9418 + }, + { + "start": 1032.34, + "end": 1033.76, + "probability": 0.8747 + }, + { + "start": 1034.4, + "end": 1037.6, + "probability": 0.9525 + }, + { + "start": 1037.6, + "end": 1041.2, + "probability": 0.9748 + }, + { + "start": 1041.8, + "end": 1044.48, + "probability": 0.9957 + }, + { + "start": 1044.94, + "end": 1047.58, + "probability": 0.9867 + }, + { + "start": 1047.74, + "end": 1050.48, + "probability": 0.8923 + }, + { + "start": 1050.72, + "end": 1052.9, + "probability": 0.9888 + }, + { + "start": 1053.42, + "end": 1055.84, + "probability": 0.9464 + }, + { + "start": 1056.28, + "end": 1057.13, + "probability": 0.949 + }, + { + "start": 1057.54, + "end": 1058.96, + "probability": 0.9829 + }, + { + "start": 1059.06, + "end": 1060.52, + "probability": 0.8194 + }, + { + "start": 1060.58, + "end": 1063.34, + "probability": 0.959 + }, + { + "start": 1063.58, + "end": 1064.88, + "probability": 0.8496 + }, + { + "start": 1065.56, + "end": 1066.28, + "probability": 0.7643 + }, + { + "start": 1066.46, + "end": 1067.56, + "probability": 0.8193 + }, + { + "start": 1067.6, + "end": 1068.5, + "probability": 0.8117 + }, + { + "start": 1068.54, + "end": 1069.62, + "probability": 0.8877 + }, + { + "start": 1070.08, + "end": 1071.66, + "probability": 0.9771 + }, + { + "start": 1072.14, + "end": 1073.86, + "probability": 0.7749 + }, + { + "start": 1074.3, + "end": 1075.92, + "probability": 0.998 + }, + { + "start": 1076.36, + "end": 1079.18, + "probability": 0.9712 + }, + { + "start": 1079.42, + "end": 1080.58, + "probability": 0.6362 + }, + { + "start": 1080.84, + "end": 1081.5, + "probability": 0.5753 + }, + { + "start": 1081.9, + "end": 1083.84, + "probability": 0.9927 + }, + { + "start": 1084.18, + "end": 1085.95, + "probability": 0.9968 + }, + { + "start": 1086.38, + "end": 1089.28, + "probability": 0.9989 + }, + { + "start": 1089.5, + "end": 1090.49, + "probability": 0.9971 + }, + { + "start": 1091.1, + "end": 1091.26, + "probability": 0.6152 + }, + { + "start": 1092.16, + "end": 1093.82, + "probability": 0.8687 + }, + { + "start": 1094.16, + "end": 1097.06, + "probability": 0.98 + }, + { + "start": 1098.7, + "end": 1099.71, + "probability": 0.7645 + }, + { + "start": 1100.56, + "end": 1102.3, + "probability": 0.5681 + }, + { + "start": 1102.42, + "end": 1103.78, + "probability": 0.8566 + }, + { + "start": 1104.04, + "end": 1105.1, + "probability": 0.9583 + }, + { + "start": 1105.12, + "end": 1107.1, + "probability": 0.9522 + }, + { + "start": 1107.5, + "end": 1109.16, + "probability": 0.7987 + }, + { + "start": 1110.48, + "end": 1112.44, + "probability": 0.7207 + }, + { + "start": 1112.66, + "end": 1115.76, + "probability": 0.9065 + }, + { + "start": 1125.02, + "end": 1126.24, + "probability": 0.5904 + }, + { + "start": 1126.28, + "end": 1127.12, + "probability": 0.8271 + }, + { + "start": 1127.52, + "end": 1129.18, + "probability": 0.7582 + }, + { + "start": 1129.48, + "end": 1130.2, + "probability": 0.8928 + }, + { + "start": 1130.68, + "end": 1131.62, + "probability": 0.0695 + }, + { + "start": 1131.8, + "end": 1132.74, + "probability": 0.5939 + }, + { + "start": 1133.0, + "end": 1133.12, + "probability": 0.2603 + }, + { + "start": 1133.28, + "end": 1137.74, + "probability": 0.9215 + }, + { + "start": 1137.96, + "end": 1140.36, + "probability": 0.977 + }, + { + "start": 1140.56, + "end": 1145.22, + "probability": 0.8306 + }, + { + "start": 1145.28, + "end": 1147.06, + "probability": 0.6804 + }, + { + "start": 1147.32, + "end": 1149.38, + "probability": 0.9792 + }, + { + "start": 1149.82, + "end": 1151.2, + "probability": 0.9397 + }, + { + "start": 1151.42, + "end": 1155.02, + "probability": 0.9142 + }, + { + "start": 1155.48, + "end": 1157.3, + "probability": 0.7083 + }, + { + "start": 1157.42, + "end": 1158.12, + "probability": 0.7383 + }, + { + "start": 1158.24, + "end": 1159.48, + "probability": 0.8262 + }, + { + "start": 1159.56, + "end": 1160.14, + "probability": 0.6446 + }, + { + "start": 1160.32, + "end": 1160.6, + "probability": 0.3037 + }, + { + "start": 1160.84, + "end": 1161.6, + "probability": 0.6907 + }, + { + "start": 1161.72, + "end": 1163.9, + "probability": 0.6779 + }, + { + "start": 1164.18, + "end": 1164.46, + "probability": 0.537 + }, + { + "start": 1164.56, + "end": 1167.64, + "probability": 0.9758 + }, + { + "start": 1167.76, + "end": 1169.26, + "probability": 0.988 + }, + { + "start": 1169.86, + "end": 1171.62, + "probability": 0.925 + }, + { + "start": 1171.9, + "end": 1172.82, + "probability": 0.9004 + }, + { + "start": 1172.92, + "end": 1181.4, + "probability": 0.9747 + }, + { + "start": 1182.24, + "end": 1186.74, + "probability": 0.9923 + }, + { + "start": 1187.3, + "end": 1191.6, + "probability": 0.9762 + }, + { + "start": 1191.72, + "end": 1194.5, + "probability": 0.9591 + }, + { + "start": 1194.68, + "end": 1196.24, + "probability": 0.9772 + }, + { + "start": 1196.26, + "end": 1200.71, + "probability": 0.9954 + }, + { + "start": 1201.3, + "end": 1206.04, + "probability": 0.9425 + }, + { + "start": 1206.62, + "end": 1210.52, + "probability": 0.9973 + }, + { + "start": 1210.58, + "end": 1212.06, + "probability": 0.8259 + }, + { + "start": 1212.14, + "end": 1212.72, + "probability": 0.6067 + }, + { + "start": 1212.92, + "end": 1213.74, + "probability": 0.7809 + }, + { + "start": 1213.98, + "end": 1215.04, + "probability": 0.9233 + }, + { + "start": 1215.62, + "end": 1215.8, + "probability": 0.3163 + }, + { + "start": 1215.8, + "end": 1220.3, + "probability": 0.9871 + }, + { + "start": 1222.44, + "end": 1224.48, + "probability": 0.9266 + }, + { + "start": 1224.6, + "end": 1225.42, + "probability": 0.8667 + }, + { + "start": 1225.8, + "end": 1226.3, + "probability": 0.3835 + }, + { + "start": 1226.36, + "end": 1226.74, + "probability": 0.7399 + }, + { + "start": 1227.06, + "end": 1227.7, + "probability": 0.9198 + }, + { + "start": 1227.96, + "end": 1233.56, + "probability": 0.9833 + }, + { + "start": 1234.04, + "end": 1237.16, + "probability": 0.8151 + }, + { + "start": 1237.7, + "end": 1244.4, + "probability": 0.9727 + }, + { + "start": 1244.9, + "end": 1249.42, + "probability": 0.9919 + }, + { + "start": 1249.6, + "end": 1249.82, + "probability": 0.7002 + }, + { + "start": 1249.94, + "end": 1251.26, + "probability": 0.718 + }, + { + "start": 1251.42, + "end": 1253.3, + "probability": 0.6042 + }, + { + "start": 1253.48, + "end": 1256.42, + "probability": 0.7351 + }, + { + "start": 1259.48, + "end": 1262.03, + "probability": 0.734 + }, + { + "start": 1263.5, + "end": 1267.42, + "probability": 0.9426 + }, + { + "start": 1267.54, + "end": 1268.3, + "probability": 0.7273 + }, + { + "start": 1268.44, + "end": 1271.22, + "probability": 0.9761 + }, + { + "start": 1272.6, + "end": 1273.46, + "probability": 0.717 + }, + { + "start": 1273.62, + "end": 1279.26, + "probability": 0.9368 + }, + { + "start": 1279.82, + "end": 1282.04, + "probability": 0.9813 + }, + { + "start": 1282.46, + "end": 1286.24, + "probability": 0.9788 + }, + { + "start": 1287.18, + "end": 1290.66, + "probability": 0.9917 + }, + { + "start": 1291.38, + "end": 1294.92, + "probability": 0.9724 + }, + { + "start": 1294.92, + "end": 1299.54, + "probability": 0.9978 + }, + { + "start": 1299.54, + "end": 1303.52, + "probability": 0.8825 + }, + { + "start": 1304.0, + "end": 1308.88, + "probability": 0.9548 + }, + { + "start": 1309.72, + "end": 1312.96, + "probability": 0.9709 + }, + { + "start": 1313.76, + "end": 1318.1, + "probability": 0.9807 + }, + { + "start": 1318.6, + "end": 1319.52, + "probability": 0.4943 + }, + { + "start": 1319.78, + "end": 1322.28, + "probability": 0.878 + }, + { + "start": 1323.22, + "end": 1326.86, + "probability": 0.9329 + }, + { + "start": 1327.6, + "end": 1330.16, + "probability": 0.9082 + }, + { + "start": 1330.9, + "end": 1333.98, + "probability": 0.9671 + }, + { + "start": 1333.98, + "end": 1338.36, + "probability": 0.9626 + }, + { + "start": 1338.6, + "end": 1339.04, + "probability": 0.6773 + }, + { + "start": 1340.7, + "end": 1342.4, + "probability": 0.7615 + }, + { + "start": 1342.56, + "end": 1344.24, + "probability": 0.8215 + }, + { + "start": 1344.4, + "end": 1346.1, + "probability": 0.8402 + }, + { + "start": 1348.98, + "end": 1350.1, + "probability": 0.8124 + }, + { + "start": 1350.32, + "end": 1354.24, + "probability": 0.9932 + }, + { + "start": 1354.82, + "end": 1356.07, + "probability": 0.7443 + }, + { + "start": 1357.18, + "end": 1358.36, + "probability": 0.8906 + }, + { + "start": 1359.04, + "end": 1362.28, + "probability": 0.9889 + }, + { + "start": 1362.28, + "end": 1366.14, + "probability": 0.9765 + }, + { + "start": 1366.32, + "end": 1367.0, + "probability": 0.8624 + }, + { + "start": 1367.58, + "end": 1368.15, + "probability": 0.8015 + }, + { + "start": 1369.22, + "end": 1369.96, + "probability": 0.9847 + }, + { + "start": 1370.64, + "end": 1373.13, + "probability": 0.8499 + }, + { + "start": 1374.34, + "end": 1376.0, + "probability": 0.9861 + }, + { + "start": 1376.36, + "end": 1377.88, + "probability": 0.9968 + }, + { + "start": 1378.42, + "end": 1382.34, + "probability": 0.9095 + }, + { + "start": 1382.88, + "end": 1384.92, + "probability": 0.9941 + }, + { + "start": 1385.02, + "end": 1386.64, + "probability": 0.8716 + }, + { + "start": 1386.74, + "end": 1387.5, + "probability": 0.6139 + }, + { + "start": 1388.26, + "end": 1389.3, + "probability": 0.7682 + }, + { + "start": 1389.48, + "end": 1391.78, + "probability": 0.9593 + }, + { + "start": 1392.48, + "end": 1394.62, + "probability": 0.9907 + }, + { + "start": 1394.74, + "end": 1395.28, + "probability": 0.7296 + }, + { + "start": 1396.42, + "end": 1399.04, + "probability": 0.9217 + }, + { + "start": 1399.52, + "end": 1400.64, + "probability": 0.8984 + }, + { + "start": 1400.72, + "end": 1403.84, + "probability": 0.9985 + }, + { + "start": 1404.46, + "end": 1406.46, + "probability": 0.9331 + }, + { + "start": 1406.58, + "end": 1411.26, + "probability": 0.9816 + }, + { + "start": 1411.4, + "end": 1412.68, + "probability": 0.7412 + }, + { + "start": 1413.26, + "end": 1417.76, + "probability": 0.9928 + }, + { + "start": 1417.76, + "end": 1422.04, + "probability": 0.9963 + }, + { + "start": 1422.82, + "end": 1423.72, + "probability": 0.9236 + }, + { + "start": 1423.84, + "end": 1426.38, + "probability": 0.9183 + }, + { + "start": 1426.46, + "end": 1428.28, + "probability": 0.8122 + }, + { + "start": 1428.34, + "end": 1429.5, + "probability": 0.9696 + }, + { + "start": 1429.96, + "end": 1430.88, + "probability": 0.9619 + }, + { + "start": 1430.96, + "end": 1431.46, + "probability": 0.7807 + }, + { + "start": 1431.7, + "end": 1432.72, + "probability": 0.9808 + }, + { + "start": 1433.04, + "end": 1435.34, + "probability": 0.9524 + }, + { + "start": 1435.78, + "end": 1438.74, + "probability": 0.8896 + }, + { + "start": 1439.08, + "end": 1440.46, + "probability": 0.9507 + }, + { + "start": 1440.54, + "end": 1444.48, + "probability": 0.8804 + }, + { + "start": 1444.74, + "end": 1447.84, + "probability": 0.8676 + }, + { + "start": 1448.12, + "end": 1448.8, + "probability": 0.6837 + }, + { + "start": 1448.9, + "end": 1452.1, + "probability": 0.9721 + }, + { + "start": 1452.36, + "end": 1455.6, + "probability": 0.9592 + }, + { + "start": 1456.08, + "end": 1457.6, + "probability": 0.9279 + }, + { + "start": 1457.92, + "end": 1461.16, + "probability": 0.9934 + }, + { + "start": 1461.4, + "end": 1462.62, + "probability": 0.8678 + }, + { + "start": 1462.68, + "end": 1463.2, + "probability": 0.7504 + }, + { + "start": 1463.4, + "end": 1465.84, + "probability": 0.9309 + }, + { + "start": 1466.04, + "end": 1467.12, + "probability": 0.9672 + }, + { + "start": 1467.32, + "end": 1467.52, + "probability": 0.6931 + }, + { + "start": 1468.16, + "end": 1469.48, + "probability": 0.7656 + }, + { + "start": 1469.58, + "end": 1473.64, + "probability": 0.9412 + }, + { + "start": 1473.64, + "end": 1474.24, + "probability": 0.7105 + }, + { + "start": 1476.64, + "end": 1477.46, + "probability": 0.5101 + }, + { + "start": 1477.62, + "end": 1477.62, + "probability": 0.4248 + }, + { + "start": 1477.62, + "end": 1480.16, + "probability": 0.5882 + }, + { + "start": 1480.5, + "end": 1482.98, + "probability": 0.8897 + }, + { + "start": 1482.98, + "end": 1485.74, + "probability": 0.8044 + }, + { + "start": 1486.7, + "end": 1490.96, + "probability": 0.9144 + }, + { + "start": 1492.78, + "end": 1493.76, + "probability": 0.5953 + }, + { + "start": 1493.96, + "end": 1499.9, + "probability": 0.9782 + }, + { + "start": 1500.36, + "end": 1501.3, + "probability": 0.6262 + }, + { + "start": 1501.64, + "end": 1506.68, + "probability": 0.9911 + }, + { + "start": 1506.82, + "end": 1508.6, + "probability": 0.915 + }, + { + "start": 1509.26, + "end": 1510.56, + "probability": 0.9342 + }, + { + "start": 1510.98, + "end": 1515.84, + "probability": 0.9539 + }, + { + "start": 1515.92, + "end": 1517.64, + "probability": 0.9985 + }, + { + "start": 1518.26, + "end": 1520.76, + "probability": 0.9963 + }, + { + "start": 1520.76, + "end": 1526.26, + "probability": 0.9806 + }, + { + "start": 1526.7, + "end": 1530.12, + "probability": 0.8356 + }, + { + "start": 1530.2, + "end": 1531.75, + "probability": 0.9668 + }, + { + "start": 1532.26, + "end": 1533.3, + "probability": 0.9274 + }, + { + "start": 1533.62, + "end": 1535.8, + "probability": 0.9897 + }, + { + "start": 1536.16, + "end": 1536.74, + "probability": 0.9861 + }, + { + "start": 1536.92, + "end": 1537.68, + "probability": 0.6483 + }, + { + "start": 1538.02, + "end": 1540.8, + "probability": 0.9957 + }, + { + "start": 1540.98, + "end": 1543.7, + "probability": 0.9985 + }, + { + "start": 1543.7, + "end": 1548.62, + "probability": 0.9808 + }, + { + "start": 1548.96, + "end": 1550.94, + "probability": 0.9996 + }, + { + "start": 1552.06, + "end": 1556.2, + "probability": 0.9939 + }, + { + "start": 1556.54, + "end": 1559.15, + "probability": 0.8525 + }, + { + "start": 1559.42, + "end": 1560.4, + "probability": 0.8146 + }, + { + "start": 1560.68, + "end": 1561.82, + "probability": 0.9503 + }, + { + "start": 1561.96, + "end": 1562.5, + "probability": 0.7636 + }, + { + "start": 1564.32, + "end": 1566.52, + "probability": 0.873 + }, + { + "start": 1566.66, + "end": 1568.94, + "probability": 0.9127 + }, + { + "start": 1569.72, + "end": 1572.22, + "probability": 0.8613 + }, + { + "start": 1572.36, + "end": 1576.58, + "probability": 0.8711 + }, + { + "start": 1576.58, + "end": 1580.26, + "probability": 0.9725 + }, + { + "start": 1581.24, + "end": 1582.26, + "probability": 0.5205 + }, + { + "start": 1585.16, + "end": 1587.54, + "probability": 0.739 + }, + { + "start": 1590.08, + "end": 1590.08, + "probability": 0.0035 + }, + { + "start": 1590.08, + "end": 1590.86, + "probability": 0.4647 + }, + { + "start": 1590.88, + "end": 1594.96, + "probability": 0.9902 + }, + { + "start": 1595.04, + "end": 1598.64, + "probability": 0.9426 + }, + { + "start": 1598.88, + "end": 1602.48, + "probability": 0.9749 + }, + { + "start": 1602.48, + "end": 1604.82, + "probability": 0.9692 + }, + { + "start": 1606.04, + "end": 1608.78, + "probability": 0.8143 + }, + { + "start": 1609.18, + "end": 1610.38, + "probability": 0.53 + }, + { + "start": 1610.62, + "end": 1612.48, + "probability": 0.9819 + }, + { + "start": 1612.82, + "end": 1613.38, + "probability": 0.8409 + }, + { + "start": 1613.82, + "end": 1614.92, + "probability": 0.9941 + }, + { + "start": 1615.96, + "end": 1621.02, + "probability": 0.9961 + }, + { + "start": 1622.2, + "end": 1625.8, + "probability": 0.9326 + }, + { + "start": 1626.48, + "end": 1630.56, + "probability": 0.9626 + }, + { + "start": 1631.12, + "end": 1634.18, + "probability": 0.8289 + }, + { + "start": 1635.64, + "end": 1638.7, + "probability": 0.9882 + }, + { + "start": 1638.74, + "end": 1639.76, + "probability": 0.769 + }, + { + "start": 1640.37, + "end": 1642.12, + "probability": 0.9242 + }, + { + "start": 1643.54, + "end": 1648.48, + "probability": 0.9814 + }, + { + "start": 1648.74, + "end": 1653.04, + "probability": 0.8393 + }, + { + "start": 1653.4, + "end": 1655.46, + "probability": 0.9606 + }, + { + "start": 1656.92, + "end": 1660.64, + "probability": 0.9838 + }, + { + "start": 1661.7, + "end": 1663.54, + "probability": 0.8991 + }, + { + "start": 1664.1, + "end": 1664.64, + "probability": 0.5135 + }, + { + "start": 1665.5, + "end": 1667.74, + "probability": 0.5616 + }, + { + "start": 1668.4, + "end": 1671.64, + "probability": 0.9917 + }, + { + "start": 1672.44, + "end": 1674.07, + "probability": 0.9956 + }, + { + "start": 1674.94, + "end": 1677.48, + "probability": 0.9816 + }, + { + "start": 1678.06, + "end": 1680.0, + "probability": 0.998 + }, + { + "start": 1684.1, + "end": 1686.34, + "probability": 0.9971 + }, + { + "start": 1686.72, + "end": 1687.58, + "probability": 0.9867 + }, + { + "start": 1687.74, + "end": 1689.68, + "probability": 0.9881 + }, + { + "start": 1690.16, + "end": 1691.46, + "probability": 0.939 + }, + { + "start": 1691.52, + "end": 1694.92, + "probability": 0.7671 + }, + { + "start": 1694.94, + "end": 1696.46, + "probability": 0.5826 + }, + { + "start": 1697.66, + "end": 1698.28, + "probability": 0.8724 + }, + { + "start": 1698.44, + "end": 1699.0, + "probability": 0.8242 + }, + { + "start": 1699.18, + "end": 1702.88, + "probability": 0.96 + }, + { + "start": 1703.14, + "end": 1705.18, + "probability": 0.9922 + }, + { + "start": 1706.7, + "end": 1711.96, + "probability": 0.9978 + }, + { + "start": 1712.22, + "end": 1714.14, + "probability": 0.9075 + }, + { + "start": 1715.64, + "end": 1716.58, + "probability": 0.942 + }, + { + "start": 1717.9, + "end": 1720.78, + "probability": 0.9471 + }, + { + "start": 1720.78, + "end": 1724.14, + "probability": 0.9844 + }, + { + "start": 1724.48, + "end": 1727.0, + "probability": 0.9919 + }, + { + "start": 1727.92, + "end": 1729.24, + "probability": 0.6322 + }, + { + "start": 1729.76, + "end": 1733.9, + "probability": 0.929 + }, + { + "start": 1734.44, + "end": 1737.64, + "probability": 0.9985 + }, + { + "start": 1738.22, + "end": 1739.84, + "probability": 0.8665 + }, + { + "start": 1740.72, + "end": 1741.08, + "probability": 0.3806 + }, + { + "start": 1741.18, + "end": 1741.66, + "probability": 0.9404 + }, + { + "start": 1741.88, + "end": 1745.6, + "probability": 0.9839 + }, + { + "start": 1746.7, + "end": 1749.64, + "probability": 0.9952 + }, + { + "start": 1749.76, + "end": 1753.1, + "probability": 0.9386 + }, + { + "start": 1753.6, + "end": 1755.28, + "probability": 0.9976 + }, + { + "start": 1755.9, + "end": 1756.66, + "probability": 0.5064 + }, + { + "start": 1757.58, + "end": 1761.76, + "probability": 0.9875 + }, + { + "start": 1761.8, + "end": 1762.92, + "probability": 0.5569 + }, + { + "start": 1763.64, + "end": 1765.68, + "probability": 0.9966 + }, + { + "start": 1765.76, + "end": 1766.36, + "probability": 0.8958 + }, + { + "start": 1766.68, + "end": 1767.4, + "probability": 0.6122 + }, + { + "start": 1767.46, + "end": 1768.32, + "probability": 0.8831 + }, + { + "start": 1768.7, + "end": 1770.24, + "probability": 0.6491 + }, + { + "start": 1770.36, + "end": 1771.15, + "probability": 0.9285 + }, + { + "start": 1771.7, + "end": 1778.14, + "probability": 0.8022 + }, + { + "start": 1778.26, + "end": 1781.24, + "probability": 0.879 + }, + { + "start": 1796.92, + "end": 1799.46, + "probability": 0.6635 + }, + { + "start": 1801.06, + "end": 1801.28, + "probability": 0.3776 + }, + { + "start": 1801.42, + "end": 1801.98, + "probability": 0.9525 + }, + { + "start": 1802.06, + "end": 1802.74, + "probability": 0.8953 + }, + { + "start": 1803.1, + "end": 1807.64, + "probability": 0.7072 + }, + { + "start": 1807.82, + "end": 1809.48, + "probability": 0.9237 + }, + { + "start": 1810.36, + "end": 1811.04, + "probability": 0.4671 + }, + { + "start": 1811.2, + "end": 1812.74, + "probability": 0.9878 + }, + { + "start": 1813.82, + "end": 1819.54, + "probability": 0.6181 + }, + { + "start": 1819.98, + "end": 1822.4, + "probability": 0.7844 + }, + { + "start": 1824.74, + "end": 1827.36, + "probability": 0.9587 + }, + { + "start": 1828.1, + "end": 1829.6, + "probability": 0.5577 + }, + { + "start": 1829.8, + "end": 1833.52, + "probability": 0.988 + }, + { + "start": 1833.94, + "end": 1835.88, + "probability": 0.8711 + }, + { + "start": 1837.04, + "end": 1838.56, + "probability": 0.6198 + }, + { + "start": 1839.5, + "end": 1841.62, + "probability": 0.827 + }, + { + "start": 1842.46, + "end": 1844.82, + "probability": 0.924 + }, + { + "start": 1845.12, + "end": 1847.86, + "probability": 0.9524 + }, + { + "start": 1849.06, + "end": 1849.26, + "probability": 0.1922 + }, + { + "start": 1849.26, + "end": 1850.38, + "probability": 0.9688 + }, + { + "start": 1851.22, + "end": 1854.94, + "probability": 0.9758 + }, + { + "start": 1855.54, + "end": 1857.13, + "probability": 0.9902 + }, + { + "start": 1857.24, + "end": 1857.84, + "probability": 0.8258 + }, + { + "start": 1858.54, + "end": 1860.14, + "probability": 0.8875 + }, + { + "start": 1860.82, + "end": 1863.94, + "probability": 0.8755 + }, + { + "start": 1865.68, + "end": 1866.02, + "probability": 0.2593 + }, + { + "start": 1866.1, + "end": 1869.9, + "probability": 0.9141 + }, + { + "start": 1869.9, + "end": 1872.56, + "probability": 0.7809 + }, + { + "start": 1873.88, + "end": 1879.08, + "probability": 0.9103 + }, + { + "start": 1879.64, + "end": 1880.84, + "probability": 0.6411 + }, + { + "start": 1880.92, + "end": 1882.36, + "probability": 0.5792 + }, + { + "start": 1882.52, + "end": 1885.14, + "probability": 0.8 + }, + { + "start": 1885.78, + "end": 1886.92, + "probability": 0.993 + }, + { + "start": 1887.76, + "end": 1893.1, + "probability": 0.7533 + }, + { + "start": 1893.1, + "end": 1896.12, + "probability": 0.9966 + }, + { + "start": 1896.16, + "end": 1897.44, + "probability": 0.8684 + }, + { + "start": 1897.54, + "end": 1898.34, + "probability": 0.6191 + }, + { + "start": 1898.54, + "end": 1899.44, + "probability": 0.6079 + }, + { + "start": 1900.22, + "end": 1901.68, + "probability": 0.6133 + }, + { + "start": 1902.3, + "end": 1903.72, + "probability": 0.8232 + }, + { + "start": 1905.42, + "end": 1905.82, + "probability": 0.538 + }, + { + "start": 1907.72, + "end": 1914.26, + "probability": 0.825 + }, + { + "start": 1915.16, + "end": 1915.54, + "probability": 0.358 + }, + { + "start": 1917.0, + "end": 1917.9, + "probability": 0.7018 + }, + { + "start": 1918.6, + "end": 1921.42, + "probability": 0.8149 + }, + { + "start": 1922.06, + "end": 1925.62, + "probability": 0.6852 + }, + { + "start": 1925.86, + "end": 1930.18, + "probability": 0.9094 + }, + { + "start": 1931.12, + "end": 1933.32, + "probability": 0.955 + }, + { + "start": 1933.82, + "end": 1935.08, + "probability": 0.8584 + }, + { + "start": 1935.14, + "end": 1935.38, + "probability": 0.874 + }, + { + "start": 1935.52, + "end": 1935.76, + "probability": 0.9358 + }, + { + "start": 1935.84, + "end": 1936.04, + "probability": 0.7158 + }, + { + "start": 1937.58, + "end": 1941.4, + "probability": 0.9961 + }, + { + "start": 1941.48, + "end": 1944.0, + "probability": 0.958 + }, + { + "start": 1944.1, + "end": 1946.86, + "probability": 0.9944 + }, + { + "start": 1947.64, + "end": 1950.18, + "probability": 0.7039 + }, + { + "start": 1951.26, + "end": 1955.3, + "probability": 0.9946 + }, + { + "start": 1955.36, + "end": 1956.1, + "probability": 0.451 + }, + { + "start": 1956.82, + "end": 1958.02, + "probability": 0.8296 + }, + { + "start": 1958.52, + "end": 1963.08, + "probability": 0.8933 + }, + { + "start": 1964.18, + "end": 1967.06, + "probability": 0.7375 + }, + { + "start": 1967.84, + "end": 1970.42, + "probability": 0.9368 + }, + { + "start": 1970.42, + "end": 1971.44, + "probability": 0.8628 + }, + { + "start": 1972.64, + "end": 1974.82, + "probability": 0.6469 + }, + { + "start": 1975.4, + "end": 1978.1, + "probability": 0.876 + }, + { + "start": 1978.18, + "end": 1981.57, + "probability": 0.8134 + }, + { + "start": 1981.72, + "end": 1982.14, + "probability": 0.7562 + }, + { + "start": 1982.2, + "end": 1986.26, + "probability": 0.9775 + }, + { + "start": 1986.36, + "end": 1988.44, + "probability": 0.9109 + }, + { + "start": 1989.32, + "end": 1990.78, + "probability": 0.9967 + }, + { + "start": 1990.88, + "end": 1991.14, + "probability": 0.3085 + }, + { + "start": 1991.22, + "end": 1991.86, + "probability": 0.7706 + }, + { + "start": 1991.9, + "end": 1994.38, + "probability": 0.9134 + }, + { + "start": 1994.42, + "end": 1997.28, + "probability": 0.9665 + }, + { + "start": 1997.36, + "end": 1998.82, + "probability": 0.9444 + }, + { + "start": 1998.92, + "end": 2000.28, + "probability": 0.7717 + }, + { + "start": 2000.32, + "end": 2002.8, + "probability": 0.9825 + }, + { + "start": 2003.48, + "end": 2005.87, + "probability": 0.823 + }, + { + "start": 2008.18, + "end": 2011.46, + "probability": 0.959 + }, + { + "start": 2013.74, + "end": 2017.07, + "probability": 0.8181 + }, + { + "start": 2017.96, + "end": 2023.56, + "probability": 0.8347 + }, + { + "start": 2025.44, + "end": 2029.58, + "probability": 0.7339 + }, + { + "start": 2030.92, + "end": 2032.82, + "probability": 0.8542 + }, + { + "start": 2033.33, + "end": 2037.22, + "probability": 0.9497 + }, + { + "start": 2037.28, + "end": 2037.84, + "probability": 0.6887 + }, + { + "start": 2037.92, + "end": 2039.93, + "probability": 0.8824 + }, + { + "start": 2040.7, + "end": 2041.88, + "probability": 0.5998 + }, + { + "start": 2042.04, + "end": 2042.54, + "probability": 0.6791 + }, + { + "start": 2042.56, + "end": 2045.84, + "probability": 0.9353 + }, + { + "start": 2046.36, + "end": 2048.22, + "probability": 0.8135 + }, + { + "start": 2048.54, + "end": 2051.36, + "probability": 0.9821 + }, + { + "start": 2051.68, + "end": 2053.5, + "probability": 0.9883 + }, + { + "start": 2053.98, + "end": 2054.94, + "probability": 0.9614 + }, + { + "start": 2055.06, + "end": 2055.7, + "probability": 0.7658 + }, + { + "start": 2055.74, + "end": 2057.25, + "probability": 0.7671 + }, + { + "start": 2058.0, + "end": 2061.7, + "probability": 0.7529 + }, + { + "start": 2063.02, + "end": 2064.82, + "probability": 0.9635 + }, + { + "start": 2065.6, + "end": 2068.26, + "probability": 0.9849 + }, + { + "start": 2069.42, + "end": 2070.6, + "probability": 0.2828 + }, + { + "start": 2071.06, + "end": 2072.54, + "probability": 0.9255 + }, + { + "start": 2075.22, + "end": 2077.2, + "probability": 0.5441 + }, + { + "start": 2078.06, + "end": 2081.88, + "probability": 0.9926 + }, + { + "start": 2082.22, + "end": 2083.06, + "probability": 0.793 + }, + { + "start": 2083.54, + "end": 2084.54, + "probability": 0.9209 + }, + { + "start": 2084.68, + "end": 2084.98, + "probability": 0.5223 + }, + { + "start": 2085.02, + "end": 2085.48, + "probability": 0.7979 + }, + { + "start": 2085.66, + "end": 2086.12, + "probability": 0.8464 + }, + { + "start": 2086.2, + "end": 2087.16, + "probability": 0.5537 + }, + { + "start": 2087.18, + "end": 2088.08, + "probability": 0.6787 + }, + { + "start": 2090.85, + "end": 2091.48, + "probability": 0.0142 + }, + { + "start": 2091.48, + "end": 2091.52, + "probability": 0.1601 + }, + { + "start": 2091.7, + "end": 2096.14, + "probability": 0.9666 + }, + { + "start": 2096.14, + "end": 2101.32, + "probability": 0.989 + }, + { + "start": 2102.42, + "end": 2105.8, + "probability": 0.8616 + }, + { + "start": 2106.26, + "end": 2107.62, + "probability": 0.5018 + }, + { + "start": 2107.62, + "end": 2110.06, + "probability": 0.3079 + }, + { + "start": 2110.06, + "end": 2112.96, + "probability": 0.9966 + }, + { + "start": 2113.54, + "end": 2113.82, + "probability": 0.5644 + }, + { + "start": 2114.46, + "end": 2119.41, + "probability": 0.9633 + }, + { + "start": 2120.0, + "end": 2123.62, + "probability": 0.8979 + }, + { + "start": 2123.94, + "end": 2125.44, + "probability": 0.7811 + }, + { + "start": 2126.16, + "end": 2128.52, + "probability": 0.8965 + }, + { + "start": 2128.62, + "end": 2130.96, + "probability": 0.4773 + }, + { + "start": 2131.18, + "end": 2131.56, + "probability": 0.7196 + }, + { + "start": 2131.68, + "end": 2134.08, + "probability": 0.9701 + }, + { + "start": 2134.42, + "end": 2135.22, + "probability": 0.8136 + }, + { + "start": 2135.78, + "end": 2138.96, + "probability": 0.984 + }, + { + "start": 2139.12, + "end": 2140.74, + "probability": 0.955 + }, + { + "start": 2140.8, + "end": 2142.38, + "probability": 0.5468 + }, + { + "start": 2143.18, + "end": 2149.9, + "probability": 0.6038 + }, + { + "start": 2151.44, + "end": 2153.68, + "probability": 0.9868 + }, + { + "start": 2153.78, + "end": 2154.42, + "probability": 0.8403 + }, + { + "start": 2154.88, + "end": 2156.82, + "probability": 0.9927 + }, + { + "start": 2157.0, + "end": 2157.88, + "probability": 0.6404 + }, + { + "start": 2158.22, + "end": 2159.6, + "probability": 0.8834 + }, + { + "start": 2160.26, + "end": 2163.12, + "probability": 0.974 + }, + { + "start": 2163.34, + "end": 2169.2, + "probability": 0.9827 + }, + { + "start": 2169.94, + "end": 2170.76, + "probability": 0.7509 + }, + { + "start": 2171.04, + "end": 2171.62, + "probability": 0.63 + }, + { + "start": 2171.7, + "end": 2173.59, + "probability": 0.865 + }, + { + "start": 2173.84, + "end": 2173.94, + "probability": 0.9292 + }, + { + "start": 2174.34, + "end": 2175.04, + "probability": 0.9484 + }, + { + "start": 2176.42, + "end": 2181.44, + "probability": 0.7133 + }, + { + "start": 2182.14, + "end": 2182.72, + "probability": 0.4821 + }, + { + "start": 2183.56, + "end": 2185.05, + "probability": 0.9992 + }, + { + "start": 2185.16, + "end": 2186.62, + "probability": 0.9941 + }, + { + "start": 2187.93, + "end": 2189.68, + "probability": 0.9451 + }, + { + "start": 2189.9, + "end": 2192.54, + "probability": 0.892 + }, + { + "start": 2192.9, + "end": 2194.52, + "probability": 0.7441 + }, + { + "start": 2195.12, + "end": 2196.65, + "probability": 0.9231 + }, + { + "start": 2197.16, + "end": 2199.34, + "probability": 0.8743 + }, + { + "start": 2200.42, + "end": 2204.2, + "probability": 0.9934 + }, + { + "start": 2204.96, + "end": 2207.46, + "probability": 0.9477 + }, + { + "start": 2208.32, + "end": 2209.94, + "probability": 0.9318 + }, + { + "start": 2210.06, + "end": 2211.06, + "probability": 0.8323 + }, + { + "start": 2211.68, + "end": 2212.16, + "probability": 0.428 + }, + { + "start": 2212.22, + "end": 2213.86, + "probability": 0.9709 + }, + { + "start": 2214.04, + "end": 2215.3, + "probability": 0.9419 + }, + { + "start": 2215.68, + "end": 2218.67, + "probability": 0.918 + }, + { + "start": 2219.08, + "end": 2220.9, + "probability": 0.9768 + }, + { + "start": 2221.96, + "end": 2225.88, + "probability": 0.7956 + }, + { + "start": 2225.98, + "end": 2228.14, + "probability": 0.7991 + }, + { + "start": 2228.28, + "end": 2229.9, + "probability": 0.8623 + }, + { + "start": 2230.38, + "end": 2236.12, + "probability": 0.8902 + }, + { + "start": 2236.26, + "end": 2238.2, + "probability": 0.6371 + }, + { + "start": 2239.06, + "end": 2242.4, + "probability": 0.9953 + }, + { + "start": 2242.54, + "end": 2243.54, + "probability": 0.7341 + }, + { + "start": 2244.13, + "end": 2246.38, + "probability": 0.5466 + }, + { + "start": 2246.4, + "end": 2247.1, + "probability": 0.3905 + }, + { + "start": 2247.88, + "end": 2249.8, + "probability": 0.54 + }, + { + "start": 2249.8, + "end": 2252.9, + "probability": 0.9402 + }, + { + "start": 2253.46, + "end": 2255.78, + "probability": 0.9922 + }, + { + "start": 2256.44, + "end": 2257.64, + "probability": 0.5118 + }, + { + "start": 2257.68, + "end": 2258.16, + "probability": 0.2738 + }, + { + "start": 2258.2, + "end": 2258.82, + "probability": 0.8411 + }, + { + "start": 2258.82, + "end": 2261.54, + "probability": 0.9353 + }, + { + "start": 2261.64, + "end": 2262.18, + "probability": 0.8307 + }, + { + "start": 2262.28, + "end": 2262.58, + "probability": 0.9003 + }, + { + "start": 2262.82, + "end": 2263.06, + "probability": 0.9297 + }, + { + "start": 2264.02, + "end": 2266.16, + "probability": 0.6654 + }, + { + "start": 2266.32, + "end": 2266.54, + "probability": 0.5631 + }, + { + "start": 2267.08, + "end": 2270.58, + "probability": 0.7952 + }, + { + "start": 2270.72, + "end": 2274.48, + "probability": 0.8944 + }, + { + "start": 2275.12, + "end": 2276.92, + "probability": 0.6472 + }, + { + "start": 2288.4, + "end": 2289.48, + "probability": 0.7638 + }, + { + "start": 2290.58, + "end": 2293.04, + "probability": 0.9666 + }, + { + "start": 2293.82, + "end": 2298.28, + "probability": 0.9849 + }, + { + "start": 2298.68, + "end": 2299.34, + "probability": 0.8501 + }, + { + "start": 2300.16, + "end": 2301.78, + "probability": 0.965 + }, + { + "start": 2302.16, + "end": 2304.58, + "probability": 0.978 + }, + { + "start": 2304.62, + "end": 2305.52, + "probability": 0.9153 + }, + { + "start": 2305.94, + "end": 2306.8, + "probability": 0.9805 + }, + { + "start": 2306.9, + "end": 2308.44, + "probability": 0.7554 + }, + { + "start": 2308.46, + "end": 2312.86, + "probability": 0.9808 + }, + { + "start": 2313.78, + "end": 2317.92, + "probability": 0.9614 + }, + { + "start": 2318.66, + "end": 2318.76, + "probability": 0.085 + }, + { + "start": 2318.76, + "end": 2320.62, + "probability": 0.9897 + }, + { + "start": 2320.62, + "end": 2323.56, + "probability": 0.9933 + }, + { + "start": 2323.74, + "end": 2324.44, + "probability": 0.662 + }, + { + "start": 2325.4, + "end": 2327.84, + "probability": 0.9137 + }, + { + "start": 2328.06, + "end": 2330.96, + "probability": 0.98 + }, + { + "start": 2331.56, + "end": 2335.86, + "probability": 0.9615 + }, + { + "start": 2335.98, + "end": 2338.86, + "probability": 0.988 + }, + { + "start": 2339.64, + "end": 2346.6, + "probability": 0.9686 + }, + { + "start": 2346.72, + "end": 2352.96, + "probability": 0.689 + }, + { + "start": 2354.65, + "end": 2357.39, + "probability": 0.5627 + }, + { + "start": 2357.98, + "end": 2361.94, + "probability": 0.9709 + }, + { + "start": 2362.6, + "end": 2363.3, + "probability": 0.5836 + }, + { + "start": 2363.46, + "end": 2365.42, + "probability": 0.7449 + }, + { + "start": 2365.6, + "end": 2367.1, + "probability": 0.4804 + }, + { + "start": 2367.3, + "end": 2369.72, + "probability": 0.9753 + }, + { + "start": 2370.34, + "end": 2371.66, + "probability": 0.8184 + }, + { + "start": 2372.02, + "end": 2372.48, + "probability": 0.9237 + }, + { + "start": 2372.54, + "end": 2377.9, + "probability": 0.979 + }, + { + "start": 2378.68, + "end": 2383.52, + "probability": 0.9427 + }, + { + "start": 2384.14, + "end": 2387.28, + "probability": 0.9948 + }, + { + "start": 2387.28, + "end": 2391.26, + "probability": 0.9901 + }, + { + "start": 2392.14, + "end": 2392.64, + "probability": 0.7856 + }, + { + "start": 2393.54, + "end": 2397.34, + "probability": 0.8101 + }, + { + "start": 2397.34, + "end": 2398.12, + "probability": 0.8914 + }, + { + "start": 2398.3, + "end": 2398.76, + "probability": 0.7604 + }, + { + "start": 2398.9, + "end": 2400.0, + "probability": 0.9125 + }, + { + "start": 2400.6, + "end": 2402.5, + "probability": 0.8866 + }, + { + "start": 2403.0, + "end": 2407.37, + "probability": 0.999 + }, + { + "start": 2407.72, + "end": 2415.32, + "probability": 0.9314 + }, + { + "start": 2416.04, + "end": 2416.24, + "probability": 0.2861 + }, + { + "start": 2416.28, + "end": 2417.0, + "probability": 0.9467 + }, + { + "start": 2417.06, + "end": 2421.5, + "probability": 0.8699 + }, + { + "start": 2421.98, + "end": 2423.92, + "probability": 0.963 + }, + { + "start": 2424.42, + "end": 2425.72, + "probability": 0.9272 + }, + { + "start": 2425.84, + "end": 2427.22, + "probability": 0.9827 + }, + { + "start": 2427.34, + "end": 2429.56, + "probability": 0.8693 + }, + { + "start": 2430.32, + "end": 2433.04, + "probability": 0.7629 + }, + { + "start": 2433.5, + "end": 2437.32, + "probability": 0.9384 + }, + { + "start": 2437.6, + "end": 2438.3, + "probability": 0.5242 + }, + { + "start": 2438.96, + "end": 2440.96, + "probability": 0.9718 + }, + { + "start": 2441.22, + "end": 2444.23, + "probability": 0.8518 + }, + { + "start": 2444.96, + "end": 2451.08, + "probability": 0.9216 + }, + { + "start": 2451.98, + "end": 2453.76, + "probability": 0.8789 + }, + { + "start": 2454.54, + "end": 2456.28, + "probability": 0.9125 + }, + { + "start": 2457.06, + "end": 2457.46, + "probability": 0.5706 + }, + { + "start": 2457.52, + "end": 2463.84, + "probability": 0.9243 + }, + { + "start": 2463.84, + "end": 2466.16, + "probability": 0.9878 + }, + { + "start": 2466.26, + "end": 2467.64, + "probability": 0.7582 + }, + { + "start": 2468.08, + "end": 2469.0, + "probability": 0.9212 + }, + { + "start": 2469.16, + "end": 2472.0, + "probability": 0.9285 + }, + { + "start": 2472.16, + "end": 2473.0, + "probability": 0.8924 + }, + { + "start": 2473.44, + "end": 2477.52, + "probability": 0.7006 + }, + { + "start": 2477.56, + "end": 2481.26, + "probability": 0.3156 + }, + { + "start": 2481.76, + "end": 2485.32, + "probability": 0.9849 + }, + { + "start": 2486.02, + "end": 2490.3, + "probability": 0.9009 + }, + { + "start": 2491.14, + "end": 2495.32, + "probability": 0.9785 + }, + { + "start": 2495.8, + "end": 2501.18, + "probability": 0.9133 + }, + { + "start": 2501.7, + "end": 2505.38, + "probability": 0.9337 + }, + { + "start": 2505.7, + "end": 2506.46, + "probability": 0.8787 + }, + { + "start": 2506.62, + "end": 2509.66, + "probability": 0.9959 + }, + { + "start": 2509.74, + "end": 2513.98, + "probability": 0.9971 + }, + { + "start": 2515.91, + "end": 2521.32, + "probability": 0.7542 + }, + { + "start": 2521.8, + "end": 2522.18, + "probability": 0.4283 + }, + { + "start": 2522.28, + "end": 2524.02, + "probability": 0.4353 + }, + { + "start": 2524.54, + "end": 2527.44, + "probability": 0.9984 + }, + { + "start": 2528.0, + "end": 2530.48, + "probability": 0.9962 + }, + { + "start": 2530.48, + "end": 2533.82, + "probability": 0.9974 + }, + { + "start": 2534.16, + "end": 2536.22, + "probability": 0.9741 + }, + { + "start": 2536.62, + "end": 2540.38, + "probability": 0.9944 + }, + { + "start": 2540.6, + "end": 2542.28, + "probability": 0.6957 + }, + { + "start": 2542.84, + "end": 2544.98, + "probability": 0.8159 + }, + { + "start": 2545.48, + "end": 2547.38, + "probability": 0.9582 + }, + { + "start": 2547.72, + "end": 2549.67, + "probability": 0.9524 + }, + { + "start": 2550.28, + "end": 2554.22, + "probability": 0.9718 + }, + { + "start": 2554.28, + "end": 2555.04, + "probability": 0.6747 + }, + { + "start": 2555.18, + "end": 2559.62, + "probability": 0.9835 + }, + { + "start": 2559.98, + "end": 2564.76, + "probability": 0.9857 + }, + { + "start": 2565.2, + "end": 2570.28, + "probability": 0.9412 + }, + { + "start": 2570.76, + "end": 2572.76, + "probability": 0.8349 + }, + { + "start": 2573.24, + "end": 2575.49, + "probability": 0.9961 + }, + { + "start": 2576.46, + "end": 2578.18, + "probability": 0.9875 + }, + { + "start": 2578.44, + "end": 2584.74, + "probability": 0.9962 + }, + { + "start": 2585.14, + "end": 2588.74, + "probability": 0.883 + }, + { + "start": 2589.24, + "end": 2593.18, + "probability": 0.922 + }, + { + "start": 2593.46, + "end": 2593.7, + "probability": 0.6933 + }, + { + "start": 2595.38, + "end": 2597.82, + "probability": 0.5106 + }, + { + "start": 2597.94, + "end": 2600.4, + "probability": 0.7211 + }, + { + "start": 2600.52, + "end": 2600.98, + "probability": 0.3321 + }, + { + "start": 2601.06, + "end": 2601.4, + "probability": 0.37 + }, + { + "start": 2601.54, + "end": 2606.34, + "probability": 0.8587 + }, + { + "start": 2617.14, + "end": 2622.06, + "probability": 0.7331 + }, + { + "start": 2622.84, + "end": 2623.6, + "probability": 0.87 + }, + { + "start": 2624.74, + "end": 2628.02, + "probability": 0.9357 + }, + { + "start": 2628.14, + "end": 2629.68, + "probability": 0.2482 + }, + { + "start": 2630.36, + "end": 2631.41, + "probability": 0.8429 + }, + { + "start": 2632.82, + "end": 2635.34, + "probability": 0.9626 + }, + { + "start": 2635.76, + "end": 2639.78, + "probability": 0.9881 + }, + { + "start": 2639.9, + "end": 2640.54, + "probability": 0.6535 + }, + { + "start": 2641.8, + "end": 2642.74, + "probability": 0.6093 + }, + { + "start": 2643.14, + "end": 2646.3, + "probability": 0.8451 + }, + { + "start": 2647.54, + "end": 2653.02, + "probability": 0.922 + }, + { + "start": 2653.02, + "end": 2655.9, + "probability": 0.3323 + }, + { + "start": 2655.9, + "end": 2659.98, + "probability": 0.872 + }, + { + "start": 2660.46, + "end": 2662.06, + "probability": 0.8934 + }, + { + "start": 2662.16, + "end": 2663.38, + "probability": 0.9193 + }, + { + "start": 2663.42, + "end": 2665.12, + "probability": 0.6255 + }, + { + "start": 2665.8, + "end": 2670.42, + "probability": 0.9465 + }, + { + "start": 2670.54, + "end": 2674.22, + "probability": 0.8952 + }, + { + "start": 2676.08, + "end": 2677.8, + "probability": 0.8657 + }, + { + "start": 2679.34, + "end": 2683.13, + "probability": 0.3229 + }, + { + "start": 2683.9, + "end": 2684.7, + "probability": 0.9277 + }, + { + "start": 2685.87, + "end": 2688.92, + "probability": 0.9335 + }, + { + "start": 2690.36, + "end": 2692.07, + "probability": 0.9862 + }, + { + "start": 2693.8, + "end": 2700.18, + "probability": 0.9459 + }, + { + "start": 2700.76, + "end": 2701.76, + "probability": 0.922 + }, + { + "start": 2701.92, + "end": 2702.85, + "probability": 0.7872 + }, + { + "start": 2703.1, + "end": 2704.15, + "probability": 0.813 + }, + { + "start": 2704.54, + "end": 2707.2, + "probability": 0.6678 + }, + { + "start": 2707.64, + "end": 2708.12, + "probability": 0.5261 + }, + { + "start": 2709.2, + "end": 2710.18, + "probability": 0.7703 + }, + { + "start": 2711.94, + "end": 2716.22, + "probability": 0.8803 + }, + { + "start": 2716.86, + "end": 2719.9, + "probability": 0.8633 + }, + { + "start": 2721.6, + "end": 2724.0, + "probability": 0.9666 + }, + { + "start": 2724.06, + "end": 2725.62, + "probability": 0.6849 + }, + { + "start": 2726.76, + "end": 2726.96, + "probability": 0.8193 + }, + { + "start": 2727.94, + "end": 2729.42, + "probability": 0.823 + }, + { + "start": 2730.96, + "end": 2736.32, + "probability": 0.9409 + }, + { + "start": 2737.22, + "end": 2741.46, + "probability": 0.7388 + }, + { + "start": 2742.66, + "end": 2745.38, + "probability": 0.8853 + }, + { + "start": 2745.88, + "end": 2748.66, + "probability": 0.9334 + }, + { + "start": 2750.38, + "end": 2755.24, + "probability": 0.9824 + }, + { + "start": 2755.3, + "end": 2758.52, + "probability": 0.7408 + }, + { + "start": 2759.2, + "end": 2765.1, + "probability": 0.5303 + }, + { + "start": 2765.9, + "end": 2770.58, + "probability": 0.9153 + }, + { + "start": 2770.88, + "end": 2772.24, + "probability": 0.5669 + }, + { + "start": 2772.28, + "end": 2775.64, + "probability": 0.78 + }, + { + "start": 2776.6, + "end": 2779.28, + "probability": 0.7412 + }, + { + "start": 2779.88, + "end": 2785.47, + "probability": 0.9324 + }, + { + "start": 2786.44, + "end": 2789.58, + "probability": 0.9759 + }, + { + "start": 2789.94, + "end": 2794.84, + "probability": 0.8235 + }, + { + "start": 2795.72, + "end": 2797.96, + "probability": 0.9838 + }, + { + "start": 2798.72, + "end": 2798.94, + "probability": 0.6283 + }, + { + "start": 2800.22, + "end": 2800.82, + "probability": 0.7732 + }, + { + "start": 2801.62, + "end": 2805.48, + "probability": 0.9584 + }, + { + "start": 2805.52, + "end": 2806.2, + "probability": 0.8115 + }, + { + "start": 2806.42, + "end": 2808.2, + "probability": 0.9314 + }, + { + "start": 2808.66, + "end": 2810.22, + "probability": 0.9478 + }, + { + "start": 2810.42, + "end": 2811.02, + "probability": 0.8536 + }, + { + "start": 2811.04, + "end": 2812.5, + "probability": 0.9904 + }, + { + "start": 2823.62, + "end": 2824.82, + "probability": 0.4738 + }, + { + "start": 2825.36, + "end": 2828.32, + "probability": 0.7188 + }, + { + "start": 2829.02, + "end": 2832.4, + "probability": 0.9937 + }, + { + "start": 2833.28, + "end": 2834.1, + "probability": 0.9561 + }, + { + "start": 2835.0, + "end": 2841.12, + "probability": 0.9601 + }, + { + "start": 2841.74, + "end": 2845.02, + "probability": 0.9483 + }, + { + "start": 2845.72, + "end": 2849.84, + "probability": 0.9626 + }, + { + "start": 2850.42, + "end": 2853.14, + "probability": 0.9341 + }, + { + "start": 2853.66, + "end": 2856.52, + "probability": 0.9852 + }, + { + "start": 2857.02, + "end": 2858.84, + "probability": 0.9905 + }, + { + "start": 2858.94, + "end": 2862.86, + "probability": 0.9276 + }, + { + "start": 2863.56, + "end": 2868.7, + "probability": 0.9974 + }, + { + "start": 2869.62, + "end": 2873.5, + "probability": 0.9194 + }, + { + "start": 2873.92, + "end": 2876.2, + "probability": 0.8136 + }, + { + "start": 2877.06, + "end": 2880.18, + "probability": 0.9927 + }, + { + "start": 2881.0, + "end": 2886.46, + "probability": 0.9824 + }, + { + "start": 2886.62, + "end": 2887.52, + "probability": 0.8506 + }, + { + "start": 2887.98, + "end": 2893.26, + "probability": 0.9881 + }, + { + "start": 2893.68, + "end": 2897.98, + "probability": 0.9956 + }, + { + "start": 2898.64, + "end": 2900.16, + "probability": 0.9893 + }, + { + "start": 2900.68, + "end": 2901.7, + "probability": 0.8647 + }, + { + "start": 2902.08, + "end": 2902.64, + "probability": 0.867 + }, + { + "start": 2903.14, + "end": 2904.24, + "probability": 0.5031 + }, + { + "start": 2904.26, + "end": 2905.7, + "probability": 0.9553 + }, + { + "start": 2905.78, + "end": 2907.14, + "probability": 0.9849 + }, + { + "start": 2907.98, + "end": 2910.18, + "probability": 0.8762 + }, + { + "start": 2910.22, + "end": 2910.9, + "probability": 0.9746 + }, + { + "start": 2911.24, + "end": 2912.7, + "probability": 0.9755 + }, + { + "start": 2912.82, + "end": 2913.38, + "probability": 0.413 + }, + { + "start": 2914.04, + "end": 2914.92, + "probability": 0.7651 + }, + { + "start": 2915.06, + "end": 2918.64, + "probability": 0.8557 + }, + { + "start": 2919.24, + "end": 2922.64, + "probability": 0.9983 + }, + { + "start": 2923.18, + "end": 2923.74, + "probability": 0.7849 + }, + { + "start": 2923.82, + "end": 2927.4, + "probability": 0.9713 + }, + { + "start": 2927.84, + "end": 2930.08, + "probability": 0.7814 + }, + { + "start": 2930.64, + "end": 2936.34, + "probability": 0.9328 + }, + { + "start": 2936.4, + "end": 2938.2, + "probability": 0.6612 + }, + { + "start": 2939.06, + "end": 2942.12, + "probability": 0.9074 + }, + { + "start": 2942.28, + "end": 2944.96, + "probability": 0.9317 + }, + { + "start": 2946.22, + "end": 2947.48, + "probability": 0.7272 + }, + { + "start": 2948.82, + "end": 2957.5, + "probability": 0.9507 + }, + { + "start": 2958.38, + "end": 2961.34, + "probability": 0.9788 + }, + { + "start": 2962.42, + "end": 2964.28, + "probability": 0.9577 + }, + { + "start": 2965.34, + "end": 2966.94, + "probability": 0.9019 + }, + { + "start": 2967.6, + "end": 2971.82, + "probability": 0.9711 + }, + { + "start": 2972.88, + "end": 2976.2, + "probability": 0.9675 + }, + { + "start": 2976.96, + "end": 2979.76, + "probability": 0.9547 + }, + { + "start": 2980.64, + "end": 2984.42, + "probability": 0.9954 + }, + { + "start": 2984.42, + "end": 2989.0, + "probability": 0.9958 + }, + { + "start": 2991.24, + "end": 2994.84, + "probability": 0.9768 + }, + { + "start": 2995.08, + "end": 2996.2, + "probability": 0.8948 + }, + { + "start": 2996.6, + "end": 2999.84, + "probability": 0.8896 + }, + { + "start": 3000.2, + "end": 3002.4, + "probability": 0.9888 + }, + { + "start": 3003.56, + "end": 3005.52, + "probability": 0.741 + }, + { + "start": 3006.16, + "end": 3008.28, + "probability": 0.9008 + }, + { + "start": 3009.16, + "end": 3016.7, + "probability": 0.9902 + }, + { + "start": 3017.22, + "end": 3018.5, + "probability": 0.8256 + }, + { + "start": 3019.64, + "end": 3022.64, + "probability": 0.9867 + }, + { + "start": 3023.72, + "end": 3028.84, + "probability": 0.9753 + }, + { + "start": 3029.04, + "end": 3037.2, + "probability": 0.7827 + }, + { + "start": 3037.2, + "end": 3044.3, + "probability": 0.9964 + }, + { + "start": 3044.9, + "end": 3048.34, + "probability": 0.703 + }, + { + "start": 3048.8, + "end": 3049.59, + "probability": 0.9061 + }, + { + "start": 3049.9, + "end": 3056.04, + "probability": 0.9868 + }, + { + "start": 3056.12, + "end": 3058.62, + "probability": 0.8767 + }, + { + "start": 3059.22, + "end": 3061.02, + "probability": 0.9225 + }, + { + "start": 3061.34, + "end": 3063.38, + "probability": 0.7939 + }, + { + "start": 3063.98, + "end": 3067.4, + "probability": 0.9912 + }, + { + "start": 3068.04, + "end": 3070.58, + "probability": 0.8983 + }, + { + "start": 3071.2, + "end": 3073.08, + "probability": 0.9663 + }, + { + "start": 3073.6, + "end": 3079.06, + "probability": 0.9564 + }, + { + "start": 3079.2, + "end": 3080.06, + "probability": 0.9726 + }, + { + "start": 3080.8, + "end": 3083.19, + "probability": 0.9734 + }, + { + "start": 3083.66, + "end": 3088.78, + "probability": 0.9722 + }, + { + "start": 3089.72, + "end": 3092.54, + "probability": 0.7948 + }, + { + "start": 3093.16, + "end": 3097.84, + "probability": 0.9966 + }, + { + "start": 3098.44, + "end": 3099.42, + "probability": 0.9889 + }, + { + "start": 3099.54, + "end": 3100.86, + "probability": 0.4357 + }, + { + "start": 3101.06, + "end": 3103.2, + "probability": 0.1795 + }, + { + "start": 3103.52, + "end": 3104.16, + "probability": 0.2973 + }, + { + "start": 3104.5, + "end": 3105.81, + "probability": 0.6459 + }, + { + "start": 3105.9, + "end": 3108.92, + "probability": 0.8749 + }, + { + "start": 3109.46, + "end": 3111.18, + "probability": 0.9573 + }, + { + "start": 3111.6, + "end": 3112.82, + "probability": 0.9676 + }, + { + "start": 3113.64, + "end": 3114.18, + "probability": 0.7578 + }, + { + "start": 3114.34, + "end": 3115.82, + "probability": 0.8033 + }, + { + "start": 3115.98, + "end": 3117.46, + "probability": 0.8188 + }, + { + "start": 3117.54, + "end": 3121.84, + "probability": 0.7231 + }, + { + "start": 3122.48, + "end": 3124.24, + "probability": 0.9366 + }, + { + "start": 3124.78, + "end": 3127.62, + "probability": 0.9919 + }, + { + "start": 3128.2, + "end": 3129.04, + "probability": 0.9555 + }, + { + "start": 3129.6, + "end": 3131.46, + "probability": 0.9725 + }, + { + "start": 3131.86, + "end": 3133.32, + "probability": 0.9684 + }, + { + "start": 3133.36, + "end": 3136.04, + "probability": 0.9771 + }, + { + "start": 3136.48, + "end": 3139.5, + "probability": 0.9966 + }, + { + "start": 3139.66, + "end": 3140.3, + "probability": 0.9644 + }, + { + "start": 3140.62, + "end": 3142.8, + "probability": 0.9884 + }, + { + "start": 3142.88, + "end": 3146.0, + "probability": 0.9991 + }, + { + "start": 3146.16, + "end": 3146.78, + "probability": 0.9497 + }, + { + "start": 3146.8, + "end": 3148.92, + "probability": 0.9302 + }, + { + "start": 3149.22, + "end": 3151.42, + "probability": 0.9519 + }, + { + "start": 3151.84, + "end": 3152.88, + "probability": 0.9077 + }, + { + "start": 3153.02, + "end": 3154.32, + "probability": 0.8167 + }, + { + "start": 3154.36, + "end": 3156.74, + "probability": 0.8281 + }, + { + "start": 3157.04, + "end": 3159.86, + "probability": 0.8118 + }, + { + "start": 3159.92, + "end": 3160.56, + "probability": 0.8218 + }, + { + "start": 3160.84, + "end": 3162.06, + "probability": 0.9638 + }, + { + "start": 3162.4, + "end": 3163.96, + "probability": 0.9822 + }, + { + "start": 3165.0, + "end": 3168.06, + "probability": 0.4794 + }, + { + "start": 3168.1, + "end": 3173.28, + "probability": 0.905 + }, + { + "start": 3174.5, + "end": 3174.7, + "probability": 0.376 + }, + { + "start": 3174.78, + "end": 3177.26, + "probability": 0.9639 + }, + { + "start": 3181.5, + "end": 3181.98, + "probability": 0.7844 + }, + { + "start": 3190.92, + "end": 3192.56, + "probability": 0.9175 + }, + { + "start": 3193.63, + "end": 3197.54, + "probability": 0.728 + }, + { + "start": 3198.26, + "end": 3201.04, + "probability": 0.9683 + }, + { + "start": 3202.06, + "end": 3203.5, + "probability": 0.9277 + }, + { + "start": 3203.92, + "end": 3204.2, + "probability": 0.4865 + }, + { + "start": 3204.38, + "end": 3206.44, + "probability": 0.9103 + }, + { + "start": 3206.5, + "end": 3207.24, + "probability": 0.6177 + }, + { + "start": 3208.4, + "end": 3212.54, + "probability": 0.9718 + }, + { + "start": 3213.82, + "end": 3215.52, + "probability": 0.9513 + }, + { + "start": 3216.8, + "end": 3219.72, + "probability": 0.9889 + }, + { + "start": 3221.3, + "end": 3221.62, + "probability": 0.3748 + }, + { + "start": 3223.22, + "end": 3224.8, + "probability": 0.7477 + }, + { + "start": 3226.4, + "end": 3230.12, + "probability": 0.9098 + }, + { + "start": 3231.02, + "end": 3233.38, + "probability": 0.9973 + }, + { + "start": 3234.48, + "end": 3237.68, + "probability": 0.8351 + }, + { + "start": 3238.7, + "end": 3242.14, + "probability": 0.7253 + }, + { + "start": 3242.14, + "end": 3245.26, + "probability": 0.9508 + }, + { + "start": 3246.04, + "end": 3250.66, + "probability": 0.9902 + }, + { + "start": 3251.42, + "end": 3255.6, + "probability": 0.9689 + }, + { + "start": 3255.7, + "end": 3256.32, + "probability": 0.5728 + }, + { + "start": 3256.5, + "end": 3256.82, + "probability": 0.85 + }, + { + "start": 3257.36, + "end": 3260.78, + "probability": 0.9065 + }, + { + "start": 3261.52, + "end": 3264.64, + "probability": 0.7584 + }, + { + "start": 3265.28, + "end": 3266.56, + "probability": 0.922 + }, + { + "start": 3267.38, + "end": 3271.84, + "probability": 0.9561 + }, + { + "start": 3272.06, + "end": 3273.44, + "probability": 0.5261 + }, + { + "start": 3273.54, + "end": 3274.35, + "probability": 0.6216 + }, + { + "start": 3274.6, + "end": 3275.04, + "probability": 0.6984 + }, + { + "start": 3275.4, + "end": 3275.68, + "probability": 0.7874 + }, + { + "start": 3280.68, + "end": 3282.2, + "probability": 0.999 + }, + { + "start": 3283.92, + "end": 3287.18, + "probability": 0.6051 + }, + { + "start": 3287.68, + "end": 3294.58, + "probability": 0.9858 + }, + { + "start": 3294.58, + "end": 3298.96, + "probability": 0.9994 + }, + { + "start": 3300.08, + "end": 3302.64, + "probability": 0.9918 + }, + { + "start": 3303.6, + "end": 3304.98, + "probability": 0.9241 + }, + { + "start": 3305.28, + "end": 3309.4, + "probability": 0.9944 + }, + { + "start": 3309.46, + "end": 3314.84, + "probability": 0.9385 + }, + { + "start": 3315.12, + "end": 3319.54, + "probability": 0.9942 + }, + { + "start": 3320.12, + "end": 3322.6, + "probability": 0.8448 + }, + { + "start": 3323.6, + "end": 3328.0, + "probability": 0.8803 + }, + { + "start": 3328.0, + "end": 3334.4, + "probability": 0.7851 + }, + { + "start": 3335.28, + "end": 3336.98, + "probability": 0.792 + }, + { + "start": 3337.54, + "end": 3340.02, + "probability": 0.9683 + }, + { + "start": 3340.72, + "end": 3344.82, + "probability": 0.9989 + }, + { + "start": 3344.82, + "end": 3349.28, + "probability": 0.992 + }, + { + "start": 3349.68, + "end": 3350.2, + "probability": 0.6695 + }, + { + "start": 3350.26, + "end": 3355.28, + "probability": 0.929 + }, + { + "start": 3356.08, + "end": 3359.03, + "probability": 0.9929 + }, + { + "start": 3359.2, + "end": 3362.24, + "probability": 0.984 + }, + { + "start": 3363.1, + "end": 3365.62, + "probability": 0.7108 + }, + { + "start": 3367.78, + "end": 3369.08, + "probability": 0.8779 + }, + { + "start": 3369.28, + "end": 3371.04, + "probability": 0.8364 + }, + { + "start": 3371.12, + "end": 3373.14, + "probability": 0.9818 + }, + { + "start": 3373.78, + "end": 3374.08, + "probability": 0.1678 + }, + { + "start": 3374.08, + "end": 3378.06, + "probability": 0.9836 + }, + { + "start": 3378.42, + "end": 3381.55, + "probability": 0.9767 + }, + { + "start": 3381.98, + "end": 3384.14, + "probability": 0.9925 + }, + { + "start": 3384.66, + "end": 3386.34, + "probability": 0.9846 + }, + { + "start": 3386.44, + "end": 3387.5, + "probability": 0.9146 + }, + { + "start": 3387.86, + "end": 3388.78, + "probability": 0.5685 + }, + { + "start": 3388.96, + "end": 3392.66, + "probability": 0.9875 + }, + { + "start": 3393.0, + "end": 3397.89, + "probability": 0.9678 + }, + { + "start": 3398.26, + "end": 3405.08, + "probability": 0.9824 + }, + { + "start": 3405.52, + "end": 3406.88, + "probability": 0.9813 + }, + { + "start": 3407.26, + "end": 3410.97, + "probability": 0.9961 + }, + { + "start": 3411.7, + "end": 3414.22, + "probability": 0.8194 + }, + { + "start": 3414.84, + "end": 3415.44, + "probability": 0.7334 + }, + { + "start": 3415.62, + "end": 3416.16, + "probability": 0.93 + }, + { + "start": 3416.16, + "end": 3419.32, + "probability": 0.769 + }, + { + "start": 3419.48, + "end": 3421.82, + "probability": 0.9753 + }, + { + "start": 3422.18, + "end": 3425.46, + "probability": 0.3738 + }, + { + "start": 3425.88, + "end": 3426.86, + "probability": 0.9724 + }, + { + "start": 3427.62, + "end": 3430.54, + "probability": 0.9914 + }, + { + "start": 3430.58, + "end": 3435.04, + "probability": 0.9941 + }, + { + "start": 3435.88, + "end": 3441.58, + "probability": 0.9897 + }, + { + "start": 3441.92, + "end": 3443.68, + "probability": 0.8952 + }, + { + "start": 3444.4, + "end": 3445.38, + "probability": 0.953 + }, + { + "start": 3445.86, + "end": 3448.16, + "probability": 0.9051 + }, + { + "start": 3448.64, + "end": 3450.5, + "probability": 0.9258 + }, + { + "start": 3450.92, + "end": 3454.31, + "probability": 0.8722 + }, + { + "start": 3455.06, + "end": 3461.96, + "probability": 0.9822 + }, + { + "start": 3462.7, + "end": 3465.9, + "probability": 0.7121 + }, + { + "start": 3466.48, + "end": 3468.78, + "probability": 0.9271 + }, + { + "start": 3468.94, + "end": 3469.7, + "probability": 0.6354 + }, + { + "start": 3469.98, + "end": 3474.38, + "probability": 0.9717 + }, + { + "start": 3474.94, + "end": 3477.7, + "probability": 0.9711 + }, + { + "start": 3477.92, + "end": 3481.1, + "probability": 0.885 + }, + { + "start": 3481.94, + "end": 3482.68, + "probability": 0.7269 + }, + { + "start": 3482.72, + "end": 3483.24, + "probability": 0.7885 + }, + { + "start": 3483.3, + "end": 3487.5, + "probability": 0.9935 + }, + { + "start": 3487.5, + "end": 3493.96, + "probability": 0.9958 + }, + { + "start": 3494.12, + "end": 3495.56, + "probability": 0.8897 + }, + { + "start": 3496.16, + "end": 3499.3, + "probability": 0.9896 + }, + { + "start": 3499.3, + "end": 3503.58, + "probability": 0.9759 + }, + { + "start": 3504.84, + "end": 3507.9, + "probability": 0.8823 + }, + { + "start": 3507.9, + "end": 3511.7, + "probability": 0.9731 + }, + { + "start": 3512.16, + "end": 3516.16, + "probability": 0.9779 + }, + { + "start": 3516.58, + "end": 3518.82, + "probability": 0.9223 + }, + { + "start": 3519.4, + "end": 3522.58, + "probability": 0.9922 + }, + { + "start": 3523.02, + "end": 3528.78, + "probability": 0.9912 + }, + { + "start": 3529.04, + "end": 3532.4, + "probability": 0.9989 + }, + { + "start": 3533.34, + "end": 3537.86, + "probability": 0.9677 + }, + { + "start": 3537.96, + "end": 3540.6, + "probability": 0.7627 + }, + { + "start": 3540.8, + "end": 3542.56, + "probability": 0.5734 + }, + { + "start": 3542.96, + "end": 3545.74, + "probability": 0.9561 + }, + { + "start": 3546.44, + "end": 3549.16, + "probability": 0.9886 + }, + { + "start": 3549.64, + "end": 3551.42, + "probability": 0.9372 + }, + { + "start": 3551.64, + "end": 3553.88, + "probability": 0.9804 + }, + { + "start": 3563.74, + "end": 3566.56, + "probability": 0.7279 + }, + { + "start": 3567.06, + "end": 3567.54, + "probability": 0.8744 + }, + { + "start": 3567.62, + "end": 3569.14, + "probability": 0.9844 + }, + { + "start": 3569.58, + "end": 3572.44, + "probability": 0.9478 + }, + { + "start": 3573.4, + "end": 3577.24, + "probability": 0.9528 + }, + { + "start": 3577.24, + "end": 3580.08, + "probability": 0.9701 + }, + { + "start": 3580.74, + "end": 3581.38, + "probability": 0.7307 + }, + { + "start": 3581.58, + "end": 3582.02, + "probability": 0.7973 + }, + { + "start": 3582.12, + "end": 3583.92, + "probability": 0.9934 + }, + { + "start": 3583.92, + "end": 3586.64, + "probability": 0.942 + }, + { + "start": 3587.34, + "end": 3587.6, + "probability": 0.865 + }, + { + "start": 3587.72, + "end": 3588.86, + "probability": 0.9578 + }, + { + "start": 3589.02, + "end": 3590.1, + "probability": 0.7927 + }, + { + "start": 3590.6, + "end": 3591.36, + "probability": 0.9958 + }, + { + "start": 3591.9, + "end": 3594.48, + "probability": 0.8259 + }, + { + "start": 3595.12, + "end": 3595.88, + "probability": 0.6156 + }, + { + "start": 3596.1, + "end": 3597.86, + "probability": 0.9541 + }, + { + "start": 3597.88, + "end": 3600.71, + "probability": 0.9974 + }, + { + "start": 3601.34, + "end": 3603.98, + "probability": 0.9819 + }, + { + "start": 3604.8, + "end": 3607.56, + "probability": 0.928 + }, + { + "start": 3607.64, + "end": 3610.1, + "probability": 0.9917 + }, + { + "start": 3610.7, + "end": 3614.18, + "probability": 0.9712 + }, + { + "start": 3614.78, + "end": 3615.1, + "probability": 0.394 + }, + { + "start": 3615.18, + "end": 3616.98, + "probability": 0.9905 + }, + { + "start": 3616.98, + "end": 3619.02, + "probability": 0.7829 + }, + { + "start": 3619.36, + "end": 3622.48, + "probability": 0.9897 + }, + { + "start": 3623.38, + "end": 3624.28, + "probability": 0.3769 + }, + { + "start": 3625.14, + "end": 3625.24, + "probability": 0.2235 + }, + { + "start": 3625.24, + "end": 3626.68, + "probability": 0.6991 + }, + { + "start": 3626.7, + "end": 3627.24, + "probability": 0.8874 + }, + { + "start": 3627.26, + "end": 3629.62, + "probability": 0.9214 + }, + { + "start": 3651.7, + "end": 3652.68, + "probability": 0.4009 + }, + { + "start": 3652.84, + "end": 3654.66, + "probability": 0.8499 + }, + { + "start": 3654.82, + "end": 3656.26, + "probability": 0.6479 + }, + { + "start": 3656.86, + "end": 3657.38, + "probability": 0.7019 + }, + { + "start": 3657.94, + "end": 3658.44, + "probability": 0.7194 + }, + { + "start": 3658.98, + "end": 3659.88, + "probability": 0.8387 + }, + { + "start": 3659.92, + "end": 3665.74, + "probability": 0.9607 + }, + { + "start": 3670.28, + "end": 3675.02, + "probability": 0.9972 + }, + { + "start": 3675.02, + "end": 3680.1, + "probability": 0.9947 + }, + { + "start": 3680.76, + "end": 3684.76, + "probability": 0.9096 + }, + { + "start": 3684.76, + "end": 3688.08, + "probability": 0.9769 + }, + { + "start": 3688.52, + "end": 3690.12, + "probability": 0.9962 + }, + { + "start": 3690.9, + "end": 3694.96, + "probability": 0.9852 + }, + { + "start": 3694.96, + "end": 3699.22, + "probability": 0.999 + }, + { + "start": 3699.22, + "end": 3703.94, + "probability": 0.9655 + }, + { + "start": 3704.06, + "end": 3704.52, + "probability": 0.8727 + }, + { + "start": 3704.56, + "end": 3707.1, + "probability": 0.9241 + }, + { + "start": 3707.2, + "end": 3708.54, + "probability": 0.449 + }, + { + "start": 3709.22, + "end": 3713.88, + "probability": 0.7839 + }, + { + "start": 3713.98, + "end": 3717.8, + "probability": 0.4214 + }, + { + "start": 3718.0, + "end": 3720.08, + "probability": 0.7912 + }, + { + "start": 3720.56, + "end": 3721.3, + "probability": 0.5059 + }, + { + "start": 3721.4, + "end": 3721.72, + "probability": 0.6151 + }, + { + "start": 3721.74, + "end": 3721.74, + "probability": 0.6759 + }, + { + "start": 3721.74, + "end": 3724.82, + "probability": 0.8614 + }, + { + "start": 3725.34, + "end": 3725.64, + "probability": 0.8082 + }, + { + "start": 3726.4, + "end": 3730.42, + "probability": 0.9793 + }, + { + "start": 3730.42, + "end": 3734.98, + "probability": 0.986 + }, + { + "start": 3735.62, + "end": 3740.68, + "probability": 0.9961 + }, + { + "start": 3740.84, + "end": 3743.34, + "probability": 0.9061 + }, + { + "start": 3743.4, + "end": 3748.0, + "probability": 0.9681 + }, + { + "start": 3748.42, + "end": 3752.94, + "probability": 0.9963 + }, + { + "start": 3753.68, + "end": 3756.5, + "probability": 0.9875 + }, + { + "start": 3756.5, + "end": 3760.96, + "probability": 0.976 + }, + { + "start": 3761.6, + "end": 3764.82, + "probability": 0.9666 + }, + { + "start": 3765.04, + "end": 3765.6, + "probability": 0.6334 + }, + { + "start": 3765.84, + "end": 3767.92, + "probability": 0.8361 + }, + { + "start": 3768.2, + "end": 3770.36, + "probability": 0.9957 + }, + { + "start": 3770.94, + "end": 3771.46, + "probability": 0.9694 + }, + { + "start": 3772.16, + "end": 3772.6, + "probability": 0.8405 + }, + { + "start": 3773.14, + "end": 3775.94, + "probability": 0.9977 + }, + { + "start": 3776.16, + "end": 3779.5, + "probability": 0.9959 + }, + { + "start": 3780.34, + "end": 3782.9, + "probability": 0.9979 + }, + { + "start": 3783.04, + "end": 3786.08, + "probability": 0.8785 + }, + { + "start": 3786.84, + "end": 3792.74, + "probability": 0.9354 + }, + { + "start": 3793.28, + "end": 3796.84, + "probability": 0.9967 + }, + { + "start": 3797.44, + "end": 3801.54, + "probability": 0.9476 + }, + { + "start": 3802.04, + "end": 3805.4, + "probability": 0.9381 + }, + { + "start": 3806.18, + "end": 3808.4, + "probability": 0.8256 + }, + { + "start": 3809.02, + "end": 3813.06, + "probability": 0.9964 + }, + { + "start": 3814.2, + "end": 3815.33, + "probability": 0.8352 + }, + { + "start": 3816.52, + "end": 3821.28, + "probability": 0.2372 + }, + { + "start": 3821.28, + "end": 3823.46, + "probability": 0.7903 + }, + { + "start": 3823.62, + "end": 3824.74, + "probability": 0.5403 + }, + { + "start": 3825.26, + "end": 3827.42, + "probability": 0.7664 + }, + { + "start": 3827.5, + "end": 3829.28, + "probability": 0.865 + }, + { + "start": 3831.12, + "end": 3833.86, + "probability": 0.2369 + }, + { + "start": 3849.72, + "end": 3849.72, + "probability": 0.0003 + }, + { + "start": 3854.34, + "end": 3856.04, + "probability": 0.1675 + }, + { + "start": 3856.12, + "end": 3856.12, + "probability": 0.0843 + }, + { + "start": 3856.14, + "end": 3856.14, + "probability": 0.0277 + }, + { + "start": 3856.14, + "end": 3857.32, + "probability": 0.254 + }, + { + "start": 3857.44, + "end": 3859.28, + "probability": 0.4983 + }, + { + "start": 3861.57, + "end": 3862.1, + "probability": 0.0529 + }, + { + "start": 3862.84, + "end": 3862.84, + "probability": 0.1072 + }, + { + "start": 3862.84, + "end": 3862.84, + "probability": 0.0935 + }, + { + "start": 3862.84, + "end": 3862.84, + "probability": 0.1008 + }, + { + "start": 3862.84, + "end": 3862.84, + "probability": 0.099 + }, + { + "start": 3862.84, + "end": 3863.08, + "probability": 0.5482 + }, + { + "start": 3863.34, + "end": 3865.31, + "probability": 0.2444 + }, + { + "start": 3867.06, + "end": 3868.78, + "probability": 0.0656 + }, + { + "start": 3868.78, + "end": 3868.78, + "probability": 0.0219 + }, + { + "start": 3868.78, + "end": 3868.78, + "probability": 0.0552 + }, + { + "start": 3868.78, + "end": 3868.78, + "probability": 0.0432 + }, + { + "start": 3868.78, + "end": 3871.4, + "probability": 0.6497 + }, + { + "start": 3871.88, + "end": 3874.24, + "probability": 0.8501 + }, + { + "start": 3888.54, + "end": 3890.1, + "probability": 0.9117 + }, + { + "start": 3892.12, + "end": 3894.64, + "probability": 0.7871 + }, + { + "start": 3897.06, + "end": 3901.78, + "probability": 0.9844 + }, + { + "start": 3906.42, + "end": 3908.9, + "probability": 0.9459 + }, + { + "start": 3910.88, + "end": 3919.08, + "probability": 0.8455 + }, + { + "start": 3920.4, + "end": 3920.4, + "probability": 0.2933 + }, + { + "start": 3920.4, + "end": 3921.46, + "probability": 0.9879 + }, + { + "start": 3922.92, + "end": 3924.7, + "probability": 0.9489 + }, + { + "start": 3924.86, + "end": 3929.08, + "probability": 0.9858 + }, + { + "start": 3930.8, + "end": 3933.62, + "probability": 0.9985 + }, + { + "start": 3933.88, + "end": 3934.16, + "probability": 0.8423 + }, + { + "start": 3936.24, + "end": 3937.06, + "probability": 0.6761 + }, + { + "start": 3937.26, + "end": 3940.7, + "probability": 0.8975 + }, + { + "start": 3941.0, + "end": 3943.0, + "probability": 0.9268 + }, + { + "start": 3943.9, + "end": 3949.54, + "probability": 0.9705 + }, + { + "start": 3951.38, + "end": 3956.2, + "probability": 0.9067 + }, + { + "start": 3959.27, + "end": 3968.36, + "probability": 0.9744 + }, + { + "start": 3969.78, + "end": 3974.18, + "probability": 0.9794 + }, + { + "start": 3975.28, + "end": 3976.66, + "probability": 0.5025 + }, + { + "start": 3976.76, + "end": 3977.48, + "probability": 0.686 + }, + { + "start": 3977.7, + "end": 3978.66, + "probability": 0.9307 + }, + { + "start": 3979.3, + "end": 3980.62, + "probability": 0.6843 + }, + { + "start": 3980.68, + "end": 3982.96, + "probability": 0.8633 + }, + { + "start": 3983.9, + "end": 3985.0, + "probability": 0.6756 + }, + { + "start": 3985.64, + "end": 3988.56, + "probability": 0.8998 + }, + { + "start": 3990.42, + "end": 3993.28, + "probability": 0.7778 + }, + { + "start": 3994.34, + "end": 3999.54, + "probability": 0.9267 + }, + { + "start": 4001.66, + "end": 4005.5, + "probability": 0.9702 + }, + { + "start": 4005.66, + "end": 4007.52, + "probability": 0.8103 + }, + { + "start": 4008.16, + "end": 4010.48, + "probability": 0.9668 + }, + { + "start": 4012.9, + "end": 4015.24, + "probability": 0.9238 + }, + { + "start": 4015.5, + "end": 4017.16, + "probability": 0.9873 + }, + { + "start": 4017.38, + "end": 4021.34, + "probability": 0.8756 + }, + { + "start": 4021.72, + "end": 4021.84, + "probability": 0.5581 + }, + { + "start": 4022.24, + "end": 4025.06, + "probability": 0.9521 + }, + { + "start": 4025.7, + "end": 4026.68, + "probability": 0.9614 + }, + { + "start": 4027.86, + "end": 4028.34, + "probability": 0.7939 + }, + { + "start": 4029.34, + "end": 4031.9, + "probability": 0.9423 + }, + { + "start": 4031.96, + "end": 4035.92, + "probability": 0.9517 + }, + { + "start": 4037.88, + "end": 4042.86, + "probability": 0.999 + }, + { + "start": 4043.06, + "end": 4046.7, + "probability": 0.8387 + }, + { + "start": 4048.04, + "end": 4051.3, + "probability": 0.9988 + }, + { + "start": 4052.64, + "end": 4054.88, + "probability": 0.9976 + }, + { + "start": 4055.19, + "end": 4060.57, + "probability": 0.4346 + }, + { + "start": 4061.62, + "end": 4061.9, + "probability": 0.3032 + }, + { + "start": 4061.96, + "end": 4065.9, + "probability": 0.9138 + }, + { + "start": 4066.06, + "end": 4068.74, + "probability": 0.7228 + }, + { + "start": 4068.84, + "end": 4069.94, + "probability": 0.8915 + }, + { + "start": 4071.04, + "end": 4074.8, + "probability": 0.9917 + }, + { + "start": 4074.88, + "end": 4076.57, + "probability": 0.9883 + }, + { + "start": 4077.58, + "end": 4080.1, + "probability": 0.9124 + }, + { + "start": 4081.72, + "end": 4083.76, + "probability": 0.7466 + }, + { + "start": 4085.0, + "end": 4086.94, + "probability": 0.853 + }, + { + "start": 4088.08, + "end": 4092.96, + "probability": 0.9987 + }, + { + "start": 4093.68, + "end": 4096.92, + "probability": 0.9855 + }, + { + "start": 4098.14, + "end": 4100.46, + "probability": 0.9489 + }, + { + "start": 4101.96, + "end": 4107.46, + "probability": 0.9131 + }, + { + "start": 4108.26, + "end": 4110.2, + "probability": 0.9907 + }, + { + "start": 4110.38, + "end": 4115.64, + "probability": 0.8997 + }, + { + "start": 4116.0, + "end": 4117.72, + "probability": 0.9839 + }, + { + "start": 4118.8, + "end": 4120.89, + "probability": 0.9873 + }, + { + "start": 4122.66, + "end": 4125.88, + "probability": 0.6939 + }, + { + "start": 4127.52, + "end": 4129.68, + "probability": 0.9595 + }, + { + "start": 4130.4, + "end": 4138.04, + "probability": 0.9668 + }, + { + "start": 4138.04, + "end": 4142.52, + "probability": 0.9934 + }, + { + "start": 4143.38, + "end": 4146.56, + "probability": 0.9795 + }, + { + "start": 4146.56, + "end": 4151.5, + "probability": 0.9982 + }, + { + "start": 4152.24, + "end": 4153.18, + "probability": 0.5909 + }, + { + "start": 4154.48, + "end": 4155.66, + "probability": 0.8381 + }, + { + "start": 4155.76, + "end": 4156.25, + "probability": 0.9165 + }, + { + "start": 4156.6, + "end": 4157.6, + "probability": 0.9143 + }, + { + "start": 4157.82, + "end": 4158.52, + "probability": 0.6806 + }, + { + "start": 4160.04, + "end": 4166.54, + "probability": 0.9949 + }, + { + "start": 4168.14, + "end": 4170.92, + "probability": 0.9424 + }, + { + "start": 4171.56, + "end": 4173.56, + "probability": 0.8605 + }, + { + "start": 4174.78, + "end": 4175.44, + "probability": 0.7556 + }, + { + "start": 4176.04, + "end": 4180.72, + "probability": 0.8741 + }, + { + "start": 4181.49, + "end": 4184.0, + "probability": 0.5047 + }, + { + "start": 4184.68, + "end": 4187.3, + "probability": 0.9932 + }, + { + "start": 4189.32, + "end": 4193.4, + "probability": 0.941 + }, + { + "start": 4193.5, + "end": 4195.0, + "probability": 0.9928 + }, + { + "start": 4195.6, + "end": 4198.99, + "probability": 0.9955 + }, + { + "start": 4199.48, + "end": 4204.24, + "probability": 0.9858 + }, + { + "start": 4204.96, + "end": 4206.02, + "probability": 0.5981 + }, + { + "start": 4206.64, + "end": 4208.79, + "probability": 0.9946 + }, + { + "start": 4209.38, + "end": 4212.2, + "probability": 0.988 + }, + { + "start": 4213.38, + "end": 4214.82, + "probability": 0.463 + }, + { + "start": 4215.04, + "end": 4215.88, + "probability": 0.8431 + }, + { + "start": 4215.98, + "end": 4218.18, + "probability": 0.95 + }, + { + "start": 4218.18, + "end": 4218.18, + "probability": 0.1631 + }, + { + "start": 4218.32, + "end": 4220.66, + "probability": 0.92 + }, + { + "start": 4220.9, + "end": 4223.2, + "probability": 0.5437 + }, + { + "start": 4223.36, + "end": 4223.36, + "probability": 0.1505 + }, + { + "start": 4223.36, + "end": 4223.36, + "probability": 0.0455 + }, + { + "start": 4223.36, + "end": 4223.36, + "probability": 0.0222 + }, + { + "start": 4224.08, + "end": 4226.6, + "probability": 0.4974 + }, + { + "start": 4227.7, + "end": 4234.13, + "probability": 0.7763 + }, + { + "start": 4234.8, + "end": 4235.06, + "probability": 0.1887 + }, + { + "start": 4235.86, + "end": 4237.1, + "probability": 0.728 + }, + { + "start": 4237.64, + "end": 4239.06, + "probability": 0.9222 + }, + { + "start": 4239.08, + "end": 4240.7, + "probability": 0.9458 + }, + { + "start": 4241.2, + "end": 4243.9, + "probability": 0.9608 + }, + { + "start": 4245.06, + "end": 4248.52, + "probability": 0.8674 + }, + { + "start": 4248.58, + "end": 4251.04, + "probability": 0.9735 + }, + { + "start": 4251.44, + "end": 4254.9, + "probability": 0.981 + }, + { + "start": 4255.44, + "end": 4257.54, + "probability": 0.9193 + }, + { + "start": 4258.26, + "end": 4262.58, + "probability": 0.9751 + }, + { + "start": 4262.64, + "end": 4263.94, + "probability": 0.9227 + }, + { + "start": 4264.44, + "end": 4265.5, + "probability": 0.5672 + }, + { + "start": 4266.04, + "end": 4267.16, + "probability": 0.9993 + }, + { + "start": 4267.92, + "end": 4271.92, + "probability": 0.9811 + }, + { + "start": 4272.6, + "end": 4273.6, + "probability": 0.9452 + }, + { + "start": 4274.0, + "end": 4274.22, + "probability": 0.8611 + }, + { + "start": 4275.02, + "end": 4276.12, + "probability": 0.5601 + }, + { + "start": 4276.72, + "end": 4278.64, + "probability": 0.854 + }, + { + "start": 4278.8, + "end": 4282.64, + "probability": 0.9001 + }, + { + "start": 4282.98, + "end": 4287.72, + "probability": 0.9805 + }, + { + "start": 4288.2, + "end": 4290.03, + "probability": 0.9929 + }, + { + "start": 4290.42, + "end": 4291.44, + "probability": 0.9525 + }, + { + "start": 4291.82, + "end": 4292.7, + "probability": 0.9912 + }, + { + "start": 4292.84, + "end": 4293.26, + "probability": 0.8484 + }, + { + "start": 4294.04, + "end": 4296.69, + "probability": 0.9924 + }, + { + "start": 4297.84, + "end": 4298.42, + "probability": 0.8243 + }, + { + "start": 4298.5, + "end": 4300.02, + "probability": 0.8904 + }, + { + "start": 4300.08, + "end": 4300.68, + "probability": 0.8839 + }, + { + "start": 4300.74, + "end": 4301.56, + "probability": 0.5965 + }, + { + "start": 4302.02, + "end": 4304.08, + "probability": 0.8505 + }, + { + "start": 4314.62, + "end": 4316.38, + "probability": 0.4481 + }, + { + "start": 4317.22, + "end": 4317.28, + "probability": 0.3922 + }, + { + "start": 4317.28, + "end": 4318.4, + "probability": 0.8038 + }, + { + "start": 4318.48, + "end": 4319.08, + "probability": 0.8665 + }, + { + "start": 4319.5, + "end": 4320.26, + "probability": 0.7337 + }, + { + "start": 4321.3, + "end": 4325.44, + "probability": 0.9409 + }, + { + "start": 4328.33, + "end": 4330.5, + "probability": 0.9726 + }, + { + "start": 4330.74, + "end": 4330.82, + "probability": 0.1462 + }, + { + "start": 4330.88, + "end": 4331.58, + "probability": 0.847 + }, + { + "start": 4331.64, + "end": 4334.6, + "probability": 0.9948 + }, + { + "start": 4334.78, + "end": 4335.0, + "probability": 0.3392 + }, + { + "start": 4335.0, + "end": 4335.78, + "probability": 0.6931 + }, + { + "start": 4337.69, + "end": 4342.28, + "probability": 0.9982 + }, + { + "start": 4342.28, + "end": 4349.72, + "probability": 0.9681 + }, + { + "start": 4350.28, + "end": 4351.76, + "probability": 0.9874 + }, + { + "start": 4351.8, + "end": 4354.34, + "probability": 0.9595 + }, + { + "start": 4355.5, + "end": 4358.8, + "probability": 0.8574 + }, + { + "start": 4358.8, + "end": 4362.8, + "probability": 0.9445 + }, + { + "start": 4363.9, + "end": 4367.08, + "probability": 0.4416 + }, + { + "start": 4367.22, + "end": 4368.36, + "probability": 0.5763 + }, + { + "start": 4368.44, + "end": 4369.16, + "probability": 0.5528 + }, + { + "start": 4370.12, + "end": 4372.66, + "probability": 0.7959 + }, + { + "start": 4373.92, + "end": 4375.18, + "probability": 0.8979 + }, + { + "start": 4376.76, + "end": 4377.64, + "probability": 0.9231 + }, + { + "start": 4378.14, + "end": 4382.36, + "probability": 0.9963 + }, + { + "start": 4382.96, + "end": 4384.86, + "probability": 0.967 + }, + { + "start": 4385.86, + "end": 4387.14, + "probability": 0.7964 + }, + { + "start": 4388.08, + "end": 4388.52, + "probability": 0.5054 + }, + { + "start": 4389.54, + "end": 4391.12, + "probability": 0.6627 + }, + { + "start": 4391.88, + "end": 4393.42, + "probability": 0.817 + }, + { + "start": 4393.5, + "end": 4393.84, + "probability": 0.7983 + }, + { + "start": 4394.26, + "end": 4398.5, + "probability": 0.9873 + }, + { + "start": 4399.52, + "end": 4406.0, + "probability": 0.8658 + }, + { + "start": 4406.88, + "end": 4408.8, + "probability": 0.9726 + }, + { + "start": 4409.84, + "end": 4411.62, + "probability": 0.9453 + }, + { + "start": 4411.7, + "end": 4411.7, + "probability": 0.9449 + }, + { + "start": 4411.76, + "end": 4413.28, + "probability": 0.9676 + }, + { + "start": 4414.14, + "end": 4416.7, + "probability": 0.9143 + }, + { + "start": 4417.96, + "end": 4420.44, + "probability": 0.6783 + }, + { + "start": 4421.22, + "end": 4421.68, + "probability": 0.2528 + }, + { + "start": 4421.68, + "end": 4422.54, + "probability": 0.7529 + }, + { + "start": 4422.84, + "end": 4424.92, + "probability": 0.8229 + }, + { + "start": 4425.12, + "end": 4425.4, + "probability": 0.849 + }, + { + "start": 4425.42, + "end": 4426.42, + "probability": 0.9041 + }, + { + "start": 4428.38, + "end": 4431.54, + "probability": 0.9685 + }, + { + "start": 4432.04, + "end": 4433.2, + "probability": 0.8893 + }, + { + "start": 4433.98, + "end": 4436.5, + "probability": 0.9466 + }, + { + "start": 4437.44, + "end": 4440.58, + "probability": 0.9489 + }, + { + "start": 4441.74, + "end": 4444.94, + "probability": 0.8659 + }, + { + "start": 4445.1, + "end": 4445.76, + "probability": 0.7144 + }, + { + "start": 4446.7, + "end": 4449.46, + "probability": 0.9813 + }, + { + "start": 4450.08, + "end": 4457.64, + "probability": 0.9863 + }, + { + "start": 4458.74, + "end": 4462.12, + "probability": 0.9954 + }, + { + "start": 4462.22, + "end": 4462.34, + "probability": 0.1866 + }, + { + "start": 4463.36, + "end": 4469.5, + "probability": 0.9898 + }, + { + "start": 4470.34, + "end": 4473.32, + "probability": 0.9954 + }, + { + "start": 4473.6, + "end": 4474.2, + "probability": 0.9025 + }, + { + "start": 4474.28, + "end": 4475.4, + "probability": 0.6852 + }, + { + "start": 4475.46, + "end": 4478.68, + "probability": 0.8428 + }, + { + "start": 4479.68, + "end": 4482.57, + "probability": 0.8529 + }, + { + "start": 4483.88, + "end": 4486.48, + "probability": 0.871 + }, + { + "start": 4486.56, + "end": 4488.56, + "probability": 0.9824 + }, + { + "start": 4489.18, + "end": 4489.56, + "probability": 0.2387 + }, + { + "start": 4490.44, + "end": 4491.44, + "probability": 0.9878 + }, + { + "start": 4492.42, + "end": 4494.98, + "probability": 0.9308 + }, + { + "start": 4496.64, + "end": 4502.2, + "probability": 0.9943 + }, + { + "start": 4503.32, + "end": 4506.56, + "probability": 0.979 + }, + { + "start": 4507.98, + "end": 4513.6, + "probability": 0.9067 + }, + { + "start": 4514.46, + "end": 4515.64, + "probability": 0.9009 + }, + { + "start": 4515.94, + "end": 4519.26, + "probability": 0.9921 + }, + { + "start": 4520.34, + "end": 4528.3, + "probability": 0.9692 + }, + { + "start": 4529.54, + "end": 4531.82, + "probability": 0.6651 + }, + { + "start": 4532.64, + "end": 4535.18, + "probability": 0.9286 + }, + { + "start": 4535.34, + "end": 4539.06, + "probability": 0.9865 + }, + { + "start": 4539.06, + "end": 4541.78, + "probability": 0.9664 + }, + { + "start": 4542.34, + "end": 4543.58, + "probability": 0.8936 + }, + { + "start": 4544.34, + "end": 4548.4, + "probability": 0.978 + }, + { + "start": 4549.06, + "end": 4549.28, + "probability": 0.0443 + }, + { + "start": 4549.72, + "end": 4553.38, + "probability": 0.9961 + }, + { + "start": 4554.16, + "end": 4554.36, + "probability": 0.3807 + }, + { + "start": 4555.2, + "end": 4557.76, + "probability": 0.9974 + }, + { + "start": 4558.26, + "end": 4561.3, + "probability": 0.9985 + }, + { + "start": 4561.84, + "end": 4564.76, + "probability": 0.962 + }, + { + "start": 4564.92, + "end": 4568.45, + "probability": 0.8413 + }, + { + "start": 4569.44, + "end": 4573.26, + "probability": 0.9261 + }, + { + "start": 4574.48, + "end": 4577.02, + "probability": 0.9473 + }, + { + "start": 4577.7, + "end": 4581.9, + "probability": 0.9844 + }, + { + "start": 4582.92, + "end": 4585.32, + "probability": 0.9375 + }, + { + "start": 4585.98, + "end": 4588.22, + "probability": 0.9885 + }, + { + "start": 4588.34, + "end": 4589.18, + "probability": 0.8564 + }, + { + "start": 4590.24, + "end": 4590.98, + "probability": 0.8813 + }, + { + "start": 4591.1, + "end": 4591.54, + "probability": 0.9877 + }, + { + "start": 4591.6, + "end": 4594.58, + "probability": 0.6656 + }, + { + "start": 4594.68, + "end": 4595.92, + "probability": 0.5215 + }, + { + "start": 4596.48, + "end": 4597.64, + "probability": 0.9779 + }, + { + "start": 4598.92, + "end": 4600.36, + "probability": 0.9388 + }, + { + "start": 4600.96, + "end": 4605.22, + "probability": 0.9838 + }, + { + "start": 4605.22, + "end": 4611.32, + "probability": 0.9968 + }, + { + "start": 4611.32, + "end": 4616.64, + "probability": 0.9627 + }, + { + "start": 4617.32, + "end": 4618.98, + "probability": 0.8397 + }, + { + "start": 4619.92, + "end": 4622.8, + "probability": 0.8891 + }, + { + "start": 4623.5, + "end": 4626.14, + "probability": 0.9127 + }, + { + "start": 4626.22, + "end": 4626.77, + "probability": 0.2172 + }, + { + "start": 4627.3, + "end": 4628.21, + "probability": 0.9746 + }, + { + "start": 4628.46, + "end": 4631.48, + "probability": 0.8333 + }, + { + "start": 4632.1, + "end": 4633.6, + "probability": 0.496 + }, + { + "start": 4633.88, + "end": 4635.28, + "probability": 0.9462 + }, + { + "start": 4635.76, + "end": 4637.72, + "probability": 0.6598 + }, + { + "start": 4638.1, + "end": 4640.84, + "probability": 0.9804 + }, + { + "start": 4641.38, + "end": 4642.51, + "probability": 0.9307 + }, + { + "start": 4643.02, + "end": 4644.5, + "probability": 0.9749 + }, + { + "start": 4644.56, + "end": 4645.94, + "probability": 0.8556 + }, + { + "start": 4645.96, + "end": 4647.1, + "probability": 0.9775 + }, + { + "start": 4647.98, + "end": 4648.5, + "probability": 0.7977 + }, + { + "start": 4649.22, + "end": 4650.03, + "probability": 0.9093 + }, + { + "start": 4650.32, + "end": 4652.6, + "probability": 0.9157 + }, + { + "start": 4653.24, + "end": 4656.92, + "probability": 0.71 + }, + { + "start": 4658.04, + "end": 4663.08, + "probability": 0.7457 + }, + { + "start": 4663.1, + "end": 4667.74, + "probability": 0.8022 + }, + { + "start": 4668.0, + "end": 4668.66, + "probability": 0.7153 + }, + { + "start": 4668.68, + "end": 4669.8, + "probability": 0.937 + }, + { + "start": 4670.2, + "end": 4677.34, + "probability": 0.9912 + }, + { + "start": 4678.28, + "end": 4681.86, + "probability": 0.9888 + }, + { + "start": 4682.46, + "end": 4684.16, + "probability": 0.9458 + }, + { + "start": 4684.22, + "end": 4689.12, + "probability": 0.9868 + }, + { + "start": 4689.86, + "end": 4693.94, + "probability": 0.7311 + }, + { + "start": 4694.46, + "end": 4696.34, + "probability": 0.9176 + }, + { + "start": 4696.78, + "end": 4697.26, + "probability": 0.8218 + }, + { + "start": 4697.88, + "end": 4699.68, + "probability": 0.694 + }, + { + "start": 4699.88, + "end": 4703.62, + "probability": 0.8084 + }, + { + "start": 4704.14, + "end": 4708.14, + "probability": 0.9815 + }, + { + "start": 4708.2, + "end": 4711.5, + "probability": 0.9807 + }, + { + "start": 4711.66, + "end": 4712.88, + "probability": 0.9912 + }, + { + "start": 4713.12, + "end": 4714.34, + "probability": 0.7703 + }, + { + "start": 4714.88, + "end": 4715.36, + "probability": 0.6671 + }, + { + "start": 4721.66, + "end": 4723.44, + "probability": 0.6416 + }, + { + "start": 4723.76, + "end": 4723.76, + "probability": 0.4873 + }, + { + "start": 4723.76, + "end": 4724.8, + "probability": 0.484 + }, + { + "start": 4724.9, + "end": 4725.44, + "probability": 0.7488 + }, + { + "start": 4725.58, + "end": 4727.88, + "probability": 0.4634 + }, + { + "start": 4728.04, + "end": 4729.76, + "probability": 0.9404 + }, + { + "start": 4730.14, + "end": 4732.78, + "probability": 0.9709 + }, + { + "start": 4733.54, + "end": 4736.24, + "probability": 0.9728 + }, + { + "start": 4736.34, + "end": 4737.68, + "probability": 0.9621 + }, + { + "start": 4738.22, + "end": 4739.28, + "probability": 0.9609 + }, + { + "start": 4739.64, + "end": 4741.44, + "probability": 0.918 + }, + { + "start": 4741.54, + "end": 4744.76, + "probability": 0.877 + }, + { + "start": 4745.18, + "end": 4747.28, + "probability": 0.9015 + }, + { + "start": 4747.86, + "end": 4749.7, + "probability": 0.8804 + }, + { + "start": 4749.86, + "end": 4755.76, + "probability": 0.9859 + }, + { + "start": 4755.76, + "end": 4759.86, + "probability": 0.9997 + }, + { + "start": 4760.08, + "end": 4760.76, + "probability": 0.7847 + }, + { + "start": 4761.6, + "end": 4764.72, + "probability": 0.9797 + }, + { + "start": 4765.34, + "end": 4768.3, + "probability": 0.9873 + }, + { + "start": 4769.08, + "end": 4772.62, + "probability": 0.9792 + }, + { + "start": 4773.28, + "end": 4776.42, + "probability": 0.9919 + }, + { + "start": 4777.38, + "end": 4780.88, + "probability": 0.9956 + }, + { + "start": 4780.88, + "end": 4784.44, + "probability": 0.9982 + }, + { + "start": 4785.52, + "end": 4788.82, + "probability": 0.9985 + }, + { + "start": 4789.3, + "end": 4791.78, + "probability": 0.9878 + }, + { + "start": 4792.6, + "end": 4796.98, + "probability": 0.9509 + }, + { + "start": 4797.61, + "end": 4800.84, + "probability": 0.8171 + }, + { + "start": 4801.46, + "end": 4804.16, + "probability": 0.8356 + }, + { + "start": 4804.84, + "end": 4806.0, + "probability": 0.8979 + }, + { + "start": 4806.4, + "end": 4808.98, + "probability": 0.9882 + }, + { + "start": 4810.8, + "end": 4815.86, + "probability": 0.8677 + }, + { + "start": 4816.42, + "end": 4819.88, + "probability": 0.8377 + }, + { + "start": 4820.3, + "end": 4823.68, + "probability": 0.9099 + }, + { + "start": 4823.86, + "end": 4826.08, + "probability": 0.9844 + }, + { + "start": 4826.58, + "end": 4831.04, + "probability": 0.9926 + }, + { + "start": 4831.04, + "end": 4835.16, + "probability": 0.9946 + }, + { + "start": 4835.5, + "end": 4837.42, + "probability": 0.7676 + }, + { + "start": 4837.96, + "end": 4842.36, + "probability": 0.9877 + }, + { + "start": 4842.56, + "end": 4843.7, + "probability": 0.6969 + }, + { + "start": 4844.1, + "end": 4846.36, + "probability": 0.9987 + }, + { + "start": 4846.78, + "end": 4850.86, + "probability": 0.921 + }, + { + "start": 4850.86, + "end": 4853.2, + "probability": 0.9965 + }, + { + "start": 4853.52, + "end": 4855.8, + "probability": 0.9333 + }, + { + "start": 4856.26, + "end": 4859.88, + "probability": 0.9797 + }, + { + "start": 4859.88, + "end": 4864.08, + "probability": 0.986 + }, + { + "start": 4864.64, + "end": 4868.64, + "probability": 0.9989 + }, + { + "start": 4869.22, + "end": 4872.0, + "probability": 0.9996 + }, + { + "start": 4872.64, + "end": 4875.42, + "probability": 0.985 + }, + { + "start": 4875.96, + "end": 4880.16, + "probability": 0.9879 + }, + { + "start": 4880.28, + "end": 4882.36, + "probability": 0.9079 + }, + { + "start": 4882.9, + "end": 4885.4, + "probability": 0.8588 + }, + { + "start": 4886.14, + "end": 4888.36, + "probability": 0.9917 + }, + { + "start": 4889.54, + "end": 4893.98, + "probability": 0.726 + }, + { + "start": 4894.24, + "end": 4896.62, + "probability": 0.9723 + }, + { + "start": 4897.0, + "end": 4898.88, + "probability": 0.8965 + }, + { + "start": 4899.3, + "end": 4902.52, + "probability": 0.9426 + }, + { + "start": 4902.98, + "end": 4906.08, + "probability": 0.9897 + }, + { + "start": 4906.64, + "end": 4909.74, + "probability": 0.9878 + }, + { + "start": 4910.24, + "end": 4915.22, + "probability": 0.999 + }, + { + "start": 4915.62, + "end": 4920.2, + "probability": 0.9981 + }, + { + "start": 4920.2, + "end": 4924.66, + "probability": 0.9954 + }, + { + "start": 4924.74, + "end": 4926.52, + "probability": 0.9064 + }, + { + "start": 4927.08, + "end": 4930.9, + "probability": 0.8865 + }, + { + "start": 4932.5, + "end": 4935.36, + "probability": 0.9818 + }, + { + "start": 4935.96, + "end": 4940.38, + "probability": 0.9934 + }, + { + "start": 4940.38, + "end": 4947.16, + "probability": 0.9439 + }, + { + "start": 4947.58, + "end": 4950.36, + "probability": 0.966 + }, + { + "start": 4951.02, + "end": 4952.39, + "probability": 0.727 + }, + { + "start": 4952.86, + "end": 4955.76, + "probability": 0.9849 + }, + { + "start": 4955.76, + "end": 4959.08, + "probability": 0.9784 + }, + { + "start": 4959.4, + "end": 4962.76, + "probability": 0.9709 + }, + { + "start": 4962.84, + "end": 4963.66, + "probability": 0.7481 + }, + { + "start": 4964.06, + "end": 4965.28, + "probability": 0.9796 + }, + { + "start": 4965.4, + "end": 4966.58, + "probability": 0.9756 + }, + { + "start": 4967.0, + "end": 4968.9, + "probability": 0.9805 + }, + { + "start": 4969.12, + "end": 4971.2, + "probability": 0.9787 + }, + { + "start": 4971.64, + "end": 4972.54, + "probability": 0.8673 + }, + { + "start": 4972.88, + "end": 4974.22, + "probability": 0.9953 + }, + { + "start": 4974.32, + "end": 4975.64, + "probability": 0.9529 + }, + { + "start": 4975.74, + "end": 4978.84, + "probability": 0.9608 + }, + { + "start": 4978.88, + "end": 4982.76, + "probability": 0.9986 + }, + { + "start": 4982.76, + "end": 4983.8, + "probability": 0.9295 + }, + { + "start": 4983.96, + "end": 4986.06, + "probability": 0.9651 + }, + { + "start": 4986.16, + "end": 4986.68, + "probability": 0.7494 + }, + { + "start": 4986.84, + "end": 4989.22, + "probability": 0.9704 + }, + { + "start": 4989.36, + "end": 4989.82, + "probability": 0.7049 + }, + { + "start": 4989.94, + "end": 4991.66, + "probability": 0.9573 + }, + { + "start": 4991.72, + "end": 4997.05, + "probability": 0.9659 + }, + { + "start": 4997.48, + "end": 5000.98, + "probability": 0.9927 + }, + { + "start": 5001.24, + "end": 5001.76, + "probability": 0.9058 + }, + { + "start": 5006.96, + "end": 5011.54, + "probability": 0.7303 + }, + { + "start": 5013.3, + "end": 5015.8, + "probability": 0.2043 + }, + { + "start": 5016.86, + "end": 5018.92, + "probability": 0.7782 + }, + { + "start": 5019.08, + "end": 5019.68, + "probability": 0.7674 + }, + { + "start": 5019.96, + "end": 5022.34, + "probability": 0.9893 + }, + { + "start": 5023.96, + "end": 5025.52, + "probability": 0.9072 + }, + { + "start": 5025.66, + "end": 5028.61, + "probability": 0.88 + }, + { + "start": 5029.2, + "end": 5031.42, + "probability": 0.6639 + }, + { + "start": 5031.7, + "end": 5032.7, + "probability": 0.7377 + }, + { + "start": 5032.8, + "end": 5032.94, + "probability": 0.3085 + }, + { + "start": 5032.98, + "end": 5035.48, + "probability": 0.9355 + }, + { + "start": 5035.62, + "end": 5037.12, + "probability": 0.4861 + }, + { + "start": 5037.62, + "end": 5039.18, + "probability": 0.9507 + }, + { + "start": 5039.3, + "end": 5040.2, + "probability": 0.4326 + }, + { + "start": 5041.94, + "end": 5042.8, + "probability": 0.5907 + }, + { + "start": 5043.38, + "end": 5046.56, + "probability": 0.8966 + }, + { + "start": 5047.84, + "end": 5050.82, + "probability": 0.985 + }, + { + "start": 5051.88, + "end": 5054.76, + "probability": 0.8551 + }, + { + "start": 5055.7, + "end": 5059.42, + "probability": 0.9658 + }, + { + "start": 5060.66, + "end": 5062.09, + "probability": 0.9775 + }, + { + "start": 5062.98, + "end": 5064.02, + "probability": 0.7623 + }, + { + "start": 5065.16, + "end": 5068.7, + "probability": 0.7255 + }, + { + "start": 5069.94, + "end": 5074.44, + "probability": 0.9983 + }, + { + "start": 5075.08, + "end": 5076.46, + "probability": 0.8797 + }, + { + "start": 5076.84, + "end": 5079.04, + "probability": 0.8514 + }, + { + "start": 5079.22, + "end": 5080.32, + "probability": 0.8759 + }, + { + "start": 5080.94, + "end": 5082.1, + "probability": 0.8922 + }, + { + "start": 5082.16, + "end": 5083.32, + "probability": 0.9977 + }, + { + "start": 5084.38, + "end": 5085.46, + "probability": 0.9624 + }, + { + "start": 5088.12, + "end": 5088.36, + "probability": 0.3271 + }, + { + "start": 5089.8, + "end": 5092.28, + "probability": 0.9518 + }, + { + "start": 5093.24, + "end": 5094.08, + "probability": 0.8848 + }, + { + "start": 5094.66, + "end": 5096.6, + "probability": 0.9499 + }, + { + "start": 5097.68, + "end": 5098.58, + "probability": 0.8301 + }, + { + "start": 5098.68, + "end": 5101.78, + "probability": 0.993 + }, + { + "start": 5104.58, + "end": 5106.82, + "probability": 0.9717 + }, + { + "start": 5106.82, + "end": 5109.76, + "probability": 0.4443 + }, + { + "start": 5110.66, + "end": 5114.74, + "probability": 0.9893 + }, + { + "start": 5115.64, + "end": 5118.46, + "probability": 0.9778 + }, + { + "start": 5118.9, + "end": 5122.32, + "probability": 0.997 + }, + { + "start": 5122.52, + "end": 5124.46, + "probability": 0.9545 + }, + { + "start": 5125.44, + "end": 5127.03, + "probability": 0.959 + }, + { + "start": 5128.02, + "end": 5128.98, + "probability": 0.5814 + }, + { + "start": 5129.06, + "end": 5129.4, + "probability": 0.2172 + }, + { + "start": 5129.4, + "end": 5131.18, + "probability": 0.9509 + }, + { + "start": 5132.6, + "end": 5133.54, + "probability": 0.5541 + }, + { + "start": 5133.74, + "end": 5135.26, + "probability": 0.8296 + }, + { + "start": 5135.34, + "end": 5136.3, + "probability": 0.923 + }, + { + "start": 5136.4, + "end": 5139.92, + "probability": 0.9293 + }, + { + "start": 5140.82, + "end": 5144.46, + "probability": 0.983 + }, + { + "start": 5145.45, + "end": 5148.36, + "probability": 0.7523 + }, + { + "start": 5148.52, + "end": 5150.68, + "probability": 0.8196 + }, + { + "start": 5151.34, + "end": 5152.98, + "probability": 0.9492 + }, + { + "start": 5153.08, + "end": 5154.5, + "probability": 0.9971 + }, + { + "start": 5154.62, + "end": 5156.72, + "probability": 0.9766 + }, + { + "start": 5157.26, + "end": 5158.6, + "probability": 0.6571 + }, + { + "start": 5158.78, + "end": 5162.48, + "probability": 0.9325 + }, + { + "start": 5162.76, + "end": 5164.84, + "probability": 0.9683 + }, + { + "start": 5165.38, + "end": 5169.79, + "probability": 0.9473 + }, + { + "start": 5170.7, + "end": 5172.56, + "probability": 0.9407 + }, + { + "start": 5172.88, + "end": 5173.92, + "probability": 0.8021 + }, + { + "start": 5173.94, + "end": 5176.6, + "probability": 0.8826 + }, + { + "start": 5176.6, + "end": 5179.8, + "probability": 0.9976 + }, + { + "start": 5180.14, + "end": 5180.98, + "probability": 0.0221 + }, + { + "start": 5185.46, + "end": 5186.16, + "probability": 0.0608 + }, + { + "start": 5186.26, + "end": 5186.44, + "probability": 0.5625 + }, + { + "start": 5186.5, + "end": 5190.1, + "probability": 0.7928 + }, + { + "start": 5190.12, + "end": 5192.26, + "probability": 0.8701 + }, + { + "start": 5192.6, + "end": 5193.2, + "probability": 0.6125 + }, + { + "start": 5193.62, + "end": 5200.24, + "probability": 0.9206 + }, + { + "start": 5201.95, + "end": 5202.92, + "probability": 0.8228 + }, + { + "start": 5202.92, + "end": 5206.26, + "probability": 0.887 + }, + { + "start": 5206.33, + "end": 5207.88, + "probability": 0.9863 + }, + { + "start": 5208.34, + "end": 5208.48, + "probability": 0.2884 + }, + { + "start": 5210.18, + "end": 5211.52, + "probability": 0.4471 + }, + { + "start": 5212.0, + "end": 5214.52, + "probability": 0.7484 + }, + { + "start": 5215.38, + "end": 5215.54, + "probability": 0.4122 + }, + { + "start": 5215.7, + "end": 5216.36, + "probability": 0.5447 + }, + { + "start": 5216.4, + "end": 5217.1, + "probability": 0.6836 + }, + { + "start": 5217.82, + "end": 5217.96, + "probability": 0.7959 + }, + { + "start": 5218.02, + "end": 5218.36, + "probability": 0.9144 + }, + { + "start": 5218.46, + "end": 5219.68, + "probability": 0.9382 + }, + { + "start": 5219.9, + "end": 5220.24, + "probability": 0.5127 + }, + { + "start": 5220.24, + "end": 5220.66, + "probability": 0.8876 + }, + { + "start": 5220.74, + "end": 5223.68, + "probability": 0.9473 + }, + { + "start": 5223.68, + "end": 5226.62, + "probability": 0.9806 + }, + { + "start": 5227.86, + "end": 5228.58, + "probability": 0.9194 + }, + { + "start": 5229.54, + "end": 5231.12, + "probability": 0.929 + }, + { + "start": 5232.02, + "end": 5234.2, + "probability": 0.9946 + }, + { + "start": 5234.28, + "end": 5234.8, + "probability": 0.9388 + }, + { + "start": 5235.02, + "end": 5237.9, + "probability": 0.9111 + }, + { + "start": 5238.98, + "end": 5240.02, + "probability": 0.9429 + }, + { + "start": 5240.06, + "end": 5244.2, + "probability": 0.9878 + }, + { + "start": 5244.54, + "end": 5246.38, + "probability": 0.9888 + }, + { + "start": 5246.42, + "end": 5250.64, + "probability": 0.993 + }, + { + "start": 5251.1, + "end": 5253.4, + "probability": 0.9995 + }, + { + "start": 5254.4, + "end": 5256.04, + "probability": 0.9089 + }, + { + "start": 5256.86, + "end": 5258.62, + "probability": 0.9431 + }, + { + "start": 5258.8, + "end": 5259.34, + "probability": 0.7494 + }, + { + "start": 5259.52, + "end": 5260.82, + "probability": 0.6287 + }, + { + "start": 5260.88, + "end": 5261.38, + "probability": 0.5839 + }, + { + "start": 5261.7, + "end": 5262.9, + "probability": 0.9677 + }, + { + "start": 5263.2, + "end": 5263.6, + "probability": 0.7147 + }, + { + "start": 5263.68, + "end": 5264.78, + "probability": 0.9729 + }, + { + "start": 5265.48, + "end": 5267.56, + "probability": 0.8691 + }, + { + "start": 5267.98, + "end": 5268.36, + "probability": 0.883 + }, + { + "start": 5268.46, + "end": 5270.48, + "probability": 0.9471 + }, + { + "start": 5272.32, + "end": 5273.78, + "probability": 0.9409 + }, + { + "start": 5274.5, + "end": 5275.78, + "probability": 0.9988 + }, + { + "start": 5275.88, + "end": 5276.72, + "probability": 0.926 + }, + { + "start": 5276.9, + "end": 5277.76, + "probability": 0.9623 + }, + { + "start": 5277.8, + "end": 5278.86, + "probability": 0.7366 + }, + { + "start": 5279.58, + "end": 5282.48, + "probability": 0.7844 + }, + { + "start": 5282.76, + "end": 5284.48, + "probability": 0.9806 + }, + { + "start": 5285.18, + "end": 5287.44, + "probability": 0.7525 + }, + { + "start": 5287.7, + "end": 5289.88, + "probability": 0.7261 + }, + { + "start": 5291.0, + "end": 5294.92, + "probability": 0.9559 + }, + { + "start": 5296.56, + "end": 5296.96, + "probability": 0.5284 + }, + { + "start": 5297.02, + "end": 5301.74, + "probability": 0.9932 + }, + { + "start": 5301.92, + "end": 5302.8, + "probability": 0.7398 + }, + { + "start": 5304.64, + "end": 5307.54, + "probability": 0.9855 + }, + { + "start": 5307.6, + "end": 5310.36, + "probability": 0.9974 + }, + { + "start": 5310.9, + "end": 5313.66, + "probability": 0.991 + }, + { + "start": 5313.88, + "end": 5317.72, + "probability": 0.9928 + }, + { + "start": 5318.54, + "end": 5319.88, + "probability": 0.9324 + }, + { + "start": 5320.08, + "end": 5322.94, + "probability": 0.9727 + }, + { + "start": 5323.08, + "end": 5324.76, + "probability": 0.9209 + }, + { + "start": 5325.84, + "end": 5330.58, + "probability": 0.9781 + }, + { + "start": 5330.76, + "end": 5331.98, + "probability": 0.9482 + }, + { + "start": 5332.06, + "end": 5336.02, + "probability": 0.9886 + }, + { + "start": 5336.08, + "end": 5338.58, + "probability": 0.999 + }, + { + "start": 5338.96, + "end": 5340.12, + "probability": 0.9546 + }, + { + "start": 5341.28, + "end": 5343.6, + "probability": 0.9216 + }, + { + "start": 5345.0, + "end": 5346.18, + "probability": 0.9171 + }, + { + "start": 5346.22, + "end": 5349.4, + "probability": 0.857 + }, + { + "start": 5350.5, + "end": 5352.52, + "probability": 0.6512 + }, + { + "start": 5353.22, + "end": 5355.48, + "probability": 0.895 + }, + { + "start": 5355.74, + "end": 5357.54, + "probability": 0.9797 + }, + { + "start": 5357.62, + "end": 5358.06, + "probability": 0.5034 + }, + { + "start": 5358.16, + "end": 5360.86, + "probability": 0.9072 + }, + { + "start": 5361.3, + "end": 5363.06, + "probability": 0.9771 + }, + { + "start": 5363.12, + "end": 5365.94, + "probability": 0.7522 + }, + { + "start": 5365.96, + "end": 5366.52, + "probability": 0.5096 + }, + { + "start": 5367.22, + "end": 5368.74, + "probability": 0.4828 + }, + { + "start": 5369.04, + "end": 5372.28, + "probability": 0.6126 + }, + { + "start": 5372.3, + "end": 5374.94, + "probability": 0.9658 + }, + { + "start": 5391.08, + "end": 5392.04, + "probability": 0.3411 + }, + { + "start": 5393.7, + "end": 5395.12, + "probability": 0.8778 + }, + { + "start": 5396.1, + "end": 5398.9, + "probability": 0.6908 + }, + { + "start": 5399.9, + "end": 5401.0, + "probability": 0.704 + }, + { + "start": 5401.54, + "end": 5406.12, + "probability": 0.9663 + }, + { + "start": 5406.68, + "end": 5412.72, + "probability": 0.9932 + }, + { + "start": 5412.84, + "end": 5413.18, + "probability": 0.4045 + }, + { + "start": 5413.22, + "end": 5414.92, + "probability": 0.8944 + }, + { + "start": 5415.68, + "end": 5418.02, + "probability": 0.9252 + }, + { + "start": 5418.96, + "end": 5421.3, + "probability": 0.9889 + }, + { + "start": 5422.38, + "end": 5425.8, + "probability": 0.9362 + }, + { + "start": 5426.48, + "end": 5431.04, + "probability": 0.9907 + }, + { + "start": 5431.04, + "end": 5435.86, + "probability": 0.9952 + }, + { + "start": 5436.2, + "end": 5441.36, + "probability": 0.9619 + }, + { + "start": 5441.92, + "end": 5443.02, + "probability": 0.5698 + }, + { + "start": 5443.86, + "end": 5444.8, + "probability": 0.8691 + }, + { + "start": 5445.72, + "end": 5448.96, + "probability": 0.9921 + }, + { + "start": 5448.96, + "end": 5452.08, + "probability": 0.9846 + }, + { + "start": 5452.12, + "end": 5452.64, + "probability": 0.9615 + }, + { + "start": 5453.56, + "end": 5456.92, + "probability": 0.9694 + }, + { + "start": 5456.98, + "end": 5458.62, + "probability": 0.9956 + }, + { + "start": 5459.16, + "end": 5461.22, + "probability": 0.8862 + }, + { + "start": 5461.64, + "end": 5465.96, + "probability": 0.9951 + }, + { + "start": 5466.38, + "end": 5469.36, + "probability": 0.9562 + }, + { + "start": 5470.04, + "end": 5473.62, + "probability": 0.9603 + }, + { + "start": 5473.78, + "end": 5476.1, + "probability": 0.966 + }, + { + "start": 5476.4, + "end": 5476.9, + "probability": 0.7216 + }, + { + "start": 5477.04, + "end": 5478.02, + "probability": 0.9744 + }, + { + "start": 5478.14, + "end": 5478.48, + "probability": 0.8852 + }, + { + "start": 5478.66, + "end": 5479.3, + "probability": 0.8209 + }, + { + "start": 5479.66, + "end": 5481.78, + "probability": 0.9546 + }, + { + "start": 5482.06, + "end": 5482.86, + "probability": 0.807 + }, + { + "start": 5483.38, + "end": 5486.56, + "probability": 0.8215 + }, + { + "start": 5486.72, + "end": 5491.02, + "probability": 0.687 + }, + { + "start": 5491.26, + "end": 5491.58, + "probability": 0.4614 + }, + { + "start": 5491.6, + "end": 5496.18, + "probability": 0.97 + }, + { + "start": 5496.22, + "end": 5500.02, + "probability": 0.9784 + }, + { + "start": 5500.56, + "end": 5504.5, + "probability": 0.994 + }, + { + "start": 5504.72, + "end": 5505.5, + "probability": 0.7022 + }, + { + "start": 5505.86, + "end": 5509.96, + "probability": 0.9883 + }, + { + "start": 5509.96, + "end": 5514.42, + "probability": 0.9736 + }, + { + "start": 5514.98, + "end": 5518.66, + "probability": 0.9457 + }, + { + "start": 5519.26, + "end": 5523.48, + "probability": 0.988 + }, + { + "start": 5524.14, + "end": 5525.94, + "probability": 0.6953 + }, + { + "start": 5526.26, + "end": 5529.94, + "probability": 0.975 + }, + { + "start": 5530.4, + "end": 5534.14, + "probability": 0.9426 + }, + { + "start": 5534.14, + "end": 5537.8, + "probability": 0.9955 + }, + { + "start": 5538.76, + "end": 5541.18, + "probability": 0.8806 + }, + { + "start": 5541.22, + "end": 5545.18, + "probability": 0.9771 + }, + { + "start": 5545.4, + "end": 5547.14, + "probability": 0.285 + }, + { + "start": 5547.84, + "end": 5550.58, + "probability": 0.8363 + }, + { + "start": 5551.68, + "end": 5559.58, + "probability": 0.9878 + }, + { + "start": 5560.18, + "end": 5561.56, + "probability": 0.6834 + }, + { + "start": 5561.7, + "end": 5561.88, + "probability": 0.6856 + }, + { + "start": 5562.06, + "end": 5563.32, + "probability": 0.8055 + }, + { + "start": 5563.76, + "end": 5569.16, + "probability": 0.9401 + }, + { + "start": 5570.16, + "end": 5575.36, + "probability": 0.9054 + }, + { + "start": 5575.98, + "end": 5576.92, + "probability": 0.8755 + }, + { + "start": 5577.56, + "end": 5580.24, + "probability": 0.8547 + }, + { + "start": 5580.44, + "end": 5582.94, + "probability": 0.8962 + }, + { + "start": 5583.26, + "end": 5584.62, + "probability": 0.9274 + }, + { + "start": 5584.84, + "end": 5586.14, + "probability": 0.6296 + }, + { + "start": 5586.54, + "end": 5587.22, + "probability": 0.5929 + }, + { + "start": 5587.56, + "end": 5588.34, + "probability": 0.6659 + }, + { + "start": 5588.38, + "end": 5589.16, + "probability": 0.0242 + }, + { + "start": 5589.16, + "end": 5590.86, + "probability": 0.4855 + }, + { + "start": 5591.1, + "end": 5592.04, + "probability": 0.3342 + }, + { + "start": 5592.5, + "end": 5594.26, + "probability": 0.1622 + }, + { + "start": 5594.91, + "end": 5598.9, + "probability": 0.089 + }, + { + "start": 5598.9, + "end": 5598.9, + "probability": 0.1872 + }, + { + "start": 5598.9, + "end": 5598.9, + "probability": 0.1194 + }, + { + "start": 5598.9, + "end": 5599.51, + "probability": 0.0995 + }, + { + "start": 5600.36, + "end": 5606.06, + "probability": 0.9884 + }, + { + "start": 5606.26, + "end": 5606.76, + "probability": 0.9482 + }, + { + "start": 5606.98, + "end": 5608.9, + "probability": 0.8744 + }, + { + "start": 5609.42, + "end": 5609.98, + "probability": 0.9463 + }, + { + "start": 5610.32, + "end": 5612.32, + "probability": 0.9814 + }, + { + "start": 5612.44, + "end": 5615.04, + "probability": 0.9114 + }, + { + "start": 5615.26, + "end": 5616.14, + "probability": 0.6936 + }, + { + "start": 5616.76, + "end": 5617.68, + "probability": 0.9839 + }, + { + "start": 5618.32, + "end": 5620.38, + "probability": 0.9684 + }, + { + "start": 5620.78, + "end": 5623.26, + "probability": 0.895 + }, + { + "start": 5623.82, + "end": 5627.3, + "probability": 0.9884 + }, + { + "start": 5628.0, + "end": 5628.42, + "probability": 0.7642 + }, + { + "start": 5629.4, + "end": 5631.74, + "probability": 0.5823 + }, + { + "start": 5631.74, + "end": 5635.69, + "probability": 0.9871 + }, + { + "start": 5636.28, + "end": 5638.26, + "probability": 0.972 + }, + { + "start": 5639.0, + "end": 5639.72, + "probability": 0.9871 + }, + { + "start": 5640.92, + "end": 5644.82, + "probability": 0.9889 + }, + { + "start": 5645.04, + "end": 5646.04, + "probability": 0.8718 + }, + { + "start": 5646.74, + "end": 5649.64, + "probability": 0.9756 + }, + { + "start": 5649.72, + "end": 5651.06, + "probability": 0.9858 + }, + { + "start": 5651.78, + "end": 5652.16, + "probability": 0.7607 + }, + { + "start": 5652.24, + "end": 5653.66, + "probability": 0.9902 + }, + { + "start": 5653.82, + "end": 5655.3, + "probability": 0.9838 + }, + { + "start": 5655.48, + "end": 5659.1, + "probability": 0.9561 + }, + { + "start": 5660.02, + "end": 5661.12, + "probability": 0.9928 + }, + { + "start": 5662.0, + "end": 5663.0, + "probability": 0.2588 + }, + { + "start": 5663.04, + "end": 5664.28, + "probability": 0.7941 + }, + { + "start": 5664.4, + "end": 5664.92, + "probability": 0.6399 + }, + { + "start": 5665.0, + "end": 5665.8, + "probability": 0.7952 + }, + { + "start": 5666.36, + "end": 5667.42, + "probability": 0.8298 + }, + { + "start": 5667.48, + "end": 5668.46, + "probability": 0.9622 + }, + { + "start": 5668.54, + "end": 5669.25, + "probability": 0.6755 + }, + { + "start": 5669.64, + "end": 5672.49, + "probability": 0.9924 + }, + { + "start": 5672.9, + "end": 5674.02, + "probability": 0.5018 + }, + { + "start": 5674.58, + "end": 5677.08, + "probability": 0.8688 + }, + { + "start": 5677.38, + "end": 5685.7, + "probability": 0.9938 + }, + { + "start": 5685.92, + "end": 5687.68, + "probability": 0.978 + }, + { + "start": 5687.68, + "end": 5688.94, + "probability": 0.9932 + }, + { + "start": 5689.36, + "end": 5690.74, + "probability": 0.9976 + }, + { + "start": 5691.24, + "end": 5694.04, + "probability": 0.9579 + }, + { + "start": 5694.16, + "end": 5695.56, + "probability": 0.8822 + }, + { + "start": 5695.84, + "end": 5696.62, + "probability": 0.5945 + }, + { + "start": 5697.0, + "end": 5697.78, + "probability": 0.6403 + }, + { + "start": 5697.88, + "end": 5699.06, + "probability": 0.9019 + }, + { + "start": 5699.52, + "end": 5700.22, + "probability": 0.9346 + }, + { + "start": 5700.84, + "end": 5702.58, + "probability": 0.8643 + }, + { + "start": 5703.3, + "end": 5705.8, + "probability": 0.9564 + }, + { + "start": 5706.38, + "end": 5707.32, + "probability": 0.9893 + }, + { + "start": 5707.56, + "end": 5709.04, + "probability": 0.6685 + }, + { + "start": 5709.04, + "end": 5711.65, + "probability": 0.7353 + }, + { + "start": 5711.94, + "end": 5713.88, + "probability": 0.4822 + }, + { + "start": 5714.44, + "end": 5717.02, + "probability": 0.8197 + }, + { + "start": 5717.02, + "end": 5722.18, + "probability": 0.9587 + }, + { + "start": 5722.66, + "end": 5724.66, + "probability": 0.9656 + }, + { + "start": 5725.24, + "end": 5731.46, + "probability": 0.9702 + }, + { + "start": 5732.32, + "end": 5735.66, + "probability": 0.8885 + }, + { + "start": 5735.9, + "end": 5736.56, + "probability": 0.8154 + }, + { + "start": 5736.58, + "end": 5737.62, + "probability": 0.6999 + }, + { + "start": 5737.76, + "end": 5738.92, + "probability": 0.9543 + }, + { + "start": 5739.32, + "end": 5741.82, + "probability": 0.9569 + }, + { + "start": 5741.92, + "end": 5743.58, + "probability": 0.9916 + }, + { + "start": 5743.9, + "end": 5747.4, + "probability": 0.9396 + }, + { + "start": 5747.46, + "end": 5749.72, + "probability": 0.9172 + }, + { + "start": 5750.88, + "end": 5757.22, + "probability": 0.9709 + }, + { + "start": 5757.34, + "end": 5760.98, + "probability": 0.9806 + }, + { + "start": 5761.08, + "end": 5764.52, + "probability": 0.953 + }, + { + "start": 5764.6, + "end": 5767.3, + "probability": 0.939 + }, + { + "start": 5767.34, + "end": 5770.58, + "probability": 0.8932 + }, + { + "start": 5771.06, + "end": 5771.3, + "probability": 0.5308 + }, + { + "start": 5772.3, + "end": 5772.68, + "probability": 0.3202 + }, + { + "start": 5772.92, + "end": 5776.72, + "probability": 0.9771 + }, + { + "start": 5777.94, + "end": 5778.88, + "probability": 0.6778 + }, + { + "start": 5778.96, + "end": 5780.1, + "probability": 0.9731 + }, + { + "start": 5780.36, + "end": 5784.86, + "probability": 0.8256 + }, + { + "start": 5784.98, + "end": 5786.8, + "probability": 0.684 + }, + { + "start": 5787.54, + "end": 5791.35, + "probability": 0.6594 + }, + { + "start": 5792.24, + "end": 5794.7, + "probability": 0.3608 + }, + { + "start": 5796.36, + "end": 5798.68, + "probability": 0.9685 + }, + { + "start": 5799.02, + "end": 5801.54, + "probability": 0.7152 + }, + { + "start": 5801.86, + "end": 5804.84, + "probability": 0.2052 + }, + { + "start": 5804.84, + "end": 5805.2, + "probability": 0.0109 + }, + { + "start": 5805.74, + "end": 5807.0, + "probability": 0.7564 + }, + { + "start": 5809.92, + "end": 5810.92, + "probability": 0.5133 + }, + { + "start": 5811.26, + "end": 5813.02, + "probability": 0.9355 + }, + { + "start": 5813.52, + "end": 5814.46, + "probability": 0.9402 + }, + { + "start": 5815.12, + "end": 5816.94, + "probability": 0.8993 + }, + { + "start": 5818.06, + "end": 5820.1, + "probability": 0.9741 + }, + { + "start": 5822.06, + "end": 5823.68, + "probability": 0.8541 + }, + { + "start": 5824.0, + "end": 5827.14, + "probability": 0.9957 + }, + { + "start": 5827.14, + "end": 5829.78, + "probability": 0.922 + }, + { + "start": 5830.5, + "end": 5835.26, + "probability": 0.9929 + }, + { + "start": 5837.66, + "end": 5841.32, + "probability": 0.9952 + }, + { + "start": 5841.94, + "end": 5846.4, + "probability": 0.8382 + }, + { + "start": 5847.58, + "end": 5852.82, + "probability": 0.9451 + }, + { + "start": 5853.34, + "end": 5853.92, + "probability": 0.4956 + }, + { + "start": 5854.95, + "end": 5859.7, + "probability": 0.9399 + }, + { + "start": 5860.54, + "end": 5863.22, + "probability": 0.7737 + }, + { + "start": 5864.1, + "end": 5866.26, + "probability": 0.9433 + }, + { + "start": 5866.4, + "end": 5868.8, + "probability": 0.8436 + }, + { + "start": 5868.86, + "end": 5869.9, + "probability": 0.9514 + }, + { + "start": 5870.7, + "end": 5876.04, + "probability": 0.9802 + }, + { + "start": 5877.04, + "end": 5879.92, + "probability": 0.9936 + }, + { + "start": 5880.78, + "end": 5881.42, + "probability": 0.8316 + }, + { + "start": 5882.14, + "end": 5885.26, + "probability": 0.9482 + }, + { + "start": 5886.0, + "end": 5887.14, + "probability": 0.6215 + }, + { + "start": 5888.14, + "end": 5893.4, + "probability": 0.9761 + }, + { + "start": 5894.1, + "end": 5896.7, + "probability": 0.8028 + }, + { + "start": 5897.56, + "end": 5899.6, + "probability": 0.641 + }, + { + "start": 5900.08, + "end": 5902.98, + "probability": 0.9885 + }, + { + "start": 5903.66, + "end": 5904.84, + "probability": 0.8088 + }, + { + "start": 5905.38, + "end": 5906.8, + "probability": 0.8081 + }, + { + "start": 5907.98, + "end": 5913.64, + "probability": 0.9755 + }, + { + "start": 5913.88, + "end": 5917.92, + "probability": 0.9989 + }, + { + "start": 5917.98, + "end": 5918.72, + "probability": 0.9461 + }, + { + "start": 5919.22, + "end": 5922.46, + "probability": 0.7593 + }, + { + "start": 5922.46, + "end": 5925.2, + "probability": 0.9501 + }, + { + "start": 5925.26, + "end": 5931.28, + "probability": 0.9561 + }, + { + "start": 5931.58, + "end": 5934.66, + "probability": 0.9287 + }, + { + "start": 5934.66, + "end": 5937.58, + "probability": 0.9971 + }, + { + "start": 5938.82, + "end": 5939.28, + "probability": 0.2487 + }, + { + "start": 5939.38, + "end": 5941.42, + "probability": 0.4959 + }, + { + "start": 5941.64, + "end": 5942.12, + "probability": 0.7059 + }, + { + "start": 5942.14, + "end": 5947.72, + "probability": 0.9372 + }, + { + "start": 5949.08, + "end": 5951.82, + "probability": 0.9785 + }, + { + "start": 5952.84, + "end": 5955.0, + "probability": 0.9883 + }, + { + "start": 5956.06, + "end": 5957.86, + "probability": 0.9706 + }, + { + "start": 5958.66, + "end": 5958.68, + "probability": 0.3726 + }, + { + "start": 5959.46, + "end": 5961.26, + "probability": 0.8491 + }, + { + "start": 5962.12, + "end": 5963.04, + "probability": 0.8877 + }, + { + "start": 5963.54, + "end": 5966.04, + "probability": 0.9868 + }, + { + "start": 5967.18, + "end": 5968.21, + "probability": 0.9695 + }, + { + "start": 5968.52, + "end": 5970.86, + "probability": 0.9824 + }, + { + "start": 5970.94, + "end": 5972.44, + "probability": 0.9951 + }, + { + "start": 5972.56, + "end": 5976.48, + "probability": 0.9353 + }, + { + "start": 5977.06, + "end": 5983.2, + "probability": 0.9915 + }, + { + "start": 5983.74, + "end": 5985.86, + "probability": 0.8733 + }, + { + "start": 5986.78, + "end": 5990.0, + "probability": 0.9153 + }, + { + "start": 5990.56, + "end": 5992.56, + "probability": 0.922 + }, + { + "start": 5993.28, + "end": 5995.22, + "probability": 0.9746 + }, + { + "start": 5995.74, + "end": 5996.24, + "probability": 0.9255 + }, + { + "start": 5996.7, + "end": 5999.22, + "probability": 0.9858 + }, + { + "start": 5999.82, + "end": 6000.88, + "probability": 0.8923 + }, + { + "start": 6001.7, + "end": 6004.14, + "probability": 0.9492 + }, + { + "start": 6004.76, + "end": 6008.96, + "probability": 0.7372 + }, + { + "start": 6009.84, + "end": 6012.2, + "probability": 0.6312 + }, + { + "start": 6013.38, + "end": 6017.78, + "probability": 0.9947 + }, + { + "start": 6018.24, + "end": 6020.56, + "probability": 0.9097 + }, + { + "start": 6021.16, + "end": 6023.06, + "probability": 0.6071 + }, + { + "start": 6023.38, + "end": 6026.82, + "probability": 0.888 + }, + { + "start": 6027.7, + "end": 6031.7, + "probability": 0.9759 + }, + { + "start": 6032.18, + "end": 6034.08, + "probability": 0.7814 + }, + { + "start": 6034.22, + "end": 6035.34, + "probability": 0.9639 + }, + { + "start": 6035.86, + "end": 6041.54, + "probability": 0.989 + }, + { + "start": 6042.42, + "end": 6046.6, + "probability": 0.993 + }, + { + "start": 6048.0, + "end": 6049.62, + "probability": 0.7596 + }, + { + "start": 6050.44, + "end": 6055.18, + "probability": 0.9316 + }, + { + "start": 6055.78, + "end": 6058.66, + "probability": 0.9924 + }, + { + "start": 6059.04, + "end": 6063.54, + "probability": 0.9932 + }, + { + "start": 6063.76, + "end": 6066.82, + "probability": 0.9268 + }, + { + "start": 6067.06, + "end": 6069.42, + "probability": 0.7522 + }, + { + "start": 6070.16, + "end": 6070.38, + "probability": 0.8038 + }, + { + "start": 6071.34, + "end": 6072.76, + "probability": 0.8825 + }, + { + "start": 6073.04, + "end": 6075.0, + "probability": 0.9749 + }, + { + "start": 6075.2, + "end": 6077.56, + "probability": 0.9564 + }, + { + "start": 6078.96, + "end": 6079.38, + "probability": 0.4877 + }, + { + "start": 6079.42, + "end": 6080.19, + "probability": 0.9325 + }, + { + "start": 6080.6, + "end": 6083.62, + "probability": 0.71 + }, + { + "start": 6084.86, + "end": 6085.86, + "probability": 0.4402 + }, + { + "start": 6086.38, + "end": 6091.34, + "probability": 0.9165 + }, + { + "start": 6091.94, + "end": 6094.44, + "probability": 0.5692 + }, + { + "start": 6094.44, + "end": 6096.96, + "probability": 0.77 + }, + { + "start": 6097.38, + "end": 6099.52, + "probability": 0.5613 + }, + { + "start": 6099.62, + "end": 6100.52, + "probability": 0.7001 + }, + { + "start": 6100.6, + "end": 6103.16, + "probability": 0.8481 + }, + { + "start": 6105.76, + "end": 6111.16, + "probability": 0.1368 + }, + { + "start": 6121.36, + "end": 6121.74, + "probability": 0.4502 + }, + { + "start": 6126.48, + "end": 6127.26, + "probability": 0.0198 + }, + { + "start": 6130.68, + "end": 6131.38, + "probability": 0.0218 + }, + { + "start": 6131.38, + "end": 6135.32, + "probability": 0.1612 + }, + { + "start": 6135.72, + "end": 6136.76, + "probability": 0.7984 + }, + { + "start": 6137.0, + "end": 6137.88, + "probability": 0.8293 + }, + { + "start": 6138.78, + "end": 6139.12, + "probability": 0.0334 + }, + { + "start": 6139.47, + "end": 6140.81, + "probability": 0.0633 + }, + { + "start": 6141.36, + "end": 6142.38, + "probability": 0.0945 + }, + { + "start": 6142.38, + "end": 6145.38, + "probability": 0.0996 + }, + { + "start": 6145.76, + "end": 6151.38, + "probability": 0.1348 + }, + { + "start": 6151.76, + "end": 6155.82, + "probability": 0.0518 + }, + { + "start": 6160.39, + "end": 6167.1, + "probability": 0.3919 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6190.0, + "end": 6190.0, + "probability": 0.0 + }, + { + "start": 6218.6, + "end": 6221.2, + "probability": 0.0442 + }, + { + "start": 6221.34, + "end": 6228.36, + "probability": 0.0281 + }, + { + "start": 6228.62, + "end": 6233.8, + "probability": 0.1147 + }, + { + "start": 6233.88, + "end": 6235.92, + "probability": 0.0523 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.0 + }, + { + "start": 6313.18, + "end": 6313.28, + "probability": 0.0489 + }, + { + "start": 6314.86, + "end": 6318.64, + "probability": 0.548 + }, + { + "start": 6319.62, + "end": 6323.46, + "probability": 0.9172 + }, + { + "start": 6324.24, + "end": 6324.76, + "probability": 0.0624 + }, + { + "start": 6324.76, + "end": 6328.4, + "probability": 0.824 + }, + { + "start": 6329.58, + "end": 6334.12, + "probability": 0.991 + }, + { + "start": 6334.82, + "end": 6336.34, + "probability": 0.7554 + }, + { + "start": 6337.4, + "end": 6343.3, + "probability": 0.9723 + }, + { + "start": 6343.58, + "end": 6345.9, + "probability": 0.9735 + }, + { + "start": 6345.92, + "end": 6349.62, + "probability": 0.9985 + }, + { + "start": 6350.22, + "end": 6351.68, + "probability": 0.9827 + }, + { + "start": 6352.7, + "end": 6353.34, + "probability": 0.6532 + }, + { + "start": 6353.4, + "end": 6355.82, + "probability": 0.8799 + }, + { + "start": 6355.82, + "end": 6358.82, + "probability": 0.9906 + }, + { + "start": 6359.8, + "end": 6363.48, + "probability": 0.9515 + }, + { + "start": 6363.54, + "end": 6364.86, + "probability": 0.6649 + }, + { + "start": 6365.36, + "end": 6368.5, + "probability": 0.8222 + }, + { + "start": 6369.53, + "end": 6374.74, + "probability": 0.9829 + }, + { + "start": 6375.36, + "end": 6382.04, + "probability": 0.9712 + }, + { + "start": 6382.64, + "end": 6384.34, + "probability": 0.8911 + }, + { + "start": 6385.52, + "end": 6385.84, + "probability": 0.5498 + }, + { + "start": 6385.92, + "end": 6386.5, + "probability": 0.8101 + }, + { + "start": 6386.94, + "end": 6391.7, + "probability": 0.7614 + }, + { + "start": 6392.12, + "end": 6395.22, + "probability": 0.9551 + }, + { + "start": 6396.36, + "end": 6398.76, + "probability": 0.9103 + }, + { + "start": 6399.72, + "end": 6403.52, + "probability": 0.6411 + }, + { + "start": 6404.18, + "end": 6408.7, + "probability": 0.7957 + }, + { + "start": 6409.16, + "end": 6411.48, + "probability": 0.6883 + }, + { + "start": 6411.74, + "end": 6413.6, + "probability": 0.762 + }, + { + "start": 6415.78, + "end": 6417.1, + "probability": 0.4583 + }, + { + "start": 6418.14, + "end": 6418.72, + "probability": 0.1078 + }, + { + "start": 6418.72, + "end": 6419.26, + "probability": 0.2687 + }, + { + "start": 6419.5, + "end": 6422.8, + "probability": 0.9929 + }, + { + "start": 6423.66, + "end": 6425.8, + "probability": 0.7217 + }, + { + "start": 6425.94, + "end": 6428.5, + "probability": 0.9828 + }, + { + "start": 6429.04, + "end": 6430.98, + "probability": 0.96 + }, + { + "start": 6432.02, + "end": 6434.48, + "probability": 0.9977 + }, + { + "start": 6435.4, + "end": 6436.2, + "probability": 0.3695 + }, + { + "start": 6437.34, + "end": 6440.26, + "probability": 0.846 + }, + { + "start": 6440.78, + "end": 6443.82, + "probability": 0.947 + }, + { + "start": 6443.82, + "end": 6446.44, + "probability": 0.7267 + }, + { + "start": 6447.32, + "end": 6449.06, + "probability": 0.713 + }, + { + "start": 6449.18, + "end": 6451.44, + "probability": 0.7346 + }, + { + "start": 6451.46, + "end": 6452.28, + "probability": 0.9048 + }, + { + "start": 6470.39, + "end": 6472.42, + "probability": 0.1342 + }, + { + "start": 6476.34, + "end": 6476.38, + "probability": 0.0438 + }, + { + "start": 6476.38, + "end": 6478.36, + "probability": 0.0362 + }, + { + "start": 6478.36, + "end": 6480.0, + "probability": 0.6626 + }, + { + "start": 6480.14, + "end": 6482.1, + "probability": 0.7621 + }, + { + "start": 6483.38, + "end": 6487.61, + "probability": 0.7336 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6581.0, + "end": 6581.0, + "probability": 0.0 + }, + { + "start": 6583.28, + "end": 6584.5, + "probability": 0.0552 + }, + { + "start": 6588.34, + "end": 6589.0, + "probability": 0.0863 + }, + { + "start": 6589.0, + "end": 6590.48, + "probability": 0.0111 + }, + { + "start": 6590.48, + "end": 6590.66, + "probability": 0.0383 + }, + { + "start": 6590.7, + "end": 6590.96, + "probability": 0.0784 + }, + { + "start": 6591.38, + "end": 6594.36, + "probability": 0.1318 + }, + { + "start": 6594.5, + "end": 6596.66, + "probability": 0.0514 + }, + { + "start": 6597.9, + "end": 6598.98, + "probability": 0.08 + }, + { + "start": 6600.2, + "end": 6600.36, + "probability": 0.0417 + }, + { + "start": 6605.32, + "end": 6606.18, + "probability": 0.0255 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.0, + "end": 6724.0, + "probability": 0.0 + }, + { + "start": 6724.44, + "end": 6724.8, + "probability": 0.0311 + }, + { + "start": 6724.98, + "end": 6726.82, + "probability": 0.7873 + }, + { + "start": 6726.94, + "end": 6729.92, + "probability": 0.7118 + }, + { + "start": 6730.48, + "end": 6736.6, + "probability": 0.8475 + }, + { + "start": 6737.3, + "end": 6738.07, + "probability": 0.7547 + }, + { + "start": 6738.22, + "end": 6739.46, + "probability": 0.3684 + }, + { + "start": 6739.58, + "end": 6740.34, + "probability": 0.0693 + }, + { + "start": 6740.34, + "end": 6748.12, + "probability": 0.5664 + }, + { + "start": 6748.12, + "end": 6756.14, + "probability": 0.8803 + }, + { + "start": 6757.18, + "end": 6757.82, + "probability": 0.4908 + }, + { + "start": 6757.88, + "end": 6762.72, + "probability": 0.7529 + }, + { + "start": 6763.28, + "end": 6767.76, + "probability": 0.9062 + }, + { + "start": 6768.3, + "end": 6775.7, + "probability": 0.8676 + }, + { + "start": 6776.02, + "end": 6777.08, + "probability": 0.8995 + }, + { + "start": 6777.18, + "end": 6777.84, + "probability": 0.6893 + }, + { + "start": 6778.1, + "end": 6780.78, + "probability": 0.6992 + }, + { + "start": 6781.16, + "end": 6784.2, + "probability": 0.754 + }, + { + "start": 6784.4, + "end": 6786.44, + "probability": 0.7819 + }, + { + "start": 6786.46, + "end": 6788.72, + "probability": 0.5974 + }, + { + "start": 6788.88, + "end": 6790.7, + "probability": 0.2136 + }, + { + "start": 6790.7, + "end": 6790.7, + "probability": 0.5954 + }, + { + "start": 6790.96, + "end": 6792.82, + "probability": 0.9624 + }, + { + "start": 6793.26, + "end": 6795.84, + "probability": 0.8049 + }, + { + "start": 6795.94, + "end": 6797.62, + "probability": 0.7593 + }, + { + "start": 6798.26, + "end": 6799.94, + "probability": 0.3447 + }, + { + "start": 6799.98, + "end": 6803.72, + "probability": 0.9678 + }, + { + "start": 6804.68, + "end": 6805.38, + "probability": 0.7188 + }, + { + "start": 6806.83, + "end": 6811.6, + "probability": 0.7765 + }, + { + "start": 6812.02, + "end": 6814.34, + "probability": 0.7413 + }, + { + "start": 6814.9, + "end": 6816.1, + "probability": 0.6491 + }, + { + "start": 6816.5, + "end": 6817.44, + "probability": 0.8061 + }, + { + "start": 6817.54, + "end": 6818.1, + "probability": 0.6211 + }, + { + "start": 6818.48, + "end": 6820.03, + "probability": 0.5039 + }, + { + "start": 6820.88, + "end": 6822.92, + "probability": 0.9678 + }, + { + "start": 6823.04, + "end": 6825.42, + "probability": 0.3849 + }, + { + "start": 6825.76, + "end": 6826.1, + "probability": 0.395 + }, + { + "start": 6826.64, + "end": 6830.26, + "probability": 0.735 + }, + { + "start": 6830.9, + "end": 6833.84, + "probability": 0.8608 + }, + { + "start": 6834.22, + "end": 6837.42, + "probability": 0.6423 + }, + { + "start": 6837.52, + "end": 6837.92, + "probability": 0.3669 + }, + { + "start": 6837.92, + "end": 6841.3, + "probability": 0.8524 + }, + { + "start": 6842.86, + "end": 6849.44, + "probability": 0.1921 + }, + { + "start": 6849.44, + "end": 6849.86, + "probability": 0.6328 + }, + { + "start": 6849.98, + "end": 6850.56, + "probability": 0.3594 + }, + { + "start": 6850.66, + "end": 6851.64, + "probability": 0.5249 + }, + { + "start": 6851.76, + "end": 6854.62, + "probability": 0.7136 + }, + { + "start": 6855.18, + "end": 6855.96, + "probability": 0.8808 + }, + { + "start": 6856.26, + "end": 6857.9, + "probability": 0.9724 + }, + { + "start": 6858.12, + "end": 6861.12, + "probability": 0.8845 + }, + { + "start": 6861.82, + "end": 6866.84, + "probability": 0.679 + }, + { + "start": 6867.72, + "end": 6869.54, + "probability": 0.8004 + }, + { + "start": 6869.72, + "end": 6871.18, + "probability": 0.7893 + }, + { + "start": 6871.42, + "end": 6874.98, + "probability": 0.9666 + }, + { + "start": 6875.0, + "end": 6875.72, + "probability": 0.7518 + }, + { + "start": 6875.8, + "end": 6877.56, + "probability": 0.8887 + }, + { + "start": 6877.96, + "end": 6882.28, + "probability": 0.8688 + }, + { + "start": 6883.1, + "end": 6887.0, + "probability": 0.9644 + }, + { + "start": 6887.04, + "end": 6887.59, + "probability": 0.8435 + }, + { + "start": 6887.88, + "end": 6889.26, + "probability": 0.539 + }, + { + "start": 6889.34, + "end": 6890.28, + "probability": 0.8116 + }, + { + "start": 6890.42, + "end": 6893.22, + "probability": 0.9154 + }, + { + "start": 6893.82, + "end": 6894.34, + "probability": 0.8792 + }, + { + "start": 6894.44, + "end": 6895.56, + "probability": 0.4915 + }, + { + "start": 6895.66, + "end": 6896.5, + "probability": 0.8784 + }, + { + "start": 6896.62, + "end": 6900.41, + "probability": 0.8774 + }, + { + "start": 6900.7, + "end": 6902.16, + "probability": 0.9067 + }, + { + "start": 6902.22, + "end": 6905.4, + "probability": 0.5753 + }, + { + "start": 6906.12, + "end": 6909.08, + "probability": 0.9892 + }, + { + "start": 6909.88, + "end": 6911.56, + "probability": 0.5166 + }, + { + "start": 6912.26, + "end": 6914.78, + "probability": 0.4524 + }, + { + "start": 6915.51, + "end": 6915.76, + "probability": 0.3511 + }, + { + "start": 6915.86, + "end": 6916.88, + "probability": 0.2372 + }, + { + "start": 6917.16, + "end": 6918.8, + "probability": 0.4474 + }, + { + "start": 6919.04, + "end": 6919.6, + "probability": 0.9013 + }, + { + "start": 6919.62, + "end": 6921.84, + "probability": 0.8218 + }, + { + "start": 6921.88, + "end": 6925.6, + "probability": 0.6589 + }, + { + "start": 6926.0, + "end": 6926.78, + "probability": 0.9311 + }, + { + "start": 6927.72, + "end": 6931.38, + "probability": 0.9463 + }, + { + "start": 6931.72, + "end": 6931.92, + "probability": 0.8812 + }, + { + "start": 6932.52, + "end": 6934.54, + "probability": 0.8895 + }, + { + "start": 6935.12, + "end": 6935.9, + "probability": 0.8923 + }, + { + "start": 6937.0, + "end": 6937.7, + "probability": 0.9732 + }, + { + "start": 6938.02, + "end": 6938.48, + "probability": 0.7512 + }, + { + "start": 6938.48, + "end": 6938.52, + "probability": 0.6128 + }, + { + "start": 6938.52, + "end": 6939.22, + "probability": 0.5052 + }, + { + "start": 6939.36, + "end": 6941.98, + "probability": 0.9275 + }, + { + "start": 6942.06, + "end": 6943.7, + "probability": 0.2988 + }, + { + "start": 6944.18, + "end": 6945.01, + "probability": 0.5038 + }, + { + "start": 6946.12, + "end": 6949.12, + "probability": 0.4442 + }, + { + "start": 6949.24, + "end": 6950.99, + "probability": 0.8689 + }, + { + "start": 6951.44, + "end": 6953.58, + "probability": 0.9277 + }, + { + "start": 6953.8, + "end": 6957.76, + "probability": 0.8535 + }, + { + "start": 6957.86, + "end": 6958.64, + "probability": 0.6234 + }, + { + "start": 6959.2, + "end": 6960.24, + "probability": 0.8923 + }, + { + "start": 6960.4, + "end": 6962.34, + "probability": 0.599 + }, + { + "start": 6962.34, + "end": 6963.2, + "probability": 0.3847 + }, + { + "start": 6963.2, + "end": 6963.92, + "probability": 0.6179 + }, + { + "start": 6964.44, + "end": 6967.74, + "probability": 0.8768 + }, + { + "start": 6967.86, + "end": 6968.74, + "probability": 0.8246 + }, + { + "start": 6968.84, + "end": 6969.74, + "probability": 0.852 + }, + { + "start": 6970.4, + "end": 6971.84, + "probability": 0.7063 + }, + { + "start": 6972.3, + "end": 6973.74, + "probability": 0.4176 + }, + { + "start": 6973.78, + "end": 6978.06, + "probability": 0.7039 + }, + { + "start": 6978.58, + "end": 6981.36, + "probability": 0.8274 + }, + { + "start": 6981.9, + "end": 6988.28, + "probability": 0.6114 + }, + { + "start": 6988.4, + "end": 6988.82, + "probability": 0.7278 + }, + { + "start": 6989.78, + "end": 6991.9, + "probability": 0.6592 + }, + { + "start": 6992.22, + "end": 6993.82, + "probability": 0.6002 + }, + { + "start": 6995.4, + "end": 7000.26, + "probability": 0.7932 + }, + { + "start": 7000.68, + "end": 7003.64, + "probability": 0.923 + }, + { + "start": 7003.64, + "end": 7006.26, + "probability": 0.903 + }, + { + "start": 7007.32, + "end": 7008.52, + "probability": 0.6694 + }, + { + "start": 7009.02, + "end": 7010.48, + "probability": 0.4925 + }, + { + "start": 7010.82, + "end": 7011.72, + "probability": 0.8468 + }, + { + "start": 7012.5, + "end": 7013.28, + "probability": 0.8639 + }, + { + "start": 7014.58, + "end": 7017.08, + "probability": 0.2426 + }, + { + "start": 7033.14, + "end": 7033.7, + "probability": 0.0092 + }, + { + "start": 7034.24, + "end": 7034.3, + "probability": 0.0072 + }, + { + "start": 7034.3, + "end": 7034.3, + "probability": 0.0114 + }, + { + "start": 7034.3, + "end": 7034.3, + "probability": 0.5375 + }, + { + "start": 7034.3, + "end": 7034.3, + "probability": 0.7493 + }, + { + "start": 7034.3, + "end": 7036.54, + "probability": 0.3887 + }, + { + "start": 7036.74, + "end": 7040.14, + "probability": 0.9093 + }, + { + "start": 7040.96, + "end": 7043.74, + "probability": 0.6501 + }, + { + "start": 7044.32, + "end": 7047.38, + "probability": 0.8563 + }, + { + "start": 7047.52, + "end": 7049.56, + "probability": 0.9895 + }, + { + "start": 7050.32, + "end": 7051.64, + "probability": 0.4981 + }, + { + "start": 7051.72, + "end": 7052.82, + "probability": 0.6533 + }, + { + "start": 7052.88, + "end": 7055.92, + "probability": 0.7569 + }, + { + "start": 7056.06, + "end": 7059.38, + "probability": 0.4642 + }, + { + "start": 7059.38, + "end": 7064.3, + "probability": 0.3547 + }, + { + "start": 7067.48, + "end": 7067.88, + "probability": 0.2618 + }, + { + "start": 7067.9, + "end": 7068.68, + "probability": 0.574 + }, + { + "start": 7068.8, + "end": 7071.54, + "probability": 0.9186 + }, + { + "start": 7071.76, + "end": 7072.86, + "probability": 0.4619 + }, + { + "start": 7072.94, + "end": 7074.4, + "probability": 0.8804 + } + ], + "segments_count": 2360, + "words_count": 12301, + "avg_words_per_segment": 5.2123, + "avg_segment_duration": 2.2212, + "avg_words_per_minute": 103.9839, + "plenum_id": "40212", + "duration": 7097.83, + "title": null, + "plenum_date": "2014-11-11" +} \ No newline at end of file