diff --git "a/32112/metadata.json" "b/32112/metadata.json" new file mode 100644--- /dev/null +++ "b/32112/metadata.json" @@ -0,0 +1,27912 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "32112", + "quality_score": 0.8649, + "per_segment_quality_scores": [ + { + "start": 30.56, + "end": 30.66, + "probability": 0.34 + }, + { + "start": 58.48, + "end": 59.88, + "probability": 0.6524 + }, + { + "start": 59.96, + "end": 61.48, + "probability": 0.8727 + }, + { + "start": 61.6, + "end": 63.14, + "probability": 0.8229 + }, + { + "start": 63.56, + "end": 64.28, + "probability": 0.6489 + }, + { + "start": 64.3, + "end": 65.22, + "probability": 0.6251 + }, + { + "start": 66.06, + "end": 69.22, + "probability": 0.9953 + }, + { + "start": 69.74, + "end": 71.34, + "probability": 0.6081 + }, + { + "start": 72.92, + "end": 75.9, + "probability": 0.5425 + }, + { + "start": 76.48, + "end": 79.08, + "probability": 0.8498 + }, + { + "start": 79.88, + "end": 81.74, + "probability": 0.9824 + }, + { + "start": 81.92, + "end": 86.64, + "probability": 0.9968 + }, + { + "start": 86.84, + "end": 91.16, + "probability": 0.6863 + }, + { + "start": 91.66, + "end": 93.92, + "probability": 0.7056 + }, + { + "start": 93.98, + "end": 94.62, + "probability": 0.772 + }, + { + "start": 95.36, + "end": 98.54, + "probability": 0.9014 + }, + { + "start": 99.24, + "end": 102.3, + "probability": 0.9899 + }, + { + "start": 102.6, + "end": 103.68, + "probability": 0.5419 + }, + { + "start": 104.5, + "end": 106.7, + "probability": 0.9875 + }, + { + "start": 107.36, + "end": 109.34, + "probability": 0.8184 + }, + { + "start": 110.12, + "end": 112.68, + "probability": 0.3857 + }, + { + "start": 120.58, + "end": 122.86, + "probability": 0.4886 + }, + { + "start": 124.88, + "end": 132.7, + "probability": 0.5792 + }, + { + "start": 133.3, + "end": 134.92, + "probability": 0.5717 + }, + { + "start": 136.78, + "end": 140.06, + "probability": 0.0508 + }, + { + "start": 142.91, + "end": 146.02, + "probability": 0.0392 + }, + { + "start": 146.02, + "end": 147.38, + "probability": 0.0711 + }, + { + "start": 149.37, + "end": 152.72, + "probability": 0.0421 + }, + { + "start": 152.78, + "end": 156.8, + "probability": 0.0227 + }, + { + "start": 157.68, + "end": 158.32, + "probability": 0.0458 + }, + { + "start": 160.08, + "end": 162.62, + "probability": 0.0692 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.0, + "end": 214.0, + "probability": 0.0 + }, + { + "start": 214.2, + "end": 215.46, + "probability": 0.3514 + }, + { + "start": 216.86, + "end": 217.52, + "probability": 0.6186 + }, + { + "start": 218.08, + "end": 221.76, + "probability": 0.9587 + }, + { + "start": 222.46, + "end": 223.8, + "probability": 0.9962 + }, + { + "start": 225.1, + "end": 227.88, + "probability": 0.9713 + }, + { + "start": 228.16, + "end": 229.38, + "probability": 0.9854 + }, + { + "start": 229.44, + "end": 229.84, + "probability": 0.6291 + }, + { + "start": 230.56, + "end": 233.6, + "probability": 0.9194 + }, + { + "start": 234.26, + "end": 235.88, + "probability": 0.9778 + }, + { + "start": 235.96, + "end": 236.7, + "probability": 0.9135 + }, + { + "start": 236.78, + "end": 237.58, + "probability": 0.6687 + }, + { + "start": 237.62, + "end": 237.98, + "probability": 0.9516 + }, + { + "start": 238.66, + "end": 241.1, + "probability": 0.9274 + }, + { + "start": 241.2, + "end": 243.46, + "probability": 0.7705 + }, + { + "start": 244.82, + "end": 245.64, + "probability": 0.9747 + }, + { + "start": 246.4, + "end": 247.18, + "probability": 0.8324 + }, + { + "start": 247.32, + "end": 248.2, + "probability": 0.7086 + }, + { + "start": 248.3, + "end": 248.86, + "probability": 0.7441 + }, + { + "start": 248.98, + "end": 249.26, + "probability": 0.7407 + }, + { + "start": 249.34, + "end": 250.74, + "probability": 0.9352 + }, + { + "start": 250.86, + "end": 254.28, + "probability": 0.8982 + }, + { + "start": 254.28, + "end": 256.6, + "probability": 0.9508 + }, + { + "start": 257.12, + "end": 258.65, + "probability": 0.9078 + }, + { + "start": 259.96, + "end": 263.64, + "probability": 0.9746 + }, + { + "start": 264.32, + "end": 270.08, + "probability": 0.9792 + }, + { + "start": 270.66, + "end": 271.16, + "probability": 0.8228 + }, + { + "start": 271.26, + "end": 272.58, + "probability": 0.8022 + }, + { + "start": 273.62, + "end": 274.04, + "probability": 0.891 + }, + { + "start": 274.38, + "end": 276.32, + "probability": 0.8077 + }, + { + "start": 276.42, + "end": 279.42, + "probability": 0.9919 + }, + { + "start": 279.64, + "end": 281.38, + "probability": 0.9956 + }, + { + "start": 281.5, + "end": 281.74, + "probability": 0.8609 + }, + { + "start": 282.76, + "end": 284.11, + "probability": 0.9458 + }, + { + "start": 284.82, + "end": 286.87, + "probability": 0.9873 + }, + { + "start": 288.0, + "end": 290.04, + "probability": 0.9784 + }, + { + "start": 290.12, + "end": 290.96, + "probability": 0.8146 + }, + { + "start": 291.12, + "end": 293.22, + "probability": 0.9858 + }, + { + "start": 293.7, + "end": 294.26, + "probability": 0.6581 + }, + { + "start": 294.5, + "end": 296.68, + "probability": 0.9251 + }, + { + "start": 296.72, + "end": 297.24, + "probability": 0.6066 + }, + { + "start": 297.8, + "end": 298.7, + "probability": 0.9484 + }, + { + "start": 298.8, + "end": 300.82, + "probability": 0.9873 + }, + { + "start": 300.96, + "end": 301.42, + "probability": 0.8036 + }, + { + "start": 301.98, + "end": 303.54, + "probability": 0.9897 + }, + { + "start": 304.28, + "end": 305.84, + "probability": 0.9922 + }, + { + "start": 306.72, + "end": 307.68, + "probability": 0.9708 + }, + { + "start": 307.74, + "end": 308.76, + "probability": 0.9908 + }, + { + "start": 308.84, + "end": 312.48, + "probability": 0.9908 + }, + { + "start": 312.54, + "end": 315.76, + "probability": 0.9951 + }, + { + "start": 315.9, + "end": 318.72, + "probability": 0.7713 + }, + { + "start": 319.14, + "end": 319.66, + "probability": 0.912 + }, + { + "start": 319.72, + "end": 320.18, + "probability": 0.9465 + }, + { + "start": 320.22, + "end": 325.22, + "probability": 0.956 + }, + { + "start": 326.5, + "end": 326.76, + "probability": 0.5752 + }, + { + "start": 326.84, + "end": 328.4, + "probability": 0.9602 + }, + { + "start": 329.2, + "end": 332.36, + "probability": 0.9898 + }, + { + "start": 332.4, + "end": 333.12, + "probability": 0.6672 + }, + { + "start": 333.52, + "end": 333.98, + "probability": 0.8121 + }, + { + "start": 334.12, + "end": 338.46, + "probability": 0.9772 + }, + { + "start": 338.6, + "end": 341.06, + "probability": 0.8049 + }, + { + "start": 341.12, + "end": 342.08, + "probability": 0.9507 + }, + { + "start": 342.84, + "end": 343.7, + "probability": 0.9863 + }, + { + "start": 343.72, + "end": 346.34, + "probability": 0.9827 + }, + { + "start": 346.44, + "end": 347.42, + "probability": 0.915 + }, + { + "start": 348.16, + "end": 351.34, + "probability": 0.9601 + }, + { + "start": 351.44, + "end": 355.8, + "probability": 0.9468 + }, + { + "start": 355.98, + "end": 357.24, + "probability": 0.9712 + }, + { + "start": 357.68, + "end": 358.78, + "probability": 0.9919 + }, + { + "start": 359.38, + "end": 361.4, + "probability": 0.9979 + }, + { + "start": 361.48, + "end": 362.35, + "probability": 0.7946 + }, + { + "start": 362.6, + "end": 363.22, + "probability": 0.985 + }, + { + "start": 363.34, + "end": 363.76, + "probability": 0.9896 + }, + { + "start": 363.84, + "end": 365.74, + "probability": 0.9269 + }, + { + "start": 366.32, + "end": 368.74, + "probability": 0.9041 + }, + { + "start": 370.04, + "end": 370.76, + "probability": 0.9654 + }, + { + "start": 371.2, + "end": 371.86, + "probability": 0.9108 + }, + { + "start": 372.02, + "end": 372.78, + "probability": 0.9504 + }, + { + "start": 372.8, + "end": 376.48, + "probability": 0.952 + }, + { + "start": 376.58, + "end": 377.7, + "probability": 0.8702 + }, + { + "start": 377.84, + "end": 378.78, + "probability": 0.9943 + }, + { + "start": 379.98, + "end": 382.86, + "probability": 0.9822 + }, + { + "start": 382.88, + "end": 385.36, + "probability": 0.9863 + }, + { + "start": 385.4, + "end": 388.08, + "probability": 0.9935 + }, + { + "start": 388.08, + "end": 390.86, + "probability": 0.9686 + }, + { + "start": 391.0, + "end": 391.78, + "probability": 0.9169 + }, + { + "start": 392.44, + "end": 392.62, + "probability": 0.9172 + }, + { + "start": 392.74, + "end": 393.24, + "probability": 0.7712 + }, + { + "start": 393.36, + "end": 394.58, + "probability": 0.9255 + }, + { + "start": 394.62, + "end": 395.52, + "probability": 0.9818 + }, + { + "start": 395.6, + "end": 398.68, + "probability": 0.9942 + }, + { + "start": 399.08, + "end": 399.38, + "probability": 0.7581 + }, + { + "start": 399.5, + "end": 404.1, + "probability": 0.9485 + }, + { + "start": 404.24, + "end": 405.06, + "probability": 0.9132 + }, + { + "start": 405.14, + "end": 406.24, + "probability": 0.9919 + }, + { + "start": 406.84, + "end": 409.34, + "probability": 0.9851 + }, + { + "start": 410.32, + "end": 414.92, + "probability": 0.9961 + }, + { + "start": 415.6, + "end": 417.96, + "probability": 0.931 + }, + { + "start": 418.52, + "end": 419.68, + "probability": 0.6977 + }, + { + "start": 420.42, + "end": 421.42, + "probability": 0.937 + }, + { + "start": 422.14, + "end": 425.23, + "probability": 0.8975 + }, + { + "start": 426.72, + "end": 429.16, + "probability": 0.9868 + }, + { + "start": 430.32, + "end": 433.78, + "probability": 0.9744 + }, + { + "start": 433.94, + "end": 434.0, + "probability": 0.3184 + }, + { + "start": 434.04, + "end": 434.64, + "probability": 0.6582 + }, + { + "start": 434.74, + "end": 437.04, + "probability": 0.9746 + }, + { + "start": 437.3, + "end": 437.8, + "probability": 0.7652 + }, + { + "start": 437.84, + "end": 440.44, + "probability": 0.9818 + }, + { + "start": 440.44, + "end": 444.64, + "probability": 0.9673 + }, + { + "start": 445.3, + "end": 448.08, + "probability": 0.9796 + }, + { + "start": 448.16, + "end": 449.53, + "probability": 0.9537 + }, + { + "start": 449.94, + "end": 449.96, + "probability": 0.3983 + }, + { + "start": 450.06, + "end": 450.52, + "probability": 0.6374 + }, + { + "start": 450.56, + "end": 451.48, + "probability": 0.9036 + }, + { + "start": 451.64, + "end": 452.28, + "probability": 0.9932 + }, + { + "start": 452.96, + "end": 454.36, + "probability": 0.6718 + }, + { + "start": 454.74, + "end": 454.96, + "probability": 0.8425 + }, + { + "start": 455.06, + "end": 457.4, + "probability": 0.5428 + }, + { + "start": 458.48, + "end": 461.7, + "probability": 0.7913 + }, + { + "start": 462.54, + "end": 464.06, + "probability": 0.5338 + }, + { + "start": 464.12, + "end": 467.12, + "probability": 0.9674 + }, + { + "start": 468.74, + "end": 472.1, + "probability": 0.9277 + }, + { + "start": 474.24, + "end": 475.28, + "probability": 0.5008 + }, + { + "start": 475.38, + "end": 476.48, + "probability": 0.9688 + }, + { + "start": 476.7, + "end": 478.95, + "probability": 0.9738 + }, + { + "start": 479.22, + "end": 480.4, + "probability": 0.9403 + }, + { + "start": 483.1, + "end": 484.7, + "probability": 0.2248 + }, + { + "start": 484.7, + "end": 485.82, + "probability": 0.4102 + }, + { + "start": 486.34, + "end": 486.88, + "probability": 0.7616 + }, + { + "start": 487.02, + "end": 488.74, + "probability": 0.9927 + }, + { + "start": 488.82, + "end": 491.24, + "probability": 0.9477 + }, + { + "start": 491.3, + "end": 492.28, + "probability": 0.9486 + }, + { + "start": 492.88, + "end": 495.6, + "probability": 0.8967 + }, + { + "start": 495.96, + "end": 500.02, + "probability": 0.9989 + }, + { + "start": 500.1, + "end": 500.8, + "probability": 0.9377 + }, + { + "start": 501.18, + "end": 501.7, + "probability": 0.9744 + }, + { + "start": 502.02, + "end": 502.68, + "probability": 0.9467 + }, + { + "start": 502.8, + "end": 503.4, + "probability": 0.9577 + }, + { + "start": 504.27, + "end": 505.39, + "probability": 0.8013 + }, + { + "start": 506.18, + "end": 510.44, + "probability": 0.8846 + }, + { + "start": 510.52, + "end": 513.23, + "probability": 0.9937 + }, + { + "start": 513.64, + "end": 514.22, + "probability": 0.8555 + }, + { + "start": 514.24, + "end": 514.58, + "probability": 0.8209 + }, + { + "start": 515.02, + "end": 515.62, + "probability": 0.8692 + }, + { + "start": 515.68, + "end": 519.42, + "probability": 0.9953 + }, + { + "start": 519.48, + "end": 519.66, + "probability": 0.8694 + }, + { + "start": 519.78, + "end": 520.0, + "probability": 0.9084 + }, + { + "start": 520.08, + "end": 524.23, + "probability": 0.9964 + }, + { + "start": 524.44, + "end": 526.56, + "probability": 0.6871 + }, + { + "start": 526.6, + "end": 528.58, + "probability": 0.8285 + }, + { + "start": 529.38, + "end": 532.55, + "probability": 0.7983 + }, + { + "start": 533.96, + "end": 535.94, + "probability": 0.9927 + }, + { + "start": 537.6, + "end": 539.5, + "probability": 0.9932 + }, + { + "start": 539.5, + "end": 542.14, + "probability": 0.9974 + }, + { + "start": 542.82, + "end": 544.74, + "probability": 0.9077 + }, + { + "start": 544.84, + "end": 545.5, + "probability": 0.9488 + }, + { + "start": 545.58, + "end": 547.88, + "probability": 0.9729 + }, + { + "start": 548.66, + "end": 549.3, + "probability": 0.7015 + }, + { + "start": 550.1, + "end": 553.64, + "probability": 0.9927 + }, + { + "start": 553.64, + "end": 556.66, + "probability": 0.9253 + }, + { + "start": 557.08, + "end": 558.22, + "probability": 0.8633 + }, + { + "start": 558.7, + "end": 559.86, + "probability": 0.9681 + }, + { + "start": 559.9, + "end": 560.4, + "probability": 0.595 + }, + { + "start": 560.46, + "end": 560.56, + "probability": 0.842 + }, + { + "start": 560.62, + "end": 562.04, + "probability": 0.9508 + }, + { + "start": 562.38, + "end": 563.31, + "probability": 0.9556 + }, + { + "start": 566.6, + "end": 567.1, + "probability": 0.0478 + }, + { + "start": 567.1, + "end": 567.1, + "probability": 0.024 + }, + { + "start": 567.1, + "end": 567.1, + "probability": 0.2207 + }, + { + "start": 567.48, + "end": 570.87, + "probability": 0.8705 + }, + { + "start": 571.88, + "end": 576.99, + "probability": 0.9829 + }, + { + "start": 577.52, + "end": 581.22, + "probability": 0.9739 + }, + { + "start": 581.46, + "end": 582.84, + "probability": 0.8521 + }, + { + "start": 583.0, + "end": 585.3, + "probability": 0.9935 + }, + { + "start": 586.88, + "end": 588.4, + "probability": 0.8939 + }, + { + "start": 589.14, + "end": 590.8, + "probability": 0.4995 + }, + { + "start": 592.08, + "end": 593.78, + "probability": 0.9624 + }, + { + "start": 594.72, + "end": 595.36, + "probability": 0.8419 + }, + { + "start": 595.56, + "end": 596.12, + "probability": 0.6547 + }, + { + "start": 596.2, + "end": 598.84, + "probability": 0.8525 + }, + { + "start": 599.44, + "end": 602.4, + "probability": 0.9954 + }, + { + "start": 603.1, + "end": 604.98, + "probability": 0.7143 + }, + { + "start": 605.96, + "end": 606.58, + "probability": 0.6304 + }, + { + "start": 607.42, + "end": 610.56, + "probability": 0.9637 + }, + { + "start": 611.38, + "end": 616.12, + "probability": 0.7966 + }, + { + "start": 616.74, + "end": 620.16, + "probability": 0.9939 + }, + { + "start": 620.6, + "end": 621.3, + "probability": 0.6485 + }, + { + "start": 621.38, + "end": 622.58, + "probability": 0.9858 + }, + { + "start": 622.9, + "end": 624.54, + "probability": 0.6852 + }, + { + "start": 624.64, + "end": 627.46, + "probability": 0.6649 + }, + { + "start": 627.56, + "end": 628.14, + "probability": 0.8604 + }, + { + "start": 628.18, + "end": 628.64, + "probability": 0.6547 + }, + { + "start": 628.7, + "end": 629.57, + "probability": 0.8153 + }, + { + "start": 629.68, + "end": 630.12, + "probability": 0.8128 + }, + { + "start": 630.2, + "end": 634.16, + "probability": 0.7598 + }, + { + "start": 634.5, + "end": 635.58, + "probability": 0.8064 + }, + { + "start": 636.16, + "end": 638.19, + "probability": 0.9974 + }, + { + "start": 640.14, + "end": 641.38, + "probability": 0.9938 + }, + { + "start": 641.44, + "end": 642.48, + "probability": 0.9801 + }, + { + "start": 642.54, + "end": 643.78, + "probability": 0.9795 + }, + { + "start": 643.96, + "end": 644.64, + "probability": 0.8703 + }, + { + "start": 645.5, + "end": 647.28, + "probability": 0.9912 + }, + { + "start": 647.42, + "end": 648.24, + "probability": 0.5274 + }, + { + "start": 648.86, + "end": 650.9, + "probability": 0.8683 + }, + { + "start": 650.98, + "end": 653.12, + "probability": 0.9283 + }, + { + "start": 653.64, + "end": 656.76, + "probability": 0.9678 + }, + { + "start": 657.3, + "end": 658.66, + "probability": 0.6542 + }, + { + "start": 658.66, + "end": 658.82, + "probability": 0.8141 + }, + { + "start": 658.9, + "end": 659.44, + "probability": 0.9397 + }, + { + "start": 659.56, + "end": 661.62, + "probability": 0.8243 + }, + { + "start": 662.0, + "end": 663.54, + "probability": 0.9313 + }, + { + "start": 663.54, + "end": 664.09, + "probability": 0.8965 + }, + { + "start": 664.38, + "end": 666.2, + "probability": 0.9609 + }, + { + "start": 666.28, + "end": 668.32, + "probability": 0.8135 + }, + { + "start": 668.36, + "end": 668.79, + "probability": 0.9722 + }, + { + "start": 669.52, + "end": 671.62, + "probability": 0.9194 + }, + { + "start": 673.34, + "end": 673.38, + "probability": 0.2498 + }, + { + "start": 673.38, + "end": 673.38, + "probability": 0.0037 + }, + { + "start": 673.38, + "end": 673.62, + "probability": 0.1413 + }, + { + "start": 673.64, + "end": 674.4, + "probability": 0.7352 + }, + { + "start": 674.44, + "end": 678.32, + "probability": 0.9898 + }, + { + "start": 678.62, + "end": 679.18, + "probability": 0.6841 + }, + { + "start": 679.3, + "end": 679.92, + "probability": 0.9097 + }, + { + "start": 680.04, + "end": 682.34, + "probability": 0.9375 + }, + { + "start": 682.86, + "end": 689.0, + "probability": 0.9912 + }, + { + "start": 689.14, + "end": 690.32, + "probability": 0.9274 + }, + { + "start": 690.7, + "end": 692.9, + "probability": 0.8716 + }, + { + "start": 694.46, + "end": 696.14, + "probability": 0.9071 + }, + { + "start": 696.2, + "end": 696.52, + "probability": 0.754 + }, + { + "start": 696.6, + "end": 697.72, + "probability": 0.8697 + }, + { + "start": 697.92, + "end": 700.28, + "probability": 0.9302 + }, + { + "start": 701.46, + "end": 703.36, + "probability": 0.9449 + }, + { + "start": 703.86, + "end": 707.5, + "probability": 0.9588 + }, + { + "start": 708.02, + "end": 710.42, + "probability": 0.9839 + }, + { + "start": 711.38, + "end": 713.42, + "probability": 0.9865 + }, + { + "start": 714.46, + "end": 717.88, + "probability": 0.9875 + }, + { + "start": 718.4, + "end": 719.16, + "probability": 0.752 + }, + { + "start": 719.52, + "end": 721.0, + "probability": 0.9758 + }, + { + "start": 721.32, + "end": 722.09, + "probability": 0.9707 + }, + { + "start": 722.82, + "end": 723.68, + "probability": 0.9147 + }, + { + "start": 724.06, + "end": 725.3, + "probability": 0.9458 + }, + { + "start": 725.62, + "end": 727.1, + "probability": 0.9948 + }, + { + "start": 727.14, + "end": 727.88, + "probability": 0.9591 + }, + { + "start": 728.32, + "end": 729.56, + "probability": 0.7533 + }, + { + "start": 729.84, + "end": 731.45, + "probability": 0.9932 + }, + { + "start": 731.9, + "end": 734.84, + "probability": 0.9707 + }, + { + "start": 734.96, + "end": 739.1, + "probability": 0.9846 + }, + { + "start": 739.74, + "end": 740.14, + "probability": 0.7836 + }, + { + "start": 740.42, + "end": 741.11, + "probability": 0.9971 + }, + { + "start": 741.56, + "end": 742.24, + "probability": 0.9717 + }, + { + "start": 742.74, + "end": 743.46, + "probability": 0.8334 + }, + { + "start": 743.78, + "end": 744.5, + "probability": 0.7631 + }, + { + "start": 744.82, + "end": 745.78, + "probability": 0.757 + }, + { + "start": 745.84, + "end": 748.06, + "probability": 0.9805 + }, + { + "start": 748.44, + "end": 751.58, + "probability": 0.9182 + }, + { + "start": 751.7, + "end": 755.52, + "probability": 0.9382 + }, + { + "start": 755.86, + "end": 757.88, + "probability": 0.9091 + }, + { + "start": 758.38, + "end": 758.9, + "probability": 0.8671 + }, + { + "start": 759.78, + "end": 760.02, + "probability": 0.8075 + }, + { + "start": 760.08, + "end": 760.72, + "probability": 0.9652 + }, + { + "start": 760.8, + "end": 762.36, + "probability": 0.9664 + }, + { + "start": 762.5, + "end": 763.84, + "probability": 0.853 + }, + { + "start": 764.24, + "end": 764.98, + "probability": 0.9283 + }, + { + "start": 765.24, + "end": 766.23, + "probability": 0.9727 + }, + { + "start": 766.88, + "end": 767.6, + "probability": 0.9594 + }, + { + "start": 767.62, + "end": 768.36, + "probability": 0.9274 + }, + { + "start": 768.66, + "end": 769.34, + "probability": 0.3693 + }, + { + "start": 769.36, + "end": 770.68, + "probability": 0.3018 + }, + { + "start": 771.44, + "end": 773.98, + "probability": 0.9374 + }, + { + "start": 774.68, + "end": 777.52, + "probability": 0.9388 + }, + { + "start": 777.66, + "end": 779.24, + "probability": 0.9799 + }, + { + "start": 779.44, + "end": 780.88, + "probability": 0.9926 + }, + { + "start": 781.18, + "end": 782.16, + "probability": 0.9599 + }, + { + "start": 782.42, + "end": 784.86, + "probability": 0.9061 + }, + { + "start": 785.24, + "end": 785.68, + "probability": 0.6383 + }, + { + "start": 786.02, + "end": 786.99, + "probability": 0.8643 + }, + { + "start": 787.1, + "end": 788.1, + "probability": 0.9575 + }, + { + "start": 788.48, + "end": 789.86, + "probability": 0.8771 + }, + { + "start": 790.04, + "end": 792.44, + "probability": 0.9497 + }, + { + "start": 792.72, + "end": 793.34, + "probability": 0.7856 + }, + { + "start": 793.44, + "end": 794.08, + "probability": 0.9696 + }, + { + "start": 794.74, + "end": 797.48, + "probability": 0.9427 + }, + { + "start": 797.56, + "end": 798.26, + "probability": 0.8879 + }, + { + "start": 799.02, + "end": 801.76, + "probability": 0.9946 + }, + { + "start": 801.76, + "end": 804.18, + "probability": 0.9539 + }, + { + "start": 804.4, + "end": 806.28, + "probability": 0.9789 + }, + { + "start": 806.84, + "end": 810.18, + "probability": 0.9844 + }, + { + "start": 810.26, + "end": 811.52, + "probability": 0.9574 + }, + { + "start": 811.6, + "end": 812.18, + "probability": 0.8308 + }, + { + "start": 812.48, + "end": 812.88, + "probability": 0.7935 + }, + { + "start": 813.44, + "end": 816.42, + "probability": 0.6917 + }, + { + "start": 816.92, + "end": 820.98, + "probability": 0.988 + }, + { + "start": 823.18, + "end": 824.0, + "probability": 0.4082 + }, + { + "start": 824.32, + "end": 824.42, + "probability": 0.3457 + }, + { + "start": 824.74, + "end": 826.4, + "probability": 0.9775 + }, + { + "start": 826.74, + "end": 827.56, + "probability": 0.8652 + }, + { + "start": 827.64, + "end": 828.04, + "probability": 0.195 + }, + { + "start": 828.52, + "end": 830.06, + "probability": 0.3606 + }, + { + "start": 830.24, + "end": 831.26, + "probability": 0.3793 + }, + { + "start": 831.38, + "end": 835.57, + "probability": 0.4641 + }, + { + "start": 835.64, + "end": 837.14, + "probability": 0.3826 + }, + { + "start": 837.14, + "end": 838.12, + "probability": 0.3597 + }, + { + "start": 838.28, + "end": 839.1, + "probability": 0.1687 + }, + { + "start": 839.52, + "end": 841.07, + "probability": 0.6036 + }, + { + "start": 843.33, + "end": 845.28, + "probability": 0.5653 + }, + { + "start": 847.38, + "end": 848.66, + "probability": 0.6905 + }, + { + "start": 848.94, + "end": 850.32, + "probability": 0.7544 + }, + { + "start": 850.48, + "end": 851.4, + "probability": 0.8233 + }, + { + "start": 851.48, + "end": 855.36, + "probability": 0.9951 + }, + { + "start": 855.46, + "end": 856.98, + "probability": 0.98 + }, + { + "start": 857.54, + "end": 862.72, + "probability": 0.9705 + }, + { + "start": 862.96, + "end": 868.38, + "probability": 0.9705 + }, + { + "start": 868.96, + "end": 872.48, + "probability": 0.5991 + }, + { + "start": 872.52, + "end": 876.43, + "probability": 0.9736 + }, + { + "start": 877.88, + "end": 879.9, + "probability": 0.9161 + }, + { + "start": 880.16, + "end": 883.61, + "probability": 0.9152 + }, + { + "start": 884.62, + "end": 886.68, + "probability": 0.9019 + }, + { + "start": 887.36, + "end": 892.24, + "probability": 0.9597 + }, + { + "start": 892.84, + "end": 893.98, + "probability": 0.9661 + }, + { + "start": 894.06, + "end": 895.12, + "probability": 0.9619 + }, + { + "start": 895.3, + "end": 899.3, + "probability": 0.9956 + }, + { + "start": 900.06, + "end": 904.7, + "probability": 0.9652 + }, + { + "start": 905.34, + "end": 907.06, + "probability": 0.702 + }, + { + "start": 907.32, + "end": 908.98, + "probability": 0.945 + }, + { + "start": 910.02, + "end": 911.17, + "probability": 0.7224 + }, + { + "start": 911.64, + "end": 913.92, + "probability": 0.9908 + }, + { + "start": 914.3, + "end": 915.42, + "probability": 0.9057 + }, + { + "start": 915.56, + "end": 917.58, + "probability": 0.9712 + }, + { + "start": 917.76, + "end": 919.02, + "probability": 0.9329 + }, + { + "start": 919.56, + "end": 921.7, + "probability": 0.8721 + }, + { + "start": 922.82, + "end": 926.44, + "probability": 0.8857 + }, + { + "start": 927.32, + "end": 928.86, + "probability": 0.9787 + }, + { + "start": 929.0, + "end": 930.88, + "probability": 0.8923 + }, + { + "start": 931.46, + "end": 933.04, + "probability": 0.9344 + }, + { + "start": 933.1, + "end": 934.04, + "probability": 0.9729 + }, + { + "start": 934.64, + "end": 937.02, + "probability": 0.6778 + }, + { + "start": 937.12, + "end": 939.4, + "probability": 0.9475 + }, + { + "start": 940.14, + "end": 941.98, + "probability": 0.9966 + }, + { + "start": 942.52, + "end": 944.26, + "probability": 0.7773 + }, + { + "start": 944.8, + "end": 946.44, + "probability": 0.9624 + }, + { + "start": 946.82, + "end": 948.76, + "probability": 0.8125 + }, + { + "start": 948.98, + "end": 949.52, + "probability": 0.9087 + }, + { + "start": 950.1, + "end": 952.16, + "probability": 0.9418 + }, + { + "start": 952.38, + "end": 953.62, + "probability": 0.6816 + }, + { + "start": 953.74, + "end": 954.3, + "probability": 0.5556 + }, + { + "start": 954.48, + "end": 955.06, + "probability": 0.6618 + }, + { + "start": 956.38, + "end": 961.4, + "probability": 0.889 + }, + { + "start": 962.22, + "end": 966.38, + "probability": 0.9976 + }, + { + "start": 967.02, + "end": 973.08, + "probability": 0.9355 + }, + { + "start": 973.5, + "end": 977.7, + "probability": 0.9312 + }, + { + "start": 978.36, + "end": 979.28, + "probability": 0.73 + }, + { + "start": 979.78, + "end": 984.52, + "probability": 0.9966 + }, + { + "start": 985.14, + "end": 985.22, + "probability": 0.4778 + }, + { + "start": 985.46, + "end": 988.72, + "probability": 0.9856 + }, + { + "start": 988.9, + "end": 990.84, + "probability": 0.9554 + }, + { + "start": 991.3, + "end": 996.46, + "probability": 0.9979 + }, + { + "start": 997.18, + "end": 1000.94, + "probability": 0.9463 + }, + { + "start": 1001.48, + "end": 1002.44, + "probability": 0.7913 + }, + { + "start": 1002.62, + "end": 1004.2, + "probability": 0.9519 + }, + { + "start": 1004.32, + "end": 1009.4, + "probability": 0.9824 + }, + { + "start": 1009.96, + "end": 1012.36, + "probability": 0.989 + }, + { + "start": 1013.0, + "end": 1015.74, + "probability": 0.7826 + }, + { + "start": 1016.24, + "end": 1018.99, + "probability": 0.7628 + }, + { + "start": 1019.78, + "end": 1022.2, + "probability": 0.9448 + }, + { + "start": 1022.7, + "end": 1026.5, + "probability": 0.9917 + }, + { + "start": 1027.02, + "end": 1028.58, + "probability": 0.8392 + }, + { + "start": 1028.78, + "end": 1030.1, + "probability": 0.6975 + }, + { + "start": 1030.16, + "end": 1030.64, + "probability": 0.7154 + }, + { + "start": 1030.82, + "end": 1031.6, + "probability": 0.6953 + }, + { + "start": 1032.12, + "end": 1035.08, + "probability": 0.8325 + }, + { + "start": 1035.92, + "end": 1038.44, + "probability": 0.9507 + }, + { + "start": 1039.34, + "end": 1040.32, + "probability": 0.9915 + }, + { + "start": 1040.84, + "end": 1044.06, + "probability": 0.8634 + }, + { + "start": 1044.06, + "end": 1044.34, + "probability": 0.4257 + }, + { + "start": 1044.5, + "end": 1047.02, + "probability": 0.5712 + }, + { + "start": 1047.2, + "end": 1047.92, + "probability": 0.7636 + }, + { + "start": 1048.24, + "end": 1048.82, + "probability": 0.4406 + }, + { + "start": 1049.48, + "end": 1049.66, + "probability": 0.3398 + }, + { + "start": 1049.98, + "end": 1051.88, + "probability": 0.3232 + }, + { + "start": 1052.04, + "end": 1053.8, + "probability": 0.8113 + }, + { + "start": 1053.88, + "end": 1057.76, + "probability": 0.9398 + }, + { + "start": 1059.3, + "end": 1060.58, + "probability": 0.7563 + }, + { + "start": 1060.94, + "end": 1062.86, + "probability": 0.9855 + }, + { + "start": 1063.46, + "end": 1070.0, + "probability": 0.7671 + }, + { + "start": 1070.48, + "end": 1071.6, + "probability": 0.9038 + }, + { + "start": 1071.9, + "end": 1072.76, + "probability": 0.9598 + }, + { + "start": 1073.3, + "end": 1075.76, + "probability": 0.9878 + }, + { + "start": 1075.8, + "end": 1076.72, + "probability": 0.9443 + }, + { + "start": 1076.82, + "end": 1077.32, + "probability": 0.7396 + }, + { + "start": 1077.48, + "end": 1080.88, + "probability": 0.8756 + }, + { + "start": 1082.4, + "end": 1085.3, + "probability": 0.9971 + }, + { + "start": 1086.56, + "end": 1089.44, + "probability": 0.9203 + }, + { + "start": 1089.44, + "end": 1092.88, + "probability": 0.7686 + }, + { + "start": 1093.9, + "end": 1095.46, + "probability": 0.912 + }, + { + "start": 1095.68, + "end": 1099.2, + "probability": 0.9932 + }, + { + "start": 1100.8, + "end": 1102.96, + "probability": 0.9834 + }, + { + "start": 1103.6, + "end": 1104.88, + "probability": 0.8788 + }, + { + "start": 1105.2, + "end": 1105.9, + "probability": 0.6587 + }, + { + "start": 1117.46, + "end": 1120.4, + "probability": 0.8556 + }, + { + "start": 1123.02, + "end": 1125.62, + "probability": 0.9463 + }, + { + "start": 1126.4, + "end": 1128.32, + "probability": 0.9719 + }, + { + "start": 1130.5, + "end": 1131.58, + "probability": 0.7241 + }, + { + "start": 1133.26, + "end": 1134.16, + "probability": 0.5233 + }, + { + "start": 1134.86, + "end": 1136.46, + "probability": 0.4697 + }, + { + "start": 1138.02, + "end": 1138.62, + "probability": 0.0072 + }, + { + "start": 1139.16, + "end": 1139.32, + "probability": 0.3188 + }, + { + "start": 1139.32, + "end": 1143.68, + "probability": 0.7916 + }, + { + "start": 1149.5, + "end": 1150.38, + "probability": 0.2341 + }, + { + "start": 1150.38, + "end": 1152.82, + "probability": 0.986 + }, + { + "start": 1153.0, + "end": 1154.52, + "probability": 0.9897 + }, + { + "start": 1155.92, + "end": 1159.84, + "probability": 0.992 + }, + { + "start": 1159.84, + "end": 1162.76, + "probability": 0.9287 + }, + { + "start": 1165.64, + "end": 1170.2, + "probability": 0.9938 + }, + { + "start": 1170.92, + "end": 1172.2, + "probability": 0.924 + }, + { + "start": 1174.28, + "end": 1175.74, + "probability": 0.8474 + }, + { + "start": 1176.97, + "end": 1179.86, + "probability": 0.9858 + }, + { + "start": 1181.74, + "end": 1182.46, + "probability": 0.9445 + }, + { + "start": 1183.58, + "end": 1187.64, + "probability": 0.9875 + }, + { + "start": 1188.44, + "end": 1188.54, + "probability": 0.7633 + }, + { + "start": 1188.6, + "end": 1192.28, + "probability": 0.9769 + }, + { + "start": 1193.36, + "end": 1193.78, + "probability": 0.6208 + }, + { + "start": 1194.04, + "end": 1195.16, + "probability": 0.7696 + }, + { + "start": 1195.3, + "end": 1202.74, + "probability": 0.9824 + }, + { + "start": 1203.72, + "end": 1205.52, + "probability": 0.9385 + }, + { + "start": 1205.63, + "end": 1211.98, + "probability": 0.9821 + }, + { + "start": 1212.36, + "end": 1215.26, + "probability": 0.9407 + }, + { + "start": 1217.54, + "end": 1218.78, + "probability": 0.8287 + }, + { + "start": 1219.02, + "end": 1223.14, + "probability": 0.9128 + }, + { + "start": 1224.44, + "end": 1226.28, + "probability": 0.9591 + }, + { + "start": 1227.86, + "end": 1228.76, + "probability": 0.8213 + }, + { + "start": 1229.1, + "end": 1232.48, + "probability": 0.8126 + }, + { + "start": 1232.48, + "end": 1237.04, + "probability": 0.9937 + }, + { + "start": 1238.1, + "end": 1244.1, + "probability": 0.9962 + }, + { + "start": 1246.1, + "end": 1249.8, + "probability": 0.8309 + }, + { + "start": 1251.54, + "end": 1253.86, + "probability": 0.6871 + }, + { + "start": 1254.4, + "end": 1255.76, + "probability": 0.9938 + }, + { + "start": 1257.38, + "end": 1258.32, + "probability": 0.8786 + }, + { + "start": 1259.66, + "end": 1261.04, + "probability": 0.8471 + }, + { + "start": 1261.88, + "end": 1266.34, + "probability": 0.7705 + }, + { + "start": 1266.34, + "end": 1269.48, + "probability": 0.9829 + }, + { + "start": 1270.8, + "end": 1273.8, + "probability": 0.9827 + }, + { + "start": 1273.86, + "end": 1274.54, + "probability": 0.6834 + }, + { + "start": 1275.04, + "end": 1276.28, + "probability": 0.7764 + }, + { + "start": 1276.44, + "end": 1277.34, + "probability": 0.684 + }, + { + "start": 1278.06, + "end": 1279.28, + "probability": 0.9712 + }, + { + "start": 1280.04, + "end": 1285.98, + "probability": 0.9966 + }, + { + "start": 1287.56, + "end": 1290.82, + "probability": 0.9444 + }, + { + "start": 1291.56, + "end": 1293.3, + "probability": 0.9847 + }, + { + "start": 1299.04, + "end": 1301.14, + "probability": 0.285 + }, + { + "start": 1302.02, + "end": 1302.74, + "probability": 0.7842 + }, + { + "start": 1302.94, + "end": 1305.24, + "probability": 0.9558 + }, + { + "start": 1305.42, + "end": 1306.58, + "probability": 0.8962 + }, + { + "start": 1307.2, + "end": 1310.3, + "probability": 0.9334 + }, + { + "start": 1311.68, + "end": 1316.22, + "probability": 0.9978 + }, + { + "start": 1316.94, + "end": 1318.5, + "probability": 0.9902 + }, + { + "start": 1319.48, + "end": 1323.9, + "probability": 0.7994 + }, + { + "start": 1324.64, + "end": 1328.12, + "probability": 0.7775 + }, + { + "start": 1330.5, + "end": 1332.46, + "probability": 0.9902 + }, + { + "start": 1332.54, + "end": 1333.96, + "probability": 0.9686 + }, + { + "start": 1334.46, + "end": 1337.88, + "probability": 0.9976 + }, + { + "start": 1338.14, + "end": 1340.74, + "probability": 0.752 + }, + { + "start": 1341.22, + "end": 1342.82, + "probability": 0.8984 + }, + { + "start": 1342.96, + "end": 1346.2, + "probability": 0.9764 + }, + { + "start": 1347.06, + "end": 1348.93, + "probability": 0.984 + }, + { + "start": 1350.48, + "end": 1355.8, + "probability": 0.8888 + }, + { + "start": 1356.94, + "end": 1359.36, + "probability": 0.5032 + }, + { + "start": 1360.52, + "end": 1363.72, + "probability": 0.8561 + }, + { + "start": 1364.68, + "end": 1368.14, + "probability": 0.8054 + }, + { + "start": 1369.06, + "end": 1373.74, + "probability": 0.8079 + }, + { + "start": 1374.78, + "end": 1376.46, + "probability": 0.6966 + }, + { + "start": 1378.74, + "end": 1385.24, + "probability": 0.8523 + }, + { + "start": 1385.7, + "end": 1386.92, + "probability": 0.9537 + }, + { + "start": 1387.34, + "end": 1388.44, + "probability": 0.5993 + }, + { + "start": 1388.84, + "end": 1390.88, + "probability": 0.8921 + }, + { + "start": 1390.96, + "end": 1391.72, + "probability": 0.8798 + }, + { + "start": 1392.12, + "end": 1392.94, + "probability": 0.7501 + }, + { + "start": 1393.04, + "end": 1394.98, + "probability": 0.9808 + }, + { + "start": 1395.92, + "end": 1399.72, + "probability": 0.9685 + }, + { + "start": 1400.3, + "end": 1403.38, + "probability": 0.7749 + }, + { + "start": 1404.34, + "end": 1407.44, + "probability": 0.8794 + }, + { + "start": 1408.12, + "end": 1410.3, + "probability": 0.7231 + }, + { + "start": 1411.34, + "end": 1415.96, + "probability": 0.9367 + }, + { + "start": 1415.96, + "end": 1416.5, + "probability": 0.936 + }, + { + "start": 1417.68, + "end": 1421.14, + "probability": 0.9234 + }, + { + "start": 1421.8, + "end": 1425.0, + "probability": 0.838 + }, + { + "start": 1425.78, + "end": 1429.96, + "probability": 0.9528 + }, + { + "start": 1430.02, + "end": 1432.9, + "probability": 0.9939 + }, + { + "start": 1435.24, + "end": 1437.86, + "probability": 0.8983 + }, + { + "start": 1438.88, + "end": 1441.5, + "probability": 0.9813 + }, + { + "start": 1442.36, + "end": 1443.42, + "probability": 0.9811 + }, + { + "start": 1444.46, + "end": 1451.34, + "probability": 0.9964 + }, + { + "start": 1452.14, + "end": 1453.09, + "probability": 0.9272 + }, + { + "start": 1454.48, + "end": 1455.08, + "probability": 0.5642 + }, + { + "start": 1455.64, + "end": 1457.08, + "probability": 0.7633 + }, + { + "start": 1458.06, + "end": 1460.1, + "probability": 0.9561 + }, + { + "start": 1461.02, + "end": 1463.88, + "probability": 0.7141 + }, + { + "start": 1464.64, + "end": 1467.86, + "probability": 0.9201 + }, + { + "start": 1470.6, + "end": 1472.82, + "probability": 0.9475 + }, + { + "start": 1473.54, + "end": 1479.28, + "probability": 0.8479 + }, + { + "start": 1480.06, + "end": 1482.54, + "probability": 0.7334 + }, + { + "start": 1483.2, + "end": 1485.18, + "probability": 0.9562 + }, + { + "start": 1486.1, + "end": 1487.54, + "probability": 0.9519 + }, + { + "start": 1488.3, + "end": 1491.74, + "probability": 0.8167 + }, + { + "start": 1493.12, + "end": 1496.42, + "probability": 0.9445 + }, + { + "start": 1496.54, + "end": 1497.46, + "probability": 0.823 + }, + { + "start": 1498.26, + "end": 1499.1, + "probability": 0.7344 + }, + { + "start": 1499.82, + "end": 1501.32, + "probability": 0.6764 + }, + { + "start": 1502.22, + "end": 1505.14, + "probability": 0.8948 + }, + { + "start": 1505.7, + "end": 1506.54, + "probability": 0.6768 + }, + { + "start": 1506.74, + "end": 1508.44, + "probability": 0.9128 + }, + { + "start": 1511.3, + "end": 1518.54, + "probability": 0.9651 + }, + { + "start": 1518.66, + "end": 1522.72, + "probability": 0.9882 + }, + { + "start": 1523.2, + "end": 1524.58, + "probability": 0.8491 + }, + { + "start": 1526.5, + "end": 1529.72, + "probability": 0.8195 + }, + { + "start": 1530.48, + "end": 1532.02, + "probability": 0.9834 + }, + { + "start": 1532.54, + "end": 1533.42, + "probability": 0.8835 + }, + { + "start": 1538.98, + "end": 1539.14, + "probability": 0.0839 + }, + { + "start": 1540.08, + "end": 1542.42, + "probability": 0.8983 + }, + { + "start": 1544.0, + "end": 1548.7, + "probability": 0.9435 + }, + { + "start": 1548.7, + "end": 1552.32, + "probability": 0.9932 + }, + { + "start": 1553.04, + "end": 1554.52, + "probability": 0.9971 + }, + { + "start": 1554.58, + "end": 1557.02, + "probability": 0.8919 + }, + { + "start": 1557.92, + "end": 1560.3, + "probability": 0.9192 + }, + { + "start": 1560.92, + "end": 1561.74, + "probability": 0.8222 + }, + { + "start": 1562.9, + "end": 1564.7, + "probability": 0.9548 + }, + { + "start": 1565.3, + "end": 1566.76, + "probability": 0.9489 + }, + { + "start": 1567.56, + "end": 1572.08, + "probability": 0.9429 + }, + { + "start": 1572.72, + "end": 1575.16, + "probability": 0.8875 + }, + { + "start": 1576.38, + "end": 1578.88, + "probability": 0.5414 + }, + { + "start": 1579.54, + "end": 1583.72, + "probability": 0.849 + }, + { + "start": 1583.84, + "end": 1591.31, + "probability": 0.8919 + }, + { + "start": 1592.32, + "end": 1593.18, + "probability": 0.6811 + }, + { + "start": 1593.64, + "end": 1597.64, + "probability": 0.8605 + }, + { + "start": 1597.64, + "end": 1600.54, + "probability": 0.9248 + }, + { + "start": 1601.42, + "end": 1602.82, + "probability": 0.6953 + }, + { + "start": 1603.5, + "end": 1606.15, + "probability": 0.9814 + }, + { + "start": 1606.86, + "end": 1608.5, + "probability": 0.9678 + }, + { + "start": 1609.08, + "end": 1610.85, + "probability": 0.9032 + }, + { + "start": 1611.46, + "end": 1613.46, + "probability": 0.7549 + }, + { + "start": 1613.58, + "end": 1614.5, + "probability": 0.8174 + }, + { + "start": 1615.04, + "end": 1618.1, + "probability": 0.619 + }, + { + "start": 1620.52, + "end": 1622.3, + "probability": 0.6956 + }, + { + "start": 1624.46, + "end": 1626.0, + "probability": 0.9944 + }, + { + "start": 1626.54, + "end": 1630.28, + "probability": 0.9858 + }, + { + "start": 1631.28, + "end": 1631.9, + "probability": 0.6108 + }, + { + "start": 1632.46, + "end": 1634.2, + "probability": 0.991 + }, + { + "start": 1635.17, + "end": 1638.08, + "probability": 0.953 + }, + { + "start": 1638.78, + "end": 1640.7, + "probability": 0.8472 + }, + { + "start": 1640.78, + "end": 1641.7, + "probability": 0.731 + }, + { + "start": 1642.18, + "end": 1644.92, + "probability": 0.8887 + }, + { + "start": 1645.44, + "end": 1649.12, + "probability": 0.8965 + }, + { + "start": 1649.6, + "end": 1653.44, + "probability": 0.8762 + }, + { + "start": 1653.9, + "end": 1654.54, + "probability": 0.9663 + }, + { + "start": 1655.46, + "end": 1664.67, + "probability": 0.8629 + }, + { + "start": 1665.58, + "end": 1669.24, + "probability": 0.7726 + }, + { + "start": 1671.34, + "end": 1672.56, + "probability": 0.9062 + }, + { + "start": 1673.22, + "end": 1674.36, + "probability": 0.7667 + }, + { + "start": 1675.72, + "end": 1679.38, + "probability": 0.9029 + }, + { + "start": 1679.44, + "end": 1679.64, + "probability": 0.5543 + }, + { + "start": 1679.76, + "end": 1680.24, + "probability": 0.676 + }, + { + "start": 1680.24, + "end": 1680.68, + "probability": 0.6705 + }, + { + "start": 1680.78, + "end": 1681.26, + "probability": 0.6528 + }, + { + "start": 1684.64, + "end": 1686.7, + "probability": 0.8171 + }, + { + "start": 1687.84, + "end": 1690.64, + "probability": 0.9949 + }, + { + "start": 1691.18, + "end": 1694.8, + "probability": 0.948 + }, + { + "start": 1695.7, + "end": 1697.32, + "probability": 0.9181 + }, + { + "start": 1698.56, + "end": 1700.1, + "probability": 0.7593 + }, + { + "start": 1700.72, + "end": 1702.02, + "probability": 0.9235 + }, + { + "start": 1702.4, + "end": 1703.7, + "probability": 0.9871 + }, + { + "start": 1703.78, + "end": 1704.85, + "probability": 0.6471 + }, + { + "start": 1705.08, + "end": 1706.86, + "probability": 0.981 + }, + { + "start": 1707.02, + "end": 1709.62, + "probability": 0.6632 + }, + { + "start": 1710.12, + "end": 1716.34, + "probability": 0.9901 + }, + { + "start": 1716.42, + "end": 1721.22, + "probability": 0.9183 + }, + { + "start": 1722.08, + "end": 1725.92, + "probability": 0.955 + }, + { + "start": 1726.56, + "end": 1728.08, + "probability": 0.9611 + }, + { + "start": 1729.98, + "end": 1732.76, + "probability": 0.9773 + }, + { + "start": 1732.92, + "end": 1734.58, + "probability": 0.982 + }, + { + "start": 1735.66, + "end": 1737.38, + "probability": 0.9696 + }, + { + "start": 1738.76, + "end": 1743.6, + "probability": 0.9979 + }, + { + "start": 1744.28, + "end": 1746.96, + "probability": 0.8987 + }, + { + "start": 1747.0, + "end": 1751.74, + "probability": 0.9796 + }, + { + "start": 1751.82, + "end": 1753.48, + "probability": 0.4957 + }, + { + "start": 1754.14, + "end": 1756.38, + "probability": 0.9156 + }, + { + "start": 1758.26, + "end": 1763.06, + "probability": 0.9784 + }, + { + "start": 1763.86, + "end": 1765.38, + "probability": 0.8152 + }, + { + "start": 1765.98, + "end": 1769.28, + "probability": 0.9951 + }, + { + "start": 1769.28, + "end": 1772.62, + "probability": 0.988 + }, + { + "start": 1773.48, + "end": 1776.86, + "probability": 0.7513 + }, + { + "start": 1777.76, + "end": 1779.32, + "probability": 0.9926 + }, + { + "start": 1779.46, + "end": 1780.4, + "probability": 0.7197 + }, + { + "start": 1780.86, + "end": 1781.4, + "probability": 0.6755 + }, + { + "start": 1781.46, + "end": 1782.64, + "probability": 0.7686 + }, + { + "start": 1783.34, + "end": 1785.48, + "probability": 0.9646 + }, + { + "start": 1786.34, + "end": 1787.5, + "probability": 0.8679 + }, + { + "start": 1787.72, + "end": 1791.08, + "probability": 0.9522 + }, + { + "start": 1791.74, + "end": 1793.28, + "probability": 0.9822 + }, + { + "start": 1793.86, + "end": 1794.96, + "probability": 0.9301 + }, + { + "start": 1795.62, + "end": 1797.44, + "probability": 0.9806 + }, + { + "start": 1797.9, + "end": 1800.56, + "probability": 0.9854 + }, + { + "start": 1800.66, + "end": 1801.26, + "probability": 0.9207 + }, + { + "start": 1802.7, + "end": 1805.1, + "probability": 0.9683 + }, + { + "start": 1805.38, + "end": 1807.86, + "probability": 0.9807 + }, + { + "start": 1807.96, + "end": 1809.84, + "probability": 0.9429 + }, + { + "start": 1810.0, + "end": 1815.16, + "probability": 0.81 + }, + { + "start": 1832.46, + "end": 1834.12, + "probability": 0.5965 + }, + { + "start": 1837.58, + "end": 1842.16, + "probability": 0.8203 + }, + { + "start": 1842.8, + "end": 1845.12, + "probability": 0.7821 + }, + { + "start": 1845.16, + "end": 1847.86, + "probability": 0.9512 + }, + { + "start": 1847.86, + "end": 1851.18, + "probability": 0.9486 + }, + { + "start": 1852.18, + "end": 1852.76, + "probability": 0.4443 + }, + { + "start": 1853.6, + "end": 1854.18, + "probability": 0.2856 + }, + { + "start": 1854.36, + "end": 1856.62, + "probability": 0.7375 + }, + { + "start": 1856.74, + "end": 1857.48, + "probability": 0.4992 + }, + { + "start": 1857.78, + "end": 1859.4, + "probability": 0.3693 + }, + { + "start": 1859.46, + "end": 1862.18, + "probability": 0.1744 + }, + { + "start": 1862.26, + "end": 1865.62, + "probability": 0.7415 + }, + { + "start": 1865.96, + "end": 1866.2, + "probability": 0.2033 + }, + { + "start": 1866.2, + "end": 1866.68, + "probability": 0.5643 + }, + { + "start": 1867.06, + "end": 1867.3, + "probability": 0.1301 + }, + { + "start": 1867.3, + "end": 1870.98, + "probability": 0.6026 + }, + { + "start": 1871.34, + "end": 1874.19, + "probability": 0.975 + }, + { + "start": 1874.92, + "end": 1875.02, + "probability": 0.6318 + }, + { + "start": 1875.12, + "end": 1878.62, + "probability": 0.8782 + }, + { + "start": 1878.74, + "end": 1879.5, + "probability": 0.5873 + }, + { + "start": 1880.44, + "end": 1881.38, + "probability": 0.0832 + }, + { + "start": 1881.76, + "end": 1885.46, + "probability": 0.9807 + }, + { + "start": 1885.46, + "end": 1889.72, + "probability": 0.9567 + }, + { + "start": 1889.8, + "end": 1890.36, + "probability": 0.6368 + }, + { + "start": 1890.36, + "end": 1895.6, + "probability": 0.8179 + }, + { + "start": 1895.64, + "end": 1898.92, + "probability": 0.874 + }, + { + "start": 1898.92, + "end": 1900.62, + "probability": 0.0442 + }, + { + "start": 1901.08, + "end": 1903.48, + "probability": 0.9046 + }, + { + "start": 1903.56, + "end": 1903.56, + "probability": 0.0095 + }, + { + "start": 1903.6, + "end": 1906.73, + "probability": 0.9135 + }, + { + "start": 1907.56, + "end": 1908.78, + "probability": 0.9816 + }, + { + "start": 1909.4, + "end": 1911.04, + "probability": 0.9023 + }, + { + "start": 1912.56, + "end": 1915.56, + "probability": 0.9846 + }, + { + "start": 1916.86, + "end": 1919.34, + "probability": 0.7111 + }, + { + "start": 1920.06, + "end": 1922.66, + "probability": 0.9624 + }, + { + "start": 1923.6, + "end": 1925.22, + "probability": 0.6213 + }, + { + "start": 1926.14, + "end": 1928.44, + "probability": 0.9378 + }, + { + "start": 1930.04, + "end": 1934.16, + "probability": 0.9912 + }, + { + "start": 1935.58, + "end": 1940.38, + "probability": 0.9736 + }, + { + "start": 1942.34, + "end": 1943.62, + "probability": 0.9438 + }, + { + "start": 1944.7, + "end": 1946.54, + "probability": 0.9766 + }, + { + "start": 1948.08, + "end": 1955.8, + "probability": 0.9911 + }, + { + "start": 1955.86, + "end": 1956.62, + "probability": 0.974 + }, + { + "start": 1957.08, + "end": 1957.46, + "probability": 0.9871 + }, + { + "start": 1957.62, + "end": 1958.8, + "probability": 0.7059 + }, + { + "start": 1960.8, + "end": 1967.82, + "probability": 0.999 + }, + { + "start": 1968.92, + "end": 1970.34, + "probability": 0.8167 + }, + { + "start": 1971.96, + "end": 1975.88, + "probability": 0.9783 + }, + { + "start": 1977.04, + "end": 1978.54, + "probability": 0.9924 + }, + { + "start": 1979.46, + "end": 1981.38, + "probability": 0.9976 + }, + { + "start": 1982.2, + "end": 1984.62, + "probability": 0.9902 + }, + { + "start": 1985.67, + "end": 1988.72, + "probability": 0.9149 + }, + { + "start": 1989.66, + "end": 1994.52, + "probability": 0.9597 + }, + { + "start": 1995.82, + "end": 1996.52, + "probability": 0.7112 + }, + { + "start": 1996.6, + "end": 1998.06, + "probability": 0.9799 + }, + { + "start": 1998.08, + "end": 1999.36, + "probability": 0.9508 + }, + { + "start": 2000.02, + "end": 2001.16, + "probability": 0.8793 + }, + { + "start": 2002.18, + "end": 2004.44, + "probability": 0.9957 + }, + { + "start": 2005.16, + "end": 2007.02, + "probability": 0.9241 + }, + { + "start": 2007.76, + "end": 2008.9, + "probability": 0.7777 + }, + { + "start": 2010.04, + "end": 2010.65, + "probability": 0.9294 + }, + { + "start": 2010.98, + "end": 2014.78, + "probability": 0.8994 + }, + { + "start": 2015.96, + "end": 2016.82, + "probability": 0.9365 + }, + { + "start": 2017.68, + "end": 2018.86, + "probability": 0.9139 + }, + { + "start": 2020.22, + "end": 2023.88, + "probability": 0.9957 + }, + { + "start": 2024.64, + "end": 2025.4, + "probability": 0.9653 + }, + { + "start": 2027.24, + "end": 2029.48, + "probability": 0.9843 + }, + { + "start": 2030.48, + "end": 2032.02, + "probability": 0.8694 + }, + { + "start": 2033.36, + "end": 2036.6, + "probability": 0.9919 + }, + { + "start": 2037.88, + "end": 2040.28, + "probability": 0.993 + }, + { + "start": 2041.72, + "end": 2042.95, + "probability": 0.7507 + }, + { + "start": 2044.42, + "end": 2047.18, + "probability": 0.9825 + }, + { + "start": 2048.98, + "end": 2050.42, + "probability": 0.9974 + }, + { + "start": 2052.26, + "end": 2055.38, + "probability": 0.9496 + }, + { + "start": 2056.54, + "end": 2057.36, + "probability": 0.9897 + }, + { + "start": 2058.34, + "end": 2060.06, + "probability": 0.5399 + }, + { + "start": 2060.9, + "end": 2062.5, + "probability": 0.9796 + }, + { + "start": 2064.28, + "end": 2067.98, + "probability": 0.7638 + }, + { + "start": 2069.8, + "end": 2072.42, + "probability": 0.8648 + }, + { + "start": 2073.04, + "end": 2074.8, + "probability": 0.983 + }, + { + "start": 2075.66, + "end": 2075.76, + "probability": 0.0066 + }, + { + "start": 2076.17, + "end": 2078.24, + "probability": 0.7635 + }, + { + "start": 2080.38, + "end": 2083.7, + "probability": 0.9785 + }, + { + "start": 2084.46, + "end": 2086.64, + "probability": 0.8979 + }, + { + "start": 2087.64, + "end": 2088.82, + "probability": 0.8997 + }, + { + "start": 2090.22, + "end": 2093.16, + "probability": 0.9873 + }, + { + "start": 2093.98, + "end": 2096.42, + "probability": 0.9479 + }, + { + "start": 2097.94, + "end": 2100.0, + "probability": 0.9763 + }, + { + "start": 2101.02, + "end": 2105.58, + "probability": 0.8188 + }, + { + "start": 2106.56, + "end": 2109.18, + "probability": 0.9699 + }, + { + "start": 2109.88, + "end": 2111.56, + "probability": 0.9205 + }, + { + "start": 2112.68, + "end": 2114.3, + "probability": 0.9626 + }, + { + "start": 2115.42, + "end": 2117.5, + "probability": 0.9968 + }, + { + "start": 2118.5, + "end": 2120.26, + "probability": 0.8256 + }, + { + "start": 2121.76, + "end": 2125.58, + "probability": 0.8027 + }, + { + "start": 2127.32, + "end": 2131.26, + "probability": 0.9992 + }, + { + "start": 2132.16, + "end": 2133.62, + "probability": 0.9128 + }, + { + "start": 2134.7, + "end": 2135.52, + "probability": 0.9712 + }, + { + "start": 2135.52, + "end": 2139.5, + "probability": 0.9993 + }, + { + "start": 2139.5, + "end": 2142.2, + "probability": 0.9982 + }, + { + "start": 2143.58, + "end": 2150.48, + "probability": 0.9983 + }, + { + "start": 2150.76, + "end": 2152.26, + "probability": 0.8946 + }, + { + "start": 2152.88, + "end": 2154.34, + "probability": 0.8253 + }, + { + "start": 2154.98, + "end": 2156.78, + "probability": 0.9849 + }, + { + "start": 2157.82, + "end": 2160.16, + "probability": 0.9226 + }, + { + "start": 2161.1, + "end": 2161.76, + "probability": 0.018 + }, + { + "start": 2161.76, + "end": 2163.08, + "probability": 0.4925 + }, + { + "start": 2163.76, + "end": 2164.92, + "probability": 0.1151 + }, + { + "start": 2169.29, + "end": 2173.46, + "probability": 0.3151 + }, + { + "start": 2173.46, + "end": 2178.64, + "probability": 0.5111 + }, + { + "start": 2178.68, + "end": 2178.96, + "probability": 0.473 + }, + { + "start": 2179.2, + "end": 2179.24, + "probability": 0.2846 + }, + { + "start": 2179.24, + "end": 2180.84, + "probability": 0.6808 + }, + { + "start": 2180.84, + "end": 2182.86, + "probability": 0.1947 + }, + { + "start": 2183.38, + "end": 2184.1, + "probability": 0.2786 + }, + { + "start": 2184.12, + "end": 2184.54, + "probability": 0.4277 + }, + { + "start": 2185.12, + "end": 2185.4, + "probability": 0.2461 + }, + { + "start": 2185.4, + "end": 2186.08, + "probability": 0.4058 + }, + { + "start": 2186.42, + "end": 2187.5, + "probability": 0.3863 + }, + { + "start": 2187.5, + "end": 2187.8, + "probability": 0.88 + }, + { + "start": 2188.48, + "end": 2191.0, + "probability": 0.4269 + }, + { + "start": 2191.08, + "end": 2191.78, + "probability": 0.4956 + }, + { + "start": 2191.8, + "end": 2193.08, + "probability": 0.3302 + }, + { + "start": 2193.2, + "end": 2194.09, + "probability": 0.5613 + }, + { + "start": 2197.68, + "end": 2198.8, + "probability": 0.1006 + }, + { + "start": 2198.8, + "end": 2198.8, + "probability": 0.2895 + }, + { + "start": 2198.8, + "end": 2202.8, + "probability": 0.7945 + }, + { + "start": 2202.8, + "end": 2205.76, + "probability": 0.6907 + }, + { + "start": 2206.36, + "end": 2207.58, + "probability": 0.2256 + }, + { + "start": 2207.86, + "end": 2209.84, + "probability": 0.4476 + }, + { + "start": 2209.96, + "end": 2211.28, + "probability": 0.4681 + }, + { + "start": 2212.68, + "end": 2215.94, + "probability": 0.9102 + }, + { + "start": 2216.14, + "end": 2217.38, + "probability": 0.7887 + }, + { + "start": 2217.5, + "end": 2218.61, + "probability": 0.7131 + }, + { + "start": 2218.78, + "end": 2219.72, + "probability": 0.6324 + }, + { + "start": 2220.58, + "end": 2224.86, + "probability": 0.9868 + }, + { + "start": 2226.6, + "end": 2229.28, + "probability": 0.9547 + }, + { + "start": 2229.94, + "end": 2231.18, + "probability": 0.858 + }, + { + "start": 2231.32, + "end": 2234.16, + "probability": 0.8817 + }, + { + "start": 2234.26, + "end": 2236.08, + "probability": 0.9953 + }, + { + "start": 2236.66, + "end": 2240.1, + "probability": 0.9392 + }, + { + "start": 2240.7, + "end": 2241.53, + "probability": 0.9795 + }, + { + "start": 2242.8, + "end": 2243.55, + "probability": 0.9129 + }, + { + "start": 2246.99, + "end": 2250.33, + "probability": 0.8872 + }, + { + "start": 2251.68, + "end": 2256.3, + "probability": 0.9941 + }, + { + "start": 2257.06, + "end": 2259.88, + "probability": 0.9978 + }, + { + "start": 2260.4, + "end": 2262.46, + "probability": 0.9883 + }, + { + "start": 2263.0, + "end": 2267.48, + "probability": 0.8511 + }, + { + "start": 2271.52, + "end": 2273.8, + "probability": 0.7526 + }, + { + "start": 2274.7, + "end": 2275.44, + "probability": 0.6497 + }, + { + "start": 2275.54, + "end": 2277.02, + "probability": 0.7114 + }, + { + "start": 2277.04, + "end": 2278.84, + "probability": 0.915 + }, + { + "start": 2279.2, + "end": 2279.86, + "probability": 0.861 + }, + { + "start": 2280.39, + "end": 2282.28, + "probability": 0.4432 + }, + { + "start": 2282.78, + "end": 2284.01, + "probability": 0.9988 + }, + { + "start": 2284.62, + "end": 2285.67, + "probability": 0.9956 + }, + { + "start": 2286.66, + "end": 2292.78, + "probability": 0.9352 + }, + { + "start": 2292.84, + "end": 2293.76, + "probability": 0.8198 + }, + { + "start": 2294.06, + "end": 2298.94, + "probability": 0.974 + }, + { + "start": 2299.48, + "end": 2303.19, + "probability": 0.8687 + }, + { + "start": 2304.12, + "end": 2306.06, + "probability": 0.9927 + }, + { + "start": 2306.62, + "end": 2307.6, + "probability": 0.9541 + }, + { + "start": 2308.4, + "end": 2309.42, + "probability": 0.09 + }, + { + "start": 2309.42, + "end": 2310.24, + "probability": 0.0854 + }, + { + "start": 2311.34, + "end": 2311.34, + "probability": 0.0129 + }, + { + "start": 2311.34, + "end": 2312.36, + "probability": 0.5956 + }, + { + "start": 2313.84, + "end": 2317.97, + "probability": 0.8024 + }, + { + "start": 2320.28, + "end": 2323.56, + "probability": 0.9479 + }, + { + "start": 2325.03, + "end": 2328.27, + "probability": 0.9841 + }, + { + "start": 2330.9, + "end": 2333.62, + "probability": 0.7028 + }, + { + "start": 2334.34, + "end": 2335.18, + "probability": 0.7315 + }, + { + "start": 2335.86, + "end": 2342.76, + "probability": 0.9791 + }, + { + "start": 2343.22, + "end": 2344.32, + "probability": 0.9652 + }, + { + "start": 2346.69, + "end": 2353.72, + "probability": 0.9885 + }, + { + "start": 2354.44, + "end": 2355.78, + "probability": 0.9656 + }, + { + "start": 2356.96, + "end": 2361.44, + "probability": 0.9297 + }, + { + "start": 2361.44, + "end": 2365.14, + "probability": 0.9952 + }, + { + "start": 2366.04, + "end": 2367.14, + "probability": 0.9297 + }, + { + "start": 2369.32, + "end": 2372.83, + "probability": 0.9827 + }, + { + "start": 2374.36, + "end": 2377.06, + "probability": 0.9985 + }, + { + "start": 2377.98, + "end": 2380.2, + "probability": 0.7935 + }, + { + "start": 2380.76, + "end": 2381.98, + "probability": 0.9643 + }, + { + "start": 2382.12, + "end": 2386.32, + "probability": 0.9332 + }, + { + "start": 2386.32, + "end": 2389.06, + "probability": 0.9971 + }, + { + "start": 2389.78, + "end": 2390.56, + "probability": 0.6841 + }, + { + "start": 2391.02, + "end": 2392.46, + "probability": 0.3078 + }, + { + "start": 2392.46, + "end": 2393.5, + "probability": 0.9211 + }, + { + "start": 2393.62, + "end": 2395.4, + "probability": 0.7941 + }, + { + "start": 2396.7, + "end": 2398.04, + "probability": 0.9629 + }, + { + "start": 2398.78, + "end": 2401.5, + "probability": 0.7909 + }, + { + "start": 2402.18, + "end": 2404.32, + "probability": 0.6608 + }, + { + "start": 2405.34, + "end": 2407.96, + "probability": 0.9932 + }, + { + "start": 2409.9, + "end": 2414.52, + "probability": 0.93 + }, + { + "start": 2415.26, + "end": 2419.36, + "probability": 0.9128 + }, + { + "start": 2420.16, + "end": 2420.86, + "probability": 0.8363 + }, + { + "start": 2421.78, + "end": 2424.92, + "probability": 0.8488 + }, + { + "start": 2424.92, + "end": 2430.6, + "probability": 0.6035 + }, + { + "start": 2431.72, + "end": 2432.3, + "probability": 0.6877 + }, + { + "start": 2433.06, + "end": 2436.28, + "probability": 0.967 + }, + { + "start": 2437.12, + "end": 2438.48, + "probability": 0.8643 + }, + { + "start": 2439.1, + "end": 2441.88, + "probability": 0.9866 + }, + { + "start": 2444.06, + "end": 2446.14, + "probability": 0.9697 + }, + { + "start": 2447.06, + "end": 2450.82, + "probability": 0.9915 + }, + { + "start": 2450.82, + "end": 2457.0, + "probability": 0.9835 + }, + { + "start": 2458.3, + "end": 2467.88, + "probability": 0.8035 + }, + { + "start": 2468.3, + "end": 2469.38, + "probability": 0.6814 + }, + { + "start": 2469.82, + "end": 2471.9, + "probability": 0.9759 + }, + { + "start": 2472.02, + "end": 2472.56, + "probability": 0.7401 + }, + { + "start": 2473.94, + "end": 2474.26, + "probability": 0.0682 + }, + { + "start": 2474.26, + "end": 2477.48, + "probability": 0.8246 + }, + { + "start": 2478.58, + "end": 2483.22, + "probability": 0.9968 + }, + { + "start": 2483.22, + "end": 2488.58, + "probability": 0.9963 + }, + { + "start": 2490.06, + "end": 2494.38, + "probability": 0.924 + }, + { + "start": 2495.62, + "end": 2496.24, + "probability": 0.3896 + }, + { + "start": 2496.6, + "end": 2500.58, + "probability": 0.2137 + }, + { + "start": 2500.68, + "end": 2501.98, + "probability": 0.2231 + }, + { + "start": 2502.64, + "end": 2503.0, + "probability": 0.0355 + }, + { + "start": 2503.22, + "end": 2504.0, + "probability": 0.6626 + }, + { + "start": 2504.24, + "end": 2509.14, + "probability": 0.9479 + }, + { + "start": 2509.34, + "end": 2509.8, + "probability": 0.5673 + }, + { + "start": 2509.84, + "end": 2510.44, + "probability": 0.5435 + }, + { + "start": 2510.56, + "end": 2512.08, + "probability": 0.9081 + }, + { + "start": 2512.22, + "end": 2512.8, + "probability": 0.6555 + }, + { + "start": 2512.82, + "end": 2513.66, + "probability": 0.9404 + }, + { + "start": 2513.74, + "end": 2514.16, + "probability": 0.737 + }, + { + "start": 2514.34, + "end": 2519.35, + "probability": 0.9786 + }, + { + "start": 2519.76, + "end": 2520.72, + "probability": 0.8465 + }, + { + "start": 2520.92, + "end": 2522.9, + "probability": 0.5571 + }, + { + "start": 2522.98, + "end": 2525.78, + "probability": 0.5222 + }, + { + "start": 2526.5, + "end": 2528.6, + "probability": 0.1683 + }, + { + "start": 2528.66, + "end": 2536.18, + "probability": 0.2651 + }, + { + "start": 2537.27, + "end": 2540.56, + "probability": 0.4014 + }, + { + "start": 2541.04, + "end": 2543.38, + "probability": 0.6344 + }, + { + "start": 2546.06, + "end": 2546.54, + "probability": 0.5279 + }, + { + "start": 2546.6, + "end": 2547.23, + "probability": 0.2288 + }, + { + "start": 2547.54, + "end": 2547.58, + "probability": 0.0724 + }, + { + "start": 2547.98, + "end": 2556.12, + "probability": 0.6615 + }, + { + "start": 2556.56, + "end": 2560.34, + "probability": 0.9895 + }, + { + "start": 2560.66, + "end": 2562.38, + "probability": 0.7798 + }, + { + "start": 2563.06, + "end": 2566.42, + "probability": 0.7667 + }, + { + "start": 2567.36, + "end": 2568.34, + "probability": 0.4021 + }, + { + "start": 2569.34, + "end": 2571.32, + "probability": 0.4683 + }, + { + "start": 2572.22, + "end": 2573.18, + "probability": 0.7769 + }, + { + "start": 2580.24, + "end": 2582.88, + "probability": 0.7117 + }, + { + "start": 2582.94, + "end": 2587.72, + "probability": 0.9937 + }, + { + "start": 2587.9, + "end": 2591.24, + "probability": 0.7455 + }, + { + "start": 2591.8, + "end": 2594.59, + "probability": 0.2698 + }, + { + "start": 2595.77, + "end": 2599.24, + "probability": 0.5059 + }, + { + "start": 2599.86, + "end": 2604.94, + "probability": 0.706 + }, + { + "start": 2605.68, + "end": 2608.76, + "probability": 0.6278 + }, + { + "start": 2609.3, + "end": 2610.8, + "probability": 0.8105 + }, + { + "start": 2611.36, + "end": 2615.1, + "probability": 0.8709 + }, + { + "start": 2615.66, + "end": 2617.0, + "probability": 0.9709 + }, + { + "start": 2617.62, + "end": 2618.46, + "probability": 0.9277 + }, + { + "start": 2618.46, + "end": 2620.32, + "probability": 0.8344 + }, + { + "start": 2620.94, + "end": 2623.82, + "probability": 0.1197 + }, + { + "start": 2624.06, + "end": 2624.06, + "probability": 0.3094 + }, + { + "start": 2624.06, + "end": 2624.3, + "probability": 0.4651 + }, + { + "start": 2624.3, + "end": 2624.34, + "probability": 0.6597 + }, + { + "start": 2628.1, + "end": 2629.22, + "probability": 0.211 + }, + { + "start": 2629.8, + "end": 2637.78, + "probability": 0.9927 + }, + { + "start": 2637.92, + "end": 2642.4, + "probability": 0.9939 + }, + { + "start": 2643.76, + "end": 2646.06, + "probability": 0.8598 + }, + { + "start": 2646.96, + "end": 2649.64, + "probability": 0.7664 + }, + { + "start": 2650.46, + "end": 2653.6, + "probability": 0.6887 + }, + { + "start": 2654.04, + "end": 2656.64, + "probability": 0.979 + }, + { + "start": 2656.76, + "end": 2657.82, + "probability": 0.9462 + }, + { + "start": 2658.24, + "end": 2660.04, + "probability": 0.8301 + }, + { + "start": 2660.96, + "end": 2666.38, + "probability": 0.9769 + }, + { + "start": 2666.62, + "end": 2667.84, + "probability": 0.884 + }, + { + "start": 2668.46, + "end": 2671.74, + "probability": 0.9256 + }, + { + "start": 2672.4, + "end": 2675.06, + "probability": 0.938 + }, + { + "start": 2675.66, + "end": 2677.2, + "probability": 0.8479 + }, + { + "start": 2678.2, + "end": 2680.49, + "probability": 0.1552 + }, + { + "start": 2682.08, + "end": 2682.18, + "probability": 0.0284 + }, + { + "start": 2683.16, + "end": 2683.72, + "probability": 0.0293 + }, + { + "start": 2683.72, + "end": 2683.72, + "probability": 0.3575 + }, + { + "start": 2683.72, + "end": 2683.72, + "probability": 0.0399 + }, + { + "start": 2683.72, + "end": 2683.72, + "probability": 0.2644 + }, + { + "start": 2683.72, + "end": 2684.76, + "probability": 0.5068 + }, + { + "start": 2684.8, + "end": 2685.74, + "probability": 0.52 + }, + { + "start": 2686.1, + "end": 2689.14, + "probability": 0.1747 + }, + { + "start": 2689.6, + "end": 2692.08, + "probability": 0.7373 + }, + { + "start": 2692.26, + "end": 2692.3, + "probability": 0.0986 + }, + { + "start": 2692.3, + "end": 2694.02, + "probability": 0.8496 + }, + { + "start": 2694.08, + "end": 2694.64, + "probability": 0.7202 + }, + { + "start": 2696.3, + "end": 2697.78, + "probability": 0.0956 + }, + { + "start": 2703.41, + "end": 2711.96, + "probability": 0.9343 + }, + { + "start": 2712.14, + "end": 2714.22, + "probability": 0.9954 + }, + { + "start": 2714.64, + "end": 2717.18, + "probability": 0.1457 + }, + { + "start": 2717.3, + "end": 2718.46, + "probability": 0.1671 + }, + { + "start": 2718.88, + "end": 2719.73, + "probability": 0.478 + }, + { + "start": 2720.84, + "end": 2722.46, + "probability": 0.1078 + }, + { + "start": 2725.08, + "end": 2727.58, + "probability": 0.77 + }, + { + "start": 2728.02, + "end": 2729.58, + "probability": 0.6679 + }, + { + "start": 2729.58, + "end": 2733.58, + "probability": 0.706 + }, + { + "start": 2733.78, + "end": 2735.78, + "probability": 0.6425 + }, + { + "start": 2735.92, + "end": 2736.58, + "probability": 0.7176 + }, + { + "start": 2736.7, + "end": 2738.74, + "probability": 0.8906 + }, + { + "start": 2739.04, + "end": 2741.9, + "probability": 0.7283 + }, + { + "start": 2742.66, + "end": 2744.12, + "probability": 0.4921 + }, + { + "start": 2744.86, + "end": 2752.16, + "probability": 0.9939 + }, + { + "start": 2752.16, + "end": 2758.3, + "probability": 0.7719 + }, + { + "start": 2758.74, + "end": 2759.62, + "probability": 0.6025 + }, + { + "start": 2759.7, + "end": 2760.86, + "probability": 0.5674 + }, + { + "start": 2761.24, + "end": 2763.36, + "probability": 0.5764 + }, + { + "start": 2763.82, + "end": 2765.48, + "probability": 0.847 + }, + { + "start": 2765.68, + "end": 2766.7, + "probability": 0.7265 + }, + { + "start": 2766.7, + "end": 2767.88, + "probability": 0.5894 + }, + { + "start": 2768.2, + "end": 2769.0, + "probability": 0.2662 + }, + { + "start": 2769.0, + "end": 2769.88, + "probability": 0.4804 + }, + { + "start": 2770.38, + "end": 2773.78, + "probability": 0.3082 + }, + { + "start": 2774.28, + "end": 2781.12, + "probability": 0.9955 + }, + { + "start": 2781.48, + "end": 2782.36, + "probability": 0.7644 + }, + { + "start": 2782.38, + "end": 2785.54, + "probability": 0.9843 + }, + { + "start": 2786.44, + "end": 2788.74, + "probability": 0.7875 + }, + { + "start": 2789.34, + "end": 2794.98, + "probability": 0.9897 + }, + { + "start": 2795.44, + "end": 2797.1, + "probability": 0.7716 + }, + { + "start": 2797.6, + "end": 2802.88, + "probability": 0.9765 + }, + { + "start": 2803.44, + "end": 2811.54, + "probability": 0.9968 + }, + { + "start": 2811.96, + "end": 2813.14, + "probability": 0.9526 + }, + { + "start": 2813.56, + "end": 2815.02, + "probability": 0.8904 + }, + { + "start": 2815.42, + "end": 2816.0, + "probability": 0.7765 + }, + { + "start": 2816.1, + "end": 2816.8, + "probability": 0.8863 + }, + { + "start": 2816.88, + "end": 2817.64, + "probability": 0.9008 + }, + { + "start": 2818.04, + "end": 2819.38, + "probability": 0.989 + }, + { + "start": 2819.6, + "end": 2820.3, + "probability": 0.98 + }, + { + "start": 2820.34, + "end": 2821.14, + "probability": 0.8927 + }, + { + "start": 2821.5, + "end": 2822.81, + "probability": 0.9684 + }, + { + "start": 2823.68, + "end": 2824.77, + "probability": 0.9762 + }, + { + "start": 2825.56, + "end": 2830.1, + "probability": 0.9851 + }, + { + "start": 2830.42, + "end": 2831.28, + "probability": 0.5663 + }, + { + "start": 2831.46, + "end": 2832.18, + "probability": 0.2077 + }, + { + "start": 2832.36, + "end": 2836.22, + "probability": 0.5598 + }, + { + "start": 2836.5, + "end": 2840.9, + "probability": 0.6947 + }, + { + "start": 2841.02, + "end": 2841.76, + "probability": 0.6664 + }, + { + "start": 2842.02, + "end": 2846.52, + "probability": 0.8437 + }, + { + "start": 2846.82, + "end": 2847.7, + "probability": 0.5103 + }, + { + "start": 2848.44, + "end": 2854.2, + "probability": 0.9878 + }, + { + "start": 2854.8, + "end": 2858.06, + "probability": 0.9836 + }, + { + "start": 2858.58, + "end": 2861.54, + "probability": 0.9866 + }, + { + "start": 2862.26, + "end": 2865.3, + "probability": 0.9679 + }, + { + "start": 2879.58, + "end": 2880.52, + "probability": 0.5578 + }, + { + "start": 2881.26, + "end": 2882.28, + "probability": 0.6452 + }, + { + "start": 2884.4, + "end": 2885.26, + "probability": 0.9229 + }, + { + "start": 2886.94, + "end": 2887.96, + "probability": 0.9622 + }, + { + "start": 2888.04, + "end": 2889.9, + "probability": 0.8731 + }, + { + "start": 2890.56, + "end": 2892.0, + "probability": 0.9618 + }, + { + "start": 2892.86, + "end": 2894.26, + "probability": 0.9676 + }, + { + "start": 2895.3, + "end": 2897.94, + "probability": 0.8073 + }, + { + "start": 2898.14, + "end": 2899.38, + "probability": 0.974 + }, + { + "start": 2899.94, + "end": 2901.38, + "probability": 0.7723 + }, + { + "start": 2902.46, + "end": 2903.92, + "probability": 0.9229 + }, + { + "start": 2904.04, + "end": 2905.5, + "probability": 0.8115 + }, + { + "start": 2905.5, + "end": 2909.4, + "probability": 0.797 + }, + { + "start": 2909.6, + "end": 2909.76, + "probability": 0.5129 + }, + { + "start": 2909.84, + "end": 2910.96, + "probability": 0.9956 + }, + { + "start": 2911.02, + "end": 2911.81, + "probability": 0.9891 + }, + { + "start": 2912.76, + "end": 2913.6, + "probability": 0.8557 + }, + { + "start": 2913.74, + "end": 2914.32, + "probability": 0.5317 + }, + { + "start": 2914.88, + "end": 2917.01, + "probability": 0.8821 + }, + { + "start": 2917.72, + "end": 2921.99, + "probability": 0.8971 + }, + { + "start": 2922.32, + "end": 2923.48, + "probability": 0.8525 + }, + { + "start": 2924.18, + "end": 2930.16, + "probability": 0.8856 + }, + { + "start": 2930.58, + "end": 2931.5, + "probability": 0.5448 + }, + { + "start": 2931.6, + "end": 2932.43, + "probability": 0.0885 + }, + { + "start": 2933.12, + "end": 2933.73, + "probability": 0.8495 + }, + { + "start": 2933.88, + "end": 2935.0, + "probability": 0.3014 + }, + { + "start": 2935.24, + "end": 2936.8, + "probability": 0.5743 + }, + { + "start": 2938.38, + "end": 2941.5, + "probability": 0.7407 + }, + { + "start": 2942.26, + "end": 2945.42, + "probability": 0.8811 + }, + { + "start": 2945.92, + "end": 2949.44, + "probability": 0.7253 + }, + { + "start": 2949.96, + "end": 2950.5, + "probability": 0.4028 + }, + { + "start": 2950.54, + "end": 2951.52, + "probability": 0.4456 + }, + { + "start": 2951.6, + "end": 2953.4, + "probability": 0.9824 + }, + { + "start": 2953.5, + "end": 2954.24, + "probability": 0.7876 + }, + { + "start": 2954.4, + "end": 2956.26, + "probability": 0.186 + }, + { + "start": 2956.62, + "end": 2958.36, + "probability": 0.0481 + }, + { + "start": 2958.9, + "end": 2959.39, + "probability": 0.1131 + }, + { + "start": 2959.88, + "end": 2962.0, + "probability": 0.3554 + }, + { + "start": 2963.84, + "end": 2965.78, + "probability": 0.6515 + }, + { + "start": 2965.86, + "end": 2967.16, + "probability": 0.8719 + }, + { + "start": 2967.2, + "end": 2967.94, + "probability": 0.315 + }, + { + "start": 2969.9, + "end": 2970.72, + "probability": 0.1654 + }, + { + "start": 2970.72, + "end": 2972.38, + "probability": 0.9043 + }, + { + "start": 2972.56, + "end": 2973.14, + "probability": 0.7777 + }, + { + "start": 2973.34, + "end": 2974.98, + "probability": 0.53 + }, + { + "start": 2975.42, + "end": 2976.08, + "probability": 0.654 + }, + { + "start": 2977.1, + "end": 2978.08, + "probability": 0.7144 + }, + { + "start": 2978.74, + "end": 2980.16, + "probability": 0.9937 + }, + { + "start": 2981.12, + "end": 2982.46, + "probability": 0.8174 + }, + { + "start": 2984.06, + "end": 2988.14, + "probability": 0.9821 + }, + { + "start": 2988.76, + "end": 2989.34, + "probability": 0.6405 + }, + { + "start": 2989.92, + "end": 2990.42, + "probability": 0.9698 + }, + { + "start": 2991.0, + "end": 2994.34, + "probability": 0.9949 + }, + { + "start": 2995.86, + "end": 2998.64, + "probability": 0.9885 + }, + { + "start": 3000.42, + "end": 3001.94, + "probability": 0.9516 + }, + { + "start": 3002.18, + "end": 3003.6, + "probability": 0.9526 + }, + { + "start": 3004.18, + "end": 3006.14, + "probability": 0.9075 + }, + { + "start": 3006.24, + "end": 3006.96, + "probability": 0.8108 + }, + { + "start": 3007.9, + "end": 3008.08, + "probability": 0.6635 + }, + { + "start": 3008.2, + "end": 3009.28, + "probability": 0.9589 + }, + { + "start": 3009.68, + "end": 3010.46, + "probability": 0.8997 + }, + { + "start": 3010.64, + "end": 3012.84, + "probability": 0.2288 + }, + { + "start": 3015.3, + "end": 3015.6, + "probability": 0.0425 + }, + { + "start": 3017.38, + "end": 3019.96, + "probability": 0.3797 + }, + { + "start": 3020.7, + "end": 3021.9, + "probability": 0.7855 + }, + { + "start": 3022.1, + "end": 3023.26, + "probability": 0.9066 + }, + { + "start": 3023.9, + "end": 3024.9, + "probability": 0.8442 + }, + { + "start": 3025.84, + "end": 3027.06, + "probability": 0.6004 + }, + { + "start": 3027.08, + "end": 3027.28, + "probability": 0.4178 + }, + { + "start": 3027.28, + "end": 3027.7, + "probability": 0.9132 + }, + { + "start": 3027.84, + "end": 3028.44, + "probability": 0.9132 + }, + { + "start": 3028.68, + "end": 3029.88, + "probability": 0.6174 + }, + { + "start": 3030.54, + "end": 3031.54, + "probability": 0.9046 + }, + { + "start": 3032.6, + "end": 3033.92, + "probability": 0.9215 + }, + { + "start": 3034.88, + "end": 3036.54, + "probability": 0.9894 + }, + { + "start": 3037.52, + "end": 3038.16, + "probability": 0.9958 + }, + { + "start": 3039.06, + "end": 3039.78, + "probability": 0.961 + }, + { + "start": 3039.86, + "end": 3040.26, + "probability": 0.5041 + }, + { + "start": 3040.34, + "end": 3042.84, + "probability": 0.9769 + }, + { + "start": 3044.06, + "end": 3045.42, + "probability": 0.6995 + }, + { + "start": 3045.58, + "end": 3046.58, + "probability": 0.6188 + }, + { + "start": 3047.04, + "end": 3047.98, + "probability": 0.9321 + }, + { + "start": 3048.06, + "end": 3049.0, + "probability": 0.7496 + }, + { + "start": 3049.16, + "end": 3049.86, + "probability": 0.6288 + }, + { + "start": 3050.38, + "end": 3051.44, + "probability": 0.9163 + }, + { + "start": 3052.08, + "end": 3053.16, + "probability": 0.8597 + }, + { + "start": 3053.52, + "end": 3055.0, + "probability": 0.7137 + }, + { + "start": 3055.0, + "end": 3056.78, + "probability": 0.4342 + }, + { + "start": 3056.98, + "end": 3057.46, + "probability": 0.7133 + }, + { + "start": 3057.56, + "end": 3058.38, + "probability": 0.9327 + }, + { + "start": 3058.94, + "end": 3059.7, + "probability": 0.6923 + }, + { + "start": 3059.84, + "end": 3062.5, + "probability": 0.8649 + }, + { + "start": 3063.3, + "end": 3067.4, + "probability": 0.8689 + }, + { + "start": 3068.06, + "end": 3069.76, + "probability": 0.6194 + }, + { + "start": 3070.42, + "end": 3071.48, + "probability": 0.4996 + }, + { + "start": 3072.56, + "end": 3073.7, + "probability": 0.8901 + }, + { + "start": 3074.52, + "end": 3075.66, + "probability": 0.8234 + }, + { + "start": 3077.16, + "end": 3079.92, + "probability": 0.8158 + }, + { + "start": 3080.08, + "end": 3080.38, + "probability": 0.2813 + }, + { + "start": 3081.3, + "end": 3083.12, + "probability": 0.8057 + }, + { + "start": 3084.12, + "end": 3084.4, + "probability": 0.651 + }, + { + "start": 3086.1, + "end": 3087.8, + "probability": 0.9502 + }, + { + "start": 3087.84, + "end": 3089.84, + "probability": 0.2125 + }, + { + "start": 3090.34, + "end": 3091.02, + "probability": 0.082 + }, + { + "start": 3091.34, + "end": 3092.52, + "probability": 0.6885 + }, + { + "start": 3092.98, + "end": 3093.94, + "probability": 0.1626 + }, + { + "start": 3094.46, + "end": 3095.32, + "probability": 0.9033 + }, + { + "start": 3096.14, + "end": 3102.96, + "probability": 0.0459 + }, + { + "start": 3103.04, + "end": 3103.74, + "probability": 0.3843 + }, + { + "start": 3103.74, + "end": 3104.12, + "probability": 0.5532 + }, + { + "start": 3104.28, + "end": 3104.52, + "probability": 0.4785 + }, + { + "start": 3104.78, + "end": 3105.58, + "probability": 0.6064 + }, + { + "start": 3105.84, + "end": 3106.38, + "probability": 0.5635 + }, + { + "start": 3107.36, + "end": 3108.9, + "probability": 0.3177 + }, + { + "start": 3109.24, + "end": 3111.46, + "probability": 0.8173 + }, + { + "start": 3111.7, + "end": 3114.87, + "probability": 0.48 + }, + { + "start": 3115.32, + "end": 3116.68, + "probability": 0.5759 + }, + { + "start": 3116.94, + "end": 3118.74, + "probability": 0.8434 + }, + { + "start": 3119.88, + "end": 3120.72, + "probability": 0.2358 + }, + { + "start": 3121.32, + "end": 3122.96, + "probability": 0.6831 + }, + { + "start": 3123.49, + "end": 3128.66, + "probability": 0.9634 + }, + { + "start": 3130.26, + "end": 3131.74, + "probability": 0.8525 + }, + { + "start": 3132.96, + "end": 3135.72, + "probability": 0.9854 + }, + { + "start": 3136.1, + "end": 3138.3, + "probability": 0.9913 + }, + { + "start": 3139.3, + "end": 3143.0, + "probability": 0.501 + }, + { + "start": 3143.0, + "end": 3143.0, + "probability": 0.158 + }, + { + "start": 3143.0, + "end": 3143.0, + "probability": 0.0678 + }, + { + "start": 3143.0, + "end": 3145.98, + "probability": 0.8656 + }, + { + "start": 3147.26, + "end": 3148.86, + "probability": 0.8212 + }, + { + "start": 3149.9, + "end": 3153.48, + "probability": 0.9158 + }, + { + "start": 3154.06, + "end": 3156.44, + "probability": 0.9771 + }, + { + "start": 3157.08, + "end": 3157.76, + "probability": 0.6517 + }, + { + "start": 3158.96, + "end": 3162.4, + "probability": 0.9772 + }, + { + "start": 3163.1, + "end": 3166.42, + "probability": 0.7461 + }, + { + "start": 3167.16, + "end": 3168.86, + "probability": 0.9267 + }, + { + "start": 3170.02, + "end": 3171.98, + "probability": 0.8329 + }, + { + "start": 3172.1, + "end": 3173.42, + "probability": 0.7893 + }, + { + "start": 3174.2, + "end": 3176.22, + "probability": 0.584 + }, + { + "start": 3178.44, + "end": 3181.96, + "probability": 0.0283 + }, + { + "start": 3181.96, + "end": 3182.12, + "probability": 0.0296 + }, + { + "start": 3182.54, + "end": 3183.8, + "probability": 0.2795 + }, + { + "start": 3183.92, + "end": 3184.48, + "probability": 0.3319 + }, + { + "start": 3184.62, + "end": 3184.62, + "probability": 0.0974 + }, + { + "start": 3184.66, + "end": 3185.84, + "probability": 0.2919 + }, + { + "start": 3185.92, + "end": 3187.2, + "probability": 0.8143 + }, + { + "start": 3187.84, + "end": 3188.95, + "probability": 0.3519 + }, + { + "start": 3190.08, + "end": 3190.52, + "probability": 0.275 + }, + { + "start": 3191.36, + "end": 3191.52, + "probability": 0.2073 + }, + { + "start": 3191.8, + "end": 3193.3, + "probability": 0.3972 + }, + { + "start": 3193.46, + "end": 3193.84, + "probability": 0.8726 + }, + { + "start": 3194.46, + "end": 3194.92, + "probability": 0.3237 + }, + { + "start": 3194.94, + "end": 3196.64, + "probability": 0.0109 + }, + { + "start": 3196.8, + "end": 3198.36, + "probability": 0.3776 + }, + { + "start": 3198.44, + "end": 3199.02, + "probability": 0.9219 + }, + { + "start": 3199.1, + "end": 3199.6, + "probability": 0.9824 + }, + { + "start": 3199.9, + "end": 3203.98, + "probability": 0.9881 + }, + { + "start": 3203.98, + "end": 3206.6, + "probability": 0.7115 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.0, + "end": 3317.0, + "probability": 0.0 + }, + { + "start": 3317.44, + "end": 3318.58, + "probability": 0.0892 + }, + { + "start": 3319.66, + "end": 3321.76, + "probability": 0.6196 + }, + { + "start": 3323.6, + "end": 3325.32, + "probability": 0.2963 + }, + { + "start": 3325.32, + "end": 3326.94, + "probability": 0.0301 + }, + { + "start": 3326.94, + "end": 3326.98, + "probability": 0.001 + }, + { + "start": 3327.04, + "end": 3327.88, + "probability": 0.026 + }, + { + "start": 3333.16, + "end": 3335.33, + "probability": 0.5978 + }, + { + "start": 3340.22, + "end": 3342.12, + "probability": 0.0418 + }, + { + "start": 3342.12, + "end": 3342.12, + "probability": 0.0973 + }, + { + "start": 3343.86, + "end": 3344.24, + "probability": 0.1715 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.0, + "end": 3440.0, + "probability": 0.0 + }, + { + "start": 3440.1, + "end": 3440.8, + "probability": 0.0867 + }, + { + "start": 3444.14, + "end": 3444.56, + "probability": 0.0632 + }, + { + "start": 3446.98, + "end": 3448.8, + "probability": 0.4677 + }, + { + "start": 3449.68, + "end": 3452.2, + "probability": 0.198 + }, + { + "start": 3453.77, + "end": 3455.28, + "probability": 0.0237 + }, + { + "start": 3455.7, + "end": 3456.12, + "probability": 0.0465 + }, + { + "start": 3456.18, + "end": 3457.1, + "probability": 0.0729 + }, + { + "start": 3457.3, + "end": 3457.82, + "probability": 0.1313 + }, + { + "start": 3457.98, + "end": 3458.76, + "probability": 0.1052 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.0, + "end": 3565.0, + "probability": 0.0 + }, + { + "start": 3565.28, + "end": 3565.44, + "probability": 0.0742 + }, + { + "start": 3566.42, + "end": 3567.3, + "probability": 0.248 + }, + { + "start": 3567.3, + "end": 3568.0, + "probability": 0.1381 + }, + { + "start": 3568.02, + "end": 3568.48, + "probability": 0.1896 + }, + { + "start": 3568.76, + "end": 3570.44, + "probability": 0.4024 + }, + { + "start": 3570.44, + "end": 3571.26, + "probability": 0.4298 + }, + { + "start": 3571.44, + "end": 3572.46, + "probability": 0.3739 + }, + { + "start": 3572.52, + "end": 3574.24, + "probability": 0.1645 + }, + { + "start": 3574.96, + "end": 3577.76, + "probability": 0.9378 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.0, + "end": 3692.0, + "probability": 0.0 + }, + { + "start": 3692.52, + "end": 3692.6, + "probability": 0.0824 + }, + { + "start": 3692.6, + "end": 3692.6, + "probability": 0.1352 + }, + { + "start": 3692.6, + "end": 3692.6, + "probability": 0.0878 + }, + { + "start": 3692.6, + "end": 3692.6, + "probability": 0.1915 + }, + { + "start": 3692.6, + "end": 3693.36, + "probability": 0.5038 + }, + { + "start": 3694.16, + "end": 3696.58, + "probability": 0.772 + }, + { + "start": 3696.72, + "end": 3697.64, + "probability": 0.3348 + }, + { + "start": 3697.74, + "end": 3698.96, + "probability": 0.8261 + }, + { + "start": 3699.36, + "end": 3700.32, + "probability": 0.8845 + }, + { + "start": 3701.78, + "end": 3702.54, + "probability": 0.715 + }, + { + "start": 3702.62, + "end": 3705.3, + "probability": 0.9551 + }, + { + "start": 3705.3, + "end": 3707.76, + "probability": 0.991 + }, + { + "start": 3707.88, + "end": 3708.2, + "probability": 0.6097 + }, + { + "start": 3708.3, + "end": 3708.9, + "probability": 0.667 + }, + { + "start": 3709.86, + "end": 3710.62, + "probability": 0.758 + }, + { + "start": 3711.4, + "end": 3714.34, + "probability": 0.9382 + }, + { + "start": 3715.14, + "end": 3715.64, + "probability": 0.6627 + }, + { + "start": 3715.76, + "end": 3716.28, + "probability": 0.4082 + }, + { + "start": 3716.5, + "end": 3718.78, + "probability": 0.9961 + }, + { + "start": 3718.78, + "end": 3721.3, + "probability": 0.998 + }, + { + "start": 3721.86, + "end": 3725.56, + "probability": 0.9921 + }, + { + "start": 3726.04, + "end": 3728.42, + "probability": 0.9973 + }, + { + "start": 3728.8, + "end": 3729.42, + "probability": 0.576 + }, + { + "start": 3729.76, + "end": 3730.34, + "probability": 0.6272 + }, + { + "start": 3730.4, + "end": 3731.1, + "probability": 0.6567 + }, + { + "start": 3731.44, + "end": 3732.0, + "probability": 0.6775 + }, + { + "start": 3732.1, + "end": 3732.76, + "probability": 0.9072 + }, + { + "start": 3733.32, + "end": 3733.86, + "probability": 0.7522 + }, + { + "start": 3733.9, + "end": 3734.68, + "probability": 0.9009 + }, + { + "start": 3734.82, + "end": 3735.94, + "probability": 0.9747 + }, + { + "start": 3736.3, + "end": 3738.06, + "probability": 0.9927 + }, + { + "start": 3738.94, + "end": 3742.6, + "probability": 0.9287 + }, + { + "start": 3742.64, + "end": 3743.86, + "probability": 0.8342 + }, + { + "start": 3744.96, + "end": 3746.4, + "probability": 0.9749 + }, + { + "start": 3746.76, + "end": 3749.1, + "probability": 0.9919 + }, + { + "start": 3749.24, + "end": 3752.38, + "probability": 0.9605 + }, + { + "start": 3752.94, + "end": 3754.56, + "probability": 0.9091 + }, + { + "start": 3754.72, + "end": 3758.56, + "probability": 0.9961 + }, + { + "start": 3759.18, + "end": 3763.32, + "probability": 0.9951 + }, + { + "start": 3763.48, + "end": 3764.82, + "probability": 0.664 + }, + { + "start": 3765.08, + "end": 3766.38, + "probability": 0.9446 + }, + { + "start": 3766.7, + "end": 3768.56, + "probability": 0.9933 + }, + { + "start": 3769.3, + "end": 3770.68, + "probability": 0.9922 + }, + { + "start": 3770.8, + "end": 3771.38, + "probability": 0.7004 + }, + { + "start": 3771.46, + "end": 3772.82, + "probability": 0.9596 + }, + { + "start": 3773.14, + "end": 3774.2, + "probability": 0.8765 + }, + { + "start": 3774.46, + "end": 3777.14, + "probability": 0.9712 + }, + { + "start": 3777.62, + "end": 3778.18, + "probability": 0.711 + }, + { + "start": 3778.24, + "end": 3779.7, + "probability": 0.9727 + }, + { + "start": 3780.04, + "end": 3781.74, + "probability": 0.9706 + }, + { + "start": 3782.44, + "end": 3786.24, + "probability": 0.8501 + }, + { + "start": 3786.5, + "end": 3787.62, + "probability": 0.9413 + }, + { + "start": 3788.94, + "end": 3792.64, + "probability": 0.9701 + }, + { + "start": 3793.22, + "end": 3794.42, + "probability": 0.7219 + }, + { + "start": 3794.88, + "end": 3797.0, + "probability": 0.9943 + }, + { + "start": 3797.48, + "end": 3799.28, + "probability": 0.962 + }, + { + "start": 3799.3, + "end": 3800.44, + "probability": 0.6802 + }, + { + "start": 3800.92, + "end": 3802.01, + "probability": 0.9724 + }, + { + "start": 3802.54, + "end": 3805.88, + "probability": 0.9766 + }, + { + "start": 3806.66, + "end": 3808.0, + "probability": 0.9658 + }, + { + "start": 3808.06, + "end": 3809.4, + "probability": 0.9888 + }, + { + "start": 3809.76, + "end": 3811.96, + "probability": 0.9745 + }, + { + "start": 3812.02, + "end": 3812.98, + "probability": 0.6135 + }, + { + "start": 3815.06, + "end": 3816.67, + "probability": 0.9419 + }, + { + "start": 3816.76, + "end": 3818.86, + "probability": 0.9907 + }, + { + "start": 3819.02, + "end": 3820.26, + "probability": 0.9542 + }, + { + "start": 3820.36, + "end": 3822.88, + "probability": 0.9834 + }, + { + "start": 3822.92, + "end": 3823.34, + "probability": 0.3409 + }, + { + "start": 3823.44, + "end": 3823.88, + "probability": 0.7143 + }, + { + "start": 3824.02, + "end": 3829.6, + "probability": 0.9778 + }, + { + "start": 3829.76, + "end": 3830.84, + "probability": 0.7183 + }, + { + "start": 3831.52, + "end": 3834.04, + "probability": 0.9893 + }, + { + "start": 3834.2, + "end": 3834.5, + "probability": 0.6752 + }, + { + "start": 3834.64, + "end": 3835.58, + "probability": 0.8216 + }, + { + "start": 3835.62, + "end": 3837.12, + "probability": 0.9758 + }, + { + "start": 3839.58, + "end": 3840.98, + "probability": 0.897 + }, + { + "start": 3841.68, + "end": 3843.53, + "probability": 0.988 + }, + { + "start": 3844.5, + "end": 3848.3, + "probability": 0.874 + }, + { + "start": 3848.64, + "end": 3849.74, + "probability": 0.8909 + }, + { + "start": 3850.5, + "end": 3852.7, + "probability": 0.9894 + }, + { + "start": 3853.74, + "end": 3857.34, + "probability": 0.9926 + }, + { + "start": 3857.8, + "end": 3860.34, + "probability": 0.9575 + }, + { + "start": 3860.44, + "end": 3860.66, + "probability": 0.9653 + }, + { + "start": 3861.16, + "end": 3861.4, + "probability": 0.9027 + }, + { + "start": 3861.44, + "end": 3865.32, + "probability": 0.972 + }, + { + "start": 3866.42, + "end": 3868.0, + "probability": 0.9983 + }, + { + "start": 3869.36, + "end": 3872.66, + "probability": 0.9366 + }, + { + "start": 3873.28, + "end": 3877.54, + "probability": 0.9897 + }, + { + "start": 3877.54, + "end": 3882.02, + "probability": 0.7468 + }, + { + "start": 3883.1, + "end": 3885.96, + "probability": 0.9403 + }, + { + "start": 3886.48, + "end": 3887.88, + "probability": 0.7375 + }, + { + "start": 3890.48, + "end": 3891.2, + "probability": 0.5184 + }, + { + "start": 3892.1, + "end": 3896.8, + "probability": 0.8208 + }, + { + "start": 3897.38, + "end": 3898.72, + "probability": 0.9722 + }, + { + "start": 3899.54, + "end": 3905.06, + "probability": 0.9912 + }, + { + "start": 3905.16, + "end": 3906.18, + "probability": 0.8436 + }, + { + "start": 3906.68, + "end": 3908.2, + "probability": 0.8733 + }, + { + "start": 3908.42, + "end": 3910.92, + "probability": 0.9661 + }, + { + "start": 3911.9, + "end": 3914.56, + "probability": 0.9937 + }, + { + "start": 3914.66, + "end": 3915.29, + "probability": 0.644 + }, + { + "start": 3915.92, + "end": 3917.94, + "probability": 0.8437 + }, + { + "start": 3918.7, + "end": 3920.06, + "probability": 0.6341 + }, + { + "start": 3920.76, + "end": 3922.94, + "probability": 0.987 + }, + { + "start": 3925.54, + "end": 3927.58, + "probability": 0.8696 + }, + { + "start": 3928.54, + "end": 3934.36, + "probability": 0.9954 + }, + { + "start": 3934.36, + "end": 3938.62, + "probability": 0.9999 + }, + { + "start": 3939.44, + "end": 3941.98, + "probability": 0.7451 + }, + { + "start": 3943.12, + "end": 3945.52, + "probability": 0.9766 + }, + { + "start": 3945.78, + "end": 3946.84, + "probability": 0.9616 + }, + { + "start": 3947.04, + "end": 3947.74, + "probability": 0.9065 + }, + { + "start": 3948.7, + "end": 3950.84, + "probability": 0.9371 + }, + { + "start": 3951.56, + "end": 3953.32, + "probability": 0.989 + }, + { + "start": 3953.4, + "end": 3956.5, + "probability": 0.7199 + }, + { + "start": 3956.5, + "end": 3959.06, + "probability": 0.9183 + }, + { + "start": 3960.54, + "end": 3963.32, + "probability": 0.9038 + }, + { + "start": 3963.32, + "end": 3966.36, + "probability": 0.998 + }, + { + "start": 3967.06, + "end": 3969.6, + "probability": 0.9926 + }, + { + "start": 3969.6, + "end": 3971.94, + "probability": 0.9975 + }, + { + "start": 3972.82, + "end": 3974.78, + "probability": 0.8499 + }, + { + "start": 3976.04, + "end": 3978.12, + "probability": 0.8452 + }, + { + "start": 3978.92, + "end": 3982.78, + "probability": 0.9682 + }, + { + "start": 3983.46, + "end": 3985.58, + "probability": 0.9899 + }, + { + "start": 3986.38, + "end": 3988.18, + "probability": 0.9908 + }, + { + "start": 3989.22, + "end": 3992.86, + "probability": 0.9882 + }, + { + "start": 3993.06, + "end": 3993.7, + "probability": 0.9826 + }, + { + "start": 3994.36, + "end": 3998.7, + "probability": 0.9706 + }, + { + "start": 3999.22, + "end": 4004.64, + "probability": 0.9783 + }, + { + "start": 4005.76, + "end": 4008.2, + "probability": 0.997 + }, + { + "start": 4008.4, + "end": 4012.3, + "probability": 0.995 + }, + { + "start": 4013.04, + "end": 4015.86, + "probability": 0.8755 + }, + { + "start": 4015.86, + "end": 4018.84, + "probability": 0.9919 + }, + { + "start": 4019.02, + "end": 4023.4, + "probability": 0.9835 + }, + { + "start": 4023.98, + "end": 4027.06, + "probability": 0.998 + }, + { + "start": 4027.82, + "end": 4030.56, + "probability": 0.9928 + }, + { + "start": 4030.6, + "end": 4031.95, + "probability": 0.9008 + }, + { + "start": 4034.64, + "end": 4037.1, + "probability": 0.9961 + }, + { + "start": 4037.1, + "end": 4039.72, + "probability": 0.7505 + }, + { + "start": 4040.86, + "end": 4044.53, + "probability": 0.9829 + }, + { + "start": 4045.8, + "end": 4048.56, + "probability": 0.9104 + }, + { + "start": 4049.34, + "end": 4049.9, + "probability": 0.7676 + }, + { + "start": 4050.08, + "end": 4052.04, + "probability": 0.8894 + }, + { + "start": 4052.08, + "end": 4052.82, + "probability": 0.8453 + }, + { + "start": 4053.54, + "end": 4055.16, + "probability": 0.9569 + }, + { + "start": 4055.58, + "end": 4057.9, + "probability": 0.9882 + }, + { + "start": 4057.9, + "end": 4060.28, + "probability": 0.9867 + }, + { + "start": 4061.2, + "end": 4062.73, + "probability": 0.7225 + }, + { + "start": 4063.3, + "end": 4065.08, + "probability": 0.9318 + }, + { + "start": 4066.08, + "end": 4068.02, + "probability": 0.9364 + }, + { + "start": 4068.36, + "end": 4072.12, + "probability": 0.9453 + }, + { + "start": 4072.12, + "end": 4074.7, + "probability": 0.986 + }, + { + "start": 4075.44, + "end": 4079.38, + "probability": 0.9774 + }, + { + "start": 4079.78, + "end": 4084.54, + "probability": 0.987 + }, + { + "start": 4086.4, + "end": 4087.38, + "probability": 0.8792 + }, + { + "start": 4087.76, + "end": 4088.68, + "probability": 0.9237 + }, + { + "start": 4088.82, + "end": 4092.86, + "probability": 0.9971 + }, + { + "start": 4093.04, + "end": 4095.06, + "probability": 0.894 + }, + { + "start": 4095.58, + "end": 4097.38, + "probability": 0.9979 + }, + { + "start": 4097.48, + "end": 4098.0, + "probability": 0.9449 + }, + { + "start": 4098.12, + "end": 4098.62, + "probability": 0.9745 + }, + { + "start": 4098.72, + "end": 4100.42, + "probability": 0.9191 + }, + { + "start": 4100.96, + "end": 4105.98, + "probability": 0.9819 + }, + { + "start": 4106.24, + "end": 4111.02, + "probability": 0.9989 + }, + { + "start": 4111.02, + "end": 4115.22, + "probability": 0.9972 + }, + { + "start": 4115.62, + "end": 4115.9, + "probability": 0.7225 + }, + { + "start": 4116.66, + "end": 4118.32, + "probability": 0.9878 + }, + { + "start": 4118.4, + "end": 4120.0, + "probability": 0.8596 + }, + { + "start": 4120.8, + "end": 4124.92, + "probability": 0.7514 + }, + { + "start": 4124.92, + "end": 4128.96, + "probability": 0.99 + }, + { + "start": 4129.42, + "end": 4134.9, + "probability": 0.9266 + }, + { + "start": 4135.1, + "end": 4136.16, + "probability": 0.3977 + }, + { + "start": 4136.42, + "end": 4137.44, + "probability": 0.3639 + }, + { + "start": 4137.44, + "end": 4139.9, + "probability": 0.9144 + }, + { + "start": 4140.68, + "end": 4144.2, + "probability": 0.9305 + }, + { + "start": 4144.3, + "end": 4144.76, + "probability": 0.542 + }, + { + "start": 4145.34, + "end": 4145.46, + "probability": 0.1128 + }, + { + "start": 4145.46, + "end": 4146.26, + "probability": 0.7546 + }, + { + "start": 4150.96, + "end": 4152.14, + "probability": 0.6415 + }, + { + "start": 4153.12, + "end": 4155.28, + "probability": 0.7662 + }, + { + "start": 4157.66, + "end": 4161.84, + "probability": 0.9629 + }, + { + "start": 4161.95, + "end": 4166.96, + "probability": 0.9842 + }, + { + "start": 4167.68, + "end": 4169.6, + "probability": 0.8865 + }, + { + "start": 4172.66, + "end": 4176.16, + "probability": 0.735 + }, + { + "start": 4179.94, + "end": 4181.44, + "probability": 0.5544 + }, + { + "start": 4182.84, + "end": 4183.94, + "probability": 0.4162 + }, + { + "start": 4185.0, + "end": 4188.14, + "probability": 0.8776 + }, + { + "start": 4189.58, + "end": 4190.24, + "probability": 0.808 + }, + { + "start": 4191.52, + "end": 4193.16, + "probability": 0.9507 + }, + { + "start": 4194.28, + "end": 4196.16, + "probability": 0.9185 + }, + { + "start": 4198.04, + "end": 4198.98, + "probability": 0.6129 + }, + { + "start": 4201.78, + "end": 4202.86, + "probability": 0.9021 + }, + { + "start": 4204.08, + "end": 4204.88, + "probability": 0.6776 + }, + { + "start": 4206.66, + "end": 4213.26, + "probability": 0.7759 + }, + { + "start": 4215.88, + "end": 4218.04, + "probability": 0.7749 + }, + { + "start": 4218.56, + "end": 4220.82, + "probability": 0.9263 + }, + { + "start": 4223.16, + "end": 4224.04, + "probability": 0.5663 + }, + { + "start": 4224.88, + "end": 4227.3, + "probability": 0.669 + }, + { + "start": 4227.98, + "end": 4231.94, + "probability": 0.9136 + }, + { + "start": 4232.64, + "end": 4240.3, + "probability": 0.8599 + }, + { + "start": 4240.3, + "end": 4245.08, + "probability": 0.9508 + }, + { + "start": 4245.96, + "end": 4246.58, + "probability": 0.8979 + }, + { + "start": 4248.98, + "end": 4252.6, + "probability": 0.7956 + }, + { + "start": 4256.02, + "end": 4259.86, + "probability": 0.9388 + }, + { + "start": 4259.86, + "end": 4264.7, + "probability": 0.9867 + }, + { + "start": 4265.26, + "end": 4266.92, + "probability": 0.9746 + }, + { + "start": 4268.08, + "end": 4270.6, + "probability": 0.9578 + }, + { + "start": 4272.98, + "end": 4273.68, + "probability": 0.6412 + }, + { + "start": 4274.74, + "end": 4279.36, + "probability": 0.9972 + }, + { + "start": 4281.28, + "end": 4287.02, + "probability": 0.9279 + }, + { + "start": 4287.44, + "end": 4287.92, + "probability": 0.3371 + }, + { + "start": 4287.96, + "end": 4289.74, + "probability": 0.8358 + }, + { + "start": 4291.14, + "end": 4294.92, + "probability": 0.9675 + }, + { + "start": 4298.38, + "end": 4304.66, + "probability": 0.967 + }, + { + "start": 4304.66, + "end": 4310.98, + "probability": 0.9405 + }, + { + "start": 4311.46, + "end": 4312.92, + "probability": 0.7805 + }, + { + "start": 4315.18, + "end": 4322.72, + "probability": 0.9141 + }, + { + "start": 4325.88, + "end": 4326.94, + "probability": 0.6369 + }, + { + "start": 4327.72, + "end": 4328.74, + "probability": 0.9829 + }, + { + "start": 4328.86, + "end": 4329.4, + "probability": 0.9014 + }, + { + "start": 4330.28, + "end": 4333.66, + "probability": 0.9905 + }, + { + "start": 4335.0, + "end": 4335.44, + "probability": 0.5109 + }, + { + "start": 4336.04, + "end": 4339.68, + "probability": 0.9663 + }, + { + "start": 4340.22, + "end": 4341.58, + "probability": 0.8569 + }, + { + "start": 4342.24, + "end": 4343.58, + "probability": 0.968 + }, + { + "start": 4343.64, + "end": 4346.18, + "probability": 0.7428 + }, + { + "start": 4346.26, + "end": 4358.48, + "probability": 0.8933 + }, + { + "start": 4359.76, + "end": 4365.56, + "probability": 0.9906 + }, + { + "start": 4366.46, + "end": 4369.18, + "probability": 0.9941 + }, + { + "start": 4370.28, + "end": 4374.62, + "probability": 0.7285 + }, + { + "start": 4375.28, + "end": 4376.28, + "probability": 0.9135 + }, + { + "start": 4377.3, + "end": 4380.5, + "probability": 0.9879 + }, + { + "start": 4381.22, + "end": 4383.56, + "probability": 0.6376 + }, + { + "start": 4384.4, + "end": 4385.28, + "probability": 0.6994 + }, + { + "start": 4386.32, + "end": 4387.08, + "probability": 0.873 + }, + { + "start": 4389.2, + "end": 4392.58, + "probability": 0.7241 + }, + { + "start": 4393.28, + "end": 4396.32, + "probability": 0.8035 + }, + { + "start": 4397.16, + "end": 4397.88, + "probability": 0.637 + }, + { + "start": 4398.44, + "end": 4402.96, + "probability": 0.9062 + }, + { + "start": 4402.96, + "end": 4409.64, + "probability": 0.9233 + }, + { + "start": 4410.66, + "end": 4415.0, + "probability": 0.9746 + }, + { + "start": 4416.52, + "end": 4420.92, + "probability": 0.8642 + }, + { + "start": 4422.12, + "end": 4423.04, + "probability": 0.9545 + }, + { + "start": 4423.48, + "end": 4424.44, + "probability": 0.9277 + }, + { + "start": 4425.44, + "end": 4428.42, + "probability": 0.8726 + }, + { + "start": 4429.28, + "end": 4434.24, + "probability": 0.9162 + }, + { + "start": 4436.72, + "end": 4438.04, + "probability": 0.7975 + }, + { + "start": 4439.22, + "end": 4442.38, + "probability": 0.6224 + }, + { + "start": 4442.98, + "end": 4447.28, + "probability": 0.9304 + }, + { + "start": 4447.28, + "end": 4451.86, + "probability": 0.7953 + }, + { + "start": 4453.14, + "end": 4454.96, + "probability": 0.7087 + }, + { + "start": 4455.94, + "end": 4459.42, + "probability": 0.8835 + }, + { + "start": 4462.44, + "end": 4466.18, + "probability": 0.959 + }, + { + "start": 4468.56, + "end": 4470.56, + "probability": 0.9194 + }, + { + "start": 4471.6, + "end": 4476.38, + "probability": 0.5596 + }, + { + "start": 4478.26, + "end": 4479.68, + "probability": 0.9399 + }, + { + "start": 4480.4, + "end": 4480.7, + "probability": 0.8683 + }, + { + "start": 4482.66, + "end": 4483.74, + "probability": 0.8582 + }, + { + "start": 4484.64, + "end": 4485.74, + "probability": 0.939 + }, + { + "start": 4487.54, + "end": 4488.64, + "probability": 0.9288 + }, + { + "start": 4489.46, + "end": 4493.04, + "probability": 0.85 + }, + { + "start": 4494.58, + "end": 4498.8, + "probability": 0.9878 + }, + { + "start": 4499.74, + "end": 4501.26, + "probability": 0.8687 + }, + { + "start": 4501.48, + "end": 4502.28, + "probability": 0.7591 + }, + { + "start": 4502.78, + "end": 4504.76, + "probability": 0.8385 + }, + { + "start": 4505.16, + "end": 4506.14, + "probability": 0.9478 + }, + { + "start": 4506.9, + "end": 4509.92, + "probability": 0.7575 + }, + { + "start": 4510.68, + "end": 4512.66, + "probability": 0.958 + }, + { + "start": 4513.6, + "end": 4515.12, + "probability": 0.6618 + }, + { + "start": 4516.02, + "end": 4518.82, + "probability": 0.9575 + }, + { + "start": 4519.5, + "end": 4524.88, + "probability": 0.9242 + }, + { + "start": 4526.72, + "end": 4529.96, + "probability": 0.9624 + }, + { + "start": 4529.96, + "end": 4533.8, + "probability": 0.9496 + }, + { + "start": 4534.6, + "end": 4537.12, + "probability": 0.8145 + }, + { + "start": 4537.72, + "end": 4540.06, + "probability": 0.9581 + }, + { + "start": 4540.74, + "end": 4542.88, + "probability": 0.8026 + }, + { + "start": 4543.72, + "end": 4546.22, + "probability": 0.3507 + }, + { + "start": 4547.48, + "end": 4548.68, + "probability": 0.752 + }, + { + "start": 4550.12, + "end": 4550.62, + "probability": 0.4144 + }, + { + "start": 4550.68, + "end": 4551.8, + "probability": 0.7304 + }, + { + "start": 4551.94, + "end": 4552.98, + "probability": 0.486 + }, + { + "start": 4553.18, + "end": 4554.28, + "probability": 0.3473 + }, + { + "start": 4554.96, + "end": 4559.9, + "probability": 0.7431 + }, + { + "start": 4560.18, + "end": 4560.72, + "probability": 0.6516 + }, + { + "start": 4560.82, + "end": 4562.04, + "probability": 0.2696 + }, + { + "start": 4562.14, + "end": 4562.14, + "probability": 0.0182 + }, + { + "start": 4562.14, + "end": 4563.18, + "probability": 0.1709 + }, + { + "start": 4563.2, + "end": 4571.56, + "probability": 0.9026 + }, + { + "start": 4571.84, + "end": 4573.48, + "probability": 0.4963 + }, + { + "start": 4573.76, + "end": 4575.38, + "probability": 0.6222 + }, + { + "start": 4576.32, + "end": 4579.02, + "probability": 0.6672 + }, + { + "start": 4579.12, + "end": 4579.9, + "probability": 0.7537 + }, + { + "start": 4582.22, + "end": 4585.12, + "probability": 0.8375 + }, + { + "start": 4585.98, + "end": 4587.46, + "probability": 0.9389 + }, + { + "start": 4587.58, + "end": 4593.78, + "probability": 0.7662 + }, + { + "start": 4595.14, + "end": 4596.7, + "probability": 0.9368 + }, + { + "start": 4598.16, + "end": 4600.65, + "probability": 0.6284 + }, + { + "start": 4601.48, + "end": 4602.81, + "probability": 0.6143 + }, + { + "start": 4604.08, + "end": 4604.44, + "probability": 0.3359 + }, + { + "start": 4605.78, + "end": 4606.13, + "probability": 0.4725 + }, + { + "start": 4606.92, + "end": 4607.08, + "probability": 0.8545 + }, + { + "start": 4607.48, + "end": 4608.24, + "probability": 0.7045 + }, + { + "start": 4610.22, + "end": 4613.3, + "probability": 0.6983 + }, + { + "start": 4613.7, + "end": 4616.74, + "probability": 0.8276 + }, + { + "start": 4617.5, + "end": 4619.42, + "probability": 0.5632 + }, + { + "start": 4619.54, + "end": 4621.38, + "probability": 0.5628 + }, + { + "start": 4622.18, + "end": 4623.24, + "probability": 0.6146 + }, + { + "start": 4623.62, + "end": 4629.46, + "probability": 0.9528 + }, + { + "start": 4630.68, + "end": 4633.0, + "probability": 0.9506 + }, + { + "start": 4633.66, + "end": 4635.06, + "probability": 0.6367 + }, + { + "start": 4635.78, + "end": 4636.02, + "probability": 0.8246 + }, + { + "start": 4637.62, + "end": 4638.06, + "probability": 0.9807 + }, + { + "start": 4639.92, + "end": 4640.43, + "probability": 0.9653 + }, + { + "start": 4642.04, + "end": 4645.16, + "probability": 0.9004 + }, + { + "start": 4646.96, + "end": 4649.6, + "probability": 0.7153 + }, + { + "start": 4655.42, + "end": 4660.14, + "probability": 0.8186 + }, + { + "start": 4662.22, + "end": 4667.6, + "probability": 0.7428 + }, + { + "start": 4670.42, + "end": 4674.08, + "probability": 0.5984 + }, + { + "start": 4675.56, + "end": 4678.76, + "probability": 0.8424 + }, + { + "start": 4678.82, + "end": 4679.51, + "probability": 0.9524 + }, + { + "start": 4681.94, + "end": 4683.74, + "probability": 0.9716 + }, + { + "start": 4684.94, + "end": 4686.36, + "probability": 0.9787 + }, + { + "start": 4687.62, + "end": 4688.34, + "probability": 0.7111 + }, + { + "start": 4689.26, + "end": 4691.17, + "probability": 0.6145 + }, + { + "start": 4693.08, + "end": 4697.6, + "probability": 0.9163 + }, + { + "start": 4698.22, + "end": 4699.34, + "probability": 0.3594 + }, + { + "start": 4702.18, + "end": 4705.06, + "probability": 0.8928 + }, + { + "start": 4706.8, + "end": 4709.72, + "probability": 0.8259 + }, + { + "start": 4710.58, + "end": 4711.48, + "probability": 0.4253 + }, + { + "start": 4711.64, + "end": 4712.08, + "probability": 0.9294 + }, + { + "start": 4715.02, + "end": 4716.56, + "probability": 0.693 + }, + { + "start": 4717.54, + "end": 4719.6, + "probability": 0.9731 + }, + { + "start": 4720.84, + "end": 4723.98, + "probability": 0.8794 + }, + { + "start": 4726.02, + "end": 4727.82, + "probability": 0.9218 + }, + { + "start": 4727.9, + "end": 4729.54, + "probability": 0.7345 + }, + { + "start": 4729.72, + "end": 4730.8, + "probability": 0.9432 + }, + { + "start": 4731.5, + "end": 4732.06, + "probability": 0.5153 + }, + { + "start": 4732.84, + "end": 4735.52, + "probability": 0.8857 + }, + { + "start": 4736.16, + "end": 4738.36, + "probability": 0.6928 + }, + { + "start": 4738.98, + "end": 4740.04, + "probability": 0.8137 + }, + { + "start": 4741.98, + "end": 4745.26, + "probability": 0.7928 + }, + { + "start": 4746.6, + "end": 4749.18, + "probability": 0.7154 + }, + { + "start": 4749.78, + "end": 4752.02, + "probability": 0.9482 + }, + { + "start": 4753.26, + "end": 4754.05, + "probability": 0.9103 + }, + { + "start": 4754.54, + "end": 4755.03, + "probability": 0.8736 + }, + { + "start": 4755.8, + "end": 4760.58, + "probability": 0.8883 + }, + { + "start": 4761.58, + "end": 4764.9, + "probability": 0.8916 + }, + { + "start": 4766.92, + "end": 4766.92, + "probability": 0.2442 + }, + { + "start": 4766.92, + "end": 4768.92, + "probability": 0.6943 + }, + { + "start": 4769.5, + "end": 4773.9, + "probability": 0.8369 + }, + { + "start": 4775.22, + "end": 4779.94, + "probability": 0.9893 + }, + { + "start": 4780.48, + "end": 4781.04, + "probability": 0.734 + }, + { + "start": 4781.46, + "end": 4782.0, + "probability": 0.9061 + }, + { + "start": 4783.18, + "end": 4784.86, + "probability": 0.6529 + }, + { + "start": 4786.28, + "end": 4789.9, + "probability": 0.8682 + }, + { + "start": 4790.94, + "end": 4792.26, + "probability": 0.8271 + }, + { + "start": 4793.18, + "end": 4794.2, + "probability": 0.7503 + }, + { + "start": 4794.78, + "end": 4797.46, + "probability": 0.8411 + }, + { + "start": 4798.74, + "end": 4800.24, + "probability": 0.5608 + }, + { + "start": 4800.86, + "end": 4803.16, + "probability": 0.9492 + }, + { + "start": 4803.84, + "end": 4807.76, + "probability": 0.9391 + }, + { + "start": 4808.06, + "end": 4809.02, + "probability": 0.7452 + }, + { + "start": 4810.64, + "end": 4812.79, + "probability": 0.8824 + }, + { + "start": 4813.16, + "end": 4820.76, + "probability": 0.8654 + }, + { + "start": 4821.46, + "end": 4821.8, + "probability": 0.7834 + }, + { + "start": 4822.24, + "end": 4823.02, + "probability": 0.9286 + }, + { + "start": 4824.02, + "end": 4826.54, + "probability": 0.8362 + }, + { + "start": 4827.16, + "end": 4828.3, + "probability": 0.4976 + }, + { + "start": 4828.44, + "end": 4829.04, + "probability": 0.8423 + }, + { + "start": 4838.24, + "end": 4841.02, + "probability": 0.6147 + }, + { + "start": 4844.32, + "end": 4847.66, + "probability": 0.9675 + }, + { + "start": 4848.42, + "end": 4850.96, + "probability": 0.9764 + }, + { + "start": 4851.84, + "end": 4853.74, + "probability": 0.9784 + }, + { + "start": 4854.52, + "end": 4856.68, + "probability": 0.8751 + }, + { + "start": 4857.58, + "end": 4858.22, + "probability": 0.8695 + }, + { + "start": 4858.36, + "end": 4859.4, + "probability": 0.8857 + }, + { + "start": 4859.48, + "end": 4860.0, + "probability": 0.9339 + }, + { + "start": 4860.38, + "end": 4861.86, + "probability": 0.9737 + }, + { + "start": 4862.48, + "end": 4865.68, + "probability": 0.8684 + }, + { + "start": 4866.24, + "end": 4867.48, + "probability": 0.9487 + }, + { + "start": 4867.5, + "end": 4867.88, + "probability": 0.7616 + }, + { + "start": 4867.96, + "end": 4868.34, + "probability": 0.7175 + }, + { + "start": 4868.56, + "end": 4873.44, + "probability": 0.9689 + }, + { + "start": 4874.28, + "end": 4876.96, + "probability": 0.9897 + }, + { + "start": 4877.54, + "end": 4878.14, + "probability": 0.8843 + }, + { + "start": 4878.16, + "end": 4882.9, + "probability": 0.9836 + }, + { + "start": 4883.14, + "end": 4884.5, + "probability": 0.7193 + }, + { + "start": 4884.96, + "end": 4886.8, + "probability": 0.6499 + }, + { + "start": 4886.96, + "end": 4887.44, + "probability": 0.7792 + }, + { + "start": 4887.94, + "end": 4889.76, + "probability": 0.7106 + }, + { + "start": 4890.26, + "end": 4891.48, + "probability": 0.9862 + }, + { + "start": 4891.56, + "end": 4897.67, + "probability": 0.9989 + }, + { + "start": 4898.48, + "end": 4900.23, + "probability": 0.8457 + }, + { + "start": 4900.5, + "end": 4900.88, + "probability": 0.5163 + }, + { + "start": 4901.04, + "end": 4903.36, + "probability": 0.9808 + }, + { + "start": 4903.44, + "end": 4904.7, + "probability": 0.9774 + }, + { + "start": 4904.96, + "end": 4908.32, + "probability": 0.9811 + }, + { + "start": 4908.62, + "end": 4909.83, + "probability": 0.9937 + }, + { + "start": 4910.06, + "end": 4911.32, + "probability": 0.7266 + }, + { + "start": 4911.66, + "end": 4915.82, + "probability": 0.9917 + }, + { + "start": 4916.16, + "end": 4917.08, + "probability": 0.9819 + }, + { + "start": 4917.14, + "end": 4918.56, + "probability": 0.9291 + }, + { + "start": 4918.96, + "end": 4920.4, + "probability": 0.9526 + }, + { + "start": 4920.58, + "end": 4921.16, + "probability": 0.9821 + }, + { + "start": 4921.22, + "end": 4921.94, + "probability": 0.9504 + }, + { + "start": 4922.1, + "end": 4922.24, + "probability": 0.3539 + }, + { + "start": 4922.52, + "end": 4925.66, + "probability": 0.865 + }, + { + "start": 4926.6, + "end": 4927.64, + "probability": 0.9438 + }, + { + "start": 4928.94, + "end": 4930.5, + "probability": 0.5471 + }, + { + "start": 4931.16, + "end": 4931.46, + "probability": 0.2734 + }, + { + "start": 4931.46, + "end": 4932.39, + "probability": 0.8804 + }, + { + "start": 4932.52, + "end": 4934.36, + "probability": 0.9211 + }, + { + "start": 4935.0, + "end": 4935.42, + "probability": 0.8099 + }, + { + "start": 4935.42, + "end": 4935.8, + "probability": 0.6099 + }, + { + "start": 4935.86, + "end": 4939.16, + "probability": 0.9867 + }, + { + "start": 4939.32, + "end": 4940.22, + "probability": 0.7798 + }, + { + "start": 4940.64, + "end": 4946.22, + "probability": 0.9231 + }, + { + "start": 4947.22, + "end": 4948.7, + "probability": 0.985 + }, + { + "start": 4948.84, + "end": 4952.06, + "probability": 0.9674 + }, + { + "start": 4952.18, + "end": 4953.36, + "probability": 0.9585 + }, + { + "start": 4953.38, + "end": 4955.04, + "probability": 0.9915 + }, + { + "start": 4955.06, + "end": 4958.66, + "probability": 0.8372 + }, + { + "start": 4958.8, + "end": 4960.28, + "probability": 0.9889 + }, + { + "start": 4960.4, + "end": 4964.66, + "probability": 0.8746 + }, + { + "start": 4964.68, + "end": 4964.84, + "probability": 0.7438 + }, + { + "start": 4964.98, + "end": 4965.76, + "probability": 0.5539 + }, + { + "start": 4966.12, + "end": 4966.66, + "probability": 0.8867 + }, + { + "start": 4966.76, + "end": 4968.62, + "probability": 0.9504 + }, + { + "start": 4968.94, + "end": 4969.76, + "probability": 0.7778 + }, + { + "start": 4969.98, + "end": 4971.18, + "probability": 0.8848 + }, + { + "start": 4971.22, + "end": 4974.24, + "probability": 0.9481 + }, + { + "start": 4974.24, + "end": 4978.48, + "probability": 0.9833 + }, + { + "start": 4978.54, + "end": 4978.61, + "probability": 0.3114 + }, + { + "start": 4979.22, + "end": 4979.96, + "probability": 0.2339 + }, + { + "start": 4980.14, + "end": 4985.9, + "probability": 0.1863 + }, + { + "start": 4985.9, + "end": 4987.24, + "probability": 0.004 + }, + { + "start": 4987.68, + "end": 4988.22, + "probability": 0.3581 + }, + { + "start": 4989.64, + "end": 4992.14, + "probability": 0.3172 + }, + { + "start": 4992.42, + "end": 4993.3, + "probability": 0.5036 + }, + { + "start": 4993.38, + "end": 4994.01, + "probability": 0.6709 + }, + { + "start": 4994.8, + "end": 4995.14, + "probability": 0.7434 + }, + { + "start": 4995.26, + "end": 4995.62, + "probability": 0.6665 + }, + { + "start": 4995.72, + "end": 4996.58, + "probability": 0.9257 + }, + { + "start": 4996.66, + "end": 4997.8, + "probability": 0.7344 + }, + { + "start": 4997.8, + "end": 4999.96, + "probability": 0.8665 + }, + { + "start": 5000.38, + "end": 5005.52, + "probability": 0.6636 + }, + { + "start": 5005.72, + "end": 5007.66, + "probability": 0.9907 + }, + { + "start": 5007.86, + "end": 5008.42, + "probability": 0.7511 + }, + { + "start": 5008.42, + "end": 5009.38, + "probability": 0.9425 + }, + { + "start": 5009.44, + "end": 5010.36, + "probability": 0.9958 + }, + { + "start": 5010.48, + "end": 5012.14, + "probability": 0.7962 + }, + { + "start": 5012.36, + "end": 5013.32, + "probability": 0.7843 + }, + { + "start": 5013.6, + "end": 5018.0, + "probability": 0.9927 + }, + { + "start": 5018.08, + "end": 5020.74, + "probability": 0.9678 + }, + { + "start": 5020.98, + "end": 5021.6, + "probability": 0.0673 + }, + { + "start": 5021.72, + "end": 5023.96, + "probability": 0.9893 + }, + { + "start": 5025.14, + "end": 5027.54, + "probability": 0.1383 + }, + { + "start": 5027.58, + "end": 5029.1, + "probability": 0.6298 + }, + { + "start": 5029.34, + "end": 5030.44, + "probability": 0.4203 + }, + { + "start": 5030.56, + "end": 5031.3, + "probability": 0.4797 + }, + { + "start": 5031.34, + "end": 5031.5, + "probability": 0.5075 + }, + { + "start": 5031.56, + "end": 5032.18, + "probability": 0.2309 + }, + { + "start": 5032.28, + "end": 5033.28, + "probability": 0.4727 + }, + { + "start": 5033.46, + "end": 5034.94, + "probability": 0.7456 + }, + { + "start": 5034.94, + "end": 5035.28, + "probability": 0.1197 + }, + { + "start": 5035.3, + "end": 5036.63, + "probability": 0.9546 + }, + { + "start": 5036.82, + "end": 5037.1, + "probability": 0.2769 + }, + { + "start": 5038.02, + "end": 5038.82, + "probability": 0.4322 + }, + { + "start": 5040.6, + "end": 5041.22, + "probability": 0.4023 + }, + { + "start": 5042.58, + "end": 5043.24, + "probability": 0.0214 + }, + { + "start": 5043.54, + "end": 5043.54, + "probability": 0.1004 + }, + { + "start": 5043.54, + "end": 5043.54, + "probability": 0.2582 + }, + { + "start": 5043.54, + "end": 5045.7, + "probability": 0.494 + }, + { + "start": 5045.7, + "end": 5045.7, + "probability": 0.0178 + }, + { + "start": 5045.7, + "end": 5046.51, + "probability": 0.558 + }, + { + "start": 5047.14, + "end": 5047.82, + "probability": 0.0837 + }, + { + "start": 5048.1, + "end": 5051.08, + "probability": 0.1411 + }, + { + "start": 5052.72, + "end": 5055.38, + "probability": 0.3511 + }, + { + "start": 5055.38, + "end": 5056.24, + "probability": 0.4843 + }, + { + "start": 5056.42, + "end": 5059.54, + "probability": 0.1177 + }, + { + "start": 5063.52, + "end": 5064.52, + "probability": 0.1422 + }, + { + "start": 5065.22, + "end": 5065.76, + "probability": 0.7622 + }, + { + "start": 5074.48, + "end": 5076.38, + "probability": 0.0364 + }, + { + "start": 5076.96, + "end": 5078.44, + "probability": 0.0425 + }, + { + "start": 5078.44, + "end": 5082.62, + "probability": 0.1726 + }, + { + "start": 5083.18, + "end": 5084.79, + "probability": 0.0294 + }, + { + "start": 5088.54, + "end": 5090.16, + "probability": 0.0588 + }, + { + "start": 5092.5, + "end": 5095.08, + "probability": 0.1174 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.0, + "end": 5120.0, + "probability": 0.0 + }, + { + "start": 5120.26, + "end": 5120.7, + "probability": 0.0631 + }, + { + "start": 5120.7, + "end": 5120.7, + "probability": 0.1781 + }, + { + "start": 5120.7, + "end": 5120.7, + "probability": 0.4519 + }, + { + "start": 5120.7, + "end": 5123.96, + "probability": 0.932 + }, + { + "start": 5124.1, + "end": 5124.58, + "probability": 0.0439 + }, + { + "start": 5124.58, + "end": 5126.82, + "probability": 0.6539 + }, + { + "start": 5126.86, + "end": 5127.04, + "probability": 0.0108 + }, + { + "start": 5127.12, + "end": 5129.62, + "probability": 0.9527 + }, + { + "start": 5130.66, + "end": 5132.92, + "probability": 0.9752 + }, + { + "start": 5133.6, + "end": 5134.38, + "probability": 0.7925 + }, + { + "start": 5134.98, + "end": 5135.46, + "probability": 0.4156 + }, + { + "start": 5135.5, + "end": 5140.62, + "probability": 0.087 + }, + { + "start": 5140.62, + "end": 5140.62, + "probability": 0.1464 + }, + { + "start": 5140.62, + "end": 5140.62, + "probability": 0.1519 + }, + { + "start": 5140.62, + "end": 5140.94, + "probability": 0.3908 + }, + { + "start": 5141.1, + "end": 5144.5, + "probability": 0.8957 + }, + { + "start": 5144.7, + "end": 5147.46, + "probability": 0.9576 + }, + { + "start": 5148.0, + "end": 5148.84, + "probability": 0.526 + }, + { + "start": 5148.86, + "end": 5149.94, + "probability": 0.8869 + }, + { + "start": 5150.08, + "end": 5151.26, + "probability": 0.9136 + }, + { + "start": 5151.38, + "end": 5152.52, + "probability": 0.9866 + }, + { + "start": 5152.6, + "end": 5154.84, + "probability": 0.9908 + }, + { + "start": 5154.92, + "end": 5156.0, + "probability": 0.9932 + }, + { + "start": 5156.46, + "end": 5159.92, + "probability": 0.989 + }, + { + "start": 5160.06, + "end": 5163.28, + "probability": 0.9971 + }, + { + "start": 5163.28, + "end": 5165.52, + "probability": 0.9978 + }, + { + "start": 5166.08, + "end": 5166.98, + "probability": 0.7143 + }, + { + "start": 5167.54, + "end": 5168.92, + "probability": 0.71 + }, + { + "start": 5169.28, + "end": 5170.88, + "probability": 0.6759 + }, + { + "start": 5171.02, + "end": 5172.24, + "probability": 0.5016 + }, + { + "start": 5172.3, + "end": 5174.46, + "probability": 0.6534 + }, + { + "start": 5174.56, + "end": 5174.96, + "probability": 0.5707 + }, + { + "start": 5175.14, + "end": 5175.5, + "probability": 0.8617 + }, + { + "start": 5175.62, + "end": 5176.88, + "probability": 0.9438 + }, + { + "start": 5177.0, + "end": 5177.58, + "probability": 0.7306 + }, + { + "start": 5177.66, + "end": 5178.06, + "probability": 0.605 + }, + { + "start": 5178.08, + "end": 5179.18, + "probability": 0.8735 + }, + { + "start": 5179.22, + "end": 5180.48, + "probability": 0.8958 + }, + { + "start": 5180.56, + "end": 5183.32, + "probability": 0.9592 + }, + { + "start": 5183.64, + "end": 5184.26, + "probability": 0.9631 + }, + { + "start": 5184.42, + "end": 5185.42, + "probability": 0.6507 + }, + { + "start": 5185.54, + "end": 5186.14, + "probability": 0.959 + }, + { + "start": 5186.3, + "end": 5186.9, + "probability": 0.8703 + }, + { + "start": 5187.18, + "end": 5189.22, + "probability": 0.9906 + }, + { + "start": 5189.52, + "end": 5193.96, + "probability": 0.9946 + }, + { + "start": 5194.04, + "end": 5197.28, + "probability": 0.7412 + }, + { + "start": 5197.8, + "end": 5198.52, + "probability": 0.8724 + }, + { + "start": 5198.64, + "end": 5199.66, + "probability": 0.7861 + }, + { + "start": 5199.74, + "end": 5200.75, + "probability": 0.877 + }, + { + "start": 5201.32, + "end": 5203.58, + "probability": 0.8264 + }, + { + "start": 5204.08, + "end": 5207.2, + "probability": 0.6342 + }, + { + "start": 5207.64, + "end": 5211.08, + "probability": 0.9917 + }, + { + "start": 5211.44, + "end": 5215.64, + "probability": 0.9928 + }, + { + "start": 5215.94, + "end": 5220.0, + "probability": 0.8548 + }, + { + "start": 5220.04, + "end": 5220.8, + "probability": 0.8104 + }, + { + "start": 5221.24, + "end": 5222.38, + "probability": 0.6965 + }, + { + "start": 5222.44, + "end": 5224.7, + "probability": 0.5981 + }, + { + "start": 5224.98, + "end": 5225.52, + "probability": 0.8312 + }, + { + "start": 5225.58, + "end": 5226.06, + "probability": 0.7612 + }, + { + "start": 5226.1, + "end": 5228.76, + "probability": 0.9503 + }, + { + "start": 5228.98, + "end": 5230.82, + "probability": 0.9717 + }, + { + "start": 5231.16, + "end": 5232.54, + "probability": 0.9854 + }, + { + "start": 5232.82, + "end": 5236.06, + "probability": 0.9685 + }, + { + "start": 5236.06, + "end": 5239.48, + "probability": 0.9958 + }, + { + "start": 5239.96, + "end": 5243.78, + "probability": 0.989 + }, + { + "start": 5244.24, + "end": 5245.24, + "probability": 0.5467 + }, + { + "start": 5245.38, + "end": 5247.0, + "probability": 0.9976 + }, + { + "start": 5247.24, + "end": 5249.54, + "probability": 0.2509 + }, + { + "start": 5249.72, + "end": 5249.78, + "probability": 0.0047 + }, + { + "start": 5250.4, + "end": 5251.3, + "probability": 0.099 + }, + { + "start": 5251.3, + "end": 5252.62, + "probability": 0.1936 + }, + { + "start": 5252.62, + "end": 5253.4, + "probability": 0.1606 + }, + { + "start": 5253.4, + "end": 5255.4, + "probability": 0.6496 + }, + { + "start": 5255.52, + "end": 5256.84, + "probability": 0.4486 + }, + { + "start": 5257.0, + "end": 5258.28, + "probability": 0.3228 + }, + { + "start": 5258.82, + "end": 5259.22, + "probability": 0.265 + }, + { + "start": 5259.48, + "end": 5261.35, + "probability": 0.6969 + }, + { + "start": 5261.56, + "end": 5262.56, + "probability": 0.0697 + }, + { + "start": 5262.76, + "end": 5265.01, + "probability": 0.1163 + }, + { + "start": 5265.6, + "end": 5267.72, + "probability": 0.8173 + }, + { + "start": 5267.8, + "end": 5268.28, + "probability": 0.7772 + }, + { + "start": 5268.38, + "end": 5269.44, + "probability": 0.8513 + }, + { + "start": 5269.86, + "end": 5273.4, + "probability": 0.9932 + }, + { + "start": 5273.4, + "end": 5277.06, + "probability": 0.9982 + }, + { + "start": 5277.62, + "end": 5279.93, + "probability": 0.9552 + }, + { + "start": 5281.06, + "end": 5283.08, + "probability": 0.7628 + }, + { + "start": 5283.12, + "end": 5287.92, + "probability": 0.9107 + }, + { + "start": 5288.06, + "end": 5291.98, + "probability": 0.9589 + }, + { + "start": 5292.14, + "end": 5292.4, + "probability": 0.2659 + }, + { + "start": 5292.46, + "end": 5292.78, + "probability": 0.7504 + }, + { + "start": 5292.86, + "end": 5293.44, + "probability": 0.7922 + }, + { + "start": 5293.58, + "end": 5294.56, + "probability": 0.8354 + }, + { + "start": 5294.86, + "end": 5295.5, + "probability": 0.4971 + }, + { + "start": 5295.64, + "end": 5296.34, + "probability": 0.5064 + }, + { + "start": 5296.68, + "end": 5300.95, + "probability": 0.8252 + }, + { + "start": 5301.08, + "end": 5304.58, + "probability": 0.9403 + }, + { + "start": 5304.96, + "end": 5309.18, + "probability": 0.9775 + }, + { + "start": 5309.36, + "end": 5311.44, + "probability": 0.8673 + }, + { + "start": 5311.78, + "end": 5317.26, + "probability": 0.9891 + }, + { + "start": 5317.6, + "end": 5321.92, + "probability": 0.9293 + }, + { + "start": 5322.6, + "end": 5323.64, + "probability": 0.9233 + }, + { + "start": 5323.84, + "end": 5326.57, + "probability": 0.5759 + }, + { + "start": 5327.32, + "end": 5328.42, + "probability": 0.9573 + }, + { + "start": 5328.56, + "end": 5333.04, + "probability": 0.9886 + }, + { + "start": 5333.4, + "end": 5337.0, + "probability": 0.9707 + }, + { + "start": 5337.36, + "end": 5338.92, + "probability": 0.8576 + }, + { + "start": 5339.08, + "end": 5341.68, + "probability": 0.9701 + }, + { + "start": 5341.94, + "end": 5343.04, + "probability": 0.989 + }, + { + "start": 5343.12, + "end": 5347.9, + "probability": 0.9891 + }, + { + "start": 5348.14, + "end": 5352.58, + "probability": 0.9957 + }, + { + "start": 5352.64, + "end": 5355.34, + "probability": 0.9856 + }, + { + "start": 5355.56, + "end": 5356.2, + "probability": 0.8019 + }, + { + "start": 5356.42, + "end": 5356.98, + "probability": 0.45 + }, + { + "start": 5357.3, + "end": 5360.86, + "probability": 0.9603 + }, + { + "start": 5361.02, + "end": 5362.4, + "probability": 0.9354 + }, + { + "start": 5363.09, + "end": 5365.86, + "probability": 0.5243 + }, + { + "start": 5366.16, + "end": 5368.7, + "probability": 0.9828 + }, + { + "start": 5369.0, + "end": 5373.24, + "probability": 0.9449 + }, + { + "start": 5373.86, + "end": 5374.48, + "probability": 0.9132 + }, + { + "start": 5374.78, + "end": 5375.46, + "probability": 0.8938 + }, + { + "start": 5375.6, + "end": 5376.7, + "probability": 0.7246 + }, + { + "start": 5376.9, + "end": 5377.8, + "probability": 0.8708 + }, + { + "start": 5377.92, + "end": 5378.45, + "probability": 0.8623 + }, + { + "start": 5379.08, + "end": 5379.81, + "probability": 0.9861 + }, + { + "start": 5381.04, + "end": 5382.64, + "probability": 0.9684 + }, + { + "start": 5383.0, + "end": 5386.94, + "probability": 0.9924 + }, + { + "start": 5387.78, + "end": 5391.48, + "probability": 0.0173 + }, + { + "start": 5391.62, + "end": 5391.62, + "probability": 0.1323 + }, + { + "start": 5391.62, + "end": 5392.46, + "probability": 0.2363 + }, + { + "start": 5392.54, + "end": 5394.06, + "probability": 0.9585 + }, + { + "start": 5394.12, + "end": 5394.68, + "probability": 0.7374 + }, + { + "start": 5394.74, + "end": 5395.48, + "probability": 0.4852 + }, + { + "start": 5396.5, + "end": 5398.42, + "probability": 0.991 + }, + { + "start": 5398.58, + "end": 5401.58, + "probability": 0.995 + }, + { + "start": 5401.72, + "end": 5402.75, + "probability": 0.9905 + }, + { + "start": 5403.46, + "end": 5404.3, + "probability": 0.5854 + }, + { + "start": 5404.32, + "end": 5404.92, + "probability": 0.3382 + }, + { + "start": 5404.92, + "end": 5405.98, + "probability": 0.502 + }, + { + "start": 5406.5, + "end": 5408.96, + "probability": 0.9316 + }, + { + "start": 5408.96, + "end": 5409.34, + "probability": 0.5288 + }, + { + "start": 5409.48, + "end": 5410.92, + "probability": 0.8394 + }, + { + "start": 5411.36, + "end": 5415.1, + "probability": 0.95 + }, + { + "start": 5415.32, + "end": 5418.82, + "probability": 0.9977 + }, + { + "start": 5419.18, + "end": 5420.89, + "probability": 0.0707 + }, + { + "start": 5421.04, + "end": 5421.94, + "probability": 0.7325 + }, + { + "start": 5422.4, + "end": 5424.1, + "probability": 0.8867 + }, + { + "start": 5424.12, + "end": 5424.46, + "probability": 0.818 + }, + { + "start": 5424.54, + "end": 5425.64, + "probability": 0.949 + }, + { + "start": 5425.7, + "end": 5426.57, + "probability": 0.8348 + }, + { + "start": 5427.26, + "end": 5432.18, + "probability": 0.8295 + }, + { + "start": 5432.4, + "end": 5432.96, + "probability": 0.2228 + }, + { + "start": 5433.14, + "end": 5435.28, + "probability": 0.9401 + }, + { + "start": 5437.11, + "end": 5438.06, + "probability": 0.051 + }, + { + "start": 5438.06, + "end": 5441.62, + "probability": 0.5951 + }, + { + "start": 5441.98, + "end": 5444.06, + "probability": 0.8939 + }, + { + "start": 5444.44, + "end": 5447.08, + "probability": 0.895 + }, + { + "start": 5447.58, + "end": 5448.16, + "probability": 0.7764 + }, + { + "start": 5448.2, + "end": 5449.64, + "probability": 0.085 + }, + { + "start": 5449.74, + "end": 5449.74, + "probability": 0.0897 + }, + { + "start": 5449.82, + "end": 5452.15, + "probability": 0.4986 + }, + { + "start": 5452.88, + "end": 5453.85, + "probability": 0.6751 + }, + { + "start": 5454.62, + "end": 5457.18, + "probability": 0.5116 + }, + { + "start": 5457.34, + "end": 5459.3, + "probability": 0.9964 + }, + { + "start": 5459.8, + "end": 5463.36, + "probability": 0.9962 + }, + { + "start": 5463.36, + "end": 5467.4, + "probability": 0.9756 + }, + { + "start": 5467.76, + "end": 5468.52, + "probability": 0.031 + }, + { + "start": 5468.52, + "end": 5468.52, + "probability": 0.0354 + }, + { + "start": 5468.52, + "end": 5469.08, + "probability": 0.5262 + }, + { + "start": 5469.98, + "end": 5472.76, + "probability": 0.769 + }, + { + "start": 5473.22, + "end": 5474.76, + "probability": 0.9667 + }, + { + "start": 5474.88, + "end": 5475.76, + "probability": 0.7338 + }, + { + "start": 5475.94, + "end": 5477.27, + "probability": 0.8329 + }, + { + "start": 5478.92, + "end": 5483.96, + "probability": 0.6949 + }, + { + "start": 5484.32, + "end": 5484.5, + "probability": 0.3845 + }, + { + "start": 5484.66, + "end": 5486.16, + "probability": 0.9697 + }, + { + "start": 5486.5, + "end": 5491.0, + "probability": 0.9568 + }, + { + "start": 5491.44, + "end": 5494.22, + "probability": 0.9871 + }, + { + "start": 5494.97, + "end": 5497.3, + "probability": 0.9834 + }, + { + "start": 5497.52, + "end": 5499.72, + "probability": 0.9937 + }, + { + "start": 5500.2, + "end": 5500.84, + "probability": 0.7555 + }, + { + "start": 5500.96, + "end": 5503.76, + "probability": 0.9558 + }, + { + "start": 5504.66, + "end": 5507.02, + "probability": 0.9764 + }, + { + "start": 5508.54, + "end": 5509.72, + "probability": 0.6943 + }, + { + "start": 5509.72, + "end": 5510.68, + "probability": 0.9489 + }, + { + "start": 5510.82, + "end": 5513.68, + "probability": 0.9869 + }, + { + "start": 5514.22, + "end": 5515.42, + "probability": 0.9976 + }, + { + "start": 5516.04, + "end": 5518.38, + "probability": 0.9956 + }, + { + "start": 5518.76, + "end": 5521.54, + "probability": 0.9606 + }, + { + "start": 5521.54, + "end": 5526.54, + "probability": 0.9528 + }, + { + "start": 5526.76, + "end": 5527.76, + "probability": 0.4599 + }, + { + "start": 5527.86, + "end": 5528.28, + "probability": 0.3708 + }, + { + "start": 5528.3, + "end": 5529.34, + "probability": 0.6385 + }, + { + "start": 5529.5, + "end": 5533.18, + "probability": 0.9744 + }, + { + "start": 5533.44, + "end": 5534.26, + "probability": 0.8527 + }, + { + "start": 5534.28, + "end": 5534.62, + "probability": 0.7076 + }, + { + "start": 5534.72, + "end": 5535.62, + "probability": 0.9709 + }, + { + "start": 5536.3, + "end": 5539.86, + "probability": 0.9802 + }, + { + "start": 5540.18, + "end": 5543.14, + "probability": 0.9875 + }, + { + "start": 5543.34, + "end": 5545.04, + "probability": 0.9709 + }, + { + "start": 5545.22, + "end": 5546.62, + "probability": 0.9603 + }, + { + "start": 5546.86, + "end": 5548.36, + "probability": 0.9221 + }, + { + "start": 5548.58, + "end": 5549.86, + "probability": 0.9193 + }, + { + "start": 5550.04, + "end": 5552.86, + "probability": 0.9584 + }, + { + "start": 5553.76, + "end": 5554.5, + "probability": 0.7182 + }, + { + "start": 5555.62, + "end": 5560.2, + "probability": 0.8481 + }, + { + "start": 5561.92, + "end": 5563.3, + "probability": 0.7619 + }, + { + "start": 5563.36, + "end": 5564.46, + "probability": 0.6041 + }, + { + "start": 5564.54, + "end": 5566.04, + "probability": 0.8038 + }, + { + "start": 5566.24, + "end": 5567.6, + "probability": 0.9645 + }, + { + "start": 5568.32, + "end": 5570.64, + "probability": 0.9806 + }, + { + "start": 5570.64, + "end": 5574.12, + "probability": 0.9977 + }, + { + "start": 5574.3, + "end": 5576.2, + "probability": 0.1653 + }, + { + "start": 5576.62, + "end": 5577.6, + "probability": 0.9538 + }, + { + "start": 5577.7, + "end": 5578.3, + "probability": 0.6866 + }, + { + "start": 5579.22, + "end": 5582.02, + "probability": 0.7624 + }, + { + "start": 5582.18, + "end": 5583.96, + "probability": 0.1591 + }, + { + "start": 5584.12, + "end": 5586.24, + "probability": 0.941 + }, + { + "start": 5588.98, + "end": 5591.9, + "probability": 0.9421 + }, + { + "start": 5592.16, + "end": 5592.3, + "probability": 0.6367 + }, + { + "start": 5592.46, + "end": 5592.92, + "probability": 0.9495 + }, + { + "start": 5593.08, + "end": 5593.42, + "probability": 0.4988 + }, + { + "start": 5593.9, + "end": 5593.98, + "probability": 0.8669 + }, + { + "start": 5594.26, + "end": 5594.68, + "probability": 0.7207 + }, + { + "start": 5595.24, + "end": 5600.6, + "probability": 0.7028 + }, + { + "start": 5602.2, + "end": 5602.98, + "probability": 0.614 + }, + { + "start": 5603.22, + "end": 5606.48, + "probability": 0.8138 + }, + { + "start": 5606.48, + "end": 5609.88, + "probability": 0.973 + }, + { + "start": 5610.32, + "end": 5612.34, + "probability": 0.3709 + }, + { + "start": 5613.02, + "end": 5615.66, + "probability": 0.147 + }, + { + "start": 5616.04, + "end": 5616.36, + "probability": 0.8661 + }, + { + "start": 5617.3, + "end": 5618.02, + "probability": 0.8389 + }, + { + "start": 5618.38, + "end": 5620.02, + "probability": 0.8076 + }, + { + "start": 5620.16, + "end": 5622.98, + "probability": 0.8958 + }, + { + "start": 5623.02, + "end": 5623.46, + "probability": 0.5037 + }, + { + "start": 5623.9, + "end": 5626.94, + "probability": 0.9097 + }, + { + "start": 5627.96, + "end": 5628.4, + "probability": 0.957 + }, + { + "start": 5649.56, + "end": 5651.64, + "probability": 0.6394 + }, + { + "start": 5652.18, + "end": 5653.24, + "probability": 0.8426 + }, + { + "start": 5654.8, + "end": 5656.9, + "probability": 0.9585 + }, + { + "start": 5658.4, + "end": 5662.36, + "probability": 0.984 + }, + { + "start": 5662.46, + "end": 5668.3, + "probability": 0.9327 + }, + { + "start": 5669.42, + "end": 5671.88, + "probability": 0.6393 + }, + { + "start": 5672.54, + "end": 5676.52, + "probability": 0.985 + }, + { + "start": 5677.7, + "end": 5681.52, + "probability": 0.9771 + }, + { + "start": 5681.7, + "end": 5682.8, + "probability": 0.6663 + }, + { + "start": 5682.94, + "end": 5683.98, + "probability": 0.8928 + }, + { + "start": 5685.66, + "end": 5690.0, + "probability": 0.9832 + }, + { + "start": 5690.98, + "end": 5692.33, + "probability": 0.9814 + }, + { + "start": 5692.8, + "end": 5697.34, + "probability": 0.9681 + }, + { + "start": 5697.86, + "end": 5699.84, + "probability": 0.9917 + }, + { + "start": 5702.08, + "end": 5705.04, + "probability": 0.7706 + }, + { + "start": 5705.84, + "end": 5706.52, + "probability": 0.9085 + }, + { + "start": 5706.58, + "end": 5714.66, + "probability": 0.9691 + }, + { + "start": 5715.9, + "end": 5716.34, + "probability": 0.8539 + }, + { + "start": 5716.36, + "end": 5722.6, + "probability": 0.9247 + }, + { + "start": 5722.72, + "end": 5724.52, + "probability": 0.9976 + }, + { + "start": 5725.1, + "end": 5726.22, + "probability": 0.883 + }, + { + "start": 5727.7, + "end": 5730.68, + "probability": 0.8369 + }, + { + "start": 5731.4, + "end": 5733.2, + "probability": 0.9395 + }, + { + "start": 5734.14, + "end": 5736.14, + "probability": 0.9868 + }, + { + "start": 5737.58, + "end": 5738.26, + "probability": 0.9447 + }, + { + "start": 5740.04, + "end": 5744.62, + "probability": 0.9307 + }, + { + "start": 5745.94, + "end": 5750.52, + "probability": 0.9374 + }, + { + "start": 5752.16, + "end": 5755.72, + "probability": 0.8884 + }, + { + "start": 5755.86, + "end": 5756.0, + "probability": 0.3179 + }, + { + "start": 5756.28, + "end": 5756.82, + "probability": 0.4733 + }, + { + "start": 5756.86, + "end": 5757.16, + "probability": 0.7279 + }, + { + "start": 5757.46, + "end": 5758.02, + "probability": 0.8205 + }, + { + "start": 5758.02, + "end": 5758.56, + "probability": 0.7172 + }, + { + "start": 5758.56, + "end": 5759.22, + "probability": 0.7985 + }, + { + "start": 5759.85, + "end": 5762.22, + "probability": 0.9146 + }, + { + "start": 5762.36, + "end": 5763.82, + "probability": 0.7976 + }, + { + "start": 5764.4, + "end": 5766.58, + "probability": 0.8775 + }, + { + "start": 5767.46, + "end": 5773.2, + "probability": 0.9657 + }, + { + "start": 5774.2, + "end": 5775.36, + "probability": 0.9575 + }, + { + "start": 5777.14, + "end": 5778.98, + "probability": 0.7653 + }, + { + "start": 5781.92, + "end": 5784.58, + "probability": 0.9928 + }, + { + "start": 5784.62, + "end": 5785.42, + "probability": 0.7917 + }, + { + "start": 5785.46, + "end": 5787.88, + "probability": 0.9321 + }, + { + "start": 5787.96, + "end": 5789.32, + "probability": 0.9743 + }, + { + "start": 5789.34, + "end": 5790.12, + "probability": 0.8942 + }, + { + "start": 5790.32, + "end": 5790.78, + "probability": 0.8693 + }, + { + "start": 5790.86, + "end": 5791.36, + "probability": 0.7406 + }, + { + "start": 5792.54, + "end": 5797.12, + "probability": 0.9823 + }, + { + "start": 5798.38, + "end": 5801.18, + "probability": 0.8591 + }, + { + "start": 5802.6, + "end": 5804.4, + "probability": 0.8862 + }, + { + "start": 5804.74, + "end": 5805.04, + "probability": 0.6901 + }, + { + "start": 5806.02, + "end": 5807.24, + "probability": 0.842 + }, + { + "start": 5807.94, + "end": 5810.12, + "probability": 0.9302 + }, + { + "start": 5810.74, + "end": 5817.12, + "probability": 0.9966 + }, + { + "start": 5817.3, + "end": 5819.4, + "probability": 0.578 + }, + { + "start": 5820.92, + "end": 5822.66, + "probability": 0.8973 + }, + { + "start": 5822.78, + "end": 5823.74, + "probability": 0.9854 + }, + { + "start": 5824.36, + "end": 5826.24, + "probability": 0.9141 + }, + { + "start": 5827.02, + "end": 5828.74, + "probability": 0.9985 + }, + { + "start": 5829.36, + "end": 5832.98, + "probability": 0.8639 + }, + { + "start": 5833.96, + "end": 5837.3, + "probability": 0.9948 + }, + { + "start": 5838.3, + "end": 5839.74, + "probability": 0.8113 + }, + { + "start": 5840.36, + "end": 5843.24, + "probability": 0.9722 + }, + { + "start": 5844.43, + "end": 5849.34, + "probability": 0.8888 + }, + { + "start": 5850.34, + "end": 5853.48, + "probability": 0.9988 + }, + { + "start": 5854.28, + "end": 5855.46, + "probability": 0.9754 + }, + { + "start": 5855.72, + "end": 5859.4, + "probability": 0.7975 + }, + { + "start": 5860.88, + "end": 5862.8, + "probability": 0.9023 + }, + { + "start": 5863.68, + "end": 5863.92, + "probability": 0.7953 + }, + { + "start": 5864.46, + "end": 5865.08, + "probability": 0.6203 + }, + { + "start": 5865.26, + "end": 5866.46, + "probability": 0.7483 + }, + { + "start": 5868.14, + "end": 5868.34, + "probability": 0.2353 + }, + { + "start": 5868.34, + "end": 5870.0, + "probability": 0.7378 + }, + { + "start": 5887.74, + "end": 5888.56, + "probability": 0.306 + }, + { + "start": 5888.72, + "end": 5893.26, + "probability": 0.9749 + }, + { + "start": 5893.42, + "end": 5894.9, + "probability": 0.8274 + }, + { + "start": 5895.12, + "end": 5898.38, + "probability": 0.6826 + }, + { + "start": 5898.86, + "end": 5907.14, + "probability": 0.8722 + }, + { + "start": 5908.56, + "end": 5909.62, + "probability": 0.5994 + }, + { + "start": 5910.14, + "end": 5913.6, + "probability": 0.9741 + }, + { + "start": 5913.6, + "end": 5919.2, + "probability": 0.9978 + }, + { + "start": 5919.26, + "end": 5923.4, + "probability": 0.886 + }, + { + "start": 5923.7, + "end": 5928.64, + "probability": 0.9941 + }, + { + "start": 5929.16, + "end": 5931.18, + "probability": 0.8501 + }, + { + "start": 5931.78, + "end": 5933.44, + "probability": 0.9766 + }, + { + "start": 5934.08, + "end": 5936.66, + "probability": 0.957 + }, + { + "start": 5937.5, + "end": 5944.92, + "probability": 0.991 + }, + { + "start": 5945.44, + "end": 5947.46, + "probability": 0.9934 + }, + { + "start": 5948.5, + "end": 5950.46, + "probability": 0.9113 + }, + { + "start": 5951.34, + "end": 5954.02, + "probability": 0.9958 + }, + { + "start": 5954.7, + "end": 5955.02, + "probability": 0.6921 + }, + { + "start": 5955.18, + "end": 5959.16, + "probability": 0.9774 + }, + { + "start": 5959.32, + "end": 5961.6, + "probability": 0.9215 + }, + { + "start": 5961.86, + "end": 5962.74, + "probability": 0.9985 + }, + { + "start": 5963.5, + "end": 5965.82, + "probability": 0.9702 + }, + { + "start": 5965.92, + "end": 5967.06, + "probability": 0.8964 + }, + { + "start": 5967.34, + "end": 5968.6, + "probability": 0.9062 + }, + { + "start": 5969.18, + "end": 5971.7, + "probability": 0.7416 + }, + { + "start": 5972.18, + "end": 5974.64, + "probability": 0.8004 + }, + { + "start": 5974.84, + "end": 5976.17, + "probability": 0.7887 + }, + { + "start": 5976.42, + "end": 5977.18, + "probability": 0.5117 + }, + { + "start": 5977.28, + "end": 5979.46, + "probability": 0.8989 + }, + { + "start": 5980.42, + "end": 5981.82, + "probability": 0.8549 + }, + { + "start": 5982.48, + "end": 5985.08, + "probability": 0.8892 + }, + { + "start": 5985.62, + "end": 5987.56, + "probability": 0.9608 + }, + { + "start": 5988.2, + "end": 5991.2, + "probability": 0.9908 + }, + { + "start": 5991.36, + "end": 5992.1, + "probability": 0.8595 + }, + { + "start": 5992.24, + "end": 5993.68, + "probability": 0.5623 + }, + { + "start": 5993.74, + "end": 5994.8, + "probability": 0.8783 + }, + { + "start": 5995.36, + "end": 5997.8, + "probability": 0.831 + }, + { + "start": 5998.92, + "end": 6005.3, + "probability": 0.9311 + }, + { + "start": 6005.44, + "end": 6007.46, + "probability": 0.9639 + }, + { + "start": 6007.86, + "end": 6008.7, + "probability": 0.7221 + }, + { + "start": 6008.78, + "end": 6009.64, + "probability": 0.7956 + }, + { + "start": 6009.74, + "end": 6013.06, + "probability": 0.8961 + }, + { + "start": 6013.08, + "end": 6017.23, + "probability": 0.9153 + }, + { + "start": 6018.32, + "end": 6024.94, + "probability": 0.884 + }, + { + "start": 6025.28, + "end": 6026.26, + "probability": 0.9015 + }, + { + "start": 6026.32, + "end": 6027.26, + "probability": 0.8372 + }, + { + "start": 6027.36, + "end": 6031.57, + "probability": 0.9927 + }, + { + "start": 6031.92, + "end": 6033.04, + "probability": 0.7783 + }, + { + "start": 6033.72, + "end": 6037.76, + "probability": 0.9293 + }, + { + "start": 6037.9, + "end": 6043.26, + "probability": 0.979 + }, + { + "start": 6043.5, + "end": 6044.16, + "probability": 0.9349 + }, + { + "start": 6044.2, + "end": 6044.84, + "probability": 0.6477 + }, + { + "start": 6044.88, + "end": 6046.84, + "probability": 0.8435 + }, + { + "start": 6047.36, + "end": 6048.26, + "probability": 0.9647 + }, + { + "start": 6048.66, + "end": 6049.34, + "probability": 0.7028 + }, + { + "start": 6049.52, + "end": 6051.86, + "probability": 0.809 + }, + { + "start": 6052.68, + "end": 6057.98, + "probability": 0.988 + }, + { + "start": 6058.14, + "end": 6061.06, + "probability": 0.9777 + }, + { + "start": 6061.58, + "end": 6062.76, + "probability": 0.8289 + }, + { + "start": 6063.02, + "end": 6064.24, + "probability": 0.8984 + }, + { + "start": 6064.46, + "end": 6070.56, + "probability": 0.7464 + }, + { + "start": 6070.64, + "end": 6071.22, + "probability": 0.3689 + }, + { + "start": 6071.22, + "end": 6071.82, + "probability": 0.3945 + }, + { + "start": 6072.22, + "end": 6074.94, + "probability": 0.9646 + }, + { + "start": 6075.08, + "end": 6075.52, + "probability": 0.8213 + }, + { + "start": 6075.98, + "end": 6076.56, + "probability": 0.7681 + }, + { + "start": 6077.38, + "end": 6079.46, + "probability": 0.9207 + }, + { + "start": 6080.1, + "end": 6083.4, + "probability": 0.8758 + }, + { + "start": 6090.03, + "end": 6093.5, + "probability": 0.929 + }, + { + "start": 6094.42, + "end": 6097.66, + "probability": 0.7693 + }, + { + "start": 6098.4, + "end": 6098.98, + "probability": 0.9297 + }, + { + "start": 6101.22, + "end": 6101.84, + "probability": 0.82 + }, + { + "start": 6102.0, + "end": 6103.1, + "probability": 0.9183 + }, + { + "start": 6103.22, + "end": 6105.2, + "probability": 0.9611 + }, + { + "start": 6105.52, + "end": 6107.2, + "probability": 0.9399 + }, + { + "start": 6107.32, + "end": 6110.0, + "probability": 0.989 + }, + { + "start": 6110.36, + "end": 6113.38, + "probability": 0.589 + }, + { + "start": 6113.56, + "end": 6116.28, + "probability": 0.9762 + }, + { + "start": 6116.62, + "end": 6119.62, + "probability": 0.9884 + }, + { + "start": 6119.62, + "end": 6123.22, + "probability": 0.953 + }, + { + "start": 6123.66, + "end": 6124.14, + "probability": 0.2829 + }, + { + "start": 6124.26, + "end": 6127.68, + "probability": 0.8015 + }, + { + "start": 6127.68, + "end": 6131.46, + "probability": 0.9722 + }, + { + "start": 6132.0, + "end": 6132.96, + "probability": 0.8002 + }, + { + "start": 6133.02, + "end": 6133.36, + "probability": 0.7261 + }, + { + "start": 6133.42, + "end": 6136.1, + "probability": 0.8042 + }, + { + "start": 6136.46, + "end": 6137.9, + "probability": 0.9856 + }, + { + "start": 6138.62, + "end": 6140.84, + "probability": 0.6754 + }, + { + "start": 6140.92, + "end": 6143.72, + "probability": 0.5048 + }, + { + "start": 6143.82, + "end": 6144.7, + "probability": 0.8234 + }, + { + "start": 6145.1, + "end": 6147.06, + "probability": 0.9385 + }, + { + "start": 6147.46, + "end": 6149.94, + "probability": 0.969 + }, + { + "start": 6150.34, + "end": 6151.72, + "probability": 0.9297 + }, + { + "start": 6152.1, + "end": 6152.9, + "probability": 0.9396 + }, + { + "start": 6153.22, + "end": 6153.88, + "probability": 0.677 + }, + { + "start": 6153.98, + "end": 6155.46, + "probability": 0.9694 + }, + { + "start": 6155.98, + "end": 6158.12, + "probability": 0.7957 + }, + { + "start": 6158.38, + "end": 6158.6, + "probability": 0.5391 + }, + { + "start": 6158.6, + "end": 6158.6, + "probability": 0.4035 + }, + { + "start": 6158.78, + "end": 6159.58, + "probability": 0.8151 + }, + { + "start": 6160.38, + "end": 6160.54, + "probability": 0.4678 + }, + { + "start": 6160.58, + "end": 6161.94, + "probability": 0.9824 + }, + { + "start": 6162.08, + "end": 6165.98, + "probability": 0.9475 + }, + { + "start": 6165.98, + "end": 6170.4, + "probability": 0.9972 + }, + { + "start": 6170.86, + "end": 6173.48, + "probability": 0.989 + }, + { + "start": 6173.96, + "end": 6178.1, + "probability": 0.873 + }, + { + "start": 6178.1, + "end": 6182.02, + "probability": 0.9932 + }, + { + "start": 6182.22, + "end": 6183.8, + "probability": 0.7574 + }, + { + "start": 6184.18, + "end": 6189.72, + "probability": 0.9418 + }, + { + "start": 6190.28, + "end": 6194.34, + "probability": 0.9946 + }, + { + "start": 6194.46, + "end": 6195.8, + "probability": 0.8934 + }, + { + "start": 6195.96, + "end": 6197.06, + "probability": 0.9774 + }, + { + "start": 6197.14, + "end": 6197.64, + "probability": 0.8406 + }, + { + "start": 6198.24, + "end": 6202.6, + "probability": 0.9813 + }, + { + "start": 6203.12, + "end": 6205.98, + "probability": 0.8882 + }, + { + "start": 6206.52, + "end": 6208.46, + "probability": 0.9976 + }, + { + "start": 6208.92, + "end": 6211.34, + "probability": 0.9917 + }, + { + "start": 6211.94, + "end": 6213.6, + "probability": 0.5463 + }, + { + "start": 6213.94, + "end": 6215.12, + "probability": 0.9106 + }, + { + "start": 6215.48, + "end": 6220.2, + "probability": 0.98 + }, + { + "start": 6220.44, + "end": 6222.76, + "probability": 0.9967 + }, + { + "start": 6223.08, + "end": 6225.56, + "probability": 0.9934 + }, + { + "start": 6225.98, + "end": 6229.58, + "probability": 0.9976 + }, + { + "start": 6229.92, + "end": 6234.74, + "probability": 0.9941 + }, + { + "start": 6238.96, + "end": 6240.4, + "probability": 0.5436 + }, + { + "start": 6240.5, + "end": 6241.22, + "probability": 0.4996 + }, + { + "start": 6241.6, + "end": 6243.7, + "probability": 0.9268 + }, + { + "start": 6243.8, + "end": 6244.5, + "probability": 0.8499 + }, + { + "start": 6244.62, + "end": 6247.98, + "probability": 0.96 + }, + { + "start": 6248.4, + "end": 6251.26, + "probability": 0.9401 + }, + { + "start": 6251.26, + "end": 6254.76, + "probability": 0.9692 + }, + { + "start": 6255.3, + "end": 6256.2, + "probability": 0.9421 + }, + { + "start": 6256.56, + "end": 6257.12, + "probability": 0.8407 + }, + { + "start": 6257.32, + "end": 6258.54, + "probability": 0.8656 + }, + { + "start": 6258.82, + "end": 6260.04, + "probability": 0.8017 + }, + { + "start": 6260.36, + "end": 6261.72, + "probability": 0.978 + }, + { + "start": 6262.08, + "end": 6262.88, + "probability": 0.9514 + }, + { + "start": 6262.96, + "end": 6265.88, + "probability": 0.9845 + }, + { + "start": 6266.24, + "end": 6270.16, + "probability": 0.9502 + }, + { + "start": 6270.44, + "end": 6272.98, + "probability": 0.8803 + }, + { + "start": 6273.34, + "end": 6274.92, + "probability": 0.9924 + }, + { + "start": 6275.04, + "end": 6278.3, + "probability": 0.9797 + }, + { + "start": 6278.78, + "end": 6284.72, + "probability": 0.9922 + }, + { + "start": 6284.72, + "end": 6289.28, + "probability": 0.9898 + }, + { + "start": 6289.8, + "end": 6293.3, + "probability": 0.9969 + }, + { + "start": 6293.66, + "end": 6297.78, + "probability": 0.9946 + }, + { + "start": 6298.2, + "end": 6299.98, + "probability": 0.9976 + }, + { + "start": 6300.4, + "end": 6301.88, + "probability": 0.9917 + }, + { + "start": 6301.94, + "end": 6302.64, + "probability": 0.7095 + }, + { + "start": 6302.74, + "end": 6303.74, + "probability": 0.8962 + }, + { + "start": 6304.28, + "end": 6307.98, + "probability": 0.9897 + }, + { + "start": 6308.18, + "end": 6309.88, + "probability": 0.9542 + }, + { + "start": 6310.24, + "end": 6314.18, + "probability": 0.9915 + }, + { + "start": 6314.38, + "end": 6315.26, + "probability": 0.9905 + }, + { + "start": 6315.58, + "end": 6316.16, + "probability": 0.3445 + }, + { + "start": 6316.84, + "end": 6320.22, + "probability": 0.9804 + }, + { + "start": 6320.84, + "end": 6325.7, + "probability": 0.9893 + }, + { + "start": 6326.0, + "end": 6326.68, + "probability": 0.5744 + }, + { + "start": 6326.78, + "end": 6327.42, + "probability": 0.9014 + }, + { + "start": 6328.02, + "end": 6330.34, + "probability": 0.9973 + }, + { + "start": 6330.7, + "end": 6336.44, + "probability": 0.9859 + }, + { + "start": 6336.84, + "end": 6337.32, + "probability": 0.7024 + }, + { + "start": 6337.56, + "end": 6339.96, + "probability": 0.9938 + }, + { + "start": 6340.52, + "end": 6343.7, + "probability": 0.9971 + }, + { + "start": 6343.74, + "end": 6345.04, + "probability": 0.9469 + }, + { + "start": 6345.38, + "end": 6347.26, + "probability": 0.9941 + }, + { + "start": 6347.94, + "end": 6349.42, + "probability": 0.9813 + }, + { + "start": 6349.44, + "end": 6350.16, + "probability": 0.1176 + }, + { + "start": 6350.26, + "end": 6351.12, + "probability": 0.718 + }, + { + "start": 6351.6, + "end": 6354.28, + "probability": 0.9886 + }, + { + "start": 6354.48, + "end": 6359.3, + "probability": 0.9559 + }, + { + "start": 6359.72, + "end": 6364.72, + "probability": 0.9321 + }, + { + "start": 6364.9, + "end": 6366.14, + "probability": 0.8266 + }, + { + "start": 6366.2, + "end": 6367.4, + "probability": 0.8376 + }, + { + "start": 6367.54, + "end": 6369.6, + "probability": 0.9198 + }, + { + "start": 6369.84, + "end": 6371.14, + "probability": 0.9993 + }, + { + "start": 6371.56, + "end": 6374.72, + "probability": 0.9894 + }, + { + "start": 6375.18, + "end": 6377.18, + "probability": 0.6572 + }, + { + "start": 6378.28, + "end": 6379.24, + "probability": 0.9966 + }, + { + "start": 6379.5, + "end": 6382.56, + "probability": 0.9844 + }, + { + "start": 6383.0, + "end": 6384.1, + "probability": 0.978 + }, + { + "start": 6384.7, + "end": 6386.56, + "probability": 0.9788 + }, + { + "start": 6387.02, + "end": 6390.94, + "probability": 0.9908 + }, + { + "start": 6391.46, + "end": 6394.4, + "probability": 0.4939 + }, + { + "start": 6394.4, + "end": 6395.48, + "probability": 0.8117 + }, + { + "start": 6395.6, + "end": 6398.26, + "probability": 0.8465 + }, + { + "start": 6398.76, + "end": 6402.26, + "probability": 0.9937 + }, + { + "start": 6402.56, + "end": 6404.76, + "probability": 0.6215 + }, + { + "start": 6405.04, + "end": 6406.06, + "probability": 0.7007 + }, + { + "start": 6406.34, + "end": 6407.82, + "probability": 0.9536 + }, + { + "start": 6408.12, + "end": 6410.14, + "probability": 0.9744 + }, + { + "start": 6410.5, + "end": 6412.62, + "probability": 0.9349 + }, + { + "start": 6413.06, + "end": 6413.46, + "probability": 0.8549 + }, + { + "start": 6414.34, + "end": 6415.1, + "probability": 0.8475 + }, + { + "start": 6415.44, + "end": 6419.1, + "probability": 0.8 + }, + { + "start": 6419.24, + "end": 6422.66, + "probability": 0.9204 + }, + { + "start": 6423.48, + "end": 6425.22, + "probability": 0.9648 + }, + { + "start": 6442.6, + "end": 6446.04, + "probability": 0.743 + }, + { + "start": 6446.84, + "end": 6450.61, + "probability": 0.9053 + }, + { + "start": 6451.62, + "end": 6456.91, + "probability": 0.9507 + }, + { + "start": 6457.6, + "end": 6461.72, + "probability": 0.7681 + }, + { + "start": 6461.96, + "end": 6462.88, + "probability": 0.0459 + }, + { + "start": 6462.98, + "end": 6462.98, + "probability": 0.1047 + }, + { + "start": 6463.02, + "end": 6463.98, + "probability": 0.5988 + }, + { + "start": 6464.12, + "end": 6466.14, + "probability": 0.7297 + }, + { + "start": 6466.14, + "end": 6469.52, + "probability": 0.8437 + }, + { + "start": 6470.5, + "end": 6471.16, + "probability": 0.7812 + }, + { + "start": 6471.26, + "end": 6473.68, + "probability": 0.8822 + }, + { + "start": 6473.74, + "end": 6474.6, + "probability": 0.8799 + }, + { + "start": 6474.84, + "end": 6475.56, + "probability": 0.7789 + }, + { + "start": 6475.64, + "end": 6476.66, + "probability": 0.978 + }, + { + "start": 6477.58, + "end": 6478.96, + "probability": 0.9768 + }, + { + "start": 6479.24, + "end": 6480.84, + "probability": 0.9889 + }, + { + "start": 6481.5, + "end": 6484.86, + "probability": 0.7093 + }, + { + "start": 6484.94, + "end": 6487.42, + "probability": 0.8253 + }, + { + "start": 6489.32, + "end": 6489.5, + "probability": 0.3021 + }, + { + "start": 6489.62, + "end": 6490.04, + "probability": 0.778 + }, + { + "start": 6490.28, + "end": 6490.72, + "probability": 0.7902 + }, + { + "start": 6490.84, + "end": 6491.94, + "probability": 0.6646 + }, + { + "start": 6492.7, + "end": 6493.56, + "probability": 0.9638 + }, + { + "start": 6494.6, + "end": 6495.82, + "probability": 0.939 + }, + { + "start": 6497.16, + "end": 6500.4, + "probability": 0.854 + }, + { + "start": 6501.26, + "end": 6502.24, + "probability": 0.6638 + }, + { + "start": 6502.32, + "end": 6502.68, + "probability": 0.8465 + }, + { + "start": 6502.84, + "end": 6505.28, + "probability": 0.8442 + }, + { + "start": 6506.36, + "end": 6508.18, + "probability": 0.8253 + }, + { + "start": 6509.28, + "end": 6511.0, + "probability": 0.8533 + }, + { + "start": 6511.72, + "end": 6513.38, + "probability": 0.8891 + }, + { + "start": 6514.04, + "end": 6515.32, + "probability": 0.481 + }, + { + "start": 6516.94, + "end": 6517.58, + "probability": 0.6702 + }, + { + "start": 6518.28, + "end": 6520.48, + "probability": 0.9352 + }, + { + "start": 6520.94, + "end": 6523.9, + "probability": 0.9572 + }, + { + "start": 6524.76, + "end": 6526.8, + "probability": 0.0679 + }, + { + "start": 6527.56, + "end": 6531.68, + "probability": 0.5011 + }, + { + "start": 6531.8, + "end": 6532.2, + "probability": 0.6431 + }, + { + "start": 6532.26, + "end": 6533.7, + "probability": 0.992 + }, + { + "start": 6533.86, + "end": 6534.86, + "probability": 0.6196 + }, + { + "start": 6534.86, + "end": 6536.18, + "probability": 0.8501 + }, + { + "start": 6536.64, + "end": 6538.9, + "probability": 0.9772 + }, + { + "start": 6539.02, + "end": 6539.5, + "probability": 0.7924 + }, + { + "start": 6539.58, + "end": 6540.76, + "probability": 0.9604 + }, + { + "start": 6540.96, + "end": 6543.4, + "probability": 0.8616 + }, + { + "start": 6543.88, + "end": 6552.5, + "probability": 0.9117 + }, + { + "start": 6553.56, + "end": 6553.84, + "probability": 0.0566 + }, + { + "start": 6553.84, + "end": 6561.4, + "probability": 0.9761 + }, + { + "start": 6562.22, + "end": 6566.26, + "probability": 0.5688 + }, + { + "start": 6567.36, + "end": 6569.02, + "probability": 0.9373 + }, + { + "start": 6569.5, + "end": 6572.84, + "probability": 0.9924 + }, + { + "start": 6573.18, + "end": 6575.86, + "probability": 0.8749 + }, + { + "start": 6576.66, + "end": 6577.9, + "probability": 0.9468 + }, + { + "start": 6578.66, + "end": 6582.16, + "probability": 0.8115 + }, + { + "start": 6583.72, + "end": 6584.5, + "probability": 0.2062 + }, + { + "start": 6585.18, + "end": 6587.96, + "probability": 0.3912 + }, + { + "start": 6588.08, + "end": 6590.14, + "probability": 0.5507 + }, + { + "start": 6590.44, + "end": 6593.42, + "probability": 0.7773 + }, + { + "start": 6593.6, + "end": 6595.62, + "probability": 0.9381 + }, + { + "start": 6595.82, + "end": 6596.62, + "probability": 0.9624 + }, + { + "start": 6597.08, + "end": 6598.24, + "probability": 0.8761 + }, + { + "start": 6598.28, + "end": 6598.72, + "probability": 0.3519 + }, + { + "start": 6600.98, + "end": 6602.0, + "probability": 0.2405 + }, + { + "start": 6602.0, + "end": 6602.4, + "probability": 0.3521 + }, + { + "start": 6602.42, + "end": 6603.2, + "probability": 0.8208 + }, + { + "start": 6603.44, + "end": 6604.02, + "probability": 0.8438 + }, + { + "start": 6604.34, + "end": 6604.69, + "probability": 0.5668 + }, + { + "start": 6605.58, + "end": 6608.86, + "probability": 0.9781 + }, + { + "start": 6609.38, + "end": 6609.98, + "probability": 0.6108 + }, + { + "start": 6610.84, + "end": 6612.94, + "probability": 0.9097 + }, + { + "start": 6613.38, + "end": 6616.7, + "probability": 0.7875 + }, + { + "start": 6617.46, + "end": 6620.44, + "probability": 0.8264 + }, + { + "start": 6621.04, + "end": 6621.88, + "probability": 0.8555 + }, + { + "start": 6622.12, + "end": 6623.2, + "probability": 0.1971 + }, + { + "start": 6623.58, + "end": 6626.82, + "probability": 0.7505 + }, + { + "start": 6627.78, + "end": 6627.88, + "probability": 0.252 + }, + { + "start": 6628.14, + "end": 6628.96, + "probability": 0.7225 + }, + { + "start": 6629.06, + "end": 6633.62, + "probability": 0.8478 + }, + { + "start": 6634.26, + "end": 6637.22, + "probability": 0.6611 + }, + { + "start": 6637.82, + "end": 6638.72, + "probability": 0.9331 + }, + { + "start": 6639.26, + "end": 6640.74, + "probability": 0.9224 + }, + { + "start": 6640.88, + "end": 6643.88, + "probability": 0.7516 + }, + { + "start": 6644.14, + "end": 6645.8, + "probability": 0.8627 + }, + { + "start": 6645.92, + "end": 6646.88, + "probability": 0.8246 + }, + { + "start": 6647.06, + "end": 6648.36, + "probability": 0.8844 + }, + { + "start": 6648.48, + "end": 6648.58, + "probability": 0.9626 + }, + { + "start": 6649.18, + "end": 6651.08, + "probability": 0.3277 + }, + { + "start": 6651.44, + "end": 6653.9, + "probability": 0.6735 + }, + { + "start": 6654.28, + "end": 6659.3, + "probability": 0.7505 + }, + { + "start": 6659.72, + "end": 6662.6, + "probability": 0.619 + }, + { + "start": 6663.36, + "end": 6664.88, + "probability": 0.9756 + }, + { + "start": 6665.26, + "end": 6666.05, + "probability": 0.8652 + }, + { + "start": 6666.66, + "end": 6667.62, + "probability": 0.6289 + }, + { + "start": 6667.98, + "end": 6671.52, + "probability": 0.9834 + }, + { + "start": 6671.66, + "end": 6671.9, + "probability": 0.8749 + }, + { + "start": 6673.12, + "end": 6673.7, + "probability": 0.7695 + }, + { + "start": 6674.2, + "end": 6675.44, + "probability": 0.9531 + }, + { + "start": 6676.28, + "end": 6678.44, + "probability": 0.6657 + }, + { + "start": 6697.96, + "end": 6699.86, + "probability": 0.0623 + }, + { + "start": 6702.76, + "end": 6704.32, + "probability": 0.5337 + }, + { + "start": 6705.82, + "end": 6708.28, + "probability": 0.0055 + }, + { + "start": 6712.98, + "end": 6714.98, + "probability": 0.3169 + }, + { + "start": 6716.36, + "end": 6723.2, + "probability": 0.9873 + }, + { + "start": 6723.74, + "end": 6726.7, + "probability": 0.9832 + }, + { + "start": 6728.62, + "end": 6732.28, + "probability": 0.9427 + }, + { + "start": 6734.74, + "end": 6739.36, + "probability": 0.9973 + }, + { + "start": 6740.74, + "end": 6742.91, + "probability": 0.9771 + }, + { + "start": 6744.54, + "end": 6749.34, + "probability": 0.7231 + }, + { + "start": 6749.34, + "end": 6753.32, + "probability": 0.9932 + }, + { + "start": 6754.72, + "end": 6757.1, + "probability": 0.9801 + }, + { + "start": 6757.92, + "end": 6758.5, + "probability": 0.6895 + }, + { + "start": 6758.64, + "end": 6759.18, + "probability": 0.8936 + }, + { + "start": 6759.28, + "end": 6760.32, + "probability": 0.7312 + }, + { + "start": 6760.32, + "end": 6760.39, + "probability": 0.0971 + }, + { + "start": 6761.6, + "end": 6764.72, + "probability": 0.9131 + }, + { + "start": 6765.36, + "end": 6771.74, + "probability": 0.9658 + }, + { + "start": 6772.82, + "end": 6777.56, + "probability": 0.9889 + }, + { + "start": 6778.9, + "end": 6781.04, + "probability": 0.9771 + }, + { + "start": 6782.06, + "end": 6790.4, + "probability": 0.8499 + }, + { + "start": 6791.58, + "end": 6793.85, + "probability": 0.8728 + }, + { + "start": 6794.88, + "end": 6797.56, + "probability": 0.9152 + }, + { + "start": 6798.44, + "end": 6799.64, + "probability": 0.9435 + }, + { + "start": 6799.68, + "end": 6801.99, + "probability": 0.9959 + }, + { + "start": 6802.66, + "end": 6804.22, + "probability": 0.7756 + }, + { + "start": 6804.28, + "end": 6805.77, + "probability": 0.9868 + }, + { + "start": 6806.52, + "end": 6807.56, + "probability": 0.9758 + }, + { + "start": 6808.22, + "end": 6810.4, + "probability": 0.8555 + }, + { + "start": 6810.98, + "end": 6811.92, + "probability": 0.9632 + }, + { + "start": 6813.3, + "end": 6817.0, + "probability": 0.9513 + }, + { + "start": 6818.12, + "end": 6825.82, + "probability": 0.9827 + }, + { + "start": 6829.46, + "end": 6830.3, + "probability": 0.4011 + }, + { + "start": 6830.96, + "end": 6836.26, + "probability": 0.668 + }, + { + "start": 6836.32, + "end": 6838.9, + "probability": 0.5192 + }, + { + "start": 6838.9, + "end": 6839.98, + "probability": 0.5382 + }, + { + "start": 6840.0, + "end": 6842.04, + "probability": 0.9102 + }, + { + "start": 6842.74, + "end": 6845.98, + "probability": 0.981 + }, + { + "start": 6846.08, + "end": 6849.68, + "probability": 0.9793 + }, + { + "start": 6850.94, + "end": 6853.9, + "probability": 0.8932 + }, + { + "start": 6856.1, + "end": 6859.52, + "probability": 0.9854 + }, + { + "start": 6861.6, + "end": 6862.76, + "probability": 0.9488 + }, + { + "start": 6862.8, + "end": 6864.84, + "probability": 0.7243 + }, + { + "start": 6865.3, + "end": 6869.82, + "probability": 0.88 + }, + { + "start": 6870.62, + "end": 6872.06, + "probability": 0.976 + }, + { + "start": 6872.22, + "end": 6873.25, + "probability": 0.8485 + }, + { + "start": 6874.82, + "end": 6875.82, + "probability": 0.6826 + }, + { + "start": 6876.08, + "end": 6878.02, + "probability": 0.9835 + }, + { + "start": 6879.32, + "end": 6884.84, + "probability": 0.9585 + }, + { + "start": 6885.14, + "end": 6890.24, + "probability": 0.973 + }, + { + "start": 6891.0, + "end": 6896.88, + "probability": 0.9869 + }, + { + "start": 6897.48, + "end": 6899.5, + "probability": 0.9598 + }, + { + "start": 6900.06, + "end": 6902.4, + "probability": 0.9971 + }, + { + "start": 6902.68, + "end": 6904.3, + "probability": 0.8247 + }, + { + "start": 6904.96, + "end": 6907.02, + "probability": 0.6787 + }, + { + "start": 6907.42, + "end": 6908.32, + "probability": 0.616 + }, + { + "start": 6908.44, + "end": 6910.32, + "probability": 0.9148 + }, + { + "start": 6910.46, + "end": 6913.45, + "probability": 0.9235 + }, + { + "start": 6914.26, + "end": 6917.98, + "probability": 0.9388 + }, + { + "start": 6918.08, + "end": 6919.42, + "probability": 0.1672 + }, + { + "start": 6919.5, + "end": 6923.8, + "probability": 0.953 + }, + { + "start": 6924.35, + "end": 6927.54, + "probability": 0.5192 + }, + { + "start": 6927.54, + "end": 6931.3, + "probability": 0.897 + }, + { + "start": 6932.24, + "end": 6937.24, + "probability": 0.6773 + }, + { + "start": 6937.76, + "end": 6938.48, + "probability": 0.7759 + }, + { + "start": 6939.42, + "end": 6942.9, + "probability": 0.7993 + }, + { + "start": 6942.94, + "end": 6944.77, + "probability": 0.6698 + }, + { + "start": 6945.0, + "end": 6947.18, + "probability": 0.3947 + }, + { + "start": 6947.34, + "end": 6948.76, + "probability": 0.959 + }, + { + "start": 6950.32, + "end": 6951.44, + "probability": 0.0105 + }, + { + "start": 6952.47, + "end": 6958.32, + "probability": 0.5705 + }, + { + "start": 6958.58, + "end": 6962.08, + "probability": 0.4222 + }, + { + "start": 6962.92, + "end": 6968.08, + "probability": 0.4962 + }, + { + "start": 6968.54, + "end": 6969.72, + "probability": 0.4292 + }, + { + "start": 6970.78, + "end": 6972.72, + "probability": 0.8306 + }, + { + "start": 6973.1, + "end": 6975.32, + "probability": 0.6348 + }, + { + "start": 6975.56, + "end": 6976.1, + "probability": 0.5034 + }, + { + "start": 6976.28, + "end": 6978.96, + "probability": 0.9928 + }, + { + "start": 6979.04, + "end": 6980.32, + "probability": 0.8429 + }, + { + "start": 6983.77, + "end": 6990.18, + "probability": 0.5921 + }, + { + "start": 6990.18, + "end": 6992.68, + "probability": 0.6581 + }, + { + "start": 6992.92, + "end": 6996.86, + "probability": 0.994 + }, + { + "start": 6997.06, + "end": 6997.86, + "probability": 0.6768 + }, + { + "start": 6997.86, + "end": 7000.5, + "probability": 0.8442 + }, + { + "start": 7000.82, + "end": 7003.2, + "probability": 0.9934 + }, + { + "start": 7003.56, + "end": 7004.66, + "probability": 0.7324 + }, + { + "start": 7004.78, + "end": 7006.16, + "probability": 0.9646 + }, + { + "start": 7006.5, + "end": 7007.26, + "probability": 0.8612 + }, + { + "start": 7007.76, + "end": 7011.3, + "probability": 0.1142 + }, + { + "start": 7011.76, + "end": 7012.26, + "probability": 0.0801 + }, + { + "start": 7012.35, + "end": 7015.84, + "probability": 0.9598 + }, + { + "start": 7016.18, + "end": 7018.96, + "probability": 0.9619 + }, + { + "start": 7019.1, + "end": 7020.86, + "probability": 0.6334 + }, + { + "start": 7021.0, + "end": 7021.82, + "probability": 0.7018 + }, + { + "start": 7022.0, + "end": 7022.1, + "probability": 0.7869 + }, + { + "start": 7023.94, + "end": 7028.84, + "probability": 0.9555 + }, + { + "start": 7032.62, + "end": 7034.36, + "probability": 0.5645 + }, + { + "start": 7034.46, + "end": 7039.22, + "probability": 0.6473 + }, + { + "start": 7039.58, + "end": 7043.34, + "probability": 0.8004 + }, + { + "start": 7044.64, + "end": 7046.66, + "probability": 0.7735 + }, + { + "start": 7047.26, + "end": 7047.78, + "probability": 0.9862 + }, + { + "start": 7049.02, + "end": 7049.96, + "probability": 0.666 + }, + { + "start": 7050.12, + "end": 7051.8, + "probability": 0.9806 + }, + { + "start": 7052.1, + "end": 7055.44, + "probability": 0.928 + }, + { + "start": 7056.8, + "end": 7061.65, + "probability": 0.1019 + }, + { + "start": 7062.18, + "end": 7064.58, + "probability": 0.0338 + }, + { + "start": 7064.58, + "end": 7066.9, + "probability": 0.5979 + }, + { + "start": 7067.96, + "end": 7068.42, + "probability": 0.2676 + }, + { + "start": 7068.94, + "end": 7072.04, + "probability": 0.8024 + }, + { + "start": 7072.68, + "end": 7073.66, + "probability": 0.2809 + }, + { + "start": 7074.04, + "end": 7077.52, + "probability": 0.7705 + }, + { + "start": 7078.12, + "end": 7080.94, + "probability": 0.9995 + }, + { + "start": 7080.96, + "end": 7082.0, + "probability": 0.5245 + }, + { + "start": 7082.16, + "end": 7084.53, + "probability": 0.9951 + }, + { + "start": 7085.56, + "end": 7088.84, + "probability": 0.9491 + }, + { + "start": 7090.0, + "end": 7094.44, + "probability": 0.9824 + }, + { + "start": 7095.24, + "end": 7097.48, + "probability": 0.6158 + }, + { + "start": 7097.78, + "end": 7102.42, + "probability": 0.9697 + }, + { + "start": 7104.5, + "end": 7110.0, + "probability": 0.0216 + }, + { + "start": 7110.0, + "end": 7113.44, + "probability": 0.2599 + }, + { + "start": 7113.62, + "end": 7114.32, + "probability": 0.5736 + }, + { + "start": 7114.38, + "end": 7115.84, + "probability": 0.5699 + }, + { + "start": 7115.9, + "end": 7118.78, + "probability": 0.9416 + }, + { + "start": 7118.86, + "end": 7124.38, + "probability": 0.8864 + }, + { + "start": 7124.58, + "end": 7125.92, + "probability": 0.7989 + }, + { + "start": 7126.04, + "end": 7126.84, + "probability": 0.8004 + }, + { + "start": 7126.98, + "end": 7129.68, + "probability": 0.7457 + }, + { + "start": 7130.18, + "end": 7133.08, + "probability": 0.966 + }, + { + "start": 7134.82, + "end": 7136.68, + "probability": 0.9871 + }, + { + "start": 7137.48, + "end": 7142.08, + "probability": 0.2546 + }, + { + "start": 7143.42, + "end": 7145.56, + "probability": 0.9905 + }, + { + "start": 7145.8, + "end": 7148.68, + "probability": 0.9003 + }, + { + "start": 7149.86, + "end": 7151.01, + "probability": 0.9707 + }, + { + "start": 7152.18, + "end": 7154.18, + "probability": 0.9584 + }, + { + "start": 7155.05, + "end": 7161.74, + "probability": 0.9126 + }, + { + "start": 7162.12, + "end": 7164.46, + "probability": 0.9785 + }, + { + "start": 7165.1, + "end": 7168.11, + "probability": 0.9941 + }, + { + "start": 7168.32, + "end": 7172.62, + "probability": 0.993 + }, + { + "start": 7173.32, + "end": 7174.6, + "probability": 0.9661 + }, + { + "start": 7174.82, + "end": 7176.74, + "probability": 0.9905 + }, + { + "start": 7177.38, + "end": 7181.56, + "probability": 0.9756 + }, + { + "start": 7181.6, + "end": 7187.4, + "probability": 0.9739 + }, + { + "start": 7188.7, + "end": 7192.2, + "probability": 0.9414 + }, + { + "start": 7192.5, + "end": 7196.84, + "probability": 0.9966 + }, + { + "start": 7196.98, + "end": 7198.12, + "probability": 0.9683 + }, + { + "start": 7198.32, + "end": 7201.3, + "probability": 0.9879 + }, + { + "start": 7203.34, + "end": 7208.8, + "probability": 0.8697 + }, + { + "start": 7210.22, + "end": 7214.6, + "probability": 0.981 + }, + { + "start": 7215.76, + "end": 7221.56, + "probability": 0.9954 + }, + { + "start": 7221.6, + "end": 7223.38, + "probability": 0.9919 + }, + { + "start": 7224.66, + "end": 7226.61, + "probability": 0.9879 + }, + { + "start": 7226.78, + "end": 7229.0, + "probability": 0.9973 + }, + { + "start": 7229.24, + "end": 7232.88, + "probability": 0.9919 + }, + { + "start": 7233.98, + "end": 7237.56, + "probability": 0.9669 + }, + { + "start": 7238.3, + "end": 7239.84, + "probability": 0.6805 + }, + { + "start": 7239.94, + "end": 7242.12, + "probability": 0.9984 + }, + { + "start": 7242.12, + "end": 7244.84, + "probability": 0.9472 + }, + { + "start": 7246.16, + "end": 7249.1, + "probability": 0.998 + }, + { + "start": 7249.1, + "end": 7253.36, + "probability": 0.9998 + }, + { + "start": 7253.54, + "end": 7257.16, + "probability": 0.8774 + }, + { + "start": 7258.32, + "end": 7262.08, + "probability": 0.9525 + }, + { + "start": 7263.4, + "end": 7267.0, + "probability": 0.998 + }, + { + "start": 7267.0, + "end": 7270.62, + "probability": 0.8993 + }, + { + "start": 7270.66, + "end": 7274.62, + "probability": 0.9458 + }, + { + "start": 7274.68, + "end": 7275.24, + "probability": 0.6244 + }, + { + "start": 7275.24, + "end": 7277.98, + "probability": 0.9875 + }, + { + "start": 7278.72, + "end": 7282.94, + "probability": 0.9934 + }, + { + "start": 7283.68, + "end": 7285.28, + "probability": 0.9888 + }, + { + "start": 7285.34, + "end": 7285.54, + "probability": 0.844 + }, + { + "start": 7286.24, + "end": 7286.74, + "probability": 0.8149 + }, + { + "start": 7287.36, + "end": 7288.84, + "probability": 0.7039 + }, + { + "start": 7288.98, + "end": 7289.34, + "probability": 0.6051 + }, + { + "start": 7289.44, + "end": 7290.74, + "probability": 0.7692 + }, + { + "start": 7293.94, + "end": 7294.3, + "probability": 0.0381 + }, + { + "start": 7294.82, + "end": 7295.28, + "probability": 0.2139 + }, + { + "start": 7318.24, + "end": 7324.78, + "probability": 0.7162 + }, + { + "start": 7325.48, + "end": 7327.32, + "probability": 0.9447 + }, + { + "start": 7328.8, + "end": 7331.57, + "probability": 0.9976 + }, + { + "start": 7332.02, + "end": 7332.74, + "probability": 0.8684 + }, + { + "start": 7335.06, + "end": 7338.08, + "probability": 0.9738 + }, + { + "start": 7338.86, + "end": 7342.98, + "probability": 0.9957 + }, + { + "start": 7342.98, + "end": 7348.96, + "probability": 0.9245 + }, + { + "start": 7350.62, + "end": 7358.8, + "probability": 0.7873 + }, + { + "start": 7359.76, + "end": 7360.9, + "probability": 0.8542 + }, + { + "start": 7361.08, + "end": 7362.54, + "probability": 0.9751 + }, + { + "start": 7362.74, + "end": 7363.18, + "probability": 0.806 + }, + { + "start": 7366.28, + "end": 7372.26, + "probability": 0.9422 + }, + { + "start": 7374.28, + "end": 7378.3, + "probability": 0.8411 + }, + { + "start": 7379.9, + "end": 7381.7, + "probability": 0.7859 + }, + { + "start": 7383.06, + "end": 7384.4, + "probability": 0.979 + }, + { + "start": 7385.18, + "end": 7390.68, + "probability": 0.9375 + }, + { + "start": 7391.54, + "end": 7397.96, + "probability": 0.809 + }, + { + "start": 7398.5, + "end": 7399.38, + "probability": 0.5918 + }, + { + "start": 7399.9, + "end": 7402.62, + "probability": 0.8602 + }, + { + "start": 7402.84, + "end": 7405.24, + "probability": 0.8662 + }, + { + "start": 7405.54, + "end": 7407.42, + "probability": 0.9912 + }, + { + "start": 7408.26, + "end": 7416.1, + "probability": 0.9843 + }, + { + "start": 7416.48, + "end": 7416.9, + "probability": 0.5505 + }, + { + "start": 7419.02, + "end": 7419.72, + "probability": 0.9105 + }, + { + "start": 7420.5, + "end": 7422.68, + "probability": 0.8579 + }, + { + "start": 7423.24, + "end": 7424.62, + "probability": 0.9932 + }, + { + "start": 7424.88, + "end": 7426.36, + "probability": 0.9505 + }, + { + "start": 7427.14, + "end": 7430.18, + "probability": 0.9733 + }, + { + "start": 7432.14, + "end": 7433.72, + "probability": 0.7158 + }, + { + "start": 7438.26, + "end": 7442.02, + "probability": 0.8766 + }, + { + "start": 7443.92, + "end": 7449.2, + "probability": 0.8788 + }, + { + "start": 7451.04, + "end": 7459.96, + "probability": 0.9666 + }, + { + "start": 7460.68, + "end": 7463.38, + "probability": 0.9321 + }, + { + "start": 7463.82, + "end": 7466.22, + "probability": 0.9273 + }, + { + "start": 7466.78, + "end": 7471.08, + "probability": 0.9443 + }, + { + "start": 7473.18, + "end": 7475.52, + "probability": 0.9069 + }, + { + "start": 7477.44, + "end": 7480.43, + "probability": 0.9888 + }, + { + "start": 7480.74, + "end": 7480.88, + "probability": 0.2975 + }, + { + "start": 7480.94, + "end": 7482.88, + "probability": 0.9717 + }, + { + "start": 7483.44, + "end": 7486.48, + "probability": 0.9807 + }, + { + "start": 7487.72, + "end": 7491.06, + "probability": 0.9868 + }, + { + "start": 7491.68, + "end": 7494.54, + "probability": 0.8964 + }, + { + "start": 7495.52, + "end": 7499.6, + "probability": 0.8615 + }, + { + "start": 7500.6, + "end": 7502.76, + "probability": 0.9583 + }, + { + "start": 7503.36, + "end": 7505.96, + "probability": 0.8975 + }, + { + "start": 7506.0, + "end": 7509.62, + "probability": 0.9984 + }, + { + "start": 7509.72, + "end": 7513.48, + "probability": 0.8739 + }, + { + "start": 7514.58, + "end": 7516.04, + "probability": 0.4016 + }, + { + "start": 7517.1, + "end": 7519.96, + "probability": 0.9944 + }, + { + "start": 7520.12, + "end": 7525.96, + "probability": 0.995 + }, + { + "start": 7526.38, + "end": 7527.34, + "probability": 0.562 + }, + { + "start": 7527.46, + "end": 7528.36, + "probability": 0.8026 + }, + { + "start": 7528.7, + "end": 7530.25, + "probability": 0.9923 + }, + { + "start": 7530.58, + "end": 7532.06, + "probability": 0.5953 + }, + { + "start": 7532.06, + "end": 7533.26, + "probability": 0.9707 + }, + { + "start": 7534.18, + "end": 7535.16, + "probability": 0.9002 + }, + { + "start": 7535.94, + "end": 7538.5, + "probability": 0.9401 + }, + { + "start": 7539.18, + "end": 7540.26, + "probability": 0.793 + }, + { + "start": 7541.8, + "end": 7543.52, + "probability": 0.7984 + }, + { + "start": 7545.66, + "end": 7548.04, + "probability": 0.9368 + }, + { + "start": 7548.4, + "end": 7554.88, + "probability": 0.9721 + }, + { + "start": 7555.02, + "end": 7555.82, + "probability": 0.8914 + }, + { + "start": 7556.26, + "end": 7559.94, + "probability": 0.9858 + }, + { + "start": 7560.12, + "end": 7560.62, + "probability": 0.318 + }, + { + "start": 7561.28, + "end": 7561.72, + "probability": 0.7091 + }, + { + "start": 7563.7, + "end": 7566.06, + "probability": 0.9557 + }, + { + "start": 7566.12, + "end": 7568.66, + "probability": 0.4683 + }, + { + "start": 7568.66, + "end": 7569.28, + "probability": 0.3175 + }, + { + "start": 7569.5, + "end": 7576.8, + "probability": 0.9813 + }, + { + "start": 7577.74, + "end": 7580.1, + "probability": 0.116 + }, + { + "start": 7580.1, + "end": 7580.74, + "probability": 0.188 + }, + { + "start": 7580.74, + "end": 7580.96, + "probability": 0.4899 + }, + { + "start": 7581.28, + "end": 7582.82, + "probability": 0.7073 + }, + { + "start": 7583.5, + "end": 7586.12, + "probability": 0.992 + }, + { + "start": 7587.28, + "end": 7587.78, + "probability": 0.625 + }, + { + "start": 7588.6, + "end": 7589.42, + "probability": 0.5755 + }, + { + "start": 7589.46, + "end": 7591.52, + "probability": 0.9937 + }, + { + "start": 7591.74, + "end": 7592.7, + "probability": 0.7187 + }, + { + "start": 7593.2, + "end": 7597.54, + "probability": 0.9698 + }, + { + "start": 7597.7, + "end": 7598.48, + "probability": 0.8275 + }, + { + "start": 7598.5, + "end": 7599.42, + "probability": 0.5191 + }, + { + "start": 7599.78, + "end": 7601.02, + "probability": 0.7089 + }, + { + "start": 7601.3, + "end": 7602.86, + "probability": 0.9043 + }, + { + "start": 7603.38, + "end": 7606.2, + "probability": 0.864 + }, + { + "start": 7606.74, + "end": 7608.68, + "probability": 0.9919 + }, + { + "start": 7609.14, + "end": 7613.8, + "probability": 0.7155 + }, + { + "start": 7614.14, + "end": 7614.42, + "probability": 0.682 + }, + { + "start": 7614.62, + "end": 7615.42, + "probability": 0.9252 + }, + { + "start": 7616.16, + "end": 7617.38, + "probability": 0.7402 + }, + { + "start": 7617.88, + "end": 7619.52, + "probability": 0.5749 + }, + { + "start": 7629.74, + "end": 7633.88, + "probability": 0.8229 + }, + { + "start": 7635.24, + "end": 7638.8, + "probability": 0.9043 + }, + { + "start": 7638.84, + "end": 7639.58, + "probability": 0.7357 + }, + { + "start": 7639.72, + "end": 7642.34, + "probability": 0.8748 + }, + { + "start": 7643.04, + "end": 7644.6, + "probability": 0.6823 + }, + { + "start": 7644.62, + "end": 7645.56, + "probability": 0.9407 + }, + { + "start": 7646.6, + "end": 7649.9, + "probability": 0.9917 + }, + { + "start": 7650.18, + "end": 7651.12, + "probability": 0.9292 + }, + { + "start": 7651.24, + "end": 7655.08, + "probability": 0.9702 + }, + { + "start": 7656.28, + "end": 7658.84, + "probability": 0.9926 + }, + { + "start": 7659.62, + "end": 7661.96, + "probability": 0.8652 + }, + { + "start": 7663.1, + "end": 7664.1, + "probability": 0.8483 + }, + { + "start": 7664.34, + "end": 7670.8, + "probability": 0.8962 + }, + { + "start": 7672.18, + "end": 7678.48, + "probability": 0.9454 + }, + { + "start": 7678.74, + "end": 7681.88, + "probability": 0.7039 + }, + { + "start": 7681.94, + "end": 7686.38, + "probability": 0.8428 + }, + { + "start": 7686.7, + "end": 7690.96, + "probability": 0.9546 + }, + { + "start": 7692.46, + "end": 7693.42, + "probability": 0.8032 + }, + { + "start": 7695.06, + "end": 7697.7, + "probability": 0.6968 + }, + { + "start": 7698.94, + "end": 7701.34, + "probability": 0.9987 + }, + { + "start": 7702.46, + "end": 7705.86, + "probability": 0.6875 + }, + { + "start": 7706.7, + "end": 7709.16, + "probability": 0.8057 + }, + { + "start": 7710.76, + "end": 7714.02, + "probability": 0.8307 + }, + { + "start": 7714.12, + "end": 7715.32, + "probability": 0.7775 + }, + { + "start": 7716.76, + "end": 7720.22, + "probability": 0.9067 + }, + { + "start": 7721.82, + "end": 7722.78, + "probability": 0.3447 + }, + { + "start": 7723.88, + "end": 7725.42, + "probability": 0.9641 + }, + { + "start": 7727.26, + "end": 7727.74, + "probability": 0.8576 + }, + { + "start": 7727.82, + "end": 7731.28, + "probability": 0.7491 + }, + { + "start": 7731.42, + "end": 7731.98, + "probability": 0.3003 + }, + { + "start": 7733.08, + "end": 7734.3, + "probability": 0.6535 + }, + { + "start": 7734.3, + "end": 7737.7, + "probability": 0.6431 + }, + { + "start": 7739.62, + "end": 7742.01, + "probability": 0.9736 + }, + { + "start": 7745.3, + "end": 7749.64, + "probability": 0.7353 + }, + { + "start": 7750.26, + "end": 7755.52, + "probability": 0.9409 + }, + { + "start": 7755.52, + "end": 7760.68, + "probability": 0.9836 + }, + { + "start": 7761.84, + "end": 7763.42, + "probability": 0.1622 + }, + { + "start": 7765.78, + "end": 7768.34, + "probability": 0.6745 + }, + { + "start": 7769.28, + "end": 7770.56, + "probability": 0.5257 + }, + { + "start": 7771.7, + "end": 7773.76, + "probability": 0.8372 + }, + { + "start": 7774.32, + "end": 7777.86, + "probability": 0.9671 + }, + { + "start": 7779.28, + "end": 7781.6, + "probability": 0.9067 + }, + { + "start": 7781.68, + "end": 7785.62, + "probability": 0.854 + }, + { + "start": 7786.48, + "end": 7789.04, + "probability": 0.9956 + }, + { + "start": 7790.4, + "end": 7791.72, + "probability": 0.8257 + }, + { + "start": 7791.78, + "end": 7793.64, + "probability": 0.8372 + }, + { + "start": 7793.66, + "end": 7794.1, + "probability": 0.5242 + }, + { + "start": 7794.68, + "end": 7800.54, + "probability": 0.8703 + }, + { + "start": 7800.7, + "end": 7802.06, + "probability": 0.8811 + }, + { + "start": 7802.26, + "end": 7803.24, + "probability": 0.7484 + }, + { + "start": 7803.96, + "end": 7807.75, + "probability": 0.7845 + }, + { + "start": 7809.82, + "end": 7812.8, + "probability": 0.9832 + }, + { + "start": 7812.8, + "end": 7818.1, + "probability": 0.968 + }, + { + "start": 7818.82, + "end": 7822.34, + "probability": 0.9924 + }, + { + "start": 7822.34, + "end": 7826.56, + "probability": 0.9847 + }, + { + "start": 7827.24, + "end": 7829.08, + "probability": 0.9936 + }, + { + "start": 7830.78, + "end": 7834.28, + "probability": 0.944 + }, + { + "start": 7834.28, + "end": 7838.98, + "probability": 0.7438 + }, + { + "start": 7840.46, + "end": 7845.9, + "probability": 0.8477 + }, + { + "start": 7846.02, + "end": 7846.88, + "probability": 0.4622 + }, + { + "start": 7847.92, + "end": 7849.26, + "probability": 0.7951 + }, + { + "start": 7849.32, + "end": 7852.28, + "probability": 0.9928 + }, + { + "start": 7852.88, + "end": 7853.66, + "probability": 0.6011 + }, + { + "start": 7854.16, + "end": 7856.6, + "probability": 0.9878 + }, + { + "start": 7858.06, + "end": 7863.2, + "probability": 0.8961 + }, + { + "start": 7863.26, + "end": 7863.42, + "probability": 0.8021 + }, + { + "start": 7863.42, + "end": 7864.22, + "probability": 0.6297 + }, + { + "start": 7864.4, + "end": 7865.34, + "probability": 0.489 + }, + { + "start": 7866.19, + "end": 7870.3, + "probability": 0.8948 + }, + { + "start": 7870.98, + "end": 7873.9, + "probability": 0.9499 + }, + { + "start": 7873.9, + "end": 7878.42, + "probability": 0.9973 + }, + { + "start": 7878.58, + "end": 7879.94, + "probability": 0.7838 + }, + { + "start": 7880.34, + "end": 7881.26, + "probability": 0.6517 + }, + { + "start": 7881.34, + "end": 7887.28, + "probability": 0.998 + }, + { + "start": 7887.92, + "end": 7892.18, + "probability": 0.9961 + }, + { + "start": 7892.3, + "end": 7892.62, + "probability": 0.7804 + }, + { + "start": 7893.54, + "end": 7894.2, + "probability": 0.8267 + }, + { + "start": 7895.02, + "end": 7896.36, + "probability": 0.7244 + }, + { + "start": 7896.42, + "end": 7896.9, + "probability": 0.6461 + }, + { + "start": 7896.94, + "end": 7898.52, + "probability": 0.9156 + }, + { + "start": 7908.6, + "end": 7911.72, + "probability": 0.7018 + }, + { + "start": 7912.68, + "end": 7917.42, + "probability": 0.9328 + }, + { + "start": 7918.36, + "end": 7920.52, + "probability": 0.9799 + }, + { + "start": 7920.66, + "end": 7922.06, + "probability": 0.9414 + }, + { + "start": 7922.16, + "end": 7923.98, + "probability": 0.9568 + }, + { + "start": 7925.12, + "end": 7929.66, + "probability": 0.9763 + }, + { + "start": 7929.88, + "end": 7938.12, + "probability": 0.9893 + }, + { + "start": 7938.14, + "end": 7946.08, + "probability": 0.9964 + }, + { + "start": 7946.94, + "end": 7955.62, + "probability": 0.9604 + }, + { + "start": 7956.06, + "end": 7961.44, + "probability": 0.9937 + }, + { + "start": 7961.52, + "end": 7968.99, + "probability": 0.9418 + }, + { + "start": 7969.08, + "end": 7973.52, + "probability": 0.979 + }, + { + "start": 7973.66, + "end": 7978.12, + "probability": 0.9841 + }, + { + "start": 7978.12, + "end": 7983.84, + "probability": 0.9446 + }, + { + "start": 7984.0, + "end": 7984.64, + "probability": 0.4866 + }, + { + "start": 7985.02, + "end": 7989.54, + "probability": 0.9954 + }, + { + "start": 7990.14, + "end": 7994.0, + "probability": 0.9708 + }, + { + "start": 7994.0, + "end": 7997.32, + "probability": 0.9751 + }, + { + "start": 7997.96, + "end": 8007.5, + "probability": 0.9862 + }, + { + "start": 8007.88, + "end": 8009.68, + "probability": 0.9644 + }, + { + "start": 8009.88, + "end": 8015.92, + "probability": 0.9904 + }, + { + "start": 8015.92, + "end": 8023.26, + "probability": 0.924 + }, + { + "start": 8023.56, + "end": 8025.98, + "probability": 0.7325 + }, + { + "start": 8026.32, + "end": 8029.22, + "probability": 0.7649 + }, + { + "start": 8030.76, + "end": 8035.68, + "probability": 0.9971 + }, + { + "start": 8035.68, + "end": 8040.98, + "probability": 0.9622 + }, + { + "start": 8041.04, + "end": 8042.76, + "probability": 0.9473 + }, + { + "start": 8043.14, + "end": 8044.58, + "probability": 0.9799 + }, + { + "start": 8044.7, + "end": 8046.82, + "probability": 0.9839 + }, + { + "start": 8047.28, + "end": 8049.94, + "probability": 0.9324 + }, + { + "start": 8050.16, + "end": 8050.92, + "probability": 0.8175 + }, + { + "start": 8051.04, + "end": 8055.44, + "probability": 0.9958 + }, + { + "start": 8055.64, + "end": 8061.24, + "probability": 0.722 + }, + { + "start": 8061.7, + "end": 8064.7, + "probability": 0.9497 + }, + { + "start": 8065.32, + "end": 8071.86, + "probability": 0.995 + }, + { + "start": 8071.86, + "end": 8076.0, + "probability": 0.9782 + }, + { + "start": 8076.2, + "end": 8080.18, + "probability": 0.9986 + }, + { + "start": 8080.3, + "end": 8085.28, + "probability": 0.9208 + }, + { + "start": 8085.8, + "end": 8091.06, + "probability": 0.9884 + }, + { + "start": 8091.18, + "end": 8093.62, + "probability": 0.9983 + }, + { + "start": 8094.12, + "end": 8097.68, + "probability": 0.8976 + }, + { + "start": 8098.32, + "end": 8099.9, + "probability": 0.6405 + }, + { + "start": 8100.28, + "end": 8102.56, + "probability": 0.8672 + }, + { + "start": 8102.96, + "end": 8104.58, + "probability": 0.9712 + }, + { + "start": 8104.74, + "end": 8107.64, + "probability": 0.9517 + }, + { + "start": 8108.48, + "end": 8110.48, + "probability": 0.9883 + }, + { + "start": 8110.6, + "end": 8114.8, + "probability": 0.9896 + }, + { + "start": 8114.8, + "end": 8118.06, + "probability": 0.9868 + }, + { + "start": 8118.28, + "end": 8122.62, + "probability": 0.9753 + }, + { + "start": 8122.72, + "end": 8124.88, + "probability": 0.9907 + }, + { + "start": 8125.54, + "end": 8129.84, + "probability": 0.9857 + }, + { + "start": 8130.28, + "end": 8133.06, + "probability": 0.9642 + }, + { + "start": 8133.4, + "end": 8136.54, + "probability": 0.9953 + }, + { + "start": 8136.9, + "end": 8141.54, + "probability": 0.8609 + }, + { + "start": 8141.62, + "end": 8147.84, + "probability": 0.9818 + }, + { + "start": 8148.46, + "end": 8149.04, + "probability": 0.7311 + }, + { + "start": 8149.3, + "end": 8149.3, + "probability": 0.6558 + }, + { + "start": 8149.92, + "end": 8151.86, + "probability": 0.7067 + }, + { + "start": 8152.48, + "end": 8154.08, + "probability": 0.7892 + }, + { + "start": 8154.68, + "end": 8157.96, + "probability": 0.7086 + }, + { + "start": 8158.28, + "end": 8159.36, + "probability": 0.997 + }, + { + "start": 8160.2, + "end": 8161.34, + "probability": 0.9801 + }, + { + "start": 8161.62, + "end": 8162.62, + "probability": 0.9282 + }, + { + "start": 8163.18, + "end": 8165.18, + "probability": 0.9943 + }, + { + "start": 8167.86, + "end": 8174.72, + "probability": 0.6667 + }, + { + "start": 8175.38, + "end": 8180.28, + "probability": 0.986 + }, + { + "start": 8181.52, + "end": 8182.6, + "probability": 0.3128 + }, + { + "start": 8183.14, + "end": 8185.78, + "probability": 0.7039 + }, + { + "start": 8185.94, + "end": 8189.42, + "probability": 0.9403 + }, + { + "start": 8189.82, + "end": 8191.86, + "probability": 0.7547 + }, + { + "start": 8195.6, + "end": 8197.94, + "probability": 0.1765 + }, + { + "start": 8198.72, + "end": 8201.72, + "probability": 0.3678 + }, + { + "start": 8201.8, + "end": 8204.58, + "probability": 0.9648 + }, + { + "start": 8205.64, + "end": 8207.54, + "probability": 0.9361 + }, + { + "start": 8207.7, + "end": 8210.1, + "probability": 0.9179 + }, + { + "start": 8210.94, + "end": 8215.24, + "probability": 0.9895 + }, + { + "start": 8215.92, + "end": 8220.56, + "probability": 0.9671 + }, + { + "start": 8221.28, + "end": 8225.02, + "probability": 0.9558 + }, + { + "start": 8225.6, + "end": 8228.28, + "probability": 0.8169 + }, + { + "start": 8229.16, + "end": 8230.86, + "probability": 0.9438 + }, + { + "start": 8230.92, + "end": 8231.5, + "probability": 0.6163 + }, + { + "start": 8231.64, + "end": 8233.76, + "probability": 0.747 + }, + { + "start": 8234.92, + "end": 8237.12, + "probability": 0.897 + }, + { + "start": 8237.92, + "end": 8241.18, + "probability": 0.9634 + }, + { + "start": 8241.18, + "end": 8246.9, + "probability": 0.9854 + }, + { + "start": 8246.96, + "end": 8251.3, + "probability": 0.957 + }, + { + "start": 8251.34, + "end": 8252.14, + "probability": 0.0941 + }, + { + "start": 8252.52, + "end": 8256.84, + "probability": 0.9122 + }, + { + "start": 8258.62, + "end": 8262.42, + "probability": 0.9958 + }, + { + "start": 8263.78, + "end": 8267.34, + "probability": 0.9624 + }, + { + "start": 8267.58, + "end": 8268.88, + "probability": 0.9637 + }, + { + "start": 8269.86, + "end": 8273.44, + "probability": 0.8944 + }, + { + "start": 8273.44, + "end": 8278.06, + "probability": 0.9775 + }, + { + "start": 8278.56, + "end": 8278.8, + "probability": 0.4793 + }, + { + "start": 8278.94, + "end": 8282.78, + "probability": 0.85 + }, + { + "start": 8282.78, + "end": 8288.54, + "probability": 0.991 + }, + { + "start": 8289.26, + "end": 8292.1, + "probability": 0.9859 + }, + { + "start": 8293.46, + "end": 8297.54, + "probability": 0.9951 + }, + { + "start": 8298.1, + "end": 8302.1, + "probability": 0.9945 + }, + { + "start": 8302.66, + "end": 8305.88, + "probability": 0.9753 + }, + { + "start": 8306.82, + "end": 8307.82, + "probability": 0.6886 + }, + { + "start": 8308.58, + "end": 8310.1, + "probability": 0.8571 + }, + { + "start": 8310.66, + "end": 8313.1, + "probability": 0.9851 + }, + { + "start": 8313.24, + "end": 8318.0, + "probability": 0.8681 + }, + { + "start": 8319.16, + "end": 8320.7, + "probability": 0.736 + }, + { + "start": 8321.28, + "end": 8325.7, + "probability": 0.9897 + }, + { + "start": 8326.64, + "end": 8329.68, + "probability": 0.9924 + }, + { + "start": 8330.24, + "end": 8332.08, + "probability": 0.9635 + }, + { + "start": 8332.66, + "end": 8335.32, + "probability": 0.9421 + }, + { + "start": 8336.0, + "end": 8340.37, + "probability": 0.9952 + }, + { + "start": 8341.12, + "end": 8345.68, + "probability": 0.996 + }, + { + "start": 8346.14, + "end": 8350.34, + "probability": 0.938 + }, + { + "start": 8350.56, + "end": 8351.88, + "probability": 0.968 + }, + { + "start": 8352.48, + "end": 8355.6, + "probability": 0.991 + }, + { + "start": 8356.04, + "end": 8359.02, + "probability": 0.995 + }, + { + "start": 8359.66, + "end": 8363.14, + "probability": 0.8414 + }, + { + "start": 8363.66, + "end": 8366.32, + "probability": 0.8784 + }, + { + "start": 8366.66, + "end": 8370.12, + "probability": 0.9969 + }, + { + "start": 8370.26, + "end": 8370.74, + "probability": 0.4749 + }, + { + "start": 8370.78, + "end": 8373.38, + "probability": 0.7303 + }, + { + "start": 8373.66, + "end": 8374.26, + "probability": 0.5547 + }, + { + "start": 8374.32, + "end": 8375.56, + "probability": 0.8625 + }, + { + "start": 8376.14, + "end": 8376.8, + "probability": 0.7748 + }, + { + "start": 8378.4, + "end": 8379.7, + "probability": 0.6826 + }, + { + "start": 8379.7, + "end": 8383.24, + "probability": 0.8172 + }, + { + "start": 8383.78, + "end": 8385.88, + "probability": 0.9812 + }, + { + "start": 8386.5, + "end": 8388.04, + "probability": 0.8476 + }, + { + "start": 8388.7, + "end": 8391.68, + "probability": 0.9225 + }, + { + "start": 8392.08, + "end": 8395.84, + "probability": 0.9745 + }, + { + "start": 8396.04, + "end": 8397.18, + "probability": 0.6596 + }, + { + "start": 8397.84, + "end": 8404.66, + "probability": 0.9851 + }, + { + "start": 8405.26, + "end": 8409.76, + "probability": 0.9803 + }, + { + "start": 8410.26, + "end": 8413.68, + "probability": 0.9714 + }, + { + "start": 8414.72, + "end": 8418.62, + "probability": 0.9178 + }, + { + "start": 8419.18, + "end": 8425.06, + "probability": 0.9519 + }, + { + "start": 8425.18, + "end": 8428.92, + "probability": 0.9924 + }, + { + "start": 8429.24, + "end": 8431.54, + "probability": 0.9834 + }, + { + "start": 8433.62, + "end": 8433.72, + "probability": 0.1155 + }, + { + "start": 8433.72, + "end": 8433.72, + "probability": 0.3874 + }, + { + "start": 8433.72, + "end": 8434.26, + "probability": 0.6211 + }, + { + "start": 8434.4, + "end": 8436.0, + "probability": 0.8232 + }, + { + "start": 8436.12, + "end": 8436.8, + "probability": 0.5565 + }, + { + "start": 8437.1, + "end": 8438.4, + "probability": 0.7785 + }, + { + "start": 8438.7, + "end": 8439.28, + "probability": 0.4916 + }, + { + "start": 8439.8, + "end": 8440.66, + "probability": 0.8021 + }, + { + "start": 8456.54, + "end": 8460.0, + "probability": 0.6436 + }, + { + "start": 8462.0, + "end": 8466.4, + "probability": 0.9499 + }, + { + "start": 8466.4, + "end": 8468.02, + "probability": 0.9943 + }, + { + "start": 8469.46, + "end": 8469.62, + "probability": 0.0239 + }, + { + "start": 8469.66, + "end": 8472.78, + "probability": 0.16 + }, + { + "start": 8472.78, + "end": 8474.42, + "probability": 0.3344 + }, + { + "start": 8474.68, + "end": 8476.19, + "probability": 0.981 + }, + { + "start": 8478.36, + "end": 8480.0, + "probability": 0.4931 + }, + { + "start": 8481.52, + "end": 8482.66, + "probability": 0.7903 + }, + { + "start": 8484.1, + "end": 8486.96, + "probability": 0.8327 + }, + { + "start": 8486.96, + "end": 8491.6, + "probability": 0.9836 + }, + { + "start": 8492.98, + "end": 8493.52, + "probability": 0.7649 + }, + { + "start": 8494.74, + "end": 8496.68, + "probability": 0.7955 + }, + { + "start": 8497.4, + "end": 8499.62, + "probability": 0.8301 + }, + { + "start": 8500.48, + "end": 8504.72, + "probability": 0.9201 + }, + { + "start": 8504.72, + "end": 8509.8, + "probability": 0.9985 + }, + { + "start": 8510.8, + "end": 8512.7, + "probability": 0.9402 + }, + { + "start": 8512.76, + "end": 8517.8, + "probability": 0.9906 + }, + { + "start": 8517.8, + "end": 8521.26, + "probability": 0.987 + }, + { + "start": 8522.04, + "end": 8522.2, + "probability": 0.3331 + }, + { + "start": 8523.26, + "end": 8524.06, + "probability": 0.8431 + }, + { + "start": 8524.78, + "end": 8525.34, + "probability": 0.0771 + }, + { + "start": 8525.34, + "end": 8530.54, + "probability": 0.3178 + }, + { + "start": 8530.54, + "end": 8532.02, + "probability": 0.0262 + }, + { + "start": 8532.02, + "end": 8532.68, + "probability": 0.4808 + }, + { + "start": 8533.44, + "end": 8533.62, + "probability": 0.0826 + }, + { + "start": 8533.62, + "end": 8539.88, + "probability": 0.9881 + }, + { + "start": 8540.38, + "end": 8542.82, + "probability": 0.9372 + }, + { + "start": 8542.9, + "end": 8543.56, + "probability": 0.5744 + }, + { + "start": 8544.68, + "end": 8546.61, + "probability": 0.9834 + }, + { + "start": 8546.7, + "end": 8549.0, + "probability": 0.0577 + }, + { + "start": 8549.2, + "end": 8549.24, + "probability": 0.0239 + }, + { + "start": 8549.24, + "end": 8550.74, + "probability": 0.9784 + }, + { + "start": 8553.18, + "end": 8554.86, + "probability": 0.1559 + }, + { + "start": 8554.86, + "end": 8555.74, + "probability": 0.6239 + }, + { + "start": 8555.74, + "end": 8555.74, + "probability": 0.1755 + }, + { + "start": 8555.74, + "end": 8556.76, + "probability": 0.0763 + }, + { + "start": 8557.68, + "end": 8559.26, + "probability": 0.9011 + }, + { + "start": 8559.62, + "end": 8562.18, + "probability": 0.8596 + }, + { + "start": 8563.9, + "end": 8565.5, + "probability": 0.0348 + }, + { + "start": 8565.56, + "end": 8566.28, + "probability": 0.1163 + }, + { + "start": 8566.28, + "end": 8569.7, + "probability": 0.0323 + }, + { + "start": 8570.18, + "end": 8574.7, + "probability": 0.7443 + }, + { + "start": 8575.68, + "end": 8581.98, + "probability": 0.9972 + }, + { + "start": 8582.68, + "end": 8583.56, + "probability": 0.6686 + }, + { + "start": 8584.38, + "end": 8586.86, + "probability": 0.9824 + }, + { + "start": 8587.74, + "end": 8588.6, + "probability": 0.8904 + }, + { + "start": 8589.28, + "end": 8591.78, + "probability": 0.999 + }, + { + "start": 8591.78, + "end": 8595.62, + "probability": 0.979 + }, + { + "start": 8595.76, + "end": 8597.04, + "probability": 0.8292 + }, + { + "start": 8598.06, + "end": 8600.0, + "probability": 0.8815 + }, + { + "start": 8600.36, + "end": 8602.76, + "probability": 0.9673 + }, + { + "start": 8603.62, + "end": 8605.22, + "probability": 0.9937 + }, + { + "start": 8610.18, + "end": 8612.78, + "probability": 0.8675 + }, + { + "start": 8613.62, + "end": 8613.62, + "probability": 0.4896 + }, + { + "start": 8614.04, + "end": 8614.76, + "probability": 0.8831 + }, + { + "start": 8615.44, + "end": 8615.68, + "probability": 0.4144 + }, + { + "start": 8615.82, + "end": 8616.3, + "probability": 0.3809 + }, + { + "start": 8616.54, + "end": 8618.78, + "probability": 0.9977 + }, + { + "start": 8619.26, + "end": 8622.26, + "probability": 0.9976 + }, + { + "start": 8623.08, + "end": 8623.72, + "probability": 0.8084 + }, + { + "start": 8624.08, + "end": 8624.58, + "probability": 0.9642 + }, + { + "start": 8625.92, + "end": 8628.58, + "probability": 0.9969 + }, + { + "start": 8628.58, + "end": 8631.12, + "probability": 0.9985 + }, + { + "start": 8631.36, + "end": 8632.5, + "probability": 0.0341 + }, + { + "start": 8632.68, + "end": 8635.0, + "probability": 0.7468 + }, + { + "start": 8635.84, + "end": 8637.18, + "probability": 0.6033 + }, + { + "start": 8637.72, + "end": 8637.72, + "probability": 0.0675 + }, + { + "start": 8637.72, + "end": 8640.94, + "probability": 0.9746 + }, + { + "start": 8641.36, + "end": 8642.56, + "probability": 0.9985 + }, + { + "start": 8643.1, + "end": 8644.0, + "probability": 0.7008 + }, + { + "start": 8644.98, + "end": 8648.6, + "probability": 0.9773 + }, + { + "start": 8649.54, + "end": 8654.17, + "probability": 0.9449 + }, + { + "start": 8655.5, + "end": 8657.36, + "probability": 0.9966 + }, + { + "start": 8657.6, + "end": 8665.76, + "probability": 0.9872 + }, + { + "start": 8666.42, + "end": 8668.14, + "probability": 0.8859 + }, + { + "start": 8668.2, + "end": 8671.4, + "probability": 0.9809 + }, + { + "start": 8671.6, + "end": 8672.16, + "probability": 0.7821 + }, + { + "start": 8672.4, + "end": 8673.24, + "probability": 0.8546 + }, + { + "start": 8673.58, + "end": 8674.02, + "probability": 0.0841 + }, + { + "start": 8674.02, + "end": 8674.02, + "probability": 0.0145 + }, + { + "start": 8674.02, + "end": 8677.1, + "probability": 0.6663 + }, + { + "start": 8679.08, + "end": 8679.4, + "probability": 0.0026 + }, + { + "start": 8681.42, + "end": 8685.18, + "probability": 0.0184 + }, + { + "start": 8690.32, + "end": 8696.0, + "probability": 0.0214 + }, + { + "start": 8700.6, + "end": 8701.42, + "probability": 0.0605 + }, + { + "start": 8709.38, + "end": 8711.4, + "probability": 0.0381 + }, + { + "start": 8711.4, + "end": 8712.14, + "probability": 0.0337 + }, + { + "start": 8713.46, + "end": 8713.84, + "probability": 0.1219 + }, + { + "start": 8713.84, + "end": 8713.84, + "probability": 0.0166 + }, + { + "start": 8713.84, + "end": 8714.44, + "probability": 0.1628 + }, + { + "start": 8714.44, + "end": 8715.08, + "probability": 0.5651 + }, + { + "start": 8715.3, + "end": 8715.3, + "probability": 0.0194 + }, + { + "start": 8715.3, + "end": 8715.3, + "probability": 0.0374 + }, + { + "start": 8715.3, + "end": 8715.3, + "probability": 0.5801 + }, + { + "start": 8715.3, + "end": 8716.72, + "probability": 0.5461 + }, + { + "start": 8717.08, + "end": 8718.74, + "probability": 0.8518 + }, + { + "start": 8719.06, + "end": 8721.11, + "probability": 0.8169 + }, + { + "start": 8725.52, + "end": 8725.96, + "probability": 0.0273 + }, + { + "start": 8725.96, + "end": 8725.96, + "probability": 0.1536 + }, + { + "start": 8725.96, + "end": 8725.96, + "probability": 0.8659 + }, + { + "start": 8725.96, + "end": 8728.22, + "probability": 0.5121 + }, + { + "start": 8728.68, + "end": 8730.54, + "probability": 0.8022 + }, + { + "start": 8730.64, + "end": 8731.9, + "probability": 0.7584 + }, + { + "start": 8732.4, + "end": 8732.82, + "probability": 0.0934 + }, + { + "start": 8733.02, + "end": 8734.32, + "probability": 0.0177 + }, + { + "start": 8734.7, + "end": 8736.04, + "probability": 0.4982 + }, + { + "start": 8736.04, + "end": 8738.28, + "probability": 0.9385 + }, + { + "start": 8739.3, + "end": 8739.88, + "probability": 0.0559 + }, + { + "start": 8740.46, + "end": 8745.56, + "probability": 0.9617 + }, + { + "start": 8746.4, + "end": 8748.26, + "probability": 0.023 + }, + { + "start": 8748.26, + "end": 8748.92, + "probability": 0.5045 + }, + { + "start": 8749.04, + "end": 8752.3, + "probability": 0.8684 + }, + { + "start": 8752.94, + "end": 8753.8, + "probability": 0.4536 + }, + { + "start": 8754.6, + "end": 8757.0, + "probability": 0.9968 + }, + { + "start": 8757.44, + "end": 8757.44, + "probability": 0.1453 + }, + { + "start": 8757.44, + "end": 8759.22, + "probability": 0.8005 + }, + { + "start": 8759.24, + "end": 8762.58, + "probability": 0.7065 + }, + { + "start": 8762.72, + "end": 8763.74, + "probability": 0.6778 + }, + { + "start": 8764.1, + "end": 8764.94, + "probability": 0.7867 + }, + { + "start": 8764.94, + "end": 8765.34, + "probability": 0.3403 + }, + { + "start": 8765.42, + "end": 8766.14, + "probability": 0.2276 + }, + { + "start": 8766.24, + "end": 8767.22, + "probability": 0.27 + }, + { + "start": 8767.38, + "end": 8767.8, + "probability": 0.918 + }, + { + "start": 8768.66, + "end": 8768.66, + "probability": 0.323 + }, + { + "start": 8768.66, + "end": 8771.92, + "probability": 0.9178 + }, + { + "start": 8772.02, + "end": 8772.86, + "probability": 0.9517 + }, + { + "start": 8772.9, + "end": 8773.7, + "probability": 0.9932 + }, + { + "start": 8774.44, + "end": 8775.85, + "probability": 0.8686 + }, + { + "start": 8776.3, + "end": 8777.38, + "probability": 0.9077 + }, + { + "start": 8777.66, + "end": 8779.28, + "probability": 0.9614 + }, + { + "start": 8779.4, + "end": 8785.74, + "probability": 0.877 + }, + { + "start": 8785.78, + "end": 8786.36, + "probability": 0.615 + }, + { + "start": 8787.74, + "end": 8790.2, + "probability": 0.8879 + }, + { + "start": 8790.54, + "end": 8792.86, + "probability": 0.9438 + }, + { + "start": 8793.15, + "end": 8796.18, + "probability": 0.5171 + }, + { + "start": 8796.18, + "end": 8796.28, + "probability": 0.131 + }, + { + "start": 8796.28, + "end": 8797.1, + "probability": 0.795 + }, + { + "start": 8797.32, + "end": 8799.76, + "probability": 0.9642 + }, + { + "start": 8799.94, + "end": 8802.44, + "probability": 0.8804 + }, + { + "start": 8802.82, + "end": 8803.08, + "probability": 0.1003 + }, + { + "start": 8803.48, + "end": 8805.22, + "probability": 0.5549 + }, + { + "start": 8805.4, + "end": 8810.76, + "probability": 0.9417 + }, + { + "start": 8811.02, + "end": 8811.04, + "probability": 0.0779 + }, + { + "start": 8811.04, + "end": 8811.04, + "probability": 0.0291 + }, + { + "start": 8811.04, + "end": 8812.33, + "probability": 0.4475 + }, + { + "start": 8813.48, + "end": 8815.54, + "probability": 0.7091 + }, + { + "start": 8815.7, + "end": 8817.08, + "probability": 0.5996 + }, + { + "start": 8817.48, + "end": 8819.18, + "probability": 0.8663 + }, + { + "start": 8819.54, + "end": 8820.14, + "probability": 0.4553 + }, + { + "start": 8820.32, + "end": 8823.06, + "probability": 0.8491 + }, + { + "start": 8823.38, + "end": 8825.06, + "probability": 0.8962 + }, + { + "start": 8825.2, + "end": 8826.54, + "probability": 0.5935 + }, + { + "start": 8827.26, + "end": 8831.38, + "probability": 0.451 + }, + { + "start": 8831.9, + "end": 8832.1, + "probability": 0.1875 + }, + { + "start": 8832.1, + "end": 8832.1, + "probability": 0.0274 + }, + { + "start": 8832.3, + "end": 8834.84, + "probability": 0.8472 + }, + { + "start": 8835.02, + "end": 8835.74, + "probability": 0.5633 + }, + { + "start": 8835.74, + "end": 8836.28, + "probability": 0.5347 + }, + { + "start": 8836.6, + "end": 8838.38, + "probability": 0.9534 + }, + { + "start": 8838.54, + "end": 8838.8, + "probability": 0.1475 + }, + { + "start": 8838.8, + "end": 8839.62, + "probability": 0.3264 + }, + { + "start": 8839.72, + "end": 8840.96, + "probability": 0.2716 + }, + { + "start": 8841.24, + "end": 8844.94, + "probability": 0.0171 + }, + { + "start": 8846.08, + "end": 8846.68, + "probability": 0.0752 + }, + { + "start": 8846.68, + "end": 8846.78, + "probability": 0.1173 + }, + { + "start": 8846.78, + "end": 8846.78, + "probability": 0.1337 + }, + { + "start": 8846.78, + "end": 8847.44, + "probability": 0.6061 + }, + { + "start": 8847.6, + "end": 8849.56, + "probability": 0.6266 + }, + { + "start": 8849.66, + "end": 8850.26, + "probability": 0.5771 + }, + { + "start": 8850.26, + "end": 8851.42, + "probability": 0.6953 + }, + { + "start": 8851.52, + "end": 8853.12, + "probability": 0.8196 + }, + { + "start": 8853.72, + "end": 8854.74, + "probability": 0.382 + }, + { + "start": 8855.24, + "end": 8855.32, + "probability": 0.0591 + }, + { + "start": 8855.32, + "end": 8857.52, + "probability": 0.1246 + }, + { + "start": 8857.94, + "end": 8864.2, + "probability": 0.8446 + }, + { + "start": 8864.78, + "end": 8867.84, + "probability": 0.958 + }, + { + "start": 8868.74, + "end": 8869.96, + "probability": 0.3521 + }, + { + "start": 8869.96, + "end": 8870.24, + "probability": 0.151 + }, + { + "start": 8870.5, + "end": 8872.24, + "probability": 0.8878 + }, + { + "start": 8872.66, + "end": 8874.53, + "probability": 0.8118 + }, + { + "start": 8874.58, + "end": 8876.12, + "probability": 0.7105 + }, + { + "start": 8876.16, + "end": 8877.9, + "probability": 0.8933 + }, + { + "start": 8878.2, + "end": 8878.22, + "probability": 0.0811 + }, + { + "start": 8878.22, + "end": 8879.48, + "probability": 0.6305 + }, + { + "start": 8880.08, + "end": 8882.34, + "probability": 0.5597 + }, + { + "start": 8882.34, + "end": 8884.84, + "probability": 0.0309 + }, + { + "start": 8884.84, + "end": 8884.84, + "probability": 0.0669 + }, + { + "start": 8884.84, + "end": 8888.3, + "probability": 0.9431 + }, + { + "start": 8888.4, + "end": 8891.48, + "probability": 0.9893 + }, + { + "start": 8891.66, + "end": 8893.54, + "probability": 0.9564 + }, + { + "start": 8895.03, + "end": 8896.36, + "probability": 0.1106 + }, + { + "start": 8896.36, + "end": 8896.36, + "probability": 0.0295 + }, + { + "start": 8896.36, + "end": 8896.36, + "probability": 0.0427 + }, + { + "start": 8896.36, + "end": 8897.42, + "probability": 0.3655 + }, + { + "start": 8897.84, + "end": 8899.12, + "probability": 0.5505 + }, + { + "start": 8899.32, + "end": 8900.81, + "probability": 0.3886 + }, + { + "start": 8901.76, + "end": 8904.0, + "probability": 0.9231 + }, + { + "start": 8908.5, + "end": 8911.12, + "probability": 0.0372 + }, + { + "start": 8911.16, + "end": 8911.64, + "probability": 0.0221 + }, + { + "start": 8911.64, + "end": 8912.84, + "probability": 0.1094 + }, + { + "start": 8912.84, + "end": 8917.52, + "probability": 0.8969 + }, + { + "start": 8917.68, + "end": 8918.81, + "probability": 0.5972 + }, + { + "start": 8919.32, + "end": 8919.99, + "probability": 0.5613 + }, + { + "start": 8920.68, + "end": 8923.42, + "probability": 0.5658 + }, + { + "start": 8924.0, + "end": 8928.26, + "probability": 0.9763 + }, + { + "start": 8928.64, + "end": 8930.34, + "probability": 0.9917 + }, + { + "start": 8931.55, + "end": 8934.06, + "probability": 0.2203 + }, + { + "start": 8934.56, + "end": 8934.56, + "probability": 0.1128 + }, + { + "start": 8934.56, + "end": 8934.56, + "probability": 0.116 + }, + { + "start": 8934.56, + "end": 8935.94, + "probability": 0.5288 + }, + { + "start": 8936.22, + "end": 8937.28, + "probability": 0.5444 + }, + { + "start": 8937.52, + "end": 8938.89, + "probability": 0.4999 + }, + { + "start": 8942.22, + "end": 8942.22, + "probability": 0.0866 + }, + { + "start": 8942.22, + "end": 8942.38, + "probability": 0.5833 + }, + { + "start": 8942.48, + "end": 8942.84, + "probability": 0.7019 + }, + { + "start": 8942.9, + "end": 8945.14, + "probability": 0.9941 + }, + { + "start": 8945.26, + "end": 8945.5, + "probability": 0.3282 + }, + { + "start": 8946.08, + "end": 8947.1, + "probability": 0.7604 + }, + { + "start": 8947.38, + "end": 8949.11, + "probability": 0.9966 + }, + { + "start": 8949.2, + "end": 8954.26, + "probability": 0.9285 + }, + { + "start": 8954.54, + "end": 8955.67, + "probability": 0.6595 + }, + { + "start": 8955.92, + "end": 8958.16, + "probability": 0.6336 + }, + { + "start": 8958.24, + "end": 8959.18, + "probability": 0.8982 + }, + { + "start": 8960.06, + "end": 8960.54, + "probability": 0.1471 + }, + { + "start": 8960.54, + "end": 8961.2, + "probability": 0.1995 + }, + { + "start": 8961.54, + "end": 8961.56, + "probability": 0.2216 + }, + { + "start": 8961.65, + "end": 8962.14, + "probability": 0.1247 + }, + { + "start": 8962.14, + "end": 8962.14, + "probability": 0.3995 + }, + { + "start": 8962.36, + "end": 8963.14, + "probability": 0.9492 + }, + { + "start": 8965.56, + "end": 8966.14, + "probability": 0.5398 + }, + { + "start": 8966.44, + "end": 8967.46, + "probability": 0.5987 + }, + { + "start": 8967.48, + "end": 8969.4, + "probability": 0.7259 + }, + { + "start": 8969.52, + "end": 8970.34, + "probability": 0.911 + }, + { + "start": 8970.46, + "end": 8971.54, + "probability": 0.9033 + }, + { + "start": 8971.62, + "end": 8974.12, + "probability": 0.7715 + }, + { + "start": 8974.66, + "end": 8976.5, + "probability": 0.4282 + }, + { + "start": 8976.6, + "end": 8979.88, + "probability": 0.9941 + }, + { + "start": 8980.0, + "end": 8981.38, + "probability": 0.6455 + }, + { + "start": 8981.56, + "end": 8981.66, + "probability": 0.1397 + }, + { + "start": 8981.66, + "end": 8982.5, + "probability": 0.3655 + }, + { + "start": 8982.96, + "end": 8983.44, + "probability": 0.7191 + }, + { + "start": 8983.86, + "end": 8985.44, + "probability": 0.8728 + }, + { + "start": 8986.26, + "end": 8987.82, + "probability": 0.7012 + }, + { + "start": 8988.56, + "end": 8990.52, + "probability": 0.9019 + }, + { + "start": 8990.9, + "end": 8991.71, + "probability": 0.8838 + }, + { + "start": 8991.94, + "end": 8994.9, + "probability": 0.9773 + }, + { + "start": 8995.1, + "end": 8996.37, + "probability": 0.9966 + }, + { + "start": 8996.58, + "end": 8997.36, + "probability": 0.7655 + }, + { + "start": 8997.66, + "end": 8999.08, + "probability": 0.9445 + }, + { + "start": 8999.96, + "end": 9000.84, + "probability": 0.2364 + }, + { + "start": 9001.74, + "end": 9004.46, + "probability": 0.6262 + }, + { + "start": 9005.14, + "end": 9007.16, + "probability": 0.7535 + }, + { + "start": 9007.62, + "end": 9008.2, + "probability": 0.0127 + }, + { + "start": 9008.2, + "end": 9008.2, + "probability": 0.2101 + }, + { + "start": 9008.2, + "end": 9009.1, + "probability": 0.8328 + }, + { + "start": 9009.4, + "end": 9014.6, + "probability": 0.9858 + }, + { + "start": 9014.96, + "end": 9017.99, + "probability": 0.9226 + }, + { + "start": 9018.52, + "end": 9021.94, + "probability": 0.9334 + }, + { + "start": 9022.24, + "end": 9023.52, + "probability": 0.9445 + }, + { + "start": 9023.62, + "end": 9024.62, + "probability": 0.9319 + }, + { + "start": 9024.62, + "end": 9025.02, + "probability": 0.074 + }, + { + "start": 9025.14, + "end": 9028.58, + "probability": 0.9419 + }, + { + "start": 9030.22, + "end": 9034.0, + "probability": 0.6882 + }, + { + "start": 9034.0, + "end": 9036.32, + "probability": 0.8325 + }, + { + "start": 9036.56, + "end": 9037.86, + "probability": 0.9961 + }, + { + "start": 9038.12, + "end": 9038.86, + "probability": 0.7687 + }, + { + "start": 9038.86, + "end": 9039.74, + "probability": 0.9097 + }, + { + "start": 9039.82, + "end": 9041.74, + "probability": 0.9873 + }, + { + "start": 9041.76, + "end": 9042.52, + "probability": 0.8084 + }, + { + "start": 9042.56, + "end": 9043.52, + "probability": 0.7964 + }, + { + "start": 9043.76, + "end": 9045.18, + "probability": 0.9775 + }, + { + "start": 9046.06, + "end": 9048.34, + "probability": 0.9979 + }, + { + "start": 9048.72, + "end": 9050.02, + "probability": 0.6697 + }, + { + "start": 9050.54, + "end": 9052.24, + "probability": 0.9976 + }, + { + "start": 9052.28, + "end": 9054.34, + "probability": 0.9963 + }, + { + "start": 9054.44, + "end": 9054.52, + "probability": 0.3592 + }, + { + "start": 9054.6, + "end": 9058.82, + "probability": 0.8928 + }, + { + "start": 9059.06, + "end": 9059.26, + "probability": 0.0442 + }, + { + "start": 9059.26, + "end": 9059.26, + "probability": 0.0419 + }, + { + "start": 9059.26, + "end": 9060.77, + "probability": 0.825 + }, + { + "start": 9060.92, + "end": 9061.62, + "probability": 0.9278 + }, + { + "start": 9062.0, + "end": 9062.88, + "probability": 0.6679 + }, + { + "start": 9062.96, + "end": 9067.02, + "probability": 0.9336 + }, + { + "start": 9068.32, + "end": 9070.48, + "probability": 0.8143 + }, + { + "start": 9071.8, + "end": 9075.68, + "probability": 0.9937 + }, + { + "start": 9075.76, + "end": 9077.3, + "probability": 0.8292 + }, + { + "start": 9078.44, + "end": 9080.94, + "probability": 0.8708 + }, + { + "start": 9081.04, + "end": 9082.62, + "probability": 0.7479 + }, + { + "start": 9083.96, + "end": 9089.48, + "probability": 0.8066 + }, + { + "start": 9090.08, + "end": 9091.12, + "probability": 0.9135 + }, + { + "start": 9091.9, + "end": 9095.76, + "probability": 0.8923 + }, + { + "start": 9102.16, + "end": 9107.0, + "probability": 0.7309 + }, + { + "start": 9107.4, + "end": 9108.94, + "probability": 0.7362 + }, + { + "start": 9109.6, + "end": 9113.16, + "probability": 0.9727 + }, + { + "start": 9114.48, + "end": 9116.2, + "probability": 0.7139 + }, + { + "start": 9116.64, + "end": 9117.2, + "probability": 0.7564 + }, + { + "start": 9117.72, + "end": 9118.56, + "probability": 0.7102 + }, + { + "start": 9120.62, + "end": 9122.0, + "probability": 0.3051 + }, + { + "start": 9133.32, + "end": 9138.18, + "probability": 0.1578 + }, + { + "start": 9138.88, + "end": 9139.48, + "probability": 0.0776 + }, + { + "start": 9141.74, + "end": 9144.22, + "probability": 0.5282 + }, + { + "start": 9144.26, + "end": 9147.26, + "probability": 0.6943 + }, + { + "start": 9147.92, + "end": 9152.12, + "probability": 0.9012 + }, + { + "start": 9153.78, + "end": 9154.68, + "probability": 0.6883 + }, + { + "start": 9154.72, + "end": 9157.34, + "probability": 0.9785 + }, + { + "start": 9157.34, + "end": 9160.7, + "probability": 0.8902 + }, + { + "start": 9161.36, + "end": 9164.48, + "probability": 0.9878 + }, + { + "start": 9165.84, + "end": 9166.58, + "probability": 0.6252 + }, + { + "start": 9166.7, + "end": 9167.2, + "probability": 0.4515 + }, + { + "start": 9167.32, + "end": 9168.06, + "probability": 0.4152 + }, + { + "start": 9178.98, + "end": 9179.78, + "probability": 0.4911 + }, + { + "start": 9180.26, + "end": 9182.92, + "probability": 0.0852 + }, + { + "start": 9183.14, + "end": 9186.6, + "probability": 0.5788 + }, + { + "start": 9187.46, + "end": 9188.14, + "probability": 0.7661 + }, + { + "start": 9188.36, + "end": 9191.4, + "probability": 0.8796 + }, + { + "start": 9192.28, + "end": 9194.26, + "probability": 0.8 + }, + { + "start": 9195.78, + "end": 9200.76, + "probability": 0.9797 + }, + { + "start": 9201.1, + "end": 9201.9, + "probability": 0.8092 + }, + { + "start": 9203.14, + "end": 9205.86, + "probability": 0.9824 + }, + { + "start": 9205.92, + "end": 9206.52, + "probability": 0.549 + }, + { + "start": 9206.8, + "end": 9207.24, + "probability": 0.3408 + }, + { + "start": 9207.26, + "end": 9208.06, + "probability": 0.5575 + }, + { + "start": 9208.72, + "end": 9211.16, + "probability": 0.0109 + }, + { + "start": 9212.5, + "end": 9218.66, + "probability": 0.2046 + }, + { + "start": 9218.66, + "end": 9218.66, + "probability": 0.0001 + }, + { + "start": 9222.52, + "end": 9227.16, + "probability": 0.5034 + }, + { + "start": 9227.82, + "end": 9230.4, + "probability": 0.9364 + }, + { + "start": 9232.26, + "end": 9237.0, + "probability": 0.9943 + }, + { + "start": 9237.14, + "end": 9238.1, + "probability": 0.9839 + }, + { + "start": 9239.1, + "end": 9242.72, + "probability": 0.9255 + }, + { + "start": 9242.8, + "end": 9245.2, + "probability": 0.5795 + }, + { + "start": 9245.56, + "end": 9246.2, + "probability": 0.573 + }, + { + "start": 9246.32, + "end": 9249.5, + "probability": 0.9834 + }, + { + "start": 9250.14, + "end": 9250.72, + "probability": 0.5545 + }, + { + "start": 9250.8, + "end": 9251.4, + "probability": 0.3507 + }, + { + "start": 9251.44, + "end": 9252.56, + "probability": 0.4887 + }, + { + "start": 9257.98, + "end": 9258.52, + "probability": 0.2852 + }, + { + "start": 9262.16, + "end": 9266.26, + "probability": 0.0343 + }, + { + "start": 9266.26, + "end": 9267.92, + "probability": 0.4676 + }, + { + "start": 9269.24, + "end": 9270.8, + "probability": 0.5293 + }, + { + "start": 9270.9, + "end": 9273.94, + "probability": 0.9669 + }, + { + "start": 9274.76, + "end": 9275.58, + "probability": 0.5994 + }, + { + "start": 9276.5, + "end": 9279.2, + "probability": 0.9769 + }, + { + "start": 9279.32, + "end": 9283.86, + "probability": 0.9795 + }, + { + "start": 9286.78, + "end": 9289.88, + "probability": 0.9761 + }, + { + "start": 9298.66, + "end": 9300.94, + "probability": 0.6379 + }, + { + "start": 9300.94, + "end": 9303.88, + "probability": 0.9964 + }, + { + "start": 9303.98, + "end": 9305.7, + "probability": 0.1494 + }, + { + "start": 9306.24, + "end": 9308.44, + "probability": 0.9225 + }, + { + "start": 9308.96, + "end": 9313.64, + "probability": 0.9836 + }, + { + "start": 9314.16, + "end": 9316.28, + "probability": 0.8447 + }, + { + "start": 9316.36, + "end": 9320.2, + "probability": 0.8891 + }, + { + "start": 9322.14, + "end": 9325.0, + "probability": 0.9666 + }, + { + "start": 9325.66, + "end": 9327.06, + "probability": 0.9789 + }, + { + "start": 9351.74, + "end": 9352.32, + "probability": 0.7226 + }, + { + "start": 9352.38, + "end": 9354.02, + "probability": 0.8741 + }, + { + "start": 9354.14, + "end": 9356.38, + "probability": 0.9253 + }, + { + "start": 9363.02, + "end": 9364.26, + "probability": 0.66 + }, + { + "start": 9366.36, + "end": 9367.28, + "probability": 0.7478 + }, + { + "start": 9368.74, + "end": 9370.68, + "probability": 0.8032 + }, + { + "start": 9373.32, + "end": 9377.06, + "probability": 0.9518 + }, + { + "start": 9377.06, + "end": 9382.18, + "probability": 0.9983 + }, + { + "start": 9382.92, + "end": 9383.06, + "probability": 0.0729 + }, + { + "start": 9383.06, + "end": 9384.88, + "probability": 0.8833 + }, + { + "start": 9391.4, + "end": 9395.7, + "probability": 0.9995 + }, + { + "start": 9395.76, + "end": 9399.9, + "probability": 0.9928 + }, + { + "start": 9400.4, + "end": 9401.2, + "probability": 0.6814 + }, + { + "start": 9401.82, + "end": 9402.42, + "probability": 0.5959 + }, + { + "start": 9402.54, + "end": 9406.92, + "probability": 0.9938 + }, + { + "start": 9407.52, + "end": 9410.46, + "probability": 0.9917 + }, + { + "start": 9412.04, + "end": 9417.9, + "probability": 0.9288 + }, + { + "start": 9418.88, + "end": 9421.22, + "probability": 0.9466 + }, + { + "start": 9423.08, + "end": 9425.94, + "probability": 0.9636 + }, + { + "start": 9427.44, + "end": 9433.14, + "probability": 0.9943 + }, + { + "start": 9433.22, + "end": 9436.24, + "probability": 0.9883 + }, + { + "start": 9437.82, + "end": 9440.58, + "probability": 0.9972 + }, + { + "start": 9440.58, + "end": 9444.18, + "probability": 0.9981 + }, + { + "start": 9444.76, + "end": 9446.38, + "probability": 0.9827 + }, + { + "start": 9446.5, + "end": 9448.92, + "probability": 0.7848 + }, + { + "start": 9449.96, + "end": 9450.54, + "probability": 0.7104 + }, + { + "start": 9450.66, + "end": 9455.78, + "probability": 0.9893 + }, + { + "start": 9456.32, + "end": 9459.04, + "probability": 0.9952 + }, + { + "start": 9459.94, + "end": 9461.9, + "probability": 0.9909 + }, + { + "start": 9462.64, + "end": 9464.58, + "probability": 0.8359 + }, + { + "start": 9465.08, + "end": 9469.32, + "probability": 0.9878 + }, + { + "start": 9469.84, + "end": 9472.74, + "probability": 0.966 + }, + { + "start": 9475.42, + "end": 9478.72, + "probability": 0.9793 + }, + { + "start": 9478.72, + "end": 9481.54, + "probability": 0.7093 + }, + { + "start": 9485.78, + "end": 9488.5, + "probability": 0.6712 + }, + { + "start": 9489.52, + "end": 9491.44, + "probability": 0.62 + }, + { + "start": 9493.12, + "end": 9496.9, + "probability": 0.982 + }, + { + "start": 9497.02, + "end": 9497.04, + "probability": 0.2497 + }, + { + "start": 9497.04, + "end": 9498.0, + "probability": 0.5643 + }, + { + "start": 9499.62, + "end": 9504.36, + "probability": 0.8514 + }, + { + "start": 9506.76, + "end": 9507.48, + "probability": 0.9961 + }, + { + "start": 9507.58, + "end": 9510.74, + "probability": 0.9455 + }, + { + "start": 9511.7, + "end": 9513.02, + "probability": 0.6866 + }, + { + "start": 9515.88, + "end": 9517.18, + "probability": 0.6798 + }, + { + "start": 9518.34, + "end": 9518.59, + "probability": 0.3425 + }, + { + "start": 9520.18, + "end": 9520.8, + "probability": 0.2709 + }, + { + "start": 9521.28, + "end": 9521.9, + "probability": 0.4918 + }, + { + "start": 9521.9, + "end": 9523.08, + "probability": 0.7045 + }, + { + "start": 9523.16, + "end": 9525.14, + "probability": 0.6309 + }, + { + "start": 9525.16, + "end": 9527.48, + "probability": 0.1706 + }, + { + "start": 9528.25, + "end": 9529.74, + "probability": 0.0452 + }, + { + "start": 9529.74, + "end": 9529.74, + "probability": 0.0746 + }, + { + "start": 9529.74, + "end": 9529.74, + "probability": 0.3046 + }, + { + "start": 9530.06, + "end": 9532.66, + "probability": 0.7062 + }, + { + "start": 9532.92, + "end": 9535.86, + "probability": 0.8847 + }, + { + "start": 9538.0, + "end": 9541.48, + "probability": 0.9001 + }, + { + "start": 9541.48, + "end": 9545.9, + "probability": 0.9606 + }, + { + "start": 9546.32, + "end": 9548.94, + "probability": 0.9792 + }, + { + "start": 9549.5, + "end": 9550.0, + "probability": 0.5866 + }, + { + "start": 9550.3, + "end": 9553.16, + "probability": 0.9939 + }, + { + "start": 9553.16, + "end": 9557.68, + "probability": 0.9018 + }, + { + "start": 9557.8, + "end": 9562.84, + "probability": 0.9891 + }, + { + "start": 9563.76, + "end": 9566.2, + "probability": 0.9885 + }, + { + "start": 9566.2, + "end": 9568.74, + "probability": 0.9734 + }, + { + "start": 9569.28, + "end": 9571.56, + "probability": 0.9872 + }, + { + "start": 9571.7, + "end": 9576.22, + "probability": 0.995 + }, + { + "start": 9576.22, + "end": 9581.22, + "probability": 0.9753 + }, + { + "start": 9581.22, + "end": 9585.74, + "probability": 0.9986 + }, + { + "start": 9586.22, + "end": 9589.38, + "probability": 0.9481 + }, + { + "start": 9589.48, + "end": 9592.1, + "probability": 0.9863 + }, + { + "start": 9592.6, + "end": 9595.84, + "probability": 0.9952 + }, + { + "start": 9595.84, + "end": 9599.1, + "probability": 0.9967 + }, + { + "start": 9599.8, + "end": 9602.77, + "probability": 0.9413 + }, + { + "start": 9603.68, + "end": 9607.56, + "probability": 0.9794 + }, + { + "start": 9608.06, + "end": 9611.0, + "probability": 0.9419 + }, + { + "start": 9611.0, + "end": 9613.72, + "probability": 0.9361 + }, + { + "start": 9615.4, + "end": 9617.22, + "probability": 0.9229 + }, + { + "start": 9617.34, + "end": 9619.42, + "probability": 0.8612 + }, + { + "start": 9619.48, + "end": 9619.92, + "probability": 0.6171 + }, + { + "start": 9619.92, + "end": 9624.58, + "probability": 0.8723 + }, + { + "start": 9625.16, + "end": 9626.14, + "probability": 0.6717 + }, + { + "start": 9636.68, + "end": 9639.2, + "probability": 0.9407 + }, + { + "start": 9641.74, + "end": 9643.38, + "probability": 0.7082 + }, + { + "start": 9643.48, + "end": 9643.48, + "probability": 0.6443 + }, + { + "start": 9643.48, + "end": 9644.64, + "probability": 0.7972 + }, + { + "start": 9644.78, + "end": 9646.16, + "probability": 0.8576 + }, + { + "start": 9646.32, + "end": 9649.76, + "probability": 0.9683 + }, + { + "start": 9650.42, + "end": 9653.3, + "probability": 0.998 + }, + { + "start": 9653.3, + "end": 9655.5, + "probability": 0.9976 + }, + { + "start": 9656.7, + "end": 9659.14, + "probability": 0.9972 + }, + { + "start": 9659.14, + "end": 9662.56, + "probability": 0.9965 + }, + { + "start": 9662.84, + "end": 9663.46, + "probability": 0.5606 + }, + { + "start": 9663.86, + "end": 9664.84, + "probability": 0.5496 + }, + { + "start": 9665.26, + "end": 9667.02, + "probability": 0.9748 + }, + { + "start": 9667.94, + "end": 9670.26, + "probability": 0.9381 + }, + { + "start": 9672.14, + "end": 9677.12, + "probability": 0.71 + }, + { + "start": 9679.34, + "end": 9682.76, + "probability": 0.9951 + }, + { + "start": 9682.76, + "end": 9688.98, + "probability": 0.9914 + }, + { + "start": 9690.96, + "end": 9691.78, + "probability": 0.8654 + }, + { + "start": 9692.38, + "end": 9694.74, + "probability": 0.9987 + }, + { + "start": 9696.1, + "end": 9699.42, + "probability": 0.9918 + }, + { + "start": 9700.34, + "end": 9705.16, + "probability": 0.9981 + }, + { + "start": 9707.74, + "end": 9710.92, + "probability": 0.9971 + }, + { + "start": 9711.96, + "end": 9713.06, + "probability": 0.9739 + }, + { + "start": 9714.46, + "end": 9719.24, + "probability": 0.9894 + }, + { + "start": 9719.24, + "end": 9722.26, + "probability": 0.9983 + }, + { + "start": 9722.92, + "end": 9724.77, + "probability": 0.8113 + }, + { + "start": 9725.74, + "end": 9729.48, + "probability": 0.9646 + }, + { + "start": 9731.38, + "end": 9733.42, + "probability": 0.9971 + }, + { + "start": 9734.26, + "end": 9736.5, + "probability": 0.9705 + }, + { + "start": 9736.58, + "end": 9739.13, + "probability": 0.9266 + }, + { + "start": 9739.54, + "end": 9742.62, + "probability": 0.9985 + }, + { + "start": 9743.28, + "end": 9746.46, + "probability": 0.9728 + }, + { + "start": 9747.8, + "end": 9751.32, + "probability": 0.8906 + }, + { + "start": 9752.58, + "end": 9753.34, + "probability": 0.8859 + }, + { + "start": 9753.52, + "end": 9757.0, + "probability": 0.9972 + }, + { + "start": 9757.0, + "end": 9760.0, + "probability": 0.9995 + }, + { + "start": 9761.06, + "end": 9764.44, + "probability": 0.9146 + }, + { + "start": 9765.12, + "end": 9768.06, + "probability": 0.9839 + }, + { + "start": 9768.94, + "end": 9770.42, + "probability": 0.9698 + }, + { + "start": 9770.78, + "end": 9771.76, + "probability": 0.9501 + }, + { + "start": 9772.26, + "end": 9773.86, + "probability": 0.9854 + }, + { + "start": 9774.3, + "end": 9778.13, + "probability": 0.999 + }, + { + "start": 9778.84, + "end": 9779.78, + "probability": 0.9768 + }, + { + "start": 9779.88, + "end": 9780.54, + "probability": 0.6793 + }, + { + "start": 9781.16, + "end": 9782.72, + "probability": 0.7413 + }, + { + "start": 9783.38, + "end": 9786.3, + "probability": 0.9803 + }, + { + "start": 9786.66, + "end": 9789.64, + "probability": 0.9753 + }, + { + "start": 9790.38, + "end": 9792.7, + "probability": 0.9919 + }, + { + "start": 9794.22, + "end": 9795.22, + "probability": 0.826 + }, + { + "start": 9795.4, + "end": 9796.52, + "probability": 0.8665 + }, + { + "start": 9796.6, + "end": 9798.92, + "probability": 0.8529 + }, + { + "start": 9799.46, + "end": 9802.86, + "probability": 0.9563 + }, + { + "start": 9804.48, + "end": 9808.12, + "probability": 0.9964 + }, + { + "start": 9809.14, + "end": 9815.28, + "probability": 0.9916 + }, + { + "start": 9816.78, + "end": 9818.38, + "probability": 0.8433 + }, + { + "start": 9819.08, + "end": 9819.98, + "probability": 0.9705 + }, + { + "start": 9821.0, + "end": 9825.6, + "probability": 0.9873 + }, + { + "start": 9826.02, + "end": 9829.92, + "probability": 0.9988 + }, + { + "start": 9830.9, + "end": 9831.68, + "probability": 0.6522 + }, + { + "start": 9831.74, + "end": 9832.9, + "probability": 0.8709 + }, + { + "start": 9833.1, + "end": 9836.36, + "probability": 0.9569 + }, + { + "start": 9836.88, + "end": 9837.9, + "probability": 0.889 + }, + { + "start": 9838.96, + "end": 9844.28, + "probability": 0.9962 + }, + { + "start": 9845.52, + "end": 9848.66, + "probability": 0.9906 + }, + { + "start": 9848.82, + "end": 9850.32, + "probability": 0.9607 + }, + { + "start": 9850.42, + "end": 9851.68, + "probability": 0.7162 + }, + { + "start": 9852.52, + "end": 9856.46, + "probability": 0.9929 + }, + { + "start": 9857.56, + "end": 9862.54, + "probability": 0.9989 + }, + { + "start": 9863.46, + "end": 9865.24, + "probability": 0.9992 + }, + { + "start": 9865.86, + "end": 9871.1, + "probability": 0.9987 + }, + { + "start": 9871.66, + "end": 9875.84, + "probability": 0.9986 + }, + { + "start": 9876.92, + "end": 9880.14, + "probability": 0.6554 + }, + { + "start": 9880.78, + "end": 9882.58, + "probability": 0.9506 + }, + { + "start": 9883.1, + "end": 9885.38, + "probability": 0.9484 + }, + { + "start": 9886.04, + "end": 9890.04, + "probability": 0.9956 + }, + { + "start": 9890.14, + "end": 9892.1, + "probability": 0.9574 + }, + { + "start": 9892.58, + "end": 9896.5, + "probability": 0.9737 + }, + { + "start": 9897.58, + "end": 9898.06, + "probability": 0.8109 + }, + { + "start": 9898.56, + "end": 9901.12, + "probability": 0.9583 + }, + { + "start": 9901.6, + "end": 9903.28, + "probability": 0.9778 + }, + { + "start": 9903.86, + "end": 9906.86, + "probability": 0.9965 + }, + { + "start": 9907.36, + "end": 9908.4, + "probability": 0.8442 + }, + { + "start": 9908.48, + "end": 9909.14, + "probability": 0.5398 + }, + { + "start": 9909.22, + "end": 9909.88, + "probability": 0.9375 + }, + { + "start": 9910.5, + "end": 9912.0, + "probability": 0.9938 + }, + { + "start": 9912.68, + "end": 9915.98, + "probability": 0.9261 + }, + { + "start": 9916.68, + "end": 9920.32, + "probability": 0.9972 + }, + { + "start": 9920.84, + "end": 9923.75, + "probability": 0.9952 + }, + { + "start": 9924.66, + "end": 9927.0, + "probability": 0.986 + }, + { + "start": 9927.66, + "end": 9936.06, + "probability": 0.9635 + }, + { + "start": 9936.88, + "end": 9939.24, + "probability": 0.8445 + }, + { + "start": 9939.46, + "end": 9941.2, + "probability": 0.9663 + }, + { + "start": 9941.86, + "end": 9947.2, + "probability": 0.9517 + }, + { + "start": 9947.2, + "end": 9953.5, + "probability": 0.9977 + }, + { + "start": 9953.68, + "end": 9954.6, + "probability": 0.6696 + }, + { + "start": 9954.72, + "end": 9955.86, + "probability": 0.6234 + }, + { + "start": 9956.12, + "end": 9958.6, + "probability": 0.7852 + }, + { + "start": 9958.72, + "end": 9961.24, + "probability": 0.9933 + }, + { + "start": 9961.34, + "end": 9964.54, + "probability": 0.998 + }, + { + "start": 9965.08, + "end": 9965.38, + "probability": 0.3725 + }, + { + "start": 9965.5, + "end": 9966.54, + "probability": 0.7277 + }, + { + "start": 9966.58, + "end": 9967.82, + "probability": 0.8259 + }, + { + "start": 9968.0, + "end": 9969.02, + "probability": 0.9414 + }, + { + "start": 9969.42, + "end": 9970.84, + "probability": 0.9771 + }, + { + "start": 9971.24, + "end": 9973.36, + "probability": 0.9361 + }, + { + "start": 9973.86, + "end": 9976.06, + "probability": 0.9871 + }, + { + "start": 9976.46, + "end": 9979.36, + "probability": 0.9755 + }, + { + "start": 9979.76, + "end": 9981.66, + "probability": 0.6493 + }, + { + "start": 9982.06, + "end": 9982.52, + "probability": 0.7242 + }, + { + "start": 9982.54, + "end": 9984.88, + "probability": 0.7254 + }, + { + "start": 9985.06, + "end": 9986.54, + "probability": 0.7974 + }, + { + "start": 9987.16, + "end": 9988.52, + "probability": 0.7232 + }, + { + "start": 9990.4, + "end": 9992.96, + "probability": 0.9756 + }, + { + "start": 9993.68, + "end": 9997.16, + "probability": 0.998 + }, + { + "start": 9997.26, + "end": 9999.78, + "probability": 0.3797 + }, + { + "start": 10000.12, + "end": 10002.2, + "probability": 0.7509 + }, + { + "start": 10002.32, + "end": 10003.18, + "probability": 0.7278 + }, + { + "start": 10004.18, + "end": 10005.74, + "probability": 0.7318 + }, + { + "start": 10006.36, + "end": 10006.94, + "probability": 0.6448 + }, + { + "start": 10007.02, + "end": 10007.58, + "probability": 0.6863 + }, + { + "start": 10007.64, + "end": 10008.74, + "probability": 0.7417 + }, + { + "start": 10012.6, + "end": 10015.78, + "probability": 0.6755 + }, + { + "start": 10018.18, + "end": 10018.68, + "probability": 0.0001 + }, + { + "start": 10021.74, + "end": 10023.34, + "probability": 0.0906 + }, + { + "start": 10024.48, + "end": 10028.72, + "probability": 0.3935 + }, + { + "start": 10029.22, + "end": 10030.12, + "probability": 0.8685 + }, + { + "start": 10030.46, + "end": 10033.26, + "probability": 0.9796 + }, + { + "start": 10033.26, + "end": 10036.96, + "probability": 0.8001 + }, + { + "start": 10037.06, + "end": 10038.84, + "probability": 0.899 + }, + { + "start": 10041.36, + "end": 10042.04, + "probability": 0.9122 + }, + { + "start": 10042.96, + "end": 10045.14, + "probability": 0.9896 + }, + { + "start": 10045.42, + "end": 10047.58, + "probability": 0.9948 + }, + { + "start": 10048.24, + "end": 10050.79, + "probability": 0.9346 + }, + { + "start": 10052.14, + "end": 10054.12, + "probability": 0.9796 + }, + { + "start": 10054.2, + "end": 10054.66, + "probability": 0.692 + }, + { + "start": 10054.78, + "end": 10055.38, + "probability": 0.6606 + }, + { + "start": 10055.48, + "end": 10056.56, + "probability": 0.813 + }, + { + "start": 10058.92, + "end": 10061.62, + "probability": 0.0307 + }, + { + "start": 10066.18, + "end": 10068.83, + "probability": 0.0425 + }, + { + "start": 10069.1, + "end": 10069.26, + "probability": 0.0615 + }, + { + "start": 10069.26, + "end": 10069.26, + "probability": 0.1014 + }, + { + "start": 10069.26, + "end": 10069.66, + "probability": 0.3358 + }, + { + "start": 10071.34, + "end": 10073.78, + "probability": 0.4874 + }, + { + "start": 10073.9, + "end": 10074.7, + "probability": 0.913 + }, + { + "start": 10075.08, + "end": 10077.98, + "probability": 0.9674 + }, + { + "start": 10078.18, + "end": 10082.06, + "probability": 0.8564 + }, + { + "start": 10082.8, + "end": 10085.28, + "probability": 0.9332 + }, + { + "start": 10092.38, + "end": 10094.42, + "probability": 0.7842 + }, + { + "start": 10094.54, + "end": 10095.66, + "probability": 0.5789 + }, + { + "start": 10095.76, + "end": 10096.78, + "probability": 0.4397 + }, + { + "start": 10097.48, + "end": 10100.36, + "probability": 0.9848 + }, + { + "start": 10100.36, + "end": 10103.12, + "probability": 0.9961 + }, + { + "start": 10104.02, + "end": 10104.66, + "probability": 0.7155 + }, + { + "start": 10104.74, + "end": 10105.5, + "probability": 0.685 + }, + { + "start": 10105.6, + "end": 10107.54, + "probability": 0.8208 + }, + { + "start": 10108.12, + "end": 10113.06, + "probability": 0.9852 + }, + { + "start": 10113.22, + "end": 10113.9, + "probability": 0.5585 + }, + { + "start": 10113.96, + "end": 10114.74, + "probability": 0.8784 + }, + { + "start": 10115.2, + "end": 10119.6, + "probability": 0.8081 + }, + { + "start": 10120.16, + "end": 10120.72, + "probability": 0.2163 + }, + { + "start": 10120.92, + "end": 10122.98, + "probability": 0.9718 + }, + { + "start": 10123.12, + "end": 10125.64, + "probability": 0.8533 + }, + { + "start": 10125.74, + "end": 10127.1, + "probability": 0.9087 + }, + { + "start": 10127.18, + "end": 10129.28, + "probability": 0.8511 + }, + { + "start": 10129.48, + "end": 10132.6, + "probability": 0.8335 + }, + { + "start": 10132.62, + "end": 10134.14, + "probability": 0.8057 + }, + { + "start": 10134.56, + "end": 10138.1, + "probability": 0.926 + }, + { + "start": 10138.2, + "end": 10139.76, + "probability": 0.9786 + }, + { + "start": 10139.94, + "end": 10141.87, + "probability": 0.8809 + }, + { + "start": 10142.38, + "end": 10144.2, + "probability": 0.9976 + }, + { + "start": 10144.36, + "end": 10145.5, + "probability": 0.9802 + }, + { + "start": 10145.58, + "end": 10147.48, + "probability": 0.9144 + }, + { + "start": 10147.94, + "end": 10150.22, + "probability": 0.8937 + }, + { + "start": 10150.36, + "end": 10150.94, + "probability": 0.8051 + }, + { + "start": 10151.42, + "end": 10152.96, + "probability": 0.9055 + }, + { + "start": 10153.08, + "end": 10156.62, + "probability": 0.9739 + }, + { + "start": 10157.0, + "end": 10158.02, + "probability": 0.9275 + }, + { + "start": 10158.44, + "end": 10159.94, + "probability": 0.7652 + }, + { + "start": 10159.98, + "end": 10161.08, + "probability": 0.7677 + }, + { + "start": 10161.14, + "end": 10162.52, + "probability": 0.953 + }, + { + "start": 10162.56, + "end": 10163.84, + "probability": 0.7828 + }, + { + "start": 10163.9, + "end": 10165.3, + "probability": 0.9877 + }, + { + "start": 10165.68, + "end": 10166.88, + "probability": 0.9749 + }, + { + "start": 10167.0, + "end": 10167.75, + "probability": 0.8879 + }, + { + "start": 10168.32, + "end": 10171.8, + "probability": 0.9627 + }, + { + "start": 10171.82, + "end": 10173.0, + "probability": 0.9122 + }, + { + "start": 10173.36, + "end": 10177.16, + "probability": 0.7865 + }, + { + "start": 10177.22, + "end": 10181.56, + "probability": 0.996 + }, + { + "start": 10181.62, + "end": 10185.3, + "probability": 0.9611 + }, + { + "start": 10185.38, + "end": 10185.88, + "probability": 0.7205 + }, + { + "start": 10187.36, + "end": 10190.88, + "probability": 0.7527 + }, + { + "start": 10192.42, + "end": 10195.78, + "probability": 0.9829 + }, + { + "start": 10195.86, + "end": 10196.54, + "probability": 0.5608 + }, + { + "start": 10196.64, + "end": 10197.32, + "probability": 0.7413 + }, + { + "start": 10197.38, + "end": 10202.7, + "probability": 0.9814 + }, + { + "start": 10202.76, + "end": 10204.04, + "probability": 0.5717 + }, + { + "start": 10204.04, + "end": 10205.58, + "probability": 0.0269 + }, + { + "start": 10211.58, + "end": 10211.99, + "probability": 0.3446 + }, + { + "start": 10214.86, + "end": 10216.92, + "probability": 0.7045 + }, + { + "start": 10218.3, + "end": 10219.24, + "probability": 0.8953 + }, + { + "start": 10219.32, + "end": 10221.5, + "probability": 0.9891 + }, + { + "start": 10221.5, + "end": 10224.72, + "probability": 0.9883 + }, + { + "start": 10225.46, + "end": 10225.66, + "probability": 0.3785 + }, + { + "start": 10225.74, + "end": 10228.62, + "probability": 0.5177 + }, + { + "start": 10229.38, + "end": 10234.1, + "probability": 0.9199 + }, + { + "start": 10234.1, + "end": 10237.64, + "probability": 0.9972 + }, + { + "start": 10238.18, + "end": 10242.0, + "probability": 0.9824 + }, + { + "start": 10242.0, + "end": 10246.38, + "probability": 0.9982 + }, + { + "start": 10247.34, + "end": 10252.12, + "probability": 0.9653 + }, + { + "start": 10252.12, + "end": 10256.6, + "probability": 0.9959 + }, + { + "start": 10257.14, + "end": 10260.02, + "probability": 0.8218 + }, + { + "start": 10260.02, + "end": 10264.22, + "probability": 0.9552 + }, + { + "start": 10264.44, + "end": 10269.66, + "probability": 0.9904 + }, + { + "start": 10271.9, + "end": 10274.72, + "probability": 0.9811 + }, + { + "start": 10274.72, + "end": 10278.18, + "probability": 0.9858 + }, + { + "start": 10278.94, + "end": 10281.86, + "probability": 0.9865 + }, + { + "start": 10281.86, + "end": 10284.6, + "probability": 0.998 + }, + { + "start": 10285.44, + "end": 10285.7, + "probability": 0.4387 + }, + { + "start": 10285.86, + "end": 10290.74, + "probability": 0.9975 + }, + { + "start": 10290.8, + "end": 10296.44, + "probability": 0.998 + }, + { + "start": 10296.44, + "end": 10301.68, + "probability": 0.9986 + }, + { + "start": 10301.86, + "end": 10307.14, + "probability": 0.9966 + }, + { + "start": 10307.14, + "end": 10311.68, + "probability": 0.9978 + }, + { + "start": 10312.34, + "end": 10312.98, + "probability": 0.3418 + }, + { + "start": 10313.16, + "end": 10314.32, + "probability": 0.957 + }, + { + "start": 10314.5, + "end": 10316.44, + "probability": 0.9818 + }, + { + "start": 10316.44, + "end": 10320.2, + "probability": 0.9973 + }, + { + "start": 10320.66, + "end": 10322.84, + "probability": 0.9943 + }, + { + "start": 10322.84, + "end": 10325.52, + "probability": 0.9839 + }, + { + "start": 10325.94, + "end": 10328.56, + "probability": 0.8586 + }, + { + "start": 10329.22, + "end": 10331.56, + "probability": 0.9863 + }, + { + "start": 10331.56, + "end": 10334.04, + "probability": 0.9161 + }, + { + "start": 10334.48, + "end": 10335.96, + "probability": 0.969 + }, + { + "start": 10336.96, + "end": 10337.14, + "probability": 0.67 + }, + { + "start": 10337.22, + "end": 10339.26, + "probability": 0.9333 + }, + { + "start": 10339.4, + "end": 10340.64, + "probability": 0.9112 + }, + { + "start": 10340.72, + "end": 10343.62, + "probability": 0.9716 + }, + { + "start": 10343.62, + "end": 10346.66, + "probability": 0.996 + }, + { + "start": 10347.0, + "end": 10351.2, + "probability": 0.991 + }, + { + "start": 10351.88, + "end": 10353.68, + "probability": 0.7369 + }, + { + "start": 10353.78, + "end": 10358.2, + "probability": 0.9812 + }, + { + "start": 10358.42, + "end": 10360.52, + "probability": 0.9188 + }, + { + "start": 10360.52, + "end": 10364.1, + "probability": 0.9954 + }, + { + "start": 10364.58, + "end": 10365.28, + "probability": 0.9868 + }, + { + "start": 10365.36, + "end": 10366.32, + "probability": 0.9465 + }, + { + "start": 10366.44, + "end": 10367.66, + "probability": 0.7747 + }, + { + "start": 10368.12, + "end": 10371.36, + "probability": 0.9127 + }, + { + "start": 10372.1, + "end": 10372.82, + "probability": 0.7714 + }, + { + "start": 10376.54, + "end": 10377.6, + "probability": 0.5942 + }, + { + "start": 10380.42, + "end": 10382.08, + "probability": 0.9026 + }, + { + "start": 10382.32, + "end": 10387.36, + "probability": 0.9989 + }, + { + "start": 10388.52, + "end": 10393.56, + "probability": 0.8886 + }, + { + "start": 10394.84, + "end": 10400.1, + "probability": 0.8183 + }, + { + "start": 10403.6, + "end": 10406.3, + "probability": 0.9812 + }, + { + "start": 10406.3, + "end": 10410.0, + "probability": 0.9587 + }, + { + "start": 10410.4, + "end": 10415.2, + "probability": 0.9741 + }, + { + "start": 10415.2, + "end": 10418.96, + "probability": 0.9758 + }, + { + "start": 10419.46, + "end": 10421.38, + "probability": 0.8664 + }, + { + "start": 10421.5, + "end": 10421.86, + "probability": 0.4934 + }, + { + "start": 10422.24, + "end": 10425.7, + "probability": 0.9885 + }, + { + "start": 10426.1, + "end": 10427.58, + "probability": 0.7968 + }, + { + "start": 10428.1, + "end": 10430.06, + "probability": 0.8972 + }, + { + "start": 10430.1, + "end": 10434.58, + "probability": 0.9924 + }, + { + "start": 10434.7, + "end": 10436.3, + "probability": 0.849 + }, + { + "start": 10436.6, + "end": 10437.02, + "probability": 0.7906 + }, + { + "start": 10439.28, + "end": 10441.66, + "probability": 0.9723 + }, + { + "start": 10441.74, + "end": 10442.7, + "probability": 0.7017 + }, + { + "start": 10443.12, + "end": 10443.94, + "probability": 0.6552 + }, + { + "start": 10445.34, + "end": 10448.98, + "probability": 0.9434 + }, + { + "start": 10449.18, + "end": 10450.82, + "probability": 0.8072 + }, + { + "start": 10453.12, + "end": 10455.61, + "probability": 0.9951 + }, + { + "start": 10455.78, + "end": 10456.72, + "probability": 0.9308 + }, + { + "start": 10457.48, + "end": 10458.14, + "probability": 0.8674 + }, + { + "start": 10458.3, + "end": 10461.34, + "probability": 0.6853 + }, + { + "start": 10461.44, + "end": 10462.36, + "probability": 0.4405 + }, + { + "start": 10462.86, + "end": 10464.48, + "probability": 0.2175 + }, + { + "start": 10465.14, + "end": 10466.28, + "probability": 0.6335 + }, + { + "start": 10466.32, + "end": 10466.92, + "probability": 0.4835 + }, + { + "start": 10467.04, + "end": 10467.56, + "probability": 0.5744 + }, + { + "start": 10467.7, + "end": 10468.56, + "probability": 0.8885 + }, + { + "start": 10472.32, + "end": 10472.84, + "probability": 0.1088 + }, + { + "start": 10474.36, + "end": 10476.96, + "probability": 0.0354 + }, + { + "start": 10481.9, + "end": 10482.68, + "probability": 0.6154 + }, + { + "start": 10482.96, + "end": 10484.62, + "probability": 0.12 + }, + { + "start": 10484.84, + "end": 10486.72, + "probability": 0.9192 + }, + { + "start": 10486.82, + "end": 10487.34, + "probability": 0.6906 + }, + { + "start": 10487.78, + "end": 10488.58, + "probability": 0.9595 + }, + { + "start": 10488.68, + "end": 10489.34, + "probability": 0.4814 + }, + { + "start": 10489.8, + "end": 10492.54, + "probability": 0.9475 + }, + { + "start": 10492.88, + "end": 10494.62, + "probability": 0.9124 + }, + { + "start": 10494.92, + "end": 10495.44, + "probability": 0.5152 + }, + { + "start": 10495.52, + "end": 10496.06, + "probability": 0.5385 + }, + { + "start": 10496.08, + "end": 10496.78, + "probability": 0.6443 + }, + { + "start": 10508.4, + "end": 10510.08, + "probability": 0.7528 + }, + { + "start": 10510.66, + "end": 10515.4, + "probability": 0.3268 + }, + { + "start": 10519.3, + "end": 10522.9, + "probability": 0.3807 + }, + { + "start": 10522.9, + "end": 10523.2, + "probability": 0.6876 + }, + { + "start": 10525.12, + "end": 10525.3, + "probability": 0.0097 + }, + { + "start": 10525.3, + "end": 10525.48, + "probability": 0.0164 + }, + { + "start": 10525.48, + "end": 10526.16, + "probability": 0.0324 + }, + { + "start": 10527.1, + "end": 10529.88, + "probability": 0.0696 + }, + { + "start": 10531.3, + "end": 10531.58, + "probability": 0.0851 + }, + { + "start": 10531.58, + "end": 10531.58, + "probability": 0.0206 + }, + { + "start": 10532.3, + "end": 10532.58, + "probability": 0.0338 + }, + { + "start": 10532.58, + "end": 10532.58, + "probability": 0.0387 + }, + { + "start": 10532.58, + "end": 10532.58, + "probability": 0.021 + }, + { + "start": 10532.58, + "end": 10535.76, + "probability": 0.6436 + }, + { + "start": 10543.2, + "end": 10545.04, + "probability": 0.8273 + }, + { + "start": 10545.94, + "end": 10546.26, + "probability": 0.0085 + }, + { + "start": 10552.02, + "end": 10556.42, + "probability": 0.6521 + }, + { + "start": 10556.48, + "end": 10558.34, + "probability": 0.2641 + }, + { + "start": 10558.9, + "end": 10560.6, + "probability": 0.9767 + }, + { + "start": 10560.82, + "end": 10563.08, + "probability": 0.9583 + }, + { + "start": 10564.0, + "end": 10564.36, + "probability": 0.7941 + }, + { + "start": 10565.84, + "end": 10566.2, + "probability": 0.3971 + }, + { + "start": 10566.2, + "end": 10566.94, + "probability": 0.5397 + }, + { + "start": 10567.62, + "end": 10569.76, + "probability": 0.7594 + }, + { + "start": 10570.74, + "end": 10573.0, + "probability": 0.8988 + }, + { + "start": 10574.4, + "end": 10579.82, + "probability": 0.9979 + }, + { + "start": 10581.56, + "end": 10586.22, + "probability": 0.9131 + }, + { + "start": 10587.1, + "end": 10589.62, + "probability": 0.9775 + }, + { + "start": 10590.3, + "end": 10590.64, + "probability": 0.074 + }, + { + "start": 10591.14, + "end": 10592.68, + "probability": 0.9121 + }, + { + "start": 10593.52, + "end": 10597.6, + "probability": 0.9304 + }, + { + "start": 10598.3, + "end": 10600.51, + "probability": 0.9976 + }, + { + "start": 10601.24, + "end": 10602.84, + "probability": 0.9889 + }, + { + "start": 10603.32, + "end": 10604.99, + "probability": 0.7414 + }, + { + "start": 10605.54, + "end": 10610.74, + "probability": 0.9905 + }, + { + "start": 10611.42, + "end": 10614.94, + "probability": 0.7884 + }, + { + "start": 10615.6, + "end": 10618.7, + "probability": 0.8001 + }, + { + "start": 10619.0, + "end": 10623.8, + "probability": 0.7507 + }, + { + "start": 10623.98, + "end": 10625.76, + "probability": 0.9976 + }, + { + "start": 10627.0, + "end": 10627.32, + "probability": 0.1024 + }, + { + "start": 10627.52, + "end": 10632.76, + "probability": 0.7572 + }, + { + "start": 10633.86, + "end": 10638.18, + "probability": 0.8676 + }, + { + "start": 10638.82, + "end": 10640.5, + "probability": 0.9489 + }, + { + "start": 10641.12, + "end": 10642.06, + "probability": 0.9814 + }, + { + "start": 10643.56, + "end": 10644.56, + "probability": 0.9305 + }, + { + "start": 10645.14, + "end": 10647.61, + "probability": 0.9587 + }, + { + "start": 10648.28, + "end": 10649.98, + "probability": 0.98 + }, + { + "start": 10650.54, + "end": 10655.36, + "probability": 0.9954 + }, + { + "start": 10655.7, + "end": 10657.96, + "probability": 0.8559 + }, + { + "start": 10660.78, + "end": 10661.76, + "probability": 0.94 + }, + { + "start": 10661.86, + "end": 10664.42, + "probability": 0.5476 + }, + { + "start": 10665.16, + "end": 10669.92, + "probability": 0.6807 + }, + { + "start": 10670.0, + "end": 10671.78, + "probability": 0.6631 + }, + { + "start": 10672.02, + "end": 10677.68, + "probability": 0.9859 + }, + { + "start": 10678.24, + "end": 10678.9, + "probability": 0.4815 + }, + { + "start": 10679.06, + "end": 10680.06, + "probability": 0.7661 + }, + { + "start": 10680.12, + "end": 10681.14, + "probability": 0.7069 + }, + { + "start": 10681.44, + "end": 10683.32, + "probability": 0.8409 + }, + { + "start": 10683.84, + "end": 10685.03, + "probability": 0.8481 + }, + { + "start": 10685.6, + "end": 10692.4, + "probability": 0.9753 + }, + { + "start": 10692.74, + "end": 10696.02, + "probability": 0.7206 + }, + { + "start": 10696.88, + "end": 10698.72, + "probability": 0.9189 + }, + { + "start": 10699.38, + "end": 10701.46, + "probability": 0.9946 + }, + { + "start": 10701.62, + "end": 10707.5, + "probability": 0.8583 + }, + { + "start": 10707.56, + "end": 10711.98, + "probability": 0.9445 + }, + { + "start": 10712.18, + "end": 10714.88, + "probability": 0.954 + }, + { + "start": 10715.38, + "end": 10717.84, + "probability": 0.8805 + }, + { + "start": 10718.36, + "end": 10722.9, + "probability": 0.9686 + }, + { + "start": 10723.46, + "end": 10726.5, + "probability": 0.9237 + }, + { + "start": 10728.42, + "end": 10731.98, + "probability": 0.981 + }, + { + "start": 10732.18, + "end": 10735.74, + "probability": 0.6621 + }, + { + "start": 10736.02, + "end": 10738.28, + "probability": 0.1134 + }, + { + "start": 10738.36, + "end": 10739.4, + "probability": 0.8011 + }, + { + "start": 10739.84, + "end": 10740.75, + "probability": 0.8381 + }, + { + "start": 10741.56, + "end": 10742.78, + "probability": 0.6842 + }, + { + "start": 10742.86, + "end": 10743.38, + "probability": 0.6253 + }, + { + "start": 10743.46, + "end": 10743.98, + "probability": 0.727 + }, + { + "start": 10744.06, + "end": 10744.74, + "probability": 0.6977 + }, + { + "start": 10746.44, + "end": 10748.68, + "probability": 0.0001 + }, + { + "start": 10756.9, + "end": 10757.7, + "probability": 0.0594 + }, + { + "start": 10758.58, + "end": 10762.8, + "probability": 0.7573 + }, + { + "start": 10763.34, + "end": 10765.96, + "probability": 0.9815 + }, + { + "start": 10766.44, + "end": 10768.24, + "probability": 0.99 + }, + { + "start": 10769.0, + "end": 10769.54, + "probability": 0.6581 + }, + { + "start": 10769.64, + "end": 10770.14, + "probability": 0.4632 + }, + { + "start": 10770.22, + "end": 10770.86, + "probability": 0.7437 + }, + { + "start": 10775.19, + "end": 10779.88, + "probability": 0.1573 + }, + { + "start": 10781.3, + "end": 10782.72, + "probability": 0.1376 + }, + { + "start": 10783.58, + "end": 10787.78, + "probability": 0.5266 + }, + { + "start": 10787.86, + "end": 10793.6, + "probability": 0.7019 + }, + { + "start": 10793.74, + "end": 10795.14, + "probability": 0.1757 + }, + { + "start": 10795.28, + "end": 10796.72, + "probability": 0.6802 + }, + { + "start": 10796.82, + "end": 10797.58, + "probability": 0.6933 + }, + { + "start": 10797.66, + "end": 10799.26, + "probability": 0.8345 + }, + { + "start": 10800.76, + "end": 10802.06, + "probability": 0.7347 + }, + { + "start": 10802.18, + "end": 10803.5, + "probability": 0.8354 + }, + { + "start": 10803.58, + "end": 10805.07, + "probability": 0.9219 + }, + { + "start": 10805.56, + "end": 10806.56, + "probability": 0.6793 + }, + { + "start": 10806.72, + "end": 10809.84, + "probability": 0.3737 + }, + { + "start": 10810.36, + "end": 10813.6, + "probability": 0.9819 + }, + { + "start": 10814.04, + "end": 10816.0, + "probability": 0.7427 + }, + { + "start": 10816.58, + "end": 10818.2, + "probability": 0.7496 + }, + { + "start": 10818.44, + "end": 10821.47, + "probability": 0.7902 + }, + { + "start": 10822.28, + "end": 10824.06, + "probability": 0.8256 + }, + { + "start": 10824.16, + "end": 10825.58, + "probability": 0.544 + }, + { + "start": 10825.58, + "end": 10825.86, + "probability": 0.7769 + }, + { + "start": 10827.54, + "end": 10829.06, + "probability": 0.8786 + }, + { + "start": 10829.12, + "end": 10829.96, + "probability": 0.8851 + }, + { + "start": 10830.92, + "end": 10832.04, + "probability": 0.838 + }, + { + "start": 10832.84, + "end": 10836.04, + "probability": 0.9291 + }, + { + "start": 10836.56, + "end": 10841.28, + "probability": 0.7759 + }, + { + "start": 10841.94, + "end": 10844.38, + "probability": 0.9846 + }, + { + "start": 10844.38, + "end": 10848.44, + "probability": 0.9731 + }, + { + "start": 10848.58, + "end": 10851.14, + "probability": 0.7354 + }, + { + "start": 10851.7, + "end": 10853.44, + "probability": 0.9589 + }, + { + "start": 10853.82, + "end": 10859.7, + "probability": 0.99 + }, + { + "start": 10860.38, + "end": 10863.92, + "probability": 0.7507 + }, + { + "start": 10864.12, + "end": 10869.7, + "probability": 0.9196 + }, + { + "start": 10869.92, + "end": 10872.42, + "probability": 0.9817 + }, + { + "start": 10872.78, + "end": 10875.08, + "probability": 0.9111 + }, + { + "start": 10881.08, + "end": 10881.7, + "probability": 0.4743 + }, + { + "start": 10881.8, + "end": 10888.34, + "probability": 0.9543 + }, + { + "start": 10888.34, + "end": 10893.24, + "probability": 0.7529 + }, + { + "start": 10893.3, + "end": 10898.14, + "probability": 0.9679 + }, + { + "start": 10898.58, + "end": 10904.4, + "probability": 0.9634 + }, + { + "start": 10904.76, + "end": 10906.0, + "probability": 0.8097 + }, + { + "start": 10906.54, + "end": 10909.74, + "probability": 0.9412 + }, + { + "start": 10910.86, + "end": 10912.34, + "probability": 0.972 + }, + { + "start": 10912.88, + "end": 10914.1, + "probability": 0.9126 + }, + { + "start": 10914.68, + "end": 10916.52, + "probability": 0.7537 + }, + { + "start": 10917.28, + "end": 10918.5, + "probability": 0.7318 + }, + { + "start": 10919.1, + "end": 10922.34, + "probability": 0.9927 + }, + { + "start": 10922.34, + "end": 10926.62, + "probability": 0.9858 + }, + { + "start": 10927.52, + "end": 10930.46, + "probability": 0.7997 + }, + { + "start": 10931.06, + "end": 10933.88, + "probability": 0.9043 + }, + { + "start": 10935.22, + "end": 10936.24, + "probability": 0.6951 + }, + { + "start": 10936.36, + "end": 10938.8, + "probability": 0.7998 + }, + { + "start": 10939.26, + "end": 10941.04, + "probability": 0.9715 + }, + { + "start": 10941.52, + "end": 10946.64, + "probability": 0.9937 + }, + { + "start": 10946.92, + "end": 10950.58, + "probability": 0.823 + }, + { + "start": 10951.02, + "end": 10951.62, + "probability": 0.0339 + }, + { + "start": 10951.62, + "end": 10954.26, + "probability": 0.1355 + }, + { + "start": 10954.6, + "end": 10955.38, + "probability": 0.2718 + }, + { + "start": 10955.58, + "end": 10955.76, + "probability": 0.3018 + }, + { + "start": 10956.18, + "end": 10959.02, + "probability": 0.8629 + }, + { + "start": 10959.2, + "end": 10964.16, + "probability": 0.4106 + }, + { + "start": 10964.16, + "end": 10965.42, + "probability": 0.6469 + }, + { + "start": 10966.66, + "end": 10967.18, + "probability": 0.4336 + }, + { + "start": 10967.18, + "end": 10967.18, + "probability": 0.0982 + }, + { + "start": 10967.22, + "end": 10968.56, + "probability": 0.9888 + }, + { + "start": 10968.56, + "end": 10968.7, + "probability": 0.4862 + }, + { + "start": 10968.7, + "end": 10969.42, + "probability": 0.6335 + }, + { + "start": 10969.6, + "end": 10970.0, + "probability": 0.8545 + }, + { + "start": 10971.24, + "end": 10972.5, + "probability": 0.9757 + }, + { + "start": 10973.02, + "end": 10973.96, + "probability": 0.8897 + }, + { + "start": 10974.64, + "end": 10975.29, + "probability": 0.5405 + }, + { + "start": 10975.48, + "end": 10978.82, + "probability": 0.7727 + }, + { + "start": 10978.9, + "end": 10980.66, + "probability": 0.8678 + }, + { + "start": 10980.94, + "end": 10986.1, + "probability": 0.9846 + }, + { + "start": 10987.48, + "end": 10987.66, + "probability": 0.0054 + }, + { + "start": 10987.66, + "end": 10987.66, + "probability": 0.3981 + }, + { + "start": 10987.66, + "end": 10987.66, + "probability": 0.1307 + }, + { + "start": 10987.66, + "end": 10987.76, + "probability": 0.2618 + }, + { + "start": 10987.78, + "end": 10989.92, + "probability": 0.7383 + }, + { + "start": 10991.14, + "end": 10993.64, + "probability": 0.6076 + }, + { + "start": 10993.88, + "end": 10997.58, + "probability": 0.9189 + }, + { + "start": 10998.68, + "end": 11002.94, + "probability": 0.7039 + }, + { + "start": 11003.46, + "end": 11004.82, + "probability": 0.6393 + }, + { + "start": 11005.18, + "end": 11006.78, + "probability": 0.8749 + }, + { + "start": 11006.98, + "end": 11011.04, + "probability": 0.8991 + }, + { + "start": 11011.38, + "end": 11016.7, + "probability": 0.9915 + }, + { + "start": 11016.96, + "end": 11021.44, + "probability": 0.9958 + }, + { + "start": 11021.78, + "end": 11023.58, + "probability": 0.8973 + }, + { + "start": 11023.96, + "end": 11026.96, + "probability": 0.9899 + }, + { + "start": 11027.5, + "end": 11030.14, + "probability": 0.9233 + }, + { + "start": 11030.22, + "end": 11032.58, + "probability": 0.9353 + }, + { + "start": 11033.2, + "end": 11036.82, + "probability": 0.9347 + }, + { + "start": 11036.98, + "end": 11038.78, + "probability": 0.973 + }, + { + "start": 11039.14, + "end": 11044.1, + "probability": 0.4943 + }, + { + "start": 11044.54, + "end": 11044.9, + "probability": 0.2643 + }, + { + "start": 11044.94, + "end": 11046.62, + "probability": 0.9034 + }, + { + "start": 11046.98, + "end": 11047.84, + "probability": 0.8385 + }, + { + "start": 11047.94, + "end": 11048.82, + "probability": 0.9289 + }, + { + "start": 11048.92, + "end": 11050.18, + "probability": 0.9583 + }, + { + "start": 11054.97, + "end": 11058.16, + "probability": 0.9784 + }, + { + "start": 11058.48, + "end": 11059.82, + "probability": 0.7936 + }, + { + "start": 11060.64, + "end": 11062.1, + "probability": 0.8591 + }, + { + "start": 11062.7, + "end": 11064.38, + "probability": 0.9487 + }, + { + "start": 11065.04, + "end": 11068.24, + "probability": 0.9951 + }, + { + "start": 11068.24, + "end": 11072.34, + "probability": 0.9937 + }, + { + "start": 11073.24, + "end": 11076.22, + "probability": 0.9973 + }, + { + "start": 11076.22, + "end": 11079.78, + "probability": 0.9985 + }, + { + "start": 11079.84, + "end": 11081.0, + "probability": 0.6671 + }, + { + "start": 11082.26, + "end": 11083.38, + "probability": 0.9159 + }, + { + "start": 11084.06, + "end": 11086.61, + "probability": 0.8193 + }, + { + "start": 11088.14, + "end": 11093.22, + "probability": 0.9845 + }, + { + "start": 11093.86, + "end": 11097.82, + "probability": 0.9823 + }, + { + "start": 11098.32, + "end": 11100.24, + "probability": 0.9365 + }, + { + "start": 11100.26, + "end": 11101.46, + "probability": 0.3582 + }, + { + "start": 11101.62, + "end": 11105.16, + "probability": 0.8701 + }, + { + "start": 11105.62, + "end": 11111.79, + "probability": 0.9931 + }, + { + "start": 11112.68, + "end": 11114.54, + "probability": 0.9094 + }, + { + "start": 11114.92, + "end": 11115.24, + "probability": 0.4675 + }, + { + "start": 11115.28, + "end": 11120.06, + "probability": 0.9956 + }, + { + "start": 11120.16, + "end": 11122.08, + "probability": 0.9871 + }, + { + "start": 11122.24, + "end": 11124.36, + "probability": 0.8303 + }, + { + "start": 11124.64, + "end": 11127.94, + "probability": 0.9929 + }, + { + "start": 11128.14, + "end": 11129.92, + "probability": 0.9868 + }, + { + "start": 11130.32, + "end": 11133.76, + "probability": 0.8766 + }, + { + "start": 11133.76, + "end": 11136.38, + "probability": 0.9946 + }, + { + "start": 11137.02, + "end": 11141.48, + "probability": 0.9785 + }, + { + "start": 11143.04, + "end": 11143.5, + "probability": 0.6523 + }, + { + "start": 11143.72, + "end": 11148.12, + "probability": 0.9629 + }, + { + "start": 11148.48, + "end": 11149.5, + "probability": 0.7687 + }, + { + "start": 11149.98, + "end": 11152.26, + "probability": 0.9783 + }, + { + "start": 11152.26, + "end": 11155.76, + "probability": 0.9562 + }, + { + "start": 11156.28, + "end": 11156.28, + "probability": 0.0141 + }, + { + "start": 11156.28, + "end": 11160.76, + "probability": 0.7471 + }, + { + "start": 11160.82, + "end": 11162.53, + "probability": 0.723 + }, + { + "start": 11162.88, + "end": 11166.96, + "probability": 0.9971 + }, + { + "start": 11168.28, + "end": 11170.44, + "probability": 0.9756 + }, + { + "start": 11170.66, + "end": 11173.34, + "probability": 0.9896 + }, + { + "start": 11173.74, + "end": 11177.92, + "probability": 0.9822 + }, + { + "start": 11177.92, + "end": 11182.3, + "probability": 0.9985 + }, + { + "start": 11182.54, + "end": 11183.54, + "probability": 0.7678 + }, + { + "start": 11183.64, + "end": 11186.58, + "probability": 0.9909 + }, + { + "start": 11187.02, + "end": 11189.64, + "probability": 0.8252 + }, + { + "start": 11190.16, + "end": 11196.46, + "probability": 0.9929 + }, + { + "start": 11197.16, + "end": 11197.16, + "probability": 0.0373 + }, + { + "start": 11197.16, + "end": 11197.16, + "probability": 0.3744 + }, + { + "start": 11197.16, + "end": 11199.46, + "probability": 0.9933 + }, + { + "start": 11202.3, + "end": 11206.46, + "probability": 0.9835 + }, + { + "start": 11206.88, + "end": 11210.6, + "probability": 0.9922 + }, + { + "start": 11210.92, + "end": 11214.62, + "probability": 0.9648 + }, + { + "start": 11214.96, + "end": 11216.61, + "probability": 0.9785 + }, + { + "start": 11218.08, + "end": 11219.32, + "probability": 0.6794 + }, + { + "start": 11219.96, + "end": 11222.36, + "probability": 0.9904 + }, + { + "start": 11222.92, + "end": 11225.88, + "probability": 0.967 + }, + { + "start": 11226.0, + "end": 11228.22, + "probability": 0.9581 + }, + { + "start": 11228.7, + "end": 11231.36, + "probability": 0.916 + }, + { + "start": 11231.68, + "end": 11232.5, + "probability": 0.7643 + }, + { + "start": 11232.62, + "end": 11233.74, + "probability": 0.8127 + }, + { + "start": 11234.22, + "end": 11236.98, + "probability": 0.9745 + }, + { + "start": 11237.2, + "end": 11238.08, + "probability": 0.7537 + }, + { + "start": 11238.68, + "end": 11240.44, + "probability": 0.8365 + }, + { + "start": 11240.48, + "end": 11242.9, + "probability": 0.8213 + }, + { + "start": 11243.02, + "end": 11245.32, + "probability": 0.9727 + }, + { + "start": 11251.78, + "end": 11254.1, + "probability": 0.7674 + }, + { + "start": 11255.44, + "end": 11257.2, + "probability": 0.6316 + }, + { + "start": 11257.22, + "end": 11262.32, + "probability": 0.4552 + }, + { + "start": 11262.32, + "end": 11263.34, + "probability": 0.2985 + }, + { + "start": 11263.34, + "end": 11264.12, + "probability": 0.4368 + }, + { + "start": 11264.24, + "end": 11264.94, + "probability": 0.6019 + }, + { + "start": 11265.18, + "end": 11270.84, + "probability": 0.9843 + }, + { + "start": 11270.84, + "end": 11274.9, + "probability": 0.9976 + }, + { + "start": 11275.48, + "end": 11276.78, + "probability": 0.0394 + }, + { + "start": 11277.22, + "end": 11279.96, + "probability": 0.9456 + }, + { + "start": 11280.98, + "end": 11285.26, + "probability": 0.9758 + }, + { + "start": 11285.48, + "end": 11288.94, + "probability": 0.8975 + }, + { + "start": 11289.72, + "end": 11292.52, + "probability": 0.931 + }, + { + "start": 11293.0, + "end": 11294.24, + "probability": 0.9469 + }, + { + "start": 11294.42, + "end": 11297.58, + "probability": 0.9651 + }, + { + "start": 11297.58, + "end": 11300.14, + "probability": 0.9991 + }, + { + "start": 11300.52, + "end": 11301.43, + "probability": 0.9207 + }, + { + "start": 11302.04, + "end": 11308.78, + "probability": 0.9941 + }, + { + "start": 11308.96, + "end": 11310.7, + "probability": 0.9262 + }, + { + "start": 11311.1, + "end": 11315.74, + "probability": 0.9971 + }, + { + "start": 11315.84, + "end": 11317.78, + "probability": 0.9971 + }, + { + "start": 11318.46, + "end": 11322.08, + "probability": 0.9807 + }, + { + "start": 11323.54, + "end": 11325.5, + "probability": 0.9977 + }, + { + "start": 11325.78, + "end": 11327.8, + "probability": 0.9741 + }, + { + "start": 11328.18, + "end": 11333.26, + "probability": 0.9849 + }, + { + "start": 11334.02, + "end": 11337.74, + "probability": 0.9905 + }, + { + "start": 11338.16, + "end": 11344.0, + "probability": 0.9961 + }, + { + "start": 11344.56, + "end": 11345.04, + "probability": 0.7981 + }, + { + "start": 11345.58, + "end": 11348.12, + "probability": 0.7812 + }, + { + "start": 11348.68, + "end": 11349.38, + "probability": 0.5466 + }, + { + "start": 11350.18, + "end": 11353.3, + "probability": 0.9966 + }, + { + "start": 11353.44, + "end": 11354.02, + "probability": 0.9443 + }, + { + "start": 11354.42, + "end": 11357.28, + "probability": 0.994 + }, + { + "start": 11357.7, + "end": 11362.96, + "probability": 0.9808 + }, + { + "start": 11363.32, + "end": 11367.08, + "probability": 0.999 + }, + { + "start": 11367.46, + "end": 11371.7, + "probability": 0.9882 + }, + { + "start": 11372.12, + "end": 11375.58, + "probability": 0.9984 + }, + { + "start": 11375.68, + "end": 11379.22, + "probability": 0.9556 + }, + { + "start": 11379.6, + "end": 11383.2, + "probability": 0.9803 + }, + { + "start": 11383.6, + "end": 11385.66, + "probability": 0.9411 + }, + { + "start": 11385.8, + "end": 11386.8, + "probability": 0.9756 + }, + { + "start": 11387.02, + "end": 11389.02, + "probability": 0.9795 + }, + { + "start": 11389.36, + "end": 11392.14, + "probability": 0.9797 + }, + { + "start": 11392.42, + "end": 11397.02, + "probability": 0.9307 + }, + { + "start": 11397.04, + "end": 11400.1, + "probability": 0.9338 + }, + { + "start": 11400.42, + "end": 11403.58, + "probability": 0.9897 + }, + { + "start": 11403.68, + "end": 11404.22, + "probability": 0.6903 + }, + { + "start": 11404.36, + "end": 11404.74, + "probability": 0.8155 + }, + { + "start": 11404.84, + "end": 11406.54, + "probability": 0.7771 + }, + { + "start": 11406.8, + "end": 11409.64, + "probability": 0.9269 + }, + { + "start": 11410.06, + "end": 11410.9, + "probability": 0.8992 + }, + { + "start": 11410.96, + "end": 11411.82, + "probability": 0.9315 + }, + { + "start": 11412.06, + "end": 11412.96, + "probability": 0.7853 + }, + { + "start": 11414.02, + "end": 11418.5, + "probability": 0.6394 + }, + { + "start": 11418.5, + "end": 11421.54, + "probability": 0.9985 + }, + { + "start": 11421.96, + "end": 11426.84, + "probability": 0.9671 + }, + { + "start": 11427.38, + "end": 11429.9, + "probability": 0.988 + }, + { + "start": 11429.9, + "end": 11433.52, + "probability": 0.9894 + }, + { + "start": 11433.78, + "end": 11437.56, + "probability": 0.9986 + }, + { + "start": 11437.56, + "end": 11442.26, + "probability": 0.7244 + }, + { + "start": 11442.48, + "end": 11443.32, + "probability": 0.5676 + }, + { + "start": 11443.86, + "end": 11446.6, + "probability": 0.9634 + }, + { + "start": 11446.8, + "end": 11447.61, + "probability": 0.9675 + }, + { + "start": 11448.56, + "end": 11449.16, + "probability": 0.493 + }, + { + "start": 11449.46, + "end": 11453.18, + "probability": 0.9896 + }, + { + "start": 11453.78, + "end": 11455.36, + "probability": 0.894 + }, + { + "start": 11455.62, + "end": 11458.82, + "probability": 0.9922 + }, + { + "start": 11458.94, + "end": 11459.48, + "probability": 0.5275 + }, + { + "start": 11459.5, + "end": 11462.72, + "probability": 0.9194 + }, + { + "start": 11463.22, + "end": 11467.14, + "probability": 0.989 + }, + { + "start": 11467.36, + "end": 11472.4, + "probability": 0.9851 + }, + { + "start": 11472.72, + "end": 11472.9, + "probability": 0.7737 + }, + { + "start": 11473.0, + "end": 11474.4, + "probability": 0.5808 + }, + { + "start": 11474.48, + "end": 11477.24, + "probability": 0.5925 + }, + { + "start": 11477.68, + "end": 11480.22, + "probability": 0.7612 + }, + { + "start": 11480.46, + "end": 11484.02, + "probability": 0.962 + }, + { + "start": 11488.54, + "end": 11489.72, + "probability": 0.7496 + }, + { + "start": 11489.9, + "end": 11490.38, + "probability": 0.6965 + }, + { + "start": 11490.46, + "end": 11491.72, + "probability": 0.8776 + }, + { + "start": 11491.72, + "end": 11493.98, + "probability": 0.9166 + }, + { + "start": 11494.08, + "end": 11496.62, + "probability": 0.6042 + }, + { + "start": 11496.64, + "end": 11499.86, + "probability": 0.9176 + }, + { + "start": 11499.86, + "end": 11502.86, + "probability": 0.9905 + }, + { + "start": 11503.44, + "end": 11505.52, + "probability": 0.9213 + }, + { + "start": 11505.58, + "end": 11506.78, + "probability": 0.9844 + }, + { + "start": 11506.94, + "end": 11508.48, + "probability": 0.8466 + }, + { + "start": 11508.6, + "end": 11509.42, + "probability": 0.6015 + }, + { + "start": 11509.54, + "end": 11510.79, + "probability": 0.938 + }, + { + "start": 11511.4, + "end": 11513.32, + "probability": 0.9221 + }, + { + "start": 11514.44, + "end": 11518.16, + "probability": 0.9761 + }, + { + "start": 11518.46, + "end": 11523.36, + "probability": 0.9858 + }, + { + "start": 11524.18, + "end": 11526.12, + "probability": 0.8958 + }, + { + "start": 11526.56, + "end": 11530.5, + "probability": 0.9318 + }, + { + "start": 11530.5, + "end": 11533.8, + "probability": 0.9829 + }, + { + "start": 11534.54, + "end": 11538.68, + "probability": 0.9927 + }, + { + "start": 11541.1, + "end": 11545.9, + "probability": 0.9906 + }, + { + "start": 11546.14, + "end": 11546.94, + "probability": 0.8347 + }, + { + "start": 11547.06, + "end": 11551.62, + "probability": 0.998 + }, + { + "start": 11551.88, + "end": 11554.66, + "probability": 0.9934 + }, + { + "start": 11555.06, + "end": 11559.98, + "probability": 0.9954 + }, + { + "start": 11560.08, + "end": 11560.64, + "probability": 0.8318 + }, + { + "start": 11561.0, + "end": 11564.98, + "probability": 0.9465 + }, + { + "start": 11565.38, + "end": 11570.8, + "probability": 0.9688 + }, + { + "start": 11571.06, + "end": 11574.94, + "probability": 0.9881 + }, + { + "start": 11575.32, + "end": 11577.7, + "probability": 0.7561 + }, + { + "start": 11578.16, + "end": 11581.1, + "probability": 0.8914 + }, + { + "start": 11582.36, + "end": 11588.22, + "probability": 0.9768 + }, + { + "start": 11588.52, + "end": 11591.22, + "probability": 0.9432 + }, + { + "start": 11591.98, + "end": 11595.94, + "probability": 0.9904 + }, + { + "start": 11595.94, + "end": 11601.89, + "probability": 0.9803 + }, + { + "start": 11603.8, + "end": 11604.82, + "probability": 0.9933 + }, + { + "start": 11605.7, + "end": 11611.3, + "probability": 0.998 + }, + { + "start": 11611.3, + "end": 11614.88, + "probability": 0.9907 + }, + { + "start": 11615.46, + "end": 11617.56, + "probability": 0.8857 + }, + { + "start": 11617.66, + "end": 11623.52, + "probability": 0.9705 + }, + { + "start": 11623.72, + "end": 11626.32, + "probability": 0.9821 + }, + { + "start": 11626.8, + "end": 11629.26, + "probability": 0.9896 + }, + { + "start": 11629.4, + "end": 11631.1, + "probability": 0.7101 + }, + { + "start": 11631.22, + "end": 11631.42, + "probability": 0.5884 + }, + { + "start": 11632.76, + "end": 11634.48, + "probability": 0.7724 + }, + { + "start": 11634.54, + "end": 11635.88, + "probability": 0.9189 + }, + { + "start": 11636.06, + "end": 11636.72, + "probability": 0.5452 + }, + { + "start": 11636.74, + "end": 11638.32, + "probability": 0.9744 + }, + { + "start": 11649.62, + "end": 11651.62, + "probability": 0.692 + }, + { + "start": 11652.4, + "end": 11656.08, + "probability": 0.9378 + }, + { + "start": 11657.06, + "end": 11661.54, + "probability": 0.9865 + }, + { + "start": 11662.36, + "end": 11665.86, + "probability": 0.9917 + }, + { + "start": 11667.0, + "end": 11669.96, + "probability": 0.7555 + }, + { + "start": 11670.96, + "end": 11674.12, + "probability": 0.796 + }, + { + "start": 11674.7, + "end": 11675.62, + "probability": 0.4429 + }, + { + "start": 11676.8, + "end": 11678.3, + "probability": 0.9242 + }, + { + "start": 11678.9, + "end": 11682.64, + "probability": 0.9846 + }, + { + "start": 11684.14, + "end": 11687.76, + "probability": 0.9924 + }, + { + "start": 11687.76, + "end": 11692.36, + "probability": 0.9975 + }, + { + "start": 11693.24, + "end": 11698.8, + "probability": 0.9627 + }, + { + "start": 11699.16, + "end": 11702.54, + "probability": 0.9968 + }, + { + "start": 11704.06, + "end": 11709.88, + "probability": 0.9965 + }, + { + "start": 11710.78, + "end": 11717.28, + "probability": 0.8558 + }, + { + "start": 11718.04, + "end": 11721.52, + "probability": 0.8325 + }, + { + "start": 11721.62, + "end": 11724.24, + "probability": 0.9948 + }, + { + "start": 11724.54, + "end": 11726.26, + "probability": 0.7728 + }, + { + "start": 11726.5, + "end": 11727.52, + "probability": 0.7324 + }, + { + "start": 11727.62, + "end": 11728.38, + "probability": 0.7226 + }, + { + "start": 11728.4, + "end": 11731.46, + "probability": 0.7174 + }, + { + "start": 11731.46, + "end": 11733.7, + "probability": 0.3785 + }, + { + "start": 11734.18, + "end": 11735.4, + "probability": 0.3675 + }, + { + "start": 11735.68, + "end": 11737.88, + "probability": 0.7997 + }, + { + "start": 11738.12, + "end": 11741.92, + "probability": 0.7982 + }, + { + "start": 11742.9, + "end": 11744.4, + "probability": 0.747 + }, + { + "start": 11744.56, + "end": 11745.8, + "probability": 0.7934 + }, + { + "start": 11746.14, + "end": 11746.66, + "probability": 0.7999 + }, + { + "start": 11747.74, + "end": 11749.2, + "probability": 0.8807 + }, + { + "start": 11749.28, + "end": 11750.44, + "probability": 0.7668 + }, + { + "start": 11750.48, + "end": 11755.02, + "probability": 0.9849 + }, + { + "start": 11755.5, + "end": 11758.46, + "probability": 0.9937 + }, + { + "start": 11758.8, + "end": 11759.9, + "probability": 0.8945 + }, + { + "start": 11760.98, + "end": 11767.86, + "probability": 0.9421 + }, + { + "start": 11768.74, + "end": 11772.14, + "probability": 0.5706 + }, + { + "start": 11772.14, + "end": 11777.14, + "probability": 0.6978 + }, + { + "start": 11777.46, + "end": 11779.0, + "probability": 0.7663 + }, + { + "start": 11779.16, + "end": 11779.44, + "probability": 0.6536 + }, + { + "start": 11780.16, + "end": 11781.48, + "probability": 0.8295 + }, + { + "start": 11781.58, + "end": 11782.07, + "probability": 0.8412 + }, + { + "start": 11783.28, + "end": 11789.38, + "probability": 0.9098 + }, + { + "start": 11789.94, + "end": 11796.12, + "probability": 0.9468 + }, + { + "start": 11796.12, + "end": 11800.44, + "probability": 0.9903 + }, + { + "start": 11800.9, + "end": 11805.4, + "probability": 0.9918 + }, + { + "start": 11805.4, + "end": 11810.06, + "probability": 0.9821 + }, + { + "start": 11810.18, + "end": 11812.58, + "probability": 0.9821 + }, + { + "start": 11812.68, + "end": 11813.52, + "probability": 0.9504 + }, + { + "start": 11813.56, + "end": 11816.68, + "probability": 0.949 + }, + { + "start": 11817.4, + "end": 11826.52, + "probability": 0.8146 + }, + { + "start": 11826.58, + "end": 11827.04, + "probability": 0.7427 + }, + { + "start": 11827.16, + "end": 11828.74, + "probability": 0.7628 + }, + { + "start": 11828.94, + "end": 11829.42, + "probability": 0.6601 + }, + { + "start": 11829.44, + "end": 11831.06, + "probability": 0.9636 + }, + { + "start": 11831.18, + "end": 11831.76, + "probability": 0.6693 + }, + { + "start": 11831.8, + "end": 11833.18, + "probability": 0.9518 + }, + { + "start": 11847.86, + "end": 11848.7, + "probability": 0.503 + }, + { + "start": 11848.76, + "end": 11849.34, + "probability": 0.8234 + }, + { + "start": 11853.3, + "end": 11854.92, + "probability": 0.404 + }, + { + "start": 11856.62, + "end": 11858.6, + "probability": 0.7413 + }, + { + "start": 11859.76, + "end": 11862.62, + "probability": 0.9932 + }, + { + "start": 11862.62, + "end": 11867.82, + "probability": 0.9807 + }, + { + "start": 11868.98, + "end": 11875.52, + "probability": 0.8899 + }, + { + "start": 11877.06, + "end": 11880.05, + "probability": 0.9715 + }, + { + "start": 11882.24, + "end": 11883.88, + "probability": 0.7492 + }, + { + "start": 11886.35, + "end": 11889.72, + "probability": 0.7061 + }, + { + "start": 11889.72, + "end": 11890.18, + "probability": 0.9211 + }, + { + "start": 11891.92, + "end": 11896.92, + "probability": 0.9937 + }, + { + "start": 11896.98, + "end": 11899.54, + "probability": 0.6068 + }, + { + "start": 11899.78, + "end": 11903.83, + "probability": 0.9614 + }, + { + "start": 11906.44, + "end": 11910.84, + "probability": 0.9019 + }, + { + "start": 11912.26, + "end": 11917.18, + "probability": 0.9977 + }, + { + "start": 11917.96, + "end": 11922.0, + "probability": 0.996 + }, + { + "start": 11922.18, + "end": 11931.68, + "probability": 0.9077 + }, + { + "start": 11933.24, + "end": 11935.14, + "probability": 0.8624 + }, + { + "start": 11935.92, + "end": 11937.12, + "probability": 0.9146 + }, + { + "start": 11937.28, + "end": 11939.14, + "probability": 0.9292 + }, + { + "start": 11940.32, + "end": 11940.9, + "probability": 0.6121 + }, + { + "start": 11941.36, + "end": 11941.78, + "probability": 0.4639 + }, + { + "start": 11941.94, + "end": 11943.72, + "probability": 0.6064 + }, + { + "start": 11943.76, + "end": 11949.56, + "probability": 0.9932 + }, + { + "start": 11949.88, + "end": 11950.08, + "probability": 0.9595 + }, + { + "start": 11950.16, + "end": 11953.82, + "probability": 0.9945 + }, + { + "start": 11953.9, + "end": 11954.8, + "probability": 0.9064 + }, + { + "start": 11955.86, + "end": 11958.78, + "probability": 0.6679 + }, + { + "start": 11960.32, + "end": 11961.28, + "probability": 0.5441 + }, + { + "start": 11961.54, + "end": 11964.34, + "probability": 0.9976 + }, + { + "start": 11964.34, + "end": 11970.94, + "probability": 0.9426 + }, + { + "start": 11971.66, + "end": 11972.7, + "probability": 0.952 + }, + { + "start": 11973.48, + "end": 11978.76, + "probability": 0.9607 + }, + { + "start": 11978.88, + "end": 11979.82, + "probability": 0.8186 + }, + { + "start": 11981.42, + "end": 11981.96, + "probability": 0.3107 + }, + { + "start": 11983.08, + "end": 11983.84, + "probability": 0.9539 + }, + { + "start": 11983.92, + "end": 11984.22, + "probability": 0.5165 + }, + { + "start": 11984.28, + "end": 11985.3, + "probability": 0.9187 + }, + { + "start": 11985.36, + "end": 11987.38, + "probability": 0.9799 + }, + { + "start": 11987.64, + "end": 11988.7, + "probability": 0.7456 + }, + { + "start": 11988.78, + "end": 11990.04, + "probability": 0.8643 + }, + { + "start": 11990.34, + "end": 11992.01, + "probability": 0.9528 + }, + { + "start": 11993.1, + "end": 11996.68, + "probability": 0.8032 + }, + { + "start": 11997.32, + "end": 11999.14, + "probability": 0.7517 + }, + { + "start": 11999.88, + "end": 12001.58, + "probability": 0.76 + }, + { + "start": 12002.64, + "end": 12005.32, + "probability": 0.8989 + }, + { + "start": 12005.86, + "end": 12006.8, + "probability": 0.6531 + }, + { + "start": 12007.86, + "end": 12013.3, + "probability": 0.9731 + }, + { + "start": 12013.48, + "end": 12018.44, + "probability": 0.9737 + }, + { + "start": 12020.14, + "end": 12024.06, + "probability": 0.9983 + }, + { + "start": 12026.06, + "end": 12027.88, + "probability": 0.8452 + }, + { + "start": 12028.82, + "end": 12031.32, + "probability": 0.9038 + }, + { + "start": 12032.24, + "end": 12036.74, + "probability": 0.9403 + }, + { + "start": 12037.46, + "end": 12039.8, + "probability": 0.3337 + }, + { + "start": 12039.8, + "end": 12039.8, + "probability": 0.3743 + }, + { + "start": 12039.8, + "end": 12039.8, + "probability": 0.481 + }, + { + "start": 12039.8, + "end": 12040.62, + "probability": 0.6061 + }, + { + "start": 12040.62, + "end": 12041.22, + "probability": 0.774 + }, + { + "start": 12041.98, + "end": 12043.42, + "probability": 0.8782 + }, + { + "start": 12044.28, + "end": 12046.24, + "probability": 0.3464 + }, + { + "start": 12046.98, + "end": 12050.08, + "probability": 0.723 + }, + { + "start": 12051.7, + "end": 12053.78, + "probability": 0.8654 + }, + { + "start": 12070.08, + "end": 12070.56, + "probability": 0.3916 + }, + { + "start": 12070.68, + "end": 12071.58, + "probability": 0.7907 + }, + { + "start": 12072.04, + "end": 12073.1, + "probability": 0.6257 + }, + { + "start": 12073.96, + "end": 12076.24, + "probability": 0.8335 + }, + { + "start": 12080.62, + "end": 12081.52, + "probability": 0.8093 + }, + { + "start": 12082.18, + "end": 12082.82, + "probability": 0.7333 + }, + { + "start": 12083.84, + "end": 12085.8, + "probability": 0.8109 + }, + { + "start": 12087.72, + "end": 12089.32, + "probability": 0.83 + }, + { + "start": 12090.4, + "end": 12091.6, + "probability": 0.503 + }, + { + "start": 12092.9, + "end": 12094.06, + "probability": 0.8888 + }, + { + "start": 12095.34, + "end": 12097.0, + "probability": 0.8743 + }, + { + "start": 12098.06, + "end": 12098.3, + "probability": 0.7222 + }, + { + "start": 12099.62, + "end": 12101.7, + "probability": 0.9565 + }, + { + "start": 12102.74, + "end": 12103.98, + "probability": 0.8372 + }, + { + "start": 12104.78, + "end": 12106.1, + "probability": 0.9797 + }, + { + "start": 12108.26, + "end": 12108.94, + "probability": 0.4051 + }, + { + "start": 12109.86, + "end": 12111.04, + "probability": 0.9771 + }, + { + "start": 12112.7, + "end": 12114.9, + "probability": 0.9152 + }, + { + "start": 12115.4, + "end": 12118.3, + "probability": 0.9312 + }, + { + "start": 12119.5, + "end": 12122.0, + "probability": 0.8289 + }, + { + "start": 12122.96, + "end": 12125.56, + "probability": 0.8208 + }, + { + "start": 12126.36, + "end": 12132.16, + "probability": 0.9953 + }, + { + "start": 12133.12, + "end": 12139.92, + "probability": 0.9875 + }, + { + "start": 12140.82, + "end": 12144.78, + "probability": 0.9347 + }, + { + "start": 12145.3, + "end": 12147.55, + "probability": 0.0606 + }, + { + "start": 12148.38, + "end": 12149.18, + "probability": 0.9074 + }, + { + "start": 12151.34, + "end": 12153.3, + "probability": 0.9956 + }, + { + "start": 12154.5, + "end": 12155.96, + "probability": 0.9971 + }, + { + "start": 12156.56, + "end": 12158.12, + "probability": 0.998 + }, + { + "start": 12159.4, + "end": 12163.88, + "probability": 0.9941 + }, + { + "start": 12166.46, + "end": 12169.46, + "probability": 0.9893 + }, + { + "start": 12170.3, + "end": 12170.72, + "probability": 0.5046 + }, + { + "start": 12171.32, + "end": 12172.8, + "probability": 0.7691 + }, + { + "start": 12173.8, + "end": 12181.2, + "probability": 0.9407 + }, + { + "start": 12181.86, + "end": 12183.04, + "probability": 0.8426 + }, + { + "start": 12183.46, + "end": 12184.6, + "probability": 0.9106 + }, + { + "start": 12184.84, + "end": 12187.22, + "probability": 0.9785 + }, + { + "start": 12187.28, + "end": 12190.66, + "probability": 0.8853 + }, + { + "start": 12193.52, + "end": 12198.06, + "probability": 0.8385 + }, + { + "start": 12198.2, + "end": 12199.9, + "probability": 0.862 + }, + { + "start": 12200.5, + "end": 12201.66, + "probability": 0.7062 + }, + { + "start": 12202.32, + "end": 12206.3, + "probability": 0.9214 + }, + { + "start": 12207.3, + "end": 12208.6, + "probability": 0.647 + }, + { + "start": 12209.62, + "end": 12211.48, + "probability": 0.9619 + }, + { + "start": 12211.96, + "end": 12213.04, + "probability": 0.792 + }, + { + "start": 12213.14, + "end": 12214.52, + "probability": 0.9761 + }, + { + "start": 12214.62, + "end": 12217.18, + "probability": 0.641 + }, + { + "start": 12217.52, + "end": 12222.1, + "probability": 0.9201 + }, + { + "start": 12222.36, + "end": 12225.28, + "probability": 0.8713 + }, + { + "start": 12225.72, + "end": 12230.22, + "probability": 0.5982 + }, + { + "start": 12230.68, + "end": 12231.9, + "probability": 0.8416 + }, + { + "start": 12235.25, + "end": 12238.0, + "probability": 0.7073 + }, + { + "start": 12239.44, + "end": 12240.44, + "probability": 0.9714 + }, + { + "start": 12241.36, + "end": 12246.82, + "probability": 0.9853 + }, + { + "start": 12248.08, + "end": 12249.66, + "probability": 0.899 + }, + { + "start": 12249.8, + "end": 12251.12, + "probability": 0.9922 + }, + { + "start": 12252.72, + "end": 12254.26, + "probability": 0.9873 + }, + { + "start": 12254.48, + "end": 12255.2, + "probability": 0.6246 + }, + { + "start": 12255.26, + "end": 12255.52, + "probability": 0.4147 + }, + { + "start": 12255.52, + "end": 12256.32, + "probability": 0.6913 + }, + { + "start": 12257.3, + "end": 12259.04, + "probability": 0.8716 + }, + { + "start": 12259.98, + "end": 12262.58, + "probability": 0.5869 + }, + { + "start": 12263.04, + "end": 12264.82, + "probability": 0.8845 + }, + { + "start": 12264.82, + "end": 12266.52, + "probability": 0.1044 + }, + { + "start": 12267.26, + "end": 12269.0, + "probability": 0.4992 + }, + { + "start": 12283.1, + "end": 12284.14, + "probability": 0.8229 + }, + { + "start": 12285.02, + "end": 12285.56, + "probability": 0.0958 + }, + { + "start": 12285.56, + "end": 12287.08, + "probability": 0.1246 + }, + { + "start": 12287.5, + "end": 12289.06, + "probability": 0.6959 + }, + { + "start": 12290.26, + "end": 12292.58, + "probability": 0.0831 + }, + { + "start": 12292.72, + "end": 12293.74, + "probability": 0.3261 + }, + { + "start": 12305.76, + "end": 12305.8, + "probability": 0.029 + }, + { + "start": 12305.8, + "end": 12306.76, + "probability": 0.0467 + }, + { + "start": 12306.76, + "end": 12306.82, + "probability": 0.0476 + }, + { + "start": 12306.82, + "end": 12306.88, + "probability": 0.0003 + }, + { + "start": 12306.88, + "end": 12307.2, + "probability": 0.1076 + }, + { + "start": 12307.2, + "end": 12307.8, + "probability": 0.1308 + }, + { + "start": 12307.8, + "end": 12308.06, + "probability": 0.0708 + }, + { + "start": 12313.3, + "end": 12315.68, + "probability": 0.5345 + }, + { + "start": 12317.56, + "end": 12319.4, + "probability": 0.6514 + }, + { + "start": 12320.68, + "end": 12321.42, + "probability": 0.0895 + }, + { + "start": 12322.56, + "end": 12325.06, + "probability": 0.7879 + }, + { + "start": 12326.48, + "end": 12329.86, + "probability": 0.7681 + }, + { + "start": 12330.38, + "end": 12331.37, + "probability": 0.5522 + }, + { + "start": 12332.2, + "end": 12334.32, + "probability": 0.8643 + }, + { + "start": 12335.42, + "end": 12336.6, + "probability": 0.705 + }, + { + "start": 12338.12, + "end": 12342.36, + "probability": 0.8193 + }, + { + "start": 12343.24, + "end": 12344.46, + "probability": 0.8562 + }, + { + "start": 12345.04, + "end": 12347.82, + "probability": 0.9906 + }, + { + "start": 12348.58, + "end": 12350.48, + "probability": 0.9719 + }, + { + "start": 12351.34, + "end": 12351.52, + "probability": 0.0812 + }, + { + "start": 12351.52, + "end": 12354.6, + "probability": 0.8089 + }, + { + "start": 12354.74, + "end": 12357.44, + "probability": 0.6867 + }, + { + "start": 12358.18, + "end": 12360.76, + "probability": 0.903 + }, + { + "start": 12361.5, + "end": 12363.54, + "probability": 0.8293 + }, + { + "start": 12365.26, + "end": 12369.7, + "probability": 0.9224 + }, + { + "start": 12372.06, + "end": 12374.06, + "probability": 0.7595 + }, + { + "start": 12376.34, + "end": 12377.56, + "probability": 0.8245 + }, + { + "start": 12378.08, + "end": 12380.7, + "probability": 0.5922 + }, + { + "start": 12381.38, + "end": 12385.24, + "probability": 0.9771 + }, + { + "start": 12385.94, + "end": 12387.78, + "probability": 0.952 + }, + { + "start": 12389.58, + "end": 12394.16, + "probability": 0.953 + }, + { + "start": 12396.12, + "end": 12396.7, + "probability": 0.7811 + }, + { + "start": 12396.78, + "end": 12399.78, + "probability": 0.8065 + }, + { + "start": 12401.28, + "end": 12403.88, + "probability": 0.752 + }, + { + "start": 12405.48, + "end": 12405.8, + "probability": 0.5231 + }, + { + "start": 12405.96, + "end": 12411.68, + "probability": 0.8755 + }, + { + "start": 12411.74, + "end": 12413.37, + "probability": 0.9627 + }, + { + "start": 12414.6, + "end": 12416.84, + "probability": 0.7506 + }, + { + "start": 12418.04, + "end": 12419.3, + "probability": 0.8421 + }, + { + "start": 12420.34, + "end": 12424.54, + "probability": 0.8489 + }, + { + "start": 12424.69, + "end": 12430.82, + "probability": 0.8813 + }, + { + "start": 12431.38, + "end": 12435.36, + "probability": 0.9471 + }, + { + "start": 12436.46, + "end": 12436.6, + "probability": 0.0256 + }, + { + "start": 12436.6, + "end": 12437.86, + "probability": 0.9588 + }, + { + "start": 12438.78, + "end": 12439.78, + "probability": 0.8872 + }, + { + "start": 12440.0, + "end": 12445.4, + "probability": 0.9502 + }, + { + "start": 12446.28, + "end": 12449.64, + "probability": 0.969 + }, + { + "start": 12450.68, + "end": 12454.52, + "probability": 0.7655 + }, + { + "start": 12455.46, + "end": 12457.14, + "probability": 0.3753 + }, + { + "start": 12459.82, + "end": 12461.25, + "probability": 0.4153 + }, + { + "start": 12461.42, + "end": 12461.9, + "probability": 0.4656 + }, + { + "start": 12462.34, + "end": 12463.23, + "probability": 0.7827 + }, + { + "start": 12464.06, + "end": 12464.98, + "probability": 0.8994 + }, + { + "start": 12465.12, + "end": 12466.56, + "probability": 0.8975 + }, + { + "start": 12466.98, + "end": 12467.9, + "probability": 0.6928 + }, + { + "start": 12468.2, + "end": 12469.0, + "probability": 0.9383 + }, + { + "start": 12469.06, + "end": 12469.82, + "probability": 0.7726 + }, + { + "start": 12470.1, + "end": 12472.52, + "probability": 0.9526 + }, + { + "start": 12473.26, + "end": 12474.8, + "probability": 0.4955 + }, + { + "start": 12474.9, + "end": 12475.24, + "probability": 0.8926 + }, + { + "start": 12475.24, + "end": 12475.61, + "probability": 0.8813 + }, + { + "start": 12475.66, + "end": 12475.66, + "probability": 0.8842 + }, + { + "start": 12475.66, + "end": 12476.44, + "probability": 0.3457 + }, + { + "start": 12477.62, + "end": 12479.04, + "probability": 0.8564 + }, + { + "start": 12479.2, + "end": 12482.54, + "probability": 0.5046 + }, + { + "start": 12482.54, + "end": 12484.08, + "probability": 0.3783 + }, + { + "start": 12489.06, + "end": 12489.41, + "probability": 0.1487 + }, + { + "start": 12490.64, + "end": 12491.88, + "probability": 0.0031 + }, + { + "start": 12492.26, + "end": 12494.26, + "probability": 0.9321 + }, + { + "start": 12494.78, + "end": 12496.56, + "probability": 0.7682 + }, + { + "start": 12496.6, + "end": 12496.86, + "probability": 0.1739 + }, + { + "start": 12496.86, + "end": 12498.44, + "probability": 0.8973 + }, + { + "start": 12498.52, + "end": 12501.0, + "probability": 0.9423 + }, + { + "start": 12501.46, + "end": 12504.28, + "probability": 0.9557 + }, + { + "start": 12504.3, + "end": 12504.52, + "probability": 0.0582 + }, + { + "start": 12504.62, + "end": 12505.16, + "probability": 0.0017 + }, + { + "start": 12505.16, + "end": 12505.86, + "probability": 0.2971 + }, + { + "start": 12506.5, + "end": 12508.64, + "probability": 0.9645 + }, + { + "start": 12508.88, + "end": 12510.66, + "probability": 0.9282 + }, + { + "start": 12510.68, + "end": 12511.5, + "probability": 0.8562 + }, + { + "start": 12512.18, + "end": 12512.58, + "probability": 0.3041 + }, + { + "start": 12512.58, + "end": 12515.06, + "probability": 0.5921 + }, + { + "start": 12515.28, + "end": 12515.38, + "probability": 0.4542 + }, + { + "start": 12515.48, + "end": 12516.8, + "probability": 0.6234 + }, + { + "start": 12516.96, + "end": 12517.74, + "probability": 0.1221 + }, + { + "start": 12519.24, + "end": 12520.08, + "probability": 0.2704 + }, + { + "start": 12520.14, + "end": 12522.14, + "probability": 0.3536 + }, + { + "start": 12522.18, + "end": 12522.34, + "probability": 0.0705 + }, + { + "start": 12522.34, + "end": 12522.34, + "probability": 0.0258 + }, + { + "start": 12522.34, + "end": 12522.34, + "probability": 0.0333 + }, + { + "start": 12522.34, + "end": 12524.98, + "probability": 0.1932 + }, + { + "start": 12525.56, + "end": 12526.38, + "probability": 0.5088 + }, + { + "start": 12526.46, + "end": 12526.72, + "probability": 0.4807 + }, + { + "start": 12526.72, + "end": 12527.3, + "probability": 0.0486 + }, + { + "start": 12527.67, + "end": 12528.03, + "probability": 0.2052 + }, + { + "start": 12528.52, + "end": 12531.5, + "probability": 0.5286 + }, + { + "start": 12531.74, + "end": 12532.52, + "probability": 0.6626 + }, + { + "start": 12532.92, + "end": 12534.1, + "probability": 0.0133 + }, + { + "start": 12534.1, + "end": 12534.1, + "probability": 0.1859 + }, + { + "start": 12534.1, + "end": 12535.26, + "probability": 0.1904 + }, + { + "start": 12535.46, + "end": 12536.58, + "probability": 0.9145 + }, + { + "start": 12536.72, + "end": 12537.89, + "probability": 0.7109 + }, + { + "start": 12539.08, + "end": 12540.56, + "probability": 0.1099 + }, + { + "start": 12544.34, + "end": 12546.82, + "probability": 0.0193 + }, + { + "start": 12547.25, + "end": 12550.3, + "probability": 0.5099 + }, + { + "start": 12550.58, + "end": 12556.36, + "probability": 0.7232 + }, + { + "start": 12556.36, + "end": 12558.48, + "probability": 0.199 + }, + { + "start": 12559.2, + "end": 12562.02, + "probability": 0.6768 + }, + { + "start": 12562.02, + "end": 12562.56, + "probability": 0.039 + }, + { + "start": 12562.56, + "end": 12563.7, + "probability": 0.5059 + }, + { + "start": 12563.9, + "end": 12565.78, + "probability": 0.8356 + }, + { + "start": 12566.58, + "end": 12568.68, + "probability": 0.6689 + }, + { + "start": 12568.92, + "end": 12570.54, + "probability": 0.5358 + }, + { + "start": 12570.64, + "end": 12572.1, + "probability": 0.9851 + }, + { + "start": 12572.28, + "end": 12573.74, + "probability": 0.7392 + }, + { + "start": 12573.78, + "end": 12575.84, + "probability": 0.8365 + }, + { + "start": 12575.92, + "end": 12578.64, + "probability": 0.9016 + }, + { + "start": 12578.64, + "end": 12581.04, + "probability": 0.9253 + }, + { + "start": 12581.1, + "end": 12582.78, + "probability": 0.7961 + }, + { + "start": 12582.78, + "end": 12583.36, + "probability": 0.1436 + }, + { + "start": 12583.68, + "end": 12586.12, + "probability": 0.861 + }, + { + "start": 12586.16, + "end": 12587.1, + "probability": 0.6208 + }, + { + "start": 12588.58, + "end": 12589.14, + "probability": 0.5945 + }, + { + "start": 12589.34, + "end": 12591.12, + "probability": 0.2641 + }, + { + "start": 12591.82, + "end": 12592.02, + "probability": 0.625 + }, + { + "start": 12592.14, + "end": 12593.68, + "probability": 0.959 + }, + { + "start": 12594.04, + "end": 12595.52, + "probability": 0.9694 + }, + { + "start": 12595.52, + "end": 12595.76, + "probability": 0.9651 + }, + { + "start": 12595.84, + "end": 12596.98, + "probability": 0.7874 + }, + { + "start": 12597.08, + "end": 12597.77, + "probability": 0.896 + }, + { + "start": 12598.46, + "end": 12599.58, + "probability": 0.9795 + }, + { + "start": 12599.84, + "end": 12599.94, + "probability": 0.0272 + }, + { + "start": 12599.94, + "end": 12599.94, + "probability": 0.2188 + }, + { + "start": 12599.94, + "end": 12599.94, + "probability": 0.0945 + }, + { + "start": 12599.94, + "end": 12601.42, + "probability": 0.6094 + }, + { + "start": 12601.6, + "end": 12602.68, + "probability": 0.9514 + }, + { + "start": 12602.74, + "end": 12604.48, + "probability": 0.9738 + }, + { + "start": 12604.78, + "end": 12605.7, + "probability": 0.6128 + }, + { + "start": 12606.12, + "end": 12607.14, + "probability": 0.4248 + }, + { + "start": 12607.14, + "end": 12611.34, + "probability": 0.7659 + }, + { + "start": 12611.74, + "end": 12613.02, + "probability": 0.6498 + }, + { + "start": 12614.16, + "end": 12617.9, + "probability": 0.9648 + }, + { + "start": 12617.9, + "end": 12623.79, + "probability": 0.9032 + }, + { + "start": 12625.02, + "end": 12625.56, + "probability": 0.1897 + }, + { + "start": 12626.26, + "end": 12626.78, + "probability": 0.2756 + }, + { + "start": 12626.98, + "end": 12629.18, + "probability": 0.9156 + }, + { + "start": 12629.88, + "end": 12635.2, + "probability": 0.9561 + }, + { + "start": 12635.36, + "end": 12641.14, + "probability": 0.9986 + }, + { + "start": 12642.48, + "end": 12649.26, + "probability": 0.9882 + }, + { + "start": 12650.78, + "end": 12654.92, + "probability": 0.9673 + }, + { + "start": 12656.52, + "end": 12659.34, + "probability": 0.9698 + }, + { + "start": 12660.0, + "end": 12662.08, + "probability": 0.9441 + }, + { + "start": 12662.26, + "end": 12664.28, + "probability": 0.8766 + }, + { + "start": 12664.36, + "end": 12671.54, + "probability": 0.9717 + }, + { + "start": 12671.6, + "end": 12673.1, + "probability": 0.6721 + }, + { + "start": 12673.98, + "end": 12682.26, + "probability": 0.89 + }, + { + "start": 12683.72, + "end": 12688.22, + "probability": 0.775 + }, + { + "start": 12688.46, + "end": 12689.6, + "probability": 0.7747 + }, + { + "start": 12691.42, + "end": 12696.64, + "probability": 0.8857 + }, + { + "start": 12697.98, + "end": 12700.74, + "probability": 0.1983 + }, + { + "start": 12702.24, + "end": 12707.2, + "probability": 0.9855 + }, + { + "start": 12707.54, + "end": 12711.38, + "probability": 0.8665 + }, + { + "start": 12712.98, + "end": 12717.7, + "probability": 0.9884 + }, + { + "start": 12718.46, + "end": 12724.34, + "probability": 0.9863 + }, + { + "start": 12724.38, + "end": 12725.34, + "probability": 0.7319 + }, + { + "start": 12725.46, + "end": 12726.54, + "probability": 0.3976 + }, + { + "start": 12726.64, + "end": 12727.34, + "probability": 0.5044 + }, + { + "start": 12727.42, + "end": 12728.04, + "probability": 0.541 + }, + { + "start": 12728.36, + "end": 12729.38, + "probability": 0.9252 + }, + { + "start": 12729.48, + "end": 12730.16, + "probability": 0.8387 + }, + { + "start": 12730.96, + "end": 12731.24, + "probability": 0.8118 + }, + { + "start": 12731.74, + "end": 12733.26, + "probability": 0.5885 + }, + { + "start": 12733.46, + "end": 12735.8, + "probability": 0.9537 + }, + { + "start": 12736.12, + "end": 12736.56, + "probability": 0.867 + }, + { + "start": 12736.58, + "end": 12737.9, + "probability": 0.7305 + }, + { + "start": 12738.0, + "end": 12738.46, + "probability": 0.4559 + }, + { + "start": 12738.48, + "end": 12739.76, + "probability": 0.5485 + }, + { + "start": 12739.82, + "end": 12740.06, + "probability": 0.7964 + }, + { + "start": 12746.66, + "end": 12750.72, + "probability": 0.8887 + }, + { + "start": 12751.62, + "end": 12758.84, + "probability": 0.9854 + }, + { + "start": 12759.72, + "end": 12761.3, + "probability": 0.979 + }, + { + "start": 12762.18, + "end": 12765.86, + "probability": 0.9825 + }, + { + "start": 12766.92, + "end": 12769.96, + "probability": 0.9863 + }, + { + "start": 12771.42, + "end": 12780.52, + "probability": 0.9738 + }, + { + "start": 12780.52, + "end": 12783.6, + "probability": 0.9922 + }, + { + "start": 12784.14, + "end": 12789.08, + "probability": 0.9647 + }, + { + "start": 12789.76, + "end": 12792.78, + "probability": 0.9502 + }, + { + "start": 12794.38, + "end": 12797.72, + "probability": 0.9235 + }, + { + "start": 12797.84, + "end": 12799.2, + "probability": 0.7975 + }, + { + "start": 12800.28, + "end": 12801.88, + "probability": 0.2697 + }, + { + "start": 12801.88, + "end": 12803.48, + "probability": 0.5342 + }, + { + "start": 12803.48, + "end": 12804.77, + "probability": 0.9883 + }, + { + "start": 12805.84, + "end": 12807.52, + "probability": 0.4561 + }, + { + "start": 12807.64, + "end": 12808.98, + "probability": 0.242 + }, + { + "start": 12809.0, + "end": 12814.28, + "probability": 0.8826 + }, + { + "start": 12815.06, + "end": 12816.3, + "probability": 0.2942 + }, + { + "start": 12817.26, + "end": 12819.74, + "probability": 0.7648 + }, + { + "start": 12819.94, + "end": 12820.34, + "probability": 0.7363 + }, + { + "start": 12820.46, + "end": 12821.84, + "probability": 0.9648 + }, + { + "start": 12821.94, + "end": 12823.96, + "probability": 0.9956 + }, + { + "start": 12824.04, + "end": 12825.58, + "probability": 0.9644 + }, + { + "start": 12825.68, + "end": 12828.48, + "probability": 0.9383 + }, + { + "start": 12828.66, + "end": 12829.94, + "probability": 0.7534 + }, + { + "start": 12830.22, + "end": 12830.62, + "probability": 0.5493 + }, + { + "start": 12830.9, + "end": 12832.64, + "probability": 0.8506 + }, + { + "start": 12832.8, + "end": 12842.46, + "probability": 0.9977 + }, + { + "start": 12843.62, + "end": 12845.5, + "probability": 0.9568 + }, + { + "start": 12845.62, + "end": 12847.44, + "probability": 0.0814 + }, + { + "start": 12847.48, + "end": 12848.42, + "probability": 0.6482 + }, + { + "start": 12848.58, + "end": 12851.68, + "probability": 0.9046 + }, + { + "start": 12851.76, + "end": 12852.48, + "probability": 0.7758 + }, + { + "start": 12852.7, + "end": 12854.9, + "probability": 0.6951 + }, + { + "start": 12855.08, + "end": 12855.12, + "probability": 0.2273 + }, + { + "start": 12855.12, + "end": 12857.1, + "probability": 0.7962 + }, + { + "start": 12857.22, + "end": 12859.72, + "probability": 0.9203 + }, + { + "start": 12860.02, + "end": 12861.18, + "probability": 0.9595 + }, + { + "start": 12861.38, + "end": 12866.24, + "probability": 0.9788 + }, + { + "start": 12866.3, + "end": 12868.48, + "probability": 0.9928 + }, + { + "start": 12869.14, + "end": 12871.52, + "probability": 0.9707 + }, + { + "start": 12871.66, + "end": 12873.28, + "probability": 0.936 + }, + { + "start": 12873.68, + "end": 12876.38, + "probability": 0.9287 + }, + { + "start": 12876.44, + "end": 12877.54, + "probability": 0.979 + }, + { + "start": 12877.58, + "end": 12879.54, + "probability": 0.9764 + }, + { + "start": 12879.86, + "end": 12884.18, + "probability": 0.9723 + }, + { + "start": 12884.3, + "end": 12888.92, + "probability": 0.827 + }, + { + "start": 12889.16, + "end": 12890.98, + "probability": 0.9044 + }, + { + "start": 12891.42, + "end": 12894.82, + "probability": 0.95 + }, + { + "start": 12895.04, + "end": 12897.28, + "probability": 0.7147 + }, + { + "start": 12897.6, + "end": 12899.92, + "probability": 0.5162 + }, + { + "start": 12900.5, + "end": 12904.72, + "probability": 0.9337 + }, + { + "start": 12905.12, + "end": 12910.1, + "probability": 0.973 + }, + { + "start": 12910.7, + "end": 12916.48, + "probability": 0.8141 + }, + { + "start": 12916.66, + "end": 12920.78, + "probability": 0.9969 + }, + { + "start": 12920.78, + "end": 12925.48, + "probability": 0.9687 + }, + { + "start": 12925.94, + "end": 12929.94, + "probability": 0.9442 + }, + { + "start": 12930.38, + "end": 12935.06, + "probability": 0.9937 + }, + { + "start": 12935.24, + "end": 12938.74, + "probability": 0.9973 + }, + { + "start": 12939.1, + "end": 12939.4, + "probability": 0.4897 + }, + { + "start": 12939.84, + "end": 12943.62, + "probability": 0.877 + }, + { + "start": 12943.74, + "end": 12945.0, + "probability": 0.5659 + }, + { + "start": 12945.1, + "end": 12947.42, + "probability": 0.8269 + }, + { + "start": 12955.5, + "end": 12957.26, + "probability": 0.9415 + }, + { + "start": 12960.68, + "end": 12962.74, + "probability": 0.5459 + }, + { + "start": 12963.38, + "end": 12964.06, + "probability": 0.6186 + }, + { + "start": 12964.8, + "end": 12971.56, + "probability": 0.988 + }, + { + "start": 12971.56, + "end": 12975.78, + "probability": 0.9966 + }, + { + "start": 12976.8, + "end": 12981.36, + "probability": 0.9166 + }, + { + "start": 12982.14, + "end": 12988.06, + "probability": 0.9594 + }, + { + "start": 12988.84, + "end": 12990.7, + "probability": 0.8921 + }, + { + "start": 12991.38, + "end": 12995.92, + "probability": 0.6381 + }, + { + "start": 12996.64, + "end": 12999.08, + "probability": 0.8903 + }, + { + "start": 13000.04, + "end": 13001.56, + "probability": 0.7538 + }, + { + "start": 13002.08, + "end": 13003.12, + "probability": 0.5537 + }, + { + "start": 13003.76, + "end": 13007.36, + "probability": 0.9901 + }, + { + "start": 13008.0, + "end": 13011.22, + "probability": 0.936 + }, + { + "start": 13012.04, + "end": 13013.16, + "probability": 0.9225 + }, + { + "start": 13013.18, + "end": 13017.56, + "probability": 0.9462 + }, + { + "start": 13017.98, + "end": 13019.8, + "probability": 0.8105 + }, + { + "start": 13020.12, + "end": 13022.52, + "probability": 0.9178 + }, + { + "start": 13022.72, + "end": 13023.84, + "probability": 0.5129 + }, + { + "start": 13024.04, + "end": 13026.56, + "probability": 0.962 + }, + { + "start": 13026.76, + "end": 13029.5, + "probability": 0.9963 + }, + { + "start": 13030.22, + "end": 13032.92, + "probability": 0.7524 + }, + { + "start": 13033.34, + "end": 13034.22, + "probability": 0.5929 + }, + { + "start": 13034.78, + "end": 13039.86, + "probability": 0.9273 + }, + { + "start": 13040.6, + "end": 13041.38, + "probability": 0.9379 + }, + { + "start": 13041.88, + "end": 13044.74, + "probability": 0.9941 + }, + { + "start": 13045.28, + "end": 13049.14, + "probability": 0.9974 + }, + { + "start": 13049.86, + "end": 13052.94, + "probability": 0.9957 + }, + { + "start": 13053.54, + "end": 13058.14, + "probability": 0.9446 + }, + { + "start": 13059.94, + "end": 13062.54, + "probability": 0.9756 + }, + { + "start": 13063.22, + "end": 13066.14, + "probability": 0.9971 + }, + { + "start": 13066.28, + "end": 13067.6, + "probability": 0.9435 + }, + { + "start": 13067.98, + "end": 13069.78, + "probability": 0.9504 + }, + { + "start": 13071.68, + "end": 13072.4, + "probability": 0.4516 + }, + { + "start": 13073.32, + "end": 13075.28, + "probability": 0.6911 + }, + { + "start": 13075.44, + "end": 13076.58, + "probability": 0.9087 + }, + { + "start": 13076.8, + "end": 13078.86, + "probability": 0.998 + }, + { + "start": 13080.44, + "end": 13082.64, + "probability": 0.9988 + }, + { + "start": 13082.74, + "end": 13084.16, + "probability": 0.9948 + }, + { + "start": 13085.08, + "end": 13086.58, + "probability": 0.9912 + }, + { + "start": 13087.4, + "end": 13088.88, + "probability": 0.9761 + }, + { + "start": 13089.8, + "end": 13091.32, + "probability": 0.9835 + }, + { + "start": 13092.12, + "end": 13094.3, + "probability": 0.995 + }, + { + "start": 13094.9, + "end": 13098.26, + "probability": 0.9905 + }, + { + "start": 13098.94, + "end": 13103.6, + "probability": 0.9977 + }, + { + "start": 13104.12, + "end": 13106.56, + "probability": 0.9966 + }, + { + "start": 13107.82, + "end": 13113.18, + "probability": 0.9964 + }, + { + "start": 13113.7, + "end": 13118.06, + "probability": 0.997 + }, + { + "start": 13119.36, + "end": 13120.24, + "probability": 0.5845 + }, + { + "start": 13120.38, + "end": 13121.36, + "probability": 0.9017 + }, + { + "start": 13121.56, + "end": 13123.62, + "probability": 0.9906 + }, + { + "start": 13123.78, + "end": 13129.14, + "probability": 0.9871 + }, + { + "start": 13129.82, + "end": 13131.38, + "probability": 0.9951 + }, + { + "start": 13133.46, + "end": 13137.13, + "probability": 0.9266 + }, + { + "start": 13138.04, + "end": 13139.08, + "probability": 0.9154 + }, + { + "start": 13139.86, + "end": 13141.58, + "probability": 0.981 + }, + { + "start": 13141.7, + "end": 13146.12, + "probability": 0.9941 + }, + { + "start": 13146.5, + "end": 13148.96, + "probability": 0.9569 + }, + { + "start": 13149.06, + "end": 13151.08, + "probability": 0.7686 + }, + { + "start": 13151.26, + "end": 13152.34, + "probability": 0.7823 + }, + { + "start": 13152.42, + "end": 13152.62, + "probability": 0.8149 + }, + { + "start": 13152.64, + "end": 13154.16, + "probability": 0.5586 + }, + { + "start": 13154.5, + "end": 13156.84, + "probability": 0.8328 + }, + { + "start": 13157.36, + "end": 13159.48, + "probability": 0.8821 + }, + { + "start": 13168.2, + "end": 13169.04, + "probability": 0.485 + }, + { + "start": 13170.6, + "end": 13174.56, + "probability": 0.8669 + }, + { + "start": 13175.86, + "end": 13176.6, + "probability": 0.0151 + }, + { + "start": 13176.82, + "end": 13177.7, + "probability": 0.9907 + }, + { + "start": 13178.84, + "end": 13179.08, + "probability": 0.3515 + }, + { + "start": 13180.1, + "end": 13181.36, + "probability": 0.7806 + }, + { + "start": 13182.08, + "end": 13183.98, + "probability": 0.2814 + }, + { + "start": 13186.36, + "end": 13187.72, + "probability": 0.6183 + }, + { + "start": 13187.76, + "end": 13189.4, + "probability": 0.009 + }, + { + "start": 13191.54, + "end": 13192.22, + "probability": 0.0033 + }, + { + "start": 13193.23, + "end": 13198.98, + "probability": 0.7438 + }, + { + "start": 13200.66, + "end": 13202.64, + "probability": 0.1069 + }, + { + "start": 13204.84, + "end": 13207.64, + "probability": 0.6121 + }, + { + "start": 13207.66, + "end": 13208.66, + "probability": 0.8832 + }, + { + "start": 13208.68, + "end": 13209.12, + "probability": 0.0296 + }, + { + "start": 13209.76, + "end": 13211.92, + "probability": 0.062 + }, + { + "start": 13212.11, + "end": 13213.66, + "probability": 0.8047 + }, + { + "start": 13213.84, + "end": 13215.97, + "probability": 0.9722 + }, + { + "start": 13217.44, + "end": 13218.98, + "probability": 0.7313 + }, + { + "start": 13219.5, + "end": 13221.6, + "probability": 0.9514 + }, + { + "start": 13221.94, + "end": 13222.84, + "probability": 0.5399 + }, + { + "start": 13222.92, + "end": 13224.28, + "probability": 0.6897 + }, + { + "start": 13225.24, + "end": 13226.76, + "probability": 0.8438 + }, + { + "start": 13227.2, + "end": 13229.9, + "probability": 0.8916 + }, + { + "start": 13230.04, + "end": 13232.84, + "probability": 0.6505 + }, + { + "start": 13232.88, + "end": 13234.96, + "probability": 0.5176 + }, + { + "start": 13235.24, + "end": 13235.73, + "probability": 0.8614 + }, + { + "start": 13236.72, + "end": 13238.56, + "probability": 0.3213 + }, + { + "start": 13238.56, + "end": 13240.1, + "probability": 0.4463 + }, + { + "start": 13240.28, + "end": 13242.18, + "probability": 0.7036 + }, + { + "start": 13243.16, + "end": 13246.0, + "probability": 0.6646 + }, + { + "start": 13246.52, + "end": 13249.48, + "probability": 0.2532 + }, + { + "start": 13249.68, + "end": 13252.38, + "probability": 0.9282 + }, + { + "start": 13253.08, + "end": 13253.87, + "probability": 0.7717 + }, + { + "start": 13254.5, + "end": 13255.48, + "probability": 0.7277 + }, + { + "start": 13256.46, + "end": 13257.86, + "probability": 0.4712 + }, + { + "start": 13258.54, + "end": 13258.96, + "probability": 0.6637 + }, + { + "start": 13259.68, + "end": 13262.08, + "probability": 0.7819 + }, + { + "start": 13263.02, + "end": 13264.14, + "probability": 0.9369 + }, + { + "start": 13264.46, + "end": 13265.02, + "probability": 0.7985 + }, + { + "start": 13266.34, + "end": 13268.88, + "probability": 0.7321 + }, + { + "start": 13268.88, + "end": 13271.54, + "probability": 0.8039 + }, + { + "start": 13272.24, + "end": 13274.75, + "probability": 0.6888 + }, + { + "start": 13276.38, + "end": 13279.6, + "probability": 0.9155 + }, + { + "start": 13280.94, + "end": 13281.48, + "probability": 0.4992 + }, + { + "start": 13282.68, + "end": 13286.68, + "probability": 0.9078 + }, + { + "start": 13287.58, + "end": 13292.09, + "probability": 0.9272 + }, + { + "start": 13292.78, + "end": 13293.12, + "probability": 0.8467 + }, + { + "start": 13293.98, + "end": 13294.49, + "probability": 0.9292 + }, + { + "start": 13295.28, + "end": 13298.28, + "probability": 0.9651 + }, + { + "start": 13298.94, + "end": 13300.64, + "probability": 0.9842 + }, + { + "start": 13301.2, + "end": 13303.82, + "probability": 0.9875 + }, + { + "start": 13304.64, + "end": 13307.96, + "probability": 0.9492 + }, + { + "start": 13308.1, + "end": 13309.1, + "probability": 0.1647 + }, + { + "start": 13309.56, + "end": 13310.5, + "probability": 0.1546 + }, + { + "start": 13310.62, + "end": 13312.44, + "probability": 0.4654 + }, + { + "start": 13312.44, + "end": 13313.82, + "probability": 0.7329 + }, + { + "start": 13314.16, + "end": 13316.5, + "probability": 0.8563 + }, + { + "start": 13317.1, + "end": 13319.3, + "probability": 0.389 + }, + { + "start": 13320.1, + "end": 13323.18, + "probability": 0.9338 + }, + { + "start": 13324.06, + "end": 13327.48, + "probability": 0.5546 + }, + { + "start": 13328.86, + "end": 13330.8, + "probability": 0.9698 + }, + { + "start": 13332.0, + "end": 13337.92, + "probability": 0.9032 + }, + { + "start": 13338.34, + "end": 13338.74, + "probability": 0.9286 + }, + { + "start": 13339.0, + "end": 13342.52, + "probability": 0.9949 + }, + { + "start": 13343.1, + "end": 13346.68, + "probability": 0.9502 + }, + { + "start": 13346.68, + "end": 13349.4, + "probability": 0.5634 + }, + { + "start": 13349.94, + "end": 13350.6, + "probability": 0.5612 + }, + { + "start": 13351.04, + "end": 13351.76, + "probability": 0.3878 + }, + { + "start": 13351.84, + "end": 13353.22, + "probability": 0.952 + }, + { + "start": 13353.38, + "end": 13356.26, + "probability": 0.9811 + }, + { + "start": 13356.34, + "end": 13358.38, + "probability": 0.599 + }, + { + "start": 13358.62, + "end": 13358.86, + "probability": 0.0014 + }, + { + "start": 13359.86, + "end": 13360.06, + "probability": 0.3339 + }, + { + "start": 13360.06, + "end": 13361.66, + "probability": 0.6674 + }, + { + "start": 13361.84, + "end": 13364.78, + "probability": 0.0921 + }, + { + "start": 13367.42, + "end": 13370.36, + "probability": 0.2095 + }, + { + "start": 13371.42, + "end": 13372.64, + "probability": 0.1714 + }, + { + "start": 13373.6, + "end": 13374.0, + "probability": 0.5701 + }, + { + "start": 13374.02, + "end": 13374.1, + "probability": 0.4975 + }, + { + "start": 13374.1, + "end": 13374.1, + "probability": 0.5689 + }, + { + "start": 13374.1, + "end": 13374.1, + "probability": 0.395 + }, + { + "start": 13374.1, + "end": 13374.1, + "probability": 0.3761 + }, + { + "start": 13374.1, + "end": 13374.88, + "probability": 0.7247 + }, + { + "start": 13377.02, + "end": 13379.13, + "probability": 0.7228 + }, + { + "start": 13379.62, + "end": 13382.76, + "probability": 0.0417 + }, + { + "start": 13382.88, + "end": 13383.5, + "probability": 0.2062 + }, + { + "start": 13385.62, + "end": 13387.4, + "probability": 0.441 + }, + { + "start": 13388.02, + "end": 13388.2, + "probability": 0.3827 + }, + { + "start": 13389.14, + "end": 13392.44, + "probability": 0.6566 + }, + { + "start": 13392.57, + "end": 13394.6, + "probability": 0.2665 + }, + { + "start": 13394.7, + "end": 13394.7, + "probability": 0.0132 + }, + { + "start": 13402.12, + "end": 13402.66, + "probability": 0.0792 + }, + { + "start": 13402.66, + "end": 13403.5, + "probability": 0.1273 + }, + { + "start": 13404.54, + "end": 13405.78, + "probability": 0.6313 + }, + { + "start": 13408.0, + "end": 13413.28, + "probability": 0.8791 + }, + { + "start": 13414.16, + "end": 13418.8, + "probability": 0.9763 + }, + { + "start": 13420.38, + "end": 13423.66, + "probability": 0.8842 + }, + { + "start": 13425.36, + "end": 13428.48, + "probability": 0.9351 + }, + { + "start": 13429.48, + "end": 13432.09, + "probability": 0.9845 + }, + { + "start": 13433.38, + "end": 13436.12, + "probability": 0.9355 + }, + { + "start": 13437.38, + "end": 13439.08, + "probability": 0.8707 + }, + { + "start": 13440.36, + "end": 13444.26, + "probability": 0.8948 + }, + { + "start": 13444.72, + "end": 13447.58, + "probability": 0.9568 + }, + { + "start": 13448.98, + "end": 13452.76, + "probability": 0.9943 + }, + { + "start": 13452.76, + "end": 13455.74, + "probability": 0.9866 + }, + { + "start": 13456.62, + "end": 13458.06, + "probability": 0.6875 + }, + { + "start": 13459.9, + "end": 13461.3, + "probability": 0.8373 + }, + { + "start": 13461.4, + "end": 13461.88, + "probability": 0.851 + }, + { + "start": 13461.96, + "end": 13462.94, + "probability": 0.9282 + }, + { + "start": 13463.0, + "end": 13464.0, + "probability": 0.8448 + }, + { + "start": 13464.16, + "end": 13466.46, + "probability": 0.6821 + }, + { + "start": 13466.86, + "end": 13467.34, + "probability": 0.456 + }, + { + "start": 13467.44, + "end": 13468.54, + "probability": 0.7223 + }, + { + "start": 13468.58, + "end": 13469.58, + "probability": 0.9795 + }, + { + "start": 13471.2, + "end": 13473.02, + "probability": 0.9891 + }, + { + "start": 13473.02, + "end": 13475.64, + "probability": 0.9041 + }, + { + "start": 13476.66, + "end": 13477.42, + "probability": 0.9844 + }, + { + "start": 13477.5, + "end": 13477.94, + "probability": 0.8078 + }, + { + "start": 13478.12, + "end": 13480.68, + "probability": 0.7168 + }, + { + "start": 13480.76, + "end": 13481.06, + "probability": 0.3911 + }, + { + "start": 13481.32, + "end": 13483.06, + "probability": 0.924 + }, + { + "start": 13484.1, + "end": 13486.38, + "probability": 0.6247 + }, + { + "start": 13487.2, + "end": 13488.16, + "probability": 0.8504 + }, + { + "start": 13488.24, + "end": 13489.83, + "probability": 0.9707 + }, + { + "start": 13490.0, + "end": 13492.26, + "probability": 0.9486 + }, + { + "start": 13492.82, + "end": 13496.3, + "probability": 0.6377 + }, + { + "start": 13496.38, + "end": 13501.22, + "probability": 0.916 + }, + { + "start": 13501.22, + "end": 13504.14, + "probability": 0.9937 + }, + { + "start": 13504.9, + "end": 13510.56, + "probability": 0.9429 + }, + { + "start": 13511.44, + "end": 13517.32, + "probability": 0.8997 + }, + { + "start": 13517.38, + "end": 13519.68, + "probability": 0.9667 + }, + { + "start": 13520.1, + "end": 13522.2, + "probability": 0.8855 + }, + { + "start": 13523.36, + "end": 13526.3, + "probability": 0.9102 + }, + { + "start": 13527.0, + "end": 13530.12, + "probability": 0.8027 + }, + { + "start": 13532.31, + "end": 13534.4, + "probability": 0.1128 + }, + { + "start": 13534.4, + "end": 13534.72, + "probability": 0.3212 + }, + { + "start": 13534.86, + "end": 13536.34, + "probability": 0.6847 + }, + { + "start": 13536.42, + "end": 13537.44, + "probability": 0.5429 + }, + { + "start": 13537.56, + "end": 13539.67, + "probability": 0.9798 + }, + { + "start": 13540.3, + "end": 13540.84, + "probability": 0.9547 + }, + { + "start": 13540.9, + "end": 13542.92, + "probability": 0.8911 + }, + { + "start": 13544.5, + "end": 13545.28, + "probability": 0.9961 + }, + { + "start": 13546.04, + "end": 13547.42, + "probability": 0.4779 + }, + { + "start": 13547.48, + "end": 13548.54, + "probability": 0.7161 + }, + { + "start": 13548.6, + "end": 13548.6, + "probability": 0.0017 + }, + { + "start": 13548.68, + "end": 13549.58, + "probability": 0.8039 + }, + { + "start": 13550.76, + "end": 13552.72, + "probability": 0.9688 + }, + { + "start": 13552.82, + "end": 13553.04, + "probability": 0.5441 + }, + { + "start": 13553.42, + "end": 13556.28, + "probability": 0.9639 + }, + { + "start": 13556.38, + "end": 13557.42, + "probability": 0.9393 + }, + { + "start": 13558.18, + "end": 13561.76, + "probability": 0.9945 + }, + { + "start": 13562.54, + "end": 13565.42, + "probability": 0.967 + }, + { + "start": 13565.64, + "end": 13568.88, + "probability": 0.9591 + }, + { + "start": 13569.04, + "end": 13570.88, + "probability": 0.7973 + }, + { + "start": 13571.02, + "end": 13571.62, + "probability": 0.7654 + }, + { + "start": 13571.66, + "end": 13572.64, + "probability": 0.9185 + }, + { + "start": 13573.52, + "end": 13574.62, + "probability": 0.9976 + }, + { + "start": 13575.54, + "end": 13577.66, + "probability": 0.9657 + }, + { + "start": 13578.26, + "end": 13580.82, + "probability": 0.7436 + }, + { + "start": 13580.9, + "end": 13582.5, + "probability": 0.7073 + }, + { + "start": 13582.66, + "end": 13589.02, + "probability": 0.8977 + }, + { + "start": 13589.12, + "end": 13589.94, + "probability": 0.9127 + }, + { + "start": 13590.2, + "end": 13591.86, + "probability": 0.9755 + }, + { + "start": 13591.96, + "end": 13593.38, + "probability": 0.7704 + }, + { + "start": 13593.5, + "end": 13595.52, + "probability": 0.8054 + }, + { + "start": 13596.36, + "end": 13597.28, + "probability": 0.7691 + }, + { + "start": 13598.04, + "end": 13600.22, + "probability": 0.936 + }, + { + "start": 13601.02, + "end": 13601.84, + "probability": 0.813 + }, + { + "start": 13601.86, + "end": 13603.7, + "probability": 0.8844 + }, + { + "start": 13603.82, + "end": 13604.14, + "probability": 0.8704 + }, + { + "start": 13607.84, + "end": 13611.28, + "probability": 0.9742 + }, + { + "start": 13629.84, + "end": 13631.34, + "probability": 0.5721 + }, + { + "start": 13632.68, + "end": 13632.88, + "probability": 0.3309 + }, + { + "start": 13633.82, + "end": 13634.36, + "probability": 0.0208 + }, + { + "start": 13639.8, + "end": 13640.84, + "probability": 0.7427 + }, + { + "start": 13641.5, + "end": 13643.66, + "probability": 0.9444 + }, + { + "start": 13644.48, + "end": 13645.88, + "probability": 0.8947 + }, + { + "start": 13646.38, + "end": 13647.28, + "probability": 0.9047 + }, + { + "start": 13647.55, + "end": 13650.02, + "probability": 0.8991 + }, + { + "start": 13650.04, + "end": 13652.34, + "probability": 0.996 + }, + { + "start": 13653.1, + "end": 13656.78, + "probability": 0.9967 + }, + { + "start": 13658.7, + "end": 13665.68, + "probability": 0.9915 + }, + { + "start": 13666.12, + "end": 13671.56, + "probability": 0.9849 + }, + { + "start": 13672.42, + "end": 13675.62, + "probability": 0.8551 + }, + { + "start": 13676.14, + "end": 13678.36, + "probability": 0.9119 + }, + { + "start": 13679.12, + "end": 13683.76, + "probability": 0.9233 + }, + { + "start": 13684.04, + "end": 13685.78, + "probability": 0.9753 + }, + { + "start": 13685.8, + "end": 13686.94, + "probability": 0.8921 + }, + { + "start": 13688.04, + "end": 13690.29, + "probability": 0.9694 + }, + { + "start": 13690.58, + "end": 13691.56, + "probability": 0.9399 + }, + { + "start": 13691.7, + "end": 13692.56, + "probability": 0.7099 + }, + { + "start": 13692.6, + "end": 13693.52, + "probability": 0.892 + }, + { + "start": 13693.98, + "end": 13694.86, + "probability": 0.9161 + }, + { + "start": 13694.9, + "end": 13699.6, + "probability": 0.9492 + }, + { + "start": 13699.66, + "end": 13701.22, + "probability": 0.9608 + }, + { + "start": 13701.76, + "end": 13705.18, + "probability": 0.9902 + }, + { + "start": 13705.34, + "end": 13708.36, + "probability": 0.869 + }, + { + "start": 13708.82, + "end": 13712.18, + "probability": 0.7966 + }, + { + "start": 13712.48, + "end": 13719.88, + "probability": 0.982 + }, + { + "start": 13720.56, + "end": 13724.48, + "probability": 0.9984 + }, + { + "start": 13724.78, + "end": 13727.48, + "probability": 0.9941 + }, + { + "start": 13728.0, + "end": 13729.78, + "probability": 0.9889 + }, + { + "start": 13729.98, + "end": 13730.76, + "probability": 0.9403 + }, + { + "start": 13731.22, + "end": 13733.38, + "probability": 0.966 + }, + { + "start": 13735.0, + "end": 13739.92, + "probability": 0.9902 + }, + { + "start": 13739.92, + "end": 13742.62, + "probability": 0.9829 + }, + { + "start": 13743.28, + "end": 13749.36, + "probability": 0.9941 + }, + { + "start": 13749.46, + "end": 13751.22, + "probability": 0.7981 + }, + { + "start": 13752.34, + "end": 13754.26, + "probability": 0.9766 + }, + { + "start": 13754.34, + "end": 13755.88, + "probability": 0.9897 + }, + { + "start": 13756.28, + "end": 13756.6, + "probability": 0.6981 + }, + { + "start": 13756.7, + "end": 13758.3, + "probability": 0.6555 + }, + { + "start": 13758.5, + "end": 13761.54, + "probability": 0.9707 + }, + { + "start": 13763.18, + "end": 13763.18, + "probability": 0.0468 + }, + { + "start": 13763.18, + "end": 13763.26, + "probability": 0.5857 + }, + { + "start": 13763.44, + "end": 13764.12, + "probability": 0.7117 + }, + { + "start": 13764.2, + "end": 13766.58, + "probability": 0.9838 + }, + { + "start": 13766.64, + "end": 13767.7, + "probability": 0.9362 + }, + { + "start": 13768.18, + "end": 13770.74, + "probability": 0.9272 + }, + { + "start": 13772.72, + "end": 13774.66, + "probability": 0.1231 + }, + { + "start": 13775.34, + "end": 13776.9, + "probability": 0.8993 + }, + { + "start": 13777.34, + "end": 13781.06, + "probability": 0.9894 + }, + { + "start": 13781.1, + "end": 13783.28, + "probability": 0.9416 + }, + { + "start": 13783.46, + "end": 13788.86, + "probability": 0.9924 + }, + { + "start": 13789.54, + "end": 13791.62, + "probability": 0.8048 + }, + { + "start": 13791.92, + "end": 13794.2, + "probability": 0.8982 + }, + { + "start": 13794.4, + "end": 13797.14, + "probability": 0.9362 + }, + { + "start": 13797.52, + "end": 13798.56, + "probability": 0.9453 + }, + { + "start": 13798.62, + "end": 13803.26, + "probability": 0.8327 + }, + { + "start": 13803.34, + "end": 13807.64, + "probability": 0.7049 + }, + { + "start": 13807.78, + "end": 13809.14, + "probability": 0.7767 + }, + { + "start": 13809.32, + "end": 13812.5, + "probability": 0.7348 + }, + { + "start": 13812.54, + "end": 13815.1, + "probability": 0.9961 + }, + { + "start": 13815.32, + "end": 13818.4, + "probability": 0.9492 + }, + { + "start": 13818.5, + "end": 13819.38, + "probability": 0.934 + }, + { + "start": 13819.54, + "end": 13821.44, + "probability": 0.9721 + }, + { + "start": 13821.7, + "end": 13823.44, + "probability": 0.8487 + }, + { + "start": 13823.86, + "end": 13828.78, + "probability": 0.9707 + }, + { + "start": 13828.78, + "end": 13828.84, + "probability": 0.5813 + }, + { + "start": 13828.84, + "end": 13829.14, + "probability": 0.665 + }, + { + "start": 13829.98, + "end": 13832.6, + "probability": 0.9271 + }, + { + "start": 13833.26, + "end": 13835.12, + "probability": 0.8203 + }, + { + "start": 13860.58, + "end": 13861.54, + "probability": 0.2284 + }, + { + "start": 13862.72, + "end": 13863.44, + "probability": 0.87 + }, + { + "start": 13865.24, + "end": 13868.02, + "probability": 0.8253 + }, + { + "start": 13868.68, + "end": 13870.74, + "probability": 0.9912 + }, + { + "start": 13871.28, + "end": 13873.22, + "probability": 0.9895 + }, + { + "start": 13874.34, + "end": 13876.42, + "probability": 0.9517 + }, + { + "start": 13877.18, + "end": 13880.48, + "probability": 0.7179 + }, + { + "start": 13880.58, + "end": 13883.16, + "probability": 0.5701 + }, + { + "start": 13883.46, + "end": 13885.34, + "probability": 0.9086 + }, + { + "start": 13886.24, + "end": 13890.14, + "probability": 0.8921 + }, + { + "start": 13891.39, + "end": 13893.52, + "probability": 0.9713 + }, + { + "start": 13894.62, + "end": 13898.3, + "probability": 0.9546 + }, + { + "start": 13898.3, + "end": 13903.46, + "probability": 0.9409 + }, + { + "start": 13904.1, + "end": 13905.46, + "probability": 0.9458 + }, + { + "start": 13905.94, + "end": 13908.42, + "probability": 0.9237 + }, + { + "start": 13909.04, + "end": 13915.12, + "probability": 0.9215 + }, + { + "start": 13915.5, + "end": 13915.78, + "probability": 0.4232 + }, + { + "start": 13915.8, + "end": 13917.28, + "probability": 0.9144 + }, + { + "start": 13917.48, + "end": 13918.76, + "probability": 0.9734 + }, + { + "start": 13918.8, + "end": 13919.44, + "probability": 0.6154 + }, + { + "start": 13920.36, + "end": 13923.56, + "probability": 0.9788 + }, + { + "start": 13924.32, + "end": 13927.4, + "probability": 0.9199 + }, + { + "start": 13928.52, + "end": 13929.84, + "probability": 0.901 + }, + { + "start": 13930.22, + "end": 13933.44, + "probability": 0.8525 + }, + { + "start": 13933.44, + "end": 13936.74, + "probability": 0.7597 + }, + { + "start": 13937.38, + "end": 13937.94, + "probability": 0.7609 + }, + { + "start": 13938.78, + "end": 13941.54, + "probability": 0.988 + }, + { + "start": 13942.08, + "end": 13947.54, + "probability": 0.983 + }, + { + "start": 13947.54, + "end": 13950.3, + "probability": 0.7796 + }, + { + "start": 13950.42, + "end": 13950.78, + "probability": 0.4567 + }, + { + "start": 13950.78, + "end": 13951.6, + "probability": 0.9121 + }, + { + "start": 13951.76, + "end": 13955.42, + "probability": 0.9905 + }, + { + "start": 13955.54, + "end": 13957.46, + "probability": 0.8781 + }, + { + "start": 13958.32, + "end": 13959.4, + "probability": 0.5797 + }, + { + "start": 13959.46, + "end": 13959.94, + "probability": 0.8843 + }, + { + "start": 13960.4, + "end": 13961.72, + "probability": 0.9275 + }, + { + "start": 13962.16, + "end": 13965.74, + "probability": 0.8801 + }, + { + "start": 13965.78, + "end": 13967.44, + "probability": 0.7901 + }, + { + "start": 13967.6, + "end": 13968.87, + "probability": 0.8556 + }, + { + "start": 13969.4, + "end": 13972.16, + "probability": 0.7429 + }, + { + "start": 13972.3, + "end": 13973.74, + "probability": 0.8295 + }, + { + "start": 13974.64, + "end": 13981.0, + "probability": 0.9706 + }, + { + "start": 13981.54, + "end": 13983.76, + "probability": 0.922 + }, + { + "start": 13983.9, + "end": 13984.62, + "probability": 0.6003 + }, + { + "start": 13984.76, + "end": 13985.74, + "probability": 0.5073 + }, + { + "start": 13986.3, + "end": 13990.5, + "probability": 0.8491 + }, + { + "start": 13990.9, + "end": 13995.16, + "probability": 0.771 + }, + { + "start": 13995.28, + "end": 14000.94, + "probability": 0.8741 + }, + { + "start": 14001.52, + "end": 14006.04, + "probability": 0.9961 + }, + { + "start": 14006.04, + "end": 14011.34, + "probability": 0.9966 + }, + { + "start": 14011.48, + "end": 14012.94, + "probability": 0.9513 + }, + { + "start": 14013.08, + "end": 14014.16, + "probability": 0.8585 + }, + { + "start": 14014.82, + "end": 14018.38, + "probability": 0.8848 + }, + { + "start": 14019.02, + "end": 14022.62, + "probability": 0.9289 + }, + { + "start": 14023.26, + "end": 14025.9, + "probability": 0.7428 + }, + { + "start": 14025.96, + "end": 14029.14, + "probability": 0.9834 + }, + { + "start": 14029.56, + "end": 14031.16, + "probability": 0.985 + }, + { + "start": 14031.34, + "end": 14037.3, + "probability": 0.9883 + }, + { + "start": 14038.06, + "end": 14043.76, + "probability": 0.9829 + }, + { + "start": 14044.02, + "end": 14045.83, + "probability": 0.7783 + }, + { + "start": 14046.74, + "end": 14046.74, + "probability": 0.5829 + }, + { + "start": 14046.74, + "end": 14048.02, + "probability": 0.4453 + }, + { + "start": 14048.3, + "end": 14050.38, + "probability": 0.9244 + }, + { + "start": 14050.6, + "end": 14052.7, + "probability": 0.805 + }, + { + "start": 14053.0, + "end": 14055.18, + "probability": 0.8767 + }, + { + "start": 14055.24, + "end": 14056.54, + "probability": 0.8209 + }, + { + "start": 14056.9, + "end": 14059.4, + "probability": 0.6243 + }, + { + "start": 14059.4, + "end": 14059.9, + "probability": 0.8207 + }, + { + "start": 14060.02, + "end": 14060.2, + "probability": 0.7906 + }, + { + "start": 14061.36, + "end": 14061.84, + "probability": 0.7223 + }, + { + "start": 14061.9, + "end": 14063.62, + "probability": 0.9613 + }, + { + "start": 14063.74, + "end": 14064.52, + "probability": 0.6772 + }, + { + "start": 14064.86, + "end": 14066.06, + "probability": 0.9064 + }, + { + "start": 14070.28, + "end": 14071.42, + "probability": 0.3948 + }, + { + "start": 14071.56, + "end": 14073.12, + "probability": 0.6056 + }, + { + "start": 14073.26, + "end": 14075.24, + "probability": 0.9878 + }, + { + "start": 14076.22, + "end": 14079.18, + "probability": 0.9976 + }, + { + "start": 14079.92, + "end": 14082.32, + "probability": 0.9858 + }, + { + "start": 14082.7, + "end": 14084.1, + "probability": 0.9893 + }, + { + "start": 14084.3, + "end": 14085.72, + "probability": 0.9817 + }, + { + "start": 14086.1, + "end": 14087.44, + "probability": 0.8999 + }, + { + "start": 14087.9, + "end": 14092.98, + "probability": 0.9839 + }, + { + "start": 14093.22, + "end": 14099.46, + "probability": 0.9902 + }, + { + "start": 14099.46, + "end": 14104.42, + "probability": 0.9829 + }, + { + "start": 14105.6, + "end": 14107.08, + "probability": 0.9385 + }, + { + "start": 14107.94, + "end": 14110.98, + "probability": 0.9924 + }, + { + "start": 14111.03, + "end": 14115.42, + "probability": 0.9989 + }, + { + "start": 14116.08, + "end": 14120.72, + "probability": 0.9331 + }, + { + "start": 14121.02, + "end": 14124.84, + "probability": 0.9197 + }, + { + "start": 14126.43, + "end": 14129.64, + "probability": 0.6547 + }, + { + "start": 14130.94, + "end": 14133.6, + "probability": 0.9927 + }, + { + "start": 14133.6, + "end": 14138.54, + "probability": 0.9694 + }, + { + "start": 14139.58, + "end": 14143.1, + "probability": 0.9956 + }, + { + "start": 14143.1, + "end": 14146.36, + "probability": 0.9753 + }, + { + "start": 14146.72, + "end": 14148.96, + "probability": 0.9793 + }, + { + "start": 14149.62, + "end": 14153.82, + "probability": 0.989 + }, + { + "start": 14154.64, + "end": 14155.34, + "probability": 0.6985 + }, + { + "start": 14156.4, + "end": 14160.74, + "probability": 0.947 + }, + { + "start": 14161.16, + "end": 14161.6, + "probability": 0.2621 + }, + { + "start": 14161.6, + "end": 14168.6, + "probability": 0.7865 + }, + { + "start": 14169.52, + "end": 14173.58, + "probability": 0.9841 + }, + { + "start": 14173.58, + "end": 14177.82, + "probability": 0.9993 + }, + { + "start": 14177.82, + "end": 14182.44, + "probability": 0.9995 + }, + { + "start": 14183.14, + "end": 14185.78, + "probability": 0.9929 + }, + { + "start": 14185.78, + "end": 14189.04, + "probability": 0.9987 + }, + { + "start": 14189.08, + "end": 14190.1, + "probability": 0.7441 + }, + { + "start": 14190.5, + "end": 14196.46, + "probability": 0.9756 + }, + { + "start": 14196.46, + "end": 14199.08, + "probability": 0.998 + }, + { + "start": 14199.74, + "end": 14202.54, + "probability": 0.9971 + }, + { + "start": 14202.98, + "end": 14204.46, + "probability": 0.8447 + }, + { + "start": 14204.84, + "end": 14207.02, + "probability": 0.9932 + }, + { + "start": 14207.7, + "end": 14210.84, + "probability": 0.8685 + }, + { + "start": 14213.02, + "end": 14218.64, + "probability": 0.9865 + }, + { + "start": 14218.68, + "end": 14219.12, + "probability": 0.7644 + }, + { + "start": 14220.22, + "end": 14222.48, + "probability": 0.9868 + }, + { + "start": 14223.14, + "end": 14224.94, + "probability": 0.7411 + }, + { + "start": 14225.1, + "end": 14225.56, + "probability": 0.5829 + }, + { + "start": 14225.86, + "end": 14227.0, + "probability": 0.4234 + }, + { + "start": 14227.06, + "end": 14228.12, + "probability": 0.2412 + }, + { + "start": 14228.34, + "end": 14229.64, + "probability": 0.7288 + }, + { + "start": 14229.88, + "end": 14233.8, + "probability": 0.9187 + }, + { + "start": 14240.4, + "end": 14242.48, + "probability": 0.6681 + }, + { + "start": 14243.66, + "end": 14243.88, + "probability": 0.4806 + }, + { + "start": 14244.0, + "end": 14247.18, + "probability": 0.937 + }, + { + "start": 14248.24, + "end": 14253.34, + "probability": 0.8044 + }, + { + "start": 14254.62, + "end": 14257.26, + "probability": 0.9812 + }, + { + "start": 14258.4, + "end": 14259.12, + "probability": 0.2004 + }, + { + "start": 14259.42, + "end": 14264.74, + "probability": 0.7693 + }, + { + "start": 14265.6, + "end": 14268.66, + "probability": 0.9412 + }, + { + "start": 14269.78, + "end": 14271.14, + "probability": 0.9192 + }, + { + "start": 14271.28, + "end": 14271.88, + "probability": 0.832 + }, + { + "start": 14271.94, + "end": 14274.26, + "probability": 0.869 + }, + { + "start": 14275.42, + "end": 14277.66, + "probability": 0.8572 + }, + { + "start": 14277.84, + "end": 14280.2, + "probability": 0.8674 + }, + { + "start": 14280.78, + "end": 14282.6, + "probability": 0.895 + }, + { + "start": 14283.42, + "end": 14286.51, + "probability": 0.9858 + }, + { + "start": 14288.06, + "end": 14289.22, + "probability": 0.9563 + }, + { + "start": 14289.62, + "end": 14290.38, + "probability": 0.8727 + }, + { + "start": 14291.12, + "end": 14292.3, + "probability": 0.9761 + }, + { + "start": 14293.4, + "end": 14295.14, + "probability": 0.9966 + }, + { + "start": 14295.2, + "end": 14296.31, + "probability": 0.9186 + }, + { + "start": 14296.42, + "end": 14299.54, + "probability": 0.9873 + }, + { + "start": 14300.94, + "end": 14302.15, + "probability": 0.9312 + }, + { + "start": 14302.84, + "end": 14304.84, + "probability": 0.7514 + }, + { + "start": 14305.66, + "end": 14309.16, + "probability": 0.9697 + }, + { + "start": 14309.2, + "end": 14311.24, + "probability": 0.7519 + }, + { + "start": 14311.34, + "end": 14313.86, + "probability": 0.7743 + }, + { + "start": 14314.06, + "end": 14315.74, + "probability": 0.6889 + }, + { + "start": 14315.9, + "end": 14318.86, + "probability": 0.989 + }, + { + "start": 14319.44, + "end": 14322.4, + "probability": 0.8469 + }, + { + "start": 14322.94, + "end": 14325.11, + "probability": 0.8318 + }, + { + "start": 14325.52, + "end": 14325.7, + "probability": 0.7561 + }, + { + "start": 14325.78, + "end": 14330.54, + "probability": 0.9089 + }, + { + "start": 14331.24, + "end": 14332.58, + "probability": 0.8259 + }, + { + "start": 14332.74, + "end": 14333.26, + "probability": 0.9501 + }, + { + "start": 14333.98, + "end": 14334.68, + "probability": 0.99 + }, + { + "start": 14335.36, + "end": 14335.9, + "probability": 0.9935 + }, + { + "start": 14336.52, + "end": 14339.02, + "probability": 0.9222 + }, + { + "start": 14339.16, + "end": 14340.08, + "probability": 0.9691 + }, + { + "start": 14340.86, + "end": 14343.02, + "probability": 0.8849 + }, + { + "start": 14344.64, + "end": 14345.64, + "probability": 0.7659 + }, + { + "start": 14349.14, + "end": 14352.08, + "probability": 0.9985 + }, + { + "start": 14352.98, + "end": 14358.6, + "probability": 0.9889 + }, + { + "start": 14358.7, + "end": 14360.74, + "probability": 0.9967 + }, + { + "start": 14361.46, + "end": 14364.02, + "probability": 0.9874 + }, + { + "start": 14364.1, + "end": 14364.53, + "probability": 0.8489 + }, + { + "start": 14364.68, + "end": 14365.84, + "probability": 0.7933 + }, + { + "start": 14366.46, + "end": 14367.93, + "probability": 0.6871 + }, + { + "start": 14369.52, + "end": 14373.1, + "probability": 0.9307 + }, + { + "start": 14375.0, + "end": 14376.38, + "probability": 0.7887 + }, + { + "start": 14376.96, + "end": 14380.72, + "probability": 0.9286 + }, + { + "start": 14381.38, + "end": 14383.48, + "probability": 0.9733 + }, + { + "start": 14383.98, + "end": 14386.94, + "probability": 0.8454 + }, + { + "start": 14388.04, + "end": 14391.49, + "probability": 0.707 + }, + { + "start": 14391.6, + "end": 14392.66, + "probability": 0.782 + }, + { + "start": 14393.2, + "end": 14393.66, + "probability": 0.934 + }, + { + "start": 14394.64, + "end": 14398.22, + "probability": 0.9865 + }, + { + "start": 14399.14, + "end": 14400.66, + "probability": 0.9951 + }, + { + "start": 14400.92, + "end": 14401.62, + "probability": 0.8503 + }, + { + "start": 14401.72, + "end": 14402.86, + "probability": 0.9976 + }, + { + "start": 14403.7, + "end": 14406.77, + "probability": 0.9958 + }, + { + "start": 14407.72, + "end": 14410.22, + "probability": 0.995 + }, + { + "start": 14411.28, + "end": 14413.29, + "probability": 0.7314 + }, + { + "start": 14414.52, + "end": 14415.34, + "probability": 0.946 + }, + { + "start": 14415.46, + "end": 14418.58, + "probability": 0.9866 + }, + { + "start": 14418.68, + "end": 14419.16, + "probability": 0.8956 + }, + { + "start": 14419.52, + "end": 14421.46, + "probability": 0.6352 + }, + { + "start": 14421.6, + "end": 14422.56, + "probability": 0.7273 + }, + { + "start": 14423.58, + "end": 14428.52, + "probability": 0.5719 + }, + { + "start": 14429.16, + "end": 14429.98, + "probability": 0.9819 + }, + { + "start": 14430.74, + "end": 14434.56, + "probability": 0.967 + }, + { + "start": 14435.16, + "end": 14438.72, + "probability": 0.7474 + }, + { + "start": 14439.32, + "end": 14439.42, + "probability": 0.3015 + }, + { + "start": 14440.02, + "end": 14440.22, + "probability": 0.0223 + }, + { + "start": 14440.22, + "end": 14440.86, + "probability": 0.2953 + }, + { + "start": 14441.86, + "end": 14445.45, + "probability": 0.9054 + }, + { + "start": 14446.0, + "end": 14446.82, + "probability": 0.8281 + }, + { + "start": 14448.08, + "end": 14449.86, + "probability": 0.9092 + }, + { + "start": 14450.4, + "end": 14451.6, + "probability": 0.9092 + }, + { + "start": 14451.72, + "end": 14454.24, + "probability": 0.7808 + }, + { + "start": 14455.18, + "end": 14458.88, + "probability": 0.8278 + }, + { + "start": 14459.52, + "end": 14462.48, + "probability": 0.8354 + }, + { + "start": 14462.78, + "end": 14464.6, + "probability": 0.7923 + }, + { + "start": 14465.22, + "end": 14469.26, + "probability": 0.9902 + }, + { + "start": 14469.32, + "end": 14470.36, + "probability": 0.8573 + }, + { + "start": 14472.0, + "end": 14473.18, + "probability": 0.5114 + }, + { + "start": 14475.16, + "end": 14476.42, + "probability": 0.8086 + }, + { + "start": 14478.3, + "end": 14483.34, + "probability": 0.9857 + }, + { + "start": 14484.18, + "end": 14486.22, + "probability": 0.9784 + }, + { + "start": 14487.62, + "end": 14489.78, + "probability": 0.8718 + }, + { + "start": 14489.82, + "end": 14492.46, + "probability": 0.9773 + }, + { + "start": 14493.28, + "end": 14494.62, + "probability": 0.7674 + }, + { + "start": 14495.8, + "end": 14500.68, + "probability": 0.9816 + }, + { + "start": 14501.26, + "end": 14505.3, + "probability": 0.9951 + }, + { + "start": 14505.9, + "end": 14509.1, + "probability": 0.9985 + }, + { + "start": 14509.6, + "end": 14516.54, + "probability": 0.9956 + }, + { + "start": 14516.6, + "end": 14517.12, + "probability": 0.6874 + }, + { + "start": 14517.18, + "end": 14519.02, + "probability": 0.967 + }, + { + "start": 14519.6, + "end": 14520.5, + "probability": 0.9204 + }, + { + "start": 14521.74, + "end": 14525.94, + "probability": 0.0631 + }, + { + "start": 14526.82, + "end": 14529.94, + "probability": 0.5069 + }, + { + "start": 14530.76, + "end": 14537.32, + "probability": 0.179 + }, + { + "start": 14537.46, + "end": 14538.78, + "probability": 0.9844 + }, + { + "start": 14539.0, + "end": 14539.62, + "probability": 0.8218 + }, + { + "start": 14539.7, + "end": 14540.94, + "probability": 0.9989 + }, + { + "start": 14541.04, + "end": 14541.96, + "probability": 0.9708 + }, + { + "start": 14542.12, + "end": 14542.54, + "probability": 0.7089 + }, + { + "start": 14542.72, + "end": 14542.9, + "probability": 0.581 + }, + { + "start": 14542.98, + "end": 14546.42, + "probability": 0.962 + }, + { + "start": 14547.42, + "end": 14549.16, + "probability": 0.9976 + }, + { + "start": 14549.22, + "end": 14550.26, + "probability": 0.9108 + }, + { + "start": 14550.4, + "end": 14551.2, + "probability": 0.8143 + }, + { + "start": 14552.08, + "end": 14552.8, + "probability": 0.8567 + }, + { + "start": 14553.2, + "end": 14553.44, + "probability": 0.7015 + }, + { + "start": 14553.48, + "end": 14555.12, + "probability": 0.9885 + }, + { + "start": 14555.62, + "end": 14558.64, + "probability": 0.9564 + }, + { + "start": 14558.66, + "end": 14560.36, + "probability": 0.9603 + }, + { + "start": 14560.44, + "end": 14560.96, + "probability": 0.7885 + }, + { + "start": 14561.18, + "end": 14561.74, + "probability": 0.3951 + }, + { + "start": 14561.82, + "end": 14563.74, + "probability": 0.8843 + }, + { + "start": 14564.24, + "end": 14565.0, + "probability": 0.636 + }, + { + "start": 14565.28, + "end": 14566.44, + "probability": 0.847 + }, + { + "start": 14566.48, + "end": 14567.07, + "probability": 0.8898 + }, + { + "start": 14567.54, + "end": 14568.72, + "probability": 0.9139 + }, + { + "start": 14569.04, + "end": 14569.76, + "probability": 0.7223 + }, + { + "start": 14569.88, + "end": 14571.56, + "probability": 0.7739 + }, + { + "start": 14572.14, + "end": 14573.12, + "probability": 0.9247 + }, + { + "start": 14573.2, + "end": 14574.42, + "probability": 0.9448 + }, + { + "start": 14574.48, + "end": 14576.08, + "probability": 0.9852 + }, + { + "start": 14576.52, + "end": 14578.18, + "probability": 0.9984 + }, + { + "start": 14578.8, + "end": 14580.1, + "probability": 0.9945 + }, + { + "start": 14580.2, + "end": 14581.88, + "probability": 0.9153 + }, + { + "start": 14581.92, + "end": 14583.64, + "probability": 0.9937 + }, + { + "start": 14584.18, + "end": 14590.24, + "probability": 0.9673 + }, + { + "start": 14590.98, + "end": 14597.6, + "probability": 0.996 + }, + { + "start": 14597.78, + "end": 14598.7, + "probability": 0.9749 + }, + { + "start": 14599.34, + "end": 14601.82, + "probability": 0.9856 + }, + { + "start": 14602.1, + "end": 14606.2, + "probability": 0.9917 + }, + { + "start": 14606.56, + "end": 14607.76, + "probability": 0.8759 + }, + { + "start": 14608.16, + "end": 14609.18, + "probability": 0.5548 + }, + { + "start": 14609.26, + "end": 14615.8, + "probability": 0.9831 + }, + { + "start": 14616.02, + "end": 14616.02, + "probability": 0.0536 + }, + { + "start": 14616.02, + "end": 14617.0, + "probability": 0.6301 + }, + { + "start": 14617.54, + "end": 14618.32, + "probability": 0.5084 + }, + { + "start": 14618.66, + "end": 14620.82, + "probability": 0.9873 + }, + { + "start": 14621.1, + "end": 14623.34, + "probability": 0.9857 + }, + { + "start": 14623.84, + "end": 14624.06, + "probability": 0.2524 + }, + { + "start": 14624.06, + "end": 14629.94, + "probability": 0.8742 + }, + { + "start": 14630.3, + "end": 14631.62, + "probability": 0.4379 + }, + { + "start": 14631.8, + "end": 14632.5, + "probability": 0.7673 + }, + { + "start": 14632.66, + "end": 14633.72, + "probability": 0.752 + }, + { + "start": 14633.9, + "end": 14639.7, + "probability": 0.6705 + }, + { + "start": 14640.14, + "end": 14642.66, + "probability": 0.9964 + }, + { + "start": 14643.02, + "end": 14646.5, + "probability": 0.9946 + }, + { + "start": 14646.7, + "end": 14647.94, + "probability": 0.6781 + }, + { + "start": 14648.3, + "end": 14649.0, + "probability": 0.8208 + }, + { + "start": 14649.12, + "end": 14654.24, + "probability": 0.9634 + }, + { + "start": 14654.3, + "end": 14659.54, + "probability": 0.9938 + }, + { + "start": 14659.76, + "end": 14664.04, + "probability": 0.9858 + }, + { + "start": 14664.14, + "end": 14665.72, + "probability": 0.6809 + }, + { + "start": 14665.76, + "end": 14666.8, + "probability": 0.8565 + }, + { + "start": 14667.08, + "end": 14668.2, + "probability": 0.6514 + }, + { + "start": 14668.26, + "end": 14670.8, + "probability": 0.9507 + }, + { + "start": 14671.06, + "end": 14673.2, + "probability": 0.6243 + }, + { + "start": 14673.46, + "end": 14674.52, + "probability": 0.967 + }, + { + "start": 14674.74, + "end": 14675.13, + "probability": 0.8848 + }, + { + "start": 14675.76, + "end": 14678.2, + "probability": 0.801 + }, + { + "start": 14678.38, + "end": 14679.1, + "probability": 0.9833 + }, + { + "start": 14679.44, + "end": 14680.56, + "probability": 0.9893 + }, + { + "start": 14681.0, + "end": 14684.72, + "probability": 0.948 + }, + { + "start": 14685.06, + "end": 14686.4, + "probability": 0.9653 + }, + { + "start": 14687.4, + "end": 14690.64, + "probability": 0.3157 + }, + { + "start": 14691.22, + "end": 14698.42, + "probability": 0.9719 + }, + { + "start": 14703.3, + "end": 14704.94, + "probability": 0.678 + }, + { + "start": 14721.58, + "end": 14727.66, + "probability": 0.7238 + }, + { + "start": 14730.18, + "end": 14732.34, + "probability": 0.804 + }, + { + "start": 14733.26, + "end": 14736.44, + "probability": 0.731 + }, + { + "start": 14737.88, + "end": 14740.1, + "probability": 0.6904 + }, + { + "start": 14740.1, + "end": 14740.32, + "probability": 0.5542 + }, + { + "start": 14740.32, + "end": 14741.66, + "probability": 0.2637 + }, + { + "start": 14741.7, + "end": 14744.52, + "probability": 0.2468 + }, + { + "start": 14744.62, + "end": 14747.14, + "probability": 0.937 + }, + { + "start": 14747.44, + "end": 14750.06, + "probability": 0.5992 + }, + { + "start": 14750.82, + "end": 14752.36, + "probability": 0.8721 + }, + { + "start": 14752.76, + "end": 14754.28, + "probability": 0.6851 + }, + { + "start": 14754.6, + "end": 14756.4, + "probability": 0.7963 + }, + { + "start": 14756.64, + "end": 14758.28, + "probability": 0.4731 + }, + { + "start": 14758.4, + "end": 14759.94, + "probability": 0.4707 + }, + { + "start": 14760.34, + "end": 14762.4, + "probability": 0.7641 + }, + { + "start": 14762.6, + "end": 14767.16, + "probability": 0.8507 + }, + { + "start": 14767.62, + "end": 14769.06, + "probability": 0.9238 + }, + { + "start": 14769.14, + "end": 14771.8, + "probability": 0.9948 + }, + { + "start": 14772.4, + "end": 14773.56, + "probability": 0.5681 + }, + { + "start": 14773.76, + "end": 14777.18, + "probability": 0.4862 + }, + { + "start": 14782.22, + "end": 14782.9, + "probability": 0.5003 + }, + { + "start": 14783.6, + "end": 14786.94, + "probability": 0.0958 + }, + { + "start": 14791.02, + "end": 14792.38, + "probability": 0.1845 + }, + { + "start": 14797.28, + "end": 14799.7, + "probability": 0.6425 + }, + { + "start": 14800.16, + "end": 14800.78, + "probability": 0.192 + }, + { + "start": 14800.78, + "end": 14802.38, + "probability": 0.0756 + }, + { + "start": 14802.88, + "end": 14804.88, + "probability": 0.6833 + }, + { + "start": 14806.96, + "end": 14809.42, + "probability": 0.3421 + }, + { + "start": 14820.68, + "end": 14821.64, + "probability": 0.1715 + }, + { + "start": 14824.58, + "end": 14829.06, + "probability": 0.2488 + }, + { + "start": 14829.68, + "end": 14835.52, + "probability": 0.2624 + }, + { + "start": 14835.66, + "end": 14837.46, + "probability": 0.3914 + }, + { + "start": 14838.34, + "end": 14839.46, + "probability": 0.8613 + }, + { + "start": 14839.96, + "end": 14840.98, + "probability": 0.9009 + }, + { + "start": 14840.98, + "end": 14848.12, + "probability": 0.5664 + }, + { + "start": 14848.92, + "end": 14849.06, + "probability": 0.5955 + }, + { + "start": 14849.06, + "end": 14849.06, + "probability": 0.5375 + }, + { + "start": 14849.06, + "end": 14849.22, + "probability": 0.5301 + }, + { + "start": 14849.22, + "end": 14851.96, + "probability": 0.6261 + }, + { + "start": 14852.0, + "end": 14852.88, + "probability": 0.6727 + }, + { + "start": 14853.52, + "end": 14855.72, + "probability": 0.8507 + }, + { + "start": 14856.74, + "end": 14860.8, + "probability": 0.0702 + }, + { + "start": 14860.8, + "end": 14861.42, + "probability": 0.4881 + }, + { + "start": 14861.48, + "end": 14862.38, + "probability": 0.5127 + }, + { + "start": 14862.7, + "end": 14863.96, + "probability": 0.6369 + }, + { + "start": 14863.96, + "end": 14866.12, + "probability": 0.7952 + }, + { + "start": 14866.18, + "end": 14867.2, + "probability": 0.2301 + }, + { + "start": 14867.2, + "end": 14869.94, + "probability": 0.9029 + }, + { + "start": 14870.0, + "end": 14873.64, + "probability": 0.9391 + }, + { + "start": 14873.8, + "end": 14875.3, + "probability": 0.999 + }, + { + "start": 14877.94, + "end": 14878.16, + "probability": 0.0005 + }, + { + "start": 14896.64, + "end": 14898.16, + "probability": 0.0746 + }, + { + "start": 14898.6, + "end": 14898.88, + "probability": 0.0521 + }, + { + "start": 14898.88, + "end": 14900.0, + "probability": 0.1788 + }, + { + "start": 14900.0, + "end": 14900.0, + "probability": 0.0243 + }, + { + "start": 14900.0, + "end": 14901.1, + "probability": 0.1026 + }, + { + "start": 14902.26, + "end": 14905.4, + "probability": 0.066 + }, + { + "start": 14906.14, + "end": 14911.38, + "probability": 0.0263 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15015.0, + "end": 15015.0, + "probability": 0.0 + }, + { + "start": 15023.7, + "end": 15025.2, + "probability": 0.0193 + }, + { + "start": 15025.26, + "end": 15025.7, + "probability": 0.0905 + }, + { + "start": 15025.7, + "end": 15026.38, + "probability": 0.3113 + }, + { + "start": 15029.98, + "end": 15033.74, + "probability": 0.0914 + }, + { + "start": 15034.42, + "end": 15035.24, + "probability": 0.0463 + }, + { + "start": 15035.24, + "end": 15035.96, + "probability": 0.0083 + }, + { + "start": 15036.48, + "end": 15037.4, + "probability": 0.3269 + }, + { + "start": 15037.4, + "end": 15039.04, + "probability": 0.0416 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.0, + "end": 15135.0, + "probability": 0.0 + }, + { + "start": 15135.86, + "end": 15141.68, + "probability": 0.7575 + }, + { + "start": 15144.36, + "end": 15146.16, + "probability": 0.1946 + }, + { + "start": 15148.8, + "end": 15150.24, + "probability": 0.0573 + }, + { + "start": 15150.44, + "end": 15153.54, + "probability": 0.1961 + }, + { + "start": 15153.54, + "end": 15153.54, + "probability": 0.0966 + }, + { + "start": 15153.88, + "end": 15155.44, + "probability": 0.0132 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.0, + "end": 15276.0, + "probability": 0.0 + }, + { + "start": 15276.12, + "end": 15277.08, + "probability": 0.0491 + }, + { + "start": 15278.06, + "end": 15278.08, + "probability": 0.0046 + }, + { + "start": 15278.08, + "end": 15278.08, + "probability": 0.0508 + }, + { + "start": 15278.08, + "end": 15279.62, + "probability": 0.1548 + }, + { + "start": 15280.36, + "end": 15285.16, + "probability": 0.7877 + }, + { + "start": 15285.84, + "end": 15290.76, + "probability": 0.9655 + }, + { + "start": 15291.44, + "end": 15296.86, + "probability": 0.9927 + }, + { + "start": 15300.7, + "end": 15303.46, + "probability": 0.0141 + }, + { + "start": 15403.896, + "end": 15403.896, + "probability": 0.0 + }, + { + "start": 15403.896, + "end": 15403.896, + "probability": 0.0 + }, + { + "start": 15403.896, + "end": 15403.896, + "probability": 0.0 + }, + { + "start": 15403.896, + "end": 15403.896, + "probability": 0.0 + }, + { + "start": 15403.896, + "end": 15403.896, + "probability": 0.0 + } + ], + "segments_count": 5579, + "words_count": 27031, + "avg_words_per_segment": 4.8451, + "avg_segment_duration": 1.9596, + "avg_words_per_minute": 105.2891, + "plenum_id": "32112", + "duration": 15403.88, + "title": null, + "plenum_date": "2013-11-11" +} \ No newline at end of file