diff --git "a/43827/metadata.json" "b/43827/metadata.json" new file mode 100644--- /dev/null +++ "b/43827/metadata.json" @@ -0,0 +1,44112 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "43827", + "quality_score": 0.9202, + "per_segment_quality_scores": [ + { + "start": 105.0, + "end": 105.0, + "probability": 0.0 + }, + { + "start": 105.0, + "end": 105.0, + "probability": 0.0 + }, + { + "start": 105.0, + "end": 105.0, + "probability": 0.0 + }, + { + "start": 105.0, + "end": 105.0, + "probability": 0.0 + }, + { + "start": 105.0, + "end": 105.0, + "probability": 0.0 + }, + { + "start": 105.0, + "end": 105.0, + "probability": 0.0 + }, + { + "start": 105.94, + "end": 108.48, + "probability": 0.7607 + }, + { + "start": 108.58, + "end": 110.44, + "probability": 0.9465 + }, + { + "start": 110.58, + "end": 113.78, + "probability": 0.9214 + }, + { + "start": 115.88, + "end": 116.02, + "probability": 0.5687 + }, + { + "start": 116.02, + "end": 118.4, + "probability": 0.4788 + }, + { + "start": 118.84, + "end": 121.32, + "probability": 0.2813 + }, + { + "start": 123.02, + "end": 124.58, + "probability": 0.7961 + }, + { + "start": 125.2, + "end": 126.7, + "probability": 0.6384 + }, + { + "start": 128.44, + "end": 133.32, + "probability": 0.9888 + }, + { + "start": 133.98, + "end": 134.64, + "probability": 0.6906 + }, + { + "start": 135.2, + "end": 135.92, + "probability": 0.9319 + }, + { + "start": 136.6, + "end": 137.72, + "probability": 0.4275 + }, + { + "start": 138.26, + "end": 143.38, + "probability": 0.6903 + }, + { + "start": 144.42, + "end": 147.34, + "probability": 0.8822 + }, + { + "start": 147.58, + "end": 151.68, + "probability": 0.9123 + }, + { + "start": 152.68, + "end": 153.42, + "probability": 0.6482 + }, + { + "start": 153.5, + "end": 160.0, + "probability": 0.9486 + }, + { + "start": 160.04, + "end": 160.52, + "probability": 0.7592 + }, + { + "start": 162.06, + "end": 164.22, + "probability": 0.9938 + }, + { + "start": 164.52, + "end": 165.54, + "probability": 0.7946 + }, + { + "start": 165.74, + "end": 167.3, + "probability": 0.8843 + }, + { + "start": 167.48, + "end": 172.62, + "probability": 0.9484 + }, + { + "start": 176.01, + "end": 178.98, + "probability": 0.8474 + }, + { + "start": 181.04, + "end": 182.9, + "probability": 0.6177 + }, + { + "start": 182.98, + "end": 183.94, + "probability": 0.1349 + }, + { + "start": 184.04, + "end": 187.5, + "probability": 0.7589 + }, + { + "start": 188.38, + "end": 192.52, + "probability": 0.6436 + }, + { + "start": 193.38, + "end": 194.92, + "probability": 0.2288 + }, + { + "start": 194.92, + "end": 195.72, + "probability": 0.3239 + }, + { + "start": 196.06, + "end": 198.92, + "probability": 0.6346 + }, + { + "start": 198.94, + "end": 201.7, + "probability": 0.6182 + }, + { + "start": 201.7, + "end": 202.02, + "probability": 0.7408 + }, + { + "start": 202.04, + "end": 205.8, + "probability": 0.982 + }, + { + "start": 205.8, + "end": 210.2, + "probability": 0.9821 + }, + { + "start": 210.3, + "end": 210.76, + "probability": 0.2065 + }, + { + "start": 210.76, + "end": 211.98, + "probability": 0.6766 + }, + { + "start": 212.08, + "end": 216.14, + "probability": 0.9471 + }, + { + "start": 216.28, + "end": 218.14, + "probability": 0.875 + }, + { + "start": 218.44, + "end": 219.14, + "probability": 0.692 + }, + { + "start": 219.14, + "end": 219.86, + "probability": 0.8257 + }, + { + "start": 220.76, + "end": 220.76, + "probability": 0.3478 + }, + { + "start": 220.76, + "end": 221.34, + "probability": 0.5332 + }, + { + "start": 221.48, + "end": 223.36, + "probability": 0.8481 + }, + { + "start": 223.54, + "end": 226.08, + "probability": 0.9388 + }, + { + "start": 226.9, + "end": 230.28, + "probability": 0.6348 + }, + { + "start": 230.4, + "end": 235.94, + "probability": 0.8277 + }, + { + "start": 236.88, + "end": 238.98, + "probability": 0.5979 + }, + { + "start": 239.06, + "end": 240.78, + "probability": 0.6403 + }, + { + "start": 240.88, + "end": 242.12, + "probability": 0.9912 + }, + { + "start": 242.95, + "end": 250.66, + "probability": 0.9102 + }, + { + "start": 251.36, + "end": 254.3, + "probability": 0.9879 + }, + { + "start": 255.62, + "end": 256.76, + "probability": 0.5368 + }, + { + "start": 257.48, + "end": 263.06, + "probability": 0.9955 + }, + { + "start": 263.48, + "end": 269.16, + "probability": 0.9991 + }, + { + "start": 269.16, + "end": 272.92, + "probability": 0.9987 + }, + { + "start": 273.9, + "end": 276.41, + "probability": 0.6622 + }, + { + "start": 276.82, + "end": 278.35, + "probability": 0.7713 + }, + { + "start": 279.52, + "end": 280.92, + "probability": 0.3257 + }, + { + "start": 280.98, + "end": 281.3, + "probability": 0.64 + }, + { + "start": 281.52, + "end": 284.34, + "probability": 0.9932 + }, + { + "start": 285.54, + "end": 290.42, + "probability": 0.9183 + }, + { + "start": 291.34, + "end": 294.92, + "probability": 0.8927 + }, + { + "start": 295.0, + "end": 296.92, + "probability": 0.6779 + }, + { + "start": 297.94, + "end": 301.82, + "probability": 0.8975 + }, + { + "start": 301.96, + "end": 303.36, + "probability": 0.8647 + }, + { + "start": 303.56, + "end": 307.18, + "probability": 0.9601 + }, + { + "start": 308.22, + "end": 311.08, + "probability": 0.6319 + }, + { + "start": 311.76, + "end": 315.4, + "probability": 0.8258 + }, + { + "start": 316.86, + "end": 318.4, + "probability": 0.9719 + }, + { + "start": 319.78, + "end": 322.7, + "probability": 0.9963 + }, + { + "start": 323.42, + "end": 326.44, + "probability": 0.9976 + }, + { + "start": 326.44, + "end": 329.5, + "probability": 0.9928 + }, + { + "start": 329.62, + "end": 330.08, + "probability": 0.7921 + }, + { + "start": 330.22, + "end": 330.74, + "probability": 0.9155 + }, + { + "start": 330.8, + "end": 330.9, + "probability": 0.8972 + }, + { + "start": 331.58, + "end": 331.9, + "probability": 0.8704 + }, + { + "start": 332.7, + "end": 336.56, + "probability": 0.9764 + }, + { + "start": 337.28, + "end": 338.46, + "probability": 0.9908 + }, + { + "start": 339.42, + "end": 340.52, + "probability": 0.79 + }, + { + "start": 341.44, + "end": 343.32, + "probability": 0.9951 + }, + { + "start": 343.58, + "end": 344.26, + "probability": 0.9645 + }, + { + "start": 346.81, + "end": 349.38, + "probability": 0.6985 + }, + { + "start": 350.6, + "end": 355.26, + "probability": 0.8918 + }, + { + "start": 356.16, + "end": 358.6, + "probability": 0.9768 + }, + { + "start": 359.58, + "end": 360.2, + "probability": 0.9216 + }, + { + "start": 360.74, + "end": 361.74, + "probability": 0.9995 + }, + { + "start": 363.36, + "end": 364.6, + "probability": 0.9686 + }, + { + "start": 365.36, + "end": 368.1, + "probability": 0.9948 + }, + { + "start": 369.38, + "end": 370.8, + "probability": 0.9995 + }, + { + "start": 371.36, + "end": 374.62, + "probability": 0.9961 + }, + { + "start": 375.6, + "end": 377.34, + "probability": 0.9484 + }, + { + "start": 378.08, + "end": 378.64, + "probability": 0.9761 + }, + { + "start": 379.18, + "end": 380.1, + "probability": 0.9902 + }, + { + "start": 381.64, + "end": 382.16, + "probability": 0.5088 + }, + { + "start": 382.7, + "end": 384.44, + "probability": 0.991 + }, + { + "start": 385.08, + "end": 388.78, + "probability": 0.9991 + }, + { + "start": 389.42, + "end": 390.46, + "probability": 0.985 + }, + { + "start": 392.38, + "end": 394.82, + "probability": 0.9956 + }, + { + "start": 395.0, + "end": 395.84, + "probability": 0.7221 + }, + { + "start": 396.02, + "end": 400.42, + "probability": 0.9791 + }, + { + "start": 401.86, + "end": 405.02, + "probability": 0.9701 + }, + { + "start": 405.56, + "end": 407.64, + "probability": 0.9625 + }, + { + "start": 407.68, + "end": 408.24, + "probability": 0.8708 + }, + { + "start": 408.46, + "end": 409.38, + "probability": 0.9579 + }, + { + "start": 409.78, + "end": 410.5, + "probability": 0.875 + }, + { + "start": 410.92, + "end": 412.5, + "probability": 0.7432 + }, + { + "start": 413.22, + "end": 413.82, + "probability": 0.468 + }, + { + "start": 413.88, + "end": 417.3, + "probability": 0.8314 + }, + { + "start": 417.3, + "end": 419.98, + "probability": 0.968 + }, + { + "start": 420.56, + "end": 423.52, + "probability": 0.9389 + }, + { + "start": 424.08, + "end": 426.52, + "probability": 0.9639 + }, + { + "start": 426.96, + "end": 431.1, + "probability": 0.9755 + }, + { + "start": 431.16, + "end": 431.75, + "probability": 0.9155 + }, + { + "start": 432.08, + "end": 432.08, + "probability": 0.3248 + }, + { + "start": 432.08, + "end": 433.64, + "probability": 0.6652 + }, + { + "start": 433.96, + "end": 435.82, + "probability": 0.9938 + }, + { + "start": 435.88, + "end": 439.92, + "probability": 0.9866 + }, + { + "start": 440.02, + "end": 440.32, + "probability": 0.567 + }, + { + "start": 440.4, + "end": 440.86, + "probability": 0.9257 + }, + { + "start": 440.94, + "end": 442.6, + "probability": 0.9836 + }, + { + "start": 442.68, + "end": 445.02, + "probability": 0.9829 + }, + { + "start": 445.6, + "end": 451.5, + "probability": 0.9854 + }, + { + "start": 451.94, + "end": 454.18, + "probability": 0.7096 + }, + { + "start": 454.24, + "end": 456.82, + "probability": 0.9274 + }, + { + "start": 457.34, + "end": 463.32, + "probability": 0.9697 + }, + { + "start": 463.74, + "end": 467.76, + "probability": 0.936 + }, + { + "start": 468.26, + "end": 471.66, + "probability": 0.9963 + }, + { + "start": 471.66, + "end": 475.08, + "probability": 0.9552 + }, + { + "start": 475.16, + "end": 479.15, + "probability": 0.9552 + }, + { + "start": 479.66, + "end": 481.08, + "probability": 0.9844 + }, + { + "start": 481.78, + "end": 488.72, + "probability": 0.9905 + }, + { + "start": 488.72, + "end": 495.0, + "probability": 0.9971 + }, + { + "start": 495.64, + "end": 498.56, + "probability": 0.994 + }, + { + "start": 498.6, + "end": 503.86, + "probability": 0.9961 + }, + { + "start": 503.86, + "end": 508.44, + "probability": 0.9911 + }, + { + "start": 509.8, + "end": 511.6, + "probability": 0.8425 + }, + { + "start": 511.66, + "end": 514.18, + "probability": 0.8865 + }, + { + "start": 517.76, + "end": 518.2, + "probability": 0.3733 + }, + { + "start": 518.2, + "end": 519.14, + "probability": 0.743 + }, + { + "start": 519.84, + "end": 519.94, + "probability": 0.3905 + }, + { + "start": 520.4, + "end": 521.22, + "probability": 0.6873 + }, + { + "start": 521.28, + "end": 522.64, + "probability": 0.7251 + }, + { + "start": 526.22, + "end": 528.0, + "probability": 0.9567 + }, + { + "start": 528.88, + "end": 530.1, + "probability": 0.6816 + }, + { + "start": 530.62, + "end": 537.26, + "probability": 0.9654 + }, + { + "start": 537.4, + "end": 540.48, + "probability": 0.9985 + }, + { + "start": 540.98, + "end": 542.68, + "probability": 0.9745 + }, + { + "start": 542.84, + "end": 545.74, + "probability": 0.9841 + }, + { + "start": 546.1, + "end": 548.36, + "probability": 0.5085 + }, + { + "start": 549.04, + "end": 554.26, + "probability": 0.5324 + }, + { + "start": 554.74, + "end": 559.74, + "probability": 0.9974 + }, + { + "start": 560.36, + "end": 562.62, + "probability": 0.8778 + }, + { + "start": 563.1, + "end": 564.54, + "probability": 0.9546 + }, + { + "start": 565.22, + "end": 566.94, + "probability": 0.72 + }, + { + "start": 567.0, + "end": 567.28, + "probability": 0.8831 + }, + { + "start": 567.4, + "end": 573.91, + "probability": 0.726 + }, + { + "start": 574.06, + "end": 579.36, + "probability": 0.9962 + }, + { + "start": 580.0, + "end": 586.3, + "probability": 0.9985 + }, + { + "start": 586.3, + "end": 591.64, + "probability": 0.9989 + }, + { + "start": 592.12, + "end": 592.16, + "probability": 0.3155 + }, + { + "start": 592.16, + "end": 592.51, + "probability": 0.8317 + }, + { + "start": 592.96, + "end": 593.89, + "probability": 0.9797 + }, + { + "start": 594.62, + "end": 599.82, + "probability": 0.8403 + }, + { + "start": 599.96, + "end": 603.68, + "probability": 0.9163 + }, + { + "start": 604.08, + "end": 605.96, + "probability": 0.9521 + }, + { + "start": 606.32, + "end": 607.56, + "probability": 0.6677 + }, + { + "start": 607.58, + "end": 611.0, + "probability": 0.9845 + }, + { + "start": 611.06, + "end": 615.16, + "probability": 0.825 + }, + { + "start": 615.16, + "end": 618.46, + "probability": 0.9959 + }, + { + "start": 618.56, + "end": 619.38, + "probability": 0.7514 + }, + { + "start": 620.28, + "end": 620.7, + "probability": 0.6016 + }, + { + "start": 621.16, + "end": 625.94, + "probability": 0.9917 + }, + { + "start": 625.98, + "end": 626.14, + "probability": 0.5833 + }, + { + "start": 626.52, + "end": 627.96, + "probability": 0.906 + }, + { + "start": 628.12, + "end": 629.18, + "probability": 0.8584 + }, + { + "start": 629.28, + "end": 629.64, + "probability": 0.7534 + }, + { + "start": 629.72, + "end": 630.58, + "probability": 0.8772 + }, + { + "start": 630.68, + "end": 632.6, + "probability": 0.9644 + }, + { + "start": 633.4, + "end": 635.98, + "probability": 0.8334 + }, + { + "start": 636.72, + "end": 641.06, + "probability": 0.7374 + }, + { + "start": 642.56, + "end": 648.8, + "probability": 0.896 + }, + { + "start": 648.9, + "end": 651.37, + "probability": 0.8144 + }, + { + "start": 651.86, + "end": 652.42, + "probability": 0.8644 + }, + { + "start": 653.64, + "end": 658.42, + "probability": 0.9966 + }, + { + "start": 659.14, + "end": 662.9, + "probability": 0.8372 + }, + { + "start": 663.52, + "end": 670.92, + "probability": 0.907 + }, + { + "start": 671.34, + "end": 672.86, + "probability": 0.834 + }, + { + "start": 673.06, + "end": 675.64, + "probability": 0.5549 + }, + { + "start": 675.78, + "end": 677.5, + "probability": 0.4958 + }, + { + "start": 678.1, + "end": 678.9, + "probability": 0.8501 + }, + { + "start": 679.88, + "end": 682.14, + "probability": 0.8856 + }, + { + "start": 682.28, + "end": 683.66, + "probability": 0.9648 + }, + { + "start": 683.88, + "end": 684.84, + "probability": 0.8076 + }, + { + "start": 685.5, + "end": 686.32, + "probability": 0.8642 + }, + { + "start": 688.72, + "end": 690.32, + "probability": 0.7369 + }, + { + "start": 691.02, + "end": 695.42, + "probability": 0.9447 + }, + { + "start": 696.06, + "end": 699.18, + "probability": 0.9405 + }, + { + "start": 699.36, + "end": 700.6, + "probability": 0.9741 + }, + { + "start": 701.74, + "end": 703.44, + "probability": 0.964 + }, + { + "start": 703.88, + "end": 705.36, + "probability": 0.9065 + }, + { + "start": 705.54, + "end": 706.72, + "probability": 0.9631 + }, + { + "start": 707.18, + "end": 709.12, + "probability": 0.968 + }, + { + "start": 709.24, + "end": 712.09, + "probability": 0.9635 + }, + { + "start": 715.8, + "end": 719.88, + "probability": 0.8992 + }, + { + "start": 720.72, + "end": 721.88, + "probability": 0.7327 + }, + { + "start": 723.3, + "end": 726.37, + "probability": 0.9905 + }, + { + "start": 726.82, + "end": 726.92, + "probability": 0.0184 + }, + { + "start": 727.12, + "end": 727.16, + "probability": 0.0156 + }, + { + "start": 727.16, + "end": 729.0, + "probability": 0.97 + }, + { + "start": 729.7, + "end": 731.64, + "probability": 0.9751 + }, + { + "start": 731.9, + "end": 731.9, + "probability": 0.0344 + }, + { + "start": 732.7, + "end": 733.9, + "probability": 0.9928 + }, + { + "start": 734.56, + "end": 740.2, + "probability": 0.9603 + }, + { + "start": 740.2, + "end": 746.2, + "probability": 0.999 + }, + { + "start": 746.92, + "end": 747.66, + "probability": 0.7747 + }, + { + "start": 748.44, + "end": 749.0, + "probability": 0.9321 + }, + { + "start": 750.44, + "end": 752.0, + "probability": 0.9512 + }, + { + "start": 752.74, + "end": 756.2, + "probability": 0.8245 + }, + { + "start": 756.32, + "end": 757.56, + "probability": 0.6456 + }, + { + "start": 758.4, + "end": 761.2, + "probability": 0.9419 + }, + { + "start": 761.96, + "end": 763.78, + "probability": 0.972 + }, + { + "start": 764.98, + "end": 766.42, + "probability": 0.809 + }, + { + "start": 767.26, + "end": 770.46, + "probability": 0.9979 + }, + { + "start": 770.78, + "end": 771.36, + "probability": 0.8054 + }, + { + "start": 771.5, + "end": 774.48, + "probability": 0.9568 + }, + { + "start": 774.6, + "end": 775.72, + "probability": 0.7682 + }, + { + "start": 776.22, + "end": 780.54, + "probability": 0.8053 + }, + { + "start": 780.76, + "end": 784.58, + "probability": 0.9902 + }, + { + "start": 784.58, + "end": 788.2, + "probability": 0.9952 + }, + { + "start": 788.84, + "end": 791.74, + "probability": 0.9954 + }, + { + "start": 792.4, + "end": 793.48, + "probability": 0.818 + }, + { + "start": 793.8, + "end": 797.4, + "probability": 0.98 + }, + { + "start": 799.51, + "end": 803.22, + "probability": 0.9358 + }, + { + "start": 804.18, + "end": 808.34, + "probability": 0.9619 + }, + { + "start": 808.98, + "end": 810.22, + "probability": 0.9878 + }, + { + "start": 810.84, + "end": 812.34, + "probability": 0.8821 + }, + { + "start": 813.34, + "end": 815.52, + "probability": 0.9354 + }, + { + "start": 815.74, + "end": 818.04, + "probability": 0.959 + }, + { + "start": 819.08, + "end": 819.54, + "probability": 0.8345 + }, + { + "start": 820.76, + "end": 823.88, + "probability": 0.9932 + }, + { + "start": 823.88, + "end": 827.15, + "probability": 0.9327 + }, + { + "start": 827.68, + "end": 830.24, + "probability": 0.9729 + }, + { + "start": 830.76, + "end": 831.68, + "probability": 0.9737 + }, + { + "start": 833.78, + "end": 835.86, + "probability": 0.0766 + }, + { + "start": 836.48, + "end": 836.72, + "probability": 0.0224 + }, + { + "start": 838.53, + "end": 840.24, + "probability": 0.8594 + }, + { + "start": 841.32, + "end": 841.72, + "probability": 0.0536 + }, + { + "start": 841.92, + "end": 842.76, + "probability": 0.9108 + }, + { + "start": 842.88, + "end": 844.64, + "probability": 0.9622 + }, + { + "start": 844.88, + "end": 845.22, + "probability": 0.9031 + }, + { + "start": 845.38, + "end": 845.86, + "probability": 0.5376 + }, + { + "start": 847.1, + "end": 850.22, + "probability": 0.9165 + }, + { + "start": 850.58, + "end": 853.83, + "probability": 0.6402 + }, + { + "start": 855.1, + "end": 857.25, + "probability": 0.967 + }, + { + "start": 858.97, + "end": 864.2, + "probability": 0.8851 + }, + { + "start": 864.58, + "end": 865.24, + "probability": 0.9855 + }, + { + "start": 865.76, + "end": 867.14, + "probability": 0.7053 + }, + { + "start": 867.86, + "end": 874.04, + "probability": 0.9756 + }, + { + "start": 874.2, + "end": 879.86, + "probability": 0.9771 + }, + { + "start": 880.48, + "end": 882.34, + "probability": 0.8231 + }, + { + "start": 882.36, + "end": 886.41, + "probability": 0.9738 + }, + { + "start": 887.2, + "end": 889.66, + "probability": 0.8448 + }, + { + "start": 889.8, + "end": 891.04, + "probability": 0.9673 + }, + { + "start": 892.08, + "end": 895.04, + "probability": 0.9961 + }, + { + "start": 895.44, + "end": 896.58, + "probability": 0.9922 + }, + { + "start": 897.06, + "end": 898.66, + "probability": 0.9733 + }, + { + "start": 899.28, + "end": 901.48, + "probability": 0.9954 + }, + { + "start": 902.04, + "end": 904.24, + "probability": 0.939 + }, + { + "start": 905.16, + "end": 906.36, + "probability": 0.9741 + }, + { + "start": 907.06, + "end": 908.22, + "probability": 0.8762 + }, + { + "start": 908.82, + "end": 909.84, + "probability": 0.9049 + }, + { + "start": 910.5, + "end": 912.7, + "probability": 0.9102 + }, + { + "start": 913.98, + "end": 917.86, + "probability": 0.9972 + }, + { + "start": 918.0, + "end": 921.24, + "probability": 0.6435 + }, + { + "start": 922.24, + "end": 922.82, + "probability": 0.9208 + }, + { + "start": 923.68, + "end": 927.9, + "probability": 0.9264 + }, + { + "start": 928.64, + "end": 928.92, + "probability": 0.8545 + }, + { + "start": 929.56, + "end": 932.06, + "probability": 0.8669 + }, + { + "start": 932.74, + "end": 936.62, + "probability": 0.9888 + }, + { + "start": 937.36, + "end": 938.4, + "probability": 0.3505 + }, + { + "start": 938.4, + "end": 938.5, + "probability": 0.3683 + }, + { + "start": 938.72, + "end": 941.34, + "probability": 0.8167 + }, + { + "start": 941.58, + "end": 943.6, + "probability": 0.0348 + }, + { + "start": 943.6, + "end": 943.6, + "probability": 0.078 + }, + { + "start": 943.6, + "end": 943.6, + "probability": 0.077 + }, + { + "start": 943.6, + "end": 943.6, + "probability": 0.0609 + }, + { + "start": 943.6, + "end": 943.6, + "probability": 0.1307 + }, + { + "start": 943.6, + "end": 944.46, + "probability": 0.6598 + }, + { + "start": 944.88, + "end": 949.34, + "probability": 0.9564 + }, + { + "start": 949.38, + "end": 949.72, + "probability": 0.9824 + }, + { + "start": 950.5, + "end": 950.62, + "probability": 0.4474 + }, + { + "start": 950.62, + "end": 953.32, + "probability": 0.7398 + }, + { + "start": 953.38, + "end": 953.92, + "probability": 0.852 + }, + { + "start": 954.1, + "end": 954.56, + "probability": 0.9863 + }, + { + "start": 955.74, + "end": 957.66, + "probability": 0.7086 + }, + { + "start": 957.82, + "end": 963.54, + "probability": 0.9803 + }, + { + "start": 964.46, + "end": 969.26, + "probability": 0.8064 + }, + { + "start": 970.32, + "end": 973.42, + "probability": 0.7745 + }, + { + "start": 974.24, + "end": 977.7, + "probability": 0.968 + }, + { + "start": 978.0, + "end": 981.0, + "probability": 0.8862 + }, + { + "start": 981.0, + "end": 984.42, + "probability": 0.7924 + }, + { + "start": 984.46, + "end": 988.94, + "probability": 0.9833 + }, + { + "start": 989.48, + "end": 989.48, + "probability": 0.4762 + }, + { + "start": 989.58, + "end": 989.8, + "probability": 0.8508 + }, + { + "start": 990.42, + "end": 991.96, + "probability": 0.9807 + }, + { + "start": 993.1, + "end": 996.38, + "probability": 0.9941 + }, + { + "start": 996.72, + "end": 997.98, + "probability": 0.5047 + }, + { + "start": 998.38, + "end": 999.36, + "probability": 0.9069 + }, + { + "start": 999.74, + "end": 999.92, + "probability": 0.2342 + }, + { + "start": 1000.24, + "end": 1000.74, + "probability": 0.7169 + }, + { + "start": 1000.82, + "end": 1002.34, + "probability": 0.8049 + }, + { + "start": 1004.59, + "end": 1007.84, + "probability": 0.9142 + }, + { + "start": 1009.08, + "end": 1013.96, + "probability": 0.7829 + }, + { + "start": 1014.86, + "end": 1016.6, + "probability": 0.8962 + }, + { + "start": 1016.62, + "end": 1022.5, + "probability": 0.9701 + }, + { + "start": 1023.02, + "end": 1025.7, + "probability": 0.919 + }, + { + "start": 1026.32, + "end": 1029.34, + "probability": 0.6116 + }, + { + "start": 1029.64, + "end": 1031.54, + "probability": 0.7463 + }, + { + "start": 1032.04, + "end": 1032.38, + "probability": 0.8132 + }, + { + "start": 1034.48, + "end": 1035.1, + "probability": 0.2273 + }, + { + "start": 1035.3, + "end": 1036.16, + "probability": 0.7482 + }, + { + "start": 1036.98, + "end": 1038.86, + "probability": 0.7748 + }, + { + "start": 1039.42, + "end": 1043.96, + "probability": 0.6174 + }, + { + "start": 1045.72, + "end": 1047.48, + "probability": 0.863 + }, + { + "start": 1047.58, + "end": 1048.42, + "probability": 0.6671 + }, + { + "start": 1048.58, + "end": 1054.04, + "probability": 0.8842 + }, + { + "start": 1055.5, + "end": 1059.3, + "probability": 0.7508 + }, + { + "start": 1059.88, + "end": 1065.76, + "probability": 0.9358 + }, + { + "start": 1066.48, + "end": 1069.68, + "probability": 0.9841 + }, + { + "start": 1070.76, + "end": 1072.94, + "probability": 0.9949 + }, + { + "start": 1074.24, + "end": 1079.34, + "probability": 0.9821 + }, + { + "start": 1079.34, + "end": 1084.24, + "probability": 0.9558 + }, + { + "start": 1084.88, + "end": 1086.46, + "probability": 0.8022 + }, + { + "start": 1087.32, + "end": 1090.3, + "probability": 0.9995 + }, + { + "start": 1092.4, + "end": 1093.24, + "probability": 0.6429 + }, + { + "start": 1093.32, + "end": 1100.23, + "probability": 0.9939 + }, + { + "start": 1101.5, + "end": 1103.8, + "probability": 0.9075 + }, + { + "start": 1103.94, + "end": 1108.32, + "probability": 0.9194 + }, + { + "start": 1108.5, + "end": 1109.14, + "probability": 0.3534 + }, + { + "start": 1110.26, + "end": 1113.4, + "probability": 0.8962 + }, + { + "start": 1113.76, + "end": 1115.3, + "probability": 0.842 + }, + { + "start": 1115.4, + "end": 1116.26, + "probability": 0.8925 + }, + { + "start": 1117.76, + "end": 1122.74, + "probability": 0.9464 + }, + { + "start": 1123.86, + "end": 1126.9, + "probability": 0.9036 + }, + { + "start": 1127.02, + "end": 1133.38, + "probability": 0.9104 + }, + { + "start": 1133.44, + "end": 1134.27, + "probability": 0.9741 + }, + { + "start": 1134.6, + "end": 1138.56, + "probability": 0.9924 + }, + { + "start": 1141.76, + "end": 1145.48, + "probability": 0.9556 + }, + { + "start": 1145.58, + "end": 1147.46, + "probability": 0.9166 + }, + { + "start": 1147.52, + "end": 1153.42, + "probability": 0.9841 + }, + { + "start": 1153.98, + "end": 1157.99, + "probability": 0.996 + }, + { + "start": 1159.84, + "end": 1160.54, + "probability": 0.7538 + }, + { + "start": 1161.32, + "end": 1162.18, + "probability": 0.9617 + }, + { + "start": 1165.22, + "end": 1170.0, + "probability": 0.9766 + }, + { + "start": 1170.0, + "end": 1176.5, + "probability": 0.7927 + }, + { + "start": 1179.14, + "end": 1184.62, + "probability": 0.9585 + }, + { + "start": 1184.62, + "end": 1191.88, + "probability": 0.9854 + }, + { + "start": 1193.1, + "end": 1195.64, + "probability": 0.9649 + }, + { + "start": 1197.02, + "end": 1201.38, + "probability": 0.9008 + }, + { + "start": 1202.68, + "end": 1205.46, + "probability": 0.9979 + }, + { + "start": 1206.28, + "end": 1207.46, + "probability": 0.8773 + }, + { + "start": 1209.14, + "end": 1212.42, + "probability": 0.9375 + }, + { + "start": 1212.94, + "end": 1214.82, + "probability": 0.9329 + }, + { + "start": 1215.0, + "end": 1215.44, + "probability": 0.5056 + }, + { + "start": 1217.82, + "end": 1217.96, + "probability": 0.6877 + }, + { + "start": 1218.98, + "end": 1221.14, + "probability": 0.9707 + }, + { + "start": 1221.42, + "end": 1222.4, + "probability": 0.6562 + }, + { + "start": 1223.78, + "end": 1228.84, + "probability": 0.9967 + }, + { + "start": 1230.14, + "end": 1231.82, + "probability": 0.8912 + }, + { + "start": 1232.58, + "end": 1233.21, + "probability": 0.9229 + }, + { + "start": 1235.36, + "end": 1236.8, + "probability": 0.6643 + }, + { + "start": 1237.2, + "end": 1239.7, + "probability": 0.5771 + }, + { + "start": 1240.4, + "end": 1241.5, + "probability": 0.7973 + }, + { + "start": 1241.84, + "end": 1245.96, + "probability": 0.994 + }, + { + "start": 1246.98, + "end": 1249.74, + "probability": 0.9113 + }, + { + "start": 1251.16, + "end": 1256.18, + "probability": 0.9824 + }, + { + "start": 1256.44, + "end": 1256.9, + "probability": 0.7866 + }, + { + "start": 1258.27, + "end": 1259.5, + "probability": 0.9058 + }, + { + "start": 1259.5, + "end": 1259.57, + "probability": 0.222 + }, + { + "start": 1260.84, + "end": 1261.56, + "probability": 0.943 + }, + { + "start": 1262.82, + "end": 1265.86, + "probability": 0.926 + }, + { + "start": 1266.98, + "end": 1271.88, + "probability": 0.9835 + }, + { + "start": 1275.88, + "end": 1280.34, + "probability": 0.8506 + }, + { + "start": 1280.48, + "end": 1281.26, + "probability": 0.7242 + }, + { + "start": 1281.7, + "end": 1282.96, + "probability": 0.9633 + }, + { + "start": 1283.12, + "end": 1283.78, + "probability": 0.7856 + }, + { + "start": 1284.72, + "end": 1287.48, + "probability": 0.7166 + }, + { + "start": 1287.74, + "end": 1291.96, + "probability": 0.9966 + }, + { + "start": 1293.52, + "end": 1296.02, + "probability": 0.8204 + }, + { + "start": 1297.26, + "end": 1299.36, + "probability": 0.9386 + }, + { + "start": 1299.94, + "end": 1300.78, + "probability": 0.7612 + }, + { + "start": 1301.18, + "end": 1301.38, + "probability": 0.8203 + }, + { + "start": 1301.66, + "end": 1307.56, + "probability": 0.9985 + }, + { + "start": 1308.66, + "end": 1309.36, + "probability": 0.814 + }, + { + "start": 1309.52, + "end": 1310.02, + "probability": 0.5779 + }, + { + "start": 1310.18, + "end": 1310.56, + "probability": 0.8446 + }, + { + "start": 1310.66, + "end": 1311.92, + "probability": 0.9879 + }, + { + "start": 1313.58, + "end": 1315.92, + "probability": 0.9797 + }, + { + "start": 1317.04, + "end": 1319.64, + "probability": 0.9956 + }, + { + "start": 1320.78, + "end": 1322.08, + "probability": 0.7479 + }, + { + "start": 1322.22, + "end": 1327.22, + "probability": 0.8436 + }, + { + "start": 1328.74, + "end": 1331.76, + "probability": 0.9545 + }, + { + "start": 1331.76, + "end": 1335.78, + "probability": 0.9628 + }, + { + "start": 1336.96, + "end": 1340.28, + "probability": 0.9642 + }, + { + "start": 1340.28, + "end": 1344.02, + "probability": 0.9873 + }, + { + "start": 1345.92, + "end": 1347.82, + "probability": 0.5407 + }, + { + "start": 1349.2, + "end": 1352.52, + "probability": 0.9883 + }, + { + "start": 1353.32, + "end": 1356.48, + "probability": 0.978 + }, + { + "start": 1358.32, + "end": 1358.68, + "probability": 0.7946 + }, + { + "start": 1358.76, + "end": 1363.06, + "probability": 0.9946 + }, + { + "start": 1363.06, + "end": 1366.92, + "probability": 0.9864 + }, + { + "start": 1367.96, + "end": 1370.56, + "probability": 0.8516 + }, + { + "start": 1370.56, + "end": 1375.4, + "probability": 0.978 + }, + { + "start": 1375.6, + "end": 1381.02, + "probability": 0.9832 + }, + { + "start": 1383.82, + "end": 1388.28, + "probability": 0.991 + }, + { + "start": 1388.48, + "end": 1389.44, + "probability": 0.6415 + }, + { + "start": 1389.56, + "end": 1392.86, + "probability": 0.9626 + }, + { + "start": 1392.86, + "end": 1398.12, + "probability": 0.9323 + }, + { + "start": 1398.26, + "end": 1400.99, + "probability": 0.9982 + }, + { + "start": 1402.08, + "end": 1403.36, + "probability": 0.5927 + }, + { + "start": 1403.42, + "end": 1403.62, + "probability": 0.9112 + }, + { + "start": 1403.9, + "end": 1408.18, + "probability": 0.7301 + }, + { + "start": 1409.14, + "end": 1410.32, + "probability": 0.6787 + }, + { + "start": 1410.4, + "end": 1416.28, + "probability": 0.9924 + }, + { + "start": 1416.54, + "end": 1419.88, + "probability": 0.9961 + }, + { + "start": 1420.88, + "end": 1425.26, + "probability": 0.8784 + }, + { + "start": 1425.42, + "end": 1426.28, + "probability": 0.7769 + }, + { + "start": 1426.94, + "end": 1428.22, + "probability": 0.8228 + }, + { + "start": 1428.38, + "end": 1430.38, + "probability": 0.6404 + }, + { + "start": 1430.44, + "end": 1433.64, + "probability": 0.895 + }, + { + "start": 1434.64, + "end": 1435.62, + "probability": 0.9718 + }, + { + "start": 1436.8, + "end": 1440.88, + "probability": 0.9161 + }, + { + "start": 1441.86, + "end": 1444.94, + "probability": 0.7071 + }, + { + "start": 1446.26, + "end": 1447.08, + "probability": 0.9183 + }, + { + "start": 1447.52, + "end": 1451.4, + "probability": 0.5601 + }, + { + "start": 1452.12, + "end": 1453.7, + "probability": 0.9453 + }, + { + "start": 1454.54, + "end": 1457.22, + "probability": 0.9806 + }, + { + "start": 1458.18, + "end": 1461.24, + "probability": 0.8889 + }, + { + "start": 1461.94, + "end": 1467.44, + "probability": 0.7848 + }, + { + "start": 1468.86, + "end": 1471.58, + "probability": 0.8533 + }, + { + "start": 1472.62, + "end": 1478.44, + "probability": 0.9553 + }, + { + "start": 1479.56, + "end": 1482.94, + "probability": 0.9614 + }, + { + "start": 1483.26, + "end": 1484.32, + "probability": 0.9585 + }, + { + "start": 1484.64, + "end": 1485.56, + "probability": 0.7683 + }, + { + "start": 1485.82, + "end": 1486.82, + "probability": 0.8892 + }, + { + "start": 1487.7, + "end": 1491.16, + "probability": 0.9867 + }, + { + "start": 1493.08, + "end": 1499.62, + "probability": 0.7747 + }, + { + "start": 1499.8, + "end": 1499.92, + "probability": 0.6315 + }, + { + "start": 1500.3, + "end": 1500.3, + "probability": 0.5305 + }, + { + "start": 1500.48, + "end": 1500.76, + "probability": 0.3209 + }, + { + "start": 1500.88, + "end": 1501.44, + "probability": 0.7635 + }, + { + "start": 1501.58, + "end": 1502.4, + "probability": 0.9779 + }, + { + "start": 1503.08, + "end": 1507.94, + "probability": 0.9883 + }, + { + "start": 1509.54, + "end": 1512.72, + "probability": 0.7917 + }, + { + "start": 1513.58, + "end": 1516.18, + "probability": 0.8555 + }, + { + "start": 1516.18, + "end": 1519.74, + "probability": 0.9995 + }, + { + "start": 1520.66, + "end": 1520.84, + "probability": 0.4148 + }, + { + "start": 1520.94, + "end": 1521.26, + "probability": 0.8484 + }, + { + "start": 1521.4, + "end": 1524.76, + "probability": 0.9777 + }, + { + "start": 1524.76, + "end": 1528.95, + "probability": 0.9048 + }, + { + "start": 1529.52, + "end": 1533.3, + "probability": 0.9722 + }, + { + "start": 1534.14, + "end": 1535.66, + "probability": 0.8379 + }, + { + "start": 1536.42, + "end": 1538.08, + "probability": 0.9211 + }, + { + "start": 1538.28, + "end": 1540.78, + "probability": 0.9972 + }, + { + "start": 1541.88, + "end": 1543.54, + "probability": 0.1892 + }, + { + "start": 1543.54, + "end": 1544.36, + "probability": 0.9487 + }, + { + "start": 1544.44, + "end": 1545.94, + "probability": 0.8909 + }, + { + "start": 1546.02, + "end": 1546.46, + "probability": 0.9871 + }, + { + "start": 1548.22, + "end": 1551.16, + "probability": 0.9821 + }, + { + "start": 1551.16, + "end": 1555.68, + "probability": 0.9901 + }, + { + "start": 1556.38, + "end": 1558.32, + "probability": 0.8901 + }, + { + "start": 1558.92, + "end": 1562.98, + "probability": 0.9937 + }, + { + "start": 1563.14, + "end": 1564.08, + "probability": 0.6728 + }, + { + "start": 1564.74, + "end": 1568.46, + "probability": 0.9761 + }, + { + "start": 1568.7, + "end": 1575.2, + "probability": 0.9753 + }, + { + "start": 1575.38, + "end": 1575.76, + "probability": 0.6778 + }, + { + "start": 1575.82, + "end": 1576.68, + "probability": 0.955 + }, + { + "start": 1576.9, + "end": 1577.95, + "probability": 0.7732 + }, + { + "start": 1578.42, + "end": 1579.66, + "probability": 0.9683 + }, + { + "start": 1580.1, + "end": 1583.0, + "probability": 0.9827 + }, + { + "start": 1583.56, + "end": 1585.36, + "probability": 0.8996 + }, + { + "start": 1586.44, + "end": 1586.8, + "probability": 0.1469 + }, + { + "start": 1586.82, + "end": 1588.2, + "probability": 0.6704 + }, + { + "start": 1588.34, + "end": 1589.46, + "probability": 0.8887 + }, + { + "start": 1589.64, + "end": 1592.6, + "probability": 0.8529 + }, + { + "start": 1592.6, + "end": 1596.06, + "probability": 0.6006 + }, + { + "start": 1596.66, + "end": 1597.88, + "probability": 0.6685 + }, + { + "start": 1598.48, + "end": 1600.76, + "probability": 0.9973 + }, + { + "start": 1602.84, + "end": 1605.46, + "probability": 0.8993 + }, + { + "start": 1606.26, + "end": 1609.8, + "probability": 0.9736 + }, + { + "start": 1610.42, + "end": 1614.26, + "probability": 0.8036 + }, + { + "start": 1614.58, + "end": 1617.0, + "probability": 0.9903 + }, + { + "start": 1617.66, + "end": 1620.02, + "probability": 0.9094 + }, + { + "start": 1620.84, + "end": 1621.22, + "probability": 0.491 + }, + { + "start": 1621.32, + "end": 1622.96, + "probability": 0.9268 + }, + { + "start": 1623.14, + "end": 1625.54, + "probability": 0.8975 + }, + { + "start": 1626.12, + "end": 1626.8, + "probability": 0.9143 + }, + { + "start": 1626.96, + "end": 1628.82, + "probability": 0.9852 + }, + { + "start": 1629.84, + "end": 1631.38, + "probability": 0.9922 + }, + { + "start": 1631.56, + "end": 1632.42, + "probability": 0.7569 + }, + { + "start": 1633.46, + "end": 1634.68, + "probability": 0.9708 + }, + { + "start": 1635.52, + "end": 1637.52, + "probability": 0.9903 + }, + { + "start": 1638.02, + "end": 1639.5, + "probability": 0.9232 + }, + { + "start": 1640.18, + "end": 1641.38, + "probability": 0.9879 + }, + { + "start": 1641.64, + "end": 1642.76, + "probability": 0.9653 + }, + { + "start": 1642.82, + "end": 1644.78, + "probability": 0.9825 + }, + { + "start": 1644.88, + "end": 1648.14, + "probability": 0.6821 + }, + { + "start": 1648.66, + "end": 1654.31, + "probability": 0.9875 + }, + { + "start": 1656.8, + "end": 1660.08, + "probability": 0.8811 + }, + { + "start": 1660.6, + "end": 1661.16, + "probability": 0.8879 + }, + { + "start": 1662.56, + "end": 1664.16, + "probability": 0.9866 + }, + { + "start": 1664.92, + "end": 1666.92, + "probability": 0.6917 + }, + { + "start": 1667.28, + "end": 1667.52, + "probability": 0.1056 + }, + { + "start": 1667.68, + "end": 1670.02, + "probability": 0.9548 + }, + { + "start": 1670.52, + "end": 1671.04, + "probability": 0.9518 + }, + { + "start": 1671.18, + "end": 1671.5, + "probability": 0.9291 + }, + { + "start": 1671.66, + "end": 1673.84, + "probability": 0.9604 + }, + { + "start": 1675.72, + "end": 1680.52, + "probability": 0.9867 + }, + { + "start": 1680.7, + "end": 1682.44, + "probability": 0.8314 + }, + { + "start": 1683.56, + "end": 1686.26, + "probability": 0.9723 + }, + { + "start": 1686.84, + "end": 1691.6, + "probability": 0.987 + }, + { + "start": 1691.64, + "end": 1694.72, + "probability": 0.9709 + }, + { + "start": 1696.08, + "end": 1698.78, + "probability": 0.9946 + }, + { + "start": 1699.86, + "end": 1700.82, + "probability": 0.7211 + }, + { + "start": 1701.04, + "end": 1704.52, + "probability": 0.9981 + }, + { + "start": 1704.68, + "end": 1705.12, + "probability": 0.826 + }, + { + "start": 1705.82, + "end": 1709.82, + "probability": 0.7642 + }, + { + "start": 1710.6, + "end": 1710.72, + "probability": 0.1098 + }, + { + "start": 1710.72, + "end": 1716.86, + "probability": 0.9828 + }, + { + "start": 1717.48, + "end": 1720.0, + "probability": 0.9893 + }, + { + "start": 1720.82, + "end": 1722.5, + "probability": 0.9295 + }, + { + "start": 1723.12, + "end": 1725.64, + "probability": 0.9922 + }, + { + "start": 1725.9, + "end": 1726.78, + "probability": 0.4469 + }, + { + "start": 1726.88, + "end": 1728.46, + "probability": 0.9258 + }, + { + "start": 1729.12, + "end": 1730.82, + "probability": 0.9071 + }, + { + "start": 1731.38, + "end": 1733.56, + "probability": 0.8564 + }, + { + "start": 1733.68, + "end": 1734.48, + "probability": 0.7452 + }, + { + "start": 1736.52, + "end": 1739.8, + "probability": 0.9754 + }, + { + "start": 1740.32, + "end": 1744.44, + "probability": 0.9823 + }, + { + "start": 1744.92, + "end": 1746.3, + "probability": 0.8708 + }, + { + "start": 1746.72, + "end": 1749.54, + "probability": 0.9883 + }, + { + "start": 1749.9, + "end": 1755.12, + "probability": 0.9855 + }, + { + "start": 1756.02, + "end": 1756.86, + "probability": 0.7727 + }, + { + "start": 1757.36, + "end": 1761.38, + "probability": 0.9824 + }, + { + "start": 1761.68, + "end": 1762.54, + "probability": 0.9756 + }, + { + "start": 1762.86, + "end": 1763.66, + "probability": 0.9551 + }, + { + "start": 1763.66, + "end": 1766.64, + "probability": 0.8108 + }, + { + "start": 1767.04, + "end": 1768.0, + "probability": 0.6158 + }, + { + "start": 1768.12, + "end": 1771.64, + "probability": 0.9966 + }, + { + "start": 1772.06, + "end": 1776.26, + "probability": 0.9932 + }, + { + "start": 1776.76, + "end": 1778.24, + "probability": 0.8287 + }, + { + "start": 1778.62, + "end": 1780.8, + "probability": 0.8213 + }, + { + "start": 1781.4, + "end": 1782.8, + "probability": 0.9674 + }, + { + "start": 1783.16, + "end": 1785.68, + "probability": 0.9758 + }, + { + "start": 1785.96, + "end": 1789.0, + "probability": 0.994 + }, + { + "start": 1789.4, + "end": 1791.46, + "probability": 0.9866 + }, + { + "start": 1792.0, + "end": 1798.18, + "probability": 0.9735 + }, + { + "start": 1798.26, + "end": 1801.24, + "probability": 0.9988 + }, + { + "start": 1801.38, + "end": 1805.52, + "probability": 0.9919 + }, + { + "start": 1805.52, + "end": 1807.9, + "probability": 0.6122 + }, + { + "start": 1808.34, + "end": 1811.6, + "probability": 0.9616 + }, + { + "start": 1811.86, + "end": 1812.94, + "probability": 0.8988 + }, + { + "start": 1812.98, + "end": 1818.34, + "probability": 0.9889 + }, + { + "start": 1818.58, + "end": 1821.86, + "probability": 0.9668 + }, + { + "start": 1822.22, + "end": 1823.24, + "probability": 0.6794 + }, + { + "start": 1823.3, + "end": 1824.04, + "probability": 0.6876 + }, + { + "start": 1824.64, + "end": 1826.34, + "probability": 0.8869 + }, + { + "start": 1826.38, + "end": 1828.88, + "probability": 0.9375 + }, + { + "start": 1829.0, + "end": 1829.32, + "probability": 0.7505 + }, + { + "start": 1830.14, + "end": 1831.38, + "probability": 0.6979 + }, + { + "start": 1831.78, + "end": 1833.78, + "probability": 0.8294 + }, + { + "start": 1835.98, + "end": 1837.32, + "probability": 0.7422 + }, + { + "start": 1837.52, + "end": 1838.04, + "probability": 0.8811 + }, + { + "start": 1838.08, + "end": 1839.88, + "probability": 0.9602 + }, + { + "start": 1839.94, + "end": 1843.86, + "probability": 0.995 + }, + { + "start": 1844.34, + "end": 1847.58, + "probability": 0.8355 + }, + { + "start": 1847.86, + "end": 1850.56, + "probability": 0.7621 + }, + { + "start": 1850.8, + "end": 1851.12, + "probability": 0.6297 + }, + { + "start": 1851.42, + "end": 1853.36, + "probability": 0.9835 + }, + { + "start": 1853.42, + "end": 1854.4, + "probability": 0.9859 + }, + { + "start": 1854.44, + "end": 1858.72, + "probability": 0.982 + }, + { + "start": 1859.06, + "end": 1862.72, + "probability": 0.9499 + }, + { + "start": 1863.0, + "end": 1863.36, + "probability": 0.9677 + }, + { + "start": 1863.86, + "end": 1864.06, + "probability": 0.4948 + }, + { + "start": 1864.16, + "end": 1866.16, + "probability": 0.9859 + }, + { + "start": 1866.5, + "end": 1866.99, + "probability": 0.903 + }, + { + "start": 1867.56, + "end": 1868.89, + "probability": 0.906 + }, + { + "start": 1869.4, + "end": 1871.14, + "probability": 0.9858 + }, + { + "start": 1871.22, + "end": 1874.6, + "probability": 0.9827 + }, + { + "start": 1875.16, + "end": 1878.02, + "probability": 0.9717 + }, + { + "start": 1878.24, + "end": 1878.6, + "probability": 0.6516 + }, + { + "start": 1878.8, + "end": 1879.02, + "probability": 0.4829 + }, + { + "start": 1879.24, + "end": 1879.7, + "probability": 0.8841 + }, + { + "start": 1880.04, + "end": 1880.87, + "probability": 0.9921 + }, + { + "start": 1881.84, + "end": 1883.14, + "probability": 0.6704 + }, + { + "start": 1883.44, + "end": 1886.22, + "probability": 0.9779 + }, + { + "start": 1886.78, + "end": 1889.62, + "probability": 0.9917 + }, + { + "start": 1889.8, + "end": 1892.32, + "probability": 0.9678 + }, + { + "start": 1892.38, + "end": 1892.68, + "probability": 0.7268 + }, + { + "start": 1892.98, + "end": 1893.42, + "probability": 0.886 + }, + { + "start": 1893.54, + "end": 1894.07, + "probability": 0.9291 + }, + { + "start": 1895.54, + "end": 1898.21, + "probability": 0.9828 + }, + { + "start": 1899.74, + "end": 1901.92, + "probability": 0.9678 + }, + { + "start": 1901.94, + "end": 1903.42, + "probability": 0.9468 + }, + { + "start": 1904.0, + "end": 1904.34, + "probability": 0.8177 + }, + { + "start": 1904.4, + "end": 1905.34, + "probability": 0.9927 + }, + { + "start": 1905.48, + "end": 1907.1, + "probability": 0.9316 + }, + { + "start": 1907.12, + "end": 1908.48, + "probability": 0.7853 + }, + { + "start": 1908.62, + "end": 1909.46, + "probability": 0.8838 + }, + { + "start": 1909.76, + "end": 1912.14, + "probability": 0.9477 + }, + { + "start": 1912.36, + "end": 1914.52, + "probability": 0.7592 + }, + { + "start": 1915.08, + "end": 1917.98, + "probability": 0.8754 + }, + { + "start": 1918.52, + "end": 1922.72, + "probability": 0.9289 + }, + { + "start": 1922.76, + "end": 1927.82, + "probability": 0.9854 + }, + { + "start": 1927.82, + "end": 1931.54, + "probability": 0.9342 + }, + { + "start": 1932.36, + "end": 1935.48, + "probability": 0.8728 + }, + { + "start": 1935.96, + "end": 1938.98, + "probability": 0.9941 + }, + { + "start": 1939.32, + "end": 1941.34, + "probability": 0.9976 + }, + { + "start": 1941.86, + "end": 1944.5, + "probability": 0.9898 + }, + { + "start": 1944.68, + "end": 1946.34, + "probability": 0.8777 + }, + { + "start": 1946.74, + "end": 1946.94, + "probability": 0.6582 + }, + { + "start": 1947.1, + "end": 1948.84, + "probability": 0.6449 + }, + { + "start": 1948.98, + "end": 1950.7, + "probability": 0.732 + }, + { + "start": 1951.9, + "end": 1953.02, + "probability": 0.9764 + }, + { + "start": 1953.54, + "end": 1954.38, + "probability": 0.6637 + }, + { + "start": 1954.56, + "end": 1957.72, + "probability": 0.9599 + }, + { + "start": 1957.84, + "end": 1958.64, + "probability": 0.9519 + }, + { + "start": 1960.34, + "end": 1961.85, + "probability": 0.846 + }, + { + "start": 1962.32, + "end": 1963.14, + "probability": 0.8612 + }, + { + "start": 1963.58, + "end": 1964.82, + "probability": 0.9836 + }, + { + "start": 1965.04, + "end": 1967.48, + "probability": 0.9764 + }, + { + "start": 1968.08, + "end": 1969.34, + "probability": 0.9594 + }, + { + "start": 1970.44, + "end": 1973.86, + "probability": 0.9597 + }, + { + "start": 1975.04, + "end": 1977.2, + "probability": 0.9792 + }, + { + "start": 1977.78, + "end": 1979.4, + "probability": 0.4978 + }, + { + "start": 1979.62, + "end": 1982.12, + "probability": 0.7829 + }, + { + "start": 1983.08, + "end": 1987.64, + "probability": 0.9968 + }, + { + "start": 1988.76, + "end": 1993.14, + "probability": 0.9974 + }, + { + "start": 1993.82, + "end": 1997.76, + "probability": 0.9939 + }, + { + "start": 1997.84, + "end": 2001.26, + "probability": 0.9976 + }, + { + "start": 2002.76, + "end": 2004.2, + "probability": 0.8489 + }, + { + "start": 2004.26, + "end": 2006.0, + "probability": 0.8308 + }, + { + "start": 2006.78, + "end": 2007.68, + "probability": 0.9114 + }, + { + "start": 2008.92, + "end": 2013.14, + "probability": 0.9852 + }, + { + "start": 2013.86, + "end": 2015.24, + "probability": 0.7611 + }, + { + "start": 2015.94, + "end": 2018.46, + "probability": 0.9391 + }, + { + "start": 2019.16, + "end": 2021.86, + "probability": 0.9639 + }, + { + "start": 2023.08, + "end": 2024.1, + "probability": 0.9252 + }, + { + "start": 2024.84, + "end": 2027.2, + "probability": 0.9733 + }, + { + "start": 2028.24, + "end": 2029.74, + "probability": 0.8151 + }, + { + "start": 2030.38, + "end": 2033.84, + "probability": 0.9983 + }, + { + "start": 2034.76, + "end": 2037.82, + "probability": 0.9808 + }, + { + "start": 2039.24, + "end": 2039.96, + "probability": 0.9252 + }, + { + "start": 2041.08, + "end": 2045.26, + "probability": 0.9883 + }, + { + "start": 2046.97, + "end": 2051.66, + "probability": 0.2816 + }, + { + "start": 2051.66, + "end": 2052.26, + "probability": 0.0672 + }, + { + "start": 2052.8, + "end": 2055.4, + "probability": 0.9964 + }, + { + "start": 2056.04, + "end": 2059.14, + "probability": 0.8241 + }, + { + "start": 2059.76, + "end": 2064.16, + "probability": 0.9813 + }, + { + "start": 2064.78, + "end": 2067.76, + "probability": 0.9961 + }, + { + "start": 2068.34, + "end": 2069.16, + "probability": 0.7793 + }, + { + "start": 2069.9, + "end": 2071.76, + "probability": 0.809 + }, + { + "start": 2071.98, + "end": 2072.33, + "probability": 0.9674 + }, + { + "start": 2073.4, + "end": 2076.06, + "probability": 0.8095 + }, + { + "start": 2076.64, + "end": 2079.92, + "probability": 0.8713 + }, + { + "start": 2080.64, + "end": 2084.6, + "probability": 0.9522 + }, + { + "start": 2086.78, + "end": 2088.66, + "probability": 0.9928 + }, + { + "start": 2089.42, + "end": 2092.28, + "probability": 0.9557 + }, + { + "start": 2093.06, + "end": 2096.24, + "probability": 0.9958 + }, + { + "start": 2096.78, + "end": 2102.02, + "probability": 0.9913 + }, + { + "start": 2102.54, + "end": 2104.74, + "probability": 0.8875 + }, + { + "start": 2105.3, + "end": 2106.82, + "probability": 0.759 + }, + { + "start": 2106.92, + "end": 2109.6, + "probability": 0.9945 + }, + { + "start": 2109.96, + "end": 2111.1, + "probability": 0.9603 + }, + { + "start": 2111.86, + "end": 2112.64, + "probability": 0.9619 + }, + { + "start": 2112.76, + "end": 2113.16, + "probability": 0.8435 + }, + { + "start": 2113.66, + "end": 2115.3, + "probability": 0.9487 + }, + { + "start": 2116.24, + "end": 2117.64, + "probability": 0.9243 + }, + { + "start": 2118.86, + "end": 2123.04, + "probability": 0.9709 + }, + { + "start": 2124.6, + "end": 2128.48, + "probability": 0.8168 + }, + { + "start": 2129.08, + "end": 2129.92, + "probability": 0.989 + }, + { + "start": 2130.22, + "end": 2132.87, + "probability": 0.9663 + }, + { + "start": 2133.96, + "end": 2135.6, + "probability": 0.999 + }, + { + "start": 2136.4, + "end": 2138.42, + "probability": 0.9391 + }, + { + "start": 2140.02, + "end": 2140.24, + "probability": 0.349 + }, + { + "start": 2140.24, + "end": 2140.8, + "probability": 0.6902 + }, + { + "start": 2142.24, + "end": 2143.04, + "probability": 0.8551 + }, + { + "start": 2144.88, + "end": 2147.68, + "probability": 0.9797 + }, + { + "start": 2148.58, + "end": 2151.3, + "probability": 0.9958 + }, + { + "start": 2152.04, + "end": 2154.68, + "probability": 0.9443 + }, + { + "start": 2154.74, + "end": 2155.9, + "probability": 0.7012 + }, + { + "start": 2156.0, + "end": 2156.62, + "probability": 0.9485 + }, + { + "start": 2157.9, + "end": 2160.46, + "probability": 0.6946 + }, + { + "start": 2161.98, + "end": 2166.22, + "probability": 0.9105 + }, + { + "start": 2166.72, + "end": 2166.98, + "probability": 0.812 + }, + { + "start": 2167.5, + "end": 2168.96, + "probability": 0.7349 + }, + { + "start": 2169.14, + "end": 2171.56, + "probability": 0.7524 + }, + { + "start": 2171.72, + "end": 2171.94, + "probability": 0.4185 + }, + { + "start": 2172.08, + "end": 2172.48, + "probability": 0.6773 + }, + { + "start": 2172.6, + "end": 2173.0, + "probability": 0.6595 + }, + { + "start": 2173.32, + "end": 2174.36, + "probability": 0.6599 + }, + { + "start": 2174.48, + "end": 2175.84, + "probability": 0.7932 + }, + { + "start": 2176.3, + "end": 2178.48, + "probability": 0.872 + }, + { + "start": 2178.94, + "end": 2180.62, + "probability": 0.9784 + }, + { + "start": 2180.74, + "end": 2183.26, + "probability": 0.9214 + }, + { + "start": 2184.34, + "end": 2187.8, + "probability": 0.6167 + }, + { + "start": 2187.88, + "end": 2188.55, + "probability": 0.8973 + }, + { + "start": 2188.8, + "end": 2191.38, + "probability": 0.9088 + }, + { + "start": 2191.9, + "end": 2195.6, + "probability": 0.9514 + }, + { + "start": 2196.42, + "end": 2198.9, + "probability": 0.7902 + }, + { + "start": 2199.7, + "end": 2201.1, + "probability": 0.9272 + }, + { + "start": 2201.32, + "end": 2203.1, + "probability": 0.7414 + }, + { + "start": 2204.06, + "end": 2204.56, + "probability": 0.9951 + }, + { + "start": 2204.84, + "end": 2205.42, + "probability": 0.6805 + }, + { + "start": 2205.5, + "end": 2207.76, + "probability": 0.9878 + }, + { + "start": 2209.34, + "end": 2212.12, + "probability": 0.7516 + }, + { + "start": 2212.8, + "end": 2216.56, + "probability": 0.978 + }, + { + "start": 2217.9, + "end": 2218.2, + "probability": 0.9133 + }, + { + "start": 2219.36, + "end": 2223.46, + "probability": 0.9967 + }, + { + "start": 2223.76, + "end": 2225.96, + "probability": 0.9716 + }, + { + "start": 2225.96, + "end": 2226.7, + "probability": 0.8635 + }, + { + "start": 2226.78, + "end": 2227.86, + "probability": 0.8003 + }, + { + "start": 2228.6, + "end": 2229.68, + "probability": 0.8773 + }, + { + "start": 2230.18, + "end": 2231.92, + "probability": 0.8519 + }, + { + "start": 2232.1, + "end": 2234.76, + "probability": 0.9636 + }, + { + "start": 2235.06, + "end": 2237.3, + "probability": 0.944 + }, + { + "start": 2238.22, + "end": 2240.1, + "probability": 0.9517 + }, + { + "start": 2240.22, + "end": 2241.8, + "probability": 0.9267 + }, + { + "start": 2242.36, + "end": 2246.24, + "probability": 0.965 + }, + { + "start": 2247.14, + "end": 2250.86, + "probability": 0.854 + }, + { + "start": 2251.98, + "end": 2253.08, + "probability": 0.9248 + }, + { + "start": 2253.16, + "end": 2257.16, + "probability": 0.9485 + }, + { + "start": 2257.74, + "end": 2258.56, + "probability": 0.7818 + }, + { + "start": 2259.26, + "end": 2260.58, + "probability": 0.755 + }, + { + "start": 2260.74, + "end": 2262.39, + "probability": 0.9771 + }, + { + "start": 2262.68, + "end": 2264.75, + "probability": 0.9854 + }, + { + "start": 2265.44, + "end": 2267.74, + "probability": 0.9915 + }, + { + "start": 2270.54, + "end": 2271.52, + "probability": 0.8612 + }, + { + "start": 2272.76, + "end": 2273.58, + "probability": 0.8715 + }, + { + "start": 2273.68, + "end": 2274.92, + "probability": 0.861 + }, + { + "start": 2275.06, + "end": 2277.36, + "probability": 0.8901 + }, + { + "start": 2277.48, + "end": 2279.04, + "probability": 0.9395 + }, + { + "start": 2279.4, + "end": 2280.78, + "probability": 0.9731 + }, + { + "start": 2281.26, + "end": 2282.28, + "probability": 0.8003 + }, + { + "start": 2282.98, + "end": 2285.92, + "probability": 0.9182 + }, + { + "start": 2286.26, + "end": 2288.0, + "probability": 0.842 + }, + { + "start": 2288.64, + "end": 2289.54, + "probability": 0.8643 + }, + { + "start": 2290.3, + "end": 2291.76, + "probability": 0.8999 + }, + { + "start": 2292.44, + "end": 2294.06, + "probability": 0.804 + }, + { + "start": 2294.9, + "end": 2295.73, + "probability": 0.9417 + }, + { + "start": 2296.12, + "end": 2299.32, + "probability": 0.9487 + }, + { + "start": 2300.04, + "end": 2300.84, + "probability": 0.7627 + }, + { + "start": 2300.94, + "end": 2304.98, + "probability": 0.9727 + }, + { + "start": 2305.32, + "end": 2308.14, + "probability": 0.9959 + }, + { + "start": 2308.98, + "end": 2311.3, + "probability": 0.9045 + }, + { + "start": 2311.58, + "end": 2314.06, + "probability": 0.9849 + }, + { + "start": 2315.1, + "end": 2317.28, + "probability": 0.9723 + }, + { + "start": 2317.92, + "end": 2318.48, + "probability": 0.5755 + }, + { + "start": 2320.14, + "end": 2323.54, + "probability": 0.6574 + }, + { + "start": 2324.12, + "end": 2324.6, + "probability": 0.5857 + }, + { + "start": 2325.04, + "end": 2327.16, + "probability": 0.9676 + }, + { + "start": 2327.3, + "end": 2327.87, + "probability": 0.696 + }, + { + "start": 2328.04, + "end": 2329.42, + "probability": 0.7855 + }, + { + "start": 2330.92, + "end": 2332.72, + "probability": 0.8029 + }, + { + "start": 2332.84, + "end": 2333.6, + "probability": 0.8624 + }, + { + "start": 2333.72, + "end": 2335.01, + "probability": 0.5849 + }, + { + "start": 2335.8, + "end": 2338.0, + "probability": 0.9971 + }, + { + "start": 2339.08, + "end": 2343.18, + "probability": 0.8052 + }, + { + "start": 2343.56, + "end": 2346.44, + "probability": 0.9531 + }, + { + "start": 2347.86, + "end": 2350.6, + "probability": 0.9901 + }, + { + "start": 2351.62, + "end": 2353.6, + "probability": 0.8433 + }, + { + "start": 2354.3, + "end": 2355.2, + "probability": 0.8685 + }, + { + "start": 2355.32, + "end": 2355.82, + "probability": 0.77 + }, + { + "start": 2355.88, + "end": 2358.68, + "probability": 0.9236 + }, + { + "start": 2359.32, + "end": 2360.54, + "probability": 0.8872 + }, + { + "start": 2361.12, + "end": 2363.61, + "probability": 0.8895 + }, + { + "start": 2364.8, + "end": 2365.44, + "probability": 0.8784 + }, + { + "start": 2365.86, + "end": 2369.5, + "probability": 0.8813 + }, + { + "start": 2369.8, + "end": 2371.24, + "probability": 0.9472 + }, + { + "start": 2371.36, + "end": 2371.84, + "probability": 0.9057 + }, + { + "start": 2371.86, + "end": 2372.42, + "probability": 0.8819 + }, + { + "start": 2372.62, + "end": 2372.92, + "probability": 0.9642 + }, + { + "start": 2373.7, + "end": 2375.1, + "probability": 0.7812 + }, + { + "start": 2376.24, + "end": 2377.96, + "probability": 0.9878 + }, + { + "start": 2378.26, + "end": 2380.92, + "probability": 0.9092 + }, + { + "start": 2381.24, + "end": 2381.98, + "probability": 0.7875 + }, + { + "start": 2382.12, + "end": 2382.4, + "probability": 0.7775 + }, + { + "start": 2383.24, + "end": 2383.72, + "probability": 0.9893 + }, + { + "start": 2385.56, + "end": 2387.64, + "probability": 0.9067 + }, + { + "start": 2388.34, + "end": 2391.76, + "probability": 0.9072 + }, + { + "start": 2391.84, + "end": 2393.9, + "probability": 0.9199 + }, + { + "start": 2394.0, + "end": 2396.14, + "probability": 0.7657 + }, + { + "start": 2396.94, + "end": 2398.46, + "probability": 0.9697 + }, + { + "start": 2398.54, + "end": 2402.02, + "probability": 0.9631 + }, + { + "start": 2402.44, + "end": 2404.1, + "probability": 0.9951 + }, + { + "start": 2404.3, + "end": 2406.8, + "probability": 0.813 + }, + { + "start": 2407.7, + "end": 2411.68, + "probability": 0.9595 + }, + { + "start": 2411.84, + "end": 2412.24, + "probability": 0.82 + }, + { + "start": 2412.44, + "end": 2412.8, + "probability": 0.3161 + }, + { + "start": 2412.8, + "end": 2413.98, + "probability": 0.6301 + }, + { + "start": 2414.06, + "end": 2416.28, + "probability": 0.6824 + }, + { + "start": 2417.3, + "end": 2417.76, + "probability": 0.7658 + }, + { + "start": 2417.92, + "end": 2418.72, + "probability": 0.8158 + }, + { + "start": 2418.82, + "end": 2419.94, + "probability": 0.7937 + }, + { + "start": 2421.52, + "end": 2423.24, + "probability": 0.869 + }, + { + "start": 2423.78, + "end": 2425.5, + "probability": 0.5412 + }, + { + "start": 2426.11, + "end": 2428.0, + "probability": 0.812 + }, + { + "start": 2429.22, + "end": 2430.04, + "probability": 0.7336 + }, + { + "start": 2430.41, + "end": 2432.78, + "probability": 0.9474 + }, + { + "start": 2432.82, + "end": 2434.4, + "probability": 0.6654 + }, + { + "start": 2434.48, + "end": 2435.58, + "probability": 0.7379 + }, + { + "start": 2435.78, + "end": 2436.76, + "probability": 0.8183 + }, + { + "start": 2436.96, + "end": 2439.26, + "probability": 0.8384 + }, + { + "start": 2439.6, + "end": 2442.1, + "probability": 0.9343 + }, + { + "start": 2442.18, + "end": 2447.02, + "probability": 0.8416 + }, + { + "start": 2447.74, + "end": 2448.68, + "probability": 0.9359 + }, + { + "start": 2449.38, + "end": 2450.84, + "probability": 0.9341 + }, + { + "start": 2451.36, + "end": 2452.02, + "probability": 0.4936 + }, + { + "start": 2453.58, + "end": 2454.14, + "probability": 0.3634 + }, + { + "start": 2454.22, + "end": 2457.44, + "probability": 0.7169 + }, + { + "start": 2458.76, + "end": 2460.54, + "probability": 0.8756 + }, + { + "start": 2461.08, + "end": 2464.62, + "probability": 0.948 + }, + { + "start": 2465.39, + "end": 2467.58, + "probability": 0.7269 + }, + { + "start": 2469.02, + "end": 2470.06, + "probability": 0.7976 + }, + { + "start": 2471.24, + "end": 2474.2, + "probability": 0.9525 + }, + { + "start": 2474.4, + "end": 2476.56, + "probability": 0.978 + }, + { + "start": 2476.7, + "end": 2480.1, + "probability": 0.9942 + }, + { + "start": 2480.2, + "end": 2481.82, + "probability": 0.9941 + }, + { + "start": 2482.8, + "end": 2486.28, + "probability": 0.9742 + }, + { + "start": 2487.26, + "end": 2488.74, + "probability": 0.7637 + }, + { + "start": 2489.52, + "end": 2490.66, + "probability": 0.7518 + }, + { + "start": 2490.86, + "end": 2491.32, + "probability": 0.8717 + }, + { + "start": 2492.18, + "end": 2492.62, + "probability": 0.6589 + }, + { + "start": 2494.12, + "end": 2497.66, + "probability": 0.7713 + }, + { + "start": 2498.2, + "end": 2499.62, + "probability": 0.8236 + }, + { + "start": 2500.34, + "end": 2501.82, + "probability": 0.8809 + }, + { + "start": 2502.16, + "end": 2502.52, + "probability": 0.553 + }, + { + "start": 2503.2, + "end": 2503.62, + "probability": 0.4971 + }, + { + "start": 2503.76, + "end": 2505.82, + "probability": 0.9339 + }, + { + "start": 2506.28, + "end": 2508.22, + "probability": 0.0633 + }, + { + "start": 2508.76, + "end": 2509.64, + "probability": 0.3088 + }, + { + "start": 2509.86, + "end": 2511.68, + "probability": 0.7368 + }, + { + "start": 2511.74, + "end": 2513.29, + "probability": 0.6932 + }, + { + "start": 2514.08, + "end": 2516.44, + "probability": 0.7405 + }, + { + "start": 2516.66, + "end": 2517.46, + "probability": 0.7019 + }, + { + "start": 2517.58, + "end": 2520.16, + "probability": 0.9851 + }, + { + "start": 2520.28, + "end": 2522.08, + "probability": 0.9897 + }, + { + "start": 2522.68, + "end": 2523.92, + "probability": 0.9426 + }, + { + "start": 2524.78, + "end": 2525.78, + "probability": 0.836 + }, + { + "start": 2526.06, + "end": 2527.2, + "probability": 0.9966 + }, + { + "start": 2527.26, + "end": 2528.41, + "probability": 0.4268 + }, + { + "start": 2528.96, + "end": 2529.84, + "probability": 0.9135 + }, + { + "start": 2529.96, + "end": 2530.4, + "probability": 0.9151 + }, + { + "start": 2530.52, + "end": 2531.08, + "probability": 0.7083 + }, + { + "start": 2531.14, + "end": 2531.94, + "probability": 0.9521 + }, + { + "start": 2533.86, + "end": 2534.86, + "probability": 0.6636 + }, + { + "start": 2536.64, + "end": 2540.18, + "probability": 0.9012 + }, + { + "start": 2541.04, + "end": 2543.76, + "probability": 0.9902 + }, + { + "start": 2545.16, + "end": 2546.54, + "probability": 0.8328 + }, + { + "start": 2547.04, + "end": 2548.88, + "probability": 0.9102 + }, + { + "start": 2549.02, + "end": 2550.6, + "probability": 0.918 + }, + { + "start": 2551.0, + "end": 2552.48, + "probability": 0.9919 + }, + { + "start": 2553.14, + "end": 2554.22, + "probability": 0.9569 + }, + { + "start": 2554.52, + "end": 2555.9, + "probability": 0.9287 + }, + { + "start": 2557.78, + "end": 2558.16, + "probability": 0.6526 + }, + { + "start": 2559.38, + "end": 2562.94, + "probability": 0.8747 + }, + { + "start": 2563.88, + "end": 2566.64, + "probability": 0.9969 + }, + { + "start": 2567.2, + "end": 2568.8, + "probability": 0.9785 + }, + { + "start": 2569.6, + "end": 2570.58, + "probability": 0.9142 + }, + { + "start": 2573.35, + "end": 2575.08, + "probability": 0.9062 + }, + { + "start": 2575.16, + "end": 2577.46, + "probability": 0.7974 + }, + { + "start": 2579.04, + "end": 2580.78, + "probability": 0.8345 + }, + { + "start": 2580.84, + "end": 2581.02, + "probability": 0.8372 + }, + { + "start": 2581.14, + "end": 2584.82, + "probability": 0.9365 + }, + { + "start": 2585.02, + "end": 2586.72, + "probability": 0.7524 + }, + { + "start": 2587.68, + "end": 2588.48, + "probability": 0.8078 + }, + { + "start": 2588.84, + "end": 2589.58, + "probability": 0.9588 + }, + { + "start": 2590.0, + "end": 2590.96, + "probability": 0.6312 + }, + { + "start": 2591.1, + "end": 2591.54, + "probability": 0.7847 + }, + { + "start": 2591.88, + "end": 2593.06, + "probability": 0.7914 + }, + { + "start": 2593.22, + "end": 2594.28, + "probability": 0.7308 + }, + { + "start": 2594.5, + "end": 2594.86, + "probability": 0.79 + }, + { + "start": 2594.92, + "end": 2595.36, + "probability": 0.7877 + }, + { + "start": 2596.24, + "end": 2597.25, + "probability": 0.9784 + }, + { + "start": 2597.48, + "end": 2601.62, + "probability": 0.9877 + }, + { + "start": 2602.2, + "end": 2603.66, + "probability": 0.6079 + }, + { + "start": 2604.22, + "end": 2607.21, + "probability": 0.7457 + }, + { + "start": 2608.06, + "end": 2609.0, + "probability": 0.9731 + }, + { + "start": 2609.64, + "end": 2611.49, + "probability": 0.9072 + }, + { + "start": 2612.32, + "end": 2613.08, + "probability": 0.718 + }, + { + "start": 2613.36, + "end": 2613.76, + "probability": 0.8279 + }, + { + "start": 2614.02, + "end": 2615.12, + "probability": 0.7174 + }, + { + "start": 2615.22, + "end": 2617.56, + "probability": 0.88 + }, + { + "start": 2617.66, + "end": 2617.8, + "probability": 0.6919 + }, + { + "start": 2618.52, + "end": 2619.24, + "probability": 0.8616 + }, + { + "start": 2619.32, + "end": 2621.34, + "probability": 0.9418 + }, + { + "start": 2621.7, + "end": 2622.9, + "probability": 0.9126 + }, + { + "start": 2624.22, + "end": 2625.54, + "probability": 0.8731 + }, + { + "start": 2627.83, + "end": 2631.08, + "probability": 0.8645 + }, + { + "start": 2631.78, + "end": 2633.12, + "probability": 0.78 + }, + { + "start": 2633.3, + "end": 2634.18, + "probability": 0.7948 + }, + { + "start": 2634.4, + "end": 2636.4, + "probability": 0.7624 + }, + { + "start": 2636.48, + "end": 2638.9, + "probability": 0.9871 + }, + { + "start": 2639.68, + "end": 2641.24, + "probability": 0.958 + }, + { + "start": 2641.72, + "end": 2643.12, + "probability": 0.8739 + }, + { + "start": 2643.24, + "end": 2647.14, + "probability": 0.6667 + }, + { + "start": 2648.3, + "end": 2649.18, + "probability": 0.8465 + }, + { + "start": 2649.5, + "end": 2649.59, + "probability": 0.8653 + }, + { + "start": 2650.38, + "end": 2651.86, + "probability": 0.8509 + }, + { + "start": 2651.94, + "end": 2654.42, + "probability": 0.9771 + }, + { + "start": 2654.62, + "end": 2655.66, + "probability": 0.8829 + }, + { + "start": 2655.92, + "end": 2656.62, + "probability": 0.6457 + }, + { + "start": 2657.44, + "end": 2661.92, + "probability": 0.8693 + }, + { + "start": 2663.36, + "end": 2663.8, + "probability": 0.7051 + }, + { + "start": 2663.98, + "end": 2664.68, + "probability": 0.3789 + }, + { + "start": 2665.16, + "end": 2665.52, + "probability": 0.8218 + }, + { + "start": 2665.76, + "end": 2668.92, + "probability": 0.8698 + }, + { + "start": 2669.34, + "end": 2669.7, + "probability": 0.8144 + }, + { + "start": 2669.84, + "end": 2670.94, + "probability": 0.5914 + }, + { + "start": 2671.7, + "end": 2672.72, + "probability": 0.6793 + }, + { + "start": 2673.3, + "end": 2676.6, + "probability": 0.1688 + }, + { + "start": 2676.72, + "end": 2679.06, + "probability": 0.5045 + }, + { + "start": 2679.1, + "end": 2682.36, + "probability": 0.7885 + }, + { + "start": 2682.4, + "end": 2682.72, + "probability": 0.6715 + }, + { + "start": 2682.8, + "end": 2684.18, + "probability": 0.7944 + }, + { + "start": 2684.22, + "end": 2684.78, + "probability": 0.9044 + }, + { + "start": 2685.16, + "end": 2686.58, + "probability": 0.832 + }, + { + "start": 2687.42, + "end": 2688.06, + "probability": 0.8268 + }, + { + "start": 2688.94, + "end": 2691.02, + "probability": 0.9644 + }, + { + "start": 2692.12, + "end": 2695.32, + "probability": 0.8971 + }, + { + "start": 2695.38, + "end": 2696.82, + "probability": 0.7494 + }, + { + "start": 2698.46, + "end": 2700.1, + "probability": 0.5786 + }, + { + "start": 2700.32, + "end": 2701.8, + "probability": 0.7453 + }, + { + "start": 2702.06, + "end": 2703.3, + "probability": 0.9153 + }, + { + "start": 2704.93, + "end": 2707.72, + "probability": 0.9321 + }, + { + "start": 2709.18, + "end": 2714.09, + "probability": 0.8369 + }, + { + "start": 2715.74, + "end": 2716.94, + "probability": 0.5012 + }, + { + "start": 2717.36, + "end": 2718.4, + "probability": 0.7086 + }, + { + "start": 2718.82, + "end": 2721.12, + "probability": 0.8334 + }, + { + "start": 2721.82, + "end": 2723.54, + "probability": 0.8217 + }, + { + "start": 2723.58, + "end": 2726.26, + "probability": 0.9878 + }, + { + "start": 2727.0, + "end": 2727.92, + "probability": 0.9651 + }, + { + "start": 2728.1, + "end": 2731.29, + "probability": 0.9734 + }, + { + "start": 2731.88, + "end": 2733.16, + "probability": 0.9972 + }, + { + "start": 2733.78, + "end": 2734.92, + "probability": 0.952 + }, + { + "start": 2735.1, + "end": 2736.2, + "probability": 0.9875 + }, + { + "start": 2736.6, + "end": 2739.3, + "probability": 0.9065 + }, + { + "start": 2740.24, + "end": 2741.16, + "probability": 0.8277 + }, + { + "start": 2741.34, + "end": 2742.28, + "probability": 0.764 + }, + { + "start": 2742.38, + "end": 2743.5, + "probability": 0.9823 + }, + { + "start": 2743.74, + "end": 2747.3, + "probability": 0.9435 + }, + { + "start": 2747.78, + "end": 2751.88, + "probability": 0.9982 + }, + { + "start": 2751.98, + "end": 2753.16, + "probability": 0.9221 + }, + { + "start": 2754.1, + "end": 2757.62, + "probability": 0.9812 + }, + { + "start": 2757.74, + "end": 2759.32, + "probability": 0.6543 + }, + { + "start": 2759.66, + "end": 2759.92, + "probability": 0.9375 + }, + { + "start": 2760.12, + "end": 2760.28, + "probability": 0.7806 + }, + { + "start": 2760.8, + "end": 2761.74, + "probability": 0.4521 + }, + { + "start": 2761.86, + "end": 2764.14, + "probability": 0.8865 + }, + { + "start": 2765.12, + "end": 2765.82, + "probability": 0.697 + }, + { + "start": 2766.36, + "end": 2768.98, + "probability": 0.9019 + }, + { + "start": 2769.1, + "end": 2770.44, + "probability": 0.7974 + }, + { + "start": 2770.92, + "end": 2772.22, + "probability": 0.8521 + }, + { + "start": 2772.54, + "end": 2773.14, + "probability": 0.8773 + }, + { + "start": 2773.62, + "end": 2776.46, + "probability": 0.722 + }, + { + "start": 2776.66, + "end": 2777.7, + "probability": 0.7699 + }, + { + "start": 2777.76, + "end": 2778.64, + "probability": 0.9057 + }, + { + "start": 2778.82, + "end": 2779.92, + "probability": 0.603 + }, + { + "start": 2779.98, + "end": 2780.32, + "probability": 0.9202 + }, + { + "start": 2780.56, + "end": 2781.08, + "probability": 0.8324 + }, + { + "start": 2781.68, + "end": 2784.94, + "probability": 0.8769 + }, + { + "start": 2784.94, + "end": 2789.04, + "probability": 0.9885 + }, + { + "start": 2789.36, + "end": 2790.14, + "probability": 0.5318 + }, + { + "start": 2790.96, + "end": 2791.58, + "probability": 0.6721 + }, + { + "start": 2791.66, + "end": 2792.3, + "probability": 0.8645 + }, + { + "start": 2792.52, + "end": 2797.04, + "probability": 0.9658 + }, + { + "start": 2797.1, + "end": 2799.88, + "probability": 0.9768 + }, + { + "start": 2799.94, + "end": 2801.08, + "probability": 0.9141 + }, + { + "start": 2801.74, + "end": 2804.6, + "probability": 0.9857 + }, + { + "start": 2804.7, + "end": 2810.18, + "probability": 0.9557 + }, + { + "start": 2810.36, + "end": 2816.72, + "probability": 0.9888 + }, + { + "start": 2816.9, + "end": 2819.7, + "probability": 0.981 + }, + { + "start": 2821.32, + "end": 2821.32, + "probability": 0.116 + }, + { + "start": 2821.32, + "end": 2822.62, + "probability": 0.9951 + }, + { + "start": 2823.42, + "end": 2828.84, + "probability": 0.9895 + }, + { + "start": 2828.84, + "end": 2833.78, + "probability": 0.7018 + }, + { + "start": 2833.88, + "end": 2834.8, + "probability": 0.5974 + }, + { + "start": 2835.7, + "end": 2838.64, + "probability": 0.9163 + }, + { + "start": 2850.18, + "end": 2851.74, + "probability": 0.466 + }, + { + "start": 2852.64, + "end": 2852.64, + "probability": 0.3871 + }, + { + "start": 2853.78, + "end": 2858.42, + "probability": 0.9897 + }, + { + "start": 2859.32, + "end": 2864.2, + "probability": 0.9732 + }, + { + "start": 2864.32, + "end": 2871.1, + "probability": 0.9788 + }, + { + "start": 2872.32, + "end": 2875.0, + "probability": 0.8126 + }, + { + "start": 2875.68, + "end": 2877.2, + "probability": 0.8906 + }, + { + "start": 2877.38, + "end": 2877.77, + "probability": 0.4885 + }, + { + "start": 2878.72, + "end": 2879.06, + "probability": 0.9664 + }, + { + "start": 2879.58, + "end": 2881.02, + "probability": 0.9738 + }, + { + "start": 2881.7, + "end": 2884.04, + "probability": 0.4958 + }, + { + "start": 2885.06, + "end": 2886.7, + "probability": 0.6576 + }, + { + "start": 2887.78, + "end": 2889.96, + "probability": 0.6011 + }, + { + "start": 2890.06, + "end": 2891.56, + "probability": 0.8973 + }, + { + "start": 2891.64, + "end": 2893.0, + "probability": 0.6972 + }, + { + "start": 2894.24, + "end": 2896.54, + "probability": 0.9721 + }, + { + "start": 2897.32, + "end": 2898.84, + "probability": 0.7123 + }, + { + "start": 2898.9, + "end": 2903.08, + "probability": 0.9539 + }, + { + "start": 2904.04, + "end": 2905.34, + "probability": 0.887 + }, + { + "start": 2906.6, + "end": 2908.46, + "probability": 0.9707 + }, + { + "start": 2908.56, + "end": 2912.14, + "probability": 0.842 + }, + { + "start": 2913.2, + "end": 2914.96, + "probability": 0.9452 + }, + { + "start": 2915.2, + "end": 2917.38, + "probability": 0.7498 + }, + { + "start": 2917.98, + "end": 2920.44, + "probability": 0.8416 + }, + { + "start": 2921.48, + "end": 2924.08, + "probability": 0.9379 + }, + { + "start": 2924.08, + "end": 2926.82, + "probability": 0.8959 + }, + { + "start": 2927.7, + "end": 2929.4, + "probability": 0.9042 + }, + { + "start": 2929.58, + "end": 2933.02, + "probability": 0.8276 + }, + { + "start": 2933.96, + "end": 2935.9, + "probability": 0.959 + }, + { + "start": 2935.98, + "end": 2940.42, + "probability": 0.9752 + }, + { + "start": 2941.06, + "end": 2943.78, + "probability": 0.79 + }, + { + "start": 2943.78, + "end": 2946.82, + "probability": 0.9787 + }, + { + "start": 2947.34, + "end": 2951.06, + "probability": 0.9379 + }, + { + "start": 2951.7, + "end": 2956.12, + "probability": 0.8999 + }, + { + "start": 2956.78, + "end": 2958.48, + "probability": 0.5473 + }, + { + "start": 2958.98, + "end": 2959.9, + "probability": 0.7765 + }, + { + "start": 2960.46, + "end": 2962.56, + "probability": 0.8361 + }, + { + "start": 2963.04, + "end": 2965.2, + "probability": 0.2815 + }, + { + "start": 2965.42, + "end": 2965.94, + "probability": 0.5492 + }, + { + "start": 2966.82, + "end": 2966.9, + "probability": 0.5439 + }, + { + "start": 2967.0, + "end": 2967.32, + "probability": 0.7805 + }, + { + "start": 2967.42, + "end": 2968.24, + "probability": 0.8189 + }, + { + "start": 2968.4, + "end": 2969.8, + "probability": 0.5058 + }, + { + "start": 2971.76, + "end": 2976.18, + "probability": 0.5556 + }, + { + "start": 2977.42, + "end": 2978.22, + "probability": 0.6392 + }, + { + "start": 2978.24, + "end": 2980.34, + "probability": 0.8202 + }, + { + "start": 2980.46, + "end": 2982.34, + "probability": 0.8753 + }, + { + "start": 2982.82, + "end": 2986.64, + "probability": 0.9309 + }, + { + "start": 2987.28, + "end": 2990.0, + "probability": 0.9431 + }, + { + "start": 2990.26, + "end": 2991.18, + "probability": 0.9437 + }, + { + "start": 2992.02, + "end": 2994.66, + "probability": 0.9277 + }, + { + "start": 2994.82, + "end": 2996.18, + "probability": 0.876 + }, + { + "start": 2996.4, + "end": 2997.68, + "probability": 0.4535 + }, + { + "start": 2998.84, + "end": 3000.38, + "probability": 0.8891 + }, + { + "start": 3000.88, + "end": 3003.2, + "probability": 0.9536 + }, + { + "start": 3003.38, + "end": 3004.14, + "probability": 0.3557 + }, + { + "start": 3004.2, + "end": 3004.24, + "probability": 0.3735 + }, + { + "start": 3004.24, + "end": 3004.7, + "probability": 0.4674 + }, + { + "start": 3005.06, + "end": 3007.56, + "probability": 0.7725 + }, + { + "start": 3007.86, + "end": 3008.24, + "probability": 0.3968 + }, + { + "start": 3008.24, + "end": 3008.9, + "probability": 0.9385 + }, + { + "start": 3009.12, + "end": 3010.42, + "probability": 0.9404 + }, + { + "start": 3011.58, + "end": 3016.26, + "probability": 0.9478 + }, + { + "start": 3016.72, + "end": 3021.72, + "probability": 0.6344 + }, + { + "start": 3021.8, + "end": 3024.94, + "probability": 0.8832 + }, + { + "start": 3025.38, + "end": 3028.3, + "probability": 0.9749 + }, + { + "start": 3030.66, + "end": 3032.32, + "probability": 0.7194 + }, + { + "start": 3033.22, + "end": 3036.9, + "probability": 0.9903 + }, + { + "start": 3036.9, + "end": 3041.94, + "probability": 0.9974 + }, + { + "start": 3043.4, + "end": 3047.32, + "probability": 0.9906 + }, + { + "start": 3047.32, + "end": 3051.46, + "probability": 0.9437 + }, + { + "start": 3056.2, + "end": 3056.6, + "probability": 0.1963 + }, + { + "start": 3057.12, + "end": 3059.08, + "probability": 0.655 + }, + { + "start": 3059.22, + "end": 3060.28, + "probability": 0.8351 + }, + { + "start": 3061.08, + "end": 3062.3, + "probability": 0.7083 + }, + { + "start": 3064.7, + "end": 3066.14, + "probability": 0.789 + }, + { + "start": 3066.62, + "end": 3069.36, + "probability": 0.5307 + }, + { + "start": 3069.62, + "end": 3071.02, + "probability": 0.9155 + }, + { + "start": 3072.8, + "end": 3075.12, + "probability": 0.6587 + }, + { + "start": 3075.36, + "end": 3075.84, + "probability": 0.7258 + }, + { + "start": 3075.9, + "end": 3077.04, + "probability": 0.9624 + }, + { + "start": 3077.1, + "end": 3078.4, + "probability": 0.738 + }, + { + "start": 3078.84, + "end": 3080.02, + "probability": 0.5242 + }, + { + "start": 3081.08, + "end": 3084.0, + "probability": 0.6764 + }, + { + "start": 3085.18, + "end": 3086.2, + "probability": 0.8168 + }, + { + "start": 3087.02, + "end": 3090.0, + "probability": 0.8655 + }, + { + "start": 3091.22, + "end": 3098.62, + "probability": 0.9321 + }, + { + "start": 3098.94, + "end": 3102.76, + "probability": 0.9006 + }, + { + "start": 3103.46, + "end": 3104.98, + "probability": 0.3036 + }, + { + "start": 3105.1, + "end": 3108.12, + "probability": 0.9746 + }, + { + "start": 3108.26, + "end": 3110.26, + "probability": 0.9663 + }, + { + "start": 3111.22, + "end": 3112.86, + "probability": 0.8097 + }, + { + "start": 3113.28, + "end": 3114.4, + "probability": 0.8972 + }, + { + "start": 3115.68, + "end": 3119.04, + "probability": 0.8429 + }, + { + "start": 3120.22, + "end": 3121.66, + "probability": 0.9786 + }, + { + "start": 3122.24, + "end": 3122.8, + "probability": 0.7143 + }, + { + "start": 3123.42, + "end": 3127.12, + "probability": 0.7373 + }, + { + "start": 3127.12, + "end": 3133.2, + "probability": 0.9184 + }, + { + "start": 3133.44, + "end": 3137.54, + "probability": 0.761 + }, + { + "start": 3138.14, + "end": 3140.5, + "probability": 0.9067 + }, + { + "start": 3140.98, + "end": 3144.4, + "probability": 0.9924 + }, + { + "start": 3144.8, + "end": 3149.42, + "probability": 0.9935 + }, + { + "start": 3150.28, + "end": 3150.88, + "probability": 0.7391 + }, + { + "start": 3151.58, + "end": 3152.48, + "probability": 0.7467 + }, + { + "start": 3153.5, + "end": 3155.18, + "probability": 0.9429 + }, + { + "start": 3162.88, + "end": 3164.36, + "probability": 0.7994 + }, + { + "start": 3164.62, + "end": 3166.82, + "probability": 0.8425 + }, + { + "start": 3167.94, + "end": 3170.16, + "probability": 0.9861 + }, + { + "start": 3170.56, + "end": 3171.16, + "probability": 0.7974 + }, + { + "start": 3171.18, + "end": 3172.41, + "probability": 0.6294 + }, + { + "start": 3173.56, + "end": 3176.72, + "probability": 0.9824 + }, + { + "start": 3177.8, + "end": 3178.92, + "probability": 0.7705 + }, + { + "start": 3179.1, + "end": 3181.82, + "probability": 0.9854 + }, + { + "start": 3182.34, + "end": 3182.62, + "probability": 0.8569 + }, + { + "start": 3183.96, + "end": 3185.3, + "probability": 0.8578 + }, + { + "start": 3185.38, + "end": 3188.64, + "probability": 0.9798 + }, + { + "start": 3189.14, + "end": 3190.06, + "probability": 0.9005 + }, + { + "start": 3190.96, + "end": 3195.12, + "probability": 0.8836 + }, + { + "start": 3196.72, + "end": 3197.1, + "probability": 0.4305 + }, + { + "start": 3197.16, + "end": 3197.6, + "probability": 0.6683 + }, + { + "start": 3198.24, + "end": 3198.44, + "probability": 0.5556 + }, + { + "start": 3199.44, + "end": 3201.56, + "probability": 0.6786 + }, + { + "start": 3201.84, + "end": 3203.5, + "probability": 0.7788 + }, + { + "start": 3207.44, + "end": 3209.02, + "probability": 0.9722 + }, + { + "start": 3210.52, + "end": 3211.68, + "probability": 0.6176 + }, + { + "start": 3212.54, + "end": 3214.4, + "probability": 0.5667 + }, + { + "start": 3217.64, + "end": 3218.18, + "probability": 0.122 + }, + { + "start": 3218.22, + "end": 3221.38, + "probability": 0.5802 + }, + { + "start": 3221.5, + "end": 3224.76, + "probability": 0.9028 + }, + { + "start": 3225.16, + "end": 3225.96, + "probability": 0.7122 + }, + { + "start": 3227.56, + "end": 3228.38, + "probability": 0.7979 + }, + { + "start": 3228.48, + "end": 3231.76, + "probability": 0.9438 + }, + { + "start": 3231.88, + "end": 3233.06, + "probability": 0.9724 + }, + { + "start": 3234.32, + "end": 3236.98, + "probability": 0.847 + }, + { + "start": 3237.2, + "end": 3238.82, + "probability": 0.4442 + }, + { + "start": 3239.66, + "end": 3240.82, + "probability": 0.7704 + }, + { + "start": 3241.0, + "end": 3242.56, + "probability": 0.7147 + }, + { + "start": 3242.64, + "end": 3244.42, + "probability": 0.8927 + }, + { + "start": 3244.8, + "end": 3245.56, + "probability": 0.3071 + }, + { + "start": 3246.94, + "end": 3248.32, + "probability": 0.7612 + }, + { + "start": 3248.94, + "end": 3250.24, + "probability": 0.8956 + }, + { + "start": 3250.38, + "end": 3250.84, + "probability": 0.84 + }, + { + "start": 3251.3, + "end": 3252.72, + "probability": 0.987 + }, + { + "start": 3253.16, + "end": 3253.94, + "probability": 0.6374 + }, + { + "start": 3254.64, + "end": 3256.56, + "probability": 0.7699 + }, + { + "start": 3257.49, + "end": 3259.48, + "probability": 0.9175 + }, + { + "start": 3259.82, + "end": 3263.86, + "probability": 0.9831 + }, + { + "start": 3264.02, + "end": 3267.98, + "probability": 0.9474 + }, + { + "start": 3268.56, + "end": 3270.34, + "probability": 0.979 + }, + { + "start": 3271.0, + "end": 3274.58, + "probability": 0.6892 + }, + { + "start": 3275.02, + "end": 3276.34, + "probability": 0.999 + }, + { + "start": 3276.6, + "end": 3278.06, + "probability": 0.7415 + }, + { + "start": 3278.2, + "end": 3278.78, + "probability": 0.7162 + }, + { + "start": 3279.2, + "end": 3280.94, + "probability": 0.9432 + }, + { + "start": 3281.94, + "end": 3287.2, + "probability": 0.826 + }, + { + "start": 3287.8, + "end": 3288.38, + "probability": 0.5609 + }, + { + "start": 3288.48, + "end": 3289.24, + "probability": 0.9592 + }, + { + "start": 3289.34, + "end": 3290.92, + "probability": 0.9227 + }, + { + "start": 3291.1, + "end": 3291.68, + "probability": 0.6272 + }, + { + "start": 3292.14, + "end": 3293.98, + "probability": 0.9439 + }, + { + "start": 3294.36, + "end": 3296.58, + "probability": 0.7664 + }, + { + "start": 3297.02, + "end": 3300.66, + "probability": 0.9737 + }, + { + "start": 3301.36, + "end": 3301.82, + "probability": 0.6421 + }, + { + "start": 3301.94, + "end": 3302.24, + "probability": 0.7029 + }, + { + "start": 3303.02, + "end": 3303.84, + "probability": 0.0046 + }, + { + "start": 3303.84, + "end": 3305.95, + "probability": 0.6566 + }, + { + "start": 3306.04, + "end": 3307.5, + "probability": 0.7143 + }, + { + "start": 3308.24, + "end": 3309.5, + "probability": 0.8177 + }, + { + "start": 3311.6, + "end": 3313.44, + "probability": 0.988 + }, + { + "start": 3314.8, + "end": 3317.4, + "probability": 0.8435 + }, + { + "start": 3318.54, + "end": 3319.8, + "probability": 0.7652 + }, + { + "start": 3320.44, + "end": 3322.38, + "probability": 0.8693 + }, + { + "start": 3323.24, + "end": 3326.96, + "probability": 0.9834 + }, + { + "start": 3327.1, + "end": 3329.28, + "probability": 0.7437 + }, + { + "start": 3329.92, + "end": 3331.74, + "probability": 0.6456 + }, + { + "start": 3332.86, + "end": 3336.1, + "probability": 0.9983 + }, + { + "start": 3337.36, + "end": 3338.74, + "probability": 0.9144 + }, + { + "start": 3338.96, + "end": 3340.42, + "probability": 0.6304 + }, + { + "start": 3340.6, + "end": 3342.12, + "probability": 0.5056 + }, + { + "start": 3343.48, + "end": 3345.0, + "probability": 0.9568 + }, + { + "start": 3345.7, + "end": 3349.54, + "probability": 0.8572 + }, + { + "start": 3350.14, + "end": 3352.62, + "probability": 0.8958 + }, + { + "start": 3353.4, + "end": 3353.46, + "probability": 0.0598 + }, + { + "start": 3354.58, + "end": 3356.5, + "probability": 0.8985 + }, + { + "start": 3356.66, + "end": 3358.02, + "probability": 0.9985 + }, + { + "start": 3358.74, + "end": 3360.3, + "probability": 0.8684 + }, + { + "start": 3362.44, + "end": 3365.84, + "probability": 0.8817 + }, + { + "start": 3366.38, + "end": 3368.84, + "probability": 0.7232 + }, + { + "start": 3371.74, + "end": 3374.04, + "probability": 0.839 + }, + { + "start": 3374.1, + "end": 3376.52, + "probability": 0.8291 + }, + { + "start": 3377.28, + "end": 3378.66, + "probability": 0.9814 + }, + { + "start": 3378.9, + "end": 3379.54, + "probability": 0.8999 + }, + { + "start": 3379.78, + "end": 3380.24, + "probability": 0.4787 + }, + { + "start": 3380.36, + "end": 3380.94, + "probability": 0.9243 + }, + { + "start": 3381.3, + "end": 3382.0, + "probability": 0.921 + }, + { + "start": 3382.2, + "end": 3384.02, + "probability": 0.9834 + }, + { + "start": 3384.62, + "end": 3386.06, + "probability": 0.6721 + }, + { + "start": 3387.34, + "end": 3389.46, + "probability": 0.2769 + }, + { + "start": 3390.0, + "end": 3391.48, + "probability": 0.2188 + }, + { + "start": 3392.24, + "end": 3397.66, + "probability": 0.6602 + }, + { + "start": 3397.96, + "end": 3400.52, + "probability": 0.7853 + }, + { + "start": 3401.04, + "end": 3402.96, + "probability": 0.7732 + }, + { + "start": 3403.3, + "end": 3405.1, + "probability": 0.772 + }, + { + "start": 3405.86, + "end": 3407.24, + "probability": 0.9385 + }, + { + "start": 3407.48, + "end": 3409.72, + "probability": 0.9356 + }, + { + "start": 3410.82, + "end": 3411.7, + "probability": 0.7515 + }, + { + "start": 3412.37, + "end": 3415.2, + "probability": 0.8033 + }, + { + "start": 3416.72, + "end": 3420.48, + "probability": 0.8857 + }, + { + "start": 3420.78, + "end": 3421.94, + "probability": 0.7195 + }, + { + "start": 3421.94, + "end": 3427.16, + "probability": 0.7863 + }, + { + "start": 3428.44, + "end": 3431.66, + "probability": 0.9097 + }, + { + "start": 3454.18, + "end": 3454.9, + "probability": 0.5528 + }, + { + "start": 3455.44, + "end": 3456.82, + "probability": 0.6762 + }, + { + "start": 3459.9, + "end": 3465.86, + "probability": 0.9974 + }, + { + "start": 3465.96, + "end": 3466.62, + "probability": 0.9266 + }, + { + "start": 3467.28, + "end": 3469.6, + "probability": 0.9394 + }, + { + "start": 3470.1, + "end": 3471.34, + "probability": 0.8023 + }, + { + "start": 3471.76, + "end": 3475.56, + "probability": 0.9487 + }, + { + "start": 3476.44, + "end": 3480.68, + "probability": 0.8878 + }, + { + "start": 3481.46, + "end": 3484.4, + "probability": 0.9433 + }, + { + "start": 3485.06, + "end": 3498.28, + "probability": 0.0282 + }, + { + "start": 3498.28, + "end": 3498.28, + "probability": 0.262 + }, + { + "start": 3498.28, + "end": 3501.32, + "probability": 0.3386 + }, + { + "start": 3502.46, + "end": 3507.62, + "probability": 0.9067 + }, + { + "start": 3508.28, + "end": 3516.98, + "probability": 0.9985 + }, + { + "start": 3517.42, + "end": 3517.84, + "probability": 0.7269 + }, + { + "start": 3517.88, + "end": 3521.3, + "probability": 0.9973 + }, + { + "start": 3521.46, + "end": 3524.32, + "probability": 0.9178 + }, + { + "start": 3524.32, + "end": 3527.52, + "probability": 0.8919 + }, + { + "start": 3528.72, + "end": 3533.26, + "probability": 0.7515 + }, + { + "start": 3534.34, + "end": 3537.22, + "probability": 0.8546 + }, + { + "start": 3537.22, + "end": 3541.3, + "probability": 0.9714 + }, + { + "start": 3541.98, + "end": 3545.34, + "probability": 0.9847 + }, + { + "start": 3545.36, + "end": 3546.04, + "probability": 0.8302 + }, + { + "start": 3546.1, + "end": 3546.9, + "probability": 0.8361 + }, + { + "start": 3547.28, + "end": 3547.64, + "probability": 0.9062 + }, + { + "start": 3547.72, + "end": 3549.36, + "probability": 0.9725 + }, + { + "start": 3549.48, + "end": 3550.4, + "probability": 0.8809 + }, + { + "start": 3551.38, + "end": 3552.88, + "probability": 0.9287 + }, + { + "start": 3553.08, + "end": 3554.42, + "probability": 0.987 + }, + { + "start": 3554.48, + "end": 3555.88, + "probability": 0.8841 + }, + { + "start": 3558.02, + "end": 3563.26, + "probability": 0.894 + }, + { + "start": 3563.66, + "end": 3564.76, + "probability": 0.7625 + }, + { + "start": 3564.82, + "end": 3568.91, + "probability": 0.9959 + }, + { + "start": 3570.42, + "end": 3573.9, + "probability": 0.9882 + }, + { + "start": 3574.58, + "end": 3578.12, + "probability": 0.9925 + }, + { + "start": 3579.32, + "end": 3580.56, + "probability": 0.6923 + }, + { + "start": 3580.68, + "end": 3588.96, + "probability": 0.9938 + }, + { + "start": 3590.24, + "end": 3590.98, + "probability": 0.5712 + }, + { + "start": 3591.42, + "end": 3595.46, + "probability": 0.981 + }, + { + "start": 3595.56, + "end": 3597.06, + "probability": 0.9903 + }, + { + "start": 3597.94, + "end": 3598.7, + "probability": 0.8867 + }, + { + "start": 3599.8, + "end": 3601.1, + "probability": 0.9338 + }, + { + "start": 3601.28, + "end": 3604.84, + "probability": 0.998 + }, + { + "start": 3605.54, + "end": 3609.8, + "probability": 0.9252 + }, + { + "start": 3610.1, + "end": 3611.64, + "probability": 0.7087 + }, + { + "start": 3612.62, + "end": 3617.66, + "probability": 0.9721 + }, + { + "start": 3618.42, + "end": 3623.86, + "probability": 0.9945 + }, + { + "start": 3624.12, + "end": 3625.96, + "probability": 0.9919 + }, + { + "start": 3627.12, + "end": 3629.5, + "probability": 0.9909 + }, + { + "start": 3629.5, + "end": 3633.1, + "probability": 0.9976 + }, + { + "start": 3633.54, + "end": 3638.44, + "probability": 0.9958 + }, + { + "start": 3638.52, + "end": 3642.36, + "probability": 0.9392 + }, + { + "start": 3642.48, + "end": 3642.76, + "probability": 0.4514 + }, + { + "start": 3643.04, + "end": 3646.36, + "probability": 0.9941 + }, + { + "start": 3646.64, + "end": 3650.0, + "probability": 0.9091 + }, + { + "start": 3650.18, + "end": 3652.28, + "probability": 0.7866 + }, + { + "start": 3652.28, + "end": 3654.72, + "probability": 0.9991 + }, + { + "start": 3655.46, + "end": 3657.04, + "probability": 0.75 + }, + { + "start": 3658.24, + "end": 3659.8, + "probability": 0.9576 + }, + { + "start": 3660.36, + "end": 3660.88, + "probability": 0.8013 + }, + { + "start": 3661.02, + "end": 3661.94, + "probability": 0.8331 + }, + { + "start": 3662.2, + "end": 3665.34, + "probability": 0.8907 + }, + { + "start": 3666.28, + "end": 3669.24, + "probability": 0.4854 + }, + { + "start": 3669.76, + "end": 3670.34, + "probability": 0.7164 + }, + { + "start": 3670.52, + "end": 3671.42, + "probability": 0.7483 + }, + { + "start": 3671.5, + "end": 3672.46, + "probability": 0.812 + }, + { + "start": 3672.6, + "end": 3674.89, + "probability": 0.9193 + }, + { + "start": 3676.66, + "end": 3681.46, + "probability": 0.9041 + }, + { + "start": 3683.04, + "end": 3691.14, + "probability": 0.9883 + }, + { + "start": 3692.32, + "end": 3700.22, + "probability": 0.9834 + }, + { + "start": 3700.96, + "end": 3705.48, + "probability": 0.9551 + }, + { + "start": 3706.24, + "end": 3710.16, + "probability": 0.9097 + }, + { + "start": 3710.84, + "end": 3716.16, + "probability": 0.9613 + }, + { + "start": 3717.9, + "end": 3720.21, + "probability": 0.9889 + }, + { + "start": 3720.88, + "end": 3726.16, + "probability": 0.9948 + }, + { + "start": 3726.4, + "end": 3729.22, + "probability": 0.9817 + }, + { + "start": 3729.38, + "end": 3729.94, + "probability": 0.7548 + }, + { + "start": 3730.1, + "end": 3730.66, + "probability": 0.9492 + }, + { + "start": 3730.88, + "end": 3733.3, + "probability": 0.715 + }, + { + "start": 3734.32, + "end": 3736.5, + "probability": 0.9333 + }, + { + "start": 3736.62, + "end": 3738.27, + "probability": 0.9701 + }, + { + "start": 3739.18, + "end": 3739.7, + "probability": 0.9374 + }, + { + "start": 3739.78, + "end": 3741.46, + "probability": 0.8998 + }, + { + "start": 3742.86, + "end": 3746.2, + "probability": 0.905 + }, + { + "start": 3746.26, + "end": 3747.2, + "probability": 0.9066 + }, + { + "start": 3747.4, + "end": 3748.12, + "probability": 0.9364 + }, + { + "start": 3748.22, + "end": 3749.08, + "probability": 0.7754 + }, + { + "start": 3750.74, + "end": 3752.94, + "probability": 0.8723 + }, + { + "start": 3753.18, + "end": 3753.36, + "probability": 0.875 + }, + { + "start": 3753.56, + "end": 3758.88, + "probability": 0.9959 + }, + { + "start": 3758.88, + "end": 3762.94, + "probability": 0.9915 + }, + { + "start": 3763.02, + "end": 3767.5, + "probability": 0.9504 + }, + { + "start": 3767.5, + "end": 3770.26, + "probability": 0.9453 + }, + { + "start": 3771.5, + "end": 3773.72, + "probability": 0.9414 + }, + { + "start": 3774.12, + "end": 3779.54, + "probability": 0.9906 + }, + { + "start": 3780.0, + "end": 3780.9, + "probability": 0.9348 + }, + { + "start": 3780.98, + "end": 3784.8, + "probability": 0.9978 + }, + { + "start": 3784.98, + "end": 3789.64, + "probability": 0.9767 + }, + { + "start": 3790.18, + "end": 3796.03, + "probability": 0.9821 + }, + { + "start": 3796.9, + "end": 3799.26, + "probability": 0.9897 + }, + { + "start": 3800.48, + "end": 3803.14, + "probability": 0.8246 + }, + { + "start": 3804.02, + "end": 3806.0, + "probability": 0.8726 + }, + { + "start": 3806.62, + "end": 3808.96, + "probability": 0.9925 + }, + { + "start": 3809.58, + "end": 3813.06, + "probability": 0.9464 + }, + { + "start": 3813.58, + "end": 3815.62, + "probability": 0.9771 + }, + { + "start": 3816.08, + "end": 3816.52, + "probability": 0.7541 + }, + { + "start": 3816.64, + "end": 3818.7, + "probability": 0.9358 + }, + { + "start": 3819.92, + "end": 3820.08, + "probability": 0.3778 + }, + { + "start": 3820.08, + "end": 3820.48, + "probability": 0.6217 + }, + { + "start": 3820.9, + "end": 3823.08, + "probability": 0.8915 + }, + { + "start": 3835.24, + "end": 3838.02, + "probability": 0.8589 + }, + { + "start": 3838.29, + "end": 3841.1, + "probability": 0.993 + }, + { + "start": 3841.52, + "end": 3844.62, + "probability": 0.9938 + }, + { + "start": 3845.12, + "end": 3848.98, + "probability": 0.9906 + }, + { + "start": 3849.0, + "end": 3851.52, + "probability": 0.9878 + }, + { + "start": 3851.9, + "end": 3853.8, + "probability": 0.687 + }, + { + "start": 3853.96, + "end": 3857.94, + "probability": 0.9196 + }, + { + "start": 3858.04, + "end": 3860.52, + "probability": 0.8485 + }, + { + "start": 3861.04, + "end": 3864.02, + "probability": 0.8321 + }, + { + "start": 3865.4, + "end": 3867.02, + "probability": 0.6837 + }, + { + "start": 3867.14, + "end": 3872.54, + "probability": 0.8262 + }, + { + "start": 3872.6, + "end": 3876.4, + "probability": 0.9498 + }, + { + "start": 3876.66, + "end": 3878.28, + "probability": 0.9172 + }, + { + "start": 3879.1, + "end": 3881.65, + "probability": 0.8076 + }, + { + "start": 3882.24, + "end": 3884.32, + "probability": 0.7484 + }, + { + "start": 3885.06, + "end": 3887.94, + "probability": 0.946 + }, + { + "start": 3888.2, + "end": 3888.9, + "probability": 0.8264 + }, + { + "start": 3889.54, + "end": 3896.92, + "probability": 0.9838 + }, + { + "start": 3897.38, + "end": 3900.84, + "probability": 0.9944 + }, + { + "start": 3900.98, + "end": 3902.14, + "probability": 0.8643 + }, + { + "start": 3902.2, + "end": 3904.68, + "probability": 0.9759 + }, + { + "start": 3905.16, + "end": 3911.28, + "probability": 0.9794 + }, + { + "start": 3911.92, + "end": 3912.5, + "probability": 0.3905 + }, + { + "start": 3912.5, + "end": 3914.42, + "probability": 0.5887 + }, + { + "start": 3915.0, + "end": 3920.54, + "probability": 0.9498 + }, + { + "start": 3920.68, + "end": 3922.52, + "probability": 0.7166 + }, + { + "start": 3923.04, + "end": 3925.92, + "probability": 0.9946 + }, + { + "start": 3926.3, + "end": 3927.24, + "probability": 0.9761 + }, + { + "start": 3927.24, + "end": 3928.34, + "probability": 0.9012 + }, + { + "start": 3928.58, + "end": 3930.2, + "probability": 0.8625 + }, + { + "start": 3930.74, + "end": 3932.58, + "probability": 0.8726 + }, + { + "start": 3941.22, + "end": 3941.68, + "probability": 0.0959 + }, + { + "start": 3941.7, + "end": 3943.26, + "probability": 0.6184 + }, + { + "start": 3944.72, + "end": 3946.02, + "probability": 0.9395 + }, + { + "start": 3946.18, + "end": 3946.58, + "probability": 0.7602 + }, + { + "start": 3946.7, + "end": 3949.28, + "probability": 0.8915 + }, + { + "start": 3950.14, + "end": 3951.42, + "probability": 0.9617 + }, + { + "start": 3951.98, + "end": 3954.94, + "probability": 0.7067 + }, + { + "start": 3955.12, + "end": 3955.62, + "probability": 0.6156 + }, + { + "start": 3956.04, + "end": 3956.8, + "probability": 0.5246 + }, + { + "start": 3957.38, + "end": 3958.38, + "probability": 0.6523 + }, + { + "start": 3958.64, + "end": 3959.22, + "probability": 0.6944 + }, + { + "start": 3959.56, + "end": 3959.94, + "probability": 0.2752 + }, + { + "start": 3960.0, + "end": 3960.86, + "probability": 0.6039 + }, + { + "start": 3960.92, + "end": 3961.32, + "probability": 0.7116 + }, + { + "start": 3961.44, + "end": 3963.4, + "probability": 0.962 + }, + { + "start": 3963.94, + "end": 3964.32, + "probability": 0.8627 + }, + { + "start": 3964.52, + "end": 3965.48, + "probability": 0.9377 + }, + { + "start": 3965.58, + "end": 3966.66, + "probability": 0.9443 + }, + { + "start": 3966.74, + "end": 3970.88, + "probability": 0.977 + }, + { + "start": 3971.74, + "end": 3975.94, + "probability": 0.9888 + }, + { + "start": 3976.46, + "end": 3976.76, + "probability": 0.7016 + }, + { + "start": 3976.94, + "end": 3977.54, + "probability": 0.7983 + }, + { + "start": 3977.62, + "end": 3978.04, + "probability": 0.8313 + }, + { + "start": 3978.12, + "end": 3979.0, + "probability": 0.8695 + }, + { + "start": 3979.1, + "end": 3979.84, + "probability": 0.9486 + }, + { + "start": 3980.22, + "end": 3981.32, + "probability": 0.8224 + }, + { + "start": 3982.02, + "end": 3984.24, + "probability": 0.9676 + }, + { + "start": 3984.82, + "end": 3988.92, + "probability": 0.993 + }, + { + "start": 3989.68, + "end": 3992.26, + "probability": 0.9758 + }, + { + "start": 3992.54, + "end": 3993.74, + "probability": 0.956 + }, + { + "start": 3994.12, + "end": 3995.22, + "probability": 0.9149 + }, + { + "start": 3995.58, + "end": 3998.36, + "probability": 0.9932 + }, + { + "start": 3998.48, + "end": 3998.98, + "probability": 0.9514 + }, + { + "start": 3999.4, + "end": 4000.0, + "probability": 0.5489 + }, + { + "start": 4000.54, + "end": 4000.62, + "probability": 0.3561 + }, + { + "start": 4000.74, + "end": 4001.24, + "probability": 0.9322 + }, + { + "start": 4001.48, + "end": 4002.6, + "probability": 0.8483 + }, + { + "start": 4002.7, + "end": 4006.16, + "probability": 0.9512 + }, + { + "start": 4006.26, + "end": 4009.8, + "probability": 0.8145 + }, + { + "start": 4010.76, + "end": 4012.82, + "probability": 0.8721 + }, + { + "start": 4012.94, + "end": 4015.08, + "probability": 0.9752 + }, + { + "start": 4015.56, + "end": 4016.94, + "probability": 0.9043 + }, + { + "start": 4017.4, + "end": 4020.58, + "probability": 0.9538 + }, + { + "start": 4021.12, + "end": 4021.34, + "probability": 0.738 + }, + { + "start": 4022.02, + "end": 4022.68, + "probability": 0.6215 + }, + { + "start": 4022.82, + "end": 4023.94, + "probability": 0.3788 + }, + { + "start": 4024.16, + "end": 4025.62, + "probability": 0.8715 + }, + { + "start": 4026.6, + "end": 4027.1, + "probability": 0.0144 + }, + { + "start": 4027.12, + "end": 4028.77, + "probability": 0.9672 + }, + { + "start": 4028.98, + "end": 4033.94, + "probability": 0.9992 + }, + { + "start": 4033.94, + "end": 4039.8, + "probability": 0.9993 + }, + { + "start": 4040.6, + "end": 4041.54, + "probability": 0.8795 + }, + { + "start": 4041.68, + "end": 4047.92, + "probability": 0.973 + }, + { + "start": 4048.6, + "end": 4054.7, + "probability": 0.9979 + }, + { + "start": 4055.1, + "end": 4058.62, + "probability": 0.9956 + }, + { + "start": 4059.22, + "end": 4062.4, + "probability": 0.9925 + }, + { + "start": 4063.22, + "end": 4070.08, + "probability": 0.9922 + }, + { + "start": 4070.26, + "end": 4071.15, + "probability": 0.0886 + }, + { + "start": 4072.44, + "end": 4075.42, + "probability": 0.937 + }, + { + "start": 4076.02, + "end": 4078.2, + "probability": 0.8767 + }, + { + "start": 4078.54, + "end": 4082.88, + "probability": 0.9962 + }, + { + "start": 4082.88, + "end": 4088.72, + "probability": 0.9868 + }, + { + "start": 4090.68, + "end": 4091.94, + "probability": 0.7341 + }, + { + "start": 4092.62, + "end": 4097.8, + "probability": 0.998 + }, + { + "start": 4097.8, + "end": 4102.78, + "probability": 0.9963 + }, + { + "start": 4102.8, + "end": 4107.7, + "probability": 0.9579 + }, + { + "start": 4107.78, + "end": 4108.76, + "probability": 0.6584 + }, + { + "start": 4109.68, + "end": 4113.76, + "probability": 0.8979 + }, + { + "start": 4114.52, + "end": 4121.06, + "probability": 0.9768 + }, + { + "start": 4121.41, + "end": 4125.0, + "probability": 0.8726 + }, + { + "start": 4125.1, + "end": 4128.02, + "probability": 0.7752 + }, + { + "start": 4128.02, + "end": 4131.72, + "probability": 0.9958 + }, + { + "start": 4132.26, + "end": 4134.12, + "probability": 0.7892 + }, + { + "start": 4135.02, + "end": 4136.22, + "probability": 0.518 + }, + { + "start": 4136.24, + "end": 4138.38, + "probability": 0.7183 + }, + { + "start": 4139.04, + "end": 4140.82, + "probability": 0.9729 + }, + { + "start": 4140.96, + "end": 4142.29, + "probability": 0.9966 + }, + { + "start": 4142.88, + "end": 4144.58, + "probability": 0.9969 + }, + { + "start": 4144.98, + "end": 4147.48, + "probability": 0.9705 + }, + { + "start": 4147.52, + "end": 4152.12, + "probability": 0.9919 + }, + { + "start": 4152.34, + "end": 4156.56, + "probability": 0.996 + }, + { + "start": 4156.56, + "end": 4160.74, + "probability": 0.999 + }, + { + "start": 4161.88, + "end": 4164.26, + "probability": 0.9828 + }, + { + "start": 4164.64, + "end": 4165.14, + "probability": 0.7644 + }, + { + "start": 4165.66, + "end": 4168.7, + "probability": 0.7027 + }, + { + "start": 4168.94, + "end": 4170.52, + "probability": 0.9575 + }, + { + "start": 4170.98, + "end": 4172.84, + "probability": 0.5074 + }, + { + "start": 4173.28, + "end": 4174.48, + "probability": 0.7143 + }, + { + "start": 4174.74, + "end": 4175.08, + "probability": 0.8368 + }, + { + "start": 4175.54, + "end": 4176.96, + "probability": 0.9341 + }, + { + "start": 4177.02, + "end": 4178.52, + "probability": 0.847 + }, + { + "start": 4178.92, + "end": 4180.56, + "probability": 0.8752 + }, + { + "start": 4180.78, + "end": 4182.36, + "probability": 0.9765 + }, + { + "start": 4183.06, + "end": 4185.62, + "probability": 0.8326 + }, + { + "start": 4186.44, + "end": 4188.62, + "probability": 0.3955 + }, + { + "start": 4189.66, + "end": 4193.22, + "probability": 0.7181 + }, + { + "start": 4193.32, + "end": 4194.06, + "probability": 0.7282 + }, + { + "start": 4194.28, + "end": 4195.58, + "probability": 0.5623 + }, + { + "start": 4196.32, + "end": 4198.64, + "probability": 0.705 + }, + { + "start": 4199.36, + "end": 4200.18, + "probability": 0.6588 + }, + { + "start": 4203.52, + "end": 4204.68, + "probability": 0.7267 + }, + { + "start": 4205.24, + "end": 4205.76, + "probability": 0.1457 + }, + { + "start": 4206.44, + "end": 4207.46, + "probability": 0.6911 + }, + { + "start": 4208.0, + "end": 4211.2, + "probability": 0.9714 + }, + { + "start": 4211.34, + "end": 4211.5, + "probability": 0.8541 + }, + { + "start": 4212.62, + "end": 4214.46, + "probability": 0.8974 + }, + { + "start": 4215.0, + "end": 4218.02, + "probability": 0.9922 + }, + { + "start": 4218.02, + "end": 4222.9, + "probability": 0.82 + }, + { + "start": 4223.46, + "end": 4227.82, + "probability": 0.8534 + }, + { + "start": 4228.66, + "end": 4233.94, + "probability": 0.8978 + }, + { + "start": 4237.34, + "end": 4237.74, + "probability": 0.6286 + }, + { + "start": 4238.26, + "end": 4239.94, + "probability": 0.8066 + }, + { + "start": 4240.3, + "end": 4242.18, + "probability": 0.4651 + }, + { + "start": 4243.04, + "end": 4247.46, + "probability": 0.6089 + }, + { + "start": 4250.22, + "end": 4255.26, + "probability": 0.9171 + }, + { + "start": 4256.1, + "end": 4256.24, + "probability": 0.0635 + }, + { + "start": 4256.24, + "end": 4256.78, + "probability": 0.4465 + }, + { + "start": 4256.94, + "end": 4257.81, + "probability": 0.8866 + }, + { + "start": 4258.02, + "end": 4258.28, + "probability": 0.6614 + }, + { + "start": 4258.28, + "end": 4259.94, + "probability": 0.9377 + }, + { + "start": 4260.86, + "end": 4264.98, + "probability": 0.8189 + }, + { + "start": 4265.38, + "end": 4266.46, + "probability": 0.9155 + }, + { + "start": 4266.58, + "end": 4272.86, + "probability": 0.911 + }, + { + "start": 4273.34, + "end": 4273.34, + "probability": 0.0326 + }, + { + "start": 4273.34, + "end": 4276.22, + "probability": 0.8636 + }, + { + "start": 4276.22, + "end": 4280.14, + "probability": 0.9941 + }, + { + "start": 4280.24, + "end": 4281.9, + "probability": 0.9164 + }, + { + "start": 4282.3, + "end": 4282.96, + "probability": 0.941 + }, + { + "start": 4284.66, + "end": 4285.0, + "probability": 0.8159 + }, + { + "start": 4285.12, + "end": 4290.7, + "probability": 0.9728 + }, + { + "start": 4291.92, + "end": 4295.4, + "probability": 0.984 + }, + { + "start": 4295.4, + "end": 4299.58, + "probability": 0.8957 + }, + { + "start": 4300.5, + "end": 4305.34, + "probability": 0.9819 + }, + { + "start": 4305.82, + "end": 4307.52, + "probability": 0.9479 + }, + { + "start": 4308.36, + "end": 4312.22, + "probability": 0.9589 + }, + { + "start": 4313.24, + "end": 4317.84, + "probability": 0.9884 + }, + { + "start": 4319.68, + "end": 4323.76, + "probability": 0.9976 + }, + { + "start": 4323.96, + "end": 4325.6, + "probability": 0.9523 + }, + { + "start": 4326.58, + "end": 4330.02, + "probability": 0.9939 + }, + { + "start": 4330.94, + "end": 4334.96, + "probability": 0.9909 + }, + { + "start": 4335.48, + "end": 4337.3, + "probability": 0.8446 + }, + { + "start": 4337.78, + "end": 4340.06, + "probability": 0.9456 + }, + { + "start": 4340.26, + "end": 4341.34, + "probability": 0.9128 + }, + { + "start": 4342.56, + "end": 4345.7, + "probability": 0.9859 + }, + { + "start": 4346.84, + "end": 4347.52, + "probability": 0.8003 + }, + { + "start": 4348.28, + "end": 4355.88, + "probability": 0.9694 + }, + { + "start": 4356.72, + "end": 4358.8, + "probability": 0.991 + }, + { + "start": 4360.8, + "end": 4365.5, + "probability": 0.7752 + }, + { + "start": 4366.16, + "end": 4370.32, + "probability": 0.993 + }, + { + "start": 4370.32, + "end": 4374.2, + "probability": 0.7186 + }, + { + "start": 4375.28, + "end": 4379.08, + "probability": 0.9746 + }, + { + "start": 4379.08, + "end": 4383.86, + "probability": 0.8316 + }, + { + "start": 4384.02, + "end": 4384.56, + "probability": 0.7414 + }, + { + "start": 4384.64, + "end": 4387.3, + "probability": 0.8696 + }, + { + "start": 4387.94, + "end": 4389.66, + "probability": 0.263 + }, + { + "start": 4389.94, + "end": 4391.66, + "probability": 0.6484 + }, + { + "start": 4391.82, + "end": 4393.46, + "probability": 0.7156 + }, + { + "start": 4393.56, + "end": 4396.78, + "probability": 0.9525 + }, + { + "start": 4397.42, + "end": 4397.7, + "probability": 0.874 + }, + { + "start": 4397.78, + "end": 4399.56, + "probability": 0.6449 + }, + { + "start": 4399.74, + "end": 4400.86, + "probability": 0.7183 + }, + { + "start": 4401.14, + "end": 4404.2, + "probability": 0.9067 + }, + { + "start": 4404.78, + "end": 4405.66, + "probability": 0.7659 + }, + { + "start": 4406.5, + "end": 4410.58, + "probability": 0.0688 + }, + { + "start": 4410.58, + "end": 4410.58, + "probability": 0.0656 + }, + { + "start": 4410.58, + "end": 4414.36, + "probability": 0.503 + }, + { + "start": 4414.98, + "end": 4417.3, + "probability": 0.9811 + }, + { + "start": 4418.16, + "end": 4419.98, + "probability": 0.7277 + }, + { + "start": 4420.32, + "end": 4422.68, + "probability": 0.9701 + }, + { + "start": 4423.08, + "end": 4430.72, + "probability": 0.8318 + }, + { + "start": 4431.8, + "end": 4434.64, + "probability": 0.8567 + }, + { + "start": 4437.0, + "end": 4441.44, + "probability": 0.7166 + }, + { + "start": 4441.5, + "end": 4444.06, + "probability": 0.9326 + }, + { + "start": 4446.04, + "end": 4450.3, + "probability": 0.9712 + }, + { + "start": 4450.6, + "end": 4455.12, + "probability": 0.9169 + }, + { + "start": 4457.06, + "end": 4461.06, + "probability": 0.9474 + }, + { + "start": 4461.58, + "end": 4469.24, + "probability": 0.9475 + }, + { + "start": 4469.82, + "end": 4472.9, + "probability": 0.8995 + }, + { + "start": 4473.58, + "end": 4477.82, + "probability": 0.9474 + }, + { + "start": 4478.44, + "end": 4481.38, + "probability": 0.9326 + }, + { + "start": 4483.4, + "end": 4488.88, + "probability": 0.9858 + }, + { + "start": 4489.48, + "end": 4494.7, + "probability": 0.9546 + }, + { + "start": 4496.42, + "end": 4499.22, + "probability": 0.9812 + }, + { + "start": 4501.24, + "end": 4501.7, + "probability": 0.8749 + }, + { + "start": 4502.3, + "end": 4504.94, + "probability": 0.9618 + }, + { + "start": 4505.72, + "end": 4508.78, + "probability": 0.7993 + }, + { + "start": 4509.44, + "end": 4512.16, + "probability": 0.8699 + }, + { + "start": 4513.02, + "end": 4515.06, + "probability": 0.7165 + }, + { + "start": 4515.08, + "end": 4516.63, + "probability": 0.8792 + }, + { + "start": 4517.42, + "end": 4521.36, + "probability": 0.98 + }, + { + "start": 4522.14, + "end": 4524.88, + "probability": 0.8668 + }, + { + "start": 4525.02, + "end": 4527.22, + "probability": 0.9902 + }, + { + "start": 4527.22, + "end": 4529.88, + "probability": 0.7955 + }, + { + "start": 4531.88, + "end": 4535.96, + "probability": 0.9965 + }, + { + "start": 4536.18, + "end": 4537.26, + "probability": 0.5832 + }, + { + "start": 4537.38, + "end": 4538.42, + "probability": 0.9504 + }, + { + "start": 4538.48, + "end": 4539.44, + "probability": 0.5089 + }, + { + "start": 4540.06, + "end": 4543.22, + "probability": 0.8862 + }, + { + "start": 4543.22, + "end": 4547.16, + "probability": 0.9436 + }, + { + "start": 4548.28, + "end": 4552.1, + "probability": 0.9913 + }, + { + "start": 4552.64, + "end": 4557.18, + "probability": 0.9518 + }, + { + "start": 4558.34, + "end": 4562.56, + "probability": 0.9978 + }, + { + "start": 4562.92, + "end": 4564.5, + "probability": 0.9978 + }, + { + "start": 4565.92, + "end": 4568.38, + "probability": 0.9878 + }, + { + "start": 4568.68, + "end": 4569.48, + "probability": 0.8826 + }, + { + "start": 4570.66, + "end": 4572.32, + "probability": 0.5739 + }, + { + "start": 4572.98, + "end": 4575.42, + "probability": 0.9922 + }, + { + "start": 4575.64, + "end": 4577.34, + "probability": 0.9785 + }, + { + "start": 4578.64, + "end": 4581.08, + "probability": 0.9651 + }, + { + "start": 4581.56, + "end": 4583.22, + "probability": 0.9841 + }, + { + "start": 4583.48, + "end": 4586.42, + "probability": 0.9352 + }, + { + "start": 4586.94, + "end": 4587.76, + "probability": 0.4649 + }, + { + "start": 4587.84, + "end": 4591.32, + "probability": 0.6648 + }, + { + "start": 4591.68, + "end": 4592.56, + "probability": 0.55 + }, + { + "start": 4594.04, + "end": 4595.94, + "probability": 0.8924 + }, + { + "start": 4597.02, + "end": 4597.42, + "probability": 0.8752 + }, + { + "start": 4597.52, + "end": 4598.42, + "probability": 0.9554 + }, + { + "start": 4598.86, + "end": 4600.86, + "probability": 0.9882 + }, + { + "start": 4601.34, + "end": 4603.92, + "probability": 0.9719 + }, + { + "start": 4604.32, + "end": 4605.9, + "probability": 0.8428 + }, + { + "start": 4606.26, + "end": 4607.38, + "probability": 0.8923 + }, + { + "start": 4607.76, + "end": 4609.16, + "probability": 0.9588 + }, + { + "start": 4610.44, + "end": 4612.96, + "probability": 0.9616 + }, + { + "start": 4613.54, + "end": 4615.52, + "probability": 0.9968 + }, + { + "start": 4616.32, + "end": 4618.66, + "probability": 0.9521 + }, + { + "start": 4619.66, + "end": 4623.54, + "probability": 0.993 + }, + { + "start": 4623.54, + "end": 4628.48, + "probability": 0.9973 + }, + { + "start": 4629.64, + "end": 4631.84, + "probability": 0.999 + }, + { + "start": 4632.5, + "end": 4636.8, + "probability": 0.8936 + }, + { + "start": 4638.32, + "end": 4639.23, + "probability": 0.9224 + }, + { + "start": 4639.38, + "end": 4641.84, + "probability": 0.9067 + }, + { + "start": 4642.82, + "end": 4645.62, + "probability": 0.7559 + }, + { + "start": 4646.2, + "end": 4651.46, + "probability": 0.9878 + }, + { + "start": 4653.06, + "end": 4654.83, + "probability": 0.9917 + }, + { + "start": 4655.4, + "end": 4658.22, + "probability": 0.9951 + }, + { + "start": 4659.5, + "end": 4661.06, + "probability": 0.9934 + }, + { + "start": 4661.26, + "end": 4662.96, + "probability": 0.9885 + }, + { + "start": 4663.04, + "end": 4664.94, + "probability": 0.9914 + }, + { + "start": 4665.4, + "end": 4666.88, + "probability": 0.9775 + }, + { + "start": 4667.46, + "end": 4669.06, + "probability": 0.9171 + }, + { + "start": 4669.56, + "end": 4675.04, + "probability": 0.9942 + }, + { + "start": 4675.66, + "end": 4677.8, + "probability": 0.9525 + }, + { + "start": 4680.44, + "end": 4682.24, + "probability": 0.8094 + }, + { + "start": 4683.42, + "end": 4684.68, + "probability": 0.7573 + }, + { + "start": 4685.04, + "end": 4687.86, + "probability": 0.9897 + }, + { + "start": 4687.98, + "end": 4689.12, + "probability": 0.9502 + }, + { + "start": 4689.58, + "end": 4691.58, + "probability": 0.9463 + }, + { + "start": 4692.32, + "end": 4695.6, + "probability": 0.9888 + }, + { + "start": 4696.72, + "end": 4700.38, + "probability": 0.9874 + }, + { + "start": 4701.34, + "end": 4701.72, + "probability": 0.8472 + }, + { + "start": 4701.76, + "end": 4707.98, + "probability": 0.9542 + }, + { + "start": 4709.2, + "end": 4712.22, + "probability": 0.994 + }, + { + "start": 4713.62, + "end": 4714.82, + "probability": 0.9919 + }, + { + "start": 4715.02, + "end": 4715.84, + "probability": 0.9939 + }, + { + "start": 4716.06, + "end": 4719.46, + "probability": 0.9937 + }, + { + "start": 4719.46, + "end": 4723.78, + "probability": 0.9993 + }, + { + "start": 4724.46, + "end": 4725.76, + "probability": 0.9062 + }, + { + "start": 4726.14, + "end": 4727.7, + "probability": 0.8857 + }, + { + "start": 4728.0, + "end": 4730.74, + "probability": 0.9308 + }, + { + "start": 4731.48, + "end": 4733.38, + "probability": 0.9712 + }, + { + "start": 4734.86, + "end": 4739.16, + "probability": 0.9474 + }, + { + "start": 4739.16, + "end": 4742.7, + "probability": 0.9878 + }, + { + "start": 4744.52, + "end": 4746.88, + "probability": 0.9507 + }, + { + "start": 4749.3, + "end": 4754.42, + "probability": 0.8596 + }, + { + "start": 4755.46, + "end": 4756.26, + "probability": 0.6188 + }, + { + "start": 4757.58, + "end": 4761.76, + "probability": 0.9946 + }, + { + "start": 4762.42, + "end": 4763.72, + "probability": 0.9723 + }, + { + "start": 4763.86, + "end": 4771.8, + "probability": 0.9769 + }, + { + "start": 4772.7, + "end": 4774.56, + "probability": 0.9894 + }, + { + "start": 4775.24, + "end": 4778.56, + "probability": 0.8739 + }, + { + "start": 4780.26, + "end": 4784.86, + "probability": 0.979 + }, + { + "start": 4785.08, + "end": 4787.22, + "probability": 0.9753 + }, + { + "start": 4788.66, + "end": 4793.46, + "probability": 0.9792 + }, + { + "start": 4794.16, + "end": 4794.7, + "probability": 0.6805 + }, + { + "start": 4795.26, + "end": 4801.16, + "probability": 0.9974 + }, + { + "start": 4801.7, + "end": 4805.6, + "probability": 0.9806 + }, + { + "start": 4807.7, + "end": 4810.12, + "probability": 0.9727 + }, + { + "start": 4810.32, + "end": 4816.46, + "probability": 0.9664 + }, + { + "start": 4816.46, + "end": 4821.08, + "probability": 0.9983 + }, + { + "start": 4821.64, + "end": 4822.92, + "probability": 0.6566 + }, + { + "start": 4823.3, + "end": 4826.04, + "probability": 0.984 + }, + { + "start": 4826.74, + "end": 4827.54, + "probability": 0.5658 + }, + { + "start": 4827.7, + "end": 4829.04, + "probability": 0.9856 + }, + { + "start": 4829.26, + "end": 4829.4, + "probability": 0.7368 + }, + { + "start": 4830.44, + "end": 4832.5, + "probability": 0.9888 + }, + { + "start": 4832.86, + "end": 4837.74, + "probability": 0.7859 + }, + { + "start": 4856.6, + "end": 4857.82, + "probability": 0.5952 + }, + { + "start": 4859.18, + "end": 4860.34, + "probability": 0.0246 + }, + { + "start": 4863.38, + "end": 4863.6, + "probability": 0.1276 + }, + { + "start": 4863.74, + "end": 4865.72, + "probability": 0.0173 + }, + { + "start": 4865.72, + "end": 4869.0, + "probability": 0.0199 + }, + { + "start": 4893.42, + "end": 4898.8, + "probability": 0.6131 + }, + { + "start": 4899.62, + "end": 4903.42, + "probability": 0.8687 + }, + { + "start": 4904.28, + "end": 4908.0, + "probability": 0.9589 + }, + { + "start": 4908.92, + "end": 4910.56, + "probability": 0.7352 + }, + { + "start": 4911.78, + "end": 4915.8, + "probability": 0.8311 + }, + { + "start": 4917.5, + "end": 4919.42, + "probability": 0.9253 + }, + { + "start": 4919.54, + "end": 4921.04, + "probability": 0.9669 + }, + { + "start": 4921.98, + "end": 4923.56, + "probability": 0.6147 + }, + { + "start": 4924.22, + "end": 4926.96, + "probability": 0.1997 + }, + { + "start": 4926.96, + "end": 4930.47, + "probability": 0.9198 + }, + { + "start": 4931.48, + "end": 4936.26, + "probability": 0.9802 + }, + { + "start": 4937.14, + "end": 4937.72, + "probability": 0.6245 + }, + { + "start": 4937.84, + "end": 4941.12, + "probability": 0.9873 + }, + { + "start": 4942.12, + "end": 4943.88, + "probability": 0.9802 + }, + { + "start": 4944.52, + "end": 4946.44, + "probability": 0.9727 + }, + { + "start": 4947.58, + "end": 4952.88, + "probability": 0.9873 + }, + { + "start": 4953.6, + "end": 4955.16, + "probability": 0.9855 + }, + { + "start": 4956.58, + "end": 4956.96, + "probability": 0.1148 + }, + { + "start": 4958.06, + "end": 4959.3, + "probability": 0.8602 + }, + { + "start": 4960.28, + "end": 4962.82, + "probability": 0.9904 + }, + { + "start": 4963.66, + "end": 4966.18, + "probability": 0.9954 + }, + { + "start": 4966.84, + "end": 4969.72, + "probability": 0.9901 + }, + { + "start": 4970.3, + "end": 4970.6, + "probability": 0.9867 + }, + { + "start": 4971.2, + "end": 4973.66, + "probability": 0.9989 + }, + { + "start": 4973.66, + "end": 4976.92, + "probability": 0.9938 + }, + { + "start": 4977.12, + "end": 4978.22, + "probability": 0.9332 + }, + { + "start": 4979.66, + "end": 4981.86, + "probability": 0.8768 + }, + { + "start": 4982.78, + "end": 4984.64, + "probability": 0.9404 + }, + { + "start": 4985.38, + "end": 4987.54, + "probability": 0.7395 + }, + { + "start": 4988.24, + "end": 4989.88, + "probability": 0.9555 + }, + { + "start": 4990.7, + "end": 4993.28, + "probability": 0.7488 + }, + { + "start": 4994.58, + "end": 4997.56, + "probability": 0.9916 + }, + { + "start": 4998.32, + "end": 5000.42, + "probability": 0.9028 + }, + { + "start": 5001.32, + "end": 5004.82, + "probability": 0.9802 + }, + { + "start": 5004.82, + "end": 5008.38, + "probability": 0.8924 + }, + { + "start": 5010.64, + "end": 5012.79, + "probability": 0.8717 + }, + { + "start": 5014.08, + "end": 5015.5, + "probability": 0.9469 + }, + { + "start": 5016.58, + "end": 5019.74, + "probability": 0.8616 + }, + { + "start": 5020.98, + "end": 5022.92, + "probability": 0.7919 + }, + { + "start": 5024.12, + "end": 5026.28, + "probability": 0.9796 + }, + { + "start": 5027.52, + "end": 5030.8, + "probability": 0.96 + }, + { + "start": 5040.3, + "end": 5040.98, + "probability": 0.7494 + }, + { + "start": 5041.8, + "end": 5043.72, + "probability": 0.9469 + }, + { + "start": 5044.26, + "end": 5049.12, + "probability": 0.9767 + }, + { + "start": 5049.14, + "end": 5049.48, + "probability": 0.8828 + }, + { + "start": 5049.92, + "end": 5056.12, + "probability": 0.9781 + }, + { + "start": 5056.52, + "end": 5059.46, + "probability": 0.9962 + }, + { + "start": 5059.86, + "end": 5061.7, + "probability": 0.9517 + }, + { + "start": 5061.78, + "end": 5066.52, + "probability": 0.9715 + }, + { + "start": 5066.7, + "end": 5070.3, + "probability": 0.8781 + }, + { + "start": 5070.66, + "end": 5072.46, + "probability": 0.9917 + }, + { + "start": 5073.2, + "end": 5078.88, + "probability": 0.9638 + }, + { + "start": 5079.02, + "end": 5084.12, + "probability": 0.9883 + }, + { + "start": 5084.26, + "end": 5086.38, + "probability": 0.9766 + }, + { + "start": 5087.16, + "end": 5088.8, + "probability": 0.7434 + }, + { + "start": 5088.86, + "end": 5091.32, + "probability": 0.9862 + }, + { + "start": 5091.56, + "end": 5091.88, + "probability": 0.4661 + }, + { + "start": 5091.92, + "end": 5096.56, + "probability": 0.775 + }, + { + "start": 5097.12, + "end": 5100.72, + "probability": 0.9929 + }, + { + "start": 5100.72, + "end": 5105.62, + "probability": 0.998 + }, + { + "start": 5106.64, + "end": 5108.24, + "probability": 0.9859 + }, + { + "start": 5108.48, + "end": 5111.02, + "probability": 0.5957 + }, + { + "start": 5111.58, + "end": 5112.02, + "probability": 0.8251 + }, + { + "start": 5112.1, + "end": 5112.42, + "probability": 0.8189 + }, + { + "start": 5112.8, + "end": 5116.22, + "probability": 0.9883 + }, + { + "start": 5116.22, + "end": 5120.14, + "probability": 0.9804 + }, + { + "start": 5120.5, + "end": 5122.38, + "probability": 0.7834 + }, + { + "start": 5122.62, + "end": 5125.16, + "probability": 0.9539 + }, + { + "start": 5125.98, + "end": 5129.8, + "probability": 0.9968 + }, + { + "start": 5130.36, + "end": 5134.16, + "probability": 0.9354 + }, + { + "start": 5134.22, + "end": 5135.68, + "probability": 0.5814 + }, + { + "start": 5136.12, + "end": 5138.5, + "probability": 0.9644 + }, + { + "start": 5138.94, + "end": 5144.54, + "probability": 0.9957 + }, + { + "start": 5144.88, + "end": 5146.36, + "probability": 0.9912 + }, + { + "start": 5146.58, + "end": 5147.42, + "probability": 0.6893 + }, + { + "start": 5147.52, + "end": 5149.62, + "probability": 0.9149 + }, + { + "start": 5149.78, + "end": 5153.48, + "probability": 0.9844 + }, + { + "start": 5153.58, + "end": 5156.32, + "probability": 0.9258 + }, + { + "start": 5157.22, + "end": 5163.89, + "probability": 0.9707 + }, + { + "start": 5164.38, + "end": 5164.6, + "probability": 0.7868 + }, + { + "start": 5164.66, + "end": 5168.36, + "probability": 0.7744 + }, + { + "start": 5169.18, + "end": 5173.98, + "probability": 0.992 + }, + { + "start": 5173.98, + "end": 5177.88, + "probability": 0.9924 + }, + { + "start": 5178.3, + "end": 5179.52, + "probability": 0.6954 + }, + { + "start": 5180.06, + "end": 5181.04, + "probability": 0.9729 + }, + { + "start": 5181.34, + "end": 5182.52, + "probability": 0.9769 + }, + { + "start": 5182.96, + "end": 5184.48, + "probability": 0.9946 + }, + { + "start": 5184.68, + "end": 5187.9, + "probability": 0.9954 + }, + { + "start": 5188.28, + "end": 5190.24, + "probability": 0.7054 + }, + { + "start": 5190.32, + "end": 5191.78, + "probability": 0.8951 + }, + { + "start": 5192.16, + "end": 5198.66, + "probability": 0.974 + }, + { + "start": 5198.92, + "end": 5204.14, + "probability": 0.9469 + }, + { + "start": 5204.22, + "end": 5204.78, + "probability": 0.4281 + }, + { + "start": 5205.74, + "end": 5209.42, + "probability": 0.9971 + }, + { + "start": 5209.76, + "end": 5213.0, + "probability": 0.9408 + }, + { + "start": 5213.06, + "end": 5217.84, + "probability": 0.9896 + }, + { + "start": 5218.56, + "end": 5222.86, + "probability": 0.991 + }, + { + "start": 5222.94, + "end": 5226.42, + "probability": 0.9097 + }, + { + "start": 5226.64, + "end": 5231.22, + "probability": 0.9952 + }, + { + "start": 5231.3, + "end": 5234.04, + "probability": 0.6346 + }, + { + "start": 5234.22, + "end": 5235.92, + "probability": 0.6887 + }, + { + "start": 5236.4, + "end": 5238.74, + "probability": 0.9812 + }, + { + "start": 5239.12, + "end": 5240.68, + "probability": 0.8248 + }, + { + "start": 5240.84, + "end": 5244.64, + "probability": 0.9958 + }, + { + "start": 5245.32, + "end": 5247.52, + "probability": 0.825 + }, + { + "start": 5247.6, + "end": 5249.54, + "probability": 0.9932 + }, + { + "start": 5250.16, + "end": 5255.12, + "probability": 0.9952 + }, + { + "start": 5255.18, + "end": 5255.74, + "probability": 0.7773 + }, + { + "start": 5256.8, + "end": 5258.88, + "probability": 0.8369 + }, + { + "start": 5259.56, + "end": 5263.0, + "probability": 0.8374 + }, + { + "start": 5263.12, + "end": 5264.96, + "probability": 0.7575 + }, + { + "start": 5265.04, + "end": 5265.36, + "probability": 0.9661 + }, + { + "start": 5268.54, + "end": 5268.54, + "probability": 0.014 + }, + { + "start": 5268.54, + "end": 5269.92, + "probability": 0.4349 + }, + { + "start": 5270.26, + "end": 5271.64, + "probability": 0.9692 + }, + { + "start": 5271.66, + "end": 5272.36, + "probability": 0.8533 + }, + { + "start": 5272.46, + "end": 5273.9, + "probability": 0.9312 + }, + { + "start": 5274.76, + "end": 5278.36, + "probability": 0.3749 + }, + { + "start": 5279.1, + "end": 5279.24, + "probability": 0.5288 + }, + { + "start": 5279.3, + "end": 5281.14, + "probability": 0.9979 + }, + { + "start": 5281.72, + "end": 5284.0, + "probability": 0.9563 + }, + { + "start": 5284.36, + "end": 5284.98, + "probability": 0.7911 + }, + { + "start": 5285.0, + "end": 5285.46, + "probability": 0.682 + }, + { + "start": 5285.54, + "end": 5288.84, + "probability": 0.8703 + }, + { + "start": 5289.14, + "end": 5290.98, + "probability": 0.6636 + }, + { + "start": 5291.26, + "end": 5291.69, + "probability": 0.9753 + }, + { + "start": 5291.8, + "end": 5292.64, + "probability": 0.5037 + }, + { + "start": 5293.18, + "end": 5295.36, + "probability": 0.9824 + }, + { + "start": 5295.56, + "end": 5295.78, + "probability": 0.4457 + }, + { + "start": 5295.84, + "end": 5297.82, + "probability": 0.8276 + }, + { + "start": 5298.32, + "end": 5300.2, + "probability": 0.9771 + }, + { + "start": 5300.48, + "end": 5302.98, + "probability": 0.9717 + }, + { + "start": 5303.34, + "end": 5303.88, + "probability": 0.9404 + }, + { + "start": 5303.96, + "end": 5307.5, + "probability": 0.8996 + }, + { + "start": 5308.22, + "end": 5311.02, + "probability": 0.9781 + }, + { + "start": 5311.46, + "end": 5313.54, + "probability": 0.9494 + }, + { + "start": 5313.9, + "end": 5315.72, + "probability": 0.9915 + }, + { + "start": 5315.9, + "end": 5317.48, + "probability": 0.832 + }, + { + "start": 5317.98, + "end": 5321.7, + "probability": 0.9552 + }, + { + "start": 5322.12, + "end": 5324.18, + "probability": 0.9241 + }, + { + "start": 5324.66, + "end": 5325.01, + "probability": 0.7109 + }, + { + "start": 5325.26, + "end": 5330.08, + "probability": 0.9901 + }, + { + "start": 5330.6, + "end": 5332.59, + "probability": 0.891 + }, + { + "start": 5333.0, + "end": 5334.74, + "probability": 0.8436 + }, + { + "start": 5335.06, + "end": 5336.54, + "probability": 0.9981 + }, + { + "start": 5337.99, + "end": 5340.81, + "probability": 0.9124 + }, + { + "start": 5341.44, + "end": 5342.32, + "probability": 0.5367 + }, + { + "start": 5342.38, + "end": 5343.06, + "probability": 0.766 + }, + { + "start": 5343.12, + "end": 5343.84, + "probability": 0.9226 + }, + { + "start": 5343.9, + "end": 5345.82, + "probability": 0.9092 + }, + { + "start": 5346.46, + "end": 5347.9, + "probability": 0.8003 + }, + { + "start": 5348.42, + "end": 5350.26, + "probability": 0.9923 + }, + { + "start": 5350.64, + "end": 5353.2, + "probability": 0.9797 + }, + { + "start": 5353.52, + "end": 5354.68, + "probability": 0.9449 + }, + { + "start": 5355.0, + "end": 5356.34, + "probability": 0.7524 + }, + { + "start": 5363.2, + "end": 5365.6, + "probability": 0.4826 + }, + { + "start": 5365.98, + "end": 5367.0, + "probability": 0.6013 + }, + { + "start": 5367.08, + "end": 5368.12, + "probability": 0.3759 + }, + { + "start": 5368.12, + "end": 5376.42, + "probability": 0.888 + }, + { + "start": 5377.06, + "end": 5378.84, + "probability": 0.5596 + }, + { + "start": 5379.32, + "end": 5383.08, + "probability": 0.7253 + }, + { + "start": 5383.76, + "end": 5387.3, + "probability": 0.0274 + }, + { + "start": 5387.3, + "end": 5390.16, + "probability": 0.1125 + }, + { + "start": 5390.34, + "end": 5391.63, + "probability": 0.6493 + }, + { + "start": 5392.12, + "end": 5393.4, + "probability": 0.2131 + }, + { + "start": 5393.6, + "end": 5398.44, + "probability": 0.1039 + }, + { + "start": 5400.6, + "end": 5405.12, + "probability": 0.1285 + }, + { + "start": 5408.08, + "end": 5414.48, + "probability": 0.8303 + }, + { + "start": 5414.52, + "end": 5417.31, + "probability": 0.0188 + }, + { + "start": 5417.56, + "end": 5419.88, + "probability": 0.7348 + }, + { + "start": 5419.9, + "end": 5421.7, + "probability": 0.5242 + }, + { + "start": 5421.7, + "end": 5423.1, + "probability": 0.7128 + }, + { + "start": 5423.1, + "end": 5423.94, + "probability": 0.519 + }, + { + "start": 5423.98, + "end": 5424.54, + "probability": 0.7673 + }, + { + "start": 5424.64, + "end": 5425.74, + "probability": 0.847 + }, + { + "start": 5426.1, + "end": 5429.19, + "probability": 0.9869 + }, + { + "start": 5429.5, + "end": 5430.12, + "probability": 0.8365 + }, + { + "start": 5430.26, + "end": 5431.3, + "probability": 0.4817 + }, + { + "start": 5431.36, + "end": 5431.7, + "probability": 0.0224 + }, + { + "start": 5431.7, + "end": 5434.8, + "probability": 0.7629 + }, + { + "start": 5435.48, + "end": 5436.8, + "probability": 0.8087 + }, + { + "start": 5436.8, + "end": 5437.36, + "probability": 0.4229 + }, + { + "start": 5437.52, + "end": 5438.2, + "probability": 0.5239 + }, + { + "start": 5438.24, + "end": 5444.24, + "probability": 0.8095 + }, + { + "start": 5444.54, + "end": 5445.82, + "probability": 0.5809 + }, + { + "start": 5445.98, + "end": 5447.38, + "probability": 0.7271 + }, + { + "start": 5447.38, + "end": 5449.05, + "probability": 0.2651 + }, + { + "start": 5451.74, + "end": 5451.74, + "probability": 0.0276 + }, + { + "start": 5451.74, + "end": 5453.74, + "probability": 0.8011 + }, + { + "start": 5454.34, + "end": 5456.4, + "probability": 0.9987 + }, + { + "start": 5456.52, + "end": 5456.7, + "probability": 0.5589 + }, + { + "start": 5456.88, + "end": 5457.94, + "probability": 0.7338 + }, + { + "start": 5458.36, + "end": 5459.54, + "probability": 0.9249 + }, + { + "start": 5459.92, + "end": 5463.54, + "probability": 0.9963 + }, + { + "start": 5463.68, + "end": 5463.82, + "probability": 0.4865 + }, + { + "start": 5463.84, + "end": 5466.04, + "probability": 0.9897 + }, + { + "start": 5466.58, + "end": 5468.66, + "probability": 0.8463 + }, + { + "start": 5468.76, + "end": 5470.32, + "probability": 0.9846 + }, + { + "start": 5470.48, + "end": 5472.74, + "probability": 0.9789 + }, + { + "start": 5477.76, + "end": 5478.46, + "probability": 0.8617 + }, + { + "start": 5478.88, + "end": 5482.46, + "probability": 0.9615 + }, + { + "start": 5483.82, + "end": 5486.38, + "probability": 0.3102 + }, + { + "start": 5488.84, + "end": 5492.12, + "probability": 0.8162 + }, + { + "start": 5492.86, + "end": 5498.0, + "probability": 0.7548 + }, + { + "start": 5498.48, + "end": 5499.76, + "probability": 0.3661 + }, + { + "start": 5500.48, + "end": 5502.2, + "probability": 0.7788 + }, + { + "start": 5505.26, + "end": 5507.64, + "probability": 0.566 + }, + { + "start": 5507.7, + "end": 5508.32, + "probability": 0.3153 + }, + { + "start": 5508.38, + "end": 5510.0, + "probability": 0.7171 + }, + { + "start": 5511.77, + "end": 5515.52, + "probability": 0.8954 + }, + { + "start": 5516.93, + "end": 5524.35, + "probability": 0.0606 + }, + { + "start": 5525.35, + "end": 5526.38, + "probability": 0.0317 + }, + { + "start": 5527.72, + "end": 5528.94, + "probability": 0.0951 + }, + { + "start": 5528.94, + "end": 5528.94, + "probability": 0.2619 + }, + { + "start": 5528.94, + "end": 5529.06, + "probability": 0.2788 + }, + { + "start": 5529.22, + "end": 5529.66, + "probability": 0.6494 + }, + { + "start": 5529.98, + "end": 5530.14, + "probability": 0.4531 + }, + { + "start": 5530.16, + "end": 5530.68, + "probability": 0.474 + }, + { + "start": 5530.7, + "end": 5534.2, + "probability": 0.9888 + }, + { + "start": 5534.72, + "end": 5539.02, + "probability": 0.957 + }, + { + "start": 5539.38, + "end": 5539.94, + "probability": 0.8087 + }, + { + "start": 5540.02, + "end": 5541.76, + "probability": 0.9322 + }, + { + "start": 5542.26, + "end": 5545.98, + "probability": 0.0269 + }, + { + "start": 5547.44, + "end": 5547.54, + "probability": 0.0379 + }, + { + "start": 5547.54, + "end": 5550.02, + "probability": 0.7935 + }, + { + "start": 5551.88, + "end": 5552.88, + "probability": 0.342 + }, + { + "start": 5552.88, + "end": 5552.88, + "probability": 0.2344 + }, + { + "start": 5553.08, + "end": 5555.86, + "probability": 0.9536 + }, + { + "start": 5556.14, + "end": 5557.24, + "probability": 0.6016 + }, + { + "start": 5557.56, + "end": 5560.9, + "probability": 0.9437 + }, + { + "start": 5561.86, + "end": 5562.36, + "probability": 0.6228 + }, + { + "start": 5562.42, + "end": 5564.11, + "probability": 0.9502 + }, + { + "start": 5564.86, + "end": 5566.58, + "probability": 0.5206 + }, + { + "start": 5566.64, + "end": 5569.62, + "probability": 0.9007 + }, + { + "start": 5570.08, + "end": 5575.44, + "probability": 0.0474 + }, + { + "start": 5591.4, + "end": 5594.6, + "probability": 0.939 + }, + { + "start": 5595.32, + "end": 5599.14, + "probability": 0.7456 + }, + { + "start": 5599.2, + "end": 5600.82, + "probability": 0.9964 + }, + { + "start": 5601.18, + "end": 5603.94, + "probability": 0.6398 + }, + { + "start": 5606.72, + "end": 5607.38, + "probability": 0.1757 + }, + { + "start": 5607.38, + "end": 5612.94, + "probability": 0.7655 + }, + { + "start": 5613.48, + "end": 5616.0, + "probability": 0.9512 + }, + { + "start": 5616.98, + "end": 5620.48, + "probability": 0.7417 + }, + { + "start": 5621.62, + "end": 5625.36, + "probability": 0.9824 + }, + { + "start": 5626.44, + "end": 5629.44, + "probability": 0.9431 + }, + { + "start": 5630.3, + "end": 5630.96, + "probability": 0.4481 + }, + { + "start": 5631.08, + "end": 5632.8, + "probability": 0.7057 + }, + { + "start": 5632.96, + "end": 5633.74, + "probability": 0.5513 + }, + { + "start": 5635.9, + "end": 5638.44, + "probability": 0.9713 + }, + { + "start": 5638.88, + "end": 5640.86, + "probability": 0.8444 + }, + { + "start": 5642.2, + "end": 5643.92, + "probability": 0.9878 + }, + { + "start": 5644.42, + "end": 5649.36, + "probability": 0.9645 + }, + { + "start": 5650.86, + "end": 5654.0, + "probability": 0.9971 + }, + { + "start": 5654.94, + "end": 5661.7, + "probability": 0.9954 + }, + { + "start": 5662.78, + "end": 5664.02, + "probability": 0.9256 + }, + { + "start": 5664.1, + "end": 5666.76, + "probability": 0.8401 + }, + { + "start": 5666.92, + "end": 5668.08, + "probability": 0.9049 + }, + { + "start": 5669.3, + "end": 5671.9, + "probability": 0.9873 + }, + { + "start": 5673.14, + "end": 5675.82, + "probability": 0.9761 + }, + { + "start": 5676.08, + "end": 5677.22, + "probability": 0.9867 + }, + { + "start": 5678.54, + "end": 5683.3, + "probability": 0.9893 + }, + { + "start": 5684.26, + "end": 5690.7, + "probability": 0.9656 + }, + { + "start": 5691.52, + "end": 5694.52, + "probability": 0.9911 + }, + { + "start": 5695.1, + "end": 5697.2, + "probability": 0.976 + }, + { + "start": 5698.04, + "end": 5701.78, + "probability": 0.8267 + }, + { + "start": 5702.02, + "end": 5703.96, + "probability": 0.9332 + }, + { + "start": 5704.58, + "end": 5706.2, + "probability": 0.881 + }, + { + "start": 5707.52, + "end": 5710.18, + "probability": 0.9122 + }, + { + "start": 5711.72, + "end": 5715.51, + "probability": 0.8661 + }, + { + "start": 5716.44, + "end": 5717.5, + "probability": 0.2703 + }, + { + "start": 5718.72, + "end": 5721.98, + "probability": 0.9957 + }, + { + "start": 5721.98, + "end": 5725.54, + "probability": 0.8952 + }, + { + "start": 5726.22, + "end": 5729.24, + "probability": 0.9976 + }, + { + "start": 5729.24, + "end": 5731.98, + "probability": 0.9995 + }, + { + "start": 5733.2, + "end": 5736.9, + "probability": 0.9691 + }, + { + "start": 5738.16, + "end": 5738.74, + "probability": 0.8573 + }, + { + "start": 5739.48, + "end": 5742.06, + "probability": 0.8705 + }, + { + "start": 5742.58, + "end": 5744.42, + "probability": 0.9871 + }, + { + "start": 5745.6, + "end": 5748.64, + "probability": 0.973 + }, + { + "start": 5749.72, + "end": 5751.44, + "probability": 0.7599 + }, + { + "start": 5751.58, + "end": 5752.96, + "probability": 0.941 + }, + { + "start": 5753.78, + "end": 5757.06, + "probability": 0.9907 + }, + { + "start": 5757.06, + "end": 5760.28, + "probability": 0.999 + }, + { + "start": 5760.94, + "end": 5762.18, + "probability": 0.9133 + }, + { + "start": 5762.7, + "end": 5764.58, + "probability": 0.9739 + }, + { + "start": 5764.78, + "end": 5765.52, + "probability": 0.7339 + }, + { + "start": 5765.66, + "end": 5768.2, + "probability": 0.9594 + }, + { + "start": 5769.24, + "end": 5770.04, + "probability": 0.9735 + }, + { + "start": 5770.76, + "end": 5772.54, + "probability": 0.9224 + }, + { + "start": 5773.12, + "end": 5778.22, + "probability": 0.9949 + }, + { + "start": 5778.46, + "end": 5779.28, + "probability": 0.3981 + }, + { + "start": 5780.28, + "end": 5782.1, + "probability": 0.7076 + }, + { + "start": 5782.44, + "end": 5782.66, + "probability": 0.8368 + }, + { + "start": 5783.68, + "end": 5785.96, + "probability": 0.8557 + }, + { + "start": 5785.98, + "end": 5789.4, + "probability": 0.7268 + }, + { + "start": 5795.46, + "end": 5803.78, + "probability": 0.7003 + }, + { + "start": 5804.78, + "end": 5805.0, + "probability": 0.3681 + }, + { + "start": 5805.0, + "end": 5805.98, + "probability": 0.4944 + }, + { + "start": 5806.62, + "end": 5806.66, + "probability": 0.3845 + }, + { + "start": 5806.66, + "end": 5810.16, + "probability": 0.9751 + }, + { + "start": 5810.26, + "end": 5814.68, + "probability": 0.9965 + }, + { + "start": 5815.22, + "end": 5817.6, + "probability": 0.8547 + }, + { + "start": 5818.24, + "end": 5821.06, + "probability": 0.7237 + }, + { + "start": 5821.66, + "end": 5824.28, + "probability": 0.9847 + }, + { + "start": 5824.28, + "end": 5827.38, + "probability": 0.9128 + }, + { + "start": 5828.08, + "end": 5829.8, + "probability": 0.9183 + }, + { + "start": 5829.94, + "end": 5833.3, + "probability": 0.8768 + }, + { + "start": 5833.86, + "end": 5837.8, + "probability": 0.9773 + }, + { + "start": 5837.8, + "end": 5842.2, + "probability": 0.994 + }, + { + "start": 5842.88, + "end": 5845.04, + "probability": 0.9979 + }, + { + "start": 5845.04, + "end": 5848.32, + "probability": 0.9967 + }, + { + "start": 5848.4, + "end": 5851.98, + "probability": 0.8261 + }, + { + "start": 5852.86, + "end": 5855.6, + "probability": 0.9931 + }, + { + "start": 5855.6, + "end": 5859.84, + "probability": 0.9504 + }, + { + "start": 5860.6, + "end": 5863.36, + "probability": 0.9546 + }, + { + "start": 5863.84, + "end": 5865.48, + "probability": 0.9834 + }, + { + "start": 5866.18, + "end": 5870.22, + "probability": 0.9774 + }, + { + "start": 5870.76, + "end": 5872.65, + "probability": 0.9501 + }, + { + "start": 5873.1, + "end": 5876.6, + "probability": 0.9801 + }, + { + "start": 5877.48, + "end": 5878.46, + "probability": 0.67 + }, + { + "start": 5878.6, + "end": 5881.72, + "probability": 0.9898 + }, + { + "start": 5882.36, + "end": 5887.42, + "probability": 0.9945 + }, + { + "start": 5887.42, + "end": 5892.88, + "probability": 0.9889 + }, + { + "start": 5893.48, + "end": 5894.74, + "probability": 0.8141 + }, + { + "start": 5895.1, + "end": 5895.34, + "probability": 0.6984 + }, + { + "start": 5896.16, + "end": 5898.68, + "probability": 0.6637 + }, + { + "start": 5899.6, + "end": 5903.48, + "probability": 0.903 + }, + { + "start": 5903.62, + "end": 5905.92, + "probability": 0.9895 + }, + { + "start": 5906.84, + "end": 5907.42, + "probability": 0.5641 + }, + { + "start": 5908.12, + "end": 5908.9, + "probability": 0.7211 + }, + { + "start": 5925.52, + "end": 5925.54, + "probability": 0.0866 + }, + { + "start": 5938.46, + "end": 5939.66, + "probability": 0.901 + }, + { + "start": 5940.4, + "end": 5942.2, + "probability": 0.9888 + }, + { + "start": 5943.0, + "end": 5944.74, + "probability": 0.9678 + }, + { + "start": 5945.56, + "end": 5949.88, + "probability": 0.9983 + }, + { + "start": 5949.88, + "end": 5953.84, + "probability": 0.9673 + }, + { + "start": 5954.98, + "end": 5957.9, + "probability": 0.9438 + }, + { + "start": 5959.32, + "end": 5964.7, + "probability": 0.82 + }, + { + "start": 5965.3, + "end": 5966.32, + "probability": 0.7638 + }, + { + "start": 5966.98, + "end": 5970.6, + "probability": 0.9572 + }, + { + "start": 5971.12, + "end": 5971.96, + "probability": 0.7979 + }, + { + "start": 5973.0, + "end": 5975.9, + "probability": 0.9486 + }, + { + "start": 5976.64, + "end": 5977.88, + "probability": 0.8589 + }, + { + "start": 5978.98, + "end": 5983.7, + "probability": 0.8966 + }, + { + "start": 5984.58, + "end": 5987.2, + "probability": 0.9857 + }, + { + "start": 5988.38, + "end": 5988.9, + "probability": 0.8679 + }, + { + "start": 5989.42, + "end": 5994.52, + "probability": 0.8422 + }, + { + "start": 5994.68, + "end": 5999.44, + "probability": 0.9185 + }, + { + "start": 6002.02, + "end": 6002.26, + "probability": 0.0946 + }, + { + "start": 6010.28, + "end": 6011.16, + "probability": 0.9919 + }, + { + "start": 6011.7, + "end": 6012.06, + "probability": 0.0324 + }, + { + "start": 6012.14, + "end": 6012.62, + "probability": 0.0567 + }, + { + "start": 6012.62, + "end": 6012.78, + "probability": 0.1754 + }, + { + "start": 6012.78, + "end": 6013.64, + "probability": 0.0587 + }, + { + "start": 6013.64, + "end": 6016.38, + "probability": 0.1495 + }, + { + "start": 6016.38, + "end": 6016.8, + "probability": 0.019 + }, + { + "start": 6018.16, + "end": 6018.16, + "probability": 0.0678 + }, + { + "start": 6018.16, + "end": 6018.16, + "probability": 0.0962 + }, + { + "start": 6018.16, + "end": 6018.16, + "probability": 0.1761 + }, + { + "start": 6018.16, + "end": 6018.16, + "probability": 0.2039 + }, + { + "start": 6018.16, + "end": 6020.68, + "probability": 0.8314 + }, + { + "start": 6021.18, + "end": 6021.34, + "probability": 0.449 + }, + { + "start": 6022.14, + "end": 6024.82, + "probability": 0.7729 + }, + { + "start": 6025.32, + "end": 6026.9, + "probability": 0.4974 + }, + { + "start": 6028.38, + "end": 6028.92, + "probability": 0.0412 + }, + { + "start": 6029.6, + "end": 6030.82, + "probability": 0.7392 + }, + { + "start": 6030.9, + "end": 6035.8, + "probability": 0.6759 + }, + { + "start": 6036.46, + "end": 6040.14, + "probability": 0.9434 + }, + { + "start": 6041.1, + "end": 6044.66, + "probability": 0.7088 + }, + { + "start": 6045.66, + "end": 6048.38, + "probability": 0.96 + }, + { + "start": 6049.48, + "end": 6052.87, + "probability": 0.9976 + }, + { + "start": 6053.94, + "end": 6056.48, + "probability": 0.9476 + }, + { + "start": 6056.88, + "end": 6060.24, + "probability": 0.9395 + }, + { + "start": 6060.76, + "end": 6062.6, + "probability": 0.9761 + }, + { + "start": 6063.44, + "end": 6068.62, + "probability": 0.8376 + }, + { + "start": 6069.2, + "end": 6071.5, + "probability": 0.8371 + }, + { + "start": 6072.62, + "end": 6074.74, + "probability": 0.9526 + }, + { + "start": 6075.14, + "end": 6078.3, + "probability": 0.9958 + }, + { + "start": 6078.78, + "end": 6082.56, + "probability": 0.7575 + }, + { + "start": 6082.76, + "end": 6084.36, + "probability": 0.6434 + }, + { + "start": 6085.26, + "end": 6087.56, + "probability": 0.9697 + }, + { + "start": 6087.68, + "end": 6090.98, + "probability": 0.938 + }, + { + "start": 6091.7, + "end": 6095.02, + "probability": 0.865 + }, + { + "start": 6095.6, + "end": 6098.42, + "probability": 0.7649 + }, + { + "start": 6099.16, + "end": 6102.94, + "probability": 0.9926 + }, + { + "start": 6103.44, + "end": 6107.04, + "probability": 0.9789 + }, + { + "start": 6108.9, + "end": 6110.4, + "probability": 0.8389 + }, + { + "start": 6111.26, + "end": 6113.08, + "probability": 0.7585 + }, + { + "start": 6113.26, + "end": 6114.58, + "probability": 0.7121 + }, + { + "start": 6115.16, + "end": 6117.04, + "probability": 0.9698 + }, + { + "start": 6117.86, + "end": 6119.1, + "probability": 0.83 + }, + { + "start": 6120.22, + "end": 6124.62, + "probability": 0.8189 + }, + { + "start": 6124.84, + "end": 6125.24, + "probability": 0.5586 + }, + { + "start": 6125.36, + "end": 6129.12, + "probability": 0.9321 + }, + { + "start": 6129.52, + "end": 6131.84, + "probability": 0.9834 + }, + { + "start": 6132.36, + "end": 6134.02, + "probability": 0.9619 + }, + { + "start": 6135.28, + "end": 6138.3, + "probability": 0.7003 + }, + { + "start": 6139.26, + "end": 6141.34, + "probability": 0.7521 + }, + { + "start": 6141.4, + "end": 6142.76, + "probability": 0.6914 + }, + { + "start": 6147.06, + "end": 6147.54, + "probability": 0.8276 + }, + { + "start": 6163.98, + "end": 6166.84, + "probability": 0.8151 + }, + { + "start": 6168.36, + "end": 6173.66, + "probability": 0.9186 + }, + { + "start": 6174.12, + "end": 6175.84, + "probability": 0.9745 + }, + { + "start": 6177.34, + "end": 6178.06, + "probability": 0.5438 + }, + { + "start": 6178.78, + "end": 6181.82, + "probability": 0.9272 + }, + { + "start": 6183.06, + "end": 6185.38, + "probability": 0.709 + }, + { + "start": 6186.44, + "end": 6187.88, + "probability": 0.974 + }, + { + "start": 6188.8, + "end": 6190.04, + "probability": 0.9499 + }, + { + "start": 6190.62, + "end": 6191.66, + "probability": 0.9177 + }, + { + "start": 6192.3, + "end": 6192.3, + "probability": 0.183 + }, + { + "start": 6192.3, + "end": 6195.88, + "probability": 0.9595 + }, + { + "start": 6195.88, + "end": 6198.84, + "probability": 0.9984 + }, + { + "start": 6199.58, + "end": 6204.46, + "probability": 0.9786 + }, + { + "start": 6205.16, + "end": 6205.7, + "probability": 0.985 + }, + { + "start": 6206.9, + "end": 6209.82, + "probability": 0.6474 + }, + { + "start": 6209.84, + "end": 6211.06, + "probability": 0.9708 + }, + { + "start": 6211.9, + "end": 6213.92, + "probability": 0.8824 + }, + { + "start": 6214.52, + "end": 6215.62, + "probability": 0.8307 + }, + { + "start": 6215.98, + "end": 6216.42, + "probability": 0.4487 + }, + { + "start": 6216.52, + "end": 6217.92, + "probability": 0.9292 + }, + { + "start": 6217.92, + "end": 6218.56, + "probability": 0.8633 + }, + { + "start": 6219.0, + "end": 6221.4, + "probability": 0.9966 + }, + { + "start": 6221.44, + "end": 6224.52, + "probability": 0.998 + }, + { + "start": 6224.62, + "end": 6224.94, + "probability": 0.7392 + }, + { + "start": 6225.6, + "end": 6227.28, + "probability": 0.5638 + }, + { + "start": 6227.66, + "end": 6228.4, + "probability": 0.9592 + }, + { + "start": 6228.46, + "end": 6229.78, + "probability": 0.931 + }, + { + "start": 6229.92, + "end": 6232.54, + "probability": 0.811 + }, + { + "start": 6235.04, + "end": 6236.2, + "probability": 0.7297 + }, + { + "start": 6236.34, + "end": 6237.33, + "probability": 0.7632 + }, + { + "start": 6242.94, + "end": 6244.34, + "probability": 0.8125 + }, + { + "start": 6244.66, + "end": 6245.8, + "probability": 0.7988 + }, + { + "start": 6246.04, + "end": 6247.24, + "probability": 0.6933 + }, + { + "start": 6253.76, + "end": 6256.72, + "probability": 0.1918 + }, + { + "start": 6258.32, + "end": 6258.72, + "probability": 0.1255 + }, + { + "start": 6270.52, + "end": 6272.04, + "probability": 0.7223 + }, + { + "start": 6272.24, + "end": 6274.42, + "probability": 0.7733 + }, + { + "start": 6274.56, + "end": 6275.78, + "probability": 0.3694 + }, + { + "start": 6276.68, + "end": 6283.9, + "probability": 0.5447 + }, + { + "start": 6284.56, + "end": 6286.8, + "probability": 0.1071 + }, + { + "start": 6288.36, + "end": 6288.44, + "probability": 0.0466 + }, + { + "start": 6288.48, + "end": 6288.48, + "probability": 0.3354 + }, + { + "start": 6288.48, + "end": 6288.48, + "probability": 0.1686 + }, + { + "start": 6288.48, + "end": 6288.48, + "probability": 0.383 + }, + { + "start": 6288.48, + "end": 6288.48, + "probability": 0.1191 + }, + { + "start": 6288.48, + "end": 6289.28, + "probability": 0.0298 + }, + { + "start": 6289.39, + "end": 6290.78, + "probability": 0.0354 + }, + { + "start": 6293.52, + "end": 6294.78, + "probability": 0.224 + }, + { + "start": 6295.46, + "end": 6298.78, + "probability": 0.0912 + }, + { + "start": 6302.42, + "end": 6304.84, + "probability": 0.0427 + }, + { + "start": 6308.12, + "end": 6309.7, + "probability": 0.3376 + }, + { + "start": 6311.02, + "end": 6314.06, + "probability": 0.2043 + }, + { + "start": 6315.0, + "end": 6315.0, + "probability": 0.0 + }, + { + "start": 6315.0, + "end": 6315.0, + "probability": 0.0 + }, + { + "start": 6315.0, + "end": 6315.0, + "probability": 0.0 + }, + { + "start": 6315.0, + "end": 6315.0, + "probability": 0.0 + }, + { + "start": 6315.0, + "end": 6315.0, + "probability": 0.0 + }, + { + "start": 6315.26, + "end": 6315.26, + "probability": 0.0141 + }, + { + "start": 6315.26, + "end": 6315.26, + "probability": 0.0762 + }, + { + "start": 6315.26, + "end": 6316.06, + "probability": 0.0418 + }, + { + "start": 6316.06, + "end": 6318.76, + "probability": 0.815 + }, + { + "start": 6319.46, + "end": 6321.56, + "probability": 0.9203 + }, + { + "start": 6321.74, + "end": 6323.48, + "probability": 0.9865 + }, + { + "start": 6323.74, + "end": 6328.64, + "probability": 0.994 + }, + { + "start": 6329.22, + "end": 6331.26, + "probability": 0.997 + }, + { + "start": 6331.26, + "end": 6333.56, + "probability": 0.9996 + }, + { + "start": 6333.68, + "end": 6336.02, + "probability": 0.9957 + }, + { + "start": 6336.02, + "end": 6339.36, + "probability": 0.9893 + }, + { + "start": 6340.06, + "end": 6340.34, + "probability": 0.2296 + }, + { + "start": 6340.34, + "end": 6343.34, + "probability": 0.9767 + }, + { + "start": 6343.44, + "end": 6343.86, + "probability": 0.8744 + }, + { + "start": 6343.94, + "end": 6345.16, + "probability": 0.8359 + }, + { + "start": 6345.3, + "end": 6350.22, + "probability": 0.9575 + }, + { + "start": 6350.92, + "end": 6356.88, + "probability": 0.8623 + }, + { + "start": 6356.98, + "end": 6357.96, + "probability": 0.7472 + }, + { + "start": 6358.1, + "end": 6362.62, + "probability": 0.9903 + }, + { + "start": 6362.92, + "end": 6366.44, + "probability": 0.9973 + }, + { + "start": 6367.1, + "end": 6369.4, + "probability": 0.9816 + }, + { + "start": 6369.62, + "end": 6374.04, + "probability": 0.9907 + }, + { + "start": 6374.5, + "end": 6380.58, + "probability": 0.9927 + }, + { + "start": 6381.0, + "end": 6386.66, + "probability": 0.9673 + }, + { + "start": 6387.16, + "end": 6388.44, + "probability": 0.8841 + }, + { + "start": 6389.06, + "end": 6390.12, + "probability": 0.9626 + }, + { + "start": 6390.22, + "end": 6393.04, + "probability": 0.9937 + }, + { + "start": 6394.14, + "end": 6396.1, + "probability": 0.9635 + }, + { + "start": 6396.76, + "end": 6400.14, + "probability": 0.9568 + }, + { + "start": 6400.32, + "end": 6407.0, + "probability": 0.9961 + }, + { + "start": 6407.48, + "end": 6410.12, + "probability": 0.9409 + }, + { + "start": 6410.62, + "end": 6416.4, + "probability": 0.9732 + }, + { + "start": 6416.86, + "end": 6417.5, + "probability": 0.9591 + }, + { + "start": 6419.12, + "end": 6424.28, + "probability": 0.9726 + }, + { + "start": 6424.8, + "end": 6426.2, + "probability": 0.9995 + }, + { + "start": 6427.12, + "end": 6431.7, + "probability": 0.9973 + }, + { + "start": 6431.92, + "end": 6434.02, + "probability": 0.9845 + }, + { + "start": 6434.02, + "end": 6440.3, + "probability": 0.9458 + }, + { + "start": 6440.48, + "end": 6443.22, + "probability": 0.9253 + }, + { + "start": 6443.5, + "end": 6444.44, + "probability": 0.845 + }, + { + "start": 6445.3, + "end": 6447.74, + "probability": 0.9243 + }, + { + "start": 6447.78, + "end": 6449.26, + "probability": 0.9727 + }, + { + "start": 6450.1, + "end": 6452.56, + "probability": 0.9867 + }, + { + "start": 6453.28, + "end": 6461.32, + "probability": 0.9901 + }, + { + "start": 6461.32, + "end": 6467.54, + "probability": 0.9976 + }, + { + "start": 6468.12, + "end": 6473.8, + "probability": 0.9735 + }, + { + "start": 6474.56, + "end": 6477.76, + "probability": 0.998 + }, + { + "start": 6477.76, + "end": 6481.18, + "probability": 0.9602 + }, + { + "start": 6481.56, + "end": 6482.94, + "probability": 0.5747 + }, + { + "start": 6483.44, + "end": 6487.04, + "probability": 0.9956 + }, + { + "start": 6488.06, + "end": 6489.62, + "probability": 0.8979 + }, + { + "start": 6490.02, + "end": 6497.44, + "probability": 0.9235 + }, + { + "start": 6497.8, + "end": 6500.1, + "probability": 0.9803 + }, + { + "start": 6500.38, + "end": 6501.04, + "probability": 0.5069 + }, + { + "start": 6501.18, + "end": 6503.78, + "probability": 0.9419 + }, + { + "start": 6504.48, + "end": 6508.64, + "probability": 0.9464 + }, + { + "start": 6509.68, + "end": 6516.7, + "probability": 0.9791 + }, + { + "start": 6517.86, + "end": 6523.6, + "probability": 0.9819 + }, + { + "start": 6523.76, + "end": 6525.48, + "probability": 0.9983 + }, + { + "start": 6526.1, + "end": 6529.94, + "probability": 0.9871 + }, + { + "start": 6529.94, + "end": 6532.96, + "probability": 0.8686 + }, + { + "start": 6533.46, + "end": 6535.88, + "probability": 0.9561 + }, + { + "start": 6536.54, + "end": 6539.68, + "probability": 0.9845 + }, + { + "start": 6540.38, + "end": 6541.9, + "probability": 0.873 + }, + { + "start": 6542.76, + "end": 6546.64, + "probability": 0.9136 + }, + { + "start": 6547.56, + "end": 6551.9, + "probability": 0.9316 + }, + { + "start": 6551.92, + "end": 6556.12, + "probability": 0.9984 + }, + { + "start": 6556.56, + "end": 6557.14, + "probability": 0.6699 + }, + { + "start": 6557.68, + "end": 6559.9, + "probability": 0.9932 + }, + { + "start": 6560.0, + "end": 6560.64, + "probability": 0.9022 + }, + { + "start": 6561.61, + "end": 6562.8, + "probability": 0.9395 + }, + { + "start": 6563.16, + "end": 6566.52, + "probability": 0.9957 + }, + { + "start": 6566.52, + "end": 6569.68, + "probability": 0.9419 + }, + { + "start": 6570.16, + "end": 6570.62, + "probability": 0.9481 + }, + { + "start": 6570.82, + "end": 6571.52, + "probability": 0.4914 + }, + { + "start": 6571.98, + "end": 6576.54, + "probability": 0.9113 + }, + { + "start": 6576.62, + "end": 6578.56, + "probability": 0.9937 + }, + { + "start": 6579.0, + "end": 6579.48, + "probability": 0.6496 + }, + { + "start": 6579.58, + "end": 6581.56, + "probability": 0.6089 + }, + { + "start": 6581.9, + "end": 6584.26, + "probability": 0.7823 + }, + { + "start": 6584.9, + "end": 6588.8, + "probability": 0.984 + }, + { + "start": 6589.12, + "end": 6591.74, + "probability": 0.9973 + }, + { + "start": 6592.2, + "end": 6595.16, + "probability": 0.9756 + }, + { + "start": 6595.46, + "end": 6599.0, + "probability": 0.8938 + }, + { + "start": 6599.56, + "end": 6603.32, + "probability": 0.9882 + }, + { + "start": 6603.68, + "end": 6606.14, + "probability": 0.8738 + }, + { + "start": 6606.62, + "end": 6610.72, + "probability": 0.9723 + }, + { + "start": 6612.62, + "end": 6617.18, + "probability": 0.995 + }, + { + "start": 6617.18, + "end": 6621.52, + "probability": 0.998 + }, + { + "start": 6621.52, + "end": 6625.28, + "probability": 0.983 + }, + { + "start": 6625.72, + "end": 6629.3, + "probability": 0.97 + }, + { + "start": 6630.1, + "end": 6631.1, + "probability": 0.9841 + }, + { + "start": 6632.36, + "end": 6634.2, + "probability": 0.5063 + }, + { + "start": 6636.08, + "end": 6637.24, + "probability": 0.8231 + }, + { + "start": 6638.52, + "end": 6641.32, + "probability": 0.8227 + }, + { + "start": 6641.5, + "end": 6643.36, + "probability": 0.9972 + }, + { + "start": 6643.5, + "end": 6645.24, + "probability": 0.9338 + }, + { + "start": 6645.3, + "end": 6646.56, + "probability": 0.9592 + }, + { + "start": 6647.16, + "end": 6648.08, + "probability": 0.9705 + }, + { + "start": 6648.72, + "end": 6649.16, + "probability": 0.406 + }, + { + "start": 6649.16, + "end": 6649.48, + "probability": 0.2368 + }, + { + "start": 6649.54, + "end": 6650.71, + "probability": 0.8097 + }, + { + "start": 6651.24, + "end": 6653.58, + "probability": 0.9087 + }, + { + "start": 6653.96, + "end": 6662.66, + "probability": 0.9725 + }, + { + "start": 6663.46, + "end": 6668.62, + "probability": 0.9806 + }, + { + "start": 6668.74, + "end": 6669.74, + "probability": 0.732 + }, + { + "start": 6669.92, + "end": 6670.9, + "probability": 0.8585 + }, + { + "start": 6671.16, + "end": 6674.18, + "probability": 0.7951 + }, + { + "start": 6674.28, + "end": 6675.96, + "probability": 0.5427 + }, + { + "start": 6676.44, + "end": 6681.84, + "probability": 0.9767 + }, + { + "start": 6682.28, + "end": 6684.78, + "probability": 0.9935 + }, + { + "start": 6684.78, + "end": 6687.78, + "probability": 0.7747 + }, + { + "start": 6688.36, + "end": 6693.74, + "probability": 0.8747 + }, + { + "start": 6693.74, + "end": 6699.72, + "probability": 0.9893 + }, + { + "start": 6700.22, + "end": 6704.36, + "probability": 0.997 + }, + { + "start": 6704.9, + "end": 6705.54, + "probability": 0.8213 + }, + { + "start": 6707.0, + "end": 6711.92, + "probability": 0.8024 + }, + { + "start": 6712.3, + "end": 6715.14, + "probability": 0.855 + }, + { + "start": 6715.2, + "end": 6722.84, + "probability": 0.9568 + }, + { + "start": 6723.48, + "end": 6723.92, + "probability": 0.7231 + }, + { + "start": 6724.32, + "end": 6728.36, + "probability": 0.8124 + }, + { + "start": 6728.54, + "end": 6729.68, + "probability": 0.8773 + }, + { + "start": 6729.82, + "end": 6732.64, + "probability": 0.9888 + }, + { + "start": 6732.84, + "end": 6737.34, + "probability": 0.9943 + }, + { + "start": 6737.44, + "end": 6738.04, + "probability": 0.9659 + }, + { + "start": 6738.08, + "end": 6738.56, + "probability": 0.9157 + }, + { + "start": 6738.9, + "end": 6740.28, + "probability": 0.988 + }, + { + "start": 6740.58, + "end": 6746.28, + "probability": 0.9717 + }, + { + "start": 6746.34, + "end": 6748.87, + "probability": 0.9939 + }, + { + "start": 6749.24, + "end": 6751.1, + "probability": 0.8848 + }, + { + "start": 6751.18, + "end": 6754.7, + "probability": 0.909 + }, + { + "start": 6754.98, + "end": 6758.04, + "probability": 0.9912 + }, + { + "start": 6758.44, + "end": 6759.94, + "probability": 0.8427 + }, + { + "start": 6760.08, + "end": 6761.0, + "probability": 0.9759 + }, + { + "start": 6761.1, + "end": 6764.44, + "probability": 0.8957 + }, + { + "start": 6764.82, + "end": 6767.42, + "probability": 0.9908 + }, + { + "start": 6767.94, + "end": 6771.88, + "probability": 0.9938 + }, + { + "start": 6771.88, + "end": 6776.14, + "probability": 0.9956 + }, + { + "start": 6776.5, + "end": 6783.18, + "probability": 0.9466 + }, + { + "start": 6783.3, + "end": 6785.94, + "probability": 0.9915 + }, + { + "start": 6785.94, + "end": 6788.76, + "probability": 0.9888 + }, + { + "start": 6788.94, + "end": 6789.16, + "probability": 0.718 + }, + { + "start": 6790.16, + "end": 6792.3, + "probability": 0.9919 + }, + { + "start": 6792.9, + "end": 6796.18, + "probability": 0.9539 + }, + { + "start": 6807.7, + "end": 6808.96, + "probability": 0.5831 + }, + { + "start": 6816.58, + "end": 6817.16, + "probability": 0.8023 + }, + { + "start": 6818.0, + "end": 6823.68, + "probability": 0.8241 + }, + { + "start": 6823.82, + "end": 6827.56, + "probability": 0.4177 + }, + { + "start": 6829.04, + "end": 6833.62, + "probability": 0.9842 + }, + { + "start": 6834.2, + "end": 6841.84, + "probability": 0.9842 + }, + { + "start": 6842.52, + "end": 6848.3, + "probability": 0.9635 + }, + { + "start": 6849.3, + "end": 6852.68, + "probability": 0.8931 + }, + { + "start": 6855.82, + "end": 6859.18, + "probability": 0.8978 + }, + { + "start": 6861.94, + "end": 6866.64, + "probability": 0.9521 + }, + { + "start": 6866.64, + "end": 6871.26, + "probability": 0.9908 + }, + { + "start": 6872.3, + "end": 6877.54, + "probability": 0.9882 + }, + { + "start": 6877.54, + "end": 6882.84, + "probability": 0.9867 + }, + { + "start": 6882.94, + "end": 6883.9, + "probability": 0.7303 + }, + { + "start": 6884.3, + "end": 6885.72, + "probability": 0.7512 + }, + { + "start": 6886.18, + "end": 6887.0, + "probability": 0.341 + }, + { + "start": 6887.6, + "end": 6888.3, + "probability": 0.6354 + }, + { + "start": 6889.06, + "end": 6891.5, + "probability": 0.925 + }, + { + "start": 6892.32, + "end": 6897.26, + "probability": 0.9688 + }, + { + "start": 6897.88, + "end": 6902.48, + "probability": 0.972 + }, + { + "start": 6903.8, + "end": 6909.64, + "probability": 0.993 + }, + { + "start": 6909.64, + "end": 6916.1, + "probability": 0.9775 + }, + { + "start": 6916.74, + "end": 6923.88, + "probability": 0.9858 + }, + { + "start": 6924.4, + "end": 6924.86, + "probability": 0.8003 + }, + { + "start": 6925.46, + "end": 6929.46, + "probability": 0.968 + }, + { + "start": 6929.66, + "end": 6933.1, + "probability": 0.9704 + }, + { + "start": 6934.5, + "end": 6936.2, + "probability": 0.8845 + }, + { + "start": 6936.26, + "end": 6938.52, + "probability": 0.7311 + }, + { + "start": 6939.34, + "end": 6941.34, + "probability": 0.8687 + }, + { + "start": 6942.38, + "end": 6943.76, + "probability": 0.9968 + }, + { + "start": 6944.8, + "end": 6945.34, + "probability": 0.8428 + }, + { + "start": 6946.8, + "end": 6948.86, + "probability": 0.9853 + }, + { + "start": 6950.36, + "end": 6952.14, + "probability": 0.9706 + }, + { + "start": 6953.1, + "end": 6953.92, + "probability": 0.8899 + }, + { + "start": 6954.5, + "end": 6957.39, + "probability": 0.9978 + }, + { + "start": 6958.74, + "end": 6959.66, + "probability": 0.72 + }, + { + "start": 6960.54, + "end": 6962.02, + "probability": 0.978 + }, + { + "start": 6963.28, + "end": 6969.94, + "probability": 0.9753 + }, + { + "start": 6970.56, + "end": 6974.78, + "probability": 0.9488 + }, + { + "start": 6974.78, + "end": 6978.46, + "probability": 0.9889 + }, + { + "start": 6979.44, + "end": 6983.52, + "probability": 0.7347 + }, + { + "start": 6984.26, + "end": 6986.68, + "probability": 0.9558 + }, + { + "start": 6987.24, + "end": 6989.94, + "probability": 0.9692 + }, + { + "start": 6990.52, + "end": 6993.5, + "probability": 0.9757 + }, + { + "start": 6994.64, + "end": 6995.36, + "probability": 0.6079 + }, + { + "start": 6995.96, + "end": 6997.2, + "probability": 0.8654 + }, + { + "start": 6997.9, + "end": 6998.46, + "probability": 0.8479 + }, + { + "start": 6999.04, + "end": 7001.6, + "probability": 0.6731 + }, + { + "start": 7002.68, + "end": 7006.86, + "probability": 0.9795 + }, + { + "start": 7007.56, + "end": 7008.16, + "probability": 0.924 + }, + { + "start": 7008.92, + "end": 7010.4, + "probability": 0.996 + }, + { + "start": 7011.16, + "end": 7014.32, + "probability": 0.8179 + }, + { + "start": 7014.96, + "end": 7018.04, + "probability": 0.9983 + }, + { + "start": 7018.6, + "end": 7019.62, + "probability": 0.7844 + }, + { + "start": 7020.8, + "end": 7025.32, + "probability": 0.6426 + }, + { + "start": 7026.34, + "end": 7030.28, + "probability": 0.9278 + }, + { + "start": 7030.72, + "end": 7035.26, + "probability": 0.9902 + }, + { + "start": 7036.06, + "end": 7042.2, + "probability": 0.959 + }, + { + "start": 7042.96, + "end": 7043.82, + "probability": 0.7218 + }, + { + "start": 7045.0, + "end": 7051.7, + "probability": 0.9984 + }, + { + "start": 7052.3, + "end": 7054.04, + "probability": 0.8572 + }, + { + "start": 7054.98, + "end": 7059.86, + "probability": 0.9943 + }, + { + "start": 7060.16, + "end": 7062.28, + "probability": 0.5075 + }, + { + "start": 7062.36, + "end": 7063.05, + "probability": 0.6594 + }, + { + "start": 7063.8, + "end": 7065.85, + "probability": 0.8979 + }, + { + "start": 7066.82, + "end": 7067.88, + "probability": 0.8481 + }, + { + "start": 7068.05, + "end": 7070.65, + "probability": 0.8945 + }, + { + "start": 7072.79, + "end": 7075.1, + "probability": 0.9521 + }, + { + "start": 7075.2, + "end": 7078.1, + "probability": 0.8605 + }, + { + "start": 7078.46, + "end": 7080.06, + "probability": 0.7861 + }, + { + "start": 7080.16, + "end": 7082.8, + "probability": 0.9933 + }, + { + "start": 7083.0, + "end": 7084.88, + "probability": 0.991 + }, + { + "start": 7084.94, + "end": 7088.82, + "probability": 0.9626 + }, + { + "start": 7089.06, + "end": 7090.82, + "probability": 0.9713 + }, + { + "start": 7091.16, + "end": 7092.48, + "probability": 0.8075 + }, + { + "start": 7092.74, + "end": 7094.9, + "probability": 0.9915 + }, + { + "start": 7095.34, + "end": 7098.12, + "probability": 0.9841 + }, + { + "start": 7098.28, + "end": 7101.34, + "probability": 0.9858 + }, + { + "start": 7101.72, + "end": 7104.84, + "probability": 0.9897 + }, + { + "start": 7104.84, + "end": 7107.56, + "probability": 0.9976 + }, + { + "start": 7107.88, + "end": 7110.99, + "probability": 0.8134 + }, + { + "start": 7111.18, + "end": 7113.7, + "probability": 0.9816 + }, + { + "start": 7113.7, + "end": 7116.02, + "probability": 0.9945 + }, + { + "start": 7116.3, + "end": 7119.44, + "probability": 0.9408 + }, + { + "start": 7119.72, + "end": 7125.3, + "probability": 0.987 + }, + { + "start": 7125.4, + "end": 7127.26, + "probability": 0.5346 + }, + { + "start": 7127.56, + "end": 7133.3, + "probability": 0.9807 + }, + { + "start": 7133.44, + "end": 7134.64, + "probability": 0.9425 + }, + { + "start": 7134.72, + "end": 7135.4, + "probability": 0.4639 + }, + { + "start": 7135.7, + "end": 7137.02, + "probability": 0.8193 + }, + { + "start": 7137.28, + "end": 7140.78, + "probability": 0.9901 + }, + { + "start": 7140.78, + "end": 7143.66, + "probability": 0.9979 + }, + { + "start": 7143.7, + "end": 7144.8, + "probability": 0.9832 + }, + { + "start": 7144.88, + "end": 7145.16, + "probability": 0.7983 + }, + { + "start": 7145.94, + "end": 7147.96, + "probability": 0.9619 + }, + { + "start": 7148.22, + "end": 7149.9, + "probability": 0.6941 + }, + { + "start": 7150.82, + "end": 7154.76, + "probability": 0.9399 + }, + { + "start": 7155.64, + "end": 7157.9, + "probability": 0.9112 + }, + { + "start": 7165.02, + "end": 7168.88, + "probability": 0.7841 + }, + { + "start": 7168.92, + "end": 7170.74, + "probability": 0.5873 + }, + { + "start": 7171.02, + "end": 7172.18, + "probability": 0.7396 + }, + { + "start": 7174.8, + "end": 7177.04, + "probability": 0.769 + }, + { + "start": 7177.08, + "end": 7177.86, + "probability": 0.5319 + }, + { + "start": 7177.9, + "end": 7178.6, + "probability": 0.6539 + }, + { + "start": 7178.64, + "end": 7179.5, + "probability": 0.8951 + }, + { + "start": 7184.06, + "end": 7184.9, + "probability": 0.2202 + }, + { + "start": 7193.78, + "end": 7194.42, + "probability": 0.0162 + }, + { + "start": 7196.17, + "end": 7201.22, + "probability": 0.5546 + }, + { + "start": 7201.22, + "end": 7204.82, + "probability": 0.9134 + }, + { + "start": 7204.92, + "end": 7206.52, + "probability": 0.5113 + }, + { + "start": 7207.12, + "end": 7207.92, + "probability": 0.3517 + }, + { + "start": 7209.16, + "end": 7209.48, + "probability": 0.0086 + }, + { + "start": 7210.2, + "end": 7210.42, + "probability": 0.3704 + }, + { + "start": 7210.42, + "end": 7211.36, + "probability": 0.5876 + }, + { + "start": 7211.36, + "end": 7225.28, + "probability": 0.7581 + }, + { + "start": 7225.72, + "end": 7225.9, + "probability": 0.0539 + }, + { + "start": 7225.9, + "end": 7225.9, + "probability": 0.0248 + }, + { + "start": 7225.9, + "end": 7225.96, + "probability": 0.0228 + }, + { + "start": 7227.26, + "end": 7231.36, + "probability": 0.3254 + }, + { + "start": 7234.8, + "end": 7235.24, + "probability": 0.013 + }, + { + "start": 7236.18, + "end": 7238.58, + "probability": 0.2138 + }, + { + "start": 7238.58, + "end": 7239.34, + "probability": 0.3828 + }, + { + "start": 7240.45, + "end": 7243.32, + "probability": 0.6149 + }, + { + "start": 7244.0, + "end": 7245.8, + "probability": 0.8365 + }, + { + "start": 7245.8, + "end": 7249.74, + "probability": 0.8112 + }, + { + "start": 7250.58, + "end": 7253.12, + "probability": 0.8797 + }, + { + "start": 7253.84, + "end": 7257.96, + "probability": 0.862 + }, + { + "start": 7258.66, + "end": 7259.66, + "probability": 0.798 + }, + { + "start": 7259.74, + "end": 7265.38, + "probability": 0.9631 + }, + { + "start": 7266.08, + "end": 7266.4, + "probability": 0.5479 + }, + { + "start": 7266.4, + "end": 7271.3, + "probability": 0.8227 + }, + { + "start": 7271.58, + "end": 7274.6, + "probability": 0.9785 + }, + { + "start": 7275.64, + "end": 7276.97, + "probability": 0.6956 + }, + { + "start": 7279.0, + "end": 7283.86, + "probability": 0.6454 + }, + { + "start": 7284.26, + "end": 7287.66, + "probability": 0.5011 + }, + { + "start": 7289.05, + "end": 7293.12, + "probability": 0.929 + }, + { + "start": 7293.72, + "end": 7295.0, + "probability": 0.8 + }, + { + "start": 7295.78, + "end": 7297.76, + "probability": 0.9897 + }, + { + "start": 7297.9, + "end": 7302.68, + "probability": 0.9001 + }, + { + "start": 7303.2, + "end": 7305.35, + "probability": 0.6773 + }, + { + "start": 7305.62, + "end": 7307.18, + "probability": 0.2826 + }, + { + "start": 7307.66, + "end": 7308.68, + "probability": 0.7925 + }, + { + "start": 7308.8, + "end": 7309.8, + "probability": 0.751 + }, + { + "start": 7310.92, + "end": 7315.14, + "probability": 0.9497 + }, + { + "start": 7315.92, + "end": 7318.04, + "probability": 0.8151 + }, + { + "start": 7318.06, + "end": 7320.52, + "probability": 0.4225 + }, + { + "start": 7321.04, + "end": 7324.18, + "probability": 0.9775 + }, + { + "start": 7324.28, + "end": 7326.82, + "probability": 0.894 + }, + { + "start": 7327.3, + "end": 7331.01, + "probability": 0.9775 + }, + { + "start": 7331.46, + "end": 7331.96, + "probability": 0.6943 + }, + { + "start": 7332.02, + "end": 7334.12, + "probability": 0.8509 + }, + { + "start": 7335.32, + "end": 7336.14, + "probability": 0.9385 + }, + { + "start": 7338.96, + "end": 7340.24, + "probability": 0.7925 + }, + { + "start": 7340.38, + "end": 7341.5, + "probability": 0.9272 + }, + { + "start": 7341.58, + "end": 7342.98, + "probability": 0.9702 + }, + { + "start": 7354.38, + "end": 7355.48, + "probability": 0.3468 + }, + { + "start": 7355.5, + "end": 7356.2, + "probability": 0.4793 + }, + { + "start": 7357.06, + "end": 7365.67, + "probability": 0.0646 + }, + { + "start": 7368.45, + "end": 7370.21, + "probability": 0.1328 + }, + { + "start": 7370.78, + "end": 7370.78, + "probability": 0.1438 + }, + { + "start": 7371.52, + "end": 7371.52, + "probability": 0.0133 + }, + { + "start": 7371.52, + "end": 7371.52, + "probability": 0.2741 + }, + { + "start": 7371.52, + "end": 7371.52, + "probability": 0.1937 + }, + { + "start": 7371.52, + "end": 7383.3, + "probability": 0.4578 + }, + { + "start": 7383.3, + "end": 7384.18, + "probability": 0.2706 + }, + { + "start": 7388.58, + "end": 7391.64, + "probability": 0.8578 + }, + { + "start": 7392.18, + "end": 7392.9, + "probability": 0.4996 + }, + { + "start": 7393.36, + "end": 7402.12, + "probability": 0.9917 + }, + { + "start": 7402.56, + "end": 7403.96, + "probability": 0.5371 + }, + { + "start": 7404.66, + "end": 7406.64, + "probability": 0.9771 + }, + { + "start": 7406.86, + "end": 7410.42, + "probability": 0.8048 + }, + { + "start": 7411.82, + "end": 7414.34, + "probability": 0.7 + }, + { + "start": 7419.6, + "end": 7421.84, + "probability": 0.5559 + }, + { + "start": 7421.84, + "end": 7424.48, + "probability": 0.2246 + }, + { + "start": 7424.74, + "end": 7425.6, + "probability": 0.6831 + }, + { + "start": 7425.66, + "end": 7426.34, + "probability": 0.6089 + }, + { + "start": 7426.5, + "end": 7427.68, + "probability": 0.6739 + }, + { + "start": 7428.28, + "end": 7430.82, + "probability": 0.9941 + }, + { + "start": 7430.88, + "end": 7432.56, + "probability": 0.9639 + }, + { + "start": 7433.58, + "end": 7433.9, + "probability": 0.7894 + }, + { + "start": 7434.06, + "end": 7437.44, + "probability": 0.9976 + }, + { + "start": 7438.38, + "end": 7440.94, + "probability": 0.9455 + }, + { + "start": 7441.64, + "end": 7443.58, + "probability": 0.9829 + }, + { + "start": 7444.14, + "end": 7445.28, + "probability": 0.8662 + }, + { + "start": 7446.04, + "end": 7446.88, + "probability": 0.9873 + }, + { + "start": 7447.58, + "end": 7448.48, + "probability": 0.9951 + }, + { + "start": 7449.4, + "end": 7454.39, + "probability": 0.978 + }, + { + "start": 7456.26, + "end": 7457.24, + "probability": 0.7158 + }, + { + "start": 7457.38, + "end": 7457.7, + "probability": 0.9414 + }, + { + "start": 7457.8, + "end": 7458.64, + "probability": 0.8648 + }, + { + "start": 7458.74, + "end": 7459.5, + "probability": 0.944 + }, + { + "start": 7459.6, + "end": 7460.63, + "probability": 0.9609 + }, + { + "start": 7461.48, + "end": 7462.58, + "probability": 0.8955 + }, + { + "start": 7462.64, + "end": 7464.4, + "probability": 0.9897 + }, + { + "start": 7464.5, + "end": 7465.62, + "probability": 0.6359 + }, + { + "start": 7465.72, + "end": 7466.04, + "probability": 0.3683 + }, + { + "start": 7466.7, + "end": 7467.68, + "probability": 0.6924 + }, + { + "start": 7468.3, + "end": 7469.14, + "probability": 0.9333 + }, + { + "start": 7469.66, + "end": 7471.46, + "probability": 0.9318 + }, + { + "start": 7471.58, + "end": 7474.62, + "probability": 0.9936 + }, + { + "start": 7475.5, + "end": 7477.98, + "probability": 0.9889 + }, + { + "start": 7478.1, + "end": 7482.7, + "probability": 0.9943 + }, + { + "start": 7482.8, + "end": 7485.8, + "probability": 0.9941 + }, + { + "start": 7487.5, + "end": 7491.26, + "probability": 0.926 + }, + { + "start": 7492.22, + "end": 7498.18, + "probability": 0.996 + }, + { + "start": 7498.92, + "end": 7501.88, + "probability": 0.9397 + }, + { + "start": 7502.9, + "end": 7504.32, + "probability": 0.8899 + }, + { + "start": 7504.74, + "end": 7509.32, + "probability": 0.9395 + }, + { + "start": 7509.82, + "end": 7516.32, + "probability": 0.9893 + }, + { + "start": 7516.4, + "end": 7517.3, + "probability": 0.6404 + }, + { + "start": 7517.74, + "end": 7519.44, + "probability": 0.9984 + }, + { + "start": 7520.2, + "end": 7521.49, + "probability": 0.9357 + }, + { + "start": 7522.14, + "end": 7525.3, + "probability": 0.9092 + }, + { + "start": 7525.78, + "end": 7528.46, + "probability": 0.9014 + }, + { + "start": 7528.5, + "end": 7529.66, + "probability": 0.6372 + }, + { + "start": 7530.12, + "end": 7531.92, + "probability": 0.8754 + }, + { + "start": 7531.98, + "end": 7533.76, + "probability": 0.9843 + }, + { + "start": 7534.18, + "end": 7535.76, + "probability": 0.9766 + }, + { + "start": 7535.84, + "end": 7536.47, + "probability": 0.9639 + }, + { + "start": 7537.6, + "end": 7539.96, + "probability": 0.9922 + }, + { + "start": 7541.86, + "end": 7544.24, + "probability": 0.8566 + }, + { + "start": 7544.92, + "end": 7546.6, + "probability": 0.807 + }, + { + "start": 7547.24, + "end": 7550.2, + "probability": 0.9852 + }, + { + "start": 7551.28, + "end": 7554.94, + "probability": 0.8203 + }, + { + "start": 7555.9, + "end": 7557.56, + "probability": 0.9414 + }, + { + "start": 7558.34, + "end": 7559.31, + "probability": 0.9899 + }, + { + "start": 7560.16, + "end": 7562.34, + "probability": 0.9932 + }, + { + "start": 7563.06, + "end": 7563.94, + "probability": 0.9792 + }, + { + "start": 7564.06, + "end": 7565.0, + "probability": 0.8932 + }, + { + "start": 7565.36, + "end": 7567.16, + "probability": 0.9819 + }, + { + "start": 7568.84, + "end": 7572.02, + "probability": 0.9811 + }, + { + "start": 7572.84, + "end": 7574.5, + "probability": 0.8583 + }, + { + "start": 7575.1, + "end": 7575.86, + "probability": 0.7419 + }, + { + "start": 7576.44, + "end": 7581.5, + "probability": 0.9502 + }, + { + "start": 7582.84, + "end": 7582.84, + "probability": 0.894 + }, + { + "start": 7583.46, + "end": 7587.44, + "probability": 0.9989 + }, + { + "start": 7587.46, + "end": 7591.32, + "probability": 0.9604 + }, + { + "start": 7592.18, + "end": 7595.68, + "probability": 0.9951 + }, + { + "start": 7596.46, + "end": 7598.28, + "probability": 0.9663 + }, + { + "start": 7599.0, + "end": 7600.02, + "probability": 0.9287 + }, + { + "start": 7600.88, + "end": 7606.12, + "probability": 0.896 + }, + { + "start": 7606.88, + "end": 7608.5, + "probability": 0.9965 + }, + { + "start": 7609.78, + "end": 7612.18, + "probability": 0.9909 + }, + { + "start": 7612.82, + "end": 7613.52, + "probability": 0.9746 + }, + { + "start": 7615.32, + "end": 7620.64, + "probability": 0.9907 + }, + { + "start": 7621.64, + "end": 7622.08, + "probability": 0.5574 + }, + { + "start": 7622.68, + "end": 7622.68, + "probability": 0.2514 + }, + { + "start": 7623.4, + "end": 7627.82, + "probability": 0.9966 + }, + { + "start": 7628.52, + "end": 7630.28, + "probability": 0.9553 + }, + { + "start": 7631.66, + "end": 7635.04, + "probability": 0.9726 + }, + { + "start": 7636.06, + "end": 7637.94, + "probability": 0.9023 + }, + { + "start": 7638.72, + "end": 7639.18, + "probability": 0.9573 + }, + { + "start": 7639.3, + "end": 7639.9, + "probability": 0.9572 + }, + { + "start": 7639.96, + "end": 7640.5, + "probability": 0.9759 + }, + { + "start": 7640.5, + "end": 7641.02, + "probability": 0.8396 + }, + { + "start": 7641.22, + "end": 7643.38, + "probability": 0.9359 + }, + { + "start": 7643.52, + "end": 7644.14, + "probability": 0.8033 + }, + { + "start": 7645.42, + "end": 7648.42, + "probability": 0.9893 + }, + { + "start": 7649.54, + "end": 7653.8, + "probability": 0.8735 + }, + { + "start": 7654.42, + "end": 7655.3, + "probability": 0.8018 + }, + { + "start": 7655.36, + "end": 7656.86, + "probability": 0.9738 + }, + { + "start": 7657.72, + "end": 7659.56, + "probability": 0.9185 + }, + { + "start": 7659.66, + "end": 7662.24, + "probability": 0.9471 + }, + { + "start": 7662.8, + "end": 7664.58, + "probability": 0.9644 + }, + { + "start": 7665.64, + "end": 7668.5, + "probability": 0.9615 + }, + { + "start": 7669.52, + "end": 7674.04, + "probability": 0.9528 + }, + { + "start": 7674.92, + "end": 7677.46, + "probability": 0.9976 + }, + { + "start": 7678.55, + "end": 7682.0, + "probability": 0.9956 + }, + { + "start": 7683.02, + "end": 7685.52, + "probability": 0.9976 + }, + { + "start": 7686.1, + "end": 7688.92, + "probability": 0.9941 + }, + { + "start": 7689.64, + "end": 7691.36, + "probability": 0.9907 + }, + { + "start": 7691.4, + "end": 7691.94, + "probability": 0.8833 + }, + { + "start": 7692.68, + "end": 7696.96, + "probability": 0.9813 + }, + { + "start": 7698.98, + "end": 7701.24, + "probability": 0.8861 + }, + { + "start": 7701.88, + "end": 7706.06, + "probability": 0.9828 + }, + { + "start": 7706.86, + "end": 7708.78, + "probability": 0.9873 + }, + { + "start": 7709.5, + "end": 7711.52, + "probability": 0.9744 + }, + { + "start": 7711.58, + "end": 7714.32, + "probability": 0.9619 + }, + { + "start": 7715.18, + "end": 7718.1, + "probability": 0.8962 + }, + { + "start": 7718.64, + "end": 7720.0, + "probability": 0.8537 + }, + { + "start": 7720.92, + "end": 7724.51, + "probability": 0.9766 + }, + { + "start": 7726.5, + "end": 7727.98, + "probability": 0.9677 + }, + { + "start": 7728.48, + "end": 7730.52, + "probability": 0.9365 + }, + { + "start": 7731.7, + "end": 7735.4, + "probability": 0.9984 + }, + { + "start": 7735.56, + "end": 7736.08, + "probability": 0.9808 + }, + { + "start": 7736.98, + "end": 7737.98, + "probability": 0.9992 + }, + { + "start": 7738.6, + "end": 7739.96, + "probability": 0.6052 + }, + { + "start": 7741.14, + "end": 7742.76, + "probability": 0.9061 + }, + { + "start": 7742.86, + "end": 7743.86, + "probability": 0.9504 + }, + { + "start": 7744.92, + "end": 7747.8, + "probability": 0.922 + }, + { + "start": 7748.24, + "end": 7748.9, + "probability": 0.7865 + }, + { + "start": 7748.9, + "end": 7751.4, + "probability": 0.9854 + }, + { + "start": 7751.46, + "end": 7752.78, + "probability": 0.9946 + }, + { + "start": 7753.52, + "end": 7753.74, + "probability": 0.843 + }, + { + "start": 7753.8, + "end": 7754.39, + "probability": 0.8597 + }, + { + "start": 7755.68, + "end": 7756.54, + "probability": 0.9276 + }, + { + "start": 7756.68, + "end": 7757.02, + "probability": 0.8187 + }, + { + "start": 7757.4, + "end": 7759.5, + "probability": 0.9888 + }, + { + "start": 7759.56, + "end": 7762.38, + "probability": 0.9583 + }, + { + "start": 7762.38, + "end": 7765.84, + "probability": 0.993 + }, + { + "start": 7766.04, + "end": 7768.02, + "probability": 0.9851 + }, + { + "start": 7768.48, + "end": 7769.56, + "probability": 0.9454 + }, + { + "start": 7770.22, + "end": 7772.68, + "probability": 0.9133 + }, + { + "start": 7772.82, + "end": 7774.58, + "probability": 0.8521 + }, + { + "start": 7775.2, + "end": 7775.58, + "probability": 0.6406 + }, + { + "start": 7775.62, + "end": 7776.34, + "probability": 0.9534 + }, + { + "start": 7776.4, + "end": 7777.2, + "probability": 0.9247 + }, + { + "start": 7777.6, + "end": 7780.24, + "probability": 0.98 + }, + { + "start": 7780.94, + "end": 7785.4, + "probability": 0.9204 + }, + { + "start": 7786.14, + "end": 7788.12, + "probability": 0.9786 + }, + { + "start": 7788.18, + "end": 7788.94, + "probability": 0.7689 + }, + { + "start": 7789.58, + "end": 7792.18, + "probability": 0.9936 + }, + { + "start": 7792.28, + "end": 7793.52, + "probability": 0.8429 + }, + { + "start": 7794.48, + "end": 7795.07, + "probability": 0.6187 + }, + { + "start": 7796.32, + "end": 7798.24, + "probability": 0.8901 + }, + { + "start": 7799.18, + "end": 7799.72, + "probability": 0.9339 + }, + { + "start": 7800.4, + "end": 7804.72, + "probability": 0.9681 + }, + { + "start": 7805.42, + "end": 7805.92, + "probability": 0.7432 + }, + { + "start": 7806.04, + "end": 7807.98, + "probability": 0.9788 + }, + { + "start": 7808.58, + "end": 7810.36, + "probability": 0.9795 + }, + { + "start": 7810.42, + "end": 7817.52, + "probability": 0.991 + }, + { + "start": 7817.94, + "end": 7820.66, + "probability": 0.9975 + }, + { + "start": 7821.02, + "end": 7821.84, + "probability": 0.8621 + }, + { + "start": 7822.12, + "end": 7822.82, + "probability": 0.3958 + }, + { + "start": 7823.34, + "end": 7823.54, + "probability": 0.8173 + }, + { + "start": 7824.06, + "end": 7825.92, + "probability": 0.9418 + }, + { + "start": 7826.62, + "end": 7829.86, + "probability": 0.991 + }, + { + "start": 7830.34, + "end": 7831.18, + "probability": 0.6398 + }, + { + "start": 7832.76, + "end": 7836.04, + "probability": 0.9862 + }, + { + "start": 7836.04, + "end": 7840.1, + "probability": 0.5668 + }, + { + "start": 7840.62, + "end": 7842.0, + "probability": 0.8551 + }, + { + "start": 7842.44, + "end": 7842.92, + "probability": 0.7426 + }, + { + "start": 7843.6, + "end": 7846.44, + "probability": 0.9922 + }, + { + "start": 7846.54, + "end": 7847.22, + "probability": 0.8973 + }, + { + "start": 7847.3, + "end": 7850.02, + "probability": 0.9956 + }, + { + "start": 7851.58, + "end": 7851.76, + "probability": 0.4936 + }, + { + "start": 7852.12, + "end": 7855.22, + "probability": 0.936 + }, + { + "start": 7856.0, + "end": 7859.4, + "probability": 0.9025 + }, + { + "start": 7860.06, + "end": 7861.4, + "probability": 0.9313 + }, + { + "start": 7863.1, + "end": 7864.76, + "probability": 0.9362 + }, + { + "start": 7866.0, + "end": 7868.74, + "probability": 0.986 + }, + { + "start": 7868.88, + "end": 7871.7, + "probability": 0.9951 + }, + { + "start": 7872.36, + "end": 7876.64, + "probability": 0.9893 + }, + { + "start": 7876.64, + "end": 7879.26, + "probability": 0.9994 + }, + { + "start": 7879.96, + "end": 7885.6, + "probability": 0.9974 + }, + { + "start": 7886.9, + "end": 7887.76, + "probability": 0.9813 + }, + { + "start": 7889.06, + "end": 7889.62, + "probability": 0.6768 + }, + { + "start": 7889.7, + "end": 7890.06, + "probability": 0.9407 + }, + { + "start": 7890.22, + "end": 7892.9, + "probability": 0.9922 + }, + { + "start": 7894.0, + "end": 7895.1, + "probability": 0.8903 + }, + { + "start": 7896.08, + "end": 7900.94, + "probability": 0.9614 + }, + { + "start": 7901.3, + "end": 7904.8, + "probability": 0.9852 + }, + { + "start": 7905.2, + "end": 7906.96, + "probability": 0.9958 + }, + { + "start": 7907.54, + "end": 7908.44, + "probability": 0.9658 + }, + { + "start": 7909.54, + "end": 7915.56, + "probability": 0.9928 + }, + { + "start": 7915.98, + "end": 7916.54, + "probability": 0.7287 + }, + { + "start": 7916.94, + "end": 7917.9, + "probability": 0.875 + }, + { + "start": 7918.78, + "end": 7919.44, + "probability": 0.5484 + }, + { + "start": 7919.82, + "end": 7920.54, + "probability": 0.9846 + }, + { + "start": 7920.92, + "end": 7922.46, + "probability": 0.9061 + }, + { + "start": 7922.5, + "end": 7923.88, + "probability": 0.9718 + }, + { + "start": 7924.38, + "end": 7925.58, + "probability": 0.9053 + }, + { + "start": 7926.66, + "end": 7929.1, + "probability": 0.9986 + }, + { + "start": 7929.32, + "end": 7929.5, + "probability": 0.5017 + }, + { + "start": 7930.52, + "end": 7932.34, + "probability": 0.5856 + }, + { + "start": 7932.58, + "end": 7935.36, + "probability": 0.8569 + }, + { + "start": 7936.76, + "end": 7938.12, + "probability": 0.762 + }, + { + "start": 7951.72, + "end": 7952.8, + "probability": 0.394 + }, + { + "start": 7953.54, + "end": 7953.54, + "probability": 0.1754 + }, + { + "start": 7953.54, + "end": 7954.5, + "probability": 0.5163 + }, + { + "start": 7954.7, + "end": 7956.5, + "probability": 0.9698 + }, + { + "start": 7956.78, + "end": 7964.52, + "probability": 0.9023 + }, + { + "start": 7964.94, + "end": 7967.7, + "probability": 0.7889 + }, + { + "start": 7968.54, + "end": 7970.5, + "probability": 0.8983 + }, + { + "start": 7971.04, + "end": 7975.6, + "probability": 0.8839 + }, + { + "start": 7976.22, + "end": 7976.64, + "probability": 0.7919 + }, + { + "start": 7976.82, + "end": 7978.96, + "probability": 0.949 + }, + { + "start": 7979.06, + "end": 7979.94, + "probability": 0.8273 + }, + { + "start": 7980.02, + "end": 7981.06, + "probability": 0.9649 + }, + { + "start": 7981.86, + "end": 7985.18, + "probability": 0.9597 + }, + { + "start": 7985.72, + "end": 7990.48, + "probability": 0.9981 + }, + { + "start": 7991.38, + "end": 7992.84, + "probability": 0.9365 + }, + { + "start": 7993.0, + "end": 7997.24, + "probability": 0.966 + }, + { + "start": 7997.98, + "end": 8004.3, + "probability": 0.8612 + }, + { + "start": 8004.34, + "end": 8005.3, + "probability": 0.8726 + }, + { + "start": 8006.44, + "end": 8009.86, + "probability": 0.981 + }, + { + "start": 8010.7, + "end": 8014.0, + "probability": 0.8247 + }, + { + "start": 8014.76, + "end": 8017.68, + "probability": 0.9865 + }, + { + "start": 8018.2, + "end": 8019.88, + "probability": 0.9017 + }, + { + "start": 8020.66, + "end": 8024.28, + "probability": 0.993 + }, + { + "start": 8024.48, + "end": 8025.8, + "probability": 0.9769 + }, + { + "start": 8025.88, + "end": 8028.48, + "probability": 0.6713 + }, + { + "start": 8029.42, + "end": 8032.62, + "probability": 0.9625 + }, + { + "start": 8033.46, + "end": 8036.5, + "probability": 0.8972 + }, + { + "start": 8037.14, + "end": 8040.2, + "probability": 0.962 + }, + { + "start": 8041.1, + "end": 8044.86, + "probability": 0.9642 + }, + { + "start": 8044.94, + "end": 8046.42, + "probability": 0.9809 + }, + { + "start": 8046.68, + "end": 8047.62, + "probability": 0.9886 + }, + { + "start": 8047.72, + "end": 8048.48, + "probability": 0.973 + }, + { + "start": 8049.3, + "end": 8051.56, + "probability": 0.8976 + }, + { + "start": 8052.44, + "end": 8056.28, + "probability": 0.9927 + }, + { + "start": 8056.92, + "end": 8057.72, + "probability": 0.7822 + }, + { + "start": 8057.96, + "end": 8062.38, + "probability": 0.9666 + }, + { + "start": 8063.14, + "end": 8064.5, + "probability": 0.9217 + }, + { + "start": 8064.76, + "end": 8068.78, + "probability": 0.9902 + }, + { + "start": 8068.86, + "end": 8074.2, + "probability": 0.9962 + }, + { + "start": 8074.28, + "end": 8079.46, + "probability": 0.9666 + }, + { + "start": 8079.98, + "end": 8086.04, + "probability": 0.7437 + }, + { + "start": 8086.04, + "end": 8088.72, + "probability": 0.9915 + }, + { + "start": 8089.74, + "end": 8092.48, + "probability": 0.9983 + }, + { + "start": 8093.1, + "end": 8094.46, + "probability": 0.8761 + }, + { + "start": 8095.08, + "end": 8096.1, + "probability": 0.7598 + }, + { + "start": 8096.26, + "end": 8097.48, + "probability": 0.9529 + }, + { + "start": 8097.54, + "end": 8100.54, + "probability": 0.9938 + }, + { + "start": 8100.7, + "end": 8100.96, + "probability": 0.9039 + }, + { + "start": 8102.06, + "end": 8103.2, + "probability": 0.7509 + }, + { + "start": 8103.46, + "end": 8106.7, + "probability": 0.5276 + }, + { + "start": 8106.74, + "end": 8107.46, + "probability": 0.7321 + }, + { + "start": 8108.45, + "end": 8108.57, + "probability": 0.441 + }, + { + "start": 8108.86, + "end": 8108.88, + "probability": 0.5207 + }, + { + "start": 8108.96, + "end": 8109.58, + "probability": 0.6324 + }, + { + "start": 8109.7, + "end": 8110.96, + "probability": 0.8901 + }, + { + "start": 8118.38, + "end": 8121.24, + "probability": 0.8701 + }, + { + "start": 8122.28, + "end": 8122.76, + "probability": 0.2462 + }, + { + "start": 8123.16, + "end": 8125.2, + "probability": 0.5939 + }, + { + "start": 8125.22, + "end": 8127.66, + "probability": 0.7183 + }, + { + "start": 8127.76, + "end": 8129.25, + "probability": 0.9409 + }, + { + "start": 8129.32, + "end": 8130.04, + "probability": 0.8442 + }, + { + "start": 8131.1, + "end": 8131.98, + "probability": 0.6112 + }, + { + "start": 8131.98, + "end": 8132.64, + "probability": 0.5531 + }, + { + "start": 8132.68, + "end": 8133.14, + "probability": 0.8317 + }, + { + "start": 8133.14, + "end": 8134.34, + "probability": 0.8253 + }, + { + "start": 8134.4, + "end": 8136.2, + "probability": 0.8427 + }, + { + "start": 8136.98, + "end": 8138.66, + "probability": 0.4961 + }, + { + "start": 8139.26, + "end": 8141.46, + "probability": 0.9791 + }, + { + "start": 8141.92, + "end": 8147.5, + "probability": 0.9461 + }, + { + "start": 8148.58, + "end": 8152.28, + "probability": 0.9548 + }, + { + "start": 8152.76, + "end": 8153.82, + "probability": 0.9386 + }, + { + "start": 8154.68, + "end": 8156.46, + "probability": 0.9675 + }, + { + "start": 8157.02, + "end": 8162.86, + "probability": 0.9312 + }, + { + "start": 8162.88, + "end": 8167.26, + "probability": 0.9023 + }, + { + "start": 8167.36, + "end": 8167.96, + "probability": 0.4682 + }, + { + "start": 8168.26, + "end": 8170.07, + "probability": 0.7337 + }, + { + "start": 8172.02, + "end": 8176.7, + "probability": 0.9825 + }, + { + "start": 8176.92, + "end": 8178.14, + "probability": 0.8771 + }, + { + "start": 8178.26, + "end": 8180.48, + "probability": 0.937 + }, + { + "start": 8180.5, + "end": 8181.6, + "probability": 0.7737 + }, + { + "start": 8181.98, + "end": 8182.96, + "probability": 0.9566 + }, + { + "start": 8184.62, + "end": 8187.74, + "probability": 0.9835 + }, + { + "start": 8189.12, + "end": 8191.34, + "probability": 0.8248 + }, + { + "start": 8192.38, + "end": 8194.82, + "probability": 0.9167 + }, + { + "start": 8195.42, + "end": 8197.6, + "probability": 0.7729 + }, + { + "start": 8197.64, + "end": 8198.12, + "probability": 0.7061 + }, + { + "start": 8199.2, + "end": 8201.28, + "probability": 0.9961 + }, + { + "start": 8202.1, + "end": 8203.12, + "probability": 0.7391 + }, + { + "start": 8203.64, + "end": 8208.02, + "probability": 0.8203 + }, + { + "start": 8208.66, + "end": 8210.44, + "probability": 0.8333 + }, + { + "start": 8210.66, + "end": 8212.14, + "probability": 0.8939 + }, + { + "start": 8212.72, + "end": 8213.56, + "probability": 0.9899 + }, + { + "start": 8214.12, + "end": 8221.42, + "probability": 0.98 + }, + { + "start": 8222.08, + "end": 8223.12, + "probability": 0.3533 + }, + { + "start": 8223.16, + "end": 8224.34, + "probability": 0.7306 + }, + { + "start": 8224.82, + "end": 8228.26, + "probability": 0.8862 + }, + { + "start": 8228.62, + "end": 8230.22, + "probability": 0.9973 + }, + { + "start": 8230.28, + "end": 8231.54, + "probability": 0.9932 + }, + { + "start": 8231.86, + "end": 8233.88, + "probability": 0.4901 + }, + { + "start": 8233.96, + "end": 8234.81, + "probability": 0.9101 + }, + { + "start": 8235.16, + "end": 8235.82, + "probability": 0.5258 + }, + { + "start": 8236.54, + "end": 8237.62, + "probability": 0.8674 + }, + { + "start": 8238.24, + "end": 8238.34, + "probability": 0.5292 + }, + { + "start": 8238.4, + "end": 8240.76, + "probability": 0.9677 + }, + { + "start": 8240.96, + "end": 8242.02, + "probability": 0.5529 + }, + { + "start": 8242.46, + "end": 8243.5, + "probability": 0.8254 + }, + { + "start": 8243.96, + "end": 8244.82, + "probability": 0.9233 + }, + { + "start": 8245.2, + "end": 8245.66, + "probability": 0.3011 + }, + { + "start": 8245.78, + "end": 8246.52, + "probability": 0.9288 + }, + { + "start": 8246.64, + "end": 8247.76, + "probability": 0.9655 + }, + { + "start": 8247.84, + "end": 8248.49, + "probability": 0.917 + }, + { + "start": 8249.2, + "end": 8251.02, + "probability": 0.9492 + }, + { + "start": 8251.16, + "end": 8255.62, + "probability": 0.7156 + }, + { + "start": 8255.74, + "end": 8258.72, + "probability": 0.9362 + }, + { + "start": 8258.9, + "end": 8259.92, + "probability": 0.9245 + }, + { + "start": 8260.04, + "end": 8263.66, + "probability": 0.9263 + }, + { + "start": 8264.28, + "end": 8265.45, + "probability": 0.9919 + }, + { + "start": 8265.9, + "end": 8269.35, + "probability": 0.9932 + }, + { + "start": 8269.88, + "end": 8272.14, + "probability": 0.9917 + }, + { + "start": 8272.78, + "end": 8275.82, + "probability": 0.995 + }, + { + "start": 8276.62, + "end": 8277.92, + "probability": 0.8903 + }, + { + "start": 8278.58, + "end": 8280.12, + "probability": 0.8867 + }, + { + "start": 8280.92, + "end": 8286.66, + "probability": 0.7279 + }, + { + "start": 8287.12, + "end": 8288.62, + "probability": 0.8059 + }, + { + "start": 8288.84, + "end": 8289.37, + "probability": 0.9069 + }, + { + "start": 8289.76, + "end": 8291.72, + "probability": 0.9863 + }, + { + "start": 8292.38, + "end": 8293.72, + "probability": 0.9457 + }, + { + "start": 8294.2, + "end": 8296.96, + "probability": 0.7776 + }, + { + "start": 8297.08, + "end": 8299.02, + "probability": 0.7697 + }, + { + "start": 8299.58, + "end": 8303.3, + "probability": 0.9111 + }, + { + "start": 8303.4, + "end": 8304.1, + "probability": 0.8058 + }, + { + "start": 8304.68, + "end": 8307.98, + "probability": 0.9622 + }, + { + "start": 8308.04, + "end": 8310.44, + "probability": 0.9971 + }, + { + "start": 8311.06, + "end": 8313.15, + "probability": 0.979 + }, + { + "start": 8313.36, + "end": 8315.28, + "probability": 0.8583 + }, + { + "start": 8315.62, + "end": 8316.5, + "probability": 0.8141 + }, + { + "start": 8317.98, + "end": 8319.92, + "probability": 0.8228 + }, + { + "start": 8320.2, + "end": 8321.64, + "probability": 0.8047 + }, + { + "start": 8329.1, + "end": 8329.84, + "probability": 0.4927 + }, + { + "start": 8329.86, + "end": 8330.5, + "probability": 0.6012 + }, + { + "start": 8330.62, + "end": 8332.34, + "probability": 0.5355 + }, + { + "start": 8332.36, + "end": 8332.94, + "probability": 0.9805 + }, + { + "start": 8350.78, + "end": 8353.61, + "probability": 0.1548 + }, + { + "start": 8353.68, + "end": 8357.48, + "probability": 0.9937 + }, + { + "start": 8357.98, + "end": 8359.8, + "probability": 0.3398 + }, + { + "start": 8360.1, + "end": 8360.92, + "probability": 0.3688 + }, + { + "start": 8362.2, + "end": 8363.58, + "probability": 0.5424 + }, + { + "start": 8363.86, + "end": 8366.26, + "probability": 0.9318 + }, + { + "start": 8368.58, + "end": 8371.82, + "probability": 0.0783 + }, + { + "start": 8371.82, + "end": 8371.82, + "probability": 0.0879 + }, + { + "start": 8371.82, + "end": 8373.02, + "probability": 0.0241 + }, + { + "start": 8391.63, + "end": 8393.99, + "probability": 0.0479 + }, + { + "start": 8393.99, + "end": 8394.09, + "probability": 0.2017 + }, + { + "start": 8403.31, + "end": 8408.63, + "probability": 0.0159 + }, + { + "start": 8408.63, + "end": 8408.63, + "probability": 0.1016 + }, + { + "start": 8408.65, + "end": 8409.21, + "probability": 0.3782 + }, + { + "start": 8409.21, + "end": 8409.21, + "probability": 0.0257 + }, + { + "start": 8409.21, + "end": 8410.75, + "probability": 0.5707 + }, + { + "start": 8411.69, + "end": 8411.97, + "probability": 0.6038 + }, + { + "start": 8414.13, + "end": 8415.59, + "probability": 0.7362 + }, + { + "start": 8416.65, + "end": 8417.77, + "probability": 0.9496 + }, + { + "start": 8418.73, + "end": 8420.51, + "probability": 0.6975 + }, + { + "start": 8422.47, + "end": 8427.17, + "probability": 0.9926 + }, + { + "start": 8428.17, + "end": 8431.23, + "probability": 0.9832 + }, + { + "start": 8432.13, + "end": 8433.29, + "probability": 0.8302 + }, + { + "start": 8433.95, + "end": 8436.15, + "probability": 0.9646 + }, + { + "start": 8437.39, + "end": 8441.61, + "probability": 0.9802 + }, + { + "start": 8442.29, + "end": 8443.85, + "probability": 0.9895 + }, + { + "start": 8444.81, + "end": 8447.53, + "probability": 0.9984 + }, + { + "start": 8449.57, + "end": 8453.89, + "probability": 0.9989 + }, + { + "start": 8454.09, + "end": 8459.05, + "probability": 0.9799 + }, + { + "start": 8460.49, + "end": 8462.43, + "probability": 0.8325 + }, + { + "start": 8462.91, + "end": 8465.08, + "probability": 0.8166 + }, + { + "start": 8466.16, + "end": 8470.65, + "probability": 0.5687 + }, + { + "start": 8471.35, + "end": 8475.93, + "probability": 0.9833 + }, + { + "start": 8477.29, + "end": 8479.85, + "probability": 0.7486 + }, + { + "start": 8480.81, + "end": 8486.73, + "probability": 0.9744 + }, + { + "start": 8487.91, + "end": 8492.87, + "probability": 0.9855 + }, + { + "start": 8493.39, + "end": 8495.68, + "probability": 0.9676 + }, + { + "start": 8498.25, + "end": 8502.53, + "probability": 0.9817 + }, + { + "start": 8503.31, + "end": 8504.97, + "probability": 0.7842 + }, + { + "start": 8506.09, + "end": 8508.99, + "probability": 0.9941 + }, + { + "start": 8508.99, + "end": 8513.51, + "probability": 0.9755 + }, + { + "start": 8515.61, + "end": 8517.11, + "probability": 0.952 + }, + { + "start": 8518.21, + "end": 8522.17, + "probability": 0.9961 + }, + { + "start": 8522.79, + "end": 8523.85, + "probability": 0.9818 + }, + { + "start": 8525.31, + "end": 8526.99, + "probability": 0.6874 + }, + { + "start": 8529.43, + "end": 8533.59, + "probability": 0.9748 + }, + { + "start": 8534.37, + "end": 8536.27, + "probability": 0.9983 + }, + { + "start": 8537.35, + "end": 8539.95, + "probability": 0.8535 + }, + { + "start": 8540.73, + "end": 8548.63, + "probability": 0.9762 + }, + { + "start": 8549.33, + "end": 8552.11, + "probability": 0.6459 + }, + { + "start": 8552.19, + "end": 8552.19, + "probability": 0.0043 + }, + { + "start": 8553.33, + "end": 8553.43, + "probability": 0.4368 + }, + { + "start": 8553.43, + "end": 8556.37, + "probability": 0.5765 + }, + { + "start": 8557.97, + "end": 8558.75, + "probability": 0.6334 + }, + { + "start": 8559.39, + "end": 8562.65, + "probability": 0.5104 + }, + { + "start": 8564.11, + "end": 8564.41, + "probability": 0.0653 + }, + { + "start": 8564.41, + "end": 8566.15, + "probability": 0.6058 + }, + { + "start": 8568.39, + "end": 8570.43, + "probability": 0.8264 + }, + { + "start": 8571.25, + "end": 8578.39, + "probability": 0.9905 + }, + { + "start": 8578.61, + "end": 8579.76, + "probability": 0.9639 + }, + { + "start": 8581.27, + "end": 8584.06, + "probability": 0.9949 + }, + { + "start": 8584.67, + "end": 8586.29, + "probability": 0.999 + }, + { + "start": 8586.87, + "end": 8588.83, + "probability": 0.9102 + }, + { + "start": 8589.35, + "end": 8591.09, + "probability": 0.8781 + }, + { + "start": 8591.81, + "end": 8595.31, + "probability": 0.8147 + }, + { + "start": 8595.31, + "end": 8599.05, + "probability": 0.8502 + }, + { + "start": 8599.65, + "end": 8602.17, + "probability": 0.9718 + }, + { + "start": 8603.27, + "end": 8608.21, + "probability": 0.9961 + }, + { + "start": 8609.05, + "end": 8613.35, + "probability": 0.9678 + }, + { + "start": 8614.31, + "end": 8618.77, + "probability": 0.9554 + }, + { + "start": 8619.47, + "end": 8620.46, + "probability": 0.9429 + }, + { + "start": 8621.53, + "end": 8622.37, + "probability": 0.6015 + }, + { + "start": 8623.07, + "end": 8624.66, + "probability": 0.8497 + }, + { + "start": 8625.25, + "end": 8628.23, + "probability": 0.9806 + }, + { + "start": 8628.23, + "end": 8632.57, + "probability": 0.9919 + }, + { + "start": 8633.39, + "end": 8634.7, + "probability": 0.9865 + }, + { + "start": 8635.75, + "end": 8637.23, + "probability": 0.9774 + }, + { + "start": 8638.39, + "end": 8639.39, + "probability": 0.8072 + }, + { + "start": 8639.99, + "end": 8642.83, + "probability": 0.995 + }, + { + "start": 8642.83, + "end": 8646.47, + "probability": 0.9869 + }, + { + "start": 8647.37, + "end": 8647.99, + "probability": 0.7712 + }, + { + "start": 8649.05, + "end": 8652.75, + "probability": 0.828 + }, + { + "start": 8653.33, + "end": 8657.13, + "probability": 0.7358 + }, + { + "start": 8657.25, + "end": 8658.14, + "probability": 0.9956 + }, + { + "start": 8658.73, + "end": 8660.45, + "probability": 0.8708 + }, + { + "start": 8678.71, + "end": 8679.97, + "probability": 0.5872 + }, + { + "start": 8680.55, + "end": 8682.85, + "probability": 0.987 + }, + { + "start": 8682.85, + "end": 8685.11, + "probability": 0.9295 + }, + { + "start": 8686.09, + "end": 8687.53, + "probability": 0.6144 + }, + { + "start": 8687.67, + "end": 8691.41, + "probability": 0.97 + }, + { + "start": 8691.93, + "end": 8694.47, + "probability": 0.996 + }, + { + "start": 8695.21, + "end": 8697.97, + "probability": 0.9497 + }, + { + "start": 8697.97, + "end": 8701.09, + "probability": 0.9844 + }, + { + "start": 8701.51, + "end": 8701.77, + "probability": 0.8527 + }, + { + "start": 8702.27, + "end": 8702.37, + "probability": 0.5928 + }, + { + "start": 8702.43, + "end": 8703.47, + "probability": 0.8264 + }, + { + "start": 8704.27, + "end": 8709.23, + "probability": 0.8792 + }, + { + "start": 8709.71, + "end": 8711.97, + "probability": 0.9785 + }, + { + "start": 8711.97, + "end": 8714.27, + "probability": 0.9952 + }, + { + "start": 8714.81, + "end": 8715.99, + "probability": 0.9149 + }, + { + "start": 8716.49, + "end": 8718.41, + "probability": 0.9982 + }, + { + "start": 8718.41, + "end": 8720.95, + "probability": 0.9965 + }, + { + "start": 8721.67, + "end": 8725.11, + "probability": 0.9836 + }, + { + "start": 8725.11, + "end": 8730.25, + "probability": 0.9945 + }, + { + "start": 8730.25, + "end": 8732.65, + "probability": 0.7831 + }, + { + "start": 8733.21, + "end": 8737.03, + "probability": 0.7886 + }, + { + "start": 8737.73, + "end": 8742.07, + "probability": 0.9701 + }, + { + "start": 8742.07, + "end": 8746.31, + "probability": 0.9612 + }, + { + "start": 8747.03, + "end": 8749.19, + "probability": 0.8526 + }, + { + "start": 8749.31, + "end": 8750.79, + "probability": 0.9197 + }, + { + "start": 8751.39, + "end": 8754.65, + "probability": 0.7576 + }, + { + "start": 8754.77, + "end": 8757.89, + "probability": 0.9667 + }, + { + "start": 8759.25, + "end": 8762.45, + "probability": 0.9678 + }, + { + "start": 8763.05, + "end": 8767.17, + "probability": 0.9901 + }, + { + "start": 8767.77, + "end": 8767.93, + "probability": 0.3933 + }, + { + "start": 8768.07, + "end": 8768.43, + "probability": 0.8684 + }, + { + "start": 8768.51, + "end": 8772.13, + "probability": 0.9832 + }, + { + "start": 8772.13, + "end": 8775.19, + "probability": 0.9917 + }, + { + "start": 8775.19, + "end": 8778.97, + "probability": 0.8093 + }, + { + "start": 8779.73, + "end": 8782.01, + "probability": 0.9943 + }, + { + "start": 8782.01, + "end": 8785.01, + "probability": 0.872 + }, + { + "start": 8785.13, + "end": 8786.11, + "probability": 0.9191 + }, + { + "start": 8787.09, + "end": 8787.51, + "probability": 0.6536 + }, + { + "start": 8787.59, + "end": 8792.37, + "probability": 0.9707 + }, + { + "start": 8793.11, + "end": 8796.43, + "probability": 0.7676 + }, + { + "start": 8796.87, + "end": 8801.17, + "probability": 0.9976 + }, + { + "start": 8801.75, + "end": 8804.15, + "probability": 0.9663 + }, + { + "start": 8804.87, + "end": 8805.35, + "probability": 0.938 + }, + { + "start": 8805.39, + "end": 8809.91, + "probability": 0.9942 + }, + { + "start": 8810.55, + "end": 8816.21, + "probability": 0.9963 + }, + { + "start": 8816.95, + "end": 8819.25, + "probability": 0.9856 + }, + { + "start": 8819.69, + "end": 8824.61, + "probability": 0.9563 + }, + { + "start": 8825.13, + "end": 8828.35, + "probability": 0.9962 + }, + { + "start": 8829.03, + "end": 8830.37, + "probability": 0.1235 + }, + { + "start": 8830.53, + "end": 8831.13, + "probability": 0.6153 + }, + { + "start": 8834.69, + "end": 8837.27, + "probability": 0.8642 + }, + { + "start": 8837.27, + "end": 8839.71, + "probability": 0.9297 + }, + { + "start": 8840.13, + "end": 8843.93, + "probability": 0.9775 + }, + { + "start": 8844.27, + "end": 8851.07, + "probability": 0.8568 + }, + { + "start": 8851.29, + "end": 8855.95, + "probability": 0.9917 + }, + { + "start": 8856.73, + "end": 8857.89, + "probability": 0.8421 + }, + { + "start": 8857.99, + "end": 8861.57, + "probability": 0.9745 + }, + { + "start": 8861.63, + "end": 8862.13, + "probability": 0.8004 + }, + { + "start": 8862.87, + "end": 8864.42, + "probability": 0.7699 + }, + { + "start": 8864.61, + "end": 8867.83, + "probability": 0.988 + }, + { + "start": 8868.17, + "end": 8868.31, + "probability": 0.7808 + }, + { + "start": 8869.03, + "end": 8871.23, + "probability": 0.8563 + }, + { + "start": 8873.71, + "end": 8874.65, + "probability": 0.7854 + }, + { + "start": 8879.77, + "end": 8881.23, + "probability": 0.586 + }, + { + "start": 8881.45, + "end": 8882.5, + "probability": 0.8839 + }, + { + "start": 8888.73, + "end": 8889.61, + "probability": 0.2897 + }, + { + "start": 8889.67, + "end": 8890.35, + "probability": 0.2962 + }, + { + "start": 8890.37, + "end": 8891.35, + "probability": 0.5874 + }, + { + "start": 8897.35, + "end": 8898.09, + "probability": 0.228 + }, + { + "start": 8898.63, + "end": 8902.22, + "probability": 0.2942 + }, + { + "start": 8905.21, + "end": 8907.61, + "probability": 0.0733 + }, + { + "start": 8908.31, + "end": 8910.97, + "probability": 0.3488 + }, + { + "start": 8911.55, + "end": 8911.99, + "probability": 0.9129 + }, + { + "start": 8913.89, + "end": 8925.63, + "probability": 0.6519 + }, + { + "start": 8925.77, + "end": 8926.73, + "probability": 0.7479 + }, + { + "start": 8926.91, + "end": 8928.25, + "probability": 0.0445 + }, + { + "start": 8929.51, + "end": 8931.05, + "probability": 0.979 + }, + { + "start": 8931.29, + "end": 8933.93, + "probability": 0.8608 + }, + { + "start": 8934.07, + "end": 8937.01, + "probability": 0.6634 + }, + { + "start": 8939.97, + "end": 8944.21, + "probability": 0.8728 + }, + { + "start": 8945.27, + "end": 8948.11, + "probability": 0.7249 + }, + { + "start": 8948.71, + "end": 8950.11, + "probability": 0.899 + }, + { + "start": 8958.05, + "end": 8958.33, + "probability": 0.5622 + }, + { + "start": 8958.43, + "end": 8960.79, + "probability": 0.9124 + }, + { + "start": 8960.79, + "end": 8964.43, + "probability": 0.9865 + }, + { + "start": 8964.55, + "end": 8967.59, + "probability": 0.3625 + }, + { + "start": 8967.95, + "end": 8972.41, + "probability": 0.9716 + }, + { + "start": 8973.21, + "end": 8975.57, + "probability": 0.7508 + }, + { + "start": 8986.19, + "end": 8989.09, + "probability": 0.6026 + }, + { + "start": 8989.27, + "end": 8989.61, + "probability": 0.2956 + }, + { + "start": 8989.61, + "end": 8991.19, + "probability": 0.9531 + }, + { + "start": 8992.69, + "end": 8996.73, + "probability": 0.5167 + }, + { + "start": 8996.73, + "end": 8999.95, + "probability": 0.7429 + }, + { + "start": 9002.01, + "end": 9007.28, + "probability": 0.1537 + }, + { + "start": 9007.99, + "end": 9008.79, + "probability": 0.7326 + }, + { + "start": 9010.32, + "end": 9015.41, + "probability": 0.6704 + }, + { + "start": 9018.35, + "end": 9021.53, + "probability": 0.7693 + }, + { + "start": 9021.69, + "end": 9025.27, + "probability": 0.619 + }, + { + "start": 9027.13, + "end": 9030.67, + "probability": 0.8378 + }, + { + "start": 9036.29, + "end": 9039.63, + "probability": 0.6534 + }, + { + "start": 9040.61, + "end": 9050.91, + "probability": 0.9674 + }, + { + "start": 9052.25, + "end": 9061.77, + "probability": 0.9819 + }, + { + "start": 9061.77, + "end": 9066.87, + "probability": 0.9922 + }, + { + "start": 9067.53, + "end": 9070.55, + "probability": 0.9207 + }, + { + "start": 9073.53, + "end": 9077.51, + "probability": 0.7448 + }, + { + "start": 9080.37, + "end": 9080.75, + "probability": 0.9485 + }, + { + "start": 9083.13, + "end": 9085.03, + "probability": 0.7895 + }, + { + "start": 9092.07, + "end": 9092.07, + "probability": 0.0002 + }, + { + "start": 9101.11, + "end": 9102.27, + "probability": 0.1349 + }, + { + "start": 9104.32, + "end": 9107.97, + "probability": 0.8106 + }, + { + "start": 9108.09, + "end": 9110.93, + "probability": 0.9935 + }, + { + "start": 9112.11, + "end": 9115.51, + "probability": 0.9648 + }, + { + "start": 9119.03, + "end": 9121.13, + "probability": 0.7995 + }, + { + "start": 9121.69, + "end": 9122.97, + "probability": 0.4917 + }, + { + "start": 9123.03, + "end": 9125.61, + "probability": 0.9791 + }, + { + "start": 9127.1, + "end": 9130.05, + "probability": 0.8397 + }, + { + "start": 9133.69, + "end": 9139.61, + "probability": 0.9397 + }, + { + "start": 9140.19, + "end": 9143.21, + "probability": 0.8748 + }, + { + "start": 9144.29, + "end": 9147.75, + "probability": 0.9233 + }, + { + "start": 9149.65, + "end": 9151.75, + "probability": 0.8615 + }, + { + "start": 9151.87, + "end": 9158.01, + "probability": 0.9946 + }, + { + "start": 9158.85, + "end": 9161.18, + "probability": 0.8766 + }, + { + "start": 9162.43, + "end": 9164.75, + "probability": 0.9195 + }, + { + "start": 9165.03, + "end": 9166.85, + "probability": 0.9259 + }, + { + "start": 9167.15, + "end": 9168.27, + "probability": 0.3635 + }, + { + "start": 9168.27, + "end": 9172.03, + "probability": 0.9806 + }, + { + "start": 9179.67, + "end": 9182.13, + "probability": 0.8694 + }, + { + "start": 9182.23, + "end": 9183.2, + "probability": 0.9607 + }, + { + "start": 9186.55, + "end": 9189.01, + "probability": 0.8979 + }, + { + "start": 9189.19, + "end": 9189.37, + "probability": 0.4937 + }, + { + "start": 9191.89, + "end": 9192.61, + "probability": 0.4417 + }, + { + "start": 9193.93, + "end": 9199.83, + "probability": 0.7741 + }, + { + "start": 9200.77, + "end": 9203.07, + "probability": 0.999 + }, + { + "start": 9203.07, + "end": 9206.87, + "probability": 0.8298 + }, + { + "start": 9207.85, + "end": 9212.21, + "probability": 0.853 + }, + { + "start": 9212.21, + "end": 9216.47, + "probability": 0.9951 + }, + { + "start": 9217.85, + "end": 9219.99, + "probability": 0.4617 + }, + { + "start": 9220.77, + "end": 9225.69, + "probability": 0.9867 + }, + { + "start": 9226.93, + "end": 9231.11, + "probability": 0.7321 + }, + { + "start": 9231.28, + "end": 9235.01, + "probability": 0.9945 + }, + { + "start": 9236.51, + "end": 9239.91, + "probability": 0.9989 + }, + { + "start": 9239.91, + "end": 9246.19, + "probability": 0.9473 + }, + { + "start": 9246.33, + "end": 9249.73, + "probability": 0.7199 + }, + { + "start": 9251.55, + "end": 9252.27, + "probability": 0.6466 + }, + { + "start": 9253.03, + "end": 9255.63, + "probability": 0.991 + }, + { + "start": 9256.35, + "end": 9257.49, + "probability": 0.9945 + }, + { + "start": 9258.25, + "end": 9259.53, + "probability": 0.681 + }, + { + "start": 9259.75, + "end": 9261.87, + "probability": 0.7682 + }, + { + "start": 9262.37, + "end": 9264.13, + "probability": 0.8337 + }, + { + "start": 9264.23, + "end": 9269.29, + "probability": 0.9759 + }, + { + "start": 9269.85, + "end": 9270.91, + "probability": 0.7287 + }, + { + "start": 9272.37, + "end": 9272.69, + "probability": 0.485 + }, + { + "start": 9272.81, + "end": 9274.37, + "probability": 0.7977 + }, + { + "start": 9274.49, + "end": 9281.07, + "probability": 0.978 + }, + { + "start": 9281.07, + "end": 9286.71, + "probability": 0.9863 + }, + { + "start": 9288.11, + "end": 9291.11, + "probability": 0.8271 + }, + { + "start": 9292.21, + "end": 9296.77, + "probability": 0.9838 + }, + { + "start": 9297.67, + "end": 9300.85, + "probability": 0.875 + }, + { + "start": 9301.11, + "end": 9303.33, + "probability": 0.7909 + }, + { + "start": 9303.65, + "end": 9305.49, + "probability": 0.9081 + }, + { + "start": 9306.71, + "end": 9308.99, + "probability": 0.367 + }, + { + "start": 9309.01, + "end": 9309.39, + "probability": 0.5739 + }, + { + "start": 9309.47, + "end": 9313.95, + "probability": 0.9974 + }, + { + "start": 9314.55, + "end": 9317.49, + "probability": 0.9907 + }, + { + "start": 9320.17, + "end": 9323.67, + "probability": 0.9586 + }, + { + "start": 9323.67, + "end": 9328.91, + "probability": 0.9993 + }, + { + "start": 9330.25, + "end": 9333.77, + "probability": 0.89 + }, + { + "start": 9335.29, + "end": 9338.79, + "probability": 0.7472 + }, + { + "start": 9339.41, + "end": 9342.79, + "probability": 0.9678 + }, + { + "start": 9342.79, + "end": 9346.13, + "probability": 0.9375 + }, + { + "start": 9347.05, + "end": 9349.45, + "probability": 0.5204 + }, + { + "start": 9349.97, + "end": 9352.87, + "probability": 0.9802 + }, + { + "start": 9354.21, + "end": 9355.89, + "probability": 0.7785 + }, + { + "start": 9356.01, + "end": 9357.45, + "probability": 0.9097 + }, + { + "start": 9357.83, + "end": 9359.83, + "probability": 0.911 + }, + { + "start": 9360.93, + "end": 9362.09, + "probability": 0.9515 + }, + { + "start": 9362.61, + "end": 9367.07, + "probability": 0.9847 + }, + { + "start": 9367.15, + "end": 9373.89, + "probability": 0.9912 + }, + { + "start": 9374.57, + "end": 9376.01, + "probability": 0.951 + }, + { + "start": 9376.71, + "end": 9379.81, + "probability": 0.9519 + }, + { + "start": 9381.21, + "end": 9386.55, + "probability": 0.9944 + }, + { + "start": 9386.55, + "end": 9391.13, + "probability": 0.9769 + }, + { + "start": 9391.19, + "end": 9392.33, + "probability": 0.8915 + }, + { + "start": 9392.41, + "end": 9393.87, + "probability": 0.8375 + }, + { + "start": 9394.91, + "end": 9398.71, + "probability": 0.863 + }, + { + "start": 9400.17, + "end": 9401.53, + "probability": 0.9404 + }, + { + "start": 9401.67, + "end": 9404.03, + "probability": 0.9976 + }, + { + "start": 9406.53, + "end": 9411.03, + "probability": 0.9907 + }, + { + "start": 9411.97, + "end": 9416.55, + "probability": 0.9846 + }, + { + "start": 9417.65, + "end": 9420.47, + "probability": 0.918 + }, + { + "start": 9421.69, + "end": 9426.11, + "probability": 0.8398 + }, + { + "start": 9430.05, + "end": 9432.99, + "probability": 0.8087 + }, + { + "start": 9433.37, + "end": 9436.43, + "probability": 0.8252 + }, + { + "start": 9437.05, + "end": 9440.83, + "probability": 0.5867 + }, + { + "start": 9441.23, + "end": 9444.59, + "probability": 0.9225 + }, + { + "start": 9446.79, + "end": 9450.91, + "probability": 0.6993 + }, + { + "start": 9451.71, + "end": 9452.31, + "probability": 0.4306 + }, + { + "start": 9453.03, + "end": 9457.57, + "probability": 0.998 + }, + { + "start": 9458.73, + "end": 9461.41, + "probability": 0.9069 + }, + { + "start": 9461.45, + "end": 9463.69, + "probability": 0.9917 + }, + { + "start": 9464.53, + "end": 9469.01, + "probability": 0.9294 + }, + { + "start": 9469.19, + "end": 9469.75, + "probability": 0.5763 + }, + { + "start": 9470.65, + "end": 9476.23, + "probability": 0.9881 + }, + { + "start": 9476.69, + "end": 9478.07, + "probability": 0.953 + }, + { + "start": 9479.69, + "end": 9483.07, + "probability": 0.9578 + }, + { + "start": 9484.11, + "end": 9486.31, + "probability": 0.9743 + }, + { + "start": 9487.29, + "end": 9491.45, + "probability": 0.995 + }, + { + "start": 9492.01, + "end": 9496.33, + "probability": 0.9323 + }, + { + "start": 9497.83, + "end": 9499.05, + "probability": 0.9844 + }, + { + "start": 9501.39, + "end": 9502.75, + "probability": 0.7969 + }, + { + "start": 9503.17, + "end": 9505.61, + "probability": 0.8248 + }, + { + "start": 9506.71, + "end": 9513.43, + "probability": 0.98 + }, + { + "start": 9514.81, + "end": 9519.25, + "probability": 0.8769 + }, + { + "start": 9520.11, + "end": 9524.47, + "probability": 0.6726 + }, + { + "start": 9524.65, + "end": 9525.89, + "probability": 0.9429 + }, + { + "start": 9526.53, + "end": 9528.27, + "probability": 0.8692 + }, + { + "start": 9528.37, + "end": 9530.69, + "probability": 0.8013 + }, + { + "start": 9531.73, + "end": 9536.85, + "probability": 0.7359 + }, + { + "start": 9536.85, + "end": 9541.79, + "probability": 0.8975 + }, + { + "start": 9543.75, + "end": 9551.13, + "probability": 0.9505 + }, + { + "start": 9553.75, + "end": 9554.51, + "probability": 0.4282 + }, + { + "start": 9554.59, + "end": 9559.17, + "probability": 0.9052 + }, + { + "start": 9559.91, + "end": 9562.79, + "probability": 0.9332 + }, + { + "start": 9562.79, + "end": 9565.33, + "probability": 0.9944 + }, + { + "start": 9565.85, + "end": 9568.41, + "probability": 0.9832 + }, + { + "start": 9568.58, + "end": 9572.29, + "probability": 0.9973 + }, + { + "start": 9572.99, + "end": 9578.15, + "probability": 0.8875 + }, + { + "start": 9580.81, + "end": 9582.45, + "probability": 0.809 + }, + { + "start": 9585.21, + "end": 9588.25, + "probability": 0.9919 + }, + { + "start": 9588.25, + "end": 9591.91, + "probability": 0.9919 + }, + { + "start": 9592.57, + "end": 9595.09, + "probability": 0.8725 + }, + { + "start": 9595.31, + "end": 9598.17, + "probability": 0.9878 + }, + { + "start": 9599.27, + "end": 9604.33, + "probability": 0.7766 + }, + { + "start": 9604.39, + "end": 9606.61, + "probability": 0.7937 + }, + { + "start": 9608.55, + "end": 9609.11, + "probability": 0.1947 + }, + { + "start": 9610.23, + "end": 9613.57, + "probability": 0.8202 + }, + { + "start": 9613.63, + "end": 9613.89, + "probability": 0.687 + }, + { + "start": 9614.73, + "end": 9616.61, + "probability": 0.5708 + }, + { + "start": 9617.37, + "end": 9620.33, + "probability": 0.9785 + }, + { + "start": 9620.33, + "end": 9624.75, + "probability": 0.9907 + }, + { + "start": 9625.41, + "end": 9627.95, + "probability": 0.9593 + }, + { + "start": 9628.59, + "end": 9632.11, + "probability": 0.9115 + }, + { + "start": 9632.91, + "end": 9637.19, + "probability": 0.9542 + }, + { + "start": 9637.91, + "end": 9643.01, + "probability": 0.9976 + }, + { + "start": 9643.41, + "end": 9644.93, + "probability": 0.9025 + }, + { + "start": 9645.89, + "end": 9646.69, + "probability": 0.6098 + }, + { + "start": 9646.81, + "end": 9650.55, + "probability": 0.9948 + }, + { + "start": 9650.63, + "end": 9654.77, + "probability": 0.9889 + }, + { + "start": 9655.49, + "end": 9657.63, + "probability": 0.98 + }, + { + "start": 9658.91, + "end": 9661.67, + "probability": 0.9748 + }, + { + "start": 9661.79, + "end": 9663.61, + "probability": 0.7928 + }, + { + "start": 9664.23, + "end": 9667.61, + "probability": 0.9805 + }, + { + "start": 9667.61, + "end": 9671.65, + "probability": 0.9866 + }, + { + "start": 9672.85, + "end": 9675.05, + "probability": 0.5862 + }, + { + "start": 9675.87, + "end": 9676.49, + "probability": 0.6371 + }, + { + "start": 9677.45, + "end": 9683.03, + "probability": 0.9961 + }, + { + "start": 9683.71, + "end": 9687.79, + "probability": 0.9316 + }, + { + "start": 9688.59, + "end": 9695.35, + "probability": 0.9422 + }, + { + "start": 9695.99, + "end": 9702.21, + "probability": 0.9934 + }, + { + "start": 9702.65, + "end": 9709.49, + "probability": 0.9885 + }, + { + "start": 9709.51, + "end": 9714.93, + "probability": 0.9935 + }, + { + "start": 9716.11, + "end": 9716.23, + "probability": 0.6854 + }, + { + "start": 9716.83, + "end": 9719.47, + "probability": 0.8069 + }, + { + "start": 9719.99, + "end": 9722.51, + "probability": 0.7645 + }, + { + "start": 9724.33, + "end": 9725.43, + "probability": 0.0185 + }, + { + "start": 9725.81, + "end": 9730.71, + "probability": 0.1231 + }, + { + "start": 9730.71, + "end": 9732.77, + "probability": 0.2288 + }, + { + "start": 9735.61, + "end": 9735.93, + "probability": 0.0426 + }, + { + "start": 9761.13, + "end": 9764.51, + "probability": 0.3817 + }, + { + "start": 9765.61, + "end": 9766.59, + "probability": 0.9909 + }, + { + "start": 9767.53, + "end": 9773.37, + "probability": 0.9907 + }, + { + "start": 9774.57, + "end": 9781.29, + "probability": 0.9818 + }, + { + "start": 9781.57, + "end": 9787.25, + "probability": 0.9915 + }, + { + "start": 9788.03, + "end": 9789.91, + "probability": 0.9985 + }, + { + "start": 9790.07, + "end": 9795.59, + "probability": 0.9839 + }, + { + "start": 9796.55, + "end": 9798.83, + "probability": 0.8488 + }, + { + "start": 9799.59, + "end": 9802.49, + "probability": 0.9899 + }, + { + "start": 9803.45, + "end": 9805.84, + "probability": 0.9596 + }, + { + "start": 9807.07, + "end": 9808.35, + "probability": 0.7886 + }, + { + "start": 9808.57, + "end": 9809.11, + "probability": 0.948 + }, + { + "start": 9813.99, + "end": 9817.29, + "probability": 0.6812 + }, + { + "start": 9817.29, + "end": 9826.85, + "probability": 0.9951 + }, + { + "start": 9828.11, + "end": 9829.11, + "probability": 0.9927 + }, + { + "start": 9829.99, + "end": 9831.49, + "probability": 0.8914 + }, + { + "start": 9832.23, + "end": 9834.05, + "probability": 0.9836 + }, + { + "start": 9836.13, + "end": 9837.99, + "probability": 0.5432 + }, + { + "start": 9839.49, + "end": 9846.59, + "probability": 0.9811 + }, + { + "start": 9848.05, + "end": 9849.4, + "probability": 0.821 + }, + { + "start": 9850.99, + "end": 9854.39, + "probability": 0.9957 + }, + { + "start": 9854.49, + "end": 9857.55, + "probability": 0.9849 + }, + { + "start": 9859.25, + "end": 9861.83, + "probability": 0.9705 + }, + { + "start": 9861.93, + "end": 9863.09, + "probability": 0.9495 + }, + { + "start": 9863.73, + "end": 9867.17, + "probability": 0.9792 + }, + { + "start": 9868.03, + "end": 9869.85, + "probability": 0.9966 + }, + { + "start": 9871.51, + "end": 9875.31, + "probability": 0.9969 + }, + { + "start": 9876.43, + "end": 9878.55, + "probability": 0.636 + }, + { + "start": 9879.99, + "end": 9882.43, + "probability": 0.9979 + }, + { + "start": 9882.43, + "end": 9886.37, + "probability": 0.9794 + }, + { + "start": 9887.31, + "end": 9888.09, + "probability": 0.6775 + }, + { + "start": 9889.41, + "end": 9891.87, + "probability": 0.9707 + }, + { + "start": 9892.01, + "end": 9895.15, + "probability": 0.654 + }, + { + "start": 9895.75, + "end": 9896.35, + "probability": 0.692 + }, + { + "start": 9898.31, + "end": 9900.01, + "probability": 0.8896 + }, + { + "start": 9900.55, + "end": 9902.25, + "probability": 0.9082 + }, + { + "start": 9903.39, + "end": 9904.85, + "probability": 0.967 + }, + { + "start": 9905.41, + "end": 9908.37, + "probability": 0.9929 + }, + { + "start": 9909.01, + "end": 9910.19, + "probability": 0.9696 + }, + { + "start": 9911.89, + "end": 9913.77, + "probability": 0.7601 + }, + { + "start": 9914.87, + "end": 9915.67, + "probability": 0.9897 + }, + { + "start": 9916.89, + "end": 9918.21, + "probability": 0.9676 + }, + { + "start": 9919.39, + "end": 9922.25, + "probability": 0.9069 + }, + { + "start": 9923.01, + "end": 9925.17, + "probability": 0.9321 + }, + { + "start": 9925.89, + "end": 9928.01, + "probability": 0.7477 + }, + { + "start": 9928.53, + "end": 9929.55, + "probability": 0.9738 + }, + { + "start": 9930.23, + "end": 9933.73, + "probability": 0.8375 + }, + { + "start": 9935.03, + "end": 9935.83, + "probability": 0.562 + }, + { + "start": 9936.47, + "end": 9937.49, + "probability": 0.1811 + }, + { + "start": 9938.23, + "end": 9939.91, + "probability": 0.8907 + }, + { + "start": 9940.57, + "end": 9943.61, + "probability": 0.9958 + }, + { + "start": 9943.61, + "end": 9947.51, + "probability": 0.9985 + }, + { + "start": 9948.13, + "end": 9948.93, + "probability": 0.9962 + }, + { + "start": 9949.93, + "end": 9952.05, + "probability": 0.9707 + }, + { + "start": 9953.43, + "end": 9955.85, + "probability": 0.8208 + }, + { + "start": 9956.81, + "end": 9957.23, + "probability": 0.976 + }, + { + "start": 9958.29, + "end": 9961.11, + "probability": 0.8903 + }, + { + "start": 9961.13, + "end": 9966.73, + "probability": 0.9492 + }, + { + "start": 9968.13, + "end": 9970.4, + "probability": 0.6345 + }, + { + "start": 9972.07, + "end": 9976.13, + "probability": 0.9066 + }, + { + "start": 9977.49, + "end": 9982.09, + "probability": 0.9012 + }, + { + "start": 9982.79, + "end": 9984.05, + "probability": 0.9352 + }, + { + "start": 9984.71, + "end": 9987.31, + "probability": 0.9664 + }, + { + "start": 9987.67, + "end": 9989.69, + "probability": 0.9862 + }, + { + "start": 9990.33, + "end": 9991.37, + "probability": 0.8467 + }, + { + "start": 9992.95, + "end": 9993.91, + "probability": 0.7362 + }, + { + "start": 9994.67, + "end": 9997.35, + "probability": 0.9616 + }, + { + "start": 9998.99, + "end": 10001.73, + "probability": 0.9048 + }, + { + "start": 10002.95, + "end": 10005.63, + "probability": 0.7802 + }, + { + "start": 10006.25, + "end": 10011.55, + "probability": 0.9867 + }, + { + "start": 10012.61, + "end": 10016.45, + "probability": 0.843 + }, + { + "start": 10017.05, + "end": 10017.65, + "probability": 0.9856 + }, + { + "start": 10019.13, + "end": 10019.43, + "probability": 0.892 + }, + { + "start": 10020.23, + "end": 10021.02, + "probability": 0.6675 + }, + { + "start": 10022.73, + "end": 10027.71, + "probability": 0.9626 + }, + { + "start": 10028.43, + "end": 10030.91, + "probability": 0.9961 + }, + { + "start": 10032.23, + "end": 10033.67, + "probability": 0.9733 + }, + { + "start": 10034.37, + "end": 10039.13, + "probability": 0.8824 + }, + { + "start": 10039.31, + "end": 10041.11, + "probability": 0.8199 + }, + { + "start": 10042.27, + "end": 10043.11, + "probability": 0.4295 + }, + { + "start": 10044.85, + "end": 10046.35, + "probability": 0.4892 + }, + { + "start": 10046.45, + "end": 10048.93, + "probability": 0.9698 + }, + { + "start": 10048.95, + "end": 10050.23, + "probability": 0.9338 + }, + { + "start": 10051.43, + "end": 10052.87, + "probability": 0.6772 + }, + { + "start": 10052.93, + "end": 10055.59, + "probability": 0.9511 + }, + { + "start": 10056.75, + "end": 10057.65, + "probability": 0.6429 + }, + { + "start": 10059.67, + "end": 10062.82, + "probability": 0.8316 + }, + { + "start": 10063.53, + "end": 10066.17, + "probability": 0.9803 + }, + { + "start": 10066.17, + "end": 10069.33, + "probability": 0.8812 + }, + { + "start": 10070.67, + "end": 10072.03, + "probability": 0.5653 + }, + { + "start": 10073.19, + "end": 10076.45, + "probability": 0.9365 + }, + { + "start": 10077.15, + "end": 10078.27, + "probability": 0.5944 + }, + { + "start": 10079.85, + "end": 10079.95, + "probability": 0.0022 + }, + { + "start": 10081.49, + "end": 10081.93, + "probability": 0.0356 + }, + { + "start": 10081.93, + "end": 10082.19, + "probability": 0.0118 + }, + { + "start": 10082.19, + "end": 10085.09, + "probability": 0.8534 + }, + { + "start": 10085.85, + "end": 10088.35, + "probability": 0.9625 + }, + { + "start": 10089.39, + "end": 10092.21, + "probability": 0.9955 + }, + { + "start": 10093.89, + "end": 10097.15, + "probability": 0.7333 + }, + { + "start": 10097.69, + "end": 10101.81, + "probability": 0.9602 + }, + { + "start": 10102.49, + "end": 10103.41, + "probability": 0.9162 + }, + { + "start": 10104.57, + "end": 10107.01, + "probability": 0.9523 + }, + { + "start": 10107.67, + "end": 10111.88, + "probability": 0.8809 + }, + { + "start": 10113.11, + "end": 10116.63, + "probability": 0.9939 + }, + { + "start": 10117.61, + "end": 10119.37, + "probability": 0.7633 + }, + { + "start": 10120.01, + "end": 10121.95, + "probability": 0.9873 + }, + { + "start": 10122.95, + "end": 10125.81, + "probability": 0.9971 + }, + { + "start": 10127.41, + "end": 10127.87, + "probability": 0.6495 + }, + { + "start": 10128.41, + "end": 10128.83, + "probability": 0.5786 + }, + { + "start": 10129.85, + "end": 10130.47, + "probability": 0.6176 + }, + { + "start": 10131.47, + "end": 10137.33, + "probability": 0.9305 + }, + { + "start": 10137.89, + "end": 10139.27, + "probability": 0.9017 + }, + { + "start": 10140.55, + "end": 10142.39, + "probability": 0.9937 + }, + { + "start": 10142.39, + "end": 10143.39, + "probability": 0.818 + }, + { + "start": 10144.19, + "end": 10145.79, + "probability": 0.98 + }, + { + "start": 10146.37, + "end": 10148.37, + "probability": 0.61 + }, + { + "start": 10149.55, + "end": 10156.07, + "probability": 0.9468 + }, + { + "start": 10156.39, + "end": 10158.87, + "probability": 0.6771 + }, + { + "start": 10159.41, + "end": 10159.97, + "probability": 0.0352 + }, + { + "start": 10161.31, + "end": 10164.65, + "probability": 0.8866 + }, + { + "start": 10165.21, + "end": 10170.87, + "probability": 0.8776 + }, + { + "start": 10171.55, + "end": 10173.51, + "probability": 0.9891 + }, + { + "start": 10174.21, + "end": 10176.29, + "probability": 0.7776 + }, + { + "start": 10177.23, + "end": 10180.09, + "probability": 0.9967 + }, + { + "start": 10181.39, + "end": 10185.21, + "probability": 0.939 + }, + { + "start": 10186.65, + "end": 10192.87, + "probability": 0.8932 + }, + { + "start": 10194.25, + "end": 10196.73, + "probability": 0.9336 + }, + { + "start": 10198.11, + "end": 10198.83, + "probability": 0.9509 + }, + { + "start": 10199.61, + "end": 10201.71, + "probability": 0.8781 + }, + { + "start": 10202.67, + "end": 10205.55, + "probability": 0.9963 + }, + { + "start": 10206.81, + "end": 10209.51, + "probability": 0.9469 + }, + { + "start": 10210.55, + "end": 10217.43, + "probability": 0.9658 + }, + { + "start": 10218.17, + "end": 10224.09, + "probability": 0.8437 + }, + { + "start": 10225.25, + "end": 10226.81, + "probability": 0.7346 + }, + { + "start": 10228.01, + "end": 10232.39, + "probability": 0.9405 + }, + { + "start": 10233.47, + "end": 10238.23, + "probability": 0.9873 + }, + { + "start": 10238.45, + "end": 10241.63, + "probability": 0.6679 + }, + { + "start": 10243.09, + "end": 10244.28, + "probability": 0.8166 + }, + { + "start": 10245.73, + "end": 10247.11, + "probability": 0.9313 + }, + { + "start": 10249.33, + "end": 10252.07, + "probability": 0.9812 + }, + { + "start": 10252.21, + "end": 10253.83, + "probability": 0.8247 + }, + { + "start": 10255.07, + "end": 10259.53, + "probability": 0.9909 + }, + { + "start": 10260.37, + "end": 10262.25, + "probability": 0.9702 + }, + { + "start": 10263.13, + "end": 10269.25, + "probability": 0.9924 + }, + { + "start": 10269.25, + "end": 10275.55, + "probability": 0.9773 + }, + { + "start": 10275.95, + "end": 10279.97, + "probability": 0.9469 + }, + { + "start": 10280.95, + "end": 10281.73, + "probability": 0.8068 + }, + { + "start": 10282.35, + "end": 10286.95, + "probability": 0.9614 + }, + { + "start": 10287.57, + "end": 10288.11, + "probability": 0.8838 + }, + { + "start": 10288.65, + "end": 10292.81, + "probability": 0.9205 + }, + { + "start": 10293.71, + "end": 10296.15, + "probability": 0.984 + }, + { + "start": 10297.21, + "end": 10298.83, + "probability": 0.603 + }, + { + "start": 10300.61, + "end": 10301.43, + "probability": 0.9789 + }, + { + "start": 10302.49, + "end": 10308.19, + "probability": 0.9935 + }, + { + "start": 10309.69, + "end": 10312.17, + "probability": 0.9952 + }, + { + "start": 10315.51, + "end": 10320.41, + "probability": 0.9697 + }, + { + "start": 10321.17, + "end": 10322.85, + "probability": 0.9983 + }, + { + "start": 10323.45, + "end": 10323.95, + "probability": 0.8823 + }, + { + "start": 10325.47, + "end": 10330.15, + "probability": 0.922 + }, + { + "start": 10331.09, + "end": 10333.21, + "probability": 0.8081 + }, + { + "start": 10333.97, + "end": 10334.79, + "probability": 0.543 + }, + { + "start": 10335.99, + "end": 10339.13, + "probability": 0.9924 + }, + { + "start": 10339.91, + "end": 10340.97, + "probability": 0.6804 + }, + { + "start": 10342.29, + "end": 10344.77, + "probability": 0.996 + }, + { + "start": 10344.9, + "end": 10347.99, + "probability": 0.8959 + }, + { + "start": 10348.59, + "end": 10355.17, + "probability": 0.9733 + }, + { + "start": 10355.89, + "end": 10356.61, + "probability": 0.9403 + }, + { + "start": 10358.49, + "end": 10359.55, + "probability": 0.6847 + }, + { + "start": 10360.67, + "end": 10361.69, + "probability": 0.6643 + }, + { + "start": 10362.59, + "end": 10365.43, + "probability": 0.8244 + }, + { + "start": 10367.07, + "end": 10370.09, + "probability": 0.9906 + }, + { + "start": 10371.19, + "end": 10375.81, + "probability": 0.6743 + }, + { + "start": 10376.71, + "end": 10379.89, + "probability": 0.9385 + }, + { + "start": 10380.55, + "end": 10385.17, + "probability": 0.9814 + }, + { + "start": 10385.17, + "end": 10389.65, + "probability": 0.9812 + }, + { + "start": 10390.63, + "end": 10394.61, + "probability": 0.9697 + }, + { + "start": 10395.45, + "end": 10396.35, + "probability": 0.9593 + }, + { + "start": 10397.35, + "end": 10397.95, + "probability": 0.944 + }, + { + "start": 10398.13, + "end": 10398.37, + "probability": 0.6938 + }, + { + "start": 10398.47, + "end": 10399.01, + "probability": 0.9175 + }, + { + "start": 10399.07, + "end": 10399.53, + "probability": 0.9626 + }, + { + "start": 10399.63, + "end": 10400.81, + "probability": 0.9036 + }, + { + "start": 10401.53, + "end": 10402.43, + "probability": 0.6452 + }, + { + "start": 10402.99, + "end": 10405.81, + "probability": 0.8745 + }, + { + "start": 10406.35, + "end": 10407.79, + "probability": 0.8097 + }, + { + "start": 10408.39, + "end": 10411.41, + "probability": 0.9112 + }, + { + "start": 10412.09, + "end": 10414.01, + "probability": 0.9078 + }, + { + "start": 10414.64, + "end": 10416.59, + "probability": 0.9185 + }, + { + "start": 10417.81, + "end": 10419.23, + "probability": 0.7991 + }, + { + "start": 10419.31, + "end": 10420.62, + "probability": 0.7158 + }, + { + "start": 10423.13, + "end": 10424.67, + "probability": 0.9976 + }, + { + "start": 10425.25, + "end": 10426.31, + "probability": 0.8701 + }, + { + "start": 10426.85, + "end": 10432.71, + "probability": 0.8895 + }, + { + "start": 10433.15, + "end": 10435.79, + "probability": 0.8047 + }, + { + "start": 10436.27, + "end": 10437.63, + "probability": 0.792 + }, + { + "start": 10437.77, + "end": 10438.03, + "probability": 0.5825 + }, + { + "start": 10438.83, + "end": 10439.77, + "probability": 0.5835 + }, + { + "start": 10441.43, + "end": 10443.03, + "probability": 0.9644 + }, + { + "start": 10443.65, + "end": 10444.43, + "probability": 0.9299 + }, + { + "start": 10445.81, + "end": 10447.19, + "probability": 0.7696 + }, + { + "start": 10448.11, + "end": 10450.39, + "probability": 0.9623 + }, + { + "start": 10451.33, + "end": 10453.15, + "probability": 0.9131 + }, + { + "start": 10453.87, + "end": 10458.29, + "probability": 0.9525 + }, + { + "start": 10459.31, + "end": 10460.49, + "probability": 0.447 + }, + { + "start": 10460.87, + "end": 10465.37, + "probability": 0.8086 + }, + { + "start": 10465.85, + "end": 10466.73, + "probability": 0.85 + }, + { + "start": 10467.31, + "end": 10468.63, + "probability": 0.81 + }, + { + "start": 10469.45, + "end": 10474.19, + "probability": 0.8513 + }, + { + "start": 10474.29, + "end": 10477.69, + "probability": 0.9507 + }, + { + "start": 10478.7, + "end": 10480.45, + "probability": 0.0327 + }, + { + "start": 10480.45, + "end": 10480.91, + "probability": 0.3499 + }, + { + "start": 10482.73, + "end": 10485.63, + "probability": 0.8849 + }, + { + "start": 10485.67, + "end": 10486.41, + "probability": 0.6956 + }, + { + "start": 10487.99, + "end": 10489.69, + "probability": 0.8723 + }, + { + "start": 10501.57, + "end": 10502.99, + "probability": 0.7761 + }, + { + "start": 10507.65, + "end": 10509.99, + "probability": 0.6612 + }, + { + "start": 10511.15, + "end": 10514.51, + "probability": 0.3374 + }, + { + "start": 10515.65, + "end": 10518.07, + "probability": 0.6741 + }, + { + "start": 10519.17, + "end": 10523.53, + "probability": 0.8924 + }, + { + "start": 10523.53, + "end": 10527.85, + "probability": 0.9902 + }, + { + "start": 10528.71, + "end": 10533.23, + "probability": 0.7439 + }, + { + "start": 10535.39, + "end": 10538.63, + "probability": 0.105 + }, + { + "start": 10539.05, + "end": 10540.71, + "probability": 0.6221 + }, + { + "start": 10542.21, + "end": 10542.23, + "probability": 0.0558 + }, + { + "start": 10542.23, + "end": 10543.13, + "probability": 0.4619 + }, + { + "start": 10543.31, + "end": 10546.59, + "probability": 0.9944 + }, + { + "start": 10546.71, + "end": 10547.25, + "probability": 0.8258 + }, + { + "start": 10548.85, + "end": 10552.61, + "probability": 0.9853 + }, + { + "start": 10553.57, + "end": 10554.77, + "probability": 0.9569 + }, + { + "start": 10554.93, + "end": 10555.21, + "probability": 0.3037 + }, + { + "start": 10555.23, + "end": 10558.95, + "probability": 0.9788 + }, + { + "start": 10560.25, + "end": 10561.55, + "probability": 0.859 + }, + { + "start": 10562.21, + "end": 10565.99, + "probability": 0.9732 + }, + { + "start": 10565.99, + "end": 10569.27, + "probability": 0.9994 + }, + { + "start": 10569.33, + "end": 10573.23, + "probability": 0.9135 + }, + { + "start": 10573.89, + "end": 10576.43, + "probability": 0.9358 + }, + { + "start": 10576.61, + "end": 10580.19, + "probability": 0.7872 + }, + { + "start": 10581.45, + "end": 10585.23, + "probability": 0.9744 + }, + { + "start": 10585.23, + "end": 10588.97, + "probability": 0.9946 + }, + { + "start": 10589.81, + "end": 10594.11, + "probability": 0.9812 + }, + { + "start": 10595.27, + "end": 10598.35, + "probability": 0.982 + }, + { + "start": 10598.87, + "end": 10600.03, + "probability": 0.8921 + }, + { + "start": 10600.91, + "end": 10602.59, + "probability": 0.9577 + }, + { + "start": 10603.07, + "end": 10604.45, + "probability": 0.903 + }, + { + "start": 10605.01, + "end": 10605.01, + "probability": 0.0911 + }, + { + "start": 10605.01, + "end": 10607.31, + "probability": 0.9883 + }, + { + "start": 10608.03, + "end": 10610.85, + "probability": 0.9667 + }, + { + "start": 10612.05, + "end": 10612.09, + "probability": 0.937 + }, + { + "start": 10612.63, + "end": 10613.75, + "probability": 0.91 + }, + { + "start": 10613.87, + "end": 10617.83, + "probability": 0.922 + }, + { + "start": 10618.53, + "end": 10618.53, + "probability": 0.1905 + }, + { + "start": 10618.53, + "end": 10619.57, + "probability": 0.0403 + }, + { + "start": 10619.57, + "end": 10620.17, + "probability": 0.0205 + }, + { + "start": 10620.55, + "end": 10626.25, + "probability": 0.9001 + }, + { + "start": 10626.29, + "end": 10627.49, + "probability": 0.8504 + }, + { + "start": 10627.53, + "end": 10629.81, + "probability": 0.7437 + }, + { + "start": 10629.99, + "end": 10631.05, + "probability": 0.4232 + }, + { + "start": 10631.57, + "end": 10633.33, + "probability": 0.7746 + }, + { + "start": 10633.79, + "end": 10635.91, + "probability": 0.9956 + }, + { + "start": 10636.73, + "end": 10644.49, + "probability": 0.9951 + }, + { + "start": 10644.49, + "end": 10650.57, + "probability": 0.9998 + }, + { + "start": 10650.75, + "end": 10655.17, + "probability": 0.9973 + }, + { + "start": 10655.63, + "end": 10661.29, + "probability": 0.9643 + }, + { + "start": 10661.77, + "end": 10663.97, + "probability": 0.9961 + }, + { + "start": 10665.23, + "end": 10669.03, + "probability": 0.9874 + }, + { + "start": 10669.03, + "end": 10672.09, + "probability": 0.9978 + }, + { + "start": 10672.77, + "end": 10673.39, + "probability": 0.7876 + }, + { + "start": 10673.55, + "end": 10676.29, + "probability": 0.8408 + }, + { + "start": 10676.67, + "end": 10677.97, + "probability": 0.9852 + }, + { + "start": 10678.71, + "end": 10680.21, + "probability": 0.8638 + }, + { + "start": 10680.79, + "end": 10682.42, + "probability": 0.9084 + }, + { + "start": 10682.69, + "end": 10683.87, + "probability": 0.8079 + }, + { + "start": 10684.93, + "end": 10686.95, + "probability": 0.976 + }, + { + "start": 10687.07, + "end": 10687.83, + "probability": 0.7585 + }, + { + "start": 10687.93, + "end": 10689.41, + "probability": 0.9326 + }, + { + "start": 10689.59, + "end": 10695.55, + "probability": 0.9568 + }, + { + "start": 10695.55, + "end": 10696.47, + "probability": 0.6673 + }, + { + "start": 10696.81, + "end": 10700.81, + "probability": 0.9864 + }, + { + "start": 10701.43, + "end": 10702.67, + "probability": 0.391 + }, + { + "start": 10702.67, + "end": 10703.43, + "probability": 0.9586 + }, + { + "start": 10704.35, + "end": 10707.15, + "probability": 0.9624 + }, + { + "start": 10707.23, + "end": 10712.01, + "probability": 0.9065 + }, + { + "start": 10712.07, + "end": 10712.07, + "probability": 0.5833 + }, + { + "start": 10712.47, + "end": 10715.49, + "probability": 0.9886 + }, + { + "start": 10715.54, + "end": 10719.81, + "probability": 0.9967 + }, + { + "start": 10720.33, + "end": 10722.61, + "probability": 0.8357 + }, + { + "start": 10722.75, + "end": 10723.01, + "probability": 0.7826 + }, + { + "start": 10723.37, + "end": 10725.13, + "probability": 0.7865 + }, + { + "start": 10725.49, + "end": 10727.57, + "probability": 0.8941 + }, + { + "start": 10727.91, + "end": 10729.19, + "probability": 0.9544 + }, + { + "start": 10729.89, + "end": 10730.53, + "probability": 0.5305 + }, + { + "start": 10730.53, + "end": 10732.27, + "probability": 0.8474 + }, + { + "start": 10732.39, + "end": 10734.47, + "probability": 0.7084 + }, + { + "start": 10735.13, + "end": 10736.67, + "probability": 0.8291 + }, + { + "start": 10736.73, + "end": 10739.23, + "probability": 0.9702 + }, + { + "start": 10739.97, + "end": 10740.97, + "probability": 0.9657 + }, + { + "start": 10741.27, + "end": 10742.05, + "probability": 0.9448 + }, + { + "start": 10742.81, + "end": 10744.04, + "probability": 0.6383 + }, + { + "start": 10745.21, + "end": 10745.79, + "probability": 0.7148 + }, + { + "start": 10745.83, + "end": 10746.45, + "probability": 0.8099 + }, + { + "start": 10746.79, + "end": 10747.77, + "probability": 0.5837 + }, + { + "start": 10750.08, + "end": 10757.05, + "probability": 0.0682 + }, + { + "start": 10757.15, + "end": 10757.57, + "probability": 0.4278 + }, + { + "start": 10757.67, + "end": 10757.79, + "probability": 0.3848 + }, + { + "start": 10757.79, + "end": 10758.35, + "probability": 0.1825 + }, + { + "start": 10765.13, + "end": 10765.97, + "probability": 0.447 + }, + { + "start": 10766.15, + "end": 10767.65, + "probability": 0.9323 + }, + { + "start": 10767.77, + "end": 10768.29, + "probability": 0.49 + }, + { + "start": 10768.43, + "end": 10770.85, + "probability": 0.8689 + }, + { + "start": 10770.85, + "end": 10771.91, + "probability": 0.699 + }, + { + "start": 10771.99, + "end": 10773.23, + "probability": 0.4263 + }, + { + "start": 10773.83, + "end": 10774.73, + "probability": 0.6547 + }, + { + "start": 10775.89, + "end": 10779.53, + "probability": 0.8138 + }, + { + "start": 10779.91, + "end": 10781.25, + "probability": 0.6619 + }, + { + "start": 10781.59, + "end": 10781.73, + "probability": 0.0565 + }, + { + "start": 10781.73, + "end": 10785.51, + "probability": 0.8823 + }, + { + "start": 10786.21, + "end": 10786.99, + "probability": 0.649 + }, + { + "start": 10787.05, + "end": 10788.77, + "probability": 0.8763 + }, + { + "start": 10788.91, + "end": 10789.57, + "probability": 0.722 + }, + { + "start": 10789.99, + "end": 10790.75, + "probability": 0.771 + }, + { + "start": 10800.91, + "end": 10804.35, + "probability": 0.697 + }, + { + "start": 10806.13, + "end": 10806.95, + "probability": 0.7438 + }, + { + "start": 10808.23, + "end": 10810.45, + "probability": 0.8276 + }, + { + "start": 10811.09, + "end": 10812.95, + "probability": 0.5449 + }, + { + "start": 10813.53, + "end": 10817.93, + "probability": 0.9502 + }, + { + "start": 10817.93, + "end": 10823.67, + "probability": 0.9961 + }, + { + "start": 10824.57, + "end": 10828.37, + "probability": 0.9347 + }, + { + "start": 10830.77, + "end": 10833.01, + "probability": 0.5144 + }, + { + "start": 10833.29, + "end": 10837.39, + "probability": 0.9919 + }, + { + "start": 10837.39, + "end": 10841.67, + "probability": 0.9969 + }, + { + "start": 10842.35, + "end": 10845.21, + "probability": 0.9685 + }, + { + "start": 10845.39, + "end": 10846.39, + "probability": 0.9836 + }, + { + "start": 10846.71, + "end": 10848.74, + "probability": 0.715 + }, + { + "start": 10849.19, + "end": 10851.37, + "probability": 0.8543 + }, + { + "start": 10852.35, + "end": 10855.47, + "probability": 0.9906 + }, + { + "start": 10855.71, + "end": 10856.53, + "probability": 0.8875 + }, + { + "start": 10857.01, + "end": 10860.01, + "probability": 0.9871 + }, + { + "start": 10860.51, + "end": 10866.39, + "probability": 0.9837 + }, + { + "start": 10866.93, + "end": 10870.15, + "probability": 0.9922 + }, + { + "start": 10870.93, + "end": 10873.89, + "probability": 0.9956 + }, + { + "start": 10874.53, + "end": 10878.11, + "probability": 0.9841 + }, + { + "start": 10878.99, + "end": 10881.63, + "probability": 0.9833 + }, + { + "start": 10882.33, + "end": 10882.93, + "probability": 0.5861 + }, + { + "start": 10883.17, + "end": 10885.27, + "probability": 0.7114 + }, + { + "start": 10885.61, + "end": 10890.01, + "probability": 0.9368 + }, + { + "start": 10890.33, + "end": 10892.31, + "probability": 0.9916 + }, + { + "start": 10892.83, + "end": 10899.25, + "probability": 0.9888 + }, + { + "start": 10899.41, + "end": 10906.21, + "probability": 0.9993 + }, + { + "start": 10906.21, + "end": 10912.81, + "probability": 0.9993 + }, + { + "start": 10913.65, + "end": 10915.89, + "probability": 0.9932 + }, + { + "start": 10916.63, + "end": 10919.91, + "probability": 0.9972 + }, + { + "start": 10919.91, + "end": 10923.41, + "probability": 0.9298 + }, + { + "start": 10924.29, + "end": 10925.65, + "probability": 0.8188 + }, + { + "start": 10926.01, + "end": 10929.83, + "probability": 0.9822 + }, + { + "start": 10930.25, + "end": 10931.41, + "probability": 0.916 + }, + { + "start": 10931.83, + "end": 10937.17, + "probability": 0.9976 + }, + { + "start": 10937.17, + "end": 10943.05, + "probability": 0.9983 + }, + { + "start": 10943.83, + "end": 10950.23, + "probability": 0.995 + }, + { + "start": 10950.23, + "end": 10957.41, + "probability": 0.9907 + }, + { + "start": 10957.41, + "end": 10963.93, + "probability": 0.9966 + }, + { + "start": 10964.83, + "end": 10969.19, + "probability": 0.9988 + }, + { + "start": 10969.87, + "end": 10973.87, + "probability": 0.9845 + }, + { + "start": 10974.49, + "end": 10978.23, + "probability": 0.9895 + }, + { + "start": 10978.93, + "end": 10983.31, + "probability": 0.9948 + }, + { + "start": 10983.31, + "end": 10987.41, + "probability": 0.9979 + }, + { + "start": 10988.57, + "end": 10993.03, + "probability": 0.9973 + }, + { + "start": 10993.03, + "end": 10998.65, + "probability": 0.9988 + }, + { + "start": 10998.65, + "end": 11002.97, + "probability": 0.9954 + }, + { + "start": 11003.45, + "end": 11003.85, + "probability": 0.6309 + }, + { + "start": 11003.93, + "end": 11007.61, + "probability": 0.9941 + }, + { + "start": 11008.01, + "end": 11012.41, + "probability": 0.9951 + }, + { + "start": 11013.03, + "end": 11014.67, + "probability": 0.9808 + }, + { + "start": 11015.31, + "end": 11017.51, + "probability": 0.9906 + }, + { + "start": 11017.59, + "end": 11018.97, + "probability": 0.9869 + }, + { + "start": 11019.33, + "end": 11021.89, + "probability": 0.9975 + }, + { + "start": 11022.37, + "end": 11023.17, + "probability": 0.9276 + }, + { + "start": 11023.25, + "end": 11024.61, + "probability": 0.9268 + }, + { + "start": 11024.93, + "end": 11029.57, + "probability": 0.8713 + }, + { + "start": 11029.57, + "end": 11034.39, + "probability": 0.9961 + }, + { + "start": 11034.99, + "end": 11035.87, + "probability": 0.435 + }, + { + "start": 11035.89, + "end": 11038.59, + "probability": 0.948 + }, + { + "start": 11039.07, + "end": 11039.87, + "probability": 0.6046 + }, + { + "start": 11039.95, + "end": 11040.45, + "probability": 0.7089 + }, + { + "start": 11040.67, + "end": 11044.05, + "probability": 0.9677 + }, + { + "start": 11044.67, + "end": 11051.11, + "probability": 0.9893 + }, + { + "start": 11051.13, + "end": 11056.99, + "probability": 0.8663 + }, + { + "start": 11057.71, + "end": 11059.93, + "probability": 0.9931 + }, + { + "start": 11059.93, + "end": 11064.09, + "probability": 0.9387 + }, + { + "start": 11064.49, + "end": 11068.69, + "probability": 0.9609 + }, + { + "start": 11068.69, + "end": 11072.43, + "probability": 0.9902 + }, + { + "start": 11073.03, + "end": 11073.83, + "probability": 0.6847 + }, + { + "start": 11073.93, + "end": 11077.59, + "probability": 0.967 + }, + { + "start": 11078.19, + "end": 11079.85, + "probability": 0.9946 + }, + { + "start": 11080.51, + "end": 11082.99, + "probability": 0.9846 + }, + { + "start": 11082.99, + "end": 11086.63, + "probability": 0.9978 + }, + { + "start": 11086.83, + "end": 11087.71, + "probability": 0.8129 + }, + { + "start": 11088.15, + "end": 11088.67, + "probability": 0.8585 + }, + { + "start": 11088.81, + "end": 11089.63, + "probability": 0.8304 + }, + { + "start": 11089.97, + "end": 11091.05, + "probability": 0.7548 + }, + { + "start": 11091.11, + "end": 11094.21, + "probability": 0.991 + }, + { + "start": 11094.97, + "end": 11103.07, + "probability": 0.9762 + }, + { + "start": 11103.55, + "end": 11107.69, + "probability": 0.9856 + }, + { + "start": 11108.21, + "end": 11111.03, + "probability": 0.998 + }, + { + "start": 11111.03, + "end": 11114.89, + "probability": 0.9811 + }, + { + "start": 11115.65, + "end": 11118.41, + "probability": 0.9966 + }, + { + "start": 11118.41, + "end": 11122.93, + "probability": 0.9949 + }, + { + "start": 11123.45, + "end": 11128.71, + "probability": 0.9598 + }, + { + "start": 11129.35, + "end": 11130.03, + "probability": 0.7923 + }, + { + "start": 11130.17, + "end": 11130.95, + "probability": 0.9175 + }, + { + "start": 11131.15, + "end": 11133.55, + "probability": 0.5592 + }, + { + "start": 11133.69, + "end": 11135.93, + "probability": 0.9233 + }, + { + "start": 11136.19, + "end": 11136.97, + "probability": 0.8047 + }, + { + "start": 11137.45, + "end": 11142.19, + "probability": 0.9451 + }, + { + "start": 11142.19, + "end": 11147.39, + "probability": 0.9311 + }, + { + "start": 11147.93, + "end": 11151.59, + "probability": 0.9912 + }, + { + "start": 11151.59, + "end": 11156.41, + "probability": 0.9898 + }, + { + "start": 11156.97, + "end": 11160.13, + "probability": 0.9739 + }, + { + "start": 11160.51, + "end": 11164.43, + "probability": 0.9972 + }, + { + "start": 11165.03, + "end": 11168.03, + "probability": 0.9666 + }, + { + "start": 11168.79, + "end": 11170.39, + "probability": 0.9791 + }, + { + "start": 11170.77, + "end": 11171.17, + "probability": 0.8395 + }, + { + "start": 11171.23, + "end": 11173.49, + "probability": 0.9919 + }, + { + "start": 11174.25, + "end": 11175.61, + "probability": 0.9894 + }, + { + "start": 11176.15, + "end": 11179.77, + "probability": 0.9816 + }, + { + "start": 11180.19, + "end": 11181.57, + "probability": 0.9794 + }, + { + "start": 11182.41, + "end": 11187.89, + "probability": 0.9893 + }, + { + "start": 11188.97, + "end": 11192.99, + "probability": 0.99 + }, + { + "start": 11192.99, + "end": 11196.75, + "probability": 0.9984 + }, + { + "start": 11196.95, + "end": 11198.39, + "probability": 0.7849 + }, + { + "start": 11198.93, + "end": 11199.77, + "probability": 0.9507 + }, + { + "start": 11200.27, + "end": 11201.25, + "probability": 0.9775 + }, + { + "start": 11201.71, + "end": 11204.81, + "probability": 0.9954 + }, + { + "start": 11205.43, + "end": 11209.13, + "probability": 0.9961 + }, + { + "start": 11209.43, + "end": 11210.11, + "probability": 0.8472 + }, + { + "start": 11210.75, + "end": 11213.89, + "probability": 0.9959 + }, + { + "start": 11214.27, + "end": 11218.69, + "probability": 0.9985 + }, + { + "start": 11219.77, + "end": 11220.31, + "probability": 0.8909 + }, + { + "start": 11221.03, + "end": 11224.01, + "probability": 0.7125 + }, + { + "start": 11224.71, + "end": 11229.65, + "probability": 0.9888 + }, + { + "start": 11230.23, + "end": 11232.59, + "probability": 0.988 + }, + { + "start": 11232.83, + "end": 11238.27, + "probability": 0.9608 + }, + { + "start": 11238.27, + "end": 11242.83, + "probability": 0.9982 + }, + { + "start": 11243.41, + "end": 11243.99, + "probability": 0.5791 + }, + { + "start": 11244.07, + "end": 11244.79, + "probability": 0.9399 + }, + { + "start": 11244.89, + "end": 11250.01, + "probability": 0.9664 + }, + { + "start": 11250.59, + "end": 11256.09, + "probability": 0.992 + }, + { + "start": 11256.83, + "end": 11257.67, + "probability": 0.8033 + }, + { + "start": 11257.95, + "end": 11258.99, + "probability": 0.9855 + }, + { + "start": 11259.09, + "end": 11262.69, + "probability": 0.9755 + }, + { + "start": 11263.01, + "end": 11264.39, + "probability": 0.9765 + }, + { + "start": 11264.75, + "end": 11266.49, + "probability": 0.9456 + }, + { + "start": 11266.97, + "end": 11269.21, + "probability": 0.9036 + }, + { + "start": 11269.51, + "end": 11270.41, + "probability": 0.989 + }, + { + "start": 11270.63, + "end": 11271.47, + "probability": 0.8907 + }, + { + "start": 11271.83, + "end": 11275.89, + "probability": 0.9657 + }, + { + "start": 11276.07, + "end": 11278.85, + "probability": 0.9868 + }, + { + "start": 11279.43, + "end": 11283.99, + "probability": 0.9951 + }, + { + "start": 11284.77, + "end": 11287.89, + "probability": 0.9331 + }, + { + "start": 11288.45, + "end": 11292.15, + "probability": 0.9961 + }, + { + "start": 11292.17, + "end": 11295.73, + "probability": 0.9991 + }, + { + "start": 11296.27, + "end": 11298.31, + "probability": 0.856 + }, + { + "start": 11298.49, + "end": 11300.57, + "probability": 0.9824 + }, + { + "start": 11301.13, + "end": 11301.77, + "probability": 0.8769 + }, + { + "start": 11301.85, + "end": 11302.45, + "probability": 0.7138 + }, + { + "start": 11302.67, + "end": 11303.91, + "probability": 0.9236 + }, + { + "start": 11304.29, + "end": 11306.05, + "probability": 0.9722 + }, + { + "start": 11306.61, + "end": 11309.59, + "probability": 0.9966 + }, + { + "start": 11310.27, + "end": 11313.33, + "probability": 0.9561 + }, + { + "start": 11313.85, + "end": 11320.05, + "probability": 0.9773 + }, + { + "start": 11320.99, + "end": 11321.57, + "probability": 0.7725 + }, + { + "start": 11321.97, + "end": 11323.53, + "probability": 0.981 + }, + { + "start": 11323.61, + "end": 11327.75, + "probability": 0.9458 + }, + { + "start": 11328.09, + "end": 11330.99, + "probability": 0.9932 + }, + { + "start": 11331.59, + "end": 11333.19, + "probability": 0.8054 + }, + { + "start": 11333.69, + "end": 11339.29, + "probability": 0.9914 + }, + { + "start": 11339.31, + "end": 11340.5, + "probability": 0.9922 + }, + { + "start": 11341.17, + "end": 11342.69, + "probability": 0.9907 + }, + { + "start": 11343.09, + "end": 11344.03, + "probability": 0.972 + }, + { + "start": 11344.13, + "end": 11349.61, + "probability": 0.9757 + }, + { + "start": 11349.95, + "end": 11354.37, + "probability": 0.9966 + }, + { + "start": 11355.05, + "end": 11355.73, + "probability": 0.7656 + }, + { + "start": 11355.79, + "end": 11356.61, + "probability": 0.8713 + }, + { + "start": 11356.67, + "end": 11358.71, + "probability": 0.8891 + }, + { + "start": 11359.13, + "end": 11361.55, + "probability": 0.9918 + }, + { + "start": 11362.09, + "end": 11362.9, + "probability": 0.9619 + }, + { + "start": 11363.53, + "end": 11366.21, + "probability": 0.9948 + }, + { + "start": 11367.25, + "end": 11369.33, + "probability": 0.8031 + }, + { + "start": 11369.89, + "end": 11371.81, + "probability": 0.9876 + }, + { + "start": 11372.31, + "end": 11372.77, + "probability": 0.4744 + }, + { + "start": 11372.95, + "end": 11374.45, + "probability": 0.8162 + }, + { + "start": 11374.67, + "end": 11375.39, + "probability": 0.7838 + }, + { + "start": 11375.47, + "end": 11376.87, + "probability": 0.927 + }, + { + "start": 11377.03, + "end": 11378.39, + "probability": 0.5648 + }, + { + "start": 11378.95, + "end": 11381.83, + "probability": 0.7151 + }, + { + "start": 11382.87, + "end": 11384.61, + "probability": 0.8512 + }, + { + "start": 11385.25, + "end": 11388.17, + "probability": 0.8616 + }, + { + "start": 11388.73, + "end": 11391.23, + "probability": 0.8747 + }, + { + "start": 11391.49, + "end": 11397.93, + "probability": 0.9686 + }, + { + "start": 11398.83, + "end": 11399.89, + "probability": 0.6438 + }, + { + "start": 11400.37, + "end": 11402.29, + "probability": 0.7568 + }, + { + "start": 11402.41, + "end": 11407.73, + "probability": 0.9615 + }, + { + "start": 11424.11, + "end": 11425.17, + "probability": 0.522 + }, + { + "start": 11426.91, + "end": 11430.33, + "probability": 0.9862 + }, + { + "start": 11430.33, + "end": 11433.09, + "probability": 0.9753 + }, + { + "start": 11434.35, + "end": 11436.65, + "probability": 0.8355 + }, + { + "start": 11436.75, + "end": 11438.39, + "probability": 0.9274 + }, + { + "start": 11438.49, + "end": 11440.09, + "probability": 0.8542 + }, + { + "start": 11440.63, + "end": 11444.43, + "probability": 0.9911 + }, + { + "start": 11444.43, + "end": 11449.39, + "probability": 0.9906 + }, + { + "start": 11450.09, + "end": 11453.57, + "probability": 0.9485 + }, + { + "start": 11454.59, + "end": 11457.49, + "probability": 0.5615 + }, + { + "start": 11457.67, + "end": 11459.47, + "probability": 0.8838 + }, + { + "start": 11459.57, + "end": 11461.49, + "probability": 0.7728 + }, + { + "start": 11461.49, + "end": 11463.97, + "probability": 0.9938 + }, + { + "start": 11464.45, + "end": 11465.79, + "probability": 0.9451 + }, + { + "start": 11466.63, + "end": 11467.11, + "probability": 0.8352 + }, + { + "start": 11467.31, + "end": 11468.67, + "probability": 0.973 + }, + { + "start": 11468.75, + "end": 11474.54, + "probability": 0.9685 + }, + { + "start": 11475.25, + "end": 11478.91, + "probability": 0.616 + }, + { + "start": 11479.05, + "end": 11480.93, + "probability": 0.9878 + }, + { + "start": 11482.41, + "end": 11484.97, + "probability": 0.0591 + }, + { + "start": 11487.57, + "end": 11490.97, + "probability": 0.1822 + }, + { + "start": 11492.07, + "end": 11495.37, + "probability": 0.9849 + }, + { + "start": 11496.09, + "end": 11503.31, + "probability": 0.9811 + }, + { + "start": 11503.41, + "end": 11504.85, + "probability": 0.3158 + }, + { + "start": 11504.95, + "end": 11510.77, + "probability": 0.9468 + }, + { + "start": 11511.39, + "end": 11512.07, + "probability": 0.6781 + }, + { + "start": 11512.59, + "end": 11514.95, + "probability": 0.9871 + }, + { + "start": 11515.07, + "end": 11515.73, + "probability": 0.9372 + }, + { + "start": 11516.19, + "end": 11517.41, + "probability": 0.9674 + }, + { + "start": 11517.53, + "end": 11517.87, + "probability": 0.8879 + }, + { + "start": 11519.65, + "end": 11524.57, + "probability": 0.8591 + }, + { + "start": 11524.67, + "end": 11526.41, + "probability": 0.8729 + }, + { + "start": 11526.53, + "end": 11529.11, + "probability": 0.9486 + }, + { + "start": 11529.81, + "end": 11532.43, + "probability": 0.0438 + }, + { + "start": 11533.39, + "end": 11534.61, + "probability": 0.5873 + }, + { + "start": 11534.61, + "end": 11535.2, + "probability": 0.4395 + }, + { + "start": 11535.45, + "end": 11537.41, + "probability": 0.9265 + }, + { + "start": 11538.23, + "end": 11541.19, + "probability": 0.9889 + }, + { + "start": 11541.89, + "end": 11547.39, + "probability": 0.9414 + }, + { + "start": 11548.13, + "end": 11551.99, + "probability": 0.7213 + }, + { + "start": 11552.59, + "end": 11554.45, + "probability": 0.9073 + }, + { + "start": 11555.05, + "end": 11561.37, + "probability": 0.9225 + }, + { + "start": 11562.13, + "end": 11567.51, + "probability": 0.9938 + }, + { + "start": 11568.31, + "end": 11572.35, + "probability": 0.9027 + }, + { + "start": 11572.55, + "end": 11573.67, + "probability": 0.0935 + }, + { + "start": 11574.51, + "end": 11575.51, + "probability": 0.9316 + }, + { + "start": 11575.89, + "end": 11579.41, + "probability": 0.7028 + }, + { + "start": 11579.77, + "end": 11579.97, + "probability": 0.7369 + }, + { + "start": 11580.33, + "end": 11581.01, + "probability": 0.9365 + }, + { + "start": 11581.09, + "end": 11588.21, + "probability": 0.9784 + }, + { + "start": 11588.91, + "end": 11591.07, + "probability": 0.9842 + }, + { + "start": 11591.77, + "end": 11595.25, + "probability": 0.9813 + }, + { + "start": 11595.93, + "end": 11597.55, + "probability": 0.9761 + }, + { + "start": 11597.85, + "end": 11600.15, + "probability": 0.9813 + }, + { + "start": 11600.25, + "end": 11600.83, + "probability": 0.9376 + }, + { + "start": 11602.11, + "end": 11602.83, + "probability": 0.7745 + }, + { + "start": 11603.35, + "end": 11604.17, + "probability": 0.7982 + }, + { + "start": 11604.27, + "end": 11606.47, + "probability": 0.752 + }, + { + "start": 11606.75, + "end": 11607.93, + "probability": 0.7753 + }, + { + "start": 11607.97, + "end": 11609.61, + "probability": 0.6519 + }, + { + "start": 11610.13, + "end": 11610.49, + "probability": 0.8283 + }, + { + "start": 11617.79, + "end": 11618.79, + "probability": 0.5098 + }, + { + "start": 11619.09, + "end": 11619.67, + "probability": 0.9211 + }, + { + "start": 11620.43, + "end": 11623.93, + "probability": 0.6968 + }, + { + "start": 11625.13, + "end": 11627.73, + "probability": 0.9839 + }, + { + "start": 11628.36, + "end": 11631.91, + "probability": 0.9899 + }, + { + "start": 11632.61, + "end": 11634.77, + "probability": 0.325 + }, + { + "start": 11634.77, + "end": 11635.88, + "probability": 0.5696 + }, + { + "start": 11636.49, + "end": 11637.57, + "probability": 0.8841 + }, + { + "start": 11637.81, + "end": 11639.87, + "probability": 0.7728 + }, + { + "start": 11640.33, + "end": 11643.35, + "probability": 0.9866 + }, + { + "start": 11643.67, + "end": 11647.43, + "probability": 0.9175 + }, + { + "start": 11647.85, + "end": 11652.35, + "probability": 0.9964 + }, + { + "start": 11653.03, + "end": 11654.01, + "probability": 0.9965 + }, + { + "start": 11657.57, + "end": 11659.67, + "probability": 0.7139 + }, + { + "start": 11659.67, + "end": 11660.02, + "probability": 0.4359 + }, + { + "start": 11660.35, + "end": 11660.93, + "probability": 0.8302 + }, + { + "start": 11660.97, + "end": 11661.53, + "probability": 0.9832 + }, + { + "start": 11661.65, + "end": 11663.35, + "probability": 0.9526 + }, + { + "start": 11664.25, + "end": 11667.69, + "probability": 0.7012 + }, + { + "start": 11668.79, + "end": 11671.57, + "probability": 0.859 + }, + { + "start": 11672.27, + "end": 11672.77, + "probability": 0.5841 + }, + { + "start": 11673.71, + "end": 11675.83, + "probability": 0.6846 + }, + { + "start": 11676.15, + "end": 11676.71, + "probability": 0.9713 + }, + { + "start": 11677.97, + "end": 11679.07, + "probability": 0.9575 + }, + { + "start": 11681.17, + "end": 11682.65, + "probability": 0.39 + }, + { + "start": 11683.35, + "end": 11684.99, + "probability": 0.7001 + }, + { + "start": 11685.95, + "end": 11686.47, + "probability": 0.0124 + }, + { + "start": 11686.47, + "end": 11687.07, + "probability": 0.5503 + }, + { + "start": 11688.13, + "end": 11689.85, + "probability": 0.8231 + }, + { + "start": 11689.87, + "end": 11691.43, + "probability": 0.5346 + }, + { + "start": 11693.41, + "end": 11694.73, + "probability": 0.7802 + }, + { + "start": 11695.05, + "end": 11697.45, + "probability": 0.9794 + }, + { + "start": 11698.15, + "end": 11701.91, + "probability": 0.9896 + }, + { + "start": 11701.91, + "end": 11704.75, + "probability": 0.9871 + }, + { + "start": 11704.87, + "end": 11706.13, + "probability": 0.6734 + }, + { + "start": 11707.05, + "end": 11708.15, + "probability": 0.6492 + }, + { + "start": 11708.81, + "end": 11709.67, + "probability": 0.7534 + }, + { + "start": 11709.99, + "end": 11712.09, + "probability": 0.795 + }, + { + "start": 11712.41, + "end": 11714.67, + "probability": 0.5044 + }, + { + "start": 11715.81, + "end": 11719.07, + "probability": 0.7232 + }, + { + "start": 11719.19, + "end": 11719.63, + "probability": 0.8136 + }, + { + "start": 11719.87, + "end": 11721.31, + "probability": 0.8174 + }, + { + "start": 11721.57, + "end": 11723.57, + "probability": 0.7198 + }, + { + "start": 11723.89, + "end": 11727.79, + "probability": 0.9519 + }, + { + "start": 11727.89, + "end": 11728.15, + "probability": 0.757 + }, + { + "start": 11728.25, + "end": 11731.99, + "probability": 0.9919 + }, + { + "start": 11734.68, + "end": 11736.35, + "probability": 0.6641 + }, + { + "start": 11736.45, + "end": 11737.43, + "probability": 0.6182 + }, + { + "start": 11737.63, + "end": 11738.87, + "probability": 0.9467 + }, + { + "start": 11739.03, + "end": 11739.57, + "probability": 0.4245 + }, + { + "start": 11739.67, + "end": 11740.65, + "probability": 0.857 + }, + { + "start": 11740.97, + "end": 11742.11, + "probability": 0.975 + }, + { + "start": 11742.25, + "end": 11743.99, + "probability": 0.9934 + }, + { + "start": 11744.67, + "end": 11746.63, + "probability": 0.8163 + }, + { + "start": 11746.81, + "end": 11748.27, + "probability": 0.9465 + }, + { + "start": 11748.83, + "end": 11750.75, + "probability": 0.9543 + }, + { + "start": 11750.83, + "end": 11752.15, + "probability": 0.5962 + }, + { + "start": 11752.23, + "end": 11753.56, + "probability": 0.6703 + }, + { + "start": 11754.59, + "end": 11757.59, + "probability": 0.7891 + }, + { + "start": 11758.47, + "end": 11760.45, + "probability": 0.9156 + }, + { + "start": 11760.51, + "end": 11763.45, + "probability": 0.8978 + }, + { + "start": 11763.53, + "end": 11765.11, + "probability": 0.96 + }, + { + "start": 11765.99, + "end": 11768.67, + "probability": 0.7031 + }, + { + "start": 11768.93, + "end": 11772.53, + "probability": 0.8735 + }, + { + "start": 11772.55, + "end": 11774.07, + "probability": 0.9904 + }, + { + "start": 11774.27, + "end": 11774.75, + "probability": 0.7445 + }, + { + "start": 11774.83, + "end": 11777.89, + "probability": 0.9866 + }, + { + "start": 11778.43, + "end": 11779.01, + "probability": 0.6102 + }, + { + "start": 11779.17, + "end": 11780.77, + "probability": 0.5664 + }, + { + "start": 11783.33, + "end": 11784.81, + "probability": 0.5902 + }, + { + "start": 11788.67, + "end": 11790.79, + "probability": 0.9865 + }, + { + "start": 11791.01, + "end": 11792.11, + "probability": 0.3438 + }, + { + "start": 11792.45, + "end": 11793.69, + "probability": 0.7159 + }, + { + "start": 11793.81, + "end": 11794.67, + "probability": 0.9595 + }, + { + "start": 11795.39, + "end": 11798.05, + "probability": 0.9905 + }, + { + "start": 11802.29, + "end": 11806.15, + "probability": 0.9479 + }, + { + "start": 11806.87, + "end": 11808.05, + "probability": 0.7995 + }, + { + "start": 11808.66, + "end": 11809.17, + "probability": 0.0161 + }, + { + "start": 11811.13, + "end": 11812.45, + "probability": 0.7338 + }, + { + "start": 11813.59, + "end": 11815.27, + "probability": 0.8499 + }, + { + "start": 11816.33, + "end": 11817.05, + "probability": 0.9777 + }, + { + "start": 11818.01, + "end": 11819.11, + "probability": 0.8181 + }, + { + "start": 11820.47, + "end": 11820.79, + "probability": 0.8986 + }, + { + "start": 11821.41, + "end": 11822.19, + "probability": 0.9314 + }, + { + "start": 11822.89, + "end": 11823.31, + "probability": 0.8571 + }, + { + "start": 11823.93, + "end": 11824.77, + "probability": 0.9167 + }, + { + "start": 11825.85, + "end": 11826.27, + "probability": 0.9902 + }, + { + "start": 11827.05, + "end": 11827.79, + "probability": 0.6118 + }, + { + "start": 11828.79, + "end": 11830.37, + "probability": 0.7356 + }, + { + "start": 11831.49, + "end": 11833.01, + "probability": 0.7311 + }, + { + "start": 11834.41, + "end": 11839.73, + "probability": 0.8004 + }, + { + "start": 11841.19, + "end": 11841.67, + "probability": 0.8843 + }, + { + "start": 11842.31, + "end": 11843.21, + "probability": 0.9069 + }, + { + "start": 11845.11, + "end": 11845.73, + "probability": 0.8083 + }, + { + "start": 11846.25, + "end": 11847.15, + "probability": 0.9089 + }, + { + "start": 11848.13, + "end": 11848.57, + "probability": 0.9842 + }, + { + "start": 11849.43, + "end": 11850.17, + "probability": 0.9081 + }, + { + "start": 11851.23, + "end": 11851.69, + "probability": 0.9844 + }, + { + "start": 11852.25, + "end": 11853.05, + "probability": 0.9121 + }, + { + "start": 11854.37, + "end": 11854.81, + "probability": 0.986 + }, + { + "start": 11855.39, + "end": 11856.03, + "probability": 0.7904 + }, + { + "start": 11856.89, + "end": 11857.21, + "probability": 0.7599 + }, + { + "start": 11857.81, + "end": 11858.83, + "probability": 0.9607 + }, + { + "start": 11859.57, + "end": 11861.47, + "probability": 0.82 + }, + { + "start": 11862.13, + "end": 11862.57, + "probability": 0.9102 + }, + { + "start": 11863.19, + "end": 11863.97, + "probability": 0.6237 + }, + { + "start": 11866.49, + "end": 11868.11, + "probability": 0.9771 + }, + { + "start": 11868.67, + "end": 11869.37, + "probability": 0.9802 + }, + { + "start": 11870.33, + "end": 11870.75, + "probability": 0.9858 + }, + { + "start": 11871.31, + "end": 11872.13, + "probability": 0.926 + }, + { + "start": 11873.03, + "end": 11874.77, + "probability": 0.9781 + }, + { + "start": 11876.53, + "end": 11877.05, + "probability": 0.9759 + }, + { + "start": 11878.29, + "end": 11879.13, + "probability": 0.8949 + }, + { + "start": 11879.73, + "end": 11880.21, + "probability": 0.9958 + }, + { + "start": 11880.83, + "end": 11881.31, + "probability": 0.7945 + }, + { + "start": 11882.55, + "end": 11882.81, + "probability": 0.7263 + }, + { + "start": 11883.53, + "end": 11884.09, + "probability": 0.973 + }, + { + "start": 11885.91, + "end": 11887.87, + "probability": 0.8829 + }, + { + "start": 11890.55, + "end": 11893.09, + "probability": 0.7463 + }, + { + "start": 11894.41, + "end": 11894.85, + "probability": 0.5963 + }, + { + "start": 11895.59, + "end": 11896.41, + "probability": 0.9095 + }, + { + "start": 11897.43, + "end": 11897.87, + "probability": 0.9927 + }, + { + "start": 11898.57, + "end": 11899.33, + "probability": 0.907 + }, + { + "start": 11900.25, + "end": 11900.53, + "probability": 0.9824 + }, + { + "start": 11901.23, + "end": 11902.15, + "probability": 0.979 + }, + { + "start": 11902.67, + "end": 11904.57, + "probability": 0.9049 + }, + { + "start": 11905.41, + "end": 11907.11, + "probability": 0.8684 + }, + { + "start": 11907.83, + "end": 11909.39, + "probability": 0.7727 + }, + { + "start": 11911.03, + "end": 11911.79, + "probability": 0.5122 + }, + { + "start": 11912.93, + "end": 11913.59, + "probability": 0.8945 + }, + { + "start": 11914.61, + "end": 11916.61, + "probability": 0.7971 + }, + { + "start": 11919.35, + "end": 11921.39, + "probability": 0.9051 + }, + { + "start": 11922.39, + "end": 11924.07, + "probability": 0.8761 + }, + { + "start": 11926.65, + "end": 11928.13, + "probability": 0.8271 + }, + { + "start": 11928.73, + "end": 11930.37, + "probability": 0.9212 + }, + { + "start": 11932.09, + "end": 11933.51, + "probability": 0.6855 + }, + { + "start": 11934.31, + "end": 11934.63, + "probability": 0.5916 + }, + { + "start": 11935.39, + "end": 11936.17, + "probability": 0.8137 + }, + { + "start": 11936.91, + "end": 11938.31, + "probability": 0.9346 + }, + { + "start": 11938.95, + "end": 11940.91, + "probability": 0.9524 + }, + { + "start": 11942.23, + "end": 11944.21, + "probability": 0.8382 + }, + { + "start": 11944.93, + "end": 11946.43, + "probability": 0.9905 + }, + { + "start": 11947.47, + "end": 11947.77, + "probability": 0.9836 + }, + { + "start": 11948.89, + "end": 11949.57, + "probability": 0.9948 + }, + { + "start": 11950.89, + "end": 11951.39, + "probability": 0.9976 + }, + { + "start": 11952.51, + "end": 11953.79, + "probability": 0.9963 + }, + { + "start": 11954.33, + "end": 11956.09, + "probability": 0.9899 + }, + { + "start": 11957.11, + "end": 11957.51, + "probability": 0.6436 + }, + { + "start": 11958.57, + "end": 11959.53, + "probability": 0.6458 + }, + { + "start": 11960.27, + "end": 11962.09, + "probability": 0.8672 + }, + { + "start": 11963.13, + "end": 11965.25, + "probability": 0.8189 + }, + { + "start": 11966.03, + "end": 11968.17, + "probability": 0.9019 + }, + { + "start": 11970.87, + "end": 11972.51, + "probability": 0.9256 + }, + { + "start": 11974.35, + "end": 11974.85, + "probability": 0.9945 + }, + { + "start": 11976.31, + "end": 11977.07, + "probability": 0.8791 + }, + { + "start": 11978.07, + "end": 11979.87, + "probability": 0.9556 + }, + { + "start": 11980.49, + "end": 11982.25, + "probability": 0.8534 + }, + { + "start": 11983.37, + "end": 11985.23, + "probability": 0.9008 + }, + { + "start": 11986.85, + "end": 11989.25, + "probability": 0.749 + }, + { + "start": 11990.69, + "end": 11992.57, + "probability": 0.9482 + }, + { + "start": 11993.47, + "end": 11993.85, + "probability": 0.9675 + }, + { + "start": 11994.75, + "end": 11995.71, + "probability": 0.3287 + }, + { + "start": 12000.91, + "end": 12001.63, + "probability": 0.5802 + }, + { + "start": 12002.71, + "end": 12003.49, + "probability": 0.6121 + }, + { + "start": 12009.97, + "end": 12010.45, + "probability": 0.5438 + }, + { + "start": 12012.81, + "end": 12013.77, + "probability": 0.5742 + }, + { + "start": 12015.53, + "end": 12017.07, + "probability": 0.7755 + }, + { + "start": 12018.65, + "end": 12020.35, + "probability": 0.9304 + }, + { + "start": 12023.01, + "end": 12023.83, + "probability": 0.9664 + }, + { + "start": 12024.63, + "end": 12025.47, + "probability": 0.9702 + }, + { + "start": 12026.23, + "end": 12026.69, + "probability": 0.9691 + }, + { + "start": 12028.21, + "end": 12028.91, + "probability": 0.9487 + }, + { + "start": 12029.73, + "end": 12030.05, + "probability": 0.9878 + }, + { + "start": 12030.81, + "end": 12031.63, + "probability": 0.9596 + }, + { + "start": 12032.67, + "end": 12034.45, + "probability": 0.9322 + }, + { + "start": 12036.35, + "end": 12037.91, + "probability": 0.7021 + }, + { + "start": 12038.93, + "end": 12039.27, + "probability": 0.8413 + }, + { + "start": 12040.73, + "end": 12041.51, + "probability": 0.7513 + }, + { + "start": 12042.33, + "end": 12042.79, + "probability": 0.8267 + }, + { + "start": 12043.61, + "end": 12044.21, + "probability": 0.9604 + }, + { + "start": 12045.41, + "end": 12048.43, + "probability": 0.9332 + }, + { + "start": 12049.13, + "end": 12050.85, + "probability": 0.9666 + }, + { + "start": 12052.29, + "end": 12052.71, + "probability": 0.9015 + }, + { + "start": 12053.37, + "end": 12054.25, + "probability": 0.9801 + }, + { + "start": 12055.11, + "end": 12057.29, + "probability": 0.9812 + }, + { + "start": 12058.01, + "end": 12058.43, + "probability": 0.9764 + }, + { + "start": 12059.19, + "end": 12060.23, + "probability": 0.9806 + }, + { + "start": 12061.47, + "end": 12063.53, + "probability": 0.8577 + }, + { + "start": 12064.41, + "end": 12064.75, + "probability": 0.8908 + }, + { + "start": 12065.57, + "end": 12066.47, + "probability": 0.4436 + }, + { + "start": 12068.33, + "end": 12070.77, + "probability": 0.9308 + }, + { + "start": 12071.91, + "end": 12072.33, + "probability": 0.9185 + }, + { + "start": 12073.31, + "end": 12074.15, + "probability": 0.8538 + }, + { + "start": 12075.15, + "end": 12075.63, + "probability": 0.9671 + }, + { + "start": 12076.45, + "end": 12077.77, + "probability": 0.9647 + }, + { + "start": 12081.77, + "end": 12082.25, + "probability": 0.8195 + }, + { + "start": 12083.73, + "end": 12084.47, + "probability": 0.8313 + }, + { + "start": 12085.35, + "end": 12085.81, + "probability": 0.9331 + }, + { + "start": 12086.49, + "end": 12086.83, + "probability": 0.8152 + }, + { + "start": 12088.77, + "end": 12089.21, + "probability": 0.7158 + }, + { + "start": 12089.85, + "end": 12090.51, + "probability": 0.9019 + }, + { + "start": 12092.91, + "end": 12093.33, + "probability": 0.9043 + }, + { + "start": 12094.21, + "end": 12094.67, + "probability": 0.9793 + }, + { + "start": 12095.83, + "end": 12097.57, + "probability": 0.9238 + }, + { + "start": 12098.41, + "end": 12098.77, + "probability": 0.9888 + }, + { + "start": 12099.35, + "end": 12100.31, + "probability": 0.9457 + }, + { + "start": 12101.15, + "end": 12102.95, + "probability": 0.9463 + }, + { + "start": 12103.67, + "end": 12104.09, + "probability": 0.9465 + }, + { + "start": 12104.95, + "end": 12106.15, + "probability": 0.8352 + }, + { + "start": 12107.01, + "end": 12107.41, + "probability": 0.5665 + }, + { + "start": 12108.11, + "end": 12109.05, + "probability": 0.784 + }, + { + "start": 12111.03, + "end": 12111.47, + "probability": 0.8952 + }, + { + "start": 12113.37, + "end": 12114.29, + "probability": 0.7292 + }, + { + "start": 12115.35, + "end": 12115.63, + "probability": 0.9702 + }, + { + "start": 12116.39, + "end": 12117.25, + "probability": 0.7581 + }, + { + "start": 12118.09, + "end": 12120.55, + "probability": 0.8909 + }, + { + "start": 12122.67, + "end": 12124.99, + "probability": 0.7089 + }, + { + "start": 12126.05, + "end": 12126.55, + "probability": 0.9839 + }, + { + "start": 12127.73, + "end": 12128.63, + "probability": 0.7167 + }, + { + "start": 12129.85, + "end": 12130.59, + "probability": 0.9951 + }, + { + "start": 12131.11, + "end": 12131.59, + "probability": 0.665 + }, + { + "start": 12133.19, + "end": 12134.93, + "probability": 0.7363 + }, + { + "start": 12136.37, + "end": 12138.43, + "probability": 0.8979 + }, + { + "start": 12142.75, + "end": 12143.83, + "probability": 0.5445 + }, + { + "start": 12144.47, + "end": 12145.35, + "probability": 0.7238 + }, + { + "start": 12146.53, + "end": 12148.53, + "probability": 0.926 + }, + { + "start": 12150.05, + "end": 12150.43, + "probability": 0.8898 + }, + { + "start": 12151.05, + "end": 12151.75, + "probability": 0.7483 + }, + { + "start": 12152.71, + "end": 12153.17, + "probability": 0.8662 + }, + { + "start": 12154.29, + "end": 12155.13, + "probability": 0.8298 + }, + { + "start": 12156.79, + "end": 12157.25, + "probability": 0.9827 + }, + { + "start": 12158.39, + "end": 12159.03, + "probability": 0.7802 + }, + { + "start": 12160.37, + "end": 12160.81, + "probability": 0.9683 + }, + { + "start": 12161.63, + "end": 12162.35, + "probability": 0.4054 + }, + { + "start": 12163.83, + "end": 12164.21, + "probability": 0.7664 + }, + { + "start": 12165.49, + "end": 12166.27, + "probability": 0.7754 + }, + { + "start": 12167.17, + "end": 12167.57, + "probability": 0.9763 + }, + { + "start": 12168.57, + "end": 12169.25, + "probability": 0.822 + }, + { + "start": 12170.51, + "end": 12171.21, + "probability": 0.9477 + }, + { + "start": 12171.81, + "end": 12172.57, + "probability": 0.8027 + }, + { + "start": 12173.43, + "end": 12173.93, + "probability": 0.9824 + }, + { + "start": 12175.29, + "end": 12176.05, + "probability": 0.9529 + }, + { + "start": 12177.03, + "end": 12177.47, + "probability": 0.959 + }, + { + "start": 12178.41, + "end": 12178.81, + "probability": 0.8268 + }, + { + "start": 12179.93, + "end": 12180.41, + "probability": 0.9826 + }, + { + "start": 12181.09, + "end": 12181.71, + "probability": 0.9617 + }, + { + "start": 12183.61, + "end": 12185.09, + "probability": 0.9356 + }, + { + "start": 12186.17, + "end": 12186.57, + "probability": 0.9927 + }, + { + "start": 12188.13, + "end": 12189.07, + "probability": 0.8457 + }, + { + "start": 12190.41, + "end": 12190.81, + "probability": 0.6624 + }, + { + "start": 12191.51, + "end": 12192.35, + "probability": 0.8075 + }, + { + "start": 12193.27, + "end": 12193.55, + "probability": 0.9631 + }, + { + "start": 12194.23, + "end": 12195.21, + "probability": 0.8188 + }, + { + "start": 12196.41, + "end": 12196.81, + "probability": 0.9692 + }, + { + "start": 12197.95, + "end": 12198.71, + "probability": 0.9138 + }, + { + "start": 12199.69, + "end": 12200.11, + "probability": 0.9917 + }, + { + "start": 12200.95, + "end": 12201.75, + "probability": 0.972 + }, + { + "start": 12202.49, + "end": 12202.99, + "probability": 0.9924 + }, + { + "start": 12203.87, + "end": 12204.77, + "probability": 0.967 + }, + { + "start": 12205.93, + "end": 12206.41, + "probability": 0.9482 + }, + { + "start": 12207.23, + "end": 12207.99, + "probability": 0.7445 + }, + { + "start": 12208.89, + "end": 12210.99, + "probability": 0.9941 + }, + { + "start": 12211.83, + "end": 12214.25, + "probability": 0.9949 + }, + { + "start": 12215.45, + "end": 12215.93, + "probability": 0.9915 + }, + { + "start": 12216.61, + "end": 12217.35, + "probability": 0.8768 + }, + { + "start": 12218.61, + "end": 12218.89, + "probability": 0.7418 + }, + { + "start": 12219.97, + "end": 12221.13, + "probability": 0.9209 + }, + { + "start": 12221.89, + "end": 12222.21, + "probability": 0.9487 + }, + { + "start": 12225.27, + "end": 12227.25, + "probability": 0.63 + }, + { + "start": 12227.41, + "end": 12230.59, + "probability": 0.9846 + }, + { + "start": 12232.47, + "end": 12233.57, + "probability": 0.8278 + }, + { + "start": 12234.79, + "end": 12236.05, + "probability": 0.8747 + }, + { + "start": 12236.11, + "end": 12237.89, + "probability": 0.9353 + }, + { + "start": 12237.89, + "end": 12242.25, + "probability": 0.9782 + }, + { + "start": 12242.43, + "end": 12244.37, + "probability": 0.9906 + }, + { + "start": 12244.45, + "end": 12246.97, + "probability": 0.9674 + }, + { + "start": 12247.95, + "end": 12250.05, + "probability": 0.9876 + }, + { + "start": 12250.11, + "end": 12252.43, + "probability": 0.9819 + }, + { + "start": 12252.59, + "end": 12253.81, + "probability": 0.8946 + }, + { + "start": 12254.59, + "end": 12256.95, + "probability": 0.9737 + }, + { + "start": 12258.33, + "end": 12258.43, + "probability": 0.4284 + }, + { + "start": 12258.49, + "end": 12259.71, + "probability": 0.2635 + }, + { + "start": 12261.35, + "end": 12262.97, + "probability": 0.883 + }, + { + "start": 12263.51, + "end": 12265.27, + "probability": 0.588 + }, + { + "start": 12265.81, + "end": 12268.37, + "probability": 0.9538 + }, + { + "start": 12269.55, + "end": 12270.17, + "probability": 0.9849 + }, + { + "start": 12270.79, + "end": 12271.78, + "probability": 0.9778 + }, + { + "start": 12272.41, + "end": 12273.93, + "probability": 0.963 + }, + { + "start": 12274.21, + "end": 12275.95, + "probability": 0.9325 + }, + { + "start": 12276.13, + "end": 12277.83, + "probability": 0.8824 + }, + { + "start": 12278.17, + "end": 12279.55, + "probability": 0.961 + }, + { + "start": 12280.17, + "end": 12280.85, + "probability": 0.8796 + }, + { + "start": 12282.11, + "end": 12284.77, + "probability": 0.7068 + }, + { + "start": 12285.53, + "end": 12287.57, + "probability": 0.9598 + }, + { + "start": 12288.27, + "end": 12290.11, + "probability": 0.9268 + }, + { + "start": 12291.39, + "end": 12293.83, + "probability": 0.8831 + }, + { + "start": 12295.15, + "end": 12295.91, + "probability": 0.9773 + }, + { + "start": 12296.45, + "end": 12296.73, + "probability": 0.9432 + }, + { + "start": 12298.25, + "end": 12300.13, + "probability": 0.976 + }, + { + "start": 12300.93, + "end": 12302.91, + "probability": 0.8505 + }, + { + "start": 12303.69, + "end": 12304.43, + "probability": 0.9733 + }, + { + "start": 12308.43, + "end": 12310.39, + "probability": 0.8784 + }, + { + "start": 12310.51, + "end": 12311.83, + "probability": 0.4566 + }, + { + "start": 12315.51, + "end": 12317.51, + "probability": 0.8036 + }, + { + "start": 12318.87, + "end": 12320.57, + "probability": 0.9551 + }, + { + "start": 12321.19, + "end": 12322.71, + "probability": 0.9617 + }, + { + "start": 12324.01, + "end": 12324.65, + "probability": 0.981 + }, + { + "start": 12327.03, + "end": 12330.31, + "probability": 0.8872 + }, + { + "start": 12330.89, + "end": 12335.03, + "probability": 0.8463 + }, + { + "start": 12335.67, + "end": 12337.19, + "probability": 0.8684 + }, + { + "start": 12338.09, + "end": 12341.99, + "probability": 0.968 + }, + { + "start": 12342.95, + "end": 12344.57, + "probability": 0.9683 + }, + { + "start": 12345.53, + "end": 12345.65, + "probability": 0.9885 + }, + { + "start": 12346.17, + "end": 12347.31, + "probability": 0.64 + }, + { + "start": 12348.41, + "end": 12349.13, + "probability": 0.8216 + }, + { + "start": 12351.01, + "end": 12354.69, + "probability": 0.8872 + }, + { + "start": 12355.21, + "end": 12356.91, + "probability": 0.6576 + }, + { + "start": 12358.29, + "end": 12358.97, + "probability": 0.3651 + }, + { + "start": 12359.43, + "end": 12360.43, + "probability": 0.4437 + }, + { + "start": 12360.47, + "end": 12361.59, + "probability": 0.891 + }, + { + "start": 12362.61, + "end": 12363.08, + "probability": 0.874 + }, + { + "start": 12367.68, + "end": 12369.97, + "probability": 0.426 + }, + { + "start": 12369.97, + "end": 12370.63, + "probability": 0.3734 + }, + { + "start": 12373.15, + "end": 12376.03, + "probability": 0.2927 + }, + { + "start": 12376.55, + "end": 12377.39, + "probability": 0.3415 + }, + { + "start": 12396.78, + "end": 12397.62, + "probability": 0.0773 + }, + { + "start": 12398.59, + "end": 12400.8, + "probability": 0.7079 + }, + { + "start": 12400.8, + "end": 12402.23, + "probability": 0.822 + }, + { + "start": 12402.9, + "end": 12403.78, + "probability": 0.2704 + }, + { + "start": 12404.0, + "end": 12406.31, + "probability": 0.0562 + }, + { + "start": 12409.66, + "end": 12409.68, + "probability": 0.0151 + }, + { + "start": 12466.9, + "end": 12467.5, + "probability": 0.443 + }, + { + "start": 12467.52, + "end": 12471.38, + "probability": 0.9396 + }, + { + "start": 12471.84, + "end": 12473.44, + "probability": 0.9341 + }, + { + "start": 12473.5, + "end": 12474.46, + "probability": 0.9097 + }, + { + "start": 12475.12, + "end": 12475.72, + "probability": 0.5738 + }, + { + "start": 12476.22, + "end": 12477.2, + "probability": 0.4872 + }, + { + "start": 12478.22, + "end": 12479.58, + "probability": 0.3299 + }, + { + "start": 12483.68, + "end": 12483.78, + "probability": 0.7099 + }, + { + "start": 12485.18, + "end": 12486.72, + "probability": 0.3718 + }, + { + "start": 12487.52, + "end": 12492.14, + "probability": 0.315 + }, + { + "start": 12492.7, + "end": 12493.03, + "probability": 0.4036 + }, + { + "start": 12495.94, + "end": 12496.73, + "probability": 0.1143 + }, + { + "start": 12497.36, + "end": 12501.74, + "probability": 0.839 + }, + { + "start": 12502.0, + "end": 12502.78, + "probability": 0.4694 + }, + { + "start": 12502.8, + "end": 12504.46, + "probability": 0.2275 + }, + { + "start": 12504.46, + "end": 12504.7, + "probability": 0.702 + }, + { + "start": 12504.7, + "end": 12505.72, + "probability": 0.3393 + }, + { + "start": 12505.8, + "end": 12509.22, + "probability": 0.5385 + }, + { + "start": 12510.92, + "end": 12514.52, + "probability": 0.9336 + }, + { + "start": 12515.2, + "end": 12517.31, + "probability": 0.7482 + }, + { + "start": 12517.98, + "end": 12522.7, + "probability": 0.8446 + }, + { + "start": 12523.24, + "end": 12524.46, + "probability": 0.8101 + }, + { + "start": 12529.24, + "end": 12530.2, + "probability": 0.7566 + }, + { + "start": 12530.3, + "end": 12531.8, + "probability": 0.9028 + }, + { + "start": 12532.2, + "end": 12537.18, + "probability": 0.9618 + }, + { + "start": 12537.88, + "end": 12540.84, + "probability": 0.9824 + }, + { + "start": 12540.84, + "end": 12545.78, + "probability": 0.9753 + }, + { + "start": 12546.9, + "end": 12549.34, + "probability": 0.5205 + }, + { + "start": 12549.92, + "end": 12550.04, + "probability": 0.472 + }, + { + "start": 12550.26, + "end": 12551.24, + "probability": 0.5286 + }, + { + "start": 12551.24, + "end": 12552.44, + "probability": 0.4279 + }, + { + "start": 12552.96, + "end": 12555.46, + "probability": 0.5581 + }, + { + "start": 12555.46, + "end": 12555.62, + "probability": 0.5394 + }, + { + "start": 12555.68, + "end": 12556.02, + "probability": 0.7498 + }, + { + "start": 12556.2, + "end": 12558.1, + "probability": 0.8783 + }, + { + "start": 12558.24, + "end": 12559.46, + "probability": 0.8257 + }, + { + "start": 12560.04, + "end": 12562.6, + "probability": 0.7693 + }, + { + "start": 12562.64, + "end": 12565.0, + "probability": 0.9766 + }, + { + "start": 12565.32, + "end": 12568.1, + "probability": 0.9719 + }, + { + "start": 12568.5, + "end": 12570.74, + "probability": 0.9547 + }, + { + "start": 12570.78, + "end": 12574.08, + "probability": 0.98 + }, + { + "start": 12574.08, + "end": 12577.08, + "probability": 0.9651 + }, + { + "start": 12577.58, + "end": 12578.54, + "probability": 0.6678 + }, + { + "start": 12578.66, + "end": 12579.96, + "probability": 0.628 + }, + { + "start": 12580.4, + "end": 12581.48, + "probability": 0.9106 + }, + { + "start": 12581.62, + "end": 12587.06, + "probability": 0.93 + }, + { + "start": 12587.06, + "end": 12590.32, + "probability": 0.9966 + }, + { + "start": 12591.04, + "end": 12592.44, + "probability": 0.8456 + }, + { + "start": 12592.96, + "end": 12594.74, + "probability": 0.8853 + }, + { + "start": 12594.82, + "end": 12598.18, + "probability": 0.9384 + }, + { + "start": 12598.78, + "end": 12600.24, + "probability": 0.999 + }, + { + "start": 12600.7, + "end": 12604.48, + "probability": 0.9971 + }, + { + "start": 12604.48, + "end": 12608.92, + "probability": 0.9948 + }, + { + "start": 12609.38, + "end": 12611.24, + "probability": 0.8686 + }, + { + "start": 12611.26, + "end": 12612.66, + "probability": 0.3979 + }, + { + "start": 12613.1, + "end": 12615.72, + "probability": 0.9661 + }, + { + "start": 12616.08, + "end": 12617.9, + "probability": 0.9235 + }, + { + "start": 12618.42, + "end": 12621.62, + "probability": 0.6114 + }, + { + "start": 12621.62, + "end": 12621.68, + "probability": 0.197 + }, + { + "start": 12621.88, + "end": 12623.22, + "probability": 0.7434 + }, + { + "start": 12623.9, + "end": 12625.28, + "probability": 0.6934 + }, + { + "start": 12626.86, + "end": 12630.26, + "probability": 0.8699 + }, + { + "start": 12631.12, + "end": 12636.4, + "probability": 0.8278 + }, + { + "start": 12636.88, + "end": 12638.88, + "probability": 0.6318 + }, + { + "start": 12639.58, + "end": 12643.9, + "probability": 0.8059 + }, + { + "start": 12644.38, + "end": 12648.56, + "probability": 0.9944 + }, + { + "start": 12649.14, + "end": 12652.98, + "probability": 0.9834 + }, + { + "start": 12653.7, + "end": 12657.72, + "probability": 0.917 + }, + { + "start": 12658.14, + "end": 12663.92, + "probability": 0.9828 + }, + { + "start": 12664.04, + "end": 12668.02, + "probability": 0.9948 + }, + { + "start": 12668.02, + "end": 12672.26, + "probability": 0.992 + }, + { + "start": 12672.26, + "end": 12677.16, + "probability": 0.9919 + }, + { + "start": 12678.08, + "end": 12680.26, + "probability": 0.7091 + }, + { + "start": 12681.02, + "end": 12683.54, + "probability": 0.9449 + }, + { + "start": 12683.8, + "end": 12687.46, + "probability": 0.9961 + }, + { + "start": 12687.66, + "end": 12689.18, + "probability": 0.7877 + }, + { + "start": 12689.8, + "end": 12692.76, + "probability": 0.9763 + }, + { + "start": 12692.76, + "end": 12697.18, + "probability": 0.9938 + }, + { + "start": 12697.52, + "end": 12704.26, + "probability": 0.9893 + }, + { + "start": 12705.12, + "end": 12710.94, + "probability": 0.9609 + }, + { + "start": 12711.04, + "end": 12712.72, + "probability": 0.6792 + }, + { + "start": 12713.28, + "end": 12714.48, + "probability": 0.9166 + }, + { + "start": 12715.0, + "end": 12718.3, + "probability": 0.9175 + }, + { + "start": 12718.84, + "end": 12720.18, + "probability": 0.9258 + }, + { + "start": 12720.72, + "end": 12722.06, + "probability": 0.7134 + }, + { + "start": 12722.14, + "end": 12728.12, + "probability": 0.7933 + }, + { + "start": 12728.36, + "end": 12729.66, + "probability": 0.6757 + }, + { + "start": 12729.78, + "end": 12733.36, + "probability": 0.9739 + }, + { + "start": 12734.3, + "end": 12734.58, + "probability": 0.1142 + }, + { + "start": 12734.58, + "end": 12735.6, + "probability": 0.0674 + }, + { + "start": 12735.74, + "end": 12737.76, + "probability": 0.8894 + }, + { + "start": 12738.2, + "end": 12739.94, + "probability": 0.9379 + }, + { + "start": 12740.36, + "end": 12746.78, + "probability": 0.9559 + }, + { + "start": 12747.1, + "end": 12747.92, + "probability": 0.8806 + }, + { + "start": 12748.42, + "end": 12749.04, + "probability": 0.8298 + }, + { + "start": 12749.32, + "end": 12750.5, + "probability": 0.7924 + }, + { + "start": 12750.92, + "end": 12755.98, + "probability": 0.994 + }, + { + "start": 12756.4, + "end": 12759.56, + "probability": 0.9944 + }, + { + "start": 12761.04, + "end": 12762.54, + "probability": 0.9697 + }, + { + "start": 12762.76, + "end": 12764.4, + "probability": 0.9727 + }, + { + "start": 12764.44, + "end": 12765.26, + "probability": 0.5302 + }, + { + "start": 12766.0, + "end": 12768.62, + "probability": 0.9971 + }, + { + "start": 12769.12, + "end": 12772.6, + "probability": 0.9982 + }, + { + "start": 12772.6, + "end": 12776.38, + "probability": 0.9935 + }, + { + "start": 12777.06, + "end": 12779.76, + "probability": 0.9976 + }, + { + "start": 12780.36, + "end": 12784.02, + "probability": 0.9995 + }, + { + "start": 12784.42, + "end": 12789.0, + "probability": 0.9979 + }, + { + "start": 12789.48, + "end": 12790.92, + "probability": 0.9122 + }, + { + "start": 12791.26, + "end": 12794.46, + "probability": 0.914 + }, + { + "start": 12794.76, + "end": 12796.46, + "probability": 0.9943 + }, + { + "start": 12796.94, + "end": 12800.68, + "probability": 0.9974 + }, + { + "start": 12800.68, + "end": 12805.26, + "probability": 0.9822 + }, + { + "start": 12805.88, + "end": 12809.34, + "probability": 0.9988 + }, + { + "start": 12809.72, + "end": 12815.6, + "probability": 0.9917 + }, + { + "start": 12815.9, + "end": 12819.9, + "probability": 0.9974 + }, + { + "start": 12820.38, + "end": 12821.4, + "probability": 0.7243 + }, + { + "start": 12821.58, + "end": 12823.18, + "probability": 0.8116 + }, + { + "start": 12823.6, + "end": 12826.32, + "probability": 0.7392 + }, + { + "start": 12826.58, + "end": 12827.96, + "probability": 0.9709 + }, + { + "start": 12828.58, + "end": 12833.46, + "probability": 0.9475 + }, + { + "start": 12834.0, + "end": 12834.82, + "probability": 0.967 + }, + { + "start": 12835.38, + "end": 12836.42, + "probability": 0.9739 + }, + { + "start": 12836.54, + "end": 12839.68, + "probability": 0.9963 + }, + { + "start": 12839.68, + "end": 12843.68, + "probability": 0.9988 + }, + { + "start": 12844.02, + "end": 12848.2, + "probability": 0.9946 + }, + { + "start": 12848.8, + "end": 12850.34, + "probability": 0.926 + }, + { + "start": 12850.48, + "end": 12851.62, + "probability": 0.7482 + }, + { + "start": 12852.04, + "end": 12856.04, + "probability": 0.8598 + }, + { + "start": 12856.42, + "end": 12857.58, + "probability": 0.9377 + }, + { + "start": 12857.7, + "end": 12861.02, + "probability": 0.8868 + }, + { + "start": 12861.12, + "end": 12863.36, + "probability": 0.996 + }, + { + "start": 12863.48, + "end": 12865.22, + "probability": 0.9542 + }, + { + "start": 12865.7, + "end": 12867.22, + "probability": 0.9855 + }, + { + "start": 12867.28, + "end": 12868.02, + "probability": 0.9446 + }, + { + "start": 12868.16, + "end": 12869.04, + "probability": 0.7553 + }, + { + "start": 12869.48, + "end": 12870.16, + "probability": 0.8885 + }, + { + "start": 12870.36, + "end": 12874.94, + "probability": 0.9907 + }, + { + "start": 12875.32, + "end": 12880.82, + "probability": 0.9954 + }, + { + "start": 12880.82, + "end": 12884.8, + "probability": 0.9969 + }, + { + "start": 12885.38, + "end": 12890.58, + "probability": 0.9981 + }, + { + "start": 12891.0, + "end": 12895.45, + "probability": 0.9897 + }, + { + "start": 12896.26, + "end": 12901.84, + "probability": 0.8312 + }, + { + "start": 12903.04, + "end": 12904.36, + "probability": 0.8747 + }, + { + "start": 12904.58, + "end": 12910.66, + "probability": 0.958 + }, + { + "start": 12912.22, + "end": 12915.38, + "probability": 0.9349 + }, + { + "start": 12916.0, + "end": 12917.7, + "probability": 0.9802 + }, + { + "start": 12918.12, + "end": 12920.25, + "probability": 0.9858 + }, + { + "start": 12920.86, + "end": 12923.76, + "probability": 0.9264 + }, + { + "start": 12924.22, + "end": 12926.0, + "probability": 0.9941 + }, + { + "start": 12926.24, + "end": 12928.56, + "probability": 0.9941 + }, + { + "start": 12929.16, + "end": 12933.68, + "probability": 0.9982 + }, + { + "start": 12933.68, + "end": 12937.34, + "probability": 0.999 + }, + { + "start": 12937.34, + "end": 12941.54, + "probability": 0.9988 + }, + { + "start": 12941.98, + "end": 12944.76, + "probability": 0.9984 + }, + { + "start": 12945.54, + "end": 12946.3, + "probability": 0.7008 + }, + { + "start": 12946.34, + "end": 12947.82, + "probability": 0.6355 + }, + { + "start": 12948.26, + "end": 12952.96, + "probability": 0.9834 + }, + { + "start": 12953.34, + "end": 12956.64, + "probability": 0.9768 + }, + { + "start": 12956.82, + "end": 12958.04, + "probability": 0.8872 + }, + { + "start": 12958.64, + "end": 12964.1, + "probability": 0.9902 + }, + { + "start": 12964.1, + "end": 12966.94, + "probability": 0.8804 + }, + { + "start": 12967.52, + "end": 12969.46, + "probability": 0.9919 + }, + { + "start": 12969.82, + "end": 12975.42, + "probability": 0.9893 + }, + { + "start": 12975.82, + "end": 12976.34, + "probability": 0.4999 + }, + { + "start": 12976.42, + "end": 12977.4, + "probability": 0.9453 + }, + { + "start": 12977.9, + "end": 12980.32, + "probability": 0.9731 + }, + { + "start": 12980.78, + "end": 12983.88, + "probability": 0.9939 + }, + { + "start": 12984.48, + "end": 12985.98, + "probability": 0.9868 + }, + { + "start": 12986.98, + "end": 12989.36, + "probability": 0.9888 + }, + { + "start": 12989.72, + "end": 12992.4, + "probability": 0.9751 + }, + { + "start": 12992.78, + "end": 12996.48, + "probability": 0.9982 + }, + { + "start": 12997.02, + "end": 13002.44, + "probability": 0.9956 + }, + { + "start": 13002.54, + "end": 13004.84, + "probability": 0.9945 + }, + { + "start": 13005.44, + "end": 13008.14, + "probability": 0.9382 + }, + { + "start": 13008.54, + "end": 13010.43, + "probability": 0.9961 + }, + { + "start": 13011.0, + "end": 13015.6, + "probability": 0.9165 + }, + { + "start": 13016.06, + "end": 13018.52, + "probability": 0.8879 + }, + { + "start": 13019.12, + "end": 13019.44, + "probability": 0.6399 + }, + { + "start": 13019.54, + "end": 13020.88, + "probability": 0.7751 + }, + { + "start": 13021.22, + "end": 13022.0, + "probability": 0.8237 + }, + { + "start": 13022.38, + "end": 13025.24, + "probability": 0.9783 + }, + { + "start": 13025.6, + "end": 13032.7, + "probability": 0.9482 + }, + { + "start": 13033.48, + "end": 13034.4, + "probability": 0.9994 + }, + { + "start": 13035.08, + "end": 13038.23, + "probability": 0.9932 + }, + { + "start": 13038.52, + "end": 13040.64, + "probability": 0.8649 + }, + { + "start": 13041.12, + "end": 13042.02, + "probability": 0.9657 + }, + { + "start": 13042.14, + "end": 13046.62, + "probability": 0.9659 + }, + { + "start": 13047.24, + "end": 13047.24, + "probability": 0.0501 + }, + { + "start": 13047.42, + "end": 13050.4, + "probability": 0.9442 + }, + { + "start": 13050.7, + "end": 13050.98, + "probability": 0.2252 + }, + { + "start": 13051.6, + "end": 13052.62, + "probability": 0.7617 + }, + { + "start": 13052.82, + "end": 13054.64, + "probability": 0.7308 + }, + { + "start": 13054.72, + "end": 13058.28, + "probability": 0.9902 + }, + { + "start": 13058.32, + "end": 13059.38, + "probability": 0.6818 + }, + { + "start": 13059.52, + "end": 13060.06, + "probability": 0.9528 + }, + { + "start": 13060.18, + "end": 13060.98, + "probability": 0.4144 + }, + { + "start": 13062.08, + "end": 13062.74, + "probability": 0.8728 + }, + { + "start": 13062.88, + "end": 13063.44, + "probability": 0.9443 + }, + { + "start": 13063.72, + "end": 13065.25, + "probability": 0.9951 + }, + { + "start": 13066.06, + "end": 13066.7, + "probability": 0.8483 + }, + { + "start": 13066.76, + "end": 13068.22, + "probability": 0.9734 + }, + { + "start": 13068.86, + "end": 13069.56, + "probability": 0.724 + }, + { + "start": 13069.64, + "end": 13071.92, + "probability": 0.9524 + }, + { + "start": 13072.0, + "end": 13075.9, + "probability": 0.9719 + }, + { + "start": 13076.84, + "end": 13078.08, + "probability": 0.7177 + }, + { + "start": 13078.7, + "end": 13080.16, + "probability": 0.922 + }, + { + "start": 13080.32, + "end": 13081.02, + "probability": 0.9912 + }, + { + "start": 13081.68, + "end": 13083.18, + "probability": 0.9595 + }, + { + "start": 13083.26, + "end": 13084.48, + "probability": 0.896 + }, + { + "start": 13084.48, + "end": 13085.42, + "probability": 0.5282 + }, + { + "start": 13087.82, + "end": 13090.02, + "probability": 0.2331 + }, + { + "start": 13091.92, + "end": 13091.92, + "probability": 0.037 + }, + { + "start": 13091.92, + "end": 13091.92, + "probability": 0.1873 + }, + { + "start": 13091.92, + "end": 13091.92, + "probability": 0.2858 + }, + { + "start": 13091.92, + "end": 13094.66, + "probability": 0.7973 + }, + { + "start": 13095.24, + "end": 13096.54, + "probability": 0.7712 + }, + { + "start": 13097.08, + "end": 13101.42, + "probability": 0.963 + }, + { + "start": 13101.78, + "end": 13102.46, + "probability": 0.7205 + }, + { + "start": 13103.56, + "end": 13105.68, + "probability": 0.933 + }, + { + "start": 13105.8, + "end": 13108.55, + "probability": 0.682 + }, + { + "start": 13110.18, + "end": 13110.18, + "probability": 0.3084 + }, + { + "start": 13110.36, + "end": 13110.54, + "probability": 0.8075 + }, + { + "start": 13110.62, + "end": 13112.3, + "probability": 0.957 + }, + { + "start": 13112.42, + "end": 13112.66, + "probability": 0.7553 + }, + { + "start": 13113.28, + "end": 13114.06, + "probability": 0.4915 + }, + { + "start": 13117.06, + "end": 13119.9, + "probability": 0.9795 + }, + { + "start": 13119.94, + "end": 13120.48, + "probability": 0.8385 + }, + { + "start": 13120.76, + "end": 13122.04, + "probability": 0.3079 + }, + { + "start": 13123.86, + "end": 13128.07, + "probability": 0.2908 + }, + { + "start": 13129.76, + "end": 13130.12, + "probability": 0.0662 + }, + { + "start": 13130.7, + "end": 13132.38, + "probability": 0.1978 + }, + { + "start": 13137.18, + "end": 13137.94, + "probability": 0.0692 + }, + { + "start": 13143.7, + "end": 13145.22, + "probability": 0.2344 + }, + { + "start": 13145.3, + "end": 13146.84, + "probability": 0.627 + }, + { + "start": 13146.9, + "end": 13148.44, + "probability": 0.9915 + }, + { + "start": 13149.3, + "end": 13153.54, + "probability": 0.9636 + }, + { + "start": 13154.34, + "end": 13156.88, + "probability": 0.9203 + }, + { + "start": 13157.66, + "end": 13158.78, + "probability": 0.6536 + }, + { + "start": 13158.9, + "end": 13161.46, + "probability": 0.8848 + }, + { + "start": 13161.54, + "end": 13164.34, + "probability": 0.865 + }, + { + "start": 13165.48, + "end": 13169.0, + "probability": 0.9911 + }, + { + "start": 13169.0, + "end": 13173.44, + "probability": 0.9165 + }, + { + "start": 13174.36, + "end": 13176.4, + "probability": 0.9094 + }, + { + "start": 13176.4, + "end": 13178.4, + "probability": 0.9838 + }, + { + "start": 13179.12, + "end": 13182.66, + "probability": 0.8242 + }, + { + "start": 13183.36, + "end": 13183.84, + "probability": 0.8745 + }, + { + "start": 13183.94, + "end": 13186.44, + "probability": 0.3404 + }, + { + "start": 13186.58, + "end": 13191.3, + "probability": 0.9543 + }, + { + "start": 13194.16, + "end": 13197.24, + "probability": 0.7068 + }, + { + "start": 13197.34, + "end": 13199.66, + "probability": 0.8784 + }, + { + "start": 13199.82, + "end": 13202.06, + "probability": 0.9133 + }, + { + "start": 13202.74, + "end": 13205.14, + "probability": 0.8156 + }, + { + "start": 13205.92, + "end": 13209.32, + "probability": 0.9951 + }, + { + "start": 13209.32, + "end": 13214.4, + "probability": 0.991 + }, + { + "start": 13214.46, + "end": 13217.06, + "probability": 0.8527 + }, + { + "start": 13218.52, + "end": 13218.56, + "probability": 0.2811 + }, + { + "start": 13218.7, + "end": 13219.6, + "probability": 0.9168 + }, + { + "start": 13219.7, + "end": 13222.4, + "probability": 0.9269 + }, + { + "start": 13222.54, + "end": 13225.08, + "probability": 0.9231 + }, + { + "start": 13225.6, + "end": 13226.86, + "probability": 0.8625 + }, + { + "start": 13227.0, + "end": 13230.12, + "probability": 0.9719 + }, + { + "start": 13230.22, + "end": 13231.28, + "probability": 0.7873 + }, + { + "start": 13231.88, + "end": 13234.18, + "probability": 0.9778 + }, + { + "start": 13234.94, + "end": 13235.96, + "probability": 0.7572 + }, + { + "start": 13236.04, + "end": 13240.86, + "probability": 0.9202 + }, + { + "start": 13242.52, + "end": 13243.48, + "probability": 0.9045 + }, + { + "start": 13244.54, + "end": 13246.22, + "probability": 0.9421 + }, + { + "start": 13246.76, + "end": 13249.1, + "probability": 0.9959 + }, + { + "start": 13249.76, + "end": 13251.54, + "probability": 0.5327 + }, + { + "start": 13251.66, + "end": 13254.0, + "probability": 0.9757 + }, + { + "start": 13254.94, + "end": 13259.56, + "probability": 0.9751 + }, + { + "start": 13260.26, + "end": 13261.26, + "probability": 0.5832 + }, + { + "start": 13261.86, + "end": 13265.9, + "probability": 0.9122 + }, + { + "start": 13266.7, + "end": 13269.18, + "probability": 0.765 + }, + { + "start": 13270.66, + "end": 13273.66, + "probability": 0.9942 + }, + { + "start": 13274.5, + "end": 13275.96, + "probability": 0.8944 + }, + { + "start": 13277.33, + "end": 13280.7, + "probability": 0.9817 + }, + { + "start": 13280.7, + "end": 13285.04, + "probability": 0.9973 + }, + { + "start": 13285.18, + "end": 13285.86, + "probability": 0.8993 + }, + { + "start": 13286.4, + "end": 13293.0, + "probability": 0.9976 + }, + { + "start": 13293.36, + "end": 13297.6, + "probability": 0.9658 + }, + { + "start": 13297.94, + "end": 13302.2, + "probability": 0.9956 + }, + { + "start": 13303.92, + "end": 13305.64, + "probability": 0.1485 + }, + { + "start": 13306.06, + "end": 13309.16, + "probability": 0.9764 + }, + { + "start": 13309.72, + "end": 13315.34, + "probability": 0.9922 + }, + { + "start": 13315.56, + "end": 13317.1, + "probability": 0.979 + }, + { + "start": 13318.38, + "end": 13320.2, + "probability": 0.9722 + }, + { + "start": 13321.32, + "end": 13322.82, + "probability": 0.9934 + }, + { + "start": 13323.48, + "end": 13325.08, + "probability": 0.9392 + }, + { + "start": 13326.46, + "end": 13329.76, + "probability": 0.6874 + }, + { + "start": 13330.64, + "end": 13334.52, + "probability": 0.9624 + }, + { + "start": 13334.78, + "end": 13337.48, + "probability": 0.9077 + }, + { + "start": 13338.34, + "end": 13340.38, + "probability": 0.9985 + }, + { + "start": 13342.32, + "end": 13342.6, + "probability": 0.0722 + }, + { + "start": 13343.54, + "end": 13345.48, + "probability": 0.3303 + }, + { + "start": 13345.58, + "end": 13348.96, + "probability": 0.9615 + }, + { + "start": 13350.14, + "end": 13353.06, + "probability": 0.3426 + }, + { + "start": 13353.3, + "end": 13354.95, + "probability": 0.6805 + }, + { + "start": 13355.18, + "end": 13356.36, + "probability": 0.8944 + }, + { + "start": 13357.16, + "end": 13362.94, + "probability": 0.9126 + }, + { + "start": 13363.04, + "end": 13363.7, + "probability": 0.9396 + }, + { + "start": 13364.28, + "end": 13368.16, + "probability": 0.904 + }, + { + "start": 13368.58, + "end": 13369.84, + "probability": 0.8456 + }, + { + "start": 13370.82, + "end": 13375.42, + "probability": 0.8963 + }, + { + "start": 13375.54, + "end": 13376.06, + "probability": 0.7561 + }, + { + "start": 13377.22, + "end": 13377.78, + "probability": 0.6954 + }, + { + "start": 13377.98, + "end": 13379.74, + "probability": 0.6898 + }, + { + "start": 13380.0, + "end": 13380.2, + "probability": 0.228 + }, + { + "start": 13380.44, + "end": 13381.64, + "probability": 0.897 + }, + { + "start": 13382.2, + "end": 13385.22, + "probability": 0.7779 + }, + { + "start": 13387.05, + "end": 13390.14, + "probability": 0.6658 + }, + { + "start": 13391.27, + "end": 13394.34, + "probability": 0.9172 + }, + { + "start": 13394.82, + "end": 13396.38, + "probability": 0.8345 + }, + { + "start": 13396.38, + "end": 13398.66, + "probability": 0.8469 + }, + { + "start": 13400.02, + "end": 13401.44, + "probability": 0.3479 + }, + { + "start": 13402.62, + "end": 13403.42, + "probability": 0.9716 + }, + { + "start": 13404.24, + "end": 13405.34, + "probability": 0.8538 + }, + { + "start": 13406.08, + "end": 13406.84, + "probability": 0.9899 + }, + { + "start": 13407.52, + "end": 13408.75, + "probability": 0.6486 + }, + { + "start": 13409.74, + "end": 13412.08, + "probability": 0.8374 + }, + { + "start": 13413.94, + "end": 13414.5, + "probability": 0.9709 + }, + { + "start": 13415.6, + "end": 13416.46, + "probability": 0.858 + }, + { + "start": 13418.54, + "end": 13420.86, + "probability": 0.98 + }, + { + "start": 13421.6, + "end": 13422.14, + "probability": 0.9085 + }, + { + "start": 13422.74, + "end": 13423.64, + "probability": 0.8692 + }, + { + "start": 13424.5, + "end": 13426.14, + "probability": 0.8801 + }, + { + "start": 13428.16, + "end": 13429.36, + "probability": 0.8027 + }, + { + "start": 13430.28, + "end": 13431.14, + "probability": 0.6134 + }, + { + "start": 13431.78, + "end": 13432.24, + "probability": 0.9873 + }, + { + "start": 13433.36, + "end": 13434.44, + "probability": 0.8594 + }, + { + "start": 13435.42, + "end": 13437.66, + "probability": 0.653 + }, + { + "start": 13443.1, + "end": 13444.7, + "probability": 0.7387 + }, + { + "start": 13446.4, + "end": 13448.14, + "probability": 0.8301 + }, + { + "start": 13453.4, + "end": 13454.92, + "probability": 0.7718 + }, + { + "start": 13456.2, + "end": 13458.12, + "probability": 0.9782 + }, + { + "start": 13458.86, + "end": 13460.86, + "probability": 0.9366 + }, + { + "start": 13461.72, + "end": 13463.8, + "probability": 0.9451 + }, + { + "start": 13464.44, + "end": 13464.9, + "probability": 0.9211 + }, + { + "start": 13465.56, + "end": 13466.38, + "probability": 0.6686 + }, + { + "start": 13467.38, + "end": 13467.88, + "probability": 0.992 + }, + { + "start": 13468.8, + "end": 13469.56, + "probability": 0.9826 + }, + { + "start": 13470.66, + "end": 13471.08, + "probability": 0.9945 + }, + { + "start": 13471.68, + "end": 13472.42, + "probability": 0.9144 + }, + { + "start": 13473.1, + "end": 13473.6, + "probability": 0.959 + }, + { + "start": 13474.5, + "end": 13477.02, + "probability": 0.988 + }, + { + "start": 13479.1, + "end": 13479.64, + "probability": 0.7836 + }, + { + "start": 13481.32, + "end": 13482.26, + "probability": 0.7027 + }, + { + "start": 13483.14, + "end": 13483.58, + "probability": 0.9881 + }, + { + "start": 13484.3, + "end": 13485.16, + "probability": 0.9682 + }, + { + "start": 13485.92, + "end": 13487.76, + "probability": 0.9454 + }, + { + "start": 13489.48, + "end": 13491.78, + "probability": 0.9471 + }, + { + "start": 13492.66, + "end": 13493.46, + "probability": 0.9878 + }, + { + "start": 13494.08, + "end": 13495.26, + "probability": 0.6487 + }, + { + "start": 13498.2, + "end": 13499.98, + "probability": 0.9321 + }, + { + "start": 13501.9, + "end": 13503.2, + "probability": 0.5628 + }, + { + "start": 13503.9, + "end": 13504.78, + "probability": 0.949 + }, + { + "start": 13507.12, + "end": 13508.86, + "probability": 0.5883 + }, + { + "start": 13509.4, + "end": 13511.32, + "probability": 0.9001 + }, + { + "start": 13513.36, + "end": 13513.86, + "probability": 0.6882 + }, + { + "start": 13514.74, + "end": 13515.64, + "probability": 0.5446 + }, + { + "start": 13518.68, + "end": 13519.56, + "probability": 0.9365 + }, + { + "start": 13520.1, + "end": 13520.94, + "probability": 0.9296 + }, + { + "start": 13522.42, + "end": 13522.9, + "probability": 0.61 + }, + { + "start": 13523.54, + "end": 13524.36, + "probability": 0.9263 + }, + { + "start": 13525.28, + "end": 13527.28, + "probability": 0.8174 + }, + { + "start": 13529.15, + "end": 13531.4, + "probability": 0.8071 + }, + { + "start": 13532.68, + "end": 13534.64, + "probability": 0.8539 + }, + { + "start": 13536.3, + "end": 13538.64, + "probability": 0.6657 + }, + { + "start": 13540.16, + "end": 13543.56, + "probability": 0.8243 + }, + { + "start": 13545.46, + "end": 13547.7, + "probability": 0.8584 + }, + { + "start": 13549.12, + "end": 13550.46, + "probability": 0.766 + }, + { + "start": 13551.42, + "end": 13553.02, + "probability": 0.9701 + }, + { + "start": 13553.75, + "end": 13556.28, + "probability": 0.9653 + }, + { + "start": 13557.28, + "end": 13559.14, + "probability": 0.9528 + }, + { + "start": 13561.28, + "end": 13563.16, + "probability": 0.9907 + }, + { + "start": 13564.2, + "end": 13564.62, + "probability": 0.6289 + }, + { + "start": 13565.36, + "end": 13566.18, + "probability": 0.8374 + }, + { + "start": 13567.0, + "end": 13569.46, + "probability": 0.9505 + }, + { + "start": 13570.6, + "end": 13571.68, + "probability": 0.9601 + }, + { + "start": 13573.3, + "end": 13574.2, + "probability": 0.8563 + }, + { + "start": 13575.06, + "end": 13577.14, + "probability": 0.8899 + }, + { + "start": 13578.0, + "end": 13579.68, + "probability": 0.9235 + }, + { + "start": 13581.54, + "end": 13582.84, + "probability": 0.7578 + }, + { + "start": 13583.36, + "end": 13584.7, + "probability": 0.7686 + }, + { + "start": 13585.56, + "end": 13587.48, + "probability": 0.8687 + }, + { + "start": 13589.12, + "end": 13589.66, + "probability": 0.875 + }, + { + "start": 13591.14, + "end": 13592.22, + "probability": 0.924 + }, + { + "start": 13594.28, + "end": 13594.84, + "probability": 0.9951 + }, + { + "start": 13595.62, + "end": 13597.42, + "probability": 0.6385 + }, + { + "start": 13599.52, + "end": 13602.16, + "probability": 0.9546 + }, + { + "start": 13603.12, + "end": 13604.48, + "probability": 0.9477 + }, + { + "start": 13606.02, + "end": 13607.92, + "probability": 0.9541 + }, + { + "start": 13608.84, + "end": 13609.28, + "probability": 0.802 + }, + { + "start": 13610.4, + "end": 13611.26, + "probability": 0.9655 + }, + { + "start": 13612.18, + "end": 13612.66, + "probability": 0.9899 + }, + { + "start": 13613.3, + "end": 13614.04, + "probability": 0.9651 + }, + { + "start": 13614.74, + "end": 13615.18, + "probability": 0.9905 + }, + { + "start": 13615.8, + "end": 13616.64, + "probability": 0.3051 + }, + { + "start": 13617.42, + "end": 13617.84, + "probability": 0.5714 + }, + { + "start": 13618.56, + "end": 13619.26, + "probability": 0.7781 + }, + { + "start": 13619.96, + "end": 13622.66, + "probability": 0.7613 + }, + { + "start": 13623.52, + "end": 13625.64, + "probability": 0.9318 + }, + { + "start": 13627.1, + "end": 13628.76, + "probability": 0.9875 + }, + { + "start": 13630.94, + "end": 13632.94, + "probability": 0.9906 + }, + { + "start": 13633.68, + "end": 13634.1, + "probability": 0.9787 + }, + { + "start": 13636.04, + "end": 13636.86, + "probability": 0.9306 + }, + { + "start": 13637.5, + "end": 13637.98, + "probability": 0.9915 + }, + { + "start": 13639.06, + "end": 13641.92, + "probability": 0.9789 + }, + { + "start": 13643.96, + "end": 13644.66, + "probability": 0.8299 + }, + { + "start": 13645.28, + "end": 13645.84, + "probability": 0.5276 + }, + { + "start": 13646.92, + "end": 13647.82, + "probability": 0.8931 + }, + { + "start": 13648.34, + "end": 13649.08, + "probability": 0.6766 + }, + { + "start": 13650.56, + "end": 13653.36, + "probability": 0.8664 + }, + { + "start": 13655.78, + "end": 13656.74, + "probability": 0.9166 + }, + { + "start": 13657.6, + "end": 13658.98, + "probability": 0.9631 + }, + { + "start": 13659.88, + "end": 13660.84, + "probability": 0.9758 + }, + { + "start": 13661.46, + "end": 13665.08, + "probability": 0.9264 + }, + { + "start": 13666.56, + "end": 13666.94, + "probability": 0.9563 + }, + { + "start": 13667.7, + "end": 13668.52, + "probability": 0.9494 + }, + { + "start": 13669.18, + "end": 13669.48, + "probability": 0.9814 + }, + { + "start": 13670.46, + "end": 13671.54, + "probability": 0.9751 + }, + { + "start": 13672.26, + "end": 13674.26, + "probability": 0.6605 + }, + { + "start": 13675.48, + "end": 13675.86, + "probability": 0.9302 + }, + { + "start": 13676.84, + "end": 13677.78, + "probability": 0.6093 + }, + { + "start": 13678.62, + "end": 13680.14, + "probability": 0.9218 + }, + { + "start": 13684.24, + "end": 13684.5, + "probability": 0.674 + }, + { + "start": 13686.16, + "end": 13686.96, + "probability": 0.9032 + }, + { + "start": 13688.2, + "end": 13688.74, + "probability": 0.978 + }, + { + "start": 13689.66, + "end": 13691.0, + "probability": 0.9679 + }, + { + "start": 13693.18, + "end": 13693.64, + "probability": 0.995 + }, + { + "start": 13694.68, + "end": 13695.48, + "probability": 0.9807 + }, + { + "start": 13697.12, + "end": 13697.6, + "probability": 0.9897 + }, + { + "start": 13698.62, + "end": 13699.54, + "probability": 0.7191 + }, + { + "start": 13702.42, + "end": 13703.05, + "probability": 0.5 + }, + { + "start": 13704.64, + "end": 13705.14, + "probability": 0.904 + }, + { + "start": 13706.44, + "end": 13707.42, + "probability": 0.9317 + }, + { + "start": 13708.26, + "end": 13708.78, + "probability": 0.9705 + }, + { + "start": 13709.52, + "end": 13710.44, + "probability": 0.8585 + }, + { + "start": 13711.5, + "end": 13712.5, + "probability": 0.9536 + }, + { + "start": 13713.32, + "end": 13714.22, + "probability": 0.9865 + }, + { + "start": 13714.98, + "end": 13715.5, + "probability": 0.9902 + }, + { + "start": 13716.06, + "end": 13717.1, + "probability": 0.9347 + }, + { + "start": 13717.74, + "end": 13718.24, + "probability": 0.9935 + }, + { + "start": 13719.46, + "end": 13720.36, + "probability": 0.9346 + }, + { + "start": 13721.94, + "end": 13722.44, + "probability": 0.9937 + }, + { + "start": 13723.48, + "end": 13724.42, + "probability": 0.9905 + }, + { + "start": 13725.12, + "end": 13725.52, + "probability": 0.9862 + }, + { + "start": 13726.72, + "end": 13727.08, + "probability": 0.7607 + }, + { + "start": 13728.68, + "end": 13729.12, + "probability": 0.602 + }, + { + "start": 13730.38, + "end": 13731.3, + "probability": 0.6935 + }, + { + "start": 13732.18, + "end": 13734.4, + "probability": 0.9075 + }, + { + "start": 13736.04, + "end": 13736.7, + "probability": 0.9041 + }, + { + "start": 13737.24, + "end": 13738.14, + "probability": 0.7118 + }, + { + "start": 13739.14, + "end": 13739.6, + "probability": 0.9626 + }, + { + "start": 13740.58, + "end": 13741.62, + "probability": 0.7675 + }, + { + "start": 13742.9, + "end": 13743.66, + "probability": 0.896 + }, + { + "start": 13745.08, + "end": 13746.06, + "probability": 0.9289 + }, + { + "start": 13747.18, + "end": 13747.94, + "probability": 0.9768 + }, + { + "start": 13748.74, + "end": 13751.04, + "probability": 0.8195 + }, + { + "start": 13752.06, + "end": 13752.5, + "probability": 0.9764 + }, + { + "start": 13754.24, + "end": 13754.7, + "probability": 0.68 + }, + { + "start": 13764.1, + "end": 13764.56, + "probability": 0.6973 + }, + { + "start": 13766.58, + "end": 13767.54, + "probability": 0.7323 + }, + { + "start": 13768.48, + "end": 13769.26, + "probability": 0.929 + }, + { + "start": 13769.8, + "end": 13770.78, + "probability": 0.9189 + }, + { + "start": 13772.98, + "end": 13774.44, + "probability": 0.9387 + }, + { + "start": 13775.28, + "end": 13776.86, + "probability": 0.9197 + }, + { + "start": 13778.92, + "end": 13779.84, + "probability": 0.7279 + }, + { + "start": 13787.24, + "end": 13788.14, + "probability": 0.7947 + }, + { + "start": 13789.14, + "end": 13790.08, + "probability": 0.6517 + }, + { + "start": 13791.12, + "end": 13791.54, + "probability": 0.8005 + }, + { + "start": 13792.6, + "end": 13793.66, + "probability": 0.9676 + }, + { + "start": 13795.18, + "end": 13795.7, + "probability": 0.8948 + }, + { + "start": 13796.5, + "end": 13797.34, + "probability": 0.8679 + }, + { + "start": 13798.08, + "end": 13799.58, + "probability": 0.8623 + }, + { + "start": 13801.02, + "end": 13801.56, + "probability": 0.9061 + }, + { + "start": 13803.42, + "end": 13804.24, + "probability": 0.9686 + }, + { + "start": 13807.5, + "end": 13809.54, + "probability": 0.8741 + }, + { + "start": 13810.32, + "end": 13810.58, + "probability": 0.7469 + }, + { + "start": 13811.42, + "end": 13812.16, + "probability": 0.7082 + }, + { + "start": 13812.82, + "end": 13814.66, + "probability": 0.912 + }, + { + "start": 13816.18, + "end": 13818.58, + "probability": 0.9425 + }, + { + "start": 13819.48, + "end": 13819.98, + "probability": 0.9895 + }, + { + "start": 13820.78, + "end": 13821.98, + "probability": 0.9586 + }, + { + "start": 13823.26, + "end": 13823.78, + "probability": 0.9912 + }, + { + "start": 13824.9, + "end": 13826.98, + "probability": 0.8611 + }, + { + "start": 13827.84, + "end": 13828.66, + "probability": 0.9373 + }, + { + "start": 13830.12, + "end": 13830.58, + "probability": 0.9757 + }, + { + "start": 13831.4, + "end": 13832.26, + "probability": 0.9596 + }, + { + "start": 13833.12, + "end": 13835.12, + "probability": 0.8169 + }, + { + "start": 13836.18, + "end": 13836.58, + "probability": 0.7527 + }, + { + "start": 13837.78, + "end": 13838.44, + "probability": 0.4968 + }, + { + "start": 13839.38, + "end": 13839.84, + "probability": 0.75 + }, + { + "start": 13840.58, + "end": 13841.44, + "probability": 0.9534 + }, + { + "start": 13842.08, + "end": 13844.22, + "probability": 0.9692 + }, + { + "start": 13844.86, + "end": 13846.8, + "probability": 0.9519 + }, + { + "start": 13847.64, + "end": 13848.12, + "probability": 0.8748 + }, + { + "start": 13849.0, + "end": 13850.3, + "probability": 0.909 + }, + { + "start": 13852.16, + "end": 13858.02, + "probability": 0.6203 + }, + { + "start": 13858.6, + "end": 13861.4, + "probability": 0.6403 + }, + { + "start": 13861.78, + "end": 13862.6, + "probability": 0.6487 + }, + { + "start": 13863.16, + "end": 13864.04, + "probability": 0.7046 + }, + { + "start": 13865.18, + "end": 13867.4, + "probability": 0.8542 + }, + { + "start": 13867.92, + "end": 13869.38, + "probability": 0.8408 + }, + { + "start": 13870.12, + "end": 13871.24, + "probability": 0.9828 + }, + { + "start": 13872.5, + "end": 13874.44, + "probability": 0.0549 + }, + { + "start": 13874.44, + "end": 13876.2, + "probability": 0.5568 + }, + { + "start": 13876.68, + "end": 13879.1, + "probability": 0.7426 + }, + { + "start": 13881.2, + "end": 13881.62, + "probability": 0.9619 + }, + { + "start": 13883.54, + "end": 13884.54, + "probability": 0.8003 + }, + { + "start": 13885.16, + "end": 13887.4, + "probability": 0.9482 + }, + { + "start": 13888.3, + "end": 13889.08, + "probability": 0.9939 + }, + { + "start": 13889.64, + "end": 13890.76, + "probability": 0.9858 + }, + { + "start": 13891.34, + "end": 13893.58, + "probability": 0.6066 + }, + { + "start": 13894.38, + "end": 13896.36, + "probability": 0.7703 + }, + { + "start": 13897.84, + "end": 13898.66, + "probability": 0.8237 + }, + { + "start": 13900.5, + "end": 13904.76, + "probability": 0.8685 + }, + { + "start": 13906.88, + "end": 13907.38, + "probability": 0.9517 + }, + { + "start": 13908.98, + "end": 13909.82, + "probability": 0.9771 + }, + { + "start": 13910.54, + "end": 13911.34, + "probability": 0.9773 + }, + { + "start": 13913.36, + "end": 13916.98, + "probability": 0.9711 + }, + { + "start": 13917.96, + "end": 13919.72, + "probability": 0.7797 + }, + { + "start": 13921.06, + "end": 13922.76, + "probability": 0.8856 + }, + { + "start": 13923.66, + "end": 13924.06, + "probability": 0.7104 + }, + { + "start": 13927.32, + "end": 13928.26, + "probability": 0.4505 + }, + { + "start": 13929.52, + "end": 13932.08, + "probability": 0.7673 + }, + { + "start": 13932.88, + "end": 13937.34, + "probability": 0.962 + }, + { + "start": 13938.08, + "end": 13940.3, + "probability": 0.9716 + }, + { + "start": 13941.22, + "end": 13942.6, + "probability": 0.962 + }, + { + "start": 13943.76, + "end": 13945.38, + "probability": 0.9901 + }, + { + "start": 13945.92, + "end": 13947.62, + "probability": 0.5135 + }, + { + "start": 13948.36, + "end": 13949.04, + "probability": 0.9883 + }, + { + "start": 13949.6, + "end": 13950.44, + "probability": 0.6661 + }, + { + "start": 13952.04, + "end": 13954.18, + "probability": 0.955 + }, + { + "start": 13955.42, + "end": 13956.36, + "probability": 0.9743 + }, + { + "start": 13957.6, + "end": 13958.76, + "probability": 0.8907 + }, + { + "start": 13959.24, + "end": 13961.22, + "probability": 0.9829 + }, + { + "start": 13961.6, + "end": 13963.28, + "probability": 0.9108 + }, + { + "start": 13963.72, + "end": 13965.74, + "probability": 0.9403 + }, + { + "start": 13966.92, + "end": 13968.76, + "probability": 0.7828 + }, + { + "start": 13969.48, + "end": 13971.3, + "probability": 0.8857 + }, + { + "start": 13971.84, + "end": 13972.62, + "probability": 0.9071 + }, + { + "start": 13973.82, + "end": 13975.58, + "probability": 0.7429 + }, + { + "start": 13977.8, + "end": 13978.26, + "probability": 0.9409 + }, + { + "start": 13980.76, + "end": 13981.66, + "probability": 0.8196 + }, + { + "start": 13984.08, + "end": 13984.94, + "probability": 0.9877 + }, + { + "start": 13986.44, + "end": 13987.2, + "probability": 0.9555 + }, + { + "start": 13988.68, + "end": 13992.16, + "probability": 0.9482 + }, + { + "start": 13995.76, + "end": 13996.84, + "probability": 0.0165 + }, + { + "start": 13996.84, + "end": 13997.75, + "probability": 0.0849 + }, + { + "start": 13998.48, + "end": 13999.26, + "probability": 0.5319 + }, + { + "start": 13999.28, + "end": 14000.28, + "probability": 0.4927 + }, + { + "start": 14000.42, + "end": 14002.1, + "probability": 0.0146 + }, + { + "start": 14002.1, + "end": 14003.94, + "probability": 0.8396 + }, + { + "start": 14004.08, + "end": 14005.18, + "probability": 0.7697 + }, + { + "start": 14006.26, + "end": 14007.04, + "probability": 0.3965 + }, + { + "start": 14009.0, + "end": 14010.92, + "probability": 0.6117 + }, + { + "start": 14012.44, + "end": 14012.92, + "probability": 0.5401 + }, + { + "start": 14012.98, + "end": 14016.36, + "probability": 0.971 + }, + { + "start": 14017.58, + "end": 14018.76, + "probability": 0.6507 + }, + { + "start": 14019.52, + "end": 14021.6, + "probability": 0.797 + }, + { + "start": 14021.7, + "end": 14023.24, + "probability": 0.8237 + }, + { + "start": 14023.94, + "end": 14027.27, + "probability": 0.9953 + }, + { + "start": 14027.4, + "end": 14029.52, + "probability": 0.816 + }, + { + "start": 14029.92, + "end": 14031.44, + "probability": 0.7314 + }, + { + "start": 14031.44, + "end": 14034.48, + "probability": 0.8942 + }, + { + "start": 14035.86, + "end": 14036.8, + "probability": 0.2629 + }, + { + "start": 14082.52, + "end": 14083.64, + "probability": 0.5274 + }, + { + "start": 14101.94, + "end": 14102.36, + "probability": 0.4065 + }, + { + "start": 14102.46, + "end": 14103.84, + "probability": 0.9912 + }, + { + "start": 14106.12, + "end": 14106.96, + "probability": 0.9257 + }, + { + "start": 14107.0, + "end": 14110.96, + "probability": 0.9039 + }, + { + "start": 14111.06, + "end": 14111.64, + "probability": 0.6956 + }, + { + "start": 14112.4, + "end": 14112.78, + "probability": 0.0811 + }, + { + "start": 14113.56, + "end": 14114.08, + "probability": 0.8663 + }, + { + "start": 14115.34, + "end": 14117.92, + "probability": 0.8886 + }, + { + "start": 14119.28, + "end": 14122.4, + "probability": 0.9843 + }, + { + "start": 14123.56, + "end": 14123.86, + "probability": 0.8882 + }, + { + "start": 14123.9, + "end": 14126.94, + "probability": 0.9823 + }, + { + "start": 14128.9, + "end": 14131.22, + "probability": 0.8092 + }, + { + "start": 14131.24, + "end": 14131.56, + "probability": 0.3053 + }, + { + "start": 14132.4, + "end": 14134.82, + "probability": 0.809 + }, + { + "start": 14134.94, + "end": 14139.06, + "probability": 0.8025 + }, + { + "start": 14139.26, + "end": 14142.04, + "probability": 0.8705 + }, + { + "start": 14153.28, + "end": 14154.48, + "probability": 0.3507 + }, + { + "start": 14159.3, + "end": 14160.47, + "probability": 0.2655 + }, + { + "start": 14163.46, + "end": 14164.38, + "probability": 0.4416 + }, + { + "start": 14164.38, + "end": 14164.38, + "probability": 0.4566 + }, + { + "start": 14164.38, + "end": 14164.86, + "probability": 0.4961 + }, + { + "start": 14165.0, + "end": 14166.24, + "probability": 0.8136 + }, + { + "start": 14166.34, + "end": 14168.58, + "probability": 0.9016 + }, + { + "start": 14168.64, + "end": 14169.78, + "probability": 0.5073 + }, + { + "start": 14169.86, + "end": 14172.04, + "probability": 0.9256 + }, + { + "start": 14172.46, + "end": 14174.68, + "probability": 0.9833 + }, + { + "start": 14174.8, + "end": 14176.74, + "probability": 0.9968 + }, + { + "start": 14176.74, + "end": 14179.36, + "probability": 0.9802 + }, + { + "start": 14180.08, + "end": 14183.38, + "probability": 0.9272 + }, + { + "start": 14183.88, + "end": 14184.5, + "probability": 0.9309 + }, + { + "start": 14184.52, + "end": 14184.74, + "probability": 0.6036 + }, + { + "start": 14184.84, + "end": 14185.98, + "probability": 0.9571 + }, + { + "start": 14186.06, + "end": 14190.22, + "probability": 0.9994 + }, + { + "start": 14190.28, + "end": 14191.32, + "probability": 0.4735 + }, + { + "start": 14191.46, + "end": 14192.7, + "probability": 0.5555 + }, + { + "start": 14192.98, + "end": 14193.84, + "probability": 0.7126 + }, + { + "start": 14196.18, + "end": 14196.38, + "probability": 0.5255 + }, + { + "start": 14197.92, + "end": 14198.7, + "probability": 0.7873 + }, + { + "start": 14200.88, + "end": 14201.63, + "probability": 0.6155 + }, + { + "start": 14201.94, + "end": 14204.88, + "probability": 0.9849 + }, + { + "start": 14204.94, + "end": 14206.0, + "probability": 0.8405 + }, + { + "start": 14206.06, + "end": 14207.26, + "probability": 0.9528 + }, + { + "start": 14207.28, + "end": 14208.72, + "probability": 0.9796 + }, + { + "start": 14209.84, + "end": 14211.93, + "probability": 0.9544 + }, + { + "start": 14212.42, + "end": 14216.2, + "probability": 0.9942 + }, + { + "start": 14216.28, + "end": 14218.98, + "probability": 0.998 + }, + { + "start": 14219.58, + "end": 14222.54, + "probability": 0.9149 + }, + { + "start": 14223.0, + "end": 14227.12, + "probability": 0.9751 + }, + { + "start": 14227.44, + "end": 14230.7, + "probability": 0.995 + }, + { + "start": 14231.1, + "end": 14233.26, + "probability": 0.9907 + }, + { + "start": 14233.42, + "end": 14234.98, + "probability": 0.9218 + }, + { + "start": 14235.54, + "end": 14236.84, + "probability": 0.8814 + }, + { + "start": 14237.36, + "end": 14238.68, + "probability": 0.9778 + }, + { + "start": 14239.44, + "end": 14240.2, + "probability": 0.9703 + }, + { + "start": 14240.28, + "end": 14242.74, + "probability": 0.9731 + }, + { + "start": 14243.24, + "end": 14245.46, + "probability": 0.9964 + }, + { + "start": 14246.4, + "end": 14247.82, + "probability": 0.6559 + }, + { + "start": 14248.0, + "end": 14250.16, + "probability": 0.979 + }, + { + "start": 14250.44, + "end": 14250.44, + "probability": 0.0439 + }, + { + "start": 14252.44, + "end": 14253.35, + "probability": 0.1467 + }, + { + "start": 14253.46, + "end": 14254.44, + "probability": 0.2629 + }, + { + "start": 14255.76, + "end": 14257.04, + "probability": 0.8596 + }, + { + "start": 14259.54, + "end": 14262.12, + "probability": 0.6324 + }, + { + "start": 14262.28, + "end": 14263.66, + "probability": 0.8865 + }, + { + "start": 14264.12, + "end": 14265.08, + "probability": 0.9683 + }, + { + "start": 14265.16, + "end": 14268.24, + "probability": 0.989 + }, + { + "start": 14268.3, + "end": 14272.24, + "probability": 0.8844 + }, + { + "start": 14272.56, + "end": 14276.3, + "probability": 0.8301 + }, + { + "start": 14277.12, + "end": 14277.16, + "probability": 0.2195 + }, + { + "start": 14277.16, + "end": 14279.36, + "probability": 0.8746 + }, + { + "start": 14279.44, + "end": 14280.12, + "probability": 0.8874 + }, + { + "start": 14280.18, + "end": 14281.16, + "probability": 0.9905 + }, + { + "start": 14281.28, + "end": 14281.96, + "probability": 0.9363 + }, + { + "start": 14282.06, + "end": 14282.88, + "probability": 0.8561 + }, + { + "start": 14283.32, + "end": 14285.82, + "probability": 0.9966 + }, + { + "start": 14286.54, + "end": 14288.62, + "probability": 0.9976 + }, + { + "start": 14289.44, + "end": 14292.52, + "probability": 0.9775 + }, + { + "start": 14292.6, + "end": 14293.75, + "probability": 0.9951 + }, + { + "start": 14294.5, + "end": 14297.92, + "probability": 0.9991 + }, + { + "start": 14297.92, + "end": 14300.62, + "probability": 0.999 + }, + { + "start": 14301.14, + "end": 14305.14, + "probability": 0.9637 + }, + { + "start": 14305.48, + "end": 14306.86, + "probability": 0.6924 + }, + { + "start": 14307.86, + "end": 14308.84, + "probability": 0.7484 + }, + { + "start": 14308.96, + "end": 14311.8, + "probability": 0.9868 + }, + { + "start": 14312.02, + "end": 14314.4, + "probability": 0.9868 + }, + { + "start": 14314.86, + "end": 14315.58, + "probability": 0.894 + }, + { + "start": 14315.98, + "end": 14316.84, + "probability": 0.7664 + }, + { + "start": 14317.26, + "end": 14319.06, + "probability": 0.9914 + }, + { + "start": 14319.06, + "end": 14322.39, + "probability": 0.9468 + }, + { + "start": 14323.04, + "end": 14325.54, + "probability": 0.9181 + }, + { + "start": 14326.08, + "end": 14327.71, + "probability": 0.9849 + }, + { + "start": 14328.16, + "end": 14333.04, + "probability": 0.7556 + }, + { + "start": 14333.32, + "end": 14338.8, + "probability": 0.9921 + }, + { + "start": 14339.72, + "end": 14342.14, + "probability": 0.9129 + }, + { + "start": 14342.18, + "end": 14345.38, + "probability": 0.9869 + }, + { + "start": 14345.38, + "end": 14348.86, + "probability": 0.9983 + }, + { + "start": 14349.48, + "end": 14353.92, + "probability": 0.9832 + }, + { + "start": 14354.08, + "end": 14355.02, + "probability": 0.999 + }, + { + "start": 14355.92, + "end": 14359.3, + "probability": 0.8293 + }, + { + "start": 14359.52, + "end": 14361.34, + "probability": 0.9221 + }, + { + "start": 14361.64, + "end": 14362.4, + "probability": 0.5268 + }, + { + "start": 14362.48, + "end": 14363.74, + "probability": 0.9356 + }, + { + "start": 14363.8, + "end": 14368.68, + "probability": 0.9943 + }, + { + "start": 14368.98, + "end": 14370.92, + "probability": 0.9487 + }, + { + "start": 14371.34, + "end": 14375.9, + "probability": 0.9954 + }, + { + "start": 14377.0, + "end": 14377.36, + "probability": 0.5085 + }, + { + "start": 14377.42, + "end": 14382.5, + "probability": 0.9706 + }, + { + "start": 14382.86, + "end": 14383.72, + "probability": 0.8573 + }, + { + "start": 14383.8, + "end": 14385.18, + "probability": 0.9749 + }, + { + "start": 14385.52, + "end": 14386.7, + "probability": 0.6052 + }, + { + "start": 14386.9, + "end": 14387.75, + "probability": 0.9896 + }, + { + "start": 14387.82, + "end": 14390.28, + "probability": 0.9964 + }, + { + "start": 14390.62, + "end": 14393.15, + "probability": 0.9882 + }, + { + "start": 14393.6, + "end": 14394.78, + "probability": 0.9797 + }, + { + "start": 14395.14, + "end": 14396.92, + "probability": 0.9967 + }, + { + "start": 14397.02, + "end": 14403.16, + "probability": 0.9854 + }, + { + "start": 14403.16, + "end": 14409.1, + "probability": 0.9881 + }, + { + "start": 14409.18, + "end": 14410.04, + "probability": 0.8483 + }, + { + "start": 14410.8, + "end": 14411.6, + "probability": 0.5958 + }, + { + "start": 14411.7, + "end": 14414.32, + "probability": 0.9923 + }, + { + "start": 14414.82, + "end": 14418.16, + "probability": 0.9636 + }, + { + "start": 14418.28, + "end": 14420.98, + "probability": 0.7114 + }, + { + "start": 14422.12, + "end": 14424.32, + "probability": 0.9771 + }, + { + "start": 14424.8, + "end": 14426.86, + "probability": 0.9945 + }, + { + "start": 14426.92, + "end": 14428.28, + "probability": 0.9803 + }, + { + "start": 14428.84, + "end": 14429.4, + "probability": 0.8252 + }, + { + "start": 14429.78, + "end": 14430.26, + "probability": 0.9702 + }, + { + "start": 14430.34, + "end": 14431.1, + "probability": 0.9458 + }, + { + "start": 14431.18, + "end": 14433.38, + "probability": 0.9265 + }, + { + "start": 14433.38, + "end": 14436.02, + "probability": 0.9999 + }, + { + "start": 14436.1, + "end": 14437.42, + "probability": 0.9951 + }, + { + "start": 14438.86, + "end": 14443.1, + "probability": 0.9881 + }, + { + "start": 14443.54, + "end": 14444.56, + "probability": 0.8984 + }, + { + "start": 14444.82, + "end": 14447.28, + "probability": 0.9582 + }, + { + "start": 14447.32, + "end": 14451.38, + "probability": 0.9805 + }, + { + "start": 14452.24, + "end": 14454.82, + "probability": 0.9963 + }, + { + "start": 14455.58, + "end": 14458.02, + "probability": 0.967 + }, + { + "start": 14458.42, + "end": 14461.4, + "probability": 0.9974 + }, + { + "start": 14462.28, + "end": 14463.34, + "probability": 0.7664 + }, + { + "start": 14463.52, + "end": 14464.42, + "probability": 0.8526 + }, + { + "start": 14464.52, + "end": 14466.78, + "probability": 0.9844 + }, + { + "start": 14467.2, + "end": 14468.46, + "probability": 0.9775 + }, + { + "start": 14468.56, + "end": 14471.62, + "probability": 0.9215 + }, + { + "start": 14472.12, + "end": 14473.94, + "probability": 0.9977 + }, + { + "start": 14474.54, + "end": 14475.84, + "probability": 0.9486 + }, + { + "start": 14475.96, + "end": 14478.2, + "probability": 0.992 + }, + { + "start": 14478.52, + "end": 14481.02, + "probability": 0.9813 + }, + { + "start": 14481.4, + "end": 14482.3, + "probability": 0.9502 + }, + { + "start": 14482.32, + "end": 14483.2, + "probability": 0.9961 + }, + { + "start": 14483.9, + "end": 14484.96, + "probability": 0.7513 + }, + { + "start": 14485.5, + "end": 14489.36, + "probability": 0.7141 + }, + { + "start": 14489.79, + "end": 14491.52, + "probability": 0.9119 + }, + { + "start": 14491.72, + "end": 14492.16, + "probability": 0.7494 + }, + { + "start": 14494.0, + "end": 14494.78, + "probability": 0.6308 + }, + { + "start": 14495.36, + "end": 14498.12, + "probability": 0.8362 + }, + { + "start": 14498.66, + "end": 14499.37, + "probability": 0.2701 + }, + { + "start": 14499.72, + "end": 14500.52, + "probability": 0.4607 + }, + { + "start": 14500.54, + "end": 14501.04, + "probability": 0.6595 + }, + { + "start": 14501.08, + "end": 14503.62, + "probability": 0.9277 + }, + { + "start": 14516.38, + "end": 14517.3, + "probability": 0.7476 + }, + { + "start": 14518.54, + "end": 14519.7, + "probability": 0.6362 + }, + { + "start": 14519.8, + "end": 14524.3, + "probability": 0.8471 + }, + { + "start": 14524.76, + "end": 14526.7, + "probability": 0.9834 + }, + { + "start": 14526.72, + "end": 14528.1, + "probability": 0.9351 + }, + { + "start": 14528.24, + "end": 14529.89, + "probability": 0.8008 + }, + { + "start": 14530.03, + "end": 14532.24, + "probability": 0.9966 + }, + { + "start": 14532.8, + "end": 14535.52, + "probability": 0.8676 + }, + { + "start": 14535.52, + "end": 14536.42, + "probability": 0.9128 + }, + { + "start": 14536.96, + "end": 14538.74, + "probability": 0.2999 + }, + { + "start": 14538.82, + "end": 14541.66, + "probability": 0.5938 + }, + { + "start": 14541.9, + "end": 14544.24, + "probability": 0.6665 + }, + { + "start": 14544.26, + "end": 14546.94, + "probability": 0.6085 + }, + { + "start": 14547.68, + "end": 14552.04, + "probability": 0.934 + }, + { + "start": 14552.14, + "end": 14556.78, + "probability": 0.9069 + }, + { + "start": 14556.88, + "end": 14558.32, + "probability": 0.4975 + }, + { + "start": 14558.7, + "end": 14558.86, + "probability": 0.2317 + }, + { + "start": 14559.02, + "end": 14560.6, + "probability": 0.7756 + }, + { + "start": 14561.06, + "end": 14561.4, + "probability": 0.788 + }, + { + "start": 14562.16, + "end": 14564.0, + "probability": 0.7799 + }, + { + "start": 14564.08, + "end": 14566.6, + "probability": 0.8018 + }, + { + "start": 14569.0, + "end": 14571.1, + "probability": 0.6327 + }, + { + "start": 14572.75, + "end": 14576.08, + "probability": 0.8972 + }, + { + "start": 14576.58, + "end": 14579.24, + "probability": 0.8149 + }, + { + "start": 14581.22, + "end": 14584.04, + "probability": 0.9194 + }, + { + "start": 14584.14, + "end": 14584.56, + "probability": 0.933 + }, + { + "start": 14591.14, + "end": 14592.92, + "probability": 0.1249 + }, + { + "start": 14593.08, + "end": 14593.08, + "probability": 0.0559 + }, + { + "start": 14593.08, + "end": 14596.69, + "probability": 0.2297 + }, + { + "start": 14607.5, + "end": 14611.14, + "probability": 0.8187 + }, + { + "start": 14611.84, + "end": 14613.52, + "probability": 0.2508 + }, + { + "start": 14614.06, + "end": 14615.42, + "probability": 0.946 + }, + { + "start": 14615.48, + "end": 14618.2, + "probability": 0.9037 + }, + { + "start": 14622.7, + "end": 14623.26, + "probability": 0.5151 + }, + { + "start": 14623.34, + "end": 14624.7, + "probability": 0.562 + }, + { + "start": 14625.72, + "end": 14627.18, + "probability": 0.7692 + }, + { + "start": 14627.18, + "end": 14628.6, + "probability": 0.6063 + }, + { + "start": 14629.26, + "end": 14632.84, + "probability": 0.9514 + }, + { + "start": 14632.9, + "end": 14634.48, + "probability": 0.6705 + }, + { + "start": 14635.26, + "end": 14637.32, + "probability": 0.7775 + }, + { + "start": 14638.95, + "end": 14639.19, + "probability": 0.1434 + }, + { + "start": 14640.28, + "end": 14640.88, + "probability": 0.8445 + }, + { + "start": 14642.14, + "end": 14644.32, + "probability": 0.6522 + }, + { + "start": 14644.86, + "end": 14647.96, + "probability": 0.9123 + }, + { + "start": 14647.96, + "end": 14651.34, + "probability": 0.7578 + }, + { + "start": 14652.4, + "end": 14654.8, + "probability": 0.7416 + }, + { + "start": 14655.08, + "end": 14659.38, + "probability": 0.9937 + }, + { + "start": 14660.06, + "end": 14664.12, + "probability": 0.9966 + }, + { + "start": 14664.58, + "end": 14667.96, + "probability": 0.9152 + }, + { + "start": 14668.4, + "end": 14669.94, + "probability": 0.962 + }, + { + "start": 14670.06, + "end": 14671.88, + "probability": 0.9771 + }, + { + "start": 14672.34, + "end": 14672.92, + "probability": 0.97 + }, + { + "start": 14672.98, + "end": 14673.56, + "probability": 0.986 + }, + { + "start": 14673.72, + "end": 14675.36, + "probability": 0.9095 + }, + { + "start": 14676.0, + "end": 14681.22, + "probability": 0.9786 + }, + { + "start": 14681.22, + "end": 14684.86, + "probability": 0.9995 + }, + { + "start": 14684.86, + "end": 14688.4, + "probability": 0.974 + }, + { + "start": 14688.96, + "end": 14690.24, + "probability": 0.8644 + }, + { + "start": 14690.38, + "end": 14690.86, + "probability": 0.269 + }, + { + "start": 14691.06, + "end": 14695.96, + "probability": 0.9655 + }, + { + "start": 14696.1, + "end": 14698.06, + "probability": 0.6783 + }, + { + "start": 14698.16, + "end": 14702.2, + "probability": 0.9543 + }, + { + "start": 14702.78, + "end": 14707.06, + "probability": 0.9098 + }, + { + "start": 14707.06, + "end": 14711.56, + "probability": 0.9917 + }, + { + "start": 14711.92, + "end": 14713.94, + "probability": 0.998 + }, + { + "start": 14714.48, + "end": 14717.38, + "probability": 0.9012 + }, + { + "start": 14717.38, + "end": 14720.38, + "probability": 0.9961 + }, + { + "start": 14720.94, + "end": 14725.96, + "probability": 0.9954 + }, + { + "start": 14726.58, + "end": 14727.58, + "probability": 0.7917 + }, + { + "start": 14727.82, + "end": 14728.28, + "probability": 0.8157 + }, + { + "start": 14728.36, + "end": 14731.02, + "probability": 0.8622 + }, + { + "start": 14731.76, + "end": 14736.18, + "probability": 0.98 + }, + { + "start": 14736.18, + "end": 14738.78, + "probability": 0.9993 + }, + { + "start": 14739.26, + "end": 14742.74, + "probability": 0.9971 + }, + { + "start": 14743.02, + "end": 14746.52, + "probability": 0.9891 + }, + { + "start": 14746.66, + "end": 14751.06, + "probability": 0.9544 + }, + { + "start": 14751.5, + "end": 14755.08, + "probability": 0.9985 + }, + { + "start": 14755.08, + "end": 14758.42, + "probability": 0.9985 + }, + { + "start": 14758.86, + "end": 14759.32, + "probability": 0.4005 + }, + { + "start": 14759.62, + "end": 14760.08, + "probability": 0.8617 + }, + { + "start": 14760.18, + "end": 14765.82, + "probability": 0.9431 + }, + { + "start": 14766.22, + "end": 14766.4, + "probability": 0.7265 + }, + { + "start": 14767.58, + "end": 14768.24, + "probability": 0.4534 + }, + { + "start": 14768.34, + "end": 14771.96, + "probability": 0.6667 + }, + { + "start": 14775.22, + "end": 14776.74, + "probability": 0.6579 + }, + { + "start": 14777.34, + "end": 14779.66, + "probability": 0.9863 + }, + { + "start": 14779.66, + "end": 14782.48, + "probability": 0.9875 + }, + { + "start": 14783.02, + "end": 14785.08, + "probability": 0.9277 + }, + { + "start": 14785.76, + "end": 14786.46, + "probability": 0.7618 + }, + { + "start": 14786.48, + "end": 14790.52, + "probability": 0.9146 + }, + { + "start": 14790.96, + "end": 14794.94, + "probability": 0.9473 + }, + { + "start": 14795.76, + "end": 14800.08, + "probability": 0.979 + }, + { + "start": 14800.08, + "end": 14805.22, + "probability": 0.9531 + }, + { + "start": 14805.72, + "end": 14810.06, + "probability": 0.8784 + }, + { + "start": 14810.5, + "end": 14811.36, + "probability": 0.9867 + }, + { + "start": 14811.62, + "end": 14814.11, + "probability": 0.9842 + }, + { + "start": 14815.2, + "end": 14817.86, + "probability": 0.9849 + }, + { + "start": 14817.86, + "end": 14821.56, + "probability": 0.9916 + }, + { + "start": 14822.26, + "end": 14824.64, + "probability": 0.9837 + }, + { + "start": 14825.48, + "end": 14829.04, + "probability": 0.9786 + }, + { + "start": 14829.56, + "end": 14830.8, + "probability": 0.9412 + }, + { + "start": 14831.42, + "end": 14834.06, + "probability": 0.8969 + }, + { + "start": 14834.54, + "end": 14835.12, + "probability": 0.6692 + }, + { + "start": 14836.2, + "end": 14841.94, + "probability": 0.9739 + }, + { + "start": 14842.18, + "end": 14842.88, + "probability": 0.696 + }, + { + "start": 14843.62, + "end": 14843.76, + "probability": 0.1729 + }, + { + "start": 14843.76, + "end": 14845.48, + "probability": 0.9166 + }, + { + "start": 14846.3, + "end": 14847.9, + "probability": 0.7667 + }, + { + "start": 14847.96, + "end": 14852.8, + "probability": 0.9923 + }, + { + "start": 14852.99, + "end": 14855.52, + "probability": 0.9934 + }, + { + "start": 14856.04, + "end": 14857.38, + "probability": 0.9558 + }, + { + "start": 14858.14, + "end": 14860.84, + "probability": 0.9489 + }, + { + "start": 14860.96, + "end": 14862.32, + "probability": 0.9398 + }, + { + "start": 14863.08, + "end": 14863.44, + "probability": 0.8989 + }, + { + "start": 14863.56, + "end": 14864.76, + "probability": 0.991 + }, + { + "start": 14865.24, + "end": 14867.06, + "probability": 0.9715 + }, + { + "start": 14867.18, + "end": 14867.8, + "probability": 0.8238 + }, + { + "start": 14868.08, + "end": 14868.3, + "probability": 0.7245 + }, + { + "start": 14869.5, + "end": 14871.94, + "probability": 0.7858 + }, + { + "start": 14872.42, + "end": 14873.22, + "probability": 0.3922 + }, + { + "start": 14874.12, + "end": 14874.32, + "probability": 0.5717 + }, + { + "start": 14875.68, + "end": 14877.9, + "probability": 0.9769 + }, + { + "start": 14878.58, + "end": 14879.38, + "probability": 0.7286 + }, + { + "start": 14879.96, + "end": 14881.05, + "probability": 0.9219 + }, + { + "start": 14881.66, + "end": 14882.9, + "probability": 0.7719 + }, + { + "start": 14883.62, + "end": 14884.24, + "probability": 0.5225 + }, + { + "start": 14884.48, + "end": 14885.1, + "probability": 0.6839 + }, + { + "start": 14885.58, + "end": 14886.26, + "probability": 0.8102 + }, + { + "start": 14887.94, + "end": 14890.48, + "probability": 0.5694 + }, + { + "start": 14895.98, + "end": 14896.9, + "probability": 0.494 + }, + { + "start": 14898.02, + "end": 14899.42, + "probability": 0.8467 + }, + { + "start": 14902.34, + "end": 14903.96, + "probability": 0.1522 + }, + { + "start": 14912.1, + "end": 14915.02, + "probability": 0.4132 + }, + { + "start": 14915.02, + "end": 14916.42, + "probability": 0.2818 + }, + { + "start": 14917.22, + "end": 14918.72, + "probability": 0.3223 + }, + { + "start": 14920.61, + "end": 14924.84, + "probability": 0.4563 + }, + { + "start": 14925.04, + "end": 14925.24, + "probability": 0.0181 + }, + { + "start": 14928.54, + "end": 14933.72, + "probability": 0.1595 + }, + { + "start": 14933.72, + "end": 14939.0, + "probability": 0.1379 + }, + { + "start": 14940.32, + "end": 14946.64, + "probability": 0.0116 + }, + { + "start": 14946.64, + "end": 14947.88, + "probability": 0.1212 + }, + { + "start": 14953.52, + "end": 14955.58, + "probability": 0.0129 + }, + { + "start": 14955.58, + "end": 14960.21, + "probability": 0.0611 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.0, + "end": 14978.0, + "probability": 0.0 + }, + { + "start": 14978.36, + "end": 14979.0, + "probability": 0.0345 + }, + { + "start": 14979.54, + "end": 14979.89, + "probability": 0.4519 + }, + { + "start": 14980.38, + "end": 14981.46, + "probability": 0.6198 + }, + { + "start": 14981.6, + "end": 14981.88, + "probability": 0.3731 + }, + { + "start": 14982.0, + "end": 14982.9, + "probability": 0.4939 + }, + { + "start": 14983.02, + "end": 14983.02, + "probability": 0.1634 + }, + { + "start": 14983.02, + "end": 14984.5, + "probability": 0.8824 + }, + { + "start": 14984.66, + "end": 14986.92, + "probability": 0.1861 + }, + { + "start": 15001.86, + "end": 15001.86, + "probability": 0.6094 + }, + { + "start": 15002.38, + "end": 15002.9, + "probability": 0.2227 + }, + { + "start": 15002.9, + "end": 15006.38, + "probability": 0.048 + }, + { + "start": 15006.72, + "end": 15007.8, + "probability": 0.0509 + }, + { + "start": 15008.87, + "end": 15010.48, + "probability": 0.0636 + }, + { + "start": 15011.84, + "end": 15015.76, + "probability": 0.055 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15109.0, + "end": 15109.0, + "probability": 0.0 + }, + { + "start": 15141.7, + "end": 15142.78, + "probability": 0.4738 + }, + { + "start": 15143.3, + "end": 15143.4, + "probability": 0.0044 + }, + { + "start": 15151.36, + "end": 15152.88, + "probability": 0.1033 + }, + { + "start": 15152.88, + "end": 15153.18, + "probability": 0.0773 + }, + { + "start": 15153.18, + "end": 15156.66, + "probability": 0.2215 + }, + { + "start": 15182.58, + "end": 15184.1, + "probability": 0.0438 + }, + { + "start": 15184.1, + "end": 15186.26, + "probability": 0.0287 + }, + { + "start": 15186.4, + "end": 15190.02, + "probability": 0.0535 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15243.0, + "end": 15243.0, + "probability": 0.0 + }, + { + "start": 15258.62, + "end": 15260.06, + "probability": 0.0006 + }, + { + "start": 15260.63, + "end": 15261.66, + "probability": 0.1057 + }, + { + "start": 15262.06, + "end": 15265.54, + "probability": 0.0448 + }, + { + "start": 15270.62, + "end": 15273.9, + "probability": 0.1094 + }, + { + "start": 15273.9, + "end": 15274.36, + "probability": 0.0488 + }, + { + "start": 15274.36, + "end": 15275.29, + "probability": 0.0747 + }, + { + "start": 15277.65, + "end": 15280.16, + "probability": 0.0569 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.0, + "end": 15387.0, + "probability": 0.0 + }, + { + "start": 15387.62, + "end": 15387.84, + "probability": 0.0371 + }, + { + "start": 15387.84, + "end": 15391.6, + "probability": 0.0799 + }, + { + "start": 15391.63, + "end": 15394.13, + "probability": 0.0665 + }, + { + "start": 15394.62, + "end": 15394.62, + "probability": 0.1035 + }, + { + "start": 15394.62, + "end": 15394.62, + "probability": 0.023 + }, + { + "start": 15394.62, + "end": 15394.62, + "probability": 0.026 + }, + { + "start": 15394.62, + "end": 15394.62, + "probability": 0.1158 + }, + { + "start": 15394.62, + "end": 15395.22, + "probability": 0.6715 + }, + { + "start": 15395.32, + "end": 15397.48, + "probability": 0.8285 + }, + { + "start": 15398.26, + "end": 15399.94, + "probability": 0.8685 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.0, + "end": 15510.0, + "probability": 0.0 + }, + { + "start": 15510.1, + "end": 15510.92, + "probability": 0.5884 + }, + { + "start": 15511.06, + "end": 15517.42, + "probability": 0.0584 + }, + { + "start": 15517.42, + "end": 15518.36, + "probability": 0.0734 + }, + { + "start": 15518.72, + "end": 15519.22, + "probability": 0.0421 + }, + { + "start": 15519.22, + "end": 15519.8, + "probability": 0.0056 + }, + { + "start": 15524.12, + "end": 15527.84, + "probability": 0.0522 + }, + { + "start": 15527.92, + "end": 15528.8, + "probability": 0.113 + }, + { + "start": 15530.4, + "end": 15531.78, + "probability": 0.0067 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.3, + "end": 15637.32, + "probability": 0.926 + }, + { + "start": 15637.32, + "end": 15641.66, + "probability": 0.9977 + }, + { + "start": 15642.18, + "end": 15646.06, + "probability": 0.9973 + }, + { + "start": 15646.06, + "end": 15650.68, + "probability": 0.9884 + }, + { + "start": 15652.18, + "end": 15655.34, + "probability": 0.8703 + }, + { + "start": 15656.38, + "end": 15659.68, + "probability": 0.5237 + }, + { + "start": 15660.42, + "end": 15661.44, + "probability": 0.8617 + }, + { + "start": 15661.64, + "end": 15666.3, + "probability": 0.9907 + }, + { + "start": 15666.38, + "end": 15667.1, + "probability": 0.8615 + }, + { + "start": 15667.26, + "end": 15670.76, + "probability": 0.9961 + }, + { + "start": 15670.8, + "end": 15674.22, + "probability": 0.9454 + }, + { + "start": 15675.58, + "end": 15681.24, + "probability": 0.9071 + }, + { + "start": 15681.78, + "end": 15684.28, + "probability": 0.9905 + }, + { + "start": 15684.46, + "end": 15686.05, + "probability": 0.884 + }, + { + "start": 15689.84, + "end": 15689.84, + "probability": 0.0435 + }, + { + "start": 15689.84, + "end": 15695.56, + "probability": 0.9547 + }, + { + "start": 15696.12, + "end": 15699.6, + "probability": 0.9578 + }, + { + "start": 15699.93, + "end": 15704.2, + "probability": 0.9956 + }, + { + "start": 15704.7, + "end": 15705.16, + "probability": 0.8555 + }, + { + "start": 15706.7, + "end": 15708.28, + "probability": 0.6429 + }, + { + "start": 15708.94, + "end": 15710.48, + "probability": 0.9316 + }, + { + "start": 15711.3, + "end": 15711.64, + "probability": 0.8283 + }, + { + "start": 15711.7, + "end": 15712.2, + "probability": 0.9239 + }, + { + "start": 15712.62, + "end": 15713.58, + "probability": 0.7775 + }, + { + "start": 15713.72, + "end": 15716.72, + "probability": 0.8087 + }, + { + "start": 15717.02, + "end": 15717.82, + "probability": 0.9938 + }, + { + "start": 15718.4, + "end": 15720.7, + "probability": 0.8805 + }, + { + "start": 15721.5, + "end": 15724.32, + "probability": 0.814 + }, + { + "start": 15724.86, + "end": 15730.34, + "probability": 0.9848 + }, + { + "start": 15731.62, + "end": 15737.68, + "probability": 0.9951 + }, + { + "start": 15738.22, + "end": 15742.98, + "probability": 0.9973 + }, + { + "start": 15743.66, + "end": 15746.74, + "probability": 0.9958 + }, + { + "start": 15747.0, + "end": 15748.04, + "probability": 0.9263 + }, + { + "start": 15748.62, + "end": 15749.18, + "probability": 0.7804 + }, + { + "start": 15749.62, + "end": 15751.16, + "probability": 0.825 + }, + { + "start": 15751.28, + "end": 15752.35, + "probability": 0.9827 + }, + { + "start": 15752.58, + "end": 15753.18, + "probability": 0.6996 + }, + { + "start": 15755.28, + "end": 15758.12, + "probability": 0.9738 + }, + { + "start": 15758.42, + "end": 15758.86, + "probability": 0.9822 + }, + { + "start": 15759.24, + "end": 15759.77, + "probability": 0.9319 + }, + { + "start": 15761.25, + "end": 15763.44, + "probability": 0.1517 + }, + { + "start": 15763.54, + "end": 15763.94, + "probability": 0.5164 + }, + { + "start": 15764.04, + "end": 15765.34, + "probability": 0.9393 + }, + { + "start": 15765.38, + "end": 15766.3, + "probability": 0.9479 + }, + { + "start": 15766.6, + "end": 15771.02, + "probability": 0.9979 + }, + { + "start": 15771.62, + "end": 15773.84, + "probability": 0.9971 + }, + { + "start": 15774.78, + "end": 15775.82, + "probability": 0.9899 + }, + { + "start": 15776.0, + "end": 15777.14, + "probability": 0.8891 + }, + { + "start": 15777.28, + "end": 15778.94, + "probability": 0.9629 + }, + { + "start": 15779.38, + "end": 15783.96, + "probability": 0.9748 + }, + { + "start": 15784.72, + "end": 15785.7, + "probability": 0.9263 + }, + { + "start": 15786.16, + "end": 15787.66, + "probability": 0.9979 + }, + { + "start": 15788.32, + "end": 15789.62, + "probability": 0.9319 + }, + { + "start": 15789.78, + "end": 15791.8, + "probability": 0.9971 + }, + { + "start": 15792.72, + "end": 15798.86, + "probability": 0.9531 + }, + { + "start": 15799.58, + "end": 15800.56, + "probability": 0.9805 + }, + { + "start": 15800.78, + "end": 15804.4, + "probability": 0.9958 + }, + { + "start": 15804.72, + "end": 15805.86, + "probability": 0.7475 + }, + { + "start": 15805.96, + "end": 15807.0, + "probability": 0.7039 + }, + { + "start": 15808.0, + "end": 15810.8, + "probability": 0.9835 + }, + { + "start": 15811.36, + "end": 15815.1, + "probability": 0.9722 + }, + { + "start": 15815.76, + "end": 15819.82, + "probability": 0.8357 + }, + { + "start": 15820.46, + "end": 15822.22, + "probability": 0.9514 + }, + { + "start": 15822.6, + "end": 15826.74, + "probability": 0.8765 + }, + { + "start": 15826.74, + "end": 15831.0, + "probability": 0.9907 + }, + { + "start": 15831.5, + "end": 15834.48, + "probability": 0.9696 + }, + { + "start": 15834.58, + "end": 15835.92, + "probability": 0.8765 + }, + { + "start": 15836.56, + "end": 15837.46, + "probability": 0.795 + }, + { + "start": 15837.66, + "end": 15839.12, + "probability": 0.5463 + }, + { + "start": 15839.38, + "end": 15842.74, + "probability": 0.9942 + }, + { + "start": 15843.98, + "end": 15845.98, + "probability": 0.8234 + }, + { + "start": 15846.62, + "end": 15850.86, + "probability": 0.9746 + }, + { + "start": 15851.68, + "end": 15855.6, + "probability": 0.9978 + }, + { + "start": 15856.14, + "end": 15859.82, + "probability": 0.9778 + }, + { + "start": 15861.08, + "end": 15863.46, + "probability": 0.8371 + }, + { + "start": 15863.52, + "end": 15865.0, + "probability": 0.8675 + }, + { + "start": 15865.54, + "end": 15868.5, + "probability": 0.9859 + }, + { + "start": 15869.02, + "end": 15870.44, + "probability": 0.5961 + }, + { + "start": 15870.58, + "end": 15871.56, + "probability": 0.8499 + }, + { + "start": 15871.9, + "end": 15874.5, + "probability": 0.8934 + }, + { + "start": 15875.02, + "end": 15878.64, + "probability": 0.894 + }, + { + "start": 15878.72, + "end": 15880.54, + "probability": 0.7977 + }, + { + "start": 15881.14, + "end": 15881.92, + "probability": 0.978 + }, + { + "start": 15882.02, + "end": 15886.28, + "probability": 0.9404 + }, + { + "start": 15886.36, + "end": 15886.8, + "probability": 0.4753 + }, + { + "start": 15886.84, + "end": 15888.18, + "probability": 0.5538 + }, + { + "start": 15888.52, + "end": 15891.38, + "probability": 0.9822 + }, + { + "start": 15891.54, + "end": 15891.64, + "probability": 0.1684 + }, + { + "start": 15891.64, + "end": 15892.94, + "probability": 0.8675 + }, + { + "start": 15893.46, + "end": 15894.44, + "probability": 0.5119 + }, + { + "start": 15894.5, + "end": 15897.38, + "probability": 0.9377 + }, + { + "start": 15897.94, + "end": 15902.24, + "probability": 0.9362 + }, + { + "start": 15903.06, + "end": 15904.8, + "probability": 0.9374 + }, + { + "start": 15905.48, + "end": 15908.34, + "probability": 0.9991 + }, + { + "start": 15908.72, + "end": 15910.62, + "probability": 0.9956 + }, + { + "start": 15911.32, + "end": 15915.18, + "probability": 0.9784 + }, + { + "start": 15915.74, + "end": 15916.98, + "probability": 0.9675 + }, + { + "start": 15917.2, + "end": 15921.2, + "probability": 0.8233 + }, + { + "start": 15921.54, + "end": 15925.32, + "probability": 0.9834 + }, + { + "start": 15925.32, + "end": 15929.94, + "probability": 0.9983 + }, + { + "start": 15930.8, + "end": 15931.18, + "probability": 0.6144 + }, + { + "start": 15931.68, + "end": 15932.86, + "probability": 0.1971 + }, + { + "start": 15932.86, + "end": 15935.0, + "probability": 0.7251 + }, + { + "start": 15937.06, + "end": 15937.74, + "probability": 0.7659 + }, + { + "start": 15937.86, + "end": 15941.24, + "probability": 0.9268 + }, + { + "start": 15942.0, + "end": 15943.76, + "probability": 0.7181 + }, + { + "start": 15945.46, + "end": 15947.26, + "probability": 0.5191 + }, + { + "start": 15947.58, + "end": 15948.22, + "probability": 0.5564 + }, + { + "start": 15948.82, + "end": 15949.82, + "probability": 0.8537 + }, + { + "start": 15949.82, + "end": 15950.68, + "probability": 0.3191 + }, + { + "start": 15952.5, + "end": 15955.34, + "probability": 0.8019 + }, + { + "start": 15956.16, + "end": 15956.84, + "probability": 0.52 + }, + { + "start": 15956.86, + "end": 15959.28, + "probability": 0.6101 + }, + { + "start": 15959.62, + "end": 15960.7, + "probability": 0.6437 + }, + { + "start": 15960.7, + "end": 15960.9, + "probability": 0.7056 + }, + { + "start": 15962.22, + "end": 15965.54, + "probability": 0.9829 + }, + { + "start": 15966.32, + "end": 15969.76, + "probability": 0.9715 + }, + { + "start": 15970.36, + "end": 15972.96, + "probability": 0.9645 + }, + { + "start": 15974.2, + "end": 15976.98, + "probability": 0.9046 + }, + { + "start": 15977.34, + "end": 15978.1, + "probability": 0.828 + }, + { + "start": 15978.6, + "end": 15979.73, + "probability": 0.9508 + }, + { + "start": 15980.0, + "end": 15981.46, + "probability": 0.9078 + }, + { + "start": 15982.06, + "end": 15988.98, + "probability": 0.9752 + }, + { + "start": 15989.58, + "end": 15991.06, + "probability": 0.9818 + }, + { + "start": 15991.88, + "end": 15996.9, + "probability": 0.9371 + }, + { + "start": 15998.0, + "end": 15998.7, + "probability": 0.6819 + }, + { + "start": 15999.58, + "end": 16005.58, + "probability": 0.9893 + }, + { + "start": 16006.32, + "end": 16009.74, + "probability": 0.9824 + }, + { + "start": 16010.46, + "end": 16017.0, + "probability": 0.9897 + }, + { + "start": 16017.86, + "end": 16018.74, + "probability": 0.7432 + }, + { + "start": 16019.48, + "end": 16023.72, + "probability": 0.9814 + }, + { + "start": 16024.34, + "end": 16026.26, + "probability": 0.953 + }, + { + "start": 16027.3, + "end": 16030.4, + "probability": 0.8831 + }, + { + "start": 16031.26, + "end": 16035.06, + "probability": 0.9828 + }, + { + "start": 16036.26, + "end": 16039.14, + "probability": 0.9053 + }, + { + "start": 16040.97, + "end": 16044.06, + "probability": 0.9095 + }, + { + "start": 16044.52, + "end": 16047.38, + "probability": 0.9949 + }, + { + "start": 16047.38, + "end": 16053.46, + "probability": 0.9308 + }, + { + "start": 16054.14, + "end": 16059.22, + "probability": 0.9904 + }, + { + "start": 16060.04, + "end": 16065.24, + "probability": 0.9897 + }, + { + "start": 16066.1, + "end": 16071.12, + "probability": 0.9712 + }, + { + "start": 16071.76, + "end": 16076.72, + "probability": 0.9949 + }, + { + "start": 16076.72, + "end": 16079.68, + "probability": 0.9885 + }, + { + "start": 16080.22, + "end": 16084.94, + "probability": 0.9953 + }, + { + "start": 16085.58, + "end": 16087.52, + "probability": 0.9468 + }, + { + "start": 16088.62, + "end": 16093.44, + "probability": 0.9212 + }, + { + "start": 16093.82, + "end": 16097.2, + "probability": 0.9788 + }, + { + "start": 16097.22, + "end": 16102.28, + "probability": 0.998 + }, + { + "start": 16102.38, + "end": 16104.96, + "probability": 0.9818 + }, + { + "start": 16105.66, + "end": 16111.64, + "probability": 0.998 + }, + { + "start": 16112.32, + "end": 16114.76, + "probability": 0.9974 + }, + { + "start": 16114.76, + "end": 16118.62, + "probability": 0.9987 + }, + { + "start": 16119.44, + "end": 16121.24, + "probability": 0.5004 + }, + { + "start": 16121.9, + "end": 16124.96, + "probability": 0.7222 + }, + { + "start": 16125.66, + "end": 16128.26, + "probability": 0.8874 + }, + { + "start": 16128.96, + "end": 16133.22, + "probability": 0.6291 + }, + { + "start": 16134.1, + "end": 16135.86, + "probability": 0.6407 + }, + { + "start": 16136.68, + "end": 16139.04, + "probability": 0.8413 + }, + { + "start": 16139.88, + "end": 16146.62, + "probability": 0.9949 + }, + { + "start": 16146.64, + "end": 16151.14, + "probability": 0.9976 + }, + { + "start": 16151.94, + "end": 16152.72, + "probability": 0.9985 + }, + { + "start": 16153.5, + "end": 16159.86, + "probability": 0.9667 + }, + { + "start": 16160.5, + "end": 16163.02, + "probability": 0.9985 + }, + { + "start": 16163.58, + "end": 16166.08, + "probability": 0.9938 + }, + { + "start": 16166.64, + "end": 16171.88, + "probability": 0.9977 + }, + { + "start": 16172.84, + "end": 16174.58, + "probability": 0.9744 + }, + { + "start": 16175.78, + "end": 16177.76, + "probability": 0.9695 + }, + { + "start": 16178.6, + "end": 16181.8, + "probability": 0.9647 + }, + { + "start": 16183.24, + "end": 16184.86, + "probability": 0.7588 + }, + { + "start": 16184.96, + "end": 16185.18, + "probability": 0.2515 + }, + { + "start": 16185.56, + "end": 16186.14, + "probability": 0.5398 + }, + { + "start": 16186.38, + "end": 16190.6, + "probability": 0.9508 + }, + { + "start": 16190.68, + "end": 16191.58, + "probability": 0.7551 + }, + { + "start": 16191.64, + "end": 16194.8, + "probability": 0.9082 + }, + { + "start": 16195.26, + "end": 16196.0, + "probability": 0.984 + }, + { + "start": 16196.6, + "end": 16197.34, + "probability": 0.8213 + }, + { + "start": 16197.76, + "end": 16201.16, + "probability": 0.9926 + }, + { + "start": 16201.32, + "end": 16203.4, + "probability": 0.9946 + }, + { + "start": 16204.02, + "end": 16205.36, + "probability": 0.8629 + }, + { + "start": 16206.7, + "end": 16208.56, + "probability": 0.9371 + }, + { + "start": 16209.3, + "end": 16209.3, + "probability": 0.239 + }, + { + "start": 16209.62, + "end": 16212.78, + "probability": 0.9716 + }, + { + "start": 16213.4, + "end": 16214.32, + "probability": 0.9613 + }, + { + "start": 16215.02, + "end": 16217.76, + "probability": 0.6557 + }, + { + "start": 16218.38, + "end": 16223.4, + "probability": 0.8036 + }, + { + "start": 16224.14, + "end": 16227.0, + "probability": 0.9798 + }, + { + "start": 16228.96, + "end": 16231.0, + "probability": 0.8507 + }, + { + "start": 16231.36, + "end": 16233.58, + "probability": 0.7662 + }, + { + "start": 16233.82, + "end": 16234.16, + "probability": 0.2276 + }, + { + "start": 16234.34, + "end": 16236.98, + "probability": 0.6816 + }, + { + "start": 16237.28, + "end": 16241.32, + "probability": 0.7385 + }, + { + "start": 16241.46, + "end": 16242.84, + "probability": 0.9767 + }, + { + "start": 16243.52, + "end": 16246.18, + "probability": 0.6812 + }, + { + "start": 16246.48, + "end": 16247.39, + "probability": 0.8693 + }, + { + "start": 16248.12, + "end": 16248.36, + "probability": 0.6641 + }, + { + "start": 16255.5, + "end": 16257.4, + "probability": 0.9516 + }, + { + "start": 16264.25, + "end": 16266.66, + "probability": 0.4805 + }, + { + "start": 16267.06, + "end": 16267.26, + "probability": 0.2496 + }, + { + "start": 16268.1, + "end": 16270.24, + "probability": 0.7314 + }, + { + "start": 16270.38, + "end": 16271.84, + "probability": 0.9425 + }, + { + "start": 16274.12, + "end": 16275.72, + "probability": 0.658 + }, + { + "start": 16279.28, + "end": 16280.6, + "probability": 0.6134 + }, + { + "start": 16283.14, + "end": 16289.16, + "probability": 0.2877 + }, + { + "start": 16289.36, + "end": 16290.89, + "probability": 0.3343 + }, + { + "start": 16291.62, + "end": 16294.14, + "probability": 0.4513 + }, + { + "start": 16294.8, + "end": 16297.68, + "probability": 0.2047 + }, + { + "start": 16301.68, + "end": 16305.96, + "probability": 0.5413 + }, + { + "start": 16306.78, + "end": 16308.74, + "probability": 0.6325 + }, + { + "start": 16309.42, + "end": 16312.84, + "probability": 0.995 + }, + { + "start": 16312.92, + "end": 16313.48, + "probability": 0.744 + }, + { + "start": 16313.54, + "end": 16313.74, + "probability": 0.655 + }, + { + "start": 16313.8, + "end": 16314.12, + "probability": 0.6573 + }, + { + "start": 16314.22, + "end": 16314.58, + "probability": 0.903 + }, + { + "start": 16315.12, + "end": 16315.52, + "probability": 0.298 + }, + { + "start": 16315.52, + "end": 16319.88, + "probability": 0.6476 + }, + { + "start": 16322.06, + "end": 16324.34, + "probability": 0.4054 + }, + { + "start": 16325.44, + "end": 16328.3, + "probability": 0.9585 + }, + { + "start": 16328.42, + "end": 16329.08, + "probability": 0.0013 + }, + { + "start": 16329.08, + "end": 16335.26, + "probability": 0.7134 + }, + { + "start": 16358.58, + "end": 16359.58, + "probability": 0.533 + }, + { + "start": 16360.52, + "end": 16361.5, + "probability": 0.8371 + }, + { + "start": 16362.32, + "end": 16364.74, + "probability": 0.5121 + }, + { + "start": 16365.74, + "end": 16367.17, + "probability": 0.8844 + }, + { + "start": 16368.64, + "end": 16372.12, + "probability": 0.9606 + }, + { + "start": 16373.08, + "end": 16379.04, + "probability": 0.9974 + }, + { + "start": 16380.16, + "end": 16382.54, + "probability": 0.9635 + }, + { + "start": 16383.12, + "end": 16384.4, + "probability": 0.9224 + }, + { + "start": 16385.28, + "end": 16386.88, + "probability": 0.9902 + }, + { + "start": 16387.62, + "end": 16388.4, + "probability": 0.9854 + }, + { + "start": 16389.34, + "end": 16391.54, + "probability": 0.7813 + }, + { + "start": 16392.26, + "end": 16395.88, + "probability": 0.9771 + }, + { + "start": 16396.64, + "end": 16397.18, + "probability": 0.2736 + }, + { + "start": 16397.94, + "end": 16399.4, + "probability": 0.978 + }, + { + "start": 16400.16, + "end": 16400.28, + "probability": 0.6492 + }, + { + "start": 16401.08, + "end": 16402.06, + "probability": 0.7405 + }, + { + "start": 16402.82, + "end": 16403.66, + "probability": 0.914 + }, + { + "start": 16405.16, + "end": 16406.62, + "probability": 0.6963 + }, + { + "start": 16407.56, + "end": 16410.3, + "probability": 0.9547 + }, + { + "start": 16410.3, + "end": 16414.4, + "probability": 0.995 + }, + { + "start": 16415.06, + "end": 16415.86, + "probability": 0.9976 + }, + { + "start": 16417.54, + "end": 16420.34, + "probability": 0.9689 + }, + { + "start": 16420.98, + "end": 16422.8, + "probability": 0.9516 + }, + { + "start": 16424.16, + "end": 16425.68, + "probability": 0.913 + }, + { + "start": 16426.82, + "end": 16431.3, + "probability": 0.9629 + }, + { + "start": 16432.28, + "end": 16434.8, + "probability": 0.9569 + }, + { + "start": 16436.0, + "end": 16437.48, + "probability": 0.9935 + }, + { + "start": 16438.08, + "end": 16442.8, + "probability": 0.9922 + }, + { + "start": 16444.36, + "end": 16447.8, + "probability": 0.9954 + }, + { + "start": 16448.54, + "end": 16451.86, + "probability": 0.9925 + }, + { + "start": 16452.38, + "end": 16453.9, + "probability": 0.9135 + }, + { + "start": 16455.08, + "end": 16456.24, + "probability": 0.9286 + }, + { + "start": 16456.94, + "end": 16459.24, + "probability": 0.9705 + }, + { + "start": 16459.68, + "end": 16462.96, + "probability": 0.9957 + }, + { + "start": 16464.16, + "end": 16465.8, + "probability": 0.9553 + }, + { + "start": 16467.08, + "end": 16467.54, + "probability": 0.6841 + }, + { + "start": 16468.5, + "end": 16469.48, + "probability": 0.9099 + }, + { + "start": 16470.16, + "end": 16473.38, + "probability": 0.9189 + }, + { + "start": 16473.54, + "end": 16475.72, + "probability": 0.9814 + }, + { + "start": 16476.5, + "end": 16477.3, + "probability": 0.8488 + }, + { + "start": 16477.82, + "end": 16480.54, + "probability": 0.991 + }, + { + "start": 16481.32, + "end": 16483.09, + "probability": 0.9985 + }, + { + "start": 16483.98, + "end": 16485.18, + "probability": 0.9868 + }, + { + "start": 16486.38, + "end": 16488.46, + "probability": 0.9933 + }, + { + "start": 16489.18, + "end": 16490.54, + "probability": 0.9905 + }, + { + "start": 16491.34, + "end": 16492.88, + "probability": 0.9955 + }, + { + "start": 16494.14, + "end": 16497.86, + "probability": 0.9673 + }, + { + "start": 16498.58, + "end": 16499.28, + "probability": 0.9649 + }, + { + "start": 16499.96, + "end": 16503.0, + "probability": 0.9819 + }, + { + "start": 16503.84, + "end": 16506.4, + "probability": 0.943 + }, + { + "start": 16506.92, + "end": 16510.08, + "probability": 0.9792 + }, + { + "start": 16510.8, + "end": 16512.06, + "probability": 0.7688 + }, + { + "start": 16512.66, + "end": 16517.54, + "probability": 0.987 + }, + { + "start": 16518.44, + "end": 16523.32, + "probability": 0.9987 + }, + { + "start": 16524.32, + "end": 16525.06, + "probability": 0.5111 + }, + { + "start": 16525.98, + "end": 16528.7, + "probability": 0.9897 + }, + { + "start": 16529.9, + "end": 16531.56, + "probability": 0.9512 + }, + { + "start": 16533.02, + "end": 16536.44, + "probability": 0.9971 + }, + { + "start": 16537.02, + "end": 16537.58, + "probability": 0.8218 + }, + { + "start": 16538.8, + "end": 16539.28, + "probability": 0.7948 + }, + { + "start": 16540.08, + "end": 16545.3, + "probability": 0.9954 + }, + { + "start": 16546.56, + "end": 16547.66, + "probability": 0.9873 + }, + { + "start": 16548.26, + "end": 16554.2, + "probability": 0.9985 + }, + { + "start": 16554.72, + "end": 16555.56, + "probability": 0.9041 + }, + { + "start": 16556.78, + "end": 16558.42, + "probability": 0.9979 + }, + { + "start": 16559.02, + "end": 16560.15, + "probability": 0.9865 + }, + { + "start": 16560.98, + "end": 16564.46, + "probability": 0.9157 + }, + { + "start": 16565.42, + "end": 16567.1, + "probability": 0.9926 + }, + { + "start": 16567.84, + "end": 16569.02, + "probability": 0.6455 + }, + { + "start": 16569.94, + "end": 16572.98, + "probability": 0.9631 + }, + { + "start": 16574.24, + "end": 16575.06, + "probability": 0.5844 + }, + { + "start": 16575.36, + "end": 16577.68, + "probability": 0.811 + }, + { + "start": 16577.74, + "end": 16578.24, + "probability": 0.5001 + }, + { + "start": 16578.96, + "end": 16580.09, + "probability": 0.96 + }, + { + "start": 16580.72, + "end": 16581.64, + "probability": 0.7725 + }, + { + "start": 16581.82, + "end": 16581.94, + "probability": 0.7275 + }, + { + "start": 16582.02, + "end": 16584.92, + "probability": 0.9512 + }, + { + "start": 16585.6, + "end": 16587.68, + "probability": 0.8568 + }, + { + "start": 16588.26, + "end": 16590.68, + "probability": 0.9631 + }, + { + "start": 16591.32, + "end": 16592.12, + "probability": 0.9949 + }, + { + "start": 16593.08, + "end": 16595.56, + "probability": 0.9935 + }, + { + "start": 16596.1, + "end": 16596.6, + "probability": 0.7241 + }, + { + "start": 16597.38, + "end": 16598.48, + "probability": 0.9493 + }, + { + "start": 16599.58, + "end": 16600.48, + "probability": 0.5448 + }, + { + "start": 16605.7, + "end": 16608.6, + "probability": 0.7396 + }, + { + "start": 16609.38, + "end": 16610.74, + "probability": 0.7126 + }, + { + "start": 16624.56, + "end": 16626.94, + "probability": 0.7102 + }, + { + "start": 16627.72, + "end": 16629.16, + "probability": 0.8434 + }, + { + "start": 16630.86, + "end": 16631.5, + "probability": 0.9803 + }, + { + "start": 16632.72, + "end": 16639.36, + "probability": 0.9728 + }, + { + "start": 16640.6, + "end": 16641.24, + "probability": 0.9953 + }, + { + "start": 16642.32, + "end": 16646.9, + "probability": 0.999 + }, + { + "start": 16647.42, + "end": 16651.74, + "probability": 0.9237 + }, + { + "start": 16652.88, + "end": 16653.54, + "probability": 0.9537 + }, + { + "start": 16654.84, + "end": 16656.44, + "probability": 0.9969 + }, + { + "start": 16656.52, + "end": 16658.84, + "probability": 0.9941 + }, + { + "start": 16660.02, + "end": 16662.44, + "probability": 0.7378 + }, + { + "start": 16663.1, + "end": 16670.54, + "probability": 0.9788 + }, + { + "start": 16671.36, + "end": 16677.78, + "probability": 0.9994 + }, + { + "start": 16678.34, + "end": 16683.82, + "probability": 0.8539 + }, + { + "start": 16683.82, + "end": 16692.0, + "probability": 0.9796 + }, + { + "start": 16692.1, + "end": 16694.54, + "probability": 0.9944 + }, + { + "start": 16694.54, + "end": 16698.16, + "probability": 0.5518 + }, + { + "start": 16698.7, + "end": 16701.28, + "probability": 0.9926 + }, + { + "start": 16702.58, + "end": 16703.58, + "probability": 0.7989 + }, + { + "start": 16704.1, + "end": 16708.76, + "probability": 0.5165 + }, + { + "start": 16709.28, + "end": 16710.12, + "probability": 0.696 + }, + { + "start": 16710.8, + "end": 16711.62, + "probability": 0.862 + }, + { + "start": 16712.14, + "end": 16720.46, + "probability": 0.9518 + }, + { + "start": 16721.16, + "end": 16726.1, + "probability": 0.9536 + }, + { + "start": 16726.36, + "end": 16727.8, + "probability": 0.897 + }, + { + "start": 16728.6, + "end": 16731.54, + "probability": 0.9984 + }, + { + "start": 16731.8, + "end": 16734.04, + "probability": 0.9971 + }, + { + "start": 16734.72, + "end": 16737.12, + "probability": 0.9946 + }, + { + "start": 16737.38, + "end": 16738.28, + "probability": 0.7624 + }, + { + "start": 16738.6, + "end": 16739.54, + "probability": 0.9901 + }, + { + "start": 16739.64, + "end": 16740.58, + "probability": 0.8179 + }, + { + "start": 16740.9, + "end": 16743.36, + "probability": 0.9947 + }, + { + "start": 16744.92, + "end": 16745.93, + "probability": 0.9487 + }, + { + "start": 16746.68, + "end": 16748.94, + "probability": 0.9966 + }, + { + "start": 16749.12, + "end": 16749.26, + "probability": 0.5859 + }, + { + "start": 16749.88, + "end": 16751.16, + "probability": 0.9553 + }, + { + "start": 16752.06, + "end": 16756.78, + "probability": 0.9901 + }, + { + "start": 16757.44, + "end": 16760.78, + "probability": 0.9895 + }, + { + "start": 16761.2, + "end": 16763.6, + "probability": 0.9918 + }, + { + "start": 16764.9, + "end": 16765.56, + "probability": 0.9137 + }, + { + "start": 16766.38, + "end": 16771.34, + "probability": 0.9703 + }, + { + "start": 16771.9, + "end": 16774.68, + "probability": 0.9721 + }, + { + "start": 16775.36, + "end": 16778.64, + "probability": 0.9517 + }, + { + "start": 16779.1, + "end": 16780.68, + "probability": 0.9971 + }, + { + "start": 16781.08, + "end": 16784.68, + "probability": 0.7443 + }, + { + "start": 16785.4, + "end": 16786.94, + "probability": 0.6562 + }, + { + "start": 16787.98, + "end": 16788.96, + "probability": 0.9866 + }, + { + "start": 16789.74, + "end": 16790.7, + "probability": 0.9484 + }, + { + "start": 16793.98, + "end": 16794.92, + "probability": 0.9507 + }, + { + "start": 16795.7, + "end": 16796.26, + "probability": 0.9196 + }, + { + "start": 16796.74, + "end": 16797.16, + "probability": 0.8172 + }, + { + "start": 16798.04, + "end": 16799.98, + "probability": 0.9971 + }, + { + "start": 16800.5, + "end": 16803.54, + "probability": 0.7268 + }, + { + "start": 16804.18, + "end": 16807.04, + "probability": 0.9812 + }, + { + "start": 16807.54, + "end": 16810.18, + "probability": 0.9893 + }, + { + "start": 16810.5, + "end": 16813.56, + "probability": 0.9878 + }, + { + "start": 16814.26, + "end": 16816.16, + "probability": 0.6422 + }, + { + "start": 16817.2, + "end": 16817.74, + "probability": 0.7214 + }, + { + "start": 16818.72, + "end": 16819.44, + "probability": 0.9722 + }, + { + "start": 16819.54, + "end": 16820.24, + "probability": 0.9835 + }, + { + "start": 16820.46, + "end": 16822.62, + "probability": 0.8784 + }, + { + "start": 16823.56, + "end": 16827.56, + "probability": 0.9863 + }, + { + "start": 16828.18, + "end": 16832.96, + "probability": 0.7817 + }, + { + "start": 16833.58, + "end": 16834.0, + "probability": 0.0306 + }, + { + "start": 16834.0, + "end": 16838.08, + "probability": 0.655 + }, + { + "start": 16839.52, + "end": 16840.74, + "probability": 0.8725 + }, + { + "start": 16840.84, + "end": 16841.08, + "probability": 0.691 + }, + { + "start": 16841.52, + "end": 16846.94, + "probability": 0.9451 + }, + { + "start": 16847.68, + "end": 16850.96, + "probability": 0.6638 + }, + { + "start": 16851.7, + "end": 16852.3, + "probability": 0.847 + }, + { + "start": 16852.92, + "end": 16853.98, + "probability": 0.8207 + }, + { + "start": 16854.42, + "end": 16856.64, + "probability": 0.8927 + }, + { + "start": 16857.08, + "end": 16858.2, + "probability": 0.9802 + }, + { + "start": 16858.58, + "end": 16860.12, + "probability": 0.9412 + }, + { + "start": 16860.2, + "end": 16863.82, + "probability": 0.9716 + }, + { + "start": 16864.32, + "end": 16865.62, + "probability": 0.9855 + }, + { + "start": 16866.98, + "end": 16868.2, + "probability": 0.46 + }, + { + "start": 16868.52, + "end": 16869.3, + "probability": 0.5195 + }, + { + "start": 16869.92, + "end": 16870.44, + "probability": 0.7538 + }, + { + "start": 16871.66, + "end": 16872.34, + "probability": 0.9382 + }, + { + "start": 16873.0, + "end": 16874.44, + "probability": 0.9795 + }, + { + "start": 16875.18, + "end": 16877.08, + "probability": 0.763 + }, + { + "start": 16877.3, + "end": 16877.82, + "probability": 0.9758 + }, + { + "start": 16878.0, + "end": 16878.52, + "probability": 0.9783 + }, + { + "start": 16878.8, + "end": 16879.74, + "probability": 0.9451 + }, + { + "start": 16879.8, + "end": 16880.5, + "probability": 0.8561 + }, + { + "start": 16880.52, + "end": 16881.22, + "probability": 0.9092 + }, + { + "start": 16881.28, + "end": 16882.08, + "probability": 0.7209 + }, + { + "start": 16882.18, + "end": 16884.38, + "probability": 0.9935 + }, + { + "start": 16884.84, + "end": 16885.72, + "probability": 0.8484 + }, + { + "start": 16886.54, + "end": 16887.44, + "probability": 0.5307 + }, + { + "start": 16887.5, + "end": 16888.78, + "probability": 0.9675 + }, + { + "start": 16889.22, + "end": 16893.78, + "probability": 0.8939 + }, + { + "start": 16894.34, + "end": 16894.98, + "probability": 0.6254 + }, + { + "start": 16895.32, + "end": 16897.4, + "probability": 0.8926 + }, + { + "start": 16898.22, + "end": 16902.84, + "probability": 0.7628 + }, + { + "start": 16903.18, + "end": 16905.52, + "probability": 0.9888 + }, + { + "start": 16905.74, + "end": 16906.0, + "probability": 0.7143 + }, + { + "start": 16906.56, + "end": 16908.48, + "probability": 0.874 + }, + { + "start": 16908.8, + "end": 16910.04, + "probability": 0.9086 + }, + { + "start": 16911.22, + "end": 16911.68, + "probability": 0.3264 + }, + { + "start": 16912.2, + "end": 16913.24, + "probability": 0.7506 + }, + { + "start": 16913.86, + "end": 16915.96, + "probability": 0.7104 + }, + { + "start": 16936.82, + "end": 16938.54, + "probability": 0.5392 + }, + { + "start": 16939.92, + "end": 16943.88, + "probability": 0.9171 + }, + { + "start": 16944.02, + "end": 16945.06, + "probability": 0.4143 + }, + { + "start": 16945.06, + "end": 16945.54, + "probability": 0.8466 + }, + { + "start": 16946.14, + "end": 16948.22, + "probability": 0.7524 + }, + { + "start": 16948.94, + "end": 16951.62, + "probability": 0.9916 + }, + { + "start": 16952.32, + "end": 16956.62, + "probability": 0.999 + }, + { + "start": 16957.8, + "end": 16960.44, + "probability": 0.989 + }, + { + "start": 16960.84, + "end": 16965.6, + "probability": 0.779 + }, + { + "start": 16966.14, + "end": 16970.78, + "probability": 0.982 + }, + { + "start": 16970.78, + "end": 16974.94, + "probability": 0.997 + }, + { + "start": 16975.72, + "end": 16979.46, + "probability": 0.9917 + }, + { + "start": 16980.56, + "end": 16984.28, + "probability": 0.9963 + }, + { + "start": 16984.4, + "end": 16988.92, + "probability": 0.9974 + }, + { + "start": 16988.92, + "end": 16995.24, + "probability": 0.9985 + }, + { + "start": 16996.66, + "end": 16998.6, + "probability": 0.9973 + }, + { + "start": 16998.92, + "end": 17001.0, + "probability": 0.9936 + }, + { + "start": 17001.66, + "end": 17004.96, + "probability": 0.9674 + }, + { + "start": 17004.96, + "end": 17007.82, + "probability": 0.9903 + }, + { + "start": 17009.14, + "end": 17013.32, + "probability": 0.9924 + }, + { + "start": 17013.94, + "end": 17015.82, + "probability": 0.9915 + }, + { + "start": 17016.74, + "end": 17017.38, + "probability": 0.3063 + }, + { + "start": 17017.56, + "end": 17019.96, + "probability": 0.9186 + }, + { + "start": 17020.52, + "end": 17024.18, + "probability": 0.9904 + }, + { + "start": 17024.7, + "end": 17028.9, + "probability": 0.9944 + }, + { + "start": 17029.78, + "end": 17030.42, + "probability": 0.7498 + }, + { + "start": 17030.64, + "end": 17033.46, + "probability": 0.8172 + }, + { + "start": 17034.1, + "end": 17039.22, + "probability": 0.9928 + }, + { + "start": 17039.22, + "end": 17044.82, + "probability": 0.995 + }, + { + "start": 17045.8, + "end": 17049.82, + "probability": 0.9897 + }, + { + "start": 17049.82, + "end": 17054.78, + "probability": 0.9904 + }, + { + "start": 17055.42, + "end": 17058.54, + "probability": 0.9985 + }, + { + "start": 17058.54, + "end": 17061.74, + "probability": 0.9839 + }, + { + "start": 17063.34, + "end": 17066.32, + "probability": 0.9731 + }, + { + "start": 17066.52, + "end": 17067.88, + "probability": 0.8846 + }, + { + "start": 17068.48, + "end": 17070.36, + "probability": 0.9961 + }, + { + "start": 17071.02, + "end": 17075.38, + "probability": 0.9963 + }, + { + "start": 17075.7, + "end": 17076.62, + "probability": 0.6849 + }, + { + "start": 17076.72, + "end": 17077.18, + "probability": 0.9609 + }, + { + "start": 17078.06, + "end": 17081.34, + "probability": 0.997 + }, + { + "start": 17081.34, + "end": 17085.36, + "probability": 0.9241 + }, + { + "start": 17086.12, + "end": 17088.46, + "probability": 0.9622 + }, + { + "start": 17089.44, + "end": 17091.26, + "probability": 0.9482 + }, + { + "start": 17091.46, + "end": 17094.08, + "probability": 0.921 + }, + { + "start": 17094.64, + "end": 17095.06, + "probability": 0.7728 + }, + { + "start": 17095.22, + "end": 17100.08, + "probability": 0.9589 + }, + { + "start": 17100.42, + "end": 17104.5, + "probability": 0.9966 + }, + { + "start": 17105.34, + "end": 17108.12, + "probability": 0.9589 + }, + { + "start": 17108.22, + "end": 17109.26, + "probability": 0.6838 + }, + { + "start": 17109.36, + "end": 17112.72, + "probability": 0.9811 + }, + { + "start": 17112.72, + "end": 17115.99, + "probability": 0.7277 + }, + { + "start": 17116.34, + "end": 17116.56, + "probability": 0.3192 + }, + { + "start": 17116.64, + "end": 17119.44, + "probability": 0.9813 + }, + { + "start": 17119.44, + "end": 17123.0, + "probability": 0.8618 + }, + { + "start": 17123.7, + "end": 17126.32, + "probability": 0.9544 + }, + { + "start": 17127.06, + "end": 17129.74, + "probability": 0.989 + }, + { + "start": 17129.74, + "end": 17132.5, + "probability": 0.9992 + }, + { + "start": 17132.74, + "end": 17132.84, + "probability": 0.8496 + }, + { + "start": 17134.04, + "end": 17136.3, + "probability": 0.9485 + }, + { + "start": 17136.3, + "end": 17139.46, + "probability": 0.9098 + }, + { + "start": 17139.54, + "end": 17142.2, + "probability": 0.889 + }, + { + "start": 17142.92, + "end": 17145.76, + "probability": 0.9884 + }, + { + "start": 17145.76, + "end": 17148.46, + "probability": 0.9863 + }, + { + "start": 17149.62, + "end": 17149.64, + "probability": 0.2099 + }, + { + "start": 17149.64, + "end": 17150.42, + "probability": 0.6373 + }, + { + "start": 17151.39, + "end": 17153.94, + "probability": 0.9821 + }, + { + "start": 17154.42, + "end": 17156.88, + "probability": 0.9805 + }, + { + "start": 17157.76, + "end": 17160.44, + "probability": 0.9829 + }, + { + "start": 17160.5, + "end": 17161.16, + "probability": 0.7689 + }, + { + "start": 17161.56, + "end": 17166.54, + "probability": 0.6238 + }, + { + "start": 17166.86, + "end": 17167.74, + "probability": 0.9176 + }, + { + "start": 17168.42, + "end": 17171.28, + "probability": 0.9434 + }, + { + "start": 17171.7, + "end": 17174.04, + "probability": 0.9422 + }, + { + "start": 17174.54, + "end": 17177.22, + "probability": 0.9816 + }, + { + "start": 17178.78, + "end": 17181.5, + "probability": 0.9956 + }, + { + "start": 17181.9, + "end": 17184.02, + "probability": 0.9961 + }, + { + "start": 17184.8, + "end": 17189.92, + "probability": 0.9939 + }, + { + "start": 17190.58, + "end": 17192.34, + "probability": 0.915 + }, + { + "start": 17192.82, + "end": 17195.36, + "probability": 0.9713 + }, + { + "start": 17195.94, + "end": 17200.38, + "probability": 0.9798 + }, + { + "start": 17201.5, + "end": 17204.6, + "probability": 0.9989 + }, + { + "start": 17205.14, + "end": 17207.88, + "probability": 0.9814 + }, + { + "start": 17208.42, + "end": 17211.06, + "probability": 0.9991 + }, + { + "start": 17211.06, + "end": 17214.4, + "probability": 0.756 + }, + { + "start": 17215.0, + "end": 17218.08, + "probability": 0.8914 + }, + { + "start": 17218.62, + "end": 17219.97, + "probability": 0.622 + }, + { + "start": 17220.12, + "end": 17220.94, + "probability": 0.8844 + }, + { + "start": 17221.4, + "end": 17224.08, + "probability": 0.9781 + }, + { + "start": 17224.14, + "end": 17225.22, + "probability": 0.6752 + }, + { + "start": 17225.8, + "end": 17229.26, + "probability": 0.8737 + }, + { + "start": 17229.66, + "end": 17230.14, + "probability": 0.6015 + }, + { + "start": 17230.26, + "end": 17231.26, + "probability": 0.5077 + }, + { + "start": 17231.46, + "end": 17231.94, + "probability": 0.445 + }, + { + "start": 17231.98, + "end": 17233.76, + "probability": 0.967 + }, + { + "start": 17234.12, + "end": 17234.6, + "probability": 0.7759 + }, + { + "start": 17234.7, + "end": 17235.08, + "probability": 0.4776 + }, + { + "start": 17235.08, + "end": 17236.86, + "probability": 0.5361 + }, + { + "start": 17236.98, + "end": 17238.74, + "probability": 0.8748 + }, + { + "start": 17239.22, + "end": 17240.31, + "probability": 0.8203 + }, + { + "start": 17242.38, + "end": 17242.86, + "probability": 0.6313 + }, + { + "start": 17242.88, + "end": 17243.32, + "probability": 0.6079 + }, + { + "start": 17243.4, + "end": 17244.24, + "probability": 0.8517 + }, + { + "start": 17248.32, + "end": 17249.2, + "probability": 0.1727 + }, + { + "start": 17260.32, + "end": 17260.56, + "probability": 0.1909 + }, + { + "start": 17260.56, + "end": 17264.08, + "probability": 0.6129 + }, + { + "start": 17264.9, + "end": 17265.38, + "probability": 0.4656 + }, + { + "start": 17265.46, + "end": 17268.44, + "probability": 0.8379 + }, + { + "start": 17268.74, + "end": 17272.6, + "probability": 0.9071 + }, + { + "start": 17275.18, + "end": 17278.18, + "probability": 0.6635 + }, + { + "start": 17279.66, + "end": 17281.2, + "probability": 0.7181 + }, + { + "start": 17281.28, + "end": 17282.42, + "probability": 0.647 + }, + { + "start": 17282.5, + "end": 17283.74, + "probability": 0.7532 + }, + { + "start": 17284.0, + "end": 17284.64, + "probability": 0.7577 + }, + { + "start": 17284.86, + "end": 17285.82, + "probability": 0.7336 + }, + { + "start": 17286.34, + "end": 17288.98, + "probability": 0.8651 + }, + { + "start": 17289.98, + "end": 17292.68, + "probability": 0.1963 + }, + { + "start": 17293.6, + "end": 17298.56, + "probability": 0.6312 + }, + { + "start": 17300.58, + "end": 17304.84, + "probability": 0.7848 + }, + { + "start": 17305.58, + "end": 17306.04, + "probability": 0.4959 + }, + { + "start": 17306.16, + "end": 17307.92, + "probability": 0.6655 + }, + { + "start": 17308.88, + "end": 17310.8, + "probability": 0.5262 + }, + { + "start": 17312.28, + "end": 17312.52, + "probability": 0.0033 + }, + { + "start": 17312.52, + "end": 17316.5, + "probability": 0.9407 + }, + { + "start": 17317.1, + "end": 17319.26, + "probability": 0.8035 + }, + { + "start": 17320.38, + "end": 17322.0, + "probability": 0.8796 + }, + { + "start": 17322.14, + "end": 17323.88, + "probability": 0.9783 + }, + { + "start": 17326.2, + "end": 17327.16, + "probability": 0.9267 + }, + { + "start": 17333.16, + "end": 17334.14, + "probability": 0.256 + }, + { + "start": 17334.68, + "end": 17335.74, + "probability": 0.8727 + }, + { + "start": 17336.44, + "end": 17339.3, + "probability": 0.6769 + }, + { + "start": 17339.66, + "end": 17344.04, + "probability": 0.9687 + }, + { + "start": 17344.12, + "end": 17346.1, + "probability": 0.6377 + }, + { + "start": 17346.68, + "end": 17350.08, + "probability": 0.9258 + }, + { + "start": 17350.9, + "end": 17352.56, + "probability": 0.8736 + }, + { + "start": 17352.98, + "end": 17360.28, + "probability": 0.9596 + }, + { + "start": 17360.28, + "end": 17366.22, + "probability": 0.937 + }, + { + "start": 17366.88, + "end": 17370.74, + "probability": 0.9399 + }, + { + "start": 17371.28, + "end": 17372.84, + "probability": 0.9622 + }, + { + "start": 17373.68, + "end": 17379.0, + "probability": 0.8652 + }, + { + "start": 17379.65, + "end": 17386.32, + "probability": 0.9502 + }, + { + "start": 17386.76, + "end": 17386.76, + "probability": 0.4305 + }, + { + "start": 17387.02, + "end": 17387.78, + "probability": 0.9713 + }, + { + "start": 17388.24, + "end": 17391.82, + "probability": 0.995 + }, + { + "start": 17392.8, + "end": 17393.16, + "probability": 0.9711 + }, + { + "start": 17393.86, + "end": 17397.04, + "probability": 0.8254 + }, + { + "start": 17397.74, + "end": 17401.22, + "probability": 0.9971 + }, + { + "start": 17401.96, + "end": 17407.24, + "probability": 0.9736 + }, + { + "start": 17408.54, + "end": 17410.48, + "probability": 0.8264 + }, + { + "start": 17411.12, + "end": 17413.46, + "probability": 0.9879 + }, + { + "start": 17414.4, + "end": 17414.74, + "probability": 0.7046 + }, + { + "start": 17415.6, + "end": 17420.2, + "probability": 0.6815 + }, + { + "start": 17421.22, + "end": 17424.46, + "probability": 0.8497 + }, + { + "start": 17425.36, + "end": 17428.7, + "probability": 0.4053 + }, + { + "start": 17430.68, + "end": 17434.08, + "probability": 0.7503 + }, + { + "start": 17436.32, + "end": 17442.42, + "probability": 0.8986 + }, + { + "start": 17443.48, + "end": 17443.64, + "probability": 0.0711 + }, + { + "start": 17444.58, + "end": 17444.78, + "probability": 0.0309 + }, + { + "start": 17444.78, + "end": 17444.78, + "probability": 0.2914 + }, + { + "start": 17444.78, + "end": 17449.16, + "probability": 0.9884 + }, + { + "start": 17449.68, + "end": 17452.12, + "probability": 0.906 + }, + { + "start": 17452.84, + "end": 17455.34, + "probability": 0.9304 + }, + { + "start": 17455.72, + "end": 17457.1, + "probability": 0.7242 + }, + { + "start": 17458.1, + "end": 17462.38, + "probability": 0.9292 + }, + { + "start": 17462.98, + "end": 17469.0, + "probability": 0.7031 + }, + { + "start": 17469.8, + "end": 17471.24, + "probability": 0.8948 + }, + { + "start": 17471.98, + "end": 17474.78, + "probability": 0.8098 + }, + { + "start": 17475.2, + "end": 17476.4, + "probability": 0.9238 + }, + { + "start": 17476.48, + "end": 17478.42, + "probability": 0.7534 + }, + { + "start": 17479.08, + "end": 17482.06, + "probability": 0.9624 + }, + { + "start": 17483.22, + "end": 17485.72, + "probability": 0.8495 + }, + { + "start": 17486.4, + "end": 17486.6, + "probability": 0.4446 + }, + { + "start": 17486.84, + "end": 17493.06, + "probability": 0.9542 + }, + { + "start": 17493.64, + "end": 17494.5, + "probability": 0.984 + }, + { + "start": 17494.62, + "end": 17496.04, + "probability": 0.998 + }, + { + "start": 17496.74, + "end": 17497.72, + "probability": 0.8503 + }, + { + "start": 17498.34, + "end": 17501.32, + "probability": 0.92 + }, + { + "start": 17502.1, + "end": 17507.08, + "probability": 0.8845 + }, + { + "start": 17507.46, + "end": 17507.72, + "probability": 0.1911 + }, + { + "start": 17508.32, + "end": 17513.72, + "probability": 0.8147 + }, + { + "start": 17514.3, + "end": 17516.04, + "probability": 0.818 + }, + { + "start": 17516.58, + "end": 17518.95, + "probability": 0.8306 + }, + { + "start": 17519.6, + "end": 17522.38, + "probability": 0.9842 + }, + { + "start": 17523.12, + "end": 17524.08, + "probability": 0.9854 + }, + { + "start": 17524.8, + "end": 17527.08, + "probability": 0.9941 + }, + { + "start": 17527.62, + "end": 17528.14, + "probability": 0.64 + }, + { + "start": 17528.5, + "end": 17534.06, + "probability": 0.6232 + }, + { + "start": 17534.64, + "end": 17534.92, + "probability": 0.028 + }, + { + "start": 17534.92, + "end": 17536.34, + "probability": 0.043 + }, + { + "start": 17536.76, + "end": 17541.36, + "probability": 0.8984 + }, + { + "start": 17541.58, + "end": 17544.76, + "probability": 0.7422 + }, + { + "start": 17544.82, + "end": 17550.08, + "probability": 0.9243 + }, + { + "start": 17550.08, + "end": 17555.06, + "probability": 0.9702 + }, + { + "start": 17555.34, + "end": 17555.68, + "probability": 0.7163 + }, + { + "start": 17555.68, + "end": 17557.78, + "probability": 0.8034 + }, + { + "start": 17557.94, + "end": 17560.16, + "probability": 0.9709 + }, + { + "start": 17569.32, + "end": 17570.92, + "probability": 0.0674 + }, + { + "start": 17588.16, + "end": 17589.16, + "probability": 0.6015 + }, + { + "start": 17591.02, + "end": 17594.52, + "probability": 0.478 + }, + { + "start": 17595.56, + "end": 17599.32, + "probability": 0.9878 + }, + { + "start": 17599.44, + "end": 17600.96, + "probability": 0.6203 + }, + { + "start": 17601.02, + "end": 17603.58, + "probability": 0.6583 + }, + { + "start": 17604.14, + "end": 17605.4, + "probability": 0.993 + }, + { + "start": 17606.82, + "end": 17607.8, + "probability": 0.7544 + }, + { + "start": 17609.92, + "end": 17612.56, + "probability": 0.9883 + }, + { + "start": 17614.14, + "end": 17617.1, + "probability": 0.8168 + }, + { + "start": 17618.18, + "end": 17619.3, + "probability": 0.86 + }, + { + "start": 17623.72, + "end": 17626.72, + "probability": 0.9767 + }, + { + "start": 17627.44, + "end": 17629.36, + "probability": 0.7221 + }, + { + "start": 17631.66, + "end": 17632.88, + "probability": 0.922 + }, + { + "start": 17633.78, + "end": 17634.76, + "probability": 0.9841 + }, + { + "start": 17636.44, + "end": 17637.24, + "probability": 0.8639 + }, + { + "start": 17640.08, + "end": 17641.34, + "probability": 0.8697 + }, + { + "start": 17642.74, + "end": 17645.16, + "probability": 0.9678 + }, + { + "start": 17646.96, + "end": 17647.46, + "probability": 0.8235 + }, + { + "start": 17649.58, + "end": 17654.34, + "probability": 0.962 + }, + { + "start": 17655.94, + "end": 17656.1, + "probability": 0.9766 + }, + { + "start": 17657.8, + "end": 17659.28, + "probability": 0.94 + }, + { + "start": 17660.52, + "end": 17662.9, + "probability": 0.995 + }, + { + "start": 17663.56, + "end": 17664.5, + "probability": 0.966 + }, + { + "start": 17665.8, + "end": 17668.46, + "probability": 0.6548 + }, + { + "start": 17668.6, + "end": 17671.22, + "probability": 0.4287 + }, + { + "start": 17671.22, + "end": 17673.09, + "probability": 0.8176 + }, + { + "start": 17674.06, + "end": 17677.82, + "probability": 0.7385 + }, + { + "start": 17680.68, + "end": 17682.86, + "probability": 0.7486 + }, + { + "start": 17683.04, + "end": 17685.78, + "probability": 0.9173 + }, + { + "start": 17685.78, + "end": 17687.84, + "probability": 0.9445 + }, + { + "start": 17688.7, + "end": 17691.54, + "probability": 0.9832 + }, + { + "start": 17692.28, + "end": 17695.14, + "probability": 0.2883 + }, + { + "start": 17696.7, + "end": 17697.38, + "probability": 0.9307 + }, + { + "start": 17698.18, + "end": 17699.7, + "probability": 0.7907 + }, + { + "start": 17700.24, + "end": 17701.6, + "probability": 0.7283 + }, + { + "start": 17702.44, + "end": 17705.24, + "probability": 0.9664 + }, + { + "start": 17705.8, + "end": 17707.34, + "probability": 0.998 + }, + { + "start": 17708.14, + "end": 17710.5, + "probability": 0.9899 + }, + { + "start": 17712.81, + "end": 17717.44, + "probability": 0.7667 + }, + { + "start": 17718.62, + "end": 17719.44, + "probability": 0.7053 + }, + { + "start": 17719.54, + "end": 17720.64, + "probability": 0.9104 + }, + { + "start": 17720.96, + "end": 17722.86, + "probability": 0.9847 + }, + { + "start": 17723.76, + "end": 17725.76, + "probability": 0.9912 + }, + { + "start": 17726.54, + "end": 17728.58, + "probability": 0.8196 + }, + { + "start": 17729.88, + "end": 17731.62, + "probability": 0.8712 + }, + { + "start": 17731.64, + "end": 17732.96, + "probability": 0.9676 + }, + { + "start": 17733.96, + "end": 17735.0, + "probability": 0.6704 + }, + { + "start": 17735.6, + "end": 17737.62, + "probability": 0.9937 + }, + { + "start": 17738.84, + "end": 17740.65, + "probability": 0.7177 + }, + { + "start": 17743.42, + "end": 17747.1, + "probability": 0.9562 + }, + { + "start": 17749.32, + "end": 17752.32, + "probability": 0.994 + }, + { + "start": 17752.82, + "end": 17754.16, + "probability": 0.8689 + }, + { + "start": 17754.76, + "end": 17758.32, + "probability": 0.9444 + }, + { + "start": 17758.82, + "end": 17759.76, + "probability": 0.9985 + }, + { + "start": 17760.3, + "end": 17761.2, + "probability": 0.9493 + }, + { + "start": 17761.38, + "end": 17765.14, + "probability": 0.7798 + }, + { + "start": 17765.52, + "end": 17768.94, + "probability": 0.9172 + }, + { + "start": 17769.64, + "end": 17769.72, + "probability": 0.8892 + }, + { + "start": 17770.46, + "end": 17772.5, + "probability": 0.9902 + }, + { + "start": 17772.94, + "end": 17773.12, + "probability": 0.7037 + }, + { + "start": 17774.16, + "end": 17776.22, + "probability": 0.8112 + }, + { + "start": 17776.42, + "end": 17777.22, + "probability": 0.2429 + }, + { + "start": 17778.18, + "end": 17779.02, + "probability": 0.6205 + }, + { + "start": 17789.36, + "end": 17790.46, + "probability": 0.7809 + }, + { + "start": 17791.58, + "end": 17793.34, + "probability": 0.9271 + }, + { + "start": 17794.18, + "end": 17794.48, + "probability": 0.5571 + }, + { + "start": 17794.64, + "end": 17798.26, + "probability": 0.9772 + }, + { + "start": 17798.48, + "end": 17803.18, + "probability": 0.8561 + }, + { + "start": 17803.6, + "end": 17808.12, + "probability": 0.7106 + }, + { + "start": 17808.62, + "end": 17811.62, + "probability": 0.5009 + }, + { + "start": 17812.52, + "end": 17813.88, + "probability": 0.8023 + }, + { + "start": 17815.94, + "end": 17820.32, + "probability": 0.8538 + }, + { + "start": 17821.1, + "end": 17825.16, + "probability": 0.7179 + }, + { + "start": 17825.16, + "end": 17829.08, + "probability": 0.9939 + }, + { + "start": 17829.16, + "end": 17830.22, + "probability": 0.8755 + }, + { + "start": 17830.96, + "end": 17833.52, + "probability": 0.9209 + }, + { + "start": 17834.14, + "end": 17839.7, + "probability": 0.9491 + }, + { + "start": 17840.3, + "end": 17841.22, + "probability": 0.9723 + }, + { + "start": 17841.98, + "end": 17843.2, + "probability": 0.1634 + }, + { + "start": 17843.2, + "end": 17845.76, + "probability": 0.8325 + }, + { + "start": 17846.12, + "end": 17847.2, + "probability": 0.5599 + }, + { + "start": 17847.84, + "end": 17849.06, + "probability": 0.6541 + }, + { + "start": 17849.16, + "end": 17849.74, + "probability": 0.7539 + }, + { + "start": 17849.76, + "end": 17853.36, + "probability": 0.8188 + }, + { + "start": 17853.36, + "end": 17856.12, + "probability": 0.9323 + }, + { + "start": 17856.66, + "end": 17857.02, + "probability": 0.8102 + }, + { + "start": 17857.12, + "end": 17858.9, + "probability": 0.6553 + }, + { + "start": 17859.36, + "end": 17862.16, + "probability": 0.8965 + }, + { + "start": 17863.22, + "end": 17868.46, + "probability": 0.7428 + }, + { + "start": 17868.92, + "end": 17874.62, + "probability": 0.9272 + }, + { + "start": 17875.34, + "end": 17876.42, + "probability": 0.9118 + }, + { + "start": 17876.76, + "end": 17880.72, + "probability": 0.9765 + }, + { + "start": 17881.46, + "end": 17887.26, + "probability": 0.9786 + }, + { + "start": 17887.42, + "end": 17888.32, + "probability": 0.8048 + }, + { + "start": 17888.98, + "end": 17890.84, + "probability": 0.9922 + }, + { + "start": 17891.3, + "end": 17893.95, + "probability": 0.9507 + }, + { + "start": 17894.76, + "end": 17896.44, + "probability": 0.9815 + }, + { + "start": 17897.14, + "end": 17900.39, + "probability": 0.9979 + }, + { + "start": 17901.46, + "end": 17908.48, + "probability": 0.9912 + }, + { + "start": 17909.3, + "end": 17914.23, + "probability": 0.8985 + }, + { + "start": 17914.66, + "end": 17914.66, + "probability": 0.5069 + }, + { + "start": 17914.66, + "end": 17915.82, + "probability": 0.7395 + }, + { + "start": 17915.96, + "end": 17917.1, + "probability": 0.8136 + }, + { + "start": 17917.74, + "end": 17920.66, + "probability": 0.993 + }, + { + "start": 17920.66, + "end": 17927.6, + "probability": 0.929 + }, + { + "start": 17928.29, + "end": 17933.48, + "probability": 0.5941 + }, + { + "start": 17934.06, + "end": 17937.72, + "probability": 0.9633 + }, + { + "start": 17938.58, + "end": 17941.4, + "probability": 0.835 + }, + { + "start": 17942.12, + "end": 17944.54, + "probability": 0.8223 + }, + { + "start": 17945.32, + "end": 17948.08, + "probability": 0.9448 + }, + { + "start": 17948.48, + "end": 17952.1, + "probability": 0.2204 + }, + { + "start": 17953.82, + "end": 17954.66, + "probability": 0.3591 + }, + { + "start": 17957.26, + "end": 17958.06, + "probability": 0.3726 + }, + { + "start": 17958.42, + "end": 17958.9, + "probability": 0.5209 + }, + { + "start": 17959.42, + "end": 17960.16, + "probability": 0.2295 + }, + { + "start": 17960.16, + "end": 17960.38, + "probability": 0.3911 + }, + { + "start": 17960.5, + "end": 17962.04, + "probability": 0.556 + }, + { + "start": 17962.12, + "end": 17964.56, + "probability": 0.7724 + }, + { + "start": 17964.68, + "end": 17970.9, + "probability": 0.4614 + }, + { + "start": 17971.26, + "end": 17971.48, + "probability": 0.11 + }, + { + "start": 17974.28, + "end": 17975.88, + "probability": 0.0185 + }, + { + "start": 17976.44, + "end": 17976.46, + "probability": 0.044 + }, + { + "start": 17976.46, + "end": 17976.46, + "probability": 0.0358 + }, + { + "start": 17976.46, + "end": 17976.46, + "probability": 0.2755 + }, + { + "start": 17976.46, + "end": 17979.94, + "probability": 0.2671 + }, + { + "start": 17979.94, + "end": 17983.5, + "probability": 0.687 + }, + { + "start": 17983.84, + "end": 17984.28, + "probability": 0.6521 + }, + { + "start": 17984.72, + "end": 17986.74, + "probability": 0.9414 + }, + { + "start": 17986.84, + "end": 17987.18, + "probability": 0.855 + }, + { + "start": 17987.36, + "end": 17991.44, + "probability": 0.6613 + }, + { + "start": 17992.16, + "end": 17996.52, + "probability": 0.6665 + }, + { + "start": 17996.72, + "end": 17999.82, + "probability": 0.9163 + }, + { + "start": 17999.86, + "end": 17999.96, + "probability": 0.2355 + }, + { + "start": 17999.96, + "end": 18000.3, + "probability": 0.0126 + }, + { + "start": 18000.4, + "end": 18004.96, + "probability": 0.7225 + }, + { + "start": 18005.3, + "end": 18005.79, + "probability": 0.4012 + }, + { + "start": 18006.22, + "end": 18006.98, + "probability": 0.9055 + }, + { + "start": 18007.2, + "end": 18010.18, + "probability": 0.9579 + }, + { + "start": 18010.96, + "end": 18013.86, + "probability": 0.9772 + }, + { + "start": 18014.58, + "end": 18015.64, + "probability": 0.4334 + }, + { + "start": 18016.18, + "end": 18016.78, + "probability": 0.5741 + }, + { + "start": 18016.92, + "end": 18021.56, + "probability": 0.9687 + }, + { + "start": 18022.66, + "end": 18023.72, + "probability": 0.2751 + }, + { + "start": 18024.36, + "end": 18030.32, + "probability": 0.9562 + }, + { + "start": 18030.44, + "end": 18033.62, + "probability": 0.9761 + }, + { + "start": 18035.24, + "end": 18037.16, + "probability": 0.5653 + }, + { + "start": 18037.54, + "end": 18038.96, + "probability": 0.92 + }, + { + "start": 18039.1, + "end": 18040.44, + "probability": 0.7428 + }, + { + "start": 18047.74, + "end": 18049.2, + "probability": 0.4206 + }, + { + "start": 18049.8, + "end": 18050.52, + "probability": 0.694 + }, + { + "start": 18051.34, + "end": 18054.08, + "probability": 0.9518 + }, + { + "start": 18054.98, + "end": 18059.38, + "probability": 0.8866 + }, + { + "start": 18059.96, + "end": 18062.64, + "probability": 0.8787 + }, + { + "start": 18063.42, + "end": 18068.26, + "probability": 0.9943 + }, + { + "start": 18069.42, + "end": 18071.46, + "probability": 0.986 + }, + { + "start": 18071.46, + "end": 18074.34, + "probability": 0.9951 + }, + { + "start": 18074.9, + "end": 18080.02, + "probability": 0.8657 + }, + { + "start": 18082.3, + "end": 18084.68, + "probability": 0.6632 + }, + { + "start": 18085.38, + "end": 18091.66, + "probability": 0.9473 + }, + { + "start": 18092.44, + "end": 18092.86, + "probability": 0.5406 + }, + { + "start": 18093.38, + "end": 18097.82, + "probability": 0.9496 + }, + { + "start": 18098.08, + "end": 18099.12, + "probability": 0.8633 + }, + { + "start": 18099.84, + "end": 18102.68, + "probability": 0.9812 + }, + { + "start": 18103.28, + "end": 18104.2, + "probability": 0.5348 + }, + { + "start": 18104.96, + "end": 18106.8, + "probability": 0.8984 + }, + { + "start": 18108.2, + "end": 18109.22, + "probability": 0.8889 + }, + { + "start": 18109.36, + "end": 18113.28, + "probability": 0.9599 + }, + { + "start": 18113.76, + "end": 18115.68, + "probability": 0.9918 + }, + { + "start": 18116.72, + "end": 18121.02, + "probability": 0.9966 + }, + { + "start": 18121.76, + "end": 18127.8, + "probability": 0.9798 + }, + { + "start": 18128.5, + "end": 18131.64, + "probability": 0.9285 + }, + { + "start": 18131.74, + "end": 18132.02, + "probability": 0.5865 + }, + { + "start": 18132.42, + "end": 18134.18, + "probability": 0.7099 + }, + { + "start": 18134.34, + "end": 18137.76, + "probability": 0.817 + }, + { + "start": 18138.16, + "end": 18139.04, + "probability": 0.5726 + }, + { + "start": 18139.04, + "end": 18139.88, + "probability": 0.6877 + }, + { + "start": 18140.94, + "end": 18141.28, + "probability": 0.4985 + }, + { + "start": 18141.3, + "end": 18142.85, + "probability": 0.7996 + }, + { + "start": 18143.08, + "end": 18143.96, + "probability": 0.5894 + }, + { + "start": 18144.62, + "end": 18144.76, + "probability": 0.4003 + }, + { + "start": 18145.9, + "end": 18146.72, + "probability": 0.7554 + }, + { + "start": 18152.8, + "end": 18152.8, + "probability": 0.0796 + }, + { + "start": 18152.8, + "end": 18153.96, + "probability": 0.7276 + }, + { + "start": 18170.8, + "end": 18170.92, + "probability": 0.3227 + }, + { + "start": 18170.92, + "end": 18174.5, + "probability": 0.725 + }, + { + "start": 18175.32, + "end": 18176.18, + "probability": 0.6885 + }, + { + "start": 18176.24, + "end": 18179.08, + "probability": 0.3252 + }, + { + "start": 18179.36, + "end": 18181.34, + "probability": 0.8391 + }, + { + "start": 18182.26, + "end": 18184.66, + "probability": 0.4681 + }, + { + "start": 18186.02, + "end": 18189.34, + "probability": 0.9972 + }, + { + "start": 18189.56, + "end": 18189.58, + "probability": 0.0016 + }, + { + "start": 18189.58, + "end": 18193.42, + "probability": 0.8636 + }, + { + "start": 18194.31, + "end": 18197.7, + "probability": 0.8787 + }, + { + "start": 18203.01, + "end": 18204.92, + "probability": 0.834 + }, + { + "start": 18205.24, + "end": 18206.6, + "probability": 0.6351 + }, + { + "start": 18208.86, + "end": 18211.07, + "probability": 0.9965 + }, + { + "start": 18211.98, + "end": 18213.3, + "probability": 0.908 + }, + { + "start": 18213.44, + "end": 18215.66, + "probability": 0.9209 + }, + { + "start": 18216.48, + "end": 18219.14, + "probability": 0.8451 + }, + { + "start": 18220.22, + "end": 18224.6, + "probability": 0.8747 + }, + { + "start": 18225.3, + "end": 18227.08, + "probability": 0.6895 + }, + { + "start": 18228.16, + "end": 18229.9, + "probability": 0.8185 + }, + { + "start": 18230.86, + "end": 18236.02, + "probability": 0.9897 + }, + { + "start": 18236.2, + "end": 18237.02, + "probability": 0.9966 + }, + { + "start": 18237.66, + "end": 18239.18, + "probability": 0.855 + }, + { + "start": 18239.64, + "end": 18240.6, + "probability": 0.8306 + }, + { + "start": 18241.66, + "end": 18243.14, + "probability": 0.9943 + }, + { + "start": 18244.16, + "end": 18245.82, + "probability": 0.9362 + }, + { + "start": 18247.38, + "end": 18249.1, + "probability": 0.9937 + }, + { + "start": 18250.1, + "end": 18250.62, + "probability": 0.9966 + }, + { + "start": 18252.2, + "end": 18255.26, + "probability": 0.9888 + }, + { + "start": 18256.46, + "end": 18257.94, + "probability": 0.952 + }, + { + "start": 18258.48, + "end": 18262.48, + "probability": 0.9793 + }, + { + "start": 18263.56, + "end": 18266.09, + "probability": 0.9934 + }, + { + "start": 18268.21, + "end": 18269.42, + "probability": 0.9985 + }, + { + "start": 18270.24, + "end": 18274.62, + "probability": 0.8667 + }, + { + "start": 18274.74, + "end": 18277.06, + "probability": 0.8948 + }, + { + "start": 18277.22, + "end": 18278.24, + "probability": 0.9824 + }, + { + "start": 18279.78, + "end": 18286.54, + "probability": 0.9952 + }, + { + "start": 18286.7, + "end": 18287.22, + "probability": 0.6106 + }, + { + "start": 18287.26, + "end": 18290.02, + "probability": 0.9962 + }, + { + "start": 18290.58, + "end": 18290.98, + "probability": 0.9604 + }, + { + "start": 18291.98, + "end": 18294.6, + "probability": 0.6312 + }, + { + "start": 18295.61, + "end": 18296.0, + "probability": 0.5909 + }, + { + "start": 18296.1, + "end": 18296.64, + "probability": 0.8028 + }, + { + "start": 18296.72, + "end": 18297.78, + "probability": 0.9971 + }, + { + "start": 18297.88, + "end": 18300.4, + "probability": 0.9904 + }, + { + "start": 18300.84, + "end": 18302.96, + "probability": 0.8244 + }, + { + "start": 18303.64, + "end": 18309.8, + "probability": 0.9888 + }, + { + "start": 18309.98, + "end": 18310.68, + "probability": 0.9873 + }, + { + "start": 18310.8, + "end": 18312.6, + "probability": 0.9818 + }, + { + "start": 18313.98, + "end": 18317.78, + "probability": 0.9863 + }, + { + "start": 18318.58, + "end": 18320.66, + "probability": 0.8313 + }, + { + "start": 18320.8, + "end": 18326.42, + "probability": 0.9904 + }, + { + "start": 18326.64, + "end": 18327.28, + "probability": 0.5757 + }, + { + "start": 18328.04, + "end": 18330.94, + "probability": 0.8606 + }, + { + "start": 18332.16, + "end": 18334.02, + "probability": 0.9985 + }, + { + "start": 18334.1, + "end": 18338.9, + "probability": 0.9932 + }, + { + "start": 18339.18, + "end": 18340.42, + "probability": 0.8115 + }, + { + "start": 18340.5, + "end": 18342.26, + "probability": 0.9986 + }, + { + "start": 18342.8, + "end": 18348.36, + "probability": 0.9012 + }, + { + "start": 18348.86, + "end": 18350.96, + "probability": 0.9917 + }, + { + "start": 18351.14, + "end": 18353.02, + "probability": 0.9952 + }, + { + "start": 18353.3, + "end": 18353.88, + "probability": 0.8636 + }, + { + "start": 18354.6, + "end": 18359.16, + "probability": 0.8765 + }, + { + "start": 18359.16, + "end": 18362.36, + "probability": 0.9336 + }, + { + "start": 18363.28, + "end": 18366.04, + "probability": 0.6921 + }, + { + "start": 18366.14, + "end": 18368.98, + "probability": 0.6564 + }, + { + "start": 18368.98, + "end": 18369.54, + "probability": 0.5309 + }, + { + "start": 18370.1, + "end": 18372.28, + "probability": 0.9883 + }, + { + "start": 18372.34, + "end": 18373.82, + "probability": 0.9968 + }, + { + "start": 18374.68, + "end": 18376.25, + "probability": 0.8401 + }, + { + "start": 18376.44, + "end": 18377.3, + "probability": 0.848 + }, + { + "start": 18377.96, + "end": 18379.96, + "probability": 0.96 + }, + { + "start": 18380.02, + "end": 18383.52, + "probability": 0.9893 + }, + { + "start": 18383.66, + "end": 18384.16, + "probability": 0.9355 + }, + { + "start": 18385.06, + "end": 18386.52, + "probability": 0.9968 + }, + { + "start": 18387.16, + "end": 18388.28, + "probability": 0.8232 + }, + { + "start": 18388.68, + "end": 18390.06, + "probability": 0.2835 + }, + { + "start": 18390.36, + "end": 18391.78, + "probability": 0.8657 + }, + { + "start": 18392.0, + "end": 18393.16, + "probability": 0.9785 + }, + { + "start": 18393.36, + "end": 18395.2, + "probability": 0.8691 + }, + { + "start": 18396.37, + "end": 18398.4, + "probability": 0.9213 + }, + { + "start": 18398.72, + "end": 18399.2, + "probability": 0.7311 + }, + { + "start": 18400.0, + "end": 18401.94, + "probability": 0.9531 + }, + { + "start": 18402.0, + "end": 18403.36, + "probability": 0.8368 + }, + { + "start": 18424.44, + "end": 18426.44, + "probability": 0.6735 + }, + { + "start": 18428.08, + "end": 18432.4, + "probability": 0.8612 + }, + { + "start": 18433.02, + "end": 18434.76, + "probability": 0.7785 + }, + { + "start": 18435.88, + "end": 18437.68, + "probability": 0.9327 + }, + { + "start": 18439.66, + "end": 18442.68, + "probability": 0.9501 + }, + { + "start": 18443.34, + "end": 18444.36, + "probability": 0.7395 + }, + { + "start": 18444.92, + "end": 18446.64, + "probability": 0.3826 + }, + { + "start": 18447.72, + "end": 18451.08, + "probability": 0.9919 + }, + { + "start": 18452.8, + "end": 18458.58, + "probability": 0.7659 + }, + { + "start": 18459.8, + "end": 18462.1, + "probability": 0.8659 + }, + { + "start": 18462.18, + "end": 18462.58, + "probability": 0.8904 + }, + { + "start": 18463.38, + "end": 18464.18, + "probability": 0.9919 + }, + { + "start": 18464.98, + "end": 18469.6, + "probability": 0.9973 + }, + { + "start": 18470.4, + "end": 18471.62, + "probability": 0.9929 + }, + { + "start": 18472.22, + "end": 18473.6, + "probability": 0.6788 + }, + { + "start": 18474.78, + "end": 18479.56, + "probability": 0.9903 + }, + { + "start": 18481.44, + "end": 18483.68, + "probability": 0.9816 + }, + { + "start": 18484.28, + "end": 18484.76, + "probability": 0.2897 + }, + { + "start": 18485.52, + "end": 18487.44, + "probability": 0.973 + }, + { + "start": 18488.58, + "end": 18490.68, + "probability": 0.9484 + }, + { + "start": 18491.22, + "end": 18491.84, + "probability": 0.9815 + }, + { + "start": 18493.14, + "end": 18497.59, + "probability": 0.9931 + }, + { + "start": 18499.58, + "end": 18500.46, + "probability": 0.782 + }, + { + "start": 18501.0, + "end": 18503.2, + "probability": 0.9938 + }, + { + "start": 18503.2, + "end": 18505.58, + "probability": 0.9928 + }, + { + "start": 18505.82, + "end": 18507.0, + "probability": 0.715 + }, + { + "start": 18507.94, + "end": 18509.1, + "probability": 0.9553 + }, + { + "start": 18509.92, + "end": 18511.32, + "probability": 0.7874 + }, + { + "start": 18511.94, + "end": 18512.22, + "probability": 0.8281 + }, + { + "start": 18513.0, + "end": 18513.32, + "probability": 0.899 + }, + { + "start": 18514.22, + "end": 18514.78, + "probability": 0.9777 + }, + { + "start": 18515.0, + "end": 18517.7, + "probability": 0.9815 + }, + { + "start": 18519.12, + "end": 18522.36, + "probability": 0.9883 + }, + { + "start": 18522.96, + "end": 18526.2, + "probability": 0.9827 + }, + { + "start": 18527.88, + "end": 18529.64, + "probability": 0.9072 + }, + { + "start": 18530.42, + "end": 18533.64, + "probability": 0.9851 + }, + { + "start": 18534.56, + "end": 18536.28, + "probability": 0.9782 + }, + { + "start": 18537.12, + "end": 18539.74, + "probability": 0.9389 + }, + { + "start": 18541.14, + "end": 18544.06, + "probability": 0.7929 + }, + { + "start": 18545.94, + "end": 18548.14, + "probability": 0.9873 + }, + { + "start": 18548.14, + "end": 18550.8, + "probability": 0.8764 + }, + { + "start": 18551.4, + "end": 18554.62, + "probability": 0.9958 + }, + { + "start": 18554.62, + "end": 18557.62, + "probability": 0.9376 + }, + { + "start": 18557.8, + "end": 18558.96, + "probability": 0.8939 + }, + { + "start": 18559.98, + "end": 18562.38, + "probability": 0.9863 + }, + { + "start": 18562.58, + "end": 18563.24, + "probability": 0.7098 + }, + { + "start": 18563.36, + "end": 18564.38, + "probability": 0.6712 + }, + { + "start": 18564.56, + "end": 18564.86, + "probability": 0.5654 + }, + { + "start": 18566.0, + "end": 18569.16, + "probability": 0.9841 + }, + { + "start": 18570.58, + "end": 18571.1, + "probability": 0.7684 + }, + { + "start": 18571.16, + "end": 18572.1, + "probability": 0.9768 + }, + { + "start": 18572.48, + "end": 18573.68, + "probability": 0.9828 + }, + { + "start": 18573.72, + "end": 18574.36, + "probability": 0.9521 + }, + { + "start": 18575.5, + "end": 18575.7, + "probability": 0.9072 + }, + { + "start": 18576.42, + "end": 18577.2, + "probability": 0.8565 + }, + { + "start": 18577.74, + "end": 18577.98, + "probability": 0.4689 + }, + { + "start": 18577.98, + "end": 18578.58, + "probability": 0.8372 + }, + { + "start": 18578.6, + "end": 18579.66, + "probability": 0.7298 + }, + { + "start": 18579.7, + "end": 18579.9, + "probability": 0.674 + }, + { + "start": 18580.2, + "end": 18580.46, + "probability": 0.9551 + }, + { + "start": 18580.48, + "end": 18580.72, + "probability": 0.9421 + }, + { + "start": 18581.18, + "end": 18581.62, + "probability": 0.5985 + }, + { + "start": 18582.54, + "end": 18585.06, + "probability": 0.9889 + }, + { + "start": 18585.06, + "end": 18588.25, + "probability": 0.9788 + }, + { + "start": 18590.74, + "end": 18590.9, + "probability": 0.0169 + }, + { + "start": 18590.9, + "end": 18591.3, + "probability": 0.0851 + }, + { + "start": 18591.36, + "end": 18592.82, + "probability": 0.9487 + }, + { + "start": 18592.96, + "end": 18594.32, + "probability": 0.997 + }, + { + "start": 18595.92, + "end": 18597.56, + "probability": 0.7897 + }, + { + "start": 18597.7, + "end": 18600.36, + "probability": 0.9921 + }, + { + "start": 18601.12, + "end": 18601.66, + "probability": 0.7815 + }, + { + "start": 18602.46, + "end": 18602.94, + "probability": 0.685 + }, + { + "start": 18602.96, + "end": 18603.98, + "probability": 0.8709 + }, + { + "start": 18604.18, + "end": 18606.78, + "probability": 0.9763 + }, + { + "start": 18608.24, + "end": 18608.94, + "probability": 0.999 + }, + { + "start": 18609.78, + "end": 18610.7, + "probability": 0.7232 + }, + { + "start": 18610.76, + "end": 18610.94, + "probability": 0.4361 + }, + { + "start": 18610.94, + "end": 18612.64, + "probability": 0.9922 + }, + { + "start": 18612.78, + "end": 18614.88, + "probability": 0.9829 + }, + { + "start": 18615.22, + "end": 18615.6, + "probability": 0.9146 + }, + { + "start": 18617.2, + "end": 18617.64, + "probability": 0.7962 + }, + { + "start": 18617.7, + "end": 18618.3, + "probability": 0.9111 + }, + { + "start": 18618.38, + "end": 18619.24, + "probability": 0.7569 + }, + { + "start": 18619.44, + "end": 18620.18, + "probability": 0.8333 + }, + { + "start": 18620.98, + "end": 18622.52, + "probability": 0.9773 + }, + { + "start": 18622.96, + "end": 18624.7, + "probability": 0.9986 + }, + { + "start": 18625.6, + "end": 18629.22, + "probability": 0.9961 + }, + { + "start": 18629.38, + "end": 18630.98, + "probability": 0.9904 + }, + { + "start": 18631.18, + "end": 18633.44, + "probability": 0.8964 + }, + { + "start": 18633.66, + "end": 18635.42, + "probability": 0.9951 + }, + { + "start": 18636.02, + "end": 18636.12, + "probability": 0.4291 + }, + { + "start": 18636.2, + "end": 18637.32, + "probability": 0.9696 + }, + { + "start": 18637.42, + "end": 18639.14, + "probability": 0.7271 + }, + { + "start": 18639.68, + "end": 18639.96, + "probability": 0.3323 + }, + { + "start": 18640.0, + "end": 18640.4, + "probability": 0.6565 + }, + { + "start": 18640.84, + "end": 18640.94, + "probability": 0.6243 + }, + { + "start": 18640.96, + "end": 18641.72, + "probability": 0.8369 + }, + { + "start": 18642.1, + "end": 18644.68, + "probability": 0.9788 + }, + { + "start": 18646.04, + "end": 18647.44, + "probability": 0.917 + }, + { + "start": 18647.94, + "end": 18651.82, + "probability": 0.9929 + }, + { + "start": 18652.02, + "end": 18652.14, + "probability": 0.5416 + }, + { + "start": 18652.24, + "end": 18653.46, + "probability": 0.8431 + }, + { + "start": 18653.66, + "end": 18654.1, + "probability": 0.6042 + }, + { + "start": 18655.36, + "end": 18656.12, + "probability": 0.9202 + }, + { + "start": 18656.98, + "end": 18659.12, + "probability": 0.4851 + }, + { + "start": 18659.12, + "end": 18660.38, + "probability": 0.9497 + }, + { + "start": 18660.4, + "end": 18661.26, + "probability": 0.9924 + }, + { + "start": 18661.42, + "end": 18663.92, + "probability": 0.9896 + }, + { + "start": 18664.36, + "end": 18666.84, + "probability": 0.9986 + }, + { + "start": 18666.88, + "end": 18667.6, + "probability": 0.7208 + }, + { + "start": 18667.84, + "end": 18669.02, + "probability": 0.7696 + }, + { + "start": 18669.1, + "end": 18672.42, + "probability": 0.9282 + }, + { + "start": 18672.42, + "end": 18676.6, + "probability": 0.941 + }, + { + "start": 18677.04, + "end": 18678.96, + "probability": 0.9953 + }, + { + "start": 18679.04, + "end": 18680.08, + "probability": 0.9951 + }, + { + "start": 18680.24, + "end": 18681.15, + "probability": 0.058 + }, + { + "start": 18681.74, + "end": 18681.94, + "probability": 0.2202 + }, + { + "start": 18682.36, + "end": 18682.46, + "probability": 0.2606 + }, + { + "start": 18682.46, + "end": 18682.9, + "probability": 0.1417 + }, + { + "start": 18683.02, + "end": 18684.22, + "probability": 0.3178 + }, + { + "start": 18684.44, + "end": 18688.12, + "probability": 0.0455 + }, + { + "start": 18688.14, + "end": 18688.36, + "probability": 0.0875 + }, + { + "start": 18688.36, + "end": 18688.36, + "probability": 0.1341 + }, + { + "start": 18688.36, + "end": 18688.36, + "probability": 0.3242 + }, + { + "start": 18688.36, + "end": 18688.92, + "probability": 0.5502 + }, + { + "start": 18689.28, + "end": 18690.04, + "probability": 0.8096 + }, + { + "start": 18690.12, + "end": 18692.15, + "probability": 0.2585 + }, + { + "start": 18692.46, + "end": 18694.96, + "probability": 0.9961 + }, + { + "start": 18695.06, + "end": 18696.94, + "probability": 0.9408 + }, + { + "start": 18697.04, + "end": 18699.18, + "probability": 0.9901 + }, + { + "start": 18699.2, + "end": 18701.5, + "probability": 0.9902 + }, + { + "start": 18701.88, + "end": 18703.64, + "probability": 0.8778 + }, + { + "start": 18704.18, + "end": 18704.56, + "probability": 0.7258 + }, + { + "start": 18704.94, + "end": 18706.42, + "probability": 0.8708 + }, + { + "start": 18707.32, + "end": 18708.08, + "probability": 0.0519 + }, + { + "start": 18708.32, + "end": 18710.02, + "probability": 0.4635 + }, + { + "start": 18710.5, + "end": 18711.7, + "probability": 0.8431 + }, + { + "start": 18722.1, + "end": 18724.64, + "probability": 0.6933 + }, + { + "start": 18725.76, + "end": 18731.02, + "probability": 0.9442 + }, + { + "start": 18731.34, + "end": 18733.87, + "probability": 0.9873 + }, + { + "start": 18735.5, + "end": 18738.96, + "probability": 0.9858 + }, + { + "start": 18739.38, + "end": 18741.2, + "probability": 0.9844 + }, + { + "start": 18741.84, + "end": 18743.04, + "probability": 0.9555 + }, + { + "start": 18743.68, + "end": 18746.98, + "probability": 0.7385 + }, + { + "start": 18747.62, + "end": 18748.52, + "probability": 0.9145 + }, + { + "start": 18751.16, + "end": 18752.42, + "probability": 0.9342 + }, + { + "start": 18752.62, + "end": 18753.86, + "probability": 0.9507 + }, + { + "start": 18754.12, + "end": 18757.6, + "probability": 0.9191 + }, + { + "start": 18757.74, + "end": 18758.38, + "probability": 0.8701 + }, + { + "start": 18759.62, + "end": 18763.94, + "probability": 0.9866 + }, + { + "start": 18764.74, + "end": 18765.78, + "probability": 0.9299 + }, + { + "start": 18768.58, + "end": 18769.22, + "probability": 0.9697 + }, + { + "start": 18770.32, + "end": 18772.1, + "probability": 0.6979 + }, + { + "start": 18773.04, + "end": 18778.64, + "probability": 0.9772 + }, + { + "start": 18779.7, + "end": 18782.8, + "probability": 0.9585 + }, + { + "start": 18782.8, + "end": 18785.76, + "probability": 0.9956 + }, + { + "start": 18785.88, + "end": 18792.62, + "probability": 0.9933 + }, + { + "start": 18792.8, + "end": 18793.58, + "probability": 0.6724 + }, + { + "start": 18793.78, + "end": 18794.24, + "probability": 0.9149 + }, + { + "start": 18794.78, + "end": 18797.0, + "probability": 0.9349 + }, + { + "start": 18798.4, + "end": 18801.52, + "probability": 0.985 + }, + { + "start": 18801.52, + "end": 18805.38, + "probability": 0.9978 + }, + { + "start": 18806.18, + "end": 18809.8, + "probability": 0.9904 + }, + { + "start": 18810.36, + "end": 18813.08, + "probability": 0.7272 + }, + { + "start": 18814.7, + "end": 18815.26, + "probability": 0.7202 + }, + { + "start": 18816.78, + "end": 18819.54, + "probability": 0.9935 + }, + { + "start": 18819.62, + "end": 18823.02, + "probability": 0.9491 + }, + { + "start": 18826.2, + "end": 18829.04, + "probability": 0.909 + }, + { + "start": 18829.18, + "end": 18830.4, + "probability": 0.822 + }, + { + "start": 18831.36, + "end": 18833.6, + "probability": 0.7595 + }, + { + "start": 18834.12, + "end": 18838.19, + "probability": 0.7826 + }, + { + "start": 18838.76, + "end": 18843.92, + "probability": 0.9644 + }, + { + "start": 18845.34, + "end": 18850.24, + "probability": 0.998 + }, + { + "start": 18851.18, + "end": 18853.66, + "probability": 0.9679 + }, + { + "start": 18854.34, + "end": 18854.9, + "probability": 0.6909 + }, + { + "start": 18856.58, + "end": 18858.38, + "probability": 0.9846 + }, + { + "start": 18860.14, + "end": 18864.14, + "probability": 0.9543 + }, + { + "start": 18864.24, + "end": 18864.94, + "probability": 0.7476 + }, + { + "start": 18865.02, + "end": 18866.04, + "probability": 0.6658 + }, + { + "start": 18866.72, + "end": 18867.84, + "probability": 0.9684 + }, + { + "start": 18869.06, + "end": 18869.74, + "probability": 0.9897 + }, + { + "start": 18872.34, + "end": 18873.62, + "probability": 0.7575 + }, + { + "start": 18874.46, + "end": 18876.3, + "probability": 0.9987 + }, + { + "start": 18877.98, + "end": 18882.6, + "probability": 0.8119 + }, + { + "start": 18885.06, + "end": 18886.4, + "probability": 0.6773 + }, + { + "start": 18886.58, + "end": 18887.6, + "probability": 0.894 + }, + { + "start": 18888.24, + "end": 18890.8, + "probability": 0.7522 + }, + { + "start": 18893.08, + "end": 18895.36, + "probability": 0.9771 + }, + { + "start": 18897.1, + "end": 18897.24, + "probability": 0.938 + }, + { + "start": 18901.1, + "end": 18902.12, + "probability": 0.9507 + }, + { + "start": 18902.68, + "end": 18905.06, + "probability": 0.8132 + }, + { + "start": 18906.54, + "end": 18908.38, + "probability": 0.9984 + }, + { + "start": 18909.5, + "end": 18910.69, + "probability": 0.9828 + }, + { + "start": 18911.94, + "end": 18912.96, + "probability": 0.9074 + }, + { + "start": 18913.48, + "end": 18915.54, + "probability": 0.7282 + }, + { + "start": 18916.18, + "end": 18919.34, + "probability": 0.9928 + }, + { + "start": 18919.7, + "end": 18920.29, + "probability": 0.7225 + }, + { + "start": 18923.24, + "end": 18924.3, + "probability": 0.8649 + }, + { + "start": 18926.18, + "end": 18927.94, + "probability": 0.9863 + }, + { + "start": 18928.72, + "end": 18933.48, + "probability": 0.9487 + }, + { + "start": 18933.54, + "end": 18935.14, + "probability": 0.7229 + }, + { + "start": 18936.84, + "end": 18939.16, + "probability": 0.9934 + }, + { + "start": 18939.52, + "end": 18941.84, + "probability": 0.9941 + }, + { + "start": 18943.08, + "end": 18944.96, + "probability": 0.8301 + }, + { + "start": 18945.62, + "end": 18946.14, + "probability": 0.8513 + }, + { + "start": 18947.0, + "end": 18950.26, + "probability": 0.9935 + }, + { + "start": 18950.26, + "end": 18952.54, + "probability": 0.976 + }, + { + "start": 18953.12, + "end": 18957.0, + "probability": 0.9823 + }, + { + "start": 18957.0, + "end": 18961.3, + "probability": 0.992 + }, + { + "start": 18963.48, + "end": 18968.56, + "probability": 0.8452 + }, + { + "start": 18969.38, + "end": 18970.28, + "probability": 0.8213 + }, + { + "start": 18970.38, + "end": 18971.62, + "probability": 0.9927 + }, + { + "start": 18971.68, + "end": 18974.44, + "probability": 0.9073 + }, + { + "start": 18975.22, + "end": 18976.36, + "probability": 0.8504 + }, + { + "start": 18977.08, + "end": 18979.0, + "probability": 0.9784 + }, + { + "start": 18979.02, + "end": 18979.44, + "probability": 0.9518 + }, + { + "start": 18980.3, + "end": 18981.9, + "probability": 0.9823 + }, + { + "start": 18982.9, + "end": 18984.48, + "probability": 0.7499 + }, + { + "start": 18985.12, + "end": 18986.02, + "probability": 0.8293 + }, + { + "start": 18987.5, + "end": 18991.42, + "probability": 0.9988 + }, + { + "start": 18991.54, + "end": 18994.44, + "probability": 0.9431 + }, + { + "start": 18996.1, + "end": 18996.7, + "probability": 0.9205 + }, + { + "start": 18996.74, + "end": 19003.12, + "probability": 0.9932 + }, + { + "start": 19003.16, + "end": 19004.06, + "probability": 0.8578 + }, + { + "start": 19004.58, + "end": 19006.34, + "probability": 0.9189 + }, + { + "start": 19007.72, + "end": 19010.44, + "probability": 0.8549 + }, + { + "start": 19011.36, + "end": 19012.46, + "probability": 0.7925 + }, + { + "start": 19012.62, + "end": 19014.64, + "probability": 0.9351 + }, + { + "start": 19014.8, + "end": 19017.94, + "probability": 0.9556 + }, + { + "start": 19018.52, + "end": 19020.86, + "probability": 0.9891 + }, + { + "start": 19021.16, + "end": 19026.46, + "probability": 0.9683 + }, + { + "start": 19026.94, + "end": 19028.58, + "probability": 0.9681 + }, + { + "start": 19028.66, + "end": 19029.02, + "probability": 0.6849 + }, + { + "start": 19029.42, + "end": 19030.76, + "probability": 0.7229 + }, + { + "start": 19031.62, + "end": 19034.34, + "probability": 0.9177 + }, + { + "start": 19035.08, + "end": 19035.8, + "probability": 0.9123 + }, + { + "start": 19036.18, + "end": 19039.53, + "probability": 0.9879 + }, + { + "start": 19040.54, + "end": 19043.12, + "probability": 0.991 + }, + { + "start": 19043.48, + "end": 19046.42, + "probability": 0.7514 + }, + { + "start": 19047.82, + "end": 19048.34, + "probability": 0.9683 + }, + { + "start": 19049.22, + "end": 19049.62, + "probability": 0.971 + }, + { + "start": 19051.42, + "end": 19054.09, + "probability": 0.8774 + }, + { + "start": 19056.68, + "end": 19058.32, + "probability": 0.8668 + }, + { + "start": 19058.34, + "end": 19058.94, + "probability": 0.8519 + }, + { + "start": 19059.38, + "end": 19060.44, + "probability": 0.9521 + }, + { + "start": 19060.7, + "end": 19066.88, + "probability": 0.9722 + }, + { + "start": 19066.96, + "end": 19067.66, + "probability": 0.6477 + }, + { + "start": 19068.2, + "end": 19068.82, + "probability": 0.9188 + }, + { + "start": 19068.9, + "end": 19071.22, + "probability": 0.9441 + }, + { + "start": 19071.26, + "end": 19071.74, + "probability": 0.4827 + }, + { + "start": 19071.82, + "end": 19072.54, + "probability": 0.8033 + }, + { + "start": 19073.74, + "end": 19074.76, + "probability": 0.9391 + }, + { + "start": 19075.2, + "end": 19075.2, + "probability": 0.9143 + }, + { + "start": 19075.6, + "end": 19076.6, + "probability": 0.9195 + }, + { + "start": 19076.9, + "end": 19080.18, + "probability": 0.9827 + }, + { + "start": 19080.48, + "end": 19084.08, + "probability": 0.9872 + }, + { + "start": 19084.14, + "end": 19085.0, + "probability": 0.9688 + }, + { + "start": 19085.52, + "end": 19089.42, + "probability": 0.9626 + }, + { + "start": 19089.82, + "end": 19091.45, + "probability": 0.9814 + }, + { + "start": 19091.58, + "end": 19097.86, + "probability": 0.9791 + }, + { + "start": 19097.86, + "end": 19098.24, + "probability": 0.8624 + }, + { + "start": 19098.3, + "end": 19101.06, + "probability": 0.9928 + }, + { + "start": 19101.52, + "end": 19104.24, + "probability": 0.9287 + }, + { + "start": 19104.24, + "end": 19107.48, + "probability": 0.9937 + }, + { + "start": 19107.86, + "end": 19107.94, + "probability": 0.663 + }, + { + "start": 19108.04, + "end": 19109.68, + "probability": 0.5624 + }, + { + "start": 19109.88, + "end": 19111.42, + "probability": 0.762 + }, + { + "start": 19111.62, + "end": 19112.94, + "probability": 0.9266 + }, + { + "start": 19113.12, + "end": 19113.51, + "probability": 0.6967 + }, + { + "start": 19113.8, + "end": 19115.52, + "probability": 0.7519 + }, + { + "start": 19120.6, + "end": 19121.42, + "probability": 0.3772 + }, + { + "start": 19122.0, + "end": 19123.33, + "probability": 0.8706 + }, + { + "start": 19125.64, + "end": 19130.08, + "probability": 0.9787 + }, + { + "start": 19131.66, + "end": 19133.32, + "probability": 0.9504 + }, + { + "start": 19134.28, + "end": 19135.36, + "probability": 0.7894 + }, + { + "start": 19136.14, + "end": 19137.92, + "probability": 0.9732 + }, + { + "start": 19139.54, + "end": 19143.7, + "probability": 0.9583 + }, + { + "start": 19143.7, + "end": 19146.48, + "probability": 0.9111 + }, + { + "start": 19146.8, + "end": 19150.08, + "probability": 0.9905 + }, + { + "start": 19150.74, + "end": 19152.64, + "probability": 0.9258 + }, + { + "start": 19153.42, + "end": 19155.76, + "probability": 0.9899 + }, + { + "start": 19155.76, + "end": 19159.58, + "probability": 0.9696 + }, + { + "start": 19159.6, + "end": 19160.98, + "probability": 0.78 + }, + { + "start": 19161.02, + "end": 19161.88, + "probability": 0.8689 + }, + { + "start": 19162.02, + "end": 19163.38, + "probability": 0.9754 + }, + { + "start": 19164.12, + "end": 19167.88, + "probability": 0.9627 + }, + { + "start": 19168.18, + "end": 19169.32, + "probability": 0.9019 + }, + { + "start": 19170.62, + "end": 19173.14, + "probability": 0.9644 + }, + { + "start": 19174.08, + "end": 19174.8, + "probability": 0.1932 + }, + { + "start": 19174.8, + "end": 19177.22, + "probability": 0.7457 + }, + { + "start": 19179.2, + "end": 19180.92, + "probability": 0.9016 + }, + { + "start": 19181.76, + "end": 19184.26, + "probability": 0.7507 + }, + { + "start": 19184.74, + "end": 19186.08, + "probability": 0.9525 + }, + { + "start": 19186.08, + "end": 19187.92, + "probability": 0.8884 + }, + { + "start": 19188.48, + "end": 19195.7, + "probability": 0.9773 + }, + { + "start": 19195.96, + "end": 19199.0, + "probability": 0.9957 + }, + { + "start": 19199.34, + "end": 19200.82, + "probability": 0.9979 + }, + { + "start": 19200.86, + "end": 19203.56, + "probability": 0.8785 + }, + { + "start": 19203.82, + "end": 19203.88, + "probability": 0.5302 + }, + { + "start": 19203.9, + "end": 19206.76, + "probability": 0.9026 + }, + { + "start": 19207.0, + "end": 19207.96, + "probability": 0.931 + }, + { + "start": 19208.34, + "end": 19209.52, + "probability": 0.8841 + }, + { + "start": 19209.62, + "end": 19210.34, + "probability": 0.8474 + }, + { + "start": 19210.44, + "end": 19210.92, + "probability": 0.7445 + }, + { + "start": 19210.92, + "end": 19212.24, + "probability": 0.8479 + }, + { + "start": 19212.6, + "end": 19213.92, + "probability": 0.9587 + }, + { + "start": 19214.24, + "end": 19214.54, + "probability": 0.8 + }, + { + "start": 19214.88, + "end": 19216.52, + "probability": 0.9492 + }, + { + "start": 19216.62, + "end": 19216.94, + "probability": 0.7429 + }, + { + "start": 19216.94, + "end": 19220.32, + "probability": 0.9861 + }, + { + "start": 19220.8, + "end": 19221.72, + "probability": 0.4971 + }, + { + "start": 19222.46, + "end": 19223.73, + "probability": 0.9902 + }, + { + "start": 19224.06, + "end": 19224.54, + "probability": 0.4823 + }, + { + "start": 19224.66, + "end": 19225.42, + "probability": 0.3336 + }, + { + "start": 19225.46, + "end": 19225.82, + "probability": 0.3009 + }, + { + "start": 19225.92, + "end": 19226.4, + "probability": 0.5698 + }, + { + "start": 19243.56, + "end": 19243.56, + "probability": 0.1555 + }, + { + "start": 19243.56, + "end": 19246.4, + "probability": 0.5704 + }, + { + "start": 19246.54, + "end": 19248.54, + "probability": 0.8829 + }, + { + "start": 19248.54, + "end": 19251.74, + "probability": 0.9891 + }, + { + "start": 19253.54, + "end": 19256.16, + "probability": 0.794 + }, + { + "start": 19258.42, + "end": 19262.3, + "probability": 0.5842 + }, + { + "start": 19263.0, + "end": 19265.6, + "probability": 0.8135 + }, + { + "start": 19266.68, + "end": 19267.76, + "probability": 0.9645 + }, + { + "start": 19267.92, + "end": 19270.18, + "probability": 0.5996 + }, + { + "start": 19274.37, + "end": 19276.52, + "probability": 0.6613 + }, + { + "start": 19276.94, + "end": 19277.54, + "probability": 0.5648 + }, + { + "start": 19277.6, + "end": 19278.08, + "probability": 0.8197 + }, + { + "start": 19278.2, + "end": 19278.82, + "probability": 0.8793 + }, + { + "start": 19278.9, + "end": 19279.74, + "probability": 0.6557 + }, + { + "start": 19280.06, + "end": 19286.57, + "probability": 0.2374 + }, + { + "start": 19287.24, + "end": 19289.24, + "probability": 0.4914 + }, + { + "start": 19292.88, + "end": 19293.74, + "probability": 0.2853 + }, + { + "start": 19293.84, + "end": 19298.16, + "probability": 0.517 + }, + { + "start": 19298.68, + "end": 19301.36, + "probability": 0.0725 + }, + { + "start": 19302.42, + "end": 19302.6, + "probability": 0.021 + }, + { + "start": 19302.6, + "end": 19305.0, + "probability": 0.5965 + }, + { + "start": 19306.22, + "end": 19308.68, + "probability": 0.1144 + }, + { + "start": 19312.42, + "end": 19316.04, + "probability": 0.3485 + }, + { + "start": 19324.1, + "end": 19326.66, + "probability": 0.627 + }, + { + "start": 19327.36, + "end": 19329.82, + "probability": 0.7726 + }, + { + "start": 19331.58, + "end": 19333.06, + "probability": 0.5054 + }, + { + "start": 19334.2, + "end": 19336.98, + "probability": 0.0629 + }, + { + "start": 19337.0, + "end": 19337.0, + "probability": 0.0 + }, + { + "start": 19337.0, + "end": 19337.0, + "probability": 0.0 + }, + { + "start": 19337.0, + "end": 19337.0, + "probability": 0.0 + }, + { + "start": 19337.0, + "end": 19337.0, + "probability": 0.0 + }, + { + "start": 19337.0, + "end": 19337.0, + "probability": 0.0 + }, + { + "start": 19337.0, + "end": 19337.0, + "probability": 0.0 + }, + { + "start": 19337.0, + "end": 19337.0, + "probability": 0.0 + }, + { + "start": 19337.16, + "end": 19340.44, + "probability": 0.6932 + }, + { + "start": 19340.88, + "end": 19342.02, + "probability": 0.7244 + }, + { + "start": 19354.24, + "end": 19356.24, + "probability": 0.7873 + }, + { + "start": 19356.82, + "end": 19357.8, + "probability": 0.8351 + }, + { + "start": 19359.44, + "end": 19364.96, + "probability": 0.9893 + }, + { + "start": 19364.96, + "end": 19371.62, + "probability": 0.99 + }, + { + "start": 19372.82, + "end": 19376.76, + "probability": 0.8634 + }, + { + "start": 19377.76, + "end": 19378.12, + "probability": 0.6259 + }, + { + "start": 19378.18, + "end": 19381.92, + "probability": 0.8383 + }, + { + "start": 19382.08, + "end": 19383.24, + "probability": 0.4881 + }, + { + "start": 19383.38, + "end": 19390.34, + "probability": 0.8538 + }, + { + "start": 19390.34, + "end": 19394.16, + "probability": 0.9896 + }, + { + "start": 19394.4, + "end": 19399.66, + "probability": 0.9147 + }, + { + "start": 19399.98, + "end": 19401.98, + "probability": 0.8715 + }, + { + "start": 19404.78, + "end": 19406.42, + "probability": 0.9999 + }, + { + "start": 19406.6, + "end": 19408.76, + "probability": 0.7628 + }, + { + "start": 19408.94, + "end": 19411.19, + "probability": 0.9951 + }, + { + "start": 19411.82, + "end": 19415.62, + "probability": 0.9993 + }, + { + "start": 19415.62, + "end": 19418.88, + "probability": 0.9912 + }, + { + "start": 19420.24, + "end": 19422.52, + "probability": 0.9163 + }, + { + "start": 19422.92, + "end": 19429.84, + "probability": 0.9951 + }, + { + "start": 19430.38, + "end": 19431.26, + "probability": 0.9906 + }, + { + "start": 19432.54, + "end": 19438.14, + "probability": 0.9268 + }, + { + "start": 19439.04, + "end": 19447.06, + "probability": 0.9961 + }, + { + "start": 19447.24, + "end": 19448.06, + "probability": 0.8917 + }, + { + "start": 19451.22, + "end": 19455.08, + "probability": 0.9623 + }, + { + "start": 19455.08, + "end": 19458.12, + "probability": 0.9854 + }, + { + "start": 19458.26, + "end": 19459.74, + "probability": 0.9844 + }, + { + "start": 19462.39, + "end": 19468.62, + "probability": 0.9672 + }, + { + "start": 19468.62, + "end": 19475.38, + "probability": 0.9832 + }, + { + "start": 19476.42, + "end": 19480.58, + "probability": 0.9972 + }, + { + "start": 19481.16, + "end": 19484.98, + "probability": 0.7516 + }, + { + "start": 19486.54, + "end": 19489.1, + "probability": 0.9902 + }, + { + "start": 19489.3, + "end": 19492.58, + "probability": 0.9767 + }, + { + "start": 19493.28, + "end": 19497.96, + "probability": 0.9211 + }, + { + "start": 19498.42, + "end": 19498.58, + "probability": 0.6724 + }, + { + "start": 19498.84, + "end": 19500.58, + "probability": 0.6748 + }, + { + "start": 19500.82, + "end": 19504.7, + "probability": 0.9679 + }, + { + "start": 19504.94, + "end": 19509.22, + "probability": 0.981 + }, + { + "start": 19509.9, + "end": 19514.2, + "probability": 0.9824 + }, + { + "start": 19514.2, + "end": 19518.82, + "probability": 0.9861 + }, + { + "start": 19518.82, + "end": 19524.4, + "probability": 0.942 + }, + { + "start": 19525.3, + "end": 19527.08, + "probability": 0.729 + }, + { + "start": 19527.58, + "end": 19530.9, + "probability": 0.939 + }, + { + "start": 19530.9, + "end": 19535.78, + "probability": 0.9731 + }, + { + "start": 19535.78, + "end": 19538.52, + "probability": 0.9398 + }, + { + "start": 19538.92, + "end": 19539.18, + "probability": 0.7195 + }, + { + "start": 19540.14, + "end": 19540.66, + "probability": 0.5082 + }, + { + "start": 19542.4, + "end": 19543.74, + "probability": 0.7111 + }, + { + "start": 19544.92, + "end": 19547.54, + "probability": 0.7764 + }, + { + "start": 19556.32, + "end": 19557.32, + "probability": 0.3303 + }, + { + "start": 19557.36, + "end": 19557.36, + "probability": 0.5123 + }, + { + "start": 19557.36, + "end": 19558.0, + "probability": 0.7436 + }, + { + "start": 19558.06, + "end": 19559.54, + "probability": 0.7285 + }, + { + "start": 19559.54, + "end": 19560.24, + "probability": 0.445 + }, + { + "start": 19561.58, + "end": 19563.74, + "probability": 0.9417 + }, + { + "start": 19564.52, + "end": 19566.94, + "probability": 0.9963 + }, + { + "start": 19567.86, + "end": 19568.34, + "probability": 0.6028 + }, + { + "start": 19569.3, + "end": 19574.86, + "probability": 0.9961 + }, + { + "start": 19574.86, + "end": 19580.38, + "probability": 0.9983 + }, + { + "start": 19581.8, + "end": 19586.54, + "probability": 0.9865 + }, + { + "start": 19586.6, + "end": 19588.1, + "probability": 0.9244 + }, + { + "start": 19588.68, + "end": 19589.84, + "probability": 0.5764 + }, + { + "start": 19590.52, + "end": 19593.6, + "probability": 0.9264 + }, + { + "start": 19594.3, + "end": 19597.34, + "probability": 0.9731 + }, + { + "start": 19597.4, + "end": 19597.8, + "probability": 0.8627 + }, + { + "start": 19597.88, + "end": 19600.2, + "probability": 0.973 + }, + { + "start": 19600.74, + "end": 19602.6, + "probability": 0.9672 + }, + { + "start": 19604.08, + "end": 19604.88, + "probability": 0.6301 + }, + { + "start": 19606.46, + "end": 19607.62, + "probability": 0.8708 + }, + { + "start": 19608.0, + "end": 19609.12, + "probability": 0.4848 + }, + { + "start": 19609.16, + "end": 19611.32, + "probability": 0.8079 + }, + { + "start": 19612.06, + "end": 19614.72, + "probability": 0.9585 + }, + { + "start": 19615.84, + "end": 19619.36, + "probability": 0.9918 + }, + { + "start": 19619.94, + "end": 19622.2, + "probability": 0.9438 + }, + { + "start": 19624.18, + "end": 19625.9, + "probability": 0.8743 + }, + { + "start": 19625.96, + "end": 19630.36, + "probability": 0.9908 + }, + { + "start": 19630.54, + "end": 19631.68, + "probability": 0.8008 + }, + { + "start": 19632.2, + "end": 19636.66, + "probability": 0.9558 + }, + { + "start": 19636.66, + "end": 19639.08, + "probability": 0.9467 + }, + { + "start": 19639.78, + "end": 19643.6, + "probability": 0.9986 + }, + { + "start": 19643.74, + "end": 19644.2, + "probability": 0.7687 + }, + { + "start": 19644.92, + "end": 19647.16, + "probability": 0.6531 + }, + { + "start": 19648.24, + "end": 19651.42, + "probability": 0.9079 + }, + { + "start": 19652.06, + "end": 19653.18, + "probability": 0.7909 + }, + { + "start": 19653.8, + "end": 19656.56, + "probability": 0.9917 + }, + { + "start": 19657.22, + "end": 19661.62, + "probability": 0.9697 + }, + { + "start": 19662.48, + "end": 19666.26, + "probability": 0.9928 + }, + { + "start": 19667.56, + "end": 19673.42, + "probability": 0.9961 + }, + { + "start": 19673.88, + "end": 19674.1, + "probability": 0.4264 + }, + { + "start": 19674.18, + "end": 19677.34, + "probability": 0.9937 + }, + { + "start": 19677.34, + "end": 19680.78, + "probability": 0.9969 + }, + { + "start": 19681.64, + "end": 19684.38, + "probability": 0.9924 + }, + { + "start": 19684.38, + "end": 19688.06, + "probability": 0.9984 + }, + { + "start": 19688.46, + "end": 19691.62, + "probability": 0.9692 + }, + { + "start": 19692.22, + "end": 19692.72, + "probability": 0.7998 + }, + { + "start": 19693.64, + "end": 19697.2, + "probability": 0.772 + }, + { + "start": 19698.24, + "end": 19700.34, + "probability": 0.9965 + }, + { + "start": 19700.48, + "end": 19702.87, + "probability": 0.9707 + }, + { + "start": 19703.38, + "end": 19707.66, + "probability": 0.9949 + }, + { + "start": 19708.22, + "end": 19709.6, + "probability": 0.8613 + }, + { + "start": 19709.84, + "end": 19713.06, + "probability": 0.9645 + }, + { + "start": 19713.12, + "end": 19715.18, + "probability": 0.8273 + }, + { + "start": 19715.78, + "end": 19719.18, + "probability": 0.9365 + }, + { + "start": 19720.32, + "end": 19720.32, + "probability": 0.0335 + }, + { + "start": 19720.32, + "end": 19727.36, + "probability": 0.8062 + }, + { + "start": 19727.78, + "end": 19732.32, + "probability": 0.9991 + }, + { + "start": 19732.32, + "end": 19736.7, + "probability": 0.9487 + }, + { + "start": 19737.2, + "end": 19739.3, + "probability": 0.6422 + }, + { + "start": 19739.92, + "end": 19742.8, + "probability": 0.9907 + }, + { + "start": 19743.4, + "end": 19746.32, + "probability": 0.9357 + }, + { + "start": 19746.4, + "end": 19750.52, + "probability": 0.7352 + }, + { + "start": 19751.68, + "end": 19752.96, + "probability": 0.9244 + }, + { + "start": 19753.64, + "end": 19755.54, + "probability": 0.7545 + }, + { + "start": 19755.68, + "end": 19761.18, + "probability": 0.0236 + }, + { + "start": 19761.56, + "end": 19761.56, + "probability": 0.3858 + }, + { + "start": 19761.56, + "end": 19761.56, + "probability": 0.1004 + }, + { + "start": 19761.56, + "end": 19761.56, + "probability": 0.0057 + }, + { + "start": 19761.56, + "end": 19762.6, + "probability": 0.2215 + }, + { + "start": 19762.72, + "end": 19766.06, + "probability": 0.9803 + }, + { + "start": 19766.06, + "end": 19769.82, + "probability": 0.9663 + }, + { + "start": 19770.3, + "end": 19772.44, + "probability": 0.7788 + }, + { + "start": 19773.22, + "end": 19777.14, + "probability": 0.9224 + }, + { + "start": 19778.52, + "end": 19779.26, + "probability": 0.4248 + }, + { + "start": 19779.28, + "end": 19780.18, + "probability": 0.8413 + }, + { + "start": 19780.5, + "end": 19781.4, + "probability": 0.9385 + }, + { + "start": 19781.52, + "end": 19783.26, + "probability": 0.9897 + }, + { + "start": 19785.41, + "end": 19786.2, + "probability": 0.0827 + }, + { + "start": 19786.2, + "end": 19786.9, + "probability": 0.0763 + }, + { + "start": 19787.16, + "end": 19788.36, + "probability": 0.3948 + }, + { + "start": 19788.5, + "end": 19791.12, + "probability": 0.7909 + }, + { + "start": 19791.18, + "end": 19791.18, + "probability": 0.0523 + }, + { + "start": 19791.18, + "end": 19791.18, + "probability": 0.3711 + }, + { + "start": 19791.3, + "end": 19792.42, + "probability": 0.7516 + }, + { + "start": 19792.5, + "end": 19796.36, + "probability": 0.2282 + }, + { + "start": 19797.3, + "end": 19797.42, + "probability": 0.0141 + }, + { + "start": 19797.54, + "end": 19797.72, + "probability": 0.3883 + }, + { + "start": 19797.72, + "end": 19798.49, + "probability": 0.2218 + }, + { + "start": 19799.02, + "end": 19799.58, + "probability": 0.65 + }, + { + "start": 19799.68, + "end": 19800.7, + "probability": 0.9038 + }, + { + "start": 19800.8, + "end": 19802.36, + "probability": 0.5487 + }, + { + "start": 19802.48, + "end": 19807.76, + "probability": 0.8464 + }, + { + "start": 19808.52, + "end": 19811.22, + "probability": 0.6373 + }, + { + "start": 19811.5, + "end": 19812.46, + "probability": 0.6857 + }, + { + "start": 19813.19, + "end": 19815.68, + "probability": 0.8983 + }, + { + "start": 19815.74, + "end": 19816.48, + "probability": 0.7207 + }, + { + "start": 19816.64, + "end": 19817.04, + "probability": 0.7727 + }, + { + "start": 19817.28, + "end": 19819.26, + "probability": 0.7538 + }, + { + "start": 19819.36, + "end": 19822.34, + "probability": 0.9468 + }, + { + "start": 19822.68, + "end": 19825.92, + "probability": 0.9915 + }, + { + "start": 19825.92, + "end": 19829.66, + "probability": 0.9991 + }, + { + "start": 19829.74, + "end": 19830.7, + "probability": 0.9829 + }, + { + "start": 19831.62, + "end": 19834.14, + "probability": 0.9017 + }, + { + "start": 19835.0, + "end": 19837.72, + "probability": 0.8008 + }, + { + "start": 19838.52, + "end": 19841.74, + "probability": 0.7087 + }, + { + "start": 19841.9, + "end": 19843.3, + "probability": 0.8278 + }, + { + "start": 19843.42, + "end": 19844.72, + "probability": 0.8625 + }, + { + "start": 19845.22, + "end": 19846.7, + "probability": 0.8431 + }, + { + "start": 19847.38, + "end": 19848.36, + "probability": 0.8791 + }, + { + "start": 19849.12, + "end": 19852.08, + "probability": 0.9656 + }, + { + "start": 19853.18, + "end": 19853.76, + "probability": 0.9279 + }, + { + "start": 19853.94, + "end": 19854.72, + "probability": 0.6203 + }, + { + "start": 19855.24, + "end": 19860.96, + "probability": 0.9744 + }, + { + "start": 19861.54, + "end": 19864.52, + "probability": 0.9843 + }, + { + "start": 19864.52, + "end": 19868.26, + "probability": 0.8921 + }, + { + "start": 19868.66, + "end": 19869.44, + "probability": 0.7406 + }, + { + "start": 19869.66, + "end": 19869.94, + "probability": 0.3195 + }, + { + "start": 19870.16, + "end": 19871.42, + "probability": 0.797 + }, + { + "start": 19871.92, + "end": 19876.7, + "probability": 0.9676 + }, + { + "start": 19877.28, + "end": 19880.66, + "probability": 0.9314 + }, + { + "start": 19882.08, + "end": 19884.77, + "probability": 0.8602 + }, + { + "start": 19885.12, + "end": 19888.98, + "probability": 0.9681 + }, + { + "start": 19889.38, + "end": 19891.3, + "probability": 0.9967 + }, + { + "start": 19891.38, + "end": 19896.56, + "probability": 0.9585 + }, + { + "start": 19897.14, + "end": 19898.96, + "probability": 0.5669 + }, + { + "start": 19900.12, + "end": 19901.26, + "probability": 0.8422 + }, + { + "start": 19901.74, + "end": 19904.62, + "probability": 0.8019 + }, + { + "start": 19905.06, + "end": 19907.74, + "probability": 0.9687 + }, + { + "start": 19908.14, + "end": 19911.08, + "probability": 0.8895 + }, + { + "start": 19911.86, + "end": 19915.04, + "probability": 0.9709 + }, + { + "start": 19915.86, + "end": 19917.02, + "probability": 0.0189 + }, + { + "start": 19917.02, + "end": 19919.48, + "probability": 0.9795 + }, + { + "start": 19919.48, + "end": 19925.1, + "probability": 0.9214 + }, + { + "start": 19925.58, + "end": 19930.56, + "probability": 0.7894 + }, + { + "start": 19930.98, + "end": 19931.46, + "probability": 0.8333 + }, + { + "start": 19931.92, + "end": 19933.18, + "probability": 0.4802 + }, + { + "start": 19933.56, + "end": 19939.24, + "probability": 0.3155 + }, + { + "start": 19939.24, + "end": 19940.5, + "probability": 0.17 + }, + { + "start": 19940.5, + "end": 19945.24, + "probability": 0.6222 + }, + { + "start": 19945.32, + "end": 19945.42, + "probability": 0.4329 + }, + { + "start": 19945.62, + "end": 19945.62, + "probability": 0.0766 + }, + { + "start": 19945.62, + "end": 19948.5, + "probability": 0.0717 + }, + { + "start": 19948.52, + "end": 19951.88, + "probability": 0.985 + }, + { + "start": 19951.98, + "end": 19954.26, + "probability": 0.5594 + }, + { + "start": 19955.2, + "end": 19956.62, + "probability": 0.8156 + }, + { + "start": 19957.22, + "end": 19960.26, + "probability": 0.9753 + }, + { + "start": 19961.1, + "end": 19962.14, + "probability": 0.9451 + }, + { + "start": 19962.54, + "end": 19969.48, + "probability": 0.9886 + }, + { + "start": 19969.66, + "end": 19969.8, + "probability": 0.4762 + }, + { + "start": 19969.96, + "end": 19974.9, + "probability": 0.9958 + }, + { + "start": 19975.02, + "end": 19975.34, + "probability": 0.7109 + }, + { + "start": 19975.64, + "end": 19976.71, + "probability": 0.1904 + }, + { + "start": 19977.24, + "end": 19978.46, + "probability": 0.8535 + }, + { + "start": 19978.8, + "end": 19979.24, + "probability": 0.846 + }, + { + "start": 19979.28, + "end": 19979.7, + "probability": 0.7375 + }, + { + "start": 19980.77, + "end": 19984.48, + "probability": 0.8996 + }, + { + "start": 19988.88, + "end": 19989.44, + "probability": 0.9714 + }, + { + "start": 19990.12, + "end": 19990.7, + "probability": 0.7955 + }, + { + "start": 19990.74, + "end": 19991.32, + "probability": 0.2592 + }, + { + "start": 19991.56, + "end": 19993.12, + "probability": 0.853 + }, + { + "start": 19993.22, + "end": 19994.84, + "probability": 0.7135 + }, + { + "start": 19994.84, + "end": 19999.42, + "probability": 0.8971 + }, + { + "start": 19999.88, + "end": 20004.82, + "probability": 0.9964 + }, + { + "start": 20005.38, + "end": 20008.9, + "probability": 0.9253 + }, + { + "start": 20009.3, + "end": 20013.58, + "probability": 0.983 + }, + { + "start": 20014.04, + "end": 20014.72, + "probability": 0.5906 + }, + { + "start": 20015.16, + "end": 20018.26, + "probability": 0.8393 + }, + { + "start": 20018.62, + "end": 20019.82, + "probability": 0.5481 + }, + { + "start": 20019.94, + "end": 20024.18, + "probability": 0.6891 + }, + { + "start": 20024.92, + "end": 20026.66, + "probability": 0.9029 + }, + { + "start": 20027.18, + "end": 20028.1, + "probability": 0.8754 + }, + { + "start": 20028.4, + "end": 20029.66, + "probability": 0.7375 + }, + { + "start": 20029.72, + "end": 20031.31, + "probability": 0.8513 + }, + { + "start": 20031.96, + "end": 20033.68, + "probability": 0.8876 + }, + { + "start": 20034.04, + "end": 20034.8, + "probability": 0.812 + }, + { + "start": 20034.94, + "end": 20035.92, + "probability": 0.1253 + }, + { + "start": 20036.34, + "end": 20038.92, + "probability": 0.9733 + }, + { + "start": 20039.3, + "end": 20040.84, + "probability": 0.6461 + }, + { + "start": 20040.88, + "end": 20042.18, + "probability": 0.9296 + }, + { + "start": 20042.76, + "end": 20045.9, + "probability": 0.9597 + }, + { + "start": 20046.48, + "end": 20049.39, + "probability": 0.9557 + }, + { + "start": 20050.1, + "end": 20050.32, + "probability": 0.575 + }, + { + "start": 20050.74, + "end": 20051.94, + "probability": 0.7997 + }, + { + "start": 20052.32, + "end": 20055.24, + "probability": 0.9705 + }, + { + "start": 20055.6, + "end": 20057.88, + "probability": 0.9888 + }, + { + "start": 20058.24, + "end": 20061.22, + "probability": 0.6558 + }, + { + "start": 20061.22, + "end": 20063.74, + "probability": 0.8726 + }, + { + "start": 20064.08, + "end": 20067.24, + "probability": 0.9506 + }, + { + "start": 20067.52, + "end": 20068.42, + "probability": 0.7928 + }, + { + "start": 20069.28, + "end": 20070.98, + "probability": 0.8433 + }, + { + "start": 20071.48, + "end": 20071.58, + "probability": 0.6774 + }, + { + "start": 20074.66, + "end": 20076.74, + "probability": 0.7486 + }, + { + "start": 20077.38, + "end": 20079.26, + "probability": 0.6458 + }, + { + "start": 20079.44, + "end": 20081.76, + "probability": 0.8657 + }, + { + "start": 20084.58, + "end": 20088.1, + "probability": 0.1198 + }, + { + "start": 20089.04, + "end": 20090.52, + "probability": 0.8733 + }, + { + "start": 20092.34, + "end": 20094.32, + "probability": 0.3372 + }, + { + "start": 20094.56, + "end": 20094.86, + "probability": 0.4984 + }, + { + "start": 20097.7, + "end": 20099.94, + "probability": 0.9888 + }, + { + "start": 20100.76, + "end": 20100.94, + "probability": 0.9302 + }, + { + "start": 20103.0, + "end": 20104.28, + "probability": 0.0797 + }, + { + "start": 20104.74, + "end": 20105.58, + "probability": 0.1256 + }, + { + "start": 20107.92, + "end": 20108.96, + "probability": 0.0396 + }, + { + "start": 20109.2, + "end": 20109.88, + "probability": 0.3997 + }, + { + "start": 20109.96, + "end": 20111.06, + "probability": 0.7643 + }, + { + "start": 20112.48, + "end": 20115.86, + "probability": 0.1542 + }, + { + "start": 20116.72, + "end": 20119.88, + "probability": 0.1162 + }, + { + "start": 20127.56, + "end": 20128.7, + "probability": 0.0469 + }, + { + "start": 20128.94, + "end": 20131.74, + "probability": 0.476 + }, + { + "start": 20132.28, + "end": 20133.34, + "probability": 0.5058 + }, + { + "start": 20134.16, + "end": 20137.88, + "probability": 0.6514 + }, + { + "start": 20139.9, + "end": 20143.68, + "probability": 0.8024 + }, + { + "start": 20143.74, + "end": 20146.54, + "probability": 0.8303 + }, + { + "start": 20146.84, + "end": 20147.72, + "probability": 0.7504 + }, + { + "start": 20148.46, + "end": 20149.8, + "probability": 0.224 + }, + { + "start": 20149.88, + "end": 20150.76, + "probability": 0.6699 + }, + { + "start": 20151.0, + "end": 20151.08, + "probability": 0.4239 + }, + { + "start": 20151.34, + "end": 20151.86, + "probability": 0.8619 + }, + { + "start": 20152.22, + "end": 20152.72, + "probability": 0.088 + }, + { + "start": 20152.9, + "end": 20153.3, + "probability": 0.7044 + }, + { + "start": 20153.4, + "end": 20153.76, + "probability": 0.8527 + }, + { + "start": 20153.9, + "end": 20154.36, + "probability": 0.8618 + }, + { + "start": 20154.52, + "end": 20155.7, + "probability": 0.8398 + }, + { + "start": 20155.7, + "end": 20156.8, + "probability": 0.981 + }, + { + "start": 20157.24, + "end": 20157.24, + "probability": 0.0807 + }, + { + "start": 20157.24, + "end": 20157.46, + "probability": 0.1901 + }, + { + "start": 20159.56, + "end": 20160.93, + "probability": 0.6948 + }, + { + "start": 20161.54, + "end": 20163.68, + "probability": 0.0401 + }, + { + "start": 20163.88, + "end": 20164.96, + "probability": 0.0382 + }, + { + "start": 20165.26, + "end": 20165.44, + "probability": 0.0899 + }, + { + "start": 20165.44, + "end": 20165.87, + "probability": 0.1099 + }, + { + "start": 20166.72, + "end": 20167.48, + "probability": 0.6683 + }, + { + "start": 20168.14, + "end": 20168.14, + "probability": 0.0949 + }, + { + "start": 20168.14, + "end": 20168.14, + "probability": 0.1083 + }, + { + "start": 20168.14, + "end": 20168.14, + "probability": 0.3986 + }, + { + "start": 20168.14, + "end": 20169.86, + "probability": 0.5138 + }, + { + "start": 20173.27, + "end": 20175.68, + "probability": 0.0959 + }, + { + "start": 20175.68, + "end": 20177.44, + "probability": 0.3853 + }, + { + "start": 20179.18, + "end": 20179.62, + "probability": 0.3181 + }, + { + "start": 20182.4, + "end": 20183.68, + "probability": 0.0492 + }, + { + "start": 20183.68, + "end": 20183.68, + "probability": 0.0971 + }, + { + "start": 20183.68, + "end": 20184.78, + "probability": 0.0632 + }, + { + "start": 20185.24, + "end": 20190.0, + "probability": 0.9198 + }, + { + "start": 20190.76, + "end": 20191.1, + "probability": 0.7266 + }, + { + "start": 20191.68, + "end": 20191.7, + "probability": 0.0329 + }, + { + "start": 20191.7, + "end": 20192.74, + "probability": 0.7913 + }, + { + "start": 20192.84, + "end": 20194.88, + "probability": 0.9883 + }, + { + "start": 20195.08, + "end": 20199.18, + "probability": 0.8734 + }, + { + "start": 20199.18, + "end": 20202.68, + "probability": 0.9863 + }, + { + "start": 20203.28, + "end": 20204.48, + "probability": 0.067 + }, + { + "start": 20204.48, + "end": 20204.92, + "probability": 0.4321 + }, + { + "start": 20205.18, + "end": 20209.9, + "probability": 0.893 + }, + { + "start": 20209.92, + "end": 20215.74, + "probability": 0.9777 + }, + { + "start": 20216.4, + "end": 20220.56, + "probability": 0.9502 + }, + { + "start": 20225.22, + "end": 20226.92, + "probability": 0.709 + }, + { + "start": 20234.74, + "end": 20236.56, + "probability": 0.4129 + }, + { + "start": 20237.38, + "end": 20237.42, + "probability": 0.45 + }, + { + "start": 20237.42, + "end": 20239.32, + "probability": 0.8887 + }, + { + "start": 20239.54, + "end": 20242.55, + "probability": 0.9751 + }, + { + "start": 20243.48, + "end": 20250.13, + "probability": 0.8999 + }, + { + "start": 20251.06, + "end": 20253.04, + "probability": 0.9317 + }, + { + "start": 20253.18, + "end": 20257.24, + "probability": 0.9287 + }, + { + "start": 20257.24, + "end": 20260.56, + "probability": 0.9526 + }, + { + "start": 20261.98, + "end": 20261.98, + "probability": 0.2031 + }, + { + "start": 20261.98, + "end": 20264.74, + "probability": 0.5119 + }, + { + "start": 20265.4, + "end": 20265.68, + "probability": 0.2019 + }, + { + "start": 20265.68, + "end": 20266.48, + "probability": 0.5379 + }, + { + "start": 20266.6, + "end": 20267.98, + "probability": 0.3398 + }, + { + "start": 20267.98, + "end": 20268.0, + "probability": 0.1283 + }, + { + "start": 20268.0, + "end": 20269.54, + "probability": 0.2708 + }, + { + "start": 20269.94, + "end": 20270.08, + "probability": 0.0031 + }, + { + "start": 20270.16, + "end": 20270.68, + "probability": 0.1118 + }, + { + "start": 20271.08, + "end": 20272.36, + "probability": 0.3304 + }, + { + "start": 20272.44, + "end": 20274.06, + "probability": 0.5722 + }, + { + "start": 20274.22, + "end": 20275.42, + "probability": 0.4856 + }, + { + "start": 20275.5, + "end": 20276.12, + "probability": 0.72 + }, + { + "start": 20276.24, + "end": 20277.66, + "probability": 0.7344 + }, + { + "start": 20277.76, + "end": 20278.27, + "probability": 0.3801 + }, + { + "start": 20278.52, + "end": 20278.68, + "probability": 0.1403 + }, + { + "start": 20278.7, + "end": 20278.8, + "probability": 0.2418 + }, + { + "start": 20279.52, + "end": 20283.82, + "probability": 0.7074 + }, + { + "start": 20284.04, + "end": 20284.32, + "probability": 0.283 + }, + { + "start": 20284.32, + "end": 20287.44, + "probability": 0.0441 + }, + { + "start": 20287.44, + "end": 20287.44, + "probability": 0.1974 + }, + { + "start": 20287.44, + "end": 20290.12, + "probability": 0.8309 + }, + { + "start": 20290.18, + "end": 20290.72, + "probability": 0.6475 + }, + { + "start": 20290.88, + "end": 20293.32, + "probability": 0.126 + }, + { + "start": 20293.98, + "end": 20294.7, + "probability": 0.0835 + }, + { + "start": 20295.2, + "end": 20295.42, + "probability": 0.6708 + }, + { + "start": 20296.18, + "end": 20297.36, + "probability": 0.8203 + }, + { + "start": 20297.44, + "end": 20301.24, + "probability": 0.9949 + }, + { + "start": 20301.24, + "end": 20303.82, + "probability": 0.9951 + }, + { + "start": 20304.48, + "end": 20309.82, + "probability": 0.9909 + }, + { + "start": 20310.56, + "end": 20313.5, + "probability": 0.8864 + }, + { + "start": 20314.38, + "end": 20316.72, + "probability": 0.9782 + }, + { + "start": 20316.9, + "end": 20319.16, + "probability": 0.9443 + }, + { + "start": 20319.58, + "end": 20320.28, + "probability": 0.8518 + }, + { + "start": 20320.78, + "end": 20324.74, + "probability": 0.9629 + }, + { + "start": 20326.54, + "end": 20328.32, + "probability": 0.2828 + }, + { + "start": 20329.54, + "end": 20329.54, + "probability": 0.185 + }, + { + "start": 20329.54, + "end": 20330.92, + "probability": 0.6626 + }, + { + "start": 20331.14, + "end": 20331.76, + "probability": 0.5322 + }, + { + "start": 20332.48, + "end": 20333.32, + "probability": 0.2531 + }, + { + "start": 20333.8, + "end": 20337.58, + "probability": 0.9346 + }, + { + "start": 20337.78, + "end": 20337.84, + "probability": 0.2186 + }, + { + "start": 20337.84, + "end": 20338.02, + "probability": 0.3047 + }, + { + "start": 20339.7, + "end": 20341.32, + "probability": 0.9203 + }, + { + "start": 20341.4, + "end": 20342.58, + "probability": 0.9554 + }, + { + "start": 20342.96, + "end": 20344.1, + "probability": 0.9529 + }, + { + "start": 20344.46, + "end": 20346.7, + "probability": 0.7493 + }, + { + "start": 20347.72, + "end": 20349.7, + "probability": 0.9481 + }, + { + "start": 20350.54, + "end": 20355.98, + "probability": 0.9927 + }, + { + "start": 20356.8, + "end": 20359.2, + "probability": 0.9944 + }, + { + "start": 20359.8, + "end": 20361.64, + "probability": 0.9789 + }, + { + "start": 20362.18, + "end": 20363.48, + "probability": 0.8872 + }, + { + "start": 20363.82, + "end": 20369.3, + "probability": 0.9791 + }, + { + "start": 20369.3, + "end": 20373.6, + "probability": 0.968 + }, + { + "start": 20374.36, + "end": 20376.24, + "probability": 0.9881 + }, + { + "start": 20377.1, + "end": 20379.56, + "probability": 0.9969 + }, + { + "start": 20379.7, + "end": 20380.46, + "probability": 0.4441 + }, + { + "start": 20380.7, + "end": 20382.52, + "probability": 0.98 + }, + { + "start": 20384.3, + "end": 20390.48, + "probability": 0.9074 + }, + { + "start": 20391.3, + "end": 20397.84, + "probability": 0.995 + }, + { + "start": 20398.66, + "end": 20401.24, + "probability": 0.9873 + }, + { + "start": 20402.32, + "end": 20408.4, + "probability": 0.9271 + }, + { + "start": 20409.26, + "end": 20417.3, + "probability": 0.9416 + }, + { + "start": 20417.3, + "end": 20420.54, + "probability": 0.999 + }, + { + "start": 20422.0, + "end": 20423.4, + "probability": 0.8915 + }, + { + "start": 20424.03, + "end": 20431.02, + "probability": 0.6487 + }, + { + "start": 20431.08, + "end": 20432.12, + "probability": 0.8175 + }, + { + "start": 20432.2, + "end": 20434.2, + "probability": 0.7314 + }, + { + "start": 20434.82, + "end": 20438.94, + "probability": 0.8765 + }, + { + "start": 20440.04, + "end": 20442.1, + "probability": 0.9429 + }, + { + "start": 20446.64, + "end": 20447.9, + "probability": 0.659 + }, + { + "start": 20448.36, + "end": 20453.26, + "probability": 0.992 + }, + { + "start": 20454.08, + "end": 20455.12, + "probability": 0.8887 + }, + { + "start": 20455.56, + "end": 20458.82, + "probability": 0.9883 + }, + { + "start": 20459.5, + "end": 20464.14, + "probability": 0.696 + }, + { + "start": 20464.9, + "end": 20465.99, + "probability": 0.5051 + }, + { + "start": 20466.74, + "end": 20472.1, + "probability": 0.9824 + }, + { + "start": 20472.96, + "end": 20473.38, + "probability": 0.5138 + }, + { + "start": 20473.52, + "end": 20474.06, + "probability": 0.8428 + }, + { + "start": 20474.12, + "end": 20474.86, + "probability": 0.847 + }, + { + "start": 20474.9, + "end": 20475.92, + "probability": 0.5596 + }, + { + "start": 20476.78, + "end": 20479.92, + "probability": 0.9938 + }, + { + "start": 20480.6, + "end": 20483.4, + "probability": 0.981 + }, + { + "start": 20484.16, + "end": 20487.54, + "probability": 0.8843 + }, + { + "start": 20488.72, + "end": 20489.56, + "probability": 0.839 + }, + { + "start": 20489.66, + "end": 20490.68, + "probability": 0.9338 + }, + { + "start": 20490.74, + "end": 20494.8, + "probability": 0.9568 + }, + { + "start": 20495.5, + "end": 20499.24, + "probability": 0.9354 + }, + { + "start": 20499.32, + "end": 20502.88, + "probability": 0.8971 + }, + { + "start": 20503.0, + "end": 20503.9, + "probability": 0.8383 + }, + { + "start": 20504.84, + "end": 20508.68, + "probability": 0.974 + }, + { + "start": 20509.26, + "end": 20510.34, + "probability": 0.9928 + }, + { + "start": 20511.06, + "end": 20514.6, + "probability": 0.8453 + }, + { + "start": 20514.98, + "end": 20516.36, + "probability": 0.9499 + }, + { + "start": 20516.44, + "end": 20517.18, + "probability": 0.7491 + }, + { + "start": 20517.54, + "end": 20518.12, + "probability": 0.7113 + }, + { + "start": 20518.18, + "end": 20519.1, + "probability": 0.9382 + }, + { + "start": 20527.64, + "end": 20528.76, + "probability": 0.532 + }, + { + "start": 20530.14, + "end": 20531.1, + "probability": 0.8169 + }, + { + "start": 20531.5, + "end": 20535.78, + "probability": 0.8505 + }, + { + "start": 20537.2, + "end": 20537.52, + "probability": 0.897 + }, + { + "start": 20539.64, + "end": 20542.32, + "probability": 0.7099 + }, + { + "start": 20543.54, + "end": 20549.6, + "probability": 0.9732 + }, + { + "start": 20550.0, + "end": 20551.5, + "probability": 0.8436 + }, + { + "start": 20555.24, + "end": 20558.68, + "probability": 0.9937 + }, + { + "start": 20560.3, + "end": 20560.8, + "probability": 0.6627 + }, + { + "start": 20562.74, + "end": 20563.64, + "probability": 0.7142 + }, + { + "start": 20566.46, + "end": 20568.06, + "probability": 0.7389 + }, + { + "start": 20569.2, + "end": 20570.16, + "probability": 0.9759 + }, + { + "start": 20571.26, + "end": 20571.92, + "probability": 0.9838 + }, + { + "start": 20573.92, + "end": 20580.9, + "probability": 0.9818 + }, + { + "start": 20583.18, + "end": 20585.5, + "probability": 0.6072 + }, + { + "start": 20585.94, + "end": 20591.8, + "probability": 0.8161 + }, + { + "start": 20594.08, + "end": 20595.82, + "probability": 0.7142 + }, + { + "start": 20598.02, + "end": 20599.16, + "probability": 0.3909 + }, + { + "start": 20602.38, + "end": 20603.56, + "probability": 0.6765 + }, + { + "start": 20604.38, + "end": 20604.98, + "probability": 0.0659 + }, + { + "start": 20605.5, + "end": 20608.04, + "probability": 0.8917 + }, + { + "start": 20609.34, + "end": 20613.4, + "probability": 0.9922 + }, + { + "start": 20614.64, + "end": 20615.4, + "probability": 0.9285 + }, + { + "start": 20616.04, + "end": 20619.32, + "probability": 0.8091 + }, + { + "start": 20619.98, + "end": 20621.04, + "probability": 0.9382 + }, + { + "start": 20621.6, + "end": 20622.84, + "probability": 0.8445 + }, + { + "start": 20624.5, + "end": 20625.27, + "probability": 0.9105 + }, + { + "start": 20625.36, + "end": 20627.74, + "probability": 0.9451 + }, + { + "start": 20628.78, + "end": 20630.82, + "probability": 0.4577 + }, + { + "start": 20631.02, + "end": 20635.48, + "probability": 0.9852 + }, + { + "start": 20636.2, + "end": 20642.56, + "probability": 0.9266 + }, + { + "start": 20642.74, + "end": 20648.04, + "probability": 0.9851 + }, + { + "start": 20648.28, + "end": 20649.64, + "probability": 0.9845 + }, + { + "start": 20650.68, + "end": 20650.96, + "probability": 0.452 + }, + { + "start": 20651.3, + "end": 20656.62, + "probability": 0.8485 + }, + { + "start": 20657.06, + "end": 20658.36, + "probability": 0.9993 + }, + { + "start": 20658.84, + "end": 20659.84, + "probability": 0.8292 + }, + { + "start": 20659.92, + "end": 20665.46, + "probability": 0.9833 + }, + { + "start": 20666.4, + "end": 20667.66, + "probability": 0.9701 + }, + { + "start": 20667.94, + "end": 20668.38, + "probability": 0.7401 + }, + { + "start": 20668.44, + "end": 20671.02, + "probability": 0.806 + }, + { + "start": 20671.94, + "end": 20675.36, + "probability": 0.9678 + }, + { + "start": 20675.68, + "end": 20676.46, + "probability": 0.8282 + }, + { + "start": 20676.58, + "end": 20678.56, + "probability": 0.9723 + }, + { + "start": 20679.06, + "end": 20680.32, + "probability": 0.9646 + }, + { + "start": 20680.36, + "end": 20682.66, + "probability": 0.9741 + }, + { + "start": 20682.86, + "end": 20685.42, + "probability": 0.7741 + }, + { + "start": 20686.5, + "end": 20693.26, + "probability": 0.9966 + }, + { + "start": 20693.36, + "end": 20695.06, + "probability": 0.3149 + }, + { + "start": 20695.48, + "end": 20698.12, + "probability": 0.7744 + }, + { + "start": 20699.36, + "end": 20700.24, + "probability": 0.7197 + }, + { + "start": 20700.48, + "end": 20702.22, + "probability": 0.9735 + }, + { + "start": 20702.42, + "end": 20703.78, + "probability": 0.6152 + }, + { + "start": 20704.4, + "end": 20705.78, + "probability": 0.5521 + }, + { + "start": 20706.72, + "end": 20708.74, + "probability": 0.2759 + }, + { + "start": 20709.08, + "end": 20712.04, + "probability": 0.9752 + }, + { + "start": 20712.16, + "end": 20715.14, + "probability": 0.9318 + }, + { + "start": 20715.32, + "end": 20718.18, + "probability": 0.985 + }, + { + "start": 20718.38, + "end": 20719.8, + "probability": 0.858 + }, + { + "start": 20720.26, + "end": 20722.34, + "probability": 0.7424 + }, + { + "start": 20722.5, + "end": 20723.3, + "probability": 0.7284 + }, + { + "start": 20723.8, + "end": 20727.4, + "probability": 0.5604 + }, + { + "start": 20727.64, + "end": 20729.1, + "probability": 0.7889 + }, + { + "start": 20729.86, + "end": 20732.96, + "probability": 0.9755 + }, + { + "start": 20733.48, + "end": 20733.72, + "probability": 0.8203 + }, + { + "start": 20734.76, + "end": 20736.38, + "probability": 0.5604 + }, + { + "start": 20737.02, + "end": 20738.96, + "probability": 0.6207 + }, + { + "start": 20739.78, + "end": 20741.9, + "probability": 0.9823 + }, + { + "start": 20743.22, + "end": 20745.7, + "probability": 0.9634 + }, + { + "start": 20754.34, + "end": 20755.38, + "probability": 0.512 + }, + { + "start": 20756.3, + "end": 20757.4, + "probability": 0.6717 + }, + { + "start": 20758.32, + "end": 20758.56, + "probability": 0.8026 + }, + { + "start": 20758.96, + "end": 20761.78, + "probability": 0.9821 + }, + { + "start": 20762.0, + "end": 20767.5, + "probability": 0.8552 + }, + { + "start": 20767.56, + "end": 20769.78, + "probability": 0.8755 + }, + { + "start": 20770.78, + "end": 20774.08, + "probability": 0.788 + }, + { + "start": 20774.78, + "end": 20777.68, + "probability": 0.9924 + }, + { + "start": 20778.22, + "end": 20786.06, + "probability": 0.8214 + }, + { + "start": 20786.62, + "end": 20789.44, + "probability": 0.9104 + }, + { + "start": 20789.86, + "end": 20791.98, + "probability": 0.4999 + }, + { + "start": 20792.38, + "end": 20800.08, + "probability": 0.8236 + }, + { + "start": 20800.66, + "end": 20807.0, + "probability": 0.9775 + }, + { + "start": 20807.92, + "end": 20810.48, + "probability": 0.8777 + }, + { + "start": 20810.96, + "end": 20815.04, + "probability": 0.7397 + }, + { + "start": 20815.68, + "end": 20820.34, + "probability": 0.9914 + }, + { + "start": 20820.34, + "end": 20824.46, + "probability": 0.9941 + }, + { + "start": 20826.24, + "end": 20827.5, + "probability": 0.7981 + }, + { + "start": 20827.66, + "end": 20828.52, + "probability": 0.9612 + }, + { + "start": 20828.66, + "end": 20830.0, + "probability": 0.9678 + }, + { + "start": 20830.1, + "end": 20830.82, + "probability": 0.9655 + }, + { + "start": 20831.28, + "end": 20835.76, + "probability": 0.567 + }, + { + "start": 20836.34, + "end": 20839.41, + "probability": 0.9923 + }, + { + "start": 20840.06, + "end": 20840.86, + "probability": 0.842 + }, + { + "start": 20841.7, + "end": 20844.46, + "probability": 0.9616 + }, + { + "start": 20844.56, + "end": 20846.9, + "probability": 0.8391 + }, + { + "start": 20847.08, + "end": 20848.58, + "probability": 0.964 + }, + { + "start": 20849.06, + "end": 20849.54, + "probability": 0.6672 + }, + { + "start": 20849.9, + "end": 20850.56, + "probability": 0.8442 + }, + { + "start": 20850.62, + "end": 20853.06, + "probability": 0.9766 + }, + { + "start": 20853.74, + "end": 20858.7, + "probability": 0.9639 + }, + { + "start": 20859.38, + "end": 20862.56, + "probability": 0.6321 + }, + { + "start": 20863.22, + "end": 20864.56, + "probability": 0.9302 + }, + { + "start": 20865.0, + "end": 20865.46, + "probability": 0.7228 + }, + { + "start": 20865.74, + "end": 20867.06, + "probability": 0.8551 + }, + { + "start": 20867.6, + "end": 20868.38, + "probability": 0.7512 + }, + { + "start": 20868.78, + "end": 20873.34, + "probability": 0.9932 + }, + { + "start": 20873.98, + "end": 20876.48, + "probability": 0.9818 + }, + { + "start": 20876.84, + "end": 20878.4, + "probability": 0.9698 + }, + { + "start": 20880.12, + "end": 20883.38, + "probability": 0.9951 + }, + { + "start": 20883.62, + "end": 20885.76, + "probability": 0.6844 + }, + { + "start": 20886.64, + "end": 20889.58, + "probability": 0.7725 + }, + { + "start": 20890.14, + "end": 20894.04, + "probability": 0.979 + }, + { + "start": 20894.04, + "end": 20896.78, + "probability": 0.9844 + }, + { + "start": 20897.5, + "end": 20900.34, + "probability": 0.9131 + }, + { + "start": 20901.02, + "end": 20901.52, + "probability": 0.7734 + }, + { + "start": 20901.8, + "end": 20904.83, + "probability": 0.9448 + }, + { + "start": 20905.9, + "end": 20910.08, + "probability": 0.4008 + }, + { + "start": 20910.64, + "end": 20913.06, + "probability": 0.9735 + }, + { + "start": 20913.58, + "end": 20914.32, + "probability": 0.6784 + }, + { + "start": 20915.22, + "end": 20919.4, + "probability": 0.8335 + }, + { + "start": 20919.4, + "end": 20919.46, + "probability": 0.0277 + }, + { + "start": 20919.54, + "end": 20920.04, + "probability": 0.8444 + }, + { + "start": 20920.44, + "end": 20922.62, + "probability": 0.8391 + }, + { + "start": 20922.72, + "end": 20923.08, + "probability": 0.838 + }, + { + "start": 20923.12, + "end": 20924.2, + "probability": 0.9855 + }, + { + "start": 20924.52, + "end": 20925.54, + "probability": 0.9388 + }, + { + "start": 20925.9, + "end": 20927.54, + "probability": 0.9509 + }, + { + "start": 20927.6, + "end": 20930.15, + "probability": 0.96 + }, + { + "start": 20930.92, + "end": 20934.74, + "probability": 0.9537 + }, + { + "start": 20935.12, + "end": 20936.66, + "probability": 0.9493 + }, + { + "start": 20937.02, + "end": 20938.46, + "probability": 0.6841 + }, + { + "start": 20938.46, + "end": 20939.52, + "probability": 0.8504 + }, + { + "start": 20941.02, + "end": 20943.92, + "probability": 0.8511 + }, + { + "start": 20945.54, + "end": 20946.46, + "probability": 0.3344 + }, + { + "start": 20946.82, + "end": 20949.74, + "probability": 0.9188 + }, + { + "start": 20951.19, + "end": 20954.35, + "probability": 0.9029 + }, + { + "start": 20973.9, + "end": 20974.94, + "probability": 0.3375 + }, + { + "start": 20976.1, + "end": 20978.2, + "probability": 0.6013 + }, + { + "start": 20984.18, + "end": 20984.88, + "probability": 0.8172 + }, + { + "start": 20986.18, + "end": 20986.88, + "probability": 0.9576 + }, + { + "start": 20987.28, + "end": 20987.92, + "probability": 0.9572 + }, + { + "start": 20988.14, + "end": 20988.5, + "probability": 0.696 + }, + { + "start": 20988.76, + "end": 20989.48, + "probability": 0.9544 + }, + { + "start": 20989.72, + "end": 20990.76, + "probability": 0.9525 + }, + { + "start": 20991.88, + "end": 20996.12, + "probability": 0.9918 + }, + { + "start": 20996.24, + "end": 20999.16, + "probability": 0.9795 + }, + { + "start": 21000.78, + "end": 21003.16, + "probability": 0.996 + }, + { + "start": 21003.94, + "end": 21004.76, + "probability": 0.6825 + }, + { + "start": 21006.5, + "end": 21008.32, + "probability": 0.9983 + }, + { + "start": 21009.9, + "end": 21013.88, + "probability": 0.9653 + }, + { + "start": 21014.04, + "end": 21014.46, + "probability": 0.5122 + }, + { + "start": 21014.58, + "end": 21015.2, + "probability": 0.877 + }, + { + "start": 21015.46, + "end": 21016.28, + "probability": 0.9948 + }, + { + "start": 21018.54, + "end": 21022.49, + "probability": 0.9844 + }, + { + "start": 21023.32, + "end": 21024.87, + "probability": 0.9937 + }, + { + "start": 21026.44, + "end": 21028.78, + "probability": 0.9853 + }, + { + "start": 21030.02, + "end": 21033.12, + "probability": 0.9744 + }, + { + "start": 21036.34, + "end": 21036.82, + "probability": 0.8853 + }, + { + "start": 21037.64, + "end": 21041.3, + "probability": 0.983 + }, + { + "start": 21041.3, + "end": 21044.32, + "probability": 0.9995 + }, + { + "start": 21045.98, + "end": 21047.99, + "probability": 0.9787 + }, + { + "start": 21049.62, + "end": 21052.3, + "probability": 0.8005 + }, + { + "start": 21052.36, + "end": 21052.78, + "probability": 0.9166 + }, + { + "start": 21052.92, + "end": 21053.78, + "probability": 0.9546 + }, + { + "start": 21053.96, + "end": 21056.98, + "probability": 0.9859 + }, + { + "start": 21057.08, + "end": 21057.88, + "probability": 0.8863 + }, + { + "start": 21058.02, + "end": 21061.48, + "probability": 0.9858 + }, + { + "start": 21061.82, + "end": 21063.24, + "probability": 0.9978 + }, + { + "start": 21063.42, + "end": 21064.36, + "probability": 0.8994 + }, + { + "start": 21064.92, + "end": 21066.22, + "probability": 0.9487 + }, + { + "start": 21067.24, + "end": 21068.72, + "probability": 0.963 + }, + { + "start": 21068.86, + "end": 21070.96, + "probability": 0.8858 + }, + { + "start": 21071.06, + "end": 21072.98, + "probability": 0.9916 + }, + { + "start": 21073.74, + "end": 21074.86, + "probability": 0.9464 + }, + { + "start": 21074.92, + "end": 21076.64, + "probability": 0.9607 + }, + { + "start": 21076.72, + "end": 21078.18, + "probability": 0.984 + }, + { + "start": 21078.32, + "end": 21079.6, + "probability": 0.9464 + }, + { + "start": 21080.42, + "end": 21083.08, + "probability": 0.7628 + }, + { + "start": 21083.2, + "end": 21085.26, + "probability": 0.9191 + }, + { + "start": 21086.0, + "end": 21086.62, + "probability": 0.8655 + }, + { + "start": 21088.9, + "end": 21091.0, + "probability": 0.9142 + }, + { + "start": 21091.22, + "end": 21093.66, + "probability": 0.9849 + }, + { + "start": 21094.24, + "end": 21096.33, + "probability": 0.9941 + }, + { + "start": 21097.3, + "end": 21098.62, + "probability": 0.8311 + }, + { + "start": 21098.9, + "end": 21100.48, + "probability": 0.9753 + }, + { + "start": 21100.62, + "end": 21102.14, + "probability": 0.9553 + }, + { + "start": 21102.2, + "end": 21106.09, + "probability": 0.8964 + }, + { + "start": 21106.24, + "end": 21109.42, + "probability": 0.9941 + }, + { + "start": 21109.5, + "end": 21109.6, + "probability": 0.5369 + }, + { + "start": 21109.8, + "end": 21110.9, + "probability": 0.9871 + }, + { + "start": 21111.5, + "end": 21112.72, + "probability": 0.9181 + }, + { + "start": 21113.18, + "end": 21113.62, + "probability": 0.3575 + }, + { + "start": 21113.62, + "end": 21117.18, + "probability": 0.9621 + }, + { + "start": 21117.78, + "end": 21120.2, + "probability": 0.7576 + }, + { + "start": 21121.8, + "end": 21122.14, + "probability": 0.9084 + }, + { + "start": 21122.38, + "end": 21123.02, + "probability": 0.012 + }, + { + "start": 21123.4, + "end": 21124.94, + "probability": 0.6729 + }, + { + "start": 21125.0, + "end": 21125.16, + "probability": 0.0685 + }, + { + "start": 21125.24, + "end": 21126.02, + "probability": 0.5289 + }, + { + "start": 21126.36, + "end": 21127.58, + "probability": 0.4035 + }, + { + "start": 21127.76, + "end": 21128.96, + "probability": 0.9569 + }, + { + "start": 21129.74, + "end": 21130.34, + "probability": 0.6297 + }, + { + "start": 21130.98, + "end": 21133.64, + "probability": 0.5953 + }, + { + "start": 21134.16, + "end": 21134.82, + "probability": 0.492 + }, + { + "start": 21134.82, + "end": 21137.26, + "probability": 0.9054 + }, + { + "start": 21137.88, + "end": 21139.6, + "probability": 0.9395 + }, + { + "start": 21140.1, + "end": 21140.76, + "probability": 0.9735 + }, + { + "start": 21140.78, + "end": 21141.94, + "probability": 0.9822 + }, + { + "start": 21142.08, + "end": 21142.9, + "probability": 0.7247 + }, + { + "start": 21142.94, + "end": 21143.14, + "probability": 0.568 + }, + { + "start": 21143.18, + "end": 21143.6, + "probability": 0.5158 + }, + { + "start": 21143.62, + "end": 21143.98, + "probability": 0.5818 + }, + { + "start": 21144.46, + "end": 21144.92, + "probability": 0.4469 + }, + { + "start": 21145.26, + "end": 21145.78, + "probability": 0.7434 + }, + { + "start": 21149.32, + "end": 21150.0, + "probability": 0.4989 + }, + { + "start": 21150.4, + "end": 21153.14, + "probability": 0.9095 + }, + { + "start": 21153.32, + "end": 21154.48, + "probability": 0.7867 + }, + { + "start": 21154.6, + "end": 21156.14, + "probability": 0.9935 + }, + { + "start": 21156.68, + "end": 21158.0, + "probability": 0.9744 + }, + { + "start": 21158.06, + "end": 21160.44, + "probability": 0.9949 + }, + { + "start": 21160.96, + "end": 21161.88, + "probability": 0.8084 + }, + { + "start": 21162.42, + "end": 21163.54, + "probability": 0.9788 + }, + { + "start": 21163.72, + "end": 21165.88, + "probability": 0.9959 + }, + { + "start": 21165.96, + "end": 21166.64, + "probability": 0.7676 + }, + { + "start": 21167.3, + "end": 21168.22, + "probability": 0.7416 + }, + { + "start": 21169.04, + "end": 21171.2, + "probability": 0.9918 + }, + { + "start": 21171.82, + "end": 21172.28, + "probability": 0.7149 + }, + { + "start": 21172.98, + "end": 21174.58, + "probability": 0.9951 + }, + { + "start": 21174.68, + "end": 21176.28, + "probability": 0.8724 + }, + { + "start": 21176.9, + "end": 21178.74, + "probability": 0.9813 + }, + { + "start": 21178.86, + "end": 21180.42, + "probability": 0.9985 + }, + { + "start": 21180.9, + "end": 21183.0, + "probability": 0.9995 + }, + { + "start": 21183.62, + "end": 21184.16, + "probability": 0.974 + }, + { + "start": 21184.4, + "end": 21185.2, + "probability": 0.9263 + }, + { + "start": 21185.24, + "end": 21186.16, + "probability": 0.9692 + }, + { + "start": 21186.56, + "end": 21187.94, + "probability": 0.9718 + }, + { + "start": 21188.04, + "end": 21188.74, + "probability": 0.8362 + }, + { + "start": 21188.88, + "end": 21189.62, + "probability": 0.9803 + }, + { + "start": 21189.7, + "end": 21190.14, + "probability": 0.9911 + }, + { + "start": 21190.86, + "end": 21192.68, + "probability": 0.7353 + }, + { + "start": 21193.34, + "end": 21196.52, + "probability": 0.9241 + }, + { + "start": 21196.54, + "end": 21198.22, + "probability": 0.9226 + }, + { + "start": 21198.48, + "end": 21199.04, + "probability": 0.2644 + }, + { + "start": 21199.04, + "end": 21199.68, + "probability": 0.9824 + }, + { + "start": 21200.2, + "end": 21200.96, + "probability": 0.6687 + }, + { + "start": 21201.04, + "end": 21206.86, + "probability": 0.9111 + }, + { + "start": 21207.64, + "end": 21211.5, + "probability": 0.9253 + }, + { + "start": 21211.82, + "end": 21212.08, + "probability": 0.8573 + }, + { + "start": 21212.16, + "end": 21213.26, + "probability": 0.9714 + }, + { + "start": 21214.12, + "end": 21214.76, + "probability": 0.9385 + }, + { + "start": 21215.36, + "end": 21217.78, + "probability": 0.7826 + }, + { + "start": 21227.48, + "end": 21227.48, + "probability": 0.0625 + }, + { + "start": 21227.48, + "end": 21227.58, + "probability": 0.1875 + }, + { + "start": 21227.88, + "end": 21228.14, + "probability": 0.1647 + }, + { + "start": 21228.88, + "end": 21229.04, + "probability": 0.0256 + }, + { + "start": 21229.04, + "end": 21231.3, + "probability": 0.3585 + }, + { + "start": 21231.54, + "end": 21232.3, + "probability": 0.2814 + }, + { + "start": 21232.52, + "end": 21232.66, + "probability": 0.5255 + }, + { + "start": 21234.94, + "end": 21236.88, + "probability": 0.2676 + }, + { + "start": 21239.7, + "end": 21239.76, + "probability": 0.0225 + }, + { + "start": 21239.78, + "end": 21239.78, + "probability": 0.0601 + }, + { + "start": 21239.78, + "end": 21239.78, + "probability": 0.2364 + }, + { + "start": 21239.78, + "end": 21241.77, + "probability": 0.2049 + }, + { + "start": 21242.6, + "end": 21243.22, + "probability": 0.1003 + }, + { + "start": 21243.46, + "end": 21244.22, + "probability": 0.5515 + }, + { + "start": 21244.28, + "end": 21245.36, + "probability": 0.876 + }, + { + "start": 21245.48, + "end": 21247.4, + "probability": 0.8939 + }, + { + "start": 21247.44, + "end": 21249.44, + "probability": 0.9353 + }, + { + "start": 21251.04, + "end": 21252.48, + "probability": 0.7811 + }, + { + "start": 21254.36, + "end": 21259.28, + "probability": 0.863 + }, + { + "start": 21260.47, + "end": 21267.64, + "probability": 0.9932 + }, + { + "start": 21269.36, + "end": 21269.78, + "probability": 0.6768 + }, + { + "start": 21270.24, + "end": 21270.56, + "probability": 0.9324 + }, + { + "start": 21271.38, + "end": 21273.32, + "probability": 0.9922 + }, + { + "start": 21273.46, + "end": 21275.28, + "probability": 0.8922 + }, + { + "start": 21277.78, + "end": 21279.22, + "probability": 0.5861 + }, + { + "start": 21281.18, + "end": 21281.94, + "probability": 0.9198 + }, + { + "start": 21284.02, + "end": 21284.74, + "probability": 0.9543 + }, + { + "start": 21287.44, + "end": 21291.62, + "probability": 0.757 + }, + { + "start": 21292.48, + "end": 21295.84, + "probability": 0.7712 + }, + { + "start": 21297.68, + "end": 21298.76, + "probability": 0.9883 + }, + { + "start": 21300.54, + "end": 21301.64, + "probability": 0.9946 + }, + { + "start": 21302.24, + "end": 21305.14, + "probability": 0.8149 + }, + { + "start": 21306.5, + "end": 21310.98, + "probability": 0.9362 + }, + { + "start": 21314.48, + "end": 21315.44, + "probability": 0.9472 + }, + { + "start": 21315.5, + "end": 21316.46, + "probability": 0.9877 + }, + { + "start": 21316.78, + "end": 21317.96, + "probability": 0.8923 + }, + { + "start": 21319.7, + "end": 21322.15, + "probability": 0.916 + }, + { + "start": 21324.08, + "end": 21325.52, + "probability": 0.9956 + }, + { + "start": 21326.46, + "end": 21327.9, + "probability": 0.7936 + }, + { + "start": 21328.7, + "end": 21333.52, + "probability": 0.9312 + }, + { + "start": 21334.32, + "end": 21335.18, + "probability": 0.9866 + }, + { + "start": 21336.66, + "end": 21339.48, + "probability": 0.9561 + }, + { + "start": 21339.64, + "end": 21346.24, + "probability": 0.8604 + }, + { + "start": 21349.2, + "end": 21351.74, + "probability": 0.9859 + }, + { + "start": 21353.0, + "end": 21354.82, + "probability": 0.9543 + }, + { + "start": 21358.02, + "end": 21363.02, + "probability": 0.9858 + }, + { + "start": 21365.02, + "end": 21366.44, + "probability": 0.9028 + }, + { + "start": 21367.78, + "end": 21371.7, + "probability": 0.8958 + }, + { + "start": 21371.72, + "end": 21371.92, + "probability": 0.366 + }, + { + "start": 21372.04, + "end": 21374.3, + "probability": 0.7186 + }, + { + "start": 21374.4, + "end": 21375.34, + "probability": 0.9314 + }, + { + "start": 21375.64, + "end": 21376.5, + "probability": 0.729 + }, + { + "start": 21377.24, + "end": 21379.53, + "probability": 0.9883 + }, + { + "start": 21381.42, + "end": 21383.36, + "probability": 0.9709 + }, + { + "start": 21385.18, + "end": 21387.2, + "probability": 0.8376 + }, + { + "start": 21390.14, + "end": 21394.92, + "probability": 0.9676 + }, + { + "start": 21395.24, + "end": 21396.34, + "probability": 0.9236 + }, + { + "start": 21399.82, + "end": 21401.46, + "probability": 0.9798 + }, + { + "start": 21402.32, + "end": 21403.3, + "probability": 0.9593 + }, + { + "start": 21405.12, + "end": 21406.36, + "probability": 0.9731 + }, + { + "start": 21408.26, + "end": 21410.98, + "probability": 0.9607 + }, + { + "start": 21412.76, + "end": 21413.88, + "probability": 0.8621 + }, + { + "start": 21416.86, + "end": 21419.16, + "probability": 0.8581 + }, + { + "start": 21420.44, + "end": 21423.3, + "probability": 0.9595 + }, + { + "start": 21424.12, + "end": 21424.82, + "probability": 0.6678 + }, + { + "start": 21425.96, + "end": 21429.2, + "probability": 0.9637 + }, + { + "start": 21430.0, + "end": 21432.88, + "probability": 0.8969 + }, + { + "start": 21433.58, + "end": 21434.0, + "probability": 0.16 + }, + { + "start": 21434.0, + "end": 21436.68, + "probability": 0.9811 + }, + { + "start": 21437.18, + "end": 21437.94, + "probability": 0.2859 + }, + { + "start": 21438.04, + "end": 21438.9, + "probability": 0.9423 + }, + { + "start": 21439.44, + "end": 21442.68, + "probability": 0.769 + }, + { + "start": 21442.76, + "end": 21443.18, + "probability": 0.8803 + }, + { + "start": 21443.7, + "end": 21444.36, + "probability": 0.6475 + }, + { + "start": 21445.04, + "end": 21449.78, + "probability": 0.7245 + }, + { + "start": 21467.7, + "end": 21469.06, + "probability": 0.6245 + }, + { + "start": 21469.86, + "end": 21471.04, + "probability": 0.7009 + }, + { + "start": 21472.28, + "end": 21476.3, + "probability": 0.9451 + }, + { + "start": 21478.06, + "end": 21481.68, + "probability": 0.9826 + }, + { + "start": 21481.68, + "end": 21487.88, + "probability": 0.9032 + }, + { + "start": 21488.88, + "end": 21492.0, + "probability": 0.9976 + }, + { + "start": 21492.44, + "end": 21496.94, + "probability": 0.9953 + }, + { + "start": 21496.94, + "end": 21502.22, + "probability": 0.9977 + }, + { + "start": 21502.88, + "end": 21506.12, + "probability": 0.9106 + }, + { + "start": 21506.74, + "end": 21509.52, + "probability": 0.8511 + }, + { + "start": 21509.52, + "end": 21512.96, + "probability": 0.895 + }, + { + "start": 21515.18, + "end": 21516.2, + "probability": 0.7844 + }, + { + "start": 21516.46, + "end": 21517.18, + "probability": 0.7742 + }, + { + "start": 21517.24, + "end": 21518.94, + "probability": 0.9802 + }, + { + "start": 21519.5, + "end": 21526.36, + "probability": 0.9922 + }, + { + "start": 21526.36, + "end": 21531.76, + "probability": 0.9832 + }, + { + "start": 21532.7, + "end": 21539.12, + "probability": 0.9901 + }, + { + "start": 21541.14, + "end": 21543.56, + "probability": 0.9968 + }, + { + "start": 21543.56, + "end": 21547.36, + "probability": 0.9785 + }, + { + "start": 21547.52, + "end": 21548.56, + "probability": 0.6399 + }, + { + "start": 21548.88, + "end": 21550.92, + "probability": 0.9546 + }, + { + "start": 21551.34, + "end": 21553.82, + "probability": 0.9306 + }, + { + "start": 21553.92, + "end": 21555.46, + "probability": 0.9898 + }, + { + "start": 21556.62, + "end": 21557.48, + "probability": 0.9966 + }, + { + "start": 21557.72, + "end": 21560.26, + "probability": 0.9959 + }, + { + "start": 21562.04, + "end": 21565.38, + "probability": 0.994 + }, + { + "start": 21566.54, + "end": 21568.06, + "probability": 0.9277 + }, + { + "start": 21568.72, + "end": 21574.3, + "probability": 0.9714 + }, + { + "start": 21575.0, + "end": 21577.34, + "probability": 0.5184 + }, + { + "start": 21578.02, + "end": 21579.34, + "probability": 0.887 + }, + { + "start": 21580.06, + "end": 21581.24, + "probability": 0.814 + }, + { + "start": 21581.48, + "end": 21582.0, + "probability": 0.5254 + }, + { + "start": 21582.26, + "end": 21582.34, + "probability": 0.3807 + }, + { + "start": 21582.44, + "end": 21584.86, + "probability": 0.0743 + }, + { + "start": 21585.56, + "end": 21585.56, + "probability": 0.0365 + }, + { + "start": 21585.56, + "end": 21585.56, + "probability": 0.5522 + }, + { + "start": 21585.56, + "end": 21585.56, + "probability": 0.1565 + }, + { + "start": 21585.56, + "end": 21585.56, + "probability": 0.379 + }, + { + "start": 21585.56, + "end": 21586.66, + "probability": 0.746 + }, + { + "start": 21587.26, + "end": 21587.82, + "probability": 0.5972 + }, + { + "start": 21589.44, + "end": 21591.96, + "probability": 0.6307 + }, + { + "start": 21592.82, + "end": 21593.94, + "probability": 0.7518 + }, + { + "start": 21595.06, + "end": 21599.64, + "probability": 0.9487 + }, + { + "start": 21600.78, + "end": 21601.92, + "probability": 0.114 + }, + { + "start": 21602.06, + "end": 21603.64, + "probability": 0.6162 + }, + { + "start": 21603.88, + "end": 21605.4, + "probability": 0.7615 + }, + { + "start": 21607.18, + "end": 21607.18, + "probability": 0.0226 + }, + { + "start": 21607.18, + "end": 21609.16, + "probability": 0.2403 + }, + { + "start": 21609.3, + "end": 21611.06, + "probability": 0.0311 + }, + { + "start": 21612.0, + "end": 21612.94, + "probability": 0.527 + }, + { + "start": 21613.06, + "end": 21616.36, + "probability": 0.1686 + }, + { + "start": 21616.36, + "end": 21616.36, + "probability": 0.3214 + }, + { + "start": 21616.36, + "end": 21619.48, + "probability": 0.6728 + }, + { + "start": 21620.08, + "end": 21621.58, + "probability": 0.5718 + }, + { + "start": 21622.1, + "end": 21627.36, + "probability": 0.9414 + }, + { + "start": 21628.21, + "end": 21630.24, + "probability": 0.9695 + }, + { + "start": 21631.37, + "end": 21633.6, + "probability": 0.7643 + }, + { + "start": 21636.28, + "end": 21637.22, + "probability": 0.8204 + }, + { + "start": 21638.08, + "end": 21642.02, + "probability": 0.9779 + }, + { + "start": 21643.36, + "end": 21644.32, + "probability": 0.916 + }, + { + "start": 21645.56, + "end": 21646.52, + "probability": 0.9376 + }, + { + "start": 21647.22, + "end": 21651.64, + "probability": 0.9585 + }, + { + "start": 21652.58, + "end": 21653.24, + "probability": 0.9569 + }, + { + "start": 21655.54, + "end": 21662.76, + "probability": 0.9954 + }, + { + "start": 21663.64, + "end": 21666.26, + "probability": 0.7576 + }, + { + "start": 21668.4, + "end": 21670.64, + "probability": 0.9557 + }, + { + "start": 21671.34, + "end": 21671.96, + "probability": 0.8519 + }, + { + "start": 21672.08, + "end": 21672.32, + "probability": 0.7415 + }, + { + "start": 21672.4, + "end": 21673.6, + "probability": 0.9704 + }, + { + "start": 21674.12, + "end": 21677.66, + "probability": 0.9857 + }, + { + "start": 21678.28, + "end": 21679.7, + "probability": 0.8551 + }, + { + "start": 21679.86, + "end": 21681.39, + "probability": 0.8687 + }, + { + "start": 21682.26, + "end": 21684.08, + "probability": 0.9876 + }, + { + "start": 21684.18, + "end": 21684.6, + "probability": 0.9494 + }, + { + "start": 21684.7, + "end": 21685.29, + "probability": 0.9669 + }, + { + "start": 21685.68, + "end": 21688.02, + "probability": 0.9277 + }, + { + "start": 21688.34, + "end": 21689.15, + "probability": 0.8713 + }, + { + "start": 21690.14, + "end": 21690.96, + "probability": 0.8853 + }, + { + "start": 21691.68, + "end": 21694.08, + "probability": 0.9058 + }, + { + "start": 21695.3, + "end": 21698.24, + "probability": 0.952 + }, + { + "start": 21700.26, + "end": 21701.68, + "probability": 0.9826 + }, + { + "start": 21702.64, + "end": 21703.18, + "probability": 0.515 + }, + { + "start": 21703.38, + "end": 21705.84, + "probability": 0.7644 + }, + { + "start": 21705.88, + "end": 21707.24, + "probability": 0.9237 + }, + { + "start": 21708.24, + "end": 21709.62, + "probability": 0.9927 + }, + { + "start": 21710.56, + "end": 21713.98, + "probability": 0.9609 + }, + { + "start": 21714.72, + "end": 21716.5, + "probability": 0.6883 + }, + { + "start": 21717.14, + "end": 21717.9, + "probability": 0.5257 + }, + { + "start": 21718.2, + "end": 21720.68, + "probability": 0.9617 + }, + { + "start": 21721.14, + "end": 21723.92, + "probability": 0.9736 + }, + { + "start": 21726.13, + "end": 21728.82, + "probability": 0.7011 + }, + { + "start": 21728.98, + "end": 21731.04, + "probability": 0.9062 + }, + { + "start": 21732.8, + "end": 21735.04, + "probability": 0.8444 + }, + { + "start": 21735.56, + "end": 21738.42, + "probability": 0.6937 + }, + { + "start": 21739.44, + "end": 21740.38, + "probability": 0.9313 + }, + { + "start": 21740.56, + "end": 21743.78, + "probability": 0.9281 + }, + { + "start": 21745.42, + "end": 21750.7, + "probability": 0.953 + }, + { + "start": 21750.72, + "end": 21750.92, + "probability": 0.8913 + }, + { + "start": 21751.7, + "end": 21756.68, + "probability": 0.9792 + }, + { + "start": 21757.26, + "end": 21760.12, + "probability": 0.9673 + }, + { + "start": 21761.52, + "end": 21762.8, + "probability": 0.7483 + }, + { + "start": 21762.86, + "end": 21765.22, + "probability": 0.9747 + }, + { + "start": 21767.1, + "end": 21769.28, + "probability": 0.9644 + }, + { + "start": 21769.74, + "end": 21771.84, + "probability": 0.7083 + }, + { + "start": 21772.38, + "end": 21773.74, + "probability": 0.9832 + }, + { + "start": 21775.48, + "end": 21776.64, + "probability": 0.9627 + }, + { + "start": 21777.82, + "end": 21780.36, + "probability": 0.9812 + }, + { + "start": 21781.2, + "end": 21784.72, + "probability": 0.879 + }, + { + "start": 21785.96, + "end": 21787.75, + "probability": 0.8534 + }, + { + "start": 21788.74, + "end": 21792.88, + "probability": 0.9839 + }, + { + "start": 21793.52, + "end": 21794.62, + "probability": 0.8081 + }, + { + "start": 21795.4, + "end": 21796.99, + "probability": 0.7417 + }, + { + "start": 21797.3, + "end": 21798.12, + "probability": 0.7729 + }, + { + "start": 21798.46, + "end": 21803.08, + "probability": 0.8006 + }, + { + "start": 21803.12, + "end": 21804.08, + "probability": 0.8718 + }, + { + "start": 21804.84, + "end": 21809.24, + "probability": 0.8009 + }, + { + "start": 21811.1, + "end": 21813.36, + "probability": 0.5749 + }, + { + "start": 21813.36, + "end": 21815.72, + "probability": 0.793 + }, + { + "start": 21816.84, + "end": 21817.48, + "probability": 0.6773 + }, + { + "start": 21817.66, + "end": 21822.58, + "probability": 0.9471 + }, + { + "start": 21823.92, + "end": 21828.22, + "probability": 0.9752 + }, + { + "start": 21828.6, + "end": 21831.44, + "probability": 0.9843 + }, + { + "start": 21832.02, + "end": 21832.3, + "probability": 0.4504 + }, + { + "start": 21832.46, + "end": 21834.1, + "probability": 0.7091 + }, + { + "start": 21834.44, + "end": 21836.26, + "probability": 0.9756 + }, + { + "start": 21836.82, + "end": 21839.72, + "probability": 0.7761 + }, + { + "start": 21840.5, + "end": 21841.66, + "probability": 0.8525 + }, + { + "start": 21842.24, + "end": 21844.4, + "probability": 0.9976 + }, + { + "start": 21845.18, + "end": 21847.38, + "probability": 0.9141 + }, + { + "start": 21847.42, + "end": 21850.48, + "probability": 0.8741 + }, + { + "start": 21850.62, + "end": 21854.38, + "probability": 0.7318 + }, + { + "start": 21854.56, + "end": 21859.76, + "probability": 0.9907 + }, + { + "start": 21859.98, + "end": 21862.74, + "probability": 0.9415 + }, + { + "start": 21863.28, + "end": 21865.44, + "probability": 0.9193 + }, + { + "start": 21865.52, + "end": 21865.92, + "probability": 0.8873 + }, + { + "start": 21866.76, + "end": 21867.18, + "probability": 0.7816 + }, + { + "start": 21869.15, + "end": 21871.82, + "probability": 0.6755 + }, + { + "start": 21872.52, + "end": 21874.46, + "probability": 0.9962 + }, + { + "start": 21883.84, + "end": 21884.14, + "probability": 0.0284 + }, + { + "start": 21893.6, + "end": 21894.71, + "probability": 0.1277 + }, + { + "start": 21895.18, + "end": 21895.32, + "probability": 0.1361 + }, + { + "start": 21895.32, + "end": 21895.32, + "probability": 0.0848 + }, + { + "start": 21895.32, + "end": 21896.11, + "probability": 0.0506 + }, + { + "start": 21897.36, + "end": 21897.52, + "probability": 0.0226 + }, + { + "start": 21897.52, + "end": 21898.41, + "probability": 0.4121 + }, + { + "start": 21901.9, + "end": 21904.1, + "probability": 0.2757 + }, + { + "start": 21905.24, + "end": 21907.76, + "probability": 0.9543 + }, + { + "start": 21907.8, + "end": 21909.56, + "probability": 0.1434 + }, + { + "start": 21910.34, + "end": 21910.44, + "probability": 0.4468 + }, + { + "start": 21911.08, + "end": 21911.72, + "probability": 0.328 + }, + { + "start": 21912.84, + "end": 21916.14, + "probability": 0.3437 + }, + { + "start": 21916.26, + "end": 21919.92, + "probability": 0.908 + }, + { + "start": 21920.04, + "end": 21920.56, + "probability": 0.8445 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.0, + "end": 22001.0, + "probability": 0.0 + }, + { + "start": 22001.1, + "end": 22001.28, + "probability": 0.1281 + }, + { + "start": 22001.28, + "end": 22001.28, + "probability": 0.1148 + }, + { + "start": 22001.28, + "end": 22001.28, + "probability": 0.0526 + }, + { + "start": 22001.28, + "end": 22001.28, + "probability": 0.2645 + }, + { + "start": 22001.28, + "end": 22001.28, + "probability": 0.2808 + }, + { + "start": 22001.28, + "end": 22001.28, + "probability": 0.0901 + }, + { + "start": 22001.28, + "end": 22002.14, + "probability": 0.0294 + }, + { + "start": 22003.68, + "end": 22005.92, + "probability": 0.8592 + }, + { + "start": 22006.4, + "end": 22009.16, + "probability": 0.7217 + }, + { + "start": 22018.18, + "end": 22018.18, + "probability": 0.0195 + }, + { + "start": 22018.18, + "end": 22018.18, + "probability": 0.1536 + }, + { + "start": 22018.18, + "end": 22018.18, + "probability": 0.1064 + }, + { + "start": 22018.18, + "end": 22018.18, + "probability": 0.0083 + }, + { + "start": 22018.18, + "end": 22018.2, + "probability": 0.1325 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22151.0, + "end": 22151.0, + "probability": 0.0 + }, + { + "start": 22157.38, + "end": 22160.88, + "probability": 0.2218 + }, + { + "start": 22162.49, + "end": 22164.82, + "probability": 0.0029 + }, + { + "start": 22165.47, + "end": 22166.8, + "probability": 0.134 + }, + { + "start": 22170.92, + "end": 22176.08, + "probability": 0.0718 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22274.0, + "end": 22274.0, + "probability": 0.0 + }, + { + "start": 22276.42, + "end": 22276.6, + "probability": 0.0583 + }, + { + "start": 22279.34, + "end": 22281.88, + "probability": 0.8188 + }, + { + "start": 22281.98, + "end": 22283.46, + "probability": 0.9228 + }, + { + "start": 22284.22, + "end": 22286.68, + "probability": 0.9421 + }, + { + "start": 22287.42, + "end": 22290.26, + "probability": 0.9556 + }, + { + "start": 22290.36, + "end": 22290.68, + "probability": 0.984 + }, + { + "start": 22291.22, + "end": 22291.8, + "probability": 0.816 + }, + { + "start": 22292.28, + "end": 22297.38, + "probability": 0.9771 + }, + { + "start": 22297.38, + "end": 22301.5, + "probability": 0.9746 + }, + { + "start": 22302.1, + "end": 22304.42, + "probability": 0.7496 + }, + { + "start": 22304.88, + "end": 22306.58, + "probability": 0.8923 + }, + { + "start": 22306.72, + "end": 22308.18, + "probability": 0.8458 + }, + { + "start": 22308.34, + "end": 22308.72, + "probability": 0.7395 + }, + { + "start": 22309.5, + "end": 22314.42, + "probability": 0.5285 + }, + { + "start": 22314.54, + "end": 22315.3, + "probability": 0.9285 + }, + { + "start": 22315.66, + "end": 22318.28, + "probability": 0.8923 + }, + { + "start": 22318.7, + "end": 22320.24, + "probability": 0.6656 + }, + { + "start": 22320.64, + "end": 22323.54, + "probability": 0.9641 + }, + { + "start": 22323.9, + "end": 22325.86, + "probability": 0.8919 + }, + { + "start": 22325.86, + "end": 22325.86, + "probability": 0.3459 + }, + { + "start": 22325.86, + "end": 22325.98, + "probability": 0.7129 + }, + { + "start": 22326.18, + "end": 22326.42, + "probability": 0.4015 + }, + { + "start": 22326.44, + "end": 22327.52, + "probability": 0.7892 + }, + { + "start": 22327.62, + "end": 22328.0, + "probability": 0.624 + }, + { + "start": 22328.04, + "end": 22331.4, + "probability": 0.5669 + }, + { + "start": 22331.54, + "end": 22332.96, + "probability": 0.4836 + }, + { + "start": 22333.3, + "end": 22333.6, + "probability": 0.4765 + }, + { + "start": 22333.68, + "end": 22334.6, + "probability": 0.6096 + }, + { + "start": 22334.6, + "end": 22336.74, + "probability": 0.8092 + }, + { + "start": 22337.8, + "end": 22340.06, + "probability": 0.7052 + }, + { + "start": 22340.3, + "end": 22340.3, + "probability": 0.3489 + }, + { + "start": 22340.3, + "end": 22340.3, + "probability": 0.5129 + }, + { + "start": 22340.34, + "end": 22343.22, + "probability": 0.8357 + }, + { + "start": 22343.22, + "end": 22343.76, + "probability": 0.7478 + }, + { + "start": 22343.86, + "end": 22344.68, + "probability": 0.7702 + }, + { + "start": 22344.82, + "end": 22345.28, + "probability": 0.6657 + }, + { + "start": 22345.42, + "end": 22346.4, + "probability": 0.4956 + }, + { + "start": 22346.64, + "end": 22346.66, + "probability": 0.6276 + }, + { + "start": 22346.66, + "end": 22348.74, + "probability": 0.7952 + }, + { + "start": 22348.8, + "end": 22350.42, + "probability": 0.8184 + }, + { + "start": 22350.52, + "end": 22351.02, + "probability": 0.6828 + }, + { + "start": 22351.2, + "end": 22353.1, + "probability": 0.9597 + }, + { + "start": 22353.4, + "end": 22355.46, + "probability": 0.9122 + }, + { + "start": 22356.14, + "end": 22359.02, + "probability": 0.9552 + }, + { + "start": 22359.18, + "end": 22359.98, + "probability": 0.0525 + }, + { + "start": 22360.78, + "end": 22362.8, + "probability": 0.7762 + }, + { + "start": 22363.42, + "end": 22364.67, + "probability": 0.9054 + }, + { + "start": 22366.42, + "end": 22370.44, + "probability": 0.9042 + }, + { + "start": 22371.08, + "end": 22372.3, + "probability": 0.3892 + }, + { + "start": 22373.24, + "end": 22374.96, + "probability": 0.4328 + }, + { + "start": 22375.0, + "end": 22376.08, + "probability": 0.4346 + }, + { + "start": 22377.83, + "end": 22380.66, + "probability": 0.7624 + }, + { + "start": 22380.76, + "end": 22381.02, + "probability": 0.8245 + }, + { + "start": 22391.02, + "end": 22392.06, + "probability": 0.542 + }, + { + "start": 22392.42, + "end": 22393.24, + "probability": 0.6556 + }, + { + "start": 22393.4, + "end": 22393.78, + "probability": 0.6406 + }, + { + "start": 22394.28, + "end": 22400.54, + "probability": 0.9633 + }, + { + "start": 22401.8, + "end": 22408.0, + "probability": 0.857 + }, + { + "start": 22410.68, + "end": 22418.26, + "probability": 0.9133 + }, + { + "start": 22419.24, + "end": 22420.16, + "probability": 0.7207 + }, + { + "start": 22420.52, + "end": 22425.16, + "probability": 0.835 + }, + { + "start": 22425.34, + "end": 22427.56, + "probability": 0.9785 + }, + { + "start": 22427.58, + "end": 22431.6, + "probability": 0.9512 + }, + { + "start": 22431.74, + "end": 22431.8, + "probability": 0.3458 + }, + { + "start": 22431.8, + "end": 22436.94, + "probability": 0.9705 + }, + { + "start": 22437.76, + "end": 22443.16, + "probability": 0.9857 + }, + { + "start": 22443.74, + "end": 22448.48, + "probability": 0.8431 + }, + { + "start": 22449.34, + "end": 22451.94, + "probability": 0.9419 + }, + { + "start": 22451.98, + "end": 22454.38, + "probability": 0.9883 + }, + { + "start": 22455.7, + "end": 22461.04, + "probability": 0.6713 + }, + { + "start": 22461.14, + "end": 22465.66, + "probability": 0.9527 + }, + { + "start": 22466.9, + "end": 22472.82, + "probability": 0.8586 + }, + { + "start": 22473.72, + "end": 22476.78, + "probability": 0.8754 + }, + { + "start": 22476.78, + "end": 22481.7, + "probability": 0.9885 + }, + { + "start": 22482.26, + "end": 22483.54, + "probability": 0.5439 + }, + { + "start": 22484.26, + "end": 22485.18, + "probability": 0.8372 + }, + { + "start": 22485.56, + "end": 22491.44, + "probability": 0.9561 + }, + { + "start": 22492.52, + "end": 22493.78, + "probability": 0.5751 + }, + { + "start": 22493.9, + "end": 22501.66, + "probability": 0.9561 + }, + { + "start": 22502.32, + "end": 22503.96, + "probability": 0.2777 + }, + { + "start": 22504.12, + "end": 22504.9, + "probability": 0.3796 + }, + { + "start": 22505.26, + "end": 22506.86, + "probability": 0.3882 + }, + { + "start": 22507.72, + "end": 22510.3, + "probability": 0.5771 + }, + { + "start": 22510.38, + "end": 22514.58, + "probability": 0.8628 + }, + { + "start": 22516.36, + "end": 22521.74, + "probability": 0.8909 + }, + { + "start": 22522.78, + "end": 22524.24, + "probability": 0.9924 + }, + { + "start": 22525.76, + "end": 22529.38, + "probability": 0.9897 + }, + { + "start": 22529.38, + "end": 22532.58, + "probability": 0.9607 + }, + { + "start": 22535.34, + "end": 22539.18, + "probability": 0.9494 + }, + { + "start": 22539.18, + "end": 22544.56, + "probability": 0.907 + }, + { + "start": 22545.26, + "end": 22549.0, + "probability": 0.9787 + }, + { + "start": 22549.76, + "end": 22555.5, + "probability": 0.9904 + }, + { + "start": 22557.8, + "end": 22561.98, + "probability": 0.9481 + }, + { + "start": 22561.98, + "end": 22567.1, + "probability": 0.9772 + }, + { + "start": 22567.94, + "end": 22571.68, + "probability": 0.9724 + }, + { + "start": 22571.68, + "end": 22574.24, + "probability": 0.9025 + }, + { + "start": 22575.46, + "end": 22585.02, + "probability": 0.9047 + }, + { + "start": 22586.08, + "end": 22586.54, + "probability": 0.3475 + }, + { + "start": 22588.22, + "end": 22589.9, + "probability": 0.5598 + }, + { + "start": 22590.62, + "end": 22594.24, + "probability": 0.776 + }, + { + "start": 22594.78, + "end": 22595.74, + "probability": 0.793 + }, + { + "start": 22596.3, + "end": 22600.16, + "probability": 0.9964 + }, + { + "start": 22600.9, + "end": 22605.88, + "probability": 0.8964 + }, + { + "start": 22606.48, + "end": 22607.22, + "probability": 0.6472 + }, + { + "start": 22607.34, + "end": 22611.08, + "probability": 0.9419 + }, + { + "start": 22611.88, + "end": 22613.06, + "probability": 0.9795 + }, + { + "start": 22613.14, + "end": 22615.76, + "probability": 0.8478 + }, + { + "start": 22615.82, + "end": 22617.26, + "probability": 0.932 + }, + { + "start": 22617.46, + "end": 22619.16, + "probability": 0.9208 + }, + { + "start": 22619.22, + "end": 22620.94, + "probability": 0.855 + }, + { + "start": 22621.46, + "end": 22621.52, + "probability": 0.6345 + }, + { + "start": 22621.6, + "end": 22624.76, + "probability": 0.8278 + }, + { + "start": 22624.76, + "end": 22628.48, + "probability": 0.9875 + }, + { + "start": 22628.78, + "end": 22629.66, + "probability": 0.7844 + }, + { + "start": 22630.24, + "end": 22631.82, + "probability": 0.9406 + }, + { + "start": 22654.02, + "end": 22654.04, + "probability": 0.0419 + }, + { + "start": 22654.04, + "end": 22654.04, + "probability": 0.0765 + }, + { + "start": 22654.04, + "end": 22655.0, + "probability": 0.2879 + }, + { + "start": 22656.24, + "end": 22658.18, + "probability": 0.8027 + }, + { + "start": 22660.24, + "end": 22661.76, + "probability": 0.9259 + }, + { + "start": 22663.56, + "end": 22664.9, + "probability": 0.9843 + }, + { + "start": 22665.68, + "end": 22670.04, + "probability": 0.9917 + }, + { + "start": 22671.18, + "end": 22672.7, + "probability": 0.9993 + }, + { + "start": 22673.6, + "end": 22680.28, + "probability": 0.9985 + }, + { + "start": 22680.28, + "end": 22686.28, + "probability": 0.9896 + }, + { + "start": 22687.7, + "end": 22691.96, + "probability": 0.9603 + }, + { + "start": 22691.96, + "end": 22694.94, + "probability": 0.9981 + }, + { + "start": 22695.7, + "end": 22700.32, + "probability": 0.9799 + }, + { + "start": 22701.7, + "end": 22703.44, + "probability": 0.9055 + }, + { + "start": 22704.38, + "end": 22707.92, + "probability": 0.9497 + }, + { + "start": 22708.8, + "end": 22715.28, + "probability": 0.9979 + }, + { + "start": 22715.5, + "end": 22716.52, + "probability": 0.8021 + }, + { + "start": 22717.62, + "end": 22718.6, + "probability": 0.9812 + }, + { + "start": 22719.42, + "end": 22721.94, + "probability": 0.8255 + }, + { + "start": 22722.76, + "end": 22723.4, + "probability": 0.8743 + }, + { + "start": 22724.08, + "end": 22726.78, + "probability": 0.9516 + }, + { + "start": 22727.78, + "end": 22729.86, + "probability": 0.9864 + }, + { + "start": 22730.72, + "end": 22732.6, + "probability": 0.5037 + }, + { + "start": 22733.14, + "end": 22734.55, + "probability": 0.9968 + }, + { + "start": 22736.44, + "end": 22737.9, + "probability": 0.804 + }, + { + "start": 22738.38, + "end": 22741.26, + "probability": 0.9497 + }, + { + "start": 22741.94, + "end": 22742.3, + "probability": 0.8202 + }, + { + "start": 22743.18, + "end": 22744.48, + "probability": 0.9751 + }, + { + "start": 22745.4, + "end": 22746.84, + "probability": 0.8865 + }, + { + "start": 22747.98, + "end": 22749.22, + "probability": 0.9908 + }, + { + "start": 22750.64, + "end": 22751.9, + "probability": 0.9985 + }, + { + "start": 22752.98, + "end": 22755.6, + "probability": 0.9261 + }, + { + "start": 22756.32, + "end": 22757.4, + "probability": 0.9912 + }, + { + "start": 22757.52, + "end": 22759.26, + "probability": 0.9961 + }, + { + "start": 22759.8, + "end": 22760.16, + "probability": 0.8623 + }, + { + "start": 22760.7, + "end": 22761.54, + "probability": 0.8958 + }, + { + "start": 22763.56, + "end": 22764.84, + "probability": 0.8269 + }, + { + "start": 22765.66, + "end": 22769.1, + "probability": 0.9827 + }, + { + "start": 22769.78, + "end": 22772.14, + "probability": 0.9967 + }, + { + "start": 22773.2, + "end": 22776.0, + "probability": 0.9508 + }, + { + "start": 22777.08, + "end": 22778.38, + "probability": 0.995 + }, + { + "start": 22779.32, + "end": 22782.94, + "probability": 0.8316 + }, + { + "start": 22783.78, + "end": 22785.32, + "probability": 0.9944 + }, + { + "start": 22785.9, + "end": 22790.22, + "probability": 0.9678 + }, + { + "start": 22791.16, + "end": 22792.22, + "probability": 0.6137 + }, + { + "start": 22793.38, + "end": 22795.84, + "probability": 0.9093 + }, + { + "start": 22795.86, + "end": 22797.06, + "probability": 0.9027 + }, + { + "start": 22798.08, + "end": 22799.76, + "probability": 0.7595 + }, + { + "start": 22800.42, + "end": 22800.82, + "probability": 0.827 + }, + { + "start": 22800.84, + "end": 22803.92, + "probability": 0.6875 + }, + { + "start": 22804.18, + "end": 22807.8, + "probability": 0.9945 + }, + { + "start": 22809.52, + "end": 22812.48, + "probability": 0.9993 + }, + { + "start": 22813.84, + "end": 22818.64, + "probability": 0.9971 + }, + { + "start": 22818.66, + "end": 22821.06, + "probability": 0.986 + }, + { + "start": 22821.7, + "end": 22822.7, + "probability": 0.9151 + }, + { + "start": 22823.26, + "end": 22826.0, + "probability": 0.9976 + }, + { + "start": 22826.74, + "end": 22827.5, + "probability": 0.7062 + }, + { + "start": 22828.04, + "end": 22830.82, + "probability": 0.9814 + }, + { + "start": 22831.2, + "end": 22831.58, + "probability": 0.7563 + }, + { + "start": 22831.88, + "end": 22832.46, + "probability": 0.6695 + }, + { + "start": 22836.32, + "end": 22838.78, + "probability": 0.9278 + }, + { + "start": 22872.68, + "end": 22875.6, + "probability": 0.5508 + }, + { + "start": 22876.62, + "end": 22880.14, + "probability": 0.9851 + }, + { + "start": 22880.14, + "end": 22885.36, + "probability": 0.9553 + }, + { + "start": 22886.06, + "end": 22887.18, + "probability": 0.7337 + }, + { + "start": 22888.0, + "end": 22889.2, + "probability": 0.9923 + }, + { + "start": 22890.66, + "end": 22894.12, + "probability": 0.902 + }, + { + "start": 22894.12, + "end": 22897.6, + "probability": 0.9809 + }, + { + "start": 22899.76, + "end": 22905.52, + "probability": 0.9767 + }, + { + "start": 22906.3, + "end": 22910.04, + "probability": 0.7788 + }, + { + "start": 22910.18, + "end": 22914.08, + "probability": 0.964 + }, + { + "start": 22914.08, + "end": 22917.26, + "probability": 0.9908 + }, + { + "start": 22918.44, + "end": 22921.28, + "probability": 0.973 + }, + { + "start": 22921.94, + "end": 22925.84, + "probability": 0.9855 + }, + { + "start": 22925.84, + "end": 22928.6, + "probability": 0.8301 + }, + { + "start": 22930.92, + "end": 22934.66, + "probability": 0.9702 + }, + { + "start": 22935.32, + "end": 22936.32, + "probability": 0.6116 + }, + { + "start": 22936.44, + "end": 22939.36, + "probability": 0.9866 + }, + { + "start": 22939.36, + "end": 22942.02, + "probability": 0.9825 + }, + { + "start": 22943.72, + "end": 22947.98, + "probability": 0.8857 + }, + { + "start": 22948.64, + "end": 22948.78, + "probability": 0.5087 + }, + { + "start": 22948.78, + "end": 22950.62, + "probability": 0.597 + }, + { + "start": 22952.54, + "end": 22955.58, + "probability": 0.4391 + }, + { + "start": 22955.58, + "end": 22959.04, + "probability": 0.6581 + }, + { + "start": 22959.06, + "end": 22962.44, + "probability": 0.9431 + }, + { + "start": 22964.56, + "end": 22966.64, + "probability": 0.8927 + }, + { + "start": 22966.64, + "end": 22969.46, + "probability": 0.9957 + }, + { + "start": 22970.3, + "end": 22973.76, + "probability": 0.9828 + }, + { + "start": 22975.76, + "end": 22976.14, + "probability": 0.5192 + }, + { + "start": 22977.72, + "end": 22979.86, + "probability": 0.7586 + }, + { + "start": 22980.38, + "end": 22982.44, + "probability": 0.9311 + }, + { + "start": 22983.3, + "end": 22986.16, + "probability": 0.9133 + }, + { + "start": 22987.2, + "end": 22989.36, + "probability": 0.9215 + }, + { + "start": 22990.16, + "end": 22992.5, + "probability": 0.9852 + }, + { + "start": 22994.14, + "end": 23000.3, + "probability": 0.6753 + }, + { + "start": 23000.72, + "end": 23003.04, + "probability": 0.96 + }, + { + "start": 23003.29, + "end": 23006.52, + "probability": 0.9517 + }, + { + "start": 23006.92, + "end": 23009.16, + "probability": 0.7629 + }, + { + "start": 23009.88, + "end": 23011.3, + "probability": 0.5262 + }, + { + "start": 23011.82, + "end": 23014.2, + "probability": 0.6655 + }, + { + "start": 23014.84, + "end": 23019.47, + "probability": 0.9915 + }, + { + "start": 23021.06, + "end": 23023.2, + "probability": 0.8191 + }, + { + "start": 23023.88, + "end": 23025.42, + "probability": 0.9681 + }, + { + "start": 23026.72, + "end": 23027.52, + "probability": 0.8366 + }, + { + "start": 23027.7, + "end": 23029.48, + "probability": 0.6689 + }, + { + "start": 23029.48, + "end": 23031.58, + "probability": 0.8122 + }, + { + "start": 23032.18, + "end": 23035.2, + "probability": 0.9319 + }, + { + "start": 23035.36, + "end": 23038.98, + "probability": 0.8587 + }, + { + "start": 23039.56, + "end": 23044.06, + "probability": 0.8628 + }, + { + "start": 23044.06, + "end": 23046.7, + "probability": 0.9476 + }, + { + "start": 23047.6, + "end": 23050.4, + "probability": 0.6964 + }, + { + "start": 23050.4, + "end": 23055.08, + "probability": 0.9738 + }, + { + "start": 23055.48, + "end": 23057.74, + "probability": 0.7947 + }, + { + "start": 23058.94, + "end": 23062.96, + "probability": 0.9586 + }, + { + "start": 23063.54, + "end": 23064.38, + "probability": 0.9053 + }, + { + "start": 23065.04, + "end": 23066.61, + "probability": 0.981 + }, + { + "start": 23067.2, + "end": 23068.5, + "probability": 0.9223 + }, + { + "start": 23069.78, + "end": 23074.19, + "probability": 0.9745 + }, + { + "start": 23075.66, + "end": 23079.34, + "probability": 0.9479 + }, + { + "start": 23080.46, + "end": 23081.4, + "probability": 0.8768 + }, + { + "start": 23082.04, + "end": 23084.64, + "probability": 0.9961 + }, + { + "start": 23085.1, + "end": 23086.5, + "probability": 0.967 + }, + { + "start": 23086.64, + "end": 23088.26, + "probability": 0.8423 + }, + { + "start": 23088.82, + "end": 23090.44, + "probability": 0.9931 + }, + { + "start": 23091.66, + "end": 23093.68, + "probability": 0.9409 + }, + { + "start": 23093.68, + "end": 23096.22, + "probability": 0.9966 + }, + { + "start": 23097.0, + "end": 23099.54, + "probability": 0.9698 + }, + { + "start": 23099.72, + "end": 23102.43, + "probability": 0.8215 + }, + { + "start": 23104.0, + "end": 23105.96, + "probability": 0.8294 + }, + { + "start": 23106.1, + "end": 23106.42, + "probability": 0.8824 + }, + { + "start": 23107.34, + "end": 23108.6, + "probability": 0.7303 + }, + { + "start": 23109.0, + "end": 23112.28, + "probability": 0.8448 + }, + { + "start": 23113.32, + "end": 23116.22, + "probability": 0.9847 + }, + { + "start": 23116.76, + "end": 23117.7, + "probability": 0.8048 + }, + { + "start": 23118.51, + "end": 23122.22, + "probability": 0.7919 + }, + { + "start": 23122.88, + "end": 23125.3, + "probability": 0.7682 + }, + { + "start": 23125.88, + "end": 23128.48, + "probability": 0.8388 + }, + { + "start": 23129.26, + "end": 23130.72, + "probability": 0.805 + }, + { + "start": 23131.36, + "end": 23132.9, + "probability": 0.9415 + }, + { + "start": 23133.96, + "end": 23136.44, + "probability": 0.9729 + }, + { + "start": 23136.86, + "end": 23139.72, + "probability": 0.8803 + }, + { + "start": 23140.32, + "end": 23141.18, + "probability": 0.8097 + }, + { + "start": 23141.86, + "end": 23142.66, + "probability": 0.3785 + }, + { + "start": 23142.7, + "end": 23147.82, + "probability": 0.9474 + }, + { + "start": 23147.82, + "end": 23151.12, + "probability": 0.7781 + }, + { + "start": 23151.24, + "end": 23154.24, + "probability": 0.8021 + }, + { + "start": 23155.0, + "end": 23157.46, + "probability": 0.9758 + }, + { + "start": 23158.84, + "end": 23159.88, + "probability": 0.666 + }, + { + "start": 23161.06, + "end": 23164.2, + "probability": 0.864 + }, + { + "start": 23165.12, + "end": 23166.64, + "probability": 0.9671 + }, + { + "start": 23167.2, + "end": 23168.3, + "probability": 0.8862 + }, + { + "start": 23168.4, + "end": 23171.28, + "probability": 0.9824 + }, + { + "start": 23171.98, + "end": 23172.72, + "probability": 0.9404 + }, + { + "start": 23175.22, + "end": 23178.0, + "probability": 0.7779 + }, + { + "start": 23178.72, + "end": 23183.64, + "probability": 0.9239 + }, + { + "start": 23184.52, + "end": 23186.76, + "probability": 0.9714 + }, + { + "start": 23186.86, + "end": 23188.61, + "probability": 0.8301 + }, + { + "start": 23189.96, + "end": 23191.94, + "probability": 0.7573 + }, + { + "start": 23191.94, + "end": 23193.56, + "probability": 0.7826 + }, + { + "start": 23194.44, + "end": 23200.72, + "probability": 0.9888 + }, + { + "start": 23201.52, + "end": 23204.72, + "probability": 0.7458 + }, + { + "start": 23205.8, + "end": 23211.08, + "probability": 0.8684 + }, + { + "start": 23212.22, + "end": 23213.6, + "probability": 0.7621 + }, + { + "start": 23213.9, + "end": 23215.06, + "probability": 0.9748 + }, + { + "start": 23215.56, + "end": 23216.5, + "probability": 0.8976 + }, + { + "start": 23216.66, + "end": 23217.35, + "probability": 0.9595 + }, + { + "start": 23218.83, + "end": 23220.58, + "probability": 0.5693 + }, + { + "start": 23220.6, + "end": 23220.9, + "probability": 0.8484 + }, + { + "start": 23220.9, + "end": 23224.36, + "probability": 0.9854 + }, + { + "start": 23225.36, + "end": 23227.76, + "probability": 0.792 + }, + { + "start": 23228.08, + "end": 23232.33, + "probability": 0.8955 + }, + { + "start": 23233.98, + "end": 23238.2, + "probability": 0.9896 + }, + { + "start": 23238.46, + "end": 23241.4, + "probability": 0.8726 + }, + { + "start": 23242.02, + "end": 23244.08, + "probability": 0.986 + }, + { + "start": 23245.06, + "end": 23250.06, + "probability": 0.7916 + }, + { + "start": 23250.96, + "end": 23253.6, + "probability": 0.8921 + }, + { + "start": 23254.14, + "end": 23256.94, + "probability": 0.8058 + }, + { + "start": 23257.46, + "end": 23258.26, + "probability": 0.9838 + }, + { + "start": 23259.3, + "end": 23265.36, + "probability": 0.9966 + }, + { + "start": 23265.36, + "end": 23271.66, + "probability": 0.9797 + }, + { + "start": 23272.66, + "end": 23276.36, + "probability": 0.9924 + }, + { + "start": 23277.08, + "end": 23280.04, + "probability": 0.9642 + }, + { + "start": 23281.04, + "end": 23283.06, + "probability": 0.9873 + }, + { + "start": 23283.06, + "end": 23286.04, + "probability": 0.996 + }, + { + "start": 23286.22, + "end": 23287.26, + "probability": 0.8786 + }, + { + "start": 23287.88, + "end": 23293.62, + "probability": 0.8977 + }, + { + "start": 23294.42, + "end": 23297.72, + "probability": 0.9901 + }, + { + "start": 23297.72, + "end": 23300.88, + "probability": 0.995 + }, + { + "start": 23301.84, + "end": 23306.58, + "probability": 0.9888 + }, + { + "start": 23307.26, + "end": 23309.18, + "probability": 0.5968 + }, + { + "start": 23309.76, + "end": 23315.02, + "probability": 0.9904 + }, + { + "start": 23316.16, + "end": 23318.36, + "probability": 0.9972 + }, + { + "start": 23318.36, + "end": 23321.0, + "probability": 0.8992 + }, + { + "start": 23321.82, + "end": 23324.06, + "probability": 0.8749 + }, + { + "start": 23324.52, + "end": 23326.44, + "probability": 0.9876 + }, + { + "start": 23327.66, + "end": 23330.48, + "probability": 0.9315 + }, + { + "start": 23330.6, + "end": 23331.54, + "probability": 0.7634 + }, + { + "start": 23332.76, + "end": 23333.82, + "probability": 0.7764 + }, + { + "start": 23335.04, + "end": 23338.64, + "probability": 0.9693 + }, + { + "start": 23339.24, + "end": 23342.68, + "probability": 0.9451 + }, + { + "start": 23345.48, + "end": 23349.56, + "probability": 0.9702 + }, + { + "start": 23349.68, + "end": 23350.48, + "probability": 0.7588 + }, + { + "start": 23350.56, + "end": 23354.4, + "probability": 0.9627 + }, + { + "start": 23356.94, + "end": 23357.92, + "probability": 0.9985 + }, + { + "start": 23357.96, + "end": 23359.3, + "probability": 0.9712 + }, + { + "start": 23359.42, + "end": 23359.8, + "probability": 0.5605 + }, + { + "start": 23360.0, + "end": 23360.0, + "probability": 0.4371 + }, + { + "start": 23360.44, + "end": 23360.62, + "probability": 0.003 + }, + { + "start": 23360.62, + "end": 23362.42, + "probability": 0.8004 + }, + { + "start": 23362.46, + "end": 23365.94, + "probability": 0.8913 + }, + { + "start": 23366.98, + "end": 23368.34, + "probability": 0.964 + }, + { + "start": 23369.42, + "end": 23370.42, + "probability": 0.8917 + }, + { + "start": 23371.5, + "end": 23372.37, + "probability": 0.9492 + }, + { + "start": 23372.52, + "end": 23376.78, + "probability": 0.978 + }, + { + "start": 23377.76, + "end": 23379.88, + "probability": 0.9814 + }, + { + "start": 23380.42, + "end": 23382.82, + "probability": 0.8455 + }, + { + "start": 23382.92, + "end": 23383.6, + "probability": 0.7896 + }, + { + "start": 23383.64, + "end": 23384.1, + "probability": 0.869 + }, + { + "start": 23384.66, + "end": 23386.12, + "probability": 0.9376 + }, + { + "start": 23387.14, + "end": 23388.42, + "probability": 0.9563 + }, + { + "start": 23389.32, + "end": 23390.74, + "probability": 0.6686 + }, + { + "start": 23391.32, + "end": 23392.8, + "probability": 0.858 + }, + { + "start": 23392.86, + "end": 23393.28, + "probability": 0.5589 + }, + { + "start": 23393.38, + "end": 23394.08, + "probability": 0.8709 + }, + { + "start": 23394.16, + "end": 23394.44, + "probability": 0.8906 + }, + { + "start": 23394.48, + "end": 23394.96, + "probability": 0.8953 + }, + { + "start": 23395.66, + "end": 23396.66, + "probability": 0.9445 + }, + { + "start": 23397.36, + "end": 23402.08, + "probability": 0.9148 + }, + { + "start": 23402.32, + "end": 23404.24, + "probability": 0.9696 + }, + { + "start": 23405.22, + "end": 23406.02, + "probability": 0.5059 + }, + { + "start": 23406.06, + "end": 23407.48, + "probability": 0.8295 + }, + { + "start": 23408.34, + "end": 23408.74, + "probability": 0.3453 + }, + { + "start": 23408.78, + "end": 23409.32, + "probability": 0.6971 + }, + { + "start": 23410.34, + "end": 23412.82, + "probability": 0.6521 + }, + { + "start": 23413.12, + "end": 23416.14, + "probability": 0.836 + }, + { + "start": 23417.34, + "end": 23420.22, + "probability": 0.7909 + }, + { + "start": 23420.94, + "end": 23422.11, + "probability": 0.0396 + }, + { + "start": 23424.42, + "end": 23424.96, + "probability": 0.4821 + }, + { + "start": 23425.52, + "end": 23427.14, + "probability": 0.6208 + }, + { + "start": 23427.36, + "end": 23428.2, + "probability": 0.8402 + }, + { + "start": 23428.7, + "end": 23429.5, + "probability": 0.9367 + }, + { + "start": 23430.3, + "end": 23431.22, + "probability": 0.8885 + }, + { + "start": 23431.46, + "end": 23434.62, + "probability": 0.9345 + }, + { + "start": 23434.62, + "end": 23437.72, + "probability": 0.9838 + }, + { + "start": 23438.26, + "end": 23438.6, + "probability": 0.4617 + }, + { + "start": 23438.94, + "end": 23443.26, + "probability": 0.9966 + }, + { + "start": 23443.92, + "end": 23446.8, + "probability": 0.8488 + }, + { + "start": 23446.98, + "end": 23447.56, + "probability": 0.5734 + }, + { + "start": 23447.68, + "end": 23448.74, + "probability": 0.745 + }, + { + "start": 23449.9, + "end": 23453.36, + "probability": 0.922 + }, + { + "start": 23454.26, + "end": 23457.46, + "probability": 0.9766 + }, + { + "start": 23458.24, + "end": 23460.42, + "probability": 0.8419 + }, + { + "start": 23460.52, + "end": 23462.38, + "probability": 0.8794 + }, + { + "start": 23463.42, + "end": 23466.74, + "probability": 0.9758 + }, + { + "start": 23467.72, + "end": 23474.08, + "probability": 0.9551 + }, + { + "start": 23474.58, + "end": 23476.9, + "probability": 0.9599 + }, + { + "start": 23477.86, + "end": 23480.4, + "probability": 0.8224 + }, + { + "start": 23480.8, + "end": 23481.82, + "probability": 0.9749 + }, + { + "start": 23482.44, + "end": 23485.72, + "probability": 0.9169 + }, + { + "start": 23486.88, + "end": 23489.78, + "probability": 0.9607 + }, + { + "start": 23490.52, + "end": 23492.78, + "probability": 0.8997 + }, + { + "start": 23492.9, + "end": 23494.46, + "probability": 0.8094 + }, + { + "start": 23495.08, + "end": 23498.98, + "probability": 0.9747 + }, + { + "start": 23499.56, + "end": 23501.98, + "probability": 0.9874 + }, + { + "start": 23502.42, + "end": 23504.02, + "probability": 0.975 + }, + { + "start": 23504.02, + "end": 23505.9, + "probability": 0.998 + }, + { + "start": 23507.36, + "end": 23507.36, + "probability": 0.0305 + }, + { + "start": 23507.36, + "end": 23509.5, + "probability": 0.7892 + }, + { + "start": 23509.66, + "end": 23511.34, + "probability": 0.9833 + }, + { + "start": 23512.12, + "end": 23515.82, + "probability": 0.1589 + }, + { + "start": 23515.82, + "end": 23516.24, + "probability": 0.2575 + }, + { + "start": 23516.9, + "end": 23519.76, + "probability": 0.7129 + }, + { + "start": 23523.54, + "end": 23525.36, + "probability": 0.8689 + }, + { + "start": 23525.44, + "end": 23529.42, + "probability": 0.3511 + }, + { + "start": 23530.06, + "end": 23531.22, + "probability": 0.0592 + }, + { + "start": 23532.08, + "end": 23532.12, + "probability": 0.3117 + }, + { + "start": 23532.12, + "end": 23532.68, + "probability": 0.6432 + }, + { + "start": 23532.68, + "end": 23535.4, + "probability": 0.5961 + }, + { + "start": 23535.4, + "end": 23535.82, + "probability": 0.4707 + }, + { + "start": 23536.76, + "end": 23537.48, + "probability": 0.7834 + }, + { + "start": 23542.26, + "end": 23542.36, + "probability": 0.0433 + }, + { + "start": 23542.36, + "end": 23542.36, + "probability": 0.0524 + }, + { + "start": 23542.36, + "end": 23545.84, + "probability": 0.4609 + }, + { + "start": 23546.14, + "end": 23547.74, + "probability": 0.8796 + }, + { + "start": 23550.42, + "end": 23551.18, + "probability": 0.7216 + }, + { + "start": 23552.28, + "end": 23554.72, + "probability": 0.8149 + }, + { + "start": 23555.06, + "end": 23555.86, + "probability": 0.7736 + }, + { + "start": 23557.02, + "end": 23560.92, + "probability": 0.8981 + }, + { + "start": 23562.04, + "end": 23563.96, + "probability": 0.253 + }, + { + "start": 23565.32, + "end": 23569.6, + "probability": 0.0855 + }, + { + "start": 23569.6, + "end": 23571.42, + "probability": 0.6615 + }, + { + "start": 23571.86, + "end": 23574.28, + "probability": 0.8601 + }, + { + "start": 23574.96, + "end": 23577.34, + "probability": 0.9778 + }, + { + "start": 23578.24, + "end": 23578.6, + "probability": 0.9048 + }, + { + "start": 23579.14, + "end": 23579.97, + "probability": 0.2408 + }, + { + "start": 23606.02, + "end": 23606.58, + "probability": 0.0752 + }, + { + "start": 23606.58, + "end": 23607.28, + "probability": 0.5799 + }, + { + "start": 23607.56, + "end": 23614.06, + "probability": 0.9103 + }, + { + "start": 23614.54, + "end": 23615.17, + "probability": 0.5671 + }, + { + "start": 23616.3, + "end": 23617.44, + "probability": 0.9547 + }, + { + "start": 23618.64, + "end": 23619.1, + "probability": 0.1737 + }, + { + "start": 23619.42, + "end": 23620.78, + "probability": 0.0778 + }, + { + "start": 23620.8, + "end": 23621.94, + "probability": 0.3425 + }, + { + "start": 23622.46, + "end": 23622.74, + "probability": 0.1157 + }, + { + "start": 23623.64, + "end": 23623.94, + "probability": 0.0069 + }, + { + "start": 23623.94, + "end": 23624.86, + "probability": 0.4578 + }, + { + "start": 23625.64, + "end": 23626.5, + "probability": 0.8019 + }, + { + "start": 23627.54, + "end": 23630.34, + "probability": 0.7672 + }, + { + "start": 23631.32, + "end": 23633.12, + "probability": 0.7056 + }, + { + "start": 23633.12, + "end": 23633.38, + "probability": 0.3522 + }, + { + "start": 23633.56, + "end": 23634.56, + "probability": 0.0494 + }, + { + "start": 23634.56, + "end": 23634.56, + "probability": 0.1665 + }, + { + "start": 23637.61, + "end": 23642.0, + "probability": 0.4183 + }, + { + "start": 23642.5, + "end": 23643.94, + "probability": 0.9764 + }, + { + "start": 23644.74, + "end": 23646.72, + "probability": 0.8926 + }, + { + "start": 23647.24, + "end": 23649.34, + "probability": 0.9767 + }, + { + "start": 23650.08, + "end": 23651.89, + "probability": 0.5684 + }, + { + "start": 23654.74, + "end": 23655.76, + "probability": 0.3819 + }, + { + "start": 23655.94, + "end": 23657.7, + "probability": 0.9927 + }, + { + "start": 23657.8, + "end": 23659.32, + "probability": 0.9895 + }, + { + "start": 23659.94, + "end": 23663.28, + "probability": 0.8474 + }, + { + "start": 23663.38, + "end": 23668.64, + "probability": 0.9951 + }, + { + "start": 23669.16, + "end": 23671.34, + "probability": 0.989 + }, + { + "start": 23671.76, + "end": 23672.24, + "probability": 0.8365 + }, + { + "start": 23673.02, + "end": 23676.3, + "probability": 0.9858 + }, + { + "start": 23676.7, + "end": 23680.94, + "probability": 0.9166 + }, + { + "start": 23681.52, + "end": 23683.0, + "probability": 0.9445 + }, + { + "start": 23683.12, + "end": 23685.6, + "probability": 0.9852 + }, + { + "start": 23685.6, + "end": 23688.5, + "probability": 0.959 + }, + { + "start": 23688.64, + "end": 23689.04, + "probability": 0.7711 + }, + { + "start": 23689.18, + "end": 23689.86, + "probability": 0.6981 + }, + { + "start": 23690.0, + "end": 23695.74, + "probability": 0.8161 + }, + { + "start": 23696.84, + "end": 23699.06, + "probability": 0.7653 + }, + { + "start": 23699.44, + "end": 23702.02, + "probability": 0.9883 + }, + { + "start": 23702.58, + "end": 23705.08, + "probability": 0.8691 + }, + { + "start": 23713.58, + "end": 23714.46, + "probability": 0.8682 + }, + { + "start": 23714.74, + "end": 23715.36, + "probability": 0.5696 + }, + { + "start": 23715.82, + "end": 23716.64, + "probability": 0.8646 + }, + { + "start": 23716.74, + "end": 23717.68, + "probability": 0.9273 + }, + { + "start": 23717.8, + "end": 23718.52, + "probability": 0.3591 + }, + { + "start": 23720.9, + "end": 23721.92, + "probability": 0.6116 + }, + { + "start": 23722.48, + "end": 23725.04, + "probability": 0.3374 + }, + { + "start": 23725.04, + "end": 23725.56, + "probability": 0.2257 + }, + { + "start": 23728.71, + "end": 23732.38, + "probability": 0.9981 + }, + { + "start": 23732.88, + "end": 23734.54, + "probability": 0.9399 + }, + { + "start": 23735.18, + "end": 23739.08, + "probability": 0.8844 + }, + { + "start": 23739.56, + "end": 23742.44, + "probability": 0.9903 + }, + { + "start": 23742.44, + "end": 23745.52, + "probability": 0.9878 + }, + { + "start": 23746.6, + "end": 23748.56, + "probability": 0.8832 + }, + { + "start": 23749.08, + "end": 23753.2, + "probability": 0.967 + }, + { + "start": 23753.5, + "end": 23755.26, + "probability": 0.7437 + }, + { + "start": 23755.94, + "end": 23757.74, + "probability": 0.9302 + }, + { + "start": 23757.98, + "end": 23759.88, + "probability": 0.4581 + }, + { + "start": 23760.38, + "end": 23764.44, + "probability": 0.996 + }, + { + "start": 23765.54, + "end": 23769.78, + "probability": 0.9902 + }, + { + "start": 23769.78, + "end": 23774.5, + "probability": 0.9966 + }, + { + "start": 23775.64, + "end": 23780.6, + "probability": 0.9932 + }, + { + "start": 23781.92, + "end": 23787.32, + "probability": 0.9756 + }, + { + "start": 23789.22, + "end": 23792.6, + "probability": 0.9992 + }, + { + "start": 23792.6, + "end": 23796.24, + "probability": 0.9948 + }, + { + "start": 23796.8, + "end": 23801.04, + "probability": 0.9959 + }, + { + "start": 23801.68, + "end": 23805.12, + "probability": 0.8676 + }, + { + "start": 23805.74, + "end": 23812.4, + "probability": 0.9883 + }, + { + "start": 23813.36, + "end": 23814.18, + "probability": 0.8258 + }, + { + "start": 23814.32, + "end": 23814.92, + "probability": 0.9856 + }, + { + "start": 23815.26, + "end": 23817.2, + "probability": 0.9706 + }, + { + "start": 23818.22, + "end": 23818.92, + "probability": 0.785 + }, + { + "start": 23819.56, + "end": 23823.82, + "probability": 0.7949 + }, + { + "start": 23824.0, + "end": 23827.1, + "probability": 0.9846 + }, + { + "start": 23828.86, + "end": 23832.42, + "probability": 0.9488 + }, + { + "start": 23833.94, + "end": 23838.06, + "probability": 0.9974 + }, + { + "start": 23838.36, + "end": 23841.08, + "probability": 0.9231 + }, + { + "start": 23842.04, + "end": 23842.5, + "probability": 0.8431 + }, + { + "start": 23842.76, + "end": 23849.68, + "probability": 0.9951 + }, + { + "start": 23851.08, + "end": 23851.78, + "probability": 0.8115 + }, + { + "start": 23852.3, + "end": 23856.04, + "probability": 0.9899 + }, + { + "start": 23856.04, + "end": 23859.46, + "probability": 0.9996 + }, + { + "start": 23861.42, + "end": 23864.56, + "probability": 0.9985 + }, + { + "start": 23865.4, + "end": 23866.02, + "probability": 0.9482 + }, + { + "start": 23866.54, + "end": 23870.12, + "probability": 0.9784 + }, + { + "start": 23870.66, + "end": 23873.28, + "probability": 0.9902 + }, + { + "start": 23874.12, + "end": 23876.06, + "probability": 0.2165 + }, + { + "start": 23876.06, + "end": 23878.42, + "probability": 0.9757 + }, + { + "start": 23878.84, + "end": 23881.38, + "probability": 0.8737 + }, + { + "start": 23881.82, + "end": 23884.8, + "probability": 0.994 + }, + { + "start": 23887.5, + "end": 23888.38, + "probability": 0.8163 + }, + { + "start": 23888.72, + "end": 23891.46, + "probability": 0.9922 + }, + { + "start": 23892.1, + "end": 23892.82, + "probability": 0.6641 + }, + { + "start": 23892.9, + "end": 23896.68, + "probability": 0.9751 + }, + { + "start": 23898.14, + "end": 23900.42, + "probability": 0.8795 + }, + { + "start": 23901.1, + "end": 23904.42, + "probability": 0.9083 + }, + { + "start": 23905.18, + "end": 23909.32, + "probability": 0.9987 + }, + { + "start": 23911.02, + "end": 23911.4, + "probability": 0.9562 + }, + { + "start": 23912.26, + "end": 23916.98, + "probability": 0.9959 + }, + { + "start": 23917.34, + "end": 23919.4, + "probability": 0.9668 + }, + { + "start": 23920.68, + "end": 23923.4, + "probability": 0.97 + }, + { + "start": 23924.56, + "end": 23929.1, + "probability": 0.9897 + }, + { + "start": 23929.94, + "end": 23932.62, + "probability": 0.9966 + }, + { + "start": 23934.5, + "end": 23939.1, + "probability": 0.9965 + }, + { + "start": 23940.42, + "end": 23946.34, + "probability": 0.9927 + }, + { + "start": 23946.88, + "end": 23950.06, + "probability": 0.9986 + }, + { + "start": 23950.92, + "end": 23954.46, + "probability": 0.9757 + }, + { + "start": 23956.5, + "end": 23959.18, + "probability": 0.942 + }, + { + "start": 23959.84, + "end": 23963.14, + "probability": 0.9752 + }, + { + "start": 23964.02, + "end": 23965.98, + "probability": 0.9921 + }, + { + "start": 23966.7, + "end": 23968.4, + "probability": 0.9854 + }, + { + "start": 23969.38, + "end": 23972.5, + "probability": 0.998 + }, + { + "start": 23973.46, + "end": 23974.92, + "probability": 0.6753 + }, + { + "start": 23975.04, + "end": 23976.1, + "probability": 0.9207 + }, + { + "start": 23976.58, + "end": 23977.7, + "probability": 0.7157 + }, + { + "start": 23978.38, + "end": 23984.1, + "probability": 0.9935 + }, + { + "start": 23984.84, + "end": 23985.88, + "probability": 0.942 + }, + { + "start": 23986.58, + "end": 23989.68, + "probability": 0.959 + }, + { + "start": 23990.46, + "end": 23991.52, + "probability": 0.7935 + }, + { + "start": 23992.64, + "end": 23996.74, + "probability": 0.9278 + }, + { + "start": 23997.64, + "end": 23999.04, + "probability": 0.965 + }, + { + "start": 23999.78, + "end": 24003.98, + "probability": 0.979 + }, + { + "start": 24005.96, + "end": 24009.28, + "probability": 0.9905 + }, + { + "start": 24009.36, + "end": 24010.0, + "probability": 0.7807 + }, + { + "start": 24010.18, + "end": 24010.96, + "probability": 0.8218 + }, + { + "start": 24011.64, + "end": 24017.1, + "probability": 0.9972 + }, + { + "start": 24017.76, + "end": 24020.74, + "probability": 0.9901 + }, + { + "start": 24021.34, + "end": 24023.7, + "probability": 0.6919 + }, + { + "start": 24025.0, + "end": 24028.02, + "probability": 0.9575 + }, + { + "start": 24028.58, + "end": 24033.22, + "probability": 0.9893 + }, + { + "start": 24034.1, + "end": 24038.06, + "probability": 0.996 + }, + { + "start": 24039.16, + "end": 24045.5, + "probability": 0.9874 + }, + { + "start": 24046.02, + "end": 24050.9, + "probability": 0.9152 + }, + { + "start": 24052.9, + "end": 24055.96, + "probability": 0.973 + }, + { + "start": 24056.36, + "end": 24059.02, + "probability": 0.9793 + }, + { + "start": 24059.6, + "end": 24060.5, + "probability": 0.7304 + }, + { + "start": 24061.38, + "end": 24065.14, + "probability": 0.9945 + }, + { + "start": 24065.14, + "end": 24068.96, + "probability": 0.9943 + }, + { + "start": 24070.92, + "end": 24073.9, + "probability": 0.898 + }, + { + "start": 24074.44, + "end": 24075.9, + "probability": 0.8653 + }, + { + "start": 24076.78, + "end": 24079.78, + "probability": 0.9436 + }, + { + "start": 24080.32, + "end": 24086.52, + "probability": 0.8665 + }, + { + "start": 24087.44, + "end": 24093.26, + "probability": 0.9951 + }, + { + "start": 24093.46, + "end": 24099.5, + "probability": 0.9097 + }, + { + "start": 24100.78, + "end": 24103.44, + "probability": 0.6774 + }, + { + "start": 24104.0, + "end": 24106.86, + "probability": 0.9926 + }, + { + "start": 24107.54, + "end": 24110.74, + "probability": 0.994 + }, + { + "start": 24110.78, + "end": 24114.1, + "probability": 0.9884 + }, + { + "start": 24115.74, + "end": 24119.0, + "probability": 0.9985 + }, + { + "start": 24119.6, + "end": 24123.44, + "probability": 0.9989 + }, + { + "start": 24123.44, + "end": 24128.42, + "probability": 0.9974 + }, + { + "start": 24129.38, + "end": 24133.94, + "probability": 0.9154 + }, + { + "start": 24135.08, + "end": 24135.56, + "probability": 0.8453 + }, + { + "start": 24136.42, + "end": 24141.86, + "probability": 0.9963 + }, + { + "start": 24141.88, + "end": 24147.24, + "probability": 0.9976 + }, + { + "start": 24148.42, + "end": 24149.9, + "probability": 0.7693 + }, + { + "start": 24150.44, + "end": 24153.7, + "probability": 0.9966 + }, + { + "start": 24154.36, + "end": 24156.3, + "probability": 0.9919 + }, + { + "start": 24157.06, + "end": 24158.96, + "probability": 0.9919 + }, + { + "start": 24159.54, + "end": 24163.64, + "probability": 0.9968 + }, + { + "start": 24167.16, + "end": 24170.46, + "probability": 0.9927 + }, + { + "start": 24171.08, + "end": 24174.26, + "probability": 0.9927 + }, + { + "start": 24174.8, + "end": 24178.32, + "probability": 0.9983 + }, + { + "start": 24180.16, + "end": 24183.18, + "probability": 0.9922 + }, + { + "start": 24183.78, + "end": 24184.74, + "probability": 0.5123 + }, + { + "start": 24184.8, + "end": 24187.98, + "probability": 0.9971 + }, + { + "start": 24188.74, + "end": 24190.42, + "probability": 0.9655 + }, + { + "start": 24191.08, + "end": 24192.68, + "probability": 0.9516 + }, + { + "start": 24194.18, + "end": 24196.72, + "probability": 0.9893 + }, + { + "start": 24197.62, + "end": 24198.26, + "probability": 0.9398 + }, + { + "start": 24198.8, + "end": 24201.58, + "probability": 0.9842 + }, + { + "start": 24202.32, + "end": 24207.0, + "probability": 0.9865 + }, + { + "start": 24207.8, + "end": 24210.48, + "probability": 0.986 + }, + { + "start": 24211.0, + "end": 24212.06, + "probability": 0.7174 + }, + { + "start": 24212.16, + "end": 24212.94, + "probability": 0.8218 + }, + { + "start": 24213.28, + "end": 24214.22, + "probability": 0.9367 + }, + { + "start": 24214.36, + "end": 24214.76, + "probability": 0.9846 + }, + { + "start": 24214.88, + "end": 24215.96, + "probability": 0.9805 + }, + { + "start": 24216.92, + "end": 24220.46, + "probability": 0.9987 + }, + { + "start": 24221.02, + "end": 24226.3, + "probability": 0.9979 + }, + { + "start": 24226.94, + "end": 24230.54, + "probability": 0.9951 + }, + { + "start": 24230.54, + "end": 24234.26, + "probability": 0.9977 + }, + { + "start": 24235.9, + "end": 24241.75, + "probability": 0.798 + }, + { + "start": 24242.78, + "end": 24244.32, + "probability": 0.9809 + }, + { + "start": 24245.48, + "end": 24245.78, + "probability": 0.7357 + }, + { + "start": 24246.14, + "end": 24250.4, + "probability": 0.9904 + }, + { + "start": 24251.04, + "end": 24254.62, + "probability": 0.999 + }, + { + "start": 24254.62, + "end": 24258.34, + "probability": 0.99 + }, + { + "start": 24258.8, + "end": 24261.2, + "probability": 0.9868 + }, + { + "start": 24262.66, + "end": 24264.76, + "probability": 0.937 + }, + { + "start": 24265.94, + "end": 24268.38, + "probability": 0.8052 + }, + { + "start": 24269.06, + "end": 24271.74, + "probability": 0.9878 + }, + { + "start": 24272.7, + "end": 24273.58, + "probability": 0.9937 + }, + { + "start": 24274.26, + "end": 24279.46, + "probability": 0.9731 + }, + { + "start": 24279.46, + "end": 24283.2, + "probability": 0.9914 + }, + { + "start": 24284.06, + "end": 24285.76, + "probability": 0.9055 + }, + { + "start": 24286.52, + "end": 24289.24, + "probability": 0.9704 + }, + { + "start": 24289.66, + "end": 24291.76, + "probability": 0.9291 + }, + { + "start": 24292.44, + "end": 24293.66, + "probability": 0.9312 + }, + { + "start": 24294.24, + "end": 24296.04, + "probability": 0.9761 + }, + { + "start": 24296.6, + "end": 24301.16, + "probability": 0.9875 + }, + { + "start": 24301.16, + "end": 24305.6, + "probability": 0.9778 + }, + { + "start": 24306.16, + "end": 24311.18, + "probability": 0.9993 + }, + { + "start": 24312.72, + "end": 24315.4, + "probability": 0.9954 + }, + { + "start": 24316.12, + "end": 24323.18, + "probability": 0.9642 + }, + { + "start": 24323.18, + "end": 24330.18, + "probability": 0.9974 + }, + { + "start": 24330.74, + "end": 24330.92, + "probability": 0.7323 + }, + { + "start": 24332.06, + "end": 24334.34, + "probability": 0.7224 + }, + { + "start": 24335.3, + "end": 24336.86, + "probability": 0.6305 + }, + { + "start": 24343.2, + "end": 24345.68, + "probability": 0.6434 + }, + { + "start": 24354.06, + "end": 24355.44, + "probability": 0.4492 + }, + { + "start": 24355.56, + "end": 24355.56, + "probability": 0.3669 + }, + { + "start": 24355.56, + "end": 24356.7, + "probability": 0.7028 + }, + { + "start": 24356.88, + "end": 24357.04, + "probability": 0.3581 + }, + { + "start": 24357.04, + "end": 24357.28, + "probability": 0.7297 + }, + { + "start": 24357.54, + "end": 24358.1, + "probability": 0.9935 + }, + { + "start": 24358.94, + "end": 24361.38, + "probability": 0.8809 + }, + { + "start": 24362.2, + "end": 24363.5, + "probability": 0.7634 + }, + { + "start": 24363.7, + "end": 24364.1, + "probability": 0.7849 + }, + { + "start": 24364.16, + "end": 24365.88, + "probability": 0.6105 + }, + { + "start": 24366.32, + "end": 24368.22, + "probability": 0.989 + }, + { + "start": 24368.9, + "end": 24371.8, + "probability": 0.9689 + }, + { + "start": 24371.8, + "end": 24376.54, + "probability": 0.9992 + }, + { + "start": 24376.9, + "end": 24379.99, + "probability": 0.7415 + }, + { + "start": 24380.02, + "end": 24382.38, + "probability": 0.993 + }, + { + "start": 24382.5, + "end": 24384.16, + "probability": 0.9964 + }, + { + "start": 24385.8, + "end": 24389.16, + "probability": 0.9951 + }, + { + "start": 24389.36, + "end": 24391.02, + "probability": 0.4343 + }, + { + "start": 24391.04, + "end": 24393.38, + "probability": 0.9424 + }, + { + "start": 24393.56, + "end": 24398.71, + "probability": 0.9942 + }, + { + "start": 24399.86, + "end": 24402.86, + "probability": 0.8818 + }, + { + "start": 24402.94, + "end": 24406.18, + "probability": 0.9697 + }, + { + "start": 24407.18, + "end": 24412.68, + "probability": 0.9908 + }, + { + "start": 24413.08, + "end": 24416.34, + "probability": 0.936 + }, + { + "start": 24416.54, + "end": 24423.46, + "probability": 0.9916 + }, + { + "start": 24424.44, + "end": 24428.46, + "probability": 0.9914 + }, + { + "start": 24428.46, + "end": 24432.82, + "probability": 0.9976 + }, + { + "start": 24434.0, + "end": 24437.45, + "probability": 0.9969 + }, + { + "start": 24438.64, + "end": 24442.52, + "probability": 0.999 + }, + { + "start": 24443.18, + "end": 24449.26, + "probability": 0.9949 + }, + { + "start": 24450.02, + "end": 24450.7, + "probability": 0.6583 + }, + { + "start": 24451.02, + "end": 24452.08, + "probability": 0.7894 + }, + { + "start": 24452.14, + "end": 24454.36, + "probability": 0.9711 + }, + { + "start": 24454.44, + "end": 24455.68, + "probability": 0.8771 + }, + { + "start": 24456.26, + "end": 24458.49, + "probability": 0.9773 + }, + { + "start": 24458.72, + "end": 24459.76, + "probability": 0.8708 + }, + { + "start": 24460.3, + "end": 24463.08, + "probability": 0.9941 + }, + { + "start": 24463.16, + "end": 24466.32, + "probability": 0.9854 + }, + { + "start": 24467.42, + "end": 24468.0, + "probability": 0.8995 + }, + { + "start": 24468.66, + "end": 24474.08, + "probability": 0.9963 + }, + { + "start": 24474.08, + "end": 24480.14, + "probability": 0.9941 + }, + { + "start": 24480.22, + "end": 24484.68, + "probability": 0.9951 + }, + { + "start": 24485.5, + "end": 24488.59, + "probability": 0.9967 + }, + { + "start": 24488.8, + "end": 24490.84, + "probability": 0.9947 + }, + { + "start": 24490.84, + "end": 24496.18, + "probability": 0.9309 + }, + { + "start": 24496.32, + "end": 24498.83, + "probability": 0.9568 + }, + { + "start": 24500.42, + "end": 24500.98, + "probability": 0.5184 + }, + { + "start": 24500.98, + "end": 24502.82, + "probability": 0.6577 + }, + { + "start": 24503.16, + "end": 24504.04, + "probability": 0.6999 + }, + { + "start": 24504.06, + "end": 24506.2, + "probability": 0.8658 + }, + { + "start": 24507.02, + "end": 24511.46, + "probability": 0.9631 + }, + { + "start": 24512.48, + "end": 24514.46, + "probability": 0.8868 + }, + { + "start": 24514.54, + "end": 24515.06, + "probability": 0.9686 + }, + { + "start": 24515.18, + "end": 24519.12, + "probability": 0.5062 + }, + { + "start": 24519.12, + "end": 24521.34, + "probability": 0.7122 + }, + { + "start": 24522.76, + "end": 24525.79, + "probability": 0.9931 + }, + { + "start": 24526.62, + "end": 24530.38, + "probability": 0.9966 + }, + { + "start": 24530.48, + "end": 24532.22, + "probability": 0.9941 + }, + { + "start": 24532.74, + "end": 24533.14, + "probability": 0.5422 + }, + { + "start": 24533.26, + "end": 24538.98, + "probability": 0.9824 + }, + { + "start": 24538.98, + "end": 24543.82, + "probability": 0.8935 + }, + { + "start": 24545.46, + "end": 24551.82, + "probability": 0.9948 + }, + { + "start": 24552.02, + "end": 24555.36, + "probability": 0.9956 + }, + { + "start": 24555.52, + "end": 24562.36, + "probability": 0.993 + }, + { + "start": 24562.36, + "end": 24567.04, + "probability": 0.9987 + }, + { + "start": 24567.48, + "end": 24571.38, + "probability": 0.9825 + }, + { + "start": 24571.5, + "end": 24577.26, + "probability": 0.9777 + }, + { + "start": 24578.54, + "end": 24578.98, + "probability": 0.6043 + }, + { + "start": 24579.32, + "end": 24585.84, + "probability": 0.9885 + }, + { + "start": 24586.54, + "end": 24594.26, + "probability": 0.999 + }, + { + "start": 24594.42, + "end": 24595.2, + "probability": 0.9008 + }, + { + "start": 24595.26, + "end": 24596.58, + "probability": 0.9739 + }, + { + "start": 24596.78, + "end": 24599.5, + "probability": 0.9746 + }, + { + "start": 24599.98, + "end": 24603.9, + "probability": 0.5994 + }, + { + "start": 24603.9, + "end": 24608.0, + "probability": 0.9771 + }, + { + "start": 24608.1, + "end": 24612.36, + "probability": 0.9778 + }, + { + "start": 24612.36, + "end": 24616.28, + "probability": 0.922 + }, + { + "start": 24616.8, + "end": 24618.97, + "probability": 0.9807 + }, + { + "start": 24619.48, + "end": 24624.14, + "probability": 0.9934 + }, + { + "start": 24624.2, + "end": 24627.58, + "probability": 0.8789 + }, + { + "start": 24628.38, + "end": 24634.82, + "probability": 0.9816 + }, + { + "start": 24634.98, + "end": 24639.52, + "probability": 0.9795 + }, + { + "start": 24640.14, + "end": 24640.4, + "probability": 0.659 + }, + { + "start": 24640.48, + "end": 24643.08, + "probability": 0.9777 + }, + { + "start": 24643.56, + "end": 24645.67, + "probability": 0.9964 + }, + { + "start": 24646.42, + "end": 24653.92, + "probability": 0.9956 + }, + { + "start": 24654.16, + "end": 24656.48, + "probability": 0.9971 + }, + { + "start": 24656.64, + "end": 24662.74, + "probability": 0.9263 + }, + { + "start": 24662.84, + "end": 24664.68, + "probability": 0.9907 + }, + { + "start": 24665.32, + "end": 24667.02, + "probability": 0.8788 + }, + { + "start": 24667.93, + "end": 24671.32, + "probability": 0.9757 + }, + { + "start": 24671.74, + "end": 24676.46, + "probability": 0.9769 + }, + { + "start": 24676.88, + "end": 24678.28, + "probability": 0.8847 + }, + { + "start": 24678.36, + "end": 24681.1, + "probability": 0.9653 + }, + { + "start": 24681.84, + "end": 24690.97, + "probability": 0.9459 + }, + { + "start": 24691.22, + "end": 24692.68, + "probability": 0.9446 + }, + { + "start": 24692.74, + "end": 24693.6, + "probability": 0.7179 + }, + { + "start": 24694.16, + "end": 24695.42, + "probability": 0.5556 + }, + { + "start": 24695.7, + "end": 24698.42, + "probability": 0.9611 + }, + { + "start": 24698.86, + "end": 24700.62, + "probability": 0.9441 + }, + { + "start": 24701.18, + "end": 24704.08, + "probability": 0.808 + }, + { + "start": 24705.24, + "end": 24706.78, + "probability": 0.9731 + }, + { + "start": 24706.84, + "end": 24708.04, + "probability": 0.9912 + }, + { + "start": 24708.46, + "end": 24710.08, + "probability": 0.9841 + }, + { + "start": 24710.64, + "end": 24712.32, + "probability": 0.9683 + }, + { + "start": 24713.36, + "end": 24718.2, + "probability": 0.9951 + }, + { + "start": 24718.74, + "end": 24722.64, + "probability": 0.993 + }, + { + "start": 24722.64, + "end": 24728.58, + "probability": 0.9845 + }, + { + "start": 24729.34, + "end": 24731.82, + "probability": 0.799 + }, + { + "start": 24732.62, + "end": 24735.18, + "probability": 0.9487 + }, + { + "start": 24735.48, + "end": 24735.9, + "probability": 0.8896 + }, + { + "start": 24735.96, + "end": 24739.46, + "probability": 0.9801 + }, + { + "start": 24740.04, + "end": 24745.85, + "probability": 0.9865 + }, + { + "start": 24746.14, + "end": 24752.08, + "probability": 0.9988 + }, + { + "start": 24752.6, + "end": 24754.79, + "probability": 0.9961 + }, + { + "start": 24755.3, + "end": 24760.02, + "probability": 0.9906 + }, + { + "start": 24760.54, + "end": 24760.78, + "probability": 0.962 + }, + { + "start": 24761.74, + "end": 24763.6, + "probability": 0.9947 + }, + { + "start": 24764.16, + "end": 24766.12, + "probability": 0.7073 + }, + { + "start": 24768.26, + "end": 24771.66, + "probability": 0.991 + }, + { + "start": 24772.32, + "end": 24775.9, + "probability": 0.9985 + }, + { + "start": 24776.04, + "end": 24777.74, + "probability": 0.9336 + }, + { + "start": 24778.48, + "end": 24783.36, + "probability": 0.9993 + }, + { + "start": 24783.36, + "end": 24789.02, + "probability": 0.9984 + }, + { + "start": 24789.1, + "end": 24790.1, + "probability": 0.7971 + }, + { + "start": 24790.16, + "end": 24793.78, + "probability": 0.8566 + }, + { + "start": 24793.82, + "end": 24800.12, + "probability": 0.9867 + }, + { + "start": 24800.9, + "end": 24803.76, + "probability": 0.7625 + }, + { + "start": 24804.5, + "end": 24807.65, + "probability": 0.8177 + }, + { + "start": 24808.82, + "end": 24812.96, + "probability": 0.9365 + }, + { + "start": 24814.21, + "end": 24817.26, + "probability": 0.9849 + }, + { + "start": 24818.76, + "end": 24821.1, + "probability": 0.9743 + }, + { + "start": 24821.3, + "end": 24827.18, + "probability": 0.9731 + }, + { + "start": 24827.38, + "end": 24833.74, + "probability": 0.988 + }, + { + "start": 24834.17, + "end": 24839.52, + "probability": 0.9957 + }, + { + "start": 24840.42, + "end": 24845.62, + "probability": 0.9954 + }, + { + "start": 24846.44, + "end": 24849.28, + "probability": 0.9355 + }, + { + "start": 24849.3, + "end": 24850.82, + "probability": 0.9608 + }, + { + "start": 24851.02, + "end": 24851.24, + "probability": 0.7933 + }, + { + "start": 24852.85, + "end": 24856.2, + "probability": 0.9753 + }, + { + "start": 24856.68, + "end": 24857.0, + "probability": 0.3471 + }, + { + "start": 24857.94, + "end": 24859.36, + "probability": 0.8873 + }, + { + "start": 24865.88, + "end": 24869.08, + "probability": 0.5032 + }, + { + "start": 24869.84, + "end": 24871.08, + "probability": 0.8399 + }, + { + "start": 24871.5, + "end": 24872.02, + "probability": 0.3397 + }, + { + "start": 24875.24, + "end": 24877.28, + "probability": 0.2081 + }, + { + "start": 24877.84, + "end": 24882.46, + "probability": 0.7399 + }, + { + "start": 24882.72, + "end": 24884.32, + "probability": 0.4358 + }, + { + "start": 24885.32, + "end": 24888.92, + "probability": 0.9928 + }, + { + "start": 24889.32, + "end": 24891.16, + "probability": 0.9849 + }, + { + "start": 24891.82, + "end": 24893.9, + "probability": 0.7388 + }, + { + "start": 24894.44, + "end": 24896.76, + "probability": 0.2376 + }, + { + "start": 24898.32, + "end": 24901.76, + "probability": 0.991 + }, + { + "start": 24902.36, + "end": 24904.26, + "probability": 0.8704 + }, + { + "start": 24925.7, + "end": 24926.28, + "probability": 0.3189 + }, + { + "start": 24926.8, + "end": 24927.02, + "probability": 0.8594 + }, + { + "start": 24928.0, + "end": 24933.76, + "probability": 0.991 + }, + { + "start": 24935.1, + "end": 24935.74, + "probability": 0.7437 + }, + { + "start": 24935.8, + "end": 24936.3, + "probability": 0.7403 + }, + { + "start": 24936.38, + "end": 24938.28, + "probability": 0.9884 + }, + { + "start": 24938.96, + "end": 24940.92, + "probability": 0.9995 + }, + { + "start": 24941.76, + "end": 24942.56, + "probability": 0.8936 + }, + { + "start": 24945.68, + "end": 24947.16, + "probability": 0.2125 + }, + { + "start": 24947.86, + "end": 24952.36, + "probability": 0.9862 + }, + { + "start": 24952.94, + "end": 24954.73, + "probability": 0.9932 + }, + { + "start": 24956.5, + "end": 24959.92, + "probability": 0.7731 + }, + { + "start": 24959.92, + "end": 24963.76, + "probability": 0.63 + }, + { + "start": 24964.68, + "end": 24966.96, + "probability": 0.827 + }, + { + "start": 24967.92, + "end": 24972.46, + "probability": 0.9175 + }, + { + "start": 24972.62, + "end": 24975.62, + "probability": 0.937 + }, + { + "start": 24976.5, + "end": 24978.54, + "probability": 0.9957 + }, + { + "start": 24979.14, + "end": 24981.51, + "probability": 0.9983 + }, + { + "start": 24982.8, + "end": 24984.38, + "probability": 0.6869 + }, + { + "start": 24985.94, + "end": 24986.38, + "probability": 0.9507 + }, + { + "start": 24988.02, + "end": 24990.92, + "probability": 0.9463 + }, + { + "start": 24991.66, + "end": 24992.5, + "probability": 0.9131 + }, + { + "start": 24993.9, + "end": 24997.48, + "probability": 0.9852 + }, + { + "start": 24998.56, + "end": 24998.98, + "probability": 0.947 + }, + { + "start": 24999.6, + "end": 25000.86, + "probability": 0.9229 + }, + { + "start": 25001.8, + "end": 25003.12, + "probability": 0.8359 + }, + { + "start": 25005.66, + "end": 25006.22, + "probability": 0.0928 + }, + { + "start": 25006.22, + "end": 25006.22, + "probability": 0.0323 + }, + { + "start": 25006.22, + "end": 25008.64, + "probability": 0.7539 + }, + { + "start": 25009.3, + "end": 25011.54, + "probability": 0.9006 + }, + { + "start": 25012.74, + "end": 25013.42, + "probability": 0.789 + }, + { + "start": 25013.94, + "end": 25017.51, + "probability": 0.8798 + }, + { + "start": 25018.22, + "end": 25020.56, + "probability": 0.9814 + }, + { + "start": 25021.4, + "end": 25022.32, + "probability": 0.8945 + }, + { + "start": 25023.04, + "end": 25024.34, + "probability": 0.8921 + }, + { + "start": 25025.72, + "end": 25026.74, + "probability": 0.9927 + }, + { + "start": 25028.0, + "end": 25029.88, + "probability": 0.9917 + }, + { + "start": 25031.16, + "end": 25032.88, + "probability": 0.9445 + }, + { + "start": 25033.96, + "end": 25037.48, + "probability": 0.7141 + }, + { + "start": 25038.24, + "end": 25041.34, + "probability": 0.981 + }, + { + "start": 25041.94, + "end": 25043.88, + "probability": 0.9913 + }, + { + "start": 25044.44, + "end": 25047.4, + "probability": 0.6227 + }, + { + "start": 25047.96, + "end": 25049.6, + "probability": 0.9409 + }, + { + "start": 25050.86, + "end": 25051.46, + "probability": 0.7018 + }, + { + "start": 25053.66, + "end": 25054.42, + "probability": 0.9542 + }, + { + "start": 25054.56, + "end": 25057.6, + "probability": 0.8574 + }, + { + "start": 25057.62, + "end": 25058.04, + "probability": 0.8869 + }, + { + "start": 25058.76, + "end": 25061.68, + "probability": 0.6566 + }, + { + "start": 25062.12, + "end": 25065.64, + "probability": 0.9445 + }, + { + "start": 25066.94, + "end": 25069.8, + "probability": 0.9775 + }, + { + "start": 25069.98, + "end": 25072.16, + "probability": 0.9937 + }, + { + "start": 25072.26, + "end": 25072.92, + "probability": 0.6109 + }, + { + "start": 25073.26, + "end": 25074.94, + "probability": 0.9939 + }, + { + "start": 25075.76, + "end": 25076.4, + "probability": 0.8453 + }, + { + "start": 25077.54, + "end": 25080.76, + "probability": 0.9454 + }, + { + "start": 25080.94, + "end": 25081.68, + "probability": 0.8013 + }, + { + "start": 25082.42, + "end": 25083.26, + "probability": 0.9862 + }, + { + "start": 25083.74, + "end": 25086.46, + "probability": 0.9739 + }, + { + "start": 25086.98, + "end": 25092.2, + "probability": 0.9949 + }, + { + "start": 25092.2, + "end": 25095.54, + "probability": 0.9673 + }, + { + "start": 25095.68, + "end": 25098.78, + "probability": 0.9737 + }, + { + "start": 25100.74, + "end": 25104.1, + "probability": 0.9962 + }, + { + "start": 25105.1, + "end": 25109.54, + "probability": 0.9938 + }, + { + "start": 25110.7, + "end": 25114.96, + "probability": 0.9289 + }, + { + "start": 25115.62, + "end": 25116.93, + "probability": 0.999 + }, + { + "start": 25117.2, + "end": 25122.9, + "probability": 0.9907 + }, + { + "start": 25123.44, + "end": 25124.4, + "probability": 0.9907 + }, + { + "start": 25125.1, + "end": 25125.68, + "probability": 0.6702 + }, + { + "start": 25126.8, + "end": 25129.64, + "probability": 0.9854 + }, + { + "start": 25129.78, + "end": 25131.06, + "probability": 0.9144 + }, + { + "start": 25131.46, + "end": 25132.5, + "probability": 0.5352 + }, + { + "start": 25133.12, + "end": 25135.0, + "probability": 0.9771 + }, + { + "start": 25136.32, + "end": 25136.96, + "probability": 0.9927 + }, + { + "start": 25137.6, + "end": 25138.78, + "probability": 0.9852 + }, + { + "start": 25139.64, + "end": 25144.28, + "probability": 0.9453 + }, + { + "start": 25145.06, + "end": 25146.56, + "probability": 0.9727 + }, + { + "start": 25146.74, + "end": 25149.18, + "probability": 0.5571 + }, + { + "start": 25149.74, + "end": 25150.06, + "probability": 0.4795 + }, + { + "start": 25151.2, + "end": 25152.3, + "probability": 0.76 + }, + { + "start": 25152.58, + "end": 25156.02, + "probability": 0.9401 + }, + { + "start": 25156.68, + "end": 25159.98, + "probability": 0.9907 + }, + { + "start": 25160.92, + "end": 25167.3, + "probability": 0.9928 + }, + { + "start": 25168.16, + "end": 25169.48, + "probability": 0.8674 + }, + { + "start": 25170.52, + "end": 25172.16, + "probability": 0.9894 + }, + { + "start": 25172.24, + "end": 25173.54, + "probability": 0.6513 + }, + { + "start": 25173.64, + "end": 25174.54, + "probability": 0.7201 + }, + { + "start": 25175.21, + "end": 25179.43, + "probability": 0.9956 + }, + { + "start": 25179.78, + "end": 25184.26, + "probability": 0.9808 + }, + { + "start": 25184.62, + "end": 25187.0, + "probability": 0.8105 + }, + { + "start": 25187.5, + "end": 25188.66, + "probability": 0.9858 + }, + { + "start": 25188.82, + "end": 25189.21, + "probability": 0.9053 + }, + { + "start": 25190.06, + "end": 25190.5, + "probability": 0.5258 + }, + { + "start": 25192.78, + "end": 25198.26, + "probability": 0.6669 + }, + { + "start": 25199.06, + "end": 25200.82, + "probability": 0.9494 + }, + { + "start": 25201.6, + "end": 25206.5, + "probability": 0.9228 + }, + { + "start": 25206.64, + "end": 25207.16, + "probability": 0.9521 + }, + { + "start": 25207.26, + "end": 25210.48, + "probability": 0.9778 + }, + { + "start": 25211.16, + "end": 25212.86, + "probability": 0.9976 + }, + { + "start": 25213.62, + "end": 25215.62, + "probability": 0.894 + }, + { + "start": 25216.4, + "end": 25218.0, + "probability": 0.5462 + }, + { + "start": 25218.66, + "end": 25222.78, + "probability": 0.979 + }, + { + "start": 25223.3, + "end": 25227.84, + "probability": 0.9764 + }, + { + "start": 25228.38, + "end": 25230.24, + "probability": 0.9476 + }, + { + "start": 25231.22, + "end": 25232.34, + "probability": 0.964 + }, + { + "start": 25232.48, + "end": 25233.3, + "probability": 0.7131 + }, + { + "start": 25233.4, + "end": 25237.92, + "probability": 0.7878 + }, + { + "start": 25238.38, + "end": 25238.96, + "probability": 0.8854 + }, + { + "start": 25239.44, + "end": 25242.68, + "probability": 0.8945 + }, + { + "start": 25243.16, + "end": 25244.0, + "probability": 0.78 + }, + { + "start": 25244.64, + "end": 25245.44, + "probability": 0.9941 + }, + { + "start": 25246.32, + "end": 25247.52, + "probability": 0.9124 + }, + { + "start": 25248.82, + "end": 25251.9, + "probability": 0.9147 + }, + { + "start": 25252.26, + "end": 25254.64, + "probability": 0.9392 + }, + { + "start": 25254.72, + "end": 25255.46, + "probability": 0.6202 + }, + { + "start": 25257.58, + "end": 25259.6, + "probability": 0.7636 + }, + { + "start": 25260.2, + "end": 25262.92, + "probability": 0.988 + }, + { + "start": 25263.48, + "end": 25264.12, + "probability": 0.8798 + }, + { + "start": 25265.06, + "end": 25268.0, + "probability": 0.8039 + }, + { + "start": 25270.1, + "end": 25271.06, + "probability": 0.8323 + }, + { + "start": 25271.78, + "end": 25271.92, + "probability": 0.2175 + }, + { + "start": 25271.92, + "end": 25272.04, + "probability": 0.2583 + }, + { + "start": 25273.79, + "end": 25275.1, + "probability": 0.9823 + }, + { + "start": 25275.18, + "end": 25279.0, + "probability": 0.749 + }, + { + "start": 25279.7, + "end": 25281.14, + "probability": 0.9924 + }, + { + "start": 25281.78, + "end": 25282.94, + "probability": 0.9742 + }, + { + "start": 25284.16, + "end": 25286.02, + "probability": 0.4592 + }, + { + "start": 25286.32, + "end": 25291.54, + "probability": 0.9761 + }, + { + "start": 25291.82, + "end": 25293.88, + "probability": 0.8257 + }, + { + "start": 25295.72, + "end": 25298.78, + "probability": 0.3886 + }, + { + "start": 25299.56, + "end": 25300.2, + "probability": 0.7177 + }, + { + "start": 25300.36, + "end": 25301.2, + "probability": 0.9674 + }, + { + "start": 25301.58, + "end": 25304.2, + "probability": 0.9491 + }, + { + "start": 25304.72, + "end": 25305.22, + "probability": 0.9738 + }, + { + "start": 25305.86, + "end": 25308.3, + "probability": 0.8332 + }, + { + "start": 25308.88, + "end": 25310.8, + "probability": 0.959 + }, + { + "start": 25311.0, + "end": 25313.36, + "probability": 0.9517 + }, + { + "start": 25313.36, + "end": 25316.86, + "probability": 0.9893 + }, + { + "start": 25317.66, + "end": 25319.28, + "probability": 0.9951 + }, + { + "start": 25320.52, + "end": 25323.28, + "probability": 0.5505 + }, + { + "start": 25324.58, + "end": 25326.88, + "probability": 0.6818 + }, + { + "start": 25326.94, + "end": 25330.4, + "probability": 0.962 + }, + { + "start": 25331.34, + "end": 25333.9, + "probability": 0.9961 + }, + { + "start": 25334.88, + "end": 25339.0, + "probability": 0.9838 + }, + { + "start": 25339.1, + "end": 25343.42, + "probability": 0.9589 + }, + { + "start": 25343.98, + "end": 25346.3, + "probability": 0.834 + }, + { + "start": 25346.38, + "end": 25346.64, + "probability": 0.6235 + }, + { + "start": 25346.72, + "end": 25349.0, + "probability": 0.9875 + }, + { + "start": 25349.0, + "end": 25352.84, + "probability": 0.9098 + }, + { + "start": 25353.94, + "end": 25355.46, + "probability": 0.8617 + }, + { + "start": 25355.6, + "end": 25356.17, + "probability": 0.7769 + }, + { + "start": 25356.92, + "end": 25361.96, + "probability": 0.9489 + }, + { + "start": 25362.38, + "end": 25365.88, + "probability": 0.9873 + }, + { + "start": 25366.84, + "end": 25369.06, + "probability": 0.9916 + }, + { + "start": 25370.12, + "end": 25374.46, + "probability": 0.9873 + }, + { + "start": 25374.7, + "end": 25376.82, + "probability": 0.8207 + }, + { + "start": 25377.54, + "end": 25380.5, + "probability": 0.9772 + }, + { + "start": 25381.36, + "end": 25383.92, + "probability": 0.7915 + }, + { + "start": 25385.06, + "end": 25386.68, + "probability": 0.9536 + }, + { + "start": 25386.92, + "end": 25388.0, + "probability": 0.8794 + }, + { + "start": 25388.64, + "end": 25390.16, + "probability": 0.9516 + }, + { + "start": 25390.32, + "end": 25394.3, + "probability": 0.9762 + }, + { + "start": 25394.62, + "end": 25396.6, + "probability": 0.8241 + }, + { + "start": 25396.66, + "end": 25399.7, + "probability": 0.9143 + }, + { + "start": 25400.72, + "end": 25402.26, + "probability": 0.9926 + }, + { + "start": 25403.04, + "end": 25408.72, + "probability": 0.9747 + }, + { + "start": 25410.6, + "end": 25415.52, + "probability": 0.9901 + }, + { + "start": 25415.52, + "end": 25418.62, + "probability": 0.9941 + }, + { + "start": 25419.66, + "end": 25421.66, + "probability": 0.5062 + }, + { + "start": 25422.7, + "end": 25425.0, + "probability": 0.7609 + }, + { + "start": 25425.02, + "end": 25426.18, + "probability": 0.8201 + }, + { + "start": 25427.04, + "end": 25430.16, + "probability": 0.8729 + }, + { + "start": 25430.36, + "end": 25433.61, + "probability": 0.7243 + }, + { + "start": 25434.62, + "end": 25439.9, + "probability": 0.9582 + }, + { + "start": 25441.22, + "end": 25442.4, + "probability": 0.741 + }, + { + "start": 25442.92, + "end": 25445.66, + "probability": 0.9961 + }, + { + "start": 25446.4, + "end": 25449.18, + "probability": 0.8672 + }, + { + "start": 25449.96, + "end": 25451.1, + "probability": 0.9313 + }, + { + "start": 25451.18, + "end": 25453.12, + "probability": 0.6597 + }, + { + "start": 25454.58, + "end": 25455.9, + "probability": 0.8494 + }, + { + "start": 25457.4, + "end": 25461.38, + "probability": 0.8552 + }, + { + "start": 25461.84, + "end": 25462.08, + "probability": 0.7427 + }, + { + "start": 25463.94, + "end": 25464.64, + "probability": 0.8007 + }, + { + "start": 25467.88, + "end": 25469.16, + "probability": 0.81 + }, + { + "start": 25469.28, + "end": 25469.56, + "probability": 0.4284 + }, + { + "start": 25470.44, + "end": 25473.46, + "probability": 0.0195 + }, + { + "start": 25473.52, + "end": 25473.58, + "probability": 0.0001 + }, + { + "start": 25473.58, + "end": 25474.39, + "probability": 0.5281 + }, + { + "start": 25474.88, + "end": 25477.06, + "probability": 0.6393 + }, + { + "start": 25477.1, + "end": 25478.82, + "probability": 0.969 + }, + { + "start": 25480.2, + "end": 25481.7, + "probability": 0.0732 + }, + { + "start": 25481.92, + "end": 25482.14, + "probability": 0.009 + }, + { + "start": 25482.14, + "end": 25485.3, + "probability": 0.4812 + }, + { + "start": 25485.5, + "end": 25487.64, + "probability": 0.7094 + }, + { + "start": 25488.52, + "end": 25490.36, + "probability": 0.9417 + }, + { + "start": 25495.68, + "end": 25496.2, + "probability": 0.2209 + }, + { + "start": 25500.82, + "end": 25504.94, + "probability": 0.3213 + }, + { + "start": 25506.9, + "end": 25507.58, + "probability": 0.074 + }, + { + "start": 25509.4, + "end": 25512.02, + "probability": 0.7499 + }, + { + "start": 25512.63, + "end": 25516.06, + "probability": 0.9932 + }, + { + "start": 25517.18, + "end": 25518.76, + "probability": 0.7832 + }, + { + "start": 25519.7, + "end": 25523.52, + "probability": 0.6967 + }, + { + "start": 25523.78, + "end": 25523.9, + "probability": 0.0018 + }, + { + "start": 25523.9, + "end": 25526.28, + "probability": 0.6768 + }, + { + "start": 25527.02, + "end": 25528.36, + "probability": 0.8094 + }, + { + "start": 25547.2, + "end": 25548.16, + "probability": 0.6594 + }, + { + "start": 25549.66, + "end": 25550.74, + "probability": 0.5672 + }, + { + "start": 25552.1, + "end": 25554.52, + "probability": 0.9453 + }, + { + "start": 25555.04, + "end": 25557.72, + "probability": 0.8562 + }, + { + "start": 25558.62, + "end": 25561.02, + "probability": 0.9007 + }, + { + "start": 25562.06, + "end": 25567.76, + "probability": 0.9748 + }, + { + "start": 25568.54, + "end": 25572.24, + "probability": 0.9844 + }, + { + "start": 25573.02, + "end": 25575.24, + "probability": 0.7748 + }, + { + "start": 25576.16, + "end": 25577.26, + "probability": 0.5888 + }, + { + "start": 25579.32, + "end": 25581.06, + "probability": 0.9968 + }, + { + "start": 25583.64, + "end": 25585.48, + "probability": 0.7878 + }, + { + "start": 25586.9, + "end": 25589.84, + "probability": 0.9834 + }, + { + "start": 25590.98, + "end": 25594.72, + "probability": 0.8765 + }, + { + "start": 25595.88, + "end": 25597.34, + "probability": 0.9908 + }, + { + "start": 25599.88, + "end": 25605.98, + "probability": 0.9763 + }, + { + "start": 25607.14, + "end": 25609.76, + "probability": 0.7372 + }, + { + "start": 25610.94, + "end": 25611.86, + "probability": 0.8851 + }, + { + "start": 25615.7, + "end": 25617.76, + "probability": 0.9707 + }, + { + "start": 25620.94, + "end": 25623.16, + "probability": 0.9947 + }, + { + "start": 25624.12, + "end": 25626.12, + "probability": 0.9834 + }, + { + "start": 25626.66, + "end": 25627.6, + "probability": 0.9177 + }, + { + "start": 25628.46, + "end": 25630.42, + "probability": 0.8527 + }, + { + "start": 25632.08, + "end": 25634.54, + "probability": 0.8926 + }, + { + "start": 25634.86, + "end": 25636.16, + "probability": 0.9112 + }, + { + "start": 25638.16, + "end": 25638.64, + "probability": 0.9489 + }, + { + "start": 25639.94, + "end": 25640.76, + "probability": 0.8311 + }, + { + "start": 25643.48, + "end": 25647.62, + "probability": 0.9973 + }, + { + "start": 25649.82, + "end": 25650.7, + "probability": 0.9651 + }, + { + "start": 25651.14, + "end": 25651.86, + "probability": 0.9824 + }, + { + "start": 25652.62, + "end": 25654.16, + "probability": 0.8508 + }, + { + "start": 25655.1, + "end": 25656.14, + "probability": 0.8859 + }, + { + "start": 25659.44, + "end": 25660.31, + "probability": 0.5188 + }, + { + "start": 25661.12, + "end": 25662.64, + "probability": 0.7608 + }, + { + "start": 25664.14, + "end": 25666.34, + "probability": 0.6756 + }, + { + "start": 25667.94, + "end": 25670.04, + "probability": 0.0178 + }, + { + "start": 25672.5, + "end": 25672.6, + "probability": 0.0465 + }, + { + "start": 25673.82, + "end": 25677.26, + "probability": 0.0061 + }, + { + "start": 25679.62, + "end": 25685.22, + "probability": 0.0136 + }, + { + "start": 25688.7, + "end": 25689.14, + "probability": 0.0637 + }, + { + "start": 25689.72, + "end": 25690.2, + "probability": 0.1723 + }, + { + "start": 25690.84, + "end": 25691.22, + "probability": 0.0326 + }, + { + "start": 25692.7, + "end": 25694.26, + "probability": 0.0617 + }, + { + "start": 25694.92, + "end": 25695.16, + "probability": 0.0163 + }, + { + "start": 25698.9, + "end": 25699.3, + "probability": 0.0649 + }, + { + "start": 25708.08, + "end": 25708.24, + "probability": 0.0116 + }, + { + "start": 25708.24, + "end": 25710.04, + "probability": 0.008 + }, + { + "start": 25711.82, + "end": 25712.44, + "probability": 0.2822 + }, + { + "start": 25712.44, + "end": 25718.54, + "probability": 0.1843 + }, + { + "start": 25719.08, + "end": 25719.38, + "probability": 0.06 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25758.0, + "end": 25758.0, + "probability": 0.0 + }, + { + "start": 25759.0, + "end": 25759.26, + "probability": 0.3077 + }, + { + "start": 25759.86, + "end": 25759.86, + "probability": 0.4587 + }, + { + "start": 25759.86, + "end": 25760.2, + "probability": 0.8119 + }, + { + "start": 25762.28, + "end": 25770.9, + "probability": 0.6883 + }, + { + "start": 25771.84, + "end": 25772.36, + "probability": 0.7157 + }, + { + "start": 25773.74, + "end": 25774.72, + "probability": 0.9401 + }, + { + "start": 25776.18, + "end": 25780.54, + "probability": 0.9224 + }, + { + "start": 25782.16, + "end": 25782.92, + "probability": 0.854 + }, + { + "start": 25783.04, + "end": 25788.82, + "probability": 0.9665 + }, + { + "start": 25790.22, + "end": 25794.56, + "probability": 0.9774 + }, + { + "start": 25795.54, + "end": 25797.66, + "probability": 0.6725 + }, + { + "start": 25798.44, + "end": 25800.96, + "probability": 0.9341 + }, + { + "start": 25801.68, + "end": 25804.06, + "probability": 0.9413 + }, + { + "start": 25805.24, + "end": 25805.42, + "probability": 0.3329 + }, + { + "start": 25805.7, + "end": 25809.5, + "probability": 0.9889 + }, + { + "start": 25810.4, + "end": 25816.02, + "probability": 0.9827 + }, + { + "start": 25816.96, + "end": 25818.8, + "probability": 0.498 + }, + { + "start": 25819.04, + "end": 25822.76, + "probability": 0.9653 + }, + { + "start": 25823.5, + "end": 25824.02, + "probability": 0.7521 + }, + { + "start": 25825.48, + "end": 25827.84, + "probability": 0.9972 + }, + { + "start": 25829.62, + "end": 25830.42, + "probability": 0.5845 + }, + { + "start": 25831.96, + "end": 25834.74, + "probability": 0.9887 + }, + { + "start": 25835.34, + "end": 25836.58, + "probability": 0.8897 + }, + { + "start": 25837.16, + "end": 25838.98, + "probability": 0.6783 + }, + { + "start": 25839.54, + "end": 25841.44, + "probability": 0.8713 + }, + { + "start": 25842.06, + "end": 25845.86, + "probability": 0.9351 + }, + { + "start": 25847.98, + "end": 25849.2, + "probability": 0.9119 + }, + { + "start": 25849.48, + "end": 25851.26, + "probability": 0.5225 + }, + { + "start": 25851.92, + "end": 25853.62, + "probability": 0.9854 + }, + { + "start": 25854.4, + "end": 25854.92, + "probability": 0.3915 + }, + { + "start": 25855.04, + "end": 25855.72, + "probability": 0.8567 + }, + { + "start": 25856.18, + "end": 25856.92, + "probability": 0.9688 + }, + { + "start": 25857.28, + "end": 25858.0, + "probability": 0.9601 + }, + { + "start": 25858.2, + "end": 25859.84, + "probability": 0.8026 + }, + { + "start": 25860.52, + "end": 25862.14, + "probability": 0.9302 + }, + { + "start": 25863.44, + "end": 25865.32, + "probability": 0.9399 + }, + { + "start": 25865.58, + "end": 25865.96, + "probability": 0.9701 + }, + { + "start": 25866.4, + "end": 25868.08, + "probability": 0.911 + }, + { + "start": 25869.3, + "end": 25871.3, + "probability": 0.6348 + }, + { + "start": 25871.44, + "end": 25873.4, + "probability": 0.9862 + }, + { + "start": 25873.98, + "end": 25874.5, + "probability": 0.1089 + }, + { + "start": 25875.82, + "end": 25879.56, + "probability": 0.9292 + }, + { + "start": 25880.16, + "end": 25883.72, + "probability": 0.9802 + }, + { + "start": 25884.22, + "end": 25888.74, + "probability": 0.9468 + }, + { + "start": 25889.38, + "end": 25891.88, + "probability": 0.9448 + }, + { + "start": 25892.5, + "end": 25893.44, + "probability": 0.6266 + }, + { + "start": 25895.73, + "end": 25898.56, + "probability": 0.9932 + }, + { + "start": 25902.2, + "end": 25905.31, + "probability": 0.8352 + }, + { + "start": 25906.2, + "end": 25907.8, + "probability": 0.999 + }, + { + "start": 25909.24, + "end": 25913.46, + "probability": 0.9265 + }, + { + "start": 25914.36, + "end": 25919.64, + "probability": 0.8931 + }, + { + "start": 25921.26, + "end": 25924.06, + "probability": 0.812 + }, + { + "start": 25924.62, + "end": 25927.56, + "probability": 0.998 + }, + { + "start": 25929.02, + "end": 25929.98, + "probability": 0.3875 + }, + { + "start": 25930.58, + "end": 25935.96, + "probability": 0.8054 + }, + { + "start": 25936.4, + "end": 25936.88, + "probability": 0.4003 + }, + { + "start": 25937.48, + "end": 25939.48, + "probability": 0.7184 + }, + { + "start": 25939.94, + "end": 25940.58, + "probability": 0.3396 + }, + { + "start": 25941.72, + "end": 25943.22, + "probability": 0.8283 + }, + { + "start": 25944.94, + "end": 25946.24, + "probability": 0.9976 + }, + { + "start": 25946.92, + "end": 25947.55, + "probability": 0.9785 + }, + { + "start": 25948.42, + "end": 25952.76, + "probability": 0.9959 + }, + { + "start": 25953.64, + "end": 25954.88, + "probability": 0.77 + }, + { + "start": 25956.0, + "end": 25957.38, + "probability": 0.9895 + }, + { + "start": 25957.94, + "end": 25962.82, + "probability": 0.9963 + }, + { + "start": 25962.82, + "end": 25967.76, + "probability": 0.9967 + }, + { + "start": 25968.58, + "end": 25971.64, + "probability": 0.8591 + }, + { + "start": 25973.28, + "end": 25974.74, + "probability": 0.6584 + }, + { + "start": 25975.96, + "end": 25977.16, + "probability": 0.5957 + }, + { + "start": 25977.4, + "end": 25978.1, + "probability": 0.9725 + }, + { + "start": 25978.74, + "end": 25984.02, + "probability": 0.6965 + }, + { + "start": 25984.54, + "end": 25986.26, + "probability": 0.8357 + }, + { + "start": 25986.72, + "end": 25988.08, + "probability": 0.7405 + }, + { + "start": 25988.52, + "end": 25991.64, + "probability": 0.9512 + }, + { + "start": 25994.06, + "end": 26000.32, + "probability": 0.9966 + }, + { + "start": 26001.34, + "end": 26003.14, + "probability": 0.9502 + }, + { + "start": 26003.82, + "end": 26004.62, + "probability": 0.2456 + }, + { + "start": 26005.32, + "end": 26010.2, + "probability": 0.6664 + }, + { + "start": 26010.48, + "end": 26011.04, + "probability": 0.8751 + }, + { + "start": 26013.4, + "end": 26017.36, + "probability": 0.8292 + }, + { + "start": 26019.86, + "end": 26023.18, + "probability": 0.7485 + }, + { + "start": 26023.84, + "end": 26024.1, + "probability": 0.7966 + }, + { + "start": 26025.62, + "end": 26028.72, + "probability": 0.8759 + }, + { + "start": 26030.1, + "end": 26030.76, + "probability": 0.9714 + }, + { + "start": 26031.44, + "end": 26034.04, + "probability": 0.9911 + }, + { + "start": 26034.92, + "end": 26037.68, + "probability": 0.8942 + }, + { + "start": 26038.4, + "end": 26042.88, + "probability": 0.793 + }, + { + "start": 26043.56, + "end": 26044.14, + "probability": 0.8062 + }, + { + "start": 26044.98, + "end": 26047.56, + "probability": 0.7728 + }, + { + "start": 26048.14, + "end": 26050.54, + "probability": 0.9846 + }, + { + "start": 26051.44, + "end": 26052.9, + "probability": 0.976 + }, + { + "start": 26053.74, + "end": 26054.8, + "probability": 0.7884 + }, + { + "start": 26055.6, + "end": 26058.16, + "probability": 0.9792 + }, + { + "start": 26058.82, + "end": 26060.22, + "probability": 0.7734 + }, + { + "start": 26060.86, + "end": 26061.78, + "probability": 0.7946 + }, + { + "start": 26062.34, + "end": 26064.08, + "probability": 0.836 + }, + { + "start": 26067.2, + "end": 26070.4, + "probability": 0.7847 + }, + { + "start": 26072.16, + "end": 26074.68, + "probability": 0.8853 + }, + { + "start": 26076.32, + "end": 26078.34, + "probability": 0.9631 + }, + { + "start": 26079.0, + "end": 26079.6, + "probability": 0.9353 + }, + { + "start": 26080.44, + "end": 26081.26, + "probability": 0.7934 + }, + { + "start": 26082.02, + "end": 26083.62, + "probability": 0.8899 + }, + { + "start": 26084.54, + "end": 26085.4, + "probability": 0.8453 + }, + { + "start": 26086.7, + "end": 26086.86, + "probability": 0.8896 + }, + { + "start": 26088.2, + "end": 26093.0, + "probability": 0.9989 + }, + { + "start": 26093.14, + "end": 26101.22, + "probability": 0.9376 + }, + { + "start": 26102.26, + "end": 26105.94, + "probability": 0.9144 + }, + { + "start": 26106.6, + "end": 26108.78, + "probability": 0.998 + }, + { + "start": 26109.48, + "end": 26113.38, + "probability": 0.9717 + }, + { + "start": 26114.0, + "end": 26115.98, + "probability": 0.8589 + }, + { + "start": 26117.22, + "end": 26124.82, + "probability": 0.9751 + }, + { + "start": 26125.32, + "end": 26126.5, + "probability": 0.9775 + }, + { + "start": 26127.4, + "end": 26128.16, + "probability": 0.7628 + }, + { + "start": 26132.08, + "end": 26134.0, + "probability": 0.7855 + }, + { + "start": 26135.0, + "end": 26136.08, + "probability": 0.8612 + }, + { + "start": 26136.74, + "end": 26138.76, + "probability": 0.9497 + }, + { + "start": 26156.96, + "end": 26159.58, + "probability": 0.6332 + }, + { + "start": 26160.82, + "end": 26164.4, + "probability": 0.9871 + }, + { + "start": 26164.56, + "end": 26167.9, + "probability": 0.9385 + }, + { + "start": 26168.04, + "end": 26168.32, + "probability": 0.4396 + }, + { + "start": 26168.72, + "end": 26173.66, + "probability": 0.8222 + }, + { + "start": 26174.74, + "end": 26178.54, + "probability": 0.9558 + }, + { + "start": 26178.78, + "end": 26180.52, + "probability": 0.8369 + }, + { + "start": 26180.76, + "end": 26181.64, + "probability": 0.7954 + }, + { + "start": 26181.82, + "end": 26182.4, + "probability": 0.8674 + }, + { + "start": 26183.52, + "end": 26184.76, + "probability": 0.039 + }, + { + "start": 26184.94, + "end": 26185.93, + "probability": 0.585 + }, + { + "start": 26186.32, + "end": 26188.02, + "probability": 0.8305 + }, + { + "start": 26188.2, + "end": 26192.78, + "probability": 0.9975 + }, + { + "start": 26194.68, + "end": 26199.78, + "probability": 0.7165 + }, + { + "start": 26200.3, + "end": 26201.68, + "probability": 0.8355 + }, + { + "start": 26204.86, + "end": 26209.3, + "probability": 0.9547 + }, + { + "start": 26210.94, + "end": 26213.86, + "probability": 0.933 + }, + { + "start": 26214.0, + "end": 26216.76, + "probability": 0.9747 + }, + { + "start": 26217.48, + "end": 26218.08, + "probability": 0.7656 + }, + { + "start": 26219.1, + "end": 26219.96, + "probability": 0.9761 + }, + { + "start": 26220.12, + "end": 26221.5, + "probability": 0.4978 + }, + { + "start": 26223.1, + "end": 26226.71, + "probability": 0.9973 + }, + { + "start": 26228.32, + "end": 26229.4, + "probability": 0.8271 + }, + { + "start": 26230.02, + "end": 26231.52, + "probability": 0.9922 + }, + { + "start": 26231.96, + "end": 26234.08, + "probability": 0.9872 + }, + { + "start": 26235.16, + "end": 26238.38, + "probability": 0.957 + }, + { + "start": 26238.92, + "end": 26239.79, + "probability": 0.9193 + }, + { + "start": 26241.18, + "end": 26242.52, + "probability": 0.6157 + }, + { + "start": 26242.64, + "end": 26243.86, + "probability": 0.9265 + }, + { + "start": 26244.22, + "end": 26244.56, + "probability": 0.621 + }, + { + "start": 26245.2, + "end": 26252.52, + "probability": 0.9968 + }, + { + "start": 26252.58, + "end": 26255.36, + "probability": 0.9316 + }, + { + "start": 26258.0, + "end": 26265.06, + "probability": 0.993 + }, + { + "start": 26265.54, + "end": 26267.56, + "probability": 0.6181 + }, + { + "start": 26268.42, + "end": 26271.96, + "probability": 0.8403 + }, + { + "start": 26273.28, + "end": 26273.66, + "probability": 0.6662 + }, + { + "start": 26273.94, + "end": 26276.98, + "probability": 0.9286 + }, + { + "start": 26277.34, + "end": 26278.08, + "probability": 0.9207 + }, + { + "start": 26279.74, + "end": 26282.88, + "probability": 0.9119 + }, + { + "start": 26284.7, + "end": 26286.78, + "probability": 0.7362 + }, + { + "start": 26289.38, + "end": 26290.62, + "probability": 0.7855 + }, + { + "start": 26292.34, + "end": 26292.76, + "probability": 0.7555 + }, + { + "start": 26292.86, + "end": 26293.74, + "probability": 0.708 + }, + { + "start": 26293.96, + "end": 26296.7, + "probability": 0.9268 + }, + { + "start": 26297.78, + "end": 26297.88, + "probability": 0.8474 + }, + { + "start": 26297.92, + "end": 26301.48, + "probability": 0.9907 + }, + { + "start": 26301.54, + "end": 26301.64, + "probability": 0.1423 + }, + { + "start": 26304.26, + "end": 26304.96, + "probability": 0.7504 + }, + { + "start": 26306.14, + "end": 26309.3, + "probability": 0.7744 + }, + { + "start": 26309.82, + "end": 26312.04, + "probability": 0.9993 + }, + { + "start": 26313.88, + "end": 26315.16, + "probability": 0.752 + }, + { + "start": 26316.36, + "end": 26320.28, + "probability": 0.937 + }, + { + "start": 26321.26, + "end": 26323.1, + "probability": 0.8693 + }, + { + "start": 26326.42, + "end": 26327.78, + "probability": 0.9604 + }, + { + "start": 26328.34, + "end": 26329.44, + "probability": 0.9446 + }, + { + "start": 26330.54, + "end": 26331.06, + "probability": 0.7782 + }, + { + "start": 26333.4, + "end": 26334.94, + "probability": 0.998 + }, + { + "start": 26335.84, + "end": 26339.08, + "probability": 0.9891 + }, + { + "start": 26340.48, + "end": 26342.58, + "probability": 0.8001 + }, + { + "start": 26342.9, + "end": 26343.18, + "probability": 0.7398 + }, + { + "start": 26343.32, + "end": 26344.28, + "probability": 0.8752 + }, + { + "start": 26346.38, + "end": 26348.96, + "probability": 0.7902 + }, + { + "start": 26350.26, + "end": 26353.2, + "probability": 0.6491 + }, + { + "start": 26353.74, + "end": 26354.6, + "probability": 0.6721 + }, + { + "start": 26354.72, + "end": 26356.28, + "probability": 0.8198 + }, + { + "start": 26356.54, + "end": 26357.84, + "probability": 0.9554 + }, + { + "start": 26358.9, + "end": 26360.96, + "probability": 0.9462 + }, + { + "start": 26361.02, + "end": 26364.08, + "probability": 0.8124 + }, + { + "start": 26364.26, + "end": 26364.6, + "probability": 0.4371 + }, + { + "start": 26365.14, + "end": 26366.06, + "probability": 0.5124 + }, + { + "start": 26366.12, + "end": 26366.89, + "probability": 0.8661 + }, + { + "start": 26367.92, + "end": 26371.67, + "probability": 0.861 + }, + { + "start": 26372.18, + "end": 26373.28, + "probability": 0.7555 + }, + { + "start": 26373.6, + "end": 26374.5, + "probability": 0.8607 + }, + { + "start": 26376.38, + "end": 26379.18, + "probability": 0.9751 + }, + { + "start": 26381.38, + "end": 26382.08, + "probability": 0.8287 + }, + { + "start": 26386.1, + "end": 26387.4, + "probability": 0.8441 + }, + { + "start": 26388.58, + "end": 26389.26, + "probability": 0.7048 + }, + { + "start": 26390.08, + "end": 26391.8, + "probability": 0.8306 + }, + { + "start": 26391.9, + "end": 26394.12, + "probability": 0.7517 + }, + { + "start": 26394.24, + "end": 26394.94, + "probability": 0.9668 + }, + { + "start": 26395.48, + "end": 26396.82, + "probability": 0.9824 + }, + { + "start": 26398.74, + "end": 26400.68, + "probability": 0.8497 + }, + { + "start": 26401.34, + "end": 26402.44, + "probability": 0.8192 + }, + { + "start": 26403.68, + "end": 26405.7, + "probability": 0.8464 + }, + { + "start": 26407.34, + "end": 26409.56, + "probability": 0.8584 + }, + { + "start": 26411.06, + "end": 26412.58, + "probability": 0.7869 + }, + { + "start": 26414.98, + "end": 26415.18, + "probability": 0.9519 + }, + { + "start": 26415.3, + "end": 26416.28, + "probability": 0.9618 + }, + { + "start": 26416.4, + "end": 26417.23, + "probability": 0.9904 + }, + { + "start": 26418.02, + "end": 26419.36, + "probability": 0.9129 + }, + { + "start": 26419.56, + "end": 26421.08, + "probability": 0.7616 + }, + { + "start": 26421.46, + "end": 26422.68, + "probability": 0.3794 + }, + { + "start": 26422.76, + "end": 26425.7, + "probability": 0.9966 + }, + { + "start": 26425.82, + "end": 26426.54, + "probability": 0.9006 + }, + { + "start": 26426.64, + "end": 26428.6, + "probability": 0.967 + }, + { + "start": 26429.7, + "end": 26430.9, + "probability": 0.9753 + }, + { + "start": 26431.6, + "end": 26433.96, + "probability": 0.7802 + }, + { + "start": 26433.98, + "end": 26435.56, + "probability": 0.5569 + }, + { + "start": 26435.64, + "end": 26436.64, + "probability": 0.496 + }, + { + "start": 26438.92, + "end": 26441.34, + "probability": 0.8759 + }, + { + "start": 26442.12, + "end": 26445.42, + "probability": 0.9492 + }, + { + "start": 26446.42, + "end": 26450.08, + "probability": 0.9774 + }, + { + "start": 26450.78, + "end": 26452.24, + "probability": 0.9606 + }, + { + "start": 26453.1, + "end": 26454.5, + "probability": 0.9219 + }, + { + "start": 26455.62, + "end": 26457.0, + "probability": 0.9687 + }, + { + "start": 26457.48, + "end": 26458.8, + "probability": 0.8728 + }, + { + "start": 26458.96, + "end": 26460.46, + "probability": 0.9371 + }, + { + "start": 26461.16, + "end": 26463.14, + "probability": 0.8597 + }, + { + "start": 26464.24, + "end": 26465.82, + "probability": 0.7039 + }, + { + "start": 26467.66, + "end": 26469.68, + "probability": 0.7385 + }, + { + "start": 26474.18, + "end": 26478.12, + "probability": 0.8874 + }, + { + "start": 26483.58, + "end": 26485.2, + "probability": 0.4919 + }, + { + "start": 26485.2, + "end": 26485.7, + "probability": 0.0461 + }, + { + "start": 26486.58, + "end": 26487.36, + "probability": 0.0162 + }, + { + "start": 26487.36, + "end": 26488.91, + "probability": 0.1582 + }, + { + "start": 26490.56, + "end": 26494.48, + "probability": 0.4014 + }, + { + "start": 26495.34, + "end": 26495.99, + "probability": 0.5191 + }, + { + "start": 26496.4, + "end": 26498.99, + "probability": 0.1765 + }, + { + "start": 26499.7, + "end": 26503.02, + "probability": 0.6851 + }, + { + "start": 26503.1, + "end": 26503.46, + "probability": 0.3276 + }, + { + "start": 26503.96, + "end": 26504.34, + "probability": 0.4461 + }, + { + "start": 26504.38, + "end": 26504.66, + "probability": 0.031 + }, + { + "start": 26505.58, + "end": 26506.08, + "probability": 0.1499 + }, + { + "start": 26506.4, + "end": 26507.96, + "probability": 0.9149 + }, + { + "start": 26508.14, + "end": 26508.36, + "probability": 0.5148 + }, + { + "start": 26508.42, + "end": 26509.05, + "probability": 0.0171 + }, + { + "start": 26509.28, + "end": 26509.62, + "probability": 0.1378 + }, + { + "start": 26509.62, + "end": 26509.98, + "probability": 0.0764 + }, + { + "start": 26509.98, + "end": 26512.5, + "probability": 0.5905 + }, + { + "start": 26512.54, + "end": 26514.6, + "probability": 0.9657 + }, + { + "start": 26515.94, + "end": 26520.48, + "probability": 0.0445 + }, + { + "start": 26522.32, + "end": 26522.74, + "probability": 0.0329 + }, + { + "start": 26522.74, + "end": 26523.84, + "probability": 0.0783 + }, + { + "start": 26524.16, + "end": 26525.44, + "probability": 0.306 + }, + { + "start": 26525.44, + "end": 26526.14, + "probability": 0.2032 + }, + { + "start": 26526.28, + "end": 26526.84, + "probability": 0.4469 + }, + { + "start": 26526.94, + "end": 26528.06, + "probability": 0.3302 + }, + { + "start": 26528.18, + "end": 26528.94, + "probability": 0.2954 + }, + { + "start": 26529.78, + "end": 26531.74, + "probability": 0.5145 + }, + { + "start": 26531.92, + "end": 26532.22, + "probability": 0.1674 + }, + { + "start": 26533.16, + "end": 26533.36, + "probability": 0.2276 + }, + { + "start": 26534.12, + "end": 26535.36, + "probability": 0.5703 + }, + { + "start": 26535.86, + "end": 26538.22, + "probability": 0.8006 + }, + { + "start": 26538.38, + "end": 26538.84, + "probability": 0.6807 + }, + { + "start": 26539.02, + "end": 26539.52, + "probability": 0.7478 + }, + { + "start": 26540.8, + "end": 26542.31, + "probability": 0.9961 + }, + { + "start": 26543.24, + "end": 26543.4, + "probability": 0.8459 + }, + { + "start": 26544.12, + "end": 26546.82, + "probability": 0.9869 + }, + { + "start": 26547.72, + "end": 26548.86, + "probability": 0.692 + }, + { + "start": 26549.1, + "end": 26549.82, + "probability": 0.8869 + }, + { + "start": 26550.12, + "end": 26550.95, + "probability": 0.9878 + }, + { + "start": 26551.44, + "end": 26553.12, + "probability": 0.9774 + }, + { + "start": 26553.94, + "end": 26556.74, + "probability": 0.9072 + }, + { + "start": 26557.8, + "end": 26561.1, + "probability": 0.8433 + }, + { + "start": 26562.1, + "end": 26566.48, + "probability": 0.8901 + }, + { + "start": 26567.48, + "end": 26568.42, + "probability": 0.6134 + }, + { + "start": 26568.48, + "end": 26570.74, + "probability": 0.9833 + }, + { + "start": 26571.3, + "end": 26576.24, + "probability": 0.9875 + }, + { + "start": 26576.24, + "end": 26578.32, + "probability": 0.7672 + }, + { + "start": 26578.88, + "end": 26580.06, + "probability": 0.5578 + }, + { + "start": 26580.7, + "end": 26585.02, + "probability": 0.9862 + }, + { + "start": 26586.72, + "end": 26588.52, + "probability": 0.6982 + }, + { + "start": 26588.68, + "end": 26589.8, + "probability": 0.6926 + }, + { + "start": 26589.9, + "end": 26591.04, + "probability": 0.943 + }, + { + "start": 26592.36, + "end": 26594.28, + "probability": 0.4821 + }, + { + "start": 26594.8, + "end": 26599.04, + "probability": 0.9032 + }, + { + "start": 26599.64, + "end": 26600.24, + "probability": 0.889 + }, + { + "start": 26600.3, + "end": 26600.5, + "probability": 0.9549 + }, + { + "start": 26601.08, + "end": 26602.48, + "probability": 0.5398 + }, + { + "start": 26602.96, + "end": 26603.24, + "probability": 0.0362 + }, + { + "start": 26603.24, + "end": 26603.24, + "probability": 0.4149 + }, + { + "start": 26603.24, + "end": 26604.3, + "probability": 0.7547 + }, + { + "start": 26604.46, + "end": 26606.22, + "probability": 0.8398 + }, + { + "start": 26606.22, + "end": 26606.76, + "probability": 0.1056 + }, + { + "start": 26606.94, + "end": 26608.92, + "probability": 0.4336 + }, + { + "start": 26609.6, + "end": 26612.28, + "probability": 0.9634 + }, + { + "start": 26612.34, + "end": 26613.14, + "probability": 0.6691 + }, + { + "start": 26613.54, + "end": 26614.1, + "probability": 0.8664 + }, + { + "start": 26614.2, + "end": 26614.82, + "probability": 0.9796 + }, + { + "start": 26614.84, + "end": 26615.74, + "probability": 0.969 + }, + { + "start": 26615.8, + "end": 26616.76, + "probability": 0.8122 + }, + { + "start": 26616.76, + "end": 26618.14, + "probability": 0.969 + }, + { + "start": 26619.08, + "end": 26621.66, + "probability": 0.9474 + }, + { + "start": 26622.08, + "end": 26623.82, + "probability": 0.9651 + }, + { + "start": 26623.88, + "end": 26626.28, + "probability": 0.7674 + }, + { + "start": 26626.76, + "end": 26629.32, + "probability": 0.9852 + }, + { + "start": 26629.9, + "end": 26631.32, + "probability": 0.9053 + }, + { + "start": 26631.44, + "end": 26635.86, + "probability": 0.9719 + }, + { + "start": 26636.94, + "end": 26637.54, + "probability": 0.621 + }, + { + "start": 26637.88, + "end": 26638.84, + "probability": 0.8949 + }, + { + "start": 26639.88, + "end": 26640.4, + "probability": 0.8369 + }, + { + "start": 26646.1, + "end": 26647.42, + "probability": 0.1348 + }, + { + "start": 26651.12, + "end": 26651.96, + "probability": 0.0083 + }, + { + "start": 26652.8, + "end": 26652.94, + "probability": 0.2784 + }, + { + "start": 26653.1, + "end": 26654.2, + "probability": 0.3368 + }, + { + "start": 26654.2, + "end": 26654.7, + "probability": 0.1741 + }, + { + "start": 26654.86, + "end": 26656.2, + "probability": 0.4765 + }, + { + "start": 26657.72, + "end": 26661.98, + "probability": 0.979 + }, + { + "start": 26662.56, + "end": 26666.0, + "probability": 0.794 + }, + { + "start": 26671.22, + "end": 26671.22, + "probability": 0.0841 + }, + { + "start": 26671.22, + "end": 26673.9, + "probability": 0.9829 + }, + { + "start": 26674.72, + "end": 26676.24, + "probability": 0.9961 + }, + { + "start": 26676.98, + "end": 26680.26, + "probability": 0.7372 + }, + { + "start": 26680.86, + "end": 26684.2, + "probability": 0.7931 + }, + { + "start": 26685.32, + "end": 26685.32, + "probability": 0.0188 + }, + { + "start": 26685.32, + "end": 26687.14, + "probability": 0.5608 + }, + { + "start": 26689.3, + "end": 26689.4, + "probability": 0.2156 + }, + { + "start": 26689.4, + "end": 26692.06, + "probability": 0.9861 + }, + { + "start": 26692.98, + "end": 26694.48, + "probability": 0.6666 + }, + { + "start": 26695.08, + "end": 26698.3, + "probability": 0.1262 + }, + { + "start": 26698.46, + "end": 26699.3, + "probability": 0.0109 + }, + { + "start": 26699.82, + "end": 26700.94, + "probability": 0.2785 + }, + { + "start": 26700.94, + "end": 26700.94, + "probability": 0.169 + }, + { + "start": 26700.94, + "end": 26700.94, + "probability": 0.0615 + }, + { + "start": 26700.94, + "end": 26700.94, + "probability": 0.1647 + }, + { + "start": 26700.94, + "end": 26706.72, + "probability": 0.4874 + }, + { + "start": 26709.06, + "end": 26711.54, + "probability": 0.5512 + }, + { + "start": 26712.44, + "end": 26714.9, + "probability": 0.8135 + }, + { + "start": 26716.56, + "end": 26722.68, + "probability": 0.97 + }, + { + "start": 26722.68, + "end": 26723.98, + "probability": 0.9748 + }, + { + "start": 26724.66, + "end": 26725.29, + "probability": 0.9736 + }, + { + "start": 26725.98, + "end": 26730.08, + "probability": 0.9781 + }, + { + "start": 26730.78, + "end": 26731.5, + "probability": 0.6427 + }, + { + "start": 26732.02, + "end": 26732.78, + "probability": 0.9033 + }, + { + "start": 26733.4, + "end": 26735.78, + "probability": 0.9961 + }, + { + "start": 26736.32, + "end": 26741.26, + "probability": 0.9917 + }, + { + "start": 26741.6, + "end": 26742.23, + "probability": 0.9331 + }, + { + "start": 26743.02, + "end": 26746.66, + "probability": 0.7988 + }, + { + "start": 26746.84, + "end": 26747.77, + "probability": 0.8354 + }, + { + "start": 26748.36, + "end": 26749.1, + "probability": 0.9773 + }, + { + "start": 26752.48, + "end": 26754.08, + "probability": 0.9388 + }, + { + "start": 26754.8, + "end": 26755.9, + "probability": 0.8277 + }, + { + "start": 26755.98, + "end": 26757.04, + "probability": 0.8243 + }, + { + "start": 26757.14, + "end": 26760.0, + "probability": 0.9668 + }, + { + "start": 26760.0, + "end": 26761.65, + "probability": 0.4015 + }, + { + "start": 26761.82, + "end": 26763.28, + "probability": 0.874 + }, + { + "start": 26763.68, + "end": 26766.0, + "probability": 0.9959 + }, + { + "start": 26766.0, + "end": 26768.94, + "probability": 0.999 + }, + { + "start": 26769.1, + "end": 26769.56, + "probability": 0.7407 + }, + { + "start": 26769.66, + "end": 26770.98, + "probability": 0.9043 + }, + { + "start": 26771.08, + "end": 26773.62, + "probability": 0.8369 + }, + { + "start": 26774.08, + "end": 26777.46, + "probability": 0.9767 + }, + { + "start": 26778.96, + "end": 26782.48, + "probability": 0.9219 + }, + { + "start": 26782.64, + "end": 26782.88, + "probability": 0.5826 + }, + { + "start": 26783.46, + "end": 26784.1, + "probability": 0.6399 + }, + { + "start": 26784.24, + "end": 26786.74, + "probability": 0.9089 + }, + { + "start": 26789.24, + "end": 26792.94, + "probability": 0.9277 + }, + { + "start": 26794.82, + "end": 26795.48, + "probability": 0.0795 + }, + { + "start": 26795.58, + "end": 26797.14, + "probability": 0.3111 + }, + { + "start": 26797.58, + "end": 26798.92, + "probability": 0.727 + }, + { + "start": 26799.18, + "end": 26800.02, + "probability": 0.8536 + }, + { + "start": 26800.08, + "end": 26800.98, + "probability": 0.318 + }, + { + "start": 26801.12, + "end": 26801.56, + "probability": 0.2687 + }, + { + "start": 26801.84, + "end": 26805.62, + "probability": 0.8655 + }, + { + "start": 26805.88, + "end": 26806.4, + "probability": 0.6729 + }, + { + "start": 26807.5, + "end": 26808.79, + "probability": 0.6172 + }, + { + "start": 26809.56, + "end": 26809.56, + "probability": 0.0449 + }, + { + "start": 26809.56, + "end": 26810.12, + "probability": 0.8235 + }, + { + "start": 26810.6, + "end": 26811.42, + "probability": 0.1277 + }, + { + "start": 26811.42, + "end": 26813.52, + "probability": 0.6154 + }, + { + "start": 26816.88, + "end": 26819.6, + "probability": 0.9906 + }, + { + "start": 26820.22, + "end": 26821.92, + "probability": 0.6845 + }, + { + "start": 26822.9, + "end": 26828.08, + "probability": 0.9752 + }, + { + "start": 26828.94, + "end": 26832.92, + "probability": 0.8516 + }, + { + "start": 26833.56, + "end": 26835.54, + "probability": 0.9966 + }, + { + "start": 26836.12, + "end": 26837.72, + "probability": 0.9575 + }, + { + "start": 26838.42, + "end": 26840.32, + "probability": 0.8765 + }, + { + "start": 26841.04, + "end": 26844.32, + "probability": 0.9983 + }, + { + "start": 26844.92, + "end": 26850.76, + "probability": 0.9938 + }, + { + "start": 26851.14, + "end": 26851.98, + "probability": 0.8962 + }, + { + "start": 26852.2, + "end": 26853.28, + "probability": 0.887 + }, + { + "start": 26853.62, + "end": 26860.36, + "probability": 0.9841 + }, + { + "start": 26860.64, + "end": 26861.14, + "probability": 0.8149 + }, + { + "start": 26861.32, + "end": 26862.14, + "probability": 0.9506 + }, + { + "start": 26862.84, + "end": 26864.58, + "probability": 0.9805 + }, + { + "start": 26865.36, + "end": 26866.56, + "probability": 0.8716 + }, + { + "start": 26867.22, + "end": 26874.84, + "probability": 0.9725 + }, + { + "start": 26875.46, + "end": 26876.52, + "probability": 0.0394 + }, + { + "start": 26877.54, + "end": 26877.58, + "probability": 0.1229 + }, + { + "start": 26877.58, + "end": 26877.58, + "probability": 0.1765 + }, + { + "start": 26877.58, + "end": 26880.66, + "probability": 0.7059 + }, + { + "start": 26881.02, + "end": 26884.7, + "probability": 0.9501 + }, + { + "start": 26885.32, + "end": 26892.88, + "probability": 0.7791 + }, + { + "start": 26892.98, + "end": 26893.96, + "probability": 0.6187 + }, + { + "start": 26894.64, + "end": 26896.4, + "probability": 0.9883 + }, + { + "start": 26897.34, + "end": 26899.94, + "probability": 0.917 + }, + { + "start": 26900.1, + "end": 26902.56, + "probability": 0.9773 + }, + { + "start": 26902.9, + "end": 26903.82, + "probability": 0.9524 + }, + { + "start": 26904.34, + "end": 26908.68, + "probability": 0.993 + }, + { + "start": 26908.74, + "end": 26909.68, + "probability": 0.7233 + }, + { + "start": 26910.08, + "end": 26910.08, + "probability": 0.0222 + }, + { + "start": 26910.64, + "end": 26913.48, + "probability": 0.9542 + }, + { + "start": 26914.02, + "end": 26914.16, + "probability": 0.172 + }, + { + "start": 26914.62, + "end": 26916.4, + "probability": 0.1307 + }, + { + "start": 26916.76, + "end": 26921.14, + "probability": 0.1242 + }, + { + "start": 26922.16, + "end": 26926.7, + "probability": 0.238 + }, + { + "start": 26926.8, + "end": 26928.46, + "probability": 0.6451 + }, + { + "start": 26929.72, + "end": 26932.18, + "probability": 0.7969 + }, + { + "start": 26932.4, + "end": 26934.64, + "probability": 0.8574 + }, + { + "start": 26934.64, + "end": 26937.48, + "probability": 0.9521 + }, + { + "start": 26939.16, + "end": 26940.02, + "probability": 0.6834 + }, + { + "start": 26940.38, + "end": 26941.2, + "probability": 0.2961 + }, + { + "start": 26941.34, + "end": 26941.74, + "probability": 0.2304 + }, + { + "start": 26941.84, + "end": 26942.02, + "probability": 0.2084 + }, + { + "start": 26942.02, + "end": 26943.08, + "probability": 0.9106 + }, + { + "start": 26944.3, + "end": 26944.3, + "probability": 0.0028 + }, + { + "start": 26945.16, + "end": 26946.22, + "probability": 0.4518 + }, + { + "start": 26950.28, + "end": 26951.12, + "probability": 0.3259 + }, + { + "start": 26951.32, + "end": 26953.0, + "probability": 0.143 + }, + { + "start": 26955.6, + "end": 26959.44, + "probability": 0.6951 + }, + { + "start": 26962.9, + "end": 26963.98, + "probability": 0.05 + } + ], + "segments_count": 8819, + "words_count": 43973, + "avg_words_per_segment": 4.9862, + "avg_segment_duration": 2.1546, + "avg_words_per_minute": 97.6894, + "plenum_id": "43827", + "duration": 27007.83, + "title": null, + "plenum_date": "2015-07-08" +} \ No newline at end of file