diff --git "a/110422/metadata.json" "b/110422/metadata.json" new file mode 100644--- /dev/null +++ "b/110422/metadata.json" @@ -0,0 +1,12457 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "110422", + "quality_score": 0.9648, + "per_segment_quality_scores": [ + { + "start": 164.0, + "end": 164.0, + "probability": 0.0 + }, + { + "start": 164.0, + "end": 164.0, + "probability": 0.0 + }, + { + "start": 164.0, + "end": 164.0, + "probability": 0.0 + }, + { + "start": 164.0, + "end": 164.0, + "probability": 0.0 + }, + { + "start": 164.16, + "end": 165.1, + "probability": 0.6637 + }, + { + "start": 165.22, + "end": 167.18, + "probability": 0.8391 + }, + { + "start": 167.36, + "end": 167.62, + "probability": 0.7978 + }, + { + "start": 178.06, + "end": 179.42, + "probability": 0.4603 + }, + { + "start": 180.0, + "end": 181.08, + "probability": 0.5848 + }, + { + "start": 181.22, + "end": 182.03, + "probability": 0.8128 + }, + { + "start": 182.44, + "end": 184.26, + "probability": 0.9946 + }, + { + "start": 184.64, + "end": 189.12, + "probability": 0.7919 + }, + { + "start": 189.16, + "end": 192.44, + "probability": 0.7941 + }, + { + "start": 192.98, + "end": 195.46, + "probability": 0.9927 + }, + { + "start": 195.9, + "end": 199.16, + "probability": 0.9548 + }, + { + "start": 199.62, + "end": 201.92, + "probability": 0.9666 + }, + { + "start": 202.56, + "end": 205.38, + "probability": 0.9985 + }, + { + "start": 205.38, + "end": 209.56, + "probability": 0.9943 + }, + { + "start": 209.56, + "end": 213.92, + "probability": 0.9924 + }, + { + "start": 214.44, + "end": 216.88, + "probability": 0.9276 + }, + { + "start": 216.94, + "end": 221.22, + "probability": 0.9893 + }, + { + "start": 224.14, + "end": 224.16, + "probability": 0.02 + }, + { + "start": 224.16, + "end": 224.37, + "probability": 0.502 + }, + { + "start": 225.0, + "end": 225.94, + "probability": 0.5948 + }, + { + "start": 226.02, + "end": 226.6, + "probability": 0.627 + }, + { + "start": 227.12, + "end": 228.24, + "probability": 0.9758 + }, + { + "start": 228.3, + "end": 231.82, + "probability": 0.9847 + }, + { + "start": 231.94, + "end": 232.39, + "probability": 0.8723 + }, + { + "start": 233.3, + "end": 235.9, + "probability": 0.8928 + }, + { + "start": 236.06, + "end": 239.48, + "probability": 0.994 + }, + { + "start": 239.5, + "end": 243.22, + "probability": 0.9979 + }, + { + "start": 243.48, + "end": 244.14, + "probability": 0.8569 + }, + { + "start": 244.5, + "end": 244.92, + "probability": 0.6642 + }, + { + "start": 245.08, + "end": 245.44, + "probability": 0.9304 + }, + { + "start": 245.6, + "end": 249.34, + "probability": 0.9523 + }, + { + "start": 249.82, + "end": 251.74, + "probability": 0.8967 + }, + { + "start": 251.92, + "end": 253.44, + "probability": 0.8462 + }, + { + "start": 253.94, + "end": 257.48, + "probability": 0.9535 + }, + { + "start": 257.48, + "end": 260.42, + "probability": 0.9904 + }, + { + "start": 260.94, + "end": 264.48, + "probability": 0.868 + }, + { + "start": 264.68, + "end": 265.88, + "probability": 0.6674 + }, + { + "start": 266.48, + "end": 266.54, + "probability": 0.2735 + }, + { + "start": 266.54, + "end": 268.48, + "probability": 0.9901 + }, + { + "start": 268.62, + "end": 270.02, + "probability": 0.9014 + }, + { + "start": 270.64, + "end": 270.84, + "probability": 0.8806 + }, + { + "start": 271.04, + "end": 272.98, + "probability": 0.9886 + }, + { + "start": 273.4, + "end": 275.02, + "probability": 0.9035 + }, + { + "start": 275.74, + "end": 278.74, + "probability": 0.9982 + }, + { + "start": 280.1, + "end": 280.56, + "probability": 0.6087 + }, + { + "start": 280.62, + "end": 283.64, + "probability": 0.7517 + }, + { + "start": 283.8, + "end": 284.3, + "probability": 0.9321 + }, + { + "start": 286.82, + "end": 287.84, + "probability": 0.6279 + }, + { + "start": 288.1, + "end": 290.06, + "probability": 0.7954 + }, + { + "start": 290.14, + "end": 294.8, + "probability": 0.8719 + }, + { + "start": 295.44, + "end": 300.7, + "probability": 0.7891 + }, + { + "start": 301.5, + "end": 303.3, + "probability": 0.9902 + }, + { + "start": 303.46, + "end": 305.1, + "probability": 0.9841 + }, + { + "start": 305.8, + "end": 307.06, + "probability": 0.6863 + }, + { + "start": 307.14, + "end": 309.44, + "probability": 0.9792 + }, + { + "start": 310.56, + "end": 313.0, + "probability": 0.9165 + }, + { + "start": 313.3, + "end": 313.92, + "probability": 0.9226 + }, + { + "start": 314.0, + "end": 314.78, + "probability": 0.5809 + }, + { + "start": 315.04, + "end": 317.88, + "probability": 0.9893 + }, + { + "start": 318.06, + "end": 319.76, + "probability": 0.9531 + }, + { + "start": 320.12, + "end": 322.78, + "probability": 0.7967 + }, + { + "start": 322.88, + "end": 325.96, + "probability": 0.9866 + }, + { + "start": 326.0, + "end": 328.98, + "probability": 0.5976 + }, + { + "start": 329.48, + "end": 331.12, + "probability": 0.6559 + }, + { + "start": 331.12, + "end": 333.52, + "probability": 0.666 + }, + { + "start": 333.94, + "end": 334.2, + "probability": 0.4317 + }, + { + "start": 334.2, + "end": 336.88, + "probability": 0.9374 + }, + { + "start": 337.28, + "end": 337.92, + "probability": 0.7322 + }, + { + "start": 338.2, + "end": 341.4, + "probability": 0.8721 + }, + { + "start": 342.3, + "end": 342.84, + "probability": 0.4757 + }, + { + "start": 343.44, + "end": 345.06, + "probability": 0.9845 + }, + { + "start": 345.12, + "end": 345.48, + "probability": 0.9149 + }, + { + "start": 346.0, + "end": 348.46, + "probability": 0.7035 + }, + { + "start": 348.46, + "end": 349.05, + "probability": 0.6849 + }, + { + "start": 349.6, + "end": 351.0, + "probability": 0.8334 + }, + { + "start": 355.7, + "end": 358.66, + "probability": 0.5283 + }, + { + "start": 359.2, + "end": 364.54, + "probability": 0.8262 + }, + { + "start": 364.66, + "end": 365.0, + "probability": 0.5773 + }, + { + "start": 365.72, + "end": 368.88, + "probability": 0.5431 + }, + { + "start": 368.88, + "end": 369.11, + "probability": 0.4112 + }, + { + "start": 369.78, + "end": 370.32, + "probability": 0.4058 + }, + { + "start": 370.46, + "end": 373.26, + "probability": 0.8154 + }, + { + "start": 373.82, + "end": 375.02, + "probability": 0.9181 + }, + { + "start": 375.02, + "end": 376.94, + "probability": 0.0415 + }, + { + "start": 377.68, + "end": 377.68, + "probability": 0.094 + }, + { + "start": 377.68, + "end": 379.4, + "probability": 0.3045 + }, + { + "start": 380.82, + "end": 382.24, + "probability": 0.4076 + }, + { + "start": 382.52, + "end": 384.98, + "probability": 0.2441 + }, + { + "start": 385.06, + "end": 385.54, + "probability": 0.7791 + }, + { + "start": 386.88, + "end": 388.02, + "probability": 0.8454 + }, + { + "start": 388.14, + "end": 389.14, + "probability": 0.8979 + }, + { + "start": 389.26, + "end": 391.88, + "probability": 0.9603 + }, + { + "start": 391.88, + "end": 395.58, + "probability": 0.989 + }, + { + "start": 395.58, + "end": 399.74, + "probability": 0.9839 + }, + { + "start": 400.18, + "end": 401.96, + "probability": 0.9758 + }, + { + "start": 402.12, + "end": 404.44, + "probability": 0.9982 + }, + { + "start": 405.16, + "end": 406.45, + "probability": 0.937 + }, + { + "start": 406.84, + "end": 407.66, + "probability": 0.6293 + }, + { + "start": 407.78, + "end": 413.32, + "probability": 0.9865 + }, + { + "start": 413.46, + "end": 417.82, + "probability": 0.9859 + }, + { + "start": 418.7, + "end": 419.5, + "probability": 0.4926 + }, + { + "start": 420.32, + "end": 422.96, + "probability": 0.9927 + }, + { + "start": 423.16, + "end": 427.58, + "probability": 0.9683 + }, + { + "start": 428.36, + "end": 432.18, + "probability": 0.9956 + }, + { + "start": 432.18, + "end": 437.06, + "probability": 0.9769 + }, + { + "start": 437.06, + "end": 442.08, + "probability": 0.9968 + }, + { + "start": 442.52, + "end": 444.66, + "probability": 0.9855 + }, + { + "start": 445.56, + "end": 450.22, + "probability": 0.9927 + }, + { + "start": 450.26, + "end": 453.04, + "probability": 0.9132 + }, + { + "start": 453.4, + "end": 455.48, + "probability": 0.9326 + }, + { + "start": 455.6, + "end": 456.42, + "probability": 0.8041 + }, + { + "start": 457.18, + "end": 457.58, + "probability": 0.7617 + }, + { + "start": 457.7, + "end": 459.68, + "probability": 0.9922 + }, + { + "start": 459.78, + "end": 461.44, + "probability": 0.9686 + }, + { + "start": 461.98, + "end": 465.44, + "probability": 0.5015 + }, + { + "start": 465.48, + "end": 467.66, + "probability": 0.9854 + }, + { + "start": 468.36, + "end": 473.0, + "probability": 0.9663 + }, + { + "start": 473.54, + "end": 477.46, + "probability": 0.9722 + }, + { + "start": 481.74, + "end": 486.8, + "probability": 0.8854 + }, + { + "start": 487.46, + "end": 489.62, + "probability": 0.8818 + }, + { + "start": 489.7, + "end": 491.22, + "probability": 0.98 + }, + { + "start": 491.64, + "end": 494.58, + "probability": 0.9849 + }, + { + "start": 494.98, + "end": 497.34, + "probability": 0.7903 + }, + { + "start": 497.8, + "end": 499.78, + "probability": 0.6659 + }, + { + "start": 500.26, + "end": 505.68, + "probability": 0.9903 + }, + { + "start": 506.26, + "end": 507.48, + "probability": 0.9149 + }, + { + "start": 507.78, + "end": 508.68, + "probability": 0.7639 + }, + { + "start": 509.12, + "end": 512.52, + "probability": 0.8923 + }, + { + "start": 512.82, + "end": 513.08, + "probability": 0.6506 + }, + { + "start": 513.26, + "end": 514.72, + "probability": 0.9639 + }, + { + "start": 515.18, + "end": 516.82, + "probability": 0.643 + }, + { + "start": 517.22, + "end": 519.01, + "probability": 0.984 + }, + { + "start": 519.02, + "end": 522.42, + "probability": 0.9897 + }, + { + "start": 522.52, + "end": 523.0, + "probability": 0.7847 + }, + { + "start": 524.08, + "end": 526.22, + "probability": 0.7926 + }, + { + "start": 526.32, + "end": 529.96, + "probability": 0.9775 + }, + { + "start": 529.96, + "end": 536.56, + "probability": 0.6363 + }, + { + "start": 537.42, + "end": 540.16, + "probability": 0.9491 + }, + { + "start": 545.8, + "end": 547.02, + "probability": 0.4998 + }, + { + "start": 549.7, + "end": 549.7, + "probability": 0.238 + }, + { + "start": 549.7, + "end": 550.52, + "probability": 0.6424 + }, + { + "start": 551.14, + "end": 553.48, + "probability": 0.9351 + }, + { + "start": 554.36, + "end": 556.2, + "probability": 0.9896 + }, + { + "start": 556.36, + "end": 558.98, + "probability": 0.9978 + }, + { + "start": 558.98, + "end": 561.3, + "probability": 0.9237 + }, + { + "start": 562.2, + "end": 562.48, + "probability": 0.4984 + }, + { + "start": 562.56, + "end": 562.94, + "probability": 0.8747 + }, + { + "start": 563.12, + "end": 567.18, + "probability": 0.9855 + }, + { + "start": 567.76, + "end": 569.58, + "probability": 0.8873 + }, + { + "start": 570.3, + "end": 575.02, + "probability": 0.8843 + }, + { + "start": 575.56, + "end": 577.48, + "probability": 0.9037 + }, + { + "start": 577.96, + "end": 578.54, + "probability": 0.6811 + }, + { + "start": 578.66, + "end": 579.9, + "probability": 0.5241 + }, + { + "start": 580.22, + "end": 585.28, + "probability": 0.9769 + }, + { + "start": 586.4, + "end": 588.88, + "probability": 0.9452 + }, + { + "start": 589.98, + "end": 592.34, + "probability": 0.9583 + }, + { + "start": 592.4, + "end": 596.0, + "probability": 0.9224 + }, + { + "start": 597.02, + "end": 597.46, + "probability": 0.8617 + }, + { + "start": 603.46, + "end": 603.56, + "probability": 0.0331 + }, + { + "start": 603.56, + "end": 603.84, + "probability": 0.1725 + }, + { + "start": 604.4, + "end": 605.58, + "probability": 0.7194 + }, + { + "start": 606.54, + "end": 606.98, + "probability": 0.4461 + }, + { + "start": 607.06, + "end": 608.86, + "probability": 0.4834 + }, + { + "start": 609.28, + "end": 613.22, + "probability": 0.939 + }, + { + "start": 613.8, + "end": 614.14, + "probability": 0.9724 + }, + { + "start": 615.46, + "end": 619.02, + "probability": 0.9185 + }, + { + "start": 619.78, + "end": 622.78, + "probability": 0.9817 + }, + { + "start": 623.58, + "end": 628.78, + "probability": 0.925 + }, + { + "start": 629.62, + "end": 636.84, + "probability": 0.9668 + }, + { + "start": 637.64, + "end": 638.18, + "probability": 0.5488 + }, + { + "start": 638.34, + "end": 639.52, + "probability": 0.5418 + }, + { + "start": 639.9, + "end": 641.78, + "probability": 0.8081 + }, + { + "start": 642.1, + "end": 644.18, + "probability": 0.7073 + }, + { + "start": 644.58, + "end": 645.9, + "probability": 0.9873 + }, + { + "start": 646.78, + "end": 652.0, + "probability": 0.9873 + }, + { + "start": 652.58, + "end": 654.22, + "probability": 0.6323 + }, + { + "start": 654.82, + "end": 655.98, + "probability": 0.7963 + }, + { + "start": 656.14, + "end": 658.16, + "probability": 0.5962 + }, + { + "start": 658.44, + "end": 660.48, + "probability": 0.9657 + }, + { + "start": 661.48, + "end": 662.1, + "probability": 0.6174 + }, + { + "start": 662.24, + "end": 662.58, + "probability": 0.8094 + }, + { + "start": 662.94, + "end": 664.18, + "probability": 0.5251 + }, + { + "start": 664.54, + "end": 668.24, + "probability": 0.9805 + }, + { + "start": 669.12, + "end": 673.22, + "probability": 0.9421 + }, + { + "start": 673.62, + "end": 674.74, + "probability": 0.9198 + }, + { + "start": 675.04, + "end": 678.14, + "probability": 0.975 + }, + { + "start": 678.94, + "end": 680.48, + "probability": 0.8945 + }, + { + "start": 681.04, + "end": 683.74, + "probability": 0.8976 + }, + { + "start": 684.2, + "end": 685.98, + "probability": 0.9391 + }, + { + "start": 686.56, + "end": 687.28, + "probability": 0.951 + }, + { + "start": 687.9, + "end": 690.04, + "probability": 0.9985 + }, + { + "start": 690.38, + "end": 694.5, + "probability": 0.8896 + }, + { + "start": 695.32, + "end": 697.86, + "probability": 0.953 + }, + { + "start": 698.4, + "end": 701.42, + "probability": 0.5906 + }, + { + "start": 702.34, + "end": 702.52, + "probability": 0.7616 + }, + { + "start": 703.32, + "end": 703.8, + "probability": 0.4854 + }, + { + "start": 703.82, + "end": 704.94, + "probability": 0.7922 + }, + { + "start": 717.02, + "end": 717.22, + "probability": 0.1395 + }, + { + "start": 717.22, + "end": 718.08, + "probability": 0.602 + }, + { + "start": 718.68, + "end": 721.54, + "probability": 0.7348 + }, + { + "start": 722.26, + "end": 724.04, + "probability": 0.7983 + }, + { + "start": 725.28, + "end": 728.3, + "probability": 0.9956 + }, + { + "start": 729.04, + "end": 732.63, + "probability": 0.8749 + }, + { + "start": 733.3, + "end": 735.48, + "probability": 0.9814 + }, + { + "start": 736.36, + "end": 736.92, + "probability": 0.2868 + }, + { + "start": 737.7, + "end": 738.58, + "probability": 0.8885 + }, + { + "start": 739.4, + "end": 743.28, + "probability": 0.9966 + }, + { + "start": 743.92, + "end": 744.8, + "probability": 0.7881 + }, + { + "start": 745.66, + "end": 749.51, + "probability": 0.996 + }, + { + "start": 750.62, + "end": 751.5, + "probability": 0.9189 + }, + { + "start": 752.18, + "end": 756.1, + "probability": 0.9934 + }, + { + "start": 756.98, + "end": 758.3, + "probability": 0.9574 + }, + { + "start": 759.02, + "end": 759.65, + "probability": 0.9202 + }, + { + "start": 761.18, + "end": 763.7, + "probability": 0.9945 + }, + { + "start": 764.34, + "end": 769.6, + "probability": 0.9783 + }, + { + "start": 770.38, + "end": 773.4, + "probability": 0.9976 + }, + { + "start": 774.14, + "end": 777.14, + "probability": 0.9832 + }, + { + "start": 777.14, + "end": 780.42, + "probability": 0.9983 + }, + { + "start": 780.96, + "end": 784.38, + "probability": 0.991 + }, + { + "start": 785.24, + "end": 788.16, + "probability": 0.8382 + }, + { + "start": 788.6, + "end": 788.9, + "probability": 0.8385 + }, + { + "start": 792.18, + "end": 794.86, + "probability": 0.787 + }, + { + "start": 799.46, + "end": 800.58, + "probability": 0.5822 + }, + { + "start": 800.76, + "end": 802.96, + "probability": 0.8816 + }, + { + "start": 803.36, + "end": 804.32, + "probability": 0.7816 + }, + { + "start": 804.92, + "end": 805.44, + "probability": 0.4635 + }, + { + "start": 806.08, + "end": 808.06, + "probability": 0.8006 + }, + { + "start": 809.04, + "end": 810.28, + "probability": 0.8776 + }, + { + "start": 810.46, + "end": 813.72, + "probability": 0.9863 + }, + { + "start": 814.08, + "end": 814.89, + "probability": 0.8762 + }, + { + "start": 815.7, + "end": 816.26, + "probability": 0.8389 + }, + { + "start": 816.36, + "end": 817.08, + "probability": 0.9409 + }, + { + "start": 817.32, + "end": 817.76, + "probability": 0.6392 + }, + { + "start": 818.16, + "end": 820.96, + "probability": 0.8468 + }, + { + "start": 821.12, + "end": 821.78, + "probability": 0.7102 + }, + { + "start": 822.58, + "end": 823.46, + "probability": 0.7854 + }, + { + "start": 823.56, + "end": 826.14, + "probability": 0.7592 + }, + { + "start": 828.04, + "end": 831.0, + "probability": 0.9951 + }, + { + "start": 831.0, + "end": 834.98, + "probability": 0.9925 + }, + { + "start": 835.42, + "end": 838.72, + "probability": 0.9929 + }, + { + "start": 838.72, + "end": 841.0, + "probability": 0.9997 + }, + { + "start": 841.78, + "end": 842.88, + "probability": 0.8346 + }, + { + "start": 843.1, + "end": 846.78, + "probability": 0.9877 + }, + { + "start": 847.92, + "end": 851.08, + "probability": 0.9779 + }, + { + "start": 851.82, + "end": 852.76, + "probability": 0.8607 + }, + { + "start": 852.96, + "end": 856.06, + "probability": 0.9916 + }, + { + "start": 856.56, + "end": 858.08, + "probability": 0.9175 + }, + { + "start": 858.86, + "end": 861.7, + "probability": 0.944 + }, + { + "start": 862.2, + "end": 863.86, + "probability": 0.9763 + }, + { + "start": 864.02, + "end": 866.32, + "probability": 0.9267 + }, + { + "start": 867.0, + "end": 871.88, + "probability": 0.9862 + }, + { + "start": 872.8, + "end": 874.08, + "probability": 0.8105 + }, + { + "start": 874.76, + "end": 878.38, + "probability": 0.9901 + }, + { + "start": 878.42, + "end": 878.98, + "probability": 0.8406 + }, + { + "start": 879.1, + "end": 879.4, + "probability": 0.805 + }, + { + "start": 879.48, + "end": 879.86, + "probability": 0.9617 + }, + { + "start": 879.9, + "end": 881.4, + "probability": 0.9434 + }, + { + "start": 882.72, + "end": 885.32, + "probability": 0.9747 + }, + { + "start": 885.32, + "end": 887.94, + "probability": 0.998 + }, + { + "start": 888.08, + "end": 888.88, + "probability": 0.8499 + }, + { + "start": 889.5, + "end": 891.66, + "probability": 0.9841 + }, + { + "start": 892.28, + "end": 893.98, + "probability": 0.876 + }, + { + "start": 894.08, + "end": 897.06, + "probability": 0.9849 + }, + { + "start": 897.74, + "end": 902.26, + "probability": 0.9879 + }, + { + "start": 902.4, + "end": 904.22, + "probability": 0.8576 + }, + { + "start": 904.88, + "end": 906.58, + "probability": 0.949 + }, + { + "start": 907.28, + "end": 909.44, + "probability": 0.9755 + }, + { + "start": 910.18, + "end": 910.76, + "probability": 0.7922 + }, + { + "start": 910.82, + "end": 914.14, + "probability": 0.9855 + }, + { + "start": 914.6, + "end": 917.04, + "probability": 0.9961 + }, + { + "start": 917.48, + "end": 921.08, + "probability": 0.9949 + }, + { + "start": 921.52, + "end": 923.74, + "probability": 0.9995 + }, + { + "start": 923.78, + "end": 924.32, + "probability": 0.7223 + }, + { + "start": 930.46, + "end": 931.16, + "probability": 0.6397 + }, + { + "start": 932.16, + "end": 934.22, + "probability": 0.6142 + }, + { + "start": 935.2, + "end": 936.78, + "probability": 0.4993 + }, + { + "start": 936.96, + "end": 937.66, + "probability": 0.5056 + }, + { + "start": 937.8, + "end": 938.68, + "probability": 0.7285 + }, + { + "start": 938.96, + "end": 940.48, + "probability": 0.6138 + }, + { + "start": 940.72, + "end": 940.82, + "probability": 0.0049 + }, + { + "start": 942.26, + "end": 944.73, + "probability": 0.8306 + }, + { + "start": 946.1, + "end": 946.56, + "probability": 0.5058 + }, + { + "start": 946.76, + "end": 949.62, + "probability": 0.4819 + }, + { + "start": 949.66, + "end": 949.92, + "probability": 0.8442 + }, + { + "start": 950.06, + "end": 950.62, + "probability": 0.9924 + }, + { + "start": 951.7, + "end": 952.76, + "probability": 0.823 + }, + { + "start": 953.66, + "end": 954.52, + "probability": 0.9628 + }, + { + "start": 954.94, + "end": 955.66, + "probability": 0.7235 + }, + { + "start": 956.16, + "end": 961.74, + "probability": 0.9579 + }, + { + "start": 962.42, + "end": 964.24, + "probability": 0.9755 + }, + { + "start": 964.84, + "end": 966.14, + "probability": 0.7815 + }, + { + "start": 967.1, + "end": 969.79, + "probability": 0.9897 + }, + { + "start": 970.02, + "end": 970.62, + "probability": 0.6284 + }, + { + "start": 971.0, + "end": 974.46, + "probability": 0.9365 + }, + { + "start": 974.66, + "end": 975.7, + "probability": 0.8296 + }, + { + "start": 975.78, + "end": 976.04, + "probability": 0.4765 + }, + { + "start": 977.44, + "end": 979.48, + "probability": 0.9509 + }, + { + "start": 980.24, + "end": 981.89, + "probability": 0.7365 + }, + { + "start": 982.5, + "end": 983.84, + "probability": 0.8168 + }, + { + "start": 984.84, + "end": 992.76, + "probability": 0.9307 + }, + { + "start": 993.8, + "end": 996.08, + "probability": 0.9937 + }, + { + "start": 996.86, + "end": 998.1, + "probability": 0.9897 + }, + { + "start": 999.58, + "end": 1001.52, + "probability": 0.9201 + }, + { + "start": 1002.08, + "end": 1002.76, + "probability": 0.588 + }, + { + "start": 1003.32, + "end": 1005.24, + "probability": 0.9543 + }, + { + "start": 1006.16, + "end": 1010.28, + "probability": 0.9979 + }, + { + "start": 1010.34, + "end": 1010.96, + "probability": 0.6663 + }, + { + "start": 1011.26, + "end": 1012.82, + "probability": 0.9981 + }, + { + "start": 1013.08, + "end": 1013.63, + "probability": 0.9731 + }, + { + "start": 1014.2, + "end": 1018.12, + "probability": 0.9795 + }, + { + "start": 1018.7, + "end": 1019.82, + "probability": 0.5855 + }, + { + "start": 1020.46, + "end": 1022.21, + "probability": 0.9827 + }, + { + "start": 1022.98, + "end": 1025.42, + "probability": 0.9837 + }, + { + "start": 1025.56, + "end": 1026.3, + "probability": 0.9585 + }, + { + "start": 1027.04, + "end": 1029.1, + "probability": 0.9583 + }, + { + "start": 1029.58, + "end": 1031.38, + "probability": 0.9537 + }, + { + "start": 1031.94, + "end": 1034.52, + "probability": 0.9945 + }, + { + "start": 1035.48, + "end": 1036.75, + "probability": 0.98 + }, + { + "start": 1037.86, + "end": 1038.46, + "probability": 0.9028 + }, + { + "start": 1038.96, + "end": 1042.08, + "probability": 0.9972 + }, + { + "start": 1042.56, + "end": 1045.08, + "probability": 0.9916 + }, + { + "start": 1045.42, + "end": 1045.54, + "probability": 0.5415 + }, + { + "start": 1047.6, + "end": 1048.24, + "probability": 0.6827 + }, + { + "start": 1048.4, + "end": 1048.72, + "probability": 0.6286 + }, + { + "start": 1050.34, + "end": 1053.7, + "probability": 0.9384 + }, + { + "start": 1053.8, + "end": 1055.06, + "probability": 0.7789 + }, + { + "start": 1055.62, + "end": 1058.36, + "probability": 0.9482 + }, + { + "start": 1059.22, + "end": 1061.78, + "probability": 0.6836 + }, + { + "start": 1061.94, + "end": 1063.24, + "probability": 0.8545 + }, + { + "start": 1063.96, + "end": 1064.94, + "probability": 0.7391 + }, + { + "start": 1065.54, + "end": 1069.06, + "probability": 0.9934 + }, + { + "start": 1069.68, + "end": 1072.16, + "probability": 0.998 + }, + { + "start": 1072.92, + "end": 1077.72, + "probability": 0.9978 + }, + { + "start": 1078.36, + "end": 1079.54, + "probability": 0.9294 + }, + { + "start": 1080.22, + "end": 1081.66, + "probability": 0.9882 + }, + { + "start": 1082.42, + "end": 1085.84, + "probability": 0.9792 + }, + { + "start": 1086.48, + "end": 1088.74, + "probability": 0.762 + }, + { + "start": 1089.26, + "end": 1090.92, + "probability": 0.9077 + }, + { + "start": 1092.76, + "end": 1094.98, + "probability": 0.9683 + }, + { + "start": 1096.7, + "end": 1097.86, + "probability": 0.5123 + }, + { + "start": 1098.52, + "end": 1101.58, + "probability": 0.9727 + }, + { + "start": 1102.34, + "end": 1104.72, + "probability": 0.9864 + }, + { + "start": 1105.56, + "end": 1107.34, + "probability": 0.9385 + }, + { + "start": 1107.94, + "end": 1109.62, + "probability": 0.7782 + }, + { + "start": 1110.4, + "end": 1115.08, + "probability": 0.9918 + }, + { + "start": 1115.8, + "end": 1117.28, + "probability": 0.9914 + }, + { + "start": 1117.92, + "end": 1120.46, + "probability": 0.9895 + }, + { + "start": 1120.46, + "end": 1124.98, + "probability": 0.9914 + }, + { + "start": 1125.48, + "end": 1126.08, + "probability": 0.7201 + }, + { + "start": 1126.72, + "end": 1128.2, + "probability": 0.9346 + }, + { + "start": 1128.9, + "end": 1134.5, + "probability": 0.9974 + }, + { + "start": 1135.1, + "end": 1137.36, + "probability": 0.9591 + }, + { + "start": 1138.16, + "end": 1139.3, + "probability": 0.8164 + }, + { + "start": 1140.1, + "end": 1145.52, + "probability": 0.9976 + }, + { + "start": 1145.52, + "end": 1150.42, + "probability": 0.9957 + }, + { + "start": 1151.3, + "end": 1156.06, + "probability": 0.9644 + }, + { + "start": 1156.6, + "end": 1156.86, + "probability": 0.7809 + }, + { + "start": 1157.86, + "end": 1161.14, + "probability": 0.9242 + }, + { + "start": 1161.72, + "end": 1162.26, + "probability": 0.9567 + }, + { + "start": 1167.26, + "end": 1168.36, + "probability": 0.6945 + }, + { + "start": 1181.78, + "end": 1183.48, + "probability": 0.6825 + }, + { + "start": 1184.4, + "end": 1186.78, + "probability": 0.9934 + }, + { + "start": 1187.6, + "end": 1190.38, + "probability": 0.9974 + }, + { + "start": 1191.0, + "end": 1192.12, + "probability": 0.9705 + }, + { + "start": 1193.32, + "end": 1198.24, + "probability": 0.9781 + }, + { + "start": 1198.96, + "end": 1203.72, + "probability": 0.9886 + }, + { + "start": 1205.0, + "end": 1208.56, + "probability": 0.9943 + }, + { + "start": 1209.88, + "end": 1213.94, + "probability": 0.9954 + }, + { + "start": 1213.94, + "end": 1217.72, + "probability": 0.9855 + }, + { + "start": 1217.96, + "end": 1218.3, + "probability": 0.5131 + }, + { + "start": 1218.36, + "end": 1219.76, + "probability": 0.685 + }, + { + "start": 1219.82, + "end": 1220.42, + "probability": 0.9839 + }, + { + "start": 1221.56, + "end": 1225.68, + "probability": 0.9936 + }, + { + "start": 1227.72, + "end": 1231.54, + "probability": 0.9355 + }, + { + "start": 1232.72, + "end": 1235.38, + "probability": 0.9009 + }, + { + "start": 1236.26, + "end": 1240.08, + "probability": 0.9858 + }, + { + "start": 1240.84, + "end": 1243.54, + "probability": 0.9888 + }, + { + "start": 1244.18, + "end": 1247.04, + "probability": 0.9698 + }, + { + "start": 1247.04, + "end": 1250.36, + "probability": 0.9943 + }, + { + "start": 1251.54, + "end": 1254.8, + "probability": 0.9731 + }, + { + "start": 1255.52, + "end": 1256.58, + "probability": 0.963 + }, + { + "start": 1257.46, + "end": 1261.36, + "probability": 0.9739 + }, + { + "start": 1261.86, + "end": 1264.58, + "probability": 0.9917 + }, + { + "start": 1265.8, + "end": 1270.38, + "probability": 0.9929 + }, + { + "start": 1270.38, + "end": 1274.78, + "probability": 0.9829 + }, + { + "start": 1275.32, + "end": 1278.72, + "probability": 0.9938 + }, + { + "start": 1279.62, + "end": 1281.36, + "probability": 0.865 + }, + { + "start": 1281.98, + "end": 1283.52, + "probability": 0.9949 + }, + { + "start": 1285.54, + "end": 1289.96, + "probability": 0.9922 + }, + { + "start": 1290.08, + "end": 1291.5, + "probability": 0.9526 + }, + { + "start": 1292.48, + "end": 1296.38, + "probability": 0.9984 + }, + { + "start": 1297.1, + "end": 1298.02, + "probability": 0.8157 + }, + { + "start": 1299.08, + "end": 1304.4, + "probability": 0.9964 + }, + { + "start": 1305.04, + "end": 1307.26, + "probability": 0.9958 + }, + { + "start": 1308.56, + "end": 1309.18, + "probability": 0.9729 + }, + { + "start": 1309.92, + "end": 1313.24, + "probability": 0.9952 + }, + { + "start": 1314.74, + "end": 1317.64, + "probability": 0.9824 + }, + { + "start": 1321.12, + "end": 1323.32, + "probability": 0.9749 + }, + { + "start": 1323.36, + "end": 1325.12, + "probability": 0.9486 + }, + { + "start": 1325.62, + "end": 1327.62, + "probability": 0.9893 + }, + { + "start": 1327.62, + "end": 1330.0, + "probability": 0.9944 + }, + { + "start": 1330.92, + "end": 1333.18, + "probability": 0.9198 + }, + { + "start": 1334.12, + "end": 1337.96, + "probability": 0.8972 + }, + { + "start": 1340.22, + "end": 1342.66, + "probability": 0.9936 + }, + { + "start": 1342.66, + "end": 1345.76, + "probability": 0.9844 + }, + { + "start": 1346.84, + "end": 1349.41, + "probability": 0.9646 + }, + { + "start": 1350.42, + "end": 1353.66, + "probability": 0.9907 + }, + { + "start": 1354.5, + "end": 1355.04, + "probability": 0.8231 + }, + { + "start": 1355.78, + "end": 1359.64, + "probability": 0.9833 + }, + { + "start": 1360.72, + "end": 1361.12, + "probability": 0.5318 + }, + { + "start": 1361.12, + "end": 1362.74, + "probability": 0.7374 + }, + { + "start": 1362.82, + "end": 1363.8, + "probability": 0.9214 + }, + { + "start": 1364.98, + "end": 1366.6, + "probability": 0.9473 + }, + { + "start": 1366.98, + "end": 1367.26, + "probability": 0.2508 + }, + { + "start": 1367.64, + "end": 1367.64, + "probability": 0.5187 + }, + { + "start": 1367.64, + "end": 1367.64, + "probability": 0.2418 + }, + { + "start": 1367.64, + "end": 1369.08, + "probability": 0.5639 + }, + { + "start": 1369.48, + "end": 1369.88, + "probability": 0.8568 + }, + { + "start": 1369.98, + "end": 1370.84, + "probability": 0.9587 + }, + { + "start": 1371.48, + "end": 1371.78, + "probability": 0.6387 + }, + { + "start": 1371.88, + "end": 1373.7, + "probability": 0.9883 + }, + { + "start": 1374.2, + "end": 1377.82, + "probability": 0.9583 + }, + { + "start": 1378.6, + "end": 1382.36, + "probability": 0.9796 + }, + { + "start": 1382.92, + "end": 1385.22, + "probability": 0.9922 + }, + { + "start": 1385.6, + "end": 1386.76, + "probability": 0.9231 + }, + { + "start": 1387.94, + "end": 1394.56, + "probability": 0.9943 + }, + { + "start": 1396.44, + "end": 1397.38, + "probability": 0.8163 + }, + { + "start": 1397.56, + "end": 1400.6, + "probability": 0.9988 + }, + { + "start": 1401.2, + "end": 1403.84, + "probability": 0.9965 + }, + { + "start": 1405.24, + "end": 1409.92, + "probability": 0.9927 + }, + { + "start": 1409.92, + "end": 1412.5, + "probability": 0.9993 + }, + { + "start": 1413.22, + "end": 1415.28, + "probability": 0.9926 + }, + { + "start": 1417.16, + "end": 1418.1, + "probability": 0.7492 + }, + { + "start": 1418.78, + "end": 1419.76, + "probability": 0.7408 + }, + { + "start": 1419.84, + "end": 1421.02, + "probability": 0.9973 + }, + { + "start": 1421.18, + "end": 1424.72, + "probability": 0.9956 + }, + { + "start": 1425.34, + "end": 1427.46, + "probability": 0.9792 + }, + { + "start": 1427.46, + "end": 1430.94, + "probability": 0.9509 + }, + { + "start": 1432.02, + "end": 1436.98, + "probability": 0.9916 + }, + { + "start": 1437.36, + "end": 1439.18, + "probability": 0.9218 + }, + { + "start": 1439.58, + "end": 1443.48, + "probability": 0.9956 + }, + { + "start": 1444.62, + "end": 1447.26, + "probability": 0.9828 + }, + { + "start": 1447.92, + "end": 1452.58, + "probability": 0.9971 + }, + { + "start": 1453.64, + "end": 1454.04, + "probability": 0.7521 + }, + { + "start": 1454.72, + "end": 1456.88, + "probability": 0.997 + }, + { + "start": 1457.78, + "end": 1463.68, + "probability": 0.9663 + }, + { + "start": 1463.68, + "end": 1467.86, + "probability": 0.9941 + }, + { + "start": 1468.78, + "end": 1470.74, + "probability": 0.9963 + }, + { + "start": 1471.66, + "end": 1474.34, + "probability": 0.9897 + }, + { + "start": 1474.34, + "end": 1477.76, + "probability": 0.9974 + }, + { + "start": 1479.18, + "end": 1480.48, + "probability": 0.9284 + }, + { + "start": 1480.66, + "end": 1483.46, + "probability": 0.9984 + }, + { + "start": 1484.18, + "end": 1486.56, + "probability": 0.8887 + }, + { + "start": 1487.28, + "end": 1489.3, + "probability": 0.9676 + }, + { + "start": 1489.4, + "end": 1490.52, + "probability": 0.9017 + }, + { + "start": 1491.26, + "end": 1494.1, + "probability": 0.991 + }, + { + "start": 1495.14, + "end": 1495.72, + "probability": 0.7441 + }, + { + "start": 1495.84, + "end": 1496.84, + "probability": 0.8336 + }, + { + "start": 1496.86, + "end": 1498.48, + "probability": 0.7046 + }, + { + "start": 1498.6, + "end": 1501.1, + "probability": 0.998 + }, + { + "start": 1502.02, + "end": 1505.24, + "probability": 0.994 + }, + { + "start": 1505.24, + "end": 1510.08, + "probability": 0.9963 + }, + { + "start": 1510.88, + "end": 1513.44, + "probability": 0.9985 + }, + { + "start": 1513.44, + "end": 1515.24, + "probability": 0.9995 + }, + { + "start": 1516.78, + "end": 1518.6, + "probability": 0.9995 + }, + { + "start": 1518.62, + "end": 1521.2, + "probability": 0.9036 + }, + { + "start": 1521.72, + "end": 1524.32, + "probability": 0.9929 + }, + { + "start": 1524.32, + "end": 1527.06, + "probability": 0.9928 + }, + { + "start": 1528.46, + "end": 1531.8, + "probability": 0.9929 + }, + { + "start": 1532.12, + "end": 1535.46, + "probability": 0.9764 + }, + { + "start": 1536.76, + "end": 1540.52, + "probability": 0.9971 + }, + { + "start": 1541.74, + "end": 1545.98, + "probability": 0.9907 + }, + { + "start": 1546.46, + "end": 1548.48, + "probability": 0.8979 + }, + { + "start": 1549.26, + "end": 1551.5, + "probability": 0.9919 + }, + { + "start": 1552.3, + "end": 1554.96, + "probability": 0.9985 + }, + { + "start": 1555.82, + "end": 1558.94, + "probability": 0.9945 + }, + { + "start": 1559.22, + "end": 1560.96, + "probability": 0.9771 + }, + { + "start": 1561.84, + "end": 1563.9, + "probability": 0.9917 + }, + { + "start": 1564.46, + "end": 1569.58, + "probability": 0.9966 + }, + { + "start": 1570.4, + "end": 1572.34, + "probability": 0.9988 + }, + { + "start": 1573.38, + "end": 1576.22, + "probability": 0.9653 + }, + { + "start": 1576.82, + "end": 1577.16, + "probability": 0.8597 + }, + { + "start": 1578.12, + "end": 1578.84, + "probability": 0.6736 + }, + { + "start": 1579.06, + "end": 1580.26, + "probability": 0.9492 + }, + { + "start": 1581.6, + "end": 1582.36, + "probability": 0.3451 + }, + { + "start": 1583.06, + "end": 1584.46, + "probability": 0.9776 + }, + { + "start": 1607.08, + "end": 1608.18, + "probability": 0.7443 + }, + { + "start": 1608.32, + "end": 1609.46, + "probability": 0.6079 + }, + { + "start": 1609.54, + "end": 1614.62, + "probability": 0.9895 + }, + { + "start": 1615.22, + "end": 1616.46, + "probability": 0.8065 + }, + { + "start": 1617.28, + "end": 1621.58, + "probability": 0.9951 + }, + { + "start": 1622.9, + "end": 1627.18, + "probability": 0.9932 + }, + { + "start": 1629.14, + "end": 1633.4, + "probability": 0.9663 + }, + { + "start": 1634.24, + "end": 1636.44, + "probability": 0.8408 + }, + { + "start": 1638.08, + "end": 1639.44, + "probability": 0.921 + }, + { + "start": 1640.24, + "end": 1641.9, + "probability": 0.998 + }, + { + "start": 1642.64, + "end": 1645.02, + "probability": 0.9978 + }, + { + "start": 1645.8, + "end": 1647.5, + "probability": 0.7792 + }, + { + "start": 1648.96, + "end": 1650.76, + "probability": 0.9899 + }, + { + "start": 1652.42, + "end": 1660.36, + "probability": 0.9286 + }, + { + "start": 1661.68, + "end": 1664.94, + "probability": 0.9819 + }, + { + "start": 1665.22, + "end": 1665.86, + "probability": 0.9721 + }, + { + "start": 1666.1, + "end": 1666.74, + "probability": 0.9845 + }, + { + "start": 1666.78, + "end": 1667.48, + "probability": 0.9303 + }, + { + "start": 1668.02, + "end": 1671.74, + "probability": 0.8368 + }, + { + "start": 1672.96, + "end": 1674.54, + "probability": 0.9976 + }, + { + "start": 1675.22, + "end": 1676.54, + "probability": 0.9964 + }, + { + "start": 1677.42, + "end": 1680.89, + "probability": 0.9922 + }, + { + "start": 1681.8, + "end": 1683.28, + "probability": 0.7511 + }, + { + "start": 1683.96, + "end": 1687.7, + "probability": 0.922 + }, + { + "start": 1688.56, + "end": 1690.92, + "probability": 0.9112 + }, + { + "start": 1691.72, + "end": 1692.76, + "probability": 0.5777 + }, + { + "start": 1693.0, + "end": 1693.5, + "probability": 0.8571 + }, + { + "start": 1693.7, + "end": 1697.5, + "probability": 0.9923 + }, + { + "start": 1697.68, + "end": 1698.58, + "probability": 0.7736 + }, + { + "start": 1698.74, + "end": 1699.82, + "probability": 0.9719 + }, + { + "start": 1700.72, + "end": 1702.46, + "probability": 0.9089 + }, + { + "start": 1703.16, + "end": 1705.9, + "probability": 0.9914 + }, + { + "start": 1705.9, + "end": 1708.12, + "probability": 0.9482 + }, + { + "start": 1709.0, + "end": 1715.62, + "probability": 0.9956 + }, + { + "start": 1716.26, + "end": 1718.68, + "probability": 0.9466 + }, + { + "start": 1719.18, + "end": 1722.02, + "probability": 0.7929 + }, + { + "start": 1722.08, + "end": 1722.76, + "probability": 0.8759 + }, + { + "start": 1722.84, + "end": 1723.5, + "probability": 0.978 + }, + { + "start": 1723.98, + "end": 1725.1, + "probability": 0.8781 + }, + { + "start": 1725.14, + "end": 1726.12, + "probability": 0.8728 + }, + { + "start": 1727.42, + "end": 1729.58, + "probability": 0.9817 + }, + { + "start": 1729.78, + "end": 1731.4, + "probability": 0.9956 + }, + { + "start": 1731.94, + "end": 1735.62, + "probability": 0.777 + }, + { + "start": 1736.38, + "end": 1738.04, + "probability": 0.9772 + }, + { + "start": 1739.1, + "end": 1742.56, + "probability": 0.9652 + }, + { + "start": 1743.34, + "end": 1745.9, + "probability": 0.9933 + }, + { + "start": 1746.62, + "end": 1748.08, + "probability": 0.8482 + }, + { + "start": 1749.0, + "end": 1751.84, + "probability": 0.9934 + }, + { + "start": 1751.88, + "end": 1755.0, + "probability": 0.8894 + }, + { + "start": 1755.0, + "end": 1758.18, + "probability": 0.9839 + }, + { + "start": 1758.62, + "end": 1761.12, + "probability": 0.9976 + }, + { + "start": 1761.66, + "end": 1764.04, + "probability": 0.8295 + }, + { + "start": 1765.12, + "end": 1766.0, + "probability": 0.9629 + }, + { + "start": 1767.34, + "end": 1767.79, + "probability": 0.9864 + }, + { + "start": 1768.48, + "end": 1771.74, + "probability": 0.9908 + }, + { + "start": 1772.18, + "end": 1773.89, + "probability": 0.9585 + }, + { + "start": 1775.2, + "end": 1776.76, + "probability": 0.9868 + }, + { + "start": 1777.68, + "end": 1778.96, + "probability": 0.8282 + }, + { + "start": 1779.1, + "end": 1780.34, + "probability": 0.7781 + }, + { + "start": 1780.48, + "end": 1781.78, + "probability": 0.9694 + }, + { + "start": 1781.88, + "end": 1783.84, + "probability": 0.9646 + }, + { + "start": 1783.88, + "end": 1784.64, + "probability": 0.7966 + }, + { + "start": 1784.86, + "end": 1785.92, + "probability": 0.9985 + }, + { + "start": 1787.82, + "end": 1790.26, + "probability": 0.9473 + }, + { + "start": 1790.34, + "end": 1793.02, + "probability": 0.9808 + }, + { + "start": 1794.22, + "end": 1797.74, + "probability": 0.9741 + }, + { + "start": 1798.56, + "end": 1800.14, + "probability": 0.9031 + }, + { + "start": 1800.58, + "end": 1802.62, + "probability": 0.988 + }, + { + "start": 1802.68, + "end": 1805.48, + "probability": 0.9797 + }, + { + "start": 1805.94, + "end": 1807.38, + "probability": 0.6057 + }, + { + "start": 1808.32, + "end": 1810.36, + "probability": 0.9012 + }, + { + "start": 1811.14, + "end": 1812.38, + "probability": 0.9585 + }, + { + "start": 1812.94, + "end": 1813.84, + "probability": 0.9033 + }, + { + "start": 1815.1, + "end": 1816.34, + "probability": 0.9991 + }, + { + "start": 1816.98, + "end": 1821.5, + "probability": 0.9476 + }, + { + "start": 1822.58, + "end": 1826.94, + "probability": 0.9961 + }, + { + "start": 1827.58, + "end": 1829.64, + "probability": 0.9827 + }, + { + "start": 1830.62, + "end": 1832.36, + "probability": 0.7236 + }, + { + "start": 1832.88, + "end": 1833.1, + "probability": 0.5867 + }, + { + "start": 1833.14, + "end": 1834.2, + "probability": 0.8437 + }, + { + "start": 1835.34, + "end": 1836.42, + "probability": 0.6665 + }, + { + "start": 1836.42, + "end": 1837.85, + "probability": 0.3402 + }, + { + "start": 1838.02, + "end": 1838.52, + "probability": 0.4784 + }, + { + "start": 1838.52, + "end": 1841.68, + "probability": 0.9846 + }, + { + "start": 1841.76, + "end": 1843.4, + "probability": 0.6694 + }, + { + "start": 1843.42, + "end": 1844.48, + "probability": 0.6966 + }, + { + "start": 1844.52, + "end": 1847.12, + "probability": 0.9822 + }, + { + "start": 1851.1, + "end": 1852.98, + "probability": 0.9788 + }, + { + "start": 1853.8, + "end": 1854.76, + "probability": 0.998 + }, + { + "start": 1858.16, + "end": 1858.9, + "probability": 0.7595 + }, + { + "start": 1859.08, + "end": 1861.38, + "probability": 0.8898 + }, + { + "start": 1861.46, + "end": 1862.32, + "probability": 0.8726 + }, + { + "start": 1862.44, + "end": 1863.42, + "probability": 0.567 + }, + { + "start": 1864.28, + "end": 1867.04, + "probability": 0.9908 + }, + { + "start": 1867.8, + "end": 1873.16, + "probability": 0.8734 + }, + { + "start": 1873.28, + "end": 1875.44, + "probability": 0.7312 + }, + { + "start": 1875.54, + "end": 1876.72, + "probability": 0.9046 + }, + { + "start": 1877.24, + "end": 1879.16, + "probability": 0.7876 + }, + { + "start": 1879.6, + "end": 1883.42, + "probability": 0.9697 + }, + { + "start": 1885.12, + "end": 1885.12, + "probability": 0.2495 + }, + { + "start": 1885.12, + "end": 1888.4, + "probability": 0.9724 + }, + { + "start": 1888.64, + "end": 1891.42, + "probability": 0.9886 + }, + { + "start": 1891.84, + "end": 1893.14, + "probability": 0.8046 + }, + { + "start": 1893.92, + "end": 1895.4, + "probability": 0.9705 + }, + { + "start": 1896.14, + "end": 1897.52, + "probability": 0.9263 + }, + { + "start": 1897.6, + "end": 1902.04, + "probability": 0.9931 + }, + { + "start": 1902.14, + "end": 1903.72, + "probability": 0.8418 + }, + { + "start": 1904.26, + "end": 1905.42, + "probability": 0.9631 + }, + { + "start": 1906.28, + "end": 1908.68, + "probability": 0.9699 + }, + { + "start": 1909.46, + "end": 1910.5, + "probability": 0.9973 + }, + { + "start": 1910.88, + "end": 1911.64, + "probability": 0.8648 + }, + { + "start": 1912.26, + "end": 1914.32, + "probability": 0.9587 + }, + { + "start": 1914.94, + "end": 1915.88, + "probability": 0.852 + }, + { + "start": 1915.94, + "end": 1916.78, + "probability": 0.8971 + }, + { + "start": 1917.22, + "end": 1922.56, + "probability": 0.9861 + }, + { + "start": 1924.04, + "end": 1925.4, + "probability": 0.9932 + }, + { + "start": 1926.36, + "end": 1928.74, + "probability": 0.8398 + }, + { + "start": 1929.6, + "end": 1932.96, + "probability": 0.9908 + }, + { + "start": 1933.04, + "end": 1934.14, + "probability": 0.9557 + }, + { + "start": 1934.56, + "end": 1935.43, + "probability": 0.9814 + }, + { + "start": 1936.06, + "end": 1936.38, + "probability": 0.7394 + }, + { + "start": 1937.46, + "end": 1937.84, + "probability": 0.6945 + }, + { + "start": 1938.66, + "end": 1938.9, + "probability": 0.504 + }, + { + "start": 1938.96, + "end": 1940.04, + "probability": 0.9712 + }, + { + "start": 1940.52, + "end": 1942.7, + "probability": 0.7844 + }, + { + "start": 1943.28, + "end": 1943.76, + "probability": 0.8784 + }, + { + "start": 1943.92, + "end": 1944.4, + "probability": 0.8898 + }, + { + "start": 1945.2, + "end": 1946.0, + "probability": 0.1338 + }, + { + "start": 1947.5, + "end": 1952.82, + "probability": 0.85 + }, + { + "start": 1953.06, + "end": 1954.22, + "probability": 0.9581 + }, + { + "start": 1955.22, + "end": 1958.56, + "probability": 0.9834 + }, + { + "start": 1959.28, + "end": 1960.58, + "probability": 0.9722 + }, + { + "start": 1960.66, + "end": 1964.88, + "probability": 0.9878 + }, + { + "start": 1965.02, + "end": 1965.64, + "probability": 0.4415 + }, + { + "start": 1965.8, + "end": 1966.26, + "probability": 0.854 + }, + { + "start": 1966.38, + "end": 1967.97, + "probability": 0.9548 + }, + { + "start": 1968.5, + "end": 1970.94, + "probability": 0.975 + }, + { + "start": 1974.38, + "end": 1978.98, + "probability": 0.2613 + }, + { + "start": 1979.6, + "end": 1981.3, + "probability": 0.4328 + }, + { + "start": 1989.78, + "end": 1991.3, + "probability": 0.5353 + }, + { + "start": 1991.58, + "end": 1993.12, + "probability": 0.6768 + }, + { + "start": 1994.5, + "end": 1997.16, + "probability": 0.2028 + }, + { + "start": 1997.18, + "end": 1998.14, + "probability": 0.9924 + }, + { + "start": 1999.58, + "end": 2001.84, + "probability": 0.818 + }, + { + "start": 2003.18, + "end": 2004.42, + "probability": 0.6255 + }, + { + "start": 2005.66, + "end": 2006.0, + "probability": 0.8799 + }, + { + "start": 2006.12, + "end": 2008.46, + "probability": 0.9978 + }, + { + "start": 2009.46, + "end": 2010.3, + "probability": 0.6065 + }, + { + "start": 2010.72, + "end": 2012.9, + "probability": 0.8175 + }, + { + "start": 2014.02, + "end": 2015.82, + "probability": 0.7935 + }, + { + "start": 2015.96, + "end": 2017.52, + "probability": 0.9495 + }, + { + "start": 2018.1, + "end": 2018.64, + "probability": 0.9559 + }, + { + "start": 2019.48, + "end": 2020.38, + "probability": 0.9724 + }, + { + "start": 2021.5, + "end": 2023.66, + "probability": 0.9377 + }, + { + "start": 2024.54, + "end": 2029.06, + "probability": 0.9777 + }, + { + "start": 2029.28, + "end": 2029.94, + "probability": 0.8359 + }, + { + "start": 2030.64, + "end": 2031.68, + "probability": 0.9076 + }, + { + "start": 2032.52, + "end": 2034.76, + "probability": 0.9591 + }, + { + "start": 2035.46, + "end": 2039.18, + "probability": 0.9493 + }, + { + "start": 2039.78, + "end": 2042.18, + "probability": 0.991 + }, + { + "start": 2042.92, + "end": 2045.58, + "probability": 0.9858 + }, + { + "start": 2046.38, + "end": 2049.54, + "probability": 0.9983 + }, + { + "start": 2049.54, + "end": 2052.24, + "probability": 0.9984 + }, + { + "start": 2052.76, + "end": 2057.68, + "probability": 0.9956 + }, + { + "start": 2058.44, + "end": 2060.64, + "probability": 0.9824 + }, + { + "start": 2061.38, + "end": 2063.74, + "probability": 0.957 + }, + { + "start": 2063.74, + "end": 2066.92, + "probability": 0.9995 + }, + { + "start": 2067.58, + "end": 2068.48, + "probability": 0.9845 + }, + { + "start": 2069.16, + "end": 2070.04, + "probability": 0.5013 + }, + { + "start": 2070.68, + "end": 2071.61, + "probability": 0.8 + }, + { + "start": 2072.34, + "end": 2073.46, + "probability": 0.9922 + }, + { + "start": 2074.1, + "end": 2076.74, + "probability": 0.9852 + }, + { + "start": 2077.72, + "end": 2078.02, + "probability": 0.9508 + }, + { + "start": 2078.66, + "end": 2081.84, + "probability": 0.9136 + }, + { + "start": 2082.46, + "end": 2085.42, + "probability": 0.9549 + }, + { + "start": 2086.0, + "end": 2086.82, + "probability": 0.8605 + }, + { + "start": 2088.12, + "end": 2089.86, + "probability": 0.8822 + }, + { + "start": 2090.42, + "end": 2092.1, + "probability": 0.9031 + }, + { + "start": 2093.84, + "end": 2097.2, + "probability": 0.8056 + }, + { + "start": 2097.78, + "end": 2098.92, + "probability": 0.8721 + }, + { + "start": 2099.48, + "end": 2100.8, + "probability": 0.7263 + }, + { + "start": 2101.32, + "end": 2104.38, + "probability": 0.9387 + }, + { + "start": 2104.38, + "end": 2108.16, + "probability": 0.9956 + }, + { + "start": 2109.7, + "end": 2114.66, + "probability": 0.9958 + }, + { + "start": 2116.14, + "end": 2119.14, + "probability": 0.9972 + }, + { + "start": 2119.14, + "end": 2123.4, + "probability": 0.9907 + }, + { + "start": 2124.4, + "end": 2125.18, + "probability": 0.9859 + }, + { + "start": 2126.24, + "end": 2127.16, + "probability": 0.9354 + }, + { + "start": 2128.22, + "end": 2130.44, + "probability": 0.8691 + }, + { + "start": 2131.66, + "end": 2132.68, + "probability": 0.678 + }, + { + "start": 2133.38, + "end": 2134.54, + "probability": 0.99 + }, + { + "start": 2135.38, + "end": 2136.82, + "probability": 0.7344 + }, + { + "start": 2136.92, + "end": 2138.46, + "probability": 0.9961 + }, + { + "start": 2139.12, + "end": 2140.34, + "probability": 0.8681 + }, + { + "start": 2141.0, + "end": 2141.74, + "probability": 0.9391 + }, + { + "start": 2143.04, + "end": 2146.44, + "probability": 0.8577 + }, + { + "start": 2146.98, + "end": 2151.12, + "probability": 0.918 + }, + { + "start": 2151.52, + "end": 2151.84, + "probability": 0.7667 + }, + { + "start": 2153.12, + "end": 2154.02, + "probability": 0.6933 + }, + { + "start": 2154.52, + "end": 2156.28, + "probability": 0.9581 + }, + { + "start": 2191.9, + "end": 2193.72, + "probability": 0.9823 + }, + { + "start": 2195.32, + "end": 2196.92, + "probability": 0.8499 + }, + { + "start": 2197.1, + "end": 2198.58, + "probability": 0.6058 + }, + { + "start": 2199.72, + "end": 2201.73, + "probability": 0.7719 + }, + { + "start": 2204.14, + "end": 2205.12, + "probability": 0.8859 + }, + { + "start": 2207.12, + "end": 2208.1, + "probability": 0.6968 + }, + { + "start": 2208.92, + "end": 2209.66, + "probability": 0.8109 + }, + { + "start": 2210.7, + "end": 2211.36, + "probability": 0.7748 + }, + { + "start": 2212.56, + "end": 2213.3, + "probability": 0.8639 + }, + { + "start": 2214.06, + "end": 2214.84, + "probability": 0.8518 + }, + { + "start": 2216.18, + "end": 2218.2, + "probability": 0.96 + }, + { + "start": 2219.66, + "end": 2222.48, + "probability": 0.962 + }, + { + "start": 2223.78, + "end": 2225.56, + "probability": 0.9963 + }, + { + "start": 2226.5, + "end": 2230.18, + "probability": 0.8379 + }, + { + "start": 2231.66, + "end": 2233.06, + "probability": 0.9402 + }, + { + "start": 2233.58, + "end": 2234.84, + "probability": 0.8734 + }, + { + "start": 2236.36, + "end": 2236.88, + "probability": 0.9512 + }, + { + "start": 2236.92, + "end": 2237.52, + "probability": 0.5856 + }, + { + "start": 2237.64, + "end": 2239.44, + "probability": 0.9873 + }, + { + "start": 2240.16, + "end": 2241.3, + "probability": 0.8046 + }, + { + "start": 2243.16, + "end": 2243.58, + "probability": 0.6805 + }, + { + "start": 2244.76, + "end": 2247.08, + "probability": 0.7007 + }, + { + "start": 2248.18, + "end": 2251.12, + "probability": 0.9937 + }, + { + "start": 2251.24, + "end": 2251.7, + "probability": 0.8132 + }, + { + "start": 2252.98, + "end": 2254.28, + "probability": 0.7274 + }, + { + "start": 2254.52, + "end": 2259.38, + "probability": 0.9836 + }, + { + "start": 2259.38, + "end": 2263.84, + "probability": 0.9907 + }, + { + "start": 2264.52, + "end": 2268.5, + "probability": 0.8713 + }, + { + "start": 2269.56, + "end": 2273.64, + "probability": 0.8464 + }, + { + "start": 2273.68, + "end": 2275.16, + "probability": 0.7853 + }, + { + "start": 2275.98, + "end": 2277.44, + "probability": 0.9831 + }, + { + "start": 2278.8, + "end": 2281.32, + "probability": 0.9587 + }, + { + "start": 2281.32, + "end": 2283.68, + "probability": 0.8339 + }, + { + "start": 2284.46, + "end": 2286.34, + "probability": 0.956 + }, + { + "start": 2287.56, + "end": 2288.26, + "probability": 0.7269 + }, + { + "start": 2288.88, + "end": 2291.54, + "probability": 0.772 + }, + { + "start": 2292.42, + "end": 2296.02, + "probability": 0.9531 + }, + { + "start": 2296.82, + "end": 2305.74, + "probability": 0.9212 + }, + { + "start": 2307.06, + "end": 2308.48, + "probability": 0.7586 + }, + { + "start": 2309.06, + "end": 2313.7, + "probability": 0.9296 + }, + { + "start": 2313.94, + "end": 2315.68, + "probability": 0.7116 + }, + { + "start": 2316.44, + "end": 2317.88, + "probability": 0.7377 + }, + { + "start": 2318.58, + "end": 2319.68, + "probability": 0.9455 + }, + { + "start": 2320.44, + "end": 2323.84, + "probability": 0.9104 + }, + { + "start": 2324.56, + "end": 2328.04, + "probability": 0.9779 + }, + { + "start": 2328.78, + "end": 2330.42, + "probability": 0.6713 + }, + { + "start": 2331.36, + "end": 2333.1, + "probability": 0.9811 + }, + { + "start": 2333.78, + "end": 2336.76, + "probability": 0.9339 + }, + { + "start": 2337.96, + "end": 2340.2, + "probability": 0.8172 + }, + { + "start": 2341.12, + "end": 2342.08, + "probability": 0.7036 + }, + { + "start": 2342.84, + "end": 2346.4, + "probability": 0.9687 + }, + { + "start": 2346.98, + "end": 2351.86, + "probability": 0.9199 + }, + { + "start": 2352.54, + "end": 2357.58, + "probability": 0.7451 + }, + { + "start": 2358.96, + "end": 2361.36, + "probability": 0.9789 + }, + { + "start": 2362.58, + "end": 2366.56, + "probability": 0.966 + }, + { + "start": 2367.4, + "end": 2369.9, + "probability": 0.8847 + }, + { + "start": 2370.74, + "end": 2372.02, + "probability": 0.9603 + }, + { + "start": 2372.1, + "end": 2374.54, + "probability": 0.9862 + }, + { + "start": 2378.24, + "end": 2378.82, + "probability": 0.0573 + }, + { + "start": 2378.82, + "end": 2378.86, + "probability": 0.1528 + }, + { + "start": 2378.86, + "end": 2379.7, + "probability": 0.446 + }, + { + "start": 2379.8, + "end": 2381.62, + "probability": 0.7285 + }, + { + "start": 2382.6, + "end": 2383.5, + "probability": 0.6818 + }, + { + "start": 2383.52, + "end": 2383.84, + "probability": 0.8109 + }, + { + "start": 2385.6, + "end": 2389.22, + "probability": 0.9456 + }, + { + "start": 2389.76, + "end": 2391.06, + "probability": 0.6153 + }, + { + "start": 2391.3, + "end": 2392.62, + "probability": 0.8747 + }, + { + "start": 2394.0, + "end": 2395.16, + "probability": 0.9822 + }, + { + "start": 2395.44, + "end": 2396.52, + "probability": 0.3423 + }, + { + "start": 2398.7, + "end": 2401.22, + "probability": 0.6864 + }, + { + "start": 2401.86, + "end": 2402.32, + "probability": 0.8876 + }, + { + "start": 2402.46, + "end": 2403.8, + "probability": 0.9348 + }, + { + "start": 2403.96, + "end": 2406.14, + "probability": 0.5674 + }, + { + "start": 2406.94, + "end": 2407.6, + "probability": 0.6041 + }, + { + "start": 2407.8, + "end": 2411.18, + "probability": 0.9838 + }, + { + "start": 2411.72, + "end": 2414.96, + "probability": 0.9889 + }, + { + "start": 2415.18, + "end": 2416.72, + "probability": 0.7546 + }, + { + "start": 2416.74, + "end": 2417.08, + "probability": 0.7209 + }, + { + "start": 2418.12, + "end": 2419.5, + "probability": 0.6301 + }, + { + "start": 2420.18, + "end": 2421.16, + "probability": 0.7164 + }, + { + "start": 2421.62, + "end": 2422.2, + "probability": 0.0599 + }, + { + "start": 2422.34, + "end": 2423.08, + "probability": 0.6369 + }, + { + "start": 2423.14, + "end": 2423.46, + "probability": 0.9261 + }, + { + "start": 2423.56, + "end": 2427.0, + "probability": 0.7278 + }, + { + "start": 2427.0, + "end": 2427.86, + "probability": 0.7965 + }, + { + "start": 2428.66, + "end": 2431.72, + "probability": 0.9615 + }, + { + "start": 2431.86, + "end": 2436.78, + "probability": 0.9866 + }, + { + "start": 2437.38, + "end": 2438.92, + "probability": 0.8391 + }, + { + "start": 2440.24, + "end": 2443.48, + "probability": 0.9969 + }, + { + "start": 2443.92, + "end": 2445.32, + "probability": 0.9888 + }, + { + "start": 2446.0, + "end": 2446.44, + "probability": 0.9849 + }, + { + "start": 2447.04, + "end": 2448.56, + "probability": 0.9365 + }, + { + "start": 2449.66, + "end": 2450.92, + "probability": 0.9496 + }, + { + "start": 2451.18, + "end": 2451.94, + "probability": 0.6651 + }, + { + "start": 2452.08, + "end": 2454.06, + "probability": 0.9215 + }, + { + "start": 2454.42, + "end": 2456.04, + "probability": 0.9371 + }, + { + "start": 2456.58, + "end": 2461.22, + "probability": 0.9581 + }, + { + "start": 2461.32, + "end": 2462.4, + "probability": 0.9943 + }, + { + "start": 2463.54, + "end": 2467.02, + "probability": 0.7861 + }, + { + "start": 2468.62, + "end": 2469.5, + "probability": 0.7271 + }, + { + "start": 2469.86, + "end": 2471.02, + "probability": 0.908 + }, + { + "start": 2471.14, + "end": 2473.3, + "probability": 0.7276 + }, + { + "start": 2473.54, + "end": 2474.42, + "probability": 0.7302 + }, + { + "start": 2474.54, + "end": 2475.24, + "probability": 0.7243 + }, + { + "start": 2475.72, + "end": 2476.92, + "probability": 0.948 + }, + { + "start": 2477.02, + "end": 2478.06, + "probability": 0.7327 + }, + { + "start": 2478.68, + "end": 2480.84, + "probability": 0.7145 + }, + { + "start": 2480.84, + "end": 2481.14, + "probability": 0.9528 + }, + { + "start": 2482.08, + "end": 2482.2, + "probability": 0.0712 + }, + { + "start": 2482.42, + "end": 2483.3, + "probability": 0.7932 + }, + { + "start": 2483.42, + "end": 2484.1, + "probability": 0.684 + }, + { + "start": 2484.32, + "end": 2485.16, + "probability": 0.6734 + }, + { + "start": 2485.24, + "end": 2486.08, + "probability": 0.8601 + }, + { + "start": 2486.12, + "end": 2486.82, + "probability": 0.6948 + }, + { + "start": 2488.16, + "end": 2490.56, + "probability": 0.8188 + }, + { + "start": 2491.02, + "end": 2495.0, + "probability": 0.7357 + }, + { + "start": 2495.14, + "end": 2496.05, + "probability": 0.9424 + }, + { + "start": 2496.6, + "end": 2501.1, + "probability": 0.8069 + }, + { + "start": 2501.2, + "end": 2503.16, + "probability": 0.8034 + }, + { + "start": 2503.78, + "end": 2507.18, + "probability": 0.8584 + }, + { + "start": 2507.74, + "end": 2508.82, + "probability": 0.8672 + }, + { + "start": 2509.34, + "end": 2510.38, + "probability": 0.9507 + }, + { + "start": 2511.72, + "end": 2512.18, + "probability": 0.0456 + }, + { + "start": 2512.18, + "end": 2512.98, + "probability": 0.8286 + }, + { + "start": 2513.74, + "end": 2514.2, + "probability": 0.7308 + }, + { + "start": 2518.86, + "end": 2519.48, + "probability": 0.4638 + }, + { + "start": 2520.1, + "end": 2520.12, + "probability": 0.0076 + }, + { + "start": 2520.12, + "end": 2520.33, + "probability": 0.0234 + }, + { + "start": 2522.64, + "end": 2524.02, + "probability": 0.6891 + }, + { + "start": 2524.42, + "end": 2526.0, + "probability": 0.8792 + }, + { + "start": 2526.28, + "end": 2531.18, + "probability": 0.9812 + }, + { + "start": 2531.2, + "end": 2532.96, + "probability": 0.6003 + }, + { + "start": 2533.32, + "end": 2534.5, + "probability": 0.8779 + }, + { + "start": 2534.9, + "end": 2536.08, + "probability": 0.7905 + }, + { + "start": 2536.42, + "end": 2539.12, + "probability": 0.7227 + }, + { + "start": 2539.72, + "end": 2543.34, + "probability": 0.9472 + }, + { + "start": 2543.34, + "end": 2546.78, + "probability": 0.9556 + }, + { + "start": 2546.96, + "end": 2547.56, + "probability": 0.7277 + }, + { + "start": 2547.9, + "end": 2550.0, + "probability": 0.687 + }, + { + "start": 2550.0, + "end": 2552.2, + "probability": 0.7608 + }, + { + "start": 2552.64, + "end": 2553.02, + "probability": 0.8287 + }, + { + "start": 2553.38, + "end": 2555.1, + "probability": 0.994 + }, + { + "start": 2555.54, + "end": 2557.86, + "probability": 0.882 + }, + { + "start": 2558.24, + "end": 2558.62, + "probability": 0.881 + }, + { + "start": 2559.0, + "end": 2559.36, + "probability": 0.539 + }, + { + "start": 2560.78, + "end": 2562.33, + "probability": 0.9709 + }, + { + "start": 2562.52, + "end": 2564.06, + "probability": 0.9529 + }, + { + "start": 2564.54, + "end": 2567.85, + "probability": 0.903 + }, + { + "start": 2568.34, + "end": 2569.7, + "probability": 0.9208 + }, + { + "start": 2570.1, + "end": 2570.66, + "probability": 0.8706 + }, + { + "start": 2570.9, + "end": 2573.76, + "probability": 0.9482 + }, + { + "start": 2574.56, + "end": 2575.18, + "probability": 0.9024 + }, + { + "start": 2575.7, + "end": 2577.04, + "probability": 0.7635 + }, + { + "start": 2578.96, + "end": 2582.28, + "probability": 0.9658 + }, + { + "start": 2582.28, + "end": 2587.46, + "probability": 0.9878 + }, + { + "start": 2587.94, + "end": 2590.92, + "probability": 0.833 + }, + { + "start": 2590.98, + "end": 2594.44, + "probability": 0.9841 + }, + { + "start": 2594.98, + "end": 2598.82, + "probability": 0.9963 + }, + { + "start": 2600.08, + "end": 2600.54, + "probability": 0.7021 + }, + { + "start": 2601.16, + "end": 2601.6, + "probability": 0.9265 + }, + { + "start": 2601.78, + "end": 2602.72, + "probability": 0.7444 + }, + { + "start": 2603.18, + "end": 2605.26, + "probability": 0.8289 + }, + { + "start": 2605.62, + "end": 2607.0, + "probability": 0.7228 + }, + { + "start": 2607.6, + "end": 2610.9, + "probability": 0.9819 + }, + { + "start": 2611.7, + "end": 2612.7, + "probability": 0.7292 + }, + { + "start": 2613.12, + "end": 2613.67, + "probability": 0.9631 + }, + { + "start": 2613.84, + "end": 2614.44, + "probability": 0.9826 + }, + { + "start": 2614.8, + "end": 2616.54, + "probability": 0.7462 + }, + { + "start": 2616.88, + "end": 2617.98, + "probability": 0.6511 + }, + { + "start": 2619.16, + "end": 2620.31, + "probability": 0.9994 + }, + { + "start": 2621.1, + "end": 2623.02, + "probability": 0.9968 + }, + { + "start": 2623.1, + "end": 2628.14, + "probability": 0.9827 + }, + { + "start": 2629.12, + "end": 2630.16, + "probability": 0.5767 + }, + { + "start": 2630.22, + "end": 2631.4, + "probability": 0.8852 + }, + { + "start": 2631.54, + "end": 2632.66, + "probability": 0.641 + }, + { + "start": 2633.76, + "end": 2635.2, + "probability": 0.7666 + }, + { + "start": 2635.94, + "end": 2637.62, + "probability": 0.9912 + }, + { + "start": 2638.48, + "end": 2640.8, + "probability": 0.9827 + }, + { + "start": 2641.64, + "end": 2643.62, + "probability": 0.9773 + }, + { + "start": 2643.86, + "end": 2644.36, + "probability": 0.8338 + }, + { + "start": 2644.72, + "end": 2645.24, + "probability": 0.766 + }, + { + "start": 2645.94, + "end": 2647.44, + "probability": 0.9812 + }, + { + "start": 2648.1, + "end": 2648.78, + "probability": 0.7505 + }, + { + "start": 2673.74, + "end": 2677.06, + "probability": 0.7458 + }, + { + "start": 2678.22, + "end": 2679.56, + "probability": 0.9969 + }, + { + "start": 2680.12, + "end": 2682.64, + "probability": 0.8701 + }, + { + "start": 2683.62, + "end": 2685.94, + "probability": 0.8137 + }, + { + "start": 2687.04, + "end": 2690.76, + "probability": 0.9899 + }, + { + "start": 2691.72, + "end": 2692.04, + "probability": 0.9419 + }, + { + "start": 2692.58, + "end": 2697.54, + "probability": 0.9899 + }, + { + "start": 2698.7, + "end": 2701.76, + "probability": 0.9416 + }, + { + "start": 2702.4, + "end": 2703.7, + "probability": 0.6448 + }, + { + "start": 2704.32, + "end": 2707.58, + "probability": 0.9292 + }, + { + "start": 2708.56, + "end": 2711.94, + "probability": 0.9364 + }, + { + "start": 2712.8, + "end": 2712.98, + "probability": 0.5056 + }, + { + "start": 2713.68, + "end": 2715.52, + "probability": 0.9912 + }, + { + "start": 2716.64, + "end": 2717.32, + "probability": 0.9543 + }, + { + "start": 2718.3, + "end": 2721.56, + "probability": 0.9641 + }, + { + "start": 2722.74, + "end": 2723.58, + "probability": 0.9663 + }, + { + "start": 2724.14, + "end": 2724.78, + "probability": 0.9279 + }, + { + "start": 2725.5, + "end": 2729.48, + "probability": 0.984 + }, + { + "start": 2729.9, + "end": 2733.02, + "probability": 0.9658 + }, + { + "start": 2733.88, + "end": 2735.38, + "probability": 0.768 + }, + { + "start": 2736.96, + "end": 2740.42, + "probability": 0.7358 + }, + { + "start": 2741.14, + "end": 2744.26, + "probability": 0.9886 + }, + { + "start": 2744.98, + "end": 2747.9, + "probability": 0.7723 + }, + { + "start": 2749.22, + "end": 2752.24, + "probability": 0.9839 + }, + { + "start": 2752.28, + "end": 2756.84, + "probability": 0.9953 + }, + { + "start": 2757.86, + "end": 2758.64, + "probability": 0.8239 + }, + { + "start": 2759.28, + "end": 2760.98, + "probability": 0.9694 + }, + { + "start": 2762.0, + "end": 2765.62, + "probability": 0.9836 + }, + { + "start": 2766.14, + "end": 2768.4, + "probability": 0.8768 + }, + { + "start": 2769.16, + "end": 2772.26, + "probability": 0.8607 + }, + { + "start": 2772.7, + "end": 2774.38, + "probability": 0.9275 + }, + { + "start": 2775.84, + "end": 2778.76, + "probability": 0.9565 + }, + { + "start": 2779.56, + "end": 2783.96, + "probability": 0.9856 + }, + { + "start": 2785.04, + "end": 2786.62, + "probability": 0.9566 + }, + { + "start": 2787.18, + "end": 2789.34, + "probability": 0.924 + }, + { + "start": 2790.06, + "end": 2792.7, + "probability": 0.9927 + }, + { + "start": 2793.68, + "end": 2794.86, + "probability": 0.9543 + }, + { + "start": 2795.6, + "end": 2800.04, + "probability": 0.9827 + }, + { + "start": 2800.82, + "end": 2802.9, + "probability": 0.9604 + }, + { + "start": 2803.84, + "end": 2806.08, + "probability": 0.9901 + }, + { + "start": 2807.12, + "end": 2810.84, + "probability": 0.9941 + }, + { + "start": 2811.64, + "end": 2814.96, + "probability": 0.9592 + }, + { + "start": 2815.86, + "end": 2817.38, + "probability": 0.9341 + }, + { + "start": 2817.92, + "end": 2818.74, + "probability": 0.8883 + }, + { + "start": 2819.38, + "end": 2822.94, + "probability": 0.9928 + }, + { + "start": 2823.38, + "end": 2824.96, + "probability": 0.9485 + }, + { + "start": 2826.14, + "end": 2828.5, + "probability": 0.9536 + }, + { + "start": 2829.04, + "end": 2830.08, + "probability": 0.7568 + }, + { + "start": 2830.68, + "end": 2833.96, + "probability": 0.9934 + }, + { + "start": 2834.76, + "end": 2837.48, + "probability": 0.9962 + }, + { + "start": 2838.04, + "end": 2839.94, + "probability": 0.999 + }, + { + "start": 2840.64, + "end": 2843.18, + "probability": 0.9498 + }, + { + "start": 2844.2, + "end": 2844.84, + "probability": 0.9126 + }, + { + "start": 2845.4, + "end": 2846.16, + "probability": 0.9177 + }, + { + "start": 2847.9, + "end": 2852.16, + "probability": 0.9951 + }, + { + "start": 2853.44, + "end": 2856.04, + "probability": 0.9971 + }, + { + "start": 2856.04, + "end": 2859.36, + "probability": 0.9989 + }, + { + "start": 2860.34, + "end": 2863.44, + "probability": 0.9962 + }, + { + "start": 2864.26, + "end": 2866.54, + "probability": 0.9946 + }, + { + "start": 2867.46, + "end": 2868.6, + "probability": 0.5739 + }, + { + "start": 2869.3, + "end": 2873.12, + "probability": 0.9446 + }, + { + "start": 2873.74, + "end": 2876.18, + "probability": 0.9126 + }, + { + "start": 2877.36, + "end": 2880.9, + "probability": 0.8354 + }, + { + "start": 2881.44, + "end": 2883.42, + "probability": 0.9629 + }, + { + "start": 2884.46, + "end": 2884.88, + "probability": 0.9268 + }, + { + "start": 2885.8, + "end": 2888.08, + "probability": 0.8769 + }, + { + "start": 2888.86, + "end": 2890.76, + "probability": 0.6584 + }, + { + "start": 2892.46, + "end": 2898.74, + "probability": 0.9956 + }, + { + "start": 2899.66, + "end": 2905.06, + "probability": 0.9976 + }, + { + "start": 2905.74, + "end": 2906.36, + "probability": 0.6106 + }, + { + "start": 2907.18, + "end": 2912.68, + "probability": 0.9889 + }, + { + "start": 2912.68, + "end": 2918.14, + "probability": 0.9736 + }, + { + "start": 2919.02, + "end": 2923.08, + "probability": 0.9985 + }, + { + "start": 2924.46, + "end": 2925.08, + "probability": 0.7458 + }, + { + "start": 2927.5, + "end": 2928.24, + "probability": 0.8314 + }, + { + "start": 2929.06, + "end": 2930.66, + "probability": 0.8571 + }, + { + "start": 2932.06, + "end": 2932.74, + "probability": 0.4717 + }, + { + "start": 2933.54, + "end": 2939.5, + "probability": 0.9673 + }, + { + "start": 2940.74, + "end": 2942.38, + "probability": 0.9466 + }, + { + "start": 2943.06, + "end": 2946.6, + "probability": 0.9043 + }, + { + "start": 2946.6, + "end": 2949.38, + "probability": 0.9933 + }, + { + "start": 2950.26, + "end": 2953.44, + "probability": 0.9874 + }, + { + "start": 2953.44, + "end": 2955.9, + "probability": 0.9956 + }, + { + "start": 2956.0, + "end": 2958.96, + "probability": 0.7003 + }, + { + "start": 2958.96, + "end": 2959.62, + "probability": 0.5192 + }, + { + "start": 2961.02, + "end": 2963.74, + "probability": 0.9506 + }, + { + "start": 2964.5, + "end": 2966.06, + "probability": 0.9285 + }, + { + "start": 2966.88, + "end": 2968.12, + "probability": 0.7367 + }, + { + "start": 2968.82, + "end": 2972.38, + "probability": 0.9875 + }, + { + "start": 2973.62, + "end": 2977.66, + "probability": 0.9942 + }, + { + "start": 2978.18, + "end": 2981.36, + "probability": 0.9102 + }, + { + "start": 2981.46, + "end": 2982.06, + "probability": 0.3396 + }, + { + "start": 2982.16, + "end": 2982.2, + "probability": 0.3107 + }, + { + "start": 2982.2, + "end": 2982.76, + "probability": 0.4217 + }, + { + "start": 2983.24, + "end": 2985.3, + "probability": 0.9096 + }, + { + "start": 2985.76, + "end": 2986.74, + "probability": 0.943 + }, + { + "start": 2987.2, + "end": 2990.64, + "probability": 0.9973 + }, + { + "start": 2990.64, + "end": 2994.6, + "probability": 0.9993 + }, + { + "start": 2994.6, + "end": 2998.56, + "probability": 0.9834 + }, + { + "start": 2998.98, + "end": 2999.68, + "probability": 0.6342 + }, + { + "start": 3000.02, + "end": 3001.12, + "probability": 0.9647 + }, + { + "start": 3001.68, + "end": 3003.94, + "probability": 0.978 + }, + { + "start": 3004.22, + "end": 3004.48, + "probability": 0.8021 + }, + { + "start": 3005.04, + "end": 3005.8, + "probability": 0.6523 + }, + { + "start": 3007.0, + "end": 3009.86, + "probability": 0.8689 + }, + { + "start": 3010.8, + "end": 3013.28, + "probability": 0.8856 + }, + { + "start": 3017.14, + "end": 3018.24, + "probability": 0.8813 + }, + { + "start": 3023.82, + "end": 3024.04, + "probability": 0.4512 + }, + { + "start": 3027.02, + "end": 3029.76, + "probability": 0.8405 + }, + { + "start": 3032.5, + "end": 3033.96, + "probability": 0.4909 + }, + { + "start": 3035.04, + "end": 3037.14, + "probability": 0.6674 + }, + { + "start": 3037.65, + "end": 3039.48, + "probability": 0.1283 + }, + { + "start": 3040.0, + "end": 3041.26, + "probability": 0.2096 + }, + { + "start": 3046.67, + "end": 3048.8, + "probability": 0.4974 + }, + { + "start": 3049.34, + "end": 3049.44, + "probability": 0.6592 + }, + { + "start": 3058.24, + "end": 3059.44, + "probability": 0.4988 + }, + { + "start": 3059.48, + "end": 3060.5, + "probability": 0.5812 + }, + { + "start": 3060.6, + "end": 3062.04, + "probability": 0.9714 + }, + { + "start": 3062.16, + "end": 3063.44, + "probability": 0.0908 + }, + { + "start": 3064.62, + "end": 3066.64, + "probability": 0.8328 + }, + { + "start": 3067.6, + "end": 3068.72, + "probability": 0.6555 + }, + { + "start": 3069.06, + "end": 3070.3, + "probability": 0.948 + }, + { + "start": 3070.3, + "end": 3070.86, + "probability": 0.7061 + }, + { + "start": 3071.2, + "end": 3072.18, + "probability": 0.182 + }, + { + "start": 3082.3, + "end": 3083.64, + "probability": 0.078 + }, + { + "start": 3084.06, + "end": 3085.44, + "probability": 0.7476 + }, + { + "start": 3086.6, + "end": 3090.32, + "probability": 0.8139 + }, + { + "start": 3091.32, + "end": 3094.74, + "probability": 0.9791 + }, + { + "start": 3095.48, + "end": 3099.26, + "probability": 0.9996 + }, + { + "start": 3099.26, + "end": 3103.98, + "probability": 0.999 + }, + { + "start": 3105.08, + "end": 3109.38, + "probability": 0.9984 + }, + { + "start": 3110.42, + "end": 3114.16, + "probability": 0.945 + }, + { + "start": 3114.9, + "end": 3118.84, + "probability": 0.9943 + }, + { + "start": 3118.84, + "end": 3123.76, + "probability": 0.9901 + }, + { + "start": 3125.32, + "end": 3130.72, + "probability": 0.9949 + }, + { + "start": 3131.32, + "end": 3134.52, + "probability": 0.997 + }, + { + "start": 3135.38, + "end": 3139.28, + "probability": 0.9963 + }, + { + "start": 3140.24, + "end": 3140.98, + "probability": 0.824 + }, + { + "start": 3141.06, + "end": 3145.64, + "probability": 0.9938 + }, + { + "start": 3145.74, + "end": 3148.28, + "probability": 0.9919 + }, + { + "start": 3149.08, + "end": 3151.3, + "probability": 0.9653 + }, + { + "start": 3151.92, + "end": 3157.28, + "probability": 0.9819 + }, + { + "start": 3157.8, + "end": 3161.6, + "probability": 0.9971 + }, + { + "start": 3162.28, + "end": 3167.38, + "probability": 0.989 + }, + { + "start": 3167.4, + "end": 3172.56, + "probability": 0.9928 + }, + { + "start": 3173.64, + "end": 3177.32, + "probability": 0.9948 + }, + { + "start": 3177.58, + "end": 3179.98, + "probability": 0.7259 + }, + { + "start": 3181.08, + "end": 3182.96, + "probability": 0.5856 + }, + { + "start": 3183.56, + "end": 3186.74, + "probability": 0.9922 + }, + { + "start": 3187.26, + "end": 3191.94, + "probability": 0.9889 + }, + { + "start": 3192.42, + "end": 3195.54, + "probability": 0.9996 + }, + { + "start": 3195.54, + "end": 3199.04, + "probability": 0.967 + }, + { + "start": 3200.04, + "end": 3204.78, + "probability": 0.9966 + }, + { + "start": 3204.78, + "end": 3209.78, + "probability": 0.998 + }, + { + "start": 3210.32, + "end": 3212.78, + "probability": 0.9948 + }, + { + "start": 3212.78, + "end": 3216.16, + "probability": 0.9808 + }, + { + "start": 3216.32, + "end": 3216.76, + "probability": 0.8469 + }, + { + "start": 3217.16, + "end": 3219.74, + "probability": 0.9926 + }, + { + "start": 3220.48, + "end": 3223.02, + "probability": 0.9235 + }, + { + "start": 3224.02, + "end": 3227.22, + "probability": 0.9902 + }, + { + "start": 3227.22, + "end": 3231.86, + "probability": 0.9763 + }, + { + "start": 3232.82, + "end": 3237.76, + "probability": 0.9955 + }, + { + "start": 3237.76, + "end": 3243.1, + "probability": 0.9929 + }, + { + "start": 3244.08, + "end": 3246.94, + "probability": 0.9984 + }, + { + "start": 3246.94, + "end": 3251.8, + "probability": 0.9934 + }, + { + "start": 3252.26, + "end": 3255.63, + "probability": 0.9932 + }, + { + "start": 3255.84, + "end": 3257.96, + "probability": 0.9976 + }, + { + "start": 3258.4, + "end": 3262.74, + "probability": 0.8924 + }, + { + "start": 3263.28, + "end": 3266.94, + "probability": 0.9878 + }, + { + "start": 3266.98, + "end": 3267.36, + "probability": 0.7009 + }, + { + "start": 3267.56, + "end": 3268.18, + "probability": 0.9109 + }, + { + "start": 3268.6, + "end": 3271.52, + "probability": 0.904 + }, + { + "start": 3272.06, + "end": 3273.2, + "probability": 0.8419 + }, + { + "start": 3274.08, + "end": 3277.02, + "probability": 0.9924 + }, + { + "start": 3277.48, + "end": 3278.56, + "probability": 0.6713 + }, + { + "start": 3278.7, + "end": 3283.32, + "probability": 0.967 + }, + { + "start": 3284.02, + "end": 3286.7, + "probability": 0.9926 + }, + { + "start": 3286.9, + "end": 3289.66, + "probability": 0.6251 + }, + { + "start": 3290.28, + "end": 3291.1, + "probability": 0.9894 + }, + { + "start": 3292.12, + "end": 3294.26, + "probability": 0.9876 + }, + { + "start": 3294.4, + "end": 3298.58, + "probability": 0.9388 + }, + { + "start": 3299.02, + "end": 3302.7, + "probability": 0.9191 + }, + { + "start": 3303.3, + "end": 3304.14, + "probability": 0.6931 + }, + { + "start": 3304.26, + "end": 3306.2, + "probability": 0.7387 + }, + { + "start": 3306.6, + "end": 3309.76, + "probability": 0.9851 + }, + { + "start": 3309.9, + "end": 3311.2, + "probability": 0.8018 + }, + { + "start": 3312.18, + "end": 3314.22, + "probability": 0.751 + }, + { + "start": 3316.06, + "end": 3320.06, + "probability": 0.983 + }, + { + "start": 3320.64, + "end": 3324.66, + "probability": 0.9941 + }, + { + "start": 3325.54, + "end": 3326.16, + "probability": 0.743 + }, + { + "start": 3326.24, + "end": 3329.34, + "probability": 0.9235 + }, + { + "start": 3329.52, + "end": 3331.34, + "probability": 0.8483 + }, + { + "start": 3331.78, + "end": 3333.3, + "probability": 0.9189 + }, + { + "start": 3333.48, + "end": 3335.54, + "probability": 0.8991 + }, + { + "start": 3335.62, + "end": 3337.54, + "probability": 0.9806 + }, + { + "start": 3338.46, + "end": 3340.5, + "probability": 0.9256 + }, + { + "start": 3340.98, + "end": 3343.2, + "probability": 0.9771 + }, + { + "start": 3343.94, + "end": 3347.86, + "probability": 0.953 + }, + { + "start": 3349.1, + "end": 3349.92, + "probability": 0.8099 + }, + { + "start": 3350.3, + "end": 3352.2, + "probability": 0.8716 + }, + { + "start": 3352.26, + "end": 3354.3, + "probability": 0.8533 + }, + { + "start": 3354.36, + "end": 3357.72, + "probability": 0.8672 + }, + { + "start": 3357.72, + "end": 3362.46, + "probability": 0.9866 + }, + { + "start": 3363.06, + "end": 3365.74, + "probability": 0.6478 + }, + { + "start": 3366.2, + "end": 3368.06, + "probability": 0.9956 + }, + { + "start": 3368.68, + "end": 3371.12, + "probability": 0.9932 + }, + { + "start": 3371.8, + "end": 3373.32, + "probability": 0.9547 + }, + { + "start": 3374.44, + "end": 3379.16, + "probability": 0.9961 + }, + { + "start": 3379.78, + "end": 3382.02, + "probability": 0.9948 + }, + { + "start": 3382.02, + "end": 3384.74, + "probability": 0.9605 + }, + { + "start": 3385.04, + "end": 3387.14, + "probability": 0.8642 + }, + { + "start": 3387.14, + "end": 3389.74, + "probability": 0.9856 + }, + { + "start": 3390.24, + "end": 3394.54, + "probability": 0.9762 + }, + { + "start": 3394.54, + "end": 3398.36, + "probability": 0.9269 + }, + { + "start": 3398.78, + "end": 3404.0, + "probability": 0.9792 + }, + { + "start": 3404.36, + "end": 3405.86, + "probability": 0.9951 + }, + { + "start": 3406.3, + "end": 3407.56, + "probability": 0.9937 + }, + { + "start": 3407.66, + "end": 3408.22, + "probability": 0.7831 + }, + { + "start": 3409.36, + "end": 3410.14, + "probability": 0.7481 + }, + { + "start": 3411.48, + "end": 3413.92, + "probability": 0.8531 + }, + { + "start": 3414.5, + "end": 3415.1, + "probability": 0.4831 + }, + { + "start": 3415.48, + "end": 3417.64, + "probability": 0.9628 + }, + { + "start": 3454.34, + "end": 3455.04, + "probability": 0.5783 + }, + { + "start": 3456.28, + "end": 3458.36, + "probability": 0.8171 + }, + { + "start": 3461.3, + "end": 3462.54, + "probability": 0.8094 + }, + { + "start": 3464.08, + "end": 3471.4, + "probability": 0.9826 + }, + { + "start": 3472.9, + "end": 3477.7, + "probability": 0.9959 + }, + { + "start": 3478.64, + "end": 3482.86, + "probability": 0.8785 + }, + { + "start": 3483.74, + "end": 3486.04, + "probability": 0.9532 + }, + { + "start": 3487.52, + "end": 3488.64, + "probability": 0.9723 + }, + { + "start": 3489.74, + "end": 3490.54, + "probability": 0.6286 + }, + { + "start": 3491.66, + "end": 3494.38, + "probability": 0.9867 + }, + { + "start": 3494.92, + "end": 3499.04, + "probability": 0.9938 + }, + { + "start": 3501.02, + "end": 3503.54, + "probability": 0.9851 + }, + { + "start": 3504.68, + "end": 3507.72, + "probability": 0.9619 + }, + { + "start": 3510.06, + "end": 3514.54, + "probability": 0.9949 + }, + { + "start": 3515.48, + "end": 3517.2, + "probability": 0.9835 + }, + { + "start": 3519.8, + "end": 3524.76, + "probability": 0.9958 + }, + { + "start": 3526.16, + "end": 3527.86, + "probability": 0.8851 + }, + { + "start": 3529.52, + "end": 3531.74, + "probability": 0.9846 + }, + { + "start": 3532.7, + "end": 3536.58, + "probability": 0.9625 + }, + { + "start": 3538.08, + "end": 3545.88, + "probability": 0.9442 + }, + { + "start": 3547.1, + "end": 3548.48, + "probability": 0.9138 + }, + { + "start": 3549.26, + "end": 3551.24, + "probability": 0.9704 + }, + { + "start": 3551.96, + "end": 3553.22, + "probability": 0.931 + }, + { + "start": 3554.64, + "end": 3558.16, + "probability": 0.9849 + }, + { + "start": 3560.22, + "end": 3561.8, + "probability": 0.9603 + }, + { + "start": 3564.06, + "end": 3574.1, + "probability": 0.7411 + }, + { + "start": 3576.52, + "end": 3578.86, + "probability": 0.9524 + }, + { + "start": 3581.14, + "end": 3585.6, + "probability": 0.9937 + }, + { + "start": 3587.2, + "end": 3588.74, + "probability": 0.926 + }, + { + "start": 3590.12, + "end": 3592.48, + "probability": 0.9897 + }, + { + "start": 3593.52, + "end": 3594.68, + "probability": 0.4868 + }, + { + "start": 3595.36, + "end": 3600.84, + "probability": 0.9917 + }, + { + "start": 3600.84, + "end": 3606.36, + "probability": 0.9502 + }, + { + "start": 3609.02, + "end": 3615.86, + "probability": 0.9937 + }, + { + "start": 3617.7, + "end": 3622.58, + "probability": 0.991 + }, + { + "start": 3622.58, + "end": 3626.68, + "probability": 0.9958 + }, + { + "start": 3627.66, + "end": 3628.28, + "probability": 0.7998 + }, + { + "start": 3630.72, + "end": 3631.82, + "probability": 0.9144 + }, + { + "start": 3633.24, + "end": 3637.1, + "probability": 0.9691 + }, + { + "start": 3637.7, + "end": 3640.48, + "probability": 0.5725 + }, + { + "start": 3641.36, + "end": 3641.4, + "probability": 0.0003 + }, + { + "start": 3644.52, + "end": 3648.28, + "probability": 0.9068 + }, + { + "start": 3648.9, + "end": 3650.42, + "probability": 0.9149 + }, + { + "start": 3651.78, + "end": 3653.38, + "probability": 0.9377 + }, + { + "start": 3654.3, + "end": 3654.92, + "probability": 0.9915 + }, + { + "start": 3655.5, + "end": 3656.16, + "probability": 0.9843 + }, + { + "start": 3658.4, + "end": 3659.74, + "probability": 0.8969 + }, + { + "start": 3661.04, + "end": 3663.46, + "probability": 0.9785 + }, + { + "start": 3664.1, + "end": 3664.98, + "probability": 0.7468 + }, + { + "start": 3665.64, + "end": 3667.48, + "probability": 0.9728 + }, + { + "start": 3668.22, + "end": 3669.32, + "probability": 0.9522 + }, + { + "start": 3670.16, + "end": 3672.6, + "probability": 0.9208 + }, + { + "start": 3675.08, + "end": 3676.54, + "probability": 0.998 + }, + { + "start": 3677.12, + "end": 3678.56, + "probability": 0.5358 + }, + { + "start": 3679.46, + "end": 3679.46, + "probability": 0.4736 + }, + { + "start": 3679.46, + "end": 3679.74, + "probability": 0.5857 + }, + { + "start": 3681.48, + "end": 3686.86, + "probability": 0.9644 + }, + { + "start": 3687.56, + "end": 3693.8, + "probability": 0.9781 + }, + { + "start": 3694.68, + "end": 3694.82, + "probability": 0.7026 + }, + { + "start": 3695.26, + "end": 3697.0, + "probability": 0.5182 + }, + { + "start": 3697.9, + "end": 3699.74, + "probability": 0.7229 + }, + { + "start": 3700.94, + "end": 3708.44, + "probability": 0.9349 + }, + { + "start": 3710.02, + "end": 3712.54, + "probability": 0.8862 + }, + { + "start": 3715.52, + "end": 3721.56, + "probability": 0.8896 + }, + { + "start": 3722.82, + "end": 3723.76, + "probability": 0.5173 + }, + { + "start": 3724.62, + "end": 3731.78, + "probability": 0.7558 + }, + { + "start": 3732.66, + "end": 3733.14, + "probability": 0.8533 + }, + { + "start": 3733.2, + "end": 3734.42, + "probability": 0.7205 + }, + { + "start": 3735.04, + "end": 3736.6, + "probability": 0.8749 + }, + { + "start": 3737.04, + "end": 3739.07, + "probability": 0.8733 + }, + { + "start": 3739.54, + "end": 3743.12, + "probability": 0.8116 + }, + { + "start": 3743.13, + "end": 3748.1, + "probability": 0.82 + }, + { + "start": 3748.42, + "end": 3748.84, + "probability": 0.7811 + }, + { + "start": 3749.1, + "end": 3749.82, + "probability": 0.7173 + }, + { + "start": 3751.16, + "end": 3752.9, + "probability": 0.843 + }, + { + "start": 3758.4, + "end": 3759.58, + "probability": 0.2124 + }, + { + "start": 3766.72, + "end": 3766.86, + "probability": 0.0063 + }, + { + "start": 3775.36, + "end": 3777.46, + "probability": 0.6728 + }, + { + "start": 3777.72, + "end": 3778.63, + "probability": 0.9946 + }, + { + "start": 3779.02, + "end": 3782.56, + "probability": 0.9132 + }, + { + "start": 3782.66, + "end": 3784.26, + "probability": 0.8645 + }, + { + "start": 3785.16, + "end": 3786.68, + "probability": 0.8934 + }, + { + "start": 3786.88, + "end": 3787.88, + "probability": 0.9834 + }, + { + "start": 3788.68, + "end": 3791.56, + "probability": 0.9993 + }, + { + "start": 3792.36, + "end": 3794.54, + "probability": 0.8087 + }, + { + "start": 3794.7, + "end": 3798.42, + "probability": 0.9604 + }, + { + "start": 3799.08, + "end": 3799.46, + "probability": 0.6151 + }, + { + "start": 3799.98, + "end": 3800.83, + "probability": 0.9953 + }, + { + "start": 3801.7, + "end": 3805.54, + "probability": 0.959 + }, + { + "start": 3806.26, + "end": 3806.5, + "probability": 0.7078 + }, + { + "start": 3806.72, + "end": 3810.02, + "probability": 0.944 + }, + { + "start": 3810.58, + "end": 3813.24, + "probability": 0.6833 + }, + { + "start": 3814.0, + "end": 3818.68, + "probability": 0.9962 + }, + { + "start": 3819.42, + "end": 3820.24, + "probability": 0.9941 + }, + { + "start": 3820.58, + "end": 3820.58, + "probability": 0.5131 + }, + { + "start": 3820.58, + "end": 3822.58, + "probability": 0.973 + }, + { + "start": 3823.14, + "end": 3823.88, + "probability": 0.6768 + }, + { + "start": 3824.48, + "end": 3826.74, + "probability": 0.657 + }, + { + "start": 3828.37, + "end": 3833.94, + "probability": 0.9757 + }, + { + "start": 3835.68, + "end": 3837.34, + "probability": 0.8787 + }, + { + "start": 3837.86, + "end": 3841.52, + "probability": 0.9858 + }, + { + "start": 3842.16, + "end": 3845.5, + "probability": 0.9762 + }, + { + "start": 3846.08, + "end": 3848.44, + "probability": 0.9132 + }, + { + "start": 3849.6, + "end": 3850.78, + "probability": 0.8428 + }, + { + "start": 3851.46, + "end": 3854.5, + "probability": 0.9865 + }, + { + "start": 3855.16, + "end": 3856.74, + "probability": 0.9915 + }, + { + "start": 3857.74, + "end": 3858.96, + "probability": 0.9956 + }, + { + "start": 3859.56, + "end": 3861.44, + "probability": 0.8141 + }, + { + "start": 3862.52, + "end": 3864.84, + "probability": 0.9842 + }, + { + "start": 3865.66, + "end": 3867.86, + "probability": 0.9594 + }, + { + "start": 3868.4, + "end": 3869.34, + "probability": 0.9413 + }, + { + "start": 3870.38, + "end": 3871.1, + "probability": 0.8234 + }, + { + "start": 3871.7, + "end": 3873.44, + "probability": 0.9659 + }, + { + "start": 3874.44, + "end": 3876.94, + "probability": 0.9643 + }, + { + "start": 3878.14, + "end": 3880.12, + "probability": 0.9711 + }, + { + "start": 3880.96, + "end": 3884.42, + "probability": 0.9463 + }, + { + "start": 3885.62, + "end": 3886.76, + "probability": 0.9908 + }, + { + "start": 3887.88, + "end": 3891.56, + "probability": 0.9963 + }, + { + "start": 3891.74, + "end": 3894.8, + "probability": 0.9915 + }, + { + "start": 3894.94, + "end": 3897.22, + "probability": 0.9468 + }, + { + "start": 3898.28, + "end": 3900.46, + "probability": 0.9976 + }, + { + "start": 3900.84, + "end": 3902.42, + "probability": 0.7936 + }, + { + "start": 3903.0, + "end": 3906.5, + "probability": 0.9849 + }, + { + "start": 3907.62, + "end": 3912.14, + "probability": 0.9736 + }, + { + "start": 3913.32, + "end": 3917.4, + "probability": 0.9937 + }, + { + "start": 3917.52, + "end": 3920.88, + "probability": 0.984 + }, + { + "start": 3922.02, + "end": 3923.04, + "probability": 0.8824 + }, + { + "start": 3923.6, + "end": 3926.42, + "probability": 0.9258 + }, + { + "start": 3926.42, + "end": 3929.72, + "probability": 0.9199 + }, + { + "start": 3930.26, + "end": 3934.02, + "probability": 0.9578 + }, + { + "start": 3935.0, + "end": 3935.9, + "probability": 0.8044 + }, + { + "start": 3935.98, + "end": 3939.58, + "probability": 0.983 + }, + { + "start": 3939.58, + "end": 3942.18, + "probability": 0.9951 + }, + { + "start": 3943.84, + "end": 3946.64, + "probability": 0.8457 + }, + { + "start": 3947.2, + "end": 3947.74, + "probability": 0.8423 + }, + { + "start": 3947.84, + "end": 3951.08, + "probability": 0.9956 + }, + { + "start": 3951.28, + "end": 3953.96, + "probability": 0.8809 + }, + { + "start": 3954.8, + "end": 3961.9, + "probability": 0.9615 + }, + { + "start": 3962.58, + "end": 3966.82, + "probability": 0.9777 + }, + { + "start": 3967.5, + "end": 3970.56, + "probability": 0.9224 + }, + { + "start": 3971.5, + "end": 3974.74, + "probability": 0.9984 + }, + { + "start": 3975.02, + "end": 3975.46, + "probability": 0.588 + }, + { + "start": 3975.5, + "end": 3976.36, + "probability": 0.9772 + }, + { + "start": 3976.54, + "end": 3979.18, + "probability": 0.9924 + }, + { + "start": 3980.98, + "end": 3984.16, + "probability": 0.9932 + }, + { + "start": 3984.94, + "end": 3985.92, + "probability": 0.8613 + }, + { + "start": 3987.2, + "end": 3992.76, + "probability": 0.9965 + }, + { + "start": 3992.76, + "end": 3996.82, + "probability": 0.9995 + }, + { + "start": 3997.62, + "end": 3998.5, + "probability": 0.9745 + }, + { + "start": 3999.84, + "end": 4004.0, + "probability": 0.983 + }, + { + "start": 4004.7, + "end": 4005.86, + "probability": 0.7547 + }, + { + "start": 4006.52, + "end": 4010.82, + "probability": 0.9019 + }, + { + "start": 4011.58, + "end": 4015.56, + "probability": 0.9964 + }, + { + "start": 4015.56, + "end": 4018.94, + "probability": 0.8714 + }, + { + "start": 4020.32, + "end": 4023.84, + "probability": 0.7692 + }, + { + "start": 4028.22, + "end": 4030.12, + "probability": 0.8915 + }, + { + "start": 4030.88, + "end": 4032.7, + "probability": 0.9641 + }, + { + "start": 4033.8, + "end": 4037.46, + "probability": 0.8718 + }, + { + "start": 4037.64, + "end": 4037.94, + "probability": 0.8394 + }, + { + "start": 4038.06, + "end": 4039.1, + "probability": 0.8595 + }, + { + "start": 4040.32, + "end": 4043.6, + "probability": 0.9471 + }, + { + "start": 4044.12, + "end": 4046.6, + "probability": 0.9967 + }, + { + "start": 4047.18, + "end": 4049.14, + "probability": 0.9962 + }, + { + "start": 4049.8, + "end": 4051.44, + "probability": 0.8678 + }, + { + "start": 4051.98, + "end": 4052.93, + "probability": 0.9775 + }, + { + "start": 4053.42, + "end": 4054.48, + "probability": 0.9835 + }, + { + "start": 4054.72, + "end": 4056.78, + "probability": 0.7018 + }, + { + "start": 4057.6, + "end": 4062.9, + "probability": 0.9972 + }, + { + "start": 4063.38, + "end": 4068.42, + "probability": 0.9902 + }, + { + "start": 4069.32, + "end": 4074.82, + "probability": 0.9932 + }, + { + "start": 4075.22, + "end": 4077.02, + "probability": 0.9081 + }, + { + "start": 4079.2, + "end": 4080.94, + "probability": 0.9651 + }, + { + "start": 4081.32, + "end": 4083.82, + "probability": 0.9956 + }, + { + "start": 4084.84, + "end": 4090.78, + "probability": 0.9941 + }, + { + "start": 4091.3, + "end": 4092.8, + "probability": 0.9633 + }, + { + "start": 4092.88, + "end": 4094.04, + "probability": 0.6731 + }, + { + "start": 4094.32, + "end": 4095.68, + "probability": 0.8654 + }, + { + "start": 4096.08, + "end": 4098.6, + "probability": 0.9455 + }, + { + "start": 4098.86, + "end": 4101.14, + "probability": 0.9934 + }, + { + "start": 4102.32, + "end": 4106.02, + "probability": 0.988 + }, + { + "start": 4107.76, + "end": 4109.14, + "probability": 0.5577 + }, + { + "start": 4109.76, + "end": 4112.62, + "probability": 0.9922 + }, + { + "start": 4112.62, + "end": 4115.48, + "probability": 0.988 + }, + { + "start": 4116.46, + "end": 4120.04, + "probability": 0.9081 + }, + { + "start": 4120.72, + "end": 4123.92, + "probability": 0.998 + }, + { + "start": 4124.6, + "end": 4129.28, + "probability": 0.958 + }, + { + "start": 4129.82, + "end": 4130.14, + "probability": 0.8988 + }, + { + "start": 4130.66, + "end": 4131.22, + "probability": 0.9714 + }, + { + "start": 4132.38, + "end": 4135.0, + "probability": 0.9627 + }, + { + "start": 4136.16, + "end": 4139.5, + "probability": 0.8394 + }, + { + "start": 4139.84, + "end": 4142.38, + "probability": 0.8373 + }, + { + "start": 4143.18, + "end": 4147.72, + "probability": 0.9608 + }, + { + "start": 4148.24, + "end": 4149.48, + "probability": 0.9047 + }, + { + "start": 4150.04, + "end": 4153.44, + "probability": 0.95 + }, + { + "start": 4154.56, + "end": 4155.83, + "probability": 0.9971 + }, + { + "start": 4156.4, + "end": 4159.34, + "probability": 0.9851 + }, + { + "start": 4159.64, + "end": 4160.78, + "probability": 0.9441 + }, + { + "start": 4161.18, + "end": 4162.36, + "probability": 0.988 + }, + { + "start": 4162.96, + "end": 4163.4, + "probability": 0.8535 + }, + { + "start": 4165.02, + "end": 4165.64, + "probability": 0.6382 + }, + { + "start": 4165.74, + "end": 4167.52, + "probability": 0.9778 + }, + { + "start": 4167.54, + "end": 4169.54, + "probability": 0.9963 + }, + { + "start": 4169.64, + "end": 4171.58, + "probability": 0.5044 + }, + { + "start": 4172.54, + "end": 4173.26, + "probability": 0.6736 + }, + { + "start": 4174.04, + "end": 4175.54, + "probability": 0.5813 + }, + { + "start": 4175.7, + "end": 4178.5, + "probability": 0.725 + }, + { + "start": 4179.32, + "end": 4180.12, + "probability": 0.904 + }, + { + "start": 4180.3, + "end": 4181.0, + "probability": 0.9272 + }, + { + "start": 4181.08, + "end": 4183.34, + "probability": 0.9534 + }, + { + "start": 4184.44, + "end": 4186.92, + "probability": 0.8973 + }, + { + "start": 4187.6, + "end": 4189.16, + "probability": 0.9831 + }, + { + "start": 4189.2, + "end": 4194.34, + "probability": 0.9546 + }, + { + "start": 4194.96, + "end": 4197.64, + "probability": 0.6355 + }, + { + "start": 4197.92, + "end": 4202.0, + "probability": 0.9874 + }, + { + "start": 4202.5, + "end": 4203.88, + "probability": 0.9626 + }, + { + "start": 4204.16, + "end": 4204.48, + "probability": 0.2567 + }, + { + "start": 4204.88, + "end": 4205.48, + "probability": 0.5154 + }, + { + "start": 4206.88, + "end": 4208.72, + "probability": 0.9533 + }, + { + "start": 4210.12, + "end": 4211.34, + "probability": 0.7507 + }, + { + "start": 4211.54, + "end": 4212.5, + "probability": 0.688 + }, + { + "start": 4213.3, + "end": 4218.76, + "probability": 0.9902 + }, + { + "start": 4218.92, + "end": 4220.9, + "probability": 0.9897 + }, + { + "start": 4221.76, + "end": 4225.26, + "probability": 0.9737 + }, + { + "start": 4226.32, + "end": 4228.88, + "probability": 0.9667 + }, + { + "start": 4229.58, + "end": 4233.92, + "probability": 0.9938 + }, + { + "start": 4235.58, + "end": 4239.62, + "probability": 0.9985 + }, + { + "start": 4240.38, + "end": 4244.84, + "probability": 0.9822 + }, + { + "start": 4245.6, + "end": 4247.76, + "probability": 0.947 + }, + { + "start": 4247.88, + "end": 4248.58, + "probability": 0.8458 + }, + { + "start": 4248.62, + "end": 4249.4, + "probability": 0.7588 + }, + { + "start": 4249.88, + "end": 4252.18, + "probability": 0.9355 + }, + { + "start": 4254.32, + "end": 4256.84, + "probability": 0.9987 + }, + { + "start": 4256.84, + "end": 4258.82, + "probability": 0.9987 + }, + { + "start": 4260.16, + "end": 4262.24, + "probability": 0.9418 + }, + { + "start": 4262.34, + "end": 4262.82, + "probability": 0.9666 + }, + { + "start": 4262.94, + "end": 4264.32, + "probability": 0.9486 + }, + { + "start": 4265.18, + "end": 4268.14, + "probability": 0.9643 + }, + { + "start": 4268.22, + "end": 4269.82, + "probability": 0.9328 + }, + { + "start": 4270.78, + "end": 4274.02, + "probability": 0.9871 + }, + { + "start": 4274.72, + "end": 4278.96, + "probability": 0.9988 + }, + { + "start": 4279.98, + "end": 4280.9, + "probability": 0.8957 + }, + { + "start": 4281.98, + "end": 4283.66, + "probability": 0.9943 + }, + { + "start": 4284.4, + "end": 4286.08, + "probability": 0.9856 + }, + { + "start": 4286.2, + "end": 4288.58, + "probability": 0.8433 + }, + { + "start": 4288.58, + "end": 4292.22, + "probability": 0.9722 + }, + { + "start": 4292.96, + "end": 4295.76, + "probability": 0.9625 + }, + { + "start": 4296.18, + "end": 4301.54, + "probability": 0.9734 + }, + { + "start": 4302.94, + "end": 4305.98, + "probability": 0.8879 + }, + { + "start": 4306.64, + "end": 4311.16, + "probability": 0.9799 + }, + { + "start": 4311.74, + "end": 4313.9, + "probability": 0.9921 + }, + { + "start": 4314.42, + "end": 4317.6, + "probability": 0.9917 + }, + { + "start": 4318.2, + "end": 4321.48, + "probability": 0.9103 + }, + { + "start": 4322.02, + "end": 4325.44, + "probability": 0.9919 + }, + { + "start": 4327.48, + "end": 4328.4, + "probability": 0.6079 + }, + { + "start": 4329.48, + "end": 4333.06, + "probability": 0.9865 + }, + { + "start": 4333.64, + "end": 4337.9, + "probability": 0.9905 + }, + { + "start": 4338.56, + "end": 4342.48, + "probability": 0.9976 + }, + { + "start": 4343.2, + "end": 4345.84, + "probability": 0.9961 + }, + { + "start": 4346.0, + "end": 4350.1, + "probability": 0.9954 + }, + { + "start": 4350.76, + "end": 4353.56, + "probability": 0.9954 + }, + { + "start": 4354.96, + "end": 4359.54, + "probability": 0.9975 + }, + { + "start": 4360.48, + "end": 4363.2, + "probability": 0.9873 + }, + { + "start": 4363.74, + "end": 4368.08, + "probability": 0.9964 + }, + { + "start": 4369.48, + "end": 4371.66, + "probability": 0.9824 + }, + { + "start": 4371.78, + "end": 4372.84, + "probability": 0.8494 + }, + { + "start": 4372.9, + "end": 4374.12, + "probability": 0.8256 + }, + { + "start": 4375.22, + "end": 4375.4, + "probability": 0.7681 + }, + { + "start": 4388.46, + "end": 4389.26, + "probability": 0.4009 + }, + { + "start": 4390.36, + "end": 4394.98, + "probability": 0.9838 + }, + { + "start": 4395.64, + "end": 4397.58, + "probability": 0.9463 + }, + { + "start": 4397.68, + "end": 4399.6, + "probability": 0.8686 + }, + { + "start": 4400.2, + "end": 4404.34, + "probability": 0.9976 + }, + { + "start": 4406.2, + "end": 4409.3, + "probability": 0.9959 + }, + { + "start": 4409.36, + "end": 4411.06, + "probability": 0.9131 + }, + { + "start": 4411.24, + "end": 4412.52, + "probability": 0.8307 + }, + { + "start": 4413.14, + "end": 4414.52, + "probability": 0.9189 + }, + { + "start": 4414.64, + "end": 4418.64, + "probability": 0.9923 + }, + { + "start": 4420.64, + "end": 4424.52, + "probability": 0.9944 + }, + { + "start": 4424.52, + "end": 4429.12, + "probability": 0.9987 + }, + { + "start": 4429.3, + "end": 4430.34, + "probability": 0.9979 + }, + { + "start": 4431.04, + "end": 4433.56, + "probability": 0.9942 + }, + { + "start": 4434.18, + "end": 4438.68, + "probability": 0.9921 + }, + { + "start": 4439.46, + "end": 4441.02, + "probability": 0.8801 + }, + { + "start": 4441.76, + "end": 4442.32, + "probability": 0.934 + }, + { + "start": 4443.98, + "end": 4446.14, + "probability": 0.9844 + }, + { + "start": 4446.14, + "end": 4448.98, + "probability": 0.9924 + }, + { + "start": 4449.76, + "end": 4450.6, + "probability": 0.7791 + }, + { + "start": 4452.3, + "end": 4457.16, + "probability": 0.9827 + }, + { + "start": 4458.08, + "end": 4460.7, + "probability": 0.9948 + }, + { + "start": 4461.02, + "end": 4468.18, + "probability": 0.9829 + }, + { + "start": 4468.7, + "end": 4470.98, + "probability": 0.9964 + }, + { + "start": 4472.04, + "end": 4472.43, + "probability": 0.9802 + }, + { + "start": 4473.5, + "end": 4476.76, + "probability": 0.9995 + }, + { + "start": 4478.64, + "end": 4479.78, + "probability": 0.9318 + }, + { + "start": 4480.42, + "end": 4482.08, + "probability": 0.958 + }, + { + "start": 4483.1, + "end": 4486.06, + "probability": 0.9939 + }, + { + "start": 4487.38, + "end": 4490.0, + "probability": 0.9858 + }, + { + "start": 4490.0, + "end": 4492.32, + "probability": 0.9995 + }, + { + "start": 4493.96, + "end": 4497.68, + "probability": 0.9475 + }, + { + "start": 4498.58, + "end": 4499.36, + "probability": 0.8098 + }, + { + "start": 4499.86, + "end": 4502.68, + "probability": 0.9978 + }, + { + "start": 4502.68, + "end": 4506.34, + "probability": 0.9968 + }, + { + "start": 4507.92, + "end": 4510.18, + "probability": 0.985 + }, + { + "start": 4510.18, + "end": 4513.9, + "probability": 0.9995 + }, + { + "start": 4515.64, + "end": 4516.62, + "probability": 0.9 + }, + { + "start": 4517.38, + "end": 4518.92, + "probability": 0.7993 + }, + { + "start": 4520.2, + "end": 4522.7, + "probability": 0.979 + }, + { + "start": 4523.56, + "end": 4524.54, + "probability": 0.9893 + }, + { + "start": 4524.72, + "end": 4525.5, + "probability": 0.9749 + }, + { + "start": 4525.56, + "end": 4526.0, + "probability": 0.7584 + }, + { + "start": 4526.16, + "end": 4527.16, + "probability": 0.5922 + }, + { + "start": 4527.96, + "end": 4532.64, + "probability": 0.9888 + }, + { + "start": 4532.64, + "end": 4533.4, + "probability": 0.7368 + }, + { + "start": 4533.84, + "end": 4534.16, + "probability": 0.7151 + }, + { + "start": 4535.66, + "end": 4537.2, + "probability": 0.9146 + }, + { + "start": 4539.7, + "end": 4541.98, + "probability": 0.5745 + }, + { + "start": 4556.86, + "end": 4557.54, + "probability": 0.5391 + }, + { + "start": 4558.6, + "end": 4559.88, + "probability": 0.5904 + }, + { + "start": 4560.24, + "end": 4561.82, + "probability": 0.6839 + }, + { + "start": 4564.78, + "end": 4569.04, + "probability": 0.892 + }, + { + "start": 4569.18, + "end": 4574.46, + "probability": 0.9465 + }, + { + "start": 4574.68, + "end": 4576.94, + "probability": 0.9991 + }, + { + "start": 4577.88, + "end": 4579.38, + "probability": 0.9272 + }, + { + "start": 4580.04, + "end": 4581.7, + "probability": 0.9986 + }, + { + "start": 4582.42, + "end": 4583.44, + "probability": 0.7603 + }, + { + "start": 4584.18, + "end": 4587.56, + "probability": 0.8648 + }, + { + "start": 4588.04, + "end": 4593.02, + "probability": 0.9846 + }, + { + "start": 4593.14, + "end": 4594.34, + "probability": 0.9985 + }, + { + "start": 4594.38, + "end": 4595.48, + "probability": 0.9572 + }, + { + "start": 4595.56, + "end": 4596.94, + "probability": 0.9985 + }, + { + "start": 4597.66, + "end": 4600.16, + "probability": 0.9882 + }, + { + "start": 4601.0, + "end": 4602.84, + "probability": 0.8813 + }, + { + "start": 4603.36, + "end": 4607.24, + "probability": 0.9973 + }, + { + "start": 4608.0, + "end": 4609.02, + "probability": 0.8314 + }, + { + "start": 4609.7, + "end": 4611.92, + "probability": 0.999 + }, + { + "start": 4612.6, + "end": 4614.36, + "probability": 0.9589 + }, + { + "start": 4614.94, + "end": 4619.04, + "probability": 0.9992 + }, + { + "start": 4619.04, + "end": 4623.26, + "probability": 0.9674 + }, + { + "start": 4623.46, + "end": 4624.34, + "probability": 0.7817 + }, + { + "start": 4625.08, + "end": 4626.7, + "probability": 0.8903 + }, + { + "start": 4629.0, + "end": 4631.44, + "probability": 0.9738 + }, + { + "start": 4631.8, + "end": 4634.27, + "probability": 0.9873 + }, + { + "start": 4634.78, + "end": 4638.1, + "probability": 0.998 + }, + { + "start": 4640.2, + "end": 4644.2, + "probability": 0.9991 + }, + { + "start": 4645.1, + "end": 4647.38, + "probability": 0.9465 + }, + { + "start": 4648.3, + "end": 4649.5, + "probability": 0.9692 + }, + { + "start": 4651.12, + "end": 4657.08, + "probability": 0.9954 + }, + { + "start": 4657.66, + "end": 4661.14, + "probability": 0.9946 + }, + { + "start": 4662.6, + "end": 4663.58, + "probability": 0.7885 + }, + { + "start": 4664.42, + "end": 4668.14, + "probability": 0.9622 + }, + { + "start": 4669.56, + "end": 4671.96, + "probability": 0.9689 + }, + { + "start": 4672.28, + "end": 4673.1, + "probability": 0.9121 + }, + { + "start": 4673.16, + "end": 4674.24, + "probability": 0.8133 + }, + { + "start": 4675.8, + "end": 4677.88, + "probability": 0.9994 + }, + { + "start": 4678.54, + "end": 4681.74, + "probability": 0.8267 + }, + { + "start": 4682.38, + "end": 4684.42, + "probability": 0.9424 + }, + { + "start": 4684.9, + "end": 4688.26, + "probability": 0.9847 + }, + { + "start": 4688.5, + "end": 4688.9, + "probability": 0.3215 + }, + { + "start": 4688.9, + "end": 4689.76, + "probability": 0.8765 + }, + { + "start": 4689.9, + "end": 4690.16, + "probability": 0.493 + }, + { + "start": 4690.24, + "end": 4691.6, + "probability": 0.7566 + }, + { + "start": 4693.28, + "end": 4694.04, + "probability": 0.8823 + }, + { + "start": 4696.94, + "end": 4698.02, + "probability": 0.4644 + }, + { + "start": 4698.68, + "end": 4701.94, + "probability": 0.9766 + }, + { + "start": 4702.56, + "end": 4706.56, + "probability": 0.999 + }, + { + "start": 4706.56, + "end": 4710.8, + "probability": 0.9612 + }, + { + "start": 4711.64, + "end": 4712.08, + "probability": 0.9426 + }, + { + "start": 4713.04, + "end": 4714.42, + "probability": 0.9993 + }, + { + "start": 4715.44, + "end": 4718.88, + "probability": 0.935 + }, + { + "start": 4719.66, + "end": 4726.12, + "probability": 0.9977 + }, + { + "start": 4726.7, + "end": 4728.44, + "probability": 0.9838 + }, + { + "start": 4729.1, + "end": 4733.36, + "probability": 0.8463 + }, + { + "start": 4733.44, + "end": 4735.6, + "probability": 0.9878 + }, + { + "start": 4736.56, + "end": 4737.18, + "probability": 0.8004 + }, + { + "start": 4737.7, + "end": 4738.68, + "probability": 0.8843 + }, + { + "start": 4739.2, + "end": 4740.82, + "probability": 0.8581 + }, + { + "start": 4741.58, + "end": 4742.86, + "probability": 0.9492 + }, + { + "start": 4743.0, + "end": 4746.94, + "probability": 0.9951 + }, + { + "start": 4747.18, + "end": 4748.04, + "probability": 0.7213 + }, + { + "start": 4748.18, + "end": 4748.46, + "probability": 0.1803 + }, + { + "start": 4749.02, + "end": 4751.5, + "probability": 0.8684 + }, + { + "start": 4751.86, + "end": 4756.58, + "probability": 0.968 + }, + { + "start": 4757.14, + "end": 4758.18, + "probability": 0.6801 + }, + { + "start": 4758.58, + "end": 4760.42, + "probability": 0.713 + }, + { + "start": 4763.75, + "end": 4766.2, + "probability": 0.3191 + }, + { + "start": 4766.36, + "end": 4766.84, + "probability": 0.8552 + }, + { + "start": 4767.66, + "end": 4772.74, + "probability": 0.9863 + }, + { + "start": 4772.82, + "end": 4773.4, + "probability": 0.5782 + }, + { + "start": 4773.4, + "end": 4773.7, + "probability": 0.8787 + }, + { + "start": 4776.24, + "end": 4779.6, + "probability": 0.6903 + }, + { + "start": 4779.7, + "end": 4781.32, + "probability": 0.989 + }, + { + "start": 4781.54, + "end": 4783.04, + "probability": 0.9969 + }, + { + "start": 4783.12, + "end": 4786.06, + "probability": 0.9883 + }, + { + "start": 4786.42, + "end": 4791.76, + "probability": 0.9967 + }, + { + "start": 4792.4, + "end": 4795.46, + "probability": 0.9746 + }, + { + "start": 4795.56, + "end": 4798.5, + "probability": 0.9942 + }, + { + "start": 4798.86, + "end": 4799.7, + "probability": 0.5055 + }, + { + "start": 4799.92, + "end": 4802.86, + "probability": 0.995 + }, + { + "start": 4803.3, + "end": 4805.58, + "probability": 0.994 + }, + { + "start": 4805.68, + "end": 4806.9, + "probability": 0.9985 + }, + { + "start": 4807.1, + "end": 4808.22, + "probability": 0.9625 + }, + { + "start": 4809.34, + "end": 4815.04, + "probability": 0.9978 + }, + { + "start": 4815.96, + "end": 4817.41, + "probability": 0.1082 + }, + { + "start": 4818.2, + "end": 4820.16, + "probability": 0.5529 + }, + { + "start": 4820.16, + "end": 4820.42, + "probability": 0.0209 + }, + { + "start": 4821.08, + "end": 4822.62, + "probability": 0.0368 + }, + { + "start": 4823.6, + "end": 4824.09, + "probability": 0.0386 + }, + { + "start": 4825.16, + "end": 4827.36, + "probability": 0.5406 + }, + { + "start": 4827.74, + "end": 4828.74, + "probability": 0.3313 + }, + { + "start": 4829.12, + "end": 4829.86, + "probability": 0.0185 + }, + { + "start": 4830.8, + "end": 4832.5, + "probability": 0.1819 + }, + { + "start": 4832.54, + "end": 4836.94, + "probability": 0.3377 + }, + { + "start": 4837.6, + "end": 4837.6, + "probability": 0.0095 + }, + { + "start": 4838.12, + "end": 4839.44, + "probability": 0.6746 + }, + { + "start": 4839.76, + "end": 4840.26, + "probability": 0.5448 + }, + { + "start": 4840.36, + "end": 4842.8, + "probability": 0.5098 + }, + { + "start": 4843.06, + "end": 4843.88, + "probability": 0.5298 + }, + { + "start": 4843.98, + "end": 4844.66, + "probability": 0.8387 + }, + { + "start": 4845.0, + "end": 4845.34, + "probability": 0.7919 + }, + { + "start": 4845.94, + "end": 4846.2, + "probability": 0.8956 + }, + { + "start": 4846.96, + "end": 4848.98, + "probability": 0.895 + }, + { + "start": 4849.52, + "end": 4851.34, + "probability": 0.7292 + }, + { + "start": 4851.52, + "end": 4852.96, + "probability": 0.9706 + }, + { + "start": 4853.02, + "end": 4854.74, + "probability": 0.948 + }, + { + "start": 4855.36, + "end": 4857.66, + "probability": 0.9995 + }, + { + "start": 4857.66, + "end": 4862.74, + "probability": 0.9965 + }, + { + "start": 4863.04, + "end": 4865.6, + "probability": 0.9939 + }, + { + "start": 4866.16, + "end": 4867.52, + "probability": 0.9717 + }, + { + "start": 4867.62, + "end": 4870.82, + "probability": 0.9828 + }, + { + "start": 4871.26, + "end": 4871.8, + "probability": 0.7567 + }, + { + "start": 4871.84, + "end": 4874.22, + "probability": 0.9764 + }, + { + "start": 4874.64, + "end": 4875.88, + "probability": 0.9899 + }, + { + "start": 4876.88, + "end": 4878.5, + "probability": 0.8143 + }, + { + "start": 4880.42, + "end": 4884.1, + "probability": 0.9888 + }, + { + "start": 4885.3, + "end": 4887.68, + "probability": 0.999 + }, + { + "start": 4889.66, + "end": 4891.14, + "probability": 0.991 + }, + { + "start": 4891.68, + "end": 4893.84, + "probability": 0.9966 + }, + { + "start": 4894.02, + "end": 4895.38, + "probability": 0.9973 + }, + { + "start": 4896.06, + "end": 4897.6, + "probability": 0.9839 + }, + { + "start": 4898.12, + "end": 4898.64, + "probability": 0.9639 + }, + { + "start": 4899.54, + "end": 4902.12, + "probability": 0.9934 + }, + { + "start": 4902.26, + "end": 4907.92, + "probability": 0.9938 + }, + { + "start": 4908.52, + "end": 4910.92, + "probability": 0.9993 + }, + { + "start": 4912.28, + "end": 4916.34, + "probability": 0.9963 + }, + { + "start": 4918.82, + "end": 4921.78, + "probability": 0.9929 + }, + { + "start": 4921.98, + "end": 4925.34, + "probability": 0.8984 + }, + { + "start": 4926.04, + "end": 4928.46, + "probability": 0.9595 + }, + { + "start": 4929.32, + "end": 4930.5, + "probability": 0.9189 + }, + { + "start": 4931.08, + "end": 4932.43, + "probability": 0.8115 + }, + { + "start": 4933.4, + "end": 4935.5, + "probability": 0.9629 + }, + { + "start": 4935.68, + "end": 4941.58, + "probability": 0.9644 + }, + { + "start": 4942.12, + "end": 4942.88, + "probability": 0.8543 + }, + { + "start": 4943.22, + "end": 4946.96, + "probability": 0.9941 + }, + { + "start": 4946.96, + "end": 4951.86, + "probability": 0.9848 + }, + { + "start": 4952.34, + "end": 4953.08, + "probability": 0.5032 + }, + { + "start": 4953.62, + "end": 4956.26, + "probability": 0.989 + }, + { + "start": 4958.06, + "end": 4960.88, + "probability": 0.9927 + }, + { + "start": 4961.56, + "end": 4964.12, + "probability": 0.8378 + }, + { + "start": 4964.22, + "end": 4965.22, + "probability": 0.7936 + }, + { + "start": 4965.38, + "end": 4968.62, + "probability": 0.9785 + }, + { + "start": 4968.74, + "end": 4971.64, + "probability": 0.9976 + }, + { + "start": 4971.78, + "end": 4972.22, + "probability": 0.7455 + }, + { + "start": 4973.02, + "end": 4978.06, + "probability": 0.979 + }, + { + "start": 4979.58, + "end": 4981.08, + "probability": 0.979 + }, + { + "start": 4981.24, + "end": 4983.48, + "probability": 0.7803 + }, + { + "start": 4983.7, + "end": 4984.1, + "probability": 0.805 + }, + { + "start": 4985.38, + "end": 4987.46, + "probability": 0.9884 + }, + { + "start": 4988.4, + "end": 4993.56, + "probability": 0.9737 + }, + { + "start": 4994.32, + "end": 4998.98, + "probability": 0.9929 + }, + { + "start": 4998.98, + "end": 5002.3, + "probability": 0.9978 + }, + { + "start": 5002.66, + "end": 5003.02, + "probability": 0.9895 + }, + { + "start": 5003.96, + "end": 5004.42, + "probability": 0.9928 + }, + { + "start": 5005.2, + "end": 5006.42, + "probability": 0.994 + }, + { + "start": 5006.68, + "end": 5008.38, + "probability": 0.9985 + }, + { + "start": 5010.0, + "end": 5011.0, + "probability": 0.9613 + }, + { + "start": 5011.44, + "end": 5014.52, + "probability": 0.9976 + }, + { + "start": 5014.8, + "end": 5017.44, + "probability": 0.9949 + }, + { + "start": 5018.14, + "end": 5023.94, + "probability": 0.9958 + }, + { + "start": 5025.4, + "end": 5027.44, + "probability": 0.9947 + }, + { + "start": 5027.54, + "end": 5032.96, + "probability": 0.998 + }, + { + "start": 5035.1, + "end": 5037.72, + "probability": 0.9995 + }, + { + "start": 5037.9, + "end": 5045.92, + "probability": 0.9856 + }, + { + "start": 5046.04, + "end": 5048.66, + "probability": 0.7241 + }, + { + "start": 5048.66, + "end": 5050.68, + "probability": 0.9836 + }, + { + "start": 5051.68, + "end": 5054.08, + "probability": 0.9341 + }, + { + "start": 5054.66, + "end": 5056.22, + "probability": 0.9984 + }, + { + "start": 5056.86, + "end": 5058.58, + "probability": 0.9965 + }, + { + "start": 5059.16, + "end": 5060.28, + "probability": 0.996 + }, + { + "start": 5060.38, + "end": 5062.3, + "probability": 0.9948 + }, + { + "start": 5062.38, + "end": 5062.84, + "probability": 0.9244 + }, + { + "start": 5063.44, + "end": 5065.92, + "probability": 0.9932 + }, + { + "start": 5066.58, + "end": 5068.52, + "probability": 0.9565 + }, + { + "start": 5069.78, + "end": 5072.55, + "probability": 0.9524 + }, + { + "start": 5073.74, + "end": 5074.58, + "probability": 0.9822 + }, + { + "start": 5074.64, + "end": 5075.84, + "probability": 0.4172 + }, + { + "start": 5075.9, + "end": 5079.06, + "probability": 0.9944 + }, + { + "start": 5079.06, + "end": 5082.06, + "probability": 0.9963 + }, + { + "start": 5082.34, + "end": 5082.62, + "probability": 0.9536 + }, + { + "start": 5083.44, + "end": 5085.6, + "probability": 0.9377 + }, + { + "start": 5086.22, + "end": 5087.08, + "probability": 0.751 + }, + { + "start": 5088.06, + "end": 5089.46, + "probability": 0.9973 + }, + { + "start": 5090.02, + "end": 5092.46, + "probability": 0.9694 + }, + { + "start": 5093.0, + "end": 5094.88, + "probability": 0.9905 + }, + { + "start": 5095.88, + "end": 5096.34, + "probability": 0.7998 + }, + { + "start": 5096.36, + "end": 5098.38, + "probability": 0.9621 + }, + { + "start": 5098.44, + "end": 5101.04, + "probability": 0.9919 + }, + { + "start": 5102.08, + "end": 5105.96, + "probability": 0.9634 + }, + { + "start": 5106.72, + "end": 5114.18, + "probability": 0.9983 + }, + { + "start": 5114.86, + "end": 5116.96, + "probability": 0.9995 + }, + { + "start": 5117.84, + "end": 5120.2, + "probability": 0.9954 + }, + { + "start": 5120.5, + "end": 5121.62, + "probability": 0.8156 + }, + { + "start": 5122.7, + "end": 5124.0, + "probability": 0.7839 + }, + { + "start": 5124.38, + "end": 5126.02, + "probability": 0.9911 + }, + { + "start": 5127.16, + "end": 5128.28, + "probability": 0.2896 + }, + { + "start": 5128.88, + "end": 5130.52, + "probability": 0.7598 + }, + { + "start": 5131.3, + "end": 5134.58, + "probability": 0.9983 + }, + { + "start": 5135.68, + "end": 5136.42, + "probability": 0.8504 + }, + { + "start": 5137.12, + "end": 5140.98, + "probability": 0.9932 + }, + { + "start": 5141.15, + "end": 5144.28, + "probability": 0.9937 + }, + { + "start": 5145.34, + "end": 5146.1, + "probability": 0.6959 + }, + { + "start": 5147.32, + "end": 5149.72, + "probability": 0.7966 + }, + { + "start": 5149.94, + "end": 5154.14, + "probability": 0.9966 + }, + { + "start": 5154.72, + "end": 5158.93, + "probability": 0.9742 + }, + { + "start": 5160.04, + "end": 5161.94, + "probability": 0.8642 + }, + { + "start": 5162.02, + "end": 5164.9, + "probability": 0.9814 + }, + { + "start": 5166.2, + "end": 5167.8, + "probability": 0.7189 + }, + { + "start": 5167.8, + "end": 5170.88, + "probability": 0.9906 + }, + { + "start": 5170.94, + "end": 5171.7, + "probability": 0.6167 + }, + { + "start": 5172.88, + "end": 5173.84, + "probability": 0.0077 + }, + { + "start": 5176.82, + "end": 5178.4, + "probability": 0.3903 + }, + { + "start": 5178.4, + "end": 5179.86, + "probability": 0.6866 + }, + { + "start": 5180.48, + "end": 5180.94, + "probability": 0.6292 + }, + { + "start": 5181.04, + "end": 5182.32, + "probability": 0.9746 + }, + { + "start": 5182.42, + "end": 5183.36, + "probability": 0.9677 + }, + { + "start": 5183.44, + "end": 5184.72, + "probability": 0.9816 + }, + { + "start": 5186.76, + "end": 5188.52, + "probability": 0.9982 + }, + { + "start": 5189.42, + "end": 5191.72, + "probability": 0.9922 + }, + { + "start": 5192.46, + "end": 5194.28, + "probability": 0.8387 + }, + { + "start": 5194.86, + "end": 5196.3, + "probability": 0.9647 + }, + { + "start": 5197.22, + "end": 5198.62, + "probability": 0.8905 + }, + { + "start": 5199.46, + "end": 5200.46, + "probability": 0.678 + }, + { + "start": 5200.72, + "end": 5205.54, + "probability": 0.8435 + }, + { + "start": 5206.6, + "end": 5207.36, + "probability": 0.4577 + }, + { + "start": 5208.26, + "end": 5209.3, + "probability": 0.756 + }, + { + "start": 5209.52, + "end": 5210.4, + "probability": 0.9753 + }, + { + "start": 5210.64, + "end": 5211.06, + "probability": 0.7648 + }, + { + "start": 5211.18, + "end": 5211.8, + "probability": 0.82 + }, + { + "start": 5211.86, + "end": 5213.16, + "probability": 0.9735 + }, + { + "start": 5213.56, + "end": 5216.62, + "probability": 0.9523 + }, + { + "start": 5216.62, + "end": 5220.14, + "probability": 0.968 + }, + { + "start": 5220.54, + "end": 5223.5, + "probability": 0.9976 + }, + { + "start": 5223.6, + "end": 5224.48, + "probability": 0.9352 + }, + { + "start": 5224.8, + "end": 5231.18, + "probability": 0.9688 + }, + { + "start": 5231.18, + "end": 5237.56, + "probability": 0.9888 + }, + { + "start": 5238.3, + "end": 5245.32, + "probability": 0.9968 + }, + { + "start": 5245.4, + "end": 5248.78, + "probability": 0.9893 + }, + { + "start": 5248.78, + "end": 5251.6, + "probability": 0.996 + }, + { + "start": 5252.32, + "end": 5255.54, + "probability": 0.9473 + }, + { + "start": 5255.54, + "end": 5259.48, + "probability": 0.9964 + }, + { + "start": 5260.02, + "end": 5265.02, + "probability": 0.9829 + }, + { + "start": 5265.02, + "end": 5269.22, + "probability": 0.9974 + }, + { + "start": 5269.72, + "end": 5270.12, + "probability": 0.812 + }, + { + "start": 5270.44, + "end": 5272.42, + "probability": 0.7981 + }, + { + "start": 5272.52, + "end": 5275.18, + "probability": 0.9885 + }, + { + "start": 5275.4, + "end": 5277.24, + "probability": 0.7021 + }, + { + "start": 5277.24, + "end": 5279.04, + "probability": 0.5149 + }, + { + "start": 5279.86, + "end": 5285.86, + "probability": 0.6697 + }, + { + "start": 5285.94, + "end": 5287.4, + "probability": 0.2579 + }, + { + "start": 5287.56, + "end": 5290.14, + "probability": 0.8907 + }, + { + "start": 5290.68, + "end": 5291.8, + "probability": 0.0398 + }, + { + "start": 5292.02, + "end": 5296.08, + "probability": 0.9731 + }, + { + "start": 5297.36, + "end": 5299.64, + "probability": 0.9902 + }, + { + "start": 5300.14, + "end": 5305.66, + "probability": 0.9722 + }, + { + "start": 5306.1, + "end": 5309.28, + "probability": 0.9956 + }, + { + "start": 5309.4, + "end": 5311.52, + "probability": 0.8428 + }, + { + "start": 5311.94, + "end": 5315.06, + "probability": 0.995 + }, + { + "start": 5315.54, + "end": 5317.86, + "probability": 0.7284 + }, + { + "start": 5318.08, + "end": 5319.04, + "probability": 0.7895 + }, + { + "start": 5319.46, + "end": 5321.34, + "probability": 0.8136 + }, + { + "start": 5321.62, + "end": 5323.26, + "probability": 0.9736 + }, + { + "start": 5323.68, + "end": 5326.1, + "probability": 0.9692 + }, + { + "start": 5326.54, + "end": 5326.92, + "probability": 0.931 + }, + { + "start": 5327.42, + "end": 5331.14, + "probability": 0.9614 + }, + { + "start": 5331.2, + "end": 5332.1, + "probability": 0.8097 + }, + { + "start": 5334.3, + "end": 5337.16, + "probability": 0.9862 + }, + { + "start": 5337.66, + "end": 5338.48, + "probability": 0.6892 + }, + { + "start": 5340.9, + "end": 5346.52, + "probability": 0.9667 + }, + { + "start": 5347.46, + "end": 5349.06, + "probability": 0.9706 + }, + { + "start": 5350.32, + "end": 5354.52, + "probability": 0.9995 + }, + { + "start": 5354.98, + "end": 5355.22, + "probability": 0.7188 + }, + { + "start": 5355.5, + "end": 5356.72, + "probability": 0.8073 + }, + { + "start": 5357.36, + "end": 5357.98, + "probability": 0.8842 + }, + { + "start": 5358.26, + "end": 5358.56, + "probability": 0.9333 + }, + { + "start": 5358.88, + "end": 5363.3, + "probability": 0.9514 + }, + { + "start": 5363.82, + "end": 5366.68, + "probability": 0.9454 + }, + { + "start": 5367.4, + "end": 5370.6, + "probability": 0.9976 + }, + { + "start": 5370.78, + "end": 5374.1, + "probability": 0.9982 + }, + { + "start": 5374.62, + "end": 5381.22, + "probability": 0.9967 + }, + { + "start": 5382.34, + "end": 5383.52, + "probability": 0.9586 + }, + { + "start": 5384.2, + "end": 5384.76, + "probability": 0.9673 + }, + { + "start": 5385.22, + "end": 5385.92, + "probability": 0.9895 + }, + { + "start": 5386.7, + "end": 5387.06, + "probability": 0.9816 + }, + { + "start": 5389.06, + "end": 5391.36, + "probability": 0.9792 + }, + { + "start": 5392.0, + "end": 5395.54, + "probability": 0.9906 + }, + { + "start": 5395.54, + "end": 5398.72, + "probability": 0.9949 + }, + { + "start": 5399.3, + "end": 5402.24, + "probability": 0.9477 + }, + { + "start": 5402.72, + "end": 5405.32, + "probability": 0.792 + }, + { + "start": 5405.92, + "end": 5408.14, + "probability": 0.9946 + }, + { + "start": 5408.92, + "end": 5412.02, + "probability": 0.9328 + }, + { + "start": 5412.3, + "end": 5413.28, + "probability": 0.9276 + }, + { + "start": 5414.04, + "end": 5415.92, + "probability": 0.9352 + }, + { + "start": 5416.5, + "end": 5417.32, + "probability": 0.962 + }, + { + "start": 5417.88, + "end": 5418.48, + "probability": 0.8272 + }, + { + "start": 5418.56, + "end": 5421.12, + "probability": 0.8965 + }, + { + "start": 5421.22, + "end": 5422.42, + "probability": 0.9707 + }, + { + "start": 5422.54, + "end": 5426.18, + "probability": 0.9702 + }, + { + "start": 5426.84, + "end": 5428.0, + "probability": 0.7017 + }, + { + "start": 5428.66, + "end": 5431.98, + "probability": 0.9932 + }, + { + "start": 5433.1, + "end": 5436.0, + "probability": 0.8763 + }, + { + "start": 5438.16, + "end": 5439.78, + "probability": 0.597 + }, + { + "start": 5440.48, + "end": 5441.37, + "probability": 0.96 + }, + { + "start": 5442.7, + "end": 5444.92, + "probability": 0.9598 + }, + { + "start": 5445.02, + "end": 5448.48, + "probability": 0.974 + }, + { + "start": 5448.48, + "end": 5452.26, + "probability": 0.9374 + }, + { + "start": 5453.7, + "end": 5457.16, + "probability": 0.9929 + }, + { + "start": 5458.88, + "end": 5462.64, + "probability": 0.9829 + }, + { + "start": 5462.84, + "end": 5466.1, + "probability": 0.9989 + }, + { + "start": 5467.36, + "end": 5471.82, + "probability": 0.9953 + }, + { + "start": 5471.94, + "end": 5475.7, + "probability": 0.9545 + }, + { + "start": 5476.04, + "end": 5476.96, + "probability": 0.9915 + }, + { + "start": 5477.26, + "end": 5482.99, + "probability": 0.9832 + }, + { + "start": 5483.66, + "end": 5484.26, + "probability": 0.916 + }, + { + "start": 5485.74, + "end": 5487.77, + "probability": 0.9912 + }, + { + "start": 5488.74, + "end": 5492.58, + "probability": 0.9977 + }, + { + "start": 5493.12, + "end": 5495.96, + "probability": 0.9751 + }, + { + "start": 5496.88, + "end": 5498.11, + "probability": 0.9842 + }, + { + "start": 5500.92, + "end": 5501.7, + "probability": 0.9978 + }, + { + "start": 5502.86, + "end": 5504.44, + "probability": 0.9989 + }, + { + "start": 5504.96, + "end": 5507.22, + "probability": 0.9458 + }, + { + "start": 5508.24, + "end": 5509.64, + "probability": 0.6974 + }, + { + "start": 5510.32, + "end": 5515.54, + "probability": 0.9244 + }, + { + "start": 5516.26, + "end": 5518.08, + "probability": 0.954 + }, + { + "start": 5518.76, + "end": 5521.0, + "probability": 0.8669 + }, + { + "start": 5521.56, + "end": 5523.38, + "probability": 0.9798 + }, + { + "start": 5524.18, + "end": 5525.42, + "probability": 0.9201 + }, + { + "start": 5526.48, + "end": 5527.24, + "probability": 0.6773 + }, + { + "start": 5527.74, + "end": 5528.96, + "probability": 0.9579 + }, + { + "start": 5530.1, + "end": 5534.28, + "probability": 0.9834 + }, + { + "start": 5534.42, + "end": 5535.12, + "probability": 0.724 + }, + { + "start": 5535.42, + "end": 5536.02, + "probability": 0.7866 + }, + { + "start": 5536.92, + "end": 5540.96, + "probability": 0.989 + }, + { + "start": 5541.08, + "end": 5541.3, + "probability": 0.7114 + }, + { + "start": 5541.34, + "end": 5545.58, + "probability": 0.9906 + }, + { + "start": 5545.96, + "end": 5547.22, + "probability": 0.999 + }, + { + "start": 5547.96, + "end": 5550.4, + "probability": 0.9995 + }, + { + "start": 5550.78, + "end": 5551.76, + "probability": 0.9937 + }, + { + "start": 5552.3, + "end": 5553.34, + "probability": 0.719 + }, + { + "start": 5554.08, + "end": 5555.04, + "probability": 0.9924 + }, + { + "start": 5555.5, + "end": 5556.98, + "probability": 0.8757 + }, + { + "start": 5557.32, + "end": 5558.14, + "probability": 0.8406 + }, + { + "start": 5558.32, + "end": 5562.2, + "probability": 0.9883 + }, + { + "start": 5562.74, + "end": 5564.5, + "probability": 0.7796 + }, + { + "start": 5565.92, + "end": 5568.82, + "probability": 0.9928 + }, + { + "start": 5569.58, + "end": 5570.82, + "probability": 0.9119 + }, + { + "start": 5571.52, + "end": 5572.54, + "probability": 0.9707 + }, + { + "start": 5573.16, + "end": 5575.7, + "probability": 0.9945 + }, + { + "start": 5577.38, + "end": 5577.88, + "probability": 0.7452 + }, + { + "start": 5579.56, + "end": 5583.7, + "probability": 0.9828 + }, + { + "start": 5584.5, + "end": 5591.46, + "probability": 0.982 + }, + { + "start": 5591.82, + "end": 5593.0, + "probability": 0.7626 + }, + { + "start": 5593.16, + "end": 5593.46, + "probability": 0.5108 + }, + { + "start": 5593.46, + "end": 5600.46, + "probability": 0.7869 + }, + { + "start": 5601.28, + "end": 5603.56, + "probability": 0.5743 + }, + { + "start": 5603.78, + "end": 5608.86, + "probability": 0.7365 + }, + { + "start": 5609.34, + "end": 5613.48, + "probability": 0.8221 + }, + { + "start": 5614.0, + "end": 5616.04, + "probability": 0.9524 + }, + { + "start": 5634.7, + "end": 5635.58, + "probability": 0.6087 + }, + { + "start": 5635.78, + "end": 5636.62, + "probability": 0.6744 + }, + { + "start": 5636.88, + "end": 5638.66, + "probability": 0.768 + }, + { + "start": 5639.84, + "end": 5645.56, + "probability": 0.9554 + }, + { + "start": 5646.16, + "end": 5646.78, + "probability": 0.707 + }, + { + "start": 5646.94, + "end": 5649.78, + "probability": 0.9626 + }, + { + "start": 5650.5, + "end": 5651.62, + "probability": 0.854 + }, + { + "start": 5652.2, + "end": 5654.78, + "probability": 0.8633 + }, + { + "start": 5655.32, + "end": 5659.1, + "probability": 0.8523 + }, + { + "start": 5660.06, + "end": 5663.84, + "probability": 0.9644 + }, + { + "start": 5664.62, + "end": 5665.44, + "probability": 0.7216 + }, + { + "start": 5666.72, + "end": 5667.92, + "probability": 0.6821 + }, + { + "start": 5668.6, + "end": 5670.14, + "probability": 0.8455 + }, + { + "start": 5670.54, + "end": 5671.88, + "probability": 0.913 + }, + { + "start": 5671.92, + "end": 5672.2, + "probability": 0.873 + }, + { + "start": 5672.64, + "end": 5674.1, + "probability": 0.9878 + }, + { + "start": 5674.94, + "end": 5675.54, + "probability": 0.933 + }, + { + "start": 5676.12, + "end": 5677.82, + "probability": 0.988 + }, + { + "start": 5679.38, + "end": 5684.1, + "probability": 0.9897 + }, + { + "start": 5684.98, + "end": 5686.2, + "probability": 0.7361 + }, + { + "start": 5686.88, + "end": 5688.88, + "probability": 0.9021 + }, + { + "start": 5689.42, + "end": 5692.12, + "probability": 0.932 + }, + { + "start": 5692.12, + "end": 5695.44, + "probability": 0.8411 + }, + { + "start": 5696.66, + "end": 5699.16, + "probability": 0.9873 + }, + { + "start": 5699.74, + "end": 5701.2, + "probability": 0.9673 + }, + { + "start": 5702.28, + "end": 5705.14, + "probability": 0.9448 + }, + { + "start": 5706.2, + "end": 5707.74, + "probability": 0.9326 + }, + { + "start": 5710.32, + "end": 5711.98, + "probability": 0.8492 + }, + { + "start": 5713.26, + "end": 5715.52, + "probability": 0.9926 + }, + { + "start": 5716.18, + "end": 5717.38, + "probability": 0.885 + }, + { + "start": 5718.88, + "end": 5721.56, + "probability": 0.9969 + }, + { + "start": 5721.56, + "end": 5726.08, + "probability": 0.9873 + }, + { + "start": 5727.28, + "end": 5729.1, + "probability": 0.9907 + }, + { + "start": 5729.6, + "end": 5731.96, + "probability": 0.9459 + }, + { + "start": 5732.68, + "end": 5733.34, + "probability": 0.6316 + }, + { + "start": 5733.94, + "end": 5735.56, + "probability": 0.9054 + }, + { + "start": 5736.16, + "end": 5741.62, + "probability": 0.9956 + }, + { + "start": 5742.46, + "end": 5743.26, + "probability": 0.6564 + }, + { + "start": 5744.22, + "end": 5746.88, + "probability": 0.9617 + }, + { + "start": 5747.4, + "end": 5748.12, + "probability": 0.9434 + }, + { + "start": 5748.94, + "end": 5750.7, + "probability": 0.9554 + }, + { + "start": 5751.22, + "end": 5752.02, + "probability": 0.8961 + }, + { + "start": 5753.34, + "end": 5756.26, + "probability": 0.9725 + }, + { + "start": 5756.98, + "end": 5757.52, + "probability": 0.9564 + }, + { + "start": 5758.26, + "end": 5760.0, + "probability": 0.8896 + }, + { + "start": 5761.1, + "end": 5765.32, + "probability": 0.9848 + }, + { + "start": 5765.98, + "end": 5768.74, + "probability": 0.9451 + }, + { + "start": 5769.36, + "end": 5769.86, + "probability": 0.9375 + }, + { + "start": 5769.9, + "end": 5770.54, + "probability": 0.7981 + }, + { + "start": 5771.04, + "end": 5772.94, + "probability": 0.9981 + }, + { + "start": 5774.72, + "end": 5777.24, + "probability": 0.8892 + }, + { + "start": 5778.72, + "end": 5779.56, + "probability": 0.7724 + }, + { + "start": 5780.12, + "end": 5780.66, + "probability": 0.9414 + }, + { + "start": 5781.36, + "end": 5783.02, + "probability": 0.9774 + }, + { + "start": 5783.86, + "end": 5784.18, + "probability": 0.9538 + }, + { + "start": 5784.7, + "end": 5787.02, + "probability": 0.9966 + }, + { + "start": 5788.0, + "end": 5789.08, + "probability": 0.9511 + }, + { + "start": 5789.22, + "end": 5792.8, + "probability": 0.9785 + }, + { + "start": 5793.42, + "end": 5795.6, + "probability": 0.9897 + }, + { + "start": 5796.54, + "end": 5799.16, + "probability": 0.9753 + }, + { + "start": 5800.44, + "end": 5801.1, + "probability": 0.8988 + }, + { + "start": 5802.24, + "end": 5804.5, + "probability": 0.98 + }, + { + "start": 5805.48, + "end": 5811.12, + "probability": 0.996 + }, + { + "start": 5812.08, + "end": 5812.48, + "probability": 0.7529 + }, + { + "start": 5813.22, + "end": 5814.18, + "probability": 0.9993 + }, + { + "start": 5815.14, + "end": 5815.66, + "probability": 0.9508 + }, + { + "start": 5816.5, + "end": 5817.06, + "probability": 0.9273 + }, + { + "start": 5818.44, + "end": 5824.6, + "probability": 0.9906 + }, + { + "start": 5825.86, + "end": 5830.8, + "probability": 0.9972 + }, + { + "start": 5831.98, + "end": 5836.32, + "probability": 0.9678 + }, + { + "start": 5837.26, + "end": 5838.18, + "probability": 0.9352 + }, + { + "start": 5839.26, + "end": 5844.28, + "probability": 0.9112 + }, + { + "start": 5844.92, + "end": 5846.26, + "probability": 0.971 + }, + { + "start": 5847.16, + "end": 5850.46, + "probability": 0.9897 + }, + { + "start": 5850.46, + "end": 5855.68, + "probability": 0.9983 + }, + { + "start": 5856.26, + "end": 5857.46, + "probability": 0.8246 + }, + { + "start": 5858.84, + "end": 5859.86, + "probability": 0.9066 + }, + { + "start": 5860.78, + "end": 5861.98, + "probability": 0.9891 + }, + { + "start": 5862.52, + "end": 5867.24, + "probability": 0.9941 + }, + { + "start": 5867.78, + "end": 5869.22, + "probability": 0.9381 + }, + { + "start": 5870.68, + "end": 5875.5, + "probability": 0.9842 + }, + { + "start": 5876.44, + "end": 5878.78, + "probability": 0.3544 + }, + { + "start": 5879.7, + "end": 5880.4, + "probability": 0.75 + }, + { + "start": 5881.1, + "end": 5881.82, + "probability": 0.9783 + }, + { + "start": 5883.1, + "end": 5886.14, + "probability": 0.9904 + }, + { + "start": 5886.14, + "end": 5890.68, + "probability": 0.9845 + }, + { + "start": 5891.26, + "end": 5892.5, + "probability": 0.9566 + }, + { + "start": 5893.44, + "end": 5895.2, + "probability": 0.967 + }, + { + "start": 5895.86, + "end": 5897.3, + "probability": 0.9898 + }, + { + "start": 5898.64, + "end": 5901.34, + "probability": 0.8825 + }, + { + "start": 5901.72, + "end": 5902.38, + "probability": 0.969 + }, + { + "start": 5902.8, + "end": 5904.52, + "probability": 0.9202 + }, + { + "start": 5905.16, + "end": 5911.6, + "probability": 0.9938 + }, + { + "start": 5912.6, + "end": 5915.06, + "probability": 0.9553 + }, + { + "start": 5916.18, + "end": 5918.12, + "probability": 0.9951 + }, + { + "start": 5918.92, + "end": 5923.94, + "probability": 0.9734 + }, + { + "start": 5924.3, + "end": 5924.62, + "probability": 0.8967 + }, + { + "start": 5925.52, + "end": 5928.32, + "probability": 0.9773 + }, + { + "start": 5929.0, + "end": 5932.2, + "probability": 0.8797 + }, + { + "start": 5933.72, + "end": 5936.88, + "probability": 0.957 + }, + { + "start": 5937.36, + "end": 5937.88, + "probability": 0.5252 + }, + { + "start": 5938.0, + "end": 5938.82, + "probability": 0.9433 + }, + { + "start": 5940.12, + "end": 5940.6, + "probability": 0.5672 + }, + { + "start": 5941.86, + "end": 5944.54, + "probability": 0.8769 + }, + { + "start": 5945.2, + "end": 5950.0, + "probability": 0.993 + }, + { + "start": 5951.2, + "end": 5951.92, + "probability": 0.7748 + }, + { + "start": 5952.54, + "end": 5953.12, + "probability": 0.6118 + }, + { + "start": 5956.36, + "end": 5957.38, + "probability": 0.7292 + }, + { + "start": 5958.1, + "end": 5959.84, + "probability": 0.795 + }, + { + "start": 5960.54, + "end": 5961.34, + "probability": 0.9265 + }, + { + "start": 5962.7, + "end": 5964.44, + "probability": 0.9401 + }, + { + "start": 5965.14, + "end": 5965.54, + "probability": 0.9059 + }, + { + "start": 5965.74, + "end": 5967.3, + "probability": 0.6255 + }, + { + "start": 5967.64, + "end": 5970.94, + "probability": 0.9934 + }, + { + "start": 5972.08, + "end": 5974.3, + "probability": 0.7607 + }, + { + "start": 5975.12, + "end": 5975.3, + "probability": 0.4894 + }, + { + "start": 5975.42, + "end": 5976.48, + "probability": 0.9728 + }, + { + "start": 5976.98, + "end": 5980.92, + "probability": 0.9861 + }, + { + "start": 5981.78, + "end": 5984.08, + "probability": 0.9879 + }, + { + "start": 5984.68, + "end": 5985.14, + "probability": 0.7933 + }, + { + "start": 5986.76, + "end": 5989.96, + "probability": 0.9297 + }, + { + "start": 5991.14, + "end": 5991.98, + "probability": 0.4728 + }, + { + "start": 5992.48, + "end": 5996.8, + "probability": 0.9893 + }, + { + "start": 5997.3, + "end": 5998.14, + "probability": 0.4798 + }, + { + "start": 5999.5, + "end": 6000.1, + "probability": 0.8029 + }, + { + "start": 6000.92, + "end": 6001.8, + "probability": 0.6566 + }, + { + "start": 6002.5, + "end": 6003.3, + "probability": 0.7448 + }, + { + "start": 6004.3, + "end": 6005.38, + "probability": 0.9497 + }, + { + "start": 6006.16, + "end": 6007.54, + "probability": 0.9407 + }, + { + "start": 6008.32, + "end": 6009.1, + "probability": 0.794 + }, + { + "start": 6009.62, + "end": 6010.58, + "probability": 0.6941 + }, + { + "start": 6011.3, + "end": 6012.04, + "probability": 0.5889 + }, + { + "start": 6012.56, + "end": 6013.52, + "probability": 0.9258 + }, + { + "start": 6016.38, + "end": 6017.06, + "probability": 0.941 + }, + { + "start": 6017.76, + "end": 6018.52, + "probability": 0.8718 + }, + { + "start": 6019.2, + "end": 6023.08, + "probability": 0.7809 + }, + { + "start": 6023.84, + "end": 6026.04, + "probability": 0.9149 + }, + { + "start": 6027.84, + "end": 6028.54, + "probability": 0.7265 + }, + { + "start": 6028.94, + "end": 6030.04, + "probability": 0.7574 + }, + { + "start": 6030.04, + "end": 6030.78, + "probability": 0.9625 + }, + { + "start": 6031.78, + "end": 6033.46, + "probability": 0.9932 + }, + { + "start": 6039.56, + "end": 6041.76, + "probability": 0.998 + }, + { + "start": 6042.56, + "end": 6043.06, + "probability": 0.7971 + }, + { + "start": 6044.46, + "end": 6046.78, + "probability": 0.994 + }, + { + "start": 6048.78, + "end": 6050.96, + "probability": 0.988 + }, + { + "start": 6051.9, + "end": 6055.38, + "probability": 0.9565 + }, + { + "start": 6056.6, + "end": 6060.66, + "probability": 0.9252 + }, + { + "start": 6061.38, + "end": 6064.34, + "probability": 0.9814 + }, + { + "start": 6065.22, + "end": 6067.76, + "probability": 0.9058 + }, + { + "start": 6068.4, + "end": 6069.62, + "probability": 0.8468 + }, + { + "start": 6070.14, + "end": 6072.06, + "probability": 0.8882 + }, + { + "start": 6073.64, + "end": 6074.08, + "probability": 0.757 + }, + { + "start": 6074.6, + "end": 6076.38, + "probability": 0.9773 + }, + { + "start": 6077.42, + "end": 6078.16, + "probability": 0.7509 + }, + { + "start": 6078.82, + "end": 6082.74, + "probability": 0.9932 + }, + { + "start": 6083.3, + "end": 6086.32, + "probability": 0.9586 + }, + { + "start": 6087.24, + "end": 6090.02, + "probability": 0.9917 + }, + { + "start": 6090.76, + "end": 6092.24, + "probability": 0.9086 + }, + { + "start": 6093.8, + "end": 6095.04, + "probability": 0.8938 + }, + { + "start": 6095.8, + "end": 6099.14, + "probability": 0.8698 + }, + { + "start": 6099.58, + "end": 6101.48, + "probability": 0.6888 + }, + { + "start": 6102.5, + "end": 6104.42, + "probability": 0.5084 + }, + { + "start": 6105.26, + "end": 6106.42, + "probability": 0.9512 + }, + { + "start": 6107.16, + "end": 6107.7, + "probability": 0.8533 + }, + { + "start": 6108.94, + "end": 6112.36, + "probability": 0.9744 + }, + { + "start": 6112.8, + "end": 6113.18, + "probability": 0.8194 + }, + { + "start": 6113.5, + "end": 6114.0, + "probability": 0.6232 + }, + { + "start": 6114.88, + "end": 6118.44, + "probability": 0.9011 + }, + { + "start": 6119.24, + "end": 6124.68, + "probability": 0.9904 + }, + { + "start": 6125.2, + "end": 6129.02, + "probability": 0.8021 + }, + { + "start": 6129.92, + "end": 6133.12, + "probability": 0.9769 + }, + { + "start": 6133.12, + "end": 6137.8, + "probability": 0.9865 + }, + { + "start": 6138.64, + "end": 6140.34, + "probability": 0.7857 + }, + { + "start": 6140.68, + "end": 6141.66, + "probability": 0.8936 + }, + { + "start": 6142.36, + "end": 6143.86, + "probability": 0.9497 + }, + { + "start": 6144.48, + "end": 6145.04, + "probability": 0.7576 + }, + { + "start": 6145.44, + "end": 6145.86, + "probability": 0.8509 + }, + { + "start": 6146.86, + "end": 6147.78, + "probability": 0.8385 + }, + { + "start": 6147.96, + "end": 6148.36, + "probability": 0.8583 + }, + { + "start": 6149.36, + "end": 6150.72, + "probability": 0.8953 + }, + { + "start": 6151.34, + "end": 6151.72, + "probability": 0.0632 + }, + { + "start": 6151.72, + "end": 6151.72, + "probability": 0.4056 + }, + { + "start": 6161.8, + "end": 6163.72, + "probability": 0.0341 + }, + { + "start": 6164.62, + "end": 6165.26, + "probability": 0.1903 + }, + { + "start": 6167.26, + "end": 6168.28, + "probability": 0.1534 + }, + { + "start": 6171.58, + "end": 6172.66, + "probability": 0.2279 + }, + { + "start": 6172.66, + "end": 6172.96, + "probability": 0.3285 + }, + { + "start": 6174.1, + "end": 6175.06, + "probability": 0.0489 + }, + { + "start": 6177.02, + "end": 6177.16, + "probability": 0.0001 + }, + { + "start": 6182.04, + "end": 6182.16, + "probability": 0.3934 + }, + { + "start": 6214.28, + "end": 6214.36, + "probability": 0.0002 + }, + { + "start": 6228.54, + "end": 6230.8, + "probability": 0.5728 + }, + { + "start": 6230.8, + "end": 6232.68, + "probability": 0.5967 + }, + { + "start": 6238.42, + "end": 6241.58, + "probability": 0.9541 + }, + { + "start": 6242.9, + "end": 6244.04, + "probability": 0.9971 + }, + { + "start": 6244.88, + "end": 6246.0, + "probability": 0.9619 + }, + { + "start": 6246.98, + "end": 6249.1, + "probability": 0.9425 + }, + { + "start": 6250.22, + "end": 6254.68, + "probability": 0.937 + }, + { + "start": 6255.5, + "end": 6257.38, + "probability": 0.9697 + }, + { + "start": 6258.16, + "end": 6258.82, + "probability": 0.8013 + }, + { + "start": 6260.3, + "end": 6262.58, + "probability": 0.9688 + }, + { + "start": 6263.52, + "end": 6264.1, + "probability": 0.6733 + }, + { + "start": 6265.2, + "end": 6266.1, + "probability": 0.9708 + }, + { + "start": 6267.24, + "end": 6268.96, + "probability": 0.9616 + }, + { + "start": 6270.02, + "end": 6272.12, + "probability": 0.9762 + }, + { + "start": 6273.14, + "end": 6278.2, + "probability": 0.9899 + }, + { + "start": 6278.92, + "end": 6280.52, + "probability": 0.9722 + }, + { + "start": 6281.8, + "end": 6283.0, + "probability": 0.9639 + }, + { + "start": 6284.08, + "end": 6285.34, + "probability": 0.8731 + }, + { + "start": 6285.98, + "end": 6287.76, + "probability": 0.9956 + }, + { + "start": 6288.74, + "end": 6290.94, + "probability": 0.9678 + }, + { + "start": 6291.54, + "end": 6292.52, + "probability": 0.9495 + }, + { + "start": 6292.76, + "end": 6292.94, + "probability": 0.7198 + }, + { + "start": 6293.04, + "end": 6295.58, + "probability": 0.9951 + }, + { + "start": 6296.04, + "end": 6297.5, + "probability": 0.9952 + }, + { + "start": 6297.68, + "end": 6298.96, + "probability": 0.9727 + }, + { + "start": 6300.02, + "end": 6303.56, + "probability": 0.9829 + }, + { + "start": 6304.18, + "end": 6305.72, + "probability": 0.8978 + }, + { + "start": 6307.2, + "end": 6310.42, + "probability": 0.7755 + }, + { + "start": 6311.32, + "end": 6313.16, + "probability": 0.8641 + }, + { + "start": 6314.56, + "end": 6318.34, + "probability": 0.9383 + }, + { + "start": 6319.22, + "end": 6319.9, + "probability": 0.984 + }, + { + "start": 6320.44, + "end": 6321.26, + "probability": 0.6495 + }, + { + "start": 6322.38, + "end": 6327.04, + "probability": 0.9586 + }, + { + "start": 6327.9, + "end": 6329.44, + "probability": 0.8892 + }, + { + "start": 6330.32, + "end": 6331.12, + "probability": 0.6721 + }, + { + "start": 6331.16, + "end": 6336.64, + "probability": 0.7853 + }, + { + "start": 6337.64, + "end": 6338.88, + "probability": 0.997 + }, + { + "start": 6340.5, + "end": 6340.86, + "probability": 0.887 + }, + { + "start": 6341.4, + "end": 6342.0, + "probability": 0.9576 + }, + { + "start": 6342.76, + "end": 6344.22, + "probability": 0.9991 + }, + { + "start": 6344.78, + "end": 6345.94, + "probability": 0.9852 + }, + { + "start": 6346.96, + "end": 6348.2, + "probability": 0.9188 + }, + { + "start": 6348.7, + "end": 6349.72, + "probability": 0.9438 + }, + { + "start": 6349.78, + "end": 6350.54, + "probability": 0.8469 + }, + { + "start": 6350.58, + "end": 6351.36, + "probability": 0.9773 + }, + { + "start": 6352.0, + "end": 6352.44, + "probability": 0.8521 + }, + { + "start": 6353.76, + "end": 6355.86, + "probability": 0.9713 + }, + { + "start": 6357.12, + "end": 6359.42, + "probability": 0.9028 + }, + { + "start": 6360.5, + "end": 6362.8, + "probability": 0.9638 + }, + { + "start": 6362.9, + "end": 6364.42, + "probability": 0.8044 + }, + { + "start": 6365.04, + "end": 6365.78, + "probability": 0.7808 + }, + { + "start": 6365.92, + "end": 6366.26, + "probability": 0.3964 + }, + { + "start": 6366.36, + "end": 6366.78, + "probability": 0.6501 + }, + { + "start": 6367.28, + "end": 6368.74, + "probability": 0.9671 + }, + { + "start": 6369.18, + "end": 6370.54, + "probability": 0.9318 + }, + { + "start": 6371.22, + "end": 6371.96, + "probability": 0.9878 + }, + { + "start": 6373.98, + "end": 6379.64, + "probability": 0.9523 + }, + { + "start": 6380.54, + "end": 6381.18, + "probability": 0.7621 + }, + { + "start": 6382.16, + "end": 6382.84, + "probability": 0.9762 + }, + { + "start": 6383.72, + "end": 6388.56, + "probability": 0.9481 + }, + { + "start": 6389.46, + "end": 6390.76, + "probability": 0.8794 + }, + { + "start": 6391.92, + "end": 6392.74, + "probability": 0.875 + }, + { + "start": 6393.48, + "end": 6394.16, + "probability": 0.9932 + }, + { + "start": 6394.8, + "end": 6395.42, + "probability": 0.9933 + }, + { + "start": 6396.16, + "end": 6398.68, + "probability": 0.9791 + }, + { + "start": 6399.72, + "end": 6401.1, + "probability": 0.9878 + }, + { + "start": 6401.88, + "end": 6405.04, + "probability": 0.9684 + }, + { + "start": 6405.88, + "end": 6409.56, + "probability": 0.8681 + }, + { + "start": 6410.32, + "end": 6411.34, + "probability": 0.9241 + }, + { + "start": 6412.58, + "end": 6414.18, + "probability": 0.9878 + }, + { + "start": 6415.1, + "end": 6415.86, + "probability": 0.8243 + }, + { + "start": 6416.82, + "end": 6416.92, + "probability": 0.9572 + }, + { + "start": 6418.02, + "end": 6418.74, + "probability": 0.8966 + }, + { + "start": 6419.64, + "end": 6421.06, + "probability": 0.9972 + }, + { + "start": 6422.06, + "end": 6422.95, + "probability": 0.907 + }, + { + "start": 6423.62, + "end": 6424.66, + "probability": 0.9727 + }, + { + "start": 6425.38, + "end": 6428.76, + "probability": 0.9104 + }, + { + "start": 6429.54, + "end": 6432.1, + "probability": 0.9905 + }, + { + "start": 6432.96, + "end": 6437.18, + "probability": 0.6787 + }, + { + "start": 6438.68, + "end": 6439.4, + "probability": 0.719 + }, + { + "start": 6440.44, + "end": 6441.92, + "probability": 0.7 + }, + { + "start": 6443.06, + "end": 6446.88, + "probability": 0.9504 + }, + { + "start": 6447.02, + "end": 6447.78, + "probability": 0.8789 + }, + { + "start": 6448.84, + "end": 6449.14, + "probability": 0.7151 + }, + { + "start": 6449.84, + "end": 6450.38, + "probability": 0.7093 + }, + { + "start": 6451.54, + "end": 6456.44, + "probability": 0.9507 + }, + { + "start": 6457.22, + "end": 6457.88, + "probability": 0.891 + }, + { + "start": 6459.36, + "end": 6460.18, + "probability": 0.9253 + }, + { + "start": 6461.42, + "end": 6461.8, + "probability": 0.3485 + }, + { + "start": 6463.4, + "end": 6465.1, + "probability": 0.8809 + }, + { + "start": 6465.94, + "end": 6467.62, + "probability": 0.7796 + }, + { + "start": 6468.94, + "end": 6473.6, + "probability": 0.9927 + }, + { + "start": 6474.82, + "end": 6477.32, + "probability": 0.9976 + }, + { + "start": 6478.16, + "end": 6478.48, + "probability": 0.9363 + }, + { + "start": 6479.1, + "end": 6480.04, + "probability": 0.996 + }, + { + "start": 6480.46, + "end": 6480.83, + "probability": 0.7441 + }, + { + "start": 6481.3, + "end": 6481.91, + "probability": 0.9196 + }, + { + "start": 6483.48, + "end": 6487.58, + "probability": 0.9958 + }, + { + "start": 6488.02, + "end": 6488.78, + "probability": 0.7853 + }, + { + "start": 6489.42, + "end": 6489.96, + "probability": 0.8497 + }, + { + "start": 6490.52, + "end": 6493.46, + "probability": 0.8175 + }, + { + "start": 6493.7, + "end": 6494.08, + "probability": 0.9731 + }, + { + "start": 6495.96, + "end": 6496.82, + "probability": 0.7579 + }, + { + "start": 6498.06, + "end": 6500.42, + "probability": 0.9641 + }, + { + "start": 6501.26, + "end": 6505.06, + "probability": 0.9048 + }, + { + "start": 6505.14, + "end": 6505.4, + "probability": 0.856 + }, + { + "start": 6531.22, + "end": 6532.36, + "probability": 0.705 + }, + { + "start": 6533.98, + "end": 6534.78, + "probability": 0.8971 + }, + { + "start": 6536.42, + "end": 6538.52, + "probability": 0.8953 + }, + { + "start": 6540.02, + "end": 6542.6, + "probability": 0.9565 + }, + { + "start": 6561.9, + "end": 6566.3, + "probability": 0.5202 + }, + { + "start": 6566.98, + "end": 6567.96, + "probability": 0.8817 + }, + { + "start": 6569.2, + "end": 6573.26, + "probability": 0.9849 + }, + { + "start": 6573.26, + "end": 6577.7, + "probability": 0.9993 + }, + { + "start": 6578.22, + "end": 6579.48, + "probability": 0.9946 + }, + { + "start": 6580.12, + "end": 6581.2, + "probability": 0.9758 + }, + { + "start": 6582.24, + "end": 6586.42, + "probability": 0.8321 + }, + { + "start": 6587.02, + "end": 6588.96, + "probability": 0.9119 + }, + { + "start": 6589.52, + "end": 6594.0, + "probability": 0.9292 + }, + { + "start": 6594.5, + "end": 6596.92, + "probability": 0.9607 + }, + { + "start": 6597.88, + "end": 6601.86, + "probability": 0.9717 + }, + { + "start": 6601.98, + "end": 6602.84, + "probability": 0.8258 + }, + { + "start": 6603.18, + "end": 6604.48, + "probability": 0.5407 + }, + { + "start": 6605.54, + "end": 6608.08, + "probability": 0.4879 + }, + { + "start": 6608.28, + "end": 6609.16, + "probability": 0.6712 + }, + { + "start": 6609.64, + "end": 6610.86, + "probability": 0.9415 + }, + { + "start": 6611.86, + "end": 6612.62, + "probability": 0.8116 + }, + { + "start": 6613.2, + "end": 6616.38, + "probability": 0.9904 + }, + { + "start": 6628.96, + "end": 6630.52, + "probability": 0.0204 + }, + { + "start": 6630.52, + "end": 6630.52, + "probability": 0.0231 + }, + { + "start": 6630.52, + "end": 6630.52, + "probability": 0.0252 + }, + { + "start": 6630.52, + "end": 6630.52, + "probability": 0.0188 + }, + { + "start": 6630.52, + "end": 6633.98, + "probability": 0.4342 + }, + { + "start": 6634.56, + "end": 6634.98, + "probability": 0.8193 + }, + { + "start": 6635.92, + "end": 6637.24, + "probability": 0.8158 + }, + { + "start": 6638.28, + "end": 6642.4, + "probability": 0.9272 + }, + { + "start": 6643.08, + "end": 6644.48, + "probability": 0.9044 + }, + { + "start": 6645.54, + "end": 6647.68, + "probability": 0.9885 + }, + { + "start": 6648.34, + "end": 6650.34, + "probability": 0.9708 + }, + { + "start": 6650.86, + "end": 6652.32, + "probability": 0.8413 + }, + { + "start": 6653.0, + "end": 6654.12, + "probability": 0.7667 + }, + { + "start": 6654.7, + "end": 6655.22, + "probability": 0.4292 + }, + { + "start": 6655.8, + "end": 6656.16, + "probability": 0.7967 + }, + { + "start": 6657.58, + "end": 6663.1, + "probability": 0.9753 + }, + { + "start": 6663.68, + "end": 6666.38, + "probability": 0.8294 + }, + { + "start": 6667.06, + "end": 6670.54, + "probability": 0.9797 + }, + { + "start": 6671.14, + "end": 6673.62, + "probability": 0.976 + }, + { + "start": 6675.1, + "end": 6678.96, + "probability": 0.9913 + }, + { + "start": 6679.62, + "end": 6679.82, + "probability": 0.903 + }, + { + "start": 6680.7, + "end": 6681.5, + "probability": 0.901 + }, + { + "start": 6682.02, + "end": 6683.36, + "probability": 0.998 + }, + { + "start": 6683.92, + "end": 6688.36, + "probability": 0.9972 + }, + { + "start": 6690.66, + "end": 6690.86, + "probability": 0.7164 + }, + { + "start": 6691.88, + "end": 6694.94, + "probability": 0.9241 + }, + { + "start": 6695.64, + "end": 6698.26, + "probability": 0.6993 + }, + { + "start": 6699.16, + "end": 6701.4, + "probability": 0.9966 + }, + { + "start": 6701.94, + "end": 6703.84, + "probability": 0.9918 + }, + { + "start": 6706.16, + "end": 6710.82, + "probability": 0.991 + }, + { + "start": 6711.38, + "end": 6712.52, + "probability": 0.6545 + }, + { + "start": 6713.4, + "end": 6715.16, + "probability": 0.9908 + }, + { + "start": 6715.76, + "end": 6721.14, + "probability": 0.9391 + }, + { + "start": 6721.26, + "end": 6723.84, + "probability": 0.9441 + }, + { + "start": 6725.52, + "end": 6727.28, + "probability": 0.9369 + }, + { + "start": 6727.82, + "end": 6731.02, + "probability": 0.9954 + }, + { + "start": 6731.66, + "end": 6733.28, + "probability": 0.9521 + }, + { + "start": 6734.6, + "end": 6740.52, + "probability": 0.9748 + }, + { + "start": 6741.06, + "end": 6742.22, + "probability": 0.6502 + }, + { + "start": 6742.8, + "end": 6746.22, + "probability": 0.9935 + }, + { + "start": 6746.94, + "end": 6753.04, + "probability": 0.9748 + }, + { + "start": 6753.66, + "end": 6755.46, + "probability": 0.8906 + }, + { + "start": 6756.92, + "end": 6758.32, + "probability": 0.6817 + }, + { + "start": 6759.2, + "end": 6760.04, + "probability": 0.7579 + }, + { + "start": 6760.78, + "end": 6763.12, + "probability": 0.903 + }, + { + "start": 6763.68, + "end": 6767.4, + "probability": 0.9761 + }, + { + "start": 6768.14, + "end": 6770.74, + "probability": 0.9946 + }, + { + "start": 6771.28, + "end": 6773.04, + "probability": 0.9982 + }, + { + "start": 6773.56, + "end": 6776.54, + "probability": 0.9469 + }, + { + "start": 6777.56, + "end": 6779.2, + "probability": 0.8306 + }, + { + "start": 6779.82, + "end": 6781.38, + "probability": 0.9967 + }, + { + "start": 6781.72, + "end": 6783.02, + "probability": 0.9864 + }, + { + "start": 6783.32, + "end": 6784.76, + "probability": 0.976 + }, + { + "start": 6785.24, + "end": 6786.36, + "probability": 0.9253 + }, + { + "start": 6787.12, + "end": 6788.48, + "probability": 0.9717 + }, + { + "start": 6789.04, + "end": 6791.2, + "probability": 0.9879 + }, + { + "start": 6792.96, + "end": 6793.4, + "probability": 0.8618 + }, + { + "start": 6794.14, + "end": 6796.54, + "probability": 0.9294 + }, + { + "start": 6797.08, + "end": 6802.64, + "probability": 0.9945 + }, + { + "start": 6802.96, + "end": 6804.4, + "probability": 0.9919 + }, + { + "start": 6804.94, + "end": 6805.46, + "probability": 0.5595 + }, + { + "start": 6805.9, + "end": 6806.8, + "probability": 0.9023 + }, + { + "start": 6807.58, + "end": 6808.94, + "probability": 0.9092 + }, + { + "start": 6809.84, + "end": 6812.12, + "probability": 0.9981 + }, + { + "start": 6812.9, + "end": 6815.32, + "probability": 0.6642 + }, + { + "start": 6815.96, + "end": 6818.3, + "probability": 0.9822 + }, + { + "start": 6818.82, + "end": 6819.08, + "probability": 0.855 + }, + { + "start": 6820.48, + "end": 6824.28, + "probability": 0.8883 + }, + { + "start": 6824.74, + "end": 6825.92, + "probability": 0.9618 + }, + { + "start": 6826.72, + "end": 6827.14, + "probability": 0.7004 + }, + { + "start": 6827.88, + "end": 6831.36, + "probability": 0.9959 + }, + { + "start": 6832.04, + "end": 6835.74, + "probability": 0.9401 + }, + { + "start": 6836.32, + "end": 6839.26, + "probability": 0.9872 + }, + { + "start": 6840.64, + "end": 6843.44, + "probability": 0.8799 + }, + { + "start": 6843.44, + "end": 6846.6, + "probability": 0.9902 + }, + { + "start": 6847.32, + "end": 6849.06, + "probability": 0.9307 + }, + { + "start": 6849.82, + "end": 6851.08, + "probability": 0.6183 + }, + { + "start": 6852.22, + "end": 6852.58, + "probability": 0.899 + }, + { + "start": 6853.72, + "end": 6854.5, + "probability": 0.8455 + }, + { + "start": 6855.12, + "end": 6858.12, + "probability": 0.9756 + }, + { + "start": 6858.78, + "end": 6860.12, + "probability": 0.7779 + }, + { + "start": 6860.88, + "end": 6862.04, + "probability": 0.7609 + }, + { + "start": 6862.6, + "end": 6865.96, + "probability": 0.9668 + }, + { + "start": 6866.84, + "end": 6870.0, + "probability": 0.9947 + }, + { + "start": 6870.56, + "end": 6871.0, + "probability": 0.8318 + }, + { + "start": 6871.52, + "end": 6871.72, + "probability": 0.7568 + }, + { + "start": 6872.92, + "end": 6875.68, + "probability": 0.9613 + }, + { + "start": 6877.12, + "end": 6881.24, + "probability": 0.9917 + }, + { + "start": 6881.24, + "end": 6886.1, + "probability": 0.9302 + }, + { + "start": 6886.22, + "end": 6886.94, + "probability": 0.8007 + }, + { + "start": 6887.54, + "end": 6892.02, + "probability": 0.9062 + }, + { + "start": 6892.68, + "end": 6895.52, + "probability": 0.9923 + }, + { + "start": 6896.68, + "end": 6897.88, + "probability": 0.9354 + }, + { + "start": 6898.4, + "end": 6901.22, + "probability": 0.9877 + }, + { + "start": 6901.76, + "end": 6905.42, + "probability": 0.9788 + }, + { + "start": 6906.36, + "end": 6909.1, + "probability": 0.8539 + }, + { + "start": 6909.96, + "end": 6913.8, + "probability": 0.9954 + }, + { + "start": 6916.18, + "end": 6920.92, + "probability": 0.9835 + }, + { + "start": 6921.42, + "end": 6926.12, + "probability": 0.9883 + }, + { + "start": 6926.92, + "end": 6928.54, + "probability": 0.9122 + }, + { + "start": 6929.12, + "end": 6933.06, + "probability": 0.9838 + }, + { + "start": 6934.16, + "end": 6936.52, + "probability": 0.906 + }, + { + "start": 6937.2, + "end": 6938.62, + "probability": 0.9641 + }, + { + "start": 6939.38, + "end": 6940.52, + "probability": 0.9485 + }, + { + "start": 6941.04, + "end": 6945.08, + "probability": 0.9888 + }, + { + "start": 6945.94, + "end": 6948.06, + "probability": 0.9966 + }, + { + "start": 6948.66, + "end": 6953.68, + "probability": 0.9936 + }, + { + "start": 6954.54, + "end": 6955.58, + "probability": 0.866 + }, + { + "start": 6957.32, + "end": 6959.86, + "probability": 0.9103 + }, + { + "start": 6960.66, + "end": 6966.98, + "probability": 0.984 + }, + { + "start": 6967.58, + "end": 6968.78, + "probability": 0.9875 + }, + { + "start": 6969.98, + "end": 6972.5, + "probability": 0.8464 + }, + { + "start": 6973.2, + "end": 6978.24, + "probability": 0.9957 + }, + { + "start": 6979.46, + "end": 6986.54, + "probability": 0.9302 + }, + { + "start": 6987.18, + "end": 6990.42, + "probability": 0.9947 + }, + { + "start": 6991.02, + "end": 6996.92, + "probability": 0.9952 + }, + { + "start": 6997.94, + "end": 7001.42, + "probability": 0.9946 + }, + { + "start": 7001.92, + "end": 7002.74, + "probability": 0.9574 + }, + { + "start": 7003.54, + "end": 7007.18, + "probability": 0.896 + }, + { + "start": 7007.58, + "end": 7009.1, + "probability": 0.9588 + }, + { + "start": 7009.26, + "end": 7012.2, + "probability": 0.9155 + }, + { + "start": 7012.58, + "end": 7017.1, + "probability": 0.9889 + }, + { + "start": 7018.46, + "end": 7018.88, + "probability": 0.8892 + }, + { + "start": 7019.58, + "end": 7022.52, + "probability": 0.9394 + }, + { + "start": 7023.0, + "end": 7026.6, + "probability": 0.9832 + }, + { + "start": 7027.16, + "end": 7028.04, + "probability": 0.8921 + }, + { + "start": 7028.72, + "end": 7032.02, + "probability": 0.986 + }, + { + "start": 7032.86, + "end": 7038.1, + "probability": 0.9725 + }, + { + "start": 7039.04, + "end": 7039.88, + "probability": 0.6414 + }, + { + "start": 7039.96, + "end": 7040.96, + "probability": 0.8532 + }, + { + "start": 7041.42, + "end": 7043.5, + "probability": 0.7984 + }, + { + "start": 7043.98, + "end": 7049.12, + "probability": 0.9167 + }, + { + "start": 7049.98, + "end": 7050.38, + "probability": 0.7251 + }, + { + "start": 7051.1, + "end": 7056.1, + "probability": 0.9889 + }, + { + "start": 7057.06, + "end": 7058.58, + "probability": 0.9407 + }, + { + "start": 7059.36, + "end": 7060.7, + "probability": 0.9786 + }, + { + "start": 7061.92, + "end": 7062.92, + "probability": 0.4595 + }, + { + "start": 7063.52, + "end": 7064.98, + "probability": 0.9878 + }, + { + "start": 7066.7, + "end": 7071.32, + "probability": 0.8646 + }, + { + "start": 7072.04, + "end": 7075.04, + "probability": 0.9943 + }, + { + "start": 7075.74, + "end": 7076.58, + "probability": 0.7489 + }, + { + "start": 7077.68, + "end": 7077.98, + "probability": 0.93 + }, + { + "start": 7079.26, + "end": 7081.62, + "probability": 0.7919 + }, + { + "start": 7081.94, + "end": 7084.06, + "probability": 0.9728 + }, + { + "start": 7084.68, + "end": 7089.16, + "probability": 0.9389 + }, + { + "start": 7089.64, + "end": 7091.84, + "probability": 0.9905 + }, + { + "start": 7092.58, + "end": 7097.28, + "probability": 0.9709 + }, + { + "start": 7097.28, + "end": 7100.44, + "probability": 0.9664 + }, + { + "start": 7101.32, + "end": 7103.94, + "probability": 0.9949 + }, + { + "start": 7104.46, + "end": 7105.42, + "probability": 0.8973 + }, + { + "start": 7105.94, + "end": 7111.86, + "probability": 0.9888 + }, + { + "start": 7113.02, + "end": 7117.06, + "probability": 0.9974 + }, + { + "start": 7117.58, + "end": 7118.84, + "probability": 0.9954 + }, + { + "start": 7119.38, + "end": 7122.08, + "probability": 0.994 + }, + { + "start": 7122.94, + "end": 7123.24, + "probability": 0.2045 + }, + { + "start": 7123.24, + "end": 7125.46, + "probability": 0.9706 + }, + { + "start": 7127.1, + "end": 7131.18, + "probability": 0.985 + }, + { + "start": 7131.66, + "end": 7133.08, + "probability": 0.8142 + }, + { + "start": 7133.18, + "end": 7134.6, + "probability": 0.8442 + }, + { + "start": 7135.38, + "end": 7136.76, + "probability": 0.939 + }, + { + "start": 7137.16, + "end": 7139.84, + "probability": 0.8703 + }, + { + "start": 7140.12, + "end": 7141.08, + "probability": 0.9054 + }, + { + "start": 7141.24, + "end": 7141.5, + "probability": 0.7162 + }, + { + "start": 7142.26, + "end": 7144.18, + "probability": 0.9717 + }, + { + "start": 7144.88, + "end": 7147.94, + "probability": 0.9703 + }, + { + "start": 7147.94, + "end": 7151.56, + "probability": 0.9899 + }, + { + "start": 7152.14, + "end": 7157.08, + "probability": 0.9411 + }, + { + "start": 7157.58, + "end": 7160.94, + "probability": 0.9811 + }, + { + "start": 7162.26, + "end": 7164.74, + "probability": 0.9438 + }, + { + "start": 7165.22, + "end": 7169.24, + "probability": 0.9748 + }, + { + "start": 7169.94, + "end": 7172.74, + "probability": 0.8979 + }, + { + "start": 7174.1, + "end": 7178.66, + "probability": 0.8382 + }, + { + "start": 7178.66, + "end": 7181.7, + "probability": 0.9941 + }, + { + "start": 7183.06, + "end": 7187.84, + "probability": 0.9069 + }, + { + "start": 7188.36, + "end": 7194.4, + "probability": 0.998 + }, + { + "start": 7196.58, + "end": 7199.16, + "probability": 0.9713 + }, + { + "start": 7199.6, + "end": 7201.78, + "probability": 0.9651 + }, + { + "start": 7202.34, + "end": 7205.14, + "probability": 0.7707 + }, + { + "start": 7205.96, + "end": 7211.86, + "probability": 0.9714 + }, + { + "start": 7212.48, + "end": 7217.44, + "probability": 0.9651 + }, + { + "start": 7217.44, + "end": 7222.2, + "probability": 0.9469 + }, + { + "start": 7223.66, + "end": 7228.04, + "probability": 0.9934 + }, + { + "start": 7228.42, + "end": 7231.48, + "probability": 0.9983 + }, + { + "start": 7231.82, + "end": 7235.96, + "probability": 0.9902 + }, + { + "start": 7236.84, + "end": 7239.26, + "probability": 0.993 + }, + { + "start": 7239.98, + "end": 7241.56, + "probability": 0.9474 + }, + { + "start": 7241.62, + "end": 7244.62, + "probability": 0.9889 + }, + { + "start": 7245.1, + "end": 7249.02, + "probability": 0.978 + }, + { + "start": 7249.02, + "end": 7252.38, + "probability": 0.9939 + }, + { + "start": 7253.84, + "end": 7255.64, + "probability": 0.9961 + }, + { + "start": 7256.22, + "end": 7259.8, + "probability": 0.9714 + }, + { + "start": 7260.36, + "end": 7263.2, + "probability": 0.7896 + }, + { + "start": 7263.7, + "end": 7265.02, + "probability": 0.9961 + }, + { + "start": 7266.32, + "end": 7271.32, + "probability": 0.9961 + }, + { + "start": 7271.92, + "end": 7272.62, + "probability": 0.9767 + }, + { + "start": 7273.38, + "end": 7276.38, + "probability": 0.9989 + }, + { + "start": 7276.38, + "end": 7279.56, + "probability": 0.9913 + }, + { + "start": 7280.06, + "end": 7280.52, + "probability": 0.4945 + }, + { + "start": 7280.64, + "end": 7283.98, + "probability": 0.9919 + }, + { + "start": 7284.58, + "end": 7289.46, + "probability": 0.9949 + }, + { + "start": 7291.1, + "end": 7295.04, + "probability": 0.967 + }, + { + "start": 7296.1, + "end": 7299.6, + "probability": 0.9545 + }, + { + "start": 7300.22, + "end": 7301.36, + "probability": 0.9302 + }, + { + "start": 7302.26, + "end": 7305.8, + "probability": 0.9814 + }, + { + "start": 7305.8, + "end": 7309.1, + "probability": 0.9507 + }, + { + "start": 7309.62, + "end": 7312.42, + "probability": 0.9958 + }, + { + "start": 7312.9, + "end": 7315.28, + "probability": 0.9019 + }, + { + "start": 7316.18, + "end": 7317.4, + "probability": 0.9152 + }, + { + "start": 7318.08, + "end": 7322.14, + "probability": 0.9792 + }, + { + "start": 7322.96, + "end": 7323.4, + "probability": 0.946 + }, + { + "start": 7324.12, + "end": 7328.0, + "probability": 0.9862 + }, + { + "start": 7329.18, + "end": 7334.14, + "probability": 0.9889 + }, + { + "start": 7334.54, + "end": 7338.5, + "probability": 0.9424 + }, + { + "start": 7338.98, + "end": 7345.82, + "probability": 0.9987 + }, + { + "start": 7346.32, + "end": 7346.86, + "probability": 0.8999 + }, + { + "start": 7348.04, + "end": 7348.54, + "probability": 0.9248 + }, + { + "start": 7349.18, + "end": 7351.18, + "probability": 0.9956 + }, + { + "start": 7352.04, + "end": 7355.42, + "probability": 0.9349 + }, + { + "start": 7356.32, + "end": 7358.84, + "probability": 0.9885 + }, + { + "start": 7359.22, + "end": 7361.38, + "probability": 0.8818 + }, + { + "start": 7362.06, + "end": 7363.9, + "probability": 0.8898 + }, + { + "start": 7364.64, + "end": 7367.36, + "probability": 0.99 + }, + { + "start": 7367.9, + "end": 7368.42, + "probability": 0.9051 + }, + { + "start": 7369.58, + "end": 7372.82, + "probability": 0.9813 + }, + { + "start": 7373.72, + "end": 7375.12, + "probability": 0.8459 + }, + { + "start": 7375.62, + "end": 7381.5, + "probability": 0.9811 + }, + { + "start": 7382.0, + "end": 7383.36, + "probability": 0.9883 + }, + { + "start": 7385.06, + "end": 7386.48, + "probability": 0.7411 + }, + { + "start": 7387.08, + "end": 7388.96, + "probability": 0.9943 + }, + { + "start": 7389.5, + "end": 7393.64, + "probability": 0.9993 + }, + { + "start": 7394.3, + "end": 7397.34, + "probability": 0.9757 + }, + { + "start": 7397.78, + "end": 7402.26, + "probability": 0.9962 + }, + { + "start": 7402.66, + "end": 7405.52, + "probability": 0.9822 + }, + { + "start": 7406.34, + "end": 7410.14, + "probability": 0.9987 + }, + { + "start": 7410.14, + "end": 7414.9, + "probability": 0.9981 + }, + { + "start": 7415.34, + "end": 7419.26, + "probability": 0.9935 + }, + { + "start": 7420.12, + "end": 7423.76, + "probability": 0.9979 + }, + { + "start": 7424.46, + "end": 7426.7, + "probability": 0.9738 + }, + { + "start": 7427.32, + "end": 7429.78, + "probability": 0.9965 + }, + { + "start": 7432.76, + "end": 7433.2, + "probability": 0.9681 + }, + { + "start": 7434.06, + "end": 7434.96, + "probability": 0.9706 + }, + { + "start": 7435.56, + "end": 7437.8, + "probability": 0.9934 + }, + { + "start": 7438.48, + "end": 7444.46, + "probability": 0.9624 + }, + { + "start": 7445.36, + "end": 7447.9, + "probability": 0.9577 + }, + { + "start": 7448.46, + "end": 7450.88, + "probability": 0.9931 + }, + { + "start": 7451.52, + "end": 7456.16, + "probability": 0.985 + }, + { + "start": 7457.02, + "end": 7457.2, + "probability": 0.7666 + }, + { + "start": 7457.9, + "end": 7461.3, + "probability": 0.9973 + }, + { + "start": 7462.74, + "end": 7465.86, + "probability": 0.9832 + }, + { + "start": 7466.4, + "end": 7468.4, + "probability": 0.98 + }, + { + "start": 7469.42, + "end": 7471.4, + "probability": 0.9873 + }, + { + "start": 7471.96, + "end": 7473.58, + "probability": 0.999 + }, + { + "start": 7473.9, + "end": 7474.44, + "probability": 0.7265 + }, + { + "start": 7474.6, + "end": 7475.16, + "probability": 0.986 + }, + { + "start": 7475.56, + "end": 7479.66, + "probability": 0.9969 + }, + { + "start": 7482.06, + "end": 7483.12, + "probability": 0.8601 + }, + { + "start": 7484.28, + "end": 7487.12, + "probability": 0.9939 + }, + { + "start": 7487.28, + "end": 7488.7, + "probability": 0.8208 + }, + { + "start": 7489.78, + "end": 7494.1, + "probability": 0.9922 + }, + { + "start": 7494.64, + "end": 7497.0, + "probability": 0.7401 + }, + { + "start": 7497.66, + "end": 7499.64, + "probability": 0.9674 + }, + { + "start": 7500.76, + "end": 7506.06, + "probability": 0.9846 + }, + { + "start": 7507.84, + "end": 7508.44, + "probability": 0.7983 + }, + { + "start": 7509.1, + "end": 7514.9, + "probability": 0.9838 + }, + { + "start": 7515.48, + "end": 7520.32, + "probability": 0.7664 + }, + { + "start": 7520.88, + "end": 7523.58, + "probability": 0.8638 + }, + { + "start": 7524.2, + "end": 7525.86, + "probability": 0.8366 + }, + { + "start": 7526.56, + "end": 7528.12, + "probability": 0.8466 + }, + { + "start": 7528.64, + "end": 7530.74, + "probability": 0.9423 + }, + { + "start": 7531.46, + "end": 7534.28, + "probability": 0.9946 + }, + { + "start": 7535.22, + "end": 7537.06, + "probability": 0.933 + }, + { + "start": 7537.84, + "end": 7544.28, + "probability": 0.8382 + }, + { + "start": 7545.96, + "end": 7546.38, + "probability": 0.7758 + }, + { + "start": 7548.48, + "end": 7548.86, + "probability": 0.152 + }, + { + "start": 7572.2, + "end": 7574.28, + "probability": 0.018 + }, + { + "start": 7574.86, + "end": 7576.56, + "probability": 0.0417 + }, + { + "start": 7586.62, + "end": 7587.36, + "probability": 0.0738 + }, + { + "start": 7593.46, + "end": 7593.66, + "probability": 0.1084 + }, + { + "start": 7594.24, + "end": 7594.48, + "probability": 0.0765 + }, + { + "start": 7594.52, + "end": 7598.29, + "probability": 0.0359 + }, + { + "start": 7599.02, + "end": 7599.7, + "probability": 0.0131 + }, + { + "start": 7600.6, + "end": 7601.78, + "probability": 0.0142 + }, + { + "start": 7608.56, + "end": 7611.44, + "probability": 0.0882 + }, + { + "start": 7650.72, + "end": 7653.86, + "probability": 0.1518 + }, + { + "start": 7670.08, + "end": 7670.42, + "probability": 0.0244 + }, + { + "start": 7670.42, + "end": 7672.58, + "probability": 0.5297 + }, + { + "start": 7673.38, + "end": 7675.56, + "probability": 0.9662 + }, + { + "start": 7676.38, + "end": 7680.68, + "probability": 0.8782 + }, + { + "start": 7681.76, + "end": 7685.06, + "probability": 0.8945 + }, + { + "start": 7686.36, + "end": 7686.98, + "probability": 0.5742 + }, + { + "start": 7688.1, + "end": 7688.74, + "probability": 0.8215 + }, + { + "start": 7689.7, + "end": 7693.78, + "probability": 0.8822 + }, + { + "start": 7694.44, + "end": 7697.88, + "probability": 0.6842 + }, + { + "start": 7698.78, + "end": 7703.48, + "probability": 0.6081 + }, + { + "start": 7704.06, + "end": 7705.72, + "probability": 0.7746 + }, + { + "start": 7706.94, + "end": 7710.86, + "probability": 0.9565 + }, + { + "start": 7712.06, + "end": 7715.1, + "probability": 0.592 + }, + { + "start": 7716.26, + "end": 7721.66, + "probability": 0.9771 + }, + { + "start": 7722.28, + "end": 7724.74, + "probability": 0.8809 + }, + { + "start": 7725.46, + "end": 7727.94, + "probability": 0.8084 + }, + { + "start": 7728.66, + "end": 7730.1, + "probability": 0.8778 + }, + { + "start": 7731.82, + "end": 7735.5, + "probability": 0.6907 + }, + { + "start": 7736.28, + "end": 7737.04, + "probability": 0.7616 + }, + { + "start": 7737.58, + "end": 7740.06, + "probability": 0.7507 + }, + { + "start": 7741.06, + "end": 7743.14, + "probability": 0.5439 + }, + { + "start": 7743.7, + "end": 7744.4, + "probability": 0.9825 + }, + { + "start": 7745.34, + "end": 7748.6, + "probability": 0.7993 + }, + { + "start": 7749.46, + "end": 7755.36, + "probability": 0.9054 + }, + { + "start": 7756.92, + "end": 7757.42, + "probability": 0.7807 + }, + { + "start": 7757.56, + "end": 7757.86, + "probability": 0.8306 + }, + { + "start": 7757.96, + "end": 7760.66, + "probability": 0.6999 + }, + { + "start": 7760.66, + "end": 7765.26, + "probability": 0.9579 + }, + { + "start": 7766.58, + "end": 7767.72, + "probability": 0.9421 + }, + { + "start": 7768.36, + "end": 7769.08, + "probability": 0.8168 + }, + { + "start": 7770.62, + "end": 7773.62, + "probability": 0.9788 + }, + { + "start": 7775.06, + "end": 7781.1, + "probability": 0.9808 + }, + { + "start": 7781.26, + "end": 7783.38, + "probability": 0.9574 + }, + { + "start": 7784.08, + "end": 7787.04, + "probability": 0.9938 + }, + { + "start": 7787.54, + "end": 7789.82, + "probability": 0.7573 + }, + { + "start": 7789.88, + "end": 7794.8, + "probability": 0.9642 + }, + { + "start": 7794.8, + "end": 7798.48, + "probability": 0.9796 + }, + { + "start": 7799.42, + "end": 7802.04, + "probability": 0.7717 + }, + { + "start": 7803.14, + "end": 7805.58, + "probability": 0.9525 + }, + { + "start": 7806.5, + "end": 7811.36, + "probability": 0.9805 + }, + { + "start": 7812.12, + "end": 7814.24, + "probability": 0.7556 + }, + { + "start": 7815.06, + "end": 7816.98, + "probability": 0.0 + }, + { + "start": 7817.62, + "end": 7819.62, + "probability": 0.8191 + }, + { + "start": 7820.36, + "end": 7825.36, + "probability": 0.9821 + }, + { + "start": 7825.46, + "end": 7828.6, + "probability": 0.9468 + }, + { + "start": 7831.52, + "end": 7833.88, + "probability": 0.6763 + }, + { + "start": 7834.88, + "end": 7837.18, + "probability": 0.9361 + }, + { + "start": 7837.98, + "end": 7840.54, + "probability": 0.9706 + }, + { + "start": 7841.44, + "end": 7844.6, + "probability": 0.8589 + }, + { + "start": 7845.22, + "end": 7847.97, + "probability": 0.8026 + }, + { + "start": 7849.12, + "end": 7853.12, + "probability": 0.9697 + }, + { + "start": 7854.66, + "end": 7855.7, + "probability": 0.6671 + }, + { + "start": 7856.62, + "end": 7860.82, + "probability": 0.8201 + }, + { + "start": 7861.72, + "end": 7865.92, + "probability": 0.8436 + }, + { + "start": 7866.8, + "end": 7869.74, + "probability": 0.9844 + }, + { + "start": 7870.42, + "end": 7871.06, + "probability": 0.9016 + }, + { + "start": 7872.74, + "end": 7875.48, + "probability": 0.9862 + }, + { + "start": 7876.7, + "end": 7878.08, + "probability": 0.8283 + }, + { + "start": 7878.98, + "end": 7881.1, + "probability": 0.9647 + }, + { + "start": 7881.86, + "end": 7883.12, + "probability": 0.7299 + }, + { + "start": 7884.0, + "end": 7886.52, + "probability": 0.9281 + }, + { + "start": 7886.72, + "end": 7894.3, + "probability": 0.4477 + }, + { + "start": 7895.46, + "end": 7899.42, + "probability": 0.8543 + }, + { + "start": 7900.0, + "end": 7905.04, + "probability": 0.8615 + }, + { + "start": 7906.72, + "end": 7908.08, + "probability": 0.4787 + }, + { + "start": 7909.3, + "end": 7909.94, + "probability": 0.857 + }, + { + "start": 7911.06, + "end": 7912.44, + "probability": 0.5388 + }, + { + "start": 7913.9, + "end": 7916.32, + "probability": 0.8362 + }, + { + "start": 7916.38, + "end": 7918.67, + "probability": 0.8835 + }, + { + "start": 7919.96, + "end": 7921.48, + "probability": 0.8508 + }, + { + "start": 7922.0, + "end": 7924.24, + "probability": 0.9478 + }, + { + "start": 7924.96, + "end": 7929.76, + "probability": 0.9216 + }, + { + "start": 7929.84, + "end": 7934.96, + "probability": 0.9918 + }, + { + "start": 7934.96, + "end": 7940.98, + "probability": 0.7967 + }, + { + "start": 7941.06, + "end": 7941.6, + "probability": 0.6865 + }, + { + "start": 7941.76, + "end": 7943.4, + "probability": 0.9894 + }, + { + "start": 7944.08, + "end": 7949.16, + "probability": 0.8894 + }, + { + "start": 7950.32, + "end": 7956.36, + "probability": 0.7893 + }, + { + "start": 7956.96, + "end": 7960.32, + "probability": 0.8931 + }, + { + "start": 7960.46, + "end": 7961.1, + "probability": 0.4939 + }, + { + "start": 7961.26, + "end": 7965.8, + "probability": 0.8943 + }, + { + "start": 7966.42, + "end": 7969.66, + "probability": 0.9734 + }, + { + "start": 7971.36, + "end": 7974.24, + "probability": 0.9585 + }, + { + "start": 7974.76, + "end": 7978.2, + "probability": 0.9983 + }, + { + "start": 7980.06, + "end": 7983.3, + "probability": 0.5852 + }, + { + "start": 7983.48, + "end": 7984.64, + "probability": 0.7853 + }, + { + "start": 7984.72, + "end": 7985.84, + "probability": 0.9873 + }, + { + "start": 7987.0, + "end": 7991.12, + "probability": 0.88 + }, + { + "start": 7992.08, + "end": 7996.92, + "probability": 0.9344 + }, + { + "start": 7997.9, + "end": 8000.7, + "probability": 0.8384 + }, + { + "start": 8001.78, + "end": 8003.88, + "probability": 0.9768 + }, + { + "start": 8005.48, + "end": 8015.8, + "probability": 0.9315 + }, + { + "start": 8016.02, + "end": 8017.28, + "probability": 0.7792 + }, + { + "start": 8017.98, + "end": 8021.36, + "probability": 0.9845 + }, + { + "start": 8022.56, + "end": 8026.04, + "probability": 0.7952 + }, + { + "start": 8026.14, + "end": 8027.32, + "probability": 0.6922 + }, + { + "start": 8027.98, + "end": 8033.02, + "probability": 0.9321 + }, + { + "start": 8035.08, + "end": 8039.44, + "probability": 0.5871 + }, + { + "start": 8040.96, + "end": 8044.08, + "probability": 0.7139 + }, + { + "start": 8045.16, + "end": 8048.44, + "probability": 0.8839 + }, + { + "start": 8048.96, + "end": 8049.86, + "probability": 0.7029 + }, + { + "start": 8050.28, + "end": 8051.56, + "probability": 0.7876 + }, + { + "start": 8051.66, + "end": 8054.17, + "probability": 0.9683 + }, + { + "start": 8054.42, + "end": 8055.86, + "probability": 0.6681 + }, + { + "start": 8056.6, + "end": 8058.78, + "probability": 0.9808 + }, + { + "start": 8059.08, + "end": 8061.68, + "probability": 0.9536 + }, + { + "start": 8062.94, + "end": 8065.04, + "probability": 0.8968 + }, + { + "start": 8065.82, + "end": 8066.64, + "probability": 0.4171 + }, + { + "start": 8066.78, + "end": 8068.32, + "probability": 0.9919 + }, + { + "start": 8068.56, + "end": 8069.12, + "probability": 0.8522 + }, + { + "start": 8069.36, + "end": 8072.08, + "probability": 0.552 + }, + { + "start": 8072.7, + "end": 8075.68, + "probability": 0.6606 + }, + { + "start": 8076.32, + "end": 8076.64, + "probability": 0.9771 + }, + { + "start": 8077.9, + "end": 8078.68, + "probability": 0.0662 + } + ], + "segments_count": 2488, + "words_count": 12811, + "avg_words_per_segment": 5.1491, + "avg_segment_duration": 2.2761, + "avg_words_per_minute": 95.0192, + "plenum_id": "110422", + "duration": 8089.52, + "title": null, + "plenum_date": "2022-11-22" +} \ No newline at end of file