diff --git "a/45446/metadata.json" "b/45446/metadata.json" new file mode 100644--- /dev/null +++ "b/45446/metadata.json" @@ -0,0 +1,15952 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "45446", + "quality_score": 0.9482, + "per_segment_quality_scores": [ + { + "start": 100.0, + "end": 100.0, + "probability": 0.0 + }, + { + "start": 100.0, + "end": 100.0, + "probability": 0.0 + }, + { + "start": 100.0, + "end": 100.0, + "probability": 0.0 + }, + { + "start": 102.16, + "end": 103.16, + "probability": 0.4534 + }, + { + "start": 103.8, + "end": 105.06, + "probability": 0.7905 + }, + { + "start": 105.2, + "end": 106.72, + "probability": 0.8032 + }, + { + "start": 106.82, + "end": 108.34, + "probability": 0.9358 + }, + { + "start": 108.84, + "end": 111.9, + "probability": 0.9753 + }, + { + "start": 111.9, + "end": 115.32, + "probability": 0.9858 + }, + { + "start": 116.06, + "end": 119.02, + "probability": 0.6446 + }, + { + "start": 119.82, + "end": 122.0, + "probability": 0.9875 + }, + { + "start": 122.48, + "end": 125.34, + "probability": 0.9785 + }, + { + "start": 125.34, + "end": 128.92, + "probability": 0.9196 + }, + { + "start": 129.46, + "end": 131.92, + "probability": 0.9948 + }, + { + "start": 132.72, + "end": 133.98, + "probability": 0.8596 + }, + { + "start": 134.22, + "end": 138.92, + "probability": 0.4699 + }, + { + "start": 138.92, + "end": 140.12, + "probability": 0.6449 + }, + { + "start": 141.28, + "end": 144.0, + "probability": 0.9746 + }, + { + "start": 144.2, + "end": 144.72, + "probability": 0.7701 + }, + { + "start": 145.32, + "end": 146.9, + "probability": 0.8554 + }, + { + "start": 147.12, + "end": 150.02, + "probability": 0.8942 + }, + { + "start": 150.78, + "end": 153.58, + "probability": 0.9921 + }, + { + "start": 162.38, + "end": 162.38, + "probability": 0.038 + }, + { + "start": 176.34, + "end": 178.6, + "probability": 0.405 + }, + { + "start": 180.42, + "end": 182.06, + "probability": 0.5353 + }, + { + "start": 183.7, + "end": 184.86, + "probability": 0.9593 + }, + { + "start": 189.66, + "end": 192.94, + "probability": 0.7011 + }, + { + "start": 194.42, + "end": 195.72, + "probability": 0.8852 + }, + { + "start": 195.8, + "end": 201.36, + "probability": 0.9874 + }, + { + "start": 202.52, + "end": 204.02, + "probability": 0.755 + }, + { + "start": 204.1, + "end": 205.84, + "probability": 0.7642 + }, + { + "start": 205.98, + "end": 208.2, + "probability": 0.9705 + }, + { + "start": 210.02, + "end": 211.7, + "probability": 0.8843 + }, + { + "start": 212.22, + "end": 214.14, + "probability": 0.9992 + }, + { + "start": 215.88, + "end": 218.2, + "probability": 0.8732 + }, + { + "start": 218.76, + "end": 220.24, + "probability": 0.9858 + }, + { + "start": 220.48, + "end": 221.68, + "probability": 0.6734 + }, + { + "start": 222.32, + "end": 224.28, + "probability": 0.8924 + }, + { + "start": 224.4, + "end": 227.42, + "probability": 0.9397 + }, + { + "start": 227.52, + "end": 228.47, + "probability": 0.9528 + }, + { + "start": 228.62, + "end": 229.3, + "probability": 0.8779 + }, + { + "start": 229.96, + "end": 231.9, + "probability": 0.7502 + }, + { + "start": 232.66, + "end": 234.32, + "probability": 0.8597 + }, + { + "start": 234.48, + "end": 237.26, + "probability": 0.9343 + }, + { + "start": 238.32, + "end": 238.98, + "probability": 0.978 + }, + { + "start": 240.04, + "end": 242.8, + "probability": 0.9485 + }, + { + "start": 243.32, + "end": 244.26, + "probability": 0.8944 + }, + { + "start": 244.9, + "end": 245.66, + "probability": 0.8929 + }, + { + "start": 245.8, + "end": 246.56, + "probability": 0.8115 + }, + { + "start": 246.94, + "end": 247.82, + "probability": 0.9669 + }, + { + "start": 247.98, + "end": 249.32, + "probability": 0.7174 + }, + { + "start": 250.5, + "end": 254.96, + "probability": 0.9957 + }, + { + "start": 255.74, + "end": 258.3, + "probability": 0.98 + }, + { + "start": 258.72, + "end": 259.58, + "probability": 0.9478 + }, + { + "start": 259.64, + "end": 262.66, + "probability": 0.9202 + }, + { + "start": 262.96, + "end": 264.26, + "probability": 0.6446 + }, + { + "start": 264.66, + "end": 265.74, + "probability": 0.6615 + }, + { + "start": 266.42, + "end": 269.8, + "probability": 0.9514 + }, + { + "start": 270.66, + "end": 271.76, + "probability": 0.7519 + }, + { + "start": 272.7, + "end": 272.7, + "probability": 0.9609 + }, + { + "start": 273.6, + "end": 274.44, + "probability": 0.8885 + }, + { + "start": 274.96, + "end": 275.78, + "probability": 0.984 + }, + { + "start": 276.26, + "end": 278.62, + "probability": 0.9012 + }, + { + "start": 278.8, + "end": 279.62, + "probability": 0.6558 + }, + { + "start": 279.76, + "end": 281.4, + "probability": 0.6898 + }, + { + "start": 282.04, + "end": 282.94, + "probability": 0.6909 + }, + { + "start": 283.72, + "end": 284.76, + "probability": 0.8523 + }, + { + "start": 285.34, + "end": 286.82, + "probability": 0.8762 + }, + { + "start": 286.98, + "end": 288.54, + "probability": 0.8813 + }, + { + "start": 288.62, + "end": 289.58, + "probability": 0.7267 + }, + { + "start": 290.44, + "end": 293.78, + "probability": 0.9684 + }, + { + "start": 293.9, + "end": 295.04, + "probability": 0.6384 + }, + { + "start": 295.44, + "end": 298.26, + "probability": 0.9165 + }, + { + "start": 298.26, + "end": 302.14, + "probability": 0.9943 + }, + { + "start": 302.64, + "end": 305.6, + "probability": 0.9836 + }, + { + "start": 306.24, + "end": 309.92, + "probability": 0.8163 + }, + { + "start": 310.1, + "end": 310.32, + "probability": 0.697 + }, + { + "start": 310.92, + "end": 312.68, + "probability": 0.7311 + }, + { + "start": 312.76, + "end": 315.3, + "probability": 0.901 + }, + { + "start": 315.86, + "end": 318.42, + "probability": 0.9788 + }, + { + "start": 319.34, + "end": 320.88, + "probability": 0.6649 + }, + { + "start": 321.38, + "end": 321.38, + "probability": 0.4559 + }, + { + "start": 321.38, + "end": 322.28, + "probability": 0.3166 + }, + { + "start": 322.34, + "end": 322.78, + "probability": 0.5798 + }, + { + "start": 322.98, + "end": 323.86, + "probability": 0.9727 + }, + { + "start": 324.54, + "end": 326.04, + "probability": 0.9292 + }, + { + "start": 326.68, + "end": 328.9, + "probability": 0.9679 + }, + { + "start": 329.54, + "end": 332.16, + "probability": 0.9874 + }, + { + "start": 332.88, + "end": 336.68, + "probability": 0.9938 + }, + { + "start": 337.24, + "end": 338.64, + "probability": 0.877 + }, + { + "start": 339.42, + "end": 344.18, + "probability": 0.804 + }, + { + "start": 344.88, + "end": 349.1, + "probability": 0.8998 + }, + { + "start": 349.7, + "end": 351.32, + "probability": 0.9652 + }, + { + "start": 352.18, + "end": 353.02, + "probability": 0.9822 + }, + { + "start": 353.62, + "end": 354.66, + "probability": 0.7404 + }, + { + "start": 355.28, + "end": 358.52, + "probability": 0.9868 + }, + { + "start": 359.32, + "end": 364.16, + "probability": 0.9905 + }, + { + "start": 364.2, + "end": 365.18, + "probability": 0.6721 + }, + { + "start": 366.32, + "end": 370.88, + "probability": 0.9854 + }, + { + "start": 371.68, + "end": 375.4, + "probability": 0.9978 + }, + { + "start": 375.42, + "end": 380.64, + "probability": 0.9951 + }, + { + "start": 381.32, + "end": 383.98, + "probability": 0.5866 + }, + { + "start": 384.16, + "end": 387.44, + "probability": 0.9847 + }, + { + "start": 388.34, + "end": 391.0, + "probability": 0.9413 + }, + { + "start": 391.68, + "end": 393.58, + "probability": 0.9833 + }, + { + "start": 393.8, + "end": 395.57, + "probability": 0.958 + }, + { + "start": 396.18, + "end": 398.08, + "probability": 0.9849 + }, + { + "start": 398.26, + "end": 401.96, + "probability": 0.9595 + }, + { + "start": 402.42, + "end": 405.68, + "probability": 0.9921 + }, + { + "start": 406.24, + "end": 407.1, + "probability": 0.981 + }, + { + "start": 408.02, + "end": 410.76, + "probability": 0.9984 + }, + { + "start": 410.76, + "end": 413.8, + "probability": 0.9961 + }, + { + "start": 414.54, + "end": 415.16, + "probability": 0.7892 + }, + { + "start": 417.56, + "end": 418.44, + "probability": 0.0004 + }, + { + "start": 418.44, + "end": 419.4, + "probability": 0.6101 + }, + { + "start": 419.76, + "end": 420.46, + "probability": 0.832 + }, + { + "start": 421.02, + "end": 424.24, + "probability": 0.9408 + }, + { + "start": 424.42, + "end": 425.89, + "probability": 0.9956 + }, + { + "start": 426.68, + "end": 428.32, + "probability": 0.9725 + }, + { + "start": 428.52, + "end": 430.42, + "probability": 0.8767 + }, + { + "start": 431.26, + "end": 434.14, + "probability": 0.894 + }, + { + "start": 434.76, + "end": 436.52, + "probability": 0.8755 + }, + { + "start": 437.0, + "end": 439.84, + "probability": 0.9774 + }, + { + "start": 439.92, + "end": 444.94, + "probability": 0.9898 + }, + { + "start": 446.14, + "end": 447.12, + "probability": 0.7566 + }, + { + "start": 447.2, + "end": 451.12, + "probability": 0.9918 + }, + { + "start": 451.12, + "end": 454.38, + "probability": 0.9858 + }, + { + "start": 455.22, + "end": 456.26, + "probability": 0.6418 + }, + { + "start": 456.26, + "end": 457.86, + "probability": 0.9459 + }, + { + "start": 457.96, + "end": 458.38, + "probability": 0.6329 + }, + { + "start": 458.42, + "end": 458.98, + "probability": 0.7636 + }, + { + "start": 459.48, + "end": 460.42, + "probability": 0.5721 + }, + { + "start": 460.56, + "end": 462.16, + "probability": 0.9717 + }, + { + "start": 462.22, + "end": 464.62, + "probability": 0.997 + }, + { + "start": 465.08, + "end": 465.72, + "probability": 0.1379 + }, + { + "start": 465.72, + "end": 470.14, + "probability": 0.8114 + }, + { + "start": 470.18, + "end": 470.78, + "probability": 0.7048 + }, + { + "start": 470.92, + "end": 472.26, + "probability": 0.8309 + }, + { + "start": 472.46, + "end": 474.08, + "probability": 0.2577 + }, + { + "start": 474.6, + "end": 475.46, + "probability": 0.2997 + }, + { + "start": 476.54, + "end": 477.7, + "probability": 0.7254 + }, + { + "start": 478.04, + "end": 478.1, + "probability": 0.2595 + }, + { + "start": 478.18, + "end": 478.26, + "probability": 0.4198 + }, + { + "start": 478.4, + "end": 482.94, + "probability": 0.9702 + }, + { + "start": 483.46, + "end": 487.24, + "probability": 0.903 + }, + { + "start": 487.28, + "end": 488.12, + "probability": 0.7132 + }, + { + "start": 488.94, + "end": 491.68, + "probability": 0.5029 + }, + { + "start": 492.46, + "end": 494.08, + "probability": 0.642 + }, + { + "start": 494.28, + "end": 500.84, + "probability": 0.9594 + }, + { + "start": 501.48, + "end": 503.4, + "probability": 0.9097 + }, + { + "start": 504.02, + "end": 505.9, + "probability": 0.9862 + }, + { + "start": 506.32, + "end": 507.16, + "probability": 0.9824 + }, + { + "start": 507.34, + "end": 510.7, + "probability": 0.964 + }, + { + "start": 511.28, + "end": 512.86, + "probability": 0.8331 + }, + { + "start": 513.74, + "end": 521.22, + "probability": 0.9851 + }, + { + "start": 521.82, + "end": 524.94, + "probability": 0.9956 + }, + { + "start": 525.58, + "end": 528.72, + "probability": 0.9648 + }, + { + "start": 529.84, + "end": 532.32, + "probability": 0.7672 + }, + { + "start": 533.16, + "end": 535.14, + "probability": 0.8705 + }, + { + "start": 535.26, + "end": 535.91, + "probability": 0.9412 + }, + { + "start": 536.26, + "end": 540.44, + "probability": 0.9738 + }, + { + "start": 540.84, + "end": 544.12, + "probability": 0.9142 + }, + { + "start": 544.6, + "end": 546.54, + "probability": 0.9658 + }, + { + "start": 547.44, + "end": 548.88, + "probability": 0.8833 + }, + { + "start": 549.28, + "end": 555.64, + "probability": 0.8054 + }, + { + "start": 556.5, + "end": 557.62, + "probability": 0.8796 + }, + { + "start": 557.94, + "end": 558.76, + "probability": 0.7823 + }, + { + "start": 558.9, + "end": 561.7, + "probability": 0.9991 + }, + { + "start": 562.28, + "end": 565.92, + "probability": 0.9983 + }, + { + "start": 566.46, + "end": 568.06, + "probability": 0.341 + }, + { + "start": 569.06, + "end": 571.86, + "probability": 0.593 + }, + { + "start": 572.58, + "end": 575.9, + "probability": 0.8905 + }, + { + "start": 576.42, + "end": 578.78, + "probability": 0.7925 + }, + { + "start": 580.38, + "end": 583.28, + "probability": 0.6479 + }, + { + "start": 583.36, + "end": 589.74, + "probability": 0.9087 + }, + { + "start": 589.74, + "end": 594.64, + "probability": 0.9871 + }, + { + "start": 595.32, + "end": 596.62, + "probability": 0.9731 + }, + { + "start": 597.06, + "end": 598.34, + "probability": 0.7705 + }, + { + "start": 598.46, + "end": 599.28, + "probability": 0.6933 + }, + { + "start": 599.62, + "end": 601.38, + "probability": 0.6793 + }, + { + "start": 601.54, + "end": 602.44, + "probability": 0.5034 + }, + { + "start": 602.76, + "end": 603.28, + "probability": 0.6119 + }, + { + "start": 603.76, + "end": 605.58, + "probability": 0.9173 + }, + { + "start": 606.08, + "end": 610.34, + "probability": 0.9904 + }, + { + "start": 610.34, + "end": 615.48, + "probability": 0.7844 + }, + { + "start": 616.14, + "end": 619.52, + "probability": 0.9575 + }, + { + "start": 620.16, + "end": 621.24, + "probability": 0.6111 + }, + { + "start": 621.42, + "end": 625.04, + "probability": 0.9888 + }, + { + "start": 625.36, + "end": 625.6, + "probability": 0.7169 + }, + { + "start": 625.98, + "end": 628.0, + "probability": 0.5994 + }, + { + "start": 628.2, + "end": 632.22, + "probability": 0.8482 + }, + { + "start": 633.08, + "end": 636.28, + "probability": 0.8937 + }, + { + "start": 636.94, + "end": 637.34, + "probability": 0.4443 + }, + { + "start": 637.98, + "end": 645.86, + "probability": 0.9589 + }, + { + "start": 646.4, + "end": 647.72, + "probability": 0.8111 + }, + { + "start": 648.14, + "end": 653.25, + "probability": 0.9841 + }, + { + "start": 653.76, + "end": 655.06, + "probability": 0.9895 + }, + { + "start": 655.48, + "end": 657.3, + "probability": 0.8778 + }, + { + "start": 657.34, + "end": 659.56, + "probability": 0.7295 + }, + { + "start": 660.12, + "end": 662.44, + "probability": 0.8925 + }, + { + "start": 669.44, + "end": 670.5, + "probability": 0.8153 + }, + { + "start": 671.32, + "end": 672.08, + "probability": 0.8276 + }, + { + "start": 672.7, + "end": 673.8, + "probability": 0.8698 + }, + { + "start": 674.54, + "end": 674.97, + "probability": 0.8958 + }, + { + "start": 675.88, + "end": 677.16, + "probability": 0.8269 + }, + { + "start": 677.28, + "end": 680.72, + "probability": 0.9785 + }, + { + "start": 681.16, + "end": 684.76, + "probability": 0.9282 + }, + { + "start": 684.9, + "end": 687.48, + "probability": 0.966 + }, + { + "start": 687.48, + "end": 690.88, + "probability": 0.9963 + }, + { + "start": 691.58, + "end": 694.8, + "probability": 0.9958 + }, + { + "start": 694.9, + "end": 698.88, + "probability": 0.9089 + }, + { + "start": 699.02, + "end": 702.28, + "probability": 0.8995 + }, + { + "start": 702.88, + "end": 705.18, + "probability": 0.8927 + }, + { + "start": 705.9, + "end": 708.72, + "probability": 0.9373 + }, + { + "start": 708.96, + "end": 710.28, + "probability": 0.8813 + }, + { + "start": 711.14, + "end": 714.88, + "probability": 0.9853 + }, + { + "start": 715.64, + "end": 716.9, + "probability": 0.9894 + }, + { + "start": 717.62, + "end": 719.72, + "probability": 0.9948 + }, + { + "start": 719.84, + "end": 721.35, + "probability": 0.9937 + }, + { + "start": 721.86, + "end": 723.62, + "probability": 0.9824 + }, + { + "start": 724.66, + "end": 726.9, + "probability": 0.9443 + }, + { + "start": 728.14, + "end": 731.94, + "probability": 0.9984 + }, + { + "start": 732.5, + "end": 738.58, + "probability": 0.9942 + }, + { + "start": 739.02, + "end": 741.66, + "probability": 0.8596 + }, + { + "start": 742.26, + "end": 745.7, + "probability": 0.9926 + }, + { + "start": 745.9, + "end": 747.3, + "probability": 0.8987 + }, + { + "start": 747.82, + "end": 749.12, + "probability": 0.8878 + }, + { + "start": 749.98, + "end": 750.8, + "probability": 0.7137 + }, + { + "start": 750.98, + "end": 757.38, + "probability": 0.9969 + }, + { + "start": 758.38, + "end": 764.26, + "probability": 0.8627 + }, + { + "start": 764.98, + "end": 767.32, + "probability": 0.9654 + }, + { + "start": 768.56, + "end": 770.46, + "probability": 0.2727 + }, + { + "start": 770.9, + "end": 771.64, + "probability": 0.5687 + }, + { + "start": 771.82, + "end": 773.84, + "probability": 0.5466 + }, + { + "start": 774.15, + "end": 776.38, + "probability": 0.804 + }, + { + "start": 776.64, + "end": 779.52, + "probability": 0.0836 + }, + { + "start": 781.56, + "end": 781.56, + "probability": 0.0965 + }, + { + "start": 781.56, + "end": 786.4, + "probability": 0.523 + }, + { + "start": 786.44, + "end": 786.9, + "probability": 0.458 + }, + { + "start": 786.98, + "end": 791.5, + "probability": 0.653 + }, + { + "start": 791.56, + "end": 794.48, + "probability": 0.7734 + }, + { + "start": 795.1, + "end": 796.86, + "probability": 0.3967 + }, + { + "start": 796.98, + "end": 799.02, + "probability": 0.7571 + }, + { + "start": 799.24, + "end": 801.56, + "probability": 0.6409 + }, + { + "start": 801.84, + "end": 804.02, + "probability": 0.4629 + }, + { + "start": 808.9, + "end": 810.16, + "probability": 0.7612 + }, + { + "start": 810.2, + "end": 814.98, + "probability": 0.6887 + }, + { + "start": 815.06, + "end": 815.66, + "probability": 0.5885 + }, + { + "start": 815.76, + "end": 816.88, + "probability": 0.6872 + }, + { + "start": 816.92, + "end": 817.24, + "probability": 0.4828 + }, + { + "start": 817.34, + "end": 818.44, + "probability": 0.8533 + }, + { + "start": 818.74, + "end": 819.08, + "probability": 0.8828 + }, + { + "start": 819.24, + "end": 820.08, + "probability": 0.9336 + }, + { + "start": 820.96, + "end": 822.74, + "probability": 0.8641 + }, + { + "start": 822.8, + "end": 824.0, + "probability": 0.9381 + }, + { + "start": 824.1, + "end": 824.84, + "probability": 0.3643 + }, + { + "start": 824.96, + "end": 826.11, + "probability": 0.841 + }, + { + "start": 826.92, + "end": 828.48, + "probability": 0.9692 + }, + { + "start": 828.9, + "end": 829.93, + "probability": 0.8882 + }, + { + "start": 830.24, + "end": 831.14, + "probability": 0.9039 + }, + { + "start": 831.24, + "end": 831.6, + "probability": 0.9844 + }, + { + "start": 832.2, + "end": 834.0, + "probability": 0.9639 + }, + { + "start": 834.06, + "end": 834.68, + "probability": 0.6991 + }, + { + "start": 834.78, + "end": 837.14, + "probability": 0.905 + }, + { + "start": 837.6, + "end": 838.04, + "probability": 0.687 + }, + { + "start": 838.2, + "end": 840.16, + "probability": 0.9918 + }, + { + "start": 840.42, + "end": 844.1, + "probability": 0.9684 + }, + { + "start": 844.5, + "end": 847.1, + "probability": 0.9576 + }, + { + "start": 847.44, + "end": 848.9, + "probability": 0.7623 + }, + { + "start": 849.32, + "end": 851.82, + "probability": 0.959 + }, + { + "start": 852.04, + "end": 855.66, + "probability": 0.9629 + }, + { + "start": 856.5, + "end": 858.04, + "probability": 0.9807 + }, + { + "start": 858.22, + "end": 860.44, + "probability": 0.987 + }, + { + "start": 860.74, + "end": 862.24, + "probability": 0.8467 + }, + { + "start": 862.5, + "end": 864.92, + "probability": 0.981 + }, + { + "start": 865.04, + "end": 868.06, + "probability": 0.9945 + }, + { + "start": 868.06, + "end": 871.96, + "probability": 0.946 + }, + { + "start": 872.4, + "end": 876.32, + "probability": 0.9632 + }, + { + "start": 876.46, + "end": 879.12, + "probability": 0.855 + }, + { + "start": 879.26, + "end": 880.9, + "probability": 0.8552 + }, + { + "start": 881.2, + "end": 882.16, + "probability": 0.9072 + }, + { + "start": 882.24, + "end": 883.52, + "probability": 0.9784 + }, + { + "start": 883.8, + "end": 884.62, + "probability": 0.7515 + }, + { + "start": 884.92, + "end": 885.52, + "probability": 0.8257 + }, + { + "start": 885.84, + "end": 887.64, + "probability": 0.838 + }, + { + "start": 887.86, + "end": 890.14, + "probability": 0.8532 + }, + { + "start": 890.28, + "end": 891.44, + "probability": 0.5211 + }, + { + "start": 891.92, + "end": 894.82, + "probability": 0.9803 + }, + { + "start": 894.9, + "end": 895.9, + "probability": 0.7842 + }, + { + "start": 896.42, + "end": 898.02, + "probability": 0.9526 + }, + { + "start": 898.44, + "end": 901.48, + "probability": 0.8727 + }, + { + "start": 901.84, + "end": 905.68, + "probability": 0.9883 + }, + { + "start": 905.78, + "end": 906.74, + "probability": 0.7644 + }, + { + "start": 907.06, + "end": 907.5, + "probability": 0.7717 + }, + { + "start": 907.66, + "end": 909.78, + "probability": 0.9407 + }, + { + "start": 910.24, + "end": 911.34, + "probability": 0.8892 + }, + { + "start": 911.46, + "end": 914.34, + "probability": 0.8413 + }, + { + "start": 914.76, + "end": 919.78, + "probability": 0.8959 + }, + { + "start": 920.16, + "end": 922.94, + "probability": 0.7625 + }, + { + "start": 923.28, + "end": 926.42, + "probability": 0.7247 + }, + { + "start": 926.72, + "end": 930.34, + "probability": 0.6041 + }, + { + "start": 930.66, + "end": 937.92, + "probability": 0.9783 + }, + { + "start": 938.04, + "end": 939.42, + "probability": 0.7674 + }, + { + "start": 939.74, + "end": 940.06, + "probability": 0.9325 + }, + { + "start": 940.26, + "end": 940.68, + "probability": 0.9673 + }, + { + "start": 940.74, + "end": 941.14, + "probability": 0.847 + }, + { + "start": 941.28, + "end": 942.12, + "probability": 0.9927 + }, + { + "start": 942.52, + "end": 944.38, + "probability": 0.8532 + }, + { + "start": 944.74, + "end": 948.92, + "probability": 0.993 + }, + { + "start": 948.92, + "end": 949.33, + "probability": 0.0216 + }, + { + "start": 950.04, + "end": 950.04, + "probability": 0.0813 + }, + { + "start": 950.04, + "end": 950.11, + "probability": 0.0161 + }, + { + "start": 950.14, + "end": 951.13, + "probability": 0.8773 + }, + { + "start": 951.34, + "end": 956.3, + "probability": 0.9648 + }, + { + "start": 956.54, + "end": 958.58, + "probability": 0.7798 + }, + { + "start": 958.84, + "end": 959.68, + "probability": 0.8734 + }, + { + "start": 959.9, + "end": 960.9, + "probability": 0.8929 + }, + { + "start": 961.04, + "end": 962.28, + "probability": 0.7746 + }, + { + "start": 962.54, + "end": 964.84, + "probability": 0.8975 + }, + { + "start": 965.36, + "end": 967.02, + "probability": 0.8569 + }, + { + "start": 967.46, + "end": 968.26, + "probability": 0.8596 + }, + { + "start": 968.36, + "end": 971.58, + "probability": 0.9343 + }, + { + "start": 971.62, + "end": 973.52, + "probability": 0.6936 + }, + { + "start": 974.22, + "end": 974.46, + "probability": 0.1337 + }, + { + "start": 974.46, + "end": 976.42, + "probability": 0.96 + }, + { + "start": 976.54, + "end": 977.36, + "probability": 0.7468 + }, + { + "start": 977.48, + "end": 979.1, + "probability": 0.9 + }, + { + "start": 979.18, + "end": 979.42, + "probability": 0.8842 + }, + { + "start": 979.48, + "end": 982.28, + "probability": 0.6083 + }, + { + "start": 982.52, + "end": 984.94, + "probability": 0.8025 + }, + { + "start": 985.84, + "end": 986.24, + "probability": 0.2837 + }, + { + "start": 986.38, + "end": 986.9, + "probability": 0.4815 + }, + { + "start": 987.04, + "end": 989.42, + "probability": 0.5262 + }, + { + "start": 990.14, + "end": 990.52, + "probability": 0.6039 + }, + { + "start": 996.28, + "end": 999.66, + "probability": 0.5474 + }, + { + "start": 999.66, + "end": 1002.76, + "probability": 0.3289 + }, + { + "start": 1003.04, + "end": 1003.6, + "probability": 0.3835 + }, + { + "start": 1005.88, + "end": 1007.48, + "probability": 0.6578 + }, + { + "start": 1007.5, + "end": 1007.8, + "probability": 0.4689 + }, + { + "start": 1007.84, + "end": 1009.18, + "probability": 0.3391 + }, + { + "start": 1010.9, + "end": 1014.54, + "probability": 0.7072 + }, + { + "start": 1015.1, + "end": 1017.15, + "probability": 0.995 + }, + { + "start": 1017.78, + "end": 1020.32, + "probability": 0.7595 + }, + { + "start": 1021.74, + "end": 1024.02, + "probability": 0.9937 + }, + { + "start": 1025.4, + "end": 1031.86, + "probability": 0.8763 + }, + { + "start": 1033.9, + "end": 1035.98, + "probability": 0.6429 + }, + { + "start": 1036.16, + "end": 1038.74, + "probability": 0.8752 + }, + { + "start": 1039.3, + "end": 1041.78, + "probability": 0.976 + }, + { + "start": 1042.32, + "end": 1045.56, + "probability": 0.9781 + }, + { + "start": 1046.24, + "end": 1046.92, + "probability": 0.809 + }, + { + "start": 1047.88, + "end": 1050.94, + "probability": 0.7513 + }, + { + "start": 1051.48, + "end": 1052.6, + "probability": 0.5637 + }, + { + "start": 1053.72, + "end": 1055.34, + "probability": 0.9689 + }, + { + "start": 1055.5, + "end": 1056.9, + "probability": 0.5985 + }, + { + "start": 1057.12, + "end": 1061.06, + "probability": 0.8584 + }, + { + "start": 1061.26, + "end": 1061.96, + "probability": 0.7369 + }, + { + "start": 1062.69, + "end": 1064.76, + "probability": 0.9705 + }, + { + "start": 1064.92, + "end": 1065.68, + "probability": 0.9648 + }, + { + "start": 1066.24, + "end": 1067.88, + "probability": 0.9858 + }, + { + "start": 1069.12, + "end": 1071.66, + "probability": 0.7653 + }, + { + "start": 1072.04, + "end": 1073.2, + "probability": 0.7666 + }, + { + "start": 1074.44, + "end": 1078.34, + "probability": 0.9554 + }, + { + "start": 1079.7, + "end": 1080.32, + "probability": 0.7773 + }, + { + "start": 1081.28, + "end": 1083.46, + "probability": 0.7684 + }, + { + "start": 1083.58, + "end": 1084.22, + "probability": 0.5787 + }, + { + "start": 1084.46, + "end": 1088.15, + "probability": 0.7716 + }, + { + "start": 1088.98, + "end": 1090.14, + "probability": 0.4861 + }, + { + "start": 1090.38, + "end": 1091.32, + "probability": 0.806 + }, + { + "start": 1092.16, + "end": 1093.44, + "probability": 0.9674 + }, + { + "start": 1094.16, + "end": 1095.18, + "probability": 0.9681 + }, + { + "start": 1095.54, + "end": 1097.0, + "probability": 0.9861 + }, + { + "start": 1097.74, + "end": 1101.26, + "probability": 0.9946 + }, + { + "start": 1101.82, + "end": 1103.32, + "probability": 0.9585 + }, + { + "start": 1103.96, + "end": 1104.42, + "probability": 0.4475 + }, + { + "start": 1105.22, + "end": 1106.71, + "probability": 0.998 + }, + { + "start": 1107.22, + "end": 1108.7, + "probability": 0.9932 + }, + { + "start": 1109.54, + "end": 1110.28, + "probability": 0.9552 + }, + { + "start": 1110.44, + "end": 1111.86, + "probability": 0.8122 + }, + { + "start": 1112.22, + "end": 1113.4, + "probability": 0.9476 + }, + { + "start": 1113.42, + "end": 1114.08, + "probability": 0.9644 + }, + { + "start": 1114.58, + "end": 1116.34, + "probability": 0.9771 + }, + { + "start": 1117.28, + "end": 1119.0, + "probability": 0.8738 + }, + { + "start": 1119.28, + "end": 1121.56, + "probability": 0.9858 + }, + { + "start": 1121.84, + "end": 1123.72, + "probability": 0.9009 + }, + { + "start": 1123.88, + "end": 1125.56, + "probability": 0.9444 + }, + { + "start": 1126.02, + "end": 1126.62, + "probability": 0.8079 + }, + { + "start": 1126.68, + "end": 1127.92, + "probability": 0.9395 + }, + { + "start": 1128.02, + "end": 1129.2, + "probability": 0.9064 + }, + { + "start": 1129.74, + "end": 1130.18, + "probability": 0.9182 + }, + { + "start": 1131.06, + "end": 1132.2, + "probability": 0.8612 + }, + { + "start": 1132.38, + "end": 1133.68, + "probability": 0.9943 + }, + { + "start": 1134.26, + "end": 1137.42, + "probability": 0.9924 + }, + { + "start": 1137.86, + "end": 1140.94, + "probability": 0.9956 + }, + { + "start": 1141.18, + "end": 1142.12, + "probability": 0.7791 + }, + { + "start": 1142.2, + "end": 1145.26, + "probability": 0.846 + }, + { + "start": 1145.46, + "end": 1145.46, + "probability": 0.4299 + }, + { + "start": 1145.46, + "end": 1146.62, + "probability": 0.7167 + }, + { + "start": 1146.74, + "end": 1148.74, + "probability": 0.8835 + }, + { + "start": 1149.42, + "end": 1153.58, + "probability": 0.8755 + }, + { + "start": 1154.4, + "end": 1156.32, + "probability": 0.9902 + }, + { + "start": 1156.4, + "end": 1156.88, + "probability": 0.6802 + }, + { + "start": 1157.04, + "end": 1159.16, + "probability": 0.9693 + }, + { + "start": 1159.76, + "end": 1162.0, + "probability": 0.9955 + }, + { + "start": 1162.0, + "end": 1164.88, + "probability": 0.9209 + }, + { + "start": 1165.04, + "end": 1165.34, + "probability": 0.322 + }, + { + "start": 1165.36, + "end": 1166.4, + "probability": 0.964 + }, + { + "start": 1166.56, + "end": 1167.24, + "probability": 0.5254 + }, + { + "start": 1167.42, + "end": 1172.26, + "probability": 0.8742 + }, + { + "start": 1172.36, + "end": 1174.32, + "probability": 0.7872 + }, + { + "start": 1175.24, + "end": 1180.86, + "probability": 0.9331 + }, + { + "start": 1181.38, + "end": 1184.12, + "probability": 0.998 + }, + { + "start": 1184.34, + "end": 1186.28, + "probability": 0.859 + }, + { + "start": 1186.4, + "end": 1186.84, + "probability": 0.6084 + }, + { + "start": 1186.86, + "end": 1188.22, + "probability": 0.009 + }, + { + "start": 1188.8, + "end": 1191.54, + "probability": 0.8595 + }, + { + "start": 1192.2, + "end": 1194.48, + "probability": 0.6349 + }, + { + "start": 1199.24, + "end": 1200.14, + "probability": 0.7529 + }, + { + "start": 1201.1, + "end": 1203.84, + "probability": 0.8445 + }, + { + "start": 1204.94, + "end": 1210.98, + "probability": 0.9882 + }, + { + "start": 1210.98, + "end": 1214.1, + "probability": 0.9981 + }, + { + "start": 1214.46, + "end": 1216.54, + "probability": 0.8851 + }, + { + "start": 1216.56, + "end": 1219.22, + "probability": 0.9117 + }, + { + "start": 1219.96, + "end": 1222.96, + "probability": 0.9995 + }, + { + "start": 1223.56, + "end": 1225.62, + "probability": 0.9531 + }, + { + "start": 1226.52, + "end": 1228.7, + "probability": 0.9976 + }, + { + "start": 1229.46, + "end": 1231.78, + "probability": 0.7565 + }, + { + "start": 1232.62, + "end": 1234.32, + "probability": 0.9971 + }, + { + "start": 1235.16, + "end": 1235.66, + "probability": 0.867 + }, + { + "start": 1236.48, + "end": 1238.06, + "probability": 0.6421 + }, + { + "start": 1238.32, + "end": 1242.18, + "probability": 0.5899 + }, + { + "start": 1242.42, + "end": 1243.72, + "probability": 0.9423 + }, + { + "start": 1243.98, + "end": 1245.72, + "probability": 0.9873 + }, + { + "start": 1246.26, + "end": 1246.92, + "probability": 0.4871 + }, + { + "start": 1246.94, + "end": 1247.38, + "probability": 0.1163 + }, + { + "start": 1247.38, + "end": 1248.6, + "probability": 0.7844 + }, + { + "start": 1248.74, + "end": 1249.78, + "probability": 0.8509 + }, + { + "start": 1250.95, + "end": 1251.38, + "probability": 0.098 + }, + { + "start": 1251.38, + "end": 1253.08, + "probability": 0.967 + }, + { + "start": 1253.08, + "end": 1256.0, + "probability": 0.9147 + }, + { + "start": 1256.0, + "end": 1257.26, + "probability": 0.335 + }, + { + "start": 1257.34, + "end": 1258.72, + "probability": 0.9852 + }, + { + "start": 1259.1, + "end": 1261.6, + "probability": 0.9735 + }, + { + "start": 1261.66, + "end": 1262.48, + "probability": 0.621 + }, + { + "start": 1262.96, + "end": 1263.7, + "probability": 0.993 + }, + { + "start": 1265.08, + "end": 1265.77, + "probability": 0.9345 + }, + { + "start": 1267.76, + "end": 1269.54, + "probability": 0.9824 + }, + { + "start": 1271.78, + "end": 1273.08, + "probability": 0.9805 + }, + { + "start": 1274.0, + "end": 1274.6, + "probability": 0.9785 + }, + { + "start": 1276.9, + "end": 1277.86, + "probability": 0.9889 + }, + { + "start": 1279.06, + "end": 1281.37, + "probability": 0.8246 + }, + { + "start": 1284.9, + "end": 1287.14, + "probability": 0.9978 + }, + { + "start": 1288.14, + "end": 1289.02, + "probability": 0.9856 + }, + { + "start": 1289.16, + "end": 1290.34, + "probability": 0.9956 + }, + { + "start": 1291.72, + "end": 1292.82, + "probability": 0.8393 + }, + { + "start": 1295.02, + "end": 1297.08, + "probability": 0.8226 + }, + { + "start": 1297.56, + "end": 1300.98, + "probability": 0.9324 + }, + { + "start": 1302.46, + "end": 1304.18, + "probability": 0.8499 + }, + { + "start": 1304.32, + "end": 1306.26, + "probability": 0.5977 + }, + { + "start": 1306.34, + "end": 1306.66, + "probability": 0.6698 + }, + { + "start": 1306.7, + "end": 1307.18, + "probability": 0.6142 + }, + { + "start": 1307.24, + "end": 1307.86, + "probability": 0.6353 + }, + { + "start": 1308.02, + "end": 1309.12, + "probability": 0.9493 + }, + { + "start": 1311.1, + "end": 1311.22, + "probability": 0.1118 + }, + { + "start": 1311.56, + "end": 1312.84, + "probability": 0.2821 + }, + { + "start": 1312.84, + "end": 1313.52, + "probability": 0.023 + }, + { + "start": 1313.78, + "end": 1314.78, + "probability": 0.4801 + }, + { + "start": 1315.0, + "end": 1316.18, + "probability": 0.4113 + }, + { + "start": 1316.44, + "end": 1318.48, + "probability": 0.6711 + }, + { + "start": 1318.86, + "end": 1321.68, + "probability": 0.9946 + }, + { + "start": 1321.84, + "end": 1326.48, + "probability": 0.969 + }, + { + "start": 1327.82, + "end": 1329.38, + "probability": 0.9902 + }, + { + "start": 1331.28, + "end": 1336.62, + "probability": 0.9758 + }, + { + "start": 1337.2, + "end": 1339.9, + "probability": 0.6774 + }, + { + "start": 1340.56, + "end": 1342.52, + "probability": 0.978 + }, + { + "start": 1342.92, + "end": 1343.84, + "probability": 0.8242 + }, + { + "start": 1343.96, + "end": 1345.7, + "probability": 0.8718 + }, + { + "start": 1346.34, + "end": 1346.8, + "probability": 0.575 + }, + { + "start": 1346.8, + "end": 1350.76, + "probability": 0.653 + }, + { + "start": 1350.86, + "end": 1352.84, + "probability": 0.8313 + }, + { + "start": 1352.96, + "end": 1355.04, + "probability": 0.633 + }, + { + "start": 1355.18, + "end": 1357.0, + "probability": 0.9418 + }, + { + "start": 1357.04, + "end": 1357.32, + "probability": 0.203 + }, + { + "start": 1357.68, + "end": 1360.86, + "probability": 0.8717 + }, + { + "start": 1361.34, + "end": 1364.38, + "probability": 0.8825 + }, + { + "start": 1366.28, + "end": 1368.04, + "probability": 0.8564 + }, + { + "start": 1368.58, + "end": 1369.32, + "probability": 0.6461 + }, + { + "start": 1371.24, + "end": 1374.74, + "probability": 0.981 + }, + { + "start": 1375.68, + "end": 1377.1, + "probability": 0.9307 + }, + { + "start": 1377.78, + "end": 1382.58, + "probability": 0.7358 + }, + { + "start": 1383.14, + "end": 1386.38, + "probability": 0.4073 + }, + { + "start": 1387.14, + "end": 1389.14, + "probability": 0.9177 + }, + { + "start": 1390.44, + "end": 1391.5, + "probability": 0.735 + }, + { + "start": 1392.02, + "end": 1396.92, + "probability": 0.9209 + }, + { + "start": 1397.44, + "end": 1401.06, + "probability": 0.9565 + }, + { + "start": 1401.26, + "end": 1402.14, + "probability": 0.9728 + }, + { + "start": 1402.52, + "end": 1403.98, + "probability": 0.8599 + }, + { + "start": 1404.9, + "end": 1409.42, + "probability": 0.8511 + }, + { + "start": 1410.4, + "end": 1412.94, + "probability": 0.5789 + }, + { + "start": 1414.68, + "end": 1416.42, + "probability": 0.684 + }, + { + "start": 1417.74, + "end": 1420.88, + "probability": 0.8225 + }, + { + "start": 1421.4, + "end": 1423.82, + "probability": 0.9131 + }, + { + "start": 1424.26, + "end": 1424.76, + "probability": 0.5006 + }, + { + "start": 1424.8, + "end": 1425.6, + "probability": 0.9561 + }, + { + "start": 1425.88, + "end": 1427.9, + "probability": 0.6881 + }, + { + "start": 1428.4, + "end": 1430.02, + "probability": 0.5024 + }, + { + "start": 1430.4, + "end": 1432.46, + "probability": 0.994 + }, + { + "start": 1432.58, + "end": 1434.2, + "probability": 0.8356 + }, + { + "start": 1435.08, + "end": 1439.24, + "probability": 0.9209 + }, + { + "start": 1440.04, + "end": 1441.9, + "probability": 0.9277 + }, + { + "start": 1442.38, + "end": 1443.38, + "probability": 0.9325 + }, + { + "start": 1444.16, + "end": 1445.24, + "probability": 0.5038 + }, + { + "start": 1446.32, + "end": 1447.96, + "probability": 0.7075 + }, + { + "start": 1448.92, + "end": 1453.0, + "probability": 0.8781 + }, + { + "start": 1454.52, + "end": 1457.39, + "probability": 0.5337 + }, + { + "start": 1458.44, + "end": 1459.38, + "probability": 0.6328 + }, + { + "start": 1460.2, + "end": 1462.48, + "probability": 0.8071 + }, + { + "start": 1463.06, + "end": 1466.46, + "probability": 0.9467 + }, + { + "start": 1467.1, + "end": 1468.18, + "probability": 0.6086 + }, + { + "start": 1469.02, + "end": 1471.14, + "probability": 0.5466 + }, + { + "start": 1471.32, + "end": 1471.88, + "probability": 0.4783 + }, + { + "start": 1471.94, + "end": 1472.88, + "probability": 0.8481 + }, + { + "start": 1473.1, + "end": 1475.52, + "probability": 0.9836 + }, + { + "start": 1475.52, + "end": 1479.06, + "probability": 0.9696 + }, + { + "start": 1479.16, + "end": 1483.64, + "probability": 0.9052 + }, + { + "start": 1484.48, + "end": 1486.68, + "probability": 0.7873 + }, + { + "start": 1486.68, + "end": 1488.64, + "probability": 0.9276 + }, + { + "start": 1493.16, + "end": 1495.64, + "probability": 0.9096 + }, + { + "start": 1496.58, + "end": 1502.46, + "probability": 0.9805 + }, + { + "start": 1502.5, + "end": 1503.52, + "probability": 0.8407 + }, + { + "start": 1503.68, + "end": 1504.88, + "probability": 0.9448 + }, + { + "start": 1505.2, + "end": 1506.01, + "probability": 0.9966 + }, + { + "start": 1507.08, + "end": 1509.14, + "probability": 0.9863 + }, + { + "start": 1509.8, + "end": 1511.56, + "probability": 0.7293 + }, + { + "start": 1513.33, + "end": 1517.56, + "probability": 0.9977 + }, + { + "start": 1517.88, + "end": 1520.78, + "probability": 0.9908 + }, + { + "start": 1520.78, + "end": 1526.96, + "probability": 0.9977 + }, + { + "start": 1527.18, + "end": 1528.08, + "probability": 0.9697 + }, + { + "start": 1528.56, + "end": 1531.6, + "probability": 0.9888 + }, + { + "start": 1532.36, + "end": 1534.52, + "probability": 0.9977 + }, + { + "start": 1535.2, + "end": 1537.04, + "probability": 0.9604 + }, + { + "start": 1538.26, + "end": 1543.66, + "probability": 0.9368 + }, + { + "start": 1544.64, + "end": 1549.14, + "probability": 0.9669 + }, + { + "start": 1550.22, + "end": 1551.44, + "probability": 0.8445 + }, + { + "start": 1551.74, + "end": 1554.02, + "probability": 0.9897 + }, + { + "start": 1554.42, + "end": 1556.52, + "probability": 0.9834 + }, + { + "start": 1556.94, + "end": 1561.44, + "probability": 0.996 + }, + { + "start": 1561.92, + "end": 1562.52, + "probability": 0.9474 + }, + { + "start": 1563.72, + "end": 1566.02, + "probability": 0.8891 + }, + { + "start": 1566.56, + "end": 1568.76, + "probability": 0.9926 + }, + { + "start": 1569.26, + "end": 1570.81, + "probability": 0.9438 + }, + { + "start": 1571.92, + "end": 1573.26, + "probability": 0.9684 + }, + { + "start": 1573.96, + "end": 1576.38, + "probability": 0.9614 + }, + { + "start": 1577.16, + "end": 1578.96, + "probability": 0.9791 + }, + { + "start": 1579.4, + "end": 1581.42, + "probability": 0.8801 + }, + { + "start": 1581.88, + "end": 1585.58, + "probability": 0.1263 + }, + { + "start": 1588.3, + "end": 1588.42, + "probability": 0.0329 + }, + { + "start": 1588.42, + "end": 1588.42, + "probability": 0.024 + }, + { + "start": 1588.42, + "end": 1588.42, + "probability": 0.4237 + }, + { + "start": 1588.42, + "end": 1589.58, + "probability": 0.6067 + }, + { + "start": 1589.66, + "end": 1592.26, + "probability": 0.7738 + }, + { + "start": 1592.48, + "end": 1594.86, + "probability": 0.9192 + }, + { + "start": 1595.56, + "end": 1598.11, + "probability": 0.9966 + }, + { + "start": 1598.46, + "end": 1601.78, + "probability": 0.9993 + }, + { + "start": 1603.2, + "end": 1606.08, + "probability": 0.1169 + }, + { + "start": 1606.38, + "end": 1607.92, + "probability": 0.8345 + }, + { + "start": 1608.8, + "end": 1610.5, + "probability": 0.9829 + }, + { + "start": 1610.62, + "end": 1612.98, + "probability": 0.8519 + }, + { + "start": 1613.86, + "end": 1615.85, + "probability": 0.9186 + }, + { + "start": 1616.56, + "end": 1617.4, + "probability": 0.9902 + }, + { + "start": 1617.98, + "end": 1618.64, + "probability": 0.9379 + }, + { + "start": 1618.86, + "end": 1619.8, + "probability": 0.749 + }, + { + "start": 1620.06, + "end": 1623.66, + "probability": 0.9756 + }, + { + "start": 1623.98, + "end": 1624.3, + "probability": 0.7033 + }, + { + "start": 1625.12, + "end": 1626.74, + "probability": 0.8657 + }, + { + "start": 1626.88, + "end": 1629.48, + "probability": 0.7145 + }, + { + "start": 1635.16, + "end": 1637.18, + "probability": 0.5853 + }, + { + "start": 1638.55, + "end": 1642.2, + "probability": 0.9808 + }, + { + "start": 1642.2, + "end": 1646.04, + "probability": 0.8761 + }, + { + "start": 1647.52, + "end": 1650.06, + "probability": 0.9946 + }, + { + "start": 1650.22, + "end": 1653.92, + "probability": 0.9117 + }, + { + "start": 1653.94, + "end": 1659.9, + "probability": 0.9979 + }, + { + "start": 1660.34, + "end": 1660.66, + "probability": 0.0911 + }, + { + "start": 1660.72, + "end": 1661.48, + "probability": 0.9687 + }, + { + "start": 1663.56, + "end": 1666.46, + "probability": 0.888 + }, + { + "start": 1667.22, + "end": 1669.3, + "probability": 0.998 + }, + { + "start": 1671.16, + "end": 1672.94, + "probability": 0.7921 + }, + { + "start": 1674.54, + "end": 1675.78, + "probability": 0.6729 + }, + { + "start": 1676.22, + "end": 1676.56, + "probability": 0.5477 + }, + { + "start": 1676.64, + "end": 1677.24, + "probability": 0.9149 + }, + { + "start": 1677.38, + "end": 1682.72, + "probability": 0.9611 + }, + { + "start": 1684.44, + "end": 1685.7, + "probability": 0.9151 + }, + { + "start": 1687.02, + "end": 1688.96, + "probability": 0.9792 + }, + { + "start": 1689.62, + "end": 1692.3, + "probability": 0.9644 + }, + { + "start": 1693.48, + "end": 1694.84, + "probability": 0.9851 + }, + { + "start": 1695.3, + "end": 1698.58, + "probability": 0.8616 + }, + { + "start": 1700.1, + "end": 1703.22, + "probability": 0.8955 + }, + { + "start": 1703.32, + "end": 1704.98, + "probability": 0.9701 + }, + { + "start": 1705.1, + "end": 1706.92, + "probability": 0.9951 + }, + { + "start": 1707.72, + "end": 1708.08, + "probability": 0.754 + }, + { + "start": 1708.7, + "end": 1711.92, + "probability": 0.9859 + }, + { + "start": 1711.92, + "end": 1717.66, + "probability": 0.9937 + }, + { + "start": 1717.8, + "end": 1718.22, + "probability": 0.7673 + }, + { + "start": 1719.56, + "end": 1722.56, + "probability": 0.9747 + }, + { + "start": 1723.48, + "end": 1724.94, + "probability": 0.415 + }, + { + "start": 1725.0, + "end": 1725.74, + "probability": 0.7306 + }, + { + "start": 1725.96, + "end": 1726.82, + "probability": 0.0878 + }, + { + "start": 1726.82, + "end": 1729.76, + "probability": 0.6282 + }, + { + "start": 1730.86, + "end": 1730.86, + "probability": 0.7133 + }, + { + "start": 1731.0, + "end": 1734.42, + "probability": 0.9827 + }, + { + "start": 1734.62, + "end": 1736.3, + "probability": 0.8484 + }, + { + "start": 1736.62, + "end": 1738.84, + "probability": 0.9798 + }, + { + "start": 1738.84, + "end": 1739.96, + "probability": 0.9968 + }, + { + "start": 1740.62, + "end": 1744.6, + "probability": 0.9875 + }, + { + "start": 1744.7, + "end": 1746.0, + "probability": 0.9991 + }, + { + "start": 1746.66, + "end": 1749.12, + "probability": 0.9946 + }, + { + "start": 1749.5, + "end": 1753.18, + "probability": 0.9913 + }, + { + "start": 1753.78, + "end": 1754.24, + "probability": 0.9537 + }, + { + "start": 1755.18, + "end": 1755.73, + "probability": 0.9692 + }, + { + "start": 1755.98, + "end": 1760.04, + "probability": 0.9964 + }, + { + "start": 1760.32, + "end": 1761.12, + "probability": 0.9481 + }, + { + "start": 1761.24, + "end": 1765.04, + "probability": 0.9919 + }, + { + "start": 1765.72, + "end": 1767.94, + "probability": 0.9581 + }, + { + "start": 1768.3, + "end": 1769.66, + "probability": 0.9932 + }, + { + "start": 1769.76, + "end": 1772.4, + "probability": 0.0367 + }, + { + "start": 1772.4, + "end": 1776.52, + "probability": 0.9597 + }, + { + "start": 1777.36, + "end": 1780.2, + "probability": 0.9963 + }, + { + "start": 1780.68, + "end": 1784.34, + "probability": 0.987 + }, + { + "start": 1784.7, + "end": 1784.8, + "probability": 0.6862 + }, + { + "start": 1785.2, + "end": 1786.96, + "probability": 0.9634 + }, + { + "start": 1787.08, + "end": 1791.38, + "probability": 0.9094 + }, + { + "start": 1794.18, + "end": 1794.74, + "probability": 0.614 + }, + { + "start": 1794.8, + "end": 1795.56, + "probability": 0.6573 + }, + { + "start": 1796.64, + "end": 1802.86, + "probability": 0.9913 + }, + { + "start": 1803.88, + "end": 1806.34, + "probability": 0.9906 + }, + { + "start": 1806.4, + "end": 1808.2, + "probability": 0.7748 + }, + { + "start": 1809.0, + "end": 1809.92, + "probability": 0.763 + }, + { + "start": 1811.18, + "end": 1814.04, + "probability": 0.9909 + }, + { + "start": 1815.16, + "end": 1816.32, + "probability": 0.9708 + }, + { + "start": 1816.42, + "end": 1816.96, + "probability": 0.4749 + }, + { + "start": 1817.06, + "end": 1817.84, + "probability": 0.9821 + }, + { + "start": 1817.96, + "end": 1818.62, + "probability": 0.9284 + }, + { + "start": 1818.72, + "end": 1819.42, + "probability": 0.7344 + }, + { + "start": 1820.72, + "end": 1821.94, + "probability": 0.5243 + }, + { + "start": 1822.62, + "end": 1827.52, + "probability": 0.9832 + }, + { + "start": 1828.82, + "end": 1830.37, + "probability": 0.4338 + }, + { + "start": 1831.62, + "end": 1833.55, + "probability": 0.9971 + }, + { + "start": 1834.32, + "end": 1836.54, + "probability": 0.9954 + }, + { + "start": 1837.42, + "end": 1838.94, + "probability": 0.9291 + }, + { + "start": 1839.08, + "end": 1842.23, + "probability": 0.9741 + }, + { + "start": 1842.94, + "end": 1846.0, + "probability": 0.944 + }, + { + "start": 1846.46, + "end": 1848.76, + "probability": 0.9977 + }, + { + "start": 1848.82, + "end": 1850.28, + "probability": 0.9438 + }, + { + "start": 1851.82, + "end": 1854.6, + "probability": 0.9341 + }, + { + "start": 1855.3, + "end": 1857.6, + "probability": 0.9621 + }, + { + "start": 1859.46, + "end": 1864.22, + "probability": 0.9976 + }, + { + "start": 1865.1, + "end": 1866.62, + "probability": 0.9969 + }, + { + "start": 1867.28, + "end": 1869.34, + "probability": 0.9565 + }, + { + "start": 1872.19, + "end": 1872.96, + "probability": 0.0666 + }, + { + "start": 1872.96, + "end": 1876.18, + "probability": 0.6553 + }, + { + "start": 1876.7, + "end": 1880.28, + "probability": 0.8812 + }, + { + "start": 1881.5, + "end": 1883.02, + "probability": 0.8274 + }, + { + "start": 1883.6, + "end": 1886.6, + "probability": 0.9531 + }, + { + "start": 1887.2, + "end": 1890.62, + "probability": 0.9744 + }, + { + "start": 1891.3, + "end": 1894.92, + "probability": 0.7739 + }, + { + "start": 1895.9, + "end": 1896.4, + "probability": 0.6177 + }, + { + "start": 1896.54, + "end": 1900.0, + "probability": 0.9908 + }, + { + "start": 1901.42, + "end": 1904.26, + "probability": 0.9976 + }, + { + "start": 1904.7, + "end": 1905.76, + "probability": 0.797 + }, + { + "start": 1905.9, + "end": 1907.9, + "probability": 0.959 + }, + { + "start": 1908.02, + "end": 1909.18, + "probability": 0.9381 + }, + { + "start": 1909.94, + "end": 1914.64, + "probability": 0.9948 + }, + { + "start": 1914.64, + "end": 1918.94, + "probability": 0.9881 + }, + { + "start": 1919.88, + "end": 1921.92, + "probability": 0.9926 + }, + { + "start": 1922.74, + "end": 1924.38, + "probability": 0.9912 + }, + { + "start": 1925.06, + "end": 1926.1, + "probability": 0.8357 + }, + { + "start": 1926.64, + "end": 1930.24, + "probability": 0.9972 + }, + { + "start": 1932.16, + "end": 1934.06, + "probability": 0.888 + }, + { + "start": 1934.32, + "end": 1934.44, + "probability": 0.2727 + }, + { + "start": 1934.48, + "end": 1935.26, + "probability": 0.754 + }, + { + "start": 1935.62, + "end": 1936.32, + "probability": 0.42 + }, + { + "start": 1936.92, + "end": 1942.46, + "probability": 0.9863 + }, + { + "start": 1942.66, + "end": 1943.64, + "probability": 0.8401 + }, + { + "start": 1944.3, + "end": 1946.96, + "probability": 0.684 + }, + { + "start": 1947.48, + "end": 1948.4, + "probability": 0.8052 + }, + { + "start": 1949.02, + "end": 1949.74, + "probability": 0.958 + }, + { + "start": 1950.32, + "end": 1952.96, + "probability": 0.9986 + }, + { + "start": 1952.96, + "end": 1956.58, + "probability": 0.9895 + }, + { + "start": 1957.6, + "end": 1959.34, + "probability": 0.9974 + }, + { + "start": 1960.54, + "end": 1964.24, + "probability": 0.9653 + }, + { + "start": 1964.56, + "end": 1965.68, + "probability": 0.9927 + }, + { + "start": 1966.5, + "end": 1968.26, + "probability": 0.7727 + }, + { + "start": 1968.44, + "end": 1970.08, + "probability": 0.9474 + }, + { + "start": 1971.24, + "end": 1973.2, + "probability": 0.9762 + }, + { + "start": 1974.3, + "end": 1976.42, + "probability": 0.7284 + }, + { + "start": 1977.54, + "end": 1979.12, + "probability": 0.9507 + }, + { + "start": 1981.06, + "end": 1982.36, + "probability": 0.8509 + }, + { + "start": 1984.5, + "end": 1987.96, + "probability": 0.9153 + }, + { + "start": 1990.72, + "end": 1991.66, + "probability": 0.9844 + }, + { + "start": 1993.6, + "end": 1993.94, + "probability": 0.7961 + }, + { + "start": 1995.32, + "end": 1996.5, + "probability": 0.8923 + }, + { + "start": 1998.8, + "end": 2002.82, + "probability": 0.8688 + }, + { + "start": 2003.0, + "end": 2004.2, + "probability": 0.9012 + }, + { + "start": 2004.32, + "end": 2005.52, + "probability": 0.6613 + }, + { + "start": 2006.8, + "end": 2007.04, + "probability": 0.7344 + }, + { + "start": 2008.02, + "end": 2008.54, + "probability": 0.7421 + }, + { + "start": 2009.06, + "end": 2009.85, + "probability": 0.3897 + }, + { + "start": 2011.98, + "end": 2012.76, + "probability": 0.9022 + }, + { + "start": 2013.38, + "end": 2015.64, + "probability": 0.9861 + }, + { + "start": 2016.56, + "end": 2018.12, + "probability": 0.9826 + }, + { + "start": 2019.44, + "end": 2021.58, + "probability": 0.9812 + }, + { + "start": 2022.64, + "end": 2024.8, + "probability": 0.902 + }, + { + "start": 2024.96, + "end": 2025.36, + "probability": 0.4655 + }, + { + "start": 2025.38, + "end": 2026.24, + "probability": 0.5951 + }, + { + "start": 2028.3, + "end": 2030.38, + "probability": 0.9785 + }, + { + "start": 2031.58, + "end": 2033.56, + "probability": 0.9978 + }, + { + "start": 2034.58, + "end": 2034.68, + "probability": 0.0583 + }, + { + "start": 2034.68, + "end": 2036.32, + "probability": 0.8502 + }, + { + "start": 2036.96, + "end": 2037.86, + "probability": 0.4529 + }, + { + "start": 2039.9, + "end": 2042.1, + "probability": 0.0315 + }, + { + "start": 2042.1, + "end": 2042.24, + "probability": 0.1113 + }, + { + "start": 2043.06, + "end": 2045.02, + "probability": 0.0497 + }, + { + "start": 2045.84, + "end": 2045.84, + "probability": 0.3134 + }, + { + "start": 2045.84, + "end": 2045.84, + "probability": 0.1554 + }, + { + "start": 2045.84, + "end": 2047.68, + "probability": 0.608 + }, + { + "start": 2048.44, + "end": 2049.82, + "probability": 0.8115 + }, + { + "start": 2050.6, + "end": 2057.04, + "probability": 0.9727 + }, + { + "start": 2057.58, + "end": 2058.14, + "probability": 0.7183 + }, + { + "start": 2059.06, + "end": 2060.58, + "probability": 0.8265 + }, + { + "start": 2060.68, + "end": 2060.94, + "probability": 0.7787 + }, + { + "start": 2061.02, + "end": 2061.18, + "probability": 0.6612 + }, + { + "start": 2061.24, + "end": 2062.06, + "probability": 0.9126 + }, + { + "start": 2062.66, + "end": 2064.44, + "probability": 0.9536 + }, + { + "start": 2066.74, + "end": 2068.62, + "probability": 0.9705 + }, + { + "start": 2068.74, + "end": 2070.26, + "probability": 0.9413 + }, + { + "start": 2071.3, + "end": 2073.51, + "probability": 0.9824 + }, + { + "start": 2074.3, + "end": 2076.16, + "probability": 0.9645 + }, + { + "start": 2077.06, + "end": 2084.58, + "probability": 0.9917 + }, + { + "start": 2085.5, + "end": 2087.94, + "probability": 0.9727 + }, + { + "start": 2089.32, + "end": 2092.76, + "probability": 0.9791 + }, + { + "start": 2093.64, + "end": 2096.44, + "probability": 0.5722 + }, + { + "start": 2097.08, + "end": 2098.42, + "probability": 0.8624 + }, + { + "start": 2099.28, + "end": 2102.08, + "probability": 0.869 + }, + { + "start": 2102.74, + "end": 2104.33, + "probability": 0.5504 + }, + { + "start": 2106.18, + "end": 2107.54, + "probability": 0.8656 + }, + { + "start": 2108.22, + "end": 2111.22, + "probability": 0.9361 + }, + { + "start": 2111.22, + "end": 2114.78, + "probability": 0.9198 + }, + { + "start": 2115.04, + "end": 2116.19, + "probability": 0.6573 + }, + { + "start": 2117.28, + "end": 2120.46, + "probability": 0.6309 + }, + { + "start": 2121.32, + "end": 2123.58, + "probability": 0.7964 + }, + { + "start": 2124.12, + "end": 2124.54, + "probability": 0.999 + }, + { + "start": 2125.46, + "end": 2126.74, + "probability": 0.9406 + }, + { + "start": 2127.42, + "end": 2128.44, + "probability": 0.7357 + }, + { + "start": 2128.54, + "end": 2129.28, + "probability": 0.9841 + }, + { + "start": 2129.42, + "end": 2130.62, + "probability": 0.9214 + }, + { + "start": 2131.14, + "end": 2134.7, + "probability": 0.958 + }, + { + "start": 2135.24, + "end": 2137.36, + "probability": 0.9637 + }, + { + "start": 2137.78, + "end": 2138.94, + "probability": 0.9543 + }, + { + "start": 2139.5, + "end": 2140.84, + "probability": 0.9512 + }, + { + "start": 2141.09, + "end": 2143.94, + "probability": 0.8217 + }, + { + "start": 2144.64, + "end": 2146.06, + "probability": 0.9986 + }, + { + "start": 2146.7, + "end": 2147.58, + "probability": 0.7934 + }, + { + "start": 2147.74, + "end": 2147.92, + "probability": 0.677 + }, + { + "start": 2149.6, + "end": 2151.02, + "probability": 0.7604 + }, + { + "start": 2151.82, + "end": 2153.48, + "probability": 0.9834 + }, + { + "start": 2153.64, + "end": 2155.08, + "probability": 0.9775 + }, + { + "start": 2169.3, + "end": 2172.74, + "probability": 0.7099 + }, + { + "start": 2173.6, + "end": 2175.52, + "probability": 0.866 + }, + { + "start": 2175.64, + "end": 2179.64, + "probability": 0.9927 + }, + { + "start": 2179.64, + "end": 2184.46, + "probability": 0.9894 + }, + { + "start": 2185.26, + "end": 2185.28, + "probability": 0.6553 + }, + { + "start": 2186.5, + "end": 2189.04, + "probability": 0.9331 + }, + { + "start": 2189.74, + "end": 2192.24, + "probability": 0.7939 + }, + { + "start": 2193.6, + "end": 2197.54, + "probability": 0.9795 + }, + { + "start": 2198.48, + "end": 2201.36, + "probability": 0.992 + }, + { + "start": 2201.44, + "end": 2204.18, + "probability": 0.957 + }, + { + "start": 2204.3, + "end": 2206.4, + "probability": 0.8351 + }, + { + "start": 2206.5, + "end": 2207.04, + "probability": 0.642 + }, + { + "start": 2207.12, + "end": 2207.96, + "probability": 0.9018 + }, + { + "start": 2208.42, + "end": 2211.68, + "probability": 0.9011 + }, + { + "start": 2212.36, + "end": 2215.78, + "probability": 0.9055 + }, + { + "start": 2215.9, + "end": 2216.79, + "probability": 0.8992 + }, + { + "start": 2217.56, + "end": 2218.54, + "probability": 0.9595 + }, + { + "start": 2219.22, + "end": 2220.4, + "probability": 0.699 + }, + { + "start": 2220.98, + "end": 2223.08, + "probability": 0.8967 + }, + { + "start": 2223.12, + "end": 2223.6, + "probability": 0.5635 + }, + { + "start": 2223.66, + "end": 2224.32, + "probability": 0.8743 + }, + { + "start": 2224.4, + "end": 2225.1, + "probability": 0.7127 + }, + { + "start": 2225.62, + "end": 2226.46, + "probability": 0.941 + }, + { + "start": 2226.76, + "end": 2229.44, + "probability": 0.9753 + }, + { + "start": 2229.96, + "end": 2236.14, + "probability": 0.5999 + }, + { + "start": 2236.92, + "end": 2237.02, + "probability": 0.5027 + }, + { + "start": 2237.02, + "end": 2238.38, + "probability": 0.7933 + }, + { + "start": 2238.84, + "end": 2240.3, + "probability": 0.9001 + }, + { + "start": 2241.09, + "end": 2242.76, + "probability": 0.9587 + }, + { + "start": 2243.12, + "end": 2243.6, + "probability": 0.936 + }, + { + "start": 2243.82, + "end": 2247.14, + "probability": 0.8142 + }, + { + "start": 2247.28, + "end": 2247.52, + "probability": 0.3375 + }, + { + "start": 2247.52, + "end": 2248.18, + "probability": 0.7773 + }, + { + "start": 2248.44, + "end": 2251.12, + "probability": 0.9724 + }, + { + "start": 2251.22, + "end": 2254.12, + "probability": 0.9834 + }, + { + "start": 2254.12, + "end": 2257.88, + "probability": 0.9854 + }, + { + "start": 2257.98, + "end": 2263.53, + "probability": 0.8849 + }, + { + "start": 2263.76, + "end": 2264.0, + "probability": 0.3795 + }, + { + "start": 2264.1, + "end": 2264.52, + "probability": 0.9447 + }, + { + "start": 2265.1, + "end": 2267.02, + "probability": 0.9868 + }, + { + "start": 2267.06, + "end": 2268.72, + "probability": 0.929 + }, + { + "start": 2268.82, + "end": 2269.5, + "probability": 0.7871 + }, + { + "start": 2269.8, + "end": 2270.18, + "probability": 0.5557 + }, + { + "start": 2270.6, + "end": 2273.12, + "probability": 0.8555 + }, + { + "start": 2273.48, + "end": 2274.2, + "probability": 0.866 + }, + { + "start": 2274.2, + "end": 2275.1, + "probability": 0.8344 + }, + { + "start": 2275.24, + "end": 2276.0, + "probability": 0.9548 + }, + { + "start": 2276.36, + "end": 2277.34, + "probability": 0.415 + }, + { + "start": 2277.5, + "end": 2278.46, + "probability": 0.7944 + }, + { + "start": 2278.72, + "end": 2280.32, + "probability": 0.6705 + }, + { + "start": 2280.62, + "end": 2283.04, + "probability": 0.7931 + }, + { + "start": 2283.44, + "end": 2283.84, + "probability": 0.4613 + }, + { + "start": 2284.56, + "end": 2286.26, + "probability": 0.876 + }, + { + "start": 2286.56, + "end": 2288.32, + "probability": 0.9941 + }, + { + "start": 2288.44, + "end": 2289.56, + "probability": 0.8297 + }, + { + "start": 2289.66, + "end": 2289.9, + "probability": 0.6009 + }, + { + "start": 2290.36, + "end": 2292.1, + "probability": 0.7603 + }, + { + "start": 2292.2, + "end": 2294.1, + "probability": 0.7614 + }, + { + "start": 2294.2, + "end": 2295.78, + "probability": 0.8313 + }, + { + "start": 2308.76, + "end": 2310.16, + "probability": 0.8083 + }, + { + "start": 2310.74, + "end": 2311.78, + "probability": 0.8235 + }, + { + "start": 2312.96, + "end": 2313.66, + "probability": 0.8039 + }, + { + "start": 2314.24, + "end": 2316.88, + "probability": 0.832 + }, + { + "start": 2319.74, + "end": 2322.7, + "probability": 0.9883 + }, + { + "start": 2323.58, + "end": 2324.38, + "probability": 0.9969 + }, + { + "start": 2325.0, + "end": 2327.9, + "probability": 0.9755 + }, + { + "start": 2328.58, + "end": 2330.54, + "probability": 0.6645 + }, + { + "start": 2331.48, + "end": 2334.5, + "probability": 0.5407 + }, + { + "start": 2334.52, + "end": 2337.62, + "probability": 0.7693 + }, + { + "start": 2337.62, + "end": 2338.12, + "probability": 0.3169 + }, + { + "start": 2338.22, + "end": 2338.7, + "probability": 0.7303 + }, + { + "start": 2339.66, + "end": 2341.1, + "probability": 0.9617 + }, + { + "start": 2341.32, + "end": 2342.56, + "probability": 0.9408 + }, + { + "start": 2343.08, + "end": 2345.11, + "probability": 0.9961 + }, + { + "start": 2345.44, + "end": 2346.64, + "probability": 0.9976 + }, + { + "start": 2346.96, + "end": 2348.46, + "probability": 0.8876 + }, + { + "start": 2348.5, + "end": 2349.16, + "probability": 0.9274 + }, + { + "start": 2349.72, + "end": 2350.54, + "probability": 0.982 + }, + { + "start": 2352.28, + "end": 2353.6, + "probability": 0.9979 + }, + { + "start": 2354.36, + "end": 2354.54, + "probability": 0.4759 + }, + { + "start": 2354.6, + "end": 2359.3, + "probability": 0.8474 + }, + { + "start": 2359.76, + "end": 2360.58, + "probability": 0.9824 + }, + { + "start": 2360.72, + "end": 2362.5, + "probability": 0.9455 + }, + { + "start": 2362.98, + "end": 2363.96, + "probability": 0.747 + }, + { + "start": 2364.06, + "end": 2366.28, + "probability": 0.994 + }, + { + "start": 2366.96, + "end": 2367.54, + "probability": 0.8993 + }, + { + "start": 2367.94, + "end": 2369.52, + "probability": 0.9695 + }, + { + "start": 2369.98, + "end": 2371.2, + "probability": 0.9904 + }, + { + "start": 2371.84, + "end": 2376.02, + "probability": 0.995 + }, + { + "start": 2376.48, + "end": 2379.4, + "probability": 0.9961 + }, + { + "start": 2379.72, + "end": 2383.62, + "probability": 0.9692 + }, + { + "start": 2383.84, + "end": 2384.74, + "probability": 0.8415 + }, + { + "start": 2384.84, + "end": 2385.84, + "probability": 0.9095 + }, + { + "start": 2385.84, + "end": 2386.34, + "probability": 0.8384 + }, + { + "start": 2386.76, + "end": 2389.3, + "probability": 0.9683 + }, + { + "start": 2389.6, + "end": 2394.22, + "probability": 0.9592 + }, + { + "start": 2394.42, + "end": 2395.32, + "probability": 0.5272 + }, + { + "start": 2395.42, + "end": 2399.1, + "probability": 0.8806 + }, + { + "start": 2399.4, + "end": 2401.56, + "probability": 0.6208 + }, + { + "start": 2401.9, + "end": 2404.86, + "probability": 0.9971 + }, + { + "start": 2405.38, + "end": 2406.8, + "probability": 0.7388 + }, + { + "start": 2407.48, + "end": 2408.7, + "probability": 0.9951 + }, + { + "start": 2408.78, + "end": 2412.54, + "probability": 0.9966 + }, + { + "start": 2412.98, + "end": 2416.7, + "probability": 0.7684 + }, + { + "start": 2416.98, + "end": 2418.5, + "probability": 0.9387 + }, + { + "start": 2418.76, + "end": 2419.78, + "probability": 0.7019 + }, + { + "start": 2419.94, + "end": 2421.52, + "probability": 0.9837 + }, + { + "start": 2422.32, + "end": 2424.22, + "probability": 0.8058 + }, + { + "start": 2424.4, + "end": 2425.49, + "probability": 0.8488 + }, + { + "start": 2426.0, + "end": 2427.06, + "probability": 0.9193 + }, + { + "start": 2427.18, + "end": 2430.04, + "probability": 0.9926 + }, + { + "start": 2430.04, + "end": 2434.06, + "probability": 0.9099 + }, + { + "start": 2434.52, + "end": 2435.48, + "probability": 0.612 + }, + { + "start": 2435.7, + "end": 2440.52, + "probability": 0.9031 + }, + { + "start": 2440.64, + "end": 2441.5, + "probability": 0.8801 + }, + { + "start": 2441.68, + "end": 2443.2, + "probability": 0.9004 + }, + { + "start": 2443.46, + "end": 2445.6, + "probability": 0.9878 + }, + { + "start": 2446.02, + "end": 2448.48, + "probability": 0.967 + }, + { + "start": 2448.58, + "end": 2449.82, + "probability": 0.9871 + }, + { + "start": 2450.2, + "end": 2453.54, + "probability": 0.9895 + }, + { + "start": 2453.7, + "end": 2454.14, + "probability": 0.7757 + }, + { + "start": 2454.46, + "end": 2455.06, + "probability": 0.7802 + }, + { + "start": 2458.34, + "end": 2458.34, + "probability": 0.4966 + }, + { + "start": 2458.34, + "end": 2458.34, + "probability": 0.0149 + }, + { + "start": 2458.34, + "end": 2459.18, + "probability": 0.3816 + }, + { + "start": 2459.2, + "end": 2461.02, + "probability": 0.6056 + }, + { + "start": 2468.08, + "end": 2469.64, + "probability": 0.6144 + }, + { + "start": 2469.96, + "end": 2469.96, + "probability": 0.4978 + }, + { + "start": 2469.96, + "end": 2470.62, + "probability": 0.5154 + }, + { + "start": 2470.86, + "end": 2472.9, + "probability": 0.7461 + }, + { + "start": 2473.3, + "end": 2473.64, + "probability": 0.853 + }, + { + "start": 2474.5, + "end": 2475.06, + "probability": 0.6599 + }, + { + "start": 2475.28, + "end": 2480.0, + "probability": 0.8461 + }, + { + "start": 2480.2, + "end": 2482.48, + "probability": 0.9418 + }, + { + "start": 2482.58, + "end": 2487.02, + "probability": 0.9165 + }, + { + "start": 2487.14, + "end": 2490.84, + "probability": 0.8888 + }, + { + "start": 2491.06, + "end": 2493.06, + "probability": 0.9408 + }, + { + "start": 2493.16, + "end": 2494.4, + "probability": 0.9812 + }, + { + "start": 2494.52, + "end": 2495.3, + "probability": 0.748 + }, + { + "start": 2495.72, + "end": 2501.12, + "probability": 0.8638 + }, + { + "start": 2501.92, + "end": 2507.26, + "probability": 0.9639 + }, + { + "start": 2507.84, + "end": 2513.02, + "probability": 0.9868 + }, + { + "start": 2513.74, + "end": 2518.08, + "probability": 0.987 + }, + { + "start": 2518.6, + "end": 2519.96, + "probability": 0.9448 + }, + { + "start": 2520.56, + "end": 2525.45, + "probability": 0.9773 + }, + { + "start": 2525.78, + "end": 2528.58, + "probability": 0.9946 + }, + { + "start": 2528.92, + "end": 2529.5, + "probability": 0.8929 + }, + { + "start": 2529.62, + "end": 2534.12, + "probability": 0.9634 + }, + { + "start": 2534.12, + "end": 2536.92, + "probability": 0.993 + }, + { + "start": 2537.04, + "end": 2538.24, + "probability": 0.7668 + }, + { + "start": 2538.58, + "end": 2539.45, + "probability": 0.8611 + }, + { + "start": 2539.94, + "end": 2541.46, + "probability": 0.9691 + }, + { + "start": 2541.82, + "end": 2543.77, + "probability": 0.981 + }, + { + "start": 2544.28, + "end": 2546.02, + "probability": 0.9209 + }, + { + "start": 2546.12, + "end": 2548.28, + "probability": 0.9676 + }, + { + "start": 2548.4, + "end": 2551.12, + "probability": 0.9822 + }, + { + "start": 2552.08, + "end": 2554.46, + "probability": 0.9539 + }, + { + "start": 2554.7, + "end": 2555.48, + "probability": 0.6425 + }, + { + "start": 2555.9, + "end": 2556.4, + "probability": 0.7899 + }, + { + "start": 2556.46, + "end": 2556.98, + "probability": 0.7486 + }, + { + "start": 2557.1, + "end": 2559.04, + "probability": 0.9661 + }, + { + "start": 2559.58, + "end": 2561.26, + "probability": 0.9873 + }, + { + "start": 2561.44, + "end": 2564.34, + "probability": 0.671 + }, + { + "start": 2565.0, + "end": 2567.98, + "probability": 0.7356 + }, + { + "start": 2568.98, + "end": 2570.84, + "probability": 0.9402 + }, + { + "start": 2570.94, + "end": 2571.92, + "probability": 0.6189 + }, + { + "start": 2572.22, + "end": 2574.54, + "probability": 0.9302 + }, + { + "start": 2575.0, + "end": 2576.52, + "probability": 0.6663 + }, + { + "start": 2576.58, + "end": 2578.06, + "probability": 0.8556 + }, + { + "start": 2578.16, + "end": 2580.18, + "probability": 0.9154 + }, + { + "start": 2580.78, + "end": 2582.14, + "probability": 0.9954 + }, + { + "start": 2582.18, + "end": 2584.74, + "probability": 0.8836 + }, + { + "start": 2584.84, + "end": 2586.28, + "probability": 0.6032 + }, + { + "start": 2586.66, + "end": 2588.32, + "probability": 0.9132 + }, + { + "start": 2588.48, + "end": 2588.98, + "probability": 0.7589 + }, + { + "start": 2589.3, + "end": 2590.18, + "probability": 0.584 + }, + { + "start": 2590.94, + "end": 2597.36, + "probability": 0.9055 + }, + { + "start": 2597.7, + "end": 2600.02, + "probability": 0.9654 + }, + { + "start": 2600.2, + "end": 2603.4, + "probability": 0.575 + }, + { + "start": 2603.4, + "end": 2604.32, + "probability": 0.7486 + }, + { + "start": 2604.46, + "end": 2608.44, + "probability": 0.8542 + }, + { + "start": 2608.74, + "end": 2610.64, + "probability": 0.9409 + }, + { + "start": 2610.72, + "end": 2611.38, + "probability": 0.9314 + }, + { + "start": 2611.7, + "end": 2613.0, + "probability": 0.9146 + }, + { + "start": 2613.26, + "end": 2616.84, + "probability": 0.9785 + }, + { + "start": 2617.4, + "end": 2618.24, + "probability": 0.5239 + }, + { + "start": 2618.36, + "end": 2621.88, + "probability": 0.7602 + }, + { + "start": 2621.92, + "end": 2622.44, + "probability": 0.7646 + }, + { + "start": 2622.46, + "end": 2623.22, + "probability": 0.9153 + }, + { + "start": 2623.38, + "end": 2627.4, + "probability": 0.9795 + }, + { + "start": 2627.7, + "end": 2630.6, + "probability": 0.9844 + }, + { + "start": 2630.88, + "end": 2632.38, + "probability": 0.9839 + }, + { + "start": 2632.54, + "end": 2634.34, + "probability": 0.9917 + }, + { + "start": 2634.34, + "end": 2636.88, + "probability": 0.9824 + }, + { + "start": 2637.32, + "end": 2638.62, + "probability": 0.8874 + }, + { + "start": 2638.8, + "end": 2639.64, + "probability": 0.8433 + }, + { + "start": 2639.72, + "end": 2642.42, + "probability": 0.8563 + }, + { + "start": 2642.98, + "end": 2645.04, + "probability": 0.9622 + }, + { + "start": 2645.38, + "end": 2646.46, + "probability": 0.7319 + }, + { + "start": 2646.94, + "end": 2648.12, + "probability": 0.9575 + }, + { + "start": 2648.52, + "end": 2649.02, + "probability": 0.9217 + }, + { + "start": 2649.18, + "end": 2650.12, + "probability": 0.6784 + }, + { + "start": 2650.12, + "end": 2651.32, + "probability": 0.5834 + }, + { + "start": 2651.38, + "end": 2652.92, + "probability": 0.96 + }, + { + "start": 2659.24, + "end": 2661.42, + "probability": 0.7175 + }, + { + "start": 2662.42, + "end": 2663.98, + "probability": 0.9743 + }, + { + "start": 2664.42, + "end": 2669.06, + "probability": 0.8645 + }, + { + "start": 2669.96, + "end": 2671.22, + "probability": 0.9526 + }, + { + "start": 2672.34, + "end": 2672.88, + "probability": 0.9471 + }, + { + "start": 2674.18, + "end": 2675.3, + "probability": 0.9912 + }, + { + "start": 2676.46, + "end": 2678.36, + "probability": 0.9505 + }, + { + "start": 2679.54, + "end": 2680.09, + "probability": 0.9414 + }, + { + "start": 2680.62, + "end": 2682.26, + "probability": 0.9908 + }, + { + "start": 2683.28, + "end": 2688.52, + "probability": 0.9727 + }, + { + "start": 2689.48, + "end": 2691.44, + "probability": 0.8878 + }, + { + "start": 2692.7, + "end": 2695.78, + "probability": 0.8496 + }, + { + "start": 2696.86, + "end": 2698.38, + "probability": 0.9344 + }, + { + "start": 2698.94, + "end": 2699.78, + "probability": 0.7411 + }, + { + "start": 2701.28, + "end": 2701.96, + "probability": 0.8745 + }, + { + "start": 2704.06, + "end": 2705.28, + "probability": 0.9308 + }, + { + "start": 2706.46, + "end": 2707.92, + "probability": 0.8064 + }, + { + "start": 2708.7, + "end": 2710.56, + "probability": 0.8804 + }, + { + "start": 2712.18, + "end": 2715.8, + "probability": 0.9743 + }, + { + "start": 2717.62, + "end": 2721.48, + "probability": 0.9624 + }, + { + "start": 2723.42, + "end": 2724.16, + "probability": 0.7861 + }, + { + "start": 2724.44, + "end": 2725.08, + "probability": 0.6448 + }, + { + "start": 2726.04, + "end": 2727.2, + "probability": 0.9826 + }, + { + "start": 2728.66, + "end": 2731.46, + "probability": 0.9941 + }, + { + "start": 2732.92, + "end": 2736.06, + "probability": 0.6804 + }, + { + "start": 2736.78, + "end": 2738.48, + "probability": 0.798 + }, + { + "start": 2741.16, + "end": 2742.82, + "probability": 0.9526 + }, + { + "start": 2742.92, + "end": 2754.54, + "probability": 0.9751 + }, + { + "start": 2756.22, + "end": 2761.96, + "probability": 0.8656 + }, + { + "start": 2762.62, + "end": 2769.84, + "probability": 0.9276 + }, + { + "start": 2771.58, + "end": 2775.2, + "probability": 0.8925 + }, + { + "start": 2776.26, + "end": 2777.48, + "probability": 0.9535 + }, + { + "start": 2778.88, + "end": 2780.62, + "probability": 0.9577 + }, + { + "start": 2780.74, + "end": 2783.34, + "probability": 0.9802 + }, + { + "start": 2783.58, + "end": 2783.82, + "probability": 0.3881 + }, + { + "start": 2784.46, + "end": 2784.88, + "probability": 0.8784 + }, + { + "start": 2785.64, + "end": 2789.28, + "probability": 0.9885 + }, + { + "start": 2791.14, + "end": 2795.34, + "probability": 0.9178 + }, + { + "start": 2796.08, + "end": 2798.48, + "probability": 0.7418 + }, + { + "start": 2799.22, + "end": 2800.36, + "probability": 0.489 + }, + { + "start": 2801.2, + "end": 2808.32, + "probability": 0.9499 + }, + { + "start": 2809.12, + "end": 2810.14, + "probability": 0.6533 + }, + { + "start": 2811.22, + "end": 2814.24, + "probability": 0.6234 + }, + { + "start": 2814.44, + "end": 2814.8, + "probability": 0.7175 + }, + { + "start": 2815.06, + "end": 2816.72, + "probability": 0.9668 + }, + { + "start": 2818.12, + "end": 2819.08, + "probability": 0.9717 + }, + { + "start": 2819.66, + "end": 2824.12, + "probability": 0.9552 + }, + { + "start": 2825.22, + "end": 2831.6, + "probability": 0.9961 + }, + { + "start": 2832.02, + "end": 2833.46, + "probability": 0.7329 + }, + { + "start": 2834.32, + "end": 2835.58, + "probability": 0.7993 + }, + { + "start": 2836.28, + "end": 2837.28, + "probability": 0.7486 + }, + { + "start": 2837.94, + "end": 2841.2, + "probability": 0.9793 + }, + { + "start": 2841.8, + "end": 2844.04, + "probability": 0.9629 + }, + { + "start": 2844.3, + "end": 2848.15, + "probability": 0.9897 + }, + { + "start": 2849.16, + "end": 2850.68, + "probability": 0.9847 + }, + { + "start": 2851.08, + "end": 2857.36, + "probability": 0.9976 + }, + { + "start": 2859.2, + "end": 2863.28, + "probability": 0.9055 + }, + { + "start": 2863.32, + "end": 2869.54, + "probability": 0.8964 + }, + { + "start": 2869.98, + "end": 2870.58, + "probability": 0.8511 + }, + { + "start": 2871.32, + "end": 2871.96, + "probability": 0.8115 + }, + { + "start": 2873.92, + "end": 2875.46, + "probability": 0.567 + }, + { + "start": 2876.0, + "end": 2877.33, + "probability": 0.9233 + }, + { + "start": 2878.18, + "end": 2884.32, + "probability": 0.9473 + }, + { + "start": 2884.78, + "end": 2893.78, + "probability": 0.9811 + }, + { + "start": 2894.4, + "end": 2895.3, + "probability": 0.5121 + }, + { + "start": 2896.62, + "end": 2897.28, + "probability": 0.899 + }, + { + "start": 2897.98, + "end": 2899.12, + "probability": 0.7905 + }, + { + "start": 2899.3, + "end": 2901.26, + "probability": 0.755 + }, + { + "start": 2905.96, + "end": 2907.86, + "probability": 0.6558 + }, + { + "start": 2908.04, + "end": 2909.2, + "probability": 0.5815 + }, + { + "start": 2909.34, + "end": 2909.66, + "probability": 0.6877 + }, + { + "start": 2909.76, + "end": 2914.14, + "probability": 0.9554 + }, + { + "start": 2914.14, + "end": 2916.68, + "probability": 0.9892 + }, + { + "start": 2917.0, + "end": 2921.36, + "probability": 0.9961 + }, + { + "start": 2922.24, + "end": 2925.0, + "probability": 0.9048 + }, + { + "start": 2926.26, + "end": 2935.16, + "probability": 0.9694 + }, + { + "start": 2936.2, + "end": 2939.12, + "probability": 0.9277 + }, + { + "start": 2939.94, + "end": 2940.78, + "probability": 0.4864 + }, + { + "start": 2941.14, + "end": 2941.56, + "probability": 0.0393 + }, + { + "start": 2941.56, + "end": 2943.48, + "probability": 0.7651 + }, + { + "start": 2944.1, + "end": 2945.46, + "probability": 0.9907 + }, + { + "start": 2945.62, + "end": 2946.64, + "probability": 0.9782 + }, + { + "start": 2946.8, + "end": 2949.46, + "probability": 0.9878 + }, + { + "start": 2949.54, + "end": 2950.34, + "probability": 0.7598 + }, + { + "start": 2950.46, + "end": 2957.36, + "probability": 0.9896 + }, + { + "start": 2958.52, + "end": 2959.34, + "probability": 0.7122 + }, + { + "start": 2959.5, + "end": 2962.24, + "probability": 0.9653 + }, + { + "start": 2962.24, + "end": 2966.26, + "probability": 0.9984 + }, + { + "start": 2967.16, + "end": 2973.7, + "probability": 0.8464 + }, + { + "start": 2974.62, + "end": 2984.3, + "probability": 0.9035 + }, + { + "start": 2984.48, + "end": 2988.02, + "probability": 0.9778 + }, + { + "start": 2988.06, + "end": 2989.06, + "probability": 0.7446 + }, + { + "start": 2989.5, + "end": 2992.66, + "probability": 0.9951 + }, + { + "start": 2993.82, + "end": 2998.36, + "probability": 0.9847 + }, + { + "start": 2998.78, + "end": 3001.46, + "probability": 0.9724 + }, + { + "start": 3002.16, + "end": 3005.62, + "probability": 0.9748 + }, + { + "start": 3006.18, + "end": 3007.36, + "probability": 0.986 + }, + { + "start": 3007.4, + "end": 3008.66, + "probability": 0.979 + }, + { + "start": 3008.86, + "end": 3009.72, + "probability": 0.483 + }, + { + "start": 3010.04, + "end": 3014.62, + "probability": 0.955 + }, + { + "start": 3014.62, + "end": 3018.7, + "probability": 0.9925 + }, + { + "start": 3019.38, + "end": 3021.6, + "probability": 0.9519 + }, + { + "start": 3022.94, + "end": 3024.1, + "probability": 0.7722 + }, + { + "start": 3024.64, + "end": 3027.28, + "probability": 0.8784 + }, + { + "start": 3027.32, + "end": 3029.66, + "probability": 0.9128 + }, + { + "start": 3029.72, + "end": 3031.75, + "probability": 0.7776 + }, + { + "start": 3032.14, + "end": 3032.18, + "probability": 0.1637 + }, + { + "start": 3032.18, + "end": 3032.66, + "probability": 0.7432 + }, + { + "start": 3032.78, + "end": 3034.01, + "probability": 0.8563 + }, + { + "start": 3034.26, + "end": 3036.52, + "probability": 0.9006 + }, + { + "start": 3036.96, + "end": 3039.12, + "probability": 0.9663 + }, + { + "start": 3039.26, + "end": 3041.84, + "probability": 0.6584 + }, + { + "start": 3042.0, + "end": 3045.92, + "probability": 0.9846 + }, + { + "start": 3046.68, + "end": 3049.64, + "probability": 0.9517 + }, + { + "start": 3050.9, + "end": 3052.44, + "probability": 0.8515 + }, + { + "start": 3052.6, + "end": 3054.04, + "probability": 0.9423 + }, + { + "start": 3054.38, + "end": 3059.46, + "probability": 0.9598 + }, + { + "start": 3059.72, + "end": 3063.64, + "probability": 0.9104 + }, + { + "start": 3063.64, + "end": 3067.12, + "probability": 0.9831 + }, + { + "start": 3068.26, + "end": 3070.0, + "probability": 0.8657 + }, + { + "start": 3070.12, + "end": 3070.76, + "probability": 0.6633 + }, + { + "start": 3070.82, + "end": 3071.22, + "probability": 0.626 + }, + { + "start": 3071.4, + "end": 3073.98, + "probability": 0.8466 + }, + { + "start": 3074.18, + "end": 3074.76, + "probability": 0.0193 + }, + { + "start": 3074.76, + "end": 3079.2, + "probability": 0.9653 + }, + { + "start": 3079.2, + "end": 3083.36, + "probability": 0.7686 + }, + { + "start": 3083.62, + "end": 3086.06, + "probability": 0.9868 + }, + { + "start": 3086.06, + "end": 3089.23, + "probability": 0.9987 + }, + { + "start": 3089.46, + "end": 3089.46, + "probability": 0.1732 + }, + { + "start": 3089.46, + "end": 3094.02, + "probability": 0.96 + }, + { + "start": 3094.84, + "end": 3097.3, + "probability": 0.8691 + }, + { + "start": 3097.34, + "end": 3098.66, + "probability": 0.8357 + }, + { + "start": 3099.0, + "end": 3103.86, + "probability": 0.9813 + }, + { + "start": 3104.12, + "end": 3106.72, + "probability": 0.9354 + }, + { + "start": 3106.92, + "end": 3107.26, + "probability": 0.6963 + }, + { + "start": 3108.14, + "end": 3109.48, + "probability": 0.6407 + }, + { + "start": 3109.86, + "end": 3111.38, + "probability": 0.8198 + }, + { + "start": 3111.86, + "end": 3113.34, + "probability": 0.5275 + }, + { + "start": 3113.62, + "end": 3114.54, + "probability": 0.7274 + }, + { + "start": 3114.72, + "end": 3115.92, + "probability": 0.8361 + }, + { + "start": 3116.92, + "end": 3119.88, + "probability": 0.6707 + }, + { + "start": 3119.88, + "end": 3121.7, + "probability": 0.9816 + }, + { + "start": 3124.6, + "end": 3125.88, + "probability": 0.5193 + }, + { + "start": 3131.48, + "end": 3133.8, + "probability": 0.9641 + }, + { + "start": 3133.92, + "end": 3134.38, + "probability": 0.7655 + }, + { + "start": 3134.78, + "end": 3136.82, + "probability": 0.9805 + }, + { + "start": 3136.96, + "end": 3140.6, + "probability": 0.9678 + }, + { + "start": 3141.86, + "end": 3146.38, + "probability": 0.998 + }, + { + "start": 3147.18, + "end": 3148.28, + "probability": 0.7334 + }, + { + "start": 3148.34, + "end": 3149.24, + "probability": 0.9395 + }, + { + "start": 3149.3, + "end": 3152.68, + "probability": 0.9229 + }, + { + "start": 3153.14, + "end": 3155.47, + "probability": 0.9856 + }, + { + "start": 3156.0, + "end": 3158.12, + "probability": 0.7744 + }, + { + "start": 3158.76, + "end": 3160.72, + "probability": 0.9981 + }, + { + "start": 3160.96, + "end": 3165.34, + "probability": 0.9909 + }, + { + "start": 3166.08, + "end": 3171.26, + "probability": 0.98 + }, + { + "start": 3171.64, + "end": 3173.1, + "probability": 0.9546 + }, + { + "start": 3173.98, + "end": 3177.44, + "probability": 0.9933 + }, + { + "start": 3178.14, + "end": 3180.58, + "probability": 0.999 + }, + { + "start": 3182.28, + "end": 3183.28, + "probability": 0.8812 + }, + { + "start": 3183.38, + "end": 3184.4, + "probability": 0.6911 + }, + { + "start": 3184.85, + "end": 3187.02, + "probability": 0.9888 + }, + { + "start": 3187.58, + "end": 3188.22, + "probability": 0.7638 + }, + { + "start": 3188.38, + "end": 3190.24, + "probability": 0.9814 + }, + { + "start": 3190.3, + "end": 3192.02, + "probability": 0.9941 + }, + { + "start": 3193.0, + "end": 3195.14, + "probability": 0.9939 + }, + { + "start": 3195.92, + "end": 3198.42, + "probability": 0.9893 + }, + { + "start": 3198.56, + "end": 3199.78, + "probability": 0.9976 + }, + { + "start": 3202.26, + "end": 3203.9, + "probability": 0.9506 + }, + { + "start": 3203.98, + "end": 3205.02, + "probability": 0.8831 + }, + { + "start": 3205.1, + "end": 3206.04, + "probability": 0.9927 + }, + { + "start": 3206.14, + "end": 3209.98, + "probability": 0.9531 + }, + { + "start": 3210.52, + "end": 3212.22, + "probability": 0.9973 + }, + { + "start": 3212.34, + "end": 3213.84, + "probability": 0.9918 + }, + { + "start": 3214.98, + "end": 3216.2, + "probability": 0.6849 + }, + { + "start": 3216.38, + "end": 3217.32, + "probability": 0.7648 + }, + { + "start": 3217.4, + "end": 3218.84, + "probability": 0.9519 + }, + { + "start": 3220.04, + "end": 3223.06, + "probability": 0.9891 + }, + { + "start": 3223.8, + "end": 3225.04, + "probability": 0.9916 + }, + { + "start": 3226.36, + "end": 3229.42, + "probability": 0.9945 + }, + { + "start": 3230.88, + "end": 3232.26, + "probability": 0.8405 + }, + { + "start": 3233.34, + "end": 3236.44, + "probability": 0.9762 + }, + { + "start": 3237.1, + "end": 3239.26, + "probability": 0.9476 + }, + { + "start": 3239.62, + "end": 3242.74, + "probability": 0.9824 + }, + { + "start": 3243.52, + "end": 3248.2, + "probability": 0.9887 + }, + { + "start": 3248.84, + "end": 3249.04, + "probability": 0.6392 + }, + { + "start": 3251.3, + "end": 3253.46, + "probability": 0.7695 + }, + { + "start": 3253.64, + "end": 3255.62, + "probability": 0.9986 + }, + { + "start": 3255.81, + "end": 3259.7, + "probability": 0.8843 + }, + { + "start": 3260.5, + "end": 3263.92, + "probability": 0.9201 + }, + { + "start": 3264.26, + "end": 3268.72, + "probability": 0.9827 + }, + { + "start": 3270.46, + "end": 3271.02, + "probability": 0.4649 + }, + { + "start": 3271.22, + "end": 3271.26, + "probability": 0.0384 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.3233 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.3745 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.3329 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.4817 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.416 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.4716 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.377 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.1447 + }, + { + "start": 3271.26, + "end": 3271.26, + "probability": 0.4157 + }, + { + "start": 3271.26, + "end": 3273.22, + "probability": 0.6065 + }, + { + "start": 3273.28, + "end": 3275.0, + "probability": 0.9095 + }, + { + "start": 3275.56, + "end": 3280.22, + "probability": 0.9731 + }, + { + "start": 3280.98, + "end": 3283.26, + "probability": 0.9984 + }, + { + "start": 3283.26, + "end": 3286.22, + "probability": 0.9977 + }, + { + "start": 3287.02, + "end": 3290.6, + "probability": 0.9305 + }, + { + "start": 3291.36, + "end": 3294.64, + "probability": 0.9731 + }, + { + "start": 3295.12, + "end": 3296.9, + "probability": 0.9946 + }, + { + "start": 3296.9, + "end": 3299.92, + "probability": 0.9961 + }, + { + "start": 3300.66, + "end": 3303.1, + "probability": 0.888 + }, + { + "start": 3303.62, + "end": 3306.32, + "probability": 0.751 + }, + { + "start": 3307.38, + "end": 3311.08, + "probability": 0.877 + }, + { + "start": 3311.14, + "end": 3312.6, + "probability": 0.7707 + }, + { + "start": 3313.16, + "end": 3314.08, + "probability": 0.762 + }, + { + "start": 3314.7, + "end": 3315.58, + "probability": 0.6848 + }, + { + "start": 3316.14, + "end": 3320.8, + "probability": 0.9927 + }, + { + "start": 3321.72, + "end": 3323.44, + "probability": 0.9929 + }, + { + "start": 3324.46, + "end": 3324.98, + "probability": 0.9825 + }, + { + "start": 3325.02, + "end": 3325.56, + "probability": 0.9022 + }, + { + "start": 3325.72, + "end": 3328.64, + "probability": 0.9884 + }, + { + "start": 3329.32, + "end": 3330.3, + "probability": 0.9606 + }, + { + "start": 3331.1, + "end": 3332.02, + "probability": 0.5844 + }, + { + "start": 3332.06, + "end": 3333.82, + "probability": 0.8004 + }, + { + "start": 3334.32, + "end": 3336.3, + "probability": 0.9888 + }, + { + "start": 3336.64, + "end": 3338.2, + "probability": 0.9802 + }, + { + "start": 3338.58, + "end": 3340.88, + "probability": 0.7988 + }, + { + "start": 3341.7, + "end": 3346.54, + "probability": 0.9783 + }, + { + "start": 3347.46, + "end": 3349.88, + "probability": 0.8677 + }, + { + "start": 3350.52, + "end": 3351.4, + "probability": 0.9129 + }, + { + "start": 3351.6, + "end": 3355.64, + "probability": 0.9814 + }, + { + "start": 3356.76, + "end": 3361.56, + "probability": 0.9794 + }, + { + "start": 3362.68, + "end": 3366.32, + "probability": 0.9897 + }, + { + "start": 3366.72, + "end": 3367.6, + "probability": 0.8882 + }, + { + "start": 3367.98, + "end": 3370.7, + "probability": 0.8321 + }, + { + "start": 3371.02, + "end": 3373.49, + "probability": 0.9937 + }, + { + "start": 3374.42, + "end": 3377.04, + "probability": 0.9905 + }, + { + "start": 3377.04, + "end": 3377.68, + "probability": 0.865 + }, + { + "start": 3377.78, + "end": 3378.6, + "probability": 0.7659 + }, + { + "start": 3379.08, + "end": 3380.74, + "probability": 0.9219 + }, + { + "start": 3381.52, + "end": 3385.68, + "probability": 0.9105 + }, + { + "start": 3386.24, + "end": 3388.48, + "probability": 0.9733 + }, + { + "start": 3389.66, + "end": 3390.42, + "probability": 0.8691 + }, + { + "start": 3390.56, + "end": 3391.14, + "probability": 0.656 + }, + { + "start": 3391.28, + "end": 3391.96, + "probability": 0.7797 + }, + { + "start": 3392.38, + "end": 3394.3, + "probability": 0.9727 + }, + { + "start": 3394.86, + "end": 3397.64, + "probability": 0.9886 + }, + { + "start": 3397.64, + "end": 3400.5, + "probability": 0.9855 + }, + { + "start": 3401.3, + "end": 3403.18, + "probability": 0.9483 + }, + { + "start": 3403.26, + "end": 3404.8, + "probability": 0.9395 + }, + { + "start": 3405.26, + "end": 3408.3, + "probability": 0.9924 + }, + { + "start": 3409.18, + "end": 3411.0, + "probability": 0.8564 + }, + { + "start": 3411.72, + "end": 3414.4, + "probability": 0.9952 + }, + { + "start": 3414.84, + "end": 3416.38, + "probability": 0.9027 + }, + { + "start": 3416.48, + "end": 3417.16, + "probability": 0.9004 + }, + { + "start": 3417.58, + "end": 3418.14, + "probability": 0.5662 + }, + { + "start": 3418.26, + "end": 3421.88, + "probability": 0.9648 + }, + { + "start": 3422.46, + "end": 3424.13, + "probability": 0.9048 + }, + { + "start": 3424.6, + "end": 3425.98, + "probability": 0.9913 + }, + { + "start": 3427.3, + "end": 3430.9, + "probability": 0.9795 + }, + { + "start": 3431.28, + "end": 3432.74, + "probability": 0.9766 + }, + { + "start": 3433.7, + "end": 3435.84, + "probability": 0.6804 + }, + { + "start": 3436.34, + "end": 3442.22, + "probability": 0.9756 + }, + { + "start": 3442.94, + "end": 3443.24, + "probability": 0.6385 + }, + { + "start": 3443.4, + "end": 3447.02, + "probability": 0.9903 + }, + { + "start": 3447.52, + "end": 3449.48, + "probability": 0.8026 + }, + { + "start": 3449.98, + "end": 3452.22, + "probability": 0.9889 + }, + { + "start": 3452.78, + "end": 3458.16, + "probability": 0.991 + }, + { + "start": 3458.66, + "end": 3462.58, + "probability": 0.9998 + }, + { + "start": 3463.04, + "end": 3466.14, + "probability": 0.9939 + }, + { + "start": 3466.86, + "end": 3467.4, + "probability": 0.5465 + }, + { + "start": 3467.52, + "end": 3470.72, + "probability": 0.996 + }, + { + "start": 3471.2, + "end": 3473.12, + "probability": 0.8836 + }, + { + "start": 3473.88, + "end": 3475.46, + "probability": 0.7517 + }, + { + "start": 3476.0, + "end": 3478.82, + "probability": 0.8807 + }, + { + "start": 3478.98, + "end": 3481.4, + "probability": 0.8335 + }, + { + "start": 3486.78, + "end": 3489.2, + "probability": 0.9733 + }, + { + "start": 3489.42, + "end": 3492.81, + "probability": 0.9403 + }, + { + "start": 3497.3, + "end": 3498.28, + "probability": 0.747 + }, + { + "start": 3502.14, + "end": 3503.32, + "probability": 0.6655 + }, + { + "start": 3507.18, + "end": 3512.0, + "probability": 0.9503 + }, + { + "start": 3513.3, + "end": 3518.16, + "probability": 0.5429 + }, + { + "start": 3518.52, + "end": 3521.16, + "probability": 0.8033 + }, + { + "start": 3523.64, + "end": 3525.28, + "probability": 0.8166 + }, + { + "start": 3525.88, + "end": 3526.62, + "probability": 0.9706 + }, + { + "start": 3527.88, + "end": 3531.74, + "probability": 0.8302 + }, + { + "start": 3533.2, + "end": 3536.82, + "probability": 0.9987 + }, + { + "start": 3538.14, + "end": 3540.32, + "probability": 0.9895 + }, + { + "start": 3541.78, + "end": 3543.44, + "probability": 0.8895 + }, + { + "start": 3545.08, + "end": 3546.6, + "probability": 0.9965 + }, + { + "start": 3548.56, + "end": 3550.5, + "probability": 0.8704 + }, + { + "start": 3551.4, + "end": 3553.66, + "probability": 0.9983 + }, + { + "start": 3554.68, + "end": 3558.28, + "probability": 0.9744 + }, + { + "start": 3559.18, + "end": 3563.3, + "probability": 0.9895 + }, + { + "start": 3564.94, + "end": 3566.76, + "probability": 0.8814 + }, + { + "start": 3567.68, + "end": 3568.38, + "probability": 0.8911 + }, + { + "start": 3570.04, + "end": 3572.94, + "probability": 0.9723 + }, + { + "start": 3574.2, + "end": 3574.82, + "probability": 0.8203 + }, + { + "start": 3575.66, + "end": 3576.54, + "probability": 0.6162 + }, + { + "start": 3577.68, + "end": 3583.9, + "probability": 0.966 + }, + { + "start": 3584.9, + "end": 3594.88, + "probability": 0.9265 + }, + { + "start": 3595.9, + "end": 3597.62, + "probability": 0.9902 + }, + { + "start": 3599.52, + "end": 3600.08, + "probability": 0.7192 + }, + { + "start": 3601.04, + "end": 3601.82, + "probability": 0.7527 + }, + { + "start": 3603.32, + "end": 3606.6, + "probability": 0.8051 + }, + { + "start": 3608.86, + "end": 3610.38, + "probability": 0.9269 + }, + { + "start": 3612.54, + "end": 3614.22, + "probability": 0.9026 + }, + { + "start": 3615.34, + "end": 3615.9, + "probability": 0.8975 + }, + { + "start": 3617.0, + "end": 3623.74, + "probability": 0.9772 + }, + { + "start": 3628.62, + "end": 3629.7, + "probability": 0.8068 + }, + { + "start": 3630.68, + "end": 3631.82, + "probability": 0.9119 + }, + { + "start": 3632.5, + "end": 3634.26, + "probability": 0.958 + }, + { + "start": 3635.48, + "end": 3638.68, + "probability": 0.9144 + }, + { + "start": 3639.4, + "end": 3643.04, + "probability": 0.9719 + }, + { + "start": 3643.42, + "end": 3643.96, + "probability": 0.8552 + }, + { + "start": 3644.4, + "end": 3644.94, + "probability": 0.9478 + }, + { + "start": 3645.6, + "end": 3646.3, + "probability": 0.6139 + }, + { + "start": 3647.22, + "end": 3649.12, + "probability": 0.9165 + }, + { + "start": 3649.74, + "end": 3652.42, + "probability": 0.9855 + }, + { + "start": 3653.82, + "end": 3657.34, + "probability": 0.9892 + }, + { + "start": 3657.66, + "end": 3658.92, + "probability": 0.9229 + }, + { + "start": 3658.96, + "end": 3659.98, + "probability": 0.793 + }, + { + "start": 3660.6, + "end": 3662.38, + "probability": 0.9937 + }, + { + "start": 3663.06, + "end": 3664.62, + "probability": 0.8298 + }, + { + "start": 3665.34, + "end": 3668.62, + "probability": 0.8355 + }, + { + "start": 3669.84, + "end": 3671.46, + "probability": 0.9368 + }, + { + "start": 3672.18, + "end": 3674.54, + "probability": 0.7964 + }, + { + "start": 3675.06, + "end": 3677.8, + "probability": 0.8551 + }, + { + "start": 3678.34, + "end": 3680.16, + "probability": 0.7694 + }, + { + "start": 3680.72, + "end": 3682.14, + "probability": 0.9525 + }, + { + "start": 3682.8, + "end": 3684.16, + "probability": 0.8059 + }, + { + "start": 3684.5, + "end": 3687.84, + "probability": 0.7763 + }, + { + "start": 3688.16, + "end": 3689.36, + "probability": 0.625 + }, + { + "start": 3689.8, + "end": 3690.36, + "probability": 0.4929 + }, + { + "start": 3690.56, + "end": 3691.18, + "probability": 0.7124 + }, + { + "start": 3691.5, + "end": 3694.36, + "probability": 0.95 + }, + { + "start": 3695.0, + "end": 3695.94, + "probability": 0.9643 + }, + { + "start": 3696.2, + "end": 3696.66, + "probability": 0.99 + }, + { + "start": 3696.68, + "end": 3697.2, + "probability": 0.9871 + }, + { + "start": 3697.5, + "end": 3701.72, + "probability": 0.9557 + }, + { + "start": 3702.12, + "end": 3702.8, + "probability": 0.6094 + }, + { + "start": 3703.34, + "end": 3705.4, + "probability": 0.9078 + }, + { + "start": 3706.72, + "end": 3710.1, + "probability": 0.9429 + }, + { + "start": 3710.56, + "end": 3710.92, + "probability": 0.96 + }, + { + "start": 3711.32, + "end": 3711.82, + "probability": 0.9897 + }, + { + "start": 3712.08, + "end": 3712.44, + "probability": 0.9462 + }, + { + "start": 3712.48, + "end": 3713.08, + "probability": 0.9761 + }, + { + "start": 3713.36, + "end": 3713.94, + "probability": 0.9877 + }, + { + "start": 3714.16, + "end": 3714.66, + "probability": 0.92 + }, + { + "start": 3715.04, + "end": 3715.94, + "probability": 0.6466 + }, + { + "start": 3716.4, + "end": 3720.04, + "probability": 0.8991 + }, + { + "start": 3721.02, + "end": 3723.06, + "probability": 0.7788 + }, + { + "start": 3723.5, + "end": 3725.16, + "probability": 0.8757 + }, + { + "start": 3725.58, + "end": 3727.04, + "probability": 0.9703 + }, + { + "start": 3727.34, + "end": 3728.1, + "probability": 0.9573 + }, + { + "start": 3728.54, + "end": 3731.02, + "probability": 0.9884 + }, + { + "start": 3731.5, + "end": 3736.22, + "probability": 0.9728 + }, + { + "start": 3737.14, + "end": 3738.26, + "probability": 0.9979 + }, + { + "start": 3738.68, + "end": 3744.1, + "probability": 0.9337 + }, + { + "start": 3744.4, + "end": 3744.68, + "probability": 0.6549 + }, + { + "start": 3744.74, + "end": 3745.18, + "probability": 0.9191 + }, + { + "start": 3745.42, + "end": 3746.2, + "probability": 0.8979 + }, + { + "start": 3746.56, + "end": 3750.0, + "probability": 0.9233 + }, + { + "start": 3750.68, + "end": 3754.16, + "probability": 0.9664 + }, + { + "start": 3755.32, + "end": 3759.26, + "probability": 0.8312 + }, + { + "start": 3759.58, + "end": 3760.86, + "probability": 0.8362 + }, + { + "start": 3761.56, + "end": 3763.8, + "probability": 0.9792 + }, + { + "start": 3764.16, + "end": 3766.58, + "probability": 0.9871 + }, + { + "start": 3767.34, + "end": 3770.78, + "probability": 0.999 + }, + { + "start": 3771.14, + "end": 3773.14, + "probability": 0.9298 + }, + { + "start": 3773.7, + "end": 3775.56, + "probability": 0.9055 + }, + { + "start": 3776.32, + "end": 3779.68, + "probability": 0.9565 + }, + { + "start": 3779.68, + "end": 3782.74, + "probability": 0.9768 + }, + { + "start": 3783.4, + "end": 3788.1, + "probability": 0.9942 + }, + { + "start": 3788.24, + "end": 3790.18, + "probability": 0.8746 + }, + { + "start": 3790.56, + "end": 3793.87, + "probability": 0.9663 + }, + { + "start": 3794.1, + "end": 3795.02, + "probability": 0.7266 + }, + { + "start": 3796.98, + "end": 3799.28, + "probability": 0.9705 + }, + { + "start": 3800.5, + "end": 3800.78, + "probability": 0.6484 + }, + { + "start": 3800.84, + "end": 3806.7, + "probability": 0.9917 + }, + { + "start": 3807.2, + "end": 3808.8, + "probability": 0.7577 + }, + { + "start": 3809.02, + "end": 3809.94, + "probability": 0.7892 + }, + { + "start": 3810.82, + "end": 3811.58, + "probability": 0.926 + }, + { + "start": 3812.1, + "end": 3813.48, + "probability": 0.9809 + }, + { + "start": 3813.9, + "end": 3816.0, + "probability": 0.9415 + }, + { + "start": 3816.36, + "end": 3818.36, + "probability": 0.987 + }, + { + "start": 3818.62, + "end": 3823.38, + "probability": 0.8897 + }, + { + "start": 3824.02, + "end": 3824.5, + "probability": 0.5541 + }, + { + "start": 3825.14, + "end": 3827.02, + "probability": 0.9928 + }, + { + "start": 3827.94, + "end": 3828.88, + "probability": 0.8931 + }, + { + "start": 3829.78, + "end": 3830.22, + "probability": 0.6434 + }, + { + "start": 3830.8, + "end": 3836.38, + "probability": 0.8245 + }, + { + "start": 3836.74, + "end": 3840.0, + "probability": 0.9877 + }, + { + "start": 3840.12, + "end": 3843.06, + "probability": 0.9634 + }, + { + "start": 3844.0, + "end": 3844.98, + "probability": 0.8064 + }, + { + "start": 3845.56, + "end": 3848.75, + "probability": 0.8184 + }, + { + "start": 3849.14, + "end": 3854.32, + "probability": 0.9337 + }, + { + "start": 3854.32, + "end": 3857.8, + "probability": 0.9808 + }, + { + "start": 3859.02, + "end": 3861.88, + "probability": 0.931 + }, + { + "start": 3862.6, + "end": 3866.14, + "probability": 0.9925 + }, + { + "start": 3866.62, + "end": 3868.72, + "probability": 0.9761 + }, + { + "start": 3869.24, + "end": 3870.64, + "probability": 0.918 + }, + { + "start": 3871.3, + "end": 3874.14, + "probability": 0.9861 + }, + { + "start": 3874.38, + "end": 3875.42, + "probability": 0.9131 + }, + { + "start": 3875.7, + "end": 3882.7, + "probability": 0.9834 + }, + { + "start": 3883.54, + "end": 3888.66, + "probability": 0.9927 + }, + { + "start": 3888.7, + "end": 3889.46, + "probability": 0.7714 + }, + { + "start": 3890.14, + "end": 3891.84, + "probability": 0.8939 + }, + { + "start": 3892.36, + "end": 3895.62, + "probability": 0.8776 + }, + { + "start": 3896.06, + "end": 3900.28, + "probability": 0.9777 + }, + { + "start": 3900.66, + "end": 3901.32, + "probability": 0.5144 + }, + { + "start": 3901.54, + "end": 3904.06, + "probability": 0.9689 + }, + { + "start": 3904.1, + "end": 3910.1, + "probability": 0.9749 + }, + { + "start": 3910.84, + "end": 3911.78, + "probability": 0.9985 + }, + { + "start": 3912.52, + "end": 3914.6, + "probability": 0.9712 + }, + { + "start": 3915.46, + "end": 3919.7, + "probability": 0.9952 + }, + { + "start": 3920.44, + "end": 3925.36, + "probability": 0.9727 + }, + { + "start": 3925.9, + "end": 3925.9, + "probability": 0.0102 + }, + { + "start": 3925.9, + "end": 3928.18, + "probability": 0.9397 + }, + { + "start": 3929.04, + "end": 3934.96, + "probability": 0.9688 + }, + { + "start": 3935.72, + "end": 3939.76, + "probability": 0.9849 + }, + { + "start": 3940.22, + "end": 3942.86, + "probability": 0.9661 + }, + { + "start": 3943.38, + "end": 3945.24, + "probability": 0.7999 + }, + { + "start": 3945.34, + "end": 3949.74, + "probability": 0.9963 + }, + { + "start": 3950.52, + "end": 3951.04, + "probability": 0.9046 + }, + { + "start": 3951.78, + "end": 3952.22, + "probability": 0.9019 + }, + { + "start": 3952.76, + "end": 3953.98, + "probability": 0.978 + }, + { + "start": 3954.64, + "end": 3955.46, + "probability": 0.9196 + }, + { + "start": 3955.56, + "end": 3955.9, + "probability": 0.9177 + }, + { + "start": 3956.18, + "end": 3957.72, + "probability": 0.9123 + }, + { + "start": 3957.84, + "end": 3958.6, + "probability": 0.9672 + }, + { + "start": 3958.72, + "end": 3959.48, + "probability": 0.9628 + }, + { + "start": 3959.9, + "end": 3963.14, + "probability": 0.9703 + }, + { + "start": 3963.98, + "end": 3966.34, + "probability": 0.6663 + }, + { + "start": 3967.02, + "end": 3967.48, + "probability": 0.5394 + }, + { + "start": 3968.16, + "end": 3972.16, + "probability": 0.9769 + }, + { + "start": 3972.22, + "end": 3973.8, + "probability": 0.9645 + }, + { + "start": 3973.96, + "end": 3976.74, + "probability": 0.8362 + }, + { + "start": 3977.46, + "end": 3981.3, + "probability": 0.9922 + }, + { + "start": 3981.68, + "end": 3985.84, + "probability": 0.9598 + }, + { + "start": 3985.84, + "end": 3989.86, + "probability": 0.9712 + }, + { + "start": 3990.28, + "end": 3992.6, + "probability": 0.8874 + }, + { + "start": 3992.66, + "end": 3993.98, + "probability": 0.9409 + }, + { + "start": 3994.4, + "end": 3998.8, + "probability": 0.9967 + }, + { + "start": 3999.38, + "end": 4000.78, + "probability": 0.5079 + }, + { + "start": 4002.2, + "end": 4005.32, + "probability": 0.8075 + }, + { + "start": 4005.66, + "end": 4008.38, + "probability": 0.9768 + }, + { + "start": 4008.92, + "end": 4014.3, + "probability": 0.8735 + }, + { + "start": 4014.32, + "end": 4014.48, + "probability": 0.0578 + }, + { + "start": 4014.58, + "end": 4016.44, + "probability": 0.9863 + }, + { + "start": 4017.02, + "end": 4022.74, + "probability": 0.9979 + }, + { + "start": 4022.74, + "end": 4029.34, + "probability": 0.9917 + }, + { + "start": 4029.88, + "end": 4034.38, + "probability": 0.9953 + }, + { + "start": 4034.76, + "end": 4036.78, + "probability": 0.5651 + }, + { + "start": 4036.82, + "end": 4037.16, + "probability": 0.3878 + }, + { + "start": 4037.22, + "end": 4042.6, + "probability": 0.9857 + }, + { + "start": 4042.96, + "end": 4044.46, + "probability": 0.8926 + }, + { + "start": 4044.76, + "end": 4046.18, + "probability": 0.9956 + }, + { + "start": 4046.48, + "end": 4048.7, + "probability": 0.9937 + }, + { + "start": 4048.88, + "end": 4049.16, + "probability": 0.7282 + }, + { + "start": 4050.12, + "end": 4051.14, + "probability": 0.7904 + }, + { + "start": 4051.36, + "end": 4053.5, + "probability": 0.9905 + }, + { + "start": 4053.54, + "end": 4055.66, + "probability": 0.9894 + }, + { + "start": 4055.82, + "end": 4059.52, + "probability": 0.9945 + }, + { + "start": 4059.7, + "end": 4061.12, + "probability": 0.927 + }, + { + "start": 4061.84, + "end": 4062.38, + "probability": 0.4188 + }, + { + "start": 4062.44, + "end": 4064.3, + "probability": 0.8472 + }, + { + "start": 4066.04, + "end": 4067.26, + "probability": 0.6435 + }, + { + "start": 4075.0, + "end": 4075.56, + "probability": 0.7539 + }, + { + "start": 4077.28, + "end": 4078.74, + "probability": 0.6654 + }, + { + "start": 4079.14, + "end": 4080.08, + "probability": 0.8211 + }, + { + "start": 4080.16, + "end": 4083.36, + "probability": 0.9883 + }, + { + "start": 4083.48, + "end": 4088.28, + "probability": 0.8768 + }, + { + "start": 4089.16, + "end": 4090.94, + "probability": 0.9985 + }, + { + "start": 4091.9, + "end": 4095.42, + "probability": 0.9313 + }, + { + "start": 4096.34, + "end": 4098.48, + "probability": 0.998 + }, + { + "start": 4099.3, + "end": 4100.3, + "probability": 0.8039 + }, + { + "start": 4100.6, + "end": 4103.69, + "probability": 0.9871 + }, + { + "start": 4104.44, + "end": 4110.04, + "probability": 0.827 + }, + { + "start": 4111.14, + "end": 4114.04, + "probability": 0.993 + }, + { + "start": 4115.1, + "end": 4119.0, + "probability": 0.887 + }, + { + "start": 4120.92, + "end": 4121.14, + "probability": 0.9421 + }, + { + "start": 4121.9, + "end": 4124.62, + "probability": 0.9741 + }, + { + "start": 4124.8, + "end": 4125.9, + "probability": 0.9386 + }, + { + "start": 4126.06, + "end": 4129.22, + "probability": 0.9984 + }, + { + "start": 4129.34, + "end": 4130.22, + "probability": 0.5785 + }, + { + "start": 4131.42, + "end": 4136.98, + "probability": 0.932 + }, + { + "start": 4137.2, + "end": 4138.78, + "probability": 0.9851 + }, + { + "start": 4139.94, + "end": 4142.08, + "probability": 0.7198 + }, + { + "start": 4142.64, + "end": 4146.58, + "probability": 0.9875 + }, + { + "start": 4147.1, + "end": 4148.43, + "probability": 0.9419 + }, + { + "start": 4150.1, + "end": 4151.58, + "probability": 0.9561 + }, + { + "start": 4152.98, + "end": 4156.6, + "probability": 0.6335 + }, + { + "start": 4157.64, + "end": 4160.68, + "probability": 0.9536 + }, + { + "start": 4161.56, + "end": 4162.72, + "probability": 0.9643 + }, + { + "start": 4163.44, + "end": 4165.12, + "probability": 0.9945 + }, + { + "start": 4166.0, + "end": 4168.07, + "probability": 0.9966 + }, + { + "start": 4168.94, + "end": 4169.9, + "probability": 0.9831 + }, + { + "start": 4170.54, + "end": 4171.5, + "probability": 0.5302 + }, + { + "start": 4171.58, + "end": 4175.58, + "probability": 0.9274 + }, + { + "start": 4176.16, + "end": 4180.48, + "probability": 0.9468 + }, + { + "start": 4181.94, + "end": 4184.04, + "probability": 0.9335 + }, + { + "start": 4185.08, + "end": 4186.36, + "probability": 0.9362 + }, + { + "start": 4187.4, + "end": 4191.2, + "probability": 0.9873 + }, + { + "start": 4192.02, + "end": 4195.02, + "probability": 0.8136 + }, + { + "start": 4195.9, + "end": 4198.06, + "probability": 0.9272 + }, + { + "start": 4198.48, + "end": 4200.3, + "probability": 0.9312 + }, + { + "start": 4201.46, + "end": 4204.32, + "probability": 0.9845 + }, + { + "start": 4204.36, + "end": 4206.18, + "probability": 0.9858 + }, + { + "start": 4207.2, + "end": 4210.58, + "probability": 0.9603 + }, + { + "start": 4211.3, + "end": 4211.72, + "probability": 0.91 + }, + { + "start": 4212.32, + "end": 4213.36, + "probability": 0.9512 + }, + { + "start": 4214.08, + "end": 4215.58, + "probability": 0.9382 + }, + { + "start": 4215.62, + "end": 4216.82, + "probability": 0.993 + }, + { + "start": 4216.86, + "end": 4221.98, + "probability": 0.9946 + }, + { + "start": 4223.4, + "end": 4224.68, + "probability": 0.9257 + }, + { + "start": 4225.2, + "end": 4228.92, + "probability": 0.9137 + }, + { + "start": 4229.46, + "end": 4229.86, + "probability": 0.7041 + }, + { + "start": 4229.98, + "end": 4234.92, + "probability": 0.8933 + }, + { + "start": 4236.1, + "end": 4240.62, + "probability": 0.8693 + }, + { + "start": 4241.3, + "end": 4242.94, + "probability": 0.8899 + }, + { + "start": 4243.36, + "end": 4244.92, + "probability": 0.9459 + }, + { + "start": 4245.12, + "end": 4246.08, + "probability": 0.9782 + }, + { + "start": 4246.52, + "end": 4247.36, + "probability": 0.4729 + }, + { + "start": 4247.82, + "end": 4250.72, + "probability": 0.9814 + }, + { + "start": 4251.7, + "end": 4255.48, + "probability": 0.9442 + }, + { + "start": 4255.76, + "end": 4257.04, + "probability": 0.9616 + }, + { + "start": 4257.54, + "end": 4258.96, + "probability": 0.9234 + }, + { + "start": 4259.0, + "end": 4261.56, + "probability": 0.6936 + }, + { + "start": 4262.28, + "end": 4265.28, + "probability": 0.8409 + }, + { + "start": 4265.92, + "end": 4267.02, + "probability": 0.5906 + }, + { + "start": 4267.58, + "end": 4269.38, + "probability": 0.9594 + }, + { + "start": 4270.2, + "end": 4271.38, + "probability": 0.7863 + }, + { + "start": 4271.6, + "end": 4273.3, + "probability": 0.6722 + }, + { + "start": 4273.38, + "end": 4275.4, + "probability": 0.8258 + }, + { + "start": 4277.56, + "end": 4280.18, + "probability": 0.9044 + }, + { + "start": 4282.35, + "end": 4284.36, + "probability": 0.2959 + }, + { + "start": 4285.34, + "end": 4287.3, + "probability": 0.8149 + }, + { + "start": 4293.56, + "end": 4293.56, + "probability": 0.0147 + }, + { + "start": 4293.56, + "end": 4294.04, + "probability": 0.3288 + }, + { + "start": 4295.6, + "end": 4297.54, + "probability": 0.8071 + }, + { + "start": 4298.22, + "end": 4299.22, + "probability": 0.4923 + }, + { + "start": 4299.38, + "end": 4301.32, + "probability": 0.3209 + }, + { + "start": 4304.7, + "end": 4305.48, + "probability": 0.7375 + }, + { + "start": 4305.8, + "end": 4308.94, + "probability": 0.8429 + }, + { + "start": 4309.28, + "end": 4315.56, + "probability": 0.9522 + }, + { + "start": 4316.44, + "end": 4320.86, + "probability": 0.9371 + }, + { + "start": 4321.1, + "end": 4325.12, + "probability": 0.998 + }, + { + "start": 4325.12, + "end": 4329.62, + "probability": 0.9943 + }, + { + "start": 4330.62, + "end": 4331.44, + "probability": 0.6421 + }, + { + "start": 4331.58, + "end": 4332.7, + "probability": 0.8255 + }, + { + "start": 4333.08, + "end": 4336.2, + "probability": 0.6461 + }, + { + "start": 4337.46, + "end": 4341.66, + "probability": 0.982 + }, + { + "start": 4342.36, + "end": 4343.32, + "probability": 0.8449 + }, + { + "start": 4344.36, + "end": 4347.82, + "probability": 0.902 + }, + { + "start": 4349.4, + "end": 4350.46, + "probability": 0.9296 + }, + { + "start": 4351.4, + "end": 4354.56, + "probability": 0.9892 + }, + { + "start": 4355.2, + "end": 4356.16, + "probability": 0.5074 + }, + { + "start": 4356.68, + "end": 4358.02, + "probability": 0.973 + }, + { + "start": 4358.66, + "end": 4360.26, + "probability": 0.8659 + }, + { + "start": 4360.94, + "end": 4364.56, + "probability": 0.9762 + }, + { + "start": 4365.26, + "end": 4366.56, + "probability": 0.8008 + }, + { + "start": 4367.88, + "end": 4369.46, + "probability": 0.8914 + }, + { + "start": 4369.56, + "end": 4371.0, + "probability": 0.9721 + }, + { + "start": 4371.02, + "end": 4376.32, + "probability": 0.987 + }, + { + "start": 4376.9, + "end": 4381.04, + "probability": 0.9799 + }, + { + "start": 4381.52, + "end": 4382.8, + "probability": 0.7018 + }, + { + "start": 4383.78, + "end": 4385.98, + "probability": 0.8672 + }, + { + "start": 4387.02, + "end": 4391.26, + "probability": 0.9264 + }, + { + "start": 4392.3, + "end": 4395.7, + "probability": 0.98 + }, + { + "start": 4395.94, + "end": 4397.74, + "probability": 0.9694 + }, + { + "start": 4398.18, + "end": 4400.66, + "probability": 0.9861 + }, + { + "start": 4400.72, + "end": 4404.92, + "probability": 0.9771 + }, + { + "start": 4406.32, + "end": 4407.76, + "probability": 0.9069 + }, + { + "start": 4408.88, + "end": 4410.01, + "probability": 0.9473 + }, + { + "start": 4412.0, + "end": 4413.82, + "probability": 0.9717 + }, + { + "start": 4414.38, + "end": 4415.76, + "probability": 0.8723 + }, + { + "start": 4416.34, + "end": 4420.18, + "probability": 0.8891 + }, + { + "start": 4421.66, + "end": 4422.52, + "probability": 0.7471 + }, + { + "start": 4422.7, + "end": 4423.48, + "probability": 0.7586 + }, + { + "start": 4423.62, + "end": 4424.4, + "probability": 0.9385 + }, + { + "start": 4424.46, + "end": 4428.34, + "probability": 0.9753 + }, + { + "start": 4429.18, + "end": 4433.04, + "probability": 0.9826 + }, + { + "start": 4433.04, + "end": 4437.1, + "probability": 0.9974 + }, + { + "start": 4437.58, + "end": 4439.44, + "probability": 0.9529 + }, + { + "start": 4440.3, + "end": 4442.9, + "probability": 0.7693 + }, + { + "start": 4442.98, + "end": 4443.68, + "probability": 0.7937 + }, + { + "start": 4444.0, + "end": 4444.82, + "probability": 0.7505 + }, + { + "start": 4445.0, + "end": 4445.44, + "probability": 0.7054 + }, + { + "start": 4445.52, + "end": 4446.1, + "probability": 0.876 + }, + { + "start": 4446.6, + "end": 4448.06, + "probability": 0.9658 + }, + { + "start": 4448.3, + "end": 4451.34, + "probability": 0.9914 + }, + { + "start": 4451.34, + "end": 4455.08, + "probability": 0.9949 + }, + { + "start": 4456.64, + "end": 4458.9, + "probability": 0.9845 + }, + { + "start": 4459.86, + "end": 4461.2, + "probability": 0.8062 + }, + { + "start": 4461.42, + "end": 4463.62, + "probability": 0.9961 + }, + { + "start": 4464.46, + "end": 4466.18, + "probability": 0.5182 + }, + { + "start": 4466.6, + "end": 4469.18, + "probability": 0.9787 + }, + { + "start": 4470.36, + "end": 4472.12, + "probability": 0.9779 + }, + { + "start": 4473.52, + "end": 4474.89, + "probability": 0.8235 + }, + { + "start": 4476.3, + "end": 4480.7, + "probability": 0.9313 + }, + { + "start": 4480.7, + "end": 4484.82, + "probability": 0.9692 + }, + { + "start": 4485.8, + "end": 4492.0, + "probability": 0.9922 + }, + { + "start": 4492.74, + "end": 4497.04, + "probability": 0.9157 + }, + { + "start": 4497.74, + "end": 4499.04, + "probability": 0.9619 + }, + { + "start": 4499.7, + "end": 4500.58, + "probability": 0.9647 + }, + { + "start": 4501.4, + "end": 4502.34, + "probability": 0.7614 + }, + { + "start": 4502.92, + "end": 4505.7, + "probability": 0.9155 + }, + { + "start": 4506.04, + "end": 4506.82, + "probability": 0.9905 + }, + { + "start": 4507.56, + "end": 4509.58, + "probability": 0.9901 + }, + { + "start": 4510.34, + "end": 4513.26, + "probability": 0.9325 + }, + { + "start": 4514.28, + "end": 4515.64, + "probability": 0.5274 + }, + { + "start": 4516.58, + "end": 4519.88, + "probability": 0.9834 + }, + { + "start": 4520.4, + "end": 4524.36, + "probability": 0.9007 + }, + { + "start": 4524.5, + "end": 4526.16, + "probability": 0.981 + }, + { + "start": 4527.9, + "end": 4531.14, + "probability": 0.9922 + }, + { + "start": 4531.82, + "end": 4533.96, + "probability": 0.9021 + }, + { + "start": 4534.12, + "end": 4534.86, + "probability": 0.9014 + }, + { + "start": 4535.04, + "end": 4538.28, + "probability": 0.988 + }, + { + "start": 4538.84, + "end": 4545.56, + "probability": 0.9688 + }, + { + "start": 4547.1, + "end": 4549.04, + "probability": 0.7886 + }, + { + "start": 4551.09, + "end": 4553.3, + "probability": 0.4424 + }, + { + "start": 4553.3, + "end": 4554.02, + "probability": 0.1826 + }, + { + "start": 4554.16, + "end": 4554.86, + "probability": 0.6273 + }, + { + "start": 4554.96, + "end": 4556.6, + "probability": 0.9761 + }, + { + "start": 4556.74, + "end": 4559.58, + "probability": 0.9965 + }, + { + "start": 4559.76, + "end": 4560.48, + "probability": 0.4061 + }, + { + "start": 4560.66, + "end": 4563.42, + "probability": 0.9345 + }, + { + "start": 4563.52, + "end": 4565.14, + "probability": 0.8958 + }, + { + "start": 4566.14, + "end": 4568.18, + "probability": 0.9722 + }, + { + "start": 4568.92, + "end": 4576.34, + "probability": 0.9795 + }, + { + "start": 4576.84, + "end": 4583.48, + "probability": 0.6548 + }, + { + "start": 4583.98, + "end": 4589.36, + "probability": 0.9673 + }, + { + "start": 4589.56, + "end": 4592.82, + "probability": 0.9862 + }, + { + "start": 4593.98, + "end": 4593.98, + "probability": 0.3064 + }, + { + "start": 4594.12, + "end": 4595.22, + "probability": 0.8845 + }, + { + "start": 4595.26, + "end": 4598.5, + "probability": 0.9869 + }, + { + "start": 4599.08, + "end": 4600.64, + "probability": 0.9961 + }, + { + "start": 4600.88, + "end": 4604.34, + "probability": 0.9868 + }, + { + "start": 4604.84, + "end": 4606.34, + "probability": 0.9951 + }, + { + "start": 4607.18, + "end": 4610.7, + "probability": 0.9346 + }, + { + "start": 4611.3, + "end": 4615.3, + "probability": 0.8705 + }, + { + "start": 4628.66, + "end": 4629.22, + "probability": 0.117 + }, + { + "start": 4629.22, + "end": 4629.22, + "probability": 0.0725 + }, + { + "start": 4629.22, + "end": 4629.22, + "probability": 0.0394 + }, + { + "start": 4629.22, + "end": 4629.22, + "probability": 0.0195 + }, + { + "start": 4629.22, + "end": 4632.08, + "probability": 0.3594 + }, + { + "start": 4632.84, + "end": 4637.0, + "probability": 0.8235 + }, + { + "start": 4638.12, + "end": 4640.84, + "probability": 0.8929 + }, + { + "start": 4641.6, + "end": 4641.6, + "probability": 0.4256 + }, + { + "start": 4641.78, + "end": 4642.66, + "probability": 0.8136 + }, + { + "start": 4642.8, + "end": 4644.66, + "probability": 0.9607 + }, + { + "start": 4644.9, + "end": 4645.94, + "probability": 0.9243 + }, + { + "start": 4646.22, + "end": 4647.78, + "probability": 0.9584 + }, + { + "start": 4648.04, + "end": 4648.24, + "probability": 0.5917 + }, + { + "start": 4648.28, + "end": 4649.42, + "probability": 0.8561 + }, + { + "start": 4649.54, + "end": 4650.34, + "probability": 0.6263 + }, + { + "start": 4650.44, + "end": 4650.54, + "probability": 0.604 + }, + { + "start": 4650.98, + "end": 4653.64, + "probability": 0.7528 + }, + { + "start": 4654.58, + "end": 4655.96, + "probability": 0.9176 + }, + { + "start": 4656.46, + "end": 4658.36, + "probability": 0.9608 + }, + { + "start": 4658.84, + "end": 4660.7, + "probability": 0.9873 + }, + { + "start": 4661.14, + "end": 4662.08, + "probability": 0.9868 + }, + { + "start": 4662.46, + "end": 4663.54, + "probability": 0.6636 + }, + { + "start": 4663.66, + "end": 4669.4, + "probability": 0.8604 + }, + { + "start": 4669.74, + "end": 4670.5, + "probability": 0.8527 + }, + { + "start": 4670.74, + "end": 4674.46, + "probability": 0.9791 + }, + { + "start": 4676.78, + "end": 4676.86, + "probability": 0.0034 + }, + { + "start": 4676.86, + "end": 4677.72, + "probability": 0.6676 + }, + { + "start": 4678.32, + "end": 4683.02, + "probability": 0.9242 + }, + { + "start": 4683.52, + "end": 4684.18, + "probability": 0.7556 + }, + { + "start": 4685.68, + "end": 4686.48, + "probability": 0.9028 + }, + { + "start": 4686.54, + "end": 4687.54, + "probability": 0.9469 + }, + { + "start": 4687.72, + "end": 4690.94, + "probability": 0.8042 + }, + { + "start": 4691.32, + "end": 4692.14, + "probability": 0.8873 + }, + { + "start": 4692.4, + "end": 4694.3, + "probability": 0.7772 + }, + { + "start": 4694.56, + "end": 4695.56, + "probability": 0.759 + }, + { + "start": 4695.9, + "end": 4696.89, + "probability": 0.896 + }, + { + "start": 4697.38, + "end": 4701.44, + "probability": 0.9769 + }, + { + "start": 4701.98, + "end": 4705.06, + "probability": 0.8766 + }, + { + "start": 4705.08, + "end": 4706.34, + "probability": 0.9492 + }, + { + "start": 4706.66, + "end": 4708.3, + "probability": 0.716 + }, + { + "start": 4708.46, + "end": 4708.88, + "probability": 0.701 + }, + { + "start": 4708.94, + "end": 4709.36, + "probability": 0.6849 + }, + { + "start": 4710.8, + "end": 4713.22, + "probability": 0.9414 + }, + { + "start": 4713.56, + "end": 4715.52, + "probability": 0.9291 + }, + { + "start": 4733.02, + "end": 4734.08, + "probability": 0.637 + }, + { + "start": 4735.0, + "end": 4743.12, + "probability": 0.5258 + }, + { + "start": 4743.84, + "end": 4745.88, + "probability": 0.8511 + }, + { + "start": 4747.44, + "end": 4753.2, + "probability": 0.7154 + }, + { + "start": 4753.3, + "end": 4753.62, + "probability": 0.6289 + }, + { + "start": 4753.62, + "end": 4759.04, + "probability": 0.9306 + }, + { + "start": 4760.88, + "end": 4762.22, + "probability": 0.4888 + }, + { + "start": 4762.4, + "end": 4765.22, + "probability": 0.9285 + }, + { + "start": 4765.4, + "end": 4768.0, + "probability": 0.9793 + }, + { + "start": 4768.34, + "end": 4769.56, + "probability": 0.9828 + }, + { + "start": 4769.74, + "end": 4770.16, + "probability": 0.7488 + }, + { + "start": 4770.22, + "end": 4773.74, + "probability": 0.9717 + }, + { + "start": 4774.5, + "end": 4777.88, + "probability": 0.9885 + }, + { + "start": 4778.24, + "end": 4779.2, + "probability": 0.8837 + }, + { + "start": 4779.3, + "end": 4779.84, + "probability": 0.7873 + }, + { + "start": 4779.98, + "end": 4784.34, + "probability": 0.949 + }, + { + "start": 4785.28, + "end": 4787.68, + "probability": 0.9312 + }, + { + "start": 4788.08, + "end": 4789.82, + "probability": 0.9025 + }, + { + "start": 4790.26, + "end": 4793.98, + "probability": 0.9692 + }, + { + "start": 4794.66, + "end": 4797.12, + "probability": 0.9897 + }, + { + "start": 4797.72, + "end": 4798.94, + "probability": 0.9839 + }, + { + "start": 4799.98, + "end": 4802.2, + "probability": 0.8992 + }, + { + "start": 4802.82, + "end": 4805.56, + "probability": 0.7994 + }, + { + "start": 4805.56, + "end": 4808.64, + "probability": 0.9934 + }, + { + "start": 4809.46, + "end": 4811.52, + "probability": 0.933 + }, + { + "start": 4811.78, + "end": 4812.84, + "probability": 0.6735 + }, + { + "start": 4813.62, + "end": 4814.84, + "probability": 0.9715 + }, + { + "start": 4816.1, + "end": 4818.62, + "probability": 0.9883 + }, + { + "start": 4818.72, + "end": 4820.82, + "probability": 0.8992 + }, + { + "start": 4820.94, + "end": 4822.9, + "probability": 0.9808 + }, + { + "start": 4823.86, + "end": 4828.0, + "probability": 0.9851 + }, + { + "start": 4828.0, + "end": 4831.42, + "probability": 0.9538 + }, + { + "start": 4831.82, + "end": 4837.5, + "probability": 0.9668 + }, + { + "start": 4837.82, + "end": 4840.14, + "probability": 0.9841 + }, + { + "start": 4840.52, + "end": 4846.28, + "probability": 0.9927 + }, + { + "start": 4847.44, + "end": 4848.06, + "probability": 0.8402 + }, + { + "start": 4848.24, + "end": 4853.12, + "probability": 0.9926 + }, + { + "start": 4853.68, + "end": 4855.14, + "probability": 0.7307 + }, + { + "start": 4855.82, + "end": 4856.96, + "probability": 0.9901 + }, + { + "start": 4857.7, + "end": 4859.22, + "probability": 0.9832 + }, + { + "start": 4860.02, + "end": 4860.12, + "probability": 0.7651 + }, + { + "start": 4860.22, + "end": 4862.76, + "probability": 0.9722 + }, + { + "start": 4862.76, + "end": 4866.26, + "probability": 0.963 + }, + { + "start": 4866.84, + "end": 4871.34, + "probability": 0.9724 + }, + { + "start": 4872.04, + "end": 4873.14, + "probability": 0.6605 + }, + { + "start": 4873.26, + "end": 4873.76, + "probability": 0.7991 + }, + { + "start": 4873.86, + "end": 4874.94, + "probability": 0.6577 + }, + { + "start": 4875.04, + "end": 4879.0, + "probability": 0.9871 + }, + { + "start": 4879.0, + "end": 4882.32, + "probability": 0.946 + }, + { + "start": 4882.78, + "end": 4885.6, + "probability": 0.7114 + }, + { + "start": 4885.92, + "end": 4889.06, + "probability": 0.9018 + }, + { + "start": 4889.74, + "end": 4894.64, + "probability": 0.959 + }, + { + "start": 4894.66, + "end": 4896.74, + "probability": 0.991 + }, + { + "start": 4897.68, + "end": 4899.48, + "probability": 0.9366 + }, + { + "start": 4899.58, + "end": 4900.16, + "probability": 0.7681 + }, + { + "start": 4900.3, + "end": 4902.24, + "probability": 0.9906 + }, + { + "start": 4902.24, + "end": 4905.84, + "probability": 0.9859 + }, + { + "start": 4906.74, + "end": 4909.08, + "probability": 0.9379 + }, + { + "start": 4909.4, + "end": 4914.98, + "probability": 0.9948 + }, + { + "start": 4915.02, + "end": 4918.06, + "probability": 0.9906 + }, + { + "start": 4918.48, + "end": 4923.28, + "probability": 0.7797 + }, + { + "start": 4924.04, + "end": 4926.96, + "probability": 0.9708 + }, + { + "start": 4927.72, + "end": 4930.98, + "probability": 0.4812 + }, + { + "start": 4930.98, + "end": 4936.56, + "probability": 0.8887 + }, + { + "start": 4936.68, + "end": 4937.34, + "probability": 0.5363 + }, + { + "start": 4937.78, + "end": 4939.8, + "probability": 0.8604 + }, + { + "start": 4940.22, + "end": 4943.24, + "probability": 0.9772 + }, + { + "start": 4943.24, + "end": 4947.3, + "probability": 0.9926 + }, + { + "start": 4947.74, + "end": 4949.84, + "probability": 0.7419 + }, + { + "start": 4949.88, + "end": 4950.22, + "probability": 0.5047 + }, + { + "start": 4950.36, + "end": 4951.62, + "probability": 0.5454 + }, + { + "start": 4952.22, + "end": 4952.36, + "probability": 0.8015 + }, + { + "start": 4952.48, + "end": 4957.44, + "probability": 0.9963 + }, + { + "start": 4957.54, + "end": 4958.46, + "probability": 0.7617 + }, + { + "start": 4958.88, + "end": 4962.54, + "probability": 0.843 + }, + { + "start": 4963.32, + "end": 4964.64, + "probability": 0.6781 + }, + { + "start": 4964.74, + "end": 4965.36, + "probability": 0.6596 + }, + { + "start": 4965.46, + "end": 4968.3, + "probability": 0.849 + }, + { + "start": 4968.76, + "end": 4974.12, + "probability": 0.9987 + }, + { + "start": 4974.28, + "end": 4978.0, + "probability": 0.9963 + }, + { + "start": 4978.32, + "end": 4981.02, + "probability": 0.998 + }, + { + "start": 4981.02, + "end": 4984.0, + "probability": 0.9977 + }, + { + "start": 4984.18, + "end": 4984.75, + "probability": 0.9924 + }, + { + "start": 4985.42, + "end": 4988.92, + "probability": 0.9708 + }, + { + "start": 4989.42, + "end": 4990.12, + "probability": 0.8938 + }, + { + "start": 4990.2, + "end": 4990.72, + "probability": 0.9764 + }, + { + "start": 4990.82, + "end": 4992.62, + "probability": 0.9323 + }, + { + "start": 4993.36, + "end": 4994.02, + "probability": 0.98 + }, + { + "start": 4994.72, + "end": 4995.52, + "probability": 0.9075 + }, + { + "start": 4995.58, + "end": 4997.42, + "probability": 0.9258 + }, + { + "start": 4997.8, + "end": 5000.5, + "probability": 0.9814 + }, + { + "start": 5000.82, + "end": 5001.58, + "probability": 0.8796 + }, + { + "start": 5001.7, + "end": 5008.18, + "probability": 0.9915 + }, + { + "start": 5008.52, + "end": 5009.36, + "probability": 0.4328 + }, + { + "start": 5009.46, + "end": 5010.54, + "probability": 0.7296 + }, + { + "start": 5010.82, + "end": 5014.96, + "probability": 0.9653 + }, + { + "start": 5015.7, + "end": 5016.02, + "probability": 0.8981 + }, + { + "start": 5016.12, + "end": 5016.64, + "probability": 0.8371 + }, + { + "start": 5016.76, + "end": 5018.58, + "probability": 0.9651 + }, + { + "start": 5018.9, + "end": 5025.86, + "probability": 0.9976 + }, + { + "start": 5026.3, + "end": 5027.06, + "probability": 0.7701 + }, + { + "start": 5027.34, + "end": 5027.99, + "probability": 0.9739 + }, + { + "start": 5028.2, + "end": 5028.88, + "probability": 0.8398 + }, + { + "start": 5028.96, + "end": 5030.36, + "probability": 0.9047 + }, + { + "start": 5030.52, + "end": 5033.06, + "probability": 0.9901 + }, + { + "start": 5033.7, + "end": 5036.62, + "probability": 0.9779 + }, + { + "start": 5036.74, + "end": 5037.72, + "probability": 0.9595 + }, + { + "start": 5038.0, + "end": 5038.6, + "probability": 0.9065 + }, + { + "start": 5038.74, + "end": 5040.59, + "probability": 0.8836 + }, + { + "start": 5041.34, + "end": 5042.74, + "probability": 0.6138 + }, + { + "start": 5042.9, + "end": 5045.38, + "probability": 0.9922 + }, + { + "start": 5045.6, + "end": 5045.8, + "probability": 0.6318 + }, + { + "start": 5045.86, + "end": 5049.04, + "probability": 0.9985 + }, + { + "start": 5049.32, + "end": 5053.72, + "probability": 0.9734 + }, + { + "start": 5054.32, + "end": 5056.0, + "probability": 0.359 + }, + { + "start": 5056.0, + "end": 5058.02, + "probability": 0.998 + }, + { + "start": 5058.84, + "end": 5062.4, + "probability": 0.9568 + }, + { + "start": 5062.64, + "end": 5064.26, + "probability": 0.648 + }, + { + "start": 5065.66, + "end": 5066.26, + "probability": 0.4772 + }, + { + "start": 5066.5, + "end": 5066.94, + "probability": 0.4219 + }, + { + "start": 5067.06, + "end": 5067.7, + "probability": 0.7767 + }, + { + "start": 5067.8, + "end": 5068.38, + "probability": 0.8805 + }, + { + "start": 5068.76, + "end": 5072.28, + "probability": 0.9694 + }, + { + "start": 5072.42, + "end": 5073.88, + "probability": 0.998 + }, + { + "start": 5073.96, + "end": 5076.14, + "probability": 0.9809 + }, + { + "start": 5076.52, + "end": 5080.76, + "probability": 0.9797 + }, + { + "start": 5081.44, + "end": 5081.78, + "probability": 0.8092 + }, + { + "start": 5082.16, + "end": 5082.84, + "probability": 0.6376 + }, + { + "start": 5082.88, + "end": 5084.18, + "probability": 0.7095 + }, + { + "start": 5084.3, + "end": 5086.06, + "probability": 0.9145 + }, + { + "start": 5088.44, + "end": 5089.69, + "probability": 0.9841 + }, + { + "start": 5089.82, + "end": 5093.02, + "probability": 0.9858 + }, + { + "start": 5093.16, + "end": 5097.36, + "probability": 0.8007 + }, + { + "start": 5098.94, + "end": 5099.81, + "probability": 0.9232 + }, + { + "start": 5101.08, + "end": 5102.16, + "probability": 0.6608 + }, + { + "start": 5103.88, + "end": 5105.22, + "probability": 0.5564 + }, + { + "start": 5106.34, + "end": 5107.77, + "probability": 0.8125 + }, + { + "start": 5108.94, + "end": 5113.72, + "probability": 0.7479 + }, + { + "start": 5113.9, + "end": 5119.68, + "probability": 0.9928 + }, + { + "start": 5120.36, + "end": 5123.3, + "probability": 0.7681 + }, + { + "start": 5127.38, + "end": 5128.18, + "probability": 0.1803 + }, + { + "start": 5128.18, + "end": 5129.64, + "probability": 0.5576 + }, + { + "start": 5129.84, + "end": 5132.48, + "probability": 0.7598 + }, + { + "start": 5132.54, + "end": 5133.76, + "probability": 0.9778 + }, + { + "start": 5133.86, + "end": 5134.68, + "probability": 0.9239 + }, + { + "start": 5135.04, + "end": 5136.12, + "probability": 0.8757 + }, + { + "start": 5136.3, + "end": 5137.42, + "probability": 0.7686 + }, + { + "start": 5137.56, + "end": 5138.34, + "probability": 0.9927 + }, + { + "start": 5138.86, + "end": 5140.68, + "probability": 0.758 + }, + { + "start": 5140.72, + "end": 5142.5, + "probability": 0.7652 + }, + { + "start": 5142.9, + "end": 5146.12, + "probability": 0.7365 + }, + { + "start": 5146.3, + "end": 5148.16, + "probability": 0.9906 + }, + { + "start": 5148.44, + "end": 5151.12, + "probability": 0.8715 + }, + { + "start": 5151.22, + "end": 5152.02, + "probability": 0.9338 + }, + { + "start": 5152.1, + "end": 5152.78, + "probability": 0.8682 + }, + { + "start": 5153.04, + "end": 5153.8, + "probability": 0.7005 + }, + { + "start": 5153.98, + "end": 5155.08, + "probability": 0.8607 + }, + { + "start": 5155.5, + "end": 5156.9, + "probability": 0.8726 + }, + { + "start": 5157.48, + "end": 5157.76, + "probability": 0.0317 + }, + { + "start": 5158.44, + "end": 5161.14, + "probability": 0.8746 + }, + { + "start": 5161.66, + "end": 5162.42, + "probability": 0.5706 + }, + { + "start": 5162.48, + "end": 5166.06, + "probability": 0.8959 + }, + { + "start": 5166.58, + "end": 5168.78, + "probability": 0.9688 + }, + { + "start": 5169.28, + "end": 5170.82, + "probability": 0.9466 + }, + { + "start": 5171.12, + "end": 5171.44, + "probability": 0.4892 + }, + { + "start": 5171.52, + "end": 5172.04, + "probability": 0.6791 + }, + { + "start": 5172.2, + "end": 5173.01, + "probability": 0.6181 + }, + { + "start": 5173.1, + "end": 5175.06, + "probability": 0.7499 + }, + { + "start": 5175.76, + "end": 5179.8, + "probability": 0.8948 + }, + { + "start": 5180.36, + "end": 5186.56, + "probability": 0.7614 + }, + { + "start": 5186.98, + "end": 5189.18, + "probability": 0.7852 + }, + { + "start": 5189.72, + "end": 5192.46, + "probability": 0.9734 + }, + { + "start": 5192.46, + "end": 5195.18, + "probability": 0.9793 + }, + { + "start": 5195.54, + "end": 5198.4, + "probability": 0.9429 + }, + { + "start": 5198.42, + "end": 5204.08, + "probability": 0.9712 + }, + { + "start": 5204.56, + "end": 5205.78, + "probability": 0.781 + }, + { + "start": 5205.86, + "end": 5212.4, + "probability": 0.9187 + }, + { + "start": 5212.76, + "end": 5214.36, + "probability": 0.7747 + }, + { + "start": 5214.46, + "end": 5219.86, + "probability": 0.8047 + }, + { + "start": 5219.98, + "end": 5220.54, + "probability": 0.7127 + }, + { + "start": 5222.2, + "end": 5224.72, + "probability": 0.7945 + }, + { + "start": 5224.76, + "end": 5225.51, + "probability": 0.9744 + }, + { + "start": 5225.92, + "end": 5227.96, + "probability": 0.8838 + }, + { + "start": 5228.34, + "end": 5230.88, + "probability": 0.7668 + }, + { + "start": 5231.56, + "end": 5232.6, + "probability": 0.5147 + }, + { + "start": 5232.88, + "end": 5233.4, + "probability": 0.6477 + }, + { + "start": 5234.16, + "end": 5235.26, + "probability": 0.6183 + }, + { + "start": 5235.34, + "end": 5236.9, + "probability": 0.9565 + }, + { + "start": 5237.06, + "end": 5237.14, + "probability": 0.0949 + }, + { + "start": 5237.16, + "end": 5237.36, + "probability": 0.6527 + }, + { + "start": 5237.88, + "end": 5240.36, + "probability": 0.6937 + }, + { + "start": 5240.44, + "end": 5243.2, + "probability": 0.8133 + }, + { + "start": 5243.92, + "end": 5246.66, + "probability": 0.7488 + }, + { + "start": 5246.8, + "end": 5247.3, + "probability": 0.5964 + }, + { + "start": 5247.92, + "end": 5253.78, + "probability": 0.9746 + }, + { + "start": 5253.94, + "end": 5255.38, + "probability": 0.9219 + }, + { + "start": 5256.1, + "end": 5258.48, + "probability": 0.9384 + }, + { + "start": 5258.68, + "end": 5260.14, + "probability": 0.9957 + }, + { + "start": 5260.72, + "end": 5265.3, + "probability": 0.9632 + }, + { + "start": 5265.48, + "end": 5266.48, + "probability": 0.8574 + }, + { + "start": 5266.72, + "end": 5268.19, + "probability": 0.9604 + }, + { + "start": 5268.7, + "end": 5269.2, + "probability": 0.832 + }, + { + "start": 5269.36, + "end": 5274.16, + "probability": 0.7635 + }, + { + "start": 5274.36, + "end": 5278.56, + "probability": 0.8906 + }, + { + "start": 5278.6, + "end": 5280.92, + "probability": 0.9851 + }, + { + "start": 5281.06, + "end": 5282.76, + "probability": 0.9516 + }, + { + "start": 5283.36, + "end": 5287.08, + "probability": 0.8284 + }, + { + "start": 5287.08, + "end": 5290.88, + "probability": 0.9057 + }, + { + "start": 5291.32, + "end": 5294.48, + "probability": 0.9637 + }, + { + "start": 5294.96, + "end": 5296.58, + "probability": 0.7701 + }, + { + "start": 5297.48, + "end": 5299.58, + "probability": 0.7398 + }, + { + "start": 5300.1, + "end": 5303.08, + "probability": 0.7803 + }, + { + "start": 5303.16, + "end": 5305.56, + "probability": 0.7094 + }, + { + "start": 5306.0, + "end": 5307.8, + "probability": 0.9269 + }, + { + "start": 5307.9, + "end": 5308.68, + "probability": 0.7942 + }, + { + "start": 5308.78, + "end": 5310.12, + "probability": 0.8949 + }, + { + "start": 5310.5, + "end": 5312.01, + "probability": 0.8799 + }, + { + "start": 5312.1, + "end": 5313.11, + "probability": 0.9 + }, + { + "start": 5313.54, + "end": 5316.86, + "probability": 0.9895 + }, + { + "start": 5317.3, + "end": 5323.08, + "probability": 0.8312 + }, + { + "start": 5323.56, + "end": 5324.88, + "probability": 0.8036 + }, + { + "start": 5324.96, + "end": 5328.84, + "probability": 0.7505 + }, + { + "start": 5330.06, + "end": 5335.84, + "probability": 0.9858 + }, + { + "start": 5337.04, + "end": 5339.28, + "probability": 0.6697 + }, + { + "start": 5340.66, + "end": 5343.54, + "probability": 0.2467 + }, + { + "start": 5343.84, + "end": 5346.74, + "probability": 0.8979 + }, + { + "start": 5346.84, + "end": 5347.76, + "probability": 0.6445 + }, + { + "start": 5347.8, + "end": 5348.22, + "probability": 0.7824 + }, + { + "start": 5350.0, + "end": 5352.54, + "probability": 0.9985 + }, + { + "start": 5352.68, + "end": 5354.1, + "probability": 0.9984 + }, + { + "start": 5354.36, + "end": 5355.38, + "probability": 0.9496 + }, + { + "start": 5355.78, + "end": 5356.82, + "probability": 0.8061 + }, + { + "start": 5357.3, + "end": 5363.34, + "probability": 0.9302 + }, + { + "start": 5363.52, + "end": 5363.78, + "probability": 0.6898 + }, + { + "start": 5364.88, + "end": 5366.5, + "probability": 0.9873 + }, + { + "start": 5366.88, + "end": 5370.3, + "probability": 0.9125 + }, + { + "start": 5370.6, + "end": 5372.38, + "probability": 0.3438 + }, + { + "start": 5372.56, + "end": 5375.8, + "probability": 0.9836 + }, + { + "start": 5375.94, + "end": 5376.58, + "probability": 0.7183 + }, + { + "start": 5379.86, + "end": 5380.74, + "probability": 0.5839 + }, + { + "start": 5380.74, + "end": 5380.74, + "probability": 0.6513 + }, + { + "start": 5380.8, + "end": 5382.1, + "probability": 0.6844 + }, + { + "start": 5382.4, + "end": 5382.82, + "probability": 0.4312 + }, + { + "start": 5382.9, + "end": 5385.08, + "probability": 0.5957 + }, + { + "start": 5385.66, + "end": 5386.5, + "probability": 0.9331 + }, + { + "start": 5386.64, + "end": 5387.3, + "probability": 0.7881 + }, + { + "start": 5388.11, + "end": 5390.68, + "probability": 0.9763 + }, + { + "start": 5390.9, + "end": 5391.36, + "probability": 0.8925 + }, + { + "start": 5391.42, + "end": 5392.02, + "probability": 0.3844 + }, + { + "start": 5392.02, + "end": 5394.12, + "probability": 0.8558 + }, + { + "start": 5394.72, + "end": 5396.04, + "probability": 0.8251 + }, + { + "start": 5396.78, + "end": 5397.9, + "probability": 0.9369 + }, + { + "start": 5397.98, + "end": 5400.2, + "probability": 0.9658 + }, + { + "start": 5401.02, + "end": 5401.26, + "probability": 0.0847 + }, + { + "start": 5401.26, + "end": 5402.02, + "probability": 0.8064 + }, + { + "start": 5402.4, + "end": 5402.96, + "probability": 0.5839 + }, + { + "start": 5403.34, + "end": 5405.18, + "probability": 0.59 + }, + { + "start": 5405.54, + "end": 5406.43, + "probability": 0.6594 + }, + { + "start": 5407.5, + "end": 5409.22, + "probability": 0.9872 + }, + { + "start": 5409.4, + "end": 5412.65, + "probability": 0.8826 + }, + { + "start": 5412.96, + "end": 5416.04, + "probability": 0.6317 + }, + { + "start": 5416.88, + "end": 5419.0, + "probability": 0.778 + }, + { + "start": 5419.38, + "end": 5421.34, + "probability": 0.9888 + }, + { + "start": 5421.92, + "end": 5424.06, + "probability": 0.9641 + }, + { + "start": 5424.08, + "end": 5424.8, + "probability": 0.7638 + }, + { + "start": 5425.52, + "end": 5427.24, + "probability": 0.363 + }, + { + "start": 5427.26, + "end": 5428.64, + "probability": 0.7845 + }, + { + "start": 5428.9, + "end": 5430.94, + "probability": 0.6234 + }, + { + "start": 5431.14, + "end": 5431.56, + "probability": 0.8013 + }, + { + "start": 5431.8, + "end": 5432.54, + "probability": 0.6588 + }, + { + "start": 5432.56, + "end": 5434.86, + "probability": 0.968 + }, + { + "start": 5435.62, + "end": 5438.9, + "probability": 0.9898 + }, + { + "start": 5439.74, + "end": 5440.46, + "probability": 0.533 + }, + { + "start": 5440.52, + "end": 5441.48, + "probability": 0.7024 + }, + { + "start": 5441.74, + "end": 5442.9, + "probability": 0.9956 + }, + { + "start": 5443.78, + "end": 5444.36, + "probability": 0.955 + }, + { + "start": 5444.84, + "end": 5448.36, + "probability": 0.9715 + }, + { + "start": 5450.17, + "end": 5451.2, + "probability": 0.9606 + }, + { + "start": 5459.3, + "end": 5461.32, + "probability": 0.6242 + }, + { + "start": 5462.78, + "end": 5466.88, + "probability": 0.8719 + }, + { + "start": 5468.26, + "end": 5468.54, + "probability": 0.7238 + }, + { + "start": 5471.1, + "end": 5472.6, + "probability": 0.9928 + }, + { + "start": 5473.84, + "end": 5474.24, + "probability": 0.9982 + }, + { + "start": 5475.26, + "end": 5479.9, + "probability": 0.99 + }, + { + "start": 5481.28, + "end": 5483.04, + "probability": 0.991 + }, + { + "start": 5486.14, + "end": 5490.58, + "probability": 0.9854 + }, + { + "start": 5490.9, + "end": 5491.68, + "probability": 0.6396 + }, + { + "start": 5491.7, + "end": 5492.64, + "probability": 0.6927 + }, + { + "start": 5493.56, + "end": 5496.24, + "probability": 0.8185 + }, + { + "start": 5498.86, + "end": 5502.24, + "probability": 0.9711 + }, + { + "start": 5503.54, + "end": 5506.18, + "probability": 0.9264 + }, + { + "start": 5506.8, + "end": 5507.88, + "probability": 0.9146 + }, + { + "start": 5508.56, + "end": 5509.5, + "probability": 0.9092 + }, + { + "start": 5510.32, + "end": 5511.76, + "probability": 0.8537 + }, + { + "start": 5512.1, + "end": 5513.56, + "probability": 0.7841 + }, + { + "start": 5515.08, + "end": 5516.16, + "probability": 0.9001 + }, + { + "start": 5516.22, + "end": 5522.84, + "probability": 0.6364 + }, + { + "start": 5522.96, + "end": 5524.2, + "probability": 0.7961 + }, + { + "start": 5525.56, + "end": 5527.46, + "probability": 0.8654 + }, + { + "start": 5529.02, + "end": 5531.52, + "probability": 0.8849 + }, + { + "start": 5533.8, + "end": 5534.48, + "probability": 0.3975 + }, + { + "start": 5537.46, + "end": 5538.1, + "probability": 0.8708 + }, + { + "start": 5539.26, + "end": 5539.94, + "probability": 0.4986 + }, + { + "start": 5541.32, + "end": 5543.72, + "probability": 0.9959 + }, + { + "start": 5545.46, + "end": 5546.38, + "probability": 0.8257 + }, + { + "start": 5546.6, + "end": 5547.34, + "probability": 0.9049 + }, + { + "start": 5547.5, + "end": 5548.32, + "probability": 0.749 + }, + { + "start": 5548.42, + "end": 5549.68, + "probability": 0.9316 + }, + { + "start": 5550.7, + "end": 5554.11, + "probability": 0.9503 + }, + { + "start": 5554.66, + "end": 5555.92, + "probability": 0.9615 + }, + { + "start": 5556.44, + "end": 5560.8, + "probability": 0.9121 + }, + { + "start": 5562.06, + "end": 5563.52, + "probability": 0.6766 + }, + { + "start": 5563.64, + "end": 5564.54, + "probability": 0.9697 + }, + { + "start": 5565.02, + "end": 5567.72, + "probability": 0.9239 + }, + { + "start": 5568.98, + "end": 5572.22, + "probability": 0.8904 + }, + { + "start": 5573.76, + "end": 5574.4, + "probability": 0.871 + }, + { + "start": 5575.28, + "end": 5576.96, + "probability": 0.9601 + }, + { + "start": 5578.4, + "end": 5578.94, + "probability": 0.9174 + }, + { + "start": 5580.48, + "end": 5583.28, + "probability": 0.9425 + }, + { + "start": 5585.04, + "end": 5587.24, + "probability": 0.9948 + }, + { + "start": 5588.22, + "end": 5590.66, + "probability": 0.8228 + }, + { + "start": 5591.68, + "end": 5593.8, + "probability": 0.9966 + }, + { + "start": 5593.94, + "end": 5594.46, + "probability": 0.4945 + }, + { + "start": 5594.62, + "end": 5595.56, + "probability": 0.7059 + }, + { + "start": 5596.12, + "end": 5600.63, + "probability": 0.9779 + }, + { + "start": 5601.76, + "end": 5602.24, + "probability": 0.9677 + }, + { + "start": 5603.46, + "end": 5605.04, + "probability": 0.9895 + }, + { + "start": 5605.66, + "end": 5606.44, + "probability": 0.9504 + }, + { + "start": 5606.56, + "end": 5610.86, + "probability": 0.499 + }, + { + "start": 5611.2, + "end": 5615.82, + "probability": 0.9681 + }, + { + "start": 5617.44, + "end": 5621.04, + "probability": 0.8953 + }, + { + "start": 5625.04, + "end": 5629.42, + "probability": 0.9812 + }, + { + "start": 5630.08, + "end": 5631.44, + "probability": 0.9386 + }, + { + "start": 5632.66, + "end": 5635.78, + "probability": 0.9895 + }, + { + "start": 5636.78, + "end": 5639.9, + "probability": 0.9919 + }, + { + "start": 5640.52, + "end": 5641.5, + "probability": 0.0169 + }, + { + "start": 5642.1, + "end": 5646.36, + "probability": 0.8563 + }, + { + "start": 5646.38, + "end": 5646.92, + "probability": 0.9259 + }, + { + "start": 5646.98, + "end": 5647.88, + "probability": 0.6063 + }, + { + "start": 5649.0, + "end": 5649.92, + "probability": 0.9188 + }, + { + "start": 5651.06, + "end": 5651.48, + "probability": 0.9424 + }, + { + "start": 5653.84, + "end": 5656.96, + "probability": 0.9663 + }, + { + "start": 5658.12, + "end": 5661.48, + "probability": 0.9968 + }, + { + "start": 5662.32, + "end": 5664.16, + "probability": 0.9983 + }, + { + "start": 5665.36, + "end": 5670.22, + "probability": 0.9922 + }, + { + "start": 5671.72, + "end": 5673.88, + "probability": 0.8652 + }, + { + "start": 5674.76, + "end": 5675.82, + "probability": 0.9677 + }, + { + "start": 5676.46, + "end": 5679.36, + "probability": 0.7484 + }, + { + "start": 5680.52, + "end": 5682.86, + "probability": 0.7955 + }, + { + "start": 5683.92, + "end": 5686.32, + "probability": 0.9757 + }, + { + "start": 5687.18, + "end": 5690.16, + "probability": 0.5692 + }, + { + "start": 5690.56, + "end": 5693.96, + "probability": 0.7999 + }, + { + "start": 5694.78, + "end": 5698.48, + "probability": 0.5156 + }, + { + "start": 5699.54, + "end": 5705.32, + "probability": 0.9939 + }, + { + "start": 5705.32, + "end": 5708.38, + "probability": 0.9857 + }, + { + "start": 5709.1, + "end": 5712.44, + "probability": 0.9824 + }, + { + "start": 5713.4, + "end": 5714.98, + "probability": 0.897 + }, + { + "start": 5716.44, + "end": 5718.5, + "probability": 0.7739 + }, + { + "start": 5719.1, + "end": 5719.1, + "probability": 0.078 + }, + { + "start": 5719.1, + "end": 5721.92, + "probability": 0.9535 + }, + { + "start": 5725.38, + "end": 5729.36, + "probability": 0.9914 + }, + { + "start": 5729.92, + "end": 5734.75, + "probability": 0.8968 + }, + { + "start": 5735.78, + "end": 5736.42, + "probability": 0.7791 + }, + { + "start": 5737.0, + "end": 5737.8, + "probability": 0.9302 + }, + { + "start": 5738.72, + "end": 5744.04, + "probability": 0.9626 + }, + { + "start": 5744.4, + "end": 5745.32, + "probability": 0.9492 + }, + { + "start": 5745.38, + "end": 5747.22, + "probability": 0.9866 + }, + { + "start": 5749.66, + "end": 5750.64, + "probability": 0.9989 + }, + { + "start": 5751.96, + "end": 5753.14, + "probability": 0.9966 + }, + { + "start": 5753.74, + "end": 5757.64, + "probability": 0.777 + }, + { + "start": 5758.62, + "end": 5759.4, + "probability": 0.2115 + }, + { + "start": 5759.46, + "end": 5760.76, + "probability": 0.8567 + }, + { + "start": 5760.82, + "end": 5765.08, + "probability": 0.9756 + }, + { + "start": 5765.26, + "end": 5768.34, + "probability": 0.2751 + }, + { + "start": 5768.42, + "end": 5771.6, + "probability": 0.9495 + }, + { + "start": 5772.0, + "end": 5775.02, + "probability": 0.8829 + }, + { + "start": 5776.18, + "end": 5778.18, + "probability": 0.9927 + }, + { + "start": 5778.28, + "end": 5778.96, + "probability": 0.7775 + }, + { + "start": 5779.36, + "end": 5781.2, + "probability": 0.8234 + }, + { + "start": 5781.38, + "end": 5782.74, + "probability": 0.9548 + }, + { + "start": 5782.78, + "end": 5783.77, + "probability": 0.8843 + }, + { + "start": 5785.1, + "end": 5785.1, + "probability": 0.3802 + }, + { + "start": 5785.1, + "end": 5786.26, + "probability": 0.4739 + }, + { + "start": 5786.58, + "end": 5788.84, + "probability": 0.6694 + }, + { + "start": 5790.04, + "end": 5792.5, + "probability": 0.8662 + }, + { + "start": 5792.66, + "end": 5792.66, + "probability": 0.0853 + }, + { + "start": 5793.56, + "end": 5795.64, + "probability": 0.9597 + }, + { + "start": 5796.4, + "end": 5796.94, + "probability": 0.807 + }, + { + "start": 5800.4, + "end": 5800.98, + "probability": 0.768 + }, + { + "start": 5805.2, + "end": 5805.82, + "probability": 0.7979 + }, + { + "start": 5806.36, + "end": 5807.82, + "probability": 0.8589 + }, + { + "start": 5807.92, + "end": 5809.84, + "probability": 0.9784 + }, + { + "start": 5809.9, + "end": 5811.43, + "probability": 0.9889 + }, + { + "start": 5811.7, + "end": 5812.32, + "probability": 0.9311 + }, + { + "start": 5812.9, + "end": 5814.1, + "probability": 0.951 + }, + { + "start": 5815.16, + "end": 5818.56, + "probability": 0.9294 + }, + { + "start": 5819.34, + "end": 5823.66, + "probability": 0.9951 + }, + { + "start": 5823.98, + "end": 5824.94, + "probability": 0.8522 + }, + { + "start": 5825.0, + "end": 5827.14, + "probability": 0.9929 + }, + { + "start": 5827.26, + "end": 5831.6, + "probability": 0.9878 + }, + { + "start": 5831.6, + "end": 5835.0, + "probability": 0.9508 + }, + { + "start": 5835.82, + "end": 5839.6, + "probability": 0.7928 + }, + { + "start": 5840.98, + "end": 5844.26, + "probability": 0.9914 + }, + { + "start": 5844.8, + "end": 5849.46, + "probability": 0.9982 + }, + { + "start": 5849.9, + "end": 5851.34, + "probability": 0.7452 + }, + { + "start": 5851.4, + "end": 5851.84, + "probability": 0.4289 + }, + { + "start": 5851.94, + "end": 5852.24, + "probability": 0.5336 + }, + { + "start": 5852.28, + "end": 5854.62, + "probability": 0.9685 + }, + { + "start": 5855.22, + "end": 5858.9, + "probability": 0.8831 + }, + { + "start": 5859.42, + "end": 5862.72, + "probability": 0.9932 + }, + { + "start": 5863.68, + "end": 5864.5, + "probability": 0.5017 + }, + { + "start": 5864.54, + "end": 5865.66, + "probability": 0.9672 + }, + { + "start": 5865.98, + "end": 5867.5, + "probability": 0.9345 + }, + { + "start": 5869.8, + "end": 5872.38, + "probability": 0.9926 + }, + { + "start": 5873.6, + "end": 5875.78, + "probability": 0.9797 + }, + { + "start": 5875.86, + "end": 5876.54, + "probability": 0.7921 + }, + { + "start": 5876.64, + "end": 5879.73, + "probability": 0.7685 + }, + { + "start": 5881.08, + "end": 5882.84, + "probability": 0.9346 + }, + { + "start": 5883.16, + "end": 5883.5, + "probability": 0.4892 + }, + { + "start": 5883.56, + "end": 5883.88, + "probability": 0.7867 + }, + { + "start": 5883.88, + "end": 5884.92, + "probability": 0.9819 + }, + { + "start": 5885.04, + "end": 5886.42, + "probability": 0.9833 + }, + { + "start": 5886.7, + "end": 5890.12, + "probability": 0.9777 + }, + { + "start": 5890.2, + "end": 5892.32, + "probability": 0.9969 + }, + { + "start": 5892.86, + "end": 5896.18, + "probability": 0.998 + }, + { + "start": 5896.28, + "end": 5899.7, + "probability": 0.8818 + }, + { + "start": 5899.78, + "end": 5900.24, + "probability": 0.7168 + }, + { + "start": 5900.28, + "end": 5900.38, + "probability": 0.5878 + }, + { + "start": 5900.46, + "end": 5900.86, + "probability": 0.8608 + }, + { + "start": 5900.9, + "end": 5902.2, + "probability": 0.93 + }, + { + "start": 5902.54, + "end": 5904.28, + "probability": 0.9415 + }, + { + "start": 5904.74, + "end": 5910.64, + "probability": 0.8281 + }, + { + "start": 5911.18, + "end": 5914.84, + "probability": 0.9753 + }, + { + "start": 5915.12, + "end": 5920.12, + "probability": 0.9971 + }, + { + "start": 5921.26, + "end": 5922.32, + "probability": 0.9565 + }, + { + "start": 5923.4, + "end": 5925.64, + "probability": 0.9746 + }, + { + "start": 5925.7, + "end": 5929.4, + "probability": 0.9971 + }, + { + "start": 5930.46, + "end": 5931.68, + "probability": 0.7578 + }, + { + "start": 5932.36, + "end": 5932.9, + "probability": 0.7814 + }, + { + "start": 5933.5, + "end": 5937.2, + "probability": 0.902 + }, + { + "start": 5937.68, + "end": 5938.46, + "probability": 0.9856 + }, + { + "start": 5938.66, + "end": 5942.8, + "probability": 0.9082 + }, + { + "start": 5945.52, + "end": 5948.52, + "probability": 0.9106 + }, + { + "start": 5948.76, + "end": 5950.24, + "probability": 0.9276 + }, + { + "start": 5950.34, + "end": 5952.66, + "probability": 0.9041 + }, + { + "start": 5952.8, + "end": 5954.54, + "probability": 0.846 + }, + { + "start": 5956.2, + "end": 5957.74, + "probability": 0.9917 + }, + { + "start": 5958.3, + "end": 5962.18, + "probability": 0.8323 + }, + { + "start": 5963.22, + "end": 5966.4, + "probability": 0.9268 + }, + { + "start": 5967.22, + "end": 5970.77, + "probability": 0.8262 + }, + { + "start": 5971.88, + "end": 5973.76, + "probability": 0.8442 + }, + { + "start": 5974.06, + "end": 5975.7, + "probability": 0.968 + }, + { + "start": 5975.82, + "end": 5976.68, + "probability": 0.7998 + }, + { + "start": 5977.14, + "end": 5978.1, + "probability": 0.6666 + }, + { + "start": 5978.88, + "end": 5983.58, + "probability": 0.9895 + }, + { + "start": 5983.68, + "end": 5984.12, + "probability": 0.5688 + }, + { + "start": 5984.72, + "end": 5990.58, + "probability": 0.9944 + }, + { + "start": 5991.86, + "end": 5992.82, + "probability": 0.9108 + }, + { + "start": 5993.56, + "end": 5995.12, + "probability": 0.9794 + }, + { + "start": 5995.2, + "end": 5996.29, + "probability": 0.5145 + }, + { + "start": 5996.64, + "end": 5998.7, + "probability": 0.9682 + }, + { + "start": 5999.08, + "end": 5999.8, + "probability": 0.7994 + }, + { + "start": 5999.94, + "end": 6000.36, + "probability": 0.8223 + }, + { + "start": 6000.7, + "end": 6002.32, + "probability": 0.8638 + }, + { + "start": 6002.36, + "end": 6003.14, + "probability": 0.916 + }, + { + "start": 6003.48, + "end": 6005.98, + "probability": 0.9688 + }, + { + "start": 6006.32, + "end": 6007.0, + "probability": 0.454 + }, + { + "start": 6007.84, + "end": 6011.12, + "probability": 0.9612 + }, + { + "start": 6011.46, + "end": 6013.2, + "probability": 0.9941 + }, + { + "start": 6014.58, + "end": 6016.68, + "probability": 0.9533 + }, + { + "start": 6017.14, + "end": 6021.32, + "probability": 0.9965 + }, + { + "start": 6021.44, + "end": 6022.24, + "probability": 0.9905 + }, + { + "start": 6023.1, + "end": 6024.04, + "probability": 0.82 + }, + { + "start": 6024.82, + "end": 6026.22, + "probability": 0.9595 + }, + { + "start": 6026.24, + "end": 6030.46, + "probability": 0.9943 + }, + { + "start": 6030.72, + "end": 6032.02, + "probability": 0.9941 + }, + { + "start": 6032.38, + "end": 6034.33, + "probability": 0.9513 + }, + { + "start": 6034.92, + "end": 6036.14, + "probability": 0.9849 + }, + { + "start": 6036.52, + "end": 6038.74, + "probability": 0.9974 + }, + { + "start": 6038.9, + "end": 6042.06, + "probability": 0.9534 + }, + { + "start": 6042.36, + "end": 6042.94, + "probability": 0.9199 + }, + { + "start": 6043.1, + "end": 6043.72, + "probability": 0.6853 + }, + { + "start": 6044.02, + "end": 6044.78, + "probability": 0.7941 + }, + { + "start": 6045.18, + "end": 6046.48, + "probability": 0.9846 + }, + { + "start": 6046.74, + "end": 6047.22, + "probability": 0.2572 + }, + { + "start": 6047.36, + "end": 6051.16, + "probability": 0.9954 + }, + { + "start": 6051.84, + "end": 6053.4, + "probability": 0.9197 + }, + { + "start": 6053.86, + "end": 6057.3, + "probability": 0.8346 + }, + { + "start": 6057.58, + "end": 6059.92, + "probability": 0.9676 + }, + { + "start": 6060.78, + "end": 6062.92, + "probability": 0.9883 + }, + { + "start": 6063.84, + "end": 6066.58, + "probability": 0.8899 + }, + { + "start": 6070.26, + "end": 6072.84, + "probability": 0.9119 + }, + { + "start": 6073.62, + "end": 6074.54, + "probability": 0.7939 + }, + { + "start": 6075.12, + "end": 6075.97, + "probability": 0.9937 + }, + { + "start": 6076.2, + "end": 6078.26, + "probability": 0.852 + }, + { + "start": 6078.9, + "end": 6082.42, + "probability": 0.9716 + }, + { + "start": 6082.88, + "end": 6083.48, + "probability": 0.3741 + }, + { + "start": 6085.34, + "end": 6088.26, + "probability": 0.8296 + }, + { + "start": 6088.36, + "end": 6090.94, + "probability": 0.9423 + }, + { + "start": 6092.08, + "end": 6093.6, + "probability": 0.8529 + }, + { + "start": 6094.16, + "end": 6096.72, + "probability": 0.9758 + }, + { + "start": 6097.18, + "end": 6100.14, + "probability": 0.998 + }, + { + "start": 6100.36, + "end": 6101.36, + "probability": 0.8521 + }, + { + "start": 6101.7, + "end": 6104.3, + "probability": 0.9391 + }, + { + "start": 6104.42, + "end": 6106.18, + "probability": 0.9517 + }, + { + "start": 6106.38, + "end": 6106.5, + "probability": 0.2793 + }, + { + "start": 6106.7, + "end": 6110.52, + "probability": 0.998 + }, + { + "start": 6111.16, + "end": 6112.46, + "probability": 0.9951 + }, + { + "start": 6112.7, + "end": 6113.94, + "probability": 0.8545 + }, + { + "start": 6114.3, + "end": 6115.94, + "probability": 0.8164 + }, + { + "start": 6116.02, + "end": 6116.08, + "probability": 0.2552 + }, + { + "start": 6116.08, + "end": 6116.68, + "probability": 0.3595 + }, + { + "start": 6117.42, + "end": 6118.4, + "probability": 0.6468 + }, + { + "start": 6118.78, + "end": 6120.02, + "probability": 0.9443 + }, + { + "start": 6120.66, + "end": 6125.02, + "probability": 0.9785 + }, + { + "start": 6125.96, + "end": 6128.38, + "probability": 0.85 + }, + { + "start": 6129.86, + "end": 6131.16, + "probability": 0.9739 + }, + { + "start": 6131.54, + "end": 6131.8, + "probability": 0.4956 + }, + { + "start": 6131.86, + "end": 6133.52, + "probability": 0.8817 + }, + { + "start": 6133.92, + "end": 6135.76, + "probability": 0.909 + }, + { + "start": 6135.84, + "end": 6136.48, + "probability": 0.8225 + }, + { + "start": 6136.62, + "end": 6138.14, + "probability": 0.4584 + }, + { + "start": 6138.2, + "end": 6138.76, + "probability": 0.6343 + }, + { + "start": 6138.82, + "end": 6139.94, + "probability": 0.9731 + }, + { + "start": 6141.74, + "end": 6146.16, + "probability": 0.8527 + }, + { + "start": 6147.66, + "end": 6150.74, + "probability": 0.7031 + }, + { + "start": 6150.86, + "end": 6151.22, + "probability": 0.5249 + }, + { + "start": 6151.22, + "end": 6151.8, + "probability": 0.2885 + }, + { + "start": 6152.6, + "end": 6154.46, + "probability": 0.7143 + }, + { + "start": 6156.48, + "end": 6157.52, + "probability": 0.5704 + }, + { + "start": 6157.76, + "end": 6160.22, + "probability": 0.8129 + }, + { + "start": 6161.18, + "end": 6163.64, + "probability": 0.8823 + }, + { + "start": 6164.54, + "end": 6169.42, + "probability": 0.854 + }, + { + "start": 6170.48, + "end": 6174.26, + "probability": 0.9016 + }, + { + "start": 6174.32, + "end": 6177.82, + "probability": 0.9811 + }, + { + "start": 6179.0, + "end": 6181.18, + "probability": 0.8188 + }, + { + "start": 6184.42, + "end": 6186.24, + "probability": 0.7319 + }, + { + "start": 6186.76, + "end": 6190.34, + "probability": 0.9265 + }, + { + "start": 6191.14, + "end": 6192.88, + "probability": 0.9788 + }, + { + "start": 6193.56, + "end": 6198.62, + "probability": 0.9828 + }, + { + "start": 6199.2, + "end": 6202.7, + "probability": 0.9294 + }, + { + "start": 6203.66, + "end": 6205.82, + "probability": 0.9833 + }, + { + "start": 6206.2, + "end": 6208.12, + "probability": 0.7834 + }, + { + "start": 6208.42, + "end": 6214.1, + "probability": 0.9481 + }, + { + "start": 6214.32, + "end": 6214.64, + "probability": 0.5125 + }, + { + "start": 6214.8, + "end": 6214.98, + "probability": 0.7658 + }, + { + "start": 6215.22, + "end": 6218.13, + "probability": 0.8058 + }, + { + "start": 6219.38, + "end": 6221.16, + "probability": 0.8915 + }, + { + "start": 6222.36, + "end": 6227.26, + "probability": 0.9452 + }, + { + "start": 6228.01, + "end": 6230.46, + "probability": 0.9573 + }, + { + "start": 6231.1, + "end": 6233.46, + "probability": 0.9946 + }, + { + "start": 6233.52, + "end": 6238.28, + "probability": 0.9932 + }, + { + "start": 6238.66, + "end": 6241.64, + "probability": 0.974 + }, + { + "start": 6242.2, + "end": 6244.9, + "probability": 0.9854 + }, + { + "start": 6245.3, + "end": 6246.88, + "probability": 0.991 + }, + { + "start": 6247.0, + "end": 6247.74, + "probability": 0.7125 + }, + { + "start": 6248.3, + "end": 6248.78, + "probability": 0.9117 + }, + { + "start": 6249.74, + "end": 6250.9, + "probability": 0.9914 + }, + { + "start": 6251.54, + "end": 6255.78, + "probability": 0.9966 + }, + { + "start": 6256.66, + "end": 6259.96, + "probability": 0.9109 + }, + { + "start": 6260.6, + "end": 6262.12, + "probability": 0.8193 + }, + { + "start": 6263.4, + "end": 6263.42, + "probability": 0.9268 + }, + { + "start": 6266.56, + "end": 6271.94, + "probability": 0.9684 + }, + { + "start": 6272.66, + "end": 6275.14, + "probability": 0.8535 + }, + { + "start": 6275.4, + "end": 6278.46, + "probability": 0.789 + }, + { + "start": 6278.56, + "end": 6280.98, + "probability": 0.9313 + }, + { + "start": 6281.88, + "end": 6284.08, + "probability": 0.9962 + }, + { + "start": 6285.3, + "end": 6290.04, + "probability": 0.9971 + }, + { + "start": 6290.18, + "end": 6291.22, + "probability": 0.8752 + }, + { + "start": 6291.56, + "end": 6293.46, + "probability": 0.9648 + }, + { + "start": 6294.98, + "end": 6299.48, + "probability": 0.8792 + }, + { + "start": 6299.84, + "end": 6300.96, + "probability": 0.9322 + }, + { + "start": 6301.0, + "end": 6301.56, + "probability": 0.7723 + }, + { + "start": 6301.94, + "end": 6307.4, + "probability": 0.9951 + }, + { + "start": 6307.84, + "end": 6311.22, + "probability": 0.9723 + }, + { + "start": 6311.74, + "end": 6314.64, + "probability": 0.9467 + }, + { + "start": 6315.36, + "end": 6319.26, + "probability": 0.9972 + }, + { + "start": 6319.88, + "end": 6325.7, + "probability": 0.9966 + }, + { + "start": 6325.78, + "end": 6326.74, + "probability": 0.9298 + }, + { + "start": 6326.96, + "end": 6328.12, + "probability": 0.7092 + }, + { + "start": 6328.18, + "end": 6329.21, + "probability": 0.9146 + }, + { + "start": 6329.66, + "end": 6332.96, + "probability": 0.998 + }, + { + "start": 6333.84, + "end": 6337.3, + "probability": 0.9788 + }, + { + "start": 6337.3, + "end": 6340.96, + "probability": 0.9949 + }, + { + "start": 6344.76, + "end": 6349.3, + "probability": 0.9945 + }, + { + "start": 6350.04, + "end": 6354.06, + "probability": 0.8429 + }, + { + "start": 6354.16, + "end": 6356.56, + "probability": 0.9797 + }, + { + "start": 6356.7, + "end": 6357.18, + "probability": 0.7484 + }, + { + "start": 6357.72, + "end": 6358.54, + "probability": 0.9474 + }, + { + "start": 6358.66, + "end": 6359.4, + "probability": 0.7772 + }, + { + "start": 6359.64, + "end": 6360.38, + "probability": 0.7375 + }, + { + "start": 6360.78, + "end": 6362.48, + "probability": 0.8555 + }, + { + "start": 6362.52, + "end": 6363.84, + "probability": 0.857 + }, + { + "start": 6364.46, + "end": 6365.72, + "probability": 0.8282 + }, + { + "start": 6366.18, + "end": 6370.52, + "probability": 0.9952 + }, + { + "start": 6370.72, + "end": 6372.26, + "probability": 0.9257 + }, + { + "start": 6372.76, + "end": 6376.22, + "probability": 0.9948 + }, + { + "start": 6376.74, + "end": 6378.68, + "probability": 0.9977 + }, + { + "start": 6380.26, + "end": 6381.08, + "probability": 0.5098 + }, + { + "start": 6381.26, + "end": 6386.5, + "probability": 0.9892 + }, + { + "start": 6387.34, + "end": 6389.46, + "probability": 0.8997 + }, + { + "start": 6391.38, + "end": 6394.78, + "probability": 0.9261 + }, + { + "start": 6395.94, + "end": 6398.7, + "probability": 0.8491 + }, + { + "start": 6399.58, + "end": 6402.56, + "probability": 0.9106 + }, + { + "start": 6403.52, + "end": 6404.78, + "probability": 0.95 + }, + { + "start": 6405.32, + "end": 6407.46, + "probability": 0.8839 + }, + { + "start": 6407.86, + "end": 6412.1, + "probability": 0.9987 + }, + { + "start": 6412.64, + "end": 6415.54, + "probability": 0.9572 + }, + { + "start": 6416.22, + "end": 6420.6, + "probability": 0.9929 + }, + { + "start": 6421.04, + "end": 6422.52, + "probability": 0.7638 + }, + { + "start": 6424.24, + "end": 6426.66, + "probability": 0.4007 + }, + { + "start": 6426.92, + "end": 6433.16, + "probability": 0.9982 + }, + { + "start": 6433.3, + "end": 6434.24, + "probability": 0.892 + }, + { + "start": 6435.04, + "end": 6439.0, + "probability": 0.9573 + }, + { + "start": 6440.04, + "end": 6445.18, + "probability": 0.9482 + }, + { + "start": 6445.78, + "end": 6447.3, + "probability": 0.7656 + }, + { + "start": 6447.38, + "end": 6449.18, + "probability": 0.9982 + }, + { + "start": 6449.3, + "end": 6451.04, + "probability": 0.8639 + }, + { + "start": 6451.76, + "end": 6453.96, + "probability": 0.5794 + }, + { + "start": 6454.56, + "end": 6457.66, + "probability": 0.9632 + }, + { + "start": 6457.76, + "end": 6458.76, + "probability": 0.7967 + }, + { + "start": 6458.84, + "end": 6468.68, + "probability": 0.9956 + }, + { + "start": 6468.74, + "end": 6469.8, + "probability": 0.8706 + }, + { + "start": 6470.02, + "end": 6470.88, + "probability": 0.5807 + }, + { + "start": 6470.92, + "end": 6474.0, + "probability": 0.9178 + }, + { + "start": 6474.56, + "end": 6478.18, + "probability": 0.9945 + }, + { + "start": 6478.6, + "end": 6480.2, + "probability": 0.9828 + }, + { + "start": 6480.22, + "end": 6481.0, + "probability": 0.6609 + }, + { + "start": 6481.0, + "end": 6483.22, + "probability": 0.9806 + }, + { + "start": 6483.32, + "end": 6486.9, + "probability": 0.8927 + }, + { + "start": 6487.58, + "end": 6492.22, + "probability": 0.9696 + }, + { + "start": 6492.6, + "end": 6495.24, + "probability": 0.986 + }, + { + "start": 6495.44, + "end": 6497.9, + "probability": 0.9721 + }, + { + "start": 6498.4, + "end": 6501.24, + "probability": 0.9924 + }, + { + "start": 6501.52, + "end": 6502.74, + "probability": 0.7728 + }, + { + "start": 6503.26, + "end": 6505.22, + "probability": 0.9793 + }, + { + "start": 6505.5, + "end": 6506.48, + "probability": 0.9597 + }, + { + "start": 6506.86, + "end": 6508.28, + "probability": 0.8832 + }, + { + "start": 6508.56, + "end": 6509.18, + "probability": 0.9542 + }, + { + "start": 6509.24, + "end": 6511.58, + "probability": 0.9733 + }, + { + "start": 6511.78, + "end": 6513.5, + "probability": 0.9686 + }, + { + "start": 6513.62, + "end": 6513.82, + "probability": 0.8143 + }, + { + "start": 6515.12, + "end": 6517.8, + "probability": 0.6991 + }, + { + "start": 6517.96, + "end": 6521.24, + "probability": 0.9565 + }, + { + "start": 6521.24, + "end": 6525.38, + "probability": 0.8923 + }, + { + "start": 6525.82, + "end": 6526.54, + "probability": 0.3149 + }, + { + "start": 6526.66, + "end": 6529.42, + "probability": 0.9768 + }, + { + "start": 6529.42, + "end": 6532.86, + "probability": 0.9976 + }, + { + "start": 6532.92, + "end": 6536.94, + "probability": 0.9868 + }, + { + "start": 6537.24, + "end": 6539.02, + "probability": 0.9868 + }, + { + "start": 6540.12, + "end": 6543.72, + "probability": 0.6725 + }, + { + "start": 6543.76, + "end": 6544.28, + "probability": 0.7728 + }, + { + "start": 6544.46, + "end": 6545.52, + "probability": 0.869 + }, + { + "start": 6545.54, + "end": 6547.7, + "probability": 0.9136 + }, + { + "start": 6547.78, + "end": 6552.42, + "probability": 0.9858 + }, + { + "start": 6552.82, + "end": 6555.62, + "probability": 0.9481 + }, + { + "start": 6555.68, + "end": 6558.78, + "probability": 0.962 + }, + { + "start": 6559.48, + "end": 6563.12, + "probability": 0.9498 + }, + { + "start": 6564.82, + "end": 6565.92, + "probability": 0.8815 + }, + { + "start": 6567.08, + "end": 6571.14, + "probability": 0.9976 + }, + { + "start": 6571.82, + "end": 6573.16, + "probability": 0.687 + }, + { + "start": 6580.72, + "end": 6581.0, + "probability": 0.0694 + }, + { + "start": 6592.64, + "end": 6593.16, + "probability": 0.6568 + }, + { + "start": 6593.28, + "end": 6596.36, + "probability": 0.9936 + }, + { + "start": 6596.4, + "end": 6601.7, + "probability": 0.9901 + }, + { + "start": 6601.72, + "end": 6602.24, + "probability": 0.7575 + }, + { + "start": 6602.9, + "end": 6606.72, + "probability": 0.7029 + }, + { + "start": 6607.14, + "end": 6610.44, + "probability": 0.9705 + }, + { + "start": 6611.18, + "end": 6614.26, + "probability": 0.9919 + }, + { + "start": 6614.38, + "end": 6615.42, + "probability": 0.8505 + }, + { + "start": 6616.2, + "end": 6618.8, + "probability": 0.9902 + }, + { + "start": 6619.3, + "end": 6621.16, + "probability": 0.9219 + }, + { + "start": 6622.2, + "end": 6624.44, + "probability": 0.9027 + }, + { + "start": 6625.44, + "end": 6629.0, + "probability": 0.8052 + }, + { + "start": 6629.08, + "end": 6629.68, + "probability": 0.9605 + }, + { + "start": 6629.8, + "end": 6631.1, + "probability": 0.8493 + }, + { + "start": 6631.98, + "end": 6632.88, + "probability": 0.7711 + }, + { + "start": 6634.44, + "end": 6640.54, + "probability": 0.9281 + }, + { + "start": 6655.16, + "end": 6655.44, + "probability": 0.0686 + }, + { + "start": 6672.08, + "end": 6673.02, + "probability": 0.7033 + }, + { + "start": 6673.58, + "end": 6677.4, + "probability": 0.7302 + }, + { + "start": 6678.32, + "end": 6682.52, + "probability": 0.8708 + }, + { + "start": 6683.2, + "end": 6684.02, + "probability": 0.8746 + }, + { + "start": 6684.98, + "end": 6685.8, + "probability": 0.978 + }, + { + "start": 6686.38, + "end": 6687.62, + "probability": 0.9761 + }, + { + "start": 6689.4, + "end": 6691.02, + "probability": 0.9919 + }, + { + "start": 6691.96, + "end": 6695.76, + "probability": 0.9796 + }, + { + "start": 6696.4, + "end": 6698.46, + "probability": 0.7437 + }, + { + "start": 6699.74, + "end": 6702.4, + "probability": 0.991 + }, + { + "start": 6703.32, + "end": 6706.82, + "probability": 0.9922 + }, + { + "start": 6707.46, + "end": 6708.68, + "probability": 0.9388 + }, + { + "start": 6709.12, + "end": 6711.4, + "probability": 0.883 + }, + { + "start": 6712.68, + "end": 6716.7, + "probability": 0.9574 + }, + { + "start": 6717.52, + "end": 6718.38, + "probability": 0.7875 + }, + { + "start": 6719.14, + "end": 6723.38, + "probability": 0.9642 + }, + { + "start": 6724.26, + "end": 6726.02, + "probability": 0.9309 + }, + { + "start": 6726.62, + "end": 6729.5, + "probability": 0.9858 + }, + { + "start": 6730.92, + "end": 6735.56, + "probability": 0.9945 + }, + { + "start": 6736.14, + "end": 6738.3, + "probability": 0.9816 + }, + { + "start": 6740.62, + "end": 6744.1, + "probability": 0.7383 + }, + { + "start": 6744.78, + "end": 6745.8, + "probability": 0.7987 + }, + { + "start": 6746.56, + "end": 6747.7, + "probability": 0.8257 + }, + { + "start": 6748.36, + "end": 6752.78, + "probability": 0.9053 + }, + { + "start": 6754.4, + "end": 6758.44, + "probability": 0.9268 + }, + { + "start": 6758.96, + "end": 6762.78, + "probability": 0.9876 + }, + { + "start": 6764.72, + "end": 6769.9, + "probability": 0.9982 + }, + { + "start": 6770.54, + "end": 6773.36, + "probability": 0.9062 + }, + { + "start": 6774.66, + "end": 6777.58, + "probability": 0.9922 + }, + { + "start": 6777.72, + "end": 6778.44, + "probability": 0.8449 + }, + { + "start": 6778.5, + "end": 6779.36, + "probability": 0.489 + }, + { + "start": 6779.5, + "end": 6780.22, + "probability": 0.4484 + }, + { + "start": 6780.28, + "end": 6780.5, + "probability": 0.7166 + }, + { + "start": 6781.06, + "end": 6782.98, + "probability": 0.944 + }, + { + "start": 6783.72, + "end": 6787.08, + "probability": 0.9847 + }, + { + "start": 6787.14, + "end": 6787.72, + "probability": 0.9311 + }, + { + "start": 6790.2, + "end": 6793.88, + "probability": 0.9719 + }, + { + "start": 6793.88, + "end": 6797.3, + "probability": 0.9924 + }, + { + "start": 6798.14, + "end": 6798.82, + "probability": 0.9866 + }, + { + "start": 6800.6, + "end": 6803.72, + "probability": 0.9984 + }, + { + "start": 6804.18, + "end": 6808.04, + "probability": 0.9248 + }, + { + "start": 6808.58, + "end": 6811.72, + "probability": 0.9149 + }, + { + "start": 6812.9, + "end": 6814.7, + "probability": 0.983 + }, + { + "start": 6816.32, + "end": 6816.88, + "probability": 0.7228 + }, + { + "start": 6817.6, + "end": 6819.5, + "probability": 0.9043 + }, + { + "start": 6820.5, + "end": 6822.86, + "probability": 0.9985 + }, + { + "start": 6824.78, + "end": 6825.4, + "probability": 0.7252 + }, + { + "start": 6827.16, + "end": 6831.16, + "probability": 0.9942 + }, + { + "start": 6832.22, + "end": 6834.62, + "probability": 0.9892 + }, + { + "start": 6835.42, + "end": 6836.54, + "probability": 0.9937 + }, + { + "start": 6837.88, + "end": 6840.48, + "probability": 0.993 + }, + { + "start": 6841.56, + "end": 6843.24, + "probability": 0.9934 + }, + { + "start": 6843.76, + "end": 6845.28, + "probability": 0.9265 + }, + { + "start": 6846.68, + "end": 6848.84, + "probability": 0.7303 + }, + { + "start": 6850.38, + "end": 6852.64, + "probability": 0.9982 + }, + { + "start": 6853.54, + "end": 6856.74, + "probability": 0.9881 + }, + { + "start": 6857.56, + "end": 6859.84, + "probability": 0.931 + }, + { + "start": 6860.58, + "end": 6862.18, + "probability": 0.8881 + }, + { + "start": 6863.44, + "end": 6866.3, + "probability": 0.8635 + }, + { + "start": 6867.28, + "end": 6870.34, + "probability": 0.8729 + }, + { + "start": 6871.44, + "end": 6872.32, + "probability": 0.9922 + }, + { + "start": 6872.68, + "end": 6876.12, + "probability": 0.9634 + }, + { + "start": 6876.76, + "end": 6878.6, + "probability": 0.9807 + }, + { + "start": 6879.8, + "end": 6881.7, + "probability": 0.9893 + }, + { + "start": 6882.8, + "end": 6885.0, + "probability": 0.9865 + }, + { + "start": 6885.54, + "end": 6888.52, + "probability": 0.9851 + }, + { + "start": 6889.94, + "end": 6890.55, + "probability": 0.9924 + }, + { + "start": 6891.5, + "end": 6895.56, + "probability": 0.8433 + }, + { + "start": 6896.04, + "end": 6899.2, + "probability": 0.8852 + }, + { + "start": 6899.64, + "end": 6901.62, + "probability": 0.9451 + }, + { + "start": 6902.2, + "end": 6906.1, + "probability": 0.9895 + }, + { + "start": 6907.14, + "end": 6910.06, + "probability": 0.8755 + }, + { + "start": 6910.68, + "end": 6911.32, + "probability": 0.7604 + }, + { + "start": 6912.3, + "end": 6913.76, + "probability": 0.99 + }, + { + "start": 6913.82, + "end": 6917.92, + "probability": 0.9683 + }, + { + "start": 6918.54, + "end": 6920.62, + "probability": 0.9876 + }, + { + "start": 6921.84, + "end": 6926.34, + "probability": 0.9563 + }, + { + "start": 6927.44, + "end": 6931.7, + "probability": 0.9797 + }, + { + "start": 6932.4, + "end": 6934.98, + "probability": 0.9962 + }, + { + "start": 6937.08, + "end": 6937.6, + "probability": 0.706 + }, + { + "start": 6938.6, + "end": 6941.28, + "probability": 0.9932 + }, + { + "start": 6942.4, + "end": 6943.74, + "probability": 0.9167 + }, + { + "start": 6944.52, + "end": 6946.74, + "probability": 0.9526 + }, + { + "start": 6947.36, + "end": 6949.44, + "probability": 0.9917 + }, + { + "start": 6950.24, + "end": 6951.56, + "probability": 0.95 + }, + { + "start": 6952.22, + "end": 6954.76, + "probability": 0.7007 + }, + { + "start": 6956.16, + "end": 6959.24, + "probability": 0.9777 + }, + { + "start": 6959.88, + "end": 6965.82, + "probability": 0.9464 + }, + { + "start": 6966.5, + "end": 6968.42, + "probability": 0.973 + }, + { + "start": 6969.54, + "end": 6970.26, + "probability": 0.9365 + }, + { + "start": 6970.88, + "end": 6977.8, + "probability": 0.8334 + }, + { + "start": 6979.44, + "end": 6982.94, + "probability": 0.9592 + }, + { + "start": 6983.94, + "end": 6988.64, + "probability": 0.999 + }, + { + "start": 6989.16, + "end": 6993.18, + "probability": 0.9633 + }, + { + "start": 6994.64, + "end": 6996.78, + "probability": 0.8995 + }, + { + "start": 6997.72, + "end": 7001.3, + "probability": 0.9119 + }, + { + "start": 7001.3, + "end": 7004.16, + "probability": 0.9956 + }, + { + "start": 7005.34, + "end": 7005.98, + "probability": 0.6908 + }, + { + "start": 7006.8, + "end": 7011.26, + "probability": 0.9497 + }, + { + "start": 7012.24, + "end": 7013.7, + "probability": 0.6298 + }, + { + "start": 7014.28, + "end": 7014.68, + "probability": 0.6157 + }, + { + "start": 7015.56, + "end": 7019.16, + "probability": 0.9845 + }, + { + "start": 7019.16, + "end": 7023.44, + "probability": 0.9929 + }, + { + "start": 7023.7, + "end": 7024.29, + "probability": 0.9194 + }, + { + "start": 7025.2, + "end": 7025.54, + "probability": 0.9689 + }, + { + "start": 7026.74, + "end": 7027.26, + "probability": 0.9066 + }, + { + "start": 7028.36, + "end": 7032.66, + "probability": 0.9257 + }, + { + "start": 7033.62, + "end": 7037.16, + "probability": 0.9905 + }, + { + "start": 7038.24, + "end": 7043.92, + "probability": 0.9695 + }, + { + "start": 7044.24, + "end": 7045.4, + "probability": 0.9438 + }, + { + "start": 7046.34, + "end": 7050.48, + "probability": 0.9967 + }, + { + "start": 7051.44, + "end": 7053.28, + "probability": 0.9443 + }, + { + "start": 7054.16, + "end": 7055.64, + "probability": 0.9068 + }, + { + "start": 7056.5, + "end": 7061.16, + "probability": 0.9827 + }, + { + "start": 7062.08, + "end": 7067.78, + "probability": 0.9712 + }, + { + "start": 7069.52, + "end": 7073.18, + "probability": 0.8926 + }, + { + "start": 7073.76, + "end": 7076.68, + "probability": 0.9932 + }, + { + "start": 7077.56, + "end": 7083.0, + "probability": 0.8886 + }, + { + "start": 7084.02, + "end": 7089.22, + "probability": 0.9829 + }, + { + "start": 7090.34, + "end": 7091.08, + "probability": 0.9468 + }, + { + "start": 7091.24, + "end": 7092.46, + "probability": 0.5785 + }, + { + "start": 7092.96, + "end": 7094.76, + "probability": 0.8687 + }, + { + "start": 7095.1, + "end": 7097.8, + "probability": 0.9334 + }, + { + "start": 7099.22, + "end": 7101.48, + "probability": 0.9282 + }, + { + "start": 7101.63, + "end": 7106.74, + "probability": 0.8576 + }, + { + "start": 7107.38, + "end": 7109.9, + "probability": 0.9218 + }, + { + "start": 7110.58, + "end": 7114.2, + "probability": 0.9702 + }, + { + "start": 7115.1, + "end": 7115.88, + "probability": 0.8378 + }, + { + "start": 7117.1, + "end": 7120.66, + "probability": 0.9871 + }, + { + "start": 7121.28, + "end": 7123.98, + "probability": 0.4771 + }, + { + "start": 7124.5, + "end": 7128.18, + "probability": 0.7838 + }, + { + "start": 7128.18, + "end": 7132.14, + "probability": 0.9971 + }, + { + "start": 7132.64, + "end": 7136.93, + "probability": 0.8899 + }, + { + "start": 7137.72, + "end": 7140.5, + "probability": 0.9033 + }, + { + "start": 7141.72, + "end": 7145.46, + "probability": 0.6124 + }, + { + "start": 7146.6, + "end": 7150.86, + "probability": 0.9769 + }, + { + "start": 7151.52, + "end": 7152.62, + "probability": 0.8567 + }, + { + "start": 7153.16, + "end": 7157.54, + "probability": 0.975 + }, + { + "start": 7158.86, + "end": 7161.44, + "probability": 0.9426 + }, + { + "start": 7162.18, + "end": 7164.3, + "probability": 0.9952 + }, + { + "start": 7165.26, + "end": 7168.94, + "probability": 0.8808 + }, + { + "start": 7169.6, + "end": 7171.92, + "probability": 0.9657 + }, + { + "start": 7172.78, + "end": 7174.57, + "probability": 0.7064 + }, + { + "start": 7175.52, + "end": 7176.92, + "probability": 0.9956 + }, + { + "start": 7177.98, + "end": 7180.84, + "probability": 0.9953 + }, + { + "start": 7181.74, + "end": 7182.8, + "probability": 0.8158 + }, + { + "start": 7183.2, + "end": 7184.18, + "probability": 0.6434 + }, + { + "start": 7184.66, + "end": 7191.08, + "probability": 0.8806 + }, + { + "start": 7191.98, + "end": 7193.1, + "probability": 0.6579 + }, + { + "start": 7194.42, + "end": 7197.78, + "probability": 0.9545 + }, + { + "start": 7198.2, + "end": 7204.0, + "probability": 0.9722 + }, + { + "start": 7204.64, + "end": 7206.56, + "probability": 0.9983 + }, + { + "start": 7207.0, + "end": 7210.14, + "probability": 0.9979 + }, + { + "start": 7211.16, + "end": 7215.28, + "probability": 0.9883 + }, + { + "start": 7215.64, + "end": 7217.03, + "probability": 0.9774 + }, + { + "start": 7219.74, + "end": 7221.58, + "probability": 0.7424 + }, + { + "start": 7221.62, + "end": 7222.08, + "probability": 0.8335 + }, + { + "start": 7222.36, + "end": 7226.14, + "probability": 0.9723 + }, + { + "start": 7226.38, + "end": 7230.66, + "probability": 0.9969 + }, + { + "start": 7231.8, + "end": 7232.28, + "probability": 0.838 + }, + { + "start": 7232.9, + "end": 7235.68, + "probability": 0.9983 + }, + { + "start": 7235.8, + "end": 7237.88, + "probability": 0.8012 + }, + { + "start": 7238.5, + "end": 7240.14, + "probability": 0.9623 + }, + { + "start": 7240.88, + "end": 7245.12, + "probability": 0.9917 + }, + { + "start": 7245.92, + "end": 7249.68, + "probability": 0.8267 + }, + { + "start": 7250.98, + "end": 7253.68, + "probability": 0.9984 + }, + { + "start": 7253.68, + "end": 7256.12, + "probability": 0.999 + }, + { + "start": 7274.72, + "end": 7275.62, + "probability": 0.8615 + }, + { + "start": 7276.74, + "end": 7277.62, + "probability": 0.7282 + }, + { + "start": 7278.82, + "end": 7279.88, + "probability": 0.9419 + }, + { + "start": 7282.8, + "end": 7284.44, + "probability": 0.9026 + }, + { + "start": 7287.16, + "end": 7287.98, + "probability": 0.9447 + }, + { + "start": 7290.44, + "end": 7291.84, + "probability": 0.7695 + }, + { + "start": 7296.14, + "end": 7302.14, + "probability": 0.9829 + }, + { + "start": 7303.88, + "end": 7305.14, + "probability": 0.8037 + }, + { + "start": 7307.8, + "end": 7309.62, + "probability": 0.9899 + }, + { + "start": 7312.52, + "end": 7314.18, + "probability": 0.9403 + }, + { + "start": 7316.3, + "end": 7319.38, + "probability": 0.9592 + }, + { + "start": 7323.18, + "end": 7324.36, + "probability": 0.8333 + }, + { + "start": 7325.84, + "end": 7328.72, + "probability": 0.9944 + }, + { + "start": 7330.44, + "end": 7332.58, + "probability": 0.9919 + }, + { + "start": 7334.22, + "end": 7335.26, + "probability": 0.8241 + }, + { + "start": 7339.1, + "end": 7340.82, + "probability": 0.9639 + }, + { + "start": 7342.14, + "end": 7343.38, + "probability": 0.9945 + }, + { + "start": 7345.06, + "end": 7346.46, + "probability": 0.6721 + }, + { + "start": 7349.04, + "end": 7350.12, + "probability": 0.9968 + }, + { + "start": 7351.04, + "end": 7354.0, + "probability": 0.9984 + }, + { + "start": 7355.98, + "end": 7358.38, + "probability": 0.9919 + }, + { + "start": 7361.2, + "end": 7362.54, + "probability": 0.9709 + }, + { + "start": 7363.64, + "end": 7364.62, + "probability": 0.9848 + }, + { + "start": 7366.74, + "end": 7368.94, + "probability": 0.9862 + }, + { + "start": 7370.4, + "end": 7372.08, + "probability": 0.9236 + }, + { + "start": 7373.4, + "end": 7375.1, + "probability": 0.9901 + }, + { + "start": 7377.14, + "end": 7378.62, + "probability": 0.9794 + }, + { + "start": 7380.98, + "end": 7382.3, + "probability": 0.9888 + }, + { + "start": 7384.44, + "end": 7386.26, + "probability": 0.9977 + }, + { + "start": 7388.1, + "end": 7388.84, + "probability": 0.7804 + }, + { + "start": 7392.16, + "end": 7392.94, + "probability": 0.7007 + }, + { + "start": 7394.46, + "end": 7396.22, + "probability": 0.9749 + }, + { + "start": 7397.18, + "end": 7399.36, + "probability": 0.9949 + }, + { + "start": 7400.52, + "end": 7402.44, + "probability": 0.984 + }, + { + "start": 7404.36, + "end": 7404.68, + "probability": 0.499 + }, + { + "start": 7404.76, + "end": 7410.04, + "probability": 0.9932 + }, + { + "start": 7412.18, + "end": 7413.68, + "probability": 0.9034 + }, + { + "start": 7415.88, + "end": 7416.66, + "probability": 0.6598 + }, + { + "start": 7418.24, + "end": 7419.6, + "probability": 0.9716 + }, + { + "start": 7420.94, + "end": 7422.08, + "probability": 0.9845 + }, + { + "start": 7423.58, + "end": 7425.82, + "probability": 0.9835 + }, + { + "start": 7427.52, + "end": 7431.14, + "probability": 0.991 + }, + { + "start": 7431.86, + "end": 7433.12, + "probability": 0.9873 + }, + { + "start": 7434.8, + "end": 7436.12, + "probability": 0.9947 + }, + { + "start": 7437.44, + "end": 7438.9, + "probability": 0.9922 + }, + { + "start": 7439.98, + "end": 7441.86, + "probability": 0.8928 + }, + { + "start": 7443.16, + "end": 7450.76, + "probability": 0.9889 + }, + { + "start": 7452.18, + "end": 7454.08, + "probability": 0.9022 + }, + { + "start": 7455.92, + "end": 7457.44, + "probability": 0.7023 + }, + { + "start": 7458.98, + "end": 7462.2, + "probability": 0.9572 + }, + { + "start": 7464.36, + "end": 7467.52, + "probability": 0.9717 + }, + { + "start": 7468.8, + "end": 7469.94, + "probability": 0.9055 + }, + { + "start": 7471.78, + "end": 7472.78, + "probability": 0.8824 + }, + { + "start": 7474.46, + "end": 7476.72, + "probability": 0.9822 + }, + { + "start": 7478.1, + "end": 7481.16, + "probability": 0.9987 + }, + { + "start": 7482.44, + "end": 7487.62, + "probability": 0.998 + }, + { + "start": 7488.46, + "end": 7493.54, + "probability": 0.9946 + }, + { + "start": 7494.8, + "end": 7499.64, + "probability": 0.9948 + }, + { + "start": 7500.9, + "end": 7504.14, + "probability": 0.9961 + }, + { + "start": 7506.3, + "end": 7510.0, + "probability": 0.9904 + }, + { + "start": 7511.48, + "end": 7513.5, + "probability": 0.9978 + }, + { + "start": 7514.56, + "end": 7516.02, + "probability": 0.9889 + }, + { + "start": 7517.38, + "end": 7518.62, + "probability": 0.9418 + }, + { + "start": 7520.0, + "end": 7522.62, + "probability": 0.9676 + }, + { + "start": 7523.6, + "end": 7524.24, + "probability": 0.8364 + }, + { + "start": 7524.98, + "end": 7525.42, + "probability": 0.9497 + }, + { + "start": 7526.46, + "end": 7526.86, + "probability": 0.9799 + }, + { + "start": 7527.8, + "end": 7529.78, + "probability": 0.978 + }, + { + "start": 7530.32, + "end": 7533.54, + "probability": 0.9885 + }, + { + "start": 7535.66, + "end": 7535.66, + "probability": 0.9746 + }, + { + "start": 7537.02, + "end": 7544.12, + "probability": 0.9178 + }, + { + "start": 7548.1, + "end": 7552.16, + "probability": 0.8145 + }, + { + "start": 7554.78, + "end": 7555.78, + "probability": 0.9969 + }, + { + "start": 7557.24, + "end": 7558.76, + "probability": 0.9929 + }, + { + "start": 7560.08, + "end": 7563.4, + "probability": 0.9694 + }, + { + "start": 7565.42, + "end": 7566.94, + "probability": 0.7327 + }, + { + "start": 7569.18, + "end": 7570.38, + "probability": 0.9179 + }, + { + "start": 7571.6, + "end": 7573.52, + "probability": 0.9976 + }, + { + "start": 7574.84, + "end": 7576.06, + "probability": 0.9104 + }, + { + "start": 7578.98, + "end": 7580.88, + "probability": 0.9937 + }, + { + "start": 7582.12, + "end": 7583.9, + "probability": 0.9983 + }, + { + "start": 7585.76, + "end": 7588.1, + "probability": 0.9379 + }, + { + "start": 7589.94, + "end": 7593.56, + "probability": 0.9782 + }, + { + "start": 7594.72, + "end": 7595.57, + "probability": 0.9697 + }, + { + "start": 7596.6, + "end": 7597.82, + "probability": 0.9873 + }, + { + "start": 7598.98, + "end": 7602.42, + "probability": 0.999 + }, + { + "start": 7603.58, + "end": 7604.4, + "probability": 0.9427 + }, + { + "start": 7605.86, + "end": 7607.26, + "probability": 0.9937 + }, + { + "start": 7608.16, + "end": 7609.32, + "probability": 0.999 + }, + { + "start": 7610.62, + "end": 7614.24, + "probability": 0.9858 + }, + { + "start": 7616.44, + "end": 7618.14, + "probability": 0.9928 + }, + { + "start": 7620.46, + "end": 7624.1, + "probability": 0.9972 + }, + { + "start": 7624.78, + "end": 7627.06, + "probability": 0.9976 + }, + { + "start": 7629.7, + "end": 7632.54, + "probability": 0.7983 + }, + { + "start": 7633.4, + "end": 7636.08, + "probability": 0.9863 + }, + { + "start": 7637.06, + "end": 7637.88, + "probability": 0.8719 + }, + { + "start": 7638.96, + "end": 7642.24, + "probability": 0.9934 + }, + { + "start": 7647.42, + "end": 7647.9, + "probability": 0.9088 + }, + { + "start": 7649.96, + "end": 7652.58, + "probability": 0.9933 + }, + { + "start": 7652.68, + "end": 7654.24, + "probability": 0.6233 + }, + { + "start": 7656.84, + "end": 7657.68, + "probability": 0.6322 + }, + { + "start": 7659.22, + "end": 7659.9, + "probability": 0.966 + }, + { + "start": 7661.66, + "end": 7665.2, + "probability": 0.9941 + }, + { + "start": 7666.04, + "end": 7670.26, + "probability": 0.9826 + }, + { + "start": 7671.16, + "end": 7675.8, + "probability": 0.8898 + }, + { + "start": 7676.94, + "end": 7679.88, + "probability": 0.9968 + }, + { + "start": 7680.94, + "end": 7683.06, + "probability": 0.9836 + }, + { + "start": 7684.12, + "end": 7686.36, + "probability": 0.7244 + }, + { + "start": 7687.4, + "end": 7692.32, + "probability": 0.9963 + }, + { + "start": 7693.22, + "end": 7696.46, + "probability": 0.9631 + }, + { + "start": 7699.04, + "end": 7701.08, + "probability": 0.9898 + }, + { + "start": 7702.34, + "end": 7705.72, + "probability": 0.9434 + }, + { + "start": 7707.32, + "end": 7708.06, + "probability": 0.9811 + }, + { + "start": 7708.16, + "end": 7708.98, + "probability": 0.9479 + }, + { + "start": 7709.1, + "end": 7711.1, + "probability": 0.9924 + }, + { + "start": 7712.1, + "end": 7714.82, + "probability": 0.9779 + }, + { + "start": 7716.96, + "end": 7719.78, + "probability": 0.9941 + }, + { + "start": 7721.24, + "end": 7722.22, + "probability": 0.8022 + }, + { + "start": 7723.72, + "end": 7724.72, + "probability": 0.9827 + }, + { + "start": 7725.62, + "end": 7726.54, + "probability": 0.7693 + }, + { + "start": 7727.72, + "end": 7729.58, + "probability": 0.9923 + }, + { + "start": 7731.44, + "end": 7735.4, + "probability": 0.9824 + }, + { + "start": 7738.28, + "end": 7744.66, + "probability": 0.997 + }, + { + "start": 7745.82, + "end": 7747.14, + "probability": 0.9949 + }, + { + "start": 7747.8, + "end": 7748.96, + "probability": 0.9987 + }, + { + "start": 7749.82, + "end": 7751.48, + "probability": 0.9559 + }, + { + "start": 7752.38, + "end": 7754.12, + "probability": 0.9791 + }, + { + "start": 7756.52, + "end": 7757.14, + "probability": 0.8347 + }, + { + "start": 7759.2, + "end": 7760.2, + "probability": 0.9175 + }, + { + "start": 7763.3, + "end": 7764.78, + "probability": 0.9443 + }, + { + "start": 7767.24, + "end": 7768.66, + "probability": 0.9855 + }, + { + "start": 7769.78, + "end": 7770.88, + "probability": 0.8035 + }, + { + "start": 7772.18, + "end": 7772.78, + "probability": 0.5269 + }, + { + "start": 7774.34, + "end": 7776.06, + "probability": 0.9834 + }, + { + "start": 7777.42, + "end": 7778.28, + "probability": 0.986 + }, + { + "start": 7780.06, + "end": 7784.1, + "probability": 0.9878 + }, + { + "start": 7784.9, + "end": 7789.1, + "probability": 0.9934 + }, + { + "start": 7801.48, + "end": 7802.14, + "probability": 0.556 + }, + { + "start": 7802.78, + "end": 7805.7, + "probability": 0.9718 + }, + { + "start": 7806.6, + "end": 7808.68, + "probability": 0.7379 + }, + { + "start": 7808.98, + "end": 7810.32, + "probability": 0.9741 + }, + { + "start": 7812.12, + "end": 7813.26, + "probability": 0.982 + }, + { + "start": 7814.1, + "end": 7817.32, + "probability": 0.8452 + }, + { + "start": 7818.16, + "end": 7820.04, + "probability": 0.6287 + }, + { + "start": 7821.32, + "end": 7822.96, + "probability": 0.7664 + }, + { + "start": 7823.8, + "end": 7826.88, + "probability": 0.9659 + }, + { + "start": 7827.74, + "end": 7830.5, + "probability": 0.8473 + }, + { + "start": 7831.38, + "end": 7833.66, + "probability": 0.9709 + }, + { + "start": 7834.62, + "end": 7838.06, + "probability": 0.9805 + }, + { + "start": 7839.04, + "end": 7842.08, + "probability": 0.976 + }, + { + "start": 7843.5, + "end": 7847.02, + "probability": 0.8517 + }, + { + "start": 7847.02, + "end": 7850.56, + "probability": 0.9954 + }, + { + "start": 7851.9, + "end": 7855.66, + "probability": 0.9983 + }, + { + "start": 7856.68, + "end": 7861.56, + "probability": 0.9884 + }, + { + "start": 7862.3, + "end": 7863.66, + "probability": 0.9167 + }, + { + "start": 7864.36, + "end": 7867.92, + "probability": 0.986 + }, + { + "start": 7868.54, + "end": 7869.88, + "probability": 0.8949 + }, + { + "start": 7870.88, + "end": 7873.16, + "probability": 0.9911 + }, + { + "start": 7873.86, + "end": 7877.22, + "probability": 0.9982 + }, + { + "start": 7878.02, + "end": 7879.24, + "probability": 0.9802 + }, + { + "start": 7880.4, + "end": 7884.32, + "probability": 0.9512 + }, + { + "start": 7885.04, + "end": 7888.36, + "probability": 0.9873 + }, + { + "start": 7888.98, + "end": 7890.36, + "probability": 0.9733 + }, + { + "start": 7891.44, + "end": 7891.82, + "probability": 0.8704 + }, + { + "start": 7891.92, + "end": 7892.74, + "probability": 0.9194 + }, + { + "start": 7892.88, + "end": 7899.03, + "probability": 0.9969 + }, + { + "start": 7899.8, + "end": 7900.46, + "probability": 0.7236 + }, + { + "start": 7901.04, + "end": 7901.64, + "probability": 0.8517 + }, + { + "start": 7902.24, + "end": 7903.48, + "probability": 0.9727 + }, + { + "start": 7904.36, + "end": 7905.94, + "probability": 0.9641 + }, + { + "start": 7906.7, + "end": 7908.26, + "probability": 0.9448 + }, + { + "start": 7909.02, + "end": 7910.9, + "probability": 0.8682 + }, + { + "start": 7911.62, + "end": 7914.38, + "probability": 0.7618 + }, + { + "start": 7914.92, + "end": 7918.46, + "probability": 0.9857 + }, + { + "start": 7918.46, + "end": 7923.22, + "probability": 0.9899 + }, + { + "start": 7924.38, + "end": 7928.82, + "probability": 0.9949 + }, + { + "start": 7928.94, + "end": 7933.04, + "probability": 0.999 + }, + { + "start": 7934.08, + "end": 7936.5, + "probability": 0.973 + }, + { + "start": 7937.18, + "end": 7939.42, + "probability": 0.9221 + }, + { + "start": 7940.02, + "end": 7942.52, + "probability": 0.9912 + }, + { + "start": 7942.7, + "end": 7944.26, + "probability": 0.9809 + }, + { + "start": 7945.04, + "end": 7947.46, + "probability": 0.9237 + }, + { + "start": 7948.6, + "end": 7951.06, + "probability": 0.9357 + }, + { + "start": 7951.86, + "end": 7952.78, + "probability": 0.8931 + }, + { + "start": 7952.88, + "end": 7954.76, + "probability": 0.974 + }, + { + "start": 7954.92, + "end": 7956.82, + "probability": 0.8969 + }, + { + "start": 7957.68, + "end": 7963.78, + "probability": 0.9911 + }, + { + "start": 7964.54, + "end": 7966.86, + "probability": 0.9979 + }, + { + "start": 7967.38, + "end": 7970.5, + "probability": 0.9998 + }, + { + "start": 7971.38, + "end": 7974.06, + "probability": 0.8625 + }, + { + "start": 7974.8, + "end": 7978.52, + "probability": 0.93 + }, + { + "start": 7979.28, + "end": 7982.84, + "probability": 0.9962 + }, + { + "start": 7983.5, + "end": 7985.02, + "probability": 0.8818 + }, + { + "start": 7985.66, + "end": 7986.18, + "probability": 0.9817 + }, + { + "start": 7986.38, + "end": 7987.62, + "probability": 0.7502 + }, + { + "start": 7987.68, + "end": 7989.24, + "probability": 0.9538 + }, + { + "start": 7989.82, + "end": 7991.42, + "probability": 0.9594 + }, + { + "start": 7991.54, + "end": 7993.66, + "probability": 0.9417 + }, + { + "start": 7994.28, + "end": 7999.66, + "probability": 0.9925 + }, + { + "start": 8000.96, + "end": 8001.56, + "probability": 0.5046 + }, + { + "start": 8002.58, + "end": 8003.42, + "probability": 0.8068 + }, + { + "start": 8004.3, + "end": 8007.22, + "probability": 0.9893 + }, + { + "start": 8008.12, + "end": 8009.8, + "probability": 0.9682 + }, + { + "start": 8010.68, + "end": 8011.98, + "probability": 0.9702 + }, + { + "start": 8012.56, + "end": 8016.22, + "probability": 0.9788 + }, + { + "start": 8017.34, + "end": 8020.96, + "probability": 0.7939 + }, + { + "start": 8021.64, + "end": 8026.72, + "probability": 0.9398 + }, + { + "start": 8028.62, + "end": 8029.8, + "probability": 0.809 + }, + { + "start": 8030.08, + "end": 8030.88, + "probability": 0.8834 + }, + { + "start": 8031.14, + "end": 8034.94, + "probability": 0.9604 + }, + { + "start": 8036.26, + "end": 8038.18, + "probability": 0.9985 + }, + { + "start": 8038.98, + "end": 8042.14, + "probability": 0.8956 + }, + { + "start": 8042.4, + "end": 8043.36, + "probability": 0.8467 + }, + { + "start": 8044.12, + "end": 8046.92, + "probability": 0.877 + }, + { + "start": 8047.72, + "end": 8050.7, + "probability": 0.9339 + }, + { + "start": 8051.8, + "end": 8056.8, + "probability": 0.9963 + }, + { + "start": 8057.46, + "end": 8059.12, + "probability": 0.9769 + }, + { + "start": 8060.04, + "end": 8063.52, + "probability": 0.9766 + }, + { + "start": 8064.58, + "end": 8066.8, + "probability": 0.9751 + }, + { + "start": 8067.54, + "end": 8069.68, + "probability": 0.7762 + }, + { + "start": 8070.64, + "end": 8072.8, + "probability": 0.9915 + }, + { + "start": 8073.38, + "end": 8074.44, + "probability": 0.9774 + }, + { + "start": 8074.94, + "end": 8077.88, + "probability": 0.9668 + }, + { + "start": 8079.02, + "end": 8082.88, + "probability": 0.9954 + }, + { + "start": 8083.48, + "end": 8084.3, + "probability": 0.6835 + }, + { + "start": 8085.18, + "end": 8090.16, + "probability": 0.9905 + }, + { + "start": 8091.24, + "end": 8094.2, + "probability": 0.9888 + }, + { + "start": 8095.14, + "end": 8097.34, + "probability": 0.9158 + }, + { + "start": 8098.32, + "end": 8104.08, + "probability": 0.9869 + }, + { + "start": 8104.92, + "end": 8107.08, + "probability": 0.7604 + }, + { + "start": 8107.76, + "end": 8111.28, + "probability": 0.9883 + }, + { + "start": 8112.9, + "end": 8116.08, + "probability": 0.9896 + }, + { + "start": 8117.14, + "end": 8119.78, + "probability": 0.9927 + }, + { + "start": 8119.78, + "end": 8124.24, + "probability": 0.781 + }, + { + "start": 8124.42, + "end": 8127.14, + "probability": 0.9426 + }, + { + "start": 8128.42, + "end": 8129.88, + "probability": 0.9351 + }, + { + "start": 8130.8, + "end": 8134.34, + "probability": 0.9104 + }, + { + "start": 8134.34, + "end": 8137.84, + "probability": 0.995 + }, + { + "start": 8138.4, + "end": 8140.76, + "probability": 0.7821 + }, + { + "start": 8141.42, + "end": 8143.46, + "probability": 0.8457 + }, + { + "start": 8144.4, + "end": 8144.68, + "probability": 0.7328 + }, + { + "start": 8144.86, + "end": 8147.86, + "probability": 0.98 + }, + { + "start": 8148.46, + "end": 8151.72, + "probability": 0.9948 + }, + { + "start": 8152.88, + "end": 8153.06, + "probability": 0.6647 + }, + { + "start": 8153.76, + "end": 8157.22, + "probability": 0.9644 + }, + { + "start": 8157.86, + "end": 8159.4, + "probability": 0.874 + }, + { + "start": 8159.76, + "end": 8163.32, + "probability": 0.9779 + }, + { + "start": 8165.18, + "end": 8169.66, + "probability": 0.9943 + }, + { + "start": 8170.68, + "end": 8172.62, + "probability": 0.625 + }, + { + "start": 8174.02, + "end": 8179.66, + "probability": 0.8649 + }, + { + "start": 8179.8, + "end": 8180.83, + "probability": 0.826 + }, + { + "start": 8181.74, + "end": 8182.26, + "probability": 0.704 + }, + { + "start": 8183.6, + "end": 8185.7, + "probability": 0.9854 + }, + { + "start": 8186.42, + "end": 8188.22, + "probability": 0.9885 + }, + { + "start": 8188.8, + "end": 8191.12, + "probability": 0.8496 + }, + { + "start": 8192.02, + "end": 8193.68, + "probability": 0.9747 + }, + { + "start": 8194.48, + "end": 8197.76, + "probability": 0.9904 + }, + { + "start": 8198.5, + "end": 8199.24, + "probability": 0.8044 + }, + { + "start": 8199.8, + "end": 8204.76, + "probability": 0.9941 + }, + { + "start": 8205.56, + "end": 8207.23, + "probability": 0.9886 + }, + { + "start": 8208.06, + "end": 8209.98, + "probability": 0.9398 + }, + { + "start": 8211.04, + "end": 8211.64, + "probability": 0.7289 + }, + { + "start": 8212.5, + "end": 8215.12, + "probability": 0.8392 + }, + { + "start": 8216.16, + "end": 8219.06, + "probability": 0.8862 + }, + { + "start": 8219.64, + "end": 8220.56, + "probability": 0.9626 + }, + { + "start": 8221.3, + "end": 8223.88, + "probability": 0.9964 + }, + { + "start": 8224.68, + "end": 8224.94, + "probability": 0.9292 + }, + { + "start": 8226.02, + "end": 8228.88, + "probability": 0.9876 + }, + { + "start": 8229.42, + "end": 8232.16, + "probability": 0.9923 + }, + { + "start": 8232.72, + "end": 8235.58, + "probability": 0.9282 + }, + { + "start": 8236.22, + "end": 8237.28, + "probability": 0.8068 + }, + { + "start": 8237.86, + "end": 8240.58, + "probability": 0.976 + }, + { + "start": 8241.46, + "end": 8242.26, + "probability": 0.7055 + }, + { + "start": 8243.02, + "end": 8249.06, + "probability": 0.9512 + }, + { + "start": 8249.82, + "end": 8250.62, + "probability": 0.9235 + }, + { + "start": 8251.9, + "end": 8255.42, + "probability": 0.8451 + }, + { + "start": 8255.66, + "end": 8259.24, + "probability": 0.9946 + }, + { + "start": 8281.8, + "end": 8283.4, + "probability": 0.6373 + }, + { + "start": 8283.74, + "end": 8286.2, + "probability": 0.9905 + }, + { + "start": 8287.3, + "end": 8288.38, + "probability": 0.817 + }, + { + "start": 8289.14, + "end": 8289.14, + "probability": 0.3203 + }, + { + "start": 8289.84, + "end": 8293.36, + "probability": 0.8068 + }, + { + "start": 8294.9, + "end": 8298.42, + "probability": 0.864 + }, + { + "start": 8299.78, + "end": 8303.48, + "probability": 0.9585 + }, + { + "start": 8304.8, + "end": 8307.54, + "probability": 0.9403 + }, + { + "start": 8308.88, + "end": 8310.26, + "probability": 0.954 + }, + { + "start": 8311.96, + "end": 8315.1, + "probability": 0.632 + }, + { + "start": 8316.14, + "end": 8318.02, + "probability": 0.9417 + }, + { + "start": 8319.8, + "end": 8323.04, + "probability": 0.9946 + }, + { + "start": 8323.04, + "end": 8328.22, + "probability": 0.9761 + }, + { + "start": 8329.32, + "end": 8331.83, + "probability": 0.9553 + }, + { + "start": 8334.0, + "end": 8334.76, + "probability": 0.3161 + }, + { + "start": 8334.76, + "end": 8337.72, + "probability": 0.9777 + }, + { + "start": 8337.86, + "end": 8340.5, + "probability": 0.7984 + }, + { + "start": 8341.12, + "end": 8342.06, + "probability": 0.5225 + }, + { + "start": 8343.44, + "end": 8347.08, + "probability": 0.9985 + }, + { + "start": 8347.22, + "end": 8347.78, + "probability": 0.8434 + }, + { + "start": 8348.1, + "end": 8350.02, + "probability": 0.8862 + }, + { + "start": 8351.3, + "end": 8358.0, + "probability": 0.991 + }, + { + "start": 8359.76, + "end": 8364.78, + "probability": 0.8702 + }, + { + "start": 8366.14, + "end": 8371.34, + "probability": 0.753 + }, + { + "start": 8373.0, + "end": 8376.06, + "probability": 0.9784 + }, + { + "start": 8376.26, + "end": 8380.82, + "probability": 0.9938 + }, + { + "start": 8382.24, + "end": 8383.68, + "probability": 0.9583 + }, + { + "start": 8383.88, + "end": 8388.76, + "probability": 0.9307 + }, + { + "start": 8389.94, + "end": 8391.86, + "probability": 0.9917 + }, + { + "start": 8393.42, + "end": 8395.9, + "probability": 0.9716 + }, + { + "start": 8398.2, + "end": 8402.96, + "probability": 0.726 + }, + { + "start": 8404.66, + "end": 8406.74, + "probability": 0.9195 + }, + { + "start": 8407.92, + "end": 8410.3, + "probability": 0.7814 + }, + { + "start": 8412.36, + "end": 8415.96, + "probability": 0.9933 + }, + { + "start": 8416.3, + "end": 8419.3, + "probability": 0.9809 + }, + { + "start": 8420.28, + "end": 8423.78, + "probability": 0.8884 + }, + { + "start": 8424.74, + "end": 8427.3, + "probability": 0.8571 + }, + { + "start": 8429.24, + "end": 8433.94, + "probability": 0.9937 + }, + { + "start": 8434.68, + "end": 8438.0, + "probability": 0.9497 + }, + { + "start": 8439.54, + "end": 8439.78, + "probability": 0.1844 + }, + { + "start": 8440.78, + "end": 8446.4, + "probability": 0.9727 + }, + { + "start": 8447.5, + "end": 8448.52, + "probability": 0.741 + }, + { + "start": 8450.68, + "end": 8455.02, + "probability": 0.9606 + }, + { + "start": 8456.78, + "end": 8459.42, + "probability": 0.9922 + }, + { + "start": 8460.98, + "end": 8463.62, + "probability": 0.9855 + }, + { + "start": 8464.4, + "end": 8465.14, + "probability": 0.8647 + }, + { + "start": 8465.76, + "end": 8468.3, + "probability": 0.6819 + }, + { + "start": 8469.36, + "end": 8472.64, + "probability": 0.9212 + }, + { + "start": 8473.72, + "end": 8476.98, + "probability": 0.9879 + }, + { + "start": 8478.36, + "end": 8482.92, + "probability": 0.9963 + }, + { + "start": 8483.84, + "end": 8487.56, + "probability": 0.9875 + }, + { + "start": 8489.54, + "end": 8494.08, + "probability": 0.7649 + }, + { + "start": 8495.36, + "end": 8497.74, + "probability": 0.9768 + }, + { + "start": 8499.48, + "end": 8501.08, + "probability": 0.9975 + }, + { + "start": 8502.94, + "end": 8506.58, + "probability": 0.9927 + }, + { + "start": 8508.32, + "end": 8511.94, + "probability": 0.999 + }, + { + "start": 8511.94, + "end": 8515.04, + "probability": 0.9994 + }, + { + "start": 8516.14, + "end": 8518.86, + "probability": 0.9834 + }, + { + "start": 8520.66, + "end": 8524.06, + "probability": 0.9941 + }, + { + "start": 8525.44, + "end": 8532.5, + "probability": 0.998 + }, + { + "start": 8534.1, + "end": 8538.72, + "probability": 0.9877 + }, + { + "start": 8539.34, + "end": 8543.06, + "probability": 0.97 + }, + { + "start": 8544.6, + "end": 8545.56, + "probability": 0.834 + }, + { + "start": 8546.32, + "end": 8547.22, + "probability": 0.6847 + }, + { + "start": 8548.22, + "end": 8554.66, + "probability": 0.9888 + }, + { + "start": 8555.12, + "end": 8555.94, + "probability": 0.6073 + }, + { + "start": 8557.46, + "end": 8561.14, + "probability": 0.99 + }, + { + "start": 8561.14, + "end": 8565.38, + "probability": 0.9987 + }, + { + "start": 8567.84, + "end": 8572.34, + "probability": 0.9833 + }, + { + "start": 8574.1, + "end": 8575.7, + "probability": 0.8204 + }, + { + "start": 8575.94, + "end": 8578.92, + "probability": 0.98 + }, + { + "start": 8579.94, + "end": 8580.88, + "probability": 0.9836 + }, + { + "start": 8583.12, + "end": 8584.12, + "probability": 0.5493 + }, + { + "start": 8585.12, + "end": 8590.6, + "probability": 0.9624 + }, + { + "start": 8590.6, + "end": 8594.9, + "probability": 0.9966 + }, + { + "start": 8596.08, + "end": 8597.54, + "probability": 0.9989 + }, + { + "start": 8598.92, + "end": 8602.94, + "probability": 0.997 + }, + { + "start": 8604.0, + "end": 8606.82, + "probability": 0.8931 + }, + { + "start": 8607.98, + "end": 8610.74, + "probability": 0.9366 + }, + { + "start": 8611.7, + "end": 8618.12, + "probability": 0.9925 + }, + { + "start": 8619.82, + "end": 8624.46, + "probability": 0.9249 + }, + { + "start": 8625.88, + "end": 8626.54, + "probability": 0.4866 + }, + { + "start": 8627.52, + "end": 8629.72, + "probability": 0.6256 + }, + { + "start": 8630.86, + "end": 8632.66, + "probability": 0.8376 + }, + { + "start": 8632.86, + "end": 8636.34, + "probability": 0.9853 + }, + { + "start": 8636.9, + "end": 8638.05, + "probability": 0.9563 + }, + { + "start": 8639.14, + "end": 8645.38, + "probability": 0.9883 + }, + { + "start": 8648.54, + "end": 8649.68, + "probability": 0.7957 + }, + { + "start": 8649.88, + "end": 8652.02, + "probability": 0.9893 + }, + { + "start": 8653.82, + "end": 8657.9, + "probability": 0.9027 + }, + { + "start": 8659.72, + "end": 8666.94, + "probability": 0.9756 + }, + { + "start": 8668.54, + "end": 8674.24, + "probability": 0.9937 + }, + { + "start": 8674.98, + "end": 8677.58, + "probability": 0.9221 + }, + { + "start": 8678.52, + "end": 8679.46, + "probability": 0.6084 + }, + { + "start": 8681.72, + "end": 8685.36, + "probability": 0.9901 + }, + { + "start": 8687.26, + "end": 8688.5, + "probability": 0.9767 + }, + { + "start": 8692.11, + "end": 8695.76, + "probability": 0.9918 + }, + { + "start": 8695.76, + "end": 8699.28, + "probability": 0.8108 + }, + { + "start": 8700.56, + "end": 8703.18, + "probability": 0.8416 + }, + { + "start": 8704.56, + "end": 8706.8, + "probability": 0.9905 + }, + { + "start": 8708.38, + "end": 8709.26, + "probability": 0.7515 + }, + { + "start": 8709.62, + "end": 8713.6, + "probability": 0.964 + }, + { + "start": 8714.4, + "end": 8717.48, + "probability": 0.9848 + }, + { + "start": 8718.6, + "end": 8721.78, + "probability": 0.9854 + }, + { + "start": 8722.98, + "end": 8725.48, + "probability": 0.8963 + }, + { + "start": 8726.72, + "end": 8731.66, + "probability": 0.9538 + }, + { + "start": 8732.58, + "end": 8736.3, + "probability": 0.9355 + }, + { + "start": 8738.32, + "end": 8740.98, + "probability": 0.7716 + }, + { + "start": 8741.66, + "end": 8745.18, + "probability": 0.995 + }, + { + "start": 8746.08, + "end": 8746.68, + "probability": 0.8507 + }, + { + "start": 8748.0, + "end": 8752.06, + "probability": 0.8827 + }, + { + "start": 8754.18, + "end": 8757.14, + "probability": 0.938 + }, + { + "start": 8760.22, + "end": 8764.04, + "probability": 0.894 + }, + { + "start": 8766.56, + "end": 8767.68, + "probability": 0.7859 + }, + { + "start": 8769.06, + "end": 8771.24, + "probability": 0.9152 + }, + { + "start": 8771.76, + "end": 8772.92, + "probability": 0.9319 + }, + { + "start": 8773.06, + "end": 8775.9, + "probability": 0.9971 + }, + { + "start": 8776.1, + "end": 8776.86, + "probability": 0.5021 + }, + { + "start": 8778.36, + "end": 8779.98, + "probability": 0.9941 + }, + { + "start": 8781.24, + "end": 8783.72, + "probability": 0.9981 + }, + { + "start": 8784.78, + "end": 8788.98, + "probability": 0.983 + }, + { + "start": 8790.76, + "end": 8792.82, + "probability": 0.6475 + }, + { + "start": 8793.9, + "end": 8797.58, + "probability": 0.9093 + }, + { + "start": 8799.08, + "end": 8801.78, + "probability": 0.5458 + }, + { + "start": 8802.6, + "end": 8805.44, + "probability": 0.9468 + }, + { + "start": 8806.58, + "end": 8807.46, + "probability": 0.9026 + }, + { + "start": 8809.76, + "end": 8811.92, + "probability": 0.687 + }, + { + "start": 8812.82, + "end": 8820.2, + "probability": 0.8673 + }, + { + "start": 8820.62, + "end": 8821.26, + "probability": 0.7893 + }, + { + "start": 8821.42, + "end": 8825.5, + "probability": 0.9927 + }, + { + "start": 8825.54, + "end": 8827.44, + "probability": 0.7566 + }, + { + "start": 8827.54, + "end": 8828.24, + "probability": 0.8612 + }, + { + "start": 8829.88, + "end": 8830.82, + "probability": 0.5864 + }, + { + "start": 8832.22, + "end": 8835.66, + "probability": 0.0363 + }, + { + "start": 8845.88, + "end": 8846.04, + "probability": 0.0653 + }, + { + "start": 8847.04, + "end": 8847.44, + "probability": 0.2865 + }, + { + "start": 8847.52, + "end": 8853.34, + "probability": 0.8198 + }, + { + "start": 8854.14, + "end": 8857.14, + "probability": 0.8375 + }, + { + "start": 8857.82, + "end": 8860.28, + "probability": 0.9781 + }, + { + "start": 8861.02, + "end": 8864.34, + "probability": 0.949 + }, + { + "start": 8865.16, + "end": 8866.52, + "probability": 0.7739 + }, + { + "start": 8867.0, + "end": 8869.84, + "probability": 0.8905 + }, + { + "start": 8869.92, + "end": 8870.2, + "probability": 0.4847 + }, + { + "start": 8870.32, + "end": 8870.46, + "probability": 0.7084 + }, + { + "start": 8883.54, + "end": 8885.52, + "probability": 0.7633 + }, + { + "start": 8886.7, + "end": 8888.5, + "probability": 0.9572 + }, + { + "start": 8889.52, + "end": 8892.42, + "probability": 0.9746 + }, + { + "start": 8893.94, + "end": 8895.28, + "probability": 0.9734 + }, + { + "start": 8895.86, + "end": 8897.18, + "probability": 0.9326 + }, + { + "start": 8897.96, + "end": 8900.36, + "probability": 0.998 + }, + { + "start": 8901.58, + "end": 8902.82, + "probability": 0.9937 + }, + { + "start": 8904.0, + "end": 8905.42, + "probability": 0.8726 + }, + { + "start": 8906.3, + "end": 8909.92, + "probability": 0.7506 + }, + { + "start": 8910.36, + "end": 8912.15, + "probability": 0.9837 + }, + { + "start": 8913.04, + "end": 8915.28, + "probability": 0.9797 + }, + { + "start": 8915.82, + "end": 8917.78, + "probability": 0.8148 + }, + { + "start": 8918.16, + "end": 8921.16, + "probability": 0.9897 + }, + { + "start": 8923.04, + "end": 8925.8, + "probability": 0.9993 + }, + { + "start": 8926.54, + "end": 8929.31, + "probability": 0.9434 + }, + { + "start": 8930.48, + "end": 8932.72, + "probability": 0.9946 + }, + { + "start": 8933.78, + "end": 8935.58, + "probability": 0.9679 + }, + { + "start": 8936.24, + "end": 8937.24, + "probability": 0.7521 + }, + { + "start": 8937.32, + "end": 8939.3, + "probability": 0.9995 + }, + { + "start": 8939.42, + "end": 8940.24, + "probability": 0.8087 + }, + { + "start": 8941.78, + "end": 8945.12, + "probability": 0.9928 + }, + { + "start": 8945.54, + "end": 8948.18, + "probability": 0.9985 + }, + { + "start": 8948.7, + "end": 8950.86, + "probability": 0.7912 + }, + { + "start": 8951.6, + "end": 8956.28, + "probability": 0.9986 + }, + { + "start": 8956.8, + "end": 8958.0, + "probability": 0.7901 + }, + { + "start": 8958.72, + "end": 8959.48, + "probability": 0.8618 + }, + { + "start": 8960.2, + "end": 8962.12, + "probability": 0.8925 + }, + { + "start": 8962.84, + "end": 8963.5, + "probability": 0.8245 + }, + { + "start": 8964.14, + "end": 8966.94, + "probability": 0.9635 + }, + { + "start": 8967.18, + "end": 8967.86, + "probability": 0.9699 + }, + { + "start": 8968.12, + "end": 8968.32, + "probability": 0.7171 + }, + { + "start": 8968.42, + "end": 8969.02, + "probability": 0.9167 + }, + { + "start": 8969.1, + "end": 8969.88, + "probability": 0.975 + }, + { + "start": 8969.96, + "end": 8970.42, + "probability": 0.9882 + }, + { + "start": 8970.44, + "end": 8970.98, + "probability": 0.9196 + }, + { + "start": 8971.24, + "end": 8972.08, + "probability": 0.9956 + }, + { + "start": 8972.14, + "end": 8972.74, + "probability": 0.594 + }, + { + "start": 8973.5, + "end": 8974.48, + "probability": 0.9202 + }, + { + "start": 8974.98, + "end": 8975.34, + "probability": 0.9724 + }, + { + "start": 8976.34, + "end": 8976.84, + "probability": 0.9583 + }, + { + "start": 8977.5, + "end": 8979.5, + "probability": 0.9989 + }, + { + "start": 8979.82, + "end": 8981.03, + "probability": 0.9895 + }, + { + "start": 8981.54, + "end": 8983.76, + "probability": 0.9895 + }, + { + "start": 8984.28, + "end": 8984.58, + "probability": 0.6274 + }, + { + "start": 8985.4, + "end": 8986.9, + "probability": 0.9976 + }, + { + "start": 8986.94, + "end": 8988.84, + "probability": 0.9858 + }, + { + "start": 8989.22, + "end": 8990.38, + "probability": 0.998 + }, + { + "start": 8991.4, + "end": 8992.92, + "probability": 0.9869 + }, + { + "start": 8993.56, + "end": 8998.46, + "probability": 0.9828 + }, + { + "start": 8998.78, + "end": 8999.74, + "probability": 0.8404 + }, + { + "start": 9000.04, + "end": 9000.5, + "probability": 0.8266 + }, + { + "start": 9000.56, + "end": 9001.0, + "probability": 0.7369 + }, + { + "start": 9001.7, + "end": 9003.34, + "probability": 0.9772 + }, + { + "start": 9004.1, + "end": 9004.7, + "probability": 0.8181 + }, + { + "start": 9004.76, + "end": 9007.1, + "probability": 0.9918 + }, + { + "start": 9007.46, + "end": 9008.3, + "probability": 0.9406 + }, + { + "start": 9008.76, + "end": 9010.3, + "probability": 0.9521 + }, + { + "start": 9010.88, + "end": 9012.4, + "probability": 0.8945 + }, + { + "start": 9013.12, + "end": 9016.7, + "probability": 0.9833 + }, + { + "start": 9017.4, + "end": 9019.12, + "probability": 0.9615 + }, + { + "start": 9019.26, + "end": 9020.12, + "probability": 0.6729 + }, + { + "start": 9020.46, + "end": 9023.0, + "probability": 0.998 + }, + { + "start": 9025.02, + "end": 9029.02, + "probability": 0.998 + }, + { + "start": 9029.96, + "end": 9032.74, + "probability": 0.9434 + }, + { + "start": 9033.28, + "end": 9034.84, + "probability": 0.9761 + }, + { + "start": 9035.52, + "end": 9038.08, + "probability": 0.7605 + }, + { + "start": 9038.82, + "end": 9040.42, + "probability": 0.6278 + }, + { + "start": 9041.06, + "end": 9043.64, + "probability": 0.8336 + }, + { + "start": 9044.3, + "end": 9046.92, + "probability": 0.9904 + }, + { + "start": 9047.78, + "end": 9051.1, + "probability": 0.9774 + }, + { + "start": 9051.8, + "end": 9052.48, + "probability": 0.6202 + }, + { + "start": 9053.12, + "end": 9055.84, + "probability": 0.9568 + }, + { + "start": 9056.82, + "end": 9059.6, + "probability": 0.8442 + }, + { + "start": 9059.72, + "end": 9060.08, + "probability": 0.5243 + }, + { + "start": 9060.1, + "end": 9060.54, + "probability": 0.4577 + }, + { + "start": 9060.64, + "end": 9061.7, + "probability": 0.8573 + }, + { + "start": 9062.12, + "end": 9062.84, + "probability": 0.9227 + }, + { + "start": 9062.94, + "end": 9063.84, + "probability": 0.9888 + }, + { + "start": 9063.92, + "end": 9065.84, + "probability": 0.9919 + }, + { + "start": 9066.24, + "end": 9069.78, + "probability": 0.9398 + }, + { + "start": 9070.3, + "end": 9070.96, + "probability": 0.6859 + }, + { + "start": 9071.5, + "end": 9072.06, + "probability": 0.7627 + }, + { + "start": 9072.1, + "end": 9075.92, + "probability": 0.8848 + }, + { + "start": 9075.96, + "end": 9079.06, + "probability": 0.7313 + }, + { + "start": 9079.24, + "end": 9081.68, + "probability": 0.7476 + }, + { + "start": 9082.12, + "end": 9085.2, + "probability": 0.994 + }, + { + "start": 9085.7, + "end": 9090.38, + "probability": 0.9777 + }, + { + "start": 9091.34, + "end": 9092.58, + "probability": 0.9146 + }, + { + "start": 9093.24, + "end": 9094.54, + "probability": 0.981 + }, + { + "start": 9095.22, + "end": 9099.5, + "probability": 0.9922 + }, + { + "start": 9100.04, + "end": 9103.9, + "probability": 0.9956 + }, + { + "start": 9104.04, + "end": 9104.96, + "probability": 0.5039 + }, + { + "start": 9105.16, + "end": 9107.14, + "probability": 0.9285 + }, + { + "start": 9107.54, + "end": 9108.18, + "probability": 0.837 + }, + { + "start": 9108.58, + "end": 9112.58, + "probability": 0.9994 + }, + { + "start": 9113.06, + "end": 9115.64, + "probability": 0.8961 + }, + { + "start": 9116.32, + "end": 9118.4, + "probability": 0.9996 + }, + { + "start": 9118.4, + "end": 9121.92, + "probability": 0.9983 + }, + { + "start": 9122.44, + "end": 9125.52, + "probability": 0.998 + }, + { + "start": 9127.8, + "end": 9129.19, + "probability": 0.6591 + }, + { + "start": 9129.56, + "end": 9133.06, + "probability": 0.7777 + }, + { + "start": 9133.12, + "end": 9133.68, + "probability": 0.7816 + }, + { + "start": 9138.8, + "end": 9140.18, + "probability": 0.1604 + }, + { + "start": 9158.12, + "end": 9162.44, + "probability": 0.83 + }, + { + "start": 9163.4, + "end": 9167.45, + "probability": 0.7708 + }, + { + "start": 9171.18, + "end": 9172.72, + "probability": 0.822 + }, + { + "start": 9174.0, + "end": 9178.34, + "probability": 0.8138 + }, + { + "start": 9179.8, + "end": 9182.58, + "probability": 0.9917 + }, + { + "start": 9183.78, + "end": 9186.4, + "probability": 0.999 + }, + { + "start": 9188.82, + "end": 9193.0, + "probability": 0.9401 + }, + { + "start": 9193.46, + "end": 9197.52, + "probability": 0.9337 + }, + { + "start": 9198.12, + "end": 9199.26, + "probability": 0.9862 + }, + { + "start": 9200.3, + "end": 9204.24, + "probability": 0.8979 + }, + { + "start": 9204.94, + "end": 9209.5, + "probability": 0.7797 + }, + { + "start": 9210.1, + "end": 9213.98, + "probability": 0.9616 + }, + { + "start": 9214.7, + "end": 9218.16, + "probability": 0.9917 + }, + { + "start": 9219.72, + "end": 9223.24, + "probability": 0.7728 + }, + { + "start": 9223.8, + "end": 9225.48, + "probability": 0.9919 + }, + { + "start": 9226.0, + "end": 9227.9, + "probability": 0.9912 + }, + { + "start": 9228.6, + "end": 9230.1, + "probability": 0.8715 + }, + { + "start": 9230.72, + "end": 9235.08, + "probability": 0.9927 + }, + { + "start": 9235.64, + "end": 9237.18, + "probability": 0.2775 + }, + { + "start": 9239.98, + "end": 9242.06, + "probability": 0.9752 + }, + { + "start": 9242.9, + "end": 9246.18, + "probability": 0.9965 + }, + { + "start": 9247.02, + "end": 9251.96, + "probability": 0.9967 + }, + { + "start": 9252.38, + "end": 9253.94, + "probability": 0.9896 + }, + { + "start": 9254.44, + "end": 9255.96, + "probability": 0.6424 + }, + { + "start": 9258.18, + "end": 9259.18, + "probability": 0.7573 + }, + { + "start": 9259.74, + "end": 9263.62, + "probability": 0.9131 + }, + { + "start": 9265.02, + "end": 9271.7, + "probability": 0.9864 + }, + { + "start": 9272.6, + "end": 9277.62, + "probability": 0.9851 + }, + { + "start": 9278.74, + "end": 9285.5, + "probability": 0.9951 + }, + { + "start": 9286.64, + "end": 9289.96, + "probability": 0.9797 + }, + { + "start": 9290.28, + "end": 9293.44, + "probability": 0.7734 + }, + { + "start": 9294.1, + "end": 9296.1, + "probability": 0.9964 + }, + { + "start": 9296.2, + "end": 9297.08, + "probability": 0.9381 + }, + { + "start": 9297.54, + "end": 9299.42, + "probability": 0.8719 + }, + { + "start": 9299.88, + "end": 9300.84, + "probability": 0.9898 + }, + { + "start": 9300.96, + "end": 9302.04, + "probability": 0.9812 + }, + { + "start": 9302.7, + "end": 9309.94, + "probability": 0.9846 + }, + { + "start": 9310.36, + "end": 9310.94, + "probability": 0.8657 + }, + { + "start": 9311.68, + "end": 9311.96, + "probability": 0.2924 + }, + { + "start": 9312.0, + "end": 9313.34, + "probability": 0.9688 + }, + { + "start": 9315.66, + "end": 9316.22, + "probability": 0.5934 + }, + { + "start": 9316.22, + "end": 9316.7, + "probability": 0.5952 + }, + { + "start": 9316.82, + "end": 9318.18, + "probability": 0.8489 + }, + { + "start": 9318.32, + "end": 9319.74, + "probability": 0.086 + }, + { + "start": 9319.74, + "end": 9320.88, + "probability": 0.813 + }, + { + "start": 9321.32, + "end": 9324.68, + "probability": 0.8342 + }, + { + "start": 9325.42, + "end": 9326.44, + "probability": 0.4571 + }, + { + "start": 9326.44, + "end": 9326.92, + "probability": 0.3795 + }, + { + "start": 9326.96, + "end": 9327.02, + "probability": 0.398 + }, + { + "start": 9327.02, + "end": 9328.38, + "probability": 0.416 + }, + { + "start": 9328.38, + "end": 9328.9, + "probability": 0.5225 + }, + { + "start": 9329.26, + "end": 9330.32, + "probability": 0.3898 + }, + { + "start": 9330.44, + "end": 9331.54, + "probability": 0.4081 + }, + { + "start": 9331.64, + "end": 9332.25, + "probability": 0.7599 + }, + { + "start": 9333.4, + "end": 9334.08, + "probability": 0.8132 + }, + { + "start": 9334.34, + "end": 9334.8, + "probability": 0.813 + }, + { + "start": 9334.92, + "end": 9335.62, + "probability": 0.666 + }, + { + "start": 9335.76, + "end": 9336.02, + "probability": 0.2822 + }, + { + "start": 9336.02, + "end": 9336.04, + "probability": 0.1522 + }, + { + "start": 9336.04, + "end": 9336.3, + "probability": 0.4018 + }, + { + "start": 9336.5, + "end": 9337.4, + "probability": 0.4447 + }, + { + "start": 9337.5, + "end": 9338.68, + "probability": 0.6735 + }, + { + "start": 9338.68, + "end": 9339.56, + "probability": 0.0856 + }, + { + "start": 9340.0, + "end": 9340.49, + "probability": 0.6532 + }, + { + "start": 9340.6, + "end": 9343.5, + "probability": 0.0103 + }, + { + "start": 9348.38, + "end": 9349.32, + "probability": 0.1957 + }, + { + "start": 9353.5, + "end": 9353.72, + "probability": 0.0295 + }, + { + "start": 9359.58, + "end": 9359.72, + "probability": 0.196 + }, + { + "start": 9361.28, + "end": 9361.62, + "probability": 0.43 + }, + { + "start": 9361.86, + "end": 9364.5, + "probability": 0.1299 + }, + { + "start": 9364.62, + "end": 9365.78, + "probability": 0.0313 + }, + { + "start": 9365.78, + "end": 9365.78, + "probability": 0.0015 + }, + { + "start": 9365.78, + "end": 9366.44, + "probability": 0.1711 + }, + { + "start": 9367.1, + "end": 9367.12, + "probability": 0.1502 + }, + { + "start": 9367.12, + "end": 9367.12, + "probability": 0.0211 + }, + { + "start": 9367.12, + "end": 9367.12, + "probability": 0.1705 + }, + { + "start": 9367.12, + "end": 9367.7, + "probability": 0.0252 + }, + { + "start": 9367.7, + "end": 9367.92, + "probability": 0.022 + }, + { + "start": 9368.04, + "end": 9370.14, + "probability": 0.7271 + }, + { + "start": 9371.2, + "end": 9372.46, + "probability": 0.1238 + }, + { + "start": 9372.46, + "end": 9373.3, + "probability": 0.1186 + }, + { + "start": 9373.3, + "end": 9374.2, + "probability": 0.0721 + }, + { + "start": 9374.6, + "end": 9374.72, + "probability": 0.1041 + }, + { + "start": 9374.72, + "end": 9375.4, + "probability": 0.2241 + }, + { + "start": 9377.04, + "end": 9377.86, + "probability": 0.0774 + }, + { + "start": 9382.52, + "end": 9384.62, + "probability": 0.0197 + }, + { + "start": 9384.62, + "end": 9384.9, + "probability": 0.1931 + }, + { + "start": 9385.76, + "end": 9388.3, + "probability": 0.1679 + }, + { + "start": 9394.46, + "end": 9394.64, + "probability": 0.103 + }, + { + "start": 9394.64, + "end": 9395.28, + "probability": 0.038 + }, + { + "start": 9399.83, + "end": 9401.06, + "probability": 0.2579 + }, + { + "start": 9401.18, + "end": 9404.58, + "probability": 0.1191 + }, + { + "start": 9404.9, + "end": 9407.26, + "probability": 0.097 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.0, + "probability": 0.0 + }, + { + "start": 9416.0, + "end": 9416.28, + "probability": 0.0557 + }, + { + "start": 9416.28, + "end": 9416.28, + "probability": 0.2431 + }, + { + "start": 9416.28, + "end": 9418.4, + "probability": 0.6902 + }, + { + "start": 9418.42, + "end": 9418.84, + "probability": 0.8575 + }, + { + "start": 9418.96, + "end": 9421.88, + "probability": 0.9532 + }, + { + "start": 9422.16, + "end": 9422.8, + "probability": 0.7163 + }, + { + "start": 9422.86, + "end": 9423.52, + "probability": 0.9739 + }, + { + "start": 9423.9, + "end": 9427.22, + "probability": 0.9916 + }, + { + "start": 9427.22, + "end": 9430.22, + "probability": 0.9367 + }, + { + "start": 9430.54, + "end": 9433.94, + "probability": 0.9854 + }, + { + "start": 9434.36, + "end": 9439.12, + "probability": 0.9937 + }, + { + "start": 9439.48, + "end": 9440.26, + "probability": 0.6619 + }, + { + "start": 9440.7, + "end": 9443.28, + "probability": 0.9886 + }, + { + "start": 9443.72, + "end": 9446.64, + "probability": 0.9195 + }, + { + "start": 9446.7, + "end": 9452.48, + "probability": 0.9692 + }, + { + "start": 9452.64, + "end": 9455.52, + "probability": 0.9352 + }, + { + "start": 9455.52, + "end": 9458.64, + "probability": 0.9945 + }, + { + "start": 9458.92, + "end": 9461.04, + "probability": 0.934 + }, + { + "start": 9461.44, + "end": 9463.12, + "probability": 0.8286 + }, + { + "start": 9463.16, + "end": 9463.62, + "probability": 0.6345 + }, + { + "start": 9463.84, + "end": 9465.47, + "probability": 0.9951 + }, + { + "start": 9466.04, + "end": 9470.1, + "probability": 0.9838 + }, + { + "start": 9470.74, + "end": 9472.56, + "probability": 0.673 + }, + { + "start": 9472.82, + "end": 9475.48, + "probability": 0.972 + }, + { + "start": 9475.88, + "end": 9478.94, + "probability": 0.988 + }, + { + "start": 9479.36, + "end": 9480.2, + "probability": 0.7324 + }, + { + "start": 9480.44, + "end": 9483.92, + "probability": 0.9311 + }, + { + "start": 9484.26, + "end": 9484.42, + "probability": 0.593 + }, + { + "start": 9485.06, + "end": 9486.22, + "probability": 0.6531 + }, + { + "start": 9486.38, + "end": 9486.7, + "probability": 0.7092 + }, + { + "start": 9486.8, + "end": 9487.44, + "probability": 0.8901 + }, + { + "start": 9487.62, + "end": 9492.98, + "probability": 0.5393 + }, + { + "start": 9493.08, + "end": 9493.3, + "probability": 0.8442 + }, + { + "start": 9493.38, + "end": 9493.68, + "probability": 0.8871 + }, + { + "start": 9495.28, + "end": 9497.74, + "probability": 0.8906 + }, + { + "start": 9498.3, + "end": 9498.6, + "probability": 0.6847 + }, + { + "start": 9498.86, + "end": 9499.78, + "probability": 0.7428 + }, + { + "start": 9499.86, + "end": 9500.54, + "probability": 0.858 + }, + { + "start": 9500.6, + "end": 9501.16, + "probability": 0.8979 + }, + { + "start": 9501.24, + "end": 9502.02, + "probability": 0.7522 + }, + { + "start": 9502.58, + "end": 9503.26, + "probability": 0.7188 + }, + { + "start": 9503.26, + "end": 9503.56, + "probability": 0.8929 + }, + { + "start": 9506.52, + "end": 9506.78, + "probability": 0.2698 + }, + { + "start": 9517.92, + "end": 9520.04, + "probability": 0.197 + }, + { + "start": 9520.3, + "end": 9520.3, + "probability": 0.0206 + } + ], + "segments_count": 3187, + "words_count": 15717, + "avg_words_per_segment": 4.9316, + "avg_segment_duration": 2.1889, + "avg_words_per_minute": 95.3143, + "plenum_id": "45446", + "duration": 9893.79, + "title": null, + "plenum_date": "2015-10-13" +} \ No newline at end of file