diff --git "a/114713/metadata.json" "b/114713/metadata.json" new file mode 100644--- /dev/null +++ "b/114713/metadata.json" @@ -0,0 +1,33692 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "114713", + "quality_score": 0.6791, + "per_segment_quality_scores": [ + { + "start": 35.18, + "end": 37.22, + "probability": 0.6382 + }, + { + "start": 38.14, + "end": 42.66, + "probability": 0.8525 + }, + { + "start": 42.76, + "end": 44.02, + "probability": 0.8413 + }, + { + "start": 44.18, + "end": 45.12, + "probability": 0.9272 + }, + { + "start": 45.24, + "end": 46.74, + "probability": 0.9027 + }, + { + "start": 46.94, + "end": 48.06, + "probability": 0.9619 + }, + { + "start": 48.18, + "end": 48.92, + "probability": 0.9636 + }, + { + "start": 51.76, + "end": 54.4, + "probability": 0.1797 + }, + { + "start": 58.42, + "end": 61.26, + "probability": 0.0509 + }, + { + "start": 61.26, + "end": 62.44, + "probability": 0.0506 + }, + { + "start": 63.06, + "end": 65.36, + "probability": 0.0529 + }, + { + "start": 65.36, + "end": 67.76, + "probability": 0.0433 + }, + { + "start": 68.2, + "end": 68.52, + "probability": 0.0803 + }, + { + "start": 68.72, + "end": 71.0, + "probability": 0.0382 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 144.31, + "end": 147.46, + "probability": 0.0554 + }, + { + "start": 165.9, + "end": 166.58, + "probability": 0.2575 + }, + { + "start": 167.61, + "end": 170.8, + "probability": 0.0881 + }, + { + "start": 171.9, + "end": 172.14, + "probability": 0.0209 + }, + { + "start": 172.66, + "end": 174.18, + "probability": 0.0823 + }, + { + "start": 174.18, + "end": 177.08, + "probability": 0.0739 + }, + { + "start": 177.08, + "end": 179.28, + "probability": 0.0559 + }, + { + "start": 179.3, + "end": 180.4, + "probability": 0.0172 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.0, + "end": 271.0, + "probability": 0.0 + }, + { + "start": 271.38, + "end": 271.38, + "probability": 0.0001 + }, + { + "start": 271.38, + "end": 273.1, + "probability": 0.0558 + }, + { + "start": 273.1, + "end": 275.06, + "probability": 0.0101 + }, + { + "start": 275.06, + "end": 275.34, + "probability": 0.1487 + }, + { + "start": 278.82, + "end": 280.88, + "probability": 0.2766 + }, + { + "start": 283.52, + "end": 284.4, + "probability": 0.0175 + }, + { + "start": 285.6, + "end": 287.18, + "probability": 0.0638 + }, + { + "start": 301.36, + "end": 301.48, + "probability": 0.088 + }, + { + "start": 302.32, + "end": 303.24, + "probability": 0.058 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 394.0, + "end": 394.0, + "probability": 0.0 + }, + { + "start": 410.84, + "end": 411.02, + "probability": 0.275 + }, + { + "start": 412.68, + "end": 414.64, + "probability": 0.0493 + }, + { + "start": 414.64, + "end": 415.7, + "probability": 0.06 + }, + { + "start": 416.3, + "end": 420.6, + "probability": 0.0439 + }, + { + "start": 421.54, + "end": 422.46, + "probability": 0.1331 + }, + { + "start": 422.46, + "end": 424.98, + "probability": 0.1335 + }, + { + "start": 424.98, + "end": 424.98, + "probability": 0.0586 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.0, + "end": 514.0, + "probability": 0.0 + }, + { + "start": 514.12, + "end": 514.89, + "probability": 0.8062 + }, + { + "start": 516.38, + "end": 517.18, + "probability": 0.9863 + }, + { + "start": 517.9, + "end": 521.08, + "probability": 0.9885 + }, + { + "start": 521.64, + "end": 525.26, + "probability": 0.9938 + }, + { + "start": 526.38, + "end": 526.48, + "probability": 0.5977 + }, + { + "start": 526.74, + "end": 529.5, + "probability": 0.9984 + }, + { + "start": 529.62, + "end": 532.34, + "probability": 0.9944 + }, + { + "start": 532.34, + "end": 535.8, + "probability": 0.9993 + }, + { + "start": 536.26, + "end": 536.62, + "probability": 0.6547 + }, + { + "start": 536.92, + "end": 541.44, + "probability": 0.9537 + }, + { + "start": 541.52, + "end": 542.03, + "probability": 0.973 + }, + { + "start": 543.38, + "end": 543.84, + "probability": 0.8874 + }, + { + "start": 544.28, + "end": 548.91, + "probability": 0.9919 + }, + { + "start": 549.52, + "end": 552.92, + "probability": 0.9917 + }, + { + "start": 553.44, + "end": 554.08, + "probability": 0.843 + }, + { + "start": 554.54, + "end": 558.12, + "probability": 0.9976 + }, + { + "start": 558.96, + "end": 560.58, + "probability": 0.9888 + }, + { + "start": 560.72, + "end": 565.64, + "probability": 0.9392 + }, + { + "start": 567.18, + "end": 571.14, + "probability": 0.882 + }, + { + "start": 571.76, + "end": 575.8, + "probability": 0.9674 + }, + { + "start": 575.82, + "end": 579.76, + "probability": 0.9966 + }, + { + "start": 581.52, + "end": 583.24, + "probability": 0.9888 + }, + { + "start": 583.25, + "end": 586.12, + "probability": 0.895 + }, + { + "start": 586.52, + "end": 587.28, + "probability": 0.6521 + }, + { + "start": 587.56, + "end": 588.82, + "probability": 0.8316 + }, + { + "start": 589.0, + "end": 590.3, + "probability": 0.999 + }, + { + "start": 591.26, + "end": 593.0, + "probability": 0.8976 + }, + { + "start": 594.2, + "end": 596.24, + "probability": 0.9971 + }, + { + "start": 596.24, + "end": 598.44, + "probability": 0.9984 + }, + { + "start": 599.94, + "end": 604.72, + "probability": 0.9729 + }, + { + "start": 605.04, + "end": 607.42, + "probability": 0.9905 + }, + { + "start": 607.74, + "end": 612.5, + "probability": 0.9955 + }, + { + "start": 613.6, + "end": 617.16, + "probability": 0.9987 + }, + { + "start": 617.62, + "end": 619.64, + "probability": 0.9963 + }, + { + "start": 620.16, + "end": 620.66, + "probability": 0.8926 + }, + { + "start": 621.1, + "end": 621.81, + "probability": 0.9735 + }, + { + "start": 623.08, + "end": 626.18, + "probability": 0.9954 + }, + { + "start": 626.66, + "end": 632.58, + "probability": 0.8164 + }, + { + "start": 632.98, + "end": 634.14, + "probability": 0.8792 + }, + { + "start": 634.56, + "end": 636.6, + "probability": 0.9696 + }, + { + "start": 636.98, + "end": 640.3, + "probability": 0.994 + }, + { + "start": 640.66, + "end": 642.76, + "probability": 0.9987 + }, + { + "start": 644.22, + "end": 644.34, + "probability": 0.056 + }, + { + "start": 644.34, + "end": 644.78, + "probability": 0.8027 + }, + { + "start": 645.02, + "end": 650.74, + "probability": 0.9277 + }, + { + "start": 651.96, + "end": 654.24, + "probability": 0.9961 + }, + { + "start": 654.84, + "end": 660.2, + "probability": 0.9899 + }, + { + "start": 660.86, + "end": 662.68, + "probability": 0.8594 + }, + { + "start": 663.24, + "end": 664.72, + "probability": 0.9488 + }, + { + "start": 664.96, + "end": 665.96, + "probability": 0.9673 + }, + { + "start": 666.34, + "end": 670.96, + "probability": 0.988 + }, + { + "start": 671.84, + "end": 673.52, + "probability": 0.9954 + }, + { + "start": 673.7, + "end": 677.92, + "probability": 0.9962 + }, + { + "start": 679.02, + "end": 680.01, + "probability": 0.9793 + }, + { + "start": 680.32, + "end": 682.08, + "probability": 0.9438 + }, + { + "start": 682.22, + "end": 682.86, + "probability": 0.6377 + }, + { + "start": 683.28, + "end": 684.88, + "probability": 0.9727 + }, + { + "start": 685.3, + "end": 686.0, + "probability": 0.8337 + }, + { + "start": 686.02, + "end": 686.68, + "probability": 0.8072 + }, + { + "start": 687.02, + "end": 687.88, + "probability": 0.7974 + }, + { + "start": 688.74, + "end": 690.96, + "probability": 0.9952 + }, + { + "start": 691.16, + "end": 694.18, + "probability": 0.9683 + }, + { + "start": 694.7, + "end": 695.16, + "probability": 0.8536 + }, + { + "start": 695.3, + "end": 695.8, + "probability": 0.8822 + }, + { + "start": 696.1, + "end": 697.06, + "probability": 0.8049 + }, + { + "start": 697.2, + "end": 698.56, + "probability": 0.4161 + }, + { + "start": 698.98, + "end": 701.12, + "probability": 0.7498 + }, + { + "start": 701.92, + "end": 702.12, + "probability": 0.8106 + }, + { + "start": 702.58, + "end": 702.88, + "probability": 0.3435 + }, + { + "start": 702.94, + "end": 706.22, + "probability": 0.9934 + }, + { + "start": 706.22, + "end": 709.54, + "probability": 0.9199 + }, + { + "start": 711.46, + "end": 712.33, + "probability": 0.5779 + }, + { + "start": 722.36, + "end": 723.14, + "probability": 0.5779 + }, + { + "start": 723.28, + "end": 723.8, + "probability": 0.7086 + }, + { + "start": 723.82, + "end": 723.82, + "probability": 0.1671 + }, + { + "start": 723.82, + "end": 726.85, + "probability": 0.8709 + }, + { + "start": 728.16, + "end": 735.12, + "probability": 0.9321 + }, + { + "start": 736.58, + "end": 738.06, + "probability": 0.8391 + }, + { + "start": 738.46, + "end": 744.0, + "probability": 0.9299 + }, + { + "start": 744.74, + "end": 745.96, + "probability": 0.9607 + }, + { + "start": 746.64, + "end": 748.34, + "probability": 0.6719 + }, + { + "start": 749.58, + "end": 753.38, + "probability": 0.966 + }, + { + "start": 755.04, + "end": 755.28, + "probability": 0.8784 + }, + { + "start": 756.64, + "end": 761.76, + "probability": 0.9473 + }, + { + "start": 762.34, + "end": 763.18, + "probability": 0.819 + }, + { + "start": 763.78, + "end": 765.24, + "probability": 0.9684 + }, + { + "start": 766.46, + "end": 767.8, + "probability": 0.9868 + }, + { + "start": 768.46, + "end": 770.46, + "probability": 0.6056 + }, + { + "start": 772.82, + "end": 773.0, + "probability": 0.649 + }, + { + "start": 773.0, + "end": 774.7, + "probability": 0.3639 + }, + { + "start": 775.1, + "end": 776.62, + "probability": 0.8689 + }, + { + "start": 777.48, + "end": 778.98, + "probability": 0.9188 + }, + { + "start": 780.1, + "end": 781.96, + "probability": 0.9891 + }, + { + "start": 784.22, + "end": 786.01, + "probability": 0.9644 + }, + { + "start": 787.34, + "end": 788.58, + "probability": 0.7309 + }, + { + "start": 789.42, + "end": 794.02, + "probability": 0.9673 + }, + { + "start": 794.72, + "end": 797.5, + "probability": 0.9805 + }, + { + "start": 799.56, + "end": 802.32, + "probability": 0.9769 + }, + { + "start": 803.38, + "end": 806.26, + "probability": 0.9956 + }, + { + "start": 808.08, + "end": 809.06, + "probability": 0.7649 + }, + { + "start": 809.78, + "end": 811.46, + "probability": 0.8862 + }, + { + "start": 812.9, + "end": 815.3, + "probability": 0.9587 + }, + { + "start": 816.56, + "end": 819.26, + "probability": 0.7881 + }, + { + "start": 819.54, + "end": 821.88, + "probability": 0.8921 + }, + { + "start": 823.44, + "end": 827.44, + "probability": 0.9926 + }, + { + "start": 829.12, + "end": 830.56, + "probability": 0.6759 + }, + { + "start": 831.88, + "end": 835.18, + "probability": 0.99 + }, + { + "start": 835.56, + "end": 836.55, + "probability": 0.6208 + }, + { + "start": 839.28, + "end": 849.02, + "probability": 0.945 + }, + { + "start": 849.02, + "end": 854.02, + "probability": 0.9993 + }, + { + "start": 855.14, + "end": 859.16, + "probability": 0.999 + }, + { + "start": 859.48, + "end": 863.12, + "probability": 0.939 + }, + { + "start": 864.14, + "end": 866.58, + "probability": 0.9813 + }, + { + "start": 868.16, + "end": 870.48, + "probability": 0.7424 + }, + { + "start": 871.16, + "end": 872.62, + "probability": 0.9624 + }, + { + "start": 873.72, + "end": 874.44, + "probability": 0.6057 + }, + { + "start": 875.26, + "end": 876.9, + "probability": 0.97 + }, + { + "start": 878.62, + "end": 878.94, + "probability": 0.6871 + }, + { + "start": 879.52, + "end": 880.02, + "probability": 0.8524 + }, + { + "start": 881.2, + "end": 881.8, + "probability": 0.9347 + }, + { + "start": 883.34, + "end": 890.22, + "probability": 0.9761 + }, + { + "start": 891.16, + "end": 895.46, + "probability": 0.9641 + }, + { + "start": 896.06, + "end": 899.58, + "probability": 0.893 + }, + { + "start": 900.18, + "end": 901.64, + "probability": 0.9487 + }, + { + "start": 902.9, + "end": 905.36, + "probability": 0.9849 + }, + { + "start": 906.28, + "end": 909.16, + "probability": 0.9635 + }, + { + "start": 909.84, + "end": 910.36, + "probability": 0.9911 + }, + { + "start": 910.98, + "end": 911.9, + "probability": 0.9897 + }, + { + "start": 912.98, + "end": 915.72, + "probability": 0.9984 + }, + { + "start": 917.04, + "end": 918.18, + "probability": 0.9503 + }, + { + "start": 918.58, + "end": 923.28, + "probability": 0.9511 + }, + { + "start": 923.4, + "end": 924.1, + "probability": 0.8011 + }, + { + "start": 924.86, + "end": 926.06, + "probability": 0.9679 + }, + { + "start": 927.66, + "end": 928.3, + "probability": 0.9664 + }, + { + "start": 929.56, + "end": 932.48, + "probability": 0.993 + }, + { + "start": 933.52, + "end": 934.84, + "probability": 0.8971 + }, + { + "start": 935.48, + "end": 936.7, + "probability": 0.8709 + }, + { + "start": 937.98, + "end": 939.56, + "probability": 0.9985 + }, + { + "start": 940.08, + "end": 940.98, + "probability": 0.8854 + }, + { + "start": 942.1, + "end": 943.1, + "probability": 0.8387 + }, + { + "start": 943.9, + "end": 946.76, + "probability": 0.8817 + }, + { + "start": 947.48, + "end": 948.02, + "probability": 0.7463 + }, + { + "start": 949.3, + "end": 953.34, + "probability": 0.9878 + }, + { + "start": 954.48, + "end": 957.16, + "probability": 0.8735 + }, + { + "start": 957.74, + "end": 959.08, + "probability": 0.8669 + }, + { + "start": 959.6, + "end": 960.5, + "probability": 0.7145 + }, + { + "start": 961.18, + "end": 962.13, + "probability": 0.9858 + }, + { + "start": 963.26, + "end": 963.86, + "probability": 0.9956 + }, + { + "start": 964.56, + "end": 965.6, + "probability": 0.8486 + }, + { + "start": 966.42, + "end": 968.08, + "probability": 0.998 + }, + { + "start": 970.66, + "end": 971.98, + "probability": 0.5158 + }, + { + "start": 972.76, + "end": 974.28, + "probability": 0.9739 + }, + { + "start": 975.32, + "end": 978.36, + "probability": 0.9925 + }, + { + "start": 980.02, + "end": 982.46, + "probability": 0.9838 + }, + { + "start": 983.52, + "end": 985.12, + "probability": 0.9924 + }, + { + "start": 985.74, + "end": 987.34, + "probability": 0.9858 + }, + { + "start": 988.24, + "end": 989.92, + "probability": 0.8379 + }, + { + "start": 991.36, + "end": 992.78, + "probability": 0.538 + }, + { + "start": 993.84, + "end": 996.58, + "probability": 0.9303 + }, + { + "start": 997.32, + "end": 998.18, + "probability": 0.9546 + }, + { + "start": 998.72, + "end": 999.66, + "probability": 0.8695 + }, + { + "start": 1000.24, + "end": 1001.93, + "probability": 0.9972 + }, + { + "start": 1003.08, + "end": 1005.34, + "probability": 0.9513 + }, + { + "start": 1006.62, + "end": 1008.74, + "probability": 0.7022 + }, + { + "start": 1010.16, + "end": 1013.98, + "probability": 0.9181 + }, + { + "start": 1014.56, + "end": 1015.28, + "probability": 0.8962 + }, + { + "start": 1015.94, + "end": 1018.82, + "probability": 0.9752 + }, + { + "start": 1019.8, + "end": 1020.3, + "probability": 0.9294 + }, + { + "start": 1023.24, + "end": 1026.54, + "probability": 0.8141 + }, + { + "start": 1027.66, + "end": 1031.38, + "probability": 0.959 + }, + { + "start": 1034.18, + "end": 1035.48, + "probability": 0.9693 + }, + { + "start": 1036.32, + "end": 1039.13, + "probability": 0.9915 + }, + { + "start": 1041.24, + "end": 1042.81, + "probability": 0.8007 + }, + { + "start": 1043.74, + "end": 1044.64, + "probability": 0.6406 + }, + { + "start": 1045.88, + "end": 1048.32, + "probability": 0.9683 + }, + { + "start": 1049.82, + "end": 1050.8, + "probability": 0.954 + }, + { + "start": 1051.54, + "end": 1052.02, + "probability": 0.6724 + }, + { + "start": 1052.64, + "end": 1058.98, + "probability": 0.9888 + }, + { + "start": 1060.7, + "end": 1063.82, + "probability": 0.979 + }, + { + "start": 1064.68, + "end": 1065.44, + "probability": 0.7368 + }, + { + "start": 1066.56, + "end": 1068.08, + "probability": 0.7499 + }, + { + "start": 1069.32, + "end": 1071.32, + "probability": 0.9266 + }, + { + "start": 1071.9, + "end": 1074.46, + "probability": 0.9222 + }, + { + "start": 1075.56, + "end": 1076.34, + "probability": 0.6074 + }, + { + "start": 1077.32, + "end": 1078.26, + "probability": 0.9473 + }, + { + "start": 1079.14, + "end": 1082.0, + "probability": 0.9723 + }, + { + "start": 1083.56, + "end": 1084.64, + "probability": 0.9888 + }, + { + "start": 1085.4, + "end": 1086.06, + "probability": 0.7723 + }, + { + "start": 1087.6, + "end": 1090.68, + "probability": 0.9841 + }, + { + "start": 1091.62, + "end": 1095.48, + "probability": 0.9546 + }, + { + "start": 1096.4, + "end": 1097.78, + "probability": 0.9668 + }, + { + "start": 1099.22, + "end": 1104.14, + "probability": 0.9409 + }, + { + "start": 1104.92, + "end": 1107.8, + "probability": 0.9987 + }, + { + "start": 1109.1, + "end": 1113.24, + "probability": 0.9902 + }, + { + "start": 1113.92, + "end": 1114.48, + "probability": 0.805 + }, + { + "start": 1115.68, + "end": 1115.98, + "probability": 0.8285 + }, + { + "start": 1116.72, + "end": 1117.48, + "probability": 0.8916 + }, + { + "start": 1118.48, + "end": 1119.34, + "probability": 0.9919 + }, + { + "start": 1120.16, + "end": 1123.48, + "probability": 0.918 + }, + { + "start": 1124.38, + "end": 1124.72, + "probability": 0.5856 + }, + { + "start": 1126.38, + "end": 1128.26, + "probability": 0.7234 + }, + { + "start": 1130.24, + "end": 1133.3, + "probability": 0.8842 + }, + { + "start": 1135.3, + "end": 1137.04, + "probability": 0.9962 + }, + { + "start": 1138.04, + "end": 1139.52, + "probability": 0.9998 + }, + { + "start": 1141.22, + "end": 1144.66, + "probability": 0.7421 + }, + { + "start": 1145.68, + "end": 1148.32, + "probability": 0.9471 + }, + { + "start": 1149.8, + "end": 1153.74, + "probability": 0.9125 + }, + { + "start": 1154.82, + "end": 1155.58, + "probability": 0.9927 + }, + { + "start": 1156.58, + "end": 1161.98, + "probability": 0.9983 + }, + { + "start": 1163.04, + "end": 1165.06, + "probability": 0.9863 + }, + { + "start": 1165.7, + "end": 1167.36, + "probability": 0.9976 + }, + { + "start": 1168.0, + "end": 1172.06, + "probability": 0.9942 + }, + { + "start": 1172.5, + "end": 1173.42, + "probability": 0.988 + }, + { + "start": 1174.12, + "end": 1174.46, + "probability": 0.556 + }, + { + "start": 1175.42, + "end": 1178.46, + "probability": 0.9913 + }, + { + "start": 1179.48, + "end": 1181.01, + "probability": 0.9259 + }, + { + "start": 1182.38, + "end": 1183.94, + "probability": 0.8473 + }, + { + "start": 1184.72, + "end": 1186.14, + "probability": 0.9964 + }, + { + "start": 1187.76, + "end": 1189.94, + "probability": 0.8902 + }, + { + "start": 1192.0, + "end": 1195.04, + "probability": 0.8607 + }, + { + "start": 1196.36, + "end": 1196.9, + "probability": 0.7976 + }, + { + "start": 1197.54, + "end": 1198.5, + "probability": 0.8419 + }, + { + "start": 1198.9, + "end": 1204.92, + "probability": 0.9575 + }, + { + "start": 1205.74, + "end": 1211.26, + "probability": 0.9967 + }, + { + "start": 1213.46, + "end": 1214.54, + "probability": 0.9626 + }, + { + "start": 1215.88, + "end": 1216.98, + "probability": 0.7439 + }, + { + "start": 1217.56, + "end": 1218.0, + "probability": 0.8289 + }, + { + "start": 1219.66, + "end": 1220.64, + "probability": 0.7379 + }, + { + "start": 1221.3, + "end": 1221.96, + "probability": 0.8326 + }, + { + "start": 1223.58, + "end": 1223.9, + "probability": 0.9272 + }, + { + "start": 1225.12, + "end": 1228.26, + "probability": 0.9929 + }, + { + "start": 1229.34, + "end": 1232.98, + "probability": 0.9663 + }, + { + "start": 1233.84, + "end": 1238.86, + "probability": 0.9326 + }, + { + "start": 1239.64, + "end": 1242.08, + "probability": 0.829 + }, + { + "start": 1242.72, + "end": 1244.18, + "probability": 0.7412 + }, + { + "start": 1245.72, + "end": 1246.44, + "probability": 0.9326 + }, + { + "start": 1247.34, + "end": 1249.38, + "probability": 0.9453 + }, + { + "start": 1250.2, + "end": 1250.9, + "probability": 0.9113 + }, + { + "start": 1252.02, + "end": 1256.1, + "probability": 0.8767 + }, + { + "start": 1256.66, + "end": 1258.82, + "probability": 0.8794 + }, + { + "start": 1259.28, + "end": 1261.24, + "probability": 0.986 + }, + { + "start": 1262.5, + "end": 1265.52, + "probability": 0.9795 + }, + { + "start": 1266.42, + "end": 1267.72, + "probability": 0.9997 + }, + { + "start": 1268.28, + "end": 1269.22, + "probability": 0.9966 + }, + { + "start": 1269.52, + "end": 1270.66, + "probability": 0.8031 + }, + { + "start": 1271.16, + "end": 1272.44, + "probability": 0.6018 + }, + { + "start": 1273.18, + "end": 1275.12, + "probability": 0.934 + }, + { + "start": 1275.68, + "end": 1277.7, + "probability": 0.9924 + }, + { + "start": 1279.66, + "end": 1282.56, + "probability": 0.889 + }, + { + "start": 1283.62, + "end": 1284.46, + "probability": 0.852 + }, + { + "start": 1285.72, + "end": 1286.06, + "probability": 0.9379 + }, + { + "start": 1286.96, + "end": 1291.27, + "probability": 0.9698 + }, + { + "start": 1292.7, + "end": 1293.06, + "probability": 0.8124 + }, + { + "start": 1293.64, + "end": 1296.46, + "probability": 0.9571 + }, + { + "start": 1297.54, + "end": 1302.3, + "probability": 0.9867 + }, + { + "start": 1303.16, + "end": 1305.08, + "probability": 0.7087 + }, + { + "start": 1305.74, + "end": 1306.85, + "probability": 0.7228 + }, + { + "start": 1308.14, + "end": 1309.54, + "probability": 0.9307 + }, + { + "start": 1311.54, + "end": 1314.5, + "probability": 0.9087 + }, + { + "start": 1315.44, + "end": 1319.12, + "probability": 0.9537 + }, + { + "start": 1319.3, + "end": 1319.48, + "probability": 0.7885 + }, + { + "start": 1320.54, + "end": 1321.22, + "probability": 0.6091 + }, + { + "start": 1321.36, + "end": 1323.98, + "probability": 0.9582 + }, + { + "start": 1323.98, + "end": 1327.26, + "probability": 0.9284 + }, + { + "start": 1327.36, + "end": 1328.48, + "probability": 0.9973 + }, + { + "start": 1329.24, + "end": 1330.22, + "probability": 0.9749 + }, + { + "start": 1339.4, + "end": 1340.7, + "probability": 0.743 + }, + { + "start": 1343.1, + "end": 1343.68, + "probability": 0.723 + }, + { + "start": 1344.48, + "end": 1346.21, + "probability": 0.8911 + }, + { + "start": 1346.7, + "end": 1347.0, + "probability": 0.6927 + }, + { + "start": 1347.54, + "end": 1349.86, + "probability": 0.3523 + }, + { + "start": 1363.9, + "end": 1366.44, + "probability": 0.5045 + }, + { + "start": 1368.7, + "end": 1370.16, + "probability": 0.7396 + }, + { + "start": 1371.1, + "end": 1372.28, + "probability": 0.9414 + }, + { + "start": 1373.06, + "end": 1375.26, + "probability": 0.9712 + }, + { + "start": 1376.56, + "end": 1377.68, + "probability": 0.8843 + }, + { + "start": 1379.14, + "end": 1380.3, + "probability": 0.748 + }, + { + "start": 1382.3, + "end": 1383.24, + "probability": 0.9561 + }, + { + "start": 1384.18, + "end": 1385.04, + "probability": 0.916 + }, + { + "start": 1385.58, + "end": 1385.96, + "probability": 0.7414 + }, + { + "start": 1387.08, + "end": 1388.48, + "probability": 0.309 + }, + { + "start": 1389.0, + "end": 1389.46, + "probability": 0.579 + }, + { + "start": 1392.02, + "end": 1394.36, + "probability": 0.7972 + }, + { + "start": 1395.1, + "end": 1397.16, + "probability": 0.9059 + }, + { + "start": 1398.22, + "end": 1400.9, + "probability": 0.9878 + }, + { + "start": 1401.86, + "end": 1404.04, + "probability": 0.9866 + }, + { + "start": 1404.94, + "end": 1405.96, + "probability": 0.9237 + }, + { + "start": 1406.44, + "end": 1408.9, + "probability": 0.1181 + }, + { + "start": 1408.9, + "end": 1409.11, + "probability": 0.4503 + }, + { + "start": 1410.28, + "end": 1413.5, + "probability": 0.8548 + }, + { + "start": 1415.92, + "end": 1417.6, + "probability": 0.2143 + }, + { + "start": 1417.6, + "end": 1417.62, + "probability": 0.0261 + }, + { + "start": 1417.62, + "end": 1420.0, + "probability": 0.9659 + }, + { + "start": 1420.38, + "end": 1421.66, + "probability": 0.9481 + }, + { + "start": 1426.38, + "end": 1428.34, + "probability": 0.9865 + }, + { + "start": 1429.32, + "end": 1430.6, + "probability": 0.9973 + }, + { + "start": 1430.72, + "end": 1434.64, + "probability": 0.9992 + }, + { + "start": 1436.18, + "end": 1438.0, + "probability": 0.999 + }, + { + "start": 1439.56, + "end": 1440.38, + "probability": 0.9881 + }, + { + "start": 1441.34, + "end": 1443.68, + "probability": 0.9747 + }, + { + "start": 1447.4, + "end": 1449.16, + "probability": 0.897 + }, + { + "start": 1452.86, + "end": 1454.0, + "probability": 0.7997 + }, + { + "start": 1457.0, + "end": 1458.22, + "probability": 0.7475 + }, + { + "start": 1459.04, + "end": 1459.48, + "probability": 0.884 + }, + { + "start": 1461.2, + "end": 1463.12, + "probability": 0.8676 + }, + { + "start": 1464.82, + "end": 1466.7, + "probability": 0.9946 + }, + { + "start": 1468.12, + "end": 1469.46, + "probability": 0.9993 + }, + { + "start": 1470.86, + "end": 1472.02, + "probability": 0.9785 + }, + { + "start": 1473.16, + "end": 1474.36, + "probability": 0.8514 + }, + { + "start": 1475.74, + "end": 1477.92, + "probability": 0.9625 + }, + { + "start": 1478.46, + "end": 1481.38, + "probability": 0.9883 + }, + { + "start": 1482.64, + "end": 1483.36, + "probability": 0.163 + }, + { + "start": 1483.54, + "end": 1485.56, + "probability": 0.7903 + }, + { + "start": 1485.66, + "end": 1486.54, + "probability": 0.9014 + }, + { + "start": 1487.48, + "end": 1489.0, + "probability": 0.7195 + }, + { + "start": 1489.88, + "end": 1491.62, + "probability": 0.0126 + }, + { + "start": 1491.62, + "end": 1494.76, + "probability": 0.7748 + }, + { + "start": 1495.72, + "end": 1495.72, + "probability": 0.1075 + }, + { + "start": 1495.72, + "end": 1497.28, + "probability": 0.9927 + }, + { + "start": 1498.06, + "end": 1499.26, + "probability": 0.9928 + }, + { + "start": 1499.32, + "end": 1502.48, + "probability": 0.8225 + }, + { + "start": 1503.7, + "end": 1504.9, + "probability": 0.7776 + }, + { + "start": 1506.22, + "end": 1506.88, + "probability": 0.8195 + }, + { + "start": 1507.7, + "end": 1508.84, + "probability": 0.0825 + }, + { + "start": 1508.84, + "end": 1511.7, + "probability": 0.4646 + }, + { + "start": 1512.26, + "end": 1512.32, + "probability": 0.1088 + }, + { + "start": 1512.32, + "end": 1512.32, + "probability": 0.2075 + }, + { + "start": 1512.32, + "end": 1516.52, + "probability": 0.7266 + }, + { + "start": 1517.08, + "end": 1520.0, + "probability": 0.7269 + }, + { + "start": 1520.7, + "end": 1522.84, + "probability": 0.9706 + }, + { + "start": 1522.84, + "end": 1523.9, + "probability": 0.4186 + }, + { + "start": 1523.92, + "end": 1524.34, + "probability": 0.6595 + }, + { + "start": 1524.54, + "end": 1525.36, + "probability": 0.2128 + }, + { + "start": 1525.36, + "end": 1525.36, + "probability": 0.358 + }, + { + "start": 1525.6, + "end": 1527.78, + "probability": 0.5 + }, + { + "start": 1527.78, + "end": 1528.94, + "probability": 0.0768 + }, + { + "start": 1528.96, + "end": 1529.54, + "probability": 0.1509 + }, + { + "start": 1530.86, + "end": 1532.78, + "probability": 0.0544 + }, + { + "start": 1532.78, + "end": 1532.92, + "probability": 0.0527 + }, + { + "start": 1532.94, + "end": 1533.04, + "probability": 0.1007 + }, + { + "start": 1533.06, + "end": 1533.16, + "probability": 0.0537 + }, + { + "start": 1533.22, + "end": 1534.32, + "probability": 0.6177 + }, + { + "start": 1536.64, + "end": 1536.66, + "probability": 0.2352 + }, + { + "start": 1536.66, + "end": 1540.7, + "probability": 0.1355 + }, + { + "start": 1544.7, + "end": 1545.66, + "probability": 0.2251 + }, + { + "start": 1545.66, + "end": 1545.87, + "probability": 0.1844 + }, + { + "start": 1546.44, + "end": 1547.22, + "probability": 0.1237 + }, + { + "start": 1547.3, + "end": 1547.56, + "probability": 0.3492 + }, + { + "start": 1547.98, + "end": 1550.32, + "probability": 0.0865 + }, + { + "start": 1550.64, + "end": 1552.68, + "probability": 0.3829 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.0, + "end": 1575.0, + "probability": 0.0 + }, + { + "start": 1575.14, + "end": 1575.5, + "probability": 0.2223 + }, + { + "start": 1575.7, + "end": 1576.3, + "probability": 0.7334 + }, + { + "start": 1576.44, + "end": 1578.2, + "probability": 0.9639 + }, + { + "start": 1578.62, + "end": 1580.8, + "probability": 0.9173 + }, + { + "start": 1582.26, + "end": 1582.56, + "probability": 0.1285 + }, + { + "start": 1584.18, + "end": 1585.04, + "probability": 0.755 + }, + { + "start": 1586.48, + "end": 1586.7, + "probability": 0.3422 + }, + { + "start": 1587.44, + "end": 1587.46, + "probability": 0.097 + }, + { + "start": 1587.62, + "end": 1588.66, + "probability": 0.7931 + }, + { + "start": 1588.82, + "end": 1589.31, + "probability": 0.0807 + }, + { + "start": 1589.88, + "end": 1593.06, + "probability": 0.8276 + }, + { + "start": 1593.18, + "end": 1594.4, + "probability": 0.2569 + }, + { + "start": 1595.42, + "end": 1595.72, + "probability": 0.1516 + }, + { + "start": 1595.72, + "end": 1597.5, + "probability": 0.4514 + }, + { + "start": 1599.84, + "end": 1601.35, + "probability": 0.0049 + }, + { + "start": 1601.6, + "end": 1603.52, + "probability": 0.3631 + }, + { + "start": 1604.4, + "end": 1605.64, + "probability": 0.2217 + }, + { + "start": 1606.8, + "end": 1608.86, + "probability": 0.206 + }, + { + "start": 1610.6, + "end": 1611.12, + "probability": 0.0589 + }, + { + "start": 1611.22, + "end": 1614.02, + "probability": 0.1473 + }, + { + "start": 1614.02, + "end": 1615.11, + "probability": 0.0356 + }, + { + "start": 1615.9, + "end": 1615.98, + "probability": 0.0034 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0 + }, + { + "start": 1721.22, + "end": 1721.66, + "probability": 0.0371 + }, + { + "start": 1721.66, + "end": 1721.66, + "probability": 0.0454 + }, + { + "start": 1721.66, + "end": 1721.66, + "probability": 0.0527 + }, + { + "start": 1721.66, + "end": 1721.82, + "probability": 0.2042 + }, + { + "start": 1721.82, + "end": 1722.04, + "probability": 0.2627 + }, + { + "start": 1723.02, + "end": 1724.74, + "probability": 0.7977 + }, + { + "start": 1726.16, + "end": 1729.38, + "probability": 0.9741 + }, + { + "start": 1729.44, + "end": 1730.42, + "probability": 0.7594 + }, + { + "start": 1730.62, + "end": 1731.0, + "probability": 0.6497 + }, + { + "start": 1732.06, + "end": 1733.08, + "probability": 0.974 + }, + { + "start": 1733.88, + "end": 1734.5, + "probability": 0.831 + }, + { + "start": 1735.96, + "end": 1737.56, + "probability": 0.9632 + }, + { + "start": 1738.86, + "end": 1739.58, + "probability": 0.8769 + }, + { + "start": 1740.78, + "end": 1742.14, + "probability": 0.9016 + }, + { + "start": 1742.28, + "end": 1743.62, + "probability": 0.9918 + }, + { + "start": 1744.14, + "end": 1744.86, + "probability": 0.7212 + }, + { + "start": 1745.34, + "end": 1746.14, + "probability": 0.8295 + }, + { + "start": 1747.24, + "end": 1750.94, + "probability": 0.9973 + }, + { + "start": 1751.74, + "end": 1752.72, + "probability": 0.9783 + }, + { + "start": 1754.58, + "end": 1756.4, + "probability": 0.9724 + }, + { + "start": 1757.26, + "end": 1758.86, + "probability": 0.96 + }, + { + "start": 1760.06, + "end": 1763.24, + "probability": 0.9959 + }, + { + "start": 1763.6, + "end": 1764.58, + "probability": 0.6086 + }, + { + "start": 1766.04, + "end": 1766.82, + "probability": 0.7501 + }, + { + "start": 1767.88, + "end": 1769.56, + "probability": 0.9243 + }, + { + "start": 1770.46, + "end": 1772.34, + "probability": 0.9928 + }, + { + "start": 1774.16, + "end": 1775.74, + "probability": 0.9299 + }, + { + "start": 1777.04, + "end": 1778.88, + "probability": 0.9425 + }, + { + "start": 1780.0, + "end": 1780.72, + "probability": 0.6932 + }, + { + "start": 1781.46, + "end": 1782.19, + "probability": 0.6125 + }, + { + "start": 1784.16, + "end": 1785.66, + "probability": 0.7996 + }, + { + "start": 1786.4, + "end": 1786.84, + "probability": 0.4041 + }, + { + "start": 1787.76, + "end": 1790.3, + "probability": 0.9775 + }, + { + "start": 1791.52, + "end": 1797.52, + "probability": 0.9526 + }, + { + "start": 1798.34, + "end": 1799.08, + "probability": 0.7683 + }, + { + "start": 1800.0, + "end": 1802.64, + "probability": 0.6437 + }, + { + "start": 1803.48, + "end": 1805.6, + "probability": 0.9513 + }, + { + "start": 1806.28, + "end": 1809.08, + "probability": 0.9663 + }, + { + "start": 1810.58, + "end": 1810.72, + "probability": 0.5046 + }, + { + "start": 1810.9, + "end": 1815.18, + "probability": 0.9497 + }, + { + "start": 1815.76, + "end": 1816.82, + "probability": 0.9871 + }, + { + "start": 1817.6, + "end": 1819.18, + "probability": 0.9751 + }, + { + "start": 1820.32, + "end": 1822.82, + "probability": 0.7214 + }, + { + "start": 1822.9, + "end": 1824.96, + "probability": 0.7193 + }, + { + "start": 1825.64, + "end": 1828.6, + "probability": 0.9403 + }, + { + "start": 1829.64, + "end": 1833.74, + "probability": 0.9845 + }, + { + "start": 1834.18, + "end": 1835.44, + "probability": 0.996 + }, + { + "start": 1836.06, + "end": 1836.88, + "probability": 0.9944 + }, + { + "start": 1837.68, + "end": 1838.48, + "probability": 0.9708 + }, + { + "start": 1839.28, + "end": 1840.88, + "probability": 0.9949 + }, + { + "start": 1841.5, + "end": 1842.12, + "probability": 0.6598 + }, + { + "start": 1842.28, + "end": 1844.5, + "probability": 0.9963 + }, + { + "start": 1845.98, + "end": 1847.82, + "probability": 0.9116 + }, + { + "start": 1848.68, + "end": 1850.88, + "probability": 0.967 + }, + { + "start": 1851.8, + "end": 1853.34, + "probability": 0.9039 + }, + { + "start": 1854.42, + "end": 1855.58, + "probability": 0.8744 + }, + { + "start": 1856.74, + "end": 1858.66, + "probability": 0.6408 + }, + { + "start": 1860.38, + "end": 1861.24, + "probability": 0.8379 + }, + { + "start": 1861.98, + "end": 1867.3, + "probability": 0.9876 + }, + { + "start": 1868.08, + "end": 1869.68, + "probability": 0.7946 + }, + { + "start": 1869.9, + "end": 1870.8, + "probability": 0.9397 + }, + { + "start": 1870.96, + "end": 1871.86, + "probability": 0.6489 + }, + { + "start": 1873.14, + "end": 1874.62, + "probability": 0.9482 + }, + { + "start": 1875.34, + "end": 1877.6, + "probability": 0.6824 + }, + { + "start": 1878.42, + "end": 1881.84, + "probability": 0.9732 + }, + { + "start": 1882.44, + "end": 1883.7, + "probability": 0.9349 + }, + { + "start": 1884.42, + "end": 1884.92, + "probability": 0.7908 + }, + { + "start": 1885.84, + "end": 1886.52, + "probability": 0.7056 + }, + { + "start": 1887.4, + "end": 1889.38, + "probability": 0.6336 + }, + { + "start": 1890.08, + "end": 1891.94, + "probability": 0.8726 + }, + { + "start": 1892.62, + "end": 1896.42, + "probability": 0.9818 + }, + { + "start": 1896.86, + "end": 1898.78, + "probability": 0.7921 + }, + { + "start": 1899.3, + "end": 1899.5, + "probability": 0.7668 + }, + { + "start": 1899.9, + "end": 1901.98, + "probability": 0.9507 + }, + { + "start": 1902.1, + "end": 1902.4, + "probability": 0.8991 + }, + { + "start": 1903.2, + "end": 1904.04, + "probability": 0.8674 + }, + { + "start": 1904.76, + "end": 1905.82, + "probability": 0.6493 + }, + { + "start": 1907.76, + "end": 1910.48, + "probability": 0.8724 + }, + { + "start": 1911.22, + "end": 1913.82, + "probability": 0.988 + }, + { + "start": 1914.28, + "end": 1914.58, + "probability": 0.7901 + }, + { + "start": 1916.24, + "end": 1919.08, + "probability": 0.9355 + }, + { + "start": 1919.48, + "end": 1922.94, + "probability": 0.8731 + }, + { + "start": 1923.54, + "end": 1925.14, + "probability": 0.959 + }, + { + "start": 1925.66, + "end": 1928.01, + "probability": 0.9245 + }, + { + "start": 1929.78, + "end": 1931.82, + "probability": 0.795 + }, + { + "start": 1932.34, + "end": 1933.96, + "probability": 0.6813 + }, + { + "start": 1935.68, + "end": 1935.9, + "probability": 0.7587 + }, + { + "start": 1937.52, + "end": 1938.86, + "probability": 0.9808 + }, + { + "start": 1939.52, + "end": 1941.16, + "probability": 0.9956 + }, + { + "start": 1941.8, + "end": 1942.9, + "probability": 0.9299 + }, + { + "start": 1943.5, + "end": 1944.58, + "probability": 0.9087 + }, + { + "start": 1945.28, + "end": 1945.92, + "probability": 0.9947 + }, + { + "start": 1946.68, + "end": 1949.12, + "probability": 0.9964 + }, + { + "start": 1950.48, + "end": 1953.74, + "probability": 0.9355 + }, + { + "start": 1954.44, + "end": 1956.64, + "probability": 0.9721 + }, + { + "start": 1957.58, + "end": 1958.14, + "probability": 0.6574 + }, + { + "start": 1958.64, + "end": 1960.98, + "probability": 0.9923 + }, + { + "start": 1962.52, + "end": 1963.28, + "probability": 0.9352 + }, + { + "start": 1963.52, + "end": 1964.4, + "probability": 0.7709 + }, + { + "start": 1964.84, + "end": 1967.7, + "probability": 0.9938 + }, + { + "start": 1968.1, + "end": 1972.64, + "probability": 0.9937 + }, + { + "start": 1973.68, + "end": 1976.88, + "probability": 0.9775 + }, + { + "start": 1978.36, + "end": 1982.75, + "probability": 0.9844 + }, + { + "start": 1985.74, + "end": 1986.76, + "probability": 0.8116 + }, + { + "start": 1987.56, + "end": 1988.36, + "probability": 0.7217 + }, + { + "start": 1988.54, + "end": 1989.12, + "probability": 0.6095 + }, + { + "start": 1989.12, + "end": 1991.06, + "probability": 0.7909 + }, + { + "start": 1991.12, + "end": 1995.88, + "probability": 0.9927 + }, + { + "start": 1996.02, + "end": 1997.25, + "probability": 0.7884 + }, + { + "start": 1998.14, + "end": 2000.88, + "probability": 0.7922 + }, + { + "start": 2001.04, + "end": 2001.18, + "probability": 0.9709 + }, + { + "start": 2002.32, + "end": 2003.5, + "probability": 0.9312 + }, + { + "start": 2003.64, + "end": 2004.68, + "probability": 0.9053 + }, + { + "start": 2004.76, + "end": 2006.28, + "probability": 0.9297 + }, + { + "start": 2006.42, + "end": 2007.2, + "probability": 0.7916 + }, + { + "start": 2007.4, + "end": 2007.64, + "probability": 0.7604 + }, + { + "start": 2008.82, + "end": 2011.42, + "probability": 0.9533 + }, + { + "start": 2011.42, + "end": 2014.78, + "probability": 0.9575 + }, + { + "start": 2014.94, + "end": 2016.62, + "probability": 0.41 + }, + { + "start": 2017.48, + "end": 2019.8, + "probability": 0.9323 + }, + { + "start": 2023.06, + "end": 2023.22, + "probability": 0.4952 + }, + { + "start": 2024.12, + "end": 2027.38, + "probability": 0.6642 + }, + { + "start": 2027.64, + "end": 2030.04, + "probability": 0.8781 + }, + { + "start": 2030.88, + "end": 2032.04, + "probability": 0.6135 + }, + { + "start": 2032.16, + "end": 2035.02, + "probability": 0.9912 + }, + { + "start": 2035.02, + "end": 2038.97, + "probability": 0.9002 + }, + { + "start": 2043.1, + "end": 2044.64, + "probability": 0.2241 + }, + { + "start": 2054.78, + "end": 2056.76, + "probability": 0.0801 + }, + { + "start": 2058.2, + "end": 2059.02, + "probability": 0.1516 + }, + { + "start": 2061.84, + "end": 2062.58, + "probability": 0.1555 + }, + { + "start": 2066.19, + "end": 2067.84, + "probability": 0.0498 + }, + { + "start": 2079.1, + "end": 2079.84, + "probability": 0.0544 + }, + { + "start": 2090.76, + "end": 2092.72, + "probability": 0.1051 + }, + { + "start": 2094.74, + "end": 2098.82, + "probability": 0.6341 + }, + { + "start": 2099.18, + "end": 2100.96, + "probability": 0.844 + }, + { + "start": 2102.88, + "end": 2105.28, + "probability": 0.9809 + }, + { + "start": 2106.26, + "end": 2109.06, + "probability": 0.9959 + }, + { + "start": 2113.18, + "end": 2114.1, + "probability": 0.8658 + }, + { + "start": 2114.98, + "end": 2117.06, + "probability": 0.9862 + }, + { + "start": 2117.94, + "end": 2120.42, + "probability": 0.8072 + }, + { + "start": 2122.4, + "end": 2122.74, + "probability": 0.938 + }, + { + "start": 2124.92, + "end": 2125.46, + "probability": 0.4607 + }, + { + "start": 2126.38, + "end": 2130.38, + "probability": 0.8927 + }, + { + "start": 2134.92, + "end": 2136.6, + "probability": 0.979 + }, + { + "start": 2140.02, + "end": 2141.82, + "probability": 0.9893 + }, + { + "start": 2143.88, + "end": 2145.14, + "probability": 0.964 + }, + { + "start": 2146.56, + "end": 2150.06, + "probability": 0.9275 + }, + { + "start": 2151.24, + "end": 2152.72, + "probability": 0.787 + }, + { + "start": 2153.44, + "end": 2154.53, + "probability": 0.5976 + }, + { + "start": 2155.56, + "end": 2158.64, + "probability": 0.9729 + }, + { + "start": 2160.3, + "end": 2162.4, + "probability": 0.9834 + }, + { + "start": 2163.38, + "end": 2164.48, + "probability": 0.6126 + }, + { + "start": 2165.14, + "end": 2165.88, + "probability": 0.975 + }, + { + "start": 2167.94, + "end": 2168.56, + "probability": 0.9646 + }, + { + "start": 2169.7, + "end": 2174.44, + "probability": 0.9504 + }, + { + "start": 2175.92, + "end": 2180.56, + "probability": 0.9534 + }, + { + "start": 2182.0, + "end": 2183.98, + "probability": 0.9846 + }, + { + "start": 2184.2, + "end": 2186.02, + "probability": 0.9112 + }, + { + "start": 2186.92, + "end": 2191.3, + "probability": 0.9922 + }, + { + "start": 2191.44, + "end": 2191.92, + "probability": 0.4902 + }, + { + "start": 2194.42, + "end": 2195.4, + "probability": 0.995 + }, + { + "start": 2198.2, + "end": 2202.6, + "probability": 0.9941 + }, + { + "start": 2203.5, + "end": 2206.52, + "probability": 0.9893 + }, + { + "start": 2207.06, + "end": 2207.42, + "probability": 0.6895 + }, + { + "start": 2208.24, + "end": 2208.96, + "probability": 0.5 + }, + { + "start": 2211.52, + "end": 2214.78, + "probability": 0.8193 + }, + { + "start": 2215.48, + "end": 2218.52, + "probability": 0.5424 + }, + { + "start": 2219.34, + "end": 2222.62, + "probability": 0.9692 + }, + { + "start": 2223.1, + "end": 2224.2, + "probability": 0.7439 + }, + { + "start": 2225.24, + "end": 2226.3, + "probability": 0.954 + }, + { + "start": 2227.72, + "end": 2229.5, + "probability": 0.029 + }, + { + "start": 2231.46, + "end": 2231.96, + "probability": 0.247 + }, + { + "start": 2232.98, + "end": 2234.3, + "probability": 0.1032 + }, + { + "start": 2234.84, + "end": 2237.26, + "probability": 0.825 + }, + { + "start": 2238.9, + "end": 2239.25, + "probability": 0.6187 + }, + { + "start": 2241.38, + "end": 2242.38, + "probability": 0.7509 + }, + { + "start": 2243.02, + "end": 2243.72, + "probability": 0.7156 + }, + { + "start": 2244.56, + "end": 2245.24, + "probability": 0.8594 + }, + { + "start": 2246.65, + "end": 2253.5, + "probability": 0.3162 + }, + { + "start": 2253.54, + "end": 2259.52, + "probability": 0.826 + }, + { + "start": 2259.68, + "end": 2259.76, + "probability": 0.15 + }, + { + "start": 2259.76, + "end": 2260.74, + "probability": 0.5647 + }, + { + "start": 2261.74, + "end": 2264.86, + "probability": 0.8805 + }, + { + "start": 2266.1, + "end": 2266.22, + "probability": 0.0999 + }, + { + "start": 2266.22, + "end": 2266.22, + "probability": 0.4576 + }, + { + "start": 2266.44, + "end": 2267.36, + "probability": 0.8478 + }, + { + "start": 2267.48, + "end": 2269.92, + "probability": 0.9409 + }, + { + "start": 2270.25, + "end": 2270.7, + "probability": 0.3141 + }, + { + "start": 2270.94, + "end": 2273.84, + "probability": 0.8192 + }, + { + "start": 2274.92, + "end": 2275.64, + "probability": 0.8091 + }, + { + "start": 2276.66, + "end": 2278.98, + "probability": 0.9924 + }, + { + "start": 2281.16, + "end": 2282.86, + "probability": 0.9836 + }, + { + "start": 2286.2, + "end": 2287.14, + "probability": 0.9335 + }, + { + "start": 2288.58, + "end": 2291.84, + "probability": 0.9856 + }, + { + "start": 2293.82, + "end": 2295.24, + "probability": 0.8613 + }, + { + "start": 2299.3, + "end": 2301.48, + "probability": 0.7072 + }, + { + "start": 2302.16, + "end": 2302.8, + "probability": 0.6195 + }, + { + "start": 2303.66, + "end": 2304.72, + "probability": 0.9447 + }, + { + "start": 2306.44, + "end": 2314.02, + "probability": 0.9907 + }, + { + "start": 2314.62, + "end": 2315.76, + "probability": 0.8632 + }, + { + "start": 2317.54, + "end": 2318.89, + "probability": 0.9755 + }, + { + "start": 2321.56, + "end": 2323.78, + "probability": 0.9814 + }, + { + "start": 2324.12, + "end": 2327.78, + "probability": 0.9968 + }, + { + "start": 2328.6, + "end": 2330.76, + "probability": 0.9598 + }, + { + "start": 2334.46, + "end": 2335.56, + "probability": 0.6209 + }, + { + "start": 2336.7, + "end": 2338.46, + "probability": 0.9712 + }, + { + "start": 2339.46, + "end": 2340.38, + "probability": 0.9071 + }, + { + "start": 2341.46, + "end": 2342.4, + "probability": 0.8426 + }, + { + "start": 2342.52, + "end": 2343.68, + "probability": 0.664 + }, + { + "start": 2343.86, + "end": 2345.16, + "probability": 0.9966 + }, + { + "start": 2346.22, + "end": 2349.22, + "probability": 0.9941 + }, + { + "start": 2349.22, + "end": 2351.56, + "probability": 0.9509 + }, + { + "start": 2352.2, + "end": 2355.4, + "probability": 0.9938 + }, + { + "start": 2355.41, + "end": 2358.76, + "probability": 0.9754 + }, + { + "start": 2360.84, + "end": 2363.28, + "probability": 0.9705 + }, + { + "start": 2363.96, + "end": 2366.96, + "probability": 0.9989 + }, + { + "start": 2369.52, + "end": 2372.92, + "probability": 0.9834 + }, + { + "start": 2374.32, + "end": 2375.5, + "probability": 0.9453 + }, + { + "start": 2376.22, + "end": 2377.26, + "probability": 0.5601 + }, + { + "start": 2377.48, + "end": 2377.6, + "probability": 0.3604 + }, + { + "start": 2378.56, + "end": 2380.84, + "probability": 0.9946 + }, + { + "start": 2382.96, + "end": 2384.42, + "probability": 0.8951 + }, + { + "start": 2385.64, + "end": 2390.92, + "probability": 0.9855 + }, + { + "start": 2391.82, + "end": 2395.32, + "probability": 0.9613 + }, + { + "start": 2396.54, + "end": 2398.5, + "probability": 0.9977 + }, + { + "start": 2403.1, + "end": 2407.4, + "probability": 0.9845 + }, + { + "start": 2409.04, + "end": 2413.38, + "probability": 0.626 + }, + { + "start": 2414.54, + "end": 2416.24, + "probability": 0.6232 + }, + { + "start": 2419.0, + "end": 2421.76, + "probability": 0.9681 + }, + { + "start": 2422.84, + "end": 2425.62, + "probability": 0.5406 + }, + { + "start": 2426.58, + "end": 2428.32, + "probability": 0.974 + }, + { + "start": 2429.0, + "end": 2430.12, + "probability": 0.8616 + }, + { + "start": 2430.28, + "end": 2431.66, + "probability": 0.9906 + }, + { + "start": 2432.16, + "end": 2433.6, + "probability": 0.9623 + }, + { + "start": 2434.96, + "end": 2438.82, + "probability": 0.9928 + }, + { + "start": 2440.18, + "end": 2442.58, + "probability": 0.9886 + }, + { + "start": 2442.6, + "end": 2444.42, + "probability": 0.9936 + }, + { + "start": 2445.44, + "end": 2447.46, + "probability": 0.906 + }, + { + "start": 2447.9, + "end": 2448.94, + "probability": 0.8511 + }, + { + "start": 2449.56, + "end": 2450.12, + "probability": 0.9114 + }, + { + "start": 2450.64, + "end": 2453.32, + "probability": 0.9002 + }, + { + "start": 2453.92, + "end": 2456.62, + "probability": 0.9126 + }, + { + "start": 2457.78, + "end": 2459.02, + "probability": 0.9136 + }, + { + "start": 2460.14, + "end": 2460.28, + "probability": 0.6392 + }, + { + "start": 2460.34, + "end": 2463.02, + "probability": 0.9932 + }, + { + "start": 2463.02, + "end": 2465.48, + "probability": 0.9878 + }, + { + "start": 2469.34, + "end": 2471.74, + "probability": 0.7648 + }, + { + "start": 2474.12, + "end": 2476.5, + "probability": 0.7569 + }, + { + "start": 2477.98, + "end": 2482.25, + "probability": 0.9921 + }, + { + "start": 2485.9, + "end": 2489.36, + "probability": 0.9537 + }, + { + "start": 2489.56, + "end": 2491.0, + "probability": 0.6997 + }, + { + "start": 2494.06, + "end": 2495.58, + "probability": 0.6978 + }, + { + "start": 2497.6, + "end": 2499.78, + "probability": 0.8928 + }, + { + "start": 2501.2, + "end": 2502.42, + "probability": 0.9592 + }, + { + "start": 2504.1, + "end": 2505.4, + "probability": 0.9453 + }, + { + "start": 2508.14, + "end": 2509.76, + "probability": 0.833 + }, + { + "start": 2511.14, + "end": 2511.9, + "probability": 0.273 + }, + { + "start": 2513.24, + "end": 2513.88, + "probability": 0.3648 + }, + { + "start": 2514.94, + "end": 2515.9, + "probability": 0.9602 + }, + { + "start": 2516.08, + "end": 2518.22, + "probability": 0.7734 + }, + { + "start": 2518.3, + "end": 2519.18, + "probability": 0.8926 + }, + { + "start": 2520.86, + "end": 2522.08, + "probability": 0.9248 + }, + { + "start": 2523.08, + "end": 2526.58, + "probability": 0.8979 + }, + { + "start": 2528.7, + "end": 2533.24, + "probability": 0.9155 + }, + { + "start": 2533.84, + "end": 2535.1, + "probability": 0.3918 + }, + { + "start": 2535.92, + "end": 2538.7, + "probability": 0.9325 + }, + { + "start": 2539.14, + "end": 2540.22, + "probability": 0.6925 + }, + { + "start": 2541.36, + "end": 2543.26, + "probability": 0.9855 + }, + { + "start": 2545.24, + "end": 2551.26, + "probability": 0.9229 + }, + { + "start": 2552.7, + "end": 2553.74, + "probability": 0.8618 + }, + { + "start": 2559.42, + "end": 2560.78, + "probability": 0.453 + }, + { + "start": 2562.74, + "end": 2565.6, + "probability": 0.8225 + }, + { + "start": 2572.44, + "end": 2578.42, + "probability": 0.9549 + }, + { + "start": 2579.44, + "end": 2581.38, + "probability": 0.7366 + }, + { + "start": 2582.14, + "end": 2583.05, + "probability": 0.5328 + }, + { + "start": 2583.76, + "end": 2587.66, + "probability": 0.9516 + }, + { + "start": 2589.5, + "end": 2589.9, + "probability": 0.9475 + }, + { + "start": 2590.58, + "end": 2593.84, + "probability": 0.9987 + }, + { + "start": 2595.22, + "end": 2597.72, + "probability": 0.9066 + }, + { + "start": 2599.44, + "end": 2605.29, + "probability": 0.8735 + }, + { + "start": 2605.86, + "end": 2607.54, + "probability": 0.658 + }, + { + "start": 2608.72, + "end": 2610.46, + "probability": 0.6681 + }, + { + "start": 2611.68, + "end": 2613.77, + "probability": 0.9744 + }, + { + "start": 2614.76, + "end": 2619.7, + "probability": 0.9548 + }, + { + "start": 2620.06, + "end": 2620.38, + "probability": 0.6001 + }, + { + "start": 2620.88, + "end": 2621.14, + "probability": 0.2752 + }, + { + "start": 2621.2, + "end": 2625.08, + "probability": 0.981 + }, + { + "start": 2633.52, + "end": 2633.52, + "probability": 0.3504 + }, + { + "start": 2633.52, + "end": 2633.52, + "probability": 0.3524 + }, + { + "start": 2633.52, + "end": 2633.52, + "probability": 0.0432 + }, + { + "start": 2633.52, + "end": 2633.62, + "probability": 0.0355 + }, + { + "start": 2664.5, + "end": 2665.28, + "probability": 0.509 + }, + { + "start": 2667.1, + "end": 2668.32, + "probability": 0.7365 + }, + { + "start": 2669.78, + "end": 2670.74, + "probability": 0.8555 + }, + { + "start": 2674.18, + "end": 2676.06, + "probability": 0.721 + }, + { + "start": 2676.46, + "end": 2678.42, + "probability": 0.7604 + }, + { + "start": 2679.34, + "end": 2680.9, + "probability": 0.8638 + }, + { + "start": 2681.7, + "end": 2682.74, + "probability": 0.9828 + }, + { + "start": 2683.8, + "end": 2684.84, + "probability": 0.9297 + }, + { + "start": 2684.94, + "end": 2687.32, + "probability": 0.9976 + }, + { + "start": 2688.96, + "end": 2690.58, + "probability": 0.8709 + }, + { + "start": 2692.66, + "end": 2694.24, + "probability": 0.7768 + }, + { + "start": 2696.06, + "end": 2699.14, + "probability": 0.9268 + }, + { + "start": 2699.2, + "end": 2699.88, + "probability": 0.9323 + }, + { + "start": 2700.04, + "end": 2702.36, + "probability": 0.7259 + }, + { + "start": 2703.16, + "end": 2704.48, + "probability": 0.9598 + }, + { + "start": 2705.62, + "end": 2706.68, + "probability": 0.9619 + }, + { + "start": 2708.18, + "end": 2709.16, + "probability": 0.9359 + }, + { + "start": 2710.5, + "end": 2710.78, + "probability": 0.972 + }, + { + "start": 2711.5, + "end": 2712.28, + "probability": 0.9181 + }, + { + "start": 2713.44, + "end": 2715.0, + "probability": 0.9565 + }, + { + "start": 2716.76, + "end": 2719.6, + "probability": 0.771 + }, + { + "start": 2720.58, + "end": 2723.72, + "probability": 0.9954 + }, + { + "start": 2725.72, + "end": 2726.96, + "probability": 0.8661 + }, + { + "start": 2728.4, + "end": 2733.96, + "probability": 0.9938 + }, + { + "start": 2734.7, + "end": 2736.38, + "probability": 0.965 + }, + { + "start": 2737.2, + "end": 2739.44, + "probability": 0.9917 + }, + { + "start": 2740.06, + "end": 2741.54, + "probability": 0.8566 + }, + { + "start": 2743.1, + "end": 2746.28, + "probability": 0.8805 + }, + { + "start": 2747.1, + "end": 2751.06, + "probability": 0.9151 + }, + { + "start": 2751.88, + "end": 2752.24, + "probability": 0.6624 + }, + { + "start": 2752.8, + "end": 2754.08, + "probability": 0.9578 + }, + { + "start": 2755.24, + "end": 2755.7, + "probability": 0.9573 + }, + { + "start": 2756.56, + "end": 2759.12, + "probability": 0.9923 + }, + { + "start": 2759.12, + "end": 2762.04, + "probability": 0.9994 + }, + { + "start": 2762.88, + "end": 2765.0, + "probability": 0.9235 + }, + { + "start": 2765.94, + "end": 2767.0, + "probability": 0.9334 + }, + { + "start": 2768.1, + "end": 2768.92, + "probability": 0.9103 + }, + { + "start": 2769.58, + "end": 2771.3, + "probability": 0.9218 + }, + { + "start": 2771.92, + "end": 2773.9, + "probability": 0.9959 + }, + { + "start": 2774.5, + "end": 2775.36, + "probability": 0.854 + }, + { + "start": 2776.06, + "end": 2778.12, + "probability": 0.7991 + }, + { + "start": 2779.4, + "end": 2779.54, + "probability": 0.5992 + }, + { + "start": 2780.18, + "end": 2781.16, + "probability": 0.9894 + }, + { + "start": 2781.96, + "end": 2783.32, + "probability": 0.922 + }, + { + "start": 2785.18, + "end": 2786.32, + "probability": 0.9719 + }, + { + "start": 2787.88, + "end": 2788.92, + "probability": 0.6337 + }, + { + "start": 2790.8, + "end": 2791.02, + "probability": 0.0972 + }, + { + "start": 2791.02, + "end": 2792.04, + "probability": 0.501 + }, + { + "start": 2792.62, + "end": 2793.9, + "probability": 0.9126 + }, + { + "start": 2795.88, + "end": 2797.96, + "probability": 0.2688 + }, + { + "start": 2798.34, + "end": 2799.84, + "probability": 0.8732 + }, + { + "start": 2799.96, + "end": 2800.94, + "probability": 0.6146 + }, + { + "start": 2801.62, + "end": 2802.76, + "probability": 0.6199 + }, + { + "start": 2804.6, + "end": 2805.4, + "probability": 0.176 + }, + { + "start": 2806.94, + "end": 2807.88, + "probability": 0.134 + }, + { + "start": 2808.3, + "end": 2809.74, + "probability": 0.2449 + }, + { + "start": 2809.74, + "end": 2811.48, + "probability": 0.0782 + }, + { + "start": 2813.33, + "end": 2814.6, + "probability": 0.2236 + }, + { + "start": 2819.24, + "end": 2820.5, + "probability": 0.1881 + }, + { + "start": 2820.94, + "end": 2823.36, + "probability": 0.0863 + }, + { + "start": 2826.76, + "end": 2827.18, + "probability": 0.3502 + }, + { + "start": 2827.88, + "end": 2828.3, + "probability": 0.1162 + }, + { + "start": 2828.3, + "end": 2828.3, + "probability": 0.0306 + }, + { + "start": 2828.3, + "end": 2828.3, + "probability": 0.0521 + }, + { + "start": 2828.3, + "end": 2830.34, + "probability": 0.0906 + }, + { + "start": 2832.16, + "end": 2832.16, + "probability": 0.5053 + }, + { + "start": 2832.16, + "end": 2840.32, + "probability": 0.9884 + }, + { + "start": 2840.44, + "end": 2841.34, + "probability": 0.7765 + }, + { + "start": 2841.42, + "end": 2842.26, + "probability": 0.9109 + }, + { + "start": 2843.64, + "end": 2844.66, + "probability": 0.9972 + }, + { + "start": 2845.96, + "end": 2847.81, + "probability": 0.6573 + }, + { + "start": 2849.8, + "end": 2851.6, + "probability": 0.9819 + }, + { + "start": 2852.52, + "end": 2854.16, + "probability": 0.9058 + }, + { + "start": 2854.98, + "end": 2858.14, + "probability": 0.9967 + }, + { + "start": 2859.16, + "end": 2861.04, + "probability": 0.7301 + }, + { + "start": 2862.46, + "end": 2863.86, + "probability": 0.8333 + }, + { + "start": 2865.54, + "end": 2866.34, + "probability": 0.6562 + }, + { + "start": 2868.22, + "end": 2868.7, + "probability": 0.7896 + }, + { + "start": 2869.9, + "end": 2872.12, + "probability": 0.7448 + }, + { + "start": 2873.34, + "end": 2877.02, + "probability": 0.8315 + }, + { + "start": 2878.02, + "end": 2880.98, + "probability": 0.6576 + }, + { + "start": 2881.44, + "end": 2882.7, + "probability": 0.7468 + }, + { + "start": 2882.94, + "end": 2885.78, + "probability": 0.6474 + }, + { + "start": 2886.24, + "end": 2887.06, + "probability": 0.8502 + }, + { + "start": 2887.56, + "end": 2888.36, + "probability": 0.5622 + }, + { + "start": 2889.92, + "end": 2891.72, + "probability": 0.9902 + }, + { + "start": 2892.32, + "end": 2894.36, + "probability": 0.9989 + }, + { + "start": 2895.0, + "end": 2897.5, + "probability": 0.7745 + }, + { + "start": 2898.86, + "end": 2901.5, + "probability": 0.6853 + }, + { + "start": 2902.46, + "end": 2902.88, + "probability": 0.7966 + }, + { + "start": 2902.88, + "end": 2903.51, + "probability": 0.6247 + }, + { + "start": 2903.76, + "end": 2904.72, + "probability": 0.9868 + }, + { + "start": 2905.78, + "end": 2907.42, + "probability": 0.9076 + }, + { + "start": 2908.1, + "end": 2909.44, + "probability": 0.8878 + }, + { + "start": 2910.06, + "end": 2911.5, + "probability": 0.9663 + }, + { + "start": 2912.06, + "end": 2913.82, + "probability": 0.9941 + }, + { + "start": 2915.1, + "end": 2917.04, + "probability": 0.998 + }, + { + "start": 2917.8, + "end": 2923.34, + "probability": 0.9946 + }, + { + "start": 2923.54, + "end": 2923.56, + "probability": 0.9155 + }, + { + "start": 2924.16, + "end": 2929.56, + "probability": 0.8816 + }, + { + "start": 2930.36, + "end": 2933.02, + "probability": 0.8186 + }, + { + "start": 2933.78, + "end": 2935.9, + "probability": 0.998 + }, + { + "start": 2936.64, + "end": 2937.27, + "probability": 0.9509 + }, + { + "start": 2938.22, + "end": 2939.12, + "probability": 0.7031 + }, + { + "start": 2939.68, + "end": 2942.08, + "probability": 0.9663 + }, + { + "start": 2944.14, + "end": 2945.98, + "probability": 0.9802 + }, + { + "start": 2947.08, + "end": 2948.16, + "probability": 0.5616 + }, + { + "start": 2948.16, + "end": 2949.12, + "probability": 0.8813 + }, + { + "start": 2954.52, + "end": 2955.38, + "probability": 0.4562 + }, + { + "start": 2955.42, + "end": 2955.66, + "probability": 0.5725 + }, + { + "start": 2955.76, + "end": 2958.2, + "probability": 0.9279 + }, + { + "start": 2958.36, + "end": 2962.0, + "probability": 0.7283 + }, + { + "start": 2962.5, + "end": 2963.88, + "probability": 0.8108 + }, + { + "start": 2965.08, + "end": 2968.38, + "probability": 0.6876 + }, + { + "start": 2968.82, + "end": 2970.48, + "probability": 0.8799 + }, + { + "start": 2971.14, + "end": 2972.66, + "probability": 0.876 + }, + { + "start": 2972.74, + "end": 2973.38, + "probability": 0.2002 + }, + { + "start": 2973.5, + "end": 2974.22, + "probability": 0.3117 + }, + { + "start": 2974.7, + "end": 2974.98, + "probability": 0.5711 + }, + { + "start": 2975.8, + "end": 2976.96, + "probability": 0.8062 + }, + { + "start": 2977.56, + "end": 2979.64, + "probability": 0.5227 + }, + { + "start": 2980.64, + "end": 2982.0, + "probability": 0.9355 + }, + { + "start": 2982.86, + "end": 2984.02, + "probability": 0.8022 + }, + { + "start": 2984.58, + "end": 2986.44, + "probability": 0.5052 + }, + { + "start": 2986.92, + "end": 2988.34, + "probability": 0.9429 + }, + { + "start": 2989.06, + "end": 2992.6, + "probability": 0.9859 + }, + { + "start": 2992.78, + "end": 2993.68, + "probability": 0.9888 + }, + { + "start": 2994.02, + "end": 2995.2, + "probability": 0.9976 + }, + { + "start": 2996.56, + "end": 2998.76, + "probability": 0.9381 + }, + { + "start": 3000.78, + "end": 3002.7, + "probability": 0.8945 + }, + { + "start": 3003.22, + "end": 3004.52, + "probability": 0.9902 + }, + { + "start": 3005.82, + "end": 3007.24, + "probability": 0.7673 + }, + { + "start": 3007.32, + "end": 3009.16, + "probability": 0.9709 + }, + { + "start": 3009.84, + "end": 3012.14, + "probability": 0.917 + }, + { + "start": 3014.74, + "end": 3015.62, + "probability": 0.9001 + }, + { + "start": 3021.18, + "end": 3023.0, + "probability": 0.7234 + }, + { + "start": 3023.0, + "end": 3024.7, + "probability": 0.6058 + }, + { + "start": 3025.06, + "end": 3025.92, + "probability": 0.5835 + }, + { + "start": 3026.78, + "end": 3029.6, + "probability": 0.9765 + }, + { + "start": 3029.92, + "end": 3031.98, + "probability": 0.8281 + }, + { + "start": 3032.24, + "end": 3033.78, + "probability": 0.9097 + }, + { + "start": 3034.56, + "end": 3037.12, + "probability": 0.9863 + }, + { + "start": 3037.7, + "end": 3038.66, + "probability": 0.6949 + }, + { + "start": 3040.22, + "end": 3040.36, + "probability": 0.0621 + }, + { + "start": 3040.36, + "end": 3040.36, + "probability": 0.163 + }, + { + "start": 3040.36, + "end": 3040.36, + "probability": 0.014 + }, + { + "start": 3040.36, + "end": 3040.36, + "probability": 0.2743 + }, + { + "start": 3040.36, + "end": 3040.36, + "probability": 0.2789 + }, + { + "start": 3040.36, + "end": 3040.8, + "probability": 0.2531 + }, + { + "start": 3040.8, + "end": 3040.9, + "probability": 0.0994 + }, + { + "start": 3040.9, + "end": 3041.02, + "probability": 0.2375 + }, + { + "start": 3041.34, + "end": 3041.34, + "probability": 0.2175 + }, + { + "start": 3041.4, + "end": 3041.44, + "probability": 0.1527 + }, + { + "start": 3041.64, + "end": 3042.1, + "probability": 0.2733 + }, + { + "start": 3044.54, + "end": 3045.24, + "probability": 0.1716 + }, + { + "start": 3045.24, + "end": 3049.26, + "probability": 0.7653 + }, + { + "start": 3049.26, + "end": 3049.5, + "probability": 0.0061 + }, + { + "start": 3049.5, + "end": 3049.5, + "probability": 0.4246 + }, + { + "start": 3049.5, + "end": 3049.8, + "probability": 0.5744 + }, + { + "start": 3049.86, + "end": 3055.36, + "probability": 0.9854 + }, + { + "start": 3055.36, + "end": 3060.64, + "probability": 0.7836 + }, + { + "start": 3060.66, + "end": 3060.84, + "probability": 0.0299 + }, + { + "start": 3061.04, + "end": 3061.04, + "probability": 0.0022 + }, + { + "start": 3061.68, + "end": 3062.22, + "probability": 0.0247 + }, + { + "start": 3062.22, + "end": 3062.22, + "probability": 0.1254 + }, + { + "start": 3062.22, + "end": 3066.5, + "probability": 0.7503 + }, + { + "start": 3066.98, + "end": 3067.92, + "probability": 0.7227 + }, + { + "start": 3068.82, + "end": 3071.02, + "probability": 0.0201 + }, + { + "start": 3071.2, + "end": 3073.24, + "probability": 0.8883 + }, + { + "start": 3076.28, + "end": 3077.0, + "probability": 0.4869 + }, + { + "start": 3077.08, + "end": 3079.02, + "probability": 0.681 + }, + { + "start": 3079.18, + "end": 3081.36, + "probability": 0.0619 + }, + { + "start": 3081.36, + "end": 3081.48, + "probability": 0.3648 + }, + { + "start": 3081.76, + "end": 3081.84, + "probability": 0.2598 + }, + { + "start": 3081.84, + "end": 3083.64, + "probability": 0.4721 + }, + { + "start": 3084.42, + "end": 3084.42, + "probability": 0.1144 + }, + { + "start": 3085.16, + "end": 3085.6, + "probability": 0.2407 + }, + { + "start": 3085.82, + "end": 3086.48, + "probability": 0.2298 + }, + { + "start": 3087.0, + "end": 3088.24, + "probability": 0.0067 + }, + { + "start": 3088.74, + "end": 3088.74, + "probability": 0.086 + }, + { + "start": 3088.74, + "end": 3090.68, + "probability": 0.014 + }, + { + "start": 3091.98, + "end": 3093.98, + "probability": 0.2591 + }, + { + "start": 3094.42, + "end": 3094.88, + "probability": 0.8034 + }, + { + "start": 3096.46, + "end": 3097.67, + "probability": 0.1908 + }, + { + "start": 3099.32, + "end": 3100.64, + "probability": 0.589 + }, + { + "start": 3103.64, + "end": 3106.04, + "probability": 0.4762 + }, + { + "start": 3107.62, + "end": 3107.8, + "probability": 0.0676 + }, + { + "start": 3108.74, + "end": 3109.16, + "probability": 0.3204 + }, + { + "start": 3109.16, + "end": 3109.72, + "probability": 0.6766 + }, + { + "start": 3109.78, + "end": 3110.94, + "probability": 0.3584 + }, + { + "start": 3111.0, + "end": 3113.24, + "probability": 0.6761 + }, + { + "start": 3114.54, + "end": 3115.92, + "probability": 0.7796 + }, + { + "start": 3116.12, + "end": 3117.7, + "probability": 0.1165 + }, + { + "start": 3117.7, + "end": 3118.99, + "probability": 0.5121 + }, + { + "start": 3124.52, + "end": 3124.8, + "probability": 0.7016 + }, + { + "start": 3124.86, + "end": 3126.34, + "probability": 0.6757 + }, + { + "start": 3128.5, + "end": 3132.44, + "probability": 0.7866 + }, + { + "start": 3132.58, + "end": 3134.42, + "probability": 0.8933 + }, + { + "start": 3135.22, + "end": 3138.3, + "probability": 0.3246 + }, + { + "start": 3139.06, + "end": 3139.06, + "probability": 0.0896 + }, + { + "start": 3139.06, + "end": 3140.12, + "probability": 0.6306 + }, + { + "start": 3140.28, + "end": 3140.6, + "probability": 0.8116 + }, + { + "start": 3142.44, + "end": 3143.06, + "probability": 0.6926 + }, + { + "start": 3143.54, + "end": 3146.66, + "probability": 0.8987 + }, + { + "start": 3147.06, + "end": 3148.46, + "probability": 0.5839 + }, + { + "start": 3149.18, + "end": 3153.48, + "probability": 0.9977 + }, + { + "start": 3153.74, + "end": 3155.72, + "probability": 0.7967 + }, + { + "start": 3156.76, + "end": 3157.3, + "probability": 0.9873 + }, + { + "start": 3157.5, + "end": 3160.82, + "probability": 0.9932 + }, + { + "start": 3161.44, + "end": 3162.78, + "probability": 0.9928 + }, + { + "start": 3163.64, + "end": 3165.46, + "probability": 0.8514 + }, + { + "start": 3166.36, + "end": 3170.68, + "probability": 0.9928 + }, + { + "start": 3171.4, + "end": 3176.06, + "probability": 0.8412 + }, + { + "start": 3177.0, + "end": 3180.3, + "probability": 0.9945 + }, + { + "start": 3180.94, + "end": 3183.98, + "probability": 0.894 + }, + { + "start": 3184.44, + "end": 3188.76, + "probability": 0.9958 + }, + { + "start": 3189.32, + "end": 3193.32, + "probability": 0.972 + }, + { + "start": 3194.12, + "end": 3195.24, + "probability": 0.6803 + }, + { + "start": 3196.7, + "end": 3199.64, + "probability": 0.5427 + }, + { + "start": 3199.86, + "end": 3202.0, + "probability": 0.9655 + }, + { + "start": 3202.54, + "end": 3205.74, + "probability": 0.9856 + }, + { + "start": 3206.54, + "end": 3210.82, + "probability": 0.9961 + }, + { + "start": 3211.24, + "end": 3217.64, + "probability": 0.9935 + }, + { + "start": 3218.68, + "end": 3221.82, + "probability": 0.9932 + }, + { + "start": 3222.1, + "end": 3224.88, + "probability": 0.9155 + }, + { + "start": 3225.88, + "end": 3229.96, + "probability": 0.9683 + }, + { + "start": 3231.14, + "end": 3235.94, + "probability": 0.5583 + }, + { + "start": 3235.94, + "end": 3235.96, + "probability": 0.5679 + }, + { + "start": 3236.12, + "end": 3239.68, + "probability": 0.9988 + }, + { + "start": 3240.16, + "end": 3243.6, + "probability": 0.9226 + }, + { + "start": 3244.16, + "end": 3245.06, + "probability": 0.8748 + }, + { + "start": 3245.66, + "end": 3246.48, + "probability": 0.7525 + }, + { + "start": 3247.12, + "end": 3250.6, + "probability": 0.9531 + }, + { + "start": 3251.42, + "end": 3252.16, + "probability": 0.7012 + }, + { + "start": 3253.12, + "end": 3255.83, + "probability": 0.751 + }, + { + "start": 3258.36, + "end": 3259.06, + "probability": 0.2959 + }, + { + "start": 3259.06, + "end": 3259.08, + "probability": 0.1597 + }, + { + "start": 3259.08, + "end": 3259.08, + "probability": 0.4481 + }, + { + "start": 3259.08, + "end": 3259.08, + "probability": 0.1065 + }, + { + "start": 3259.08, + "end": 3259.38, + "probability": 0.0459 + }, + { + "start": 3259.82, + "end": 3260.98, + "probability": 0.3582 + }, + { + "start": 3261.0, + "end": 3263.21, + "probability": 0.7357 + }, + { + "start": 3263.86, + "end": 3265.6, + "probability": 0.8794 + }, + { + "start": 3266.34, + "end": 3268.86, + "probability": 0.9889 + }, + { + "start": 3269.4, + "end": 3271.84, + "probability": 0.9863 + }, + { + "start": 3272.1, + "end": 3275.3, + "probability": 0.9959 + }, + { + "start": 3275.8, + "end": 3276.7, + "probability": 0.9897 + }, + { + "start": 3277.24, + "end": 3281.2, + "probability": 0.9791 + }, + { + "start": 3281.96, + "end": 3283.58, + "probability": 0.9973 + }, + { + "start": 3284.28, + "end": 3286.9, + "probability": 0.9758 + }, + { + "start": 3286.9, + "end": 3290.72, + "probability": 0.969 + }, + { + "start": 3291.28, + "end": 3295.36, + "probability": 0.9869 + }, + { + "start": 3295.64, + "end": 3299.52, + "probability": 0.999 + }, + { + "start": 3300.2, + "end": 3303.1, + "probability": 0.8924 + }, + { + "start": 3303.48, + "end": 3304.8, + "probability": 0.9408 + }, + { + "start": 3304.96, + "end": 3305.96, + "probability": 0.8468 + }, + { + "start": 3306.16, + "end": 3306.56, + "probability": 0.9572 + }, + { + "start": 3306.68, + "end": 3308.32, + "probability": 0.9392 + }, + { + "start": 3308.82, + "end": 3312.44, + "probability": 0.929 + }, + { + "start": 3313.08, + "end": 3316.42, + "probability": 0.9844 + }, + { + "start": 3316.42, + "end": 3316.42, + "probability": 0.4148 + }, + { + "start": 3316.42, + "end": 3316.42, + "probability": 0.2314 + }, + { + "start": 3316.42, + "end": 3317.08, + "probability": 0.9029 + }, + { + "start": 3317.66, + "end": 3318.72, + "probability": 0.7263 + }, + { + "start": 3318.72, + "end": 3322.22, + "probability": 0.9694 + }, + { + "start": 3322.62, + "end": 3323.24, + "probability": 0.8657 + }, + { + "start": 3323.84, + "end": 3325.82, + "probability": 0.9453 + }, + { + "start": 3326.0, + "end": 3328.36, + "probability": 0.4659 + }, + { + "start": 3328.36, + "end": 3328.36, + "probability": 0.1023 + }, + { + "start": 3328.36, + "end": 3329.94, + "probability": 0.3625 + }, + { + "start": 3329.98, + "end": 3332.24, + "probability": 0.4669 + }, + { + "start": 3334.76, + "end": 3337.26, + "probability": 0.5571 + }, + { + "start": 3338.08, + "end": 3338.54, + "probability": 0.2083 + }, + { + "start": 3338.54, + "end": 3339.4, + "probability": 0.1814 + }, + { + "start": 3342.71, + "end": 3344.0, + "probability": 0.0359 + }, + { + "start": 3344.28, + "end": 3345.68, + "probability": 0.3644 + }, + { + "start": 3347.26, + "end": 3347.82, + "probability": 0.2717 + }, + { + "start": 3349.2, + "end": 3350.24, + "probability": 0.0783 + }, + { + "start": 3351.1, + "end": 3351.72, + "probability": 0.1104 + }, + { + "start": 3352.38, + "end": 3353.38, + "probability": 0.1086 + }, + { + "start": 3353.78, + "end": 3356.4, + "probability": 0.3544 + }, + { + "start": 3356.56, + "end": 3359.86, + "probability": 0.4206 + }, + { + "start": 3361.28, + "end": 3366.33, + "probability": 0.0477 + }, + { + "start": 3368.82, + "end": 3370.38, + "probability": 0.0548 + }, + { + "start": 3370.7, + "end": 3371.86, + "probability": 0.0467 + }, + { + "start": 3371.86, + "end": 3375.94, + "probability": 0.08 + }, + { + "start": 3376.16, + "end": 3378.7, + "probability": 0.2999 + }, + { + "start": 3378.7, + "end": 3378.88, + "probability": 0.051 + }, + { + "start": 3386.47, + "end": 3388.93, + "probability": 0.03 + }, + { + "start": 3390.3, + "end": 3390.48, + "probability": 0.034 + }, + { + "start": 3394.21, + "end": 3395.52, + "probability": 0.0251 + }, + { + "start": 3405.2, + "end": 3406.26, + "probability": 0.0236 + }, + { + "start": 3406.26, + "end": 3406.76, + "probability": 0.1455 + }, + { + "start": 3407.66, + "end": 3409.04, + "probability": 0.0363 + }, + { + "start": 3409.26, + "end": 3409.78, + "probability": 0.0344 + }, + { + "start": 3409.96, + "end": 3410.98, + "probability": 0.0091 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.0, + "end": 3412.0, + "probability": 0.0 + }, + { + "start": 3412.3, + "end": 3413.16, + "probability": 0.0634 + }, + { + "start": 3413.38, + "end": 3413.86, + "probability": 0.2076 + }, + { + "start": 3414.0, + "end": 3418.38, + "probability": 0.6084 + }, + { + "start": 3418.84, + "end": 3422.66, + "probability": 0.632 + }, + { + "start": 3422.72, + "end": 3423.0, + "probability": 0.1365 + }, + { + "start": 3423.0, + "end": 3423.9, + "probability": 0.1571 + }, + { + "start": 3425.42, + "end": 3426.84, + "probability": 0.8053 + }, + { + "start": 3426.94, + "end": 3428.61, + "probability": 0.9204 + }, + { + "start": 3428.94, + "end": 3429.2, + "probability": 0.5068 + }, + { + "start": 3430.22, + "end": 3434.0, + "probability": 0.0139 + }, + { + "start": 3434.32, + "end": 3436.48, + "probability": 0.0412 + }, + { + "start": 3437.78, + "end": 3437.78, + "probability": 0.4392 + }, + { + "start": 3437.78, + "end": 3438.98, + "probability": 0.7876 + }, + { + "start": 3440.3, + "end": 3442.13, + "probability": 0.9773 + }, + { + "start": 3442.46, + "end": 3443.89, + "probability": 0.1805 + }, + { + "start": 3445.68, + "end": 3449.18, + "probability": 0.1412 + }, + { + "start": 3449.18, + "end": 3450.76, + "probability": 0.0723 + }, + { + "start": 3450.98, + "end": 3450.98, + "probability": 0.0741 + }, + { + "start": 3451.18, + "end": 3451.32, + "probability": 0.3095 + }, + { + "start": 3453.02, + "end": 3454.1, + "probability": 0.2002 + }, + { + "start": 3455.8, + "end": 3456.16, + "probability": 0.5073 + }, + { + "start": 3458.86, + "end": 3459.74, + "probability": 0.4446 + }, + { + "start": 3461.73, + "end": 3466.04, + "probability": 0.0703 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.0, + "end": 3538.0, + "probability": 0.0 + }, + { + "start": 3538.4, + "end": 3538.62, + "probability": 0.133 + }, + { + "start": 3538.62, + "end": 3538.62, + "probability": 0.1004 + }, + { + "start": 3538.62, + "end": 3538.62, + "probability": 0.1263 + }, + { + "start": 3538.62, + "end": 3539.34, + "probability": 0.3326 + }, + { + "start": 3540.18, + "end": 3541.48, + "probability": 0.4926 + }, + { + "start": 3542.5, + "end": 3543.46, + "probability": 0.2086 + }, + { + "start": 3545.02, + "end": 3548.52, + "probability": 0.0139 + }, + { + "start": 3549.94, + "end": 3552.56, + "probability": 0.9849 + }, + { + "start": 3553.78, + "end": 3556.0, + "probability": 0.9892 + }, + { + "start": 3556.2, + "end": 3556.96, + "probability": 0.877 + }, + { + "start": 3557.98, + "end": 3558.0, + "probability": 0.0894 + }, + { + "start": 3558.0, + "end": 3558.9, + "probability": 0.7568 + }, + { + "start": 3562.4, + "end": 3565.02, + "probability": 0.9663 + }, + { + "start": 3569.06, + "end": 3570.68, + "probability": 0.9427 + }, + { + "start": 3570.98, + "end": 3574.96, + "probability": 0.9976 + }, + { + "start": 3575.92, + "end": 3577.38, + "probability": 0.9772 + }, + { + "start": 3579.82, + "end": 3580.74, + "probability": 0.9338 + }, + { + "start": 3582.82, + "end": 3583.98, + "probability": 0.9849 + }, + { + "start": 3585.46, + "end": 3589.02, + "probability": 0.9141 + }, + { + "start": 3590.58, + "end": 3593.38, + "probability": 0.9397 + }, + { + "start": 3594.46, + "end": 3599.34, + "probability": 0.9896 + }, + { + "start": 3600.36, + "end": 3603.54, + "probability": 0.7003 + }, + { + "start": 3604.58, + "end": 3605.02, + "probability": 0.6775 + }, + { + "start": 3605.44, + "end": 3605.52, + "probability": 0.8057 + }, + { + "start": 3606.06, + "end": 3606.56, + "probability": 0.8254 + }, + { + "start": 3606.76, + "end": 3608.2, + "probability": 0.926 + }, + { + "start": 3609.04, + "end": 3609.46, + "probability": 0.6674 + }, + { + "start": 3610.7, + "end": 3611.68, + "probability": 0.8966 + }, + { + "start": 3612.98, + "end": 3617.64, + "probability": 0.5014 + }, + { + "start": 3619.46, + "end": 3623.52, + "probability": 0.8908 + }, + { + "start": 3624.04, + "end": 3627.64, + "probability": 0.5001 + }, + { + "start": 3628.14, + "end": 3629.54, + "probability": 0.7801 + }, + { + "start": 3629.56, + "end": 3633.2, + "probability": 0.7752 + }, + { + "start": 3634.62, + "end": 3635.36, + "probability": 0.6841 + }, + { + "start": 3636.24, + "end": 3636.34, + "probability": 0.0173 + }, + { + "start": 3636.48, + "end": 3637.34, + "probability": 0.4522 + }, + { + "start": 3637.68, + "end": 3638.98, + "probability": 0.5335 + }, + { + "start": 3639.04, + "end": 3639.32, + "probability": 0.9204 + }, + { + "start": 3639.72, + "end": 3640.46, + "probability": 0.8828 + }, + { + "start": 3641.4, + "end": 3644.94, + "probability": 0.9916 + }, + { + "start": 3645.64, + "end": 3647.23, + "probability": 0.9985 + }, + { + "start": 3647.82, + "end": 3648.84, + "probability": 0.9227 + }, + { + "start": 3649.74, + "end": 3651.0, + "probability": 0.936 + }, + { + "start": 3651.6, + "end": 3651.86, + "probability": 0.4831 + }, + { + "start": 3652.52, + "end": 3654.42, + "probability": 0.8698 + }, + { + "start": 3654.96, + "end": 3656.12, + "probability": 0.5733 + }, + { + "start": 3657.12, + "end": 3658.36, + "probability": 0.6609 + }, + { + "start": 3660.64, + "end": 3662.92, + "probability": 0.9547 + }, + { + "start": 3663.2, + "end": 3666.42, + "probability": 0.9507 + }, + { + "start": 3666.86, + "end": 3668.12, + "probability": 0.6792 + }, + { + "start": 3668.7, + "end": 3670.74, + "probability": 0.6302 + }, + { + "start": 3671.2, + "end": 3673.52, + "probability": 0.9354 + }, + { + "start": 3673.88, + "end": 3679.2, + "probability": 0.9402 + }, + { + "start": 3681.07, + "end": 3683.4, + "probability": 0.928 + }, + { + "start": 3683.78, + "end": 3684.56, + "probability": 0.5295 + }, + { + "start": 3684.68, + "end": 3688.4, + "probability": 0.8971 + }, + { + "start": 3690.48, + "end": 3693.1, + "probability": 0.0821 + }, + { + "start": 3695.0, + "end": 3697.04, + "probability": 0.7755 + }, + { + "start": 3697.84, + "end": 3698.96, + "probability": 0.172 + }, + { + "start": 3699.66, + "end": 3700.14, + "probability": 0.8126 + }, + { + "start": 3700.58, + "end": 3701.34, + "probability": 0.2525 + }, + { + "start": 3701.5, + "end": 3701.76, + "probability": 0.7455 + }, + { + "start": 3702.46, + "end": 3703.82, + "probability": 0.8098 + }, + { + "start": 3704.18, + "end": 3705.22, + "probability": 0.8736 + }, + { + "start": 3706.58, + "end": 3706.58, + "probability": 0.0393 + }, + { + "start": 3706.58, + "end": 3708.06, + "probability": 0.5374 + }, + { + "start": 3709.6, + "end": 3711.28, + "probability": 0.7622 + }, + { + "start": 3711.42, + "end": 3712.24, + "probability": 0.8569 + }, + { + "start": 3712.54, + "end": 3712.9, + "probability": 0.8699 + }, + { + "start": 3713.64, + "end": 3716.84, + "probability": 0.8823 + }, + { + "start": 3719.06, + "end": 3720.6, + "probability": 0.9974 + }, + { + "start": 3722.96, + "end": 3723.84, + "probability": 0.6086 + }, + { + "start": 3725.8, + "end": 3726.96, + "probability": 0.8471 + }, + { + "start": 3727.68, + "end": 3729.04, + "probability": 0.8615 + }, + { + "start": 3731.44, + "end": 3733.64, + "probability": 0.9879 + }, + { + "start": 3736.44, + "end": 3737.76, + "probability": 0.9914 + }, + { + "start": 3740.24, + "end": 3742.28, + "probability": 0.9471 + }, + { + "start": 3744.06, + "end": 3744.84, + "probability": 0.8112 + }, + { + "start": 3745.76, + "end": 3747.34, + "probability": 0.9967 + }, + { + "start": 3747.98, + "end": 3749.0, + "probability": 0.9994 + }, + { + "start": 3749.64, + "end": 3751.5, + "probability": 0.9984 + }, + { + "start": 3753.56, + "end": 3754.5, + "probability": 0.9617 + }, + { + "start": 3758.08, + "end": 3759.38, + "probability": 0.6706 + }, + { + "start": 3761.38, + "end": 3762.38, + "probability": 0.971 + }, + { + "start": 3765.12, + "end": 3766.77, + "probability": 0.9961 + }, + { + "start": 3771.56, + "end": 3773.84, + "probability": 0.9571 + }, + { + "start": 3775.24, + "end": 3776.58, + "probability": 0.9716 + }, + { + "start": 3776.64, + "end": 3777.84, + "probability": 0.9318 + }, + { + "start": 3779.84, + "end": 3781.16, + "probability": 0.8062 + }, + { + "start": 3782.2, + "end": 3783.72, + "probability": 0.8373 + }, + { + "start": 3785.74, + "end": 3787.8, + "probability": 0.7213 + }, + { + "start": 3789.16, + "end": 3791.85, + "probability": 0.9551 + }, + { + "start": 3793.94, + "end": 3795.2, + "probability": 0.772 + }, + { + "start": 3796.68, + "end": 3797.84, + "probability": 0.831 + }, + { + "start": 3799.12, + "end": 3799.74, + "probability": 0.6532 + }, + { + "start": 3801.88, + "end": 3803.44, + "probability": 0.9899 + }, + { + "start": 3805.14, + "end": 3806.14, + "probability": 0.9773 + }, + { + "start": 3807.62, + "end": 3809.04, + "probability": 0.8305 + }, + { + "start": 3813.22, + "end": 3813.98, + "probability": 0.8934 + }, + { + "start": 3815.88, + "end": 3817.12, + "probability": 0.9392 + }, + { + "start": 3818.14, + "end": 3819.24, + "probability": 0.9316 + }, + { + "start": 3821.56, + "end": 3825.66, + "probability": 0.9307 + }, + { + "start": 3828.22, + "end": 3830.48, + "probability": 0.9468 + }, + { + "start": 3832.06, + "end": 3833.76, + "probability": 0.9891 + }, + { + "start": 3834.3, + "end": 3834.92, + "probability": 0.5139 + }, + { + "start": 3836.32, + "end": 3837.42, + "probability": 0.9858 + }, + { + "start": 3838.64, + "end": 3840.2, + "probability": 0.7804 + }, + { + "start": 3843.72, + "end": 3845.28, + "probability": 0.9914 + }, + { + "start": 3846.86, + "end": 3849.42, + "probability": 0.9985 + }, + { + "start": 3850.32, + "end": 3851.16, + "probability": 0.6573 + }, + { + "start": 3851.8, + "end": 3852.76, + "probability": 0.9429 + }, + { + "start": 3854.56, + "end": 3855.08, + "probability": 0.9724 + }, + { + "start": 3856.06, + "end": 3860.6, + "probability": 0.9924 + }, + { + "start": 3862.18, + "end": 3862.7, + "probability": 0.9799 + }, + { + "start": 3864.62, + "end": 3866.32, + "probability": 0.9735 + }, + { + "start": 3867.38, + "end": 3868.36, + "probability": 0.9661 + }, + { + "start": 3869.2, + "end": 3870.46, + "probability": 0.9974 + }, + { + "start": 3871.76, + "end": 3872.74, + "probability": 0.8476 + }, + { + "start": 3873.88, + "end": 3874.86, + "probability": 0.8563 + }, + { + "start": 3877.02, + "end": 3878.52, + "probability": 0.9863 + }, + { + "start": 3880.2, + "end": 3881.6, + "probability": 0.897 + }, + { + "start": 3882.5, + "end": 3883.4, + "probability": 0.9968 + }, + { + "start": 3884.44, + "end": 3885.34, + "probability": 0.823 + }, + { + "start": 3887.46, + "end": 3887.72, + "probability": 0.9717 + }, + { + "start": 3888.96, + "end": 3889.58, + "probability": 0.5456 + }, + { + "start": 3891.0, + "end": 3891.98, + "probability": 0.6494 + }, + { + "start": 3893.22, + "end": 3895.5, + "probability": 0.6866 + }, + { + "start": 3897.24, + "end": 3897.78, + "probability": 0.949 + }, + { + "start": 3898.4, + "end": 3899.88, + "probability": 0.9848 + }, + { + "start": 3900.3, + "end": 3901.82, + "probability": 0.9554 + }, + { + "start": 3902.76, + "end": 3903.66, + "probability": 0.9988 + }, + { + "start": 3903.82, + "end": 3905.5, + "probability": 0.3025 + }, + { + "start": 3905.7, + "end": 3908.0, + "probability": 0.8364 + }, + { + "start": 3908.82, + "end": 3909.92, + "probability": 0.5543 + }, + { + "start": 3910.6, + "end": 3912.04, + "probability": 0.6756 + }, + { + "start": 3929.9, + "end": 3930.72, + "probability": 0.8193 + }, + { + "start": 3938.76, + "end": 3940.5, + "probability": 0.608 + }, + { + "start": 3942.06, + "end": 3946.3, + "probability": 0.9761 + }, + { + "start": 3946.58, + "end": 3947.1, + "probability": 0.6876 + }, + { + "start": 3948.42, + "end": 3950.18, + "probability": 0.9947 + }, + { + "start": 3950.72, + "end": 3953.1, + "probability": 0.9687 + }, + { + "start": 3953.82, + "end": 3954.62, + "probability": 0.0462 + }, + { + "start": 3955.92, + "end": 3957.5, + "probability": 0.9988 + }, + { + "start": 3958.08, + "end": 3959.08, + "probability": 0.7237 + }, + { + "start": 3959.8, + "end": 3965.58, + "probability": 0.9801 + }, + { + "start": 3966.56, + "end": 3967.9, + "probability": 0.8039 + }, + { + "start": 3968.0, + "end": 3973.38, + "probability": 0.979 + }, + { + "start": 3974.32, + "end": 3976.32, + "probability": 0.9912 + }, + { + "start": 3976.86, + "end": 3977.56, + "probability": 0.8076 + }, + { + "start": 3978.1, + "end": 3979.7, + "probability": 0.9175 + }, + { + "start": 3980.38, + "end": 3985.76, + "probability": 0.9922 + }, + { + "start": 3985.76, + "end": 3991.74, + "probability": 0.9967 + }, + { + "start": 3992.66, + "end": 3995.92, + "probability": 0.9956 + }, + { + "start": 3996.66, + "end": 4002.92, + "probability": 0.9834 + }, + { + "start": 4004.5, + "end": 4006.96, + "probability": 0.986 + }, + { + "start": 4006.98, + "end": 4010.7, + "probability": 0.9989 + }, + { + "start": 4011.26, + "end": 4014.1, + "probability": 0.9071 + }, + { + "start": 4014.74, + "end": 4017.3, + "probability": 0.9915 + }, + { + "start": 4018.2, + "end": 4020.62, + "probability": 0.9893 + }, + { + "start": 4020.64, + "end": 4023.26, + "probability": 0.9983 + }, + { + "start": 4023.84, + "end": 4027.58, + "probability": 0.996 + }, + { + "start": 4028.4, + "end": 4031.7, + "probability": 0.985 + }, + { + "start": 4031.7, + "end": 4036.66, + "probability": 0.9806 + }, + { + "start": 4036.66, + "end": 4040.94, + "probability": 0.9889 + }, + { + "start": 4041.44, + "end": 4044.76, + "probability": 0.8562 + }, + { + "start": 4045.78, + "end": 4047.94, + "probability": 0.9908 + }, + { + "start": 4048.14, + "end": 4048.26, + "probability": 0.0204 + }, + { + "start": 4048.64, + "end": 4050.32, + "probability": 0.9649 + }, + { + "start": 4050.42, + "end": 4052.12, + "probability": 0.941 + }, + { + "start": 4052.66, + "end": 4056.73, + "probability": 0.9667 + }, + { + "start": 4058.08, + "end": 4063.66, + "probability": 0.9931 + }, + { + "start": 4063.68, + "end": 4066.58, + "probability": 0.9126 + }, + { + "start": 4066.58, + "end": 4070.76, + "probability": 0.9299 + }, + { + "start": 4071.56, + "end": 4073.68, + "probability": 0.9828 + }, + { + "start": 4073.68, + "end": 4076.94, + "probability": 0.9941 + }, + { + "start": 4077.56, + "end": 4081.68, + "probability": 0.8066 + }, + { + "start": 4082.42, + "end": 4084.1, + "probability": 0.8517 + }, + { + "start": 4084.52, + "end": 4088.36, + "probability": 0.969 + }, + { + "start": 4088.36, + "end": 4092.24, + "probability": 0.9981 + }, + { + "start": 4093.1, + "end": 4096.74, + "probability": 0.9951 + }, + { + "start": 4096.74, + "end": 4099.24, + "probability": 0.995 + }, + { + "start": 4099.96, + "end": 4104.92, + "probability": 0.9609 + }, + { + "start": 4104.92, + "end": 4110.28, + "probability": 0.878 + }, + { + "start": 4110.78, + "end": 4114.84, + "probability": 0.9957 + }, + { + "start": 4115.44, + "end": 4118.6, + "probability": 0.889 + }, + { + "start": 4119.04, + "end": 4119.12, + "probability": 0.1695 + }, + { + "start": 4119.14, + "end": 4123.86, + "probability": 0.8505 + }, + { + "start": 4123.98, + "end": 4125.7, + "probability": 0.9454 + }, + { + "start": 4126.44, + "end": 4129.54, + "probability": 0.9963 + }, + { + "start": 4129.54, + "end": 4133.26, + "probability": 0.8909 + }, + { + "start": 4133.64, + "end": 4137.0, + "probability": 0.9059 + }, + { + "start": 4137.56, + "end": 4141.58, + "probability": 0.9815 + }, + { + "start": 4141.72, + "end": 4143.46, + "probability": 0.9937 + }, + { + "start": 4143.94, + "end": 4147.58, + "probability": 0.9888 + }, + { + "start": 4148.28, + "end": 4150.64, + "probability": 0.9076 + }, + { + "start": 4150.8, + "end": 4150.92, + "probability": 0.091 + }, + { + "start": 4151.02, + "end": 4156.32, + "probability": 0.9941 + }, + { + "start": 4156.32, + "end": 4160.96, + "probability": 0.9728 + }, + { + "start": 4161.5, + "end": 4162.58, + "probability": 0.9987 + }, + { + "start": 4163.54, + "end": 4167.18, + "probability": 0.9902 + }, + { + "start": 4167.18, + "end": 4172.19, + "probability": 0.9946 + }, + { + "start": 4172.76, + "end": 4172.76, + "probability": 0.0084 + }, + { + "start": 4174.08, + "end": 4174.3, + "probability": 0.501 + }, + { + "start": 4174.3, + "end": 4175.42, + "probability": 0.2506 + }, + { + "start": 4175.8, + "end": 4180.74, + "probability": 0.9521 + }, + { + "start": 4181.38, + "end": 4182.72, + "probability": 0.8522 + }, + { + "start": 4182.82, + "end": 4185.53, + "probability": 0.6623 + }, + { + "start": 4185.66, + "end": 4187.66, + "probability": 0.8705 + }, + { + "start": 4188.14, + "end": 4190.58, + "probability": 0.638 + }, + { + "start": 4191.86, + "end": 4194.84, + "probability": 0.0141 + }, + { + "start": 4196.54, + "end": 4196.98, + "probability": 0.0128 + }, + { + "start": 4196.98, + "end": 4196.98, + "probability": 0.059 + }, + { + "start": 4196.98, + "end": 4196.98, + "probability": 0.015 + }, + { + "start": 4196.98, + "end": 4196.98, + "probability": 0.0597 + }, + { + "start": 4196.98, + "end": 4199.18, + "probability": 0.4209 + }, + { + "start": 4199.36, + "end": 4199.68, + "probability": 0.6958 + }, + { + "start": 4199.72, + "end": 4203.52, + "probability": 0.9693 + }, + { + "start": 4203.72, + "end": 4204.54, + "probability": 0.1997 + }, + { + "start": 4204.68, + "end": 4204.88, + "probability": 0.0393 + }, + { + "start": 4205.58, + "end": 4207.68, + "probability": 0.0953 + }, + { + "start": 4211.58, + "end": 4213.66, + "probability": 0.313 + }, + { + "start": 4214.72, + "end": 4215.26, + "probability": 0.1008 + }, + { + "start": 4215.26, + "end": 4215.26, + "probability": 0.2321 + }, + { + "start": 4215.38, + "end": 4217.5, + "probability": 0.0162 + }, + { + "start": 4217.5, + "end": 4217.86, + "probability": 0.1271 + }, + { + "start": 4218.3, + "end": 4220.04, + "probability": 0.3242 + }, + { + "start": 4220.04, + "end": 4221.2, + "probability": 0.3743 + }, + { + "start": 4221.2, + "end": 4222.98, + "probability": 0.0569 + }, + { + "start": 4228.02, + "end": 4228.5, + "probability": 0.1234 + }, + { + "start": 4228.76, + "end": 4229.63, + "probability": 0.0343 + }, + { + "start": 4229.94, + "end": 4231.2, + "probability": 0.1681 + }, + { + "start": 4231.54, + "end": 4233.0, + "probability": 0.0423 + }, + { + "start": 4233.26, + "end": 4235.68, + "probability": 0.1394 + }, + { + "start": 4236.8, + "end": 4238.22, + "probability": 0.1668 + }, + { + "start": 4238.82, + "end": 4239.84, + "probability": 0.1163 + }, + { + "start": 4239.84, + "end": 4240.38, + "probability": 0.0283 + }, + { + "start": 4241.46, + "end": 4244.08, + "probability": 0.0153 + }, + { + "start": 4245.64, + "end": 4250.1, + "probability": 0.1641 + }, + { + "start": 4253.7, + "end": 4255.52, + "probability": 0.001 + }, + { + "start": 4260.6, + "end": 4260.76, + "probability": 0.0634 + }, + { + "start": 4261.77, + "end": 4264.58, + "probability": 0.0406 + }, + { + "start": 4264.58, + "end": 4264.86, + "probability": 0.031 + }, + { + "start": 4265.54, + "end": 4265.88, + "probability": 0.2729 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.0, + "end": 4297.0, + "probability": 0.0 + }, + { + "start": 4297.98, + "end": 4300.34, + "probability": 0.0898 + }, + { + "start": 4301.46, + "end": 4303.08, + "probability": 0.7812 + }, + { + "start": 4304.84, + "end": 4307.96, + "probability": 0.6585 + }, + { + "start": 4308.94, + "end": 4311.22, + "probability": 0.6556 + }, + { + "start": 4313.0, + "end": 4315.5, + "probability": 0.8869 + }, + { + "start": 4316.26, + "end": 4319.0, + "probability": 0.9028 + }, + { + "start": 4320.08, + "end": 4321.66, + "probability": 0.9783 + }, + { + "start": 4322.4, + "end": 4327.48, + "probability": 0.9555 + }, + { + "start": 4328.3, + "end": 4333.14, + "probability": 0.9915 + }, + { + "start": 4334.16, + "end": 4337.84, + "probability": 0.7763 + }, + { + "start": 4338.9, + "end": 4344.8, + "probability": 0.8721 + }, + { + "start": 4345.22, + "end": 4345.82, + "probability": 0.5591 + }, + { + "start": 4346.06, + "end": 4349.66, + "probability": 0.9297 + }, + { + "start": 4352.86, + "end": 4353.74, + "probability": 0.0393 + }, + { + "start": 4353.74, + "end": 4357.26, + "probability": 0.8126 + }, + { + "start": 4357.86, + "end": 4362.66, + "probability": 0.9039 + }, + { + "start": 4362.72, + "end": 4366.18, + "probability": 0.8801 + }, + { + "start": 4366.72, + "end": 4372.08, + "probability": 0.9933 + }, + { + "start": 4372.62, + "end": 4373.88, + "probability": 0.5723 + }, + { + "start": 4374.82, + "end": 4378.54, + "probability": 0.9038 + }, + { + "start": 4378.54, + "end": 4384.16, + "probability": 0.6095 + }, + { + "start": 4384.16, + "end": 4392.44, + "probability": 0.9532 + }, + { + "start": 4393.0, + "end": 4395.74, + "probability": 0.7686 + }, + { + "start": 4396.04, + "end": 4396.04, + "probability": 0.3781 + }, + { + "start": 4396.28, + "end": 4400.04, + "probability": 0.9189 + }, + { + "start": 4400.5, + "end": 4401.12, + "probability": 0.8501 + }, + { + "start": 4401.78, + "end": 4402.86, + "probability": 0.5132 + }, + { + "start": 4403.24, + "end": 4407.66, + "probability": 0.9424 + }, + { + "start": 4408.06, + "end": 4411.2, + "probability": 0.8516 + }, + { + "start": 4411.2, + "end": 4415.22, + "probability": 0.8928 + }, + { + "start": 4416.3, + "end": 4419.38, + "probability": 0.7787 + }, + { + "start": 4419.38, + "end": 4423.94, + "probability": 0.8411 + }, + { + "start": 4424.54, + "end": 4432.76, + "probability": 0.8372 + }, + { + "start": 4433.92, + "end": 4434.38, + "probability": 0.7311 + }, + { + "start": 4435.9, + "end": 4436.42, + "probability": 0.6063 + }, + { + "start": 4436.48, + "end": 4438.8, + "probability": 0.8176 + }, + { + "start": 4439.04, + "end": 4443.24, + "probability": 0.3827 + }, + { + "start": 4453.44, + "end": 4454.2, + "probability": 0.8333 + }, + { + "start": 4454.82, + "end": 4455.5, + "probability": 0.4001 + }, + { + "start": 4457.76, + "end": 4458.92, + "probability": 0.511 + }, + { + "start": 4463.52, + "end": 4465.09, + "probability": 0.6512 + }, + { + "start": 4466.12, + "end": 4469.34, + "probability": 0.9894 + }, + { + "start": 4470.08, + "end": 4473.06, + "probability": 0.9546 + }, + { + "start": 4474.18, + "end": 4476.26, + "probability": 0.5506 + }, + { + "start": 4476.52, + "end": 4480.88, + "probability": 0.8166 + }, + { + "start": 4481.52, + "end": 4484.38, + "probability": 0.8811 + }, + { + "start": 4484.48, + "end": 4486.42, + "probability": 0.9154 + }, + { + "start": 4487.4, + "end": 4491.26, + "probability": 0.8844 + }, + { + "start": 4491.34, + "end": 4494.36, + "probability": 0.9596 + }, + { + "start": 4494.72, + "end": 4495.98, + "probability": 0.627 + }, + { + "start": 4496.12, + "end": 4496.7, + "probability": 0.7809 + }, + { + "start": 4497.52, + "end": 4499.1, + "probability": 0.9816 + }, + { + "start": 4499.4, + "end": 4499.84, + "probability": 0.5484 + }, + { + "start": 4500.52, + "end": 4503.46, + "probability": 0.9828 + }, + { + "start": 4503.98, + "end": 4506.08, + "probability": 0.9974 + }, + { + "start": 4506.38, + "end": 4507.6, + "probability": 0.9837 + }, + { + "start": 4508.08, + "end": 4510.66, + "probability": 0.9756 + }, + { + "start": 4512.88, + "end": 4512.92, + "probability": 0.2859 + }, + { + "start": 4512.92, + "end": 4513.5, + "probability": 0.4395 + }, + { + "start": 4514.44, + "end": 4514.88, + "probability": 0.5014 + }, + { + "start": 4515.5, + "end": 4516.98, + "probability": 0.6943 + }, + { + "start": 4517.88, + "end": 4518.96, + "probability": 0.7772 + }, + { + "start": 4519.88, + "end": 4520.84, + "probability": 0.7209 + }, + { + "start": 4522.24, + "end": 4522.26, + "probability": 0.0179 + }, + { + "start": 4522.26, + "end": 4523.16, + "probability": 0.8069 + }, + { + "start": 4523.84, + "end": 4525.32, + "probability": 0.7429 + }, + { + "start": 4526.04, + "end": 4527.6, + "probability": 0.9712 + }, + { + "start": 4528.58, + "end": 4531.24, + "probability": 0.7563 + }, + { + "start": 4531.24, + "end": 4531.86, + "probability": 0.1496 + }, + { + "start": 4533.32, + "end": 4533.32, + "probability": 0.0801 + }, + { + "start": 4533.34, + "end": 4534.04, + "probability": 0.3785 + }, + { + "start": 4534.04, + "end": 4540.61, + "probability": 0.9484 + }, + { + "start": 4540.88, + "end": 4543.12, + "probability": 0.9552 + }, + { + "start": 4543.22, + "end": 4544.58, + "probability": 0.949 + }, + { + "start": 4545.04, + "end": 4549.68, + "probability": 0.9639 + }, + { + "start": 4550.16, + "end": 4551.98, + "probability": 0.9919 + }, + { + "start": 4552.86, + "end": 4555.82, + "probability": 0.9904 + }, + { + "start": 4555.96, + "end": 4556.72, + "probability": 0.9171 + }, + { + "start": 4557.32, + "end": 4559.18, + "probability": 0.8847 + }, + { + "start": 4560.08, + "end": 4561.04, + "probability": 0.8659 + }, + { + "start": 4561.74, + "end": 4563.62, + "probability": 0.8163 + }, + { + "start": 4564.18, + "end": 4565.96, + "probability": 0.8086 + }, + { + "start": 4566.48, + "end": 4568.84, + "probability": 0.9839 + }, + { + "start": 4569.24, + "end": 4570.94, + "probability": 0.8846 + }, + { + "start": 4571.52, + "end": 4576.72, + "probability": 0.9277 + }, + { + "start": 4577.16, + "end": 4581.42, + "probability": 0.9881 + }, + { + "start": 4581.98, + "end": 4585.56, + "probability": 0.75 + }, + { + "start": 4586.5, + "end": 4587.34, + "probability": 0.5828 + }, + { + "start": 4588.12, + "end": 4589.98, + "probability": 0.8179 + }, + { + "start": 4590.08, + "end": 4592.26, + "probability": 0.9937 + }, + { + "start": 4592.78, + "end": 4595.0, + "probability": 0.9211 + }, + { + "start": 4595.96, + "end": 4598.74, + "probability": 0.5033 + }, + { + "start": 4598.9, + "end": 4601.89, + "probability": 0.6406 + }, + { + "start": 4602.48, + "end": 4604.48, + "probability": 0.6511 + }, + { + "start": 4605.04, + "end": 4605.5, + "probability": 0.7998 + }, + { + "start": 4605.6, + "end": 4606.62, + "probability": 0.9496 + }, + { + "start": 4607.34, + "end": 4608.04, + "probability": 0.5598 + }, + { + "start": 4608.84, + "end": 4610.18, + "probability": 0.8325 + }, + { + "start": 4610.5, + "end": 4612.96, + "probability": 0.9844 + }, + { + "start": 4612.96, + "end": 4615.88, + "probability": 0.9888 + }, + { + "start": 4616.32, + "end": 4620.1, + "probability": 0.6186 + }, + { + "start": 4620.58, + "end": 4625.06, + "probability": 0.9824 + }, + { + "start": 4626.5, + "end": 4627.9, + "probability": 0.018 + }, + { + "start": 4629.02, + "end": 4629.37, + "probability": 0.0394 + }, + { + "start": 4630.58, + "end": 4632.78, + "probability": 0.051 + }, + { + "start": 4632.78, + "end": 4632.78, + "probability": 0.1576 + }, + { + "start": 4632.78, + "end": 4632.78, + "probability": 0.2824 + }, + { + "start": 4632.78, + "end": 4636.62, + "probability": 0.6941 + }, + { + "start": 4637.3, + "end": 4641.28, + "probability": 0.8548 + }, + { + "start": 4641.8, + "end": 4645.28, + "probability": 0.9639 + }, + { + "start": 4646.0, + "end": 4647.62, + "probability": 0.9744 + }, + { + "start": 4648.16, + "end": 4649.6, + "probability": 0.6163 + }, + { + "start": 4649.8, + "end": 4651.04, + "probability": 0.7866 + }, + { + "start": 4651.72, + "end": 4654.8, + "probability": 0.9956 + }, + { + "start": 4655.49, + "end": 4657.34, + "probability": 0.8825 + }, + { + "start": 4657.98, + "end": 4662.84, + "probability": 0.3953 + }, + { + "start": 4662.84, + "end": 4664.31, + "probability": 0.6948 + }, + { + "start": 4664.46, + "end": 4665.84, + "probability": 0.891 + }, + { + "start": 4665.94, + "end": 4668.04, + "probability": 0.9761 + }, + { + "start": 4668.58, + "end": 4671.56, + "probability": 0.9679 + }, + { + "start": 4672.18, + "end": 4672.68, + "probability": 0.5699 + }, + { + "start": 4672.78, + "end": 4674.14, + "probability": 0.7875 + }, + { + "start": 4697.32, + "end": 4699.12, + "probability": 0.0149 + }, + { + "start": 4699.12, + "end": 4699.62, + "probability": 0.1187 + }, + { + "start": 4699.94, + "end": 4699.94, + "probability": 0.0726 + }, + { + "start": 4699.94, + "end": 4699.94, + "probability": 0.0176 + }, + { + "start": 4700.02, + "end": 4702.3, + "probability": 0.6997 + }, + { + "start": 4703.72, + "end": 4704.94, + "probability": 0.9946 + }, + { + "start": 4705.52, + "end": 4706.38, + "probability": 0.9993 + }, + { + "start": 4707.28, + "end": 4709.0, + "probability": 0.8091 + }, + { + "start": 4709.52, + "end": 4712.06, + "probability": 0.9788 + }, + { + "start": 4712.86, + "end": 4715.24, + "probability": 0.8491 + }, + { + "start": 4715.36, + "end": 4719.84, + "probability": 0.9958 + }, + { + "start": 4720.88, + "end": 4726.14, + "probability": 0.9983 + }, + { + "start": 4727.18, + "end": 4729.68, + "probability": 0.9922 + }, + { + "start": 4730.25, + "end": 4734.86, + "probability": 0.9978 + }, + { + "start": 4735.48, + "end": 4737.24, + "probability": 0.9056 + }, + { + "start": 4738.1, + "end": 4741.04, + "probability": 0.9167 + }, + { + "start": 4742.88, + "end": 4744.88, + "probability": 0.9982 + }, + { + "start": 4745.6, + "end": 4750.02, + "probability": 0.9615 + }, + { + "start": 4750.74, + "end": 4752.56, + "probability": 0.8825 + }, + { + "start": 4753.28, + "end": 4755.04, + "probability": 0.9243 + }, + { + "start": 4755.74, + "end": 4759.9, + "probability": 0.993 + }, + { + "start": 4760.5, + "end": 4763.62, + "probability": 0.9949 + }, + { + "start": 4765.42, + "end": 4772.68, + "probability": 0.9913 + }, + { + "start": 4773.8, + "end": 4778.2, + "probability": 0.8607 + }, + { + "start": 4779.28, + "end": 4783.04, + "probability": 0.0323 + }, + { + "start": 4783.04, + "end": 4783.08, + "probability": 0.0098 + }, + { + "start": 4810.52, + "end": 4811.36, + "probability": 0.0268 + }, + { + "start": 4813.75, + "end": 4814.64, + "probability": 0.0436 + }, + { + "start": 4814.64, + "end": 4815.9, + "probability": 0.2785 + }, + { + "start": 4820.2, + "end": 4825.46, + "probability": 0.0741 + }, + { + "start": 4825.46, + "end": 4826.94, + "probability": 0.031 + }, + { + "start": 4827.56, + "end": 4827.66, + "probability": 0.0013 + }, + { + "start": 4834.14, + "end": 4834.92, + "probability": 0.064 + }, + { + "start": 4836.73, + "end": 4838.56, + "probability": 0.0344 + }, + { + "start": 4838.99, + "end": 4841.3, + "probability": 0.058 + }, + { + "start": 4841.74, + "end": 4842.74, + "probability": 0.0995 + }, + { + "start": 4842.76, + "end": 4843.08, + "probability": 0.143 + }, + { + "start": 4843.24, + "end": 4843.6, + "probability": 0.0567 + }, + { + "start": 4843.8, + "end": 4848.1, + "probability": 0.1383 + }, + { + "start": 4849.3, + "end": 4849.94, + "probability": 0.0238 + }, + { + "start": 4849.94, + "end": 4850.74, + "probability": 0.0784 + }, + { + "start": 4850.74, + "end": 4851.38, + "probability": 0.0271 + }, + { + "start": 4852.08, + "end": 4854.06, + "probability": 0.0156 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.0, + "end": 4855.0, + "probability": 0.0 + }, + { + "start": 4855.48, + "end": 4856.0, + "probability": 0.0528 + }, + { + "start": 4856.0, + "end": 4856.0, + "probability": 0.0202 + }, + { + "start": 4856.0, + "end": 4856.5, + "probability": 0.1607 + }, + { + "start": 4856.92, + "end": 4858.67, + "probability": 0.4394 + }, + { + "start": 4858.94, + "end": 4860.44, + "probability": 0.4764 + }, + { + "start": 4861.02, + "end": 4862.56, + "probability": 0.5746 + }, + { + "start": 4862.64, + "end": 4865.22, + "probability": 0.9952 + }, + { + "start": 4866.4, + "end": 4868.1, + "probability": 0.9878 + }, + { + "start": 4868.98, + "end": 4870.7, + "probability": 0.7582 + }, + { + "start": 4871.24, + "end": 4874.46, + "probability": 0.808 + }, + { + "start": 4875.22, + "end": 4877.3, + "probability": 0.9721 + }, + { + "start": 4877.3, + "end": 4882.24, + "probability": 0.9902 + }, + { + "start": 4882.78, + "end": 4883.78, + "probability": 0.7502 + }, + { + "start": 4884.3, + "end": 4885.38, + "probability": 0.9954 + }, + { + "start": 4890.22, + "end": 4891.4, + "probability": 0.5593 + }, + { + "start": 4891.5, + "end": 4893.32, + "probability": 0.8262 + }, + { + "start": 4894.14, + "end": 4894.88, + "probability": 0.6363 + }, + { + "start": 4904.76, + "end": 4908.54, + "probability": 0.6211 + }, + { + "start": 4909.42, + "end": 4910.58, + "probability": 0.5124 + }, + { + "start": 4910.58, + "end": 4911.12, + "probability": 0.8632 + }, + { + "start": 4916.52, + "end": 4917.98, + "probability": 0.1331 + }, + { + "start": 4919.32, + "end": 4919.94, + "probability": 0.1137 + }, + { + "start": 4943.9, + "end": 4947.16, + "probability": 0.8411 + }, + { + "start": 4949.34, + "end": 4952.38, + "probability": 0.986 + }, + { + "start": 4953.8, + "end": 4957.16, + "probability": 0.9717 + }, + { + "start": 4958.42, + "end": 4959.42, + "probability": 0.5793 + }, + { + "start": 4960.04, + "end": 4960.4, + "probability": 0.4072 + }, + { + "start": 4960.48, + "end": 4961.98, + "probability": 0.9789 + }, + { + "start": 4962.4, + "end": 4963.52, + "probability": 0.9567 + }, + { + "start": 4963.62, + "end": 4965.08, + "probability": 0.998 + }, + { + "start": 4966.42, + "end": 4968.44, + "probability": 0.833 + }, + { + "start": 4969.48, + "end": 4973.26, + "probability": 0.9969 + }, + { + "start": 4973.26, + "end": 4975.44, + "probability": 0.9983 + }, + { + "start": 4977.2, + "end": 4980.12, + "probability": 0.9928 + }, + { + "start": 4981.16, + "end": 4983.16, + "probability": 0.7617 + }, + { + "start": 4984.1, + "end": 4985.42, + "probability": 0.8904 + }, + { + "start": 4986.44, + "end": 4987.98, + "probability": 0.9627 + }, + { + "start": 4988.58, + "end": 4992.88, + "probability": 0.9966 + }, + { + "start": 4994.18, + "end": 4997.8, + "probability": 0.9822 + }, + { + "start": 4998.34, + "end": 4998.94, + "probability": 0.8687 + }, + { + "start": 5001.26, + "end": 5002.98, + "probability": 0.9946 + }, + { + "start": 5004.3, + "end": 5006.44, + "probability": 0.9976 + }, + { + "start": 5007.36, + "end": 5009.34, + "probability": 0.9933 + }, + { + "start": 5010.04, + "end": 5012.64, + "probability": 0.9931 + }, + { + "start": 5014.16, + "end": 5016.5, + "probability": 0.9326 + }, + { + "start": 5018.0, + "end": 5020.42, + "probability": 0.7804 + }, + { + "start": 5020.42, + "end": 5023.64, + "probability": 0.9978 + }, + { + "start": 5025.28, + "end": 5030.14, + "probability": 0.9937 + }, + { + "start": 5030.88, + "end": 5032.16, + "probability": 0.707 + }, + { + "start": 5033.7, + "end": 5034.62, + "probability": 0.6297 + }, + { + "start": 5035.24, + "end": 5037.72, + "probability": 0.9558 + }, + { + "start": 5037.82, + "end": 5039.34, + "probability": 0.9229 + }, + { + "start": 5040.14, + "end": 5043.4, + "probability": 0.8923 + }, + { + "start": 5043.52, + "end": 5043.82, + "probability": 0.9218 + }, + { + "start": 5043.98, + "end": 5044.76, + "probability": 0.8765 + }, + { + "start": 5045.86, + "end": 5048.1, + "probability": 0.8586 + }, + { + "start": 5048.72, + "end": 5051.6, + "probability": 0.7258 + }, + { + "start": 5052.8, + "end": 5053.08, + "probability": 0.7954 + }, + { + "start": 5053.84, + "end": 5054.64, + "probability": 0.8989 + }, + { + "start": 5055.18, + "end": 5056.88, + "probability": 0.8441 + }, + { + "start": 5056.98, + "end": 5057.7, + "probability": 0.1676 + }, + { + "start": 5057.76, + "end": 5058.48, + "probability": 0.5757 + }, + { + "start": 5059.26, + "end": 5060.6, + "probability": 0.9786 + }, + { + "start": 5061.24, + "end": 5065.42, + "probability": 0.7793 + }, + { + "start": 5066.06, + "end": 5067.88, + "probability": 0.9636 + }, + { + "start": 5068.42, + "end": 5069.94, + "probability": 0.9299 + }, + { + "start": 5071.4, + "end": 5075.13, + "probability": 0.9847 + }, + { + "start": 5075.28, + "end": 5078.18, + "probability": 0.9956 + }, + { + "start": 5079.0, + "end": 5081.96, + "probability": 0.9711 + }, + { + "start": 5083.16, + "end": 5084.82, + "probability": 0.9156 + }, + { + "start": 5085.6, + "end": 5088.42, + "probability": 0.9922 + }, + { + "start": 5089.08, + "end": 5091.48, + "probability": 0.9501 + }, + { + "start": 5092.16, + "end": 5095.38, + "probability": 0.9664 + }, + { + "start": 5096.94, + "end": 5098.52, + "probability": 0.8741 + }, + { + "start": 5099.1, + "end": 5101.12, + "probability": 0.9893 + }, + { + "start": 5101.12, + "end": 5103.5, + "probability": 0.9941 + }, + { + "start": 5105.1, + "end": 5105.66, + "probability": 0.8764 + }, + { + "start": 5106.12, + "end": 5107.18, + "probability": 0.9487 + }, + { + "start": 5107.26, + "end": 5109.36, + "probability": 0.9994 + }, + { + "start": 5109.46, + "end": 5110.76, + "probability": 0.8994 + }, + { + "start": 5111.56, + "end": 5112.16, + "probability": 0.5255 + }, + { + "start": 5112.84, + "end": 5115.2, + "probability": 0.8842 + }, + { + "start": 5116.48, + "end": 5116.82, + "probability": 0.9586 + }, + { + "start": 5116.98, + "end": 5120.82, + "probability": 0.8674 + }, + { + "start": 5121.48, + "end": 5124.66, + "probability": 0.997 + }, + { + "start": 5125.8, + "end": 5127.8, + "probability": 0.9778 + }, + { + "start": 5128.32, + "end": 5131.1, + "probability": 0.8311 + }, + { + "start": 5132.12, + "end": 5136.0, + "probability": 0.958 + }, + { + "start": 5136.6, + "end": 5138.38, + "probability": 0.8557 + }, + { + "start": 5139.48, + "end": 5142.94, + "probability": 0.9895 + }, + { + "start": 5143.92, + "end": 5145.26, + "probability": 0.9591 + }, + { + "start": 5146.46, + "end": 5149.14, + "probability": 0.9817 + }, + { + "start": 5150.66, + "end": 5151.5, + "probability": 0.9849 + }, + { + "start": 5152.04, + "end": 5153.56, + "probability": 0.9755 + }, + { + "start": 5153.88, + "end": 5156.42, + "probability": 0.9893 + }, + { + "start": 5157.78, + "end": 5159.86, + "probability": 0.8706 + }, + { + "start": 5161.12, + "end": 5166.16, + "probability": 0.9751 + }, + { + "start": 5167.38, + "end": 5170.44, + "probability": 0.9976 + }, + { + "start": 5170.44, + "end": 5173.82, + "probability": 0.9982 + }, + { + "start": 5175.24, + "end": 5176.64, + "probability": 0.9922 + }, + { + "start": 5177.26, + "end": 5178.64, + "probability": 0.9979 + }, + { + "start": 5180.04, + "end": 5183.36, + "probability": 0.8483 + }, + { + "start": 5183.42, + "end": 5184.18, + "probability": 0.981 + }, + { + "start": 5185.78, + "end": 5187.5, + "probability": 0.9593 + }, + { + "start": 5188.04, + "end": 5190.92, + "probability": 0.9971 + }, + { + "start": 5190.92, + "end": 5194.38, + "probability": 0.9976 + }, + { + "start": 5194.9, + "end": 5196.64, + "probability": 0.9992 + }, + { + "start": 5197.32, + "end": 5201.3, + "probability": 0.9983 + }, + { + "start": 5203.56, + "end": 5206.82, + "probability": 0.988 + }, + { + "start": 5206.9, + "end": 5209.62, + "probability": 0.9984 + }, + { + "start": 5210.92, + "end": 5213.44, + "probability": 0.9977 + }, + { + "start": 5213.44, + "end": 5217.02, + "probability": 0.7731 + }, + { + "start": 5217.8, + "end": 5220.74, + "probability": 0.9717 + }, + { + "start": 5221.62, + "end": 5223.2, + "probability": 0.8838 + }, + { + "start": 5224.38, + "end": 5226.62, + "probability": 0.9132 + }, + { + "start": 5226.7, + "end": 5229.66, + "probability": 0.9927 + }, + { + "start": 5230.9, + "end": 5233.46, + "probability": 0.9731 + }, + { + "start": 5234.44, + "end": 5236.9, + "probability": 0.8794 + }, + { + "start": 5237.06, + "end": 5238.66, + "probability": 0.9611 + }, + { + "start": 5239.78, + "end": 5242.16, + "probability": 0.9754 + }, + { + "start": 5242.68, + "end": 5245.56, + "probability": 0.9849 + }, + { + "start": 5248.98, + "end": 5251.36, + "probability": 0.7824 + }, + { + "start": 5251.42, + "end": 5254.82, + "probability": 0.9841 + }, + { + "start": 5255.76, + "end": 5259.96, + "probability": 0.9732 + }, + { + "start": 5260.88, + "end": 5261.75, + "probability": 0.8747 + }, + { + "start": 5262.84, + "end": 5264.18, + "probability": 0.9315 + }, + { + "start": 5265.02, + "end": 5269.72, + "probability": 0.9548 + }, + { + "start": 5269.82, + "end": 5271.82, + "probability": 0.8964 + }, + { + "start": 5272.58, + "end": 5275.3, + "probability": 0.9551 + }, + { + "start": 5275.9, + "end": 5277.46, + "probability": 0.974 + }, + { + "start": 5278.5, + "end": 5282.32, + "probability": 0.9927 + }, + { + "start": 5282.86, + "end": 5286.34, + "probability": 0.9454 + }, + { + "start": 5286.84, + "end": 5287.28, + "probability": 0.8038 + }, + { + "start": 5289.08, + "end": 5290.6, + "probability": 0.7166 + }, + { + "start": 5290.64, + "end": 5291.06, + "probability": 0.808 + }, + { + "start": 5292.02, + "end": 5295.06, + "probability": 0.7448 + }, + { + "start": 5296.97, + "end": 5298.12, + "probability": 0.6754 + }, + { + "start": 5299.02, + "end": 5302.48, + "probability": 0.5183 + }, + { + "start": 5302.52, + "end": 5306.72, + "probability": 0.8493 + }, + { + "start": 5307.28, + "end": 5308.72, + "probability": 0.8363 + }, + { + "start": 5309.0, + "end": 5310.48, + "probability": 0.7959 + }, + { + "start": 5311.06, + "end": 5311.5, + "probability": 0.1755 + }, + { + "start": 5313.46, + "end": 5313.84, + "probability": 0.8921 + }, + { + "start": 5314.58, + "end": 5315.14, + "probability": 0.9139 + }, + { + "start": 5316.08, + "end": 5316.36, + "probability": 0.9575 + }, + { + "start": 5317.14, + "end": 5317.92, + "probability": 0.7891 + }, + { + "start": 5319.72, + "end": 5320.32, + "probability": 0.7399 + }, + { + "start": 5320.88, + "end": 5321.58, + "probability": 0.6461 + }, + { + "start": 5323.38, + "end": 5323.76, + "probability": 0.98 + }, + { + "start": 5325.2, + "end": 5325.74, + "probability": 0.8061 + }, + { + "start": 5329.0, + "end": 5330.64, + "probability": 0.5228 + }, + { + "start": 5332.68, + "end": 5333.38, + "probability": 0.8428 + }, + { + "start": 5334.28, + "end": 5334.58, + "probability": 0.9663 + }, + { + "start": 5335.7, + "end": 5336.18, + "probability": 0.6016 + }, + { + "start": 5337.06, + "end": 5339.06, + "probability": 0.6172 + }, + { + "start": 5341.04, + "end": 5343.96, + "probability": 0.8574 + }, + { + "start": 5345.46, + "end": 5346.18, + "probability": 0.6044 + }, + { + "start": 5347.4, + "end": 5347.82, + "probability": 0.9492 + }, + { + "start": 5348.58, + "end": 5349.22, + "probability": 0.9212 + }, + { + "start": 5352.28, + "end": 5352.98, + "probability": 0.9224 + }, + { + "start": 5353.52, + "end": 5354.3, + "probability": 0.8976 + }, + { + "start": 5356.66, + "end": 5357.1, + "probability": 0.9941 + }, + { + "start": 5358.76, + "end": 5359.46, + "probability": 0.7806 + }, + { + "start": 5360.32, + "end": 5360.78, + "probability": 0.9821 + }, + { + "start": 5361.88, + "end": 5362.72, + "probability": 0.9602 + }, + { + "start": 5366.34, + "end": 5367.04, + "probability": 0.994 + }, + { + "start": 5367.78, + "end": 5368.34, + "probability": 0.781 + }, + { + "start": 5369.06, + "end": 5370.92, + "probability": 0.6845 + }, + { + "start": 5372.16, + "end": 5372.56, + "probability": 0.8906 + }, + { + "start": 5373.42, + "end": 5374.32, + "probability": 0.7942 + }, + { + "start": 5374.86, + "end": 5375.16, + "probability": 0.8845 + }, + { + "start": 5376.14, + "end": 5376.88, + "probability": 0.924 + }, + { + "start": 5378.26, + "end": 5378.88, + "probability": 0.9213 + }, + { + "start": 5380.54, + "end": 5381.26, + "probability": 0.9353 + }, + { + "start": 5381.92, + "end": 5382.3, + "probability": 0.9574 + }, + { + "start": 5383.92, + "end": 5384.74, + "probability": 0.9084 + }, + { + "start": 5388.82, + "end": 5389.54, + "probability": 0.9376 + }, + { + "start": 5390.3, + "end": 5391.16, + "probability": 0.9614 + }, + { + "start": 5393.08, + "end": 5393.9, + "probability": 0.9883 + }, + { + "start": 5394.46, + "end": 5394.94, + "probability": 0.7817 + }, + { + "start": 5396.08, + "end": 5396.52, + "probability": 0.5172 + }, + { + "start": 5397.48, + "end": 5398.42, + "probability": 0.9695 + }, + { + "start": 5399.2, + "end": 5399.5, + "probability": 0.8079 + }, + { + "start": 5400.64, + "end": 5401.58, + "probability": 0.9638 + }, + { + "start": 5406.78, + "end": 5407.08, + "probability": 0.7319 + }, + { + "start": 5409.16, + "end": 5410.14, + "probability": 0.8273 + }, + { + "start": 5411.5, + "end": 5412.56, + "probability": 0.6932 + }, + { + "start": 5413.48, + "end": 5414.1, + "probability": 0.9489 + }, + { + "start": 5415.74, + "end": 5417.74, + "probability": 0.9453 + }, + { + "start": 5422.18, + "end": 5422.82, + "probability": 0.9078 + }, + { + "start": 5425.5, + "end": 5426.22, + "probability": 0.8359 + }, + { + "start": 5427.12, + "end": 5428.0, + "probability": 0.969 + }, + { + "start": 5428.56, + "end": 5429.38, + "probability": 0.8883 + }, + { + "start": 5430.78, + "end": 5432.82, + "probability": 0.8338 + }, + { + "start": 5435.06, + "end": 5435.7, + "probability": 0.7842 + }, + { + "start": 5436.26, + "end": 5437.02, + "probability": 0.8842 + }, + { + "start": 5438.4, + "end": 5439.2, + "probability": 0.96 + }, + { + "start": 5440.88, + "end": 5441.56, + "probability": 0.9799 + }, + { + "start": 5443.32, + "end": 5444.06, + "probability": 0.973 + }, + { + "start": 5444.58, + "end": 5445.34, + "probability": 0.8445 + }, + { + "start": 5449.2, + "end": 5449.6, + "probability": 0.9925 + }, + { + "start": 5452.92, + "end": 5453.76, + "probability": 0.6932 + }, + { + "start": 5454.82, + "end": 5455.1, + "probability": 0.8645 + }, + { + "start": 5457.0, + "end": 5457.74, + "probability": 0.8384 + }, + { + "start": 5458.5, + "end": 5458.86, + "probability": 0.9797 + }, + { + "start": 5459.74, + "end": 5460.88, + "probability": 0.6961 + }, + { + "start": 5463.98, + "end": 5464.38, + "probability": 0.8185 + }, + { + "start": 5466.38, + "end": 5467.02, + "probability": 0.5888 + }, + { + "start": 5467.84, + "end": 5469.16, + "probability": 0.9572 + }, + { + "start": 5470.96, + "end": 5471.6, + "probability": 0.811 + }, + { + "start": 5472.32, + "end": 5472.88, + "probability": 0.9352 + }, + { + "start": 5473.84, + "end": 5474.26, + "probability": 0.9442 + }, + { + "start": 5474.86, + "end": 5475.44, + "probability": 0.6519 + }, + { + "start": 5476.02, + "end": 5477.5, + "probability": 0.9349 + }, + { + "start": 5478.58, + "end": 5479.02, + "probability": 0.9821 + }, + { + "start": 5480.0, + "end": 5480.9, + "probability": 0.6559 + }, + { + "start": 5482.6, + "end": 5483.0, + "probability": 0.9434 + }, + { + "start": 5484.66, + "end": 5486.42, + "probability": 0.8663 + }, + { + "start": 5488.22, + "end": 5488.99, + "probability": 0.7896 + }, + { + "start": 5490.62, + "end": 5491.08, + "probability": 0.8153 + }, + { + "start": 5493.02, + "end": 5494.26, + "probability": 0.9242 + }, + { + "start": 5495.06, + "end": 5495.98, + "probability": 0.9701 + }, + { + "start": 5496.72, + "end": 5497.54, + "probability": 0.8739 + }, + { + "start": 5498.66, + "end": 5499.12, + "probability": 0.7654 + }, + { + "start": 5500.08, + "end": 5501.04, + "probability": 0.6721 + }, + { + "start": 5501.89, + "end": 5503.64, + "probability": 0.6597 + }, + { + "start": 5503.9, + "end": 5505.72, + "probability": 0.8027 + }, + { + "start": 5505.76, + "end": 5507.42, + "probability": 0.8093 + }, + { + "start": 5508.3, + "end": 5508.56, + "probability": 0.5962 + }, + { + "start": 5510.62, + "end": 5511.04, + "probability": 0.7323 + }, + { + "start": 5512.08, + "end": 5512.4, + "probability": 0.9263 + }, + { + "start": 5513.0, + "end": 5513.66, + "probability": 0.8931 + }, + { + "start": 5514.66, + "end": 5515.04, + "probability": 0.96 + }, + { + "start": 5515.9, + "end": 5516.5, + "probability": 0.8325 + }, + { + "start": 5517.36, + "end": 5519.06, + "probability": 0.9771 + }, + { + "start": 5519.72, + "end": 5521.1, + "probability": 0.9932 + }, + { + "start": 5522.08, + "end": 5522.82, + "probability": 0.8795 + }, + { + "start": 5523.52, + "end": 5524.86, + "probability": 0.9848 + }, + { + "start": 5525.52, + "end": 5527.34, + "probability": 0.9788 + }, + { + "start": 5528.96, + "end": 5529.64, + "probability": 0.9599 + }, + { + "start": 5530.54, + "end": 5531.14, + "probability": 0.976 + }, + { + "start": 5531.88, + "end": 5533.1, + "probability": 0.9844 + }, + { + "start": 5534.3, + "end": 5537.24, + "probability": 0.6409 + }, + { + "start": 5539.12, + "end": 5539.36, + "probability": 0.5159 + }, + { + "start": 5540.06, + "end": 5540.54, + "probability": 0.7628 + }, + { + "start": 5541.76, + "end": 5542.98, + "probability": 0.9823 + }, + { + "start": 5544.42, + "end": 5545.72, + "probability": 0.942 + }, + { + "start": 5549.8, + "end": 5551.8, + "probability": 0.6494 + }, + { + "start": 5554.6, + "end": 5555.36, + "probability": 0.9917 + }, + { + "start": 5556.4, + "end": 5557.04, + "probability": 0.9531 + }, + { + "start": 5558.78, + "end": 5559.24, + "probability": 0.9792 + }, + { + "start": 5560.1, + "end": 5560.92, + "probability": 0.9432 + }, + { + "start": 5562.24, + "end": 5564.12, + "probability": 0.9306 + }, + { + "start": 5565.94, + "end": 5566.7, + "probability": 0.9954 + }, + { + "start": 5568.0, + "end": 5568.96, + "probability": 0.6999 + }, + { + "start": 5570.6, + "end": 5572.32, + "probability": 0.9385 + }, + { + "start": 5573.3, + "end": 5573.7, + "probability": 0.9248 + }, + { + "start": 5574.52, + "end": 5575.6, + "probability": 0.8915 + }, + { + "start": 5576.6, + "end": 5577.1, + "probability": 0.9826 + }, + { + "start": 5577.88, + "end": 5578.56, + "probability": 0.884 + }, + { + "start": 5579.66, + "end": 5580.1, + "probability": 0.9893 + }, + { + "start": 5581.2, + "end": 5582.14, + "probability": 0.759 + }, + { + "start": 5583.98, + "end": 5584.86, + "probability": 0.9872 + }, + { + "start": 5585.8, + "end": 5586.82, + "probability": 0.8586 + }, + { + "start": 5587.54, + "end": 5588.0, + "probability": 0.9912 + }, + { + "start": 5588.68, + "end": 5589.68, + "probability": 0.8008 + }, + { + "start": 5594.86, + "end": 5595.16, + "probability": 0.7069 + }, + { + "start": 5597.16, + "end": 5598.2, + "probability": 0.4713 + }, + { + "start": 5599.3, + "end": 5599.74, + "probability": 0.9873 + }, + { + "start": 5600.28, + "end": 5600.98, + "probability": 0.9065 + }, + { + "start": 5604.3, + "end": 5604.66, + "probability": 0.807 + }, + { + "start": 5606.68, + "end": 5607.46, + "probability": 0.7645 + }, + { + "start": 5611.32, + "end": 5613.48, + "probability": 0.8788 + }, + { + "start": 5614.92, + "end": 5615.4, + "probability": 0.9831 + }, + { + "start": 5616.92, + "end": 5617.54, + "probability": 0.7864 + }, + { + "start": 5620.28, + "end": 5620.76, + "probability": 0.9958 + }, + { + "start": 5621.9, + "end": 5622.54, + "probability": 0.9681 + }, + { + "start": 5623.38, + "end": 5623.88, + "probability": 0.9858 + }, + { + "start": 5624.78, + "end": 5625.56, + "probability": 0.9862 + }, + { + "start": 5626.94, + "end": 5627.32, + "probability": 0.9565 + }, + { + "start": 5629.8, + "end": 5630.26, + "probability": 0.9352 + }, + { + "start": 5631.7, + "end": 5633.6, + "probability": 0.6393 + }, + { + "start": 5634.26, + "end": 5634.76, + "probability": 0.8442 + }, + { + "start": 5636.62, + "end": 5637.36, + "probability": 0.8376 + }, + { + "start": 5638.98, + "end": 5639.68, + "probability": 0.9747 + }, + { + "start": 5640.28, + "end": 5641.32, + "probability": 0.9161 + }, + { + "start": 5643.56, + "end": 5643.96, + "probability": 0.994 + }, + { + "start": 5645.68, + "end": 5646.54, + "probability": 0.8605 + }, + { + "start": 5647.72, + "end": 5649.66, + "probability": 0.8931 + }, + { + "start": 5650.72, + "end": 5653.24, + "probability": 0.818 + }, + { + "start": 5654.42, + "end": 5655.32, + "probability": 0.9355 + }, + { + "start": 5666.16, + "end": 5667.02, + "probability": 0.6164 + }, + { + "start": 5669.1, + "end": 5670.04, + "probability": 0.6423 + }, + { + "start": 5671.48, + "end": 5671.96, + "probability": 0.9648 + }, + { + "start": 5673.14, + "end": 5673.94, + "probability": 0.8537 + }, + { + "start": 5674.82, + "end": 5677.0, + "probability": 0.9606 + }, + { + "start": 5678.68, + "end": 5680.98, + "probability": 0.9701 + }, + { + "start": 5682.98, + "end": 5683.38, + "probability": 0.9656 + }, + { + "start": 5684.54, + "end": 5685.22, + "probability": 0.9375 + }, + { + "start": 5687.42, + "end": 5687.86, + "probability": 0.9797 + }, + { + "start": 5688.92, + "end": 5689.7, + "probability": 0.9095 + }, + { + "start": 5691.46, + "end": 5695.26, + "probability": 0.8472 + }, + { + "start": 5697.22, + "end": 5698.28, + "probability": 0.5964 + }, + { + "start": 5703.66, + "end": 5705.4, + "probability": 0.873 + }, + { + "start": 5706.22, + "end": 5706.68, + "probability": 0.9038 + }, + { + "start": 5707.54, + "end": 5708.42, + "probability": 0.944 + }, + { + "start": 5709.9, + "end": 5710.38, + "probability": 0.9875 + }, + { + "start": 5711.9, + "end": 5712.76, + "probability": 0.9721 + }, + { + "start": 5714.4, + "end": 5715.22, + "probability": 0.9858 + }, + { + "start": 5715.76, + "end": 5716.62, + "probability": 0.9884 + }, + { + "start": 5718.3, + "end": 5720.16, + "probability": 0.3592 + }, + { + "start": 5720.86, + "end": 5723.1, + "probability": 0.5078 + }, + { + "start": 5724.52, + "end": 5725.22, + "probability": 0.8258 + }, + { + "start": 5729.1, + "end": 5730.3, + "probability": 0.218 + }, + { + "start": 5732.18, + "end": 5732.64, + "probability": 0.5981 + }, + { + "start": 5734.28, + "end": 5735.5, + "probability": 0.9013 + }, + { + "start": 5736.47, + "end": 5738.74, + "probability": 0.8931 + }, + { + "start": 5739.98, + "end": 5740.78, + "probability": 0.9222 + }, + { + "start": 5741.52, + "end": 5742.42, + "probability": 0.7955 + }, + { + "start": 5748.68, + "end": 5749.5, + "probability": 0.7768 + }, + { + "start": 5750.94, + "end": 5751.42, + "probability": 0.8031 + }, + { + "start": 5756.5, + "end": 5756.94, + "probability": 0.897 + }, + { + "start": 5759.06, + "end": 5759.8, + "probability": 0.921 + }, + { + "start": 5763.5, + "end": 5764.34, + "probability": 0.9452 + }, + { + "start": 5765.14, + "end": 5765.96, + "probability": 0.8318 + }, + { + "start": 5768.4, + "end": 5769.2, + "probability": 0.983 + }, + { + "start": 5769.98, + "end": 5770.86, + "probability": 0.9684 + }, + { + "start": 5772.5, + "end": 5772.78, + "probability": 0.8009 + }, + { + "start": 5776.12, + "end": 5776.5, + "probability": 0.4917 + }, + { + "start": 5777.76, + "end": 5778.3, + "probability": 0.9185 + }, + { + "start": 5778.84, + "end": 5779.74, + "probability": 0.7358 + }, + { + "start": 5784.34, + "end": 5786.3, + "probability": 0.8318 + }, + { + "start": 5788.4, + "end": 5788.8, + "probability": 0.7229 + }, + { + "start": 5789.94, + "end": 5790.86, + "probability": 0.8037 + }, + { + "start": 5795.28, + "end": 5795.64, + "probability": 0.9424 + }, + { + "start": 5797.02, + "end": 5798.14, + "probability": 0.7804 + }, + { + "start": 5799.2, + "end": 5799.64, + "probability": 0.9846 + }, + { + "start": 5800.98, + "end": 5804.64, + "probability": 0.954 + }, + { + "start": 5805.7, + "end": 5806.18, + "probability": 0.9658 + }, + { + "start": 5807.72, + "end": 5808.5, + "probability": 0.9702 + }, + { + "start": 5809.52, + "end": 5809.66, + "probability": 0.0095 + }, + { + "start": 5813.46, + "end": 5814.28, + "probability": 0.1477 + }, + { + "start": 5815.38, + "end": 5815.74, + "probability": 0.6077 + }, + { + "start": 5816.46, + "end": 5817.1, + "probability": 0.809 + }, + { + "start": 5817.66, + "end": 5819.22, + "probability": 0.9378 + }, + { + "start": 5820.54, + "end": 5821.4, + "probability": 0.7994 + }, + { + "start": 5823.76, + "end": 5824.82, + "probability": 0.8748 + }, + { + "start": 5826.44, + "end": 5828.36, + "probability": 0.7556 + }, + { + "start": 5829.74, + "end": 5832.38, + "probability": 0.9498 + }, + { + "start": 5833.74, + "end": 5836.42, + "probability": 0.9042 + }, + { + "start": 5836.72, + "end": 5838.38, + "probability": 0.8589 + }, + { + "start": 5840.6, + "end": 5841.14, + "probability": 0.251 + }, + { + "start": 5842.04, + "end": 5842.3, + "probability": 0.9575 + }, + { + "start": 5845.74, + "end": 5846.48, + "probability": 0.3331 + }, + { + "start": 5847.36, + "end": 5847.62, + "probability": 0.7891 + }, + { + "start": 5849.1, + "end": 5849.94, + "probability": 0.7947 + }, + { + "start": 5853.0, + "end": 5853.76, + "probability": 0.9067 + }, + { + "start": 5854.44, + "end": 5855.32, + "probability": 0.9552 + }, + { + "start": 5858.38, + "end": 5859.18, + "probability": 0.807 + }, + { + "start": 5859.96, + "end": 5860.74, + "probability": 0.9588 + }, + { + "start": 5861.62, + "end": 5862.38, + "probability": 0.9604 + }, + { + "start": 5863.76, + "end": 5864.64, + "probability": 0.9113 + }, + { + "start": 5870.92, + "end": 5872.42, + "probability": 0.6843 + }, + { + "start": 5874.34, + "end": 5874.7, + "probability": 0.6149 + }, + { + "start": 5876.86, + "end": 5877.48, + "probability": 0.6583 + }, + { + "start": 5880.34, + "end": 5880.78, + "probability": 0.9565 + }, + { + "start": 5884.34, + "end": 5884.94, + "probability": 0.522 + }, + { + "start": 5886.64, + "end": 5888.16, + "probability": 0.8918 + }, + { + "start": 5888.86, + "end": 5890.38, + "probability": 0.9754 + }, + { + "start": 5891.82, + "end": 5892.56, + "probability": 0.9546 + }, + { + "start": 5893.7, + "end": 5894.4, + "probability": 0.9282 + }, + { + "start": 5896.28, + "end": 5897.18, + "probability": 0.9728 + }, + { + "start": 5898.5, + "end": 5899.18, + "probability": 0.978 + }, + { + "start": 5899.82, + "end": 5900.2, + "probability": 0.9629 + }, + { + "start": 5902.38, + "end": 5903.0, + "probability": 0.9312 + }, + { + "start": 5904.66, + "end": 5905.48, + "probability": 0.9918 + }, + { + "start": 5906.5, + "end": 5907.14, + "probability": 0.641 + }, + { + "start": 5907.98, + "end": 5908.7, + "probability": 0.9823 + }, + { + "start": 5910.32, + "end": 5911.04, + "probability": 0.7139 + }, + { + "start": 5911.16, + "end": 5912.7, + "probability": 0.4606 + }, + { + "start": 5912.7, + "end": 5914.46, + "probability": 0.8465 + }, + { + "start": 5914.64, + "end": 5915.26, + "probability": 0.9013 + }, + { + "start": 5917.26, + "end": 5917.96, + "probability": 0.8332 + }, + { + "start": 5919.3, + "end": 5919.78, + "probability": 0.8601 + }, + { + "start": 5922.08, + "end": 5922.54, + "probability": 0.9326 + }, + { + "start": 5923.92, + "end": 5924.6, + "probability": 0.9734 + }, + { + "start": 5926.14, + "end": 5926.72, + "probability": 0.9097 + }, + { + "start": 5928.84, + "end": 5931.32, + "probability": 0.8064 + }, + { + "start": 5933.66, + "end": 5935.96, + "probability": 0.7547 + }, + { + "start": 5937.22, + "end": 5938.0, + "probability": 0.8838 + }, + { + "start": 5938.92, + "end": 5939.16, + "probability": 0.7616 + }, + { + "start": 5941.26, + "end": 5942.1, + "probability": 0.6027 + }, + { + "start": 5944.32, + "end": 5948.02, + "probability": 0.9604 + }, + { + "start": 5948.92, + "end": 5949.38, + "probability": 0.8103 + }, + { + "start": 5951.66, + "end": 5952.52, + "probability": 0.677 + }, + { + "start": 5956.0, + "end": 5956.9, + "probability": 0.915 + }, + { + "start": 5957.76, + "end": 5958.54, + "probability": 0.9068 + }, + { + "start": 5960.06, + "end": 5960.94, + "probability": 0.9738 + }, + { + "start": 5963.44, + "end": 5964.4, + "probability": 0.9629 + }, + { + "start": 5966.5, + "end": 5967.1, + "probability": 0.4967 + }, + { + "start": 5969.4, + "end": 5970.4, + "probability": 0.3806 + }, + { + "start": 5972.06, + "end": 5972.78, + "probability": 0.8273 + }, + { + "start": 5973.52, + "end": 5974.26, + "probability": 0.7008 + }, + { + "start": 5979.02, + "end": 5979.68, + "probability": 0.5158 + }, + { + "start": 5982.52, + "end": 5984.66, + "probability": 0.9207 + }, + { + "start": 5985.76, + "end": 5986.42, + "probability": 0.7423 + }, + { + "start": 5987.44, + "end": 5987.86, + "probability": 0.6068 + }, + { + "start": 5989.06, + "end": 5991.14, + "probability": 0.9601 + }, + { + "start": 5991.96, + "end": 5992.22, + "probability": 0.6786 + }, + { + "start": 5994.42, + "end": 5995.12, + "probability": 0.6696 + }, + { + "start": 5996.9, + "end": 5999.02, + "probability": 0.7114 + }, + { + "start": 6001.04, + "end": 6001.8, + "probability": 0.9855 + }, + { + "start": 6003.08, + "end": 6004.06, + "probability": 0.9518 + }, + { + "start": 6007.0, + "end": 6007.76, + "probability": 0.9615 + }, + { + "start": 6008.34, + "end": 6009.16, + "probability": 0.7963 + }, + { + "start": 6011.12, + "end": 6011.94, + "probability": 0.9757 + }, + { + "start": 6013.82, + "end": 6015.96, + "probability": 0.9314 + }, + { + "start": 6016.06, + "end": 6016.48, + "probability": 0.0505 + }, + { + "start": 6018.98, + "end": 6019.62, + "probability": 0.5958 + }, + { + "start": 6020.66, + "end": 6025.46, + "probability": 0.6397 + }, + { + "start": 6026.28, + "end": 6026.7, + "probability": 0.7169 + }, + { + "start": 6034.56, + "end": 6038.54, + "probability": 0.9795 + }, + { + "start": 6039.34, + "end": 6040.28, + "probability": 0.5293 + }, + { + "start": 6041.82, + "end": 6041.92, + "probability": 0.2983 + }, + { + "start": 6051.84, + "end": 6052.46, + "probability": 0.4806 + }, + { + "start": 6053.5, + "end": 6056.76, + "probability": 0.8374 + }, + { + "start": 6056.84, + "end": 6059.52, + "probability": 0.8964 + }, + { + "start": 6060.68, + "end": 6063.86, + "probability": 0.9084 + }, + { + "start": 6064.22, + "end": 6065.48, + "probability": 0.687 + }, + { + "start": 6067.36, + "end": 6069.06, + "probability": 0.9183 + }, + { + "start": 6078.16, + "end": 6078.66, + "probability": 0.1014 + }, + { + "start": 6081.08, + "end": 6081.18, + "probability": 0.055 + }, + { + "start": 6082.26, + "end": 6085.56, + "probability": 0.0559 + }, + { + "start": 6089.79, + "end": 6090.28, + "probability": 0.1171 + }, + { + "start": 6105.46, + "end": 6109.18, + "probability": 0.066 + }, + { + "start": 6115.34, + "end": 6115.92, + "probability": 0.0422 + }, + { + "start": 6118.02, + "end": 6119.46, + "probability": 0.0013 + }, + { + "start": 6206.66, + "end": 6206.68, + "probability": 0.0483 + }, + { + "start": 6206.68, + "end": 6206.68, + "probability": 0.1506 + }, + { + "start": 6206.68, + "end": 6206.68, + "probability": 0.0405 + }, + { + "start": 6206.68, + "end": 6206.68, + "probability": 0.0927 + }, + { + "start": 6206.68, + "end": 6207.22, + "probability": 0.3644 + }, + { + "start": 6208.48, + "end": 6210.06, + "probability": 0.5603 + }, + { + "start": 6210.84, + "end": 6214.16, + "probability": 0.5842 + }, + { + "start": 6214.88, + "end": 6217.32, + "probability": 0.8537 + }, + { + "start": 6217.96, + "end": 6219.64, + "probability": 0.5763 + }, + { + "start": 6220.1, + "end": 6223.38, + "probability": 0.0352 + }, + { + "start": 6236.94, + "end": 6237.76, + "probability": 0.1147 + }, + { + "start": 6237.76, + "end": 6240.0, + "probability": 0.1118 + }, + { + "start": 6243.66, + "end": 6245.3, + "probability": 0.7398 + }, + { + "start": 6246.78, + "end": 6247.34, + "probability": 0.6076 + }, + { + "start": 6248.2, + "end": 6248.72, + "probability": 0.7581 + }, + { + "start": 6250.28, + "end": 6251.76, + "probability": 0.5104 + }, + { + "start": 6252.44, + "end": 6256.14, + "probability": 0.915 + }, + { + "start": 6256.36, + "end": 6256.92, + "probability": 0.5918 + }, + { + "start": 6258.26, + "end": 6259.5, + "probability": 0.5021 + }, + { + "start": 6260.44, + "end": 6263.5, + "probability": 0.6266 + }, + { + "start": 6264.14, + "end": 6268.18, + "probability": 0.7352 + }, + { + "start": 6269.34, + "end": 6271.94, + "probability": 0.7809 + }, + { + "start": 6272.32, + "end": 6272.98, + "probability": 0.6036 + }, + { + "start": 6287.78, + "end": 6288.08, + "probability": 0.0955 + }, + { + "start": 6288.08, + "end": 6289.68, + "probability": 0.1954 + }, + { + "start": 6290.54, + "end": 6291.88, + "probability": 0.6361 + }, + { + "start": 6291.96, + "end": 6292.82, + "probability": 0.5812 + }, + { + "start": 6293.34, + "end": 6297.02, + "probability": 0.813 + }, + { + "start": 6298.32, + "end": 6300.14, + "probability": 0.9136 + }, + { + "start": 6301.74, + "end": 6301.98, + "probability": 0.5133 + }, + { + "start": 6301.98, + "end": 6302.86, + "probability": 0.7443 + }, + { + "start": 6302.94, + "end": 6305.4, + "probability": 0.9338 + }, + { + "start": 6305.64, + "end": 6307.25, + "probability": 0.9956 + }, + { + "start": 6309.1, + "end": 6310.24, + "probability": 0.7565 + }, + { + "start": 6310.5, + "end": 6313.03, + "probability": 0.6899 + }, + { + "start": 6313.26, + "end": 6316.94, + "probability": 0.8 + }, + { + "start": 6317.56, + "end": 6319.07, + "probability": 0.79 + }, + { + "start": 6319.92, + "end": 6321.8, + "probability": 0.6802 + }, + { + "start": 6331.72, + "end": 6333.56, + "probability": 0.5908 + }, + { + "start": 6335.78, + "end": 6341.09, + "probability": 0.6973 + }, + { + "start": 6342.36, + "end": 6343.48, + "probability": 0.9913 + }, + { + "start": 6344.34, + "end": 6345.6, + "probability": 0.9832 + }, + { + "start": 6347.06, + "end": 6348.52, + "probability": 0.8687 + }, + { + "start": 6349.2, + "end": 6350.72, + "probability": 0.732 + }, + { + "start": 6351.54, + "end": 6353.0, + "probability": 0.8229 + }, + { + "start": 6354.76, + "end": 6355.66, + "probability": 0.4481 + }, + { + "start": 6356.88, + "end": 6359.66, + "probability": 0.8743 + }, + { + "start": 6359.74, + "end": 6362.18, + "probability": 0.9954 + }, + { + "start": 6362.26, + "end": 6364.98, + "probability": 0.7079 + }, + { + "start": 6364.98, + "end": 6365.64, + "probability": 0.5702 + }, + { + "start": 6367.24, + "end": 6369.66, + "probability": 0.6936 + }, + { + "start": 6369.88, + "end": 6372.38, + "probability": 0.9641 + }, + { + "start": 6373.5, + "end": 6375.94, + "probability": 0.934 + }, + { + "start": 6376.0, + "end": 6377.08, + "probability": 0.7811 + }, + { + "start": 6377.74, + "end": 6378.5, + "probability": 0.9781 + }, + { + "start": 6379.08, + "end": 6381.56, + "probability": 0.9566 + }, + { + "start": 6381.86, + "end": 6383.12, + "probability": 0.3892 + }, + { + "start": 6383.28, + "end": 6384.54, + "probability": 0.9595 + }, + { + "start": 6385.1, + "end": 6387.02, + "probability": 0.9238 + }, + { + "start": 6387.68, + "end": 6389.12, + "probability": 0.9858 + }, + { + "start": 6390.64, + "end": 6391.4, + "probability": 0.9731 + }, + { + "start": 6392.72, + "end": 6393.6, + "probability": 0.8058 + }, + { + "start": 6393.84, + "end": 6395.52, + "probability": 0.9661 + }, + { + "start": 6396.86, + "end": 6398.55, + "probability": 0.9614 + }, + { + "start": 6399.68, + "end": 6402.1, + "probability": 0.7576 + }, + { + "start": 6402.26, + "end": 6402.98, + "probability": 0.8824 + }, + { + "start": 6403.1, + "end": 6403.9, + "probability": 0.7445 + }, + { + "start": 6404.04, + "end": 6404.51, + "probability": 0.8354 + }, + { + "start": 6404.8, + "end": 6407.22, + "probability": 0.9819 + }, + { + "start": 6408.69, + "end": 6409.08, + "probability": 0.3754 + }, + { + "start": 6409.08, + "end": 6409.58, + "probability": 0.5649 + }, + { + "start": 6410.82, + "end": 6413.66, + "probability": 0.9856 + }, + { + "start": 6414.56, + "end": 6415.54, + "probability": 0.5264 + }, + { + "start": 6416.28, + "end": 6416.68, + "probability": 0.6624 + }, + { + "start": 6416.72, + "end": 6417.92, + "probability": 0.8579 + }, + { + "start": 6418.0, + "end": 6420.42, + "probability": 0.9407 + }, + { + "start": 6420.44, + "end": 6421.9, + "probability": 0.9431 + }, + { + "start": 6423.72, + "end": 6425.4, + "probability": 0.9443 + }, + { + "start": 6426.86, + "end": 6429.9, + "probability": 0.8746 + }, + { + "start": 6429.96, + "end": 6431.14, + "probability": 0.9725 + }, + { + "start": 6431.26, + "end": 6432.24, + "probability": 0.9637 + }, + { + "start": 6432.8, + "end": 6433.96, + "probability": 0.9735 + }, + { + "start": 6434.58, + "end": 6435.82, + "probability": 0.7248 + }, + { + "start": 6436.4, + "end": 6438.48, + "probability": 0.9824 + }, + { + "start": 6438.56, + "end": 6439.02, + "probability": 0.3444 + }, + { + "start": 6440.5, + "end": 6441.92, + "probability": 0.906 + }, + { + "start": 6442.02, + "end": 6442.92, + "probability": 0.9967 + }, + { + "start": 6443.92, + "end": 6447.06, + "probability": 0.7008 + }, + { + "start": 6447.14, + "end": 6450.34, + "probability": 0.7653 + }, + { + "start": 6451.68, + "end": 6454.18, + "probability": 0.9254 + }, + { + "start": 6454.84, + "end": 6458.5, + "probability": 0.8542 + }, + { + "start": 6459.56, + "end": 6462.68, + "probability": 0.9381 + }, + { + "start": 6462.78, + "end": 6463.72, + "probability": 0.9401 + }, + { + "start": 6464.6, + "end": 6470.26, + "probability": 0.9863 + }, + { + "start": 6471.84, + "end": 6472.72, + "probability": 0.8348 + }, + { + "start": 6472.88, + "end": 6473.24, + "probability": 0.3105 + }, + { + "start": 6473.38, + "end": 6476.96, + "probability": 0.6744 + }, + { + "start": 6478.3, + "end": 6479.36, + "probability": 0.8557 + }, + { + "start": 6480.28, + "end": 6481.52, + "probability": 0.9685 + }, + { + "start": 6482.2, + "end": 6483.35, + "probability": 0.9353 + }, + { + "start": 6484.16, + "end": 6485.2, + "probability": 0.7479 + }, + { + "start": 6485.32, + "end": 6490.84, + "probability": 0.9253 + }, + { + "start": 6490.92, + "end": 6491.54, + "probability": 0.4984 + }, + { + "start": 6492.1, + "end": 6493.34, + "probability": 0.9627 + }, + { + "start": 6493.66, + "end": 6495.66, + "probability": 0.8688 + }, + { + "start": 6495.72, + "end": 6498.3, + "probability": 0.9278 + }, + { + "start": 6498.7, + "end": 6499.3, + "probability": 0.9216 + }, + { + "start": 6499.34, + "end": 6503.34, + "probability": 0.7793 + }, + { + "start": 6504.22, + "end": 6505.14, + "probability": 0.7086 + }, + { + "start": 6506.32, + "end": 6508.34, + "probability": 0.9867 + }, + { + "start": 6509.1, + "end": 6510.82, + "probability": 0.5864 + }, + { + "start": 6512.08, + "end": 6513.32, + "probability": 0.8885 + }, + { + "start": 6514.28, + "end": 6516.39, + "probability": 0.9912 + }, + { + "start": 6517.3, + "end": 6519.8, + "probability": 0.6657 + }, + { + "start": 6519.98, + "end": 6522.86, + "probability": 0.8742 + }, + { + "start": 6523.28, + "end": 6524.66, + "probability": 0.7104 + }, + { + "start": 6524.72, + "end": 6525.42, + "probability": 0.2959 + }, + { + "start": 6526.86, + "end": 6528.67, + "probability": 0.741 + }, + { + "start": 6530.32, + "end": 6531.86, + "probability": 0.8771 + }, + { + "start": 6532.18, + "end": 6534.18, + "probability": 0.6237 + }, + { + "start": 6535.0, + "end": 6535.71, + "probability": 0.917 + }, + { + "start": 6535.98, + "end": 6537.12, + "probability": 0.7118 + }, + { + "start": 6539.46, + "end": 6541.02, + "probability": 0.8545 + }, + { + "start": 6541.9, + "end": 6544.18, + "probability": 0.5139 + }, + { + "start": 6546.4, + "end": 6546.4, + "probability": 0.2259 + }, + { + "start": 6546.4, + "end": 6548.9, + "probability": 0.7524 + }, + { + "start": 6549.46, + "end": 6550.78, + "probability": 0.9678 + }, + { + "start": 6551.1, + "end": 6552.96, + "probability": 0.9909 + }, + { + "start": 6553.9, + "end": 6556.0, + "probability": 0.8172 + }, + { + "start": 6556.14, + "end": 6557.28, + "probability": 0.9512 + }, + { + "start": 6558.22, + "end": 6559.52, + "probability": 0.9572 + }, + { + "start": 6560.44, + "end": 6563.58, + "probability": 0.7983 + }, + { + "start": 6564.94, + "end": 6565.56, + "probability": 0.7284 + }, + { + "start": 6567.5, + "end": 6569.5, + "probability": 0.8484 + }, + { + "start": 6569.58, + "end": 6569.82, + "probability": 0.4233 + }, + { + "start": 6569.98, + "end": 6570.48, + "probability": 0.9645 + }, + { + "start": 6571.0, + "end": 6573.36, + "probability": 0.8101 + }, + { + "start": 6573.46, + "end": 6574.68, + "probability": 0.8223 + }, + { + "start": 6574.8, + "end": 6576.14, + "probability": 0.7439 + }, + { + "start": 6576.38, + "end": 6577.28, + "probability": 0.9498 + }, + { + "start": 6577.52, + "end": 6578.91, + "probability": 0.9754 + }, + { + "start": 6579.38, + "end": 6581.14, + "probability": 0.8779 + }, + { + "start": 6582.98, + "end": 6584.78, + "probability": 0.3148 + }, + { + "start": 6585.0, + "end": 6586.86, + "probability": 0.9186 + }, + { + "start": 6587.1, + "end": 6587.84, + "probability": 0.7214 + }, + { + "start": 6589.0, + "end": 6590.68, + "probability": 0.835 + }, + { + "start": 6591.58, + "end": 6594.02, + "probability": 0.9321 + }, + { + "start": 6594.62, + "end": 6596.32, + "probability": 0.7734 + }, + { + "start": 6596.48, + "end": 6598.84, + "probability": 0.6849 + }, + { + "start": 6600.14, + "end": 6602.32, + "probability": 0.9006 + }, + { + "start": 6602.56, + "end": 6603.9, + "probability": 0.9644 + }, + { + "start": 6605.78, + "end": 6609.82, + "probability": 0.8493 + }, + { + "start": 6610.26, + "end": 6611.46, + "probability": 0.6028 + }, + { + "start": 6611.74, + "end": 6614.78, + "probability": 0.8325 + }, + { + "start": 6616.98, + "end": 6619.5, + "probability": 0.623 + }, + { + "start": 6620.08, + "end": 6620.94, + "probability": 0.998 + }, + { + "start": 6622.43, + "end": 6628.34, + "probability": 0.9961 + }, + { + "start": 6629.08, + "end": 6631.48, + "probability": 0.9885 + }, + { + "start": 6632.02, + "end": 6634.84, + "probability": 0.7791 + }, + { + "start": 6636.58, + "end": 6638.02, + "probability": 0.9888 + }, + { + "start": 6639.64, + "end": 6642.52, + "probability": 0.8472 + }, + { + "start": 6643.04, + "end": 6643.54, + "probability": 0.2195 + }, + { + "start": 6645.33, + "end": 6645.64, + "probability": 0.0283 + }, + { + "start": 6645.84, + "end": 6648.6, + "probability": 0.8192 + }, + { + "start": 6649.3, + "end": 6652.14, + "probability": 0.9313 + }, + { + "start": 6652.9, + "end": 6656.16, + "probability": 0.967 + }, + { + "start": 6656.2, + "end": 6657.82, + "probability": 0.5194 + }, + { + "start": 6658.16, + "end": 6659.14, + "probability": 0.9438 + }, + { + "start": 6659.26, + "end": 6660.78, + "probability": 0.9883 + }, + { + "start": 6661.46, + "end": 6662.08, + "probability": 0.9178 + }, + { + "start": 6662.69, + "end": 6662.88, + "probability": 0.0853 + }, + { + "start": 6663.2, + "end": 6665.06, + "probability": 0.7735 + }, + { + "start": 6665.1, + "end": 6665.4, + "probability": 0.7372 + }, + { + "start": 6665.62, + "end": 6670.98, + "probability": 0.9946 + }, + { + "start": 6671.14, + "end": 6673.04, + "probability": 0.9577 + }, + { + "start": 6674.8, + "end": 6675.3, + "probability": 0.9329 + }, + { + "start": 6676.06, + "end": 6677.12, + "probability": 0.9473 + }, + { + "start": 6677.68, + "end": 6679.34, + "probability": 0.9862 + }, + { + "start": 6680.12, + "end": 6684.8, + "probability": 0.084 + }, + { + "start": 6684.8, + "end": 6686.78, + "probability": 0.0589 + }, + { + "start": 6689.5, + "end": 6691.48, + "probability": 0.8193 + }, + { + "start": 6694.56, + "end": 6694.96, + "probability": 0.7395 + }, + { + "start": 6695.6, + "end": 6696.2, + "probability": 0.0273 + }, + { + "start": 6698.6, + "end": 6700.62, + "probability": 0.1543 + }, + { + "start": 6701.34, + "end": 6703.04, + "probability": 0.2172 + }, + { + "start": 6703.04, + "end": 6706.44, + "probability": 0.0753 + }, + { + "start": 6706.44, + "end": 6707.82, + "probability": 0.1059 + }, + { + "start": 6708.62, + "end": 6708.96, + "probability": 0.0061 + }, + { + "start": 6711.48, + "end": 6717.18, + "probability": 0.0579 + }, + { + "start": 6717.64, + "end": 6718.34, + "probability": 0.04 + }, + { + "start": 6718.34, + "end": 6718.34, + "probability": 0.111 + }, + { + "start": 6718.34, + "end": 6719.11, + "probability": 0.0869 + }, + { + "start": 6720.0, + "end": 6723.46, + "probability": 0.1091 + }, + { + "start": 6725.16, + "end": 6728.4, + "probability": 0.1011 + }, + { + "start": 6728.58, + "end": 6731.48, + "probability": 0.0487 + }, + { + "start": 6731.48, + "end": 6732.28, + "probability": 0.0367 + }, + { + "start": 6732.36, + "end": 6733.32, + "probability": 0.2059 + }, + { + "start": 6733.42, + "end": 6734.48, + "probability": 0.0808 + }, + { + "start": 6735.11, + "end": 6735.18, + "probability": 0.0348 + }, + { + "start": 6735.18, + "end": 6736.72, + "probability": 0.0515 + }, + { + "start": 6736.92, + "end": 6739.6, + "probability": 0.0503 + }, + { + "start": 6739.98, + "end": 6740.24, + "probability": 0.3625 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.0, + "end": 6741.0, + "probability": 0.0 + }, + { + "start": 6741.16, + "end": 6741.46, + "probability": 0.0078 + }, + { + "start": 6741.46, + "end": 6742.78, + "probability": 0.5158 + }, + { + "start": 6743.16, + "end": 6744.18, + "probability": 0.8751 + }, + { + "start": 6744.6, + "end": 6747.82, + "probability": 0.9081 + }, + { + "start": 6748.24, + "end": 6749.74, + "probability": 0.6947 + }, + { + "start": 6749.74, + "end": 6750.24, + "probability": 0.6226 + }, + { + "start": 6750.44, + "end": 6752.34, + "probability": 0.235 + }, + { + "start": 6752.7, + "end": 6753.42, + "probability": 0.7369 + }, + { + "start": 6753.6, + "end": 6754.23, + "probability": 0.6311 + }, + { + "start": 6755.56, + "end": 6758.2, + "probability": 0.5879 + }, + { + "start": 6758.24, + "end": 6758.48, + "probability": 0.2882 + }, + { + "start": 6758.48, + "end": 6760.52, + "probability": 0.8567 + }, + { + "start": 6760.58, + "end": 6761.18, + "probability": 0.8279 + }, + { + "start": 6761.36, + "end": 6762.03, + "probability": 0.9215 + }, + { + "start": 6763.42, + "end": 6765.72, + "probability": 0.9722 + }, + { + "start": 6765.8, + "end": 6767.0, + "probability": 0.6312 + }, + { + "start": 6767.1, + "end": 6768.92, + "probability": 0.8189 + }, + { + "start": 6768.94, + "end": 6769.4, + "probability": 0.0995 + }, + { + "start": 6769.4, + "end": 6770.2, + "probability": 0.1066 + }, + { + "start": 6770.34, + "end": 6771.58, + "probability": 0.8981 + }, + { + "start": 6771.58, + "end": 6780.04, + "probability": 0.9082 + }, + { + "start": 6780.12, + "end": 6782.12, + "probability": 0.6833 + }, + { + "start": 6783.08, + "end": 6785.72, + "probability": 0.9663 + }, + { + "start": 6786.96, + "end": 6788.44, + "probability": 0.9966 + }, + { + "start": 6789.36, + "end": 6791.46, + "probability": 0.9709 + }, + { + "start": 6791.74, + "end": 6798.62, + "probability": 0.0373 + }, + { + "start": 6800.7, + "end": 6801.0, + "probability": 0.0904 + }, + { + "start": 6801.0, + "end": 6801.0, + "probability": 0.0143 + }, + { + "start": 6801.0, + "end": 6801.0, + "probability": 0.0603 + }, + { + "start": 6801.0, + "end": 6801.0, + "probability": 0.0395 + }, + { + "start": 6801.0, + "end": 6804.18, + "probability": 0.3573 + }, + { + "start": 6808.38, + "end": 6809.44, + "probability": 0.1024 + }, + { + "start": 6809.83, + "end": 6811.36, + "probability": 0.1338 + }, + { + "start": 6813.3, + "end": 6814.58, + "probability": 0.1427 + }, + { + "start": 6815.06, + "end": 6818.02, + "probability": 0.1569 + }, + { + "start": 6818.9, + "end": 6818.9, + "probability": 0.2493 + }, + { + "start": 6818.9, + "end": 6818.9, + "probability": 0.1866 + }, + { + "start": 6818.9, + "end": 6818.9, + "probability": 0.0396 + }, + { + "start": 6818.9, + "end": 6818.9, + "probability": 0.0307 + }, + { + "start": 6818.9, + "end": 6818.9, + "probability": 0.3894 + }, + { + "start": 6818.9, + "end": 6818.9, + "probability": 0.0344 + }, + { + "start": 6818.9, + "end": 6820.82, + "probability": 0.7559 + }, + { + "start": 6821.3, + "end": 6822.02, + "probability": 0.6904 + }, + { + "start": 6822.18, + "end": 6822.5, + "probability": 0.7375 + }, + { + "start": 6822.58, + "end": 6825.56, + "probability": 0.9961 + }, + { + "start": 6826.72, + "end": 6827.36, + "probability": 0.7969 + }, + { + "start": 6828.29, + "end": 6828.5, + "probability": 0.0132 + }, + { + "start": 6828.5, + "end": 6828.5, + "probability": 0.14 + }, + { + "start": 6828.5, + "end": 6829.14, + "probability": 0.4385 + }, + { + "start": 6829.14, + "end": 6831.9, + "probability": 0.8982 + }, + { + "start": 6832.32, + "end": 6835.38, + "probability": 0.8102 + }, + { + "start": 6835.84, + "end": 6838.7, + "probability": 0.7975 + }, + { + "start": 6838.92, + "end": 6841.06, + "probability": 0.1741 + }, + { + "start": 6843.2, + "end": 6843.36, + "probability": 0.0268 + }, + { + "start": 6843.38, + "end": 6843.38, + "probability": 0.0232 + }, + { + "start": 6843.38, + "end": 6843.38, + "probability": 0.0122 + }, + { + "start": 6843.38, + "end": 6843.62, + "probability": 0.406 + }, + { + "start": 6844.16, + "end": 6846.86, + "probability": 0.7502 + }, + { + "start": 6847.4, + "end": 6849.26, + "probability": 0.7156 + }, + { + "start": 6850.3, + "end": 6851.98, + "probability": 0.8959 + }, + { + "start": 6852.2, + "end": 6852.55, + "probability": 0.2302 + }, + { + "start": 6853.04, + "end": 6853.9, + "probability": 0.7701 + }, + { + "start": 6854.24, + "end": 6855.86, + "probability": 0.9775 + }, + { + "start": 6855.96, + "end": 6856.92, + "probability": 0.806 + }, + { + "start": 6857.32, + "end": 6858.04, + "probability": 0.2259 + }, + { + "start": 6858.3, + "end": 6860.2, + "probability": 0.9888 + }, + { + "start": 6860.74, + "end": 6862.44, + "probability": 0.9636 + }, + { + "start": 6863.64, + "end": 6863.86, + "probability": 0.1576 + }, + { + "start": 6863.86, + "end": 6863.86, + "probability": 0.2544 + }, + { + "start": 6863.86, + "end": 6864.68, + "probability": 0.0963 + }, + { + "start": 6865.28, + "end": 6870.72, + "probability": 0.9829 + }, + { + "start": 6871.54, + "end": 6872.2, + "probability": 0.7008 + }, + { + "start": 6872.6, + "end": 6876.88, + "probability": 0.9131 + }, + { + "start": 6877.32, + "end": 6878.61, + "probability": 0.9317 + }, + { + "start": 6879.44, + "end": 6880.22, + "probability": 0.0202 + }, + { + "start": 6880.22, + "end": 6880.94, + "probability": 0.0309 + }, + { + "start": 6881.1, + "end": 6882.22, + "probability": 0.8311 + }, + { + "start": 6882.8, + "end": 6887.74, + "probability": 0.785 + }, + { + "start": 6888.38, + "end": 6889.68, + "probability": 0.97 + }, + { + "start": 6889.82, + "end": 6891.3, + "probability": 0.9718 + }, + { + "start": 6891.42, + "end": 6892.48, + "probability": 0.6358 + }, + { + "start": 6893.12, + "end": 6895.2, + "probability": 0.5034 + }, + { + "start": 6895.26, + "end": 6897.64, + "probability": 0.1626 + }, + { + "start": 6898.08, + "end": 6900.7, + "probability": 0.2756 + }, + { + "start": 6901.3, + "end": 6902.34, + "probability": 0.7223 + }, + { + "start": 6902.46, + "end": 6902.52, + "probability": 0.2346 + }, + { + "start": 6903.58, + "end": 6903.98, + "probability": 0.0688 + }, + { + "start": 6903.98, + "end": 6905.53, + "probability": 0.2422 + }, + { + "start": 6907.34, + "end": 6908.0, + "probability": 0.1138 + }, + { + "start": 6908.14, + "end": 6908.38, + "probability": 0.0904 + }, + { + "start": 6908.38, + "end": 6909.72, + "probability": 0.7474 + }, + { + "start": 6909.8, + "end": 6911.84, + "probability": 0.1055 + }, + { + "start": 6912.48, + "end": 6913.96, + "probability": 0.0748 + }, + { + "start": 6914.04, + "end": 6916.42, + "probability": 0.439 + }, + { + "start": 6916.6, + "end": 6916.92, + "probability": 0.0657 + }, + { + "start": 6917.16, + "end": 6919.73, + "probability": 0.8583 + }, + { + "start": 6920.2, + "end": 6924.82, + "probability": 0.9231 + }, + { + "start": 6925.34, + "end": 6927.78, + "probability": 0.0254 + }, + { + "start": 6927.91, + "end": 6928.51, + "probability": 0.038 + }, + { + "start": 6930.54, + "end": 6930.62, + "probability": 0.0034 + }, + { + "start": 6930.62, + "end": 6930.62, + "probability": 0.1183 + }, + { + "start": 6930.62, + "end": 6930.64, + "probability": 0.0689 + }, + { + "start": 6930.64, + "end": 6934.84, + "probability": 0.6119 + }, + { + "start": 6934.96, + "end": 6937.9, + "probability": 0.7382 + }, + { + "start": 6938.34, + "end": 6939.68, + "probability": 0.8716 + }, + { + "start": 6939.9, + "end": 6940.68, + "probability": 0.8492 + }, + { + "start": 6941.1, + "end": 6944.32, + "probability": 0.7918 + }, + { + "start": 6944.36, + "end": 6946.44, + "probability": 0.9604 + }, + { + "start": 6946.94, + "end": 6952.0, + "probability": 0.9282 + }, + { + "start": 6953.14, + "end": 6954.42, + "probability": 0.4988 + }, + { + "start": 6954.98, + "end": 6959.7, + "probability": 0.9339 + }, + { + "start": 6960.18, + "end": 6961.58, + "probability": 0.8523 + }, + { + "start": 6961.6, + "end": 6961.94, + "probability": 0.9749 + }, + { + "start": 6962.06, + "end": 6966.4, + "probability": 0.9724 + }, + { + "start": 6966.8, + "end": 6969.04, + "probability": 0.9558 + }, + { + "start": 6969.2, + "end": 6970.52, + "probability": 0.7458 + }, + { + "start": 6971.04, + "end": 6972.22, + "probability": 0.7356 + }, + { + "start": 6972.74, + "end": 6973.36, + "probability": 0.8219 + }, + { + "start": 6974.12, + "end": 6974.9, + "probability": 0.7617 + }, + { + "start": 6975.44, + "end": 6980.46, + "probability": 0.9802 + }, + { + "start": 6980.48, + "end": 6982.42, + "probability": 0.9722 + }, + { + "start": 6983.16, + "end": 6984.64, + "probability": 0.6086 + }, + { + "start": 6985.0, + "end": 6986.74, + "probability": 0.7449 + }, + { + "start": 6987.0, + "end": 6987.36, + "probability": 0.0808 + }, + { + "start": 6987.36, + "end": 6989.5, + "probability": 0.6395 + }, + { + "start": 6989.62, + "end": 6992.44, + "probability": 0.6697 + }, + { + "start": 6992.84, + "end": 6997.0, + "probability": 0.9551 + }, + { + "start": 6997.18, + "end": 6997.38, + "probability": 0.7764 + }, + { + "start": 6997.54, + "end": 6999.87, + "probability": 0.6604 + }, + { + "start": 7000.5, + "end": 7003.12, + "probability": 0.9028 + }, + { + "start": 7003.7, + "end": 7004.04, + "probability": 0.205 + }, + { + "start": 7004.04, + "end": 7004.1, + "probability": 0.454 + }, + { + "start": 7004.1, + "end": 7006.84, + "probability": 0.9258 + }, + { + "start": 7009.05, + "end": 7010.17, + "probability": 0.1442 + }, + { + "start": 7010.88, + "end": 7013.36, + "probability": 0.6323 + }, + { + "start": 7013.46, + "end": 7014.44, + "probability": 0.1958 + }, + { + "start": 7015.04, + "end": 7019.78, + "probability": 0.9814 + }, + { + "start": 7020.08, + "end": 7021.18, + "probability": 0.9957 + }, + { + "start": 7021.36, + "end": 7021.84, + "probability": 0.9516 + }, + { + "start": 7022.76, + "end": 7024.2, + "probability": 0.7484 + }, + { + "start": 7024.72, + "end": 7028.74, + "probability": 0.7089 + }, + { + "start": 7029.22, + "end": 7029.22, + "probability": 0.6064 + }, + { + "start": 7029.7, + "end": 7032.66, + "probability": 0.5984 + }, + { + "start": 7033.1, + "end": 7037.52, + "probability": 0.813 + }, + { + "start": 7038.34, + "end": 7040.46, + "probability": 0.7509 + }, + { + "start": 7044.24, + "end": 7047.6, + "probability": 0.7072 + }, + { + "start": 7048.92, + "end": 7050.08, + "probability": 0.812 + }, + { + "start": 7051.04, + "end": 7052.81, + "probability": 0.8447 + }, + { + "start": 7054.76, + "end": 7057.38, + "probability": 0.528 + }, + { + "start": 7058.26, + "end": 7060.86, + "probability": 0.8461 + }, + { + "start": 7062.3, + "end": 7063.56, + "probability": 0.6809 + }, + { + "start": 7076.46, + "end": 7076.54, + "probability": 0.1367 + }, + { + "start": 7084.56, + "end": 7086.36, + "probability": 0.474 + }, + { + "start": 7088.46, + "end": 7090.74, + "probability": 0.9131 + }, + { + "start": 7091.92, + "end": 7093.8, + "probability": 0.6145 + }, + { + "start": 7094.62, + "end": 7096.12, + "probability": 0.8784 + }, + { + "start": 7096.76, + "end": 7100.78, + "probability": 0.9912 + }, + { + "start": 7101.64, + "end": 7103.6, + "probability": 0.9899 + }, + { + "start": 7105.6, + "end": 7109.66, + "probability": 0.9399 + }, + { + "start": 7109.66, + "end": 7113.52, + "probability": 0.9978 + }, + { + "start": 7114.74, + "end": 7117.36, + "probability": 0.8816 + }, + { + "start": 7118.26, + "end": 7120.84, + "probability": 0.7516 + }, + { + "start": 7122.18, + "end": 7126.7, + "probability": 0.9927 + }, + { + "start": 7126.7, + "end": 7130.28, + "probability": 0.9971 + }, + { + "start": 7131.2, + "end": 7135.12, + "probability": 0.9984 + }, + { + "start": 7135.72, + "end": 7139.1, + "probability": 0.8921 + }, + { + "start": 7139.96, + "end": 7142.62, + "probability": 0.9518 + }, + { + "start": 7143.24, + "end": 7143.96, + "probability": 0.83 + }, + { + "start": 7144.36, + "end": 7145.6, + "probability": 0.9773 + }, + { + "start": 7145.7, + "end": 7146.58, + "probability": 0.8701 + }, + { + "start": 7146.96, + "end": 7147.86, + "probability": 0.9928 + }, + { + "start": 7148.2, + "end": 7152.1, + "probability": 0.98 + }, + { + "start": 7153.14, + "end": 7156.38, + "probability": 0.9844 + }, + { + "start": 7156.38, + "end": 7160.38, + "probability": 0.9977 + }, + { + "start": 7160.92, + "end": 7161.88, + "probability": 0.9609 + }, + { + "start": 7163.46, + "end": 7166.72, + "probability": 0.0633 + }, + { + "start": 7166.72, + "end": 7166.72, + "probability": 0.1848 + }, + { + "start": 7167.04, + "end": 7171.04, + "probability": 0.8948 + }, + { + "start": 7171.04, + "end": 7175.46, + "probability": 0.8973 + }, + { + "start": 7176.45, + "end": 7178.68, + "probability": 0.934 + }, + { + "start": 7180.56, + "end": 7182.42, + "probability": 0.9601 + }, + { + "start": 7182.96, + "end": 7184.14, + "probability": 0.8862 + }, + { + "start": 7184.8, + "end": 7189.52, + "probability": 0.8975 + }, + { + "start": 7189.52, + "end": 7193.72, + "probability": 0.9076 + }, + { + "start": 7194.28, + "end": 7197.0, + "probability": 0.8337 + }, + { + "start": 7197.54, + "end": 7199.72, + "probability": 0.8969 + }, + { + "start": 7200.56, + "end": 7202.92, + "probability": 0.9958 + }, + { + "start": 7203.5, + "end": 7207.8, + "probability": 0.8545 + }, + { + "start": 7208.3, + "end": 7211.74, + "probability": 0.9421 + }, + { + "start": 7212.48, + "end": 7213.02, + "probability": 0.7354 + }, + { + "start": 7213.72, + "end": 7218.48, + "probability": 0.995 + }, + { + "start": 7219.46, + "end": 7220.12, + "probability": 0.8217 + }, + { + "start": 7220.58, + "end": 7222.54, + "probability": 0.9506 + }, + { + "start": 7223.04, + "end": 7226.24, + "probability": 0.9832 + }, + { + "start": 7227.34, + "end": 7227.86, + "probability": 0.6358 + }, + { + "start": 7228.32, + "end": 7228.8, + "probability": 0.8705 + }, + { + "start": 7228.96, + "end": 7232.2, + "probability": 0.9934 + }, + { + "start": 7232.58, + "end": 7234.02, + "probability": 0.9713 + }, + { + "start": 7235.08, + "end": 7236.64, + "probability": 0.7937 + }, + { + "start": 7237.4, + "end": 7241.16, + "probability": 0.6442 + }, + { + "start": 7241.72, + "end": 7243.4, + "probability": 0.739 + }, + { + "start": 7243.58, + "end": 7245.66, + "probability": 0.7651 + }, + { + "start": 7246.1, + "end": 7248.62, + "probability": 0.8589 + }, + { + "start": 7249.06, + "end": 7250.4, + "probability": 0.9942 + }, + { + "start": 7250.96, + "end": 7253.12, + "probability": 0.9611 + }, + { + "start": 7253.82, + "end": 7257.9, + "probability": 0.9098 + }, + { + "start": 7259.72, + "end": 7261.48, + "probability": 0.9439 + }, + { + "start": 7262.02, + "end": 7266.48, + "probability": 0.9973 + }, + { + "start": 7267.16, + "end": 7268.1, + "probability": 0.76 + }, + { + "start": 7268.86, + "end": 7271.38, + "probability": 0.9778 + }, + { + "start": 7271.66, + "end": 7272.94, + "probability": 0.8519 + }, + { + "start": 7273.02, + "end": 7275.56, + "probability": 0.5426 + }, + { + "start": 7275.64, + "end": 7277.1, + "probability": 0.7504 + }, + { + "start": 7277.28, + "end": 7280.24, + "probability": 0.964 + }, + { + "start": 7280.66, + "end": 7284.76, + "probability": 0.9942 + }, + { + "start": 7285.52, + "end": 7289.72, + "probability": 0.9969 + }, + { + "start": 7290.34, + "end": 7290.86, + "probability": 0.744 + }, + { + "start": 7291.36, + "end": 7294.84, + "probability": 0.9968 + }, + { + "start": 7295.04, + "end": 7295.28, + "probability": 0.8076 + }, + { + "start": 7295.86, + "end": 7297.98, + "probability": 0.7952 + }, + { + "start": 7300.84, + "end": 7301.5, + "probability": 0.7925 + }, + { + "start": 7301.5, + "end": 7302.18, + "probability": 0.9841 + }, + { + "start": 7302.38, + "end": 7303.09, + "probability": 0.5995 + }, + { + "start": 7304.66, + "end": 7309.92, + "probability": 0.7363 + }, + { + "start": 7310.76, + "end": 7313.14, + "probability": 0.1461 + }, + { + "start": 7318.33, + "end": 7322.26, + "probability": 0.7721 + }, + { + "start": 7322.94, + "end": 7324.72, + "probability": 0.9517 + }, + { + "start": 7324.9, + "end": 7325.82, + "probability": 0.4181 + }, + { + "start": 7326.04, + "end": 7326.98, + "probability": 0.4729 + }, + { + "start": 7327.84, + "end": 7329.14, + "probability": 0.7877 + }, + { + "start": 7329.74, + "end": 7330.46, + "probability": 0.7487 + }, + { + "start": 7331.26, + "end": 7332.64, + "probability": 0.2155 + }, + { + "start": 7352.74, + "end": 7355.64, + "probability": 0.2257 + }, + { + "start": 7355.92, + "end": 7359.38, + "probability": 0.5432 + }, + { + "start": 7359.84, + "end": 7360.48, + "probability": 0.3587 + }, + { + "start": 7361.94, + "end": 7366.66, + "probability": 0.7333 + }, + { + "start": 7366.98, + "end": 7369.8, + "probability": 0.0483 + }, + { + "start": 7370.84, + "end": 7372.46, + "probability": 0.1031 + }, + { + "start": 7372.7, + "end": 7373.49, + "probability": 0.113 + }, + { + "start": 7373.72, + "end": 7375.5, + "probability": 0.1068 + }, + { + "start": 7376.5, + "end": 7376.84, + "probability": 0.1636 + }, + { + "start": 7379.08, + "end": 7379.42, + "probability": 0.0326 + }, + { + "start": 7382.8, + "end": 7383.3, + "probability": 0.0417 + }, + { + "start": 7387.16, + "end": 7388.76, + "probability": 0.0205 + }, + { + "start": 7390.95, + "end": 7392.54, + "probability": 0.0443 + }, + { + "start": 7393.04, + "end": 7394.06, + "probability": 0.2879 + }, + { + "start": 7394.62, + "end": 7395.96, + "probability": 0.0842 + }, + { + "start": 7395.96, + "end": 7395.98, + "probability": 0.0223 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.0, + "end": 7396.0, + "probability": 0.0 + }, + { + "start": 7396.26, + "end": 7396.68, + "probability": 0.3038 + }, + { + "start": 7403.86, + "end": 7403.86, + "probability": 0.0899 + }, + { + "start": 7403.86, + "end": 7403.9, + "probability": 0.1564 + }, + { + "start": 7422.66, + "end": 7424.06, + "probability": 0.7005 + }, + { + "start": 7424.46, + "end": 7424.76, + "probability": 0.9102 + }, + { + "start": 7429.64, + "end": 7430.54, + "probability": 0.7158 + }, + { + "start": 7431.32, + "end": 7433.28, + "probability": 0.9806 + }, + { + "start": 7434.08, + "end": 7434.68, + "probability": 0.7503 + }, + { + "start": 7436.42, + "end": 7442.4, + "probability": 0.9871 + }, + { + "start": 7443.3, + "end": 7443.42, + "probability": 0.0779 + }, + { + "start": 7443.42, + "end": 7444.08, + "probability": 0.9937 + }, + { + "start": 7444.82, + "end": 7446.88, + "probability": 0.8902 + }, + { + "start": 7448.0, + "end": 7450.8, + "probability": 0.6958 + }, + { + "start": 7451.26, + "end": 7452.26, + "probability": 0.7162 + }, + { + "start": 7452.7, + "end": 7453.92, + "probability": 0.6681 + }, + { + "start": 7454.36, + "end": 7455.24, + "probability": 0.8443 + }, + { + "start": 7455.7, + "end": 7457.82, + "probability": 0.0736 + }, + { + "start": 7457.82, + "end": 7459.46, + "probability": 0.7763 + }, + { + "start": 7462.55, + "end": 7463.88, + "probability": 0.0391 + }, + { + "start": 7463.88, + "end": 7463.88, + "probability": 0.0344 + }, + { + "start": 7463.88, + "end": 7466.14, + "probability": 0.7016 + }, + { + "start": 7467.72, + "end": 7469.04, + "probability": 0.7107 + }, + { + "start": 7469.62, + "end": 7470.44, + "probability": 0.9355 + }, + { + "start": 7470.5, + "end": 7471.14, + "probability": 0.8238 + }, + { + "start": 7471.2, + "end": 7472.84, + "probability": 0.8695 + }, + { + "start": 7473.24, + "end": 7474.92, + "probability": 0.816 + }, + { + "start": 7475.18, + "end": 7475.82, + "probability": 0.9594 + }, + { + "start": 7476.08, + "end": 7476.26, + "probability": 0.3492 + }, + { + "start": 7476.26, + "end": 7477.19, + "probability": 0.0733 + }, + { + "start": 7477.34, + "end": 7477.96, + "probability": 0.6797 + }, + { + "start": 7478.04, + "end": 7479.56, + "probability": 0.658 + }, + { + "start": 7479.56, + "end": 7481.1, + "probability": 0.2445 + }, + { + "start": 7481.26, + "end": 7486.2, + "probability": 0.8394 + }, + { + "start": 7486.36, + "end": 7487.9, + "probability": 0.997 + }, + { + "start": 7488.75, + "end": 7493.74, + "probability": 0.7651 + }, + { + "start": 7494.62, + "end": 7498.72, + "probability": 0.8796 + }, + { + "start": 7499.28, + "end": 7500.64, + "probability": 0.7469 + }, + { + "start": 7500.68, + "end": 7502.24, + "probability": 0.8621 + }, + { + "start": 7502.3, + "end": 7503.76, + "probability": 0.9939 + }, + { + "start": 7504.0, + "end": 7504.64, + "probability": 0.9868 + }, + { + "start": 7505.44, + "end": 7506.77, + "probability": 0.9716 + }, + { + "start": 7507.28, + "end": 7509.42, + "probability": 0.9822 + }, + { + "start": 7509.54, + "end": 7510.94, + "probability": 0.7981 + }, + { + "start": 7511.28, + "end": 7512.72, + "probability": 0.9291 + }, + { + "start": 7512.78, + "end": 7514.7, + "probability": 0.9846 + }, + { + "start": 7516.42, + "end": 7518.48, + "probability": 0.996 + }, + { + "start": 7519.26, + "end": 7521.3, + "probability": 0.9596 + }, + { + "start": 7521.42, + "end": 7523.46, + "probability": 0.9797 + }, + { + "start": 7523.6, + "end": 7527.4, + "probability": 0.9914 + }, + { + "start": 7528.64, + "end": 7531.06, + "probability": 0.7473 + }, + { + "start": 7532.08, + "end": 7533.42, + "probability": 0.8528 + }, + { + "start": 7534.58, + "end": 7536.24, + "probability": 0.9659 + }, + { + "start": 7536.64, + "end": 7539.08, + "probability": 0.999 + }, + { + "start": 7539.88, + "end": 7542.92, + "probability": 0.8987 + }, + { + "start": 7543.56, + "end": 7546.22, + "probability": 0.9471 + }, + { + "start": 7546.58, + "end": 7548.46, + "probability": 0.8771 + }, + { + "start": 7549.1, + "end": 7550.66, + "probability": 0.9796 + }, + { + "start": 7551.1, + "end": 7551.98, + "probability": 0.964 + }, + { + "start": 7552.14, + "end": 7553.44, + "probability": 0.9555 + }, + { + "start": 7553.88, + "end": 7555.42, + "probability": 0.4438 + }, + { + "start": 7555.58, + "end": 7556.7, + "probability": 0.845 + }, + { + "start": 7556.74, + "end": 7557.48, + "probability": 0.5101 + }, + { + "start": 7557.86, + "end": 7559.06, + "probability": 0.8223 + }, + { + "start": 7559.3, + "end": 7561.18, + "probability": 0.8723 + }, + { + "start": 7561.34, + "end": 7562.46, + "probability": 0.5941 + }, + { + "start": 7563.18, + "end": 7563.3, + "probability": 0.3352 + }, + { + "start": 7563.3, + "end": 7566.28, + "probability": 0.6275 + }, + { + "start": 7566.62, + "end": 7567.32, + "probability": 0.8688 + }, + { + "start": 7568.64, + "end": 7570.88, + "probability": 0.9888 + }, + { + "start": 7571.12, + "end": 7571.64, + "probability": 0.3158 + }, + { + "start": 7571.82, + "end": 7572.38, + "probability": 0.5523 + }, + { + "start": 7572.44, + "end": 7572.94, + "probability": 0.9369 + }, + { + "start": 7573.72, + "end": 7575.0, + "probability": 0.0981 + }, + { + "start": 7575.0, + "end": 7575.56, + "probability": 0.9497 + }, + { + "start": 7575.72, + "end": 7576.44, + "probability": 0.9427 + }, + { + "start": 7576.88, + "end": 7577.81, + "probability": 0.8079 + }, + { + "start": 7577.84, + "end": 7579.4, + "probability": 0.7753 + }, + { + "start": 7580.06, + "end": 7580.9, + "probability": 0.0184 + }, + { + "start": 7581.38, + "end": 7583.44, + "probability": 0.0564 + }, + { + "start": 7583.5, + "end": 7584.88, + "probability": 0.0851 + }, + { + "start": 7585.5, + "end": 7586.14, + "probability": 0.2185 + }, + { + "start": 7586.14, + "end": 7586.14, + "probability": 0.0814 + }, + { + "start": 7586.14, + "end": 7586.6, + "probability": 0.1964 + }, + { + "start": 7587.26, + "end": 7588.16, + "probability": 0.5896 + }, + { + "start": 7588.48, + "end": 7590.28, + "probability": 0.8125 + }, + { + "start": 7590.6, + "end": 7591.52, + "probability": 0.9619 + }, + { + "start": 7593.32, + "end": 7594.24, + "probability": 0.0791 + }, + { + "start": 7600.06, + "end": 7600.64, + "probability": 0.0278 + }, + { + "start": 7600.68, + "end": 7602.52, + "probability": 0.1916 + }, + { + "start": 7602.52, + "end": 7603.36, + "probability": 0.2037 + }, + { + "start": 7603.5, + "end": 7607.0, + "probability": 0.0323 + }, + { + "start": 7607.0, + "end": 7607.02, + "probability": 0.0606 + }, + { + "start": 7607.02, + "end": 7607.02, + "probability": 0.0369 + }, + { + "start": 7607.02, + "end": 7609.72, + "probability": 0.0532 + }, + { + "start": 7609.86, + "end": 7610.92, + "probability": 0.3604 + }, + { + "start": 7611.06, + "end": 7615.92, + "probability": 0.1783 + }, + { + "start": 7615.92, + "end": 7617.88, + "probability": 0.2009 + }, + { + "start": 7617.94, + "end": 7618.36, + "probability": 0.0094 + }, + { + "start": 7619.44, + "end": 7620.0, + "probability": 0.1216 + }, + { + "start": 7622.12, + "end": 7623.94, + "probability": 0.0357 + }, + { + "start": 7625.86, + "end": 7627.66, + "probability": 0.0112 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.72, + "end": 7653.52, + "probability": 0.0143 + }, + { + "start": 7654.22, + "end": 7656.28, + "probability": 0.0947 + }, + { + "start": 7656.54, + "end": 7656.76, + "probability": 0.3755 + }, + { + "start": 7657.52, + "end": 7660.1, + "probability": 0.6646 + }, + { + "start": 7660.72, + "end": 7663.1, + "probability": 0.0408 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7779.0, + "end": 7779.0, + "probability": 0.0 + }, + { + "start": 7781.6, + "end": 7787.1, + "probability": 0.2636 + }, + { + "start": 7787.1, + "end": 7788.0, + "probability": 0.6653 + }, + { + "start": 7788.22, + "end": 7790.62, + "probability": 0.0707 + }, + { + "start": 7790.62, + "end": 7790.98, + "probability": 0.2049 + }, + { + "start": 7791.02, + "end": 7792.32, + "probability": 0.4488 + }, + { + "start": 7792.66, + "end": 7792.66, + "probability": 0.1189 + }, + { + "start": 7792.66, + "end": 7792.66, + "probability": 0.0469 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.16, + "end": 7903.49, + "probability": 0.117 + }, + { + "start": 7904.66, + "end": 7906.12, + "probability": 0.2687 + }, + { + "start": 7906.2, + "end": 7908.24, + "probability": 0.3936 + }, + { + "start": 7908.84, + "end": 7909.78, + "probability": 0.2536 + }, + { + "start": 7911.74, + "end": 7913.14, + "probability": 0.4327 + }, + { + "start": 7914.36, + "end": 7915.64, + "probability": 0.1 + }, + { + "start": 7917.18, + "end": 7919.34, + "probability": 0.1036 + }, + { + "start": 7919.34, + "end": 7921.3, + "probability": 0.1257 + }, + { + "start": 7921.3, + "end": 7922.42, + "probability": 0.2952 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.0, + "end": 8026.0, + "probability": 0.0 + }, + { + "start": 8026.12, + "end": 8029.82, + "probability": 0.053 + }, + { + "start": 8029.82, + "end": 8031.92, + "probability": 0.0368 + }, + { + "start": 8031.92, + "end": 8032.5, + "probability": 0.1706 + }, + { + "start": 8032.5, + "end": 8032.96, + "probability": 0.2667 + }, + { + "start": 8034.7, + "end": 8035.24, + "probability": 0.1888 + }, + { + "start": 8035.68, + "end": 8042.9, + "probability": 0.6734 + }, + { + "start": 8043.14, + "end": 8043.5, + "probability": 0.9301 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.0, + "end": 8151.0, + "probability": 0.0 + }, + { + "start": 8151.42, + "end": 8152.2, + "probability": 0.1991 + }, + { + "start": 8155.83, + "end": 8156.45, + "probability": 0.0481 + }, + { + "start": 8156.6, + "end": 8157.1, + "probability": 0.1169 + }, + { + "start": 8158.18, + "end": 8160.63, + "probability": 0.0266 + }, + { + "start": 8161.78, + "end": 8164.58, + "probability": 0.0287 + }, + { + "start": 8166.94, + "end": 8170.78, + "probability": 0.067 + }, + { + "start": 8171.3, + "end": 8173.56, + "probability": 0.0407 + }, + { + "start": 8173.9, + "end": 8179.16, + "probability": 0.0722 + }, + { + "start": 8186.98, + "end": 8188.42, + "probability": 0.0604 + }, + { + "start": 8188.42, + "end": 8188.6, + "probability": 0.1256 + }, + { + "start": 8188.64, + "end": 8191.48, + "probability": 0.1062 + }, + { + "start": 8191.48, + "end": 8193.28, + "probability": 0.0673 + }, + { + "start": 8195.54, + "end": 8196.34, + "probability": 0.0313 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.0, + "end": 8271.0, + "probability": 0.0 + }, + { + "start": 8271.16, + "end": 8271.6, + "probability": 0.0266 + }, + { + "start": 8271.6, + "end": 8271.7, + "probability": 0.0496 + }, + { + "start": 8272.2, + "end": 8275.52, + "probability": 0.1781 + }, + { + "start": 8275.96, + "end": 8277.18, + "probability": 0.1257 + }, + { + "start": 8277.64, + "end": 8278.42, + "probability": 0.2027 + }, + { + "start": 8278.54, + "end": 8279.28, + "probability": 0.2954 + }, + { + "start": 8280.48, + "end": 8280.9, + "probability": 0.3105 + }, + { + "start": 8280.9, + "end": 8284.06, + "probability": 0.8235 + }, + { + "start": 8284.26, + "end": 8284.36, + "probability": 0.1255 + }, + { + "start": 8284.36, + "end": 8285.58, + "probability": 0.7821 + }, + { + "start": 8285.68, + "end": 8286.64, + "probability": 0.9825 + }, + { + "start": 8286.78, + "end": 8288.36, + "probability": 0.9924 + }, + { + "start": 8288.64, + "end": 8290.0, + "probability": 0.988 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.0, + "end": 8404.0, + "probability": 0.0 + }, + { + "start": 8404.89, + "end": 8406.84, + "probability": 0.6377 + }, + { + "start": 8406.94, + "end": 8407.92, + "probability": 0.8065 + }, + { + "start": 8408.5, + "end": 8408.6, + "probability": 0.2229 + }, + { + "start": 8408.62, + "end": 8410.52, + "probability": 0.5415 + }, + { + "start": 8410.6, + "end": 8413.74, + "probability": 0.9368 + }, + { + "start": 8414.32, + "end": 8415.72, + "probability": 0.9753 + }, + { + "start": 8415.76, + "end": 8417.26, + "probability": 0.9513 + }, + { + "start": 8417.54, + "end": 8419.68, + "probability": 0.89 + }, + { + "start": 8420.34, + "end": 8421.24, + "probability": 0.4032 + }, + { + "start": 8421.72, + "end": 8423.24, + "probability": 0.7865 + }, + { + "start": 8423.44, + "end": 8426.92, + "probability": 0.6918 + }, + { + "start": 8428.24, + "end": 8430.5, + "probability": 0.0843 + }, + { + "start": 8430.5, + "end": 8432.74, + "probability": 0.0729 + }, + { + "start": 8433.22, + "end": 8433.9, + "probability": 0.129 + }, + { + "start": 8440.68, + "end": 8443.88, + "probability": 0.0129 + }, + { + "start": 8444.14, + "end": 8445.8, + "probability": 0.0634 + }, + { + "start": 8445.9, + "end": 8448.74, + "probability": 0.0446 + }, + { + "start": 8449.26, + "end": 8451.92, + "probability": 0.2619 + }, + { + "start": 8451.92, + "end": 8453.2, + "probability": 0.2899 + }, + { + "start": 8453.92, + "end": 8457.0, + "probability": 0.0226 + }, + { + "start": 8457.2, + "end": 8458.36, + "probability": 0.0033 + }, + { + "start": 8458.36, + "end": 8458.86, + "probability": 0.5144 + }, + { + "start": 8459.44, + "end": 8459.44, + "probability": 0.0918 + }, + { + "start": 8460.12, + "end": 8460.88, + "probability": 0.4203 + }, + { + "start": 8460.88, + "end": 8461.28, + "probability": 0.1544 + }, + { + "start": 8461.78, + "end": 8462.64, + "probability": 0.267 + }, + { + "start": 8462.7, + "end": 8463.16, + "probability": 0.3303 + }, + { + "start": 8463.16, + "end": 8463.66, + "probability": 0.0516 + }, + { + "start": 8478.58, + "end": 8479.16, + "probability": 0.0016 + }, + { + "start": 8490.48, + "end": 8491.9, + "probability": 0.0464 + }, + { + "start": 8494.4, + "end": 8494.62, + "probability": 0.2456 + }, + { + "start": 8494.74, + "end": 8501.7, + "probability": 0.0312 + }, + { + "start": 8505.62, + "end": 8505.92, + "probability": 0.0267 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.0, + "end": 8529.0, + "probability": 0.0 + }, + { + "start": 8529.16, + "end": 8529.38, + "probability": 0.0326 + }, + { + "start": 8529.38, + "end": 8529.38, + "probability": 0.4495 + }, + { + "start": 8529.38, + "end": 8529.38, + "probability": 0.3313 + }, + { + "start": 8529.38, + "end": 8530.0, + "probability": 0.6985 + }, + { + "start": 8530.3, + "end": 8533.2, + "probability": 0.8326 + }, + { + "start": 8534.2, + "end": 8539.72, + "probability": 0.4296 + }, + { + "start": 8547.0, + "end": 8548.86, + "probability": 0.8358 + }, + { + "start": 8597.36, + "end": 8598.56, + "probability": 0.0278 + }, + { + "start": 8598.56, + "end": 8598.84, + "probability": 0.0768 + }, + { + "start": 8599.34, + "end": 8600.62, + "probability": 0.1536 + }, + { + "start": 8600.62, + "end": 8600.62, + "probability": 0.0907 + }, + { + "start": 8601.3, + "end": 8601.3, + "probability": 0.0867 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8665.0, + "end": 8665.0, + "probability": 0.0 + }, + { + "start": 8682.24, + "end": 8685.36, + "probability": 0.2025 + }, + { + "start": 8690.24, + "end": 8691.06, + "probability": 0.0501 + }, + { + "start": 8694.46, + "end": 8696.36, + "probability": 0.2166 + }, + { + "start": 8697.46, + "end": 8699.54, + "probability": 0.117 + }, + { + "start": 8700.78, + "end": 8702.64, + "probability": 0.0268 + }, + { + "start": 8702.64, + "end": 8709.62, + "probability": 0.0308 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.0, + "end": 8801.0, + "probability": 0.0 + }, + { + "start": 8801.5, + "end": 8804.18, + "probability": 0.8049 + }, + { + "start": 8804.8, + "end": 8806.06, + "probability": 0.8172 + }, + { + "start": 8806.14, + "end": 8809.84, + "probability": 0.9741 + }, + { + "start": 8809.92, + "end": 8814.16, + "probability": 0.9976 + }, + { + "start": 8815.0, + "end": 8815.58, + "probability": 0.894 + }, + { + "start": 8815.64, + "end": 8816.3, + "probability": 0.9766 + }, + { + "start": 8816.52, + "end": 8817.68, + "probability": 0.9574 + }, + { + "start": 8818.26, + "end": 8819.47, + "probability": 0.9454 + }, + { + "start": 8820.56, + "end": 8824.38, + "probability": 0.9918 + }, + { + "start": 8824.38, + "end": 8826.98, + "probability": 0.9971 + }, + { + "start": 8827.64, + "end": 8829.58, + "probability": 0.9934 + }, + { + "start": 8830.28, + "end": 8835.06, + "probability": 0.9993 + }, + { + "start": 8835.76, + "end": 8840.16, + "probability": 0.9756 + }, + { + "start": 8840.74, + "end": 8846.09, + "probability": 0.9937 + }, + { + "start": 8846.88, + "end": 8849.82, + "probability": 0.9956 + }, + { + "start": 8850.7, + "end": 8851.62, + "probability": 0.602 + }, + { + "start": 8852.38, + "end": 8852.78, + "probability": 0.8311 + }, + { + "start": 8852.86, + "end": 8855.04, + "probability": 0.9804 + }, + { + "start": 8855.14, + "end": 8858.28, + "probability": 0.9609 + }, + { + "start": 8858.82, + "end": 8860.8, + "probability": 0.9688 + }, + { + "start": 8860.96, + "end": 8864.13, + "probability": 0.9934 + }, + { + "start": 8865.02, + "end": 8866.5, + "probability": 0.9567 + }, + { + "start": 8866.86, + "end": 8867.38, + "probability": 0.6905 + }, + { + "start": 8867.62, + "end": 8870.46, + "probability": 0.2249 + }, + { + "start": 8871.86, + "end": 8872.2, + "probability": 0.7093 + }, + { + "start": 8873.58, + "end": 8874.76, + "probability": 0.8008 + }, + { + "start": 8874.98, + "end": 8878.46, + "probability": 0.8079 + }, + { + "start": 8878.54, + "end": 8880.02, + "probability": 0.8964 + }, + { + "start": 8880.6, + "end": 8881.24, + "probability": 0.9629 + }, + { + "start": 8881.6, + "end": 8881.78, + "probability": 0.9174 + }, + { + "start": 8889.88, + "end": 8893.42, + "probability": 0.6903 + }, + { + "start": 8894.0, + "end": 8899.56, + "probability": 0.6405 + }, + { + "start": 8899.56, + "end": 8899.66, + "probability": 0.8444 + }, + { + "start": 8906.36, + "end": 8906.36, + "probability": 0.078 + }, + { + "start": 8906.36, + "end": 8906.36, + "probability": 0.1633 + }, + { + "start": 8906.36, + "end": 8906.36, + "probability": 0.037 + }, + { + "start": 8906.38, + "end": 8906.52, + "probability": 0.0264 + }, + { + "start": 8930.4, + "end": 8933.28, + "probability": 0.3306 + }, + { + "start": 8934.12, + "end": 8936.14, + "probability": 0.757 + }, + { + "start": 8937.9, + "end": 8940.88, + "probability": 0.9937 + }, + { + "start": 8941.4, + "end": 8946.08, + "probability": 0.7762 + }, + { + "start": 8947.24, + "end": 8950.06, + "probability": 0.9255 + }, + { + "start": 8951.04, + "end": 8953.64, + "probability": 0.9348 + }, + { + "start": 8954.68, + "end": 8958.1, + "probability": 0.745 + }, + { + "start": 8959.34, + "end": 8964.92, + "probability": 0.9669 + }, + { + "start": 8966.38, + "end": 8968.24, + "probability": 0.9248 + }, + { + "start": 8968.62, + "end": 8969.14, + "probability": 0.9427 + }, + { + "start": 8969.36, + "end": 8972.2, + "probability": 0.9909 + }, + { + "start": 8973.68, + "end": 8974.64, + "probability": 0.8571 + }, + { + "start": 8974.96, + "end": 8981.68, + "probability": 0.9509 + }, + { + "start": 8982.32, + "end": 8987.7, + "probability": 0.8478 + }, + { + "start": 8987.9, + "end": 8989.08, + "probability": 0.5108 + }, + { + "start": 8989.7, + "end": 8993.18, + "probability": 0.9841 + }, + { + "start": 8994.12, + "end": 8994.65, + "probability": 0.4847 + }, + { + "start": 8996.26, + "end": 8997.36, + "probability": 0.0339 + }, + { + "start": 9003.08, + "end": 9006.7, + "probability": 0.9333 + }, + { + "start": 9007.92, + "end": 9009.86, + "probability": 0.5185 + }, + { + "start": 9010.7, + "end": 9015.32, + "probability": 0.9001 + }, + { + "start": 9016.62, + "end": 9018.04, + "probability": 0.7737 + }, + { + "start": 9018.62, + "end": 9020.24, + "probability": 0.9537 + }, + { + "start": 9021.92, + "end": 9024.48, + "probability": 0.9703 + }, + { + "start": 9025.38, + "end": 9027.58, + "probability": 0.9737 + }, + { + "start": 9028.12, + "end": 9031.44, + "probability": 0.9235 + }, + { + "start": 9032.16, + "end": 9034.0, + "probability": 0.9519 + }, + { + "start": 9034.7, + "end": 9038.56, + "probability": 0.9699 + }, + { + "start": 9039.4, + "end": 9041.04, + "probability": 0.9736 + }, + { + "start": 9041.88, + "end": 9044.64, + "probability": 0.9288 + }, + { + "start": 9045.6, + "end": 9046.86, + "probability": 0.5188 + }, + { + "start": 9047.76, + "end": 9049.72, + "probability": 0.8228 + }, + { + "start": 9050.54, + "end": 9054.12, + "probability": 0.9644 + }, + { + "start": 9055.16, + "end": 9058.26, + "probability": 0.869 + }, + { + "start": 9058.6, + "end": 9060.88, + "probability": 0.9595 + }, + { + "start": 9064.46, + "end": 9064.46, + "probability": 0.1261 + }, + { + "start": 9064.46, + "end": 9065.98, + "probability": 0.2676 + }, + { + "start": 9066.56, + "end": 9069.36, + "probability": 0.8125 + }, + { + "start": 9070.36, + "end": 9075.6, + "probability": 0.9836 + }, + { + "start": 9077.32, + "end": 9083.2, + "probability": 0.9026 + }, + { + "start": 9084.04, + "end": 9085.72, + "probability": 0.9957 + }, + { + "start": 9086.42, + "end": 9087.86, + "probability": 0.9915 + }, + { + "start": 9088.8, + "end": 9089.96, + "probability": 0.7026 + }, + { + "start": 9091.18, + "end": 9094.38, + "probability": 0.965 + }, + { + "start": 9095.04, + "end": 9098.3, + "probability": 0.9673 + }, + { + "start": 9098.3, + "end": 9103.42, + "probability": 0.988 + }, + { + "start": 9104.14, + "end": 9106.22, + "probability": 0.98 + }, + { + "start": 9106.72, + "end": 9109.72, + "probability": 0.9913 + }, + { + "start": 9110.32, + "end": 9113.22, + "probability": 0.7903 + }, + { + "start": 9114.14, + "end": 9116.72, + "probability": 0.1602 + }, + { + "start": 9117.7, + "end": 9119.4, + "probability": 0.6372 + }, + { + "start": 9120.1, + "end": 9124.84, + "probability": 0.2183 + }, + { + "start": 9125.52, + "end": 9127.96, + "probability": 0.9006 + }, + { + "start": 9128.68, + "end": 9130.98, + "probability": 0.7178 + }, + { + "start": 9131.24, + "end": 9133.78, + "probability": 0.9969 + }, + { + "start": 9137.54, + "end": 9138.26, + "probability": 0.783 + }, + { + "start": 9138.66, + "end": 9140.9, + "probability": 0.7485 + }, + { + "start": 9163.2, + "end": 9163.32, + "probability": 0.0362 + }, + { + "start": 9164.17, + "end": 9165.98, + "probability": 0.0965 + }, + { + "start": 9166.92, + "end": 9168.8, + "probability": 0.5332 + }, + { + "start": 9169.68, + "end": 9172.64, + "probability": 0.9891 + }, + { + "start": 9173.62, + "end": 9174.64, + "probability": 0.8774 + }, + { + "start": 9175.84, + "end": 9177.72, + "probability": 0.9628 + }, + { + "start": 9181.86, + "end": 9181.86, + "probability": 0.051 + }, + { + "start": 9181.86, + "end": 9181.86, + "probability": 0.119 + }, + { + "start": 9181.86, + "end": 9181.86, + "probability": 0.0454 + }, + { + "start": 9181.86, + "end": 9182.84, + "probability": 0.6786 + }, + { + "start": 9183.0, + "end": 9183.44, + "probability": 0.5947 + }, + { + "start": 9184.1, + "end": 9187.56, + "probability": 0.8843 + }, + { + "start": 9188.94, + "end": 9190.7, + "probability": 0.9451 + }, + { + "start": 9191.42, + "end": 9195.16, + "probability": 0.902 + }, + { + "start": 9195.94, + "end": 9198.18, + "probability": 0.8413 + }, + { + "start": 9198.28, + "end": 9200.16, + "probability": 0.8534 + }, + { + "start": 9201.86, + "end": 9203.84, + "probability": 0.9526 + }, + { + "start": 9204.92, + "end": 9206.68, + "probability": 0.8956 + }, + { + "start": 9207.58, + "end": 9209.66, + "probability": 0.9838 + }, + { + "start": 9210.34, + "end": 9211.04, + "probability": 0.9871 + }, + { + "start": 9211.14, + "end": 9211.36, + "probability": 0.9753 + }, + { + "start": 9211.86, + "end": 9213.76, + "probability": 0.9883 + }, + { + "start": 9213.88, + "end": 9215.32, + "probability": 0.8965 + }, + { + "start": 9215.32, + "end": 9215.98, + "probability": 0.7583 + }, + { + "start": 9217.72, + "end": 9219.28, + "probability": 0.995 + }, + { + "start": 9220.1, + "end": 9222.16, + "probability": 0.993 + }, + { + "start": 9222.74, + "end": 9223.54, + "probability": 0.8619 + }, + { + "start": 9224.28, + "end": 9225.24, + "probability": 0.7281 + }, + { + "start": 9225.82, + "end": 9227.4, + "probability": 0.9678 + }, + { + "start": 9227.84, + "end": 9229.04, + "probability": 0.1892 + }, + { + "start": 9229.76, + "end": 9230.54, + "probability": 0.0573 + }, + { + "start": 9231.08, + "end": 9231.72, + "probability": 0.4885 + }, + { + "start": 9232.14, + "end": 9232.32, + "probability": 0.085 + }, + { + "start": 9232.32, + "end": 9232.32, + "probability": 0.2055 + }, + { + "start": 9232.32, + "end": 9237.1, + "probability": 0.7347 + }, + { + "start": 9239.58, + "end": 9241.96, + "probability": 0.4518 + }, + { + "start": 9242.24, + "end": 9242.24, + "probability": 0.0332 + }, + { + "start": 9242.24, + "end": 9242.24, + "probability": 0.2834 + }, + { + "start": 9242.24, + "end": 9244.24, + "probability": 0.9283 + }, + { + "start": 9244.34, + "end": 9244.66, + "probability": 0.5782 + }, + { + "start": 9245.16, + "end": 9246.5, + "probability": 0.9915 + }, + { + "start": 9246.74, + "end": 9247.23, + "probability": 0.9668 + }, + { + "start": 9247.78, + "end": 9248.29, + "probability": 0.7722 + }, + { + "start": 9249.04, + "end": 9250.12, + "probability": 0.5557 + }, + { + "start": 9251.0, + "end": 9252.16, + "probability": 0.3409 + }, + { + "start": 9252.5, + "end": 9252.64, + "probability": 0.0231 + }, + { + "start": 9252.64, + "end": 9252.64, + "probability": 0.0387 + }, + { + "start": 9252.64, + "end": 9252.92, + "probability": 0.5809 + }, + { + "start": 9253.22, + "end": 9253.48, + "probability": 0.4541 + }, + { + "start": 9253.54, + "end": 9255.12, + "probability": 0.8447 + }, + { + "start": 9255.56, + "end": 9260.76, + "probability": 0.0471 + }, + { + "start": 9268.44, + "end": 9269.62, + "probability": 0.5722 + }, + { + "start": 9270.44, + "end": 9270.7, + "probability": 0.6883 + }, + { + "start": 9270.7, + "end": 9271.26, + "probability": 0.273 + }, + { + "start": 9271.26, + "end": 9272.14, + "probability": 0.1129 + }, + { + "start": 9272.14, + "end": 9273.44, + "probability": 0.0456 + }, + { + "start": 9273.58, + "end": 9276.14, + "probability": 0.0594 + }, + { + "start": 9276.2, + "end": 9278.32, + "probability": 0.1733 + }, + { + "start": 9279.08, + "end": 9279.85, + "probability": 0.0499 + }, + { + "start": 9285.12, + "end": 9289.56, + "probability": 0.4173 + }, + { + "start": 9290.08, + "end": 9292.4, + "probability": 0.0279 + }, + { + "start": 9292.52, + "end": 9294.22, + "probability": 0.0203 + }, + { + "start": 9295.2, + "end": 9295.2, + "probability": 0.025 + }, + { + "start": 9296.28, + "end": 9297.1, + "probability": 0.0172 + }, + { + "start": 9297.96, + "end": 9299.72, + "probability": 0.052 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.0, + "end": 9326.0, + "probability": 0.0 + }, + { + "start": 9326.08, + "end": 9326.24, + "probability": 0.0152 + }, + { + "start": 9326.24, + "end": 9326.24, + "probability": 0.0327 + }, + { + "start": 9326.24, + "end": 9326.24, + "probability": 0.2131 + }, + { + "start": 9326.24, + "end": 9326.5, + "probability": 0.21 + }, + { + "start": 9326.88, + "end": 9328.16, + "probability": 0.5596 + }, + { + "start": 9329.61, + "end": 9330.52, + "probability": 0.0221 + }, + { + "start": 9330.52, + "end": 9331.44, + "probability": 0.0215 + }, + { + "start": 9331.57, + "end": 9331.79, + "probability": 0.0185 + }, + { + "start": 9333.36, + "end": 9334.9, + "probability": 0.0247 + }, + { + "start": 9335.3, + "end": 9336.96, + "probability": 0.1282 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.0, + "end": 9449.0, + "probability": 0.0 + }, + { + "start": 9449.18, + "end": 9449.82, + "probability": 0.7974 + }, + { + "start": 9451.4, + "end": 9453.28, + "probability": 0.9495 + }, + { + "start": 9454.44, + "end": 9454.88, + "probability": 0.992 + }, + { + "start": 9455.56, + "end": 9456.52, + "probability": 0.9903 + }, + { + "start": 9457.06, + "end": 9457.54, + "probability": 0.8628 + }, + { + "start": 9458.8, + "end": 9459.54, + "probability": 0.9889 + }, + { + "start": 9460.32, + "end": 9460.74, + "probability": 0.9641 + }, + { + "start": 9461.5, + "end": 9462.4, + "probability": 0.9554 + }, + { + "start": 9463.06, + "end": 9465.02, + "probability": 0.9653 + }, + { + "start": 9466.12, + "end": 9467.74, + "probability": 0.9487 + }, + { + "start": 9469.02, + "end": 9471.02, + "probability": 0.9812 + }, + { + "start": 9471.74, + "end": 9474.62, + "probability": 0.7863 + }, + { + "start": 9475.34, + "end": 9476.86, + "probability": 0.8677 + }, + { + "start": 9480.36, + "end": 9480.84, + "probability": 0.9011 + }, + { + "start": 9482.44, + "end": 9483.24, + "probability": 0.9292 + }, + { + "start": 9484.78, + "end": 9485.22, + "probability": 0.9744 + }, + { + "start": 9486.32, + "end": 9486.96, + "probability": 0.9397 + }, + { + "start": 9491.18, + "end": 9493.0, + "probability": 0.8472 + }, + { + "start": 9494.6, + "end": 9495.08, + "probability": 0.9438 + }, + { + "start": 9495.84, + "end": 9496.42, + "probability": 0.9136 + }, + { + "start": 9500.08, + "end": 9500.44, + "probability": 0.995 + }, + { + "start": 9501.74, + "end": 9502.44, + "probability": 0.6882 + }, + { + "start": 9503.28, + "end": 9503.56, + "probability": 0.6893 + }, + { + "start": 9504.2, + "end": 9505.26, + "probability": 0.6902 + }, + { + "start": 9506.3, + "end": 9507.22, + "probability": 0.9812 + }, + { + "start": 9508.0, + "end": 9508.76, + "probability": 0.8343 + }, + { + "start": 9511.82, + "end": 9514.0, + "probability": 0.9709 + }, + { + "start": 9515.28, + "end": 9517.44, + "probability": 0.9745 + }, + { + "start": 9518.22, + "end": 9519.2, + "probability": 0.9895 + }, + { + "start": 9519.84, + "end": 9520.86, + "probability": 0.9412 + }, + { + "start": 9521.38, + "end": 9522.1, + "probability": 0.9282 + }, + { + "start": 9522.62, + "end": 9523.38, + "probability": 0.9727 + }, + { + "start": 9524.53, + "end": 9526.68, + "probability": 0.7678 + }, + { + "start": 9529.94, + "end": 9530.28, + "probability": 0.8223 + }, + { + "start": 9531.88, + "end": 9533.6, + "probability": 0.6621 + }, + { + "start": 9534.18, + "end": 9535.42, + "probability": 0.9434 + }, + { + "start": 9536.26, + "end": 9536.72, + "probability": 0.752 + }, + { + "start": 9537.88, + "end": 9539.18, + "probability": 0.9446 + }, + { + "start": 9539.96, + "end": 9542.26, + "probability": 0.9524 + }, + { + "start": 9543.46, + "end": 9543.86, + "probability": 0.9557 + }, + { + "start": 9545.16, + "end": 9546.4, + "probability": 0.7391 + }, + { + "start": 9547.26, + "end": 9547.7, + "probability": 0.98 + }, + { + "start": 9548.98, + "end": 9549.7, + "probability": 0.4554 + }, + { + "start": 9549.94, + "end": 9551.68, + "probability": 0.8377 + }, + { + "start": 9551.78, + "end": 9552.94, + "probability": 0.6293 + }, + { + "start": 9553.88, + "end": 9555.62, + "probability": 0.8727 + }, + { + "start": 9559.8, + "end": 9562.74, + "probability": 0.9419 + }, + { + "start": 9563.62, + "end": 9565.24, + "probability": 0.715 + }, + { + "start": 9565.96, + "end": 9566.44, + "probability": 0.9657 + }, + { + "start": 9567.74, + "end": 9569.96, + "probability": 0.9691 + }, + { + "start": 9570.9, + "end": 9573.84, + "probability": 0.9788 + }, + { + "start": 9574.36, + "end": 9575.14, + "probability": 0.9339 + }, + { + "start": 9576.16, + "end": 9577.88, + "probability": 0.9755 + }, + { + "start": 9580.32, + "end": 9580.54, + "probability": 0.9895 + }, + { + "start": 9582.1, + "end": 9582.5, + "probability": 0.6796 + }, + { + "start": 9583.74, + "end": 9585.08, + "probability": 0.8826 + }, + { + "start": 9586.28, + "end": 9588.9, + "probability": 0.9631 + }, + { + "start": 9589.52, + "end": 9590.12, + "probability": 0.9153 + }, + { + "start": 9591.48, + "end": 9592.0, + "probability": 0.9824 + }, + { + "start": 9592.62, + "end": 9593.3, + "probability": 0.9601 + }, + { + "start": 9594.02, + "end": 9594.46, + "probability": 0.9604 + }, + { + "start": 9595.06, + "end": 9595.78, + "probability": 0.9802 + }, + { + "start": 9596.41, + "end": 9597.84, + "probability": 0.9761 + }, + { + "start": 9599.64, + "end": 9600.1, + "probability": 0.9893 + }, + { + "start": 9600.74, + "end": 9601.82, + "probability": 0.7209 + }, + { + "start": 9602.4, + "end": 9604.0, + "probability": 0.9502 + }, + { + "start": 9606.84, + "end": 9607.22, + "probability": 0.7497 + }, + { + "start": 9609.26, + "end": 9609.96, + "probability": 0.6376 + }, + { + "start": 9611.86, + "end": 9612.14, + "probability": 0.8279 + }, + { + "start": 9613.98, + "end": 9614.86, + "probability": 0.8168 + }, + { + "start": 9616.68, + "end": 9619.06, + "probability": 0.9412 + }, + { + "start": 9620.54, + "end": 9620.94, + "probability": 0.9793 + }, + { + "start": 9622.68, + "end": 9623.4, + "probability": 0.9696 + }, + { + "start": 9624.98, + "end": 9625.44, + "probability": 0.9943 + }, + { + "start": 9626.62, + "end": 9627.78, + "probability": 0.9442 + }, + { + "start": 9628.82, + "end": 9631.62, + "probability": 0.9734 + }, + { + "start": 9632.52, + "end": 9633.02, + "probability": 0.9945 + }, + { + "start": 9634.18, + "end": 9634.96, + "probability": 0.4448 + }, + { + "start": 9636.04, + "end": 9636.38, + "probability": 0.7987 + }, + { + "start": 9637.2, + "end": 9638.36, + "probability": 0.8865 + }, + { + "start": 9638.92, + "end": 9639.42, + "probability": 0.9686 + }, + { + "start": 9640.18, + "end": 9641.2, + "probability": 0.8189 + }, + { + "start": 9641.84, + "end": 9642.26, + "probability": 0.7495 + }, + { + "start": 9643.0, + "end": 9644.2, + "probability": 0.9157 + }, + { + "start": 9645.22, + "end": 9646.16, + "probability": 0.9846 + }, + { + "start": 9646.68, + "end": 9647.58, + "probability": 0.9855 + }, + { + "start": 9650.18, + "end": 9655.48, + "probability": 0.956 + }, + { + "start": 9656.32, + "end": 9656.8, + "probability": 0.9946 + }, + { + "start": 9657.9, + "end": 9658.48, + "probability": 0.8774 + }, + { + "start": 9659.7, + "end": 9660.06, + "probability": 0.564 + }, + { + "start": 9660.92, + "end": 9661.56, + "probability": 0.6775 + }, + { + "start": 9662.58, + "end": 9664.16, + "probability": 0.9565 + }, + { + "start": 9665.4, + "end": 9665.84, + "probability": 0.9473 + }, + { + "start": 9669.3, + "end": 9673.14, + "probability": 0.7681 + }, + { + "start": 9677.44, + "end": 9677.86, + "probability": 0.7828 + }, + { + "start": 9679.1, + "end": 9679.98, + "probability": 0.4921 + }, + { + "start": 9680.5, + "end": 9680.82, + "probability": 0.9741 + }, + { + "start": 9681.44, + "end": 9682.46, + "probability": 0.8968 + }, + { + "start": 9683.88, + "end": 9684.28, + "probability": 0.7534 + }, + { + "start": 9685.4, + "end": 9686.3, + "probability": 0.8832 + }, + { + "start": 9687.74, + "end": 9689.72, + "probability": 0.6331 + }, + { + "start": 9697.4, + "end": 9697.6, + "probability": 0.5698 + }, + { + "start": 9699.34, + "end": 9700.28, + "probability": 0.7244 + }, + { + "start": 9703.22, + "end": 9708.78, + "probability": 0.9187 + }, + { + "start": 9709.79, + "end": 9711.92, + "probability": 0.921 + }, + { + "start": 9713.76, + "end": 9714.26, + "probability": 0.9854 + }, + { + "start": 9715.0, + "end": 9715.76, + "probability": 0.9859 + }, + { + "start": 9718.32, + "end": 9718.8, + "probability": 0.9935 + }, + { + "start": 9720.24, + "end": 9720.94, + "probability": 0.9143 + }, + { + "start": 9721.94, + "end": 9722.24, + "probability": 0.957 + }, + { + "start": 9723.44, + "end": 9724.36, + "probability": 0.923 + }, + { + "start": 9724.94, + "end": 9724.96, + "probability": 0.86 + }, + { + "start": 9731.28, + "end": 9733.08, + "probability": 0.5364 + }, + { + "start": 9734.56, + "end": 9735.26, + "probability": 0.7278 + }, + { + "start": 9737.94, + "end": 9738.3, + "probability": 0.7103 + }, + { + "start": 9739.96, + "end": 9740.84, + "probability": 0.9866 + }, + { + "start": 9741.76, + "end": 9744.14, + "probability": 0.9609 + }, + { + "start": 9744.82, + "end": 9745.56, + "probability": 0.8357 + }, + { + "start": 9746.7, + "end": 9747.68, + "probability": 0.9533 + }, + { + "start": 9750.1, + "end": 9751.08, + "probability": 0.9644 + }, + { + "start": 9752.76, + "end": 9753.76, + "probability": 0.9176 + }, + { + "start": 9755.62, + "end": 9756.6, + "probability": 0.6894 + }, + { + "start": 9758.14, + "end": 9758.72, + "probability": 0.9736 + }, + { + "start": 9760.08, + "end": 9761.32, + "probability": 0.882 + }, + { + "start": 9762.42, + "end": 9763.72, + "probability": 0.9884 + }, + { + "start": 9764.32, + "end": 9767.2, + "probability": 0.9668 + }, + { + "start": 9768.1, + "end": 9768.5, + "probability": 0.8809 + }, + { + "start": 9769.9, + "end": 9770.66, + "probability": 0.9422 + }, + { + "start": 9772.6, + "end": 9773.0, + "probability": 0.9919 + }, + { + "start": 9774.58, + "end": 9774.98, + "probability": 0.9826 + }, + { + "start": 9776.74, + "end": 9777.18, + "probability": 0.9827 + }, + { + "start": 9778.24, + "end": 9779.08, + "probability": 0.8187 + }, + { + "start": 9780.86, + "end": 9781.58, + "probability": 0.9909 + }, + { + "start": 9782.3, + "end": 9783.06, + "probability": 0.8102 + }, + { + "start": 9784.4, + "end": 9784.84, + "probability": 0.5531 + }, + { + "start": 9787.72, + "end": 9787.9, + "probability": 0.488 + }, + { + "start": 9790.08, + "end": 9790.96, + "probability": 0.2922 + }, + { + "start": 9792.06, + "end": 9793.66, + "probability": 0.6718 + }, + { + "start": 9794.72, + "end": 9795.48, + "probability": 0.8277 + }, + { + "start": 9797.07, + "end": 9798.46, + "probability": 0.9668 + }, + { + "start": 9800.28, + "end": 9800.68, + "probability": 0.9702 + }, + { + "start": 9801.58, + "end": 9802.54, + "probability": 0.9342 + }, + { + "start": 9803.22, + "end": 9803.6, + "probability": 0.9564 + }, + { + "start": 9804.18, + "end": 9805.14, + "probability": 0.7866 + }, + { + "start": 9806.74, + "end": 9807.18, + "probability": 0.9803 + }, + { + "start": 9808.32, + "end": 9809.22, + "probability": 0.9355 + }, + { + "start": 9810.14, + "end": 9811.44, + "probability": 0.9759 + }, + { + "start": 9812.04, + "end": 9813.1, + "probability": 0.9594 + }, + { + "start": 9814.04, + "end": 9816.5, + "probability": 0.8971 + }, + { + "start": 9822.82, + "end": 9823.78, + "probability": 0.4102 + }, + { + "start": 9825.48, + "end": 9827.98, + "probability": 0.7939 + }, + { + "start": 9829.24, + "end": 9831.28, + "probability": 0.8058 + }, + { + "start": 9832.46, + "end": 9832.7, + "probability": 0.6472 + }, + { + "start": 9833.88, + "end": 9834.94, + "probability": 0.5648 + }, + { + "start": 9837.57, + "end": 9840.86, + "probability": 0.8264 + }, + { + "start": 9842.14, + "end": 9842.84, + "probability": 0.9956 + }, + { + "start": 9845.72, + "end": 9847.56, + "probability": 0.7805 + }, + { + "start": 9849.76, + "end": 9851.02, + "probability": 0.5178 + }, + { + "start": 9851.46, + "end": 9853.92, + "probability": 0.9525 + }, + { + "start": 9854.14, + "end": 9856.56, + "probability": 0.5065 + }, + { + "start": 9856.72, + "end": 9857.9, + "probability": 0.9599 + }, + { + "start": 9858.02, + "end": 9859.42, + "probability": 0.6665 + }, + { + "start": 9860.32, + "end": 9860.62, + "probability": 0.8833 + }, + { + "start": 9863.98, + "end": 9864.82, + "probability": 0.3144 + }, + { + "start": 9865.34, + "end": 9866.02, + "probability": 0.8836 + }, + { + "start": 9866.72, + "end": 9867.93, + "probability": 0.5518 + }, + { + "start": 9868.8, + "end": 9869.54, + "probability": 0.8664 + }, + { + "start": 9869.66, + "end": 9870.92, + "probability": 0.6419 + }, + { + "start": 9870.92, + "end": 9872.48, + "probability": 0.8009 + }, + { + "start": 9872.56, + "end": 9873.14, + "probability": 0.8778 + }, + { + "start": 9873.8, + "end": 9874.72, + "probability": 0.9504 + }, + { + "start": 9874.94, + "end": 9877.22, + "probability": 0.8836 + }, + { + "start": 9877.48, + "end": 9879.46, + "probability": 0.597 + }, + { + "start": 9880.02, + "end": 9880.7, + "probability": 0.9246 + }, + { + "start": 9883.44, + "end": 9886.68, + "probability": 0.834 + }, + { + "start": 9887.3, + "end": 9888.04, + "probability": 0.9727 + }, + { + "start": 9888.96, + "end": 9891.92, + "probability": 0.9378 + }, + { + "start": 9893.18, + "end": 9893.74, + "probability": 0.9881 + }, + { + "start": 9896.32, + "end": 9897.46, + "probability": 0.5939 + }, + { + "start": 9898.72, + "end": 9900.68, + "probability": 0.1073 + }, + { + "start": 9903.46, + "end": 9905.08, + "probability": 0.4978 + }, + { + "start": 9906.16, + "end": 9906.94, + "probability": 0.9714 + }, + { + "start": 9907.9, + "end": 9911.1, + "probability": 0.9222 + }, + { + "start": 9911.2, + "end": 9912.7, + "probability": 0.0865 + }, + { + "start": 9914.74, + "end": 9915.18, + "probability": 0.0241 + }, + { + "start": 9918.52, + "end": 9920.82, + "probability": 0.2339 + }, + { + "start": 9921.06, + "end": 9921.06, + "probability": 0.3103 + }, + { + "start": 9921.1, + "end": 9922.7, + "probability": 0.6571 + }, + { + "start": 9923.56, + "end": 9924.66, + "probability": 0.1664 + }, + { + "start": 9924.86, + "end": 9924.86, + "probability": 0.0336 + }, + { + "start": 9926.22, + "end": 9926.66, + "probability": 0.0087 + }, + { + "start": 9927.06, + "end": 9928.34, + "probability": 0.4955 + }, + { + "start": 9928.36, + "end": 9928.82, + "probability": 0.8795 + }, + { + "start": 9929.8, + "end": 9931.56, + "probability": 0.3856 + }, + { + "start": 9932.46, + "end": 9933.6, + "probability": 0.3062 + }, + { + "start": 9935.66, + "end": 9938.96, + "probability": 0.8881 + }, + { + "start": 9939.66, + "end": 9941.7, + "probability": 0.3471 + }, + { + "start": 9943.16, + "end": 9946.38, + "probability": 0.2767 + }, + { + "start": 9946.38, + "end": 9946.46, + "probability": 0.0109 + }, + { + "start": 9946.46, + "end": 9947.28, + "probability": 0.1853 + }, + { + "start": 9947.8, + "end": 9948.22, + "probability": 0.6577 + }, + { + "start": 9948.3, + "end": 9949.44, + "probability": 0.738 + }, + { + "start": 9949.56, + "end": 9951.92, + "probability": 0.2488 + }, + { + "start": 9951.96, + "end": 9953.74, + "probability": 0.6113 + }, + { + "start": 9953.76, + "end": 9955.24, + "probability": 0.0906 + }, + { + "start": 9955.58, + "end": 9957.42, + "probability": 0.0992 + }, + { + "start": 9958.12, + "end": 9960.12, + "probability": 0.196 + }, + { + "start": 9960.26, + "end": 9960.26, + "probability": 0.3705 + }, + { + "start": 9960.26, + "end": 9962.32, + "probability": 0.8749 + }, + { + "start": 9962.5, + "end": 9965.58, + "probability": 0.8404 + }, + { + "start": 9966.58, + "end": 9967.5, + "probability": 0.4332 + }, + { + "start": 9967.52, + "end": 9968.56, + "probability": 0.8024 + }, + { + "start": 9968.8, + "end": 9969.87, + "probability": 0.4652 + }, + { + "start": 9970.14, + "end": 9970.76, + "probability": 0.003 + }, + { + "start": 9981.11, + "end": 9983.155, + "probability": 0.0512 + }, + { + "start": 9986.58, + "end": 9988.9, + "probability": 0.0835 + }, + { + "start": 9990.32, + "end": 9991.82, + "probability": 0.0322 + }, + { + "start": 10003.62, + "end": 10006.18, + "probability": 0.0529 + }, + { + "start": 10006.28, + "end": 10007.92, + "probability": 0.0153 + }, + { + "start": 10009.64, + "end": 10009.86, + "probability": 0.0096 + }, + { + "start": 10011.66, + "end": 10014.44, + "probability": 0.0595 + }, + { + "start": 10015.96, + "end": 10016.9, + "probability": 0.0403 + }, + { + "start": 10101.08, + "end": 10101.08, + "probability": 0.0757 + }, + { + "start": 10101.08, + "end": 10106.16, + "probability": 0.9013 + }, + { + "start": 10106.22, + "end": 10106.84, + "probability": 0.7113 + }, + { + "start": 10107.32, + "end": 10107.64, + "probability": 0.2352 + }, + { + "start": 10108.6, + "end": 10108.64, + "probability": 0.1836 + }, + { + "start": 10108.64, + "end": 10111.38, + "probability": 0.9601 + }, + { + "start": 10112.7, + "end": 10113.56, + "probability": 0.7467 + }, + { + "start": 10113.8, + "end": 10114.36, + "probability": 0.3804 + }, + { + "start": 10116.0, + "end": 10118.32, + "probability": 0.5018 + }, + { + "start": 10118.48, + "end": 10119.34, + "probability": 0.8618 + }, + { + "start": 10120.54, + "end": 10123.08, + "probability": 0.8603 + }, + { + "start": 10123.08, + "end": 10123.94, + "probability": 0.6921 + }, + { + "start": 10124.0, + "end": 10125.1, + "probability": 0.669 + }, + { + "start": 10125.16, + "end": 10126.06, + "probability": 0.8641 + }, + { + "start": 10126.2, + "end": 10127.7, + "probability": 0.6934 + }, + { + "start": 10127.8, + "end": 10128.94, + "probability": 0.1783 + }, + { + "start": 10129.06, + "end": 10130.1, + "probability": 0.0512 + }, + { + "start": 10130.16, + "end": 10132.57, + "probability": 0.5601 + }, + { + "start": 10132.76, + "end": 10133.18, + "probability": 0.7864 + }, + { + "start": 10133.58, + "end": 10135.92, + "probability": 0.3755 + }, + { + "start": 10136.66, + "end": 10137.26, + "probability": 0.177 + }, + { + "start": 10145.72, + "end": 10146.36, + "probability": 0.5737 + }, + { + "start": 10147.28, + "end": 10148.34, + "probability": 0.8633 + }, + { + "start": 10150.22, + "end": 10151.8, + "probability": 0.994 + }, + { + "start": 10152.95, + "end": 10155.64, + "probability": 0.9142 + }, + { + "start": 10156.94, + "end": 10157.72, + "probability": 0.8957 + }, + { + "start": 10159.0, + "end": 10159.46, + "probability": 0.438 + }, + { + "start": 10165.34, + "end": 10166.28, + "probability": 0.5725 + }, + { + "start": 10167.08, + "end": 10168.74, + "probability": 0.6656 + }, + { + "start": 10169.62, + "end": 10171.0, + "probability": 0.993 + }, + { + "start": 10171.78, + "end": 10175.18, + "probability": 0.9971 + }, + { + "start": 10175.36, + "end": 10176.84, + "probability": 0.9604 + }, + { + "start": 10178.02, + "end": 10178.54, + "probability": 0.8915 + }, + { + "start": 10179.22, + "end": 10181.22, + "probability": 0.9336 + }, + { + "start": 10181.22, + "end": 10183.34, + "probability": 0.9995 + }, + { + "start": 10185.68, + "end": 10190.26, + "probability": 0.9947 + }, + { + "start": 10190.98, + "end": 10196.52, + "probability": 0.928 + }, + { + "start": 10199.16, + "end": 10199.98, + "probability": 0.6523 + }, + { + "start": 10200.06, + "end": 10200.36, + "probability": 0.6757 + }, + { + "start": 10200.44, + "end": 10200.74, + "probability": 0.8019 + }, + { + "start": 10200.78, + "end": 10201.56, + "probability": 0.8732 + }, + { + "start": 10202.06, + "end": 10203.74, + "probability": 0.8473 + }, + { + "start": 10205.74, + "end": 10207.24, + "probability": 0.9937 + }, + { + "start": 10209.08, + "end": 10209.34, + "probability": 0.8989 + }, + { + "start": 10209.86, + "end": 10210.98, + "probability": 0.9752 + }, + { + "start": 10212.26, + "end": 10215.46, + "probability": 0.9727 + }, + { + "start": 10215.54, + "end": 10218.26, + "probability": 0.8911 + }, + { + "start": 10219.3, + "end": 10222.5, + "probability": 0.9802 + }, + { + "start": 10222.54, + "end": 10222.76, + "probability": 0.8004 + }, + { + "start": 10222.82, + "end": 10225.48, + "probability": 0.998 + }, + { + "start": 10227.0, + "end": 10227.16, + "probability": 0.4998 + }, + { + "start": 10228.66, + "end": 10231.2, + "probability": 0.9711 + }, + { + "start": 10231.92, + "end": 10233.26, + "probability": 0.9824 + }, + { + "start": 10234.38, + "end": 10235.44, + "probability": 0.9941 + }, + { + "start": 10236.04, + "end": 10241.96, + "probability": 0.9934 + }, + { + "start": 10242.96, + "end": 10244.44, + "probability": 0.9874 + }, + { + "start": 10245.98, + "end": 10247.9, + "probability": 0.9228 + }, + { + "start": 10248.52, + "end": 10255.34, + "probability": 0.7301 + }, + { + "start": 10255.46, + "end": 10260.22, + "probability": 0.9622 + }, + { + "start": 10260.76, + "end": 10262.1, + "probability": 0.7959 + }, + { + "start": 10263.38, + "end": 10264.68, + "probability": 0.9865 + }, + { + "start": 10266.12, + "end": 10267.32, + "probability": 0.9883 + }, + { + "start": 10268.08, + "end": 10271.36, + "probability": 0.9697 + }, + { + "start": 10272.48, + "end": 10273.8, + "probability": 0.9729 + }, + { + "start": 10274.68, + "end": 10276.44, + "probability": 0.9979 + }, + { + "start": 10276.52, + "end": 10278.26, + "probability": 0.9243 + }, + { + "start": 10278.34, + "end": 10279.02, + "probability": 0.8629 + }, + { + "start": 10279.86, + "end": 10280.46, + "probability": 0.9066 + }, + { + "start": 10280.54, + "end": 10281.54, + "probability": 0.9461 + }, + { + "start": 10281.58, + "end": 10284.34, + "probability": 0.9781 + }, + { + "start": 10285.08, + "end": 10286.34, + "probability": 0.9822 + }, + { + "start": 10286.54, + "end": 10287.01, + "probability": 0.875 + }, + { + "start": 10287.34, + "end": 10287.62, + "probability": 0.5453 + }, + { + "start": 10288.44, + "end": 10290.9, + "probability": 0.9899 + }, + { + "start": 10292.16, + "end": 10294.34, + "probability": 0.9407 + }, + { + "start": 10294.54, + "end": 10295.6, + "probability": 0.8944 + }, + { + "start": 10298.1, + "end": 10300.82, + "probability": 0.5685 + }, + { + "start": 10302.16, + "end": 10303.06, + "probability": 0.9612 + }, + { + "start": 10303.88, + "end": 10307.51, + "probability": 0.9209 + }, + { + "start": 10309.06, + "end": 10315.66, + "probability": 0.9938 + }, + { + "start": 10316.7, + "end": 10316.9, + "probability": 0.0464 + }, + { + "start": 10319.76, + "end": 10320.38, + "probability": 0.3801 + }, + { + "start": 10320.44, + "end": 10320.58, + "probability": 0.1787 + }, + { + "start": 10320.58, + "end": 10320.58, + "probability": 0.0866 + }, + { + "start": 10320.58, + "end": 10320.58, + "probability": 0.128 + }, + { + "start": 10320.58, + "end": 10320.58, + "probability": 0.041 + }, + { + "start": 10320.58, + "end": 10320.58, + "probability": 0.233 + }, + { + "start": 10320.58, + "end": 10322.16, + "probability": 0.556 + }, + { + "start": 10322.16, + "end": 10324.96, + "probability": 0.9769 + }, + { + "start": 10330.68, + "end": 10334.78, + "probability": 0.4217 + }, + { + "start": 10335.16, + "end": 10336.58, + "probability": 0.9284 + }, + { + "start": 10338.04, + "end": 10339.22, + "probability": 0.9993 + }, + { + "start": 10340.04, + "end": 10342.0, + "probability": 0.9962 + }, + { + "start": 10342.5, + "end": 10343.92, + "probability": 0.9973 + }, + { + "start": 10344.66, + "end": 10348.84, + "probability": 0.9341 + }, + { + "start": 10348.92, + "end": 10350.04, + "probability": 0.8199 + }, + { + "start": 10350.6, + "end": 10355.24, + "probability": 0.9979 + }, + { + "start": 10355.66, + "end": 10357.28, + "probability": 0.782 + }, + { + "start": 10358.16, + "end": 10360.12, + "probability": 0.9875 + }, + { + "start": 10360.72, + "end": 10363.7, + "probability": 0.9927 + }, + { + "start": 10364.22, + "end": 10367.76, + "probability": 0.991 + }, + { + "start": 10367.88, + "end": 10369.4, + "probability": 0.9963 + }, + { + "start": 10369.94, + "end": 10371.22, + "probability": 0.9969 + }, + { + "start": 10371.98, + "end": 10378.02, + "probability": 0.9728 + }, + { + "start": 10379.86, + "end": 10382.76, + "probability": 0.8442 + }, + { + "start": 10382.84, + "end": 10386.4, + "probability": 0.9733 + }, + { + "start": 10387.2, + "end": 10390.44, + "probability": 0.9563 + }, + { + "start": 10391.28, + "end": 10392.7, + "probability": 0.9334 + }, + { + "start": 10393.14, + "end": 10396.86, + "probability": 0.9924 + }, + { + "start": 10397.64, + "end": 10398.12, + "probability": 0.7533 + }, + { + "start": 10398.9, + "end": 10399.14, + "probability": 0.9526 + }, + { + "start": 10400.32, + "end": 10401.76, + "probability": 0.9985 + }, + { + "start": 10402.52, + "end": 10404.4, + "probability": 0.942 + }, + { + "start": 10406.54, + "end": 10408.14, + "probability": 0.9432 + }, + { + "start": 10409.54, + "end": 10412.12, + "probability": 0.9624 + }, + { + "start": 10413.1, + "end": 10416.34, + "probability": 0.986 + }, + { + "start": 10417.04, + "end": 10418.18, + "probability": 0.7964 + }, + { + "start": 10418.98, + "end": 10425.44, + "probability": 0.9683 + }, + { + "start": 10425.94, + "end": 10426.93, + "probability": 0.9603 + }, + { + "start": 10428.38, + "end": 10429.36, + "probability": 0.939 + }, + { + "start": 10431.0, + "end": 10431.94, + "probability": 0.9585 + }, + { + "start": 10432.08, + "end": 10434.02, + "probability": 0.8997 + }, + { + "start": 10434.5, + "end": 10435.42, + "probability": 0.9136 + }, + { + "start": 10435.6, + "end": 10436.24, + "probability": 0.7601 + }, + { + "start": 10437.02, + "end": 10439.42, + "probability": 0.6372 + }, + { + "start": 10439.92, + "end": 10442.72, + "probability": 0.9274 + }, + { + "start": 10443.62, + "end": 10446.46, + "probability": 0.6499 + }, + { + "start": 10447.04, + "end": 10448.56, + "probability": 0.9849 + }, + { + "start": 10449.08, + "end": 10450.66, + "probability": 0.99 + }, + { + "start": 10451.1, + "end": 10452.88, + "probability": 0.8573 + }, + { + "start": 10453.44, + "end": 10455.66, + "probability": 0.973 + }, + { + "start": 10456.26, + "end": 10458.48, + "probability": 0.8836 + }, + { + "start": 10459.02, + "end": 10461.04, + "probability": 0.9885 + }, + { + "start": 10461.4, + "end": 10463.34, + "probability": 0.9941 + }, + { + "start": 10463.34, + "end": 10466.28, + "probability": 0.819 + }, + { + "start": 10466.34, + "end": 10468.56, + "probability": 0.9658 + }, + { + "start": 10468.84, + "end": 10471.12, + "probability": 0.9976 + }, + { + "start": 10471.18, + "end": 10472.34, + "probability": 0.9005 + }, + { + "start": 10473.1, + "end": 10476.5, + "probability": 0.9552 + }, + { + "start": 10478.18, + "end": 10479.82, + "probability": 0.9754 + }, + { + "start": 10480.98, + "end": 10482.14, + "probability": 0.8949 + }, + { + "start": 10482.86, + "end": 10486.96, + "probability": 0.9486 + }, + { + "start": 10487.22, + "end": 10488.2, + "probability": 0.8395 + }, + { + "start": 10488.96, + "end": 10489.6, + "probability": 0.7518 + }, + { + "start": 10489.72, + "end": 10491.98, + "probability": 0.9589 + }, + { + "start": 10492.24, + "end": 10493.0, + "probability": 0.9062 + }, + { + "start": 10493.42, + "end": 10494.69, + "probability": 0.7974 + }, + { + "start": 10495.58, + "end": 10496.78, + "probability": 0.9997 + }, + { + "start": 10497.3, + "end": 10500.46, + "probability": 0.9966 + }, + { + "start": 10501.0, + "end": 10502.18, + "probability": 0.9989 + }, + { + "start": 10502.36, + "end": 10504.08, + "probability": 0.9308 + }, + { + "start": 10505.8, + "end": 10506.64, + "probability": 0.9395 + }, + { + "start": 10506.78, + "end": 10511.6, + "probability": 0.9789 + }, + { + "start": 10512.22, + "end": 10516.98, + "probability": 0.9982 + }, + { + "start": 10518.36, + "end": 10519.21, + "probability": 0.6522 + }, + { + "start": 10520.38, + "end": 10521.58, + "probability": 0.9858 + }, + { + "start": 10522.64, + "end": 10523.77, + "probability": 0.9961 + }, + { + "start": 10524.42, + "end": 10529.76, + "probability": 0.9976 + }, + { + "start": 10531.78, + "end": 10539.26, + "probability": 0.9556 + }, + { + "start": 10540.36, + "end": 10543.54, + "probability": 0.9945 + }, + { + "start": 10543.54, + "end": 10547.94, + "probability": 0.9773 + }, + { + "start": 10548.02, + "end": 10550.98, + "probability": 0.991 + }, + { + "start": 10551.12, + "end": 10552.25, + "probability": 0.8658 + }, + { + "start": 10553.46, + "end": 10554.78, + "probability": 0.9462 + }, + { + "start": 10554.96, + "end": 10556.9, + "probability": 0.9976 + }, + { + "start": 10557.04, + "end": 10557.34, + "probability": 0.8147 + }, + { + "start": 10558.02, + "end": 10560.76, + "probability": 0.9552 + }, + { + "start": 10561.58, + "end": 10562.34, + "probability": 0.8212 + }, + { + "start": 10563.02, + "end": 10564.48, + "probability": 0.9536 + }, + { + "start": 10565.12, + "end": 10566.8, + "probability": 0.9946 + }, + { + "start": 10567.52, + "end": 10568.66, + "probability": 0.5601 + }, + { + "start": 10569.78, + "end": 10572.16, + "probability": 0.9559 + }, + { + "start": 10572.92, + "end": 10577.14, + "probability": 0.9642 + }, + { + "start": 10577.94, + "end": 10578.2, + "probability": 0.6072 + }, + { + "start": 10578.28, + "end": 10580.04, + "probability": 0.855 + }, + { + "start": 10580.04, + "end": 10581.64, + "probability": 0.989 + }, + { + "start": 10582.04, + "end": 10582.96, + "probability": 0.9022 + }, + { + "start": 10583.42, + "end": 10584.64, + "probability": 0.9076 + }, + { + "start": 10585.35, + "end": 10586.36, + "probability": 0.5047 + }, + { + "start": 10586.56, + "end": 10587.1, + "probability": 0.3275 + }, + { + "start": 10588.5, + "end": 10588.78, + "probability": 0.0699 + }, + { + "start": 10588.78, + "end": 10588.78, + "probability": 0.0401 + }, + { + "start": 10588.78, + "end": 10590.72, + "probability": 0.644 + }, + { + "start": 10591.32, + "end": 10592.22, + "probability": 0.0556 + }, + { + "start": 10592.22, + "end": 10593.1, + "probability": 0.7 + }, + { + "start": 10594.04, + "end": 10595.96, + "probability": 0.7026 + }, + { + "start": 10596.3, + "end": 10598.26, + "probability": 0.9883 + }, + { + "start": 10598.58, + "end": 10601.95, + "probability": 0.9949 + }, + { + "start": 10602.2, + "end": 10603.98, + "probability": 0.0118 + }, + { + "start": 10605.76, + "end": 10607.9, + "probability": 0.2089 + }, + { + "start": 10608.06, + "end": 10610.02, + "probability": 0.0427 + }, + { + "start": 10610.02, + "end": 10610.92, + "probability": 0.4728 + }, + { + "start": 10611.32, + "end": 10611.32, + "probability": 0.0986 + }, + { + "start": 10611.32, + "end": 10614.62, + "probability": 0.6475 + }, + { + "start": 10615.18, + "end": 10615.7, + "probability": 0.7233 + }, + { + "start": 10618.33, + "end": 10618.57, + "probability": 0.1011 + }, + { + "start": 10618.72, + "end": 10620.16, + "probability": 0.3711 + }, + { + "start": 10620.86, + "end": 10620.86, + "probability": 0.0496 + }, + { + "start": 10620.86, + "end": 10622.02, + "probability": 0.5013 + }, + { + "start": 10623.46, + "end": 10624.94, + "probability": 0.6798 + }, + { + "start": 10625.54, + "end": 10625.54, + "probability": 0.092 + }, + { + "start": 10625.58, + "end": 10625.68, + "probability": 0.3538 + }, + { + "start": 10626.68, + "end": 10628.8, + "probability": 0.869 + }, + { + "start": 10629.12, + "end": 10630.18, + "probability": 0.9932 + }, + { + "start": 10630.36, + "end": 10631.88, + "probability": 0.92 + }, + { + "start": 10632.82, + "end": 10637.76, + "probability": 0.9533 + }, + { + "start": 10637.88, + "end": 10638.4, + "probability": 0.1398 + }, + { + "start": 10638.4, + "end": 10638.46, + "probability": 0.1292 + }, + { + "start": 10638.46, + "end": 10638.54, + "probability": 0.006 + }, + { + "start": 10639.26, + "end": 10640.18, + "probability": 0.0445 + }, + { + "start": 10640.44, + "end": 10643.22, + "probability": 0.3971 + }, + { + "start": 10644.32, + "end": 10651.32, + "probability": 0.9834 + }, + { + "start": 10651.76, + "end": 10654.94, + "probability": 0.9048 + }, + { + "start": 10655.32, + "end": 10661.28, + "probability": 0.9727 + }, + { + "start": 10661.28, + "end": 10665.03, + "probability": 0.9512 + }, + { + "start": 10665.88, + "end": 10667.54, + "probability": 0.8912 + }, + { + "start": 10667.78, + "end": 10671.4, + "probability": 0.9495 + }, + { + "start": 10671.48, + "end": 10671.62, + "probability": 0.5302 + }, + { + "start": 10671.72, + "end": 10674.74, + "probability": 0.8182 + }, + { + "start": 10674.94, + "end": 10676.46, + "probability": 0.8979 + }, + { + "start": 10676.62, + "end": 10676.98, + "probability": 0.2277 + }, + { + "start": 10677.2, + "end": 10679.46, + "probability": 0.797 + }, + { + "start": 10679.6, + "end": 10682.34, + "probability": 0.8736 + }, + { + "start": 10682.56, + "end": 10683.91, + "probability": 0.8716 + }, + { + "start": 10684.22, + "end": 10685.3, + "probability": 0.9607 + }, + { + "start": 10685.36, + "end": 10686.84, + "probability": 0.9807 + }, + { + "start": 10687.24, + "end": 10687.84, + "probability": 0.0715 + }, + { + "start": 10699.66, + "end": 10701.14, + "probability": 0.7622 + }, + { + "start": 10701.14, + "end": 10701.14, + "probability": 0.708 + }, + { + "start": 10702.96, + "end": 10704.54, + "probability": 0.0487 + }, + { + "start": 10704.76, + "end": 10706.8, + "probability": 0.0585 + }, + { + "start": 10706.8, + "end": 10708.74, + "probability": 0.0815 + }, + { + "start": 10709.54, + "end": 10710.7, + "probability": 0.0483 + }, + { + "start": 10711.0, + "end": 10711.14, + "probability": 0.0178 + }, + { + "start": 10711.14, + "end": 10711.14, + "probability": 0.1242 + }, + { + "start": 10711.14, + "end": 10713.52, + "probability": 0.8378 + }, + { + "start": 10714.08, + "end": 10715.06, + "probability": 0.9697 + }, + { + "start": 10716.06, + "end": 10718.96, + "probability": 0.8912 + }, + { + "start": 10719.08, + "end": 10724.2, + "probability": 0.4537 + }, + { + "start": 10724.72, + "end": 10725.83, + "probability": 0.9868 + }, + { + "start": 10725.88, + "end": 10727.28, + "probability": 0.9767 + }, + { + "start": 10727.7, + "end": 10729.64, + "probability": 0.8926 + }, + { + "start": 10730.26, + "end": 10734.58, + "probability": 0.9548 + }, + { + "start": 10735.42, + "end": 10737.98, + "probability": 0.8515 + }, + { + "start": 10738.36, + "end": 10739.74, + "probability": 0.84 + }, + { + "start": 10739.8, + "end": 10740.06, + "probability": 0.4138 + }, + { + "start": 10740.16, + "end": 10744.12, + "probability": 0.9004 + }, + { + "start": 10744.36, + "end": 10746.4, + "probability": 0.998 + }, + { + "start": 10746.5, + "end": 10750.86, + "probability": 0.995 + }, + { + "start": 10750.86, + "end": 10754.6, + "probability": 0.919 + }, + { + "start": 10755.21, + "end": 10755.28, + "probability": 0.1303 + }, + { + "start": 10755.4, + "end": 10760.64, + "probability": 0.7725 + }, + { + "start": 10761.28, + "end": 10762.06, + "probability": 0.7122 + }, + { + "start": 10762.18, + "end": 10768.0, + "probability": 0.5658 + }, + { + "start": 10768.04, + "end": 10768.7, + "probability": 0.8143 + }, + { + "start": 10771.14, + "end": 10775.14, + "probability": 0.3428 + }, + { + "start": 10775.74, + "end": 10777.28, + "probability": 0.5098 + }, + { + "start": 10777.85, + "end": 10780.44, + "probability": 0.2038 + }, + { + "start": 10780.7, + "end": 10781.04, + "probability": 0.0185 + }, + { + "start": 10781.08, + "end": 10782.84, + "probability": 0.2227 + }, + { + "start": 10783.1, + "end": 10783.48, + "probability": 0.0886 + }, + { + "start": 10783.72, + "end": 10785.33, + "probability": 0.449 + }, + { + "start": 10788.2, + "end": 10792.8, + "probability": 0.1526 + }, + { + "start": 10793.02, + "end": 10796.12, + "probability": 0.6712 + }, + { + "start": 10796.12, + "end": 10796.3, + "probability": 0.3837 + }, + { + "start": 10797.6, + "end": 10799.04, + "probability": 0.5736 + }, + { + "start": 10799.32, + "end": 10800.38, + "probability": 0.8279 + }, + { + "start": 10800.56, + "end": 10800.56, + "probability": 0.5407 + }, + { + "start": 10800.56, + "end": 10803.29, + "probability": 0.0802 + }, + { + "start": 10803.6, + "end": 10806.9, + "probability": 0.1331 + }, + { + "start": 10807.0, + "end": 10807.68, + "probability": 0.0493 + }, + { + "start": 10807.82, + "end": 10808.62, + "probability": 0.2208 + }, + { + "start": 10808.84, + "end": 10809.1, + "probability": 0.2336 + }, + { + "start": 10810.23, + "end": 10812.51, + "probability": 0.4582 + }, + { + "start": 10812.76, + "end": 10814.3, + "probability": 0.0424 + }, + { + "start": 10815.38, + "end": 10816.58, + "probability": 0.5973 + }, + { + "start": 10816.98, + "end": 10818.4, + "probability": 0.0217 + }, + { + "start": 10819.18, + "end": 10820.64, + "probability": 0.2896 + }, + { + "start": 10821.1, + "end": 10821.92, + "probability": 0.7613 + }, + { + "start": 10821.96, + "end": 10824.39, + "probability": 0.6536 + }, + { + "start": 10824.4, + "end": 10824.8, + "probability": 0.9081 + }, + { + "start": 10826.36, + "end": 10828.3, + "probability": 0.879 + }, + { + "start": 10828.44, + "end": 10832.78, + "probability": 0.5624 + }, + { + "start": 10833.36, + "end": 10839.08, + "probability": 0.6298 + }, + { + "start": 10839.1, + "end": 10840.5, + "probability": 0.6159 + }, + { + "start": 10841.08, + "end": 10846.0, + "probability": 0.985 + }, + { + "start": 10846.52, + "end": 10850.64, + "probability": 0.9419 + }, + { + "start": 10850.88, + "end": 10852.56, + "probability": 0.1215 + }, + { + "start": 10853.49, + "end": 10856.06, + "probability": 0.8354 + }, + { + "start": 10856.88, + "end": 10860.18, + "probability": 0.1892 + }, + { + "start": 10860.38, + "end": 10860.82, + "probability": 0.4057 + }, + { + "start": 10860.84, + "end": 10861.7, + "probability": 0.1058 + }, + { + "start": 10863.58, + "end": 10864.14, + "probability": 0.6468 + }, + { + "start": 10864.22, + "end": 10865.16, + "probability": 0.9688 + }, + { + "start": 10865.92, + "end": 10866.46, + "probability": 0.9509 + }, + { + "start": 10866.52, + "end": 10871.38, + "probability": 0.9859 + }, + { + "start": 10871.52, + "end": 10873.48, + "probability": 0.9565 + }, + { + "start": 10873.94, + "end": 10875.08, + "probability": 0.9039 + }, + { + "start": 10876.32, + "end": 10878.04, + "probability": 0.1212 + }, + { + "start": 10878.92, + "end": 10879.5, + "probability": 0.7382 + }, + { + "start": 10880.04, + "end": 10882.1, + "probability": 0.451 + }, + { + "start": 10882.76, + "end": 10883.2, + "probability": 0.846 + }, + { + "start": 10883.98, + "end": 10885.22, + "probability": 0.2186 + }, + { + "start": 10885.24, + "end": 10888.3, + "probability": 0.9075 + }, + { + "start": 10888.4, + "end": 10888.62, + "probability": 0.613 + }, + { + "start": 10889.08, + "end": 10890.08, + "probability": 0.1898 + }, + { + "start": 10890.08, + "end": 10893.64, + "probability": 0.6959 + }, + { + "start": 10894.96, + "end": 10895.86, + "probability": 0.1616 + }, + { + "start": 10896.74, + "end": 10897.22, + "probability": 0.3341 + }, + { + "start": 10897.22, + "end": 10897.6, + "probability": 0.172 + }, + { + "start": 10897.76, + "end": 10900.34, + "probability": 0.7385 + }, + { + "start": 10900.4, + "end": 10903.2, + "probability": 0.9841 + }, + { + "start": 10903.72, + "end": 10904.34, + "probability": 0.8538 + }, + { + "start": 10904.64, + "end": 10905.46, + "probability": 0.9583 + }, + { + "start": 10905.52, + "end": 10907.62, + "probability": 0.9629 + }, + { + "start": 10907.72, + "end": 10908.3, + "probability": 0.9133 + }, + { + "start": 10909.36, + "end": 10911.06, + "probability": 0.988 + }, + { + "start": 10911.56, + "end": 10911.92, + "probability": 0.7433 + }, + { + "start": 10912.98, + "end": 10916.52, + "probability": 0.9711 + }, + { + "start": 10916.62, + "end": 10917.46, + "probability": 0.917 + }, + { + "start": 10917.72, + "end": 10924.34, + "probability": 0.9949 + }, + { + "start": 10924.5, + "end": 10927.82, + "probability": 0.9895 + }, + { + "start": 10928.56, + "end": 10931.84, + "probability": 0.999 + }, + { + "start": 10932.0, + "end": 10933.74, + "probability": 0.7052 + }, + { + "start": 10934.7, + "end": 10935.38, + "probability": 0.712 + }, + { + "start": 10936.42, + "end": 10937.26, + "probability": 0.8266 + }, + { + "start": 10937.48, + "end": 10938.46, + "probability": 0.9883 + }, + { + "start": 10938.54, + "end": 10941.34, + "probability": 0.9891 + }, + { + "start": 10941.6, + "end": 10942.66, + "probability": 0.9858 + }, + { + "start": 10942.76, + "end": 10944.06, + "probability": 0.8594 + }, + { + "start": 10944.98, + "end": 10947.84, + "probability": 0.9761 + }, + { + "start": 10947.92, + "end": 10949.2, + "probability": 0.9739 + }, + { + "start": 10949.26, + "end": 10954.84, + "probability": 0.9846 + }, + { + "start": 10955.94, + "end": 10960.08, + "probability": 0.9946 + }, + { + "start": 10960.48, + "end": 10963.56, + "probability": 0.983 + }, + { + "start": 10963.74, + "end": 10963.94, + "probability": 0.851 + }, + { + "start": 10964.08, + "end": 10967.54, + "probability": 0.9616 + }, + { + "start": 10968.24, + "end": 10972.2, + "probability": 0.8609 + }, + { + "start": 10972.2, + "end": 10976.06, + "probability": 0.8767 + }, + { + "start": 10976.4, + "end": 10980.04, + "probability": 0.8868 + }, + { + "start": 10980.84, + "end": 10984.8, + "probability": 0.9952 + }, + { + "start": 10985.94, + "end": 10988.68, + "probability": 0.8734 + }, + { + "start": 10988.68, + "end": 10990.94, + "probability": 0.9955 + }, + { + "start": 10991.04, + "end": 10992.19, + "probability": 0.9052 + }, + { + "start": 10993.08, + "end": 10995.96, + "probability": 0.9936 + }, + { + "start": 10995.96, + "end": 10999.0, + "probability": 0.9662 + }, + { + "start": 10999.12, + "end": 11000.48, + "probability": 0.7781 + }, + { + "start": 11001.06, + "end": 11003.52, + "probability": 0.9901 + }, + { + "start": 11003.52, + "end": 11007.42, + "probability": 0.9347 + }, + { + "start": 11008.35, + "end": 11011.7, + "probability": 0.9913 + }, + { + "start": 11011.7, + "end": 11014.68, + "probability": 0.9955 + }, + { + "start": 11015.96, + "end": 11018.58, + "probability": 0.8756 + }, + { + "start": 11018.8, + "end": 11022.08, + "probability": 0.9805 + }, + { + "start": 11023.06, + "end": 11025.54, + "probability": 0.9961 + }, + { + "start": 11026.0, + "end": 11029.03, + "probability": 0.9861 + }, + { + "start": 11029.72, + "end": 11031.74, + "probability": 0.9308 + }, + { + "start": 11031.78, + "end": 11039.06, + "probability": 0.9867 + }, + { + "start": 11039.24, + "end": 11040.02, + "probability": 0.9907 + }, + { + "start": 11040.16, + "end": 11041.04, + "probability": 0.508 + }, + { + "start": 11041.18, + "end": 11048.64, + "probability": 0.9924 + }, + { + "start": 11048.9, + "end": 11049.82, + "probability": 0.8168 + }, + { + "start": 11050.62, + "end": 11054.76, + "probability": 0.9945 + }, + { + "start": 11054.76, + "end": 11058.44, + "probability": 0.9929 + }, + { + "start": 11059.2, + "end": 11060.4, + "probability": 0.7413 + }, + { + "start": 11060.78, + "end": 11063.22, + "probability": 0.8941 + }, + { + "start": 11063.26, + "end": 11064.46, + "probability": 0.9667 + }, + { + "start": 11064.92, + "end": 11067.78, + "probability": 0.9696 + }, + { + "start": 11067.98, + "end": 11070.36, + "probability": 0.9908 + }, + { + "start": 11070.84, + "end": 11071.5, + "probability": 0.9111 + }, + { + "start": 11072.1, + "end": 11075.24, + "probability": 0.987 + }, + { + "start": 11075.98, + "end": 11077.22, + "probability": 0.9072 + }, + { + "start": 11077.3, + "end": 11078.24, + "probability": 0.9585 + }, + { + "start": 11078.36, + "end": 11083.88, + "probability": 0.9744 + }, + { + "start": 11083.94, + "end": 11084.57, + "probability": 0.9098 + }, + { + "start": 11085.39, + "end": 11087.94, + "probability": 0.6543 + }, + { + "start": 11088.66, + "end": 11091.28, + "probability": 0.9928 + }, + { + "start": 11091.88, + "end": 11094.92, + "probability": 0.9681 + }, + { + "start": 11094.92, + "end": 11098.28, + "probability": 0.9972 + }, + { + "start": 11098.76, + "end": 11101.06, + "probability": 0.9856 + }, + { + "start": 11101.66, + "end": 11104.96, + "probability": 0.977 + }, + { + "start": 11105.92, + "end": 11110.3, + "probability": 0.9835 + }, + { + "start": 11110.86, + "end": 11116.08, + "probability": 0.9868 + }, + { + "start": 11116.56, + "end": 11125.92, + "probability": 0.9953 + }, + { + "start": 11126.44, + "end": 11128.52, + "probability": 0.998 + }, + { + "start": 11129.0, + "end": 11131.1, + "probability": 0.09 + }, + { + "start": 11131.1, + "end": 11131.5, + "probability": 0.8505 + }, + { + "start": 11131.76, + "end": 11133.02, + "probability": 0.8318 + }, + { + "start": 11133.42, + "end": 11134.36, + "probability": 0.7091 + }, + { + "start": 11134.42, + "end": 11135.14, + "probability": 0.6067 + }, + { + "start": 11135.22, + "end": 11135.9, + "probability": 0.8438 + }, + { + "start": 11137.48, + "end": 11137.74, + "probability": 0.0106 + }, + { + "start": 11137.74, + "end": 11137.94, + "probability": 0.1133 + }, + { + "start": 11137.94, + "end": 11138.22, + "probability": 0.629 + }, + { + "start": 11138.92, + "end": 11142.46, + "probability": 0.81 + }, + { + "start": 11142.6, + "end": 11147.04, + "probability": 0.9931 + }, + { + "start": 11147.16, + "end": 11148.36, + "probability": 0.9444 + }, + { + "start": 11148.42, + "end": 11152.02, + "probability": 0.9936 + }, + { + "start": 11152.62, + "end": 11157.24, + "probability": 0.9968 + }, + { + "start": 11157.34, + "end": 11160.78, + "probability": 0.9028 + }, + { + "start": 11161.42, + "end": 11165.82, + "probability": 0.9718 + }, + { + "start": 11165.82, + "end": 11168.48, + "probability": 0.9962 + }, + { + "start": 11168.62, + "end": 11168.96, + "probability": 0.9044 + }, + { + "start": 11169.08, + "end": 11170.02, + "probability": 0.9625 + }, + { + "start": 11170.56, + "end": 11174.18, + "probability": 0.8369 + }, + { + "start": 11174.98, + "end": 11178.0, + "probability": 0.6489 + }, + { + "start": 11178.18, + "end": 11178.66, + "probability": 0.8322 + }, + { + "start": 11178.8, + "end": 11181.86, + "probability": 0.9556 + }, + { + "start": 11182.3, + "end": 11183.42, + "probability": 0.0704 + }, + { + "start": 11183.7, + "end": 11184.12, + "probability": 0.5922 + }, + { + "start": 11184.22, + "end": 11185.52, + "probability": 0.9445 + }, + { + "start": 11185.52, + "end": 11187.3, + "probability": 0.7682 + }, + { + "start": 11187.46, + "end": 11190.98, + "probability": 0.9923 + }, + { + "start": 11190.98, + "end": 11193.8, + "probability": 0.8548 + }, + { + "start": 11194.34, + "end": 11195.44, + "probability": 0.9907 + }, + { + "start": 11195.66, + "end": 11200.08, + "probability": 0.9974 + }, + { + "start": 11200.22, + "end": 11200.44, + "probability": 0.4449 + }, + { + "start": 11201.02, + "end": 11202.04, + "probability": 0.7887 + }, + { + "start": 11202.22, + "end": 11203.82, + "probability": 0.8944 + }, + { + "start": 11203.92, + "end": 11205.48, + "probability": 0.8837 + }, + { + "start": 11205.6, + "end": 11206.82, + "probability": 0.9622 + }, + { + "start": 11207.46, + "end": 11208.1, + "probability": 0.9561 + }, + { + "start": 11209.18, + "end": 11211.08, + "probability": 0.9261 + }, + { + "start": 11211.16, + "end": 11217.94, + "probability": 0.9792 + }, + { + "start": 11217.94, + "end": 11222.18, + "probability": 0.9524 + }, + { + "start": 11222.68, + "end": 11225.19, + "probability": 0.9941 + }, + { + "start": 11225.52, + "end": 11229.4, + "probability": 0.9223 + }, + { + "start": 11229.54, + "end": 11233.44, + "probability": 0.9971 + }, + { + "start": 11234.38, + "end": 11234.6, + "probability": 0.0042 + }, + { + "start": 11236.98, + "end": 11236.98, + "probability": 0.066 + }, + { + "start": 11236.98, + "end": 11238.56, + "probability": 0.7285 + }, + { + "start": 11238.74, + "end": 11243.22, + "probability": 0.9946 + }, + { + "start": 11243.86, + "end": 11244.48, + "probability": 0.4414 + }, + { + "start": 11245.2, + "end": 11247.92, + "probability": 0.9922 + }, + { + "start": 11248.58, + "end": 11250.62, + "probability": 0.9641 + }, + { + "start": 11251.14, + "end": 11254.94, + "probability": 0.9925 + }, + { + "start": 11255.56, + "end": 11257.66, + "probability": 0.7994 + }, + { + "start": 11258.04, + "end": 11259.96, + "probability": 0.9933 + }, + { + "start": 11260.44, + "end": 11261.96, + "probability": 0.7368 + }, + { + "start": 11262.18, + "end": 11263.74, + "probability": 0.8945 + }, + { + "start": 11264.28, + "end": 11267.52, + "probability": 0.9309 + }, + { + "start": 11267.52, + "end": 11270.06, + "probability": 0.9758 + }, + { + "start": 11270.9, + "end": 11273.54, + "probability": 0.939 + }, + { + "start": 11273.7, + "end": 11275.56, + "probability": 0.9979 + }, + { + "start": 11276.02, + "end": 11277.86, + "probability": 0.9946 + }, + { + "start": 11278.46, + "end": 11281.24, + "probability": 0.9557 + }, + { + "start": 11281.88, + "end": 11284.06, + "probability": 0.8958 + }, + { + "start": 11284.2, + "end": 11289.86, + "probability": 0.9557 + }, + { + "start": 11289.86, + "end": 11291.52, + "probability": 0.4363 + }, + { + "start": 11291.58, + "end": 11293.0, + "probability": 0.9792 + }, + { + "start": 11293.88, + "end": 11296.94, + "probability": 0.9751 + }, + { + "start": 11297.1, + "end": 11297.76, + "probability": 0.8921 + }, + { + "start": 11297.92, + "end": 11302.68, + "probability": 0.8428 + }, + { + "start": 11302.68, + "end": 11303.8, + "probability": 0.6788 + }, + { + "start": 11304.04, + "end": 11304.54, + "probability": 0.2875 + }, + { + "start": 11304.58, + "end": 11308.02, + "probability": 0.9121 + }, + { + "start": 11308.52, + "end": 11313.4, + "probability": 0.8715 + }, + { + "start": 11313.7, + "end": 11316.42, + "probability": 0.9982 + }, + { + "start": 11316.42, + "end": 11319.54, + "probability": 0.9988 + }, + { + "start": 11320.46, + "end": 11321.88, + "probability": 0.6907 + }, + { + "start": 11322.12, + "end": 11322.94, + "probability": 0.5044 + }, + { + "start": 11323.0, + "end": 11324.8, + "probability": 0.9512 + }, + { + "start": 11324.92, + "end": 11326.1, + "probability": 0.9456 + }, + { + "start": 11326.14, + "end": 11330.64, + "probability": 0.981 + }, + { + "start": 11331.04, + "end": 11336.32, + "probability": 0.8115 + }, + { + "start": 11336.54, + "end": 11337.08, + "probability": 0.3848 + }, + { + "start": 11337.96, + "end": 11341.32, + "probability": 0.901 + }, + { + "start": 11341.86, + "end": 11343.26, + "probability": 0.7723 + }, + { + "start": 11343.8, + "end": 11344.66, + "probability": 0.1008 + }, + { + "start": 11344.74, + "end": 11354.14, + "probability": 0.9889 + }, + { + "start": 11354.2, + "end": 11354.84, + "probability": 0.6597 + }, + { + "start": 11354.92, + "end": 11357.05, + "probability": 0.8753 + }, + { + "start": 11357.48, + "end": 11364.04, + "probability": 0.9899 + }, + { + "start": 11364.9, + "end": 11367.64, + "probability": 0.957 + }, + { + "start": 11367.82, + "end": 11368.18, + "probability": 0.7915 + }, + { + "start": 11368.28, + "end": 11369.56, + "probability": 0.8569 + }, + { + "start": 11369.98, + "end": 11372.52, + "probability": 0.9654 + }, + { + "start": 11373.08, + "end": 11373.78, + "probability": 0.6753 + }, + { + "start": 11374.3, + "end": 11377.92, + "probability": 0.737 + }, + { + "start": 11378.84, + "end": 11384.3, + "probability": 0.8767 + }, + { + "start": 11385.34, + "end": 11388.5, + "probability": 0.9893 + }, + { + "start": 11389.5, + "end": 11390.86, + "probability": 0.9905 + }, + { + "start": 11392.28, + "end": 11396.82, + "probability": 0.8848 + }, + { + "start": 11397.64, + "end": 11398.42, + "probability": 0.7191 + }, + { + "start": 11398.6, + "end": 11403.12, + "probability": 0.9818 + }, + { + "start": 11403.26, + "end": 11403.87, + "probability": 0.8622 + }, + { + "start": 11404.42, + "end": 11405.66, + "probability": 0.8448 + }, + { + "start": 11406.4, + "end": 11408.28, + "probability": 0.5744 + }, + { + "start": 11409.32, + "end": 11410.08, + "probability": 0.7539 + }, + { + "start": 11411.22, + "end": 11414.43, + "probability": 0.9907 + }, + { + "start": 11415.08, + "end": 11418.48, + "probability": 0.979 + }, + { + "start": 11419.46, + "end": 11422.44, + "probability": 0.0281 + }, + { + "start": 11422.5, + "end": 11423.3, + "probability": 0.1508 + }, + { + "start": 11423.32, + "end": 11423.38, + "probability": 0.1457 + }, + { + "start": 11423.38, + "end": 11423.38, + "probability": 0.2566 + }, + { + "start": 11423.38, + "end": 11423.38, + "probability": 0.1292 + }, + { + "start": 11423.38, + "end": 11423.9, + "probability": 0.0353 + }, + { + "start": 11423.96, + "end": 11426.38, + "probability": 0.8137 + }, + { + "start": 11427.72, + "end": 11428.8, + "probability": 0.8975 + }, + { + "start": 11429.0, + "end": 11429.7, + "probability": 0.8173 + }, + { + "start": 11429.84, + "end": 11431.4, + "probability": 0.659 + }, + { + "start": 11431.66, + "end": 11433.3, + "probability": 0.9683 + }, + { + "start": 11433.9, + "end": 11437.44, + "probability": 0.9732 + }, + { + "start": 11443.46, + "end": 11443.84, + "probability": 0.3447 + }, + { + "start": 11444.54, + "end": 11446.84, + "probability": 0.9238 + }, + { + "start": 11455.72, + "end": 11463.52, + "probability": 0.4987 + }, + { + "start": 11463.52, + "end": 11463.88, + "probability": 0.4026 + }, + { + "start": 11464.02, + "end": 11468.32, + "probability": 0.9932 + }, + { + "start": 11468.58, + "end": 11469.97, + "probability": 0.0669 + }, + { + "start": 11477.16, + "end": 11478.04, + "probability": 0.6497 + }, + { + "start": 11480.2, + "end": 11481.26, + "probability": 0.6513 + }, + { + "start": 11482.1, + "end": 11485.84, + "probability": 0.55 + }, + { + "start": 11486.28, + "end": 11486.84, + "probability": 0.769 + }, + { + "start": 11486.9, + "end": 11492.18, + "probability": 0.989 + }, + { + "start": 11492.32, + "end": 11496.0, + "probability": 0.9647 + }, + { + "start": 11497.22, + "end": 11501.0, + "probability": 0.995 + }, + { + "start": 11501.16, + "end": 11503.98, + "probability": 0.9976 + }, + { + "start": 11504.22, + "end": 11506.8, + "probability": 0.9928 + }, + { + "start": 11507.32, + "end": 11508.16, + "probability": 0.8784 + }, + { + "start": 11509.22, + "end": 11511.02, + "probability": 0.8472 + }, + { + "start": 11511.6, + "end": 11513.56, + "probability": 0.6695 + }, + { + "start": 11514.02, + "end": 11516.28, + "probability": 0.6751 + }, + { + "start": 11516.46, + "end": 11517.1, + "probability": 0.3722 + }, + { + "start": 11518.16, + "end": 11519.94, + "probability": 0.9365 + }, + { + "start": 11522.17, + "end": 11524.14, + "probability": 0.9905 + }, + { + "start": 11524.3, + "end": 11528.02, + "probability": 0.9779 + }, + { + "start": 11528.06, + "end": 11529.78, + "probability": 0.9849 + }, + { + "start": 11530.22, + "end": 11534.1, + "probability": 0.9939 + }, + { + "start": 11535.0, + "end": 11537.17, + "probability": 0.9773 + }, + { + "start": 11537.76, + "end": 11538.88, + "probability": 0.8892 + }, + { + "start": 11539.24, + "end": 11540.34, + "probability": 0.9846 + }, + { + "start": 11540.46, + "end": 11542.57, + "probability": 0.9902 + }, + { + "start": 11542.72, + "end": 11543.4, + "probability": 0.9519 + }, + { + "start": 11543.9, + "end": 11546.06, + "probability": 0.981 + }, + { + "start": 11546.46, + "end": 11547.8, + "probability": 0.9559 + }, + { + "start": 11547.92, + "end": 11548.74, + "probability": 0.7159 + }, + { + "start": 11549.18, + "end": 11551.16, + "probability": 0.9943 + }, + { + "start": 11551.34, + "end": 11552.56, + "probability": 0.8877 + }, + { + "start": 11553.06, + "end": 11558.28, + "probability": 0.9939 + }, + { + "start": 11558.7, + "end": 11562.72, + "probability": 0.9985 + }, + { + "start": 11563.52, + "end": 11563.52, + "probability": 0.0746 + }, + { + "start": 11563.56, + "end": 11567.16, + "probability": 0.9548 + }, + { + "start": 11567.74, + "end": 11568.88, + "probability": 0.9069 + }, + { + "start": 11569.14, + "end": 11573.54, + "probability": 0.9928 + }, + { + "start": 11573.62, + "end": 11575.92, + "probability": 0.9074 + }, + { + "start": 11576.26, + "end": 11578.16, + "probability": 0.6418 + }, + { + "start": 11578.68, + "end": 11580.14, + "probability": 0.7198 + }, + { + "start": 11582.86, + "end": 11582.86, + "probability": 0.2551 + }, + { + "start": 11582.86, + "end": 11582.86, + "probability": 0.492 + }, + { + "start": 11582.86, + "end": 11582.86, + "probability": 0.0293 + }, + { + "start": 11582.86, + "end": 11583.42, + "probability": 0.3125 + }, + { + "start": 11584.16, + "end": 11585.1, + "probability": 0.7688 + }, + { + "start": 11585.18, + "end": 11586.74, + "probability": 0.9608 + }, + { + "start": 11586.82, + "end": 11590.6, + "probability": 0.951 + }, + { + "start": 11590.92, + "end": 11593.24, + "probability": 0.9937 + }, + { + "start": 11593.54, + "end": 11593.56, + "probability": 0.0106 + }, + { + "start": 11593.56, + "end": 11593.56, + "probability": 0.2299 + }, + { + "start": 11593.56, + "end": 11598.72, + "probability": 0.9946 + }, + { + "start": 11598.72, + "end": 11599.32, + "probability": 0.0887 + }, + { + "start": 11599.59, + "end": 11599.66, + "probability": 0.1622 + }, + { + "start": 11599.76, + "end": 11603.14, + "probability": 0.8746 + }, + { + "start": 11603.38, + "end": 11605.78, + "probability": 0.9972 + }, + { + "start": 11606.1, + "end": 11609.7, + "probability": 0.9984 + }, + { + "start": 11610.02, + "end": 11610.65, + "probability": 0.8467 + }, + { + "start": 11611.34, + "end": 11614.0, + "probability": 0.9482 + }, + { + "start": 11614.42, + "end": 11616.1, + "probability": 0.9922 + }, + { + "start": 11616.3, + "end": 11616.85, + "probability": 0.6616 + }, + { + "start": 11617.0, + "end": 11621.76, + "probability": 0.9741 + }, + { + "start": 11622.16, + "end": 11626.8, + "probability": 0.9937 + }, + { + "start": 11626.84, + "end": 11629.76, + "probability": 0.9941 + }, + { + "start": 11630.14, + "end": 11631.18, + "probability": 0.9477 + }, + { + "start": 11631.84, + "end": 11633.98, + "probability": 0.971 + }, + { + "start": 11634.5, + "end": 11635.18, + "probability": 0.3587 + }, + { + "start": 11635.52, + "end": 11636.22, + "probability": 0.2771 + }, + { + "start": 11636.24, + "end": 11639.19, + "probability": 0.99 + }, + { + "start": 11639.99, + "end": 11639.99, + "probability": 0.0485 + }, + { + "start": 11639.99, + "end": 11642.53, + "probability": 0.8285 + }, + { + "start": 11642.83, + "end": 11642.83, + "probability": 0.0363 + }, + { + "start": 11642.83, + "end": 11646.71, + "probability": 0.9811 + }, + { + "start": 11646.83, + "end": 11647.17, + "probability": 0.6138 + }, + { + "start": 11647.31, + "end": 11647.93, + "probability": 0.7514 + }, + { + "start": 11648.07, + "end": 11648.29, + "probability": 0.483 + }, + { + "start": 11648.35, + "end": 11655.59, + "probability": 0.9784 + }, + { + "start": 11655.87, + "end": 11656.91, + "probability": 0.7029 + }, + { + "start": 11657.05, + "end": 11658.98, + "probability": 0.9844 + }, + { + "start": 11659.21, + "end": 11660.37, + "probability": 0.9976 + }, + { + "start": 11660.67, + "end": 11663.03, + "probability": 0.7143 + }, + { + "start": 11663.55, + "end": 11664.77, + "probability": 0.9966 + }, + { + "start": 11664.93, + "end": 11667.37, + "probability": 0.9712 + }, + { + "start": 11667.95, + "end": 11668.15, + "probability": 0.7837 + }, + { + "start": 11668.29, + "end": 11672.51, + "probability": 0.946 + }, + { + "start": 11672.51, + "end": 11672.95, + "probability": 0.7379 + }, + { + "start": 11673.09, + "end": 11673.6, + "probability": 0.7569 + }, + { + "start": 11674.21, + "end": 11675.57, + "probability": 0.6947 + }, + { + "start": 11675.99, + "end": 11676.53, + "probability": 0.4408 + }, + { + "start": 11676.53, + "end": 11679.26, + "probability": 0.6313 + }, + { + "start": 11679.61, + "end": 11681.07, + "probability": 0.9417 + }, + { + "start": 11681.35, + "end": 11682.25, + "probability": 0.5768 + }, + { + "start": 11682.69, + "end": 11684.65, + "probability": 0.8357 + }, + { + "start": 11685.03, + "end": 11685.19, + "probability": 0.0572 + }, + { + "start": 11685.19, + "end": 11685.19, + "probability": 0.4956 + }, + { + "start": 11685.19, + "end": 11685.19, + "probability": 0.047 + }, + { + "start": 11685.19, + "end": 11685.19, + "probability": 0.0834 + }, + { + "start": 11685.19, + "end": 11686.71, + "probability": 0.9141 + }, + { + "start": 11687.21, + "end": 11690.61, + "probability": 0.978 + }, + { + "start": 11690.61, + "end": 11691.17, + "probability": 0.4572 + }, + { + "start": 11691.27, + "end": 11693.83, + "probability": 0.8855 + }, + { + "start": 11694.01, + "end": 11696.75, + "probability": 0.4445 + }, + { + "start": 11696.83, + "end": 11699.61, + "probability": 0.8282 + }, + { + "start": 11700.11, + "end": 11701.99, + "probability": 0.5747 + }, + { + "start": 11702.15, + "end": 11704.25, + "probability": 0.6832 + }, + { + "start": 11704.79, + "end": 11705.77, + "probability": 0.3423 + }, + { + "start": 11707.05, + "end": 11707.33, + "probability": 0.153 + }, + { + "start": 11707.33, + "end": 11707.33, + "probability": 0.0793 + }, + { + "start": 11707.33, + "end": 11709.82, + "probability": 0.499 + }, + { + "start": 11710.89, + "end": 11712.83, + "probability": 0.8292 + }, + { + "start": 11713.97, + "end": 11714.33, + "probability": 0.3047 + }, + { + "start": 11717.75, + "end": 11720.75, + "probability": 0.0408 + }, + { + "start": 11721.49, + "end": 11726.33, + "probability": 0.0745 + }, + { + "start": 11727.81, + "end": 11731.05, + "probability": 0.0178 + }, + { + "start": 11731.85, + "end": 11734.57, + "probability": 0.0232 + }, + { + "start": 11735.97, + "end": 11735.99, + "probability": 0.0437 + }, + { + "start": 11735.99, + "end": 11736.87, + "probability": 0.032 + }, + { + "start": 11736.87, + "end": 11738.79, + "probability": 0.1552 + }, + { + "start": 11750.85, + "end": 11754.65, + "probability": 0.1123 + }, + { + "start": 11754.65, + "end": 11755.81, + "probability": 0.1982 + }, + { + "start": 11756.51, + "end": 11756.81, + "probability": 0.2953 + }, + { + "start": 11757.53, + "end": 11758.53, + "probability": 0.0648 + }, + { + "start": 11758.53, + "end": 11758.53, + "probability": 0.3402 + }, + { + "start": 11758.59, + "end": 11759.43, + "probability": 0.4012 + }, + { + "start": 11760.53, + "end": 11761.51, + "probability": 0.5388 + }, + { + "start": 11761.95, + "end": 11762.5, + "probability": 0.0054 + }, + { + "start": 11775.34, + "end": 11780.48, + "probability": 0.0441 + }, + { + "start": 11782.9, + "end": 11784.2, + "probability": 0.0175 + }, + { + "start": 11785.0, + "end": 11785.68, + "probability": 0.0759 + }, + { + "start": 11785.68, + "end": 11785.92, + "probability": 0.0117 + }, + { + "start": 11786.06, + "end": 11786.38, + "probability": 0.0402 + }, + { + "start": 11786.4, + "end": 11786.88, + "probability": 0.3078 + }, + { + "start": 11786.92, + "end": 11787.46, + "probability": 0.4611 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.0, + "end": 11908.0, + "probability": 0.0 + }, + { + "start": 11908.63, + "end": 11908.7, + "probability": 0.0348 + }, + { + "start": 11908.7, + "end": 11910.38, + "probability": 0.0824 + }, + { + "start": 11910.38, + "end": 11910.38, + "probability": 0.0644 + }, + { + "start": 11910.38, + "end": 11910.38, + "probability": 0.346 + }, + { + "start": 11910.38, + "end": 11913.5, + "probability": 0.6102 + }, + { + "start": 11914.42, + "end": 11915.58, + "probability": 0.4155 + }, + { + "start": 11915.7, + "end": 11916.84, + "probability": 0.9135 + }, + { + "start": 11917.06, + "end": 11919.46, + "probability": 0.9724 + }, + { + "start": 11920.4, + "end": 11926.74, + "probability": 0.9977 + }, + { + "start": 11929.48, + "end": 11931.72, + "probability": 0.9656 + }, + { + "start": 11931.76, + "end": 11934.17, + "probability": 0.9496 + }, + { + "start": 11935.7, + "end": 11937.26, + "probability": 0.8574 + }, + { + "start": 11937.4, + "end": 11939.26, + "probability": 0.9702 + }, + { + "start": 11940.56, + "end": 11943.48, + "probability": 0.9913 + }, + { + "start": 11944.24, + "end": 11946.18, + "probability": 0.9471 + }, + { + "start": 11947.0, + "end": 11951.3, + "probability": 0.9688 + }, + { + "start": 11951.64, + "end": 11956.12, + "probability": 0.8732 + }, + { + "start": 11956.64, + "end": 11961.18, + "probability": 0.9951 + }, + { + "start": 11961.92, + "end": 11964.26, + "probability": 0.9983 + }, + { + "start": 11965.32, + "end": 11966.18, + "probability": 0.8194 + }, + { + "start": 11967.36, + "end": 11974.02, + "probability": 0.9908 + }, + { + "start": 11974.74, + "end": 11976.54, + "probability": 0.8339 + }, + { + "start": 11977.2, + "end": 11981.06, + "probability": 0.9267 + }, + { + "start": 11981.7, + "end": 11983.04, + "probability": 0.8109 + }, + { + "start": 11983.8, + "end": 11986.14, + "probability": 0.9816 + }, + { + "start": 11987.0, + "end": 11989.78, + "probability": 0.8799 + }, + { + "start": 11990.92, + "end": 11991.82, + "probability": 0.7155 + }, + { + "start": 11992.44, + "end": 11996.22, + "probability": 0.9638 + }, + { + "start": 11996.62, + "end": 11999.38, + "probability": 0.9768 + }, + { + "start": 12000.6, + "end": 12002.46, + "probability": 0.8543 + }, + { + "start": 12003.2, + "end": 12005.5, + "probability": 0.9924 + }, + { + "start": 12006.28, + "end": 12012.66, + "probability": 0.9786 + }, + { + "start": 12013.48, + "end": 12013.58, + "probability": 0.9609 + }, + { + "start": 12014.18, + "end": 12018.16, + "probability": 0.8683 + }, + { + "start": 12018.7, + "end": 12022.68, + "probability": 0.9955 + }, + { + "start": 12023.3, + "end": 12025.74, + "probability": 0.7908 + }, + { + "start": 12027.22, + "end": 12028.4, + "probability": 0.9433 + }, + { + "start": 12030.82, + "end": 12032.92, + "probability": 0.9976 + }, + { + "start": 12033.5, + "end": 12033.99, + "probability": 0.9521 + }, + { + "start": 12035.44, + "end": 12036.18, + "probability": 0.84 + }, + { + "start": 12037.12, + "end": 12041.2, + "probability": 0.9282 + }, + { + "start": 12042.58, + "end": 12044.12, + "probability": 0.8328 + }, + { + "start": 12044.86, + "end": 12047.5, + "probability": 0.9941 + }, + { + "start": 12048.42, + "end": 12050.48, + "probability": 0.998 + }, + { + "start": 12051.18, + "end": 12053.02, + "probability": 0.9857 + }, + { + "start": 12054.06, + "end": 12058.52, + "probability": 0.8656 + }, + { + "start": 12059.2, + "end": 12061.26, + "probability": 0.9939 + }, + { + "start": 12061.92, + "end": 12065.1, + "probability": 0.9988 + }, + { + "start": 12066.74, + "end": 12068.7, + "probability": 0.9987 + }, + { + "start": 12068.82, + "end": 12071.8, + "probability": 0.9961 + }, + { + "start": 12072.14, + "end": 12074.18, + "probability": 0.8412 + }, + { + "start": 12075.22, + "end": 12079.14, + "probability": 0.9962 + }, + { + "start": 12079.56, + "end": 12080.2, + "probability": 0.9667 + }, + { + "start": 12080.7, + "end": 12081.12, + "probability": 0.9491 + }, + { + "start": 12081.86, + "end": 12082.22, + "probability": 0.9237 + }, + { + "start": 12082.82, + "end": 12085.08, + "probability": 0.8393 + }, + { + "start": 12085.8, + "end": 12085.8, + "probability": 0.141 + }, + { + "start": 12085.8, + "end": 12088.02, + "probability": 0.6374 + }, + { + "start": 12088.04, + "end": 12091.8, + "probability": 0.9766 + }, + { + "start": 12092.7, + "end": 12095.48, + "probability": 0.9885 + }, + { + "start": 12096.04, + "end": 12096.47, + "probability": 0.9619 + }, + { + "start": 12097.58, + "end": 12099.24, + "probability": 0.6243 + }, + { + "start": 12099.64, + "end": 12099.68, + "probability": 0.0129 + }, + { + "start": 12099.89, + "end": 12099.96, + "probability": 0.1463 + }, + { + "start": 12100.14, + "end": 12100.18, + "probability": 0.4147 + }, + { + "start": 12100.18, + "end": 12104.5, + "probability": 0.7749 + }, + { + "start": 12104.76, + "end": 12106.98, + "probability": 0.7285 + }, + { + "start": 12107.76, + "end": 12108.49, + "probability": 0.8401 + }, + { + "start": 12109.44, + "end": 12111.41, + "probability": 0.4309 + }, + { + "start": 12111.74, + "end": 12112.6, + "probability": 0.9143 + }, + { + "start": 12113.04, + "end": 12115.4, + "probability": 0.9901 + }, + { + "start": 12115.7, + "end": 12116.64, + "probability": 0.8118 + }, + { + "start": 12116.7, + "end": 12117.46, + "probability": 0.9723 + }, + { + "start": 12117.76, + "end": 12118.4, + "probability": 0.9836 + }, + { + "start": 12118.44, + "end": 12122.42, + "probability": 0.9895 + }, + { + "start": 12123.42, + "end": 12124.5, + "probability": 0.7151 + }, + { + "start": 12125.12, + "end": 12125.12, + "probability": 0.0133 + }, + { + "start": 12125.12, + "end": 12128.24, + "probability": 0.9834 + }, + { + "start": 12128.24, + "end": 12132.1, + "probability": 0.9824 + }, + { + "start": 12133.14, + "end": 12134.7, + "probability": 0.9318 + }, + { + "start": 12135.52, + "end": 12139.08, + "probability": 0.9434 + }, + { + "start": 12139.42, + "end": 12140.7, + "probability": 0.9889 + }, + { + "start": 12140.82, + "end": 12141.9, + "probability": 0.9048 + }, + { + "start": 12142.34, + "end": 12143.12, + "probability": 0.5029 + }, + { + "start": 12145.02, + "end": 12146.82, + "probability": 0.9923 + }, + { + "start": 12147.5, + "end": 12148.38, + "probability": 0.8696 + }, + { + "start": 12148.96, + "end": 12154.48, + "probability": 0.9899 + }, + { + "start": 12155.74, + "end": 12157.41, + "probability": 0.9897 + }, + { + "start": 12159.18, + "end": 12159.44, + "probability": 0.9563 + }, + { + "start": 12160.02, + "end": 12162.96, + "probability": 0.9789 + }, + { + "start": 12163.98, + "end": 12169.54, + "probability": 0.9611 + }, + { + "start": 12170.32, + "end": 12172.08, + "probability": 0.9087 + }, + { + "start": 12173.14, + "end": 12175.52, + "probability": 0.9958 + }, + { + "start": 12175.84, + "end": 12178.02, + "probability": 0.9871 + }, + { + "start": 12178.64, + "end": 12183.16, + "probability": 0.9978 + }, + { + "start": 12183.16, + "end": 12187.02, + "probability": 0.9989 + }, + { + "start": 12188.3, + "end": 12190.0, + "probability": 0.5739 + }, + { + "start": 12191.1, + "end": 12191.56, + "probability": 0.7898 + }, + { + "start": 12192.12, + "end": 12192.58, + "probability": 0.9665 + }, + { + "start": 12195.6, + "end": 12197.72, + "probability": 0.2332 + }, + { + "start": 12197.82, + "end": 12198.4, + "probability": 0.6465 + }, + { + "start": 12198.94, + "end": 12199.78, + "probability": 0.8761 + }, + { + "start": 12201.2, + "end": 12203.4, + "probability": 0.659 + }, + { + "start": 12204.76, + "end": 12206.32, + "probability": 0.5312 + }, + { + "start": 12207.76, + "end": 12208.84, + "probability": 0.9202 + }, + { + "start": 12208.96, + "end": 12210.24, + "probability": 0.8099 + }, + { + "start": 12210.49, + "end": 12211.48, + "probability": 0.743 + }, + { + "start": 12215.72, + "end": 12216.7, + "probability": 0.5869 + }, + { + "start": 12216.96, + "end": 12217.6, + "probability": 0.2927 + }, + { + "start": 12217.7, + "end": 12217.86, + "probability": 0.0548 + }, + { + "start": 12217.94, + "end": 12218.66, + "probability": 0.7561 + }, + { + "start": 12222.5, + "end": 12223.18, + "probability": 0.0922 + }, + { + "start": 12223.58, + "end": 12229.54, + "probability": 0.6715 + }, + { + "start": 12230.26, + "end": 12231.22, + "probability": 0.3123 + }, + { + "start": 12231.74, + "end": 12232.64, + "probability": 0.9857 + }, + { + "start": 12233.8, + "end": 12234.31, + "probability": 0.7192 + }, + { + "start": 12235.0, + "end": 12237.64, + "probability": 0.6691 + }, + { + "start": 12237.64, + "end": 12238.5, + "probability": 0.6611 + }, + { + "start": 12239.8, + "end": 12240.58, + "probability": 0.8015 + }, + { + "start": 12241.1, + "end": 12245.4, + "probability": 0.81 + }, + { + "start": 12246.1, + "end": 12249.9, + "probability": 0.824 + }, + { + "start": 12250.82, + "end": 12252.14, + "probability": 0.541 + }, + { + "start": 12252.88, + "end": 12253.54, + "probability": 0.9645 + }, + { + "start": 12253.8, + "end": 12256.02, + "probability": 0.7847 + }, + { + "start": 12256.36, + "end": 12256.98, + "probability": 0.6902 + }, + { + "start": 12258.22, + "end": 12259.32, + "probability": 0.9796 + }, + { + "start": 12260.0, + "end": 12262.2, + "probability": 0.9041 + }, + { + "start": 12263.02, + "end": 12264.22, + "probability": 0.9321 + }, + { + "start": 12264.28, + "end": 12269.44, + "probability": 0.9053 + }, + { + "start": 12269.84, + "end": 12271.52, + "probability": 0.9436 + }, + { + "start": 12272.04, + "end": 12274.1, + "probability": 0.9731 + }, + { + "start": 12274.84, + "end": 12274.98, + "probability": 0.946 + }, + { + "start": 12275.64, + "end": 12278.66, + "probability": 0.4477 + }, + { + "start": 12279.42, + "end": 12281.66, + "probability": 0.2455 + }, + { + "start": 12281.82, + "end": 12282.0, + "probability": 0.7695 + }, + { + "start": 12282.08, + "end": 12282.54, + "probability": 0.6896 + }, + { + "start": 12282.58, + "end": 12284.33, + "probability": 0.87 + }, + { + "start": 12284.54, + "end": 12286.82, + "probability": 0.3771 + }, + { + "start": 12286.86, + "end": 12287.16, + "probability": 0.9233 + }, + { + "start": 12287.24, + "end": 12289.08, + "probability": 0.4798 + }, + { + "start": 12289.26, + "end": 12289.72, + "probability": 0.5471 + }, + { + "start": 12290.04, + "end": 12292.68, + "probability": 0.7653 + }, + { + "start": 12293.18, + "end": 12293.82, + "probability": 0.8998 + }, + { + "start": 12293.98, + "end": 12296.94, + "probability": 0.9347 + }, + { + "start": 12297.12, + "end": 12298.08, + "probability": 0.1622 + }, + { + "start": 12298.12, + "end": 12301.94, + "probability": 0.5298 + }, + { + "start": 12302.9, + "end": 12303.66, + "probability": 0.0445 + }, + { + "start": 12303.66, + "end": 12303.66, + "probability": 0.1268 + }, + { + "start": 12303.66, + "end": 12303.66, + "probability": 0.156 + }, + { + "start": 12303.66, + "end": 12303.86, + "probability": 0.3978 + }, + { + "start": 12303.86, + "end": 12306.46, + "probability": 0.6006 + }, + { + "start": 12306.46, + "end": 12306.82, + "probability": 0.8258 + }, + { + "start": 12307.22, + "end": 12308.0, + "probability": 0.1908 + }, + { + "start": 12308.8, + "end": 12309.34, + "probability": 0.4432 + }, + { + "start": 12309.4, + "end": 12310.52, + "probability": 0.6718 + }, + { + "start": 12311.08, + "end": 12312.94, + "probability": 0.9978 + }, + { + "start": 12313.9, + "end": 12317.44, + "probability": 0.8649 + }, + { + "start": 12318.22, + "end": 12322.68, + "probability": 0.9772 + }, + { + "start": 12323.42, + "end": 12325.36, + "probability": 0.757 + }, + { + "start": 12325.53, + "end": 12329.2, + "probability": 0.882 + }, + { + "start": 12330.12, + "end": 12330.26, + "probability": 0.1506 + }, + { + "start": 12330.54, + "end": 12331.36, + "probability": 0.3578 + }, + { + "start": 12331.42, + "end": 12333.76, + "probability": 0.6191 + }, + { + "start": 12334.84, + "end": 12335.72, + "probability": 0.8645 + }, + { + "start": 12336.28, + "end": 12336.48, + "probability": 0.6026 + }, + { + "start": 12338.66, + "end": 12342.48, + "probability": 0.7987 + }, + { + "start": 12343.3, + "end": 12347.92, + "probability": 0.7916 + }, + { + "start": 12351.26, + "end": 12353.94, + "probability": 0.9519 + }, + { + "start": 12355.28, + "end": 12356.58, + "probability": 0.6424 + }, + { + "start": 12356.68, + "end": 12360.59, + "probability": 0.7883 + }, + { + "start": 12362.34, + "end": 12362.66, + "probability": 0.7859 + }, + { + "start": 12363.4, + "end": 12365.78, + "probability": 0.8506 + }, + { + "start": 12366.78, + "end": 12368.68, + "probability": 0.6231 + }, + { + "start": 12369.04, + "end": 12372.72, + "probability": 0.9614 + }, + { + "start": 12373.76, + "end": 12374.72, + "probability": 0.8 + }, + { + "start": 12375.42, + "end": 12376.88, + "probability": 0.9328 + }, + { + "start": 12377.6, + "end": 12379.7, + "probability": 0.7637 + }, + { + "start": 12381.1, + "end": 12382.76, + "probability": 0.3012 + }, + { + "start": 12383.38, + "end": 12384.02, + "probability": 0.3374 + }, + { + "start": 12386.28, + "end": 12387.04, + "probability": 0.0156 + }, + { + "start": 12387.04, + "end": 12387.44, + "probability": 0.399 + }, + { + "start": 12387.44, + "end": 12387.68, + "probability": 0.1026 + }, + { + "start": 12387.8, + "end": 12387.94, + "probability": 0.6597 + }, + { + "start": 12387.94, + "end": 12388.02, + "probability": 0.0235 + }, + { + "start": 12388.02, + "end": 12388.84, + "probability": 0.0339 + }, + { + "start": 12390.92, + "end": 12390.92, + "probability": 0.1958 + }, + { + "start": 12390.92, + "end": 12391.6, + "probability": 0.7952 + }, + { + "start": 12392.54, + "end": 12394.08, + "probability": 0.5411 + }, + { + "start": 12394.08, + "end": 12394.58, + "probability": 0.0886 + }, + { + "start": 12395.94, + "end": 12398.34, + "probability": 0.5821 + }, + { + "start": 12400.34, + "end": 12400.74, + "probability": 0.3703 + }, + { + "start": 12401.8, + "end": 12404.18, + "probability": 0.6108 + }, + { + "start": 12405.56, + "end": 12406.44, + "probability": 0.4929 + }, + { + "start": 12409.12, + "end": 12410.44, + "probability": 0.6057 + }, + { + "start": 12411.74, + "end": 12412.02, + "probability": 0.0654 + }, + { + "start": 12412.02, + "end": 12412.76, + "probability": 0.0937 + }, + { + "start": 12412.76, + "end": 12412.83, + "probability": 0.1005 + }, + { + "start": 12412.98, + "end": 12413.76, + "probability": 0.1542 + }, + { + "start": 12414.26, + "end": 12417.01, + "probability": 0.048 + }, + { + "start": 12418.24, + "end": 12420.09, + "probability": 0.2652 + }, + { + "start": 12421.4, + "end": 12423.32, + "probability": 0.029 + }, + { + "start": 12423.32, + "end": 12423.72, + "probability": 0.0038 + }, + { + "start": 12423.72, + "end": 12424.77, + "probability": 0.0167 + }, + { + "start": 12425.26, + "end": 12426.26, + "probability": 0.0256 + }, + { + "start": 12427.34, + "end": 12431.0, + "probability": 0.1075 + }, + { + "start": 12431.14, + "end": 12431.83, + "probability": 0.2785 + }, + { + "start": 12432.08, + "end": 12434.96, + "probability": 0.0346 + }, + { + "start": 12434.98, + "end": 12435.12, + "probability": 0.0807 + }, + { + "start": 12435.12, + "end": 12437.71, + "probability": 0.4532 + }, + { + "start": 12439.56, + "end": 12439.92, + "probability": 0.0835 + }, + { + "start": 12440.56, + "end": 12440.78, + "probability": 0.3838 + }, + { + "start": 12441.16, + "end": 12442.18, + "probability": 0.0968 + }, + { + "start": 12442.4, + "end": 12442.44, + "probability": 0.2836 + }, + { + "start": 12442.44, + "end": 12442.44, + "probability": 0.3728 + }, + { + "start": 12442.44, + "end": 12442.44, + "probability": 0.0402 + }, + { + "start": 12442.44, + "end": 12444.08, + "probability": 0.194 + }, + { + "start": 12444.24, + "end": 12445.4, + "probability": 0.3392 + }, + { + "start": 12446.86, + "end": 12446.98, + "probability": 0.0107 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.0, + "end": 12447.0, + "probability": 0.0 + }, + { + "start": 12447.48, + "end": 12449.18, + "probability": 0.3792 + }, + { + "start": 12449.42, + "end": 12450.34, + "probability": 0.5817 + }, + { + "start": 12450.4, + "end": 12450.94, + "probability": 0.6981 + }, + { + "start": 12451.04, + "end": 12453.0, + "probability": 0.7554 + }, + { + "start": 12453.78, + "end": 12456.66, + "probability": 0.8147 + }, + { + "start": 12457.18, + "end": 12457.96, + "probability": 0.9775 + }, + { + "start": 12458.54, + "end": 12460.58, + "probability": 0.9207 + }, + { + "start": 12461.74, + "end": 12464.2, + "probability": 0.9801 + }, + { + "start": 12465.2, + "end": 12466.4, + "probability": 0.8179 + }, + { + "start": 12467.84, + "end": 12468.22, + "probability": 0.5287 + }, + { + "start": 12468.26, + "end": 12469.38, + "probability": 0.3181 + }, + { + "start": 12469.5, + "end": 12473.2, + "probability": 0.8589 + }, + { + "start": 12473.38, + "end": 12474.04, + "probability": 0.9683 + }, + { + "start": 12475.18, + "end": 12480.54, + "probability": 0.9117 + }, + { + "start": 12481.9, + "end": 12483.99, + "probability": 0.8942 + }, + { + "start": 12484.36, + "end": 12485.44, + "probability": 0.1725 + }, + { + "start": 12485.56, + "end": 12486.02, + "probability": 0.4034 + }, + { + "start": 12486.92, + "end": 12487.24, + "probability": 0.4861 + }, + { + "start": 12487.56, + "end": 12487.8, + "probability": 0.689 + }, + { + "start": 12488.04, + "end": 12488.14, + "probability": 0.7314 + }, + { + "start": 12488.66, + "end": 12489.38, + "probability": 0.9722 + }, + { + "start": 12489.96, + "end": 12494.74, + "probability": 0.7666 + }, + { + "start": 12495.12, + "end": 12495.12, + "probability": 0.8241 + }, + { + "start": 12495.68, + "end": 12498.58, + "probability": 0.9854 + }, + { + "start": 12499.32, + "end": 12501.36, + "probability": 0.907 + }, + { + "start": 12502.34, + "end": 12502.34, + "probability": 0.0217 + }, + { + "start": 12502.34, + "end": 12502.84, + "probability": 0.4744 + }, + { + "start": 12503.1, + "end": 12503.54, + "probability": 0.4964 + }, + { + "start": 12504.36, + "end": 12505.06, + "probability": 0.9774 + }, + { + "start": 12505.6, + "end": 12507.06, + "probability": 0.99 + }, + { + "start": 12507.18, + "end": 12507.86, + "probability": 0.2226 + }, + { + "start": 12507.86, + "end": 12510.62, + "probability": 0.9863 + }, + { + "start": 12511.66, + "end": 12513.4, + "probability": 0.9749 + }, + { + "start": 12514.38, + "end": 12515.1, + "probability": 0.9865 + }, + { + "start": 12515.3, + "end": 12517.66, + "probability": 0.9726 + }, + { + "start": 12518.12, + "end": 12518.58, + "probability": 0.823 + }, + { + "start": 12518.66, + "end": 12520.21, + "probability": 0.9173 + }, + { + "start": 12521.2, + "end": 12523.96, + "probability": 0.9528 + }, + { + "start": 12524.82, + "end": 12526.2, + "probability": 0.4356 + }, + { + "start": 12527.24, + "end": 12528.34, + "probability": 0.2423 + }, + { + "start": 12528.34, + "end": 12528.76, + "probability": 0.0281 + }, + { + "start": 12528.86, + "end": 12534.5, + "probability": 0.5013 + }, + { + "start": 12535.12, + "end": 12536.36, + "probability": 0.7894 + }, + { + "start": 12536.56, + "end": 12539.7, + "probability": 0.1931 + }, + { + "start": 12539.74, + "end": 12539.96, + "probability": 0.095 + }, + { + "start": 12539.96, + "end": 12540.78, + "probability": 0.2524 + }, + { + "start": 12541.18, + "end": 12542.26, + "probability": 0.6787 + }, + { + "start": 12544.1, + "end": 12545.86, + "probability": 0.7653 + }, + { + "start": 12549.08, + "end": 12550.22, + "probability": 0.751 + }, + { + "start": 12550.42, + "end": 12552.56, + "probability": 0.327 + }, + { + "start": 12552.98, + "end": 12554.34, + "probability": 0.9227 + }, + { + "start": 12554.44, + "end": 12556.82, + "probability": 0.9939 + }, + { + "start": 12556.9, + "end": 12557.64, + "probability": 0.7985 + }, + { + "start": 12558.06, + "end": 12558.64, + "probability": 0.4229 + }, + { + "start": 12559.14, + "end": 12559.4, + "probability": 0.5761 + }, + { + "start": 12559.8, + "end": 12562.5, + "probability": 0.7344 + }, + { + "start": 12563.14, + "end": 12563.6, + "probability": 0.7399 + }, + { + "start": 12563.6, + "end": 12564.19, + "probability": 0.8889 + }, + { + "start": 12564.96, + "end": 12566.78, + "probability": 0.9294 + }, + { + "start": 12567.1, + "end": 12570.02, + "probability": 0.7125 + }, + { + "start": 12570.18, + "end": 12570.76, + "probability": 0.6678 + }, + { + "start": 12571.68, + "end": 12573.26, + "probability": 0.864 + }, + { + "start": 12573.8, + "end": 12575.34, + "probability": 0.8853 + }, + { + "start": 12575.56, + "end": 12576.64, + "probability": 0.9651 + }, + { + "start": 12577.06, + "end": 12578.76, + "probability": 0.7255 + }, + { + "start": 12580.5, + "end": 12581.18, + "probability": 0.0157 + }, + { + "start": 12581.18, + "end": 12581.18, + "probability": 0.0291 + }, + { + "start": 12581.18, + "end": 12581.4, + "probability": 0.0824 + }, + { + "start": 12581.4, + "end": 12582.96, + "probability": 0.3149 + }, + { + "start": 12583.26, + "end": 12583.46, + "probability": 0.5051 + }, + { + "start": 12584.26, + "end": 12584.92, + "probability": 0.9412 + }, + { + "start": 12585.44, + "end": 12586.76, + "probability": 0.921 + }, + { + "start": 12588.3, + "end": 12588.7, + "probability": 0.0529 + }, + { + "start": 12588.7, + "end": 12589.86, + "probability": 0.0258 + }, + { + "start": 12589.86, + "end": 12591.9, + "probability": 0.1009 + }, + { + "start": 12591.96, + "end": 12594.38, + "probability": 0.4001 + }, + { + "start": 12594.4, + "end": 12594.76, + "probability": 0.4843 + }, + { + "start": 12595.32, + "end": 12598.16, + "probability": 0.1537 + }, + { + "start": 12598.16, + "end": 12598.16, + "probability": 0.4605 + }, + { + "start": 12598.23, + "end": 12603.92, + "probability": 0.4287 + }, + { + "start": 12605.42, + "end": 12605.98, + "probability": 0.8447 + }, + { + "start": 12606.5, + "end": 12608.64, + "probability": 0.8955 + }, + { + "start": 12609.2, + "end": 12610.84, + "probability": 0.7345 + }, + { + "start": 12611.32, + "end": 12611.76, + "probability": 0.3742 + }, + { + "start": 12611.92, + "end": 12613.62, + "probability": 0.3736 + }, + { + "start": 12614.02, + "end": 12614.64, + "probability": 0.6657 + }, + { + "start": 12614.66, + "end": 12615.06, + "probability": 0.7004 + }, + { + "start": 12615.1, + "end": 12615.58, + "probability": 0.7936 + }, + { + "start": 12615.8, + "end": 12617.78, + "probability": 0.7157 + }, + { + "start": 12618.48, + "end": 12619.24, + "probability": 0.5607 + }, + { + "start": 12620.0, + "end": 12621.54, + "probability": 0.0328 + }, + { + "start": 12624.02, + "end": 12624.34, + "probability": 0.0667 + }, + { + "start": 12624.34, + "end": 12624.7, + "probability": 0.0533 + }, + { + "start": 12625.06, + "end": 12625.36, + "probability": 0.0364 + }, + { + "start": 12625.76, + "end": 12629.18, + "probability": 0.1299 + }, + { + "start": 12629.18, + "end": 12630.48, + "probability": 0.0794 + }, + { + "start": 12630.48, + "end": 12632.03, + "probability": 0.3243 + }, + { + "start": 12633.3, + "end": 12634.18, + "probability": 0.0458 + }, + { + "start": 12634.66, + "end": 12634.84, + "probability": 0.0826 + }, + { + "start": 12634.84, + "end": 12637.16, + "probability": 0.1258 + }, + { + "start": 12640.94, + "end": 12641.84, + "probability": 0.0234 + }, + { + "start": 12641.88, + "end": 12641.88, + "probability": 0.0218 + }, + { + "start": 12641.88, + "end": 12641.88, + "probability": 0.0148 + }, + { + "start": 12641.88, + "end": 12642.42, + "probability": 0.051 + }, + { + "start": 12642.98, + "end": 12646.04, + "probability": 0.3408 + }, + { + "start": 12647.72, + "end": 12648.02, + "probability": 0.0851 + }, + { + "start": 12649.2, + "end": 12649.87, + "probability": 0.1493 + }, + { + "start": 12651.34, + "end": 12652.28, + "probability": 0.3293 + }, + { + "start": 12652.98, + "end": 12654.24, + "probability": 0.9106 + }, + { + "start": 12654.3, + "end": 12654.3, + "probability": 0.488 + }, + { + "start": 12654.3, + "end": 12656.11, + "probability": 0.2998 + }, + { + "start": 12656.42, + "end": 12657.7, + "probability": 0.8359 + }, + { + "start": 12658.66, + "end": 12659.08, + "probability": 0.0775 + }, + { + "start": 12659.08, + "end": 12663.3, + "probability": 0.9443 + }, + { + "start": 12664.26, + "end": 12666.9, + "probability": 0.7754 + }, + { + "start": 12667.62, + "end": 12669.78, + "probability": 0.8679 + }, + { + "start": 12670.23, + "end": 12671.88, + "probability": 0.2994 + }, + { + "start": 12671.94, + "end": 12672.38, + "probability": 0.3013 + }, + { + "start": 12672.38, + "end": 12672.66, + "probability": 0.1704 + }, + { + "start": 12672.66, + "end": 12675.5, + "probability": 0.4855 + }, + { + "start": 12675.86, + "end": 12676.12, + "probability": 0.6845 + }, + { + "start": 12676.12, + "end": 12676.22, + "probability": 0.4713 + }, + { + "start": 12676.22, + "end": 12676.28, + "probability": 0.0392 + }, + { + "start": 12676.28, + "end": 12677.14, + "probability": 0.7161 + }, + { + "start": 12677.2, + "end": 12678.56, + "probability": 0.1896 + }, + { + "start": 12678.8, + "end": 12680.26, + "probability": 0.5023 + }, + { + "start": 12680.72, + "end": 12681.0, + "probability": 0.0039 + }, + { + "start": 12681.42, + "end": 12681.42, + "probability": 0.033 + }, + { + "start": 12681.42, + "end": 12684.32, + "probability": 0.4755 + }, + { + "start": 12684.32, + "end": 12688.86, + "probability": 0.9067 + }, + { + "start": 12689.3, + "end": 12689.84, + "probability": 0.4582 + }, + { + "start": 12690.04, + "end": 12693.46, + "probability": 0.8186 + }, + { + "start": 12693.92, + "end": 12694.54, + "probability": 0.8942 + }, + { + "start": 12695.56, + "end": 12695.82, + "probability": 0.1776 + }, + { + "start": 12695.92, + "end": 12699.54, + "probability": 0.9769 + }, + { + "start": 12700.16, + "end": 12701.1, + "probability": 0.741 + }, + { + "start": 12701.8, + "end": 12704.82, + "probability": 0.9734 + }, + { + "start": 12705.68, + "end": 12709.48, + "probability": 0.8454 + }, + { + "start": 12710.04, + "end": 12710.74, + "probability": 0.8412 + }, + { + "start": 12711.68, + "end": 12715.14, + "probability": 0.8698 + }, + { + "start": 12715.24, + "end": 12715.92, + "probability": 0.4477 + }, + { + "start": 12716.16, + "end": 12716.74, + "probability": 0.0893 + }, + { + "start": 12716.74, + "end": 12716.84, + "probability": 0.018 + }, + { + "start": 12717.32, + "end": 12718.18, + "probability": 0.0385 + }, + { + "start": 12718.5, + "end": 12718.86, + "probability": 0.3994 + }, + { + "start": 12718.88, + "end": 12720.44, + "probability": 0.3109 + }, + { + "start": 12720.78, + "end": 12721.5, + "probability": 0.8715 + }, + { + "start": 12721.56, + "end": 12722.01, + "probability": 0.5301 + }, + { + "start": 12722.22, + "end": 12723.52, + "probability": 0.8667 + }, + { + "start": 12723.6, + "end": 12723.98, + "probability": 0.231 + }, + { + "start": 12723.98, + "end": 12724.98, + "probability": 0.365 + }, + { + "start": 12726.82, + "end": 12728.84, + "probability": 0.824 + }, + { + "start": 12729.24, + "end": 12731.44, + "probability": 0.5401 + }, + { + "start": 12731.74, + "end": 12735.14, + "probability": 0.78 + }, + { + "start": 12735.24, + "end": 12737.08, + "probability": 0.835 + }, + { + "start": 12737.26, + "end": 12739.64, + "probability": 0.5825 + }, + { + "start": 12740.46, + "end": 12741.5, + "probability": 0.8936 + }, + { + "start": 12742.34, + "end": 12743.78, + "probability": 0.0998 + }, + { + "start": 12744.22, + "end": 12745.16, + "probability": 0.573 + }, + { + "start": 12745.22, + "end": 12745.96, + "probability": 0.3797 + }, + { + "start": 12746.0, + "end": 12746.28, + "probability": 0.474 + }, + { + "start": 12749.04, + "end": 12752.24, + "probability": 0.9873 + }, + { + "start": 12752.34, + "end": 12752.82, + "probability": 0.2022 + }, + { + "start": 12752.82, + "end": 12754.58, + "probability": 0.1634 + }, + { + "start": 12754.58, + "end": 12757.52, + "probability": 0.7909 + }, + { + "start": 12758.92, + "end": 12763.82, + "probability": 0.8226 + }, + { + "start": 12763.82, + "end": 12766.56, + "probability": 0.8329 + }, + { + "start": 12767.1, + "end": 12770.76, + "probability": 0.9897 + }, + { + "start": 12770.76, + "end": 12772.82, + "probability": 0.9791 + }, + { + "start": 12773.48, + "end": 12778.5, + "probability": 0.7554 + }, + { + "start": 12778.5, + "end": 12782.24, + "probability": 0.9669 + }, + { + "start": 12782.26, + "end": 12785.86, + "probability": 0.9989 + }, + { + "start": 12786.56, + "end": 12789.28, + "probability": 0.551 + }, + { + "start": 12789.8, + "end": 12792.4, + "probability": 0.9628 + }, + { + "start": 12793.64, + "end": 12794.86, + "probability": 0.5393 + }, + { + "start": 12795.54, + "end": 12796.94, + "probability": 0.7462 + }, + { + "start": 12797.48, + "end": 12799.46, + "probability": 0.1289 + }, + { + "start": 12799.68, + "end": 12799.88, + "probability": 0.089 + }, + { + "start": 12799.88, + "end": 12800.36, + "probability": 0.4847 + }, + { + "start": 12801.38, + "end": 12808.57, + "probability": 0.386 + }, + { + "start": 12810.0, + "end": 12810.0, + "probability": 0.0733 + }, + { + "start": 12810.0, + "end": 12810.0, + "probability": 0.0405 + }, + { + "start": 12810.0, + "end": 12810.0, + "probability": 0.1344 + }, + { + "start": 12810.0, + "end": 12810.0, + "probability": 0.1229 + }, + { + "start": 12810.0, + "end": 12815.12, + "probability": 0.8403 + }, + { + "start": 12816.38, + "end": 12817.26, + "probability": 0.9027 + }, + { + "start": 12817.92, + "end": 12821.22, + "probability": 0.9377 + }, + { + "start": 12821.22, + "end": 12823.88, + "probability": 0.7496 + }, + { + "start": 12824.72, + "end": 12828.23, + "probability": 0.961 + }, + { + "start": 12828.36, + "end": 12834.26, + "probability": 0.9935 + }, + { + "start": 12835.18, + "end": 12838.26, + "probability": 0.9955 + }, + { + "start": 12839.36, + "end": 12840.4, + "probability": 0.4831 + }, + { + "start": 12841.38, + "end": 12841.52, + "probability": 0.1479 + }, + { + "start": 12841.52, + "end": 12842.42, + "probability": 0.29 + }, + { + "start": 12843.92, + "end": 12844.94, + "probability": 0.5205 + }, + { + "start": 12845.34, + "end": 12847.08, + "probability": 0.7539 + }, + { + "start": 12848.0, + "end": 12848.1, + "probability": 0.7774 + }, + { + "start": 12848.58, + "end": 12850.14, + "probability": 0.7719 + }, + { + "start": 12851.16, + "end": 12856.68, + "probability": 0.9629 + }, + { + "start": 12858.74, + "end": 12862.04, + "probability": 0.8683 + }, + { + "start": 12862.56, + "end": 12863.57, + "probability": 0.3898 + }, + { + "start": 12864.74, + "end": 12868.98, + "probability": 0.4789 + }, + { + "start": 12869.38, + "end": 12872.76, + "probability": 0.8176 + }, + { + "start": 12872.9, + "end": 12874.56, + "probability": 0.9712 + }, + { + "start": 12875.04, + "end": 12876.62, + "probability": 0.7069 + }, + { + "start": 12877.16, + "end": 12877.96, + "probability": 0.5047 + }, + { + "start": 12879.96, + "end": 12882.34, + "probability": 0.6118 + }, + { + "start": 12882.34, + "end": 12884.66, + "probability": 0.7742 + }, + { + "start": 12885.7, + "end": 12887.92, + "probability": 0.7009 + }, + { + "start": 12888.72, + "end": 12891.73, + "probability": 0.9351 + }, + { + "start": 12892.66, + "end": 12894.5, + "probability": 0.9809 + }, + { + "start": 12895.32, + "end": 12896.14, + "probability": 0.9824 + }, + { + "start": 12897.04, + "end": 12898.86, + "probability": 0.9944 + }, + { + "start": 12898.92, + "end": 12901.04, + "probability": 0.9897 + }, + { + "start": 12901.58, + "end": 12902.56, + "probability": 0.9301 + }, + { + "start": 12902.66, + "end": 12903.36, + "probability": 0.4277 + }, + { + "start": 12903.48, + "end": 12907.36, + "probability": 0.6755 + }, + { + "start": 12907.4, + "end": 12914.04, + "probability": 0.9645 + }, + { + "start": 12914.26, + "end": 12914.42, + "probability": 0.6567 + }, + { + "start": 12914.84, + "end": 12916.62, + "probability": 0.9933 + }, + { + "start": 12917.3, + "end": 12920.62, + "probability": 0.9951 + }, + { + "start": 12921.34, + "end": 12925.42, + "probability": 0.9772 + }, + { + "start": 12925.94, + "end": 12929.08, + "probability": 0.9532 + }, + { + "start": 12929.38, + "end": 12931.0, + "probability": 0.8536 + }, + { + "start": 12931.8, + "end": 12934.38, + "probability": 0.9906 + }, + { + "start": 12934.92, + "end": 12935.7, + "probability": 0.9989 + }, + { + "start": 12936.46, + "end": 12938.21, + "probability": 0.9604 + }, + { + "start": 12939.08, + "end": 12939.22, + "probability": 0.9834 + }, + { + "start": 12940.6, + "end": 12942.16, + "probability": 0.8461 + }, + { + "start": 12942.28, + "end": 12945.12, + "probability": 0.7539 + }, + { + "start": 12945.5, + "end": 12946.7, + "probability": 0.9953 + }, + { + "start": 12947.06, + "end": 12952.56, + "probability": 0.7672 + }, + { + "start": 12952.96, + "end": 12953.62, + "probability": 0.8983 + }, + { + "start": 12953.92, + "end": 12955.98, + "probability": 0.5513 + }, + { + "start": 12956.12, + "end": 12956.62, + "probability": 0.5706 + }, + { + "start": 12956.96, + "end": 12959.14, + "probability": 0.9961 + }, + { + "start": 12959.14, + "end": 12962.1, + "probability": 0.9583 + }, + { + "start": 12962.34, + "end": 12964.86, + "probability": 0.9795 + }, + { + "start": 12965.26, + "end": 12967.44, + "probability": 0.9791 + }, + { + "start": 12968.32, + "end": 12972.76, + "probability": 0.9631 + }, + { + "start": 12973.06, + "end": 12973.64, + "probability": 0.3581 + }, + { + "start": 12973.68, + "end": 12974.26, + "probability": 0.8824 + }, + { + "start": 12975.28, + "end": 12978.24, + "probability": 0.9834 + }, + { + "start": 12978.9, + "end": 12980.77, + "probability": 0.6391 + }, + { + "start": 12981.16, + "end": 12984.9, + "probability": 0.9901 + }, + { + "start": 12984.9, + "end": 12989.58, + "probability": 0.9982 + }, + { + "start": 12990.14, + "end": 12990.92, + "probability": 0.6009 + }, + { + "start": 12991.46, + "end": 12992.68, + "probability": 0.5617 + }, + { + "start": 12992.76, + "end": 12992.76, + "probability": 0.3936 + }, + { + "start": 12993.5, + "end": 12994.02, + "probability": 0.9141 + }, + { + "start": 12994.66, + "end": 12995.08, + "probability": 0.7174 + }, + { + "start": 12996.34, + "end": 12999.38, + "probability": 0.8454 + }, + { + "start": 12999.52, + "end": 13000.5, + "probability": 0.9569 + }, + { + "start": 13000.62, + "end": 13001.7, + "probability": 0.2611 + }, + { + "start": 13004.3, + "end": 13004.58, + "probability": 0.1162 + }, + { + "start": 13004.58, + "end": 13004.58, + "probability": 0.0428 + }, + { + "start": 13004.58, + "end": 13004.58, + "probability": 0.2041 + }, + { + "start": 13004.58, + "end": 13004.58, + "probability": 0.0812 + }, + { + "start": 13004.58, + "end": 13007.74, + "probability": 0.6538 + }, + { + "start": 13008.43, + "end": 13009.62, + "probability": 0.484 + }, + { + "start": 13009.96, + "end": 13013.04, + "probability": 0.9882 + }, + { + "start": 13013.44, + "end": 13017.02, + "probability": 0.8948 + }, + { + "start": 13017.94, + "end": 13018.48, + "probability": 0.9141 + }, + { + "start": 13018.64, + "end": 13019.24, + "probability": 0.5958 + }, + { + "start": 13019.56, + "end": 13022.36, + "probability": 0.9984 + }, + { + "start": 13022.76, + "end": 13026.3, + "probability": 0.9648 + }, + { + "start": 13026.56, + "end": 13029.6, + "probability": 0.998 + }, + { + "start": 13029.9, + "end": 13033.22, + "probability": 0.9948 + }, + { + "start": 13033.5, + "end": 13035.5, + "probability": 0.9962 + }, + { + "start": 13036.06, + "end": 13037.0, + "probability": 0.5425 + }, + { + "start": 13038.6, + "end": 13039.12, + "probability": 0.502 + }, + { + "start": 13039.12, + "end": 13041.68, + "probability": 0.5977 + }, + { + "start": 13043.36, + "end": 13046.76, + "probability": 0.3801 + }, + { + "start": 13046.76, + "end": 13049.74, + "probability": 0.7679 + }, + { + "start": 13050.38, + "end": 13052.29, + "probability": 0.5318 + }, + { + "start": 13052.88, + "end": 13054.9, + "probability": 0.9765 + }, + { + "start": 13055.52, + "end": 13058.84, + "probability": 0.8121 + }, + { + "start": 13060.56, + "end": 13060.6, + "probability": 0.4895 + }, + { + "start": 13062.2, + "end": 13062.32, + "probability": 0.1698 + }, + { + "start": 13064.76, + "end": 13068.82, + "probability": 0.0235 + }, + { + "start": 13068.82, + "end": 13071.74, + "probability": 0.0361 + }, + { + "start": 13072.78, + "end": 13075.66, + "probability": 0.0392 + }, + { + "start": 13076.82, + "end": 13078.64, + "probability": 0.038 + }, + { + "start": 13078.64, + "end": 13083.72, + "probability": 0.4467 + }, + { + "start": 13084.67, + "end": 13085.6, + "probability": 0.483 + }, + { + "start": 13085.86, + "end": 13085.86, + "probability": 0.0317 + }, + { + "start": 13085.86, + "end": 13085.86, + "probability": 0.0957 + }, + { + "start": 13085.86, + "end": 13085.86, + "probability": 0.1002 + }, + { + "start": 13085.86, + "end": 13086.52, + "probability": 0.073 + }, + { + "start": 13087.48, + "end": 13090.62, + "probability": 0.5126 + }, + { + "start": 13091.24, + "end": 13092.24, + "probability": 0.8359 + }, + { + "start": 13093.56, + "end": 13095.66, + "probability": 0.7389 + }, + { + "start": 13096.5, + "end": 13096.58, + "probability": 0.0026 + }, + { + "start": 13096.58, + "end": 13098.6, + "probability": 0.7163 + }, + { + "start": 13098.64, + "end": 13098.68, + "probability": 0.0533 + }, + { + "start": 13098.68, + "end": 13099.31, + "probability": 0.6697 + }, + { + "start": 13100.0, + "end": 13101.08, + "probability": 0.5725 + }, + { + "start": 13101.7, + "end": 13103.5, + "probability": 0.5479 + }, + { + "start": 13103.7, + "end": 13104.24, + "probability": 0.8818 + }, + { + "start": 13110.1, + "end": 13111.8, + "probability": 0.709 + }, + { + "start": 13112.64, + "end": 13114.66, + "probability": 0.874 + }, + { + "start": 13114.84, + "end": 13116.18, + "probability": 0.724 + }, + { + "start": 13116.8, + "end": 13120.52, + "probability": 0.9682 + }, + { + "start": 13121.2, + "end": 13125.78, + "probability": 0.9896 + }, + { + "start": 13126.8, + "end": 13129.5, + "probability": 0.5832 + }, + { + "start": 13130.22, + "end": 13132.58, + "probability": 0.8243 + }, + { + "start": 13132.82, + "end": 13133.72, + "probability": 0.8488 + }, + { + "start": 13134.26, + "end": 13138.02, + "probability": 0.9025 + }, + { + "start": 13138.38, + "end": 13140.62, + "probability": 0.9722 + }, + { + "start": 13140.84, + "end": 13141.34, + "probability": 0.5197 + }, + { + "start": 13141.36, + "end": 13143.22, + "probability": 0.9429 + }, + { + "start": 13143.54, + "end": 13145.08, + "probability": 0.9494 + }, + { + "start": 13145.44, + "end": 13148.58, + "probability": 0.9901 + }, + { + "start": 13148.96, + "end": 13152.8, + "probability": 0.9093 + }, + { + "start": 13152.88, + "end": 13155.1, + "probability": 0.9459 + }, + { + "start": 13155.36, + "end": 13159.2, + "probability": 0.7054 + }, + { + "start": 13159.68, + "end": 13161.6, + "probability": 0.8295 + }, + { + "start": 13161.72, + "end": 13162.18, + "probability": 0.7647 + }, + { + "start": 13163.14, + "end": 13163.7, + "probability": 0.6159 + }, + { + "start": 13164.9, + "end": 13166.22, + "probability": 0.7104 + }, + { + "start": 13167.52, + "end": 13169.46, + "probability": 0.8134 + }, + { + "start": 13170.68, + "end": 13171.36, + "probability": 0.0118 + }, + { + "start": 13192.6, + "end": 13195.66, + "probability": 0.5417 + }, + { + "start": 13195.68, + "end": 13196.39, + "probability": 0.4849 + }, + { + "start": 13197.32, + "end": 13199.84, + "probability": 0.7275 + }, + { + "start": 13199.84, + "end": 13201.62, + "probability": 0.8836 + }, + { + "start": 13201.8, + "end": 13202.98, + "probability": 0.5904 + }, + { + "start": 13203.88, + "end": 13205.02, + "probability": 0.7041 + }, + { + "start": 13205.2, + "end": 13205.88, + "probability": 0.8086 + }, + { + "start": 13205.94, + "end": 13207.48, + "probability": 0.7043 + }, + { + "start": 13208.4, + "end": 13212.3, + "probability": 0.975 + }, + { + "start": 13212.3, + "end": 13217.09, + "probability": 0.6894 + }, + { + "start": 13218.32, + "end": 13221.2, + "probability": 0.9658 + }, + { + "start": 13222.36, + "end": 13223.34, + "probability": 0.7073 + }, + { + "start": 13223.46, + "end": 13226.16, + "probability": 0.9495 + }, + { + "start": 13226.16, + "end": 13229.68, + "probability": 0.9885 + }, + { + "start": 13229.7, + "end": 13232.67, + "probability": 0.9166 + }, + { + "start": 13233.44, + "end": 13234.32, + "probability": 0.733 + }, + { + "start": 13234.48, + "end": 13234.89, + "probability": 0.9575 + }, + { + "start": 13235.6, + "end": 13238.4, + "probability": 0.9814 + }, + { + "start": 13238.4, + "end": 13242.06, + "probability": 0.9853 + }, + { + "start": 13245.12, + "end": 13249.0, + "probability": 0.9078 + }, + { + "start": 13249.62, + "end": 13251.2, + "probability": 0.9641 + }, + { + "start": 13251.78, + "end": 13252.92, + "probability": 0.949 + }, + { + "start": 13253.08, + "end": 13255.14, + "probability": 0.9982 + }, + { + "start": 13255.16, + "end": 13257.72, + "probability": 0.9984 + }, + { + "start": 13257.78, + "end": 13262.0, + "probability": 0.9994 + }, + { + "start": 13262.62, + "end": 13263.36, + "probability": 0.7311 + }, + { + "start": 13263.5, + "end": 13264.3, + "probability": 0.5094 + }, + { + "start": 13264.56, + "end": 13266.5, + "probability": 0.9254 + }, + { + "start": 13267.8, + "end": 13270.08, + "probability": 0.9912 + }, + { + "start": 13270.72, + "end": 13273.84, + "probability": 0.995 + }, + { + "start": 13274.5, + "end": 13275.02, + "probability": 0.7414 + }, + { + "start": 13275.12, + "end": 13276.12, + "probability": 0.7545 + }, + { + "start": 13276.18, + "end": 13277.78, + "probability": 0.9975 + }, + { + "start": 13278.34, + "end": 13280.52, + "probability": 0.9753 + }, + { + "start": 13280.54, + "end": 13283.1, + "probability": 0.9089 + }, + { + "start": 13284.52, + "end": 13287.98, + "probability": 0.9841 + }, + { + "start": 13288.16, + "end": 13293.0, + "probability": 0.9955 + }, + { + "start": 13293.02, + "end": 13296.3, + "probability": 0.9976 + }, + { + "start": 13297.26, + "end": 13300.24, + "probability": 0.9968 + }, + { + "start": 13300.48, + "end": 13301.3, + "probability": 0.9619 + }, + { + "start": 13302.92, + "end": 13306.2, + "probability": 0.9892 + }, + { + "start": 13306.2, + "end": 13309.36, + "probability": 0.9862 + }, + { + "start": 13309.98, + "end": 13311.5, + "probability": 0.9927 + }, + { + "start": 13312.16, + "end": 13312.26, + "probability": 0.5966 + }, + { + "start": 13312.84, + "end": 13313.75, + "probability": 0.6808 + }, + { + "start": 13314.74, + "end": 13316.19, + "probability": 0.8286 + }, + { + "start": 13316.9, + "end": 13318.97, + "probability": 0.5713 + }, + { + "start": 13321.02, + "end": 13325.88, + "probability": 0.2831 + }, + { + "start": 13336.66, + "end": 13336.86, + "probability": 0.0194 + }, + { + "start": 13336.94, + "end": 13336.96, + "probability": 0.0495 + }, + { + "start": 13336.96, + "end": 13336.96, + "probability": 0.0446 + }, + { + "start": 13336.96, + "end": 13336.96, + "probability": 0.086 + }, + { + "start": 13336.96, + "end": 13337.82, + "probability": 0.2999 + }, + { + "start": 13338.82, + "end": 13339.42, + "probability": 0.9966 + }, + { + "start": 13340.02, + "end": 13340.54, + "probability": 0.8162 + }, + { + "start": 13347.58, + "end": 13350.76, + "probability": 0.4525 + }, + { + "start": 13352.68, + "end": 13355.4, + "probability": 0.5395 + }, + { + "start": 13355.9, + "end": 13356.53, + "probability": 0.8115 + }, + { + "start": 13359.02, + "end": 13360.32, + "probability": 0.5801 + }, + { + "start": 13361.22, + "end": 13361.9, + "probability": 0.8411 + }, + { + "start": 13364.12, + "end": 13366.28, + "probability": 0.498 + }, + { + "start": 13372.58, + "end": 13374.72, + "probability": 0.9898 + }, + { + "start": 13375.16, + "end": 13377.36, + "probability": 0.7404 + }, + { + "start": 13379.74, + "end": 13381.44, + "probability": 0.5903 + }, + { + "start": 13382.28, + "end": 13384.46, + "probability": 0.3435 + }, + { + "start": 13384.6, + "end": 13384.96, + "probability": 0.8637 + }, + { + "start": 13386.18, + "end": 13387.54, + "probability": 0.687 + }, + { + "start": 13389.0, + "end": 13391.92, + "probability": 0.936 + }, + { + "start": 13393.16, + "end": 13395.84, + "probability": 0.9858 + }, + { + "start": 13395.96, + "end": 13397.66, + "probability": 0.8051 + }, + { + "start": 13397.84, + "end": 13406.24, + "probability": 0.8635 + }, + { + "start": 13407.2, + "end": 13407.88, + "probability": 0.6296 + }, + { + "start": 13408.22, + "end": 13408.88, + "probability": 0.2759 + }, + { + "start": 13409.6, + "end": 13410.58, + "probability": 0.7989 + }, + { + "start": 13410.84, + "end": 13411.4, + "probability": 0.0907 + }, + { + "start": 13411.4, + "end": 13413.44, + "probability": 0.8859 + }, + { + "start": 13413.96, + "end": 13415.22, + "probability": 0.8267 + }, + { + "start": 13415.24, + "end": 13415.56, + "probability": 0.4362 + }, + { + "start": 13415.56, + "end": 13416.68, + "probability": 0.5502 + }, + { + "start": 13416.68, + "end": 13420.16, + "probability": 0.2078 + }, + { + "start": 13426.42, + "end": 13429.14, + "probability": 0.791 + }, + { + "start": 13430.42, + "end": 13431.44, + "probability": 0.8959 + }, + { + "start": 13431.7, + "end": 13433.8, + "probability": 0.9904 + }, + { + "start": 13433.92, + "end": 13435.2, + "probability": 0.9615 + }, + { + "start": 13435.86, + "end": 13440.02, + "probability": 0.9868 + }, + { + "start": 13440.68, + "end": 13443.38, + "probability": 0.9697 + }, + { + "start": 13444.12, + "end": 13447.34, + "probability": 0.923 + }, + { + "start": 13448.16, + "end": 13449.96, + "probability": 0.9886 + }, + { + "start": 13450.96, + "end": 13451.68, + "probability": 0.968 + }, + { + "start": 13451.84, + "end": 13456.32, + "probability": 0.9902 + }, + { + "start": 13456.8, + "end": 13458.22, + "probability": 0.7672 + }, + { + "start": 13458.3, + "end": 13459.0, + "probability": 0.3632 + }, + { + "start": 13459.64, + "end": 13463.0, + "probability": 0.9983 + }, + { + "start": 13464.08, + "end": 13468.08, + "probability": 0.9208 + }, + { + "start": 13468.92, + "end": 13471.04, + "probability": 0.9907 + }, + { + "start": 13471.82, + "end": 13476.6, + "probability": 0.9043 + }, + { + "start": 13477.6, + "end": 13480.02, + "probability": 0.998 + }, + { + "start": 13480.54, + "end": 13482.86, + "probability": 0.9981 + }, + { + "start": 13483.58, + "end": 13484.4, + "probability": 0.829 + }, + { + "start": 13485.24, + "end": 13486.16, + "probability": 0.5992 + }, + { + "start": 13486.8, + "end": 13489.62, + "probability": 0.9575 + }, + { + "start": 13490.44, + "end": 13491.2, + "probability": 0.8969 + }, + { + "start": 13491.84, + "end": 13492.84, + "probability": 0.8551 + }, + { + "start": 13493.4, + "end": 13497.41, + "probability": 0.5505 + }, + { + "start": 13499.64, + "end": 13500.76, + "probability": 0.9312 + }, + { + "start": 13501.36, + "end": 13502.04, + "probability": 0.7979 + }, + { + "start": 13502.12, + "end": 13509.92, + "probability": 0.9851 + }, + { + "start": 13510.94, + "end": 13512.86, + "probability": 0.981 + }, + { + "start": 13514.12, + "end": 13516.4, + "probability": 0.9822 + }, + { + "start": 13517.44, + "end": 13520.88, + "probability": 0.7382 + }, + { + "start": 13521.46, + "end": 13526.6, + "probability": 0.9846 + }, + { + "start": 13527.7, + "end": 13530.4, + "probability": 0.6312 + }, + { + "start": 13530.82, + "end": 13534.78, + "probability": 0.9789 + }, + { + "start": 13534.8, + "end": 13537.54, + "probability": 0.7464 + }, + { + "start": 13538.5, + "end": 13538.96, + "probability": 0.654 + }, + { + "start": 13540.16, + "end": 13540.96, + "probability": 0.6955 + }, + { + "start": 13541.58, + "end": 13546.7, + "probability": 0.9142 + }, + { + "start": 13547.84, + "end": 13551.34, + "probability": 0.9772 + }, + { + "start": 13551.48, + "end": 13552.02, + "probability": 0.8931 + }, + { + "start": 13552.2, + "end": 13552.64, + "probability": 0.8569 + }, + { + "start": 13553.72, + "end": 13555.6, + "probability": 0.9937 + }, + { + "start": 13556.04, + "end": 13557.94, + "probability": 0.903 + }, + { + "start": 13558.52, + "end": 13563.48, + "probability": 0.9985 + }, + { + "start": 13565.52, + "end": 13567.6, + "probability": 0.9301 + }, + { + "start": 13568.12, + "end": 13570.74, + "probability": 0.989 + }, + { + "start": 13571.76, + "end": 13573.3, + "probability": 0.9517 + }, + { + "start": 13574.04, + "end": 13574.46, + "probability": 0.8633 + }, + { + "start": 13575.18, + "end": 13580.84, + "probability": 0.9744 + }, + { + "start": 13581.46, + "end": 13583.22, + "probability": 0.813 + }, + { + "start": 13584.92, + "end": 13585.56, + "probability": 0.7182 + }, + { + "start": 13586.16, + "end": 13587.16, + "probability": 0.6494 + }, + { + "start": 13587.78, + "end": 13589.06, + "probability": 0.7756 + }, + { + "start": 13589.6, + "end": 13592.24, + "probability": 0.9353 + }, + { + "start": 13592.78, + "end": 13595.54, + "probability": 0.9821 + }, + { + "start": 13596.42, + "end": 13597.66, + "probability": 0.9847 + }, + { + "start": 13598.94, + "end": 13603.62, + "probability": 0.9214 + }, + { + "start": 13604.16, + "end": 13605.28, + "probability": 0.9346 + }, + { + "start": 13605.74, + "end": 13606.67, + "probability": 0.9771 + }, + { + "start": 13606.88, + "end": 13607.65, + "probability": 0.9882 + }, + { + "start": 13608.3, + "end": 13610.14, + "probability": 0.841 + }, + { + "start": 13610.68, + "end": 13613.16, + "probability": 0.904 + }, + { + "start": 13614.32, + "end": 13617.36, + "probability": 0.7881 + }, + { + "start": 13618.12, + "end": 13621.96, + "probability": 0.9897 + }, + { + "start": 13622.54, + "end": 13626.5, + "probability": 0.9888 + }, + { + "start": 13627.12, + "end": 13629.74, + "probability": 0.9403 + }, + { + "start": 13630.28, + "end": 13631.74, + "probability": 0.9199 + }, + { + "start": 13632.52, + "end": 13634.64, + "probability": 0.9785 + }, + { + "start": 13635.16, + "end": 13637.0, + "probability": 0.9878 + }, + { + "start": 13637.54, + "end": 13642.14, + "probability": 0.5807 + }, + { + "start": 13642.14, + "end": 13642.28, + "probability": 0.1331 + }, + { + "start": 13642.28, + "end": 13642.28, + "probability": 0.031 + }, + { + "start": 13642.28, + "end": 13642.62, + "probability": 0.5426 + }, + { + "start": 13642.86, + "end": 13645.34, + "probability": 0.8486 + }, + { + "start": 13645.42, + "end": 13645.76, + "probability": 0.1436 + }, + { + "start": 13645.86, + "end": 13645.92, + "probability": 0.7117 + }, + { + "start": 13645.92, + "end": 13646.48, + "probability": 0.7389 + }, + { + "start": 13646.48, + "end": 13646.96, + "probability": 0.7608 + }, + { + "start": 13647.16, + "end": 13649.56, + "probability": 0.8547 + }, + { + "start": 13650.3, + "end": 13653.49, + "probability": 0.5663 + }, + { + "start": 13653.88, + "end": 13654.12, + "probability": 0.1798 + }, + { + "start": 13654.12, + "end": 13655.0, + "probability": 0.053 + }, + { + "start": 13655.34, + "end": 13655.88, + "probability": 0.7497 + }, + { + "start": 13657.14, + "end": 13658.36, + "probability": 0.6352 + }, + { + "start": 13658.54, + "end": 13658.82, + "probability": 0.5777 + }, + { + "start": 13658.82, + "end": 13659.46, + "probability": 0.5493 + }, + { + "start": 13660.08, + "end": 13660.94, + "probability": 0.9813 + }, + { + "start": 13661.48, + "end": 13663.18, + "probability": 0.9185 + }, + { + "start": 13664.48, + "end": 13665.18, + "probability": 0.5884 + }, + { + "start": 13665.84, + "end": 13667.04, + "probability": 0.8047 + }, + { + "start": 13667.18, + "end": 13670.58, + "probability": 0.9635 + }, + { + "start": 13670.7, + "end": 13672.4, + "probability": 0.9535 + }, + { + "start": 13673.2, + "end": 13677.28, + "probability": 0.8602 + }, + { + "start": 13677.88, + "end": 13681.25, + "probability": 0.9794 + }, + { + "start": 13681.92, + "end": 13683.64, + "probability": 0.9081 + }, + { + "start": 13684.4, + "end": 13688.42, + "probability": 0.8608 + }, + { + "start": 13688.86, + "end": 13692.36, + "probability": 0.9469 + }, + { + "start": 13692.88, + "end": 13695.0, + "probability": 0.9412 + }, + { + "start": 13695.62, + "end": 13695.88, + "probability": 0.6022 + }, + { + "start": 13696.4, + "end": 13697.54, + "probability": 0.9294 + }, + { + "start": 13698.08, + "end": 13700.33, + "probability": 0.9951 + }, + { + "start": 13701.04, + "end": 13703.62, + "probability": 0.9922 + }, + { + "start": 13704.58, + "end": 13706.88, + "probability": 0.9622 + }, + { + "start": 13707.4, + "end": 13710.98, + "probability": 0.7383 + }, + { + "start": 13711.54, + "end": 13712.26, + "probability": 0.9612 + }, + { + "start": 13712.4, + "end": 13712.9, + "probability": 0.7026 + }, + { + "start": 13712.9, + "end": 13713.18, + "probability": 0.688 + }, + { + "start": 13713.74, + "end": 13718.6, + "probability": 0.8158 + }, + { + "start": 13718.72, + "end": 13721.44, + "probability": 0.8193 + }, + { + "start": 13721.48, + "end": 13721.86, + "probability": 0.3909 + }, + { + "start": 13721.96, + "end": 13723.9, + "probability": 0.8733 + }, + { + "start": 13724.26, + "end": 13724.38, + "probability": 0.7976 + }, + { + "start": 13729.42, + "end": 13731.36, + "probability": 0.9674 + }, + { + "start": 13731.46, + "end": 13732.62, + "probability": 0.9126 + }, + { + "start": 13745.02, + "end": 13745.02, + "probability": 0.084 + }, + { + "start": 13745.02, + "end": 13747.73, + "probability": 0.6628 + }, + { + "start": 13748.96, + "end": 13749.36, + "probability": 0.9078 + }, + { + "start": 13751.8, + "end": 13753.84, + "probability": 0.7997 + }, + { + "start": 13754.7, + "end": 13758.58, + "probability": 0.9987 + }, + { + "start": 13758.68, + "end": 13762.26, + "probability": 0.9971 + }, + { + "start": 13764.6, + "end": 13768.38, + "probability": 0.9397 + }, + { + "start": 13768.38, + "end": 13773.54, + "probability": 0.9879 + }, + { + "start": 13775.02, + "end": 13775.22, + "probability": 0.3318 + }, + { + "start": 13775.32, + "end": 13775.52, + "probability": 0.8579 + }, + { + "start": 13775.58, + "end": 13778.2, + "probability": 0.9862 + }, + { + "start": 13778.2, + "end": 13780.88, + "probability": 0.9675 + }, + { + "start": 13782.14, + "end": 13789.3, + "probability": 0.9889 + }, + { + "start": 13789.3, + "end": 13795.5, + "probability": 0.9993 + }, + { + "start": 13796.36, + "end": 13797.74, + "probability": 0.9883 + }, + { + "start": 13798.82, + "end": 13799.1, + "probability": 0.4332 + }, + { + "start": 13799.24, + "end": 13799.82, + "probability": 0.9629 + }, + { + "start": 13800.3, + "end": 13803.42, + "probability": 0.9522 + }, + { + "start": 13803.76, + "end": 13807.56, + "probability": 0.9645 + }, + { + "start": 13807.98, + "end": 13810.9, + "probability": 0.97 + }, + { + "start": 13811.34, + "end": 13814.6, + "probability": 0.9667 + }, + { + "start": 13816.02, + "end": 13818.1, + "probability": 0.9941 + }, + { + "start": 13818.98, + "end": 13821.04, + "probability": 0.9884 + }, + { + "start": 13822.1, + "end": 13822.94, + "probability": 0.8462 + }, + { + "start": 13823.02, + "end": 13824.14, + "probability": 0.9043 + }, + { + "start": 13824.4, + "end": 13829.8, + "probability": 0.9868 + }, + { + "start": 13830.78, + "end": 13834.94, + "probability": 0.9888 + }, + { + "start": 13835.12, + "end": 13838.82, + "probability": 0.9897 + }, + { + "start": 13839.72, + "end": 13842.54, + "probability": 0.9801 + }, + { + "start": 13842.98, + "end": 13843.54, + "probability": 0.7828 + }, + { + "start": 13845.4, + "end": 13849.52, + "probability": 0.9721 + }, + { + "start": 13850.12, + "end": 13855.0, + "probability": 0.9825 + }, + { + "start": 13855.78, + "end": 13858.7, + "probability": 0.9902 + }, + { + "start": 13858.7, + "end": 13862.3, + "probability": 0.9984 + }, + { + "start": 13863.28, + "end": 13868.6, + "probability": 0.9978 + }, + { + "start": 13868.6, + "end": 13873.38, + "probability": 0.9989 + }, + { + "start": 13873.42, + "end": 13876.26, + "probability": 0.9988 + }, + { + "start": 13876.44, + "end": 13879.22, + "probability": 0.9983 + }, + { + "start": 13880.08, + "end": 13886.92, + "probability": 0.821 + }, + { + "start": 13887.5, + "end": 13891.76, + "probability": 0.9757 + }, + { + "start": 13893.04, + "end": 13898.04, + "probability": 0.9959 + }, + { + "start": 13898.98, + "end": 13900.8, + "probability": 0.7576 + }, + { + "start": 13901.04, + "end": 13904.04, + "probability": 0.9821 + }, + { + "start": 13905.2, + "end": 13907.7, + "probability": 0.984 + }, + { + "start": 13908.32, + "end": 13910.14, + "probability": 0.9436 + }, + { + "start": 13910.66, + "end": 13915.88, + "probability": 0.9975 + }, + { + "start": 13916.62, + "end": 13921.38, + "probability": 0.9967 + }, + { + "start": 13921.38, + "end": 13926.84, + "probability": 0.9984 + }, + { + "start": 13927.5, + "end": 13930.28, + "probability": 0.9972 + }, + { + "start": 13931.0, + "end": 13934.18, + "probability": 0.9847 + }, + { + "start": 13934.18, + "end": 13938.24, + "probability": 0.9984 + }, + { + "start": 13938.88, + "end": 13941.46, + "probability": 0.9927 + }, + { + "start": 13941.9, + "end": 13948.04, + "probability": 0.9866 + }, + { + "start": 13948.46, + "end": 13953.3, + "probability": 0.9878 + }, + { + "start": 13954.3, + "end": 13954.76, + "probability": 0.257 + }, + { + "start": 13954.8, + "end": 13955.28, + "probability": 0.6887 + }, + { + "start": 13956.44, + "end": 13956.66, + "probability": 0.458 + }, + { + "start": 13956.98, + "end": 13957.7, + "probability": 0.895 + }, + { + "start": 13958.08, + "end": 13958.36, + "probability": 0.591 + }, + { + "start": 13958.5, + "end": 13960.14, + "probability": 0.9032 + }, + { + "start": 13960.54, + "end": 13962.26, + "probability": 0.9978 + }, + { + "start": 13962.44, + "end": 13966.08, + "probability": 0.9609 + }, + { + "start": 13967.7, + "end": 13970.14, + "probability": 0.915 + }, + { + "start": 13970.94, + "end": 13974.39, + "probability": 0.9927 + }, + { + "start": 13974.74, + "end": 13981.2, + "probability": 0.9881 + }, + { + "start": 13982.34, + "end": 13985.46, + "probability": 0.9619 + }, + { + "start": 13985.64, + "end": 13987.82, + "probability": 0.9982 + }, + { + "start": 13988.24, + "end": 13989.32, + "probability": 0.7944 + }, + { + "start": 13989.4, + "end": 13990.06, + "probability": 0.9137 + }, + { + "start": 13990.44, + "end": 13993.58, + "probability": 0.9917 + }, + { + "start": 13994.52, + "end": 13996.78, + "probability": 0.9946 + }, + { + "start": 13997.3, + "end": 14001.3, + "probability": 0.9965 + }, + { + "start": 14001.94, + "end": 14002.16, + "probability": 0.6443 + }, + { + "start": 14002.24, + "end": 14004.2, + "probability": 0.989 + }, + { + "start": 14004.42, + "end": 14005.45, + "probability": 0.9745 + }, + { + "start": 14006.86, + "end": 14009.78, + "probability": 0.9567 + }, + { + "start": 14009.86, + "end": 14010.5, + "probability": 0.9618 + }, + { + "start": 14010.76, + "end": 14014.36, + "probability": 0.6719 + }, + { + "start": 14014.36, + "end": 14017.16, + "probability": 0.9985 + }, + { + "start": 14017.28, + "end": 14018.0, + "probability": 0.9564 + }, + { + "start": 14019.26, + "end": 14024.72, + "probability": 0.8829 + }, + { + "start": 14024.78, + "end": 14025.84, + "probability": 0.7874 + }, + { + "start": 14026.38, + "end": 14027.24, + "probability": 0.8431 + }, + { + "start": 14027.86, + "end": 14031.72, + "probability": 0.9988 + }, + { + "start": 14033.04, + "end": 14035.78, + "probability": 0.5041 + }, + { + "start": 14036.2, + "end": 14041.74, + "probability": 0.9933 + }, + { + "start": 14042.72, + "end": 14043.0, + "probability": 0.1102 + }, + { + "start": 14043.74, + "end": 14046.18, + "probability": 0.0303 + }, + { + "start": 14046.18, + "end": 14046.18, + "probability": 0.1508 + }, + { + "start": 14046.18, + "end": 14046.58, + "probability": 0.0322 + }, + { + "start": 14048.02, + "end": 14049.34, + "probability": 0.0369 + }, + { + "start": 14049.68, + "end": 14052.12, + "probability": 0.8171 + }, + { + "start": 14052.26, + "end": 14054.14, + "probability": 0.8672 + }, + { + "start": 14055.28, + "end": 14057.76, + "probability": 0.916 + }, + { + "start": 14058.56, + "end": 14059.52, + "probability": 0.167 + }, + { + "start": 14059.52, + "end": 14061.0, + "probability": 0.5426 + }, + { + "start": 14061.22, + "end": 14061.82, + "probability": 0.6438 + }, + { + "start": 14061.82, + "end": 14063.94, + "probability": 0.8406 + }, + { + "start": 14064.14, + "end": 14069.02, + "probability": 0.978 + }, + { + "start": 14069.18, + "end": 14069.64, + "probability": 0.8995 + }, + { + "start": 14070.0, + "end": 14071.27, + "probability": 0.2755 + }, + { + "start": 14071.9, + "end": 14073.98, + "probability": 0.777 + }, + { + "start": 14074.1, + "end": 14077.34, + "probability": 0.5367 + }, + { + "start": 14077.34, + "end": 14077.53, + "probability": 0.0482 + }, + { + "start": 14078.7, + "end": 14080.04, + "probability": 0.0488 + }, + { + "start": 14080.04, + "end": 14082.16, + "probability": 0.0648 + }, + { + "start": 14082.78, + "end": 14086.96, + "probability": 0.5841 + }, + { + "start": 14086.96, + "end": 14091.54, + "probability": 0.6337 + }, + { + "start": 14091.6, + "end": 14094.1, + "probability": 0.8501 + }, + { + "start": 14094.16, + "end": 14095.0, + "probability": 0.6398 + }, + { + "start": 14095.36, + "end": 14098.62, + "probability": 0.9197 + }, + { + "start": 14102.44, + "end": 14104.88, + "probability": 0.6523 + }, + { + "start": 14104.92, + "end": 14105.64, + "probability": 0.7567 + }, + { + "start": 14106.8, + "end": 14108.94, + "probability": 0.637 + }, + { + "start": 14110.3, + "end": 14114.82, + "probability": 0.9945 + }, + { + "start": 14114.82, + "end": 14119.82, + "probability": 0.969 + }, + { + "start": 14120.82, + "end": 14122.66, + "probability": 0.9832 + }, + { + "start": 14123.32, + "end": 14125.32, + "probability": 0.9841 + }, + { + "start": 14125.88, + "end": 14128.18, + "probability": 0.9845 + }, + { + "start": 14128.92, + "end": 14133.66, + "probability": 0.9885 + }, + { + "start": 14134.24, + "end": 14138.14, + "probability": 0.9838 + }, + { + "start": 14139.3, + "end": 14139.32, + "probability": 0.0591 + }, + { + "start": 14139.32, + "end": 14139.32, + "probability": 0.2614 + }, + { + "start": 14139.32, + "end": 14142.98, + "probability": 0.9818 + }, + { + "start": 14143.58, + "end": 14145.1, + "probability": 0.9852 + }, + { + "start": 14146.5, + "end": 14148.54, + "probability": 0.9556 + }, + { + "start": 14149.3, + "end": 14152.92, + "probability": 0.9958 + }, + { + "start": 14153.46, + "end": 14154.78, + "probability": 0.8976 + }, + { + "start": 14155.34, + "end": 14158.72, + "probability": 0.8835 + }, + { + "start": 14159.4, + "end": 14161.08, + "probability": 0.5981 + }, + { + "start": 14162.68, + "end": 14164.52, + "probability": 0.8522 + }, + { + "start": 14165.28, + "end": 14168.86, + "probability": 0.9912 + }, + { + "start": 14169.34, + "end": 14170.52, + "probability": 0.9043 + }, + { + "start": 14171.1, + "end": 14173.3, + "probability": 0.9967 + }, + { + "start": 14174.56, + "end": 14176.9, + "probability": 0.9976 + }, + { + "start": 14176.9, + "end": 14180.82, + "probability": 0.9705 + }, + { + "start": 14181.62, + "end": 14185.38, + "probability": 0.9727 + }, + { + "start": 14188.02, + "end": 14189.5, + "probability": 0.9734 + }, + { + "start": 14189.66, + "end": 14194.14, + "probability": 0.9805 + }, + { + "start": 14194.74, + "end": 14197.64, + "probability": 0.9973 + }, + { + "start": 14197.64, + "end": 14201.14, + "probability": 0.999 + }, + { + "start": 14202.12, + "end": 14203.34, + "probability": 0.9968 + }, + { + "start": 14204.08, + "end": 14205.84, + "probability": 0.988 + }, + { + "start": 14207.9, + "end": 14211.8, + "probability": 0.8407 + }, + { + "start": 14212.36, + "end": 14218.76, + "probability": 0.9963 + }, + { + "start": 14219.36, + "end": 14221.1, + "probability": 0.7434 + }, + { + "start": 14221.7, + "end": 14224.34, + "probability": 0.9775 + }, + { + "start": 14225.38, + "end": 14226.96, + "probability": 0.9835 + }, + { + "start": 14228.3, + "end": 14231.46, + "probability": 0.986 + }, + { + "start": 14232.22, + "end": 14234.32, + "probability": 0.9358 + }, + { + "start": 14235.74, + "end": 14242.6, + "probability": 0.9868 + }, + { + "start": 14243.86, + "end": 14246.54, + "probability": 0.998 + }, + { + "start": 14247.54, + "end": 14251.7, + "probability": 0.9873 + }, + { + "start": 14252.72, + "end": 14255.7, + "probability": 0.9918 + }, + { + "start": 14255.88, + "end": 14257.24, + "probability": 0.8563 + }, + { + "start": 14257.84, + "end": 14260.86, + "probability": 0.9983 + }, + { + "start": 14261.56, + "end": 14263.64, + "probability": 0.9866 + }, + { + "start": 14264.36, + "end": 14270.16, + "probability": 0.9912 + }, + { + "start": 14270.24, + "end": 14273.98, + "probability": 0.9976 + }, + { + "start": 14275.24, + "end": 14275.84, + "probability": 0.703 + }, + { + "start": 14276.2, + "end": 14276.9, + "probability": 0.712 + }, + { + "start": 14277.54, + "end": 14279.2, + "probability": 0.8413 + }, + { + "start": 14282.32, + "end": 14283.58, + "probability": 0.6846 + }, + { + "start": 14284.84, + "end": 14285.04, + "probability": 0.6616 + }, + { + "start": 14287.36, + "end": 14289.3, + "probability": 0.4861 + }, + { + "start": 14300.38, + "end": 14300.52, + "probability": 0.1689 + }, + { + "start": 14300.52, + "end": 14300.52, + "probability": 0.1142 + }, + { + "start": 14300.52, + "end": 14301.34, + "probability": 0.7791 + }, + { + "start": 14301.97, + "end": 14304.5, + "probability": 0.4975 + }, + { + "start": 14304.78, + "end": 14305.64, + "probability": 0.8705 + }, + { + "start": 14307.92, + "end": 14310.16, + "probability": 0.9172 + }, + { + "start": 14312.76, + "end": 14313.22, + "probability": 0.856 + }, + { + "start": 14315.18, + "end": 14316.02, + "probability": 0.7382 + }, + { + "start": 14316.86, + "end": 14318.7, + "probability": 0.3611 + }, + { + "start": 14327.92, + "end": 14329.5, + "probability": 0.5212 + }, + { + "start": 14339.16, + "end": 14343.36, + "probability": 0.7865 + }, + { + "start": 14344.18, + "end": 14344.2, + "probability": 0.7837 + }, + { + "start": 14345.08, + "end": 14345.6, + "probability": 0.9285 + }, + { + "start": 14347.45, + "end": 14349.7, + "probability": 0.7185 + }, + { + "start": 14351.06, + "end": 14351.46, + "probability": 0.9902 + }, + { + "start": 14354.28, + "end": 14356.9, + "probability": 0.9517 + }, + { + "start": 14357.86, + "end": 14360.14, + "probability": 0.9952 + }, + { + "start": 14361.56, + "end": 14362.1, + "probability": 0.8183 + }, + { + "start": 14363.04, + "end": 14363.5, + "probability": 0.8529 + }, + { + "start": 14364.08, + "end": 14364.28, + "probability": 0.3917 + }, + { + "start": 14364.48, + "end": 14365.9, + "probability": 0.831 + }, + { + "start": 14367.3, + "end": 14370.34, + "probability": 0.9678 + }, + { + "start": 14370.56, + "end": 14374.24, + "probability": 0.9833 + }, + { + "start": 14374.24, + "end": 14377.7, + "probability": 0.9927 + }, + { + "start": 14378.26, + "end": 14378.96, + "probability": 0.7076 + }, + { + "start": 14380.34, + "end": 14383.12, + "probability": 0.951 + }, + { + "start": 14383.58, + "end": 14383.86, + "probability": 0.874 + }, + { + "start": 14384.6, + "end": 14385.02, + "probability": 0.8837 + }, + { + "start": 14386.12, + "end": 14386.36, + "probability": 0.8241 + }, + { + "start": 14387.92, + "end": 14390.6, + "probability": 0.9617 + }, + { + "start": 14391.26, + "end": 14392.76, + "probability": 0.9823 + }, + { + "start": 14393.5, + "end": 14394.98, + "probability": 0.6664 + }, + { + "start": 14395.56, + "end": 14398.43, + "probability": 0.8064 + }, + { + "start": 14399.62, + "end": 14401.4, + "probability": 0.9464 + }, + { + "start": 14403.22, + "end": 14405.12, + "probability": 0.8838 + }, + { + "start": 14406.3, + "end": 14408.32, + "probability": 0.9951 + }, + { + "start": 14408.62, + "end": 14411.69, + "probability": 0.9658 + }, + { + "start": 14412.32, + "end": 14412.42, + "probability": 0.6337 + }, + { + "start": 14413.44, + "end": 14413.82, + "probability": 0.9555 + }, + { + "start": 14414.88, + "end": 14415.78, + "probability": 0.921 + }, + { + "start": 14416.88, + "end": 14419.14, + "probability": 0.8597 + }, + { + "start": 14419.64, + "end": 14420.54, + "probability": 0.9665 + }, + { + "start": 14420.98, + "end": 14421.84, + "probability": 0.9039 + }, + { + "start": 14422.12, + "end": 14423.16, + "probability": 0.7181 + }, + { + "start": 14423.78, + "end": 14424.48, + "probability": 0.65 + }, + { + "start": 14426.94, + "end": 14426.94, + "probability": 0.9126 + }, + { + "start": 14427.56, + "end": 14428.74, + "probability": 0.8299 + }, + { + "start": 14432.18, + "end": 14433.16, + "probability": 0.0808 + }, + { + "start": 14435.54, + "end": 14435.72, + "probability": 0.0328 + }, + { + "start": 14435.72, + "end": 14436.36, + "probability": 0.0231 + }, + { + "start": 14437.84, + "end": 14440.88, + "probability": 0.8662 + }, + { + "start": 14442.32, + "end": 14442.54, + "probability": 0.541 + }, + { + "start": 14443.3, + "end": 14444.58, + "probability": 0.9478 + }, + { + "start": 14446.14, + "end": 14447.92, + "probability": 0.974 + }, + { + "start": 14448.64, + "end": 14451.62, + "probability": 0.9891 + }, + { + "start": 14452.16, + "end": 14453.84, + "probability": 0.9242 + }, + { + "start": 14454.02, + "end": 14455.76, + "probability": 0.7362 + }, + { + "start": 14455.9, + "end": 14458.28, + "probability": 0.9773 + }, + { + "start": 14458.42, + "end": 14459.12, + "probability": 0.7666 + }, + { + "start": 14460.34, + "end": 14463.78, + "probability": 0.8904 + }, + { + "start": 14464.56, + "end": 14466.34, + "probability": 0.9555 + }, + { + "start": 14467.88, + "end": 14468.86, + "probability": 0.9172 + }, + { + "start": 14469.6, + "end": 14470.66, + "probability": 0.9845 + }, + { + "start": 14471.68, + "end": 14472.7, + "probability": 0.7711 + }, + { + "start": 14474.42, + "end": 14474.6, + "probability": 0.3862 + }, + { + "start": 14475.08, + "end": 14475.32, + "probability": 0.4186 + }, + { + "start": 14477.28, + "end": 14480.9, + "probability": 0.9774 + }, + { + "start": 14483.36, + "end": 14485.4, + "probability": 0.999 + }, + { + "start": 14485.64, + "end": 14487.4, + "probability": 0.9992 + }, + { + "start": 14488.14, + "end": 14494.44, + "probability": 0.8954 + }, + { + "start": 14494.52, + "end": 14495.28, + "probability": 0.7687 + }, + { + "start": 14496.2, + "end": 14498.96, + "probability": 0.9839 + }, + { + "start": 14500.34, + "end": 14501.74, + "probability": 0.8573 + }, + { + "start": 14503.0, + "end": 14503.66, + "probability": 0.7872 + }, + { + "start": 14504.6, + "end": 14509.06, + "probability": 0.9883 + }, + { + "start": 14509.28, + "end": 14510.16, + "probability": 0.6775 + }, + { + "start": 14511.04, + "end": 14512.22, + "probability": 0.6895 + }, + { + "start": 14512.42, + "end": 14512.88, + "probability": 0.8286 + }, + { + "start": 14513.34, + "end": 14514.06, + "probability": 0.7099 + }, + { + "start": 14514.62, + "end": 14517.34, + "probability": 0.6421 + }, + { + "start": 14518.46, + "end": 14522.0, + "probability": 0.9878 + }, + { + "start": 14522.78, + "end": 14522.96, + "probability": 0.7325 + }, + { + "start": 14523.82, + "end": 14524.78, + "probability": 0.9806 + }, + { + "start": 14525.96, + "end": 14528.38, + "probability": 0.9836 + }, + { + "start": 14529.38, + "end": 14529.44, + "probability": 0.5638 + }, + { + "start": 14529.54, + "end": 14530.42, + "probability": 0.8178 + }, + { + "start": 14530.48, + "end": 14532.44, + "probability": 0.9935 + }, + { + "start": 14532.78, + "end": 14536.12, + "probability": 0.9911 + }, + { + "start": 14536.2, + "end": 14540.16, + "probability": 0.991 + }, + { + "start": 14540.24, + "end": 14541.16, + "probability": 0.5729 + }, + { + "start": 14541.8, + "end": 14542.88, + "probability": 0.8153 + }, + { + "start": 14543.52, + "end": 14546.48, + "probability": 0.9165 + }, + { + "start": 14547.74, + "end": 14548.38, + "probability": 0.9259 + }, + { + "start": 14548.96, + "end": 14549.66, + "probability": 0.9083 + }, + { + "start": 14550.64, + "end": 14552.16, + "probability": 0.4949 + }, + { + "start": 14554.7, + "end": 14556.66, + "probability": 0.991 + }, + { + "start": 14556.66, + "end": 14559.0, + "probability": 0.9883 + }, + { + "start": 14559.52, + "end": 14563.0, + "probability": 0.9395 + }, + { + "start": 14563.08, + "end": 14565.02, + "probability": 0.895 + }, + { + "start": 14565.54, + "end": 14566.12, + "probability": 0.6552 + }, + { + "start": 14566.34, + "end": 14566.92, + "probability": 0.7925 + }, + { + "start": 14566.98, + "end": 14567.52, + "probability": 0.9161 + }, + { + "start": 14573.28, + "end": 14575.26, + "probability": 0.2294 + }, + { + "start": 14581.68, + "end": 14581.98, + "probability": 0.6754 + }, + { + "start": 14581.98, + "end": 14582.06, + "probability": 0.0819 + }, + { + "start": 14582.06, + "end": 14582.08, + "probability": 0.0344 + }, + { + "start": 14582.08, + "end": 14582.08, + "probability": 0.623 + }, + { + "start": 14582.08, + "end": 14586.02, + "probability": 0.5361 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.0, + "end": 14697.0, + "probability": 0.0 + }, + { + "start": 14697.1, + "end": 14697.2, + "probability": 0.0108 + }, + { + "start": 14697.2, + "end": 14697.68, + "probability": 0.0174 + }, + { + "start": 14697.71, + "end": 14697.94, + "probability": 0.0428 + }, + { + "start": 14697.94, + "end": 14698.18, + "probability": 0.1255 + }, + { + "start": 14698.44, + "end": 14698.44, + "probability": 0.0286 + }, + { + "start": 14698.44, + "end": 14698.44, + "probability": 0.3843 + }, + { + "start": 14698.44, + "end": 14699.99, + "probability": 0.3706 + }, + { + "start": 14700.1, + "end": 14700.84, + "probability": 0.6881 + }, + { + "start": 14701.28, + "end": 14705.6, + "probability": 0.1313 + }, + { + "start": 14710.16, + "end": 14711.9, + "probability": 0.768 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14833.0, + "end": 14833.0, + "probability": 0.0 + }, + { + "start": 14834.52, + "end": 14836.76, + "probability": 0.0541 + }, + { + "start": 14837.44, + "end": 14838.12, + "probability": 0.041 + }, + { + "start": 14838.66, + "end": 14840.48, + "probability": 0.0755 + }, + { + "start": 14840.48, + "end": 14841.28, + "probability": 0.0267 + }, + { + "start": 14843.86, + "end": 14844.86, + "probability": 0.7332 + }, + { + "start": 14855.52, + "end": 14858.28, + "probability": 0.0348 + }, + { + "start": 14860.39, + "end": 14860.78, + "probability": 0.0185 + }, + { + "start": 14860.78, + "end": 14861.77, + "probability": 0.0263 + }, + { + "start": 14862.56, + "end": 14863.12, + "probability": 0.0546 + }, + { + "start": 14864.42, + "end": 14866.18, + "probability": 0.0825 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.0, + "end": 14958.0, + "probability": 0.0 + }, + { + "start": 14958.24, + "end": 14962.08, + "probability": 0.9902 + }, + { + "start": 14963.04, + "end": 14967.7, + "probability": 0.9616 + }, + { + "start": 14968.72, + "end": 14971.64, + "probability": 0.9773 + }, + { + "start": 14972.48, + "end": 14973.84, + "probability": 0.9917 + }, + { + "start": 14974.98, + "end": 14976.2, + "probability": 0.9422 + }, + { + "start": 14976.26, + "end": 14976.7, + "probability": 0.761 + }, + { + "start": 14977.48, + "end": 14980.86, + "probability": 0.9971 + }, + { + "start": 14983.56, + "end": 14986.76, + "probability": 0.9524 + }, + { + "start": 14986.76, + "end": 14989.82, + "probability": 0.9727 + }, + { + "start": 14990.12, + "end": 14992.02, + "probability": 0.9976 + }, + { + "start": 14992.86, + "end": 14994.04, + "probability": 0.9816 + }, + { + "start": 14994.2, + "end": 14995.82, + "probability": 0.9933 + }, + { + "start": 15000.22, + "end": 15001.68, + "probability": 0.7422 + }, + { + "start": 15001.82, + "end": 15002.48, + "probability": 0.6574 + }, + { + "start": 15002.68, + "end": 15003.74, + "probability": 0.9373 + }, + { + "start": 15003.9, + "end": 15004.18, + "probability": 0.7415 + }, + { + "start": 15004.38, + "end": 15006.84, + "probability": 0.9793 + }, + { + "start": 15009.8, + "end": 15010.48, + "probability": 0.9847 + }, + { + "start": 15010.94, + "end": 15011.66, + "probability": 0.9139 + }, + { + "start": 15011.94, + "end": 15013.56, + "probability": 0.8676 + }, + { + "start": 15014.48, + "end": 15018.46, + "probability": 0.7694 + }, + { + "start": 15018.46, + "end": 15019.11, + "probability": 0.6273 + }, + { + "start": 15019.3, + "end": 15021.56, + "probability": 0.9849 + }, + { + "start": 15022.24, + "end": 15025.34, + "probability": 0.9496 + }, + { + "start": 15025.98, + "end": 15029.42, + "probability": 0.8383 + }, + { + "start": 15030.18, + "end": 15032.82, + "probability": 0.6797 + }, + { + "start": 15032.94, + "end": 15033.43, + "probability": 0.9275 + }, + { + "start": 15033.6, + "end": 15035.08, + "probability": 0.7504 + }, + { + "start": 15035.52, + "end": 15036.76, + "probability": 0.9328 + }, + { + "start": 15037.18, + "end": 15040.36, + "probability": 0.7446 + }, + { + "start": 15041.04, + "end": 15042.14, + "probability": 0.9745 + }, + { + "start": 15042.36, + "end": 15042.78, + "probability": 0.8407 + }, + { + "start": 15043.04, + "end": 15043.82, + "probability": 0.7699 + }, + { + "start": 15044.36, + "end": 15045.53, + "probability": 0.8308 + }, + { + "start": 15047.04, + "end": 15047.14, + "probability": 0.3572 + }, + { + "start": 15048.41, + "end": 15049.9, + "probability": 0.7737 + }, + { + "start": 15050.64, + "end": 15051.26, + "probability": 0.8566 + }, + { + "start": 15051.9, + "end": 15056.02, + "probability": 0.9641 + }, + { + "start": 15059.1, + "end": 15060.88, + "probability": 0.4638 + }, + { + "start": 15061.5, + "end": 15064.36, + "probability": 0.6356 + }, + { + "start": 15066.16, + "end": 15067.14, + "probability": 0.7686 + }, + { + "start": 15067.64, + "end": 15068.86, + "probability": 0.5457 + }, + { + "start": 15069.44, + "end": 15069.8, + "probability": 0.5201 + }, + { + "start": 15070.68, + "end": 15071.42, + "probability": 0.9053 + }, + { + "start": 15071.62, + "end": 15073.5, + "probability": 0.9695 + }, + { + "start": 15099.12, + "end": 15099.74, + "probability": 0.3364 + }, + { + "start": 15103.28, + "end": 15105.14, + "probability": 0.9238 + }, + { + "start": 15105.82, + "end": 15107.16, + "probability": 0.802 + }, + { + "start": 15108.32, + "end": 15112.94, + "probability": 0.785 + }, + { + "start": 15114.4, + "end": 15118.96, + "probability": 0.9932 + }, + { + "start": 15119.58, + "end": 15120.84, + "probability": 0.699 + }, + { + "start": 15122.23, + "end": 15125.7, + "probability": 0.9922 + }, + { + "start": 15126.72, + "end": 15128.54, + "probability": 0.9044 + }, + { + "start": 15128.76, + "end": 15129.26, + "probability": 0.9295 + }, + { + "start": 15129.76, + "end": 15130.1, + "probability": 0.9777 + }, + { + "start": 15130.28, + "end": 15130.68, + "probability": 0.908 + }, + { + "start": 15130.88, + "end": 15137.5, + "probability": 0.9777 + }, + { + "start": 15138.72, + "end": 15140.12, + "probability": 0.881 + }, + { + "start": 15140.96, + "end": 15141.46, + "probability": 0.8078 + }, + { + "start": 15143.16, + "end": 15148.94, + "probability": 0.7743 + }, + { + "start": 15150.66, + "end": 15151.58, + "probability": 0.8 + }, + { + "start": 15152.26, + "end": 15155.56, + "probability": 0.9974 + }, + { + "start": 15156.9, + "end": 15162.28, + "probability": 0.9538 + }, + { + "start": 15164.04, + "end": 15167.78, + "probability": 0.9919 + }, + { + "start": 15169.28, + "end": 15174.78, + "probability": 0.9416 + }, + { + "start": 15174.94, + "end": 15180.86, + "probability": 0.9385 + }, + { + "start": 15182.02, + "end": 15185.34, + "probability": 0.9708 + }, + { + "start": 15188.02, + "end": 15189.16, + "probability": 0.8008 + }, + { + "start": 15190.56, + "end": 15192.2, + "probability": 0.9103 + }, + { + "start": 15192.74, + "end": 15194.58, + "probability": 0.8583 + }, + { + "start": 15195.46, + "end": 15195.86, + "probability": 0.6255 + }, + { + "start": 15196.87, + "end": 15201.48, + "probability": 0.9167 + }, + { + "start": 15202.24, + "end": 15203.2, + "probability": 0.8442 + }, + { + "start": 15203.46, + "end": 15203.94, + "probability": 0.7687 + }, + { + "start": 15203.98, + "end": 15204.8, + "probability": 0.461 + }, + { + "start": 15206.56, + "end": 15209.9, + "probability": 0.8602 + }, + { + "start": 15210.02, + "end": 15211.43, + "probability": 0.9588 + }, + { + "start": 15211.6, + "end": 15212.94, + "probability": 0.825 + }, + { + "start": 15230.54, + "end": 15231.44, + "probability": 0.6001 + }, + { + "start": 15232.54, + "end": 15233.72, + "probability": 0.7537 + }, + { + "start": 15235.06, + "end": 15239.26, + "probability": 0.728 + }, + { + "start": 15239.26, + "end": 15242.86, + "probability": 0.6648 + }, + { + "start": 15243.18, + "end": 15247.24, + "probability": 0.714 + }, + { + "start": 15251.24, + "end": 15251.3, + "probability": 0.4095 + }, + { + "start": 15251.32, + "end": 15259.12, + "probability": 0.9894 + }, + { + "start": 15259.22, + "end": 15260.78, + "probability": 0.7636 + }, + { + "start": 15261.64, + "end": 15264.64, + "probability": 0.976 + }, + { + "start": 15264.64, + "end": 15271.6, + "probability": 0.7889 + }, + { + "start": 15271.82, + "end": 15275.4, + "probability": 0.8138 + }, + { + "start": 15275.52, + "end": 15283.9, + "probability": 0.6266 + }, + { + "start": 15284.64, + "end": 15285.8, + "probability": 0.8351 + }, + { + "start": 15286.5, + "end": 15289.52, + "probability": 0.8335 + }, + { + "start": 15291.76, + "end": 15295.74, + "probability": 0.8239 + }, + { + "start": 15296.72, + "end": 15300.14, + "probability": 0.7762 + }, + { + "start": 15301.26, + "end": 15304.52, + "probability": 0.8287 + }, + { + "start": 15305.36, + "end": 15308.02, + "probability": 0.8834 + }, + { + "start": 15308.62, + "end": 15309.92, + "probability": 0.9677 + }, + { + "start": 15310.56, + "end": 15312.04, + "probability": 0.9127 + }, + { + "start": 15313.22, + "end": 15315.78, + "probability": 0.9402 + }, + { + "start": 15316.7, + "end": 15319.9, + "probability": 0.6839 + }, + { + "start": 15320.84, + "end": 15325.06, + "probability": 0.7533 + }, + { + "start": 15326.08, + "end": 15328.06, + "probability": 0.9963 + }, + { + "start": 15328.66, + "end": 15331.8, + "probability": 0.9893 + }, + { + "start": 15332.64, + "end": 15333.44, + "probability": 0.8955 + }, + { + "start": 15333.5, + "end": 15333.94, + "probability": 0.7228 + }, + { + "start": 15334.44, + "end": 15337.46, + "probability": 0.7756 + }, + { + "start": 15338.5, + "end": 15340.78, + "probability": 0.9958 + }, + { + "start": 15341.32, + "end": 15342.72, + "probability": 0.6382 + }, + { + "start": 15343.12, + "end": 15346.52, + "probability": 0.8305 + }, + { + "start": 15347.1, + "end": 15349.12, + "probability": 0.9899 + }, + { + "start": 15349.76, + "end": 15350.18, + "probability": 0.2762 + }, + { + "start": 15351.14, + "end": 15352.98, + "probability": 0.5755 + }, + { + "start": 15353.46, + "end": 15355.08, + "probability": 0.584 + }, + { + "start": 15356.24, + "end": 15358.56, + "probability": 0.8669 + }, + { + "start": 15359.44, + "end": 15362.36, + "probability": 0.7588 + }, + { + "start": 15362.56, + "end": 15366.16, + "probability": 0.8275 + }, + { + "start": 15366.66, + "end": 15369.92, + "probability": 0.9839 + }, + { + "start": 15370.16, + "end": 15373.08, + "probability": 0.9819 + }, + { + "start": 15374.38, + "end": 15374.38, + "probability": 0.143 + }, + { + "start": 15374.38, + "end": 15377.26, + "probability": 0.669 + }, + { + "start": 15377.84, + "end": 15380.18, + "probability": 0.9743 + }, + { + "start": 15380.9, + "end": 15382.08, + "probability": 0.8722 + }, + { + "start": 15382.52, + "end": 15386.0, + "probability": 0.9854 + }, + { + "start": 15386.4, + "end": 15387.8, + "probability": 0.9653 + }, + { + "start": 15388.26, + "end": 15388.68, + "probability": 0.8721 + }, + { + "start": 15388.78, + "end": 15391.02, + "probability": 0.8256 + }, + { + "start": 15391.44, + "end": 15391.96, + "probability": 0.6951 + }, + { + "start": 15392.76, + "end": 15393.7, + "probability": 0.9453 + }, + { + "start": 15393.78, + "end": 15394.38, + "probability": 0.9105 + }, + { + "start": 15394.42, + "end": 15395.88, + "probability": 0.6695 + }, + { + "start": 15395.92, + "end": 15397.4, + "probability": 0.9377 + }, + { + "start": 15397.66, + "end": 15400.54, + "probability": 0.993 + }, + { + "start": 15401.08, + "end": 15403.16, + "probability": 0.9323 + }, + { + "start": 15404.98, + "end": 15407.0, + "probability": 0.4761 + }, + { + "start": 15407.6, + "end": 15409.07, + "probability": 0.9888 + }, + { + "start": 15410.32, + "end": 15414.48, + "probability": 0.9827 + }, + { + "start": 15414.58, + "end": 15415.54, + "probability": 0.9448 + }, + { + "start": 15416.24, + "end": 15418.84, + "probability": 0.7676 + }, + { + "start": 15419.46, + "end": 15423.26, + "probability": 0.8692 + }, + { + "start": 15423.78, + "end": 15425.02, + "probability": 0.7675 + }, + { + "start": 15425.91, + "end": 15428.66, + "probability": 0.7153 + }, + { + "start": 15429.2, + "end": 15430.0, + "probability": 0.5759 + }, + { + "start": 15430.24, + "end": 15434.4, + "probability": 0.6955 + }, + { + "start": 15460.58, + "end": 15463.02, + "probability": 0.5565 + }, + { + "start": 15463.72, + "end": 15465.56, + "probability": 0.0212 + }, + { + "start": 15465.94, + "end": 15466.87, + "probability": 0.0333 + }, + { + "start": 15466.88, + "end": 15466.98, + "probability": 0.0446 + }, + { + "start": 15469.62, + "end": 15472.42, + "probability": 0.5855 + }, + { + "start": 15473.24, + "end": 15473.98, + "probability": 0.9092 + }, + { + "start": 15475.2, + "end": 15475.2, + "probability": 0.0302 + }, + { + "start": 15475.2, + "end": 15475.2, + "probability": 0.0879 + }, + { + "start": 15475.2, + "end": 15477.35, + "probability": 0.1905 + }, + { + "start": 15478.16, + "end": 15479.44, + "probability": 0.7434 + }, + { + "start": 15480.1, + "end": 15480.1, + "probability": 0.0104 + }, + { + "start": 15480.82, + "end": 15482.84, + "probability": 0.7851 + }, + { + "start": 15483.56, + "end": 15488.26, + "probability": 0.989 + }, + { + "start": 15490.04, + "end": 15490.74, + "probability": 0.8944 + }, + { + "start": 15491.74, + "end": 15497.18, + "probability": 0.918 + }, + { + "start": 15497.26, + "end": 15498.22, + "probability": 0.8374 + }, + { + "start": 15498.88, + "end": 15501.46, + "probability": 0.5221 + }, + { + "start": 15502.24, + "end": 15502.8, + "probability": 0.6692 + }, + { + "start": 15503.44, + "end": 15506.72, + "probability": 0.9504 + }, + { + "start": 15507.62, + "end": 15511.18, + "probability": 0.9867 + }, + { + "start": 15511.96, + "end": 15512.68, + "probability": 0.2675 + }, + { + "start": 15513.14, + "end": 15513.68, + "probability": 0.5003 + }, + { + "start": 15514.26, + "end": 15515.82, + "probability": 0.9437 + }, + { + "start": 15516.36, + "end": 15518.88, + "probability": 0.7323 + }, + { + "start": 15520.42, + "end": 15521.2, + "probability": 0.8377 + }, + { + "start": 15521.34, + "end": 15522.16, + "probability": 0.5864 + }, + { + "start": 15522.66, + "end": 15523.86, + "probability": 0.825 + }, + { + "start": 15524.4, + "end": 15525.68, + "probability": 0.7419 + }, + { + "start": 15525.82, + "end": 15527.06, + "probability": 0.7753 + }, + { + "start": 15527.62, + "end": 15530.68, + "probability": 0.8805 + }, + { + "start": 15530.86, + "end": 15534.14, + "probability": 0.9569 + }, + { + "start": 15534.78, + "end": 15535.66, + "probability": 0.5278 + }, + { + "start": 15536.58, + "end": 15540.92, + "probability": 0.9797 + }, + { + "start": 15541.22, + "end": 15545.0, + "probability": 0.9601 + }, + { + "start": 15545.8, + "end": 15550.44, + "probability": 0.9624 + }, + { + "start": 15550.72, + "end": 15551.36, + "probability": 0.8381 + }, + { + "start": 15552.24, + "end": 15556.57, + "probability": 0.8525 + }, + { + "start": 15557.32, + "end": 15561.16, + "probability": 0.8921 + }, + { + "start": 15561.86, + "end": 15565.46, + "probability": 0.9715 + }, + { + "start": 15565.46, + "end": 15568.82, + "probability": 0.879 + }, + { + "start": 15569.14, + "end": 15573.9, + "probability": 0.9784 + }, + { + "start": 15574.54, + "end": 15576.62, + "probability": 0.9932 + }, + { + "start": 15576.92, + "end": 15577.3, + "probability": 0.6856 + }, + { + "start": 15580.44, + "end": 15581.9, + "probability": 0.8402 + }, + { + "start": 15584.49, + "end": 15589.56, + "probability": 0.8745 + }, + { + "start": 15591.52, + "end": 15593.72, + "probability": 0.9902 + }, + { + "start": 15595.08, + "end": 15596.02, + "probability": 0.6968 + }, + { + "start": 15597.68, + "end": 15601.44, + "probability": 0.1778 + }, + { + "start": 15601.58, + "end": 15602.67, + "probability": 0.9124 + }, + { + "start": 15603.26, + "end": 15605.88, + "probability": 0.3615 + }, + { + "start": 15606.88, + "end": 15606.98, + "probability": 0.4491 + }, + { + "start": 15624.32, + "end": 15626.56, + "probability": 0.7302 + }, + { + "start": 15628.56, + "end": 15634.36, + "probability": 0.6361 + }, + { + "start": 15634.66, + "end": 15636.3, + "probability": 0.842 + }, + { + "start": 15636.42, + "end": 15639.28, + "probability": 0.9928 + }, + { + "start": 15639.62, + "end": 15641.74, + "probability": 0.9919 + }, + { + "start": 15642.6, + "end": 15644.04, + "probability": 0.8154 + }, + { + "start": 15644.96, + "end": 15648.36, + "probability": 0.817 + }, + { + "start": 15649.28, + "end": 15652.54, + "probability": 0.9139 + }, + { + "start": 15653.52, + "end": 15659.72, + "probability": 0.9822 + }, + { + "start": 15659.94, + "end": 15662.82, + "probability": 0.9959 + }, + { + "start": 15662.9, + "end": 15664.36, + "probability": 0.9014 + }, + { + "start": 15665.0, + "end": 15667.42, + "probability": 0.9934 + }, + { + "start": 15668.96, + "end": 15670.32, + "probability": 0.8095 + }, + { + "start": 15670.9, + "end": 15673.48, + "probability": 0.76 + }, + { + "start": 15673.76, + "end": 15678.5, + "probability": 0.993 + }, + { + "start": 15679.28, + "end": 15680.02, + "probability": 0.7578 + }, + { + "start": 15680.96, + "end": 15683.56, + "probability": 0.9826 + }, + { + "start": 15684.3, + "end": 15685.4, + "probability": 0.8741 + }, + { + "start": 15690.04, + "end": 15692.5, + "probability": 0.8912 + }, + { + "start": 15692.8, + "end": 15697.54, + "probability": 0.9943 + }, + { + "start": 15697.76, + "end": 15698.52, + "probability": 0.7809 + }, + { + "start": 15699.88, + "end": 15702.3, + "probability": 0.9792 + }, + { + "start": 15703.86, + "end": 15708.42, + "probability": 0.9988 + }, + { + "start": 15708.42, + "end": 15711.74, + "probability": 0.9939 + }, + { + "start": 15712.28, + "end": 15713.08, + "probability": 0.9104 + }, + { + "start": 15713.86, + "end": 15715.6, + "probability": 0.8975 + }, + { + "start": 15717.62, + "end": 15722.46, + "probability": 0.998 + }, + { + "start": 15723.7, + "end": 15725.98, + "probability": 0.9582 + }, + { + "start": 15726.28, + "end": 15729.52, + "probability": 0.9932 + }, + { + "start": 15729.72, + "end": 15730.9, + "probability": 0.8219 + }, + { + "start": 15731.72, + "end": 15736.78, + "probability": 0.9662 + }, + { + "start": 15737.04, + "end": 15738.44, + "probability": 0.9236 + }, + { + "start": 15738.6, + "end": 15740.7, + "probability": 0.9963 + }, + { + "start": 15743.1, + "end": 15748.65, + "probability": 0.7458 + }, + { + "start": 15749.84, + "end": 15754.16, + "probability": 0.9828 + }, + { + "start": 15755.66, + "end": 15757.84, + "probability": 0.9835 + }, + { + "start": 15758.04, + "end": 15762.56, + "probability": 0.8837 + }, + { + "start": 15762.66, + "end": 15764.0, + "probability": 0.8845 + }, + { + "start": 15765.62, + "end": 15765.88, + "probability": 0.6465 + }, + { + "start": 15765.96, + "end": 15769.14, + "probability": 0.9887 + }, + { + "start": 15769.31, + "end": 15773.46, + "probability": 0.9923 + }, + { + "start": 15773.68, + "end": 15776.84, + "probability": 0.9914 + }, + { + "start": 15777.58, + "end": 15780.9, + "probability": 0.954 + }, + { + "start": 15782.06, + "end": 15783.16, + "probability": 0.5385 + }, + { + "start": 15783.32, + "end": 15784.32, + "probability": 0.9235 + }, + { + "start": 15784.4, + "end": 15785.22, + "probability": 0.9834 + }, + { + "start": 15785.28, + "end": 15788.0, + "probability": 0.9849 + }, + { + "start": 15788.12, + "end": 15788.68, + "probability": 0.6441 + }, + { + "start": 15788.76, + "end": 15789.82, + "probability": 0.3194 + }, + { + "start": 15790.58, + "end": 15791.1, + "probability": 0.5952 + }, + { + "start": 15791.6, + "end": 15795.4, + "probability": 0.9875 + }, + { + "start": 15795.86, + "end": 15802.26, + "probability": 0.9965 + }, + { + "start": 15802.88, + "end": 15807.38, + "probability": 0.9934 + }, + { + "start": 15808.08, + "end": 15812.56, + "probability": 0.9998 + }, + { + "start": 15813.38, + "end": 15815.46, + "probability": 0.9972 + }, + { + "start": 15817.58, + "end": 15825.54, + "probability": 0.9939 + }, + { + "start": 15825.66, + "end": 15827.66, + "probability": 0.856 + }, + { + "start": 15829.64, + "end": 15834.12, + "probability": 0.9902 + }, + { + "start": 15834.12, + "end": 15839.14, + "probability": 0.9886 + }, + { + "start": 15839.14, + "end": 15844.02, + "probability": 0.9998 + }, + { + "start": 15844.68, + "end": 15846.76, + "probability": 0.9987 + }, + { + "start": 15850.3, + "end": 15853.9, + "probability": 0.6943 + }, + { + "start": 15855.56, + "end": 15859.5, + "probability": 0.9624 + }, + { + "start": 15859.56, + "end": 15860.88, + "probability": 0.6862 + }, + { + "start": 15862.12, + "end": 15866.16, + "probability": 0.8944 + }, + { + "start": 15867.46, + "end": 15867.96, + "probability": 0.7641 + }, + { + "start": 15868.48, + "end": 15873.74, + "probability": 0.9469 + }, + { + "start": 15874.98, + "end": 15876.22, + "probability": 0.9582 + }, + { + "start": 15880.82, + "end": 15881.74, + "probability": 0.6771 + }, + { + "start": 15882.44, + "end": 15883.66, + "probability": 0.8809 + }, + { + "start": 15886.34, + "end": 15890.22, + "probability": 0.8565 + }, + { + "start": 15893.63, + "end": 15899.8, + "probability": 0.9965 + }, + { + "start": 15899.8, + "end": 15905.22, + "probability": 0.9978 + }, + { + "start": 15907.0, + "end": 15911.02, + "probability": 0.9958 + }, + { + "start": 15911.36, + "end": 15913.82, + "probability": 0.7804 + }, + { + "start": 15914.52, + "end": 15916.12, + "probability": 0.983 + }, + { + "start": 15917.42, + "end": 15917.9, + "probability": 0.8774 + }, + { + "start": 15918.08, + "end": 15922.46, + "probability": 0.9721 + }, + { + "start": 15930.74, + "end": 15932.98, + "probability": 0.826 + }, + { + "start": 15933.86, + "end": 15938.04, + "probability": 0.9774 + }, + { + "start": 15938.2, + "end": 15941.3, + "probability": 0.7415 + }, + { + "start": 15942.9, + "end": 15945.72, + "probability": 0.9959 + }, + { + "start": 15947.18, + "end": 15948.82, + "probability": 0.9941 + }, + { + "start": 15951.14, + "end": 15954.52, + "probability": 0.9761 + }, + { + "start": 15955.52, + "end": 15957.84, + "probability": 0.7409 + }, + { + "start": 15958.26, + "end": 15961.48, + "probability": 0.9854 + }, + { + "start": 15961.48, + "end": 15964.14, + "probability": 0.9827 + }, + { + "start": 15965.26, + "end": 15969.84, + "probability": 0.7764 + }, + { + "start": 15970.66, + "end": 15972.6, + "probability": 0.9985 + }, + { + "start": 15973.8, + "end": 15977.6, + "probability": 0.9548 + }, + { + "start": 15979.14, + "end": 15984.24, + "probability": 0.7758 + }, + { + "start": 15987.4, + "end": 15991.34, + "probability": 0.506 + }, + { + "start": 15991.42, + "end": 15992.48, + "probability": 0.8437 + }, + { + "start": 15992.56, + "end": 15997.02, + "probability": 0.9937 + }, + { + "start": 15997.82, + "end": 15998.82, + "probability": 0.8926 + }, + { + "start": 16003.92, + "end": 16006.0, + "probability": 0.8118 + }, + { + "start": 16007.14, + "end": 16008.24, + "probability": 0.925 + }, + { + "start": 16013.66, + "end": 16016.94, + "probability": 0.9828 + }, + { + "start": 16016.94, + "end": 16019.36, + "probability": 0.9775 + }, + { + "start": 16021.66, + "end": 16024.94, + "probability": 0.996 + }, + { + "start": 16025.02, + "end": 16027.4, + "probability": 0.9959 + }, + { + "start": 16027.64, + "end": 16031.88, + "probability": 0.986 + }, + { + "start": 16031.88, + "end": 16035.25, + "probability": 0.9286 + }, + { + "start": 16036.42, + "end": 16039.08, + "probability": 0.8695 + }, + { + "start": 16039.08, + "end": 16041.22, + "probability": 0.7993 + }, + { + "start": 16041.82, + "end": 16044.18, + "probability": 0.8938 + }, + { + "start": 16048.42, + "end": 16051.24, + "probability": 0.9764 + }, + { + "start": 16052.12, + "end": 16055.12, + "probability": 0.9814 + }, + { + "start": 16055.18, + "end": 16060.18, + "probability": 0.9871 + }, + { + "start": 16063.32, + "end": 16065.08, + "probability": 0.796 + }, + { + "start": 16066.56, + "end": 16068.78, + "probability": 0.9596 + }, + { + "start": 16068.84, + "end": 16071.06, + "probability": 0.9756 + }, + { + "start": 16071.06, + "end": 16073.48, + "probability": 0.978 + }, + { + "start": 16074.2, + "end": 16076.36, + "probability": 0.8144 + }, + { + "start": 16077.18, + "end": 16079.38, + "probability": 0.9063 + }, + { + "start": 16081.16, + "end": 16086.22, + "probability": 0.9817 + }, + { + "start": 16087.5, + "end": 16092.14, + "probability": 0.9655 + }, + { + "start": 16092.44, + "end": 16097.1, + "probability": 0.9941 + }, + { + "start": 16098.04, + "end": 16099.92, + "probability": 0.9978 + }, + { + "start": 16101.32, + "end": 16104.34, + "probability": 0.9983 + }, + { + "start": 16105.52, + "end": 16107.38, + "probability": 0.9049 + }, + { + "start": 16107.74, + "end": 16109.18, + "probability": 0.9414 + }, + { + "start": 16109.52, + "end": 16111.48, + "probability": 0.9443 + }, + { + "start": 16112.72, + "end": 16116.7, + "probability": 0.5821 + }, + { + "start": 16118.8, + "end": 16120.2, + "probability": 0.9777 + }, + { + "start": 16120.72, + "end": 16121.96, + "probability": 0.9463 + }, + { + "start": 16122.8, + "end": 16126.26, + "probability": 0.9808 + }, + { + "start": 16126.38, + "end": 16126.82, + "probability": 0.7109 + }, + { + "start": 16127.02, + "end": 16132.1, + "probability": 0.9932 + }, + { + "start": 16132.62, + "end": 16135.26, + "probability": 0.9971 + }, + { + "start": 16135.86, + "end": 16138.0, + "probability": 0.9403 + }, + { + "start": 16139.18, + "end": 16140.46, + "probability": 0.9565 + }, + { + "start": 16141.12, + "end": 16143.92, + "probability": 0.9829 + }, + { + "start": 16144.12, + "end": 16144.92, + "probability": 0.713 + }, + { + "start": 16145.74, + "end": 16150.92, + "probability": 0.9214 + }, + { + "start": 16157.98, + "end": 16160.5, + "probability": 0.8774 + }, + { + "start": 16160.6, + "end": 16161.66, + "probability": 0.8168 + }, + { + "start": 16163.18, + "end": 16163.78, + "probability": 0.8028 + }, + { + "start": 16164.46, + "end": 16166.52, + "probability": 0.8693 + }, + { + "start": 16166.68, + "end": 16167.04, + "probability": 0.9367 + }, + { + "start": 16168.16, + "end": 16168.85, + "probability": 0.9844 + }, + { + "start": 16169.16, + "end": 16171.26, + "probability": 0.6682 + }, + { + "start": 16172.36, + "end": 16173.76, + "probability": 0.92 + }, + { + "start": 16188.28, + "end": 16188.96, + "probability": 0.4588 + }, + { + "start": 16188.96, + "end": 16189.64, + "probability": 0.556 + }, + { + "start": 16189.72, + "end": 16191.1, + "probability": 0.7496 + }, + { + "start": 16191.1, + "end": 16195.3, + "probability": 0.8375 + }, + { + "start": 16195.6, + "end": 16200.88, + "probability": 0.979 + }, + { + "start": 16201.28, + "end": 16204.04, + "probability": 0.7329 + }, + { + "start": 16204.08, + "end": 16205.64, + "probability": 0.9412 + }, + { + "start": 16208.38, + "end": 16209.44, + "probability": 0.6902 + }, + { + "start": 16209.58, + "end": 16210.0, + "probability": 0.0687 + }, + { + "start": 16210.06, + "end": 16210.64, + "probability": 0.5502 + }, + { + "start": 16210.82, + "end": 16215.22, + "probability": 0.8989 + }, + { + "start": 16215.34, + "end": 16218.04, + "probability": 0.9991 + }, + { + "start": 16218.04, + "end": 16224.26, + "probability": 0.995 + }, + { + "start": 16225.06, + "end": 16228.82, + "probability": 0.9887 + }, + { + "start": 16228.84, + "end": 16231.02, + "probability": 0.9971 + }, + { + "start": 16231.66, + "end": 16235.44, + "probability": 0.9976 + }, + { + "start": 16235.54, + "end": 16236.68, + "probability": 0.9392 + }, + { + "start": 16238.04, + "end": 16241.46, + "probability": 0.9505 + }, + { + "start": 16242.14, + "end": 16243.84, + "probability": 0.5319 + }, + { + "start": 16243.86, + "end": 16247.6, + "probability": 0.97 + }, + { + "start": 16248.42, + "end": 16253.24, + "probability": 0.7404 + }, + { + "start": 16254.71, + "end": 16260.18, + "probability": 0.955 + }, + { + "start": 16260.24, + "end": 16261.24, + "probability": 0.9718 + }, + { + "start": 16261.7, + "end": 16263.58, + "probability": 0.9609 + }, + { + "start": 16263.7, + "end": 16265.98, + "probability": 0.9939 + }, + { + "start": 16266.2, + "end": 16268.96, + "probability": 0.9979 + }, + { + "start": 16269.82, + "end": 16271.42, + "probability": 0.7722 + }, + { + "start": 16271.76, + "end": 16276.82, + "probability": 0.9743 + }, + { + "start": 16276.88, + "end": 16279.36, + "probability": 0.9899 + }, + { + "start": 16280.23, + "end": 16283.46, + "probability": 0.9751 + }, + { + "start": 16284.06, + "end": 16285.84, + "probability": 0.9792 + }, + { + "start": 16285.98, + "end": 16286.7, + "probability": 0.8384 + }, + { + "start": 16286.8, + "end": 16287.85, + "probability": 0.5836 + }, + { + "start": 16288.42, + "end": 16292.86, + "probability": 0.8196 + }, + { + "start": 16293.44, + "end": 16295.14, + "probability": 0.6899 + }, + { + "start": 16295.18, + "end": 16296.58, + "probability": 0.9742 + }, + { + "start": 16296.71, + "end": 16299.36, + "probability": 0.3843 + }, + { + "start": 16299.36, + "end": 16301.14, + "probability": 0.6021 + }, + { + "start": 16301.3, + "end": 16302.68, + "probability": 0.9873 + }, + { + "start": 16302.74, + "end": 16304.14, + "probability": 0.8742 + }, + { + "start": 16304.24, + "end": 16305.6, + "probability": 0.7299 + }, + { + "start": 16305.66, + "end": 16308.86, + "probability": 0.6704 + }, + { + "start": 16309.24, + "end": 16310.02, + "probability": 0.1325 + }, + { + "start": 16310.02, + "end": 16312.92, + "probability": 0.7252 + }, + { + "start": 16312.94, + "end": 16315.24, + "probability": 0.9891 + }, + { + "start": 16316.06, + "end": 16317.74, + "probability": 0.3531 + }, + { + "start": 16318.44, + "end": 16319.22, + "probability": 0.5799 + }, + { + "start": 16319.28, + "end": 16319.96, + "probability": 0.7285 + }, + { + "start": 16320.02, + "end": 16325.2, + "probability": 0.9413 + }, + { + "start": 16325.38, + "end": 16330.68, + "probability": 0.7664 + }, + { + "start": 16330.92, + "end": 16333.72, + "probability": 0.9452 + }, + { + "start": 16334.36, + "end": 16341.4, + "probability": 0.9875 + }, + { + "start": 16341.94, + "end": 16343.84, + "probability": 0.9866 + }, + { + "start": 16343.9, + "end": 16347.84, + "probability": 0.9214 + }, + { + "start": 16348.84, + "end": 16352.86, + "probability": 0.9959 + }, + { + "start": 16352.86, + "end": 16357.0, + "probability": 0.9863 + }, + { + "start": 16357.82, + "end": 16363.2, + "probability": 0.9895 + }, + { + "start": 16364.0, + "end": 16365.2, + "probability": 0.6175 + }, + { + "start": 16365.36, + "end": 16365.62, + "probability": 0.6852 + }, + { + "start": 16365.68, + "end": 16366.58, + "probability": 0.6979 + }, + { + "start": 16366.7, + "end": 16369.24, + "probability": 0.9594 + }, + { + "start": 16370.16, + "end": 16373.9, + "probability": 0.9951 + }, + { + "start": 16374.61, + "end": 16379.88, + "probability": 0.9973 + }, + { + "start": 16380.1, + "end": 16383.26, + "probability": 0.9468 + }, + { + "start": 16385.04, + "end": 16386.96, + "probability": 0.8506 + }, + { + "start": 16387.24, + "end": 16389.1, + "probability": 0.7363 + }, + { + "start": 16389.26, + "end": 16390.32, + "probability": 0.9443 + }, + { + "start": 16390.94, + "end": 16396.68, + "probability": 0.9912 + }, + { + "start": 16397.3, + "end": 16400.74, + "probability": 0.9837 + }, + { + "start": 16401.0, + "end": 16402.58, + "probability": 0.7778 + }, + { + "start": 16402.58, + "end": 16404.9, + "probability": 0.9647 + }, + { + "start": 16405.64, + "end": 16406.54, + "probability": 0.9247 + }, + { + "start": 16407.28, + "end": 16411.22, + "probability": 0.9952 + }, + { + "start": 16411.86, + "end": 16416.04, + "probability": 0.9973 + }, + { + "start": 16416.66, + "end": 16421.8, + "probability": 0.9913 + }, + { + "start": 16422.42, + "end": 16426.74, + "probability": 0.7521 + }, + { + "start": 16426.92, + "end": 16433.42, + "probability": 0.7566 + }, + { + "start": 16433.42, + "end": 16438.14, + "probability": 0.9598 + }, + { + "start": 16438.92, + "end": 16440.49, + "probability": 0.7537 + }, + { + "start": 16441.44, + "end": 16445.5, + "probability": 0.8716 + }, + { + "start": 16445.5, + "end": 16449.54, + "probability": 0.9959 + }, + { + "start": 16450.08, + "end": 16453.94, + "probability": 0.9884 + }, + { + "start": 16454.78, + "end": 16458.22, + "probability": 0.9924 + }, + { + "start": 16459.05, + "end": 16464.61, + "probability": 0.7755 + }, + { + "start": 16465.06, + "end": 16467.08, + "probability": 0.8548 + }, + { + "start": 16467.2, + "end": 16470.16, + "probability": 0.9282 + }, + { + "start": 16470.4, + "end": 16476.46, + "probability": 0.9759 + }, + { + "start": 16477.92, + "end": 16483.64, + "probability": 0.9912 + }, + { + "start": 16483.64, + "end": 16487.66, + "probability": 0.9968 + }, + { + "start": 16489.76, + "end": 16493.54, + "probability": 0.9945 + }, + { + "start": 16493.54, + "end": 16499.68, + "probability": 0.9961 + }, + { + "start": 16499.8, + "end": 16503.1, + "probability": 0.668 + }, + { + "start": 16504.26, + "end": 16508.82, + "probability": 0.9941 + }, + { + "start": 16508.82, + "end": 16513.54, + "probability": 0.998 + }, + { + "start": 16515.7, + "end": 16518.68, + "probability": 0.378 + }, + { + "start": 16518.68, + "end": 16524.96, + "probability": 0.8593 + }, + { + "start": 16525.6, + "end": 16526.2, + "probability": 0.7114 + }, + { + "start": 16526.4, + "end": 16526.58, + "probability": 0.9158 + }, + { + "start": 16527.0, + "end": 16529.36, + "probability": 0.8578 + }, + { + "start": 16529.74, + "end": 16535.16, + "probability": 0.8697 + }, + { + "start": 16535.32, + "end": 16540.16, + "probability": 0.8293 + }, + { + "start": 16540.94, + "end": 16546.6, + "probability": 0.9943 + }, + { + "start": 16547.82, + "end": 16549.72, + "probability": 0.9839 + }, + { + "start": 16551.18, + "end": 16553.36, + "probability": 0.8238 + }, + { + "start": 16553.46, + "end": 16559.14, + "probability": 0.9839 + }, + { + "start": 16559.14, + "end": 16564.98, + "probability": 0.9908 + }, + { + "start": 16565.94, + "end": 16571.64, + "probability": 0.9856 + }, + { + "start": 16571.64, + "end": 16577.98, + "probability": 0.9864 + }, + { + "start": 16577.98, + "end": 16584.24, + "probability": 0.9974 + }, + { + "start": 16584.82, + "end": 16590.86, + "probability": 0.9849 + }, + { + "start": 16592.14, + "end": 16597.58, + "probability": 0.9924 + }, + { + "start": 16597.58, + "end": 16604.84, + "probability": 0.9976 + }, + { + "start": 16604.94, + "end": 16605.36, + "probability": 0.747 + }, + { + "start": 16606.02, + "end": 16608.18, + "probability": 0.4011 + }, + { + "start": 16608.56, + "end": 16611.72, + "probability": 0.9818 + }, + { + "start": 16621.56, + "end": 16624.56, + "probability": 0.9907 + }, + { + "start": 16625.87, + "end": 16629.68, + "probability": 0.7055 + }, + { + "start": 16629.98, + "end": 16632.27, + "probability": 0.9891 + }, + { + "start": 16633.66, + "end": 16639.44, + "probability": 0.9623 + }, + { + "start": 16640.02, + "end": 16644.6, + "probability": 0.9069 + }, + { + "start": 16645.1, + "end": 16646.48, + "probability": 0.7468 + }, + { + "start": 16647.04, + "end": 16650.3, + "probability": 0.953 + }, + { + "start": 16650.86, + "end": 16652.1, + "probability": 0.9929 + }, + { + "start": 16652.16, + "end": 16653.78, + "probability": 0.9906 + }, + { + "start": 16653.88, + "end": 16654.1, + "probability": 0.4611 + }, + { + "start": 16654.14, + "end": 16655.72, + "probability": 0.325 + }, + { + "start": 16655.74, + "end": 16656.16, + "probability": 0.5078 + }, + { + "start": 16656.88, + "end": 16657.8, + "probability": 0.4852 + }, + { + "start": 16658.44, + "end": 16661.42, + "probability": 0.8897 + }, + { + "start": 16661.98, + "end": 16665.42, + "probability": 0.9675 + }, + { + "start": 16666.12, + "end": 16667.32, + "probability": 0.8115 + }, + { + "start": 16667.5, + "end": 16668.28, + "probability": 0.5902 + }, + { + "start": 16668.68, + "end": 16673.14, + "probability": 0.9951 + }, + { + "start": 16673.14, + "end": 16678.3, + "probability": 0.9944 + }, + { + "start": 16679.1, + "end": 16683.28, + "probability": 0.9875 + }, + { + "start": 16684.42, + "end": 16688.66, + "probability": 0.7625 + }, + { + "start": 16692.14, + "end": 16694.82, + "probability": 0.9849 + }, + { + "start": 16695.48, + "end": 16698.52, + "probability": 0.9704 + }, + { + "start": 16699.02, + "end": 16700.48, + "probability": 0.8636 + }, + { + "start": 16700.96, + "end": 16704.76, + "probability": 0.7769 + }, + { + "start": 16705.34, + "end": 16708.94, + "probability": 0.9906 + }, + { + "start": 16709.5, + "end": 16710.6, + "probability": 0.5327 + }, + { + "start": 16711.12, + "end": 16715.96, + "probability": 0.98 + }, + { + "start": 16716.76, + "end": 16716.76, + "probability": 0.1161 + }, + { + "start": 16716.9, + "end": 16717.3, + "probability": 0.7355 + }, + { + "start": 16717.32, + "end": 16719.71, + "probability": 0.947 + }, + { + "start": 16720.26, + "end": 16723.98, + "probability": 0.9673 + }, + { + "start": 16724.04, + "end": 16730.06, + "probability": 0.9941 + }, + { + "start": 16730.72, + "end": 16736.24, + "probability": 0.9932 + }, + { + "start": 16736.82, + "end": 16739.68, + "probability": 0.991 + }, + { + "start": 16740.28, + "end": 16743.02, + "probability": 0.8929 + }, + { + "start": 16743.76, + "end": 16744.04, + "probability": 0.6339 + }, + { + "start": 16744.96, + "end": 16748.14, + "probability": 0.9814 + }, + { + "start": 16748.62, + "end": 16750.64, + "probability": 0.7778 + }, + { + "start": 16751.24, + "end": 16751.64, + "probability": 0.835 + }, + { + "start": 16751.74, + "end": 16751.92, + "probability": 0.4593 + }, + { + "start": 16752.12, + "end": 16752.46, + "probability": 0.4696 + }, + { + "start": 16752.8, + "end": 16754.6, + "probability": 0.9885 + }, + { + "start": 16754.98, + "end": 16757.38, + "probability": 0.9696 + }, + { + "start": 16757.84, + "end": 16759.72, + "probability": 0.9976 + }, + { + "start": 16760.22, + "end": 16761.82, + "probability": 0.969 + }, + { + "start": 16762.34, + "end": 16768.24, + "probability": 0.8215 + }, + { + "start": 16769.01, + "end": 16773.02, + "probability": 0.8908 + }, + { + "start": 16773.8, + "end": 16779.0, + "probability": 0.9707 + }, + { + "start": 16779.76, + "end": 16780.2, + "probability": 0.9707 + }, + { + "start": 16780.76, + "end": 16782.96, + "probability": 0.9847 + }, + { + "start": 16783.66, + "end": 16783.88, + "probability": 0.3674 + }, + { + "start": 16783.94, + "end": 16784.28, + "probability": 0.7338 + }, + { + "start": 16784.76, + "end": 16787.58, + "probability": 0.9927 + }, + { + "start": 16788.02, + "end": 16789.98, + "probability": 0.8597 + }, + { + "start": 16790.06, + "end": 16790.4, + "probability": 0.7562 + }, + { + "start": 16790.5, + "end": 16791.46, + "probability": 0.8935 + }, + { + "start": 16791.94, + "end": 16798.68, + "probability": 0.9819 + }, + { + "start": 16799.2, + "end": 16803.18, + "probability": 0.9486 + }, + { + "start": 16803.36, + "end": 16804.02, + "probability": 0.575 + }, + { + "start": 16804.02, + "end": 16804.12, + "probability": 0.6373 + }, + { + "start": 16804.68, + "end": 16806.54, + "probability": 0.6691 + }, + { + "start": 16806.76, + "end": 16807.54, + "probability": 0.714 + }, + { + "start": 16808.74, + "end": 16809.98, + "probability": 0.8076 + }, + { + "start": 16810.78, + "end": 16811.28, + "probability": 0.8421 + }, + { + "start": 16812.18, + "end": 16813.5, + "probability": 0.9752 + }, + { + "start": 16814.68, + "end": 16815.92, + "probability": 0.9737 + }, + { + "start": 16816.04, + "end": 16817.44, + "probability": 0.9149 + }, + { + "start": 16817.44, + "end": 16819.32, + "probability": 0.3605 + }, + { + "start": 16819.44, + "end": 16819.88, + "probability": 0.567 + }, + { + "start": 16820.38, + "end": 16821.92, + "probability": 0.9604 + }, + { + "start": 16823.46, + "end": 16824.02, + "probability": 0.5914 + }, + { + "start": 16824.2, + "end": 16824.74, + "probability": 0.7426 + }, + { + "start": 16825.08, + "end": 16825.42, + "probability": 0.8658 + }, + { + "start": 16828.86, + "end": 16832.8, + "probability": 0.0453 + }, + { + "start": 16846.97, + "end": 16847.73, + "probability": 0.0243 + }, + { + "start": 16847.96, + "end": 16849.22, + "probability": 0.0427 + }, + { + "start": 16849.22, + "end": 16851.54, + "probability": 0.5773 + }, + { + "start": 16853.33, + "end": 16854.42, + "probability": 0.0529 + }, + { + "start": 16854.45, + "end": 16855.2, + "probability": 0.1285 + }, + { + "start": 16855.28, + "end": 16855.8, + "probability": 0.0888 + }, + { + "start": 16856.1, + "end": 16858.24, + "probability": 0.0067 + }, + { + "start": 16861.94, + "end": 16862.8, + "probability": 0.1972 + }, + { + "start": 16862.8, + "end": 16863.12, + "probability": 0.0844 + }, + { + "start": 16868.32, + "end": 16868.98, + "probability": 0.0386 + }, + { + "start": 16869.64, + "end": 16872.1, + "probability": 0.0532 + }, + { + "start": 16873.5, + "end": 16875.42, + "probability": 0.1368 + }, + { + "start": 16875.42, + "end": 16879.36, + "probability": 0.2028 + }, + { + "start": 16880.98, + "end": 16881.58, + "probability": 0.2584 + }, + { + "start": 16884.38, + "end": 16887.98, + "probability": 0.627 + }, + { + "start": 16889.24, + "end": 16889.86, + "probability": 0.7369 + }, + { + "start": 16893.22, + "end": 16893.22, + "probability": 0.0557 + }, + { + "start": 16893.22, + "end": 16894.64, + "probability": 0.1753 + }, + { + "start": 16894.82, + "end": 16895.38, + "probability": 0.007 + }, + { + "start": 16903.86, + "end": 16905.67, + "probability": 0.0039 + }, + { + "start": 16906.5, + "end": 16906.76, + "probability": 0.0199 + }, + { + "start": 16907.04, + "end": 16907.78, + "probability": 0.2592 + }, + { + "start": 16907.88, + "end": 16908.84, + "probability": 0.2901 + }, + { + "start": 16909.16, + "end": 16909.7, + "probability": 0.1709 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.1312 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.0, + "end": 16910.0, + "probability": 0.0 + }, + { + "start": 16910.28, + "end": 16910.38, + "probability": 0.1619 + }, + { + "start": 16911.02, + "end": 16911.02, + "probability": 0.7756 + }, + { + "start": 16911.02, + "end": 16914.1, + "probability": 0.7312 + }, + { + "start": 16914.3, + "end": 16915.11, + "probability": 0.4448 + }, + { + "start": 16915.44, + "end": 16916.06, + "probability": 0.7101 + }, + { + "start": 16917.22, + "end": 16917.78, + "probability": 0.5886 + }, + { + "start": 16928.6, + "end": 16931.84, + "probability": 0.0461 + }, + { + "start": 16932.66, + "end": 16936.18, + "probability": 0.1427 + }, + { + "start": 16936.3, + "end": 16936.3, + "probability": 0.0422 + }, + { + "start": 16936.3, + "end": 16936.32, + "probability": 0.0418 + }, + { + "start": 16936.32, + "end": 16937.38, + "probability": 0.5687 + }, + { + "start": 16940.84, + "end": 16943.66, + "probability": 0.6888 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + }, + { + "start": 17130.97, + "end": 17130.97, + "probability": 0.0 + } + ], + "segments_count": 6735, + "words_count": 30674, + "avg_words_per_segment": 4.5544, + "avg_segment_duration": 1.4395, + "avg_words_per_minute": 107.4335, + "plenum_id": "114713", + "duration": 17130.97, + "title": null, + "plenum_date": "2023-03-06" +} \ No newline at end of file