diff --git "a/45911/metadata.json" "b/45911/metadata.json" new file mode 100644--- /dev/null +++ "b/45911/metadata.json" @@ -0,0 +1,14972 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "45911", + "quality_score": 0.9062, + "per_segment_quality_scores": [ + { + "start": 42.24, + "end": 43.14, + "probability": 0.3596 + }, + { + "start": 43.16, + "end": 45.46, + "probability": 0.2882 + }, + { + "start": 45.7, + "end": 51.16, + "probability": 0.9927 + }, + { + "start": 51.24, + "end": 52.48, + "probability": 0.9829 + }, + { + "start": 53.24, + "end": 53.62, + "probability": 0.7294 + }, + { + "start": 54.08, + "end": 55.22, + "probability": 0.6901 + }, + { + "start": 55.32, + "end": 56.76, + "probability": 0.6871 + }, + { + "start": 56.82, + "end": 58.38, + "probability": 0.9649 + }, + { + "start": 58.56, + "end": 60.24, + "probability": 0.9741 + }, + { + "start": 60.84, + "end": 65.08, + "probability": 0.9247 + }, + { + "start": 65.64, + "end": 66.58, + "probability": 0.7737 + }, + { + "start": 67.04, + "end": 68.16, + "probability": 0.4042 + }, + { + "start": 68.5, + "end": 69.3, + "probability": 0.9495 + }, + { + "start": 70.2, + "end": 70.92, + "probability": 0.7582 + }, + { + "start": 71.06, + "end": 75.28, + "probability": 0.6887 + }, + { + "start": 75.94, + "end": 77.04, + "probability": 0.6336 + }, + { + "start": 77.22, + "end": 79.82, + "probability": 0.6481 + }, + { + "start": 79.88, + "end": 80.74, + "probability": 0.8076 + }, + { + "start": 81.3, + "end": 82.84, + "probability": 0.9417 + }, + { + "start": 83.04, + "end": 85.3, + "probability": 0.4744 + }, + { + "start": 86.06, + "end": 87.98, + "probability": 0.899 + }, + { + "start": 88.44, + "end": 89.66, + "probability": 0.4223 + }, + { + "start": 89.84, + "end": 90.92, + "probability": 0.9963 + }, + { + "start": 91.42, + "end": 93.24, + "probability": 0.9199 + }, + { + "start": 93.7, + "end": 95.78, + "probability": 0.5182 + }, + { + "start": 96.3, + "end": 100.48, + "probability": 0.8778 + }, + { + "start": 101.08, + "end": 102.88, + "probability": 0.6069 + }, + { + "start": 103.74, + "end": 107.52, + "probability": 0.9966 + }, + { + "start": 107.52, + "end": 111.62, + "probability": 0.6694 + }, + { + "start": 112.22, + "end": 114.98, + "probability": 0.4929 + }, + { + "start": 115.82, + "end": 116.64, + "probability": 0.7297 + }, + { + "start": 117.16, + "end": 117.92, + "probability": 0.9397 + }, + { + "start": 121.2, + "end": 122.78, + "probability": 0.6524 + }, + { + "start": 122.78, + "end": 123.86, + "probability": 0.4233 + }, + { + "start": 124.16, + "end": 125.22, + "probability": 0.771 + }, + { + "start": 125.38, + "end": 126.32, + "probability": 0.4375 + }, + { + "start": 126.74, + "end": 129.92, + "probability": 0.748 + }, + { + "start": 131.66, + "end": 133.66, + "probability": 0.3913 + }, + { + "start": 140.32, + "end": 140.74, + "probability": 0.0879 + }, + { + "start": 140.74, + "end": 141.74, + "probability": 0.3042 + }, + { + "start": 142.14, + "end": 144.4, + "probability": 0.1744 + }, + { + "start": 144.4, + "end": 144.47, + "probability": 0.1338 + }, + { + "start": 145.56, + "end": 147.86, + "probability": 0.2021 + }, + { + "start": 147.86, + "end": 148.08, + "probability": 0.1358 + }, + { + "start": 148.2, + "end": 148.68, + "probability": 0.0608 + }, + { + "start": 148.68, + "end": 152.26, + "probability": 0.1038 + }, + { + "start": 152.28, + "end": 154.5, + "probability": 0.3091 + }, + { + "start": 155.54, + "end": 157.68, + "probability": 0.0094 + }, + { + "start": 158.71, + "end": 163.44, + "probability": 0.0305 + }, + { + "start": 163.52, + "end": 164.18, + "probability": 0.0935 + }, + { + "start": 175.52, + "end": 176.54, + "probability": 0.0209 + }, + { + "start": 181.0, + "end": 181.34, + "probability": 0.015 + }, + { + "start": 181.4, + "end": 182.26, + "probability": 0.0687 + }, + { + "start": 182.26, + "end": 182.36, + "probability": 0.054 + }, + { + "start": 182.7, + "end": 186.02, + "probability": 0.1711 + }, + { + "start": 187.16, + "end": 192.24, + "probability": 0.038 + }, + { + "start": 192.58, + "end": 193.76, + "probability": 0.0398 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 198.12, + "probability": 0.7864 + }, + { + "start": 198.32, + "end": 199.96, + "probability": 0.5625 + }, + { + "start": 200.06, + "end": 201.66, + "probability": 0.9501 + }, + { + "start": 201.72, + "end": 202.72, + "probability": 0.8828 + }, + { + "start": 202.8, + "end": 203.12, + "probability": 0.3522 + }, + { + "start": 203.16, + "end": 203.97, + "probability": 0.5572 + }, + { + "start": 204.44, + "end": 206.52, + "probability": 0.9409 + }, + { + "start": 206.58, + "end": 207.42, + "probability": 0.6602 + }, + { + "start": 209.02, + "end": 214.7, + "probability": 0.9741 + }, + { + "start": 215.8, + "end": 219.56, + "probability": 0.897 + }, + { + "start": 220.14, + "end": 226.14, + "probability": 0.9624 + }, + { + "start": 226.14, + "end": 230.08, + "probability": 0.8873 + }, + { + "start": 230.86, + "end": 235.06, + "probability": 0.9984 + }, + { + "start": 236.56, + "end": 238.32, + "probability": 0.7059 + }, + { + "start": 238.92, + "end": 243.76, + "probability": 0.9621 + }, + { + "start": 244.46, + "end": 247.2, + "probability": 0.9991 + }, + { + "start": 247.76, + "end": 251.04, + "probability": 0.9793 + }, + { + "start": 251.86, + "end": 255.32, + "probability": 0.9607 + }, + { + "start": 255.32, + "end": 258.64, + "probability": 0.9776 + }, + { + "start": 274.34, + "end": 275.16, + "probability": 0.4341 + }, + { + "start": 275.18, + "end": 277.16, + "probability": 0.6211 + }, + { + "start": 277.26, + "end": 283.94, + "probability": 0.7763 + }, + { + "start": 285.46, + "end": 287.62, + "probability": 0.9192 + }, + { + "start": 287.76, + "end": 291.14, + "probability": 0.9779 + }, + { + "start": 292.3, + "end": 298.02, + "probability": 0.8301 + }, + { + "start": 299.68, + "end": 301.68, + "probability": 0.42 + }, + { + "start": 301.84, + "end": 306.66, + "probability": 0.7041 + }, + { + "start": 306.72, + "end": 310.58, + "probability": 0.8792 + }, + { + "start": 311.7, + "end": 316.78, + "probability": 0.9077 + }, + { + "start": 317.58, + "end": 324.06, + "probability": 0.9822 + }, + { + "start": 324.06, + "end": 330.2, + "probability": 0.9483 + }, + { + "start": 331.1, + "end": 335.2, + "probability": 0.9702 + }, + { + "start": 335.74, + "end": 338.98, + "probability": 0.9774 + }, + { + "start": 340.3, + "end": 343.36, + "probability": 0.7474 + }, + { + "start": 344.82, + "end": 345.66, + "probability": 0.7656 + }, + { + "start": 345.84, + "end": 348.36, + "probability": 0.6043 + }, + { + "start": 348.68, + "end": 352.52, + "probability": 0.8994 + }, + { + "start": 352.88, + "end": 357.98, + "probability": 0.6353 + }, + { + "start": 358.5, + "end": 360.18, + "probability": 0.9924 + }, + { + "start": 360.34, + "end": 361.36, + "probability": 0.8734 + }, + { + "start": 361.72, + "end": 364.18, + "probability": 0.7255 + }, + { + "start": 364.4, + "end": 365.42, + "probability": 0.7391 + }, + { + "start": 365.98, + "end": 368.86, + "probability": 0.6393 + }, + { + "start": 369.04, + "end": 371.42, + "probability": 0.9696 + }, + { + "start": 371.86, + "end": 373.78, + "probability": 0.9953 + }, + { + "start": 374.14, + "end": 376.8, + "probability": 0.9741 + }, + { + "start": 378.06, + "end": 379.4, + "probability": 0.745 + }, + { + "start": 379.58, + "end": 383.46, + "probability": 0.9922 + }, + { + "start": 384.24, + "end": 386.42, + "probability": 0.5013 + }, + { + "start": 386.52, + "end": 388.76, + "probability": 0.8889 + }, + { + "start": 388.94, + "end": 390.92, + "probability": 0.8106 + }, + { + "start": 396.8, + "end": 398.92, + "probability": 0.4566 + }, + { + "start": 399.46, + "end": 399.74, + "probability": 0.6461 + }, + { + "start": 400.24, + "end": 401.74, + "probability": 0.6929 + }, + { + "start": 402.36, + "end": 403.68, + "probability": 0.2008 + }, + { + "start": 403.68, + "end": 405.34, + "probability": 0.3187 + }, + { + "start": 408.43, + "end": 411.26, + "probability": 0.9995 + }, + { + "start": 411.34, + "end": 412.54, + "probability": 0.7121 + }, + { + "start": 413.22, + "end": 414.62, + "probability": 0.7772 + }, + { + "start": 414.98, + "end": 416.38, + "probability": 0.9897 + }, + { + "start": 416.86, + "end": 419.38, + "probability": 0.794 + }, + { + "start": 420.76, + "end": 422.94, + "probability": 0.6911 + }, + { + "start": 423.48, + "end": 424.56, + "probability": 0.7241 + }, + { + "start": 425.24, + "end": 427.48, + "probability": 0.7994 + }, + { + "start": 428.44, + "end": 430.32, + "probability": 0.9974 + }, + { + "start": 430.9, + "end": 437.32, + "probability": 0.9983 + }, + { + "start": 438.52, + "end": 440.48, + "probability": 0.9672 + }, + { + "start": 441.42, + "end": 442.28, + "probability": 0.9664 + }, + { + "start": 443.18, + "end": 444.8, + "probability": 0.9379 + }, + { + "start": 445.72, + "end": 448.38, + "probability": 0.9287 + }, + { + "start": 448.98, + "end": 449.82, + "probability": 0.9392 + }, + { + "start": 451.3, + "end": 452.16, + "probability": 0.9335 + }, + { + "start": 452.84, + "end": 453.9, + "probability": 0.97 + }, + { + "start": 454.56, + "end": 456.22, + "probability": 0.9908 + }, + { + "start": 456.86, + "end": 457.72, + "probability": 0.9123 + }, + { + "start": 459.1, + "end": 461.04, + "probability": 0.9612 + }, + { + "start": 461.66, + "end": 463.94, + "probability": 0.8853 + }, + { + "start": 465.18, + "end": 466.76, + "probability": 0.9893 + }, + { + "start": 467.8, + "end": 471.08, + "probability": 0.9883 + }, + { + "start": 471.94, + "end": 473.62, + "probability": 0.9932 + }, + { + "start": 474.34, + "end": 475.84, + "probability": 0.9964 + }, + { + "start": 476.48, + "end": 479.6, + "probability": 0.9969 + }, + { + "start": 480.76, + "end": 485.66, + "probability": 0.9362 + }, + { + "start": 485.66, + "end": 489.18, + "probability": 0.9982 + }, + { + "start": 489.94, + "end": 491.66, + "probability": 0.9123 + }, + { + "start": 492.22, + "end": 493.38, + "probability": 0.9904 + }, + { + "start": 494.42, + "end": 494.68, + "probability": 0.5448 + }, + { + "start": 494.84, + "end": 495.52, + "probability": 0.9889 + }, + { + "start": 496.02, + "end": 501.22, + "probability": 0.9382 + }, + { + "start": 501.96, + "end": 504.02, + "probability": 0.8108 + }, + { + "start": 504.26, + "end": 507.36, + "probability": 0.7344 + }, + { + "start": 507.96, + "end": 509.52, + "probability": 0.9927 + }, + { + "start": 510.16, + "end": 512.64, + "probability": 0.8733 + }, + { + "start": 513.78, + "end": 515.88, + "probability": 0.7489 + }, + { + "start": 516.64, + "end": 520.2, + "probability": 0.8919 + }, + { + "start": 520.54, + "end": 523.8, + "probability": 0.7539 + }, + { + "start": 524.53, + "end": 527.68, + "probability": 0.968 + }, + { + "start": 529.3, + "end": 533.34, + "probability": 0.597 + }, + { + "start": 534.26, + "end": 539.2, + "probability": 0.7427 + }, + { + "start": 539.8, + "end": 543.34, + "probability": 0.9908 + }, + { + "start": 544.72, + "end": 547.28, + "probability": 0.6567 + }, + { + "start": 548.62, + "end": 552.64, + "probability": 0.8817 + }, + { + "start": 553.48, + "end": 556.2, + "probability": 0.6162 + }, + { + "start": 556.64, + "end": 557.42, + "probability": 0.91 + }, + { + "start": 557.6, + "end": 559.41, + "probability": 0.8098 + }, + { + "start": 560.96, + "end": 563.06, + "probability": 0.6664 + }, + { + "start": 563.24, + "end": 565.68, + "probability": 0.5945 + }, + { + "start": 566.1, + "end": 567.84, + "probability": 0.8025 + }, + { + "start": 568.28, + "end": 572.0, + "probability": 0.6957 + }, + { + "start": 573.64, + "end": 576.74, + "probability": 0.9819 + }, + { + "start": 577.64, + "end": 580.02, + "probability": 0.8362 + }, + { + "start": 580.24, + "end": 580.5, + "probability": 0.8055 + }, + { + "start": 581.08, + "end": 582.6, + "probability": 0.9604 + }, + { + "start": 582.8, + "end": 584.58, + "probability": 0.9512 + }, + { + "start": 584.74, + "end": 586.54, + "probability": 0.7165 + }, + { + "start": 587.18, + "end": 589.22, + "probability": 0.9494 + }, + { + "start": 591.11, + "end": 593.34, + "probability": 0.1046 + }, + { + "start": 594.9, + "end": 595.88, + "probability": 0.6609 + }, + { + "start": 597.46, + "end": 603.24, + "probability": 0.9059 + }, + { + "start": 603.98, + "end": 607.28, + "probability": 0.9904 + }, + { + "start": 607.9, + "end": 611.06, + "probability": 0.8123 + }, + { + "start": 612.26, + "end": 615.54, + "probability": 0.9936 + }, + { + "start": 615.54, + "end": 618.28, + "probability": 0.9993 + }, + { + "start": 618.9, + "end": 620.48, + "probability": 0.9707 + }, + { + "start": 621.56, + "end": 625.46, + "probability": 0.6906 + }, + { + "start": 625.54, + "end": 629.94, + "probability": 0.864 + }, + { + "start": 629.94, + "end": 635.74, + "probability": 0.9674 + }, + { + "start": 636.84, + "end": 640.62, + "probability": 0.7802 + }, + { + "start": 640.62, + "end": 643.74, + "probability": 0.9984 + }, + { + "start": 644.82, + "end": 645.84, + "probability": 0.8611 + }, + { + "start": 646.14, + "end": 648.88, + "probability": 0.9511 + }, + { + "start": 649.7, + "end": 651.76, + "probability": 0.9298 + }, + { + "start": 651.94, + "end": 652.52, + "probability": 0.8315 + }, + { + "start": 652.92, + "end": 655.98, + "probability": 0.9974 + }, + { + "start": 656.78, + "end": 659.22, + "probability": 0.9245 + }, + { + "start": 659.58, + "end": 664.18, + "probability": 0.9956 + }, + { + "start": 664.84, + "end": 665.84, + "probability": 0.8672 + }, + { + "start": 667.28, + "end": 669.49, + "probability": 0.9056 + }, + { + "start": 671.4, + "end": 674.44, + "probability": 0.9655 + }, + { + "start": 674.6, + "end": 676.3, + "probability": 0.962 + }, + { + "start": 676.4, + "end": 677.6, + "probability": 0.8042 + }, + { + "start": 677.66, + "end": 677.86, + "probability": 0.4038 + }, + { + "start": 678.54, + "end": 679.46, + "probability": 0.9162 + }, + { + "start": 680.88, + "end": 683.16, + "probability": 0.9873 + }, + { + "start": 683.28, + "end": 683.62, + "probability": 0.9661 + }, + { + "start": 683.7, + "end": 687.08, + "probability": 0.9959 + }, + { + "start": 689.16, + "end": 690.66, + "probability": 0.544 + }, + { + "start": 690.7, + "end": 691.7, + "probability": 0.7047 + }, + { + "start": 691.92, + "end": 692.66, + "probability": 0.8389 + }, + { + "start": 694.01, + "end": 697.8, + "probability": 0.9388 + }, + { + "start": 697.84, + "end": 698.64, + "probability": 0.7158 + }, + { + "start": 698.98, + "end": 701.52, + "probability": 0.8447 + }, + { + "start": 702.26, + "end": 704.36, + "probability": 0.9879 + }, + { + "start": 704.68, + "end": 705.5, + "probability": 0.9493 + }, + { + "start": 705.6, + "end": 706.98, + "probability": 0.9327 + }, + { + "start": 707.62, + "end": 713.12, + "probability": 0.9961 + }, + { + "start": 713.62, + "end": 717.8, + "probability": 0.9904 + }, + { + "start": 717.94, + "end": 718.2, + "probability": 0.7877 + }, + { + "start": 718.82, + "end": 719.96, + "probability": 0.7144 + }, + { + "start": 720.1, + "end": 721.72, + "probability": 0.9591 + }, + { + "start": 721.96, + "end": 724.76, + "probability": 0.9798 + }, + { + "start": 724.92, + "end": 725.63, + "probability": 0.937 + }, + { + "start": 725.94, + "end": 730.06, + "probability": 0.8359 + }, + { + "start": 730.16, + "end": 730.74, + "probability": 0.7387 + }, + { + "start": 730.8, + "end": 731.5, + "probability": 0.7054 + }, + { + "start": 731.56, + "end": 732.78, + "probability": 0.0126 + }, + { + "start": 732.94, + "end": 735.9, + "probability": 0.8718 + }, + { + "start": 736.26, + "end": 737.84, + "probability": 0.493 + }, + { + "start": 740.62, + "end": 742.06, + "probability": 0.7213 + }, + { + "start": 742.92, + "end": 750.78, + "probability": 0.9939 + }, + { + "start": 751.66, + "end": 755.82, + "probability": 0.9675 + }, + { + "start": 757.14, + "end": 758.46, + "probability": 0.6965 + }, + { + "start": 759.86, + "end": 762.32, + "probability": 0.9258 + }, + { + "start": 763.4, + "end": 765.8, + "probability": 0.861 + }, + { + "start": 766.52, + "end": 774.01, + "probability": 0.9913 + }, + { + "start": 775.74, + "end": 778.38, + "probability": 0.817 + }, + { + "start": 779.64, + "end": 781.6, + "probability": 0.9819 + }, + { + "start": 782.46, + "end": 783.3, + "probability": 0.9229 + }, + { + "start": 783.84, + "end": 786.28, + "probability": 0.9933 + }, + { + "start": 788.04, + "end": 792.7, + "probability": 0.9404 + }, + { + "start": 792.88, + "end": 793.6, + "probability": 0.4135 + }, + { + "start": 794.56, + "end": 795.8, + "probability": 0.9484 + }, + { + "start": 796.62, + "end": 798.24, + "probability": 0.9642 + }, + { + "start": 798.96, + "end": 801.8, + "probability": 0.9092 + }, + { + "start": 802.34, + "end": 804.34, + "probability": 0.9189 + }, + { + "start": 805.34, + "end": 808.84, + "probability": 0.9628 + }, + { + "start": 808.9, + "end": 809.7, + "probability": 0.973 + }, + { + "start": 810.82, + "end": 812.18, + "probability": 0.6975 + }, + { + "start": 813.18, + "end": 816.72, + "probability": 0.9863 + }, + { + "start": 817.36, + "end": 820.06, + "probability": 0.9797 + }, + { + "start": 820.7, + "end": 823.16, + "probability": 0.9952 + }, + { + "start": 823.94, + "end": 828.62, + "probability": 0.9949 + }, + { + "start": 829.5, + "end": 836.9, + "probability": 0.9287 + }, + { + "start": 837.54, + "end": 838.22, + "probability": 0.8091 + }, + { + "start": 839.02, + "end": 841.1, + "probability": 0.6903 + }, + { + "start": 841.18, + "end": 846.06, + "probability": 0.8823 + }, + { + "start": 847.42, + "end": 851.42, + "probability": 0.902 + }, + { + "start": 852.18, + "end": 852.52, + "probability": 0.418 + }, + { + "start": 853.34, + "end": 856.82, + "probability": 0.993 + }, + { + "start": 857.44, + "end": 862.38, + "probability": 0.9961 + }, + { + "start": 863.08, + "end": 867.38, + "probability": 0.9683 + }, + { + "start": 867.96, + "end": 871.62, + "probability": 0.9725 + }, + { + "start": 872.04, + "end": 878.56, + "probability": 0.8363 + }, + { + "start": 879.08, + "end": 880.52, + "probability": 0.8745 + }, + { + "start": 881.06, + "end": 883.86, + "probability": 0.9263 + }, + { + "start": 884.7, + "end": 885.24, + "probability": 0.7549 + }, + { + "start": 885.98, + "end": 887.92, + "probability": 0.8022 + }, + { + "start": 888.18, + "end": 889.08, + "probability": 0.9422 + }, + { + "start": 889.38, + "end": 893.06, + "probability": 0.939 + }, + { + "start": 893.6, + "end": 895.96, + "probability": 0.8958 + }, + { + "start": 896.62, + "end": 900.06, + "probability": 0.9836 + }, + { + "start": 903.68, + "end": 905.68, + "probability": 0.2333 + }, + { + "start": 907.46, + "end": 911.92, + "probability": 0.8371 + }, + { + "start": 912.54, + "end": 915.28, + "probability": 0.9731 + }, + { + "start": 916.18, + "end": 918.08, + "probability": 0.9803 + }, + { + "start": 918.2, + "end": 922.33, + "probability": 0.9909 + }, + { + "start": 923.76, + "end": 928.0, + "probability": 0.8665 + }, + { + "start": 929.12, + "end": 933.22, + "probability": 0.9596 + }, + { + "start": 933.98, + "end": 938.2, + "probability": 0.9865 + }, + { + "start": 939.82, + "end": 942.64, + "probability": 0.7786 + }, + { + "start": 942.86, + "end": 944.38, + "probability": 0.8555 + }, + { + "start": 945.34, + "end": 946.46, + "probability": 0.7506 + }, + { + "start": 947.24, + "end": 952.5, + "probability": 0.9982 + }, + { + "start": 953.36, + "end": 958.4, + "probability": 0.9984 + }, + { + "start": 960.85, + "end": 965.44, + "probability": 0.9917 + }, + { + "start": 965.44, + "end": 970.44, + "probability": 0.9961 + }, + { + "start": 971.36, + "end": 972.48, + "probability": 0.7084 + }, + { + "start": 973.06, + "end": 975.04, + "probability": 0.8923 + }, + { + "start": 975.58, + "end": 978.92, + "probability": 0.604 + }, + { + "start": 979.56, + "end": 982.8, + "probability": 0.9548 + }, + { + "start": 984.3, + "end": 987.98, + "probability": 0.8374 + }, + { + "start": 989.42, + "end": 991.6, + "probability": 0.9678 + }, + { + "start": 992.34, + "end": 996.6, + "probability": 0.9977 + }, + { + "start": 997.04, + "end": 1001.74, + "probability": 0.9823 + }, + { + "start": 1002.62, + "end": 1005.52, + "probability": 0.9992 + }, + { + "start": 1005.52, + "end": 1010.58, + "probability": 0.8047 + }, + { + "start": 1010.98, + "end": 1015.28, + "probability": 0.9917 + }, + { + "start": 1016.06, + "end": 1020.24, + "probability": 0.9955 + }, + { + "start": 1020.94, + "end": 1023.8, + "probability": 0.8671 + }, + { + "start": 1024.02, + "end": 1025.98, + "probability": 0.9886 + }, + { + "start": 1026.12, + "end": 1028.26, + "probability": 0.9767 + }, + { + "start": 1028.44, + "end": 1029.88, + "probability": 0.9521 + }, + { + "start": 1030.54, + "end": 1031.6, + "probability": 0.9909 + }, + { + "start": 1031.78, + "end": 1032.58, + "probability": 0.9081 + }, + { + "start": 1032.68, + "end": 1033.3, + "probability": 0.9626 + }, + { + "start": 1033.48, + "end": 1034.56, + "probability": 0.9428 + }, + { + "start": 1034.9, + "end": 1035.6, + "probability": 0.9229 + }, + { + "start": 1036.52, + "end": 1039.44, + "probability": 0.9518 + }, + { + "start": 1039.72, + "end": 1042.02, + "probability": 0.8872 + }, + { + "start": 1042.96, + "end": 1043.76, + "probability": 0.8427 + }, + { + "start": 1044.26, + "end": 1048.14, + "probability": 0.9667 + }, + { + "start": 1048.14, + "end": 1051.4, + "probability": 0.9973 + }, + { + "start": 1052.04, + "end": 1054.24, + "probability": 0.9967 + }, + { + "start": 1055.16, + "end": 1059.16, + "probability": 0.985 + }, + { + "start": 1059.54, + "end": 1060.14, + "probability": 0.7622 + }, + { + "start": 1060.54, + "end": 1065.52, + "probability": 0.9738 + }, + { + "start": 1066.0, + "end": 1068.96, + "probability": 0.8892 + }, + { + "start": 1068.96, + "end": 1072.54, + "probability": 0.9841 + }, + { + "start": 1073.22, + "end": 1074.46, + "probability": 0.7469 + }, + { + "start": 1074.8, + "end": 1078.58, + "probability": 0.9232 + }, + { + "start": 1078.98, + "end": 1081.1, + "probability": 0.8645 + }, + { + "start": 1082.14, + "end": 1085.5, + "probability": 0.2462 + }, + { + "start": 1086.8, + "end": 1090.52, + "probability": 0.8409 + }, + { + "start": 1091.24, + "end": 1092.58, + "probability": 0.738 + }, + { + "start": 1092.66, + "end": 1093.1, + "probability": 0.699 + }, + { + "start": 1093.16, + "end": 1093.42, + "probability": 0.7387 + }, + { + "start": 1093.46, + "end": 1093.9, + "probability": 0.7349 + }, + { + "start": 1094.02, + "end": 1095.2, + "probability": 0.9695 + }, + { + "start": 1102.7, + "end": 1104.12, + "probability": 0.4488 + }, + { + "start": 1105.68, + "end": 1108.22, + "probability": 0.8696 + }, + { + "start": 1109.6, + "end": 1110.26, + "probability": 0.7902 + }, + { + "start": 1110.92, + "end": 1116.7, + "probability": 0.9951 + }, + { + "start": 1117.98, + "end": 1119.0, + "probability": 0.9666 + }, + { + "start": 1119.76, + "end": 1121.79, + "probability": 0.986 + }, + { + "start": 1122.4, + "end": 1127.6, + "probability": 0.9981 + }, + { + "start": 1127.6, + "end": 1131.84, + "probability": 0.999 + }, + { + "start": 1133.0, + "end": 1135.88, + "probability": 0.991 + }, + { + "start": 1137.52, + "end": 1139.02, + "probability": 0.8676 + }, + { + "start": 1139.84, + "end": 1144.86, + "probability": 0.9702 + }, + { + "start": 1145.98, + "end": 1147.04, + "probability": 0.7077 + }, + { + "start": 1148.58, + "end": 1150.36, + "probability": 0.9974 + }, + { + "start": 1150.9, + "end": 1154.3, + "probability": 0.9987 + }, + { + "start": 1154.82, + "end": 1158.02, + "probability": 0.9917 + }, + { + "start": 1159.06, + "end": 1159.9, + "probability": 0.941 + }, + { + "start": 1160.3, + "end": 1161.26, + "probability": 0.8369 + }, + { + "start": 1161.66, + "end": 1164.14, + "probability": 0.9888 + }, + { + "start": 1164.42, + "end": 1168.06, + "probability": 0.972 + }, + { + "start": 1169.26, + "end": 1170.44, + "probability": 0.856 + }, + { + "start": 1170.98, + "end": 1173.06, + "probability": 0.9948 + }, + { + "start": 1174.08, + "end": 1179.88, + "probability": 0.9923 + }, + { + "start": 1180.68, + "end": 1183.0, + "probability": 0.9995 + }, + { + "start": 1183.44, + "end": 1185.82, + "probability": 0.9639 + }, + { + "start": 1186.66, + "end": 1189.54, + "probability": 0.9709 + }, + { + "start": 1189.72, + "end": 1190.18, + "probability": 0.8326 + }, + { + "start": 1190.74, + "end": 1192.3, + "probability": 0.6982 + }, + { + "start": 1194.64, + "end": 1196.98, + "probability": 0.8691 + }, + { + "start": 1197.02, + "end": 1199.36, + "probability": 0.7507 + }, + { + "start": 1201.02, + "end": 1202.06, + "probability": 0.648 + }, + { + "start": 1202.2, + "end": 1203.42, + "probability": 0.9245 + }, + { + "start": 1203.54, + "end": 1204.72, + "probability": 0.6659 + }, + { + "start": 1206.02, + "end": 1208.58, + "probability": 0.9983 + }, + { + "start": 1208.58, + "end": 1212.56, + "probability": 0.9871 + }, + { + "start": 1213.2, + "end": 1215.16, + "probability": 0.9734 + }, + { + "start": 1215.82, + "end": 1220.16, + "probability": 0.9129 + }, + { + "start": 1220.96, + "end": 1224.26, + "probability": 0.91 + }, + { + "start": 1224.76, + "end": 1230.38, + "probability": 0.9658 + }, + { + "start": 1230.94, + "end": 1233.8, + "probability": 0.9932 + }, + { + "start": 1233.84, + "end": 1236.58, + "probability": 0.6841 + }, + { + "start": 1237.0, + "end": 1237.65, + "probability": 0.6934 + }, + { + "start": 1238.18, + "end": 1238.82, + "probability": 0.8438 + }, + { + "start": 1239.34, + "end": 1240.88, + "probability": 0.6458 + }, + { + "start": 1241.5, + "end": 1243.58, + "probability": 0.7283 + }, + { + "start": 1244.16, + "end": 1249.24, + "probability": 0.7886 + }, + { + "start": 1249.98, + "end": 1250.38, + "probability": 0.3528 + }, + { + "start": 1250.4, + "end": 1252.12, + "probability": 0.8928 + }, + { + "start": 1252.12, + "end": 1254.72, + "probability": 0.9494 + }, + { + "start": 1255.28, + "end": 1256.66, + "probability": 0.9092 + }, + { + "start": 1256.84, + "end": 1258.74, + "probability": 0.9074 + }, + { + "start": 1258.84, + "end": 1260.02, + "probability": 0.9621 + }, + { + "start": 1261.92, + "end": 1263.54, + "probability": 0.9752 + }, + { + "start": 1264.18, + "end": 1265.34, + "probability": 0.9749 + }, + { + "start": 1266.16, + "end": 1269.2, + "probability": 0.7645 + }, + { + "start": 1269.82, + "end": 1270.9, + "probability": 0.9661 + }, + { + "start": 1271.0, + "end": 1272.98, + "probability": 0.9333 + }, + { + "start": 1273.34, + "end": 1277.66, + "probability": 0.9927 + }, + { + "start": 1278.04, + "end": 1280.36, + "probability": 0.998 + }, + { + "start": 1281.12, + "end": 1282.14, + "probability": 0.8838 + }, + { + "start": 1283.18, + "end": 1283.92, + "probability": 0.9774 + }, + { + "start": 1284.18, + "end": 1289.96, + "probability": 0.7588 + }, + { + "start": 1291.38, + "end": 1294.84, + "probability": 0.9729 + }, + { + "start": 1295.4, + "end": 1299.94, + "probability": 0.9722 + }, + { + "start": 1300.62, + "end": 1308.18, + "probability": 0.9875 + }, + { + "start": 1309.32, + "end": 1311.26, + "probability": 0.5502 + }, + { + "start": 1311.32, + "end": 1313.42, + "probability": 0.6708 + }, + { + "start": 1313.6, + "end": 1315.0, + "probability": 0.9424 + }, + { + "start": 1315.8, + "end": 1317.51, + "probability": 0.4961 + }, + { + "start": 1318.92, + "end": 1318.92, + "probability": 0.0018 + }, + { + "start": 1318.92, + "end": 1319.52, + "probability": 0.1548 + }, + { + "start": 1319.69, + "end": 1321.64, + "probability": 0.0894 + }, + { + "start": 1322.4, + "end": 1323.22, + "probability": 0.0345 + }, + { + "start": 1323.22, + "end": 1325.29, + "probability": 0.6888 + }, + { + "start": 1326.54, + "end": 1328.7, + "probability": 0.8027 + }, + { + "start": 1329.38, + "end": 1329.8, + "probability": 0.554 + }, + { + "start": 1330.36, + "end": 1331.62, + "probability": 0.9459 + }, + { + "start": 1333.82, + "end": 1339.34, + "probability": 0.9681 + }, + { + "start": 1340.44, + "end": 1342.02, + "probability": 0.9918 + }, + { + "start": 1342.76, + "end": 1349.5, + "probability": 0.9932 + }, + { + "start": 1353.26, + "end": 1357.5, + "probability": 0.9932 + }, + { + "start": 1359.58, + "end": 1362.92, + "probability": 0.9766 + }, + { + "start": 1364.48, + "end": 1366.5, + "probability": 0.9946 + }, + { + "start": 1366.8, + "end": 1367.64, + "probability": 0.9631 + }, + { + "start": 1367.64, + "end": 1369.66, + "probability": 0.7962 + }, + { + "start": 1371.68, + "end": 1372.88, + "probability": 0.5534 + }, + { + "start": 1373.44, + "end": 1375.62, + "probability": 0.9622 + }, + { + "start": 1378.38, + "end": 1380.38, + "probability": 0.7288 + }, + { + "start": 1382.74, + "end": 1388.7, + "probability": 0.9587 + }, + { + "start": 1389.42, + "end": 1392.1, + "probability": 0.9731 + }, + { + "start": 1393.24, + "end": 1394.96, + "probability": 0.6818 + }, + { + "start": 1395.66, + "end": 1399.92, + "probability": 0.9427 + }, + { + "start": 1401.06, + "end": 1404.58, + "probability": 0.9866 + }, + { + "start": 1405.96, + "end": 1408.24, + "probability": 0.7166 + }, + { + "start": 1409.76, + "end": 1417.26, + "probability": 0.9326 + }, + { + "start": 1417.82, + "end": 1421.64, + "probability": 0.9908 + }, + { + "start": 1421.66, + "end": 1422.02, + "probability": 0.2567 + }, + { + "start": 1422.52, + "end": 1423.64, + "probability": 0.6248 + }, + { + "start": 1423.72, + "end": 1425.84, + "probability": 0.839 + }, + { + "start": 1425.88, + "end": 1427.96, + "probability": 0.7666 + }, + { + "start": 1434.46, + "end": 1436.22, + "probability": 0.6354 + }, + { + "start": 1437.22, + "end": 1437.94, + "probability": 0.9285 + }, + { + "start": 1438.82, + "end": 1443.52, + "probability": 0.9937 + }, + { + "start": 1444.52, + "end": 1445.46, + "probability": 0.9993 + }, + { + "start": 1446.8, + "end": 1449.62, + "probability": 0.9897 + }, + { + "start": 1450.52, + "end": 1451.18, + "probability": 0.8478 + }, + { + "start": 1452.24, + "end": 1453.72, + "probability": 0.927 + }, + { + "start": 1454.36, + "end": 1455.9, + "probability": 0.8489 + }, + { + "start": 1456.66, + "end": 1459.6, + "probability": 0.9111 + }, + { + "start": 1460.22, + "end": 1460.96, + "probability": 0.7769 + }, + { + "start": 1461.48, + "end": 1462.52, + "probability": 0.9203 + }, + { + "start": 1463.04, + "end": 1464.88, + "probability": 0.9904 + }, + { + "start": 1465.18, + "end": 1466.1, + "probability": 0.9534 + }, + { + "start": 1466.22, + "end": 1467.18, + "probability": 0.7789 + }, + { + "start": 1468.22, + "end": 1471.08, + "probability": 0.6882 + }, + { + "start": 1471.84, + "end": 1472.84, + "probability": 0.731 + }, + { + "start": 1473.54, + "end": 1476.82, + "probability": 0.8595 + }, + { + "start": 1477.94, + "end": 1480.76, + "probability": 0.9766 + }, + { + "start": 1482.12, + "end": 1483.54, + "probability": 0.7232 + }, + { + "start": 1485.72, + "end": 1487.84, + "probability": 0.9805 + }, + { + "start": 1488.08, + "end": 1488.22, + "probability": 0.9663 + }, + { + "start": 1490.28, + "end": 1492.92, + "probability": 0.9273 + }, + { + "start": 1493.46, + "end": 1495.66, + "probability": 0.7632 + }, + { + "start": 1496.58, + "end": 1503.34, + "probability": 0.8755 + }, + { + "start": 1503.36, + "end": 1505.28, + "probability": 0.9556 + }, + { + "start": 1505.7, + "end": 1506.34, + "probability": 0.7892 + }, + { + "start": 1506.42, + "end": 1507.22, + "probability": 0.8578 + }, + { + "start": 1507.74, + "end": 1509.1, + "probability": 0.9953 + }, + { + "start": 1510.58, + "end": 1511.86, + "probability": 0.8467 + }, + { + "start": 1512.62, + "end": 1513.66, + "probability": 0.4056 + }, + { + "start": 1513.84, + "end": 1514.06, + "probability": 0.6914 + }, + { + "start": 1515.1, + "end": 1516.6, + "probability": 0.5139 + }, + { + "start": 1518.34, + "end": 1520.2, + "probability": 0.9274 + }, + { + "start": 1521.58, + "end": 1523.7, + "probability": 0.5852 + }, + { + "start": 1524.2, + "end": 1525.1, + "probability": 0.3275 + }, + { + "start": 1525.1, + "end": 1532.86, + "probability": 0.9623 + }, + { + "start": 1533.12, + "end": 1538.36, + "probability": 0.9944 + }, + { + "start": 1538.52, + "end": 1542.7, + "probability": 0.9941 + }, + { + "start": 1543.2, + "end": 1544.76, + "probability": 0.9817 + }, + { + "start": 1544.86, + "end": 1547.06, + "probability": 0.9938 + }, + { + "start": 1547.6, + "end": 1549.08, + "probability": 0.9744 + }, + { + "start": 1549.22, + "end": 1553.12, + "probability": 0.9829 + }, + { + "start": 1553.12, + "end": 1555.8, + "probability": 0.9524 + }, + { + "start": 1555.88, + "end": 1559.64, + "probability": 0.93 + }, + { + "start": 1560.02, + "end": 1564.56, + "probability": 0.9897 + }, + { + "start": 1565.18, + "end": 1566.58, + "probability": 0.6194 + }, + { + "start": 1566.98, + "end": 1568.66, + "probability": 0.7466 + }, + { + "start": 1568.94, + "end": 1570.08, + "probability": 0.6908 + }, + { + "start": 1570.52, + "end": 1573.0, + "probability": 0.9338 + }, + { + "start": 1573.0, + "end": 1576.2, + "probability": 0.8969 + }, + { + "start": 1576.32, + "end": 1577.9, + "probability": 0.9954 + }, + { + "start": 1578.22, + "end": 1578.78, + "probability": 0.5375 + }, + { + "start": 1578.86, + "end": 1581.5, + "probability": 0.9818 + }, + { + "start": 1582.14, + "end": 1583.04, + "probability": 0.9521 + }, + { + "start": 1583.22, + "end": 1584.69, + "probability": 0.9106 + }, + { + "start": 1584.84, + "end": 1585.12, + "probability": 0.6803 + }, + { + "start": 1585.92, + "end": 1586.8, + "probability": 0.2698 + }, + { + "start": 1587.12, + "end": 1589.91, + "probability": 0.8717 + }, + { + "start": 1590.66, + "end": 1593.24, + "probability": 0.4874 + }, + { + "start": 1595.58, + "end": 1597.64, + "probability": 0.6202 + }, + { + "start": 1599.4, + "end": 1603.6, + "probability": 0.664 + }, + { + "start": 1605.12, + "end": 1611.54, + "probability": 0.8746 + }, + { + "start": 1612.46, + "end": 1614.5, + "probability": 0.999 + }, + { + "start": 1614.7, + "end": 1617.48, + "probability": 0.8826 + }, + { + "start": 1618.08, + "end": 1621.68, + "probability": 0.9834 + }, + { + "start": 1622.42, + "end": 1623.42, + "probability": 0.8706 + }, + { + "start": 1624.66, + "end": 1627.06, + "probability": 0.706 + }, + { + "start": 1627.48, + "end": 1628.48, + "probability": 0.6916 + }, + { + "start": 1629.56, + "end": 1631.14, + "probability": 0.9344 + }, + { + "start": 1631.44, + "end": 1633.16, + "probability": 0.4882 + }, + { + "start": 1633.2, + "end": 1633.2, + "probability": 0.4094 + }, + { + "start": 1633.2, + "end": 1636.72, + "probability": 0.6797 + }, + { + "start": 1637.4, + "end": 1638.68, + "probability": 0.9119 + }, + { + "start": 1640.76, + "end": 1644.8, + "probability": 0.9634 + }, + { + "start": 1645.04, + "end": 1645.5, + "probability": 0.4769 + }, + { + "start": 1645.64, + "end": 1649.26, + "probability": 0.984 + }, + { + "start": 1649.92, + "end": 1653.12, + "probability": 0.9549 + }, + { + "start": 1653.87, + "end": 1657.66, + "probability": 0.9964 + }, + { + "start": 1657.74, + "end": 1660.86, + "probability": 0.9989 + }, + { + "start": 1661.62, + "end": 1662.8, + "probability": 0.7653 + }, + { + "start": 1663.32, + "end": 1671.56, + "probability": 0.9984 + }, + { + "start": 1672.12, + "end": 1674.64, + "probability": 0.9806 + }, + { + "start": 1675.08, + "end": 1677.02, + "probability": 0.8003 + }, + { + "start": 1677.1, + "end": 1680.74, + "probability": 0.9603 + }, + { + "start": 1681.2, + "end": 1682.34, + "probability": 0.9097 + }, + { + "start": 1683.06, + "end": 1685.06, + "probability": 0.9333 + }, + { + "start": 1685.3, + "end": 1686.81, + "probability": 0.4776 + }, + { + "start": 1687.1, + "end": 1689.1, + "probability": 0.9382 + }, + { + "start": 1689.22, + "end": 1693.8, + "probability": 0.9358 + }, + { + "start": 1694.52, + "end": 1698.46, + "probability": 0.8494 + }, + { + "start": 1698.46, + "end": 1702.3, + "probability": 0.9851 + }, + { + "start": 1702.36, + "end": 1703.58, + "probability": 0.9607 + }, + { + "start": 1703.86, + "end": 1706.58, + "probability": 0.8903 + }, + { + "start": 1706.66, + "end": 1708.02, + "probability": 0.734 + }, + { + "start": 1708.12, + "end": 1708.36, + "probability": 0.7253 + }, + { + "start": 1708.36, + "end": 1708.9, + "probability": 0.8492 + }, + { + "start": 1709.82, + "end": 1711.2, + "probability": 0.5213 + }, + { + "start": 1711.28, + "end": 1712.34, + "probability": 0.8615 + }, + { + "start": 1712.7, + "end": 1716.24, + "probability": 0.8616 + }, + { + "start": 1716.24, + "end": 1719.56, + "probability": 0.9451 + }, + { + "start": 1719.58, + "end": 1724.08, + "probability": 0.7812 + }, + { + "start": 1724.38, + "end": 1725.42, + "probability": 0.8339 + }, + { + "start": 1725.46, + "end": 1725.84, + "probability": 0.8453 + }, + { + "start": 1725.92, + "end": 1726.64, + "probability": 0.7312 + }, + { + "start": 1726.82, + "end": 1727.02, + "probability": 0.6595 + }, + { + "start": 1727.1, + "end": 1728.0, + "probability": 0.4996 + }, + { + "start": 1728.38, + "end": 1730.4, + "probability": 0.9348 + }, + { + "start": 1735.38, + "end": 1735.38, + "probability": 0.0937 + }, + { + "start": 1735.38, + "end": 1736.26, + "probability": 0.3377 + }, + { + "start": 1737.06, + "end": 1740.08, + "probability": 0.9741 + }, + { + "start": 1741.12, + "end": 1743.83, + "probability": 0.9702 + }, + { + "start": 1744.18, + "end": 1745.96, + "probability": 0.9906 + }, + { + "start": 1746.02, + "end": 1751.24, + "probability": 0.6968 + }, + { + "start": 1751.94, + "end": 1756.08, + "probability": 0.5853 + }, + { + "start": 1756.32, + "end": 1756.94, + "probability": 0.1964 + }, + { + "start": 1757.0, + "end": 1764.0, + "probability": 0.9344 + }, + { + "start": 1764.78, + "end": 1766.06, + "probability": 0.9118 + }, + { + "start": 1767.12, + "end": 1768.1, + "probability": 0.922 + }, + { + "start": 1769.0, + "end": 1774.96, + "probability": 0.967 + }, + { + "start": 1776.08, + "end": 1781.24, + "probability": 0.8516 + }, + { + "start": 1783.04, + "end": 1784.14, + "probability": 0.9448 + }, + { + "start": 1785.04, + "end": 1789.26, + "probability": 0.8665 + }, + { + "start": 1789.84, + "end": 1794.38, + "probability": 0.974 + }, + { + "start": 1795.26, + "end": 1798.42, + "probability": 0.9906 + }, + { + "start": 1799.5, + "end": 1802.52, + "probability": 0.9876 + }, + { + "start": 1802.68, + "end": 1807.58, + "probability": 0.9873 + }, + { + "start": 1808.1, + "end": 1811.16, + "probability": 0.96 + }, + { + "start": 1811.36, + "end": 1811.66, + "probability": 0.7576 + }, + { + "start": 1812.1, + "end": 1812.98, + "probability": 0.414 + }, + { + "start": 1812.98, + "end": 1814.34, + "probability": 0.8248 + }, + { + "start": 1814.38, + "end": 1814.88, + "probability": 0.4798 + }, + { + "start": 1814.98, + "end": 1816.44, + "probability": 0.8585 + }, + { + "start": 1824.28, + "end": 1825.94, + "probability": 0.5401 + }, + { + "start": 1827.72, + "end": 1832.58, + "probability": 0.9289 + }, + { + "start": 1833.08, + "end": 1833.62, + "probability": 0.7578 + }, + { + "start": 1835.5, + "end": 1835.6, + "probability": 0.3273 + }, + { + "start": 1835.6, + "end": 1837.88, + "probability": 0.812 + }, + { + "start": 1839.24, + "end": 1841.94, + "probability": 0.6811 + }, + { + "start": 1843.04, + "end": 1845.26, + "probability": 0.8038 + }, + { + "start": 1846.86, + "end": 1848.22, + "probability": 0.8218 + }, + { + "start": 1849.12, + "end": 1851.18, + "probability": 0.9707 + }, + { + "start": 1852.38, + "end": 1855.84, + "probability": 0.8291 + }, + { + "start": 1856.78, + "end": 1861.26, + "probability": 0.9561 + }, + { + "start": 1862.18, + "end": 1863.38, + "probability": 0.8524 + }, + { + "start": 1864.26, + "end": 1867.26, + "probability": 0.9817 + }, + { + "start": 1868.32, + "end": 1869.76, + "probability": 0.8432 + }, + { + "start": 1872.08, + "end": 1878.74, + "probability": 0.9556 + }, + { + "start": 1880.08, + "end": 1882.64, + "probability": 0.8747 + }, + { + "start": 1883.22, + "end": 1885.26, + "probability": 0.9822 + }, + { + "start": 1887.0, + "end": 1889.72, + "probability": 0.9529 + }, + { + "start": 1890.42, + "end": 1894.76, + "probability": 0.8894 + }, + { + "start": 1895.64, + "end": 1895.68, + "probability": 0.1198 + }, + { + "start": 1895.68, + "end": 1896.2, + "probability": 0.6287 + }, + { + "start": 1896.34, + "end": 1901.34, + "probability": 0.9722 + }, + { + "start": 1901.72, + "end": 1902.34, + "probability": 0.4385 + }, + { + "start": 1902.44, + "end": 1904.42, + "probability": 0.9045 + }, + { + "start": 1904.88, + "end": 1908.58, + "probability": 0.9955 + }, + { + "start": 1909.56, + "end": 1910.34, + "probability": 0.532 + }, + { + "start": 1910.36, + "end": 1912.24, + "probability": 0.8452 + }, + { + "start": 1920.62, + "end": 1922.0, + "probability": 0.555 + }, + { + "start": 1935.42, + "end": 1935.88, + "probability": 0.3048 + }, + { + "start": 1936.64, + "end": 1941.98, + "probability": 0.9527 + }, + { + "start": 1942.54, + "end": 1947.7, + "probability": 0.9758 + }, + { + "start": 1948.36, + "end": 1953.2, + "probability": 0.9844 + }, + { + "start": 1953.38, + "end": 1954.16, + "probability": 0.882 + }, + { + "start": 1954.32, + "end": 1955.4, + "probability": 0.9674 + }, + { + "start": 1955.84, + "end": 1958.64, + "probability": 0.9947 + }, + { + "start": 1958.94, + "end": 1963.56, + "probability": 0.9585 + }, + { + "start": 1964.02, + "end": 1965.64, + "probability": 0.8726 + }, + { + "start": 1966.38, + "end": 1968.48, + "probability": 0.9875 + }, + { + "start": 1968.54, + "end": 1969.74, + "probability": 0.9152 + }, + { + "start": 1969.92, + "end": 1973.74, + "probability": 0.9945 + }, + { + "start": 1974.6, + "end": 1975.82, + "probability": 0.7895 + }, + { + "start": 1975.96, + "end": 1977.96, + "probability": 0.9834 + }, + { + "start": 1977.96, + "end": 1979.32, + "probability": 0.901 + }, + { + "start": 1980.32, + "end": 1982.06, + "probability": 0.7428 + }, + { + "start": 1982.48, + "end": 1983.52, + "probability": 0.5606 + }, + { + "start": 1984.3, + "end": 1984.72, + "probability": 0.9334 + }, + { + "start": 1985.04, + "end": 1986.54, + "probability": 0.8696 + }, + { + "start": 1986.6, + "end": 1988.72, + "probability": 0.9977 + }, + { + "start": 1988.98, + "end": 1990.34, + "probability": 0.9402 + }, + { + "start": 1990.44, + "end": 1993.12, + "probability": 0.9601 + }, + { + "start": 1993.58, + "end": 1994.12, + "probability": 0.3812 + }, + { + "start": 1994.42, + "end": 1994.9, + "probability": 0.8827 + }, + { + "start": 1995.08, + "end": 1995.96, + "probability": 0.8918 + }, + { + "start": 1996.26, + "end": 1997.16, + "probability": 0.9453 + }, + { + "start": 1997.26, + "end": 1997.98, + "probability": 0.8749 + }, + { + "start": 1998.42, + "end": 1999.3, + "probability": 0.6958 + }, + { + "start": 1999.82, + "end": 2001.13, + "probability": 0.991 + }, + { + "start": 2001.28, + "end": 2004.46, + "probability": 0.9517 + }, + { + "start": 2004.52, + "end": 2009.1, + "probability": 0.869 + }, + { + "start": 2009.4, + "end": 2010.22, + "probability": 0.7089 + }, + { + "start": 2010.3, + "end": 2012.42, + "probability": 0.9967 + }, + { + "start": 2013.06, + "end": 2015.68, + "probability": 0.9645 + }, + { + "start": 2016.02, + "end": 2020.92, + "probability": 0.9936 + }, + { + "start": 2021.26, + "end": 2023.44, + "probability": 0.9604 + }, + { + "start": 2023.8, + "end": 2025.3, + "probability": 0.8796 + }, + { + "start": 2025.34, + "end": 2027.22, + "probability": 0.8669 + }, + { + "start": 2027.68, + "end": 2030.56, + "probability": 0.9968 + }, + { + "start": 2031.84, + "end": 2034.28, + "probability": 0.99 + }, + { + "start": 2034.36, + "end": 2035.62, + "probability": 0.6398 + }, + { + "start": 2036.18, + "end": 2036.48, + "probability": 0.9377 + }, + { + "start": 2036.9, + "end": 2037.84, + "probability": 0.3527 + }, + { + "start": 2038.06, + "end": 2041.54, + "probability": 0.8875 + }, + { + "start": 2051.72, + "end": 2053.08, + "probability": 0.6449 + }, + { + "start": 2057.98, + "end": 2062.82, + "probability": 0.9922 + }, + { + "start": 2062.82, + "end": 2066.74, + "probability": 0.9888 + }, + { + "start": 2067.8, + "end": 2075.0, + "probability": 0.9924 + }, + { + "start": 2075.0, + "end": 2080.02, + "probability": 0.9987 + }, + { + "start": 2081.96, + "end": 2086.63, + "probability": 0.9599 + }, + { + "start": 2087.56, + "end": 2090.42, + "probability": 0.9746 + }, + { + "start": 2091.72, + "end": 2099.36, + "probability": 0.9404 + }, + { + "start": 2099.36, + "end": 2106.64, + "probability": 0.9937 + }, + { + "start": 2107.1, + "end": 2109.24, + "probability": 0.9956 + }, + { + "start": 2110.62, + "end": 2111.14, + "probability": 0.8372 + }, + { + "start": 2112.06, + "end": 2113.08, + "probability": 0.9037 + }, + { + "start": 2114.18, + "end": 2117.52, + "probability": 0.9471 + }, + { + "start": 2118.14, + "end": 2120.17, + "probability": 0.9712 + }, + { + "start": 2121.22, + "end": 2123.74, + "probability": 0.9644 + }, + { + "start": 2124.66, + "end": 2128.88, + "probability": 0.9439 + }, + { + "start": 2129.56, + "end": 2133.92, + "probability": 0.995 + }, + { + "start": 2133.92, + "end": 2138.88, + "probability": 0.9978 + }, + { + "start": 2139.92, + "end": 2140.88, + "probability": 0.4626 + }, + { + "start": 2141.48, + "end": 2143.86, + "probability": 0.9061 + }, + { + "start": 2144.26, + "end": 2146.36, + "probability": 0.9531 + }, + { + "start": 2146.94, + "end": 2150.84, + "probability": 0.9443 + }, + { + "start": 2151.54, + "end": 2152.82, + "probability": 0.7334 + }, + { + "start": 2153.4, + "end": 2154.97, + "probability": 0.9697 + }, + { + "start": 2156.0, + "end": 2157.06, + "probability": 0.6767 + }, + { + "start": 2158.24, + "end": 2160.54, + "probability": 0.7302 + }, + { + "start": 2161.68, + "end": 2165.06, + "probability": 0.9471 + }, + { + "start": 2165.72, + "end": 2170.12, + "probability": 0.8894 + }, + { + "start": 2171.3, + "end": 2173.68, + "probability": 0.8562 + }, + { + "start": 2174.18, + "end": 2179.42, + "probability": 0.995 + }, + { + "start": 2179.9, + "end": 2180.82, + "probability": 0.7227 + }, + { + "start": 2180.98, + "end": 2181.6, + "probability": 0.8369 + }, + { + "start": 2182.06, + "end": 2182.82, + "probability": 0.8287 + }, + { + "start": 2183.08, + "end": 2183.99, + "probability": 0.9559 + }, + { + "start": 2184.74, + "end": 2188.4, + "probability": 0.9798 + }, + { + "start": 2189.16, + "end": 2193.22, + "probability": 0.9949 + }, + { + "start": 2194.02, + "end": 2195.72, + "probability": 0.9526 + }, + { + "start": 2196.36, + "end": 2200.92, + "probability": 0.8727 + }, + { + "start": 2200.92, + "end": 2204.64, + "probability": 0.9979 + }, + { + "start": 2205.0, + "end": 2208.0, + "probability": 0.9003 + }, + { + "start": 2208.02, + "end": 2208.48, + "probability": 0.8523 + }, + { + "start": 2208.56, + "end": 2209.56, + "probability": 0.7242 + }, + { + "start": 2210.5, + "end": 2212.26, + "probability": 0.8537 + }, + { + "start": 2212.42, + "end": 2213.4, + "probability": 0.8205 + }, + { + "start": 2219.98, + "end": 2220.1, + "probability": 0.6904 + }, + { + "start": 2220.3, + "end": 2220.88, + "probability": 0.5904 + }, + { + "start": 2220.96, + "end": 2221.92, + "probability": 0.618 + }, + { + "start": 2221.92, + "end": 2223.53, + "probability": 0.6187 + }, + { + "start": 2223.92, + "end": 2224.76, + "probability": 0.788 + }, + { + "start": 2224.76, + "end": 2227.04, + "probability": 0.8346 + }, + { + "start": 2228.14, + "end": 2228.26, + "probability": 0.6763 + }, + { + "start": 2228.56, + "end": 2231.04, + "probability": 0.8534 + }, + { + "start": 2231.4, + "end": 2232.56, + "probability": 0.2172 + }, + { + "start": 2232.76, + "end": 2233.86, + "probability": 0.6813 + }, + { + "start": 2234.86, + "end": 2237.94, + "probability": 0.9078 + }, + { + "start": 2238.88, + "end": 2243.15, + "probability": 0.9438 + }, + { + "start": 2243.82, + "end": 2244.58, + "probability": 0.9421 + }, + { + "start": 2245.46, + "end": 2246.28, + "probability": 0.0332 + }, + { + "start": 2246.86, + "end": 2247.68, + "probability": 0.5248 + }, + { + "start": 2248.18, + "end": 2250.6, + "probability": 0.943 + }, + { + "start": 2250.84, + "end": 2252.24, + "probability": 0.8313 + }, + { + "start": 2252.76, + "end": 2256.9, + "probability": 0.9572 + }, + { + "start": 2257.76, + "end": 2261.34, + "probability": 0.9921 + }, + { + "start": 2262.08, + "end": 2266.02, + "probability": 0.963 + }, + { + "start": 2266.5, + "end": 2268.86, + "probability": 0.8624 + }, + { + "start": 2268.96, + "end": 2271.28, + "probability": 0.9855 + }, + { + "start": 2271.68, + "end": 2275.9, + "probability": 0.938 + }, + { + "start": 2275.98, + "end": 2278.32, + "probability": 0.8989 + }, + { + "start": 2278.66, + "end": 2280.24, + "probability": 0.9383 + }, + { + "start": 2280.52, + "end": 2282.31, + "probability": 0.7757 + }, + { + "start": 2282.94, + "end": 2285.96, + "probability": 0.9442 + }, + { + "start": 2286.42, + "end": 2287.02, + "probability": 0.6433 + }, + { + "start": 2287.36, + "end": 2291.24, + "probability": 0.7567 + }, + { + "start": 2291.8, + "end": 2292.04, + "probability": 0.8676 + }, + { + "start": 2292.38, + "end": 2293.26, + "probability": 0.377 + }, + { + "start": 2293.36, + "end": 2296.48, + "probability": 0.7338 + }, + { + "start": 2297.06, + "end": 2298.22, + "probability": 0.875 + }, + { + "start": 2306.58, + "end": 2307.84, + "probability": 0.7166 + }, + { + "start": 2309.46, + "end": 2311.9, + "probability": 0.7939 + }, + { + "start": 2315.19, + "end": 2318.06, + "probability": 0.7332 + }, + { + "start": 2318.58, + "end": 2319.12, + "probability": 0.2549 + }, + { + "start": 2319.12, + "end": 2321.56, + "probability": 0.9073 + }, + { + "start": 2322.46, + "end": 2323.6, + "probability": 0.8187 + }, + { + "start": 2324.16, + "end": 2326.48, + "probability": 0.9078 + }, + { + "start": 2327.24, + "end": 2334.92, + "probability": 0.8864 + }, + { + "start": 2334.92, + "end": 2339.96, + "probability": 0.9971 + }, + { + "start": 2340.56, + "end": 2343.0, + "probability": 0.8821 + }, + { + "start": 2343.46, + "end": 2348.06, + "probability": 0.9501 + }, + { + "start": 2350.94, + "end": 2355.76, + "probability": 0.9971 + }, + { + "start": 2355.76, + "end": 2362.18, + "probability": 0.897 + }, + { + "start": 2362.68, + "end": 2363.57, + "probability": 0.6377 + }, + { + "start": 2364.38, + "end": 2366.62, + "probability": 0.9893 + }, + { + "start": 2367.02, + "end": 2368.4, + "probability": 0.9584 + }, + { + "start": 2368.7, + "end": 2370.0, + "probability": 0.8999 + }, + { + "start": 2370.38, + "end": 2374.28, + "probability": 0.9771 + }, + { + "start": 2374.6, + "end": 2378.5, + "probability": 0.9936 + }, + { + "start": 2378.9, + "end": 2382.62, + "probability": 0.7643 + }, + { + "start": 2382.88, + "end": 2383.98, + "probability": 0.7428 + }, + { + "start": 2384.88, + "end": 2386.42, + "probability": 0.8501 + }, + { + "start": 2387.64, + "end": 2393.4, + "probability": 0.7973 + }, + { + "start": 2394.28, + "end": 2394.48, + "probability": 0.5637 + }, + { + "start": 2394.48, + "end": 2397.94, + "probability": 0.911 + }, + { + "start": 2398.72, + "end": 2399.58, + "probability": 0.2997 + }, + { + "start": 2399.98, + "end": 2405.4, + "probability": 0.9285 + }, + { + "start": 2405.72, + "end": 2407.22, + "probability": 0.9551 + }, + { + "start": 2407.68, + "end": 2409.46, + "probability": 0.6576 + }, + { + "start": 2409.92, + "end": 2413.9, + "probability": 0.9543 + }, + { + "start": 2414.02, + "end": 2414.32, + "probability": 0.4061 + }, + { + "start": 2414.64, + "end": 2417.32, + "probability": 0.9381 + }, + { + "start": 2417.62, + "end": 2418.24, + "probability": 0.7051 + }, + { + "start": 2418.4, + "end": 2419.94, + "probability": 0.8708 + }, + { + "start": 2420.36, + "end": 2422.88, + "probability": 0.9494 + }, + { + "start": 2423.52, + "end": 2424.62, + "probability": 0.8767 + }, + { + "start": 2425.1, + "end": 2428.38, + "probability": 0.9551 + }, + { + "start": 2428.46, + "end": 2428.74, + "probability": 0.3474 + }, + { + "start": 2428.78, + "end": 2431.02, + "probability": 0.9979 + }, + { + "start": 2431.42, + "end": 2435.56, + "probability": 0.9937 + }, + { + "start": 2435.6, + "end": 2436.5, + "probability": 0.87 + }, + { + "start": 2436.74, + "end": 2437.44, + "probability": 0.7652 + }, + { + "start": 2437.54, + "end": 2437.82, + "probability": 0.7092 + }, + { + "start": 2438.1, + "end": 2438.72, + "probability": 0.5443 + }, + { + "start": 2439.14, + "end": 2441.62, + "probability": 0.939 + }, + { + "start": 2441.68, + "end": 2443.02, + "probability": 0.8924 + }, + { + "start": 2443.16, + "end": 2443.76, + "probability": 0.8273 + }, + { + "start": 2443.9, + "end": 2445.24, + "probability": 0.9699 + }, + { + "start": 2446.16, + "end": 2446.8, + "probability": 0.8208 + }, + { + "start": 2447.12, + "end": 2450.98, + "probability": 0.7935 + }, + { + "start": 2451.58, + "end": 2452.06, + "probability": 0.4296 + }, + { + "start": 2454.1, + "end": 2455.18, + "probability": 0.7276 + }, + { + "start": 2455.46, + "end": 2455.88, + "probability": 0.9041 + }, + { + "start": 2459.16, + "end": 2460.22, + "probability": 0.8544 + }, + { + "start": 2460.8, + "end": 2462.56, + "probability": 0.8406 + }, + { + "start": 2464.2, + "end": 2468.74, + "probability": 0.9935 + }, + { + "start": 2470.7, + "end": 2473.9, + "probability": 0.9261 + }, + { + "start": 2474.9, + "end": 2477.64, + "probability": 0.9609 + }, + { + "start": 2479.38, + "end": 2482.7, + "probability": 0.993 + }, + { + "start": 2484.38, + "end": 2487.0, + "probability": 0.9274 + }, + { + "start": 2488.12, + "end": 2488.62, + "probability": 0.7452 + }, + { + "start": 2488.74, + "end": 2490.24, + "probability": 0.9736 + }, + { + "start": 2490.64, + "end": 2492.46, + "probability": 0.9602 + }, + { + "start": 2492.84, + "end": 2494.34, + "probability": 0.9753 + }, + { + "start": 2494.36, + "end": 2496.06, + "probability": 0.994 + }, + { + "start": 2497.02, + "end": 2500.76, + "probability": 0.8573 + }, + { + "start": 2501.88, + "end": 2503.16, + "probability": 0.9585 + }, + { + "start": 2504.12, + "end": 2507.42, + "probability": 0.8301 + }, + { + "start": 2508.06, + "end": 2509.36, + "probability": 0.98 + }, + { + "start": 2510.14, + "end": 2512.58, + "probability": 0.9977 + }, + { + "start": 2513.14, + "end": 2516.48, + "probability": 0.9791 + }, + { + "start": 2516.64, + "end": 2517.46, + "probability": 0.8832 + }, + { + "start": 2517.96, + "end": 2522.68, + "probability": 0.9955 + }, + { + "start": 2522.82, + "end": 2525.84, + "probability": 0.9838 + }, + { + "start": 2526.38, + "end": 2529.24, + "probability": 0.9965 + }, + { + "start": 2529.34, + "end": 2531.1, + "probability": 0.986 + }, + { + "start": 2531.42, + "end": 2533.02, + "probability": 0.9933 + }, + { + "start": 2534.64, + "end": 2537.17, + "probability": 0.9482 + }, + { + "start": 2537.6, + "end": 2538.62, + "probability": 0.993 + }, + { + "start": 2540.28, + "end": 2546.12, + "probability": 0.9948 + }, + { + "start": 2546.6, + "end": 2547.46, + "probability": 0.4642 + }, + { + "start": 2548.16, + "end": 2550.5, + "probability": 0.9615 + }, + { + "start": 2550.52, + "end": 2551.72, + "probability": 0.9757 + }, + { + "start": 2551.72, + "end": 2553.12, + "probability": 0.4807 + }, + { + "start": 2553.12, + "end": 2557.3, + "probability": 0.0545 + }, + { + "start": 2557.66, + "end": 2557.66, + "probability": 0.0344 + }, + { + "start": 2557.66, + "end": 2557.66, + "probability": 0.164 + }, + { + "start": 2557.66, + "end": 2558.04, + "probability": 0.089 + }, + { + "start": 2558.04, + "end": 2559.1, + "probability": 0.7311 + }, + { + "start": 2559.14, + "end": 2562.3, + "probability": 0.9662 + }, + { + "start": 2562.34, + "end": 2562.54, + "probability": 0.7083 + }, + { + "start": 2562.7, + "end": 2563.38, + "probability": 0.3661 + }, + { + "start": 2563.76, + "end": 2566.74, + "probability": 0.7155 + }, + { + "start": 2570.14, + "end": 2571.46, + "probability": 0.7774 + }, + { + "start": 2571.7, + "end": 2572.96, + "probability": 0.8095 + }, + { + "start": 2573.04, + "end": 2576.36, + "probability": 0.767 + }, + { + "start": 2576.92, + "end": 2582.3, + "probability": 0.998 + }, + { + "start": 2583.04, + "end": 2586.54, + "probability": 0.8761 + }, + { + "start": 2586.82, + "end": 2589.54, + "probability": 0.9744 + }, + { + "start": 2590.2, + "end": 2590.7, + "probability": 0.7217 + }, + { + "start": 2590.76, + "end": 2594.64, + "probability": 0.9901 + }, + { + "start": 2595.28, + "end": 2602.34, + "probability": 0.9985 + }, + { + "start": 2602.4, + "end": 2608.58, + "probability": 0.9976 + }, + { + "start": 2609.3, + "end": 2610.1, + "probability": 0.7178 + }, + { + "start": 2610.16, + "end": 2615.18, + "probability": 0.9966 + }, + { + "start": 2615.18, + "end": 2620.46, + "probability": 0.9865 + }, + { + "start": 2621.32, + "end": 2626.3, + "probability": 0.9377 + }, + { + "start": 2627.1, + "end": 2631.5, + "probability": 0.958 + }, + { + "start": 2631.5, + "end": 2635.6, + "probability": 0.981 + }, + { + "start": 2636.26, + "end": 2638.14, + "probability": 0.9757 + }, + { + "start": 2638.36, + "end": 2640.4, + "probability": 0.9967 + }, + { + "start": 2640.92, + "end": 2644.78, + "probability": 0.9775 + }, + { + "start": 2645.3, + "end": 2646.88, + "probability": 0.6508 + }, + { + "start": 2647.6, + "end": 2649.5, + "probability": 0.9644 + }, + { + "start": 2650.04, + "end": 2651.5, + "probability": 0.8316 + }, + { + "start": 2651.56, + "end": 2656.88, + "probability": 0.9757 + }, + { + "start": 2657.18, + "end": 2660.32, + "probability": 0.9584 + }, + { + "start": 2660.6, + "end": 2665.98, + "probability": 0.9907 + }, + { + "start": 2666.58, + "end": 2666.74, + "probability": 0.1959 + }, + { + "start": 2666.74, + "end": 2667.32, + "probability": 0.3698 + }, + { + "start": 2667.56, + "end": 2672.18, + "probability": 0.7016 + }, + { + "start": 2673.2, + "end": 2674.96, + "probability": 0.8971 + }, + { + "start": 2675.44, + "end": 2676.22, + "probability": 0.6696 + }, + { + "start": 2676.34, + "end": 2676.36, + "probability": 0.8585 + }, + { + "start": 2676.4, + "end": 2677.46, + "probability": 0.7712 + }, + { + "start": 2677.72, + "end": 2679.3, + "probability": 0.6736 + }, + { + "start": 2679.36, + "end": 2682.08, + "probability": 0.7367 + }, + { + "start": 2685.74, + "end": 2691.22, + "probability": 0.9052 + }, + { + "start": 2692.44, + "end": 2697.86, + "probability": 0.9236 + }, + { + "start": 2699.36, + "end": 2702.92, + "probability": 0.9598 + }, + { + "start": 2702.92, + "end": 2706.36, + "probability": 0.9862 + }, + { + "start": 2707.7, + "end": 2713.3, + "probability": 0.9087 + }, + { + "start": 2714.24, + "end": 2716.66, + "probability": 0.9978 + }, + { + "start": 2717.22, + "end": 2718.66, + "probability": 0.7539 + }, + { + "start": 2720.06, + "end": 2721.88, + "probability": 0.7096 + }, + { + "start": 2722.14, + "end": 2723.62, + "probability": 0.968 + }, + { + "start": 2723.7, + "end": 2728.98, + "probability": 0.9855 + }, + { + "start": 2730.55, + "end": 2735.2, + "probability": 0.9962 + }, + { + "start": 2735.94, + "end": 2738.58, + "probability": 0.998 + }, + { + "start": 2739.84, + "end": 2745.16, + "probability": 0.6989 + }, + { + "start": 2745.66, + "end": 2749.5, + "probability": 0.9712 + }, + { + "start": 2750.44, + "end": 2753.78, + "probability": 0.9402 + }, + { + "start": 2754.28, + "end": 2757.36, + "probability": 0.9657 + }, + { + "start": 2757.8, + "end": 2762.38, + "probability": 0.9291 + }, + { + "start": 2762.48, + "end": 2764.02, + "probability": 0.8126 + }, + { + "start": 2764.16, + "end": 2764.92, + "probability": 0.8865 + }, + { + "start": 2765.48, + "end": 2767.58, + "probability": 0.9366 + }, + { + "start": 2767.8, + "end": 2768.6, + "probability": 0.9068 + }, + { + "start": 2768.68, + "end": 2769.6, + "probability": 0.5844 + }, + { + "start": 2770.1, + "end": 2772.7, + "probability": 0.9184 + }, + { + "start": 2772.76, + "end": 2775.0, + "probability": 0.7759 + }, + { + "start": 2776.08, + "end": 2778.16, + "probability": 0.9915 + }, + { + "start": 2779.8, + "end": 2780.58, + "probability": 0.7409 + }, + { + "start": 2780.68, + "end": 2782.34, + "probability": 0.7211 + }, + { + "start": 2782.84, + "end": 2783.42, + "probability": 0.5812 + }, + { + "start": 2783.54, + "end": 2784.3, + "probability": 0.7809 + }, + { + "start": 2785.8, + "end": 2791.22, + "probability": 0.899 + }, + { + "start": 2792.02, + "end": 2793.18, + "probability": 0.7548 + }, + { + "start": 2793.34, + "end": 2796.0, + "probability": 0.811 + }, + { + "start": 2796.12, + "end": 2800.42, + "probability": 0.9875 + }, + { + "start": 2800.54, + "end": 2803.08, + "probability": 0.9709 + }, + { + "start": 2803.8, + "end": 2806.98, + "probability": 0.9975 + }, + { + "start": 2808.02, + "end": 2809.02, + "probability": 0.9056 + }, + { + "start": 2810.36, + "end": 2817.1, + "probability": 0.9858 + }, + { + "start": 2818.0, + "end": 2824.0, + "probability": 0.9899 + }, + { + "start": 2824.94, + "end": 2826.98, + "probability": 0.9052 + }, + { + "start": 2827.48, + "end": 2829.32, + "probability": 0.5695 + }, + { + "start": 2829.38, + "end": 2834.02, + "probability": 0.7882 + }, + { + "start": 2834.08, + "end": 2834.84, + "probability": 0.7433 + }, + { + "start": 2835.3, + "end": 2836.46, + "probability": 0.9398 + }, + { + "start": 2836.92, + "end": 2839.96, + "probability": 0.9604 + }, + { + "start": 2840.88, + "end": 2844.36, + "probability": 0.9443 + }, + { + "start": 2844.46, + "end": 2848.72, + "probability": 0.9576 + }, + { + "start": 2849.04, + "end": 2852.6, + "probability": 0.9946 + }, + { + "start": 2853.08, + "end": 2857.54, + "probability": 0.8939 + }, + { + "start": 2857.68, + "end": 2859.84, + "probability": 0.622 + }, + { + "start": 2860.16, + "end": 2861.46, + "probability": 0.745 + }, + { + "start": 2861.54, + "end": 2864.16, + "probability": 0.9776 + }, + { + "start": 2864.7, + "end": 2867.2, + "probability": 0.9714 + }, + { + "start": 2867.3, + "end": 2868.76, + "probability": 0.9966 + }, + { + "start": 2869.44, + "end": 2871.3, + "probability": 0.9751 + }, + { + "start": 2871.3, + "end": 2872.02, + "probability": 0.6201 + }, + { + "start": 2872.36, + "end": 2876.24, + "probability": 0.9372 + }, + { + "start": 2876.6, + "end": 2880.42, + "probability": 0.9958 + }, + { + "start": 2880.9, + "end": 2883.37, + "probability": 0.9515 + }, + { + "start": 2883.82, + "end": 2885.38, + "probability": 0.9978 + }, + { + "start": 2885.38, + "end": 2886.7, + "probability": 0.9656 + }, + { + "start": 2886.88, + "end": 2887.64, + "probability": 0.9258 + }, + { + "start": 2887.64, + "end": 2888.36, + "probability": 0.5253 + }, + { + "start": 2888.88, + "end": 2890.6, + "probability": 0.8028 + }, + { + "start": 2890.74, + "end": 2892.62, + "probability": 0.7125 + }, + { + "start": 2897.02, + "end": 2899.58, + "probability": 0.7295 + }, + { + "start": 2899.74, + "end": 2899.74, + "probability": 0.5543 + }, + { + "start": 2899.8, + "end": 2900.94, + "probability": 0.5894 + }, + { + "start": 2902.24, + "end": 2905.36, + "probability": 0.8993 + }, + { + "start": 2905.94, + "end": 2910.08, + "probability": 0.9873 + }, + { + "start": 2910.08, + "end": 2914.32, + "probability": 0.9953 + }, + { + "start": 2914.84, + "end": 2916.14, + "probability": 0.5375 + }, + { + "start": 2916.84, + "end": 2920.46, + "probability": 0.7083 + }, + { + "start": 2921.22, + "end": 2921.9, + "probability": 0.5608 + }, + { + "start": 2922.04, + "end": 2924.06, + "probability": 0.7695 + }, + { + "start": 2924.66, + "end": 2925.22, + "probability": 0.9118 + }, + { + "start": 2926.12, + "end": 2931.27, + "probability": 0.9614 + }, + { + "start": 2931.92, + "end": 2934.98, + "probability": 0.8898 + }, + { + "start": 2935.74, + "end": 2936.7, + "probability": 0.6152 + }, + { + "start": 2936.86, + "end": 2939.14, + "probability": 0.9668 + }, + { + "start": 2939.46, + "end": 2942.48, + "probability": 0.9875 + }, + { + "start": 2943.06, + "end": 2944.72, + "probability": 0.8294 + }, + { + "start": 2945.42, + "end": 2947.28, + "probability": 0.6978 + }, + { + "start": 2948.12, + "end": 2948.96, + "probability": 0.893 + }, + { + "start": 2949.02, + "end": 2949.78, + "probability": 0.9145 + }, + { + "start": 2950.0, + "end": 2950.88, + "probability": 0.9705 + }, + { + "start": 2951.38, + "end": 2954.8, + "probability": 0.9729 + }, + { + "start": 2955.38, + "end": 2956.3, + "probability": 0.883 + }, + { + "start": 2956.86, + "end": 2960.82, + "probability": 0.9811 + }, + { + "start": 2961.42, + "end": 2967.42, + "probability": 0.9958 + }, + { + "start": 2967.88, + "end": 2973.56, + "probability": 0.9709 + }, + { + "start": 2974.24, + "end": 2974.88, + "probability": 0.9368 + }, + { + "start": 2975.34, + "end": 2977.2, + "probability": 0.8374 + }, + { + "start": 2977.28, + "end": 2977.87, + "probability": 0.9838 + }, + { + "start": 2978.66, + "end": 2983.0, + "probability": 0.999 + }, + { + "start": 2983.5, + "end": 2986.96, + "probability": 0.9847 + }, + { + "start": 2986.96, + "end": 2992.62, + "probability": 0.9933 + }, + { + "start": 2993.24, + "end": 2996.32, + "probability": 0.9861 + }, + { + "start": 2997.08, + "end": 3000.1, + "probability": 0.6291 + }, + { + "start": 3000.24, + "end": 3000.44, + "probability": 0.1215 + }, + { + "start": 3000.44, + "end": 3000.44, + "probability": 0.3052 + }, + { + "start": 3000.98, + "end": 3003.69, + "probability": 0.9919 + }, + { + "start": 3004.5, + "end": 3008.64, + "probability": 0.995 + }, + { + "start": 3009.22, + "end": 3009.66, + "probability": 0.5385 + }, + { + "start": 3009.68, + "end": 3010.68, + "probability": 0.9706 + }, + { + "start": 3010.82, + "end": 3011.64, + "probability": 0.6209 + }, + { + "start": 3011.64, + "end": 3013.62, + "probability": 0.476 + }, + { + "start": 3013.96, + "end": 3014.66, + "probability": 0.607 + }, + { + "start": 3014.66, + "end": 3014.66, + "probability": 0.0493 + }, + { + "start": 3014.66, + "end": 3015.7, + "probability": 0.559 + }, + { + "start": 3015.74, + "end": 3015.8, + "probability": 0.4653 + }, + { + "start": 3015.8, + "end": 3016.64, + "probability": 0.7676 + }, + { + "start": 3018.02, + "end": 3020.64, + "probability": 0.7577 + }, + { + "start": 3020.92, + "end": 3023.68, + "probability": 0.751 + }, + { + "start": 3024.24, + "end": 3027.12, + "probability": 0.8706 + }, + { + "start": 3027.4, + "end": 3028.24, + "probability": 0.3108 + }, + { + "start": 3028.36, + "end": 3029.8, + "probability": 0.8666 + }, + { + "start": 3029.88, + "end": 3030.48, + "probability": 0.6281 + }, + { + "start": 3030.62, + "end": 3031.88, + "probability": 0.8982 + }, + { + "start": 3031.96, + "end": 3032.06, + "probability": 0.9611 + }, + { + "start": 3045.62, + "end": 3046.5, + "probability": 0.7039 + }, + { + "start": 3046.82, + "end": 3047.75, + "probability": 0.9341 + }, + { + "start": 3048.0, + "end": 3050.2, + "probability": 0.9521 + }, + { + "start": 3050.92, + "end": 3054.04, + "probability": 0.8379 + }, + { + "start": 3054.78, + "end": 3056.62, + "probability": 0.7843 + }, + { + "start": 3057.26, + "end": 3059.62, + "probability": 0.9852 + }, + { + "start": 3060.2, + "end": 3060.88, + "probability": 0.7749 + }, + { + "start": 3061.74, + "end": 3063.36, + "probability": 0.9097 + }, + { + "start": 3064.14, + "end": 3065.74, + "probability": 0.9928 + }, + { + "start": 3066.66, + "end": 3067.98, + "probability": 0.8994 + }, + { + "start": 3068.66, + "end": 3071.24, + "probability": 0.9379 + }, + { + "start": 3071.96, + "end": 3073.28, + "probability": 0.8064 + }, + { + "start": 3073.82, + "end": 3074.8, + "probability": 0.9699 + }, + { + "start": 3074.9, + "end": 3076.04, + "probability": 0.9369 + }, + { + "start": 3076.54, + "end": 3077.48, + "probability": 0.9919 + }, + { + "start": 3077.58, + "end": 3079.5, + "probability": 0.9965 + }, + { + "start": 3079.98, + "end": 3082.51, + "probability": 0.9976 + }, + { + "start": 3083.02, + "end": 3084.32, + "probability": 0.9658 + }, + { + "start": 3084.58, + "end": 3085.14, + "probability": 0.5143 + }, + { + "start": 3085.68, + "end": 3089.72, + "probability": 0.9786 + }, + { + "start": 3090.1, + "end": 3092.48, + "probability": 0.9774 + }, + { + "start": 3093.12, + "end": 3095.7, + "probability": 0.7986 + }, + { + "start": 3096.36, + "end": 3101.1, + "probability": 0.9917 + }, + { + "start": 3101.14, + "end": 3102.2, + "probability": 0.7493 + }, + { + "start": 3102.88, + "end": 3104.76, + "probability": 0.9983 + }, + { + "start": 3105.48, + "end": 3106.86, + "probability": 0.9779 + }, + { + "start": 3107.58, + "end": 3108.44, + "probability": 0.8799 + }, + { + "start": 3109.02, + "end": 3110.12, + "probability": 0.9823 + }, + { + "start": 3111.26, + "end": 3112.78, + "probability": 0.9142 + }, + { + "start": 3113.54, + "end": 3113.72, + "probability": 0.5637 + }, + { + "start": 3113.86, + "end": 3114.6, + "probability": 0.3772 + }, + { + "start": 3114.66, + "end": 3116.56, + "probability": 0.8487 + }, + { + "start": 3116.62, + "end": 3117.12, + "probability": 0.7318 + }, + { + "start": 3117.22, + "end": 3117.72, + "probability": 0.5809 + }, + { + "start": 3117.76, + "end": 3118.98, + "probability": 0.9318 + }, + { + "start": 3124.94, + "end": 3125.24, + "probability": 0.5692 + }, + { + "start": 3125.26, + "end": 3126.34, + "probability": 0.4943 + }, + { + "start": 3126.56, + "end": 3127.92, + "probability": 0.8955 + }, + { + "start": 3128.02, + "end": 3129.44, + "probability": 0.9067 + }, + { + "start": 3129.52, + "end": 3130.88, + "probability": 0.893 + }, + { + "start": 3130.9, + "end": 3131.1, + "probability": 0.8139 + }, + { + "start": 3132.26, + "end": 3136.91, + "probability": 0.7698 + }, + { + "start": 3137.32, + "end": 3141.66, + "probability": 0.8971 + }, + { + "start": 3142.38, + "end": 3144.76, + "probability": 0.9771 + }, + { + "start": 3145.26, + "end": 3148.78, + "probability": 0.9935 + }, + { + "start": 3149.0, + "end": 3153.38, + "probability": 0.9372 + }, + { + "start": 3153.9, + "end": 3157.26, + "probability": 0.5858 + }, + { + "start": 3157.38, + "end": 3159.02, + "probability": 0.8745 + }, + { + "start": 3159.7, + "end": 3160.56, + "probability": 0.764 + }, + { + "start": 3161.52, + "end": 3164.22, + "probability": 0.3174 + }, + { + "start": 3164.4, + "end": 3165.02, + "probability": 0.7101 + }, + { + "start": 3165.3, + "end": 3170.48, + "probability": 0.9171 + }, + { + "start": 3170.82, + "end": 3171.0, + "probability": 0.7062 + }, + { + "start": 3171.26, + "end": 3171.92, + "probability": 0.5579 + }, + { + "start": 3171.94, + "end": 3172.96, + "probability": 0.6376 + }, + { + "start": 3173.04, + "end": 3175.38, + "probability": 0.8717 + }, + { + "start": 3175.4, + "end": 3178.52, + "probability": 0.8135 + }, + { + "start": 3178.9, + "end": 3180.36, + "probability": 0.8503 + }, + { + "start": 3180.44, + "end": 3182.3, + "probability": 0.5737 + }, + { + "start": 3182.34, + "end": 3183.32, + "probability": 0.7735 + }, + { + "start": 3183.62, + "end": 3185.98, + "probability": 0.7767 + }, + { + "start": 3186.38, + "end": 3191.18, + "probability": 0.9731 + }, + { + "start": 3191.3, + "end": 3193.8, + "probability": 0.9758 + }, + { + "start": 3194.54, + "end": 3196.16, + "probability": 0.8976 + }, + { + "start": 3196.34, + "end": 3198.22, + "probability": 0.5069 + }, + { + "start": 3198.42, + "end": 3199.44, + "probability": 0.7604 + }, + { + "start": 3199.5, + "end": 3202.22, + "probability": 0.9837 + }, + { + "start": 3202.64, + "end": 3203.16, + "probability": 0.8612 + }, + { + "start": 3203.46, + "end": 3204.1, + "probability": 0.7007 + }, + { + "start": 3204.4, + "end": 3207.19, + "probability": 0.7825 + }, + { + "start": 3207.68, + "end": 3209.2, + "probability": 0.9567 + }, + { + "start": 3209.3, + "end": 3210.94, + "probability": 0.7627 + }, + { + "start": 3211.52, + "end": 3212.64, + "probability": 0.9853 + }, + { + "start": 3212.78, + "end": 3213.84, + "probability": 0.9887 + }, + { + "start": 3213.96, + "end": 3214.56, + "probability": 0.9921 + }, + { + "start": 3214.64, + "end": 3215.92, + "probability": 0.9334 + }, + { + "start": 3216.06, + "end": 3220.9, + "probability": 0.9917 + }, + { + "start": 3221.24, + "end": 3222.44, + "probability": 0.9727 + }, + { + "start": 3222.44, + "end": 3223.88, + "probability": 0.9572 + }, + { + "start": 3224.3, + "end": 3225.98, + "probability": 0.9295 + }, + { + "start": 3226.2, + "end": 3228.96, + "probability": 0.9744 + }, + { + "start": 3229.2, + "end": 3231.06, + "probability": 0.8056 + }, + { + "start": 3231.18, + "end": 3232.24, + "probability": 0.6969 + }, + { + "start": 3232.32, + "end": 3233.3, + "probability": 0.3961 + }, + { + "start": 3233.5, + "end": 3235.66, + "probability": 0.8901 + }, + { + "start": 3235.76, + "end": 3236.56, + "probability": 0.9678 + }, + { + "start": 3239.18, + "end": 3240.9, + "probability": 0.8267 + }, + { + "start": 3244.68, + "end": 3244.78, + "probability": 0.0683 + }, + { + "start": 3244.78, + "end": 3247.6, + "probability": 0.8723 + }, + { + "start": 3247.82, + "end": 3249.36, + "probability": 0.9345 + }, + { + "start": 3249.6, + "end": 3250.86, + "probability": 0.8189 + }, + { + "start": 3251.8, + "end": 3255.38, + "probability": 0.8561 + }, + { + "start": 3256.0, + "end": 3258.04, + "probability": 0.9524 + }, + { + "start": 3259.76, + "end": 3262.66, + "probability": 0.9858 + }, + { + "start": 3264.72, + "end": 3271.76, + "probability": 0.9938 + }, + { + "start": 3272.66, + "end": 3275.04, + "probability": 0.9082 + }, + { + "start": 3275.58, + "end": 3277.24, + "probability": 0.9951 + }, + { + "start": 3277.6, + "end": 3279.44, + "probability": 0.8784 + }, + { + "start": 3280.34, + "end": 3283.58, + "probability": 0.8945 + }, + { + "start": 3283.86, + "end": 3285.88, + "probability": 0.9951 + }, + { + "start": 3286.66, + "end": 3287.32, + "probability": 0.4606 + }, + { + "start": 3287.38, + "end": 3293.68, + "probability": 0.9654 + }, + { + "start": 3294.5, + "end": 3295.1, + "probability": 0.9035 + }, + { + "start": 3295.22, + "end": 3299.4, + "probability": 0.9968 + }, + { + "start": 3299.4, + "end": 3303.98, + "probability": 0.9802 + }, + { + "start": 3304.44, + "end": 3311.24, + "probability": 0.994 + }, + { + "start": 3311.9, + "end": 3312.94, + "probability": 0.5181 + }, + { + "start": 3314.98, + "end": 3317.1, + "probability": 0.8482 + }, + { + "start": 3322.42, + "end": 3325.16, + "probability": 0.7502 + }, + { + "start": 3325.82, + "end": 3327.72, + "probability": 0.9832 + }, + { + "start": 3327.74, + "end": 3330.12, + "probability": 0.9488 + }, + { + "start": 3330.72, + "end": 3331.16, + "probability": 0.5656 + }, + { + "start": 3331.22, + "end": 3332.06, + "probability": 0.9906 + }, + { + "start": 3332.4, + "end": 3334.12, + "probability": 0.9846 + }, + { + "start": 3334.5, + "end": 3337.56, + "probability": 0.9784 + }, + { + "start": 3337.62, + "end": 3338.88, + "probability": 0.9868 + }, + { + "start": 3338.96, + "end": 3340.66, + "probability": 0.9683 + }, + { + "start": 3341.0, + "end": 3342.56, + "probability": 0.9832 + }, + { + "start": 3342.92, + "end": 3345.48, + "probability": 0.8634 + }, + { + "start": 3345.68, + "end": 3347.92, + "probability": 0.7856 + }, + { + "start": 3348.06, + "end": 3349.55, + "probability": 0.9961 + }, + { + "start": 3350.38, + "end": 3352.94, + "probability": 0.7912 + }, + { + "start": 3353.46, + "end": 3354.76, + "probability": 0.439 + }, + { + "start": 3355.28, + "end": 3356.58, + "probability": 0.9557 + }, + { + "start": 3356.94, + "end": 3357.08, + "probability": 0.3098 + }, + { + "start": 3357.16, + "end": 3360.4, + "probability": 0.9584 + }, + { + "start": 3360.48, + "end": 3361.84, + "probability": 0.9484 + }, + { + "start": 3362.2, + "end": 3362.66, + "probability": 0.8546 + }, + { + "start": 3362.76, + "end": 3363.66, + "probability": 0.4891 + }, + { + "start": 3363.72, + "end": 3366.04, + "probability": 0.9453 + }, + { + "start": 3366.54, + "end": 3367.12, + "probability": 0.8263 + }, + { + "start": 3367.86, + "end": 3371.82, + "probability": 0.978 + }, + { + "start": 3372.68, + "end": 3376.48, + "probability": 0.975 + }, + { + "start": 3376.72, + "end": 3381.24, + "probability": 0.0295 + }, + { + "start": 3389.08, + "end": 3391.98, + "probability": 0.0391 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3737.0, + "end": 3737.0, + "probability": 0.0 + }, + { + "start": 3745.23, + "end": 3745.88, + "probability": 0.0351 + }, + { + "start": 3752.88, + "end": 3754.68, + "probability": 0.0365 + }, + { + "start": 3755.04, + "end": 3756.84, + "probability": 0.6564 + }, + { + "start": 3758.94, + "end": 3763.38, + "probability": 0.0518 + }, + { + "start": 3763.38, + "end": 3766.18, + "probability": 0.2977 + }, + { + "start": 3766.18, + "end": 3766.18, + "probability": 0.1143 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.0, + "end": 3867.0, + "probability": 0.0 + }, + { + "start": 3867.28, + "end": 3869.08, + "probability": 0.4832 + }, + { + "start": 3869.82, + "end": 3871.42, + "probability": 0.9837 + }, + { + "start": 3871.72, + "end": 3872.34, + "probability": 0.9814 + }, + { + "start": 3872.48, + "end": 3873.72, + "probability": 0.9794 + }, + { + "start": 3873.84, + "end": 3874.38, + "probability": 0.9895 + }, + { + "start": 3874.5, + "end": 3874.98, + "probability": 0.9706 + }, + { + "start": 3875.12, + "end": 3875.74, + "probability": 0.9188 + }, + { + "start": 3877.04, + "end": 3878.24, + "probability": 0.9653 + }, + { + "start": 3879.32, + "end": 3880.92, + "probability": 0.9907 + }, + { + "start": 3881.02, + "end": 3882.32, + "probability": 0.863 + }, + { + "start": 3882.38, + "end": 3885.26, + "probability": 0.9929 + }, + { + "start": 3885.86, + "end": 3888.26, + "probability": 0.7992 + }, + { + "start": 3890.56, + "end": 3897.54, + "probability": 0.9971 + }, + { + "start": 3917.82, + "end": 3917.82, + "probability": 0.0953 + }, + { + "start": 3917.9, + "end": 3918.04, + "probability": 0.1325 + }, + { + "start": 3928.14, + "end": 3928.48, + "probability": 0.0065 + }, + { + "start": 3928.48, + "end": 3929.78, + "probability": 0.8263 + }, + { + "start": 3930.62, + "end": 3931.92, + "probability": 0.9345 + }, + { + "start": 3932.5, + "end": 3933.9, + "probability": 0.7412 + }, + { + "start": 3934.7, + "end": 3935.14, + "probability": 0.7473 + }, + { + "start": 3935.98, + "end": 3939.76, + "probability": 0.9966 + }, + { + "start": 3940.58, + "end": 3944.68, + "probability": 0.9666 + }, + { + "start": 3946.46, + "end": 3947.26, + "probability": 0.8641 + }, + { + "start": 3947.34, + "end": 3949.92, + "probability": 0.9876 + }, + { + "start": 3950.4, + "end": 3952.66, + "probability": 0.8934 + }, + { + "start": 3954.24, + "end": 3957.72, + "probability": 0.9639 + }, + { + "start": 3958.64, + "end": 3962.12, + "probability": 0.9407 + }, + { + "start": 3962.96, + "end": 3965.2, + "probability": 0.9966 + }, + { + "start": 3966.62, + "end": 3968.96, + "probability": 0.9886 + }, + { + "start": 3969.66, + "end": 3971.26, + "probability": 0.8908 + }, + { + "start": 3971.8, + "end": 3976.96, + "probability": 0.9297 + }, + { + "start": 3978.96, + "end": 3980.94, + "probability": 0.7532 + }, + { + "start": 3981.36, + "end": 3984.76, + "probability": 0.9266 + }, + { + "start": 3985.4, + "end": 3987.04, + "probability": 0.9932 + }, + { + "start": 3987.82, + "end": 3991.76, + "probability": 0.9445 + }, + { + "start": 3992.34, + "end": 3992.96, + "probability": 0.7194 + }, + { + "start": 3993.92, + "end": 3996.5, + "probability": 0.9937 + }, + { + "start": 3997.32, + "end": 3999.12, + "probability": 0.8576 + }, + { + "start": 4000.75, + "end": 4003.9, + "probability": 0.9854 + }, + { + "start": 4004.52, + "end": 4007.88, + "probability": 0.9941 + }, + { + "start": 4008.4, + "end": 4010.06, + "probability": 0.9925 + }, + { + "start": 4010.54, + "end": 4013.14, + "probability": 0.9443 + }, + { + "start": 4014.46, + "end": 4015.09, + "probability": 0.7417 + }, + { + "start": 4016.02, + "end": 4017.56, + "probability": 0.9639 + }, + { + "start": 4018.04, + "end": 4020.88, + "probability": 0.9849 + }, + { + "start": 4021.66, + "end": 4023.18, + "probability": 0.7693 + }, + { + "start": 4024.12, + "end": 4027.58, + "probability": 0.9611 + }, + { + "start": 4027.68, + "end": 4029.26, + "probability": 0.9832 + }, + { + "start": 4030.3, + "end": 4030.94, + "probability": 0.9216 + }, + { + "start": 4031.66, + "end": 4032.84, + "probability": 0.6799 + }, + { + "start": 4033.36, + "end": 4035.36, + "probability": 0.957 + }, + { + "start": 4036.86, + "end": 4038.02, + "probability": 0.9362 + }, + { + "start": 4039.1, + "end": 4043.12, + "probability": 0.7878 + }, + { + "start": 4043.28, + "end": 4047.1, + "probability": 0.9972 + }, + { + "start": 4047.7, + "end": 4048.76, + "probability": 0.9987 + }, + { + "start": 4049.66, + "end": 4050.84, + "probability": 0.9946 + }, + { + "start": 4051.6, + "end": 4054.86, + "probability": 0.9771 + }, + { + "start": 4055.34, + "end": 4055.98, + "probability": 0.7478 + }, + { + "start": 4058.04, + "end": 4060.84, + "probability": 0.9232 + }, + { + "start": 4061.86, + "end": 4062.64, + "probability": 0.9055 + }, + { + "start": 4064.14, + "end": 4065.24, + "probability": 0.5246 + }, + { + "start": 4065.6, + "end": 4071.04, + "probability": 0.9525 + }, + { + "start": 4071.72, + "end": 4076.98, + "probability": 0.9901 + }, + { + "start": 4079.42, + "end": 4080.14, + "probability": 0.905 + }, + { + "start": 4080.98, + "end": 4081.92, + "probability": 0.7706 + }, + { + "start": 4083.92, + "end": 4085.72, + "probability": 0.98 + }, + { + "start": 4086.9, + "end": 4088.8, + "probability": 0.9863 + }, + { + "start": 4090.42, + "end": 4094.38, + "probability": 0.9502 + }, + { + "start": 4095.96, + "end": 4097.52, + "probability": 0.9959 + }, + { + "start": 4098.08, + "end": 4102.52, + "probability": 0.9272 + }, + { + "start": 4103.52, + "end": 4105.76, + "probability": 0.9657 + }, + { + "start": 4106.5, + "end": 4109.64, + "probability": 0.3664 + }, + { + "start": 4110.92, + "end": 4116.12, + "probability": 0.9553 + }, + { + "start": 4116.72, + "end": 4120.2, + "probability": 0.9988 + }, + { + "start": 4120.82, + "end": 4122.24, + "probability": 0.9703 + }, + { + "start": 4123.0, + "end": 4127.92, + "probability": 0.6566 + }, + { + "start": 4129.4, + "end": 4133.1, + "probability": 0.9713 + }, + { + "start": 4133.88, + "end": 4137.25, + "probability": 0.9905 + }, + { + "start": 4137.36, + "end": 4141.38, + "probability": 0.9891 + }, + { + "start": 4143.04, + "end": 4146.88, + "probability": 0.994 + }, + { + "start": 4146.88, + "end": 4150.72, + "probability": 0.9963 + }, + { + "start": 4151.1, + "end": 4152.28, + "probability": 0.8507 + }, + { + "start": 4152.36, + "end": 4153.26, + "probability": 0.5607 + }, + { + "start": 4153.66, + "end": 4156.58, + "probability": 0.9873 + }, + { + "start": 4157.82, + "end": 4160.28, + "probability": 0.953 + }, + { + "start": 4161.28, + "end": 4164.46, + "probability": 0.9014 + }, + { + "start": 4164.84, + "end": 4167.28, + "probability": 0.9645 + }, + { + "start": 4167.84, + "end": 4169.68, + "probability": 0.9784 + }, + { + "start": 4170.94, + "end": 4175.28, + "probability": 0.957 + }, + { + "start": 4175.98, + "end": 4180.54, + "probability": 0.9389 + }, + { + "start": 4180.54, + "end": 4183.7, + "probability": 0.9973 + }, + { + "start": 4184.62, + "end": 4185.5, + "probability": 0.5019 + }, + { + "start": 4186.28, + "end": 4189.1, + "probability": 0.998 + }, + { + "start": 4189.68, + "end": 4191.66, + "probability": 0.9584 + }, + { + "start": 4192.3, + "end": 4195.88, + "probability": 0.9959 + }, + { + "start": 4197.1, + "end": 4198.66, + "probability": 0.8259 + }, + { + "start": 4199.54, + "end": 4200.18, + "probability": 0.9259 + }, + { + "start": 4201.2, + "end": 4202.62, + "probability": 0.9807 + }, + { + "start": 4202.96, + "end": 4204.72, + "probability": 0.8615 + }, + { + "start": 4205.16, + "end": 4210.84, + "probability": 0.9887 + }, + { + "start": 4212.18, + "end": 4215.42, + "probability": 0.6895 + }, + { + "start": 4216.2, + "end": 4220.4, + "probability": 0.9312 + }, + { + "start": 4222.28, + "end": 4222.84, + "probability": 0.8991 + }, + { + "start": 4223.3, + "end": 4228.14, + "probability": 0.9948 + }, + { + "start": 4228.96, + "end": 4232.96, + "probability": 0.9423 + }, + { + "start": 4233.2, + "end": 4233.98, + "probability": 0.7561 + }, + { + "start": 4234.46, + "end": 4235.76, + "probability": 0.5776 + }, + { + "start": 4236.84, + "end": 4242.0, + "probability": 0.9907 + }, + { + "start": 4243.44, + "end": 4249.42, + "probability": 0.9901 + }, + { + "start": 4250.2, + "end": 4251.94, + "probability": 0.9102 + }, + { + "start": 4252.56, + "end": 4254.96, + "probability": 0.9969 + }, + { + "start": 4255.8, + "end": 4257.74, + "probability": 0.7288 + }, + { + "start": 4258.52, + "end": 4262.12, + "probability": 0.9907 + }, + { + "start": 4262.86, + "end": 4266.48, + "probability": 0.9262 + }, + { + "start": 4266.88, + "end": 4268.38, + "probability": 0.9887 + }, + { + "start": 4269.52, + "end": 4271.68, + "probability": 0.7805 + }, + { + "start": 4272.32, + "end": 4277.82, + "probability": 0.996 + }, + { + "start": 4279.82, + "end": 4283.26, + "probability": 0.8997 + }, + { + "start": 4284.12, + "end": 4285.04, + "probability": 0.9486 + }, + { + "start": 4285.58, + "end": 4286.76, + "probability": 0.5526 + }, + { + "start": 4287.88, + "end": 4291.44, + "probability": 0.9479 + }, + { + "start": 4291.44, + "end": 4295.56, + "probability": 0.9976 + }, + { + "start": 4295.92, + "end": 4297.18, + "probability": 0.9398 + }, + { + "start": 4298.34, + "end": 4300.54, + "probability": 0.8062 + }, + { + "start": 4301.34, + "end": 4305.12, + "probability": 0.9951 + }, + { + "start": 4305.12, + "end": 4309.44, + "probability": 0.9995 + }, + { + "start": 4310.22, + "end": 4314.06, + "probability": 0.9986 + }, + { + "start": 4314.7, + "end": 4315.24, + "probability": 0.4186 + }, + { + "start": 4316.4, + "end": 4317.64, + "probability": 0.6079 + }, + { + "start": 4318.62, + "end": 4322.2, + "probability": 0.9877 + }, + { + "start": 4323.7, + "end": 4324.7, + "probability": 0.7713 + }, + { + "start": 4324.88, + "end": 4330.12, + "probability": 0.9956 + }, + { + "start": 4330.56, + "end": 4335.16, + "probability": 0.9921 + }, + { + "start": 4336.14, + "end": 4339.34, + "probability": 0.9824 + }, + { + "start": 4339.34, + "end": 4343.44, + "probability": 0.9036 + }, + { + "start": 4344.7, + "end": 4350.08, + "probability": 0.9749 + }, + { + "start": 4351.26, + "end": 4356.24, + "probability": 0.9836 + }, + { + "start": 4356.8, + "end": 4360.68, + "probability": 0.9917 + }, + { + "start": 4361.86, + "end": 4363.88, + "probability": 0.9692 + }, + { + "start": 4364.44, + "end": 4368.78, + "probability": 0.9377 + }, + { + "start": 4369.48, + "end": 4371.48, + "probability": 0.8831 + }, + { + "start": 4372.1, + "end": 4372.74, + "probability": 0.8357 + }, + { + "start": 4373.1, + "end": 4374.54, + "probability": 0.9551 + }, + { + "start": 4374.96, + "end": 4379.9, + "probability": 0.9821 + }, + { + "start": 4380.34, + "end": 4380.8, + "probability": 0.7812 + }, + { + "start": 4381.26, + "end": 4383.4, + "probability": 0.9963 + }, + { + "start": 4384.54, + "end": 4386.26, + "probability": 0.9915 + }, + { + "start": 4387.7, + "end": 4388.72, + "probability": 0.9693 + }, + { + "start": 4389.24, + "end": 4390.1, + "probability": 0.9219 + }, + { + "start": 4391.3, + "end": 4391.84, + "probability": 0.8354 + }, + { + "start": 4392.56, + "end": 4394.16, + "probability": 0.9836 + }, + { + "start": 4394.8, + "end": 4398.04, + "probability": 0.9876 + }, + { + "start": 4398.76, + "end": 4400.6, + "probability": 0.9274 + }, + { + "start": 4401.28, + "end": 4403.44, + "probability": 0.9946 + }, + { + "start": 4406.04, + "end": 4407.16, + "probability": 0.9458 + }, + { + "start": 4407.22, + "end": 4408.18, + "probability": 0.8964 + }, + { + "start": 4408.38, + "end": 4410.2, + "probability": 0.9821 + }, + { + "start": 4410.48, + "end": 4410.98, + "probability": 0.9925 + }, + { + "start": 4411.52, + "end": 4416.22, + "probability": 0.9985 + }, + { + "start": 4416.22, + "end": 4421.8, + "probability": 0.9987 + }, + { + "start": 4423.34, + "end": 4423.58, + "probability": 0.689 + }, + { + "start": 4423.6, + "end": 4424.8, + "probability": 0.9886 + }, + { + "start": 4425.2, + "end": 4430.18, + "probability": 0.9971 + }, + { + "start": 4430.92, + "end": 4432.98, + "probability": 0.995 + }, + { + "start": 4433.36, + "end": 4435.52, + "probability": 0.9682 + }, + { + "start": 4435.64, + "end": 4436.4, + "probability": 0.9781 + }, + { + "start": 4437.16, + "end": 4439.14, + "probability": 0.909 + }, + { + "start": 4440.8, + "end": 4443.02, + "probability": 0.9985 + }, + { + "start": 4443.02, + "end": 4445.5, + "probability": 0.9543 + }, + { + "start": 4464.48, + "end": 4465.54, + "probability": 0.9873 + }, + { + "start": 4466.9, + "end": 4468.82, + "probability": 0.9557 + }, + { + "start": 4470.14, + "end": 4471.1, + "probability": 0.8451 + }, + { + "start": 4472.92, + "end": 4474.26, + "probability": 0.8533 + }, + { + "start": 4475.3, + "end": 4480.3, + "probability": 0.9058 + }, + { + "start": 4481.26, + "end": 4482.74, + "probability": 0.8574 + }, + { + "start": 4484.34, + "end": 4488.78, + "probability": 0.8558 + }, + { + "start": 4490.12, + "end": 4494.68, + "probability": 0.9891 + }, + { + "start": 4495.74, + "end": 4498.66, + "probability": 0.926 + }, + { + "start": 4499.56, + "end": 4502.04, + "probability": 0.9637 + }, + { + "start": 4503.54, + "end": 4505.84, + "probability": 0.976 + }, + { + "start": 4506.6, + "end": 4507.66, + "probability": 0.7175 + }, + { + "start": 4509.1, + "end": 4512.98, + "probability": 0.7683 + }, + { + "start": 4513.98, + "end": 4515.94, + "probability": 0.8779 + }, + { + "start": 4518.18, + "end": 4520.02, + "probability": 0.968 + }, + { + "start": 4521.66, + "end": 4522.72, + "probability": 0.9767 + }, + { + "start": 4524.32, + "end": 4525.66, + "probability": 0.7831 + }, + { + "start": 4527.1, + "end": 4528.4, + "probability": 0.9866 + }, + { + "start": 4530.1, + "end": 4532.78, + "probability": 0.8783 + }, + { + "start": 4535.14, + "end": 4538.0, + "probability": 0.9938 + }, + { + "start": 4539.78, + "end": 4542.86, + "probability": 0.9637 + }, + { + "start": 4544.72, + "end": 4548.5, + "probability": 0.9875 + }, + { + "start": 4551.32, + "end": 4553.48, + "probability": 0.8125 + }, + { + "start": 4555.3, + "end": 4557.04, + "probability": 0.9083 + }, + { + "start": 4558.74, + "end": 4562.2, + "probability": 0.9146 + }, + { + "start": 4564.58, + "end": 4568.18, + "probability": 0.9839 + }, + { + "start": 4570.32, + "end": 4573.74, + "probability": 0.9642 + }, + { + "start": 4575.0, + "end": 4576.48, + "probability": 0.6903 + }, + { + "start": 4577.98, + "end": 4583.32, + "probability": 0.9856 + }, + { + "start": 4584.66, + "end": 4589.18, + "probability": 0.9403 + }, + { + "start": 4592.66, + "end": 4595.18, + "probability": 0.9701 + }, + { + "start": 4596.92, + "end": 4600.67, + "probability": 0.9993 + }, + { + "start": 4601.16, + "end": 4601.76, + "probability": 0.9716 + }, + { + "start": 4601.98, + "end": 4602.76, + "probability": 0.7994 + }, + { + "start": 4603.84, + "end": 4606.74, + "probability": 0.9871 + }, + { + "start": 4611.1, + "end": 4611.96, + "probability": 0.7515 + }, + { + "start": 4615.0, + "end": 4616.23, + "probability": 0.7944 + }, + { + "start": 4617.66, + "end": 4619.38, + "probability": 0.9898 + }, + { + "start": 4621.34, + "end": 4622.84, + "probability": 0.9993 + }, + { + "start": 4626.32, + "end": 4627.26, + "probability": 0.9465 + }, + { + "start": 4628.64, + "end": 4632.24, + "probability": 0.9938 + }, + { + "start": 4634.52, + "end": 4637.16, + "probability": 0.988 + }, + { + "start": 4639.04, + "end": 4642.88, + "probability": 0.9945 + }, + { + "start": 4643.94, + "end": 4649.66, + "probability": 0.9678 + }, + { + "start": 4651.42, + "end": 4657.34, + "probability": 0.9863 + }, + { + "start": 4658.54, + "end": 4659.78, + "probability": 0.7572 + }, + { + "start": 4661.02, + "end": 4662.82, + "probability": 0.965 + }, + { + "start": 4663.98, + "end": 4665.7, + "probability": 0.9968 + }, + { + "start": 4666.36, + "end": 4668.36, + "probability": 0.9763 + }, + { + "start": 4670.0, + "end": 4672.14, + "probability": 0.9899 + }, + { + "start": 4674.1, + "end": 4679.86, + "probability": 0.98 + }, + { + "start": 4681.78, + "end": 4682.92, + "probability": 0.7192 + }, + { + "start": 4684.34, + "end": 4688.04, + "probability": 0.99 + }, + { + "start": 4689.62, + "end": 4691.86, + "probability": 0.9883 + }, + { + "start": 4693.04, + "end": 4694.64, + "probability": 0.8273 + }, + { + "start": 4694.74, + "end": 4695.72, + "probability": 0.8232 + }, + { + "start": 4695.8, + "end": 4696.44, + "probability": 0.8391 + }, + { + "start": 4697.32, + "end": 4700.02, + "probability": 0.9882 + }, + { + "start": 4700.58, + "end": 4701.34, + "probability": 0.9799 + }, + { + "start": 4702.96, + "end": 4704.44, + "probability": 0.989 + }, + { + "start": 4705.56, + "end": 4709.3, + "probability": 0.9816 + }, + { + "start": 4710.36, + "end": 4712.16, + "probability": 0.9876 + }, + { + "start": 4713.6, + "end": 4715.24, + "probability": 0.9421 + }, + { + "start": 4717.52, + "end": 4721.5, + "probability": 0.9945 + }, + { + "start": 4722.88, + "end": 4726.02, + "probability": 0.997 + }, + { + "start": 4727.54, + "end": 4728.88, + "probability": 0.9971 + }, + { + "start": 4730.14, + "end": 4732.54, + "probability": 0.9998 + }, + { + "start": 4733.8, + "end": 4735.98, + "probability": 0.6635 + }, + { + "start": 4738.02, + "end": 4742.46, + "probability": 0.9889 + }, + { + "start": 4743.08, + "end": 4746.58, + "probability": 0.7527 + }, + { + "start": 4748.26, + "end": 4751.76, + "probability": 0.9968 + }, + { + "start": 4753.12, + "end": 4757.58, + "probability": 0.8756 + }, + { + "start": 4759.8, + "end": 4760.6, + "probability": 0.5225 + }, + { + "start": 4762.94, + "end": 4767.1, + "probability": 0.9683 + }, + { + "start": 4768.3, + "end": 4768.94, + "probability": 0.9497 + }, + { + "start": 4770.24, + "end": 4772.14, + "probability": 0.988 + }, + { + "start": 4773.38, + "end": 4776.04, + "probability": 0.9927 + }, + { + "start": 4777.42, + "end": 4781.7, + "probability": 0.9985 + }, + { + "start": 4781.7, + "end": 4786.42, + "probability": 0.9657 + }, + { + "start": 4787.74, + "end": 4793.08, + "probability": 0.9799 + }, + { + "start": 4794.0, + "end": 4795.64, + "probability": 0.9985 + }, + { + "start": 4796.52, + "end": 4796.96, + "probability": 0.8903 + }, + { + "start": 4797.86, + "end": 4798.78, + "probability": 0.8748 + }, + { + "start": 4799.74, + "end": 4801.07, + "probability": 0.9836 + }, + { + "start": 4801.92, + "end": 4804.44, + "probability": 0.9847 + }, + { + "start": 4805.58, + "end": 4812.2, + "probability": 0.9683 + }, + { + "start": 4814.28, + "end": 4815.76, + "probability": 0.9917 + }, + { + "start": 4818.4, + "end": 4819.32, + "probability": 0.9322 + }, + { + "start": 4820.9, + "end": 4821.5, + "probability": 0.6844 + }, + { + "start": 4822.68, + "end": 4823.94, + "probability": 0.9828 + }, + { + "start": 4824.18, + "end": 4825.06, + "probability": 0.986 + }, + { + "start": 4825.2, + "end": 4827.26, + "probability": 0.9639 + }, + { + "start": 4828.42, + "end": 4830.98, + "probability": 0.9893 + }, + { + "start": 4832.56, + "end": 4838.08, + "probability": 0.9949 + }, + { + "start": 4839.92, + "end": 4842.0, + "probability": 0.9297 + }, + { + "start": 4843.26, + "end": 4843.3, + "probability": 0.4314 + }, + { + "start": 4843.4, + "end": 4843.82, + "probability": 0.9636 + }, + { + "start": 4843.86, + "end": 4849.26, + "probability": 0.9924 + }, + { + "start": 4851.06, + "end": 4851.24, + "probability": 0.3267 + }, + { + "start": 4851.26, + "end": 4855.58, + "probability": 0.9033 + }, + { + "start": 4855.74, + "end": 4856.72, + "probability": 0.8786 + }, + { + "start": 4858.54, + "end": 4860.66, + "probability": 0.9688 + }, + { + "start": 4864.0, + "end": 4865.66, + "probability": 0.9559 + }, + { + "start": 4868.3, + "end": 4871.7, + "probability": 0.9627 + }, + { + "start": 4873.3, + "end": 4876.88, + "probability": 0.9844 + }, + { + "start": 4878.46, + "end": 4879.3, + "probability": 0.6542 + }, + { + "start": 4879.52, + "end": 4879.86, + "probability": 0.7716 + }, + { + "start": 4879.96, + "end": 4881.44, + "probability": 0.95 + }, + { + "start": 4881.58, + "end": 4881.72, + "probability": 0.5863 + }, + { + "start": 4883.76, + "end": 4884.66, + "probability": 0.568 + }, + { + "start": 4885.88, + "end": 4887.3, + "probability": 0.6229 + }, + { + "start": 4887.38, + "end": 4890.32, + "probability": 0.9961 + }, + { + "start": 4890.32, + "end": 4894.94, + "probability": 0.9872 + }, + { + "start": 4895.72, + "end": 4897.28, + "probability": 0.865 + }, + { + "start": 4898.64, + "end": 4900.66, + "probability": 0.8319 + }, + { + "start": 4901.46, + "end": 4902.08, + "probability": 0.5236 + }, + { + "start": 4902.86, + "end": 4905.8, + "probability": 0.9653 + }, + { + "start": 4907.48, + "end": 4909.48, + "probability": 0.8898 + }, + { + "start": 4910.94, + "end": 4915.18, + "probability": 0.9648 + }, + { + "start": 4916.9, + "end": 4917.52, + "probability": 0.7234 + }, + { + "start": 4919.52, + "end": 4922.2, + "probability": 0.9976 + }, + { + "start": 4923.3, + "end": 4926.72, + "probability": 0.9909 + }, + { + "start": 4927.4, + "end": 4929.82, + "probability": 0.9009 + }, + { + "start": 4930.28, + "end": 4933.86, + "probability": 0.9744 + }, + { + "start": 4935.3, + "end": 4936.52, + "probability": 0.9647 + }, + { + "start": 4938.42, + "end": 4940.6, + "probability": 0.9993 + }, + { + "start": 4941.78, + "end": 4943.96, + "probability": 0.9954 + }, + { + "start": 4945.2, + "end": 4946.46, + "probability": 0.6483 + }, + { + "start": 4948.78, + "end": 4950.0, + "probability": 0.9553 + }, + { + "start": 4951.1, + "end": 4952.0, + "probability": 0.9987 + }, + { + "start": 4954.48, + "end": 4955.38, + "probability": 0.9661 + }, + { + "start": 4956.58, + "end": 4957.74, + "probability": 0.8701 + }, + { + "start": 4960.24, + "end": 4960.78, + "probability": 0.7455 + }, + { + "start": 4960.88, + "end": 4965.14, + "probability": 0.9973 + }, + { + "start": 4966.2, + "end": 4967.84, + "probability": 0.9972 + }, + { + "start": 4969.1, + "end": 4972.92, + "probability": 0.9855 + }, + { + "start": 4974.4, + "end": 4976.22, + "probability": 0.9218 + }, + { + "start": 4977.62, + "end": 4980.3, + "probability": 0.7752 + }, + { + "start": 4982.06, + "end": 4983.6, + "probability": 0.9806 + }, + { + "start": 4985.22, + "end": 4987.82, + "probability": 0.9977 + }, + { + "start": 4989.88, + "end": 4990.65, + "probability": 0.9661 + }, + { + "start": 4991.94, + "end": 4995.14, + "probability": 0.9953 + }, + { + "start": 4996.76, + "end": 4998.18, + "probability": 0.7227 + }, + { + "start": 4999.54, + "end": 5000.8, + "probability": 0.9518 + }, + { + "start": 5002.16, + "end": 5003.8, + "probability": 0.9856 + }, + { + "start": 5005.28, + "end": 5007.74, + "probability": 0.9833 + }, + { + "start": 5008.86, + "end": 5011.02, + "probability": 0.9973 + }, + { + "start": 5012.52, + "end": 5014.68, + "probability": 0.9028 + }, + { + "start": 5015.64, + "end": 5016.82, + "probability": 0.9045 + }, + { + "start": 5018.02, + "end": 5019.94, + "probability": 0.9895 + }, + { + "start": 5021.28, + "end": 5022.16, + "probability": 0.991 + }, + { + "start": 5023.18, + "end": 5025.26, + "probability": 0.9076 + }, + { + "start": 5026.74, + "end": 5029.22, + "probability": 0.9973 + }, + { + "start": 5031.6, + "end": 5032.37, + "probability": 0.3239 + }, + { + "start": 5034.04, + "end": 5039.28, + "probability": 0.978 + }, + { + "start": 5040.14, + "end": 5041.04, + "probability": 0.8142 + }, + { + "start": 5042.1, + "end": 5044.08, + "probability": 0.9868 + }, + { + "start": 5045.46, + "end": 5046.09, + "probability": 0.9019 + }, + { + "start": 5047.12, + "end": 5049.2, + "probability": 0.9946 + }, + { + "start": 5050.72, + "end": 5051.32, + "probability": 0.6962 + }, + { + "start": 5052.24, + "end": 5055.78, + "probability": 0.9888 + }, + { + "start": 5057.52, + "end": 5060.6, + "probability": 0.9832 + }, + { + "start": 5063.08, + "end": 5064.12, + "probability": 0.7086 + }, + { + "start": 5065.12, + "end": 5066.6, + "probability": 0.986 + }, + { + "start": 5068.38, + "end": 5071.5, + "probability": 0.9525 + }, + { + "start": 5074.5, + "end": 5078.55, + "probability": 0.9975 + }, + { + "start": 5079.26, + "end": 5080.06, + "probability": 0.822 + }, + { + "start": 5081.26, + "end": 5082.78, + "probability": 0.8727 + }, + { + "start": 5083.8, + "end": 5085.46, + "probability": 0.9288 + }, + { + "start": 5086.24, + "end": 5090.1, + "probability": 0.9131 + }, + { + "start": 5091.2, + "end": 5094.2, + "probability": 0.9653 + }, + { + "start": 5095.12, + "end": 5098.56, + "probability": 0.8944 + }, + { + "start": 5100.2, + "end": 5101.3, + "probability": 0.836 + }, + { + "start": 5102.16, + "end": 5107.48, + "probability": 0.9932 + }, + { + "start": 5109.16, + "end": 5112.34, + "probability": 0.998 + }, + { + "start": 5113.76, + "end": 5114.98, + "probability": 0.7131 + }, + { + "start": 5116.86, + "end": 5119.16, + "probability": 0.8538 + }, + { + "start": 5120.34, + "end": 5121.25, + "probability": 0.9558 + }, + { + "start": 5122.68, + "end": 5124.33, + "probability": 0.9965 + }, + { + "start": 5125.16, + "end": 5126.82, + "probability": 0.9501 + }, + { + "start": 5129.86, + "end": 5131.58, + "probability": 0.9743 + }, + { + "start": 5132.98, + "end": 5134.2, + "probability": 0.9778 + }, + { + "start": 5135.98, + "end": 5137.56, + "probability": 0.9046 + }, + { + "start": 5139.7, + "end": 5142.46, + "probability": 0.9863 + }, + { + "start": 5143.68, + "end": 5147.3, + "probability": 0.998 + }, + { + "start": 5148.48, + "end": 5150.0, + "probability": 0.9707 + }, + { + "start": 5151.4, + "end": 5158.02, + "probability": 0.996 + }, + { + "start": 5160.22, + "end": 5162.36, + "probability": 0.7834 + }, + { + "start": 5163.16, + "end": 5165.5, + "probability": 0.9827 + }, + { + "start": 5166.52, + "end": 5167.9, + "probability": 0.9078 + }, + { + "start": 5168.7, + "end": 5170.68, + "probability": 0.9886 + }, + { + "start": 5171.98, + "end": 5175.1, + "probability": 0.9878 + }, + { + "start": 5176.18, + "end": 5177.82, + "probability": 0.9882 + }, + { + "start": 5179.74, + "end": 5183.88, + "probability": 0.9988 + }, + { + "start": 5185.16, + "end": 5188.68, + "probability": 0.9373 + }, + { + "start": 5189.04, + "end": 5190.44, + "probability": 0.9776 + }, + { + "start": 5191.44, + "end": 5195.46, + "probability": 0.999 + }, + { + "start": 5196.14, + "end": 5200.7, + "probability": 0.9342 + }, + { + "start": 5202.1, + "end": 5204.64, + "probability": 0.9485 + }, + { + "start": 5206.12, + "end": 5208.46, + "probability": 0.9662 + }, + { + "start": 5209.38, + "end": 5210.42, + "probability": 0.9913 + }, + { + "start": 5211.52, + "end": 5212.94, + "probability": 0.9696 + }, + { + "start": 5214.26, + "end": 5218.09, + "probability": 0.9178 + }, + { + "start": 5220.7, + "end": 5221.58, + "probability": 0.9877 + }, + { + "start": 5223.38, + "end": 5227.52, + "probability": 0.9958 + }, + { + "start": 5227.74, + "end": 5232.7, + "probability": 0.9962 + }, + { + "start": 5249.86, + "end": 5254.98, + "probability": 0.9788 + }, + { + "start": 5255.96, + "end": 5257.52, + "probability": 0.9574 + }, + { + "start": 5258.5, + "end": 5260.06, + "probability": 0.9282 + }, + { + "start": 5261.0, + "end": 5264.3, + "probability": 0.9631 + }, + { + "start": 5264.82, + "end": 5267.38, + "probability": 0.9408 + }, + { + "start": 5268.34, + "end": 5271.14, + "probability": 0.7431 + }, + { + "start": 5272.02, + "end": 5273.92, + "probability": 0.9908 + }, + { + "start": 5274.66, + "end": 5279.34, + "probability": 0.976 + }, + { + "start": 5279.68, + "end": 5281.12, + "probability": 0.7665 + }, + { + "start": 5282.82, + "end": 5285.22, + "probability": 0.9957 + }, + { + "start": 5285.94, + "end": 5288.76, + "probability": 0.9037 + }, + { + "start": 5288.76, + "end": 5292.52, + "probability": 0.9006 + }, + { + "start": 5293.44, + "end": 5297.74, + "probability": 0.9947 + }, + { + "start": 5298.32, + "end": 5302.46, + "probability": 0.9922 + }, + { + "start": 5302.94, + "end": 5303.52, + "probability": 0.7868 + }, + { + "start": 5303.84, + "end": 5307.56, + "probability": 0.9975 + }, + { + "start": 5308.3, + "end": 5308.94, + "probability": 0.8569 + }, + { + "start": 5310.06, + "end": 5314.7, + "probability": 0.8325 + }, + { + "start": 5315.34, + "end": 5316.24, + "probability": 0.8306 + }, + { + "start": 5316.58, + "end": 5317.84, + "probability": 0.8505 + }, + { + "start": 5317.92, + "end": 5318.72, + "probability": 0.6596 + }, + { + "start": 5318.74, + "end": 5319.64, + "probability": 0.7547 + }, + { + "start": 5320.4, + "end": 5325.94, + "probability": 0.81 + }, + { + "start": 5327.1, + "end": 5329.82, + "probability": 0.8823 + }, + { + "start": 5330.56, + "end": 5332.82, + "probability": 0.8124 + }, + { + "start": 5334.46, + "end": 5336.6, + "probability": 0.7532 + }, + { + "start": 5337.22, + "end": 5338.14, + "probability": 0.9806 + }, + { + "start": 5339.32, + "end": 5341.68, + "probability": 0.856 + }, + { + "start": 5342.94, + "end": 5346.64, + "probability": 0.9396 + }, + { + "start": 5347.64, + "end": 5350.46, + "probability": 0.9742 + }, + { + "start": 5351.34, + "end": 5355.38, + "probability": 0.9304 + }, + { + "start": 5356.26, + "end": 5357.22, + "probability": 0.804 + }, + { + "start": 5357.88, + "end": 5358.8, + "probability": 0.8686 + }, + { + "start": 5359.86, + "end": 5361.18, + "probability": 0.8854 + }, + { + "start": 5361.9, + "end": 5363.36, + "probability": 0.9824 + }, + { + "start": 5363.96, + "end": 5365.36, + "probability": 0.9941 + }, + { + "start": 5365.94, + "end": 5368.54, + "probability": 0.9982 + }, + { + "start": 5370.36, + "end": 5373.46, + "probability": 0.9955 + }, + { + "start": 5374.32, + "end": 5376.48, + "probability": 0.9779 + }, + { + "start": 5377.22, + "end": 5382.14, + "probability": 0.9898 + }, + { + "start": 5382.8, + "end": 5384.28, + "probability": 0.9068 + }, + { + "start": 5385.62, + "end": 5388.28, + "probability": 0.9802 + }, + { + "start": 5388.96, + "end": 5389.8, + "probability": 0.7062 + }, + { + "start": 5390.82, + "end": 5395.1, + "probability": 0.9757 + }, + { + "start": 5395.84, + "end": 5398.08, + "probability": 0.7355 + }, + { + "start": 5399.3, + "end": 5402.48, + "probability": 0.936 + }, + { + "start": 5403.16, + "end": 5406.48, + "probability": 0.9371 + }, + { + "start": 5407.18, + "end": 5409.82, + "probability": 0.9608 + }, + { + "start": 5410.46, + "end": 5413.14, + "probability": 0.9729 + }, + { + "start": 5414.2, + "end": 5417.78, + "probability": 0.9539 + }, + { + "start": 5418.38, + "end": 5419.74, + "probability": 0.9131 + }, + { + "start": 5420.7, + "end": 5423.04, + "probability": 0.9476 + }, + { + "start": 5423.92, + "end": 5426.34, + "probability": 0.9927 + }, + { + "start": 5426.34, + "end": 5429.9, + "probability": 0.9241 + }, + { + "start": 5431.82, + "end": 5437.78, + "probability": 0.9963 + }, + { + "start": 5439.1, + "end": 5440.46, + "probability": 0.2507 + }, + { + "start": 5440.62, + "end": 5443.18, + "probability": 0.9673 + }, + { + "start": 5443.8, + "end": 5446.32, + "probability": 0.995 + }, + { + "start": 5446.38, + "end": 5447.48, + "probability": 0.8267 + }, + { + "start": 5448.68, + "end": 5451.06, + "probability": 0.9967 + }, + { + "start": 5451.42, + "end": 5451.9, + "probability": 0.6963 + }, + { + "start": 5453.38, + "end": 5458.34, + "probability": 0.9635 + }, + { + "start": 5459.12, + "end": 5461.16, + "probability": 0.9002 + }, + { + "start": 5461.8, + "end": 5463.44, + "probability": 0.9341 + }, + { + "start": 5464.06, + "end": 5465.95, + "probability": 0.974 + }, + { + "start": 5467.28, + "end": 5470.2, + "probability": 0.9174 + }, + { + "start": 5471.52, + "end": 5472.18, + "probability": 0.6014 + }, + { + "start": 5473.34, + "end": 5473.82, + "probability": 0.6336 + }, + { + "start": 5473.9, + "end": 5474.26, + "probability": 0.9376 + }, + { + "start": 5474.44, + "end": 5480.0, + "probability": 0.9902 + }, + { + "start": 5480.14, + "end": 5480.68, + "probability": 0.8234 + }, + { + "start": 5481.54, + "end": 5484.52, + "probability": 0.9604 + }, + { + "start": 5485.14, + "end": 5485.92, + "probability": 0.9662 + }, + { + "start": 5487.0, + "end": 5489.46, + "probability": 0.9868 + }, + { + "start": 5490.08, + "end": 5491.78, + "probability": 0.9902 + }, + { + "start": 5492.54, + "end": 5494.4, + "probability": 0.7962 + }, + { + "start": 5495.0, + "end": 5495.58, + "probability": 0.9904 + }, + { + "start": 5496.86, + "end": 5499.6, + "probability": 0.9986 + }, + { + "start": 5500.38, + "end": 5502.06, + "probability": 0.6204 + }, + { + "start": 5502.72, + "end": 5508.12, + "probability": 0.9964 + }, + { + "start": 5509.1, + "end": 5510.5, + "probability": 0.688 + }, + { + "start": 5511.96, + "end": 5513.44, + "probability": 0.9875 + }, + { + "start": 5514.18, + "end": 5518.36, + "probability": 0.8311 + }, + { + "start": 5519.36, + "end": 5524.24, + "probability": 0.9969 + }, + { + "start": 5526.0, + "end": 5529.16, + "probability": 0.9891 + }, + { + "start": 5530.74, + "end": 5532.54, + "probability": 0.9885 + }, + { + "start": 5533.42, + "end": 5534.96, + "probability": 0.9978 + }, + { + "start": 5535.6, + "end": 5537.26, + "probability": 0.9207 + }, + { + "start": 5538.38, + "end": 5540.32, + "probability": 0.9611 + }, + { + "start": 5541.1, + "end": 5544.54, + "probability": 0.9909 + }, + { + "start": 5545.46, + "end": 5546.98, + "probability": 0.7047 + }, + { + "start": 5547.9, + "end": 5549.02, + "probability": 0.7484 + }, + { + "start": 5549.62, + "end": 5552.72, + "probability": 0.9945 + }, + { + "start": 5554.28, + "end": 5555.72, + "probability": 0.9128 + }, + { + "start": 5556.38, + "end": 5558.1, + "probability": 0.9917 + }, + { + "start": 5558.68, + "end": 5560.84, + "probability": 0.9662 + }, + { + "start": 5561.98, + "end": 5564.82, + "probability": 0.9933 + }, + { + "start": 5565.58, + "end": 5568.18, + "probability": 0.9939 + }, + { + "start": 5568.84, + "end": 5573.48, + "probability": 0.9946 + }, + { + "start": 5574.12, + "end": 5579.48, + "probability": 0.971 + }, + { + "start": 5580.38, + "end": 5582.88, + "probability": 0.905 + }, + { + "start": 5585.06, + "end": 5592.4, + "probability": 0.927 + }, + { + "start": 5594.0, + "end": 5595.64, + "probability": 0.9521 + }, + { + "start": 5596.3, + "end": 5599.3, + "probability": 0.9677 + }, + { + "start": 5599.94, + "end": 5605.56, + "probability": 0.9679 + }, + { + "start": 5606.08, + "end": 5610.46, + "probability": 0.9989 + }, + { + "start": 5611.42, + "end": 5613.68, + "probability": 0.9647 + }, + { + "start": 5614.44, + "end": 5618.38, + "probability": 0.9838 + }, + { + "start": 5619.4, + "end": 5623.54, + "probability": 0.8162 + }, + { + "start": 5624.22, + "end": 5626.38, + "probability": 0.9736 + }, + { + "start": 5626.94, + "end": 5628.24, + "probability": 0.6059 + }, + { + "start": 5629.08, + "end": 5633.42, + "probability": 0.941 + }, + { + "start": 5634.34, + "end": 5638.94, + "probability": 0.9941 + }, + { + "start": 5639.8, + "end": 5646.1, + "probability": 0.9801 + }, + { + "start": 5647.06, + "end": 5651.36, + "probability": 0.9915 + }, + { + "start": 5652.36, + "end": 5654.4, + "probability": 0.6332 + }, + { + "start": 5654.58, + "end": 5656.42, + "probability": 0.9681 + }, + { + "start": 5657.98, + "end": 5660.4, + "probability": 0.9878 + }, + { + "start": 5661.14, + "end": 5665.62, + "probability": 0.9925 + }, + { + "start": 5665.62, + "end": 5668.92, + "probability": 0.9995 + }, + { + "start": 5670.02, + "end": 5672.18, + "probability": 0.9277 + }, + { + "start": 5672.8, + "end": 5674.78, + "probability": 0.7545 + }, + { + "start": 5675.58, + "end": 5679.84, + "probability": 0.9214 + }, + { + "start": 5679.84, + "end": 5682.68, + "probability": 0.998 + }, + { + "start": 5684.14, + "end": 5688.88, + "probability": 0.9914 + }, + { + "start": 5689.5, + "end": 5692.48, + "probability": 0.9919 + }, + { + "start": 5693.76, + "end": 5697.7, + "probability": 0.9666 + }, + { + "start": 5698.52, + "end": 5703.48, + "probability": 0.9956 + }, + { + "start": 5704.02, + "end": 5707.86, + "probability": 0.9233 + }, + { + "start": 5708.56, + "end": 5713.28, + "probability": 0.9838 + }, + { + "start": 5714.08, + "end": 5716.16, + "probability": 0.9731 + }, + { + "start": 5716.28, + "end": 5717.0, + "probability": 0.8172 + }, + { + "start": 5717.44, + "end": 5720.48, + "probability": 0.988 + }, + { + "start": 5720.72, + "end": 5721.42, + "probability": 0.5452 + }, + { + "start": 5722.04, + "end": 5725.1, + "probability": 0.8783 + }, + { + "start": 5725.66, + "end": 5729.44, + "probability": 0.7046 + }, + { + "start": 5730.22, + "end": 5730.84, + "probability": 0.9486 + }, + { + "start": 5731.84, + "end": 5734.96, + "probability": 0.9841 + }, + { + "start": 5735.46, + "end": 5736.2, + "probability": 0.5868 + }, + { + "start": 5736.82, + "end": 5738.22, + "probability": 0.9547 + }, + { + "start": 5739.76, + "end": 5740.96, + "probability": 0.9996 + }, + { + "start": 5741.86, + "end": 5744.72, + "probability": 0.9736 + }, + { + "start": 5745.36, + "end": 5750.38, + "probability": 0.9959 + }, + { + "start": 5751.0, + "end": 5756.76, + "probability": 0.9885 + }, + { + "start": 5758.4, + "end": 5761.35, + "probability": 0.9894 + }, + { + "start": 5762.06, + "end": 5763.58, + "probability": 0.6974 + }, + { + "start": 5764.12, + "end": 5766.56, + "probability": 0.9869 + }, + { + "start": 5767.68, + "end": 5769.84, + "probability": 0.983 + }, + { + "start": 5770.52, + "end": 5771.38, + "probability": 0.9421 + }, + { + "start": 5772.12, + "end": 5774.12, + "probability": 0.8474 + }, + { + "start": 5774.78, + "end": 5778.26, + "probability": 0.9785 + }, + { + "start": 5778.88, + "end": 5779.94, + "probability": 0.5263 + }, + { + "start": 5780.04, + "end": 5780.56, + "probability": 0.3603 + }, + { + "start": 5781.36, + "end": 5784.76, + "probability": 0.9715 + }, + { + "start": 5785.46, + "end": 5788.2, + "probability": 0.9863 + }, + { + "start": 5788.92, + "end": 5791.8, + "probability": 0.9987 + }, + { + "start": 5791.84, + "end": 5795.44, + "probability": 0.9814 + }, + { + "start": 5796.28, + "end": 5800.4, + "probability": 0.998 + }, + { + "start": 5801.26, + "end": 5803.6, + "probability": 0.9953 + }, + { + "start": 5804.26, + "end": 5806.82, + "probability": 0.9665 + }, + { + "start": 5807.6, + "end": 5808.92, + "probability": 0.9712 + }, + { + "start": 5809.66, + "end": 5812.48, + "probability": 0.9404 + }, + { + "start": 5814.0, + "end": 5816.8, + "probability": 0.949 + }, + { + "start": 5817.38, + "end": 5818.82, + "probability": 0.8143 + }, + { + "start": 5819.3, + "end": 5824.62, + "probability": 0.9963 + }, + { + "start": 5825.4, + "end": 5827.43, + "probability": 0.9697 + }, + { + "start": 5828.06, + "end": 5828.96, + "probability": 0.7149 + }, + { + "start": 5829.6, + "end": 5831.58, + "probability": 0.9791 + }, + { + "start": 5832.16, + "end": 5833.26, + "probability": 0.994 + }, + { + "start": 5833.94, + "end": 5835.62, + "probability": 0.9331 + }, + { + "start": 5836.3, + "end": 5839.3, + "probability": 0.9987 + }, + { + "start": 5839.94, + "end": 5846.14, + "probability": 0.9438 + }, + { + "start": 5846.72, + "end": 5848.16, + "probability": 0.8761 + }, + { + "start": 5848.94, + "end": 5850.84, + "probability": 0.8135 + }, + { + "start": 5851.44, + "end": 5853.46, + "probability": 0.9737 + }, + { + "start": 5854.06, + "end": 5858.12, + "probability": 0.9761 + }, + { + "start": 5858.66, + "end": 5860.0, + "probability": 0.9941 + }, + { + "start": 5861.44, + "end": 5861.56, + "probability": 0.1025 + }, + { + "start": 5862.9, + "end": 5864.4, + "probability": 0.7742 + }, + { + "start": 5864.92, + "end": 5868.88, + "probability": 0.9954 + }, + { + "start": 5869.48, + "end": 5870.9, + "probability": 0.891 + }, + { + "start": 5871.66, + "end": 5874.14, + "probability": 0.9301 + }, + { + "start": 5874.88, + "end": 5878.84, + "probability": 0.8389 + }, + { + "start": 5879.48, + "end": 5881.37, + "probability": 0.9946 + }, + { + "start": 5883.32, + "end": 5886.02, + "probability": 0.9895 + }, + { + "start": 5886.56, + "end": 5889.64, + "probability": 0.9989 + }, + { + "start": 5890.46, + "end": 5891.56, + "probability": 0.77 + }, + { + "start": 5892.2, + "end": 5895.58, + "probability": 0.9978 + }, + { + "start": 5895.58, + "end": 5897.92, + "probability": 0.9976 + }, + { + "start": 5898.88, + "end": 5900.72, + "probability": 0.9647 + }, + { + "start": 5901.44, + "end": 5903.12, + "probability": 0.9736 + }, + { + "start": 5904.08, + "end": 5906.86, + "probability": 0.9383 + }, + { + "start": 5907.5, + "end": 5909.34, + "probability": 0.8259 + }, + { + "start": 5910.02, + "end": 5912.48, + "probability": 0.95 + }, + { + "start": 5913.08, + "end": 5915.32, + "probability": 0.7479 + }, + { + "start": 5915.96, + "end": 5918.32, + "probability": 0.8145 + }, + { + "start": 5919.06, + "end": 5920.75, + "probability": 0.7898 + }, + { + "start": 5921.56, + "end": 5925.6, + "probability": 0.9515 + }, + { + "start": 5926.1, + "end": 5929.24, + "probability": 0.9945 + }, + { + "start": 5929.82, + "end": 5931.6, + "probability": 0.956 + }, + { + "start": 5932.32, + "end": 5933.32, + "probability": 0.75 + }, + { + "start": 5933.8, + "end": 5934.52, + "probability": 0.9457 + }, + { + "start": 5934.56, + "end": 5936.6, + "probability": 0.9228 + }, + { + "start": 5937.1, + "end": 5939.82, + "probability": 0.9951 + }, + { + "start": 5941.26, + "end": 5941.98, + "probability": 0.6518 + }, + { + "start": 5942.56, + "end": 5944.12, + "probability": 0.9878 + }, + { + "start": 5945.26, + "end": 5946.92, + "probability": 0.8605 + }, + { + "start": 5947.44, + "end": 5951.26, + "probability": 0.9402 + }, + { + "start": 5951.96, + "end": 5952.9, + "probability": 0.9803 + }, + { + "start": 5953.44, + "end": 5956.54, + "probability": 0.7656 + }, + { + "start": 5957.3, + "end": 5959.28, + "probability": 0.9854 + }, + { + "start": 5960.1, + "end": 5963.4, + "probability": 0.9905 + }, + { + "start": 5964.24, + "end": 5967.54, + "probability": 0.9436 + }, + { + "start": 5968.12, + "end": 5970.28, + "probability": 0.9253 + }, + { + "start": 5971.28, + "end": 5974.58, + "probability": 0.9221 + }, + { + "start": 5975.22, + "end": 5976.62, + "probability": 0.6065 + }, + { + "start": 5977.4, + "end": 5980.38, + "probability": 0.9519 + }, + { + "start": 5981.34, + "end": 5984.0, + "probability": 0.9918 + }, + { + "start": 5984.1, + "end": 5986.28, + "probability": 0.9897 + }, + { + "start": 5987.08, + "end": 5989.26, + "probability": 0.8086 + }, + { + "start": 5989.96, + "end": 5991.68, + "probability": 0.951 + }, + { + "start": 5992.52, + "end": 5993.74, + "probability": 0.502 + }, + { + "start": 5994.7, + "end": 5996.76, + "probability": 0.9087 + }, + { + "start": 5997.44, + "end": 5999.3, + "probability": 0.7786 + }, + { + "start": 6000.0, + "end": 6003.04, + "probability": 0.7539 + }, + { + "start": 6004.1, + "end": 6006.78, + "probability": 0.9805 + }, + { + "start": 6007.32, + "end": 6010.06, + "probability": 0.9948 + }, + { + "start": 6010.7, + "end": 6012.46, + "probability": 0.9865 + }, + { + "start": 6013.08, + "end": 6017.7, + "probability": 0.9912 + }, + { + "start": 6018.3, + "end": 6019.78, + "probability": 0.8149 + }, + { + "start": 6020.68, + "end": 6024.32, + "probability": 0.9978 + }, + { + "start": 6024.84, + "end": 6028.46, + "probability": 0.9878 + }, + { + "start": 6029.2, + "end": 6033.34, + "probability": 0.9875 + }, + { + "start": 6034.08, + "end": 6038.7, + "probability": 0.9853 + }, + { + "start": 6040.2, + "end": 6041.34, + "probability": 0.8988 + }, + { + "start": 6041.4, + "end": 6042.42, + "probability": 0.9341 + }, + { + "start": 6042.9, + "end": 6045.92, + "probability": 0.9927 + }, + { + "start": 6046.54, + "end": 6047.18, + "probability": 0.6217 + }, + { + "start": 6048.14, + "end": 6051.72, + "probability": 0.9365 + }, + { + "start": 6052.26, + "end": 6056.9, + "probability": 0.9792 + }, + { + "start": 6057.48, + "end": 6059.46, + "probability": 0.9677 + }, + { + "start": 6060.28, + "end": 6063.16, + "probability": 0.9742 + }, + { + "start": 6064.52, + "end": 6065.84, + "probability": 0.9341 + }, + { + "start": 6066.44, + "end": 6067.62, + "probability": 0.8382 + }, + { + "start": 6068.12, + "end": 6072.72, + "probability": 0.9811 + }, + { + "start": 6073.7, + "end": 6077.28, + "probability": 0.8508 + }, + { + "start": 6077.92, + "end": 6080.32, + "probability": 0.8697 + }, + { + "start": 6080.32, + "end": 6083.1, + "probability": 0.9575 + }, + { + "start": 6084.16, + "end": 6090.68, + "probability": 0.9968 + }, + { + "start": 6090.68, + "end": 6096.2, + "probability": 0.9937 + }, + { + "start": 6096.8, + "end": 6097.29, + "probability": 0.8153 + }, + { + "start": 6098.26, + "end": 6104.32, + "probability": 0.9896 + }, + { + "start": 6104.9, + "end": 6109.12, + "probability": 0.9812 + }, + { + "start": 6109.68, + "end": 6110.17, + "probability": 0.9556 + }, + { + "start": 6111.04, + "end": 6112.18, + "probability": 0.859 + }, + { + "start": 6112.78, + "end": 6115.12, + "probability": 0.9902 + }, + { + "start": 6115.78, + "end": 6117.02, + "probability": 0.6055 + }, + { + "start": 6117.6, + "end": 6119.92, + "probability": 0.987 + }, + { + "start": 6120.68, + "end": 6121.52, + "probability": 0.6914 + }, + { + "start": 6121.58, + "end": 6124.34, + "probability": 0.9679 + }, + { + "start": 6125.58, + "end": 6126.84, + "probability": 0.9932 + }, + { + "start": 6127.66, + "end": 6129.46, + "probability": 0.8656 + }, + { + "start": 6130.08, + "end": 6132.64, + "probability": 0.9517 + }, + { + "start": 6133.62, + "end": 6137.04, + "probability": 0.9912 + }, + { + "start": 6137.6, + "end": 6138.1, + "probability": 0.4231 + }, + { + "start": 6138.74, + "end": 6145.39, + "probability": 0.9896 + }, + { + "start": 6145.5, + "end": 6149.06, + "probability": 0.995 + }, + { + "start": 6150.0, + "end": 6151.78, + "probability": 0.9399 + }, + { + "start": 6152.6, + "end": 6152.9, + "probability": 0.9768 + }, + { + "start": 6153.44, + "end": 6157.02, + "probability": 0.9951 + }, + { + "start": 6157.62, + "end": 6162.26, + "probability": 0.9964 + }, + { + "start": 6162.88, + "end": 6166.32, + "probability": 0.9906 + }, + { + "start": 6167.02, + "end": 6170.0, + "probability": 0.9002 + }, + { + "start": 6170.64, + "end": 6175.62, + "probability": 0.9863 + }, + { + "start": 6176.74, + "end": 6177.92, + "probability": 0.9855 + }, + { + "start": 6178.64, + "end": 6181.36, + "probability": 0.9902 + }, + { + "start": 6181.88, + "end": 6182.08, + "probability": 0.1552 + }, + { + "start": 6182.08, + "end": 6185.56, + "probability": 0.8904 + }, + { + "start": 6186.9, + "end": 6187.82, + "probability": 0.4106 + }, + { + "start": 6196.15, + "end": 6199.93, + "probability": 0.3701 + }, + { + "start": 6200.07, + "end": 6200.13, + "probability": 0.6483 + }, + { + "start": 6200.13, + "end": 6201.93, + "probability": 0.9889 + }, + { + "start": 6206.25, + "end": 6207.09, + "probability": 0.1456 + }, + { + "start": 6208.39, + "end": 6210.67, + "probability": 0.3353 + }, + { + "start": 6211.49, + "end": 6214.61, + "probability": 0.9669 + }, + { + "start": 6214.63, + "end": 6218.31, + "probability": 0.9902 + }, + { + "start": 6218.79, + "end": 6223.71, + "probability": 0.9893 + }, + { + "start": 6224.33, + "end": 6226.17, + "probability": 0.9949 + }, + { + "start": 6226.67, + "end": 6229.53, + "probability": 0.9887 + }, + { + "start": 6230.51, + "end": 6234.13, + "probability": 0.8477 + }, + { + "start": 6235.23, + "end": 6237.57, + "probability": 0.9221 + }, + { + "start": 6238.05, + "end": 6243.27, + "probability": 0.997 + }, + { + "start": 6243.75, + "end": 6245.55, + "probability": 0.846 + }, + { + "start": 6246.25, + "end": 6250.03, + "probability": 0.3663 + }, + { + "start": 6250.13, + "end": 6251.95, + "probability": 0.3328 + }, + { + "start": 6252.31, + "end": 6252.95, + "probability": 0.6328 + }, + { + "start": 6253.61, + "end": 6254.59, + "probability": 0.4609 + }, + { + "start": 6254.99, + "end": 6257.45, + "probability": 0.3738 + }, + { + "start": 6257.93, + "end": 6260.21, + "probability": 0.16 + }, + { + "start": 6260.91, + "end": 6260.91, + "probability": 0.04 + }, + { + "start": 6261.87, + "end": 6263.93, + "probability": 0.2231 + }, + { + "start": 6263.93, + "end": 6265.13, + "probability": 0.1031 + }, + { + "start": 6267.57, + "end": 6272.25, + "probability": 0.1257 + }, + { + "start": 6272.25, + "end": 6275.17, + "probability": 0.3369 + }, + { + "start": 6275.27, + "end": 6276.75, + "probability": 0.7211 + }, + { + "start": 6277.19, + "end": 6279.09, + "probability": 0.7181 + }, + { + "start": 6279.89, + "end": 6285.45, + "probability": 0.998 + }, + { + "start": 6286.09, + "end": 6288.55, + "probability": 0.9962 + }, + { + "start": 6289.27, + "end": 6292.53, + "probability": 0.9954 + }, + { + "start": 6293.27, + "end": 6296.67, + "probability": 0.7866 + }, + { + "start": 6297.39, + "end": 6299.15, + "probability": 0.8345 + }, + { + "start": 6299.33, + "end": 6302.75, + "probability": 0.9755 + }, + { + "start": 6303.07, + "end": 6305.93, + "probability": 0.9987 + }, + { + "start": 6306.45, + "end": 6311.15, + "probability": 0.9785 + }, + { + "start": 6311.69, + "end": 6316.63, + "probability": 0.9917 + }, + { + "start": 6317.45, + "end": 6318.63, + "probability": 0.6213 + }, + { + "start": 6319.23, + "end": 6325.13, + "probability": 0.9912 + }, + { + "start": 6325.79, + "end": 6325.89, + "probability": 0.7968 + }, + { + "start": 6326.89, + "end": 6328.37, + "probability": 0.9278 + }, + { + "start": 6328.53, + "end": 6331.69, + "probability": 0.9951 + }, + { + "start": 6331.75, + "end": 6332.53, + "probability": 0.7202 + }, + { + "start": 6333.09, + "end": 6336.59, + "probability": 0.9854 + }, + { + "start": 6337.21, + "end": 6339.23, + "probability": 0.9089 + }, + { + "start": 6339.91, + "end": 6344.31, + "probability": 0.9896 + }, + { + "start": 6344.31, + "end": 6347.65, + "probability": 0.998 + }, + { + "start": 6348.17, + "end": 6348.75, + "probability": 0.9758 + }, + { + "start": 6349.21, + "end": 6352.27, + "probability": 0.972 + }, + { + "start": 6352.69, + "end": 6357.07, + "probability": 0.9937 + }, + { + "start": 6357.61, + "end": 6361.99, + "probability": 0.8055 + }, + { + "start": 6362.79, + "end": 6364.51, + "probability": 0.8252 + }, + { + "start": 6365.17, + "end": 6367.73, + "probability": 0.981 + }, + { + "start": 6368.31, + "end": 6372.93, + "probability": 0.9878 + }, + { + "start": 6373.57, + "end": 6374.55, + "probability": 0.5338 + }, + { + "start": 6374.65, + "end": 6375.81, + "probability": 0.9576 + }, + { + "start": 6376.31, + "end": 6378.79, + "probability": 0.9783 + }, + { + "start": 6378.95, + "end": 6379.33, + "probability": 0.9392 + }, + { + "start": 6380.05, + "end": 6384.63, + "probability": 0.9961 + }, + { + "start": 6385.21, + "end": 6386.27, + "probability": 0.9645 + }, + { + "start": 6386.43, + "end": 6388.37, + "probability": 0.9288 + }, + { + "start": 6388.87, + "end": 6390.01, + "probability": 0.8833 + }, + { + "start": 6390.43, + "end": 6391.13, + "probability": 0.9336 + }, + { + "start": 6391.67, + "end": 6393.93, + "probability": 0.9768 + }, + { + "start": 6394.57, + "end": 6397.95, + "probability": 0.9977 + }, + { + "start": 6398.77, + "end": 6400.93, + "probability": 0.9848 + }, + { + "start": 6401.71, + "end": 6403.59, + "probability": 0.9902 + }, + { + "start": 6404.31, + "end": 6408.73, + "probability": 0.9926 + }, + { + "start": 6409.31, + "end": 6410.75, + "probability": 0.9398 + }, + { + "start": 6411.45, + "end": 6413.59, + "probability": 0.769 + }, + { + "start": 6414.19, + "end": 6416.29, + "probability": 0.964 + }, + { + "start": 6416.87, + "end": 6419.19, + "probability": 0.9924 + }, + { + "start": 6419.61, + "end": 6423.17, + "probability": 0.9965 + }, + { + "start": 6423.65, + "end": 6426.61, + "probability": 0.9575 + }, + { + "start": 6427.73, + "end": 6429.35, + "probability": 0.9497 + }, + { + "start": 6430.23, + "end": 6431.58, + "probability": 0.9443 + }, + { + "start": 6432.23, + "end": 6433.03, + "probability": 0.9066 + }, + { + "start": 6433.19, + "end": 6433.99, + "probability": 0.8819 + }, + { + "start": 6434.47, + "end": 6435.77, + "probability": 0.9834 + }, + { + "start": 6436.37, + "end": 6437.73, + "probability": 0.8311 + }, + { + "start": 6438.53, + "end": 6441.21, + "probability": 0.9959 + }, + { + "start": 6441.83, + "end": 6444.07, + "probability": 0.8846 + }, + { + "start": 6444.53, + "end": 6446.07, + "probability": 0.9618 + }, + { + "start": 6446.53, + "end": 6446.93, + "probability": 0.7518 + }, + { + "start": 6447.67, + "end": 6448.77, + "probability": 0.9214 + }, + { + "start": 6451.25, + "end": 6452.73, + "probability": 0.9456 + }, + { + "start": 6452.79, + "end": 6456.51, + "probability": 0.9816 + }, + { + "start": 6456.51, + "end": 6460.59, + "probability": 0.9888 + }, + { + "start": 6460.89, + "end": 6462.21, + "probability": 0.6936 + }, + { + "start": 6462.47, + "end": 6463.83, + "probability": 0.8982 + }, + { + "start": 6464.03, + "end": 6467.89, + "probability": 0.9923 + }, + { + "start": 6470.35, + "end": 6471.47, + "probability": 0.7049 + }, + { + "start": 6475.01, + "end": 6476.47, + "probability": 0.295 + }, + { + "start": 6494.27, + "end": 6494.71, + "probability": 0.0348 + }, + { + "start": 6496.65, + "end": 6497.57, + "probability": 0.7315 + }, + { + "start": 6499.17, + "end": 6500.27, + "probability": 0.8188 + }, + { + "start": 6500.27, + "end": 6502.33, + "probability": 0.7976 + }, + { + "start": 6502.41, + "end": 6504.77, + "probability": 0.9438 + }, + { + "start": 6504.87, + "end": 6508.25, + "probability": 0.9424 + }, + { + "start": 6508.81, + "end": 6512.53, + "probability": 0.9119 + }, + { + "start": 6512.85, + "end": 6514.41, + "probability": 0.7607 + }, + { + "start": 6515.45, + "end": 6518.37, + "probability": 0.1067 + }, + { + "start": 6992.0, + "end": 6992.0, + "probability": 0.0 + }, + { + "start": 6992.22, + "end": 6992.66, + "probability": 0.4737 + }, + { + "start": 6992.66, + "end": 6995.64, + "probability": 0.0267 + }, + { + "start": 6996.26, + "end": 6996.3, + "probability": 0.0053 + }, + { + "start": 6997.4, + "end": 6997.56, + "probability": 0.0128 + }, + { + "start": 7012.79, + "end": 7014.86, + "probability": 0.1335 + }, + { + "start": 7014.86, + "end": 7014.86, + "probability": 0.0337 + }, + { + "start": 7015.74, + "end": 7016.34, + "probability": 0.0487 + }, + { + "start": 7017.36, + "end": 7018.1, + "probability": 0.6087 + }, + { + "start": 7019.2, + "end": 7020.1, + "probability": 0.7481 + }, + { + "start": 7022.02, + "end": 7025.62, + "probability": 0.9381 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.0, + "end": 7123.0, + "probability": 0.0 + }, + { + "start": 7123.26, + "end": 7123.62, + "probability": 0.0986 + }, + { + "start": 7123.62, + "end": 7123.62, + "probability": 0.2143 + }, + { + "start": 7123.62, + "end": 7123.62, + "probability": 0.1223 + }, + { + "start": 7123.62, + "end": 7123.62, + "probability": 0.0961 + }, + { + "start": 7123.62, + "end": 7124.26, + "probability": 0.1061 + }, + { + "start": 7124.94, + "end": 7126.16, + "probability": 0.4649 + }, + { + "start": 7126.16, + "end": 7127.71, + "probability": 0.3359 + }, + { + "start": 7128.95, + "end": 7132.52, + "probability": 0.7894 + }, + { + "start": 7132.52, + "end": 7135.16, + "probability": 0.9889 + }, + { + "start": 7136.6, + "end": 7140.44, + "probability": 0.9437 + }, + { + "start": 7141.04, + "end": 7143.14, + "probability": 0.9713 + }, + { + "start": 7143.24, + "end": 7147.42, + "probability": 0.9957 + }, + { + "start": 7147.42, + "end": 7151.24, + "probability": 0.9993 + }, + { + "start": 7152.24, + "end": 7158.2, + "probability": 0.815 + }, + { + "start": 7158.46, + "end": 7158.92, + "probability": 0.7691 + }, + { + "start": 7159.68, + "end": 7160.76, + "probability": 0.6249 + }, + { + "start": 7161.24, + "end": 7167.14, + "probability": 0.8949 + }, + { + "start": 7167.96, + "end": 7168.88, + "probability": 0.9979 + }, + { + "start": 7172.78, + "end": 7172.88, + "probability": 0.5247 + }, + { + "start": 7174.82, + "end": 7175.86, + "probability": 0.4952 + }, + { + "start": 7184.04, + "end": 7186.53, + "probability": 0.7965 + }, + { + "start": 7198.04, + "end": 7198.14, + "probability": 0.0003 + }, + { + "start": 7205.04, + "end": 7206.04, + "probability": 0.103 + }, + { + "start": 7209.24, + "end": 7212.4, + "probability": 0.6177 + }, + { + "start": 7212.82, + "end": 7213.44, + "probability": 0.8875 + }, + { + "start": 7214.34, + "end": 7217.38, + "probability": 0.3563 + }, + { + "start": 7218.14, + "end": 7219.52, + "probability": 0.4543 + }, + { + "start": 7219.98, + "end": 7220.92, + "probability": 0.1906 + }, + { + "start": 7220.92, + "end": 7221.82, + "probability": 0.9677 + }, + { + "start": 7222.58, + "end": 7223.18, + "probability": 0.1911 + }, + { + "start": 7224.26, + "end": 7225.18, + "probability": 0.3011 + }, + { + "start": 7225.2, + "end": 7226.64, + "probability": 0.3464 + }, + { + "start": 7229.86, + "end": 7230.98, + "probability": 0.7958 + }, + { + "start": 7231.1, + "end": 7231.78, + "probability": 0.3382 + }, + { + "start": 7231.78, + "end": 7232.88, + "probability": 0.2806 + }, + { + "start": 7233.42, + "end": 7234.14, + "probability": 0.2079 + }, + { + "start": 7234.14, + "end": 7236.26, + "probability": 0.3781 + }, + { + "start": 7236.28, + "end": 7237.56, + "probability": 0.2642 + }, + { + "start": 7255.08, + "end": 7257.36, + "probability": 0.3488 + }, + { + "start": 7258.06, + "end": 7258.16, + "probability": 0.0036 + }, + { + "start": 7258.24, + "end": 7258.74, + "probability": 0.1435 + }, + { + "start": 7258.76, + "end": 7260.22, + "probability": 0.7681 + }, + { + "start": 7260.6, + "end": 7263.28, + "probability": 0.6345 + }, + { + "start": 7263.32, + "end": 7264.0, + "probability": 0.6348 + }, + { + "start": 7264.3, + "end": 7266.92, + "probability": 0.9951 + }, + { + "start": 7267.02, + "end": 7268.56, + "probability": 0.7008 + }, + { + "start": 7269.48, + "end": 7271.54, + "probability": 0.5689 + }, + { + "start": 7272.45, + "end": 7273.7, + "probability": 0.6564 + }, + { + "start": 7273.78, + "end": 7276.1, + "probability": 0.7938 + }, + { + "start": 7276.42, + "end": 7278.98, + "probability": 0.981 + }, + { + "start": 7279.6, + "end": 7280.08, + "probability": 0.7837 + }, + { + "start": 7280.32, + "end": 7281.88, + "probability": 0.4214 + }, + { + "start": 7282.04, + "end": 7282.04, + "probability": 0.4116 + }, + { + "start": 7282.04, + "end": 7282.94, + "probability": 0.7364 + }, + { + "start": 7284.74, + "end": 7285.74, + "probability": 0.2009 + }, + { + "start": 7288.96, + "end": 7289.84, + "probability": 0.3329 + }, + { + "start": 7291.06, + "end": 7293.16, + "probability": 0.804 + }, + { + "start": 7298.82, + "end": 7300.88, + "probability": 0.5226 + }, + { + "start": 7302.3, + "end": 7306.38, + "probability": 0.6912 + }, + { + "start": 7306.76, + "end": 7312.08, + "probability": 0.8553 + }, + { + "start": 7312.08, + "end": 7313.2, + "probability": 0.8293 + }, + { + "start": 7314.14, + "end": 7315.52, + "probability": 0.5347 + }, + { + "start": 7323.02, + "end": 7323.82, + "probability": 0.6916 + }, + { + "start": 7328.9, + "end": 7331.94, + "probability": 0.5181 + }, + { + "start": 7332.4, + "end": 7333.66, + "probability": 0.811 + }, + { + "start": 7342.25, + "end": 7347.8, + "probability": 0.6664 + }, + { + "start": 7348.42, + "end": 7349.78, + "probability": 0.2012 + }, + { + "start": 7351.08, + "end": 7352.36, + "probability": 0.1271 + }, + { + "start": 7354.06, + "end": 7357.76, + "probability": 0.6662 + }, + { + "start": 7358.56, + "end": 7359.44, + "probability": 0.3342 + }, + { + "start": 7360.16, + "end": 7360.2, + "probability": 0.4012 + }, + { + "start": 7361.26, + "end": 7363.32, + "probability": 0.3326 + }, + { + "start": 7363.32, + "end": 7363.32, + "probability": 0.1143 + }, + { + "start": 7363.32, + "end": 7363.32, + "probability": 0.0703 + }, + { + "start": 7363.32, + "end": 7363.32, + "probability": 0.1091 + }, + { + "start": 7363.32, + "end": 7363.32, + "probability": 0.0308 + }, + { + "start": 7363.32, + "end": 7363.32, + "probability": 0.3403 + }, + { + "start": 7363.32, + "end": 7365.52, + "probability": 0.5771 + }, + { + "start": 7366.1, + "end": 7368.06, + "probability": 0.6514 + }, + { + "start": 7369.4, + "end": 7369.86, + "probability": 0.9144 + }, + { + "start": 7376.74, + "end": 7377.89, + "probability": 0.0363 + }, + { + "start": 7378.3, + "end": 7378.32, + "probability": 0.5426 + }, + { + "start": 7379.1, + "end": 7379.46, + "probability": 0.4521 + }, + { + "start": 7379.54, + "end": 7380.32, + "probability": 0.9741 + }, + { + "start": 7380.52, + "end": 7381.5, + "probability": 0.761 + }, + { + "start": 7381.7, + "end": 7382.98, + "probability": 0.929 + }, + { + "start": 7383.1, + "end": 7383.28, + "probability": 0.7504 + }, + { + "start": 7384.18, + "end": 7387.12, + "probability": 0.9859 + }, + { + "start": 7388.66, + "end": 7389.46, + "probability": 0.3227 + }, + { + "start": 7390.08, + "end": 7390.76, + "probability": 0.5411 + }, + { + "start": 7391.42, + "end": 7392.8, + "probability": 0.5351 + }, + { + "start": 7393.62, + "end": 7394.52, + "probability": 0.3994 + }, + { + "start": 7395.68, + "end": 7398.48, + "probability": 0.8576 + }, + { + "start": 7398.92, + "end": 7402.1, + "probability": 0.7746 + }, + { + "start": 7403.98, + "end": 7408.46, + "probability": 0.9818 + }, + { + "start": 7408.48, + "end": 7409.26, + "probability": 0.5999 + }, + { + "start": 7410.9, + "end": 7412.02, + "probability": 0.7696 + }, + { + "start": 7412.1, + "end": 7412.92, + "probability": 0.9222 + }, + { + "start": 7413.0, + "end": 7414.38, + "probability": 0.8585 + }, + { + "start": 7414.44, + "end": 7415.7, + "probability": 0.6955 + }, + { + "start": 7416.66, + "end": 7416.9, + "probability": 0.7701 + }, + { + "start": 7416.98, + "end": 7417.48, + "probability": 0.8561 + }, + { + "start": 7417.64, + "end": 7419.95, + "probability": 0.958 + }, + { + "start": 7420.6, + "end": 7421.14, + "probability": 0.188 + }, + { + "start": 7421.14, + "end": 7424.06, + "probability": 0.7239 + }, + { + "start": 7424.34, + "end": 7427.34, + "probability": 0.9937 + }, + { + "start": 7427.58, + "end": 7427.98, + "probability": 0.9157 + }, + { + "start": 7434.78, + "end": 7436.98, + "probability": 0.9886 + }, + { + "start": 7436.98, + "end": 7440.08, + "probability": 0.7467 + }, + { + "start": 7440.8, + "end": 7441.7, + "probability": 0.5233 + }, + { + "start": 7441.9, + "end": 7443.04, + "probability": 0.4075 + }, + { + "start": 7443.28, + "end": 7444.74, + "probability": 0.9561 + }, + { + "start": 7445.88, + "end": 7448.16, + "probability": 0.9176 + }, + { + "start": 7448.28, + "end": 7449.56, + "probability": 0.906 + }, + { + "start": 7450.16, + "end": 7450.64, + "probability": 0.7295 + }, + { + "start": 7450.74, + "end": 7455.6, + "probability": 0.968 + }, + { + "start": 7456.06, + "end": 7457.48, + "probability": 0.3859 + }, + { + "start": 7458.02, + "end": 7461.72, + "probability": 0.9853 + }, + { + "start": 7461.72, + "end": 7466.56, + "probability": 0.9522 + }, + { + "start": 7467.34, + "end": 7470.46, + "probability": 0.9417 + }, + { + "start": 7471.3, + "end": 7474.36, + "probability": 0.9705 + }, + { + "start": 7474.59, + "end": 7475.28, + "probability": 0.6821 + }, + { + "start": 7475.28, + "end": 7475.66, + "probability": 0.5388 + }, + { + "start": 7475.72, + "end": 7475.88, + "probability": 0.8354 + }, + { + "start": 7475.98, + "end": 7476.78, + "probability": 0.8679 + }, + { + "start": 7476.94, + "end": 7479.92, + "probability": 0.9662 + }, + { + "start": 7481.36, + "end": 7482.62, + "probability": 0.8669 + }, + { + "start": 7483.64, + "end": 7484.76, + "probability": 0.6934 + }, + { + "start": 7484.82, + "end": 7484.92, + "probability": 0.9517 + }, + { + "start": 7488.82, + "end": 7489.52, + "probability": 0.392 + }, + { + "start": 7489.56, + "end": 7493.36, + "probability": 0.9092 + }, + { + "start": 7493.44, + "end": 7494.76, + "probability": 0.4362 + }, + { + "start": 7495.24, + "end": 7498.68, + "probability": 0.9894 + }, + { + "start": 7498.68, + "end": 7503.04, + "probability": 0.9161 + }, + { + "start": 7503.4, + "end": 7506.74, + "probability": 0.9931 + }, + { + "start": 7507.5, + "end": 7510.18, + "probability": 0.9151 + }, + { + "start": 7510.58, + "end": 7513.92, + "probability": 0.9893 + }, + { + "start": 7514.42, + "end": 7516.64, + "probability": 0.9846 + }, + { + "start": 7517.26, + "end": 7522.82, + "probability": 0.8734 + }, + { + "start": 7523.34, + "end": 7526.66, + "probability": 0.9728 + }, + { + "start": 7527.18, + "end": 7529.2, + "probability": 0.8447 + }, + { + "start": 7529.74, + "end": 7533.46, + "probability": 0.9963 + }, + { + "start": 7533.88, + "end": 7536.14, + "probability": 0.9277 + }, + { + "start": 7537.72, + "end": 7539.34, + "probability": 0.9512 + }, + { + "start": 7539.8, + "end": 7543.92, + "probability": 0.9817 + }, + { + "start": 7544.5, + "end": 7545.42, + "probability": 0.882 + }, + { + "start": 7546.16, + "end": 7550.04, + "probability": 0.9658 + }, + { + "start": 7551.12, + "end": 7554.54, + "probability": 0.9913 + }, + { + "start": 7554.78, + "end": 7555.18, + "probability": 0.8645 + }, + { + "start": 7555.62, + "end": 7556.18, + "probability": 0.873 + }, + { + "start": 7556.22, + "end": 7560.8, + "probability": 0.947 + }, + { + "start": 7561.22, + "end": 7563.62, + "probability": 0.9974 + }, + { + "start": 7563.62, + "end": 7565.88, + "probability": 0.9845 + }, + { + "start": 7567.22, + "end": 7567.76, + "probability": 0.5651 + }, + { + "start": 7568.58, + "end": 7571.44, + "probability": 0.9917 + }, + { + "start": 7572.02, + "end": 7574.9, + "probability": 0.991 + }, + { + "start": 7577.3, + "end": 7580.22, + "probability": 0.5724 + }, + { + "start": 7580.78, + "end": 7583.92, + "probability": 0.9541 + }, + { + "start": 7584.38, + "end": 7588.54, + "probability": 0.988 + }, + { + "start": 7589.36, + "end": 7593.22, + "probability": 0.7396 + }, + { + "start": 7593.32, + "end": 7593.86, + "probability": 0.7263 + }, + { + "start": 7593.86, + "end": 7595.16, + "probability": 0.7974 + }, + { + "start": 7595.3, + "end": 7597.94, + "probability": 0.9303 + }, + { + "start": 7598.48, + "end": 7602.24, + "probability": 0.9448 + }, + { + "start": 7603.16, + "end": 7606.72, + "probability": 0.9801 + }, + { + "start": 7606.72, + "end": 7610.56, + "probability": 0.9897 + }, + { + "start": 7611.2, + "end": 7612.34, + "probability": 0.688 + }, + { + "start": 7612.62, + "end": 7615.36, + "probability": 0.9556 + }, + { + "start": 7615.36, + "end": 7618.98, + "probability": 0.9643 + }, + { + "start": 7618.98, + "end": 7622.88, + "probability": 0.9982 + }, + { + "start": 7623.32, + "end": 7626.12, + "probability": 0.9906 + }, + { + "start": 7626.12, + "end": 7629.14, + "probability": 0.9832 + }, + { + "start": 7629.72, + "end": 7631.54, + "probability": 0.9551 + }, + { + "start": 7632.0, + "end": 7634.46, + "probability": 0.9606 + }, + { + "start": 7634.82, + "end": 7637.94, + "probability": 0.9639 + }, + { + "start": 7638.38, + "end": 7639.5, + "probability": 0.6664 + }, + { + "start": 7640.06, + "end": 7643.24, + "probability": 0.8207 + }, + { + "start": 7643.38, + "end": 7646.92, + "probability": 0.7572 + }, + { + "start": 7646.92, + "end": 7650.48, + "probability": 0.967 + }, + { + "start": 7651.26, + "end": 7656.82, + "probability": 0.979 + }, + { + "start": 7656.96, + "end": 7657.44, + "probability": 0.7024 + }, + { + "start": 7657.92, + "end": 7658.84, + "probability": 0.7123 + }, + { + "start": 7659.02, + "end": 7662.98, + "probability": 0.9469 + }, + { + "start": 7664.4, + "end": 7666.02, + "probability": 0.7201 + }, + { + "start": 7666.32, + "end": 7667.44, + "probability": 0.8926 + }, + { + "start": 7668.78, + "end": 7671.2, + "probability": 0.916 + }, + { + "start": 7672.44, + "end": 7673.76, + "probability": 0.4841 + }, + { + "start": 7675.48, + "end": 7676.58, + "probability": 0.9761 + }, + { + "start": 7680.7, + "end": 7682.76, + "probability": 0.6694 + }, + { + "start": 7686.38, + "end": 7689.24, + "probability": 0.0077 + }, + { + "start": 7693.9, + "end": 7694.12, + "probability": 0.0 + }, + { + "start": 7702.34, + "end": 7702.34, + "probability": 0.079 + }, + { + "start": 7702.34, + "end": 7705.48, + "probability": 0.8044 + }, + { + "start": 7705.48, + "end": 7710.14, + "probability": 0.3887 + }, + { + "start": 7713.2, + "end": 7716.56, + "probability": 0.964 + }, + { + "start": 7717.8, + "end": 7718.82, + "probability": 0.4116 + }, + { + "start": 7727.42, + "end": 7731.4, + "probability": 0.9916 + }, + { + "start": 7744.54, + "end": 7744.68, + "probability": 0.1986 + }, + { + "start": 7744.68, + "end": 7744.68, + "probability": 0.327 + }, + { + "start": 7744.68, + "end": 7744.68, + "probability": 0.0908 + }, + { + "start": 7744.68, + "end": 7749.84, + "probability": 0.6853 + }, + { + "start": 7750.12, + "end": 7751.36, + "probability": 0.6205 + }, + { + "start": 7751.76, + "end": 7753.66, + "probability": 0.8036 + }, + { + "start": 7755.02, + "end": 7755.8, + "probability": 0.7978 + }, + { + "start": 7756.92, + "end": 7759.58, + "probability": 0.744 + }, + { + "start": 7759.72, + "end": 7760.34, + "probability": 0.9045 + }, + { + "start": 7762.7, + "end": 7765.84, + "probability": 0.9032 + }, + { + "start": 7766.48, + "end": 7769.48, + "probability": 0.5215 + }, + { + "start": 7770.26, + "end": 7774.26, + "probability": 0.7458 + }, + { + "start": 7775.1, + "end": 7776.22, + "probability": 0.6108 + }, + { + "start": 7776.48, + "end": 7780.12, + "probability": 0.7359 + }, + { + "start": 7780.54, + "end": 7783.96, + "probability": 0.9941 + }, + { + "start": 7784.58, + "end": 7785.32, + "probability": 0.6443 + }, + { + "start": 7785.32, + "end": 7785.66, + "probability": 0.8873 + }, + { + "start": 7786.38, + "end": 7787.48, + "probability": 0.7637 + }, + { + "start": 7787.54, + "end": 7788.96, + "probability": 0.7365 + }, + { + "start": 7789.46, + "end": 7793.04, + "probability": 0.8412 + }, + { + "start": 7793.04, + "end": 7797.52, + "probability": 0.9973 + }, + { + "start": 7798.56, + "end": 7804.18, + "probability": 0.9987 + }, + { + "start": 7804.18, + "end": 7811.96, + "probability": 0.9938 + }, + { + "start": 7812.42, + "end": 7816.56, + "probability": 0.8377 + }, + { + "start": 7816.7, + "end": 7821.52, + "probability": 0.9714 + }, + { + "start": 7822.48, + "end": 7825.32, + "probability": 0.9619 + }, + { + "start": 7825.78, + "end": 7830.0, + "probability": 0.918 + }, + { + "start": 7830.38, + "end": 7834.42, + "probability": 0.9662 + }, + { + "start": 7835.52, + "end": 7837.8, + "probability": 0.8387 + }, + { + "start": 7838.14, + "end": 7840.26, + "probability": 0.4888 + }, + { + "start": 7840.86, + "end": 7843.42, + "probability": 0.7493 + }, + { + "start": 7844.56, + "end": 7849.86, + "probability": 0.9937 + }, + { + "start": 7850.52, + "end": 7855.52, + "probability": 0.9967 + }, + { + "start": 7856.1, + "end": 7862.62, + "probability": 0.9922 + }, + { + "start": 7863.8, + "end": 7867.74, + "probability": 0.9962 + }, + { + "start": 7867.76, + "end": 7871.88, + "probability": 0.9895 + }, + { + "start": 7872.62, + "end": 7877.64, + "probability": 0.9694 + }, + { + "start": 7878.62, + "end": 7882.88, + "probability": 0.7498 + }, + { + "start": 7882.88, + "end": 7887.26, + "probability": 0.9939 + }, + { + "start": 7887.82, + "end": 7892.12, + "probability": 0.9973 + }, + { + "start": 7893.04, + "end": 7897.3, + "probability": 0.9631 + }, + { + "start": 7897.3, + "end": 7903.36, + "probability": 0.5466 + }, + { + "start": 7903.98, + "end": 7908.24, + "probability": 0.8204 + }, + { + "start": 7908.24, + "end": 7913.58, + "probability": 0.998 + }, + { + "start": 7914.58, + "end": 7918.78, + "probability": 0.911 + }, + { + "start": 7919.38, + "end": 7920.56, + "probability": 0.7046 + }, + { + "start": 7920.92, + "end": 7922.98, + "probability": 0.8479 + }, + { + "start": 7923.48, + "end": 7925.0, + "probability": 0.7489 + }, + { + "start": 7925.38, + "end": 7927.58, + "probability": 0.8432 + }, + { + "start": 7928.08, + "end": 7929.6, + "probability": 0.9439 + }, + { + "start": 7930.68, + "end": 7935.9, + "probability": 0.9595 + }, + { + "start": 7936.52, + "end": 7939.54, + "probability": 0.9917 + }, + { + "start": 7939.54, + "end": 7942.9, + "probability": 0.8037 + }, + { + "start": 7943.4, + "end": 7946.76, + "probability": 0.7485 + }, + { + "start": 7946.84, + "end": 7947.22, + "probability": 0.7721 + }, + { + "start": 7948.94, + "end": 7950.23, + "probability": 0.6324 + }, + { + "start": 7950.7, + "end": 7953.42, + "probability": 0.9137 + }, + { + "start": 7958.42, + "end": 7960.06, + "probability": 0.964 + }, + { + "start": 7960.64, + "end": 7962.24, + "probability": 0.7789 + }, + { + "start": 7965.36, + "end": 7966.7, + "probability": 0.3929 + }, + { + "start": 7969.14, + "end": 7971.04, + "probability": 0.935 + }, + { + "start": 7973.02, + "end": 7973.58, + "probability": 0.9538 + }, + { + "start": 7975.4, + "end": 7977.2, + "probability": 0.9401 + }, + { + "start": 7980.26, + "end": 7980.92, + "probability": 0.906 + }, + { + "start": 7981.96, + "end": 7982.82, + "probability": 0.9607 + }, + { + "start": 7984.54, + "end": 7985.22, + "probability": 0.9516 + }, + { + "start": 7987.38, + "end": 7989.32, + "probability": 0.8164 + }, + { + "start": 7990.16, + "end": 7991.5, + "probability": 0.4924 + }, + { + "start": 7991.62, + "end": 7992.06, + "probability": 0.6691 + }, + { + "start": 7992.22, + "end": 7992.64, + "probability": 0.5861 + }, + { + "start": 7994.5, + "end": 7996.26, + "probability": 0.968 + }, + { + "start": 7997.08, + "end": 7997.86, + "probability": 0.3459 + }, + { + "start": 7998.44, + "end": 8000.12, + "probability": 0.8189 + }, + { + "start": 8001.76, + "end": 8003.74, + "probability": 0.8455 + }, + { + "start": 8005.84, + "end": 8007.56, + "probability": 0.9174 + }, + { + "start": 8011.36, + "end": 8013.08, + "probability": 0.9764 + }, + { + "start": 8014.18, + "end": 8014.98, + "probability": 0.8657 + }, + { + "start": 8015.82, + "end": 8017.52, + "probability": 0.9886 + }, + { + "start": 8018.08, + "end": 8018.7, + "probability": 0.4284 + }, + { + "start": 8023.62, + "end": 8025.42, + "probability": 0.8807 + }, + { + "start": 8026.48, + "end": 8027.08, + "probability": 0.6075 + }, + { + "start": 8028.58, + "end": 8030.92, + "probability": 0.9621 + }, + { + "start": 8031.82, + "end": 8033.74, + "probability": 0.6262 + }, + { + "start": 8033.82, + "end": 8034.46, + "probability": 0.9957 + }, + { + "start": 8047.82, + "end": 8048.46, + "probability": 0.441 + }, + { + "start": 8062.1, + "end": 8067.06, + "probability": 0.762 + }, + { + "start": 8067.42, + "end": 8067.66, + "probability": 0.7391 + }, + { + "start": 8068.1, + "end": 8069.25, + "probability": 0.9801 + }, + { + "start": 8069.94, + "end": 8070.22, + "probability": 0.874 + }, + { + "start": 8070.74, + "end": 8072.18, + "probability": 0.7312 + }, + { + "start": 8073.6, + "end": 8073.9, + "probability": 0.916 + }, + { + "start": 8075.76, + "end": 8079.36, + "probability": 0.997 + }, + { + "start": 8080.58, + "end": 8084.64, + "probability": 0.9928 + }, + { + "start": 8084.68, + "end": 8085.58, + "probability": 0.723 + }, + { + "start": 8087.14, + "end": 8089.7, + "probability": 0.9979 + }, + { + "start": 8089.88, + "end": 8091.22, + "probability": 0.6663 + }, + { + "start": 8091.88, + "end": 8093.22, + "probability": 0.9281 + }, + { + "start": 8094.04, + "end": 8097.02, + "probability": 0.9141 + }, + { + "start": 8098.5, + "end": 8100.44, + "probability": 0.9932 + }, + { + "start": 8100.6, + "end": 8102.22, + "probability": 0.6412 + }, + { + "start": 8102.32, + "end": 8103.32, + "probability": 0.8667 + }, + { + "start": 8103.38, + "end": 8105.7, + "probability": 0.8284 + }, + { + "start": 8106.74, + "end": 8109.62, + "probability": 0.8374 + }, + { + "start": 8109.64, + "end": 8110.38, + "probability": 0.7958 + }, + { + "start": 8110.54, + "end": 8111.68, + "probability": 0.9006 + }, + { + "start": 8111.76, + "end": 8112.3, + "probability": 0.508 + }, + { + "start": 8114.74, + "end": 8117.0, + "probability": 0.7299 + }, + { + "start": 8118.38, + "end": 8119.58, + "probability": 0.3861 + }, + { + "start": 8119.96, + "end": 8120.62, + "probability": 0.766 + }, + { + "start": 8120.7, + "end": 8121.38, + "probability": 0.5451 + }, + { + "start": 8121.38, + "end": 8123.32, + "probability": 0.9398 + }, + { + "start": 8123.5, + "end": 8124.74, + "probability": 0.7394 + }, + { + "start": 8125.18, + "end": 8126.54, + "probability": 0.873 + }, + { + "start": 8126.64, + "end": 8127.4, + "probability": 0.824 + }, + { + "start": 8127.54, + "end": 8128.06, + "probability": 0.3541 + }, + { + "start": 8128.22, + "end": 8128.71, + "probability": 0.7018 + }, + { + "start": 8129.82, + "end": 8131.52, + "probability": 0.7194 + }, + { + "start": 8132.38, + "end": 8134.98, + "probability": 0.9883 + }, + { + "start": 8134.98, + "end": 8137.54, + "probability": 0.9819 + }, + { + "start": 8138.64, + "end": 8140.06, + "probability": 0.7143 + }, + { + "start": 8140.36, + "end": 8143.94, + "probability": 0.9884 + }, + { + "start": 8144.28, + "end": 8146.54, + "probability": 0.8367 + }, + { + "start": 8147.26, + "end": 8147.54, + "probability": 0.5217 + }, + { + "start": 8147.64, + "end": 8152.62, + "probability": 0.9656 + }, + { + "start": 8152.62, + "end": 8156.24, + "probability": 0.9774 + }, + { + "start": 8157.08, + "end": 8158.5, + "probability": 0.5262 + }, + { + "start": 8158.58, + "end": 8159.72, + "probability": 0.9764 + }, + { + "start": 8160.0, + "end": 8160.78, + "probability": 0.7729 + }, + { + "start": 8161.38, + "end": 8163.48, + "probability": 0.9176 + }, + { + "start": 8163.54, + "end": 8164.26, + "probability": 0.8952 + }, + { + "start": 8164.3, + "end": 8165.4, + "probability": 0.7447 + }, + { + "start": 8166.06, + "end": 8167.1, + "probability": 0.902 + }, + { + "start": 8167.2, + "end": 8168.92, + "probability": 0.7419 + }, + { + "start": 8168.92, + "end": 8171.02, + "probability": 0.7578 + }, + { + "start": 8172.18, + "end": 8173.81, + "probability": 0.8917 + }, + { + "start": 8174.14, + "end": 8178.14, + "probability": 0.8375 + }, + { + "start": 8178.58, + "end": 8179.25, + "probability": 0.8562 + }, + { + "start": 8180.18, + "end": 8184.4, + "probability": 0.9198 + }, + { + "start": 8185.08, + "end": 8185.52, + "probability": 0.9226 + }, + { + "start": 8185.74, + "end": 8186.38, + "probability": 0.9294 + }, + { + "start": 8187.14, + "end": 8192.44, + "probability": 0.9927 + }, + { + "start": 8193.54, + "end": 8194.96, + "probability": 0.896 + }, + { + "start": 8195.1, + "end": 8196.08, + "probability": 0.8842 + }, + { + "start": 8196.18, + "end": 8196.78, + "probability": 0.9775 + }, + { + "start": 8196.84, + "end": 8197.42, + "probability": 0.5693 + }, + { + "start": 8197.8, + "end": 8199.5, + "probability": 0.9551 + }, + { + "start": 8199.56, + "end": 8201.12, + "probability": 0.8207 + }, + { + "start": 8201.48, + "end": 8202.58, + "probability": 0.6605 + }, + { + "start": 8202.88, + "end": 8207.17, + "probability": 0.9875 + }, + { + "start": 8207.64, + "end": 8209.44, + "probability": 0.9506 + }, + { + "start": 8210.22, + "end": 8211.66, + "probability": 0.8848 + }, + { + "start": 8211.98, + "end": 8213.22, + "probability": 0.9549 + }, + { + "start": 8213.48, + "end": 8215.78, + "probability": 0.8964 + }, + { + "start": 8216.28, + "end": 8220.1, + "probability": 0.8214 + }, + { + "start": 8220.76, + "end": 8221.5, + "probability": 0.5411 + }, + { + "start": 8222.12, + "end": 8224.6, + "probability": 0.8923 + }, + { + "start": 8225.0, + "end": 8227.32, + "probability": 0.8796 + }, + { + "start": 8227.4, + "end": 8227.86, + "probability": 0.5982 + }, + { + "start": 8227.92, + "end": 8228.96, + "probability": 0.7574 + }, + { + "start": 8229.68, + "end": 8231.38, + "probability": 0.7173 + }, + { + "start": 8231.92, + "end": 8232.52, + "probability": 0.6509 + }, + { + "start": 8232.6, + "end": 8235.96, + "probability": 0.9753 + }, + { + "start": 8236.24, + "end": 8237.12, + "probability": 0.8538 + }, + { + "start": 8238.06, + "end": 8239.66, + "probability": 0.891 + }, + { + "start": 8240.12, + "end": 8241.32, + "probability": 0.96 + }, + { + "start": 8241.36, + "end": 8242.24, + "probability": 0.9647 + }, + { + "start": 8242.28, + "end": 8243.94, + "probability": 0.8523 + }, + { + "start": 8244.22, + "end": 8245.78, + "probability": 0.9761 + }, + { + "start": 8245.98, + "end": 8248.24, + "probability": 0.9927 + }, + { + "start": 8248.56, + "end": 8249.7, + "probability": 0.8986 + }, + { + "start": 8250.06, + "end": 8250.82, + "probability": 0.8188 + }, + { + "start": 8250.86, + "end": 8251.86, + "probability": 0.835 + }, + { + "start": 8252.52, + "end": 8253.32, + "probability": 0.4392 + }, + { + "start": 8253.86, + "end": 8259.23, + "probability": 0.1139 + }, + { + "start": 8259.5, + "end": 8262.32, + "probability": 0.9971 + }, + { + "start": 8262.36, + "end": 8267.08, + "probability": 0.8322 + }, + { + "start": 8267.12, + "end": 8268.32, + "probability": 0.7781 + }, + { + "start": 8268.4, + "end": 8269.01, + "probability": 0.9699 + }, + { + "start": 8269.72, + "end": 8271.65, + "probability": 0.9253 + }, + { + "start": 8272.36, + "end": 8276.08, + "probability": 0.9016 + }, + { + "start": 8276.14, + "end": 8276.75, + "probability": 0.5917 + }, + { + "start": 8277.68, + "end": 8279.08, + "probability": 0.8735 + }, + { + "start": 8279.46, + "end": 8280.78, + "probability": 0.9178 + }, + { + "start": 8280.96, + "end": 8283.14, + "probability": 0.6994 + }, + { + "start": 8283.66, + "end": 8284.72, + "probability": 0.9615 + }, + { + "start": 8284.78, + "end": 8287.22, + "probability": 0.9661 + }, + { + "start": 8287.22, + "end": 8289.68, + "probability": 0.9922 + }, + { + "start": 8290.22, + "end": 8292.62, + "probability": 0.9644 + }, + { + "start": 8293.06, + "end": 8294.13, + "probability": 0.9902 + }, + { + "start": 8294.52, + "end": 8296.55, + "probability": 0.9299 + }, + { + "start": 8297.02, + "end": 8297.68, + "probability": 0.1367 + }, + { + "start": 8297.78, + "end": 8298.4, + "probability": 0.1292 + }, + { + "start": 8298.52, + "end": 8299.72, + "probability": 0.5806 + }, + { + "start": 8300.28, + "end": 8301.12, + "probability": 0.7312 + }, + { + "start": 8301.22, + "end": 8302.12, + "probability": 0.4621 + }, + { + "start": 8302.28, + "end": 8303.66, + "probability": 0.9209 + }, + { + "start": 8303.86, + "end": 8305.28, + "probability": 0.7906 + }, + { + "start": 8305.56, + "end": 8307.44, + "probability": 0.9747 + }, + { + "start": 8307.46, + "end": 8310.45, + "probability": 0.9971 + }, + { + "start": 8311.18, + "end": 8311.96, + "probability": 0.8802 + }, + { + "start": 8312.02, + "end": 8314.76, + "probability": 0.9858 + }, + { + "start": 8314.88, + "end": 8315.68, + "probability": 0.8153 + }, + { + "start": 8315.92, + "end": 8317.48, + "probability": 0.7287 + }, + { + "start": 8317.98, + "end": 8320.96, + "probability": 0.6266 + }, + { + "start": 8321.08, + "end": 8323.8, + "probability": 0.9121 + }, + { + "start": 8323.94, + "end": 8325.86, + "probability": 0.9633 + }, + { + "start": 8326.28, + "end": 8326.54, + "probability": 0.8003 + }, + { + "start": 8326.98, + "end": 8328.46, + "probability": 0.8859 + }, + { + "start": 8328.78, + "end": 8329.74, + "probability": 0.9902 + }, + { + "start": 8330.66, + "end": 8332.34, + "probability": 0.8374 + }, + { + "start": 8332.38, + "end": 8332.86, + "probability": 0.8949 + }, + { + "start": 8332.96, + "end": 8333.38, + "probability": 0.7253 + }, + { + "start": 8333.5, + "end": 8335.26, + "probability": 0.7539 + }, + { + "start": 8335.66, + "end": 8338.68, + "probability": 0.9902 + }, + { + "start": 8339.0, + "end": 8340.24, + "probability": 0.9969 + }, + { + "start": 8340.3, + "end": 8341.18, + "probability": 0.8046 + }, + { + "start": 8341.68, + "end": 8343.33, + "probability": 0.5097 + }, + { + "start": 8343.44, + "end": 8343.48, + "probability": 0.5616 + }, + { + "start": 8343.98, + "end": 8346.54, + "probability": 0.8704 + }, + { + "start": 8347.1, + "end": 8349.42, + "probability": 0.9813 + }, + { + "start": 8351.34, + "end": 8353.66, + "probability": 0.7327 + }, + { + "start": 8362.16, + "end": 8364.44, + "probability": 0.9661 + }, + { + "start": 8364.6, + "end": 8365.12, + "probability": 0.8085 + }, + { + "start": 8367.22, + "end": 8367.7, + "probability": 0.61 + }, + { + "start": 8375.38, + "end": 8377.08, + "probability": 0.7709 + }, + { + "start": 8377.18, + "end": 8381.06, + "probability": 0.9956 + }, + { + "start": 8381.8, + "end": 8386.0, + "probability": 0.9302 + }, + { + "start": 8386.52, + "end": 8387.44, + "probability": 0.9344 + }, + { + "start": 8387.6, + "end": 8389.64, + "probability": 0.994 + }, + { + "start": 8389.78, + "end": 8391.3, + "probability": 0.7878 + }, + { + "start": 8391.88, + "end": 8395.77, + "probability": 0.9904 + }, + { + "start": 8396.24, + "end": 8397.76, + "probability": 0.922 + }, + { + "start": 8398.2, + "end": 8400.4, + "probability": 0.2752 + }, + { + "start": 8400.4, + "end": 8401.29, + "probability": 0.9255 + }, + { + "start": 8401.64, + "end": 8404.16, + "probability": 0.7976 + }, + { + "start": 8404.28, + "end": 8407.0, + "probability": 0.7343 + }, + { + "start": 8407.28, + "end": 8407.58, + "probability": 0.0055 + }, + { + "start": 8407.58, + "end": 8408.64, + "probability": 0.397 + }, + { + "start": 8410.6, + "end": 8410.6, + "probability": 0.3481 + }, + { + "start": 8410.6, + "end": 8410.6, + "probability": 0.0384 + }, + { + "start": 8410.6, + "end": 8410.6, + "probability": 0.075 + }, + { + "start": 8410.6, + "end": 8412.56, + "probability": 0.5783 + }, + { + "start": 8412.72, + "end": 8417.14, + "probability": 0.854 + }, + { + "start": 8417.96, + "end": 8417.96, + "probability": 0.0298 + }, + { + "start": 8417.96, + "end": 8419.78, + "probability": 0.5851 + }, + { + "start": 8420.6, + "end": 8423.7, + "probability": 0.2913 + }, + { + "start": 8423.92, + "end": 8427.04, + "probability": 0.3259 + }, + { + "start": 8427.86, + "end": 8428.92, + "probability": 0.3694 + }, + { + "start": 8429.0, + "end": 8429.0, + "probability": 0.5518 + }, + { + "start": 8429.16, + "end": 8431.04, + "probability": 0.1533 + }, + { + "start": 8431.16, + "end": 8432.34, + "probability": 0.1858 + }, + { + "start": 8433.5, + "end": 8435.62, + "probability": 0.4056 + }, + { + "start": 8435.78, + "end": 8435.92, + "probability": 0.0325 + }, + { + "start": 8436.7, + "end": 8437.28, + "probability": 0.1493 + }, + { + "start": 8437.38, + "end": 8440.08, + "probability": 0.3371 + }, + { + "start": 8441.26, + "end": 8445.18, + "probability": 0.2915 + }, + { + "start": 8447.92, + "end": 8448.58, + "probability": 0.0333 + }, + { + "start": 8448.58, + "end": 8448.58, + "probability": 0.408 + }, + { + "start": 8448.58, + "end": 8448.58, + "probability": 0.0354 + }, + { + "start": 8448.58, + "end": 8448.58, + "probability": 0.0337 + }, + { + "start": 8448.58, + "end": 8451.23, + "probability": 0.498 + }, + { + "start": 8452.4, + "end": 8454.44, + "probability": 0.2219 + }, + { + "start": 8454.62, + "end": 8454.62, + "probability": 0.0302 + }, + { + "start": 8455.46, + "end": 8455.92, + "probability": 0.1268 + }, + { + "start": 8456.56, + "end": 8457.17, + "probability": 0.3191 + }, + { + "start": 8457.38, + "end": 8463.7, + "probability": 0.7252 + }, + { + "start": 8463.7, + "end": 8464.4, + "probability": 0.1649 + }, + { + "start": 8466.82, + "end": 8467.04, + "probability": 0.0145 + }, + { + "start": 8467.04, + "end": 8469.22, + "probability": 0.3644 + }, + { + "start": 8469.72, + "end": 8469.76, + "probability": 0.2298 + }, + { + "start": 8469.76, + "end": 8469.76, + "probability": 0.2581 + }, + { + "start": 8469.76, + "end": 8469.76, + "probability": 0.0565 + }, + { + "start": 8469.76, + "end": 8469.76, + "probability": 0.4226 + }, + { + "start": 8469.76, + "end": 8471.54, + "probability": 0.7312 + }, + { + "start": 8471.86, + "end": 8473.18, + "probability": 0.128 + }, + { + "start": 8473.94, + "end": 8476.7, + "probability": 0.5901 + }, + { + "start": 8476.74, + "end": 8477.7, + "probability": 0.0975 + }, + { + "start": 8477.7, + "end": 8478.7, + "probability": 0.4411 + }, + { + "start": 8478.88, + "end": 8480.08, + "probability": 0.2696 + }, + { + "start": 8480.08, + "end": 8480.5, + "probability": 0.5816 + }, + { + "start": 8481.28, + "end": 8482.44, + "probability": 0.7472 + }, + { + "start": 8482.82, + "end": 8484.0, + "probability": 0.8552 + }, + { + "start": 8484.32, + "end": 8485.58, + "probability": 0.6166 + }, + { + "start": 8485.76, + "end": 8486.38, + "probability": 0.6875 + }, + { + "start": 8486.38, + "end": 8489.98, + "probability": 0.9674 + }, + { + "start": 8490.24, + "end": 8491.1, + "probability": 0.5296 + }, + { + "start": 8491.2, + "end": 8492.54, + "probability": 0.8627 + }, + { + "start": 8492.76, + "end": 8495.5, + "probability": 0.9873 + }, + { + "start": 8496.78, + "end": 8496.88, + "probability": 0.0617 + }, + { + "start": 8496.88, + "end": 8496.88, + "probability": 0.1164 + }, + { + "start": 8496.88, + "end": 8498.44, + "probability": 0.5221 + }, + { + "start": 8498.44, + "end": 8501.56, + "probability": 0.9742 + }, + { + "start": 8501.98, + "end": 8506.84, + "probability": 0.9961 + }, + { + "start": 8506.88, + "end": 8509.78, + "probability": 0.915 + }, + { + "start": 8509.78, + "end": 8512.16, + "probability": 0.9529 + }, + { + "start": 8512.4, + "end": 8513.52, + "probability": 0.8337 + }, + { + "start": 8513.52, + "end": 8519.14, + "probability": 0.5906 + }, + { + "start": 8519.68, + "end": 8520.22, + "probability": 0.9839 + }, + { + "start": 8520.86, + "end": 8523.11, + "probability": 0.631 + }, + { + "start": 8523.74, + "end": 8526.1, + "probability": 0.9825 + }, + { + "start": 8526.1, + "end": 8530.26, + "probability": 0.8088 + }, + { + "start": 8530.48, + "end": 8530.48, + "probability": 0.0792 + }, + { + "start": 8530.48, + "end": 8532.72, + "probability": 0.6583 + }, + { + "start": 8533.84, + "end": 8534.24, + "probability": 0.5174 + }, + { + "start": 8542.98, + "end": 8545.78, + "probability": 0.157 + }, + { + "start": 8546.98, + "end": 8549.36, + "probability": 0.7273 + }, + { + "start": 8550.38, + "end": 8551.34, + "probability": 0.6318 + }, + { + "start": 8551.94, + "end": 8554.62, + "probability": 0.9388 + }, + { + "start": 8555.2, + "end": 8555.58, + "probability": 0.567 + }, + { + "start": 8555.58, + "end": 8555.82, + "probability": 0.7627 + }, + { + "start": 8556.86, + "end": 8559.22, + "probability": 0.9185 + }, + { + "start": 8560.86, + "end": 8561.86, + "probability": 0.6397 + }, + { + "start": 8573.72, + "end": 8576.06, + "probability": 0.7698 + }, + { + "start": 8577.68, + "end": 8582.36, + "probability": 0.9868 + }, + { + "start": 8583.4, + "end": 8589.32, + "probability": 0.9969 + }, + { + "start": 8589.44, + "end": 8592.02, + "probability": 0.9098 + }, + { + "start": 8592.7, + "end": 8593.14, + "probability": 0.9924 + }, + { + "start": 8594.04, + "end": 8597.58, + "probability": 0.9319 + }, + { + "start": 8598.62, + "end": 8602.26, + "probability": 0.9155 + }, + { + "start": 8603.0, + "end": 8606.78, + "probability": 0.9274 + }, + { + "start": 8606.92, + "end": 8610.64, + "probability": 0.981 + }, + { + "start": 8610.98, + "end": 8614.5, + "probability": 0.9355 + }, + { + "start": 8614.5, + "end": 8617.98, + "probability": 0.9953 + }, + { + "start": 8618.14, + "end": 8619.47, + "probability": 0.9293 + }, + { + "start": 8620.04, + "end": 8622.78, + "probability": 0.5489 + }, + { + "start": 8622.92, + "end": 8624.78, + "probability": 0.9586 + }, + { + "start": 8625.64, + "end": 8628.53, + "probability": 0.9888 + }, + { + "start": 8628.64, + "end": 8630.06, + "probability": 0.9387 + }, + { + "start": 8630.46, + "end": 8633.1, + "probability": 0.6312 + }, + { + "start": 8633.2, + "end": 8639.94, + "probability": 0.9731 + }, + { + "start": 8639.94, + "end": 8647.38, + "probability": 0.9765 + }, + { + "start": 8647.8, + "end": 8648.64, + "probability": 0.9034 + }, + { + "start": 8649.42, + "end": 8650.94, + "probability": 0.8903 + }, + { + "start": 8651.06, + "end": 8651.7, + "probability": 0.6639 + }, + { + "start": 8651.94, + "end": 8652.92, + "probability": 0.9306 + }, + { + "start": 8653.34, + "end": 8656.08, + "probability": 0.7947 + }, + { + "start": 8656.08, + "end": 8658.28, + "probability": 0.9954 + }, + { + "start": 8658.6, + "end": 8659.98, + "probability": 0.9881 + }, + { + "start": 8660.54, + "end": 8664.22, + "probability": 0.9938 + }, + { + "start": 8664.36, + "end": 8669.8, + "probability": 0.9915 + }, + { + "start": 8669.92, + "end": 8671.76, + "probability": 0.8457 + }, + { + "start": 8672.24, + "end": 8676.24, + "probability": 0.998 + }, + { + "start": 8676.48, + "end": 8677.2, + "probability": 0.8584 + }, + { + "start": 8677.66, + "end": 8679.28, + "probability": 0.9857 + }, + { + "start": 8679.38, + "end": 8681.76, + "probability": 0.9873 + }, + { + "start": 8681.82, + "end": 8684.46, + "probability": 0.9837 + }, + { + "start": 8684.82, + "end": 8689.12, + "probability": 0.9504 + }, + { + "start": 8689.28, + "end": 8693.96, + "probability": 0.9719 + }, + { + "start": 8694.36, + "end": 8698.4, + "probability": 0.9984 + }, + { + "start": 8698.7, + "end": 8699.54, + "probability": 0.9221 + }, + { + "start": 8699.64, + "end": 8700.46, + "probability": 0.9856 + }, + { + "start": 8700.52, + "end": 8701.2, + "probability": 0.9397 + }, + { + "start": 8701.38, + "end": 8702.48, + "probability": 0.9377 + }, + { + "start": 8702.8, + "end": 8704.6, + "probability": 0.9025 + }, + { + "start": 8704.96, + "end": 8711.0, + "probability": 0.9932 + }, + { + "start": 8711.3, + "end": 8713.38, + "probability": 0.909 + }, + { + "start": 8713.82, + "end": 8714.9, + "probability": 0.8925 + }, + { + "start": 8715.24, + "end": 8717.8, + "probability": 0.9432 + }, + { + "start": 8718.22, + "end": 8720.9, + "probability": 0.9911 + }, + { + "start": 8721.4, + "end": 8724.92, + "probability": 0.9717 + }, + { + "start": 8725.18, + "end": 8725.68, + "probability": 0.8895 + }, + { + "start": 8725.9, + "end": 8727.84, + "probability": 0.9468 + }, + { + "start": 8728.2, + "end": 8728.86, + "probability": 0.6755 + }, + { + "start": 8729.42, + "end": 8730.52, + "probability": 0.7935 + }, + { + "start": 8731.14, + "end": 8734.66, + "probability": 0.9388 + }, + { + "start": 8734.84, + "end": 8739.44, + "probability": 0.9912 + }, + { + "start": 8739.76, + "end": 8741.3, + "probability": 0.9875 + }, + { + "start": 8741.58, + "end": 8741.78, + "probability": 0.6017 + }, + { + "start": 8742.22, + "end": 8743.16, + "probability": 0.5026 + }, + { + "start": 8744.34, + "end": 8747.67, + "probability": 0.909 + }, + { + "start": 8759.74, + "end": 8762.78, + "probability": 0.7568 + }, + { + "start": 8764.02, + "end": 8765.42, + "probability": 0.6415 + }, + { + "start": 8766.64, + "end": 8766.98, + "probability": 0.8377 + }, + { + "start": 8768.12, + "end": 8769.5, + "probability": 0.6549 + }, + { + "start": 8769.78, + "end": 8770.72, + "probability": 0.84 + }, + { + "start": 8772.44, + "end": 8775.92, + "probability": 0.727 + }, + { + "start": 8777.72, + "end": 8780.0, + "probability": 0.8758 + }, + { + "start": 8780.14, + "end": 8780.5, + "probability": 0.6735 + }, + { + "start": 8780.54, + "end": 8780.74, + "probability": 0.6311 + }, + { + "start": 8780.86, + "end": 8781.34, + "probability": 0.9333 + }, + { + "start": 8781.72, + "end": 8782.0, + "probability": 0.4752 + }, + { + "start": 8782.06, + "end": 8782.78, + "probability": 0.7798 + }, + { + "start": 8783.76, + "end": 8783.82, + "probability": 0.1912 + }, + { + "start": 8783.82, + "end": 8792.6, + "probability": 0.9909 + }, + { + "start": 8792.64, + "end": 8798.32, + "probability": 0.9778 + }, + { + "start": 8798.52, + "end": 8799.54, + "probability": 0.9844 + }, + { + "start": 8799.72, + "end": 8800.3, + "probability": 0.9118 + }, + { + "start": 8800.34, + "end": 8801.8, + "probability": 0.8931 + }, + { + "start": 8801.8, + "end": 8802.44, + "probability": 0.0479 + }, + { + "start": 8803.52, + "end": 8803.82, + "probability": 0.3999 + }, + { + "start": 8803.82, + "end": 8804.64, + "probability": 0.4146 + }, + { + "start": 8807.06, + "end": 8809.92, + "probability": 0.9637 + }, + { + "start": 8810.34, + "end": 8813.33, + "probability": 0.7474 + }, + { + "start": 8814.06, + "end": 8819.38, + "probability": 0.7967 + }, + { + "start": 8820.0, + "end": 8820.82, + "probability": 0.7966 + }, + { + "start": 8822.0, + "end": 8822.4, + "probability": 0.7566 + }, + { + "start": 8823.0, + "end": 8824.9, + "probability": 0.9468 + }, + { + "start": 8825.7, + "end": 8828.66, + "probability": 0.9956 + }, + { + "start": 8829.46, + "end": 8830.36, + "probability": 0.5632 + }, + { + "start": 8830.5, + "end": 8831.74, + "probability": 0.9467 + }, + { + "start": 8831.92, + "end": 8832.14, + "probability": 0.3795 + }, + { + "start": 8832.2, + "end": 8834.29, + "probability": 0.7764 + }, + { + "start": 8835.36, + "end": 8838.66, + "probability": 0.9697 + }, + { + "start": 8838.82, + "end": 8840.06, + "probability": 0.6875 + }, + { + "start": 8840.8, + "end": 8842.66, + "probability": 0.9917 + }, + { + "start": 8843.9, + "end": 8846.38, + "probability": 0.988 + }, + { + "start": 8846.9, + "end": 8846.98, + "probability": 0.3814 + }, + { + "start": 8847.08, + "end": 8848.02, + "probability": 0.8098 + }, + { + "start": 8848.12, + "end": 8848.84, + "probability": 0.8608 + }, + { + "start": 8849.28, + "end": 8850.24, + "probability": 0.9693 + }, + { + "start": 8850.79, + "end": 8854.62, + "probability": 0.9731 + }, + { + "start": 8855.68, + "end": 8857.64, + "probability": 0.9934 + }, + { + "start": 8857.7, + "end": 8858.83, + "probability": 0.9918 + }, + { + "start": 8860.08, + "end": 8861.12, + "probability": 0.7435 + }, + { + "start": 8861.2, + "end": 8862.23, + "probability": 0.7939 + }, + { + "start": 8862.54, + "end": 8864.06, + "probability": 0.2602 + }, + { + "start": 8864.14, + "end": 8864.44, + "probability": 0.1418 + }, + { + "start": 8864.5, + "end": 8865.32, + "probability": 0.5181 + }, + { + "start": 8866.16, + "end": 8867.16, + "probability": 0.5955 + }, + { + "start": 8867.16, + "end": 8875.06, + "probability": 0.7076 + }, + { + "start": 8875.24, + "end": 8876.34, + "probability": 0.1799 + }, + { + "start": 8876.98, + "end": 8877.54, + "probability": 0.0331 + }, + { + "start": 8877.54, + "end": 8877.54, + "probability": 0.1017 + }, + { + "start": 8877.54, + "end": 8879.12, + "probability": 0.5492 + }, + { + "start": 8880.28, + "end": 8884.92, + "probability": 0.9084 + }, + { + "start": 8885.07, + "end": 8887.94, + "probability": 0.9888 + }, + { + "start": 8888.22, + "end": 8888.72, + "probability": 0.0484 + }, + { + "start": 8888.94, + "end": 8891.28, + "probability": 0.8788 + }, + { + "start": 8892.18, + "end": 8896.06, + "probability": 0.9014 + }, + { + "start": 8896.96, + "end": 8899.3, + "probability": 0.912 + }, + { + "start": 8899.98, + "end": 8904.7, + "probability": 0.9921 + }, + { + "start": 8905.62, + "end": 8909.16, + "probability": 0.6696 + }, + { + "start": 8909.4, + "end": 8911.86, + "probability": 0.9385 + }, + { + "start": 8913.14, + "end": 8915.22, + "probability": 0.2075 + }, + { + "start": 8916.7, + "end": 8917.22, + "probability": 0.0839 + }, + { + "start": 8917.22, + "end": 8919.9, + "probability": 0.394 + }, + { + "start": 8920.0, + "end": 8920.0, + "probability": 0.0871 + }, + { + "start": 8920.0, + "end": 8921.3, + "probability": 0.5596 + }, + { + "start": 8921.34, + "end": 8924.1, + "probability": 0.9619 + }, + { + "start": 8924.18, + "end": 8925.5, + "probability": 0.8966 + }, + { + "start": 8925.6, + "end": 8926.32, + "probability": 0.7767 + }, + { + "start": 8926.32, + "end": 8927.66, + "probability": 0.5504 + }, + { + "start": 8928.36, + "end": 8930.96, + "probability": 0.6614 + }, + { + "start": 8930.98, + "end": 8931.8, + "probability": 0.5913 + }, + { + "start": 8931.8, + "end": 8932.68, + "probability": 0.8692 + }, + { + "start": 8932.86, + "end": 8934.66, + "probability": 0.4801 + }, + { + "start": 8934.7, + "end": 8937.64, + "probability": 0.5704 + }, + { + "start": 8937.86, + "end": 8937.96, + "probability": 0.0694 + }, + { + "start": 8938.06, + "end": 8938.46, + "probability": 0.7294 + }, + { + "start": 8938.52, + "end": 8940.56, + "probability": 0.7619 + }, + { + "start": 8940.8, + "end": 8942.92, + "probability": 0.9634 + }, + { + "start": 8942.92, + "end": 8943.86, + "probability": 0.1068 + }, + { + "start": 8944.02, + "end": 8944.04, + "probability": 0.0174 + }, + { + "start": 8944.04, + "end": 8944.25, + "probability": 0.4767 + }, + { + "start": 8944.84, + "end": 8944.84, + "probability": 0.6147 + }, + { + "start": 8945.28, + "end": 8945.54, + "probability": 0.2112 + }, + { + "start": 8945.54, + "end": 8946.02, + "probability": 0.7459 + }, + { + "start": 8946.24, + "end": 8947.66, + "probability": 0.8422 + }, + { + "start": 8947.72, + "end": 8950.16, + "probability": 0.9888 + }, + { + "start": 8950.16, + "end": 8953.94, + "probability": 0.9966 + }, + { + "start": 8954.48, + "end": 8956.2, + "probability": 0.984 + }, + { + "start": 8957.28, + "end": 8957.84, + "probability": 0.691 + }, + { + "start": 8958.26, + "end": 8960.7, + "probability": 0.6547 + }, + { + "start": 8961.28, + "end": 8962.82, + "probability": 0.4685 + }, + { + "start": 8963.4, + "end": 8964.42, + "probability": 0.3826 + }, + { + "start": 8964.8, + "end": 8966.76, + "probability": 0.9985 + }, + { + "start": 8967.34, + "end": 8967.97, + "probability": 0.4359 + }, + { + "start": 8968.72, + "end": 8971.96, + "probability": 0.853 + }, + { + "start": 8972.08, + "end": 8974.24, + "probability": 0.7549 + }, + { + "start": 8974.24, + "end": 8976.98, + "probability": 0.9626 + }, + { + "start": 8976.98, + "end": 8980.45, + "probability": 0.7544 + }, + { + "start": 8981.2, + "end": 8981.92, + "probability": 0.0071 + }, + { + "start": 8982.0, + "end": 8985.24, + "probability": 0.2587 + }, + { + "start": 8985.74, + "end": 8990.46, + "probability": 0.5986 + }, + { + "start": 8990.46, + "end": 8993.58, + "probability": 0.286 + }, + { + "start": 8994.5, + "end": 8995.6, + "probability": 0.023 + }, + { + "start": 8995.86, + "end": 8996.56, + "probability": 0.1745 + }, + { + "start": 8996.58, + "end": 8996.7, + "probability": 0.0664 + }, + { + "start": 8996.7, + "end": 8996.7, + "probability": 0.5396 + }, + { + "start": 8996.7, + "end": 8996.7, + "probability": 0.4921 + }, + { + "start": 8996.74, + "end": 8998.56, + "probability": 0.8262 + }, + { + "start": 8998.68, + "end": 9000.15, + "probability": 0.3644 + }, + { + "start": 9001.58, + "end": 9002.88, + "probability": 0.1377 + }, + { + "start": 9002.88, + "end": 9002.88, + "probability": 0.1165 + }, + { + "start": 9002.88, + "end": 9002.88, + "probability": 0.0036 + }, + { + "start": 9002.88, + "end": 9002.88, + "probability": 0.1775 + }, + { + "start": 9002.88, + "end": 9002.88, + "probability": 0.3747 + }, + { + "start": 9002.88, + "end": 9004.58, + "probability": 0.4397 + }, + { + "start": 9004.58, + "end": 9006.16, + "probability": 0.0702 + }, + { + "start": 9006.16, + "end": 9007.43, + "probability": 0.1269 + }, + { + "start": 9008.12, + "end": 9009.02, + "probability": 0.3863 + }, + { + "start": 9010.59, + "end": 9011.02, + "probability": 0.3393 + }, + { + "start": 9011.44, + "end": 9011.48, + "probability": 0.0532 + }, + { + "start": 9011.48, + "end": 9011.48, + "probability": 0.0792 + }, + { + "start": 9011.48, + "end": 9011.52, + "probability": 0.2773 + }, + { + "start": 9011.52, + "end": 9013.84, + "probability": 0.6626 + }, + { + "start": 9014.34, + "end": 9017.9, + "probability": 0.8469 + }, + { + "start": 9018.42, + "end": 9022.66, + "probability": 0.9507 + }, + { + "start": 9022.82, + "end": 9029.54, + "probability": 0.8846 + }, + { + "start": 9029.68, + "end": 9030.26, + "probability": 0.7123 + }, + { + "start": 9030.28, + "end": 9033.54, + "probability": 0.8382 + }, + { + "start": 9034.8, + "end": 9035.78, + "probability": 0.2664 + }, + { + "start": 9036.3, + "end": 9039.74, + "probability": 0.9494 + }, + { + "start": 9040.18, + "end": 9040.38, + "probability": 0.7063 + }, + { + "start": 9040.38, + "end": 9042.76, + "probability": 0.8847 + }, + { + "start": 9043.04, + "end": 9045.44, + "probability": 0.8993 + }, + { + "start": 9045.5, + "end": 9048.64, + "probability": 0.9954 + }, + { + "start": 9048.8, + "end": 9049.14, + "probability": 0.8621 + }, + { + "start": 9049.2, + "end": 9049.82, + "probability": 0.6988 + }, + { + "start": 9050.5, + "end": 9051.98, + "probability": 0.9902 + }, + { + "start": 9052.06, + "end": 9052.98, + "probability": 0.9857 + }, + { + "start": 9053.0, + "end": 9053.0, + "probability": 0.0 + }, + { + "start": 9053.0, + "end": 9053.0, + "probability": 0.0 + }, + { + "start": 9054.88, + "end": 9060.18, + "probability": 0.9329 + }, + { + "start": 9060.84, + "end": 9062.88, + "probability": 0.9124 + }, + { + "start": 9062.92, + "end": 9063.84, + "probability": 0.7573 + }, + { + "start": 9063.84, + "end": 9063.84, + "probability": 0.5767 + }, + { + "start": 9064.0, + "end": 9065.53, + "probability": 0.5896 + }, + { + "start": 9065.92, + "end": 9068.58, + "probability": 0.6565 + }, + { + "start": 9068.58, + "end": 9068.58, + "probability": 0.1929 + }, + { + "start": 9068.58, + "end": 9069.4, + "probability": 0.2734 + }, + { + "start": 9069.84, + "end": 9070.47, + "probability": 0.1368 + }, + { + "start": 9070.72, + "end": 9072.44, + "probability": 0.6296 + }, + { + "start": 9072.44, + "end": 9074.05, + "probability": 0.2935 + }, + { + "start": 9074.46, + "end": 9075.22, + "probability": 0.5109 + }, + { + "start": 9087.78, + "end": 9091.0, + "probability": 0.1884 + }, + { + "start": 9091.0, + "end": 9091.4, + "probability": 0.0752 + }, + { + "start": 9093.42, + "end": 9093.46, + "probability": 0.1083 + }, + { + "start": 9093.46, + "end": 9093.46, + "probability": 0.162 + }, + { + "start": 9093.46, + "end": 9093.46, + "probability": 0.0412 + }, + { + "start": 9093.46, + "end": 9093.46, + "probability": 0.2235 + }, + { + "start": 9093.46, + "end": 9094.46, + "probability": 0.2813 + }, + { + "start": 9094.48, + "end": 9095.68, + "probability": 0.438 + }, + { + "start": 9097.0, + "end": 9097.54, + "probability": 0.5228 + }, + { + "start": 9097.6, + "end": 9100.52, + "probability": 0.9586 + }, + { + "start": 9101.9, + "end": 9103.12, + "probability": 0.1533 + }, + { + "start": 9103.18, + "end": 9106.34, + "probability": 0.6119 + }, + { + "start": 9106.44, + "end": 9107.8, + "probability": 0.4974 + }, + { + "start": 9108.14, + "end": 9109.36, + "probability": 0.4192 + }, + { + "start": 9109.52, + "end": 9109.94, + "probability": 0.9393 + }, + { + "start": 9119.26, + "end": 9127.46, + "probability": 0.0515 + }, + { + "start": 9127.46, + "end": 9128.58, + "probability": 0.011 + }, + { + "start": 9131.31, + "end": 9131.54, + "probability": 0.0063 + }, + { + "start": 9135.42, + "end": 9137.7, + "probability": 0.0653 + }, + { + "start": 9138.02, + "end": 9138.48, + "probability": 0.0142 + }, + { + "start": 9138.48, + "end": 9138.48, + "probability": 0.196 + }, + { + "start": 9138.48, + "end": 9138.48, + "probability": 0.0209 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.0, + "end": 9177.0, + "probability": 0.0 + }, + { + "start": 9177.12, + "end": 9178.86, + "probability": 0.4927 + }, + { + "start": 9179.18, + "end": 9180.16, + "probability": 0.8201 + }, + { + "start": 9191.18, + "end": 9192.34, + "probability": 0.5842 + }, + { + "start": 9194.4, + "end": 9196.68, + "probability": 0.7503 + }, + { + "start": 9197.18, + "end": 9197.18, + "probability": 0.535 + }, + { + "start": 9197.18, + "end": 9197.84, + "probability": 0.7551 + }, + { + "start": 9197.92, + "end": 9198.66, + "probability": 0.8607 + }, + { + "start": 9198.76, + "end": 9203.6, + "probability": 0.9127 + }, + { + "start": 9203.82, + "end": 9206.88, + "probability": 0.8889 + }, + { + "start": 9206.88, + "end": 9211.17, + "probability": 0.8749 + }, + { + "start": 9211.62, + "end": 9213.42, + "probability": 0.08 + }, + { + "start": 9214.06, + "end": 9218.26, + "probability": 0.9842 + }, + { + "start": 9218.26, + "end": 9221.96, + "probability": 0.8696 + }, + { + "start": 9222.68, + "end": 9224.12, + "probability": 0.9625 + }, + { + "start": 9225.4, + "end": 9226.76, + "probability": 0.9883 + }, + { + "start": 9227.66, + "end": 9228.54, + "probability": 0.6418 + }, + { + "start": 9228.62, + "end": 9230.92, + "probability": 0.9841 + }, + { + "start": 9230.98, + "end": 9233.94, + "probability": 0.876 + }, + { + "start": 9234.48, + "end": 9237.5, + "probability": 0.9987 + }, + { + "start": 9238.28, + "end": 9241.32, + "probability": 0.9752 + }, + { + "start": 9241.32, + "end": 9244.98, + "probability": 0.8757 + }, + { + "start": 9245.06, + "end": 9245.7, + "probability": 0.6647 + }, + { + "start": 9246.18, + "end": 9248.64, + "probability": 0.8264 + }, + { + "start": 9248.96, + "end": 9252.9, + "probability": 0.9695 + }, + { + "start": 9253.64, + "end": 9254.06, + "probability": 0.5253 + }, + { + "start": 9254.1, + "end": 9257.58, + "probability": 0.8906 + }, + { + "start": 9257.7, + "end": 9259.1, + "probability": 0.8114 + }, + { + "start": 9259.82, + "end": 9262.96, + "probability": 0.9834 + }, + { + "start": 9262.96, + "end": 9265.06, + "probability": 0.9985 + }, + { + "start": 9266.4, + "end": 9269.42, + "probability": 0.9513 + }, + { + "start": 9269.96, + "end": 9273.08, + "probability": 0.9986 + }, + { + "start": 9273.9, + "end": 9277.38, + "probability": 0.9915 + }, + { + "start": 9277.46, + "end": 9281.66, + "probability": 0.9844 + }, + { + "start": 9282.44, + "end": 9285.54, + "probability": 0.9391 + }, + { + "start": 9286.12, + "end": 9286.58, + "probability": 0.7202 + }, + { + "start": 9287.92, + "end": 9288.72, + "probability": 0.6827 + }, + { + "start": 9288.84, + "end": 9290.03, + "probability": 0.793 + }, + { + "start": 9290.22, + "end": 9291.14, + "probability": 0.8143 + }, + { + "start": 9291.28, + "end": 9295.14, + "probability": 0.8901 + }, + { + "start": 9296.36, + "end": 9297.22, + "probability": 0.8895 + }, + { + "start": 9300.86, + "end": 9301.44, + "probability": 0.6425 + }, + { + "start": 9305.72, + "end": 9309.52, + "probability": 0.0395 + }, + { + "start": 9309.52, + "end": 9313.46, + "probability": 0.0181 + }, + { + "start": 9320.98, + "end": 9320.98, + "probability": 0.0204 + }, + { + "start": 9320.98, + "end": 9326.7, + "probability": 0.9067 + }, + { + "start": 9327.0, + "end": 9327.96, + "probability": 0.3692 + }, + { + "start": 9328.02, + "end": 9328.48, + "probability": 0.5426 + }, + { + "start": 9330.98, + "end": 9335.12, + "probability": 0.1835 + }, + { + "start": 9337.1, + "end": 9338.46, + "probability": 0.4952 + }, + { + "start": 9338.94, + "end": 9341.87, + "probability": 0.9153 + }, + { + "start": 9348.48, + "end": 9349.7, + "probability": 0.5438 + }, + { + "start": 9349.74, + "end": 9352.2, + "probability": 0.6975 + }, + { + "start": 9352.2, + "end": 9355.22, + "probability": 0.908 + }, + { + "start": 9356.08, + "end": 9359.0, + "probability": 0.6677 + }, + { + "start": 9359.92, + "end": 9369.14, + "probability": 0.7334 + }, + { + "start": 9377.48, + "end": 9379.24, + "probability": 0.705 + }, + { + "start": 9380.28, + "end": 9381.76, + "probability": 0.921 + }, + { + "start": 9394.26, + "end": 9394.32, + "probability": 0.0114 + }, + { + "start": 9404.32, + "end": 9405.74, + "probability": 0.2876 + }, + { + "start": 9407.4, + "end": 9409.26, + "probability": 0.0252 + }, + { + "start": 9409.26, + "end": 9412.02, + "probability": 0.0157 + }, + { + "start": 9412.56, + "end": 9413.12, + "probability": 0.0064 + }, + { + "start": 9414.48, + "end": 9416.84, + "probability": 0.0222 + }, + { + "start": 9417.7, + "end": 9419.16, + "probability": 0.0448 + }, + { + "start": 9419.18, + "end": 9420.52, + "probability": 0.2383 + }, + { + "start": 9449.42, + "end": 9449.42, + "probability": 0.2792 + }, + { + "start": 9449.42, + "end": 9453.0, + "probability": 0.173 + }, + { + "start": 9455.3, + "end": 9455.98, + "probability": 0.296 + }, + { + "start": 9456.86, + "end": 9457.26, + "probability": 0.1571 + }, + { + "start": 9457.26, + "end": 9458.94, + "probability": 0.0675 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + }, + { + "start": 9460.293, + "end": 9460.293, + "probability": 0.0 + } + ], + "segments_count": 2991, + "words_count": 14217, + "avg_words_per_segment": 4.7533, + "avg_segment_duration": 2.0114, + "avg_words_per_minute": 90.1687, + "plenum_id": "45911", + "duration": 9460.27, + "title": null, + "plenum_date": "2015-10-26" +} \ No newline at end of file