diff --git "a/11910/metadata.json" "b/11910/metadata.json" new file mode 100644--- /dev/null +++ "b/11910/metadata.json" @@ -0,0 +1,14282 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11910", + "quality_score": 0.9305, + "per_segment_quality_scores": [ + { + "start": 59.98, + "end": 66.1, + "probability": 0.9945 + }, + { + "start": 66.84, + "end": 69.8, + "probability": 0.4334 + }, + { + "start": 69.96, + "end": 72.04, + "probability": 0.7576 + }, + { + "start": 72.12, + "end": 76.44, + "probability": 0.8628 + }, + { + "start": 76.44, + "end": 80.3, + "probability": 0.9931 + }, + { + "start": 80.74, + "end": 83.3, + "probability": 0.9917 + }, + { + "start": 83.76, + "end": 85.66, + "probability": 0.4067 + }, + { + "start": 85.76, + "end": 88.02, + "probability": 0.4981 + }, + { + "start": 88.14, + "end": 89.46, + "probability": 0.5334 + }, + { + "start": 89.56, + "end": 92.49, + "probability": 0.8224 + }, + { + "start": 93.0, + "end": 94.94, + "probability": 0.5136 + }, + { + "start": 95.0, + "end": 95.56, + "probability": 0.6504 + }, + { + "start": 95.9, + "end": 97.64, + "probability": 0.7943 + }, + { + "start": 114.74, + "end": 115.88, + "probability": 0.2714 + }, + { + "start": 115.96, + "end": 116.88, + "probability": 0.6421 + }, + { + "start": 116.96, + "end": 118.02, + "probability": 0.7118 + }, + { + "start": 118.18, + "end": 118.98, + "probability": 0.3614 + }, + { + "start": 118.98, + "end": 120.36, + "probability": 0.7186 + }, + { + "start": 120.62, + "end": 120.98, + "probability": 0.1785 + }, + { + "start": 121.26, + "end": 125.22, + "probability": 0.9929 + }, + { + "start": 126.38, + "end": 127.16, + "probability": 0.3207 + }, + { + "start": 127.34, + "end": 131.34, + "probability": 0.9149 + }, + { + "start": 132.16, + "end": 134.58, + "probability": 0.4839 + }, + { + "start": 135.16, + "end": 142.64, + "probability": 0.8179 + }, + { + "start": 144.68, + "end": 145.06, + "probability": 0.5909 + }, + { + "start": 146.44, + "end": 150.52, + "probability": 0.4449 + }, + { + "start": 150.54, + "end": 152.6, + "probability": 0.7623 + }, + { + "start": 153.24, + "end": 155.12, + "probability": 0.8058 + }, + { + "start": 155.62, + "end": 156.08, + "probability": 0.8813 + }, + { + "start": 156.96, + "end": 157.5, + "probability": 0.5438 + }, + { + "start": 157.52, + "end": 158.78, + "probability": 0.9026 + }, + { + "start": 159.22, + "end": 160.02, + "probability": 0.4453 + }, + { + "start": 160.04, + "end": 162.74, + "probability": 0.6724 + }, + { + "start": 167.36, + "end": 174.06, + "probability": 0.9883 + }, + { + "start": 174.56, + "end": 177.0, + "probability": 0.9697 + }, + { + "start": 177.4, + "end": 179.3, + "probability": 0.7431 + }, + { + "start": 179.54, + "end": 181.26, + "probability": 0.7861 + }, + { + "start": 181.98, + "end": 183.92, + "probability": 0.7831 + }, + { + "start": 184.12, + "end": 185.52, + "probability": 0.9709 + }, + { + "start": 186.32, + "end": 189.7, + "probability": 0.9935 + }, + { + "start": 189.88, + "end": 190.42, + "probability": 0.3699 + }, + { + "start": 190.6, + "end": 191.42, + "probability": 0.7001 + }, + { + "start": 191.8, + "end": 194.08, + "probability": 0.78 + }, + { + "start": 194.5, + "end": 196.12, + "probability": 0.788 + }, + { + "start": 196.5, + "end": 197.28, + "probability": 0.4961 + }, + { + "start": 197.3, + "end": 201.34, + "probability": 0.9692 + }, + { + "start": 202.22, + "end": 204.42, + "probability": 0.781 + }, + { + "start": 204.8, + "end": 206.42, + "probability": 0.53 + }, + { + "start": 206.44, + "end": 211.2, + "probability": 0.9878 + }, + { + "start": 211.96, + "end": 213.44, + "probability": 0.869 + }, + { + "start": 213.52, + "end": 214.32, + "probability": 0.8521 + }, + { + "start": 214.4, + "end": 215.34, + "probability": 0.8798 + }, + { + "start": 216.06, + "end": 218.64, + "probability": 0.8999 + }, + { + "start": 218.68, + "end": 221.4, + "probability": 0.909 + }, + { + "start": 221.58, + "end": 223.26, + "probability": 0.9189 + }, + { + "start": 223.34, + "end": 223.98, + "probability": 0.5188 + }, + { + "start": 224.58, + "end": 228.32, + "probability": 0.9886 + }, + { + "start": 228.78, + "end": 231.82, + "probability": 0.9839 + }, + { + "start": 232.18, + "end": 235.4, + "probability": 0.8745 + }, + { + "start": 235.46, + "end": 236.56, + "probability": 0.7633 + }, + { + "start": 236.86, + "end": 237.5, + "probability": 0.6691 + }, + { + "start": 238.44, + "end": 238.7, + "probability": 0.4799 + }, + { + "start": 238.8, + "end": 240.02, + "probability": 0.6041 + }, + { + "start": 241.32, + "end": 242.26, + "probability": 0.8316 + }, + { + "start": 242.36, + "end": 243.78, + "probability": 0.9096 + }, + { + "start": 244.06, + "end": 247.96, + "probability": 0.6255 + }, + { + "start": 248.46, + "end": 251.06, + "probability": 0.9202 + }, + { + "start": 251.06, + "end": 254.34, + "probability": 0.9585 + }, + { + "start": 254.4, + "end": 257.72, + "probability": 0.9796 + }, + { + "start": 258.24, + "end": 260.52, + "probability": 0.7162 + }, + { + "start": 260.94, + "end": 262.94, + "probability": 0.6304 + }, + { + "start": 263.1, + "end": 266.2, + "probability": 0.9784 + }, + { + "start": 266.32, + "end": 269.22, + "probability": 0.9919 + }, + { + "start": 269.36, + "end": 270.08, + "probability": 0.6057 + }, + { + "start": 270.4, + "end": 273.56, + "probability": 0.9664 + }, + { + "start": 274.32, + "end": 274.36, + "probability": 0.1166 + }, + { + "start": 274.56, + "end": 275.22, + "probability": 0.6923 + }, + { + "start": 275.36, + "end": 277.06, + "probability": 0.7761 + }, + { + "start": 277.18, + "end": 278.02, + "probability": 0.9433 + }, + { + "start": 278.38, + "end": 280.34, + "probability": 0.938 + }, + { + "start": 280.8, + "end": 282.28, + "probability": 0.7915 + }, + { + "start": 282.7, + "end": 286.78, + "probability": 0.7763 + }, + { + "start": 287.4, + "end": 288.56, + "probability": 0.6758 + }, + { + "start": 288.82, + "end": 289.3, + "probability": 0.3725 + }, + { + "start": 289.34, + "end": 291.78, + "probability": 0.841 + }, + { + "start": 292.32, + "end": 295.14, + "probability": 0.674 + }, + { + "start": 295.26, + "end": 297.42, + "probability": 0.9584 + }, + { + "start": 297.7, + "end": 299.68, + "probability": 0.8186 + }, + { + "start": 299.94, + "end": 301.76, + "probability": 0.9311 + }, + { + "start": 302.14, + "end": 303.3, + "probability": 0.6689 + }, + { + "start": 303.68, + "end": 305.22, + "probability": 0.9343 + }, + { + "start": 305.26, + "end": 305.72, + "probability": 0.8218 + }, + { + "start": 306.24, + "end": 306.94, + "probability": 0.542 + }, + { + "start": 307.22, + "end": 309.04, + "probability": 0.8987 + }, + { + "start": 309.88, + "end": 310.14, + "probability": 0.1953 + }, + { + "start": 314.4, + "end": 315.3, + "probability": 0.0328 + }, + { + "start": 315.82, + "end": 318.22, + "probability": 0.6331 + }, + { + "start": 318.8, + "end": 320.1, + "probability": 0.7336 + }, + { + "start": 320.9, + "end": 323.36, + "probability": 0.9063 + }, + { + "start": 323.72, + "end": 326.48, + "probability": 0.9905 + }, + { + "start": 327.36, + "end": 333.36, + "probability": 0.9476 + }, + { + "start": 333.36, + "end": 337.5, + "probability": 0.9922 + }, + { + "start": 338.32, + "end": 343.62, + "probability": 0.988 + }, + { + "start": 343.62, + "end": 347.52, + "probability": 0.9728 + }, + { + "start": 348.58, + "end": 358.46, + "probability": 0.972 + }, + { + "start": 359.12, + "end": 360.04, + "probability": 0.8891 + }, + { + "start": 361.54, + "end": 362.86, + "probability": 0.888 + }, + { + "start": 363.28, + "end": 365.4, + "probability": 0.9784 + }, + { + "start": 365.54, + "end": 366.42, + "probability": 0.9642 + }, + { + "start": 366.56, + "end": 367.38, + "probability": 0.9189 + }, + { + "start": 368.0, + "end": 373.56, + "probability": 0.9645 + }, + { + "start": 373.82, + "end": 374.88, + "probability": 0.9191 + }, + { + "start": 374.92, + "end": 375.44, + "probability": 0.6881 + }, + { + "start": 375.56, + "end": 376.02, + "probability": 0.6751 + }, + { + "start": 376.16, + "end": 376.9, + "probability": 0.9054 + }, + { + "start": 377.14, + "end": 378.7, + "probability": 0.8996 + }, + { + "start": 378.8, + "end": 379.58, + "probability": 0.8713 + }, + { + "start": 379.66, + "end": 381.08, + "probability": 0.945 + }, + { + "start": 381.26, + "end": 382.76, + "probability": 0.9627 + }, + { + "start": 382.9, + "end": 384.66, + "probability": 0.9429 + }, + { + "start": 384.7, + "end": 387.44, + "probability": 0.8918 + }, + { + "start": 387.6, + "end": 388.32, + "probability": 0.5674 + }, + { + "start": 388.32, + "end": 392.02, + "probability": 0.6291 + }, + { + "start": 392.22, + "end": 392.98, + "probability": 0.4122 + }, + { + "start": 393.12, + "end": 393.3, + "probability": 0.1143 + }, + { + "start": 393.3, + "end": 394.48, + "probability": 0.7687 + }, + { + "start": 394.56, + "end": 395.16, + "probability": 0.9738 + }, + { + "start": 395.22, + "end": 395.75, + "probability": 0.75 + }, + { + "start": 396.32, + "end": 399.16, + "probability": 0.9062 + }, + { + "start": 399.48, + "end": 399.62, + "probability": 0.4686 + }, + { + "start": 399.62, + "end": 401.9, + "probability": 0.9099 + }, + { + "start": 402.0, + "end": 402.32, + "probability": 0.6798 + }, + { + "start": 402.42, + "end": 403.08, + "probability": 0.6021 + }, + { + "start": 403.28, + "end": 403.86, + "probability": 0.5338 + }, + { + "start": 404.08, + "end": 405.98, + "probability": 0.7549 + }, + { + "start": 406.02, + "end": 407.24, + "probability": 0.7137 + }, + { + "start": 407.48, + "end": 408.24, + "probability": 0.7898 + }, + { + "start": 408.5, + "end": 409.1, + "probability": 0.7398 + }, + { + "start": 409.42, + "end": 411.68, + "probability": 0.979 + }, + { + "start": 411.68, + "end": 412.66, + "probability": 0.6219 + }, + { + "start": 413.86, + "end": 416.12, + "probability": 0.7928 + }, + { + "start": 416.76, + "end": 417.92, + "probability": 0.2114 + }, + { + "start": 418.42, + "end": 420.41, + "probability": 0.7021 + }, + { + "start": 420.9, + "end": 424.28, + "probability": 0.8525 + }, + { + "start": 426.64, + "end": 426.92, + "probability": 0.0004 + }, + { + "start": 430.92, + "end": 432.12, + "probability": 0.6255 + }, + { + "start": 432.88, + "end": 434.08, + "probability": 0.8678 + }, + { + "start": 435.06, + "end": 441.02, + "probability": 0.965 + }, + { + "start": 441.02, + "end": 446.04, + "probability": 0.9239 + }, + { + "start": 447.18, + "end": 448.82, + "probability": 0.9552 + }, + { + "start": 449.72, + "end": 451.73, + "probability": 0.6744 + }, + { + "start": 452.64, + "end": 456.06, + "probability": 0.972 + }, + { + "start": 456.34, + "end": 457.86, + "probability": 0.8248 + }, + { + "start": 458.0, + "end": 462.22, + "probability": 0.9639 + }, + { + "start": 462.22, + "end": 466.44, + "probability": 0.9193 + }, + { + "start": 466.82, + "end": 467.26, + "probability": 0.3584 + }, + { + "start": 467.36, + "end": 467.96, + "probability": 0.5878 + }, + { + "start": 468.32, + "end": 471.1, + "probability": 0.9727 + }, + { + "start": 471.56, + "end": 473.12, + "probability": 0.8346 + }, + { + "start": 473.24, + "end": 473.64, + "probability": 0.3779 + }, + { + "start": 474.04, + "end": 475.86, + "probability": 0.9686 + }, + { + "start": 476.16, + "end": 480.03, + "probability": 0.9744 + }, + { + "start": 480.46, + "end": 485.68, + "probability": 0.8697 + }, + { + "start": 485.94, + "end": 490.48, + "probability": 0.9736 + }, + { + "start": 491.04, + "end": 492.16, + "probability": 0.9934 + }, + { + "start": 492.22, + "end": 493.24, + "probability": 0.5949 + }, + { + "start": 493.54, + "end": 495.76, + "probability": 0.7371 + }, + { + "start": 496.2, + "end": 498.14, + "probability": 0.9851 + }, + { + "start": 498.36, + "end": 499.54, + "probability": 0.9548 + }, + { + "start": 499.94, + "end": 501.8, + "probability": 0.9931 + }, + { + "start": 502.26, + "end": 505.4, + "probability": 0.9194 + }, + { + "start": 506.16, + "end": 508.46, + "probability": 0.976 + }, + { + "start": 508.5, + "end": 509.18, + "probability": 0.6718 + }, + { + "start": 509.98, + "end": 513.26, + "probability": 0.5997 + }, + { + "start": 513.44, + "end": 515.88, + "probability": 0.9709 + }, + { + "start": 516.58, + "end": 518.32, + "probability": 0.313 + }, + { + "start": 520.52, + "end": 522.66, + "probability": 0.6485 + }, + { + "start": 522.84, + "end": 524.14, + "probability": 0.6952 + }, + { + "start": 524.14, + "end": 526.96, + "probability": 0.8491 + }, + { + "start": 527.04, + "end": 530.0, + "probability": 0.9678 + }, + { + "start": 531.07, + "end": 538.14, + "probability": 0.8079 + }, + { + "start": 538.14, + "end": 542.22, + "probability": 0.9941 + }, + { + "start": 542.92, + "end": 545.58, + "probability": 0.9662 + }, + { + "start": 545.66, + "end": 548.3, + "probability": 0.8185 + }, + { + "start": 548.5, + "end": 548.92, + "probability": 0.754 + }, + { + "start": 549.06, + "end": 549.38, + "probability": 0.5988 + }, + { + "start": 549.38, + "end": 551.0, + "probability": 0.9362 + }, + { + "start": 551.34, + "end": 554.24, + "probability": 0.9318 + }, + { + "start": 554.34, + "end": 555.12, + "probability": 0.8162 + }, + { + "start": 555.4, + "end": 560.5, + "probability": 0.9757 + }, + { + "start": 561.06, + "end": 565.32, + "probability": 0.9067 + }, + { + "start": 565.58, + "end": 566.83, + "probability": 0.7756 + }, + { + "start": 567.08, + "end": 567.72, + "probability": 0.7828 + }, + { + "start": 567.78, + "end": 568.24, + "probability": 0.8613 + }, + { + "start": 568.3, + "end": 569.3, + "probability": 0.9102 + }, + { + "start": 569.82, + "end": 574.98, + "probability": 0.9716 + }, + { + "start": 575.06, + "end": 576.5, + "probability": 0.933 + }, + { + "start": 576.66, + "end": 581.04, + "probability": 0.9595 + }, + { + "start": 581.28, + "end": 585.44, + "probability": 0.8604 + }, + { + "start": 585.9, + "end": 586.62, + "probability": 0.5073 + }, + { + "start": 586.74, + "end": 587.96, + "probability": 0.7662 + }, + { + "start": 588.14, + "end": 589.3, + "probability": 0.8924 + }, + { + "start": 589.32, + "end": 592.4, + "probability": 0.9961 + }, + { + "start": 592.66, + "end": 593.22, + "probability": 0.5191 + }, + { + "start": 593.58, + "end": 597.7, + "probability": 0.7849 + }, + { + "start": 598.34, + "end": 600.22, + "probability": 0.9902 + }, + { + "start": 601.1, + "end": 601.4, + "probability": 0.2559 + }, + { + "start": 601.42, + "end": 602.2, + "probability": 0.6857 + }, + { + "start": 602.44, + "end": 607.36, + "probability": 0.9905 + }, + { + "start": 607.72, + "end": 608.96, + "probability": 0.9162 + }, + { + "start": 609.32, + "end": 609.96, + "probability": 0.8008 + }, + { + "start": 610.88, + "end": 612.66, + "probability": 0.988 + }, + { + "start": 613.78, + "end": 615.32, + "probability": 0.8622 + }, + { + "start": 615.6, + "end": 618.14, + "probability": 0.3952 + }, + { + "start": 619.6, + "end": 621.64, + "probability": 0.0441 + }, + { + "start": 621.64, + "end": 624.4, + "probability": 0.5781 + }, + { + "start": 624.9, + "end": 627.3, + "probability": 0.9083 + }, + { + "start": 627.6, + "end": 632.06, + "probability": 0.9498 + }, + { + "start": 632.46, + "end": 635.86, + "probability": 0.8525 + }, + { + "start": 637.02, + "end": 638.16, + "probability": 0.5859 + }, + { + "start": 638.66, + "end": 640.0, + "probability": 0.9808 + }, + { + "start": 640.2, + "end": 645.56, + "probability": 0.9937 + }, + { + "start": 645.6, + "end": 650.84, + "probability": 0.9941 + }, + { + "start": 651.52, + "end": 656.12, + "probability": 0.9794 + }, + { + "start": 656.12, + "end": 661.58, + "probability": 0.9993 + }, + { + "start": 661.84, + "end": 662.58, + "probability": 0.6419 + }, + { + "start": 662.74, + "end": 663.58, + "probability": 0.9463 + }, + { + "start": 663.74, + "end": 664.66, + "probability": 0.968 + }, + { + "start": 665.16, + "end": 670.52, + "probability": 0.9672 + }, + { + "start": 670.6, + "end": 671.04, + "probability": 0.7527 + }, + { + "start": 671.22, + "end": 672.9, + "probability": 0.9976 + }, + { + "start": 673.02, + "end": 674.72, + "probability": 0.6599 + }, + { + "start": 675.46, + "end": 676.94, + "probability": 0.3392 + }, + { + "start": 677.24, + "end": 678.65, + "probability": 0.9641 + }, + { + "start": 679.1, + "end": 684.2, + "probability": 0.961 + }, + { + "start": 684.38, + "end": 686.76, + "probability": 0.2189 + }, + { + "start": 689.28, + "end": 691.08, + "probability": 0.5815 + }, + { + "start": 691.22, + "end": 693.6, + "probability": 0.8759 + }, + { + "start": 693.82, + "end": 694.62, + "probability": 0.8991 + }, + { + "start": 694.66, + "end": 696.42, + "probability": 0.6065 + }, + { + "start": 697.64, + "end": 698.98, + "probability": 0.9157 + }, + { + "start": 699.06, + "end": 699.85, + "probability": 0.7188 + }, + { + "start": 700.04, + "end": 704.44, + "probability": 0.9577 + }, + { + "start": 705.3, + "end": 706.58, + "probability": 0.4684 + }, + { + "start": 706.58, + "end": 709.1, + "probability": 0.5715 + }, + { + "start": 709.1, + "end": 710.4, + "probability": 0.7944 + }, + { + "start": 710.5, + "end": 713.66, + "probability": 0.9966 + }, + { + "start": 714.04, + "end": 715.33, + "probability": 0.9995 + }, + { + "start": 715.4, + "end": 715.94, + "probability": 0.9023 + }, + { + "start": 716.04, + "end": 719.18, + "probability": 0.9956 + }, + { + "start": 719.6, + "end": 725.66, + "probability": 0.8289 + }, + { + "start": 725.74, + "end": 726.88, + "probability": 0.9313 + }, + { + "start": 727.12, + "end": 728.34, + "probability": 0.624 + }, + { + "start": 728.38, + "end": 729.14, + "probability": 0.8648 + }, + { + "start": 729.42, + "end": 730.12, + "probability": 0.6393 + }, + { + "start": 730.42, + "end": 731.4, + "probability": 0.8452 + }, + { + "start": 731.46, + "end": 732.3, + "probability": 0.9765 + }, + { + "start": 732.38, + "end": 733.48, + "probability": 0.9141 + }, + { + "start": 733.92, + "end": 738.04, + "probability": 0.9772 + }, + { + "start": 738.82, + "end": 742.68, + "probability": 0.8569 + }, + { + "start": 743.22, + "end": 746.23, + "probability": 0.9438 + }, + { + "start": 746.66, + "end": 749.36, + "probability": 0.9714 + }, + { + "start": 749.76, + "end": 751.28, + "probability": 0.9116 + }, + { + "start": 751.7, + "end": 758.04, + "probability": 0.8115 + }, + { + "start": 758.36, + "end": 761.42, + "probability": 0.9641 + }, + { + "start": 761.6, + "end": 766.98, + "probability": 0.7803 + }, + { + "start": 766.98, + "end": 771.52, + "probability": 0.8224 + }, + { + "start": 771.52, + "end": 774.46, + "probability": 0.9503 + }, + { + "start": 774.88, + "end": 779.3, + "probability": 0.9661 + }, + { + "start": 780.0, + "end": 781.16, + "probability": 0.9319 + }, + { + "start": 781.24, + "end": 782.82, + "probability": 0.8886 + }, + { + "start": 782.86, + "end": 784.18, + "probability": 0.8823 + }, + { + "start": 784.32, + "end": 785.7, + "probability": 0.8251 + }, + { + "start": 785.94, + "end": 789.96, + "probability": 0.9786 + }, + { + "start": 790.22, + "end": 792.62, + "probability": 0.9914 + }, + { + "start": 792.74, + "end": 793.7, + "probability": 0.7938 + }, + { + "start": 794.06, + "end": 796.09, + "probability": 0.8812 + }, + { + "start": 796.58, + "end": 799.46, + "probability": 0.9458 + }, + { + "start": 799.66, + "end": 801.08, + "probability": 0.792 + }, + { + "start": 801.16, + "end": 805.84, + "probability": 0.8243 + }, + { + "start": 806.32, + "end": 810.04, + "probability": 0.9928 + }, + { + "start": 810.16, + "end": 811.1, + "probability": 0.8894 + }, + { + "start": 811.88, + "end": 812.4, + "probability": 0.6766 + }, + { + "start": 813.08, + "end": 815.4, + "probability": 0.8857 + }, + { + "start": 817.42, + "end": 819.9, + "probability": 0.4379 + }, + { + "start": 820.58, + "end": 822.14, + "probability": 0.9827 + }, + { + "start": 822.6, + "end": 824.92, + "probability": 0.9841 + }, + { + "start": 825.06, + "end": 829.22, + "probability": 0.9543 + }, + { + "start": 830.4, + "end": 833.82, + "probability": 0.7202 + }, + { + "start": 833.96, + "end": 839.5, + "probability": 0.6134 + }, + { + "start": 840.88, + "end": 846.08, + "probability": 0.7199 + }, + { + "start": 847.4, + "end": 850.62, + "probability": 0.9893 + }, + { + "start": 851.06, + "end": 853.68, + "probability": 0.9628 + }, + { + "start": 854.28, + "end": 856.32, + "probability": 0.8284 + }, + { + "start": 857.58, + "end": 860.39, + "probability": 0.9585 + }, + { + "start": 861.22, + "end": 862.8, + "probability": 0.9883 + }, + { + "start": 863.34, + "end": 865.08, + "probability": 0.987 + }, + { + "start": 865.38, + "end": 868.02, + "probability": 0.9933 + }, + { + "start": 868.28, + "end": 870.3, + "probability": 0.9966 + }, + { + "start": 870.62, + "end": 872.21, + "probability": 0.9707 + }, + { + "start": 873.48, + "end": 875.12, + "probability": 0.9761 + }, + { + "start": 875.78, + "end": 877.86, + "probability": 0.9731 + }, + { + "start": 878.2, + "end": 880.93, + "probability": 0.9849 + }, + { + "start": 881.44, + "end": 882.94, + "probability": 0.95 + }, + { + "start": 883.24, + "end": 887.62, + "probability": 0.9796 + }, + { + "start": 887.86, + "end": 889.86, + "probability": 0.8465 + }, + { + "start": 890.38, + "end": 892.84, + "probability": 0.9803 + }, + { + "start": 892.96, + "end": 894.38, + "probability": 0.6384 + }, + { + "start": 894.96, + "end": 895.04, + "probability": 0.4932 + }, + { + "start": 895.06, + "end": 897.0, + "probability": 0.9263 + }, + { + "start": 897.2, + "end": 898.32, + "probability": 0.8948 + }, + { + "start": 898.84, + "end": 900.4, + "probability": 0.7949 + }, + { + "start": 900.58, + "end": 901.58, + "probability": 0.4254 + }, + { + "start": 901.76, + "end": 904.52, + "probability": 0.9744 + }, + { + "start": 904.8, + "end": 904.86, + "probability": 0.2682 + }, + { + "start": 904.86, + "end": 906.4, + "probability": 0.8821 + }, + { + "start": 906.58, + "end": 907.3, + "probability": 0.8406 + }, + { + "start": 909.26, + "end": 909.82, + "probability": 0.5922 + }, + { + "start": 909.86, + "end": 910.9, + "probability": 0.9516 + }, + { + "start": 915.94, + "end": 917.8, + "probability": 0.3789 + }, + { + "start": 919.04, + "end": 920.18, + "probability": 0.5805 + }, + { + "start": 920.84, + "end": 922.6, + "probability": 0.6621 + }, + { + "start": 922.88, + "end": 925.34, + "probability": 0.7229 + }, + { + "start": 925.42, + "end": 927.48, + "probability": 0.7217 + }, + { + "start": 928.58, + "end": 931.78, + "probability": 0.9971 + }, + { + "start": 932.84, + "end": 935.5, + "probability": 0.9644 + }, + { + "start": 936.6, + "end": 942.4, + "probability": 0.9629 + }, + { + "start": 943.48, + "end": 951.4, + "probability": 0.8544 + }, + { + "start": 952.12, + "end": 956.36, + "probability": 0.9023 + }, + { + "start": 956.36, + "end": 959.68, + "probability": 0.9901 + }, + { + "start": 960.92, + "end": 963.2, + "probability": 0.7085 + }, + { + "start": 963.2, + "end": 963.46, + "probability": 0.7272 + }, + { + "start": 963.46, + "end": 965.16, + "probability": 0.925 + }, + { + "start": 968.04, + "end": 970.38, + "probability": 0.9326 + }, + { + "start": 970.54, + "end": 971.86, + "probability": 0.9973 + }, + { + "start": 972.68, + "end": 974.24, + "probability": 0.8994 + }, + { + "start": 974.54, + "end": 977.76, + "probability": 0.962 + }, + { + "start": 977.76, + "end": 982.4, + "probability": 0.7911 + }, + { + "start": 983.08, + "end": 987.52, + "probability": 0.7287 + }, + { + "start": 987.6, + "end": 992.44, + "probability": 0.8523 + }, + { + "start": 992.7, + "end": 993.92, + "probability": 0.8682 + }, + { + "start": 994.24, + "end": 1000.02, + "probability": 0.9701 + }, + { + "start": 1000.42, + "end": 1008.22, + "probability": 0.9913 + }, + { + "start": 1008.28, + "end": 1011.62, + "probability": 0.8826 + }, + { + "start": 1011.92, + "end": 1012.14, + "probability": 0.6845 + }, + { + "start": 1012.44, + "end": 1014.58, + "probability": 0.7929 + }, + { + "start": 1014.92, + "end": 1015.28, + "probability": 0.9255 + }, + { + "start": 1016.14, + "end": 1017.9, + "probability": 0.6051 + }, + { + "start": 1017.96, + "end": 1020.6, + "probability": 0.7294 + }, + { + "start": 1022.28, + "end": 1022.8, + "probability": 0.4539 + }, + { + "start": 1022.84, + "end": 1025.54, + "probability": 0.7396 + }, + { + "start": 1026.08, + "end": 1027.46, + "probability": 0.8232 + }, + { + "start": 1027.54, + "end": 1030.0, + "probability": 0.962 + }, + { + "start": 1030.5, + "end": 1032.74, + "probability": 0.9515 + }, + { + "start": 1033.0, + "end": 1035.0, + "probability": 0.7213 + }, + { + "start": 1035.18, + "end": 1036.14, + "probability": 0.5745 + }, + { + "start": 1036.74, + "end": 1037.1, + "probability": 0.6703 + }, + { + "start": 1037.16, + "end": 1037.84, + "probability": 0.7708 + }, + { + "start": 1038.1, + "end": 1043.8, + "probability": 0.7938 + }, + { + "start": 1043.9, + "end": 1046.16, + "probability": 0.9438 + }, + { + "start": 1046.54, + "end": 1050.46, + "probability": 0.9282 + }, + { + "start": 1050.56, + "end": 1054.9, + "probability": 0.8579 + }, + { + "start": 1055.4, + "end": 1055.9, + "probability": 0.3876 + }, + { + "start": 1056.44, + "end": 1057.64, + "probability": 0.7401 + }, + { + "start": 1058.6, + "end": 1062.7, + "probability": 0.8584 + }, + { + "start": 1063.12, + "end": 1066.4, + "probability": 0.7507 + }, + { + "start": 1066.64, + "end": 1069.5, + "probability": 0.9592 + }, + { + "start": 1070.02, + "end": 1072.2, + "probability": 0.9554 + }, + { + "start": 1072.22, + "end": 1077.46, + "probability": 0.9829 + }, + { + "start": 1079.48, + "end": 1080.9, + "probability": 0.7704 + }, + { + "start": 1081.0, + "end": 1085.7, + "probability": 0.9796 + }, + { + "start": 1086.2, + "end": 1091.94, + "probability": 0.883 + }, + { + "start": 1092.14, + "end": 1092.9, + "probability": 0.8926 + }, + { + "start": 1093.0, + "end": 1093.94, + "probability": 0.5534 + }, + { + "start": 1094.56, + "end": 1095.18, + "probability": 0.8796 + }, + { + "start": 1095.66, + "end": 1098.46, + "probability": 0.9536 + }, + { + "start": 1098.82, + "end": 1102.9, + "probability": 0.9895 + }, + { + "start": 1103.72, + "end": 1107.14, + "probability": 0.0116 + }, + { + "start": 1107.14, + "end": 1107.14, + "probability": 0.0547 + }, + { + "start": 1107.14, + "end": 1110.14, + "probability": 0.9594 + }, + { + "start": 1110.68, + "end": 1114.02, + "probability": 0.9654 + }, + { + "start": 1116.26, + "end": 1116.68, + "probability": 0.6214 + }, + { + "start": 1116.76, + "end": 1121.36, + "probability": 0.5944 + }, + { + "start": 1122.76, + "end": 1123.8, + "probability": 0.5228 + }, + { + "start": 1123.9, + "end": 1126.08, + "probability": 0.9731 + }, + { + "start": 1127.14, + "end": 1131.24, + "probability": 0.8338 + }, + { + "start": 1133.36, + "end": 1136.84, + "probability": 0.7217 + }, + { + "start": 1137.46, + "end": 1145.54, + "probability": 0.8238 + }, + { + "start": 1146.3, + "end": 1150.12, + "probability": 0.9109 + }, + { + "start": 1151.16, + "end": 1156.98, + "probability": 0.9966 + }, + { + "start": 1157.64, + "end": 1162.94, + "probability": 0.9038 + }, + { + "start": 1163.56, + "end": 1164.86, + "probability": 0.8939 + }, + { + "start": 1165.7, + "end": 1173.12, + "probability": 0.9966 + }, + { + "start": 1173.12, + "end": 1180.64, + "probability": 0.9968 + }, + { + "start": 1181.26, + "end": 1186.6, + "probability": 0.9161 + }, + { + "start": 1187.26, + "end": 1187.82, + "probability": 0.5106 + }, + { + "start": 1187.82, + "end": 1188.76, + "probability": 0.8443 + }, + { + "start": 1188.9, + "end": 1191.56, + "probability": 0.8679 + }, + { + "start": 1192.1, + "end": 1197.64, + "probability": 0.9076 + }, + { + "start": 1200.46, + "end": 1200.74, + "probability": 0.2713 + }, + { + "start": 1200.74, + "end": 1203.26, + "probability": 0.802 + }, + { + "start": 1204.4, + "end": 1207.52, + "probability": 0.9226 + }, + { + "start": 1207.52, + "end": 1212.3, + "probability": 0.9749 + }, + { + "start": 1213.12, + "end": 1216.84, + "probability": 0.8401 + }, + { + "start": 1217.38, + "end": 1220.56, + "probability": 0.8583 + }, + { + "start": 1221.06, + "end": 1227.22, + "probability": 0.9415 + }, + { + "start": 1227.58, + "end": 1228.08, + "probability": 0.8447 + }, + { + "start": 1228.18, + "end": 1228.54, + "probability": 0.5727 + }, + { + "start": 1228.7, + "end": 1228.98, + "probability": 0.4695 + }, + { + "start": 1229.52, + "end": 1230.22, + "probability": 0.4431 + }, + { + "start": 1230.24, + "end": 1231.74, + "probability": 0.6387 + }, + { + "start": 1237.4, + "end": 1241.02, + "probability": 0.7051 + }, + { + "start": 1242.06, + "end": 1243.72, + "probability": 0.8756 + }, + { + "start": 1243.78, + "end": 1249.32, + "probability": 0.9688 + }, + { + "start": 1250.22, + "end": 1254.96, + "probability": 0.9772 + }, + { + "start": 1254.96, + "end": 1261.48, + "probability": 0.9794 + }, + { + "start": 1261.6, + "end": 1261.6, + "probability": 0.2842 + }, + { + "start": 1261.6, + "end": 1262.74, + "probability": 0.5121 + }, + { + "start": 1262.74, + "end": 1265.8, + "probability": 0.8338 + }, + { + "start": 1265.86, + "end": 1266.64, + "probability": 0.7419 + }, + { + "start": 1267.0, + "end": 1270.22, + "probability": 0.9951 + }, + { + "start": 1270.64, + "end": 1272.9, + "probability": 0.9967 + }, + { + "start": 1273.28, + "end": 1275.62, + "probability": 0.9933 + }, + { + "start": 1276.0, + "end": 1277.84, + "probability": 0.8976 + }, + { + "start": 1277.94, + "end": 1278.4, + "probability": 0.8943 + }, + { + "start": 1278.9, + "end": 1279.4, + "probability": 0.7484 + }, + { + "start": 1279.78, + "end": 1280.6, + "probability": 0.8705 + }, + { + "start": 1280.86, + "end": 1281.68, + "probability": 0.7903 + }, + { + "start": 1282.04, + "end": 1283.98, + "probability": 0.9354 + }, + { + "start": 1284.4, + "end": 1285.26, + "probability": 0.8095 + }, + { + "start": 1285.58, + "end": 1286.74, + "probability": 0.9726 + }, + { + "start": 1287.22, + "end": 1287.76, + "probability": 0.9609 + }, + { + "start": 1287.84, + "end": 1288.54, + "probability": 0.5216 + }, + { + "start": 1288.78, + "end": 1290.82, + "probability": 0.6662 + }, + { + "start": 1290.86, + "end": 1291.78, + "probability": 0.9219 + }, + { + "start": 1291.86, + "end": 1292.96, + "probability": 0.9663 + }, + { + "start": 1293.68, + "end": 1294.94, + "probability": 0.0477 + }, + { + "start": 1294.94, + "end": 1295.99, + "probability": 0.7349 + }, + { + "start": 1296.5, + "end": 1298.92, + "probability": 0.8231 + }, + { + "start": 1299.3, + "end": 1300.4, + "probability": 0.7626 + }, + { + "start": 1300.88, + "end": 1302.72, + "probability": 0.669 + }, + { + "start": 1302.78, + "end": 1305.4, + "probability": 0.9223 + }, + { + "start": 1305.58, + "end": 1305.76, + "probability": 0.8232 + }, + { + "start": 1307.1, + "end": 1308.06, + "probability": 0.7041 + }, + { + "start": 1308.14, + "end": 1308.96, + "probability": 0.707 + }, + { + "start": 1309.1, + "end": 1312.5, + "probability": 0.9684 + }, + { + "start": 1313.0, + "end": 1316.92, + "probability": 0.6625 + }, + { + "start": 1317.38, + "end": 1319.86, + "probability": 0.8202 + }, + { + "start": 1320.14, + "end": 1328.66, + "probability": 0.9669 + }, + { + "start": 1329.32, + "end": 1329.88, + "probability": 0.925 + }, + { + "start": 1331.0, + "end": 1334.62, + "probability": 0.2574 + }, + { + "start": 1335.46, + "end": 1336.42, + "probability": 0.4275 + }, + { + "start": 1336.74, + "end": 1340.76, + "probability": 0.5677 + }, + { + "start": 1341.06, + "end": 1341.62, + "probability": 0.6047 + }, + { + "start": 1341.7, + "end": 1343.34, + "probability": 0.7995 + }, + { + "start": 1343.92, + "end": 1344.84, + "probability": 0.5825 + }, + { + "start": 1345.64, + "end": 1346.98, + "probability": 0.7589 + }, + { + "start": 1349.5, + "end": 1350.6, + "probability": 0.7635 + }, + { + "start": 1350.8, + "end": 1351.86, + "probability": 0.8234 + }, + { + "start": 1352.06, + "end": 1355.62, + "probability": 0.9963 + }, + { + "start": 1356.42, + "end": 1358.58, + "probability": 0.9009 + }, + { + "start": 1358.68, + "end": 1362.06, + "probability": 0.9945 + }, + { + "start": 1362.48, + "end": 1363.74, + "probability": 0.7396 + }, + { + "start": 1363.9, + "end": 1366.44, + "probability": 0.9849 + }, + { + "start": 1366.52, + "end": 1369.04, + "probability": 0.978 + }, + { + "start": 1369.9, + "end": 1374.88, + "probability": 0.9324 + }, + { + "start": 1375.02, + "end": 1377.1, + "probability": 0.82 + }, + { + "start": 1377.74, + "end": 1380.48, + "probability": 0.9925 + }, + { + "start": 1380.68, + "end": 1381.34, + "probability": 0.8466 + }, + { + "start": 1381.7, + "end": 1382.6, + "probability": 0.9807 + }, + { + "start": 1382.72, + "end": 1383.44, + "probability": 0.5351 + }, + { + "start": 1383.9, + "end": 1385.82, + "probability": 0.9312 + }, + { + "start": 1385.9, + "end": 1386.14, + "probability": 0.5106 + }, + { + "start": 1386.38, + "end": 1387.16, + "probability": 0.9644 + }, + { + "start": 1387.48, + "end": 1392.66, + "probability": 0.9945 + }, + { + "start": 1393.0, + "end": 1397.68, + "probability": 0.9924 + }, + { + "start": 1397.96, + "end": 1401.1, + "probability": 0.9904 + }, + { + "start": 1401.1, + "end": 1404.6, + "probability": 0.9655 + }, + { + "start": 1405.6, + "end": 1407.45, + "probability": 0.875 + }, + { + "start": 1407.76, + "end": 1411.92, + "probability": 0.4311 + }, + { + "start": 1414.12, + "end": 1414.52, + "probability": 0.692 + }, + { + "start": 1416.08, + "end": 1417.42, + "probability": 0.4749 + }, + { + "start": 1417.62, + "end": 1417.62, + "probability": 0.3962 + }, + { + "start": 1417.62, + "end": 1419.62, + "probability": 0.9177 + }, + { + "start": 1420.1, + "end": 1422.82, + "probability": 0.9897 + }, + { + "start": 1423.0, + "end": 1424.82, + "probability": 0.8746 + }, + { + "start": 1425.56, + "end": 1426.6, + "probability": 0.8422 + }, + { + "start": 1426.7, + "end": 1427.32, + "probability": 0.7202 + }, + { + "start": 1427.34, + "end": 1430.52, + "probability": 0.9558 + }, + { + "start": 1431.18, + "end": 1433.82, + "probability": 0.879 + }, + { + "start": 1433.82, + "end": 1436.92, + "probability": 0.9951 + }, + { + "start": 1438.1, + "end": 1441.66, + "probability": 0.8057 + }, + { + "start": 1442.36, + "end": 1445.32, + "probability": 0.8765 + }, + { + "start": 1446.1, + "end": 1450.32, + "probability": 0.9948 + }, + { + "start": 1450.48, + "end": 1450.76, + "probability": 0.8829 + }, + { + "start": 1450.98, + "end": 1453.48, + "probability": 0.9937 + }, + { + "start": 1454.36, + "end": 1458.48, + "probability": 0.8204 + }, + { + "start": 1458.88, + "end": 1460.7, + "probability": 0.9091 + }, + { + "start": 1461.22, + "end": 1462.96, + "probability": 0.9804 + }, + { + "start": 1463.72, + "end": 1467.2, + "probability": 0.9783 + }, + { + "start": 1467.26, + "end": 1471.02, + "probability": 0.9766 + }, + { + "start": 1471.88, + "end": 1474.06, + "probability": 0.954 + }, + { + "start": 1474.86, + "end": 1475.78, + "probability": 0.967 + }, + { + "start": 1475.92, + "end": 1477.44, + "probability": 0.9421 + }, + { + "start": 1477.54, + "end": 1480.54, + "probability": 0.9824 + }, + { + "start": 1481.52, + "end": 1482.48, + "probability": 0.6926 + }, + { + "start": 1482.62, + "end": 1485.48, + "probability": 0.9976 + }, + { + "start": 1486.16, + "end": 1490.8, + "probability": 0.903 + }, + { + "start": 1491.4, + "end": 1493.88, + "probability": 0.9657 + }, + { + "start": 1493.96, + "end": 1495.96, + "probability": 0.9965 + }, + { + "start": 1496.58, + "end": 1497.6, + "probability": 0.9694 + }, + { + "start": 1498.08, + "end": 1501.88, + "probability": 0.9713 + }, + { + "start": 1502.36, + "end": 1504.72, + "probability": 0.9918 + }, + { + "start": 1505.08, + "end": 1507.8, + "probability": 0.9957 + }, + { + "start": 1508.28, + "end": 1508.94, + "probability": 0.5695 + }, + { + "start": 1509.5, + "end": 1511.04, + "probability": 0.541 + }, + { + "start": 1511.1, + "end": 1514.52, + "probability": 0.8205 + }, + { + "start": 1515.1, + "end": 1517.28, + "probability": 0.7392 + }, + { + "start": 1519.15, + "end": 1520.48, + "probability": 0.1229 + }, + { + "start": 1520.48, + "end": 1521.24, + "probability": 0.569 + }, + { + "start": 1521.54, + "end": 1521.54, + "probability": 0.6491 + }, + { + "start": 1521.84, + "end": 1523.1, + "probability": 0.7362 + }, + { + "start": 1523.78, + "end": 1526.67, + "probability": 0.8149 + }, + { + "start": 1527.68, + "end": 1531.44, + "probability": 0.7955 + }, + { + "start": 1533.94, + "end": 1537.98, + "probability": 0.3541 + }, + { + "start": 1538.2, + "end": 1539.1, + "probability": 0.7416 + }, + { + "start": 1539.28, + "end": 1540.12, + "probability": 0.5918 + }, + { + "start": 1540.46, + "end": 1541.48, + "probability": 0.913 + }, + { + "start": 1541.94, + "end": 1542.99, + "probability": 0.9912 + }, + { + "start": 1543.98, + "end": 1544.87, + "probability": 0.8915 + }, + { + "start": 1545.84, + "end": 1549.22, + "probability": 0.7104 + }, + { + "start": 1549.72, + "end": 1552.56, + "probability": 0.5256 + }, + { + "start": 1553.54, + "end": 1557.44, + "probability": 0.7475 + }, + { + "start": 1558.06, + "end": 1559.65, + "probability": 0.9455 + }, + { + "start": 1560.2, + "end": 1564.02, + "probability": 0.9757 + }, + { + "start": 1564.46, + "end": 1569.06, + "probability": 0.9891 + }, + { + "start": 1569.22, + "end": 1571.04, + "probability": 0.9363 + }, + { + "start": 1571.84, + "end": 1573.26, + "probability": 0.9757 + }, + { + "start": 1573.36, + "end": 1573.9, + "probability": 0.8494 + }, + { + "start": 1574.34, + "end": 1574.92, + "probability": 0.6657 + }, + { + "start": 1575.62, + "end": 1579.16, + "probability": 0.9922 + }, + { + "start": 1579.28, + "end": 1579.82, + "probability": 0.3924 + }, + { + "start": 1579.9, + "end": 1580.92, + "probability": 0.8575 + }, + { + "start": 1581.54, + "end": 1582.16, + "probability": 0.6336 + }, + { + "start": 1582.3, + "end": 1582.82, + "probability": 0.6931 + }, + { + "start": 1582.92, + "end": 1586.84, + "probability": 0.9961 + }, + { + "start": 1587.66, + "end": 1593.62, + "probability": 0.9971 + }, + { + "start": 1593.8, + "end": 1595.46, + "probability": 0.9696 + }, + { + "start": 1596.2, + "end": 1598.34, + "probability": 0.9961 + }, + { + "start": 1598.54, + "end": 1599.26, + "probability": 0.7655 + }, + { + "start": 1599.44, + "end": 1600.44, + "probability": 0.6601 + }, + { + "start": 1600.8, + "end": 1602.96, + "probability": 0.7283 + }, + { + "start": 1603.0, + "end": 1605.66, + "probability": 0.8384 + }, + { + "start": 1606.22, + "end": 1607.02, + "probability": 0.9233 + }, + { + "start": 1607.62, + "end": 1608.76, + "probability": 0.9929 + }, + { + "start": 1609.44, + "end": 1616.06, + "probability": 0.992 + }, + { + "start": 1616.3, + "end": 1617.98, + "probability": 0.748 + }, + { + "start": 1619.44, + "end": 1621.84, + "probability": 0.9072 + }, + { + "start": 1622.0, + "end": 1623.28, + "probability": 0.9712 + }, + { + "start": 1623.36, + "end": 1624.18, + "probability": 0.92 + }, + { + "start": 1624.5, + "end": 1625.33, + "probability": 0.9595 + }, + { + "start": 1626.66, + "end": 1630.28, + "probability": 0.9974 + }, + { + "start": 1630.76, + "end": 1632.32, + "probability": 0.5882 + }, + { + "start": 1633.02, + "end": 1635.78, + "probability": 0.8203 + }, + { + "start": 1636.06, + "end": 1641.1, + "probability": 0.9932 + }, + { + "start": 1641.6, + "end": 1647.08, + "probability": 0.9795 + }, + { + "start": 1647.16, + "end": 1648.42, + "probability": 0.8723 + }, + { + "start": 1648.52, + "end": 1649.4, + "probability": 0.7695 + }, + { + "start": 1649.44, + "end": 1650.3, + "probability": 0.3657 + }, + { + "start": 1650.38, + "end": 1650.74, + "probability": 0.5715 + }, + { + "start": 1651.12, + "end": 1655.4, + "probability": 0.7965 + }, + { + "start": 1655.48, + "end": 1657.26, + "probability": 0.8928 + }, + { + "start": 1657.34, + "end": 1659.86, + "probability": 0.9594 + }, + { + "start": 1660.42, + "end": 1662.42, + "probability": 0.7772 + }, + { + "start": 1663.06, + "end": 1664.52, + "probability": 0.9937 + }, + { + "start": 1665.1, + "end": 1667.16, + "probability": 0.2075 + }, + { + "start": 1667.16, + "end": 1670.24, + "probability": 0.946 + }, + { + "start": 1670.34, + "end": 1673.34, + "probability": 0.9888 + }, + { + "start": 1674.54, + "end": 1675.8, + "probability": 0.9904 + }, + { + "start": 1675.88, + "end": 1678.38, + "probability": 0.9185 + }, + { + "start": 1678.8, + "end": 1681.9, + "probability": 0.988 + }, + { + "start": 1682.56, + "end": 1683.86, + "probability": 0.9825 + }, + { + "start": 1684.08, + "end": 1686.1, + "probability": 0.6485 + }, + { + "start": 1686.24, + "end": 1686.52, + "probability": 0.8015 + }, + { + "start": 1686.62, + "end": 1687.0, + "probability": 0.6585 + }, + { + "start": 1687.26, + "end": 1687.74, + "probability": 0.6921 + }, + { + "start": 1688.48, + "end": 1690.16, + "probability": 0.5812 + }, + { + "start": 1691.12, + "end": 1693.68, + "probability": 0.8865 + }, + { + "start": 1697.42, + "end": 1700.06, + "probability": 0.5961 + }, + { + "start": 1701.5, + "end": 1702.7, + "probability": 0.5817 + }, + { + "start": 1702.9, + "end": 1707.17, + "probability": 0.9004 + }, + { + "start": 1708.58, + "end": 1713.45, + "probability": 0.9847 + }, + { + "start": 1714.78, + "end": 1715.2, + "probability": 0.6801 + }, + { + "start": 1715.28, + "end": 1717.66, + "probability": 0.9863 + }, + { + "start": 1717.66, + "end": 1721.24, + "probability": 0.9828 + }, + { + "start": 1721.36, + "end": 1722.3, + "probability": 0.8144 + }, + { + "start": 1722.36, + "end": 1722.8, + "probability": 0.859 + }, + { + "start": 1722.88, + "end": 1723.42, + "probability": 0.7137 + }, + { + "start": 1724.0, + "end": 1727.4, + "probability": 0.9662 + }, + { + "start": 1728.16, + "end": 1728.44, + "probability": 0.6807 + }, + { + "start": 1729.78, + "end": 1731.6, + "probability": 0.8022 + }, + { + "start": 1732.62, + "end": 1736.9, + "probability": 0.8047 + }, + { + "start": 1737.46, + "end": 1739.88, + "probability": 0.9843 + }, + { + "start": 1739.96, + "end": 1740.8, + "probability": 0.9871 + }, + { + "start": 1740.88, + "end": 1741.64, + "probability": 0.9792 + }, + { + "start": 1741.98, + "end": 1743.08, + "probability": 0.9834 + }, + { + "start": 1743.96, + "end": 1745.34, + "probability": 0.9683 + }, + { + "start": 1745.96, + "end": 1748.08, + "probability": 0.8902 + }, + { + "start": 1748.98, + "end": 1752.8, + "probability": 0.9692 + }, + { + "start": 1752.8, + "end": 1754.7, + "probability": 0.9902 + }, + { + "start": 1755.86, + "end": 1758.7, + "probability": 0.8919 + }, + { + "start": 1759.56, + "end": 1760.68, + "probability": 0.9744 + }, + { + "start": 1761.0, + "end": 1762.72, + "probability": 0.8273 + }, + { + "start": 1763.5, + "end": 1763.8, + "probability": 0.8643 + }, + { + "start": 1763.9, + "end": 1766.24, + "probability": 0.8937 + }, + { + "start": 1766.46, + "end": 1771.8, + "probability": 0.9928 + }, + { + "start": 1772.34, + "end": 1773.2, + "probability": 0.8608 + }, + { + "start": 1775.02, + "end": 1776.36, + "probability": 0.9329 + }, + { + "start": 1776.78, + "end": 1778.44, + "probability": 0.984 + }, + { + "start": 1778.82, + "end": 1780.32, + "probability": 0.8124 + }, + { + "start": 1780.74, + "end": 1785.66, + "probability": 0.999 + }, + { + "start": 1786.12, + "end": 1788.48, + "probability": 0.9135 + }, + { + "start": 1788.74, + "end": 1792.96, + "probability": 0.965 + }, + { + "start": 1793.08, + "end": 1793.74, + "probability": 0.6257 + }, + { + "start": 1794.3, + "end": 1796.35, + "probability": 0.96 + }, + { + "start": 1796.84, + "end": 1800.14, + "probability": 0.9857 + }, + { + "start": 1800.14, + "end": 1802.46, + "probability": 0.9946 + }, + { + "start": 1802.82, + "end": 1804.44, + "probability": 0.9614 + }, + { + "start": 1804.56, + "end": 1805.88, + "probability": 0.9321 + }, + { + "start": 1814.3, + "end": 1814.64, + "probability": 0.3126 + }, + { + "start": 1814.76, + "end": 1816.66, + "probability": 0.6437 + }, + { + "start": 1817.92, + "end": 1819.8, + "probability": 0.8959 + }, + { + "start": 1819.88, + "end": 1821.08, + "probability": 0.8439 + }, + { + "start": 1821.32, + "end": 1823.57, + "probability": 0.9954 + }, + { + "start": 1824.82, + "end": 1827.5, + "probability": 0.6789 + }, + { + "start": 1827.82, + "end": 1828.54, + "probability": 0.6659 + }, + { + "start": 1828.66, + "end": 1831.64, + "probability": 0.9549 + }, + { + "start": 1832.72, + "end": 1837.0, + "probability": 0.7326 + }, + { + "start": 1837.36, + "end": 1840.78, + "probability": 0.9709 + }, + { + "start": 1840.78, + "end": 1845.1, + "probability": 0.9855 + }, + { + "start": 1845.22, + "end": 1848.86, + "probability": 0.8898 + }, + { + "start": 1849.3, + "end": 1850.42, + "probability": 0.9901 + }, + { + "start": 1850.48, + "end": 1851.5, + "probability": 0.7717 + }, + { + "start": 1851.94, + "end": 1854.2, + "probability": 0.8783 + }, + { + "start": 1854.7, + "end": 1858.08, + "probability": 0.9854 + }, + { + "start": 1858.16, + "end": 1858.7, + "probability": 0.9761 + }, + { + "start": 1859.06, + "end": 1860.56, + "probability": 0.894 + }, + { + "start": 1862.24, + "end": 1864.12, + "probability": 0.8105 + }, + { + "start": 1865.06, + "end": 1866.4, + "probability": 0.8633 + }, + { + "start": 1866.5, + "end": 1871.6, + "probability": 0.7264 + }, + { + "start": 1872.48, + "end": 1873.28, + "probability": 0.8637 + }, + { + "start": 1873.5, + "end": 1878.64, + "probability": 0.7949 + }, + { + "start": 1878.96, + "end": 1880.22, + "probability": 0.4953 + }, + { + "start": 1881.78, + "end": 1883.78, + "probability": 0.9326 + }, + { + "start": 1883.92, + "end": 1887.48, + "probability": 0.8639 + }, + { + "start": 1888.6, + "end": 1889.56, + "probability": 0.839 + }, + { + "start": 1889.7, + "end": 1890.12, + "probability": 0.5457 + }, + { + "start": 1890.22, + "end": 1890.96, + "probability": 0.8431 + }, + { + "start": 1891.02, + "end": 1893.76, + "probability": 0.9611 + }, + { + "start": 1894.34, + "end": 1897.6, + "probability": 0.6495 + }, + { + "start": 1899.22, + "end": 1902.38, + "probability": 0.995 + }, + { + "start": 1902.66, + "end": 1906.0, + "probability": 0.958 + }, + { + "start": 1906.78, + "end": 1908.58, + "probability": 0.5524 + }, + { + "start": 1909.3, + "end": 1912.78, + "probability": 0.7904 + }, + { + "start": 1912.78, + "end": 1920.64, + "probability": 0.9045 + }, + { + "start": 1920.78, + "end": 1922.32, + "probability": 0.9464 + }, + { + "start": 1922.44, + "end": 1922.82, + "probability": 0.5269 + }, + { + "start": 1922.94, + "end": 1923.86, + "probability": 0.9222 + }, + { + "start": 1926.48, + "end": 1927.7, + "probability": 0.6164 + }, + { + "start": 1928.44, + "end": 1931.3, + "probability": 0.9795 + }, + { + "start": 1931.72, + "end": 1932.46, + "probability": 0.559 + }, + { + "start": 1932.56, + "end": 1934.56, + "probability": 0.7531 + }, + { + "start": 1935.02, + "end": 1935.44, + "probability": 0.3261 + }, + { + "start": 1935.5, + "end": 1939.92, + "probability": 0.945 + }, + { + "start": 1940.04, + "end": 1940.58, + "probability": 0.6323 + }, + { + "start": 1940.74, + "end": 1942.28, + "probability": 0.9897 + }, + { + "start": 1942.66, + "end": 1944.96, + "probability": 0.9052 + }, + { + "start": 1945.36, + "end": 1947.46, + "probability": 0.8646 + }, + { + "start": 1947.76, + "end": 1949.03, + "probability": 0.9502 + }, + { + "start": 1949.42, + "end": 1951.48, + "probability": 0.9886 + }, + { + "start": 1951.88, + "end": 1953.42, + "probability": 0.9922 + }, + { + "start": 1954.46, + "end": 1956.42, + "probability": 0.7838 + }, + { + "start": 1956.46, + "end": 1957.82, + "probability": 0.9119 + }, + { + "start": 1958.02, + "end": 1959.96, + "probability": 0.7792 + }, + { + "start": 1960.1, + "end": 1962.58, + "probability": 0.94 + }, + { + "start": 1963.24, + "end": 1963.46, + "probability": 0.7617 + }, + { + "start": 1963.78, + "end": 1964.46, + "probability": 0.9526 + }, + { + "start": 1964.56, + "end": 1965.84, + "probability": 0.7646 + }, + { + "start": 1965.84, + "end": 1966.46, + "probability": 0.8686 + }, + { + "start": 1966.8, + "end": 1968.1, + "probability": 0.9772 + }, + { + "start": 1968.26, + "end": 1969.58, + "probability": 0.9423 + }, + { + "start": 1969.96, + "end": 1972.58, + "probability": 0.9637 + }, + { + "start": 1973.04, + "end": 1974.9, + "probability": 0.9326 + }, + { + "start": 1975.28, + "end": 1977.94, + "probability": 0.836 + }, + { + "start": 1978.24, + "end": 1978.88, + "probability": 0.5294 + }, + { + "start": 1978.94, + "end": 1980.16, + "probability": 0.5407 + }, + { + "start": 1980.16, + "end": 1982.58, + "probability": 0.8209 + }, + { + "start": 1983.34, + "end": 1983.82, + "probability": 0.7124 + }, + { + "start": 1983.94, + "end": 1984.12, + "probability": 0.0041 + }, + { + "start": 1985.96, + "end": 1992.68, + "probability": 0.9905 + }, + { + "start": 1993.1, + "end": 1998.72, + "probability": 0.9774 + }, + { + "start": 1999.32, + "end": 2000.72, + "probability": 0.7846 + }, + { + "start": 2000.86, + "end": 2006.62, + "probability": 0.9971 + }, + { + "start": 2006.62, + "end": 2011.16, + "probability": 0.9878 + }, + { + "start": 2013.44, + "end": 2014.64, + "probability": 0.5617 + }, + { + "start": 2015.56, + "end": 2018.14, + "probability": 0.4917 + }, + { + "start": 2018.52, + "end": 2018.94, + "probability": 0.8859 + }, + { + "start": 2019.66, + "end": 2021.48, + "probability": 0.4355 + }, + { + "start": 2022.42, + "end": 2023.42, + "probability": 0.6376 + }, + { + "start": 2023.64, + "end": 2026.84, + "probability": 0.7706 + }, + { + "start": 2026.84, + "end": 2031.78, + "probability": 0.9772 + }, + { + "start": 2032.9, + "end": 2035.42, + "probability": 0.9158 + }, + { + "start": 2035.42, + "end": 2038.34, + "probability": 0.9412 + }, + { + "start": 2038.96, + "end": 2041.84, + "probability": 0.9849 + }, + { + "start": 2043.1, + "end": 2044.9, + "probability": 0.7902 + }, + { + "start": 2044.9, + "end": 2047.44, + "probability": 0.8558 + }, + { + "start": 2047.62, + "end": 2050.37, + "probability": 0.8083 + }, + { + "start": 2051.6, + "end": 2051.96, + "probability": 0.7144 + }, + { + "start": 2052.06, + "end": 2052.88, + "probability": 0.7219 + }, + { + "start": 2053.02, + "end": 2054.9, + "probability": 0.8765 + }, + { + "start": 2055.3, + "end": 2056.78, + "probability": 0.996 + }, + { + "start": 2056.9, + "end": 2058.46, + "probability": 0.8716 + }, + { + "start": 2058.56, + "end": 2060.28, + "probability": 0.9863 + }, + { + "start": 2060.88, + "end": 2062.38, + "probability": 0.5053 + }, + { + "start": 2062.52, + "end": 2063.22, + "probability": 0.6528 + }, + { + "start": 2063.22, + "end": 2064.06, + "probability": 0.9478 + }, + { + "start": 2064.54, + "end": 2065.78, + "probability": 0.9597 + }, + { + "start": 2066.52, + "end": 2066.7, + "probability": 0.1121 + }, + { + "start": 2066.7, + "end": 2067.81, + "probability": 0.5564 + }, + { + "start": 2068.34, + "end": 2070.06, + "probability": 0.5116 + }, + { + "start": 2070.26, + "end": 2070.52, + "probability": 0.7137 + }, + { + "start": 2071.84, + "end": 2071.9, + "probability": 0.5354 + }, + { + "start": 2071.9, + "end": 2076.76, + "probability": 0.7939 + }, + { + "start": 2078.36, + "end": 2082.48, + "probability": 0.994 + }, + { + "start": 2082.48, + "end": 2087.62, + "probability": 0.997 + }, + { + "start": 2087.8, + "end": 2088.1, + "probability": 0.6914 + }, + { + "start": 2088.12, + "end": 2089.44, + "probability": 0.79 + }, + { + "start": 2089.56, + "end": 2092.96, + "probability": 0.9863 + }, + { + "start": 2093.8, + "end": 2096.42, + "probability": 0.9573 + }, + { + "start": 2096.42, + "end": 2099.32, + "probability": 0.9939 + }, + { + "start": 2099.5, + "end": 2103.52, + "probability": 0.8107 + }, + { + "start": 2104.04, + "end": 2109.22, + "probability": 0.9976 + }, + { + "start": 2110.34, + "end": 2111.76, + "probability": 0.7009 + }, + { + "start": 2111.88, + "end": 2112.52, + "probability": 0.8144 + }, + { + "start": 2112.98, + "end": 2117.78, + "probability": 0.9925 + }, + { + "start": 2117.78, + "end": 2120.62, + "probability": 0.9744 + }, + { + "start": 2120.8, + "end": 2127.96, + "probability": 0.9922 + }, + { + "start": 2129.36, + "end": 2130.1, + "probability": 0.6421 + }, + { + "start": 2130.22, + "end": 2133.36, + "probability": 0.9964 + }, + { + "start": 2134.32, + "end": 2138.6, + "probability": 0.9315 + }, + { + "start": 2139.1, + "end": 2142.54, + "probability": 0.905 + }, + { + "start": 2142.92, + "end": 2148.92, + "probability": 0.9976 + }, + { + "start": 2148.92, + "end": 2157.03, + "probability": 0.997 + }, + { + "start": 2157.78, + "end": 2162.84, + "probability": 0.9985 + }, + { + "start": 2163.92, + "end": 2167.12, + "probability": 0.9879 + }, + { + "start": 2167.12, + "end": 2169.5, + "probability": 0.8936 + }, + { + "start": 2169.5, + "end": 2170.5, + "probability": 0.6241 + }, + { + "start": 2171.84, + "end": 2179.24, + "probability": 0.9854 + }, + { + "start": 2179.26, + "end": 2181.9, + "probability": 0.9966 + }, + { + "start": 2182.06, + "end": 2183.1, + "probability": 0.751 + }, + { + "start": 2183.26, + "end": 2184.3, + "probability": 0.7323 + }, + { + "start": 2184.52, + "end": 2189.94, + "probability": 0.9049 + }, + { + "start": 2189.94, + "end": 2193.82, + "probability": 0.999 + }, + { + "start": 2194.02, + "end": 2194.02, + "probability": 0.4167 + }, + { + "start": 2194.02, + "end": 2200.12, + "probability": 0.9745 + }, + { + "start": 2200.2, + "end": 2202.98, + "probability": 0.9557 + }, + { + "start": 2203.1, + "end": 2205.62, + "probability": 0.9233 + }, + { + "start": 2205.76, + "end": 2207.94, + "probability": 0.8577 + }, + { + "start": 2208.14, + "end": 2210.34, + "probability": 0.9806 + }, + { + "start": 2210.38, + "end": 2211.54, + "probability": 0.9238 + }, + { + "start": 2211.58, + "end": 2216.9, + "probability": 0.981 + }, + { + "start": 2216.9, + "end": 2221.48, + "probability": 0.9541 + }, + { + "start": 2221.98, + "end": 2225.44, + "probability": 0.9979 + }, + { + "start": 2226.2, + "end": 2226.4, + "probability": 0.3749 + }, + { + "start": 2226.52, + "end": 2230.34, + "probability": 0.9929 + }, + { + "start": 2230.34, + "end": 2236.32, + "probability": 0.9717 + }, + { + "start": 2236.32, + "end": 2242.56, + "probability": 0.9534 + }, + { + "start": 2242.6, + "end": 2243.52, + "probability": 0.8368 + }, + { + "start": 2243.68, + "end": 2244.24, + "probability": 0.6841 + }, + { + "start": 2244.42, + "end": 2245.08, + "probability": 0.6258 + }, + { + "start": 2245.2, + "end": 2246.48, + "probability": 0.9776 + }, + { + "start": 2246.96, + "end": 2247.9, + "probability": 0.7214 + }, + { + "start": 2248.12, + "end": 2249.2, + "probability": 0.7024 + }, + { + "start": 2249.61, + "end": 2252.78, + "probability": 0.9893 + }, + { + "start": 2252.78, + "end": 2255.86, + "probability": 0.9902 + }, + { + "start": 2256.46, + "end": 2259.92, + "probability": 0.9901 + }, + { + "start": 2260.46, + "end": 2262.96, + "probability": 0.9892 + }, + { + "start": 2262.96, + "end": 2265.72, + "probability": 0.9992 + }, + { + "start": 2266.66, + "end": 2270.26, + "probability": 0.9785 + }, + { + "start": 2270.44, + "end": 2271.34, + "probability": 0.55 + }, + { + "start": 2271.46, + "end": 2272.32, + "probability": 0.7366 + }, + { + "start": 2272.46, + "end": 2275.74, + "probability": 0.9674 + }, + { + "start": 2276.04, + "end": 2277.76, + "probability": 0.6545 + }, + { + "start": 2277.86, + "end": 2281.06, + "probability": 0.8021 + }, + { + "start": 2281.42, + "end": 2283.96, + "probability": 0.7118 + }, + { + "start": 2284.08, + "end": 2287.64, + "probability": 0.9849 + }, + { + "start": 2287.9, + "end": 2291.1, + "probability": 0.9972 + }, + { + "start": 2291.1, + "end": 2295.12, + "probability": 0.9865 + }, + { + "start": 2295.16, + "end": 2298.18, + "probability": 0.9851 + }, + { + "start": 2298.54, + "end": 2299.14, + "probability": 0.7408 + }, + { + "start": 2299.58, + "end": 2300.48, + "probability": 0.7442 + }, + { + "start": 2300.9, + "end": 2302.28, + "probability": 0.9328 + }, + { + "start": 2302.44, + "end": 2304.22, + "probability": 0.9186 + }, + { + "start": 2304.84, + "end": 2306.98, + "probability": 0.9097 + }, + { + "start": 2307.12, + "end": 2310.22, + "probability": 0.9882 + }, + { + "start": 2310.22, + "end": 2313.4, + "probability": 0.9933 + }, + { + "start": 2314.08, + "end": 2317.74, + "probability": 0.9963 + }, + { + "start": 2318.32, + "end": 2322.36, + "probability": 0.9969 + }, + { + "start": 2322.36, + "end": 2327.22, + "probability": 0.9701 + }, + { + "start": 2327.92, + "end": 2331.04, + "probability": 0.9757 + }, + { + "start": 2331.9, + "end": 2336.58, + "probability": 0.9914 + }, + { + "start": 2336.58, + "end": 2342.0, + "probability": 0.9937 + }, + { + "start": 2342.86, + "end": 2346.58, + "probability": 0.9941 + }, + { + "start": 2346.66, + "end": 2348.32, + "probability": 0.8468 + }, + { + "start": 2348.84, + "end": 2350.06, + "probability": 0.8011 + }, + { + "start": 2350.2, + "end": 2352.98, + "probability": 0.8718 + }, + { + "start": 2352.98, + "end": 2359.46, + "probability": 0.949 + }, + { + "start": 2359.58, + "end": 2363.82, + "probability": 0.9688 + }, + { + "start": 2364.06, + "end": 2369.7, + "probability": 0.9615 + }, + { + "start": 2369.82, + "end": 2371.26, + "probability": 0.7607 + }, + { + "start": 2371.72, + "end": 2372.26, + "probability": 0.5988 + }, + { + "start": 2372.48, + "end": 2378.32, + "probability": 0.9058 + }, + { + "start": 2378.4, + "end": 2381.68, + "probability": 0.7937 + }, + { + "start": 2381.78, + "end": 2385.52, + "probability": 0.9937 + }, + { + "start": 2385.68, + "end": 2390.16, + "probability": 0.9934 + }, + { + "start": 2390.22, + "end": 2391.6, + "probability": 0.9406 + }, + { + "start": 2392.54, + "end": 2398.18, + "probability": 0.9938 + }, + { + "start": 2398.3, + "end": 2404.98, + "probability": 0.9889 + }, + { + "start": 2405.28, + "end": 2407.1, + "probability": 0.8013 + }, + { + "start": 2407.64, + "end": 2408.4, + "probability": 0.9514 + }, + { + "start": 2408.46, + "end": 2410.8, + "probability": 0.9078 + }, + { + "start": 2412.16, + "end": 2415.4, + "probability": 0.7145 + }, + { + "start": 2415.48, + "end": 2416.04, + "probability": 0.5007 + }, + { + "start": 2416.36, + "end": 2420.28, + "probability": 0.9775 + }, + { + "start": 2421.22, + "end": 2424.58, + "probability": 0.6662 + }, + { + "start": 2424.58, + "end": 2427.34, + "probability": 0.9869 + }, + { + "start": 2428.1, + "end": 2429.58, + "probability": 0.7668 + }, + { + "start": 2429.86, + "end": 2436.04, + "probability": 0.9185 + }, + { + "start": 2436.14, + "end": 2443.16, + "probability": 0.8051 + }, + { + "start": 2443.84, + "end": 2446.78, + "probability": 0.9739 + }, + { + "start": 2447.54, + "end": 2450.64, + "probability": 0.9929 + }, + { + "start": 2450.84, + "end": 2451.04, + "probability": 0.7568 + }, + { + "start": 2451.98, + "end": 2455.54, + "probability": 0.9679 + }, + { + "start": 2455.66, + "end": 2458.04, + "probability": 0.7788 + }, + { + "start": 2458.12, + "end": 2460.92, + "probability": 0.8943 + }, + { + "start": 2461.12, + "end": 2463.29, + "probability": 0.9575 + }, + { + "start": 2464.4, + "end": 2466.12, + "probability": 0.875 + }, + { + "start": 2466.18, + "end": 2470.58, + "probability": 0.9556 + }, + { + "start": 2471.16, + "end": 2473.22, + "probability": 0.9816 + }, + { + "start": 2473.28, + "end": 2474.62, + "probability": 0.9865 + }, + { + "start": 2474.72, + "end": 2477.69, + "probability": 0.988 + }, + { + "start": 2478.34, + "end": 2479.02, + "probability": 0.9316 + }, + { + "start": 2479.06, + "end": 2482.06, + "probability": 0.9917 + }, + { + "start": 2482.14, + "end": 2484.1, + "probability": 0.9973 + }, + { + "start": 2484.66, + "end": 2486.8, + "probability": 0.9886 + }, + { + "start": 2486.8, + "end": 2489.0, + "probability": 0.9792 + }, + { + "start": 2489.1, + "end": 2493.7, + "probability": 0.7632 + }, + { + "start": 2494.06, + "end": 2497.62, + "probability": 0.9977 + }, + { + "start": 2497.74, + "end": 2498.5, + "probability": 0.7476 + }, + { + "start": 2498.66, + "end": 2500.49, + "probability": 0.8707 + }, + { + "start": 2500.78, + "end": 2502.84, + "probability": 0.986 + }, + { + "start": 2503.54, + "end": 2504.46, + "probability": 0.4382 + }, + { + "start": 2504.5, + "end": 2505.12, + "probability": 0.8837 + }, + { + "start": 2505.4, + "end": 2508.88, + "probability": 0.9961 + }, + { + "start": 2509.0, + "end": 2510.46, + "probability": 0.8717 + }, + { + "start": 2510.52, + "end": 2510.8, + "probability": 0.8752 + }, + { + "start": 2511.0, + "end": 2513.78, + "probability": 0.9873 + }, + { + "start": 2514.14, + "end": 2517.04, + "probability": 0.9474 + }, + { + "start": 2517.42, + "end": 2521.18, + "probability": 0.9814 + }, + { + "start": 2521.18, + "end": 2525.42, + "probability": 0.9977 + }, + { + "start": 2525.92, + "end": 2526.72, + "probability": 0.8661 + }, + { + "start": 2526.88, + "end": 2532.04, + "probability": 0.9958 + }, + { + "start": 2532.5, + "end": 2535.12, + "probability": 0.9785 + }, + { + "start": 2535.64, + "end": 2538.18, + "probability": 0.9773 + }, + { + "start": 2538.18, + "end": 2541.3, + "probability": 0.9597 + }, + { + "start": 2541.42, + "end": 2544.42, + "probability": 0.9932 + }, + { + "start": 2544.82, + "end": 2548.62, + "probability": 0.9929 + }, + { + "start": 2549.06, + "end": 2549.94, + "probability": 0.7054 + }, + { + "start": 2550.04, + "end": 2551.08, + "probability": 0.8268 + }, + { + "start": 2551.12, + "end": 2555.2, + "probability": 0.8848 + }, + { + "start": 2555.2, + "end": 2559.86, + "probability": 0.9814 + }, + { + "start": 2560.18, + "end": 2565.86, + "probability": 0.7926 + }, + { + "start": 2565.98, + "end": 2572.08, + "probability": 0.9597 + }, + { + "start": 2572.42, + "end": 2574.14, + "probability": 0.9414 + }, + { + "start": 2574.22, + "end": 2575.52, + "probability": 0.8931 + }, + { + "start": 2576.14, + "end": 2577.18, + "probability": 0.8609 + }, + { + "start": 2577.6, + "end": 2579.02, + "probability": 0.7074 + }, + { + "start": 2579.16, + "end": 2580.88, + "probability": 0.7607 + }, + { + "start": 2581.04, + "end": 2584.7, + "probability": 0.9593 + }, + { + "start": 2585.2, + "end": 2585.82, + "probability": 0.8552 + }, + { + "start": 2585.9, + "end": 2589.88, + "probability": 0.9285 + }, + { + "start": 2590.04, + "end": 2590.68, + "probability": 0.3577 + }, + { + "start": 2590.92, + "end": 2594.64, + "probability": 0.7918 + }, + { + "start": 2595.04, + "end": 2599.68, + "probability": 0.8992 + }, + { + "start": 2599.96, + "end": 2605.1, + "probability": 0.9364 + }, + { + "start": 2605.81, + "end": 2608.62, + "probability": 0.632 + }, + { + "start": 2608.64, + "end": 2612.18, + "probability": 0.8418 + }, + { + "start": 2612.34, + "end": 2613.14, + "probability": 0.6441 + }, + { + "start": 2613.24, + "end": 2614.98, + "probability": 0.9504 + }, + { + "start": 2615.38, + "end": 2615.92, + "probability": 0.3758 + }, + { + "start": 2615.92, + "end": 2619.22, + "probability": 0.8051 + }, + { + "start": 2619.7, + "end": 2622.5, + "probability": 0.9824 + }, + { + "start": 2622.8, + "end": 2624.6, + "probability": 0.7668 + }, + { + "start": 2624.7, + "end": 2625.12, + "probability": 0.3152 + }, + { + "start": 2625.42, + "end": 2626.52, + "probability": 0.916 + }, + { + "start": 2626.88, + "end": 2627.74, + "probability": 0.449 + }, + { + "start": 2628.06, + "end": 2631.32, + "probability": 0.624 + }, + { + "start": 2631.32, + "end": 2632.4, + "probability": 0.9006 + }, + { + "start": 2632.84, + "end": 2638.8, + "probability": 0.8846 + }, + { + "start": 2638.8, + "end": 2641.74, + "probability": 0.9766 + }, + { + "start": 2642.02, + "end": 2643.4, + "probability": 0.8639 + }, + { + "start": 2643.58, + "end": 2645.6, + "probability": 0.633 + }, + { + "start": 2645.84, + "end": 2648.22, + "probability": 0.7275 + }, + { + "start": 2648.46, + "end": 2652.16, + "probability": 0.9264 + }, + { + "start": 2652.16, + "end": 2656.78, + "probability": 0.9965 + }, + { + "start": 2656.78, + "end": 2658.18, + "probability": 0.9883 + }, + { + "start": 2658.18, + "end": 2658.72, + "probability": 0.8053 + }, + { + "start": 2659.38, + "end": 2659.96, + "probability": 0.782 + }, + { + "start": 2660.02, + "end": 2664.15, + "probability": 0.9849 + }, + { + "start": 2664.38, + "end": 2668.6, + "probability": 0.9961 + }, + { + "start": 2668.6, + "end": 2669.12, + "probability": 0.1894 + }, + { + "start": 2669.14, + "end": 2670.56, + "probability": 0.4971 + }, + { + "start": 2671.14, + "end": 2672.9, + "probability": 0.1363 + }, + { + "start": 2672.9, + "end": 2673.78, + "probability": 0.3884 + }, + { + "start": 2676.44, + "end": 2676.44, + "probability": 0.065 + }, + { + "start": 2677.04, + "end": 2678.44, + "probability": 0.0455 + }, + { + "start": 2679.22, + "end": 2682.2, + "probability": 0.2136 + }, + { + "start": 2682.74, + "end": 2687.88, + "probability": 0.4461 + }, + { + "start": 2688.08, + "end": 2689.5, + "probability": 0.3715 + }, + { + "start": 2689.84, + "end": 2690.26, + "probability": 0.0795 + }, + { + "start": 2690.74, + "end": 2692.48, + "probability": 0.1469 + }, + { + "start": 2693.06, + "end": 2695.02, + "probability": 0.2187 + }, + { + "start": 2695.62, + "end": 2696.12, + "probability": 0.1336 + }, + { + "start": 2698.65, + "end": 2699.0, + "probability": 0.0439 + }, + { + "start": 2700.69, + "end": 2704.62, + "probability": 0.3414 + }, + { + "start": 2704.76, + "end": 2705.18, + "probability": 0.5537 + }, + { + "start": 2706.67, + "end": 2710.22, + "probability": 0.7748 + }, + { + "start": 2710.22, + "end": 2710.56, + "probability": 0.7048 + }, + { + "start": 2710.66, + "end": 2711.64, + "probability": 0.9052 + }, + { + "start": 2712.1, + "end": 2712.32, + "probability": 0.8226 + }, + { + "start": 2713.06, + "end": 2717.54, + "probability": 0.9922 + }, + { + "start": 2717.54, + "end": 2722.5, + "probability": 0.8713 + }, + { + "start": 2722.58, + "end": 2725.5, + "probability": 0.9976 + }, + { + "start": 2725.5, + "end": 2726.26, + "probability": 0.0573 + }, + { + "start": 2731.53, + "end": 2732.7, + "probability": 0.984 + }, + { + "start": 2736.12, + "end": 2737.98, + "probability": 0.9954 + }, + { + "start": 2738.46, + "end": 2738.74, + "probability": 0.7293 + }, + { + "start": 2738.92, + "end": 2740.84, + "probability": 0.0177 + }, + { + "start": 2741.2, + "end": 2742.18, + "probability": 0.1044 + }, + { + "start": 2743.46, + "end": 2744.96, + "probability": 0.7515 + }, + { + "start": 2745.32, + "end": 2746.68, + "probability": 0.6663 + }, + { + "start": 2746.72, + "end": 2750.82, + "probability": 0.0539 + }, + { + "start": 2751.1, + "end": 2751.78, + "probability": 0.7636 + }, + { + "start": 2752.92, + "end": 2760.12, + "probability": 0.9371 + }, + { + "start": 2760.12, + "end": 2762.58, + "probability": 0.0051 + }, + { + "start": 2763.38, + "end": 2764.12, + "probability": 0.6772 + }, + { + "start": 2764.16, + "end": 2765.6, + "probability": 0.5768 + }, + { + "start": 2765.74, + "end": 2768.28, + "probability": 0.9529 + }, + { + "start": 2768.42, + "end": 2770.98, + "probability": 0.8207 + }, + { + "start": 2770.98, + "end": 2774.58, + "probability": 0.966 + }, + { + "start": 2777.96, + "end": 2779.8, + "probability": 0.0168 + }, + { + "start": 2780.62, + "end": 2780.88, + "probability": 0.3348 + }, + { + "start": 2780.88, + "end": 2780.96, + "probability": 0.0221 + }, + { + "start": 2780.96, + "end": 2780.96, + "probability": 0.1496 + }, + { + "start": 2780.96, + "end": 2780.96, + "probability": 0.1241 + }, + { + "start": 2780.96, + "end": 2784.02, + "probability": 0.7579 + }, + { + "start": 2784.18, + "end": 2785.32, + "probability": 0.7762 + }, + { + "start": 2785.5, + "end": 2787.54, + "probability": 0.9049 + }, + { + "start": 2787.76, + "end": 2788.62, + "probability": 0.1224 + }, + { + "start": 2788.84, + "end": 2789.56, + "probability": 0.1571 + }, + { + "start": 2790.08, + "end": 2791.46, + "probability": 0.648 + }, + { + "start": 2791.58, + "end": 2792.28, + "probability": 0.518 + }, + { + "start": 2792.88, + "end": 2796.02, + "probability": 0.2777 + }, + { + "start": 2797.92, + "end": 2798.26, + "probability": 0.6483 + }, + { + "start": 2798.62, + "end": 2799.2, + "probability": 0.2036 + }, + { + "start": 2799.36, + "end": 2800.24, + "probability": 0.4194 + }, + { + "start": 2800.24, + "end": 2802.66, + "probability": 0.6069 + }, + { + "start": 2803.04, + "end": 2803.79, + "probability": 0.1776 + }, + { + "start": 2804.52, + "end": 2804.86, + "probability": 0.7567 + }, + { + "start": 2804.92, + "end": 2807.86, + "probability": 0.849 + }, + { + "start": 2808.18, + "end": 2809.67, + "probability": 0.9888 + }, + { + "start": 2810.12, + "end": 2810.56, + "probability": 0.2892 + }, + { + "start": 2811.3, + "end": 2811.8, + "probability": 0.755 + }, + { + "start": 2812.02, + "end": 2813.8, + "probability": 0.9248 + }, + { + "start": 2814.02, + "end": 2816.6, + "probability": 0.9949 + }, + { + "start": 2816.72, + "end": 2819.5, + "probability": 0.9982 + }, + { + "start": 2819.84, + "end": 2824.02, + "probability": 0.9976 + }, + { + "start": 2824.72, + "end": 2825.36, + "probability": 0.5362 + }, + { + "start": 2825.44, + "end": 2829.52, + "probability": 0.8994 + }, + { + "start": 2829.64, + "end": 2830.1, + "probability": 0.5467 + }, + { + "start": 2830.52, + "end": 2832.14, + "probability": 0.918 + }, + { + "start": 2832.86, + "end": 2834.5, + "probability": 0.7254 + }, + { + "start": 2834.54, + "end": 2836.17, + "probability": 0.6626 + }, + { + "start": 2836.36, + "end": 2836.84, + "probability": 0.6335 + }, + { + "start": 2836.92, + "end": 2837.6, + "probability": 0.6425 + }, + { + "start": 2837.72, + "end": 2839.04, + "probability": 0.9223 + }, + { + "start": 2839.22, + "end": 2847.94, + "probability": 0.5992 + }, + { + "start": 2847.94, + "end": 2848.18, + "probability": 0.4824 + }, + { + "start": 2848.54, + "end": 2851.2, + "probability": 0.6568 + }, + { + "start": 2851.28, + "end": 2853.18, + "probability": 0.9849 + }, + { + "start": 2853.4, + "end": 2854.66, + "probability": 0.5436 + }, + { + "start": 2855.1, + "end": 2858.08, + "probability": 0.9717 + }, + { + "start": 2858.12, + "end": 2858.52, + "probability": 0.8409 + }, + { + "start": 2858.58, + "end": 2859.8, + "probability": 0.8838 + }, + { + "start": 2859.92, + "end": 2860.62, + "probability": 0.714 + }, + { + "start": 2860.66, + "end": 2862.87, + "probability": 0.9749 + }, + { + "start": 2863.1, + "end": 2864.14, + "probability": 0.6759 + }, + { + "start": 2864.5, + "end": 2867.04, + "probability": 0.9922 + }, + { + "start": 2867.26, + "end": 2871.36, + "probability": 0.9842 + }, + { + "start": 2871.48, + "end": 2871.58, + "probability": 0.0547 + }, + { + "start": 2871.58, + "end": 2877.04, + "probability": 0.9925 + }, + { + "start": 2877.42, + "end": 2881.46, + "probability": 0.7523 + }, + { + "start": 2881.54, + "end": 2885.32, + "probability": 0.6218 + }, + { + "start": 2885.56, + "end": 2888.62, + "probability": 0.6139 + }, + { + "start": 2890.05, + "end": 2893.58, + "probability": 0.8137 + }, + { + "start": 2893.58, + "end": 2897.32, + "probability": 0.8377 + }, + { + "start": 2898.3, + "end": 2898.66, + "probability": 0.6001 + }, + { + "start": 2898.84, + "end": 2902.34, + "probability": 0.9731 + }, + { + "start": 2902.48, + "end": 2907.06, + "probability": 0.9175 + }, + { + "start": 2907.98, + "end": 2911.78, + "probability": 0.5705 + }, + { + "start": 2912.0, + "end": 2914.02, + "probability": 0.9863 + }, + { + "start": 2914.12, + "end": 2914.56, + "probability": 0.4429 + }, + { + "start": 2914.56, + "end": 2915.02, + "probability": 0.247 + }, + { + "start": 2916.34, + "end": 2917.78, + "probability": 0.6455 + }, + { + "start": 2917.78, + "end": 2921.86, + "probability": 0.5383 + }, + { + "start": 2922.56, + "end": 2923.2, + "probability": 0.6171 + }, + { + "start": 2923.34, + "end": 2923.8, + "probability": 0.5717 + }, + { + "start": 2923.84, + "end": 2926.96, + "probability": 0.9576 + }, + { + "start": 2927.7, + "end": 2929.2, + "probability": 0.5728 + }, + { + "start": 2930.26, + "end": 2933.58, + "probability": 0.6904 + }, + { + "start": 2933.66, + "end": 2936.44, + "probability": 0.9807 + }, + { + "start": 2936.7, + "end": 2937.48, + "probability": 0.9937 + }, + { + "start": 2938.04, + "end": 2940.34, + "probability": 0.8674 + }, + { + "start": 2940.34, + "end": 2940.7, + "probability": 0.7793 + }, + { + "start": 2942.12, + "end": 2944.72, + "probability": 0.9875 + }, + { + "start": 2944.92, + "end": 2948.68, + "probability": 0.9965 + }, + { + "start": 2948.68, + "end": 2952.86, + "probability": 0.9788 + }, + { + "start": 2953.52, + "end": 2957.0, + "probability": 0.9929 + }, + { + "start": 2957.0, + "end": 2961.3, + "probability": 0.9922 + }, + { + "start": 2961.78, + "end": 2963.84, + "probability": 0.9932 + }, + { + "start": 2963.96, + "end": 2965.24, + "probability": 0.875 + }, + { + "start": 2965.32, + "end": 2965.76, + "probability": 0.7545 + }, + { + "start": 2965.86, + "end": 2967.18, + "probability": 0.984 + }, + { + "start": 2968.2, + "end": 2968.68, + "probability": 0.4709 + }, + { + "start": 2968.72, + "end": 2971.14, + "probability": 0.4384 + }, + { + "start": 2971.14, + "end": 2971.14, + "probability": 0.1071 + }, + { + "start": 2971.14, + "end": 2971.98, + "probability": 0.3186 + }, + { + "start": 2972.08, + "end": 2973.48, + "probability": 0.9048 + }, + { + "start": 2973.74, + "end": 2975.6, + "probability": 0.8885 + }, + { + "start": 2976.28, + "end": 2978.4, + "probability": 0.9272 + }, + { + "start": 2978.44, + "end": 2980.6, + "probability": 0.988 + }, + { + "start": 2980.6, + "end": 2983.48, + "probability": 0.9948 + }, + { + "start": 2983.74, + "end": 2984.7, + "probability": 0.7063 + }, + { + "start": 2984.78, + "end": 2986.08, + "probability": 0.9594 + }, + { + "start": 2986.58, + "end": 2990.8, + "probability": 0.8057 + }, + { + "start": 2991.32, + "end": 2993.82, + "probability": 0.9932 + }, + { + "start": 2993.82, + "end": 2996.62, + "probability": 0.9284 + }, + { + "start": 2997.08, + "end": 3002.66, + "probability": 0.9861 + }, + { + "start": 3002.8, + "end": 3002.96, + "probability": 0.4447 + }, + { + "start": 3003.06, + "end": 3004.06, + "probability": 0.9498 + }, + { + "start": 3004.68, + "end": 3004.9, + "probability": 0.531 + }, + { + "start": 3004.96, + "end": 3006.5, + "probability": 0.8853 + }, + { + "start": 3006.68, + "end": 3010.44, + "probability": 0.9883 + }, + { + "start": 3010.44, + "end": 3013.76, + "probability": 0.9757 + }, + { + "start": 3014.3, + "end": 3018.06, + "probability": 0.8607 + }, + { + "start": 3018.06, + "end": 3021.78, + "probability": 0.9839 + }, + { + "start": 3021.82, + "end": 3024.68, + "probability": 0.9954 + }, + { + "start": 3024.88, + "end": 3027.86, + "probability": 0.9481 + }, + { + "start": 3028.74, + "end": 3030.78, + "probability": 0.9794 + }, + { + "start": 3031.2, + "end": 3033.64, + "probability": 0.9252 + }, + { + "start": 3033.64, + "end": 3037.2, + "probability": 0.9675 + }, + { + "start": 3037.52, + "end": 3044.32, + "probability": 0.9938 + }, + { + "start": 3044.94, + "end": 3047.7, + "probability": 0.9604 + }, + { + "start": 3048.44, + "end": 3055.62, + "probability": 0.9401 + }, + { + "start": 3056.06, + "end": 3059.38, + "probability": 0.9917 + }, + { + "start": 3059.48, + "end": 3061.42, + "probability": 0.9879 + }, + { + "start": 3061.58, + "end": 3061.98, + "probability": 0.2771 + }, + { + "start": 3062.0, + "end": 3062.92, + "probability": 0.8716 + }, + { + "start": 3062.98, + "end": 3064.35, + "probability": 0.7903 + }, + { + "start": 3064.84, + "end": 3070.18, + "probability": 0.9718 + }, + { + "start": 3070.26, + "end": 3074.02, + "probability": 0.9243 + }, + { + "start": 3074.1, + "end": 3078.58, + "probability": 0.997 + }, + { + "start": 3078.62, + "end": 3079.6, + "probability": 0.9019 + }, + { + "start": 3080.26, + "end": 3081.9, + "probability": 0.9847 + }, + { + "start": 3081.98, + "end": 3084.3, + "probability": 0.8159 + }, + { + "start": 3084.34, + "end": 3085.38, + "probability": 0.571 + }, + { + "start": 3086.02, + "end": 3092.3, + "probability": 0.9181 + }, + { + "start": 3093.02, + "end": 3093.54, + "probability": 0.6778 + }, + { + "start": 3093.56, + "end": 3094.5, + "probability": 0.9753 + }, + { + "start": 3094.66, + "end": 3095.76, + "probability": 0.9639 + }, + { + "start": 3095.9, + "end": 3096.8, + "probability": 0.9563 + }, + { + "start": 3096.84, + "end": 3102.36, + "probability": 0.909 + }, + { + "start": 3103.18, + "end": 3105.52, + "probability": 0.9766 + }, + { + "start": 3105.68, + "end": 3107.56, + "probability": 0.7832 + }, + { + "start": 3107.7, + "end": 3110.92, + "probability": 0.9968 + }, + { + "start": 3111.18, + "end": 3115.7, + "probability": 0.9154 + }, + { + "start": 3115.84, + "end": 3120.08, + "probability": 0.985 + }, + { + "start": 3120.24, + "end": 3122.4, + "probability": 0.8533 + }, + { + "start": 3122.98, + "end": 3128.68, + "probability": 0.9583 + }, + { + "start": 3129.12, + "end": 3130.18, + "probability": 0.5215 + }, + { + "start": 3131.09, + "end": 3132.19, + "probability": 0.9326 + }, + { + "start": 3132.48, + "end": 3133.92, + "probability": 0.6663 + }, + { + "start": 3134.7, + "end": 3135.82, + "probability": 0.7692 + }, + { + "start": 3135.82, + "end": 3138.14, + "probability": 0.9851 + }, + { + "start": 3139.02, + "end": 3139.7, + "probability": 0.3074 + }, + { + "start": 3139.7, + "end": 3142.04, + "probability": 0.9438 + }, + { + "start": 3142.18, + "end": 3142.9, + "probability": 0.5696 + }, + { + "start": 3142.98, + "end": 3146.46, + "probability": 0.8869 + }, + { + "start": 3147.58, + "end": 3150.8, + "probability": 0.6062 + }, + { + "start": 3150.96, + "end": 3155.12, + "probability": 0.9931 + }, + { + "start": 3155.56, + "end": 3156.06, + "probability": 0.2856 + }, + { + "start": 3156.2, + "end": 3157.9, + "probability": 0.6673 + }, + { + "start": 3158.38, + "end": 3160.0, + "probability": 0.6481 + }, + { + "start": 3160.04, + "end": 3162.34, + "probability": 0.7235 + }, + { + "start": 3162.38, + "end": 3163.74, + "probability": 0.9293 + }, + { + "start": 3163.8, + "end": 3166.76, + "probability": 0.8044 + }, + { + "start": 3167.58, + "end": 3167.9, + "probability": 0.0544 + }, + { + "start": 3167.96, + "end": 3168.62, + "probability": 0.0306 + }, + { + "start": 3168.62, + "end": 3169.52, + "probability": 0.3598 + }, + { + "start": 3169.76, + "end": 3175.04, + "probability": 0.8238 + }, + { + "start": 3175.08, + "end": 3176.08, + "probability": 0.6456 + }, + { + "start": 3176.12, + "end": 3178.06, + "probability": 0.5385 + }, + { + "start": 3178.12, + "end": 3179.3, + "probability": 0.8607 + }, + { + "start": 3179.44, + "end": 3180.5, + "probability": 0.9198 + }, + { + "start": 3180.86, + "end": 3182.3, + "probability": 0.3428 + }, + { + "start": 3182.84, + "end": 3184.28, + "probability": 0.538 + }, + { + "start": 3184.92, + "end": 3192.1, + "probability": 0.8439 + }, + { + "start": 3192.52, + "end": 3193.45, + "probability": 0.7643 + }, + { + "start": 3193.78, + "end": 3194.22, + "probability": 0.8922 + }, + { + "start": 3194.24, + "end": 3199.94, + "probability": 0.9913 + }, + { + "start": 3199.98, + "end": 3202.54, + "probability": 0.4227 + }, + { + "start": 3202.66, + "end": 3203.18, + "probability": 0.8508 + }, + { + "start": 3203.22, + "end": 3203.88, + "probability": 0.6991 + }, + { + "start": 3204.1, + "end": 3206.06, + "probability": 0.7115 + }, + { + "start": 3206.12, + "end": 3208.28, + "probability": 0.874 + }, + { + "start": 3208.4, + "end": 3210.18, + "probability": 0.8958 + }, + { + "start": 3210.58, + "end": 3212.24, + "probability": 0.6207 + }, + { + "start": 3212.36, + "end": 3214.16, + "probability": 0.9783 + }, + { + "start": 3214.4, + "end": 3216.56, + "probability": 0.6538 + }, + { + "start": 3216.56, + "end": 3217.02, + "probability": 0.5331 + }, + { + "start": 3217.16, + "end": 3218.54, + "probability": 0.8232 + }, + { + "start": 3218.88, + "end": 3219.44, + "probability": 0.7805 + }, + { + "start": 3219.46, + "end": 3221.54, + "probability": 0.9909 + }, + { + "start": 3221.66, + "end": 3227.94, + "probability": 0.7336 + }, + { + "start": 3228.14, + "end": 3230.32, + "probability": 0.8072 + }, + { + "start": 3230.48, + "end": 3235.12, + "probability": 0.9922 + }, + { + "start": 3236.16, + "end": 3238.98, + "probability": 0.9243 + }, + { + "start": 3239.38, + "end": 3242.9, + "probability": 0.817 + }, + { + "start": 3242.94, + "end": 3243.71, + "probability": 0.5512 + }, + { + "start": 3243.9, + "end": 3244.2, + "probability": 0.7729 + }, + { + "start": 3244.4, + "end": 3245.26, + "probability": 0.847 + }, + { + "start": 3246.5, + "end": 3246.7, + "probability": 0.6316 + }, + { + "start": 3246.78, + "end": 3249.28, + "probability": 0.975 + }, + { + "start": 3249.34, + "end": 3250.54, + "probability": 0.7007 + }, + { + "start": 3250.74, + "end": 3253.5, + "probability": 0.6554 + }, + { + "start": 3255.12, + "end": 3255.42, + "probability": 0.1426 + }, + { + "start": 3255.42, + "end": 3256.36, + "probability": 0.5386 + }, + { + "start": 3257.33, + "end": 3259.78, + "probability": 0.8972 + }, + { + "start": 3259.78, + "end": 3260.46, + "probability": 0.5473 + }, + { + "start": 3260.46, + "end": 3261.42, + "probability": 0.7973 + }, + { + "start": 3261.54, + "end": 3262.06, + "probability": 0.7535 + }, + { + "start": 3262.24, + "end": 3263.9, + "probability": 0.5526 + }, + { + "start": 3264.58, + "end": 3265.78, + "probability": 0.9207 + }, + { + "start": 3265.84, + "end": 3266.48, + "probability": 0.8613 + }, + { + "start": 3266.64, + "end": 3267.28, + "probability": 0.2944 + }, + { + "start": 3267.36, + "end": 3270.24, + "probability": 0.7256 + }, + { + "start": 3272.67, + "end": 3273.48, + "probability": 0.5641 + }, + { + "start": 3279.06, + "end": 3282.58, + "probability": 0.393 + }, + { + "start": 3283.06, + "end": 3283.76, + "probability": 0.6844 + }, + { + "start": 3284.18, + "end": 3286.3, + "probability": 0.5772 + }, + { + "start": 3286.5, + "end": 3291.08, + "probability": 0.6802 + }, + { + "start": 3291.52, + "end": 3294.02, + "probability": 0.7863 + }, + { + "start": 3294.22, + "end": 3297.58, + "probability": 0.838 + }, + { + "start": 3298.66, + "end": 3299.86, + "probability": 0.9004 + }, + { + "start": 3300.54, + "end": 3301.84, + "probability": 0.176 + }, + { + "start": 3302.36, + "end": 3305.68, + "probability": 0.9417 + }, + { + "start": 3305.88, + "end": 3305.88, + "probability": 0.2955 + }, + { + "start": 3306.0, + "end": 3307.78, + "probability": 0.7751 + }, + { + "start": 3307.86, + "end": 3308.99, + "probability": 0.9002 + }, + { + "start": 3309.68, + "end": 3309.68, + "probability": 0.1036 + }, + { + "start": 3309.68, + "end": 3310.34, + "probability": 0.2758 + }, + { + "start": 3310.5, + "end": 3313.04, + "probability": 0.8124 + }, + { + "start": 3313.28, + "end": 3316.56, + "probability": 0.856 + }, + { + "start": 3316.72, + "end": 3316.84, + "probability": 0.7374 + }, + { + "start": 3317.38, + "end": 3319.34, + "probability": 0.8793 + }, + { + "start": 3319.64, + "end": 3321.08, + "probability": 0.6648 + }, + { + "start": 3321.2, + "end": 3322.22, + "probability": 0.3907 + }, + { + "start": 3323.32, + "end": 3324.58, + "probability": 0.2904 + }, + { + "start": 3324.84, + "end": 3326.38, + "probability": 0.8914 + }, + { + "start": 3326.5, + "end": 3329.12, + "probability": 0.9355 + }, + { + "start": 3329.44, + "end": 3331.34, + "probability": 0.9959 + }, + { + "start": 3331.86, + "end": 3332.44, + "probability": 0.6579 + }, + { + "start": 3332.66, + "end": 3335.82, + "probability": 0.8719 + }, + { + "start": 3336.18, + "end": 3339.02, + "probability": 0.9546 + }, + { + "start": 3339.1, + "end": 3343.4, + "probability": 0.6764 + }, + { + "start": 3344.1, + "end": 3349.48, + "probability": 0.8766 + }, + { + "start": 3350.42, + "end": 3355.28, + "probability": 0.9943 + }, + { + "start": 3360.74, + "end": 3361.52, + "probability": 0.6171 + }, + { + "start": 3361.64, + "end": 3365.96, + "probability": 0.9869 + }, + { + "start": 3365.96, + "end": 3370.06, + "probability": 0.8903 + }, + { + "start": 3371.58, + "end": 3372.46, + "probability": 0.9383 + }, + { + "start": 3372.52, + "end": 3377.18, + "probability": 0.9872 + }, + { + "start": 3377.44, + "end": 3380.82, + "probability": 0.98 + }, + { + "start": 3381.18, + "end": 3383.58, + "probability": 0.6632 + }, + { + "start": 3383.64, + "end": 3383.8, + "probability": 0.5784 + }, + { + "start": 3384.18, + "end": 3388.49, + "probability": 0.9494 + }, + { + "start": 3389.68, + "end": 3394.56, + "probability": 0.9972 + }, + { + "start": 3394.56, + "end": 3402.98, + "probability": 0.6571 + }, + { + "start": 3404.36, + "end": 3406.04, + "probability": 0.8116 + }, + { + "start": 3408.96, + "end": 3412.02, + "probability": 0.4998 + }, + { + "start": 3412.14, + "end": 3412.14, + "probability": 0.4158 + }, + { + "start": 3412.14, + "end": 3414.12, + "probability": 0.7531 + }, + { + "start": 3414.64, + "end": 3417.18, + "probability": 0.8779 + }, + { + "start": 3417.26, + "end": 3420.66, + "probability": 0.979 + }, + { + "start": 3420.9, + "end": 3423.06, + "probability": 0.8035 + }, + { + "start": 3423.26, + "end": 3427.72, + "probability": 0.9481 + }, + { + "start": 3428.22, + "end": 3428.82, + "probability": 0.7174 + }, + { + "start": 3428.96, + "end": 3429.74, + "probability": 0.5003 + }, + { + "start": 3429.82, + "end": 3434.86, + "probability": 0.8491 + }, + { + "start": 3434.94, + "end": 3435.44, + "probability": 0.5816 + }, + { + "start": 3435.52, + "end": 3439.02, + "probability": 0.9639 + }, + { + "start": 3439.02, + "end": 3443.26, + "probability": 0.9851 + }, + { + "start": 3444.1, + "end": 3445.72, + "probability": 0.7887 + }, + { + "start": 3446.0, + "end": 3450.14, + "probability": 0.8783 + }, + { + "start": 3450.32, + "end": 3452.4, + "probability": 0.9024 + }, + { + "start": 3453.28, + "end": 3457.62, + "probability": 0.9644 + }, + { + "start": 3457.62, + "end": 3460.18, + "probability": 0.9434 + }, + { + "start": 3460.8, + "end": 3468.86, + "probability": 0.9497 + }, + { + "start": 3469.66, + "end": 3472.93, + "probability": 0.9932 + }, + { + "start": 3473.74, + "end": 3477.95, + "probability": 0.8166 + }, + { + "start": 3478.34, + "end": 3479.48, + "probability": 0.8154 + }, + { + "start": 3479.68, + "end": 3480.98, + "probability": 0.4006 + }, + { + "start": 3481.48, + "end": 3484.18, + "probability": 0.997 + }, + { + "start": 3484.18, + "end": 3490.06, + "probability": 0.9679 + }, + { + "start": 3490.24, + "end": 3490.72, + "probability": 0.6935 + }, + { + "start": 3491.02, + "end": 3494.66, + "probability": 0.9429 + }, + { + "start": 3495.44, + "end": 3498.88, + "probability": 0.9692 + }, + { + "start": 3498.88, + "end": 3501.18, + "probability": 0.7142 + }, + { + "start": 3505.78, + "end": 3508.58, + "probability": 0.9956 + }, + { + "start": 3508.58, + "end": 3510.98, + "probability": 0.9333 + }, + { + "start": 3512.34, + "end": 3513.22, + "probability": 0.4653 + }, + { + "start": 3513.34, + "end": 3513.6, + "probability": 0.7637 + }, + { + "start": 3513.84, + "end": 3516.26, + "probability": 0.9836 + }, + { + "start": 3516.34, + "end": 3518.51, + "probability": 0.5856 + }, + { + "start": 3519.3, + "end": 3524.4, + "probability": 0.9418 + }, + { + "start": 3524.4, + "end": 3530.06, + "probability": 0.9977 + }, + { + "start": 3530.28, + "end": 3535.34, + "probability": 0.6719 + }, + { + "start": 3536.95, + "end": 3539.88, + "probability": 0.9237 + }, + { + "start": 3540.88, + "end": 3543.48, + "probability": 0.9533 + }, + { + "start": 3544.12, + "end": 3547.8, + "probability": 0.8985 + }, + { + "start": 3547.88, + "end": 3550.2, + "probability": 0.7114 + }, + { + "start": 3550.78, + "end": 3552.42, + "probability": 0.9287 + }, + { + "start": 3552.44, + "end": 3556.56, + "probability": 0.9779 + }, + { + "start": 3556.62, + "end": 3562.94, + "probability": 0.9766 + }, + { + "start": 3564.0, + "end": 3566.88, + "probability": 0.8281 + }, + { + "start": 3567.1, + "end": 3569.26, + "probability": 0.8244 + }, + { + "start": 3569.88, + "end": 3572.88, + "probability": 0.9972 + }, + { + "start": 3572.88, + "end": 3576.76, + "probability": 0.7712 + }, + { + "start": 3576.9, + "end": 3580.32, + "probability": 0.9803 + }, + { + "start": 3581.26, + "end": 3581.54, + "probability": 0.5503 + }, + { + "start": 3581.56, + "end": 3582.6, + "probability": 0.9833 + }, + { + "start": 3582.7, + "end": 3589.64, + "probability": 0.9763 + }, + { + "start": 3589.64, + "end": 3593.14, + "probability": 0.9778 + }, + { + "start": 3594.44, + "end": 3595.8, + "probability": 0.7729 + }, + { + "start": 3596.08, + "end": 3599.84, + "probability": 0.7913 + }, + { + "start": 3600.22, + "end": 3601.0, + "probability": 0.6533 + }, + { + "start": 3601.52, + "end": 3602.7, + "probability": 0.8558 + }, + { + "start": 3603.75, + "end": 3607.1, + "probability": 0.9736 + }, + { + "start": 3607.1, + "end": 3607.34, + "probability": 0.5344 + }, + { + "start": 3608.66, + "end": 3610.17, + "probability": 0.8191 + }, + { + "start": 3610.5, + "end": 3610.62, + "probability": 0.1016 + }, + { + "start": 3610.62, + "end": 3613.96, + "probability": 0.9694 + }, + { + "start": 3614.56, + "end": 3620.1, + "probability": 0.9888 + }, + { + "start": 3620.84, + "end": 3621.26, + "probability": 0.179 + }, + { + "start": 3622.14, + "end": 3623.54, + "probability": 0.8276 + }, + { + "start": 3625.38, + "end": 3636.02, + "probability": 0.9883 + }, + { + "start": 3636.22, + "end": 3636.52, + "probability": 0.4985 + }, + { + "start": 3637.06, + "end": 3641.12, + "probability": 0.7994 + }, + { + "start": 3641.38, + "end": 3644.72, + "probability": 0.9924 + }, + { + "start": 3644.76, + "end": 3647.5, + "probability": 0.9323 + }, + { + "start": 3647.58, + "end": 3647.72, + "probability": 0.5828 + }, + { + "start": 3647.74, + "end": 3648.14, + "probability": 0.9043 + }, + { + "start": 3648.2, + "end": 3653.52, + "probability": 0.9915 + }, + { + "start": 3653.52, + "end": 3658.5, + "probability": 0.9949 + }, + { + "start": 3658.58, + "end": 3660.18, + "probability": 0.9966 + }, + { + "start": 3660.76, + "end": 3666.2, + "probability": 0.9934 + }, + { + "start": 3667.1, + "end": 3667.82, + "probability": 0.8809 + }, + { + "start": 3667.84, + "end": 3668.48, + "probability": 0.3307 + }, + { + "start": 3668.6, + "end": 3669.62, + "probability": 0.9747 + }, + { + "start": 3669.64, + "end": 3675.56, + "probability": 0.9977 + }, + { + "start": 3675.72, + "end": 3677.94, + "probability": 0.6203 + }, + { + "start": 3678.28, + "end": 3681.88, + "probability": 0.8937 + }, + { + "start": 3682.28, + "end": 3686.56, + "probability": 0.9444 + }, + { + "start": 3687.12, + "end": 3689.12, + "probability": 0.9932 + }, + { + "start": 3689.84, + "end": 3691.37, + "probability": 0.863 + }, + { + "start": 3691.86, + "end": 3695.66, + "probability": 0.9688 + }, + { + "start": 3696.98, + "end": 3697.3, + "probability": 0.7602 + }, + { + "start": 3698.18, + "end": 3698.9, + "probability": 0.6042 + }, + { + "start": 3699.04, + "end": 3700.26, + "probability": 0.5063 + }, + { + "start": 3700.36, + "end": 3702.6, + "probability": 0.8239 + }, + { + "start": 3704.04, + "end": 3705.3, + "probability": 0.3123 + }, + { + "start": 3705.44, + "end": 3709.96, + "probability": 0.9199 + }, + { + "start": 3710.7, + "end": 3711.2, + "probability": 0.5636 + }, + { + "start": 3711.28, + "end": 3713.2, + "probability": 0.7776 + }, + { + "start": 3713.5, + "end": 3714.66, + "probability": 0.9343 + }, + { + "start": 3714.94, + "end": 3715.58, + "probability": 0.7744 + }, + { + "start": 3715.78, + "end": 3718.78, + "probability": 0.9575 + }, + { + "start": 3718.78, + "end": 3722.08, + "probability": 0.9988 + }, + { + "start": 3722.98, + "end": 3725.34, + "probability": 0.9148 + }, + { + "start": 3725.34, + "end": 3728.96, + "probability": 0.9583 + }, + { + "start": 3729.04, + "end": 3733.46, + "probability": 0.9351 + }, + { + "start": 3733.58, + "end": 3735.74, + "probability": 0.9473 + }, + { + "start": 3735.74, + "end": 3738.28, + "probability": 0.6749 + }, + { + "start": 3740.76, + "end": 3744.04, + "probability": 0.6287 + }, + { + "start": 3744.42, + "end": 3745.56, + "probability": 0.7935 + }, + { + "start": 3748.4, + "end": 3751.6, + "probability": 0.9895 + }, + { + "start": 3751.8, + "end": 3754.96, + "probability": 0.6379 + }, + { + "start": 3755.1, + "end": 3756.24, + "probability": 0.9535 + }, + { + "start": 3757.76, + "end": 3761.06, + "probability": 0.9432 + }, + { + "start": 3761.78, + "end": 3762.46, + "probability": 0.4758 + }, + { + "start": 3762.56, + "end": 3762.98, + "probability": 0.939 + }, + { + "start": 3763.1, + "end": 3765.62, + "probability": 0.9871 + }, + { + "start": 3766.62, + "end": 3770.92, + "probability": 0.7965 + }, + { + "start": 3770.92, + "end": 3773.04, + "probability": 0.2299 + }, + { + "start": 3773.1, + "end": 3776.98, + "probability": 0.9688 + }, + { + "start": 3777.68, + "end": 3785.31, + "probability": 0.965 + }, + { + "start": 3788.4, + "end": 3790.2, + "probability": 0.6669 + }, + { + "start": 3790.3, + "end": 3792.2, + "probability": 0.999 + }, + { + "start": 3792.64, + "end": 3794.02, + "probability": 0.9616 + }, + { + "start": 3794.1, + "end": 3796.22, + "probability": 0.7606 + }, + { + "start": 3796.34, + "end": 3797.8, + "probability": 0.9083 + }, + { + "start": 3797.9, + "end": 3798.82, + "probability": 0.0906 + }, + { + "start": 3799.32, + "end": 3800.48, + "probability": 0.7379 + }, + { + "start": 3801.22, + "end": 3801.66, + "probability": 0.7618 + }, + { + "start": 3802.7, + "end": 3805.74, + "probability": 0.7122 + }, + { + "start": 3805.84, + "end": 3806.72, + "probability": 0.8658 + }, + { + "start": 3806.8, + "end": 3808.04, + "probability": 0.9283 + }, + { + "start": 3808.16, + "end": 3815.29, + "probability": 0.9835 + }, + { + "start": 3815.96, + "end": 3816.06, + "probability": 0.0787 + }, + { + "start": 3816.08, + "end": 3816.08, + "probability": 0.1721 + }, + { + "start": 3816.08, + "end": 3816.62, + "probability": 0.6561 + }, + { + "start": 3817.48, + "end": 3823.1, + "probability": 0.9921 + }, + { + "start": 3823.86, + "end": 3827.74, + "probability": 0.9945 + }, + { + "start": 3827.74, + "end": 3833.44, + "probability": 0.9959 + }, + { + "start": 3834.04, + "end": 3837.48, + "probability": 0.9985 + }, + { + "start": 3838.2, + "end": 3843.54, + "probability": 0.9705 + }, + { + "start": 3843.66, + "end": 3846.0, + "probability": 0.9613 + }, + { + "start": 3846.84, + "end": 3848.24, + "probability": 0.887 + }, + { + "start": 3848.4, + "end": 3849.74, + "probability": 0.6968 + }, + { + "start": 3849.84, + "end": 3851.9, + "probability": 0.9412 + }, + { + "start": 3852.66, + "end": 3855.6, + "probability": 0.6343 + }, + { + "start": 3855.72, + "end": 3857.42, + "probability": 0.6124 + }, + { + "start": 3857.46, + "end": 3858.14, + "probability": 0.9055 + }, + { + "start": 3858.58, + "end": 3863.48, + "probability": 0.9806 + }, + { + "start": 3864.06, + "end": 3864.92, + "probability": 0.6867 + }, + { + "start": 3864.98, + "end": 3867.5, + "probability": 0.688 + }, + { + "start": 3867.54, + "end": 3869.02, + "probability": 0.7375 + }, + { + "start": 3869.22, + "end": 3871.08, + "probability": 0.7078 + }, + { + "start": 3871.58, + "end": 3879.16, + "probability": 0.9858 + }, + { + "start": 3880.2, + "end": 3884.42, + "probability": 0.7607 + }, + { + "start": 3884.8, + "end": 3888.84, + "probability": 0.9796 + }, + { + "start": 3888.84, + "end": 3891.58, + "probability": 0.9966 + }, + { + "start": 3891.68, + "end": 3894.98, + "probability": 0.6016 + }, + { + "start": 3895.12, + "end": 3902.4, + "probability": 0.9967 + }, + { + "start": 3902.7, + "end": 3904.45, + "probability": 0.9976 + }, + { + "start": 3904.56, + "end": 3908.26, + "probability": 0.9695 + }, + { + "start": 3908.26, + "end": 3911.06, + "probability": 0.984 + }, + { + "start": 3911.18, + "end": 3911.88, + "probability": 0.6595 + }, + { + "start": 3912.1, + "end": 3915.4, + "probability": 0.9846 + }, + { + "start": 3915.66, + "end": 3917.14, + "probability": 0.9917 + }, + { + "start": 3917.58, + "end": 3917.72, + "probability": 0.5562 + }, + { + "start": 3918.32, + "end": 3919.78, + "probability": 0.9896 + }, + { + "start": 3919.96, + "end": 3921.07, + "probability": 0.6075 + }, + { + "start": 3921.5, + "end": 3922.44, + "probability": 0.9731 + }, + { + "start": 3923.9, + "end": 3927.86, + "probability": 0.7717 + }, + { + "start": 3931.8, + "end": 3934.58, + "probability": 0.0353 + }, + { + "start": 3934.6, + "end": 3934.68, + "probability": 0.0416 + }, + { + "start": 3934.68, + "end": 3936.16, + "probability": 0.1992 + }, + { + "start": 3936.62, + "end": 3939.78, + "probability": 0.3435 + }, + { + "start": 3940.58, + "end": 3940.74, + "probability": 0.5914 + }, + { + "start": 3940.8, + "end": 3941.52, + "probability": 0.5278 + }, + { + "start": 3941.62, + "end": 3946.28, + "probability": 0.9476 + }, + { + "start": 3947.22, + "end": 3950.9, + "probability": 0.6835 + }, + { + "start": 3951.32, + "end": 3959.75, + "probability": 0.9904 + }, + { + "start": 3960.58, + "end": 3964.29, + "probability": 0.8942 + }, + { + "start": 3965.08, + "end": 3966.76, + "probability": 0.9612 + }, + { + "start": 3966.96, + "end": 3974.5, + "probability": 0.9382 + }, + { + "start": 3975.08, + "end": 3976.68, + "probability": 0.5485 + }, + { + "start": 3976.76, + "end": 3977.16, + "probability": 0.4926 + }, + { + "start": 3977.24, + "end": 3977.74, + "probability": 0.4015 + }, + { + "start": 3977.8, + "end": 3985.48, + "probability": 0.749 + }, + { + "start": 3985.6, + "end": 3988.4, + "probability": 0.912 + }, + { + "start": 3988.4, + "end": 3989.06, + "probability": 0.6822 + }, + { + "start": 3990.17, + "end": 3991.12, + "probability": 0.9133 + }, + { + "start": 3991.64, + "end": 3993.76, + "probability": 0.7798 + }, + { + "start": 3993.84, + "end": 3996.88, + "probability": 0.9912 + }, + { + "start": 3996.98, + "end": 3997.42, + "probability": 0.8477 + }, + { + "start": 3999.54, + "end": 4000.12, + "probability": 0.6158 + }, + { + "start": 4000.22, + "end": 4002.1, + "probability": 0.7285 + }, + { + "start": 4008.8, + "end": 4010.0, + "probability": 0.6936 + }, + { + "start": 4011.22, + "end": 4014.04, + "probability": 0.9624 + }, + { + "start": 4014.58, + "end": 4015.25, + "probability": 0.686 + }, + { + "start": 4018.18, + "end": 4020.6, + "probability": 0.7562 + }, + { + "start": 4021.52, + "end": 4022.08, + "probability": 0.7688 + }, + { + "start": 4022.16, + "end": 4025.26, + "probability": 0.9954 + }, + { + "start": 4025.56, + "end": 4029.18, + "probability": 0.8677 + }, + { + "start": 4030.15, + "end": 4034.5, + "probability": 0.8296 + }, + { + "start": 4035.9, + "end": 4039.52, + "probability": 0.8999 + }, + { + "start": 4039.52, + "end": 4042.08, + "probability": 0.9818 + }, + { + "start": 4043.16, + "end": 4045.82, + "probability": 0.9309 + }, + { + "start": 4046.52, + "end": 4046.92, + "probability": 0.1325 + }, + { + "start": 4046.92, + "end": 4048.76, + "probability": 0.98 + }, + { + "start": 4048.76, + "end": 4051.36, + "probability": 0.8399 + }, + { + "start": 4052.9, + "end": 4053.68, + "probability": 0.8697 + }, + { + "start": 4053.9, + "end": 4056.93, + "probability": 0.9515 + }, + { + "start": 4057.46, + "end": 4057.88, + "probability": 0.5861 + }, + { + "start": 4057.98, + "end": 4060.34, + "probability": 0.9465 + }, + { + "start": 4061.1, + "end": 4066.04, + "probability": 0.8418 + }, + { + "start": 4066.72, + "end": 4070.42, + "probability": 0.825 + }, + { + "start": 4070.42, + "end": 4074.28, + "probability": 0.9905 + }, + { + "start": 4074.74, + "end": 4075.08, + "probability": 0.6224 + }, + { + "start": 4075.98, + "end": 4076.42, + "probability": 0.7452 + }, + { + "start": 4076.94, + "end": 4080.02, + "probability": 0.9412 + }, + { + "start": 4080.94, + "end": 4085.86, + "probability": 0.9804 + }, + { + "start": 4085.86, + "end": 4094.68, + "probability": 0.9724 + }, + { + "start": 4094.82, + "end": 4097.22, + "probability": 0.9951 + }, + { + "start": 4098.42, + "end": 4098.92, + "probability": 0.6445 + }, + { + "start": 4099.0, + "end": 4101.54, + "probability": 0.9926 + }, + { + "start": 4101.54, + "end": 4104.58, + "probability": 0.9954 + }, + { + "start": 4105.14, + "end": 4113.06, + "probability": 0.9978 + }, + { + "start": 4113.86, + "end": 4118.82, + "probability": 0.9938 + }, + { + "start": 4119.22, + "end": 4123.48, + "probability": 0.9832 + }, + { + "start": 4124.24, + "end": 4127.3, + "probability": 0.9785 + }, + { + "start": 4128.08, + "end": 4135.14, + "probability": 0.9542 + }, + { + "start": 4135.14, + "end": 4139.52, + "probability": 0.8188 + }, + { + "start": 4139.66, + "end": 4141.1, + "probability": 0.7465 + }, + { + "start": 4142.7, + "end": 4146.58, + "probability": 0.8197 + }, + { + "start": 4147.72, + "end": 4147.94, + "probability": 0.0313 + }, + { + "start": 4147.94, + "end": 4151.74, + "probability": 0.9381 + }, + { + "start": 4152.84, + "end": 4156.2, + "probability": 0.9193 + }, + { + "start": 4156.86, + "end": 4158.86, + "probability": 0.9959 + }, + { + "start": 4158.86, + "end": 4163.76, + "probability": 0.9673 + }, + { + "start": 4164.0, + "end": 4165.78, + "probability": 0.9946 + }, + { + "start": 4166.92, + "end": 4169.18, + "probability": 0.7405 + }, + { + "start": 4169.36, + "end": 4171.35, + "probability": 0.9858 + }, + { + "start": 4172.92, + "end": 4176.56, + "probability": 0.9855 + }, + { + "start": 4176.56, + "end": 4180.03, + "probability": 0.9856 + }, + { + "start": 4180.9, + "end": 4185.78, + "probability": 0.954 + }, + { + "start": 4185.78, + "end": 4191.74, + "probability": 0.9939 + }, + { + "start": 4192.98, + "end": 4195.99, + "probability": 0.998 + }, + { + "start": 4196.22, + "end": 4202.8, + "probability": 0.9976 + }, + { + "start": 4202.92, + "end": 4204.1, + "probability": 0.6883 + }, + { + "start": 4205.08, + "end": 4208.08, + "probability": 0.9906 + }, + { + "start": 4208.96, + "end": 4209.8, + "probability": 0.927 + }, + { + "start": 4210.1, + "end": 4212.3, + "probability": 0.979 + }, + { + "start": 4212.38, + "end": 4212.86, + "probability": 0.9214 + }, + { + "start": 4213.71, + "end": 4220.6, + "probability": 0.9452 + }, + { + "start": 4220.66, + "end": 4224.74, + "probability": 0.9971 + }, + { + "start": 4225.72, + "end": 4230.04, + "probability": 0.7821 + }, + { + "start": 4230.62, + "end": 4234.1, + "probability": 0.9962 + }, + { + "start": 4234.18, + "end": 4238.8, + "probability": 0.992 + }, + { + "start": 4239.6, + "end": 4242.87, + "probability": 0.8951 + }, + { + "start": 4244.5, + "end": 4248.36, + "probability": 0.7425 + }, + { + "start": 4249.16, + "end": 4253.5, + "probability": 0.9282 + }, + { + "start": 4254.1, + "end": 4255.14, + "probability": 0.7092 + }, + { + "start": 4255.2, + "end": 4256.16, + "probability": 0.8092 + }, + { + "start": 4256.3, + "end": 4257.14, + "probability": 0.7877 + }, + { + "start": 4257.18, + "end": 4260.72, + "probability": 0.9215 + }, + { + "start": 4261.42, + "end": 4265.54, + "probability": 0.8489 + }, + { + "start": 4266.06, + "end": 4269.0, + "probability": 0.9888 + }, + { + "start": 4269.0, + "end": 4272.66, + "probability": 0.9595 + }, + { + "start": 4273.66, + "end": 4277.2, + "probability": 0.9978 + }, + { + "start": 4277.24, + "end": 4278.04, + "probability": 0.901 + }, + { + "start": 4278.64, + "end": 4280.62, + "probability": 0.9917 + }, + { + "start": 4280.7, + "end": 4282.74, + "probability": 0.9849 + }, + { + "start": 4282.86, + "end": 4284.94, + "probability": 0.951 + }, + { + "start": 4286.24, + "end": 4291.92, + "probability": 0.9935 + }, + { + "start": 4291.92, + "end": 4298.64, + "probability": 0.9973 + }, + { + "start": 4298.74, + "end": 4300.68, + "probability": 0.8877 + }, + { + "start": 4301.3, + "end": 4301.7, + "probability": 0.8138 + }, + { + "start": 4301.78, + "end": 4304.63, + "probability": 0.9969 + }, + { + "start": 4304.82, + "end": 4311.12, + "probability": 0.9663 + }, + { + "start": 4311.56, + "end": 4314.58, + "probability": 0.7996 + }, + { + "start": 4314.58, + "end": 4318.12, + "probability": 0.9939 + }, + { + "start": 4318.62, + "end": 4319.18, + "probability": 0.5746 + }, + { + "start": 4319.24, + "end": 4321.98, + "probability": 0.998 + }, + { + "start": 4321.98, + "end": 4324.96, + "probability": 0.9967 + }, + { + "start": 4325.14, + "end": 4328.36, + "probability": 0.983 + }, + { + "start": 4328.42, + "end": 4331.3, + "probability": 0.98 + }, + { + "start": 4333.4, + "end": 4334.1, + "probability": 0.6216 + }, + { + "start": 4334.18, + "end": 4334.56, + "probability": 0.4041 + }, + { + "start": 4334.62, + "end": 4336.02, + "probability": 0.8945 + }, + { + "start": 4343.82, + "end": 4344.2, + "probability": 0.5595 + }, + { + "start": 4345.24, + "end": 4347.64, + "probability": 0.7554 + }, + { + "start": 4348.52, + "end": 4351.88, + "probability": 0.996 + }, + { + "start": 4351.88, + "end": 4354.48, + "probability": 0.9879 + }, + { + "start": 4355.34, + "end": 4359.78, + "probability": 0.97 + }, + { + "start": 4360.38, + "end": 4366.34, + "probability": 0.9928 + }, + { + "start": 4366.78, + "end": 4369.1, + "probability": 0.9946 + }, + { + "start": 4370.14, + "end": 4374.84, + "probability": 0.9487 + }, + { + "start": 4375.42, + "end": 4378.28, + "probability": 0.7911 + }, + { + "start": 4378.8, + "end": 4381.46, + "probability": 0.9674 + }, + { + "start": 4382.36, + "end": 4390.42, + "probability": 0.9691 + }, + { + "start": 4390.42, + "end": 4396.82, + "probability": 0.9942 + }, + { + "start": 4396.96, + "end": 4400.25, + "probability": 0.9946 + }, + { + "start": 4401.14, + "end": 4404.42, + "probability": 0.925 + }, + { + "start": 4405.1, + "end": 4407.72, + "probability": 0.9474 + }, + { + "start": 4408.7, + "end": 4415.48, + "probability": 0.9822 + }, + { + "start": 4416.3, + "end": 4418.3, + "probability": 0.972 + }, + { + "start": 4419.0, + "end": 4422.02, + "probability": 0.998 + }, + { + "start": 4422.02, + "end": 4425.7, + "probability": 0.9959 + }, + { + "start": 4429.66, + "end": 4429.92, + "probability": 0.254 + }, + { + "start": 4429.96, + "end": 4431.68, + "probability": 0.8088 + }, + { + "start": 4432.32, + "end": 4436.14, + "probability": 0.9112 + }, + { + "start": 4438.87, + "end": 4442.16, + "probability": 0.6268 + }, + { + "start": 4442.37, + "end": 4446.33, + "probability": 0.9618 + }, + { + "start": 4447.1, + "end": 4449.7, + "probability": 0.9689 + }, + { + "start": 4449.7, + "end": 4452.68, + "probability": 0.998 + }, + { + "start": 4453.28, + "end": 4455.18, + "probability": 0.7471 + }, + { + "start": 4455.76, + "end": 4457.92, + "probability": 0.8706 + }, + { + "start": 4458.16, + "end": 4462.44, + "probability": 0.9931 + }, + { + "start": 4462.52, + "end": 4463.7, + "probability": 0.9695 + }, + { + "start": 4464.36, + "end": 4467.22, + "probability": 0.9116 + }, + { + "start": 4467.22, + "end": 4471.51, + "probability": 0.9355 + }, + { + "start": 4471.94, + "end": 4477.12, + "probability": 0.9736 + }, + { + "start": 4477.12, + "end": 4483.2, + "probability": 0.9971 + }, + { + "start": 4483.4, + "end": 4486.18, + "probability": 0.7298 + }, + { + "start": 4486.58, + "end": 4488.98, + "probability": 0.9977 + }, + { + "start": 4490.06, + "end": 4497.5, + "probability": 0.9087 + }, + { + "start": 4497.56, + "end": 4498.24, + "probability": 0.6247 + }, + { + "start": 4499.12, + "end": 4503.67, + "probability": 0.8857 + }, + { + "start": 4503.88, + "end": 4506.26, + "probability": 0.8712 + }, + { + "start": 4506.82, + "end": 4510.28, + "probability": 0.9966 + }, + { + "start": 4510.38, + "end": 4512.68, + "probability": 0.9764 + }, + { + "start": 4513.24, + "end": 4513.7, + "probability": 0.5669 + }, + { + "start": 4513.84, + "end": 4518.0, + "probability": 0.9662 + }, + { + "start": 4518.1, + "end": 4520.48, + "probability": 0.8671 + }, + { + "start": 4521.12, + "end": 4525.38, + "probability": 0.9795 + }, + { + "start": 4526.24, + "end": 4529.68, + "probability": 0.9794 + }, + { + "start": 4530.42, + "end": 4534.32, + "probability": 0.9426 + }, + { + "start": 4534.32, + "end": 4539.4, + "probability": 0.9497 + }, + { + "start": 4539.5, + "end": 4544.58, + "probability": 0.9567 + }, + { + "start": 4544.74, + "end": 4545.6, + "probability": 0.88 + }, + { + "start": 4546.36, + "end": 4549.42, + "probability": 0.9928 + }, + { + "start": 4549.42, + "end": 4553.1, + "probability": 0.9966 + }, + { + "start": 4553.54, + "end": 4556.78, + "probability": 0.9939 + }, + { + "start": 4556.78, + "end": 4560.62, + "probability": 0.9963 + }, + { + "start": 4561.32, + "end": 4564.22, + "probability": 0.9967 + }, + { + "start": 4564.22, + "end": 4567.46, + "probability": 0.993 + }, + { + "start": 4567.76, + "end": 4570.78, + "probability": 0.9963 + }, + { + "start": 4570.78, + "end": 4574.08, + "probability": 0.9905 + }, + { + "start": 4575.08, + "end": 4578.44, + "probability": 0.9891 + }, + { + "start": 4578.44, + "end": 4581.02, + "probability": 0.9976 + }, + { + "start": 4581.02, + "end": 4585.56, + "probability": 0.9954 + }, + { + "start": 4586.28, + "end": 4588.86, + "probability": 0.9935 + }, + { + "start": 4588.86, + "end": 4592.34, + "probability": 0.9931 + }, + { + "start": 4592.44, + "end": 4593.3, + "probability": 0.8739 + }, + { + "start": 4593.44, + "end": 4595.9, + "probability": 0.9944 + }, + { + "start": 4596.82, + "end": 4597.18, + "probability": 0.6404 + }, + { + "start": 4597.34, + "end": 4601.24, + "probability": 0.9659 + }, + { + "start": 4601.24, + "end": 4602.32, + "probability": 0.8908 + }, + { + "start": 4602.38, + "end": 4603.24, + "probability": 0.9091 + }, + { + "start": 4603.3, + "end": 4606.02, + "probability": 0.8728 + }, + { + "start": 4606.22, + "end": 4608.92, + "probability": 0.9935 + }, + { + "start": 4609.4, + "end": 4609.54, + "probability": 0.0863 + }, + { + "start": 4609.6, + "end": 4610.06, + "probability": 0.8603 + }, + { + "start": 4610.14, + "end": 4613.5, + "probability": 0.9919 + }, + { + "start": 4613.7, + "end": 4614.52, + "probability": 0.711 + }, + { + "start": 4614.6, + "end": 4615.54, + "probability": 0.9541 + }, + { + "start": 4615.9, + "end": 4620.6, + "probability": 0.9285 + }, + { + "start": 4621.14, + "end": 4622.9, + "probability": 0.9155 + }, + { + "start": 4622.98, + "end": 4623.3, + "probability": 0.9565 + }, + { + "start": 4623.44, + "end": 4626.94, + "probability": 0.9875 + }, + { + "start": 4627.3, + "end": 4630.84, + "probability": 0.9819 + }, + { + "start": 4630.86, + "end": 4631.54, + "probability": 0.2274 + }, + { + "start": 4631.68, + "end": 4634.98, + "probability": 0.9885 + }, + { + "start": 4635.64, + "end": 4638.04, + "probability": 0.9941 + }, + { + "start": 4638.06, + "end": 4641.32, + "probability": 0.8445 + }, + { + "start": 4641.48, + "end": 4643.46, + "probability": 0.9943 + }, + { + "start": 4643.46, + "end": 4645.58, + "probability": 0.9973 + }, + { + "start": 4646.5, + "end": 4646.98, + "probability": 0.6336 + }, + { + "start": 4647.02, + "end": 4647.54, + "probability": 0.5873 + }, + { + "start": 4647.58, + "end": 4649.1, + "probability": 0.9329 + }, + { + "start": 4649.16, + "end": 4652.98, + "probability": 0.9906 + }, + { + "start": 4652.98, + "end": 4656.04, + "probability": 0.998 + }, + { + "start": 4656.52, + "end": 4658.54, + "probability": 0.9984 + }, + { + "start": 4658.54, + "end": 4661.5, + "probability": 0.9609 + }, + { + "start": 4661.6, + "end": 4666.1, + "probability": 0.926 + }, + { + "start": 4666.1, + "end": 4669.5, + "probability": 0.9982 + }, + { + "start": 4669.58, + "end": 4671.47, + "probability": 0.8685 + }, + { + "start": 4672.0, + "end": 4674.6, + "probability": 0.9488 + }, + { + "start": 4674.7, + "end": 4677.68, + "probability": 0.9939 + }, + { + "start": 4677.88, + "end": 4679.28, + "probability": 0.5308 + }, + { + "start": 4679.92, + "end": 4681.16, + "probability": 0.9152 + }, + { + "start": 4681.26, + "end": 4685.16, + "probability": 0.9932 + }, + { + "start": 4685.42, + "end": 4688.16, + "probability": 0.9822 + }, + { + "start": 4688.24, + "end": 4693.7, + "probability": 0.9232 + }, + { + "start": 4693.76, + "end": 4694.88, + "probability": 0.9288 + }, + { + "start": 4695.0, + "end": 4700.94, + "probability": 0.9248 + }, + { + "start": 4701.38, + "end": 4704.5, + "probability": 0.9697 + }, + { + "start": 4704.5, + "end": 4707.88, + "probability": 0.9966 + }, + { + "start": 4708.04, + "end": 4711.74, + "probability": 0.9171 + }, + { + "start": 4711.8, + "end": 4712.59, + "probability": 0.9112 + }, + { + "start": 4713.22, + "end": 4718.14, + "probability": 0.9704 + }, + { + "start": 4718.14, + "end": 4723.58, + "probability": 0.9866 + }, + { + "start": 4723.9, + "end": 4723.9, + "probability": 0.4808 + }, + { + "start": 4724.06, + "end": 4724.76, + "probability": 0.6223 + }, + { + "start": 4724.88, + "end": 4730.28, + "probability": 0.7674 + }, + { + "start": 4730.28, + "end": 4734.6, + "probability": 0.9787 + }, + { + "start": 4735.62, + "end": 4739.3, + "probability": 0.9556 + }, + { + "start": 4739.78, + "end": 4744.14, + "probability": 0.9788 + }, + { + "start": 4745.04, + "end": 4746.94, + "probability": 0.9935 + }, + { + "start": 4747.12, + "end": 4750.44, + "probability": 0.6783 + }, + { + "start": 4750.96, + "end": 4752.18, + "probability": 0.5357 + }, + { + "start": 4752.36, + "end": 4753.88, + "probability": 0.878 + }, + { + "start": 4754.26, + "end": 4756.52, + "probability": 0.9963 + }, + { + "start": 4756.52, + "end": 4759.08, + "probability": 0.8785 + }, + { + "start": 4759.18, + "end": 4759.3, + "probability": 0.3821 + }, + { + "start": 4759.44, + "end": 4762.18, + "probability": 0.9852 + }, + { + "start": 4762.18, + "end": 4764.4, + "probability": 0.9984 + }, + { + "start": 4765.2, + "end": 4768.8, + "probability": 0.9711 + }, + { + "start": 4769.88, + "end": 4771.02, + "probability": 0.9138 + }, + { + "start": 4771.52, + "end": 4774.1, + "probability": 0.9534 + }, + { + "start": 4774.22, + "end": 4777.4, + "probability": 0.8595 + }, + { + "start": 4777.54, + "end": 4779.1, + "probability": 0.946 + }, + { + "start": 4779.62, + "end": 4782.22, + "probability": 0.8825 + }, + { + "start": 4782.76, + "end": 4784.5, + "probability": 0.9453 + }, + { + "start": 4785.0, + "end": 4785.58, + "probability": 0.8425 + }, + { + "start": 4785.72, + "end": 4788.18, + "probability": 0.9827 + }, + { + "start": 4788.22, + "end": 4791.5, + "probability": 0.9923 + }, + { + "start": 4791.5, + "end": 4795.38, + "probability": 0.9982 + }, + { + "start": 4795.4, + "end": 4800.94, + "probability": 0.9939 + }, + { + "start": 4801.88, + "end": 4803.56, + "probability": 0.8951 + }, + { + "start": 4803.74, + "end": 4804.82, + "probability": 0.6103 + }, + { + "start": 4804.82, + "end": 4806.5, + "probability": 0.8907 + }, + { + "start": 4806.64, + "end": 4811.49, + "probability": 0.9382 + }, + { + "start": 4812.78, + "end": 4815.02, + "probability": 0.9946 + }, + { + "start": 4815.02, + "end": 4818.78, + "probability": 0.9083 + }, + { + "start": 4819.52, + "end": 4820.24, + "probability": 0.5918 + }, + { + "start": 4821.34, + "end": 4825.62, + "probability": 0.9772 + }, + { + "start": 4825.62, + "end": 4829.64, + "probability": 0.9811 + }, + { + "start": 4829.64, + "end": 4832.56, + "probability": 0.999 + }, + { + "start": 4833.12, + "end": 4835.63, + "probability": 0.6922 + }, + { + "start": 4836.4, + "end": 4837.92, + "probability": 0.6898 + }, + { + "start": 4838.4, + "end": 4842.94, + "probability": 0.9893 + }, + { + "start": 4844.08, + "end": 4848.46, + "probability": 0.975 + }, + { + "start": 4848.66, + "end": 4850.14, + "probability": 0.792 + }, + { + "start": 4850.46, + "end": 4851.32, + "probability": 0.8729 + }, + { + "start": 4851.38, + "end": 4853.18, + "probability": 0.8347 + }, + { + "start": 4853.64, + "end": 4855.82, + "probability": 0.8461 + }, + { + "start": 4856.04, + "end": 4856.8, + "probability": 0.5668 + }, + { + "start": 4857.36, + "end": 4861.5, + "probability": 0.9175 + }, + { + "start": 4861.6, + "end": 4862.46, + "probability": 0.586 + }, + { + "start": 4862.56, + "end": 4863.18, + "probability": 0.2747 + }, + { + "start": 4863.8, + "end": 4864.3, + "probability": 0.6743 + }, + { + "start": 4864.42, + "end": 4866.44, + "probability": 0.8221 + }, + { + "start": 4867.28, + "end": 4872.86, + "probability": 0.9771 + }, + { + "start": 4873.92, + "end": 4876.7, + "probability": 0.9798 + }, + { + "start": 4876.7, + "end": 4881.74, + "probability": 0.9971 + }, + { + "start": 4881.82, + "end": 4882.14, + "probability": 0.4602 + }, + { + "start": 4882.22, + "end": 4887.94, + "probability": 0.8745 + }, + { + "start": 4887.94, + "end": 4892.38, + "probability": 0.9875 + }, + { + "start": 4893.78, + "end": 4896.99, + "probability": 0.9949 + }, + { + "start": 4897.28, + "end": 4897.74, + "probability": 0.7211 + }, + { + "start": 4897.8, + "end": 4898.14, + "probability": 0.6942 + }, + { + "start": 4898.28, + "end": 4902.8, + "probability": 0.9927 + }, + { + "start": 4903.3, + "end": 4906.6, + "probability": 0.9895 + }, + { + "start": 4906.64, + "end": 4908.4, + "probability": 0.7 + }, + { + "start": 4908.88, + "end": 4913.56, + "probability": 0.8223 + }, + { + "start": 4914.68, + "end": 4916.15, + "probability": 0.9072 + }, + { + "start": 4917.74, + "end": 4918.34, + "probability": 0.5488 + }, + { + "start": 4918.48, + "end": 4922.54, + "probability": 0.7432 + }, + { + "start": 4922.78, + "end": 4923.86, + "probability": 0.9702 + }, + { + "start": 4923.9, + "end": 4927.58, + "probability": 0.9868 + }, + { + "start": 4927.68, + "end": 4928.96, + "probability": 0.7349 + }, + { + "start": 4929.12, + "end": 4930.86, + "probability": 0.991 + }, + { + "start": 4931.4, + "end": 4932.8, + "probability": 0.9645 + }, + { + "start": 4933.54, + "end": 4934.2, + "probability": 0.7985 + }, + { + "start": 4934.42, + "end": 4936.78, + "probability": 0.844 + }, + { + "start": 4936.78, + "end": 4939.4, + "probability": 0.9983 + }, + { + "start": 4939.54, + "end": 4941.68, + "probability": 0.45 + }, + { + "start": 4941.8, + "end": 4944.18, + "probability": 0.6682 + }, + { + "start": 4944.79, + "end": 4951.22, + "probability": 0.9342 + }, + { + "start": 4951.7, + "end": 4952.66, + "probability": 0.8269 + }, + { + "start": 4953.04, + "end": 4953.8, + "probability": 0.751 + }, + { + "start": 4953.88, + "end": 4959.98, + "probability": 0.8442 + }, + { + "start": 4960.86, + "end": 4965.04, + "probability": 0.9705 + }, + { + "start": 4965.06, + "end": 4968.78, + "probability": 0.9917 + }, + { + "start": 4969.44, + "end": 4971.3, + "probability": 0.7886 + }, + { + "start": 4971.52, + "end": 4976.48, + "probability": 0.921 + }, + { + "start": 4976.68, + "end": 4978.78, + "probability": 0.9819 + }, + { + "start": 4980.26, + "end": 4983.06, + "probability": 0.4406 + }, + { + "start": 4983.62, + "end": 4986.38, + "probability": 0.0151 + }, + { + "start": 4986.84, + "end": 4986.84, + "probability": 0.1699 + }, + { + "start": 4986.84, + "end": 4986.84, + "probability": 0.1036 + }, + { + "start": 4986.84, + "end": 4988.22, + "probability": 0.4707 + }, + { + "start": 4989.76, + "end": 4991.02, + "probability": 0.2078 + }, + { + "start": 4991.94, + "end": 4993.04, + "probability": 0.613 + }, + { + "start": 4993.6, + "end": 4994.02, + "probability": 0.2763 + }, + { + "start": 4994.16, + "end": 4996.64, + "probability": 0.4788 + }, + { + "start": 5003.12, + "end": 5004.96, + "probability": 0.6656 + }, + { + "start": 5005.1, + "end": 5005.12, + "probability": 0.0234 + }, + { + "start": 5005.12, + "end": 5005.12, + "probability": 0.6767 + }, + { + "start": 5005.12, + "end": 5007.38, + "probability": 0.978 + }, + { + "start": 5007.52, + "end": 5009.72, + "probability": 0.9504 + }, + { + "start": 5010.75, + "end": 5016.44, + "probability": 0.9915 + }, + { + "start": 5017.66, + "end": 5019.78, + "probability": 0.7977 + }, + { + "start": 5020.4, + "end": 5022.94, + "probability": 0.9727 + }, + { + "start": 5023.16, + "end": 5023.86, + "probability": 0.8303 + }, + { + "start": 5023.86, + "end": 5025.7, + "probability": 0.9755 + }, + { + "start": 5025.76, + "end": 5029.09, + "probability": 0.991 + }, + { + "start": 5030.06, + "end": 5031.34, + "probability": 0.8293 + }, + { + "start": 5031.46, + "end": 5037.32, + "probability": 0.9793 + }, + { + "start": 5037.84, + "end": 5038.28, + "probability": 0.5966 + }, + { + "start": 5038.34, + "end": 5038.78, + "probability": 0.8801 + }, + { + "start": 5038.82, + "end": 5041.82, + "probability": 0.9609 + }, + { + "start": 5041.82, + "end": 5045.42, + "probability": 0.9943 + }, + { + "start": 5045.52, + "end": 5047.08, + "probability": 0.8386 + }, + { + "start": 5047.6, + "end": 5050.02, + "probability": 0.9915 + }, + { + "start": 5051.02, + "end": 5051.36, + "probability": 0.6633 + }, + { + "start": 5051.5, + "end": 5051.78, + "probability": 0.7717 + }, + { + "start": 5051.82, + "end": 5052.98, + "probability": 0.5357 + }, + { + "start": 5053.34, + "end": 5054.34, + "probability": 0.7574 + }, + { + "start": 5054.42, + "end": 5057.0, + "probability": 0.9783 + }, + { + "start": 5057.04, + "end": 5058.14, + "probability": 0.9873 + }, + { + "start": 5058.72, + "end": 5062.38, + "probability": 0.9611 + }, + { + "start": 5062.38, + "end": 5064.2, + "probability": 0.3927 + }, + { + "start": 5064.2, + "end": 5068.14, + "probability": 0.7934 + }, + { + "start": 5068.38, + "end": 5072.18, + "probability": 0.9909 + }, + { + "start": 5073.26, + "end": 5077.44, + "probability": 0.9763 + }, + { + "start": 5077.96, + "end": 5084.04, + "probability": 0.9528 + }, + { + "start": 5084.54, + "end": 5084.9, + "probability": 0.7479 + }, + { + "start": 5084.96, + "end": 5089.4, + "probability": 0.9666 + }, + { + "start": 5090.4, + "end": 5092.34, + "probability": 0.8094 + }, + { + "start": 5092.42, + "end": 5094.08, + "probability": 0.9954 + }, + { + "start": 5095.0, + "end": 5100.52, + "probability": 0.9927 + }, + { + "start": 5100.7, + "end": 5104.22, + "probability": 0.9957 + }, + { + "start": 5104.72, + "end": 5109.06, + "probability": 0.7671 + }, + { + "start": 5109.18, + "end": 5110.54, + "probability": 0.8815 + }, + { + "start": 5111.64, + "end": 5112.36, + "probability": 0.8128 + }, + { + "start": 5113.22, + "end": 5117.83, + "probability": 0.9595 + }, + { + "start": 5118.4, + "end": 5118.88, + "probability": 0.8665 + }, + { + "start": 5119.8, + "end": 5120.84, + "probability": 0.4787 + }, + { + "start": 5120.94, + "end": 5124.9, + "probability": 0.9863 + }, + { + "start": 5125.1, + "end": 5130.88, + "probability": 0.9561 + }, + { + "start": 5130.98, + "end": 5133.66, + "probability": 0.9929 + }, + { + "start": 5134.52, + "end": 5138.92, + "probability": 0.9149 + }, + { + "start": 5139.1, + "end": 5139.62, + "probability": 0.8127 + }, + { + "start": 5139.74, + "end": 5140.84, + "probability": 0.7718 + }, + { + "start": 5141.9, + "end": 5143.34, + "probability": 0.8217 + }, + { + "start": 5143.46, + "end": 5144.18, + "probability": 0.8141 + }, + { + "start": 5144.36, + "end": 5147.1, + "probability": 0.9847 + }, + { + "start": 5147.26, + "end": 5149.88, + "probability": 0.738 + }, + { + "start": 5150.44, + "end": 5152.38, + "probability": 0.9902 + }, + { + "start": 5153.16, + "end": 5157.08, + "probability": 0.9854 + }, + { + "start": 5157.14, + "end": 5157.64, + "probability": 0.4107 + }, + { + "start": 5157.68, + "end": 5158.94, + "probability": 0.9867 + }, + { + "start": 5159.64, + "end": 5163.78, + "probability": 0.9207 + }, + { + "start": 5163.9, + "end": 5165.66, + "probability": 0.9871 + }, + { + "start": 5166.64, + "end": 5170.72, + "probability": 0.9975 + }, + { + "start": 5170.82, + "end": 5173.6, + "probability": 0.8946 + }, + { + "start": 5174.58, + "end": 5175.76, + "probability": 0.8459 + }, + { + "start": 5176.58, + "end": 5179.42, + "probability": 0.8338 + }, + { + "start": 5179.42, + "end": 5184.66, + "probability": 0.8799 + }, + { + "start": 5184.76, + "end": 5185.02, + "probability": 0.4382 + }, + { + "start": 5185.04, + "end": 5187.5, + "probability": 0.9761 + }, + { + "start": 5188.4, + "end": 5191.9, + "probability": 0.9639 + }, + { + "start": 5192.42, + "end": 5194.18, + "probability": 0.9922 + }, + { + "start": 5194.2, + "end": 5195.74, + "probability": 0.9855 + }, + { + "start": 5196.0, + "end": 5196.46, + "probability": 0.7601 + }, + { + "start": 5196.54, + "end": 5197.0, + "probability": 0.6842 + }, + { + "start": 5197.36, + "end": 5197.36, + "probability": 0.2829 + }, + { + "start": 5197.44, + "end": 5198.0, + "probability": 0.5899 + }, + { + "start": 5198.18, + "end": 5205.62, + "probability": 0.991 + }, + { + "start": 5206.16, + "end": 5208.7, + "probability": 0.9287 + }, + { + "start": 5208.82, + "end": 5213.02, + "probability": 0.9844 + }, + { + "start": 5213.52, + "end": 5215.76, + "probability": 0.9661 + }, + { + "start": 5216.42, + "end": 5219.18, + "probability": 0.9263 + }, + { + "start": 5219.36, + "end": 5219.88, + "probability": 0.4486 + }, + { + "start": 5220.3, + "end": 5222.24, + "probability": 0.9702 + }, + { + "start": 5222.34, + "end": 5223.02, + "probability": 0.4432 + }, + { + "start": 5223.06, + "end": 5224.08, + "probability": 0.9004 + }, + { + "start": 5224.18, + "end": 5227.18, + "probability": 0.9188 + }, + { + "start": 5227.18, + "end": 5230.96, + "probability": 0.9958 + }, + { + "start": 5231.1, + "end": 5237.31, + "probability": 0.9399 + }, + { + "start": 5239.28, + "end": 5241.06, + "probability": 0.9976 + }, + { + "start": 5241.54, + "end": 5242.38, + "probability": 0.75 + }, + { + "start": 5242.62, + "end": 5244.16, + "probability": 0.9565 + }, + { + "start": 5244.78, + "end": 5247.24, + "probability": 0.9563 + }, + { + "start": 5247.38, + "end": 5251.54, + "probability": 0.9595 + }, + { + "start": 5251.84, + "end": 5255.74, + "probability": 0.9735 + }, + { + "start": 5255.92, + "end": 5258.7, + "probability": 0.9959 + }, + { + "start": 5258.7, + "end": 5264.92, + "probability": 0.9746 + }, + { + "start": 5265.36, + "end": 5267.64, + "probability": 0.8887 + }, + { + "start": 5267.9, + "end": 5271.54, + "probability": 0.9521 + }, + { + "start": 5272.24, + "end": 5274.2, + "probability": 0.6528 + }, + { + "start": 5274.4, + "end": 5276.96, + "probability": 0.954 + }, + { + "start": 5276.96, + "end": 5282.22, + "probability": 0.5191 + }, + { + "start": 5282.46, + "end": 5283.86, + "probability": 0.9675 + }, + { + "start": 5283.94, + "end": 5285.32, + "probability": 0.9492 + }, + { + "start": 5285.42, + "end": 5289.31, + "probability": 0.8046 + }, + { + "start": 5290.58, + "end": 5290.78, + "probability": 0.7264 + }, + { + "start": 5291.06, + "end": 5291.68, + "probability": 0.6501 + }, + { + "start": 5291.8, + "end": 5293.5, + "probability": 0.8771 + }, + { + "start": 5297.54, + "end": 5298.22, + "probability": 0.6402 + }, + { + "start": 5298.26, + "end": 5298.84, + "probability": 0.7765 + }, + { + "start": 5298.88, + "end": 5299.7, + "probability": 0.715 + }, + { + "start": 5300.2, + "end": 5300.76, + "probability": 0.639 + }, + { + "start": 5300.88, + "end": 5303.83, + "probability": 0.9795 + }, + { + "start": 5304.66, + "end": 5305.44, + "probability": 0.8423 + }, + { + "start": 5305.86, + "end": 5306.54, + "probability": 0.8808 + }, + { + "start": 5306.66, + "end": 5311.12, + "probability": 0.9883 + }, + { + "start": 5311.12, + "end": 5314.42, + "probability": 0.999 + }, + { + "start": 5314.46, + "end": 5319.88, + "probability": 0.9984 + }, + { + "start": 5320.4, + "end": 5321.73, + "probability": 0.7758 + }, + { + "start": 5322.16, + "end": 5322.54, + "probability": 0.7166 + }, + { + "start": 5323.0, + "end": 5330.16, + "probability": 0.965 + }, + { + "start": 5331.3, + "end": 5335.36, + "probability": 0.9871 + }, + { + "start": 5335.54, + "end": 5336.04, + "probability": 0.6456 + }, + { + "start": 5336.18, + "end": 5337.34, + "probability": 0.9719 + }, + { + "start": 5337.94, + "end": 5340.92, + "probability": 0.8004 + }, + { + "start": 5341.72, + "end": 5343.32, + "probability": 0.7146 + }, + { + "start": 5343.8, + "end": 5347.36, + "probability": 0.9944 + }, + { + "start": 5347.56, + "end": 5348.8, + "probability": 0.9519 + }, + { + "start": 5349.08, + "end": 5354.36, + "probability": 0.9826 + }, + { + "start": 5354.46, + "end": 5358.2, + "probability": 0.6803 + }, + { + "start": 5358.32, + "end": 5358.9, + "probability": 0.7385 + }, + { + "start": 5359.24, + "end": 5360.02, + "probability": 0.8395 + }, + { + "start": 5360.12, + "end": 5362.66, + "probability": 0.5843 + }, + { + "start": 5362.94, + "end": 5365.38, + "probability": 0.7805 + }, + { + "start": 5365.82, + "end": 5370.18, + "probability": 0.9344 + }, + { + "start": 5370.26, + "end": 5372.46, + "probability": 0.9788 + }, + { + "start": 5372.88, + "end": 5374.76, + "probability": 0.9933 + }, + { + "start": 5375.48, + "end": 5377.43, + "probability": 0.9264 + }, + { + "start": 5377.62, + "end": 5382.8, + "probability": 0.7807 + }, + { + "start": 5383.2, + "end": 5384.42, + "probability": 0.5551 + }, + { + "start": 5385.06, + "end": 5387.38, + "probability": 0.9753 + }, + { + "start": 5387.66, + "end": 5390.88, + "probability": 0.9901 + }, + { + "start": 5390.94, + "end": 5393.1, + "probability": 0.8944 + }, + { + "start": 5393.52, + "end": 5394.77, + "probability": 0.8674 + }, + { + "start": 5395.28, + "end": 5398.26, + "probability": 0.6751 + }, + { + "start": 5399.0, + "end": 5399.28, + "probability": 0.8168 + }, + { + "start": 5400.48, + "end": 5400.96, + "probability": 0.7688 + }, + { + "start": 5402.7, + "end": 5404.23, + "probability": 0.9304 + }, + { + "start": 5405.04, + "end": 5405.64, + "probability": 0.0427 + }, + { + "start": 5405.64, + "end": 5406.0, + "probability": 0.6309 + }, + { + "start": 5406.98, + "end": 5407.68, + "probability": 0.5471 + }, + { + "start": 5409.2, + "end": 5412.53, + "probability": 0.9902 + }, + { + "start": 5413.1, + "end": 5415.08, + "probability": 0.7748 + }, + { + "start": 5415.68, + "end": 5420.82, + "probability": 0.9952 + }, + { + "start": 5421.44, + "end": 5425.62, + "probability": 0.9973 + }, + { + "start": 5426.04, + "end": 5427.24, + "probability": 0.9019 + }, + { + "start": 5427.72, + "end": 5430.9, + "probability": 0.9863 + }, + { + "start": 5430.9, + "end": 5434.63, + "probability": 0.9877 + }, + { + "start": 5436.06, + "end": 5444.06, + "probability": 0.9366 + }, + { + "start": 5444.1, + "end": 5445.3, + "probability": 0.7725 + }, + { + "start": 5445.78, + "end": 5446.48, + "probability": 0.7215 + }, + { + "start": 5446.62, + "end": 5448.94, + "probability": 0.7568 + }, + { + "start": 5448.96, + "end": 5449.44, + "probability": 0.3305 + }, + { + "start": 5449.5, + "end": 5450.36, + "probability": 0.6294 + }, + { + "start": 5450.94, + "end": 5452.32, + "probability": 0.8254 + }, + { + "start": 5452.5, + "end": 5452.8, + "probability": 0.5547 + }, + { + "start": 5452.82, + "end": 5453.32, + "probability": 0.9152 + }, + { + "start": 5453.32, + "end": 5455.02, + "probability": 0.875 + }, + { + "start": 5455.16, + "end": 5456.32, + "probability": 0.8253 + }, + { + "start": 5456.48, + "end": 5456.9, + "probability": 0.3602 + }, + { + "start": 5457.46, + "end": 5461.5, + "probability": 0.9016 + }, + { + "start": 5462.66, + "end": 5464.77, + "probability": 0.8054 + }, + { + "start": 5464.84, + "end": 5468.0, + "probability": 0.9631 + }, + { + "start": 5468.58, + "end": 5471.76, + "probability": 0.9819 + }, + { + "start": 5472.54, + "end": 5475.16, + "probability": 0.9581 + }, + { + "start": 5475.68, + "end": 5480.74, + "probability": 0.9789 + }, + { + "start": 5480.78, + "end": 5481.22, + "probability": 0.5734 + }, + { + "start": 5482.22, + "end": 5484.62, + "probability": 0.6539 + }, + { + "start": 5484.68, + "end": 5487.4, + "probability": 0.9193 + }, + { + "start": 5487.64, + "end": 5488.58, + "probability": 0.6004 + }, + { + "start": 5488.88, + "end": 5492.34, + "probability": 0.8109 + }, + { + "start": 5493.0, + "end": 5496.24, + "probability": 0.9514 + }, + { + "start": 5496.68, + "end": 5498.72, + "probability": 0.3017 + }, + { + "start": 5498.72, + "end": 5500.32, + "probability": 0.8704 + }, + { + "start": 5500.38, + "end": 5501.1, + "probability": 0.7003 + }, + { + "start": 5501.34, + "end": 5504.96, + "probability": 0.705 + }, + { + "start": 5505.98, + "end": 5509.82, + "probability": 0.9823 + }, + { + "start": 5510.5, + "end": 5517.6, + "probability": 0.9808 + }, + { + "start": 5517.64, + "end": 5521.32, + "probability": 0.8681 + }, + { + "start": 5522.08, + "end": 5526.66, + "probability": 0.9144 + }, + { + "start": 5527.0, + "end": 5529.5, + "probability": 0.9047 + }, + { + "start": 5529.64, + "end": 5530.02, + "probability": 0.9706 + }, + { + "start": 5530.08, + "end": 5531.88, + "probability": 0.8336 + }, + { + "start": 5532.12, + "end": 5536.32, + "probability": 0.9674 + }, + { + "start": 5536.4, + "end": 5540.3, + "probability": 0.9861 + }, + { + "start": 5540.56, + "end": 5541.5, + "probability": 0.8539 + }, + { + "start": 5541.7, + "end": 5543.68, + "probability": 0.7458 + }, + { + "start": 5545.78, + "end": 5548.04, + "probability": 0.8324 + }, + { + "start": 5548.16, + "end": 5553.64, + "probability": 0.9485 + }, + { + "start": 5553.82, + "end": 5555.88, + "probability": 0.6249 + }, + { + "start": 5556.14, + "end": 5558.27, + "probability": 0.7158 + }, + { + "start": 5558.28, + "end": 5561.04, + "probability": 0.8062 + }, + { + "start": 5561.62, + "end": 5564.56, + "probability": 0.7155 + }, + { + "start": 5564.58, + "end": 5565.92, + "probability": 0.76 + }, + { + "start": 5566.38, + "end": 5569.42, + "probability": 0.9674 + }, + { + "start": 5569.54, + "end": 5574.54, + "probability": 0.9714 + }, + { + "start": 5575.24, + "end": 5577.54, + "probability": 0.998 + }, + { + "start": 5577.64, + "end": 5578.24, + "probability": 0.821 + }, + { + "start": 5578.52, + "end": 5582.88, + "probability": 0.9768 + }, + { + "start": 5583.74, + "end": 5587.82, + "probability": 0.9912 + }, + { + "start": 5588.98, + "end": 5591.4, + "probability": 0.8855 + }, + { + "start": 5591.5, + "end": 5592.18, + "probability": 0.4944 + }, + { + "start": 5592.22, + "end": 5596.5, + "probability": 0.9736 + }, + { + "start": 5596.5, + "end": 5601.76, + "probability": 0.9761 + }, + { + "start": 5602.8, + "end": 5604.72, + "probability": 0.7426 + }, + { + "start": 5606.06, + "end": 5608.28, + "probability": 0.9752 + }, + { + "start": 5608.6, + "end": 5611.94, + "probability": 0.984 + }, + { + "start": 5611.94, + "end": 5616.08, + "probability": 0.9939 + }, + { + "start": 5616.28, + "end": 5616.6, + "probability": 0.7927 + }, + { + "start": 5616.7, + "end": 5624.0, + "probability": 0.9494 + }, + { + "start": 5625.38, + "end": 5631.58, + "probability": 0.9842 + }, + { + "start": 5634.14, + "end": 5635.26, + "probability": 0.5788 + }, + { + "start": 5635.32, + "end": 5636.06, + "probability": 0.7644 + }, + { + "start": 5636.18, + "end": 5637.7, + "probability": 0.9243 + }, + { + "start": 5637.98, + "end": 5641.26, + "probability": 0.9889 + }, + { + "start": 5641.26, + "end": 5642.48, + "probability": 0.9756 + }, + { + "start": 5642.62, + "end": 5643.04, + "probability": 0.9482 + }, + { + "start": 5643.12, + "end": 5643.66, + "probability": 0.5269 + }, + { + "start": 5644.32, + "end": 5647.88, + "probability": 0.9835 + }, + { + "start": 5647.98, + "end": 5650.31, + "probability": 0.9542 + }, + { + "start": 5650.6, + "end": 5652.14, + "probability": 0.9541 + }, + { + "start": 5652.52, + "end": 5654.3, + "probability": 0.7686 + }, + { + "start": 5654.4, + "end": 5654.56, + "probability": 0.6572 + }, + { + "start": 5654.58, + "end": 5655.18, + "probability": 0.6585 + }, + { + "start": 5655.22, + "end": 5658.4, + "probability": 0.9733 + }, + { + "start": 5658.6, + "end": 5659.76, + "probability": 0.8006 + }, + { + "start": 5659.82, + "end": 5661.86, + "probability": 0.6682 + }, + { + "start": 5661.92, + "end": 5662.74, + "probability": 0.6366 + }, + { + "start": 5662.74, + "end": 5664.92, + "probability": 0.566 + }, + { + "start": 5664.92, + "end": 5665.62, + "probability": 0.6093 + }, + { + "start": 5666.16, + "end": 5669.46, + "probability": 0.7847 + }, + { + "start": 5670.18, + "end": 5671.96, + "probability": 0.7329 + }, + { + "start": 5673.32, + "end": 5676.98, + "probability": 0.9441 + }, + { + "start": 5676.98, + "end": 5681.66, + "probability": 0.7261 + }, + { + "start": 5682.12, + "end": 5683.84, + "probability": 0.6256 + }, + { + "start": 5684.52, + "end": 5685.56, + "probability": 0.8865 + }, + { + "start": 5685.76, + "end": 5690.92, + "probability": 0.8278 + }, + { + "start": 5691.72, + "end": 5692.2, + "probability": 0.5406 + }, + { + "start": 5692.46, + "end": 5693.78, + "probability": 0.9156 + }, + { + "start": 5693.84, + "end": 5695.9, + "probability": 0.9727 + }, + { + "start": 5696.08, + "end": 5697.86, + "probability": 0.9782 + }, + { + "start": 5698.46, + "end": 5699.18, + "probability": 0.8488 + }, + { + "start": 5700.5, + "end": 5701.04, + "probability": 0.876 + }, + { + "start": 5701.12, + "end": 5702.28, + "probability": 0.9644 + }, + { + "start": 5702.34, + "end": 5703.1, + "probability": 0.9686 + }, + { + "start": 5703.16, + "end": 5704.48, + "probability": 0.9788 + }, + { + "start": 5705.04, + "end": 5710.24, + "probability": 0.9935 + }, + { + "start": 5710.5, + "end": 5711.06, + "probability": 0.4185 + }, + { + "start": 5712.16, + "end": 5712.42, + "probability": 0.1983 + }, + { + "start": 5712.52, + "end": 5715.0, + "probability": 0.7046 + }, + { + "start": 5715.08, + "end": 5717.36, + "probability": 0.9488 + }, + { + "start": 5717.56, + "end": 5718.6, + "probability": 0.7876 + }, + { + "start": 5718.6, + "end": 5722.44, + "probability": 0.9845 + }, + { + "start": 5723.54, + "end": 5725.14, + "probability": 0.7031 + }, + { + "start": 5725.3, + "end": 5729.92, + "probability": 0.9883 + }, + { + "start": 5730.38, + "end": 5731.54, + "probability": 0.6094 + }, + { + "start": 5732.32, + "end": 5733.48, + "probability": 0.7984 + }, + { + "start": 5733.58, + "end": 5735.06, + "probability": 0.9985 + }, + { + "start": 5735.08, + "end": 5737.28, + "probability": 0.9928 + }, + { + "start": 5737.66, + "end": 5738.52, + "probability": 0.2381 + }, + { + "start": 5738.62, + "end": 5739.26, + "probability": 0.8652 + }, + { + "start": 5739.5, + "end": 5742.16, + "probability": 0.9921 + }, + { + "start": 5742.92, + "end": 5743.58, + "probability": 0.4201 + }, + { + "start": 5743.58, + "end": 5744.76, + "probability": 0.9395 + }, + { + "start": 5744.86, + "end": 5746.04, + "probability": 0.7324 + }, + { + "start": 5746.18, + "end": 5747.48, + "probability": 0.7523 + }, + { + "start": 5747.64, + "end": 5749.7, + "probability": 0.9889 + }, + { + "start": 5750.32, + "end": 5753.68, + "probability": 0.9714 + }, + { + "start": 5753.68, + "end": 5757.84, + "probability": 0.9979 + }, + { + "start": 5758.88, + "end": 5761.04, + "probability": 0.9846 + }, + { + "start": 5762.92, + "end": 5766.42, + "probability": 0.9948 + }, + { + "start": 5767.08, + "end": 5772.04, + "probability": 0.9668 + }, + { + "start": 5772.66, + "end": 5773.82, + "probability": 0.6615 + }, + { + "start": 5774.08, + "end": 5775.34, + "probability": 0.9697 + }, + { + "start": 5775.74, + "end": 5780.72, + "probability": 0.908 + }, + { + "start": 5780.72, + "end": 5785.8, + "probability": 0.9986 + }, + { + "start": 5785.9, + "end": 5790.28, + "probability": 0.9943 + }, + { + "start": 5790.28, + "end": 5795.24, + "probability": 0.9694 + }, + { + "start": 5796.16, + "end": 5797.24, + "probability": 0.1656 + }, + { + "start": 5797.24, + "end": 5798.12, + "probability": 0.9093 + }, + { + "start": 5798.26, + "end": 5799.22, + "probability": 0.5079 + }, + { + "start": 5799.24, + "end": 5802.68, + "probability": 0.6503 + }, + { + "start": 5802.8, + "end": 5805.84, + "probability": 0.9008 + }, + { + "start": 5805.84, + "end": 5808.66, + "probability": 0.9366 + }, + { + "start": 5809.12, + "end": 5809.64, + "probability": 0.3893 + }, + { + "start": 5809.68, + "end": 5809.92, + "probability": 0.9611 + }, + { + "start": 5810.06, + "end": 5810.64, + "probability": 0.5177 + }, + { + "start": 5810.76, + "end": 5812.44, + "probability": 0.957 + }, + { + "start": 5812.62, + "end": 5817.8, + "probability": 0.9761 + }, + { + "start": 5817.92, + "end": 5819.36, + "probability": 0.9939 + }, + { + "start": 5819.56, + "end": 5820.04, + "probability": 0.671 + }, + { + "start": 5820.24, + "end": 5821.16, + "probability": 0.9406 + }, + { + "start": 5821.86, + "end": 5824.66, + "probability": 0.7715 + }, + { + "start": 5824.78, + "end": 5826.08, + "probability": 0.8134 + }, + { + "start": 5826.12, + "end": 5828.94, + "probability": 0.9666 + }, + { + "start": 5828.94, + "end": 5833.04, + "probability": 0.9993 + }, + { + "start": 5833.1, + "end": 5834.92, + "probability": 0.9479 + }, + { + "start": 5835.12, + "end": 5835.24, + "probability": 0.4537 + }, + { + "start": 5835.28, + "end": 5835.78, + "probability": 0.8936 + }, + { + "start": 5836.26, + "end": 5838.92, + "probability": 0.8738 + }, + { + "start": 5839.66, + "end": 5841.94, + "probability": 0.9894 + }, + { + "start": 5844.44, + "end": 5845.08, + "probability": 0.6537 + }, + { + "start": 5845.46, + "end": 5845.8, + "probability": 0.3401 + }, + { + "start": 5845.9, + "end": 5850.26, + "probability": 0.8847 + }, + { + "start": 5850.82, + "end": 5857.2, + "probability": 0.9655 + }, + { + "start": 5857.74, + "end": 5860.18, + "probability": 0.7871 + }, + { + "start": 5860.82, + "end": 5864.26, + "probability": 0.9978 + }, + { + "start": 5864.26, + "end": 5868.56, + "probability": 0.9925 + }, + { + "start": 5869.18, + "end": 5870.36, + "probability": 0.8575 + }, + { + "start": 5870.74, + "end": 5870.74, + "probability": 0.2897 + }, + { + "start": 5870.74, + "end": 5871.44, + "probability": 0.8304 + }, + { + "start": 5871.6, + "end": 5873.3, + "probability": 0.7171 + }, + { + "start": 5873.38, + "end": 5873.88, + "probability": 0.8053 + }, + { + "start": 5874.38, + "end": 5876.86, + "probability": 0.967 + }, + { + "start": 5877.36, + "end": 5880.67, + "probability": 0.978 + }, + { + "start": 5881.2, + "end": 5883.48, + "probability": 0.7558 + }, + { + "start": 5883.48, + "end": 5886.26, + "probability": 0.979 + }, + { + "start": 5887.26, + "end": 5891.76, + "probability": 0.9083 + }, + { + "start": 5892.02, + "end": 5892.52, + "probability": 0.5592 + }, + { + "start": 5892.78, + "end": 5894.23, + "probability": 0.7645 + }, + { + "start": 5896.18, + "end": 5898.1, + "probability": 0.7491 + }, + { + "start": 5898.14, + "end": 5898.64, + "probability": 0.6478 + }, + { + "start": 5898.74, + "end": 5899.28, + "probability": 0.7345 + }, + { + "start": 5899.44, + "end": 5904.22, + "probability": 0.8105 + }, + { + "start": 5905.0, + "end": 5906.71, + "probability": 0.9739 + }, + { + "start": 5907.03, + "end": 5910.26, + "probability": 0.9928 + }, + { + "start": 5910.32, + "end": 5915.38, + "probability": 0.8524 + }, + { + "start": 5915.46, + "end": 5916.7, + "probability": 0.9436 + }, + { + "start": 5917.0, + "end": 5919.88, + "probability": 0.9807 + }, + { + "start": 5921.4, + "end": 5921.5, + "probability": 0.5142 + }, + { + "start": 5922.06, + "end": 5923.2, + "probability": 0.7139 + }, + { + "start": 5923.38, + "end": 5928.44, + "probability": 0.9708 + }, + { + "start": 5928.52, + "end": 5932.48, + "probability": 0.9695 + }, + { + "start": 5932.48, + "end": 5936.84, + "probability": 0.9976 + }, + { + "start": 5937.76, + "end": 5941.38, + "probability": 0.8064 + }, + { + "start": 5942.54, + "end": 5946.08, + "probability": 0.9985 + }, + { + "start": 5946.08, + "end": 5949.8, + "probability": 0.9792 + }, + { + "start": 5950.36, + "end": 5954.12, + "probability": 0.7871 + }, + { + "start": 5954.24, + "end": 5957.76, + "probability": 0.9167 + }, + { + "start": 5958.36, + "end": 5958.88, + "probability": 0.4741 + }, + { + "start": 5958.92, + "end": 5959.28, + "probability": 0.6893 + }, + { + "start": 5959.42, + "end": 5962.2, + "probability": 0.9854 + }, + { + "start": 5962.32, + "end": 5962.94, + "probability": 0.6752 + }, + { + "start": 5963.42, + "end": 5964.42, + "probability": 0.7365 + }, + { + "start": 5964.52, + "end": 5966.58, + "probability": 0.9837 + }, + { + "start": 5967.38, + "end": 5970.0, + "probability": 0.7162 + }, + { + "start": 5970.62, + "end": 5973.7, + "probability": 0.9944 + }, + { + "start": 5973.7, + "end": 5977.5, + "probability": 0.9834 + }, + { + "start": 5977.94, + "end": 5980.1, + "probability": 0.9522 + }, + { + "start": 5980.28, + "end": 5981.38, + "probability": 0.7456 + }, + { + "start": 5981.84, + "end": 5983.2, + "probability": 0.9546 + }, + { + "start": 5983.36, + "end": 5985.1, + "probability": 0.9264 + }, + { + "start": 5985.52, + "end": 5988.0, + "probability": 0.927 + }, + { + "start": 5988.1, + "end": 5991.54, + "probability": 0.9079 + }, + { + "start": 5992.58, + "end": 5993.12, + "probability": 0.7607 + }, + { + "start": 5993.3, + "end": 5995.08, + "probability": 0.9254 + }, + { + "start": 5995.46, + "end": 5996.76, + "probability": 0.8848 + }, + { + "start": 5996.96, + "end": 5998.7, + "probability": 0.963 + }, + { + "start": 5999.22, + "end": 6002.04, + "probability": 0.9371 + }, + { + "start": 6002.84, + "end": 6006.7, + "probability": 0.9688 + }, + { + "start": 6007.2, + "end": 6007.6, + "probability": 0.7391 + }, + { + "start": 6008.24, + "end": 6010.32, + "probability": 0.861 + }, + { + "start": 6010.38, + "end": 6012.7, + "probability": 0.9775 + }, + { + "start": 6013.88, + "end": 6016.38, + "probability": 0.7279 + }, + { + "start": 6016.54, + "end": 6018.66, + "probability": 0.8635 + }, + { + "start": 6019.14, + "end": 6019.63, + "probability": 0.522 + }, + { + "start": 6019.96, + "end": 6022.71, + "probability": 0.9961 + }, + { + "start": 6022.98, + "end": 6026.76, + "probability": 0.9964 + }, + { + "start": 6026.8, + "end": 6032.0, + "probability": 0.9801 + }, + { + "start": 6032.18, + "end": 6036.76, + "probability": 0.999 + }, + { + "start": 6037.48, + "end": 6041.92, + "probability": 0.995 + }, + { + "start": 6042.92, + "end": 6046.73, + "probability": 0.9982 + }, + { + "start": 6047.68, + "end": 6051.1, + "probability": 0.8956 + }, + { + "start": 6051.32, + "end": 6051.84, + "probability": 0.8652 + }, + { + "start": 6051.9, + "end": 6052.42, + "probability": 0.9409 + }, + { + "start": 6052.54, + "end": 6054.42, + "probability": 0.9916 + }, + { + "start": 6054.62, + "end": 6057.42, + "probability": 0.8962 + }, + { + "start": 6057.58, + "end": 6058.08, + "probability": 0.4763 + }, + { + "start": 6058.28, + "end": 6063.02, + "probability": 0.7365 + }, + { + "start": 6063.6, + "end": 6067.32, + "probability": 0.9048 + }, + { + "start": 6067.84, + "end": 6069.54, + "probability": 0.6965 + }, + { + "start": 6070.12, + "end": 6075.78, + "probability": 0.8286 + }, + { + "start": 6075.82, + "end": 6077.48, + "probability": 0.988 + }, + { + "start": 6077.58, + "end": 6081.41, + "probability": 0.9874 + }, + { + "start": 6081.86, + "end": 6085.06, + "probability": 0.9858 + }, + { + "start": 6085.06, + "end": 6087.5, + "probability": 0.9976 + }, + { + "start": 6088.46, + "end": 6088.82, + "probability": 0.6293 + }, + { + "start": 6088.96, + "end": 6092.68, + "probability": 0.9922 + }, + { + "start": 6092.82, + "end": 6097.46, + "probability": 0.8711 + }, + { + "start": 6097.46, + "end": 6103.64, + "probability": 0.9961 + }, + { + "start": 6104.08, + "end": 6111.86, + "probability": 0.9985 + }, + { + "start": 6111.86, + "end": 6119.98, + "probability": 0.9757 + }, + { + "start": 6120.06, + "end": 6120.8, + "probability": 0.6738 + }, + { + "start": 6120.96, + "end": 6126.68, + "probability": 0.8095 + }, + { + "start": 6126.72, + "end": 6131.42, + "probability": 0.8379 + }, + { + "start": 6131.6, + "end": 6134.8, + "probability": 0.7944 + }, + { + "start": 6134.94, + "end": 6138.94, + "probability": 0.9536 + }, + { + "start": 6139.0, + "end": 6142.0, + "probability": 0.7346 + }, + { + "start": 6142.08, + "end": 6142.96, + "probability": 0.9124 + }, + { + "start": 6143.12, + "end": 6145.54, + "probability": 0.9659 + }, + { + "start": 6145.92, + "end": 6146.32, + "probability": 0.9348 + }, + { + "start": 6146.46, + "end": 6147.46, + "probability": 0.967 + }, + { + "start": 6147.52, + "end": 6149.06, + "probability": 0.9927 + }, + { + "start": 6149.64, + "end": 6151.3, + "probability": 0.674 + }, + { + "start": 6151.56, + "end": 6153.5, + "probability": 0.7455 + }, + { + "start": 6154.24, + "end": 6158.62, + "probability": 0.8479 + }, + { + "start": 6158.74, + "end": 6162.4, + "probability": 0.7673 + }, + { + "start": 6162.84, + "end": 6164.04, + "probability": 0.9264 + }, + { + "start": 6164.92, + "end": 6165.26, + "probability": 0.2701 + }, + { + "start": 6166.7, + "end": 6169.78, + "probability": 0.9648 + }, + { + "start": 6171.18, + "end": 6175.68, + "probability": 0.9883 + }, + { + "start": 6175.68, + "end": 6177.47, + "probability": 0.8599 + }, + { + "start": 6180.63, + "end": 6186.11, + "probability": 0.9334 + }, + { + "start": 6186.82, + "end": 6187.84, + "probability": 0.7155 + }, + { + "start": 6189.3, + "end": 6193.2, + "probability": 0.8651 + }, + { + "start": 6194.12, + "end": 6198.58, + "probability": 0.9725 + }, + { + "start": 6198.62, + "end": 6200.56, + "probability": 0.9777 + }, + { + "start": 6201.2, + "end": 6204.24, + "probability": 0.6792 + }, + { + "start": 6204.8, + "end": 6206.7, + "probability": 0.8328 + }, + { + "start": 6206.84, + "end": 6209.74, + "probability": 0.7431 + }, + { + "start": 6210.0, + "end": 6212.48, + "probability": 0.9706 + }, + { + "start": 6212.72, + "end": 6214.18, + "probability": 0.9556 + }, + { + "start": 6217.56, + "end": 6218.72, + "probability": 0.7687 + }, + { + "start": 6218.8, + "end": 6222.74, + "probability": 0.9867 + }, + { + "start": 6222.78, + "end": 6223.6, + "probability": 0.721 + }, + { + "start": 6223.72, + "end": 6225.98, + "probability": 0.9895 + }, + { + "start": 6226.26, + "end": 6227.3, + "probability": 0.8632 + }, + { + "start": 6227.38, + "end": 6229.72, + "probability": 0.9224 + }, + { + "start": 6230.54, + "end": 6232.4, + "probability": 0.8716 + }, + { + "start": 6232.44, + "end": 6236.36, + "probability": 0.9822 + }, + { + "start": 6236.36, + "end": 6236.8, + "probability": 0.1213 + }, + { + "start": 6237.18, + "end": 6241.18, + "probability": 0.9052 + }, + { + "start": 6241.68, + "end": 6243.68, + "probability": 0.9365 + }, + { + "start": 6243.7, + "end": 6244.62, + "probability": 0.6686 + }, + { + "start": 6245.26, + "end": 6246.51, + "probability": 0.4635 + }, + { + "start": 6246.74, + "end": 6249.68, + "probability": 0.9932 + }, + { + "start": 6249.78, + "end": 6250.04, + "probability": 0.4332 + }, + { + "start": 6250.56, + "end": 6253.86, + "probability": 0.9722 + }, + { + "start": 6254.0, + "end": 6256.68, + "probability": 0.6507 + }, + { + "start": 6257.08, + "end": 6258.78, + "probability": 0.8493 + }, + { + "start": 6259.1, + "end": 6259.96, + "probability": 0.6705 + }, + { + "start": 6260.78, + "end": 6261.44, + "probability": 0.6391 + }, + { + "start": 6261.76, + "end": 6265.26, + "probability": 0.783 + }, + { + "start": 6272.2, + "end": 6277.36, + "probability": 0.9583 + }, + { + "start": 6278.24, + "end": 6283.72, + "probability": 0.8867 + }, + { + "start": 6284.36, + "end": 6292.8, + "probability": 0.9927 + }, + { + "start": 6294.46, + "end": 6297.94, + "probability": 0.9979 + }, + { + "start": 6299.54, + "end": 6301.26, + "probability": 0.8329 + }, + { + "start": 6302.12, + "end": 6306.56, + "probability": 0.9303 + }, + { + "start": 6306.64, + "end": 6311.54, + "probability": 0.993 + }, + { + "start": 6312.06, + "end": 6312.3, + "probability": 0.7238 + }, + { + "start": 6313.1, + "end": 6313.42, + "probability": 0.719 + }, + { + "start": 6313.54, + "end": 6313.82, + "probability": 0.9438 + }, + { + "start": 6313.94, + "end": 6314.78, + "probability": 0.8516 + }, + { + "start": 6315.24, + "end": 6316.74, + "probability": 0.9598 + }, + { + "start": 6316.84, + "end": 6317.34, + "probability": 0.7015 + }, + { + "start": 6317.48, + "end": 6318.62, + "probability": 0.7781 + }, + { + "start": 6319.24, + "end": 6321.46, + "probability": 0.7632 + }, + { + "start": 6321.64, + "end": 6322.12, + "probability": 0.8424 + }, + { + "start": 6322.34, + "end": 6324.72, + "probability": 0.6837 + }, + { + "start": 6325.02, + "end": 6325.02, + "probability": 0.8188 + }, + { + "start": 6325.54, + "end": 6328.44, + "probability": 0.9788 + }, + { + "start": 6328.44, + "end": 6332.2, + "probability": 0.9271 + }, + { + "start": 6332.36, + "end": 6339.82, + "probability": 0.9722 + }, + { + "start": 6340.56, + "end": 6344.56, + "probability": 0.9921 + }, + { + "start": 6344.76, + "end": 6347.14, + "probability": 0.9983 + }, + { + "start": 6347.32, + "end": 6348.34, + "probability": 0.8681 + }, + { + "start": 6348.44, + "end": 6349.08, + "probability": 0.9001 + }, + { + "start": 6349.54, + "end": 6351.9, + "probability": 0.978 + }, + { + "start": 6352.46, + "end": 6354.62, + "probability": 0.9805 + }, + { + "start": 6354.8, + "end": 6361.8, + "probability": 0.9875 + }, + { + "start": 6362.26, + "end": 6367.94, + "probability": 0.9876 + }, + { + "start": 6368.9, + "end": 6369.42, + "probability": 0.2506 + }, + { + "start": 6369.58, + "end": 6373.96, + "probability": 0.9634 + }, + { + "start": 6373.96, + "end": 6376.66, + "probability": 0.9963 + }, + { + "start": 6377.18, + "end": 6382.2, + "probability": 0.9373 + }, + { + "start": 6382.2, + "end": 6389.06, + "probability": 0.9993 + }, + { + "start": 6389.98, + "end": 6392.52, + "probability": 0.9868 + }, + { + "start": 6392.64, + "end": 6397.66, + "probability": 0.9968 + }, + { + "start": 6398.2, + "end": 6398.62, + "probability": 0.8595 + }, + { + "start": 6398.66, + "end": 6401.26, + "probability": 0.7817 + }, + { + "start": 6401.42, + "end": 6404.82, + "probability": 0.9209 + }, + { + "start": 6405.1, + "end": 6408.22, + "probability": 0.9949 + }, + { + "start": 6408.34, + "end": 6411.84, + "probability": 0.9924 + }, + { + "start": 6411.88, + "end": 6413.46, + "probability": 0.6 + }, + { + "start": 6414.24, + "end": 6416.1, + "probability": 0.9865 + }, + { + "start": 6416.26, + "end": 6418.76, + "probability": 0.6423 + }, + { + "start": 6419.3, + "end": 6421.06, + "probability": 0.8844 + }, + { + "start": 6421.16, + "end": 6423.86, + "probability": 0.9533 + }, + { + "start": 6424.3, + "end": 6427.64, + "probability": 0.9216 + }, + { + "start": 6427.64, + "end": 6430.92, + "probability": 0.9785 + }, + { + "start": 6431.75, + "end": 6433.33, + "probability": 0.9546 + }, + { + "start": 6433.68, + "end": 6434.28, + "probability": 0.4469 + }, + { + "start": 6434.32, + "end": 6436.29, + "probability": 0.7878 + }, + { + "start": 6436.88, + "end": 6441.22, + "probability": 0.9961 + }, + { + "start": 6441.54, + "end": 6444.66, + "probability": 0.9447 + }, + { + "start": 6444.94, + "end": 6448.7, + "probability": 0.9673 + }, + { + "start": 6448.7, + "end": 6452.42, + "probability": 0.9956 + }, + { + "start": 6452.5, + "end": 6457.74, + "probability": 0.8861 + }, + { + "start": 6458.26, + "end": 6460.6, + "probability": 0.7296 + }, + { + "start": 6460.94, + "end": 6465.68, + "probability": 0.7466 + }, + { + "start": 6466.42, + "end": 6466.64, + "probability": 0.1587 + }, + { + "start": 6467.08, + "end": 6468.88, + "probability": 0.9573 + }, + { + "start": 6469.12, + "end": 6469.8, + "probability": 0.8747 + }, + { + "start": 6469.86, + "end": 6471.66, + "probability": 0.7885 + }, + { + "start": 6472.14, + "end": 6475.98, + "probability": 0.9413 + }, + { + "start": 6476.52, + "end": 6478.08, + "probability": 0.7946 + }, + { + "start": 6478.22, + "end": 6480.56, + "probability": 0.8573 + }, + { + "start": 6480.88, + "end": 6487.04, + "probability": 0.9854 + }, + { + "start": 6487.28, + "end": 6492.35, + "probability": 0.9807 + }, + { + "start": 6492.76, + "end": 6493.26, + "probability": 0.6953 + }, + { + "start": 6493.34, + "end": 6496.74, + "probability": 0.9959 + }, + { + "start": 6496.94, + "end": 6500.32, + "probability": 0.9512 + }, + { + "start": 6500.42, + "end": 6501.23, + "probability": 0.1998 + }, + { + "start": 6501.66, + "end": 6504.38, + "probability": 0.9517 + }, + { + "start": 6504.56, + "end": 6505.6, + "probability": 0.9259 + }, + { + "start": 6505.74, + "end": 6507.16, + "probability": 0.8965 + }, + { + "start": 6507.42, + "end": 6512.12, + "probability": 0.9964 + }, + { + "start": 6512.12, + "end": 6515.78, + "probability": 0.9877 + }, + { + "start": 6515.94, + "end": 6518.02, + "probability": 0.9778 + }, + { + "start": 6519.52, + "end": 6520.28, + "probability": 0.6731 + }, + { + "start": 6520.78, + "end": 6521.44, + "probability": 0.7175 + }, + { + "start": 6521.44, + "end": 6524.86, + "probability": 0.8047 + }, + { + "start": 6525.62, + "end": 6527.44, + "probability": 0.7277 + }, + { + "start": 6527.58, + "end": 6530.6, + "probability": 0.9581 + }, + { + "start": 6530.7, + "end": 6531.4, + "probability": 0.6881 + }, + { + "start": 6531.6, + "end": 6534.06, + "probability": 0.9211 + }, + { + "start": 6534.16, + "end": 6535.46, + "probability": 0.7099 + }, + { + "start": 6535.56, + "end": 6536.6, + "probability": 0.8126 + }, + { + "start": 6536.84, + "end": 6538.77, + "probability": 0.4209 + }, + { + "start": 6539.58, + "end": 6540.98, + "probability": 0.62 + }, + { + "start": 6541.92, + "end": 6543.1, + "probability": 0.5822 + }, + { + "start": 6543.16, + "end": 6544.18, + "probability": 0.6704 + }, + { + "start": 6544.28, + "end": 6546.56, + "probability": 0.9633 + }, + { + "start": 6546.74, + "end": 6547.38, + "probability": 0.6445 + }, + { + "start": 6547.38, + "end": 6548.5, + "probability": 0.3165 + }, + { + "start": 6550.22, + "end": 6554.44, + "probability": 0.6648 + }, + { + "start": 6554.88, + "end": 6557.22, + "probability": 0.1934 + }, + { + "start": 6557.42, + "end": 6560.78, + "probability": 0.6638 + }, + { + "start": 6560.78, + "end": 6563.04, + "probability": 0.9698 + }, + { + "start": 6563.6, + "end": 6564.3, + "probability": 0.7811 + }, + { + "start": 6565.06, + "end": 6567.14, + "probability": 0.2133 + }, + { + "start": 6567.38, + "end": 6572.26, + "probability": 0.6862 + }, + { + "start": 6572.76, + "end": 6574.64, + "probability": 0.2899 + }, + { + "start": 6574.98, + "end": 6579.88, + "probability": 0.6602 + }, + { + "start": 6580.18, + "end": 6587.54, + "probability": 0.8778 + }, + { + "start": 6587.54, + "end": 6591.06, + "probability": 0.8773 + }, + { + "start": 6591.45, + "end": 6597.98, + "probability": 0.9875 + }, + { + "start": 6598.16, + "end": 6603.18, + "probability": 0.9808 + }, + { + "start": 6604.31, + "end": 6606.06, + "probability": 0.7289 + }, + { + "start": 6606.14, + "end": 6607.9, + "probability": 0.8571 + }, + { + "start": 6607.9, + "end": 6610.38, + "probability": 0.8939 + }, + { + "start": 6611.9, + "end": 6615.2, + "probability": 0.9547 + }, + { + "start": 6615.2, + "end": 6615.44, + "probability": 0.6621 + }, + { + "start": 6616.12, + "end": 6616.76, + "probability": 0.7156 + }, + { + "start": 6617.02, + "end": 6617.92, + "probability": 0.8022 + }, + { + "start": 6618.62, + "end": 6622.68, + "probability": 0.9127 + }, + { + "start": 6623.2, + "end": 6627.32, + "probability": 0.5114 + }, + { + "start": 6627.48, + "end": 6630.82, + "probability": 0.7978 + }, + { + "start": 6635.46, + "end": 6636.3, + "probability": 0.2772 + }, + { + "start": 6637.51, + "end": 6642.6, + "probability": 0.0433 + }, + { + "start": 6653.12, + "end": 6658.38, + "probability": 0.7077 + }, + { + "start": 6658.38, + "end": 6661.98, + "probability": 0.9724 + }, + { + "start": 6662.1, + "end": 6664.22, + "probability": 0.9985 + }, + { + "start": 6664.9, + "end": 6668.54, + "probability": 0.8761 + }, + { + "start": 6669.1, + "end": 6671.74, + "probability": 0.9961 + }, + { + "start": 6671.74, + "end": 6674.54, + "probability": 0.9904 + }, + { + "start": 6675.16, + "end": 6679.28, + "probability": 0.9973 + }, + { + "start": 6680.04, + "end": 6684.36, + "probability": 0.9961 + }, + { + "start": 6685.56, + "end": 6691.44, + "probability": 0.9928 + }, + { + "start": 6692.02, + "end": 6695.06, + "probability": 0.9971 + }, + { + "start": 6695.06, + "end": 6698.22, + "probability": 0.9968 + }, + { + "start": 6698.86, + "end": 6702.88, + "probability": 0.9916 + }, + { + "start": 6703.44, + "end": 6704.36, + "probability": 0.7283 + }, + { + "start": 6704.7, + "end": 6708.3, + "probability": 0.8793 + }, + { + "start": 6708.58, + "end": 6711.74, + "probability": 0.9745 + }, + { + "start": 6712.46, + "end": 6717.26, + "probability": 0.8973 + }, + { + "start": 6717.26, + "end": 6720.06, + "probability": 0.9603 + }, + { + "start": 6720.14, + "end": 6720.84, + "probability": 0.6605 + }, + { + "start": 6720.94, + "end": 6723.24, + "probability": 0.9266 + }, + { + "start": 6723.24, + "end": 6726.26, + "probability": 0.9729 + }, + { + "start": 6727.1, + "end": 6730.48, + "probability": 0.9929 + }, + { + "start": 6730.62, + "end": 6732.74, + "probability": 0.9696 + }, + { + "start": 6733.5, + "end": 6734.74, + "probability": 0.9139 + }, + { + "start": 6734.88, + "end": 6735.62, + "probability": 0.9921 + }, + { + "start": 6735.76, + "end": 6736.98, + "probability": 0.9682 + }, + { + "start": 6737.24, + "end": 6741.2, + "probability": 0.8255 + }, + { + "start": 6741.28, + "end": 6744.52, + "probability": 0.9777 + }, + { + "start": 6745.58, + "end": 6747.38, + "probability": 0.9978 + }, + { + "start": 6747.48, + "end": 6749.0, + "probability": 0.9819 + }, + { + "start": 6749.22, + "end": 6750.36, + "probability": 0.9224 + }, + { + "start": 6751.02, + "end": 6753.6, + "probability": 0.9704 + }, + { + "start": 6753.6, + "end": 6757.02, + "probability": 0.9982 + }, + { + "start": 6757.02, + "end": 6760.4, + "probability": 0.9915 + }, + { + "start": 6760.78, + "end": 6763.42, + "probability": 0.9419 + }, + { + "start": 6763.66, + "end": 6765.76, + "probability": 0.9789 + }, + { + "start": 6765.76, + "end": 6768.2, + "probability": 0.9939 + }, + { + "start": 6768.76, + "end": 6769.92, + "probability": 0.8606 + }, + { + "start": 6770.8, + "end": 6773.04, + "probability": 0.6167 + }, + { + "start": 6774.02, + "end": 6778.14, + "probability": 0.6746 + }, + { + "start": 6778.54, + "end": 6780.16, + "probability": 0.9961 + }, + { + "start": 6780.24, + "end": 6782.52, + "probability": 0.9072 + }, + { + "start": 6783.04, + "end": 6786.77, + "probability": 0.9966 + }, + { + "start": 6786.88, + "end": 6790.52, + "probability": 0.9485 + }, + { + "start": 6791.4, + "end": 6793.6, + "probability": 0.9615 + }, + { + "start": 6795.02, + "end": 6798.62, + "probability": 0.9334 + }, + { + "start": 6798.62, + "end": 6801.52, + "probability": 0.9996 + }, + { + "start": 6801.74, + "end": 6805.34, + "probability": 0.9924 + }, + { + "start": 6805.84, + "end": 6808.6, + "probability": 0.5056 + }, + { + "start": 6809.41, + "end": 6813.66, + "probability": 0.9898 + }, + { + "start": 6814.42, + "end": 6815.88, + "probability": 0.6976 + }, + { + "start": 6816.78, + "end": 6817.16, + "probability": 0.5923 + }, + { + "start": 6817.36, + "end": 6822.34, + "probability": 0.9894 + }, + { + "start": 6822.34, + "end": 6827.06, + "probability": 0.9948 + }, + { + "start": 6827.42, + "end": 6829.48, + "probability": 0.8226 + }, + { + "start": 6829.56, + "end": 6831.94, + "probability": 0.9962 + }, + { + "start": 6832.0, + "end": 6833.06, + "probability": 0.9714 + }, + { + "start": 6833.94, + "end": 6834.18, + "probability": 0.7314 + }, + { + "start": 6834.48, + "end": 6839.1, + "probability": 0.9939 + }, + { + "start": 6839.1, + "end": 6843.64, + "probability": 0.9937 + }, + { + "start": 6844.3, + "end": 6847.08, + "probability": 0.9965 + }, + { + "start": 6847.9, + "end": 6851.2, + "probability": 0.9981 + }, + { + "start": 6851.2, + "end": 6854.9, + "probability": 0.9242 + }, + { + "start": 6856.1, + "end": 6856.5, + "probability": 0.7285 + }, + { + "start": 6856.8, + "end": 6861.04, + "probability": 0.9734 + }, + { + "start": 6861.58, + "end": 6865.44, + "probability": 0.9962 + }, + { + "start": 6865.86, + "end": 6868.22, + "probability": 0.988 + }, + { + "start": 6868.62, + "end": 6870.56, + "probability": 0.9842 + }, + { + "start": 6872.04, + "end": 6873.22, + "probability": 0.6777 + }, + { + "start": 6873.42, + "end": 6876.82, + "probability": 0.9968 + }, + { + "start": 6876.82, + "end": 6880.14, + "probability": 0.9927 + }, + { + "start": 6880.52, + "end": 6885.04, + "probability": 0.9876 + }, + { + "start": 6885.54, + "end": 6887.94, + "probability": 0.9946 + }, + { + "start": 6887.94, + "end": 6891.14, + "probability": 0.9972 + }, + { + "start": 6892.06, + "end": 6898.68, + "probability": 0.9644 + }, + { + "start": 6898.96, + "end": 6900.02, + "probability": 0.9686 + }, + { + "start": 6900.14, + "end": 6902.52, + "probability": 0.9083 + }, + { + "start": 6903.32, + "end": 6906.86, + "probability": 0.9875 + }, + { + "start": 6906.96, + "end": 6907.58, + "probability": 0.7229 + }, + { + "start": 6907.9, + "end": 6909.92, + "probability": 0.9943 + }, + { + "start": 6909.92, + "end": 6913.02, + "probability": 0.9935 + }, + { + "start": 6913.34, + "end": 6915.16, + "probability": 0.9421 + }, + { + "start": 6915.58, + "end": 6918.24, + "probability": 0.8085 + }, + { + "start": 6918.76, + "end": 6921.2, + "probability": 0.9779 + }, + { + "start": 6921.38, + "end": 6925.46, + "probability": 0.9881 + }, + { + "start": 6925.5, + "end": 6930.06, + "probability": 0.9877 + }, + { + "start": 6930.78, + "end": 6936.84, + "probability": 0.9899 + }, + { + "start": 6936.94, + "end": 6939.02, + "probability": 0.8557 + }, + { + "start": 6939.1, + "end": 6939.66, + "probability": 0.9301 + }, + { + "start": 6939.78, + "end": 6940.36, + "probability": 0.605 + }, + { + "start": 6940.76, + "end": 6945.4, + "probability": 0.97 + }, + { + "start": 6945.4, + "end": 6948.86, + "probability": 0.9279 + }, + { + "start": 6949.84, + "end": 6954.36, + "probability": 0.9646 + }, + { + "start": 6955.3, + "end": 6957.88, + "probability": 0.5398 + }, + { + "start": 6958.82, + "end": 6961.08, + "probability": 0.8928 + }, + { + "start": 6992.4, + "end": 6993.2, + "probability": 0.4878 + }, + { + "start": 6993.28, + "end": 6994.28, + "probability": 0.6585 + }, + { + "start": 6994.92, + "end": 6996.76, + "probability": 0.8629 + }, + { + "start": 6997.2, + "end": 6998.86, + "probability": 0.9912 + }, + { + "start": 6999.64, + "end": 7000.32, + "probability": 0.9704 + }, + { + "start": 7002.06, + "end": 7004.52, + "probability": 0.8896 + }, + { + "start": 7006.14, + "end": 7010.02, + "probability": 0.9858 + }, + { + "start": 7011.56, + "end": 7013.92, + "probability": 0.996 + }, + { + "start": 7013.92, + "end": 7019.5, + "probability": 0.999 + }, + { + "start": 7019.5, + "end": 7025.0, + "probability": 0.998 + }, + { + "start": 7026.24, + "end": 7027.26, + "probability": 0.5037 + }, + { + "start": 7029.14, + "end": 7031.62, + "probability": 0.7661 + }, + { + "start": 7033.22, + "end": 7039.38, + "probability": 0.9983 + }, + { + "start": 7041.9, + "end": 7046.62, + "probability": 0.9949 + }, + { + "start": 7047.56, + "end": 7048.82, + "probability": 0.7711 + }, + { + "start": 7049.96, + "end": 7051.4, + "probability": 0.967 + }, + { + "start": 7053.06, + "end": 7054.98, + "probability": 0.9976 + }, + { + "start": 7056.96, + "end": 7059.85, + "probability": 0.9213 + }, + { + "start": 7060.44, + "end": 7065.22, + "probability": 0.9363 + }, + { + "start": 7065.92, + "end": 7075.3, + "probability": 0.9497 + }, + { + "start": 7076.48, + "end": 7079.08, + "probability": 0.9861 + }, + { + "start": 7080.46, + "end": 7083.88, + "probability": 0.9928 + }, + { + "start": 7084.46, + "end": 7087.04, + "probability": 0.9802 + }, + { + "start": 7087.72, + "end": 7088.87, + "probability": 0.7381 + }, + { + "start": 7089.74, + "end": 7091.12, + "probability": 0.7178 + }, + { + "start": 7092.08, + "end": 7097.46, + "probability": 0.8969 + }, + { + "start": 7098.76, + "end": 7106.56, + "probability": 0.8008 + }, + { + "start": 7107.52, + "end": 7108.68, + "probability": 0.9036 + }, + { + "start": 7110.18, + "end": 7112.23, + "probability": 0.9171 + }, + { + "start": 7112.9, + "end": 7115.96, + "probability": 0.844 + }, + { + "start": 7116.92, + "end": 7118.04, + "probability": 0.8295 + }, + { + "start": 7119.12, + "end": 7121.26, + "probability": 0.9854 + }, + { + "start": 7122.2, + "end": 7123.06, + "probability": 0.4097 + }, + { + "start": 7123.7, + "end": 7125.76, + "probability": 0.8482 + }, + { + "start": 7126.88, + "end": 7130.32, + "probability": 0.7995 + }, + { + "start": 7131.3, + "end": 7132.9, + "probability": 0.652 + }, + { + "start": 7135.16, + "end": 7138.42, + "probability": 0.9375 + }, + { + "start": 7139.26, + "end": 7140.76, + "probability": 0.9953 + }, + { + "start": 7141.66, + "end": 7145.24, + "probability": 0.7956 + }, + { + "start": 7146.98, + "end": 7148.76, + "probability": 0.7591 + }, + { + "start": 7150.08, + "end": 7151.68, + "probability": 0.8582 + }, + { + "start": 7153.46, + "end": 7155.54, + "probability": 0.9922 + }, + { + "start": 7156.56, + "end": 7160.22, + "probability": 0.9854 + }, + { + "start": 7161.0, + "end": 7163.94, + "probability": 0.8759 + }, + { + "start": 7166.02, + "end": 7169.34, + "probability": 0.97 + }, + { + "start": 7169.42, + "end": 7170.86, + "probability": 0.8948 + }, + { + "start": 7171.2, + "end": 7172.76, + "probability": 0.7452 + }, + { + "start": 7173.4, + "end": 7176.74, + "probability": 0.9668 + }, + { + "start": 7176.92, + "end": 7178.82, + "probability": 0.7405 + }, + { + "start": 7179.34, + "end": 7180.25, + "probability": 0.9008 + }, + { + "start": 7181.34, + "end": 7183.02, + "probability": 0.3657 + }, + { + "start": 7184.0, + "end": 7185.66, + "probability": 0.8181 + }, + { + "start": 7185.76, + "end": 7187.02, + "probability": 0.6728 + }, + { + "start": 7187.42, + "end": 7188.62, + "probability": 0.9552 + }, + { + "start": 7190.38, + "end": 7192.28, + "probability": 0.9791 + }, + { + "start": 7192.98, + "end": 7197.8, + "probability": 0.9902 + }, + { + "start": 7198.1, + "end": 7201.3, + "probability": 0.8112 + }, + { + "start": 7202.52, + "end": 7206.28, + "probability": 0.9971 + }, + { + "start": 7207.3, + "end": 7207.97, + "probability": 0.7893 + }, + { + "start": 7209.86, + "end": 7213.08, + "probability": 0.9606 + }, + { + "start": 7213.88, + "end": 7218.96, + "probability": 0.9898 + }, + { + "start": 7219.3, + "end": 7223.94, + "probability": 0.8841 + }, + { + "start": 7224.36, + "end": 7226.1, + "probability": 0.8195 + }, + { + "start": 7226.26, + "end": 7229.2, + "probability": 0.9888 + }, + { + "start": 7229.24, + "end": 7231.62, + "probability": 0.9978 + }, + { + "start": 7231.66, + "end": 7232.58, + "probability": 0.7031 + }, + { + "start": 7233.0, + "end": 7233.18, + "probability": 0.5491 + }, + { + "start": 7233.18, + "end": 7234.96, + "probability": 0.8088 + }, + { + "start": 7251.34, + "end": 7252.84, + "probability": 0.4389 + }, + { + "start": 7253.0, + "end": 7253.06, + "probability": 0.3987 + }, + { + "start": 7253.06, + "end": 7254.1, + "probability": 0.7382 + }, + { + "start": 7254.4, + "end": 7256.56, + "probability": 0.6448 + }, + { + "start": 7256.84, + "end": 7257.78, + "probability": 0.728 + }, + { + "start": 7257.8, + "end": 7260.38, + "probability": 0.8746 + }, + { + "start": 7261.1, + "end": 7262.64, + "probability": 0.9741 + }, + { + "start": 7262.64, + "end": 7263.97, + "probability": 0.9451 + }, + { + "start": 7264.24, + "end": 7265.2, + "probability": 0.6904 + }, + { + "start": 7265.32, + "end": 7266.3, + "probability": 0.3573 + }, + { + "start": 7267.54, + "end": 7267.68, + "probability": 0.2292 + }, + { + "start": 7267.68, + "end": 7268.4, + "probability": 0.6332 + }, + { + "start": 7269.64, + "end": 7279.09, + "probability": 0.8971 + }, + { + "start": 7279.32, + "end": 7280.14, + "probability": 0.9769 + }, + { + "start": 7280.28, + "end": 7281.12, + "probability": 0.9897 + }, + { + "start": 7281.16, + "end": 7284.2, + "probability": 0.3672 + }, + { + "start": 7285.72, + "end": 7288.76, + "probability": 0.6667 + }, + { + "start": 7289.52, + "end": 7292.14, + "probability": 0.6519 + }, + { + "start": 7293.32, + "end": 7294.84, + "probability": 0.6244 + }, + { + "start": 7295.16, + "end": 7296.96, + "probability": 0.2832 + }, + { + "start": 7297.66, + "end": 7299.76, + "probability": 0.9774 + }, + { + "start": 7300.92, + "end": 7304.46, + "probability": 0.9712 + }, + { + "start": 7306.98, + "end": 7309.32, + "probability": 0.9781 + }, + { + "start": 7310.18, + "end": 7312.1, + "probability": 0.964 + }, + { + "start": 7313.56, + "end": 7315.64, + "probability": 0.9751 + }, + { + "start": 7316.54, + "end": 7321.1, + "probability": 0.9948 + }, + { + "start": 7321.1, + "end": 7327.0, + "probability": 0.9941 + }, + { + "start": 7327.54, + "end": 7329.54, + "probability": 0.9447 + }, + { + "start": 7330.22, + "end": 7330.76, + "probability": 0.9976 + }, + { + "start": 7331.4, + "end": 7336.86, + "probability": 0.9075 + }, + { + "start": 7337.12, + "end": 7339.85, + "probability": 0.7888 + }, + { + "start": 7341.6, + "end": 7346.78, + "probability": 0.6464 + }, + { + "start": 7350.4, + "end": 7351.92, + "probability": 0.6618 + }, + { + "start": 7352.22, + "end": 7354.96, + "probability": 0.9016 + }, + { + "start": 7355.66, + "end": 7356.66, + "probability": 0.8901 + }, + { + "start": 7357.84, + "end": 7359.56, + "probability": 0.646 + }, + { + "start": 7360.62, + "end": 7364.16, + "probability": 0.799 + }, + { + "start": 7365.66, + "end": 7367.72, + "probability": 0.9305 + }, + { + "start": 7367.98, + "end": 7368.72, + "probability": 0.7492 + }, + { + "start": 7369.38, + "end": 7372.12, + "probability": 0.9713 + }, + { + "start": 7373.1, + "end": 7376.46, + "probability": 0.9966 + }, + { + "start": 7376.76, + "end": 7378.54, + "probability": 0.9906 + }, + { + "start": 7378.6, + "end": 7382.76, + "probability": 0.9631 + }, + { + "start": 7383.8, + "end": 7384.2, + "probability": 0.0617 + }, + { + "start": 7384.32, + "end": 7388.92, + "probability": 0.7162 + }, + { + "start": 7389.06, + "end": 7389.9, + "probability": 0.0968 + }, + { + "start": 7390.24, + "end": 7391.16, + "probability": 0.6235 + }, + { + "start": 7392.82, + "end": 7392.86, + "probability": 0.0256 + }, + { + "start": 7392.86, + "end": 7395.66, + "probability": 0.2266 + }, + { + "start": 7395.66, + "end": 7398.8, + "probability": 0.4579 + }, + { + "start": 7398.8, + "end": 7405.2, + "probability": 0.6146 + }, + { + "start": 7405.48, + "end": 7405.68, + "probability": 0.8743 + }, + { + "start": 7406.4, + "end": 7408.72, + "probability": 0.4185 + }, + { + "start": 7409.16, + "end": 7409.96, + "probability": 0.9097 + }, + { + "start": 7410.06, + "end": 7414.68, + "probability": 0.3128 + }, + { + "start": 7414.68, + "end": 7417.96, + "probability": 0.1967 + }, + { + "start": 7418.34, + "end": 7420.97, + "probability": 0.3004 + }, + { + "start": 7424.66, + "end": 7426.6, + "probability": 0.3674 + }, + { + "start": 7426.86, + "end": 7427.3, + "probability": 0.1078 + }, + { + "start": 7427.3, + "end": 7427.3, + "probability": 0.1953 + }, + { + "start": 7427.3, + "end": 7427.3, + "probability": 0.0341 + }, + { + "start": 7427.3, + "end": 7427.3, + "probability": 0.1314 + }, + { + "start": 7427.3, + "end": 7427.3, + "probability": 0.0476 + }, + { + "start": 7427.3, + "end": 7427.3, + "probability": 0.3785 + }, + { + "start": 7427.3, + "end": 7429.68, + "probability": 0.7098 + }, + { + "start": 7431.76, + "end": 7433.02, + "probability": 0.5695 + }, + { + "start": 7434.28, + "end": 7436.42, + "probability": 0.7096 + }, + { + "start": 7449.28, + "end": 7452.46, + "probability": 0.4899 + }, + { + "start": 7462.18, + "end": 7465.38, + "probability": 0.036 + }, + { + "start": 7466.74, + "end": 7468.96, + "probability": 0.138 + }, + { + "start": 7473.16, + "end": 7474.0, + "probability": 0.0287 + }, + { + "start": 7474.0, + "end": 7474.8, + "probability": 0.074 + }, + { + "start": 7481.48, + "end": 7481.6, + "probability": 0.0218 + }, + { + "start": 7481.6, + "end": 7483.08, + "probability": 0.1657 + }, + { + "start": 7491.06, + "end": 7492.54, + "probability": 0.1585 + }, + { + "start": 7496.6, + "end": 7498.64, + "probability": 0.1538 + }, + { + "start": 7499.56, + "end": 7500.44, + "probability": 0.0965 + }, + { + "start": 7500.44, + "end": 7500.82, + "probability": 0.2007 + }, + { + "start": 7500.82, + "end": 7500.82, + "probability": 0.1101 + }, + { + "start": 7500.82, + "end": 7500.82, + "probability": 0.0907 + }, + { + "start": 7500.82, + "end": 7502.32, + "probability": 0.0549 + }, + { + "start": 7503.48, + "end": 7503.9, + "probability": 0.3276 + }, + { + "start": 7504.0, + "end": 7504.0, + "probability": 0.0 + }, + { + "start": 7504.28, + "end": 7504.36, + "probability": 0.0142 + }, + { + "start": 7504.36, + "end": 7504.36, + "probability": 0.0201 + }, + { + "start": 7504.36, + "end": 7505.04, + "probability": 0.2147 + }, + { + "start": 7505.44, + "end": 7506.52, + "probability": 0.9271 + }, + { + "start": 7506.58, + "end": 7507.9, + "probability": 0.9789 + }, + { + "start": 7508.58, + "end": 7515.75, + "probability": 0.9715 + }, + { + "start": 7516.99, + "end": 7520.34, + "probability": 0.9588 + }, + { + "start": 7521.3, + "end": 7524.4, + "probability": 0.7536 + }, + { + "start": 7525.1, + "end": 7528.5, + "probability": 0.9911 + }, + { + "start": 7529.4, + "end": 7531.42, + "probability": 0.9886 + }, + { + "start": 7531.54, + "end": 7534.14, + "probability": 0.968 + }, + { + "start": 7535.24, + "end": 7535.6, + "probability": 0.5047 + }, + { + "start": 7535.68, + "end": 7538.44, + "probability": 0.9497 + }, + { + "start": 7538.44, + "end": 7543.5, + "probability": 0.8954 + }, + { + "start": 7543.94, + "end": 7546.3, + "probability": 0.9761 + }, + { + "start": 7547.26, + "end": 7550.98, + "probability": 0.9553 + }, + { + "start": 7552.08, + "end": 7554.8, + "probability": 0.9876 + }, + { + "start": 7555.82, + "end": 7561.56, + "probability": 0.9742 + }, + { + "start": 7563.32, + "end": 7568.26, + "probability": 0.9434 + }, + { + "start": 7568.94, + "end": 7571.86, + "probability": 0.9718 + }, + { + "start": 7572.12, + "end": 7572.76, + "probability": 0.3249 + }, + { + "start": 7577.12, + "end": 7578.57, + "probability": 0.5217 + }, + { + "start": 7579.52, + "end": 7580.18, + "probability": 0.8906 + }, + { + "start": 7582.84, + "end": 7587.58, + "probability": 0.967 + }, + { + "start": 7590.68, + "end": 7591.1, + "probability": 0.7395 + }, + { + "start": 7592.56, + "end": 7593.92, + "probability": 0.853 + }, + { + "start": 7601.86, + "end": 7604.0, + "probability": 0.6286 + }, + { + "start": 7609.88, + "end": 7610.98, + "probability": 0.1375 + }, + { + "start": 7622.74, + "end": 7622.94, + "probability": 0.0002 + }, + { + "start": 7623.94, + "end": 7624.34, + "probability": 0.0138 + }, + { + "start": 7625.54, + "end": 7625.72, + "probability": 0.3182 + }, + { + "start": 7625.72, + "end": 7625.96, + "probability": 0.0815 + }, + { + "start": 7625.96, + "end": 7626.44, + "probability": 0.5667 + }, + { + "start": 7627.32, + "end": 7630.72, + "probability": 0.5544 + }, + { + "start": 7631.82, + "end": 7632.54, + "probability": 0.2073 + }, + { + "start": 7633.62, + "end": 7634.04, + "probability": 0.7477 + }, + { + "start": 7634.64, + "end": 7639.32, + "probability": 0.904 + }, + { + "start": 7640.26, + "end": 7640.44, + "probability": 0.9609 + }, + { + "start": 7641.12, + "end": 7644.2, + "probability": 0.8838 + }, + { + "start": 7644.22, + "end": 7644.88, + "probability": 0.8178 + }, + { + "start": 7653.1, + "end": 7654.52, + "probability": 0.6427 + }, + { + "start": 7656.18, + "end": 7658.18, + "probability": 0.7513 + }, + { + "start": 7659.44, + "end": 7660.78, + "probability": 0.9721 + }, + { + "start": 7660.92, + "end": 7664.24, + "probability": 0.9255 + }, + { + "start": 7664.24, + "end": 7667.8, + "probability": 0.811 + }, + { + "start": 7668.74, + "end": 7671.86, + "probability": 0.9922 + }, + { + "start": 7672.9, + "end": 7675.22, + "probability": 0.8797 + }, + { + "start": 7676.91, + "end": 7680.12, + "probability": 0.8389 + }, + { + "start": 7680.96, + "end": 7681.4, + "probability": 0.8571 + }, + { + "start": 7681.98, + "end": 7686.18, + "probability": 0.6247 + }, + { + "start": 7686.18, + "end": 7690.52, + "probability": 0.9971 + }, + { + "start": 7691.06, + "end": 7693.64, + "probability": 0.7758 + }, + { + "start": 7693.91, + "end": 7696.76, + "probability": 0.5211 + }, + { + "start": 7696.84, + "end": 7701.38, + "probability": 0.9206 + }, + { + "start": 7702.04, + "end": 7704.36, + "probability": 0.9971 + }, + { + "start": 7704.72, + "end": 7707.94, + "probability": 0.9327 + }, + { + "start": 7708.44, + "end": 7711.72, + "probability": 0.8432 + }, + { + "start": 7712.66, + "end": 7713.1, + "probability": 0.4154 + }, + { + "start": 7713.18, + "end": 7715.22, + "probability": 0.9045 + }, + { + "start": 7715.22, + "end": 7717.84, + "probability": 0.9072 + }, + { + "start": 7717.94, + "end": 7719.54, + "probability": 0.8636 + }, + { + "start": 7719.84, + "end": 7720.66, + "probability": 0.672 + }, + { + "start": 7721.22, + "end": 7721.68, + "probability": 0.8113 + }, + { + "start": 7722.44, + "end": 7723.4, + "probability": 0.9595 + }, + { + "start": 7724.98, + "end": 7726.28, + "probability": 0.9317 + }, + { + "start": 7726.7, + "end": 7731.32, + "probability": 0.9184 + }, + { + "start": 7731.44, + "end": 7732.36, + "probability": 0.7728 + }, + { + "start": 7732.36, + "end": 7733.28, + "probability": 0.6167 + }, + { + "start": 7736.24, + "end": 7741.0, + "probability": 0.9841 + }, + { + "start": 7741.58, + "end": 7745.42, + "probability": 0.9297 + }, + { + "start": 7745.42, + "end": 7749.48, + "probability": 0.8981 + }, + { + "start": 7749.98, + "end": 7752.74, + "probability": 0.9475 + }, + { + "start": 7753.1, + "end": 7755.0, + "probability": 0.8208 + }, + { + "start": 7755.52, + "end": 7761.7, + "probability": 0.9819 + }, + { + "start": 7763.2, + "end": 7764.32, + "probability": 0.7238 + }, + { + "start": 7764.5, + "end": 7766.1, + "probability": 0.6171 + }, + { + "start": 7766.16, + "end": 7767.86, + "probability": 0.7021 + }, + { + "start": 7768.44, + "end": 7774.06, + "probability": 0.9614 + }, + { + "start": 7774.42, + "end": 7775.86, + "probability": 0.5304 + }, + { + "start": 7775.92, + "end": 7779.22, + "probability": 0.8338 + }, + { + "start": 7779.34, + "end": 7785.58, + "probability": 0.7265 + }, + { + "start": 7785.98, + "end": 7787.18, + "probability": 0.8593 + }, + { + "start": 7787.9, + "end": 7789.28, + "probability": 0.9868 + }, + { + "start": 7789.32, + "end": 7793.56, + "probability": 0.9586 + }, + { + "start": 7793.92, + "end": 7795.28, + "probability": 0.7507 + }, + { + "start": 7795.68, + "end": 7796.66, + "probability": 0.7384 + }, + { + "start": 7796.96, + "end": 7798.26, + "probability": 0.8184 + }, + { + "start": 7798.38, + "end": 7802.62, + "probability": 0.9401 + }, + { + "start": 7802.72, + "end": 7805.4, + "probability": 0.8859 + }, + { + "start": 7805.66, + "end": 7806.14, + "probability": 0.3284 + }, + { + "start": 7806.36, + "end": 7806.72, + "probability": 0.6936 + }, + { + "start": 7806.92, + "end": 7812.06, + "probability": 0.9425 + }, + { + "start": 7812.5, + "end": 7814.95, + "probability": 0.9266 + }, + { + "start": 7815.08, + "end": 7816.48, + "probability": 0.9702 + }, + { + "start": 7816.58, + "end": 7817.39, + "probability": 0.9932 + }, + { + "start": 7817.94, + "end": 7819.38, + "probability": 0.7517 + }, + { + "start": 7820.36, + "end": 7823.66, + "probability": 0.9193 + }, + { + "start": 7824.63, + "end": 7830.32, + "probability": 0.8306 + }, + { + "start": 7830.32, + "end": 7830.88, + "probability": 0.4824 + }, + { + "start": 7831.12, + "end": 7834.04, + "probability": 0.782 + }, + { + "start": 7834.98, + "end": 7839.26, + "probability": 0.9495 + }, + { + "start": 7839.46, + "end": 7839.9, + "probability": 0.8359 + }, + { + "start": 7840.08, + "end": 7841.66, + "probability": 0.8669 + }, + { + "start": 7842.46, + "end": 7846.12, + "probability": 0.9927 + }, + { + "start": 7848.64, + "end": 7848.84, + "probability": 0.1627 + }, + { + "start": 7848.84, + "end": 7849.28, + "probability": 0.4528 + }, + { + "start": 7849.64, + "end": 7852.21, + "probability": 0.565 + }, + { + "start": 7852.38, + "end": 7853.29, + "probability": 0.4207 + }, + { + "start": 7853.52, + "end": 7854.14, + "probability": 0.8635 + }, + { + "start": 7854.6, + "end": 7859.14, + "probability": 0.8868 + }, + { + "start": 7859.28, + "end": 7859.96, + "probability": 0.688 + }, + { + "start": 7860.04, + "end": 7860.64, + "probability": 0.8705 + }, + { + "start": 7861.2, + "end": 7863.18, + "probability": 0.9712 + }, + { + "start": 7863.74, + "end": 7864.66, + "probability": 0.7908 + }, + { + "start": 7864.8, + "end": 7868.28, + "probability": 0.9322 + }, + { + "start": 7868.38, + "end": 7869.56, + "probability": 0.5513 + }, + { + "start": 7870.38, + "end": 7871.9, + "probability": 0.8212 + }, + { + "start": 7871.9, + "end": 7874.08, + "probability": 0.9861 + }, + { + "start": 7874.14, + "end": 7875.84, + "probability": 0.937 + }, + { + "start": 7875.9, + "end": 7876.86, + "probability": 0.8851 + }, + { + "start": 7876.92, + "end": 7880.22, + "probability": 0.7631 + }, + { + "start": 7880.9, + "end": 7883.62, + "probability": 0.8541 + }, + { + "start": 7883.76, + "end": 7888.0, + "probability": 0.8246 + }, + { + "start": 7888.04, + "end": 7888.48, + "probability": 0.7533 + }, + { + "start": 7897.28, + "end": 7897.52, + "probability": 0.5459 + }, + { + "start": 7897.58, + "end": 7898.5, + "probability": 0.6437 + }, + { + "start": 7905.32, + "end": 7905.68, + "probability": 0.124 + }, + { + "start": 7912.22, + "end": 7913.96, + "probability": 0.7823 + }, + { + "start": 7915.24, + "end": 7916.4, + "probability": 0.8604 + }, + { + "start": 7917.54, + "end": 7918.56, + "probability": 0.7105 + }, + { + "start": 7918.82, + "end": 7919.04, + "probability": 0.0884 + }, + { + "start": 7919.04, + "end": 7919.45, + "probability": 0.4428 + }, + { + "start": 7920.38, + "end": 7921.38, + "probability": 0.8457 + }, + { + "start": 7928.54, + "end": 7928.74, + "probability": 0.6718 + }, + { + "start": 7932.06, + "end": 7935.26, + "probability": 0.8335 + }, + { + "start": 7935.88, + "end": 7941.88, + "probability": 0.9811 + }, + { + "start": 7942.5, + "end": 7946.66, + "probability": 0.5348 + }, + { + "start": 7947.52, + "end": 7951.28, + "probability": 0.9762 + }, + { + "start": 7952.18, + "end": 7955.3, + "probability": 0.7026 + }, + { + "start": 7955.52, + "end": 7961.2, + "probability": 0.9736 + }, + { + "start": 7961.48, + "end": 7966.38, + "probability": 0.9878 + }, + { + "start": 7966.56, + "end": 7966.94, + "probability": 0.9897 + }, + { + "start": 7969.82, + "end": 7973.36, + "probability": 0.8351 + }, + { + "start": 7974.0, + "end": 7979.6, + "probability": 0.9897 + }, + { + "start": 7979.66, + "end": 7984.58, + "probability": 0.9878 + }, + { + "start": 7985.2, + "end": 7988.0, + "probability": 0.9012 + }, + { + "start": 7991.0, + "end": 7991.88, + "probability": 0.5514 + }, + { + "start": 7991.94, + "end": 7997.9, + "probability": 0.9961 + }, + { + "start": 7999.08, + "end": 7999.88, + "probability": 0.8821 + }, + { + "start": 7999.94, + "end": 8000.92, + "probability": 0.9277 + }, + { + "start": 8001.08, + "end": 8001.78, + "probability": 0.6042 + }, + { + "start": 8001.86, + "end": 8002.56, + "probability": 0.9473 + }, + { + "start": 8002.64, + "end": 8003.7, + "probability": 0.7435 + }, + { + "start": 8004.68, + "end": 8006.18, + "probability": 0.3019 + }, + { + "start": 8006.42, + "end": 8008.03, + "probability": 0.8646 + }, + { + "start": 8008.8, + "end": 8016.32, + "probability": 0.9659 + }, + { + "start": 8016.46, + "end": 8017.72, + "probability": 0.5415 + }, + { + "start": 8019.2, + "end": 8024.64, + "probability": 0.9121 + }, + { + "start": 8024.88, + "end": 8027.96, + "probability": 0.8927 + }, + { + "start": 8028.48, + "end": 8031.04, + "probability": 0.9596 + }, + { + "start": 8031.54, + "end": 8033.36, + "probability": 0.9611 + }, + { + "start": 8034.44, + "end": 8036.56, + "probability": 0.9943 + }, + { + "start": 8036.88, + "end": 8037.06, + "probability": 0.7763 + }, + { + "start": 8037.54, + "end": 8038.26, + "probability": 0.5971 + }, + { + "start": 8038.54, + "end": 8039.91, + "probability": 0.8735 + }, + { + "start": 8053.52, + "end": 8054.74, + "probability": 0.6121 + }, + { + "start": 8055.0, + "end": 8057.26, + "probability": 0.6744 + }, + { + "start": 8063.98, + "end": 8064.24, + "probability": 0.3505 + }, + { + "start": 8064.28, + "end": 8066.16, + "probability": 0.9381 + }, + { + "start": 8066.26, + "end": 8069.26, + "probability": 0.9733 + }, + { + "start": 8070.1, + "end": 8072.18, + "probability": 0.9597 + }, + { + "start": 8072.86, + "end": 8074.52, + "probability": 0.9829 + }, + { + "start": 8074.64, + "end": 8075.72, + "probability": 0.9073 + }, + { + "start": 8075.94, + "end": 8076.84, + "probability": 0.8923 + }, + { + "start": 8076.88, + "end": 8079.32, + "probability": 0.8801 + }, + { + "start": 8079.84, + "end": 8081.62, + "probability": 0.9268 + }, + { + "start": 8082.7, + "end": 8085.8, + "probability": 0.9641 + }, + { + "start": 8087.68, + "end": 8088.03, + "probability": 0.0123 + }, + { + "start": 8088.28, + "end": 8088.87, + "probability": 0.7703 + }, + { + "start": 8089.56, + "end": 8090.5, + "probability": 0.6655 + }, + { + "start": 8090.5, + "end": 8093.24, + "probability": 0.8844 + }, + { + "start": 8093.56, + "end": 8094.9, + "probability": 0.7259 + }, + { + "start": 8097.05, + "end": 8097.28, + "probability": 0.0627 + }, + { + "start": 8097.28, + "end": 8098.08, + "probability": 0.4597 + }, + { + "start": 8098.22, + "end": 8099.0, + "probability": 0.326 + }, + { + "start": 8099.08, + "end": 8099.26, + "probability": 0.3423 + }, + { + "start": 8099.36, + "end": 8102.32, + "probability": 0.8907 + }, + { + "start": 8102.42, + "end": 8102.84, + "probability": 0.8831 + }, + { + "start": 8103.44, + "end": 8104.38, + "probability": 0.7907 + }, + { + "start": 8104.48, + "end": 8105.46, + "probability": 0.908 + }, + { + "start": 8105.94, + "end": 8109.08, + "probability": 0.9453 + }, + { + "start": 8109.14, + "end": 8114.04, + "probability": 0.9399 + }, + { + "start": 8114.14, + "end": 8115.56, + "probability": 0.869 + }, + { + "start": 8116.7, + "end": 8119.18, + "probability": 0.9484 + }, + { + "start": 8120.24, + "end": 8125.92, + "probability": 0.9673 + }, + { + "start": 8126.48, + "end": 8129.7, + "probability": 0.9927 + }, + { + "start": 8130.08, + "end": 8135.84, + "probability": 0.9894 + }, + { + "start": 8136.0, + "end": 8139.56, + "probability": 0.9912 + }, + { + "start": 8140.5, + "end": 8146.84, + "probability": 0.9624 + }, + { + "start": 8147.8, + "end": 8149.89, + "probability": 0.9932 + }, + { + "start": 8150.23, + "end": 8151.65, + "probability": 0.7643 + }, + { + "start": 8151.81, + "end": 8154.78, + "probability": 0.9946 + }, + { + "start": 8155.26, + "end": 8158.42, + "probability": 0.6665 + }, + { + "start": 8158.82, + "end": 8161.44, + "probability": 0.861 + }, + { + "start": 8161.84, + "end": 8166.48, + "probability": 0.9801 + }, + { + "start": 8166.56, + "end": 8167.74, + "probability": 0.9675 + }, + { + "start": 8168.04, + "end": 8173.54, + "probability": 0.9897 + }, + { + "start": 8173.74, + "end": 8177.36, + "probability": 0.9634 + }, + { + "start": 8177.36, + "end": 8179.98, + "probability": 0.8596 + }, + { + "start": 8180.28, + "end": 8184.92, + "probability": 0.9907 + }, + { + "start": 8185.28, + "end": 8186.66, + "probability": 0.9974 + }, + { + "start": 8187.1, + "end": 8187.88, + "probability": 0.5571 + }, + { + "start": 8187.92, + "end": 8187.92, + "probability": 0.6604 + }, + { + "start": 8188.36, + "end": 8190.56, + "probability": 0.7423 + }, + { + "start": 8190.56, + "end": 8191.52, + "probability": 0.7214 + }, + { + "start": 8191.54, + "end": 8197.36, + "probability": 0.9411 + }, + { + "start": 8197.9, + "end": 8200.1, + "probability": 0.9592 + }, + { + "start": 8200.96, + "end": 8201.44, + "probability": 0.8699 + }, + { + "start": 8203.06, + "end": 8204.9, + "probability": 0.5074 + }, + { + "start": 8206.08, + "end": 8209.0, + "probability": 0.2731 + }, + { + "start": 8215.48, + "end": 8215.5, + "probability": 0.0142 + }, + { + "start": 8215.5, + "end": 8215.9, + "probability": 0.0825 + }, + { + "start": 8225.58, + "end": 8229.42, + "probability": 0.0505 + }, + { + "start": 8229.78, + "end": 8229.78, + "probability": 0.0318 + }, + { + "start": 8229.78, + "end": 8229.78, + "probability": 0.5551 + }, + { + "start": 8229.78, + "end": 8232.66, + "probability": 0.4266 + }, + { + "start": 8232.66, + "end": 8233.58, + "probability": 0.9329 + }, + { + "start": 8234.26, + "end": 8239.14, + "probability": 0.8459 + }, + { + "start": 8241.6, + "end": 8242.32, + "probability": 0.8508 + }, + { + "start": 8243.06, + "end": 8243.82, + "probability": 0.7933 + }, + { + "start": 8243.88, + "end": 8246.86, + "probability": 0.9916 + }, + { + "start": 8247.62, + "end": 8250.28, + "probability": 0.8242 + }, + { + "start": 8251.34, + "end": 8252.2, + "probability": 0.6247 + }, + { + "start": 8253.02, + "end": 8253.72, + "probability": 0.7652 + }, + { + "start": 8256.22, + "end": 8258.0, + "probability": 0.6682 + }, + { + "start": 8262.96, + "end": 8267.28, + "probability": 0.7034 + }, + { + "start": 8267.44, + "end": 8270.0, + "probability": 0.9871 + }, + { + "start": 8271.74, + "end": 8272.8, + "probability": 0.7691 + }, + { + "start": 8273.14, + "end": 8273.76, + "probability": 0.7212 + }, + { + "start": 8273.86, + "end": 8275.14, + "probability": 0.7381 + }, + { + "start": 8281.16, + "end": 8281.22, + "probability": 0.0 + }, + { + "start": 8281.22, + "end": 8281.22, + "probability": 0.1113 + }, + { + "start": 8281.22, + "end": 8281.22, + "probability": 0.6186 + }, + { + "start": 8281.22, + "end": 8281.48, + "probability": 0.3781 + }, + { + "start": 8281.48, + "end": 8281.54, + "probability": 0.3257 + }, + { + "start": 8281.7, + "end": 8282.28, + "probability": 0.5212 + }, + { + "start": 8282.52, + "end": 8285.94, + "probability": 0.7421 + }, + { + "start": 8286.06, + "end": 8287.14, + "probability": 0.8106 + }, + { + "start": 8287.3, + "end": 8288.92, + "probability": 0.889 + }, + { + "start": 8289.14, + "end": 8291.58, + "probability": 0.9117 + }, + { + "start": 8291.62, + "end": 8294.38, + "probability": 0.9255 + }, + { + "start": 8294.9, + "end": 8297.98, + "probability": 0.6808 + }, + { + "start": 8298.16, + "end": 8301.54, + "probability": 0.9523 + }, + { + "start": 8301.94, + "end": 8304.42, + "probability": 0.8363 + }, + { + "start": 8305.0, + "end": 8308.98, + "probability": 0.9554 + }, + { + "start": 8309.02, + "end": 8313.94, + "probability": 0.9856 + }, + { + "start": 8314.34, + "end": 8316.22, + "probability": 0.729 + }, + { + "start": 8316.4, + "end": 8317.02, + "probability": 0.8332 + }, + { + "start": 8317.28, + "end": 8319.64, + "probability": 0.9451 + }, + { + "start": 8320.02, + "end": 8323.76, + "probability": 0.9963 + }, + { + "start": 8323.76, + "end": 8329.12, + "probability": 0.9944 + }, + { + "start": 8329.32, + "end": 8334.98, + "probability": 0.9831 + }, + { + "start": 8335.46, + "end": 8339.34, + "probability": 0.9798 + }, + { + "start": 8339.82, + "end": 8342.82, + "probability": 0.9461 + }, + { + "start": 8343.18, + "end": 8346.88, + "probability": 0.9299 + }, + { + "start": 8347.3, + "end": 8349.16, + "probability": 0.9411 + }, + { + "start": 8349.16, + "end": 8352.08, + "probability": 0.9945 + }, + { + "start": 8352.48, + "end": 8357.94, + "probability": 0.9974 + }, + { + "start": 8358.04, + "end": 8360.54, + "probability": 0.7225 + }, + { + "start": 8360.64, + "end": 8363.59, + "probability": 0.9806 + }, + { + "start": 8363.88, + "end": 8368.7, + "probability": 0.944 + }, + { + "start": 8368.7, + "end": 8374.34, + "probability": 0.992 + }, + { + "start": 8374.4, + "end": 8375.66, + "probability": 0.7471 + }, + { + "start": 8375.96, + "end": 8376.5, + "probability": 0.5828 + }, + { + "start": 8376.72, + "end": 8377.6, + "probability": 0.766 + }, + { + "start": 8378.06, + "end": 8381.9, + "probability": 0.9321 + }, + { + "start": 8382.06, + "end": 8388.81, + "probability": 0.9792 + }, + { + "start": 8389.38, + "end": 8393.1, + "probability": 0.8661 + }, + { + "start": 8393.88, + "end": 8396.16, + "probability": 0.9897 + }, + { + "start": 8396.4, + "end": 8396.92, + "probability": 0.9006 + }, + { + "start": 8397.4, + "end": 8399.18, + "probability": 0.5134 + }, + { + "start": 8400.0, + "end": 8403.14, + "probability": 0.7924 + }, + { + "start": 8403.28, + "end": 8404.7, + "probability": 0.9958 + }, + { + "start": 8405.26, + "end": 8405.94, + "probability": 0.5269 + }, + { + "start": 8407.18, + "end": 8407.68, + "probability": 0.86 + }, + { + "start": 8426.4, + "end": 8426.4, + "probability": 0.156 + }, + { + "start": 8426.4, + "end": 8426.4, + "probability": 0.1351 + }, + { + "start": 8426.4, + "end": 8426.4, + "probability": 0.2903 + }, + { + "start": 8426.4, + "end": 8426.4, + "probability": 0.15 + }, + { + "start": 8426.4, + "end": 8426.42, + "probability": 0.0242 + }, + { + "start": 8426.42, + "end": 8426.44, + "probability": 0.0426 + }, + { + "start": 8451.4, + "end": 8451.96, + "probability": 0.2578 + }, + { + "start": 8453.34, + "end": 8454.12, + "probability": 0.9331 + }, + { + "start": 8454.2, + "end": 8455.0, + "probability": 0.7014 + }, + { + "start": 8455.22, + "end": 8459.18, + "probability": 0.9647 + }, + { + "start": 8461.4, + "end": 8462.36, + "probability": 0.4915 + }, + { + "start": 8462.64, + "end": 8465.8, + "probability": 0.9932 + }, + { + "start": 8465.8, + "end": 8469.62, + "probability": 0.9858 + }, + { + "start": 8470.78, + "end": 8472.68, + "probability": 0.7665 + }, + { + "start": 8472.86, + "end": 8473.34, + "probability": 0.539 + }, + { + "start": 8474.5, + "end": 8478.04, + "probability": 0.8739 + }, + { + "start": 8478.76, + "end": 8482.14, + "probability": 0.9449 + }, + { + "start": 8482.2, + "end": 8482.74, + "probability": 0.3416 + }, + { + "start": 8483.08, + "end": 8486.18, + "probability": 0.8514 + }, + { + "start": 8486.32, + "end": 8487.94, + "probability": 0.9752 + }, + { + "start": 8488.06, + "end": 8489.81, + "probability": 0.981 + }, + { + "start": 8492.07, + "end": 8496.4, + "probability": 0.7708 + }, + { + "start": 8496.54, + "end": 8500.0, + "probability": 0.8587 + }, + { + "start": 8500.68, + "end": 8504.92, + "probability": 0.9708 + }, + { + "start": 8504.98, + "end": 8510.18, + "probability": 0.9045 + }, + { + "start": 8510.66, + "end": 8511.1, + "probability": 0.4107 + }, + { + "start": 8511.26, + "end": 8515.24, + "probability": 0.7051 + }, + { + "start": 8515.72, + "end": 8519.54, + "probability": 0.8627 + }, + { + "start": 8520.5, + "end": 8525.72, + "probability": 0.8463 + }, + { + "start": 8525.72, + "end": 8529.38, + "probability": 0.9942 + }, + { + "start": 8529.42, + "end": 8530.58, + "probability": 0.8138 + }, + { + "start": 8530.98, + "end": 8532.6, + "probability": 0.95 + }, + { + "start": 8533.16, + "end": 8534.3, + "probability": 0.8435 + }, + { + "start": 8534.38, + "end": 8536.24, + "probability": 0.9133 + }, + { + "start": 8536.3, + "end": 8537.28, + "probability": 0.6464 + }, + { + "start": 8537.3, + "end": 8539.22, + "probability": 0.7127 + }, + { + "start": 8543.84, + "end": 8546.76, + "probability": 0.6702 + }, + { + "start": 8555.0, + "end": 8556.14, + "probability": 0.2851 + }, + { + "start": 8556.14, + "end": 8557.2, + "probability": 0.0285 + }, + { + "start": 8559.26, + "end": 8560.0, + "probability": 0.0675 + }, + { + "start": 8562.94, + "end": 8564.98, + "probability": 0.0359 + }, + { + "start": 8565.67, + "end": 8568.12, + "probability": 0.0291 + }, + { + "start": 8568.12, + "end": 8568.14, + "probability": 0.0225 + }, + { + "start": 8568.14, + "end": 8568.14, + "probability": 0.0663 + }, + { + "start": 8568.14, + "end": 8568.14, + "probability": 0.1171 + }, + { + "start": 8568.14, + "end": 8569.76, + "probability": 0.2351 + }, + { + "start": 8569.76, + "end": 8570.94, + "probability": 0.3513 + }, + { + "start": 8571.02, + "end": 8572.56, + "probability": 0.23 + }, + { + "start": 8573.82, + "end": 8577.86, + "probability": 0.9639 + }, + { + "start": 8578.44, + "end": 8581.28, + "probability": 0.761 + }, + { + "start": 8582.02, + "end": 8583.52, + "probability": 0.8684 + }, + { + "start": 8584.64, + "end": 8585.54, + "probability": 0.4305 + }, + { + "start": 8585.98, + "end": 8588.46, + "probability": 0.9565 + }, + { + "start": 8589.12, + "end": 8593.08, + "probability": 0.6507 + }, + { + "start": 8594.22, + "end": 8597.95, + "probability": 0.7423 + }, + { + "start": 8599.1, + "end": 8599.2, + "probability": 0.2659 + } + ], + "segments_count": 2853, + "words_count": 14836, + "avg_words_per_segment": 5.2001, + "avg_segment_duration": 2.4224, + "avg_words_per_minute": 103.514, + "plenum_id": "11910", + "duration": 8599.42, + "title": null, + "plenum_date": "2011-02-01" +} \ No newline at end of file