diff --git "a/29408/metadata.json" "b/29408/metadata.json" new file mode 100644--- /dev/null +++ "b/29408/metadata.json" @@ -0,0 +1,44882 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "29408", + "quality_score": 0.9221, + "per_segment_quality_scores": [ + { + "start": 66.27, + "end": 68.6, + "probability": 0.7208 + }, + { + "start": 68.76, + "end": 72.76, + "probability": 0.8979 + }, + { + "start": 75.22, + "end": 80.2, + "probability": 0.9459 + }, + { + "start": 80.26, + "end": 85.78, + "probability": 0.8824 + }, + { + "start": 86.26, + "end": 91.04, + "probability": 0.743 + }, + { + "start": 91.08, + "end": 92.16, + "probability": 0.8643 + }, + { + "start": 92.56, + "end": 96.14, + "probability": 0.9429 + }, + { + "start": 97.14, + "end": 101.22, + "probability": 0.9929 + }, + { + "start": 103.32, + "end": 104.9, + "probability": 0.5234 + }, + { + "start": 110.42, + "end": 111.9, + "probability": 0.6657 + }, + { + "start": 112.0, + "end": 114.52, + "probability": 0.603 + }, + { + "start": 114.74, + "end": 115.96, + "probability": 0.9028 + }, + { + "start": 116.26, + "end": 121.5, + "probability": 0.9674 + }, + { + "start": 121.5, + "end": 127.68, + "probability": 0.9844 + }, + { + "start": 128.62, + "end": 128.98, + "probability": 0.0031 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.1, + "end": 140.12, + "probability": 0.9928 + }, + { + "start": 140.12, + "end": 147.46, + "probability": 0.9483 + }, + { + "start": 147.94, + "end": 150.64, + "probability": 0.6621 + }, + { + "start": 151.1, + "end": 151.94, + "probability": 0.886 + }, + { + "start": 152.32, + "end": 158.3, + "probability": 0.9348 + }, + { + "start": 158.48, + "end": 160.18, + "probability": 0.7586 + }, + { + "start": 160.68, + "end": 163.1, + "probability": 0.9735 + }, + { + "start": 163.28, + "end": 164.6, + "probability": 0.987 + }, + { + "start": 165.06, + "end": 167.66, + "probability": 0.9776 + }, + { + "start": 167.82, + "end": 170.3, + "probability": 0.9126 + }, + { + "start": 170.44, + "end": 175.66, + "probability": 0.9902 + }, + { + "start": 175.88, + "end": 180.12, + "probability": 0.9956 + }, + { + "start": 180.4, + "end": 184.98, + "probability": 0.9755 + }, + { + "start": 185.4, + "end": 187.16, + "probability": 0.937 + }, + { + "start": 187.3, + "end": 191.42, + "probability": 0.9563 + }, + { + "start": 191.74, + "end": 194.46, + "probability": 0.7776 + }, + { + "start": 194.76, + "end": 195.92, + "probability": 0.8808 + }, + { + "start": 196.86, + "end": 199.48, + "probability": 0.5128 + }, + { + "start": 199.58, + "end": 203.98, + "probability": 0.8633 + }, + { + "start": 204.7, + "end": 207.86, + "probability": 0.8201 + }, + { + "start": 208.08, + "end": 214.32, + "probability": 0.9888 + }, + { + "start": 214.7, + "end": 218.5, + "probability": 0.8086 + }, + { + "start": 218.72, + "end": 220.4, + "probability": 0.9628 + }, + { + "start": 220.52, + "end": 221.04, + "probability": 0.9782 + }, + { + "start": 221.12, + "end": 222.08, + "probability": 0.9754 + }, + { + "start": 222.2, + "end": 225.98, + "probability": 0.9624 + }, + { + "start": 226.58, + "end": 231.7, + "probability": 0.9876 + }, + { + "start": 231.84, + "end": 232.7, + "probability": 0.7545 + }, + { + "start": 233.3, + "end": 234.54, + "probability": 0.9019 + }, + { + "start": 234.62, + "end": 236.08, + "probability": 0.9543 + }, + { + "start": 236.34, + "end": 237.02, + "probability": 0.5974 + }, + { + "start": 237.42, + "end": 238.9, + "probability": 0.9485 + }, + { + "start": 239.04, + "end": 243.46, + "probability": 0.8792 + }, + { + "start": 243.6, + "end": 245.6, + "probability": 0.8298 + }, + { + "start": 245.78, + "end": 250.58, + "probability": 0.9866 + }, + { + "start": 250.84, + "end": 254.48, + "probability": 0.8587 + }, + { + "start": 255.28, + "end": 259.78, + "probability": 0.9847 + }, + { + "start": 259.78, + "end": 263.58, + "probability": 0.995 + }, + { + "start": 263.76, + "end": 265.08, + "probability": 0.9722 + }, + { + "start": 265.28, + "end": 266.94, + "probability": 0.9116 + }, + { + "start": 268.02, + "end": 268.72, + "probability": 0.6697 + }, + { + "start": 270.3, + "end": 273.86, + "probability": 0.6923 + }, + { + "start": 274.02, + "end": 277.02, + "probability": 0.9194 + }, + { + "start": 277.72, + "end": 281.06, + "probability": 0.9922 + }, + { + "start": 281.36, + "end": 288.48, + "probability": 0.9891 + }, + { + "start": 288.58, + "end": 293.26, + "probability": 0.9698 + }, + { + "start": 294.12, + "end": 296.32, + "probability": 0.988 + }, + { + "start": 296.46, + "end": 297.56, + "probability": 0.7466 + }, + { + "start": 297.86, + "end": 298.62, + "probability": 0.7211 + }, + { + "start": 298.8, + "end": 301.06, + "probability": 0.9971 + }, + { + "start": 301.78, + "end": 303.72, + "probability": 0.9683 + }, + { + "start": 303.84, + "end": 305.14, + "probability": 0.9179 + }, + { + "start": 305.64, + "end": 312.84, + "probability": 0.9882 + }, + { + "start": 313.06, + "end": 318.94, + "probability": 0.9895 + }, + { + "start": 318.94, + "end": 323.7, + "probability": 0.9961 + }, + { + "start": 323.84, + "end": 327.94, + "probability": 0.9896 + }, + { + "start": 328.4, + "end": 331.9, + "probability": 0.9561 + }, + { + "start": 332.12, + "end": 333.1, + "probability": 0.9697 + }, + { + "start": 333.2, + "end": 339.18, + "probability": 0.9202 + }, + { + "start": 339.52, + "end": 345.42, + "probability": 0.9444 + }, + { + "start": 345.74, + "end": 348.5, + "probability": 0.5659 + }, + { + "start": 348.7, + "end": 353.66, + "probability": 0.8535 + }, + { + "start": 353.86, + "end": 358.1, + "probability": 0.9935 + }, + { + "start": 361.88, + "end": 362.78, + "probability": 0.6674 + }, + { + "start": 362.92, + "end": 365.84, + "probability": 0.5492 + }, + { + "start": 366.28, + "end": 370.04, + "probability": 0.964 + }, + { + "start": 370.18, + "end": 371.28, + "probability": 0.8534 + }, + { + "start": 371.6, + "end": 373.14, + "probability": 0.8871 + }, + { + "start": 373.36, + "end": 374.76, + "probability": 0.5842 + }, + { + "start": 375.04, + "end": 380.34, + "probability": 0.9676 + }, + { + "start": 380.34, + "end": 383.1, + "probability": 0.9992 + }, + { + "start": 383.6, + "end": 384.08, + "probability": 0.7285 + }, + { + "start": 384.18, + "end": 386.7, + "probability": 0.6541 + }, + { + "start": 387.42, + "end": 391.98, + "probability": 0.9971 + }, + { + "start": 391.98, + "end": 397.06, + "probability": 0.9111 + }, + { + "start": 397.58, + "end": 398.96, + "probability": 0.0396 + }, + { + "start": 399.16, + "end": 400.84, + "probability": 0.957 + }, + { + "start": 402.54, + "end": 406.16, + "probability": 0.9927 + }, + { + "start": 406.32, + "end": 411.63, + "probability": 0.9966 + }, + { + "start": 412.4, + "end": 415.54, + "probability": 0.9229 + }, + { + "start": 415.62, + "end": 416.46, + "probability": 0.8292 + }, + { + "start": 416.56, + "end": 417.62, + "probability": 0.7007 + }, + { + "start": 418.42, + "end": 423.0, + "probability": 0.9778 + }, + { + "start": 423.0, + "end": 428.68, + "probability": 0.9976 + }, + { + "start": 428.78, + "end": 429.14, + "probability": 0.9695 + }, + { + "start": 429.22, + "end": 429.6, + "probability": 0.9615 + }, + { + "start": 429.7, + "end": 430.42, + "probability": 0.8464 + }, + { + "start": 430.52, + "end": 431.22, + "probability": 0.8173 + }, + { + "start": 431.36, + "end": 431.86, + "probability": 0.4996 + }, + { + "start": 432.45, + "end": 434.9, + "probability": 0.5374 + }, + { + "start": 435.38, + "end": 439.98, + "probability": 0.9211 + }, + { + "start": 439.98, + "end": 444.06, + "probability": 0.4896 + }, + { + "start": 444.1, + "end": 446.46, + "probability": 0.5351 + }, + { + "start": 446.52, + "end": 447.46, + "probability": 0.8382 + }, + { + "start": 447.54, + "end": 449.02, + "probability": 0.9098 + }, + { + "start": 449.46, + "end": 452.32, + "probability": 0.9723 + }, + { + "start": 452.62, + "end": 456.06, + "probability": 0.9926 + }, + { + "start": 456.12, + "end": 459.28, + "probability": 0.9339 + }, + { + "start": 460.2, + "end": 463.04, + "probability": 0.4781 + }, + { + "start": 463.04, + "end": 466.26, + "probability": 0.9703 + }, + { + "start": 466.94, + "end": 468.75, + "probability": 0.8988 + }, + { + "start": 469.74, + "end": 475.78, + "probability": 0.9893 + }, + { + "start": 475.9, + "end": 477.8, + "probability": 0.9064 + }, + { + "start": 478.4, + "end": 482.48, + "probability": 0.9147 + }, + { + "start": 482.84, + "end": 486.28, + "probability": 0.9989 + }, + { + "start": 487.56, + "end": 491.44, + "probability": 0.9381 + }, + { + "start": 492.28, + "end": 499.82, + "probability": 0.9315 + }, + { + "start": 499.9, + "end": 500.71, + "probability": 0.8314 + }, + { + "start": 501.1, + "end": 502.04, + "probability": 0.6083 + }, + { + "start": 502.42, + "end": 503.7, + "probability": 0.8195 + }, + { + "start": 503.9, + "end": 505.74, + "probability": 0.4785 + }, + { + "start": 505.88, + "end": 510.18, + "probability": 0.9315 + }, + { + "start": 510.52, + "end": 513.66, + "probability": 0.8954 + }, + { + "start": 513.74, + "end": 516.84, + "probability": 0.9208 + }, + { + "start": 518.12, + "end": 521.56, + "probability": 0.8259 + }, + { + "start": 521.76, + "end": 527.36, + "probability": 0.7697 + }, + { + "start": 527.66, + "end": 531.54, + "probability": 0.9133 + }, + { + "start": 532.74, + "end": 533.4, + "probability": 0.7665 + }, + { + "start": 533.64, + "end": 538.68, + "probability": 0.6751 + }, + { + "start": 538.7, + "end": 543.16, + "probability": 0.8206 + }, + { + "start": 544.18, + "end": 547.5, + "probability": 0.9725 + }, + { + "start": 549.28, + "end": 553.62, + "probability": 0.8441 + }, + { + "start": 554.44, + "end": 556.74, + "probability": 0.8676 + }, + { + "start": 558.0, + "end": 562.56, + "probability": 0.9267 + }, + { + "start": 563.26, + "end": 565.34, + "probability": 0.9013 + }, + { + "start": 565.42, + "end": 568.78, + "probability": 0.9902 + }, + { + "start": 568.78, + "end": 572.56, + "probability": 0.9859 + }, + { + "start": 573.14, + "end": 577.4, + "probability": 0.8647 + }, + { + "start": 578.34, + "end": 579.92, + "probability": 0.6633 + }, + { + "start": 579.96, + "end": 583.54, + "probability": 0.6154 + }, + { + "start": 583.96, + "end": 584.48, + "probability": 0.762 + }, + { + "start": 585.48, + "end": 586.76, + "probability": 0.4478 + }, + { + "start": 586.76, + "end": 587.72, + "probability": 0.5592 + }, + { + "start": 590.34, + "end": 592.76, + "probability": 0.7619 + }, + { + "start": 595.24, + "end": 603.44, + "probability": 0.9897 + }, + { + "start": 605.18, + "end": 609.28, + "probability": 0.9734 + }, + { + "start": 610.6, + "end": 614.42, + "probability": 0.9348 + }, + { + "start": 615.88, + "end": 623.9, + "probability": 0.9707 + }, + { + "start": 626.18, + "end": 628.42, + "probability": 0.8238 + }, + { + "start": 629.02, + "end": 630.66, + "probability": 0.8643 + }, + { + "start": 632.12, + "end": 636.02, + "probability": 0.737 + }, + { + "start": 638.23, + "end": 640.62, + "probability": 0.9797 + }, + { + "start": 641.26, + "end": 647.8, + "probability": 0.8162 + }, + { + "start": 648.56, + "end": 649.7, + "probability": 0.9728 + }, + { + "start": 650.34, + "end": 651.02, + "probability": 0.4104 + }, + { + "start": 652.72, + "end": 655.2, + "probability": 0.9961 + }, + { + "start": 655.2, + "end": 659.34, + "probability": 0.8303 + }, + { + "start": 660.54, + "end": 663.68, + "probability": 0.9416 + }, + { + "start": 664.42, + "end": 672.76, + "probability": 0.91 + }, + { + "start": 673.96, + "end": 677.8, + "probability": 0.937 + }, + { + "start": 679.34, + "end": 682.06, + "probability": 0.8524 + }, + { + "start": 682.28, + "end": 684.68, + "probability": 0.9315 + }, + { + "start": 685.48, + "end": 688.34, + "probability": 0.9634 + }, + { + "start": 688.74, + "end": 689.4, + "probability": 0.5179 + }, + { + "start": 689.64, + "end": 692.91, + "probability": 0.9775 + }, + { + "start": 693.62, + "end": 694.38, + "probability": 0.6107 + }, + { + "start": 695.32, + "end": 698.38, + "probability": 0.9913 + }, + { + "start": 699.28, + "end": 702.72, + "probability": 0.9563 + }, + { + "start": 703.34, + "end": 709.74, + "probability": 0.9895 + }, + { + "start": 709.74, + "end": 713.74, + "probability": 0.9952 + }, + { + "start": 714.74, + "end": 719.14, + "probability": 0.855 + }, + { + "start": 719.14, + "end": 723.26, + "probability": 0.9973 + }, + { + "start": 723.26, + "end": 727.66, + "probability": 0.9854 + }, + { + "start": 728.16, + "end": 729.03, + "probability": 0.5926 + }, + { + "start": 730.26, + "end": 730.76, + "probability": 0.7933 + }, + { + "start": 731.84, + "end": 732.7, + "probability": 0.8433 + }, + { + "start": 733.1, + "end": 735.68, + "probability": 0.9072 + }, + { + "start": 735.8, + "end": 736.46, + "probability": 0.9011 + }, + { + "start": 736.56, + "end": 739.72, + "probability": 0.9246 + }, + { + "start": 739.72, + "end": 740.14, + "probability": 0.5972 + }, + { + "start": 740.26, + "end": 740.92, + "probability": 0.8753 + }, + { + "start": 741.08, + "end": 746.28, + "probability": 0.9548 + }, + { + "start": 748.54, + "end": 749.96, + "probability": 0.7556 + }, + { + "start": 750.04, + "end": 750.67, + "probability": 0.6743 + }, + { + "start": 751.06, + "end": 753.12, + "probability": 0.7705 + }, + { + "start": 758.5, + "end": 761.76, + "probability": 0.797 + }, + { + "start": 762.1, + "end": 763.04, + "probability": 0.7482 + }, + { + "start": 763.8, + "end": 767.92, + "probability": 0.8978 + }, + { + "start": 768.24, + "end": 768.56, + "probability": 0.4666 + }, + { + "start": 768.58, + "end": 769.48, + "probability": 0.5974 + }, + { + "start": 769.64, + "end": 772.2, + "probability": 0.9346 + }, + { + "start": 774.74, + "end": 783.74, + "probability": 0.9888 + }, + { + "start": 783.84, + "end": 789.98, + "probability": 0.9861 + }, + { + "start": 791.42, + "end": 796.04, + "probability": 0.9878 + }, + { + "start": 796.68, + "end": 803.7, + "probability": 0.9005 + }, + { + "start": 804.82, + "end": 805.06, + "probability": 0.4709 + }, + { + "start": 805.12, + "end": 806.57, + "probability": 0.9732 + }, + { + "start": 806.8, + "end": 808.84, + "probability": 0.8936 + }, + { + "start": 809.46, + "end": 813.32, + "probability": 0.9756 + }, + { + "start": 813.34, + "end": 814.34, + "probability": 0.7981 + }, + { + "start": 814.66, + "end": 815.22, + "probability": 0.3103 + }, + { + "start": 815.22, + "end": 816.06, + "probability": 0.9194 + }, + { + "start": 816.98, + "end": 817.98, + "probability": 0.6154 + }, + { + "start": 818.04, + "end": 819.18, + "probability": 0.8796 + }, + { + "start": 819.3, + "end": 822.9, + "probability": 0.9895 + }, + { + "start": 823.04, + "end": 828.15, + "probability": 0.9973 + }, + { + "start": 828.68, + "end": 831.16, + "probability": 0.9647 + }, + { + "start": 831.16, + "end": 832.26, + "probability": 0.8052 + }, + { + "start": 832.4, + "end": 836.64, + "probability": 0.9982 + }, + { + "start": 837.08, + "end": 838.88, + "probability": 0.9623 + }, + { + "start": 839.16, + "end": 842.0, + "probability": 0.9619 + }, + { + "start": 842.58, + "end": 846.66, + "probability": 0.992 + }, + { + "start": 846.68, + "end": 849.2, + "probability": 0.8185 + }, + { + "start": 849.58, + "end": 849.7, + "probability": 0.3754 + }, + { + "start": 849.86, + "end": 849.94, + "probability": 0.6034 + }, + { + "start": 849.94, + "end": 851.02, + "probability": 0.7346 + }, + { + "start": 851.14, + "end": 851.7, + "probability": 0.9358 + }, + { + "start": 851.7, + "end": 855.48, + "probability": 0.9692 + }, + { + "start": 857.26, + "end": 857.54, + "probability": 0.9812 + }, + { + "start": 857.54, + "end": 859.0, + "probability": 0.9735 + }, + { + "start": 859.1, + "end": 861.91, + "probability": 0.948 + }, + { + "start": 862.0, + "end": 863.6, + "probability": 0.9507 + }, + { + "start": 864.74, + "end": 870.0, + "probability": 0.8558 + }, + { + "start": 870.22, + "end": 871.08, + "probability": 0.5709 + }, + { + "start": 871.72, + "end": 873.34, + "probability": 0.7286 + }, + { + "start": 874.7, + "end": 881.82, + "probability": 0.9482 + }, + { + "start": 882.46, + "end": 884.02, + "probability": 0.486 + }, + { + "start": 884.1, + "end": 884.58, + "probability": 0.6 + }, + { + "start": 884.76, + "end": 886.34, + "probability": 0.7494 + }, + { + "start": 887.26, + "end": 887.92, + "probability": 0.8661 + }, + { + "start": 888.02, + "end": 889.31, + "probability": 0.9956 + }, + { + "start": 889.46, + "end": 890.08, + "probability": 0.9216 + }, + { + "start": 890.12, + "end": 892.4, + "probability": 0.9096 + }, + { + "start": 893.06, + "end": 895.28, + "probability": 0.972 + }, + { + "start": 895.74, + "end": 899.44, + "probability": 0.9833 + }, + { + "start": 899.5, + "end": 900.72, + "probability": 0.9498 + }, + { + "start": 901.74, + "end": 902.2, + "probability": 0.7448 + }, + { + "start": 902.42, + "end": 903.94, + "probability": 0.6899 + }, + { + "start": 904.06, + "end": 904.8, + "probability": 0.6812 + }, + { + "start": 904.94, + "end": 905.54, + "probability": 0.7725 + }, + { + "start": 905.6, + "end": 906.5, + "probability": 0.1882 + }, + { + "start": 906.66, + "end": 907.12, + "probability": 0.935 + }, + { + "start": 907.16, + "end": 908.58, + "probability": 0.9951 + }, + { + "start": 908.98, + "end": 912.3, + "probability": 0.9387 + }, + { + "start": 913.7, + "end": 914.72, + "probability": 0.1241 + }, + { + "start": 914.72, + "end": 915.14, + "probability": 0.2129 + }, + { + "start": 915.88, + "end": 917.92, + "probability": 0.9873 + }, + { + "start": 918.6, + "end": 922.04, + "probability": 0.8177 + }, + { + "start": 922.83, + "end": 924.46, + "probability": 0.9449 + }, + { + "start": 924.68, + "end": 925.87, + "probability": 0.906 + }, + { + "start": 928.38, + "end": 929.34, + "probability": 0.9803 + }, + { + "start": 929.52, + "end": 931.2, + "probability": 0.9651 + }, + { + "start": 931.88, + "end": 933.54, + "probability": 0.4282 + }, + { + "start": 934.08, + "end": 935.4, + "probability": 0.7972 + }, + { + "start": 935.54, + "end": 938.22, + "probability": 0.7015 + }, + { + "start": 940.86, + "end": 943.42, + "probability": 0.9832 + }, + { + "start": 943.88, + "end": 946.56, + "probability": 0.986 + }, + { + "start": 947.02, + "end": 948.26, + "probability": 0.9735 + }, + { + "start": 948.74, + "end": 949.44, + "probability": 0.9519 + }, + { + "start": 949.6, + "end": 952.12, + "probability": 0.9837 + }, + { + "start": 952.7, + "end": 954.92, + "probability": 0.7196 + }, + { + "start": 955.54, + "end": 960.72, + "probability": 0.9033 + }, + { + "start": 961.26, + "end": 962.45, + "probability": 0.8644 + }, + { + "start": 962.96, + "end": 965.95, + "probability": 0.9953 + }, + { + "start": 966.56, + "end": 969.64, + "probability": 0.9394 + }, + { + "start": 969.84, + "end": 971.44, + "probability": 0.9098 + }, + { + "start": 971.84, + "end": 973.4, + "probability": 0.9923 + }, + { + "start": 974.24, + "end": 974.5, + "probability": 0.2757 + }, + { + "start": 974.74, + "end": 977.74, + "probability": 0.8707 + }, + { + "start": 977.8, + "end": 978.42, + "probability": 0.6727 + }, + { + "start": 978.44, + "end": 980.7, + "probability": 0.9624 + }, + { + "start": 980.88, + "end": 983.26, + "probability": 0.8936 + }, + { + "start": 983.34, + "end": 984.28, + "probability": 0.8949 + }, + { + "start": 984.72, + "end": 985.32, + "probability": 0.4651 + }, + { + "start": 985.46, + "end": 985.48, + "probability": 0.7005 + }, + { + "start": 985.58, + "end": 986.82, + "probability": 0.6565 + }, + { + "start": 986.94, + "end": 992.66, + "probability": 0.9294 + }, + { + "start": 993.36, + "end": 995.96, + "probability": 0.9167 + }, + { + "start": 996.88, + "end": 998.16, + "probability": 0.8219 + }, + { + "start": 998.94, + "end": 1002.66, + "probability": 0.7207 + }, + { + "start": 1003.2, + "end": 1004.34, + "probability": 0.5829 + }, + { + "start": 1004.46, + "end": 1007.06, + "probability": 0.9376 + }, + { + "start": 1008.18, + "end": 1012.58, + "probability": 0.9239 + }, + { + "start": 1013.06, + "end": 1014.28, + "probability": 0.9886 + }, + { + "start": 1014.32, + "end": 1014.86, + "probability": 0.9924 + }, + { + "start": 1015.8, + "end": 1017.44, + "probability": 0.9923 + }, + { + "start": 1018.34, + "end": 1021.3, + "probability": 0.9869 + }, + { + "start": 1021.74, + "end": 1023.83, + "probability": 0.9912 + }, + { + "start": 1025.0, + "end": 1026.46, + "probability": 0.8534 + }, + { + "start": 1026.62, + "end": 1029.68, + "probability": 0.8837 + }, + { + "start": 1030.2, + "end": 1032.84, + "probability": 0.873 + }, + { + "start": 1033.88, + "end": 1035.0, + "probability": 0.9863 + }, + { + "start": 1035.28, + "end": 1038.86, + "probability": 0.6135 + }, + { + "start": 1039.62, + "end": 1042.46, + "probability": 0.7183 + }, + { + "start": 1042.8, + "end": 1044.48, + "probability": 0.9149 + }, + { + "start": 1045.02, + "end": 1047.72, + "probability": 0.8665 + }, + { + "start": 1047.82, + "end": 1049.16, + "probability": 0.6668 + }, + { + "start": 1049.94, + "end": 1053.16, + "probability": 0.7403 + }, + { + "start": 1053.56, + "end": 1058.2, + "probability": 0.8817 + }, + { + "start": 1058.42, + "end": 1062.52, + "probability": 0.9882 + }, + { + "start": 1064.04, + "end": 1065.28, + "probability": 0.945 + }, + { + "start": 1065.32, + "end": 1067.01, + "probability": 0.9651 + }, + { + "start": 1067.56, + "end": 1071.74, + "probability": 0.9965 + }, + { + "start": 1072.56, + "end": 1074.96, + "probability": 0.8698 + }, + { + "start": 1075.36, + "end": 1077.5, + "probability": 0.9406 + }, + { + "start": 1077.74, + "end": 1079.12, + "probability": 0.9836 + }, + { + "start": 1080.3, + "end": 1082.48, + "probability": 0.8275 + }, + { + "start": 1082.86, + "end": 1083.23, + "probability": 0.8915 + }, + { + "start": 1084.42, + "end": 1086.26, + "probability": 0.9832 + }, + { + "start": 1086.44, + "end": 1087.6, + "probability": 0.7916 + }, + { + "start": 1088.24, + "end": 1090.7, + "probability": 0.8929 + }, + { + "start": 1091.34, + "end": 1093.02, + "probability": 0.9618 + }, + { + "start": 1093.08, + "end": 1094.27, + "probability": 0.9828 + }, + { + "start": 1094.54, + "end": 1096.0, + "probability": 0.6837 + }, + { + "start": 1096.56, + "end": 1098.66, + "probability": 0.9824 + }, + { + "start": 1098.74, + "end": 1100.12, + "probability": 0.946 + }, + { + "start": 1100.54, + "end": 1101.17, + "probability": 0.5716 + }, + { + "start": 1102.28, + "end": 1105.96, + "probability": 0.8398 + }, + { + "start": 1106.74, + "end": 1110.3, + "probability": 0.7092 + }, + { + "start": 1110.44, + "end": 1111.28, + "probability": 0.6571 + }, + { + "start": 1111.66, + "end": 1113.26, + "probability": 0.8299 + }, + { + "start": 1113.56, + "end": 1115.52, + "probability": 0.9935 + }, + { + "start": 1115.86, + "end": 1117.62, + "probability": 0.9927 + }, + { + "start": 1118.3, + "end": 1119.08, + "probability": 0.498 + }, + { + "start": 1120.07, + "end": 1124.04, + "probability": 0.8721 + }, + { + "start": 1124.58, + "end": 1125.58, + "probability": 0.8296 + }, + { + "start": 1125.7, + "end": 1127.18, + "probability": 0.8002 + }, + { + "start": 1127.72, + "end": 1129.26, + "probability": 0.998 + }, + { + "start": 1129.28, + "end": 1132.54, + "probability": 0.9814 + }, + { + "start": 1133.34, + "end": 1134.18, + "probability": 0.8848 + }, + { + "start": 1134.38, + "end": 1136.62, + "probability": 0.7103 + }, + { + "start": 1136.9, + "end": 1137.88, + "probability": 0.8933 + }, + { + "start": 1138.0, + "end": 1140.8, + "probability": 0.8331 + }, + { + "start": 1141.3, + "end": 1143.42, + "probability": 0.7325 + }, + { + "start": 1143.5, + "end": 1144.2, + "probability": 0.7744 + }, + { + "start": 1144.92, + "end": 1146.44, + "probability": 0.5959 + }, + { + "start": 1146.52, + "end": 1150.86, + "probability": 0.9724 + }, + { + "start": 1151.32, + "end": 1152.58, + "probability": 0.8036 + }, + { + "start": 1152.66, + "end": 1153.32, + "probability": 0.7508 + }, + { + "start": 1153.72, + "end": 1155.22, + "probability": 0.9365 + }, + { + "start": 1155.32, + "end": 1162.58, + "probability": 0.8968 + }, + { + "start": 1163.56, + "end": 1165.16, + "probability": 0.6003 + }, + { + "start": 1165.32, + "end": 1170.02, + "probability": 0.9713 + }, + { + "start": 1170.42, + "end": 1173.28, + "probability": 0.7473 + }, + { + "start": 1173.94, + "end": 1175.74, + "probability": 0.8511 + }, + { + "start": 1176.46, + "end": 1179.77, + "probability": 0.7562 + }, + { + "start": 1181.16, + "end": 1184.68, + "probability": 0.8016 + }, + { + "start": 1184.7, + "end": 1185.5, + "probability": 0.8951 + }, + { + "start": 1185.7, + "end": 1187.82, + "probability": 0.825 + }, + { + "start": 1190.32, + "end": 1192.72, + "probability": 0.9001 + }, + { + "start": 1194.62, + "end": 1197.76, + "probability": 0.6636 + }, + { + "start": 1197.92, + "end": 1200.12, + "probability": 0.7696 + }, + { + "start": 1200.62, + "end": 1205.34, + "probability": 0.8828 + }, + { + "start": 1205.98, + "end": 1207.18, + "probability": 0.7269 + }, + { + "start": 1207.72, + "end": 1209.45, + "probability": 0.9438 + }, + { + "start": 1211.16, + "end": 1214.6, + "probability": 0.8779 + }, + { + "start": 1215.12, + "end": 1218.06, + "probability": 0.6083 + }, + { + "start": 1218.62, + "end": 1220.66, + "probability": 0.6943 + }, + { + "start": 1221.86, + "end": 1227.14, + "probability": 0.9473 + }, + { + "start": 1227.82, + "end": 1231.04, + "probability": 0.9857 + }, + { + "start": 1231.04, + "end": 1235.38, + "probability": 0.9076 + }, + { + "start": 1235.68, + "end": 1237.48, + "probability": 0.5799 + }, + { + "start": 1237.58, + "end": 1238.6, + "probability": 0.8232 + }, + { + "start": 1239.82, + "end": 1241.36, + "probability": 0.7286 + }, + { + "start": 1243.02, + "end": 1249.18, + "probability": 0.821 + }, + { + "start": 1250.74, + "end": 1253.68, + "probability": 0.9342 + }, + { + "start": 1254.06, + "end": 1255.5, + "probability": 0.9497 + }, + { + "start": 1255.88, + "end": 1266.34, + "probability": 0.4788 + }, + { + "start": 1268.14, + "end": 1268.14, + "probability": 0.0664 + }, + { + "start": 1268.14, + "end": 1268.14, + "probability": 0.0243 + }, + { + "start": 1268.14, + "end": 1270.36, + "probability": 0.5831 + }, + { + "start": 1271.64, + "end": 1275.4, + "probability": 0.9792 + }, + { + "start": 1275.6, + "end": 1278.18, + "probability": 0.867 + }, + { + "start": 1279.0, + "end": 1283.2, + "probability": 0.9834 + }, + { + "start": 1283.28, + "end": 1284.84, + "probability": 0.9247 + }, + { + "start": 1286.72, + "end": 1290.06, + "probability": 0.9552 + }, + { + "start": 1291.78, + "end": 1295.02, + "probability": 0.9168 + }, + { + "start": 1295.02, + "end": 1298.56, + "probability": 0.9892 + }, + { + "start": 1299.16, + "end": 1300.8, + "probability": 0.7982 + }, + { + "start": 1301.72, + "end": 1305.6, + "probability": 0.8781 + }, + { + "start": 1305.78, + "end": 1307.48, + "probability": 0.9731 + }, + { + "start": 1307.84, + "end": 1310.7, + "probability": 0.9975 + }, + { + "start": 1311.2, + "end": 1311.84, + "probability": 0.7662 + }, + { + "start": 1312.02, + "end": 1313.14, + "probability": 0.9683 + }, + { + "start": 1313.58, + "end": 1316.64, + "probability": 0.7481 + }, + { + "start": 1317.44, + "end": 1318.8, + "probability": 0.9757 + }, + { + "start": 1319.56, + "end": 1321.54, + "probability": 0.9578 + }, + { + "start": 1321.82, + "end": 1325.98, + "probability": 0.9128 + }, + { + "start": 1326.64, + "end": 1327.72, + "probability": 0.917 + }, + { + "start": 1327.9, + "end": 1329.3, + "probability": 0.9906 + }, + { + "start": 1329.42, + "end": 1330.24, + "probability": 0.5765 + }, + { + "start": 1330.34, + "end": 1333.16, + "probability": 0.5632 + }, + { + "start": 1334.4, + "end": 1339.27, + "probability": 0.7186 + }, + { + "start": 1340.66, + "end": 1342.82, + "probability": 0.959 + }, + { + "start": 1343.28, + "end": 1347.18, + "probability": 0.9241 + }, + { + "start": 1347.72, + "end": 1348.36, + "probability": 0.8736 + }, + { + "start": 1349.86, + "end": 1350.72, + "probability": 0.6489 + }, + { + "start": 1350.86, + "end": 1353.7, + "probability": 0.9563 + }, + { + "start": 1354.84, + "end": 1355.7, + "probability": 0.9876 + }, + { + "start": 1355.84, + "end": 1356.9, + "probability": 0.9341 + }, + { + "start": 1357.28, + "end": 1360.3, + "probability": 0.9559 + }, + { + "start": 1360.86, + "end": 1366.2, + "probability": 0.9697 + }, + { + "start": 1366.28, + "end": 1369.12, + "probability": 0.9487 + }, + { + "start": 1369.34, + "end": 1369.8, + "probability": 0.4234 + }, + { + "start": 1370.18, + "end": 1371.28, + "probability": 0.8165 + }, + { + "start": 1371.58, + "end": 1375.42, + "probability": 0.5941 + }, + { + "start": 1375.94, + "end": 1381.78, + "probability": 0.9329 + }, + { + "start": 1382.4, + "end": 1384.02, + "probability": 0.5151 + }, + { + "start": 1384.44, + "end": 1385.8, + "probability": 0.9432 + }, + { + "start": 1385.98, + "end": 1388.98, + "probability": 0.8735 + }, + { + "start": 1389.44, + "end": 1391.16, + "probability": 0.7437 + }, + { + "start": 1391.88, + "end": 1400.2, + "probability": 0.9419 + }, + { + "start": 1400.68, + "end": 1401.18, + "probability": 0.8517 + }, + { + "start": 1401.28, + "end": 1404.82, + "probability": 0.9902 + }, + { + "start": 1405.38, + "end": 1407.82, + "probability": 0.854 + }, + { + "start": 1408.7, + "end": 1409.26, + "probability": 0.8205 + }, + { + "start": 1409.3, + "end": 1410.54, + "probability": 0.9863 + }, + { + "start": 1410.58, + "end": 1415.74, + "probability": 0.9409 + }, + { + "start": 1416.04, + "end": 1420.38, + "probability": 0.9219 + }, + { + "start": 1420.58, + "end": 1422.28, + "probability": 0.9696 + }, + { + "start": 1422.52, + "end": 1423.74, + "probability": 0.9692 + }, + { + "start": 1423.88, + "end": 1425.23, + "probability": 0.9545 + }, + { + "start": 1425.6, + "end": 1428.58, + "probability": 0.9965 + }, + { + "start": 1428.58, + "end": 1433.09, + "probability": 0.8267 + }, + { + "start": 1433.88, + "end": 1436.62, + "probability": 0.8986 + }, + { + "start": 1437.32, + "end": 1441.86, + "probability": 0.9969 + }, + { + "start": 1443.12, + "end": 1443.9, + "probability": 0.9586 + }, + { + "start": 1444.42, + "end": 1449.06, + "probability": 0.6639 + }, + { + "start": 1449.64, + "end": 1450.52, + "probability": 0.7892 + }, + { + "start": 1450.64, + "end": 1452.48, + "probability": 0.9886 + }, + { + "start": 1452.56, + "end": 1453.7, + "probability": 0.6025 + }, + { + "start": 1454.2, + "end": 1455.94, + "probability": 0.9047 + }, + { + "start": 1456.18, + "end": 1457.92, + "probability": 0.5473 + }, + { + "start": 1458.08, + "end": 1460.72, + "probability": 0.9954 + }, + { + "start": 1462.2, + "end": 1463.36, + "probability": 0.7738 + }, + { + "start": 1463.82, + "end": 1465.18, + "probability": 0.9233 + }, + { + "start": 1465.44, + "end": 1466.2, + "probability": 0.8677 + }, + { + "start": 1466.3, + "end": 1468.08, + "probability": 0.8277 + }, + { + "start": 1468.46, + "end": 1469.64, + "probability": 0.9489 + }, + { + "start": 1469.68, + "end": 1470.0, + "probability": 0.9346 + }, + { + "start": 1470.9, + "end": 1475.34, + "probability": 0.9525 + }, + { + "start": 1476.02, + "end": 1476.32, + "probability": 0.7433 + }, + { + "start": 1476.4, + "end": 1478.2, + "probability": 0.9767 + }, + { + "start": 1478.66, + "end": 1485.15, + "probability": 0.9542 + }, + { + "start": 1486.4, + "end": 1488.57, + "probability": 0.7385 + }, + { + "start": 1489.94, + "end": 1494.08, + "probability": 0.9493 + }, + { + "start": 1494.08, + "end": 1500.24, + "probability": 0.853 + }, + { + "start": 1500.36, + "end": 1501.64, + "probability": 0.9508 + }, + { + "start": 1501.94, + "end": 1507.14, + "probability": 0.9641 + }, + { + "start": 1508.04, + "end": 1510.76, + "probability": 0.141 + }, + { + "start": 1510.76, + "end": 1512.22, + "probability": 0.5776 + }, + { + "start": 1512.94, + "end": 1518.6, + "probability": 0.9792 + }, + { + "start": 1519.22, + "end": 1522.74, + "probability": 0.9897 + }, + { + "start": 1523.46, + "end": 1525.56, + "probability": 0.9736 + }, + { + "start": 1526.34, + "end": 1529.66, + "probability": 0.9812 + }, + { + "start": 1529.94, + "end": 1531.29, + "probability": 0.9254 + }, + { + "start": 1531.9, + "end": 1533.18, + "probability": 0.9431 + }, + { + "start": 1533.28, + "end": 1534.64, + "probability": 0.9747 + }, + { + "start": 1534.76, + "end": 1538.22, + "probability": 0.8274 + }, + { + "start": 1538.46, + "end": 1539.92, + "probability": 0.9049 + }, + { + "start": 1540.04, + "end": 1541.46, + "probability": 0.864 + }, + { + "start": 1541.94, + "end": 1549.04, + "probability": 0.9775 + }, + { + "start": 1557.32, + "end": 1559.94, + "probability": 0.9727 + }, + { + "start": 1560.06, + "end": 1560.22, + "probability": 0.8625 + }, + { + "start": 1560.3, + "end": 1563.02, + "probability": 0.9814 + }, + { + "start": 1563.2, + "end": 1565.92, + "probability": 0.9953 + }, + { + "start": 1566.3, + "end": 1569.88, + "probability": 0.9845 + }, + { + "start": 1570.32, + "end": 1571.4, + "probability": 0.8929 + }, + { + "start": 1571.42, + "end": 1572.44, + "probability": 0.7504 + }, + { + "start": 1572.82, + "end": 1577.68, + "probability": 0.9255 + }, + { + "start": 1578.26, + "end": 1580.32, + "probability": 0.8774 + }, + { + "start": 1581.1, + "end": 1586.62, + "probability": 0.968 + }, + { + "start": 1587.2, + "end": 1588.84, + "probability": 0.7275 + }, + { + "start": 1589.68, + "end": 1592.6, + "probability": 0.9856 + }, + { + "start": 1593.12, + "end": 1595.98, + "probability": 0.9935 + }, + { + "start": 1596.56, + "end": 1597.49, + "probability": 0.9756 + }, + { + "start": 1598.4, + "end": 1599.99, + "probability": 0.9843 + }, + { + "start": 1600.62, + "end": 1602.5, + "probability": 0.964 + }, + { + "start": 1602.66, + "end": 1604.68, + "probability": 0.9442 + }, + { + "start": 1605.54, + "end": 1609.1, + "probability": 0.9424 + }, + { + "start": 1609.16, + "end": 1611.36, + "probability": 0.9794 + }, + { + "start": 1612.1, + "end": 1618.98, + "probability": 0.9311 + }, + { + "start": 1619.54, + "end": 1621.12, + "probability": 0.7809 + }, + { + "start": 1622.06, + "end": 1627.48, + "probability": 0.8636 + }, + { + "start": 1627.8, + "end": 1630.52, + "probability": 0.9902 + }, + { + "start": 1630.72, + "end": 1632.12, + "probability": 0.9279 + }, + { + "start": 1632.52, + "end": 1635.26, + "probability": 0.8406 + }, + { + "start": 1635.52, + "end": 1637.1, + "probability": 0.9656 + }, + { + "start": 1637.62, + "end": 1638.68, + "probability": 0.9912 + }, + { + "start": 1638.8, + "end": 1639.84, + "probability": 0.4224 + }, + { + "start": 1640.08, + "end": 1642.0, + "probability": 0.97 + }, + { + "start": 1642.86, + "end": 1644.9, + "probability": 0.9802 + }, + { + "start": 1645.1, + "end": 1645.8, + "probability": 0.8175 + }, + { + "start": 1646.26, + "end": 1649.04, + "probability": 0.8858 + }, + { + "start": 1649.6, + "end": 1653.14, + "probability": 0.972 + }, + { + "start": 1653.86, + "end": 1657.64, + "probability": 0.9365 + }, + { + "start": 1657.96, + "end": 1660.48, + "probability": 0.9292 + }, + { + "start": 1660.58, + "end": 1661.24, + "probability": 0.7404 + }, + { + "start": 1662.1, + "end": 1665.06, + "probability": 0.6603 + }, + { + "start": 1665.4, + "end": 1667.88, + "probability": 0.9964 + }, + { + "start": 1668.2, + "end": 1669.7, + "probability": 0.98 + }, + { + "start": 1669.98, + "end": 1670.78, + "probability": 0.5916 + }, + { + "start": 1670.96, + "end": 1672.52, + "probability": 0.669 + }, + { + "start": 1673.34, + "end": 1674.38, + "probability": 0.9577 + }, + { + "start": 1674.92, + "end": 1676.48, + "probability": 0.9087 + }, + { + "start": 1676.78, + "end": 1679.58, + "probability": 0.9205 + }, + { + "start": 1680.56, + "end": 1681.34, + "probability": 0.6605 + }, + { + "start": 1681.38, + "end": 1683.85, + "probability": 0.9556 + }, + { + "start": 1684.12, + "end": 1688.8, + "probability": 0.9871 + }, + { + "start": 1689.32, + "end": 1692.45, + "probability": 0.9829 + }, + { + "start": 1692.68, + "end": 1695.06, + "probability": 0.9881 + }, + { + "start": 1695.14, + "end": 1695.6, + "probability": 0.8394 + }, + { + "start": 1695.94, + "end": 1703.55, + "probability": 0.9872 + }, + { + "start": 1705.18, + "end": 1710.08, + "probability": 0.8939 + }, + { + "start": 1710.28, + "end": 1710.92, + "probability": 0.8255 + }, + { + "start": 1711.18, + "end": 1711.46, + "probability": 0.2956 + }, + { + "start": 1711.5, + "end": 1712.58, + "probability": 0.4216 + }, + { + "start": 1712.68, + "end": 1714.96, + "probability": 0.6038 + }, + { + "start": 1720.74, + "end": 1722.68, + "probability": 0.6336 + }, + { + "start": 1722.8, + "end": 1726.68, + "probability": 0.8282 + }, + { + "start": 1727.56, + "end": 1731.91, + "probability": 0.9232 + }, + { + "start": 1732.22, + "end": 1732.86, + "probability": 0.8671 + }, + { + "start": 1732.9, + "end": 1735.38, + "probability": 0.9657 + }, + { + "start": 1736.12, + "end": 1737.32, + "probability": 0.9092 + }, + { + "start": 1738.1, + "end": 1739.12, + "probability": 0.8728 + }, + { + "start": 1739.84, + "end": 1744.22, + "probability": 0.949 + }, + { + "start": 1745.94, + "end": 1747.18, + "probability": 0.9058 + }, + { + "start": 1747.38, + "end": 1749.1, + "probability": 0.9033 + }, + { + "start": 1749.3, + "end": 1750.25, + "probability": 0.9446 + }, + { + "start": 1751.38, + "end": 1754.8, + "probability": 0.9941 + }, + { + "start": 1755.03, + "end": 1759.66, + "probability": 0.9985 + }, + { + "start": 1759.72, + "end": 1765.04, + "probability": 0.9976 + }, + { + "start": 1765.24, + "end": 1767.1, + "probability": 0.815 + }, + { + "start": 1767.36, + "end": 1769.76, + "probability": 0.8969 + }, + { + "start": 1769.84, + "end": 1771.98, + "probability": 0.8853 + }, + { + "start": 1772.88, + "end": 1773.72, + "probability": 0.7725 + }, + { + "start": 1773.82, + "end": 1778.38, + "probability": 0.9609 + }, + { + "start": 1778.52, + "end": 1779.58, + "probability": 0.8446 + }, + { + "start": 1780.0, + "end": 1780.94, + "probability": 0.9886 + }, + { + "start": 1781.18, + "end": 1782.78, + "probability": 0.869 + }, + { + "start": 1782.86, + "end": 1785.48, + "probability": 0.9016 + }, + { + "start": 1786.44, + "end": 1788.02, + "probability": 0.8784 + }, + { + "start": 1788.1, + "end": 1789.32, + "probability": 0.9425 + }, + { + "start": 1789.4, + "end": 1790.0, + "probability": 0.6274 + }, + { + "start": 1790.08, + "end": 1790.96, + "probability": 0.9358 + }, + { + "start": 1791.12, + "end": 1793.98, + "probability": 0.8969 + }, + { + "start": 1794.52, + "end": 1797.66, + "probability": 0.7778 + }, + { + "start": 1797.76, + "end": 1801.08, + "probability": 0.6572 + }, + { + "start": 1801.3, + "end": 1801.98, + "probability": 0.7788 + }, + { + "start": 1802.36, + "end": 1804.22, + "probability": 0.6795 + }, + { + "start": 1804.88, + "end": 1809.36, + "probability": 0.9971 + }, + { + "start": 1810.14, + "end": 1811.4, + "probability": 0.987 + }, + { + "start": 1811.5, + "end": 1812.43, + "probability": 0.9806 + }, + { + "start": 1812.56, + "end": 1814.33, + "probability": 0.9912 + }, + { + "start": 1815.64, + "end": 1815.64, + "probability": 0.1924 + }, + { + "start": 1815.64, + "end": 1817.24, + "probability": 0.7113 + }, + { + "start": 1817.34, + "end": 1819.34, + "probability": 0.9805 + }, + { + "start": 1819.92, + "end": 1822.34, + "probability": 0.9824 + }, + { + "start": 1822.54, + "end": 1823.16, + "probability": 0.9495 + }, + { + "start": 1823.48, + "end": 1824.58, + "probability": 0.9644 + }, + { + "start": 1824.64, + "end": 1825.72, + "probability": 0.8187 + }, + { + "start": 1825.86, + "end": 1826.56, + "probability": 0.7394 + }, + { + "start": 1826.9, + "end": 1828.04, + "probability": 0.9351 + }, + { + "start": 1828.38, + "end": 1832.3, + "probability": 0.996 + }, + { + "start": 1832.74, + "end": 1834.24, + "probability": 0.7302 + }, + { + "start": 1834.48, + "end": 1835.64, + "probability": 0.8864 + }, + { + "start": 1835.7, + "end": 1836.66, + "probability": 0.9902 + }, + { + "start": 1836.68, + "end": 1840.84, + "probability": 0.97 + }, + { + "start": 1840.98, + "end": 1843.42, + "probability": 0.8489 + }, + { + "start": 1844.24, + "end": 1846.38, + "probability": 0.9842 + }, + { + "start": 1846.8, + "end": 1849.42, + "probability": 0.9125 + }, + { + "start": 1850.02, + "end": 1856.64, + "probability": 0.9847 + }, + { + "start": 1857.06, + "end": 1861.74, + "probability": 0.9392 + }, + { + "start": 1862.0, + "end": 1864.02, + "probability": 0.0368 + }, + { + "start": 1864.08, + "end": 1865.21, + "probability": 0.2513 + }, + { + "start": 1865.4, + "end": 1866.0, + "probability": 0.3822 + }, + { + "start": 1866.22, + "end": 1869.82, + "probability": 0.9022 + }, + { + "start": 1869.98, + "end": 1872.16, + "probability": 0.9369 + }, + { + "start": 1872.62, + "end": 1874.94, + "probability": 0.9913 + }, + { + "start": 1874.94, + "end": 1880.14, + "probability": 0.9917 + }, + { + "start": 1880.3, + "end": 1881.93, + "probability": 0.0179 + }, + { + "start": 1882.78, + "end": 1882.84, + "probability": 0.0218 + }, + { + "start": 1882.84, + "end": 1887.64, + "probability": 0.9729 + }, + { + "start": 1887.92, + "end": 1890.74, + "probability": 0.9005 + }, + { + "start": 1890.88, + "end": 1894.18, + "probability": 0.5963 + }, + { + "start": 1894.68, + "end": 1897.86, + "probability": 0.6984 + }, + { + "start": 1898.5, + "end": 1900.14, + "probability": 0.7445 + }, + { + "start": 1900.3, + "end": 1903.5, + "probability": 0.8927 + }, + { + "start": 1904.36, + "end": 1906.34, + "probability": 0.9915 + }, + { + "start": 1907.4, + "end": 1909.3, + "probability": 0.6609 + }, + { + "start": 1909.3, + "end": 1909.74, + "probability": 0.811 + }, + { + "start": 1910.28, + "end": 1910.86, + "probability": 0.2261 + }, + { + "start": 1911.64, + "end": 1911.9, + "probability": 0.1244 + }, + { + "start": 1911.94, + "end": 1912.54, + "probability": 0.3677 + }, + { + "start": 1912.64, + "end": 1913.76, + "probability": 0.686 + }, + { + "start": 1914.06, + "end": 1915.97, + "probability": 0.5452 + }, + { + "start": 1916.36, + "end": 1920.04, + "probability": 0.8536 + }, + { + "start": 1920.82, + "end": 1922.42, + "probability": 0.7573 + }, + { + "start": 1922.74, + "end": 1927.13, + "probability": 0.9768 + }, + { + "start": 1930.64, + "end": 1935.19, + "probability": 0.8097 + }, + { + "start": 1935.9, + "end": 1938.06, + "probability": 0.8691 + }, + { + "start": 1938.68, + "end": 1939.82, + "probability": 0.3649 + }, + { + "start": 1939.98, + "end": 1940.26, + "probability": 0.7582 + }, + { + "start": 1940.36, + "end": 1942.5, + "probability": 0.9532 + }, + { + "start": 1943.42, + "end": 1946.5, + "probability": 0.9622 + }, + { + "start": 1947.08, + "end": 1951.52, + "probability": 0.9017 + }, + { + "start": 1951.92, + "end": 1955.34, + "probability": 0.9855 + }, + { + "start": 1956.16, + "end": 1957.14, + "probability": 0.8187 + }, + { + "start": 1957.62, + "end": 1958.86, + "probability": 0.8211 + }, + { + "start": 1959.1, + "end": 1961.08, + "probability": 0.5568 + }, + { + "start": 1961.44, + "end": 1963.38, + "probability": 0.8249 + }, + { + "start": 1963.68, + "end": 1965.88, + "probability": 0.8132 + }, + { + "start": 1968.32, + "end": 1974.56, + "probability": 0.9675 + }, + { + "start": 1975.32, + "end": 1976.64, + "probability": 0.9604 + }, + { + "start": 1978.14, + "end": 1981.08, + "probability": 0.991 + }, + { + "start": 1981.24, + "end": 1985.96, + "probability": 0.9818 + }, + { + "start": 1986.0, + "end": 1988.4, + "probability": 0.9931 + }, + { + "start": 1988.9, + "end": 1990.02, + "probability": 0.6901 + }, + { + "start": 1990.64, + "end": 1994.58, + "probability": 0.9434 + }, + { + "start": 1995.46, + "end": 1996.4, + "probability": 0.9675 + }, + { + "start": 1996.8, + "end": 2001.92, + "probability": 0.992 + }, + { + "start": 2003.06, + "end": 2004.96, + "probability": 0.9668 + }, + { + "start": 2005.7, + "end": 2012.62, + "probability": 0.9953 + }, + { + "start": 2013.6, + "end": 2017.76, + "probability": 0.9828 + }, + { + "start": 2017.96, + "end": 2020.32, + "probability": 0.8335 + }, + { + "start": 2020.5, + "end": 2022.62, + "probability": 0.8141 + }, + { + "start": 2022.98, + "end": 2024.45, + "probability": 0.923 + }, + { + "start": 2025.22, + "end": 2027.52, + "probability": 0.9834 + }, + { + "start": 2028.26, + "end": 2032.5, + "probability": 0.995 + }, + { + "start": 2032.5, + "end": 2037.64, + "probability": 0.9988 + }, + { + "start": 2037.64, + "end": 2041.0, + "probability": 0.9993 + }, + { + "start": 2041.58, + "end": 2044.78, + "probability": 0.9383 + }, + { + "start": 2044.96, + "end": 2046.62, + "probability": 0.5362 + }, + { + "start": 2046.98, + "end": 2053.19, + "probability": 0.9962 + }, + { + "start": 2054.06, + "end": 2057.58, + "probability": 0.7853 + }, + { + "start": 2058.0, + "end": 2059.18, + "probability": 0.8965 + }, + { + "start": 2059.52, + "end": 2067.08, + "probability": 0.8191 + }, + { + "start": 2067.66, + "end": 2069.42, + "probability": 0.9956 + }, + { + "start": 2069.88, + "end": 2072.46, + "probability": 0.9985 + }, + { + "start": 2072.72, + "end": 2078.5, + "probability": 0.695 + }, + { + "start": 2078.72, + "end": 2079.88, + "probability": 0.7895 + }, + { + "start": 2079.92, + "end": 2081.76, + "probability": 0.9932 + }, + { + "start": 2081.86, + "end": 2082.44, + "probability": 0.8447 + }, + { + "start": 2083.0, + "end": 2083.22, + "probability": 0.7158 + }, + { + "start": 2084.2, + "end": 2086.66, + "probability": 0.6514 + }, + { + "start": 2086.8, + "end": 2087.32, + "probability": 0.6864 + }, + { + "start": 2087.34, + "end": 2088.48, + "probability": 0.8135 + }, + { + "start": 2088.62, + "end": 2092.04, + "probability": 0.9319 + }, + { + "start": 2092.94, + "end": 2095.86, + "probability": 0.6893 + }, + { + "start": 2097.1, + "end": 2099.16, + "probability": 0.9174 + }, + { + "start": 2099.5, + "end": 2102.98, + "probability": 0.9808 + }, + { + "start": 2102.98, + "end": 2106.12, + "probability": 0.641 + }, + { + "start": 2106.76, + "end": 2109.06, + "probability": 0.9043 + }, + { + "start": 2109.5, + "end": 2112.32, + "probability": 0.66 + }, + { + "start": 2112.7, + "end": 2116.44, + "probability": 0.9953 + }, + { + "start": 2116.82, + "end": 2117.24, + "probability": 0.6212 + }, + { + "start": 2117.28, + "end": 2122.14, + "probability": 0.9158 + }, + { + "start": 2122.66, + "end": 2125.68, + "probability": 0.99 + }, + { + "start": 2126.28, + "end": 2127.96, + "probability": 0.9289 + }, + { + "start": 2128.02, + "end": 2132.26, + "probability": 0.9689 + }, + { + "start": 2132.38, + "end": 2135.64, + "probability": 0.9966 + }, + { + "start": 2135.74, + "end": 2136.46, + "probability": 0.7998 + }, + { + "start": 2136.56, + "end": 2138.92, + "probability": 0.9953 + }, + { + "start": 2139.26, + "end": 2139.86, + "probability": 0.6947 + }, + { + "start": 2140.5, + "end": 2142.4, + "probability": 0.9614 + }, + { + "start": 2143.48, + "end": 2144.24, + "probability": 0.6426 + }, + { + "start": 2145.26, + "end": 2147.4, + "probability": 0.6355 + }, + { + "start": 2147.42, + "end": 2151.44, + "probability": 0.9631 + }, + { + "start": 2152.6, + "end": 2153.14, + "probability": 0.9101 + }, + { + "start": 2153.22, + "end": 2154.8, + "probability": 0.9331 + }, + { + "start": 2154.94, + "end": 2156.12, + "probability": 0.7047 + }, + { + "start": 2156.12, + "end": 2156.64, + "probability": 0.513 + }, + { + "start": 2157.42, + "end": 2157.58, + "probability": 0.3889 + }, + { + "start": 2157.58, + "end": 2157.92, + "probability": 0.5693 + }, + { + "start": 2158.02, + "end": 2160.4, + "probability": 0.9951 + }, + { + "start": 2160.44, + "end": 2162.55, + "probability": 0.8774 + }, + { + "start": 2163.04, + "end": 2164.44, + "probability": 0.521 + }, + { + "start": 2164.54, + "end": 2165.58, + "probability": 0.947 + }, + { + "start": 2166.14, + "end": 2167.18, + "probability": 0.9836 + }, + { + "start": 2167.28, + "end": 2173.68, + "probability": 0.9882 + }, + { + "start": 2173.76, + "end": 2176.3, + "probability": 0.5477 + }, + { + "start": 2176.38, + "end": 2177.26, + "probability": 0.5457 + }, + { + "start": 2177.66, + "end": 2181.92, + "probability": 0.9938 + }, + { + "start": 2182.78, + "end": 2186.44, + "probability": 0.9254 + }, + { + "start": 2187.0, + "end": 2189.72, + "probability": 0.9875 + }, + { + "start": 2190.06, + "end": 2190.76, + "probability": 0.5648 + }, + { + "start": 2191.2, + "end": 2191.24, + "probability": 0.4852 + }, + { + "start": 2191.24, + "end": 2192.58, + "probability": 0.6338 + }, + { + "start": 2193.0, + "end": 2193.74, + "probability": 0.9817 + }, + { + "start": 2193.96, + "end": 2195.32, + "probability": 0.9974 + }, + { + "start": 2196.06, + "end": 2197.78, + "probability": 0.8252 + }, + { + "start": 2197.8, + "end": 2201.06, + "probability": 0.8427 + }, + { + "start": 2202.02, + "end": 2205.52, + "probability": 0.9922 + }, + { + "start": 2205.52, + "end": 2209.06, + "probability": 0.9868 + }, + { + "start": 2210.14, + "end": 2215.14, + "probability": 0.9829 + }, + { + "start": 2215.14, + "end": 2220.64, + "probability": 0.9968 + }, + { + "start": 2221.32, + "end": 2223.88, + "probability": 0.9978 + }, + { + "start": 2224.0, + "end": 2224.76, + "probability": 0.5765 + }, + { + "start": 2225.34, + "end": 2229.68, + "probability": 0.9825 + }, + { + "start": 2230.02, + "end": 2234.28, + "probability": 0.9967 + }, + { + "start": 2234.76, + "end": 2237.1, + "probability": 0.7808 + }, + { + "start": 2237.22, + "end": 2237.4, + "probability": 0.6691 + }, + { + "start": 2237.5, + "end": 2238.32, + "probability": 0.6442 + }, + { + "start": 2238.68, + "end": 2242.86, + "probability": 0.993 + }, + { + "start": 2243.58, + "end": 2245.12, + "probability": 0.8957 + }, + { + "start": 2245.4, + "end": 2247.34, + "probability": 0.9183 + }, + { + "start": 2248.12, + "end": 2252.64, + "probability": 0.8538 + }, + { + "start": 2253.14, + "end": 2255.44, + "probability": 0.9108 + }, + { + "start": 2255.8, + "end": 2257.4, + "probability": 0.9057 + }, + { + "start": 2257.52, + "end": 2259.13, + "probability": 0.9934 + }, + { + "start": 2259.18, + "end": 2262.08, + "probability": 0.9917 + }, + { + "start": 2262.22, + "end": 2264.37, + "probability": 0.9906 + }, + { + "start": 2264.38, + "end": 2266.98, + "probability": 0.9819 + }, + { + "start": 2267.3, + "end": 2268.58, + "probability": 0.6342 + }, + { + "start": 2271.24, + "end": 2271.38, + "probability": 0.0721 + }, + { + "start": 2271.38, + "end": 2271.38, + "probability": 0.0272 + }, + { + "start": 2271.38, + "end": 2271.38, + "probability": 0.1781 + }, + { + "start": 2271.38, + "end": 2271.87, + "probability": 0.4475 + }, + { + "start": 2273.14, + "end": 2274.78, + "probability": 0.8311 + }, + { + "start": 2275.68, + "end": 2276.58, + "probability": 0.7596 + }, + { + "start": 2277.38, + "end": 2279.17, + "probability": 0.971 + }, + { + "start": 2280.24, + "end": 2281.42, + "probability": 0.6358 + }, + { + "start": 2281.68, + "end": 2287.5, + "probability": 0.9895 + }, + { + "start": 2288.04, + "end": 2290.4, + "probability": 0.9956 + }, + { + "start": 2290.54, + "end": 2294.48, + "probability": 0.9665 + }, + { + "start": 2295.56, + "end": 2296.2, + "probability": 0.7286 + }, + { + "start": 2296.3, + "end": 2296.6, + "probability": 0.3979 + }, + { + "start": 2296.72, + "end": 2296.96, + "probability": 0.5125 + }, + { + "start": 2297.08, + "end": 2298.26, + "probability": 0.8409 + }, + { + "start": 2298.34, + "end": 2299.9, + "probability": 0.8638 + }, + { + "start": 2300.9, + "end": 2302.14, + "probability": 0.9139 + }, + { + "start": 2302.28, + "end": 2310.08, + "probability": 0.781 + }, + { + "start": 2310.66, + "end": 2314.6, + "probability": 0.7676 + }, + { + "start": 2315.92, + "end": 2318.36, + "probability": 0.7637 + }, + { + "start": 2318.56, + "end": 2319.92, + "probability": 0.8124 + }, + { + "start": 2320.42, + "end": 2322.84, + "probability": 0.9905 + }, + { + "start": 2323.44, + "end": 2326.02, + "probability": 0.7478 + }, + { + "start": 2327.04, + "end": 2328.26, + "probability": 0.5811 + }, + { + "start": 2329.18, + "end": 2329.36, + "probability": 0.2607 + }, + { + "start": 2329.36, + "end": 2331.54, + "probability": 0.7534 + }, + { + "start": 2331.6, + "end": 2335.34, + "probability": 0.927 + }, + { + "start": 2335.52, + "end": 2338.34, + "probability": 0.9438 + }, + { + "start": 2338.9, + "end": 2341.86, + "probability": 0.9896 + }, + { + "start": 2342.16, + "end": 2342.9, + "probability": 0.6899 + }, + { + "start": 2342.96, + "end": 2343.62, + "probability": 0.9604 + }, + { + "start": 2343.76, + "end": 2344.94, + "probability": 0.8868 + }, + { + "start": 2345.26, + "end": 2346.26, + "probability": 0.8693 + }, + { + "start": 2346.7, + "end": 2350.58, + "probability": 0.9112 + }, + { + "start": 2351.0, + "end": 2353.6, + "probability": 0.7967 + }, + { + "start": 2353.76, + "end": 2354.24, + "probability": 0.5346 + }, + { + "start": 2354.26, + "end": 2356.44, + "probability": 0.8864 + }, + { + "start": 2357.1, + "end": 2357.52, + "probability": 0.6839 + }, + { + "start": 2359.3, + "end": 2360.92, + "probability": 0.3345 + }, + { + "start": 2360.98, + "end": 2362.8, + "probability": 0.8825 + }, + { + "start": 2363.44, + "end": 2366.72, + "probability": 0.8952 + }, + { + "start": 2367.72, + "end": 2370.46, + "probability": 0.8441 + }, + { + "start": 2371.1, + "end": 2371.58, + "probability": 0.984 + }, + { + "start": 2372.81, + "end": 2375.06, + "probability": 0.9602 + }, + { + "start": 2375.3, + "end": 2377.2, + "probability": 0.5389 + }, + { + "start": 2377.7, + "end": 2386.3, + "probability": 0.9807 + }, + { + "start": 2386.3, + "end": 2392.12, + "probability": 0.9791 + }, + { + "start": 2394.32, + "end": 2395.18, + "probability": 0.8589 + }, + { + "start": 2395.92, + "end": 2397.77, + "probability": 0.7578 + }, + { + "start": 2399.74, + "end": 2401.32, + "probability": 0.9902 + }, + { + "start": 2401.5, + "end": 2402.16, + "probability": 0.6802 + }, + { + "start": 2402.4, + "end": 2405.6, + "probability": 0.7789 + }, + { + "start": 2405.9, + "end": 2411.16, + "probability": 0.7084 + }, + { + "start": 2411.22, + "end": 2412.54, + "probability": 0.9684 + }, + { + "start": 2412.86, + "end": 2413.0, + "probability": 0.8317 + }, + { + "start": 2413.04, + "end": 2418.08, + "probability": 0.8945 + }, + { + "start": 2419.48, + "end": 2420.37, + "probability": 0.5845 + }, + { + "start": 2421.28, + "end": 2421.84, + "probability": 0.6202 + }, + { + "start": 2422.02, + "end": 2423.62, + "probability": 0.7649 + }, + { + "start": 2424.36, + "end": 2425.24, + "probability": 0.8673 + }, + { + "start": 2425.88, + "end": 2429.76, + "probability": 0.9829 + }, + { + "start": 2430.28, + "end": 2435.36, + "probability": 0.9825 + }, + { + "start": 2436.38, + "end": 2438.48, + "probability": 0.8299 + }, + { + "start": 2439.22, + "end": 2441.28, + "probability": 0.9746 + }, + { + "start": 2441.54, + "end": 2444.86, + "probability": 0.9158 + }, + { + "start": 2445.4, + "end": 2452.32, + "probability": 0.7632 + }, + { + "start": 2452.38, + "end": 2456.38, + "probability": 0.9529 + }, + { + "start": 2456.6, + "end": 2458.45, + "probability": 0.9963 + }, + { + "start": 2458.56, + "end": 2462.92, + "probability": 0.3722 + }, + { + "start": 2462.98, + "end": 2465.24, + "probability": 0.8804 + }, + { + "start": 2465.58, + "end": 2466.26, + "probability": 0.6644 + }, + { + "start": 2466.6, + "end": 2469.82, + "probability": 0.9634 + }, + { + "start": 2470.16, + "end": 2470.2, + "probability": 0.2497 + }, + { + "start": 2470.2, + "end": 2471.2, + "probability": 0.8232 + }, + { + "start": 2471.6, + "end": 2475.76, + "probability": 0.9432 + }, + { + "start": 2476.02, + "end": 2478.98, + "probability": 0.7951 + }, + { + "start": 2479.98, + "end": 2482.56, + "probability": 0.9727 + }, + { + "start": 2482.66, + "end": 2484.86, + "probability": 0.9565 + }, + { + "start": 2485.5, + "end": 2488.04, + "probability": 0.9688 + }, + { + "start": 2488.76, + "end": 2490.8, + "probability": 0.7072 + }, + { + "start": 2491.71, + "end": 2498.27, + "probability": 0.9873 + }, + { + "start": 2498.6, + "end": 2500.34, + "probability": 0.9478 + }, + { + "start": 2500.44, + "end": 2503.44, + "probability": 0.9929 + }, + { + "start": 2503.9, + "end": 2506.2, + "probability": 0.7839 + }, + { + "start": 2506.54, + "end": 2507.56, + "probability": 0.8975 + }, + { + "start": 2507.84, + "end": 2515.28, + "probability": 0.9758 + }, + { + "start": 2516.08, + "end": 2520.14, + "probability": 0.9524 + }, + { + "start": 2520.82, + "end": 2522.6, + "probability": 0.9872 + }, + { + "start": 2522.68, + "end": 2523.3, + "probability": 0.778 + }, + { + "start": 2523.5, + "end": 2524.14, + "probability": 0.6796 + }, + { + "start": 2524.36, + "end": 2528.98, + "probability": 0.944 + }, + { + "start": 2529.52, + "end": 2532.32, + "probability": 0.93 + }, + { + "start": 2532.46, + "end": 2533.14, + "probability": 0.7243 + }, + { + "start": 2533.92, + "end": 2535.02, + "probability": 0.6866 + }, + { + "start": 2535.32, + "end": 2536.14, + "probability": 0.8996 + }, + { + "start": 2536.26, + "end": 2539.8, + "probability": 0.9115 + }, + { + "start": 2539.88, + "end": 2541.32, + "probability": 0.3896 + }, + { + "start": 2542.36, + "end": 2542.4, + "probability": 0.2838 + }, + { + "start": 2542.4, + "end": 2542.4, + "probability": 0.0048 + }, + { + "start": 2542.4, + "end": 2542.4, + "probability": 0.3129 + }, + { + "start": 2542.4, + "end": 2542.4, + "probability": 0.1999 + }, + { + "start": 2542.4, + "end": 2544.4, + "probability": 0.4886 + }, + { + "start": 2544.56, + "end": 2546.26, + "probability": 0.1047 + }, + { + "start": 2546.26, + "end": 2546.26, + "probability": 0.0496 + }, + { + "start": 2546.26, + "end": 2546.26, + "probability": 0.135 + }, + { + "start": 2546.26, + "end": 2546.44, + "probability": 0.3715 + }, + { + "start": 2546.46, + "end": 2547.7, + "probability": 0.7353 + }, + { + "start": 2548.74, + "end": 2550.18, + "probability": 0.8918 + }, + { + "start": 2550.28, + "end": 2553.2, + "probability": 0.6706 + }, + { + "start": 2553.6, + "end": 2553.62, + "probability": 0.4401 + }, + { + "start": 2553.62, + "end": 2553.82, + "probability": 0.0113 + }, + { + "start": 2554.08, + "end": 2558.32, + "probability": 0.6959 + }, + { + "start": 2558.32, + "end": 2559.32, + "probability": 0.7057 + }, + { + "start": 2560.5, + "end": 2561.98, + "probability": 0.6855 + }, + { + "start": 2562.04, + "end": 2562.44, + "probability": 0.9588 + }, + { + "start": 2562.46, + "end": 2565.16, + "probability": 0.7984 + }, + { + "start": 2565.16, + "end": 2568.88, + "probability": 0.9956 + }, + { + "start": 2569.2, + "end": 2570.52, + "probability": 0.8075 + }, + { + "start": 2570.72, + "end": 2572.66, + "probability": 0.8574 + }, + { + "start": 2573.18, + "end": 2574.08, + "probability": 0.7701 + }, + { + "start": 2574.08, + "end": 2575.22, + "probability": 0.8199 + }, + { + "start": 2575.56, + "end": 2577.46, + "probability": 0.7448 + }, + { + "start": 2577.52, + "end": 2577.74, + "probability": 0.0874 + }, + { + "start": 2577.74, + "end": 2577.84, + "probability": 0.32 + }, + { + "start": 2578.52, + "end": 2579.36, + "probability": 0.8508 + }, + { + "start": 2579.62, + "end": 2584.04, + "probability": 0.9502 + }, + { + "start": 2584.04, + "end": 2587.18, + "probability": 0.9984 + }, + { + "start": 2587.18, + "end": 2590.74, + "probability": 0.9987 + }, + { + "start": 2591.3, + "end": 2593.32, + "probability": 0.9951 + }, + { + "start": 2593.5, + "end": 2594.68, + "probability": 0.7767 + }, + { + "start": 2595.34, + "end": 2599.58, + "probability": 0.9872 + }, + { + "start": 2599.74, + "end": 2601.72, + "probability": 0.6797 + }, + { + "start": 2601.94, + "end": 2602.97, + "probability": 0.9873 + }, + { + "start": 2603.82, + "end": 2606.76, + "probability": 0.9742 + }, + { + "start": 2606.76, + "end": 2609.96, + "probability": 0.9772 + }, + { + "start": 2610.04, + "end": 2610.83, + "probability": 0.7935 + }, + { + "start": 2611.36, + "end": 2614.3, + "probability": 0.9994 + }, + { + "start": 2614.3, + "end": 2617.4, + "probability": 0.9965 + }, + { + "start": 2618.42, + "end": 2618.68, + "probability": 0.2773 + }, + { + "start": 2618.76, + "end": 2620.3, + "probability": 0.7406 + }, + { + "start": 2620.46, + "end": 2622.98, + "probability": 0.8317 + }, + { + "start": 2623.24, + "end": 2623.9, + "probability": 0.88 + }, + { + "start": 2623.94, + "end": 2624.86, + "probability": 0.8044 + }, + { + "start": 2624.98, + "end": 2625.3, + "probability": 0.2841 + }, + { + "start": 2625.34, + "end": 2626.76, + "probability": 0.5578 + }, + { + "start": 2628.26, + "end": 2628.78, + "probability": 0.7388 + }, + { + "start": 2628.88, + "end": 2632.92, + "probability": 0.7608 + }, + { + "start": 2632.92, + "end": 2636.9, + "probability": 0.9792 + }, + { + "start": 2637.54, + "end": 2639.88, + "probability": 0.9854 + }, + { + "start": 2640.5, + "end": 2642.54, + "probability": 0.2767 + }, + { + "start": 2643.62, + "end": 2644.52, + "probability": 0.8992 + }, + { + "start": 2644.68, + "end": 2648.12, + "probability": 0.981 + }, + { + "start": 2648.12, + "end": 2651.04, + "probability": 0.9828 + }, + { + "start": 2651.6, + "end": 2654.58, + "probability": 0.9558 + }, + { + "start": 2654.84, + "end": 2659.52, + "probability": 0.9787 + }, + { + "start": 2659.54, + "end": 2659.94, + "probability": 0.4743 + }, + { + "start": 2659.96, + "end": 2661.24, + "probability": 0.3994 + }, + { + "start": 2661.26, + "end": 2663.08, + "probability": 0.5762 + }, + { + "start": 2663.16, + "end": 2665.34, + "probability": 0.9735 + }, + { + "start": 2665.78, + "end": 2670.2, + "probability": 0.9287 + }, + { + "start": 2670.32, + "end": 2671.84, + "probability": 0.6776 + }, + { + "start": 2672.1, + "end": 2673.3, + "probability": 0.8123 + }, + { + "start": 2673.34, + "end": 2679.56, + "probability": 0.9439 + }, + { + "start": 2680.34, + "end": 2685.36, + "probability": 0.9929 + }, + { + "start": 2685.46, + "end": 2686.28, + "probability": 0.8012 + }, + { + "start": 2686.94, + "end": 2687.72, + "probability": 0.7198 + }, + { + "start": 2688.34, + "end": 2690.34, + "probability": 0.5091 + }, + { + "start": 2690.86, + "end": 2696.06, + "probability": 0.9428 + }, + { + "start": 2696.28, + "end": 2700.17, + "probability": 0.9575 + }, + { + "start": 2700.58, + "end": 2703.68, + "probability": 0.922 + }, + { + "start": 2704.2, + "end": 2705.56, + "probability": 0.7749 + }, + { + "start": 2705.96, + "end": 2707.06, + "probability": 0.7665 + }, + { + "start": 2707.2, + "end": 2708.34, + "probability": 0.8397 + }, + { + "start": 2708.56, + "end": 2713.58, + "probability": 0.9598 + }, + { + "start": 2713.84, + "end": 2714.84, + "probability": 0.4322 + }, + { + "start": 2715.32, + "end": 2717.62, + "probability": 0.984 + }, + { + "start": 2718.82, + "end": 2718.82, + "probability": 0.0693 + }, + { + "start": 2718.82, + "end": 2719.62, + "probability": 0.361 + }, + { + "start": 2719.72, + "end": 2722.04, + "probability": 0.9945 + }, + { + "start": 2722.24, + "end": 2724.72, + "probability": 0.9908 + }, + { + "start": 2724.94, + "end": 2729.68, + "probability": 0.9794 + }, + { + "start": 2729.84, + "end": 2733.02, + "probability": 0.9932 + }, + { + "start": 2733.68, + "end": 2738.48, + "probability": 0.7223 + }, + { + "start": 2738.52, + "end": 2742.4, + "probability": 0.997 + }, + { + "start": 2743.0, + "end": 2744.38, + "probability": 0.8201 + }, + { + "start": 2745.04, + "end": 2747.76, + "probability": 0.931 + }, + { + "start": 2747.82, + "end": 2750.98, + "probability": 0.9472 + }, + { + "start": 2751.36, + "end": 2754.96, + "probability": 0.9927 + }, + { + "start": 2754.98, + "end": 2760.22, + "probability": 0.9934 + }, + { + "start": 2761.34, + "end": 2768.36, + "probability": 0.9879 + }, + { + "start": 2769.96, + "end": 2773.38, + "probability": 0.681 + }, + { + "start": 2773.46, + "end": 2774.26, + "probability": 0.8014 + }, + { + "start": 2774.38, + "end": 2775.14, + "probability": 0.8568 + }, + { + "start": 2775.42, + "end": 2776.4, + "probability": 0.3542 + }, + { + "start": 2776.56, + "end": 2777.62, + "probability": 0.9878 + }, + { + "start": 2777.72, + "end": 2783.32, + "probability": 0.8784 + }, + { + "start": 2783.32, + "end": 2786.32, + "probability": 0.7357 + }, + { + "start": 2786.78, + "end": 2788.7, + "probability": 0.9775 + }, + { + "start": 2789.42, + "end": 2792.98, + "probability": 0.9776 + }, + { + "start": 2793.04, + "end": 2795.28, + "probability": 0.9913 + }, + { + "start": 2796.64, + "end": 2799.02, + "probability": 0.986 + }, + { + "start": 2799.12, + "end": 2801.04, + "probability": 0.9961 + }, + { + "start": 2801.3, + "end": 2802.84, + "probability": 0.974 + }, + { + "start": 2803.46, + "end": 2808.36, + "probability": 0.9844 + }, + { + "start": 2808.58, + "end": 2812.16, + "probability": 0.6885 + }, + { + "start": 2812.3, + "end": 2814.58, + "probability": 0.8296 + }, + { + "start": 2816.18, + "end": 2820.36, + "probability": 0.9683 + }, + { + "start": 2820.76, + "end": 2825.88, + "probability": 0.9591 + }, + { + "start": 2826.6, + "end": 2830.92, + "probability": 0.7349 + }, + { + "start": 2830.96, + "end": 2833.43, + "probability": 0.9067 + }, + { + "start": 2833.92, + "end": 2839.52, + "probability": 0.9948 + }, + { + "start": 2839.66, + "end": 2840.48, + "probability": 0.9624 + }, + { + "start": 2840.96, + "end": 2842.08, + "probability": 0.8089 + }, + { + "start": 2842.42, + "end": 2843.27, + "probability": 0.8807 + }, + { + "start": 2843.52, + "end": 2846.94, + "probability": 0.9903 + }, + { + "start": 2847.4, + "end": 2848.64, + "probability": 0.9331 + }, + { + "start": 2848.78, + "end": 2849.24, + "probability": 0.6114 + }, + { + "start": 2849.38, + "end": 2849.62, + "probability": 0.6175 + }, + { + "start": 2849.7, + "end": 2850.5, + "probability": 0.9239 + }, + { + "start": 2850.98, + "end": 2853.32, + "probability": 0.9639 + }, + { + "start": 2853.66, + "end": 2857.84, + "probability": 0.9755 + }, + { + "start": 2858.38, + "end": 2861.78, + "probability": 0.9987 + }, + { + "start": 2861.78, + "end": 2866.84, + "probability": 0.9893 + }, + { + "start": 2867.14, + "end": 2867.92, + "probability": 0.8138 + }, + { + "start": 2868.38, + "end": 2869.34, + "probability": 0.9196 + }, + { + "start": 2870.1, + "end": 2872.28, + "probability": 0.9932 + }, + { + "start": 2873.14, + "end": 2874.34, + "probability": 0.9814 + }, + { + "start": 2875.32, + "end": 2876.46, + "probability": 0.4976 + }, + { + "start": 2876.66, + "end": 2878.46, + "probability": 0.9462 + }, + { + "start": 2879.02, + "end": 2884.3, + "probability": 0.95 + }, + { + "start": 2884.66, + "end": 2885.34, + "probability": 0.572 + }, + { + "start": 2885.9, + "end": 2886.56, + "probability": 0.6934 + }, + { + "start": 2886.7, + "end": 2888.8, + "probability": 0.9886 + }, + { + "start": 2889.18, + "end": 2890.54, + "probability": 0.9819 + }, + { + "start": 2890.54, + "end": 2891.84, + "probability": 0.7815 + }, + { + "start": 2892.38, + "end": 2893.22, + "probability": 0.8442 + }, + { + "start": 2893.42, + "end": 2895.02, + "probability": 0.8988 + }, + { + "start": 2895.34, + "end": 2896.06, + "probability": 0.7503 + }, + { + "start": 2896.16, + "end": 2897.54, + "probability": 0.612 + }, + { + "start": 2897.78, + "end": 2899.3, + "probability": 0.9332 + }, + { + "start": 2899.7, + "end": 2900.44, + "probability": 0.8781 + }, + { + "start": 2900.84, + "end": 2903.32, + "probability": 0.9904 + }, + { + "start": 2904.2, + "end": 2906.52, + "probability": 0.9989 + }, + { + "start": 2906.56, + "end": 2908.26, + "probability": 0.6818 + }, + { + "start": 2908.8, + "end": 2909.88, + "probability": 0.6363 + }, + { + "start": 2910.4, + "end": 2912.46, + "probability": 0.7336 + }, + { + "start": 2913.04, + "end": 2916.1, + "probability": 0.9485 + }, + { + "start": 2916.36, + "end": 2922.72, + "probability": 0.9883 + }, + { + "start": 2923.66, + "end": 2925.82, + "probability": 0.8555 + }, + { + "start": 2926.02, + "end": 2931.56, + "probability": 0.9408 + }, + { + "start": 2932.32, + "end": 2938.12, + "probability": 0.4067 + }, + { + "start": 2938.96, + "end": 2938.96, + "probability": 0.001 + }, + { + "start": 2940.12, + "end": 2940.5, + "probability": 0.0445 + }, + { + "start": 2940.5, + "end": 2940.62, + "probability": 0.1515 + }, + { + "start": 2940.62, + "end": 2940.94, + "probability": 0.2336 + }, + { + "start": 2941.14, + "end": 2944.12, + "probability": 0.1574 + }, + { + "start": 2945.08, + "end": 2947.7, + "probability": 0.6259 + }, + { + "start": 2948.22, + "end": 2949.98, + "probability": 0.8205 + }, + { + "start": 2950.72, + "end": 2954.12, + "probability": 0.4332 + }, + { + "start": 2954.92, + "end": 2956.94, + "probability": 0.8024 + }, + { + "start": 2956.96, + "end": 2959.3, + "probability": 0.8897 + }, + { + "start": 2959.3, + "end": 2962.04, + "probability": 0.8074 + }, + { + "start": 2963.44, + "end": 2963.66, + "probability": 0.0137 + }, + { + "start": 2963.66, + "end": 2963.66, + "probability": 0.1022 + }, + { + "start": 2963.66, + "end": 2964.47, + "probability": 0.6446 + }, + { + "start": 2965.41, + "end": 2967.64, + "probability": 0.8984 + }, + { + "start": 2968.38, + "end": 2973.08, + "probability": 0.7792 + }, + { + "start": 2973.68, + "end": 2977.06, + "probability": 0.9884 + }, + { + "start": 2977.06, + "end": 2982.38, + "probability": 0.9993 + }, + { + "start": 2983.08, + "end": 2984.12, + "probability": 0.9871 + }, + { + "start": 2984.22, + "end": 2986.94, + "probability": 0.7201 + }, + { + "start": 2987.64, + "end": 2990.3, + "probability": 0.989 + }, + { + "start": 2990.94, + "end": 2995.7, + "probability": 0.9957 + }, + { + "start": 2996.04, + "end": 3000.56, + "probability": 0.991 + }, + { + "start": 3001.1, + "end": 3001.1, + "probability": 0.1245 + }, + { + "start": 3001.1, + "end": 3007.12, + "probability": 0.8185 + }, + { + "start": 3007.2, + "end": 3008.04, + "probability": 0.8057 + }, + { + "start": 3008.34, + "end": 3009.22, + "probability": 0.3736 + }, + { + "start": 3009.98, + "end": 3013.66, + "probability": 0.7247 + }, + { + "start": 3014.38, + "end": 3014.58, + "probability": 0.4931 + }, + { + "start": 3014.58, + "end": 3014.58, + "probability": 0.5111 + }, + { + "start": 3014.58, + "end": 3014.58, + "probability": 0.0165 + }, + { + "start": 3014.58, + "end": 3014.58, + "probability": 0.066 + }, + { + "start": 3014.58, + "end": 3014.58, + "probability": 0.05 + }, + { + "start": 3014.58, + "end": 3014.92, + "probability": 0.2601 + }, + { + "start": 3014.94, + "end": 3019.42, + "probability": 0.9349 + }, + { + "start": 3019.5, + "end": 3020.26, + "probability": 0.9171 + }, + { + "start": 3020.98, + "end": 3021.3, + "probability": 0.3117 + }, + { + "start": 3021.3, + "end": 3023.56, + "probability": 0.7798 + }, + { + "start": 3023.76, + "end": 3028.14, + "probability": 0.9132 + }, + { + "start": 3028.26, + "end": 3029.8, + "probability": 0.9731 + }, + { + "start": 3030.78, + "end": 3031.58, + "probability": 0.2012 + }, + { + "start": 3033.8, + "end": 3033.8, + "probability": 0.0285 + }, + { + "start": 3033.8, + "end": 3033.8, + "probability": 0.119 + }, + { + "start": 3033.8, + "end": 3036.0, + "probability": 0.4023 + }, + { + "start": 3037.76, + "end": 3039.82, + "probability": 0.706 + }, + { + "start": 3040.18, + "end": 3043.94, + "probability": 0.9827 + }, + { + "start": 3044.32, + "end": 3045.18, + "probability": 0.9066 + }, + { + "start": 3045.52, + "end": 3048.12, + "probability": 0.825 + }, + { + "start": 3048.6, + "end": 3048.74, + "probability": 0.5501 + }, + { + "start": 3048.8, + "end": 3050.52, + "probability": 0.789 + }, + { + "start": 3050.88, + "end": 3056.36, + "probability": 0.9964 + }, + { + "start": 3056.9, + "end": 3060.6, + "probability": 0.9214 + }, + { + "start": 3060.66, + "end": 3063.78, + "probability": 0.9991 + }, + { + "start": 3064.3, + "end": 3067.0, + "probability": 0.79 + }, + { + "start": 3067.18, + "end": 3067.86, + "probability": 0.7992 + }, + { + "start": 3068.0, + "end": 3073.84, + "probability": 0.9824 + }, + { + "start": 3073.84, + "end": 3076.54, + "probability": 0.9974 + }, + { + "start": 3076.66, + "end": 3077.72, + "probability": 0.7417 + }, + { + "start": 3078.16, + "end": 3078.58, + "probability": 0.0517 + }, + { + "start": 3078.58, + "end": 3079.52, + "probability": 0.8873 + }, + { + "start": 3079.6, + "end": 3081.68, + "probability": 0.9151 + }, + { + "start": 3081.68, + "end": 3084.0, + "probability": 0.2801 + }, + { + "start": 3084.12, + "end": 3084.9, + "probability": 0.7207 + }, + { + "start": 3084.9, + "end": 3086.7, + "probability": 0.2515 + }, + { + "start": 3086.76, + "end": 3088.14, + "probability": 0.5231 + }, + { + "start": 3088.22, + "end": 3089.1, + "probability": 0.8252 + }, + { + "start": 3089.24, + "end": 3090.42, + "probability": 0.8665 + }, + { + "start": 3090.48, + "end": 3093.62, + "probability": 0.994 + }, + { + "start": 3093.74, + "end": 3095.4, + "probability": 0.8549 + }, + { + "start": 3095.98, + "end": 3098.72, + "probability": 0.5016 + }, + { + "start": 3098.78, + "end": 3099.26, + "probability": 0.8256 + }, + { + "start": 3099.38, + "end": 3103.28, + "probability": 0.9839 + }, + { + "start": 3103.28, + "end": 3103.84, + "probability": 0.5765 + }, + { + "start": 3103.84, + "end": 3105.96, + "probability": 0.684 + }, + { + "start": 3105.96, + "end": 3106.72, + "probability": 0.636 + }, + { + "start": 3106.72, + "end": 3109.04, + "probability": 0.6534 + }, + { + "start": 3109.12, + "end": 3109.74, + "probability": 0.6653 + }, + { + "start": 3110.44, + "end": 3112.36, + "probability": 0.9421 + }, + { + "start": 3112.46, + "end": 3113.72, + "probability": 0.5576 + }, + { + "start": 3113.76, + "end": 3116.4, + "probability": 0.4184 + }, + { + "start": 3116.51, + "end": 3117.43, + "probability": 0.4669 + }, + { + "start": 3117.82, + "end": 3118.28, + "probability": 0.829 + }, + { + "start": 3119.93, + "end": 3121.68, + "probability": 0.9282 + }, + { + "start": 3121.76, + "end": 3124.44, + "probability": 0.985 + }, + { + "start": 3124.78, + "end": 3126.84, + "probability": 0.8783 + }, + { + "start": 3127.94, + "end": 3131.14, + "probability": 0.9442 + }, + { + "start": 3132.08, + "end": 3134.86, + "probability": 0.983 + }, + { + "start": 3134.9, + "end": 3135.52, + "probability": 0.8145 + }, + { + "start": 3135.98, + "end": 3138.24, + "probability": 0.9844 + }, + { + "start": 3138.94, + "end": 3142.9, + "probability": 0.9796 + }, + { + "start": 3142.9, + "end": 3146.28, + "probability": 0.9897 + }, + { + "start": 3146.46, + "end": 3148.52, + "probability": 0.9102 + }, + { + "start": 3149.24, + "end": 3155.3, + "probability": 0.8181 + }, + { + "start": 3155.3, + "end": 3162.36, + "probability": 0.9974 + }, + { + "start": 3162.46, + "end": 3163.44, + "probability": 0.7045 + }, + { + "start": 3163.84, + "end": 3167.14, + "probability": 0.9992 + }, + { + "start": 3167.66, + "end": 3171.7, + "probability": 0.9149 + }, + { + "start": 3171.82, + "end": 3173.56, + "probability": 0.9958 + }, + { + "start": 3173.82, + "end": 3174.28, + "probability": 0.8252 + }, + { + "start": 3174.4, + "end": 3176.24, + "probability": 0.8924 + }, + { + "start": 3176.34, + "end": 3179.98, + "probability": 0.9938 + }, + { + "start": 3180.34, + "end": 3180.94, + "probability": 0.8831 + }, + { + "start": 3181.06, + "end": 3184.92, + "probability": 0.9927 + }, + { + "start": 3185.42, + "end": 3186.04, + "probability": 0.7455 + }, + { + "start": 3186.9, + "end": 3189.9, + "probability": 0.5052 + }, + { + "start": 3190.02, + "end": 3190.68, + "probability": 0.4502 + }, + { + "start": 3190.78, + "end": 3191.42, + "probability": 0.7524 + }, + { + "start": 3191.52, + "end": 3191.82, + "probability": 0.3858 + }, + { + "start": 3191.92, + "end": 3192.2, + "probability": 0.6328 + }, + { + "start": 3192.26, + "end": 3193.26, + "probability": 0.8982 + }, + { + "start": 3194.2, + "end": 3195.9, + "probability": 0.9819 + }, + { + "start": 3195.98, + "end": 3197.2, + "probability": 0.8507 + }, + { + "start": 3199.14, + "end": 3206.32, + "probability": 0.9937 + }, + { + "start": 3206.32, + "end": 3213.38, + "probability": 0.8041 + }, + { + "start": 3214.9, + "end": 3215.46, + "probability": 0.7565 + }, + { + "start": 3215.54, + "end": 3215.97, + "probability": 0.2854 + }, + { + "start": 3216.26, + "end": 3218.22, + "probability": 0.9442 + }, + { + "start": 3218.66, + "end": 3219.3, + "probability": 0.9422 + }, + { + "start": 3219.84, + "end": 3221.14, + "probability": 0.7522 + }, + { + "start": 3221.62, + "end": 3222.14, + "probability": 0.5223 + }, + { + "start": 3222.2, + "end": 3225.22, + "probability": 0.6988 + }, + { + "start": 3226.5, + "end": 3230.9, + "probability": 0.9631 + }, + { + "start": 3230.9, + "end": 3233.84, + "probability": 0.9911 + }, + { + "start": 3234.68, + "end": 3238.4, + "probability": 0.9543 + }, + { + "start": 3238.4, + "end": 3241.38, + "probability": 0.8723 + }, + { + "start": 3242.22, + "end": 3244.56, + "probability": 0.9563 + }, + { + "start": 3245.16, + "end": 3247.88, + "probability": 0.9691 + }, + { + "start": 3250.24, + "end": 3253.2, + "probability": 0.9963 + }, + { + "start": 3253.3, + "end": 3253.42, + "probability": 0.2915 + }, + { + "start": 3254.28, + "end": 3255.86, + "probability": 0.729 + }, + { + "start": 3255.92, + "end": 3256.82, + "probability": 0.8099 + }, + { + "start": 3257.9, + "end": 3259.82, + "probability": 0.6411 + }, + { + "start": 3260.92, + "end": 3263.84, + "probability": 0.9174 + }, + { + "start": 3265.04, + "end": 3265.38, + "probability": 0.505 + }, + { + "start": 3265.52, + "end": 3266.72, + "probability": 0.9951 + }, + { + "start": 3267.0, + "end": 3270.96, + "probability": 0.9528 + }, + { + "start": 3273.14, + "end": 3277.84, + "probability": 0.9722 + }, + { + "start": 3277.84, + "end": 3282.46, + "probability": 0.9899 + }, + { + "start": 3283.1, + "end": 3286.98, + "probability": 0.9742 + }, + { + "start": 3287.74, + "end": 3293.22, + "probability": 0.9979 + }, + { + "start": 3293.26, + "end": 3295.58, + "probability": 0.9805 + }, + { + "start": 3296.56, + "end": 3299.34, + "probability": 0.8457 + }, + { + "start": 3300.24, + "end": 3303.48, + "probability": 0.9915 + }, + { + "start": 3304.54, + "end": 3307.0, + "probability": 0.9635 + }, + { + "start": 3308.0, + "end": 3312.48, + "probability": 0.8306 + }, + { + "start": 3312.6, + "end": 3313.68, + "probability": 0.898 + }, + { + "start": 3314.16, + "end": 3316.0, + "probability": 0.7141 + }, + { + "start": 3317.1, + "end": 3321.9, + "probability": 0.9912 + }, + { + "start": 3323.42, + "end": 3327.82, + "probability": 0.778 + }, + { + "start": 3330.42, + "end": 3336.1, + "probability": 0.9933 + }, + { + "start": 3336.22, + "end": 3336.5, + "probability": 0.9622 + }, + { + "start": 3339.16, + "end": 3339.8, + "probability": 0.358 + }, + { + "start": 3340.04, + "end": 3341.32, + "probability": 0.8661 + }, + { + "start": 3341.4, + "end": 3344.82, + "probability": 0.9837 + }, + { + "start": 3345.66, + "end": 3347.38, + "probability": 0.8447 + }, + { + "start": 3347.6, + "end": 3349.76, + "probability": 0.6155 + }, + { + "start": 3350.22, + "end": 3352.98, + "probability": 0.887 + }, + { + "start": 3353.38, + "end": 3360.88, + "probability": 0.9933 + }, + { + "start": 3361.48, + "end": 3367.66, + "probability": 0.9922 + }, + { + "start": 3368.2, + "end": 3371.72, + "probability": 0.9582 + }, + { + "start": 3372.2, + "end": 3373.22, + "probability": 0.6795 + }, + { + "start": 3374.6, + "end": 3375.18, + "probability": 0.7346 + }, + { + "start": 3375.4, + "end": 3379.7, + "probability": 0.9211 + }, + { + "start": 3380.58, + "end": 3386.28, + "probability": 0.9949 + }, + { + "start": 3387.04, + "end": 3390.96, + "probability": 0.9896 + }, + { + "start": 3391.74, + "end": 3392.3, + "probability": 0.4833 + }, + { + "start": 3393.66, + "end": 3399.86, + "probability": 0.9386 + }, + { + "start": 3401.16, + "end": 3403.48, + "probability": 0.986 + }, + { + "start": 3404.56, + "end": 3407.14, + "probability": 0.9479 + }, + { + "start": 3407.2, + "end": 3409.38, + "probability": 0.9522 + }, + { + "start": 3410.32, + "end": 3412.88, + "probability": 0.9913 + }, + { + "start": 3413.82, + "end": 3413.9, + "probability": 0.7304 + }, + { + "start": 3414.04, + "end": 3415.87, + "probability": 0.9778 + }, + { + "start": 3416.86, + "end": 3420.52, + "probability": 0.8875 + }, + { + "start": 3420.52, + "end": 3425.08, + "probability": 0.983 + }, + { + "start": 3426.4, + "end": 3429.06, + "probability": 0.8056 + }, + { + "start": 3429.62, + "end": 3432.0, + "probability": 0.9954 + }, + { + "start": 3432.3, + "end": 3435.44, + "probability": 0.9829 + }, + { + "start": 3435.72, + "end": 3436.8, + "probability": 0.801 + }, + { + "start": 3436.9, + "end": 3437.5, + "probability": 0.7854 + }, + { + "start": 3438.3, + "end": 3445.34, + "probability": 0.6854 + }, + { + "start": 3446.64, + "end": 3449.24, + "probability": 0.864 + }, + { + "start": 3450.24, + "end": 3451.47, + "probability": 0.9985 + }, + { + "start": 3453.62, + "end": 3454.4, + "probability": 0.7426 + }, + { + "start": 3455.38, + "end": 3458.58, + "probability": 0.9062 + }, + { + "start": 3458.58, + "end": 3463.15, + "probability": 0.8711 + }, + { + "start": 3463.88, + "end": 3467.38, + "probability": 0.9656 + }, + { + "start": 3467.96, + "end": 3470.74, + "probability": 0.9515 + }, + { + "start": 3471.24, + "end": 3473.68, + "probability": 0.936 + }, + { + "start": 3474.32, + "end": 3475.78, + "probability": 0.9941 + }, + { + "start": 3476.3, + "end": 3477.34, + "probability": 0.8181 + }, + { + "start": 3477.46, + "end": 3481.68, + "probability": 0.8382 + }, + { + "start": 3481.76, + "end": 3484.12, + "probability": 0.7325 + }, + { + "start": 3484.56, + "end": 3488.56, + "probability": 0.9767 + }, + { + "start": 3488.56, + "end": 3492.0, + "probability": 0.9533 + }, + { + "start": 3492.1, + "end": 3498.44, + "probability": 0.9943 + }, + { + "start": 3499.16, + "end": 3505.64, + "probability": 0.948 + }, + { + "start": 3506.22, + "end": 3517.7, + "probability": 0.9565 + }, + { + "start": 3518.84, + "end": 3519.52, + "probability": 0.7343 + }, + { + "start": 3519.52, + "end": 3523.86, + "probability": 0.8792 + }, + { + "start": 3523.86, + "end": 3530.7, + "probability": 0.9966 + }, + { + "start": 3531.48, + "end": 3538.22, + "probability": 0.9585 + }, + { + "start": 3539.14, + "end": 3539.8, + "probability": 0.9833 + }, + { + "start": 3540.56, + "end": 3544.22, + "probability": 0.6007 + }, + { + "start": 3544.68, + "end": 3545.24, + "probability": 0.9772 + }, + { + "start": 3545.36, + "end": 3546.5, + "probability": 0.9291 + }, + { + "start": 3546.64, + "end": 3547.68, + "probability": 0.8119 + }, + { + "start": 3548.12, + "end": 3548.99, + "probability": 0.8833 + }, + { + "start": 3549.16, + "end": 3551.78, + "probability": 0.9845 + }, + { + "start": 3552.3, + "end": 3554.3, + "probability": 0.9762 + }, + { + "start": 3557.6, + "end": 3560.46, + "probability": 0.9608 + }, + { + "start": 3561.76, + "end": 3567.0, + "probability": 0.9251 + }, + { + "start": 3568.26, + "end": 3569.1, + "probability": 0.998 + }, + { + "start": 3570.32, + "end": 3572.44, + "probability": 0.9204 + }, + { + "start": 3572.5, + "end": 3572.94, + "probability": 0.7769 + }, + { + "start": 3572.94, + "end": 3574.36, + "probability": 0.9833 + }, + { + "start": 3574.98, + "end": 3582.76, + "probability": 0.9545 + }, + { + "start": 3583.48, + "end": 3584.64, + "probability": 0.8685 + }, + { + "start": 3585.36, + "end": 3587.12, + "probability": 0.991 + }, + { + "start": 3588.36, + "end": 3589.54, + "probability": 0.6953 + }, + { + "start": 3589.54, + "end": 3590.06, + "probability": 0.7307 + }, + { + "start": 3590.18, + "end": 3592.86, + "probability": 0.2934 + }, + { + "start": 3593.42, + "end": 3594.62, + "probability": 0.0801 + }, + { + "start": 3594.62, + "end": 3597.34, + "probability": 0.4254 + }, + { + "start": 3597.76, + "end": 3599.01, + "probability": 0.5937 + }, + { + "start": 3600.5, + "end": 3603.1, + "probability": 0.9014 + }, + { + "start": 3603.96, + "end": 3605.5, + "probability": 0.9716 + }, + { + "start": 3605.64, + "end": 3607.21, + "probability": 0.9938 + }, + { + "start": 3607.7, + "end": 3611.18, + "probability": 0.9581 + }, + { + "start": 3611.82, + "end": 3615.16, + "probability": 0.8877 + }, + { + "start": 3615.56, + "end": 3618.58, + "probability": 0.8885 + }, + { + "start": 3619.16, + "end": 3619.8, + "probability": 0.4589 + }, + { + "start": 3619.98, + "end": 3620.82, + "probability": 0.7604 + }, + { + "start": 3621.3, + "end": 3624.25, + "probability": 0.9732 + }, + { + "start": 3624.5, + "end": 3627.8, + "probability": 0.8698 + }, + { + "start": 3627.9, + "end": 3628.2, + "probability": 0.7083 + }, + { + "start": 3628.84, + "end": 3629.1, + "probability": 0.4536 + }, + { + "start": 3629.2, + "end": 3630.92, + "probability": 0.8234 + }, + { + "start": 3631.04, + "end": 3631.8, + "probability": 0.5671 + }, + { + "start": 3631.86, + "end": 3632.48, + "probability": 0.562 + }, + { + "start": 3632.72, + "end": 3636.74, + "probability": 0.984 + }, + { + "start": 3637.48, + "end": 3642.12, + "probability": 0.7081 + }, + { + "start": 3642.28, + "end": 3647.98, + "probability": 0.9808 + }, + { + "start": 3649.04, + "end": 3649.56, + "probability": 0.9171 + }, + { + "start": 3649.76, + "end": 3653.58, + "probability": 0.9576 + }, + { + "start": 3653.58, + "end": 3654.18, + "probability": 0.2825 + }, + { + "start": 3654.96, + "end": 3656.94, + "probability": 0.8521 + }, + { + "start": 3657.08, + "end": 3658.46, + "probability": 0.9951 + }, + { + "start": 3659.12, + "end": 3659.98, + "probability": 0.8996 + }, + { + "start": 3660.02, + "end": 3661.8, + "probability": 0.9482 + }, + { + "start": 3662.4, + "end": 3664.0, + "probability": 0.9966 + }, + { + "start": 3664.02, + "end": 3669.04, + "probability": 0.957 + }, + { + "start": 3669.18, + "end": 3670.58, + "probability": 0.9881 + }, + { + "start": 3671.14, + "end": 3672.28, + "probability": 0.6828 + }, + { + "start": 3672.64, + "end": 3675.86, + "probability": 0.9448 + }, + { + "start": 3676.28, + "end": 3678.68, + "probability": 0.9092 + }, + { + "start": 3679.3, + "end": 3681.5, + "probability": 0.8042 + }, + { + "start": 3682.14, + "end": 3682.6, + "probability": 0.7234 + }, + { + "start": 3683.32, + "end": 3686.56, + "probability": 0.9102 + }, + { + "start": 3687.12, + "end": 3690.7, + "probability": 0.9978 + }, + { + "start": 3691.48, + "end": 3696.94, + "probability": 0.996 + }, + { + "start": 3696.94, + "end": 3702.52, + "probability": 0.9883 + }, + { + "start": 3703.64, + "end": 3706.52, + "probability": 0.9991 + }, + { + "start": 3707.24, + "end": 3712.36, + "probability": 0.9939 + }, + { + "start": 3713.16, + "end": 3714.4, + "probability": 0.8534 + }, + { + "start": 3714.94, + "end": 3718.12, + "probability": 0.9873 + }, + { + "start": 3718.12, + "end": 3720.38, + "probability": 0.9866 + }, + { + "start": 3720.84, + "end": 3723.64, + "probability": 0.9254 + }, + { + "start": 3723.64, + "end": 3727.56, + "probability": 0.937 + }, + { + "start": 3727.64, + "end": 3729.39, + "probability": 0.9958 + }, + { + "start": 3729.98, + "end": 3730.82, + "probability": 0.6477 + }, + { + "start": 3730.96, + "end": 3732.22, + "probability": 0.9154 + }, + { + "start": 3732.3, + "end": 3736.38, + "probability": 0.9927 + }, + { + "start": 3736.38, + "end": 3742.18, + "probability": 0.9694 + }, + { + "start": 3742.7, + "end": 3746.74, + "probability": 0.8841 + }, + { + "start": 3746.78, + "end": 3752.68, + "probability": 0.9917 + }, + { + "start": 3752.78, + "end": 3758.72, + "probability": 0.9942 + }, + { + "start": 3758.82, + "end": 3762.66, + "probability": 0.9166 + }, + { + "start": 3762.66, + "end": 3767.28, + "probability": 0.9792 + }, + { + "start": 3767.28, + "end": 3767.52, + "probability": 0.6891 + }, + { + "start": 3768.26, + "end": 3769.32, + "probability": 0.6091 + }, + { + "start": 3769.38, + "end": 3770.92, + "probability": 0.8551 + }, + { + "start": 3770.98, + "end": 3771.4, + "probability": 0.674 + }, + { + "start": 3771.48, + "end": 3773.48, + "probability": 0.8302 + }, + { + "start": 3776.82, + "end": 3777.68, + "probability": 0.9578 + }, + { + "start": 3777.7, + "end": 3780.36, + "probability": 0.938 + }, + { + "start": 3780.96, + "end": 3784.12, + "probability": 0.8575 + }, + { + "start": 3784.72, + "end": 3785.58, + "probability": 0.6371 + }, + { + "start": 3786.02, + "end": 3789.38, + "probability": 0.9448 + }, + { + "start": 3789.7, + "end": 3790.38, + "probability": 0.9168 + }, + { + "start": 3790.68, + "end": 3794.22, + "probability": 0.9951 + }, + { + "start": 3794.32, + "end": 3799.56, + "probability": 0.9852 + }, + { + "start": 3799.6, + "end": 3801.2, + "probability": 0.9984 + }, + { + "start": 3801.26, + "end": 3802.46, + "probability": 0.8427 + }, + { + "start": 3802.58, + "end": 3806.1, + "probability": 0.9203 + }, + { + "start": 3806.38, + "end": 3807.4, + "probability": 0.926 + }, + { + "start": 3807.56, + "end": 3810.7, + "probability": 0.9968 + }, + { + "start": 3810.7, + "end": 3813.44, + "probability": 0.9472 + }, + { + "start": 3813.96, + "end": 3816.62, + "probability": 0.6473 + }, + { + "start": 3816.86, + "end": 3817.56, + "probability": 0.8258 + }, + { + "start": 3818.44, + "end": 3820.69, + "probability": 0.966 + }, + { + "start": 3820.96, + "end": 3821.94, + "probability": 0.6251 + }, + { + "start": 3822.04, + "end": 3823.18, + "probability": 0.7661 + }, + { + "start": 3823.32, + "end": 3824.14, + "probability": 0.9895 + }, + { + "start": 3826.1, + "end": 3827.12, + "probability": 0.6799 + }, + { + "start": 3827.44, + "end": 3831.86, + "probability": 0.9869 + }, + { + "start": 3832.0, + "end": 3836.42, + "probability": 0.9201 + }, + { + "start": 3836.76, + "end": 3837.0, + "probability": 0.6933 + }, + { + "start": 3837.2, + "end": 3838.54, + "probability": 0.7416 + }, + { + "start": 3838.68, + "end": 3841.68, + "probability": 0.5296 + }, + { + "start": 3841.82, + "end": 3846.02, + "probability": 0.9703 + }, + { + "start": 3846.14, + "end": 3849.71, + "probability": 0.8171 + }, + { + "start": 3850.44, + "end": 3851.14, + "probability": 0.8002 + }, + { + "start": 3852.34, + "end": 3852.94, + "probability": 0.107 + }, + { + "start": 3853.12, + "end": 3853.42, + "probability": 0.3922 + }, + { + "start": 3853.58, + "end": 3857.38, + "probability": 0.8003 + }, + { + "start": 3857.54, + "end": 3862.2, + "probability": 0.9572 + }, + { + "start": 3862.74, + "end": 3863.3, + "probability": 0.7258 + }, + { + "start": 3863.38, + "end": 3864.96, + "probability": 0.7448 + }, + { + "start": 3865.08, + "end": 3873.2, + "probability": 0.9482 + }, + { + "start": 3873.7, + "end": 3875.0, + "probability": 0.9512 + }, + { + "start": 3875.8, + "end": 3876.52, + "probability": 0.716 + }, + { + "start": 3876.52, + "end": 3878.08, + "probability": 0.907 + }, + { + "start": 3878.1, + "end": 3880.58, + "probability": 0.9292 + }, + { + "start": 3881.3, + "end": 3882.06, + "probability": 0.7052 + }, + { + "start": 3882.12, + "end": 3883.18, + "probability": 0.9805 + }, + { + "start": 3883.52, + "end": 3885.54, + "probability": 0.6998 + }, + { + "start": 3885.8, + "end": 3889.0, + "probability": 0.9688 + }, + { + "start": 3889.42, + "end": 3892.82, + "probability": 0.925 + }, + { + "start": 3893.12, + "end": 3894.52, + "probability": 0.8835 + }, + { + "start": 3894.9, + "end": 3896.42, + "probability": 0.808 + }, + { + "start": 3896.68, + "end": 3897.68, + "probability": 0.4202 + }, + { + "start": 3898.16, + "end": 3900.06, + "probability": 0.2959 + }, + { + "start": 3900.44, + "end": 3905.48, + "probability": 0.8714 + }, + { + "start": 3906.24, + "end": 3906.42, + "probability": 0.6568 + }, + { + "start": 3906.64, + "end": 3907.96, + "probability": 0.5132 + }, + { + "start": 3908.16, + "end": 3909.28, + "probability": 0.8553 + }, + { + "start": 3910.0, + "end": 3913.3, + "probability": 0.9723 + }, + { + "start": 3913.32, + "end": 3914.74, + "probability": 0.4152 + }, + { + "start": 3914.9, + "end": 3917.1, + "probability": 0.9801 + }, + { + "start": 3917.18, + "end": 3921.56, + "probability": 0.9648 + }, + { + "start": 3922.06, + "end": 3923.26, + "probability": 0.8682 + }, + { + "start": 3923.4, + "end": 3924.36, + "probability": 0.7334 + }, + { + "start": 3924.4, + "end": 3927.2, + "probability": 0.749 + }, + { + "start": 3927.26, + "end": 3927.8, + "probability": 0.743 + }, + { + "start": 3928.88, + "end": 3931.18, + "probability": 0.876 + }, + { + "start": 3932.94, + "end": 3935.45, + "probability": 0.8076 + }, + { + "start": 3936.56, + "end": 3940.8, + "probability": 0.9961 + }, + { + "start": 3941.4, + "end": 3943.63, + "probability": 0.8492 + }, + { + "start": 3943.78, + "end": 3945.5, + "probability": 0.9551 + }, + { + "start": 3945.96, + "end": 3947.5, + "probability": 0.8496 + }, + { + "start": 3947.68, + "end": 3950.88, + "probability": 0.8992 + }, + { + "start": 3951.14, + "end": 3951.96, + "probability": 0.7818 + }, + { + "start": 3952.1, + "end": 3953.22, + "probability": 0.9648 + }, + { + "start": 3953.8, + "end": 3954.42, + "probability": 0.5183 + }, + { + "start": 3954.5, + "end": 3956.12, + "probability": 0.9397 + }, + { + "start": 3956.18, + "end": 3956.56, + "probability": 0.4608 + }, + { + "start": 3956.58, + "end": 3957.38, + "probability": 0.5463 + }, + { + "start": 3957.58, + "end": 3959.9, + "probability": 0.7852 + }, + { + "start": 3959.9, + "end": 3962.2, + "probability": 0.8009 + }, + { + "start": 3962.36, + "end": 3964.38, + "probability": 0.7991 + }, + { + "start": 3964.58, + "end": 3967.33, + "probability": 0.7969 + }, + { + "start": 3968.3, + "end": 3969.98, + "probability": 0.998 + }, + { + "start": 3970.48, + "end": 3973.22, + "probability": 0.9668 + }, + { + "start": 3973.82, + "end": 3974.54, + "probability": 0.4849 + }, + { + "start": 3974.8, + "end": 3978.72, + "probability": 0.9931 + }, + { + "start": 3978.98, + "end": 3979.66, + "probability": 0.5859 + }, + { + "start": 3980.28, + "end": 3982.86, + "probability": 0.9717 + }, + { + "start": 3983.38, + "end": 3985.74, + "probability": 0.9792 + }, + { + "start": 3985.78, + "end": 3986.57, + "probability": 0.8638 + }, + { + "start": 3987.08, + "end": 3989.49, + "probability": 0.9651 + }, + { + "start": 3989.76, + "end": 3991.06, + "probability": 0.1348 + }, + { + "start": 3992.43, + "end": 3995.19, + "probability": 0.9968 + }, + { + "start": 3996.04, + "end": 3998.96, + "probability": 0.9545 + }, + { + "start": 3999.48, + "end": 4000.32, + "probability": 0.9311 + }, + { + "start": 4000.96, + "end": 4001.44, + "probability": 0.9923 + }, + { + "start": 4004.5, + "end": 4008.86, + "probability": 0.9118 + }, + { + "start": 4009.4, + "end": 4010.48, + "probability": 0.4233 + }, + { + "start": 4011.22, + "end": 4011.8, + "probability": 0.8037 + }, + { + "start": 4011.9, + "end": 4012.63, + "probability": 0.8713 + }, + { + "start": 4013.3, + "end": 4015.08, + "probability": 0.9712 + }, + { + "start": 4015.2, + "end": 4017.1, + "probability": 0.7876 + }, + { + "start": 4017.22, + "end": 4017.76, + "probability": 0.6114 + }, + { + "start": 4017.88, + "end": 4018.73, + "probability": 0.9253 + }, + { + "start": 4019.24, + "end": 4020.96, + "probability": 0.6925 + }, + { + "start": 4021.48, + "end": 4022.08, + "probability": 0.8036 + }, + { + "start": 4022.32, + "end": 4023.3, + "probability": 0.9592 + }, + { + "start": 4023.56, + "end": 4025.21, + "probability": 0.9917 + }, + { + "start": 4025.76, + "end": 4029.38, + "probability": 0.9781 + }, + { + "start": 4029.52, + "end": 4032.64, + "probability": 0.9778 + }, + { + "start": 4034.14, + "end": 4037.96, + "probability": 0.9981 + }, + { + "start": 4038.72, + "end": 4042.48, + "probability": 0.9937 + }, + { + "start": 4042.56, + "end": 4043.94, + "probability": 0.9973 + }, + { + "start": 4043.98, + "end": 4047.7, + "probability": 0.9863 + }, + { + "start": 4047.96, + "end": 4048.58, + "probability": 0.422 + }, + { + "start": 4048.72, + "end": 4050.11, + "probability": 0.5985 + }, + { + "start": 4050.46, + "end": 4053.3, + "probability": 0.8542 + }, + { + "start": 4055.06, + "end": 4058.02, + "probability": 0.7275 + }, + { + "start": 4059.6, + "end": 4061.14, + "probability": 0.5416 + }, + { + "start": 4061.14, + "end": 4062.28, + "probability": 0.7007 + }, + { + "start": 4063.12, + "end": 4064.62, + "probability": 0.9688 + }, + { + "start": 4065.14, + "end": 4067.16, + "probability": 0.8989 + }, + { + "start": 4067.26, + "end": 4068.22, + "probability": 0.7251 + }, + { + "start": 4068.92, + "end": 4070.66, + "probability": 0.906 + }, + { + "start": 4071.0, + "end": 4071.92, + "probability": 0.9424 + }, + { + "start": 4072.1, + "end": 4073.3, + "probability": 0.9296 + }, + { + "start": 4073.68, + "end": 4074.68, + "probability": 0.8561 + }, + { + "start": 4074.68, + "end": 4075.08, + "probability": 0.8049 + }, + { + "start": 4075.22, + "end": 4076.85, + "probability": 0.7139 + }, + { + "start": 4078.08, + "end": 4078.36, + "probability": 0.3726 + }, + { + "start": 4078.36, + "end": 4080.38, + "probability": 0.747 + }, + { + "start": 4080.48, + "end": 4081.72, + "probability": 0.905 + }, + { + "start": 4081.86, + "end": 4085.28, + "probability": 0.9785 + }, + { + "start": 4085.96, + "end": 4087.0, + "probability": 0.9211 + }, + { + "start": 4087.28, + "end": 4089.7, + "probability": 0.9153 + }, + { + "start": 4089.8, + "end": 4090.3, + "probability": 0.8841 + }, + { + "start": 4090.36, + "end": 4090.96, + "probability": 0.6722 + }, + { + "start": 4091.56, + "end": 4096.8, + "probability": 0.9891 + }, + { + "start": 4097.48, + "end": 4101.96, + "probability": 0.8102 + }, + { + "start": 4102.54, + "end": 4105.24, + "probability": 0.9942 + }, + { + "start": 4105.54, + "end": 4107.81, + "probability": 0.8279 + }, + { + "start": 4108.36, + "end": 4108.5, + "probability": 0.4591 + }, + { + "start": 4108.66, + "end": 4110.14, + "probability": 0.0051 + }, + { + "start": 4110.42, + "end": 4112.38, + "probability": 0.0298 + }, + { + "start": 4112.46, + "end": 4112.58, + "probability": 0.0195 + }, + { + "start": 4112.58, + "end": 4112.58, + "probability": 0.3798 + }, + { + "start": 4112.58, + "end": 4116.75, + "probability": 0.9905 + }, + { + "start": 4118.14, + "end": 4119.23, + "probability": 0.9873 + }, + { + "start": 4119.56, + "end": 4120.82, + "probability": 0.9169 + }, + { + "start": 4120.92, + "end": 4127.02, + "probability": 0.8611 + }, + { + "start": 4127.56, + "end": 4132.94, + "probability": 0.9877 + }, + { + "start": 4133.1, + "end": 4134.18, + "probability": 0.6015 + }, + { + "start": 4134.4, + "end": 4136.06, + "probability": 0.9373 + }, + { + "start": 4136.2, + "end": 4138.96, + "probability": 0.7626 + }, + { + "start": 4138.96, + "end": 4138.96, + "probability": 0.3475 + }, + { + "start": 4138.96, + "end": 4141.88, + "probability": 0.7381 + }, + { + "start": 4142.78, + "end": 4143.28, + "probability": 0.8497 + }, + { + "start": 4144.0, + "end": 4146.16, + "probability": 0.6916 + }, + { + "start": 4146.76, + "end": 4147.74, + "probability": 0.4348 + }, + { + "start": 4147.74, + "end": 4148.38, + "probability": 0.225 + }, + { + "start": 4149.2, + "end": 4151.48, + "probability": 0.6413 + }, + { + "start": 4152.18, + "end": 4155.28, + "probability": 0.994 + }, + { + "start": 4155.28, + "end": 4160.08, + "probability": 0.9192 + }, + { + "start": 4160.58, + "end": 4161.42, + "probability": 0.6766 + }, + { + "start": 4162.08, + "end": 4165.76, + "probability": 0.9369 + }, + { + "start": 4166.16, + "end": 4172.08, + "probability": 0.9886 + }, + { + "start": 4172.72, + "end": 4173.56, + "probability": 0.2506 + }, + { + "start": 4173.56, + "end": 4173.9, + "probability": 0.669 + }, + { + "start": 4174.14, + "end": 4175.48, + "probability": 0.6694 + }, + { + "start": 4175.52, + "end": 4176.82, + "probability": 0.8045 + }, + { + "start": 4176.82, + "end": 4182.32, + "probability": 0.9878 + }, + { + "start": 4182.56, + "end": 4187.76, + "probability": 0.9448 + }, + { + "start": 4187.76, + "end": 4192.54, + "probability": 0.9924 + }, + { + "start": 4192.94, + "end": 4196.3, + "probability": 0.9712 + }, + { + "start": 4196.52, + "end": 4197.78, + "probability": 0.9725 + }, + { + "start": 4197.98, + "end": 4200.46, + "probability": 0.9287 + }, + { + "start": 4200.64, + "end": 4203.06, + "probability": 0.9776 + }, + { + "start": 4203.96, + "end": 4208.74, + "probability": 0.9928 + }, + { + "start": 4209.18, + "end": 4211.94, + "probability": 0.9919 + }, + { + "start": 4213.68, + "end": 4216.96, + "probability": 0.746 + }, + { + "start": 4217.32, + "end": 4222.54, + "probability": 0.9939 + }, + { + "start": 4222.7, + "end": 4226.84, + "probability": 0.838 + }, + { + "start": 4226.84, + "end": 4230.54, + "probability": 0.9634 + }, + { + "start": 4231.46, + "end": 4235.16, + "probability": 0.9745 + }, + { + "start": 4235.76, + "end": 4237.92, + "probability": 0.6959 + }, + { + "start": 4238.5, + "end": 4240.56, + "probability": 0.9521 + }, + { + "start": 4240.9, + "end": 4246.84, + "probability": 0.9787 + }, + { + "start": 4247.92, + "end": 4251.04, + "probability": 0.9699 + }, + { + "start": 4251.32, + "end": 4252.64, + "probability": 0.9787 + }, + { + "start": 4253.76, + "end": 4256.1, + "probability": 0.9677 + }, + { + "start": 4256.6, + "end": 4259.14, + "probability": 0.9266 + }, + { + "start": 4260.26, + "end": 4262.64, + "probability": 0.7979 + }, + { + "start": 4262.9, + "end": 4264.52, + "probability": 0.9639 + }, + { + "start": 4264.6, + "end": 4266.28, + "probability": 0.6886 + }, + { + "start": 4267.08, + "end": 4268.38, + "probability": 0.9703 + }, + { + "start": 4268.46, + "end": 4269.0, + "probability": 0.9138 + }, + { + "start": 4269.08, + "end": 4271.24, + "probability": 0.8653 + }, + { + "start": 4271.24, + "end": 4274.3, + "probability": 0.8275 + }, + { + "start": 4275.49, + "end": 4277.28, + "probability": 0.9993 + }, + { + "start": 4277.44, + "end": 4279.26, + "probability": 0.8836 + }, + { + "start": 4279.26, + "end": 4281.74, + "probability": 0.9465 + }, + { + "start": 4282.1, + "end": 4284.52, + "probability": 0.5795 + }, + { + "start": 4284.62, + "end": 4288.42, + "probability": 0.987 + }, + { + "start": 4288.56, + "end": 4290.04, + "probability": 0.9438 + }, + { + "start": 4290.6, + "end": 4291.2, + "probability": 0.698 + }, + { + "start": 4291.24, + "end": 4295.14, + "probability": 0.9772 + }, + { + "start": 4295.3, + "end": 4296.54, + "probability": 0.8922 + }, + { + "start": 4297.52, + "end": 4299.62, + "probability": 0.502 + }, + { + "start": 4299.74, + "end": 4299.94, + "probability": 0.3429 + }, + { + "start": 4300.0, + "end": 4303.86, + "probability": 0.9166 + }, + { + "start": 4303.86, + "end": 4306.78, + "probability": 0.871 + }, + { + "start": 4307.32, + "end": 4308.8, + "probability": 0.96 + }, + { + "start": 4309.0, + "end": 4310.42, + "probability": 0.9478 + }, + { + "start": 4310.78, + "end": 4317.76, + "probability": 0.9167 + }, + { + "start": 4317.9, + "end": 4320.86, + "probability": 0.9252 + }, + { + "start": 4321.28, + "end": 4322.36, + "probability": 0.9927 + }, + { + "start": 4322.46, + "end": 4325.17, + "probability": 0.9884 + }, + { + "start": 4326.14, + "end": 4332.1, + "probability": 0.9789 + }, + { + "start": 4332.1, + "end": 4336.98, + "probability": 0.9995 + }, + { + "start": 4337.68, + "end": 4342.7, + "probability": 0.9082 + }, + { + "start": 4343.54, + "end": 4344.94, + "probability": 0.9416 + }, + { + "start": 4345.92, + "end": 4349.44, + "probability": 0.8726 + }, + { + "start": 4349.58, + "end": 4351.22, + "probability": 0.9924 + }, + { + "start": 4351.4, + "end": 4352.4, + "probability": 0.9759 + }, + { + "start": 4352.62, + "end": 4353.9, + "probability": 0.5311 + }, + { + "start": 4353.98, + "end": 4356.78, + "probability": 0.9778 + }, + { + "start": 4357.04, + "end": 4360.38, + "probability": 0.9919 + }, + { + "start": 4360.54, + "end": 4361.22, + "probability": 0.4213 + }, + { + "start": 4361.22, + "end": 4361.52, + "probability": 0.3562 + }, + { + "start": 4362.4, + "end": 4362.68, + "probability": 0.6688 + }, + { + "start": 4362.98, + "end": 4364.2, + "probability": 0.7778 + }, + { + "start": 4364.46, + "end": 4365.38, + "probability": 0.8579 + }, + { + "start": 4365.58, + "end": 4366.34, + "probability": 0.7397 + }, + { + "start": 4366.4, + "end": 4367.5, + "probability": 0.9087 + }, + { + "start": 4367.6, + "end": 4369.12, + "probability": 0.8621 + }, + { + "start": 4370.5, + "end": 4373.8, + "probability": 0.9756 + }, + { + "start": 4373.98, + "end": 4377.24, + "probability": 0.8511 + }, + { + "start": 4380.02, + "end": 4381.98, + "probability": 0.9631 + }, + { + "start": 4381.98, + "end": 4383.14, + "probability": 0.7099 + }, + { + "start": 4383.28, + "end": 4383.84, + "probability": 0.1735 + }, + { + "start": 4385.16, + "end": 4390.74, + "probability": 0.9526 + }, + { + "start": 4391.18, + "end": 4393.14, + "probability": 0.9795 + }, + { + "start": 4394.82, + "end": 4396.37, + "probability": 0.5723 + }, + { + "start": 4396.66, + "end": 4398.72, + "probability": 0.9433 + }, + { + "start": 4399.26, + "end": 4402.84, + "probability": 0.9129 + }, + { + "start": 4403.14, + "end": 4403.24, + "probability": 0.7817 + }, + { + "start": 4422.68, + "end": 4424.74, + "probability": 0.6711 + }, + { + "start": 4425.76, + "end": 4429.09, + "probability": 0.9285 + }, + { + "start": 4430.32, + "end": 4431.66, + "probability": 0.874 + }, + { + "start": 4432.76, + "end": 4434.12, + "probability": 0.9743 + }, + { + "start": 4434.56, + "end": 4437.02, + "probability": 0.9937 + }, + { + "start": 4437.12, + "end": 4438.4, + "probability": 0.7676 + }, + { + "start": 4440.08, + "end": 4443.36, + "probability": 0.7826 + }, + { + "start": 4444.34, + "end": 4447.14, + "probability": 0.9907 + }, + { + "start": 4447.32, + "end": 4450.26, + "probability": 0.9988 + }, + { + "start": 4450.3, + "end": 4451.19, + "probability": 0.9879 + }, + { + "start": 4452.5, + "end": 4453.5, + "probability": 0.9849 + }, + { + "start": 4454.28, + "end": 4455.76, + "probability": 0.75 + }, + { + "start": 4456.58, + "end": 4457.58, + "probability": 0.7537 + }, + { + "start": 4458.06, + "end": 4461.54, + "probability": 0.9233 + }, + { + "start": 4464.62, + "end": 4465.68, + "probability": 0.541 + }, + { + "start": 4467.26, + "end": 4470.38, + "probability": 0.9585 + }, + { + "start": 4473.48, + "end": 4475.46, + "probability": 0.9174 + }, + { + "start": 4475.68, + "end": 4476.92, + "probability": 0.8223 + }, + { + "start": 4476.96, + "end": 4479.82, + "probability": 0.8115 + }, + { + "start": 4480.06, + "end": 4481.92, + "probability": 0.9679 + }, + { + "start": 4482.38, + "end": 4484.3, + "probability": 0.866 + }, + { + "start": 4485.94, + "end": 4487.62, + "probability": 0.9599 + }, + { + "start": 4490.74, + "end": 4493.48, + "probability": 0.8135 + }, + { + "start": 4494.0, + "end": 4494.44, + "probability": 0.7819 + }, + { + "start": 4494.54, + "end": 4495.6, + "probability": 0.6649 + }, + { + "start": 4495.82, + "end": 4498.76, + "probability": 0.8803 + }, + { + "start": 4499.24, + "end": 4504.18, + "probability": 0.8153 + }, + { + "start": 4504.26, + "end": 4506.88, + "probability": 0.9874 + }, + { + "start": 4507.0, + "end": 4511.02, + "probability": 0.9132 + }, + { + "start": 4511.5, + "end": 4513.08, + "probability": 0.7566 + }, + { + "start": 4514.4, + "end": 4518.86, + "probability": 0.9647 + }, + { + "start": 4518.86, + "end": 4521.82, + "probability": 0.9299 + }, + { + "start": 4522.22, + "end": 4525.64, + "probability": 0.782 + }, + { + "start": 4526.1, + "end": 4527.06, + "probability": 0.7468 + }, + { + "start": 4528.2, + "end": 4528.76, + "probability": 0.0854 + }, + { + "start": 4528.96, + "end": 4529.66, + "probability": 0.7114 + }, + { + "start": 4529.86, + "end": 4532.62, + "probability": 0.3633 + }, + { + "start": 4532.62, + "end": 4533.38, + "probability": 0.021 + }, + { + "start": 4534.06, + "end": 4535.14, + "probability": 0.5138 + }, + { + "start": 4535.64, + "end": 4538.54, + "probability": 0.7142 + }, + { + "start": 4541.3, + "end": 4545.78, + "probability": 0.9927 + }, + { + "start": 4546.88, + "end": 4550.74, + "probability": 0.922 + }, + { + "start": 4550.76, + "end": 4552.16, + "probability": 0.7648 + }, + { + "start": 4552.98, + "end": 4555.04, + "probability": 0.9971 + }, + { + "start": 4556.0, + "end": 4557.56, + "probability": 0.6352 + }, + { + "start": 4557.66, + "end": 4559.42, + "probability": 0.6207 + }, + { + "start": 4559.62, + "end": 4563.62, + "probability": 0.9428 + }, + { + "start": 4563.72, + "end": 4565.46, + "probability": 0.7749 + }, + { + "start": 4565.84, + "end": 4567.13, + "probability": 0.9438 + }, + { + "start": 4567.48, + "end": 4568.22, + "probability": 0.748 + }, + { + "start": 4568.9, + "end": 4570.67, + "probability": 0.9888 + }, + { + "start": 4571.46, + "end": 4572.58, + "probability": 0.7344 + }, + { + "start": 4572.62, + "end": 4573.06, + "probability": 0.8631 + }, + { + "start": 4573.16, + "end": 4576.53, + "probability": 0.8873 + }, + { + "start": 4577.22, + "end": 4578.56, + "probability": 0.9558 + }, + { + "start": 4579.32, + "end": 4579.81, + "probability": 0.468 + }, + { + "start": 4580.08, + "end": 4580.24, + "probability": 0.519 + }, + { + "start": 4580.26, + "end": 4582.32, + "probability": 0.9119 + }, + { + "start": 4583.14, + "end": 4585.04, + "probability": 0.6936 + }, + { + "start": 4585.46, + "end": 4586.96, + "probability": 0.7328 + }, + { + "start": 4587.04, + "end": 4588.02, + "probability": 0.8546 + }, + { + "start": 4588.08, + "end": 4588.74, + "probability": 0.9516 + }, + { + "start": 4588.92, + "end": 4589.14, + "probability": 0.8379 + }, + { + "start": 4591.4, + "end": 4592.8, + "probability": 0.5605 + }, + { + "start": 4593.08, + "end": 4593.44, + "probability": 0.6562 + }, + { + "start": 4594.2, + "end": 4595.58, + "probability": 0.9344 + }, + { + "start": 4605.66, + "end": 4607.48, + "probability": 0.7164 + }, + { + "start": 4608.22, + "end": 4610.86, + "probability": 0.8411 + }, + { + "start": 4611.28, + "end": 4614.3, + "probability": 0.9956 + }, + { + "start": 4614.3, + "end": 4618.38, + "probability": 0.9684 + }, + { + "start": 4618.8, + "end": 4619.98, + "probability": 0.6382 + }, + { + "start": 4620.08, + "end": 4620.52, + "probability": 0.9349 + }, + { + "start": 4621.74, + "end": 4624.22, + "probability": 0.5716 + }, + { + "start": 4624.72, + "end": 4628.56, + "probability": 0.8396 + }, + { + "start": 4641.91, + "end": 4642.42, + "probability": 0.0171 + }, + { + "start": 4642.42, + "end": 4643.28, + "probability": 0.0312 + }, + { + "start": 4643.76, + "end": 4643.78, + "probability": 0.0419 + }, + { + "start": 4643.78, + "end": 4646.48, + "probability": 0.0968 + }, + { + "start": 4650.52, + "end": 4653.51, + "probability": 0.5733 + }, + { + "start": 4656.98, + "end": 4659.66, + "probability": 0.9306 + }, + { + "start": 4659.76, + "end": 4662.09, + "probability": 0.9548 + }, + { + "start": 4662.22, + "end": 4663.66, + "probability": 0.7231 + }, + { + "start": 4665.34, + "end": 4665.34, + "probability": 0.044 + }, + { + "start": 4665.34, + "end": 4667.88, + "probability": 0.9118 + }, + { + "start": 4668.06, + "end": 4669.88, + "probability": 0.9587 + }, + { + "start": 4669.88, + "end": 4671.66, + "probability": 0.8965 + }, + { + "start": 4671.8, + "end": 4674.0, + "probability": 0.9933 + }, + { + "start": 4675.96, + "end": 4678.36, + "probability": 0.9194 + }, + { + "start": 4691.88, + "end": 4694.12, + "probability": 0.9663 + }, + { + "start": 4694.36, + "end": 4695.84, + "probability": 0.6472 + }, + { + "start": 4696.14, + "end": 4697.18, + "probability": 0.7315 + }, + { + "start": 4701.98, + "end": 4704.34, + "probability": 0.7479 + }, + { + "start": 4704.44, + "end": 4707.05, + "probability": 0.8881 + }, + { + "start": 4714.19, + "end": 4717.13, + "probability": 0.8882 + }, + { + "start": 4719.16, + "end": 4719.66, + "probability": 0.8375 + }, + { + "start": 4730.52, + "end": 4731.78, + "probability": 0.698 + }, + { + "start": 4731.94, + "end": 4733.48, + "probability": 0.7739 + }, + { + "start": 4733.58, + "end": 4735.52, + "probability": 0.6644 + }, + { + "start": 4736.14, + "end": 4740.5, + "probability": 0.9965 + }, + { + "start": 4742.24, + "end": 4743.44, + "probability": 0.9807 + }, + { + "start": 4745.92, + "end": 4746.12, + "probability": 0.4569 + }, + { + "start": 4746.2, + "end": 4747.42, + "probability": 0.8797 + }, + { + "start": 4749.32, + "end": 4752.14, + "probability": 0.871 + }, + { + "start": 4757.52, + "end": 4760.97, + "probability": 0.9995 + }, + { + "start": 4761.0, + "end": 4765.68, + "probability": 0.9949 + }, + { + "start": 4766.28, + "end": 4769.68, + "probability": 0.9988 + }, + { + "start": 4769.68, + "end": 4772.2, + "probability": 0.9986 + }, + { + "start": 4773.0, + "end": 4776.85, + "probability": 0.9541 + }, + { + "start": 4777.58, + "end": 4782.26, + "probability": 0.987 + }, + { + "start": 4782.36, + "end": 4786.68, + "probability": 0.9933 + }, + { + "start": 4786.68, + "end": 4790.54, + "probability": 0.9982 + }, + { + "start": 4791.4, + "end": 4795.24, + "probability": 0.8634 + }, + { + "start": 4795.86, + "end": 4798.48, + "probability": 0.9875 + }, + { + "start": 4798.48, + "end": 4802.46, + "probability": 0.9986 + }, + { + "start": 4802.92, + "end": 4804.92, + "probability": 0.8361 + }, + { + "start": 4805.5, + "end": 4807.08, + "probability": 0.8143 + }, + { + "start": 4807.58, + "end": 4810.12, + "probability": 0.9653 + }, + { + "start": 4810.84, + "end": 4814.56, + "probability": 0.9659 + }, + { + "start": 4815.2, + "end": 4818.12, + "probability": 0.9901 + }, + { + "start": 4818.12, + "end": 4821.28, + "probability": 0.9989 + }, + { + "start": 4821.54, + "end": 4825.74, + "probability": 0.998 + }, + { + "start": 4826.12, + "end": 4829.54, + "probability": 0.9286 + }, + { + "start": 4829.54, + "end": 4833.12, + "probability": 0.9969 + }, + { + "start": 4833.62, + "end": 4837.66, + "probability": 0.9927 + }, + { + "start": 4838.48, + "end": 4841.58, + "probability": 0.9983 + }, + { + "start": 4841.98, + "end": 4847.04, + "probability": 0.9894 + }, + { + "start": 4847.3, + "end": 4847.88, + "probability": 0.621 + }, + { + "start": 4848.0, + "end": 4848.64, + "probability": 0.7127 + }, + { + "start": 4849.0, + "end": 4850.4, + "probability": 0.9266 + }, + { + "start": 4850.46, + "end": 4852.02, + "probability": 0.8727 + }, + { + "start": 4852.62, + "end": 4856.67, + "probability": 0.9517 + }, + { + "start": 4857.24, + "end": 4859.5, + "probability": 0.9323 + }, + { + "start": 4859.82, + "end": 4863.3, + "probability": 0.9967 + }, + { + "start": 4864.08, + "end": 4866.28, + "probability": 0.9975 + }, + { + "start": 4866.28, + "end": 4870.14, + "probability": 0.9766 + }, + { + "start": 4870.66, + "end": 4872.08, + "probability": 0.999 + }, + { + "start": 4872.68, + "end": 4874.48, + "probability": 0.4061 + }, + { + "start": 4874.64, + "end": 4877.46, + "probability": 0.9491 + }, + { + "start": 4877.8, + "end": 4878.76, + "probability": 0.8703 + }, + { + "start": 4879.02, + "end": 4884.16, + "probability": 0.9924 + }, + { + "start": 4884.58, + "end": 4887.36, + "probability": 0.9884 + }, + { + "start": 4887.76, + "end": 4890.22, + "probability": 0.9863 + }, + { + "start": 4890.64, + "end": 4891.8, + "probability": 0.8214 + }, + { + "start": 4891.96, + "end": 4892.59, + "probability": 0.8369 + }, + { + "start": 4893.22, + "end": 4894.02, + "probability": 0.9784 + }, + { + "start": 4894.94, + "end": 4900.72, + "probability": 0.9702 + }, + { + "start": 4901.24, + "end": 4903.22, + "probability": 0.9759 + }, + { + "start": 4903.6, + "end": 4905.68, + "probability": 0.9893 + }, + { + "start": 4906.68, + "end": 4908.94, + "probability": 0.9816 + }, + { + "start": 4909.68, + "end": 4913.02, + "probability": 0.9791 + }, + { + "start": 4913.02, + "end": 4917.14, + "probability": 0.9912 + }, + { + "start": 4917.6, + "end": 4921.12, + "probability": 0.9815 + }, + { + "start": 4921.62, + "end": 4923.76, + "probability": 0.9852 + }, + { + "start": 4923.84, + "end": 4924.42, + "probability": 0.6494 + }, + { + "start": 4924.76, + "end": 4927.0, + "probability": 0.9966 + }, + { + "start": 4927.0, + "end": 4929.43, + "probability": 0.9571 + }, + { + "start": 4929.98, + "end": 4935.4, + "probability": 0.9926 + }, + { + "start": 4936.4, + "end": 4936.78, + "probability": 0.3469 + }, + { + "start": 4936.82, + "end": 4937.04, + "probability": 0.6713 + }, + { + "start": 4937.16, + "end": 4941.8, + "probability": 0.9717 + }, + { + "start": 4941.8, + "end": 4945.2, + "probability": 0.9914 + }, + { + "start": 4945.66, + "end": 4946.78, + "probability": 0.8769 + }, + { + "start": 4946.88, + "end": 4948.38, + "probability": 0.9106 + }, + { + "start": 4948.48, + "end": 4949.4, + "probability": 0.688 + }, + { + "start": 4949.48, + "end": 4950.7, + "probability": 0.8998 + }, + { + "start": 4951.02, + "end": 4953.66, + "probability": 0.9731 + }, + { + "start": 4954.56, + "end": 4955.02, + "probability": 0.8559 + }, + { + "start": 4955.86, + "end": 4955.96, + "probability": 0.6229 + }, + { + "start": 4958.7, + "end": 4960.74, + "probability": 0.9844 + }, + { + "start": 4961.9, + "end": 4965.98, + "probability": 0.9969 + }, + { + "start": 4966.1, + "end": 4966.8, + "probability": 0.8672 + }, + { + "start": 4966.9, + "end": 4971.24, + "probability": 0.9601 + }, + { + "start": 4971.24, + "end": 4975.28, + "probability": 0.9927 + }, + { + "start": 4975.72, + "end": 4981.62, + "probability": 0.9628 + }, + { + "start": 4982.1, + "end": 4986.44, + "probability": 0.9939 + }, + { + "start": 4986.84, + "end": 4987.26, + "probability": 0.8725 + }, + { + "start": 4987.88, + "end": 4991.64, + "probability": 0.9967 + }, + { + "start": 4992.0, + "end": 4993.94, + "probability": 0.9927 + }, + { + "start": 4994.66, + "end": 4998.54, + "probability": 0.9904 + }, + { + "start": 4998.54, + "end": 5002.78, + "probability": 0.9955 + }, + { + "start": 5003.24, + "end": 5005.74, + "probability": 0.9956 + }, + { + "start": 5006.14, + "end": 5007.04, + "probability": 0.7174 + }, + { + "start": 5007.92, + "end": 5010.34, + "probability": 0.8712 + }, + { + "start": 5010.34, + "end": 5012.53, + "probability": 0.9142 + }, + { + "start": 5013.28, + "end": 5016.44, + "probability": 0.9799 + }, + { + "start": 5017.12, + "end": 5022.28, + "probability": 0.9902 + }, + { + "start": 5022.88, + "end": 5024.6, + "probability": 0.8287 + }, + { + "start": 5024.66, + "end": 5026.52, + "probability": 0.8632 + }, + { + "start": 5027.04, + "end": 5028.9, + "probability": 0.998 + }, + { + "start": 5029.32, + "end": 5032.3, + "probability": 0.998 + }, + { + "start": 5032.3, + "end": 5036.32, + "probability": 0.9897 + }, + { + "start": 5036.66, + "end": 5041.22, + "probability": 0.9983 + }, + { + "start": 5041.8, + "end": 5044.72, + "probability": 0.8436 + }, + { + "start": 5045.14, + "end": 5046.92, + "probability": 0.8428 + }, + { + "start": 5047.52, + "end": 5049.78, + "probability": 0.9943 + }, + { + "start": 5049.78, + "end": 5053.1, + "probability": 0.766 + }, + { + "start": 5053.52, + "end": 5056.44, + "probability": 0.9565 + }, + { + "start": 5056.92, + "end": 5060.28, + "probability": 0.9644 + }, + { + "start": 5060.28, + "end": 5064.38, + "probability": 0.8693 + }, + { + "start": 5064.74, + "end": 5066.75, + "probability": 0.9977 + }, + { + "start": 5067.62, + "end": 5071.62, + "probability": 0.981 + }, + { + "start": 5072.0, + "end": 5073.4, + "probability": 0.8598 + }, + { + "start": 5073.46, + "end": 5077.6, + "probability": 0.9778 + }, + { + "start": 5078.08, + "end": 5082.12, + "probability": 0.9885 + }, + { + "start": 5082.82, + "end": 5085.1, + "probability": 0.9742 + }, + { + "start": 5085.32, + "end": 5088.23, + "probability": 0.9828 + }, + { + "start": 5088.72, + "end": 5091.14, + "probability": 0.9888 + }, + { + "start": 5091.52, + "end": 5092.76, + "probability": 0.8874 + }, + { + "start": 5093.28, + "end": 5096.86, + "probability": 0.9889 + }, + { + "start": 5097.04, + "end": 5097.76, + "probability": 0.8647 + }, + { + "start": 5098.26, + "end": 5101.56, + "probability": 0.8237 + }, + { + "start": 5102.02, + "end": 5105.14, + "probability": 0.9541 + }, + { + "start": 5105.2, + "end": 5106.48, + "probability": 0.8058 + }, + { + "start": 5119.6, + "end": 5120.0, + "probability": 0.886 + }, + { + "start": 5121.34, + "end": 5124.24, + "probability": 0.8234 + }, + { + "start": 5126.14, + "end": 5128.88, + "probability": 0.9792 + }, + { + "start": 5129.58, + "end": 5130.76, + "probability": 0.7761 + }, + { + "start": 5131.62, + "end": 5132.62, + "probability": 0.9227 + }, + { + "start": 5132.68, + "end": 5137.96, + "probability": 0.9588 + }, + { + "start": 5138.84, + "end": 5147.92, + "probability": 0.9958 + }, + { + "start": 5149.44, + "end": 5153.82, + "probability": 0.9505 + }, + { + "start": 5154.28, + "end": 5159.64, + "probability": 0.8748 + }, + { + "start": 5160.66, + "end": 5162.22, + "probability": 0.7173 + }, + { + "start": 5162.88, + "end": 5167.78, + "probability": 0.9404 + }, + { + "start": 5167.78, + "end": 5172.42, + "probability": 0.8829 + }, + { + "start": 5172.52, + "end": 5176.78, + "probability": 0.9784 + }, + { + "start": 5177.74, + "end": 5184.6, + "probability": 0.9907 + }, + { + "start": 5184.6, + "end": 5190.44, + "probability": 0.9938 + }, + { + "start": 5191.4, + "end": 5191.92, + "probability": 0.4657 + }, + { + "start": 5192.48, + "end": 5195.46, + "probability": 0.958 + }, + { + "start": 5195.46, + "end": 5199.96, + "probability": 0.8511 + }, + { + "start": 5200.78, + "end": 5205.5, + "probability": 0.9202 + }, + { + "start": 5206.42, + "end": 5209.48, + "probability": 0.8036 + }, + { + "start": 5209.86, + "end": 5212.86, + "probability": 0.978 + }, + { + "start": 5213.32, + "end": 5215.22, + "probability": 0.8436 + }, + { + "start": 5215.54, + "end": 5216.26, + "probability": 0.8991 + }, + { + "start": 5216.34, + "end": 5219.1, + "probability": 0.9623 + }, + { + "start": 5219.28, + "end": 5220.28, + "probability": 0.9602 + }, + { + "start": 5220.82, + "end": 5223.2, + "probability": 0.9631 + }, + { + "start": 5223.96, + "end": 5227.54, + "probability": 0.9961 + }, + { + "start": 5227.96, + "end": 5228.12, + "probability": 0.5603 + }, + { + "start": 5228.3, + "end": 5233.2, + "probability": 0.9382 + }, + { + "start": 5233.4, + "end": 5233.94, + "probability": 0.8029 + }, + { + "start": 5234.62, + "end": 5237.91, + "probability": 0.8057 + }, + { + "start": 5238.7, + "end": 5242.18, + "probability": 0.6053 + }, + { + "start": 5243.18, + "end": 5246.24, + "probability": 0.9303 + }, + { + "start": 5248.98, + "end": 5250.32, + "probability": 0.8245 + }, + { + "start": 5250.64, + "end": 5253.24, + "probability": 0.9914 + }, + { + "start": 5253.32, + "end": 5254.28, + "probability": 0.9266 + }, + { + "start": 5256.72, + "end": 5257.28, + "probability": 0.5848 + }, + { + "start": 5257.28, + "end": 5257.58, + "probability": 0.2845 + }, + { + "start": 5257.58, + "end": 5259.26, + "probability": 0.5499 + }, + { + "start": 5261.74, + "end": 5267.58, + "probability": 0.9771 + }, + { + "start": 5268.54, + "end": 5271.62, + "probability": 0.6898 + }, + { + "start": 5272.54, + "end": 5276.98, + "probability": 0.9477 + }, + { + "start": 5277.84, + "end": 5281.2, + "probability": 0.8915 + }, + { + "start": 5282.4, + "end": 5284.7, + "probability": 0.6962 + }, + { + "start": 5285.5, + "end": 5287.13, + "probability": 0.9431 + }, + { + "start": 5288.02, + "end": 5292.9, + "probability": 0.9705 + }, + { + "start": 5293.64, + "end": 5296.22, + "probability": 0.7169 + }, + { + "start": 5296.86, + "end": 5302.54, + "probability": 0.9673 + }, + { + "start": 5303.02, + "end": 5303.94, + "probability": 0.818 + }, + { + "start": 5304.4, + "end": 5307.48, + "probability": 0.8457 + }, + { + "start": 5308.02, + "end": 5310.78, + "probability": 0.9834 + }, + { + "start": 5311.52, + "end": 5313.08, + "probability": 0.8212 + }, + { + "start": 5314.46, + "end": 5317.46, + "probability": 0.4662 + }, + { + "start": 5317.48, + "end": 5318.24, + "probability": 0.8343 + }, + { + "start": 5318.66, + "end": 5319.15, + "probability": 0.374 + }, + { + "start": 5319.8, + "end": 5321.9, + "probability": 0.9675 + }, + { + "start": 5322.78, + "end": 5328.22, + "probability": 0.939 + }, + { + "start": 5328.76, + "end": 5332.46, + "probability": 0.9873 + }, + { + "start": 5333.2, + "end": 5336.0, + "probability": 0.9976 + }, + { + "start": 5336.04, + "end": 5336.85, + "probability": 0.8086 + }, + { + "start": 5337.72, + "end": 5341.1, + "probability": 0.9579 + }, + { + "start": 5342.92, + "end": 5345.34, + "probability": 0.9755 + }, + { + "start": 5345.98, + "end": 5347.64, + "probability": 0.9787 + }, + { + "start": 5348.58, + "end": 5352.9, + "probability": 0.8792 + }, + { + "start": 5353.74, + "end": 5354.84, + "probability": 0.7991 + }, + { + "start": 5354.96, + "end": 5355.74, + "probability": 0.6115 + }, + { + "start": 5356.18, + "end": 5358.04, + "probability": 0.9736 + }, + { + "start": 5358.46, + "end": 5358.82, + "probability": 0.4781 + }, + { + "start": 5358.98, + "end": 5362.08, + "probability": 0.966 + }, + { + "start": 5362.48, + "end": 5364.0, + "probability": 0.879 + }, + { + "start": 5364.5, + "end": 5366.5, + "probability": 0.936 + }, + { + "start": 5368.4, + "end": 5368.5, + "probability": 0.1644 + }, + { + "start": 5369.88, + "end": 5369.88, + "probability": 0.3195 + }, + { + "start": 5369.88, + "end": 5373.32, + "probability": 0.8163 + }, + { + "start": 5373.34, + "end": 5374.98, + "probability": 0.4121 + }, + { + "start": 5375.36, + "end": 5378.18, + "probability": 0.9043 + }, + { + "start": 5378.46, + "end": 5380.69, + "probability": 0.9854 + }, + { + "start": 5381.62, + "end": 5383.96, + "probability": 0.8538 + }, + { + "start": 5384.38, + "end": 5385.3, + "probability": 0.9691 + }, + { + "start": 5385.36, + "end": 5386.06, + "probability": 0.9181 + }, + { + "start": 5386.64, + "end": 5387.13, + "probability": 0.6368 + }, + { + "start": 5388.04, + "end": 5389.04, + "probability": 0.3835 + }, + { + "start": 5389.7, + "end": 5390.92, + "probability": 0.8549 + }, + { + "start": 5392.04, + "end": 5396.3, + "probability": 0.985 + }, + { + "start": 5396.4, + "end": 5398.44, + "probability": 0.7745 + }, + { + "start": 5398.44, + "end": 5400.04, + "probability": 0.0405 + }, + { + "start": 5400.12, + "end": 5401.56, + "probability": 0.9101 + }, + { + "start": 5401.96, + "end": 5402.82, + "probability": 0.8832 + }, + { + "start": 5403.04, + "end": 5404.68, + "probability": 0.7752 + }, + { + "start": 5404.92, + "end": 5406.2, + "probability": 0.7295 + }, + { + "start": 5406.3, + "end": 5407.4, + "probability": 0.916 + }, + { + "start": 5407.87, + "end": 5407.94, + "probability": 0.0069 + }, + { + "start": 5407.94, + "end": 5408.38, + "probability": 0.4145 + }, + { + "start": 5408.64, + "end": 5411.46, + "probability": 0.9282 + }, + { + "start": 5411.88, + "end": 5415.53, + "probability": 0.9033 + }, + { + "start": 5415.78, + "end": 5417.24, + "probability": 0.8358 + }, + { + "start": 5417.26, + "end": 5417.42, + "probability": 0.3639 + }, + { + "start": 5417.54, + "end": 5418.98, + "probability": 0.9348 + }, + { + "start": 5419.52, + "end": 5422.92, + "probability": 0.7186 + }, + { + "start": 5422.92, + "end": 5422.92, + "probability": 0.4241 + }, + { + "start": 5422.94, + "end": 5423.72, + "probability": 0.4955 + }, + { + "start": 5424.24, + "end": 5427.66, + "probability": 0.9868 + }, + { + "start": 5428.18, + "end": 5429.72, + "probability": 0.9535 + }, + { + "start": 5429.74, + "end": 5430.88, + "probability": 0.927 + }, + { + "start": 5431.62, + "end": 5432.27, + "probability": 0.6651 + }, + { + "start": 5433.56, + "end": 5435.86, + "probability": 0.8938 + }, + { + "start": 5436.44, + "end": 5440.78, + "probability": 0.9513 + }, + { + "start": 5441.24, + "end": 5443.06, + "probability": 0.4061 + }, + { + "start": 5443.22, + "end": 5450.34, + "probability": 0.9617 + }, + { + "start": 5450.4, + "end": 5450.5, + "probability": 0.6222 + }, + { + "start": 5450.6, + "end": 5450.82, + "probability": 0.9459 + }, + { + "start": 5450.9, + "end": 5455.08, + "probability": 0.9332 + }, + { + "start": 5455.17, + "end": 5458.68, + "probability": 0.9912 + }, + { + "start": 5459.3, + "end": 5460.17, + "probability": 0.9058 + }, + { + "start": 5460.54, + "end": 5461.95, + "probability": 0.7195 + }, + { + "start": 5462.0, + "end": 5462.0, + "probability": 0.0456 + }, + { + "start": 5462.0, + "end": 5462.44, + "probability": 0.6864 + }, + { + "start": 5462.6, + "end": 5463.44, + "probability": 0.2942 + }, + { + "start": 5463.44, + "end": 5463.48, + "probability": 0.7211 + }, + { + "start": 5463.48, + "end": 5466.6, + "probability": 0.8353 + }, + { + "start": 5466.96, + "end": 5467.84, + "probability": 0.7018 + }, + { + "start": 5467.86, + "end": 5470.76, + "probability": 0.76 + }, + { + "start": 5471.9, + "end": 5476.24, + "probability": 0.8438 + }, + { + "start": 5476.24, + "end": 5478.46, + "probability": 0.9133 + }, + { + "start": 5478.52, + "end": 5481.26, + "probability": 0.8369 + }, + { + "start": 5481.4, + "end": 5484.6, + "probability": 0.5908 + }, + { + "start": 5485.06, + "end": 5487.5, + "probability": 0.7331 + }, + { + "start": 5500.12, + "end": 5507.48, + "probability": 0.3082 + }, + { + "start": 5507.48, + "end": 5508.99, + "probability": 0.0446 + }, + { + "start": 5511.04, + "end": 5517.4, + "probability": 0.1371 + }, + { + "start": 5518.8, + "end": 5519.48, + "probability": 0.0322 + }, + { + "start": 5519.48, + "end": 5519.98, + "probability": 0.107 + }, + { + "start": 5519.98, + "end": 5522.56, + "probability": 0.287 + }, + { + "start": 5526.36, + "end": 5532.0, + "probability": 0.86 + }, + { + "start": 5532.1, + "end": 5534.76, + "probability": 0.9663 + }, + { + "start": 5534.86, + "end": 5537.68, + "probability": 0.956 + }, + { + "start": 5538.02, + "end": 5539.24, + "probability": 0.931 + }, + { + "start": 5539.74, + "end": 5543.64, + "probability": 0.0464 + }, + { + "start": 5544.02, + "end": 5545.54, + "probability": 0.0935 + }, + { + "start": 5545.54, + "end": 5548.46, + "probability": 0.7547 + }, + { + "start": 5548.56, + "end": 5551.12, + "probability": 0.8496 + }, + { + "start": 5551.5, + "end": 5554.32, + "probability": 0.0589 + }, + { + "start": 5554.36, + "end": 5557.12, + "probability": 0.8773 + }, + { + "start": 5557.98, + "end": 5559.88, + "probability": 0.7004 + }, + { + "start": 5560.4, + "end": 5562.64, + "probability": 0.8085 + }, + { + "start": 5566.78, + "end": 5567.18, + "probability": 0.609 + }, + { + "start": 5567.92, + "end": 5568.86, + "probability": 0.6719 + }, + { + "start": 5568.96, + "end": 5570.52, + "probability": 0.8975 + }, + { + "start": 5570.68, + "end": 5576.84, + "probability": 0.9642 + }, + { + "start": 5577.76, + "end": 5581.71, + "probability": 0.9217 + }, + { + "start": 5582.72, + "end": 5583.76, + "probability": 0.7284 + }, + { + "start": 5584.02, + "end": 5589.88, + "probability": 0.9885 + }, + { + "start": 5589.9, + "end": 5597.4, + "probability": 0.9549 + }, + { + "start": 5598.58, + "end": 5600.14, + "probability": 0.529 + }, + { + "start": 5601.14, + "end": 5603.74, + "probability": 0.8094 + }, + { + "start": 5603.78, + "end": 5604.93, + "probability": 0.7951 + }, + { + "start": 5605.42, + "end": 5606.12, + "probability": 0.6405 + }, + { + "start": 5606.48, + "end": 5607.62, + "probability": 0.6988 + }, + { + "start": 5608.2, + "end": 5611.58, + "probability": 0.751 + }, + { + "start": 5612.44, + "end": 5617.12, + "probability": 0.8457 + }, + { + "start": 5617.12, + "end": 5623.78, + "probability": 0.9844 + }, + { + "start": 5623.78, + "end": 5630.76, + "probability": 0.9923 + }, + { + "start": 5632.92, + "end": 5634.84, + "probability": 0.9198 + }, + { + "start": 5635.14, + "end": 5635.58, + "probability": 0.324 + }, + { + "start": 5635.7, + "end": 5636.34, + "probability": 0.7414 + }, + { + "start": 5636.76, + "end": 5637.54, + "probability": 0.7769 + }, + { + "start": 5637.56, + "end": 5638.56, + "probability": 0.7869 + }, + { + "start": 5638.76, + "end": 5640.02, + "probability": 0.7538 + }, + { + "start": 5640.88, + "end": 5641.12, + "probability": 0.1071 + }, + { + "start": 5641.12, + "end": 5642.12, + "probability": 0.8371 + }, + { + "start": 5642.32, + "end": 5645.02, + "probability": 0.9992 + }, + { + "start": 5645.18, + "end": 5648.62, + "probability": 0.902 + }, + { + "start": 5649.18, + "end": 5653.02, + "probability": 0.2523 + }, + { + "start": 5653.04, + "end": 5654.54, + "probability": 0.7857 + }, + { + "start": 5655.64, + "end": 5659.7, + "probability": 0.9544 + }, + { + "start": 5659.72, + "end": 5661.22, + "probability": 0.8002 + }, + { + "start": 5661.28, + "end": 5661.74, + "probability": 0.6316 + }, + { + "start": 5661.82, + "end": 5664.16, + "probability": 0.8685 + }, + { + "start": 5665.3, + "end": 5666.22, + "probability": 0.831 + }, + { + "start": 5666.32, + "end": 5668.46, + "probability": 0.8964 + }, + { + "start": 5668.82, + "end": 5669.9, + "probability": 0.604 + }, + { + "start": 5670.18, + "end": 5672.58, + "probability": 0.9824 + }, + { + "start": 5673.02, + "end": 5675.58, + "probability": 0.9956 + }, + { + "start": 5675.58, + "end": 5680.16, + "probability": 0.9578 + }, + { + "start": 5680.5, + "end": 5685.48, + "probability": 0.9919 + }, + { + "start": 5685.48, + "end": 5691.4, + "probability": 0.9954 + }, + { + "start": 5691.69, + "end": 5698.92, + "probability": 0.9858 + }, + { + "start": 5699.98, + "end": 5700.64, + "probability": 0.6921 + }, + { + "start": 5701.0, + "end": 5705.88, + "probability": 0.9484 + }, + { + "start": 5705.88, + "end": 5711.46, + "probability": 0.9976 + }, + { + "start": 5712.44, + "end": 5714.36, + "probability": 0.8812 + }, + { + "start": 5714.68, + "end": 5720.4, + "probability": 0.9924 + }, + { + "start": 5722.54, + "end": 5726.54, + "probability": 0.923 + }, + { + "start": 5726.7, + "end": 5727.24, + "probability": 0.8918 + }, + { + "start": 5727.38, + "end": 5728.82, + "probability": 0.9049 + }, + { + "start": 5729.4, + "end": 5734.76, + "probability": 0.9391 + }, + { + "start": 5734.98, + "end": 5738.72, + "probability": 0.7615 + }, + { + "start": 5741.04, + "end": 5742.6, + "probability": 0.8015 + }, + { + "start": 5742.68, + "end": 5743.38, + "probability": 0.8597 + }, + { + "start": 5743.44, + "end": 5750.24, + "probability": 0.9873 + }, + { + "start": 5751.58, + "end": 5754.0, + "probability": 0.9175 + }, + { + "start": 5754.04, + "end": 5760.44, + "probability": 0.9849 + }, + { + "start": 5761.26, + "end": 5766.06, + "probability": 0.909 + }, + { + "start": 5768.02, + "end": 5771.64, + "probability": 0.9329 + }, + { + "start": 5774.7, + "end": 5777.58, + "probability": 0.9225 + }, + { + "start": 5778.78, + "end": 5783.84, + "probability": 0.921 + }, + { + "start": 5784.14, + "end": 5786.62, + "probability": 0.9907 + }, + { + "start": 5786.72, + "end": 5787.48, + "probability": 0.8521 + }, + { + "start": 5787.56, + "end": 5788.04, + "probability": 0.4447 + }, + { + "start": 5789.52, + "end": 5793.26, + "probability": 0.9881 + }, + { + "start": 5793.38, + "end": 5796.78, + "probability": 0.9781 + }, + { + "start": 5796.78, + "end": 5799.14, + "probability": 0.9957 + }, + { + "start": 5799.24, + "end": 5807.16, + "probability": 0.9824 + }, + { + "start": 5807.4, + "end": 5809.72, + "probability": 0.9256 + }, + { + "start": 5810.74, + "end": 5814.0, + "probability": 0.988 + }, + { + "start": 5814.5, + "end": 5817.62, + "probability": 0.9343 + }, + { + "start": 5817.78, + "end": 5819.58, + "probability": 0.9466 + }, + { + "start": 5819.66, + "end": 5820.76, + "probability": 0.7745 + }, + { + "start": 5821.36, + "end": 5824.3, + "probability": 0.9874 + }, + { + "start": 5824.96, + "end": 5833.09, + "probability": 0.9727 + }, + { + "start": 5833.54, + "end": 5840.28, + "probability": 0.9046 + }, + { + "start": 5840.54, + "end": 5842.18, + "probability": 0.9985 + }, + { + "start": 5842.42, + "end": 5849.84, + "probability": 0.9766 + }, + { + "start": 5850.1, + "end": 5858.16, + "probability": 0.9669 + }, + { + "start": 5858.16, + "end": 5864.88, + "probability": 0.8327 + }, + { + "start": 5865.34, + "end": 5866.38, + "probability": 0.8701 + }, + { + "start": 5866.48, + "end": 5868.46, + "probability": 0.9668 + }, + { + "start": 5869.14, + "end": 5873.64, + "probability": 0.9788 + }, + { + "start": 5874.02, + "end": 5876.76, + "probability": 0.5178 + }, + { + "start": 5877.38, + "end": 5879.58, + "probability": 0.9001 + }, + { + "start": 5880.22, + "end": 5882.3, + "probability": 0.7363 + }, + { + "start": 5882.4, + "end": 5887.88, + "probability": 0.9019 + }, + { + "start": 5888.2, + "end": 5891.68, + "probability": 0.9968 + }, + { + "start": 5891.68, + "end": 5895.98, + "probability": 0.999 + }, + { + "start": 5896.12, + "end": 5898.02, + "probability": 0.9646 + }, + { + "start": 5898.18, + "end": 5901.1, + "probability": 0.9976 + }, + { + "start": 5901.16, + "end": 5905.8, + "probability": 0.8027 + }, + { + "start": 5907.26, + "end": 5914.96, + "probability": 0.9911 + }, + { + "start": 5915.04, + "end": 5919.94, + "probability": 0.9692 + }, + { + "start": 5920.56, + "end": 5923.98, + "probability": 0.8734 + }, + { + "start": 5924.16, + "end": 5925.38, + "probability": 0.8204 + }, + { + "start": 5925.74, + "end": 5926.86, + "probability": 0.8219 + }, + { + "start": 5926.96, + "end": 5927.6, + "probability": 0.8841 + }, + { + "start": 5927.82, + "end": 5929.24, + "probability": 0.9163 + }, + { + "start": 5929.32, + "end": 5932.1, + "probability": 0.9922 + }, + { + "start": 5932.2, + "end": 5934.1, + "probability": 0.7225 + }, + { + "start": 5934.14, + "end": 5938.14, + "probability": 0.7102 + }, + { + "start": 5938.74, + "end": 5939.82, + "probability": 0.6553 + }, + { + "start": 5940.08, + "end": 5940.52, + "probability": 0.3193 + }, + { + "start": 5940.52, + "end": 5943.42, + "probability": 0.9464 + }, + { + "start": 5943.54, + "end": 5946.86, + "probability": 0.9907 + }, + { + "start": 5947.12, + "end": 5951.96, + "probability": 0.9824 + }, + { + "start": 5953.3, + "end": 5957.6, + "probability": 0.9917 + }, + { + "start": 5957.72, + "end": 5960.96, + "probability": 0.9634 + }, + { + "start": 5961.06, + "end": 5965.14, + "probability": 0.9963 + }, + { + "start": 5965.14, + "end": 5969.48, + "probability": 0.9951 + }, + { + "start": 5969.68, + "end": 5974.58, + "probability": 0.8888 + }, + { + "start": 5975.68, + "end": 5978.32, + "probability": 0.6763 + }, + { + "start": 5978.4, + "end": 5979.39, + "probability": 0.9725 + }, + { + "start": 5979.68, + "end": 5983.56, + "probability": 0.8752 + }, + { + "start": 5983.82, + "end": 5986.9, + "probability": 0.958 + }, + { + "start": 5987.46, + "end": 5990.1, + "probability": 0.5122 + }, + { + "start": 5991.32, + "end": 5994.6, + "probability": 0.9624 + }, + { + "start": 5994.68, + "end": 5994.96, + "probability": 0.9239 + }, + { + "start": 5995.0, + "end": 5999.32, + "probability": 0.8999 + }, + { + "start": 5999.32, + "end": 6003.74, + "probability": 0.9492 + }, + { + "start": 6003.78, + "end": 6005.42, + "probability": 0.8254 + }, + { + "start": 6005.72, + "end": 6008.58, + "probability": 0.9775 + }, + { + "start": 6009.63, + "end": 6011.77, + "probability": 0.7489 + }, + { + "start": 6011.94, + "end": 6013.66, + "probability": 0.8102 + }, + { + "start": 6013.96, + "end": 6015.6, + "probability": 0.771 + }, + { + "start": 6015.74, + "end": 6016.94, + "probability": 0.8951 + }, + { + "start": 6017.54, + "end": 6020.1, + "probability": 0.5562 + }, + { + "start": 6020.82, + "end": 6024.04, + "probability": 0.9938 + }, + { + "start": 6024.24, + "end": 6028.08, + "probability": 0.8623 + }, + { + "start": 6028.22, + "end": 6029.36, + "probability": 0.7521 + }, + { + "start": 6029.42, + "end": 6030.36, + "probability": 0.9313 + }, + { + "start": 6030.66, + "end": 6039.63, + "probability": 0.9698 + }, + { + "start": 6041.39, + "end": 6043.92, + "probability": 0.8315 + }, + { + "start": 6044.0, + "end": 6049.28, + "probability": 0.8782 + }, + { + "start": 6049.5, + "end": 6051.0, + "probability": 0.939 + }, + { + "start": 6051.12, + "end": 6053.46, + "probability": 0.5002 + }, + { + "start": 6053.72, + "end": 6055.88, + "probability": 0.8433 + }, + { + "start": 6056.18, + "end": 6060.68, + "probability": 0.9251 + }, + { + "start": 6060.94, + "end": 6064.5, + "probability": 0.981 + }, + { + "start": 6065.18, + "end": 6070.08, + "probability": 0.979 + }, + { + "start": 6070.14, + "end": 6073.52, + "probability": 0.8249 + }, + { + "start": 6073.94, + "end": 6075.18, + "probability": 0.9538 + }, + { + "start": 6075.34, + "end": 6079.2, + "probability": 0.8498 + }, + { + "start": 6079.2, + "end": 6082.14, + "probability": 0.7955 + }, + { + "start": 6082.48, + "end": 6084.48, + "probability": 0.9704 + }, + { + "start": 6084.88, + "end": 6091.09, + "probability": 0.9947 + }, + { + "start": 6091.52, + "end": 6092.08, + "probability": 0.6017 + }, + { + "start": 6092.32, + "end": 6094.4, + "probability": 0.8187 + }, + { + "start": 6094.76, + "end": 6100.92, + "probability": 0.9746 + }, + { + "start": 6101.32, + "end": 6101.9, + "probability": 0.8623 + }, + { + "start": 6101.98, + "end": 6102.48, + "probability": 0.8545 + }, + { + "start": 6102.56, + "end": 6103.86, + "probability": 0.8542 + }, + { + "start": 6104.04, + "end": 6108.34, + "probability": 0.9958 + }, + { + "start": 6108.44, + "end": 6109.5, + "probability": 0.6429 + }, + { + "start": 6110.24, + "end": 6111.98, + "probability": 0.9582 + }, + { + "start": 6112.42, + "end": 6117.36, + "probability": 0.9774 + }, + { + "start": 6117.58, + "end": 6119.96, + "probability": 0.9869 + }, + { + "start": 6119.96, + "end": 6122.74, + "probability": 0.9964 + }, + { + "start": 6123.12, + "end": 6125.92, + "probability": 0.7366 + }, + { + "start": 6126.06, + "end": 6126.98, + "probability": 0.5254 + }, + { + "start": 6127.18, + "end": 6130.36, + "probability": 0.877 + }, + { + "start": 6130.4, + "end": 6132.76, + "probability": 0.8848 + }, + { + "start": 6133.22, + "end": 6137.5, + "probability": 0.5989 + }, + { + "start": 6138.18, + "end": 6143.0, + "probability": 0.9952 + }, + { + "start": 6143.12, + "end": 6143.4, + "probability": 0.7862 + }, + { + "start": 6143.72, + "end": 6146.12, + "probability": 0.9551 + }, + { + "start": 6146.58, + "end": 6151.48, + "probability": 0.7996 + }, + { + "start": 6172.14, + "end": 6172.64, + "probability": 0.4248 + }, + { + "start": 6172.74, + "end": 6175.36, + "probability": 0.2897 + }, + { + "start": 6175.62, + "end": 6177.34, + "probability": 0.4439 + }, + { + "start": 6180.86, + "end": 6183.86, + "probability": 0.7343 + }, + { + "start": 6183.96, + "end": 6184.46, + "probability": 0.8888 + }, + { + "start": 6184.7, + "end": 6188.3, + "probability": 0.6627 + }, + { + "start": 6190.44, + "end": 6193.24, + "probability": 0.9443 + }, + { + "start": 6194.64, + "end": 6199.28, + "probability": 0.9776 + }, + { + "start": 6199.48, + "end": 6203.46, + "probability": 0.7504 + }, + { + "start": 6203.76, + "end": 6211.5, + "probability": 0.8445 + }, + { + "start": 6211.5, + "end": 6216.24, + "probability": 0.9754 + }, + { + "start": 6218.48, + "end": 6224.36, + "probability": 0.9817 + }, + { + "start": 6225.3, + "end": 6229.12, + "probability": 0.9923 + }, + { + "start": 6229.34, + "end": 6230.78, + "probability": 0.7969 + }, + { + "start": 6231.28, + "end": 6236.2, + "probability": 0.8387 + }, + { + "start": 6236.7, + "end": 6240.54, + "probability": 0.9294 + }, + { + "start": 6240.54, + "end": 6245.33, + "probability": 0.9985 + }, + { + "start": 6245.96, + "end": 6248.6, + "probability": 0.9891 + }, + { + "start": 6248.7, + "end": 6249.92, + "probability": 0.8839 + }, + { + "start": 6250.26, + "end": 6254.78, + "probability": 0.9985 + }, + { + "start": 6255.18, + "end": 6256.4, + "probability": 0.5678 + }, + { + "start": 6258.76, + "end": 6259.48, + "probability": 0.0217 + }, + { + "start": 6259.48, + "end": 6260.22, + "probability": 0.2519 + }, + { + "start": 6260.4, + "end": 6261.86, + "probability": 0.8948 + }, + { + "start": 6262.66, + "end": 6265.2, + "probability": 0.9058 + }, + { + "start": 6265.84, + "end": 6267.58, + "probability": 0.9641 + }, + { + "start": 6268.72, + "end": 6270.04, + "probability": 0.6938 + }, + { + "start": 6270.44, + "end": 6271.05, + "probability": 0.9605 + }, + { + "start": 6272.5, + "end": 6273.3, + "probability": 0.3164 + }, + { + "start": 6273.38, + "end": 6274.84, + "probability": 0.7633 + }, + { + "start": 6274.92, + "end": 6276.53, + "probability": 0.4669 + }, + { + "start": 6277.64, + "end": 6279.16, + "probability": 0.9443 + }, + { + "start": 6279.44, + "end": 6281.32, + "probability": 0.823 + }, + { + "start": 6281.58, + "end": 6283.42, + "probability": 0.9655 + }, + { + "start": 6283.6, + "end": 6287.08, + "probability": 0.6261 + }, + { + "start": 6287.3, + "end": 6292.42, + "probability": 0.9582 + }, + { + "start": 6292.54, + "end": 6294.3, + "probability": 0.9956 + }, + { + "start": 6294.72, + "end": 6295.06, + "probability": 0.4353 + }, + { + "start": 6295.2, + "end": 6297.64, + "probability": 0.8367 + }, + { + "start": 6297.86, + "end": 6302.6, + "probability": 0.8893 + }, + { + "start": 6302.72, + "end": 6304.38, + "probability": 0.9722 + }, + { + "start": 6304.82, + "end": 6306.88, + "probability": 0.9303 + }, + { + "start": 6307.26, + "end": 6310.84, + "probability": 0.9924 + }, + { + "start": 6310.92, + "end": 6314.74, + "probability": 0.9795 + }, + { + "start": 6315.06, + "end": 6316.8, + "probability": 0.9301 + }, + { + "start": 6317.02, + "end": 6320.6, + "probability": 0.7748 + }, + { + "start": 6320.98, + "end": 6322.26, + "probability": 0.5501 + }, + { + "start": 6322.8, + "end": 6324.84, + "probability": 0.6683 + }, + { + "start": 6325.2, + "end": 6326.6, + "probability": 0.9321 + }, + { + "start": 6326.74, + "end": 6328.4, + "probability": 0.8547 + }, + { + "start": 6328.66, + "end": 6330.91, + "probability": 0.8706 + }, + { + "start": 6332.76, + "end": 6333.9, + "probability": 0.0628 + }, + { + "start": 6334.5, + "end": 6336.42, + "probability": 0.4727 + }, + { + "start": 6338.81, + "end": 6340.78, + "probability": 0.0433 + }, + { + "start": 6341.0, + "end": 6341.42, + "probability": 0.0527 + }, + { + "start": 6341.44, + "end": 6341.98, + "probability": 0.2053 + }, + { + "start": 6342.1, + "end": 6342.1, + "probability": 0.429 + }, + { + "start": 6342.18, + "end": 6342.9, + "probability": 0.5437 + }, + { + "start": 6343.02, + "end": 6346.56, + "probability": 0.7973 + }, + { + "start": 6346.6, + "end": 6347.92, + "probability": 0.1548 + }, + { + "start": 6348.06, + "end": 6349.6, + "probability": 0.3967 + }, + { + "start": 6349.66, + "end": 6351.96, + "probability": 0.0156 + }, + { + "start": 6352.64, + "end": 6355.38, + "probability": 0.4414 + }, + { + "start": 6356.2, + "end": 6359.1, + "probability": 0.819 + }, + { + "start": 6359.44, + "end": 6359.88, + "probability": 0.896 + }, + { + "start": 6360.04, + "end": 6364.92, + "probability": 0.9969 + }, + { + "start": 6365.49, + "end": 6369.16, + "probability": 0.0814 + }, + { + "start": 6369.16, + "end": 6369.48, + "probability": 0.0531 + }, + { + "start": 6370.04, + "end": 6371.36, + "probability": 0.2634 + }, + { + "start": 6372.08, + "end": 6373.78, + "probability": 0.4261 + }, + { + "start": 6375.81, + "end": 6378.9, + "probability": 0.782 + }, + { + "start": 6379.88, + "end": 6380.74, + "probability": 0.0987 + }, + { + "start": 6381.06, + "end": 6381.06, + "probability": 0.0981 + }, + { + "start": 6381.06, + "end": 6381.06, + "probability": 0.2138 + }, + { + "start": 6381.42, + "end": 6387.48, + "probability": 0.533 + }, + { + "start": 6387.5, + "end": 6387.92, + "probability": 0.4433 + }, + { + "start": 6388.02, + "end": 6388.68, + "probability": 0.4524 + }, + { + "start": 6388.78, + "end": 6389.08, + "probability": 0.0846 + }, + { + "start": 6389.16, + "end": 6391.2, + "probability": 0.1271 + }, + { + "start": 6391.2, + "end": 6392.26, + "probability": 0.2714 + }, + { + "start": 6392.58, + "end": 6392.78, + "probability": 0.3193 + }, + { + "start": 6392.78, + "end": 6393.85, + "probability": 0.2087 + }, + { + "start": 6395.59, + "end": 6402.5, + "probability": 0.9768 + }, + { + "start": 6402.7, + "end": 6403.62, + "probability": 0.8792 + }, + { + "start": 6403.62, + "end": 6405.32, + "probability": 0.8305 + }, + { + "start": 6405.48, + "end": 6407.66, + "probability": 0.8713 + }, + { + "start": 6407.94, + "end": 6410.06, + "probability": 0.9002 + }, + { + "start": 6410.28, + "end": 6411.12, + "probability": 0.8304 + }, + { + "start": 6411.14, + "end": 6411.94, + "probability": 0.212 + }, + { + "start": 6412.02, + "end": 6413.24, + "probability": 0.7983 + }, + { + "start": 6413.26, + "end": 6415.74, + "probability": 0.9752 + }, + { + "start": 6416.34, + "end": 6417.46, + "probability": 0.8477 + }, + { + "start": 6427.88, + "end": 6429.18, + "probability": 0.6152 + }, + { + "start": 6430.56, + "end": 6437.22, + "probability": 0.5697 + }, + { + "start": 6438.46, + "end": 6440.26, + "probability": 0.6052 + }, + { + "start": 6440.34, + "end": 6442.5, + "probability": 0.8963 + }, + { + "start": 6442.82, + "end": 6445.4, + "probability": 0.9171 + }, + { + "start": 6445.58, + "end": 6449.36, + "probability": 0.8132 + }, + { + "start": 6449.58, + "end": 6452.7, + "probability": 0.9933 + }, + { + "start": 6452.7, + "end": 6457.76, + "probability": 0.9869 + }, + { + "start": 6457.88, + "end": 6461.9, + "probability": 0.9904 + }, + { + "start": 6462.1, + "end": 6466.7, + "probability": 0.9779 + }, + { + "start": 6466.82, + "end": 6471.92, + "probability": 0.9893 + }, + { + "start": 6472.2, + "end": 6473.2, + "probability": 0.9214 + }, + { + "start": 6473.24, + "end": 6476.94, + "probability": 0.9895 + }, + { + "start": 6476.94, + "end": 6480.92, + "probability": 0.9988 + }, + { + "start": 6481.56, + "end": 6484.98, + "probability": 0.9975 + }, + { + "start": 6484.98, + "end": 6489.38, + "probability": 0.9915 + }, + { + "start": 6489.88, + "end": 6491.6, + "probability": 0.9961 + }, + { + "start": 6491.7, + "end": 6494.12, + "probability": 0.6046 + }, + { + "start": 6494.16, + "end": 6496.97, + "probability": 0.9719 + }, + { + "start": 6497.54, + "end": 6505.02, + "probability": 0.9857 + }, + { + "start": 6505.18, + "end": 6508.36, + "probability": 0.9912 + }, + { + "start": 6508.96, + "end": 6513.94, + "probability": 0.8818 + }, + { + "start": 6514.44, + "end": 6515.34, + "probability": 0.9683 + }, + { + "start": 6515.44, + "end": 6516.68, + "probability": 0.7847 + }, + { + "start": 6516.8, + "end": 6518.86, + "probability": 0.5818 + }, + { + "start": 6519.54, + "end": 6524.56, + "probability": 0.9868 + }, + { + "start": 6525.34, + "end": 6530.5, + "probability": 0.9977 + }, + { + "start": 6530.5, + "end": 6533.7, + "probability": 0.9692 + }, + { + "start": 6533.9, + "end": 6534.54, + "probability": 0.9918 + }, + { + "start": 6535.34, + "end": 6537.52, + "probability": 0.7497 + }, + { + "start": 6538.14, + "end": 6540.89, + "probability": 0.9907 + }, + { + "start": 6541.2, + "end": 6543.32, + "probability": 0.9779 + }, + { + "start": 6543.66, + "end": 6544.7, + "probability": 0.7987 + }, + { + "start": 6544.8, + "end": 6546.26, + "probability": 0.8858 + }, + { + "start": 6546.44, + "end": 6548.82, + "probability": 0.8798 + }, + { + "start": 6549.04, + "end": 6549.84, + "probability": 0.6147 + }, + { + "start": 6550.24, + "end": 6553.16, + "probability": 0.9865 + }, + { + "start": 6553.24, + "end": 6557.84, + "probability": 0.7983 + }, + { + "start": 6557.84, + "end": 6562.18, + "probability": 0.9784 + }, + { + "start": 6562.7, + "end": 6566.54, + "probability": 0.6885 + }, + { + "start": 6567.06, + "end": 6569.82, + "probability": 0.7162 + }, + { + "start": 6570.16, + "end": 6575.52, + "probability": 0.9951 + }, + { + "start": 6575.78, + "end": 6576.38, + "probability": 0.8068 + }, + { + "start": 6576.5, + "end": 6577.24, + "probability": 0.9059 + }, + { + "start": 6577.32, + "end": 6578.42, + "probability": 0.7213 + }, + { + "start": 6579.06, + "end": 6580.26, + "probability": 0.3908 + }, + { + "start": 6580.26, + "end": 6581.99, + "probability": 0.8475 + }, + { + "start": 6583.06, + "end": 6585.54, + "probability": 0.5934 + }, + { + "start": 6585.92, + "end": 6589.32, + "probability": 0.7117 + }, + { + "start": 6589.88, + "end": 6591.92, + "probability": 0.8998 + }, + { + "start": 6592.42, + "end": 6594.72, + "probability": 0.917 + }, + { + "start": 6595.02, + "end": 6596.0, + "probability": 0.9565 + }, + { + "start": 6596.08, + "end": 6599.27, + "probability": 0.9773 + }, + { + "start": 6600.62, + "end": 6603.06, + "probability": 0.0253 + }, + { + "start": 6603.1, + "end": 6604.43, + "probability": 0.0932 + }, + { + "start": 6604.96, + "end": 6606.14, + "probability": 0.0675 + }, + { + "start": 6606.36, + "end": 6607.68, + "probability": 0.0538 + }, + { + "start": 6608.04, + "end": 6608.04, + "probability": 0.6626 + }, + { + "start": 6609.3, + "end": 6613.94, + "probability": 0.7793 + }, + { + "start": 6615.8, + "end": 6618.32, + "probability": 0.448 + }, + { + "start": 6618.32, + "end": 6619.26, + "probability": 0.3693 + }, + { + "start": 6619.26, + "end": 6622.08, + "probability": 0.5903 + }, + { + "start": 6622.1, + "end": 6622.1, + "probability": 0.4301 + }, + { + "start": 6622.1, + "end": 6624.28, + "probability": 0.6684 + }, + { + "start": 6625.24, + "end": 6627.2, + "probability": 0.5456 + }, + { + "start": 6627.2, + "end": 6627.58, + "probability": 0.3013 + }, + { + "start": 6627.74, + "end": 6628.44, + "probability": 0.4161 + }, + { + "start": 6628.56, + "end": 6628.56, + "probability": 0.7065 + }, + { + "start": 6628.56, + "end": 6632.8, + "probability": 0.973 + }, + { + "start": 6632.88, + "end": 6634.02, + "probability": 0.8521 + }, + { + "start": 6634.74, + "end": 6635.64, + "probability": 0.6143 + }, + { + "start": 6635.74, + "end": 6639.54, + "probability": 0.9966 + }, + { + "start": 6639.54, + "end": 6642.82, + "probability": 0.9575 + }, + { + "start": 6643.1, + "end": 6644.04, + "probability": 0.9376 + }, + { + "start": 6644.22, + "end": 6645.92, + "probability": 0.8809 + }, + { + "start": 6645.98, + "end": 6649.12, + "probability": 0.2115 + }, + { + "start": 6649.78, + "end": 6650.08, + "probability": 0.2578 + }, + { + "start": 6650.08, + "end": 6650.08, + "probability": 0.0535 + }, + { + "start": 6650.08, + "end": 6650.74, + "probability": 0.2538 + }, + { + "start": 6651.5, + "end": 6653.2, + "probability": 0.8162 + }, + { + "start": 6655.96, + "end": 6658.14, + "probability": 0.8488 + }, + { + "start": 6659.12, + "end": 6662.24, + "probability": 0.9961 + }, + { + "start": 6663.06, + "end": 6667.48, + "probability": 0.9941 + }, + { + "start": 6667.72, + "end": 6670.42, + "probability": 0.8496 + }, + { + "start": 6671.76, + "end": 6676.88, + "probability": 0.1428 + }, + { + "start": 6676.88, + "end": 6676.88, + "probability": 0.3489 + }, + { + "start": 6676.88, + "end": 6677.3, + "probability": 0.0582 + }, + { + "start": 6677.3, + "end": 6678.04, + "probability": 0.5241 + }, + { + "start": 6678.04, + "end": 6679.5, + "probability": 0.8498 + }, + { + "start": 6680.74, + "end": 6683.38, + "probability": 0.1468 + }, + { + "start": 6683.38, + "end": 6683.68, + "probability": 0.3312 + }, + { + "start": 6683.68, + "end": 6684.98, + "probability": 0.6577 + }, + { + "start": 6685.12, + "end": 6686.26, + "probability": 0.9972 + }, + { + "start": 6688.76, + "end": 6694.48, + "probability": 0.7983 + }, + { + "start": 6694.7, + "end": 6696.96, + "probability": 0.7911 + }, + { + "start": 6697.08, + "end": 6700.36, + "probability": 0.4662 + }, + { + "start": 6700.56, + "end": 6701.04, + "probability": 0.6672 + }, + { + "start": 6701.06, + "end": 6701.92, + "probability": 0.7829 + }, + { + "start": 6706.44, + "end": 6706.76, + "probability": 0.1024 + }, + { + "start": 6708.3, + "end": 6717.64, + "probability": 0.0134 + }, + { + "start": 6717.64, + "end": 6722.36, + "probability": 0.0801 + }, + { + "start": 6724.04, + "end": 6724.6, + "probability": 0.0514 + }, + { + "start": 6724.6, + "end": 6724.6, + "probability": 0.036 + }, + { + "start": 6724.6, + "end": 6724.7, + "probability": 0.1742 + }, + { + "start": 6724.7, + "end": 6724.82, + "probability": 0.1409 + }, + { + "start": 6725.26, + "end": 6727.92, + "probability": 0.4741 + }, + { + "start": 6728.36, + "end": 6733.52, + "probability": 0.5393 + }, + { + "start": 6734.04, + "end": 6738.48, + "probability": 0.2901 + }, + { + "start": 6739.0, + "end": 6742.78, + "probability": 0.7745 + }, + { + "start": 6743.0, + "end": 6749.63, + "probability": 0.7745 + }, + { + "start": 6750.12, + "end": 6751.64, + "probability": 0.033 + }, + { + "start": 6751.74, + "end": 6753.9, + "probability": 0.9893 + }, + { + "start": 6754.8, + "end": 6757.58, + "probability": 0.9082 + }, + { + "start": 6757.68, + "end": 6759.64, + "probability": 0.912 + }, + { + "start": 6775.9, + "end": 6776.98, + "probability": 0.7003 + }, + { + "start": 6777.06, + "end": 6778.18, + "probability": 0.6636 + }, + { + "start": 6778.3, + "end": 6780.1, + "probability": 0.8564 + }, + { + "start": 6780.16, + "end": 6782.46, + "probability": 0.5978 + }, + { + "start": 6783.64, + "end": 6786.52, + "probability": 0.5372 + }, + { + "start": 6786.86, + "end": 6788.64, + "probability": 0.7321 + }, + { + "start": 6793.78, + "end": 6794.88, + "probability": 0.7383 + }, + { + "start": 6795.12, + "end": 6797.94, + "probability": 0.7601 + }, + { + "start": 6797.94, + "end": 6806.46, + "probability": 0.9435 + }, + { + "start": 6806.62, + "end": 6811.36, + "probability": 0.9688 + }, + { + "start": 6812.34, + "end": 6815.56, + "probability": 0.941 + }, + { + "start": 6817.16, + "end": 6820.7, + "probability": 0.8452 + }, + { + "start": 6823.52, + "end": 6829.58, + "probability": 0.7907 + }, + { + "start": 6831.32, + "end": 6832.6, + "probability": 0.8086 + }, + { + "start": 6832.64, + "end": 6835.38, + "probability": 0.9888 + }, + { + "start": 6835.96, + "end": 6838.66, + "probability": 0.9907 + }, + { + "start": 6839.12, + "end": 6841.48, + "probability": 0.7953 + }, + { + "start": 6841.52, + "end": 6842.24, + "probability": 0.8415 + }, + { + "start": 6843.1, + "end": 6843.9, + "probability": 0.86 + }, + { + "start": 6843.98, + "end": 6847.7, + "probability": 0.784 + }, + { + "start": 6847.7, + "end": 6850.22, + "probability": 0.808 + }, + { + "start": 6850.7, + "end": 6852.7, + "probability": 0.9749 + }, + { + "start": 6853.2, + "end": 6854.18, + "probability": 0.8507 + }, + { + "start": 6854.95, + "end": 6857.66, + "probability": 0.8117 + }, + { + "start": 6857.66, + "end": 6858.81, + "probability": 0.8288 + }, + { + "start": 6860.1, + "end": 6861.24, + "probability": 0.7149 + }, + { + "start": 6862.46, + "end": 6862.96, + "probability": 0.9412 + }, + { + "start": 6863.22, + "end": 6865.44, + "probability": 0.4581 + }, + { + "start": 6865.56, + "end": 6865.82, + "probability": 0.6354 + }, + { + "start": 6865.94, + "end": 6866.81, + "probability": 0.9351 + }, + { + "start": 6867.12, + "end": 6867.56, + "probability": 0.9282 + }, + { + "start": 6867.78, + "end": 6868.29, + "probability": 0.7151 + }, + { + "start": 6868.52, + "end": 6869.76, + "probability": 0.9653 + }, + { + "start": 6870.28, + "end": 6870.92, + "probability": 0.4986 + }, + { + "start": 6872.56, + "end": 6876.9, + "probability": 0.9418 + }, + { + "start": 6877.72, + "end": 6879.98, + "probability": 0.9296 + }, + { + "start": 6881.12, + "end": 6882.44, + "probability": 0.5975 + }, + { + "start": 6883.18, + "end": 6885.14, + "probability": 0.7231 + }, + { + "start": 6885.32, + "end": 6886.42, + "probability": 0.6658 + }, + { + "start": 6886.46, + "end": 6890.36, + "probability": 0.9761 + }, + { + "start": 6891.46, + "end": 6895.86, + "probability": 0.6908 + }, + { + "start": 6896.82, + "end": 6897.94, + "probability": 0.7495 + }, + { + "start": 6900.2, + "end": 6904.02, + "probability": 0.9268 + }, + { + "start": 6904.24, + "end": 6905.71, + "probability": 0.6348 + }, + { + "start": 6906.34, + "end": 6908.81, + "probability": 0.9502 + }, + { + "start": 6909.7, + "end": 6910.36, + "probability": 0.6827 + }, + { + "start": 6911.5, + "end": 6914.94, + "probability": 0.7885 + }, + { + "start": 6915.56, + "end": 6917.3, + "probability": 0.9775 + }, + { + "start": 6917.58, + "end": 6919.22, + "probability": 0.5193 + }, + { + "start": 6919.32, + "end": 6920.19, + "probability": 0.7888 + }, + { + "start": 6920.88, + "end": 6923.46, + "probability": 0.8465 + }, + { + "start": 6924.56, + "end": 6929.06, + "probability": 0.7781 + }, + { + "start": 6932.24, + "end": 6938.0, + "probability": 0.5624 + }, + { + "start": 6938.68, + "end": 6942.74, + "probability": 0.7933 + }, + { + "start": 6943.7, + "end": 6948.28, + "probability": 0.9136 + }, + { + "start": 6948.64, + "end": 6951.87, + "probability": 0.8431 + }, + { + "start": 6952.48, + "end": 6953.68, + "probability": 0.728 + }, + { + "start": 6956.16, + "end": 6960.66, + "probability": 0.8651 + }, + { + "start": 6961.16, + "end": 6968.99, + "probability": 0.5135 + }, + { + "start": 6970.58, + "end": 6971.69, + "probability": 0.8657 + }, + { + "start": 6971.84, + "end": 6972.66, + "probability": 0.8556 + }, + { + "start": 6973.0, + "end": 6974.28, + "probability": 0.6247 + }, + { + "start": 6975.22, + "end": 6981.6, + "probability": 0.6062 + }, + { + "start": 6983.34, + "end": 6984.32, + "probability": 0.6842 + }, + { + "start": 6984.44, + "end": 6989.48, + "probability": 0.7532 + }, + { + "start": 6990.22, + "end": 6992.06, + "probability": 0.8379 + }, + { + "start": 6994.36, + "end": 6995.04, + "probability": 0.4881 + }, + { + "start": 6997.35, + "end": 7003.08, + "probability": 0.9795 + }, + { + "start": 7005.04, + "end": 7007.1, + "probability": 0.7571 + }, + { + "start": 7007.1, + "end": 7008.94, + "probability": 0.6521 + }, + { + "start": 7009.34, + "end": 7012.18, + "probability": 0.9569 + }, + { + "start": 7012.52, + "end": 7012.8, + "probability": 0.3764 + }, + { + "start": 7012.84, + "end": 7015.66, + "probability": 0.9089 + }, + { + "start": 7015.76, + "end": 7016.8, + "probability": 0.712 + }, + { + "start": 7017.48, + "end": 7019.88, + "probability": 0.4653 + }, + { + "start": 7019.96, + "end": 7020.54, + "probability": 0.7859 + }, + { + "start": 7020.68, + "end": 7022.24, + "probability": 0.6238 + }, + { + "start": 7022.3, + "end": 7023.44, + "probability": 0.7976 + }, + { + "start": 7024.02, + "end": 7028.46, + "probability": 0.8127 + }, + { + "start": 7029.52, + "end": 7031.28, + "probability": 0.9044 + }, + { + "start": 7031.42, + "end": 7033.92, + "probability": 0.8971 + }, + { + "start": 7033.98, + "end": 7036.2, + "probability": 0.9106 + }, + { + "start": 7038.52, + "end": 7042.72, + "probability": 0.6758 + }, + { + "start": 7044.54, + "end": 7047.0, + "probability": 0.9688 + }, + { + "start": 7047.08, + "end": 7047.88, + "probability": 0.6373 + }, + { + "start": 7048.58, + "end": 7050.54, + "probability": 0.9736 + }, + { + "start": 7050.78, + "end": 7053.5, + "probability": 0.9899 + }, + { + "start": 7054.02, + "end": 7056.96, + "probability": 0.9601 + }, + { + "start": 7057.08, + "end": 7058.44, + "probability": 0.77 + }, + { + "start": 7059.42, + "end": 7062.22, + "probability": 0.684 + }, + { + "start": 7066.96, + "end": 7066.96, + "probability": 0.0655 + }, + { + "start": 7066.96, + "end": 7067.1, + "probability": 0.4478 + }, + { + "start": 7067.22, + "end": 7067.96, + "probability": 0.5178 + }, + { + "start": 7068.18, + "end": 7071.6, + "probability": 0.9427 + }, + { + "start": 7071.64, + "end": 7074.5, + "probability": 0.9449 + }, + { + "start": 7074.86, + "end": 7076.02, + "probability": 0.9496 + }, + { + "start": 7076.2, + "end": 7078.48, + "probability": 0.9478 + }, + { + "start": 7078.74, + "end": 7079.5, + "probability": 0.8662 + }, + { + "start": 7079.68, + "end": 7081.24, + "probability": 0.9333 + }, + { + "start": 7082.88, + "end": 7085.8, + "probability": 0.8586 + }, + { + "start": 7085.96, + "end": 7089.18, + "probability": 0.7375 + }, + { + "start": 7089.4, + "end": 7089.54, + "probability": 0.0033 + }, + { + "start": 7089.56, + "end": 7091.26, + "probability": 0.957 + }, + { + "start": 7091.38, + "end": 7093.2, + "probability": 0.9556 + }, + { + "start": 7093.34, + "end": 7095.14, + "probability": 0.8816 + }, + { + "start": 7095.52, + "end": 7097.11, + "probability": 0.8242 + }, + { + "start": 7098.6, + "end": 7102.9, + "probability": 0.9971 + }, + { + "start": 7103.62, + "end": 7104.78, + "probability": 0.477 + }, + { + "start": 7104.84, + "end": 7108.16, + "probability": 0.6526 + }, + { + "start": 7109.02, + "end": 7110.3, + "probability": 0.7296 + }, + { + "start": 7110.86, + "end": 7115.18, + "probability": 0.7069 + }, + { + "start": 7116.59, + "end": 7120.26, + "probability": 0.7527 + }, + { + "start": 7120.67, + "end": 7130.22, + "probability": 0.6674 + }, + { + "start": 7130.34, + "end": 7131.72, + "probability": 0.7779 + }, + { + "start": 7131.98, + "end": 7133.1, + "probability": 0.6054 + }, + { + "start": 7133.16, + "end": 7133.7, + "probability": 0.5892 + }, + { + "start": 7133.8, + "end": 7134.82, + "probability": 0.8514 + }, + { + "start": 7134.94, + "end": 7136.6, + "probability": 0.5712 + }, + { + "start": 7136.62, + "end": 7138.54, + "probability": 0.9893 + }, + { + "start": 7138.86, + "end": 7141.36, + "probability": 0.9632 + }, + { + "start": 7141.68, + "end": 7145.94, + "probability": 0.7272 + }, + { + "start": 7146.02, + "end": 7147.14, + "probability": 0.5766 + }, + { + "start": 7148.0, + "end": 7150.7, + "probability": 0.7705 + }, + { + "start": 7151.9, + "end": 7151.97, + "probability": 0.206 + }, + { + "start": 7155.22, + "end": 7157.34, + "probability": 0.6287 + }, + { + "start": 7157.42, + "end": 7163.28, + "probability": 0.8395 + }, + { + "start": 7163.38, + "end": 7163.74, + "probability": 0.7013 + }, + { + "start": 7164.52, + "end": 7166.36, + "probability": 0.8662 + }, + { + "start": 7166.52, + "end": 7168.34, + "probability": 0.4651 + }, + { + "start": 7168.78, + "end": 7170.08, + "probability": 0.8143 + }, + { + "start": 7170.12, + "end": 7170.74, + "probability": 0.6349 + }, + { + "start": 7170.9, + "end": 7171.34, + "probability": 0.8314 + }, + { + "start": 7185.66, + "end": 7186.64, + "probability": 0.772 + }, + { + "start": 7186.78, + "end": 7190.08, + "probability": 0.7958 + }, + { + "start": 7190.44, + "end": 7197.88, + "probability": 0.87 + }, + { + "start": 7198.26, + "end": 7198.5, + "probability": 0.4981 + }, + { + "start": 7198.62, + "end": 7202.02, + "probability": 0.9741 + }, + { + "start": 7202.44, + "end": 7203.28, + "probability": 0.9446 + }, + { + "start": 7203.5, + "end": 7205.12, + "probability": 0.7984 + }, + { + "start": 7205.26, + "end": 7209.94, + "probability": 0.982 + }, + { + "start": 7209.94, + "end": 7212.3, + "probability": 0.7878 + }, + { + "start": 7212.98, + "end": 7215.04, + "probability": 0.8784 + }, + { + "start": 7215.34, + "end": 7219.0, + "probability": 0.998 + }, + { + "start": 7219.14, + "end": 7220.76, + "probability": 0.8928 + }, + { + "start": 7221.18, + "end": 7222.04, + "probability": 0.47 + }, + { + "start": 7222.2, + "end": 7222.82, + "probability": 0.604 + }, + { + "start": 7222.94, + "end": 7224.34, + "probability": 0.367 + }, + { + "start": 7226.76, + "end": 7229.58, + "probability": 0.0189 + }, + { + "start": 7231.56, + "end": 7232.94, + "probability": 0.1386 + }, + { + "start": 7233.14, + "end": 7234.76, + "probability": 0.86 + }, + { + "start": 7234.82, + "end": 7238.28, + "probability": 0.929 + }, + { + "start": 7238.62, + "end": 7239.88, + "probability": 0.6538 + }, + { + "start": 7240.08, + "end": 7245.1, + "probability": 0.7397 + }, + { + "start": 7245.24, + "end": 7247.78, + "probability": 0.9702 + }, + { + "start": 7248.08, + "end": 7252.18, + "probability": 0.9941 + }, + { + "start": 7252.18, + "end": 7257.62, + "probability": 0.9565 + }, + { + "start": 7258.3, + "end": 7261.26, + "probability": 0.9389 + }, + { + "start": 7261.96, + "end": 7263.3, + "probability": 0.7946 + }, + { + "start": 7264.54, + "end": 7269.14, + "probability": 0.9897 + }, + { + "start": 7269.96, + "end": 7273.7, + "probability": 0.7772 + }, + { + "start": 7274.02, + "end": 7278.46, + "probability": 0.9954 + }, + { + "start": 7278.72, + "end": 7281.64, + "probability": 0.7849 + }, + { + "start": 7282.04, + "end": 7285.36, + "probability": 0.6699 + }, + { + "start": 7286.34, + "end": 7287.1, + "probability": 0.9238 + }, + { + "start": 7287.54, + "end": 7291.68, + "probability": 0.9949 + }, + { + "start": 7292.35, + "end": 7297.22, + "probability": 0.9939 + }, + { + "start": 7298.04, + "end": 7300.82, + "probability": 0.6953 + }, + { + "start": 7301.06, + "end": 7302.89, + "probability": 0.6453 + }, + { + "start": 7303.88, + "end": 7309.44, + "probability": 0.9937 + }, + { + "start": 7309.96, + "end": 7313.62, + "probability": 0.9929 + }, + { + "start": 7313.8, + "end": 7316.1, + "probability": 0.9468 + }, + { + "start": 7316.38, + "end": 7321.36, + "probability": 0.9702 + }, + { + "start": 7322.34, + "end": 7323.22, + "probability": 0.9503 + }, + { + "start": 7323.26, + "end": 7327.02, + "probability": 0.9712 + }, + { + "start": 7327.36, + "end": 7328.14, + "probability": 0.6179 + }, + { + "start": 7328.36, + "end": 7332.18, + "probability": 0.9409 + }, + { + "start": 7332.28, + "end": 7338.86, + "probability": 0.9253 + }, + { + "start": 7339.18, + "end": 7339.64, + "probability": 0.2709 + }, + { + "start": 7340.14, + "end": 7340.9, + "probability": 0.5115 + }, + { + "start": 7341.04, + "end": 7341.72, + "probability": 0.6971 + }, + { + "start": 7342.16, + "end": 7345.58, + "probability": 0.9148 + }, + { + "start": 7346.32, + "end": 7350.98, + "probability": 0.9849 + }, + { + "start": 7352.82, + "end": 7355.42, + "probability": 0.6529 + }, + { + "start": 7356.18, + "end": 7357.22, + "probability": 0.0027 + }, + { + "start": 7359.0, + "end": 7359.16, + "probability": 0.2764 + }, + { + "start": 7359.16, + "end": 7362.04, + "probability": 0.9499 + }, + { + "start": 7362.58, + "end": 7365.68, + "probability": 0.8175 + }, + { + "start": 7365.96, + "end": 7367.79, + "probability": 0.7961 + }, + { + "start": 7369.46, + "end": 7370.58, + "probability": 0.9175 + }, + { + "start": 7370.68, + "end": 7371.88, + "probability": 0.6635 + }, + { + "start": 7371.98, + "end": 7375.04, + "probability": 0.9531 + }, + { + "start": 7375.54, + "end": 7376.75, + "probability": 0.8916 + }, + { + "start": 7377.71, + "end": 7378.48, + "probability": 0.6843 + }, + { + "start": 7378.92, + "end": 7381.44, + "probability": 0.5685 + }, + { + "start": 7381.86, + "end": 7383.46, + "probability": 0.9885 + }, + { + "start": 7384.0, + "end": 7386.17, + "probability": 0.9768 + }, + { + "start": 7387.6, + "end": 7388.78, + "probability": 0.8533 + }, + { + "start": 7394.4, + "end": 7394.4, + "probability": 0.4066 + }, + { + "start": 7394.4, + "end": 7396.94, + "probability": 0.3595 + }, + { + "start": 7397.46, + "end": 7398.16, + "probability": 0.4135 + }, + { + "start": 7398.16, + "end": 7399.36, + "probability": 0.7 + }, + { + "start": 7401.52, + "end": 7402.06, + "probability": 0.7744 + }, + { + "start": 7402.12, + "end": 7402.42, + "probability": 0.6716 + }, + { + "start": 7403.28, + "end": 7406.4, + "probability": 0.9354 + }, + { + "start": 7407.0, + "end": 7409.0, + "probability": 0.9951 + }, + { + "start": 7409.4, + "end": 7411.54, + "probability": 0.7598 + }, + { + "start": 7411.74, + "end": 7412.98, + "probability": 0.9237 + }, + { + "start": 7413.5, + "end": 7413.8, + "probability": 0.4578 + }, + { + "start": 7413.86, + "end": 7414.46, + "probability": 0.8717 + }, + { + "start": 7414.54, + "end": 7417.42, + "probability": 0.9581 + }, + { + "start": 7417.78, + "end": 7419.18, + "probability": 0.6352 + }, + { + "start": 7419.32, + "end": 7420.08, + "probability": 0.8991 + }, + { + "start": 7420.54, + "end": 7425.6, + "probability": 0.9335 + }, + { + "start": 7425.9, + "end": 7430.72, + "probability": 0.9452 + }, + { + "start": 7431.18, + "end": 7433.44, + "probability": 0.8947 + }, + { + "start": 7433.54, + "end": 7436.24, + "probability": 0.9421 + }, + { + "start": 7437.08, + "end": 7438.26, + "probability": 0.5516 + }, + { + "start": 7450.5, + "end": 7452.74, + "probability": 0.5953 + }, + { + "start": 7453.04, + "end": 7462.36, + "probability": 0.6757 + }, + { + "start": 7464.02, + "end": 7466.3, + "probability": 0.9175 + }, + { + "start": 7466.62, + "end": 7469.84, + "probability": 0.8623 + }, + { + "start": 7469.98, + "end": 7473.02, + "probability": 0.6729 + }, + { + "start": 7473.12, + "end": 7474.18, + "probability": 0.4659 + }, + { + "start": 7474.18, + "end": 7478.72, + "probability": 0.9707 + }, + { + "start": 7479.22, + "end": 7479.44, + "probability": 0.4338 + }, + { + "start": 7480.52, + "end": 7482.44, + "probability": 0.8599 + }, + { + "start": 7482.56, + "end": 7490.58, + "probability": 0.7839 + }, + { + "start": 7491.06, + "end": 7494.62, + "probability": 0.8027 + }, + { + "start": 7494.98, + "end": 7498.44, + "probability": 0.718 + }, + { + "start": 7499.06, + "end": 7500.74, + "probability": 0.8002 + }, + { + "start": 7503.09, + "end": 7506.54, + "probability": 0.4688 + }, + { + "start": 7507.04, + "end": 7507.6, + "probability": 0.0284 + }, + { + "start": 7508.56, + "end": 7509.66, + "probability": 0.3752 + }, + { + "start": 7509.82, + "end": 7514.04, + "probability": 0.8454 + }, + { + "start": 7514.82, + "end": 7518.88, + "probability": 0.0004 + }, + { + "start": 7519.7, + "end": 7519.7, + "probability": 0.0425 + }, + { + "start": 7519.7, + "end": 7519.7, + "probability": 0.0639 + }, + { + "start": 7519.7, + "end": 7521.63, + "probability": 0.4228 + }, + { + "start": 7522.1, + "end": 7524.84, + "probability": 0.8453 + }, + { + "start": 7525.36, + "end": 7526.44, + "probability": 0.8993 + }, + { + "start": 7526.88, + "end": 7528.7, + "probability": 0.8101 + }, + { + "start": 7528.92, + "end": 7531.82, + "probability": 0.7037 + }, + { + "start": 7532.14, + "end": 7533.36, + "probability": 0.7076 + }, + { + "start": 7533.52, + "end": 7533.92, + "probability": 0.1863 + }, + { + "start": 7534.0, + "end": 7535.69, + "probability": 0.1599 + }, + { + "start": 7538.18, + "end": 7542.52, + "probability": 0.4305 + }, + { + "start": 7546.6, + "end": 7549.56, + "probability": 0.2686 + }, + { + "start": 7550.52, + "end": 7552.96, + "probability": 0.9373 + }, + { + "start": 7556.82, + "end": 7559.78, + "probability": 0.9825 + }, + { + "start": 7560.04, + "end": 7562.45, + "probability": 0.4434 + }, + { + "start": 7562.8, + "end": 7563.74, + "probability": 0.5753 + }, + { + "start": 7563.82, + "end": 7566.64, + "probability": 0.798 + }, + { + "start": 7566.96, + "end": 7568.1, + "probability": 0.7808 + }, + { + "start": 7569.11, + "end": 7571.76, + "probability": 0.9938 + }, + { + "start": 7571.86, + "end": 7576.68, + "probability": 0.7419 + }, + { + "start": 7577.5, + "end": 7580.66, + "probability": 0.5333 + }, + { + "start": 7581.36, + "end": 7583.53, + "probability": 0.8048 + }, + { + "start": 7584.4, + "end": 7585.18, + "probability": 0.2117 + }, + { + "start": 7586.38, + "end": 7589.44, + "probability": 0.2698 + }, + { + "start": 7590.18, + "end": 7592.06, + "probability": 0.592 + }, + { + "start": 7592.2, + "end": 7593.76, + "probability": 0.6698 + }, + { + "start": 7593.82, + "end": 7597.44, + "probability": 0.6188 + }, + { + "start": 7597.96, + "end": 7601.4, + "probability": 0.8409 + }, + { + "start": 7601.48, + "end": 7602.16, + "probability": 0.5567 + }, + { + "start": 7602.3, + "end": 7604.44, + "probability": 0.8707 + }, + { + "start": 7604.94, + "end": 7606.76, + "probability": 0.8167 + }, + { + "start": 7606.76, + "end": 7609.2, + "probability": 0.0816 + }, + { + "start": 7609.7, + "end": 7611.7, + "probability": 0.8445 + }, + { + "start": 7611.94, + "end": 7613.76, + "probability": 0.693 + }, + { + "start": 7613.96, + "end": 7618.38, + "probability": 0.9695 + }, + { + "start": 7618.56, + "end": 7619.24, + "probability": 0.9407 + }, + { + "start": 7620.1, + "end": 7623.54, + "probability": 0.7683 + }, + { + "start": 7624.4, + "end": 7627.76, + "probability": 0.4661 + }, + { + "start": 7628.42, + "end": 7629.76, + "probability": 0.738 + }, + { + "start": 7629.81, + "end": 7632.58, + "probability": 0.1178 + }, + { + "start": 7632.68, + "end": 7633.26, + "probability": 0.8912 + }, + { + "start": 7633.78, + "end": 7635.84, + "probability": 0.8906 + }, + { + "start": 7636.04, + "end": 7640.02, + "probability": 0.9918 + }, + { + "start": 7640.36, + "end": 7641.72, + "probability": 0.5879 + }, + { + "start": 7641.88, + "end": 7642.9, + "probability": 0.4822 + }, + { + "start": 7642.9, + "end": 7643.32, + "probability": 0.4823 + }, + { + "start": 7643.36, + "end": 7646.38, + "probability": 0.8759 + }, + { + "start": 7646.38, + "end": 7647.46, + "probability": 0.8409 + }, + { + "start": 7647.6, + "end": 7650.16, + "probability": 0.6473 + }, + { + "start": 7650.22, + "end": 7650.74, + "probability": 0.8929 + }, + { + "start": 7651.02, + "end": 7652.76, + "probability": 0.9514 + }, + { + "start": 7652.92, + "end": 7657.96, + "probability": 0.9829 + }, + { + "start": 7657.96, + "end": 7662.56, + "probability": 0.9261 + }, + { + "start": 7663.3, + "end": 7666.9, + "probability": 0.7206 + }, + { + "start": 7667.68, + "end": 7668.92, + "probability": 0.7051 + }, + { + "start": 7668.96, + "end": 7669.7, + "probability": 0.7581 + }, + { + "start": 7670.72, + "end": 7673.12, + "probability": 0.3381 + }, + { + "start": 7681.94, + "end": 7684.52, + "probability": 0.0328 + }, + { + "start": 7686.93, + "end": 7688.46, + "probability": 0.0983 + }, + { + "start": 7688.46, + "end": 7688.46, + "probability": 0.2964 + }, + { + "start": 7688.46, + "end": 7688.46, + "probability": 0.1873 + }, + { + "start": 7688.46, + "end": 7688.56, + "probability": 0.385 + }, + { + "start": 7689.52, + "end": 7691.3, + "probability": 0.5719 + }, + { + "start": 7691.5, + "end": 7693.2, + "probability": 0.8014 + }, + { + "start": 7694.22, + "end": 7699.08, + "probability": 0.9333 + }, + { + "start": 7699.08, + "end": 7702.24, + "probability": 0.869 + }, + { + "start": 7702.8, + "end": 7703.9, + "probability": 0.4108 + }, + { + "start": 7704.08, + "end": 7705.8, + "probability": 0.9663 + }, + { + "start": 7706.2, + "end": 7709.26, + "probability": 0.909 + }, + { + "start": 7709.96, + "end": 7710.4, + "probability": 0.8089 + }, + { + "start": 7718.14, + "end": 7718.78, + "probability": 0.5508 + }, + { + "start": 7718.86, + "end": 7719.62, + "probability": 0.7203 + }, + { + "start": 7719.78, + "end": 7721.0, + "probability": 0.7478 + }, + { + "start": 7721.08, + "end": 7724.6, + "probability": 0.9871 + }, + { + "start": 7724.6, + "end": 7728.56, + "probability": 0.8805 + }, + { + "start": 7729.28, + "end": 7730.38, + "probability": 0.7092 + }, + { + "start": 7730.56, + "end": 7735.84, + "probability": 0.9968 + }, + { + "start": 7735.94, + "end": 7736.64, + "probability": 0.8511 + }, + { + "start": 7737.04, + "end": 7737.96, + "probability": 0.788 + }, + { + "start": 7738.14, + "end": 7739.72, + "probability": 0.981 + }, + { + "start": 7740.52, + "end": 7744.28, + "probability": 0.9623 + }, + { + "start": 7744.46, + "end": 7746.96, + "probability": 0.9869 + }, + { + "start": 7747.34, + "end": 7751.88, + "probability": 0.9905 + }, + { + "start": 7753.04, + "end": 7757.66, + "probability": 0.9678 + }, + { + "start": 7758.2, + "end": 7760.38, + "probability": 0.8662 + }, + { + "start": 7760.38, + "end": 7762.78, + "probability": 0.9879 + }, + { + "start": 7762.98, + "end": 7765.48, + "probability": 0.5892 + }, + { + "start": 7765.7, + "end": 7766.44, + "probability": 0.5081 + }, + { + "start": 7766.56, + "end": 7768.18, + "probability": 0.9882 + }, + { + "start": 7768.3, + "end": 7768.76, + "probability": 0.7928 + }, + { + "start": 7768.9, + "end": 7769.68, + "probability": 0.9924 + }, + { + "start": 7769.78, + "end": 7770.54, + "probability": 0.9389 + }, + { + "start": 7770.6, + "end": 7771.78, + "probability": 0.9797 + }, + { + "start": 7772.18, + "end": 7773.16, + "probability": 0.4838 + }, + { + "start": 7773.36, + "end": 7774.14, + "probability": 0.8377 + }, + { + "start": 7774.22, + "end": 7777.58, + "probability": 0.8676 + }, + { + "start": 7777.78, + "end": 7779.4, + "probability": 0.9533 + }, + { + "start": 7780.28, + "end": 7783.1, + "probability": 0.9821 + }, + { + "start": 7783.1, + "end": 7785.8, + "probability": 0.986 + }, + { + "start": 7786.26, + "end": 7789.96, + "probability": 0.9991 + }, + { + "start": 7790.6, + "end": 7792.88, + "probability": 0.9995 + }, + { + "start": 7793.8, + "end": 7798.82, + "probability": 0.7968 + }, + { + "start": 7799.5, + "end": 7803.72, + "probability": 0.9842 + }, + { + "start": 7804.76, + "end": 7807.34, + "probability": 0.9699 + }, + { + "start": 7807.58, + "end": 7808.28, + "probability": 0.8948 + }, + { + "start": 7808.32, + "end": 7808.96, + "probability": 0.9291 + }, + { + "start": 7809.02, + "end": 7809.98, + "probability": 0.8541 + }, + { + "start": 7809.98, + "end": 7811.72, + "probability": 0.9772 + }, + { + "start": 7811.84, + "end": 7812.28, + "probability": 0.8689 + }, + { + "start": 7812.36, + "end": 7814.16, + "probability": 0.9485 + }, + { + "start": 7814.28, + "end": 7815.72, + "probability": 0.7501 + }, + { + "start": 7815.94, + "end": 7817.58, + "probability": 0.9735 + }, + { + "start": 7817.74, + "end": 7818.64, + "probability": 0.6311 + }, + { + "start": 7818.76, + "end": 7820.1, + "probability": 0.9403 + }, + { + "start": 7820.28, + "end": 7823.88, + "probability": 0.8918 + }, + { + "start": 7823.98, + "end": 7824.82, + "probability": 0.9765 + }, + { + "start": 7824.96, + "end": 7826.74, + "probability": 0.9881 + }, + { + "start": 7828.1, + "end": 7832.14, + "probability": 0.9238 + }, + { + "start": 7832.14, + "end": 7834.76, + "probability": 0.8248 + }, + { + "start": 7836.76, + "end": 7840.12, + "probability": 0.9876 + }, + { + "start": 7841.1, + "end": 7843.44, + "probability": 0.9605 + }, + { + "start": 7843.62, + "end": 7844.9, + "probability": 0.923 + }, + { + "start": 7844.94, + "end": 7847.08, + "probability": 0.9692 + }, + { + "start": 7847.4, + "end": 7848.42, + "probability": 0.8632 + }, + { + "start": 7849.1, + "end": 7851.64, + "probability": 0.9934 + }, + { + "start": 7851.9, + "end": 7857.18, + "probability": 0.9923 + }, + { + "start": 7857.28, + "end": 7858.24, + "probability": 0.9824 + }, + { + "start": 7858.36, + "end": 7859.12, + "probability": 0.9789 + }, + { + "start": 7859.3, + "end": 7860.1, + "probability": 0.4856 + }, + { + "start": 7860.44, + "end": 7864.92, + "probability": 0.965 + }, + { + "start": 7865.52, + "end": 7867.56, + "probability": 0.916 + }, + { + "start": 7868.2, + "end": 7870.9, + "probability": 0.938 + }, + { + "start": 7871.18, + "end": 7872.1, + "probability": 0.922 + }, + { + "start": 7872.28, + "end": 7873.06, + "probability": 0.96 + }, + { + "start": 7873.3, + "end": 7874.36, + "probability": 0.9248 + }, + { + "start": 7875.08, + "end": 7876.62, + "probability": 0.8797 + }, + { + "start": 7877.18, + "end": 7878.56, + "probability": 0.9802 + }, + { + "start": 7878.82, + "end": 7880.2, + "probability": 0.9522 + }, + { + "start": 7880.26, + "end": 7880.84, + "probability": 0.8134 + }, + { + "start": 7882.4, + "end": 7885.02, + "probability": 0.9519 + }, + { + "start": 7885.64, + "end": 7889.3, + "probability": 0.9989 + }, + { + "start": 7889.76, + "end": 7892.54, + "probability": 0.9836 + }, + { + "start": 7893.0, + "end": 7896.3, + "probability": 0.9885 + }, + { + "start": 7897.08, + "end": 7897.64, + "probability": 0.7945 + }, + { + "start": 7897.8, + "end": 7900.56, + "probability": 0.9895 + }, + { + "start": 7900.8, + "end": 7905.68, + "probability": 0.9254 + }, + { + "start": 7905.74, + "end": 7907.58, + "probability": 0.9308 + }, + { + "start": 7908.06, + "end": 7908.78, + "probability": 0.925 + }, + { + "start": 7908.92, + "end": 7909.64, + "probability": 0.7916 + }, + { + "start": 7909.8, + "end": 7910.8, + "probability": 0.648 + }, + { + "start": 7911.24, + "end": 7913.84, + "probability": 0.96 + }, + { + "start": 7913.9, + "end": 7915.3, + "probability": 0.9497 + }, + { + "start": 7915.6, + "end": 7918.72, + "probability": 0.9941 + }, + { + "start": 7919.34, + "end": 7927.22, + "probability": 0.916 + }, + { + "start": 7927.56, + "end": 7927.56, + "probability": 0.0678 + }, + { + "start": 7927.56, + "end": 7929.65, + "probability": 0.781 + }, + { + "start": 7930.78, + "end": 7933.88, + "probability": 0.8048 + }, + { + "start": 7934.04, + "end": 7936.06, + "probability": 0.9925 + }, + { + "start": 7937.6, + "end": 7939.08, + "probability": 0.9396 + }, + { + "start": 7939.62, + "end": 7941.56, + "probability": 0.98 + }, + { + "start": 7942.18, + "end": 7944.9, + "probability": 0.9942 + }, + { + "start": 7944.9, + "end": 7948.58, + "probability": 0.9812 + }, + { + "start": 7949.96, + "end": 7955.08, + "probability": 0.9973 + }, + { + "start": 7955.86, + "end": 7960.84, + "probability": 0.9947 + }, + { + "start": 7961.42, + "end": 7966.46, + "probability": 0.993 + }, + { + "start": 7967.38, + "end": 7968.82, + "probability": 0.8308 + }, + { + "start": 7969.24, + "end": 7971.88, + "probability": 0.9871 + }, + { + "start": 7971.88, + "end": 7975.42, + "probability": 0.9964 + }, + { + "start": 7976.24, + "end": 7980.38, + "probability": 0.9938 + }, + { + "start": 7980.64, + "end": 7982.34, + "probability": 0.9338 + }, + { + "start": 7982.58, + "end": 7986.04, + "probability": 0.9966 + }, + { + "start": 7986.82, + "end": 7989.84, + "probability": 0.9738 + }, + { + "start": 7990.38, + "end": 7990.96, + "probability": 0.5053 + }, + { + "start": 7991.32, + "end": 7993.42, + "probability": 0.9477 + }, + { + "start": 7993.74, + "end": 7996.16, + "probability": 0.9958 + }, + { + "start": 7996.22, + "end": 7997.36, + "probability": 0.9937 + }, + { + "start": 7997.52, + "end": 7999.0, + "probability": 0.8583 + }, + { + "start": 7999.22, + "end": 8000.5, + "probability": 0.974 + }, + { + "start": 8001.06, + "end": 8003.38, + "probability": 0.9829 + }, + { + "start": 8003.38, + "end": 8006.4, + "probability": 0.9995 + }, + { + "start": 8007.22, + "end": 8011.58, + "probability": 0.9979 + }, + { + "start": 8012.24, + "end": 8013.52, + "probability": 0.8552 + }, + { + "start": 8014.08, + "end": 8015.64, + "probability": 0.9921 + }, + { + "start": 8016.04, + "end": 8019.0, + "probability": 0.9813 + }, + { + "start": 8019.04, + "end": 8019.74, + "probability": 0.6889 + }, + { + "start": 8019.94, + "end": 8025.1, + "probability": 0.9963 + }, + { + "start": 8025.88, + "end": 8026.48, + "probability": 0.8311 + }, + { + "start": 8026.58, + "end": 8027.4, + "probability": 0.9877 + }, + { + "start": 8027.66, + "end": 8031.36, + "probability": 0.9966 + }, + { + "start": 8031.9, + "end": 8033.66, + "probability": 0.3248 + }, + { + "start": 8034.36, + "end": 8039.1, + "probability": 0.913 + }, + { + "start": 8039.48, + "end": 8041.04, + "probability": 0.7978 + }, + { + "start": 8041.4, + "end": 8042.16, + "probability": 0.8285 + }, + { + "start": 8042.5, + "end": 8044.18, + "probability": 0.9705 + }, + { + "start": 8045.82, + "end": 8046.8, + "probability": 0.947 + }, + { + "start": 8047.1, + "end": 8047.98, + "probability": 0.9404 + }, + { + "start": 8048.14, + "end": 8050.68, + "probability": 0.7463 + }, + { + "start": 8054.92, + "end": 8055.84, + "probability": 0.6149 + }, + { + "start": 8056.98, + "end": 8058.88, + "probability": 0.3031 + }, + { + "start": 8058.88, + "end": 8059.82, + "probability": 0.7633 + }, + { + "start": 8060.08, + "end": 8060.8, + "probability": 0.6509 + }, + { + "start": 8061.22, + "end": 8063.22, + "probability": 0.8318 + }, + { + "start": 8063.32, + "end": 8064.34, + "probability": 0.7538 + }, + { + "start": 8064.68, + "end": 8066.86, + "probability": 0.7741 + }, + { + "start": 8068.6, + "end": 8072.0, + "probability": 0.9583 + }, + { + "start": 8072.0, + "end": 8074.6, + "probability": 0.9897 + }, + { + "start": 8074.98, + "end": 8076.7, + "probability": 0.9758 + }, + { + "start": 8076.92, + "end": 8077.48, + "probability": 0.9636 + }, + { + "start": 8077.72, + "end": 8079.14, + "probability": 0.9746 + }, + { + "start": 8079.4, + "end": 8084.6, + "probability": 0.9972 + }, + { + "start": 8084.78, + "end": 8086.0, + "probability": 0.7534 + }, + { + "start": 8087.5, + "end": 8090.62, + "probability": 0.9761 + }, + { + "start": 8090.62, + "end": 8094.3, + "probability": 0.9732 + }, + { + "start": 8095.52, + "end": 8096.46, + "probability": 0.8228 + }, + { + "start": 8097.07, + "end": 8101.76, + "probability": 0.9808 + }, + { + "start": 8102.42, + "end": 8103.76, + "probability": 0.8137 + }, + { + "start": 8104.58, + "end": 8107.24, + "probability": 0.9478 + }, + { + "start": 8107.54, + "end": 8110.22, + "probability": 0.9723 + }, + { + "start": 8110.32, + "end": 8111.44, + "probability": 0.9541 + }, + { + "start": 8111.54, + "end": 8112.4, + "probability": 0.8765 + }, + { + "start": 8112.6, + "end": 8115.46, + "probability": 0.9905 + }, + { + "start": 8116.16, + "end": 8117.86, + "probability": 0.9977 + }, + { + "start": 8118.0, + "end": 8119.56, + "probability": 0.8836 + }, + { + "start": 8119.86, + "end": 8120.62, + "probability": 0.8766 + }, + { + "start": 8121.02, + "end": 8122.26, + "probability": 0.9763 + }, + { + "start": 8122.74, + "end": 8123.3, + "probability": 0.9783 + }, + { + "start": 8123.42, + "end": 8124.18, + "probability": 0.944 + }, + { + "start": 8124.34, + "end": 8129.34, + "probability": 0.9897 + }, + { + "start": 8129.92, + "end": 8132.58, + "probability": 0.9166 + }, + { + "start": 8133.04, + "end": 8136.42, + "probability": 0.9949 + }, + { + "start": 8136.5, + "end": 8140.06, + "probability": 0.8915 + }, + { + "start": 8140.38, + "end": 8141.24, + "probability": 0.9508 + }, + { + "start": 8141.36, + "end": 8144.48, + "probability": 0.8411 + }, + { + "start": 8145.16, + "end": 8148.88, + "probability": 0.9777 + }, + { + "start": 8149.22, + "end": 8151.66, + "probability": 0.9298 + }, + { + "start": 8152.96, + "end": 8156.66, + "probability": 0.8763 + }, + { + "start": 8157.32, + "end": 8159.16, + "probability": 0.8696 + }, + { + "start": 8159.78, + "end": 8162.38, + "probability": 0.9983 + }, + { + "start": 8162.38, + "end": 8165.8, + "probability": 0.8822 + }, + { + "start": 8166.46, + "end": 8170.5, + "probability": 0.9565 + }, + { + "start": 8171.04, + "end": 8174.14, + "probability": 0.9922 + }, + { + "start": 8174.76, + "end": 8177.38, + "probability": 0.9442 + }, + { + "start": 8177.6, + "end": 8184.7, + "probability": 0.94 + }, + { + "start": 8185.14, + "end": 8189.94, + "probability": 0.8655 + }, + { + "start": 8190.44, + "end": 8192.6, + "probability": 0.8042 + }, + { + "start": 8192.72, + "end": 8195.16, + "probability": 0.9315 + }, + { + "start": 8197.12, + "end": 8198.6, + "probability": 0.9899 + }, + { + "start": 8198.78, + "end": 8202.9, + "probability": 0.9956 + }, + { + "start": 8203.12, + "end": 8204.26, + "probability": 0.6609 + }, + { + "start": 8204.28, + "end": 8205.8, + "probability": 0.7066 + }, + { + "start": 8206.5, + "end": 8208.51, + "probability": 0.9863 + }, + { + "start": 8209.24, + "end": 8212.16, + "probability": 0.959 + }, + { + "start": 8213.08, + "end": 8215.56, + "probability": 0.939 + }, + { + "start": 8216.06, + "end": 8217.5, + "probability": 0.9244 + }, + { + "start": 8218.2, + "end": 8218.44, + "probability": 0.198 + }, + { + "start": 8218.5, + "end": 8223.64, + "probability": 0.9759 + }, + { + "start": 8224.02, + "end": 8226.0, + "probability": 0.7905 + }, + { + "start": 8226.98, + "end": 8230.26, + "probability": 0.9904 + }, + { + "start": 8230.48, + "end": 8234.66, + "probability": 0.9824 + }, + { + "start": 8234.92, + "end": 8236.6, + "probability": 0.9699 + }, + { + "start": 8236.7, + "end": 8237.18, + "probability": 0.7988 + }, + { + "start": 8237.48, + "end": 8239.65, + "probability": 0.9659 + }, + { + "start": 8239.78, + "end": 8242.06, + "probability": 0.8525 + }, + { + "start": 8242.1, + "end": 8242.86, + "probability": 0.6766 + }, + { + "start": 8243.12, + "end": 8243.96, + "probability": 0.9544 + }, + { + "start": 8254.86, + "end": 8255.16, + "probability": 0.7733 + }, + { + "start": 8255.78, + "end": 8258.42, + "probability": 0.8399 + }, + { + "start": 8259.52, + "end": 8260.54, + "probability": 0.906 + }, + { + "start": 8261.1, + "end": 8262.42, + "probability": 0.9814 + }, + { + "start": 8263.06, + "end": 8263.88, + "probability": 0.8975 + }, + { + "start": 8264.58, + "end": 8266.48, + "probability": 0.9766 + }, + { + "start": 8267.6, + "end": 8271.8, + "probability": 0.9764 + }, + { + "start": 8271.98, + "end": 8276.62, + "probability": 0.9945 + }, + { + "start": 8277.46, + "end": 8279.52, + "probability": 0.8279 + }, + { + "start": 8280.16, + "end": 8283.04, + "probability": 0.8594 + }, + { + "start": 8283.5, + "end": 8285.02, + "probability": 0.9681 + }, + { + "start": 8285.72, + "end": 8288.84, + "probability": 0.9854 + }, + { + "start": 8288.84, + "end": 8292.12, + "probability": 0.9839 + }, + { + "start": 8293.76, + "end": 8295.22, + "probability": 0.9724 + }, + { + "start": 8295.46, + "end": 8296.56, + "probability": 0.8896 + }, + { + "start": 8296.68, + "end": 8297.26, + "probability": 0.9443 + }, + { + "start": 8297.42, + "end": 8302.88, + "probability": 0.9582 + }, + { + "start": 8303.02, + "end": 8304.42, + "probability": 0.9686 + }, + { + "start": 8305.16, + "end": 8306.52, + "probability": 0.9939 + }, + { + "start": 8306.82, + "end": 8311.35, + "probability": 0.8694 + }, + { + "start": 8311.48, + "end": 8312.22, + "probability": 0.62 + }, + { + "start": 8312.32, + "end": 8313.44, + "probability": 0.6827 + }, + { + "start": 8313.56, + "end": 8318.88, + "probability": 0.9269 + }, + { + "start": 8318.88, + "end": 8324.94, + "probability": 0.9922 + }, + { + "start": 8325.42, + "end": 8327.84, + "probability": 0.9691 + }, + { + "start": 8328.48, + "end": 8331.7, + "probability": 0.9602 + }, + { + "start": 8332.06, + "end": 8333.96, + "probability": 0.9077 + }, + { + "start": 8334.1, + "end": 8335.46, + "probability": 0.9216 + }, + { + "start": 8335.66, + "end": 8338.88, + "probability": 0.9956 + }, + { + "start": 8339.72, + "end": 8342.98, + "probability": 0.9485 + }, + { + "start": 8343.06, + "end": 8343.84, + "probability": 0.7948 + }, + { + "start": 8344.34, + "end": 8346.87, + "probability": 0.9324 + }, + { + "start": 8347.38, + "end": 8349.34, + "probability": 0.8173 + }, + { + "start": 8349.86, + "end": 8353.12, + "probability": 0.995 + }, + { + "start": 8353.3, + "end": 8353.98, + "probability": 0.9113 + }, + { + "start": 8354.6, + "end": 8360.22, + "probability": 0.9748 + }, + { + "start": 8360.22, + "end": 8363.64, + "probability": 0.9844 + }, + { + "start": 8364.14, + "end": 8366.52, + "probability": 0.8087 + }, + { + "start": 8367.36, + "end": 8370.34, + "probability": 0.8958 + }, + { + "start": 8370.96, + "end": 8371.98, + "probability": 0.9695 + }, + { + "start": 8372.86, + "end": 8373.96, + "probability": 0.8758 + }, + { + "start": 8374.14, + "end": 8376.12, + "probability": 0.9478 + }, + { + "start": 8376.52, + "end": 8379.28, + "probability": 0.9839 + }, + { + "start": 8379.78, + "end": 8388.82, + "probability": 0.9712 + }, + { + "start": 8389.28, + "end": 8395.2, + "probability": 0.9976 + }, + { + "start": 8395.48, + "end": 8398.6, + "probability": 0.999 + }, + { + "start": 8398.6, + "end": 8403.3, + "probability": 0.9974 + }, + { + "start": 8403.76, + "end": 8406.82, + "probability": 0.992 + }, + { + "start": 8407.72, + "end": 8411.48, + "probability": 0.9673 + }, + { + "start": 8411.88, + "end": 8414.32, + "probability": 0.9771 + }, + { + "start": 8414.4, + "end": 8416.82, + "probability": 0.9966 + }, + { + "start": 8417.38, + "end": 8422.48, + "probability": 0.9913 + }, + { + "start": 8422.48, + "end": 8426.72, + "probability": 0.798 + }, + { + "start": 8427.28, + "end": 8428.26, + "probability": 0.5113 + }, + { + "start": 8428.62, + "end": 8429.22, + "probability": 0.412 + }, + { + "start": 8429.92, + "end": 8435.2, + "probability": 0.9781 + }, + { + "start": 8435.28, + "end": 8436.28, + "probability": 0.8695 + }, + { + "start": 8436.64, + "end": 8438.21, + "probability": 0.6959 + }, + { + "start": 8438.82, + "end": 8442.3, + "probability": 0.9949 + }, + { + "start": 8442.88, + "end": 8446.16, + "probability": 0.8256 + }, + { + "start": 8446.4, + "end": 8448.5, + "probability": 0.8497 + }, + { + "start": 8448.56, + "end": 8451.38, + "probability": 0.9873 + }, + { + "start": 8451.76, + "end": 8456.5, + "probability": 0.9937 + }, + { + "start": 8456.56, + "end": 8456.86, + "probability": 0.0262 + }, + { + "start": 8457.9, + "end": 8458.9, + "probability": 0.1342 + }, + { + "start": 8460.2, + "end": 8463.26, + "probability": 0.096 + }, + { + "start": 8464.82, + "end": 8468.44, + "probability": 0.8592 + }, + { + "start": 8468.52, + "end": 8469.98, + "probability": 0.1378 + }, + { + "start": 8470.14, + "end": 8470.94, + "probability": 0.4807 + }, + { + "start": 8471.04, + "end": 8471.92, + "probability": 0.3201 + }, + { + "start": 8472.16, + "end": 8475.14, + "probability": 0.985 + }, + { + "start": 8475.22, + "end": 8479.58, + "probability": 0.9064 + }, + { + "start": 8480.0, + "end": 8482.46, + "probability": 0.8554 + }, + { + "start": 8482.84, + "end": 8484.72, + "probability": 0.8704 + }, + { + "start": 8485.08, + "end": 8486.67, + "probability": 0.9106 + }, + { + "start": 8487.04, + "end": 8487.86, + "probability": 0.8424 + }, + { + "start": 8487.88, + "end": 8490.36, + "probability": 0.9532 + }, + { + "start": 8490.76, + "end": 8492.14, + "probability": 0.9396 + }, + { + "start": 8492.9, + "end": 8494.86, + "probability": 0.9243 + }, + { + "start": 8495.3, + "end": 8496.68, + "probability": 0.9019 + }, + { + "start": 8496.92, + "end": 8499.34, + "probability": 0.9031 + }, + { + "start": 8499.5, + "end": 8504.38, + "probability": 0.9862 + }, + { + "start": 8504.76, + "end": 8506.18, + "probability": 0.7243 + }, + { + "start": 8506.32, + "end": 8509.52, + "probability": 0.9534 + }, + { + "start": 8509.7, + "end": 8514.76, + "probability": 0.9947 + }, + { + "start": 8515.4, + "end": 8516.31, + "probability": 0.7336 + }, + { + "start": 8516.88, + "end": 8518.16, + "probability": 0.9709 + }, + { + "start": 8518.44, + "end": 8519.16, + "probability": 0.3758 + }, + { + "start": 8519.18, + "end": 8520.94, + "probability": 0.891 + }, + { + "start": 8521.18, + "end": 8521.68, + "probability": 0.9663 + }, + { + "start": 8522.58, + "end": 8522.94, + "probability": 0.863 + }, + { + "start": 8524.34, + "end": 8527.74, + "probability": 0.9728 + }, + { + "start": 8527.84, + "end": 8529.82, + "probability": 0.9681 + }, + { + "start": 8530.44, + "end": 8535.58, + "probability": 0.9814 + }, + { + "start": 8536.02, + "end": 8537.62, + "probability": 0.8828 + }, + { + "start": 8537.8, + "end": 8538.9, + "probability": 0.9272 + }, + { + "start": 8539.12, + "end": 8539.86, + "probability": 0.8492 + }, + { + "start": 8540.14, + "end": 8540.92, + "probability": 0.8239 + }, + { + "start": 8541.14, + "end": 8543.52, + "probability": 0.9943 + }, + { + "start": 8543.96, + "end": 8544.54, + "probability": 0.3864 + }, + { + "start": 8544.62, + "end": 8551.0, + "probability": 0.992 + }, + { + "start": 8551.2, + "end": 8551.86, + "probability": 0.785 + }, + { + "start": 8552.34, + "end": 8553.96, + "probability": 0.9971 + }, + { + "start": 8554.1, + "end": 8554.64, + "probability": 0.8086 + }, + { + "start": 8554.78, + "end": 8556.42, + "probability": 0.9745 + }, + { + "start": 8556.92, + "end": 8559.92, + "probability": 0.9805 + }, + { + "start": 8560.42, + "end": 8566.24, + "probability": 0.993 + }, + { + "start": 8566.78, + "end": 8567.68, + "probability": 0.6409 + }, + { + "start": 8568.18, + "end": 8571.2, + "probability": 0.9611 + }, + { + "start": 8571.52, + "end": 8575.78, + "probability": 0.9351 + }, + { + "start": 8576.16, + "end": 8579.2, + "probability": 0.9651 + }, + { + "start": 8579.34, + "end": 8583.16, + "probability": 0.9878 + }, + { + "start": 8583.62, + "end": 8586.62, + "probability": 0.9893 + }, + { + "start": 8587.18, + "end": 8588.96, + "probability": 0.9718 + }, + { + "start": 8589.2, + "end": 8590.28, + "probability": 0.9252 + }, + { + "start": 8590.36, + "end": 8597.26, + "probability": 0.9973 + }, + { + "start": 8597.56, + "end": 8601.04, + "probability": 0.9965 + }, + { + "start": 8601.38, + "end": 8605.44, + "probability": 0.9404 + }, + { + "start": 8605.58, + "end": 8608.72, + "probability": 0.9934 + }, + { + "start": 8609.26, + "end": 8611.68, + "probability": 0.9749 + }, + { + "start": 8612.04, + "end": 8615.7, + "probability": 0.8895 + }, + { + "start": 8616.22, + "end": 8617.72, + "probability": 0.998 + }, + { + "start": 8617.88, + "end": 8621.34, + "probability": 0.988 + }, + { + "start": 8621.64, + "end": 8623.5, + "probability": 0.8639 + }, + { + "start": 8623.88, + "end": 8627.28, + "probability": 0.9553 + }, + { + "start": 8627.68, + "end": 8632.78, + "probability": 0.9492 + }, + { + "start": 8633.0, + "end": 8635.01, + "probability": 0.6068 + }, + { + "start": 8637.03, + "end": 8640.66, + "probability": 0.8772 + }, + { + "start": 8641.26, + "end": 8641.92, + "probability": 0.6304 + }, + { + "start": 8641.94, + "end": 8642.88, + "probability": 0.8049 + }, + { + "start": 8643.84, + "end": 8644.78, + "probability": 0.9779 + }, + { + "start": 8645.44, + "end": 8645.82, + "probability": 0.5639 + }, + { + "start": 8645.88, + "end": 8647.29, + "probability": 0.9836 + }, + { + "start": 8647.92, + "end": 8648.38, + "probability": 0.7839 + }, + { + "start": 8655.08, + "end": 8656.36, + "probability": 0.314 + }, + { + "start": 8656.9, + "end": 8657.78, + "probability": 0.8004 + }, + { + "start": 8658.0, + "end": 8660.4, + "probability": 0.952 + }, + { + "start": 8660.48, + "end": 8662.02, + "probability": 0.9048 + }, + { + "start": 8662.59, + "end": 8665.47, + "probability": 0.9354 + }, + { + "start": 8665.82, + "end": 8668.4, + "probability": 0.9849 + }, + { + "start": 8668.42, + "end": 8669.56, + "probability": 0.8765 + }, + { + "start": 8669.56, + "end": 8669.66, + "probability": 0.2804 + }, + { + "start": 8669.72, + "end": 8670.24, + "probability": 0.5424 + }, + { + "start": 8670.26, + "end": 8673.28, + "probability": 0.867 + }, + { + "start": 8673.28, + "end": 8677.3, + "probability": 0.9871 + }, + { + "start": 8677.3, + "end": 8681.26, + "probability": 0.9988 + }, + { + "start": 8681.78, + "end": 8688.0, + "probability": 0.9606 + }, + { + "start": 8688.32, + "end": 8692.3, + "probability": 0.785 + }, + { + "start": 8693.22, + "end": 8696.46, + "probability": 0.9607 + }, + { + "start": 8698.78, + "end": 8703.28, + "probability": 0.97 + }, + { + "start": 8704.16, + "end": 8714.32, + "probability": 0.9934 + }, + { + "start": 8714.66, + "end": 8715.18, + "probability": 0.8283 + }, + { + "start": 8715.62, + "end": 8721.94, + "probability": 0.9975 + }, + { + "start": 8722.38, + "end": 8724.58, + "probability": 0.9704 + }, + { + "start": 8725.02, + "end": 8725.88, + "probability": 0.8412 + }, + { + "start": 8726.08, + "end": 8730.48, + "probability": 0.9007 + }, + { + "start": 8731.36, + "end": 8735.76, + "probability": 0.9009 + }, + { + "start": 8736.34, + "end": 8741.26, + "probability": 0.9956 + }, + { + "start": 8741.54, + "end": 8744.98, + "probability": 0.6423 + }, + { + "start": 8745.26, + "end": 8746.19, + "probability": 0.9113 + }, + { + "start": 8746.64, + "end": 8750.54, + "probability": 0.9533 + }, + { + "start": 8751.02, + "end": 8751.88, + "probability": 0.9002 + }, + { + "start": 8752.02, + "end": 8753.16, + "probability": 0.9243 + }, + { + "start": 8753.56, + "end": 8758.46, + "probability": 0.993 + }, + { + "start": 8758.7, + "end": 8765.36, + "probability": 0.9462 + }, + { + "start": 8765.6, + "end": 8767.86, + "probability": 0.9575 + }, + { + "start": 8768.02, + "end": 8770.2, + "probability": 0.969 + }, + { + "start": 8771.78, + "end": 8777.04, + "probability": 0.5104 + }, + { + "start": 8777.5, + "end": 8778.98, + "probability": 0.8513 + }, + { + "start": 8779.04, + "end": 8782.08, + "probability": 0.7882 + }, + { + "start": 8782.2, + "end": 8784.1, + "probability": 0.7935 + }, + { + "start": 8784.1, + "end": 8785.98, + "probability": 0.6573 + }, + { + "start": 8786.52, + "end": 8787.64, + "probability": 0.79 + }, + { + "start": 8787.64, + "end": 8787.64, + "probability": 0.16 + }, + { + "start": 8787.64, + "end": 8788.2, + "probability": 0.4287 + }, + { + "start": 8788.3, + "end": 8789.9, + "probability": 0.5137 + }, + { + "start": 8790.0, + "end": 8790.24, + "probability": 0.7415 + }, + { + "start": 8790.9, + "end": 8795.22, + "probability": 0.989 + }, + { + "start": 8795.22, + "end": 8798.62, + "probability": 0.992 + }, + { + "start": 8799.1, + "end": 8802.32, + "probability": 0.988 + }, + { + "start": 8802.38, + "end": 8803.56, + "probability": 0.6839 + }, + { + "start": 8803.86, + "end": 8807.26, + "probability": 0.9716 + }, + { + "start": 8807.54, + "end": 8812.32, + "probability": 0.9945 + }, + { + "start": 8812.62, + "end": 8814.5, + "probability": 0.9751 + }, + { + "start": 8814.92, + "end": 8818.0, + "probability": 0.9952 + }, + { + "start": 8818.0, + "end": 8821.06, + "probability": 0.9931 + }, + { + "start": 8821.48, + "end": 8828.56, + "probability": 0.9924 + }, + { + "start": 8828.56, + "end": 8834.16, + "probability": 0.9917 + }, + { + "start": 8834.26, + "end": 8838.84, + "probability": 0.9946 + }, + { + "start": 8838.9, + "end": 8840.98, + "probability": 0.8082 + }, + { + "start": 8840.98, + "end": 8845.48, + "probability": 0.8819 + }, + { + "start": 8845.76, + "end": 8847.94, + "probability": 0.7722 + }, + { + "start": 8848.1, + "end": 8850.7, + "probability": 0.9973 + }, + { + "start": 8850.76, + "end": 8852.86, + "probability": 0.9944 + }, + { + "start": 8853.06, + "end": 8854.58, + "probability": 0.7527 + }, + { + "start": 8854.88, + "end": 8856.39, + "probability": 0.9938 + }, + { + "start": 8856.48, + "end": 8857.2, + "probability": 0.6554 + }, + { + "start": 8857.44, + "end": 8860.26, + "probability": 0.9927 + }, + { + "start": 8860.42, + "end": 8861.42, + "probability": 0.7708 + }, + { + "start": 8861.62, + "end": 8863.1, + "probability": 0.9666 + }, + { + "start": 8863.32, + "end": 8871.3, + "probability": 0.8166 + }, + { + "start": 8871.38, + "end": 8871.54, + "probability": 0.6104 + }, + { + "start": 8871.56, + "end": 8873.12, + "probability": 0.8859 + }, + { + "start": 8873.24, + "end": 8877.32, + "probability": 0.979 + }, + { + "start": 8877.56, + "end": 8878.98, + "probability": 0.7306 + }, + { + "start": 8879.04, + "end": 8880.44, + "probability": 0.5755 + }, + { + "start": 8880.44, + "end": 8882.94, + "probability": 0.7145 + }, + { + "start": 8883.48, + "end": 8884.18, + "probability": 0.5326 + }, + { + "start": 8885.62, + "end": 8889.88, + "probability": 0.916 + }, + { + "start": 8890.38, + "end": 8895.32, + "probability": 0.7617 + }, + { + "start": 8895.8, + "end": 8897.0, + "probability": 0.0628 + }, + { + "start": 8897.16, + "end": 8899.0, + "probability": 0.9899 + }, + { + "start": 8899.54, + "end": 8900.42, + "probability": 0.596 + }, + { + "start": 8900.54, + "end": 8901.18, + "probability": 0.7173 + }, + { + "start": 8901.24, + "end": 8902.1, + "probability": 0.8766 + }, + { + "start": 8906.78, + "end": 8907.14, + "probability": 0.3222 + }, + { + "start": 8908.8, + "end": 8913.38, + "probability": 0.0272 + }, + { + "start": 8913.38, + "end": 8916.34, + "probability": 0.0239 + }, + { + "start": 8918.44, + "end": 8918.44, + "probability": 0.1503 + }, + { + "start": 8918.44, + "end": 8922.62, + "probability": 0.4943 + }, + { + "start": 8923.22, + "end": 8925.1, + "probability": 0.8615 + }, + { + "start": 8925.82, + "end": 8927.56, + "probability": 0.9911 + }, + { + "start": 8927.78, + "end": 8928.66, + "probability": 0.7828 + }, + { + "start": 8929.06, + "end": 8931.18, + "probability": 0.8681 + }, + { + "start": 8931.22, + "end": 8932.76, + "probability": 0.9316 + }, + { + "start": 8932.86, + "end": 8936.5, + "probability": 0.9557 + }, + { + "start": 8937.7, + "end": 8939.0, + "probability": 0.8309 + }, + { + "start": 8939.18, + "end": 8940.34, + "probability": 0.5664 + }, + { + "start": 8940.42, + "end": 8942.16, + "probability": 0.9839 + }, + { + "start": 8942.7, + "end": 8943.34, + "probability": 0.732 + }, + { + "start": 8943.38, + "end": 8946.02, + "probability": 0.7683 + }, + { + "start": 8946.02, + "end": 8949.7, + "probability": 0.7687 + }, + { + "start": 8949.92, + "end": 8951.88, + "probability": 0.3918 + }, + { + "start": 8952.3, + "end": 8956.76, + "probability": 0.8906 + }, + { + "start": 8956.8, + "end": 8961.94, + "probability": 0.793 + }, + { + "start": 8962.12, + "end": 8964.16, + "probability": 0.8591 + }, + { + "start": 8964.64, + "end": 8968.03, + "probability": 0.7369 + }, + { + "start": 8968.78, + "end": 8972.22, + "probability": 0.4591 + }, + { + "start": 8972.42, + "end": 8974.46, + "probability": 0.3229 + }, + { + "start": 8974.94, + "end": 8979.16, + "probability": 0.8529 + }, + { + "start": 8979.4, + "end": 8981.18, + "probability": 0.6081 + }, + { + "start": 8981.48, + "end": 8984.76, + "probability": 0.6646 + }, + { + "start": 8985.14, + "end": 8987.26, + "probability": 0.1496 + }, + { + "start": 8987.54, + "end": 8991.08, + "probability": 0.8278 + }, + { + "start": 8991.96, + "end": 8993.14, + "probability": 0.7123 + }, + { + "start": 8994.2, + "end": 8997.86, + "probability": 0.9073 + }, + { + "start": 8998.02, + "end": 9000.8, + "probability": 0.64 + }, + { + "start": 9000.9, + "end": 9002.18, + "probability": 0.7723 + }, + { + "start": 9002.26, + "end": 9007.1, + "probability": 0.9246 + }, + { + "start": 9007.12, + "end": 9015.31, + "probability": 0.8707 + }, + { + "start": 9016.4, + "end": 9022.86, + "probability": 0.9414 + }, + { + "start": 9022.86, + "end": 9029.86, + "probability": 0.8672 + }, + { + "start": 9030.28, + "end": 9034.76, + "probability": 0.4334 + }, + { + "start": 9034.84, + "end": 9037.9, + "probability": 0.8314 + }, + { + "start": 9038.98, + "end": 9041.14, + "probability": 0.8626 + }, + { + "start": 9041.34, + "end": 9043.78, + "probability": 0.842 + }, + { + "start": 9044.16, + "end": 9047.18, + "probability": 0.4113 + }, + { + "start": 9047.3, + "end": 9047.64, + "probability": 0.8176 + }, + { + "start": 9048.8, + "end": 9050.52, + "probability": 0.8428 + }, + { + "start": 9050.84, + "end": 9051.34, + "probability": 0.8713 + }, + { + "start": 9052.26, + "end": 9053.69, + "probability": 0.8223 + }, + { + "start": 9053.8, + "end": 9054.48, + "probability": 0.6056 + }, + { + "start": 9054.68, + "end": 9058.32, + "probability": 0.7432 + }, + { + "start": 9058.32, + "end": 9059.76, + "probability": 0.8189 + }, + { + "start": 9059.96, + "end": 9061.52, + "probability": 0.0431 + }, + { + "start": 9061.76, + "end": 9066.0, + "probability": 0.8719 + }, + { + "start": 9066.4, + "end": 9068.58, + "probability": 0.9916 + }, + { + "start": 9068.64, + "end": 9069.12, + "probability": 0.5583 + }, + { + "start": 9069.8, + "end": 9070.7, + "probability": 0.8593 + }, + { + "start": 9080.08, + "end": 9082.94, + "probability": 0.7909 + }, + { + "start": 9084.17, + "end": 9089.36, + "probability": 0.9956 + }, + { + "start": 9090.12, + "end": 9091.24, + "probability": 0.9588 + }, + { + "start": 9091.72, + "end": 9093.42, + "probability": 0.9928 + }, + { + "start": 9093.62, + "end": 9098.56, + "probability": 0.999 + }, + { + "start": 9099.9, + "end": 9102.02, + "probability": 0.8054 + }, + { + "start": 9102.34, + "end": 9103.94, + "probability": 0.8183 + }, + { + "start": 9104.42, + "end": 9105.58, + "probability": 0.8634 + }, + { + "start": 9105.86, + "end": 9107.28, + "probability": 0.9654 + }, + { + "start": 9107.78, + "end": 9109.1, + "probability": 0.8522 + }, + { + "start": 9109.52, + "end": 9110.44, + "probability": 0.7979 + }, + { + "start": 9110.5, + "end": 9112.06, + "probability": 0.8756 + }, + { + "start": 9112.54, + "end": 9115.12, + "probability": 0.9362 + }, + { + "start": 9115.78, + "end": 9118.04, + "probability": 0.9938 + }, + { + "start": 9119.34, + "end": 9123.7, + "probability": 0.6975 + }, + { + "start": 9123.7, + "end": 9128.8, + "probability": 0.9947 + }, + { + "start": 9132.04, + "end": 9135.28, + "probability": 0.9694 + }, + { + "start": 9135.28, + "end": 9138.1, + "probability": 0.7501 + }, + { + "start": 9138.94, + "end": 9141.96, + "probability": 0.987 + }, + { + "start": 9142.7, + "end": 9145.58, + "probability": 0.9728 + }, + { + "start": 9146.02, + "end": 9149.9, + "probability": 0.9946 + }, + { + "start": 9149.9, + "end": 9155.0, + "probability": 0.967 + }, + { + "start": 9155.7, + "end": 9159.18, + "probability": 0.95 + }, + { + "start": 9159.78, + "end": 9162.82, + "probability": 0.9819 + }, + { + "start": 9163.84, + "end": 9168.26, + "probability": 0.9973 + }, + { + "start": 9168.26, + "end": 9175.74, + "probability": 0.799 + }, + { + "start": 9176.28, + "end": 9178.7, + "probability": 0.9486 + }, + { + "start": 9179.54, + "end": 9185.06, + "probability": 0.9697 + }, + { + "start": 9185.7, + "end": 9189.98, + "probability": 0.9858 + }, + { + "start": 9189.98, + "end": 9196.92, + "probability": 0.8633 + }, + { + "start": 9197.72, + "end": 9201.0, + "probability": 0.9757 + }, + { + "start": 9202.28, + "end": 9206.74, + "probability": 0.9971 + }, + { + "start": 9206.74, + "end": 9212.16, + "probability": 0.9932 + }, + { + "start": 9212.88, + "end": 9217.02, + "probability": 0.9498 + }, + { + "start": 9217.02, + "end": 9222.28, + "probability": 0.9924 + }, + { + "start": 9223.24, + "end": 9229.68, + "probability": 0.9798 + }, + { + "start": 9230.2, + "end": 9234.6, + "probability": 0.9365 + }, + { + "start": 9235.38, + "end": 9237.8, + "probability": 0.9561 + }, + { + "start": 9238.72, + "end": 9243.02, + "probability": 0.9832 + }, + { + "start": 9243.02, + "end": 9247.32, + "probability": 0.6717 + }, + { + "start": 9247.84, + "end": 9248.78, + "probability": 0.662 + }, + { + "start": 9249.12, + "end": 9253.36, + "probability": 0.9969 + }, + { + "start": 9254.22, + "end": 9255.04, + "probability": 0.6895 + }, + { + "start": 9255.04, + "end": 9259.28, + "probability": 0.9563 + }, + { + "start": 9259.3, + "end": 9262.26, + "probability": 0.9914 + }, + { + "start": 9262.26, + "end": 9264.56, + "probability": 0.6763 + }, + { + "start": 9264.86, + "end": 9269.1, + "probability": 0.962 + }, + { + "start": 9269.1, + "end": 9271.38, + "probability": 0.9694 + }, + { + "start": 9271.72, + "end": 9272.32, + "probability": 0.691 + }, + { + "start": 9272.34, + "end": 9275.86, + "probability": 0.8743 + }, + { + "start": 9276.14, + "end": 9277.68, + "probability": 0.785 + }, + { + "start": 9277.78, + "end": 9283.02, + "probability": 0.5264 + }, + { + "start": 9283.44, + "end": 9284.72, + "probability": 0.6731 + }, + { + "start": 9284.8, + "end": 9285.76, + "probability": 0.8562 + }, + { + "start": 9285.96, + "end": 9288.96, + "probability": 0.9598 + }, + { + "start": 9289.06, + "end": 9290.04, + "probability": 0.796 + }, + { + "start": 9290.48, + "end": 9291.59, + "probability": 0.8999 + }, + { + "start": 9291.96, + "end": 9292.82, + "probability": 0.9534 + }, + { + "start": 9292.94, + "end": 9293.42, + "probability": 0.4462 + }, + { + "start": 9293.58, + "end": 9294.26, + "probability": 0.4793 + }, + { + "start": 9294.48, + "end": 9295.22, + "probability": 0.6917 + }, + { + "start": 9295.28, + "end": 9296.82, + "probability": 0.8862 + }, + { + "start": 9297.22, + "end": 9299.84, + "probability": 0.7581 + }, + { + "start": 9300.32, + "end": 9300.52, + "probability": 0.3027 + }, + { + "start": 9300.62, + "end": 9302.96, + "probability": 0.8433 + }, + { + "start": 9303.1, + "end": 9304.66, + "probability": 0.9607 + }, + { + "start": 9304.84, + "end": 9305.98, + "probability": 0.897 + }, + { + "start": 9306.12, + "end": 9309.0, + "probability": 0.9761 + }, + { + "start": 9309.08, + "end": 9309.68, + "probability": 0.8505 + }, + { + "start": 9310.32, + "end": 9312.88, + "probability": 0.9716 + }, + { + "start": 9313.24, + "end": 9316.32, + "probability": 0.9209 + }, + { + "start": 9316.34, + "end": 9316.76, + "probability": 0.8972 + }, + { + "start": 9331.06, + "end": 9333.8, + "probability": 0.6707 + }, + { + "start": 9334.7, + "end": 9337.68, + "probability": 0.7298 + }, + { + "start": 9337.78, + "end": 9339.42, + "probability": 0.8518 + }, + { + "start": 9339.46, + "end": 9345.08, + "probability": 0.9843 + }, + { + "start": 9345.18, + "end": 9348.96, + "probability": 0.7535 + }, + { + "start": 9349.14, + "end": 9351.8, + "probability": 0.4475 + }, + { + "start": 9352.32, + "end": 9355.3, + "probability": 0.9976 + }, + { + "start": 9355.52, + "end": 9358.56, + "probability": 0.9951 + }, + { + "start": 9359.34, + "end": 9362.4, + "probability": 0.9467 + }, + { + "start": 9362.76, + "end": 9366.52, + "probability": 0.889 + }, + { + "start": 9367.44, + "end": 9371.42, + "probability": 0.9836 + }, + { + "start": 9371.42, + "end": 9377.36, + "probability": 0.996 + }, + { + "start": 9378.1, + "end": 9378.5, + "probability": 0.4497 + }, + { + "start": 9378.66, + "end": 9385.36, + "probability": 0.9834 + }, + { + "start": 9385.36, + "end": 9391.72, + "probability": 0.9965 + }, + { + "start": 9392.4, + "end": 9398.58, + "probability": 0.9881 + }, + { + "start": 9398.72, + "end": 9399.86, + "probability": 0.7875 + }, + { + "start": 9400.2, + "end": 9401.76, + "probability": 0.8973 + }, + { + "start": 9402.16, + "end": 9402.62, + "probability": 0.9873 + }, + { + "start": 9403.14, + "end": 9408.82, + "probability": 0.9927 + }, + { + "start": 9408.98, + "end": 9410.66, + "probability": 0.9386 + }, + { + "start": 9411.12, + "end": 9413.9, + "probability": 0.9932 + }, + { + "start": 9413.94, + "end": 9415.16, + "probability": 0.7453 + }, + { + "start": 9415.68, + "end": 9416.73, + "probability": 0.534 + }, + { + "start": 9418.68, + "end": 9425.74, + "probability": 0.9126 + }, + { + "start": 9426.04, + "end": 9430.6, + "probability": 0.9893 + }, + { + "start": 9430.6, + "end": 9435.28, + "probability": 0.9489 + }, + { + "start": 9435.5, + "end": 9438.98, + "probability": 0.9927 + }, + { + "start": 9439.1, + "end": 9444.16, + "probability": 0.9715 + }, + { + "start": 9444.36, + "end": 9449.86, + "probability": 0.9832 + }, + { + "start": 9450.52, + "end": 9452.52, + "probability": 0.9292 + }, + { + "start": 9452.84, + "end": 9457.64, + "probability": 0.8813 + }, + { + "start": 9457.76, + "end": 9461.32, + "probability": 0.4552 + }, + { + "start": 9461.44, + "end": 9463.55, + "probability": 0.9938 + }, + { + "start": 9466.16, + "end": 9466.92, + "probability": 0.6212 + }, + { + "start": 9467.08, + "end": 9472.47, + "probability": 0.9875 + }, + { + "start": 9472.76, + "end": 9474.54, + "probability": 0.6498 + }, + { + "start": 9474.66, + "end": 9478.04, + "probability": 0.9923 + }, + { + "start": 9480.14, + "end": 9486.16, + "probability": 0.7102 + }, + { + "start": 9486.68, + "end": 9489.64, + "probability": 0.9757 + }, + { + "start": 9490.34, + "end": 9495.5, + "probability": 0.9521 + }, + { + "start": 9496.26, + "end": 9499.82, + "probability": 0.9906 + }, + { + "start": 9499.82, + "end": 9503.16, + "probability": 0.9935 + }, + { + "start": 9504.06, + "end": 9508.46, + "probability": 0.9604 + }, + { + "start": 9508.52, + "end": 9509.45, + "probability": 0.9048 + }, + { + "start": 9510.18, + "end": 9515.02, + "probability": 0.9826 + }, + { + "start": 9515.02, + "end": 9520.3, + "probability": 0.9889 + }, + { + "start": 9521.44, + "end": 9524.94, + "probability": 0.9881 + }, + { + "start": 9524.94, + "end": 9528.14, + "probability": 0.9896 + }, + { + "start": 9528.84, + "end": 9530.26, + "probability": 0.243 + }, + { + "start": 9531.92, + "end": 9536.78, + "probability": 0.123 + }, + { + "start": 9536.98, + "end": 9540.06, + "probability": 0.8063 + }, + { + "start": 9540.18, + "end": 9541.48, + "probability": 0.5489 + }, + { + "start": 9541.84, + "end": 9546.42, + "probability": 0.9191 + }, + { + "start": 9546.52, + "end": 9547.32, + "probability": 0.7935 + }, + { + "start": 9549.49, + "end": 9550.96, + "probability": 0.0597 + }, + { + "start": 9550.96, + "end": 9554.76, + "probability": 0.9255 + }, + { + "start": 9554.82, + "end": 9555.1, + "probability": 0.4822 + }, + { + "start": 9555.32, + "end": 9555.56, + "probability": 0.3289 + }, + { + "start": 9555.68, + "end": 9556.6, + "probability": 0.3231 + }, + { + "start": 9556.92, + "end": 9557.94, + "probability": 0.7296 + }, + { + "start": 9558.96, + "end": 9561.22, + "probability": 0.824 + }, + { + "start": 9561.92, + "end": 9564.76, + "probability": 0.732 + }, + { + "start": 9565.04, + "end": 9566.64, + "probability": 0.012 + }, + { + "start": 9567.1, + "end": 9569.08, + "probability": 0.7426 + }, + { + "start": 9569.78, + "end": 9571.6, + "probability": 0.2935 + }, + { + "start": 9572.66, + "end": 9572.76, + "probability": 0.1239 + }, + { + "start": 9573.44, + "end": 9575.24, + "probability": 0.1635 + }, + { + "start": 9575.66, + "end": 9576.7, + "probability": 0.4648 + }, + { + "start": 9577.4, + "end": 9580.38, + "probability": 0.7304 + }, + { + "start": 9580.96, + "end": 9585.68, + "probability": 0.9945 + }, + { + "start": 9585.68, + "end": 9591.08, + "probability": 0.9967 + }, + { + "start": 9591.24, + "end": 9591.98, + "probability": 0.7273 + }, + { + "start": 9592.22, + "end": 9595.64, + "probability": 0.9965 + }, + { + "start": 9595.64, + "end": 9600.4, + "probability": 0.9919 + }, + { + "start": 9601.12, + "end": 9605.62, + "probability": 0.9897 + }, + { + "start": 9606.2, + "end": 9612.0, + "probability": 0.9985 + }, + { + "start": 9612.7, + "end": 9613.1, + "probability": 0.586 + }, + { + "start": 9613.26, + "end": 9615.61, + "probability": 0.9863 + }, + { + "start": 9615.9, + "end": 9619.94, + "probability": 0.9123 + }, + { + "start": 9620.32, + "end": 9622.9, + "probability": 0.9957 + }, + { + "start": 9622.9, + "end": 9626.82, + "probability": 0.9909 + }, + { + "start": 9627.48, + "end": 9628.86, + "probability": 0.7957 + }, + { + "start": 9629.12, + "end": 9634.86, + "probability": 0.9905 + }, + { + "start": 9635.04, + "end": 9642.58, + "probability": 0.9954 + }, + { + "start": 9642.58, + "end": 9649.02, + "probability": 0.9987 + }, + { + "start": 9649.4, + "end": 9656.24, + "probability": 0.9984 + }, + { + "start": 9656.24, + "end": 9662.38, + "probability": 0.9995 + }, + { + "start": 9662.7, + "end": 9664.33, + "probability": 0.725 + }, + { + "start": 9665.22, + "end": 9671.47, + "probability": 0.9981 + }, + { + "start": 9672.5, + "end": 9679.08, + "probability": 0.9972 + }, + { + "start": 9679.08, + "end": 9686.26, + "probability": 0.9979 + }, + { + "start": 9687.34, + "end": 9688.32, + "probability": 0.6816 + }, + { + "start": 9689.54, + "end": 9695.86, + "probability": 0.9793 + }, + { + "start": 9695.86, + "end": 9700.98, + "probability": 0.9977 + }, + { + "start": 9700.98, + "end": 9706.58, + "probability": 0.9941 + }, + { + "start": 9707.16, + "end": 9707.52, + "probability": 0.6099 + }, + { + "start": 9707.76, + "end": 9708.88, + "probability": 0.7448 + }, + { + "start": 9708.94, + "end": 9709.86, + "probability": 0.7809 + }, + { + "start": 9710.24, + "end": 9713.1, + "probability": 0.9865 + }, + { + "start": 9713.18, + "end": 9713.54, + "probability": 0.7581 + }, + { + "start": 9713.7, + "end": 9715.96, + "probability": 0.6063 + }, + { + "start": 9716.4, + "end": 9718.88, + "probability": 0.8609 + }, + { + "start": 9718.88, + "end": 9720.03, + "probability": 0.8752 + }, + { + "start": 9722.1, + "end": 9724.5, + "probability": 0.0464 + }, + { + "start": 9725.32, + "end": 9725.34, + "probability": 0.1825 + }, + { + "start": 9726.0, + "end": 9730.46, + "probability": 0.5752 + }, + { + "start": 9731.88, + "end": 9733.0, + "probability": 0.6419 + }, + { + "start": 9733.96, + "end": 9735.98, + "probability": 0.9839 + }, + { + "start": 9737.36, + "end": 9740.37, + "probability": 0.9912 + }, + { + "start": 9742.18, + "end": 9746.92, + "probability": 0.986 + }, + { + "start": 9747.78, + "end": 9749.0, + "probability": 0.8054 + }, + { + "start": 9749.3, + "end": 9750.96, + "probability": 0.8998 + }, + { + "start": 9751.26, + "end": 9753.02, + "probability": 0.9883 + }, + { + "start": 9753.62, + "end": 9754.74, + "probability": 0.6566 + }, + { + "start": 9754.84, + "end": 9755.34, + "probability": 0.5532 + }, + { + "start": 9755.62, + "end": 9759.72, + "probability": 0.5821 + }, + { + "start": 9761.14, + "end": 9764.6, + "probability": 0.7956 + }, + { + "start": 9765.16, + "end": 9766.48, + "probability": 0.9555 + }, + { + "start": 9766.66, + "end": 9770.46, + "probability": 0.7369 + }, + { + "start": 9770.7, + "end": 9774.92, + "probability": 0.7478 + }, + { + "start": 9776.0, + "end": 9777.64, + "probability": 0.7215 + }, + { + "start": 9777.74, + "end": 9778.28, + "probability": 0.7775 + }, + { + "start": 9778.46, + "end": 9783.58, + "probability": 0.5613 + }, + { + "start": 9784.12, + "end": 9785.04, + "probability": 0.6705 + }, + { + "start": 9786.98, + "end": 9788.18, + "probability": 0.5789 + }, + { + "start": 9788.7, + "end": 9791.54, + "probability": 0.9146 + }, + { + "start": 9792.06, + "end": 9794.09, + "probability": 0.9712 + }, + { + "start": 9794.21, + "end": 9796.67, + "probability": 0.9565 + }, + { + "start": 9797.07, + "end": 9798.51, + "probability": 0.7746 + }, + { + "start": 9798.87, + "end": 9800.77, + "probability": 0.9264 + }, + { + "start": 9801.23, + "end": 9803.75, + "probability": 0.9805 + }, + { + "start": 9803.91, + "end": 9808.33, + "probability": 0.8743 + }, + { + "start": 9808.33, + "end": 9810.25, + "probability": 0.9902 + }, + { + "start": 9810.81, + "end": 9812.59, + "probability": 0.8401 + }, + { + "start": 9813.29, + "end": 9815.15, + "probability": 0.3241 + }, + { + "start": 9815.71, + "end": 9816.23, + "probability": 0.3032 + }, + { + "start": 9817.49, + "end": 9817.49, + "probability": 0.404 + }, + { + "start": 9817.49, + "end": 9817.57, + "probability": 0.2508 + }, + { + "start": 9819.57, + "end": 9822.69, + "probability": 0.085 + }, + { + "start": 9824.51, + "end": 9826.73, + "probability": 0.0369 + }, + { + "start": 9827.51, + "end": 9830.15, + "probability": 0.1681 + }, + { + "start": 9830.79, + "end": 9832.15, + "probability": 0.1799 + }, + { + "start": 9832.15, + "end": 9832.15, + "probability": 0.1563 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.0, + "end": 9944.0, + "probability": 0.0 + }, + { + "start": 9944.18, + "end": 9944.44, + "probability": 0.0004 + }, + { + "start": 9944.5, + "end": 9945.1, + "probability": 0.189 + }, + { + "start": 9945.53, + "end": 9947.82, + "probability": 0.9111 + }, + { + "start": 9947.92, + "end": 9948.92, + "probability": 0.8578 + }, + { + "start": 9971.02, + "end": 9973.82, + "probability": 0.6672 + }, + { + "start": 9974.94, + "end": 9977.04, + "probability": 0.88 + }, + { + "start": 9979.38, + "end": 9982.04, + "probability": 0.7601 + }, + { + "start": 9983.34, + "end": 9986.06, + "probability": 0.9542 + }, + { + "start": 9986.68, + "end": 9987.3, + "probability": 0.4348 + }, + { + "start": 9987.4, + "end": 9989.36, + "probability": 0.9649 + }, + { + "start": 9989.62, + "end": 9991.72, + "probability": 0.7271 + }, + { + "start": 9992.28, + "end": 9993.88, + "probability": 0.7933 + }, + { + "start": 9997.45, + "end": 10004.12, + "probability": 0.6847 + }, + { + "start": 10005.37, + "end": 10010.98, + "probability": 0.9644 + }, + { + "start": 10011.16, + "end": 10016.82, + "probability": 0.7411 + }, + { + "start": 10017.52, + "end": 10019.32, + "probability": 0.7648 + }, + { + "start": 10019.46, + "end": 10020.2, + "probability": 0.8338 + }, + { + "start": 10020.26, + "end": 10021.08, + "probability": 0.9791 + }, + { + "start": 10021.16, + "end": 10023.32, + "probability": 0.9582 + }, + { + "start": 10023.76, + "end": 10024.84, + "probability": 0.6422 + }, + { + "start": 10025.3, + "end": 10028.21, + "probability": 0.8406 + }, + { + "start": 10029.36, + "end": 10033.96, + "probability": 0.9744 + }, + { + "start": 10034.04, + "end": 10034.8, + "probability": 0.9315 + }, + { + "start": 10035.06, + "end": 10037.33, + "probability": 0.8996 + }, + { + "start": 10037.74, + "end": 10038.44, + "probability": 0.486 + }, + { + "start": 10038.88, + "end": 10039.37, + "probability": 0.5171 + }, + { + "start": 10039.9, + "end": 10040.32, + "probability": 0.7556 + }, + { + "start": 10040.44, + "end": 10045.5, + "probability": 0.847 + }, + { + "start": 10047.66, + "end": 10048.5, + "probability": 0.207 + }, + { + "start": 10050.94, + "end": 10055.68, + "probability": 0.7659 + }, + { + "start": 10059.78, + "end": 10060.4, + "probability": 0.6044 + }, + { + "start": 10061.76, + "end": 10064.86, + "probability": 0.6425 + }, + { + "start": 10065.14, + "end": 10067.58, + "probability": 0.9946 + }, + { + "start": 10068.62, + "end": 10073.4, + "probability": 0.7492 + }, + { + "start": 10073.6, + "end": 10076.2, + "probability": 0.789 + }, + { + "start": 10077.56, + "end": 10078.12, + "probability": 0.9333 + }, + { + "start": 10078.96, + "end": 10084.02, + "probability": 0.9307 + }, + { + "start": 10085.32, + "end": 10087.12, + "probability": 0.7863 + }, + { + "start": 10088.28, + "end": 10089.34, + "probability": 0.963 + }, + { + "start": 10089.46, + "end": 10090.61, + "probability": 0.9128 + }, + { + "start": 10091.04, + "end": 10092.5, + "probability": 0.7547 + }, + { + "start": 10092.84, + "end": 10094.9, + "probability": 0.8694 + }, + { + "start": 10095.64, + "end": 10099.0, + "probability": 0.5074 + }, + { + "start": 10099.44, + "end": 10100.3, + "probability": 0.8483 + }, + { + "start": 10100.34, + "end": 10104.26, + "probability": 0.8265 + }, + { + "start": 10104.9, + "end": 10106.08, + "probability": 0.8408 + }, + { + "start": 10106.5, + "end": 10109.2, + "probability": 0.9474 + }, + { + "start": 10109.48, + "end": 10114.44, + "probability": 0.9458 + }, + { + "start": 10114.54, + "end": 10115.72, + "probability": 0.9966 + }, + { + "start": 10116.88, + "end": 10117.16, + "probability": 0.5049 + }, + { + "start": 10117.36, + "end": 10119.86, + "probability": 0.6159 + }, + { + "start": 10120.02, + "end": 10121.22, + "probability": 0.7265 + }, + { + "start": 10121.6, + "end": 10124.04, + "probability": 0.9523 + }, + { + "start": 10127.4, + "end": 10128.14, + "probability": 0.4675 + }, + { + "start": 10129.66, + "end": 10130.46, + "probability": 0.6081 + }, + { + "start": 10130.88, + "end": 10135.4, + "probability": 0.6895 + }, + { + "start": 10135.52, + "end": 10136.04, + "probability": 0.7814 + }, + { + "start": 10136.26, + "end": 10138.44, + "probability": 0.9689 + }, + { + "start": 10139.39, + "end": 10141.94, + "probability": 0.9626 + }, + { + "start": 10142.8, + "end": 10144.87, + "probability": 0.8419 + }, + { + "start": 10149.7, + "end": 10150.86, + "probability": 0.7845 + }, + { + "start": 10151.12, + "end": 10152.1, + "probability": 0.9344 + }, + { + "start": 10152.18, + "end": 10153.03, + "probability": 0.7534 + }, + { + "start": 10153.26, + "end": 10155.7, + "probability": 0.512 + }, + { + "start": 10156.4, + "end": 10159.32, + "probability": 0.5411 + }, + { + "start": 10159.44, + "end": 10161.0, + "probability": 0.8936 + }, + { + "start": 10161.92, + "end": 10162.54, + "probability": 0.6857 + }, + { + "start": 10162.6, + "end": 10163.02, + "probability": 0.6652 + }, + { + "start": 10163.12, + "end": 10163.54, + "probability": 0.5604 + }, + { + "start": 10164.32, + "end": 10167.7, + "probability": 0.0797 + }, + { + "start": 10169.4, + "end": 10178.2, + "probability": 0.0868 + }, + { + "start": 10179.2, + "end": 10183.2, + "probability": 0.6376 + }, + { + "start": 10183.38, + "end": 10185.23, + "probability": 0.9303 + }, + { + "start": 10186.98, + "end": 10188.3, + "probability": 0.652 + }, + { + "start": 10188.38, + "end": 10192.2, + "probability": 0.8055 + }, + { + "start": 10192.38, + "end": 10196.48, + "probability": 0.9941 + }, + { + "start": 10196.48, + "end": 10201.6, + "probability": 0.6497 + }, + { + "start": 10202.14, + "end": 10206.16, + "probability": 0.5477 + }, + { + "start": 10206.32, + "end": 10207.54, + "probability": 0.7313 + }, + { + "start": 10207.58, + "end": 10207.96, + "probability": 0.6444 + }, + { + "start": 10209.51, + "end": 10212.06, + "probability": 0.9771 + }, + { + "start": 10213.38, + "end": 10215.14, + "probability": 0.6551 + }, + { + "start": 10222.3, + "end": 10226.3, + "probability": 0.7939 + }, + { + "start": 10230.52, + "end": 10232.2, + "probability": 0.8042 + }, + { + "start": 10233.38, + "end": 10235.56, + "probability": 0.627 + }, + { + "start": 10235.56, + "end": 10236.28, + "probability": 0.4002 + }, + { + "start": 10236.28, + "end": 10241.32, + "probability": 0.9673 + }, + { + "start": 10241.72, + "end": 10247.32, + "probability": 0.8624 + }, + { + "start": 10247.42, + "end": 10250.08, + "probability": 0.9702 + }, + { + "start": 10250.84, + "end": 10254.04, + "probability": 0.9956 + }, + { + "start": 10255.7, + "end": 10256.26, + "probability": 0.866 + }, + { + "start": 10259.9, + "end": 10261.28, + "probability": 0.8351 + }, + { + "start": 10262.72, + "end": 10266.56, + "probability": 0.9976 + }, + { + "start": 10266.56, + "end": 10270.26, + "probability": 0.9968 + }, + { + "start": 10271.08, + "end": 10274.66, + "probability": 0.9978 + }, + { + "start": 10274.66, + "end": 10278.0, + "probability": 0.9982 + }, + { + "start": 10278.0, + "end": 10282.7, + "probability": 0.71 + }, + { + "start": 10282.88, + "end": 10284.16, + "probability": 0.6124 + }, + { + "start": 10284.22, + "end": 10287.2, + "probability": 0.7992 + }, + { + "start": 10287.36, + "end": 10287.92, + "probability": 0.7821 + }, + { + "start": 10287.98, + "end": 10288.88, + "probability": 0.9368 + }, + { + "start": 10289.02, + "end": 10290.3, + "probability": 0.6748 + }, + { + "start": 10290.88, + "end": 10294.62, + "probability": 0.7603 + }, + { + "start": 10295.3, + "end": 10296.26, + "probability": 0.9338 + }, + { + "start": 10296.5, + "end": 10297.02, + "probability": 0.7844 + }, + { + "start": 10297.2, + "end": 10297.56, + "probability": 0.4736 + }, + { + "start": 10297.64, + "end": 10299.96, + "probability": 0.5072 + }, + { + "start": 10300.1, + "end": 10300.56, + "probability": 0.1614 + }, + { + "start": 10300.78, + "end": 10301.2, + "probability": 0.1004 + }, + { + "start": 10301.74, + "end": 10305.92, + "probability": 0.8574 + }, + { + "start": 10306.52, + "end": 10307.18, + "probability": 0.7063 + }, + { + "start": 10307.28, + "end": 10308.4, + "probability": 0.8385 + }, + { + "start": 10308.6, + "end": 10309.1, + "probability": 0.7041 + }, + { + "start": 10309.22, + "end": 10311.82, + "probability": 0.7558 + }, + { + "start": 10311.92, + "end": 10313.8, + "probability": 0.969 + }, + { + "start": 10314.4, + "end": 10315.02, + "probability": 0.909 + }, + { + "start": 10315.1, + "end": 10315.78, + "probability": 0.8341 + }, + { + "start": 10315.86, + "end": 10317.49, + "probability": 0.9902 + }, + { + "start": 10318.34, + "end": 10321.1, + "probability": 0.9822 + }, + { + "start": 10321.1, + "end": 10323.82, + "probability": 0.8424 + }, + { + "start": 10324.9, + "end": 10330.0, + "probability": 0.9917 + }, + { + "start": 10330.0, + "end": 10333.74, + "probability": 0.7212 + }, + { + "start": 10333.74, + "end": 10336.96, + "probability": 0.9744 + }, + { + "start": 10336.96, + "end": 10340.04, + "probability": 0.992 + }, + { + "start": 10340.2, + "end": 10341.06, + "probability": 0.7756 + }, + { + "start": 10341.16, + "end": 10341.68, + "probability": 0.6144 + }, + { + "start": 10342.78, + "end": 10343.48, + "probability": 0.0935 + }, + { + "start": 10343.48, + "end": 10343.48, + "probability": 0.164 + }, + { + "start": 10343.48, + "end": 10346.5, + "probability": 0.5667 + }, + { + "start": 10346.58, + "end": 10348.5, + "probability": 0.9686 + }, + { + "start": 10349.22, + "end": 10351.06, + "probability": 0.899 + }, + { + "start": 10351.16, + "end": 10351.66, + "probability": 0.9454 + }, + { + "start": 10351.76, + "end": 10352.54, + "probability": 0.7918 + }, + { + "start": 10352.66, + "end": 10354.44, + "probability": 0.9634 + }, + { + "start": 10355.52, + "end": 10356.14, + "probability": 0.7596 + }, + { + "start": 10356.26, + "end": 10357.48, + "probability": 0.802 + }, + { + "start": 10357.8, + "end": 10358.32, + "probability": 0.6844 + }, + { + "start": 10358.4, + "end": 10359.84, + "probability": 0.7277 + }, + { + "start": 10359.96, + "end": 10360.98, + "probability": 0.9451 + }, + { + "start": 10361.4, + "end": 10361.84, + "probability": 0.9799 + }, + { + "start": 10361.92, + "end": 10363.74, + "probability": 0.6844 + }, + { + "start": 10363.82, + "end": 10365.54, + "probability": 0.9471 + }, + { + "start": 10366.0, + "end": 10366.48, + "probability": 0.8426 + }, + { + "start": 10366.62, + "end": 10367.24, + "probability": 0.591 + }, + { + "start": 10367.26, + "end": 10368.94, + "probability": 0.9492 + }, + { + "start": 10369.18, + "end": 10371.08, + "probability": 0.9207 + }, + { + "start": 10371.74, + "end": 10373.54, + "probability": 0.9213 + }, + { + "start": 10374.06, + "end": 10376.4, + "probability": 0.0566 + }, + { + "start": 10376.46, + "end": 10379.42, + "probability": 0.9435 + }, + { + "start": 10379.52, + "end": 10381.36, + "probability": 0.8287 + }, + { + "start": 10381.78, + "end": 10382.52, + "probability": 0.8707 + }, + { + "start": 10382.66, + "end": 10383.96, + "probability": 0.9569 + }, + { + "start": 10384.24, + "end": 10385.38, + "probability": 0.7166 + }, + { + "start": 10385.48, + "end": 10388.64, + "probability": 0.8007 + }, + { + "start": 10389.0, + "end": 10389.0, + "probability": 0.0 + }, + { + "start": 10389.0, + "end": 10389.0, + "probability": 0.0 + }, + { + "start": 10389.0, + "end": 10389.0, + "probability": 0.0 + }, + { + "start": 10389.0, + "end": 10389.0, + "probability": 0.0 + }, + { + "start": 10394.4, + "end": 10396.28, + "probability": 0.8572 + }, + { + "start": 10396.7, + "end": 10400.62, + "probability": 0.9518 + }, + { + "start": 10400.76, + "end": 10404.86, + "probability": 0.9889 + }, + { + "start": 10405.0, + "end": 10406.86, + "probability": 0.8866 + }, + { + "start": 10406.96, + "end": 10407.92, + "probability": 0.7189 + }, + { + "start": 10408.52, + "end": 10413.1, + "probability": 0.9724 + }, + { + "start": 10413.86, + "end": 10414.66, + "probability": 0.7994 + }, + { + "start": 10414.84, + "end": 10417.6, + "probability": 0.9861 + }, + { + "start": 10417.6, + "end": 10421.7, + "probability": 0.807 + }, + { + "start": 10421.86, + "end": 10425.44, + "probability": 0.9387 + }, + { + "start": 10425.7, + "end": 10426.96, + "probability": 0.6119 + }, + { + "start": 10427.1, + "end": 10431.7, + "probability": 0.9338 + }, + { + "start": 10431.86, + "end": 10433.3, + "probability": 0.1931 + }, + { + "start": 10433.88, + "end": 10436.36, + "probability": 0.9766 + }, + { + "start": 10436.82, + "end": 10441.2, + "probability": 0.9086 + }, + { + "start": 10441.36, + "end": 10443.96, + "probability": 0.9188 + }, + { + "start": 10444.46, + "end": 10444.64, + "probability": 0.0407 + }, + { + "start": 10444.64, + "end": 10447.3, + "probability": 0.8169 + }, + { + "start": 10447.66, + "end": 10450.6, + "probability": 0.9 + }, + { + "start": 10450.84, + "end": 10452.0, + "probability": 0.7383 + }, + { + "start": 10458.38, + "end": 10459.26, + "probability": 0.6454 + }, + { + "start": 10459.94, + "end": 10462.02, + "probability": 0.958 + }, + { + "start": 10462.02, + "end": 10465.16, + "probability": 0.9332 + }, + { + "start": 10465.64, + "end": 10468.98, + "probability": 0.905 + }, + { + "start": 10469.74, + "end": 10471.08, + "probability": 0.8108 + }, + { + "start": 10471.2, + "end": 10472.58, + "probability": 0.862 + }, + { + "start": 10472.62, + "end": 10477.58, + "probability": 0.9684 + }, + { + "start": 10478.64, + "end": 10481.2, + "probability": 0.9553 + }, + { + "start": 10483.46, + "end": 10484.36, + "probability": 0.7117 + }, + { + "start": 10484.42, + "end": 10486.36, + "probability": 0.7242 + }, + { + "start": 10486.8, + "end": 10489.51, + "probability": 0.9719 + }, + { + "start": 10489.86, + "end": 10494.31, + "probability": 0.9971 + }, + { + "start": 10494.98, + "end": 10500.24, + "probability": 0.979 + }, + { + "start": 10500.3, + "end": 10504.78, + "probability": 0.9966 + }, + { + "start": 10504.96, + "end": 10509.84, + "probability": 0.9919 + }, + { + "start": 10510.46, + "end": 10517.04, + "probability": 0.9955 + }, + { + "start": 10517.04, + "end": 10520.96, + "probability": 0.9965 + }, + { + "start": 10521.88, + "end": 10523.92, + "probability": 0.9929 + }, + { + "start": 10524.66, + "end": 10526.26, + "probability": 0.97 + }, + { + "start": 10526.88, + "end": 10532.72, + "probability": 0.9832 + }, + { + "start": 10533.12, + "end": 10539.28, + "probability": 0.9967 + }, + { + "start": 10539.28, + "end": 10545.5, + "probability": 0.9915 + }, + { + "start": 10546.1, + "end": 10547.44, + "probability": 0.9966 + }, + { + "start": 10548.1, + "end": 10550.14, + "probability": 0.8789 + }, + { + "start": 10550.46, + "end": 10551.32, + "probability": 0.8647 + }, + { + "start": 10551.58, + "end": 10551.64, + "probability": 0.5017 + }, + { + "start": 10551.64, + "end": 10557.36, + "probability": 0.9822 + }, + { + "start": 10557.5, + "end": 10558.44, + "probability": 0.7252 + }, + { + "start": 10559.32, + "end": 10560.04, + "probability": 0.657 + }, + { + "start": 10560.16, + "end": 10560.76, + "probability": 0.7461 + }, + { + "start": 10560.86, + "end": 10563.94, + "probability": 0.9789 + }, + { + "start": 10564.32, + "end": 10569.28, + "probability": 0.9313 + }, + { + "start": 10569.96, + "end": 10572.92, + "probability": 0.9929 + }, + { + "start": 10573.52, + "end": 10576.06, + "probability": 0.9901 + }, + { + "start": 10576.22, + "end": 10577.54, + "probability": 0.9883 + }, + { + "start": 10577.58, + "end": 10580.08, + "probability": 0.9622 + }, + { + "start": 10580.48, + "end": 10581.82, + "probability": 0.7908 + }, + { + "start": 10582.5, + "end": 10585.28, + "probability": 0.9469 + }, + { + "start": 10585.48, + "end": 10591.76, + "probability": 0.8 + }, + { + "start": 10591.86, + "end": 10593.9, + "probability": 0.9644 + }, + { + "start": 10595.24, + "end": 10599.34, + "probability": 0.9949 + }, + { + "start": 10599.68, + "end": 10601.42, + "probability": 0.8152 + }, + { + "start": 10602.68, + "end": 10606.58, + "probability": 0.9904 + }, + { + "start": 10606.92, + "end": 10609.42, + "probability": 0.9757 + }, + { + "start": 10609.8, + "end": 10611.28, + "probability": 0.6522 + }, + { + "start": 10611.34, + "end": 10612.74, + "probability": 0.9706 + }, + { + "start": 10613.84, + "end": 10616.46, + "probability": 0.7807 + }, + { + "start": 10616.64, + "end": 10618.44, + "probability": 0.9382 + }, + { + "start": 10618.56, + "end": 10623.72, + "probability": 0.9767 + }, + { + "start": 10624.48, + "end": 10627.6, + "probability": 0.9382 + }, + { + "start": 10628.06, + "end": 10628.92, + "probability": 0.8797 + }, + { + "start": 10629.1, + "end": 10630.44, + "probability": 0.8708 + }, + { + "start": 10630.66, + "end": 10634.84, + "probability": 0.9663 + }, + { + "start": 10635.12, + "end": 10639.14, + "probability": 0.7995 + }, + { + "start": 10640.72, + "end": 10641.48, + "probability": 0.1705 + }, + { + "start": 10641.48, + "end": 10644.12, + "probability": 0.6325 + }, + { + "start": 10644.98, + "end": 10650.82, + "probability": 0.9803 + }, + { + "start": 10650.88, + "end": 10651.68, + "probability": 0.9026 + }, + { + "start": 10652.58, + "end": 10652.94, + "probability": 0.4893 + }, + { + "start": 10653.56, + "end": 10655.01, + "probability": 0.3651 + }, + { + "start": 10656.46, + "end": 10658.38, + "probability": 0.1316 + }, + { + "start": 10659.24, + "end": 10659.26, + "probability": 0.1106 + }, + { + "start": 10659.34, + "end": 10660.0, + "probability": 0.3251 + }, + { + "start": 10660.0, + "end": 10662.22, + "probability": 0.6354 + }, + { + "start": 10673.24, + "end": 10674.82, + "probability": 0.7395 + }, + { + "start": 10678.48, + "end": 10680.24, + "probability": 0.6871 + }, + { + "start": 10680.46, + "end": 10680.5, + "probability": 0.284 + }, + { + "start": 10680.5, + "end": 10686.48, + "probability": 0.9753 + }, + { + "start": 10687.1, + "end": 10692.22, + "probability": 0.9938 + }, + { + "start": 10692.22, + "end": 10698.08, + "probability": 0.9907 + }, + { + "start": 10698.58, + "end": 10701.98, + "probability": 0.9909 + }, + { + "start": 10702.66, + "end": 10706.64, + "probability": 0.9902 + }, + { + "start": 10706.78, + "end": 10708.78, + "probability": 0.9391 + }, + { + "start": 10708.94, + "end": 10710.38, + "probability": 0.9808 + }, + { + "start": 10711.0, + "end": 10713.26, + "probability": 0.9813 + }, + { + "start": 10713.5, + "end": 10716.7, + "probability": 0.9898 + }, + { + "start": 10717.16, + "end": 10718.08, + "probability": 0.54 + }, + { + "start": 10718.14, + "end": 10719.2, + "probability": 0.9463 + }, + { + "start": 10719.24, + "end": 10720.75, + "probability": 0.6268 + }, + { + "start": 10721.08, + "end": 10725.84, + "probability": 0.9742 + }, + { + "start": 10726.1, + "end": 10728.14, + "probability": 0.9468 + }, + { + "start": 10728.8, + "end": 10731.38, + "probability": 0.7512 + }, + { + "start": 10731.7, + "end": 10735.32, + "probability": 0.9828 + }, + { + "start": 10735.86, + "end": 10736.76, + "probability": 0.6104 + }, + { + "start": 10737.3, + "end": 10739.32, + "probability": 0.7781 + }, + { + "start": 10739.44, + "end": 10741.42, + "probability": 0.8831 + }, + { + "start": 10741.88, + "end": 10745.47, + "probability": 0.735 + }, + { + "start": 10745.56, + "end": 10750.32, + "probability": 0.9645 + }, + { + "start": 10750.56, + "end": 10752.3, + "probability": 0.9769 + }, + { + "start": 10752.48, + "end": 10753.46, + "probability": 0.9941 + }, + { + "start": 10753.6, + "end": 10759.18, + "probability": 0.9301 + }, + { + "start": 10759.36, + "end": 10759.7, + "probability": 0.7168 + }, + { + "start": 10759.86, + "end": 10762.28, + "probability": 0.9998 + }, + { + "start": 10762.62, + "end": 10766.24, + "probability": 0.9769 + }, + { + "start": 10766.24, + "end": 10770.14, + "probability": 0.731 + }, + { + "start": 10770.16, + "end": 10770.72, + "probability": 0.8153 + }, + { + "start": 10771.38, + "end": 10774.22, + "probability": 0.8776 + }, + { + "start": 10776.2, + "end": 10778.62, + "probability": 0.9542 + }, + { + "start": 10778.76, + "end": 10782.28, + "probability": 0.995 + }, + { + "start": 10782.82, + "end": 10784.56, + "probability": 0.9819 + }, + { + "start": 10784.7, + "end": 10787.02, + "probability": 0.9724 + }, + { + "start": 10787.58, + "end": 10790.64, + "probability": 0.967 + }, + { + "start": 10790.9, + "end": 10792.52, + "probability": 0.622 + }, + { + "start": 10792.84, + "end": 10794.58, + "probability": 0.8453 + }, + { + "start": 10794.7, + "end": 10796.52, + "probability": 0.9963 + }, + { + "start": 10797.36, + "end": 10805.42, + "probability": 0.9671 + }, + { + "start": 10806.2, + "end": 10810.76, + "probability": 0.9988 + }, + { + "start": 10811.72, + "end": 10813.08, + "probability": 0.922 + }, + { + "start": 10813.24, + "end": 10813.31, + "probability": 0.2532 + }, + { + "start": 10813.94, + "end": 10816.88, + "probability": 0.8142 + }, + { + "start": 10817.38, + "end": 10818.1, + "probability": 0.958 + }, + { + "start": 10818.6, + "end": 10823.36, + "probability": 0.9267 + }, + { + "start": 10823.5, + "end": 10826.25, + "probability": 0.9831 + }, + { + "start": 10826.66, + "end": 10828.88, + "probability": 0.971 + }, + { + "start": 10828.94, + "end": 10832.94, + "probability": 0.9711 + }, + { + "start": 10833.3, + "end": 10835.3, + "probability": 0.8252 + }, + { + "start": 10835.42, + "end": 10837.28, + "probability": 0.067 + }, + { + "start": 10837.28, + "end": 10838.45, + "probability": 0.4429 + }, + { + "start": 10839.6, + "end": 10840.34, + "probability": 0.0257 + }, + { + "start": 10840.88, + "end": 10842.08, + "probability": 0.2112 + }, + { + "start": 10842.68, + "end": 10843.52, + "probability": 0.5601 + }, + { + "start": 10844.1, + "end": 10844.84, + "probability": 0.7209 + }, + { + "start": 10845.02, + "end": 10847.54, + "probability": 0.8349 + }, + { + "start": 10848.18, + "end": 10851.82, + "probability": 0.8977 + }, + { + "start": 10851.92, + "end": 10853.24, + "probability": 0.8029 + }, + { + "start": 10853.64, + "end": 10855.14, + "probability": 0.9583 + }, + { + "start": 10855.3, + "end": 10858.44, + "probability": 0.993 + }, + { + "start": 10859.0, + "end": 10859.62, + "probability": 0.8375 + }, + { + "start": 10859.7, + "end": 10860.98, + "probability": 0.9768 + }, + { + "start": 10861.12, + "end": 10864.62, + "probability": 0.9895 + }, + { + "start": 10864.86, + "end": 10867.8, + "probability": 0.993 + }, + { + "start": 10867.8, + "end": 10871.04, + "probability": 0.997 + }, + { + "start": 10871.24, + "end": 10871.78, + "probability": 0.8582 + }, + { + "start": 10871.86, + "end": 10872.58, + "probability": 0.9937 + }, + { + "start": 10873.26, + "end": 10875.0, + "probability": 0.9451 + }, + { + "start": 10875.68, + "end": 10877.42, + "probability": 0.9319 + }, + { + "start": 10877.56, + "end": 10879.38, + "probability": 0.9948 + }, + { + "start": 10879.76, + "end": 10884.82, + "probability": 0.9852 + }, + { + "start": 10885.32, + "end": 10886.84, + "probability": 0.9106 + }, + { + "start": 10887.62, + "end": 10889.42, + "probability": 0.7861 + }, + { + "start": 10889.66, + "end": 10890.75, + "probability": 0.8356 + }, + { + "start": 10891.98, + "end": 10892.18, + "probability": 0.0965 + }, + { + "start": 10892.18, + "end": 10893.44, + "probability": 0.8894 + }, + { + "start": 10893.56, + "end": 10896.02, + "probability": 0.9657 + }, + { + "start": 10896.1, + "end": 10897.46, + "probability": 0.8991 + }, + { + "start": 10898.04, + "end": 10900.6, + "probability": 0.231 + }, + { + "start": 10901.22, + "end": 10902.28, + "probability": 0.8184 + }, + { + "start": 10902.4, + "end": 10903.18, + "probability": 0.5383 + }, + { + "start": 10903.3, + "end": 10905.32, + "probability": 0.825 + }, + { + "start": 10905.44, + "end": 10906.22, + "probability": 0.7351 + }, + { + "start": 10906.66, + "end": 10908.38, + "probability": 0.5822 + }, + { + "start": 10908.84, + "end": 10911.82, + "probability": 0.925 + }, + { + "start": 10912.1, + "end": 10916.0, + "probability": 0.9438 + }, + { + "start": 10916.1, + "end": 10917.38, + "probability": 0.7691 + }, + { + "start": 10917.78, + "end": 10918.81, + "probability": 0.9866 + }, + { + "start": 10919.3, + "end": 10921.14, + "probability": 0.9762 + }, + { + "start": 10921.28, + "end": 10922.16, + "probability": 0.8647 + }, + { + "start": 10922.72, + "end": 10927.42, + "probability": 0.9808 + }, + { + "start": 10927.5, + "end": 10930.1, + "probability": 0.9915 + }, + { + "start": 10930.78, + "end": 10935.14, + "probability": 0.9719 + }, + { + "start": 10935.52, + "end": 10938.96, + "probability": 0.9664 + }, + { + "start": 10939.5, + "end": 10940.17, + "probability": 0.9888 + }, + { + "start": 10940.38, + "end": 10941.44, + "probability": 0.7869 + }, + { + "start": 10941.92, + "end": 10943.32, + "probability": 0.9662 + }, + { + "start": 10943.8, + "end": 10945.22, + "probability": 0.6037 + }, + { + "start": 10946.16, + "end": 10946.3, + "probability": 0.5368 + }, + { + "start": 10946.54, + "end": 10947.18, + "probability": 0.6022 + }, + { + "start": 10947.24, + "end": 10949.96, + "probability": 0.9005 + }, + { + "start": 10950.4, + "end": 10952.82, + "probability": 0.9973 + }, + { + "start": 10953.26, + "end": 10956.02, + "probability": 0.9831 + }, + { + "start": 10956.6, + "end": 10960.38, + "probability": 0.9746 + }, + { + "start": 10960.58, + "end": 10962.11, + "probability": 0.6867 + }, + { + "start": 10963.06, + "end": 10966.48, + "probability": 0.6338 + }, + { + "start": 10967.3, + "end": 10969.54, + "probability": 0.7453 + }, + { + "start": 10969.94, + "end": 10971.12, + "probability": 0.9348 + }, + { + "start": 10971.74, + "end": 10974.88, + "probability": 0.9915 + }, + { + "start": 10975.76, + "end": 10978.46, + "probability": 0.7951 + }, + { + "start": 10978.78, + "end": 10980.72, + "probability": 0.9983 + }, + { + "start": 10981.16, + "end": 10983.0, + "probability": 0.979 + }, + { + "start": 10983.32, + "end": 10986.44, + "probability": 0.1294 + }, + { + "start": 10986.92, + "end": 10989.04, + "probability": 0.1835 + }, + { + "start": 10989.04, + "end": 10990.3, + "probability": 0.5535 + }, + { + "start": 10990.9, + "end": 10991.5, + "probability": 0.0028 + }, + { + "start": 10991.84, + "end": 10996.26, + "probability": 0.272 + }, + { + "start": 10996.26, + "end": 10997.02, + "probability": 0.0559 + }, + { + "start": 10997.14, + "end": 10998.82, + "probability": 0.2936 + }, + { + "start": 10999.18, + "end": 11000.22, + "probability": 0.5048 + }, + { + "start": 11000.22, + "end": 11000.73, + "probability": 0.4595 + }, + { + "start": 11001.0, + "end": 11002.12, + "probability": 0.5289 + }, + { + "start": 11002.28, + "end": 11003.34, + "probability": 0.5529 + }, + { + "start": 11003.42, + "end": 11005.04, + "probability": 0.9936 + }, + { + "start": 11005.4, + "end": 11007.12, + "probability": 0.7441 + }, + { + "start": 11007.2, + "end": 11009.52, + "probability": 0.9663 + }, + { + "start": 11009.62, + "end": 11012.44, + "probability": 0.9366 + }, + { + "start": 11012.44, + "end": 11014.3, + "probability": 0.7556 + }, + { + "start": 11015.52, + "end": 11018.86, + "probability": 0.9434 + }, + { + "start": 11019.04, + "end": 11020.5, + "probability": 0.6782 + }, + { + "start": 11020.86, + "end": 11024.66, + "probability": 0.4317 + }, + { + "start": 11027.66, + "end": 11028.82, + "probability": 0.5979 + }, + { + "start": 11029.58, + "end": 11030.7, + "probability": 0.7211 + }, + { + "start": 11031.34, + "end": 11035.82, + "probability": 0.9883 + }, + { + "start": 11035.82, + "end": 11039.0, + "probability": 0.805 + }, + { + "start": 11039.36, + "end": 11041.22, + "probability": 0.7617 + }, + { + "start": 11041.36, + "end": 11045.52, + "probability": 0.9922 + }, + { + "start": 11045.64, + "end": 11046.74, + "probability": 0.8121 + }, + { + "start": 11047.16, + "end": 11048.32, + "probability": 0.8371 + }, + { + "start": 11048.44, + "end": 11050.28, + "probability": 0.6275 + }, + { + "start": 11050.38, + "end": 11051.16, + "probability": 0.9087 + }, + { + "start": 11051.2, + "end": 11052.5, + "probability": 0.9006 + }, + { + "start": 11052.94, + "end": 11054.76, + "probability": 0.8967 + }, + { + "start": 11055.18, + "end": 11058.12, + "probability": 0.691 + }, + { + "start": 11058.24, + "end": 11058.94, + "probability": 0.6708 + }, + { + "start": 11080.39, + "end": 11087.08, + "probability": 0.0579 + }, + { + "start": 11088.32, + "end": 11094.76, + "probability": 0.0097 + }, + { + "start": 11099.02, + "end": 11100.46, + "probability": 0.0085 + }, + { + "start": 11101.06, + "end": 11105.08, + "probability": 0.012 + }, + { + "start": 11105.08, + "end": 11106.98, + "probability": 0.1436 + }, + { + "start": 11106.98, + "end": 11107.78, + "probability": 0.1449 + }, + { + "start": 11107.82, + "end": 11109.44, + "probability": 0.4918 + }, + { + "start": 11112.28, + "end": 11112.66, + "probability": 0.0063 + }, + { + "start": 11114.18, + "end": 11116.28, + "probability": 0.0698 + }, + { + "start": 11117.66, + "end": 11117.96, + "probability": 0.1898 + }, + { + "start": 11118.6, + "end": 11118.74, + "probability": 0.0676 + }, + { + "start": 11118.74, + "end": 11121.99, + "probability": 0.1425 + }, + { + "start": 11122.26, + "end": 11125.88, + "probability": 0.1103 + }, + { + "start": 11125.88, + "end": 11131.04, + "probability": 0.1087 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.0, + "end": 11160.0, + "probability": 0.0 + }, + { + "start": 11160.7, + "end": 11161.3, + "probability": 0.0058 + }, + { + "start": 11166.35, + "end": 11167.26, + "probability": 0.0184 + }, + { + "start": 11167.26, + "end": 11171.52, + "probability": 0.0291 + }, + { + "start": 11173.23, + "end": 11175.66, + "probability": 0.0798 + }, + { + "start": 11176.72, + "end": 11176.86, + "probability": 0.11 + }, + { + "start": 11177.98, + "end": 11177.98, + "probability": 0.1812 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.0, + "end": 11283.0, + "probability": 0.0 + }, + { + "start": 11283.18, + "end": 11283.26, + "probability": 0.0588 + }, + { + "start": 11283.26, + "end": 11283.26, + "probability": 0.1026 + }, + { + "start": 11283.26, + "end": 11284.12, + "probability": 0.155 + }, + { + "start": 11284.9, + "end": 11285.38, + "probability": 0.7216 + }, + { + "start": 11285.54, + "end": 11289.26, + "probability": 0.8364 + }, + { + "start": 11290.08, + "end": 11291.27, + "probability": 0.5068 + }, + { + "start": 11291.66, + "end": 11294.08, + "probability": 0.989 + }, + { + "start": 11294.08, + "end": 11296.98, + "probability": 0.9988 + }, + { + "start": 11297.82, + "end": 11298.06, + "probability": 0.5662 + }, + { + "start": 11298.14, + "end": 11299.4, + "probability": 0.9189 + }, + { + "start": 11299.56, + "end": 11302.34, + "probability": 0.7217 + }, + { + "start": 11302.48, + "end": 11306.06, + "probability": 0.951 + }, + { + "start": 11306.06, + "end": 11310.38, + "probability": 0.1566 + }, + { + "start": 11310.38, + "end": 11312.6, + "probability": 0.5849 + }, + { + "start": 11312.72, + "end": 11313.14, + "probability": 0.6974 + }, + { + "start": 11313.4, + "end": 11315.02, + "probability": 0.9793 + }, + { + "start": 11315.28, + "end": 11318.54, + "probability": 0.9801 + }, + { + "start": 11319.52, + "end": 11321.92, + "probability": 0.9892 + }, + { + "start": 11322.06, + "end": 11326.1, + "probability": 0.988 + }, + { + "start": 11326.1, + "end": 11331.82, + "probability": 0.9787 + }, + { + "start": 11332.5, + "end": 11333.54, + "probability": 0.6407 + }, + { + "start": 11333.64, + "end": 11335.58, + "probability": 0.9954 + }, + { + "start": 11335.58, + "end": 11338.18, + "probability": 0.9715 + }, + { + "start": 11338.44, + "end": 11343.02, + "probability": 0.8831 + }, + { + "start": 11344.02, + "end": 11347.08, + "probability": 0.8377 + }, + { + "start": 11347.14, + "end": 11347.96, + "probability": 0.8228 + }, + { + "start": 11348.08, + "end": 11352.78, + "probability": 0.9885 + }, + { + "start": 11353.5, + "end": 11356.76, + "probability": 0.9977 + }, + { + "start": 11356.76, + "end": 11359.4, + "probability": 0.973 + }, + { + "start": 11359.94, + "end": 11363.64, + "probability": 0.994 + }, + { + "start": 11363.74, + "end": 11366.76, + "probability": 0.9236 + }, + { + "start": 11366.94, + "end": 11368.8, + "probability": 0.9933 + }, + { + "start": 11369.86, + "end": 11370.52, + "probability": 0.7084 + }, + { + "start": 11370.68, + "end": 11374.58, + "probability": 0.9178 + }, + { + "start": 11374.58, + "end": 11379.82, + "probability": 0.874 + }, + { + "start": 11379.92, + "end": 11380.54, + "probability": 0.8826 + }, + { + "start": 11381.28, + "end": 11384.28, + "probability": 0.976 + }, + { + "start": 11384.46, + "end": 11387.42, + "probability": 0.9916 + }, + { + "start": 11387.88, + "end": 11391.74, + "probability": 0.9955 + }, + { + "start": 11391.84, + "end": 11393.87, + "probability": 0.9705 + }, + { + "start": 11394.36, + "end": 11395.92, + "probability": 0.8972 + }, + { + "start": 11395.96, + "end": 11397.36, + "probability": 0.8371 + }, + { + "start": 11397.82, + "end": 11399.02, + "probability": 0.9713 + }, + { + "start": 11399.08, + "end": 11400.32, + "probability": 0.9801 + }, + { + "start": 11400.42, + "end": 11402.4, + "probability": 0.9489 + }, + { + "start": 11403.48, + "end": 11407.14, + "probability": 0.9846 + }, + { + "start": 11407.14, + "end": 11411.36, + "probability": 0.9873 + }, + { + "start": 11412.06, + "end": 11417.16, + "probability": 0.9821 + }, + { + "start": 11418.08, + "end": 11420.52, + "probability": 0.7211 + }, + { + "start": 11420.66, + "end": 11421.96, + "probability": 0.9966 + }, + { + "start": 11422.77, + "end": 11425.26, + "probability": 0.9938 + }, + { + "start": 11425.48, + "end": 11427.16, + "probability": 0.9958 + }, + { + "start": 11427.26, + "end": 11431.86, + "probability": 0.9976 + }, + { + "start": 11432.04, + "end": 11436.2, + "probability": 0.9849 + }, + { + "start": 11436.34, + "end": 11440.98, + "probability": 0.9883 + }, + { + "start": 11441.28, + "end": 11443.46, + "probability": 0.9842 + }, + { + "start": 11444.0, + "end": 11449.84, + "probability": 0.9989 + }, + { + "start": 11450.2, + "end": 11450.6, + "probability": 0.4216 + }, + { + "start": 11450.7, + "end": 11453.5, + "probability": 0.9487 + }, + { + "start": 11453.56, + "end": 11455.68, + "probability": 0.9563 + }, + { + "start": 11456.1, + "end": 11459.12, + "probability": 0.9985 + }, + { + "start": 11459.12, + "end": 11462.34, + "probability": 0.9995 + }, + { + "start": 11462.6, + "end": 11463.08, + "probability": 0.7214 + }, + { + "start": 11463.16, + "end": 11465.52, + "probability": 0.8677 + }, + { + "start": 11465.56, + "end": 11467.36, + "probability": 0.6716 + }, + { + "start": 11467.92, + "end": 11470.06, + "probability": 0.75 + }, + { + "start": 11470.54, + "end": 11471.68, + "probability": 0.2891 + }, + { + "start": 11482.76, + "end": 11482.76, + "probability": 0.6415 + }, + { + "start": 11482.76, + "end": 11482.76, + "probability": 0.2125 + }, + { + "start": 11482.76, + "end": 11482.86, + "probability": 0.2717 + }, + { + "start": 11483.46, + "end": 11483.46, + "probability": 0.3562 + }, + { + "start": 11483.62, + "end": 11484.96, + "probability": 0.2571 + }, + { + "start": 11485.54, + "end": 11485.76, + "probability": 0.287 + }, + { + "start": 11485.78, + "end": 11486.38, + "probability": 0.626 + }, + { + "start": 11486.5, + "end": 11486.58, + "probability": 0.6486 + }, + { + "start": 11486.6, + "end": 11487.18, + "probability": 0.6563 + }, + { + "start": 11487.46, + "end": 11488.1, + "probability": 0.2363 + }, + { + "start": 11488.12, + "end": 11489.29, + "probability": 0.2527 + }, + { + "start": 11489.9, + "end": 11490.44, + "probability": 0.3323 + }, + { + "start": 11495.68, + "end": 11495.68, + "probability": 0.0858 + }, + { + "start": 11495.68, + "end": 11495.74, + "probability": 0.1298 + }, + { + "start": 11495.74, + "end": 11495.74, + "probability": 0.0179 + }, + { + "start": 11495.74, + "end": 11495.74, + "probability": 0.0302 + }, + { + "start": 11495.74, + "end": 11495.74, + "probability": 0.3873 + }, + { + "start": 11495.74, + "end": 11495.74, + "probability": 0.0444 + }, + { + "start": 11495.74, + "end": 11495.88, + "probability": 0.0137 + }, + { + "start": 11495.94, + "end": 11497.44, + "probability": 0.2556 + }, + { + "start": 11497.82, + "end": 11499.26, + "probability": 0.3258 + }, + { + "start": 11499.3, + "end": 11502.27, + "probability": 0.8569 + }, + { + "start": 11504.64, + "end": 11504.74, + "probability": 0.0054 + }, + { + "start": 11504.9, + "end": 11504.9, + "probability": 0.046 + }, + { + "start": 11504.9, + "end": 11504.98, + "probability": 0.0203 + }, + { + "start": 11504.98, + "end": 11505.9, + "probability": 0.4644 + }, + { + "start": 11505.96, + "end": 11506.4, + "probability": 0.6949 + }, + { + "start": 11506.5, + "end": 11507.72, + "probability": 0.6808 + }, + { + "start": 11508.9, + "end": 11513.3, + "probability": 0.8955 + }, + { + "start": 11514.06, + "end": 11515.56, + "probability": 0.7289 + }, + { + "start": 11515.88, + "end": 11523.86, + "probability": 0.8477 + }, + { + "start": 11524.34, + "end": 11526.44, + "probability": 0.8228 + }, + { + "start": 11526.56, + "end": 11528.5, + "probability": 0.9929 + }, + { + "start": 11528.6, + "end": 11531.86, + "probability": 0.9849 + }, + { + "start": 11531.92, + "end": 11532.34, + "probability": 0.9204 + }, + { + "start": 11533.44, + "end": 11536.38, + "probability": 0.9971 + }, + { + "start": 11537.22, + "end": 11538.04, + "probability": 0.7702 + }, + { + "start": 11538.64, + "end": 11541.48, + "probability": 0.7214 + }, + { + "start": 11542.04, + "end": 11544.88, + "probability": 0.9324 + }, + { + "start": 11545.84, + "end": 11550.1, + "probability": 0.9938 + }, + { + "start": 11550.2, + "end": 11551.18, + "probability": 0.8588 + }, + { + "start": 11552.12, + "end": 11554.28, + "probability": 0.8662 + }, + { + "start": 11554.34, + "end": 11556.48, + "probability": 0.857 + }, + { + "start": 11557.48, + "end": 11558.76, + "probability": 0.8441 + }, + { + "start": 11559.54, + "end": 11564.54, + "probability": 0.872 + }, + { + "start": 11565.44, + "end": 11569.2, + "probability": 0.8246 + }, + { + "start": 11570.2, + "end": 11571.82, + "probability": 0.9566 + }, + { + "start": 11571.88, + "end": 11573.88, + "probability": 0.958 + }, + { + "start": 11574.36, + "end": 11578.94, + "probability": 0.9696 + }, + { + "start": 11579.04, + "end": 11584.42, + "probability": 0.9889 + }, + { + "start": 11584.42, + "end": 11588.14, + "probability": 0.9878 + }, + { + "start": 11588.86, + "end": 11590.8, + "probability": 0.8044 + }, + { + "start": 11591.46, + "end": 11591.98, + "probability": 0.6561 + }, + { + "start": 11592.34, + "end": 11593.04, + "probability": 0.9676 + }, + { + "start": 11593.12, + "end": 11594.26, + "probability": 0.9658 + }, + { + "start": 11594.32, + "end": 11595.66, + "probability": 0.9342 + }, + { + "start": 11595.66, + "end": 11596.66, + "probability": 0.9556 + }, + { + "start": 11596.8, + "end": 11597.96, + "probability": 0.77 + }, + { + "start": 11598.58, + "end": 11599.0, + "probability": 0.8461 + }, + { + "start": 11600.92, + "end": 11601.58, + "probability": 0.9326 + }, + { + "start": 11601.66, + "end": 11603.26, + "probability": 0.9488 + }, + { + "start": 11603.46, + "end": 11604.06, + "probability": 0.7746 + }, + { + "start": 11604.18, + "end": 11607.6, + "probability": 0.9971 + }, + { + "start": 11608.5, + "end": 11609.5, + "probability": 0.9873 + }, + { + "start": 11609.64, + "end": 11613.48, + "probability": 0.9282 + }, + { + "start": 11613.48, + "end": 11618.36, + "probability": 0.95 + }, + { + "start": 11618.5, + "end": 11619.64, + "probability": 0.8676 + }, + { + "start": 11620.14, + "end": 11622.68, + "probability": 0.9974 + }, + { + "start": 11622.84, + "end": 11626.3, + "probability": 0.9657 + }, + { + "start": 11626.52, + "end": 11627.54, + "probability": 0.9065 + }, + { + "start": 11627.66, + "end": 11633.06, + "probability": 0.8322 + }, + { + "start": 11633.1, + "end": 11634.52, + "probability": 0.938 + }, + { + "start": 11634.94, + "end": 11638.02, + "probability": 0.9956 + }, + { + "start": 11638.2, + "end": 11639.66, + "probability": 0.9744 + }, + { + "start": 11639.74, + "end": 11640.38, + "probability": 0.8943 + }, + { + "start": 11640.46, + "end": 11641.02, + "probability": 0.9852 + }, + { + "start": 11641.14, + "end": 11642.92, + "probability": 0.9223 + }, + { + "start": 11643.9, + "end": 11644.54, + "probability": 0.6439 + }, + { + "start": 11644.64, + "end": 11645.32, + "probability": 0.6576 + }, + { + "start": 11645.42, + "end": 11646.26, + "probability": 0.9397 + }, + { + "start": 11646.34, + "end": 11650.42, + "probability": 0.8733 + }, + { + "start": 11652.06, + "end": 11652.88, + "probability": 0.8315 + }, + { + "start": 11652.92, + "end": 11654.34, + "probability": 0.9915 + }, + { + "start": 11654.54, + "end": 11655.94, + "probability": 0.9722 + }, + { + "start": 11656.0, + "end": 11657.04, + "probability": 0.871 + }, + { + "start": 11657.6, + "end": 11661.86, + "probability": 0.9919 + }, + { + "start": 11662.06, + "end": 11665.1, + "probability": 0.6992 + }, + { + "start": 11665.26, + "end": 11667.92, + "probability": 0.9834 + }, + { + "start": 11667.92, + "end": 11671.86, + "probability": 0.9978 + }, + { + "start": 11671.94, + "end": 11673.06, + "probability": 0.9114 + }, + { + "start": 11673.38, + "end": 11673.88, + "probability": 0.4564 + }, + { + "start": 11674.98, + "end": 11678.36, + "probability": 0.7399 + }, + { + "start": 11678.48, + "end": 11680.14, + "probability": 0.976 + }, + { + "start": 11680.22, + "end": 11681.94, + "probability": 0.9715 + }, + { + "start": 11682.04, + "end": 11682.92, + "probability": 0.7899 + }, + { + "start": 11683.04, + "end": 11684.8, + "probability": 0.9944 + }, + { + "start": 11685.06, + "end": 11689.14, + "probability": 0.9009 + }, + { + "start": 11690.9, + "end": 11693.46, + "probability": 0.7222 + }, + { + "start": 11693.52, + "end": 11697.32, + "probability": 0.9122 + }, + { + "start": 11698.2, + "end": 11701.81, + "probability": 0.9818 + }, + { + "start": 11702.4, + "end": 11706.9, + "probability": 0.983 + }, + { + "start": 11707.28, + "end": 11712.3, + "probability": 0.7989 + }, + { + "start": 11713.44, + "end": 11717.34, + "probability": 0.7163 + }, + { + "start": 11717.44, + "end": 11718.1, + "probability": 0.6818 + }, + { + "start": 11718.22, + "end": 11719.88, + "probability": 0.7077 + }, + { + "start": 11719.88, + "end": 11720.28, + "probability": 0.3569 + }, + { + "start": 11720.28, + "end": 11720.9, + "probability": 0.5096 + }, + { + "start": 11720.98, + "end": 11721.38, + "probability": 0.7664 + }, + { + "start": 11721.62, + "end": 11724.28, + "probability": 0.896 + }, + { + "start": 11725.06, + "end": 11726.28, + "probability": 0.7454 + }, + { + "start": 11726.34, + "end": 11727.0, + "probability": 0.5977 + }, + { + "start": 11727.18, + "end": 11728.5, + "probability": 0.6461 + }, + { + "start": 11728.56, + "end": 11730.28, + "probability": 0.9679 + }, + { + "start": 11730.36, + "end": 11733.48, + "probability": 0.9403 + }, + { + "start": 11733.62, + "end": 11734.64, + "probability": 0.5959 + }, + { + "start": 11735.12, + "end": 11736.34, + "probability": 0.8567 + }, + { + "start": 11736.38, + "end": 11737.28, + "probability": 0.7749 + }, + { + "start": 11737.66, + "end": 11740.16, + "probability": 0.9859 + }, + { + "start": 11740.3, + "end": 11741.98, + "probability": 0.93 + }, + { + "start": 11742.38, + "end": 11744.16, + "probability": 0.967 + }, + { + "start": 11744.26, + "end": 11745.38, + "probability": 0.9655 + }, + { + "start": 11745.74, + "end": 11747.04, + "probability": 0.7713 + }, + { + "start": 11747.16, + "end": 11749.24, + "probability": 0.9756 + }, + { + "start": 11749.88, + "end": 11751.56, + "probability": 0.8807 + }, + { + "start": 11753.68, + "end": 11755.16, + "probability": 0.9827 + }, + { + "start": 11757.32, + "end": 11759.22, + "probability": 0.9788 + }, + { + "start": 11759.26, + "end": 11761.13, + "probability": 0.9945 + }, + { + "start": 11762.24, + "end": 11765.18, + "probability": 0.2184 + }, + { + "start": 11765.64, + "end": 11766.86, + "probability": 0.9108 + }, + { + "start": 11767.3, + "end": 11768.6, + "probability": 0.8193 + }, + { + "start": 11770.08, + "end": 11772.0, + "probability": 0.9957 + }, + { + "start": 11773.86, + "end": 11776.72, + "probability": 0.5699 + }, + { + "start": 11778.0, + "end": 11779.5, + "probability": 0.6924 + }, + { + "start": 11780.56, + "end": 11781.14, + "probability": 0.6419 + }, + { + "start": 11781.88, + "end": 11783.86, + "probability": 0.7627 + }, + { + "start": 11784.1, + "end": 11784.74, + "probability": 0.0343 + }, + { + "start": 11785.46, + "end": 11787.84, + "probability": 0.2787 + }, + { + "start": 11787.9, + "end": 11788.86, + "probability": 0.5924 + }, + { + "start": 11789.48, + "end": 11789.92, + "probability": 0.9444 + }, + { + "start": 11789.98, + "end": 11791.82, + "probability": 0.937 + }, + { + "start": 11793.02, + "end": 11793.78, + "probability": 0.9668 + }, + { + "start": 11793.96, + "end": 11794.74, + "probability": 0.8483 + }, + { + "start": 11795.06, + "end": 11797.14, + "probability": 0.9956 + }, + { + "start": 11797.16, + "end": 11798.16, + "probability": 0.8915 + }, + { + "start": 11798.38, + "end": 11799.46, + "probability": 0.7462 + }, + { + "start": 11800.26, + "end": 11804.78, + "probability": 0.8768 + }, + { + "start": 11805.78, + "end": 11810.3, + "probability": 0.9241 + }, + { + "start": 11810.52, + "end": 11813.92, + "probability": 0.9944 + }, + { + "start": 11814.06, + "end": 11815.23, + "probability": 0.9644 + }, + { + "start": 11816.04, + "end": 11816.74, + "probability": 0.9628 + }, + { + "start": 11816.82, + "end": 11817.48, + "probability": 0.8914 + }, + { + "start": 11817.58, + "end": 11818.38, + "probability": 0.6212 + }, + { + "start": 11818.5, + "end": 11819.78, + "probability": 0.7569 + }, + { + "start": 11820.2, + "end": 11821.19, + "probability": 0.909 + }, + { + "start": 11821.44, + "end": 11822.23, + "probability": 0.9622 + }, + { + "start": 11822.8, + "end": 11827.54, + "probability": 0.9893 + }, + { + "start": 11828.04, + "end": 11829.54, + "probability": 0.9951 + }, + { + "start": 11829.66, + "end": 11830.72, + "probability": 0.9984 + }, + { + "start": 11831.6, + "end": 11832.74, + "probability": 0.9977 + }, + { + "start": 11832.76, + "end": 11833.0, + "probability": 0.4398 + }, + { + "start": 11833.04, + "end": 11833.74, + "probability": 0.8892 + }, + { + "start": 11833.82, + "end": 11835.22, + "probability": 0.9565 + }, + { + "start": 11835.52, + "end": 11836.52, + "probability": 0.9092 + }, + { + "start": 11837.22, + "end": 11837.94, + "probability": 0.5501 + }, + { + "start": 11840.64, + "end": 11845.64, + "probability": 0.2164 + }, + { + "start": 11846.38, + "end": 11846.52, + "probability": 0.1423 + }, + { + "start": 11846.52, + "end": 11846.52, + "probability": 0.0851 + }, + { + "start": 11846.52, + "end": 11846.52, + "probability": 0.0642 + }, + { + "start": 11846.52, + "end": 11846.52, + "probability": 0.184 + }, + { + "start": 11846.52, + "end": 11847.07, + "probability": 0.2309 + }, + { + "start": 11848.24, + "end": 11849.84, + "probability": 0.7242 + }, + { + "start": 11849.94, + "end": 11851.08, + "probability": 0.791 + }, + { + "start": 11851.98, + "end": 11856.4, + "probability": 0.5116 + }, + { + "start": 11856.4, + "end": 11859.22, + "probability": 0.5512 + }, + { + "start": 11859.28, + "end": 11861.3, + "probability": 0.9233 + }, + { + "start": 11862.46, + "end": 11865.04, + "probability": 0.7823 + }, + { + "start": 11865.86, + "end": 11867.46, + "probability": 0.9707 + }, + { + "start": 11867.9, + "end": 11869.04, + "probability": 0.9618 + }, + { + "start": 11869.12, + "end": 11870.52, + "probability": 0.9908 + }, + { + "start": 11871.22, + "end": 11874.52, + "probability": 0.7831 + }, + { + "start": 11875.2, + "end": 11876.56, + "probability": 0.855 + }, + { + "start": 11876.68, + "end": 11877.46, + "probability": 0.6616 + }, + { + "start": 11877.78, + "end": 11880.14, + "probability": 0.6359 + }, + { + "start": 11880.38, + "end": 11880.92, + "probability": 0.4839 + }, + { + "start": 11881.04, + "end": 11881.3, + "probability": 0.0457 + }, + { + "start": 11881.64, + "end": 11882.26, + "probability": 0.707 + }, + { + "start": 11883.12, + "end": 11885.15, + "probability": 0.7087 + }, + { + "start": 11885.54, + "end": 11887.82, + "probability": 0.8403 + }, + { + "start": 11890.98, + "end": 11892.58, + "probability": 0.1976 + }, + { + "start": 11893.64, + "end": 11894.02, + "probability": 0.0145 + }, + { + "start": 11896.26, + "end": 11896.26, + "probability": 0.4274 + }, + { + "start": 11896.42, + "end": 11899.6, + "probability": 0.4484 + }, + { + "start": 11900.06, + "end": 11904.34, + "probability": 0.6404 + }, + { + "start": 11905.36, + "end": 11909.64, + "probability": 0.9598 + }, + { + "start": 11909.84, + "end": 11912.62, + "probability": 0.9897 + }, + { + "start": 11912.74, + "end": 11915.06, + "probability": 0.8041 + }, + { + "start": 11915.48, + "end": 11916.66, + "probability": 0.9799 + }, + { + "start": 11917.04, + "end": 11917.38, + "probability": 0.8679 + }, + { + "start": 11917.46, + "end": 11920.06, + "probability": 0.8899 + }, + { + "start": 11920.14, + "end": 11925.4, + "probability": 0.9812 + }, + { + "start": 11925.68, + "end": 11929.52, + "probability": 0.9696 + }, + { + "start": 11930.68, + "end": 11937.56, + "probability": 0.9701 + }, + { + "start": 11937.72, + "end": 11938.78, + "probability": 0.8692 + }, + { + "start": 11939.72, + "end": 11941.08, + "probability": 0.8655 + }, + { + "start": 11941.32, + "end": 11944.18, + "probability": 0.8644 + }, + { + "start": 11944.64, + "end": 11946.1, + "probability": 0.9583 + }, + { + "start": 11946.68, + "end": 11950.0, + "probability": 0.9734 + }, + { + "start": 11950.6, + "end": 11953.44, + "probability": 0.9531 + }, + { + "start": 11953.58, + "end": 11955.46, + "probability": 0.901 + }, + { + "start": 11956.78, + "end": 11960.34, + "probability": 0.998 + }, + { + "start": 11960.34, + "end": 11963.68, + "probability": 0.9993 + }, + { + "start": 11963.74, + "end": 11964.81, + "probability": 0.9971 + }, + { + "start": 11965.84, + "end": 11973.94, + "probability": 0.9746 + }, + { + "start": 11975.38, + "end": 11977.99, + "probability": 0.6636 + }, + { + "start": 11978.36, + "end": 11980.38, + "probability": 0.969 + }, + { + "start": 11981.08, + "end": 11983.68, + "probability": 0.938 + }, + { + "start": 11984.32, + "end": 11988.32, + "probability": 0.9055 + }, + { + "start": 11988.98, + "end": 11990.4, + "probability": 0.9414 + }, + { + "start": 11990.48, + "end": 11991.56, + "probability": 0.8418 + }, + { + "start": 11991.68, + "end": 11992.65, + "probability": 0.9965 + }, + { + "start": 11993.62, + "end": 11994.72, + "probability": 0.8834 + }, + { + "start": 11994.9, + "end": 11995.52, + "probability": 0.6524 + }, + { + "start": 11995.92, + "end": 11997.24, + "probability": 0.8804 + }, + { + "start": 11997.4, + "end": 11997.94, + "probability": 0.7907 + }, + { + "start": 11998.62, + "end": 12001.1, + "probability": 0.9675 + }, + { + "start": 12002.2, + "end": 12003.58, + "probability": 0.4588 + }, + { + "start": 12004.1, + "end": 12006.1, + "probability": 0.9302 + }, + { + "start": 12006.96, + "end": 12010.9, + "probability": 0.9385 + }, + { + "start": 12013.9, + "end": 12014.48, + "probability": 0.0297 + }, + { + "start": 12014.48, + "end": 12014.48, + "probability": 0.1091 + }, + { + "start": 12014.48, + "end": 12014.83, + "probability": 0.3739 + }, + { + "start": 12015.2, + "end": 12016.0, + "probability": 0.6846 + }, + { + "start": 12016.04, + "end": 12017.1, + "probability": 0.9257 + }, + { + "start": 12017.2, + "end": 12018.32, + "probability": 0.947 + }, + { + "start": 12018.74, + "end": 12021.58, + "probability": 0.9677 + }, + { + "start": 12021.9, + "end": 12023.08, + "probability": 0.8736 + }, + { + "start": 12023.3, + "end": 12025.8, + "probability": 0.9468 + }, + { + "start": 12026.44, + "end": 12030.92, + "probability": 0.9973 + }, + { + "start": 12030.92, + "end": 12034.46, + "probability": 0.9993 + }, + { + "start": 12035.06, + "end": 12037.32, + "probability": 0.9035 + }, + { + "start": 12038.28, + "end": 12041.48, + "probability": 0.7763 + }, + { + "start": 12041.6, + "end": 12047.6, + "probability": 0.951 + }, + { + "start": 12048.04, + "end": 12050.4, + "probability": 0.8066 + }, + { + "start": 12050.7, + "end": 12055.56, + "probability": 0.905 + }, + { + "start": 12056.1, + "end": 12057.22, + "probability": 0.834 + }, + { + "start": 12058.14, + "end": 12063.3, + "probability": 0.999 + }, + { + "start": 12063.3, + "end": 12067.88, + "probability": 0.9979 + }, + { + "start": 12068.48, + "end": 12068.64, + "probability": 0.5782 + }, + { + "start": 12068.7, + "end": 12073.42, + "probability": 0.9976 + }, + { + "start": 12073.92, + "end": 12081.3, + "probability": 0.8718 + }, + { + "start": 12081.52, + "end": 12082.14, + "probability": 0.7516 + }, + { + "start": 12083.0, + "end": 12085.28, + "probability": 0.6094 + }, + { + "start": 12085.4, + "end": 12087.47, + "probability": 0.8623 + }, + { + "start": 12088.74, + "end": 12091.4, + "probability": 0.8283 + }, + { + "start": 12093.36, + "end": 12093.68, + "probability": 0.9564 + }, + { + "start": 12103.9, + "end": 12104.0, + "probability": 0.7519 + }, + { + "start": 12104.0, + "end": 12104.4, + "probability": 0.1545 + }, + { + "start": 12104.4, + "end": 12104.4, + "probability": 0.1866 + }, + { + "start": 12104.4, + "end": 12104.4, + "probability": 0.0528 + }, + { + "start": 12104.4, + "end": 12104.46, + "probability": 0.1198 + }, + { + "start": 12104.46, + "end": 12104.46, + "probability": 0.0616 + }, + { + "start": 12104.46, + "end": 12104.6, + "probability": 0.1112 + }, + { + "start": 12104.6, + "end": 12104.8, + "probability": 0.1503 + }, + { + "start": 12104.8, + "end": 12104.9, + "probability": 0.0757 + }, + { + "start": 12127.93, + "end": 12133.19, + "probability": 0.9984 + }, + { + "start": 12133.96, + "end": 12134.74, + "probability": 0.985 + }, + { + "start": 12135.75, + "end": 12136.19, + "probability": 0.4161 + }, + { + "start": 12136.41, + "end": 12137.59, + "probability": 0.9395 + }, + { + "start": 12137.63, + "end": 12139.46, + "probability": 0.9249 + }, + { + "start": 12139.87, + "end": 12147.17, + "probability": 0.9814 + }, + { + "start": 12148.69, + "end": 12152.29, + "probability": 0.8415 + }, + { + "start": 12153.15, + "end": 12158.55, + "probability": 0.9565 + }, + { + "start": 12159.77, + "end": 12162.53, + "probability": 0.9985 + }, + { + "start": 12164.39, + "end": 12168.83, + "probability": 0.9937 + }, + { + "start": 12168.97, + "end": 12172.31, + "probability": 0.9943 + }, + { + "start": 12173.47, + "end": 12176.41, + "probability": 0.9716 + }, + { + "start": 12177.63, + "end": 12179.45, + "probability": 0.9897 + }, + { + "start": 12180.33, + "end": 12181.97, + "probability": 0.9572 + }, + { + "start": 12182.03, + "end": 12183.29, + "probability": 0.8628 + }, + { + "start": 12184.31, + "end": 12184.93, + "probability": 0.5052 + }, + { + "start": 12185.23, + "end": 12186.33, + "probability": 0.9645 + }, + { + "start": 12186.45, + "end": 12190.01, + "probability": 0.9851 + }, + { + "start": 12190.01, + "end": 12193.27, + "probability": 0.999 + }, + { + "start": 12194.45, + "end": 12200.41, + "probability": 0.9788 + }, + { + "start": 12200.41, + "end": 12204.43, + "probability": 0.9995 + }, + { + "start": 12206.05, + "end": 12206.31, + "probability": 0.7058 + }, + { + "start": 12206.65, + "end": 12207.77, + "probability": 0.7469 + }, + { + "start": 12207.91, + "end": 12212.51, + "probability": 0.986 + }, + { + "start": 12213.59, + "end": 12218.55, + "probability": 0.9972 + }, + { + "start": 12218.69, + "end": 12220.69, + "probability": 0.9985 + }, + { + "start": 12222.21, + "end": 12226.69, + "probability": 0.9724 + }, + { + "start": 12226.75, + "end": 12229.57, + "probability": 0.9939 + }, + { + "start": 12230.63, + "end": 12232.37, + "probability": 0.9417 + }, + { + "start": 12233.17, + "end": 12238.73, + "probability": 0.7771 + }, + { + "start": 12239.45, + "end": 12240.75, + "probability": 0.9843 + }, + { + "start": 12242.11, + "end": 12243.43, + "probability": 0.9222 + }, + { + "start": 12244.79, + "end": 12249.43, + "probability": 0.9991 + }, + { + "start": 12250.19, + "end": 12250.93, + "probability": 0.9278 + }, + { + "start": 12252.47, + "end": 12256.81, + "probability": 0.8709 + }, + { + "start": 12257.89, + "end": 12260.23, + "probability": 0.9922 + }, + { + "start": 12262.23, + "end": 12268.43, + "probability": 0.9766 + }, + { + "start": 12268.49, + "end": 12273.51, + "probability": 0.8786 + }, + { + "start": 12274.27, + "end": 12277.03, + "probability": 0.9743 + }, + { + "start": 12277.83, + "end": 12282.13, + "probability": 0.9954 + }, + { + "start": 12282.43, + "end": 12284.01, + "probability": 0.916 + }, + { + "start": 12284.33, + "end": 12285.43, + "probability": 0.9654 + }, + { + "start": 12285.73, + "end": 12287.33, + "probability": 0.9421 + }, + { + "start": 12288.07, + "end": 12291.09, + "probability": 0.9846 + }, + { + "start": 12291.09, + "end": 12295.29, + "probability": 0.9733 + }, + { + "start": 12296.07, + "end": 12297.71, + "probability": 0.9055 + }, + { + "start": 12297.83, + "end": 12298.21, + "probability": 0.6313 + }, + { + "start": 12298.31, + "end": 12302.09, + "probability": 0.9971 + }, + { + "start": 12302.09, + "end": 12307.03, + "probability": 0.9992 + }, + { + "start": 12308.21, + "end": 12309.07, + "probability": 0.5455 + }, + { + "start": 12309.67, + "end": 12311.83, + "probability": 0.7535 + }, + { + "start": 12313.31, + "end": 12314.55, + "probability": 0.9322 + }, + { + "start": 12314.75, + "end": 12315.73, + "probability": 0.7498 + }, + { + "start": 12315.91, + "end": 12318.71, + "probability": 0.8097 + }, + { + "start": 12318.93, + "end": 12321.35, + "probability": 0.8106 + }, + { + "start": 12321.87, + "end": 12323.87, + "probability": 0.509 + }, + { + "start": 12324.59, + "end": 12326.11, + "probability": 0.946 + }, + { + "start": 12326.27, + "end": 12330.71, + "probability": 0.9937 + }, + { + "start": 12330.71, + "end": 12335.05, + "probability": 0.9939 + }, + { + "start": 12335.23, + "end": 12337.53, + "probability": 0.9971 + }, + { + "start": 12339.07, + "end": 12340.5, + "probability": 0.814 + }, + { + "start": 12340.65, + "end": 12342.61, + "probability": 0.9875 + }, + { + "start": 12342.91, + "end": 12344.11, + "probability": 0.8463 + }, + { + "start": 12344.51, + "end": 12348.79, + "probability": 0.9966 + }, + { + "start": 12349.87, + "end": 12355.53, + "probability": 0.9259 + }, + { + "start": 12357.02, + "end": 12365.87, + "probability": 0.9775 + }, + { + "start": 12367.37, + "end": 12368.77, + "probability": 0.9806 + }, + { + "start": 12369.93, + "end": 12374.07, + "probability": 0.877 + }, + { + "start": 12374.43, + "end": 12376.05, + "probability": 0.775 + }, + { + "start": 12376.73, + "end": 12378.93, + "probability": 0.984 + }, + { + "start": 12381.65, + "end": 12384.71, + "probability": 0.9985 + }, + { + "start": 12385.63, + "end": 12391.07, + "probability": 0.9388 + }, + { + "start": 12391.91, + "end": 12394.13, + "probability": 0.9545 + }, + { + "start": 12395.01, + "end": 12396.91, + "probability": 0.9968 + }, + { + "start": 12397.01, + "end": 12398.69, + "probability": 0.988 + }, + { + "start": 12399.29, + "end": 12403.81, + "probability": 0.9864 + }, + { + "start": 12403.81, + "end": 12409.25, + "probability": 0.9834 + }, + { + "start": 12409.89, + "end": 12410.41, + "probability": 0.6252 + }, + { + "start": 12410.53, + "end": 12415.41, + "probability": 0.739 + }, + { + "start": 12415.85, + "end": 12419.37, + "probability": 0.932 + }, + { + "start": 12420.29, + "end": 12423.41, + "probability": 0.9963 + }, + { + "start": 12423.41, + "end": 12426.89, + "probability": 0.8792 + }, + { + "start": 12427.51, + "end": 12429.65, + "probability": 0.8682 + }, + { + "start": 12430.23, + "end": 12434.13, + "probability": 0.9958 + }, + { + "start": 12435.6, + "end": 12438.49, + "probability": 0.386 + }, + { + "start": 12438.57, + "end": 12439.03, + "probability": 0.7426 + }, + { + "start": 12439.23, + "end": 12441.19, + "probability": 0.6903 + }, + { + "start": 12441.77, + "end": 12442.03, + "probability": 0.498 + }, + { + "start": 12442.07, + "end": 12442.43, + "probability": 0.7615 + }, + { + "start": 12442.55, + "end": 12445.89, + "probability": 0.9697 + }, + { + "start": 12445.89, + "end": 12450.15, + "probability": 0.5771 + }, + { + "start": 12450.33, + "end": 12451.51, + "probability": 0.4459 + }, + { + "start": 12451.63, + "end": 12452.76, + "probability": 0.7416 + }, + { + "start": 12454.71, + "end": 12458.29, + "probability": 0.9651 + }, + { + "start": 12458.69, + "end": 12460.43, + "probability": 0.6195 + }, + { + "start": 12460.85, + "end": 12463.73, + "probability": 0.9191 + }, + { + "start": 12464.73, + "end": 12465.25, + "probability": 0.8397 + }, + { + "start": 12466.87, + "end": 12469.57, + "probability": 0.6892 + }, + { + "start": 12470.27, + "end": 12472.63, + "probability": 0.6007 + }, + { + "start": 12473.97, + "end": 12476.19, + "probability": 0.6332 + }, + { + "start": 12476.55, + "end": 12478.42, + "probability": 0.8849 + }, + { + "start": 12479.01, + "end": 12480.23, + "probability": 0.9912 + }, + { + "start": 12480.35, + "end": 12488.47, + "probability": 0.8455 + }, + { + "start": 12489.19, + "end": 12490.29, + "probability": 0.8614 + }, + { + "start": 12490.37, + "end": 12492.41, + "probability": 0.7543 + }, + { + "start": 12493.07, + "end": 12495.77, + "probability": 0.9362 + }, + { + "start": 12495.87, + "end": 12500.15, + "probability": 0.9327 + }, + { + "start": 12501.19, + "end": 12502.72, + "probability": 0.7952 + }, + { + "start": 12504.27, + "end": 12505.53, + "probability": 0.8024 + }, + { + "start": 12506.03, + "end": 12506.81, + "probability": 0.7988 + }, + { + "start": 12506.95, + "end": 12509.41, + "probability": 0.877 + }, + { + "start": 12509.97, + "end": 12510.13, + "probability": 0.8635 + }, + { + "start": 12510.49, + "end": 12512.65, + "probability": 0.9458 + }, + { + "start": 12512.75, + "end": 12512.99, + "probability": 0.2767 + }, + { + "start": 12513.03, + "end": 12514.53, + "probability": 0.7919 + }, + { + "start": 12514.65, + "end": 12518.41, + "probability": 0.8618 + }, + { + "start": 12519.47, + "end": 12520.31, + "probability": 0.6104 + }, + { + "start": 12520.39, + "end": 12521.33, + "probability": 0.8195 + }, + { + "start": 12521.45, + "end": 12525.49, + "probability": 0.8317 + }, + { + "start": 12525.87, + "end": 12528.57, + "probability": 0.215 + }, + { + "start": 12528.57, + "end": 12529.03, + "probability": 0.1806 + }, + { + "start": 12529.77, + "end": 12530.68, + "probability": 0.5274 + }, + { + "start": 12531.01, + "end": 12532.57, + "probability": 0.9792 + }, + { + "start": 12533.71, + "end": 12535.11, + "probability": 0.8789 + }, + { + "start": 12536.11, + "end": 12539.17, + "probability": 0.9907 + }, + { + "start": 12539.71, + "end": 12541.57, + "probability": 0.9849 + }, + { + "start": 12542.31, + "end": 12543.41, + "probability": 0.7557 + }, + { + "start": 12543.45, + "end": 12545.35, + "probability": 0.9954 + }, + { + "start": 12546.11, + "end": 12547.88, + "probability": 0.9408 + }, + { + "start": 12548.05, + "end": 12548.25, + "probability": 0.7496 + }, + { + "start": 12548.35, + "end": 12549.67, + "probability": 0.9059 + }, + { + "start": 12549.91, + "end": 12551.27, + "probability": 0.89 + }, + { + "start": 12551.41, + "end": 12552.31, + "probability": 0.7615 + }, + { + "start": 12553.39, + "end": 12553.65, + "probability": 0.2924 + }, + { + "start": 12553.65, + "end": 12554.93, + "probability": 0.6006 + }, + { + "start": 12554.97, + "end": 12555.53, + "probability": 0.6082 + }, + { + "start": 12555.65, + "end": 12557.45, + "probability": 0.8792 + }, + { + "start": 12557.97, + "end": 12559.26, + "probability": 0.9891 + }, + { + "start": 12559.77, + "end": 12564.83, + "probability": 0.8062 + }, + { + "start": 12565.23, + "end": 12566.73, + "probability": 0.9128 + }, + { + "start": 12567.23, + "end": 12569.49, + "probability": 0.9833 + }, + { + "start": 12569.99, + "end": 12571.75, + "probability": 0.8152 + }, + { + "start": 12572.59, + "end": 12577.09, + "probability": 0.9882 + }, + { + "start": 12577.19, + "end": 12578.65, + "probability": 0.8601 + }, + { + "start": 12579.35, + "end": 12579.97, + "probability": 0.638 + }, + { + "start": 12580.13, + "end": 12583.23, + "probability": 0.986 + }, + { + "start": 12583.77, + "end": 12584.71, + "probability": 0.849 + }, + { + "start": 12584.81, + "end": 12587.57, + "probability": 0.9142 + }, + { + "start": 12587.57, + "end": 12587.79, + "probability": 0.7228 + }, + { + "start": 12587.87, + "end": 12590.51, + "probability": 0.9988 + }, + { + "start": 12591.25, + "end": 12591.85, + "probability": 0.4107 + }, + { + "start": 12592.41, + "end": 12595.41, + "probability": 0.9782 + }, + { + "start": 12595.81, + "end": 12596.45, + "probability": 0.6965 + }, + { + "start": 12596.53, + "end": 12597.19, + "probability": 0.8299 + }, + { + "start": 12597.29, + "end": 12599.13, + "probability": 0.9686 + }, + { + "start": 12599.25, + "end": 12599.91, + "probability": 0.7285 + }, + { + "start": 12601.51, + "end": 12608.05, + "probability": 0.8654 + }, + { + "start": 12608.05, + "end": 12612.21, + "probability": 0.9973 + }, + { + "start": 12612.29, + "end": 12616.43, + "probability": 0.9813 + }, + { + "start": 12617.15, + "end": 12617.99, + "probability": 0.7405 + }, + { + "start": 12618.01, + "end": 12624.89, + "probability": 0.9526 + }, + { + "start": 12625.37, + "end": 12627.95, + "probability": 0.9355 + }, + { + "start": 12628.41, + "end": 12629.81, + "probability": 0.9844 + }, + { + "start": 12631.19, + "end": 12634.69, + "probability": 0.9719 + }, + { + "start": 12634.75, + "end": 12634.91, + "probability": 0.5127 + }, + { + "start": 12635.01, + "end": 12635.11, + "probability": 0.825 + }, + { + "start": 12635.19, + "end": 12636.17, + "probability": 0.8546 + }, + { + "start": 12637.65, + "end": 12638.27, + "probability": 0.9287 + }, + { + "start": 12638.71, + "end": 12639.29, + "probability": 0.9647 + }, + { + "start": 12639.41, + "end": 12642.43, + "probability": 0.9738 + }, + { + "start": 12642.51, + "end": 12644.45, + "probability": 0.9552 + }, + { + "start": 12644.71, + "end": 12646.37, + "probability": 0.9441 + }, + { + "start": 12646.37, + "end": 12647.14, + "probability": 0.9384 + }, + { + "start": 12647.53, + "end": 12649.19, + "probability": 0.9462 + }, + { + "start": 12649.27, + "end": 12654.09, + "probability": 0.9911 + }, + { + "start": 12654.57, + "end": 12658.27, + "probability": 0.9349 + }, + { + "start": 12658.35, + "end": 12658.71, + "probability": 0.3095 + }, + { + "start": 12658.93, + "end": 12659.25, + "probability": 0.7033 + }, + { + "start": 12659.33, + "end": 12659.47, + "probability": 0.8264 + }, + { + "start": 12659.87, + "end": 12660.73, + "probability": 0.8281 + }, + { + "start": 12661.13, + "end": 12664.31, + "probability": 0.9258 + }, + { + "start": 12664.35, + "end": 12666.21, + "probability": 0.9604 + }, + { + "start": 12666.67, + "end": 12669.77, + "probability": 0.9938 + }, + { + "start": 12669.77, + "end": 12672.27, + "probability": 0.9979 + }, + { + "start": 12672.93, + "end": 12675.15, + "probability": 0.9893 + }, + { + "start": 12675.21, + "end": 12676.85, + "probability": 0.9659 + }, + { + "start": 12677.27, + "end": 12679.27, + "probability": 0.989 + }, + { + "start": 12679.86, + "end": 12682.45, + "probability": 0.9495 + }, + { + "start": 12682.45, + "end": 12686.04, + "probability": 0.991 + }, + { + "start": 12686.62, + "end": 12687.63, + "probability": 0.3958 + }, + { + "start": 12687.67, + "end": 12688.23, + "probability": 0.833 + }, + { + "start": 12688.71, + "end": 12690.09, + "probability": 0.7837 + }, + { + "start": 12690.17, + "end": 12694.77, + "probability": 0.9779 + }, + { + "start": 12695.31, + "end": 12696.79, + "probability": 0.9838 + }, + { + "start": 12697.45, + "end": 12700.27, + "probability": 0.9913 + }, + { + "start": 12700.39, + "end": 12701.27, + "probability": 0.6851 + }, + { + "start": 12701.49, + "end": 12702.81, + "probability": 0.7875 + }, + { + "start": 12702.99, + "end": 12704.21, + "probability": 0.9294 + }, + { + "start": 12705.09, + "end": 12705.89, + "probability": 0.8381 + }, + { + "start": 12706.67, + "end": 12707.91, + "probability": 0.8441 + }, + { + "start": 12708.01, + "end": 12709.78, + "probability": 0.808 + }, + { + "start": 12709.95, + "end": 12711.97, + "probability": 0.9931 + }, + { + "start": 12712.75, + "end": 12714.57, + "probability": 0.8825 + }, + { + "start": 12714.61, + "end": 12718.67, + "probability": 0.981 + }, + { + "start": 12719.15, + "end": 12720.45, + "probability": 0.9914 + }, + { + "start": 12720.53, + "end": 12722.35, + "probability": 0.7307 + }, + { + "start": 12722.93, + "end": 12727.11, + "probability": 0.9495 + }, + { + "start": 12727.11, + "end": 12727.39, + "probability": 0.2041 + }, + { + "start": 12727.73, + "end": 12728.05, + "probability": 0.6423 + }, + { + "start": 12728.37, + "end": 12730.49, + "probability": 0.8728 + }, + { + "start": 12730.63, + "end": 12732.11, + "probability": 0.7243 + }, + { + "start": 12733.15, + "end": 12734.71, + "probability": 0.8249 + }, + { + "start": 12749.31, + "end": 12751.37, + "probability": 0.6164 + }, + { + "start": 12752.43, + "end": 12753.81, + "probability": 0.7505 + }, + { + "start": 12754.35, + "end": 12755.67, + "probability": 0.7235 + }, + { + "start": 12756.41, + "end": 12759.07, + "probability": 0.985 + }, + { + "start": 12759.19, + "end": 12764.67, + "probability": 0.9901 + }, + { + "start": 12765.31, + "end": 12769.01, + "probability": 0.9961 + }, + { + "start": 12769.17, + "end": 12773.73, + "probability": 0.9705 + }, + { + "start": 12773.95, + "end": 12778.13, + "probability": 0.9939 + }, + { + "start": 12778.26, + "end": 12782.07, + "probability": 0.7559 + }, + { + "start": 12783.25, + "end": 12787.76, + "probability": 0.9908 + }, + { + "start": 12788.43, + "end": 12789.87, + "probability": 0.9 + }, + { + "start": 12789.97, + "end": 12793.43, + "probability": 0.9961 + }, + { + "start": 12795.01, + "end": 12798.23, + "probability": 0.9312 + }, + { + "start": 12799.27, + "end": 12804.69, + "probability": 0.9974 + }, + { + "start": 12806.29, + "end": 12809.73, + "probability": 0.887 + }, + { + "start": 12810.63, + "end": 12816.99, + "probability": 0.9886 + }, + { + "start": 12817.95, + "end": 12820.87, + "probability": 0.9868 + }, + { + "start": 12822.63, + "end": 12825.49, + "probability": 0.9917 + }, + { + "start": 12826.67, + "end": 12831.57, + "probability": 0.9943 + }, + { + "start": 12832.93, + "end": 12837.11, + "probability": 0.9075 + }, + { + "start": 12838.67, + "end": 12842.11, + "probability": 0.9966 + }, + { + "start": 12842.11, + "end": 12845.11, + "probability": 0.9979 + }, + { + "start": 12846.21, + "end": 12849.07, + "probability": 0.9115 + }, + { + "start": 12851.41, + "end": 12852.69, + "probability": 0.6614 + }, + { + "start": 12852.81, + "end": 12859.29, + "probability": 0.9932 + }, + { + "start": 12859.29, + "end": 12870.69, + "probability": 0.9905 + }, + { + "start": 12870.69, + "end": 12875.89, + "probability": 0.9878 + }, + { + "start": 12876.53, + "end": 12878.43, + "probability": 0.9718 + }, + { + "start": 12882.01, + "end": 12884.31, + "probability": 0.7795 + }, + { + "start": 12885.35, + "end": 12890.21, + "probability": 0.8845 + }, + { + "start": 12891.77, + "end": 12896.03, + "probability": 0.9873 + }, + { + "start": 12897.87, + "end": 12901.55, + "probability": 0.8062 + }, + { + "start": 12902.77, + "end": 12904.73, + "probability": 0.9384 + }, + { + "start": 12905.67, + "end": 12910.91, + "probability": 0.9871 + }, + { + "start": 12912.07, + "end": 12914.51, + "probability": 0.9966 + }, + { + "start": 12915.37, + "end": 12916.73, + "probability": 0.9939 + }, + { + "start": 12918.19, + "end": 12923.79, + "probability": 0.9862 + }, + { + "start": 12925.61, + "end": 12928.85, + "probability": 0.8387 + }, + { + "start": 12929.63, + "end": 12932.09, + "probability": 0.9037 + }, + { + "start": 12932.83, + "end": 12934.23, + "probability": 0.9056 + }, + { + "start": 12934.63, + "end": 12934.99, + "probability": 0.5367 + }, + { + "start": 12935.05, + "end": 12944.79, + "probability": 0.9871 + }, + { + "start": 12946.27, + "end": 12949.39, + "probability": 0.8351 + }, + { + "start": 12950.37, + "end": 12960.87, + "probability": 0.8721 + }, + { + "start": 12963.43, + "end": 12964.49, + "probability": 0.4977 + }, + { + "start": 12965.89, + "end": 12968.37, + "probability": 0.963 + }, + { + "start": 12970.17, + "end": 12974.49, + "probability": 0.9821 + }, + { + "start": 12975.15, + "end": 12976.61, + "probability": 0.9598 + }, + { + "start": 12978.41, + "end": 12979.59, + "probability": 0.9561 + }, + { + "start": 12979.81, + "end": 12980.67, + "probability": 0.7482 + }, + { + "start": 12980.79, + "end": 12983.71, + "probability": 0.9783 + }, + { + "start": 12984.97, + "end": 12989.85, + "probability": 0.9554 + }, + { + "start": 12989.95, + "end": 12991.83, + "probability": 0.9283 + }, + { + "start": 12993.17, + "end": 12995.61, + "probability": 0.968 + }, + { + "start": 12995.65, + "end": 12998.79, + "probability": 0.9828 + }, + { + "start": 12998.79, + "end": 13002.23, + "probability": 0.9949 + }, + { + "start": 13003.25, + "end": 13004.55, + "probability": 0.9727 + }, + { + "start": 13006.05, + "end": 13010.35, + "probability": 0.9951 + }, + { + "start": 13011.53, + "end": 13012.91, + "probability": 0.6946 + }, + { + "start": 13013.63, + "end": 13016.95, + "probability": 0.9972 + }, + { + "start": 13017.81, + "end": 13020.89, + "probability": 0.9937 + }, + { + "start": 13022.03, + "end": 13023.53, + "probability": 0.9917 + }, + { + "start": 13024.81, + "end": 13030.17, + "probability": 0.9824 + }, + { + "start": 13031.01, + "end": 13035.25, + "probability": 0.9343 + }, + { + "start": 13035.27, + "end": 13041.61, + "probability": 0.9841 + }, + { + "start": 13042.81, + "end": 13045.99, + "probability": 0.9136 + }, + { + "start": 13046.79, + "end": 13050.59, + "probability": 0.9973 + }, + { + "start": 13050.93, + "end": 13055.41, + "probability": 0.9734 + }, + { + "start": 13055.67, + "end": 13056.33, + "probability": 0.7552 + }, + { + "start": 13057.15, + "end": 13059.11, + "probability": 0.6632 + }, + { + "start": 13060.55, + "end": 13064.31, + "probability": 0.947 + }, + { + "start": 13064.57, + "end": 13068.27, + "probability": 0.991 + }, + { + "start": 13069.07, + "end": 13073.37, + "probability": 0.5627 + }, + { + "start": 13075.83, + "end": 13079.33, + "probability": 0.8813 + }, + { + "start": 13080.03, + "end": 13081.41, + "probability": 0.9819 + }, + { + "start": 13082.15, + "end": 13083.45, + "probability": 0.8273 + }, + { + "start": 13084.17, + "end": 13085.87, + "probability": 0.841 + }, + { + "start": 13090.97, + "end": 13092.21, + "probability": 0.9732 + }, + { + "start": 13097.64, + "end": 13100.87, + "probability": 0.6727 + }, + { + "start": 13102.07, + "end": 13107.95, + "probability": 0.9072 + }, + { + "start": 13108.63, + "end": 13109.97, + "probability": 0.9253 + }, + { + "start": 13110.81, + "end": 13115.51, + "probability": 0.9895 + }, + { + "start": 13116.51, + "end": 13119.37, + "probability": 0.8315 + }, + { + "start": 13120.19, + "end": 13122.83, + "probability": 0.8235 + }, + { + "start": 13123.75, + "end": 13125.41, + "probability": 0.7228 + }, + { + "start": 13126.09, + "end": 13130.33, + "probability": 0.962 + }, + { + "start": 13133.09, + "end": 13138.89, + "probability": 0.9806 + }, + { + "start": 13139.19, + "end": 13140.19, + "probability": 0.8209 + }, + { + "start": 13141.73, + "end": 13146.75, + "probability": 0.9904 + }, + { + "start": 13147.23, + "end": 13151.55, + "probability": 0.9871 + }, + { + "start": 13152.57, + "end": 13154.41, + "probability": 0.7484 + }, + { + "start": 13154.49, + "end": 13155.15, + "probability": 0.9167 + }, + { + "start": 13155.61, + "end": 13156.31, + "probability": 0.6596 + }, + { + "start": 13156.77, + "end": 13158.21, + "probability": 0.9864 + }, + { + "start": 13159.23, + "end": 13160.29, + "probability": 0.959 + }, + { + "start": 13161.23, + "end": 13163.87, + "probability": 0.9949 + }, + { + "start": 13163.99, + "end": 13164.77, + "probability": 0.665 + }, + { + "start": 13166.39, + "end": 13168.85, + "probability": 0.8646 + }, + { + "start": 13168.99, + "end": 13171.99, + "probability": 0.9653 + }, + { + "start": 13172.69, + "end": 13174.03, + "probability": 0.9774 + }, + { + "start": 13174.65, + "end": 13181.09, + "probability": 0.9752 + }, + { + "start": 13181.71, + "end": 13184.57, + "probability": 0.9908 + }, + { + "start": 13185.85, + "end": 13189.69, + "probability": 0.8877 + }, + { + "start": 13191.17, + "end": 13191.49, + "probability": 0.5444 + }, + { + "start": 13191.53, + "end": 13191.91, + "probability": 0.7358 + }, + { + "start": 13192.39, + "end": 13193.39, + "probability": 0.9919 + }, + { + "start": 13193.49, + "end": 13194.51, + "probability": 0.9754 + }, + { + "start": 13194.93, + "end": 13195.65, + "probability": 0.7539 + }, + { + "start": 13195.83, + "end": 13196.63, + "probability": 0.8999 + }, + { + "start": 13197.73, + "end": 13198.31, + "probability": 0.8829 + }, + { + "start": 13198.59, + "end": 13199.29, + "probability": 0.9277 + }, + { + "start": 13200.09, + "end": 13205.25, + "probability": 0.9978 + }, + { + "start": 13205.25, + "end": 13211.33, + "probability": 0.999 + }, + { + "start": 13212.59, + "end": 13213.91, + "probability": 0.75 + }, + { + "start": 13214.59, + "end": 13217.33, + "probability": 0.9263 + }, + { + "start": 13217.67, + "end": 13218.83, + "probability": 0.9857 + }, + { + "start": 13219.45, + "end": 13220.89, + "probability": 0.995 + }, + { + "start": 13222.59, + "end": 13226.55, + "probability": 0.9872 + }, + { + "start": 13229.05, + "end": 13231.45, + "probability": 0.8687 + }, + { + "start": 13232.45, + "end": 13235.33, + "probability": 0.9647 + }, + { + "start": 13235.87, + "end": 13236.97, + "probability": 0.9825 + }, + { + "start": 13237.85, + "end": 13242.73, + "probability": 0.967 + }, + { + "start": 13244.31, + "end": 13247.25, + "probability": 0.9384 + }, + { + "start": 13247.81, + "end": 13254.95, + "probability": 0.9424 + }, + { + "start": 13256.05, + "end": 13261.07, + "probability": 0.9961 + }, + { + "start": 13261.07, + "end": 13268.89, + "probability": 0.9609 + }, + { + "start": 13268.91, + "end": 13269.75, + "probability": 0.6686 + }, + { + "start": 13269.87, + "end": 13270.71, + "probability": 0.8577 + }, + { + "start": 13271.05, + "end": 13273.47, + "probability": 0.9424 + }, + { + "start": 13273.61, + "end": 13274.05, + "probability": 0.8092 + }, + { + "start": 13274.47, + "end": 13275.01, + "probability": 0.8218 + }, + { + "start": 13277.33, + "end": 13281.57, + "probability": 0.8657 + }, + { + "start": 13281.81, + "end": 13282.37, + "probability": 0.4893 + }, + { + "start": 13282.39, + "end": 13286.91, + "probability": 0.7783 + }, + { + "start": 13287.19, + "end": 13291.93, + "probability": 0.7102 + }, + { + "start": 13292.05, + "end": 13293.83, + "probability": 0.0293 + }, + { + "start": 13294.09, + "end": 13296.91, + "probability": 0.3504 + }, + { + "start": 13297.19, + "end": 13299.77, + "probability": 0.9463 + }, + { + "start": 13299.79, + "end": 13305.93, + "probability": 0.9648 + }, + { + "start": 13306.25, + "end": 13306.75, + "probability": 0.5742 + }, + { + "start": 13306.93, + "end": 13308.43, + "probability": 0.9609 + }, + { + "start": 13310.01, + "end": 13313.59, + "probability": 0.9702 + }, + { + "start": 13314.27, + "end": 13315.75, + "probability": 0.9599 + }, + { + "start": 13316.11, + "end": 13316.47, + "probability": 0.6154 + }, + { + "start": 13316.67, + "end": 13317.11, + "probability": 0.6329 + }, + { + "start": 13317.27, + "end": 13318.66, + "probability": 0.9188 + }, + { + "start": 13319.43, + "end": 13325.13, + "probability": 0.9564 + }, + { + "start": 13325.23, + "end": 13325.37, + "probability": 0.6548 + }, + { + "start": 13325.57, + "end": 13326.67, + "probability": 0.7024 + }, + { + "start": 13326.71, + "end": 13327.63, + "probability": 0.9052 + }, + { + "start": 13328.15, + "end": 13330.83, + "probability": 0.9395 + }, + { + "start": 13330.99, + "end": 13336.37, + "probability": 0.9919 + }, + { + "start": 13336.53, + "end": 13339.41, + "probability": 0.9981 + }, + { + "start": 13340.75, + "end": 13341.41, + "probability": 0.4949 + }, + { + "start": 13341.57, + "end": 13342.53, + "probability": 0.7866 + }, + { + "start": 13342.75, + "end": 13347.45, + "probability": 0.994 + }, + { + "start": 13348.01, + "end": 13348.97, + "probability": 0.5788 + }, + { + "start": 13349.13, + "end": 13349.13, + "probability": 0.6533 + }, + { + "start": 13349.31, + "end": 13351.73, + "probability": 0.9993 + }, + { + "start": 13351.89, + "end": 13352.95, + "probability": 0.7429 + }, + { + "start": 13353.17, + "end": 13356.75, + "probability": 0.9865 + }, + { + "start": 13356.87, + "end": 13361.89, + "probability": 0.9688 + }, + { + "start": 13362.05, + "end": 13363.95, + "probability": 0.8799 + }, + { + "start": 13364.49, + "end": 13366.07, + "probability": 0.5929 + }, + { + "start": 13366.31, + "end": 13366.89, + "probability": 0.916 + }, + { + "start": 13367.03, + "end": 13369.53, + "probability": 0.9749 + }, + { + "start": 13370.41, + "end": 13374.19, + "probability": 0.9866 + }, + { + "start": 13374.95, + "end": 13375.67, + "probability": 0.7285 + }, + { + "start": 13376.25, + "end": 13377.26, + "probability": 0.9824 + }, + { + "start": 13377.87, + "end": 13378.61, + "probability": 0.9922 + }, + { + "start": 13378.63, + "end": 13379.75, + "probability": 0.9584 + }, + { + "start": 13379.87, + "end": 13380.95, + "probability": 0.8955 + }, + { + "start": 13381.15, + "end": 13382.03, + "probability": 0.7037 + }, + { + "start": 13383.13, + "end": 13383.43, + "probability": 0.8739 + }, + { + "start": 13384.33, + "end": 13385.68, + "probability": 0.9185 + }, + { + "start": 13386.39, + "end": 13387.67, + "probability": 0.9209 + }, + { + "start": 13387.75, + "end": 13388.71, + "probability": 0.9749 + }, + { + "start": 13388.71, + "end": 13390.25, + "probability": 0.9575 + }, + { + "start": 13391.03, + "end": 13392.23, + "probability": 0.9817 + }, + { + "start": 13392.73, + "end": 13395.97, + "probability": 0.9962 + }, + { + "start": 13396.11, + "end": 13398.47, + "probability": 0.8393 + }, + { + "start": 13398.77, + "end": 13401.43, + "probability": 0.9984 + }, + { + "start": 13401.77, + "end": 13402.65, + "probability": 0.8717 + }, + { + "start": 13402.79, + "end": 13404.15, + "probability": 0.9824 + }, + { + "start": 13404.25, + "end": 13405.49, + "probability": 0.9182 + }, + { + "start": 13405.99, + "end": 13408.13, + "probability": 0.9975 + }, + { + "start": 13408.31, + "end": 13409.65, + "probability": 0.7576 + }, + { + "start": 13409.81, + "end": 13411.57, + "probability": 0.9041 + }, + { + "start": 13411.77, + "end": 13413.13, + "probability": 0.9842 + }, + { + "start": 13413.75, + "end": 13419.25, + "probability": 0.9643 + }, + { + "start": 13419.83, + "end": 13422.13, + "probability": 0.9826 + }, + { + "start": 13422.87, + "end": 13424.61, + "probability": 0.9985 + }, + { + "start": 13424.91, + "end": 13426.03, + "probability": 0.9875 + }, + { + "start": 13426.49, + "end": 13430.33, + "probability": 0.9604 + }, + { + "start": 13431.05, + "end": 13435.83, + "probability": 0.999 + }, + { + "start": 13436.33, + "end": 13436.89, + "probability": 0.4545 + }, + { + "start": 13437.01, + "end": 13439.07, + "probability": 0.9622 + }, + { + "start": 13439.41, + "end": 13442.79, + "probability": 0.8604 + }, + { + "start": 13443.55, + "end": 13444.75, + "probability": 0.7451 + }, + { + "start": 13445.09, + "end": 13445.61, + "probability": 0.4405 + }, + { + "start": 13445.63, + "end": 13447.05, + "probability": 0.9484 + }, + { + "start": 13467.97, + "end": 13470.93, + "probability": 0.7459 + }, + { + "start": 13471.75, + "end": 13472.97, + "probability": 0.7641 + }, + { + "start": 13474.03, + "end": 13480.47, + "probability": 0.9985 + }, + { + "start": 13481.27, + "end": 13482.25, + "probability": 0.9578 + }, + { + "start": 13484.3, + "end": 13487.69, + "probability": 0.9924 + }, + { + "start": 13489.29, + "end": 13496.29, + "probability": 0.9912 + }, + { + "start": 13496.29, + "end": 13503.41, + "probability": 0.9973 + }, + { + "start": 13505.09, + "end": 13510.21, + "probability": 0.9962 + }, + { + "start": 13511.41, + "end": 13515.89, + "probability": 0.9986 + }, + { + "start": 13517.25, + "end": 13518.77, + "probability": 0.9591 + }, + { + "start": 13519.23, + "end": 13523.51, + "probability": 0.9932 + }, + { + "start": 13523.51, + "end": 13532.89, + "probability": 0.9868 + }, + { + "start": 13534.67, + "end": 13539.81, + "probability": 0.9678 + }, + { + "start": 13539.81, + "end": 13546.21, + "probability": 0.9988 + }, + { + "start": 13547.09, + "end": 13550.79, + "probability": 0.9139 + }, + { + "start": 13552.71, + "end": 13555.77, + "probability": 0.9896 + }, + { + "start": 13557.05, + "end": 13558.67, + "probability": 0.9777 + }, + { + "start": 13560.15, + "end": 13562.65, + "probability": 0.9907 + }, + { + "start": 13563.75, + "end": 13567.35, + "probability": 0.9989 + }, + { + "start": 13568.11, + "end": 13569.49, + "probability": 0.8807 + }, + { + "start": 13571.47, + "end": 13573.73, + "probability": 0.9968 + }, + { + "start": 13575.01, + "end": 13577.53, + "probability": 0.9965 + }, + { + "start": 13578.39, + "end": 13578.79, + "probability": 0.5174 + }, + { + "start": 13578.95, + "end": 13580.17, + "probability": 0.7753 + }, + { + "start": 13580.65, + "end": 13581.75, + "probability": 0.8695 + }, + { + "start": 13581.89, + "end": 13582.57, + "probability": 0.696 + }, + { + "start": 13583.19, + "end": 13586.59, + "probability": 0.9637 + }, + { + "start": 13587.29, + "end": 13590.57, + "probability": 0.9133 + }, + { + "start": 13592.37, + "end": 13593.73, + "probability": 0.9351 + }, + { + "start": 13593.83, + "end": 13594.91, + "probability": 0.6739 + }, + { + "start": 13595.11, + "end": 13596.09, + "probability": 0.4951 + }, + { + "start": 13596.17, + "end": 13597.73, + "probability": 0.9946 + }, + { + "start": 13598.51, + "end": 13600.63, + "probability": 0.9652 + }, + { + "start": 13601.31, + "end": 13604.37, + "probability": 0.8163 + }, + { + "start": 13604.99, + "end": 13607.73, + "probability": 0.9796 + }, + { + "start": 13608.01, + "end": 13611.03, + "probability": 0.9957 + }, + { + "start": 13611.11, + "end": 13613.53, + "probability": 0.8033 + }, + { + "start": 13614.11, + "end": 13615.93, + "probability": 0.5879 + }, + { + "start": 13616.11, + "end": 13617.27, + "probability": 0.6211 + }, + { + "start": 13617.37, + "end": 13618.03, + "probability": 0.6629 + }, + { + "start": 13618.37, + "end": 13619.01, + "probability": 0.9277 + }, + { + "start": 13619.65, + "end": 13621.89, + "probability": 0.9771 + }, + { + "start": 13622.59, + "end": 13624.91, + "probability": 0.978 + }, + { + "start": 13625.87, + "end": 13628.21, + "probability": 0.7688 + }, + { + "start": 13628.81, + "end": 13631.59, + "probability": 0.9717 + }, + { + "start": 13633.49, + "end": 13637.47, + "probability": 0.983 + }, + { + "start": 13638.21, + "end": 13639.35, + "probability": 0.9023 + }, + { + "start": 13639.79, + "end": 13642.62, + "probability": 0.9971 + }, + { + "start": 13643.83, + "end": 13644.93, + "probability": 0.7064 + }, + { + "start": 13645.73, + "end": 13653.11, + "probability": 0.9331 + }, + { + "start": 13653.47, + "end": 13656.51, + "probability": 0.9705 + }, + { + "start": 13656.67, + "end": 13658.13, + "probability": 0.5771 + }, + { + "start": 13659.23, + "end": 13661.55, + "probability": 0.9683 + }, + { + "start": 13661.63, + "end": 13662.98, + "probability": 0.9839 + }, + { + "start": 13663.81, + "end": 13664.57, + "probability": 0.8872 + }, + { + "start": 13664.77, + "end": 13665.75, + "probability": 0.7892 + }, + { + "start": 13665.97, + "end": 13668.11, + "probability": 0.9529 + }, + { + "start": 13668.67, + "end": 13670.23, + "probability": 0.9321 + }, + { + "start": 13671.33, + "end": 13673.97, + "probability": 0.9666 + }, + { + "start": 13674.49, + "end": 13677.89, + "probability": 0.9967 + }, + { + "start": 13677.89, + "end": 13681.69, + "probability": 0.8718 + }, + { + "start": 13682.43, + "end": 13683.37, + "probability": 0.7561 + }, + { + "start": 13686.15, + "end": 13687.43, + "probability": 0.9312 + }, + { + "start": 13688.73, + "end": 13694.23, + "probability": 0.9663 + }, + { + "start": 13694.95, + "end": 13699.41, + "probability": 0.9956 + }, + { + "start": 13700.61, + "end": 13703.89, + "probability": 0.985 + }, + { + "start": 13703.95, + "end": 13707.65, + "probability": 0.9937 + }, + { + "start": 13708.27, + "end": 13709.51, + "probability": 0.9828 + }, + { + "start": 13709.69, + "end": 13710.87, + "probability": 0.9946 + }, + { + "start": 13710.99, + "end": 13713.23, + "probability": 0.9438 + }, + { + "start": 13714.09, + "end": 13716.57, + "probability": 0.9974 + }, + { + "start": 13718.03, + "end": 13719.19, + "probability": 0.6941 + }, + { + "start": 13719.41, + "end": 13722.41, + "probability": 0.9795 + }, + { + "start": 13722.65, + "end": 13724.37, + "probability": 0.9834 + }, + { + "start": 13724.71, + "end": 13728.81, + "probability": 0.9902 + }, + { + "start": 13728.99, + "end": 13730.29, + "probability": 0.97 + }, + { + "start": 13730.51, + "end": 13731.95, + "probability": 0.7101 + }, + { + "start": 13732.03, + "end": 13733.13, + "probability": 0.8562 + }, + { + "start": 13733.81, + "end": 13735.69, + "probability": 0.9681 + }, + { + "start": 13736.53, + "end": 13740.87, + "probability": 0.9781 + }, + { + "start": 13740.87, + "end": 13743.45, + "probability": 0.9611 + }, + { + "start": 13743.79, + "end": 13745.39, + "probability": 0.9643 + }, + { + "start": 13746.31, + "end": 13748.11, + "probability": 0.9865 + }, + { + "start": 13748.95, + "end": 13752.37, + "probability": 0.9978 + }, + { + "start": 13753.27, + "end": 13755.35, + "probability": 0.9951 + }, + { + "start": 13755.79, + "end": 13758.27, + "probability": 0.9823 + }, + { + "start": 13758.85, + "end": 13765.01, + "probability": 0.9795 + }, + { + "start": 13765.07, + "end": 13766.45, + "probability": 0.8811 + }, + { + "start": 13767.29, + "end": 13773.69, + "probability": 0.9896 + }, + { + "start": 13774.09, + "end": 13774.93, + "probability": 0.7668 + }, + { + "start": 13775.07, + "end": 13776.05, + "probability": 0.9231 + }, + { + "start": 13776.47, + "end": 13783.67, + "probability": 0.989 + }, + { + "start": 13784.01, + "end": 13788.49, + "probability": 0.7461 + }, + { + "start": 13788.91, + "end": 13793.29, + "probability": 0.9834 + }, + { + "start": 13793.57, + "end": 13795.87, + "probability": 0.9916 + }, + { + "start": 13796.45, + "end": 13798.55, + "probability": 0.7686 + }, + { + "start": 13798.69, + "end": 13802.65, + "probability": 0.9878 + }, + { + "start": 13803.11, + "end": 13805.29, + "probability": 0.9233 + }, + { + "start": 13805.43, + "end": 13806.07, + "probability": 0.6244 + }, + { + "start": 13806.67, + "end": 13810.61, + "probability": 0.9634 + }, + { + "start": 13810.91, + "end": 13813.15, + "probability": 0.9828 + }, + { + "start": 13813.33, + "end": 13815.2, + "probability": 0.8709 + }, + { + "start": 13815.23, + "end": 13815.23, + "probability": 0.4683 + }, + { + "start": 13815.27, + "end": 13819.59, + "probability": 0.9799 + }, + { + "start": 13819.77, + "end": 13820.29, + "probability": 0.6905 + }, + { + "start": 13820.59, + "end": 13822.03, + "probability": 0.5804 + }, + { + "start": 13822.15, + "end": 13824.05, + "probability": 0.9172 + }, + { + "start": 13825.07, + "end": 13827.33, + "probability": 0.9663 + }, + { + "start": 13832.17, + "end": 13833.17, + "probability": 0.7705 + }, + { + "start": 13838.91, + "end": 13839.33, + "probability": 0.3298 + }, + { + "start": 13839.33, + "end": 13839.75, + "probability": 0.5565 + }, + { + "start": 13839.87, + "end": 13839.87, + "probability": 0.3874 + }, + { + "start": 13839.87, + "end": 13840.57, + "probability": 0.894 + }, + { + "start": 13840.73, + "end": 13845.37, + "probability": 0.9813 + }, + { + "start": 13845.37, + "end": 13849.61, + "probability": 0.9987 + }, + { + "start": 13850.21, + "end": 13851.69, + "probability": 0.979 + }, + { + "start": 13851.97, + "end": 13855.55, + "probability": 0.9669 + }, + { + "start": 13855.67, + "end": 13856.05, + "probability": 0.7257 + }, + { + "start": 13856.25, + "end": 13857.19, + "probability": 0.6083 + }, + { + "start": 13857.89, + "end": 13862.73, + "probability": 0.8598 + }, + { + "start": 13863.95, + "end": 13865.13, + "probability": 0.8814 + }, + { + "start": 13865.93, + "end": 13867.17, + "probability": 0.966 + }, + { + "start": 13867.33, + "end": 13868.81, + "probability": 0.9795 + }, + { + "start": 13869.25, + "end": 13872.47, + "probability": 0.908 + }, + { + "start": 13872.93, + "end": 13877.63, + "probability": 0.9956 + }, + { + "start": 13878.49, + "end": 13879.21, + "probability": 0.8112 + }, + { + "start": 13879.59, + "end": 13883.59, + "probability": 0.9885 + }, + { + "start": 13884.09, + "end": 13888.17, + "probability": 0.9942 + }, + { + "start": 13888.83, + "end": 13890.75, + "probability": 0.9321 + }, + { + "start": 13890.87, + "end": 13891.09, + "probability": 0.9486 + }, + { + "start": 13891.11, + "end": 13893.89, + "probability": 0.9839 + }, + { + "start": 13894.57, + "end": 13896.61, + "probability": 0.8822 + }, + { + "start": 13896.95, + "end": 13897.61, + "probability": 0.7237 + }, + { + "start": 13897.95, + "end": 13899.09, + "probability": 0.9946 + }, + { + "start": 13899.27, + "end": 13901.63, + "probability": 0.8659 + }, + { + "start": 13902.07, + "end": 13903.11, + "probability": 0.937 + }, + { + "start": 13903.41, + "end": 13906.89, + "probability": 0.9487 + }, + { + "start": 13907.51, + "end": 13908.48, + "probability": 0.9487 + }, + { + "start": 13908.61, + "end": 13910.77, + "probability": 0.8789 + }, + { + "start": 13911.01, + "end": 13912.59, + "probability": 0.9661 + }, + { + "start": 13913.11, + "end": 13913.61, + "probability": 0.3353 + }, + { + "start": 13913.99, + "end": 13914.77, + "probability": 0.7597 + }, + { + "start": 13915.25, + "end": 13917.19, + "probability": 0.8723 + }, + { + "start": 13917.19, + "end": 13920.65, + "probability": 0.9493 + }, + { + "start": 13920.75, + "end": 13921.97, + "probability": 0.9587 + }, + { + "start": 13922.25, + "end": 13924.09, + "probability": 0.9365 + }, + { + "start": 13924.45, + "end": 13925.65, + "probability": 0.9262 + }, + { + "start": 13926.09, + "end": 13932.41, + "probability": 0.9574 + }, + { + "start": 13933.03, + "end": 13934.43, + "probability": 0.8031 + }, + { + "start": 13934.43, + "end": 13939.39, + "probability": 0.9854 + }, + { + "start": 13939.83, + "end": 13940.31, + "probability": 0.4302 + }, + { + "start": 13941.17, + "end": 13942.71, + "probability": 0.6759 + }, + { + "start": 13942.91, + "end": 13944.31, + "probability": 0.9691 + }, + { + "start": 13944.35, + "end": 13946.95, + "probability": 0.9868 + }, + { + "start": 13947.53, + "end": 13949.01, + "probability": 0.9928 + }, + { + "start": 13949.37, + "end": 13952.69, + "probability": 0.9922 + }, + { + "start": 13952.81, + "end": 13953.67, + "probability": 0.5791 + }, + { + "start": 13954.41, + "end": 13956.23, + "probability": 0.8798 + }, + { + "start": 13956.41, + "end": 13958.75, + "probability": 0.9873 + }, + { + "start": 13958.85, + "end": 13962.55, + "probability": 0.9878 + }, + { + "start": 13962.67, + "end": 13964.61, + "probability": 0.8984 + }, + { + "start": 13964.73, + "end": 13965.23, + "probability": 0.6103 + }, + { + "start": 13965.59, + "end": 13966.81, + "probability": 0.8105 + }, + { + "start": 13966.91, + "end": 13968.21, + "probability": 0.9501 + }, + { + "start": 13968.31, + "end": 13968.95, + "probability": 0.8019 + }, + { + "start": 13969.09, + "end": 13972.07, + "probability": 0.985 + }, + { + "start": 13972.23, + "end": 13973.12, + "probability": 0.9304 + }, + { + "start": 13973.91, + "end": 13975.65, + "probability": 0.9437 + }, + { + "start": 13975.67, + "end": 13976.51, + "probability": 0.7831 + }, + { + "start": 13976.91, + "end": 13979.05, + "probability": 0.9956 + }, + { + "start": 13979.29, + "end": 13980.37, + "probability": 0.9848 + }, + { + "start": 13980.57, + "end": 13981.23, + "probability": 0.906 + }, + { + "start": 13981.31, + "end": 13982.27, + "probability": 0.9266 + }, + { + "start": 13982.93, + "end": 13983.89, + "probability": 0.8884 + }, + { + "start": 13984.23, + "end": 13985.33, + "probability": 0.917 + }, + { + "start": 13985.79, + "end": 13986.63, + "probability": 0.8129 + }, + { + "start": 13986.91, + "end": 13987.79, + "probability": 0.7732 + }, + { + "start": 13987.95, + "end": 13988.81, + "probability": 0.9846 + }, + { + "start": 13989.29, + "end": 13993.13, + "probability": 0.9773 + }, + { + "start": 13993.79, + "end": 13994.41, + "probability": 0.5553 + }, + { + "start": 13994.65, + "end": 13995.97, + "probability": 0.9978 + }, + { + "start": 13996.15, + "end": 13997.11, + "probability": 0.6264 + }, + { + "start": 13997.23, + "end": 13998.51, + "probability": 0.9307 + }, + { + "start": 13998.69, + "end": 13999.47, + "probability": 0.7109 + }, + { + "start": 13999.85, + "end": 14005.19, + "probability": 0.9766 + }, + { + "start": 14005.33, + "end": 14008.01, + "probability": 0.963 + }, + { + "start": 14008.53, + "end": 14009.79, + "probability": 0.9943 + }, + { + "start": 14010.01, + "end": 14013.99, + "probability": 0.9956 + }, + { + "start": 14014.49, + "end": 14015.65, + "probability": 0.7656 + }, + { + "start": 14016.05, + "end": 14017.71, + "probability": 0.9989 + }, + { + "start": 14017.91, + "end": 14019.13, + "probability": 0.6649 + }, + { + "start": 14019.47, + "end": 14020.22, + "probability": 0.9968 + }, + { + "start": 14020.71, + "end": 14022.45, + "probability": 0.9222 + }, + { + "start": 14023.27, + "end": 14026.21, + "probability": 0.9895 + }, + { + "start": 14026.33, + "end": 14026.73, + "probability": 0.7507 + }, + { + "start": 14026.85, + "end": 14027.59, + "probability": 0.8816 + }, + { + "start": 14027.65, + "end": 14029.81, + "probability": 0.8765 + }, + { + "start": 14030.43, + "end": 14035.37, + "probability": 0.9692 + }, + { + "start": 14035.85, + "end": 14036.33, + "probability": 0.6263 + }, + { + "start": 14036.73, + "end": 14038.57, + "probability": 0.8672 + }, + { + "start": 14038.97, + "end": 14040.77, + "probability": 0.9755 + }, + { + "start": 14040.95, + "end": 14042.55, + "probability": 0.9976 + }, + { + "start": 14042.95, + "end": 14046.81, + "probability": 0.9889 + }, + { + "start": 14047.11, + "end": 14047.31, + "probability": 0.8577 + }, + { + "start": 14048.07, + "end": 14050.35, + "probability": 0.8659 + }, + { + "start": 14050.51, + "end": 14051.53, + "probability": 0.916 + }, + { + "start": 14052.47, + "end": 14054.17, + "probability": 0.847 + }, + { + "start": 14054.73, + "end": 14057.03, + "probability": 0.9933 + }, + { + "start": 14057.03, + "end": 14060.37, + "probability": 0.514 + }, + { + "start": 14060.91, + "end": 14064.8, + "probability": 0.6451 + }, + { + "start": 14066.77, + "end": 14070.59, + "probability": 0.8655 + }, + { + "start": 14071.13, + "end": 14074.93, + "probability": 0.6695 + }, + { + "start": 14077.13, + "end": 14078.69, + "probability": 0.9946 + }, + { + "start": 14078.97, + "end": 14079.79, + "probability": 0.6871 + }, + { + "start": 14081.35, + "end": 14082.97, + "probability": 0.8708 + }, + { + "start": 14084.99, + "end": 14086.71, + "probability": 0.7543 + }, + { + "start": 14098.15, + "end": 14098.25, + "probability": 0.5761 + }, + { + "start": 14099.29, + "end": 14099.29, + "probability": 0.8317 + }, + { + "start": 14099.29, + "end": 14107.71, + "probability": 0.9861 + }, + { + "start": 14108.83, + "end": 14113.83, + "probability": 0.9928 + }, + { + "start": 14115.95, + "end": 14117.95, + "probability": 0.9619 + }, + { + "start": 14119.25, + "end": 14122.65, + "probability": 0.9139 + }, + { + "start": 14123.77, + "end": 14128.97, + "probability": 0.7412 + }, + { + "start": 14129.89, + "end": 14137.97, + "probability": 0.9901 + }, + { + "start": 14141.51, + "end": 14145.65, + "probability": 0.9967 + }, + { + "start": 14146.45, + "end": 14149.3, + "probability": 0.999 + }, + { + "start": 14150.19, + "end": 14154.03, + "probability": 0.9313 + }, + { + "start": 14154.85, + "end": 14156.93, + "probability": 0.8931 + }, + { + "start": 14158.33, + "end": 14161.83, + "probability": 0.9983 + }, + { + "start": 14162.79, + "end": 14167.07, + "probability": 0.9604 + }, + { + "start": 14168.43, + "end": 14168.43, + "probability": 0.1154 + }, + { + "start": 14168.61, + "end": 14169.67, + "probability": 0.9055 + }, + { + "start": 14169.75, + "end": 14175.41, + "probability": 0.9733 + }, + { + "start": 14176.89, + "end": 14184.67, + "probability": 0.9941 + }, + { + "start": 14185.83, + "end": 14186.63, + "probability": 0.9814 + }, + { + "start": 14186.81, + "end": 14188.05, + "probability": 0.9339 + }, + { + "start": 14188.11, + "end": 14195.77, + "probability": 0.9854 + }, + { + "start": 14196.25, + "end": 14197.25, + "probability": 0.7655 + }, + { + "start": 14198.87, + "end": 14204.69, + "probability": 0.9946 + }, + { + "start": 14206.37, + "end": 14209.35, + "probability": 0.996 + }, + { + "start": 14210.59, + "end": 14215.09, + "probability": 0.9851 + }, + { + "start": 14215.17, + "end": 14215.77, + "probability": 0.8182 + }, + { + "start": 14216.81, + "end": 14222.73, + "probability": 0.946 + }, + { + "start": 14222.73, + "end": 14227.65, + "probability": 0.9936 + }, + { + "start": 14229.07, + "end": 14229.99, + "probability": 0.2873 + }, + { + "start": 14230.09, + "end": 14231.01, + "probability": 0.7459 + }, + { + "start": 14231.39, + "end": 14236.17, + "probability": 0.9525 + }, + { + "start": 14236.81, + "end": 14238.99, + "probability": 0.7935 + }, + { + "start": 14239.17, + "end": 14239.55, + "probability": 0.667 + }, + { + "start": 14240.55, + "end": 14243.71, + "probability": 0.9855 + }, + { + "start": 14243.71, + "end": 14246.63, + "probability": 0.9864 + }, + { + "start": 14247.67, + "end": 14248.73, + "probability": 0.7607 + }, + { + "start": 14249.07, + "end": 14251.95, + "probability": 0.9193 + }, + { + "start": 14252.07, + "end": 14254.89, + "probability": 0.8752 + }, + { + "start": 14255.77, + "end": 14259.75, + "probability": 0.9355 + }, + { + "start": 14260.61, + "end": 14265.57, + "probability": 0.9777 + }, + { + "start": 14267.29, + "end": 14269.61, + "probability": 0.9832 + }, + { + "start": 14270.45, + "end": 14273.13, + "probability": 0.9778 + }, + { + "start": 14273.95, + "end": 14276.43, + "probability": 0.9965 + }, + { + "start": 14276.43, + "end": 14279.87, + "probability": 0.9984 + }, + { + "start": 14280.47, + "end": 14283.11, + "probability": 0.6872 + }, + { + "start": 14283.91, + "end": 14285.39, + "probability": 0.954 + }, + { + "start": 14286.01, + "end": 14291.49, + "probability": 0.9968 + }, + { + "start": 14292.35, + "end": 14294.51, + "probability": 0.9447 + }, + { + "start": 14295.15, + "end": 14300.63, + "probability": 0.9952 + }, + { + "start": 14300.63, + "end": 14304.67, + "probability": 0.9988 + }, + { + "start": 14305.29, + "end": 14307.91, + "probability": 0.9186 + }, + { + "start": 14308.53, + "end": 14316.21, + "probability": 0.9945 + }, + { + "start": 14317.03, + "end": 14324.07, + "probability": 0.9893 + }, + { + "start": 14324.11, + "end": 14331.95, + "probability": 0.9357 + }, + { + "start": 14332.59, + "end": 14337.75, + "probability": 0.9882 + }, + { + "start": 14337.75, + "end": 14342.57, + "probability": 0.9686 + }, + { + "start": 14343.99, + "end": 14345.77, + "probability": 0.9628 + }, + { + "start": 14347.39, + "end": 14352.15, + "probability": 0.996 + }, + { + "start": 14353.47, + "end": 14355.59, + "probability": 0.9989 + }, + { + "start": 14356.47, + "end": 14357.23, + "probability": 0.7756 + }, + { + "start": 14358.15, + "end": 14363.17, + "probability": 0.9958 + }, + { + "start": 14364.73, + "end": 14368.59, + "probability": 0.9961 + }, + { + "start": 14370.93, + "end": 14372.87, + "probability": 0.9197 + }, + { + "start": 14373.11, + "end": 14374.11, + "probability": 0.9354 + }, + { + "start": 14374.29, + "end": 14376.07, + "probability": 0.8969 + }, + { + "start": 14377.35, + "end": 14379.85, + "probability": 0.9142 + }, + { + "start": 14382.07, + "end": 14388.35, + "probability": 0.998 + }, + { + "start": 14389.49, + "end": 14394.11, + "probability": 0.8118 + }, + { + "start": 14394.79, + "end": 14397.85, + "probability": 0.9746 + }, + { + "start": 14398.49, + "end": 14399.95, + "probability": 0.97 + }, + { + "start": 14400.57, + "end": 14405.13, + "probability": 0.9823 + }, + { + "start": 14406.23, + "end": 14407.71, + "probability": 0.9993 + }, + { + "start": 14409.97, + "end": 14410.37, + "probability": 0.9911 + }, + { + "start": 14410.93, + "end": 14411.13, + "probability": 0.2252 + }, + { + "start": 14411.59, + "end": 14414.59, + "probability": 0.9172 + }, + { + "start": 14414.73, + "end": 14415.97, + "probability": 0.9854 + }, + { + "start": 14417.09, + "end": 14417.47, + "probability": 0.4212 + }, + { + "start": 14417.69, + "end": 14419.33, + "probability": 0.9922 + }, + { + "start": 14419.47, + "end": 14421.89, + "probability": 0.9867 + }, + { + "start": 14422.07, + "end": 14424.43, + "probability": 0.9515 + }, + { + "start": 14424.45, + "end": 14426.73, + "probability": 0.8888 + }, + { + "start": 14427.51, + "end": 14433.73, + "probability": 0.9948 + }, + { + "start": 14435.37, + "end": 14442.11, + "probability": 0.9961 + }, + { + "start": 14442.11, + "end": 14446.55, + "probability": 0.9939 + }, + { + "start": 14447.53, + "end": 14449.83, + "probability": 0.9455 + }, + { + "start": 14450.59, + "end": 14453.42, + "probability": 0.9814 + }, + { + "start": 14454.05, + "end": 14455.71, + "probability": 0.9576 + }, + { + "start": 14456.15, + "end": 14460.35, + "probability": 0.9871 + }, + { + "start": 14460.69, + "end": 14461.43, + "probability": 0.9692 + }, + { + "start": 14461.81, + "end": 14462.79, + "probability": 0.8594 + }, + { + "start": 14463.57, + "end": 14465.03, + "probability": 0.47 + }, + { + "start": 14465.05, + "end": 14468.59, + "probability": 0.9156 + }, + { + "start": 14468.67, + "end": 14469.23, + "probability": 0.8441 + }, + { + "start": 14469.83, + "end": 14472.11, + "probability": 0.8479 + }, + { + "start": 14472.29, + "end": 14475.37, + "probability": 0.9833 + }, + { + "start": 14475.99, + "end": 14479.63, + "probability": 0.8945 + }, + { + "start": 14479.63, + "end": 14484.53, + "probability": 0.8562 + }, + { + "start": 14484.63, + "end": 14486.11, + "probability": 0.6064 + }, + { + "start": 14486.31, + "end": 14487.6, + "probability": 0.4103 + }, + { + "start": 14489.31, + "end": 14494.87, + "probability": 0.7825 + }, + { + "start": 14494.95, + "end": 14496.93, + "probability": 0.7805 + }, + { + "start": 14497.75, + "end": 14499.21, + "probability": 0.3036 + }, + { + "start": 14499.37, + "end": 14503.23, + "probability": 0.8532 + }, + { + "start": 14504.13, + "end": 14505.64, + "probability": 0.0031 + }, + { + "start": 14509.03, + "end": 14512.89, + "probability": 0.7719 + }, + { + "start": 14513.31, + "end": 14514.55, + "probability": 0.9258 + }, + { + "start": 14515.95, + "end": 14517.17, + "probability": 0.9614 + }, + { + "start": 14517.21, + "end": 14520.51, + "probability": 0.8877 + }, + { + "start": 14520.51, + "end": 14521.47, + "probability": 0.5126 + }, + { + "start": 14521.79, + "end": 14522.15, + "probability": 0.7739 + }, + { + "start": 14522.17, + "end": 14522.63, + "probability": 0.5413 + }, + { + "start": 14522.63, + "end": 14524.1, + "probability": 0.7738 + }, + { + "start": 14524.77, + "end": 14526.15, + "probability": 0.9796 + }, + { + "start": 14526.33, + "end": 14526.69, + "probability": 0.308 + }, + { + "start": 14527.31, + "end": 14530.33, + "probability": 0.952 + }, + { + "start": 14530.41, + "end": 14532.05, + "probability": 0.545 + }, + { + "start": 14532.43, + "end": 14533.57, + "probability": 0.9303 + }, + { + "start": 14533.75, + "end": 14534.01, + "probability": 0.8004 + }, + { + "start": 14534.47, + "end": 14536.35, + "probability": 0.8721 + }, + { + "start": 14537.25, + "end": 14539.53, + "probability": 0.7507 + }, + { + "start": 14539.53, + "end": 14541.63, + "probability": 0.5144 + }, + { + "start": 14541.71, + "end": 14542.05, + "probability": 0.6931 + }, + { + "start": 14542.05, + "end": 14547.11, + "probability": 0.788 + }, + { + "start": 14547.59, + "end": 14547.93, + "probability": 0.6177 + }, + { + "start": 14548.03, + "end": 14548.89, + "probability": 0.8355 + }, + { + "start": 14549.03, + "end": 14552.65, + "probability": 0.9903 + }, + { + "start": 14552.79, + "end": 14554.17, + "probability": 0.9985 + }, + { + "start": 14554.69, + "end": 14557.01, + "probability": 0.9513 + }, + { + "start": 14557.17, + "end": 14558.27, + "probability": 0.7156 + }, + { + "start": 14558.87, + "end": 14560.33, + "probability": 0.9375 + }, + { + "start": 14560.95, + "end": 14563.05, + "probability": 0.957 + }, + { + "start": 14563.96, + "end": 14565.85, + "probability": 0.8619 + }, + { + "start": 14566.01, + "end": 14571.07, + "probability": 0.9854 + }, + { + "start": 14572.23, + "end": 14575.51, + "probability": 0.9933 + }, + { + "start": 14576.17, + "end": 14579.67, + "probability": 0.9987 + }, + { + "start": 14580.41, + "end": 14582.63, + "probability": 0.8975 + }, + { + "start": 14583.63, + "end": 14585.81, + "probability": 0.9597 + }, + { + "start": 14585.89, + "end": 14586.48, + "probability": 0.8113 + }, + { + "start": 14586.57, + "end": 14586.87, + "probability": 0.7789 + }, + { + "start": 14587.27, + "end": 14589.99, + "probability": 0.9865 + }, + { + "start": 14589.99, + "end": 14593.17, + "probability": 0.7704 + }, + { + "start": 14593.59, + "end": 14595.37, + "probability": 0.9674 + }, + { + "start": 14595.47, + "end": 14597.35, + "probability": 0.9537 + }, + { + "start": 14597.87, + "end": 14600.57, + "probability": 0.7019 + }, + { + "start": 14600.67, + "end": 14604.17, + "probability": 0.988 + }, + { + "start": 14604.61, + "end": 14608.91, + "probability": 0.9972 + }, + { + "start": 14609.19, + "end": 14611.63, + "probability": 0.9893 + }, + { + "start": 14612.09, + "end": 14613.99, + "probability": 0.9761 + }, + { + "start": 14614.07, + "end": 14614.37, + "probability": 0.5587 + }, + { + "start": 14614.39, + "end": 14614.69, + "probability": 0.9609 + }, + { + "start": 14614.79, + "end": 14618.61, + "probability": 0.9817 + }, + { + "start": 14618.79, + "end": 14623.33, + "probability": 0.9914 + }, + { + "start": 14623.99, + "end": 14626.97, + "probability": 0.9978 + }, + { + "start": 14627.13, + "end": 14632.05, + "probability": 0.9891 + }, + { + "start": 14632.05, + "end": 14635.81, + "probability": 0.9868 + }, + { + "start": 14636.41, + "end": 14637.65, + "probability": 0.9387 + }, + { + "start": 14637.71, + "end": 14640.67, + "probability": 0.9952 + }, + { + "start": 14641.85, + "end": 14645.87, + "probability": 0.9793 + }, + { + "start": 14646.71, + "end": 14651.39, + "probability": 0.9646 + }, + { + "start": 14651.97, + "end": 14653.43, + "probability": 0.9858 + }, + { + "start": 14654.73, + "end": 14657.11, + "probability": 0.9046 + }, + { + "start": 14657.15, + "end": 14661.47, + "probability": 0.9954 + }, + { + "start": 14661.77, + "end": 14663.91, + "probability": 0.9848 + }, + { + "start": 14664.61, + "end": 14666.11, + "probability": 0.995 + }, + { + "start": 14666.27, + "end": 14666.87, + "probability": 0.7953 + }, + { + "start": 14666.95, + "end": 14667.69, + "probability": 0.7124 + }, + { + "start": 14668.33, + "end": 14671.84, + "probability": 0.9619 + }, + { + "start": 14673.11, + "end": 14673.97, + "probability": 0.8733 + }, + { + "start": 14674.87, + "end": 14675.59, + "probability": 0.3093 + }, + { + "start": 14675.89, + "end": 14677.01, + "probability": 0.4808 + }, + { + "start": 14677.13, + "end": 14677.49, + "probability": 0.748 + }, + { + "start": 14677.61, + "end": 14678.73, + "probability": 0.9818 + }, + { + "start": 14678.83, + "end": 14680.37, + "probability": 0.9757 + }, + { + "start": 14680.65, + "end": 14684.87, + "probability": 0.9207 + }, + { + "start": 14685.73, + "end": 14688.64, + "probability": 0.7539 + }, + { + "start": 14688.87, + "end": 14691.57, + "probability": 0.8188 + }, + { + "start": 14692.17, + "end": 14693.69, + "probability": 0.9374 + }, + { + "start": 14693.81, + "end": 14697.09, + "probability": 0.9964 + }, + { + "start": 14697.13, + "end": 14698.01, + "probability": 0.9508 + }, + { + "start": 14698.07, + "end": 14701.01, + "probability": 0.9856 + }, + { + "start": 14701.33, + "end": 14703.27, + "probability": 0.9983 + }, + { + "start": 14703.27, + "end": 14706.37, + "probability": 0.999 + }, + { + "start": 14706.99, + "end": 14710.13, + "probability": 0.988 + }, + { + "start": 14711.07, + "end": 14713.77, + "probability": 0.9779 + }, + { + "start": 14713.79, + "end": 14716.05, + "probability": 0.9978 + }, + { + "start": 14716.71, + "end": 14720.29, + "probability": 0.9238 + }, + { + "start": 14721.21, + "end": 14722.75, + "probability": 0.8361 + }, + { + "start": 14723.05, + "end": 14723.73, + "probability": 0.5821 + }, + { + "start": 14723.75, + "end": 14724.97, + "probability": 0.9009 + }, + { + "start": 14725.27, + "end": 14726.23, + "probability": 0.6864 + }, + { + "start": 14726.29, + "end": 14728.01, + "probability": 0.9717 + }, + { + "start": 14728.41, + "end": 14729.51, + "probability": 0.6987 + }, + { + "start": 14729.91, + "end": 14732.64, + "probability": 0.7045 + }, + { + "start": 14733.31, + "end": 14738.59, + "probability": 0.943 + }, + { + "start": 14738.75, + "end": 14739.53, + "probability": 0.6954 + }, + { + "start": 14739.53, + "end": 14744.48, + "probability": 0.505 + }, + { + "start": 14745.47, + "end": 14746.73, + "probability": 0.9192 + }, + { + "start": 14746.83, + "end": 14748.43, + "probability": 0.9715 + }, + { + "start": 14748.51, + "end": 14748.71, + "probability": 0.5268 + }, + { + "start": 14748.73, + "end": 14750.3, + "probability": 0.7117 + }, + { + "start": 14750.37, + "end": 14755.59, + "probability": 0.9772 + }, + { + "start": 14755.67, + "end": 14756.95, + "probability": 0.9097 + }, + { + "start": 14757.41, + "end": 14761.87, + "probability": 0.9858 + }, + { + "start": 14761.93, + "end": 14764.17, + "probability": 0.9943 + }, + { + "start": 14764.27, + "end": 14768.13, + "probability": 0.9859 + }, + { + "start": 14768.19, + "end": 14771.27, + "probability": 0.9789 + }, + { + "start": 14771.63, + "end": 14775.83, + "probability": 0.9668 + }, + { + "start": 14775.89, + "end": 14776.57, + "probability": 0.6415 + }, + { + "start": 14777.67, + "end": 14780.45, + "probability": 0.7771 + }, + { + "start": 14780.61, + "end": 14782.55, + "probability": 0.9706 + }, + { + "start": 14783.67, + "end": 14785.65, + "probability": 0.9214 + }, + { + "start": 14797.03, + "end": 14798.87, + "probability": 0.921 + }, + { + "start": 14814.25, + "end": 14815.85, + "probability": 0.6485 + }, + { + "start": 14818.85, + "end": 14822.71, + "probability": 0.979 + }, + { + "start": 14822.87, + "end": 14824.37, + "probability": 0.9321 + }, + { + "start": 14827.07, + "end": 14834.71, + "probability": 0.976 + }, + { + "start": 14834.85, + "end": 14840.12, + "probability": 0.9508 + }, + { + "start": 14840.27, + "end": 14845.45, + "probability": 0.9976 + }, + { + "start": 14847.81, + "end": 14850.36, + "probability": 0.8792 + }, + { + "start": 14851.67, + "end": 14854.01, + "probability": 0.999 + }, + { + "start": 14854.21, + "end": 14855.63, + "probability": 0.5228 + }, + { + "start": 14857.81, + "end": 14860.99, + "probability": 0.8644 + }, + { + "start": 14861.91, + "end": 14864.53, + "probability": 0.8018 + }, + { + "start": 14867.15, + "end": 14869.53, + "probability": 0.9213 + }, + { + "start": 14869.63, + "end": 14869.87, + "probability": 0.3314 + }, + { + "start": 14869.97, + "end": 14872.57, + "probability": 0.9637 + }, + { + "start": 14873.67, + "end": 14875.8, + "probability": 0.9578 + }, + { + "start": 14877.43, + "end": 14877.47, + "probability": 0.7734 + }, + { + "start": 14878.95, + "end": 14880.53, + "probability": 0.726 + }, + { + "start": 14880.63, + "end": 14885.57, + "probability": 0.9056 + }, + { + "start": 14886.81, + "end": 14889.87, + "probability": 0.996 + }, + { + "start": 14889.87, + "end": 14892.89, + "probability": 0.9919 + }, + { + "start": 14896.25, + "end": 14898.43, + "probability": 0.8982 + }, + { + "start": 14898.45, + "end": 14901.07, + "probability": 0.917 + }, + { + "start": 14902.17, + "end": 14904.96, + "probability": 0.9971 + }, + { + "start": 14905.63, + "end": 14908.07, + "probability": 0.9922 + }, + { + "start": 14908.19, + "end": 14908.97, + "probability": 0.7654 + }, + { + "start": 14909.95, + "end": 14910.77, + "probability": 0.9413 + }, + { + "start": 14910.87, + "end": 14912.37, + "probability": 0.8351 + }, + { + "start": 14912.59, + "end": 14916.27, + "probability": 0.9958 + }, + { + "start": 14917.65, + "end": 14920.47, + "probability": 0.854 + }, + { + "start": 14921.07, + "end": 14923.75, + "probability": 0.9717 + }, + { + "start": 14923.99, + "end": 14924.67, + "probability": 0.7705 + }, + { + "start": 14924.71, + "end": 14925.27, + "probability": 0.8723 + }, + { + "start": 14925.51, + "end": 14926.31, + "probability": 0.9821 + }, + { + "start": 14926.41, + "end": 14927.07, + "probability": 0.8545 + }, + { + "start": 14927.79, + "end": 14933.33, + "probability": 0.9924 + }, + { + "start": 14933.75, + "end": 14937.37, + "probability": 0.9897 + }, + { + "start": 14938.77, + "end": 14940.81, + "probability": 0.9494 + }, + { + "start": 14941.59, + "end": 14946.95, + "probability": 0.9771 + }, + { + "start": 14946.95, + "end": 14950.71, + "probability": 0.9739 + }, + { + "start": 14950.87, + "end": 14951.93, + "probability": 0.5208 + }, + { + "start": 14952.29, + "end": 14955.95, + "probability": 0.8727 + }, + { + "start": 14957.39, + "end": 14963.31, + "probability": 0.9459 + }, + { + "start": 14963.43, + "end": 14967.39, + "probability": 0.9302 + }, + { + "start": 14967.67, + "end": 14973.75, + "probability": 0.9867 + }, + { + "start": 14974.13, + "end": 14975.29, + "probability": 0.795 + }, + { + "start": 14975.31, + "end": 14979.12, + "probability": 0.9706 + }, + { + "start": 14979.61, + "end": 14980.33, + "probability": 0.9619 + }, + { + "start": 14980.81, + "end": 14986.03, + "probability": 0.947 + }, + { + "start": 14986.71, + "end": 14989.99, + "probability": 0.9347 + }, + { + "start": 14990.71, + "end": 14995.15, + "probability": 0.9541 + }, + { + "start": 14995.41, + "end": 14998.15, + "probability": 0.7195 + }, + { + "start": 14998.25, + "end": 14998.69, + "probability": 0.4426 + }, + { + "start": 14998.77, + "end": 14999.35, + "probability": 0.8396 + }, + { + "start": 14999.43, + "end": 15002.09, + "probability": 0.9722 + }, + { + "start": 15002.11, + "end": 15003.93, + "probability": 0.9658 + }, + { + "start": 15004.23, + "end": 15004.91, + "probability": 0.6565 + }, + { + "start": 15005.39, + "end": 15006.29, + "probability": 0.9175 + }, + { + "start": 15006.37, + "end": 15007.81, + "probability": 0.9485 + }, + { + "start": 15007.97, + "end": 15009.53, + "probability": 0.9974 + }, + { + "start": 15009.67, + "end": 15010.36, + "probability": 0.9526 + }, + { + "start": 15010.43, + "end": 15011.31, + "probability": 0.8962 + }, + { + "start": 15011.83, + "end": 15014.23, + "probability": 0.9631 + }, + { + "start": 15014.63, + "end": 15017.65, + "probability": 0.9956 + }, + { + "start": 15017.65, + "end": 15020.51, + "probability": 0.9977 + }, + { + "start": 15020.63, + "end": 15023.61, + "probability": 0.8958 + }, + { + "start": 15023.95, + "end": 15024.99, + "probability": 0.9578 + }, + { + "start": 15025.69, + "end": 15028.31, + "probability": 0.9553 + }, + { + "start": 15029.27, + "end": 15032.77, + "probability": 0.8695 + }, + { + "start": 15032.85, + "end": 15033.95, + "probability": 0.793 + }, + { + "start": 15035.05, + "end": 15038.37, + "probability": 0.8481 + }, + { + "start": 15038.65, + "end": 15040.07, + "probability": 0.8516 + }, + { + "start": 15040.25, + "end": 15045.27, + "probability": 0.9482 + }, + { + "start": 15045.63, + "end": 15048.71, + "probability": 0.7528 + }, + { + "start": 15048.79, + "end": 15049.95, + "probability": 0.7976 + }, + { + "start": 15050.05, + "end": 15052.15, + "probability": 0.9877 + }, + { + "start": 15052.15, + "end": 15055.55, + "probability": 0.9941 + }, + { + "start": 15056.23, + "end": 15056.53, + "probability": 0.7705 + }, + { + "start": 15057.21, + "end": 15060.87, + "probability": 0.9813 + }, + { + "start": 15061.61, + "end": 15064.87, + "probability": 0.85 + }, + { + "start": 15065.47, + "end": 15067.35, + "probability": 0.9379 + }, + { + "start": 15067.41, + "end": 15068.78, + "probability": 0.9934 + }, + { + "start": 15068.89, + "end": 15070.33, + "probability": 0.9863 + }, + { + "start": 15070.51, + "end": 15071.91, + "probability": 0.9609 + }, + { + "start": 15072.09, + "end": 15074.52, + "probability": 0.957 + }, + { + "start": 15074.75, + "end": 15076.13, + "probability": 0.9971 + }, + { + "start": 15076.65, + "end": 15078.73, + "probability": 0.9832 + }, + { + "start": 15079.03, + "end": 15080.48, + "probability": 0.9951 + }, + { + "start": 15080.93, + "end": 15083.25, + "probability": 0.9907 + }, + { + "start": 15083.53, + "end": 15084.88, + "probability": 0.9995 + }, + { + "start": 15085.51, + "end": 15093.53, + "probability": 0.9516 + }, + { + "start": 15093.61, + "end": 15095.13, + "probability": 0.7865 + }, + { + "start": 15095.21, + "end": 15099.79, + "probability": 0.8789 + }, + { + "start": 15100.71, + "end": 15103.79, + "probability": 0.9199 + }, + { + "start": 15104.23, + "end": 15108.31, + "probability": 0.99 + }, + { + "start": 15108.41, + "end": 15110.42, + "probability": 0.8748 + }, + { + "start": 15110.85, + "end": 15111.49, + "probability": 0.8019 + }, + { + "start": 15111.61, + "end": 15112.23, + "probability": 0.9542 + }, + { + "start": 15112.29, + "end": 15112.95, + "probability": 0.9852 + }, + { + "start": 15113.07, + "end": 15113.63, + "probability": 0.9934 + }, + { + "start": 15113.67, + "end": 15114.59, + "probability": 0.9248 + }, + { + "start": 15114.71, + "end": 15115.45, + "probability": 0.9513 + }, + { + "start": 15115.79, + "end": 15117.13, + "probability": 0.9658 + }, + { + "start": 15117.55, + "end": 15118.53, + "probability": 0.7951 + }, + { + "start": 15118.65, + "end": 15122.19, + "probability": 0.9499 + }, + { + "start": 15122.33, + "end": 15123.36, + "probability": 0.7493 + }, + { + "start": 15123.81, + "end": 15126.03, + "probability": 0.7733 + }, + { + "start": 15126.53, + "end": 15128.31, + "probability": 0.8831 + }, + { + "start": 15129.03, + "end": 15132.33, + "probability": 0.9663 + }, + { + "start": 15132.85, + "end": 15133.47, + "probability": 0.7824 + }, + { + "start": 15133.79, + "end": 15135.05, + "probability": 0.9129 + }, + { + "start": 15135.41, + "end": 15135.89, + "probability": 0.8574 + }, + { + "start": 15136.53, + "end": 15138.17, + "probability": 0.9532 + }, + { + "start": 15138.89, + "end": 15145.03, + "probability": 0.9671 + }, + { + "start": 15145.35, + "end": 15147.79, + "probability": 0.9975 + }, + { + "start": 15148.11, + "end": 15152.45, + "probability": 0.925 + }, + { + "start": 15153.31, + "end": 15158.09, + "probability": 0.9954 + }, + { + "start": 15158.29, + "end": 15159.31, + "probability": 0.8575 + }, + { + "start": 15159.89, + "end": 15161.77, + "probability": 0.9163 + }, + { + "start": 15162.11, + "end": 15163.65, + "probability": 0.9049 + }, + { + "start": 15163.75, + "end": 15164.43, + "probability": 0.4161 + }, + { + "start": 15164.53, + "end": 15164.75, + "probability": 0.5017 + }, + { + "start": 15164.77, + "end": 15165.25, + "probability": 0.4243 + }, + { + "start": 15165.25, + "end": 15170.59, + "probability": 0.9137 + }, + { + "start": 15172.05, + "end": 15174.07, + "probability": 0.9375 + }, + { + "start": 15174.15, + "end": 15174.83, + "probability": 0.7508 + }, + { + "start": 15174.99, + "end": 15178.61, + "probability": 0.8786 + }, + { + "start": 15178.61, + "end": 15181.05, + "probability": 0.8711 + }, + { + "start": 15181.49, + "end": 15182.37, + "probability": 0.8451 + }, + { + "start": 15182.87, + "end": 15185.61, + "probability": 0.7998 + }, + { + "start": 15185.89, + "end": 15186.63, + "probability": 0.3493 + }, + { + "start": 15186.65, + "end": 15187.39, + "probability": 0.7121 + }, + { + "start": 15187.43, + "end": 15189.53, + "probability": 0.8564 + }, + { + "start": 15189.69, + "end": 15191.71, + "probability": 0.9639 + }, + { + "start": 15192.19, + "end": 15197.43, + "probability": 0.9934 + }, + { + "start": 15197.77, + "end": 15200.25, + "probability": 0.989 + }, + { + "start": 15200.25, + "end": 15203.95, + "probability": 0.9935 + }, + { + "start": 15204.03, + "end": 15204.31, + "probability": 0.6385 + }, + { + "start": 15204.55, + "end": 15207.13, + "probability": 0.8894 + }, + { + "start": 15207.19, + "end": 15208.91, + "probability": 0.7993 + }, + { + "start": 15209.81, + "end": 15212.51, + "probability": 0.7826 + }, + { + "start": 15212.65, + "end": 15213.11, + "probability": 0.8447 + }, + { + "start": 15213.41, + "end": 15215.79, + "probability": 0.9854 + }, + { + "start": 15217.09, + "end": 15219.25, + "probability": 0.8785 + }, + { + "start": 15223.83, + "end": 15226.77, + "probability": 0.6068 + }, + { + "start": 15230.75, + "end": 15232.37, + "probability": 0.6314 + }, + { + "start": 15232.63, + "end": 15232.79, + "probability": 0.5423 + }, + { + "start": 15232.79, + "end": 15237.17, + "probability": 0.7731 + }, + { + "start": 15238.53, + "end": 15242.85, + "probability": 0.696 + }, + { + "start": 15243.83, + "end": 15245.93, + "probability": 0.9868 + }, + { + "start": 15246.51, + "end": 15249.31, + "probability": 0.9907 + }, + { + "start": 15250.97, + "end": 15258.41, + "probability": 0.9907 + }, + { + "start": 15259.59, + "end": 15261.95, + "probability": 0.7769 + }, + { + "start": 15263.01, + "end": 15264.89, + "probability": 0.9672 + }, + { + "start": 15265.97, + "end": 15270.83, + "probability": 0.9932 + }, + { + "start": 15273.13, + "end": 15276.59, + "probability": 0.9973 + }, + { + "start": 15276.79, + "end": 15283.73, + "probability": 0.9868 + }, + { + "start": 15284.03, + "end": 15284.61, + "probability": 0.7175 + }, + { + "start": 15284.79, + "end": 15285.25, + "probability": 0.941 + }, + { + "start": 15285.41, + "end": 15286.55, + "probability": 0.915 + }, + { + "start": 15287.15, + "end": 15288.85, + "probability": 0.999 + }, + { + "start": 15289.65, + "end": 15293.25, + "probability": 0.9818 + }, + { + "start": 15293.85, + "end": 15295.27, + "probability": 0.9839 + }, + { + "start": 15296.01, + "end": 15298.61, + "probability": 0.9548 + }, + { + "start": 15299.91, + "end": 15300.25, + "probability": 0.3394 + }, + { + "start": 15300.43, + "end": 15301.15, + "probability": 0.6728 + }, + { + "start": 15301.21, + "end": 15302.09, + "probability": 0.9099 + }, + { + "start": 15302.57, + "end": 15309.13, + "probability": 0.9763 + }, + { + "start": 15310.43, + "end": 15317.33, + "probability": 0.9983 + }, + { + "start": 15318.01, + "end": 15324.81, + "probability": 0.9961 + }, + { + "start": 15325.91, + "end": 15327.01, + "probability": 0.4946 + }, + { + "start": 15327.85, + "end": 15335.97, + "probability": 0.8877 + }, + { + "start": 15336.71, + "end": 15338.53, + "probability": 0.9723 + }, + { + "start": 15339.07, + "end": 15341.51, + "probability": 0.9624 + }, + { + "start": 15341.67, + "end": 15342.69, + "probability": 0.9102 + }, + { + "start": 15343.15, + "end": 15344.79, + "probability": 0.8462 + }, + { + "start": 15346.03, + "end": 15346.71, + "probability": 0.831 + }, + { + "start": 15346.87, + "end": 15351.79, + "probability": 0.9902 + }, + { + "start": 15354.27, + "end": 15359.21, + "probability": 0.9882 + }, + { + "start": 15360.43, + "end": 15365.67, + "probability": 0.9946 + }, + { + "start": 15366.63, + "end": 15369.55, + "probability": 0.9927 + }, + { + "start": 15371.19, + "end": 15373.19, + "probability": 0.9824 + }, + { + "start": 15373.87, + "end": 15375.99, + "probability": 0.9343 + }, + { + "start": 15376.59, + "end": 15385.51, + "probability": 0.994 + }, + { + "start": 15385.51, + "end": 15393.61, + "probability": 0.9993 + }, + { + "start": 15393.67, + "end": 15395.05, + "probability": 0.6601 + }, + { + "start": 15395.73, + "end": 15397.01, + "probability": 0.9342 + }, + { + "start": 15399.03, + "end": 15399.75, + "probability": 0.7261 + }, + { + "start": 15401.51, + "end": 15404.47, + "probability": 0.9958 + }, + { + "start": 15404.47, + "end": 15408.03, + "probability": 0.9969 + }, + { + "start": 15409.27, + "end": 15415.19, + "probability": 0.9901 + }, + { + "start": 15415.19, + "end": 15422.89, + "probability": 0.9368 + }, + { + "start": 15423.43, + "end": 15425.31, + "probability": 0.9562 + }, + { + "start": 15425.97, + "end": 15427.41, + "probability": 0.7265 + }, + { + "start": 15429.26, + "end": 15430.59, + "probability": 0.6587 + }, + { + "start": 15430.63, + "end": 15430.63, + "probability": 0.5474 + }, + { + "start": 15430.69, + "end": 15431.77, + "probability": 0.7374 + }, + { + "start": 15431.91, + "end": 15432.17, + "probability": 0.8428 + }, + { + "start": 15432.23, + "end": 15434.77, + "probability": 0.9637 + }, + { + "start": 15434.89, + "end": 15438.65, + "probability": 0.9922 + }, + { + "start": 15439.23, + "end": 15443.17, + "probability": 0.9658 + }, + { + "start": 15443.67, + "end": 15444.97, + "probability": 0.9893 + }, + { + "start": 15446.19, + "end": 15448.93, + "probability": 0.9973 + }, + { + "start": 15448.93, + "end": 15452.31, + "probability": 0.9899 + }, + { + "start": 15452.95, + "end": 15454.01, + "probability": 0.9603 + }, + { + "start": 15454.21, + "end": 15456.83, + "probability": 0.9677 + }, + { + "start": 15457.01, + "end": 15458.83, + "probability": 0.9786 + }, + { + "start": 15459.13, + "end": 15460.07, + "probability": 0.9524 + }, + { + "start": 15460.21, + "end": 15461.91, + "probability": 0.9326 + }, + { + "start": 15462.01, + "end": 15464.79, + "probability": 0.9993 + }, + { + "start": 15464.79, + "end": 15468.53, + "probability": 0.9949 + }, + { + "start": 15469.21, + "end": 15470.19, + "probability": 0.7771 + }, + { + "start": 15470.33, + "end": 15474.55, + "probability": 0.9683 + }, + { + "start": 15475.17, + "end": 15480.01, + "probability": 0.9946 + }, + { + "start": 15480.61, + "end": 15483.49, + "probability": 0.9978 + }, + { + "start": 15485.05, + "end": 15486.11, + "probability": 0.8781 + }, + { + "start": 15486.73, + "end": 15488.95, + "probability": 0.9274 + }, + { + "start": 15489.21, + "end": 15491.47, + "probability": 0.9039 + }, + { + "start": 15491.95, + "end": 15495.59, + "probability": 0.9814 + }, + { + "start": 15495.81, + "end": 15499.65, + "probability": 0.9749 + }, + { + "start": 15499.99, + "end": 15503.73, + "probability": 0.781 + }, + { + "start": 15504.45, + "end": 15505.69, + "probability": 0.6757 + }, + { + "start": 15506.45, + "end": 15513.49, + "probability": 0.9268 + }, + { + "start": 15514.23, + "end": 15516.53, + "probability": 0.9969 + }, + { + "start": 15517.33, + "end": 15519.52, + "probability": 0.9961 + }, + { + "start": 15521.11, + "end": 15522.59, + "probability": 0.9854 + }, + { + "start": 15523.15, + "end": 15527.45, + "probability": 0.9811 + }, + { + "start": 15527.91, + "end": 15529.67, + "probability": 0.9702 + }, + { + "start": 15529.75, + "end": 15529.99, + "probability": 0.8115 + }, + { + "start": 15530.15, + "end": 15530.85, + "probability": 0.8767 + }, + { + "start": 15531.33, + "end": 15533.97, + "probability": 0.9785 + }, + { + "start": 15534.63, + "end": 15539.89, + "probability": 0.998 + }, + { + "start": 15540.73, + "end": 15545.39, + "probability": 0.9914 + }, + { + "start": 15545.85, + "end": 15545.85, + "probability": 0.2053 + }, + { + "start": 15546.07, + "end": 15546.37, + "probability": 0.6246 + }, + { + "start": 15546.51, + "end": 15547.15, + "probability": 0.8506 + }, + { + "start": 15547.27, + "end": 15551.73, + "probability": 0.9971 + }, + { + "start": 15551.73, + "end": 15560.97, + "probability": 0.9954 + }, + { + "start": 15561.57, + "end": 15563.19, + "probability": 0.9946 + }, + { + "start": 15563.95, + "end": 15569.53, + "probability": 0.9972 + }, + { + "start": 15570.01, + "end": 15571.41, + "probability": 0.5969 + }, + { + "start": 15571.61, + "end": 15572.69, + "probability": 0.707 + }, + { + "start": 15573.31, + "end": 15575.49, + "probability": 0.9615 + }, + { + "start": 15583.97, + "end": 15584.69, + "probability": 0.5587 + }, + { + "start": 15585.09, + "end": 15587.27, + "probability": 0.7568 + }, + { + "start": 15588.19, + "end": 15592.29, + "probability": 0.9211 + }, + { + "start": 15593.31, + "end": 15596.03, + "probability": 0.3503 + }, + { + "start": 15596.03, + "end": 15598.83, + "probability": 0.9679 + }, + { + "start": 15600.45, + "end": 15602.93, + "probability": 0.9851 + }, + { + "start": 15603.67, + "end": 15605.43, + "probability": 0.9618 + }, + { + "start": 15606.33, + "end": 15610.01, + "probability": 0.8901 + }, + { + "start": 15610.19, + "end": 15613.21, + "probability": 0.9829 + }, + { + "start": 15613.25, + "end": 15615.77, + "probability": 0.9891 + }, + { + "start": 15617.71, + "end": 15619.63, + "probability": 0.9905 + }, + { + "start": 15619.69, + "end": 15620.75, + "probability": 0.6809 + }, + { + "start": 15621.19, + "end": 15622.01, + "probability": 0.7946 + }, + { + "start": 15622.25, + "end": 15624.63, + "probability": 0.9242 + }, + { + "start": 15624.91, + "end": 15629.89, + "probability": 0.9601 + }, + { + "start": 15630.97, + "end": 15631.93, + "probability": 0.9663 + }, + { + "start": 15632.03, + "end": 15633.55, + "probability": 0.805 + }, + { + "start": 15633.79, + "end": 15641.27, + "probability": 0.9526 + }, + { + "start": 15642.91, + "end": 15645.91, + "probability": 0.8973 + }, + { + "start": 15646.37, + "end": 15649.03, + "probability": 0.7535 + }, + { + "start": 15649.87, + "end": 15650.91, + "probability": 0.9856 + }, + { + "start": 15651.15, + "end": 15653.09, + "probability": 0.9995 + }, + { + "start": 15653.15, + "end": 15654.76, + "probability": 0.999 + }, + { + "start": 15656.35, + "end": 15659.27, + "probability": 0.9952 + }, + { + "start": 15659.27, + "end": 15665.29, + "probability": 0.9797 + }, + { + "start": 15666.21, + "end": 15667.19, + "probability": 0.7501 + }, + { + "start": 15667.29, + "end": 15672.75, + "probability": 0.9918 + }, + { + "start": 15672.75, + "end": 15675.93, + "probability": 0.9304 + }, + { + "start": 15676.41, + "end": 15676.65, + "probability": 0.9407 + }, + { + "start": 15677.71, + "end": 15683.43, + "probability": 0.9919 + }, + { + "start": 15685.33, + "end": 15691.19, + "probability": 0.8733 + }, + { + "start": 15692.05, + "end": 15695.95, + "probability": 0.9777 + }, + { + "start": 15695.95, + "end": 15701.01, + "probability": 0.8289 + }, + { + "start": 15702.71, + "end": 15705.59, + "probability": 0.8198 + }, + { + "start": 15706.19, + "end": 15707.26, + "probability": 0.9754 + }, + { + "start": 15708.15, + "end": 15710.23, + "probability": 0.9814 + }, + { + "start": 15711.49, + "end": 15719.21, + "probability": 0.9491 + }, + { + "start": 15719.77, + "end": 15724.13, + "probability": 0.9974 + }, + { + "start": 15724.17, + "end": 15727.33, + "probability": 0.9896 + }, + { + "start": 15727.33, + "end": 15730.53, + "probability": 0.9893 + }, + { + "start": 15730.61, + "end": 15733.01, + "probability": 0.9435 + }, + { + "start": 15733.57, + "end": 15735.71, + "probability": 0.9694 + }, + { + "start": 15737.17, + "end": 15739.27, + "probability": 0.8926 + }, + { + "start": 15739.43, + "end": 15742.32, + "probability": 0.967 + }, + { + "start": 15743.23, + "end": 15744.79, + "probability": 0.4571 + }, + { + "start": 15745.04, + "end": 15750.63, + "probability": 0.9851 + }, + { + "start": 15750.75, + "end": 15754.37, + "probability": 0.992 + }, + { + "start": 15756.81, + "end": 15764.05, + "probability": 0.995 + }, + { + "start": 15764.51, + "end": 15766.29, + "probability": 0.5842 + }, + { + "start": 15766.73, + "end": 15767.87, + "probability": 0.8624 + }, + { + "start": 15768.41, + "end": 15770.89, + "probability": 0.9913 + }, + { + "start": 15770.99, + "end": 15775.03, + "probability": 0.9848 + }, + { + "start": 15775.35, + "end": 15781.31, + "probability": 0.9896 + }, + { + "start": 15781.37, + "end": 15784.61, + "probability": 0.918 + }, + { + "start": 15785.17, + "end": 15788.53, + "probability": 0.9747 + }, + { + "start": 15789.83, + "end": 15794.47, + "probability": 0.9834 + }, + { + "start": 15795.01, + "end": 15800.01, + "probability": 0.9295 + }, + { + "start": 15800.93, + "end": 15802.87, + "probability": 0.9083 + }, + { + "start": 15803.03, + "end": 15804.93, + "probability": 0.9849 + }, + { + "start": 15804.99, + "end": 15805.73, + "probability": 0.9138 + }, + { + "start": 15806.57, + "end": 15811.37, + "probability": 0.9814 + }, + { + "start": 15811.59, + "end": 15813.51, + "probability": 0.9967 + }, + { + "start": 15813.91, + "end": 15814.11, + "probability": 0.1975 + }, + { + "start": 15814.33, + "end": 15816.35, + "probability": 0.8137 + }, + { + "start": 15816.51, + "end": 15820.85, + "probability": 0.9878 + }, + { + "start": 15821.15, + "end": 15824.45, + "probability": 0.9209 + }, + { + "start": 15825.07, + "end": 15825.83, + "probability": 0.3746 + }, + { + "start": 15826.79, + "end": 15827.91, + "probability": 0.7939 + }, + { + "start": 15828.17, + "end": 15831.94, + "probability": 0.9702 + }, + { + "start": 15832.29, + "end": 15834.51, + "probability": 0.9966 + }, + { + "start": 15835.91, + "end": 15841.43, + "probability": 0.8062 + }, + { + "start": 15842.51, + "end": 15843.47, + "probability": 0.8145 + }, + { + "start": 15843.63, + "end": 15844.69, + "probability": 0.9556 + }, + { + "start": 15844.95, + "end": 15845.93, + "probability": 0.9155 + }, + { + "start": 15845.99, + "end": 15847.09, + "probability": 0.9518 + }, + { + "start": 15847.15, + "end": 15848.01, + "probability": 0.858 + }, + { + "start": 15848.11, + "end": 15848.93, + "probability": 0.759 + }, + { + "start": 15849.41, + "end": 15854.77, + "probability": 0.844 + }, + { + "start": 15854.85, + "end": 15855.13, + "probability": 0.6437 + }, + { + "start": 15855.25, + "end": 15856.91, + "probability": 0.7964 + }, + { + "start": 15857.63, + "end": 15860.83, + "probability": 0.8309 + }, + { + "start": 15861.69, + "end": 15866.13, + "probability": 0.936 + }, + { + "start": 15866.67, + "end": 15869.69, + "probability": 0.8074 + }, + { + "start": 15870.77, + "end": 15871.99, + "probability": 0.9712 + }, + { + "start": 15872.83, + "end": 15874.59, + "probability": 0.5188 + }, + { + "start": 15875.11, + "end": 15876.34, + "probability": 0.9248 + }, + { + "start": 15877.27, + "end": 15879.11, + "probability": 0.9904 + }, + { + "start": 15879.49, + "end": 15880.91, + "probability": 0.9783 + }, + { + "start": 15881.13, + "end": 15881.31, + "probability": 0.8418 + }, + { + "start": 15884.43, + "end": 15885.99, + "probability": 0.9966 + }, + { + "start": 15886.85, + "end": 15890.07, + "probability": 0.9875 + }, + { + "start": 15891.57, + "end": 15893.43, + "probability": 0.8079 + }, + { + "start": 15893.55, + "end": 15895.55, + "probability": 0.9316 + }, + { + "start": 15896.23, + "end": 15899.15, + "probability": 0.9778 + }, + { + "start": 15899.45, + "end": 15900.45, + "probability": 0.9834 + }, + { + "start": 15901.19, + "end": 15904.03, + "probability": 0.9224 + }, + { + "start": 15904.99, + "end": 15907.15, + "probability": 0.9982 + }, + { + "start": 15907.69, + "end": 15913.93, + "probability": 0.992 + }, + { + "start": 15913.93, + "end": 15921.37, + "probability": 0.9985 + }, + { + "start": 15921.37, + "end": 15926.69, + "probability": 0.9986 + }, + { + "start": 15926.97, + "end": 15929.35, + "probability": 0.9313 + }, + { + "start": 15929.75, + "end": 15933.07, + "probability": 0.8855 + }, + { + "start": 15933.53, + "end": 15935.97, + "probability": 0.8474 + }, + { + "start": 15936.41, + "end": 15941.83, + "probability": 0.9508 + }, + { + "start": 15942.97, + "end": 15947.21, + "probability": 0.9211 + }, + { + "start": 15947.57, + "end": 15947.77, + "probability": 0.6264 + }, + { + "start": 15947.97, + "end": 15949.89, + "probability": 0.7307 + }, + { + "start": 15950.79, + "end": 15951.79, + "probability": 0.5668 + }, + { + "start": 15953.25, + "end": 15959.37, + "probability": 0.4046 + }, + { + "start": 15960.81, + "end": 15967.45, + "probability": 0.9684 + }, + { + "start": 15967.55, + "end": 15968.87, + "probability": 0.5838 + }, + { + "start": 15969.07, + "end": 15969.75, + "probability": 0.924 + }, + { + "start": 15971.81, + "end": 15977.87, + "probability": 0.7533 + }, + { + "start": 15978.07, + "end": 15980.49, + "probability": 0.7307 + }, + { + "start": 15981.83, + "end": 15984.25, + "probability": 0.8369 + }, + { + "start": 15997.19, + "end": 16001.05, + "probability": 0.7125 + }, + { + "start": 16002.31, + "end": 16004.37, + "probability": 0.8766 + }, + { + "start": 16004.59, + "end": 16008.93, + "probability": 0.9773 + }, + { + "start": 16008.93, + "end": 16012.43, + "probability": 0.9259 + }, + { + "start": 16013.67, + "end": 16022.41, + "probability": 0.9856 + }, + { + "start": 16022.73, + "end": 16024.07, + "probability": 0.8213 + }, + { + "start": 16025.09, + "end": 16027.77, + "probability": 0.9954 + }, + { + "start": 16027.95, + "end": 16030.49, + "probability": 0.9294 + }, + { + "start": 16030.61, + "end": 16032.15, + "probability": 0.855 + }, + { + "start": 16033.17, + "end": 16035.09, + "probability": 0.6663 + }, + { + "start": 16035.25, + "end": 16035.73, + "probability": 0.3817 + }, + { + "start": 16035.81, + "end": 16036.41, + "probability": 0.8097 + }, + { + "start": 16036.63, + "end": 16042.95, + "probability": 0.985 + }, + { + "start": 16044.05, + "end": 16045.25, + "probability": 0.7556 + }, + { + "start": 16045.91, + "end": 16051.27, + "probability": 0.9694 + }, + { + "start": 16051.27, + "end": 16054.65, + "probability": 0.9834 + }, + { + "start": 16055.63, + "end": 16058.45, + "probability": 0.846 + }, + { + "start": 16059.59, + "end": 16062.75, + "probability": 0.9489 + }, + { + "start": 16063.93, + "end": 16068.55, + "probability": 0.9421 + }, + { + "start": 16069.25, + "end": 16072.89, + "probability": 0.9947 + }, + { + "start": 16075.35, + "end": 16076.45, + "probability": 0.9078 + }, + { + "start": 16077.29, + "end": 16078.15, + "probability": 0.437 + }, + { + "start": 16079.67, + "end": 16082.03, + "probability": 0.7859 + }, + { + "start": 16082.85, + "end": 16089.49, + "probability": 0.9347 + }, + { + "start": 16089.93, + "end": 16090.38, + "probability": 0.9492 + }, + { + "start": 16092.41, + "end": 16093.29, + "probability": 0.9767 + }, + { + "start": 16096.27, + "end": 16104.51, + "probability": 0.9982 + }, + { + "start": 16105.13, + "end": 16106.99, + "probability": 0.9097 + }, + { + "start": 16108.01, + "end": 16109.07, + "probability": 0.7035 + }, + { + "start": 16109.65, + "end": 16110.95, + "probability": 0.9412 + }, + { + "start": 16112.31, + "end": 16113.75, + "probability": 0.9414 + }, + { + "start": 16114.41, + "end": 16120.39, + "probability": 0.9969 + }, + { + "start": 16120.39, + "end": 16123.95, + "probability": 0.9958 + }, + { + "start": 16124.83, + "end": 16126.71, + "probability": 0.9149 + }, + { + "start": 16127.89, + "end": 16135.34, + "probability": 0.7071 + }, + { + "start": 16136.37, + "end": 16137.11, + "probability": 0.9363 + }, + { + "start": 16137.81, + "end": 16139.97, + "probability": 0.9617 + }, + { + "start": 16141.37, + "end": 16141.37, + "probability": 0.4213 + }, + { + "start": 16141.51, + "end": 16142.45, + "probability": 0.6586 + }, + { + "start": 16142.61, + "end": 16144.06, + "probability": 0.9935 + }, + { + "start": 16144.79, + "end": 16145.79, + "probability": 0.6759 + }, + { + "start": 16146.15, + "end": 16151.15, + "probability": 0.9482 + }, + { + "start": 16151.73, + "end": 16152.37, + "probability": 0.917 + }, + { + "start": 16154.03, + "end": 16159.51, + "probability": 0.9933 + }, + { + "start": 16161.65, + "end": 16164.29, + "probability": 0.9912 + }, + { + "start": 16165.13, + "end": 16167.29, + "probability": 0.9451 + }, + { + "start": 16168.37, + "end": 16170.61, + "probability": 0.9982 + }, + { + "start": 16172.99, + "end": 16181.55, + "probability": 0.9984 + }, + { + "start": 16181.55, + "end": 16186.35, + "probability": 0.9766 + }, + { + "start": 16187.91, + "end": 16190.85, + "probability": 0.7576 + }, + { + "start": 16191.63, + "end": 16192.7, + "probability": 0.5771 + }, + { + "start": 16193.41, + "end": 16198.99, + "probability": 0.9969 + }, + { + "start": 16200.61, + "end": 16204.99, + "probability": 0.998 + }, + { + "start": 16205.35, + "end": 16209.11, + "probability": 0.9997 + }, + { + "start": 16209.73, + "end": 16210.75, + "probability": 0.8596 + }, + { + "start": 16211.01, + "end": 16213.55, + "probability": 0.6917 + }, + { + "start": 16214.47, + "end": 16216.87, + "probability": 0.996 + }, + { + "start": 16217.67, + "end": 16219.05, + "probability": 0.7422 + }, + { + "start": 16219.85, + "end": 16222.37, + "probability": 0.9717 + }, + { + "start": 16222.75, + "end": 16225.13, + "probability": 0.9176 + }, + { + "start": 16226.57, + "end": 16229.79, + "probability": 0.9866 + }, + { + "start": 16230.69, + "end": 16232.77, + "probability": 0.1576 + }, + { + "start": 16233.43, + "end": 16235.27, + "probability": 0.7697 + }, + { + "start": 16235.35, + "end": 16236.73, + "probability": 0.884 + }, + { + "start": 16237.25, + "end": 16243.31, + "probability": 0.9884 + }, + { + "start": 16243.47, + "end": 16250.67, + "probability": 0.9633 + }, + { + "start": 16251.35, + "end": 16255.87, + "probability": 0.9718 + }, + { + "start": 16255.93, + "end": 16259.71, + "probability": 0.9532 + }, + { + "start": 16260.67, + "end": 16260.79, + "probability": 0.4033 + }, + { + "start": 16260.93, + "end": 16262.05, + "probability": 0.8503 + }, + { + "start": 16262.19, + "end": 16267.41, + "probability": 0.9986 + }, + { + "start": 16267.93, + "end": 16271.63, + "probability": 0.7486 + }, + { + "start": 16272.73, + "end": 16274.93, + "probability": 0.8406 + }, + { + "start": 16275.47, + "end": 16278.77, + "probability": 0.9656 + }, + { + "start": 16279.41, + "end": 16281.73, + "probability": 0.9739 + }, + { + "start": 16282.23, + "end": 16284.39, + "probability": 0.9947 + }, + { + "start": 16284.75, + "end": 16289.07, + "probability": 0.9885 + }, + { + "start": 16289.25, + "end": 16291.89, + "probability": 0.9932 + }, + { + "start": 16291.99, + "end": 16292.47, + "probability": 0.7815 + }, + { + "start": 16293.07, + "end": 16295.07, + "probability": 0.8179 + }, + { + "start": 16295.47, + "end": 16298.71, + "probability": 0.8837 + }, + { + "start": 16298.79, + "end": 16299.05, + "probability": 0.7361 + }, + { + "start": 16299.07, + "end": 16299.67, + "probability": 0.722 + }, + { + "start": 16300.15, + "end": 16303.21, + "probability": 0.959 + }, + { + "start": 16303.29, + "end": 16305.03, + "probability": 0.9519 + }, + { + "start": 16314.69, + "end": 16316.13, + "probability": 0.7182 + }, + { + "start": 16317.31, + "end": 16320.91, + "probability": 0.9105 + }, + { + "start": 16321.95, + "end": 16322.63, + "probability": 0.4192 + }, + { + "start": 16322.87, + "end": 16323.77, + "probability": 0.0634 + }, + { + "start": 16323.89, + "end": 16324.11, + "probability": 0.9319 + }, + { + "start": 16324.17, + "end": 16325.57, + "probability": 0.8381 + }, + { + "start": 16325.73, + "end": 16327.17, + "probability": 0.7724 + }, + { + "start": 16327.29, + "end": 16327.43, + "probability": 0.5069 + }, + { + "start": 16327.55, + "end": 16328.13, + "probability": 0.4102 + }, + { + "start": 16328.83, + "end": 16329.71, + "probability": 0.3765 + }, + { + "start": 16329.81, + "end": 16330.65, + "probability": 0.595 + }, + { + "start": 16330.79, + "end": 16331.21, + "probability": 0.3303 + }, + { + "start": 16331.27, + "end": 16331.41, + "probability": 0.1271 + }, + { + "start": 16331.45, + "end": 16331.63, + "probability": 0.6854 + }, + { + "start": 16332.23, + "end": 16332.97, + "probability": 0.7739 + }, + { + "start": 16332.97, + "end": 16333.63, + "probability": 0.64 + }, + { + "start": 16335.57, + "end": 16337.01, + "probability": 0.8431 + }, + { + "start": 16338.28, + "end": 16340.51, + "probability": 0.7973 + }, + { + "start": 16341.79, + "end": 16343.47, + "probability": 0.7548 + }, + { + "start": 16345.39, + "end": 16352.12, + "probability": 0.9452 + }, + { + "start": 16353.95, + "end": 16354.49, + "probability": 0.8195 + }, + { + "start": 16354.61, + "end": 16355.25, + "probability": 0.9819 + }, + { + "start": 16355.37, + "end": 16356.39, + "probability": 0.8644 + }, + { + "start": 16356.51, + "end": 16357.14, + "probability": 0.9902 + }, + { + "start": 16357.29, + "end": 16358.01, + "probability": 0.9183 + }, + { + "start": 16358.49, + "end": 16359.29, + "probability": 0.71 + }, + { + "start": 16359.49, + "end": 16360.79, + "probability": 0.8438 + }, + { + "start": 16361.03, + "end": 16361.97, + "probability": 0.9407 + }, + { + "start": 16362.73, + "end": 16364.73, + "probability": 0.9239 + }, + { + "start": 16364.85, + "end": 16370.31, + "probability": 0.7896 + }, + { + "start": 16370.49, + "end": 16370.95, + "probability": 0.6313 + }, + { + "start": 16371.23, + "end": 16371.87, + "probability": 0.7206 + }, + { + "start": 16372.03, + "end": 16372.59, + "probability": 0.9486 + }, + { + "start": 16372.63, + "end": 16373.95, + "probability": 0.8809 + }, + { + "start": 16374.87, + "end": 16376.61, + "probability": 0.8068 + }, + { + "start": 16377.29, + "end": 16379.29, + "probability": 0.9888 + }, + { + "start": 16379.45, + "end": 16379.91, + "probability": 0.811 + }, + { + "start": 16380.05, + "end": 16384.53, + "probability": 0.972 + }, + { + "start": 16385.53, + "end": 16390.37, + "probability": 0.9805 + }, + { + "start": 16392.39, + "end": 16394.29, + "probability": 0.938 + }, + { + "start": 16395.55, + "end": 16397.29, + "probability": 0.922 + }, + { + "start": 16398.89, + "end": 16400.13, + "probability": 0.9327 + }, + { + "start": 16400.25, + "end": 16402.35, + "probability": 0.9839 + }, + { + "start": 16403.01, + "end": 16407.67, + "probability": 0.9662 + }, + { + "start": 16407.81, + "end": 16411.25, + "probability": 0.9856 + }, + { + "start": 16412.21, + "end": 16415.77, + "probability": 0.9302 + }, + { + "start": 16415.89, + "end": 16421.17, + "probability": 0.9829 + }, + { + "start": 16421.97, + "end": 16423.09, + "probability": 0.8582 + }, + { + "start": 16424.05, + "end": 16425.85, + "probability": 0.9834 + }, + { + "start": 16426.13, + "end": 16427.75, + "probability": 0.7944 + }, + { + "start": 16428.07, + "end": 16428.81, + "probability": 0.8107 + }, + { + "start": 16429.01, + "end": 16429.69, + "probability": 0.943 + }, + { + "start": 16430.33, + "end": 16431.71, + "probability": 0.7472 + }, + { + "start": 16432.63, + "end": 16435.45, + "probability": 0.7748 + }, + { + "start": 16435.67, + "end": 16439.47, + "probability": 0.9248 + }, + { + "start": 16439.63, + "end": 16443.95, + "probability": 0.9313 + }, + { + "start": 16444.89, + "end": 16446.55, + "probability": 0.8978 + }, + { + "start": 16447.57, + "end": 16449.39, + "probability": 0.9906 + }, + { + "start": 16449.47, + "end": 16449.83, + "probability": 0.8975 + }, + { + "start": 16449.83, + "end": 16451.6, + "probability": 0.9298 + }, + { + "start": 16453.57, + "end": 16455.61, + "probability": 0.7671 + }, + { + "start": 16456.13, + "end": 16457.71, + "probability": 0.723 + }, + { + "start": 16458.27, + "end": 16459.93, + "probability": 0.9111 + }, + { + "start": 16460.07, + "end": 16462.47, + "probability": 0.8784 + }, + { + "start": 16462.57, + "end": 16464.51, + "probability": 0.8835 + }, + { + "start": 16464.91, + "end": 16469.37, + "probability": 0.8703 + }, + { + "start": 16469.93, + "end": 16472.39, + "probability": 0.7006 + }, + { + "start": 16472.47, + "end": 16473.43, + "probability": 0.6597 + }, + { + "start": 16473.57, + "end": 16475.41, + "probability": 0.9693 + }, + { + "start": 16475.51, + "end": 16478.57, + "probability": 0.8867 + }, + { + "start": 16479.11, + "end": 16480.05, + "probability": 0.9629 + }, + { + "start": 16480.15, + "end": 16480.99, + "probability": 0.9218 + }, + { + "start": 16481.15, + "end": 16482.21, + "probability": 0.929 + }, + { + "start": 16483.19, + "end": 16485.69, + "probability": 0.855 + }, + { + "start": 16486.01, + "end": 16486.85, + "probability": 0.7968 + }, + { + "start": 16486.97, + "end": 16490.29, + "probability": 0.8159 + }, + { + "start": 16490.43, + "end": 16495.35, + "probability": 0.9404 + }, + { + "start": 16495.39, + "end": 16496.31, + "probability": 0.979 + }, + { + "start": 16497.11, + "end": 16497.93, + "probability": 0.9736 + }, + { + "start": 16498.05, + "end": 16501.41, + "probability": 0.9755 + }, + { + "start": 16501.89, + "end": 16507.43, + "probability": 0.9451 + }, + { + "start": 16507.63, + "end": 16511.51, + "probability": 0.7337 + }, + { + "start": 16512.11, + "end": 16519.07, + "probability": 0.9912 + }, + { + "start": 16519.35, + "end": 16524.13, + "probability": 0.7991 + }, + { + "start": 16524.95, + "end": 16527.28, + "probability": 0.6698 + }, + { + "start": 16527.71, + "end": 16530.67, + "probability": 0.9323 + }, + { + "start": 16531.11, + "end": 16534.59, + "probability": 0.9245 + }, + { + "start": 16534.83, + "end": 16537.11, + "probability": 0.9238 + }, + { + "start": 16537.27, + "end": 16542.39, + "probability": 0.9788 + }, + { + "start": 16543.03, + "end": 16549.19, + "probability": 0.9928 + }, + { + "start": 16549.19, + "end": 16550.59, + "probability": 0.6886 + }, + { + "start": 16551.65, + "end": 16554.39, + "probability": 0.9912 + }, + { + "start": 16554.45, + "end": 16555.43, + "probability": 0.8944 + }, + { + "start": 16555.45, + "end": 16556.27, + "probability": 0.9406 + }, + { + "start": 16556.31, + "end": 16557.75, + "probability": 0.978 + }, + { + "start": 16557.99, + "end": 16563.43, + "probability": 0.9954 + }, + { + "start": 16563.93, + "end": 16566.01, + "probability": 0.9849 + }, + { + "start": 16566.75, + "end": 16571.31, + "probability": 0.9672 + }, + { + "start": 16571.41, + "end": 16572.81, + "probability": 0.9473 + }, + { + "start": 16572.99, + "end": 16576.73, + "probability": 0.9608 + }, + { + "start": 16577.49, + "end": 16581.29, + "probability": 0.9653 + }, + { + "start": 16581.99, + "end": 16585.35, + "probability": 0.898 + }, + { + "start": 16585.99, + "end": 16589.53, + "probability": 0.9797 + }, + { + "start": 16589.69, + "end": 16591.87, + "probability": 0.6738 + }, + { + "start": 16592.53, + "end": 16593.15, + "probability": 0.3859 + }, + { + "start": 16593.47, + "end": 16597.79, + "probability": 0.9847 + }, + { + "start": 16598.67, + "end": 16605.01, + "probability": 0.9944 + }, + { + "start": 16605.63, + "end": 16607.85, + "probability": 0.789 + }, + { + "start": 16608.03, + "end": 16608.13, + "probability": 0.4174 + }, + { + "start": 16608.59, + "end": 16612.33, + "probability": 0.8901 + }, + { + "start": 16612.49, + "end": 16614.23, + "probability": 0.6443 + }, + { + "start": 16614.97, + "end": 16620.61, + "probability": 0.7646 + }, + { + "start": 16620.83, + "end": 16620.99, + "probability": 0.4674 + }, + { + "start": 16621.19, + "end": 16622.07, + "probability": 0.8988 + }, + { + "start": 16622.29, + "end": 16623.09, + "probability": 0.9722 + }, + { + "start": 16623.61, + "end": 16626.29, + "probability": 0.9971 + }, + { + "start": 16626.29, + "end": 16629.71, + "probability": 0.8091 + }, + { + "start": 16630.39, + "end": 16631.07, + "probability": 0.718 + }, + { + "start": 16631.13, + "end": 16632.69, + "probability": 0.9246 + }, + { + "start": 16633.07, + "end": 16634.11, + "probability": 0.9655 + }, + { + "start": 16634.37, + "end": 16636.05, + "probability": 0.9662 + }, + { + "start": 16636.93, + "end": 16641.27, + "probability": 0.6243 + }, + { + "start": 16641.39, + "end": 16643.01, + "probability": 0.5754 + }, + { + "start": 16643.19, + "end": 16644.69, + "probability": 0.9577 + }, + { + "start": 16645.41, + "end": 16650.65, + "probability": 0.6116 + }, + { + "start": 16650.97, + "end": 16651.73, + "probability": 0.5084 + }, + { + "start": 16662.11, + "end": 16663.61, + "probability": 0.7974 + }, + { + "start": 16663.89, + "end": 16665.46, + "probability": 0.9849 + }, + { + "start": 16666.03, + "end": 16667.13, + "probability": 0.9834 + }, + { + "start": 16667.21, + "end": 16668.84, + "probability": 0.9367 + }, + { + "start": 16669.25, + "end": 16669.89, + "probability": 0.553 + }, + { + "start": 16669.97, + "end": 16670.95, + "probability": 0.9762 + }, + { + "start": 16672.15, + "end": 16675.29, + "probability": 0.2171 + }, + { + "start": 16681.27, + "end": 16685.95, + "probability": 0.3213 + }, + { + "start": 16687.05, + "end": 16687.61, + "probability": 0.0218 + }, + { + "start": 16690.77, + "end": 16694.7, + "probability": 0.0297 + }, + { + "start": 16695.71, + "end": 16696.85, + "probability": 0.0689 + }, + { + "start": 16696.85, + "end": 16700.51, + "probability": 0.119 + }, + { + "start": 16701.03, + "end": 16702.35, + "probability": 0.1395 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16763.0, + "end": 16763.0, + "probability": 0.0 + }, + { + "start": 16765.98, + "end": 16766.98, + "probability": 0.2023 + }, + { + "start": 16768.74, + "end": 16769.52, + "probability": 0.0047 + }, + { + "start": 16776.24, + "end": 16781.26, + "probability": 0.049 + }, + { + "start": 16782.48, + "end": 16783.6, + "probability": 0.0257 + }, + { + "start": 16791.12, + "end": 16796.3, + "probability": 0.4094 + }, + { + "start": 16797.36, + "end": 16797.86, + "probability": 0.3047 + }, + { + "start": 16797.86, + "end": 16799.14, + "probability": 0.2547 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.0, + "end": 16895.0, + "probability": 0.0 + }, + { + "start": 16895.16, + "end": 16896.86, + "probability": 0.4398 + }, + { + "start": 16896.96, + "end": 16901.42, + "probability": 0.632 + }, + { + "start": 16901.6, + "end": 16902.36, + "probability": 0.7559 + }, + { + "start": 16902.64, + "end": 16903.5, + "probability": 0.6662 + }, + { + "start": 16917.1, + "end": 16920.42, + "probability": 0.0361 + }, + { + "start": 16920.42, + "end": 16920.86, + "probability": 0.0353 + }, + { + "start": 16920.86, + "end": 16921.5, + "probability": 0.0427 + }, + { + "start": 16921.5, + "end": 16921.5, + "probability": 0.0381 + }, + { + "start": 16921.5, + "end": 16924.22, + "probability": 0.7792 + }, + { + "start": 16924.28, + "end": 16924.28, + "probability": 0.0048 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.0, + "end": 17029.0, + "probability": 0.0 + }, + { + "start": 17029.22, + "end": 17031.3, + "probability": 0.0479 + }, + { + "start": 17031.3, + "end": 17033.28, + "probability": 0.3207 + }, + { + "start": 17033.42, + "end": 17035.36, + "probability": 0.4168 + }, + { + "start": 17035.38, + "end": 17037.0, + "probability": 0.6167 + }, + { + "start": 17038.39, + "end": 17046.98, + "probability": 0.9529 + }, + { + "start": 17047.58, + "end": 17050.92, + "probability": 0.8555 + }, + { + "start": 17054.06, + "end": 17054.84, + "probability": 0.0009 + }, + { + "start": 17055.83, + "end": 17058.58, + "probability": 0.6343 + }, + { + "start": 17060.4, + "end": 17061.7, + "probability": 0.0752 + }, + { + "start": 17062.54, + "end": 17067.62, + "probability": 0.0399 + }, + { + "start": 17067.62, + "end": 17071.58, + "probability": 0.0396 + }, + { + "start": 17071.6, + "end": 17074.88, + "probability": 0.0742 + }, + { + "start": 17074.9, + "end": 17076.98, + "probability": 0.0754 + }, + { + "start": 17076.98, + "end": 17078.78, + "probability": 0.1223 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.0, + "end": 17163.0, + "probability": 0.0 + }, + { + "start": 17163.18, + "end": 17163.66, + "probability": 0.0557 + }, + { + "start": 17163.66, + "end": 17163.66, + "probability": 0.0559 + }, + { + "start": 17163.66, + "end": 17166.22, + "probability": 0.3173 + }, + { + "start": 17167.5, + "end": 17168.42, + "probability": 0.6148 + }, + { + "start": 17169.02, + "end": 17170.9, + "probability": 0.9336 + }, + { + "start": 17172.2, + "end": 17175.08, + "probability": 0.988 + }, + { + "start": 17176.0, + "end": 17182.58, + "probability": 0.9883 + }, + { + "start": 17183.82, + "end": 17185.16, + "probability": 0.7953 + }, + { + "start": 17185.92, + "end": 17187.78, + "probability": 0.9346 + }, + { + "start": 17188.54, + "end": 17189.84, + "probability": 0.7555 + }, + { + "start": 17190.58, + "end": 17195.28, + "probability": 0.9369 + }, + { + "start": 17196.04, + "end": 17200.64, + "probability": 0.926 + }, + { + "start": 17201.96, + "end": 17206.56, + "probability": 0.9874 + }, + { + "start": 17207.44, + "end": 17214.68, + "probability": 0.9285 + }, + { + "start": 17215.44, + "end": 17217.12, + "probability": 0.9774 + }, + { + "start": 17217.78, + "end": 17220.18, + "probability": 0.9772 + }, + { + "start": 17221.0, + "end": 17227.24, + "probability": 0.9839 + }, + { + "start": 17228.16, + "end": 17228.5, + "probability": 0.5376 + }, + { + "start": 17228.58, + "end": 17229.72, + "probability": 0.6745 + }, + { + "start": 17229.94, + "end": 17233.86, + "probability": 0.9991 + }, + { + "start": 17234.4, + "end": 17236.82, + "probability": 0.9255 + }, + { + "start": 17238.14, + "end": 17241.7, + "probability": 0.9911 + }, + { + "start": 17241.84, + "end": 17244.66, + "probability": 0.982 + }, + { + "start": 17245.7, + "end": 17247.16, + "probability": 0.8826 + }, + { + "start": 17247.7, + "end": 17251.3, + "probability": 0.9816 + }, + { + "start": 17252.98, + "end": 17257.44, + "probability": 0.9888 + }, + { + "start": 17258.56, + "end": 17259.42, + "probability": 0.729 + }, + { + "start": 17259.62, + "end": 17266.36, + "probability": 0.8938 + }, + { + "start": 17267.1, + "end": 17272.98, + "probability": 0.9267 + }, + { + "start": 17273.82, + "end": 17276.92, + "probability": 0.9628 + }, + { + "start": 17276.92, + "end": 17279.52, + "probability": 0.9969 + }, + { + "start": 17280.24, + "end": 17286.24, + "probability": 0.9934 + }, + { + "start": 17287.46, + "end": 17288.34, + "probability": 0.6377 + }, + { + "start": 17288.4, + "end": 17290.74, + "probability": 0.9708 + }, + { + "start": 17290.74, + "end": 17295.24, + "probability": 0.9798 + }, + { + "start": 17296.24, + "end": 17297.28, + "probability": 0.9009 + }, + { + "start": 17297.74, + "end": 17301.66, + "probability": 0.8723 + }, + { + "start": 17301.66, + "end": 17305.24, + "probability": 0.9312 + }, + { + "start": 17305.44, + "end": 17306.49, + "probability": 0.9233 + }, + { + "start": 17307.94, + "end": 17308.76, + "probability": 0.9305 + }, + { + "start": 17309.1, + "end": 17309.9, + "probability": 0.9175 + }, + { + "start": 17310.36, + "end": 17311.28, + "probability": 0.8006 + }, + { + "start": 17311.38, + "end": 17312.34, + "probability": 0.9972 + }, + { + "start": 17312.82, + "end": 17313.86, + "probability": 0.801 + }, + { + "start": 17314.8, + "end": 17315.28, + "probability": 0.8023 + }, + { + "start": 17317.14, + "end": 17321.02, + "probability": 0.9993 + }, + { + "start": 17321.7, + "end": 17324.32, + "probability": 0.9727 + }, + { + "start": 17324.5, + "end": 17331.36, + "probability": 0.9929 + }, + { + "start": 17332.44, + "end": 17338.62, + "probability": 0.9983 + }, + { + "start": 17338.62, + "end": 17343.88, + "probability": 0.9974 + }, + { + "start": 17344.9, + "end": 17348.94, + "probability": 0.9927 + }, + { + "start": 17348.98, + "end": 17351.6, + "probability": 0.9971 + }, + { + "start": 17353.0, + "end": 17357.7, + "probability": 0.9954 + }, + { + "start": 17357.7, + "end": 17366.5, + "probability": 0.9911 + }, + { + "start": 17367.46, + "end": 17370.26, + "probability": 0.9479 + }, + { + "start": 17371.04, + "end": 17374.88, + "probability": 0.9612 + }, + { + "start": 17376.42, + "end": 17380.82, + "probability": 0.9948 + }, + { + "start": 17381.68, + "end": 17384.68, + "probability": 0.9937 + }, + { + "start": 17384.74, + "end": 17386.44, + "probability": 0.83 + }, + { + "start": 17387.48, + "end": 17391.6, + "probability": 0.951 + }, + { + "start": 17392.1, + "end": 17394.92, + "probability": 0.9906 + }, + { + "start": 17396.18, + "end": 17397.9, + "probability": 0.7154 + }, + { + "start": 17398.58, + "end": 17402.08, + "probability": 0.9963 + }, + { + "start": 17402.2, + "end": 17403.98, + "probability": 0.9337 + }, + { + "start": 17404.72, + "end": 17409.16, + "probability": 0.9941 + }, + { + "start": 17409.74, + "end": 17409.82, + "probability": 0.2727 + }, + { + "start": 17409.92, + "end": 17410.12, + "probability": 0.873 + }, + { + "start": 17410.2, + "end": 17416.06, + "probability": 0.9911 + }, + { + "start": 17416.66, + "end": 17421.94, + "probability": 0.9854 + }, + { + "start": 17422.72, + "end": 17428.16, + "probability": 0.9884 + }, + { + "start": 17428.94, + "end": 17431.96, + "probability": 0.9702 + }, + { + "start": 17432.02, + "end": 17434.98, + "probability": 0.9912 + }, + { + "start": 17435.52, + "end": 17439.48, + "probability": 0.9812 + }, + { + "start": 17439.64, + "end": 17442.22, + "probability": 0.8224 + }, + { + "start": 17442.76, + "end": 17444.42, + "probability": 0.8866 + }, + { + "start": 17444.54, + "end": 17445.88, + "probability": 0.9639 + }, + { + "start": 17446.28, + "end": 17453.72, + "probability": 0.9832 + }, + { + "start": 17454.48, + "end": 17456.12, + "probability": 0.9634 + }, + { + "start": 17457.3, + "end": 17458.46, + "probability": 0.8062 + }, + { + "start": 17458.58, + "end": 17460.46, + "probability": 0.7974 + }, + { + "start": 17460.92, + "end": 17461.74, + "probability": 0.9269 + }, + { + "start": 17462.42, + "end": 17466.04, + "probability": 0.9953 + }, + { + "start": 17466.88, + "end": 17472.26, + "probability": 0.9795 + }, + { + "start": 17473.32, + "end": 17477.06, + "probability": 0.9355 + }, + { + "start": 17477.22, + "end": 17482.12, + "probability": 0.8323 + }, + { + "start": 17483.32, + "end": 17487.54, + "probability": 0.989 + }, + { + "start": 17487.62, + "end": 17488.84, + "probability": 0.9184 + }, + { + "start": 17489.68, + "end": 17493.1, + "probability": 0.9749 + }, + { + "start": 17493.22, + "end": 17494.12, + "probability": 0.9603 + }, + { + "start": 17494.44, + "end": 17498.66, + "probability": 0.7866 + }, + { + "start": 17500.5, + "end": 17502.68, + "probability": 0.9979 + }, + { + "start": 17502.68, + "end": 17507.3, + "probability": 0.9136 + }, + { + "start": 17507.52, + "end": 17512.16, + "probability": 0.9963 + }, + { + "start": 17512.82, + "end": 17517.28, + "probability": 0.9873 + }, + { + "start": 17518.02, + "end": 17521.18, + "probability": 0.7817 + }, + { + "start": 17521.34, + "end": 17522.84, + "probability": 0.8666 + }, + { + "start": 17523.56, + "end": 17527.54, + "probability": 0.9769 + }, + { + "start": 17527.58, + "end": 17528.42, + "probability": 0.6641 + }, + { + "start": 17529.14, + "end": 17530.74, + "probability": 0.9504 + }, + { + "start": 17531.34, + "end": 17535.76, + "probability": 0.972 + }, + { + "start": 17536.16, + "end": 17538.9, + "probability": 0.7337 + }, + { + "start": 17539.14, + "end": 17540.2, + "probability": 0.7837 + }, + { + "start": 17540.34, + "end": 17542.74, + "probability": 0.971 + }, + { + "start": 17542.88, + "end": 17546.78, + "probability": 0.9435 + }, + { + "start": 17547.5, + "end": 17548.08, + "probability": 0.5539 + }, + { + "start": 17548.71, + "end": 17550.72, + "probability": 0.7367 + }, + { + "start": 17551.74, + "end": 17554.3, + "probability": 0.8335 + }, + { + "start": 17555.18, + "end": 17558.3, + "probability": 0.924 + }, + { + "start": 17559.12, + "end": 17561.46, + "probability": 0.8364 + }, + { + "start": 17563.06, + "end": 17565.76, + "probability": 0.8862 + }, + { + "start": 17565.76, + "end": 17569.02, + "probability": 0.9435 + }, + { + "start": 17570.18, + "end": 17571.46, + "probability": 0.035 + }, + { + "start": 17571.46, + "end": 17574.12, + "probability": 0.8318 + }, + { + "start": 17574.22, + "end": 17574.32, + "probability": 0.7878 + }, + { + "start": 17583.7, + "end": 17586.16, + "probability": 0.7048 + }, + { + "start": 17587.58, + "end": 17588.14, + "probability": 0.9469 + }, + { + "start": 17591.18, + "end": 17595.4, + "probability": 0.9944 + }, + { + "start": 17596.64, + "end": 17597.7, + "probability": 0.7735 + }, + { + "start": 17597.9, + "end": 17600.46, + "probability": 0.9863 + }, + { + "start": 17601.64, + "end": 17604.48, + "probability": 0.9972 + }, + { + "start": 17605.54, + "end": 17609.56, + "probability": 0.9954 + }, + { + "start": 17611.42, + "end": 17612.26, + "probability": 0.691 + }, + { + "start": 17612.46, + "end": 17620.5, + "probability": 0.9753 + }, + { + "start": 17621.82, + "end": 17622.58, + "probability": 0.8884 + }, + { + "start": 17622.7, + "end": 17624.1, + "probability": 0.9707 + }, + { + "start": 17624.22, + "end": 17625.14, + "probability": 0.9281 + }, + { + "start": 17625.3, + "end": 17626.54, + "probability": 0.9118 + }, + { + "start": 17630.08, + "end": 17632.68, + "probability": 0.987 + }, + { + "start": 17633.3, + "end": 17634.32, + "probability": 0.8928 + }, + { + "start": 17635.08, + "end": 17639.24, + "probability": 0.989 + }, + { + "start": 17639.7, + "end": 17644.88, + "probability": 0.9995 + }, + { + "start": 17646.14, + "end": 17648.78, + "probability": 0.6934 + }, + { + "start": 17649.36, + "end": 17650.48, + "probability": 0.8289 + }, + { + "start": 17651.9, + "end": 17654.6, + "probability": 0.4037 + }, + { + "start": 17655.18, + "end": 17656.04, + "probability": 0.8302 + }, + { + "start": 17656.24, + "end": 17658.74, + "probability": 0.9847 + }, + { + "start": 17660.26, + "end": 17665.0, + "probability": 0.9803 + }, + { + "start": 17665.0, + "end": 17669.02, + "probability": 0.7746 + }, + { + "start": 17669.12, + "end": 17671.24, + "probability": 0.8345 + }, + { + "start": 17672.16, + "end": 17673.26, + "probability": 0.3609 + }, + { + "start": 17673.9, + "end": 17676.18, + "probability": 0.9766 + }, + { + "start": 17678.0, + "end": 17679.48, + "probability": 0.6687 + }, + { + "start": 17679.94, + "end": 17683.16, + "probability": 0.9672 + }, + { + "start": 17683.52, + "end": 17688.44, + "probability": 0.8927 + }, + { + "start": 17689.0, + "end": 17691.72, + "probability": 0.9526 + }, + { + "start": 17692.36, + "end": 17693.88, + "probability": 0.8151 + }, + { + "start": 17694.56, + "end": 17697.45, + "probability": 0.9941 + }, + { + "start": 17697.88, + "end": 17702.24, + "probability": 0.5673 + }, + { + "start": 17702.98, + "end": 17704.46, + "probability": 0.9606 + }, + { + "start": 17704.94, + "end": 17705.32, + "probability": 0.6678 + }, + { + "start": 17705.4, + "end": 17710.16, + "probability": 0.9358 + }, + { + "start": 17710.86, + "end": 17712.44, + "probability": 0.6845 + }, + { + "start": 17713.5, + "end": 17716.46, + "probability": 0.9915 + }, + { + "start": 17716.64, + "end": 17717.4, + "probability": 0.7534 + }, + { + "start": 17717.6, + "end": 17720.42, + "probability": 0.9901 + }, + { + "start": 17720.76, + "end": 17723.04, + "probability": 0.9551 + }, + { + "start": 17723.46, + "end": 17725.71, + "probability": 0.9921 + }, + { + "start": 17727.36, + "end": 17727.56, + "probability": 0.6576 + }, + { + "start": 17727.8, + "end": 17728.24, + "probability": 0.8566 + }, + { + "start": 17728.28, + "end": 17732.29, + "probability": 0.9985 + }, + { + "start": 17733.28, + "end": 17738.02, + "probability": 0.998 + }, + { + "start": 17738.24, + "end": 17742.58, + "probability": 0.8667 + }, + { + "start": 17742.9, + "end": 17743.16, + "probability": 0.6013 + }, + { + "start": 17743.28, + "end": 17748.72, + "probability": 0.9976 + }, + { + "start": 17748.8, + "end": 17749.88, + "probability": 0.7415 + }, + { + "start": 17750.44, + "end": 17752.76, + "probability": 0.609 + }, + { + "start": 17753.04, + "end": 17754.8, + "probability": 0.9929 + }, + { + "start": 17755.54, + "end": 17757.98, + "probability": 0.93 + }, + { + "start": 17759.12, + "end": 17759.96, + "probability": 0.6649 + }, + { + "start": 17762.5, + "end": 17768.3, + "probability": 0.9984 + }, + { + "start": 17768.96, + "end": 17773.1, + "probability": 0.9504 + }, + { + "start": 17773.26, + "end": 17773.52, + "probability": 0.7065 + }, + { + "start": 17775.94, + "end": 17778.46, + "probability": 0.7542 + }, + { + "start": 17778.56, + "end": 17781.92, + "probability": 0.5931 + }, + { + "start": 17781.98, + "end": 17782.54, + "probability": 0.7247 + }, + { + "start": 17800.08, + "end": 17802.58, + "probability": 0.6642 + }, + { + "start": 17803.36, + "end": 17804.46, + "probability": 0.6882 + }, + { + "start": 17806.6, + "end": 17812.62, + "probability": 0.9843 + }, + { + "start": 17812.78, + "end": 17816.7, + "probability": 0.9948 + }, + { + "start": 17816.7, + "end": 17820.36, + "probability": 0.9977 + }, + { + "start": 17821.64, + "end": 17825.86, + "probability": 0.9976 + }, + { + "start": 17826.93, + "end": 17832.44, + "probability": 0.9717 + }, + { + "start": 17832.5, + "end": 17834.0, + "probability": 0.53 + }, + { + "start": 17834.44, + "end": 17836.94, + "probability": 0.8938 + }, + { + "start": 17837.78, + "end": 17843.2, + "probability": 0.9976 + }, + { + "start": 17844.24, + "end": 17847.34, + "probability": 0.8703 + }, + { + "start": 17847.34, + "end": 17850.28, + "probability": 0.9987 + }, + { + "start": 17851.06, + "end": 17852.9, + "probability": 0.999 + }, + { + "start": 17853.26, + "end": 17854.64, + "probability": 0.9957 + }, + { + "start": 17855.66, + "end": 17857.84, + "probability": 0.9747 + }, + { + "start": 17858.6, + "end": 17861.8, + "probability": 0.9438 + }, + { + "start": 17862.54, + "end": 17868.04, + "probability": 0.9769 + }, + { + "start": 17868.94, + "end": 17871.68, + "probability": 0.7427 + }, + { + "start": 17871.92, + "end": 17873.42, + "probability": 0.9772 + }, + { + "start": 17873.96, + "end": 17875.57, + "probability": 0.9834 + }, + { + "start": 17876.08, + "end": 17878.48, + "probability": 0.9984 + }, + { + "start": 17879.42, + "end": 17879.64, + "probability": 0.8901 + }, + { + "start": 17879.64, + "end": 17882.98, + "probability": 0.9922 + }, + { + "start": 17883.68, + "end": 17887.26, + "probability": 0.9944 + }, + { + "start": 17887.82, + "end": 17891.38, + "probability": 0.9324 + }, + { + "start": 17891.86, + "end": 17893.92, + "probability": 0.9764 + }, + { + "start": 17894.76, + "end": 17896.54, + "probability": 0.9504 + }, + { + "start": 17897.16, + "end": 17898.64, + "probability": 0.8941 + }, + { + "start": 17898.74, + "end": 17900.9, + "probability": 0.9916 + }, + { + "start": 17901.02, + "end": 17902.08, + "probability": 0.8331 + }, + { + "start": 17902.78, + "end": 17904.14, + "probability": 0.9713 + }, + { + "start": 17904.94, + "end": 17908.02, + "probability": 0.9813 + }, + { + "start": 17908.18, + "end": 17911.84, + "probability": 0.9962 + }, + { + "start": 17911.84, + "end": 17915.9, + "probability": 0.9969 + }, + { + "start": 17916.66, + "end": 17920.5, + "probability": 0.9976 + }, + { + "start": 17921.2, + "end": 17923.8, + "probability": 0.9987 + }, + { + "start": 17924.86, + "end": 17925.68, + "probability": 0.7376 + }, + { + "start": 17925.76, + "end": 17930.06, + "probability": 0.8491 + }, + { + "start": 17930.34, + "end": 17932.66, + "probability": 0.9954 + }, + { + "start": 17933.22, + "end": 17935.86, + "probability": 0.9941 + }, + { + "start": 17935.86, + "end": 17939.74, + "probability": 0.9856 + }, + { + "start": 17940.24, + "end": 17943.86, + "probability": 0.9854 + }, + { + "start": 17944.96, + "end": 17946.86, + "probability": 0.8119 + }, + { + "start": 17947.02, + "end": 17948.74, + "probability": 0.897 + }, + { + "start": 17949.48, + "end": 17951.44, + "probability": 0.997 + }, + { + "start": 17951.44, + "end": 17954.14, + "probability": 0.9969 + }, + { + "start": 17954.56, + "end": 17956.7, + "probability": 0.9569 + }, + { + "start": 17957.4, + "end": 17958.2, + "probability": 0.95 + }, + { + "start": 17958.44, + "end": 17960.8, + "probability": 0.8662 + }, + { + "start": 17961.06, + "end": 17962.48, + "probability": 0.9673 + }, + { + "start": 17962.96, + "end": 17966.52, + "probability": 0.9962 + }, + { + "start": 17967.04, + "end": 17970.0, + "probability": 0.9191 + }, + { + "start": 17970.98, + "end": 17973.66, + "probability": 0.9982 + }, + { + "start": 17973.66, + "end": 17977.64, + "probability": 0.9991 + }, + { + "start": 17978.3, + "end": 17980.28, + "probability": 0.8314 + }, + { + "start": 17980.64, + "end": 17984.54, + "probability": 0.8745 + }, + { + "start": 17984.58, + "end": 17985.45, + "probability": 0.9512 + }, + { + "start": 17986.06, + "end": 17987.98, + "probability": 0.9909 + }, + { + "start": 17987.98, + "end": 17990.52, + "probability": 0.6608 + }, + { + "start": 17991.1, + "end": 17996.3, + "probability": 0.9731 + }, + { + "start": 17996.96, + "end": 17999.22, + "probability": 0.9926 + }, + { + "start": 17999.22, + "end": 18002.58, + "probability": 0.9898 + }, + { + "start": 18003.34, + "end": 18003.78, + "probability": 0.6571 + }, + { + "start": 18003.88, + "end": 18005.96, + "probability": 0.9608 + }, + { + "start": 18006.5, + "end": 18007.98, + "probability": 0.9517 + }, + { + "start": 18008.2, + "end": 18010.22, + "probability": 0.9792 + }, + { + "start": 18010.28, + "end": 18012.26, + "probability": 0.9038 + }, + { + "start": 18012.64, + "end": 18015.1, + "probability": 0.9893 + }, + { + "start": 18015.74, + "end": 18019.36, + "probability": 0.8458 + }, + { + "start": 18019.36, + "end": 18022.78, + "probability": 0.9919 + }, + { + "start": 18023.58, + "end": 18025.4, + "probability": 0.9922 + }, + { + "start": 18025.4, + "end": 18027.82, + "probability": 0.999 + }, + { + "start": 18028.54, + "end": 18032.78, + "probability": 0.9761 + }, + { + "start": 18033.52, + "end": 18036.34, + "probability": 0.7894 + }, + { + "start": 18036.34, + "end": 18040.04, + "probability": 0.9614 + }, + { + "start": 18041.02, + "end": 18044.18, + "probability": 0.7345 + }, + { + "start": 18044.88, + "end": 18048.4, + "probability": 0.969 + }, + { + "start": 18048.4, + "end": 18052.0, + "probability": 0.9453 + }, + { + "start": 18052.68, + "end": 18055.74, + "probability": 0.9902 + }, + { + "start": 18055.74, + "end": 18058.72, + "probability": 0.984 + }, + { + "start": 18059.24, + "end": 18061.56, + "probability": 0.9861 + }, + { + "start": 18062.22, + "end": 18065.62, + "probability": 0.9886 + }, + { + "start": 18065.62, + "end": 18069.4, + "probability": 0.9776 + }, + { + "start": 18069.76, + "end": 18073.52, + "probability": 0.8935 + }, + { + "start": 18073.74, + "end": 18076.52, + "probability": 0.991 + }, + { + "start": 18077.14, + "end": 18078.22, + "probability": 0.8252 + }, + { + "start": 18078.48, + "end": 18085.32, + "probability": 0.9906 + }, + { + "start": 18085.8, + "end": 18086.86, + "probability": 0.9897 + }, + { + "start": 18086.98, + "end": 18090.52, + "probability": 0.9454 + }, + { + "start": 18091.02, + "end": 18093.04, + "probability": 0.9934 + }, + { + "start": 18093.22, + "end": 18096.78, + "probability": 0.9874 + }, + { + "start": 18097.24, + "end": 18097.68, + "probability": 0.2436 + }, + { + "start": 18097.7, + "end": 18097.94, + "probability": 0.8442 + }, + { + "start": 18098.06, + "end": 18100.84, + "probability": 0.9972 + }, + { + "start": 18100.84, + "end": 18103.8, + "probability": 0.9847 + }, + { + "start": 18103.94, + "end": 18109.04, + "probability": 0.9964 + }, + { + "start": 18109.16, + "end": 18110.34, + "probability": 0.652 + }, + { + "start": 18110.34, + "end": 18112.24, + "probability": 0.9896 + }, + { + "start": 18112.62, + "end": 18113.9, + "probability": 0.8302 + }, + { + "start": 18114.6, + "end": 18115.98, + "probability": 0.8803 + }, + { + "start": 18117.02, + "end": 18117.02, + "probability": 0.7874 + }, + { + "start": 18117.24, + "end": 18117.86, + "probability": 0.7037 + }, + { + "start": 18117.98, + "end": 18120.2, + "probability": 0.8267 + }, + { + "start": 18120.24, + "end": 18120.92, + "probability": 0.7887 + }, + { + "start": 18128.56, + "end": 18130.3, + "probability": 0.6682 + }, + { + "start": 18130.64, + "end": 18132.5, + "probability": 0.9636 + }, + { + "start": 18133.34, + "end": 18134.58, + "probability": 0.9331 + }, + { + "start": 18134.84, + "end": 18136.76, + "probability": 0.9956 + }, + { + "start": 18136.88, + "end": 18139.76, + "probability": 0.9286 + }, + { + "start": 18140.96, + "end": 18141.1, + "probability": 0.6267 + }, + { + "start": 18141.16, + "end": 18141.76, + "probability": 0.6766 + }, + { + "start": 18141.84, + "end": 18144.38, + "probability": 0.987 + }, + { + "start": 18145.08, + "end": 18148.1, + "probability": 0.9807 + }, + { + "start": 18148.76, + "end": 18149.46, + "probability": 0.9458 + }, + { + "start": 18149.52, + "end": 18150.52, + "probability": 0.7773 + }, + { + "start": 18150.74, + "end": 18155.16, + "probability": 0.9989 + }, + { + "start": 18155.34, + "end": 18156.86, + "probability": 0.8628 + }, + { + "start": 18157.04, + "end": 18158.4, + "probability": 0.9033 + }, + { + "start": 18158.52, + "end": 18161.24, + "probability": 0.9556 + }, + { + "start": 18161.38, + "end": 18165.48, + "probability": 0.9789 + }, + { + "start": 18166.22, + "end": 18166.72, + "probability": 0.9302 + }, + { + "start": 18166.72, + "end": 18167.66, + "probability": 0.8129 + }, + { + "start": 18167.76, + "end": 18171.02, + "probability": 0.9953 + }, + { + "start": 18171.02, + "end": 18174.9, + "probability": 0.9974 + }, + { + "start": 18175.5, + "end": 18177.94, + "probability": 0.9973 + }, + { + "start": 18177.94, + "end": 18182.18, + "probability": 0.9954 + }, + { + "start": 18184.04, + "end": 18184.98, + "probability": 0.3187 + }, + { + "start": 18185.14, + "end": 18190.16, + "probability": 0.9866 + }, + { + "start": 18192.52, + "end": 18193.72, + "probability": 0.4605 + }, + { + "start": 18196.34, + "end": 18202.28, + "probability": 0.3623 + }, + { + "start": 18212.92, + "end": 18215.8, + "probability": 0.9839 + }, + { + "start": 18216.16, + "end": 18218.88, + "probability": 0.7713 + }, + { + "start": 18223.16, + "end": 18227.44, + "probability": 0.7244 + }, + { + "start": 18227.44, + "end": 18232.23, + "probability": 0.9797 + }, + { + "start": 18234.52, + "end": 18236.28, + "probability": 0.8456 + }, + { + "start": 18236.38, + "end": 18237.02, + "probability": 0.8152 + }, + { + "start": 18239.07, + "end": 18241.32, + "probability": 0.8191 + }, + { + "start": 18241.44, + "end": 18243.06, + "probability": 0.7884 + }, + { + "start": 18243.4, + "end": 18245.37, + "probability": 0.8455 + }, + { + "start": 18245.62, + "end": 18249.28, + "probability": 0.9959 + }, + { + "start": 18249.38, + "end": 18253.84, + "probability": 0.9736 + }, + { + "start": 18253.84, + "end": 18259.88, + "probability": 0.9731 + }, + { + "start": 18260.2, + "end": 18262.94, + "probability": 0.3044 + }, + { + "start": 18263.22, + "end": 18267.14, + "probability": 0.9321 + }, + { + "start": 18267.54, + "end": 18270.8, + "probability": 0.9816 + }, + { + "start": 18271.14, + "end": 18276.71, + "probability": 0.7854 + }, + { + "start": 18277.8, + "end": 18281.24, + "probability": 0.7014 + }, + { + "start": 18281.48, + "end": 18284.32, + "probability": 0.7942 + }, + { + "start": 18284.48, + "end": 18284.86, + "probability": 0.7709 + }, + { + "start": 18289.2, + "end": 18289.54, + "probability": 0.3241 + }, + { + "start": 18289.6, + "end": 18292.34, + "probability": 0.7501 + }, + { + "start": 18292.6, + "end": 18296.9, + "probability": 0.9963 + }, + { + "start": 18297.48, + "end": 18300.84, + "probability": 0.1375 + }, + { + "start": 18320.46, + "end": 18320.74, + "probability": 0.0003 + }, + { + "start": 18321.3, + "end": 18324.58, + "probability": 0.2936 + }, + { + "start": 18324.58, + "end": 18326.14, + "probability": 0.0623 + }, + { + "start": 18328.06, + "end": 18328.06, + "probability": 0.2736 + }, + { + "start": 18328.06, + "end": 18328.06, + "probability": 0.1545 + }, + { + "start": 18328.06, + "end": 18328.06, + "probability": 0.0714 + }, + { + "start": 18328.06, + "end": 18328.06, + "probability": 0.0999 + }, + { + "start": 18328.06, + "end": 18329.9, + "probability": 0.6262 + }, + { + "start": 18330.24, + "end": 18337.78, + "probability": 0.7586 + }, + { + "start": 18339.28, + "end": 18342.64, + "probability": 0.9355 + }, + { + "start": 18343.62, + "end": 18344.98, + "probability": 0.5486 + }, + { + "start": 18347.04, + "end": 18355.54, + "probability": 0.9446 + }, + { + "start": 18357.52, + "end": 18361.4, + "probability": 0.9763 + }, + { + "start": 18362.06, + "end": 18362.85, + "probability": 0.895 + }, + { + "start": 18363.94, + "end": 18366.32, + "probability": 0.8777 + }, + { + "start": 18367.58, + "end": 18371.76, + "probability": 0.7473 + }, + { + "start": 18373.3, + "end": 18381.92, + "probability": 0.9551 + }, + { + "start": 18382.32, + "end": 18385.16, + "probability": 0.8956 + }, + { + "start": 18385.84, + "end": 18389.0, + "probability": 0.9978 + }, + { + "start": 18389.04, + "end": 18389.56, + "probability": 0.7777 + }, + { + "start": 18390.56, + "end": 18398.12, + "probability": 0.9971 + }, + { + "start": 18399.22, + "end": 18399.82, + "probability": 0.502 + }, + { + "start": 18400.04, + "end": 18401.08, + "probability": 0.7734 + }, + { + "start": 18401.2, + "end": 18410.96, + "probability": 0.9938 + }, + { + "start": 18411.76, + "end": 18416.84, + "probability": 0.9914 + }, + { + "start": 18417.72, + "end": 18424.62, + "probability": 0.9834 + }, + { + "start": 18425.12, + "end": 18426.37, + "probability": 0.9891 + }, + { + "start": 18427.32, + "end": 18428.92, + "probability": 0.9338 + }, + { + "start": 18430.06, + "end": 18431.68, + "probability": 0.9821 + }, + { + "start": 18432.3, + "end": 18433.94, + "probability": 0.9926 + }, + { + "start": 18434.48, + "end": 18435.11, + "probability": 0.641 + }, + { + "start": 18435.76, + "end": 18437.1, + "probability": 0.3882 + }, + { + "start": 18437.5, + "end": 18440.6, + "probability": 0.8316 + }, + { + "start": 18441.02, + "end": 18444.67, + "probability": 0.9204 + }, + { + "start": 18445.18, + "end": 18445.96, + "probability": 0.6439 + }, + { + "start": 18446.08, + "end": 18447.56, + "probability": 0.9558 + }, + { + "start": 18448.08, + "end": 18448.82, + "probability": 0.5918 + }, + { + "start": 18449.26, + "end": 18452.72, + "probability": 0.8502 + }, + { + "start": 18453.14, + "end": 18454.8, + "probability": 0.9852 + }, + { + "start": 18455.32, + "end": 18459.44, + "probability": 0.9623 + }, + { + "start": 18459.8, + "end": 18462.76, + "probability": 0.9666 + }, + { + "start": 18462.94, + "end": 18463.34, + "probability": 0.8071 + }, + { + "start": 18463.46, + "end": 18464.5, + "probability": 0.8413 + }, + { + "start": 18464.9, + "end": 18465.58, + "probability": 0.6144 + }, + { + "start": 18465.6, + "end": 18465.94, + "probability": 0.4241 + }, + { + "start": 18469.24, + "end": 18470.32, + "probability": 0.9306 + }, + { + "start": 18470.7, + "end": 18474.98, + "probability": 0.7275 + }, + { + "start": 18474.98, + "end": 18479.26, + "probability": 0.9943 + }, + { + "start": 18479.5, + "end": 18482.26, + "probability": 0.9931 + }, + { + "start": 18482.4, + "end": 18483.8, + "probability": 0.961 + }, + { + "start": 18484.36, + "end": 18486.24, + "probability": 0.9983 + }, + { + "start": 18486.5, + "end": 18487.62, + "probability": 0.789 + }, + { + "start": 18489.52, + "end": 18494.2, + "probability": 0.8114 + }, + { + "start": 18494.92, + "end": 18500.26, + "probability": 0.9814 + }, + { + "start": 18501.18, + "end": 18504.72, + "probability": 0.979 + }, + { + "start": 18505.7, + "end": 18510.54, + "probability": 0.9738 + }, + { + "start": 18510.7, + "end": 18516.56, + "probability": 0.9634 + }, + { + "start": 18517.44, + "end": 18518.56, + "probability": 0.8665 + }, + { + "start": 18518.68, + "end": 18523.54, + "probability": 0.9922 + }, + { + "start": 18524.82, + "end": 18526.3, + "probability": 0.363 + }, + { + "start": 18526.36, + "end": 18529.1, + "probability": 0.9314 + }, + { + "start": 18529.32, + "end": 18530.8, + "probability": 0.53 + }, + { + "start": 18532.28, + "end": 18533.86, + "probability": 0.946 + }, + { + "start": 18537.38, + "end": 18543.24, + "probability": 0.7693 + }, + { + "start": 18543.7, + "end": 18546.38, + "probability": 0.928 + }, + { + "start": 18547.8, + "end": 18551.0, + "probability": 0.7542 + }, + { + "start": 18553.24, + "end": 18556.76, + "probability": 0.9248 + }, + { + "start": 18557.26, + "end": 18559.24, + "probability": 0.9006 + }, + { + "start": 18559.3, + "end": 18560.4, + "probability": 0.9883 + }, + { + "start": 18560.46, + "end": 18561.62, + "probability": 0.9727 + }, + { + "start": 18562.0, + "end": 18565.7, + "probability": 0.9112 + }, + { + "start": 18566.24, + "end": 18567.46, + "probability": 0.5075 + }, + { + "start": 18568.96, + "end": 18570.64, + "probability": 0.9816 + }, + { + "start": 18571.72, + "end": 18578.44, + "probability": 0.9404 + }, + { + "start": 18578.5, + "end": 18579.34, + "probability": 0.8897 + }, + { + "start": 18579.46, + "end": 18580.58, + "probability": 0.9373 + }, + { + "start": 18581.18, + "end": 18584.22, + "probability": 0.9404 + }, + { + "start": 18584.44, + "end": 18585.22, + "probability": 0.9871 + }, + { + "start": 18585.6, + "end": 18589.36, + "probability": 0.2219 + }, + { + "start": 18589.36, + "end": 18592.28, + "probability": 0.8608 + }, + { + "start": 18592.78, + "end": 18596.46, + "probability": 0.9541 + }, + { + "start": 18597.12, + "end": 18599.92, + "probability": 0.686 + }, + { + "start": 18600.46, + "end": 18604.94, + "probability": 0.9568 + }, + { + "start": 18604.94, + "end": 18610.82, + "probability": 0.9945 + }, + { + "start": 18611.54, + "end": 18616.84, + "probability": 0.9606 + }, + { + "start": 18619.44, + "end": 18624.74, + "probability": 0.7528 + }, + { + "start": 18625.52, + "end": 18631.5, + "probability": 0.7743 + }, + { + "start": 18631.68, + "end": 18632.04, + "probability": 0.634 + }, + { + "start": 18632.78, + "end": 18637.48, + "probability": 0.9963 + }, + { + "start": 18637.48, + "end": 18641.38, + "probability": 0.9988 + }, + { + "start": 18641.8, + "end": 18642.34, + "probability": 0.6743 + }, + { + "start": 18643.32, + "end": 18648.68, + "probability": 0.9935 + }, + { + "start": 18650.26, + "end": 18652.74, + "probability": 0.9658 + }, + { + "start": 18652.74, + "end": 18656.78, + "probability": 0.7984 + }, + { + "start": 18657.94, + "end": 18661.1, + "probability": 0.9976 + }, + { + "start": 18661.24, + "end": 18662.66, + "probability": 0.8739 + }, + { + "start": 18663.04, + "end": 18666.36, + "probability": 0.7528 + }, + { + "start": 18666.4, + "end": 18667.32, + "probability": 0.783 + }, + { + "start": 18667.62, + "end": 18670.74, + "probability": 0.9818 + }, + { + "start": 18671.68, + "end": 18673.98, + "probability": 0.6919 + }, + { + "start": 18674.12, + "end": 18678.84, + "probability": 0.9907 + }, + { + "start": 18679.6, + "end": 18686.9, + "probability": 0.9814 + }, + { + "start": 18687.73, + "end": 18693.18, + "probability": 0.704 + }, + { + "start": 18693.42, + "end": 18693.98, + "probability": 0.6321 + }, + { + "start": 18694.0, + "end": 18694.9, + "probability": 0.6918 + }, + { + "start": 18695.24, + "end": 18698.4, + "probability": 0.9578 + }, + { + "start": 18698.96, + "end": 18702.83, + "probability": 0.9794 + }, + { + "start": 18706.56, + "end": 18709.16, + "probability": 0.9267 + }, + { + "start": 18709.28, + "end": 18712.6, + "probability": 0.9785 + }, + { + "start": 18713.14, + "end": 18715.26, + "probability": 0.799 + }, + { + "start": 18715.64, + "end": 18716.32, + "probability": 0.7678 + }, + { + "start": 18716.44, + "end": 18720.72, + "probability": 0.9748 + }, + { + "start": 18720.9, + "end": 18721.22, + "probability": 0.6378 + }, + { + "start": 18721.22, + "end": 18723.78, + "probability": 0.9416 + }, + { + "start": 18723.82, + "end": 18727.94, + "probability": 0.7476 + }, + { + "start": 18729.32, + "end": 18730.32, + "probability": 0.6588 + }, + { + "start": 18730.48, + "end": 18731.42, + "probability": 0.9281 + }, + { + "start": 18731.64, + "end": 18733.76, + "probability": 0.9253 + }, + { + "start": 18734.12, + "end": 18735.62, + "probability": 0.8103 + }, + { + "start": 18735.96, + "end": 18736.68, + "probability": 0.8677 + }, + { + "start": 18736.74, + "end": 18741.08, + "probability": 0.9335 + }, + { + "start": 18741.08, + "end": 18746.0, + "probability": 0.9995 + }, + { + "start": 18746.66, + "end": 18748.82, + "probability": 0.7872 + }, + { + "start": 18749.32, + "end": 18749.48, + "probability": 0.4037 + }, + { + "start": 18749.62, + "end": 18755.66, + "probability": 0.9237 + }, + { + "start": 18756.02, + "end": 18759.82, + "probability": 0.9872 + }, + { + "start": 18760.68, + "end": 18762.5, + "probability": 0.8441 + }, + { + "start": 18762.62, + "end": 18766.36, + "probability": 0.6772 + }, + { + "start": 18766.44, + "end": 18767.22, + "probability": 0.7356 + }, + { + "start": 18767.28, + "end": 18767.84, + "probability": 0.7222 + }, + { + "start": 18767.9, + "end": 18770.8, + "probability": 0.631 + }, + { + "start": 18771.52, + "end": 18774.42, + "probability": 0.998 + }, + { + "start": 18775.16, + "end": 18778.74, + "probability": 0.9669 + }, + { + "start": 18779.86, + "end": 18784.17, + "probability": 0.997 + }, + { + "start": 18785.16, + "end": 18786.02, + "probability": 0.9489 + }, + { + "start": 18786.84, + "end": 18788.1, + "probability": 0.9976 + }, + { + "start": 18789.14, + "end": 18790.42, + "probability": 0.0052 + }, + { + "start": 18791.02, + "end": 18792.06, + "probability": 0.8498 + }, + { + "start": 18792.2, + "end": 18793.7, + "probability": 0.6326 + }, + { + "start": 18794.18, + "end": 18798.02, + "probability": 0.8002 + }, + { + "start": 18798.46, + "end": 18801.54, + "probability": 0.9197 + }, + { + "start": 18801.72, + "end": 18802.04, + "probability": 0.7162 + }, + { + "start": 18802.12, + "end": 18805.82, + "probability": 0.9911 + }, + { + "start": 18806.46, + "end": 18812.34, + "probability": 0.9156 + }, + { + "start": 18812.6, + "end": 18813.66, + "probability": 0.958 + }, + { + "start": 18814.26, + "end": 18815.42, + "probability": 0.7608 + }, + { + "start": 18816.62, + "end": 18822.2, + "probability": 0.9562 + }, + { + "start": 18823.22, + "end": 18825.1, + "probability": 0.9731 + }, + { + "start": 18825.56, + "end": 18828.04, + "probability": 0.8364 + }, + { + "start": 18828.18, + "end": 18829.08, + "probability": 0.5786 + }, + { + "start": 18829.5, + "end": 18832.4, + "probability": 0.9939 + }, + { + "start": 18832.5, + "end": 18833.24, + "probability": 0.7694 + }, + { + "start": 18833.74, + "end": 18835.96, + "probability": 0.9814 + }, + { + "start": 18836.3, + "end": 18837.52, + "probability": 0.9832 + }, + { + "start": 18837.86, + "end": 18838.59, + "probability": 0.9658 + }, + { + "start": 18838.86, + "end": 18841.74, + "probability": 0.9006 + }, + { + "start": 18841.86, + "end": 18842.34, + "probability": 0.9855 + }, + { + "start": 18842.44, + "end": 18842.76, + "probability": 0.4003 + }, + { + "start": 18842.88, + "end": 18843.26, + "probability": 0.1566 + }, + { + "start": 18843.44, + "end": 18844.68, + "probability": 0.9233 + }, + { + "start": 18845.2, + "end": 18848.86, + "probability": 0.5393 + }, + { + "start": 18849.42, + "end": 18850.66, + "probability": 0.7842 + }, + { + "start": 18850.94, + "end": 18853.09, + "probability": 0.9802 + }, + { + "start": 18854.24, + "end": 18858.28, + "probability": 0.9781 + }, + { + "start": 18859.68, + "end": 18863.12, + "probability": 0.9951 + }, + { + "start": 18863.22, + "end": 18865.52, + "probability": 0.9958 + }, + { + "start": 18866.04, + "end": 18871.72, + "probability": 0.979 + }, + { + "start": 18871.72, + "end": 18873.68, + "probability": 0.9963 + }, + { + "start": 18873.94, + "end": 18874.46, + "probability": 0.3756 + }, + { + "start": 18875.02, + "end": 18879.82, + "probability": 0.4165 + }, + { + "start": 18879.84, + "end": 18879.94, + "probability": 0.5655 + }, + { + "start": 18879.94, + "end": 18881.0, + "probability": 0.7811 + }, + { + "start": 18881.94, + "end": 18884.42, + "probability": 0.4405 + }, + { + "start": 18886.04, + "end": 18887.66, + "probability": 0.9138 + }, + { + "start": 18888.28, + "end": 18889.86, + "probability": 0.9858 + }, + { + "start": 18891.38, + "end": 18892.06, + "probability": 0.7358 + }, + { + "start": 18892.1, + "end": 18894.28, + "probability": 0.4626 + }, + { + "start": 18895.56, + "end": 18896.12, + "probability": 0.6491 + }, + { + "start": 18896.74, + "end": 18898.38, + "probability": 0.8553 + }, + { + "start": 18898.84, + "end": 18901.5, + "probability": 0.8852 + }, + { + "start": 18901.68, + "end": 18903.22, + "probability": 0.9527 + }, + { + "start": 18903.36, + "end": 18905.28, + "probability": 0.9626 + }, + { + "start": 18905.84, + "end": 18907.06, + "probability": 0.6431 + }, + { + "start": 18907.34, + "end": 18909.04, + "probability": 0.6917 + }, + { + "start": 18909.76, + "end": 18911.4, + "probability": 0.9757 + }, + { + "start": 18912.38, + "end": 18915.28, + "probability": 0.9753 + }, + { + "start": 18915.84, + "end": 18916.82, + "probability": 0.8611 + }, + { + "start": 18917.58, + "end": 18918.58, + "probability": 0.9521 + }, + { + "start": 18918.86, + "end": 18920.5, + "probability": 0.6848 + }, + { + "start": 18921.18, + "end": 18925.0, + "probability": 0.9893 + }, + { + "start": 18925.18, + "end": 18929.26, + "probability": 0.7787 + }, + { + "start": 18930.04, + "end": 18932.96, + "probability": 0.9849 + }, + { + "start": 18933.68, + "end": 18938.34, + "probability": 0.7948 + }, + { + "start": 18939.36, + "end": 18941.32, + "probability": 0.6895 + }, + { + "start": 18941.56, + "end": 18943.64, + "probability": 0.9402 + }, + { + "start": 18944.14, + "end": 18946.3, + "probability": 0.7681 + }, + { + "start": 18946.92, + "end": 18951.76, + "probability": 0.9614 + }, + { + "start": 18952.38, + "end": 18952.62, + "probability": 0.5345 + }, + { + "start": 18952.62, + "end": 18953.06, + "probability": 0.7565 + }, + { + "start": 18953.16, + "end": 18955.0, + "probability": 0.714 + }, + { + "start": 18955.1, + "end": 18957.06, + "probability": 0.9131 + }, + { + "start": 18957.76, + "end": 18962.3, + "probability": 0.9384 + }, + { + "start": 18962.34, + "end": 18963.66, + "probability": 0.9698 + }, + { + "start": 18963.84, + "end": 18965.38, + "probability": 0.8813 + }, + { + "start": 18965.48, + "end": 18965.76, + "probability": 0.8618 + }, + { + "start": 18966.8, + "end": 18968.78, + "probability": 0.8176 + }, + { + "start": 18969.22, + "end": 18971.78, + "probability": 0.7789 + }, + { + "start": 18971.92, + "end": 18972.24, + "probability": 0.7624 + }, + { + "start": 18990.26, + "end": 18991.4, + "probability": 0.7592 + }, + { + "start": 18994.0, + "end": 18995.48, + "probability": 0.4827 + }, + { + "start": 18996.16, + "end": 18997.3, + "probability": 0.95 + }, + { + "start": 18998.06, + "end": 18998.88, + "probability": 0.7485 + }, + { + "start": 19000.02, + "end": 19000.38, + "probability": 0.6607 + }, + { + "start": 19001.1, + "end": 19004.3, + "probability": 0.9772 + }, + { + "start": 19005.98, + "end": 19006.53, + "probability": 0.9025 + }, + { + "start": 19006.78, + "end": 19007.86, + "probability": 0.8735 + }, + { + "start": 19008.26, + "end": 19011.18, + "probability": 0.5941 + }, + { + "start": 19012.06, + "end": 19015.96, + "probability": 0.8907 + }, + { + "start": 19016.08, + "end": 19017.84, + "probability": 0.9966 + }, + { + "start": 19018.54, + "end": 19020.26, + "probability": 0.9514 + }, + { + "start": 19020.92, + "end": 19023.24, + "probability": 0.9392 + }, + { + "start": 19023.48, + "end": 19025.68, + "probability": 0.9883 + }, + { + "start": 19026.46, + "end": 19028.6, + "probability": 0.8415 + }, + { + "start": 19028.76, + "end": 19034.88, + "probability": 0.7512 + }, + { + "start": 19035.08, + "end": 19035.8, + "probability": 0.8192 + }, + { + "start": 19035.86, + "end": 19036.36, + "probability": 0.8489 + }, + { + "start": 19036.58, + "end": 19039.6, + "probability": 0.9488 + }, + { + "start": 19040.38, + "end": 19047.44, + "probability": 0.6466 + }, + { + "start": 19048.2, + "end": 19053.1, + "probability": 0.9099 + }, + { + "start": 19053.2, + "end": 19054.92, + "probability": 0.9883 + }, + { + "start": 19055.5, + "end": 19055.76, + "probability": 0.1467 + }, + { + "start": 19056.32, + "end": 19058.4, + "probability": 0.9303 + }, + { + "start": 19058.98, + "end": 19061.16, + "probability": 0.7936 + }, + { + "start": 19061.38, + "end": 19062.66, + "probability": 0.9666 + }, + { + "start": 19063.28, + "end": 19066.04, + "probability": 0.7085 + }, + { + "start": 19066.62, + "end": 19068.88, + "probability": 0.9878 + }, + { + "start": 19069.06, + "end": 19073.01, + "probability": 0.7554 + }, + { + "start": 19073.22, + "end": 19074.8, + "probability": 0.4569 + }, + { + "start": 19075.16, + "end": 19077.2, + "probability": 0.3866 + }, + { + "start": 19077.2, + "end": 19077.78, + "probability": 0.5517 + }, + { + "start": 19078.06, + "end": 19078.52, + "probability": 0.8454 + }, + { + "start": 19079.22, + "end": 19079.66, + "probability": 0.5898 + }, + { + "start": 19080.26, + "end": 19080.96, + "probability": 0.4905 + }, + { + "start": 19081.0, + "end": 19083.74, + "probability": 0.9497 + }, + { + "start": 19084.08, + "end": 19087.88, + "probability": 0.9746 + }, + { + "start": 19087.88, + "end": 19091.14, + "probability": 0.9839 + }, + { + "start": 19091.28, + "end": 19094.52, + "probability": 0.6964 + }, + { + "start": 19095.24, + "end": 19097.4, + "probability": 0.7213 + }, + { + "start": 19097.8, + "end": 19099.26, + "probability": 0.9795 + }, + { + "start": 19099.4, + "end": 19103.7, + "probability": 0.8656 + }, + { + "start": 19103.84, + "end": 19105.64, + "probability": 0.7849 + }, + { + "start": 19105.8, + "end": 19107.34, + "probability": 0.8766 + }, + { + "start": 19107.62, + "end": 19110.16, + "probability": 0.9525 + }, + { + "start": 19110.24, + "end": 19112.12, + "probability": 0.9783 + }, + { + "start": 19112.3, + "end": 19117.88, + "probability": 0.9502 + }, + { + "start": 19118.34, + "end": 19119.04, + "probability": 0.6119 + }, + { + "start": 19119.24, + "end": 19122.06, + "probability": 0.987 + }, + { + "start": 19122.38, + "end": 19125.82, + "probability": 0.9686 + }, + { + "start": 19127.14, + "end": 19131.4, + "probability": 0.9944 + }, + { + "start": 19132.04, + "end": 19134.16, + "probability": 0.8595 + }, + { + "start": 19134.42, + "end": 19141.64, + "probability": 0.9846 + }, + { + "start": 19141.66, + "end": 19142.68, + "probability": 0.3556 + }, + { + "start": 19145.76, + "end": 19149.38, + "probability": 0.3821 + }, + { + "start": 19150.14, + "end": 19154.98, + "probability": 0.9771 + }, + { + "start": 19155.3, + "end": 19156.46, + "probability": 0.9185 + }, + { + "start": 19156.54, + "end": 19158.46, + "probability": 0.9663 + }, + { + "start": 19158.64, + "end": 19161.24, + "probability": 0.9894 + }, + { + "start": 19161.66, + "end": 19162.54, + "probability": 0.6708 + }, + { + "start": 19162.64, + "end": 19163.6, + "probability": 0.9185 + }, + { + "start": 19163.76, + "end": 19166.2, + "probability": 0.7381 + }, + { + "start": 19166.28, + "end": 19166.67, + "probability": 0.7277 + }, + { + "start": 19167.22, + "end": 19167.68, + "probability": 0.8091 + }, + { + "start": 19168.18, + "end": 19168.92, + "probability": 0.979 + }, + { + "start": 19169.06, + "end": 19170.46, + "probability": 0.8843 + }, + { + "start": 19170.48, + "end": 19172.71, + "probability": 0.7776 + }, + { + "start": 19173.36, + "end": 19174.1, + "probability": 0.4989 + }, + { + "start": 19174.26, + "end": 19177.36, + "probability": 0.8508 + }, + { + "start": 19177.46, + "end": 19179.1, + "probability": 0.8838 + }, + { + "start": 19179.12, + "end": 19181.5, + "probability": 0.5847 + }, + { + "start": 19181.82, + "end": 19183.44, + "probability": 0.9355 + }, + { + "start": 19183.7, + "end": 19187.38, + "probability": 0.9365 + }, + { + "start": 19187.62, + "end": 19189.2, + "probability": 0.8079 + }, + { + "start": 19189.28, + "end": 19190.46, + "probability": 0.885 + }, + { + "start": 19191.32, + "end": 19193.06, + "probability": 0.8535 + }, + { + "start": 19193.1, + "end": 19194.3, + "probability": 0.7178 + }, + { + "start": 19194.46, + "end": 19199.78, + "probability": 0.7805 + }, + { + "start": 19199.9, + "end": 19204.7, + "probability": 0.8855 + }, + { + "start": 19204.8, + "end": 19205.32, + "probability": 0.7318 + }, + { + "start": 19205.94, + "end": 19210.3, + "probability": 0.9661 + }, + { + "start": 19210.38, + "end": 19214.08, + "probability": 0.6743 + }, + { + "start": 19214.3, + "end": 19218.1, + "probability": 0.5261 + }, + { + "start": 19218.14, + "end": 19219.4, + "probability": 0.5577 + }, + { + "start": 19220.06, + "end": 19223.12, + "probability": 0.5532 + }, + { + "start": 19223.52, + "end": 19225.88, + "probability": 0.9469 + }, + { + "start": 19226.02, + "end": 19226.68, + "probability": 0.9324 + }, + { + "start": 19226.78, + "end": 19231.28, + "probability": 0.9839 + }, + { + "start": 19231.5, + "end": 19234.04, + "probability": 0.7797 + }, + { + "start": 19234.14, + "end": 19237.54, + "probability": 0.9818 + }, + { + "start": 19237.7, + "end": 19239.41, + "probability": 0.9259 + }, + { + "start": 19239.5, + "end": 19243.38, + "probability": 0.9429 + }, + { + "start": 19243.7, + "end": 19247.54, + "probability": 0.9917 + }, + { + "start": 19247.82, + "end": 19248.14, + "probability": 0.3979 + }, + { + "start": 19248.14, + "end": 19251.32, + "probability": 0.7476 + }, + { + "start": 19251.42, + "end": 19254.96, + "probability": 0.9878 + }, + { + "start": 19255.08, + "end": 19255.5, + "probability": 0.8711 + }, + { + "start": 19256.26, + "end": 19257.4, + "probability": 0.5656 + }, + { + "start": 19258.3, + "end": 19260.52, + "probability": 0.934 + }, + { + "start": 19261.96, + "end": 19262.3, + "probability": 0.8778 + }, + { + "start": 19262.84, + "end": 19265.42, + "probability": 0.1631 + }, + { + "start": 19266.18, + "end": 19267.1, + "probability": 0.8005 + }, + { + "start": 19267.22, + "end": 19268.34, + "probability": 0.6258 + }, + { + "start": 19269.06, + "end": 19271.24, + "probability": 0.9665 + }, + { + "start": 19271.3, + "end": 19271.68, + "probability": 0.9777 + }, + { + "start": 19286.66, + "end": 19287.48, + "probability": 0.6701 + }, + { + "start": 19288.7, + "end": 19290.16, + "probability": 0.8599 + }, + { + "start": 19290.84, + "end": 19291.7, + "probability": 0.7682 + }, + { + "start": 19292.46, + "end": 19298.4, + "probability": 0.9908 + }, + { + "start": 19299.22, + "end": 19300.42, + "probability": 0.9985 + }, + { + "start": 19301.9, + "end": 19305.74, + "probability": 0.9874 + }, + { + "start": 19306.5, + "end": 19311.5, + "probability": 0.989 + }, + { + "start": 19311.5, + "end": 19319.0, + "probability": 0.9953 + }, + { + "start": 19319.84, + "end": 19322.74, + "probability": 0.9923 + }, + { + "start": 19322.74, + "end": 19328.88, + "probability": 0.965 + }, + { + "start": 19329.16, + "end": 19329.58, + "probability": 0.6375 + }, + { + "start": 19329.96, + "end": 19331.06, + "probability": 0.8793 + }, + { + "start": 19331.7, + "end": 19335.75, + "probability": 0.9822 + }, + { + "start": 19336.3, + "end": 19337.72, + "probability": 0.944 + }, + { + "start": 19337.92, + "end": 19341.68, + "probability": 0.9851 + }, + { + "start": 19341.8, + "end": 19342.8, + "probability": 0.7169 + }, + { + "start": 19343.92, + "end": 19346.16, + "probability": 0.8823 + }, + { + "start": 19346.3, + "end": 19348.9, + "probability": 0.8276 + }, + { + "start": 19349.62, + "end": 19350.72, + "probability": 0.9655 + }, + { + "start": 19350.78, + "end": 19352.17, + "probability": 0.9736 + }, + { + "start": 19352.36, + "end": 19353.68, + "probability": 0.9388 + }, + { + "start": 19354.02, + "end": 19359.46, + "probability": 0.9924 + }, + { + "start": 19360.84, + "end": 19361.42, + "probability": 0.7029 + }, + { + "start": 19361.56, + "end": 19363.46, + "probability": 0.9889 + }, + { + "start": 19363.58, + "end": 19365.42, + "probability": 0.9985 + }, + { + "start": 19366.62, + "end": 19372.38, + "probability": 0.9971 + }, + { + "start": 19373.64, + "end": 19378.92, + "probability": 0.8706 + }, + { + "start": 19380.62, + "end": 19385.78, + "probability": 0.9954 + }, + { + "start": 19385.92, + "end": 19387.08, + "probability": 0.9899 + }, + { + "start": 19387.12, + "end": 19388.74, + "probability": 0.9881 + }, + { + "start": 19388.86, + "end": 19391.16, + "probability": 0.939 + }, + { + "start": 19392.56, + "end": 19398.3, + "probability": 0.8142 + }, + { + "start": 19398.36, + "end": 19399.6, + "probability": 0.7998 + }, + { + "start": 19399.68, + "end": 19401.72, + "probability": 0.9792 + }, + { + "start": 19401.86, + "end": 19404.48, + "probability": 0.842 + }, + { + "start": 19404.8, + "end": 19410.78, + "probability": 0.9498 + }, + { + "start": 19410.82, + "end": 19417.66, + "probability": 0.9839 + }, + { + "start": 19417.9, + "end": 19421.18, + "probability": 0.9926 + }, + { + "start": 19421.2, + "end": 19425.7, + "probability": 0.7832 + }, + { + "start": 19426.08, + "end": 19428.9, + "probability": 0.9897 + }, + { + "start": 19429.3, + "end": 19431.5, + "probability": 0.9834 + }, + { + "start": 19431.6, + "end": 19434.24, + "probability": 0.9505 + }, + { + "start": 19434.62, + "end": 19440.82, + "probability": 0.9932 + }, + { + "start": 19441.8, + "end": 19444.48, + "probability": 0.9964 + }, + { + "start": 19445.82, + "end": 19453.68, + "probability": 0.9155 + }, + { + "start": 19454.14, + "end": 19459.64, + "probability": 0.9797 + }, + { + "start": 19460.4, + "end": 19462.92, + "probability": 0.8135 + }, + { + "start": 19463.64, + "end": 19468.2, + "probability": 0.9941 + }, + { + "start": 19468.28, + "end": 19470.08, + "probability": 0.8411 + }, + { + "start": 19471.24, + "end": 19472.7, + "probability": 0.5146 + }, + { + "start": 19472.86, + "end": 19474.24, + "probability": 0.9077 + }, + { + "start": 19474.28, + "end": 19475.1, + "probability": 0.9006 + }, + { + "start": 19475.1, + "end": 19482.5, + "probability": 0.7985 + }, + { + "start": 19482.94, + "end": 19483.78, + "probability": 0.8677 + }, + { + "start": 19484.56, + "end": 19488.64, + "probability": 0.8377 + }, + { + "start": 19488.76, + "end": 19492.1, + "probability": 0.8907 + }, + { + "start": 19492.28, + "end": 19494.6, + "probability": 0.6977 + }, + { + "start": 19494.72, + "end": 19495.34, + "probability": 0.6638 + }, + { + "start": 19495.62, + "end": 19500.0, + "probability": 0.8261 + }, + { + "start": 19500.28, + "end": 19500.73, + "probability": 0.967 + }, + { + "start": 19500.8, + "end": 19501.74, + "probability": 0.4469 + }, + { + "start": 19502.42, + "end": 19506.54, + "probability": 0.9839 + }, + { + "start": 19508.0, + "end": 19509.9, + "probability": 0.6952 + }, + { + "start": 19509.94, + "end": 19511.18, + "probability": 0.175 + }, + { + "start": 19511.48, + "end": 19512.62, + "probability": 0.4773 + }, + { + "start": 19512.9, + "end": 19521.4, + "probability": 0.9808 + }, + { + "start": 19521.78, + "end": 19523.44, + "probability": 0.9813 + }, + { + "start": 19523.5, + "end": 19523.98, + "probability": 0.9006 + }, + { + "start": 19524.62, + "end": 19526.22, + "probability": 0.7475 + }, + { + "start": 19526.34, + "end": 19527.42, + "probability": 0.9198 + }, + { + "start": 19527.52, + "end": 19528.14, + "probability": 0.5148 + }, + { + "start": 19528.32, + "end": 19529.24, + "probability": 0.8442 + }, + { + "start": 19529.64, + "end": 19534.94, + "probability": 0.9399 + }, + { + "start": 19535.24, + "end": 19537.56, + "probability": 0.9795 + }, + { + "start": 19538.3, + "end": 19539.14, + "probability": 0.5252 + }, + { + "start": 19539.24, + "end": 19540.16, + "probability": 0.8436 + }, + { + "start": 19540.34, + "end": 19541.2, + "probability": 0.6133 + }, + { + "start": 19541.32, + "end": 19543.86, + "probability": 0.9766 + }, + { + "start": 19544.0, + "end": 19549.8, + "probability": 0.8416 + }, + { + "start": 19549.86, + "end": 19551.24, + "probability": 0.8128 + }, + { + "start": 19551.66, + "end": 19552.62, + "probability": 0.8442 + }, + { + "start": 19553.5, + "end": 19554.62, + "probability": 0.6713 + }, + { + "start": 19554.88, + "end": 19562.5, + "probability": 0.957 + }, + { + "start": 19562.94, + "end": 19566.7, + "probability": 0.6744 + }, + { + "start": 19567.26, + "end": 19569.56, + "probability": 0.9789 + }, + { + "start": 19569.7, + "end": 19571.08, + "probability": 0.8975 + }, + { + "start": 19571.12, + "end": 19575.12, + "probability": 0.9098 + }, + { + "start": 19575.28, + "end": 19578.32, + "probability": 0.8541 + }, + { + "start": 19578.5, + "end": 19579.94, + "probability": 0.7533 + }, + { + "start": 19580.32, + "end": 19583.84, + "probability": 0.7799 + }, + { + "start": 19584.82, + "end": 19591.98, + "probability": 0.9374 + }, + { + "start": 19592.02, + "end": 19595.86, + "probability": 0.8997 + }, + { + "start": 19596.08, + "end": 19597.56, + "probability": 0.9854 + }, + { + "start": 19597.58, + "end": 19598.48, + "probability": 0.9135 + }, + { + "start": 19598.78, + "end": 19599.56, + "probability": 0.8352 + }, + { + "start": 19599.72, + "end": 19601.72, + "probability": 0.9688 + }, + { + "start": 19602.02, + "end": 19605.96, + "probability": 0.8906 + }, + { + "start": 19606.16, + "end": 19607.84, + "probability": 0.7539 + }, + { + "start": 19608.16, + "end": 19614.36, + "probability": 0.9788 + }, + { + "start": 19614.68, + "end": 19616.82, + "probability": 0.9751 + }, + { + "start": 19617.16, + "end": 19617.38, + "probability": 0.8036 + }, + { + "start": 19618.36, + "end": 19621.54, + "probability": 0.9757 + }, + { + "start": 19622.02, + "end": 19623.76, + "probability": 0.7975 + }, + { + "start": 19623.92, + "end": 19624.66, + "probability": 0.4084 + }, + { + "start": 19624.7, + "end": 19627.1, + "probability": 0.9157 + }, + { + "start": 19630.68, + "end": 19631.02, + "probability": 0.968 + }, + { + "start": 19633.88, + "end": 19634.8, + "probability": 0.5564 + }, + { + "start": 19635.18, + "end": 19636.7, + "probability": 0.0292 + }, + { + "start": 19637.7, + "end": 19639.2, + "probability": 0.2062 + }, + { + "start": 19639.9, + "end": 19641.26, + "probability": 0.2177 + }, + { + "start": 19648.86, + "end": 19649.74, + "probability": 0.5131 + }, + { + "start": 19650.02, + "end": 19651.24, + "probability": 0.4746 + }, + { + "start": 19651.54, + "end": 19654.2, + "probability": 0.7609 + }, + { + "start": 19654.32, + "end": 19658.58, + "probability": 0.7207 + }, + { + "start": 19659.12, + "end": 19662.16, + "probability": 0.9215 + }, + { + "start": 19665.42, + "end": 19665.58, + "probability": 0.074 + }, + { + "start": 19665.78, + "end": 19666.56, + "probability": 0.2136 + }, + { + "start": 19666.56, + "end": 19666.56, + "probability": 0.2798 + }, + { + "start": 19666.56, + "end": 19666.56, + "probability": 0.0378 + }, + { + "start": 19666.56, + "end": 19667.95, + "probability": 0.6841 + }, + { + "start": 19668.34, + "end": 19669.08, + "probability": 0.966 + }, + { + "start": 19670.02, + "end": 19674.08, + "probability": 0.9734 + }, + { + "start": 19674.74, + "end": 19676.5, + "probability": 0.9277 + }, + { + "start": 19676.5, + "end": 19677.28, + "probability": 0.9478 + }, + { + "start": 19677.56, + "end": 19678.94, + "probability": 0.9546 + }, + { + "start": 19679.3, + "end": 19682.44, + "probability": 0.9818 + }, + { + "start": 19683.0, + "end": 19684.4, + "probability": 0.9092 + }, + { + "start": 19684.94, + "end": 19686.7, + "probability": 0.9839 + }, + { + "start": 19687.52, + "end": 19689.04, + "probability": 0.7956 + }, + { + "start": 19689.1, + "end": 19689.7, + "probability": 0.9293 + }, + { + "start": 19689.76, + "end": 19693.62, + "probability": 0.9933 + }, + { + "start": 19693.62, + "end": 19697.4, + "probability": 0.9766 + }, + { + "start": 19698.86, + "end": 19701.28, + "probability": 0.993 + }, + { + "start": 19701.28, + "end": 19704.1, + "probability": 0.9929 + }, + { + "start": 19705.54, + "end": 19710.38, + "probability": 0.9944 + }, + { + "start": 19710.64, + "end": 19711.94, + "probability": 0.9878 + }, + { + "start": 19712.1, + "end": 19712.78, + "probability": 0.9559 + }, + { + "start": 19712.98, + "end": 19714.12, + "probability": 0.8075 + }, + { + "start": 19714.2, + "end": 19715.5, + "probability": 0.9912 + }, + { + "start": 19715.6, + "end": 19718.84, + "probability": 0.9979 + }, + { + "start": 19719.46, + "end": 19720.84, + "probability": 0.9841 + }, + { + "start": 19721.6, + "end": 19722.06, + "probability": 0.7117 + }, + { + "start": 19722.14, + "end": 19722.64, + "probability": 0.8796 + }, + { + "start": 19722.76, + "end": 19727.34, + "probability": 0.9325 + }, + { + "start": 19727.6, + "end": 19729.3, + "probability": 0.9225 + }, + { + "start": 19730.82, + "end": 19735.84, + "probability": 0.9368 + }, + { + "start": 19737.34, + "end": 19738.69, + "probability": 0.9912 + }, + { + "start": 19740.24, + "end": 19743.98, + "probability": 0.9798 + }, + { + "start": 19744.14, + "end": 19746.48, + "probability": 0.9663 + }, + { + "start": 19746.86, + "end": 19748.14, + "probability": 0.9572 + }, + { + "start": 19749.24, + "end": 19752.78, + "probability": 0.998 + }, + { + "start": 19752.98, + "end": 19755.04, + "probability": 0.9077 + }, + { + "start": 19755.28, + "end": 19758.06, + "probability": 0.9833 + }, + { + "start": 19758.68, + "end": 19761.06, + "probability": 0.9188 + }, + { + "start": 19762.28, + "end": 19765.86, + "probability": 0.9889 + }, + { + "start": 19765.9, + "end": 19766.92, + "probability": 0.748 + }, + { + "start": 19767.22, + "end": 19768.0, + "probability": 0.8996 + }, + { + "start": 19768.38, + "end": 19770.04, + "probability": 0.9796 + }, + { + "start": 19771.24, + "end": 19775.04, + "probability": 0.9966 + }, + { + "start": 19775.08, + "end": 19775.44, + "probability": 0.7952 + }, + { + "start": 19775.6, + "end": 19780.9, + "probability": 0.9422 + }, + { + "start": 19781.12, + "end": 19782.52, + "probability": 0.981 + }, + { + "start": 19782.92, + "end": 19783.74, + "probability": 0.9345 + }, + { + "start": 19783.82, + "end": 19786.82, + "probability": 0.9832 + }, + { + "start": 19786.82, + "end": 19789.04, + "probability": 0.9959 + }, + { + "start": 19789.12, + "end": 19792.04, + "probability": 0.9959 + }, + { + "start": 19792.66, + "end": 19797.48, + "probability": 0.996 + }, + { + "start": 19797.9, + "end": 19798.58, + "probability": 0.9332 + }, + { + "start": 19798.94, + "end": 19803.08, + "probability": 0.938 + }, + { + "start": 19803.7, + "end": 19805.08, + "probability": 0.9985 + }, + { + "start": 19805.32, + "end": 19807.12, + "probability": 0.4814 + }, + { + "start": 19807.22, + "end": 19809.22, + "probability": 0.9458 + }, + { + "start": 19809.3, + "end": 19809.86, + "probability": 0.507 + }, + { + "start": 19809.96, + "end": 19810.68, + "probability": 0.8697 + }, + { + "start": 19811.04, + "end": 19814.78, + "probability": 0.9375 + }, + { + "start": 19815.2, + "end": 19816.28, + "probability": 0.8809 + }, + { + "start": 19817.14, + "end": 19818.68, + "probability": 0.9176 + }, + { + "start": 19818.76, + "end": 19820.02, + "probability": 0.8942 + }, + { + "start": 19820.2, + "end": 19821.12, + "probability": 0.9433 + }, + { + "start": 19821.54, + "end": 19822.74, + "probability": 0.9363 + }, + { + "start": 19822.78, + "end": 19824.84, + "probability": 0.9255 + }, + { + "start": 19825.34, + "end": 19829.1, + "probability": 0.9736 + }, + { + "start": 19829.5, + "end": 19829.96, + "probability": 0.859 + }, + { + "start": 19830.12, + "end": 19830.72, + "probability": 0.8677 + }, + { + "start": 19830.82, + "end": 19833.58, + "probability": 0.8453 + }, + { + "start": 19833.88, + "end": 19837.2, + "probability": 0.9864 + }, + { + "start": 19837.2, + "end": 19840.26, + "probability": 0.9641 + }, + { + "start": 19840.74, + "end": 19842.06, + "probability": 0.9976 + }, + { + "start": 19842.22, + "end": 19842.32, + "probability": 0.2539 + }, + { + "start": 19842.32, + "end": 19843.74, + "probability": 0.9132 + }, + { + "start": 19843.96, + "end": 19845.12, + "probability": 0.9888 + }, + { + "start": 19845.16, + "end": 19845.64, + "probability": 0.4378 + }, + { + "start": 19846.26, + "end": 19848.66, + "probability": 0.9707 + }, + { + "start": 19848.98, + "end": 19850.64, + "probability": 0.9922 + }, + { + "start": 19850.74, + "end": 19852.24, + "probability": 0.9149 + }, + { + "start": 19852.34, + "end": 19853.48, + "probability": 0.9154 + }, + { + "start": 19853.84, + "end": 19856.66, + "probability": 0.3172 + }, + { + "start": 19856.66, + "end": 19857.08, + "probability": 0.0755 + }, + { + "start": 19857.08, + "end": 19859.38, + "probability": 0.905 + }, + { + "start": 19859.82, + "end": 19861.9, + "probability": 0.9431 + }, + { + "start": 19862.04, + "end": 19862.56, + "probability": 0.7582 + }, + { + "start": 19862.74, + "end": 19868.02, + "probability": 0.9886 + }, + { + "start": 19868.46, + "end": 19874.5, + "probability": 0.9735 + }, + { + "start": 19875.12, + "end": 19878.94, + "probability": 0.9987 + }, + { + "start": 19879.35, + "end": 19884.44, + "probability": 0.9976 + }, + { + "start": 19884.5, + "end": 19888.18, + "probability": 0.8471 + }, + { + "start": 19888.3, + "end": 19889.96, + "probability": 0.9742 + }, + { + "start": 19890.3, + "end": 19895.08, + "probability": 0.9949 + }, + { + "start": 19895.16, + "end": 19896.18, + "probability": 0.7634 + }, + { + "start": 19896.56, + "end": 19898.32, + "probability": 0.8696 + }, + { + "start": 19898.34, + "end": 19899.18, + "probability": 0.9285 + }, + { + "start": 19900.12, + "end": 19901.18, + "probability": 0.9758 + }, + { + "start": 19901.24, + "end": 19901.76, + "probability": 0.7452 + }, + { + "start": 19901.8, + "end": 19904.64, + "probability": 0.9786 + }, + { + "start": 19905.2, + "end": 19911.9, + "probability": 0.9709 + }, + { + "start": 19912.66, + "end": 19914.84, + "probability": 0.8513 + }, + { + "start": 19915.04, + "end": 19916.52, + "probability": 0.624 + }, + { + "start": 19916.6, + "end": 19917.22, + "probability": 0.4449 + }, + { + "start": 19917.24, + "end": 19919.42, + "probability": 0.7979 + }, + { + "start": 19927.38, + "end": 19929.58, + "probability": 0.9453 + }, + { + "start": 19934.2, + "end": 19935.36, + "probability": 0.7218 + }, + { + "start": 19937.34, + "end": 19939.06, + "probability": 0.7875 + }, + { + "start": 19939.82, + "end": 19944.42, + "probability": 0.9865 + }, + { + "start": 19945.34, + "end": 19949.26, + "probability": 0.9533 + }, + { + "start": 19949.76, + "end": 19952.26, + "probability": 0.9572 + }, + { + "start": 19953.72, + "end": 19958.84, + "probability": 0.8774 + }, + { + "start": 19959.68, + "end": 19961.66, + "probability": 0.8001 + }, + { + "start": 19962.82, + "end": 19964.24, + "probability": 0.926 + }, + { + "start": 19966.24, + "end": 19967.18, + "probability": 0.6663 + }, + { + "start": 19968.3, + "end": 19973.04, + "probability": 0.9827 + }, + { + "start": 19973.92, + "end": 19979.36, + "probability": 0.9891 + }, + { + "start": 19980.54, + "end": 19983.38, + "probability": 0.6673 + }, + { + "start": 19984.12, + "end": 19985.4, + "probability": 0.7241 + }, + { + "start": 19985.94, + "end": 19987.0, + "probability": 0.7509 + }, + { + "start": 19987.76, + "end": 19988.82, + "probability": 0.743 + }, + { + "start": 19990.4, + "end": 19991.52, + "probability": 0.8612 + }, + { + "start": 19992.64, + "end": 19995.26, + "probability": 0.436 + }, + { + "start": 19995.98, + "end": 19998.58, + "probability": 0.849 + }, + { + "start": 19999.86, + "end": 20001.02, + "probability": 0.6624 + }, + { + "start": 20002.44, + "end": 20003.74, + "probability": 0.9087 + }, + { + "start": 20005.22, + "end": 20006.66, + "probability": 0.9985 + }, + { + "start": 20007.78, + "end": 20009.4, + "probability": 0.848 + }, + { + "start": 20010.46, + "end": 20016.34, + "probability": 0.9166 + }, + { + "start": 20017.16, + "end": 20020.52, + "probability": 0.79 + }, + { + "start": 20021.04, + "end": 20023.72, + "probability": 0.9783 + }, + { + "start": 20023.82, + "end": 20024.06, + "probability": 0.9049 + }, + { + "start": 20024.16, + "end": 20024.62, + "probability": 0.7941 + }, + { + "start": 20025.58, + "end": 20028.8, + "probability": 0.8853 + }, + { + "start": 20029.72, + "end": 20033.84, + "probability": 0.9604 + }, + { + "start": 20034.1, + "end": 20034.7, + "probability": 0.744 + }, + { + "start": 20035.46, + "end": 20038.26, + "probability": 0.9534 + }, + { + "start": 20039.48, + "end": 20042.44, + "probability": 0.8651 + }, + { + "start": 20043.48, + "end": 20044.58, + "probability": 0.8932 + }, + { + "start": 20045.66, + "end": 20049.88, + "probability": 0.9904 + }, + { + "start": 20049.88, + "end": 20053.24, + "probability": 0.997 + }, + { + "start": 20053.66, + "end": 20054.46, + "probability": 0.9651 + }, + { + "start": 20054.92, + "end": 20055.9, + "probability": 0.831 + }, + { + "start": 20056.34, + "end": 20057.1, + "probability": 0.7486 + }, + { + "start": 20057.78, + "end": 20060.32, + "probability": 0.813 + }, + { + "start": 20061.54, + "end": 20066.24, + "probability": 0.7503 + }, + { + "start": 20069.14, + "end": 20070.98, + "probability": 0.7177 + }, + { + "start": 20071.66, + "end": 20074.36, + "probability": 0.9039 + }, + { + "start": 20075.62, + "end": 20079.0, + "probability": 0.968 + }, + { + "start": 20079.86, + "end": 20081.78, + "probability": 0.9326 + }, + { + "start": 20082.5, + "end": 20086.26, + "probability": 0.8908 + }, + { + "start": 20087.2, + "end": 20089.54, + "probability": 0.9376 + }, + { + "start": 20090.58, + "end": 20093.26, + "probability": 0.807 + }, + { + "start": 20093.82, + "end": 20097.46, + "probability": 0.8127 + }, + { + "start": 20098.16, + "end": 20099.9, + "probability": 0.9261 + }, + { + "start": 20100.46, + "end": 20101.76, + "probability": 0.4208 + }, + { + "start": 20102.86, + "end": 20105.28, + "probability": 0.9883 + }, + { + "start": 20106.22, + "end": 20112.74, + "probability": 0.9456 + }, + { + "start": 20113.02, + "end": 20114.9, + "probability": 0.9199 + }, + { + "start": 20115.02, + "end": 20121.88, + "probability": 0.9887 + }, + { + "start": 20122.36, + "end": 20122.56, + "probability": 0.6629 + }, + { + "start": 20123.42, + "end": 20125.6, + "probability": 0.7344 + }, + { + "start": 20125.66, + "end": 20128.06, + "probability": 0.9618 + }, + { + "start": 20128.14, + "end": 20129.68, + "probability": 0.6763 + }, + { + "start": 20130.1, + "end": 20130.72, + "probability": 0.4226 + }, + { + "start": 20130.76, + "end": 20132.96, + "probability": 0.9358 + }, + { + "start": 20133.62, + "end": 20134.74, + "probability": 0.4438 + }, + { + "start": 20135.14, + "end": 20137.9, + "probability": 0.8691 + }, + { + "start": 20138.04, + "end": 20138.66, + "probability": 0.802 + }, + { + "start": 20145.02, + "end": 20147.18, + "probability": 0.4855 + }, + { + "start": 20148.74, + "end": 20153.56, + "probability": 0.866 + }, + { + "start": 20154.42, + "end": 20159.7, + "probability": 0.7541 + }, + { + "start": 20159.96, + "end": 20164.8, + "probability": 0.985 + }, + { + "start": 20164.88, + "end": 20165.98, + "probability": 0.767 + }, + { + "start": 20166.42, + "end": 20168.05, + "probability": 0.8297 + }, + { + "start": 20168.44, + "end": 20171.22, + "probability": 0.9085 + }, + { + "start": 20171.3, + "end": 20175.3, + "probability": 0.9908 + }, + { + "start": 20175.3, + "end": 20180.0, + "probability": 0.8364 + }, + { + "start": 20180.1, + "end": 20181.8, + "probability": 0.7316 + }, + { + "start": 20182.3, + "end": 20184.46, + "probability": 0.9173 + }, + { + "start": 20184.48, + "end": 20185.6, + "probability": 0.7494 + }, + { + "start": 20185.6, + "end": 20186.36, + "probability": 0.8408 + }, + { + "start": 20186.52, + "end": 20187.6, + "probability": 0.753 + }, + { + "start": 20188.54, + "end": 20192.24, + "probability": 0.7138 + }, + { + "start": 20192.26, + "end": 20193.32, + "probability": 0.9313 + }, + { + "start": 20194.48, + "end": 20195.18, + "probability": 0.6592 + }, + { + "start": 20195.4, + "end": 20198.6, + "probability": 0.7156 + }, + { + "start": 20198.68, + "end": 20200.4, + "probability": 0.6998 + }, + { + "start": 20200.44, + "end": 20202.01, + "probability": 0.8968 + }, + { + "start": 20202.82, + "end": 20205.83, + "probability": 0.7 + }, + { + "start": 20205.98, + "end": 20207.57, + "probability": 0.9531 + }, + { + "start": 20208.74, + "end": 20212.34, + "probability": 0.9831 + }, + { + "start": 20212.94, + "end": 20214.96, + "probability": 0.9046 + }, + { + "start": 20214.96, + "end": 20217.5, + "probability": 0.9971 + }, + { + "start": 20217.64, + "end": 20219.06, + "probability": 0.8923 + }, + { + "start": 20219.24, + "end": 20222.04, + "probability": 0.9648 + }, + { + "start": 20222.04, + "end": 20225.74, + "probability": 0.921 + }, + { + "start": 20226.2, + "end": 20229.24, + "probability": 0.8256 + }, + { + "start": 20230.0, + "end": 20230.7, + "probability": 0.9666 + }, + { + "start": 20230.74, + "end": 20234.76, + "probability": 0.9525 + }, + { + "start": 20234.96, + "end": 20236.46, + "probability": 0.9737 + }, + { + "start": 20236.58, + "end": 20236.92, + "probability": 0.4207 + }, + { + "start": 20237.1, + "end": 20237.34, + "probability": 0.5086 + }, + { + "start": 20237.38, + "end": 20238.16, + "probability": 0.7005 + }, + { + "start": 20238.16, + "end": 20240.78, + "probability": 0.9061 + }, + { + "start": 20240.92, + "end": 20243.3, + "probability": 0.9436 + }, + { + "start": 20243.68, + "end": 20248.06, + "probability": 0.9455 + }, + { + "start": 20251.2, + "end": 20253.24, + "probability": 0.8886 + }, + { + "start": 20253.44, + "end": 20257.14, + "probability": 0.8447 + }, + { + "start": 20257.5, + "end": 20258.38, + "probability": 0.6033 + }, + { + "start": 20258.44, + "end": 20261.54, + "probability": 0.6114 + }, + { + "start": 20262.78, + "end": 20263.6, + "probability": 0.6643 + }, + { + "start": 20264.44, + "end": 20271.7, + "probability": 0.9204 + }, + { + "start": 20272.1, + "end": 20272.6, + "probability": 0.9604 + }, + { + "start": 20272.88, + "end": 20278.66, + "probability": 0.9944 + }, + { + "start": 20279.02, + "end": 20279.2, + "probability": 0.4992 + }, + { + "start": 20279.22, + "end": 20284.0, + "probability": 0.9944 + }, + { + "start": 20285.38, + "end": 20286.88, + "probability": 0.8853 + }, + { + "start": 20286.92, + "end": 20288.27, + "probability": 0.9473 + }, + { + "start": 20288.58, + "end": 20289.76, + "probability": 0.803 + }, + { + "start": 20289.84, + "end": 20291.18, + "probability": 0.7795 + }, + { + "start": 20291.2, + "end": 20293.3, + "probability": 0.9221 + }, + { + "start": 20293.88, + "end": 20296.04, + "probability": 0.822 + }, + { + "start": 20296.16, + "end": 20298.46, + "probability": 0.6069 + }, + { + "start": 20298.52, + "end": 20301.24, + "probability": 0.9474 + }, + { + "start": 20301.24, + "end": 20304.54, + "probability": 0.8204 + }, + { + "start": 20304.58, + "end": 20305.16, + "probability": 0.7955 + }, + { + "start": 20305.28, + "end": 20306.2, + "probability": 0.8291 + }, + { + "start": 20306.4, + "end": 20308.36, + "probability": 0.9716 + }, + { + "start": 20308.5, + "end": 20308.78, + "probability": 0.4877 + }, + { + "start": 20308.84, + "end": 20309.56, + "probability": 0.619 + }, + { + "start": 20312.1, + "end": 20314.7, + "probability": 0.9945 + }, + { + "start": 20314.8, + "end": 20316.4, + "probability": 0.9672 + }, + { + "start": 20316.46, + "end": 20318.97, + "probability": 0.9348 + }, + { + "start": 20319.66, + "end": 20319.96, + "probability": 0.7662 + }, + { + "start": 20320.04, + "end": 20321.42, + "probability": 0.9743 + }, + { + "start": 20321.46, + "end": 20324.88, + "probability": 0.9487 + }, + { + "start": 20325.16, + "end": 20326.86, + "probability": 0.7615 + }, + { + "start": 20327.32, + "end": 20333.78, + "probability": 0.9025 + }, + { + "start": 20333.78, + "end": 20338.7, + "probability": 0.9503 + }, + { + "start": 20339.02, + "end": 20340.3, + "probability": 0.5783 + }, + { + "start": 20340.98, + "end": 20345.22, + "probability": 0.9622 + }, + { + "start": 20346.64, + "end": 20349.72, + "probability": 0.92 + }, + { + "start": 20349.76, + "end": 20352.68, + "probability": 0.9947 + }, + { + "start": 20352.68, + "end": 20357.35, + "probability": 0.9347 + }, + { + "start": 20357.5, + "end": 20359.84, + "probability": 0.981 + }, + { + "start": 20360.08, + "end": 20365.18, + "probability": 0.7872 + }, + { + "start": 20365.7, + "end": 20368.64, + "probability": 0.9765 + }, + { + "start": 20368.8, + "end": 20370.9, + "probability": 0.9003 + }, + { + "start": 20371.06, + "end": 20376.32, + "probability": 0.9961 + }, + { + "start": 20376.44, + "end": 20377.88, + "probability": 0.5373 + }, + { + "start": 20378.24, + "end": 20380.58, + "probability": 0.866 + }, + { + "start": 20380.74, + "end": 20386.68, + "probability": 0.9384 + }, + { + "start": 20386.84, + "end": 20388.14, + "probability": 0.6997 + }, + { + "start": 20388.18, + "end": 20389.02, + "probability": 0.2241 + }, + { + "start": 20389.2, + "end": 20391.98, + "probability": 0.6797 + }, + { + "start": 20392.14, + "end": 20394.52, + "probability": 0.8103 + }, + { + "start": 20394.68, + "end": 20396.56, + "probability": 0.9696 + }, + { + "start": 20396.74, + "end": 20399.68, + "probability": 0.9567 + }, + { + "start": 20399.78, + "end": 20402.16, + "probability": 0.9922 + }, + { + "start": 20418.18, + "end": 20420.61, + "probability": 0.6783 + }, + { + "start": 20422.02, + "end": 20424.18, + "probability": 0.8394 + }, + { + "start": 20424.48, + "end": 20426.42, + "probability": 0.8876 + }, + { + "start": 20426.5, + "end": 20428.12, + "probability": 0.9341 + }, + { + "start": 20430.34, + "end": 20432.5, + "probability": 0.9889 + }, + { + "start": 20433.38, + "end": 20434.8, + "probability": 0.8084 + }, + { + "start": 20435.96, + "end": 20436.76, + "probability": 0.9471 + }, + { + "start": 20436.78, + "end": 20438.1, + "probability": 0.9639 + }, + { + "start": 20438.14, + "end": 20439.54, + "probability": 0.5434 + }, + { + "start": 20439.54, + "end": 20440.44, + "probability": 0.4039 + }, + { + "start": 20440.62, + "end": 20442.62, + "probability": 0.7256 + }, + { + "start": 20444.36, + "end": 20449.4, + "probability": 0.9309 + }, + { + "start": 20450.0, + "end": 20451.16, + "probability": 0.8738 + }, + { + "start": 20452.74, + "end": 20453.0, + "probability": 0.7893 + }, + { + "start": 20453.16, + "end": 20455.2, + "probability": 0.9157 + }, + { + "start": 20455.44, + "end": 20457.62, + "probability": 0.9722 + }, + { + "start": 20457.82, + "end": 20464.24, + "probability": 0.9214 + }, + { + "start": 20465.12, + "end": 20467.22, + "probability": 0.9914 + }, + { + "start": 20468.64, + "end": 20470.94, + "probability": 0.9934 + }, + { + "start": 20472.18, + "end": 20479.28, + "probability": 0.9949 + }, + { + "start": 20479.72, + "end": 20481.64, + "probability": 0.9971 + }, + { + "start": 20482.24, + "end": 20483.68, + "probability": 0.9089 + }, + { + "start": 20484.04, + "end": 20485.13, + "probability": 0.9932 + }, + { + "start": 20487.96, + "end": 20493.74, + "probability": 0.8852 + }, + { + "start": 20493.9, + "end": 20494.94, + "probability": 0.7222 + }, + { + "start": 20495.3, + "end": 20497.44, + "probability": 0.6095 + }, + { + "start": 20497.5, + "end": 20498.98, + "probability": 0.6516 + }, + { + "start": 20499.86, + "end": 20501.23, + "probability": 0.7751 + }, + { + "start": 20503.2, + "end": 20505.14, + "probability": 0.9101 + }, + { + "start": 20505.52, + "end": 20509.84, + "probability": 0.9637 + }, + { + "start": 20510.64, + "end": 20514.58, + "probability": 0.8875 + }, + { + "start": 20515.34, + "end": 20519.96, + "probability": 0.9299 + }, + { + "start": 20519.96, + "end": 20523.88, + "probability": 0.9209 + }, + { + "start": 20524.62, + "end": 20530.42, + "probability": 0.8899 + }, + { + "start": 20530.72, + "end": 20531.52, + "probability": 0.9354 + }, + { + "start": 20531.52, + "end": 20531.86, + "probability": 0.5188 + }, + { + "start": 20532.0, + "end": 20532.94, + "probability": 0.7486 + }, + { + "start": 20533.2, + "end": 20537.06, + "probability": 0.9849 + }, + { + "start": 20537.38, + "end": 20539.06, + "probability": 0.9932 + }, + { + "start": 20539.88, + "end": 20541.76, + "probability": 0.9755 + }, + { + "start": 20541.8, + "end": 20542.78, + "probability": 0.7698 + }, + { + "start": 20542.86, + "end": 20543.56, + "probability": 0.5475 + }, + { + "start": 20543.74, + "end": 20544.52, + "probability": 0.645 + }, + { + "start": 20545.6, + "end": 20547.5, + "probability": 0.8813 + }, + { + "start": 20548.42, + "end": 20550.03, + "probability": 0.9231 + }, + { + "start": 20550.26, + "end": 20553.02, + "probability": 0.9836 + }, + { + "start": 20553.78, + "end": 20555.36, + "probability": 0.9717 + }, + { + "start": 20555.54, + "end": 20561.54, + "probability": 0.8662 + }, + { + "start": 20563.02, + "end": 20565.04, + "probability": 0.9007 + }, + { + "start": 20565.2, + "end": 20568.14, + "probability": 0.9396 + }, + { + "start": 20568.94, + "end": 20571.72, + "probability": 0.9476 + }, + { + "start": 20572.44, + "end": 20576.2, + "probability": 0.8628 + }, + { + "start": 20577.7, + "end": 20581.14, + "probability": 0.8813 + }, + { + "start": 20581.82, + "end": 20584.58, + "probability": 0.544 + }, + { + "start": 20584.96, + "end": 20587.38, + "probability": 0.8427 + }, + { + "start": 20587.98, + "end": 20592.06, + "probability": 0.9627 + }, + { + "start": 20593.3, + "end": 20597.5, + "probability": 0.9858 + }, + { + "start": 20597.98, + "end": 20600.48, + "probability": 0.9948 + }, + { + "start": 20600.54, + "end": 20602.24, + "probability": 0.8603 + }, + { + "start": 20602.34, + "end": 20608.4, + "probability": 0.988 + }, + { + "start": 20608.52, + "end": 20610.94, + "probability": 0.9606 + }, + { + "start": 20611.22, + "end": 20612.95, + "probability": 0.9572 + }, + { + "start": 20614.18, + "end": 20617.6, + "probability": 0.996 + }, + { + "start": 20618.64, + "end": 20620.84, + "probability": 0.9954 + }, + { + "start": 20621.0, + "end": 20622.86, + "probability": 0.9561 + }, + { + "start": 20623.0, + "end": 20623.56, + "probability": 0.5143 + }, + { + "start": 20623.73, + "end": 20626.45, + "probability": 0.9414 + }, + { + "start": 20626.98, + "end": 20628.14, + "probability": 0.1595 + }, + { + "start": 20629.7, + "end": 20631.28, + "probability": 0.4306 + }, + { + "start": 20632.16, + "end": 20636.64, + "probability": 0.8132 + }, + { + "start": 20639.07, + "end": 20644.26, + "probability": 0.9734 + }, + { + "start": 20644.26, + "end": 20647.64, + "probability": 0.3292 + }, + { + "start": 20648.48, + "end": 20650.34, + "probability": 0.9287 + }, + { + "start": 20650.44, + "end": 20653.76, + "probability": 0.7326 + }, + { + "start": 20654.2, + "end": 20659.73, + "probability": 0.9966 + }, + { + "start": 20660.4, + "end": 20663.48, + "probability": 0.501 + }, + { + "start": 20665.36, + "end": 20666.56, + "probability": 0.0232 + }, + { + "start": 20668.42, + "end": 20668.7, + "probability": 0.4403 + }, + { + "start": 20668.7, + "end": 20669.46, + "probability": 0.09 + }, + { + "start": 20670.2, + "end": 20671.46, + "probability": 0.7952 + }, + { + "start": 20672.12, + "end": 20674.66, + "probability": 0.7375 + }, + { + "start": 20675.12, + "end": 20675.9, + "probability": 0.7737 + }, + { + "start": 20676.34, + "end": 20681.96, + "probability": 0.8861 + }, + { + "start": 20683.62, + "end": 20684.43, + "probability": 0.8146 + }, + { + "start": 20684.92, + "end": 20686.16, + "probability": 0.6416 + }, + { + "start": 20686.5, + "end": 20692.72, + "probability": 0.9936 + }, + { + "start": 20692.72, + "end": 20698.64, + "probability": 0.9823 + }, + { + "start": 20698.8, + "end": 20700.1, + "probability": 0.9325 + }, + { + "start": 20700.2, + "end": 20704.26, + "probability": 0.877 + }, + { + "start": 20704.88, + "end": 20706.68, + "probability": 0.8268 + }, + { + "start": 20706.82, + "end": 20711.08, + "probability": 0.9602 + }, + { + "start": 20711.24, + "end": 20714.26, + "probability": 0.8853 + }, + { + "start": 20715.82, + "end": 20718.76, + "probability": 0.9644 + }, + { + "start": 20719.66, + "end": 20722.8, + "probability": 0.5935 + }, + { + "start": 20723.54, + "end": 20724.44, + "probability": 0.8809 + }, + { + "start": 20724.94, + "end": 20727.62, + "probability": 0.9215 + }, + { + "start": 20728.76, + "end": 20734.54, + "probability": 0.9415 + }, + { + "start": 20735.12, + "end": 20737.24, + "probability": 0.998 + }, + { + "start": 20737.36, + "end": 20738.22, + "probability": 0.6851 + }, + { + "start": 20738.34, + "end": 20739.44, + "probability": 0.8166 + }, + { + "start": 20739.88, + "end": 20741.48, + "probability": 0.8535 + }, + { + "start": 20742.7, + "end": 20743.76, + "probability": 0.5713 + }, + { + "start": 20744.18, + "end": 20747.66, + "probability": 0.8968 + }, + { + "start": 20748.1, + "end": 20753.54, + "probability": 0.9362 + }, + { + "start": 20755.6, + "end": 20756.3, + "probability": 0.8026 + }, + { + "start": 20756.8, + "end": 20759.52, + "probability": 0.9508 + }, + { + "start": 20759.64, + "end": 20766.08, + "probability": 0.9746 + }, + { + "start": 20766.3, + "end": 20770.32, + "probability": 0.9551 + }, + { + "start": 20770.96, + "end": 20774.08, + "probability": 0.9823 + }, + { + "start": 20775.26, + "end": 20776.14, + "probability": 0.5323 + }, + { + "start": 20776.68, + "end": 20777.9, + "probability": 0.7874 + }, + { + "start": 20779.32, + "end": 20779.68, + "probability": 0.8221 + }, + { + "start": 20779.74, + "end": 20781.36, + "probability": 0.8811 + }, + { + "start": 20781.5, + "end": 20783.02, + "probability": 0.9242 + }, + { + "start": 20783.1, + "end": 20785.98, + "probability": 0.9889 + }, + { + "start": 20786.48, + "end": 20786.78, + "probability": 0.8713 + }, + { + "start": 20786.96, + "end": 20789.24, + "probability": 0.9539 + }, + { + "start": 20789.34, + "end": 20791.04, + "probability": 0.8939 + }, + { + "start": 20791.84, + "end": 20799.52, + "probability": 0.9636 + }, + { + "start": 20800.56, + "end": 20802.82, + "probability": 0.5562 + }, + { + "start": 20803.4, + "end": 20805.0, + "probability": 0.855 + }, + { + "start": 20805.2, + "end": 20806.66, + "probability": 0.9787 + }, + { + "start": 20808.4, + "end": 20811.14, + "probability": 0.9889 + }, + { + "start": 20812.1, + "end": 20817.08, + "probability": 0.8862 + }, + { + "start": 20818.3, + "end": 20819.8, + "probability": 0.9992 + }, + { + "start": 20822.38, + "end": 20828.1, + "probability": 0.986 + }, + { + "start": 20828.44, + "end": 20831.62, + "probability": 0.9984 + }, + { + "start": 20832.52, + "end": 20836.74, + "probability": 0.9744 + }, + { + "start": 20837.72, + "end": 20840.54, + "probability": 0.9409 + }, + { + "start": 20840.7, + "end": 20842.84, + "probability": 0.6952 + }, + { + "start": 20844.38, + "end": 20847.52, + "probability": 0.9932 + }, + { + "start": 20847.94, + "end": 20851.02, + "probability": 0.9966 + }, + { + "start": 20852.06, + "end": 20853.4, + "probability": 0.9937 + }, + { + "start": 20853.52, + "end": 20855.62, + "probability": 0.9794 + }, + { + "start": 20857.46, + "end": 20860.8, + "probability": 0.9289 + }, + { + "start": 20862.16, + "end": 20865.98, + "probability": 0.9766 + }, + { + "start": 20866.96, + "end": 20868.19, + "probability": 0.5403 + }, + { + "start": 20868.48, + "end": 20870.34, + "probability": 0.9408 + }, + { + "start": 20870.58, + "end": 20872.76, + "probability": 0.9882 + }, + { + "start": 20872.86, + "end": 20873.16, + "probability": 0.447 + }, + { + "start": 20873.84, + "end": 20875.02, + "probability": 0.9846 + }, + { + "start": 20875.2, + "end": 20876.49, + "probability": 0.9976 + }, + { + "start": 20878.06, + "end": 20879.52, + "probability": 0.8253 + }, + { + "start": 20880.4, + "end": 20884.04, + "probability": 0.9949 + }, + { + "start": 20884.96, + "end": 20887.11, + "probability": 0.9539 + }, + { + "start": 20887.72, + "end": 20889.4, + "probability": 0.998 + }, + { + "start": 20889.48, + "end": 20893.64, + "probability": 0.9703 + }, + { + "start": 20894.22, + "end": 20897.48, + "probability": 0.7532 + }, + { + "start": 20898.16, + "end": 20899.77, + "probability": 0.9827 + }, + { + "start": 20900.22, + "end": 20903.12, + "probability": 0.993 + }, + { + "start": 20903.28, + "end": 20909.82, + "probability": 0.988 + }, + { + "start": 20911.98, + "end": 20914.8, + "probability": 0.7256 + }, + { + "start": 20915.58, + "end": 20916.64, + "probability": 0.7418 + }, + { + "start": 20917.08, + "end": 20920.18, + "probability": 0.9878 + }, + { + "start": 20920.84, + "end": 20924.06, + "probability": 0.9919 + }, + { + "start": 20924.36, + "end": 20926.76, + "probability": 0.6044 + }, + { + "start": 20927.46, + "end": 20929.96, + "probability": 0.9927 + }, + { + "start": 20930.12, + "end": 20931.16, + "probability": 0.9579 + }, + { + "start": 20933.36, + "end": 20936.34, + "probability": 0.6069 + }, + { + "start": 20937.0, + "end": 20939.8, + "probability": 0.6772 + }, + { + "start": 20939.86, + "end": 20944.32, + "probability": 0.857 + }, + { + "start": 20944.66, + "end": 20946.88, + "probability": 0.967 + }, + { + "start": 20947.46, + "end": 20949.1, + "probability": 0.5642 + }, + { + "start": 20949.18, + "end": 20951.42, + "probability": 0.102 + }, + { + "start": 20951.42, + "end": 20951.56, + "probability": 0.2341 + }, + { + "start": 20953.42, + "end": 20955.06, + "probability": 0.9697 + }, + { + "start": 20955.16, + "end": 20956.34, + "probability": 0.6803 + }, + { + "start": 20958.92, + "end": 20960.34, + "probability": 0.9855 + }, + { + "start": 20962.32, + "end": 20964.38, + "probability": 0.7416 + }, + { + "start": 20965.26, + "end": 20968.58, + "probability": 0.9634 + }, + { + "start": 20969.72, + "end": 20976.66, + "probability": 0.9841 + }, + { + "start": 20978.26, + "end": 20985.04, + "probability": 0.835 + }, + { + "start": 20985.06, + "end": 20985.34, + "probability": 0.8259 + }, + { + "start": 20985.48, + "end": 20986.2, + "probability": 0.895 + }, + { + "start": 20986.48, + "end": 20989.6, + "probability": 0.9934 + }, + { + "start": 20990.3, + "end": 20994.06, + "probability": 0.9133 + }, + { + "start": 20994.94, + "end": 20999.5, + "probability": 0.9748 + }, + { + "start": 20999.6, + "end": 21000.84, + "probability": 0.7607 + }, + { + "start": 21001.54, + "end": 21003.82, + "probability": 0.6192 + }, + { + "start": 21004.7, + "end": 21006.16, + "probability": 0.2115 + }, + { + "start": 21006.52, + "end": 21008.5, + "probability": 0.9614 + }, + { + "start": 21008.7, + "end": 21009.24, + "probability": 0.7458 + }, + { + "start": 21009.36, + "end": 21010.0, + "probability": 0.6885 + }, + { + "start": 21010.16, + "end": 21011.58, + "probability": 0.6272 + }, + { + "start": 21011.7, + "end": 21012.6, + "probability": 0.7559 + }, + { + "start": 21012.78, + "end": 21013.84, + "probability": 0.8452 + }, + { + "start": 21013.96, + "end": 21014.18, + "probability": 0.5796 + }, + { + "start": 21014.38, + "end": 21017.88, + "probability": 0.9956 + }, + { + "start": 21020.6, + "end": 21023.9, + "probability": 0.9082 + }, + { + "start": 21024.54, + "end": 21025.87, + "probability": 0.9849 + }, + { + "start": 21026.58, + "end": 21027.52, + "probability": 0.8345 + }, + { + "start": 21027.96, + "end": 21029.32, + "probability": 0.9541 + }, + { + "start": 21029.4, + "end": 21031.68, + "probability": 0.9871 + }, + { + "start": 21031.76, + "end": 21037.64, + "probability": 0.9854 + }, + { + "start": 21037.74, + "end": 21039.94, + "probability": 0.8096 + }, + { + "start": 21040.88, + "end": 21042.5, + "probability": 0.6516 + }, + { + "start": 21043.02, + "end": 21043.72, + "probability": 0.8367 + }, + { + "start": 21045.68, + "end": 21047.46, + "probability": 0.7199 + }, + { + "start": 21047.54, + "end": 21051.26, + "probability": 0.9844 + }, + { + "start": 21051.38, + "end": 21054.68, + "probability": 0.8991 + }, + { + "start": 21055.18, + "end": 21058.46, + "probability": 0.8853 + }, + { + "start": 21059.16, + "end": 21061.58, + "probability": 0.9961 + }, + { + "start": 21062.92, + "end": 21066.96, + "probability": 0.9907 + }, + { + "start": 21067.02, + "end": 21069.76, + "probability": 0.8938 + }, + { + "start": 21070.1, + "end": 21071.7, + "probability": 0.6586 + }, + { + "start": 21072.0, + "end": 21074.32, + "probability": 0.7248 + }, + { + "start": 21074.88, + "end": 21077.64, + "probability": 0.7769 + }, + { + "start": 21077.8, + "end": 21079.28, + "probability": 0.9539 + }, + { + "start": 21079.34, + "end": 21080.48, + "probability": 0.8751 + }, + { + "start": 21081.06, + "end": 21084.46, + "probability": 0.9731 + }, + { + "start": 21085.04, + "end": 21089.48, + "probability": 0.9873 + }, + { + "start": 21089.48, + "end": 21093.2, + "probability": 0.9862 + }, + { + "start": 21095.34, + "end": 21096.64, + "probability": 0.5254 + }, + { + "start": 21097.0, + "end": 21098.3, + "probability": 0.8407 + }, + { + "start": 21098.52, + "end": 21101.32, + "probability": 0.9435 + }, + { + "start": 21102.9, + "end": 21104.0, + "probability": 0.9156 + }, + { + "start": 21107.16, + "end": 21109.38, + "probability": 0.2453 + }, + { + "start": 21112.78, + "end": 21113.02, + "probability": 0.153 + }, + { + "start": 21113.24, + "end": 21113.46, + "probability": 0.0171 + }, + { + "start": 21113.8, + "end": 21115.62, + "probability": 0.3576 + }, + { + "start": 21115.7, + "end": 21116.0, + "probability": 0.2399 + }, + { + "start": 21116.0, + "end": 21116.74, + "probability": 0.646 + }, + { + "start": 21117.02, + "end": 21117.16, + "probability": 0.4215 + }, + { + "start": 21117.38, + "end": 21117.64, + "probability": 0.0464 + }, + { + "start": 21117.72, + "end": 21118.2, + "probability": 0.3348 + }, + { + "start": 21118.42, + "end": 21118.5, + "probability": 0.064 + }, + { + "start": 21118.58, + "end": 21119.48, + "probability": 0.6181 + }, + { + "start": 21119.56, + "end": 21120.48, + "probability": 0.8098 + }, + { + "start": 21121.3, + "end": 21121.81, + "probability": 0.1616 + }, + { + "start": 21122.18, + "end": 21123.94, + "probability": 0.2139 + }, + { + "start": 21126.14, + "end": 21128.27, + "probability": 0.3479 + }, + { + "start": 21128.46, + "end": 21128.7, + "probability": 0.4718 + }, + { + "start": 21128.72, + "end": 21129.66, + "probability": 0.5192 + }, + { + "start": 21129.76, + "end": 21132.84, + "probability": 0.4226 + }, + { + "start": 21133.08, + "end": 21135.54, + "probability": 0.8242 + }, + { + "start": 21137.2, + "end": 21142.34, + "probability": 0.9888 + }, + { + "start": 21142.5, + "end": 21144.54, + "probability": 0.8123 + }, + { + "start": 21145.2, + "end": 21146.16, + "probability": 0.9182 + }, + { + "start": 21148.22, + "end": 21148.7, + "probability": 0.8013 + }, + { + "start": 21149.78, + "end": 21154.04, + "probability": 0.892 + }, + { + "start": 21154.84, + "end": 21156.08, + "probability": 0.9087 + }, + { + "start": 21157.72, + "end": 21159.6, + "probability": 0.953 + }, + { + "start": 21160.12, + "end": 21162.44, + "probability": 0.9824 + }, + { + "start": 21162.7, + "end": 21163.68, + "probability": 0.6988 + }, + { + "start": 21163.82, + "end": 21165.4, + "probability": 0.9822 + }, + { + "start": 21167.48, + "end": 21169.08, + "probability": 0.9062 + }, + { + "start": 21169.16, + "end": 21170.42, + "probability": 0.9749 + }, + { + "start": 21170.48, + "end": 21172.32, + "probability": 0.7902 + }, + { + "start": 21172.38, + "end": 21173.44, + "probability": 0.9355 + }, + { + "start": 21173.58, + "end": 21176.28, + "probability": 0.9971 + }, + { + "start": 21177.14, + "end": 21179.1, + "probability": 0.9535 + }, + { + "start": 21179.18, + "end": 21185.26, + "probability": 0.9879 + }, + { + "start": 21185.4, + "end": 21187.24, + "probability": 0.8542 + }, + { + "start": 21189.72, + "end": 21191.08, + "probability": 0.8569 + }, + { + "start": 21191.3, + "end": 21193.1, + "probability": 0.9144 + }, + { + "start": 21193.36, + "end": 21194.9, + "probability": 0.8491 + }, + { + "start": 21194.98, + "end": 21196.52, + "probability": 0.9369 + }, + { + "start": 21197.92, + "end": 21198.6, + "probability": 0.7605 + }, + { + "start": 21198.78, + "end": 21202.0, + "probability": 0.7267 + }, + { + "start": 21202.3, + "end": 21204.96, + "probability": 0.9908 + }, + { + "start": 21205.42, + "end": 21207.12, + "probability": 0.999 + }, + { + "start": 21207.82, + "end": 21210.08, + "probability": 0.8818 + }, + { + "start": 21210.52, + "end": 21211.5, + "probability": 0.99 + }, + { + "start": 21212.0, + "end": 21215.48, + "probability": 0.9924 + }, + { + "start": 21216.42, + "end": 21217.32, + "probability": 0.9956 + }, + { + "start": 21218.24, + "end": 21219.66, + "probability": 0.999 + }, + { + "start": 21221.9, + "end": 21222.5, + "probability": 0.8784 + }, + { + "start": 21224.12, + "end": 21225.36, + "probability": 0.6228 + }, + { + "start": 21225.5, + "end": 21228.12, + "probability": 0.9194 + }, + { + "start": 21228.2, + "end": 21230.48, + "probability": 0.9788 + }, + { + "start": 21231.91, + "end": 21234.54, + "probability": 0.8259 + }, + { + "start": 21235.94, + "end": 21238.44, + "probability": 0.9813 + }, + { + "start": 21240.1, + "end": 21243.08, + "probability": 0.9905 + }, + { + "start": 21243.36, + "end": 21244.28, + "probability": 0.9487 + }, + { + "start": 21244.32, + "end": 21244.68, + "probability": 0.7669 + }, + { + "start": 21244.92, + "end": 21247.04, + "probability": 0.8979 + }, + { + "start": 21247.2, + "end": 21252.86, + "probability": 0.9886 + }, + { + "start": 21253.02, + "end": 21253.37, + "probability": 0.9642 + }, + { + "start": 21255.32, + "end": 21259.44, + "probability": 0.9962 + }, + { + "start": 21259.5, + "end": 21262.82, + "probability": 0.9842 + }, + { + "start": 21263.6, + "end": 21266.38, + "probability": 0.737 + }, + { + "start": 21266.96, + "end": 21271.14, + "probability": 0.9932 + }, + { + "start": 21271.36, + "end": 21274.76, + "probability": 0.9956 + }, + { + "start": 21275.02, + "end": 21278.54, + "probability": 0.9844 + }, + { + "start": 21281.32, + "end": 21284.38, + "probability": 0.8548 + }, + { + "start": 21286.2, + "end": 21291.28, + "probability": 0.9984 + }, + { + "start": 21291.62, + "end": 21294.52, + "probability": 0.9971 + }, + { + "start": 21295.14, + "end": 21301.44, + "probability": 0.9947 + }, + { + "start": 21301.72, + "end": 21302.7, + "probability": 0.6343 + }, + { + "start": 21303.52, + "end": 21305.32, + "probability": 0.931 + }, + { + "start": 21305.82, + "end": 21308.24, + "probability": 0.7352 + }, + { + "start": 21308.5, + "end": 21310.88, + "probability": 0.9729 + }, + { + "start": 21311.4, + "end": 21313.18, + "probability": 0.9803 + }, + { + "start": 21315.06, + "end": 21318.0, + "probability": 0.8066 + }, + { + "start": 21318.78, + "end": 21321.6, + "probability": 0.9596 + }, + { + "start": 21321.66, + "end": 21324.76, + "probability": 0.9861 + }, + { + "start": 21325.26, + "end": 21326.48, + "probability": 0.8627 + }, + { + "start": 21327.6, + "end": 21328.0, + "probability": 0.553 + }, + { + "start": 21328.24, + "end": 21328.64, + "probability": 0.605 + }, + { + "start": 21328.82, + "end": 21330.08, + "probability": 0.9186 + }, + { + "start": 21330.24, + "end": 21333.22, + "probability": 0.5415 + }, + { + "start": 21334.36, + "end": 21335.86, + "probability": 0.8735 + }, + { + "start": 21336.84, + "end": 21337.62, + "probability": 0.9381 + }, + { + "start": 21337.76, + "end": 21338.82, + "probability": 0.9425 + }, + { + "start": 21338.98, + "end": 21345.32, + "probability": 0.9875 + }, + { + "start": 21346.08, + "end": 21347.0, + "probability": 0.7074 + }, + { + "start": 21347.1, + "end": 21348.84, + "probability": 0.9882 + }, + { + "start": 21349.04, + "end": 21351.08, + "probability": 0.8948 + }, + { + "start": 21351.66, + "end": 21352.56, + "probability": 0.9303 + }, + { + "start": 21352.76, + "end": 21353.26, + "probability": 0.7124 + }, + { + "start": 21353.36, + "end": 21354.12, + "probability": 0.9665 + }, + { + "start": 21354.6, + "end": 21355.34, + "probability": 0.8119 + }, + { + "start": 21355.54, + "end": 21356.14, + "probability": 0.9843 + }, + { + "start": 21356.36, + "end": 21357.84, + "probability": 0.8328 + }, + { + "start": 21358.16, + "end": 21359.1, + "probability": 0.9271 + }, + { + "start": 21359.38, + "end": 21360.44, + "probability": 0.9651 + }, + { + "start": 21361.2, + "end": 21361.42, + "probability": 0.7076 + }, + { + "start": 21361.44, + "end": 21363.4, + "probability": 0.9663 + }, + { + "start": 21363.48, + "end": 21364.5, + "probability": 0.9764 + }, + { + "start": 21365.76, + "end": 21367.18, + "probability": 0.9651 + }, + { + "start": 21368.0, + "end": 21371.28, + "probability": 0.9463 + }, + { + "start": 21371.62, + "end": 21373.7, + "probability": 0.9888 + }, + { + "start": 21373.84, + "end": 21375.92, + "probability": 0.7611 + }, + { + "start": 21376.34, + "end": 21380.08, + "probability": 0.9932 + }, + { + "start": 21380.14, + "end": 21381.06, + "probability": 0.7998 + }, + { + "start": 21382.62, + "end": 21383.92, + "probability": 0.8252 + }, + { + "start": 21384.2, + "end": 21386.73, + "probability": 0.9775 + }, + { + "start": 21387.56, + "end": 21389.44, + "probability": 0.9377 + }, + { + "start": 21391.26, + "end": 21397.42, + "probability": 0.9669 + }, + { + "start": 21398.62, + "end": 21402.35, + "probability": 0.9878 + }, + { + "start": 21403.0, + "end": 21403.66, + "probability": 0.8441 + }, + { + "start": 21403.74, + "end": 21404.38, + "probability": 0.669 + }, + { + "start": 21404.4, + "end": 21406.02, + "probability": 0.525 + }, + { + "start": 21406.24, + "end": 21407.52, + "probability": 0.9573 + }, + { + "start": 21407.96, + "end": 21408.97, + "probability": 0.8953 + }, + { + "start": 21409.22, + "end": 21411.48, + "probability": 0.3154 + }, + { + "start": 21411.48, + "end": 21414.42, + "probability": 0.9121 + }, + { + "start": 21414.52, + "end": 21415.24, + "probability": 0.814 + }, + { + "start": 21415.32, + "end": 21416.06, + "probability": 0.9718 + }, + { + "start": 21416.12, + "end": 21416.84, + "probability": 0.9667 + }, + { + "start": 21417.86, + "end": 21422.16, + "probability": 0.9768 + }, + { + "start": 21422.24, + "end": 21427.18, + "probability": 0.9961 + }, + { + "start": 21427.38, + "end": 21429.11, + "probability": 0.9775 + }, + { + "start": 21430.5, + "end": 21434.18, + "probability": 0.9748 + }, + { + "start": 21434.74, + "end": 21438.18, + "probability": 0.9567 + }, + { + "start": 21438.66, + "end": 21440.1, + "probability": 0.9537 + }, + { + "start": 21441.34, + "end": 21444.82, + "probability": 0.9897 + }, + { + "start": 21444.98, + "end": 21449.58, + "probability": 0.8995 + }, + { + "start": 21450.44, + "end": 21453.69, + "probability": 0.9883 + }, + { + "start": 21454.3, + "end": 21457.84, + "probability": 0.9491 + }, + { + "start": 21458.86, + "end": 21463.08, + "probability": 0.8168 + }, + { + "start": 21464.7, + "end": 21468.18, + "probability": 0.9478 + }, + { + "start": 21468.74, + "end": 21471.7, + "probability": 0.9473 + }, + { + "start": 21473.26, + "end": 21475.6, + "probability": 0.969 + }, + { + "start": 21476.56, + "end": 21480.78, + "probability": 0.9889 + }, + { + "start": 21481.8, + "end": 21483.34, + "probability": 0.7789 + }, + { + "start": 21483.76, + "end": 21485.56, + "probability": 0.6153 + }, + { + "start": 21486.28, + "end": 21487.24, + "probability": 0.774 + }, + { + "start": 21487.4, + "end": 21489.52, + "probability": 0.9886 + }, + { + "start": 21489.62, + "end": 21491.1, + "probability": 0.9095 + }, + { + "start": 21491.48, + "end": 21495.0, + "probability": 0.9062 + }, + { + "start": 21495.58, + "end": 21498.48, + "probability": 0.9095 + }, + { + "start": 21498.58, + "end": 21501.3, + "probability": 0.9972 + }, + { + "start": 21501.4, + "end": 21501.7, + "probability": 0.623 + }, + { + "start": 21501.88, + "end": 21504.5, + "probability": 0.6362 + }, + { + "start": 21504.56, + "end": 21505.94, + "probability": 0.8917 + }, + { + "start": 21506.54, + "end": 21508.78, + "probability": 0.891 + }, + { + "start": 21509.18, + "end": 21511.47, + "probability": 0.9812 + }, + { + "start": 21512.36, + "end": 21514.04, + "probability": 0.9215 + }, + { + "start": 21514.2, + "end": 21515.2, + "probability": 0.6925 + }, + { + "start": 21515.26, + "end": 21517.74, + "probability": 0.7401 + }, + { + "start": 21517.78, + "end": 21517.88, + "probability": 0.3423 + }, + { + "start": 21517.88, + "end": 21518.78, + "probability": 0.5182 + }, + { + "start": 21518.78, + "end": 21520.43, + "probability": 0.6441 + }, + { + "start": 21521.0, + "end": 21523.66, + "probability": 0.8009 + }, + { + "start": 21523.76, + "end": 21524.74, + "probability": 0.8664 + }, + { + "start": 21526.08, + "end": 21530.42, + "probability": 0.8971 + }, + { + "start": 21530.5, + "end": 21533.0, + "probability": 0.8628 + }, + { + "start": 21533.14, + "end": 21534.54, + "probability": 0.7611 + }, + { + "start": 21536.58, + "end": 21540.04, + "probability": 0.9574 + }, + { + "start": 21540.7, + "end": 21542.9, + "probability": 0.9841 + }, + { + "start": 21543.16, + "end": 21544.56, + "probability": 0.9191 + }, + { + "start": 21545.66, + "end": 21549.18, + "probability": 0.9744 + }, + { + "start": 21549.58, + "end": 21550.24, + "probability": 0.6916 + }, + { + "start": 21550.3, + "end": 21550.98, + "probability": 0.8038 + }, + { + "start": 21551.2, + "end": 21561.84, + "probability": 0.9684 + }, + { + "start": 21562.46, + "end": 21565.1, + "probability": 0.7747 + }, + { + "start": 21565.14, + "end": 21566.08, + "probability": 0.0599 + }, + { + "start": 21566.18, + "end": 21567.76, + "probability": 0.734 + }, + { + "start": 21568.0, + "end": 21569.38, + "probability": 0.7221 + }, + { + "start": 21569.42, + "end": 21571.04, + "probability": 0.7793 + }, + { + "start": 21571.16, + "end": 21571.64, + "probability": 0.5017 + }, + { + "start": 21571.74, + "end": 21572.9, + "probability": 0.8976 + }, + { + "start": 21573.04, + "end": 21574.7, + "probability": 0.848 + }, + { + "start": 21575.38, + "end": 21577.68, + "probability": 0.9272 + }, + { + "start": 21577.82, + "end": 21580.1, + "probability": 0.9822 + }, + { + "start": 21580.44, + "end": 21582.7, + "probability": 0.9833 + }, + { + "start": 21582.74, + "end": 21584.14, + "probability": 0.9294 + }, + { + "start": 21584.64, + "end": 21585.52, + "probability": 0.7108 + }, + { + "start": 21586.18, + "end": 21587.5, + "probability": 0.5601 + }, + { + "start": 21588.7, + "end": 21591.26, + "probability": 0.897 + }, + { + "start": 21591.52, + "end": 21593.84, + "probability": 0.9435 + }, + { + "start": 21594.56, + "end": 21596.59, + "probability": 0.8552 + }, + { + "start": 21596.92, + "end": 21599.84, + "probability": 0.8684 + }, + { + "start": 21600.22, + "end": 21603.98, + "probability": 0.9062 + }, + { + "start": 21604.56, + "end": 21607.72, + "probability": 0.998 + }, + { + "start": 21607.8, + "end": 21615.26, + "probability": 0.966 + }, + { + "start": 21615.7, + "end": 21616.26, + "probability": 0.9523 + }, + { + "start": 21616.4, + "end": 21621.84, + "probability": 0.8624 + }, + { + "start": 21622.16, + "end": 21623.52, + "probability": 0.3144 + }, + { + "start": 21623.52, + "end": 21624.54, + "probability": 0.8349 + }, + { + "start": 21624.62, + "end": 21626.76, + "probability": 0.9814 + }, + { + "start": 21626.88, + "end": 21629.62, + "probability": 0.8073 + }, + { + "start": 21629.84, + "end": 21631.14, + "probability": 0.4627 + }, + { + "start": 21631.22, + "end": 21633.48, + "probability": 0.9876 + }, + { + "start": 21634.32, + "end": 21636.08, + "probability": 0.9429 + }, + { + "start": 21636.16, + "end": 21637.96, + "probability": 0.7763 + }, + { + "start": 21638.42, + "end": 21640.9, + "probability": 0.9517 + }, + { + "start": 21642.18, + "end": 21644.9, + "probability": 0.9542 + }, + { + "start": 21645.12, + "end": 21646.78, + "probability": 0.9214 + }, + { + "start": 21646.9, + "end": 21649.74, + "probability": 0.9841 + }, + { + "start": 21650.36, + "end": 21654.72, + "probability": 0.9105 + }, + { + "start": 21655.26, + "end": 21657.1, + "probability": 0.9225 + }, + { + "start": 21657.34, + "end": 21658.64, + "probability": 0.8302 + }, + { + "start": 21659.64, + "end": 21661.32, + "probability": 0.7197 + }, + { + "start": 21661.42, + "end": 21662.34, + "probability": 0.3985 + }, + { + "start": 21662.44, + "end": 21665.34, + "probability": 0.9189 + }, + { + "start": 21665.78, + "end": 21667.02, + "probability": 0.8535 + }, + { + "start": 21667.12, + "end": 21667.54, + "probability": 0.6021 + }, + { + "start": 21668.32, + "end": 21669.74, + "probability": 0.6233 + }, + { + "start": 21669.9, + "end": 21670.96, + "probability": 0.9182 + }, + { + "start": 21670.96, + "end": 21673.68, + "probability": 0.9923 + }, + { + "start": 21674.4, + "end": 21678.4, + "probability": 0.8706 + }, + { + "start": 21679.12, + "end": 21679.82, + "probability": 0.9976 + }, + { + "start": 21681.8, + "end": 21686.1, + "probability": 0.9707 + }, + { + "start": 21686.28, + "end": 21686.62, + "probability": 0.7809 + }, + { + "start": 21702.82, + "end": 21702.82, + "probability": 0.3425 + }, + { + "start": 21702.82, + "end": 21705.98, + "probability": 0.8044 + }, + { + "start": 21706.1, + "end": 21707.24, + "probability": 0.7472 + }, + { + "start": 21707.81, + "end": 21714.28, + "probability": 0.8269 + }, + { + "start": 21714.28, + "end": 21717.2, + "probability": 0.9857 + }, + { + "start": 21718.2, + "end": 21724.9, + "probability": 0.8814 + }, + { + "start": 21724.9, + "end": 21727.85, + "probability": 0.9973 + }, + { + "start": 21728.74, + "end": 21731.06, + "probability": 0.0015 + }, + { + "start": 21733.22, + "end": 21733.78, + "probability": 0.0043 + }, + { + "start": 21750.5, + "end": 21750.5, + "probability": 0.0771 + }, + { + "start": 21750.5, + "end": 21750.5, + "probability": 0.0315 + }, + { + "start": 21750.5, + "end": 21751.24, + "probability": 0.4661 + }, + { + "start": 21752.14, + "end": 21753.58, + "probability": 0.6229 + }, + { + "start": 21753.64, + "end": 21755.04, + "probability": 0.2141 + }, + { + "start": 21755.6, + "end": 21755.98, + "probability": 0.8521 + }, + { + "start": 21758.62, + "end": 21761.3, + "probability": 0.7702 + }, + { + "start": 21762.08, + "end": 21767.42, + "probability": 0.7151 + }, + { + "start": 21769.34, + "end": 21774.93, + "probability": 0.8306 + }, + { + "start": 21777.06, + "end": 21778.52, + "probability": 0.8695 + }, + { + "start": 21779.06, + "end": 21779.16, + "probability": 0.9489 + }, + { + "start": 21779.76, + "end": 21780.8, + "probability": 0.7407 + }, + { + "start": 21781.62, + "end": 21786.78, + "probability": 0.7334 + }, + { + "start": 21788.06, + "end": 21790.7, + "probability": 0.9229 + }, + { + "start": 21791.76, + "end": 21796.36, + "probability": 0.8326 + }, + { + "start": 21797.74, + "end": 21801.12, + "probability": 0.9823 + }, + { + "start": 21802.48, + "end": 21807.03, + "probability": 0.8684 + }, + { + "start": 21807.08, + "end": 21812.7, + "probability": 0.9749 + }, + { + "start": 21812.78, + "end": 21814.29, + "probability": 0.9484 + }, + { + "start": 21815.1, + "end": 21817.28, + "probability": 0.8344 + }, + { + "start": 21817.34, + "end": 21818.46, + "probability": 0.989 + }, + { + "start": 21818.88, + "end": 21820.04, + "probability": 0.8906 + }, + { + "start": 21820.9, + "end": 21823.53, + "probability": 0.8779 + }, + { + "start": 21824.84, + "end": 21826.02, + "probability": 0.8926 + }, + { + "start": 21826.14, + "end": 21828.76, + "probability": 0.8038 + }, + { + "start": 21829.84, + "end": 21832.53, + "probability": 0.9692 + }, + { + "start": 21833.46, + "end": 21833.98, + "probability": 0.945 + }, + { + "start": 21834.66, + "end": 21837.31, + "probability": 0.6315 + }, + { + "start": 21837.78, + "end": 21838.88, + "probability": 0.6872 + }, + { + "start": 21841.18, + "end": 21848.1, + "probability": 0.8312 + }, + { + "start": 21848.1, + "end": 21853.62, + "probability": 0.9141 + }, + { + "start": 21854.62, + "end": 21856.98, + "probability": 0.5429 + }, + { + "start": 21857.08, + "end": 21859.52, + "probability": 0.8296 + }, + { + "start": 21860.16, + "end": 21861.54, + "probability": 0.854 + }, + { + "start": 21863.18, + "end": 21864.74, + "probability": 0.7307 + }, + { + "start": 21864.86, + "end": 21866.04, + "probability": 0.5304 + }, + { + "start": 21866.4, + "end": 21867.34, + "probability": 0.7557 + }, + { + "start": 21867.62, + "end": 21868.54, + "probability": 0.8336 + }, + { + "start": 21868.76, + "end": 21870.39, + "probability": 0.9698 + }, + { + "start": 21871.1, + "end": 21875.5, + "probability": 0.9891 + }, + { + "start": 21876.56, + "end": 21878.02, + "probability": 0.9414 + }, + { + "start": 21878.6, + "end": 21882.02, + "probability": 0.9065 + }, + { + "start": 21882.6, + "end": 21886.72, + "probability": 0.9342 + }, + { + "start": 21886.76, + "end": 21892.34, + "probability": 0.9868 + }, + { + "start": 21892.34, + "end": 21898.82, + "probability": 0.9883 + }, + { + "start": 21899.94, + "end": 21903.78, + "probability": 0.9744 + }, + { + "start": 21904.32, + "end": 21905.52, + "probability": 0.827 + }, + { + "start": 21906.22, + "end": 21911.7, + "probability": 0.8668 + }, + { + "start": 21911.94, + "end": 21914.42, + "probability": 0.7515 + }, + { + "start": 21914.84, + "end": 21916.26, + "probability": 0.9653 + }, + { + "start": 21916.44, + "end": 21918.52, + "probability": 0.9516 + }, + { + "start": 21919.18, + "end": 21923.88, + "probability": 0.8678 + }, + { + "start": 21924.6, + "end": 21926.7, + "probability": 0.7866 + }, + { + "start": 21927.44, + "end": 21931.76, + "probability": 0.8159 + }, + { + "start": 21931.88, + "end": 21932.23, + "probability": 0.8518 + }, + { + "start": 21932.62, + "end": 21936.92, + "probability": 0.8682 + }, + { + "start": 21937.14, + "end": 21939.46, + "probability": 0.7283 + }, + { + "start": 21939.62, + "end": 21940.04, + "probability": 0.6603 + }, + { + "start": 21940.14, + "end": 21942.34, + "probability": 0.1412 + }, + { + "start": 21942.34, + "end": 21945.16, + "probability": 0.6983 + }, + { + "start": 21946.04, + "end": 21947.78, + "probability": 0.7645 + }, + { + "start": 21947.8, + "end": 21947.9, + "probability": 0.545 + }, + { + "start": 21947.96, + "end": 21951.64, + "probability": 0.9413 + }, + { + "start": 21952.26, + "end": 21956.24, + "probability": 0.9752 + }, + { + "start": 21956.6, + "end": 21959.34, + "probability": 0.8906 + }, + { + "start": 21959.42, + "end": 21960.6, + "probability": 0.9661 + }, + { + "start": 21960.8, + "end": 21961.53, + "probability": 0.7006 + }, + { + "start": 21962.12, + "end": 21963.44, + "probability": 0.9652 + }, + { + "start": 21964.2, + "end": 21966.72, + "probability": 0.923 + }, + { + "start": 21966.84, + "end": 21970.34, + "probability": 0.6001 + }, + { + "start": 21971.48, + "end": 21978.44, + "probability": 0.9395 + }, + { + "start": 21979.24, + "end": 21984.38, + "probability": 0.9914 + }, + { + "start": 21984.54, + "end": 21989.98, + "probability": 0.98 + }, + { + "start": 21989.98, + "end": 21994.14, + "probability": 0.9587 + }, + { + "start": 21994.78, + "end": 21996.12, + "probability": 0.5293 + }, + { + "start": 21996.18, + "end": 21998.24, + "probability": 0.9007 + }, + { + "start": 22013.92, + "end": 22014.16, + "probability": 0.7429 + }, + { + "start": 22015.6, + "end": 22018.02, + "probability": 0.578 + }, + { + "start": 22019.16, + "end": 22022.02, + "probability": 0.6907 + }, + { + "start": 22022.36, + "end": 22027.42, + "probability": 0.7467 + }, + { + "start": 22028.48, + "end": 22031.28, + "probability": 0.7981 + }, + { + "start": 22033.32, + "end": 22038.18, + "probability": 0.6326 + }, + { + "start": 22038.32, + "end": 22039.58, + "probability": 0.9333 + }, + { + "start": 22040.66, + "end": 22041.78, + "probability": 0.9085 + }, + { + "start": 22041.84, + "end": 22045.22, + "probability": 0.764 + }, + { + "start": 22045.9, + "end": 22046.26, + "probability": 0.9175 + }, + { + "start": 22046.28, + "end": 22048.9, + "probability": 0.4941 + }, + { + "start": 22050.06, + "end": 22053.78, + "probability": 0.5168 + }, + { + "start": 22054.38, + "end": 22056.82, + "probability": 0.6327 + }, + { + "start": 22057.92, + "end": 22058.88, + "probability": 0.8809 + }, + { + "start": 22059.0, + "end": 22067.78, + "probability": 0.7472 + }, + { + "start": 22068.48, + "end": 22073.09, + "probability": 0.9866 + }, + { + "start": 22074.48, + "end": 22076.98, + "probability": 0.6886 + }, + { + "start": 22078.17, + "end": 22083.42, + "probability": 0.5306 + }, + { + "start": 22083.48, + "end": 22084.35, + "probability": 0.6685 + }, + { + "start": 22084.74, + "end": 22085.38, + "probability": 0.7172 + }, + { + "start": 22086.42, + "end": 22089.44, + "probability": 0.3795 + }, + { + "start": 22089.48, + "end": 22091.76, + "probability": 0.7246 + }, + { + "start": 22091.94, + "end": 22094.24, + "probability": 0.8813 + }, + { + "start": 22094.52, + "end": 22095.5, + "probability": 0.6157 + }, + { + "start": 22096.4, + "end": 22098.74, + "probability": 0.9274 + }, + { + "start": 22098.96, + "end": 22100.53, + "probability": 0.9514 + }, + { + "start": 22100.9, + "end": 22103.8, + "probability": 0.8293 + }, + { + "start": 22103.92, + "end": 22105.37, + "probability": 0.9033 + }, + { + "start": 22106.48, + "end": 22110.38, + "probability": 0.9639 + }, + { + "start": 22110.5, + "end": 22111.53, + "probability": 0.4843 + }, + { + "start": 22111.98, + "end": 22116.8, + "probability": 0.9037 + }, + { + "start": 22117.6, + "end": 22119.11, + "probability": 0.9464 + }, + { + "start": 22121.3, + "end": 22122.2, + "probability": 0.8046 + }, + { + "start": 22122.34, + "end": 22126.42, + "probability": 0.6719 + }, + { + "start": 22129.69, + "end": 22134.0, + "probability": 0.8452 + }, + { + "start": 22135.06, + "end": 22137.9, + "probability": 0.9131 + }, + { + "start": 22137.9, + "end": 22143.16, + "probability": 0.9438 + }, + { + "start": 22144.48, + "end": 22148.74, + "probability": 0.7794 + }, + { + "start": 22149.82, + "end": 22151.46, + "probability": 0.8228 + }, + { + "start": 22151.88, + "end": 22154.86, + "probability": 0.9899 + }, + { + "start": 22155.12, + "end": 22156.26, + "probability": 0.8729 + }, + { + "start": 22157.3, + "end": 22160.68, + "probability": 0.7375 + }, + { + "start": 22160.78, + "end": 22161.22, + "probability": 0.6941 + }, + { + "start": 22161.36, + "end": 22162.24, + "probability": 0.8153 + }, + { + "start": 22162.46, + "end": 22163.88, + "probability": 0.5339 + }, + { + "start": 22163.96, + "end": 22167.04, + "probability": 0.7643 + }, + { + "start": 22170.78, + "end": 22176.78, + "probability": 0.8732 + }, + { + "start": 22178.66, + "end": 22180.56, + "probability": 0.6914 + }, + { + "start": 22182.33, + "end": 22185.6, + "probability": 0.9723 + }, + { + "start": 22186.2, + "end": 22192.64, + "probability": 0.7823 + }, + { + "start": 22192.74, + "end": 22195.35, + "probability": 0.8814 + }, + { + "start": 22195.86, + "end": 22196.42, + "probability": 0.7541 + }, + { + "start": 22197.12, + "end": 22198.49, + "probability": 0.5739 + }, + { + "start": 22199.22, + "end": 22201.66, + "probability": 0.7367 + }, + { + "start": 22201.72, + "end": 22202.16, + "probability": 0.8972 + }, + { + "start": 22219.24, + "end": 22219.24, + "probability": 0.4562 + }, + { + "start": 22219.24, + "end": 22219.87, + "probability": 0.7168 + }, + { + "start": 22220.64, + "end": 22221.32, + "probability": 0.6704 + }, + { + "start": 22221.32, + "end": 22221.32, + "probability": 0.2093 + }, + { + "start": 22221.32, + "end": 22221.86, + "probability": 0.5994 + }, + { + "start": 22221.96, + "end": 22223.08, + "probability": 0.7453 + }, + { + "start": 22223.2, + "end": 22225.52, + "probability": 0.8384 + }, + { + "start": 22227.9, + "end": 22229.16, + "probability": 0.7573 + }, + { + "start": 22231.44, + "end": 22232.72, + "probability": 0.7564 + }, + { + "start": 22233.88, + "end": 22237.48, + "probability": 0.926 + }, + { + "start": 22238.88, + "end": 22242.66, + "probability": 0.9709 + }, + { + "start": 22243.0, + "end": 22253.06, + "probability": 0.8135 + }, + { + "start": 22253.26, + "end": 22254.3, + "probability": 0.7019 + }, + { + "start": 22255.06, + "end": 22258.66, + "probability": 0.7522 + }, + { + "start": 22258.78, + "end": 22264.18, + "probability": 0.959 + }, + { + "start": 22265.72, + "end": 22267.3, + "probability": 0.6224 + }, + { + "start": 22267.4, + "end": 22267.84, + "probability": 0.839 + }, + { + "start": 22269.66, + "end": 22271.84, + "probability": 0.8649 + }, + { + "start": 22274.48, + "end": 22274.64, + "probability": 0.1295 + }, + { + "start": 22274.64, + "end": 22276.15, + "probability": 0.8604 + }, + { + "start": 22277.34, + "end": 22280.06, + "probability": 0.9074 + }, + { + "start": 22281.3, + "end": 22288.46, + "probability": 0.9396 + }, + { + "start": 22290.28, + "end": 22294.86, + "probability": 0.9455 + }, + { + "start": 22295.44, + "end": 22297.36, + "probability": 0.8714 + }, + { + "start": 22298.54, + "end": 22300.46, + "probability": 0.7444 + }, + { + "start": 22301.68, + "end": 22303.44, + "probability": 0.9508 + }, + { + "start": 22304.2, + "end": 22305.74, + "probability": 0.7593 + }, + { + "start": 22306.54, + "end": 22307.66, + "probability": 0.7072 + }, + { + "start": 22307.74, + "end": 22308.21, + "probability": 0.7852 + }, + { + "start": 22310.42, + "end": 22314.42, + "probability": 0.2556 + }, + { + "start": 22314.48, + "end": 22315.16, + "probability": 0.3038 + }, + { + "start": 22315.46, + "end": 22316.22, + "probability": 0.0141 + }, + { + "start": 22316.5, + "end": 22316.88, + "probability": 0.5671 + }, + { + "start": 22317.34, + "end": 22318.34, + "probability": 0.8669 + }, + { + "start": 22318.42, + "end": 22320.65, + "probability": 0.7529 + }, + { + "start": 22321.06, + "end": 22322.4, + "probability": 0.6636 + }, + { + "start": 22322.42, + "end": 22326.42, + "probability": 0.8818 + }, + { + "start": 22326.62, + "end": 22329.1, + "probability": 0.6832 + }, + { + "start": 22330.0, + "end": 22331.8, + "probability": 0.6475 + }, + { + "start": 22332.26, + "end": 22334.94, + "probability": 0.9269 + }, + { + "start": 22334.94, + "end": 22337.34, + "probability": 0.9727 + }, + { + "start": 22337.34, + "end": 22341.16, + "probability": 0.9525 + }, + { + "start": 22341.32, + "end": 22347.76, + "probability": 0.9568 + }, + { + "start": 22348.38, + "end": 22351.16, + "probability": 0.7964 + }, + { + "start": 22351.74, + "end": 22353.0, + "probability": 0.9958 + }, + { + "start": 22353.9, + "end": 22354.1, + "probability": 0.002 + }, + { + "start": 22354.1, + "end": 22354.58, + "probability": 0.1012 + }, + { + "start": 22354.96, + "end": 22356.17, + "probability": 0.8911 + }, + { + "start": 22357.14, + "end": 22360.31, + "probability": 0.8831 + }, + { + "start": 22361.34, + "end": 22365.02, + "probability": 0.8594 + }, + { + "start": 22365.5, + "end": 22366.72, + "probability": 0.9484 + }, + { + "start": 22366.8, + "end": 22368.36, + "probability": 0.7246 + }, + { + "start": 22369.12, + "end": 22372.86, + "probability": 0.5565 + }, + { + "start": 22373.74, + "end": 22374.46, + "probability": 0.7116 + }, + { + "start": 22374.54, + "end": 22375.78, + "probability": 0.8375 + }, + { + "start": 22375.78, + "end": 22378.4, + "probability": 0.9084 + }, + { + "start": 22379.44, + "end": 22380.12, + "probability": 0.8484 + }, + { + "start": 22380.28, + "end": 22380.82, + "probability": 0.7719 + }, + { + "start": 22381.3, + "end": 22384.46, + "probability": 0.994 + }, + { + "start": 22385.76, + "end": 22387.78, + "probability": 0.8345 + }, + { + "start": 22387.88, + "end": 22391.3, + "probability": 0.9429 + }, + { + "start": 22391.92, + "end": 22392.74, + "probability": 0.9425 + }, + { + "start": 22392.82, + "end": 22394.98, + "probability": 0.9364 + }, + { + "start": 22395.34, + "end": 22397.7, + "probability": 0.918 + }, + { + "start": 22399.08, + "end": 22399.8, + "probability": 0.6217 + }, + { + "start": 22399.86, + "end": 22401.24, + "probability": 0.9623 + }, + { + "start": 22401.72, + "end": 22404.22, + "probability": 0.2738 + }, + { + "start": 22404.4, + "end": 22405.5, + "probability": 0.3852 + }, + { + "start": 22405.66, + "end": 22406.6, + "probability": 0.6457 + }, + { + "start": 22406.9, + "end": 22409.18, + "probability": 0.9883 + }, + { + "start": 22409.62, + "end": 22411.42, + "probability": 0.9163 + }, + { + "start": 22411.74, + "end": 22414.56, + "probability": 0.8977 + }, + { + "start": 22414.62, + "end": 22415.32, + "probability": 0.917 + }, + { + "start": 22415.38, + "end": 22416.32, + "probability": 0.9238 + }, + { + "start": 22416.82, + "end": 22417.78, + "probability": 0.9479 + }, + { + "start": 22417.92, + "end": 22418.7, + "probability": 0.4603 + }, + { + "start": 22418.7, + "end": 22420.48, + "probability": 0.513 + }, + { + "start": 22420.52, + "end": 22420.62, + "probability": 0.0405 + }, + { + "start": 22420.98, + "end": 22423.12, + "probability": 0.7874 + }, + { + "start": 22423.28, + "end": 22423.92, + "probability": 0.9065 + }, + { + "start": 22423.98, + "end": 22424.38, + "probability": 0.5429 + }, + { + "start": 22424.72, + "end": 22427.28, + "probability": 0.0073 + }, + { + "start": 22427.5, + "end": 22429.44, + "probability": 0.8254 + }, + { + "start": 22429.58, + "end": 22432.56, + "probability": 0.2676 + }, + { + "start": 22433.08, + "end": 22435.65, + "probability": 0.4086 + }, + { + "start": 22437.5, + "end": 22440.28, + "probability": 0.1453 + }, + { + "start": 22440.42, + "end": 22440.42, + "probability": 0.0096 + }, + { + "start": 22443.7, + "end": 22444.68, + "probability": 0.0326 + }, + { + "start": 22444.68, + "end": 22444.72, + "probability": 0.0992 + }, + { + "start": 22445.32, + "end": 22449.04, + "probability": 0.5947 + }, + { + "start": 22449.12, + "end": 22451.26, + "probability": 0.6269 + }, + { + "start": 22451.36, + "end": 22451.78, + "probability": 0.5304 + }, + { + "start": 22451.84, + "end": 22452.6, + "probability": 0.1423 + }, + { + "start": 22452.62, + "end": 22454.96, + "probability": 0.1425 + }, + { + "start": 22455.7, + "end": 22456.14, + "probability": 0.2233 + }, + { + "start": 22456.24, + "end": 22456.98, + "probability": 0.6193 + }, + { + "start": 22457.08, + "end": 22458.56, + "probability": 0.9082 + }, + { + "start": 22458.6, + "end": 22460.68, + "probability": 0.797 + }, + { + "start": 22460.68, + "end": 22460.96, + "probability": 0.2303 + }, + { + "start": 22461.14, + "end": 22463.28, + "probability": 0.8867 + }, + { + "start": 22464.08, + "end": 22467.96, + "probability": 0.9972 + }, + { + "start": 22467.96, + "end": 22474.78, + "probability": 0.9276 + }, + { + "start": 22475.36, + "end": 22478.84, + "probability": 0.9689 + }, + { + "start": 22479.3, + "end": 22484.3, + "probability": 0.9967 + }, + { + "start": 22484.9, + "end": 22489.6, + "probability": 0.9137 + }, + { + "start": 22489.92, + "end": 22491.22, + "probability": 0.8613 + }, + { + "start": 22491.4, + "end": 22493.92, + "probability": 0.9376 + }, + { + "start": 22494.22, + "end": 22496.32, + "probability": 0.9535 + }, + { + "start": 22496.6, + "end": 22497.86, + "probability": 0.9867 + }, + { + "start": 22498.62, + "end": 22498.98, + "probability": 0.906 + }, + { + "start": 22499.08, + "end": 22499.5, + "probability": 0.8335 + }, + { + "start": 22499.54, + "end": 22501.76, + "probability": 0.9947 + }, + { + "start": 22502.2, + "end": 22504.66, + "probability": 0.9792 + }, + { + "start": 22504.78, + "end": 22505.28, + "probability": 0.9341 + }, + { + "start": 22506.12, + "end": 22507.28, + "probability": 0.9374 + }, + { + "start": 22507.36, + "end": 22511.12, + "probability": 0.9629 + }, + { + "start": 22511.54, + "end": 22512.04, + "probability": 0.8074 + }, + { + "start": 22512.86, + "end": 22517.34, + "probability": 0.7299 + }, + { + "start": 22518.82, + "end": 22518.96, + "probability": 0.0749 + }, + { + "start": 22518.96, + "end": 22519.5, + "probability": 0.189 + }, + { + "start": 22520.14, + "end": 22523.86, + "probability": 0.9292 + }, + { + "start": 22523.92, + "end": 22524.54, + "probability": 0.782 + }, + { + "start": 22524.62, + "end": 22525.08, + "probability": 0.4032 + }, + { + "start": 22525.4, + "end": 22527.84, + "probability": 0.0992 + }, + { + "start": 22527.84, + "end": 22528.5, + "probability": 0.3756 + }, + { + "start": 22529.0, + "end": 22529.54, + "probability": 0.4842 + }, + { + "start": 22530.46, + "end": 22530.46, + "probability": 0.4222 + }, + { + "start": 22530.46, + "end": 22530.46, + "probability": 0.084 + }, + { + "start": 22530.46, + "end": 22530.46, + "probability": 0.2824 + }, + { + "start": 22531.08, + "end": 22533.64, + "probability": 0.78 + }, + { + "start": 22533.76, + "end": 22535.92, + "probability": 0.7371 + }, + { + "start": 22535.96, + "end": 22536.84, + "probability": 0.8236 + }, + { + "start": 22538.8, + "end": 22541.56, + "probability": 0.7093 + }, + { + "start": 22542.02, + "end": 22543.84, + "probability": 0.6573 + }, + { + "start": 22544.18, + "end": 22544.28, + "probability": 0.1045 + }, + { + "start": 22544.4, + "end": 22545.36, + "probability": 0.6935 + }, + { + "start": 22547.02, + "end": 22548.84, + "probability": 0.6356 + }, + { + "start": 22552.75, + "end": 22560.58, + "probability": 0.9618 + }, + { + "start": 22561.18, + "end": 22562.16, + "probability": 0.751 + }, + { + "start": 22562.56, + "end": 22563.24, + "probability": 0.7562 + }, + { + "start": 22563.42, + "end": 22565.36, + "probability": 0.9871 + }, + { + "start": 22565.4, + "end": 22566.45, + "probability": 0.7944 + }, + { + "start": 22566.8, + "end": 22568.58, + "probability": 0.8866 + }, + { + "start": 22569.32, + "end": 22570.98, + "probability": 0.8307 + }, + { + "start": 22571.36, + "end": 22573.34, + "probability": 0.9255 + }, + { + "start": 22573.64, + "end": 22577.78, + "probability": 0.9792 + }, + { + "start": 22577.8, + "end": 22581.04, + "probability": 0.2474 + }, + { + "start": 22581.04, + "end": 22584.06, + "probability": 0.8936 + }, + { + "start": 22584.1, + "end": 22584.96, + "probability": 0.8621 + }, + { + "start": 22585.08, + "end": 22586.14, + "probability": 0.9 + }, + { + "start": 22587.6, + "end": 22592.26, + "probability": 0.5503 + }, + { + "start": 22592.38, + "end": 22593.28, + "probability": 0.5146 + }, + { + "start": 22593.48, + "end": 22594.77, + "probability": 0.7276 + }, + { + "start": 22595.2, + "end": 22597.9, + "probability": 0.9565 + }, + { + "start": 22597.9, + "end": 22601.6, + "probability": 0.9933 + }, + { + "start": 22601.98, + "end": 22603.18, + "probability": 0.8495 + }, + { + "start": 22603.32, + "end": 22604.56, + "probability": 0.8401 + }, + { + "start": 22604.66, + "end": 22606.1, + "probability": 0.745 + }, + { + "start": 22606.2, + "end": 22611.4, + "probability": 0.6614 + }, + { + "start": 22611.52, + "end": 22614.28, + "probability": 0.9947 + }, + { + "start": 22614.6, + "end": 22615.14, + "probability": 0.4824 + }, + { + "start": 22615.26, + "end": 22617.94, + "probability": 0.6069 + }, + { + "start": 22618.06, + "end": 22619.32, + "probability": 0.9837 + }, + { + "start": 22619.76, + "end": 22621.56, + "probability": 0.865 + }, + { + "start": 22622.06, + "end": 22623.84, + "probability": 0.9746 + }, + { + "start": 22623.96, + "end": 22626.48, + "probability": 0.855 + }, + { + "start": 22626.84, + "end": 22628.18, + "probability": 0.1303 + }, + { + "start": 22628.22, + "end": 22630.7, + "probability": 0.9373 + }, + { + "start": 22630.84, + "end": 22631.28, + "probability": 0.8444 + }, + { + "start": 22631.36, + "end": 22634.18, + "probability": 0.7359 + }, + { + "start": 22634.46, + "end": 22636.8, + "probability": 0.921 + }, + { + "start": 22636.92, + "end": 22637.96, + "probability": 0.8921 + }, + { + "start": 22638.04, + "end": 22638.82, + "probability": 0.856 + }, + { + "start": 22639.32, + "end": 22641.64, + "probability": 0.8075 + }, + { + "start": 22642.22, + "end": 22644.98, + "probability": 0.9546 + }, + { + "start": 22645.06, + "end": 22645.98, + "probability": 0.551 + }, + { + "start": 22646.14, + "end": 22647.4, + "probability": 0.9812 + }, + { + "start": 22647.52, + "end": 22648.46, + "probability": 0.7886 + }, + { + "start": 22648.56, + "end": 22649.94, + "probability": 0.8599 + }, + { + "start": 22650.12, + "end": 22650.86, + "probability": 0.6186 + }, + { + "start": 22650.94, + "end": 22654.88, + "probability": 0.845 + }, + { + "start": 22655.26, + "end": 22655.38, + "probability": 0.2881 + }, + { + "start": 22655.48, + "end": 22656.38, + "probability": 0.7812 + }, + { + "start": 22656.44, + "end": 22657.36, + "probability": 0.9619 + }, + { + "start": 22657.56, + "end": 22658.92, + "probability": 0.7612 + }, + { + "start": 22659.3, + "end": 22661.14, + "probability": 0.9941 + }, + { + "start": 22661.54, + "end": 22663.54, + "probability": 0.9643 + }, + { + "start": 22663.84, + "end": 22664.5, + "probability": 0.6559 + }, + { + "start": 22664.6, + "end": 22667.24, + "probability": 0.9847 + }, + { + "start": 22667.24, + "end": 22670.98, + "probability": 0.7559 + }, + { + "start": 22671.18, + "end": 22673.32, + "probability": 0.9333 + }, + { + "start": 22673.62, + "end": 22674.28, + "probability": 0.5154 + }, + { + "start": 22674.28, + "end": 22675.0, + "probability": 0.5719 + }, + { + "start": 22676.32, + "end": 22676.92, + "probability": 0.0502 + }, + { + "start": 22676.92, + "end": 22678.16, + "probability": 0.8275 + }, + { + "start": 22678.26, + "end": 22678.92, + "probability": 0.8865 + }, + { + "start": 22678.98, + "end": 22679.49, + "probability": 0.8428 + }, + { + "start": 22680.02, + "end": 22682.3, + "probability": 0.9305 + }, + { + "start": 22682.66, + "end": 22683.64, + "probability": 0.7667 + }, + { + "start": 22683.74, + "end": 22685.86, + "probability": 0.2736 + }, + { + "start": 22686.02, + "end": 22688.72, + "probability": 0.8496 + }, + { + "start": 22689.14, + "end": 22693.9, + "probability": 0.9871 + }, + { + "start": 22694.2, + "end": 22698.28, + "probability": 0.6053 + }, + { + "start": 22701.46, + "end": 22704.38, + "probability": 0.3973 + }, + { + "start": 22704.38, + "end": 22704.59, + "probability": 0.0616 + }, + { + "start": 22712.0, + "end": 22713.48, + "probability": 0.1936 + }, + { + "start": 22714.04, + "end": 22719.26, + "probability": 0.8726 + }, + { + "start": 22719.26, + "end": 22721.96, + "probability": 0.9394 + }, + { + "start": 22721.96, + "end": 22728.4, + "probability": 0.983 + }, + { + "start": 22728.62, + "end": 22730.8, + "probability": 0.8292 + }, + { + "start": 22731.36, + "end": 22731.98, + "probability": 0.2623 + }, + { + "start": 22734.9, + "end": 22739.56, + "probability": 0.9819 + }, + { + "start": 22741.1, + "end": 22742.3, + "probability": 0.068 + }, + { + "start": 22742.3, + "end": 22742.3, + "probability": 0.3266 + }, + { + "start": 22742.3, + "end": 22742.3, + "probability": 0.3516 + }, + { + "start": 22742.3, + "end": 22742.3, + "probability": 0.4449 + }, + { + "start": 22742.3, + "end": 22742.3, + "probability": 0.517 + }, + { + "start": 22742.3, + "end": 22742.3, + "probability": 0.0386 + }, + { + "start": 22742.3, + "end": 22743.04, + "probability": 0.1182 + }, + { + "start": 22752.9, + "end": 22752.92, + "probability": 0.7129 + }, + { + "start": 22752.92, + "end": 22753.8, + "probability": 0.7387 + }, + { + "start": 22755.63, + "end": 22756.74, + "probability": 0.6715 + }, + { + "start": 22757.1, + "end": 22759.02, + "probability": 0.5221 + }, + { + "start": 22763.08, + "end": 22769.36, + "probability": 0.9162 + }, + { + "start": 22769.5, + "end": 22770.18, + "probability": 0.8384 + }, + { + "start": 22770.96, + "end": 22776.26, + "probability": 0.9873 + }, + { + "start": 22777.18, + "end": 22785.42, + "probability": 0.123 + }, + { + "start": 22785.42, + "end": 22798.06, + "probability": 0.9922 + }, + { + "start": 22798.06, + "end": 22804.28, + "probability": 0.9905 + }, + { + "start": 22805.72, + "end": 22810.26, + "probability": 0.9841 + }, + { + "start": 22811.3, + "end": 22818.84, + "probability": 0.9724 + }, + { + "start": 22818.84, + "end": 22824.69, + "probability": 0.9959 + }, + { + "start": 22825.32, + "end": 22830.58, + "probability": 0.9982 + }, + { + "start": 22830.66, + "end": 22836.98, + "probability": 0.9691 + }, + { + "start": 22838.76, + "end": 22848.94, + "probability": 0.9641 + }, + { + "start": 22849.96, + "end": 22852.24, + "probability": 0.6452 + }, + { + "start": 22853.5, + "end": 22857.4, + "probability": 0.9446 + }, + { + "start": 22858.18, + "end": 22863.4, + "probability": 0.8899 + }, + { + "start": 22863.52, + "end": 22869.72, + "probability": 0.9846 + }, + { + "start": 22869.84, + "end": 22874.32, + "probability": 0.8728 + }, + { + "start": 22874.32, + "end": 22878.32, + "probability": 0.9719 + }, + { + "start": 22878.38, + "end": 22880.8, + "probability": 0.8775 + }, + { + "start": 22881.13, + "end": 22883.34, + "probability": 0.9176 + }, + { + "start": 22883.56, + "end": 22885.8, + "probability": 0.9844 + }, + { + "start": 22886.94, + "end": 22892.12, + "probability": 0.9542 + }, + { + "start": 22893.02, + "end": 22897.16, + "probability": 0.9504 + }, + { + "start": 22897.52, + "end": 22897.88, + "probability": 0.3347 + }, + { + "start": 22898.92, + "end": 22901.4, + "probability": 0.9923 + }, + { + "start": 22901.4, + "end": 22904.6, + "probability": 0.9656 + }, + { + "start": 22906.02, + "end": 22910.12, + "probability": 0.9971 + }, + { + "start": 22910.58, + "end": 22915.18, + "probability": 0.9873 + }, + { + "start": 22915.72, + "end": 22916.54, + "probability": 0.9269 + }, + { + "start": 22917.12, + "end": 22920.82, + "probability": 0.9982 + }, + { + "start": 22920.82, + "end": 22926.02, + "probability": 0.9951 + }, + { + "start": 22926.76, + "end": 22929.0, + "probability": 0.983 + }, + { + "start": 22929.4, + "end": 22935.88, + "probability": 0.9754 + }, + { + "start": 22935.88, + "end": 22939.98, + "probability": 0.9846 + }, + { + "start": 22940.66, + "end": 22947.7, + "probability": 0.9938 + }, + { + "start": 22947.7, + "end": 22952.06, + "probability": 0.9953 + }, + { + "start": 22953.2, + "end": 22958.7, + "probability": 0.9872 + }, + { + "start": 22959.06, + "end": 22960.3, + "probability": 0.886 + }, + { + "start": 22960.72, + "end": 22964.06, + "probability": 0.995 + }, + { + "start": 22964.06, + "end": 22969.64, + "probability": 0.875 + }, + { + "start": 22970.34, + "end": 22972.42, + "probability": 0.9355 + }, + { + "start": 22972.8, + "end": 22972.8, + "probability": 0.4125 + }, + { + "start": 22972.9, + "end": 22976.46, + "probability": 0.9878 + }, + { + "start": 22977.2, + "end": 22981.1, + "probability": 0.9595 + }, + { + "start": 22981.1, + "end": 22983.92, + "probability": 0.8346 + }, + { + "start": 22983.92, + "end": 22984.88, + "probability": 0.6268 + }, + { + "start": 22985.0, + "end": 22988.0, + "probability": 0.9775 + }, + { + "start": 22988.16, + "end": 22990.28, + "probability": 0.8691 + }, + { + "start": 22990.72, + "end": 22992.4, + "probability": 0.9563 + }, + { + "start": 22992.48, + "end": 22997.18, + "probability": 0.9866 + }, + { + "start": 22997.34, + "end": 22998.0, + "probability": 0.7278 + }, + { + "start": 22998.24, + "end": 22998.44, + "probability": 0.7361 + }, + { + "start": 22999.04, + "end": 23000.16, + "probability": 0.632 + }, + { + "start": 23000.48, + "end": 23003.5, + "probability": 0.6302 + }, + { + "start": 23014.56, + "end": 23015.91, + "probability": 0.3831 + }, + { + "start": 23017.56, + "end": 23018.64, + "probability": 0.9099 + }, + { + "start": 23018.82, + "end": 23022.68, + "probability": 0.9609 + }, + { + "start": 23022.68, + "end": 23027.44, + "probability": 0.953 + }, + { + "start": 23028.42, + "end": 23031.64, + "probability": 0.9775 + }, + { + "start": 23031.64, + "end": 23036.2, + "probability": 0.999 + }, + { + "start": 23036.8, + "end": 23037.94, + "probability": 0.9114 + }, + { + "start": 23038.28, + "end": 23038.96, + "probability": 0.5414 + }, + { + "start": 23039.08, + "end": 23040.02, + "probability": 0.8822 + }, + { + "start": 23040.12, + "end": 23046.8, + "probability": 0.9738 + }, + { + "start": 23047.98, + "end": 23048.64, + "probability": 0.7231 + }, + { + "start": 23048.82, + "end": 23053.16, + "probability": 0.9957 + }, + { + "start": 23054.14, + "end": 23058.88, + "probability": 0.9724 + }, + { + "start": 23059.94, + "end": 23065.9, + "probability": 0.9399 + }, + { + "start": 23065.9, + "end": 23074.46, + "probability": 0.9935 + }, + { + "start": 23075.2, + "end": 23081.22, + "probability": 0.9957 + }, + { + "start": 23081.88, + "end": 23086.3, + "probability": 0.9844 + }, + { + "start": 23086.98, + "end": 23090.62, + "probability": 0.9941 + }, + { + "start": 23091.24, + "end": 23096.8, + "probability": 0.8604 + }, + { + "start": 23097.68, + "end": 23101.92, + "probability": 0.9736 + }, + { + "start": 23102.46, + "end": 23105.63, + "probability": 0.9259 + }, + { + "start": 23106.72, + "end": 23111.2, + "probability": 0.9875 + }, + { + "start": 23111.2, + "end": 23115.68, + "probability": 0.999 + }, + { + "start": 23116.24, + "end": 23118.72, + "probability": 0.9823 + }, + { + "start": 23119.06, + "end": 23120.4, + "probability": 0.7308 + }, + { + "start": 23120.61, + "end": 23122.18, + "probability": 0.9919 + }, + { + "start": 23122.92, + "end": 23130.0, + "probability": 0.8955 + }, + { + "start": 23131.08, + "end": 23138.68, + "probability": 0.9707 + }, + { + "start": 23138.68, + "end": 23147.1, + "probability": 0.9594 + }, + { + "start": 23147.56, + "end": 23148.14, + "probability": 0.7577 + }, + { + "start": 23148.26, + "end": 23150.2, + "probability": 0.9838 + }, + { + "start": 23150.2, + "end": 23154.66, + "probability": 0.7725 + }, + { + "start": 23154.72, + "end": 23157.22, + "probability": 0.9111 + }, + { + "start": 23157.32, + "end": 23159.32, + "probability": 0.7248 + }, + { + "start": 23159.68, + "end": 23163.07, + "probability": 0.9723 + }, + { + "start": 23163.24, + "end": 23167.54, + "probability": 0.9942 + }, + { + "start": 23167.96, + "end": 23169.9, + "probability": 0.6201 + }, + { + "start": 23169.92, + "end": 23171.52, + "probability": 0.9531 + }, + { + "start": 23172.7, + "end": 23176.54, + "probability": 0.9632 + }, + { + "start": 23177.44, + "end": 23182.06, + "probability": 0.9941 + }, + { + "start": 23182.18, + "end": 23185.18, + "probability": 0.9082 + }, + { + "start": 23185.24, + "end": 23185.52, + "probability": 0.74 + }, + { + "start": 23186.4, + "end": 23188.01, + "probability": 0.6273 + }, + { + "start": 23188.32, + "end": 23190.22, + "probability": 0.8994 + }, + { + "start": 23190.4, + "end": 23190.9, + "probability": 0.9431 + }, + { + "start": 23218.68, + "end": 23224.1, + "probability": 0.9453 + }, + { + "start": 23225.82, + "end": 23228.98, + "probability": 0.9957 + }, + { + "start": 23230.3, + "end": 23231.3, + "probability": 0.9365 + }, + { + "start": 23234.54, + "end": 23238.9, + "probability": 0.9824 + }, + { + "start": 23239.46, + "end": 23242.36, + "probability": 0.9349 + }, + { + "start": 23243.66, + "end": 23246.8, + "probability": 0.959 + }, + { + "start": 23249.22, + "end": 23250.36, + "probability": 0.6154 + }, + { + "start": 23250.82, + "end": 23258.82, + "probability": 0.9194 + }, + { + "start": 23260.2, + "end": 23260.96, + "probability": 0.9463 + }, + { + "start": 23261.64, + "end": 23268.48, + "probability": 0.991 + }, + { + "start": 23268.48, + "end": 23274.38, + "probability": 0.9526 + }, + { + "start": 23275.06, + "end": 23278.56, + "probability": 0.9049 + }, + { + "start": 23280.02, + "end": 23284.94, + "probability": 0.9702 + }, + { + "start": 23285.9, + "end": 23291.24, + "probability": 0.9951 + }, + { + "start": 23292.6, + "end": 23299.02, + "probability": 0.9803 + }, + { + "start": 23301.64, + "end": 23305.04, + "probability": 0.9691 + }, + { + "start": 23306.94, + "end": 23308.6, + "probability": 0.6807 + }, + { + "start": 23309.96, + "end": 23314.82, + "probability": 0.9741 + }, + { + "start": 23316.56, + "end": 23321.0, + "probability": 0.995 + }, + { + "start": 23322.88, + "end": 23332.66, + "probability": 0.9948 + }, + { + "start": 23333.72, + "end": 23335.44, + "probability": 0.874 + }, + { + "start": 23336.24, + "end": 23337.14, + "probability": 0.8695 + }, + { + "start": 23339.6, + "end": 23340.34, + "probability": 0.9312 + }, + { + "start": 23340.52, + "end": 23346.5, + "probability": 0.9602 + }, + { + "start": 23346.68, + "end": 23347.49, + "probability": 0.5889 + }, + { + "start": 23347.56, + "end": 23348.7, + "probability": 0.7486 + }, + { + "start": 23349.62, + "end": 23350.94, + "probability": 0.782 + }, + { + "start": 23351.48, + "end": 23352.46, + "probability": 0.9292 + }, + { + "start": 23352.48, + "end": 23352.88, + "probability": 0.9408 + }, + { + "start": 23352.98, + "end": 23354.04, + "probability": 0.9736 + }, + { + "start": 23354.38, + "end": 23355.74, + "probability": 0.9738 + }, + { + "start": 23356.62, + "end": 23358.8, + "probability": 0.9653 + }, + { + "start": 23359.32, + "end": 23360.36, + "probability": 0.9646 + }, + { + "start": 23360.56, + "end": 23361.88, + "probability": 0.9512 + }, + { + "start": 23361.96, + "end": 23363.06, + "probability": 0.7498 + }, + { + "start": 23364.46, + "end": 23365.08, + "probability": 0.5991 + }, + { + "start": 23366.5, + "end": 23372.66, + "probability": 0.6173 + }, + { + "start": 23372.9, + "end": 23374.42, + "probability": 0.9512 + }, + { + "start": 23374.6, + "end": 23377.36, + "probability": 0.9092 + }, + { + "start": 23378.34, + "end": 23386.02, + "probability": 0.9854 + }, + { + "start": 23387.38, + "end": 23388.56, + "probability": 0.8975 + }, + { + "start": 23389.12, + "end": 23391.92, + "probability": 0.991 + }, + { + "start": 23392.6, + "end": 23394.26, + "probability": 0.9844 + }, + { + "start": 23395.12, + "end": 23399.98, + "probability": 0.9702 + }, + { + "start": 23400.08, + "end": 23401.0, + "probability": 0.8461 + }, + { + "start": 23401.6, + "end": 23403.24, + "probability": 0.7726 + }, + { + "start": 23403.34, + "end": 23404.82, + "probability": 0.9025 + }, + { + "start": 23405.16, + "end": 23408.1, + "probability": 0.9983 + }, + { + "start": 23409.54, + "end": 23411.78, + "probability": 0.9421 + }, + { + "start": 23412.38, + "end": 23415.52, + "probability": 0.9836 + }, + { + "start": 23416.06, + "end": 23418.0, + "probability": 0.9909 + }, + { + "start": 23418.82, + "end": 23420.7, + "probability": 0.9097 + }, + { + "start": 23421.36, + "end": 23422.1, + "probability": 0.8141 + }, + { + "start": 23422.32, + "end": 23423.3, + "probability": 0.9513 + }, + { + "start": 23423.54, + "end": 23428.1, + "probability": 0.9767 + }, + { + "start": 23428.4, + "end": 23430.3, + "probability": 0.7838 + }, + { + "start": 23430.92, + "end": 23432.52, + "probability": 0.6131 + }, + { + "start": 23433.12, + "end": 23435.9, + "probability": 0.9955 + }, + { + "start": 23435.9, + "end": 23439.74, + "probability": 0.9841 + }, + { + "start": 23439.74, + "end": 23443.1, + "probability": 0.9192 + }, + { + "start": 23443.2, + "end": 23447.1, + "probability": 0.9869 + }, + { + "start": 23447.54, + "end": 23450.12, + "probability": 0.9878 + }, + { + "start": 23450.16, + "end": 23450.7, + "probability": 0.792 + }, + { + "start": 23451.06, + "end": 23453.46, + "probability": 0.7538 + }, + { + "start": 23453.62, + "end": 23457.64, + "probability": 0.9803 + }, + { + "start": 23457.92, + "end": 23460.98, + "probability": 0.9185 + }, + { + "start": 23480.28, + "end": 23482.2, + "probability": 0.7161 + }, + { + "start": 23484.44, + "end": 23486.84, + "probability": 0.9381 + }, + { + "start": 23488.9, + "end": 23490.8, + "probability": 0.9865 + }, + { + "start": 23492.3, + "end": 23492.82, + "probability": 0.4418 + }, + { + "start": 23494.74, + "end": 23495.68, + "probability": 0.7949 + }, + { + "start": 23496.6, + "end": 23498.45, + "probability": 0.9595 + }, + { + "start": 23499.72, + "end": 23500.7, + "probability": 0.4663 + }, + { + "start": 23501.66, + "end": 23503.4, + "probability": 0.9248 + }, + { + "start": 23504.74, + "end": 23507.9, + "probability": 0.9487 + }, + { + "start": 23508.92, + "end": 23509.64, + "probability": 0.9517 + }, + { + "start": 23511.6, + "end": 23512.56, + "probability": 0.9031 + }, + { + "start": 23512.72, + "end": 23513.13, + "probability": 0.7724 + }, + { + "start": 23513.54, + "end": 23520.28, + "probability": 0.989 + }, + { + "start": 23520.46, + "end": 23520.96, + "probability": 0.4095 + }, + { + "start": 23522.02, + "end": 23522.96, + "probability": 0.913 + }, + { + "start": 23523.74, + "end": 23528.26, + "probability": 0.8279 + }, + { + "start": 23528.86, + "end": 23531.08, + "probability": 0.7867 + }, + { + "start": 23531.3, + "end": 23533.7, + "probability": 0.8242 + }, + { + "start": 23533.8, + "end": 23536.15, + "probability": 0.9533 + }, + { + "start": 23536.4, + "end": 23539.08, + "probability": 0.9753 + }, + { + "start": 23539.86, + "end": 23540.88, + "probability": 0.7987 + }, + { + "start": 23541.94, + "end": 23544.0, + "probability": 0.9971 + }, + { + "start": 23544.16, + "end": 23545.96, + "probability": 0.4744 + }, + { + "start": 23546.08, + "end": 23547.18, + "probability": 0.5783 + }, + { + "start": 23547.42, + "end": 23549.46, + "probability": 0.939 + }, + { + "start": 23551.86, + "end": 23553.88, + "probability": 0.8058 + }, + { + "start": 23554.44, + "end": 23557.26, + "probability": 0.6853 + }, + { + "start": 23559.16, + "end": 23560.13, + "probability": 0.0739 + }, + { + "start": 23561.7, + "end": 23561.96, + "probability": 0.8118 + }, + { + "start": 23562.02, + "end": 23562.82, + "probability": 0.8228 + }, + { + "start": 23562.92, + "end": 23566.99, + "probability": 0.9329 + }, + { + "start": 23568.8, + "end": 23570.96, + "probability": 0.9241 + }, + { + "start": 23571.56, + "end": 23576.98, + "probability": 0.9226 + }, + { + "start": 23577.3, + "end": 23579.6, + "probability": 0.8562 + }, + { + "start": 23580.28, + "end": 23586.0, + "probability": 0.9685 + }, + { + "start": 23586.86, + "end": 23589.96, + "probability": 0.9487 + }, + { + "start": 23591.38, + "end": 23596.22, + "probability": 0.5356 + }, + { + "start": 23597.92, + "end": 23601.62, + "probability": 0.9641 + }, + { + "start": 23602.78, + "end": 23603.9, + "probability": 0.9793 + }, + { + "start": 23604.04, + "end": 23606.73, + "probability": 0.8312 + }, + { + "start": 23608.08, + "end": 23611.16, + "probability": 0.777 + }, + { + "start": 23611.72, + "end": 23616.48, + "probability": 0.9546 + }, + { + "start": 23616.92, + "end": 23618.94, + "probability": 0.8619 + }, + { + "start": 23622.14, + "end": 23623.6, + "probability": 0.0694 + }, + { + "start": 23623.6, + "end": 23626.22, + "probability": 0.5648 + }, + { + "start": 23627.0, + "end": 23628.88, + "probability": 0.9624 + }, + { + "start": 23631.19, + "end": 23635.66, + "probability": 0.6561 + }, + { + "start": 23636.48, + "end": 23637.86, + "probability": 0.4756 + }, + { + "start": 23639.56, + "end": 23644.12, + "probability": 0.9575 + }, + { + "start": 23644.3, + "end": 23652.06, + "probability": 0.9867 + }, + { + "start": 23652.26, + "end": 23655.88, + "probability": 0.4896 + }, + { + "start": 23656.84, + "end": 23660.72, + "probability": 0.9901 + }, + { + "start": 23661.74, + "end": 23666.96, + "probability": 0.9942 + }, + { + "start": 23667.4, + "end": 23671.42, + "probability": 0.9877 + }, + { + "start": 23671.46, + "end": 23676.5, + "probability": 0.9959 + }, + { + "start": 23676.68, + "end": 23677.38, + "probability": 0.181 + }, + { + "start": 23679.2, + "end": 23679.46, + "probability": 0.3025 + }, + { + "start": 23679.46, + "end": 23680.8, + "probability": 0.9879 + }, + { + "start": 23681.18, + "end": 23682.12, + "probability": 0.7017 + }, + { + "start": 23682.24, + "end": 23682.36, + "probability": 0.0021 + }, + { + "start": 23683.76, + "end": 23686.86, + "probability": 0.8027 + }, + { + "start": 23687.24, + "end": 23689.15, + "probability": 0.9253 + }, + { + "start": 23689.78, + "end": 23694.96, + "probability": 0.7305 + }, + { + "start": 23695.96, + "end": 23697.36, + "probability": 0.7155 + }, + { + "start": 23697.4, + "end": 23699.94, + "probability": 0.8179 + }, + { + "start": 23700.3, + "end": 23705.36, + "probability": 0.8228 + }, + { + "start": 23705.46, + "end": 23706.06, + "probability": 0.6971 + }, + { + "start": 23706.22, + "end": 23707.26, + "probability": 0.7208 + }, + { + "start": 23707.46, + "end": 23709.92, + "probability": 0.9084 + }, + { + "start": 23710.66, + "end": 23713.18, + "probability": 0.8715 + }, + { + "start": 23713.28, + "end": 23713.85, + "probability": 0.797 + }, + { + "start": 23715.15, + "end": 23721.64, + "probability": 0.9958 + }, + { + "start": 23721.64, + "end": 23725.54, + "probability": 0.7952 + }, + { + "start": 23726.32, + "end": 23727.76, + "probability": 0.6617 + }, + { + "start": 23728.42, + "end": 23729.3, + "probability": 0.9101 + }, + { + "start": 23730.04, + "end": 23732.06, + "probability": 0.9829 + }, + { + "start": 23732.58, + "end": 23733.76, + "probability": 0.9937 + }, + { + "start": 23734.02, + "end": 23734.58, + "probability": 0.5167 + }, + { + "start": 23734.92, + "end": 23738.74, + "probability": 0.9915 + }, + { + "start": 23739.89, + "end": 23741.76, + "probability": 0.5059 + }, + { + "start": 23743.18, + "end": 23745.88, + "probability": 0.9538 + }, + { + "start": 23745.88, + "end": 23747.96, + "probability": 0.8895 + }, + { + "start": 23747.98, + "end": 23749.89, + "probability": 0.6503 + }, + { + "start": 23750.22, + "end": 23754.48, + "probability": 0.9746 + }, + { + "start": 23754.56, + "end": 23756.08, + "probability": 0.9956 + }, + { + "start": 23756.14, + "end": 23758.26, + "probability": 0.8628 + }, + { + "start": 23758.76, + "end": 23759.96, + "probability": 0.7 + }, + { + "start": 23760.06, + "end": 23761.9, + "probability": 0.9905 + }, + { + "start": 23762.42, + "end": 23763.44, + "probability": 0.8009 + }, + { + "start": 23763.72, + "end": 23767.24, + "probability": 0.9153 + }, + { + "start": 23767.86, + "end": 23773.46, + "probability": 0.9692 + }, + { + "start": 23773.52, + "end": 23775.44, + "probability": 0.998 + }, + { + "start": 23775.56, + "end": 23777.32, + "probability": 0.9293 + }, + { + "start": 23777.4, + "end": 23778.5, + "probability": 0.5343 + }, + { + "start": 23778.66, + "end": 23782.22, + "probability": 0.9574 + }, + { + "start": 23782.26, + "end": 23784.96, + "probability": 0.9937 + }, + { + "start": 23785.38, + "end": 23786.4, + "probability": 0.9927 + }, + { + "start": 23786.84, + "end": 23789.64, + "probability": 0.9711 + }, + { + "start": 23790.02, + "end": 23793.7, + "probability": 0.0103 + }, + { + "start": 23794.69, + "end": 23796.28, + "probability": 0.1824 + }, + { + "start": 23796.42, + "end": 23798.72, + "probability": 0.4527 + }, + { + "start": 23799.16, + "end": 23800.9, + "probability": 0.7576 + }, + { + "start": 23802.02, + "end": 23804.52, + "probability": 0.1839 + }, + { + "start": 23804.52, + "end": 23806.4, + "probability": 0.6659 + }, + { + "start": 23806.62, + "end": 23808.73, + "probability": 0.8441 + }, + { + "start": 23809.36, + "end": 23812.76, + "probability": 0.2736 + }, + { + "start": 23813.18, + "end": 23814.38, + "probability": 0.9074 + }, + { + "start": 23814.58, + "end": 23814.82, + "probability": 0.4003 + }, + { + "start": 23815.0, + "end": 23821.74, + "probability": 0.9897 + }, + { + "start": 23822.0, + "end": 23822.98, + "probability": 0.9407 + }, + { + "start": 23823.06, + "end": 23823.64, + "probability": 0.871 + }, + { + "start": 23824.1, + "end": 23826.43, + "probability": 0.6917 + }, + { + "start": 23827.66, + "end": 23828.42, + "probability": 0.7571 + }, + { + "start": 23829.12, + "end": 23831.32, + "probability": 0.867 + }, + { + "start": 23839.98, + "end": 23841.04, + "probability": 0.2935 + }, + { + "start": 23841.2, + "end": 23842.23, + "probability": 0.7247 + }, + { + "start": 23842.56, + "end": 23844.72, + "probability": 0.5743 + }, + { + "start": 23844.88, + "end": 23851.5, + "probability": 0.987 + }, + { + "start": 23852.12, + "end": 23854.21, + "probability": 0.9975 + }, + { + "start": 23854.24, + "end": 23856.08, + "probability": 0.9343 + }, + { + "start": 23856.56, + "end": 23859.5, + "probability": 0.8934 + }, + { + "start": 23860.18, + "end": 23863.02, + "probability": 0.5656 + }, + { + "start": 23863.8, + "end": 23867.6, + "probability": 0.7018 + }, + { + "start": 23867.78, + "end": 23869.14, + "probability": 0.1234 + }, + { + "start": 23871.08, + "end": 23873.38, + "probability": 0.037 + }, + { + "start": 23876.84, + "end": 23877.7, + "probability": 0.3028 + }, + { + "start": 23877.7, + "end": 23878.56, + "probability": 0.4664 + }, + { + "start": 23880.84, + "end": 23883.1, + "probability": 0.4586 + }, + { + "start": 23884.54, + "end": 23888.38, + "probability": 0.6729 + }, + { + "start": 23888.82, + "end": 23891.4, + "probability": 0.8615 + }, + { + "start": 23891.44, + "end": 23892.96, + "probability": 0.6412 + }, + { + "start": 23893.28, + "end": 23894.9, + "probability": 0.9934 + }, + { + "start": 23895.32, + "end": 23898.48, + "probability": 0.8884 + }, + { + "start": 23898.52, + "end": 23899.28, + "probability": 0.7718 + }, + { + "start": 23899.4, + "end": 23901.16, + "probability": 0.3289 + }, + { + "start": 23901.68, + "end": 23905.42, + "probability": 0.7492 + }, + { + "start": 23906.1, + "end": 23908.38, + "probability": 0.925 + }, + { + "start": 23911.34, + "end": 23913.14, + "probability": 0.6479 + }, + { + "start": 23913.2, + "end": 23915.24, + "probability": 0.5701 + }, + { + "start": 23915.72, + "end": 23920.48, + "probability": 0.847 + }, + { + "start": 23920.58, + "end": 23922.72, + "probability": 0.9352 + }, + { + "start": 23924.72, + "end": 23927.7, + "probability": 0.73 + }, + { + "start": 23935.28, + "end": 23936.64, + "probability": 0.5388 + }, + { + "start": 23938.48, + "end": 23939.5, + "probability": 0.6917 + }, + { + "start": 23939.56, + "end": 23946.36, + "probability": 0.9758 + }, + { + "start": 23947.1, + "end": 23948.64, + "probability": 0.4814 + }, + { + "start": 23949.92, + "end": 23952.2, + "probability": 0.8915 + }, + { + "start": 23953.4, + "end": 23956.08, + "probability": 0.8105 + }, + { + "start": 23957.04, + "end": 23959.6, + "probability": 0.6744 + }, + { + "start": 23961.24, + "end": 23962.9, + "probability": 0.8989 + }, + { + "start": 23963.8, + "end": 23967.8, + "probability": 0.7739 + }, + { + "start": 23968.6, + "end": 23970.36, + "probability": 0.7493 + }, + { + "start": 23971.17, + "end": 23974.56, + "probability": 0.7886 + }, + { + "start": 23975.14, + "end": 23976.7, + "probability": 0.9719 + }, + { + "start": 23977.56, + "end": 23978.8, + "probability": 0.6158 + }, + { + "start": 23979.36, + "end": 23981.49, + "probability": 0.5229 + }, + { + "start": 23983.0, + "end": 23983.0, + "probability": 0.1375 + }, + { + "start": 23983.0, + "end": 23986.77, + "probability": 0.6772 + }, + { + "start": 23987.34, + "end": 23989.32, + "probability": 0.9214 + }, + { + "start": 23990.4, + "end": 23994.74, + "probability": 0.9271 + }, + { + "start": 23996.02, + "end": 23998.22, + "probability": 0.9447 + }, + { + "start": 23998.6, + "end": 23999.86, + "probability": 0.9115 + }, + { + "start": 24000.16, + "end": 24000.92, + "probability": 0.6994 + }, + { + "start": 24001.34, + "end": 24005.68, + "probability": 0.9822 + }, + { + "start": 24006.1, + "end": 24008.6, + "probability": 0.7965 + }, + { + "start": 24009.12, + "end": 24010.6, + "probability": 0.6893 + }, + { + "start": 24011.02, + "end": 24013.42, + "probability": 0.993 + }, + { + "start": 24013.98, + "end": 24014.16, + "probability": 0.5514 + }, + { + "start": 24014.92, + "end": 24015.4, + "probability": 0.2331 + }, + { + "start": 24015.68, + "end": 24016.64, + "probability": 0.8023 + }, + { + "start": 24016.72, + "end": 24017.22, + "probability": 0.8807 + }, + { + "start": 24018.76, + "end": 24020.44, + "probability": 0.8857 + }, + { + "start": 24034.88, + "end": 24036.42, + "probability": 0.8126 + }, + { + "start": 24037.88, + "end": 24040.82, + "probability": 0.8799 + }, + { + "start": 24040.92, + "end": 24042.2, + "probability": 0.9922 + }, + { + "start": 24043.06, + "end": 24044.15, + "probability": 0.9531 + }, + { + "start": 24044.72, + "end": 24046.52, + "probability": 0.7861 + }, + { + "start": 24046.52, + "end": 24048.82, + "probability": 0.6178 + }, + { + "start": 24048.88, + "end": 24049.94, + "probability": 0.0435 + }, + { + "start": 24049.94, + "end": 24051.74, + "probability": 0.4862 + }, + { + "start": 24051.96, + "end": 24053.3, + "probability": 0.4895 + }, + { + "start": 24053.4, + "end": 24058.86, + "probability": 0.9875 + }, + { + "start": 24059.92, + "end": 24062.88, + "probability": 0.9526 + }, + { + "start": 24063.2, + "end": 24067.54, + "probability": 0.9902 + }, + { + "start": 24067.9, + "end": 24070.22, + "probability": 0.9931 + }, + { + "start": 24071.04, + "end": 24071.98, + "probability": 0.6375 + }, + { + "start": 24072.14, + "end": 24074.36, + "probability": 0.8855 + }, + { + "start": 24074.46, + "end": 24075.28, + "probability": 0.8189 + }, + { + "start": 24075.32, + "end": 24076.92, + "probability": 0.8834 + }, + { + "start": 24077.32, + "end": 24077.64, + "probability": 0.7271 + }, + { + "start": 24077.88, + "end": 24079.62, + "probability": 0.7651 + }, + { + "start": 24079.78, + "end": 24083.5, + "probability": 0.9139 + }, + { + "start": 24083.88, + "end": 24086.52, + "probability": 0.9241 + }, + { + "start": 24086.66, + "end": 24089.38, + "probability": 0.9792 + }, + { + "start": 24089.96, + "end": 24091.26, + "probability": 0.7408 + }, + { + "start": 24106.78, + "end": 24107.04, + "probability": 0.4569 + }, + { + "start": 24107.04, + "end": 24107.74, + "probability": 0.0293 + }, + { + "start": 24111.48, + "end": 24113.98, + "probability": 0.4983 + }, + { + "start": 24113.98, + "end": 24119.56, + "probability": 0.7519 + }, + { + "start": 24119.66, + "end": 24120.44, + "probability": 0.5657 + }, + { + "start": 24120.56, + "end": 24122.64, + "probability": 0.8736 + }, + { + "start": 24122.82, + "end": 24124.0, + "probability": 0.7391 + }, + { + "start": 24125.08, + "end": 24127.62, + "probability": 0.1401 + }, + { + "start": 24129.82, + "end": 24129.9, + "probability": 0.0322 + }, + { + "start": 24129.9, + "end": 24129.9, + "probability": 0.2418 + }, + { + "start": 24129.94, + "end": 24129.94, + "probability": 0.1854 + }, + { + "start": 24129.94, + "end": 24129.94, + "probability": 0.3161 + }, + { + "start": 24129.94, + "end": 24131.89, + "probability": 0.306 + }, + { + "start": 24132.4, + "end": 24133.35, + "probability": 0.4974 + }, + { + "start": 24135.42, + "end": 24136.8, + "probability": 0.7307 + }, + { + "start": 24137.43, + "end": 24138.2, + "probability": 0.311 + }, + { + "start": 24138.64, + "end": 24140.7, + "probability": 0.0465 + }, + { + "start": 24140.7, + "end": 24141.16, + "probability": 0.0823 + }, + { + "start": 24141.16, + "end": 24142.76, + "probability": 0.6777 + }, + { + "start": 24143.34, + "end": 24144.3, + "probability": 0.0143 + }, + { + "start": 24144.56, + "end": 24148.04, + "probability": 0.8376 + }, + { + "start": 24148.12, + "end": 24148.56, + "probability": 0.6898 + }, + { + "start": 24148.68, + "end": 24149.28, + "probability": 0.0518 + }, + { + "start": 24149.28, + "end": 24150.9, + "probability": 0.9282 + }, + { + "start": 24153.61, + "end": 24156.9, + "probability": 0.7921 + }, + { + "start": 24156.92, + "end": 24157.6, + "probability": 0.7659 + }, + { + "start": 24157.7, + "end": 24159.21, + "probability": 0.6816 + }, + { + "start": 24160.58, + "end": 24163.28, + "probability": 0.9048 + }, + { + "start": 24164.5, + "end": 24167.1, + "probability": 0.4706 + }, + { + "start": 24167.88, + "end": 24168.92, + "probability": 0.7996 + }, + { + "start": 24170.0, + "end": 24171.24, + "probability": 0.6711 + }, + { + "start": 24172.02, + "end": 24173.38, + "probability": 0.9637 + }, + { + "start": 24174.52, + "end": 24180.03, + "probability": 0.9736 + }, + { + "start": 24180.7, + "end": 24184.54, + "probability": 0.9259 + }, + { + "start": 24186.0, + "end": 24191.72, + "probability": 0.9873 + }, + { + "start": 24191.92, + "end": 24194.62, + "probability": 0.8678 + }, + { + "start": 24195.38, + "end": 24197.06, + "probability": 0.9644 + }, + { + "start": 24197.3, + "end": 24198.44, + "probability": 0.7755 + }, + { + "start": 24198.62, + "end": 24200.1, + "probability": 0.916 + }, + { + "start": 24200.34, + "end": 24203.16, + "probability": 0.9866 + }, + { + "start": 24204.52, + "end": 24207.62, + "probability": 0.5908 + }, + { + "start": 24208.4, + "end": 24212.78, + "probability": 0.7299 + }, + { + "start": 24213.14, + "end": 24213.2, + "probability": 0.2352 + }, + { + "start": 24213.2, + "end": 24213.2, + "probability": 0.0535 + }, + { + "start": 24213.2, + "end": 24213.2, + "probability": 0.266 + }, + { + "start": 24213.2, + "end": 24213.54, + "probability": 0.8971 + }, + { + "start": 24214.06, + "end": 24214.64, + "probability": 0.9681 + }, + { + "start": 24215.3, + "end": 24217.42, + "probability": 0.9964 + }, + { + "start": 24217.7, + "end": 24219.04, + "probability": 0.9941 + }, + { + "start": 24219.1, + "end": 24219.63, + "probability": 0.9452 + }, + { + "start": 24219.96, + "end": 24221.7, + "probability": 0.9976 + }, + { + "start": 24222.3, + "end": 24223.08, + "probability": 0.8823 + }, + { + "start": 24223.08, + "end": 24223.74, + "probability": 0.1813 + }, + { + "start": 24224.12, + "end": 24228.96, + "probability": 0.9301 + }, + { + "start": 24229.18, + "end": 24230.32, + "probability": 0.8794 + }, + { + "start": 24230.54, + "end": 24231.0, + "probability": 0.8125 + }, + { + "start": 24232.52, + "end": 24235.74, + "probability": 0.9659 + }, + { + "start": 24236.1, + "end": 24240.62, + "probability": 0.9906 + }, + { + "start": 24240.88, + "end": 24244.44, + "probability": 0.9475 + }, + { + "start": 24244.72, + "end": 24247.18, + "probability": 0.8176 + }, + { + "start": 24247.22, + "end": 24247.76, + "probability": 0.7109 + }, + { + "start": 24248.08, + "end": 24251.3, + "probability": 0.9366 + }, + { + "start": 24251.42, + "end": 24252.88, + "probability": 0.7377 + }, + { + "start": 24253.22, + "end": 24255.34, + "probability": 0.7664 + }, + { + "start": 24256.36, + "end": 24257.76, + "probability": 0.6611 + }, + { + "start": 24257.84, + "end": 24257.96, + "probability": 0.8916 + }, + { + "start": 24258.08, + "end": 24261.2, + "probability": 0.9474 + }, + { + "start": 24261.34, + "end": 24262.71, + "probability": 0.9797 + }, + { + "start": 24263.78, + "end": 24269.25, + "probability": 0.9623 + }, + { + "start": 24269.64, + "end": 24278.3, + "probability": 0.9875 + }, + { + "start": 24279.1, + "end": 24281.76, + "probability": 0.9028 + }, + { + "start": 24281.92, + "end": 24282.8, + "probability": 0.4886 + }, + { + "start": 24282.84, + "end": 24284.64, + "probability": 0.5257 + }, + { + "start": 24284.86, + "end": 24286.28, + "probability": 0.6405 + }, + { + "start": 24288.88, + "end": 24292.38, + "probability": 0.9941 + }, + { + "start": 24292.38, + "end": 24296.9, + "probability": 0.943 + }, + { + "start": 24297.28, + "end": 24299.17, + "probability": 0.9269 + }, + { + "start": 24299.76, + "end": 24300.74, + "probability": 0.667 + }, + { + "start": 24300.83, + "end": 24302.14, + "probability": 0.8733 + }, + { + "start": 24302.3, + "end": 24304.62, + "probability": 0.9487 + }, + { + "start": 24304.76, + "end": 24306.64, + "probability": 0.7119 + }, + { + "start": 24307.12, + "end": 24307.84, + "probability": 0.8613 + }, + { + "start": 24308.22, + "end": 24309.84, + "probability": 0.6964 + }, + { + "start": 24310.36, + "end": 24313.78, + "probability": 0.9139 + }, + { + "start": 24314.0, + "end": 24317.98, + "probability": 0.9793 + }, + { + "start": 24318.46, + "end": 24321.72, + "probability": 0.8492 + }, + { + "start": 24321.8, + "end": 24326.02, + "probability": 0.91 + }, + { + "start": 24326.02, + "end": 24328.66, + "probability": 0.9991 + }, + { + "start": 24329.96, + "end": 24330.56, + "probability": 0.9554 + }, + { + "start": 24332.88, + "end": 24334.8, + "probability": 0.7839 + }, + { + "start": 24334.94, + "end": 24336.2, + "probability": 0.8689 + }, + { + "start": 24336.32, + "end": 24341.16, + "probability": 0.9834 + }, + { + "start": 24342.02, + "end": 24344.96, + "probability": 0.9935 + }, + { + "start": 24345.12, + "end": 24346.99, + "probability": 0.978 + }, + { + "start": 24348.0, + "end": 24351.64, + "probability": 0.9724 + }, + { + "start": 24351.8, + "end": 24352.38, + "probability": 0.6933 + }, + { + "start": 24353.38, + "end": 24356.5, + "probability": 0.9702 + }, + { + "start": 24356.56, + "end": 24357.78, + "probability": 0.9009 + }, + { + "start": 24358.38, + "end": 24359.62, + "probability": 0.9959 + }, + { + "start": 24360.36, + "end": 24362.06, + "probability": 0.9121 + }, + { + "start": 24362.68, + "end": 24363.4, + "probability": 0.5888 + }, + { + "start": 24364.0, + "end": 24366.48, + "probability": 0.9713 + }, + { + "start": 24366.58, + "end": 24368.86, + "probability": 0.8594 + }, + { + "start": 24369.04, + "end": 24370.7, + "probability": 0.5372 + }, + { + "start": 24371.26, + "end": 24372.36, + "probability": 0.9482 + }, + { + "start": 24372.78, + "end": 24377.7, + "probability": 0.9375 + }, + { + "start": 24378.36, + "end": 24379.24, + "probability": 0.7644 + }, + { + "start": 24379.38, + "end": 24380.4, + "probability": 0.5334 + }, + { + "start": 24380.4, + "end": 24380.52, + "probability": 0.0814 + }, + { + "start": 24380.52, + "end": 24381.74, + "probability": 0.9929 + }, + { + "start": 24382.05, + "end": 24382.14, + "probability": 0.1894 + }, + { + "start": 24382.14, + "end": 24382.24, + "probability": 0.7493 + }, + { + "start": 24382.32, + "end": 24385.14, + "probability": 0.9597 + }, + { + "start": 24385.26, + "end": 24385.26, + "probability": 0.332 + }, + { + "start": 24385.42, + "end": 24386.96, + "probability": 0.3308 + }, + { + "start": 24387.06, + "end": 24387.06, + "probability": 0.2678 + }, + { + "start": 24387.06, + "end": 24392.58, + "probability": 0.9769 + }, + { + "start": 24392.88, + "end": 24393.54, + "probability": 0.4344 + }, + { + "start": 24393.84, + "end": 24395.04, + "probability": 0.8925 + }, + { + "start": 24395.58, + "end": 24395.8, + "probability": 0.7599 + }, + { + "start": 24397.32, + "end": 24399.2, + "probability": 0.9305 + }, + { + "start": 24399.22, + "end": 24401.52, + "probability": 0.8461 + }, + { + "start": 24402.22, + "end": 24404.42, + "probability": 0.8145 + }, + { + "start": 24428.1, + "end": 24428.28, + "probability": 0.5493 + }, + { + "start": 24432.42, + "end": 24434.37, + "probability": 0.682 + }, + { + "start": 24436.7, + "end": 24438.8, + "probability": 0.9186 + }, + { + "start": 24439.56, + "end": 24442.26, + "probability": 0.9385 + }, + { + "start": 24443.38, + "end": 24444.42, + "probability": 0.7033 + }, + { + "start": 24446.34, + "end": 24451.0, + "probability": 0.7974 + }, + { + "start": 24451.98, + "end": 24454.7, + "probability": 0.9945 + }, + { + "start": 24455.88, + "end": 24458.36, + "probability": 0.9407 + }, + { + "start": 24458.54, + "end": 24460.12, + "probability": 0.9976 + }, + { + "start": 24460.8, + "end": 24463.72, + "probability": 0.9492 + }, + { + "start": 24464.74, + "end": 24468.09, + "probability": 0.9427 + }, + { + "start": 24468.52, + "end": 24473.72, + "probability": 0.996 + }, + { + "start": 24475.46, + "end": 24475.46, + "probability": 0.0891 + }, + { + "start": 24475.68, + "end": 24476.26, + "probability": 0.4404 + }, + { + "start": 24476.34, + "end": 24479.74, + "probability": 0.9728 + }, + { + "start": 24479.88, + "end": 24481.52, + "probability": 0.9321 + }, + { + "start": 24483.04, + "end": 24489.36, + "probability": 0.9837 + }, + { + "start": 24490.76, + "end": 24492.04, + "probability": 0.7682 + }, + { + "start": 24492.52, + "end": 24497.16, + "probability": 0.9209 + }, + { + "start": 24497.54, + "end": 24498.54, + "probability": 0.9717 + }, + { + "start": 24499.7, + "end": 24503.84, + "probability": 0.9816 + }, + { + "start": 24504.7, + "end": 24506.82, + "probability": 0.9977 + }, + { + "start": 24507.68, + "end": 24518.08, + "probability": 0.9399 + }, + { + "start": 24518.08, + "end": 24524.32, + "probability": 0.9989 + }, + { + "start": 24525.02, + "end": 24527.22, + "probability": 0.967 + }, + { + "start": 24527.38, + "end": 24528.14, + "probability": 0.4124 + }, + { + "start": 24528.28, + "end": 24529.76, + "probability": 0.7344 + }, + { + "start": 24530.16, + "end": 24534.24, + "probability": 0.9922 + }, + { + "start": 24534.24, + "end": 24538.03, + "probability": 0.9912 + }, + { + "start": 24538.38, + "end": 24540.86, + "probability": 0.9882 + }, + { + "start": 24541.0, + "end": 24542.04, + "probability": 0.9932 + }, + { + "start": 24542.14, + "end": 24543.3, + "probability": 0.9638 + }, + { + "start": 24544.72, + "end": 24547.42, + "probability": 0.9594 + }, + { + "start": 24548.78, + "end": 24549.64, + "probability": 0.9834 + }, + { + "start": 24553.1, + "end": 24555.58, + "probability": 0.9699 + }, + { + "start": 24555.84, + "end": 24562.46, + "probability": 0.9862 + }, + { + "start": 24563.54, + "end": 24567.92, + "probability": 0.7872 + }, + { + "start": 24568.38, + "end": 24571.82, + "probability": 0.8918 + }, + { + "start": 24571.82, + "end": 24574.78, + "probability": 0.8636 + }, + { + "start": 24575.88, + "end": 24577.22, + "probability": 0.5005 + }, + { + "start": 24577.9, + "end": 24579.2, + "probability": 0.5996 + }, + { + "start": 24579.86, + "end": 24582.48, + "probability": 0.6815 + }, + { + "start": 24583.2, + "end": 24585.24, + "probability": 0.8174 + }, + { + "start": 24585.94, + "end": 24587.66, + "probability": 0.9863 + }, + { + "start": 24587.7, + "end": 24593.02, + "probability": 0.989 + }, + { + "start": 24593.66, + "end": 24602.56, + "probability": 0.8749 + }, + { + "start": 24602.96, + "end": 24605.74, + "probability": 0.9907 + }, + { + "start": 24605.86, + "end": 24609.28, + "probability": 0.9473 + }, + { + "start": 24609.38, + "end": 24613.38, + "probability": 0.9745 + }, + { + "start": 24613.7, + "end": 24614.1, + "probability": 0.4029 + }, + { + "start": 24614.14, + "end": 24615.7, + "probability": 0.8312 + }, + { + "start": 24616.6, + "end": 24619.56, + "probability": 0.7754 + }, + { + "start": 24619.84, + "end": 24620.64, + "probability": 0.8751 + }, + { + "start": 24620.64, + "end": 24625.16, + "probability": 0.9802 + }, + { + "start": 24625.58, + "end": 24627.68, + "probability": 0.5812 + }, + { + "start": 24627.78, + "end": 24630.22, + "probability": 0.7524 + }, + { + "start": 24643.64, + "end": 24644.82, + "probability": 0.6599 + }, + { + "start": 24647.88, + "end": 24650.56, + "probability": 0.9985 + }, + { + "start": 24651.3, + "end": 24653.5, + "probability": 0.8396 + }, + { + "start": 24654.18, + "end": 24660.18, + "probability": 0.9971 + }, + { + "start": 24660.34, + "end": 24665.61, + "probability": 0.9863 + }, + { + "start": 24666.94, + "end": 24670.58, + "probability": 0.9664 + }, + { + "start": 24670.8, + "end": 24675.0, + "probability": 0.9666 + }, + { + "start": 24675.18, + "end": 24676.26, + "probability": 0.947 + }, + { + "start": 24677.22, + "end": 24678.86, + "probability": 0.8578 + }, + { + "start": 24679.42, + "end": 24682.54, + "probability": 0.9953 + }, + { + "start": 24682.68, + "end": 24685.86, + "probability": 0.9968 + }, + { + "start": 24686.64, + "end": 24692.38, + "probability": 0.9741 + }, + { + "start": 24692.56, + "end": 24695.5, + "probability": 0.9243 + }, + { + "start": 24696.52, + "end": 24701.84, + "probability": 0.9696 + }, + { + "start": 24702.08, + "end": 24702.52, + "probability": 0.7507 + }, + { + "start": 24702.92, + "end": 24703.46, + "probability": 0.9846 + }, + { + "start": 24704.62, + "end": 24707.2, + "probability": 0.9839 + }, + { + "start": 24707.62, + "end": 24712.52, + "probability": 0.7658 + }, + { + "start": 24712.58, + "end": 24715.02, + "probability": 0.8765 + }, + { + "start": 24716.04, + "end": 24717.82, + "probability": 0.7798 + }, + { + "start": 24718.78, + "end": 24722.54, + "probability": 0.9357 + }, + { + "start": 24723.5, + "end": 24725.94, + "probability": 0.8818 + }, + { + "start": 24726.56, + "end": 24729.06, + "probability": 0.985 + }, + { + "start": 24729.54, + "end": 24731.6, + "probability": 0.9946 + }, + { + "start": 24732.62, + "end": 24733.4, + "probability": 0.4252 + }, + { + "start": 24733.48, + "end": 24737.0, + "probability": 0.9797 + }, + { + "start": 24738.2, + "end": 24741.48, + "probability": 0.1399 + }, + { + "start": 24741.54, + "end": 24747.24, + "probability": 0.7876 + }, + { + "start": 24747.4, + "end": 24749.94, + "probability": 0.2698 + }, + { + "start": 24750.18, + "end": 24750.4, + "probability": 0.2906 + }, + { + "start": 24750.44, + "end": 24754.62, + "probability": 0.9146 + }, + { + "start": 24754.88, + "end": 24755.6, + "probability": 0.0098 + }, + { + "start": 24756.68, + "end": 24759.74, + "probability": 0.5366 + }, + { + "start": 24759.92, + "end": 24760.8, + "probability": 0.3055 + }, + { + "start": 24760.8, + "end": 24762.4, + "probability": 0.9937 + }, + { + "start": 24762.86, + "end": 24765.1, + "probability": 0.89 + }, + { + "start": 24765.18, + "end": 24768.24, + "probability": 0.9785 + }, + { + "start": 24768.84, + "end": 24770.58, + "probability": 0.8471 + }, + { + "start": 24770.96, + "end": 24772.36, + "probability": 0.9531 + }, + { + "start": 24772.46, + "end": 24776.52, + "probability": 0.9678 + }, + { + "start": 24777.74, + "end": 24780.9, + "probability": 0.9827 + }, + { + "start": 24781.42, + "end": 24783.3, + "probability": 0.8536 + }, + { + "start": 24784.22, + "end": 24785.62, + "probability": 0.6518 + }, + { + "start": 24786.32, + "end": 24792.96, + "probability": 0.9913 + }, + { + "start": 24793.74, + "end": 24795.16, + "probability": 0.7038 + }, + { + "start": 24797.98, + "end": 24799.99, + "probability": 0.9941 + }, + { + "start": 24805.26, + "end": 24807.0, + "probability": 0.7557 + }, + { + "start": 24807.84, + "end": 24811.88, + "probability": 0.4741 + }, + { + "start": 24812.9, + "end": 24815.42, + "probability": 0.9118 + }, + { + "start": 24815.64, + "end": 24816.22, + "probability": 0.6349 + }, + { + "start": 24816.7, + "end": 24817.48, + "probability": 0.9543 + }, + { + "start": 24817.72, + "end": 24818.84, + "probability": 0.7444 + }, + { + "start": 24818.88, + "end": 24821.06, + "probability": 0.9596 + }, + { + "start": 24822.6, + "end": 24823.44, + "probability": 0.9795 + }, + { + "start": 24823.56, + "end": 24824.24, + "probability": 0.9145 + }, + { + "start": 24824.4, + "end": 24825.06, + "probability": 0.8442 + }, + { + "start": 24825.38, + "end": 24829.24, + "probability": 0.9631 + }, + { + "start": 24833.76, + "end": 24835.96, + "probability": 0.9866 + }, + { + "start": 24836.66, + "end": 24837.38, + "probability": 0.3874 + }, + { + "start": 24837.62, + "end": 24838.3, + "probability": 0.7656 + }, + { + "start": 24838.36, + "end": 24839.1, + "probability": 0.8547 + }, + { + "start": 24839.1, + "end": 24841.28, + "probability": 0.9971 + }, + { + "start": 24841.44, + "end": 24843.6, + "probability": 0.9939 + }, + { + "start": 24843.96, + "end": 24845.28, + "probability": 0.8212 + }, + { + "start": 24845.88, + "end": 24848.38, + "probability": 0.9602 + }, + { + "start": 24849.94, + "end": 24852.82, + "probability": 0.8367 + }, + { + "start": 24853.46, + "end": 24854.56, + "probability": 0.9025 + }, + { + "start": 24855.31, + "end": 24858.0, + "probability": 0.9931 + }, + { + "start": 24859.74, + "end": 24863.7, + "probability": 0.9872 + }, + { + "start": 24863.86, + "end": 24864.6, + "probability": 0.673 + }, + { + "start": 24864.88, + "end": 24870.22, + "probability": 0.9312 + }, + { + "start": 24870.32, + "end": 24871.42, + "probability": 0.6419 + }, + { + "start": 24871.58, + "end": 24874.6, + "probability": 0.9777 + }, + { + "start": 24876.12, + "end": 24877.86, + "probability": 0.9882 + }, + { + "start": 24879.1, + "end": 24879.96, + "probability": 0.9961 + }, + { + "start": 24880.72, + "end": 24882.5, + "probability": 0.9405 + }, + { + "start": 24883.0, + "end": 24886.48, + "probability": 0.9738 + }, + { + "start": 24886.58, + "end": 24886.92, + "probability": 0.5626 + }, + { + "start": 24886.96, + "end": 24887.44, + "probability": 0.5205 + }, + { + "start": 24887.74, + "end": 24890.22, + "probability": 0.9601 + }, + { + "start": 24890.52, + "end": 24891.0, + "probability": 0.8844 + }, + { + "start": 24891.44, + "end": 24891.66, + "probability": 0.5734 + }, + { + "start": 24891.94, + "end": 24894.02, + "probability": 0.9933 + }, + { + "start": 24894.06, + "end": 24895.3, + "probability": 0.9492 + }, + { + "start": 24895.72, + "end": 24898.22, + "probability": 0.8029 + }, + { + "start": 24898.98, + "end": 24899.96, + "probability": 0.9279 + }, + { + "start": 24900.18, + "end": 24900.96, + "probability": 0.7465 + }, + { + "start": 24901.06, + "end": 24903.79, + "probability": 0.9971 + }, + { + "start": 24906.55, + "end": 24908.39, + "probability": 0.9854 + }, + { + "start": 24908.53, + "end": 24909.84, + "probability": 0.9985 + }, + { + "start": 24910.93, + "end": 24914.13, + "probability": 0.8414 + }, + { + "start": 24914.43, + "end": 24916.87, + "probability": 0.9976 + }, + { + "start": 24916.95, + "end": 24917.99, + "probability": 0.8785 + }, + { + "start": 24918.31, + "end": 24922.21, + "probability": 0.9902 + }, + { + "start": 24922.21, + "end": 24926.47, + "probability": 0.9955 + }, + { + "start": 24926.72, + "end": 24933.13, + "probability": 0.9897 + }, + { + "start": 24933.53, + "end": 24937.09, + "probability": 0.9972 + }, + { + "start": 24937.09, + "end": 24937.35, + "probability": 0.3143 + }, + { + "start": 24937.35, + "end": 24941.17, + "probability": 0.8394 + }, + { + "start": 24941.29, + "end": 24945.51, + "probability": 0.9033 + }, + { + "start": 24945.55, + "end": 24951.81, + "probability": 0.9902 + }, + { + "start": 24952.03, + "end": 24952.33, + "probability": 0.2941 + }, + { + "start": 24952.65, + "end": 24956.69, + "probability": 0.88 + }, + { + "start": 24956.93, + "end": 24958.69, + "probability": 0.7956 + }, + { + "start": 24958.69, + "end": 24958.69, + "probability": 0.0225 + }, + { + "start": 24958.69, + "end": 24958.69, + "probability": 0.0295 + }, + { + "start": 24958.69, + "end": 24959.25, + "probability": 0.4657 + }, + { + "start": 24959.53, + "end": 24961.73, + "probability": 0.6049 + }, + { + "start": 24961.73, + "end": 24963.36, + "probability": 0.7703 + }, + { + "start": 24964.09, + "end": 24964.45, + "probability": 0.8411 + }, + { + "start": 24965.01, + "end": 24965.07, + "probability": 0.38 + }, + { + "start": 24965.07, + "end": 24967.29, + "probability": 0.7347 + }, + { + "start": 24967.37, + "end": 24967.69, + "probability": 0.0405 + }, + { + "start": 24967.69, + "end": 24971.35, + "probability": 0.9848 + }, + { + "start": 24971.65, + "end": 24971.81, + "probability": 0.448 + }, + { + "start": 24971.81, + "end": 24971.81, + "probability": 0.0256 + }, + { + "start": 24971.81, + "end": 24971.81, + "probability": 0.0448 + }, + { + "start": 24971.81, + "end": 24973.91, + "probability": 0.908 + }, + { + "start": 24973.99, + "end": 24974.05, + "probability": 0.4753 + }, + { + "start": 24974.05, + "end": 24975.86, + "probability": 0.5734 + }, + { + "start": 24976.41, + "end": 24979.65, + "probability": 0.677 + }, + { + "start": 24980.33, + "end": 24981.07, + "probability": 0.6631 + }, + { + "start": 24992.69, + "end": 24993.67, + "probability": 0.5302 + }, + { + "start": 24994.25, + "end": 24995.89, + "probability": 0.8844 + }, + { + "start": 24997.81, + "end": 25002.49, + "probability": 0.9741 + }, + { + "start": 25002.51, + "end": 25006.05, + "probability": 0.9885 + }, + { + "start": 25007.01, + "end": 25007.63, + "probability": 0.7024 + }, + { + "start": 25009.91, + "end": 25013.85, + "probability": 0.9829 + }, + { + "start": 25015.03, + "end": 25015.66, + "probability": 0.978 + }, + { + "start": 25016.95, + "end": 25020.57, + "probability": 0.8245 + }, + { + "start": 25021.23, + "end": 25022.31, + "probability": 0.8989 + }, + { + "start": 25024.09, + "end": 25025.25, + "probability": 0.8109 + }, + { + "start": 25025.51, + "end": 25026.85, + "probability": 0.6069 + }, + { + "start": 25027.05, + "end": 25028.63, + "probability": 0.8762 + }, + { + "start": 25028.67, + "end": 25033.13, + "probability": 0.8509 + }, + { + "start": 25034.69, + "end": 25037.59, + "probability": 0.9632 + }, + { + "start": 25038.73, + "end": 25041.01, + "probability": 0.8981 + }, + { + "start": 25042.29, + "end": 25042.93, + "probability": 0.952 + }, + { + "start": 25046.41, + "end": 25051.27, + "probability": 0.7458 + }, + { + "start": 25051.81, + "end": 25054.61, + "probability": 0.7125 + }, + { + "start": 25055.77, + "end": 25060.17, + "probability": 0.8057 + }, + { + "start": 25060.35, + "end": 25065.85, + "probability": 0.8342 + }, + { + "start": 25066.51, + "end": 25067.89, + "probability": 0.837 + }, + { + "start": 25068.73, + "end": 25071.07, + "probability": 0.9086 + }, + { + "start": 25071.91, + "end": 25073.29, + "probability": 0.7017 + }, + { + "start": 25074.49, + "end": 25075.39, + "probability": 0.5763 + }, + { + "start": 25077.31, + "end": 25080.11, + "probability": 0.9792 + }, + { + "start": 25081.61, + "end": 25086.07, + "probability": 0.9976 + }, + { + "start": 25086.55, + "end": 25088.91, + "probability": 0.3355 + }, + { + "start": 25089.43, + "end": 25091.37, + "probability": 0.6631 + }, + { + "start": 25091.47, + "end": 25091.91, + "probability": 0.9691 + }, + { + "start": 25094.57, + "end": 25097.09, + "probability": 0.938 + }, + { + "start": 25097.95, + "end": 25100.57, + "probability": 0.9951 + }, + { + "start": 25101.91, + "end": 25104.31, + "probability": 0.8165 + }, + { + "start": 25106.15, + "end": 25108.41, + "probability": 0.9405 + }, + { + "start": 25109.49, + "end": 25111.09, + "probability": 0.98 + }, + { + "start": 25111.97, + "end": 25116.63, + "probability": 0.9878 + }, + { + "start": 25117.75, + "end": 25120.09, + "probability": 0.9443 + }, + { + "start": 25120.27, + "end": 25127.01, + "probability": 0.9141 + }, + { + "start": 25127.45, + "end": 25128.79, + "probability": 0.5442 + }, + { + "start": 25129.47, + "end": 25131.61, + "probability": 0.822 + }, + { + "start": 25133.23, + "end": 25136.99, + "probability": 0.948 + }, + { + "start": 25139.51, + "end": 25143.57, + "probability": 0.9883 + }, + { + "start": 25143.65, + "end": 25144.57, + "probability": 0.9462 + }, + { + "start": 25144.77, + "end": 25147.53, + "probability": 0.4929 + }, + { + "start": 25147.53, + "end": 25147.97, + "probability": 0.1771 + }, + { + "start": 25150.61, + "end": 25155.13, + "probability": 0.9988 + }, + { + "start": 25155.77, + "end": 25158.56, + "probability": 0.8042 + }, + { + "start": 25159.23, + "end": 25160.85, + "probability": 0.9768 + }, + { + "start": 25161.23, + "end": 25164.05, + "probability": 0.7461 + }, + { + "start": 25164.73, + "end": 25166.31, + "probability": 0.5023 + }, + { + "start": 25167.45, + "end": 25168.27, + "probability": 0.8379 + }, + { + "start": 25168.55, + "end": 25169.19, + "probability": 0.5211 + }, + { + "start": 25169.77, + "end": 25170.25, + "probability": 0.4464 + }, + { + "start": 25170.57, + "end": 25172.23, + "probability": 0.558 + }, + { + "start": 25172.23, + "end": 25172.39, + "probability": 0.6533 + }, + { + "start": 25172.57, + "end": 25174.66, + "probability": 0.4089 + }, + { + "start": 25175.53, + "end": 25176.02, + "probability": 0.7675 + }, + { + "start": 25176.39, + "end": 25177.54, + "probability": 0.8504 + }, + { + "start": 25177.81, + "end": 25181.89, + "probability": 0.6557 + }, + { + "start": 25181.89, + "end": 25181.99, + "probability": 0.5106 + }, + { + "start": 25184.17, + "end": 25186.11, + "probability": 0.7954 + }, + { + "start": 25187.88, + "end": 25193.47, + "probability": 0.9937 + }, + { + "start": 25193.91, + "end": 25199.15, + "probability": 0.9464 + }, + { + "start": 25199.15, + "end": 25203.79, + "probability": 0.9565 + }, + { + "start": 25205.61, + "end": 25217.59, + "probability": 0.9238 + }, + { + "start": 25218.17, + "end": 25219.63, + "probability": 0.8344 + }, + { + "start": 25220.21, + "end": 25222.31, + "probability": 0.9927 + }, + { + "start": 25223.27, + "end": 25229.11, + "probability": 0.9897 + }, + { + "start": 25229.77, + "end": 25232.52, + "probability": 0.9178 + }, + { + "start": 25233.61, + "end": 25235.19, + "probability": 0.9066 + }, + { + "start": 25235.23, + "end": 25236.89, + "probability": 0.9597 + }, + { + "start": 25236.93, + "end": 25239.19, + "probability": 0.9948 + }, + { + "start": 25239.19, + "end": 25239.33, + "probability": 0.5572 + }, + { + "start": 25240.55, + "end": 25241.59, + "probability": 0.3767 + }, + { + "start": 25242.17, + "end": 25246.27, + "probability": 0.8679 + }, + { + "start": 25261.53, + "end": 25263.84, + "probability": 0.6746 + }, + { + "start": 25264.41, + "end": 25265.99, + "probability": 0.8908 + }, + { + "start": 25266.23, + "end": 25269.63, + "probability": 0.9938 + }, + { + "start": 25269.63, + "end": 25273.37, + "probability": 0.9924 + }, + { + "start": 25274.05, + "end": 25278.95, + "probability": 0.988 + }, + { + "start": 25278.95, + "end": 25285.97, + "probability": 0.9932 + }, + { + "start": 25286.01, + "end": 25286.27, + "probability": 0.6699 + }, + { + "start": 25287.21, + "end": 25289.45, + "probability": 0.9534 + }, + { + "start": 25289.59, + "end": 25292.77, + "probability": 0.995 + }, + { + "start": 25292.77, + "end": 25295.31, + "probability": 0.9989 + }, + { + "start": 25295.55, + "end": 25298.13, + "probability": 0.9951 + }, + { + "start": 25298.13, + "end": 25301.07, + "probability": 0.9988 + }, + { + "start": 25301.33, + "end": 25305.07, + "probability": 0.9953 + }, + { + "start": 25306.12, + "end": 25307.49, + "probability": 0.3074 + }, + { + "start": 25307.49, + "end": 25308.75, + "probability": 0.6907 + }, + { + "start": 25308.99, + "end": 25314.55, + "probability": 0.9982 + }, + { + "start": 25314.73, + "end": 25314.95, + "probability": 0.9285 + }, + { + "start": 25315.31, + "end": 25320.73, + "probability": 0.9869 + }, + { + "start": 25320.81, + "end": 25323.37, + "probability": 0.9273 + }, + { + "start": 25323.45, + "end": 25326.59, + "probability": 0.8401 + }, + { + "start": 25326.87, + "end": 25332.19, + "probability": 0.977 + }, + { + "start": 25332.73, + "end": 25334.33, + "probability": 0.9949 + }, + { + "start": 25334.99, + "end": 25339.69, + "probability": 0.9983 + }, + { + "start": 25340.09, + "end": 25340.47, + "probability": 0.3668 + }, + { + "start": 25340.47, + "end": 25343.91, + "probability": 0.9055 + }, + { + "start": 25343.99, + "end": 25345.55, + "probability": 0.9526 + }, + { + "start": 25346.09, + "end": 25347.77, + "probability": 0.8447 + }, + { + "start": 25347.89, + "end": 25348.57, + "probability": 0.8398 + }, + { + "start": 25348.63, + "end": 25349.99, + "probability": 0.9814 + }, + { + "start": 25350.05, + "end": 25351.81, + "probability": 0.981 + }, + { + "start": 25352.43, + "end": 25355.95, + "probability": 0.9802 + }, + { + "start": 25357.63, + "end": 25360.57, + "probability": 0.9894 + }, + { + "start": 25360.57, + "end": 25362.97, + "probability": 0.9982 + }, + { + "start": 25364.21, + "end": 25365.09, + "probability": 0.6559 + }, + { + "start": 25366.39, + "end": 25369.29, + "probability": 0.9985 + }, + { + "start": 25369.95, + "end": 25373.21, + "probability": 0.9503 + }, + { + "start": 25373.35, + "end": 25373.47, + "probability": 0.4071 + }, + { + "start": 25373.51, + "end": 25377.95, + "probability": 0.9849 + }, + { + "start": 25379.57, + "end": 25380.75, + "probability": 0.958 + }, + { + "start": 25381.29, + "end": 25384.31, + "probability": 0.9818 + }, + { + "start": 25384.47, + "end": 25389.97, + "probability": 0.9801 + }, + { + "start": 25389.97, + "end": 25392.97, + "probability": 0.9844 + }, + { + "start": 25393.13, + "end": 25393.91, + "probability": 0.9761 + }, + { + "start": 25394.87, + "end": 25395.89, + "probability": 0.1154 + }, + { + "start": 25395.89, + "end": 25398.47, + "probability": 0.9048 + }, + { + "start": 25398.89, + "end": 25403.37, + "probability": 0.9213 + }, + { + "start": 25403.49, + "end": 25403.97, + "probability": 0.271 + }, + { + "start": 25404.37, + "end": 25406.53, + "probability": 0.543 + }, + { + "start": 25406.53, + "end": 25408.43, + "probability": 0.7153 + }, + { + "start": 25408.49, + "end": 25415.11, + "probability": 0.9869 + }, + { + "start": 25415.72, + "end": 25416.07, + "probability": 0.0251 + }, + { + "start": 25416.59, + "end": 25416.71, + "probability": 0.0155 + }, + { + "start": 25416.71, + "end": 25418.73, + "probability": 0.8743 + }, + { + "start": 25421.33, + "end": 25423.31, + "probability": 0.9661 + }, + { + "start": 25424.45, + "end": 25427.21, + "probability": 0.8343 + }, + { + "start": 25427.83, + "end": 25431.19, + "probability": 0.9855 + }, + { + "start": 25431.27, + "end": 25432.79, + "probability": 0.9707 + }, + { + "start": 25432.91, + "end": 25435.89, + "probability": 0.6719 + }, + { + "start": 25436.19, + "end": 25438.47, + "probability": 0.9026 + }, + { + "start": 25438.51, + "end": 25438.97, + "probability": 0.8213 + }, + { + "start": 25439.15, + "end": 25440.21, + "probability": 0.8514 + }, + { + "start": 25440.29, + "end": 25444.11, + "probability": 0.9238 + }, + { + "start": 25444.11, + "end": 25447.71, + "probability": 0.954 + }, + { + "start": 25447.81, + "end": 25449.27, + "probability": 0.5781 + }, + { + "start": 25449.71, + "end": 25453.03, + "probability": 0.9411 + }, + { + "start": 25453.07, + "end": 25453.89, + "probability": 0.7609 + }, + { + "start": 25454.53, + "end": 25458.37, + "probability": 0.9578 + }, + { + "start": 25458.41, + "end": 25458.87, + "probability": 0.7026 + }, + { + "start": 25459.43, + "end": 25460.73, + "probability": 0.9817 + }, + { + "start": 25461.03, + "end": 25461.97, + "probability": 0.8819 + }, + { + "start": 25461.99, + "end": 25465.59, + "probability": 0.9706 + }, + { + "start": 25465.59, + "end": 25468.29, + "probability": 0.9934 + }, + { + "start": 25468.45, + "end": 25471.21, + "probability": 0.9141 + }, + { + "start": 25471.41, + "end": 25474.47, + "probability": 0.9705 + }, + { + "start": 25476.17, + "end": 25476.99, + "probability": 0.48 + }, + { + "start": 25477.03, + "end": 25477.31, + "probability": 0.8295 + }, + { + "start": 25477.37, + "end": 25478.77, + "probability": 0.98 + }, + { + "start": 25478.87, + "end": 25479.95, + "probability": 0.9761 + }, + { + "start": 25480.05, + "end": 25480.42, + "probability": 0.5077 + }, + { + "start": 25481.09, + "end": 25481.61, + "probability": 0.3121 + }, + { + "start": 25482.01, + "end": 25485.31, + "probability": 0.6679 + }, + { + "start": 25485.49, + "end": 25486.15, + "probability": 0.9248 + }, + { + "start": 25486.37, + "end": 25488.87, + "probability": 0.9586 + }, + { + "start": 25489.13, + "end": 25490.77, + "probability": 0.9707 + }, + { + "start": 25490.95, + "end": 25493.95, + "probability": 0.9907 + }, + { + "start": 25493.95, + "end": 25498.63, + "probability": 0.9281 + }, + { + "start": 25498.77, + "end": 25499.35, + "probability": 0.7269 + }, + { + "start": 25500.03, + "end": 25501.31, + "probability": 0.9954 + }, + { + "start": 25501.49, + "end": 25505.71, + "probability": 0.8283 + }, + { + "start": 25505.83, + "end": 25509.53, + "probability": 0.8439 + }, + { + "start": 25509.95, + "end": 25511.39, + "probability": 0.8955 + }, + { + "start": 25511.49, + "end": 25512.27, + "probability": 0.7823 + }, + { + "start": 25512.47, + "end": 25518.23, + "probability": 0.8707 + }, + { + "start": 25518.35, + "end": 25521.77, + "probability": 0.9966 + }, + { + "start": 25521.77, + "end": 25528.13, + "probability": 0.9874 + }, + { + "start": 25528.59, + "end": 25530.25, + "probability": 0.9958 + }, + { + "start": 25530.35, + "end": 25532.71, + "probability": 0.128 + }, + { + "start": 25533.13, + "end": 25536.43, + "probability": 0.9292 + }, + { + "start": 25536.95, + "end": 25539.61, + "probability": 0.6337 + }, + { + "start": 25540.67, + "end": 25543.67, + "probability": 0.9941 + }, + { + "start": 25543.85, + "end": 25546.17, + "probability": 0.9195 + }, + { + "start": 25546.17, + "end": 25548.63, + "probability": 0.9513 + }, + { + "start": 25548.71, + "end": 25549.94, + "probability": 0.9844 + }, + { + "start": 25550.35, + "end": 25555.03, + "probability": 0.9617 + }, + { + "start": 25555.81, + "end": 25557.15, + "probability": 0.652 + }, + { + "start": 25557.23, + "end": 25558.61, + "probability": 0.9868 + }, + { + "start": 25562.05, + "end": 25562.99, + "probability": 0.1661 + }, + { + "start": 25562.99, + "end": 25563.95, + "probability": 0.4827 + }, + { + "start": 25564.07, + "end": 25565.79, + "probability": 0.933 + }, + { + "start": 25566.45, + "end": 25569.69, + "probability": 0.9852 + }, + { + "start": 25569.69, + "end": 25573.21, + "probability": 0.9502 + }, + { + "start": 25573.37, + "end": 25575.09, + "probability": 0.9556 + }, + { + "start": 25575.21, + "end": 25575.75, + "probability": 0.0602 + }, + { + "start": 25575.91, + "end": 25576.21, + "probability": 0.0482 + }, + { + "start": 25576.99, + "end": 25577.61, + "probability": 0.1888 + }, + { + "start": 25577.69, + "end": 25580.51, + "probability": 0.8584 + }, + { + "start": 25580.99, + "end": 25583.77, + "probability": 0.9863 + }, + { + "start": 25583.91, + "end": 25585.81, + "probability": 0.88 + }, + { + "start": 25585.89, + "end": 25586.53, + "probability": 0.3317 + }, + { + "start": 25587.65, + "end": 25590.81, + "probability": 0.9976 + }, + { + "start": 25590.81, + "end": 25593.13, + "probability": 0.9824 + }, + { + "start": 25593.65, + "end": 25596.29, + "probability": 0.8721 + }, + { + "start": 25596.95, + "end": 25601.61, + "probability": 0.9937 + }, + { + "start": 25601.77, + "end": 25603.59, + "probability": 0.996 + }, + { + "start": 25604.31, + "end": 25608.21, + "probability": 0.9988 + }, + { + "start": 25608.69, + "end": 25609.67, + "probability": 0.7569 + }, + { + "start": 25609.89, + "end": 25611.81, + "probability": 0.9637 + }, + { + "start": 25612.23, + "end": 25614.19, + "probability": 0.881 + }, + { + "start": 25614.49, + "end": 25616.07, + "probability": 0.9951 + }, + { + "start": 25616.91, + "end": 25618.05, + "probability": 0.5343 + }, + { + "start": 25618.33, + "end": 25622.21, + "probability": 0.9839 + }, + { + "start": 25623.29, + "end": 25626.29, + "probability": 0.7921 + }, + { + "start": 25626.37, + "end": 25626.99, + "probability": 0.9285 + }, + { + "start": 25627.19, + "end": 25630.45, + "probability": 0.9461 + }, + { + "start": 25631.21, + "end": 25634.05, + "probability": 0.823 + }, + { + "start": 25634.91, + "end": 25636.13, + "probability": 0.9946 + }, + { + "start": 25636.23, + "end": 25637.07, + "probability": 0.8079 + }, + { + "start": 25637.39, + "end": 25638.02, + "probability": 0.7921 + }, + { + "start": 25639.41, + "end": 25643.89, + "probability": 0.9835 + }, + { + "start": 25644.35, + "end": 25645.27, + "probability": 0.6916 + }, + { + "start": 25647.55, + "end": 25649.79, + "probability": 0.9863 + }, + { + "start": 25650.09, + "end": 25651.81, + "probability": 0.8195 + }, + { + "start": 25652.33, + "end": 25655.65, + "probability": 0.9411 + }, + { + "start": 25655.95, + "end": 25660.31, + "probability": 0.9482 + }, + { + "start": 25660.41, + "end": 25662.95, + "probability": 0.5446 + }, + { + "start": 25663.29, + "end": 25668.16, + "probability": 0.9653 + }, + { + "start": 25669.02, + "end": 25671.7, + "probability": 0.7962 + }, + { + "start": 25671.8, + "end": 25672.6, + "probability": 0.9658 + }, + { + "start": 25672.68, + "end": 25675.8, + "probability": 0.9618 + }, + { + "start": 25676.18, + "end": 25677.74, + "probability": 0.6044 + }, + { + "start": 25678.12, + "end": 25679.48, + "probability": 0.9802 + }, + { + "start": 25679.56, + "end": 25683.2, + "probability": 0.8153 + }, + { + "start": 25684.04, + "end": 25687.54, + "probability": 0.8448 + }, + { + "start": 25688.04, + "end": 25691.94, + "probability": 0.7828 + }, + { + "start": 25692.26, + "end": 25694.46, + "probability": 0.8946 + }, + { + "start": 25694.9, + "end": 25698.34, + "probability": 0.9558 + }, + { + "start": 25698.82, + "end": 25706.7, + "probability": 0.854 + }, + { + "start": 25706.82, + "end": 25708.14, + "probability": 0.9387 + }, + { + "start": 25708.36, + "end": 25709.45, + "probability": 0.4898 + }, + { + "start": 25712.72, + "end": 25714.1, + "probability": 0.0403 + }, + { + "start": 25719.4, + "end": 25721.06, + "probability": 0.4376 + }, + { + "start": 25722.99, + "end": 25725.04, + "probability": 0.0277 + }, + { + "start": 25725.06, + "end": 25725.44, + "probability": 0.0645 + }, + { + "start": 25725.44, + "end": 25726.82, + "probability": 0.0167 + }, + { + "start": 25726.82, + "end": 25727.56, + "probability": 0.2514 + }, + { + "start": 25727.7, + "end": 25731.04, + "probability": 0.6577 + }, + { + "start": 25731.36, + "end": 25733.02, + "probability": 0.2473 + }, + { + "start": 25733.46, + "end": 25736.12, + "probability": 0.0544 + }, + { + "start": 25736.18, + "end": 25736.64, + "probability": 0.2086 + }, + { + "start": 25736.64, + "end": 25737.12, + "probability": 0.0798 + }, + { + "start": 25737.12, + "end": 25738.18, + "probability": 0.0142 + }, + { + "start": 25738.52, + "end": 25742.56, + "probability": 0.1152 + }, + { + "start": 25757.16, + "end": 25761.12, + "probability": 0.0607 + }, + { + "start": 25761.12, + "end": 25761.33, + "probability": 0.1397 + }, + { + "start": 25761.7, + "end": 25766.26, + "probability": 0.0415 + }, + { + "start": 25766.52, + "end": 25767.82, + "probability": 0.1161 + }, + { + "start": 25767.82, + "end": 25773.14, + "probability": 0.068 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.0, + "end": 25799.0, + "probability": 0.0 + }, + { + "start": 25799.1, + "end": 25801.1, + "probability": 0.9919 + }, + { + "start": 25801.66, + "end": 25806.1, + "probability": 0.9854 + }, + { + "start": 25806.24, + "end": 25806.7, + "probability": 0.9207 + }, + { + "start": 25807.3, + "end": 25810.64, + "probability": 0.9618 + }, + { + "start": 25810.82, + "end": 25811.6, + "probability": 0.9403 + }, + { + "start": 25812.28, + "end": 25815.52, + "probability": 0.9821 + }, + { + "start": 25816.2, + "end": 25818.36, + "probability": 0.9937 + }, + { + "start": 25819.36, + "end": 25820.26, + "probability": 0.9018 + }, + { + "start": 25821.04, + "end": 25822.6, + "probability": 0.854 + }, + { + "start": 25822.7, + "end": 25827.9, + "probability": 0.9957 + }, + { + "start": 25827.9, + "end": 25830.92, + "probability": 0.9952 + }, + { + "start": 25831.88, + "end": 25833.54, + "probability": 0.998 + }, + { + "start": 25834.18, + "end": 25836.36, + "probability": 0.9167 + }, + { + "start": 25836.54, + "end": 25837.66, + "probability": 0.9548 + }, + { + "start": 25838.38, + "end": 25839.74, + "probability": 0.998 + }, + { + "start": 25840.4, + "end": 25842.16, + "probability": 0.9832 + }, + { + "start": 25842.36, + "end": 25846.7, + "probability": 0.957 + }, + { + "start": 25846.78, + "end": 25847.8, + "probability": 0.1415 + }, + { + "start": 25847.88, + "end": 25850.36, + "probability": 0.3356 + }, + { + "start": 25850.94, + "end": 25852.78, + "probability": 0.8218 + }, + { + "start": 25852.88, + "end": 25853.51, + "probability": 0.8081 + }, + { + "start": 25854.5, + "end": 25855.16, + "probability": 0.8359 + }, + { + "start": 25855.16, + "end": 25858.58, + "probability": 0.3495 + }, + { + "start": 25858.68, + "end": 25861.02, + "probability": 0.8849 + }, + { + "start": 25861.44, + "end": 25862.74, + "probability": 0.9895 + }, + { + "start": 25863.24, + "end": 25866.66, + "probability": 0.9805 + }, + { + "start": 25867.02, + "end": 25868.28, + "probability": 0.902 + }, + { + "start": 25868.32, + "end": 25868.82, + "probability": 0.9705 + }, + { + "start": 25869.32, + "end": 25871.82, + "probability": 0.9871 + }, + { + "start": 25872.08, + "end": 25876.02, + "probability": 0.8953 + }, + { + "start": 25876.16, + "end": 25876.94, + "probability": 0.8457 + }, + { + "start": 25876.98, + "end": 25879.62, + "probability": 0.9871 + }, + { + "start": 25879.78, + "end": 25881.1, + "probability": 0.9658 + }, + { + "start": 25881.44, + "end": 25884.58, + "probability": 0.9615 + }, + { + "start": 25884.98, + "end": 25887.0, + "probability": 0.9838 + }, + { + "start": 25887.28, + "end": 25889.36, + "probability": 0.9188 + }, + { + "start": 25889.6, + "end": 25890.96, + "probability": 0.5938 + }, + { + "start": 25891.0, + "end": 25892.5, + "probability": 0.98 + }, + { + "start": 25892.6, + "end": 25892.88, + "probability": 0.852 + }, + { + "start": 25893.46, + "end": 25897.12, + "probability": 0.9824 + }, + { + "start": 25897.22, + "end": 25899.02, + "probability": 0.9778 + }, + { + "start": 25899.7, + "end": 25902.6, + "probability": 0.7839 + }, + { + "start": 25902.78, + "end": 25907.78, + "probability": 0.7835 + }, + { + "start": 25908.8, + "end": 25912.72, + "probability": 0.9056 + }, + { + "start": 25913.24, + "end": 25915.56, + "probability": 0.9969 + }, + { + "start": 25915.7, + "end": 25916.84, + "probability": 0.8301 + }, + { + "start": 25916.92, + "end": 25919.0, + "probability": 0.7804 + }, + { + "start": 25919.46, + "end": 25920.14, + "probability": 0.7638 + }, + { + "start": 25920.3, + "end": 25923.88, + "probability": 0.9917 + }, + { + "start": 25924.48, + "end": 25925.38, + "probability": 0.6504 + }, + { + "start": 25926.08, + "end": 25928.58, + "probability": 0.8911 + }, + { + "start": 25930.04, + "end": 25932.42, + "probability": 0.966 + }, + { + "start": 25933.18, + "end": 25934.46, + "probability": 0.3302 + }, + { + "start": 25934.58, + "end": 25936.94, + "probability": 0.9653 + }, + { + "start": 25937.48, + "end": 25942.46, + "probability": 0.9731 + }, + { + "start": 25943.7, + "end": 25947.08, + "probability": 0.9812 + }, + { + "start": 25947.42, + "end": 25953.32, + "probability": 0.9476 + }, + { + "start": 25953.46, + "end": 25955.88, + "probability": 0.676 + }, + { + "start": 25955.96, + "end": 25958.42, + "probability": 0.9492 + }, + { + "start": 25958.54, + "end": 25961.16, + "probability": 0.985 + }, + { + "start": 25961.16, + "end": 25964.14, + "probability": 0.9897 + }, + { + "start": 25964.6, + "end": 25966.68, + "probability": 0.9932 + }, + { + "start": 25967.32, + "end": 25969.52, + "probability": 0.9936 + }, + { + "start": 25969.72, + "end": 25970.08, + "probability": 0.8444 + }, + { + "start": 25970.62, + "end": 25971.49, + "probability": 0.9363 + }, + { + "start": 25971.78, + "end": 25972.62, + "probability": 0.9548 + }, + { + "start": 25972.96, + "end": 25975.12, + "probability": 0.9398 + }, + { + "start": 25975.5, + "end": 25977.24, + "probability": 0.9976 + }, + { + "start": 25977.6, + "end": 25979.86, + "probability": 0.9985 + }, + { + "start": 25980.06, + "end": 25980.88, + "probability": 0.9165 + }, + { + "start": 25981.18, + "end": 25984.66, + "probability": 0.9694 + }, + { + "start": 25984.76, + "end": 25986.22, + "probability": 0.9468 + }, + { + "start": 25986.28, + "end": 25991.52, + "probability": 0.9589 + }, + { + "start": 25992.4, + "end": 25996.12, + "probability": 0.9507 + }, + { + "start": 25996.2, + "end": 25997.36, + "probability": 0.7708 + }, + { + "start": 25997.52, + "end": 25998.28, + "probability": 0.9319 + }, + { + "start": 25998.32, + "end": 26001.3, + "probability": 0.8915 + }, + { + "start": 26001.5, + "end": 26002.36, + "probability": 0.9468 + }, + { + "start": 26002.7, + "end": 26004.0, + "probability": 0.9564 + }, + { + "start": 26004.08, + "end": 26005.22, + "probability": 0.9609 + }, + { + "start": 26005.54, + "end": 26006.22, + "probability": 0.9734 + }, + { + "start": 26006.48, + "end": 26011.04, + "probability": 0.9953 + }, + { + "start": 26011.22, + "end": 26014.68, + "probability": 0.9902 + }, + { + "start": 26014.92, + "end": 26016.56, + "probability": 0.9668 + }, + { + "start": 26016.62, + "end": 26020.28, + "probability": 0.9554 + }, + { + "start": 26021.32, + "end": 26022.72, + "probability": 0.4118 + }, + { + "start": 26023.78, + "end": 26024.72, + "probability": 0.8676 + }, + { + "start": 26025.06, + "end": 26029.14, + "probability": 0.995 + }, + { + "start": 26029.74, + "end": 26030.34, + "probability": 0.5403 + }, + { + "start": 26030.4, + "end": 26032.44, + "probability": 0.5118 + }, + { + "start": 26032.44, + "end": 26034.3, + "probability": 0.9783 + }, + { + "start": 26034.4, + "end": 26035.5, + "probability": 0.6332 + }, + { + "start": 26036.24, + "end": 26036.76, + "probability": 0.3757 + }, + { + "start": 26036.76, + "end": 26039.08, + "probability": 0.8452 + }, + { + "start": 26039.22, + "end": 26039.58, + "probability": 0.8101 + }, + { + "start": 26039.58, + "end": 26039.58, + "probability": 0.4361 + }, + { + "start": 26039.58, + "end": 26039.68, + "probability": 0.3952 + }, + { + "start": 26039.7, + "end": 26040.02, + "probability": 0.837 + }, + { + "start": 26040.12, + "end": 26041.52, + "probability": 0.7062 + }, + { + "start": 26041.58, + "end": 26044.56, + "probability": 0.9961 + }, + { + "start": 26044.56, + "end": 26047.42, + "probability": 0.9897 + }, + { + "start": 26047.46, + "end": 26048.56, + "probability": 0.9383 + }, + { + "start": 26048.7, + "end": 26049.28, + "probability": 0.6784 + }, + { + "start": 26049.34, + "end": 26051.22, + "probability": 0.9636 + }, + { + "start": 26051.34, + "end": 26051.58, + "probability": 0.7189 + }, + { + "start": 26051.58, + "end": 26053.12, + "probability": 0.7725 + }, + { + "start": 26053.22, + "end": 26054.84, + "probability": 0.6665 + }, + { + "start": 26056.06, + "end": 26057.48, + "probability": 0.998 + }, + { + "start": 26057.56, + "end": 26059.24, + "probability": 0.913 + }, + { + "start": 26061.24, + "end": 26065.56, + "probability": 0.8843 + }, + { + "start": 26067.64, + "end": 26068.12, + "probability": 0.9003 + }, + { + "start": 26069.72, + "end": 26072.22, + "probability": 0.5819 + }, + { + "start": 26073.2, + "end": 26075.6, + "probability": 0.9131 + }, + { + "start": 26076.8, + "end": 26079.41, + "probability": 0.9673 + }, + { + "start": 26080.56, + "end": 26081.04, + "probability": 0.062 + }, + { + "start": 26081.68, + "end": 26082.11, + "probability": 0.1833 + }, + { + "start": 26084.4, + "end": 26084.4, + "probability": 0.1366 + }, + { + "start": 26084.4, + "end": 26084.4, + "probability": 0.2468 + }, + { + "start": 26084.4, + "end": 26084.4, + "probability": 0.0487 + }, + { + "start": 26084.4, + "end": 26084.7, + "probability": 0.2166 + }, + { + "start": 26084.94, + "end": 26085.14, + "probability": 0.0864 + }, + { + "start": 26085.26, + "end": 26085.82, + "probability": 0.8429 + }, + { + "start": 26085.84, + "end": 26086.06, + "probability": 0.0981 + }, + { + "start": 26086.06, + "end": 26086.58, + "probability": 0.3095 + }, + { + "start": 26086.92, + "end": 26087.86, + "probability": 0.098 + }, + { + "start": 26088.04, + "end": 26090.52, + "probability": 0.6807 + }, + { + "start": 26095.24, + "end": 26097.7, + "probability": 0.7561 + }, + { + "start": 26098.48, + "end": 26098.78, + "probability": 0.6204 + }, + { + "start": 26098.78, + "end": 26100.02, + "probability": 0.8442 + }, + { + "start": 26101.18, + "end": 26105.76, + "probability": 0.9749 + }, + { + "start": 26105.76, + "end": 26110.5, + "probability": 0.8806 + }, + { + "start": 26110.5, + "end": 26115.28, + "probability": 0.977 + }, + { + "start": 26115.98, + "end": 26119.22, + "probability": 0.929 + }, + { + "start": 26119.42, + "end": 26122.32, + "probability": 0.9806 + }, + { + "start": 26122.88, + "end": 26124.44, + "probability": 0.8162 + }, + { + "start": 26125.74, + "end": 26127.36, + "probability": 0.5833 + }, + { + "start": 26127.36, + "end": 26127.62, + "probability": 0.8278 + }, + { + "start": 26128.98, + "end": 26131.84, + "probability": 0.941 + }, + { + "start": 26132.6, + "end": 26133.48, + "probability": 0.7592 + }, + { + "start": 26133.54, + "end": 26138.34, + "probability": 0.9253 + }, + { + "start": 26139.5, + "end": 26141.48, + "probability": 0.9539 + }, + { + "start": 26142.96, + "end": 26144.94, + "probability": 0.7614 + }, + { + "start": 26146.54, + "end": 26148.96, + "probability": 0.7693 + }, + { + "start": 26150.18, + "end": 26154.76, + "probability": 0.8634 + }, + { + "start": 26155.38, + "end": 26160.6, + "probability": 0.9955 + }, + { + "start": 26161.74, + "end": 26165.3, + "probability": 0.898 + }, + { + "start": 26166.5, + "end": 26172.62, + "probability": 0.9678 + }, + { + "start": 26173.5, + "end": 26174.4, + "probability": 0.9807 + }, + { + "start": 26174.5, + "end": 26175.28, + "probability": 0.8313 + }, + { + "start": 26175.38, + "end": 26176.1, + "probability": 0.7683 + }, + { + "start": 26176.14, + "end": 26177.84, + "probability": 0.4651 + }, + { + "start": 26177.84, + "end": 26178.38, + "probability": 0.3806 + }, + { + "start": 26178.72, + "end": 26183.42, + "probability": 0.8501 + }, + { + "start": 26184.68, + "end": 26185.84, + "probability": 0.971 + }, + { + "start": 26186.76, + "end": 26192.84, + "probability": 0.9918 + }, + { + "start": 26193.6, + "end": 26197.49, + "probability": 0.9916 + }, + { + "start": 26198.06, + "end": 26199.9, + "probability": 0.9815 + }, + { + "start": 26200.86, + "end": 26202.14, + "probability": 0.9853 + }, + { + "start": 26203.02, + "end": 26203.98, + "probability": 0.9019 + }, + { + "start": 26204.9, + "end": 26208.18, + "probability": 0.9377 + }, + { + "start": 26208.86, + "end": 26211.12, + "probability": 0.8186 + }, + { + "start": 26211.64, + "end": 26213.9, + "probability": 0.9581 + }, + { + "start": 26214.82, + "end": 26215.9, + "probability": 0.9871 + }, + { + "start": 26216.12, + "end": 26217.46, + "probability": 0.5106 + }, + { + "start": 26217.54, + "end": 26218.64, + "probability": 0.8559 + }, + { + "start": 26218.7, + "end": 26219.46, + "probability": 0.7261 + }, + { + "start": 26219.84, + "end": 26222.44, + "probability": 0.9703 + }, + { + "start": 26223.0, + "end": 26224.4, + "probability": 0.928 + }, + { + "start": 26224.94, + "end": 26227.62, + "probability": 0.9822 + }, + { + "start": 26228.1, + "end": 26229.08, + "probability": 0.8262 + }, + { + "start": 26229.42, + "end": 26230.12, + "probability": 0.2744 + }, + { + "start": 26230.54, + "end": 26233.26, + "probability": 0.9633 + }, + { + "start": 26234.42, + "end": 26235.3, + "probability": 0.6004 + }, + { + "start": 26235.48, + "end": 26241.12, + "probability": 0.9656 + }, + { + "start": 26242.34, + "end": 26246.39, + "probability": 0.9786 + }, + { + "start": 26246.44, + "end": 26249.64, + "probability": 0.9717 + }, + { + "start": 26252.0, + "end": 26254.4, + "probability": 0.8728 + }, + { + "start": 26256.24, + "end": 26259.06, + "probability": 0.811 + }, + { + "start": 26260.28, + "end": 26263.78, + "probability": 0.8845 + }, + { + "start": 26264.48, + "end": 26267.26, + "probability": 0.9303 + }, + { + "start": 26269.26, + "end": 26269.67, + "probability": 0.5339 + }, + { + "start": 26271.75, + "end": 26274.36, + "probability": 0.7239 + }, + { + "start": 26275.68, + "end": 26278.7, + "probability": 0.9836 + }, + { + "start": 26280.42, + "end": 26289.56, + "probability": 0.9778 + }, + { + "start": 26290.4, + "end": 26291.52, + "probability": 0.9702 + }, + { + "start": 26292.36, + "end": 26295.22, + "probability": 0.6482 + }, + { + "start": 26296.44, + "end": 26299.1, + "probability": 0.9333 + }, + { + "start": 26299.52, + "end": 26303.14, + "probability": 0.9716 + }, + { + "start": 26304.52, + "end": 26310.62, + "probability": 0.9743 + }, + { + "start": 26312.32, + "end": 26313.45, + "probability": 0.7692 + }, + { + "start": 26314.16, + "end": 26315.24, + "probability": 0.7513 + }, + { + "start": 26315.84, + "end": 26321.72, + "probability": 0.5655 + }, + { + "start": 26322.42, + "end": 26322.96, + "probability": 0.8915 + }, + { + "start": 26323.5, + "end": 26325.6, + "probability": 0.8759 + }, + { + "start": 26326.2, + "end": 26332.68, + "probability": 0.9351 + }, + { + "start": 26333.32, + "end": 26334.3, + "probability": 0.4578 + }, + { + "start": 26334.4, + "end": 26339.42, + "probability": 0.8239 + }, + { + "start": 26339.94, + "end": 26343.46, + "probability": 0.8941 + }, + { + "start": 26344.24, + "end": 26345.88, + "probability": 0.9135 + }, + { + "start": 26347.24, + "end": 26349.56, + "probability": 0.627 + }, + { + "start": 26349.62, + "end": 26350.7, + "probability": 0.8728 + }, + { + "start": 26350.78, + "end": 26353.94, + "probability": 0.4997 + }, + { + "start": 26354.08, + "end": 26354.86, + "probability": 0.6767 + }, + { + "start": 26355.72, + "end": 26357.54, + "probability": 0.9683 + }, + { + "start": 26358.34, + "end": 26359.64, + "probability": 0.9938 + }, + { + "start": 26359.78, + "end": 26363.62, + "probability": 0.9823 + }, + { + "start": 26365.58, + "end": 26365.98, + "probability": 0.7146 + }, + { + "start": 26366.0, + "end": 26366.94, + "probability": 0.942 + }, + { + "start": 26367.04, + "end": 26373.88, + "probability": 0.9611 + }, + { + "start": 26374.24, + "end": 26381.24, + "probability": 0.666 + }, + { + "start": 26385.94, + "end": 26390.38, + "probability": 0.9123 + }, + { + "start": 26390.38, + "end": 26395.12, + "probability": 0.972 + }, + { + "start": 26396.64, + "end": 26398.54, + "probability": 0.2434 + }, + { + "start": 26398.64, + "end": 26399.1, + "probability": 0.8596 + }, + { + "start": 26399.22, + "end": 26407.3, + "probability": 0.943 + }, + { + "start": 26408.24, + "end": 26412.24, + "probability": 0.9992 + }, + { + "start": 26412.24, + "end": 26416.42, + "probability": 0.9524 + }, + { + "start": 26417.94, + "end": 26419.14, + "probability": 0.742 + }, + { + "start": 26419.9, + "end": 26424.78, + "probability": 0.9905 + }, + { + "start": 26424.78, + "end": 26428.86, + "probability": 0.9983 + }, + { + "start": 26429.84, + "end": 26431.56, + "probability": 0.6607 + }, + { + "start": 26433.98, + "end": 26437.6, + "probability": 0.9939 + }, + { + "start": 26437.86, + "end": 26443.86, + "probability": 0.899 + }, + { + "start": 26446.52, + "end": 26448.0, + "probability": 0.6931 + }, + { + "start": 26448.98, + "end": 26453.74, + "probability": 0.8596 + }, + { + "start": 26455.06, + "end": 26456.34, + "probability": 0.1888 + }, + { + "start": 26458.06, + "end": 26464.26, + "probability": 0.4437 + }, + { + "start": 26465.22, + "end": 26466.32, + "probability": 0.5838 + }, + { + "start": 26466.82, + "end": 26467.73, + "probability": 0.9219 + }, + { + "start": 26468.3, + "end": 26469.88, + "probability": 0.9605 + }, + { + "start": 26470.32, + "end": 26471.06, + "probability": 0.7469 + }, + { + "start": 26471.18, + "end": 26472.33, + "probability": 0.9529 + }, + { + "start": 26472.52, + "end": 26474.9, + "probability": 0.9861 + }, + { + "start": 26475.52, + "end": 26476.38, + "probability": 0.6804 + }, + { + "start": 26476.5, + "end": 26482.38, + "probability": 0.9746 + }, + { + "start": 26484.4, + "end": 26486.46, + "probability": 0.9354 + }, + { + "start": 26487.72, + "end": 26489.28, + "probability": 0.9479 + }, + { + "start": 26489.9, + "end": 26492.3, + "probability": 0.8667 + }, + { + "start": 26492.46, + "end": 26493.78, + "probability": 0.6441 + }, + { + "start": 26494.46, + "end": 26498.56, + "probability": 0.7851 + }, + { + "start": 26499.06, + "end": 26501.18, + "probability": 0.9091 + }, + { + "start": 26501.84, + "end": 26503.39, + "probability": 0.9379 + }, + { + "start": 26504.9, + "end": 26508.0, + "probability": 0.8816 + }, + { + "start": 26508.04, + "end": 26508.4, + "probability": 0.7729 + }, + { + "start": 26508.44, + "end": 26509.16, + "probability": 0.7283 + }, + { + "start": 26509.6, + "end": 26513.2, + "probability": 0.9741 + }, + { + "start": 26513.46, + "end": 26514.28, + "probability": 0.9556 + }, + { + "start": 26514.86, + "end": 26517.0, + "probability": 0.9909 + }, + { + "start": 26517.78, + "end": 26521.72, + "probability": 0.8515 + }, + { + "start": 26522.4, + "end": 26526.84, + "probability": 0.8847 + }, + { + "start": 26528.52, + "end": 26533.22, + "probability": 0.7031 + }, + { + "start": 26534.0, + "end": 26536.6, + "probability": 0.9648 + }, + { + "start": 26537.28, + "end": 26538.88, + "probability": 0.937 + }, + { + "start": 26539.2, + "end": 26541.12, + "probability": 0.9348 + }, + { + "start": 26541.72, + "end": 26547.48, + "probability": 0.9963 + }, + { + "start": 26547.66, + "end": 26548.96, + "probability": 0.9785 + }, + { + "start": 26550.2, + "end": 26551.82, + "probability": 0.8862 + }, + { + "start": 26553.46, + "end": 26559.08, + "probability": 0.8846 + }, + { + "start": 26559.16, + "end": 26560.14, + "probability": 0.5742 + }, + { + "start": 26560.42, + "end": 26560.84, + "probability": 0.5583 + }, + { + "start": 26560.98, + "end": 26560.98, + "probability": 0.0968 + }, + { + "start": 26561.06, + "end": 26564.02, + "probability": 0.8914 + }, + { + "start": 26564.12, + "end": 26565.36, + "probability": 0.6838 + }, + { + "start": 26565.42, + "end": 26566.88, + "probability": 0.7842 + }, + { + "start": 26567.28, + "end": 26570.68, + "probability": 0.9724 + }, + { + "start": 26571.62, + "end": 26573.84, + "probability": 0.8867 + }, + { + "start": 26575.3, + "end": 26582.3, + "probability": 0.8787 + }, + { + "start": 26583.5, + "end": 26584.4, + "probability": 0.9089 + }, + { + "start": 26584.54, + "end": 26585.32, + "probability": 0.9502 + }, + { + "start": 26585.36, + "end": 26586.14, + "probability": 0.9838 + }, + { + "start": 26586.28, + "end": 26586.82, + "probability": 0.9007 + }, + { + "start": 26587.6, + "end": 26588.82, + "probability": 0.9756 + }, + { + "start": 26589.54, + "end": 26591.5, + "probability": 0.9419 + }, + { + "start": 26592.52, + "end": 26596.0, + "probability": 0.9482 + }, + { + "start": 26596.62, + "end": 26599.22, + "probability": 0.7909 + }, + { + "start": 26599.96, + "end": 26601.13, + "probability": 0.916 + }, + { + "start": 26601.62, + "end": 26607.26, + "probability": 0.984 + }, + { + "start": 26608.26, + "end": 26610.86, + "probability": 0.9912 + }, + { + "start": 26610.96, + "end": 26613.24, + "probability": 0.9003 + }, + { + "start": 26614.44, + "end": 26618.98, + "probability": 0.666 + }, + { + "start": 26620.82, + "end": 26623.28, + "probability": 0.9077 + }, + { + "start": 26623.98, + "end": 26625.16, + "probability": 0.9922 + }, + { + "start": 26626.98, + "end": 26630.74, + "probability": 0.9895 + }, + { + "start": 26631.98, + "end": 26633.78, + "probability": 0.9945 + }, + { + "start": 26634.54, + "end": 26637.66, + "probability": 0.9561 + }, + { + "start": 26637.78, + "end": 26639.08, + "probability": 0.6479 + }, + { + "start": 26639.18, + "end": 26639.8, + "probability": 0.8154 + }, + { + "start": 26640.82, + "end": 26646.53, + "probability": 0.9525 + }, + { + "start": 26646.68, + "end": 26647.22, + "probability": 0.7719 + }, + { + "start": 26647.42, + "end": 26652.6, + "probability": 0.9587 + }, + { + "start": 26653.94, + "end": 26658.88, + "probability": 0.7578 + }, + { + "start": 26659.5, + "end": 26660.22, + "probability": 0.7809 + }, + { + "start": 26660.86, + "end": 26662.72, + "probability": 0.8806 + }, + { + "start": 26663.74, + "end": 26665.04, + "probability": 0.765 + }, + { + "start": 26665.12, + "end": 26665.78, + "probability": 0.6119 + }, + { + "start": 26665.88, + "end": 26672.58, + "probability": 0.9693 + }, + { + "start": 26672.58, + "end": 26677.18, + "probability": 0.968 + }, + { + "start": 26677.62, + "end": 26680.78, + "probability": 0.7344 + }, + { + "start": 26681.18, + "end": 26683.06, + "probability": 0.3666 + }, + { + "start": 26683.76, + "end": 26684.48, + "probability": 0.7396 + }, + { + "start": 26684.56, + "end": 26686.48, + "probability": 0.8487 + }, + { + "start": 26686.78, + "end": 26691.5, + "probability": 0.9429 + }, + { + "start": 26691.72, + "end": 26694.96, + "probability": 0.9856 + }, + { + "start": 26695.44, + "end": 26696.92, + "probability": 0.8449 + }, + { + "start": 26698.18, + "end": 26700.26, + "probability": 0.8633 + }, + { + "start": 26700.94, + "end": 26701.15, + "probability": 0.5066 + }, + { + "start": 26701.88, + "end": 26704.62, + "probability": 0.7947 + }, + { + "start": 26705.32, + "end": 26709.72, + "probability": 0.8942 + }, + { + "start": 26709.8, + "end": 26713.8, + "probability": 0.8019 + }, + { + "start": 26713.8, + "end": 26718.18, + "probability": 0.9804 + }, + { + "start": 26719.36, + "end": 26722.32, + "probability": 0.7681 + }, + { + "start": 26722.52, + "end": 26723.04, + "probability": 0.5163 + }, + { + "start": 26723.14, + "end": 26725.28, + "probability": 0.9814 + }, + { + "start": 26726.24, + "end": 26728.94, + "probability": 0.9916 + }, + { + "start": 26729.7, + "end": 26733.86, + "probability": 0.9866 + }, + { + "start": 26734.7, + "end": 26738.67, + "probability": 0.9863 + }, + { + "start": 26739.14, + "end": 26741.66, + "probability": 0.9216 + }, + { + "start": 26741.82, + "end": 26746.38, + "probability": 0.9737 + }, + { + "start": 26746.46, + "end": 26747.26, + "probability": 0.9546 + }, + { + "start": 26747.9, + "end": 26748.08, + "probability": 0.6923 + }, + { + "start": 26748.12, + "end": 26748.66, + "probability": 0.7286 + }, + { + "start": 26748.84, + "end": 26755.56, + "probability": 0.9442 + }, + { + "start": 26755.72, + "end": 26756.21, + "probability": 0.7026 + }, + { + "start": 26757.24, + "end": 26758.86, + "probability": 0.9668 + }, + { + "start": 26759.54, + "end": 26762.3, + "probability": 0.9257 + }, + { + "start": 26764.06, + "end": 26767.46, + "probability": 0.4231 + }, + { + "start": 26768.66, + "end": 26770.78, + "probability": 0.6909 + }, + { + "start": 26771.38, + "end": 26773.52, + "probability": 0.9762 + }, + { + "start": 26773.64, + "end": 26776.02, + "probability": 0.9917 + }, + { + "start": 26776.5, + "end": 26778.6, + "probability": 0.8057 + }, + { + "start": 26779.24, + "end": 26781.64, + "probability": 0.9362 + }, + { + "start": 26782.84, + "end": 26784.34, + "probability": 0.571 + }, + { + "start": 26784.52, + "end": 26786.92, + "probability": 0.8534 + }, + { + "start": 26788.38, + "end": 26788.64, + "probability": 0.8981 + }, + { + "start": 26788.68, + "end": 26790.77, + "probability": 0.9973 + }, + { + "start": 26791.2, + "end": 26794.4, + "probability": 0.998 + }, + { + "start": 26795.92, + "end": 26799.84, + "probability": 0.9622 + }, + { + "start": 26801.52, + "end": 26802.0, + "probability": 0.4244 + }, + { + "start": 26802.12, + "end": 26804.4, + "probability": 0.9486 + }, + { + "start": 26804.66, + "end": 26805.36, + "probability": 0.4789 + }, + { + "start": 26806.46, + "end": 26807.98, + "probability": 0.6831 + }, + { + "start": 26808.12, + "end": 26808.12, + "probability": 0.4959 + }, + { + "start": 26808.12, + "end": 26809.12, + "probability": 0.764 + }, + { + "start": 26809.52, + "end": 26811.42, + "probability": 0.8085 + }, + { + "start": 26811.5, + "end": 26816.36, + "probability": 0.9883 + }, + { + "start": 26816.36, + "end": 26820.82, + "probability": 0.9977 + }, + { + "start": 26821.92, + "end": 26822.86, + "probability": 0.6748 + }, + { + "start": 26823.22, + "end": 26829.64, + "probability": 0.99 + }, + { + "start": 26829.64, + "end": 26835.8, + "probability": 0.9068 + }, + { + "start": 26836.24, + "end": 26837.08, + "probability": 0.8233 + }, + { + "start": 26837.14, + "end": 26838.0, + "probability": 0.6313 + }, + { + "start": 26838.06, + "end": 26839.96, + "probability": 0.7844 + }, + { + "start": 26840.2, + "end": 26842.0, + "probability": 0.8701 + }, + { + "start": 26842.48, + "end": 26845.8, + "probability": 0.9409 + }, + { + "start": 26845.9, + "end": 26847.7, + "probability": 0.8232 + }, + { + "start": 26847.8, + "end": 26852.66, + "probability": 0.944 + }, + { + "start": 26852.82, + "end": 26854.1, + "probability": 0.9917 + }, + { + "start": 26854.42, + "end": 26855.92, + "probability": 0.912 + }, + { + "start": 26856.24, + "end": 26857.04, + "probability": 0.829 + }, + { + "start": 26857.12, + "end": 26859.6, + "probability": 0.8351 + }, + { + "start": 26859.6, + "end": 26863.61, + "probability": 0.9982 + }, + { + "start": 26863.82, + "end": 26865.48, + "probability": 0.6407 + }, + { + "start": 26866.49, + "end": 26869.04, + "probability": 0.9733 + }, + { + "start": 26869.24, + "end": 26871.16, + "probability": 0.9471 + }, + { + "start": 26871.32, + "end": 26873.28, + "probability": 0.9507 + }, + { + "start": 26873.92, + "end": 26874.8, + "probability": 0.9825 + }, + { + "start": 26874.92, + "end": 26876.28, + "probability": 0.9677 + }, + { + "start": 26876.52, + "end": 26879.2, + "probability": 0.9745 + }, + { + "start": 26879.2, + "end": 26881.34, + "probability": 0.998 + }, + { + "start": 26881.36, + "end": 26882.24, + "probability": 0.5009 + }, + { + "start": 26882.24, + "end": 26882.84, + "probability": 0.7265 + }, + { + "start": 26882.9, + "end": 26887.38, + "probability": 0.7678 + }, + { + "start": 26888.04, + "end": 26890.39, + "probability": 0.6544 + }, + { + "start": 26890.62, + "end": 26896.6, + "probability": 0.9408 + }, + { + "start": 26896.68, + "end": 26899.08, + "probability": 0.9709 + }, + { + "start": 26899.24, + "end": 26902.68, + "probability": 0.9527 + }, + { + "start": 26902.74, + "end": 26906.76, + "probability": 0.9899 + }, + { + "start": 26906.92, + "end": 26906.92, + "probability": 0.0103 + }, + { + "start": 26906.92, + "end": 26910.26, + "probability": 0.9856 + }, + { + "start": 26910.26, + "end": 26913.88, + "probability": 0.9908 + }, + { + "start": 26914.78, + "end": 26915.36, + "probability": 0.8083 + }, + { + "start": 26915.42, + "end": 26916.54, + "probability": 0.9783 + }, + { + "start": 26916.7, + "end": 26917.3, + "probability": 0.7854 + }, + { + "start": 26917.46, + "end": 26918.62, + "probability": 0.9454 + }, + { + "start": 26918.62, + "end": 26923.08, + "probability": 0.9579 + }, + { + "start": 26923.62, + "end": 26924.26, + "probability": 0.8189 + }, + { + "start": 26924.44, + "end": 26925.28, + "probability": 0.8721 + }, + { + "start": 26925.38, + "end": 26927.52, + "probability": 0.8197 + }, + { + "start": 26927.88, + "end": 26932.98, + "probability": 0.9958 + }, + { + "start": 26933.12, + "end": 26935.32, + "probability": 0.744 + }, + { + "start": 26935.5, + "end": 26939.04, + "probability": 0.9797 + }, + { + "start": 26939.04, + "end": 26941.42, + "probability": 0.9976 + }, + { + "start": 26941.54, + "end": 26945.22, + "probability": 0.962 + }, + { + "start": 26945.26, + "end": 26945.98, + "probability": 0.7123 + }, + { + "start": 26946.26, + "end": 26950.08, + "probability": 0.9839 + }, + { + "start": 26950.24, + "end": 26954.16, + "probability": 0.9977 + }, + { + "start": 26954.94, + "end": 26957.82, + "probability": 0.7271 + }, + { + "start": 26960.44, + "end": 26961.18, + "probability": 0.9683 + }, + { + "start": 26961.86, + "end": 26962.02, + "probability": 0.3761 + }, + { + "start": 26962.02, + "end": 26964.08, + "probability": 0.1974 + }, + { + "start": 26964.14, + "end": 26967.56, + "probability": 0.8474 + }, + { + "start": 26967.76, + "end": 26971.2, + "probability": 0.8857 + }, + { + "start": 26972.56, + "end": 26977.84, + "probability": 0.8776 + }, + { + "start": 26978.08, + "end": 26979.18, + "probability": 0.8367 + }, + { + "start": 26979.24, + "end": 26980.0, + "probability": 0.6251 + }, + { + "start": 26980.0, + "end": 26983.58, + "probability": 0.95 + }, + { + "start": 26983.72, + "end": 26985.38, + "probability": 0.9015 + }, + { + "start": 26985.88, + "end": 26986.34, + "probability": 0.9451 + }, + { + "start": 26986.48, + "end": 26989.44, + "probability": 0.9917 + }, + { + "start": 26989.9, + "end": 26991.4, + "probability": 0.9564 + }, + { + "start": 26992.36, + "end": 26993.56, + "probability": 0.7509 + }, + { + "start": 26993.78, + "end": 26996.44, + "probability": 0.9325 + }, + { + "start": 26996.72, + "end": 26999.96, + "probability": 0.9893 + }, + { + "start": 26999.96, + "end": 27003.3, + "probability": 0.9819 + }, + { + "start": 27003.5, + "end": 27004.0, + "probability": 0.9602 + }, + { + "start": 27004.76, + "end": 27009.98, + "probability": 0.9921 + }, + { + "start": 27010.64, + "end": 27012.94, + "probability": 0.9624 + }, + { + "start": 27013.42, + "end": 27015.06, + "probability": 0.9884 + }, + { + "start": 27015.18, + "end": 27015.9, + "probability": 0.9356 + }, + { + "start": 27016.0, + "end": 27020.28, + "probability": 0.7636 + }, + { + "start": 27020.74, + "end": 27023.5, + "probability": 0.9382 + }, + { + "start": 27023.54, + "end": 27025.68, + "probability": 0.9758 + }, + { + "start": 27026.66, + "end": 27028.43, + "probability": 0.7987 + }, + { + "start": 27029.12, + "end": 27034.04, + "probability": 0.9833 + }, + { + "start": 27034.1, + "end": 27034.68, + "probability": 0.7703 + }, + { + "start": 27034.76, + "end": 27038.52, + "probability": 0.9909 + }, + { + "start": 27038.52, + "end": 27041.78, + "probability": 0.9957 + }, + { + "start": 27041.82, + "end": 27043.96, + "probability": 0.9067 + }, + { + "start": 27043.96, + "end": 27048.84, + "probability": 0.9374 + }, + { + "start": 27049.48, + "end": 27050.92, + "probability": 0.8899 + }, + { + "start": 27051.04, + "end": 27055.68, + "probability": 0.9829 + }, + { + "start": 27055.98, + "end": 27056.84, + "probability": 0.6489 + }, + { + "start": 27057.34, + "end": 27059.92, + "probability": 0.9853 + }, + { + "start": 27060.16, + "end": 27062.16, + "probability": 0.8654 + }, + { + "start": 27062.32, + "end": 27063.18, + "probability": 0.8713 + }, + { + "start": 27063.2, + "end": 27065.24, + "probability": 0.9916 + }, + { + "start": 27065.36, + "end": 27067.26, + "probability": 0.9274 + }, + { + "start": 27067.4, + "end": 27069.44, + "probability": 0.9805 + }, + { + "start": 27069.96, + "end": 27071.12, + "probability": 0.8955 + }, + { + "start": 27071.2, + "end": 27071.8, + "probability": 0.8113 + }, + { + "start": 27071.92, + "end": 27075.82, + "probability": 0.974 + }, + { + "start": 27075.92, + "end": 27079.22, + "probability": 0.985 + }, + { + "start": 27079.3, + "end": 27079.88, + "probability": 0.5261 + }, + { + "start": 27080.66, + "end": 27083.06, + "probability": 0.9386 + }, + { + "start": 27083.48, + "end": 27088.64, + "probability": 0.953 + }, + { + "start": 27088.88, + "end": 27092.76, + "probability": 0.9486 + }, + { + "start": 27092.9, + "end": 27093.1, + "probability": 0.5243 + }, + { + "start": 27093.14, + "end": 27093.86, + "probability": 0.7043 + }, + { + "start": 27094.26, + "end": 27095.42, + "probability": 0.8926 + }, + { + "start": 27095.84, + "end": 27096.5, + "probability": 0.7513 + }, + { + "start": 27096.62, + "end": 27100.8, + "probability": 0.9907 + }, + { + "start": 27101.06, + "end": 27104.04, + "probability": 0.9379 + }, + { + "start": 27104.22, + "end": 27106.06, + "probability": 0.8298 + }, + { + "start": 27106.2, + "end": 27107.8, + "probability": 0.839 + }, + { + "start": 27107.92, + "end": 27108.88, + "probability": 0.8645 + }, + { + "start": 27109.34, + "end": 27112.52, + "probability": 0.9629 + }, + { + "start": 27112.68, + "end": 27117.38, + "probability": 0.9615 + }, + { + "start": 27117.62, + "end": 27117.64, + "probability": 0.4875 + }, + { + "start": 27117.76, + "end": 27118.04, + "probability": 0.8725 + }, + { + "start": 27118.16, + "end": 27119.28, + "probability": 0.9712 + }, + { + "start": 27119.36, + "end": 27121.24, + "probability": 0.6157 + }, + { + "start": 27121.8, + "end": 27123.3, + "probability": 0.8195 + }, + { + "start": 27123.52, + "end": 27124.2, + "probability": 0.4894 + }, + { + "start": 27124.28, + "end": 27125.56, + "probability": 0.9844 + }, + { + "start": 27125.66, + "end": 27126.6, + "probability": 0.5693 + }, + { + "start": 27126.6, + "end": 27127.16, + "probability": 0.2048 + }, + { + "start": 27127.72, + "end": 27127.72, + "probability": 0.2958 + }, + { + "start": 27127.72, + "end": 27128.94, + "probability": 0.9219 + }, + { + "start": 27129.2, + "end": 27129.66, + "probability": 0.7368 + }, + { + "start": 27130.34, + "end": 27132.4, + "probability": 0.7969 + }, + { + "start": 27132.54, + "end": 27136.1, + "probability": 0.9771 + }, + { + "start": 27136.1, + "end": 27140.14, + "probability": 0.9805 + }, + { + "start": 27140.32, + "end": 27141.8, + "probability": 0.989 + }, + { + "start": 27141.8, + "end": 27144.02, + "probability": 0.9731 + }, + { + "start": 27144.02, + "end": 27144.06, + "probability": 0.0301 + }, + { + "start": 27144.06, + "end": 27145.74, + "probability": 0.7231 + }, + { + "start": 27146.14, + "end": 27146.86, + "probability": 0.4521 + }, + { + "start": 27147.36, + "end": 27148.0, + "probability": 0.1591 + }, + { + "start": 27148.22, + "end": 27151.1, + "probability": 0.7661 + }, + { + "start": 27151.1, + "end": 27152.66, + "probability": 0.8309 + }, + { + "start": 27152.86, + "end": 27155.9, + "probability": 0.8741 + }, + { + "start": 27156.1, + "end": 27156.72, + "probability": 0.0103 + }, + { + "start": 27157.02, + "end": 27158.44, + "probability": 0.4909 + }, + { + "start": 27158.44, + "end": 27159.14, + "probability": 0.1416 + }, + { + "start": 27159.14, + "end": 27159.14, + "probability": 0.2466 + }, + { + "start": 27159.14, + "end": 27160.02, + "probability": 0.555 + }, + { + "start": 27161.18, + "end": 27161.4, + "probability": 0.0206 + }, + { + "start": 27161.4, + "end": 27161.68, + "probability": 0.4871 + }, + { + "start": 27162.1, + "end": 27162.36, + "probability": 0.2461 + }, + { + "start": 27162.74, + "end": 27163.14, + "probability": 0.1621 + }, + { + "start": 27163.14, + "end": 27164.92, + "probability": 0.7371 + }, + { + "start": 27165.02, + "end": 27166.38, + "probability": 0.9033 + }, + { + "start": 27166.88, + "end": 27167.78, + "probability": 0.494 + }, + { + "start": 27168.38, + "end": 27169.67, + "probability": 0.4703 + }, + { + "start": 27173.01, + "end": 27174.81, + "probability": 0.5777 + }, + { + "start": 27175.4, + "end": 27177.92, + "probability": 0.4997 + }, + { + "start": 27177.94, + "end": 27178.5, + "probability": 0.0746 + }, + { + "start": 27178.5, + "end": 27179.32, + "probability": 0.189 + }, + { + "start": 27179.6, + "end": 27180.22, + "probability": 0.2579 + }, + { + "start": 27180.44, + "end": 27182.28, + "probability": 0.5068 + }, + { + "start": 27182.38, + "end": 27184.4, + "probability": 0.3734 + }, + { + "start": 27184.4, + "end": 27186.28, + "probability": 0.5294 + }, + { + "start": 27186.5, + "end": 27190.7, + "probability": 0.7815 + }, + { + "start": 27190.7, + "end": 27194.42, + "probability": 0.9965 + }, + { + "start": 27194.62, + "end": 27198.26, + "probability": 0.9939 + }, + { + "start": 27198.42, + "end": 27200.54, + "probability": 0.8986 + }, + { + "start": 27200.54, + "end": 27203.32, + "probability": 0.9987 + }, + { + "start": 27203.54, + "end": 27206.32, + "probability": 0.9919 + }, + { + "start": 27206.68, + "end": 27209.41, + "probability": 0.85 + }, + { + "start": 27209.58, + "end": 27210.5, + "probability": 0.6026 + }, + { + "start": 27210.52, + "end": 27210.62, + "probability": 0.3753 + }, + { + "start": 27210.62, + "end": 27210.68, + "probability": 0.0183 + }, + { + "start": 27210.74, + "end": 27211.26, + "probability": 0.5381 + }, + { + "start": 27211.6, + "end": 27212.08, + "probability": 0.0403 + }, + { + "start": 27212.22, + "end": 27212.22, + "probability": 0.2674 + }, + { + "start": 27212.22, + "end": 27213.54, + "probability": 0.9562 + }, + { + "start": 27213.62, + "end": 27215.28, + "probability": 0.9168 + }, + { + "start": 27216.56, + "end": 27218.7, + "probability": 0.0565 + }, + { + "start": 27218.7, + "end": 27218.7, + "probability": 0.0264 + }, + { + "start": 27218.7, + "end": 27220.35, + "probability": 0.0814 + }, + { + "start": 27221.14, + "end": 27224.28, + "probability": 0.9592 + }, + { + "start": 27224.34, + "end": 27226.44, + "probability": 0.6072 + }, + { + "start": 27226.56, + "end": 27227.22, + "probability": 0.0296 + }, + { + "start": 27227.3, + "end": 27228.35, + "probability": 0.6918 + }, + { + "start": 27228.96, + "end": 27230.58, + "probability": 0.1251 + }, + { + "start": 27230.8, + "end": 27232.66, + "probability": 0.8937 + }, + { + "start": 27232.66, + "end": 27235.88, + "probability": 0.4748 + }, + { + "start": 27235.88, + "end": 27236.22, + "probability": 0.473 + }, + { + "start": 27237.94, + "end": 27238.28, + "probability": 0.4469 + }, + { + "start": 27238.28, + "end": 27238.28, + "probability": 0.0142 + }, + { + "start": 27238.28, + "end": 27238.69, + "probability": 0.2994 + }, + { + "start": 27238.96, + "end": 27242.66, + "probability": 0.7475 + }, + { + "start": 27243.24, + "end": 27244.9, + "probability": 0.003 + }, + { + "start": 27244.9, + "end": 27244.96, + "probability": 0.004 + }, + { + "start": 27244.96, + "end": 27246.76, + "probability": 0.646 + }, + { + "start": 27246.76, + "end": 27247.04, + "probability": 0.2496 + }, + { + "start": 27247.04, + "end": 27249.2, + "probability": 0.9767 + }, + { + "start": 27249.2, + "end": 27249.66, + "probability": 0.0271 + }, + { + "start": 27249.68, + "end": 27250.22, + "probability": 0.7852 + }, + { + "start": 27250.36, + "end": 27251.86, + "probability": 0.5389 + }, + { + "start": 27251.88, + "end": 27253.62, + "probability": 0.9199 + }, + { + "start": 27253.74, + "end": 27254.82, + "probability": 0.5831 + }, + { + "start": 27254.92, + "end": 27257.41, + "probability": 0.9115 + }, + { + "start": 27257.8, + "end": 27257.8, + "probability": 0.0201 + }, + { + "start": 27257.8, + "end": 27257.8, + "probability": 0.0282 + }, + { + "start": 27257.8, + "end": 27260.06, + "probability": 0.9101 + }, + { + "start": 27260.14, + "end": 27260.8, + "probability": 0.9819 + }, + { + "start": 27260.86, + "end": 27262.02, + "probability": 0.9184 + }, + { + "start": 27262.12, + "end": 27265.26, + "probability": 0.9979 + }, + { + "start": 27265.8, + "end": 27266.56, + "probability": 0.5933 + }, + { + "start": 27266.72, + "end": 27271.48, + "probability": 0.9856 + }, + { + "start": 27272.04, + "end": 27274.32, + "probability": 0.9017 + }, + { + "start": 27274.42, + "end": 27276.2, + "probability": 0.8669 + }, + { + "start": 27276.5, + "end": 27277.96, + "probability": 0.9953 + }, + { + "start": 27278.6, + "end": 27279.34, + "probability": 0.2688 + }, + { + "start": 27279.34, + "end": 27281.82, + "probability": 0.9673 + }, + { + "start": 27281.88, + "end": 27284.44, + "probability": 0.9952 + }, + { + "start": 27284.52, + "end": 27285.3, + "probability": 0.8889 + }, + { + "start": 27285.32, + "end": 27286.04, + "probability": 0.8841 + }, + { + "start": 27286.94, + "end": 27287.5, + "probability": 0.6691 + }, + { + "start": 27293.16, + "end": 27295.12, + "probability": 0.5063 + }, + { + "start": 27295.88, + "end": 27297.1, + "probability": 0.7184 + }, + { + "start": 27302.84, + "end": 27303.12, + "probability": 0.221 + }, + { + "start": 27303.12, + "end": 27303.12, + "probability": 0.1231 + }, + { + "start": 27303.12, + "end": 27306.38, + "probability": 0.9635 + }, + { + "start": 27308.0, + "end": 27308.99, + "probability": 0.1142 + }, + { + "start": 27312.14, + "end": 27314.1, + "probability": 0.119 + }, + { + "start": 27314.7, + "end": 27321.2, + "probability": 0.295 + }, + { + "start": 27321.46, + "end": 27322.28, + "probability": 0.006 + } + ], + "segments_count": 8973, + "words_count": 46423, + "avg_words_per_segment": 5.1736, + "avg_segment_duration": 2.3553, + "avg_words_per_minute": 101.75, + "plenum_id": "29408", + "duration": 27374.75, + "title": null, + "plenum_date": "2013-06-19" +} \ No newline at end of file