diff --git "a/37091/metadata.json" "b/37091/metadata.json" new file mode 100644--- /dev/null +++ "b/37091/metadata.json" @@ -0,0 +1,41182 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "37091", + "quality_score": 0.8949, + "per_segment_quality_scores": [ + { + "start": 62.26, + "end": 62.32, + "probability": 0.0432 + }, + { + "start": 62.32, + "end": 62.32, + "probability": 0.229 + }, + { + "start": 62.32, + "end": 62.32, + "probability": 0.1038 + }, + { + "start": 62.32, + "end": 62.32, + "probability": 0.0129 + }, + { + "start": 62.32, + "end": 62.32, + "probability": 0.1036 + }, + { + "start": 62.32, + "end": 63.26, + "probability": 0.597 + }, + { + "start": 63.34, + "end": 68.22, + "probability": 0.7446 + }, + { + "start": 68.68, + "end": 71.46, + "probability": 0.9551 + }, + { + "start": 71.86, + "end": 72.82, + "probability": 0.9042 + }, + { + "start": 73.64, + "end": 74.34, + "probability": 0.2445 + }, + { + "start": 74.34, + "end": 76.32, + "probability": 0.6206 + }, + { + "start": 76.38, + "end": 80.3, + "probability": 0.8167 + }, + { + "start": 80.3, + "end": 84.04, + "probability": 0.7073 + }, + { + "start": 84.94, + "end": 87.76, + "probability": 0.8569 + }, + { + "start": 88.3, + "end": 92.04, + "probability": 0.9146 + }, + { + "start": 92.8, + "end": 96.22, + "probability": 0.7896 + }, + { + "start": 96.22, + "end": 100.28, + "probability": 0.8722 + }, + { + "start": 100.42, + "end": 100.64, + "probability": 0.503 + }, + { + "start": 101.4, + "end": 102.94, + "probability": 0.5998 + }, + { + "start": 103.1, + "end": 105.92, + "probability": 0.8511 + }, + { + "start": 106.78, + "end": 111.4, + "probability": 0.7738 + }, + { + "start": 111.4, + "end": 116.46, + "probability": 0.7966 + }, + { + "start": 116.54, + "end": 120.76, + "probability": 0.9076 + }, + { + "start": 132.48, + "end": 133.3, + "probability": 0.6647 + }, + { + "start": 134.7, + "end": 138.12, + "probability": 0.963 + }, + { + "start": 140.3, + "end": 143.78, + "probability": 0.8574 + }, + { + "start": 144.44, + "end": 146.02, + "probability": 0.809 + }, + { + "start": 147.18, + "end": 149.9, + "probability": 0.9935 + }, + { + "start": 150.5, + "end": 151.46, + "probability": 0.7931 + }, + { + "start": 152.14, + "end": 154.8, + "probability": 0.8847 + }, + { + "start": 154.8, + "end": 159.2, + "probability": 0.7993 + }, + { + "start": 160.16, + "end": 163.14, + "probability": 0.6631 + }, + { + "start": 163.82, + "end": 165.85, + "probability": 0.7107 + }, + { + "start": 165.94, + "end": 167.58, + "probability": 0.5146 + }, + { + "start": 167.82, + "end": 170.68, + "probability": 0.6769 + }, + { + "start": 172.64, + "end": 175.28, + "probability": 0.9913 + }, + { + "start": 176.42, + "end": 182.04, + "probability": 0.9768 + }, + { + "start": 183.34, + "end": 187.62, + "probability": 0.9992 + }, + { + "start": 189.34, + "end": 193.48, + "probability": 0.9976 + }, + { + "start": 195.06, + "end": 195.52, + "probability": 0.5887 + }, + { + "start": 195.62, + "end": 198.7, + "probability": 0.9541 + }, + { + "start": 200.06, + "end": 203.24, + "probability": 0.7428 + }, + { + "start": 204.14, + "end": 208.1, + "probability": 0.9714 + }, + { + "start": 209.28, + "end": 210.9, + "probability": 0.7585 + }, + { + "start": 210.96, + "end": 212.2, + "probability": 0.7307 + }, + { + "start": 212.3, + "end": 214.96, + "probability": 0.8768 + }, + { + "start": 219.18, + "end": 219.62, + "probability": 0.3435 + }, + { + "start": 219.74, + "end": 222.76, + "probability": 0.9502 + }, + { + "start": 223.16, + "end": 225.2, + "probability": 0.6569 + }, + { + "start": 225.52, + "end": 227.86, + "probability": 0.9688 + }, + { + "start": 228.04, + "end": 230.22, + "probability": 0.9812 + }, + { + "start": 231.06, + "end": 233.7, + "probability": 0.9734 + }, + { + "start": 233.7, + "end": 238.9, + "probability": 0.9934 + }, + { + "start": 239.7, + "end": 245.54, + "probability": 0.9976 + }, + { + "start": 246.4, + "end": 250.68, + "probability": 0.8084 + }, + { + "start": 250.86, + "end": 254.68, + "probability": 0.9756 + }, + { + "start": 255.22, + "end": 260.26, + "probability": 0.9204 + }, + { + "start": 260.33, + "end": 265.44, + "probability": 0.9546 + }, + { + "start": 265.6, + "end": 271.22, + "probability": 0.9312 + }, + { + "start": 272.1, + "end": 273.19, + "probability": 0.9941 + }, + { + "start": 273.88, + "end": 275.48, + "probability": 0.9931 + }, + { + "start": 275.84, + "end": 277.44, + "probability": 0.682 + }, + { + "start": 277.48, + "end": 280.1, + "probability": 0.7536 + }, + { + "start": 280.6, + "end": 285.66, + "probability": 0.9475 + }, + { + "start": 286.08, + "end": 286.9, + "probability": 0.7173 + }, + { + "start": 287.06, + "end": 292.38, + "probability": 0.985 + }, + { + "start": 292.39, + "end": 296.46, + "probability": 0.9893 + }, + { + "start": 296.76, + "end": 297.24, + "probability": 0.7551 + }, + { + "start": 297.32, + "end": 299.14, + "probability": 0.7759 + }, + { + "start": 299.18, + "end": 301.92, + "probability": 0.9479 + }, + { + "start": 310.26, + "end": 312.64, + "probability": 0.8647 + }, + { + "start": 313.2, + "end": 313.82, + "probability": 0.8372 + }, + { + "start": 314.2, + "end": 316.06, + "probability": 0.5612 + }, + { + "start": 316.39, + "end": 317.92, + "probability": 0.7904 + }, + { + "start": 318.16, + "end": 319.58, + "probability": 0.9885 + }, + { + "start": 320.06, + "end": 326.7, + "probability": 0.9642 + }, + { + "start": 327.89, + "end": 329.78, + "probability": 0.5197 + }, + { + "start": 330.4, + "end": 334.1, + "probability": 0.9883 + }, + { + "start": 334.42, + "end": 338.84, + "probability": 0.9167 + }, + { + "start": 339.32, + "end": 343.6, + "probability": 0.9073 + }, + { + "start": 343.86, + "end": 346.92, + "probability": 0.7299 + }, + { + "start": 346.92, + "end": 351.78, + "probability": 0.7591 + }, + { + "start": 352.1, + "end": 352.58, + "probability": 0.7618 + }, + { + "start": 352.66, + "end": 353.44, + "probability": 0.7643 + }, + { + "start": 353.56, + "end": 355.0, + "probability": 0.9686 + }, + { + "start": 355.24, + "end": 357.86, + "probability": 0.9234 + }, + { + "start": 358.4, + "end": 359.26, + "probability": 0.0009 + }, + { + "start": 360.8, + "end": 366.88, + "probability": 0.6878 + }, + { + "start": 366.88, + "end": 371.02, + "probability": 0.7559 + }, + { + "start": 371.52, + "end": 373.44, + "probability": 0.6842 + }, + { + "start": 373.48, + "end": 377.68, + "probability": 0.8174 + }, + { + "start": 379.6, + "end": 379.78, + "probability": 0.596 + }, + { + "start": 380.46, + "end": 382.76, + "probability": 0.8338 + }, + { + "start": 383.37, + "end": 388.0, + "probability": 0.5366 + }, + { + "start": 390.76, + "end": 393.2, + "probability": 0.797 + }, + { + "start": 393.7, + "end": 395.04, + "probability": 0.9653 + }, + { + "start": 395.2, + "end": 396.4, + "probability": 0.9916 + }, + { + "start": 396.46, + "end": 398.22, + "probability": 0.8389 + }, + { + "start": 399.3, + "end": 399.98, + "probability": 0.7098 + }, + { + "start": 400.9, + "end": 401.5, + "probability": 0.3864 + }, + { + "start": 401.6, + "end": 402.12, + "probability": 0.8327 + }, + { + "start": 402.3, + "end": 403.62, + "probability": 0.8049 + }, + { + "start": 403.78, + "end": 406.34, + "probability": 0.7539 + }, + { + "start": 406.56, + "end": 408.42, + "probability": 0.9941 + }, + { + "start": 408.44, + "end": 411.2, + "probability": 0.8074 + }, + { + "start": 411.38, + "end": 421.64, + "probability": 0.7412 + }, + { + "start": 422.06, + "end": 425.16, + "probability": 0.7027 + }, + { + "start": 425.6, + "end": 430.76, + "probability": 0.8264 + }, + { + "start": 431.48, + "end": 432.58, + "probability": 0.7607 + }, + { + "start": 432.72, + "end": 434.78, + "probability": 0.8965 + }, + { + "start": 434.92, + "end": 436.7, + "probability": 0.9949 + }, + { + "start": 437.12, + "end": 438.28, + "probability": 0.9098 + }, + { + "start": 438.46, + "end": 439.4, + "probability": 0.9209 + }, + { + "start": 439.44, + "end": 440.8, + "probability": 0.9795 + }, + { + "start": 441.34, + "end": 444.04, + "probability": 0.9886 + }, + { + "start": 444.14, + "end": 445.94, + "probability": 0.8298 + }, + { + "start": 446.44, + "end": 447.32, + "probability": 0.8582 + }, + { + "start": 447.78, + "end": 449.3, + "probability": 0.9671 + }, + { + "start": 449.6, + "end": 450.48, + "probability": 0.9292 + }, + { + "start": 450.54, + "end": 452.5, + "probability": 0.9861 + }, + { + "start": 453.06, + "end": 455.74, + "probability": 0.9244 + }, + { + "start": 457.28, + "end": 458.4, + "probability": 0.5516 + }, + { + "start": 458.64, + "end": 460.54, + "probability": 0.5902 + }, + { + "start": 460.92, + "end": 462.65, + "probability": 0.9805 + }, + { + "start": 462.78, + "end": 467.4, + "probability": 0.6581 + }, + { + "start": 468.14, + "end": 471.18, + "probability": 0.2439 + }, + { + "start": 471.48, + "end": 475.16, + "probability": 0.8688 + }, + { + "start": 475.8, + "end": 476.9, + "probability": 0.8187 + }, + { + "start": 477.08, + "end": 479.61, + "probability": 0.9761 + }, + { + "start": 480.56, + "end": 484.44, + "probability": 0.7958 + }, + { + "start": 485.0, + "end": 485.98, + "probability": 0.9301 + }, + { + "start": 486.14, + "end": 487.39, + "probability": 0.9453 + }, + { + "start": 487.62, + "end": 489.12, + "probability": 0.8654 + }, + { + "start": 489.28, + "end": 490.28, + "probability": 0.4535 + }, + { + "start": 490.62, + "end": 491.46, + "probability": 0.9961 + }, + { + "start": 491.56, + "end": 494.52, + "probability": 0.9404 + }, + { + "start": 494.84, + "end": 496.7, + "probability": 0.8853 + }, + { + "start": 497.1, + "end": 497.58, + "probability": 0.1308 + }, + { + "start": 497.66, + "end": 500.26, + "probability": 0.9214 + }, + { + "start": 500.44, + "end": 503.52, + "probability": 0.9697 + }, + { + "start": 503.96, + "end": 505.06, + "probability": 0.892 + }, + { + "start": 505.18, + "end": 505.66, + "probability": 0.7619 + }, + { + "start": 505.88, + "end": 507.78, + "probability": 0.9426 + }, + { + "start": 507.84, + "end": 509.52, + "probability": 0.9109 + }, + { + "start": 509.54, + "end": 511.44, + "probability": 0.9968 + }, + { + "start": 511.88, + "end": 518.98, + "probability": 0.6581 + }, + { + "start": 518.98, + "end": 519.6, + "probability": 0.06 + }, + { + "start": 520.81, + "end": 524.4, + "probability": 0.9015 + }, + { + "start": 525.74, + "end": 530.92, + "probability": 0.926 + }, + { + "start": 537.3, + "end": 538.59, + "probability": 0.6483 + }, + { + "start": 540.86, + "end": 546.38, + "probability": 0.8883 + }, + { + "start": 546.38, + "end": 551.54, + "probability": 0.968 + }, + { + "start": 552.14, + "end": 553.88, + "probability": 0.5347 + }, + { + "start": 554.02, + "end": 554.23, + "probability": 0.4375 + }, + { + "start": 555.48, + "end": 559.24, + "probability": 0.9647 + }, + { + "start": 559.24, + "end": 563.54, + "probability": 0.9539 + }, + { + "start": 565.72, + "end": 566.58, + "probability": 0.6106 + }, + { + "start": 566.64, + "end": 567.64, + "probability": 0.8152 + }, + { + "start": 567.72, + "end": 572.34, + "probability": 0.9805 + }, + { + "start": 572.34, + "end": 578.42, + "probability": 0.9795 + }, + { + "start": 578.5, + "end": 578.68, + "probability": 0.3258 + }, + { + "start": 578.76, + "end": 581.94, + "probability": 0.9885 + }, + { + "start": 581.94, + "end": 588.28, + "probability": 0.9878 + }, + { + "start": 588.28, + "end": 592.18, + "probability": 0.9967 + }, + { + "start": 592.44, + "end": 593.96, + "probability": 0.8238 + }, + { + "start": 594.58, + "end": 596.96, + "probability": 0.9595 + }, + { + "start": 597.34, + "end": 600.92, + "probability": 0.9717 + }, + { + "start": 602.12, + "end": 603.58, + "probability": 0.7349 + }, + { + "start": 603.68, + "end": 605.82, + "probability": 0.8303 + }, + { + "start": 605.96, + "end": 608.9, + "probability": 0.9766 + }, + { + "start": 609.02, + "end": 610.28, + "probability": 0.8089 + }, + { + "start": 611.16, + "end": 615.98, + "probability": 0.9924 + }, + { + "start": 617.06, + "end": 618.62, + "probability": 0.6929 + }, + { + "start": 618.7, + "end": 623.48, + "probability": 0.9858 + }, + { + "start": 624.62, + "end": 626.64, + "probability": 0.9164 + }, + { + "start": 627.1, + "end": 630.32, + "probability": 0.9914 + }, + { + "start": 630.32, + "end": 633.3, + "probability": 0.9849 + }, + { + "start": 633.5, + "end": 634.38, + "probability": 0.9221 + }, + { + "start": 635.68, + "end": 640.52, + "probability": 0.9736 + }, + { + "start": 640.58, + "end": 641.6, + "probability": 0.7753 + }, + { + "start": 641.66, + "end": 645.62, + "probability": 0.9976 + }, + { + "start": 646.76, + "end": 646.94, + "probability": 0.5747 + }, + { + "start": 648.34, + "end": 650.48, + "probability": 0.9581 + }, + { + "start": 650.62, + "end": 653.72, + "probability": 0.7616 + }, + { + "start": 653.94, + "end": 658.6, + "probability": 0.9531 + }, + { + "start": 658.72, + "end": 663.56, + "probability": 0.9386 + }, + { + "start": 663.64, + "end": 664.5, + "probability": 0.8434 + }, + { + "start": 664.56, + "end": 664.94, + "probability": 0.6578 + }, + { + "start": 665.96, + "end": 670.74, + "probability": 0.9907 + }, + { + "start": 670.86, + "end": 672.86, + "probability": 0.9545 + }, + { + "start": 672.92, + "end": 674.06, + "probability": 0.5939 + }, + { + "start": 674.2, + "end": 675.46, + "probability": 0.8356 + }, + { + "start": 675.48, + "end": 676.56, + "probability": 0.8498 + }, + { + "start": 676.82, + "end": 677.52, + "probability": 0.6253 + }, + { + "start": 677.54, + "end": 679.08, + "probability": 0.7729 + }, + { + "start": 679.66, + "end": 682.28, + "probability": 0.9893 + }, + { + "start": 684.06, + "end": 686.15, + "probability": 0.9598 + }, + { + "start": 688.1, + "end": 688.68, + "probability": 0.4621 + }, + { + "start": 690.2, + "end": 690.46, + "probability": 0.2269 + }, + { + "start": 690.8, + "end": 692.6, + "probability": 0.9854 + }, + { + "start": 693.36, + "end": 696.26, + "probability": 0.9861 + }, + { + "start": 696.9, + "end": 701.04, + "probability": 0.9702 + }, + { + "start": 701.24, + "end": 701.5, + "probability": 0.1808 + }, + { + "start": 701.5, + "end": 702.4, + "probability": 0.7669 + }, + { + "start": 702.72, + "end": 708.28, + "probability": 0.9594 + }, + { + "start": 709.12, + "end": 711.1, + "probability": 0.9679 + }, + { + "start": 711.12, + "end": 714.34, + "probability": 0.9117 + }, + { + "start": 714.98, + "end": 715.3, + "probability": 0.0352 + }, + { + "start": 715.58, + "end": 718.14, + "probability": 0.9146 + }, + { + "start": 718.96, + "end": 721.8, + "probability": 0.6277 + }, + { + "start": 721.98, + "end": 723.54, + "probability": 0.4325 + }, + { + "start": 723.9, + "end": 725.2, + "probability": 0.6032 + }, + { + "start": 725.4, + "end": 728.64, + "probability": 0.9556 + }, + { + "start": 728.66, + "end": 729.34, + "probability": 0.8846 + }, + { + "start": 729.78, + "end": 731.94, + "probability": 0.6601 + }, + { + "start": 732.26, + "end": 733.54, + "probability": 0.9902 + }, + { + "start": 733.86, + "end": 738.2, + "probability": 0.6648 + }, + { + "start": 738.38, + "end": 739.7, + "probability": 0.7236 + }, + { + "start": 740.26, + "end": 741.1, + "probability": 0.6841 + }, + { + "start": 741.46, + "end": 745.92, + "probability": 0.9613 + }, + { + "start": 746.32, + "end": 750.5, + "probability": 0.9113 + }, + { + "start": 750.9, + "end": 751.9, + "probability": 0.9642 + }, + { + "start": 752.06, + "end": 754.17, + "probability": 0.8114 + }, + { + "start": 754.54, + "end": 759.14, + "probability": 0.9894 + }, + { + "start": 759.4, + "end": 760.52, + "probability": 0.9517 + }, + { + "start": 760.98, + "end": 762.02, + "probability": 0.9237 + }, + { + "start": 762.2, + "end": 763.9, + "probability": 0.8078 + }, + { + "start": 764.0, + "end": 767.22, + "probability": 0.8935 + }, + { + "start": 775.04, + "end": 776.7, + "probability": 0.4818 + }, + { + "start": 778.02, + "end": 780.56, + "probability": 0.7509 + }, + { + "start": 780.68, + "end": 783.94, + "probability": 0.8633 + }, + { + "start": 784.66, + "end": 788.2, + "probability": 0.9844 + }, + { + "start": 788.28, + "end": 789.56, + "probability": 0.9707 + }, + { + "start": 790.54, + "end": 795.08, + "probability": 0.9295 + }, + { + "start": 795.8, + "end": 799.14, + "probability": 0.7559 + }, + { + "start": 799.63, + "end": 801.74, + "probability": 0.9014 + }, + { + "start": 802.42, + "end": 804.4, + "probability": 0.5032 + }, + { + "start": 805.24, + "end": 807.14, + "probability": 0.8646 + }, + { + "start": 807.98, + "end": 809.9, + "probability": 0.9907 + }, + { + "start": 810.68, + "end": 814.02, + "probability": 0.9521 + }, + { + "start": 814.12, + "end": 816.1, + "probability": 0.6636 + }, + { + "start": 816.22, + "end": 818.98, + "probability": 0.9961 + }, + { + "start": 820.14, + "end": 821.08, + "probability": 0.5538 + }, + { + "start": 821.86, + "end": 823.92, + "probability": 0.3459 + }, + { + "start": 824.02, + "end": 827.56, + "probability": 0.9168 + }, + { + "start": 827.58, + "end": 828.08, + "probability": 0.5724 + }, + { + "start": 828.44, + "end": 829.48, + "probability": 0.9352 + }, + { + "start": 829.8, + "end": 837.22, + "probability": 0.9775 + }, + { + "start": 837.22, + "end": 844.98, + "probability": 0.9944 + }, + { + "start": 845.32, + "end": 850.44, + "probability": 0.9811 + }, + { + "start": 850.92, + "end": 851.58, + "probability": 0.7052 + }, + { + "start": 852.58, + "end": 854.34, + "probability": 0.8157 + }, + { + "start": 854.64, + "end": 856.46, + "probability": 0.9713 + }, + { + "start": 857.16, + "end": 858.92, + "probability": 0.7708 + }, + { + "start": 859.04, + "end": 862.96, + "probability": 0.9771 + }, + { + "start": 863.3, + "end": 863.74, + "probability": 0.3085 + }, + { + "start": 863.8, + "end": 866.24, + "probability": 0.7085 + }, + { + "start": 874.56, + "end": 875.58, + "probability": 0.5965 + }, + { + "start": 875.68, + "end": 876.5, + "probability": 0.8027 + }, + { + "start": 876.82, + "end": 885.24, + "probability": 0.9547 + }, + { + "start": 885.8, + "end": 887.32, + "probability": 0.7299 + }, + { + "start": 888.3, + "end": 893.04, + "probability": 0.9863 + }, + { + "start": 893.92, + "end": 895.8, + "probability": 0.981 + }, + { + "start": 895.98, + "end": 899.82, + "probability": 0.9811 + }, + { + "start": 900.52, + "end": 901.38, + "probability": 0.9022 + }, + { + "start": 901.44, + "end": 902.84, + "probability": 0.9307 + }, + { + "start": 902.92, + "end": 909.2, + "probability": 0.9834 + }, + { + "start": 909.76, + "end": 911.72, + "probability": 0.6604 + }, + { + "start": 912.02, + "end": 914.82, + "probability": 0.9377 + }, + { + "start": 916.74, + "end": 917.92, + "probability": 0.4847 + }, + { + "start": 918.02, + "end": 920.06, + "probability": 0.8149 + }, + { + "start": 920.16, + "end": 922.3, + "probability": 0.8809 + }, + { + "start": 922.98, + "end": 924.8, + "probability": 0.8953 + }, + { + "start": 924.82, + "end": 927.92, + "probability": 0.996 + }, + { + "start": 928.76, + "end": 932.44, + "probability": 0.7229 + }, + { + "start": 932.66, + "end": 934.54, + "probability": 0.9518 + }, + { + "start": 934.64, + "end": 936.12, + "probability": 0.9773 + }, + { + "start": 936.52, + "end": 939.28, + "probability": 0.8428 + }, + { + "start": 939.44, + "end": 941.36, + "probability": 0.9369 + }, + { + "start": 941.84, + "end": 943.52, + "probability": 0.9799 + }, + { + "start": 943.58, + "end": 947.1, + "probability": 0.969 + }, + { + "start": 947.1, + "end": 950.4, + "probability": 0.3749 + }, + { + "start": 950.88, + "end": 955.21, + "probability": 0.9679 + }, + { + "start": 955.54, + "end": 955.86, + "probability": 0.7332 + }, + { + "start": 956.0, + "end": 957.58, + "probability": 0.9846 + }, + { + "start": 957.66, + "end": 958.2, + "probability": 0.8443 + }, + { + "start": 958.26, + "end": 959.13, + "probability": 0.6396 + }, + { + "start": 959.48, + "end": 960.08, + "probability": 0.741 + }, + { + "start": 960.4, + "end": 962.58, + "probability": 0.9807 + }, + { + "start": 963.38, + "end": 966.14, + "probability": 0.9948 + }, + { + "start": 967.12, + "end": 970.82, + "probability": 0.9924 + }, + { + "start": 971.2, + "end": 973.78, + "probability": 0.9546 + }, + { + "start": 974.26, + "end": 975.76, + "probability": 0.7931 + }, + { + "start": 975.76, + "end": 980.51, + "probability": 0.9854 + }, + { + "start": 980.86, + "end": 984.64, + "probability": 0.9986 + }, + { + "start": 985.34, + "end": 989.58, + "probability": 0.7079 + }, + { + "start": 990.08, + "end": 992.56, + "probability": 0.9526 + }, + { + "start": 992.56, + "end": 994.14, + "probability": 0.7926 + }, + { + "start": 994.54, + "end": 998.48, + "probability": 0.3188 + }, + { + "start": 999.42, + "end": 1002.76, + "probability": 0.9946 + }, + { + "start": 1002.92, + "end": 1005.0, + "probability": 0.9957 + }, + { + "start": 1005.08, + "end": 1005.92, + "probability": 0.6558 + }, + { + "start": 1006.46, + "end": 1008.68, + "probability": 0.9825 + }, + { + "start": 1009.68, + "end": 1011.84, + "probability": 0.981 + }, + { + "start": 1011.9, + "end": 1014.48, + "probability": 0.999 + }, + { + "start": 1015.08, + "end": 1016.06, + "probability": 0.9115 + }, + { + "start": 1016.52, + "end": 1018.08, + "probability": 0.9709 + }, + { + "start": 1018.22, + "end": 1024.66, + "probability": 0.9943 + }, + { + "start": 1026.78, + "end": 1028.66, + "probability": 0.0539 + }, + { + "start": 1028.66, + "end": 1032.1, + "probability": 0.8461 + }, + { + "start": 1032.48, + "end": 1033.3, + "probability": 0.541 + }, + { + "start": 1033.32, + "end": 1035.1, + "probability": 0.0786 + }, + { + "start": 1035.1, + "end": 1037.44, + "probability": 0.8984 + }, + { + "start": 1037.52, + "end": 1038.18, + "probability": 0.7542 + }, + { + "start": 1038.68, + "end": 1040.3, + "probability": 0.977 + }, + { + "start": 1040.38, + "end": 1041.62, + "probability": 0.9538 + }, + { + "start": 1042.14, + "end": 1044.94, + "probability": 0.9919 + }, + { + "start": 1044.94, + "end": 1048.4, + "probability": 0.9894 + }, + { + "start": 1048.52, + "end": 1051.56, + "probability": 0.9102 + }, + { + "start": 1052.72, + "end": 1055.3, + "probability": 0.9676 + }, + { + "start": 1056.04, + "end": 1059.84, + "probability": 0.9065 + }, + { + "start": 1060.46, + "end": 1060.74, + "probability": 0.9847 + }, + { + "start": 1061.34, + "end": 1063.5, + "probability": 0.9703 + }, + { + "start": 1063.98, + "end": 1065.58, + "probability": 0.8073 + }, + { + "start": 1065.64, + "end": 1067.2, + "probability": 0.9551 + }, + { + "start": 1067.74, + "end": 1070.48, + "probability": 0.8856 + }, + { + "start": 1070.7, + "end": 1071.82, + "probability": 0.8311 + }, + { + "start": 1071.88, + "end": 1073.34, + "probability": 0.8619 + }, + { + "start": 1074.14, + "end": 1076.94, + "probability": 0.9843 + }, + { + "start": 1077.1, + "end": 1078.46, + "probability": 0.8858 + }, + { + "start": 1078.54, + "end": 1082.06, + "probability": 0.9917 + }, + { + "start": 1082.7, + "end": 1084.7, + "probability": 0.9194 + }, + { + "start": 1084.78, + "end": 1086.92, + "probability": 0.9847 + }, + { + "start": 1087.5, + "end": 1089.52, + "probability": 0.9988 + }, + { + "start": 1089.86, + "end": 1090.66, + "probability": 0.6891 + }, + { + "start": 1091.22, + "end": 1093.12, + "probability": 0.6014 + }, + { + "start": 1093.24, + "end": 1094.5, + "probability": 0.0124 + }, + { + "start": 1094.5, + "end": 1097.32, + "probability": 0.9126 + }, + { + "start": 1098.44, + "end": 1100.82, + "probability": 0.6226 + }, + { + "start": 1100.98, + "end": 1104.66, + "probability": 0.8389 + }, + { + "start": 1105.22, + "end": 1109.1, + "probability": 0.9562 + }, + { + "start": 1109.64, + "end": 1112.48, + "probability": 0.9611 + }, + { + "start": 1112.56, + "end": 1115.82, + "probability": 0.9858 + }, + { + "start": 1116.42, + "end": 1116.96, + "probability": 0.9112 + }, + { + "start": 1117.12, + "end": 1118.2, + "probability": 0.7394 + }, + { + "start": 1123.53, + "end": 1124.12, + "probability": 0.1224 + }, + { + "start": 1124.12, + "end": 1125.38, + "probability": 0.8339 + }, + { + "start": 1126.22, + "end": 1128.46, + "probability": 0.0477 + }, + { + "start": 1128.46, + "end": 1128.78, + "probability": 0.226 + }, + { + "start": 1129.14, + "end": 1134.88, + "probability": 0.6796 + }, + { + "start": 1135.38, + "end": 1138.92, + "probability": 0.7748 + }, + { + "start": 1139.3, + "end": 1139.88, + "probability": 0.6915 + }, + { + "start": 1140.02, + "end": 1145.34, + "probability": 0.7671 + }, + { + "start": 1147.26, + "end": 1147.3, + "probability": 0.0564 + }, + { + "start": 1147.3, + "end": 1147.3, + "probability": 0.0922 + }, + { + "start": 1147.3, + "end": 1150.22, + "probability": 0.5948 + }, + { + "start": 1151.36, + "end": 1152.5, + "probability": 0.8412 + }, + { + "start": 1152.72, + "end": 1153.88, + "probability": 0.7117 + }, + { + "start": 1153.98, + "end": 1158.72, + "probability": 0.793 + }, + { + "start": 1159.36, + "end": 1166.18, + "probability": 0.6537 + }, + { + "start": 1170.16, + "end": 1173.56, + "probability": 0.7913 + }, + { + "start": 1175.3, + "end": 1176.28, + "probability": 0.6785 + }, + { + "start": 1178.8, + "end": 1179.6, + "probability": 0.7744 + }, + { + "start": 1181.06, + "end": 1185.84, + "probability": 0.9232 + }, + { + "start": 1186.24, + "end": 1187.64, + "probability": 0.6739 + }, + { + "start": 1188.24, + "end": 1190.28, + "probability": 0.9416 + }, + { + "start": 1191.16, + "end": 1196.06, + "probability": 0.9586 + }, + { + "start": 1196.6, + "end": 1198.52, + "probability": 0.9041 + }, + { + "start": 1198.9, + "end": 1206.12, + "probability": 0.9809 + }, + { + "start": 1209.6, + "end": 1212.24, + "probability": 0.6154 + }, + { + "start": 1212.3, + "end": 1214.1, + "probability": 0.9138 + }, + { + "start": 1214.14, + "end": 1215.2, + "probability": 0.8459 + }, + { + "start": 1217.24, + "end": 1217.96, + "probability": 0.6685 + }, + { + "start": 1218.1, + "end": 1219.14, + "probability": 0.7173 + }, + { + "start": 1219.38, + "end": 1221.6, + "probability": 0.9707 + }, + { + "start": 1223.26, + "end": 1229.74, + "probability": 0.9403 + }, + { + "start": 1230.5, + "end": 1231.36, + "probability": 0.3916 + }, + { + "start": 1232.88, + "end": 1233.52, + "probability": 0.4831 + }, + { + "start": 1234.78, + "end": 1237.66, + "probability": 0.7842 + }, + { + "start": 1239.14, + "end": 1247.3, + "probability": 0.9402 + }, + { + "start": 1247.3, + "end": 1255.12, + "probability": 0.8952 + }, + { + "start": 1256.44, + "end": 1259.58, + "probability": 0.9248 + }, + { + "start": 1264.4, + "end": 1265.28, + "probability": 0.0019 + }, + { + "start": 1265.52, + "end": 1270.38, + "probability": 0.5593 + }, + { + "start": 1271.1, + "end": 1271.2, + "probability": 0.55 + }, + { + "start": 1271.2, + "end": 1271.2, + "probability": 0.2921 + }, + { + "start": 1271.2, + "end": 1271.2, + "probability": 0.0152 + }, + { + "start": 1271.2, + "end": 1272.88, + "probability": 0.8647 + }, + { + "start": 1273.28, + "end": 1275.56, + "probability": 0.5196 + }, + { + "start": 1276.9, + "end": 1279.4, + "probability": 0.9301 + }, + { + "start": 1280.14, + "end": 1281.58, + "probability": 0.6974 + }, + { + "start": 1282.52, + "end": 1286.98, + "probability": 0.6978 + }, + { + "start": 1287.06, + "end": 1290.45, + "probability": 0.8809 + }, + { + "start": 1291.08, + "end": 1295.72, + "probability": 0.7591 + }, + { + "start": 1295.88, + "end": 1298.76, + "probability": 0.7541 + }, + { + "start": 1299.36, + "end": 1301.86, + "probability": 0.8815 + }, + { + "start": 1302.2, + "end": 1303.76, + "probability": 0.9338 + }, + { + "start": 1303.9, + "end": 1306.66, + "probability": 0.7996 + }, + { + "start": 1308.54, + "end": 1310.2, + "probability": 0.9603 + }, + { + "start": 1310.44, + "end": 1316.5, + "probability": 0.9112 + }, + { + "start": 1317.2, + "end": 1325.34, + "probability": 0.9912 + }, + { + "start": 1326.36, + "end": 1329.04, + "probability": 0.9287 + }, + { + "start": 1329.72, + "end": 1331.06, + "probability": 0.9165 + }, + { + "start": 1331.44, + "end": 1336.8, + "probability": 0.9558 + }, + { + "start": 1336.96, + "end": 1340.7, + "probability": 0.7414 + }, + { + "start": 1341.98, + "end": 1344.36, + "probability": 0.9914 + }, + { + "start": 1344.48, + "end": 1345.42, + "probability": 0.7857 + }, + { + "start": 1345.42, + "end": 1351.42, + "probability": 0.9757 + }, + { + "start": 1351.82, + "end": 1352.22, + "probability": 0.6269 + }, + { + "start": 1353.74, + "end": 1354.9, + "probability": 0.1521 + }, + { + "start": 1356.84, + "end": 1357.48, + "probability": 0.0196 + }, + { + "start": 1357.48, + "end": 1358.32, + "probability": 0.496 + }, + { + "start": 1358.7, + "end": 1361.44, + "probability": 0.6489 + }, + { + "start": 1361.7, + "end": 1363.0, + "probability": 0.2738 + }, + { + "start": 1363.78, + "end": 1368.54, + "probability": 0.5365 + }, + { + "start": 1368.54, + "end": 1373.2, + "probability": 0.8492 + }, + { + "start": 1373.2, + "end": 1377.3, + "probability": 0.9924 + }, + { + "start": 1378.12, + "end": 1380.58, + "probability": 0.8975 + }, + { + "start": 1380.96, + "end": 1381.96, + "probability": 0.8997 + }, + { + "start": 1382.12, + "end": 1382.88, + "probability": 0.8011 + }, + { + "start": 1382.98, + "end": 1386.16, + "probability": 0.9766 + }, + { + "start": 1386.86, + "end": 1393.98, + "probability": 0.9855 + }, + { + "start": 1393.98, + "end": 1401.3, + "probability": 0.9548 + }, + { + "start": 1401.54, + "end": 1402.54, + "probability": 0.7368 + }, + { + "start": 1402.66, + "end": 1403.4, + "probability": 0.6921 + }, + { + "start": 1404.74, + "end": 1405.72, + "probability": 0.6982 + }, + { + "start": 1405.82, + "end": 1410.51, + "probability": 0.9017 + }, + { + "start": 1410.54, + "end": 1414.98, + "probability": 0.986 + }, + { + "start": 1415.06, + "end": 1415.94, + "probability": 0.8518 + }, + { + "start": 1416.44, + "end": 1417.98, + "probability": 0.9391 + }, + { + "start": 1418.72, + "end": 1421.34, + "probability": 0.6922 + }, + { + "start": 1421.44, + "end": 1425.18, + "probability": 0.9867 + }, + { + "start": 1425.72, + "end": 1427.48, + "probability": 0.9159 + }, + { + "start": 1428.0, + "end": 1433.22, + "probability": 0.9794 + }, + { + "start": 1434.12, + "end": 1440.9, + "probability": 0.9431 + }, + { + "start": 1441.44, + "end": 1445.2, + "probability": 0.9958 + }, + { + "start": 1445.88, + "end": 1450.54, + "probability": 0.9983 + }, + { + "start": 1452.42, + "end": 1456.34, + "probability": 0.9903 + }, + { + "start": 1456.34, + "end": 1462.06, + "probability": 0.9747 + }, + { + "start": 1463.32, + "end": 1466.12, + "probability": 0.7991 + }, + { + "start": 1466.28, + "end": 1467.18, + "probability": 0.9368 + }, + { + "start": 1467.36, + "end": 1470.14, + "probability": 0.9728 + }, + { + "start": 1470.36, + "end": 1471.94, + "probability": 0.9057 + }, + { + "start": 1472.06, + "end": 1473.7, + "probability": 0.9342 + }, + { + "start": 1474.26, + "end": 1479.42, + "probability": 0.9839 + }, + { + "start": 1480.22, + "end": 1488.02, + "probability": 0.9856 + }, + { + "start": 1488.94, + "end": 1489.98, + "probability": 0.792 + }, + { + "start": 1490.28, + "end": 1494.26, + "probability": 0.9789 + }, + { + "start": 1495.2, + "end": 1497.32, + "probability": 0.7667 + }, + { + "start": 1497.54, + "end": 1499.58, + "probability": 0.522 + }, + { + "start": 1499.66, + "end": 1508.04, + "probability": 0.953 + }, + { + "start": 1509.0, + "end": 1511.47, + "probability": 0.9961 + }, + { + "start": 1512.26, + "end": 1516.34, + "probability": 0.9923 + }, + { + "start": 1517.0, + "end": 1518.7, + "probability": 0.7047 + }, + { + "start": 1520.34, + "end": 1524.06, + "probability": 0.989 + }, + { + "start": 1524.16, + "end": 1530.12, + "probability": 0.9895 + }, + { + "start": 1530.12, + "end": 1539.58, + "probability": 0.9181 + }, + { + "start": 1541.3, + "end": 1544.6, + "probability": 0.9267 + }, + { + "start": 1545.26, + "end": 1548.76, + "probability": 0.9899 + }, + { + "start": 1549.46, + "end": 1549.84, + "probability": 0.7018 + }, + { + "start": 1549.98, + "end": 1551.06, + "probability": 0.9271 + }, + { + "start": 1551.24, + "end": 1555.72, + "probability": 0.8625 + }, + { + "start": 1556.02, + "end": 1558.42, + "probability": 0.9827 + }, + { + "start": 1559.32, + "end": 1562.94, + "probability": 0.9715 + }, + { + "start": 1563.88, + "end": 1570.12, + "probability": 0.9733 + }, + { + "start": 1570.34, + "end": 1571.82, + "probability": 0.9526 + }, + { + "start": 1572.46, + "end": 1574.4, + "probability": 0.9561 + }, + { + "start": 1575.16, + "end": 1578.72, + "probability": 0.9942 + }, + { + "start": 1578.78, + "end": 1580.18, + "probability": 0.9914 + }, + { + "start": 1580.82, + "end": 1584.44, + "probability": 0.8273 + }, + { + "start": 1585.0, + "end": 1591.74, + "probability": 0.6719 + }, + { + "start": 1592.12, + "end": 1594.9, + "probability": 0.9819 + }, + { + "start": 1595.62, + "end": 1599.02, + "probability": 0.9937 + }, + { + "start": 1600.25, + "end": 1604.64, + "probability": 0.951 + }, + { + "start": 1605.18, + "end": 1606.96, + "probability": 0.9956 + }, + { + "start": 1607.06, + "end": 1616.14, + "probability": 0.9406 + }, + { + "start": 1616.76, + "end": 1620.8, + "probability": 0.9604 + }, + { + "start": 1621.22, + "end": 1623.04, + "probability": 0.9696 + }, + { + "start": 1623.76, + "end": 1625.88, + "probability": 0.9972 + }, + { + "start": 1626.14, + "end": 1626.88, + "probability": 0.8571 + }, + { + "start": 1626.96, + "end": 1628.18, + "probability": 0.9089 + }, + { + "start": 1628.8, + "end": 1629.1, + "probability": 0.7816 + }, + { + "start": 1634.0, + "end": 1634.0, + "probability": 0.318 + }, + { + "start": 1634.06, + "end": 1635.64, + "probability": 0.7823 + }, + { + "start": 1635.66, + "end": 1636.62, + "probability": 0.7804 + }, + { + "start": 1636.68, + "end": 1640.8, + "probability": 0.9515 + }, + { + "start": 1642.44, + "end": 1644.36, + "probability": 0.8975 + }, + { + "start": 1645.4, + "end": 1645.78, + "probability": 0.5043 + }, + { + "start": 1646.16, + "end": 1646.86, + "probability": 0.6039 + }, + { + "start": 1646.92, + "end": 1650.52, + "probability": 0.9971 + }, + { + "start": 1650.6, + "end": 1651.72, + "probability": 0.5193 + }, + { + "start": 1652.82, + "end": 1652.86, + "probability": 0.1351 + }, + { + "start": 1653.46, + "end": 1656.46, + "probability": 0.8979 + }, + { + "start": 1656.52, + "end": 1657.3, + "probability": 0.7175 + }, + { + "start": 1657.4, + "end": 1659.82, + "probability": 0.9604 + }, + { + "start": 1660.7, + "end": 1663.93, + "probability": 0.9736 + }, + { + "start": 1664.48, + "end": 1667.78, + "probability": 0.9738 + }, + { + "start": 1667.78, + "end": 1669.29, + "probability": 0.8024 + }, + { + "start": 1669.46, + "end": 1670.22, + "probability": 0.6954 + }, + { + "start": 1670.68, + "end": 1671.28, + "probability": 0.866 + }, + { + "start": 1671.62, + "end": 1675.88, + "probability": 0.9895 + }, + { + "start": 1676.72, + "end": 1678.26, + "probability": 0.9927 + }, + { + "start": 1679.1, + "end": 1680.12, + "probability": 0.3598 + }, + { + "start": 1680.74, + "end": 1683.5, + "probability": 0.9294 + }, + { + "start": 1683.5, + "end": 1686.3, + "probability": 0.9017 + }, + { + "start": 1687.36, + "end": 1688.36, + "probability": 0.607 + }, + { + "start": 1688.48, + "end": 1689.88, + "probability": 0.9753 + }, + { + "start": 1692.38, + "end": 1696.88, + "probability": 0.9696 + }, + { + "start": 1698.54, + "end": 1699.28, + "probability": 0.7536 + }, + { + "start": 1699.64, + "end": 1700.0, + "probability": 0.807 + }, + { + "start": 1700.08, + "end": 1702.98, + "probability": 0.7071 + }, + { + "start": 1704.28, + "end": 1707.22, + "probability": 0.8706 + }, + { + "start": 1708.3, + "end": 1709.78, + "probability": 0.8017 + }, + { + "start": 1710.24, + "end": 1710.86, + "probability": 0.8288 + }, + { + "start": 1711.26, + "end": 1718.36, + "probability": 0.9606 + }, + { + "start": 1718.42, + "end": 1719.08, + "probability": 0.9699 + }, + { + "start": 1720.4, + "end": 1722.82, + "probability": 0.9485 + }, + { + "start": 1723.64, + "end": 1723.94, + "probability": 0.8701 + }, + { + "start": 1724.06, + "end": 1724.27, + "probability": 0.0137 + }, + { + "start": 1724.9, + "end": 1727.44, + "probability": 0.9255 + }, + { + "start": 1728.2, + "end": 1732.26, + "probability": 0.9268 + }, + { + "start": 1733.42, + "end": 1734.2, + "probability": 0.9044 + }, + { + "start": 1734.2, + "end": 1735.15, + "probability": 0.9557 + }, + { + "start": 1735.44, + "end": 1737.82, + "probability": 0.7879 + }, + { + "start": 1738.62, + "end": 1739.2, + "probability": 0.8808 + }, + { + "start": 1739.26, + "end": 1742.1, + "probability": 0.9339 + }, + { + "start": 1742.44, + "end": 1745.88, + "probability": 0.9939 + }, + { + "start": 1746.78, + "end": 1748.2, + "probability": 0.9133 + }, + { + "start": 1748.24, + "end": 1748.45, + "probability": 0.4936 + }, + { + "start": 1748.52, + "end": 1750.5, + "probability": 0.9687 + }, + { + "start": 1750.62, + "end": 1750.86, + "probability": 0.7224 + }, + { + "start": 1751.02, + "end": 1752.28, + "probability": 0.9575 + }, + { + "start": 1752.39, + "end": 1755.36, + "probability": 0.9705 + }, + { + "start": 1755.5, + "end": 1756.68, + "probability": 0.7254 + }, + { + "start": 1756.74, + "end": 1757.44, + "probability": 0.924 + }, + { + "start": 1757.52, + "end": 1761.86, + "probability": 0.9917 + }, + { + "start": 1762.02, + "end": 1763.1, + "probability": 0.8607 + }, + { + "start": 1763.44, + "end": 1763.98, + "probability": 0.9006 + }, + { + "start": 1764.08, + "end": 1764.52, + "probability": 0.7569 + }, + { + "start": 1764.6, + "end": 1765.61, + "probability": 0.8783 + }, + { + "start": 1766.56, + "end": 1767.82, + "probability": 0.7242 + }, + { + "start": 1767.98, + "end": 1771.92, + "probability": 0.7516 + }, + { + "start": 1772.56, + "end": 1773.58, + "probability": 0.8786 + }, + { + "start": 1773.98, + "end": 1775.14, + "probability": 0.8969 + }, + { + "start": 1775.64, + "end": 1777.01, + "probability": 0.5721 + }, + { + "start": 1779.96, + "end": 1780.2, + "probability": 0.005 + }, + { + "start": 1780.2, + "end": 1781.26, + "probability": 0.3082 + }, + { + "start": 1781.5, + "end": 1784.68, + "probability": 0.4137 + }, + { + "start": 1784.9, + "end": 1785.85, + "probability": 0.8389 + }, + { + "start": 1786.0, + "end": 1788.58, + "probability": 0.7904 + }, + { + "start": 1789.26, + "end": 1789.32, + "probability": 0.1337 + }, + { + "start": 1789.32, + "end": 1790.46, + "probability": 0.5734 + }, + { + "start": 1790.56, + "end": 1792.34, + "probability": 0.8095 + }, + { + "start": 1793.24, + "end": 1795.39, + "probability": 0.783 + }, + { + "start": 1799.48, + "end": 1799.96, + "probability": 0.9294 + }, + { + "start": 1800.14, + "end": 1802.1, + "probability": 0.9875 + }, + { + "start": 1802.2, + "end": 1803.56, + "probability": 0.9557 + }, + { + "start": 1804.88, + "end": 1810.2, + "probability": 0.9351 + }, + { + "start": 1810.58, + "end": 1811.44, + "probability": 0.7458 + }, + { + "start": 1811.52, + "end": 1811.9, + "probability": 0.4708 + }, + { + "start": 1811.92, + "end": 1813.2, + "probability": 0.6143 + }, + { + "start": 1814.86, + "end": 1817.46, + "probability": 0.9406 + }, + { + "start": 1818.08, + "end": 1820.12, + "probability": 0.9907 + }, + { + "start": 1820.18, + "end": 1826.14, + "probability": 0.9937 + }, + { + "start": 1826.3, + "end": 1828.34, + "probability": 0.9917 + }, + { + "start": 1829.12, + "end": 1829.86, + "probability": 0.8644 + }, + { + "start": 1830.36, + "end": 1832.22, + "probability": 0.9359 + }, + { + "start": 1833.84, + "end": 1835.66, + "probability": 0.9936 + }, + { + "start": 1835.66, + "end": 1837.98, + "probability": 0.959 + }, + { + "start": 1838.48, + "end": 1839.82, + "probability": 0.981 + }, + { + "start": 1840.64, + "end": 1841.9, + "probability": 0.984 + }, + { + "start": 1843.1, + "end": 1847.6, + "probability": 0.9928 + }, + { + "start": 1847.72, + "end": 1850.86, + "probability": 0.8094 + }, + { + "start": 1850.86, + "end": 1853.92, + "probability": 0.9857 + }, + { + "start": 1854.12, + "end": 1855.64, + "probability": 0.9929 + }, + { + "start": 1856.62, + "end": 1857.84, + "probability": 0.8311 + }, + { + "start": 1858.64, + "end": 1859.34, + "probability": 0.9222 + }, + { + "start": 1860.14, + "end": 1863.82, + "probability": 0.9961 + }, + { + "start": 1864.66, + "end": 1865.36, + "probability": 0.7058 + }, + { + "start": 1865.44, + "end": 1867.32, + "probability": 0.9751 + }, + { + "start": 1867.44, + "end": 1868.24, + "probability": 0.5454 + }, + { + "start": 1868.52, + "end": 1870.84, + "probability": 0.981 + }, + { + "start": 1872.38, + "end": 1874.64, + "probability": 0.8649 + }, + { + "start": 1875.46, + "end": 1878.58, + "probability": 0.9472 + }, + { + "start": 1879.78, + "end": 1882.92, + "probability": 0.9826 + }, + { + "start": 1884.24, + "end": 1884.58, + "probability": 0.5408 + }, + { + "start": 1884.7, + "end": 1888.88, + "probability": 0.8945 + }, + { + "start": 1888.88, + "end": 1891.84, + "probability": 0.9907 + }, + { + "start": 1892.44, + "end": 1893.46, + "probability": 0.9983 + }, + { + "start": 1894.16, + "end": 1895.16, + "probability": 0.9553 + }, + { + "start": 1896.38, + "end": 1897.7, + "probability": 0.8345 + }, + { + "start": 1897.82, + "end": 1899.13, + "probability": 0.7494 + }, + { + "start": 1899.3, + "end": 1904.72, + "probability": 0.903 + }, + { + "start": 1905.76, + "end": 1909.34, + "probability": 0.9705 + }, + { + "start": 1909.48, + "end": 1910.42, + "probability": 0.9285 + }, + { + "start": 1910.48, + "end": 1912.7, + "probability": 0.9078 + }, + { + "start": 1913.42, + "end": 1914.78, + "probability": 0.9297 + }, + { + "start": 1915.3, + "end": 1916.6, + "probability": 0.985 + }, + { + "start": 1916.78, + "end": 1919.08, + "probability": 0.9922 + }, + { + "start": 1919.66, + "end": 1923.48, + "probability": 0.9138 + }, + { + "start": 1923.62, + "end": 1923.96, + "probability": 0.1662 + }, + { + "start": 1923.96, + "end": 1924.36, + "probability": 0.4785 + }, + { + "start": 1925.14, + "end": 1928.98, + "probability": 0.8466 + }, + { + "start": 1929.2, + "end": 1930.46, + "probability": 0.9222 + }, + { + "start": 1930.56, + "end": 1930.96, + "probability": 0.6469 + }, + { + "start": 1931.38, + "end": 1932.2, + "probability": 0.8667 + }, + { + "start": 1932.7, + "end": 1933.31, + "probability": 0.7129 + }, + { + "start": 1934.14, + "end": 1935.78, + "probability": 0.7388 + }, + { + "start": 1935.92, + "end": 1936.26, + "probability": 0.2567 + }, + { + "start": 1936.26, + "end": 1938.08, + "probability": 0.845 + }, + { + "start": 1938.1, + "end": 1938.8, + "probability": 0.7798 + }, + { + "start": 1939.64, + "end": 1940.44, + "probability": 0.6109 + }, + { + "start": 1940.66, + "end": 1941.21, + "probability": 0.9052 + }, + { + "start": 1941.92, + "end": 1947.22, + "probability": 0.8949 + }, + { + "start": 1947.36, + "end": 1948.1, + "probability": 0.9673 + }, + { + "start": 1948.68, + "end": 1949.22, + "probability": 0.8811 + }, + { + "start": 1949.32, + "end": 1953.6, + "probability": 0.8101 + }, + { + "start": 1953.72, + "end": 1956.38, + "probability": 0.7662 + }, + { + "start": 1956.38, + "end": 1957.62, + "probability": 0.7746 + }, + { + "start": 1958.26, + "end": 1960.46, + "probability": 0.3687 + }, + { + "start": 1960.46, + "end": 1960.46, + "probability": 0.0759 + }, + { + "start": 1960.58, + "end": 1965.98, + "probability": 0.8786 + }, + { + "start": 1965.98, + "end": 1967.02, + "probability": 0.5712 + }, + { + "start": 1967.6, + "end": 1968.36, + "probability": 0.8881 + }, + { + "start": 1968.42, + "end": 1968.94, + "probability": 0.6854 + }, + { + "start": 1969.0, + "end": 1969.8, + "probability": 0.7038 + }, + { + "start": 1969.86, + "end": 1971.02, + "probability": 0.9432 + }, + { + "start": 1971.1, + "end": 1975.4, + "probability": 0.999 + }, + { + "start": 1975.88, + "end": 1976.96, + "probability": 0.8196 + }, + { + "start": 1977.12, + "end": 1980.18, + "probability": 0.5973 + }, + { + "start": 1980.18, + "end": 1984.7, + "probability": 0.9463 + }, + { + "start": 1985.04, + "end": 1985.76, + "probability": 0.8265 + }, + { + "start": 1985.82, + "end": 1988.16, + "probability": 0.8053 + }, + { + "start": 1988.18, + "end": 1988.94, + "probability": 0.7873 + }, + { + "start": 1988.94, + "end": 1989.7, + "probability": 0.5934 + }, + { + "start": 1989.82, + "end": 1993.94, + "probability": 0.8849 + }, + { + "start": 1994.0, + "end": 1997.3, + "probability": 0.9956 + }, + { + "start": 1997.3, + "end": 2001.6, + "probability": 0.9937 + }, + { + "start": 2001.72, + "end": 2002.82, + "probability": 0.8228 + }, + { + "start": 2003.4, + "end": 2005.32, + "probability": 0.9961 + }, + { + "start": 2005.66, + "end": 2006.49, + "probability": 0.896 + }, + { + "start": 2007.02, + "end": 2012.52, + "probability": 0.9901 + }, + { + "start": 2012.66, + "end": 2015.22, + "probability": 0.7911 + }, + { + "start": 2015.92, + "end": 2018.08, + "probability": 0.9656 + }, + { + "start": 2018.42, + "end": 2018.52, + "probability": 0.6528 + }, + { + "start": 2018.58, + "end": 2019.8, + "probability": 0.5384 + }, + { + "start": 2019.9, + "end": 2022.56, + "probability": 0.9939 + }, + { + "start": 2022.8, + "end": 2023.12, + "probability": 0.6992 + }, + { + "start": 2023.9, + "end": 2026.28, + "probability": 0.9415 + }, + { + "start": 2026.44, + "end": 2028.67, + "probability": 0.8689 + }, + { + "start": 2029.0, + "end": 2030.08, + "probability": 0.7741 + }, + { + "start": 2030.46, + "end": 2031.24, + "probability": 0.7852 + }, + { + "start": 2031.32, + "end": 2032.3, + "probability": 0.7009 + }, + { + "start": 2034.32, + "end": 2035.5, + "probability": 0.8405 + }, + { + "start": 2035.9, + "end": 2040.04, + "probability": 0.9939 + }, + { + "start": 2040.38, + "end": 2042.56, + "probability": 0.6597 + }, + { + "start": 2042.9, + "end": 2046.56, + "probability": 0.9732 + }, + { + "start": 2046.56, + "end": 2049.68, + "probability": 0.8911 + }, + { + "start": 2050.0, + "end": 2054.9, + "probability": 0.9933 + }, + { + "start": 2055.24, + "end": 2056.18, + "probability": 0.8281 + }, + { + "start": 2056.46, + "end": 2057.6, + "probability": 0.9026 + }, + { + "start": 2057.72, + "end": 2058.54, + "probability": 0.9067 + }, + { + "start": 2059.3, + "end": 2062.0, + "probability": 0.7251 + }, + { + "start": 2062.24, + "end": 2065.4, + "probability": 0.9529 + }, + { + "start": 2066.12, + "end": 2070.64, + "probability": 0.6586 + }, + { + "start": 2072.08, + "end": 2074.84, + "probability": 0.9727 + }, + { + "start": 2075.44, + "end": 2077.14, + "probability": 0.8313 + }, + { + "start": 2078.66, + "end": 2081.97, + "probability": 0.7474 + }, + { + "start": 2082.32, + "end": 2082.88, + "probability": 0.357 + }, + { + "start": 2083.34, + "end": 2089.96, + "probability": 0.7802 + }, + { + "start": 2091.06, + "end": 2094.5, + "probability": 0.7041 + }, + { + "start": 2095.08, + "end": 2097.86, + "probability": 0.924 + }, + { + "start": 2098.8, + "end": 2102.14, + "probability": 0.9884 + }, + { + "start": 2103.27, + "end": 2107.06, + "probability": 0.8936 + }, + { + "start": 2111.36, + "end": 2112.3, + "probability": 0.5304 + }, + { + "start": 2112.3, + "end": 2114.2, + "probability": 0.1697 + }, + { + "start": 2114.3, + "end": 2114.86, + "probability": 0.903 + }, + { + "start": 2115.92, + "end": 2119.29, + "probability": 0.8842 + }, + { + "start": 2120.04, + "end": 2121.0, + "probability": 0.7944 + }, + { + "start": 2121.08, + "end": 2122.78, + "probability": 0.9619 + }, + { + "start": 2122.94, + "end": 2123.74, + "probability": 0.4728 + }, + { + "start": 2123.8, + "end": 2126.84, + "probability": 0.7247 + }, + { + "start": 2126.92, + "end": 2128.2, + "probability": 0.8296 + }, + { + "start": 2128.32, + "end": 2130.98, + "probability": 0.691 + }, + { + "start": 2131.04, + "end": 2133.64, + "probability": 0.6902 + }, + { + "start": 2133.84, + "end": 2136.08, + "probability": 0.8648 + }, + { + "start": 2136.6, + "end": 2139.7, + "probability": 0.9933 + }, + { + "start": 2139.84, + "end": 2141.0, + "probability": 0.6686 + }, + { + "start": 2142.02, + "end": 2145.52, + "probability": 0.9664 + }, + { + "start": 2146.84, + "end": 2153.6, + "probability": 0.9538 + }, + { + "start": 2154.7, + "end": 2157.84, + "probability": 0.7075 + }, + { + "start": 2158.74, + "end": 2162.3, + "probability": 0.8958 + }, + { + "start": 2162.4, + "end": 2165.38, + "probability": 0.9477 + }, + { + "start": 2166.12, + "end": 2167.42, + "probability": 0.8757 + }, + { + "start": 2168.38, + "end": 2170.52, + "probability": 0.9991 + }, + { + "start": 2170.52, + "end": 2174.48, + "probability": 0.9669 + }, + { + "start": 2174.88, + "end": 2176.72, + "probability": 0.9728 + }, + { + "start": 2177.28, + "end": 2181.4, + "probability": 0.8281 + }, + { + "start": 2181.56, + "end": 2182.33, + "probability": 0.9043 + }, + { + "start": 2182.72, + "end": 2183.42, + "probability": 0.7794 + }, + { + "start": 2184.04, + "end": 2184.32, + "probability": 0.8206 + }, + { + "start": 2184.52, + "end": 2185.12, + "probability": 0.9073 + }, + { + "start": 2185.38, + "end": 2185.8, + "probability": 0.8018 + }, + { + "start": 2186.5, + "end": 2188.9, + "probability": 0.9961 + }, + { + "start": 2189.44, + "end": 2192.12, + "probability": 0.9551 + }, + { + "start": 2193.22, + "end": 2195.48, + "probability": 0.6189 + }, + { + "start": 2196.02, + "end": 2197.64, + "probability": 0.9772 + }, + { + "start": 2197.98, + "end": 2201.42, + "probability": 0.9855 + }, + { + "start": 2201.42, + "end": 2204.5, + "probability": 0.995 + }, + { + "start": 2204.72, + "end": 2205.88, + "probability": 0.9849 + }, + { + "start": 2206.02, + "end": 2206.78, + "probability": 0.6954 + }, + { + "start": 2206.86, + "end": 2208.28, + "probability": 0.9735 + }, + { + "start": 2208.7, + "end": 2210.3, + "probability": 0.936 + }, + { + "start": 2210.46, + "end": 2211.62, + "probability": 0.8257 + }, + { + "start": 2211.7, + "end": 2212.08, + "probability": 0.3604 + }, + { + "start": 2212.94, + "end": 2214.46, + "probability": 0.5301 + }, + { + "start": 2214.66, + "end": 2218.38, + "probability": 0.9663 + }, + { + "start": 2219.08, + "end": 2221.24, + "probability": 0.9648 + }, + { + "start": 2222.04, + "end": 2223.28, + "probability": 0.9353 + }, + { + "start": 2223.62, + "end": 2224.46, + "probability": 0.7351 + }, + { + "start": 2224.7, + "end": 2227.58, + "probability": 0.9862 + }, + { + "start": 2228.44, + "end": 2228.44, + "probability": 0.1101 + }, + { + "start": 2229.04, + "end": 2236.26, + "probability": 0.9961 + }, + { + "start": 2238.0, + "end": 2242.48, + "probability": 0.5611 + }, + { + "start": 2242.78, + "end": 2248.64, + "probability": 0.7583 + }, + { + "start": 2248.88, + "end": 2251.68, + "probability": 0.9863 + }, + { + "start": 2252.28, + "end": 2253.52, + "probability": 0.8234 + }, + { + "start": 2253.72, + "end": 2254.66, + "probability": 0.7593 + }, + { + "start": 2254.7, + "end": 2256.06, + "probability": 0.9082 + }, + { + "start": 2256.4, + "end": 2257.82, + "probability": 0.6964 + }, + { + "start": 2258.26, + "end": 2260.7, + "probability": 0.9893 + }, + { + "start": 2261.24, + "end": 2261.82, + "probability": 0.4988 + }, + { + "start": 2261.92, + "end": 2262.3, + "probability": 0.9021 + }, + { + "start": 2262.48, + "end": 2263.5, + "probability": 0.9451 + }, + { + "start": 2263.86, + "end": 2266.3, + "probability": 0.9881 + }, + { + "start": 2266.3, + "end": 2269.62, + "probability": 0.9946 + }, + { + "start": 2270.34, + "end": 2270.6, + "probability": 0.3423 + }, + { + "start": 2270.68, + "end": 2274.14, + "probability": 0.9445 + }, + { + "start": 2274.52, + "end": 2276.12, + "probability": 0.9347 + }, + { + "start": 2276.14, + "end": 2280.04, + "probability": 0.9492 + }, + { + "start": 2280.08, + "end": 2283.68, + "probability": 0.9397 + }, + { + "start": 2284.02, + "end": 2284.6, + "probability": 0.7067 + }, + { + "start": 2285.3, + "end": 2287.7, + "probability": 0.9438 + }, + { + "start": 2287.7, + "end": 2291.62, + "probability": 0.9835 + }, + { + "start": 2291.88, + "end": 2295.14, + "probability": 0.854 + }, + { + "start": 2295.32, + "end": 2300.4, + "probability": 0.9263 + }, + { + "start": 2300.52, + "end": 2301.1, + "probability": 0.5046 + }, + { + "start": 2301.54, + "end": 2303.22, + "probability": 0.9128 + }, + { + "start": 2303.32, + "end": 2304.32, + "probability": 0.633 + }, + { + "start": 2306.64, + "end": 2312.0, + "probability": 0.8767 + }, + { + "start": 2313.5, + "end": 2314.88, + "probability": 0.775 + }, + { + "start": 2314.88, + "end": 2317.18, + "probability": 0.9973 + }, + { + "start": 2318.02, + "end": 2318.78, + "probability": 0.6659 + }, + { + "start": 2318.86, + "end": 2319.28, + "probability": 0.9064 + }, + { + "start": 2319.46, + "end": 2320.72, + "probability": 0.9844 + }, + { + "start": 2321.9, + "end": 2322.8, + "probability": 0.9615 + }, + { + "start": 2323.3, + "end": 2324.52, + "probability": 0.9316 + }, + { + "start": 2324.56, + "end": 2330.28, + "probability": 0.9233 + }, + { + "start": 2330.44, + "end": 2331.04, + "probability": 0.6813 + }, + { + "start": 2331.98, + "end": 2336.86, + "probability": 0.9114 + }, + { + "start": 2337.66, + "end": 2343.58, + "probability": 0.9781 + }, + { + "start": 2345.24, + "end": 2348.68, + "probability": 0.9188 + }, + { + "start": 2349.28, + "end": 2349.86, + "probability": 0.7442 + }, + { + "start": 2349.98, + "end": 2350.68, + "probability": 0.5438 + }, + { + "start": 2350.88, + "end": 2356.24, + "probability": 0.7458 + }, + { + "start": 2356.24, + "end": 2362.72, + "probability": 0.9831 + }, + { + "start": 2363.56, + "end": 2368.38, + "probability": 0.9244 + }, + { + "start": 2369.34, + "end": 2372.86, + "probability": 0.8149 + }, + { + "start": 2373.66, + "end": 2374.18, + "probability": 0.3649 + }, + { + "start": 2374.34, + "end": 2376.76, + "probability": 0.9699 + }, + { + "start": 2376.76, + "end": 2378.24, + "probability": 0.8462 + }, + { + "start": 2378.96, + "end": 2381.01, + "probability": 0.9906 + }, + { + "start": 2381.82, + "end": 2382.88, + "probability": 0.6394 + }, + { + "start": 2383.22, + "end": 2388.52, + "probability": 0.9394 + }, + { + "start": 2389.32, + "end": 2390.72, + "probability": 0.9762 + }, + { + "start": 2392.44, + "end": 2392.48, + "probability": 0.1074 + }, + { + "start": 2392.48, + "end": 2393.52, + "probability": 0.575 + }, + { + "start": 2395.0, + "end": 2399.18, + "probability": 0.9756 + }, + { + "start": 2399.56, + "end": 2400.4, + "probability": 0.9468 + }, + { + "start": 2400.82, + "end": 2401.93, + "probability": 0.6621 + }, + { + "start": 2402.72, + "end": 2405.8, + "probability": 0.8903 + }, + { + "start": 2406.46, + "end": 2410.72, + "probability": 0.9985 + }, + { + "start": 2411.44, + "end": 2412.26, + "probability": 0.6033 + }, + { + "start": 2412.76, + "end": 2413.76, + "probability": 0.885 + }, + { + "start": 2413.9, + "end": 2418.26, + "probability": 0.7173 + }, + { + "start": 2419.4, + "end": 2423.2, + "probability": 0.8539 + }, + { + "start": 2423.48, + "end": 2425.32, + "probability": 0.4817 + }, + { + "start": 2425.32, + "end": 2425.32, + "probability": 0.1146 + }, + { + "start": 2425.42, + "end": 2428.4, + "probability": 0.4678 + }, + { + "start": 2428.4, + "end": 2432.26, + "probability": 0.4634 + }, + { + "start": 2432.46, + "end": 2434.51, + "probability": 0.873 + }, + { + "start": 2434.86, + "end": 2436.36, + "probability": 0.5231 + }, + { + "start": 2436.5, + "end": 2438.5, + "probability": 0.85 + }, + { + "start": 2438.72, + "end": 2439.62, + "probability": 0.7215 + }, + { + "start": 2439.68, + "end": 2440.66, + "probability": 0.2474 + }, + { + "start": 2440.66, + "end": 2440.96, + "probability": 0.5011 + }, + { + "start": 2441.2, + "end": 2441.7, + "probability": 0.7037 + }, + { + "start": 2442.28, + "end": 2443.0, + "probability": 0.9149 + }, + { + "start": 2443.1, + "end": 2445.58, + "probability": 0.95 + }, + { + "start": 2446.42, + "end": 2448.96, + "probability": 0.6463 + }, + { + "start": 2449.08, + "end": 2449.2, + "probability": 0.3059 + }, + { + "start": 2449.7, + "end": 2455.22, + "probability": 0.9585 + }, + { + "start": 2456.24, + "end": 2457.7, + "probability": 0.7236 + }, + { + "start": 2457.82, + "end": 2459.0, + "probability": 0.9048 + }, + { + "start": 2459.62, + "end": 2461.64, + "probability": 0.8828 + }, + { + "start": 2461.86, + "end": 2466.34, + "probability": 0.8423 + }, + { + "start": 2466.7, + "end": 2468.52, + "probability": 0.98 + }, + { + "start": 2468.96, + "end": 2471.7, + "probability": 0.8092 + }, + { + "start": 2472.32, + "end": 2475.1, + "probability": 0.9956 + }, + { + "start": 2475.36, + "end": 2478.08, + "probability": 0.8518 + }, + { + "start": 2478.98, + "end": 2479.8, + "probability": 0.9117 + }, + { + "start": 2479.96, + "end": 2482.1, + "probability": 0.8437 + }, + { + "start": 2482.16, + "end": 2483.88, + "probability": 0.9204 + }, + { + "start": 2484.48, + "end": 2487.14, + "probability": 0.967 + }, + { + "start": 2487.28, + "end": 2490.0, + "probability": 0.9938 + }, + { + "start": 2490.7, + "end": 2491.3, + "probability": 0.9688 + }, + { + "start": 2491.88, + "end": 2496.4, + "probability": 0.9838 + }, + { + "start": 2496.4, + "end": 2500.88, + "probability": 0.9719 + }, + { + "start": 2501.32, + "end": 2502.48, + "probability": 0.9687 + }, + { + "start": 2503.06, + "end": 2505.46, + "probability": 0.9851 + }, + { + "start": 2505.98, + "end": 2509.56, + "probability": 0.9569 + }, + { + "start": 2510.4, + "end": 2513.96, + "probability": 0.7801 + }, + { + "start": 2514.78, + "end": 2516.26, + "probability": 0.9785 + }, + { + "start": 2517.0, + "end": 2519.04, + "probability": 0.9961 + }, + { + "start": 2519.1, + "end": 2520.54, + "probability": 0.6159 + }, + { + "start": 2520.92, + "end": 2521.72, + "probability": 0.9231 + }, + { + "start": 2521.86, + "end": 2522.16, + "probability": 0.9125 + }, + { + "start": 2522.26, + "end": 2524.0, + "probability": 0.817 + }, + { + "start": 2524.44, + "end": 2528.92, + "probability": 0.6188 + }, + { + "start": 2529.0, + "end": 2530.92, + "probability": 0.9535 + }, + { + "start": 2531.72, + "end": 2535.2, + "probability": 0.0337 + }, + { + "start": 2535.76, + "end": 2535.76, + "probability": 0.1847 + }, + { + "start": 2535.76, + "end": 2537.1, + "probability": 0.2367 + }, + { + "start": 2538.36, + "end": 2543.62, + "probability": 0.9702 + }, + { + "start": 2543.72, + "end": 2546.82, + "probability": 0.9481 + }, + { + "start": 2547.08, + "end": 2548.64, + "probability": 0.9194 + }, + { + "start": 2548.72, + "end": 2551.86, + "probability": 0.9669 + }, + { + "start": 2552.4, + "end": 2558.9, + "probability": 0.9985 + }, + { + "start": 2559.0, + "end": 2559.26, + "probability": 0.7628 + }, + { + "start": 2559.76, + "end": 2563.14, + "probability": 0.8398 + }, + { + "start": 2563.96, + "end": 2568.3, + "probability": 0.9787 + }, + { + "start": 2568.36, + "end": 2569.78, + "probability": 0.8054 + }, + { + "start": 2571.22, + "end": 2575.8, + "probability": 0.7214 + }, + { + "start": 2576.92, + "end": 2582.86, + "probability": 0.7394 + }, + { + "start": 2582.88, + "end": 2583.32, + "probability": 0.7254 + }, + { + "start": 2589.3, + "end": 2592.68, + "probability": 0.7703 + }, + { + "start": 2598.94, + "end": 2599.6, + "probability": 0.5344 + }, + { + "start": 2599.74, + "end": 2600.62, + "probability": 0.8105 + }, + { + "start": 2600.98, + "end": 2602.3, + "probability": 0.4182 + }, + { + "start": 2602.4, + "end": 2604.96, + "probability": 0.92 + }, + { + "start": 2605.06, + "end": 2610.36, + "probability": 0.7129 + }, + { + "start": 2610.98, + "end": 2615.02, + "probability": 0.9742 + }, + { + "start": 2615.24, + "end": 2619.42, + "probability": 0.9727 + }, + { + "start": 2619.5, + "end": 2619.72, + "probability": 0.7071 + }, + { + "start": 2621.79, + "end": 2624.46, + "probability": 0.5212 + }, + { + "start": 2624.56, + "end": 2625.69, + "probability": 0.7736 + }, + { + "start": 2626.04, + "end": 2626.98, + "probability": 0.7295 + }, + { + "start": 2627.7, + "end": 2628.4, + "probability": 0.7505 + }, + { + "start": 2630.02, + "end": 2633.56, + "probability": 0.7316 + }, + { + "start": 2633.7, + "end": 2638.5, + "probability": 0.4485 + }, + { + "start": 2638.58, + "end": 2642.58, + "probability": 0.9577 + }, + { + "start": 2643.48, + "end": 2645.06, + "probability": 0.6927 + }, + { + "start": 2645.12, + "end": 2649.02, + "probability": 0.9718 + }, + { + "start": 2650.28, + "end": 2653.15, + "probability": 0.9895 + }, + { + "start": 2653.87, + "end": 2657.84, + "probability": 0.9919 + }, + { + "start": 2658.62, + "end": 2661.08, + "probability": 0.8145 + }, + { + "start": 2662.3, + "end": 2665.44, + "probability": 0.9896 + }, + { + "start": 2665.44, + "end": 2670.38, + "probability": 0.9928 + }, + { + "start": 2671.44, + "end": 2671.44, + "probability": 0.0001 + }, + { + "start": 2674.44, + "end": 2674.7, + "probability": 0.2816 + }, + { + "start": 2674.7, + "end": 2674.7, + "probability": 0.2444 + }, + { + "start": 2674.7, + "end": 2680.0, + "probability": 0.236 + }, + { + "start": 2681.36, + "end": 2685.56, + "probability": 0.131 + }, + { + "start": 2686.01, + "end": 2690.8, + "probability": 0.9125 + }, + { + "start": 2691.64, + "end": 2693.14, + "probability": 0.7982 + }, + { + "start": 2693.9, + "end": 2696.44, + "probability": 0.649 + }, + { + "start": 2697.26, + "end": 2700.36, + "probability": 0.9655 + }, + { + "start": 2701.26, + "end": 2703.7, + "probability": 0.9839 + }, + { + "start": 2704.88, + "end": 2708.5, + "probability": 0.9598 + }, + { + "start": 2710.4, + "end": 2711.92, + "probability": 0.967 + }, + { + "start": 2713.26, + "end": 2715.96, + "probability": 0.6633 + }, + { + "start": 2716.84, + "end": 2720.02, + "probability": 0.9275 + }, + { + "start": 2721.24, + "end": 2726.68, + "probability": 0.8411 + }, + { + "start": 2727.38, + "end": 2731.44, + "probability": 0.9083 + }, + { + "start": 2731.48, + "end": 2735.52, + "probability": 0.9681 + }, + { + "start": 2736.3, + "end": 2737.54, + "probability": 0.5078 + }, + { + "start": 2737.7, + "end": 2740.36, + "probability": 0.725 + }, + { + "start": 2740.52, + "end": 2743.66, + "probability": 0.8248 + }, + { + "start": 2743.66, + "end": 2744.1, + "probability": 0.434 + }, + { + "start": 2744.2, + "end": 2745.02, + "probability": 0.9602 + }, + { + "start": 2746.44, + "end": 2748.32, + "probability": 0.8569 + }, + { + "start": 2748.64, + "end": 2750.74, + "probability": 0.9468 + }, + { + "start": 2751.42, + "end": 2756.3, + "probability": 0.871 + }, + { + "start": 2757.14, + "end": 2761.46, + "probability": 0.9172 + }, + { + "start": 2761.46, + "end": 2762.58, + "probability": 0.7616 + }, + { + "start": 2763.42, + "end": 2767.44, + "probability": 0.9872 + }, + { + "start": 2767.52, + "end": 2768.15, + "probability": 0.8477 + }, + { + "start": 2768.38, + "end": 2774.1, + "probability": 0.9933 + }, + { + "start": 2774.26, + "end": 2780.8, + "probability": 0.9873 + }, + { + "start": 2781.6, + "end": 2786.28, + "probability": 0.9487 + }, + { + "start": 2786.28, + "end": 2790.0, + "probability": 0.656 + }, + { + "start": 2790.12, + "end": 2790.46, + "probability": 0.6452 + }, + { + "start": 2791.6, + "end": 2793.5, + "probability": 0.6678 + }, + { + "start": 2793.58, + "end": 2798.32, + "probability": 0.9153 + }, + { + "start": 2798.58, + "end": 2799.14, + "probability": 0.5273 + }, + { + "start": 2799.3, + "end": 2800.62, + "probability": 0.9774 + }, + { + "start": 2802.12, + "end": 2803.28, + "probability": 0.9351 + }, + { + "start": 2803.64, + "end": 2807.24, + "probability": 0.9242 + }, + { + "start": 2808.6, + "end": 2812.0, + "probability": 0.9151 + }, + { + "start": 2812.86, + "end": 2814.34, + "probability": 0.5239 + }, + { + "start": 2814.48, + "end": 2815.32, + "probability": 0.7345 + }, + { + "start": 2815.34, + "end": 2815.58, + "probability": 0.4811 + }, + { + "start": 2815.6, + "end": 2816.54, + "probability": 0.9232 + }, + { + "start": 2816.92, + "end": 2821.0, + "probability": 0.9613 + }, + { + "start": 2821.0, + "end": 2825.7, + "probability": 0.9744 + }, + { + "start": 2826.48, + "end": 2829.28, + "probability": 0.987 + }, + { + "start": 2829.34, + "end": 2832.6, + "probability": 0.9026 + }, + { + "start": 2832.62, + "end": 2834.84, + "probability": 0.9421 + }, + { + "start": 2835.9, + "end": 2839.64, + "probability": 0.9922 + }, + { + "start": 2840.18, + "end": 2841.12, + "probability": 0.6058 + }, + { + "start": 2841.38, + "end": 2842.08, + "probability": 0.3706 + }, + { + "start": 2842.12, + "end": 2844.82, + "probability": 0.8157 + }, + { + "start": 2845.26, + "end": 2848.98, + "probability": 0.8523 + }, + { + "start": 2848.98, + "end": 2854.0, + "probability": 0.7447 + }, + { + "start": 2854.08, + "end": 2854.92, + "probability": 0.6752 + }, + { + "start": 2855.04, + "end": 2855.88, + "probability": 0.8498 + }, + { + "start": 2856.2, + "end": 2857.48, + "probability": 0.7153 + }, + { + "start": 2857.66, + "end": 2863.24, + "probability": 0.6805 + }, + { + "start": 2863.58, + "end": 2867.2, + "probability": 0.9473 + }, + { + "start": 2868.04, + "end": 2870.97, + "probability": 0.9966 + }, + { + "start": 2871.54, + "end": 2873.64, + "probability": 0.9916 + }, + { + "start": 2873.66, + "end": 2876.24, + "probability": 0.7773 + }, + { + "start": 2876.24, + "end": 2880.78, + "probability": 0.9906 + }, + { + "start": 2881.28, + "end": 2884.74, + "probability": 0.8355 + }, + { + "start": 2885.04, + "end": 2886.6, + "probability": 0.7905 + }, + { + "start": 2886.78, + "end": 2887.92, + "probability": 0.8159 + }, + { + "start": 2888.32, + "end": 2890.36, + "probability": 0.9603 + }, + { + "start": 2890.56, + "end": 2892.66, + "probability": 0.8811 + }, + { + "start": 2892.66, + "end": 2896.84, + "probability": 0.9681 + }, + { + "start": 2900.78, + "end": 2901.54, + "probability": 0.8149 + }, + { + "start": 2901.62, + "end": 2902.64, + "probability": 0.9276 + }, + { + "start": 2902.8, + "end": 2903.54, + "probability": 0.6911 + }, + { + "start": 2903.74, + "end": 2906.0, + "probability": 0.9229 + }, + { + "start": 2906.28, + "end": 2907.6, + "probability": 0.9976 + }, + { + "start": 2908.22, + "end": 2911.76, + "probability": 0.9962 + }, + { + "start": 2912.32, + "end": 2912.76, + "probability": 0.1581 + }, + { + "start": 2912.84, + "end": 2914.3, + "probability": 0.5608 + }, + { + "start": 2914.9, + "end": 2917.28, + "probability": 0.6674 + }, + { + "start": 2917.78, + "end": 2919.36, + "probability": 0.5533 + }, + { + "start": 2919.5, + "end": 2922.1, + "probability": 0.7212 + }, + { + "start": 2922.7, + "end": 2924.3, + "probability": 0.9344 + }, + { + "start": 2924.42, + "end": 2925.28, + "probability": 0.9934 + }, + { + "start": 2925.88, + "end": 2928.62, + "probability": 0.7341 + }, + { + "start": 2928.76, + "end": 2930.54, + "probability": 0.7919 + }, + { + "start": 2930.88, + "end": 2932.18, + "probability": 0.9985 + }, + { + "start": 2932.48, + "end": 2936.7, + "probability": 0.4199 + }, + { + "start": 2937.0, + "end": 2937.8, + "probability": 0.7706 + }, + { + "start": 2937.84, + "end": 2942.58, + "probability": 0.9652 + }, + { + "start": 2943.78, + "end": 2944.44, + "probability": 0.4239 + }, + { + "start": 2944.86, + "end": 2947.16, + "probability": 0.9583 + }, + { + "start": 2947.4, + "end": 2952.0, + "probability": 0.9048 + }, + { + "start": 2952.3, + "end": 2954.16, + "probability": 0.9514 + }, + { + "start": 2954.26, + "end": 2957.33, + "probability": 0.7611 + }, + { + "start": 2958.0, + "end": 2962.86, + "probability": 0.9431 + }, + { + "start": 2963.3, + "end": 2966.18, + "probability": 0.9663 + }, + { + "start": 2966.3, + "end": 2969.18, + "probability": 0.9399 + }, + { + "start": 2969.24, + "end": 2971.1, + "probability": 0.5691 + }, + { + "start": 2971.32, + "end": 2973.91, + "probability": 0.9346 + }, + { + "start": 2974.3, + "end": 2976.14, + "probability": 0.8057 + }, + { + "start": 2976.16, + "end": 2978.44, + "probability": 0.9806 + }, + { + "start": 2978.6, + "end": 2981.74, + "probability": 0.0921 + }, + { + "start": 2981.74, + "end": 2981.81, + "probability": 0.1653 + }, + { + "start": 2983.78, + "end": 2984.28, + "probability": 0.7277 + }, + { + "start": 2985.18, + "end": 2985.3, + "probability": 0.9016 + }, + { + "start": 2985.34, + "end": 2986.76, + "probability": 0.8826 + }, + { + "start": 2986.94, + "end": 2987.24, + "probability": 0.4756 + }, + { + "start": 2987.36, + "end": 2988.28, + "probability": 0.9468 + }, + { + "start": 2988.36, + "end": 2990.56, + "probability": 0.865 + }, + { + "start": 2991.36, + "end": 2996.28, + "probability": 0.7674 + }, + { + "start": 2997.54, + "end": 2999.76, + "probability": 0.9629 + }, + { + "start": 3000.8, + "end": 3004.12, + "probability": 0.9175 + }, + { + "start": 3005.38, + "end": 3006.32, + "probability": 0.7918 + }, + { + "start": 3006.7, + "end": 3008.18, + "probability": 0.8461 + }, + { + "start": 3008.28, + "end": 3015.5, + "probability": 0.9681 + }, + { + "start": 3016.22, + "end": 3016.74, + "probability": 0.9893 + }, + { + "start": 3020.84, + "end": 3028.64, + "probability": 0.991 + }, + { + "start": 3028.8, + "end": 3031.46, + "probability": 0.9681 + }, + { + "start": 3031.68, + "end": 3032.1, + "probability": 0.4547 + }, + { + "start": 3032.62, + "end": 3033.7, + "probability": 0.9502 + }, + { + "start": 3034.22, + "end": 3034.88, + "probability": 0.8915 + }, + { + "start": 3035.88, + "end": 3037.78, + "probability": 0.9932 + }, + { + "start": 3037.94, + "end": 3047.28, + "probability": 0.9926 + }, + { + "start": 3047.4, + "end": 3048.34, + "probability": 0.6702 + }, + { + "start": 3048.96, + "end": 3052.44, + "probability": 0.9958 + }, + { + "start": 3053.54, + "end": 3056.72, + "probability": 0.9889 + }, + { + "start": 3057.66, + "end": 3061.66, + "probability": 0.9924 + }, + { + "start": 3062.34, + "end": 3064.58, + "probability": 0.8557 + }, + { + "start": 3065.22, + "end": 3068.3, + "probability": 0.7902 + }, + { + "start": 3069.12, + "end": 3072.5, + "probability": 0.9465 + }, + { + "start": 3073.58, + "end": 3075.46, + "probability": 0.9956 + }, + { + "start": 3076.34, + "end": 3078.8, + "probability": 0.8511 + }, + { + "start": 3079.34, + "end": 3080.36, + "probability": 0.9676 + }, + { + "start": 3080.62, + "end": 3085.72, + "probability": 0.809 + }, + { + "start": 3085.8, + "end": 3086.88, + "probability": 0.9722 + }, + { + "start": 3087.58, + "end": 3089.08, + "probability": 0.9507 + }, + { + "start": 3089.99, + "end": 3091.8, + "probability": 0.3579 + }, + { + "start": 3091.8, + "end": 3091.87, + "probability": 0.7061 + }, + { + "start": 3093.28, + "end": 3093.9, + "probability": 0.8394 + }, + { + "start": 3094.86, + "end": 3100.06, + "probability": 0.9648 + }, + { + "start": 3100.84, + "end": 3104.44, + "probability": 0.9869 + }, + { + "start": 3105.22, + "end": 3106.46, + "probability": 0.8073 + }, + { + "start": 3106.62, + "end": 3107.18, + "probability": 0.7147 + }, + { + "start": 3108.06, + "end": 3111.72, + "probability": 0.9093 + }, + { + "start": 3112.24, + "end": 3115.32, + "probability": 0.8648 + }, + { + "start": 3116.06, + "end": 3119.56, + "probability": 0.6353 + }, + { + "start": 3119.68, + "end": 3122.57, + "probability": 0.8378 + }, + { + "start": 3123.38, + "end": 3124.42, + "probability": 0.7426 + }, + { + "start": 3125.26, + "end": 3127.0, + "probability": 0.8014 + }, + { + "start": 3127.66, + "end": 3129.08, + "probability": 0.7492 + }, + { + "start": 3129.98, + "end": 3131.69, + "probability": 0.8142 + }, + { + "start": 3132.62, + "end": 3133.84, + "probability": 0.8112 + }, + { + "start": 3134.48, + "end": 3137.1, + "probability": 0.7964 + }, + { + "start": 3137.16, + "end": 3138.31, + "probability": 0.9644 + }, + { + "start": 3139.14, + "end": 3140.56, + "probability": 0.9663 + }, + { + "start": 3141.14, + "end": 3142.42, + "probability": 0.758 + }, + { + "start": 3142.52, + "end": 3143.6, + "probability": 0.8516 + }, + { + "start": 3144.22, + "end": 3146.2, + "probability": 0.8585 + }, + { + "start": 3146.84, + "end": 3147.3, + "probability": 0.4456 + }, + { + "start": 3147.74, + "end": 3150.78, + "probability": 0.899 + }, + { + "start": 3151.62, + "end": 3153.88, + "probability": 0.8267 + }, + { + "start": 3154.14, + "end": 3156.34, + "probability": 0.996 + }, + { + "start": 3157.26, + "end": 3159.34, + "probability": 0.9954 + }, + { + "start": 3160.4, + "end": 3161.7, + "probability": 0.8777 + }, + { + "start": 3164.34, + "end": 3166.59, + "probability": 0.998 + }, + { + "start": 3167.94, + "end": 3170.18, + "probability": 0.88 + }, + { + "start": 3170.58, + "end": 3172.1, + "probability": 0.7244 + }, + { + "start": 3173.6, + "end": 3175.16, + "probability": 0.7698 + }, + { + "start": 3175.78, + "end": 3175.94, + "probability": 0.7059 + }, + { + "start": 3176.5, + "end": 3178.26, + "probability": 0.9174 + }, + { + "start": 3178.36, + "end": 3179.34, + "probability": 0.9022 + }, + { + "start": 3179.64, + "end": 3182.56, + "probability": 0.9521 + }, + { + "start": 3182.62, + "end": 3184.4, + "probability": 0.9961 + }, + { + "start": 3185.2, + "end": 3186.06, + "probability": 0.9366 + }, + { + "start": 3186.66, + "end": 3189.88, + "probability": 0.9175 + }, + { + "start": 3190.48, + "end": 3193.44, + "probability": 0.9258 + }, + { + "start": 3193.62, + "end": 3194.62, + "probability": 0.6985 + }, + { + "start": 3195.48, + "end": 3196.2, + "probability": 0.8994 + }, + { + "start": 3196.28, + "end": 3201.92, + "probability": 0.9946 + }, + { + "start": 3203.82, + "end": 3203.82, + "probability": 0.1675 + }, + { + "start": 3203.82, + "end": 3204.28, + "probability": 0.7965 + }, + { + "start": 3205.02, + "end": 3207.32, + "probability": 0.8635 + }, + { + "start": 3207.44, + "end": 3208.28, + "probability": 0.9648 + }, + { + "start": 3208.42, + "end": 3209.42, + "probability": 0.9708 + }, + { + "start": 3209.5, + "end": 3209.58, + "probability": 0.7313 + }, + { + "start": 3209.78, + "end": 3210.46, + "probability": 0.1899 + }, + { + "start": 3210.5, + "end": 3210.86, + "probability": 0.3229 + }, + { + "start": 3210.94, + "end": 3212.96, + "probability": 0.7898 + }, + { + "start": 3213.48, + "end": 3214.02, + "probability": 0.5902 + }, + { + "start": 3214.1, + "end": 3216.54, + "probability": 0.9281 + }, + { + "start": 3217.58, + "end": 3218.46, + "probability": 0.7788 + }, + { + "start": 3218.5, + "end": 3220.86, + "probability": 0.9053 + }, + { + "start": 3220.86, + "end": 3221.21, + "probability": 0.3776 + }, + { + "start": 3222.18, + "end": 3226.18, + "probability": 0.88 + }, + { + "start": 3226.38, + "end": 3228.9, + "probability": 0.9076 + }, + { + "start": 3229.78, + "end": 3232.56, + "probability": 0.938 + }, + { + "start": 3233.08, + "end": 3234.14, + "probability": 0.7377 + }, + { + "start": 3234.92, + "end": 3236.86, + "probability": 0.7607 + }, + { + "start": 3237.78, + "end": 3239.76, + "probability": 0.8207 + }, + { + "start": 3240.32, + "end": 3241.52, + "probability": 0.7642 + }, + { + "start": 3241.82, + "end": 3243.82, + "probability": 0.8621 + }, + { + "start": 3244.4, + "end": 3245.81, + "probability": 0.9634 + }, + { + "start": 3251.16, + "end": 3252.28, + "probability": 0.3897 + }, + { + "start": 3252.28, + "end": 3252.28, + "probability": 0.0775 + }, + { + "start": 3252.28, + "end": 3256.46, + "probability": 0.7561 + }, + { + "start": 3258.22, + "end": 3258.78, + "probability": 0.8158 + }, + { + "start": 3258.94, + "end": 3261.38, + "probability": 0.8698 + }, + { + "start": 3261.38, + "end": 3265.26, + "probability": 0.821 + }, + { + "start": 3265.74, + "end": 3266.72, + "probability": 0.9512 + }, + { + "start": 3266.76, + "end": 3267.8, + "probability": 0.8658 + }, + { + "start": 3269.17, + "end": 3272.04, + "probability": 0.8688 + }, + { + "start": 3272.9, + "end": 3273.56, + "probability": 0.7954 + }, + { + "start": 3274.4, + "end": 3275.1, + "probability": 0.4465 + }, + { + "start": 3275.2, + "end": 3276.63, + "probability": 0.9664 + }, + { + "start": 3277.36, + "end": 3279.77, + "probability": 0.9276 + }, + { + "start": 3280.74, + "end": 3284.11, + "probability": 0.9844 + }, + { + "start": 3285.0, + "end": 3286.88, + "probability": 0.9893 + }, + { + "start": 3287.0, + "end": 3288.32, + "probability": 0.9905 + }, + { + "start": 3288.98, + "end": 3293.14, + "probability": 0.9218 + }, + { + "start": 3294.42, + "end": 3298.72, + "probability": 0.9684 + }, + { + "start": 3299.42, + "end": 3301.22, + "probability": 0.9858 + }, + { + "start": 3301.94, + "end": 3307.08, + "probability": 0.9277 + }, + { + "start": 3308.0, + "end": 3308.76, + "probability": 0.9197 + }, + { + "start": 3309.86, + "end": 3310.5, + "probability": 0.5074 + }, + { + "start": 3310.74, + "end": 3310.74, + "probability": 0.0618 + }, + { + "start": 3310.94, + "end": 3314.68, + "probability": 0.9284 + }, + { + "start": 3315.54, + "end": 3317.9, + "probability": 0.9507 + }, + { + "start": 3318.84, + "end": 3320.94, + "probability": 0.9924 + }, + { + "start": 3321.0, + "end": 3322.54, + "probability": 0.8342 + }, + { + "start": 3323.3, + "end": 3325.14, + "probability": 0.7565 + }, + { + "start": 3325.74, + "end": 3328.34, + "probability": 0.7331 + }, + { + "start": 3329.14, + "end": 3332.14, + "probability": 0.7432 + }, + { + "start": 3332.22, + "end": 3333.22, + "probability": 0.9495 + }, + { + "start": 3333.7, + "end": 3334.47, + "probability": 0.9274 + }, + { + "start": 3335.14, + "end": 3335.78, + "probability": 0.8457 + }, + { + "start": 3336.08, + "end": 3337.02, + "probability": 0.8145 + }, + { + "start": 3337.24, + "end": 3340.04, + "probability": 0.9738 + }, + { + "start": 3340.72, + "end": 3343.38, + "probability": 0.965 + }, + { + "start": 3343.54, + "end": 3343.94, + "probability": 0.4611 + }, + { + "start": 3344.0, + "end": 3345.2, + "probability": 0.9296 + }, + { + "start": 3345.96, + "end": 3346.96, + "probability": 0.706 + }, + { + "start": 3347.12, + "end": 3351.14, + "probability": 0.8711 + }, + { + "start": 3353.84, + "end": 3354.04, + "probability": 0.0198 + }, + { + "start": 3354.04, + "end": 3354.04, + "probability": 0.208 + }, + { + "start": 3354.04, + "end": 3354.68, + "probability": 0.4106 + }, + { + "start": 3354.78, + "end": 3357.22, + "probability": 0.8848 + }, + { + "start": 3358.26, + "end": 3360.98, + "probability": 0.8949 + }, + { + "start": 3360.98, + "end": 3364.62, + "probability": 0.9792 + }, + { + "start": 3366.1, + "end": 3369.74, + "probability": 0.9974 + }, + { + "start": 3370.6, + "end": 3373.44, + "probability": 0.9648 + }, + { + "start": 3374.3, + "end": 3379.7, + "probability": 0.9666 + }, + { + "start": 3380.61, + "end": 3384.78, + "probability": 0.9929 + }, + { + "start": 3384.78, + "end": 3387.68, + "probability": 0.8293 + }, + { + "start": 3388.3, + "end": 3390.14, + "probability": 0.9737 + }, + { + "start": 3391.46, + "end": 3394.56, + "probability": 0.9943 + }, + { + "start": 3395.7, + "end": 3398.43, + "probability": 0.9496 + }, + { + "start": 3399.28, + "end": 3401.26, + "probability": 0.9966 + }, + { + "start": 3402.18, + "end": 3402.68, + "probability": 0.7074 + }, + { + "start": 3403.16, + "end": 3406.86, + "probability": 0.9889 + }, + { + "start": 3408.04, + "end": 3411.98, + "probability": 0.5709 + }, + { + "start": 3412.96, + "end": 3415.32, + "probability": 0.8677 + }, + { + "start": 3415.98, + "end": 3417.06, + "probability": 0.8979 + }, + { + "start": 3417.06, + "end": 3419.56, + "probability": 0.9486 + }, + { + "start": 3420.36, + "end": 3422.24, + "probability": 0.7542 + }, + { + "start": 3423.14, + "end": 3426.48, + "probability": 0.8177 + }, + { + "start": 3427.04, + "end": 3429.48, + "probability": 0.9763 + }, + { + "start": 3430.3, + "end": 3433.82, + "probability": 0.9892 + }, + { + "start": 3434.86, + "end": 3438.94, + "probability": 0.9287 + }, + { + "start": 3439.1, + "end": 3440.72, + "probability": 0.6674 + }, + { + "start": 3441.64, + "end": 3443.94, + "probability": 0.9886 + }, + { + "start": 3443.94, + "end": 3446.64, + "probability": 0.8573 + }, + { + "start": 3447.24, + "end": 3449.86, + "probability": 0.8391 + }, + { + "start": 3450.76, + "end": 3453.92, + "probability": 0.9722 + }, + { + "start": 3454.72, + "end": 3455.3, + "probability": 0.384 + }, + { + "start": 3455.36, + "end": 3456.04, + "probability": 0.5409 + }, + { + "start": 3456.12, + "end": 3459.08, + "probability": 0.9761 + }, + { + "start": 3459.18, + "end": 3462.24, + "probability": 0.8206 + }, + { + "start": 3463.52, + "end": 3467.38, + "probability": 0.9578 + }, + { + "start": 3468.16, + "end": 3470.4, + "probability": 0.9904 + }, + { + "start": 3470.5, + "end": 3471.9, + "probability": 0.8742 + }, + { + "start": 3472.34, + "end": 3474.44, + "probability": 0.9441 + }, + { + "start": 3474.96, + "end": 3476.22, + "probability": 0.7375 + }, + { + "start": 3476.34, + "end": 3479.7, + "probability": 0.5342 + }, + { + "start": 3479.74, + "end": 3480.6, + "probability": 0.9028 + }, + { + "start": 3480.94, + "end": 3482.14, + "probability": 0.9557 + }, + { + "start": 3482.22, + "end": 3482.86, + "probability": 0.8222 + }, + { + "start": 3483.6, + "end": 3484.06, + "probability": 0.3941 + }, + { + "start": 3484.2, + "end": 3484.86, + "probability": 0.9679 + }, + { + "start": 3485.22, + "end": 3486.5, + "probability": 0.6156 + }, + { + "start": 3486.52, + "end": 3487.35, + "probability": 0.5102 + }, + { + "start": 3487.7, + "end": 3489.03, + "probability": 0.9353 + }, + { + "start": 3489.94, + "end": 3492.56, + "probability": 0.9839 + }, + { + "start": 3493.1, + "end": 3494.32, + "probability": 0.8054 + }, + { + "start": 3494.38, + "end": 3496.64, + "probability": 0.7082 + }, + { + "start": 3496.8, + "end": 3498.1, + "probability": 0.0933 + }, + { + "start": 3498.72, + "end": 3500.02, + "probability": 0.204 + }, + { + "start": 3500.28, + "end": 3501.34, + "probability": 0.7323 + }, + { + "start": 3502.62, + "end": 3503.98, + "probability": 0.9468 + }, + { + "start": 3506.22, + "end": 3507.46, + "probability": 0.634 + }, + { + "start": 3507.58, + "end": 3508.54, + "probability": 0.2235 + }, + { + "start": 3508.6, + "end": 3514.42, + "probability": 0.7394 + }, + { + "start": 3514.42, + "end": 3519.66, + "probability": 0.7779 + }, + { + "start": 3521.58, + "end": 3523.2, + "probability": 0.6373 + }, + { + "start": 3524.6, + "end": 3525.76, + "probability": 0.9635 + }, + { + "start": 3528.18, + "end": 3528.88, + "probability": 0.6363 + }, + { + "start": 3529.44, + "end": 3530.38, + "probability": 0.8882 + }, + { + "start": 3531.76, + "end": 3537.42, + "probability": 0.9793 + }, + { + "start": 3537.42, + "end": 3541.66, + "probability": 0.8448 + }, + { + "start": 3542.5, + "end": 3547.8, + "probability": 0.9414 + }, + { + "start": 3547.8, + "end": 3555.12, + "probability": 0.9764 + }, + { + "start": 3555.26, + "end": 3556.32, + "probability": 0.66 + }, + { + "start": 3557.28, + "end": 3562.72, + "probability": 0.8741 + }, + { + "start": 3563.78, + "end": 3568.9, + "probability": 0.981 + }, + { + "start": 3569.24, + "end": 3573.86, + "probability": 0.9961 + }, + { + "start": 3574.46, + "end": 3575.28, + "probability": 0.6134 + }, + { + "start": 3575.42, + "end": 3578.14, + "probability": 0.9596 + }, + { + "start": 3578.54, + "end": 3578.72, + "probability": 0.8472 + }, + { + "start": 3579.38, + "end": 3581.22, + "probability": 0.8865 + }, + { + "start": 3581.54, + "end": 3582.86, + "probability": 0.7685 + }, + { + "start": 3583.76, + "end": 3584.72, + "probability": 0.8407 + }, + { + "start": 3584.86, + "end": 3586.24, + "probability": 0.8509 + }, + { + "start": 3586.74, + "end": 3589.76, + "probability": 0.9609 + }, + { + "start": 3590.34, + "end": 3591.5, + "probability": 0.5238 + }, + { + "start": 3592.12, + "end": 3595.4, + "probability": 0.7938 + }, + { + "start": 3595.96, + "end": 3597.14, + "probability": 0.8625 + }, + { + "start": 3598.44, + "end": 3599.18, + "probability": 0.8492 + }, + { + "start": 3600.52, + "end": 3603.8, + "probability": 0.7793 + }, + { + "start": 3604.44, + "end": 3605.04, + "probability": 0.6817 + }, + { + "start": 3605.48, + "end": 3611.18, + "probability": 0.9098 + }, + { + "start": 3611.66, + "end": 3613.32, + "probability": 0.9058 + }, + { + "start": 3613.4, + "end": 3614.08, + "probability": 0.8718 + }, + { + "start": 3614.16, + "end": 3614.78, + "probability": 0.8771 + }, + { + "start": 3614.84, + "end": 3615.58, + "probability": 0.4247 + }, + { + "start": 3616.06, + "end": 3617.56, + "probability": 0.971 + }, + { + "start": 3618.01, + "end": 3621.14, + "probability": 0.9922 + }, + { + "start": 3621.14, + "end": 3623.32, + "probability": 0.985 + }, + { + "start": 3623.98, + "end": 3624.32, + "probability": 0.4771 + }, + { + "start": 3624.4, + "end": 3624.82, + "probability": 0.8371 + }, + { + "start": 3624.92, + "end": 3631.84, + "probability": 0.8328 + }, + { + "start": 3632.16, + "end": 3636.39, + "probability": 0.9973 + }, + { + "start": 3636.98, + "end": 3639.68, + "probability": 0.9735 + }, + { + "start": 3640.56, + "end": 3645.22, + "probability": 0.9963 + }, + { + "start": 3645.22, + "end": 3650.64, + "probability": 0.8196 + }, + { + "start": 3651.08, + "end": 3654.12, + "probability": 0.7899 + }, + { + "start": 3654.3, + "end": 3655.96, + "probability": 0.9135 + }, + { + "start": 3656.68, + "end": 3661.86, + "probability": 0.9824 + }, + { + "start": 3662.58, + "end": 3665.84, + "probability": 0.8714 + }, + { + "start": 3666.34, + "end": 3667.92, + "probability": 0.8266 + }, + { + "start": 3668.52, + "end": 3671.18, + "probability": 0.9713 + }, + { + "start": 3671.72, + "end": 3673.72, + "probability": 0.9858 + }, + { + "start": 3674.18, + "end": 3677.04, + "probability": 0.9961 + }, + { + "start": 3678.38, + "end": 3678.88, + "probability": 0.2724 + }, + { + "start": 3678.9, + "end": 3681.54, + "probability": 0.7073 + }, + { + "start": 3681.7, + "end": 3683.4, + "probability": 0.8367 + }, + { + "start": 3684.22, + "end": 3684.9, + "probability": 0.9779 + }, + { + "start": 3686.16, + "end": 3687.96, + "probability": 0.8493 + }, + { + "start": 3688.66, + "end": 3689.96, + "probability": 0.9939 + }, + { + "start": 3690.14, + "end": 3692.09, + "probability": 0.9625 + }, + { + "start": 3693.28, + "end": 3695.44, + "probability": 0.9775 + }, + { + "start": 3695.54, + "end": 3695.72, + "probability": 0.9271 + }, + { + "start": 3695.84, + "end": 3700.96, + "probability": 0.8632 + }, + { + "start": 3701.86, + "end": 3706.5, + "probability": 0.8001 + }, + { + "start": 3706.92, + "end": 3707.42, + "probability": 0.5749 + }, + { + "start": 3707.62, + "end": 3709.66, + "probability": 0.9816 + }, + { + "start": 3709.76, + "end": 3713.72, + "probability": 0.9502 + }, + { + "start": 3713.84, + "end": 3715.72, + "probability": 0.7009 + }, + { + "start": 3715.78, + "end": 3717.26, + "probability": 0.9438 + }, + { + "start": 3719.83, + "end": 3720.6, + "probability": 0.3164 + }, + { + "start": 3720.6, + "end": 3723.66, + "probability": 0.6636 + }, + { + "start": 3723.82, + "end": 3726.02, + "probability": 0.8152 + }, + { + "start": 3726.54, + "end": 3727.3, + "probability": 0.5242 + }, + { + "start": 3727.36, + "end": 3727.54, + "probability": 0.8677 + }, + { + "start": 3727.6, + "end": 3730.2, + "probability": 0.7495 + }, + { + "start": 3730.2, + "end": 3730.88, + "probability": 0.7971 + }, + { + "start": 3731.0, + "end": 3732.14, + "probability": 0.6793 + }, + { + "start": 3732.58, + "end": 3737.24, + "probability": 0.993 + }, + { + "start": 3737.78, + "end": 3742.56, + "probability": 0.9904 + }, + { + "start": 3742.56, + "end": 3742.82, + "probability": 0.6842 + }, + { + "start": 3742.98, + "end": 3747.52, + "probability": 0.9984 + }, + { + "start": 3747.66, + "end": 3747.82, + "probability": 0.6277 + }, + { + "start": 3747.96, + "end": 3749.84, + "probability": 0.9666 + }, + { + "start": 3749.84, + "end": 3752.08, + "probability": 0.9045 + }, + { + "start": 3757.88, + "end": 3759.42, + "probability": 0.5882 + }, + { + "start": 3760.12, + "end": 3763.04, + "probability": 0.9512 + }, + { + "start": 3763.12, + "end": 3765.03, + "probability": 0.7226 + }, + { + "start": 3765.84, + "end": 3768.92, + "probability": 0.911 + }, + { + "start": 3768.98, + "end": 3770.08, + "probability": 0.9867 + }, + { + "start": 3770.62, + "end": 3774.1, + "probability": 0.9205 + }, + { + "start": 3774.58, + "end": 3777.88, + "probability": 0.7499 + }, + { + "start": 3778.34, + "end": 3780.38, + "probability": 0.7527 + }, + { + "start": 3780.84, + "end": 3786.68, + "probability": 0.7946 + }, + { + "start": 3787.3, + "end": 3789.74, + "probability": 0.6322 + }, + { + "start": 3789.94, + "end": 3792.44, + "probability": 0.9451 + }, + { + "start": 3793.22, + "end": 3794.64, + "probability": 0.9912 + }, + { + "start": 3795.04, + "end": 3797.36, + "probability": 0.8326 + }, + { + "start": 3797.82, + "end": 3800.46, + "probability": 0.9099 + }, + { + "start": 3800.46, + "end": 3804.68, + "probability": 0.9872 + }, + { + "start": 3804.92, + "end": 3808.5, + "probability": 0.9678 + }, + { + "start": 3808.72, + "end": 3809.62, + "probability": 0.9114 + }, + { + "start": 3809.74, + "end": 3811.04, + "probability": 0.921 + }, + { + "start": 3811.22, + "end": 3814.52, + "probability": 0.9707 + }, + { + "start": 3814.52, + "end": 3819.18, + "probability": 0.997 + }, + { + "start": 3819.26, + "end": 3819.74, + "probability": 0.7348 + }, + { + "start": 3820.46, + "end": 3822.88, + "probability": 0.9512 + }, + { + "start": 3823.2, + "end": 3823.48, + "probability": 0.8135 + }, + { + "start": 3823.7, + "end": 3825.52, + "probability": 0.9563 + }, + { + "start": 3825.52, + "end": 3827.5, + "probability": 0.6943 + }, + { + "start": 3828.1, + "end": 3829.14, + "probability": 0.8012 + }, + { + "start": 3829.3, + "end": 3830.75, + "probability": 0.7357 + }, + { + "start": 3830.96, + "end": 3832.44, + "probability": 0.8963 + }, + { + "start": 3832.66, + "end": 3832.86, + "probability": 0.3479 + }, + { + "start": 3833.7, + "end": 3834.96, + "probability": 0.6467 + }, + { + "start": 3835.46, + "end": 3837.74, + "probability": 0.9921 + }, + { + "start": 3838.2, + "end": 3841.58, + "probability": 0.9391 + }, + { + "start": 3841.98, + "end": 3845.12, + "probability": 0.9552 + }, + { + "start": 3845.46, + "end": 3848.62, + "probability": 0.9878 + }, + { + "start": 3849.06, + "end": 3853.92, + "probability": 0.9031 + }, + { + "start": 3854.36, + "end": 3855.58, + "probability": 0.9873 + }, + { + "start": 3856.34, + "end": 3858.8, + "probability": 0.9542 + }, + { + "start": 3859.42, + "end": 3860.22, + "probability": 0.8009 + }, + { + "start": 3860.9, + "end": 3862.84, + "probability": 0.9714 + }, + { + "start": 3863.68, + "end": 3865.42, + "probability": 0.8787 + }, + { + "start": 3866.2, + "end": 3867.36, + "probability": 0.9732 + }, + { + "start": 3867.68, + "end": 3870.72, + "probability": 0.897 + }, + { + "start": 3871.18, + "end": 3872.68, + "probability": 0.9678 + }, + { + "start": 3873.42, + "end": 3874.08, + "probability": 0.433 + }, + { + "start": 3875.1, + "end": 3877.9, + "probability": 0.9626 + }, + { + "start": 3877.9, + "end": 3880.32, + "probability": 0.9309 + }, + { + "start": 3881.24, + "end": 3883.2, + "probability": 0.99 + }, + { + "start": 3883.88, + "end": 3885.78, + "probability": 0.8436 + }, + { + "start": 3886.08, + "end": 3886.58, + "probability": 0.8126 + }, + { + "start": 3886.9, + "end": 3889.16, + "probability": 0.9933 + }, + { + "start": 3889.54, + "end": 3891.09, + "probability": 0.9868 + }, + { + "start": 3891.26, + "end": 3894.84, + "probability": 0.8914 + }, + { + "start": 3895.32, + "end": 3897.59, + "probability": 0.9117 + }, + { + "start": 3898.56, + "end": 3901.34, + "probability": 0.9499 + }, + { + "start": 3902.06, + "end": 3909.16, + "probability": 0.976 + }, + { + "start": 3909.52, + "end": 3910.01, + "probability": 0.0833 + }, + { + "start": 3910.92, + "end": 3910.94, + "probability": 0.1523 + }, + { + "start": 3910.94, + "end": 3911.44, + "probability": 0.3858 + }, + { + "start": 3911.84, + "end": 3914.36, + "probability": 0.4123 + }, + { + "start": 3914.36, + "end": 3915.13, + "probability": 0.4243 + }, + { + "start": 3915.5, + "end": 3916.56, + "probability": 0.9248 + }, + { + "start": 3916.64, + "end": 3920.85, + "probability": 0.6079 + }, + { + "start": 3921.48, + "end": 3922.74, + "probability": 0.8646 + }, + { + "start": 3923.38, + "end": 3923.86, + "probability": 0.6318 + }, + { + "start": 3924.06, + "end": 3927.68, + "probability": 0.9775 + }, + { + "start": 3927.68, + "end": 3931.18, + "probability": 0.9878 + }, + { + "start": 3931.56, + "end": 3936.82, + "probability": 0.9954 + }, + { + "start": 3936.82, + "end": 3942.88, + "probability": 0.9041 + }, + { + "start": 3943.48, + "end": 3944.62, + "probability": 0.8237 + }, + { + "start": 3945.12, + "end": 3948.18, + "probability": 0.9656 + }, + { + "start": 3948.94, + "end": 3949.74, + "probability": 0.6725 + }, + { + "start": 3950.48, + "end": 3952.06, + "probability": 0.7575 + }, + { + "start": 3952.64, + "end": 3953.81, + "probability": 0.8402 + }, + { + "start": 3954.24, + "end": 3955.16, + "probability": 0.6827 + }, + { + "start": 3955.6, + "end": 3956.2, + "probability": 0.7572 + }, + { + "start": 3956.22, + "end": 3958.1, + "probability": 0.9739 + }, + { + "start": 3959.02, + "end": 3959.22, + "probability": 0.5454 + }, + { + "start": 3959.66, + "end": 3962.0, + "probability": 0.6935 + }, + { + "start": 3962.12, + "end": 3962.38, + "probability": 0.2267 + }, + { + "start": 3962.38, + "end": 3962.82, + "probability": 0.774 + }, + { + "start": 3962.92, + "end": 3965.96, + "probability": 0.8625 + }, + { + "start": 3967.5, + "end": 3969.9, + "probability": 0.9768 + }, + { + "start": 3970.84, + "end": 3971.74, + "probability": 0.9771 + }, + { + "start": 3972.74, + "end": 3974.36, + "probability": 0.6082 + }, + { + "start": 3974.36, + "end": 3975.56, + "probability": 0.6281 + }, + { + "start": 3975.74, + "end": 3977.04, + "probability": 0.4943 + }, + { + "start": 3978.8, + "end": 3982.94, + "probability": 0.9729 + }, + { + "start": 3988.27, + "end": 3993.34, + "probability": 0.885 + }, + { + "start": 3994.97, + "end": 3997.86, + "probability": 0.6451 + }, + { + "start": 3998.48, + "end": 4002.8, + "probability": 0.9729 + }, + { + "start": 4003.36, + "end": 4007.4, + "probability": 0.9047 + }, + { + "start": 4007.98, + "end": 4008.56, + "probability": 0.8274 + }, + { + "start": 4008.62, + "end": 4009.6, + "probability": 0.8975 + }, + { + "start": 4009.66, + "end": 4012.4, + "probability": 0.9515 + }, + { + "start": 4013.14, + "end": 4016.64, + "probability": 0.989 + }, + { + "start": 4016.78, + "end": 4020.32, + "probability": 0.9992 + }, + { + "start": 4021.04, + "end": 4025.04, + "probability": 0.9972 + }, + { + "start": 4025.38, + "end": 4030.24, + "probability": 0.9961 + }, + { + "start": 4030.52, + "end": 4033.96, + "probability": 0.9983 + }, + { + "start": 4034.36, + "end": 4036.38, + "probability": 0.9934 + }, + { + "start": 4037.0, + "end": 4037.98, + "probability": 0.7453 + }, + { + "start": 4038.58, + "end": 4041.98, + "probability": 0.9503 + }, + { + "start": 4042.22, + "end": 4043.16, + "probability": 0.7193 + }, + { + "start": 4043.26, + "end": 4044.52, + "probability": 0.9438 + }, + { + "start": 4045.9, + "end": 4048.62, + "probability": 0.866 + }, + { + "start": 4048.7, + "end": 4048.94, + "probability": 0.4308 + }, + { + "start": 4049.06, + "end": 4049.9, + "probability": 0.9534 + }, + { + "start": 4050.61, + "end": 4053.5, + "probability": 0.8218 + }, + { + "start": 4053.94, + "end": 4054.3, + "probability": 0.5111 + }, + { + "start": 4054.48, + "end": 4057.4, + "probability": 0.9942 + }, + { + "start": 4057.4, + "end": 4062.8, + "probability": 0.9763 + }, + { + "start": 4064.12, + "end": 4065.9, + "probability": 0.9386 + }, + { + "start": 4066.62, + "end": 4067.38, + "probability": 0.9922 + }, + { + "start": 4068.28, + "end": 4071.1, + "probability": 0.7393 + }, + { + "start": 4071.4, + "end": 4073.78, + "probability": 0.984 + }, + { + "start": 4073.88, + "end": 4077.86, + "probability": 0.9858 + }, + { + "start": 4077.86, + "end": 4078.88, + "probability": 0.7625 + }, + { + "start": 4078.88, + "end": 4083.9, + "probability": 0.9966 + }, + { + "start": 4085.02, + "end": 4086.88, + "probability": 0.9985 + }, + { + "start": 4087.22, + "end": 4087.7, + "probability": 0.6307 + }, + { + "start": 4087.7, + "end": 4089.2, + "probability": 0.8916 + }, + { + "start": 4089.28, + "end": 4091.88, + "probability": 0.9416 + }, + { + "start": 4092.64, + "end": 4095.4, + "probability": 0.995 + }, + { + "start": 4095.72, + "end": 4097.76, + "probability": 0.7475 + }, + { + "start": 4097.84, + "end": 4098.88, + "probability": 0.5528 + }, + { + "start": 4099.02, + "end": 4102.06, + "probability": 0.4984 + }, + { + "start": 4102.14, + "end": 4104.0, + "probability": 0.9548 + }, + { + "start": 4108.68, + "end": 4109.98, + "probability": 0.7189 + }, + { + "start": 4110.08, + "end": 4114.56, + "probability": 0.9843 + }, + { + "start": 4115.2, + "end": 4117.04, + "probability": 0.9868 + }, + { + "start": 4117.74, + "end": 4119.03, + "probability": 0.9976 + }, + { + "start": 4119.6, + "end": 4124.68, + "probability": 0.863 + }, + { + "start": 4124.92, + "end": 4128.78, + "probability": 0.8693 + }, + { + "start": 4129.06, + "end": 4130.34, + "probability": 0.6187 + }, + { + "start": 4131.26, + "end": 4132.14, + "probability": 0.8823 + }, + { + "start": 4132.28, + "end": 4135.24, + "probability": 0.6446 + }, + { + "start": 4135.72, + "end": 4138.88, + "probability": 0.96 + }, + { + "start": 4139.28, + "end": 4141.62, + "probability": 0.9912 + }, + { + "start": 4142.5, + "end": 4147.98, + "probability": 0.8299 + }, + { + "start": 4148.36, + "end": 4152.42, + "probability": 0.9486 + }, + { + "start": 4153.04, + "end": 4155.28, + "probability": 0.989 + }, + { + "start": 4155.66, + "end": 4157.56, + "probability": 0.9937 + }, + { + "start": 4158.3, + "end": 4160.74, + "probability": 0.9833 + }, + { + "start": 4160.96, + "end": 4162.34, + "probability": 0.9927 + }, + { + "start": 4162.54, + "end": 4163.7, + "probability": 0.7305 + }, + { + "start": 4164.08, + "end": 4168.06, + "probability": 0.8969 + }, + { + "start": 4168.16, + "end": 4170.09, + "probability": 0.9839 + }, + { + "start": 4170.78, + "end": 4171.48, + "probability": 0.4646 + }, + { + "start": 4171.5, + "end": 4173.48, + "probability": 0.8958 + }, + { + "start": 4173.68, + "end": 4175.83, + "probability": 0.9927 + }, + { + "start": 4176.56, + "end": 4177.52, + "probability": 0.6034 + }, + { + "start": 4177.86, + "end": 4178.68, + "probability": 0.0031 + }, + { + "start": 4179.1, + "end": 4181.2, + "probability": 0.9296 + }, + { + "start": 4181.32, + "end": 4181.66, + "probability": 0.2719 + }, + { + "start": 4181.66, + "end": 4183.28, + "probability": 0.9062 + }, + { + "start": 4183.9, + "end": 4188.42, + "probability": 0.5908 + }, + { + "start": 4188.76, + "end": 4191.8, + "probability": 0.7554 + }, + { + "start": 4191.9, + "end": 4194.32, + "probability": 0.732 + }, + { + "start": 4194.34, + "end": 4195.34, + "probability": 0.4269 + }, + { + "start": 4195.44, + "end": 4198.46, + "probability": 0.8927 + }, + { + "start": 4198.76, + "end": 4199.38, + "probability": 0.9784 + }, + { + "start": 4200.66, + "end": 4201.14, + "probability": 0.3056 + }, + { + "start": 4201.26, + "end": 4202.58, + "probability": 0.792 + }, + { + "start": 4203.12, + "end": 4205.08, + "probability": 0.8519 + }, + { + "start": 4205.96, + "end": 4208.22, + "probability": 0.7474 + }, + { + "start": 4208.84, + "end": 4211.1, + "probability": 0.8976 + }, + { + "start": 4212.58, + "end": 4216.6, + "probability": 0.9701 + }, + { + "start": 4216.76, + "end": 4220.98, + "probability": 0.8481 + }, + { + "start": 4222.9, + "end": 4226.06, + "probability": 0.9946 + }, + { + "start": 4229.06, + "end": 4229.86, + "probability": 0.2916 + }, + { + "start": 4229.88, + "end": 4232.88, + "probability": 0.7286 + }, + { + "start": 4233.38, + "end": 4236.2, + "probability": 0.6248 + }, + { + "start": 4236.8, + "end": 4239.24, + "probability": 0.877 + }, + { + "start": 4239.36, + "end": 4240.38, + "probability": 0.9678 + }, + { + "start": 4240.82, + "end": 4243.34, + "probability": 0.5956 + }, + { + "start": 4245.22, + "end": 4245.22, + "probability": 0.1435 + }, + { + "start": 4245.22, + "end": 4245.22, + "probability": 0.1247 + }, + { + "start": 4245.22, + "end": 4247.68, + "probability": 0.9799 + }, + { + "start": 4248.24, + "end": 4248.54, + "probability": 0.6981 + }, + { + "start": 4248.96, + "end": 4252.78, + "probability": 0.9862 + }, + { + "start": 4253.08, + "end": 4255.5, + "probability": 0.8023 + }, + { + "start": 4256.08, + "end": 4260.52, + "probability": 0.9528 + }, + { + "start": 4260.52, + "end": 4263.58, + "probability": 0.9949 + }, + { + "start": 4263.66, + "end": 4263.9, + "probability": 0.7289 + }, + { + "start": 4264.1, + "end": 4265.88, + "probability": 0.8698 + }, + { + "start": 4265.98, + "end": 4270.9, + "probability": 0.7551 + }, + { + "start": 4271.18, + "end": 4272.36, + "probability": 0.7574 + }, + { + "start": 4272.6, + "end": 4273.32, + "probability": 0.8422 + }, + { + "start": 4279.26, + "end": 4282.4, + "probability": 0.716 + }, + { + "start": 4283.16, + "end": 4285.3, + "probability": 0.9727 + }, + { + "start": 4285.4, + "end": 4288.98, + "probability": 0.9966 + }, + { + "start": 4288.98, + "end": 4293.38, + "probability": 0.9656 + }, + { + "start": 4294.12, + "end": 4299.04, + "probability": 0.9801 + }, + { + "start": 4299.58, + "end": 4302.8, + "probability": 0.8497 + }, + { + "start": 4302.8, + "end": 4304.48, + "probability": 0.9037 + }, + { + "start": 4304.8, + "end": 4307.11, + "probability": 0.9829 + }, + { + "start": 4307.98, + "end": 4309.5, + "probability": 0.8716 + }, + { + "start": 4311.52, + "end": 4313.62, + "probability": 0.799 + }, + { + "start": 4322.14, + "end": 4322.82, + "probability": 0.3653 + }, + { + "start": 4325.38, + "end": 4328.88, + "probability": 0.6884 + }, + { + "start": 4328.88, + "end": 4329.92, + "probability": 0.4384 + }, + { + "start": 4330.12, + "end": 4332.94, + "probability": 0.5514 + }, + { + "start": 4333.14, + "end": 4334.02, + "probability": 0.8162 + }, + { + "start": 4334.36, + "end": 4334.94, + "probability": 0.83 + }, + { + "start": 4335.0, + "end": 4335.74, + "probability": 0.7523 + }, + { + "start": 4339.72, + "end": 4342.61, + "probability": 0.1477 + }, + { + "start": 4344.14, + "end": 4344.32, + "probability": 0.0081 + }, + { + "start": 4344.84, + "end": 4346.98, + "probability": 0.0155 + }, + { + "start": 4349.51, + "end": 4351.46, + "probability": 0.0805 + }, + { + "start": 4351.76, + "end": 4355.9, + "probability": 0.6277 + }, + { + "start": 4356.36, + "end": 4361.44, + "probability": 0.7515 + }, + { + "start": 4362.52, + "end": 4362.62, + "probability": 0.4603 + }, + { + "start": 4363.28, + "end": 4364.14, + "probability": 0.7533 + }, + { + "start": 4366.1, + "end": 4367.96, + "probability": 0.7498 + }, + { + "start": 4368.84, + "end": 4369.76, + "probability": 0.3667 + }, + { + "start": 4370.14, + "end": 4371.88, + "probability": 0.9048 + }, + { + "start": 4371.88, + "end": 4373.27, + "probability": 0.9071 + }, + { + "start": 4373.97, + "end": 4374.65, + "probability": 0.5631 + }, + { + "start": 4374.77, + "end": 4377.59, + "probability": 0.758 + }, + { + "start": 4377.65, + "end": 4378.55, + "probability": 0.6456 + }, + { + "start": 4379.29, + "end": 4382.27, + "probability": 0.7182 + }, + { + "start": 4382.27, + "end": 4383.41, + "probability": 0.5383 + }, + { + "start": 4383.57, + "end": 4385.07, + "probability": 0.2177 + }, + { + "start": 4385.21, + "end": 4387.57, + "probability": 0.7271 + }, + { + "start": 4387.59, + "end": 4389.07, + "probability": 0.5554 + }, + { + "start": 4389.51, + "end": 4390.25, + "probability": 0.6422 + }, + { + "start": 4390.45, + "end": 4391.23, + "probability": 0.7244 + }, + { + "start": 4396.61, + "end": 4399.67, + "probability": 0.2162 + }, + { + "start": 4399.67, + "end": 4400.35, + "probability": 0.0285 + }, + { + "start": 4400.57, + "end": 4403.59, + "probability": 0.0395 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.0, + "probability": 0.0 + }, + { + "start": 4536.0, + "end": 4536.08, + "probability": 0.1216 + }, + { + "start": 4536.08, + "end": 4539.82, + "probability": 0.9789 + }, + { + "start": 4539.82, + "end": 4542.18, + "probability": 0.9408 + }, + { + "start": 4542.88, + "end": 4546.4, + "probability": 0.9843 + }, + { + "start": 4546.4, + "end": 4548.33, + "probability": 0.9985 + }, + { + "start": 4549.4, + "end": 4552.44, + "probability": 0.9914 + }, + { + "start": 4553.28, + "end": 4558.14, + "probability": 0.9961 + }, + { + "start": 4558.68, + "end": 4560.96, + "probability": 0.8977 + }, + { + "start": 4561.7, + "end": 4564.0, + "probability": 0.9443 + }, + { + "start": 4565.52, + "end": 4569.52, + "probability": 0.7571 + }, + { + "start": 4570.08, + "end": 4574.18, + "probability": 0.9547 + }, + { + "start": 4574.46, + "end": 4577.24, + "probability": 0.9942 + }, + { + "start": 4577.66, + "end": 4577.98, + "probability": 0.8271 + }, + { + "start": 4578.72, + "end": 4581.06, + "probability": 0.7985 + }, + { + "start": 4581.14, + "end": 4586.54, + "probability": 0.9552 + }, + { + "start": 4600.56, + "end": 4603.38, + "probability": 0.8485 + }, + { + "start": 4604.2, + "end": 4605.5, + "probability": 0.7528 + }, + { + "start": 4606.18, + "end": 4611.74, + "probability": 0.9917 + }, + { + "start": 4611.74, + "end": 4617.08, + "probability": 0.9991 + }, + { + "start": 4617.76, + "end": 4618.32, + "probability": 0.3059 + }, + { + "start": 4618.34, + "end": 4619.66, + "probability": 0.9364 + }, + { + "start": 4619.8, + "end": 4621.92, + "probability": 0.9956 + }, + { + "start": 4622.66, + "end": 4628.5, + "probability": 0.9652 + }, + { + "start": 4628.5, + "end": 4632.42, + "probability": 0.998 + }, + { + "start": 4633.0, + "end": 4635.88, + "probability": 0.9623 + }, + { + "start": 4637.02, + "end": 4641.16, + "probability": 0.9505 + }, + { + "start": 4641.16, + "end": 4644.94, + "probability": 0.9932 + }, + { + "start": 4646.36, + "end": 4647.52, + "probability": 0.9934 + }, + { + "start": 4648.32, + "end": 4654.2, + "probability": 0.9957 + }, + { + "start": 4654.2, + "end": 4658.56, + "probability": 0.9965 + }, + { + "start": 4659.48, + "end": 4664.08, + "probability": 0.8843 + }, + { + "start": 4664.66, + "end": 4666.74, + "probability": 0.9095 + }, + { + "start": 4667.64, + "end": 4670.06, + "probability": 0.7126 + }, + { + "start": 4670.58, + "end": 4671.6, + "probability": 0.9638 + }, + { + "start": 4672.3, + "end": 4673.56, + "probability": 0.964 + }, + { + "start": 4674.28, + "end": 4678.38, + "probability": 0.9652 + }, + { + "start": 4679.2, + "end": 4683.48, + "probability": 0.8415 + }, + { + "start": 4683.48, + "end": 4686.58, + "probability": 0.9967 + }, + { + "start": 4687.44, + "end": 4693.32, + "probability": 0.9823 + }, + { + "start": 4693.62, + "end": 4694.68, + "probability": 0.8528 + }, + { + "start": 4694.86, + "end": 4697.04, + "probability": 0.5995 + }, + { + "start": 4697.76, + "end": 4700.68, + "probability": 0.9487 + }, + { + "start": 4701.32, + "end": 4704.64, + "probability": 0.9946 + }, + { + "start": 4705.38, + "end": 4707.0, + "probability": 0.8901 + }, + { + "start": 4707.8, + "end": 4713.52, + "probability": 0.9831 + }, + { + "start": 4714.36, + "end": 4717.98, + "probability": 0.755 + }, + { + "start": 4718.12, + "end": 4721.9, + "probability": 0.9812 + }, + { + "start": 4722.5, + "end": 4724.64, + "probability": 0.8815 + }, + { + "start": 4725.2, + "end": 4729.84, + "probability": 0.9684 + }, + { + "start": 4730.02, + "end": 4730.56, + "probability": 0.9017 + }, + { + "start": 4730.7, + "end": 4733.2, + "probability": 0.9324 + }, + { + "start": 4733.48, + "end": 4733.76, + "probability": 0.7427 + }, + { + "start": 4733.78, + "end": 4735.28, + "probability": 0.7755 + }, + { + "start": 4735.44, + "end": 4737.82, + "probability": 0.9279 + }, + { + "start": 4738.2, + "end": 4741.02, + "probability": 0.729 + }, + { + "start": 4741.14, + "end": 4742.83, + "probability": 0.7807 + }, + { + "start": 4743.54, + "end": 4745.84, + "probability": 0.8465 + }, + { + "start": 4745.88, + "end": 4747.57, + "probability": 0.7962 + }, + { + "start": 4748.26, + "end": 4749.6, + "probability": 0.5514 + }, + { + "start": 4750.48, + "end": 4755.52, + "probability": 0.688 + }, + { + "start": 4755.92, + "end": 4756.94, + "probability": 0.6001 + }, + { + "start": 4778.84, + "end": 4779.46, + "probability": 0.3817 + }, + { + "start": 4779.58, + "end": 4783.18, + "probability": 0.1981 + }, + { + "start": 4783.62, + "end": 4785.74, + "probability": 0.0099 + }, + { + "start": 4797.64, + "end": 4799.04, + "probability": 0.0184 + }, + { + "start": 4799.76, + "end": 4801.68, + "probability": 0.2974 + }, + { + "start": 4802.16, + "end": 4805.58, + "probability": 0.1598 + }, + { + "start": 4808.42, + "end": 4809.94, + "probability": 0.0412 + }, + { + "start": 4810.89, + "end": 4811.74, + "probability": 0.0875 + }, + { + "start": 4815.76, + "end": 4816.72, + "probability": 0.0019 + }, + { + "start": 4820.16, + "end": 4820.64, + "probability": 0.2813 + }, + { + "start": 4822.09, + "end": 4827.6, + "probability": 0.0631 + }, + { + "start": 4827.6, + "end": 4829.04, + "probability": 0.1025 + }, + { + "start": 4829.74, + "end": 4832.52, + "probability": 0.1025 + }, + { + "start": 4832.52, + "end": 4833.3, + "probability": 0.3874 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.0, + "end": 4848.0, + "probability": 0.0 + }, + { + "start": 4848.8, + "end": 4849.3, + "probability": 0.5933 + }, + { + "start": 4849.46, + "end": 4849.46, + "probability": 0.1242 + }, + { + "start": 4849.46, + "end": 4850.04, + "probability": 0.6877 + }, + { + "start": 4850.06, + "end": 4850.36, + "probability": 0.4541 + }, + { + "start": 4850.46, + "end": 4850.76, + "probability": 0.6859 + }, + { + "start": 4850.98, + "end": 4852.46, + "probability": 0.8343 + }, + { + "start": 4852.54, + "end": 4857.82, + "probability": 0.9807 + }, + { + "start": 4858.0, + "end": 4863.24, + "probability": 0.9864 + }, + { + "start": 4863.34, + "end": 4865.78, + "probability": 0.9987 + }, + { + "start": 4865.88, + "end": 4867.22, + "probability": 0.6927 + }, + { + "start": 4867.66, + "end": 4873.54, + "probability": 0.7356 + }, + { + "start": 4873.54, + "end": 4875.32, + "probability": 0.9886 + }, + { + "start": 4875.44, + "end": 4880.64, + "probability": 0.9483 + }, + { + "start": 4881.3, + "end": 4883.02, + "probability": 0.9108 + }, + { + "start": 4883.24, + "end": 4884.02, + "probability": 0.7282 + }, + { + "start": 4884.22, + "end": 4887.4, + "probability": 0.9105 + }, + { + "start": 4887.84, + "end": 4888.58, + "probability": 0.9302 + }, + { + "start": 4888.72, + "end": 4889.32, + "probability": 0.8001 + }, + { + "start": 4889.46, + "end": 4890.14, + "probability": 0.7577 + }, + { + "start": 4890.46, + "end": 4892.98, + "probability": 0.8914 + }, + { + "start": 4893.04, + "end": 4898.38, + "probability": 0.9803 + }, + { + "start": 4898.8, + "end": 4905.5, + "probability": 0.9808 + }, + { + "start": 4905.6, + "end": 4906.82, + "probability": 0.6424 + }, + { + "start": 4907.14, + "end": 4908.22, + "probability": 0.8243 + }, + { + "start": 4908.38, + "end": 4908.5, + "probability": 0.7559 + }, + { + "start": 4909.4, + "end": 4915.58, + "probability": 0.9102 + }, + { + "start": 4916.48, + "end": 4919.24, + "probability": 0.846 + }, + { + "start": 4919.6, + "end": 4923.35, + "probability": 0.9941 + }, + { + "start": 4923.9, + "end": 4927.26, + "probability": 0.9948 + }, + { + "start": 4928.04, + "end": 4934.06, + "probability": 0.9701 + }, + { + "start": 4934.6, + "end": 4939.44, + "probability": 0.7467 + }, + { + "start": 4940.54, + "end": 4943.76, + "probability": 0.9755 + }, + { + "start": 4943.76, + "end": 4948.14, + "probability": 0.9948 + }, + { + "start": 4948.66, + "end": 4952.72, + "probability": 0.9968 + }, + { + "start": 4952.72, + "end": 4957.78, + "probability": 0.9744 + }, + { + "start": 4957.82, + "end": 4964.94, + "probability": 0.9931 + }, + { + "start": 4965.36, + "end": 4971.98, + "probability": 0.9621 + }, + { + "start": 4972.56, + "end": 4979.7, + "probability": 0.8915 + }, + { + "start": 4979.7, + "end": 4989.76, + "probability": 0.9956 + }, + { + "start": 4990.08, + "end": 4992.36, + "probability": 0.7891 + }, + { + "start": 4992.46, + "end": 4998.46, + "probability": 0.9919 + }, + { + "start": 4998.9, + "end": 4999.76, + "probability": 0.5109 + }, + { + "start": 5000.18, + "end": 5000.98, + "probability": 0.8815 + }, + { + "start": 5001.08, + "end": 5003.92, + "probability": 0.9846 + }, + { + "start": 5003.92, + "end": 5009.48, + "probability": 0.7913 + }, + { + "start": 5009.7, + "end": 5012.02, + "probability": 0.9888 + }, + { + "start": 5012.02, + "end": 5013.14, + "probability": 0.6161 + }, + { + "start": 5013.52, + "end": 5016.38, + "probability": 0.714 + }, + { + "start": 5016.44, + "end": 5018.58, + "probability": 0.9596 + }, + { + "start": 5019.02, + "end": 5024.18, + "probability": 0.9661 + }, + { + "start": 5024.46, + "end": 5027.86, + "probability": 0.9435 + }, + { + "start": 5028.08, + "end": 5028.64, + "probability": 0.8563 + }, + { + "start": 5028.72, + "end": 5029.42, + "probability": 0.7112 + }, + { + "start": 5029.48, + "end": 5033.24, + "probability": 0.9937 + }, + { + "start": 5033.38, + "end": 5035.76, + "probability": 0.9668 + }, + { + "start": 5035.86, + "end": 5041.46, + "probability": 0.9787 + }, + { + "start": 5041.66, + "end": 5044.52, + "probability": 0.8767 + }, + { + "start": 5044.72, + "end": 5049.76, + "probability": 0.9748 + }, + { + "start": 5050.14, + "end": 5052.6, + "probability": 0.7506 + }, + { + "start": 5053.0, + "end": 5053.28, + "probability": 0.5731 + }, + { + "start": 5053.56, + "end": 5053.62, + "probability": 0.4875 + }, + { + "start": 5053.62, + "end": 5056.9, + "probability": 0.8438 + }, + { + "start": 5056.9, + "end": 5056.94, + "probability": 0.0665 + }, + { + "start": 5056.94, + "end": 5059.16, + "probability": 0.7801 + }, + { + "start": 5059.96, + "end": 5061.58, + "probability": 0.9478 + }, + { + "start": 5064.68, + "end": 5065.46, + "probability": 0.7703 + }, + { + "start": 5065.7, + "end": 5066.32, + "probability": 0.8248 + }, + { + "start": 5066.46, + "end": 5070.58, + "probability": 0.972 + }, + { + "start": 5070.64, + "end": 5071.7, + "probability": 0.9435 + }, + { + "start": 5072.02, + "end": 5074.9, + "probability": 0.8128 + }, + { + "start": 5075.6, + "end": 5081.5, + "probability": 0.9808 + }, + { + "start": 5082.44, + "end": 5085.56, + "probability": 0.9853 + }, + { + "start": 5086.14, + "end": 5089.44, + "probability": 0.7505 + }, + { + "start": 5090.0, + "end": 5090.56, + "probability": 0.606 + }, + { + "start": 5090.92, + "end": 5092.06, + "probability": 0.9644 + }, + { + "start": 5092.12, + "end": 5094.28, + "probability": 0.9908 + }, + { + "start": 5094.58, + "end": 5095.26, + "probability": 0.9827 + }, + { + "start": 5095.3, + "end": 5096.22, + "probability": 0.9844 + }, + { + "start": 5096.3, + "end": 5097.62, + "probability": 0.7954 + }, + { + "start": 5098.02, + "end": 5099.24, + "probability": 0.8796 + }, + { + "start": 5099.7, + "end": 5102.38, + "probability": 0.9954 + }, + { + "start": 5103.1, + "end": 5104.14, + "probability": 0.6476 + }, + { + "start": 5104.32, + "end": 5108.34, + "probability": 0.9917 + }, + { + "start": 5108.66, + "end": 5112.86, + "probability": 0.9813 + }, + { + "start": 5112.86, + "end": 5116.0, + "probability": 0.9969 + }, + { + "start": 5116.58, + "end": 5118.58, + "probability": 0.986 + }, + { + "start": 5118.98, + "end": 5120.72, + "probability": 0.9963 + }, + { + "start": 5121.66, + "end": 5125.04, + "probability": 0.9591 + }, + { + "start": 5126.22, + "end": 5127.6, + "probability": 0.9957 + }, + { + "start": 5127.7, + "end": 5129.94, + "probability": 0.9578 + }, + { + "start": 5130.4, + "end": 5131.7, + "probability": 0.8677 + }, + { + "start": 5131.92, + "end": 5133.66, + "probability": 0.5713 + }, + { + "start": 5133.78, + "end": 5137.8, + "probability": 0.8908 + }, + { + "start": 5137.86, + "end": 5138.92, + "probability": 0.9883 + }, + { + "start": 5139.24, + "end": 5140.24, + "probability": 0.7821 + }, + { + "start": 5140.96, + "end": 5142.84, + "probability": 0.9556 + }, + { + "start": 5143.24, + "end": 5143.4, + "probability": 0.649 + }, + { + "start": 5143.54, + "end": 5146.64, + "probability": 0.8663 + }, + { + "start": 5146.72, + "end": 5148.8, + "probability": 0.7506 + }, + { + "start": 5148.98, + "end": 5150.98, + "probability": 0.9603 + }, + { + "start": 5151.06, + "end": 5151.36, + "probability": 0.9274 + }, + { + "start": 5151.66, + "end": 5152.34, + "probability": 0.6085 + }, + { + "start": 5152.54, + "end": 5157.1, + "probability": 0.9283 + }, + { + "start": 5166.88, + "end": 5167.82, + "probability": 0.6631 + }, + { + "start": 5168.18, + "end": 5169.34, + "probability": 0.9118 + }, + { + "start": 5169.44, + "end": 5170.58, + "probability": 0.7464 + }, + { + "start": 5170.72, + "end": 5172.3, + "probability": 0.9791 + }, + { + "start": 5172.86, + "end": 5178.12, + "probability": 0.924 + }, + { + "start": 5178.22, + "end": 5178.9, + "probability": 0.7681 + }, + { + "start": 5179.36, + "end": 5187.68, + "probability": 0.5714 + }, + { + "start": 5188.08, + "end": 5190.46, + "probability": 0.9567 + }, + { + "start": 5190.94, + "end": 5193.4, + "probability": 0.9507 + }, + { + "start": 5193.8, + "end": 5196.76, + "probability": 0.9863 + }, + { + "start": 5197.0, + "end": 5199.1, + "probability": 0.9167 + }, + { + "start": 5199.68, + "end": 5203.74, + "probability": 0.5931 + }, + { + "start": 5204.48, + "end": 5206.62, + "probability": 0.9678 + }, + { + "start": 5207.18, + "end": 5207.68, + "probability": 0.5457 + }, + { + "start": 5207.78, + "end": 5211.6, + "probability": 0.9904 + }, + { + "start": 5211.6, + "end": 5216.24, + "probability": 0.9982 + }, + { + "start": 5216.42, + "end": 5219.28, + "probability": 0.9903 + }, + { + "start": 5219.28, + "end": 5222.54, + "probability": 0.9929 + }, + { + "start": 5223.16, + "end": 5226.92, + "probability": 0.9849 + }, + { + "start": 5227.48, + "end": 5228.5, + "probability": 0.8486 + }, + { + "start": 5229.9, + "end": 5230.72, + "probability": 0.4817 + }, + { + "start": 5230.8, + "end": 5235.32, + "probability": 0.7595 + }, + { + "start": 5235.78, + "end": 5240.58, + "probability": 0.9836 + }, + { + "start": 5240.78, + "end": 5241.92, + "probability": 0.5185 + }, + { + "start": 5242.06, + "end": 5243.26, + "probability": 0.8424 + }, + { + "start": 5243.6, + "end": 5243.86, + "probability": 0.6682 + }, + { + "start": 5244.78, + "end": 5245.42, + "probability": 0.6514 + }, + { + "start": 5245.58, + "end": 5247.16, + "probability": 0.9532 + }, + { + "start": 5247.36, + "end": 5248.46, + "probability": 0.8762 + }, + { + "start": 5249.2, + "end": 5251.53, + "probability": 0.3648 + }, + { + "start": 5252.3, + "end": 5253.52, + "probability": 0.3341 + }, + { + "start": 5253.76, + "end": 5255.16, + "probability": 0.2754 + }, + { + "start": 5255.36, + "end": 5256.84, + "probability": 0.4392 + }, + { + "start": 5257.3, + "end": 5258.86, + "probability": 0.4097 + }, + { + "start": 5259.04, + "end": 5261.24, + "probability": 0.4794 + }, + { + "start": 5261.84, + "end": 5263.5, + "probability": 0.9143 + }, + { + "start": 5268.5, + "end": 5270.9, + "probability": 0.7217 + }, + { + "start": 5272.68, + "end": 5275.92, + "probability": 0.948 + }, + { + "start": 5275.94, + "end": 5278.96, + "probability": 0.9958 + }, + { + "start": 5279.06, + "end": 5280.96, + "probability": 0.8557 + }, + { + "start": 5281.9, + "end": 5287.34, + "probability": 0.9218 + }, + { + "start": 5287.36, + "end": 5288.14, + "probability": 0.7882 + }, + { + "start": 5288.26, + "end": 5288.8, + "probability": 0.8975 + }, + { + "start": 5288.86, + "end": 5289.62, + "probability": 0.6872 + }, + { + "start": 5289.76, + "end": 5290.46, + "probability": 0.6976 + }, + { + "start": 5290.63, + "end": 5297.22, + "probability": 0.9454 + }, + { + "start": 5297.5, + "end": 5299.18, + "probability": 0.7127 + }, + { + "start": 5299.4, + "end": 5304.48, + "probability": 0.9483 + }, + { + "start": 5304.62, + "end": 5305.38, + "probability": 0.3478 + }, + { + "start": 5305.68, + "end": 5307.78, + "probability": 0.9581 + }, + { + "start": 5307.82, + "end": 5308.6, + "probability": 0.6642 + }, + { + "start": 5308.72, + "end": 5312.1, + "probability": 0.9535 + }, + { + "start": 5312.64, + "end": 5317.18, + "probability": 0.9653 + }, + { + "start": 5317.18, + "end": 5324.44, + "probability": 0.9826 + }, + { + "start": 5324.44, + "end": 5331.26, + "probability": 0.9834 + }, + { + "start": 5331.26, + "end": 5336.8, + "probability": 0.9935 + }, + { + "start": 5336.98, + "end": 5342.22, + "probability": 0.9909 + }, + { + "start": 5342.22, + "end": 5344.26, + "probability": 0.5172 + }, + { + "start": 5344.5, + "end": 5350.48, + "probability": 0.9944 + }, + { + "start": 5350.48, + "end": 5355.04, + "probability": 0.995 + }, + { + "start": 5355.64, + "end": 5359.92, + "probability": 0.9858 + }, + { + "start": 5360.02, + "end": 5361.32, + "probability": 0.8199 + }, + { + "start": 5362.12, + "end": 5364.74, + "probability": 0.9789 + }, + { + "start": 5365.16, + "end": 5368.66, + "probability": 0.9554 + }, + { + "start": 5369.08, + "end": 5371.08, + "probability": 0.9599 + }, + { + "start": 5371.1, + "end": 5372.36, + "probability": 0.9061 + }, + { + "start": 5372.76, + "end": 5373.42, + "probability": 0.737 + }, + { + "start": 5373.52, + "end": 5374.62, + "probability": 0.8944 + }, + { + "start": 5375.04, + "end": 5378.9, + "probability": 0.9897 + }, + { + "start": 5378.9, + "end": 5379.69, + "probability": 0.8405 + }, + { + "start": 5380.3, + "end": 5384.72, + "probability": 0.8436 + }, + { + "start": 5384.72, + "end": 5387.8, + "probability": 0.9883 + }, + { + "start": 5387.88, + "end": 5389.52, + "probability": 0.8894 + }, + { + "start": 5389.72, + "end": 5392.56, + "probability": 0.6117 + }, + { + "start": 5392.96, + "end": 5393.44, + "probability": 0.7297 + }, + { + "start": 5393.72, + "end": 5394.21, + "probability": 0.8746 + }, + { + "start": 5395.02, + "end": 5396.94, + "probability": 0.7463 + }, + { + "start": 5397.2, + "end": 5399.44, + "probability": 0.8796 + }, + { + "start": 5400.04, + "end": 5400.52, + "probability": 0.0162 + }, + { + "start": 5400.52, + "end": 5402.76, + "probability": 0.8596 + }, + { + "start": 5402.76, + "end": 5406.46, + "probability": 0.6244 + }, + { + "start": 5406.98, + "end": 5409.38, + "probability": 0.9812 + }, + { + "start": 5409.44, + "end": 5410.48, + "probability": 0.9799 + }, + { + "start": 5411.04, + "end": 5417.48, + "probability": 0.8545 + }, + { + "start": 5417.78, + "end": 5419.1, + "probability": 0.3941 + }, + { + "start": 5419.84, + "end": 5422.44, + "probability": 0.9632 + }, + { + "start": 5422.46, + "end": 5423.34, + "probability": 0.817 + }, + { + "start": 5423.88, + "end": 5427.62, + "probability": 0.9751 + }, + { + "start": 5428.26, + "end": 5429.44, + "probability": 0.6006 + }, + { + "start": 5429.7, + "end": 5430.14, + "probability": 0.8236 + }, + { + "start": 5430.36, + "end": 5434.26, + "probability": 0.5859 + }, + { + "start": 5435.98, + "end": 5437.7, + "probability": 0.8749 + }, + { + "start": 5438.16, + "end": 5440.56, + "probability": 0.9813 + }, + { + "start": 5441.5, + "end": 5442.89, + "probability": 0.9518 + }, + { + "start": 5443.22, + "end": 5443.48, + "probability": 0.4813 + }, + { + "start": 5443.58, + "end": 5444.98, + "probability": 0.7414 + }, + { + "start": 5445.56, + "end": 5445.93, + "probability": 0.8589 + }, + { + "start": 5446.4, + "end": 5447.76, + "probability": 0.8485 + }, + { + "start": 5448.36, + "end": 5449.64, + "probability": 0.4652 + }, + { + "start": 5452.5, + "end": 5454.42, + "probability": 0.5644 + }, + { + "start": 5455.06, + "end": 5462.2, + "probability": 0.9667 + }, + { + "start": 5463.04, + "end": 5464.52, + "probability": 0.9044 + }, + { + "start": 5464.82, + "end": 5467.34, + "probability": 0.7568 + }, + { + "start": 5467.34, + "end": 5470.0, + "probability": 0.9917 + }, + { + "start": 5470.68, + "end": 5471.84, + "probability": 0.9917 + }, + { + "start": 5471.98, + "end": 5476.96, + "probability": 0.9276 + }, + { + "start": 5476.96, + "end": 5480.56, + "probability": 0.9577 + }, + { + "start": 5481.0, + "end": 5482.34, + "probability": 0.9941 + }, + { + "start": 5482.6, + "end": 5485.76, + "probability": 0.7727 + }, + { + "start": 5486.1, + "end": 5486.32, + "probability": 0.5031 + }, + { + "start": 5486.46, + "end": 5486.96, + "probability": 0.5619 + }, + { + "start": 5487.04, + "end": 5488.06, + "probability": 0.8806 + }, + { + "start": 5488.4, + "end": 5491.86, + "probability": 0.9398 + }, + { + "start": 5492.0, + "end": 5493.06, + "probability": 0.959 + }, + { + "start": 5493.78, + "end": 5493.78, + "probability": 0.041 + }, + { + "start": 5493.78, + "end": 5494.92, + "probability": 0.5233 + }, + { + "start": 5495.22, + "end": 5500.94, + "probability": 0.9557 + }, + { + "start": 5501.1, + "end": 5503.9, + "probability": 0.8588 + }, + { + "start": 5503.96, + "end": 5504.18, + "probability": 0.6305 + }, + { + "start": 5504.5, + "end": 5505.2, + "probability": 0.7506 + }, + { + "start": 5505.74, + "end": 5508.84, + "probability": 0.7004 + }, + { + "start": 5525.06, + "end": 5525.36, + "probability": 0.287 + }, + { + "start": 5525.5, + "end": 5526.46, + "probability": 0.9212 + }, + { + "start": 5529.92, + "end": 5532.43, + "probability": 0.8566 + }, + { + "start": 5533.7, + "end": 5535.06, + "probability": 0.9969 + }, + { + "start": 5536.18, + "end": 5537.42, + "probability": 0.6799 + }, + { + "start": 5538.38, + "end": 5540.82, + "probability": 0.9158 + }, + { + "start": 5541.64, + "end": 5543.76, + "probability": 0.9205 + }, + { + "start": 5545.46, + "end": 5546.96, + "probability": 0.999 + }, + { + "start": 5548.48, + "end": 5553.78, + "probability": 0.858 + }, + { + "start": 5554.52, + "end": 5555.42, + "probability": 0.4892 + }, + { + "start": 5555.48, + "end": 5558.22, + "probability": 0.9235 + }, + { + "start": 5558.64, + "end": 5560.08, + "probability": 0.9492 + }, + { + "start": 5560.76, + "end": 5562.46, + "probability": 0.9927 + }, + { + "start": 5564.64, + "end": 5565.55, + "probability": 0.554 + }, + { + "start": 5566.14, + "end": 5568.39, + "probability": 0.9525 + }, + { + "start": 5569.1, + "end": 5569.28, + "probability": 0.2355 + }, + { + "start": 5569.28, + "end": 5572.76, + "probability": 0.4645 + }, + { + "start": 5573.6, + "end": 5574.92, + "probability": 0.7135 + }, + { + "start": 5575.88, + "end": 5579.32, + "probability": 0.8507 + }, + { + "start": 5579.42, + "end": 5580.88, + "probability": 0.641 + }, + { + "start": 5581.66, + "end": 5581.78, + "probability": 0.3625 + }, + { + "start": 5581.78, + "end": 5582.74, + "probability": 0.7966 + }, + { + "start": 5582.82, + "end": 5583.4, + "probability": 0.5464 + }, + { + "start": 5583.9, + "end": 5587.02, + "probability": 0.9861 + }, + { + "start": 5587.76, + "end": 5589.24, + "probability": 0.9395 + }, + { + "start": 5589.38, + "end": 5590.2, + "probability": 0.0764 + }, + { + "start": 5591.52, + "end": 5591.88, + "probability": 0.1157 + }, + { + "start": 5591.88, + "end": 5591.88, + "probability": 0.3379 + }, + { + "start": 5591.88, + "end": 5595.06, + "probability": 0.3755 + }, + { + "start": 5595.64, + "end": 5597.73, + "probability": 0.731 + }, + { + "start": 5597.96, + "end": 5598.94, + "probability": 0.8479 + }, + { + "start": 5599.08, + "end": 5601.62, + "probability": 0.8444 + }, + { + "start": 5602.22, + "end": 5603.14, + "probability": 0.987 + }, + { + "start": 5603.82, + "end": 5604.74, + "probability": 0.9663 + }, + { + "start": 5607.46, + "end": 5608.64, + "probability": 0.5379 + }, + { + "start": 5609.16, + "end": 5612.06, + "probability": 0.988 + }, + { + "start": 5613.28, + "end": 5614.96, + "probability": 0.6077 + }, + { + "start": 5615.56, + "end": 5617.02, + "probability": 0.8807 + }, + { + "start": 5617.64, + "end": 5619.84, + "probability": 0.9797 + }, + { + "start": 5620.21, + "end": 5622.82, + "probability": 0.9829 + }, + { + "start": 5623.16, + "end": 5624.04, + "probability": 0.0095 + }, + { + "start": 5624.04, + "end": 5624.74, + "probability": 0.5224 + }, + { + "start": 5624.92, + "end": 5626.37, + "probability": 0.4057 + }, + { + "start": 5627.5, + "end": 5631.88, + "probability": 0.6682 + }, + { + "start": 5632.48, + "end": 5635.84, + "probability": 0.9893 + }, + { + "start": 5636.9, + "end": 5639.72, + "probability": 0.803 + }, + { + "start": 5639.98, + "end": 5642.62, + "probability": 0.892 + }, + { + "start": 5643.94, + "end": 5650.02, + "probability": 0.9956 + }, + { + "start": 5652.14, + "end": 5654.1, + "probability": 0.9119 + }, + { + "start": 5654.62, + "end": 5655.84, + "probability": 0.5339 + }, + { + "start": 5656.5, + "end": 5658.5, + "probability": 0.8848 + }, + { + "start": 5659.24, + "end": 5660.08, + "probability": 0.5272 + }, + { + "start": 5661.16, + "end": 5665.92, + "probability": 0.9758 + }, + { + "start": 5667.12, + "end": 5669.2, + "probability": 0.8833 + }, + { + "start": 5670.26, + "end": 5672.18, + "probability": 0.9816 + }, + { + "start": 5673.62, + "end": 5677.32, + "probability": 0.9688 + }, + { + "start": 5677.54, + "end": 5679.04, + "probability": 0.8816 + }, + { + "start": 5679.18, + "end": 5680.88, + "probability": 0.7772 + }, + { + "start": 5681.46, + "end": 5687.4, + "probability": 0.3593 + }, + { + "start": 5688.04, + "end": 5689.06, + "probability": 0.6561 + }, + { + "start": 5690.22, + "end": 5692.92, + "probability": 0.8246 + }, + { + "start": 5693.16, + "end": 5694.28, + "probability": 0.712 + }, + { + "start": 5695.06, + "end": 5696.44, + "probability": 0.9446 + }, + { + "start": 5697.42, + "end": 5702.78, + "probability": 0.8718 + }, + { + "start": 5703.66, + "end": 5705.0, + "probability": 0.8633 + }, + { + "start": 5705.14, + "end": 5709.94, + "probability": 0.9604 + }, + { + "start": 5710.36, + "end": 5711.36, + "probability": 0.8206 + }, + { + "start": 5711.92, + "end": 5714.66, + "probability": 0.5873 + }, + { + "start": 5714.76, + "end": 5715.6, + "probability": 0.5523 + }, + { + "start": 5715.7, + "end": 5716.1, + "probability": 0.2702 + }, + { + "start": 5716.1, + "end": 5717.72, + "probability": 0.8004 + }, + { + "start": 5718.42, + "end": 5719.62, + "probability": 0.5989 + }, + { + "start": 5720.84, + "end": 5726.14, + "probability": 0.6732 + }, + { + "start": 5727.1, + "end": 5729.74, + "probability": 0.9131 + }, + { + "start": 5730.36, + "end": 5731.64, + "probability": 0.7271 + }, + { + "start": 5732.54, + "end": 5733.07, + "probability": 0.5918 + }, + { + "start": 5734.62, + "end": 5737.18, + "probability": 0.9393 + }, + { + "start": 5737.58, + "end": 5741.4, + "probability": 0.9652 + }, + { + "start": 5741.66, + "end": 5746.4, + "probability": 0.876 + }, + { + "start": 5746.42, + "end": 5747.08, + "probability": 0.5349 + }, + { + "start": 5747.12, + "end": 5749.26, + "probability": 0.7453 + }, + { + "start": 5749.7, + "end": 5752.38, + "probability": 0.9463 + }, + { + "start": 5752.7, + "end": 5754.96, + "probability": 0.866 + }, + { + "start": 5755.0, + "end": 5755.92, + "probability": 0.921 + }, + { + "start": 5757.04, + "end": 5760.08, + "probability": 0.708 + }, + { + "start": 5770.46, + "end": 5772.54, + "probability": 0.8202 + }, + { + "start": 5773.24, + "end": 5774.0, + "probability": 0.9797 + }, + { + "start": 5774.22, + "end": 5776.18, + "probability": 0.6966 + }, + { + "start": 5776.42, + "end": 5776.42, + "probability": 0.3214 + }, + { + "start": 5776.42, + "end": 5778.64, + "probability": 0.59 + }, + { + "start": 5779.0, + "end": 5780.42, + "probability": 0.9088 + }, + { + "start": 5780.64, + "end": 5785.08, + "probability": 0.9053 + }, + { + "start": 5785.46, + "end": 5787.51, + "probability": 0.9414 + }, + { + "start": 5788.3, + "end": 5790.72, + "probability": 0.7543 + }, + { + "start": 5790.8, + "end": 5794.46, + "probability": 0.821 + }, + { + "start": 5794.62, + "end": 5795.98, + "probability": 0.9073 + }, + { + "start": 5796.06, + "end": 5797.4, + "probability": 0.9836 + }, + { + "start": 5797.46, + "end": 5798.68, + "probability": 0.9446 + }, + { + "start": 5798.88, + "end": 5800.98, + "probability": 0.8342 + }, + { + "start": 5801.12, + "end": 5806.69, + "probability": 0.9078 + }, + { + "start": 5807.24, + "end": 5808.06, + "probability": 0.8201 + }, + { + "start": 5808.82, + "end": 5811.0, + "probability": 0.9819 + }, + { + "start": 5811.08, + "end": 5814.6, + "probability": 0.9619 + }, + { + "start": 5814.92, + "end": 5815.43, + "probability": 0.7676 + }, + { + "start": 5815.56, + "end": 5817.76, + "probability": 0.9751 + }, + { + "start": 5818.48, + "end": 5821.2, + "probability": 0.9917 + }, + { + "start": 5821.26, + "end": 5821.78, + "probability": 0.8797 + }, + { + "start": 5822.12, + "end": 5824.68, + "probability": 0.983 + }, + { + "start": 5824.68, + "end": 5827.96, + "probability": 0.9097 + }, + { + "start": 5828.24, + "end": 5831.42, + "probability": 0.7886 + }, + { + "start": 5831.9, + "end": 5835.0, + "probability": 0.9913 + }, + { + "start": 5835.1, + "end": 5836.6, + "probability": 0.9941 + }, + { + "start": 5837.6, + "end": 5839.8, + "probability": 0.934 + }, + { + "start": 5839.82, + "end": 5841.21, + "probability": 0.9507 + }, + { + "start": 5842.04, + "end": 5843.66, + "probability": 0.9707 + }, + { + "start": 5843.88, + "end": 5845.36, + "probability": 0.925 + }, + { + "start": 5845.4, + "end": 5846.64, + "probability": 0.9922 + }, + { + "start": 5846.76, + "end": 5847.22, + "probability": 0.7939 + }, + { + "start": 5847.34, + "end": 5852.68, + "probability": 0.9941 + }, + { + "start": 5852.72, + "end": 5853.4, + "probability": 0.5687 + }, + { + "start": 5853.44, + "end": 5856.17, + "probability": 0.5772 + }, + { + "start": 5856.98, + "end": 5858.81, + "probability": 0.6678 + }, + { + "start": 5859.02, + "end": 5860.77, + "probability": 0.9707 + }, + { + "start": 5860.9, + "end": 5864.22, + "probability": 0.9728 + }, + { + "start": 5864.28, + "end": 5865.94, + "probability": 0.939 + }, + { + "start": 5866.34, + "end": 5872.54, + "probability": 0.8159 + }, + { + "start": 5872.56, + "end": 5873.12, + "probability": 0.6157 + }, + { + "start": 5873.16, + "end": 5875.62, + "probability": 0.9591 + }, + { + "start": 5876.12, + "end": 5880.88, + "probability": 0.8076 + }, + { + "start": 5881.18, + "end": 5883.86, + "probability": 0.9898 + }, + { + "start": 5883.96, + "end": 5885.0, + "probability": 0.8286 + }, + { + "start": 5885.22, + "end": 5887.88, + "probability": 0.9605 + }, + { + "start": 5887.96, + "end": 5888.24, + "probability": 0.7747 + }, + { + "start": 5888.32, + "end": 5889.26, + "probability": 0.8348 + }, + { + "start": 5889.48, + "end": 5892.4, + "probability": 0.9867 + }, + { + "start": 5892.5, + "end": 5893.56, + "probability": 0.7532 + }, + { + "start": 5893.66, + "end": 5894.34, + "probability": 0.7903 + }, + { + "start": 5894.94, + "end": 5895.66, + "probability": 0.9543 + }, + { + "start": 5906.26, + "end": 5906.5, + "probability": 0.102 + }, + { + "start": 5906.5, + "end": 5908.02, + "probability": 0.8866 + }, + { + "start": 5909.4, + "end": 5909.96, + "probability": 0.748 + }, + { + "start": 5910.14, + "end": 5913.34, + "probability": 0.8149 + }, + { + "start": 5913.4, + "end": 5914.52, + "probability": 0.5018 + }, + { + "start": 5914.74, + "end": 5915.38, + "probability": 0.8542 + }, + { + "start": 5915.96, + "end": 5919.76, + "probability": 0.8477 + }, + { + "start": 5919.82, + "end": 5922.64, + "probability": 0.9316 + }, + { + "start": 5922.92, + "end": 5924.36, + "probability": 0.8102 + }, + { + "start": 5925.06, + "end": 5927.68, + "probability": 0.9138 + }, + { + "start": 5927.9, + "end": 5929.4, + "probability": 0.9646 + }, + { + "start": 5929.76, + "end": 5930.92, + "probability": 0.9915 + }, + { + "start": 5931.06, + "end": 5934.46, + "probability": 0.8845 + }, + { + "start": 5934.72, + "end": 5940.84, + "probability": 0.9967 + }, + { + "start": 5941.62, + "end": 5945.14, + "probability": 0.9806 + }, + { + "start": 5945.38, + "end": 5950.06, + "probability": 0.9736 + }, + { + "start": 5950.28, + "end": 5953.36, + "probability": 0.9695 + }, + { + "start": 5953.7, + "end": 5957.22, + "probability": 0.9265 + }, + { + "start": 5957.64, + "end": 5964.44, + "probability": 0.5084 + }, + { + "start": 5964.56, + "end": 5966.44, + "probability": 0.7317 + }, + { + "start": 5966.52, + "end": 5967.98, + "probability": 0.9738 + }, + { + "start": 5968.3, + "end": 5970.7, + "probability": 0.9661 + }, + { + "start": 5970.8, + "end": 5971.8, + "probability": 0.8794 + }, + { + "start": 5972.16, + "end": 5975.24, + "probability": 0.9632 + }, + { + "start": 5975.6, + "end": 5977.84, + "probability": 0.8948 + }, + { + "start": 5978.04, + "end": 5981.54, + "probability": 0.8683 + }, + { + "start": 5982.12, + "end": 5982.32, + "probability": 0.8579 + }, + { + "start": 5982.44, + "end": 5983.18, + "probability": 0.7295 + }, + { + "start": 5983.62, + "end": 5986.98, + "probability": 0.9217 + }, + { + "start": 5987.98, + "end": 5989.76, + "probability": 0.6875 + }, + { + "start": 5989.88, + "end": 5990.44, + "probability": 0.3868 + }, + { + "start": 5990.44, + "end": 5992.84, + "probability": 0.9784 + }, + { + "start": 5993.28, + "end": 5995.34, + "probability": 0.9843 + }, + { + "start": 5995.58, + "end": 5998.78, + "probability": 0.9819 + }, + { + "start": 6000.3, + "end": 6003.96, + "probability": 0.6635 + }, + { + "start": 6003.96, + "end": 6004.74, + "probability": 0.6016 + }, + { + "start": 6005.14, + "end": 6006.44, + "probability": 0.8924 + }, + { + "start": 6007.24, + "end": 6010.32, + "probability": 0.9321 + }, + { + "start": 6010.5, + "end": 6011.24, + "probability": 0.833 + }, + { + "start": 6011.42, + "end": 6012.32, + "probability": 0.8372 + }, + { + "start": 6012.8, + "end": 6014.5, + "probability": 0.9951 + }, + { + "start": 6014.6, + "end": 6015.16, + "probability": 0.8571 + }, + { + "start": 6015.68, + "end": 6016.24, + "probability": 0.6144 + }, + { + "start": 6016.24, + "end": 6018.8, + "probability": 0.7457 + }, + { + "start": 6020.64, + "end": 6021.81, + "probability": 0.5576 + }, + { + "start": 6022.88, + "end": 6023.94, + "probability": 0.8039 + }, + { + "start": 6024.02, + "end": 6026.94, + "probability": 0.7977 + }, + { + "start": 6027.11, + "end": 6039.54, + "probability": 0.1854 + }, + { + "start": 6039.54, + "end": 6040.24, + "probability": 0.0606 + }, + { + "start": 6042.52, + "end": 6043.48, + "probability": 0.06 + }, + { + "start": 6043.48, + "end": 6045.26, + "probability": 0.1212 + }, + { + "start": 6049.08, + "end": 6052.96, + "probability": 0.5323 + }, + { + "start": 6053.7, + "end": 6060.28, + "probability": 0.9242 + }, + { + "start": 6060.66, + "end": 6061.76, + "probability": 0.1955 + }, + { + "start": 6061.78, + "end": 6064.06, + "probability": 0.866 + }, + { + "start": 6064.48, + "end": 6066.06, + "probability": 0.789 + }, + { + "start": 6066.68, + "end": 6068.28, + "probability": 0.4602 + }, + { + "start": 6068.36, + "end": 6071.06, + "probability": 0.7987 + }, + { + "start": 6071.16, + "end": 6086.24, + "probability": 0.1298 + }, + { + "start": 6086.24, + "end": 6087.42, + "probability": 0.074 + }, + { + "start": 6088.12, + "end": 6088.38, + "probability": 0.0592 + }, + { + "start": 6088.58, + "end": 6090.68, + "probability": 0.1103 + }, + { + "start": 6093.76, + "end": 6097.12, + "probability": 0.4592 + }, + { + "start": 6097.92, + "end": 6099.93, + "probability": 0.867 + }, + { + "start": 6100.2, + "end": 6101.88, + "probability": 0.1908 + }, + { + "start": 6101.88, + "end": 6102.1, + "probability": 0.2136 + }, + { + "start": 6102.64, + "end": 6106.42, + "probability": 0.9556 + }, + { + "start": 6106.82, + "end": 6110.42, + "probability": 0.8322 + }, + { + "start": 6110.6, + "end": 6112.5, + "probability": 0.3714 + }, + { + "start": 6113.48, + "end": 6116.0, + "probability": 0.9461 + }, + { + "start": 6116.34, + "end": 6117.26, + "probability": 0.7608 + }, + { + "start": 6118.02, + "end": 6122.54, + "probability": 0.8426 + }, + { + "start": 6132.14, + "end": 6134.1, + "probability": 0.57 + }, + { + "start": 6135.36, + "end": 6138.72, + "probability": 0.9674 + }, + { + "start": 6138.72, + "end": 6142.2, + "probability": 0.9979 + }, + { + "start": 6142.96, + "end": 6145.6, + "probability": 0.8051 + }, + { + "start": 6145.6, + "end": 6148.92, + "probability": 0.8414 + }, + { + "start": 6149.36, + "end": 6151.88, + "probability": 0.9181 + }, + { + "start": 6151.88, + "end": 6155.5, + "probability": 0.9976 + }, + { + "start": 6155.56, + "end": 6157.8, + "probability": 0.8291 + }, + { + "start": 6158.08, + "end": 6160.64, + "probability": 0.9819 + }, + { + "start": 6161.06, + "end": 6167.16, + "probability": 0.8831 + }, + { + "start": 6167.6, + "end": 6170.54, + "probability": 0.9977 + }, + { + "start": 6171.38, + "end": 6175.54, + "probability": 0.9969 + }, + { + "start": 6175.54, + "end": 6179.82, + "probability": 0.9881 + }, + { + "start": 6180.2, + "end": 6180.66, + "probability": 0.4919 + }, + { + "start": 6180.74, + "end": 6183.64, + "probability": 0.9554 + }, + { + "start": 6184.01, + "end": 6186.06, + "probability": 0.9912 + }, + { + "start": 6186.2, + "end": 6187.64, + "probability": 0.8428 + }, + { + "start": 6188.2, + "end": 6192.24, + "probability": 0.999 + }, + { + "start": 6193.76, + "end": 6197.52, + "probability": 0.9865 + }, + { + "start": 6198.06, + "end": 6202.0, + "probability": 0.8545 + }, + { + "start": 6202.14, + "end": 6207.5, + "probability": 0.9687 + }, + { + "start": 6207.64, + "end": 6208.54, + "probability": 0.7512 + }, + { + "start": 6208.8, + "end": 6209.46, + "probability": 0.9913 + }, + { + "start": 6210.42, + "end": 6211.24, + "probability": 0.8724 + }, + { + "start": 6211.32, + "end": 6212.04, + "probability": 0.7455 + }, + { + "start": 6212.28, + "end": 6212.28, + "probability": 0.7033 + }, + { + "start": 6212.8, + "end": 6214.8, + "probability": 0.9191 + }, + { + "start": 6232.96, + "end": 6236.86, + "probability": 0.7914 + }, + { + "start": 6237.56, + "end": 6241.96, + "probability": 0.9533 + }, + { + "start": 6242.54, + "end": 6245.24, + "probability": 0.9979 + }, + { + "start": 6245.24, + "end": 6250.14, + "probability": 0.7534 + }, + { + "start": 6250.58, + "end": 6254.86, + "probability": 0.9889 + }, + { + "start": 6254.86, + "end": 6261.74, + "probability": 0.9949 + }, + { + "start": 6261.82, + "end": 6263.56, + "probability": 0.9381 + }, + { + "start": 6264.12, + "end": 6266.96, + "probability": 0.8116 + }, + { + "start": 6267.46, + "end": 6270.9, + "probability": 0.9791 + }, + { + "start": 6270.9, + "end": 6278.28, + "probability": 0.8905 + }, + { + "start": 6278.5, + "end": 6283.28, + "probability": 0.9216 + }, + { + "start": 6283.9, + "end": 6285.94, + "probability": 0.9348 + }, + { + "start": 6286.08, + "end": 6290.92, + "probability": 0.9914 + }, + { + "start": 6291.52, + "end": 6297.94, + "probability": 0.9963 + }, + { + "start": 6298.6, + "end": 6302.98, + "probability": 0.8316 + }, + { + "start": 6303.46, + "end": 6307.82, + "probability": 0.821 + }, + { + "start": 6308.5, + "end": 6309.88, + "probability": 0.9515 + }, + { + "start": 6309.88, + "end": 6310.58, + "probability": 0.7352 + }, + { + "start": 6311.22, + "end": 6313.5, + "probability": 0.9565 + }, + { + "start": 6313.66, + "end": 6317.8, + "probability": 0.9557 + }, + { + "start": 6319.55, + "end": 6321.92, + "probability": 0.4578 + }, + { + "start": 6322.4, + "end": 6322.8, + "probability": 0.8394 + }, + { + "start": 6325.78, + "end": 6337.82, + "probability": 0.0556 + }, + { + "start": 6337.82, + "end": 6338.98, + "probability": 0.2056 + }, + { + "start": 6339.12, + "end": 6344.54, + "probability": 0.049 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.0, + "end": 6430.0, + "probability": 0.0 + }, + { + "start": 6430.28, + "end": 6431.18, + "probability": 0.02 + }, + { + "start": 6431.18, + "end": 6431.18, + "probability": 0.2544 + }, + { + "start": 6431.18, + "end": 6437.78, + "probability": 0.8169 + }, + { + "start": 6437.94, + "end": 6440.84, + "probability": 0.9723 + }, + { + "start": 6440.92, + "end": 6446.0, + "probability": 0.9927 + }, + { + "start": 6446.16, + "end": 6449.12, + "probability": 0.9563 + }, + { + "start": 6449.7, + "end": 6452.56, + "probability": 0.9836 + }, + { + "start": 6452.6, + "end": 6455.3, + "probability": 0.9831 + }, + { + "start": 6455.38, + "end": 6457.0, + "probability": 0.999 + }, + { + "start": 6457.92, + "end": 6462.4, + "probability": 0.9765 + }, + { + "start": 6462.42, + "end": 6467.0, + "probability": 0.7165 + }, + { + "start": 6467.7, + "end": 6468.26, + "probability": 0.8417 + }, + { + "start": 6468.68, + "end": 6469.02, + "probability": 0.3572 + }, + { + "start": 6469.22, + "end": 6472.28, + "probability": 0.8431 + }, + { + "start": 6473.06, + "end": 6476.64, + "probability": 0.9751 + }, + { + "start": 6476.64, + "end": 6479.06, + "probability": 0.3571 + }, + { + "start": 6486.02, + "end": 6486.14, + "probability": 0.0234 + }, + { + "start": 6486.14, + "end": 6488.16, + "probability": 0.6719 + }, + { + "start": 6488.9, + "end": 6491.9, + "probability": 0.9551 + }, + { + "start": 6491.9, + "end": 6495.64, + "probability": 0.9844 + }, + { + "start": 6496.02, + "end": 6498.72, + "probability": 0.9761 + }, + { + "start": 6499.26, + "end": 6500.1, + "probability": 0.9234 + }, + { + "start": 6500.22, + "end": 6501.0, + "probability": 0.8455 + }, + { + "start": 6501.12, + "end": 6504.14, + "probability": 0.8707 + }, + { + "start": 6504.8, + "end": 6507.72, + "probability": 0.96 + }, + { + "start": 6508.3, + "end": 6510.34, + "probability": 0.8299 + }, + { + "start": 6511.68, + "end": 6513.2, + "probability": 0.4187 + }, + { + "start": 6513.92, + "end": 6516.34, + "probability": 0.9777 + }, + { + "start": 6516.84, + "end": 6518.8, + "probability": 0.9943 + }, + { + "start": 6520.44, + "end": 6520.98, + "probability": 0.4314 + }, + { + "start": 6521.1, + "end": 6524.6, + "probability": 0.9926 + }, + { + "start": 6524.6, + "end": 6529.62, + "probability": 0.9481 + }, + { + "start": 6530.0, + "end": 6531.6, + "probability": 0.9948 + }, + { + "start": 6532.1, + "end": 6533.28, + "probability": 0.968 + }, + { + "start": 6533.44, + "end": 6535.52, + "probability": 0.9948 + }, + { + "start": 6535.82, + "end": 6537.12, + "probability": 0.3097 + }, + { + "start": 6538.44, + "end": 6538.56, + "probability": 0.018 + }, + { + "start": 6538.56, + "end": 6540.7, + "probability": 0.9089 + }, + { + "start": 6541.1, + "end": 6542.01, + "probability": 0.9271 + }, + { + "start": 6542.4, + "end": 6543.98, + "probability": 0.9661 + }, + { + "start": 6544.22, + "end": 6544.66, + "probability": 0.9011 + }, + { + "start": 6544.96, + "end": 6545.6, + "probability": 0.7149 + }, + { + "start": 6545.89, + "end": 6550.6, + "probability": 0.9203 + }, + { + "start": 6550.64, + "end": 6551.62, + "probability": 0.824 + }, + { + "start": 6552.37, + "end": 6554.42, + "probability": 0.1845 + }, + { + "start": 6554.46, + "end": 6554.92, + "probability": 0.2985 + }, + { + "start": 6557.56, + "end": 6558.34, + "probability": 0.3742 + }, + { + "start": 6560.25, + "end": 6564.22, + "probability": 0.0879 + }, + { + "start": 6564.22, + "end": 6564.22, + "probability": 0.0039 + }, + { + "start": 6572.24, + "end": 6573.8, + "probability": 0.1804 + }, + { + "start": 6575.2, + "end": 6577.94, + "probability": 0.0451 + }, + { + "start": 6578.44, + "end": 6579.44, + "probability": 0.2333 + }, + { + "start": 6579.44, + "end": 6581.32, + "probability": 0.1773 + }, + { + "start": 6582.96, + "end": 6583.38, + "probability": 0.0559 + }, + { + "start": 6585.6, + "end": 6588.58, + "probability": 0.5462 + }, + { + "start": 6588.96, + "end": 6593.92, + "probability": 0.6909 + }, + { + "start": 6594.58, + "end": 6595.62, + "probability": 0.0631 + }, + { + "start": 6595.7, + "end": 6596.76, + "probability": 0.2752 + }, + { + "start": 6606.22, + "end": 6610.0, + "probability": 0.0352 + }, + { + "start": 6610.0, + "end": 6610.78, + "probability": 0.0602 + }, + { + "start": 6610.86, + "end": 6612.52, + "probability": 0.0576 + }, + { + "start": 6614.64, + "end": 6616.84, + "probability": 0.1883 + }, + { + "start": 6618.93, + "end": 6620.72, + "probability": 0.4525 + }, + { + "start": 6621.56, + "end": 6621.56, + "probability": 0.1503 + }, + { + "start": 6621.56, + "end": 6621.56, + "probability": 0.0318 + }, + { + "start": 6621.56, + "end": 6621.56, + "probability": 0.1154 + }, + { + "start": 6621.56, + "end": 6621.56, + "probability": 0.0442 + }, + { + "start": 6621.56, + "end": 6623.78, + "probability": 0.1367 + }, + { + "start": 6624.76, + "end": 6625.48, + "probability": 0.6348 + }, + { + "start": 6625.92, + "end": 6628.04, + "probability": 0.74 + }, + { + "start": 6628.54, + "end": 6630.14, + "probability": 0.9053 + }, + { + "start": 6630.52, + "end": 6633.32, + "probability": 0.9575 + }, + { + "start": 6633.94, + "end": 6637.4, + "probability": 0.9843 + }, + { + "start": 6638.1, + "end": 6644.56, + "probability": 0.9871 + }, + { + "start": 6646.86, + "end": 6648.46, + "probability": 0.8273 + }, + { + "start": 6649.54, + "end": 6653.32, + "probability": 0.9963 + }, + { + "start": 6654.02, + "end": 6655.86, + "probability": 0.9974 + }, + { + "start": 6656.44, + "end": 6660.64, + "probability": 0.9941 + }, + { + "start": 6661.58, + "end": 6662.42, + "probability": 0.8886 + }, + { + "start": 6662.58, + "end": 6663.76, + "probability": 0.8462 + }, + { + "start": 6664.16, + "end": 6664.84, + "probability": 0.8516 + }, + { + "start": 6664.9, + "end": 6666.76, + "probability": 0.9955 + }, + { + "start": 6667.76, + "end": 6668.9, + "probability": 0.8398 + }, + { + "start": 6668.98, + "end": 6670.24, + "probability": 0.9704 + }, + { + "start": 6670.6, + "end": 6671.4, + "probability": 0.823 + }, + { + "start": 6671.68, + "end": 6673.82, + "probability": 0.9621 + }, + { + "start": 6674.3, + "end": 6674.98, + "probability": 0.5229 + }, + { + "start": 6675.2, + "end": 6676.28, + "probability": 0.9877 + }, + { + "start": 6676.4, + "end": 6678.72, + "probability": 0.9907 + }, + { + "start": 6679.66, + "end": 6682.52, + "probability": 0.9746 + }, + { + "start": 6685.98, + "end": 6687.16, + "probability": 0.812 + }, + { + "start": 6687.2, + "end": 6687.7, + "probability": 0.5284 + }, + { + "start": 6687.72, + "end": 6689.08, + "probability": 0.8182 + }, + { + "start": 6689.16, + "end": 6691.72, + "probability": 0.7263 + }, + { + "start": 6691.82, + "end": 6691.82, + "probability": 0.3804 + }, + { + "start": 6691.82, + "end": 6692.97, + "probability": 0.5438 + }, + { + "start": 6693.2, + "end": 6693.66, + "probability": 0.2589 + }, + { + "start": 6694.1, + "end": 6696.7, + "probability": 0.9491 + }, + { + "start": 6696.94, + "end": 6699.02, + "probability": 0.8727 + }, + { + "start": 6699.2, + "end": 6699.76, + "probability": 0.9205 + }, + { + "start": 6699.82, + "end": 6701.02, + "probability": 0.8817 + }, + { + "start": 6701.12, + "end": 6703.3, + "probability": 0.9219 + }, + { + "start": 6703.4, + "end": 6705.62, + "probability": 0.9321 + }, + { + "start": 6706.18, + "end": 6708.66, + "probability": 0.9251 + }, + { + "start": 6709.4, + "end": 6713.66, + "probability": 0.9785 + }, + { + "start": 6714.14, + "end": 6717.6, + "probability": 0.992 + }, + { + "start": 6717.6, + "end": 6722.3, + "probability": 0.9332 + }, + { + "start": 6723.04, + "end": 6725.84, + "probability": 0.6649 + }, + { + "start": 6727.1, + "end": 6733.18, + "probability": 0.946 + }, + { + "start": 6734.32, + "end": 6736.16, + "probability": 0.9939 + }, + { + "start": 6737.16, + "end": 6739.36, + "probability": 0.9675 + }, + { + "start": 6739.46, + "end": 6741.76, + "probability": 0.9972 + }, + { + "start": 6743.44, + "end": 6744.42, + "probability": 0.9717 + }, + { + "start": 6744.6, + "end": 6748.76, + "probability": 0.9788 + }, + { + "start": 6750.1, + "end": 6754.96, + "probability": 0.9414 + }, + { + "start": 6755.54, + "end": 6757.2, + "probability": 0.8061 + }, + { + "start": 6758.1, + "end": 6761.38, + "probability": 0.9413 + }, + { + "start": 6761.84, + "end": 6769.8, + "probability": 0.7028 + }, + { + "start": 6771.02, + "end": 6771.63, + "probability": 0.9743 + }, + { + "start": 6774.66, + "end": 6775.36, + "probability": 0.8712 + }, + { + "start": 6775.42, + "end": 6776.84, + "probability": 0.7424 + }, + { + "start": 6777.3, + "end": 6780.6, + "probability": 0.9835 + }, + { + "start": 6780.6, + "end": 6785.08, + "probability": 0.8903 + }, + { + "start": 6785.88, + "end": 6787.82, + "probability": 0.8325 + }, + { + "start": 6789.86, + "end": 6796.02, + "probability": 0.8447 + }, + { + "start": 6797.42, + "end": 6801.3, + "probability": 0.9717 + }, + { + "start": 6801.38, + "end": 6802.58, + "probability": 0.7383 + }, + { + "start": 6803.24, + "end": 6806.26, + "probability": 0.7523 + }, + { + "start": 6806.76, + "end": 6810.2, + "probability": 0.9432 + }, + { + "start": 6810.2, + "end": 6812.12, + "probability": 0.8182 + }, + { + "start": 6813.96, + "end": 6815.06, + "probability": 0.9672 + }, + { + "start": 6815.18, + "end": 6815.53, + "probability": 0.9463 + }, + { + "start": 6817.58, + "end": 6819.5, + "probability": 0.9884 + }, + { + "start": 6820.32, + "end": 6822.68, + "probability": 0.9416 + }, + { + "start": 6823.54, + "end": 6826.22, + "probability": 0.9462 + }, + { + "start": 6828.3, + "end": 6829.4, + "probability": 0.9324 + }, + { + "start": 6829.96, + "end": 6835.16, + "probability": 0.9954 + }, + { + "start": 6835.88, + "end": 6836.8, + "probability": 0.913 + }, + { + "start": 6837.6, + "end": 6839.02, + "probability": 0.6412 + }, + { + "start": 6839.04, + "end": 6840.08, + "probability": 0.7916 + }, + { + "start": 6840.72, + "end": 6841.36, + "probability": 0.7437 + }, + { + "start": 6842.48, + "end": 6845.52, + "probability": 0.9756 + }, + { + "start": 6846.18, + "end": 6849.22, + "probability": 0.0123 + }, + { + "start": 6850.72, + "end": 6853.46, + "probability": 0.4824 + }, + { + "start": 6853.58, + "end": 6854.3, + "probability": 0.4621 + }, + { + "start": 6854.32, + "end": 6855.14, + "probability": 0.8391 + }, + { + "start": 6855.16, + "end": 6856.1, + "probability": 0.665 + }, + { + "start": 6856.46, + "end": 6858.64, + "probability": 0.7453 + }, + { + "start": 6858.86, + "end": 6859.62, + "probability": 0.906 + }, + { + "start": 6860.14, + "end": 6865.12, + "probability": 0.9784 + }, + { + "start": 6865.34, + "end": 6866.48, + "probability": 0.9792 + }, + { + "start": 6867.4, + "end": 6872.22, + "probability": 0.8579 + }, + { + "start": 6872.7, + "end": 6873.98, + "probability": 0.9614 + }, + { + "start": 6874.52, + "end": 6877.44, + "probability": 0.9861 + }, + { + "start": 6877.9, + "end": 6882.06, + "probability": 0.9838 + }, + { + "start": 6885.34, + "end": 6885.34, + "probability": 0.2064 + }, + { + "start": 6885.34, + "end": 6886.76, + "probability": 0.7857 + }, + { + "start": 6887.04, + "end": 6890.28, + "probability": 0.8224 + }, + { + "start": 6890.44, + "end": 6891.15, + "probability": 0.9897 + }, + { + "start": 6891.7, + "end": 6896.38, + "probability": 0.2301 + }, + { + "start": 6896.44, + "end": 6897.22, + "probability": 0.4597 + }, + { + "start": 6897.54, + "end": 6899.22, + "probability": 0.3068 + }, + { + "start": 6900.04, + "end": 6901.22, + "probability": 0.0286 + }, + { + "start": 6901.34, + "end": 6901.74, + "probability": 0.0189 + }, + { + "start": 6902.16, + "end": 6902.52, + "probability": 0.0589 + }, + { + "start": 6902.52, + "end": 6902.52, + "probability": 0.1933 + }, + { + "start": 6902.52, + "end": 6902.52, + "probability": 0.354 + }, + { + "start": 6902.52, + "end": 6903.16, + "probability": 0.3243 + }, + { + "start": 6903.28, + "end": 6907.1, + "probability": 0.2291 + }, + { + "start": 6907.5, + "end": 6911.66, + "probability": 0.8232 + }, + { + "start": 6911.98, + "end": 6912.98, + "probability": 0.6874 + }, + { + "start": 6913.24, + "end": 6916.66, + "probability": 0.9841 + }, + { + "start": 6917.28, + "end": 6919.32, + "probability": 0.9272 + }, + { + "start": 6919.58, + "end": 6922.26, + "probability": 0.9538 + }, + { + "start": 6923.38, + "end": 6926.46, + "probability": 0.7184 + }, + { + "start": 6927.28, + "end": 6930.34, + "probability": 0.6346 + }, + { + "start": 6931.3, + "end": 6932.5, + "probability": 0.5697 + }, + { + "start": 6932.78, + "end": 6934.28, + "probability": 0.8485 + }, + { + "start": 6934.32, + "end": 6935.28, + "probability": 0.7651 + }, + { + "start": 6935.64, + "end": 6937.32, + "probability": 0.918 + }, + { + "start": 6937.88, + "end": 6942.2, + "probability": 0.9563 + }, + { + "start": 6942.7, + "end": 6947.07, + "probability": 0.7997 + }, + { + "start": 6947.96, + "end": 6949.3, + "probability": 0.6318 + }, + { + "start": 6949.36, + "end": 6953.9, + "probability": 0.9417 + }, + { + "start": 6954.06, + "end": 6955.54, + "probability": 0.9972 + }, + { + "start": 6955.7, + "end": 6961.82, + "probability": 0.9824 + }, + { + "start": 6963.48, + "end": 6964.4, + "probability": 0.9957 + }, + { + "start": 6965.0, + "end": 6967.58, + "probability": 0.8007 + }, + { + "start": 6967.72, + "end": 6969.1, + "probability": 0.8214 + }, + { + "start": 6969.58, + "end": 6971.24, + "probability": 0.9337 + }, + { + "start": 6971.86, + "end": 6973.74, + "probability": 0.937 + }, + { + "start": 6973.76, + "end": 6975.18, + "probability": 0.9802 + }, + { + "start": 6975.98, + "end": 6979.56, + "probability": 0.992 + }, + { + "start": 6979.56, + "end": 6984.0, + "probability": 0.9716 + }, + { + "start": 6984.14, + "end": 6988.54, + "probability": 0.8184 + }, + { + "start": 6988.72, + "end": 6989.74, + "probability": 0.8692 + }, + { + "start": 6990.5, + "end": 6992.76, + "probability": 0.9583 + }, + { + "start": 6992.92, + "end": 6994.5, + "probability": 0.6658 + }, + { + "start": 6995.74, + "end": 6996.58, + "probability": 0.5961 + }, + { + "start": 6996.76, + "end": 6997.14, + "probability": 0.8335 + }, + { + "start": 6997.3, + "end": 6998.74, + "probability": 0.9441 + }, + { + "start": 6998.8, + "end": 6999.64, + "probability": 0.7311 + }, + { + "start": 7000.16, + "end": 7002.22, + "probability": 0.7189 + }, + { + "start": 7002.84, + "end": 7004.58, + "probability": 0.9175 + }, + { + "start": 7005.18, + "end": 7006.14, + "probability": 0.7656 + }, + { + "start": 7006.96, + "end": 7009.08, + "probability": 0.9844 + }, + { + "start": 7009.14, + "end": 7010.22, + "probability": 0.7583 + }, + { + "start": 7010.54, + "end": 7013.9, + "probability": 0.9435 + }, + { + "start": 7014.68, + "end": 7019.54, + "probability": 0.9052 + }, + { + "start": 7020.3, + "end": 7022.26, + "probability": 0.8467 + }, + { + "start": 7023.08, + "end": 7025.12, + "probability": 0.9202 + }, + { + "start": 7025.24, + "end": 7025.74, + "probability": 0.9282 + }, + { + "start": 7025.98, + "end": 7029.44, + "probability": 0.4801 + }, + { + "start": 7030.42, + "end": 7033.96, + "probability": 0.9567 + }, + { + "start": 7034.06, + "end": 7037.88, + "probability": 0.8518 + }, + { + "start": 7038.1, + "end": 7038.98, + "probability": 0.8519 + }, + { + "start": 7039.12, + "end": 7040.92, + "probability": 0.9985 + }, + { + "start": 7041.62, + "end": 7044.32, + "probability": 0.9497 + }, + { + "start": 7044.38, + "end": 7045.9, + "probability": 0.9248 + }, + { + "start": 7046.18, + "end": 7047.86, + "probability": 0.9932 + }, + { + "start": 7049.44, + "end": 7052.3, + "probability": 0.9969 + }, + { + "start": 7052.3, + "end": 7056.2, + "probability": 0.9785 + }, + { + "start": 7057.0, + "end": 7059.48, + "probability": 0.9983 + }, + { + "start": 7059.48, + "end": 7062.7, + "probability": 0.9954 + }, + { + "start": 7063.24, + "end": 7067.3, + "probability": 0.5677 + }, + { + "start": 7068.12, + "end": 7069.68, + "probability": 0.7302 + }, + { + "start": 7069.84, + "end": 7071.2, + "probability": 0.9968 + }, + { + "start": 7071.66, + "end": 7077.18, + "probability": 0.9871 + }, + { + "start": 7077.92, + "end": 7081.6, + "probability": 0.9355 + }, + { + "start": 7082.12, + "end": 7084.74, + "probability": 0.7582 + }, + { + "start": 7086.36, + "end": 7086.76, + "probability": 0.5818 + }, + { + "start": 7086.8, + "end": 7087.62, + "probability": 0.8635 + }, + { + "start": 7087.72, + "end": 7090.44, + "probability": 0.9717 + }, + { + "start": 7090.48, + "end": 7091.1, + "probability": 0.9132 + }, + { + "start": 7092.28, + "end": 7094.32, + "probability": 0.9624 + }, + { + "start": 7094.46, + "end": 7095.6, + "probability": 0.8538 + }, + { + "start": 7095.68, + "end": 7098.76, + "probability": 0.9587 + }, + { + "start": 7099.48, + "end": 7103.14, + "probability": 0.9062 + }, + { + "start": 7103.9, + "end": 7106.44, + "probability": 0.8391 + }, + { + "start": 7106.9, + "end": 7114.38, + "probability": 0.9929 + }, + { + "start": 7115.04, + "end": 7121.98, + "probability": 0.9885 + }, + { + "start": 7124.04, + "end": 7126.26, + "probability": 0.9983 + }, + { + "start": 7126.7, + "end": 7130.76, + "probability": 0.9966 + }, + { + "start": 7132.16, + "end": 7134.42, + "probability": 0.9905 + }, + { + "start": 7135.02, + "end": 7137.42, + "probability": 0.9862 + }, + { + "start": 7137.84, + "end": 7139.38, + "probability": 0.8517 + }, + { + "start": 7139.88, + "end": 7140.24, + "probability": 0.6096 + }, + { + "start": 7141.0, + "end": 7143.5, + "probability": 0.9408 + }, + { + "start": 7145.08, + "end": 7148.46, + "probability": 0.9534 + }, + { + "start": 7148.86, + "end": 7149.86, + "probability": 0.8373 + }, + { + "start": 7149.92, + "end": 7151.32, + "probability": 0.9162 + }, + { + "start": 7151.9, + "end": 7158.1, + "probability": 0.9709 + }, + { + "start": 7160.32, + "end": 7165.72, + "probability": 0.9927 + }, + { + "start": 7166.5, + "end": 7174.4, + "probability": 0.9783 + }, + { + "start": 7174.78, + "end": 7176.24, + "probability": 0.9225 + }, + { + "start": 7177.32, + "end": 7180.6, + "probability": 0.8998 + }, + { + "start": 7181.7, + "end": 7183.44, + "probability": 0.9347 + }, + { + "start": 7184.84, + "end": 7186.4, + "probability": 0.5916 + }, + { + "start": 7186.92, + "end": 7189.02, + "probability": 0.9714 + }, + { + "start": 7189.22, + "end": 7190.64, + "probability": 0.7975 + }, + { + "start": 7190.82, + "end": 7191.84, + "probability": 0.8129 + }, + { + "start": 7192.28, + "end": 7195.66, + "probability": 0.9845 + }, + { + "start": 7196.76, + "end": 7197.46, + "probability": 0.8942 + }, + { + "start": 7197.54, + "end": 7202.9, + "probability": 0.9972 + }, + { + "start": 7203.44, + "end": 7205.34, + "probability": 0.759 + }, + { + "start": 7206.0, + "end": 7208.48, + "probability": 0.7849 + }, + { + "start": 7208.64, + "end": 7210.24, + "probability": 0.7817 + }, + { + "start": 7210.54, + "end": 7212.16, + "probability": 0.9287 + }, + { + "start": 7212.44, + "end": 7215.96, + "probability": 0.9742 + }, + { + "start": 7216.28, + "end": 7220.28, + "probability": 0.9714 + }, + { + "start": 7220.78, + "end": 7224.68, + "probability": 0.9932 + }, + { + "start": 7225.44, + "end": 7229.2, + "probability": 0.9943 + }, + { + "start": 7229.94, + "end": 7234.96, + "probability": 0.6833 + }, + { + "start": 7235.16, + "end": 7237.06, + "probability": 0.9827 + }, + { + "start": 7237.42, + "end": 7239.28, + "probability": 0.9961 + }, + { + "start": 7239.68, + "end": 7242.22, + "probability": 0.8523 + }, + { + "start": 7242.9, + "end": 7244.56, + "probability": 0.8712 + }, + { + "start": 7245.42, + "end": 7248.6, + "probability": 0.9915 + }, + { + "start": 7249.16, + "end": 7252.74, + "probability": 0.9969 + }, + { + "start": 7253.08, + "end": 7253.74, + "probability": 0.7628 + }, + { + "start": 7254.04, + "end": 7262.18, + "probability": 0.9875 + }, + { + "start": 7263.22, + "end": 7263.84, + "probability": 0.8098 + }, + { + "start": 7264.52, + "end": 7266.5, + "probability": 0.7734 + }, + { + "start": 7266.78, + "end": 7269.86, + "probability": 0.8947 + }, + { + "start": 7270.56, + "end": 7272.64, + "probability": 0.8428 + }, + { + "start": 7292.64, + "end": 7293.26, + "probability": 0.5296 + }, + { + "start": 7293.36, + "end": 7295.14, + "probability": 0.9631 + }, + { + "start": 7295.36, + "end": 7296.1, + "probability": 0.8878 + }, + { + "start": 7298.74, + "end": 7302.71, + "probability": 0.894 + }, + { + "start": 7303.58, + "end": 7306.5, + "probability": 0.7444 + }, + { + "start": 7307.26, + "end": 7308.08, + "probability": 0.5951 + }, + { + "start": 7309.54, + "end": 7312.46, + "probability": 0.949 + }, + { + "start": 7313.54, + "end": 7315.38, + "probability": 0.9953 + }, + { + "start": 7317.02, + "end": 7321.9, + "probability": 0.9973 + }, + { + "start": 7323.14, + "end": 7324.76, + "probability": 0.957 + }, + { + "start": 7324.8, + "end": 7325.06, + "probability": 0.4626 + }, + { + "start": 7325.06, + "end": 7325.06, + "probability": 0.0001 + }, + { + "start": 7325.92, + "end": 7326.62, + "probability": 0.0385 + }, + { + "start": 7326.62, + "end": 7327.04, + "probability": 0.5137 + }, + { + "start": 7327.5, + "end": 7330.4, + "probability": 0.9937 + }, + { + "start": 7331.62, + "end": 7333.36, + "probability": 0.7801 + }, + { + "start": 7333.36, + "end": 7333.6, + "probability": 0.0156 + }, + { + "start": 7333.6, + "end": 7334.84, + "probability": 0.1657 + }, + { + "start": 7335.86, + "end": 7336.98, + "probability": 0.1127 + }, + { + "start": 7337.44, + "end": 7337.44, + "probability": 0.313 + }, + { + "start": 7338.1, + "end": 7339.66, + "probability": 0.9656 + }, + { + "start": 7340.38, + "end": 7343.04, + "probability": 0.9866 + }, + { + "start": 7344.02, + "end": 7347.28, + "probability": 0.9913 + }, + { + "start": 7347.98, + "end": 7351.81, + "probability": 0.4001 + }, + { + "start": 7352.64, + "end": 7353.6, + "probability": 0.6738 + }, + { + "start": 7354.36, + "end": 7355.74, + "probability": 0.9984 + }, + { + "start": 7357.22, + "end": 7359.54, + "probability": 0.5482 + }, + { + "start": 7360.62, + "end": 7362.22, + "probability": 0.6374 + }, + { + "start": 7362.94, + "end": 7365.91, + "probability": 0.9419 + }, + { + "start": 7366.44, + "end": 7366.44, + "probability": 0.3412 + }, + { + "start": 7366.44, + "end": 7366.86, + "probability": 0.4695 + }, + { + "start": 7367.26, + "end": 7371.0, + "probability": 0.3557 + }, + { + "start": 7371.44, + "end": 7372.92, + "probability": 0.0083 + }, + { + "start": 7373.16, + "end": 7373.26, + "probability": 0.0619 + }, + { + "start": 7373.64, + "end": 7373.64, + "probability": 0.306 + }, + { + "start": 7373.76, + "end": 7376.68, + "probability": 0.9915 + }, + { + "start": 7376.74, + "end": 7377.08, + "probability": 0.1143 + }, + { + "start": 7378.36, + "end": 7379.6, + "probability": 0.8975 + }, + { + "start": 7381.14, + "end": 7383.68, + "probability": 0.9985 + }, + { + "start": 7386.82, + "end": 7390.4, + "probability": 0.9985 + }, + { + "start": 7392.28, + "end": 7393.72, + "probability": 0.9734 + }, + { + "start": 7393.76, + "end": 7394.81, + "probability": 0.9756 + }, + { + "start": 7395.76, + "end": 7397.88, + "probability": 0.9203 + }, + { + "start": 7399.18, + "end": 7401.04, + "probability": 0.9508 + }, + { + "start": 7402.5, + "end": 7404.44, + "probability": 0.953 + }, + { + "start": 7405.24, + "end": 7410.52, + "probability": 0.9816 + }, + { + "start": 7411.56, + "end": 7412.88, + "probability": 0.8361 + }, + { + "start": 7413.84, + "end": 7415.1, + "probability": 0.9518 + }, + { + "start": 7415.82, + "end": 7416.84, + "probability": 0.9016 + }, + { + "start": 7417.6, + "end": 7421.86, + "probability": 0.9916 + }, + { + "start": 7423.52, + "end": 7426.86, + "probability": 0.7413 + }, + { + "start": 7426.86, + "end": 7427.46, + "probability": 0.2036 + }, + { + "start": 7430.56, + "end": 7433.52, + "probability": 0.9231 + }, + { + "start": 7434.24, + "end": 7437.14, + "probability": 0.9863 + }, + { + "start": 7437.14, + "end": 7440.8, + "probability": 0.9988 + }, + { + "start": 7441.5, + "end": 7443.58, + "probability": 0.6853 + }, + { + "start": 7444.64, + "end": 7451.08, + "probability": 0.9941 + }, + { + "start": 7451.26, + "end": 7451.46, + "probability": 0.3765 + }, + { + "start": 7451.64, + "end": 7451.82, + "probability": 0.3047 + }, + { + "start": 7451.92, + "end": 7452.16, + "probability": 0.0449 + }, + { + "start": 7452.7, + "end": 7453.02, + "probability": 0.8273 + }, + { + "start": 7453.08, + "end": 7454.14, + "probability": 0.8801 + }, + { + "start": 7454.26, + "end": 7458.74, + "probability": 0.9964 + }, + { + "start": 7459.9, + "end": 7463.24, + "probability": 0.5311 + }, + { + "start": 7464.26, + "end": 7465.6, + "probability": 0.9731 + }, + { + "start": 7467.62, + "end": 7469.98, + "probability": 0.8785 + }, + { + "start": 7470.62, + "end": 7472.7, + "probability": 0.9564 + }, + { + "start": 7473.24, + "end": 7476.34, + "probability": 0.8323 + }, + { + "start": 7477.02, + "end": 7477.64, + "probability": 0.9013 + }, + { + "start": 7477.74, + "end": 7478.54, + "probability": 0.7335 + }, + { + "start": 7478.68, + "end": 7479.04, + "probability": 0.9231 + }, + { + "start": 7479.14, + "end": 7479.88, + "probability": 0.9279 + }, + { + "start": 7479.92, + "end": 7480.92, + "probability": 0.9607 + }, + { + "start": 7481.92, + "end": 7483.56, + "probability": 0.9838 + }, + { + "start": 7484.86, + "end": 7486.33, + "probability": 0.985 + }, + { + "start": 7486.56, + "end": 7488.34, + "probability": 0.9869 + }, + { + "start": 7488.96, + "end": 7491.24, + "probability": 0.9541 + }, + { + "start": 7492.22, + "end": 7494.28, + "probability": 0.912 + }, + { + "start": 7494.9, + "end": 7497.56, + "probability": 0.8748 + }, + { + "start": 7498.76, + "end": 7504.72, + "probability": 0.6871 + }, + { + "start": 7505.72, + "end": 7511.0, + "probability": 0.9409 + }, + { + "start": 7512.06, + "end": 7513.76, + "probability": 0.5376 + }, + { + "start": 7514.04, + "end": 7515.16, + "probability": 0.4656 + }, + { + "start": 7515.26, + "end": 7518.7, + "probability": 0.9266 + }, + { + "start": 7519.52, + "end": 7523.34, + "probability": 0.9851 + }, + { + "start": 7523.94, + "end": 7525.5, + "probability": 0.9757 + }, + { + "start": 7526.02, + "end": 7528.92, + "probability": 0.8613 + }, + { + "start": 7529.48, + "end": 7531.44, + "probability": 0.874 + }, + { + "start": 7531.96, + "end": 7533.72, + "probability": 0.998 + }, + { + "start": 7534.36, + "end": 7536.14, + "probability": 0.9828 + }, + { + "start": 7538.04, + "end": 7539.62, + "probability": 0.9025 + }, + { + "start": 7539.8, + "end": 7540.2, + "probability": 0.9092 + }, + { + "start": 7540.94, + "end": 7543.12, + "probability": 0.2217 + }, + { + "start": 7543.8, + "end": 7547.52, + "probability": 0.995 + }, + { + "start": 7548.1, + "end": 7550.86, + "probability": 0.7922 + }, + { + "start": 7551.76, + "end": 7552.62, + "probability": 0.8875 + }, + { + "start": 7553.26, + "end": 7556.54, + "probability": 0.8437 + }, + { + "start": 7557.12, + "end": 7558.64, + "probability": 0.972 + }, + { + "start": 7559.36, + "end": 7563.88, + "probability": 0.9717 + }, + { + "start": 7564.74, + "end": 7567.44, + "probability": 0.8913 + }, + { + "start": 7568.04, + "end": 7571.37, + "probability": 0.6592 + }, + { + "start": 7571.38, + "end": 7575.56, + "probability": 0.9961 + }, + { + "start": 7576.88, + "end": 7580.88, + "probability": 0.9941 + }, + { + "start": 7581.6, + "end": 7583.72, + "probability": 0.9993 + }, + { + "start": 7584.42, + "end": 7586.14, + "probability": 0.9208 + }, + { + "start": 7586.66, + "end": 7590.18, + "probability": 0.9777 + }, + { + "start": 7592.54, + "end": 7597.64, + "probability": 0.9961 + }, + { + "start": 7598.2, + "end": 7603.44, + "probability": 0.9952 + }, + { + "start": 7603.84, + "end": 7604.4, + "probability": 0.5781 + }, + { + "start": 7604.54, + "end": 7605.3, + "probability": 0.8197 + }, + { + "start": 7606.0, + "end": 7608.44, + "probability": 0.7579 + }, + { + "start": 7609.92, + "end": 7612.38, + "probability": 0.9976 + }, + { + "start": 7614.5, + "end": 7617.2, + "probability": 0.8107 + }, + { + "start": 7617.78, + "end": 7619.12, + "probability": 0.7678 + }, + { + "start": 7619.7, + "end": 7623.06, + "probability": 0.9692 + }, + { + "start": 7623.76, + "end": 7630.28, + "probability": 0.9943 + }, + { + "start": 7630.82, + "end": 7632.66, + "probability": 0.7705 + }, + { + "start": 7632.78, + "end": 7633.7, + "probability": 0.912 + }, + { + "start": 7634.18, + "end": 7635.72, + "probability": 0.9004 + }, + { + "start": 7636.18, + "end": 7641.02, + "probability": 0.9486 + }, + { + "start": 7641.08, + "end": 7641.56, + "probability": 0.7621 + }, + { + "start": 7641.82, + "end": 7642.16, + "probability": 0.684 + }, + { + "start": 7643.74, + "end": 7644.5, + "probability": 0.9243 + }, + { + "start": 7645.16, + "end": 7646.14, + "probability": 0.7172 + }, + { + "start": 7647.06, + "end": 7647.66, + "probability": 0.1647 + }, + { + "start": 7653.12, + "end": 7654.66, + "probability": 0.877 + }, + { + "start": 7655.82, + "end": 7656.94, + "probability": 0.8596 + }, + { + "start": 7657.08, + "end": 7657.44, + "probability": 0.5238 + }, + { + "start": 7657.44, + "end": 7663.16, + "probability": 0.9893 + }, + { + "start": 7663.84, + "end": 7664.58, + "probability": 0.8584 + }, + { + "start": 7664.76, + "end": 7665.8, + "probability": 0.7669 + }, + { + "start": 7665.82, + "end": 7670.42, + "probability": 0.9229 + }, + { + "start": 7670.6, + "end": 7675.52, + "probability": 0.9355 + }, + { + "start": 7676.68, + "end": 7679.78, + "probability": 0.9805 + }, + { + "start": 7680.48, + "end": 7683.98, + "probability": 0.9808 + }, + { + "start": 7683.98, + "end": 7686.36, + "probability": 0.8818 + }, + { + "start": 7686.86, + "end": 7687.14, + "probability": 0.8302 + }, + { + "start": 7687.34, + "end": 7688.12, + "probability": 0.8564 + }, + { + "start": 7688.16, + "end": 7691.48, + "probability": 0.8975 + }, + { + "start": 7692.64, + "end": 7694.42, + "probability": 0.802 + }, + { + "start": 7695.12, + "end": 7696.84, + "probability": 0.98 + }, + { + "start": 7696.9, + "end": 7699.36, + "probability": 0.9928 + }, + { + "start": 7699.98, + "end": 7705.96, + "probability": 0.9343 + }, + { + "start": 7706.12, + "end": 7706.96, + "probability": 0.6608 + }, + { + "start": 7707.14, + "end": 7707.84, + "probability": 0.903 + }, + { + "start": 7708.5, + "end": 7709.7, + "probability": 0.6608 + }, + { + "start": 7709.92, + "end": 7715.38, + "probability": 0.9601 + }, + { + "start": 7715.46, + "end": 7716.36, + "probability": 0.8159 + }, + { + "start": 7716.86, + "end": 7718.32, + "probability": 0.9922 + }, + { + "start": 7718.86, + "end": 7725.65, + "probability": 0.9114 + }, + { + "start": 7726.32, + "end": 7730.66, + "probability": 0.9456 + }, + { + "start": 7731.06, + "end": 7732.1, + "probability": 0.9634 + }, + { + "start": 7732.9, + "end": 7738.66, + "probability": 0.9465 + }, + { + "start": 7738.76, + "end": 7740.2, + "probability": 0.5739 + }, + { + "start": 7740.5, + "end": 7741.04, + "probability": 0.4034 + }, + { + "start": 7741.62, + "end": 7744.24, + "probability": 0.7638 + }, + { + "start": 7744.66, + "end": 7745.76, + "probability": 0.7859 + }, + { + "start": 7745.94, + "end": 7748.32, + "probability": 0.9938 + }, + { + "start": 7748.96, + "end": 7754.0, + "probability": 0.8501 + }, + { + "start": 7754.32, + "end": 7754.96, + "probability": 0.8747 + }, + { + "start": 7756.02, + "end": 7756.64, + "probability": 0.6025 + }, + { + "start": 7756.78, + "end": 7761.1, + "probability": 0.8163 + }, + { + "start": 7761.9, + "end": 7763.78, + "probability": 0.7397 + }, + { + "start": 7763.92, + "end": 7764.52, + "probability": 0.9493 + }, + { + "start": 7766.62, + "end": 7768.26, + "probability": 0.382 + }, + { + "start": 7770.48, + "end": 7772.74, + "probability": 0.8375 + }, + { + "start": 7773.7, + "end": 7775.93, + "probability": 0.9558 + }, + { + "start": 7776.58, + "end": 7777.24, + "probability": 0.7666 + }, + { + "start": 7777.8, + "end": 7778.7, + "probability": 0.6286 + }, + { + "start": 7779.32, + "end": 7779.72, + "probability": 0.9572 + }, + { + "start": 7781.24, + "end": 7782.12, + "probability": 0.9034 + }, + { + "start": 7782.9, + "end": 7783.44, + "probability": 0.9774 + }, + { + "start": 7783.98, + "end": 7784.62, + "probability": 0.9905 + }, + { + "start": 7785.54, + "end": 7787.44, + "probability": 0.8616 + }, + { + "start": 7788.16, + "end": 7791.16, + "probability": 0.9717 + }, + { + "start": 7792.44, + "end": 7795.02, + "probability": 0.9711 + }, + { + "start": 7795.64, + "end": 7797.88, + "probability": 0.8049 + }, + { + "start": 7799.28, + "end": 7801.82, + "probability": 0.5825 + }, + { + "start": 7804.7, + "end": 7808.16, + "probability": 0.7044 + }, + { + "start": 7808.96, + "end": 7811.8, + "probability": 0.7147 + }, + { + "start": 7812.82, + "end": 7814.6, + "probability": 0.8743 + }, + { + "start": 7816.22, + "end": 7818.26, + "probability": 0.8035 + }, + { + "start": 7820.58, + "end": 7822.98, + "probability": 0.813 + }, + { + "start": 7823.82, + "end": 7824.24, + "probability": 0.4912 + }, + { + "start": 7825.08, + "end": 7826.44, + "probability": 0.8664 + }, + { + "start": 7827.8, + "end": 7830.96, + "probability": 0.8926 + }, + { + "start": 7831.98, + "end": 7832.84, + "probability": 0.6679 + }, + { + "start": 7833.62, + "end": 7835.04, + "probability": 0.8193 + }, + { + "start": 7835.9, + "end": 7837.42, + "probability": 0.9528 + }, + { + "start": 7838.22, + "end": 7840.3, + "probability": 0.9331 + }, + { + "start": 7841.1, + "end": 7843.42, + "probability": 0.9536 + }, + { + "start": 7845.06, + "end": 7850.52, + "probability": 0.9198 + }, + { + "start": 7851.3, + "end": 7853.24, + "probability": 0.9636 + }, + { + "start": 7854.0, + "end": 7856.12, + "probability": 0.8247 + }, + { + "start": 7857.12, + "end": 7858.84, + "probability": 0.7543 + }, + { + "start": 7860.1, + "end": 7862.08, + "probability": 0.7392 + }, + { + "start": 7863.58, + "end": 7864.32, + "probability": 0.9089 + }, + { + "start": 7864.96, + "end": 7865.86, + "probability": 0.8421 + }, + { + "start": 7867.06, + "end": 7869.06, + "probability": 0.9439 + }, + { + "start": 7870.08, + "end": 7870.56, + "probability": 0.9727 + }, + { + "start": 7871.44, + "end": 7872.2, + "probability": 0.8493 + }, + { + "start": 7873.42, + "end": 7875.92, + "probability": 0.9858 + }, + { + "start": 7876.72, + "end": 7879.54, + "probability": 0.985 + }, + { + "start": 7880.48, + "end": 7880.96, + "probability": 0.9954 + }, + { + "start": 7882.5, + "end": 7883.46, + "probability": 0.852 + }, + { + "start": 7884.44, + "end": 7884.76, + "probability": 0.5579 + }, + { + "start": 7885.64, + "end": 7886.48, + "probability": 0.7303 + }, + { + "start": 7887.52, + "end": 7888.28, + "probability": 0.8906 + }, + { + "start": 7889.02, + "end": 7889.82, + "probability": 0.9668 + }, + { + "start": 7890.92, + "end": 7892.7, + "probability": 0.9101 + }, + { + "start": 7893.86, + "end": 7894.38, + "probability": 0.9567 + }, + { + "start": 7895.46, + "end": 7896.28, + "probability": 0.9625 + }, + { + "start": 7900.38, + "end": 7907.14, + "probability": 0.7876 + }, + { + "start": 7908.14, + "end": 7910.74, + "probability": 0.8805 + }, + { + "start": 7911.44, + "end": 7913.3, + "probability": 0.8033 + }, + { + "start": 7913.78, + "end": 7915.94, + "probability": 0.6485 + }, + { + "start": 7916.36, + "end": 7917.74, + "probability": 0.802 + }, + { + "start": 7918.92, + "end": 7920.66, + "probability": 0.9034 + }, + { + "start": 7922.24, + "end": 7922.64, + "probability": 0.825 + }, + { + "start": 7923.22, + "end": 7924.26, + "probability": 0.8796 + }, + { + "start": 7926.3, + "end": 7929.24, + "probability": 0.9531 + }, + { + "start": 7930.78, + "end": 7932.8, + "probability": 0.9437 + }, + { + "start": 7934.46, + "end": 7934.86, + "probability": 0.7689 + }, + { + "start": 7935.44, + "end": 7936.42, + "probability": 0.4276 + }, + { + "start": 7937.34, + "end": 7938.08, + "probability": 0.5379 + }, + { + "start": 7938.78, + "end": 7939.66, + "probability": 0.6264 + }, + { + "start": 7941.36, + "end": 7941.68, + "probability": 0.9297 + }, + { + "start": 7942.3, + "end": 7943.1, + "probability": 0.4063 + }, + { + "start": 7944.54, + "end": 7946.58, + "probability": 0.9365 + }, + { + "start": 7947.48, + "end": 7948.54, + "probability": 0.9377 + }, + { + "start": 7949.22, + "end": 7950.04, + "probability": 0.9845 + }, + { + "start": 7950.76, + "end": 7952.46, + "probability": 0.9653 + }, + { + "start": 7955.96, + "end": 7956.72, + "probability": 0.9834 + }, + { + "start": 7957.42, + "end": 7958.16, + "probability": 0.9941 + }, + { + "start": 7959.1, + "end": 7960.88, + "probability": 0.8311 + }, + { + "start": 7961.96, + "end": 7962.48, + "probability": 0.9963 + }, + { + "start": 7963.7, + "end": 7964.32, + "probability": 0.9443 + }, + { + "start": 7966.82, + "end": 7969.26, + "probability": 0.7187 + }, + { + "start": 7970.02, + "end": 7970.24, + "probability": 0.7862 + }, + { + "start": 7971.08, + "end": 7971.84, + "probability": 0.7819 + }, + { + "start": 7972.58, + "end": 7974.22, + "probability": 0.9373 + }, + { + "start": 7975.42, + "end": 7977.1, + "probability": 0.9128 + }, + { + "start": 7978.08, + "end": 7978.86, + "probability": 0.9955 + }, + { + "start": 7979.4, + "end": 7980.4, + "probability": 0.969 + }, + { + "start": 7981.44, + "end": 7983.32, + "probability": 0.981 + }, + { + "start": 7984.2, + "end": 7984.68, + "probability": 0.9411 + }, + { + "start": 7985.62, + "end": 7986.36, + "probability": 0.9663 + }, + { + "start": 7987.32, + "end": 7987.88, + "probability": 0.9917 + }, + { + "start": 7988.58, + "end": 7989.56, + "probability": 0.8276 + }, + { + "start": 7990.44, + "end": 7992.06, + "probability": 0.7686 + }, + { + "start": 7992.88, + "end": 7993.22, + "probability": 0.8701 + }, + { + "start": 7993.98, + "end": 7994.94, + "probability": 0.9492 + }, + { + "start": 7996.12, + "end": 7997.98, + "probability": 0.9492 + }, + { + "start": 7998.82, + "end": 8003.0, + "probability": 0.9569 + }, + { + "start": 8003.66, + "end": 8004.1, + "probability": 0.9813 + }, + { + "start": 8004.7, + "end": 8006.1, + "probability": 0.9874 + }, + { + "start": 8007.36, + "end": 8009.78, + "probability": 0.9112 + }, + { + "start": 8011.96, + "end": 8012.38, + "probability": 0.7875 + }, + { + "start": 8013.34, + "end": 8014.28, + "probability": 0.781 + }, + { + "start": 8015.34, + "end": 8017.3, + "probability": 0.9128 + }, + { + "start": 8019.7, + "end": 8021.26, + "probability": 0.845 + }, + { + "start": 8022.18, + "end": 8024.68, + "probability": 0.9785 + }, + { + "start": 8025.56, + "end": 8025.82, + "probability": 0.9844 + }, + { + "start": 8026.48, + "end": 8027.3, + "probability": 0.7229 + }, + { + "start": 8028.58, + "end": 8032.96, + "probability": 0.9798 + }, + { + "start": 8035.94, + "end": 8036.72, + "probability": 0.8326 + }, + { + "start": 8037.8, + "end": 8038.76, + "probability": 0.5702 + }, + { + "start": 8039.62, + "end": 8039.98, + "probability": 0.5252 + }, + { + "start": 8041.3, + "end": 8042.2, + "probability": 0.78 + }, + { + "start": 8043.36, + "end": 8045.2, + "probability": 0.9209 + }, + { + "start": 8045.74, + "end": 8046.5, + "probability": 0.8637 + }, + { + "start": 8047.2, + "end": 8047.92, + "probability": 0.7359 + }, + { + "start": 8048.92, + "end": 8050.5, + "probability": 0.9491 + }, + { + "start": 8051.5, + "end": 8053.1, + "probability": 0.9675 + }, + { + "start": 8054.44, + "end": 8054.92, + "probability": 0.9901 + }, + { + "start": 8055.66, + "end": 8057.2, + "probability": 0.8868 + }, + { + "start": 8058.52, + "end": 8061.22, + "probability": 0.8875 + }, + { + "start": 8061.92, + "end": 8064.58, + "probability": 0.7016 + }, + { + "start": 8065.26, + "end": 8066.38, + "probability": 0.882 + }, + { + "start": 8067.56, + "end": 8069.08, + "probability": 0.8936 + }, + { + "start": 8070.06, + "end": 8071.56, + "probability": 0.8806 + }, + { + "start": 8072.58, + "end": 8074.06, + "probability": 0.9583 + }, + { + "start": 8074.82, + "end": 8075.28, + "probability": 0.9937 + }, + { + "start": 8076.56, + "end": 8077.4, + "probability": 0.7416 + }, + { + "start": 8078.26, + "end": 8080.7, + "probability": 0.7319 + }, + { + "start": 8081.84, + "end": 8082.08, + "probability": 0.7631 + }, + { + "start": 8082.78, + "end": 8083.58, + "probability": 0.8088 + }, + { + "start": 8084.56, + "end": 8085.94, + "probability": 0.8411 + }, + { + "start": 8089.88, + "end": 8090.34, + "probability": 0.8183 + }, + { + "start": 8091.56, + "end": 8092.66, + "probability": 0.8086 + }, + { + "start": 8093.64, + "end": 8095.14, + "probability": 0.9344 + }, + { + "start": 8096.1, + "end": 8097.16, + "probability": 0.9787 + }, + { + "start": 8098.06, + "end": 8099.1, + "probability": 0.808 + }, + { + "start": 8100.66, + "end": 8104.16, + "probability": 0.9757 + }, + { + "start": 8105.52, + "end": 8105.92, + "probability": 0.987 + }, + { + "start": 8107.52, + "end": 8108.14, + "probability": 0.7199 + }, + { + "start": 8109.02, + "end": 8109.36, + "probability": 0.705 + }, + { + "start": 8110.16, + "end": 8110.98, + "probability": 0.8112 + }, + { + "start": 8111.96, + "end": 8113.02, + "probability": 0.9429 + }, + { + "start": 8114.7, + "end": 8115.64, + "probability": 0.8862 + }, + { + "start": 8120.4, + "end": 8120.78, + "probability": 0.7454 + }, + { + "start": 8122.1, + "end": 8122.76, + "probability": 0.7304 + }, + { + "start": 8123.62, + "end": 8125.26, + "probability": 0.8545 + }, + { + "start": 8126.16, + "end": 8126.56, + "probability": 0.9559 + }, + { + "start": 8127.48, + "end": 8128.32, + "probability": 0.9216 + }, + { + "start": 8129.66, + "end": 8130.3, + "probability": 0.9715 + }, + { + "start": 8131.44, + "end": 8132.32, + "probability": 0.9246 + }, + { + "start": 8134.3, + "end": 8134.74, + "probability": 0.9793 + }, + { + "start": 8135.68, + "end": 8136.52, + "probability": 0.9264 + }, + { + "start": 8137.48, + "end": 8137.84, + "probability": 0.9818 + }, + { + "start": 8138.76, + "end": 8139.5, + "probability": 0.7987 + }, + { + "start": 8141.58, + "end": 8141.96, + "probability": 0.9901 + }, + { + "start": 8143.24, + "end": 8144.16, + "probability": 0.8975 + }, + { + "start": 8145.9, + "end": 8147.98, + "probability": 0.6202 + }, + { + "start": 8149.24, + "end": 8149.64, + "probability": 0.8098 + }, + { + "start": 8150.4, + "end": 8151.16, + "probability": 0.9218 + }, + { + "start": 8152.16, + "end": 8153.9, + "probability": 0.8431 + }, + { + "start": 8155.18, + "end": 8156.82, + "probability": 0.98 + }, + { + "start": 8160.82, + "end": 8161.0, + "probability": 0.5633 + }, + { + "start": 8161.62, + "end": 8162.38, + "probability": 0.7695 + }, + { + "start": 8163.2, + "end": 8164.82, + "probability": 0.8195 + }, + { + "start": 8165.98, + "end": 8166.44, + "probability": 0.8369 + }, + { + "start": 8167.52, + "end": 8168.26, + "probability": 0.9015 + }, + { + "start": 8169.76, + "end": 8171.74, + "probability": 0.7064 + }, + { + "start": 8172.94, + "end": 8175.4, + "probability": 0.3256 + }, + { + "start": 8176.14, + "end": 8177.1, + "probability": 0.4142 + }, + { + "start": 8180.72, + "end": 8183.0, + "probability": 0.4438 + }, + { + "start": 8183.84, + "end": 8184.48, + "probability": 0.9435 + }, + { + "start": 8185.0, + "end": 8185.94, + "probability": 0.6407 + }, + { + "start": 8186.58, + "end": 8188.6, + "probability": 0.9717 + }, + { + "start": 8189.04, + "end": 8190.54, + "probability": 0.976 + }, + { + "start": 8191.22, + "end": 8192.78, + "probability": 0.9681 + }, + { + "start": 8193.7, + "end": 8195.36, + "probability": 0.6159 + }, + { + "start": 8196.32, + "end": 8197.76, + "probability": 0.5881 + }, + { + "start": 8199.08, + "end": 8199.92, + "probability": 0.7668 + }, + { + "start": 8200.74, + "end": 8202.3, + "probability": 0.8684 + }, + { + "start": 8203.08, + "end": 8204.62, + "probability": 0.9519 + }, + { + "start": 8206.38, + "end": 8208.92, + "probability": 0.9183 + }, + { + "start": 8210.1, + "end": 8212.66, + "probability": 0.9499 + }, + { + "start": 8213.24, + "end": 8214.78, + "probability": 0.5299 + }, + { + "start": 8215.62, + "end": 8217.98, + "probability": 0.8553 + }, + { + "start": 8220.54, + "end": 8223.94, + "probability": 0.4065 + }, + { + "start": 8224.58, + "end": 8226.2, + "probability": 0.8726 + }, + { + "start": 8228.18, + "end": 8229.96, + "probability": 0.7567 + }, + { + "start": 8231.42, + "end": 8233.08, + "probability": 0.9709 + }, + { + "start": 8234.16, + "end": 8235.98, + "probability": 0.9714 + }, + { + "start": 8237.02, + "end": 8238.66, + "probability": 0.9884 + }, + { + "start": 8239.58, + "end": 8240.22, + "probability": 0.9818 + }, + { + "start": 8241.04, + "end": 8241.82, + "probability": 0.9115 + }, + { + "start": 8242.96, + "end": 8244.3, + "probability": 0.6642 + }, + { + "start": 8245.56, + "end": 8246.44, + "probability": 0.7661 + }, + { + "start": 8247.34, + "end": 8248.16, + "probability": 0.8956 + }, + { + "start": 8249.26, + "end": 8250.24, + "probability": 0.7643 + }, + { + "start": 8251.08, + "end": 8253.1, + "probability": 0.7595 + }, + { + "start": 8253.66, + "end": 8255.2, + "probability": 0.9758 + }, + { + "start": 8256.52, + "end": 8258.92, + "probability": 0.9769 + }, + { + "start": 8260.12, + "end": 8262.14, + "probability": 0.9632 + }, + { + "start": 8262.92, + "end": 8265.02, + "probability": 0.9402 + }, + { + "start": 8266.36, + "end": 8266.68, + "probability": 0.726 + }, + { + "start": 8268.24, + "end": 8270.52, + "probability": 0.812 + }, + { + "start": 8271.62, + "end": 8273.48, + "probability": 0.8044 + }, + { + "start": 8275.34, + "end": 8275.8, + "probability": 0.8955 + }, + { + "start": 8277.08, + "end": 8277.82, + "probability": 0.6858 + }, + { + "start": 8278.96, + "end": 8279.78, + "probability": 0.9807 + }, + { + "start": 8280.72, + "end": 8281.84, + "probability": 0.8384 + }, + { + "start": 8283.14, + "end": 8284.94, + "probability": 0.9308 + }, + { + "start": 8285.5, + "end": 8287.12, + "probability": 0.9591 + }, + { + "start": 8288.14, + "end": 8290.6, + "probability": 0.8984 + }, + { + "start": 8291.58, + "end": 8295.34, + "probability": 0.8787 + }, + { + "start": 8296.88, + "end": 8297.3, + "probability": 0.5012 + }, + { + "start": 8298.34, + "end": 8299.16, + "probability": 0.5702 + }, + { + "start": 8300.32, + "end": 8302.74, + "probability": 0.9577 + }, + { + "start": 8304.14, + "end": 8305.98, + "probability": 0.9766 + }, + { + "start": 8307.1, + "end": 8309.22, + "probability": 0.9759 + }, + { + "start": 8310.04, + "end": 8311.8, + "probability": 0.8388 + }, + { + "start": 8312.86, + "end": 8314.4, + "probability": 0.7264 + }, + { + "start": 8316.6, + "end": 8317.06, + "probability": 0.8719 + }, + { + "start": 8317.96, + "end": 8318.86, + "probability": 0.8517 + }, + { + "start": 8319.64, + "end": 8321.82, + "probability": 0.8937 + }, + { + "start": 8322.46, + "end": 8325.8, + "probability": 0.8724 + }, + { + "start": 8327.58, + "end": 8328.66, + "probability": 0.9476 + }, + { + "start": 8329.66, + "end": 8330.58, + "probability": 0.8769 + }, + { + "start": 8332.26, + "end": 8334.48, + "probability": 0.9655 + }, + { + "start": 8335.52, + "end": 8337.46, + "probability": 0.9436 + }, + { + "start": 8338.5, + "end": 8339.12, + "probability": 0.6469 + }, + { + "start": 8339.82, + "end": 8340.8, + "probability": 0.6919 + }, + { + "start": 8341.54, + "end": 8344.62, + "probability": 0.9469 + }, + { + "start": 8345.3, + "end": 8346.06, + "probability": 0.9627 + }, + { + "start": 8346.92, + "end": 8349.08, + "probability": 0.9735 + }, + { + "start": 8350.28, + "end": 8351.86, + "probability": 0.9843 + }, + { + "start": 8352.6, + "end": 8354.0, + "probability": 0.5477 + }, + { + "start": 8355.0, + "end": 8356.16, + "probability": 0.8361 + }, + { + "start": 8357.22, + "end": 8358.02, + "probability": 0.7887 + }, + { + "start": 8358.78, + "end": 8360.34, + "probability": 0.9239 + }, + { + "start": 8361.56, + "end": 8362.86, + "probability": 0.6906 + }, + { + "start": 8363.88, + "end": 8369.42, + "probability": 0.9542 + }, + { + "start": 8369.84, + "end": 8371.72, + "probability": 0.0017 + }, + { + "start": 8373.32, + "end": 8376.32, + "probability": 0.5782 + }, + { + "start": 8378.72, + "end": 8379.1, + "probability": 0.0108 + }, + { + "start": 8382.8, + "end": 8384.2, + "probability": 0.0348 + }, + { + "start": 8386.08, + "end": 8386.92, + "probability": 0.0225 + }, + { + "start": 8406.62, + "end": 8407.28, + "probability": 0.191 + }, + { + "start": 8407.34, + "end": 8412.38, + "probability": 0.7881 + }, + { + "start": 8412.8, + "end": 8413.34, + "probability": 0.7421 + }, + { + "start": 8419.2, + "end": 8421.98, + "probability": 0.3647 + }, + { + "start": 8425.8, + "end": 8428.74, + "probability": 0.0848 + }, + { + "start": 8450.3, + "end": 8451.96, + "probability": 0.1303 + }, + { + "start": 8454.72, + "end": 8456.04, + "probability": 0.7129 + }, + { + "start": 8456.14, + "end": 8457.4, + "probability": 0.7521 + }, + { + "start": 8457.48, + "end": 8459.96, + "probability": 0.941 + }, + { + "start": 8459.96, + "end": 8466.78, + "probability": 0.1884 + }, + { + "start": 8484.16, + "end": 8486.5, + "probability": 0.0322 + }, + { + "start": 8489.0, + "end": 8489.0, + "probability": 0.0 + }, + { + "start": 8489.0, + "end": 8489.0, + "probability": 0.0 + }, + { + "start": 8489.0, + "end": 8489.0, + "probability": 0.0 + }, + { + "start": 8489.14, + "end": 8489.4, + "probability": 0.0794 + }, + { + "start": 8489.4, + "end": 8489.4, + "probability": 0.043 + }, + { + "start": 8489.4, + "end": 8489.4, + "probability": 0.1859 + }, + { + "start": 8489.4, + "end": 8490.77, + "probability": 0.7698 + }, + { + "start": 8491.78, + "end": 8494.5, + "probability": 0.8623 + }, + { + "start": 8495.74, + "end": 8497.36, + "probability": 0.7108 + }, + { + "start": 8498.22, + "end": 8499.88, + "probability": 0.178 + }, + { + "start": 8500.24, + "end": 8504.02, + "probability": 0.9658 + }, + { + "start": 8504.48, + "end": 8506.2, + "probability": 0.9544 + }, + { + "start": 8508.18, + "end": 8509.02, + "probability": 0.9235 + }, + { + "start": 8512.62, + "end": 8514.78, + "probability": 0.7828 + }, + { + "start": 8515.76, + "end": 8518.12, + "probability": 0.959 + }, + { + "start": 8518.12, + "end": 8521.38, + "probability": 0.9124 + }, + { + "start": 8523.98, + "end": 8524.6, + "probability": 0.7277 + }, + { + "start": 8525.22, + "end": 8526.84, + "probability": 0.9757 + }, + { + "start": 8527.22, + "end": 8531.84, + "probability": 0.9846 + }, + { + "start": 8533.2, + "end": 8534.36, + "probability": 0.3447 + }, + { + "start": 8534.48, + "end": 8536.12, + "probability": 0.7146 + }, + { + "start": 8536.94, + "end": 8540.98, + "probability": 0.9746 + }, + { + "start": 8541.08, + "end": 8542.74, + "probability": 0.9949 + }, + { + "start": 8543.24, + "end": 8544.44, + "probability": 0.9558 + }, + { + "start": 8545.16, + "end": 8549.52, + "probability": 0.9757 + }, + { + "start": 8549.84, + "end": 8551.14, + "probability": 0.9868 + }, + { + "start": 8552.04, + "end": 8555.12, + "probability": 0.9833 + }, + { + "start": 8555.12, + "end": 8559.24, + "probability": 0.998 + }, + { + "start": 8560.5, + "end": 8563.74, + "probability": 0.9906 + }, + { + "start": 8563.88, + "end": 8565.26, + "probability": 0.9888 + }, + { + "start": 8566.44, + "end": 8567.16, + "probability": 0.9927 + }, + { + "start": 8568.1, + "end": 8569.3, + "probability": 0.9931 + }, + { + "start": 8569.76, + "end": 8570.56, + "probability": 0.6444 + }, + { + "start": 8570.7, + "end": 8571.6, + "probability": 0.942 + }, + { + "start": 8572.58, + "end": 8574.5, + "probability": 0.992 + }, + { + "start": 8575.62, + "end": 8580.0, + "probability": 0.896 + }, + { + "start": 8581.16, + "end": 8583.02, + "probability": 0.9631 + }, + { + "start": 8584.8, + "end": 8586.9, + "probability": 0.9824 + }, + { + "start": 8587.72, + "end": 8588.38, + "probability": 0.9561 + }, + { + "start": 8589.16, + "end": 8589.78, + "probability": 0.9218 + }, + { + "start": 8589.9, + "end": 8591.08, + "probability": 0.9815 + }, + { + "start": 8591.12, + "end": 8592.4, + "probability": 0.9636 + }, + { + "start": 8592.94, + "end": 8594.6, + "probability": 0.864 + }, + { + "start": 8595.26, + "end": 8596.76, + "probability": 0.8952 + }, + { + "start": 8596.96, + "end": 8598.27, + "probability": 0.8591 + }, + { + "start": 8599.08, + "end": 8602.26, + "probability": 0.9751 + }, + { + "start": 8602.5, + "end": 8603.92, + "probability": 0.8994 + }, + { + "start": 8604.82, + "end": 8605.46, + "probability": 0.7863 + }, + { + "start": 8606.12, + "end": 8609.52, + "probability": 0.7618 + }, + { + "start": 8610.3, + "end": 8610.92, + "probability": 0.8464 + }, + { + "start": 8612.3, + "end": 8612.86, + "probability": 0.7276 + }, + { + "start": 8613.4, + "end": 8614.76, + "probability": 0.8185 + }, + { + "start": 8615.14, + "end": 8615.74, + "probability": 0.7876 + }, + { + "start": 8615.9, + "end": 8616.92, + "probability": 0.9063 + }, + { + "start": 8617.36, + "end": 8618.44, + "probability": 0.4792 + }, + { + "start": 8618.66, + "end": 8620.9, + "probability": 0.5018 + }, + { + "start": 8621.86, + "end": 8627.02, + "probability": 0.9914 + }, + { + "start": 8627.72, + "end": 8630.0, + "probability": 0.3795 + }, + { + "start": 8630.94, + "end": 8633.28, + "probability": 0.8735 + }, + { + "start": 8634.36, + "end": 8638.0, + "probability": 0.7236 + }, + { + "start": 8638.96, + "end": 8642.1, + "probability": 0.9529 + }, + { + "start": 8642.84, + "end": 8643.72, + "probability": 0.8944 + }, + { + "start": 8644.56, + "end": 8645.84, + "probability": 0.5242 + }, + { + "start": 8647.08, + "end": 8648.9, + "probability": 0.9277 + }, + { + "start": 8649.46, + "end": 8651.08, + "probability": 0.6261 + }, + { + "start": 8651.72, + "end": 8654.36, + "probability": 0.9636 + }, + { + "start": 8655.44, + "end": 8657.64, + "probability": 0.7976 + }, + { + "start": 8658.82, + "end": 8661.16, + "probability": 0.9514 + }, + { + "start": 8661.32, + "end": 8662.38, + "probability": 0.879 + }, + { + "start": 8662.62, + "end": 8663.7, + "probability": 0.8958 + }, + { + "start": 8663.98, + "end": 8667.66, + "probability": 0.942 + }, + { + "start": 8668.22, + "end": 8669.88, + "probability": 0.9238 + }, + { + "start": 8670.97, + "end": 8674.16, + "probability": 0.9301 + }, + { + "start": 8674.72, + "end": 8676.16, + "probability": 0.9383 + }, + { + "start": 8676.74, + "end": 8677.42, + "probability": 0.9041 + }, + { + "start": 8678.78, + "end": 8679.96, + "probability": 0.7793 + }, + { + "start": 8680.9, + "end": 8683.34, + "probability": 0.7054 + }, + { + "start": 8683.92, + "end": 8685.83, + "probability": 0.9203 + }, + { + "start": 8686.98, + "end": 8689.66, + "probability": 0.9819 + }, + { + "start": 8690.46, + "end": 8692.62, + "probability": 0.9989 + }, + { + "start": 8705.6, + "end": 8705.84, + "probability": 0.1496 + }, + { + "start": 8705.84, + "end": 8705.84, + "probability": 0.06 + }, + { + "start": 8705.84, + "end": 8705.84, + "probability": 0.052 + }, + { + "start": 8705.84, + "end": 8705.84, + "probability": 0.098 + }, + { + "start": 8705.84, + "end": 8710.22, + "probability": 0.6873 + }, + { + "start": 8710.76, + "end": 8712.3, + "probability": 0.9027 + }, + { + "start": 8713.4, + "end": 8714.48, + "probability": 0.8569 + }, + { + "start": 8714.7, + "end": 8715.82, + "probability": 0.8719 + }, + { + "start": 8716.14, + "end": 8717.34, + "probability": 0.9111 + }, + { + "start": 8717.46, + "end": 8718.26, + "probability": 0.9229 + }, + { + "start": 8719.12, + "end": 8719.82, + "probability": 0.6089 + }, + { + "start": 8720.66, + "end": 8726.0, + "probability": 0.7912 + }, + { + "start": 8726.24, + "end": 8727.08, + "probability": 0.5486 + }, + { + "start": 8728.06, + "end": 8731.1, + "probability": 0.9607 + }, + { + "start": 8731.96, + "end": 8733.06, + "probability": 0.7699 + }, + { + "start": 8734.66, + "end": 8735.18, + "probability": 0.7201 + }, + { + "start": 8736.22, + "end": 8738.46, + "probability": 0.8268 + }, + { + "start": 8739.2, + "end": 8741.18, + "probability": 0.8583 + }, + { + "start": 8742.06, + "end": 8742.8, + "probability": 0.6942 + }, + { + "start": 8743.78, + "end": 8746.88, + "probability": 0.9526 + }, + { + "start": 8747.92, + "end": 8748.7, + "probability": 0.9707 + }, + { + "start": 8749.56, + "end": 8751.38, + "probability": 0.8257 + }, + { + "start": 8752.06, + "end": 8753.12, + "probability": 0.4448 + }, + { + "start": 8753.64, + "end": 8755.34, + "probability": 0.9622 + }, + { + "start": 8756.22, + "end": 8757.02, + "probability": 0.9899 + }, + { + "start": 8757.66, + "end": 8757.9, + "probability": 0.8844 + }, + { + "start": 8759.38, + "end": 8760.44, + "probability": 0.6868 + }, + { + "start": 8760.54, + "end": 8762.2, + "probability": 0.9116 + }, + { + "start": 8762.3, + "end": 8763.38, + "probability": 0.8246 + }, + { + "start": 8763.8, + "end": 8766.02, + "probability": 0.6737 + }, + { + "start": 8767.02, + "end": 8767.24, + "probability": 0.7152 + }, + { + "start": 8767.32, + "end": 8767.96, + "probability": 0.9439 + }, + { + "start": 8768.66, + "end": 8770.88, + "probability": 0.9428 + }, + { + "start": 8771.78, + "end": 8772.86, + "probability": 0.5969 + }, + { + "start": 8772.94, + "end": 8773.96, + "probability": 0.541 + }, + { + "start": 8774.74, + "end": 8776.5, + "probability": 0.9604 + }, + { + "start": 8776.78, + "end": 8777.8, + "probability": 0.9336 + }, + { + "start": 8778.16, + "end": 8779.18, + "probability": 0.996 + }, + { + "start": 8780.34, + "end": 8781.94, + "probability": 0.9355 + }, + { + "start": 8783.22, + "end": 8785.32, + "probability": 0.3436 + }, + { + "start": 8785.34, + "end": 8787.16, + "probability": 0.7526 + }, + { + "start": 8787.86, + "end": 8789.82, + "probability": 0.9428 + }, + { + "start": 8790.48, + "end": 8795.54, + "probability": 0.9647 + }, + { + "start": 8796.14, + "end": 8797.66, + "probability": 0.9856 + }, + { + "start": 8798.76, + "end": 8801.06, + "probability": 0.8339 + }, + { + "start": 8801.7, + "end": 8803.08, + "probability": 0.9895 + }, + { + "start": 8803.38, + "end": 8805.94, + "probability": 0.989 + }, + { + "start": 8806.62, + "end": 8809.24, + "probability": 0.9753 + }, + { + "start": 8810.02, + "end": 8811.04, + "probability": 0.8989 + }, + { + "start": 8812.24, + "end": 8813.62, + "probability": 0.9682 + }, + { + "start": 8813.74, + "end": 8816.92, + "probability": 0.9934 + }, + { + "start": 8816.92, + "end": 8821.04, + "probability": 0.9971 + }, + { + "start": 8821.72, + "end": 8823.6, + "probability": 0.511 + }, + { + "start": 8824.16, + "end": 8825.6, + "probability": 0.9321 + }, + { + "start": 8826.12, + "end": 8827.18, + "probability": 0.8867 + }, + { + "start": 8827.84, + "end": 8829.8, + "probability": 0.4463 + }, + { + "start": 8830.68, + "end": 8831.14, + "probability": 0.7573 + }, + { + "start": 8831.24, + "end": 8833.12, + "probability": 0.9878 + }, + { + "start": 8833.36, + "end": 8835.54, + "probability": 0.8138 + }, + { + "start": 8836.12, + "end": 8837.4, + "probability": 0.9467 + }, + { + "start": 8838.08, + "end": 8840.36, + "probability": 0.9155 + }, + { + "start": 8840.36, + "end": 8843.64, + "probability": 0.9368 + }, + { + "start": 8844.3, + "end": 8845.38, + "probability": 0.7066 + }, + { + "start": 8845.94, + "end": 8848.1, + "probability": 0.9002 + }, + { + "start": 8848.74, + "end": 8850.68, + "probability": 0.9852 + }, + { + "start": 8851.44, + "end": 8852.76, + "probability": 0.9766 + }, + { + "start": 8853.34, + "end": 8854.74, + "probability": 0.8515 + }, + { + "start": 8855.32, + "end": 8857.56, + "probability": 0.9735 + }, + { + "start": 8858.22, + "end": 8859.32, + "probability": 0.6394 + }, + { + "start": 8860.16, + "end": 8862.88, + "probability": 0.8332 + }, + { + "start": 8863.54, + "end": 8866.86, + "probability": 0.8313 + }, + { + "start": 8867.64, + "end": 8868.86, + "probability": 0.9834 + }, + { + "start": 8869.12, + "end": 8872.86, + "probability": 0.9244 + }, + { + "start": 8873.5, + "end": 8874.26, + "probability": 0.4873 + }, + { + "start": 8874.74, + "end": 8875.86, + "probability": 0.7862 + }, + { + "start": 8876.78, + "end": 8878.34, + "probability": 0.7402 + }, + { + "start": 8879.26, + "end": 8881.3, + "probability": 0.915 + }, + { + "start": 8881.44, + "end": 8882.18, + "probability": 0.939 + }, + { + "start": 8884.84, + "end": 8885.0, + "probability": 0.5937 + }, + { + "start": 8885.92, + "end": 8886.34, + "probability": 0.0283 + }, + { + "start": 8886.34, + "end": 8887.07, + "probability": 0.2078 + }, + { + "start": 8888.04, + "end": 8889.42, + "probability": 0.9614 + }, + { + "start": 8890.5, + "end": 8891.1, + "probability": 0.8745 + }, + { + "start": 8891.52, + "end": 8895.71, + "probability": 0.959 + }, + { + "start": 8896.38, + "end": 8896.7, + "probability": 0.7688 + }, + { + "start": 8897.26, + "end": 8898.3, + "probability": 0.9296 + }, + { + "start": 8898.38, + "end": 8899.32, + "probability": 0.8965 + }, + { + "start": 8899.58, + "end": 8900.2, + "probability": 0.8636 + }, + { + "start": 8900.5, + "end": 8901.18, + "probability": 0.92 + }, + { + "start": 8901.26, + "end": 8903.26, + "probability": 0.9713 + }, + { + "start": 8903.36, + "end": 8904.02, + "probability": 0.8651 + }, + { + "start": 8904.34, + "end": 8905.1, + "probability": 0.8791 + }, + { + "start": 8905.46, + "end": 8905.98, + "probability": 0.4987 + }, + { + "start": 8906.36, + "end": 8910.24, + "probability": 0.9834 + }, + { + "start": 8910.4, + "end": 8912.3, + "probability": 0.9858 + }, + { + "start": 8913.08, + "end": 8917.18, + "probability": 0.9753 + }, + { + "start": 8917.76, + "end": 8918.48, + "probability": 0.9702 + }, + { + "start": 8918.84, + "end": 8920.52, + "probability": 0.9017 + }, + { + "start": 8921.28, + "end": 8926.48, + "probability": 0.997 + }, + { + "start": 8927.14, + "end": 8929.14, + "probability": 0.9971 + }, + { + "start": 8929.74, + "end": 8930.72, + "probability": 0.9092 + }, + { + "start": 8931.5, + "end": 8934.68, + "probability": 0.9946 + }, + { + "start": 8935.14, + "end": 8935.88, + "probability": 0.936 + }, + { + "start": 8936.32, + "end": 8936.98, + "probability": 0.7059 + }, + { + "start": 8937.84, + "end": 8938.96, + "probability": 0.9907 + }, + { + "start": 8939.66, + "end": 8941.26, + "probability": 0.489 + }, + { + "start": 8941.8, + "end": 8941.8, + "probability": 0.2519 + }, + { + "start": 8942.06, + "end": 8945.72, + "probability": 0.9884 + }, + { + "start": 8946.62, + "end": 8949.34, + "probability": 0.8238 + }, + { + "start": 8949.9, + "end": 8950.64, + "probability": 0.9722 + }, + { + "start": 8951.32, + "end": 8952.66, + "probability": 0.8248 + }, + { + "start": 8953.46, + "end": 8954.44, + "probability": 0.5317 + }, + { + "start": 8954.92, + "end": 8959.7, + "probability": 0.9939 + }, + { + "start": 8960.6, + "end": 8961.76, + "probability": 0.9956 + }, + { + "start": 8961.88, + "end": 8963.18, + "probability": 0.9978 + }, + { + "start": 8963.78, + "end": 8964.82, + "probability": 0.9717 + }, + { + "start": 8964.9, + "end": 8967.48, + "probability": 0.8099 + }, + { + "start": 8968.16, + "end": 8969.48, + "probability": 0.7036 + }, + { + "start": 8969.58, + "end": 8972.32, + "probability": 0.8891 + }, + { + "start": 8973.18, + "end": 8976.19, + "probability": 0.9858 + }, + { + "start": 8976.84, + "end": 8978.14, + "probability": 0.7508 + }, + { + "start": 8979.02, + "end": 8982.44, + "probability": 0.995 + }, + { + "start": 8982.7, + "end": 8982.7, + "probability": 0.0727 + }, + { + "start": 8983.26, + "end": 8985.72, + "probability": 0.6887 + }, + { + "start": 8986.86, + "end": 8989.14, + "probability": 0.856 + }, + { + "start": 8990.0, + "end": 8991.66, + "probability": 0.9546 + }, + { + "start": 8992.16, + "end": 8995.02, + "probability": 0.9836 + }, + { + "start": 8995.7, + "end": 8996.94, + "probability": 0.6283 + }, + { + "start": 8997.36, + "end": 8998.26, + "probability": 0.9437 + }, + { + "start": 8999.14, + "end": 9001.14, + "probability": 0.9463 + }, + { + "start": 9001.84, + "end": 9002.63, + "probability": 0.9648 + }, + { + "start": 9003.22, + "end": 9003.98, + "probability": 0.9868 + }, + { + "start": 9004.46, + "end": 9007.02, + "probability": 0.9922 + }, + { + "start": 9007.14, + "end": 9008.18, + "probability": 0.7251 + }, + { + "start": 9008.58, + "end": 9010.52, + "probability": 0.9572 + }, + { + "start": 9011.28, + "end": 9014.6, + "probability": 0.9987 + }, + { + "start": 9015.12, + "end": 9017.8, + "probability": 0.9972 + }, + { + "start": 9018.56, + "end": 9019.72, + "probability": 0.7515 + }, + { + "start": 9019.88, + "end": 9022.52, + "probability": 0.9629 + }, + { + "start": 9022.84, + "end": 9023.66, + "probability": 0.8142 + }, + { + "start": 9024.16, + "end": 9026.34, + "probability": 0.9967 + }, + { + "start": 9027.02, + "end": 9028.2, + "probability": 0.9996 + }, + { + "start": 9029.02, + "end": 9030.26, + "probability": 0.7087 + }, + { + "start": 9030.72, + "end": 9032.92, + "probability": 0.8976 + }, + { + "start": 9033.54, + "end": 9034.68, + "probability": 0.803 + }, + { + "start": 9034.74, + "end": 9036.28, + "probability": 0.9588 + }, + { + "start": 9036.74, + "end": 9037.82, + "probability": 0.9791 + }, + { + "start": 9038.32, + "end": 9040.38, + "probability": 0.9816 + }, + { + "start": 9040.98, + "end": 9041.66, + "probability": 0.4853 + }, + { + "start": 9042.24, + "end": 9043.2, + "probability": 0.4491 + }, + { + "start": 9043.94, + "end": 9044.74, + "probability": 0.5206 + }, + { + "start": 9045.4, + "end": 9047.66, + "probability": 0.6532 + }, + { + "start": 9048.38, + "end": 9049.32, + "probability": 0.9095 + }, + { + "start": 9049.88, + "end": 9051.1, + "probability": 0.8099 + }, + { + "start": 9051.84, + "end": 9052.42, + "probability": 0.4579 + }, + { + "start": 9053.0, + "end": 9056.0, + "probability": 0.6802 + }, + { + "start": 9056.6, + "end": 9058.7, + "probability": 0.9434 + }, + { + "start": 9059.92, + "end": 9061.68, + "probability": 0.9268 + }, + { + "start": 9063.0, + "end": 9064.22, + "probability": 0.8362 + }, + { + "start": 9064.52, + "end": 9066.48, + "probability": 0.96 + }, + { + "start": 9066.96, + "end": 9067.96, + "probability": 0.9727 + }, + { + "start": 9068.22, + "end": 9069.66, + "probability": 0.9654 + }, + { + "start": 9070.48, + "end": 9071.26, + "probability": 0.9717 + }, + { + "start": 9071.98, + "end": 9073.0, + "probability": 0.9684 + }, + { + "start": 9073.74, + "end": 9075.06, + "probability": 0.8545 + }, + { + "start": 9075.74, + "end": 9078.62, + "probability": 0.8938 + }, + { + "start": 9079.26, + "end": 9081.6, + "probability": 0.9885 + }, + { + "start": 9082.2, + "end": 9083.64, + "probability": 0.9878 + }, + { + "start": 9083.7, + "end": 9084.96, + "probability": 0.9985 + }, + { + "start": 9085.54, + "end": 9086.5, + "probability": 0.8757 + }, + { + "start": 9086.9, + "end": 9087.62, + "probability": 0.8647 + }, + { + "start": 9087.84, + "end": 9088.68, + "probability": 0.9126 + }, + { + "start": 9089.32, + "end": 9090.4, + "probability": 0.825 + }, + { + "start": 9091.02, + "end": 9092.78, + "probability": 0.9905 + }, + { + "start": 9093.14, + "end": 9094.36, + "probability": 0.9664 + }, + { + "start": 9094.78, + "end": 9095.42, + "probability": 0.8654 + }, + { + "start": 9095.74, + "end": 9097.04, + "probability": 0.6932 + }, + { + "start": 9097.6, + "end": 9099.32, + "probability": 0.8545 + }, + { + "start": 9099.98, + "end": 9101.06, + "probability": 0.9966 + }, + { + "start": 9101.5, + "end": 9102.56, + "probability": 0.8638 + }, + { + "start": 9103.48, + "end": 9105.22, + "probability": 0.9621 + }, + { + "start": 9105.52, + "end": 9106.46, + "probability": 0.9338 + }, + { + "start": 9107.06, + "end": 9107.9, + "probability": 0.7114 + }, + { + "start": 9108.52, + "end": 9110.22, + "probability": 0.7465 + }, + { + "start": 9110.78, + "end": 9111.8, + "probability": 0.9985 + }, + { + "start": 9112.62, + "end": 9113.72, + "probability": 0.5837 + }, + { + "start": 9114.8, + "end": 9116.72, + "probability": 0.9675 + }, + { + "start": 9117.48, + "end": 9118.64, + "probability": 0.9087 + }, + { + "start": 9119.32, + "end": 9119.96, + "probability": 0.7788 + }, + { + "start": 9120.64, + "end": 9122.62, + "probability": 0.697 + }, + { + "start": 9123.96, + "end": 9126.56, + "probability": 0.6267 + }, + { + "start": 9127.32, + "end": 9128.62, + "probability": 0.7834 + }, + { + "start": 9130.12, + "end": 9133.04, + "probability": 0.9437 + }, + { + "start": 9133.66, + "end": 9134.38, + "probability": 0.6962 + }, + { + "start": 9134.6, + "end": 9135.22, + "probability": 0.5638 + }, + { + "start": 9135.34, + "end": 9137.33, + "probability": 0.6796 + }, + { + "start": 9137.84, + "end": 9138.82, + "probability": 0.8184 + }, + { + "start": 9139.7, + "end": 9140.82, + "probability": 0.7414 + }, + { + "start": 9142.16, + "end": 9144.64, + "probability": 0.9149 + }, + { + "start": 9145.22, + "end": 9146.64, + "probability": 0.9909 + }, + { + "start": 9147.34, + "end": 9149.0, + "probability": 0.958 + }, + { + "start": 9149.6, + "end": 9150.92, + "probability": 0.9906 + }, + { + "start": 9151.54, + "end": 9152.1, + "probability": 0.7686 + }, + { + "start": 9152.12, + "end": 9153.68, + "probability": 0.9397 + }, + { + "start": 9153.8, + "end": 9154.38, + "probability": 0.9101 + }, + { + "start": 9154.46, + "end": 9155.06, + "probability": 0.9151 + }, + { + "start": 9155.32, + "end": 9156.92, + "probability": 0.9561 + }, + { + "start": 9157.34, + "end": 9159.54, + "probability": 0.9762 + }, + { + "start": 9160.04, + "end": 9161.16, + "probability": 0.8594 + }, + { + "start": 9161.46, + "end": 9162.44, + "probability": 0.9724 + }, + { + "start": 9162.96, + "end": 9165.8, + "probability": 0.973 + }, + { + "start": 9166.1, + "end": 9167.04, + "probability": 0.9901 + }, + { + "start": 9167.2, + "end": 9167.82, + "probability": 0.8646 + }, + { + "start": 9169.32, + "end": 9169.44, + "probability": 0.5851 + }, + { + "start": 9170.58, + "end": 9172.44, + "probability": 0.7959 + }, + { + "start": 9196.28, + "end": 9198.12, + "probability": 0.7706 + }, + { + "start": 9199.54, + "end": 9203.08, + "probability": 0.9819 + }, + { + "start": 9203.66, + "end": 9206.6, + "probability": 0.9773 + }, + { + "start": 9206.74, + "end": 9208.44, + "probability": 0.9942 + }, + { + "start": 9209.22, + "end": 9212.44, + "probability": 0.9886 + }, + { + "start": 9213.02, + "end": 9213.81, + "probability": 0.9178 + }, + { + "start": 9214.14, + "end": 9216.38, + "probability": 0.6127 + }, + { + "start": 9216.72, + "end": 9217.1, + "probability": 0.8071 + }, + { + "start": 9217.18, + "end": 9218.42, + "probability": 0.9799 + }, + { + "start": 9218.68, + "end": 9218.86, + "probability": 0.4974 + }, + { + "start": 9219.86, + "end": 9225.04, + "probability": 0.2026 + }, + { + "start": 9225.04, + "end": 9225.08, + "probability": 0.1451 + }, + { + "start": 9225.08, + "end": 9227.8, + "probability": 0.7312 + }, + { + "start": 9228.6, + "end": 9231.2, + "probability": 0.9805 + }, + { + "start": 9231.86, + "end": 9235.04, + "probability": 0.8601 + }, + { + "start": 9235.66, + "end": 9236.3, + "probability": 0.873 + }, + { + "start": 9236.34, + "end": 9238.3, + "probability": 0.839 + }, + { + "start": 9238.74, + "end": 9240.54, + "probability": 0.9871 + }, + { + "start": 9240.74, + "end": 9241.33, + "probability": 0.9232 + }, + { + "start": 9242.04, + "end": 9243.34, + "probability": 0.9845 + }, + { + "start": 9243.52, + "end": 9245.72, + "probability": 0.7925 + }, + { + "start": 9246.76, + "end": 9248.83, + "probability": 0.9635 + }, + { + "start": 9250.9, + "end": 9251.14, + "probability": 0.9329 + }, + { + "start": 9252.32, + "end": 9256.48, + "probability": 0.9988 + }, + { + "start": 9257.42, + "end": 9259.18, + "probability": 0.928 + }, + { + "start": 9259.82, + "end": 9261.66, + "probability": 0.9659 + }, + { + "start": 9262.32, + "end": 9264.38, + "probability": 0.8928 + }, + { + "start": 9265.16, + "end": 9272.21, + "probability": 0.993 + }, + { + "start": 9273.38, + "end": 9276.56, + "probability": 0.9155 + }, + { + "start": 9277.18, + "end": 9277.94, + "probability": 0.8966 + }, + { + "start": 9278.3, + "end": 9279.4, + "probability": 0.9605 + }, + { + "start": 9279.62, + "end": 9280.54, + "probability": 0.847 + }, + { + "start": 9281.0, + "end": 9284.1, + "probability": 0.975 + }, + { + "start": 9284.74, + "end": 9287.3, + "probability": 0.9943 + }, + { + "start": 9287.76, + "end": 9289.09, + "probability": 0.5557 + }, + { + "start": 9290.02, + "end": 9294.7, + "probability": 0.7864 + }, + { + "start": 9295.3, + "end": 9299.46, + "probability": 0.8927 + }, + { + "start": 9300.9, + "end": 9303.73, + "probability": 0.9968 + }, + { + "start": 9304.34, + "end": 9306.76, + "probability": 0.9951 + }, + { + "start": 9306.76, + "end": 9309.48, + "probability": 0.9602 + }, + { + "start": 9310.48, + "end": 9313.34, + "probability": 0.9566 + }, + { + "start": 9313.82, + "end": 9315.08, + "probability": 0.88 + }, + { + "start": 9316.94, + "end": 9321.82, + "probability": 0.8673 + }, + { + "start": 9321.82, + "end": 9326.0, + "probability": 0.8955 + }, + { + "start": 9326.66, + "end": 9330.62, + "probability": 0.9523 + }, + { + "start": 9331.22, + "end": 9332.66, + "probability": 0.9647 + }, + { + "start": 9332.88, + "end": 9335.68, + "probability": 0.9929 + }, + { + "start": 9335.68, + "end": 9337.6, + "probability": 0.9588 + }, + { + "start": 9337.92, + "end": 9340.98, + "probability": 0.9208 + }, + { + "start": 9341.78, + "end": 9345.88, + "probability": 0.8472 + }, + { + "start": 9346.16, + "end": 9348.28, + "probability": 0.9897 + }, + { + "start": 9348.36, + "end": 9348.58, + "probability": 0.8972 + }, + { + "start": 9350.24, + "end": 9350.84, + "probability": 0.9748 + }, + { + "start": 9351.38, + "end": 9353.16, + "probability": 0.7717 + }, + { + "start": 9354.06, + "end": 9354.74, + "probability": 0.971 + }, + { + "start": 9359.76, + "end": 9360.62, + "probability": 0.5815 + }, + { + "start": 9361.68, + "end": 9363.0, + "probability": 0.9942 + }, + { + "start": 9363.46, + "end": 9365.28, + "probability": 0.6449 + }, + { + "start": 9365.42, + "end": 9366.66, + "probability": 0.9944 + }, + { + "start": 9367.8, + "end": 9372.52, + "probability": 0.9572 + }, + { + "start": 9372.58, + "end": 9373.52, + "probability": 0.728 + }, + { + "start": 9374.18, + "end": 9377.54, + "probability": 0.8512 + }, + { + "start": 9378.42, + "end": 9379.18, + "probability": 0.9752 + }, + { + "start": 9379.86, + "end": 9380.74, + "probability": 0.9559 + }, + { + "start": 9380.82, + "end": 9381.47, + "probability": 0.9053 + }, + { + "start": 9381.54, + "end": 9382.24, + "probability": 0.9952 + }, + { + "start": 9383.18, + "end": 9384.18, + "probability": 0.8829 + }, + { + "start": 9385.12, + "end": 9387.26, + "probability": 0.998 + }, + { + "start": 9387.7, + "end": 9389.84, + "probability": 0.9237 + }, + { + "start": 9390.4, + "end": 9391.62, + "probability": 0.9427 + }, + { + "start": 9393.1, + "end": 9395.76, + "probability": 0.8868 + }, + { + "start": 9396.28, + "end": 9398.5, + "probability": 0.936 + }, + { + "start": 9398.84, + "end": 9398.94, + "probability": 0.4247 + }, + { + "start": 9399.9, + "end": 9401.44, + "probability": 0.9368 + }, + { + "start": 9402.3, + "end": 9404.78, + "probability": 0.9558 + }, + { + "start": 9405.32, + "end": 9406.58, + "probability": 0.9713 + }, + { + "start": 9406.62, + "end": 9407.36, + "probability": 0.9749 + }, + { + "start": 9407.64, + "end": 9408.5, + "probability": 0.6777 + }, + { + "start": 9409.12, + "end": 9411.26, + "probability": 0.9243 + }, + { + "start": 9412.06, + "end": 9415.18, + "probability": 0.6667 + }, + { + "start": 9416.12, + "end": 9417.04, + "probability": 0.9524 + }, + { + "start": 9417.08, + "end": 9418.22, + "probability": 0.8673 + }, + { + "start": 9418.7, + "end": 9420.44, + "probability": 0.9355 + }, + { + "start": 9421.28, + "end": 9425.56, + "probability": 0.9949 + }, + { + "start": 9426.2, + "end": 9427.06, + "probability": 0.9569 + }, + { + "start": 9427.94, + "end": 9428.96, + "probability": 0.7892 + }, + { + "start": 9429.18, + "end": 9430.68, + "probability": 0.8618 + }, + { + "start": 9430.84, + "end": 9431.56, + "probability": 0.8883 + }, + { + "start": 9431.68, + "end": 9432.88, + "probability": 0.6139 + }, + { + "start": 9432.94, + "end": 9433.36, + "probability": 0.6119 + }, + { + "start": 9434.18, + "end": 9437.58, + "probability": 0.9564 + }, + { + "start": 9438.16, + "end": 9439.44, + "probability": 0.6669 + }, + { + "start": 9440.2, + "end": 9443.32, + "probability": 0.9837 + }, + { + "start": 9443.4, + "end": 9444.42, + "probability": 0.8079 + }, + { + "start": 9444.9, + "end": 9445.85, + "probability": 0.9848 + }, + { + "start": 9446.04, + "end": 9446.96, + "probability": 0.9626 + }, + { + "start": 9448.38, + "end": 9449.38, + "probability": 0.4347 + }, + { + "start": 9449.8, + "end": 9450.5, + "probability": 0.9696 + }, + { + "start": 9450.62, + "end": 9452.18, + "probability": 0.5659 + }, + { + "start": 9452.54, + "end": 9456.64, + "probability": 0.9843 + }, + { + "start": 9456.9, + "end": 9457.52, + "probability": 0.7254 + }, + { + "start": 9458.34, + "end": 9458.82, + "probability": 0.4363 + }, + { + "start": 9458.94, + "end": 9461.2, + "probability": 0.9557 + }, + { + "start": 9461.2, + "end": 9465.04, + "probability": 0.8353 + }, + { + "start": 9465.18, + "end": 9470.18, + "probability": 0.6935 + }, + { + "start": 9472.38, + "end": 9477.18, + "probability": 0.0149 + }, + { + "start": 9478.3, + "end": 9479.2, + "probability": 0.5887 + }, + { + "start": 9482.28, + "end": 9486.76, + "probability": 0.0622 + }, + { + "start": 9486.76, + "end": 9486.76, + "probability": 0.0562 + }, + { + "start": 9486.76, + "end": 9486.76, + "probability": 0.079 + }, + { + "start": 9487.66, + "end": 9488.4, + "probability": 0.2816 + }, + { + "start": 9489.16, + "end": 9493.5, + "probability": 0.96 + }, + { + "start": 9494.68, + "end": 9496.41, + "probability": 0.6671 + }, + { + "start": 9498.0, + "end": 9499.32, + "probability": 0.7947 + }, + { + "start": 9499.84, + "end": 9501.26, + "probability": 0.8049 + }, + { + "start": 9502.3, + "end": 9505.6, + "probability": 0.9181 + }, + { + "start": 9506.58, + "end": 9509.92, + "probability": 0.9024 + }, + { + "start": 9517.36, + "end": 9519.8, + "probability": 0.7002 + }, + { + "start": 9521.98, + "end": 9524.8, + "probability": 0.8492 + }, + { + "start": 9526.62, + "end": 9532.44, + "probability": 0.9934 + }, + { + "start": 9532.84, + "end": 9533.88, + "probability": 0.9451 + }, + { + "start": 9536.22, + "end": 9540.94, + "probability": 0.9595 + }, + { + "start": 9541.56, + "end": 9543.0, + "probability": 0.598 + }, + { + "start": 9544.46, + "end": 9546.14, + "probability": 0.9701 + }, + { + "start": 9546.74, + "end": 9550.6, + "probability": 0.9944 + }, + { + "start": 9551.22, + "end": 9552.06, + "probability": 0.9579 + }, + { + "start": 9553.02, + "end": 9556.86, + "probability": 0.9751 + }, + { + "start": 9557.12, + "end": 9557.96, + "probability": 0.9154 + }, + { + "start": 9558.12, + "end": 9561.04, + "probability": 0.9878 + }, + { + "start": 9561.56, + "end": 9563.88, + "probability": 0.8037 + }, + { + "start": 9565.2, + "end": 9567.04, + "probability": 0.9785 + }, + { + "start": 9567.28, + "end": 9571.84, + "probability": 0.9902 + }, + { + "start": 9571.84, + "end": 9576.54, + "probability": 0.8552 + }, + { + "start": 9579.76, + "end": 9583.6, + "probability": 0.9492 + }, + { + "start": 9583.7, + "end": 9584.6, + "probability": 0.597 + }, + { + "start": 9584.72, + "end": 9586.4, + "probability": 0.9568 + }, + { + "start": 9588.04, + "end": 9591.64, + "probability": 0.9513 + }, + { + "start": 9592.06, + "end": 9595.04, + "probability": 0.9502 + }, + { + "start": 9595.62, + "end": 9597.06, + "probability": 0.9102 + }, + { + "start": 9598.12, + "end": 9600.48, + "probability": 0.9889 + }, + { + "start": 9600.66, + "end": 9603.06, + "probability": 0.9909 + }, + { + "start": 9604.2, + "end": 9605.96, + "probability": 0.9146 + }, + { + "start": 9606.54, + "end": 9607.92, + "probability": 0.9985 + }, + { + "start": 9608.86, + "end": 9613.83, + "probability": 0.9661 + }, + { + "start": 9614.54, + "end": 9620.68, + "probability": 0.9912 + }, + { + "start": 9620.86, + "end": 9621.98, + "probability": 0.8938 + }, + { + "start": 9622.08, + "end": 9624.13, + "probability": 0.7046 + }, + { + "start": 9625.02, + "end": 9627.76, + "probability": 0.4056 + }, + { + "start": 9628.24, + "end": 9630.24, + "probability": 0.9891 + }, + { + "start": 9630.26, + "end": 9630.9, + "probability": 0.7481 + }, + { + "start": 9631.28, + "end": 9631.8, + "probability": 0.7649 + }, + { + "start": 9631.84, + "end": 9634.08, + "probability": 0.9517 + }, + { + "start": 9636.86, + "end": 9640.96, + "probability": 0.9302 + }, + { + "start": 9642.76, + "end": 9647.54, + "probability": 0.9818 + }, + { + "start": 9647.54, + "end": 9653.18, + "probability": 0.9976 + }, + { + "start": 9655.46, + "end": 9660.02, + "probability": 0.9927 + }, + { + "start": 9660.54, + "end": 9664.28, + "probability": 0.991 + }, + { + "start": 9665.84, + "end": 9667.32, + "probability": 0.9706 + }, + { + "start": 9668.04, + "end": 9670.44, + "probability": 0.9656 + }, + { + "start": 9671.7, + "end": 9677.36, + "probability": 0.9965 + }, + { + "start": 9678.72, + "end": 9679.16, + "probability": 0.974 + }, + { + "start": 9679.34, + "end": 9680.2, + "probability": 0.9602 + }, + { + "start": 9680.26, + "end": 9685.82, + "probability": 0.9968 + }, + { + "start": 9686.12, + "end": 9689.6, + "probability": 0.9581 + }, + { + "start": 9690.26, + "end": 9690.74, + "probability": 0.8488 + }, + { + "start": 9691.98, + "end": 9695.8, + "probability": 0.9058 + }, + { + "start": 9696.78, + "end": 9697.8, + "probability": 0.9085 + }, + { + "start": 9698.46, + "end": 9705.12, + "probability": 0.9959 + }, + { + "start": 9705.12, + "end": 9709.22, + "probability": 0.999 + }, + { + "start": 9710.0, + "end": 9710.44, + "probability": 0.6851 + }, + { + "start": 9710.55, + "end": 9715.16, + "probability": 0.9989 + }, + { + "start": 9715.16, + "end": 9718.96, + "probability": 0.9993 + }, + { + "start": 9719.56, + "end": 9721.2, + "probability": 0.9927 + }, + { + "start": 9721.94, + "end": 9724.34, + "probability": 0.9949 + }, + { + "start": 9724.8, + "end": 9726.3, + "probability": 0.9919 + }, + { + "start": 9726.78, + "end": 9728.86, + "probability": 0.9894 + }, + { + "start": 9728.86, + "end": 9731.94, + "probability": 0.9631 + }, + { + "start": 9732.68, + "end": 9734.22, + "probability": 0.9966 + }, + { + "start": 9734.78, + "end": 9738.86, + "probability": 0.9988 + }, + { + "start": 9740.62, + "end": 9741.12, + "probability": 0.8928 + }, + { + "start": 9741.68, + "end": 9743.26, + "probability": 0.9978 + }, + { + "start": 9743.84, + "end": 9745.5, + "probability": 0.9835 + }, + { + "start": 9746.1, + "end": 9748.3, + "probability": 0.8943 + }, + { + "start": 9748.38, + "end": 9749.28, + "probability": 0.9209 + }, + { + "start": 9749.56, + "end": 9751.26, + "probability": 0.9933 + }, + { + "start": 9751.3, + "end": 9752.56, + "probability": 0.913 + }, + { + "start": 9752.64, + "end": 9754.6, + "probability": 0.9757 + }, + { + "start": 9755.7, + "end": 9761.2, + "probability": 0.9919 + }, + { + "start": 9761.22, + "end": 9762.06, + "probability": 0.7553 + }, + { + "start": 9763.18, + "end": 9763.97, + "probability": 0.9985 + }, + { + "start": 9765.78, + "end": 9768.82, + "probability": 0.9171 + }, + { + "start": 9769.58, + "end": 9773.38, + "probability": 0.9865 + }, + { + "start": 9773.94, + "end": 9777.1, + "probability": 0.9877 + }, + { + "start": 9778.02, + "end": 9784.42, + "probability": 0.9974 + }, + { + "start": 9785.08, + "end": 9786.2, + "probability": 0.8306 + }, + { + "start": 9787.06, + "end": 9788.84, + "probability": 0.9966 + }, + { + "start": 9789.4, + "end": 9794.82, + "probability": 0.9967 + }, + { + "start": 9794.82, + "end": 9797.86, + "probability": 0.9988 + }, + { + "start": 9798.68, + "end": 9801.66, + "probability": 0.9277 + }, + { + "start": 9803.96, + "end": 9807.4, + "probability": 0.9907 + }, + { + "start": 9807.9, + "end": 9810.46, + "probability": 0.8563 + }, + { + "start": 9810.6, + "end": 9812.2, + "probability": 0.9178 + }, + { + "start": 9813.38, + "end": 9816.38, + "probability": 0.9153 + }, + { + "start": 9816.94, + "end": 9820.29, + "probability": 0.9954 + }, + { + "start": 9821.54, + "end": 9824.03, + "probability": 0.995 + }, + { + "start": 9825.06, + "end": 9829.46, + "probability": 0.895 + }, + { + "start": 9830.86, + "end": 9837.59, + "probability": 0.9821 + }, + { + "start": 9838.54, + "end": 9839.38, + "probability": 0.7842 + }, + { + "start": 9839.68, + "end": 9842.9, + "probability": 0.9878 + }, + { + "start": 9843.26, + "end": 9844.9, + "probability": 0.7771 + }, + { + "start": 9846.3, + "end": 9849.12, + "probability": 0.9969 + }, + { + "start": 9850.54, + "end": 9850.54, + "probability": 0.896 + }, + { + "start": 9851.06, + "end": 9852.66, + "probability": 0.9399 + }, + { + "start": 9858.47, + "end": 9859.73, + "probability": 0.9736 + }, + { + "start": 9860.96, + "end": 9865.18, + "probability": 0.9863 + }, + { + "start": 9865.18, + "end": 9867.86, + "probability": 0.7305 + }, + { + "start": 9868.92, + "end": 9870.26, + "probability": 0.9859 + }, + { + "start": 9871.48, + "end": 9875.48, + "probability": 0.5065 + }, + { + "start": 9875.92, + "end": 9881.28, + "probability": 0.9963 + }, + { + "start": 9882.2, + "end": 9882.98, + "probability": 0.8536 + }, + { + "start": 9883.62, + "end": 9889.06, + "probability": 0.9985 + }, + { + "start": 9889.06, + "end": 9894.26, + "probability": 0.999 + }, + { + "start": 9894.9, + "end": 9895.44, + "probability": 0.7362 + }, + { + "start": 9896.1, + "end": 9900.6, + "probability": 0.9889 + }, + { + "start": 9900.6, + "end": 9904.94, + "probability": 0.9008 + }, + { + "start": 9905.28, + "end": 9908.24, + "probability": 0.9 + }, + { + "start": 9908.6, + "end": 9909.1, + "probability": 0.6003 + }, + { + "start": 9909.14, + "end": 9913.72, + "probability": 0.9377 + }, + { + "start": 9916.46, + "end": 9917.26, + "probability": 0.9985 + }, + { + "start": 9918.76, + "end": 9922.08, + "probability": 0.9888 + }, + { + "start": 9922.9, + "end": 9925.02, + "probability": 0.8124 + }, + { + "start": 9925.52, + "end": 9926.4, + "probability": 0.8378 + }, + { + "start": 9926.62, + "end": 9930.04, + "probability": 0.9701 + }, + { + "start": 9930.88, + "end": 9935.41, + "probability": 0.8779 + }, + { + "start": 9935.58, + "end": 9938.4, + "probability": 0.9875 + }, + { + "start": 9939.6, + "end": 9943.48, + "probability": 0.5109 + }, + { + "start": 9944.66, + "end": 9944.68, + "probability": 0.3599 + }, + { + "start": 9945.1, + "end": 9946.0, + "probability": 0.9667 + }, + { + "start": 9946.38, + "end": 9948.84, + "probability": 0.9443 + }, + { + "start": 9949.72, + "end": 9954.31, + "probability": 0.9433 + }, + { + "start": 9954.72, + "end": 9960.24, + "probability": 0.9513 + }, + { + "start": 9960.34, + "end": 9962.62, + "probability": 0.8913 + }, + { + "start": 9962.78, + "end": 9964.3, + "probability": 0.8111 + }, + { + "start": 9964.34, + "end": 9965.22, + "probability": 0.7786 + }, + { + "start": 9966.56, + "end": 9971.29, + "probability": 0.9943 + }, + { + "start": 9972.14, + "end": 9973.35, + "probability": 0.9877 + }, + { + "start": 9973.38, + "end": 9974.5, + "probability": 0.9233 + }, + { + "start": 9974.74, + "end": 9980.24, + "probability": 0.9974 + }, + { + "start": 9981.3, + "end": 9982.26, + "probability": 0.9484 + }, + { + "start": 9982.46, + "end": 9984.04, + "probability": 0.9593 + }, + { + "start": 9984.1, + "end": 9986.58, + "probability": 0.9779 + }, + { + "start": 9986.72, + "end": 9988.7, + "probability": 0.9919 + }, + { + "start": 9989.08, + "end": 9989.78, + "probability": 0.662 + }, + { + "start": 9990.2, + "end": 9991.78, + "probability": 0.9229 + }, + { + "start": 9991.92, + "end": 9992.62, + "probability": 0.9541 + }, + { + "start": 9992.7, + "end": 9993.82, + "probability": 0.989 + }, + { + "start": 9994.32, + "end": 9996.12, + "probability": 0.9951 + }, + { + "start": 9996.22, + "end": 9996.28, + "probability": 0.6738 + }, + { + "start": 9996.32, + "end": 9996.8, + "probability": 0.981 + }, + { + "start": 9997.16, + "end": 10000.88, + "probability": 0.9915 + }, + { + "start": 10001.38, + "end": 10002.52, + "probability": 0.7499 + }, + { + "start": 10002.6, + "end": 10004.92, + "probability": 0.9977 + }, + { + "start": 10005.08, + "end": 10007.8, + "probability": 0.8019 + }, + { + "start": 10007.84, + "end": 10013.1, + "probability": 0.9932 + }, + { + "start": 10013.62, + "end": 10016.46, + "probability": 0.9976 + }, + { + "start": 10016.46, + "end": 10020.0, + "probability": 0.9947 + }, + { + "start": 10021.02, + "end": 10023.46, + "probability": 0.8441 + }, + { + "start": 10023.98, + "end": 10027.16, + "probability": 0.9839 + }, + { + "start": 10027.5, + "end": 10028.96, + "probability": 0.8648 + }, + { + "start": 10029.32, + "end": 10031.66, + "probability": 0.9652 + }, + { + "start": 10032.1, + "end": 10035.94, + "probability": 0.9333 + }, + { + "start": 10036.26, + "end": 10037.36, + "probability": 0.6855 + }, + { + "start": 10038.06, + "end": 10042.42, + "probability": 0.9861 + }, + { + "start": 10042.42, + "end": 10046.52, + "probability": 0.9917 + }, + { + "start": 10049.28, + "end": 10053.34, + "probability": 0.7298 + }, + { + "start": 10054.28, + "end": 10055.44, + "probability": 0.8525 + }, + { + "start": 10060.62, + "end": 10060.74, + "probability": 0.0248 + }, + { + "start": 10060.74, + "end": 10061.88, + "probability": 0.5317 + }, + { + "start": 10062.78, + "end": 10067.2, + "probability": 0.9596 + }, + { + "start": 10067.7, + "end": 10070.26, + "probability": 0.8462 + }, + { + "start": 10070.36, + "end": 10071.96, + "probability": 0.9686 + }, + { + "start": 10072.48, + "end": 10073.46, + "probability": 0.6031 + }, + { + "start": 10074.3, + "end": 10077.38, + "probability": 0.6658 + }, + { + "start": 10077.62, + "end": 10080.22, + "probability": 0.8997 + }, + { + "start": 10080.62, + "end": 10081.68, + "probability": 0.8431 + }, + { + "start": 10082.34, + "end": 10084.34, + "probability": 0.9629 + }, + { + "start": 10085.58, + "end": 10087.52, + "probability": 0.894 + }, + { + "start": 10088.04, + "end": 10092.66, + "probability": 0.9917 + }, + { + "start": 10093.28, + "end": 10096.72, + "probability": 0.9957 + }, + { + "start": 10097.34, + "end": 10101.5, + "probability": 0.9966 + }, + { + "start": 10102.36, + "end": 10105.36, + "probability": 0.9766 + }, + { + "start": 10105.36, + "end": 10108.14, + "probability": 0.9987 + }, + { + "start": 10108.8, + "end": 10109.22, + "probability": 0.0007 + }, + { + "start": 10110.72, + "end": 10113.16, + "probability": 0.8374 + }, + { + "start": 10113.16, + "end": 10115.8, + "probability": 0.9129 + }, + { + "start": 10115.9, + "end": 10116.68, + "probability": 0.4234 + }, + { + "start": 10117.04, + "end": 10117.36, + "probability": 0.9666 + }, + { + "start": 10117.46, + "end": 10118.64, + "probability": 0.8705 + }, + { + "start": 10119.38, + "end": 10120.2, + "probability": 0.9724 + }, + { + "start": 10120.36, + "end": 10121.12, + "probability": 0.8968 + }, + { + "start": 10121.64, + "end": 10124.75, + "probability": 0.9819 + }, + { + "start": 10125.34, + "end": 10125.86, + "probability": 0.4289 + }, + { + "start": 10126.04, + "end": 10127.84, + "probability": 0.6979 + }, + { + "start": 10128.42, + "end": 10130.0, + "probability": 0.9763 + }, + { + "start": 10130.6, + "end": 10131.24, + "probability": 0.949 + }, + { + "start": 10131.72, + "end": 10133.42, + "probability": 0.9222 + }, + { + "start": 10133.42, + "end": 10135.42, + "probability": 0.9971 + }, + { + "start": 10136.42, + "end": 10137.12, + "probability": 0.6761 + }, + { + "start": 10137.18, + "end": 10137.18, + "probability": 0.2436 + }, + { + "start": 10137.18, + "end": 10139.86, + "probability": 0.9957 + }, + { + "start": 10140.46, + "end": 10143.74, + "probability": 0.913 + }, + { + "start": 10144.96, + "end": 10148.04, + "probability": 0.9811 + }, + { + "start": 10148.48, + "end": 10148.74, + "probability": 0.8783 + }, + { + "start": 10148.92, + "end": 10150.06, + "probability": 0.9841 + }, + { + "start": 10150.44, + "end": 10151.82, + "probability": 0.6977 + }, + { + "start": 10152.36, + "end": 10154.58, + "probability": 0.9475 + }, + { + "start": 10154.58, + "end": 10156.62, + "probability": 0.9949 + }, + { + "start": 10157.26, + "end": 10160.7, + "probability": 0.8401 + }, + { + "start": 10161.66, + "end": 10168.0, + "probability": 0.9554 + }, + { + "start": 10168.18, + "end": 10168.4, + "probability": 0.7861 + }, + { + "start": 10168.98, + "end": 10169.74, + "probability": 0.9873 + }, + { + "start": 10170.28, + "end": 10170.96, + "probability": 0.7195 + }, + { + "start": 10170.96, + "end": 10171.54, + "probability": 0.8678 + }, + { + "start": 10172.42, + "end": 10175.24, + "probability": 0.8815 + }, + { + "start": 10198.24, + "end": 10199.38, + "probability": 0.6191 + }, + { + "start": 10200.38, + "end": 10203.26, + "probability": 0.7835 + }, + { + "start": 10204.62, + "end": 10211.42, + "probability": 0.9528 + }, + { + "start": 10212.22, + "end": 10216.78, + "probability": 0.9733 + }, + { + "start": 10217.8, + "end": 10224.22, + "probability": 0.9792 + }, + { + "start": 10224.84, + "end": 10228.96, + "probability": 0.9286 + }, + { + "start": 10229.48, + "end": 10233.78, + "probability": 0.9438 + }, + { + "start": 10234.84, + "end": 10240.42, + "probability": 0.997 + }, + { + "start": 10241.48, + "end": 10242.38, + "probability": 0.9934 + }, + { + "start": 10242.92, + "end": 10245.84, + "probability": 0.8647 + }, + { + "start": 10246.48, + "end": 10248.92, + "probability": 0.8254 + }, + { + "start": 10249.56, + "end": 10253.72, + "probability": 0.9561 + }, + { + "start": 10254.54, + "end": 10257.94, + "probability": 0.9236 + }, + { + "start": 10258.56, + "end": 10262.14, + "probability": 0.9894 + }, + { + "start": 10262.3, + "end": 10262.58, + "probability": 0.7748 + }, + { + "start": 10263.92, + "end": 10265.88, + "probability": 0.6903 + }, + { + "start": 10275.34, + "end": 10278.06, + "probability": 0.8502 + }, + { + "start": 10278.68, + "end": 10282.96, + "probability": 0.9978 + }, + { + "start": 10283.2, + "end": 10285.72, + "probability": 0.9657 + }, + { + "start": 10285.9, + "end": 10289.54, + "probability": 0.998 + }, + { + "start": 10290.08, + "end": 10290.96, + "probability": 0.713 + }, + { + "start": 10291.64, + "end": 10293.62, + "probability": 0.9664 + }, + { + "start": 10293.82, + "end": 10299.46, + "probability": 0.9655 + }, + { + "start": 10299.94, + "end": 10302.92, + "probability": 0.9937 + }, + { + "start": 10302.98, + "end": 10304.66, + "probability": 0.9744 + }, + { + "start": 10305.22, + "end": 10306.44, + "probability": 0.9746 + }, + { + "start": 10306.56, + "end": 10307.44, + "probability": 0.4975 + }, + { + "start": 10307.92, + "end": 10309.74, + "probability": 0.9963 + }, + { + "start": 10310.3, + "end": 10312.56, + "probability": 0.9769 + }, + { + "start": 10314.64, + "end": 10315.66, + "probability": 0.1465 + }, + { + "start": 10315.66, + "end": 10321.28, + "probability": 0.3013 + }, + { + "start": 10321.38, + "end": 10321.9, + "probability": 0.23 + }, + { + "start": 10321.9, + "end": 10323.9, + "probability": 0.5081 + }, + { + "start": 10323.9, + "end": 10327.32, + "probability": 0.6429 + }, + { + "start": 10327.56, + "end": 10332.26, + "probability": 0.8392 + }, + { + "start": 10332.46, + "end": 10333.2, + "probability": 0.6059 + }, + { + "start": 10333.38, + "end": 10336.48, + "probability": 0.9805 + }, + { + "start": 10336.62, + "end": 10338.64, + "probability": 0.9982 + }, + { + "start": 10339.1, + "end": 10340.6, + "probability": 0.9841 + }, + { + "start": 10341.46, + "end": 10342.88, + "probability": 0.9706 + }, + { + "start": 10342.92, + "end": 10345.46, + "probability": 0.9801 + }, + { + "start": 10345.8, + "end": 10346.74, + "probability": 0.8965 + }, + { + "start": 10347.46, + "end": 10348.44, + "probability": 0.3026 + }, + { + "start": 10348.44, + "end": 10350.08, + "probability": 0.715 + }, + { + "start": 10350.58, + "end": 10350.96, + "probability": 0.6888 + }, + { + "start": 10351.78, + "end": 10356.3, + "probability": 0.961 + }, + { + "start": 10356.54, + "end": 10358.2, + "probability": 0.9246 + }, + { + "start": 10358.26, + "end": 10360.38, + "probability": 0.9964 + }, + { + "start": 10360.8, + "end": 10362.86, + "probability": 0.9523 + }, + { + "start": 10363.78, + "end": 10366.42, + "probability": 0.9854 + }, + { + "start": 10366.78, + "end": 10367.76, + "probability": 0.7369 + }, + { + "start": 10368.12, + "end": 10368.74, + "probability": 0.9573 + }, + { + "start": 10369.46, + "end": 10370.86, + "probability": 0.9922 + }, + { + "start": 10371.0, + "end": 10373.04, + "probability": 0.9559 + }, + { + "start": 10373.66, + "end": 10375.78, + "probability": 0.9821 + }, + { + "start": 10378.1, + "end": 10378.78, + "probability": 0.1135 + }, + { + "start": 10378.78, + "end": 10380.04, + "probability": 0.6931 + }, + { + "start": 10381.43, + "end": 10384.32, + "probability": 0.0369 + }, + { + "start": 10384.32, + "end": 10384.48, + "probability": 0.1188 + }, + { + "start": 10384.68, + "end": 10385.84, + "probability": 0.0212 + }, + { + "start": 10385.84, + "end": 10386.4, + "probability": 0.5163 + }, + { + "start": 10386.5, + "end": 10387.13, + "probability": 0.8594 + }, + { + "start": 10387.46, + "end": 10390.18, + "probability": 0.9279 + }, + { + "start": 10391.05, + "end": 10393.94, + "probability": 0.8185 + }, + { + "start": 10393.94, + "end": 10396.4, + "probability": 0.6779 + }, + { + "start": 10396.84, + "end": 10400.92, + "probability": 0.9724 + }, + { + "start": 10401.72, + "end": 10406.5, + "probability": 0.983 + }, + { + "start": 10407.06, + "end": 10410.88, + "probability": 0.9938 + }, + { + "start": 10410.88, + "end": 10415.22, + "probability": 0.9608 + }, + { + "start": 10415.7, + "end": 10417.7, + "probability": 0.9907 + }, + { + "start": 10418.24, + "end": 10422.56, + "probability": 0.9928 + }, + { + "start": 10423.63, + "end": 10427.64, + "probability": 0.9463 + }, + { + "start": 10427.68, + "end": 10428.82, + "probability": 0.5451 + }, + { + "start": 10429.0, + "end": 10430.0, + "probability": 0.7146 + }, + { + "start": 10430.04, + "end": 10431.04, + "probability": 0.9601 + }, + { + "start": 10431.4, + "end": 10433.96, + "probability": 0.7211 + }, + { + "start": 10434.32, + "end": 10435.45, + "probability": 0.9922 + }, + { + "start": 10435.92, + "end": 10437.72, + "probability": 0.959 + }, + { + "start": 10438.26, + "end": 10441.54, + "probability": 0.992 + }, + { + "start": 10442.06, + "end": 10446.36, + "probability": 0.9996 + }, + { + "start": 10446.5, + "end": 10451.78, + "probability": 0.9032 + }, + { + "start": 10452.06, + "end": 10458.02, + "probability": 0.9965 + }, + { + "start": 10458.04, + "end": 10459.68, + "probability": 0.9675 + }, + { + "start": 10459.88, + "end": 10461.28, + "probability": 0.8789 + }, + { + "start": 10461.68, + "end": 10463.1, + "probability": 0.9811 + }, + { + "start": 10463.38, + "end": 10463.68, + "probability": 0.9088 + }, + { + "start": 10463.88, + "end": 10464.4, + "probability": 0.8822 + }, + { + "start": 10465.16, + "end": 10465.72, + "probability": 0.9379 + }, + { + "start": 10465.82, + "end": 10469.34, + "probability": 0.8638 + }, + { + "start": 10469.72, + "end": 10470.8, + "probability": 0.8813 + }, + { + "start": 10473.02, + "end": 10474.1, + "probability": 0.7053 + }, + { + "start": 10479.12, + "end": 10481.36, + "probability": 0.184 + }, + { + "start": 10490.8, + "end": 10491.02, + "probability": 0.0258 + }, + { + "start": 10491.02, + "end": 10491.02, + "probability": 0.0577 + }, + { + "start": 10491.02, + "end": 10494.08, + "probability": 0.4387 + }, + { + "start": 10494.76, + "end": 10495.56, + "probability": 0.7776 + }, + { + "start": 10495.88, + "end": 10497.98, + "probability": 0.826 + }, + { + "start": 10503.56, + "end": 10504.98, + "probability": 0.0462 + }, + { + "start": 10504.98, + "end": 10505.58, + "probability": 0.8514 + }, + { + "start": 10507.38, + "end": 10507.7, + "probability": 0.1494 + }, + { + "start": 10507.7, + "end": 10508.98, + "probability": 0.4744 + }, + { + "start": 10509.44, + "end": 10514.2, + "probability": 0.8518 + }, + { + "start": 10515.2, + "end": 10517.0, + "probability": 0.3804 + }, + { + "start": 10517.76, + "end": 10518.9, + "probability": 0.8076 + }, + { + "start": 10520.14, + "end": 10521.88, + "probability": 0.9126 + }, + { + "start": 10522.3, + "end": 10524.56, + "probability": 0.9836 + }, + { + "start": 10540.7, + "end": 10541.34, + "probability": 0.5989 + }, + { + "start": 10542.0, + "end": 10542.86, + "probability": 0.6022 + }, + { + "start": 10542.88, + "end": 10543.9, + "probability": 0.7568 + }, + { + "start": 10544.64, + "end": 10546.24, + "probability": 0.7778 + }, + { + "start": 10546.94, + "end": 10549.64, + "probability": 0.9485 + }, + { + "start": 10549.64, + "end": 10552.48, + "probability": 0.9938 + }, + { + "start": 10552.98, + "end": 10554.58, + "probability": 0.8171 + }, + { + "start": 10555.0, + "end": 10558.82, + "probability": 0.9154 + }, + { + "start": 10558.82, + "end": 10562.0, + "probability": 0.9971 + }, + { + "start": 10562.78, + "end": 10563.4, + "probability": 0.7871 + }, + { + "start": 10563.86, + "end": 10568.72, + "probability": 0.9811 + }, + { + "start": 10568.72, + "end": 10572.12, + "probability": 0.9893 + }, + { + "start": 10572.54, + "end": 10575.32, + "probability": 0.792 + }, + { + "start": 10576.44, + "end": 10578.5, + "probability": 0.9142 + }, + { + "start": 10579.58, + "end": 10582.28, + "probability": 0.9739 + }, + { + "start": 10582.72, + "end": 10586.56, + "probability": 0.9387 + }, + { + "start": 10586.56, + "end": 10589.96, + "probability": 0.9933 + }, + { + "start": 10590.92, + "end": 10594.12, + "probability": 0.998 + }, + { + "start": 10594.12, + "end": 10598.48, + "probability": 0.9931 + }, + { + "start": 10601.56, + "end": 10604.74, + "probability": 0.9406 + }, + { + "start": 10605.2, + "end": 10610.3, + "probability": 0.9886 + }, + { + "start": 10611.12, + "end": 10614.04, + "probability": 0.831 + }, + { + "start": 10614.52, + "end": 10617.2, + "probability": 0.965 + }, + { + "start": 10617.46, + "end": 10621.0, + "probability": 0.9872 + }, + { + "start": 10621.0, + "end": 10624.36, + "probability": 0.9705 + }, + { + "start": 10625.2, + "end": 10628.48, + "probability": 0.8958 + }, + { + "start": 10629.14, + "end": 10631.24, + "probability": 0.9857 + }, + { + "start": 10632.92, + "end": 10636.48, + "probability": 0.9865 + }, + { + "start": 10636.48, + "end": 10641.84, + "probability": 0.9961 + }, + { + "start": 10642.64, + "end": 10644.88, + "probability": 0.5892 + }, + { + "start": 10645.78, + "end": 10647.06, + "probability": 0.6993 + }, + { + "start": 10647.5, + "end": 10650.36, + "probability": 0.9946 + }, + { + "start": 10650.84, + "end": 10656.32, + "probability": 0.9937 + }, + { + "start": 10657.14, + "end": 10660.56, + "probability": 0.8156 + }, + { + "start": 10661.08, + "end": 10664.82, + "probability": 0.8428 + }, + { + "start": 10665.16, + "end": 10666.52, + "probability": 0.8367 + }, + { + "start": 10666.86, + "end": 10667.8, + "probability": 0.9056 + }, + { + "start": 10667.82, + "end": 10670.96, + "probability": 0.8751 + }, + { + "start": 10671.44, + "end": 10673.78, + "probability": 0.953 + }, + { + "start": 10674.52, + "end": 10676.6, + "probability": 0.8317 + }, + { + "start": 10676.98, + "end": 10679.86, + "probability": 0.9988 + }, + { + "start": 10680.38, + "end": 10681.2, + "probability": 0.8034 + }, + { + "start": 10681.9, + "end": 10683.52, + "probability": 0.9582 + }, + { + "start": 10683.96, + "end": 10685.2, + "probability": 0.9976 + }, + { + "start": 10685.28, + "end": 10688.52, + "probability": 0.9644 + }, + { + "start": 10689.02, + "end": 10692.46, + "probability": 0.7694 + }, + { + "start": 10692.9, + "end": 10695.76, + "probability": 0.9875 + }, + { + "start": 10695.86, + "end": 10696.52, + "probability": 0.7065 + }, + { + "start": 10697.76, + "end": 10698.74, + "probability": 0.8259 + }, + { + "start": 10698.98, + "end": 10702.52, + "probability": 0.929 + }, + { + "start": 10703.26, + "end": 10706.74, + "probability": 0.5272 + }, + { + "start": 10706.74, + "end": 10707.6, + "probability": 0.8451 + }, + { + "start": 10709.14, + "end": 10711.04, + "probability": 0.7729 + }, + { + "start": 10711.26, + "end": 10712.34, + "probability": 0.6009 + }, + { + "start": 10713.1, + "end": 10716.84, + "probability": 0.5503 + }, + { + "start": 10718.24, + "end": 10718.56, + "probability": 0.0003 + }, + { + "start": 10720.04, + "end": 10720.34, + "probability": 0.102 + }, + { + "start": 10721.0, + "end": 10721.64, + "probability": 0.24 + }, + { + "start": 10731.54, + "end": 10731.74, + "probability": 0.0836 + }, + { + "start": 10731.74, + "end": 10731.74, + "probability": 0.0547 + }, + { + "start": 10731.74, + "end": 10732.56, + "probability": 0.4003 + }, + { + "start": 10733.5, + "end": 10736.12, + "probability": 0.6388 + }, + { + "start": 10737.76, + "end": 10740.38, + "probability": 0.9949 + }, + { + "start": 10742.02, + "end": 10746.6, + "probability": 0.8403 + }, + { + "start": 10748.14, + "end": 10754.22, + "probability": 0.916 + }, + { + "start": 10754.68, + "end": 10757.16, + "probability": 0.9856 + }, + { + "start": 10759.12, + "end": 10764.76, + "probability": 0.9893 + }, + { + "start": 10765.48, + "end": 10766.56, + "probability": 0.9656 + }, + { + "start": 10767.24, + "end": 10768.26, + "probability": 0.9883 + }, + { + "start": 10769.32, + "end": 10771.68, + "probability": 0.9923 + }, + { + "start": 10772.44, + "end": 10774.92, + "probability": 0.9916 + }, + { + "start": 10775.96, + "end": 10780.22, + "probability": 0.9949 + }, + { + "start": 10781.64, + "end": 10784.08, + "probability": 0.9976 + }, + { + "start": 10784.62, + "end": 10787.7, + "probability": 0.9654 + }, + { + "start": 10788.48, + "end": 10790.0, + "probability": 0.9817 + }, + { + "start": 10790.12, + "end": 10791.36, + "probability": 0.9919 + }, + { + "start": 10791.62, + "end": 10793.28, + "probability": 0.7678 + }, + { + "start": 10793.8, + "end": 10794.84, + "probability": 0.9903 + }, + { + "start": 10796.34, + "end": 10799.84, + "probability": 0.9136 + }, + { + "start": 10799.84, + "end": 10803.78, + "probability": 0.9911 + }, + { + "start": 10804.62, + "end": 10808.34, + "probability": 0.9916 + }, + { + "start": 10809.38, + "end": 10812.18, + "probability": 0.8896 + }, + { + "start": 10813.5, + "end": 10814.52, + "probability": 0.9377 + }, + { + "start": 10814.74, + "end": 10816.27, + "probability": 0.7989 + }, + { + "start": 10816.7, + "end": 10817.86, + "probability": 0.9651 + }, + { + "start": 10817.9, + "end": 10818.92, + "probability": 0.9911 + }, + { + "start": 10819.64, + "end": 10821.41, + "probability": 0.9622 + }, + { + "start": 10821.72, + "end": 10822.68, + "probability": 0.9678 + }, + { + "start": 10822.76, + "end": 10823.56, + "probability": 0.9586 + }, + { + "start": 10824.2, + "end": 10825.96, + "probability": 0.5946 + }, + { + "start": 10827.36, + "end": 10830.86, + "probability": 0.9575 + }, + { + "start": 10832.08, + "end": 10832.34, + "probability": 0.7792 + }, + { + "start": 10832.46, + "end": 10833.8, + "probability": 0.9262 + }, + { + "start": 10834.48, + "end": 10835.04, + "probability": 0.9679 + }, + { + "start": 10835.64, + "end": 10837.34, + "probability": 0.8055 + }, + { + "start": 10837.5, + "end": 10838.6, + "probability": 0.7631 + }, + { + "start": 10838.62, + "end": 10839.14, + "probability": 0.9067 + }, + { + "start": 10839.38, + "end": 10844.5, + "probability": 0.95 + }, + { + "start": 10844.68, + "end": 10846.17, + "probability": 0.5858 + }, + { + "start": 10847.0, + "end": 10850.24, + "probability": 0.9432 + }, + { + "start": 10851.44, + "end": 10851.92, + "probability": 0.653 + }, + { + "start": 10851.96, + "end": 10853.24, + "probability": 0.7842 + }, + { + "start": 10853.62, + "end": 10855.84, + "probability": 0.9951 + }, + { + "start": 10857.28, + "end": 10861.2, + "probability": 0.8895 + }, + { + "start": 10861.5, + "end": 10864.08, + "probability": 0.9807 + }, + { + "start": 10864.44, + "end": 10868.7, + "probability": 0.9884 + }, + { + "start": 10868.84, + "end": 10869.94, + "probability": 0.5727 + }, + { + "start": 10870.06, + "end": 10871.44, + "probability": 0.7394 + }, + { + "start": 10871.96, + "end": 10873.86, + "probability": 0.967 + }, + { + "start": 10874.36, + "end": 10874.86, + "probability": 0.5313 + }, + { + "start": 10876.62, + "end": 10877.2, + "probability": 0.9536 + }, + { + "start": 10877.32, + "end": 10878.34, + "probability": 0.9832 + }, + { + "start": 10878.7, + "end": 10879.54, + "probability": 0.866 + }, + { + "start": 10879.7, + "end": 10881.84, + "probability": 0.9895 + }, + { + "start": 10882.3, + "end": 10882.64, + "probability": 0.8121 + }, + { + "start": 10883.38, + "end": 10886.66, + "probability": 0.874 + }, + { + "start": 10887.18, + "end": 10889.9, + "probability": 0.9976 + }, + { + "start": 10889.9, + "end": 10892.74, + "probability": 0.8546 + }, + { + "start": 10893.1, + "end": 10894.54, + "probability": 0.6063 + }, + { + "start": 10895.68, + "end": 10896.42, + "probability": 0.603 + }, + { + "start": 10896.6, + "end": 10897.6, + "probability": 0.9225 + }, + { + "start": 10897.72, + "end": 10898.5, + "probability": 0.972 + }, + { + "start": 10898.72, + "end": 10903.02, + "probability": 0.9585 + }, + { + "start": 10903.16, + "end": 10904.6, + "probability": 0.6271 + }, + { + "start": 10904.6, + "end": 10905.86, + "probability": 0.9631 + }, + { + "start": 10906.06, + "end": 10909.0, + "probability": 0.9961 + }, + { + "start": 10909.72, + "end": 10912.34, + "probability": 0.939 + }, + { + "start": 10912.84, + "end": 10913.52, + "probability": 0.7515 + }, + { + "start": 10914.06, + "end": 10915.32, + "probability": 0.8586 + }, + { + "start": 10915.82, + "end": 10916.7, + "probability": 0.9615 + }, + { + "start": 10916.86, + "end": 10917.14, + "probability": 0.8016 + }, + { + "start": 10917.6, + "end": 10919.1, + "probability": 0.8452 + }, + { + "start": 10919.22, + "end": 10920.94, + "probability": 0.9805 + }, + { + "start": 10921.48, + "end": 10923.1, + "probability": 0.9837 + }, + { + "start": 10923.6, + "end": 10923.74, + "probability": 0.7947 + }, + { + "start": 10933.72, + "end": 10935.62, + "probability": 0.6606 + }, + { + "start": 10937.22, + "end": 10947.04, + "probability": 0.8499 + }, + { + "start": 10948.32, + "end": 10949.86, + "probability": 0.9815 + }, + { + "start": 10951.16, + "end": 10952.06, + "probability": 0.969 + }, + { + "start": 10953.4, + "end": 10955.48, + "probability": 0.8801 + }, + { + "start": 10956.4, + "end": 10959.24, + "probability": 0.7331 + }, + { + "start": 10960.58, + "end": 10963.64, + "probability": 0.5979 + }, + { + "start": 10963.72, + "end": 10964.68, + "probability": 0.9127 + }, + { + "start": 10965.58, + "end": 10969.36, + "probability": 0.8874 + }, + { + "start": 10969.66, + "end": 10971.09, + "probability": 0.7119 + }, + { + "start": 10972.02, + "end": 10973.46, + "probability": 0.778 + }, + { + "start": 10973.74, + "end": 10976.16, + "probability": 0.5494 + }, + { + "start": 10976.22, + "end": 10980.02, + "probability": 0.9657 + }, + { + "start": 10980.2, + "end": 10981.18, + "probability": 0.7629 + }, + { + "start": 10981.24, + "end": 10982.03, + "probability": 0.7245 + }, + { + "start": 10983.06, + "end": 10986.38, + "probability": 0.988 + }, + { + "start": 10988.42, + "end": 10990.48, + "probability": 0.6753 + }, + { + "start": 10990.62, + "end": 10991.22, + "probability": 0.9325 + }, + { + "start": 10991.32, + "end": 10995.24, + "probability": 0.8338 + }, + { + "start": 10995.4, + "end": 10999.1, + "probability": 0.9905 + }, + { + "start": 11000.4, + "end": 11000.96, + "probability": 0.7468 + }, + { + "start": 11001.06, + "end": 11001.92, + "probability": 0.7488 + }, + { + "start": 11001.92, + "end": 11005.22, + "probability": 0.9945 + }, + { + "start": 11006.12, + "end": 11007.82, + "probability": 0.9943 + }, + { + "start": 11008.95, + "end": 11014.1, + "probability": 0.9141 + }, + { + "start": 11015.56, + "end": 11019.12, + "probability": 0.9868 + }, + { + "start": 11019.66, + "end": 11024.04, + "probability": 0.9985 + }, + { + "start": 11025.48, + "end": 11028.24, + "probability": 0.9959 + }, + { + "start": 11028.24, + "end": 11031.04, + "probability": 0.9875 + }, + { + "start": 11031.18, + "end": 11031.9, + "probability": 0.7295 + }, + { + "start": 11032.12, + "end": 11033.7, + "probability": 0.9933 + }, + { + "start": 11034.82, + "end": 11036.46, + "probability": 0.9985 + }, + { + "start": 11037.04, + "end": 11037.86, + "probability": 0.7515 + }, + { + "start": 11038.3, + "end": 11047.52, + "probability": 0.9607 + }, + { + "start": 11047.78, + "end": 11048.22, + "probability": 0.5891 + }, + { + "start": 11048.72, + "end": 11051.82, + "probability": 0.959 + }, + { + "start": 11053.06, + "end": 11053.06, + "probability": 0.1034 + }, + { + "start": 11053.94, + "end": 11059.58, + "probability": 0.9934 + }, + { + "start": 11060.72, + "end": 11065.96, + "probability": 0.9984 + }, + { + "start": 11066.14, + "end": 11069.96, + "probability": 0.9722 + }, + { + "start": 11070.89, + "end": 11071.92, + "probability": 0.6975 + }, + { + "start": 11072.08, + "end": 11076.4, + "probability": 0.9742 + }, + { + "start": 11077.18, + "end": 11079.38, + "probability": 0.9852 + }, + { + "start": 11079.46, + "end": 11082.22, + "probability": 0.9373 + }, + { + "start": 11083.16, + "end": 11087.6, + "probability": 0.928 + }, + { + "start": 11088.68, + "end": 11094.72, + "probability": 0.9421 + }, + { + "start": 11094.88, + "end": 11097.42, + "probability": 0.2831 + }, + { + "start": 11097.68, + "end": 11102.6, + "probability": 0.8804 + }, + { + "start": 11103.86, + "end": 11106.34, + "probability": 0.9711 + }, + { + "start": 11107.54, + "end": 11108.72, + "probability": 0.2701 + }, + { + "start": 11108.8, + "end": 11113.67, + "probability": 0.9474 + }, + { + "start": 11114.62, + "end": 11116.6, + "probability": 0.7665 + }, + { + "start": 11117.6, + "end": 11119.84, + "probability": 0.8184 + }, + { + "start": 11122.32, + "end": 11123.5, + "probability": 0.9852 + }, + { + "start": 11124.18, + "end": 11127.96, + "probability": 0.9937 + }, + { + "start": 11128.62, + "end": 11129.94, + "probability": 0.9945 + }, + { + "start": 11130.34, + "end": 11130.6, + "probability": 0.7205 + }, + { + "start": 11130.98, + "end": 11132.8, + "probability": 0.9847 + }, + { + "start": 11132.94, + "end": 11134.28, + "probability": 0.9265 + }, + { + "start": 11135.38, + "end": 11135.94, + "probability": 0.6036 + }, + { + "start": 11136.08, + "end": 11137.94, + "probability": 0.9349 + }, + { + "start": 11138.61, + "end": 11140.1, + "probability": 0.6661 + }, + { + "start": 11151.72, + "end": 11152.58, + "probability": 0.561 + }, + { + "start": 11152.66, + "end": 11153.42, + "probability": 0.7952 + }, + { + "start": 11153.78, + "end": 11157.56, + "probability": 0.9371 + }, + { + "start": 11157.68, + "end": 11160.58, + "probability": 0.9918 + }, + { + "start": 11161.4, + "end": 11164.62, + "probability": 0.9607 + }, + { + "start": 11164.8, + "end": 11168.92, + "probability": 0.9869 + }, + { + "start": 11170.1, + "end": 11171.8, + "probability": 0.9966 + }, + { + "start": 11171.9, + "end": 11174.46, + "probability": 0.9243 + }, + { + "start": 11175.2, + "end": 11178.4, + "probability": 0.9426 + }, + { + "start": 11178.92, + "end": 11181.44, + "probability": 0.957 + }, + { + "start": 11181.66, + "end": 11183.26, + "probability": 0.8986 + }, + { + "start": 11183.34, + "end": 11184.76, + "probability": 0.9697 + }, + { + "start": 11184.94, + "end": 11185.9, + "probability": 0.9142 + }, + { + "start": 11187.04, + "end": 11189.42, + "probability": 0.9976 + }, + { + "start": 11189.42, + "end": 11192.62, + "probability": 0.9476 + }, + { + "start": 11192.74, + "end": 11194.86, + "probability": 0.7937 + }, + { + "start": 11196.12, + "end": 11197.56, + "probability": 0.979 + }, + { + "start": 11197.7, + "end": 11200.23, + "probability": 0.9702 + }, + { + "start": 11201.76, + "end": 11202.32, + "probability": 0.9279 + }, + { + "start": 11202.32, + "end": 11202.92, + "probability": 0.8843 + }, + { + "start": 11202.96, + "end": 11203.84, + "probability": 0.9555 + }, + { + "start": 11203.9, + "end": 11206.64, + "probability": 0.9829 + }, + { + "start": 11206.72, + "end": 11207.76, + "probability": 0.5582 + }, + { + "start": 11207.88, + "end": 11208.65, + "probability": 0.8799 + }, + { + "start": 11208.78, + "end": 11210.38, + "probability": 0.9891 + }, + { + "start": 11210.52, + "end": 11211.68, + "probability": 0.9414 + }, + { + "start": 11213.02, + "end": 11213.4, + "probability": 0.449 + }, + { + "start": 11214.0, + "end": 11217.86, + "probability": 0.9407 + }, + { + "start": 11217.88, + "end": 11219.22, + "probability": 0.7164 + }, + { + "start": 11219.28, + "end": 11220.56, + "probability": 0.9621 + }, + { + "start": 11221.66, + "end": 11222.12, + "probability": 0.8804 + }, + { + "start": 11222.88, + "end": 11225.44, + "probability": 0.9921 + }, + { + "start": 11225.44, + "end": 11229.06, + "probability": 0.8385 + }, + { + "start": 11229.26, + "end": 11230.52, + "probability": 0.9031 + }, + { + "start": 11231.08, + "end": 11233.64, + "probability": 0.7574 + }, + { + "start": 11234.9, + "end": 11239.34, + "probability": 0.9854 + }, + { + "start": 11240.64, + "end": 11241.54, + "probability": 0.7763 + }, + { + "start": 11241.62, + "end": 11242.94, + "probability": 0.6557 + }, + { + "start": 11242.94, + "end": 11243.72, + "probability": 0.9776 + }, + { + "start": 11243.76, + "end": 11246.12, + "probability": 0.9836 + }, + { + "start": 11246.18, + "end": 11247.06, + "probability": 0.9172 + }, + { + "start": 11247.08, + "end": 11248.16, + "probability": 0.9998 + }, + { + "start": 11248.7, + "end": 11251.38, + "probability": 0.9865 + }, + { + "start": 11251.46, + "end": 11252.48, + "probability": 0.9928 + }, + { + "start": 11255.3, + "end": 11262.44, + "probability": 0.9823 + }, + { + "start": 11262.66, + "end": 11263.28, + "probability": 0.8857 + }, + { + "start": 11263.42, + "end": 11266.42, + "probability": 0.8724 + }, + { + "start": 11267.72, + "end": 11273.06, + "probability": 0.953 + }, + { + "start": 11273.06, + "end": 11276.04, + "probability": 0.9863 + }, + { + "start": 11277.0, + "end": 11279.52, + "probability": 0.9104 + }, + { + "start": 11280.28, + "end": 11284.37, + "probability": 0.9339 + }, + { + "start": 11284.86, + "end": 11287.44, + "probability": 0.9858 + }, + { + "start": 11288.34, + "end": 11290.7, + "probability": 0.8713 + }, + { + "start": 11291.24, + "end": 11295.86, + "probability": 0.956 + }, + { + "start": 11296.2, + "end": 11297.26, + "probability": 0.8037 + }, + { + "start": 11298.1, + "end": 11302.18, + "probability": 0.9948 + }, + { + "start": 11302.18, + "end": 11306.78, + "probability": 0.9982 + }, + { + "start": 11307.62, + "end": 11313.92, + "probability": 0.9185 + }, + { + "start": 11314.0, + "end": 11317.34, + "probability": 0.9929 + }, + { + "start": 11318.02, + "end": 11320.1, + "probability": 0.948 + }, + { + "start": 11320.78, + "end": 11326.38, + "probability": 0.9854 + }, + { + "start": 11326.5, + "end": 11327.02, + "probability": 0.8128 + }, + { + "start": 11327.08, + "end": 11331.46, + "probability": 0.9979 + }, + { + "start": 11332.08, + "end": 11332.32, + "probability": 0.8069 + }, + { + "start": 11332.96, + "end": 11334.72, + "probability": 0.895 + }, + { + "start": 11335.34, + "end": 11337.38, + "probability": 0.9943 + }, + { + "start": 11337.38, + "end": 11340.16, + "probability": 0.7636 + }, + { + "start": 11340.22, + "end": 11344.36, + "probability": 0.6991 + }, + { + "start": 11344.38, + "end": 11345.24, + "probability": 0.9845 + }, + { + "start": 11345.62, + "end": 11350.26, + "probability": 0.7959 + }, + { + "start": 11350.3, + "end": 11350.88, + "probability": 0.587 + }, + { + "start": 11351.18, + "end": 11351.86, + "probability": 0.4801 + }, + { + "start": 11351.96, + "end": 11353.7, + "probability": 0.9702 + }, + { + "start": 11353.7, + "end": 11354.32, + "probability": 0.6438 + }, + { + "start": 11354.7, + "end": 11356.88, + "probability": 0.6439 + }, + { + "start": 11357.22, + "end": 11360.73, + "probability": 0.9081 + }, + { + "start": 11361.04, + "end": 11361.85, + "probability": 0.2771 + }, + { + "start": 11362.18, + "end": 11362.18, + "probability": 0.4178 + }, + { + "start": 11362.28, + "end": 11363.56, + "probability": 0.4178 + }, + { + "start": 11363.6, + "end": 11364.86, + "probability": 0.4141 + }, + { + "start": 11371.34, + "end": 11373.98, + "probability": 0.5541 + }, + { + "start": 11381.08, + "end": 11381.74, + "probability": 0.8086 + }, + { + "start": 11383.06, + "end": 11384.12, + "probability": 0.6816 + }, + { + "start": 11385.42, + "end": 11388.88, + "probability": 0.8908 + }, + { + "start": 11389.88, + "end": 11392.96, + "probability": 0.9415 + }, + { + "start": 11393.1, + "end": 11394.2, + "probability": 0.9255 + }, + { + "start": 11394.28, + "end": 11396.26, + "probability": 0.9574 + }, + { + "start": 11396.54, + "end": 11401.72, + "probability": 0.8469 + }, + { + "start": 11402.28, + "end": 11403.36, + "probability": 0.9608 + }, + { + "start": 11404.66, + "end": 11410.08, + "probability": 0.9963 + }, + { + "start": 11410.08, + "end": 11413.6, + "probability": 0.9756 + }, + { + "start": 11414.68, + "end": 11415.58, + "probability": 0.8122 + }, + { + "start": 11416.02, + "end": 11420.92, + "probability": 0.7677 + }, + { + "start": 11421.0, + "end": 11423.52, + "probability": 0.801 + }, + { + "start": 11423.8, + "end": 11425.16, + "probability": 0.7896 + }, + { + "start": 11427.02, + "end": 11428.6, + "probability": 0.9983 + }, + { + "start": 11428.74, + "end": 11429.46, + "probability": 0.2716 + }, + { + "start": 11430.1, + "end": 11430.6, + "probability": 0.9116 + }, + { + "start": 11430.68, + "end": 11431.12, + "probability": 0.9647 + }, + { + "start": 11431.16, + "end": 11431.86, + "probability": 0.9695 + }, + { + "start": 11432.32, + "end": 11433.32, + "probability": 0.9175 + }, + { + "start": 11433.6, + "end": 11435.74, + "probability": 0.9504 + }, + { + "start": 11436.6, + "end": 11438.14, + "probability": 0.8634 + }, + { + "start": 11438.86, + "end": 11440.86, + "probability": 0.9637 + }, + { + "start": 11440.98, + "end": 11442.54, + "probability": 0.9648 + }, + { + "start": 11443.06, + "end": 11445.62, + "probability": 0.9893 + }, + { + "start": 11447.12, + "end": 11447.62, + "probability": 0.9042 + }, + { + "start": 11449.16, + "end": 11450.24, + "probability": 0.945 + }, + { + "start": 11450.78, + "end": 11453.36, + "probability": 0.9922 + }, + { + "start": 11454.46, + "end": 11456.04, + "probability": 0.7851 + }, + { + "start": 11457.32, + "end": 11460.0, + "probability": 0.4823 + }, + { + "start": 11460.54, + "end": 11462.98, + "probability": 0.9866 + }, + { + "start": 11463.02, + "end": 11466.34, + "probability": 0.9723 + }, + { + "start": 11467.26, + "end": 11468.42, + "probability": 0.9209 + }, + { + "start": 11469.0, + "end": 11469.96, + "probability": 0.7866 + }, + { + "start": 11471.06, + "end": 11471.68, + "probability": 0.8571 + }, + { + "start": 11472.28, + "end": 11474.52, + "probability": 0.9669 + }, + { + "start": 11475.2, + "end": 11476.82, + "probability": 0.9634 + }, + { + "start": 11477.34, + "end": 11478.8, + "probability": 0.943 + }, + { + "start": 11478.96, + "end": 11482.6, + "probability": 0.9878 + }, + { + "start": 11483.22, + "end": 11486.32, + "probability": 0.9593 + }, + { + "start": 11486.42, + "end": 11487.34, + "probability": 0.4864 + }, + { + "start": 11488.06, + "end": 11491.32, + "probability": 0.947 + }, + { + "start": 11491.5, + "end": 11492.56, + "probability": 0.9045 + }, + { + "start": 11493.66, + "end": 11497.72, + "probability": 0.9798 + }, + { + "start": 11500.24, + "end": 11500.52, + "probability": 0.9492 + }, + { + "start": 11501.04, + "end": 11503.2, + "probability": 0.8051 + }, + { + "start": 11503.58, + "end": 11505.58, + "probability": 0.9753 + }, + { + "start": 11505.8, + "end": 11507.82, + "probability": 0.9063 + }, + { + "start": 11509.1, + "end": 11509.32, + "probability": 0.8708 + }, + { + "start": 11510.1, + "end": 11513.76, + "probability": 0.9743 + }, + { + "start": 11514.64, + "end": 11517.26, + "probability": 0.7212 + }, + { + "start": 11518.14, + "end": 11520.44, + "probability": 0.9899 + }, + { + "start": 11521.06, + "end": 11523.18, + "probability": 0.9899 + }, + { + "start": 11523.58, + "end": 11527.32, + "probability": 0.967 + }, + { + "start": 11527.8, + "end": 11528.66, + "probability": 0.778 + }, + { + "start": 11529.16, + "end": 11532.92, + "probability": 0.979 + }, + { + "start": 11533.88, + "end": 11536.84, + "probability": 0.6836 + }, + { + "start": 11537.52, + "end": 11540.84, + "probability": 0.9695 + }, + { + "start": 11541.76, + "end": 11544.54, + "probability": 0.8224 + }, + { + "start": 11544.98, + "end": 11546.36, + "probability": 0.7581 + }, + { + "start": 11546.68, + "end": 11547.18, + "probability": 0.8486 + }, + { + "start": 11548.12, + "end": 11549.28, + "probability": 0.8104 + }, + { + "start": 11549.9, + "end": 11552.06, + "probability": 0.8718 + }, + { + "start": 11552.62, + "end": 11557.18, + "probability": 0.9819 + }, + { + "start": 11557.84, + "end": 11558.76, + "probability": 0.9907 + }, + { + "start": 11559.94, + "end": 11562.44, + "probability": 0.8596 + }, + { + "start": 11562.6, + "end": 11564.48, + "probability": 0.558 + }, + { + "start": 11565.16, + "end": 11568.58, + "probability": 0.9861 + }, + { + "start": 11570.52, + "end": 11571.22, + "probability": 0.6108 + }, + { + "start": 11571.78, + "end": 11573.98, + "probability": 0.7084 + }, + { + "start": 11574.36, + "end": 11575.26, + "probability": 0.7969 + }, + { + "start": 11575.42, + "end": 11576.98, + "probability": 0.9335 + }, + { + "start": 11577.28, + "end": 11579.24, + "probability": 0.994 + }, + { + "start": 11579.78, + "end": 11581.6, + "probability": 0.9955 + }, + { + "start": 11582.6, + "end": 11584.54, + "probability": 0.8439 + }, + { + "start": 11585.28, + "end": 11587.7, + "probability": 0.6877 + }, + { + "start": 11588.54, + "end": 11592.32, + "probability": 0.9046 + }, + { + "start": 11593.14, + "end": 11594.96, + "probability": 0.9603 + }, + { + "start": 11595.1, + "end": 11596.82, + "probability": 0.8138 + }, + { + "start": 11597.1, + "end": 11598.18, + "probability": 0.8777 + }, + { + "start": 11599.88, + "end": 11602.04, + "probability": 0.9592 + }, + { + "start": 11602.72, + "end": 11604.2, + "probability": 0.9934 + }, + { + "start": 11604.94, + "end": 11606.34, + "probability": 0.661 + }, + { + "start": 11606.44, + "end": 11607.33, + "probability": 0.8203 + }, + { + "start": 11607.58, + "end": 11609.88, + "probability": 0.9927 + }, + { + "start": 11610.0, + "end": 11612.1, + "probability": 0.286 + }, + { + "start": 11612.84, + "end": 11616.2, + "probability": 0.6843 + }, + { + "start": 11617.08, + "end": 11620.08, + "probability": 0.7507 + }, + { + "start": 11620.62, + "end": 11621.52, + "probability": 0.7493 + }, + { + "start": 11621.62, + "end": 11622.56, + "probability": 0.8101 + }, + { + "start": 11622.66, + "end": 11623.04, + "probability": 0.6764 + }, + { + "start": 11623.04, + "end": 11624.5, + "probability": 0.7927 + }, + { + "start": 11625.04, + "end": 11626.7, + "probability": 0.9709 + }, + { + "start": 11626.84, + "end": 11627.18, + "probability": 0.7144 + }, + { + "start": 11627.26, + "end": 11627.72, + "probability": 0.7215 + }, + { + "start": 11627.8, + "end": 11628.06, + "probability": 0.7258 + }, + { + "start": 11628.08, + "end": 11629.54, + "probability": 0.5113 + }, + { + "start": 11629.6, + "end": 11630.72, + "probability": 0.9253 + }, + { + "start": 11631.3, + "end": 11634.3, + "probability": 0.8208 + }, + { + "start": 11634.44, + "end": 11635.42, + "probability": 0.9119 + }, + { + "start": 11636.38, + "end": 11639.78, + "probability": 0.9941 + }, + { + "start": 11639.94, + "end": 11644.26, + "probability": 0.9941 + }, + { + "start": 11644.26, + "end": 11648.1, + "probability": 0.9995 + }, + { + "start": 11649.12, + "end": 11652.32, + "probability": 0.9653 + }, + { + "start": 11654.77, + "end": 11655.4, + "probability": 0.1103 + }, + { + "start": 11655.4, + "end": 11656.9, + "probability": 0.8911 + }, + { + "start": 11657.3, + "end": 11657.5, + "probability": 0.6161 + }, + { + "start": 11657.94, + "end": 11659.88, + "probability": 0.9539 + }, + { + "start": 11662.1, + "end": 11662.84, + "probability": 0.4956 + }, + { + "start": 11663.58, + "end": 11664.34, + "probability": 0.5821 + }, + { + "start": 11665.48, + "end": 11668.0, + "probability": 0.3416 + }, + { + "start": 11668.96, + "end": 11671.56, + "probability": 0.7864 + }, + { + "start": 11689.46, + "end": 11692.22, + "probability": 0.7321 + }, + { + "start": 11693.64, + "end": 11698.6, + "probability": 0.9471 + }, + { + "start": 11698.6, + "end": 11702.88, + "probability": 0.9939 + }, + { + "start": 11702.88, + "end": 11703.64, + "probability": 0.9144 + }, + { + "start": 11704.42, + "end": 11707.26, + "probability": 0.9994 + }, + { + "start": 11708.1, + "end": 11708.6, + "probability": 0.8436 + }, + { + "start": 11708.76, + "end": 11709.84, + "probability": 0.9784 + }, + { + "start": 11709.96, + "end": 11714.42, + "probability": 0.9787 + }, + { + "start": 11715.32, + "end": 11715.74, + "probability": 0.4908 + }, + { + "start": 11716.4, + "end": 11719.28, + "probability": 0.9955 + }, + { + "start": 11719.82, + "end": 11724.6, + "probability": 0.9971 + }, + { + "start": 11725.36, + "end": 11729.78, + "probability": 0.9973 + }, + { + "start": 11730.68, + "end": 11734.22, + "probability": 0.6175 + }, + { + "start": 11734.22, + "end": 11737.34, + "probability": 0.8384 + }, + { + "start": 11737.56, + "end": 11739.86, + "probability": 0.9958 + }, + { + "start": 11740.62, + "end": 11741.54, + "probability": 0.7926 + }, + { + "start": 11741.6, + "end": 11742.16, + "probability": 0.9865 + }, + { + "start": 11742.28, + "end": 11742.92, + "probability": 0.9153 + }, + { + "start": 11743.04, + "end": 11743.58, + "probability": 0.9428 + }, + { + "start": 11743.64, + "end": 11745.24, + "probability": 0.9196 + }, + { + "start": 11746.26, + "end": 11748.54, + "probability": 0.9076 + }, + { + "start": 11748.64, + "end": 11749.44, + "probability": 0.6928 + }, + { + "start": 11749.64, + "end": 11751.48, + "probability": 0.9751 + }, + { + "start": 11751.48, + "end": 11754.55, + "probability": 0.9904 + }, + { + "start": 11755.06, + "end": 11756.68, + "probability": 0.984 + }, + { + "start": 11757.62, + "end": 11758.04, + "probability": 0.44 + }, + { + "start": 11758.16, + "end": 11759.14, + "probability": 0.9618 + }, + { + "start": 11759.34, + "end": 11759.98, + "probability": 0.2325 + }, + { + "start": 11760.4, + "end": 11762.52, + "probability": 0.9606 + }, + { + "start": 11763.42, + "end": 11766.26, + "probability": 0.9903 + }, + { + "start": 11767.24, + "end": 11773.54, + "probability": 0.8801 + }, + { + "start": 11774.32, + "end": 11775.3, + "probability": 0.7675 + }, + { + "start": 11775.76, + "end": 11776.68, + "probability": 0.7331 + }, + { + "start": 11776.8, + "end": 11777.66, + "probability": 0.9043 + }, + { + "start": 11777.78, + "end": 11778.26, + "probability": 0.6849 + }, + { + "start": 11778.58, + "end": 11780.62, + "probability": 0.978 + }, + { + "start": 11781.24, + "end": 11782.48, + "probability": 0.8752 + }, + { + "start": 11783.42, + "end": 11789.06, + "probability": 0.9312 + }, + { + "start": 11789.12, + "end": 11791.2, + "probability": 0.9455 + }, + { + "start": 11791.38, + "end": 11792.58, + "probability": 0.7504 + }, + { + "start": 11793.52, + "end": 11798.54, + "probability": 0.9891 + }, + { + "start": 11799.54, + "end": 11801.92, + "probability": 0.9943 + }, + { + "start": 11801.92, + "end": 11804.88, + "probability": 0.9986 + }, + { + "start": 11805.42, + "end": 11810.86, + "probability": 0.9983 + }, + { + "start": 11812.18, + "end": 11813.2, + "probability": 0.5733 + }, + { + "start": 11813.84, + "end": 11817.12, + "probability": 0.9772 + }, + { + "start": 11817.24, + "end": 11819.52, + "probability": 0.9988 + }, + { + "start": 11820.04, + "end": 11820.6, + "probability": 0.9405 + }, + { + "start": 11821.54, + "end": 11824.91, + "probability": 0.6752 + }, + { + "start": 11825.08, + "end": 11829.94, + "probability": 0.9136 + }, + { + "start": 11830.12, + "end": 11834.9, + "probability": 0.9922 + }, + { + "start": 11836.13, + "end": 11839.94, + "probability": 0.9883 + }, + { + "start": 11840.5, + "end": 11843.18, + "probability": 0.9924 + }, + { + "start": 11844.06, + "end": 11847.2, + "probability": 0.9264 + }, + { + "start": 11847.24, + "end": 11849.18, + "probability": 0.9234 + }, + { + "start": 11849.34, + "end": 11853.3, + "probability": 0.9964 + }, + { + "start": 11854.6, + "end": 11856.56, + "probability": 0.9841 + }, + { + "start": 11856.62, + "end": 11859.32, + "probability": 0.9952 + }, + { + "start": 11859.38, + "end": 11861.54, + "probability": 0.9437 + }, + { + "start": 11861.72, + "end": 11862.62, + "probability": 0.7949 + }, + { + "start": 11864.04, + "end": 11867.16, + "probability": 0.6558 + }, + { + "start": 11868.04, + "end": 11872.32, + "probability": 0.902 + }, + { + "start": 11872.98, + "end": 11877.76, + "probability": 0.9853 + }, + { + "start": 11878.06, + "end": 11879.64, + "probability": 0.8997 + }, + { + "start": 11880.34, + "end": 11882.54, + "probability": 0.9016 + }, + { + "start": 11883.64, + "end": 11887.44, + "probability": 0.7198 + }, + { + "start": 11888.56, + "end": 11891.09, + "probability": 0.9941 + }, + { + "start": 11892.26, + "end": 11892.96, + "probability": 0.5091 + }, + { + "start": 11893.3, + "end": 11899.56, + "probability": 0.9821 + }, + { + "start": 11900.38, + "end": 11902.4, + "probability": 0.9649 + }, + { + "start": 11903.3, + "end": 11905.64, + "probability": 0.8938 + }, + { + "start": 11906.9, + "end": 11909.86, + "probability": 0.9097 + }, + { + "start": 11910.54, + "end": 11912.88, + "probability": 0.9439 + }, + { + "start": 11913.62, + "end": 11914.98, + "probability": 0.6982 + }, + { + "start": 11916.8, + "end": 11917.08, + "probability": 0.7312 + }, + { + "start": 11917.08, + "end": 11919.44, + "probability": 0.7707 + }, + { + "start": 11919.88, + "end": 11921.94, + "probability": 0.5609 + }, + { + "start": 11922.36, + "end": 11923.4, + "probability": 0.8239 + }, + { + "start": 11923.66, + "end": 11925.28, + "probability": 0.9176 + }, + { + "start": 11926.2, + "end": 11926.48, + "probability": 0.4855 + }, + { + "start": 11926.52, + "end": 11926.92, + "probability": 0.9676 + }, + { + "start": 11935.16, + "end": 11936.6, + "probability": 0.6163 + }, + { + "start": 11937.92, + "end": 11938.44, + "probability": 0.9074 + }, + { + "start": 11938.56, + "end": 11939.84, + "probability": 0.7643 + }, + { + "start": 11940.02, + "end": 11943.64, + "probability": 0.9766 + }, + { + "start": 11945.96, + "end": 11949.5, + "probability": 0.9896 + }, + { + "start": 11949.98, + "end": 11951.9, + "probability": 0.9905 + }, + { + "start": 11952.2, + "end": 11958.12, + "probability": 0.988 + }, + { + "start": 11959.24, + "end": 11961.6, + "probability": 0.9959 + }, + { + "start": 11962.76, + "end": 11964.86, + "probability": 0.9902 + }, + { + "start": 11965.66, + "end": 11968.48, + "probability": 0.9907 + }, + { + "start": 11968.48, + "end": 11973.22, + "probability": 0.9995 + }, + { + "start": 11974.32, + "end": 11976.18, + "probability": 0.8065 + }, + { + "start": 11976.8, + "end": 11982.32, + "probability": 0.9426 + }, + { + "start": 11983.18, + "end": 11983.9, + "probability": 0.696 + }, + { + "start": 11984.12, + "end": 11988.6, + "probability": 0.9964 + }, + { + "start": 11989.46, + "end": 11993.96, + "probability": 0.9943 + }, + { + "start": 11994.12, + "end": 11994.38, + "probability": 0.5178 + }, + { + "start": 11994.48, + "end": 11997.82, + "probability": 0.991 + }, + { + "start": 11998.76, + "end": 12001.36, + "probability": 0.8975 + }, + { + "start": 12001.54, + "end": 12004.14, + "probability": 0.9636 + }, + { + "start": 12004.34, + "end": 12007.18, + "probability": 0.9647 + }, + { + "start": 12009.56, + "end": 12011.2, + "probability": 0.8875 + }, + { + "start": 12012.14, + "end": 12013.74, + "probability": 0.7089 + }, + { + "start": 12014.14, + "end": 12016.86, + "probability": 0.6839 + }, + { + "start": 12016.98, + "end": 12018.58, + "probability": 0.6586 + }, + { + "start": 12018.66, + "end": 12019.42, + "probability": 0.6952 + }, + { + "start": 12019.88, + "end": 12019.98, + "probability": 0.4661 + }, + { + "start": 12021.04, + "end": 12021.46, + "probability": 0.7455 + }, + { + "start": 12021.48, + "end": 12021.76, + "probability": 0.4345 + }, + { + "start": 12021.8, + "end": 12022.24, + "probability": 0.9169 + }, + { + "start": 12040.02, + "end": 12040.02, + "probability": 0.3491 + }, + { + "start": 12040.02, + "end": 12041.84, + "probability": 0.5419 + }, + { + "start": 12041.94, + "end": 12044.46, + "probability": 0.8262 + }, + { + "start": 12044.96, + "end": 12048.76, + "probability": 0.6536 + }, + { + "start": 12049.44, + "end": 12051.22, + "probability": 0.7948 + }, + { + "start": 12051.99, + "end": 12052.26, + "probability": 0.0162 + }, + { + "start": 12052.26, + "end": 12052.64, + "probability": 0.558 + }, + { + "start": 12052.72, + "end": 12053.24, + "probability": 0.5908 + }, + { + "start": 12053.38, + "end": 12053.64, + "probability": 0.15 + }, + { + "start": 12053.78, + "end": 12054.94, + "probability": 0.7085 + }, + { + "start": 12072.24, + "end": 12072.92, + "probability": 0.674 + }, + { + "start": 12075.84, + "end": 12076.22, + "probability": 0.0684 + }, + { + "start": 12076.22, + "end": 12076.22, + "probability": 0.2909 + }, + { + "start": 12076.22, + "end": 12077.52, + "probability": 0.5248 + }, + { + "start": 12077.64, + "end": 12077.64, + "probability": 0.4146 + }, + { + "start": 12077.64, + "end": 12078.18, + "probability": 0.8668 + }, + { + "start": 12078.3, + "end": 12079.48, + "probability": 0.6055 + }, + { + "start": 12080.6, + "end": 12084.76, + "probability": 0.9168 + }, + { + "start": 12085.02, + "end": 12088.2, + "probability": 0.9954 + }, + { + "start": 12088.94, + "end": 12097.57, + "probability": 0.9172 + }, + { + "start": 12098.46, + "end": 12102.46, + "probability": 0.9711 + }, + { + "start": 12103.18, + "end": 12103.64, + "probability": 0.6214 + }, + { + "start": 12103.64, + "end": 12104.76, + "probability": 0.693 + }, + { + "start": 12104.82, + "end": 12105.14, + "probability": 0.7502 + }, + { + "start": 12105.4, + "end": 12107.74, + "probability": 0.987 + }, + { + "start": 12107.82, + "end": 12109.6, + "probability": 0.9891 + }, + { + "start": 12110.7, + "end": 12113.46, + "probability": 0.9919 + }, + { + "start": 12113.46, + "end": 12116.06, + "probability": 0.9824 + }, + { + "start": 12117.36, + "end": 12122.2, + "probability": 0.965 + }, + { + "start": 12123.22, + "end": 12123.74, + "probability": 0.9101 + }, + { + "start": 12123.94, + "end": 12126.18, + "probability": 0.9946 + }, + { + "start": 12126.3, + "end": 12127.07, + "probability": 0.9485 + }, + { + "start": 12127.66, + "end": 12128.58, + "probability": 0.9686 + }, + { + "start": 12128.64, + "end": 12129.6, + "probability": 0.9883 + }, + { + "start": 12130.22, + "end": 12131.7, + "probability": 0.9819 + }, + { + "start": 12132.5, + "end": 12137.88, + "probability": 0.9541 + }, + { + "start": 12138.58, + "end": 12142.06, + "probability": 0.9865 + }, + { + "start": 12142.06, + "end": 12146.64, + "probability": 0.9909 + }, + { + "start": 12147.6, + "end": 12147.7, + "probability": 0.2182 + }, + { + "start": 12147.7, + "end": 12147.96, + "probability": 0.6193 + }, + { + "start": 12148.08, + "end": 12149.18, + "probability": 0.8882 + }, + { + "start": 12149.4, + "end": 12153.52, + "probability": 0.9956 + }, + { + "start": 12153.52, + "end": 12156.34, + "probability": 0.9992 + }, + { + "start": 12157.42, + "end": 12159.82, + "probability": 0.9934 + }, + { + "start": 12159.94, + "end": 12166.26, + "probability": 0.9771 + }, + { + "start": 12166.26, + "end": 12167.66, + "probability": 0.5016 + }, + { + "start": 12168.94, + "end": 12172.72, + "probability": 0.3982 + }, + { + "start": 12173.4, + "end": 12174.68, + "probability": 0.6061 + }, + { + "start": 12174.82, + "end": 12175.8, + "probability": 0.6684 + }, + { + "start": 12176.28, + "end": 12176.98, + "probability": 0.9081 + }, + { + "start": 12177.1, + "end": 12179.92, + "probability": 0.6277 + }, + { + "start": 12180.04, + "end": 12180.62, + "probability": 0.5571 + }, + { + "start": 12180.98, + "end": 12183.16, + "probability": 0.9044 + }, + { + "start": 12183.3, + "end": 12185.0, + "probability": 0.8981 + }, + { + "start": 12185.08, + "end": 12186.42, + "probability": 0.8284 + }, + { + "start": 12186.52, + "end": 12189.48, + "probability": 0.9941 + }, + { + "start": 12189.48, + "end": 12192.7, + "probability": 0.7726 + }, + { + "start": 12192.84, + "end": 12193.22, + "probability": 0.7217 + }, + { + "start": 12193.26, + "end": 12195.56, + "probability": 0.9796 + }, + { + "start": 12195.56, + "end": 12198.22, + "probability": 0.7792 + }, + { + "start": 12199.38, + "end": 12200.32, + "probability": 0.6827 + }, + { + "start": 12200.48, + "end": 12200.92, + "probability": 0.8798 + }, + { + "start": 12201.0, + "end": 12202.78, + "probability": 0.972 + }, + { + "start": 12202.84, + "end": 12207.0, + "probability": 0.9245 + }, + { + "start": 12207.0, + "end": 12211.32, + "probability": 0.998 + }, + { + "start": 12212.32, + "end": 12215.22, + "probability": 0.9797 + }, + { + "start": 12215.58, + "end": 12218.26, + "probability": 0.9865 + }, + { + "start": 12218.44, + "end": 12222.1, + "probability": 0.9993 + }, + { + "start": 12222.8, + "end": 12223.58, + "probability": 0.5613 + }, + { + "start": 12224.54, + "end": 12226.38, + "probability": 0.5995 + }, + { + "start": 12226.5, + "end": 12227.32, + "probability": 0.8715 + }, + { + "start": 12228.08, + "end": 12231.18, + "probability": 0.9827 + }, + { + "start": 12231.7, + "end": 12233.78, + "probability": 0.9768 + }, + { + "start": 12234.18, + "end": 12236.7, + "probability": 0.999 + }, + { + "start": 12236.78, + "end": 12237.4, + "probability": 0.8525 + }, + { + "start": 12237.46, + "end": 12240.56, + "probability": 0.9716 + }, + { + "start": 12241.34, + "end": 12242.0, + "probability": 0.9049 + }, + { + "start": 12242.16, + "end": 12246.7, + "probability": 0.9779 + }, + { + "start": 12246.74, + "end": 12247.36, + "probability": 0.8941 + }, + { + "start": 12247.86, + "end": 12249.32, + "probability": 0.9746 + }, + { + "start": 12249.6, + "end": 12250.08, + "probability": 0.6994 + }, + { + "start": 12251.12, + "end": 12255.22, + "probability": 0.9831 + }, + { + "start": 12255.6, + "end": 12257.8, + "probability": 0.9746 + }, + { + "start": 12258.24, + "end": 12262.9, + "probability": 0.9882 + }, + { + "start": 12263.54, + "end": 12266.52, + "probability": 0.7822 + }, + { + "start": 12267.04, + "end": 12268.5, + "probability": 0.7337 + }, + { + "start": 12269.08, + "end": 12272.22, + "probability": 0.9925 + }, + { + "start": 12272.24, + "end": 12273.22, + "probability": 0.8121 + }, + { + "start": 12273.54, + "end": 12274.7, + "probability": 0.945 + }, + { + "start": 12275.58, + "end": 12276.52, + "probability": 0.5215 + }, + { + "start": 12276.74, + "end": 12278.84, + "probability": 0.8966 + }, + { + "start": 12278.9, + "end": 12281.78, + "probability": 0.925 + }, + { + "start": 12282.96, + "end": 12287.12, + "probability": 0.9954 + }, + { + "start": 12287.68, + "end": 12289.47, + "probability": 0.981 + }, + { + "start": 12290.26, + "end": 12291.64, + "probability": 0.9304 + }, + { + "start": 12292.06, + "end": 12293.42, + "probability": 0.9878 + }, + { + "start": 12293.54, + "end": 12294.54, + "probability": 0.9871 + }, + { + "start": 12295.32, + "end": 12297.98, + "probability": 0.8944 + }, + { + "start": 12298.06, + "end": 12299.5, + "probability": 0.7614 + }, + { + "start": 12300.44, + "end": 12304.2, + "probability": 0.9927 + }, + { + "start": 12304.94, + "end": 12311.02, + "probability": 0.9634 + }, + { + "start": 12311.76, + "end": 12315.4, + "probability": 0.9985 + }, + { + "start": 12316.34, + "end": 12318.22, + "probability": 0.9941 + }, + { + "start": 12318.66, + "end": 12320.34, + "probability": 0.662 + }, + { + "start": 12320.52, + "end": 12323.52, + "probability": 0.9951 + }, + { + "start": 12323.52, + "end": 12327.36, + "probability": 0.9835 + }, + { + "start": 12327.98, + "end": 12328.32, + "probability": 0.5575 + }, + { + "start": 12328.4, + "end": 12329.5, + "probability": 0.8537 + }, + { + "start": 12329.96, + "end": 12332.26, + "probability": 0.9831 + }, + { + "start": 12332.34, + "end": 12332.98, + "probability": 0.914 + }, + { + "start": 12333.9, + "end": 12339.26, + "probability": 0.9377 + }, + { + "start": 12339.26, + "end": 12345.64, + "probability": 0.9979 + }, + { + "start": 12346.72, + "end": 12347.34, + "probability": 0.9922 + }, + { + "start": 12347.86, + "end": 12348.7, + "probability": 0.9838 + }, + { + "start": 12349.26, + "end": 12349.7, + "probability": 0.8145 + }, + { + "start": 12350.2, + "end": 12352.32, + "probability": 0.8668 + }, + { + "start": 12352.42, + "end": 12354.28, + "probability": 0.9585 + }, + { + "start": 12355.44, + "end": 12355.96, + "probability": 0.3718 + }, + { + "start": 12356.46, + "end": 12357.82, + "probability": 0.8173 + }, + { + "start": 12358.54, + "end": 12362.6, + "probability": 0.8992 + }, + { + "start": 12367.6, + "end": 12369.62, + "probability": 0.9964 + }, + { + "start": 12369.72, + "end": 12372.42, + "probability": 0.9611 + }, + { + "start": 12372.54, + "end": 12373.62, + "probability": 0.9894 + }, + { + "start": 12381.74, + "end": 12381.94, + "probability": 0.751 + }, + { + "start": 12383.16, + "end": 12386.34, + "probability": 0.8496 + }, + { + "start": 12387.32, + "end": 12388.12, + "probability": 0.378 + }, + { + "start": 12388.22, + "end": 12388.92, + "probability": 0.8214 + }, + { + "start": 12389.02, + "end": 12389.98, + "probability": 0.9545 + }, + { + "start": 12390.12, + "end": 12391.3, + "probability": 0.7458 + }, + { + "start": 12391.3, + "end": 12391.78, + "probability": 0.2277 + }, + { + "start": 12392.0, + "end": 12392.16, + "probability": 0.3612 + }, + { + "start": 12393.02, + "end": 12393.92, + "probability": 0.9854 + }, + { + "start": 12395.68, + "end": 12398.16, + "probability": 0.9657 + }, + { + "start": 12398.4, + "end": 12401.02, + "probability": 0.9308 + }, + { + "start": 12401.72, + "end": 12403.96, + "probability": 0.9693 + }, + { + "start": 12404.84, + "end": 12410.74, + "probability": 0.9905 + }, + { + "start": 12411.98, + "end": 12415.6, + "probability": 0.8989 + }, + { + "start": 12416.16, + "end": 12417.18, + "probability": 0.8862 + }, + { + "start": 12417.8, + "end": 12419.17, + "probability": 0.9524 + }, + { + "start": 12421.66, + "end": 12421.98, + "probability": 0.9036 + }, + { + "start": 12422.1, + "end": 12425.08, + "probability": 0.9653 + }, + { + "start": 12425.08, + "end": 12429.78, + "probability": 0.9038 + }, + { + "start": 12430.48, + "end": 12433.82, + "probability": 0.9322 + }, + { + "start": 12433.98, + "end": 12434.94, + "probability": 0.6317 + }, + { + "start": 12435.06, + "end": 12435.89, + "probability": 0.979 + }, + { + "start": 12437.04, + "end": 12441.82, + "probability": 0.9685 + }, + { + "start": 12442.02, + "end": 12443.88, + "probability": 0.8452 + }, + { + "start": 12444.34, + "end": 12444.98, + "probability": 0.8259 + }, + { + "start": 12445.06, + "end": 12447.1, + "probability": 0.8243 + }, + { + "start": 12448.16, + "end": 12453.94, + "probability": 0.9982 + }, + { + "start": 12454.0, + "end": 12455.64, + "probability": 0.6594 + }, + { + "start": 12456.6, + "end": 12463.3, + "probability": 0.9969 + }, + { + "start": 12464.44, + "end": 12465.96, + "probability": 0.9945 + }, + { + "start": 12466.0, + "end": 12467.22, + "probability": 0.9729 + }, + { + "start": 12467.34, + "end": 12468.26, + "probability": 0.5067 + }, + { + "start": 12469.38, + "end": 12471.88, + "probability": 0.8962 + }, + { + "start": 12473.18, + "end": 12474.4, + "probability": 0.9151 + }, + { + "start": 12474.48, + "end": 12477.32, + "probability": 0.96 + }, + { + "start": 12478.22, + "end": 12482.14, + "probability": 0.9829 + }, + { + "start": 12482.78, + "end": 12486.64, + "probability": 0.998 + }, + { + "start": 12487.2, + "end": 12488.78, + "probability": 0.9757 + }, + { + "start": 12490.66, + "end": 12491.18, + "probability": 0.8166 + }, + { + "start": 12491.28, + "end": 12494.78, + "probability": 0.9977 + }, + { + "start": 12495.62, + "end": 12496.24, + "probability": 0.2235 + }, + { + "start": 12496.46, + "end": 12497.4, + "probability": 0.9927 + }, + { + "start": 12497.62, + "end": 12498.86, + "probability": 0.9813 + }, + { + "start": 12499.44, + "end": 12506.52, + "probability": 0.5293 + }, + { + "start": 12507.92, + "end": 12509.75, + "probability": 0.9019 + }, + { + "start": 12510.2, + "end": 12515.72, + "probability": 0.9597 + }, + { + "start": 12515.86, + "end": 12517.12, + "probability": 0.8377 + }, + { + "start": 12517.8, + "end": 12520.8, + "probability": 0.9959 + }, + { + "start": 12521.26, + "end": 12521.6, + "probability": 0.5163 + }, + { + "start": 12521.7, + "end": 12522.32, + "probability": 0.876 + }, + { + "start": 12522.44, + "end": 12523.22, + "probability": 0.9396 + }, + { + "start": 12523.76, + "end": 12526.54, + "probability": 0.9871 + }, + { + "start": 12526.72, + "end": 12528.9, + "probability": 0.9725 + }, + { + "start": 12530.06, + "end": 12533.3, + "probability": 0.9608 + }, + { + "start": 12533.96, + "end": 12535.97, + "probability": 0.8223 + }, + { + "start": 12536.22, + "end": 12537.57, + "probability": 0.9683 + }, + { + "start": 12538.76, + "end": 12539.48, + "probability": 0.5782 + }, + { + "start": 12540.42, + "end": 12541.0, + "probability": 0.3506 + }, + { + "start": 12541.2, + "end": 12541.4, + "probability": 0.4042 + }, + { + "start": 12541.9, + "end": 12544.78, + "probability": 0.8611 + }, + { + "start": 12545.38, + "end": 12547.0, + "probability": 0.9174 + }, + { + "start": 12548.12, + "end": 12556.9, + "probability": 0.8689 + }, + { + "start": 12557.58, + "end": 12560.18, + "probability": 0.9889 + }, + { + "start": 12561.72, + "end": 12565.72, + "probability": 0.9858 + }, + { + "start": 12566.4, + "end": 12567.54, + "probability": 0.8384 + }, + { + "start": 12568.44, + "end": 12572.78, + "probability": 0.9913 + }, + { + "start": 12572.78, + "end": 12577.94, + "probability": 0.9038 + }, + { + "start": 12579.04, + "end": 12584.96, + "probability": 0.8712 + }, + { + "start": 12584.96, + "end": 12587.98, + "probability": 0.8258 + }, + { + "start": 12589.24, + "end": 12590.02, + "probability": 0.8833 + }, + { + "start": 12590.98, + "end": 12591.84, + "probability": 0.9548 + }, + { + "start": 12592.66, + "end": 12596.25, + "probability": 0.8259 + }, + { + "start": 12596.5, + "end": 12601.82, + "probability": 0.8641 + }, + { + "start": 12602.36, + "end": 12602.86, + "probability": 0.8444 + }, + { + "start": 12603.56, + "end": 12606.08, + "probability": 0.9722 + }, + { + "start": 12606.96, + "end": 12610.3, + "probability": 0.9904 + }, + { + "start": 12611.78, + "end": 12612.59, + "probability": 0.9004 + }, + { + "start": 12613.78, + "end": 12617.75, + "probability": 0.9726 + }, + { + "start": 12618.14, + "end": 12619.36, + "probability": 0.8927 + }, + { + "start": 12619.46, + "end": 12621.66, + "probability": 0.9545 + }, + { + "start": 12624.74, + "end": 12627.7, + "probability": 0.9604 + }, + { + "start": 12627.7, + "end": 12631.86, + "probability": 0.9869 + }, + { + "start": 12633.16, + "end": 12634.76, + "probability": 0.6842 + }, + { + "start": 12635.5, + "end": 12640.4, + "probability": 0.983 + }, + { + "start": 12641.1, + "end": 12641.92, + "probability": 0.0468 + }, + { + "start": 12642.32, + "end": 12644.86, + "probability": 0.8659 + }, + { + "start": 12645.34, + "end": 12650.52, + "probability": 0.9866 + }, + { + "start": 12651.12, + "end": 12651.7, + "probability": 0.5369 + }, + { + "start": 12651.86, + "end": 12654.52, + "probability": 0.9901 + }, + { + "start": 12655.16, + "end": 12656.38, + "probability": 0.9686 + }, + { + "start": 12656.48, + "end": 12657.08, + "probability": 0.9013 + }, + { + "start": 12657.44, + "end": 12664.31, + "probability": 0.9705 + }, + { + "start": 12665.0, + "end": 12666.28, + "probability": 0.9282 + }, + { + "start": 12666.82, + "end": 12669.14, + "probability": 0.9153 + }, + { + "start": 12669.54, + "end": 12669.9, + "probability": 0.8047 + }, + { + "start": 12670.18, + "end": 12672.24, + "probability": 0.9154 + }, + { + "start": 12672.56, + "end": 12674.4, + "probability": 0.8359 + }, + { + "start": 12687.92, + "end": 12688.04, + "probability": 0.5081 + }, + { + "start": 12688.04, + "end": 12688.6, + "probability": 0.6104 + }, + { + "start": 12688.7, + "end": 12691.6, + "probability": 0.3347 + }, + { + "start": 12692.9, + "end": 12694.78, + "probability": 0.9509 + }, + { + "start": 12695.76, + "end": 12699.24, + "probability": 0.8971 + }, + { + "start": 12699.8, + "end": 12701.28, + "probability": 0.9817 + }, + { + "start": 12701.44, + "end": 12702.76, + "probability": 0.325 + }, + { + "start": 12703.08, + "end": 12703.5, + "probability": 0.4917 + }, + { + "start": 12703.56, + "end": 12704.42, + "probability": 0.9717 + }, + { + "start": 12704.82, + "end": 12705.34, + "probability": 0.7345 + }, + { + "start": 12707.36, + "end": 12708.68, + "probability": 0.6645 + }, + { + "start": 12709.46, + "end": 12712.34, + "probability": 0.8299 + }, + { + "start": 12712.48, + "end": 12713.66, + "probability": 0.7395 + }, + { + "start": 12714.0, + "end": 12714.22, + "probability": 0.8815 + }, + { + "start": 12714.36, + "end": 12715.2, + "probability": 0.7576 + }, + { + "start": 12715.36, + "end": 12717.56, + "probability": 0.9282 + }, + { + "start": 12717.98, + "end": 12718.56, + "probability": 0.7762 + }, + { + "start": 12718.68, + "end": 12719.46, + "probability": 0.4993 + }, + { + "start": 12719.88, + "end": 12720.98, + "probability": 0.7242 + }, + { + "start": 12721.4, + "end": 12726.6, + "probability": 0.974 + }, + { + "start": 12726.82, + "end": 12727.4, + "probability": 0.9611 + }, + { + "start": 12728.0, + "end": 12728.6, + "probability": 0.7709 + }, + { + "start": 12728.98, + "end": 12730.82, + "probability": 0.985 + }, + { + "start": 12730.88, + "end": 12731.48, + "probability": 0.7557 + }, + { + "start": 12731.56, + "end": 12732.5, + "probability": 0.7273 + }, + { + "start": 12732.94, + "end": 12736.04, + "probability": 0.9532 + }, + { + "start": 12736.82, + "end": 12740.9, + "probability": 0.915 + }, + { + "start": 12741.08, + "end": 12742.88, + "probability": 0.9862 + }, + { + "start": 12743.4, + "end": 12745.18, + "probability": 0.7242 + }, + { + "start": 12746.18, + "end": 12749.96, + "probability": 0.8975 + }, + { + "start": 12750.36, + "end": 12753.83, + "probability": 0.998 + }, + { + "start": 12753.9, + "end": 12757.94, + "probability": 0.942 + }, + { + "start": 12758.08, + "end": 12758.78, + "probability": 0.9744 + }, + { + "start": 12759.34, + "end": 12759.72, + "probability": 0.9672 + }, + { + "start": 12760.34, + "end": 12764.44, + "probability": 0.9944 + }, + { + "start": 12764.78, + "end": 12765.22, + "probability": 0.8534 + }, + { + "start": 12765.38, + "end": 12768.1, + "probability": 0.9085 + }, + { + "start": 12768.18, + "end": 12769.7, + "probability": 0.4196 + }, + { + "start": 12769.82, + "end": 12770.54, + "probability": 0.9324 + }, + { + "start": 12770.9, + "end": 12772.04, + "probability": 0.9758 + }, + { + "start": 12772.58, + "end": 12773.94, + "probability": 0.9697 + }, + { + "start": 12774.44, + "end": 12778.24, + "probability": 0.8829 + }, + { + "start": 12778.68, + "end": 12782.78, + "probability": 0.9752 + }, + { + "start": 12782.88, + "end": 12784.74, + "probability": 0.9955 + }, + { + "start": 12785.3, + "end": 12785.94, + "probability": 0.8578 + }, + { + "start": 12787.54, + "end": 12792.82, + "probability": 0.9867 + }, + { + "start": 12793.0, + "end": 12793.46, + "probability": 0.9535 + }, + { + "start": 12794.94, + "end": 12799.54, + "probability": 0.9877 + }, + { + "start": 12799.84, + "end": 12802.32, + "probability": 0.955 + }, + { + "start": 12803.04, + "end": 12805.4, + "probability": 0.9571 + }, + { + "start": 12805.52, + "end": 12810.56, + "probability": 0.9938 + }, + { + "start": 12811.04, + "end": 12816.12, + "probability": 0.991 + }, + { + "start": 12816.74, + "end": 12817.92, + "probability": 0.715 + }, + { + "start": 12818.1, + "end": 12823.07, + "probability": 0.8567 + }, + { + "start": 12824.46, + "end": 12827.86, + "probability": 0.6907 + }, + { + "start": 12828.72, + "end": 12829.84, + "probability": 0.7091 + }, + { + "start": 12830.48, + "end": 12836.34, + "probability": 0.9411 + }, + { + "start": 12836.82, + "end": 12837.99, + "probability": 0.9719 + }, + { + "start": 12839.02, + "end": 12840.5, + "probability": 0.6569 + }, + { + "start": 12840.54, + "end": 12842.26, + "probability": 0.8718 + }, + { + "start": 12842.74, + "end": 12843.2, + "probability": 0.6375 + }, + { + "start": 12843.56, + "end": 12845.02, + "probability": 0.7383 + }, + { + "start": 12845.18, + "end": 12845.76, + "probability": 0.936 + }, + { + "start": 12845.9, + "end": 12847.24, + "probability": 0.4453 + }, + { + "start": 12847.3, + "end": 12848.28, + "probability": 0.8153 + }, + { + "start": 12848.42, + "end": 12848.86, + "probability": 0.8811 + }, + { + "start": 12848.92, + "end": 12850.04, + "probability": 0.9713 + }, + { + "start": 12850.24, + "end": 12850.86, + "probability": 0.7718 + }, + { + "start": 12851.66, + "end": 12852.48, + "probability": 0.6303 + }, + { + "start": 12852.58, + "end": 12853.76, + "probability": 0.8147 + }, + { + "start": 12854.26, + "end": 12856.86, + "probability": 0.9868 + }, + { + "start": 12857.38, + "end": 12858.4, + "probability": 0.5061 + }, + { + "start": 12858.44, + "end": 12861.07, + "probability": 0.9824 + }, + { + "start": 12861.24, + "end": 12862.36, + "probability": 0.8248 + }, + { + "start": 12862.46, + "end": 12863.7, + "probability": 0.9811 + }, + { + "start": 12863.98, + "end": 12865.52, + "probability": 0.9801 + }, + { + "start": 12866.16, + "end": 12868.14, + "probability": 0.7505 + }, + { + "start": 12868.14, + "end": 12871.62, + "probability": 0.9268 + }, + { + "start": 12871.92, + "end": 12874.16, + "probability": 0.8914 + }, + { + "start": 12875.66, + "end": 12877.86, + "probability": 0.9961 + }, + { + "start": 12878.8, + "end": 12881.76, + "probability": 0.9731 + }, + { + "start": 12882.54, + "end": 12884.1, + "probability": 0.8918 + }, + { + "start": 12884.68, + "end": 12888.82, + "probability": 0.7808 + }, + { + "start": 12889.12, + "end": 12890.1, + "probability": 0.99 + }, + { + "start": 12890.82, + "end": 12893.46, + "probability": 0.9979 + }, + { + "start": 12894.1, + "end": 12894.5, + "probability": 0.4483 + }, + { + "start": 12894.82, + "end": 12895.7, + "probability": 0.8188 + }, + { + "start": 12896.26, + "end": 12897.94, + "probability": 0.9754 + }, + { + "start": 12899.96, + "end": 12901.28, + "probability": 0.3458 + }, + { + "start": 12902.36, + "end": 12906.8, + "probability": 0.7246 + }, + { + "start": 12907.9, + "end": 12908.86, + "probability": 0.4412 + }, + { + "start": 12908.94, + "end": 12909.86, + "probability": 0.6366 + }, + { + "start": 12910.32, + "end": 12913.14, + "probability": 0.912 + }, + { + "start": 12914.16, + "end": 12915.54, + "probability": 0.5422 + }, + { + "start": 12916.02, + "end": 12917.22, + "probability": 0.633 + }, + { + "start": 12918.22, + "end": 12918.52, + "probability": 0.7358 + }, + { + "start": 12919.14, + "end": 12919.62, + "probability": 0.3186 + }, + { + "start": 12919.96, + "end": 12921.98, + "probability": 0.5271 + }, + { + "start": 12922.34, + "end": 12925.61, + "probability": 0.2651 + }, + { + "start": 12926.2, + "end": 12929.82, + "probability": 0.4283 + }, + { + "start": 12930.64, + "end": 12931.32, + "probability": 0.3013 + }, + { + "start": 12931.52, + "end": 12932.02, + "probability": 0.1389 + }, + { + "start": 12932.46, + "end": 12932.92, + "probability": 0.5498 + }, + { + "start": 12934.46, + "end": 12938.64, + "probability": 0.6762 + }, + { + "start": 12938.78, + "end": 12939.66, + "probability": 0.6586 + }, + { + "start": 12939.74, + "end": 12940.26, + "probability": 0.7339 + }, + { + "start": 12940.26, + "end": 12940.33, + "probability": 0.5782 + }, + { + "start": 12940.92, + "end": 12942.14, + "probability": 0.9893 + }, + { + "start": 12943.64, + "end": 12946.1, + "probability": 0.9931 + }, + { + "start": 12947.06, + "end": 12952.28, + "probability": 0.9896 + }, + { + "start": 12952.38, + "end": 12952.66, + "probability": 0.5079 + }, + { + "start": 12952.72, + "end": 12954.6, + "probability": 0.8291 + }, + { + "start": 12955.02, + "end": 12958.1, + "probability": 0.8507 + }, + { + "start": 12958.78, + "end": 12959.56, + "probability": 0.6231 + }, + { + "start": 12959.88, + "end": 12963.42, + "probability": 0.9815 + }, + { + "start": 12964.16, + "end": 12967.4, + "probability": 0.8484 + }, + { + "start": 12968.06, + "end": 12968.84, + "probability": 0.7603 + }, + { + "start": 12970.28, + "end": 12971.78, + "probability": 0.7518 + }, + { + "start": 12971.86, + "end": 12972.76, + "probability": 0.6163 + }, + { + "start": 12973.16, + "end": 12974.62, + "probability": 0.9895 + }, + { + "start": 12974.74, + "end": 12975.56, + "probability": 0.7503 + }, + { + "start": 12976.06, + "end": 12978.34, + "probability": 0.9292 + }, + { + "start": 12979.74, + "end": 12980.94, + "probability": 0.9946 + }, + { + "start": 12981.88, + "end": 12983.78, + "probability": 0.9404 + }, + { + "start": 12983.88, + "end": 12985.66, + "probability": 0.9928 + }, + { + "start": 12986.44, + "end": 12988.94, + "probability": 0.9429 + }, + { + "start": 12989.1, + "end": 12990.42, + "probability": 0.9531 + }, + { + "start": 12990.54, + "end": 12993.34, + "probability": 0.9861 + }, + { + "start": 12993.68, + "end": 12994.24, + "probability": 0.6131 + }, + { + "start": 12994.42, + "end": 12997.74, + "probability": 0.7349 + }, + { + "start": 12997.78, + "end": 12998.2, + "probability": 0.9384 + }, + { + "start": 12998.34, + "end": 12998.6, + "probability": 0.7387 + }, + { + "start": 12998.92, + "end": 13000.6, + "probability": 0.9342 + }, + { + "start": 13001.4, + "end": 13004.64, + "probability": 0.8301 + }, + { + "start": 13005.06, + "end": 13007.52, + "probability": 0.9315 + }, + { + "start": 13008.16, + "end": 13010.58, + "probability": 0.8116 + }, + { + "start": 13024.68, + "end": 13025.72, + "probability": 0.6034 + }, + { + "start": 13026.34, + "end": 13028.08, + "probability": 0.813 + }, + { + "start": 13029.4, + "end": 13035.66, + "probability": 0.9766 + }, + { + "start": 13036.18, + "end": 13039.44, + "probability": 0.7086 + }, + { + "start": 13040.2, + "end": 13045.08, + "probability": 0.9915 + }, + { + "start": 13045.08, + "end": 13050.88, + "probability": 0.9934 + }, + { + "start": 13052.14, + "end": 13053.16, + "probability": 0.5812 + }, + { + "start": 13053.36, + "end": 13056.62, + "probability": 0.9658 + }, + { + "start": 13057.12, + "end": 13058.52, + "probability": 0.9823 + }, + { + "start": 13059.08, + "end": 13061.5, + "probability": 0.9547 + }, + { + "start": 13061.68, + "end": 13062.18, + "probability": 0.4355 + }, + { + "start": 13062.66, + "end": 13063.48, + "probability": 0.6868 + }, + { + "start": 13063.54, + "end": 13066.22, + "probability": 0.8799 + }, + { + "start": 13066.82, + "end": 13072.22, + "probability": 0.9641 + }, + { + "start": 13073.12, + "end": 13078.44, + "probability": 0.9956 + }, + { + "start": 13079.26, + "end": 13082.84, + "probability": 0.8669 + }, + { + "start": 13083.36, + "end": 13088.74, + "probability": 0.9894 + }, + { + "start": 13088.74, + "end": 13094.82, + "probability": 0.9978 + }, + { + "start": 13095.84, + "end": 13098.64, + "probability": 0.8748 + }, + { + "start": 13098.98, + "end": 13099.84, + "probability": 0.3015 + }, + { + "start": 13100.16, + "end": 13100.78, + "probability": 0.5753 + }, + { + "start": 13101.66, + "end": 13102.56, + "probability": 0.6785 + }, + { + "start": 13102.84, + "end": 13103.68, + "probability": 0.9001 + }, + { + "start": 13103.82, + "end": 13108.16, + "probability": 0.8683 + }, + { + "start": 13109.0, + "end": 13111.52, + "probability": 0.9913 + }, + { + "start": 13112.46, + "end": 13113.12, + "probability": 0.8861 + }, + { + "start": 13113.9, + "end": 13119.24, + "probability": 0.9437 + }, + { + "start": 13120.32, + "end": 13124.66, + "probability": 0.9233 + }, + { + "start": 13126.18, + "end": 13128.5, + "probability": 0.955 + }, + { + "start": 13129.52, + "end": 13133.86, + "probability": 0.9624 + }, + { + "start": 13135.12, + "end": 13135.82, + "probability": 0.9174 + }, + { + "start": 13136.1, + "end": 13138.58, + "probability": 0.9174 + }, + { + "start": 13139.1, + "end": 13141.46, + "probability": 0.9644 + }, + { + "start": 13142.02, + "end": 13147.48, + "probability": 0.98 + }, + { + "start": 13148.64, + "end": 13149.18, + "probability": 0.7435 + }, + { + "start": 13149.74, + "end": 13150.82, + "probability": 0.7721 + }, + { + "start": 13150.98, + "end": 13156.84, + "probability": 0.9916 + }, + { + "start": 13157.82, + "end": 13160.08, + "probability": 0.9857 + }, + { + "start": 13160.64, + "end": 13163.02, + "probability": 0.9972 + }, + { + "start": 13164.58, + "end": 13165.2, + "probability": 0.5349 + }, + { + "start": 13166.08, + "end": 13167.1, + "probability": 0.7474 + }, + { + "start": 13168.0, + "end": 13169.32, + "probability": 0.8297 + }, + { + "start": 13169.64, + "end": 13170.9, + "probability": 0.873 + }, + { + "start": 13171.0, + "end": 13174.46, + "probability": 0.7618 + }, + { + "start": 13175.72, + "end": 13182.54, + "probability": 0.9727 + }, + { + "start": 13183.68, + "end": 13183.82, + "probability": 0.8608 + }, + { + "start": 13185.1, + "end": 13185.98, + "probability": 0.7926 + }, + { + "start": 13187.3, + "end": 13190.24, + "probability": 0.8318 + }, + { + "start": 13190.82, + "end": 13194.64, + "probability": 0.9633 + }, + { + "start": 13194.82, + "end": 13196.24, + "probability": 0.6875 + }, + { + "start": 13197.24, + "end": 13198.12, + "probability": 0.9869 + }, + { + "start": 13198.96, + "end": 13200.46, + "probability": 0.965 + }, + { + "start": 13201.26, + "end": 13202.04, + "probability": 0.9984 + }, + { + "start": 13203.4, + "end": 13206.92, + "probability": 0.9442 + }, + { + "start": 13207.82, + "end": 13211.14, + "probability": 0.9885 + }, + { + "start": 13211.66, + "end": 13215.78, + "probability": 0.9528 + }, + { + "start": 13216.72, + "end": 13218.74, + "probability": 0.9995 + }, + { + "start": 13219.14, + "end": 13222.48, + "probability": 0.857 + }, + { + "start": 13222.56, + "end": 13226.44, + "probability": 0.9963 + }, + { + "start": 13226.58, + "end": 13227.68, + "probability": 0.7437 + }, + { + "start": 13228.5, + "end": 13228.92, + "probability": 0.0284 + }, + { + "start": 13229.86, + "end": 13230.6, + "probability": 0.9866 + }, + { + "start": 13231.12, + "end": 13232.58, + "probability": 0.9691 + }, + { + "start": 13236.01, + "end": 13239.74, + "probability": 0.9456 + }, + { + "start": 13240.06, + "end": 13243.28, + "probability": 0.9502 + }, + { + "start": 13243.88, + "end": 13246.38, + "probability": 0.9578 + }, + { + "start": 13246.9, + "end": 13249.66, + "probability": 0.9661 + }, + { + "start": 13251.26, + "end": 13253.58, + "probability": 0.6882 + }, + { + "start": 13253.64, + "end": 13256.56, + "probability": 0.9922 + }, + { + "start": 13257.18, + "end": 13258.3, + "probability": 0.8457 + }, + { + "start": 13258.82, + "end": 13259.84, + "probability": 0.3841 + }, + { + "start": 13260.48, + "end": 13264.23, + "probability": 0.9226 + }, + { + "start": 13264.44, + "end": 13268.32, + "probability": 0.995 + }, + { + "start": 13268.6, + "end": 13272.66, + "probability": 0.935 + }, + { + "start": 13273.14, + "end": 13274.8, + "probability": 0.8105 + }, + { + "start": 13275.24, + "end": 13276.28, + "probability": 0.8745 + }, + { + "start": 13276.46, + "end": 13277.86, + "probability": 0.9734 + }, + { + "start": 13278.16, + "end": 13280.22, + "probability": 0.9377 + }, + { + "start": 13280.64, + "end": 13283.07, + "probability": 0.9822 + }, + { + "start": 13285.34, + "end": 13286.76, + "probability": 0.9995 + }, + { + "start": 13287.44, + "end": 13291.02, + "probability": 0.8796 + }, + { + "start": 13291.96, + "end": 13295.94, + "probability": 0.9827 + }, + { + "start": 13296.72, + "end": 13297.66, + "probability": 0.9272 + }, + { + "start": 13298.06, + "end": 13301.78, + "probability": 0.9914 + }, + { + "start": 13302.28, + "end": 13307.27, + "probability": 0.9961 + }, + { + "start": 13308.14, + "end": 13314.62, + "probability": 0.9442 + }, + { + "start": 13315.26, + "end": 13317.54, + "probability": 0.9951 + }, + { + "start": 13319.06, + "end": 13319.58, + "probability": 0.7444 + }, + { + "start": 13319.74, + "end": 13322.26, + "probability": 0.954 + }, + { + "start": 13322.42, + "end": 13322.52, + "probability": 0.3868 + }, + { + "start": 13324.24, + "end": 13327.08, + "probability": 0.1093 + }, + { + "start": 13327.78, + "end": 13332.02, + "probability": 0.5809 + }, + { + "start": 13333.68, + "end": 13335.02, + "probability": 0.0667 + }, + { + "start": 13337.18, + "end": 13339.12, + "probability": 0.8467 + }, + { + "start": 13340.38, + "end": 13341.98, + "probability": 0.9322 + }, + { + "start": 13342.0, + "end": 13343.56, + "probability": 0.684 + }, + { + "start": 13344.12, + "end": 13345.78, + "probability": 0.4763 + }, + { + "start": 13349.56, + "end": 13352.14, + "probability": 0.2465 + }, + { + "start": 13352.42, + "end": 13352.44, + "probability": 0.4558 + }, + { + "start": 13352.74, + "end": 13354.0, + "probability": 0.7833 + }, + { + "start": 13354.24, + "end": 13356.02, + "probability": 0.3245 + }, + { + "start": 13357.26, + "end": 13360.58, + "probability": 0.5248 + }, + { + "start": 13360.76, + "end": 13363.2, + "probability": 0.3467 + }, + { + "start": 13363.56, + "end": 13368.6, + "probability": 0.07 + }, + { + "start": 13369.26, + "end": 13370.02, + "probability": 0.1305 + }, + { + "start": 13370.1, + "end": 13370.74, + "probability": 0.6696 + }, + { + "start": 13370.78, + "end": 13371.3, + "probability": 0.398 + }, + { + "start": 13371.3, + "end": 13372.8, + "probability": 0.7906 + }, + { + "start": 13373.52, + "end": 13374.26, + "probability": 0.9913 + }, + { + "start": 13374.32, + "end": 13376.46, + "probability": 0.637 + }, + { + "start": 13376.8, + "end": 13378.32, + "probability": 0.8899 + }, + { + "start": 13378.64, + "end": 13378.7, + "probability": 0.8182 + }, + { + "start": 13381.26, + "end": 13383.84, + "probability": 0.8673 + }, + { + "start": 13383.96, + "end": 13386.72, + "probability": 0.7742 + }, + { + "start": 13387.34, + "end": 13390.82, + "probability": 0.9556 + }, + { + "start": 13391.0, + "end": 13394.2, + "probability": 0.1137 + }, + { + "start": 13395.06, + "end": 13396.58, + "probability": 0.3965 + }, + { + "start": 13397.42, + "end": 13397.84, + "probability": 0.6723 + }, + { + "start": 13397.86, + "end": 13399.3, + "probability": 0.6618 + }, + { + "start": 13399.32, + "end": 13400.76, + "probability": 0.8416 + }, + { + "start": 13401.08, + "end": 13405.72, + "probability": 0.9572 + }, + { + "start": 13405.76, + "end": 13406.96, + "probability": 0.918 + }, + { + "start": 13407.0, + "end": 13407.36, + "probability": 0.8372 + }, + { + "start": 13407.94, + "end": 13408.72, + "probability": 0.8839 + }, + { + "start": 13408.82, + "end": 13410.22, + "probability": 0.9777 + }, + { + "start": 13410.58, + "end": 13416.4, + "probability": 0.9701 + }, + { + "start": 13416.8, + "end": 13420.97, + "probability": 0.9793 + }, + { + "start": 13421.7, + "end": 13423.74, + "probability": 0.885 + }, + { + "start": 13423.94, + "end": 13424.62, + "probability": 0.6772 + }, + { + "start": 13424.92, + "end": 13430.12, + "probability": 0.9092 + }, + { + "start": 13430.78, + "end": 13433.28, + "probability": 0.8591 + }, + { + "start": 13433.4, + "end": 13433.44, + "probability": 0.1768 + }, + { + "start": 13433.52, + "end": 13434.72, + "probability": 0.8712 + }, + { + "start": 13434.94, + "end": 13435.82, + "probability": 0.8517 + }, + { + "start": 13436.1, + "end": 13438.71, + "probability": 0.8147 + }, + { + "start": 13440.1, + "end": 13441.36, + "probability": 0.5796 + }, + { + "start": 13441.5, + "end": 13443.62, + "probability": 0.9461 + }, + { + "start": 13444.4, + "end": 13447.92, + "probability": 0.6846 + }, + { + "start": 13448.72, + "end": 13452.58, + "probability": 0.9929 + }, + { + "start": 13452.58, + "end": 13455.78, + "probability": 0.9896 + }, + { + "start": 13455.86, + "end": 13461.2, + "probability": 0.9934 + }, + { + "start": 13461.32, + "end": 13465.32, + "probability": 0.9856 + }, + { + "start": 13465.46, + "end": 13468.38, + "probability": 0.9978 + }, + { + "start": 13468.9, + "end": 13473.84, + "probability": 0.979 + }, + { + "start": 13474.64, + "end": 13475.94, + "probability": 0.5641 + }, + { + "start": 13476.02, + "end": 13480.2, + "probability": 0.9951 + }, + { + "start": 13480.76, + "end": 13486.48, + "probability": 0.8963 + }, + { + "start": 13486.72, + "end": 13490.2, + "probability": 0.9918 + }, + { + "start": 13490.64, + "end": 13492.48, + "probability": 0.9957 + }, + { + "start": 13492.6, + "end": 13494.3, + "probability": 0.9819 + }, + { + "start": 13494.6, + "end": 13495.52, + "probability": 0.9782 + }, + { + "start": 13495.72, + "end": 13496.82, + "probability": 0.8601 + }, + { + "start": 13496.92, + "end": 13501.96, + "probability": 0.9568 + }, + { + "start": 13502.48, + "end": 13503.3, + "probability": 0.8888 + }, + { + "start": 13503.64, + "end": 13506.58, + "probability": 0.9733 + }, + { + "start": 13506.72, + "end": 13507.48, + "probability": 0.6081 + }, + { + "start": 13507.58, + "end": 13510.14, + "probability": 0.9536 + }, + { + "start": 13510.46, + "end": 13514.4, + "probability": 0.9871 + }, + { + "start": 13514.44, + "end": 13515.52, + "probability": 0.1652 + }, + { + "start": 13516.26, + "end": 13516.7, + "probability": 0.4322 + }, + { + "start": 13517.28, + "end": 13518.34, + "probability": 0.7765 + }, + { + "start": 13518.76, + "end": 13523.82, + "probability": 0.9751 + }, + { + "start": 13525.28, + "end": 13526.35, + "probability": 0.9058 + }, + { + "start": 13526.88, + "end": 13530.0, + "probability": 0.907 + }, + { + "start": 13530.36, + "end": 13533.84, + "probability": 0.9429 + }, + { + "start": 13533.92, + "end": 13536.12, + "probability": 0.7505 + }, + { + "start": 13536.42, + "end": 13539.28, + "probability": 0.7405 + }, + { + "start": 13539.7, + "end": 13542.98, + "probability": 0.9609 + }, + { + "start": 13543.56, + "end": 13544.32, + "probability": 0.8705 + }, + { + "start": 13544.4, + "end": 13547.42, + "probability": 0.9836 + }, + { + "start": 13547.46, + "end": 13548.16, + "probability": 0.9741 + }, + { + "start": 13548.52, + "end": 13552.3, + "probability": 0.8528 + }, + { + "start": 13552.72, + "end": 13553.69, + "probability": 0.6393 + }, + { + "start": 13554.0, + "end": 13557.98, + "probability": 0.9884 + }, + { + "start": 13558.52, + "end": 13559.44, + "probability": 0.9541 + }, + { + "start": 13559.92, + "end": 13561.08, + "probability": 0.942 + }, + { + "start": 13561.64, + "end": 13562.06, + "probability": 0.6464 + }, + { + "start": 13562.2, + "end": 13564.04, + "probability": 0.9132 + }, + { + "start": 13564.18, + "end": 13564.98, + "probability": 0.622 + }, + { + "start": 13565.0, + "end": 13568.12, + "probability": 0.9463 + }, + { + "start": 13568.76, + "end": 13569.96, + "probability": 0.9519 + }, + { + "start": 13570.58, + "end": 13571.02, + "probability": 0.6559 + }, + { + "start": 13571.06, + "end": 13571.42, + "probability": 0.6983 + }, + { + "start": 13571.48, + "end": 13571.9, + "probability": 0.9259 + }, + { + "start": 13595.26, + "end": 13596.04, + "probability": 0.2085 + }, + { + "start": 13596.04, + "end": 13597.3, + "probability": 0.5108 + }, + { + "start": 13597.42, + "end": 13599.36, + "probability": 0.8587 + }, + { + "start": 13599.48, + "end": 13601.42, + "probability": 0.8344 + }, + { + "start": 13601.96, + "end": 13603.44, + "probability": 0.1302 + }, + { + "start": 13604.84, + "end": 13606.86, + "probability": 0.0283 + }, + { + "start": 13609.2, + "end": 13609.52, + "probability": 0.2257 + }, + { + "start": 13610.18, + "end": 13611.26, + "probability": 0.1509 + }, + { + "start": 13611.94, + "end": 13613.82, + "probability": 0.1457 + }, + { + "start": 13623.72, + "end": 13624.44, + "probability": 0.2433 + }, + { + "start": 13624.44, + "end": 13624.44, + "probability": 0.0957 + }, + { + "start": 13624.44, + "end": 13628.9, + "probability": 0.0723 + }, + { + "start": 13630.7, + "end": 13631.64, + "probability": 0.3561 + }, + { + "start": 13634.26, + "end": 13635.6, + "probability": 0.2863 + }, + { + "start": 13637.34, + "end": 13638.6, + "probability": 0.451 + }, + { + "start": 13639.04, + "end": 13639.04, + "probability": 0.0589 + }, + { + "start": 13639.04, + "end": 13639.04, + "probability": 0.0632 + }, + { + "start": 13639.04, + "end": 13639.04, + "probability": 0.1475 + }, + { + "start": 13639.04, + "end": 13639.04, + "probability": 0.2405 + }, + { + "start": 13639.04, + "end": 13642.76, + "probability": 0.3533 + }, + { + "start": 13643.94, + "end": 13647.82, + "probability": 0.9158 + }, + { + "start": 13649.52, + "end": 13654.6, + "probability": 0.9949 + }, + { + "start": 13654.6, + "end": 13659.74, + "probability": 0.9799 + }, + { + "start": 13659.9, + "end": 13660.42, + "probability": 0.5928 + }, + { + "start": 13660.98, + "end": 13663.34, + "probability": 0.9418 + }, + { + "start": 13664.84, + "end": 13666.94, + "probability": 0.8953 + }, + { + "start": 13667.86, + "end": 13671.92, + "probability": 0.9779 + }, + { + "start": 13672.58, + "end": 13675.58, + "probability": 0.8705 + }, + { + "start": 13675.58, + "end": 13680.38, + "probability": 0.9838 + }, + { + "start": 13680.84, + "end": 13684.78, + "probability": 0.9852 + }, + { + "start": 13687.3, + "end": 13690.76, + "probability": 0.8976 + }, + { + "start": 13691.68, + "end": 13696.54, + "probability": 0.9471 + }, + { + "start": 13697.36, + "end": 13698.98, + "probability": 0.7562 + }, + { + "start": 13700.6, + "end": 13703.86, + "probability": 0.9838 + }, + { + "start": 13704.24, + "end": 13707.78, + "probability": 0.9762 + }, + { + "start": 13708.56, + "end": 13709.9, + "probability": 0.7029 + }, + { + "start": 13713.54, + "end": 13715.74, + "probability": 0.6453 + }, + { + "start": 13715.9, + "end": 13717.54, + "probability": 0.9951 + }, + { + "start": 13718.9, + "end": 13722.5, + "probability": 0.3942 + }, + { + "start": 13723.26, + "end": 13728.2, + "probability": 0.6929 + }, + { + "start": 13729.68, + "end": 13730.92, + "probability": 0.8971 + }, + { + "start": 13731.88, + "end": 13735.14, + "probability": 0.6958 + }, + { + "start": 13736.04, + "end": 13742.1, + "probability": 0.7499 + }, + { + "start": 13742.4, + "end": 13743.28, + "probability": 0.6181 + }, + { + "start": 13743.9, + "end": 13748.46, + "probability": 0.964 + }, + { + "start": 13749.1, + "end": 13750.2, + "probability": 0.7344 + }, + { + "start": 13751.44, + "end": 13755.37, + "probability": 0.4578 + }, + { + "start": 13756.5, + "end": 13756.84, + "probability": 0.8274 + }, + { + "start": 13757.0, + "end": 13758.3, + "probability": 0.6947 + }, + { + "start": 13758.58, + "end": 13764.8, + "probability": 0.0147 + }, + { + "start": 13764.8, + "end": 13764.8, + "probability": 0.0517 + }, + { + "start": 13764.8, + "end": 13764.8, + "probability": 0.2741 + }, + { + "start": 13764.8, + "end": 13764.8, + "probability": 0.1986 + }, + { + "start": 13764.8, + "end": 13766.12, + "probability": 0.4673 + }, + { + "start": 13767.64, + "end": 13770.14, + "probability": 0.68 + }, + { + "start": 13770.94, + "end": 13774.76, + "probability": 0.7295 + }, + { + "start": 13775.66, + "end": 13777.92, + "probability": 0.205 + }, + { + "start": 13778.16, + "end": 13781.0, + "probability": 0.6809 + }, + { + "start": 13781.56, + "end": 13783.42, + "probability": 0.9632 + }, + { + "start": 13783.54, + "end": 13784.46, + "probability": 0.6576 + }, + { + "start": 13784.62, + "end": 13784.82, + "probability": 0.6388 + }, + { + "start": 13784.82, + "end": 13784.82, + "probability": 0.6688 + }, + { + "start": 13784.82, + "end": 13786.24, + "probability": 0.6399 + }, + { + "start": 13786.24, + "end": 13786.56, + "probability": 0.1166 + }, + { + "start": 13787.12, + "end": 13787.6, + "probability": 0.2526 + }, + { + "start": 13787.8, + "end": 13789.6, + "probability": 0.9741 + }, + { + "start": 13789.6, + "end": 13790.06, + "probability": 0.6257 + }, + { + "start": 13790.16, + "end": 13790.88, + "probability": 0.7667 + }, + { + "start": 13791.88, + "end": 13793.22, + "probability": 0.7499 + }, + { + "start": 13793.44, + "end": 13795.64, + "probability": 0.6601 + }, + { + "start": 13795.68, + "end": 13795.72, + "probability": 0.0475 + }, + { + "start": 13795.72, + "end": 13799.84, + "probability": 0.719 + }, + { + "start": 13799.86, + "end": 13804.08, + "probability": 0.1102 + }, + { + "start": 13804.08, + "end": 13804.08, + "probability": 0.1746 + }, + { + "start": 13804.08, + "end": 13805.04, + "probability": 0.1003 + }, + { + "start": 13805.16, + "end": 13808.7, + "probability": 0.8337 + }, + { + "start": 13808.82, + "end": 13812.96, + "probability": 0.6583 + }, + { + "start": 13813.12, + "end": 13814.78, + "probability": 0.7783 + }, + { + "start": 13814.78, + "end": 13818.94, + "probability": 0.9392 + }, + { + "start": 13819.02, + "end": 13819.24, + "probability": 0.08 + }, + { + "start": 13819.36, + "end": 13820.34, + "probability": 0.801 + }, + { + "start": 13821.28, + "end": 13823.3, + "probability": 0.552 + }, + { + "start": 13823.54, + "end": 13824.59, + "probability": 0.9382 + }, + { + "start": 13824.96, + "end": 13826.52, + "probability": 0.8611 + }, + { + "start": 13826.72, + "end": 13830.98, + "probability": 0.941 + }, + { + "start": 13831.58, + "end": 13836.08, + "probability": 0.8438 + }, + { + "start": 13837.08, + "end": 13838.96, + "probability": 0.803 + }, + { + "start": 13839.24, + "end": 13843.08, + "probability": 0.9875 + }, + { + "start": 13843.22, + "end": 13846.34, + "probability": 0.0799 + }, + { + "start": 13846.72, + "end": 13846.72, + "probability": 0.3273 + }, + { + "start": 13846.74, + "end": 13847.78, + "probability": 0.7077 + }, + { + "start": 13847.92, + "end": 13851.62, + "probability": 0.9609 + }, + { + "start": 13851.98, + "end": 13854.64, + "probability": 0.9749 + }, + { + "start": 13855.28, + "end": 13857.34, + "probability": 0.8835 + }, + { + "start": 13857.8, + "end": 13861.54, + "probability": 0.9417 + }, + { + "start": 13862.42, + "end": 13864.58, + "probability": 0.8668 + }, + { + "start": 13865.1, + "end": 13866.46, + "probability": 0.8009 + }, + { + "start": 13866.96, + "end": 13870.08, + "probability": 0.9948 + }, + { + "start": 13871.36, + "end": 13875.12, + "probability": 0.9837 + }, + { + "start": 13876.38, + "end": 13879.38, + "probability": 0.913 + }, + { + "start": 13879.92, + "end": 13887.3, + "probability": 0.9106 + }, + { + "start": 13888.9, + "end": 13892.94, + "probability": 0.9681 + }, + { + "start": 13894.1, + "end": 13895.88, + "probability": 0.5125 + }, + { + "start": 13896.68, + "end": 13901.4, + "probability": 0.5955 + }, + { + "start": 13902.76, + "end": 13903.16, + "probability": 0.0818 + }, + { + "start": 13903.16, + "end": 13906.44, + "probability": 0.7613 + }, + { + "start": 13906.48, + "end": 13909.18, + "probability": 0.9404 + }, + { + "start": 13910.16, + "end": 13912.92, + "probability": 0.9011 + }, + { + "start": 13914.3, + "end": 13915.92, + "probability": 0.9609 + }, + { + "start": 13916.8, + "end": 13922.0, + "probability": 0.995 + }, + { + "start": 13922.18, + "end": 13924.18, + "probability": 0.785 + }, + { + "start": 13924.68, + "end": 13928.34, + "probability": 0.9955 + }, + { + "start": 13930.12, + "end": 13932.98, + "probability": 0.8287 + }, + { + "start": 13933.54, + "end": 13939.02, + "probability": 0.9976 + }, + { + "start": 13939.54, + "end": 13943.2, + "probability": 0.8891 + }, + { + "start": 13944.42, + "end": 13947.9, + "probability": 0.9402 + }, + { + "start": 13948.0, + "end": 13951.16, + "probability": 0.9881 + }, + { + "start": 13952.22, + "end": 13953.26, + "probability": 0.5392 + }, + { + "start": 13953.36, + "end": 13956.48, + "probability": 0.8982 + }, + { + "start": 13957.32, + "end": 13960.06, + "probability": 0.9871 + }, + { + "start": 13960.2, + "end": 13964.3, + "probability": 0.9809 + }, + { + "start": 13964.84, + "end": 13965.68, + "probability": 0.3408 + }, + { + "start": 13965.72, + "end": 13969.5, + "probability": 0.9717 + }, + { + "start": 13971.1, + "end": 13973.84, + "probability": 0.9663 + }, + { + "start": 13973.94, + "end": 13976.46, + "probability": 0.3038 + }, + { + "start": 13976.46, + "end": 13976.46, + "probability": 0.592 + }, + { + "start": 13976.49, + "end": 13978.73, + "probability": 0.9651 + }, + { + "start": 13979.4, + "end": 13983.64, + "probability": 0.9836 + }, + { + "start": 13983.64, + "end": 13988.2, + "probability": 0.9935 + }, + { + "start": 13988.66, + "end": 13989.82, + "probability": 0.8706 + }, + { + "start": 13990.62, + "end": 13994.92, + "probability": 0.9621 + }, + { + "start": 13995.66, + "end": 13996.4, + "probability": 0.8517 + }, + { + "start": 13997.48, + "end": 13998.02, + "probability": 0.9576 + }, + { + "start": 13998.66, + "end": 13999.66, + "probability": 0.9891 + }, + { + "start": 14000.48, + "end": 14005.86, + "probability": 0.9956 + }, + { + "start": 14005.86, + "end": 14010.2, + "probability": 0.9852 + }, + { + "start": 14010.24, + "end": 14012.22, + "probability": 0.9681 + }, + { + "start": 14012.66, + "end": 14012.98, + "probability": 0.2594 + }, + { + "start": 14013.0, + "end": 14014.18, + "probability": 0.6854 + }, + { + "start": 14014.36, + "end": 14015.7, + "probability": 0.7913 + }, + { + "start": 14016.54, + "end": 14018.4, + "probability": 0.6233 + }, + { + "start": 14019.58, + "end": 14020.76, + "probability": 0.6003 + }, + { + "start": 14033.52, + "end": 14034.46, + "probability": 0.8099 + }, + { + "start": 14036.24, + "end": 14037.62, + "probability": 0.5235 + }, + { + "start": 14038.93, + "end": 14039.6, + "probability": 0.5751 + }, + { + "start": 14040.84, + "end": 14041.7, + "probability": 0.7825 + }, + { + "start": 14046.42, + "end": 14048.02, + "probability": 0.7552 + }, + { + "start": 14049.28, + "end": 14054.98, + "probability": 0.9471 + }, + { + "start": 14056.6, + "end": 14059.38, + "probability": 0.6214 + }, + { + "start": 14061.06, + "end": 14066.98, + "probability": 0.9966 + }, + { + "start": 14068.64, + "end": 14069.28, + "probability": 0.979 + }, + { + "start": 14070.96, + "end": 14074.24, + "probability": 0.9984 + }, + { + "start": 14076.54, + "end": 14077.7, + "probability": 0.9563 + }, + { + "start": 14078.26, + "end": 14078.54, + "probability": 0.4107 + }, + { + "start": 14078.6, + "end": 14079.06, + "probability": 0.859 + }, + { + "start": 14079.34, + "end": 14081.52, + "probability": 0.796 + }, + { + "start": 14081.68, + "end": 14084.28, + "probability": 0.9949 + }, + { + "start": 14084.44, + "end": 14086.74, + "probability": 0.8632 + }, + { + "start": 14088.3, + "end": 14089.98, + "probability": 0.8695 + }, + { + "start": 14091.4, + "end": 14097.32, + "probability": 0.9951 + }, + { + "start": 14099.58, + "end": 14100.8, + "probability": 0.9447 + }, + { + "start": 14103.0, + "end": 14111.34, + "probability": 0.9812 + }, + { + "start": 14112.92, + "end": 14114.84, + "probability": 0.9354 + }, + { + "start": 14116.34, + "end": 14118.74, + "probability": 0.6894 + }, + { + "start": 14120.2, + "end": 14128.16, + "probability": 0.9835 + }, + { + "start": 14129.5, + "end": 14134.16, + "probability": 0.6296 + }, + { + "start": 14134.9, + "end": 14137.3, + "probability": 0.9025 + }, + { + "start": 14138.62, + "end": 14139.87, + "probability": 0.775 + }, + { + "start": 14140.74, + "end": 14140.96, + "probability": 0.7695 + }, + { + "start": 14141.06, + "end": 14142.22, + "probability": 0.631 + }, + { + "start": 14142.34, + "end": 14143.16, + "probability": 0.9551 + }, + { + "start": 14143.24, + "end": 14146.04, + "probability": 0.9907 + }, + { + "start": 14147.2, + "end": 14147.38, + "probability": 0.7012 + }, + { + "start": 14153.66, + "end": 14156.02, + "probability": 0.254 + }, + { + "start": 14156.98, + "end": 14158.44, + "probability": 0.4378 + }, + { + "start": 14159.51, + "end": 14167.96, + "probability": 0.9937 + }, + { + "start": 14169.6, + "end": 14173.52, + "probability": 0.8469 + }, + { + "start": 14174.18, + "end": 14175.98, + "probability": 0.9315 + }, + { + "start": 14177.3, + "end": 14178.66, + "probability": 0.7931 + }, + { + "start": 14179.86, + "end": 14181.34, + "probability": 0.7615 + }, + { + "start": 14181.42, + "end": 14183.16, + "probability": 0.9848 + }, + { + "start": 14184.7, + "end": 14187.46, + "probability": 0.9524 + }, + { + "start": 14188.58, + "end": 14191.94, + "probability": 0.8586 + }, + { + "start": 14192.46, + "end": 14192.9, + "probability": 0.832 + }, + { + "start": 14194.02, + "end": 14194.88, + "probability": 0.8868 + }, + { + "start": 14196.06, + "end": 14197.74, + "probability": 0.649 + }, + { + "start": 14198.28, + "end": 14201.7, + "probability": 0.923 + }, + { + "start": 14202.7, + "end": 14209.4, + "probability": 0.8473 + }, + { + "start": 14210.18, + "end": 14211.5, + "probability": 0.8576 + }, + { + "start": 14211.8, + "end": 14215.66, + "probability": 0.9167 + }, + { + "start": 14216.92, + "end": 14217.86, + "probability": 0.5734 + }, + { + "start": 14220.22, + "end": 14225.74, + "probability": 0.9812 + }, + { + "start": 14227.6, + "end": 14229.08, + "probability": 0.9387 + }, + { + "start": 14229.2, + "end": 14230.3, + "probability": 0.7107 + }, + { + "start": 14230.38, + "end": 14231.8, + "probability": 0.9966 + }, + { + "start": 14233.12, + "end": 14235.12, + "probability": 0.9879 + }, + { + "start": 14236.44, + "end": 14243.22, + "probability": 0.9766 + }, + { + "start": 14244.78, + "end": 14246.4, + "probability": 0.744 + }, + { + "start": 14247.46, + "end": 14248.58, + "probability": 0.8735 + }, + { + "start": 14251.4, + "end": 14255.24, + "probability": 0.9889 + }, + { + "start": 14256.3, + "end": 14259.34, + "probability": 0.9739 + }, + { + "start": 14260.38, + "end": 14261.7, + "probability": 0.9948 + }, + { + "start": 14262.88, + "end": 14263.38, + "probability": 0.7374 + }, + { + "start": 14265.7, + "end": 14269.44, + "probability": 0.9794 + }, + { + "start": 14270.42, + "end": 14271.7, + "probability": 0.936 + }, + { + "start": 14272.74, + "end": 14276.38, + "probability": 0.9915 + }, + { + "start": 14277.2, + "end": 14277.7, + "probability": 0.8743 + }, + { + "start": 14279.04, + "end": 14281.94, + "probability": 0.4195 + }, + { + "start": 14281.94, + "end": 14282.08, + "probability": 0.7185 + }, + { + "start": 14282.42, + "end": 14285.94, + "probability": 0.9838 + }, + { + "start": 14286.54, + "end": 14287.64, + "probability": 0.948 + }, + { + "start": 14287.94, + "end": 14290.72, + "probability": 0.9188 + }, + { + "start": 14290.84, + "end": 14292.8, + "probability": 0.8418 + }, + { + "start": 14293.02, + "end": 14294.34, + "probability": 0.942 + }, + { + "start": 14295.06, + "end": 14297.1, + "probability": 0.9944 + }, + { + "start": 14298.26, + "end": 14300.86, + "probability": 0.9273 + }, + { + "start": 14301.44, + "end": 14302.24, + "probability": 0.9695 + }, + { + "start": 14303.12, + "end": 14304.8, + "probability": 0.9937 + }, + { + "start": 14305.32, + "end": 14306.06, + "probability": 0.6979 + }, + { + "start": 14306.12, + "end": 14306.56, + "probability": 0.7727 + }, + { + "start": 14306.66, + "end": 14307.26, + "probability": 0.7874 + }, + { + "start": 14307.28, + "end": 14309.44, + "probability": 0.9927 + }, + { + "start": 14309.92, + "end": 14310.99, + "probability": 0.9083 + }, + { + "start": 14311.38, + "end": 14314.26, + "probability": 0.9858 + }, + { + "start": 14314.74, + "end": 14316.32, + "probability": 0.9497 + }, + { + "start": 14317.54, + "end": 14318.5, + "probability": 0.8177 + }, + { + "start": 14318.9, + "end": 14324.56, + "probability": 0.9152 + }, + { + "start": 14324.68, + "end": 14326.5, + "probability": 0.7393 + }, + { + "start": 14326.8, + "end": 14329.0, + "probability": 0.7202 + }, + { + "start": 14329.98, + "end": 14330.0, + "probability": 0.2286 + }, + { + "start": 14330.0, + "end": 14331.76, + "probability": 0.5171 + }, + { + "start": 14332.48, + "end": 14334.28, + "probability": 0.8636 + }, + { + "start": 14335.34, + "end": 14337.06, + "probability": 0.6199 + }, + { + "start": 14338.08, + "end": 14339.08, + "probability": 0.8425 + }, + { + "start": 14339.12, + "end": 14341.76, + "probability": 0.9811 + }, + { + "start": 14341.96, + "end": 14342.34, + "probability": 0.8258 + }, + { + "start": 14345.94, + "end": 14346.86, + "probability": 0.5948 + }, + { + "start": 14346.92, + "end": 14347.74, + "probability": 0.5312 + }, + { + "start": 14350.14, + "end": 14351.26, + "probability": 0.7791 + }, + { + "start": 14352.34, + "end": 14353.3, + "probability": 0.9065 + }, + { + "start": 14354.3, + "end": 14355.4, + "probability": 0.7357 + }, + { + "start": 14357.3, + "end": 14358.62, + "probability": 0.8925 + }, + { + "start": 14359.18, + "end": 14361.92, + "probability": 0.9895 + }, + { + "start": 14361.98, + "end": 14366.6, + "probability": 0.9928 + }, + { + "start": 14367.84, + "end": 14371.26, + "probability": 0.6117 + }, + { + "start": 14372.6, + "end": 14380.7, + "probability": 0.8958 + }, + { + "start": 14382.1, + "end": 14385.18, + "probability": 0.7621 + }, + { + "start": 14385.18, + "end": 14389.12, + "probability": 0.9202 + }, + { + "start": 14389.9, + "end": 14391.42, + "probability": 0.9934 + }, + { + "start": 14392.4, + "end": 14398.66, + "probability": 0.9365 + }, + { + "start": 14399.98, + "end": 14407.28, + "probability": 0.9837 + }, + { + "start": 14408.78, + "end": 14411.4, + "probability": 0.264 + }, + { + "start": 14411.4, + "end": 14413.82, + "probability": 0.7817 + }, + { + "start": 14414.7, + "end": 14417.58, + "probability": 0.8281 + }, + { + "start": 14417.78, + "end": 14418.34, + "probability": 0.8033 + }, + { + "start": 14418.44, + "end": 14418.78, + "probability": 0.4333 + }, + { + "start": 14418.84, + "end": 14419.18, + "probability": 0.8903 + }, + { + "start": 14420.8, + "end": 14424.84, + "probability": 0.7778 + }, + { + "start": 14424.94, + "end": 14426.28, + "probability": 0.4306 + }, + { + "start": 14427.74, + "end": 14430.18, + "probability": 0.7781 + }, + { + "start": 14431.82, + "end": 14433.36, + "probability": 0.3867 + }, + { + "start": 14433.9, + "end": 14434.88, + "probability": 0.9543 + }, + { + "start": 14435.42, + "end": 14437.68, + "probability": 0.9766 + }, + { + "start": 14438.92, + "end": 14441.06, + "probability": 0.5726 + }, + { + "start": 14442.02, + "end": 14447.64, + "probability": 0.8398 + }, + { + "start": 14448.78, + "end": 14451.86, + "probability": 0.6563 + }, + { + "start": 14452.94, + "end": 14453.62, + "probability": 0.847 + }, + { + "start": 14454.54, + "end": 14456.32, + "probability": 0.9641 + }, + { + "start": 14456.84, + "end": 14457.8, + "probability": 0.4276 + }, + { + "start": 14458.36, + "end": 14459.5, + "probability": 0.9187 + }, + { + "start": 14460.36, + "end": 14463.68, + "probability": 0.9689 + }, + { + "start": 14465.96, + "end": 14469.32, + "probability": 0.9768 + }, + { + "start": 14470.68, + "end": 14480.2, + "probability": 0.9872 + }, + { + "start": 14481.82, + "end": 14484.46, + "probability": 0.9771 + }, + { + "start": 14485.94, + "end": 14487.1, + "probability": 0.8232 + }, + { + "start": 14488.02, + "end": 14489.22, + "probability": 0.6952 + }, + { + "start": 14490.42, + "end": 14492.3, + "probability": 0.7485 + }, + { + "start": 14493.18, + "end": 14495.94, + "probability": 0.8403 + }, + { + "start": 14498.02, + "end": 14500.0, + "probability": 0.8699 + }, + { + "start": 14501.04, + "end": 14503.68, + "probability": 0.8127 + }, + { + "start": 14504.54, + "end": 14507.16, + "probability": 0.6958 + }, + { + "start": 14507.9, + "end": 14512.16, + "probability": 0.8622 + }, + { + "start": 14512.66, + "end": 14515.96, + "probability": 0.6837 + }, + { + "start": 14516.58, + "end": 14521.96, + "probability": 0.9495 + }, + { + "start": 14522.82, + "end": 14523.64, + "probability": 0.8971 + }, + { + "start": 14523.72, + "end": 14528.0, + "probability": 0.9731 + }, + { + "start": 14529.08, + "end": 14532.84, + "probability": 0.9686 + }, + { + "start": 14533.74, + "end": 14537.98, + "probability": 0.4049 + }, + { + "start": 14539.22, + "end": 14542.96, + "probability": 0.5415 + }, + { + "start": 14543.72, + "end": 14546.14, + "probability": 0.7263 + }, + { + "start": 14548.68, + "end": 14550.58, + "probability": 0.5634 + }, + { + "start": 14551.48, + "end": 14554.9, + "probability": 0.8615 + }, + { + "start": 14555.7, + "end": 14556.66, + "probability": 0.2495 + }, + { + "start": 14557.18, + "end": 14562.24, + "probability": 0.7664 + }, + { + "start": 14562.92, + "end": 14563.14, + "probability": 0.2784 + }, + { + "start": 14563.26, + "end": 14569.44, + "probability": 0.9695 + }, + { + "start": 14569.84, + "end": 14571.3, + "probability": 0.8535 + }, + { + "start": 14571.72, + "end": 14574.5, + "probability": 0.4817 + }, + { + "start": 14574.94, + "end": 14576.62, + "probability": 0.5729 + }, + { + "start": 14577.26, + "end": 14577.92, + "probability": 0.7005 + }, + { + "start": 14578.16, + "end": 14581.78, + "probability": 0.7807 + }, + { + "start": 14581.78, + "end": 14586.52, + "probability": 0.7952 + }, + { + "start": 14586.76, + "end": 14587.12, + "probability": 0.7397 + }, + { + "start": 14587.72, + "end": 14590.0, + "probability": 0.8496 + }, + { + "start": 14591.18, + "end": 14593.96, + "probability": 0.6732 + }, + { + "start": 14594.22, + "end": 14597.3, + "probability": 0.7959 + }, + { + "start": 14597.38, + "end": 14598.18, + "probability": 0.8941 + }, + { + "start": 14608.32, + "end": 14608.32, + "probability": 0.5647 + }, + { + "start": 14608.38, + "end": 14608.84, + "probability": 0.498 + }, + { + "start": 14609.04, + "end": 14609.72, + "probability": 0.6187 + }, + { + "start": 14609.84, + "end": 14610.26, + "probability": 0.7979 + }, + { + "start": 14610.44, + "end": 14611.68, + "probability": 0.9465 + }, + { + "start": 14611.74, + "end": 14615.66, + "probability": 0.632 + }, + { + "start": 14617.88, + "end": 14618.98, + "probability": 0.9552 + }, + { + "start": 14619.98, + "end": 14620.1, + "probability": 0.1172 + }, + { + "start": 14620.32, + "end": 14626.78, + "probability": 0.6773 + }, + { + "start": 14626.98, + "end": 14628.78, + "probability": 0.2413 + }, + { + "start": 14628.82, + "end": 14629.42, + "probability": 0.017 + }, + { + "start": 14630.4, + "end": 14632.75, + "probability": 0.0262 + }, + { + "start": 14636.72, + "end": 14636.92, + "probability": 0.1249 + }, + { + "start": 14636.92, + "end": 14638.68, + "probability": 0.9606 + }, + { + "start": 14639.82, + "end": 14641.32, + "probability": 0.3965 + }, + { + "start": 14641.42, + "end": 14641.54, + "probability": 0.6865 + }, + { + "start": 14641.82, + "end": 14643.0, + "probability": 0.8124 + }, + { + "start": 14643.1, + "end": 14643.78, + "probability": 0.7157 + }, + { + "start": 14644.32, + "end": 14647.58, + "probability": 0.0557 + }, + { + "start": 14647.58, + "end": 14647.62, + "probability": 0.0397 + }, + { + "start": 14647.62, + "end": 14647.62, + "probability": 0.1028 + }, + { + "start": 14647.62, + "end": 14647.62, + "probability": 0.0175 + }, + { + "start": 14647.62, + "end": 14648.98, + "probability": 0.7874 + }, + { + "start": 14651.16, + "end": 14651.98, + "probability": 0.4163 + }, + { + "start": 14652.08, + "end": 14653.38, + "probability": 0.7792 + }, + { + "start": 14653.56, + "end": 14654.44, + "probability": 0.601 + }, + { + "start": 14654.74, + "end": 14657.6, + "probability": 0.4859 + }, + { + "start": 14657.6, + "end": 14657.6, + "probability": 0.0286 + }, + { + "start": 14657.6, + "end": 14658.04, + "probability": 0.3819 + }, + { + "start": 14658.62, + "end": 14660.34, + "probability": 0.5127 + }, + { + "start": 14661.58, + "end": 14662.74, + "probability": 0.9842 + }, + { + "start": 14663.66, + "end": 14665.22, + "probability": 0.9745 + }, + { + "start": 14667.48, + "end": 14669.6, + "probability": 0.996 + }, + { + "start": 14670.52, + "end": 14673.26, + "probability": 0.9506 + }, + { + "start": 14674.72, + "end": 14675.44, + "probability": 0.6371 + }, + { + "start": 14675.7, + "end": 14676.84, + "probability": 0.872 + }, + { + "start": 14676.9, + "end": 14680.2, + "probability": 0.9924 + }, + { + "start": 14680.36, + "end": 14682.8, + "probability": 0.9792 + }, + { + "start": 14683.68, + "end": 14686.04, + "probability": 0.9535 + }, + { + "start": 14687.04, + "end": 14689.56, + "probability": 0.9924 + }, + { + "start": 14689.58, + "end": 14691.88, + "probability": 0.9512 + }, + { + "start": 14692.68, + "end": 14693.16, + "probability": 0.4272 + }, + { + "start": 14693.94, + "end": 14695.08, + "probability": 0.8005 + }, + { + "start": 14696.74, + "end": 14699.06, + "probability": 0.6895 + }, + { + "start": 14699.84, + "end": 14701.15, + "probability": 0.6791 + }, + { + "start": 14702.1, + "end": 14704.36, + "probability": 0.9949 + }, + { + "start": 14704.46, + "end": 14707.6, + "probability": 0.9424 + }, + { + "start": 14708.04, + "end": 14708.9, + "probability": 0.71 + }, + { + "start": 14709.78, + "end": 14711.73, + "probability": 0.9811 + }, + { + "start": 14713.18, + "end": 14713.6, + "probability": 0.6321 + }, + { + "start": 14713.7, + "end": 14714.46, + "probability": 0.8173 + }, + { + "start": 14714.48, + "end": 14717.18, + "probability": 0.864 + }, + { + "start": 14718.15, + "end": 14721.72, + "probability": 0.9915 + }, + { + "start": 14721.82, + "end": 14722.87, + "probability": 0.9954 + }, + { + "start": 14724.16, + "end": 14726.02, + "probability": 0.8773 + }, + { + "start": 14727.8, + "end": 14729.02, + "probability": 0.824 + }, + { + "start": 14730.66, + "end": 14733.36, + "probability": 0.9992 + }, + { + "start": 14733.36, + "end": 14736.88, + "probability": 0.6972 + }, + { + "start": 14737.92, + "end": 14739.72, + "probability": 0.8439 + }, + { + "start": 14741.09, + "end": 14743.74, + "probability": 0.6953 + }, + { + "start": 14743.82, + "end": 14744.18, + "probability": 0.2801 + }, + { + "start": 14744.38, + "end": 14746.02, + "probability": 0.9985 + }, + { + "start": 14746.47, + "end": 14748.88, + "probability": 0.9902 + }, + { + "start": 14749.0, + "end": 14751.28, + "probability": 0.6638 + }, + { + "start": 14752.92, + "end": 14756.58, + "probability": 0.8115 + }, + { + "start": 14757.64, + "end": 14759.86, + "probability": 0.7032 + }, + { + "start": 14760.76, + "end": 14761.9, + "probability": 0.9788 + }, + { + "start": 14763.58, + "end": 14764.92, + "probability": 0.9783 + }, + { + "start": 14767.24, + "end": 14767.68, + "probability": 0.9482 + }, + { + "start": 14767.72, + "end": 14772.1, + "probability": 0.8909 + }, + { + "start": 14772.26, + "end": 14774.02, + "probability": 0.9986 + }, + { + "start": 14774.08, + "end": 14777.12, + "probability": 0.9017 + }, + { + "start": 14778.02, + "end": 14781.0, + "probability": 0.494 + }, + { + "start": 14782.24, + "end": 14784.76, + "probability": 0.6563 + }, + { + "start": 14785.28, + "end": 14785.38, + "probability": 0.639 + }, + { + "start": 14787.18, + "end": 14791.24, + "probability": 0.601 + }, + { + "start": 14791.32, + "end": 14792.4, + "probability": 0.9822 + }, + { + "start": 14793.2, + "end": 14793.92, + "probability": 0.4121 + }, + { + "start": 14794.98, + "end": 14797.6, + "probability": 0.6433 + }, + { + "start": 14798.18, + "end": 14799.92, + "probability": 0.9574 + }, + { + "start": 14800.98, + "end": 14802.18, + "probability": 0.7697 + }, + { + "start": 14802.18, + "end": 14803.5, + "probability": 0.3536 + }, + { + "start": 14803.56, + "end": 14804.36, + "probability": 0.8132 + }, + { + "start": 14804.42, + "end": 14804.84, + "probability": 0.7502 + }, + { + "start": 14804.9, + "end": 14807.26, + "probability": 0.5688 + }, + { + "start": 14808.14, + "end": 14809.22, + "probability": 0.9924 + }, + { + "start": 14809.42, + "end": 14812.96, + "probability": 0.7229 + }, + { + "start": 14813.22, + "end": 14814.34, + "probability": 0.9204 + }, + { + "start": 14814.42, + "end": 14816.02, + "probability": 0.7826 + }, + { + "start": 14816.1, + "end": 14817.62, + "probability": 0.5847 + }, + { + "start": 14817.64, + "end": 14822.16, + "probability": 0.9944 + }, + { + "start": 14822.32, + "end": 14827.08, + "probability": 0.9819 + }, + { + "start": 14827.14, + "end": 14828.4, + "probability": 0.8777 + }, + { + "start": 14828.52, + "end": 14829.68, + "probability": 0.9922 + }, + { + "start": 14830.92, + "end": 14832.54, + "probability": 0.9932 + }, + { + "start": 14833.26, + "end": 14838.0, + "probability": 0.9899 + }, + { + "start": 14838.96, + "end": 14842.08, + "probability": 0.6572 + }, + { + "start": 14842.34, + "end": 14844.22, + "probability": 0.657 + }, + { + "start": 14844.54, + "end": 14845.72, + "probability": 0.198 + }, + { + "start": 14845.74, + "end": 14846.04, + "probability": 0.1395 + }, + { + "start": 14846.22, + "end": 14847.18, + "probability": 0.592 + }, + { + "start": 14847.46, + "end": 14852.0, + "probability": 0.9229 + }, + { + "start": 14853.96, + "end": 14854.92, + "probability": 0.7382 + }, + { + "start": 14854.92, + "end": 14858.36, + "probability": 0.9298 + }, + { + "start": 14858.48, + "end": 14860.42, + "probability": 0.6204 + }, + { + "start": 14860.52, + "end": 14861.86, + "probability": 0.9359 + }, + { + "start": 14862.64, + "end": 14863.24, + "probability": 0.696 + }, + { + "start": 14865.08, + "end": 14866.76, + "probability": 0.9161 + }, + { + "start": 14866.8, + "end": 14869.36, + "probability": 0.8982 + }, + { + "start": 14869.56, + "end": 14870.76, + "probability": 0.7527 + }, + { + "start": 14871.52, + "end": 14875.36, + "probability": 0.9963 + }, + { + "start": 14875.36, + "end": 14880.6, + "probability": 0.9967 + }, + { + "start": 14881.56, + "end": 14883.7, + "probability": 0.791 + }, + { + "start": 14885.02, + "end": 14887.11, + "probability": 0.8638 + }, + { + "start": 14887.92, + "end": 14892.2, + "probability": 0.9287 + }, + { + "start": 14892.92, + "end": 14896.36, + "probability": 0.9973 + }, + { + "start": 14897.24, + "end": 14902.28, + "probability": 0.9935 + }, + { + "start": 14903.08, + "end": 14905.32, + "probability": 0.8745 + }, + { + "start": 14905.5, + "end": 14907.46, + "probability": 0.8626 + }, + { + "start": 14908.6, + "end": 14909.4, + "probability": 0.9692 + }, + { + "start": 14909.46, + "end": 14913.96, + "probability": 0.981 + }, + { + "start": 14913.96, + "end": 14918.64, + "probability": 0.9867 + }, + { + "start": 14919.24, + "end": 14923.24, + "probability": 0.9629 + }, + { + "start": 14923.78, + "end": 14925.3, + "probability": 0.6735 + }, + { + "start": 14925.76, + "end": 14926.04, + "probability": 0.6824 + }, + { + "start": 14926.12, + "end": 14927.56, + "probability": 0.9951 + }, + { + "start": 14927.64, + "end": 14928.34, + "probability": 0.9266 + }, + { + "start": 14928.42, + "end": 14931.58, + "probability": 0.9966 + }, + { + "start": 14931.72, + "end": 14934.34, + "probability": 0.9893 + }, + { + "start": 14934.42, + "end": 14936.48, + "probability": 0.9648 + }, + { + "start": 14937.32, + "end": 14939.23, + "probability": 0.4998 + }, + { + "start": 14942.48, + "end": 14947.28, + "probability": 0.8623 + }, + { + "start": 14948.24, + "end": 14949.1, + "probability": 0.8599 + }, + { + "start": 14949.16, + "end": 14953.06, + "probability": 0.9885 + }, + { + "start": 14953.22, + "end": 14954.38, + "probability": 0.684 + }, + { + "start": 14955.56, + "end": 14958.33, + "probability": 0.3449 + }, + { + "start": 14958.96, + "end": 14963.7, + "probability": 0.9955 + }, + { + "start": 14964.7, + "end": 14968.04, + "probability": 0.9968 + }, + { + "start": 14968.4, + "end": 14968.94, + "probability": 0.8123 + }, + { + "start": 14969.64, + "end": 14970.12, + "probability": 0.3196 + }, + { + "start": 14970.72, + "end": 14970.88, + "probability": 0.0052 + }, + { + "start": 14970.88, + "end": 14971.44, + "probability": 0.3749 + }, + { + "start": 14972.56, + "end": 14975.04, + "probability": 0.9984 + }, + { + "start": 14975.14, + "end": 14979.08, + "probability": 0.9956 + }, + { + "start": 14979.26, + "end": 14980.68, + "probability": 0.7537 + }, + { + "start": 14981.46, + "end": 14983.28, + "probability": 0.9985 + }, + { + "start": 14983.38, + "end": 14984.56, + "probability": 0.7791 + }, + { + "start": 14984.64, + "end": 14985.78, + "probability": 0.7364 + }, + { + "start": 14986.58, + "end": 14988.52, + "probability": 0.3425 + }, + { + "start": 14990.18, + "end": 14994.96, + "probability": 0.8094 + }, + { + "start": 14995.48, + "end": 14998.34, + "probability": 0.8582 + }, + { + "start": 14999.04, + "end": 15003.94, + "probability": 0.9952 + }, + { + "start": 15004.84, + "end": 15010.22, + "probability": 0.8581 + }, + { + "start": 15011.04, + "end": 15015.0, + "probability": 0.7421 + }, + { + "start": 15015.0, + "end": 15017.96, + "probability": 0.9819 + }, + { + "start": 15018.84, + "end": 15024.7, + "probability": 0.9971 + }, + { + "start": 15025.46, + "end": 15026.72, + "probability": 0.9956 + }, + { + "start": 15027.2, + "end": 15027.56, + "probability": 0.8179 + }, + { + "start": 15027.68, + "end": 15029.04, + "probability": 0.7737 + }, + { + "start": 15029.04, + "end": 15034.82, + "probability": 0.9145 + }, + { + "start": 15034.9, + "end": 15036.16, + "probability": 0.9761 + }, + { + "start": 15036.9, + "end": 15038.0, + "probability": 0.9705 + }, + { + "start": 15038.72, + "end": 15041.46, + "probability": 0.9469 + }, + { + "start": 15042.14, + "end": 15044.76, + "probability": 0.9637 + }, + { + "start": 15045.7, + "end": 15049.54, + "probability": 0.8005 + }, + { + "start": 15049.64, + "end": 15055.66, + "probability": 0.9795 + }, + { + "start": 15055.78, + "end": 15056.94, + "probability": 0.0308 + }, + { + "start": 15058.0, + "end": 15059.48, + "probability": 0.6237 + }, + { + "start": 15059.54, + "end": 15062.9, + "probability": 0.622 + }, + { + "start": 15062.9, + "end": 15062.98, + "probability": 0.0305 + }, + { + "start": 15062.98, + "end": 15063.56, + "probability": 0.7719 + }, + { + "start": 15063.7, + "end": 15064.72, + "probability": 0.8477 + }, + { + "start": 15065.5, + "end": 15066.02, + "probability": 0.6211 + }, + { + "start": 15066.2, + "end": 15067.4, + "probability": 0.4882 + }, + { + "start": 15067.56, + "end": 15069.78, + "probability": 0.576 + }, + { + "start": 15070.78, + "end": 15072.36, + "probability": 0.4707 + }, + { + "start": 15072.52, + "end": 15073.08, + "probability": 0.812 + }, + { + "start": 15076.28, + "end": 15077.52, + "probability": 0.8624 + }, + { + "start": 15077.6, + "end": 15077.92, + "probability": 0.2294 + }, + { + "start": 15078.84, + "end": 15078.84, + "probability": 0.3198 + }, + { + "start": 15079.02, + "end": 15080.68, + "probability": 0.6547 + }, + { + "start": 15081.56, + "end": 15084.52, + "probability": 0.9009 + }, + { + "start": 15085.56, + "end": 15085.56, + "probability": 0.4201 + }, + { + "start": 15085.56, + "end": 15086.8, + "probability": 0.9827 + }, + { + "start": 15086.9, + "end": 15090.08, + "probability": 0.985 + }, + { + "start": 15090.24, + "end": 15092.62, + "probability": 0.5162 + }, + { + "start": 15093.16, + "end": 15096.36, + "probability": 0.9572 + }, + { + "start": 15096.44, + "end": 15099.42, + "probability": 0.6249 + }, + { + "start": 15099.92, + "end": 15100.36, + "probability": 0.4058 + }, + { + "start": 15100.58, + "end": 15101.26, + "probability": 0.5271 + }, + { + "start": 15101.88, + "end": 15104.28, + "probability": 0.7037 + }, + { + "start": 15104.32, + "end": 15104.9, + "probability": 0.8145 + }, + { + "start": 15105.02, + "end": 15106.38, + "probability": 0.7966 + }, + { + "start": 15106.96, + "end": 15111.04, + "probability": 0.7292 + }, + { + "start": 15111.94, + "end": 15111.94, + "probability": 0.1528 + }, + { + "start": 15111.94, + "end": 15116.63, + "probability": 0.9839 + }, + { + "start": 15118.08, + "end": 15119.18, + "probability": 0.7971 + }, + { + "start": 15119.68, + "end": 15120.98, + "probability": 0.7361 + }, + { + "start": 15121.48, + "end": 15122.17, + "probability": 0.4999 + }, + { + "start": 15123.5, + "end": 15124.7, + "probability": 0.5363 + }, + { + "start": 15125.06, + "end": 15128.12, + "probability": 0.7959 + }, + { + "start": 15128.5, + "end": 15128.96, + "probability": 0.8711 + }, + { + "start": 15130.04, + "end": 15131.46, + "probability": 0.9282 + }, + { + "start": 15131.76, + "end": 15134.24, + "probability": 0.8487 + }, + { + "start": 15134.6, + "end": 15136.84, + "probability": 0.8236 + }, + { + "start": 15137.1, + "end": 15138.04, + "probability": 0.9799 + }, + { + "start": 15143.44, + "end": 15143.98, + "probability": 0.0107 + }, + { + "start": 15143.98, + "end": 15143.98, + "probability": 0.0452 + }, + { + "start": 15143.98, + "end": 15144.62, + "probability": 0.2071 + }, + { + "start": 15144.68, + "end": 15146.15, + "probability": 0.8463 + }, + { + "start": 15147.18, + "end": 15149.1, + "probability": 0.9358 + }, + { + "start": 15149.16, + "end": 15150.07, + "probability": 0.9521 + }, + { + "start": 15151.68, + "end": 15152.52, + "probability": 0.8286 + }, + { + "start": 15153.3, + "end": 15153.66, + "probability": 0.0081 + }, + { + "start": 15153.66, + "end": 15153.66, + "probability": 0.0788 + }, + { + "start": 15153.66, + "end": 15154.46, + "probability": 0.4814 + }, + { + "start": 15154.96, + "end": 15156.42, + "probability": 0.6427 + }, + { + "start": 15156.62, + "end": 15161.4, + "probability": 0.8774 + }, + { + "start": 15161.84, + "end": 15164.48, + "probability": 0.82 + }, + { + "start": 15165.62, + "end": 15166.78, + "probability": 0.3682 + }, + { + "start": 15166.9, + "end": 15168.24, + "probability": 0.4569 + }, + { + "start": 15168.58, + "end": 15168.88, + "probability": 0.2771 + }, + { + "start": 15168.88, + "end": 15169.0, + "probability": 0.7398 + }, + { + "start": 15169.26, + "end": 15171.58, + "probability": 0.8784 + }, + { + "start": 15171.74, + "end": 15172.54, + "probability": 0.5656 + }, + { + "start": 15172.58, + "end": 15173.12, + "probability": 0.849 + }, + { + "start": 15174.78, + "end": 15178.14, + "probability": 0.4218 + }, + { + "start": 15178.14, + "end": 15178.78, + "probability": 0.6227 + }, + { + "start": 15179.54, + "end": 15179.82, + "probability": 0.1898 + }, + { + "start": 15179.82, + "end": 15183.22, + "probability": 0.8012 + }, + { + "start": 15183.28, + "end": 15185.7, + "probability": 0.9844 + }, + { + "start": 15185.7, + "end": 15187.88, + "probability": 0.9991 + }, + { + "start": 15187.98, + "end": 15188.96, + "probability": 0.7334 + }, + { + "start": 15189.5, + "end": 15191.72, + "probability": 0.9912 + }, + { + "start": 15192.26, + "end": 15193.36, + "probability": 0.5509 + }, + { + "start": 15193.86, + "end": 15194.6, + "probability": 0.8368 + }, + { + "start": 15194.7, + "end": 15197.08, + "probability": 0.9946 + }, + { + "start": 15197.26, + "end": 15199.34, + "probability": 0.8986 + }, + { + "start": 15199.88, + "end": 15201.34, + "probability": 0.9917 + }, + { + "start": 15202.18, + "end": 15203.94, + "probability": 0.0244 + }, + { + "start": 15204.56, + "end": 15211.78, + "probability": 0.9236 + }, + { + "start": 15211.94, + "end": 15212.91, + "probability": 0.7776 + }, + { + "start": 15213.32, + "end": 15216.39, + "probability": 0.9924 + }, + { + "start": 15216.86, + "end": 15218.66, + "probability": 0.9536 + }, + { + "start": 15219.36, + "end": 15221.44, + "probability": 0.3626 + }, + { + "start": 15221.56, + "end": 15222.0, + "probability": 0.2954 + }, + { + "start": 15222.56, + "end": 15223.6, + "probability": 0.9932 + }, + { + "start": 15224.1, + "end": 15226.64, + "probability": 0.9716 + }, + { + "start": 15226.74, + "end": 15230.15, + "probability": 0.9465 + }, + { + "start": 15230.86, + "end": 15232.06, + "probability": 0.8537 + }, + { + "start": 15232.44, + "end": 15237.5, + "probability": 0.9771 + }, + { + "start": 15238.28, + "end": 15240.54, + "probability": 0.9976 + }, + { + "start": 15240.9, + "end": 15241.7, + "probability": 0.9033 + }, + { + "start": 15241.94, + "end": 15243.52, + "probability": 0.8941 + }, + { + "start": 15243.96, + "end": 15244.55, + "probability": 0.9459 + }, + { + "start": 15245.82, + "end": 15246.94, + "probability": 0.7854 + }, + { + "start": 15247.46, + "end": 15251.26, + "probability": 0.7277 + }, + { + "start": 15251.26, + "end": 15252.08, + "probability": 0.7893 + }, + { + "start": 15252.46, + "end": 15254.36, + "probability": 0.9914 + }, + { + "start": 15254.62, + "end": 15255.38, + "probability": 0.7039 + }, + { + "start": 15255.84, + "end": 15257.76, + "probability": 0.9412 + }, + { + "start": 15258.18, + "end": 15259.5, + "probability": 0.8547 + }, + { + "start": 15260.06, + "end": 15260.52, + "probability": 0.7729 + }, + { + "start": 15260.58, + "end": 15261.04, + "probability": 0.157 + }, + { + "start": 15261.04, + "end": 15261.46, + "probability": 0.8647 + }, + { + "start": 15261.56, + "end": 15263.2, + "probability": 0.9727 + }, + { + "start": 15264.04, + "end": 15266.06, + "probability": 0.4926 + }, + { + "start": 15266.7, + "end": 15268.72, + "probability": 0.5635 + }, + { + "start": 15268.82, + "end": 15269.4, + "probability": 0.6344 + }, + { + "start": 15269.64, + "end": 15274.4, + "probability": 0.9879 + }, + { + "start": 15274.64, + "end": 15275.6, + "probability": 0.8062 + }, + { + "start": 15276.48, + "end": 15280.94, + "probability": 0.9517 + }, + { + "start": 15281.18, + "end": 15285.82, + "probability": 0.9943 + }, + { + "start": 15285.86, + "end": 15288.92, + "probability": 0.9852 + }, + { + "start": 15289.62, + "end": 15292.66, + "probability": 0.9783 + }, + { + "start": 15292.74, + "end": 15294.23, + "probability": 0.807 + }, + { + "start": 15294.58, + "end": 15295.02, + "probability": 0.9476 + }, + { + "start": 15295.14, + "end": 15297.12, + "probability": 0.9453 + }, + { + "start": 15297.38, + "end": 15298.74, + "probability": 0.7633 + }, + { + "start": 15298.9, + "end": 15299.04, + "probability": 0.672 + }, + { + "start": 15299.58, + "end": 15300.92, + "probability": 0.6972 + }, + { + "start": 15301.78, + "end": 15302.74, + "probability": 0.4275 + }, + { + "start": 15302.74, + "end": 15303.66, + "probability": 0.7413 + }, + { + "start": 15313.24, + "end": 15313.9, + "probability": 0.5077 + }, + { + "start": 15314.08, + "end": 15317.12, + "probability": 0.9267 + }, + { + "start": 15318.12, + "end": 15319.68, + "probability": 0.8875 + }, + { + "start": 15320.62, + "end": 15321.58, + "probability": 0.6653 + }, + { + "start": 15321.58, + "end": 15322.62, + "probability": 0.2376 + }, + { + "start": 15322.88, + "end": 15323.34, + "probability": 0.3386 + }, + { + "start": 15323.34, + "end": 15327.02, + "probability": 0.6335 + }, + { + "start": 15327.08, + "end": 15329.68, + "probability": 0.7769 + }, + { + "start": 15329.68, + "end": 15330.52, + "probability": 0.6646 + }, + { + "start": 15330.92, + "end": 15331.9, + "probability": 0.9443 + }, + { + "start": 15331.92, + "end": 15332.6, + "probability": 0.9099 + }, + { + "start": 15332.8, + "end": 15333.76, + "probability": 0.1808 + }, + { + "start": 15333.92, + "end": 15334.78, + "probability": 0.2377 + }, + { + "start": 15335.9, + "end": 15336.1, + "probability": 0.0493 + }, + { + "start": 15336.12, + "end": 15337.84, + "probability": 0.0473 + }, + { + "start": 15338.12, + "end": 15343.04, + "probability": 0.9937 + }, + { + "start": 15343.1, + "end": 15343.98, + "probability": 0.9009 + }, + { + "start": 15344.04, + "end": 15345.1, + "probability": 0.9001 + }, + { + "start": 15345.74, + "end": 15348.62, + "probability": 0.9768 + }, + { + "start": 15349.28, + "end": 15350.54, + "probability": 0.9016 + }, + { + "start": 15350.96, + "end": 15353.2, + "probability": 0.9944 + }, + { + "start": 15354.02, + "end": 15354.42, + "probability": 0.8945 + }, + { + "start": 15355.02, + "end": 15358.62, + "probability": 0.8661 + }, + { + "start": 15359.34, + "end": 15361.24, + "probability": 0.5479 + }, + { + "start": 15361.46, + "end": 15366.7, + "probability": 0.1669 + }, + { + "start": 15366.7, + "end": 15366.74, + "probability": 0.0468 + }, + { + "start": 15366.82, + "end": 15367.24, + "probability": 0.1056 + }, + { + "start": 15367.48, + "end": 15367.78, + "probability": 0.051 + }, + { + "start": 15367.78, + "end": 15367.78, + "probability": 0.0716 + }, + { + "start": 15367.78, + "end": 15368.81, + "probability": 0.5541 + }, + { + "start": 15369.42, + "end": 15369.74, + "probability": 0.7697 + }, + { + "start": 15370.24, + "end": 15372.08, + "probability": 0.9818 + }, + { + "start": 15372.2, + "end": 15375.0, + "probability": 0.9976 + }, + { + "start": 15375.0, + "end": 15377.6, + "probability": 0.9996 + }, + { + "start": 15378.52, + "end": 15381.96, + "probability": 0.9952 + }, + { + "start": 15382.78, + "end": 15384.56, + "probability": 0.547 + }, + { + "start": 15384.64, + "end": 15387.34, + "probability": 0.9255 + }, + { + "start": 15388.16, + "end": 15389.1, + "probability": 0.8502 + }, + { + "start": 15391.07, + "end": 15392.2, + "probability": 0.0264 + }, + { + "start": 15392.2, + "end": 15392.2, + "probability": 0.0625 + }, + { + "start": 15392.2, + "end": 15398.56, + "probability": 0.5141 + }, + { + "start": 15398.56, + "end": 15398.64, + "probability": 0.4828 + }, + { + "start": 15398.86, + "end": 15399.38, + "probability": 0.6671 + }, + { + "start": 15399.46, + "end": 15400.9, + "probability": 0.1477 + }, + { + "start": 15401.0, + "end": 15402.72, + "probability": 0.8809 + }, + { + "start": 15402.88, + "end": 15403.54, + "probability": 0.0067 + }, + { + "start": 15403.88, + "end": 15405.23, + "probability": 0.0517 + }, + { + "start": 15405.66, + "end": 15409.1, + "probability": 0.5503 + }, + { + "start": 15409.24, + "end": 15410.32, + "probability": 0.6534 + }, + { + "start": 15410.44, + "end": 15413.48, + "probability": 0.9673 + }, + { + "start": 15414.12, + "end": 15419.02, + "probability": 0.9979 + }, + { + "start": 15419.1, + "end": 15420.06, + "probability": 0.7955 + }, + { + "start": 15420.68, + "end": 15420.9, + "probability": 0.2487 + }, + { + "start": 15420.9, + "end": 15421.78, + "probability": 0.9619 + }, + { + "start": 15421.84, + "end": 15423.36, + "probability": 0.9536 + }, + { + "start": 15423.5, + "end": 15423.82, + "probability": 0.3021 + }, + { + "start": 15423.82, + "end": 15425.45, + "probability": 0.674 + }, + { + "start": 15425.78, + "end": 15426.1, + "probability": 0.4123 + }, + { + "start": 15426.36, + "end": 15427.54, + "probability": 0.9725 + }, + { + "start": 15427.6, + "end": 15429.46, + "probability": 0.8467 + }, + { + "start": 15429.46, + "end": 15429.62, + "probability": 0.1826 + }, + { + "start": 15429.98, + "end": 15430.55, + "probability": 0.1273 + }, + { + "start": 15430.94, + "end": 15431.44, + "probability": 0.2922 + }, + { + "start": 15431.44, + "end": 15432.06, + "probability": 0.8834 + }, + { + "start": 15432.06, + "end": 15432.86, + "probability": 0.0631 + }, + { + "start": 15433.04, + "end": 15434.28, + "probability": 0.2044 + }, + { + "start": 15435.08, + "end": 15437.77, + "probability": 0.5878 + }, + { + "start": 15438.38, + "end": 15443.32, + "probability": 0.991 + }, + { + "start": 15444.18, + "end": 15447.32, + "probability": 0.7407 + }, + { + "start": 15447.4, + "end": 15450.96, + "probability": 0.9907 + }, + { + "start": 15451.72, + "end": 15457.78, + "probability": 0.9874 + }, + { + "start": 15458.28, + "end": 15459.98, + "probability": 0.67 + }, + { + "start": 15460.58, + "end": 15462.18, + "probability": 0.816 + }, + { + "start": 15462.7, + "end": 15465.26, + "probability": 0.9402 + }, + { + "start": 15465.92, + "end": 15467.17, + "probability": 0.9919 + }, + { + "start": 15467.56, + "end": 15468.52, + "probability": 0.3871 + }, + { + "start": 15468.54, + "end": 15469.68, + "probability": 0.6127 + }, + { + "start": 15469.92, + "end": 15471.86, + "probability": 0.6152 + }, + { + "start": 15473.08, + "end": 15474.82, + "probability": 0.7014 + }, + { + "start": 15475.68, + "end": 15475.82, + "probability": 0.2387 + }, + { + "start": 15475.82, + "end": 15476.37, + "probability": 0.1383 + }, + { + "start": 15476.74, + "end": 15476.88, + "probability": 0.2775 + }, + { + "start": 15476.92, + "end": 15478.08, + "probability": 0.4594 + }, + { + "start": 15478.22, + "end": 15481.1, + "probability": 0.1336 + }, + { + "start": 15481.1, + "end": 15481.1, + "probability": 0.021 + }, + { + "start": 15481.1, + "end": 15482.74, + "probability": 0.1251 + }, + { + "start": 15482.86, + "end": 15484.16, + "probability": 0.7747 + }, + { + "start": 15484.3, + "end": 15487.74, + "probability": 0.964 + }, + { + "start": 15487.84, + "end": 15488.55, + "probability": 0.7278 + }, + { + "start": 15488.97, + "end": 15489.87, + "probability": 0.6418 + }, + { + "start": 15490.06, + "end": 15491.42, + "probability": 0.9742 + }, + { + "start": 15491.66, + "end": 15492.28, + "probability": 0.7648 + }, + { + "start": 15492.56, + "end": 15494.36, + "probability": 0.8884 + }, + { + "start": 15494.58, + "end": 15496.52, + "probability": 0.8896 + }, + { + "start": 15496.62, + "end": 15499.5, + "probability": 0.6768 + }, + { + "start": 15500.04, + "end": 15500.76, + "probability": 0.3324 + }, + { + "start": 15500.76, + "end": 15500.88, + "probability": 0.457 + }, + { + "start": 15500.9, + "end": 15502.4, + "probability": 0.6365 + }, + { + "start": 15502.54, + "end": 15504.74, + "probability": 0.9607 + }, + { + "start": 15504.86, + "end": 15505.54, + "probability": 0.8786 + }, + { + "start": 15506.06, + "end": 15507.92, + "probability": 0.9066 + }, + { + "start": 15508.0, + "end": 15508.9, + "probability": 0.641 + }, + { + "start": 15509.32, + "end": 15511.52, + "probability": 0.9395 + }, + { + "start": 15511.92, + "end": 15513.62, + "probability": 0.6471 + }, + { + "start": 15513.76, + "end": 15517.28, + "probability": 0.688 + }, + { + "start": 15517.64, + "end": 15519.33, + "probability": 0.9579 + }, + { + "start": 15519.98, + "end": 15522.94, + "probability": 0.9911 + }, + { + "start": 15523.6, + "end": 15526.82, + "probability": 0.9415 + }, + { + "start": 15527.36, + "end": 15527.82, + "probability": 0.6301 + }, + { + "start": 15528.8, + "end": 15530.8, + "probability": 0.1805 + }, + { + "start": 15532.96, + "end": 15533.74, + "probability": 0.0166 + }, + { + "start": 15533.78, + "end": 15534.68, + "probability": 0.6224 + }, + { + "start": 15534.76, + "end": 15535.28, + "probability": 0.3016 + }, + { + "start": 15535.46, + "end": 15536.96, + "probability": 0.5805 + }, + { + "start": 15536.96, + "end": 15537.06, + "probability": 0.4589 + }, + { + "start": 15537.06, + "end": 15537.06, + "probability": 0.0475 + }, + { + "start": 15537.06, + "end": 15539.0, + "probability": 0.6978 + }, + { + "start": 15539.04, + "end": 15543.32, + "probability": 0.9565 + }, + { + "start": 15543.44, + "end": 15543.46, + "probability": 0.0908 + }, + { + "start": 15543.46, + "end": 15543.46, + "probability": 0.0771 + }, + { + "start": 15543.46, + "end": 15544.28, + "probability": 0.2394 + }, + { + "start": 15544.28, + "end": 15544.28, + "probability": 0.1465 + }, + { + "start": 15544.28, + "end": 15546.23, + "probability": 0.4228 + }, + { + "start": 15546.5, + "end": 15546.5, + "probability": 0.2782 + }, + { + "start": 15547.06, + "end": 15549.0, + "probability": 0.6598 + }, + { + "start": 15550.12, + "end": 15551.3, + "probability": 0.6092 + }, + { + "start": 15551.68, + "end": 15551.82, + "probability": 0.3993 + }, + { + "start": 15551.82, + "end": 15551.82, + "probability": 0.8203 + }, + { + "start": 15551.82, + "end": 15551.82, + "probability": 0.1785 + }, + { + "start": 15551.82, + "end": 15553.15, + "probability": 0.3315 + }, + { + "start": 15553.66, + "end": 15556.26, + "probability": 0.7703 + }, + { + "start": 15557.6, + "end": 15557.9, + "probability": 0.1278 + }, + { + "start": 15557.9, + "end": 15557.9, + "probability": 0.2237 + }, + { + "start": 15557.9, + "end": 15557.98, + "probability": 0.4912 + }, + { + "start": 15558.08, + "end": 15559.1, + "probability": 0.3833 + }, + { + "start": 15559.86, + "end": 15560.16, + "probability": 0.4184 + }, + { + "start": 15560.16, + "end": 15560.76, + "probability": 0.1523 + }, + { + "start": 15561.0, + "end": 15563.06, + "probability": 0.032 + }, + { + "start": 15563.3, + "end": 15564.78, + "probability": 0.6355 + }, + { + "start": 15574.32, + "end": 15575.06, + "probability": 0.5682 + }, + { + "start": 15580.68, + "end": 15580.86, + "probability": 0.6523 + }, + { + "start": 15582.48, + "end": 15583.2, + "probability": 0.0162 + }, + { + "start": 15583.2, + "end": 15585.52, + "probability": 0.0262 + }, + { + "start": 15585.58, + "end": 15586.88, + "probability": 0.0353 + }, + { + "start": 15587.46, + "end": 15588.74, + "probability": 0.0304 + }, + { + "start": 15597.24, + "end": 15597.32, + "probability": 0.0073 + }, + { + "start": 15600.06, + "end": 15602.01, + "probability": 0.0275 + }, + { + "start": 15602.52, + "end": 15602.52, + "probability": 0.0196 + }, + { + "start": 15602.6, + "end": 15604.66, + "probability": 0.0622 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.0, + "end": 15624.0, + "probability": 0.0 + }, + { + "start": 15624.04, + "end": 15625.38, + "probability": 0.1083 + }, + { + "start": 15627.01, + "end": 15627.5, + "probability": 0.0361 + }, + { + "start": 15629.84, + "end": 15631.36, + "probability": 0.0425 + }, + { + "start": 15631.58, + "end": 15631.78, + "probability": 0.1357 + }, + { + "start": 15632.02, + "end": 15632.78, + "probability": 0.1625 + }, + { + "start": 15632.96, + "end": 15632.96, + "probability": 0.2239 + }, + { + "start": 15633.3, + "end": 15634.12, + "probability": 0.4171 + }, + { + "start": 15634.5, + "end": 15635.02, + "probability": 0.1247 + }, + { + "start": 15636.76, + "end": 15637.42, + "probability": 0.1557 + }, + { + "start": 15637.42, + "end": 15639.24, + "probability": 0.3378 + }, + { + "start": 15642.0, + "end": 15642.76, + "probability": 0.0692 + }, + { + "start": 15642.78, + "end": 15645.52, + "probability": 0.1518 + }, + { + "start": 15645.52, + "end": 15645.68, + "probability": 0.0852 + }, + { + "start": 15645.92, + "end": 15647.68, + "probability": 0.0426 + }, + { + "start": 15647.68, + "end": 15647.78, + "probability": 0.0306 + }, + { + "start": 15650.52, + "end": 15652.82, + "probability": 0.1915 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15744.0, + "end": 15744.0, + "probability": 0.0 + }, + { + "start": 15758.48, + "end": 15763.18, + "probability": 0.0629 + }, + { + "start": 15763.18, + "end": 15763.72, + "probability": 0.2175 + }, + { + "start": 15763.72, + "end": 15767.34, + "probability": 0.0186 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.0, + "end": 15873.0, + "probability": 0.0 + }, + { + "start": 15873.1, + "end": 15876.24, + "probability": 0.4974 + }, + { + "start": 15878.02, + "end": 15880.32, + "probability": 0.8391 + }, + { + "start": 15882.58, + "end": 15883.36, + "probability": 0.3833 + }, + { + "start": 15883.68, + "end": 15884.92, + "probability": 0.6426 + }, + { + "start": 15885.84, + "end": 15885.84, + "probability": 0.8299 + }, + { + "start": 15885.9, + "end": 15887.3, + "probability": 0.5525 + }, + { + "start": 15888.54, + "end": 15889.04, + "probability": 0.7632 + }, + { + "start": 15889.06, + "end": 15889.52, + "probability": 0.7061 + }, + { + "start": 15889.54, + "end": 15890.06, + "probability": 0.6213 + }, + { + "start": 15890.66, + "end": 15892.2, + "probability": 0.8979 + }, + { + "start": 15907.18, + "end": 15907.18, + "probability": 0.3273 + }, + { + "start": 15907.18, + "end": 15907.18, + "probability": 0.0471 + }, + { + "start": 15907.18, + "end": 15909.08, + "probability": 0.3775 + }, + { + "start": 15909.16, + "end": 15911.12, + "probability": 0.7297 + }, + { + "start": 15911.24, + "end": 15912.73, + "probability": 0.5694 + }, + { + "start": 15913.64, + "end": 15918.02, + "probability": 0.6176 + }, + { + "start": 15919.04, + "end": 15922.58, + "probability": 0.0277 + }, + { + "start": 15922.82, + "end": 15922.82, + "probability": 0.2237 + }, + { + "start": 15922.82, + "end": 15922.86, + "probability": 0.2918 + }, + { + "start": 15922.9, + "end": 15923.92, + "probability": 0.3551 + }, + { + "start": 15923.92, + "end": 15924.68, + "probability": 0.0472 + }, + { + "start": 15936.48, + "end": 15937.81, + "probability": 0.2829 + }, + { + "start": 15940.58, + "end": 15941.08, + "probability": 0.1304 + }, + { + "start": 15943.32, + "end": 15945.18, + "probability": 0.0716 + }, + { + "start": 15945.18, + "end": 15946.38, + "probability": 0.1116 + }, + { + "start": 15946.38, + "end": 15946.72, + "probability": 0.0116 + }, + { + "start": 15947.22, + "end": 15948.62, + "probability": 0.2793 + }, + { + "start": 15951.88, + "end": 15953.92, + "probability": 0.0529 + }, + { + "start": 15955.42, + "end": 15956.7, + "probability": 0.4965 + }, + { + "start": 15957.82, + "end": 15959.96, + "probability": 0.0742 + }, + { + "start": 15961.1, + "end": 15961.5, + "probability": 0.3459 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.0, + "end": 16003.0, + "probability": 0.0 + }, + { + "start": 16003.88, + "end": 16003.88, + "probability": 0.2105 + }, + { + "start": 16003.88, + "end": 16003.88, + "probability": 0.0739 + }, + { + "start": 16003.88, + "end": 16007.3, + "probability": 0.9058 + }, + { + "start": 16008.1, + "end": 16009.14, + "probability": 0.9164 + }, + { + "start": 16010.68, + "end": 16014.6, + "probability": 0.9833 + }, + { + "start": 16015.96, + "end": 16017.12, + "probability": 0.7899 + }, + { + "start": 16017.86, + "end": 16018.92, + "probability": 0.8679 + }, + { + "start": 16019.8, + "end": 16020.78, + "probability": 0.974 + }, + { + "start": 16022.12, + "end": 16024.32, + "probability": 0.9961 + }, + { + "start": 16025.39, + "end": 16027.57, + "probability": 0.9954 + }, + { + "start": 16028.8, + "end": 16030.38, + "probability": 0.9856 + }, + { + "start": 16031.18, + "end": 16032.38, + "probability": 0.9736 + }, + { + "start": 16032.54, + "end": 16039.04, + "probability": 0.9976 + }, + { + "start": 16039.28, + "end": 16040.54, + "probability": 0.6468 + }, + { + "start": 16041.54, + "end": 16045.96, + "probability": 0.8509 + }, + { + "start": 16046.84, + "end": 16051.8, + "probability": 0.9481 + }, + { + "start": 16051.8, + "end": 16056.14, + "probability": 0.998 + }, + { + "start": 16056.64, + "end": 16059.16, + "probability": 0.9966 + }, + { + "start": 16059.54, + "end": 16063.12, + "probability": 0.8405 + }, + { + "start": 16063.96, + "end": 16065.07, + "probability": 0.6836 + }, + { + "start": 16066.66, + "end": 16071.84, + "probability": 0.9881 + }, + { + "start": 16071.96, + "end": 16073.06, + "probability": 0.9808 + }, + { + "start": 16073.18, + "end": 16073.58, + "probability": 0.6389 + }, + { + "start": 16074.5, + "end": 16076.86, + "probability": 0.7961 + }, + { + "start": 16077.58, + "end": 16081.6, + "probability": 0.9707 + }, + { + "start": 16082.2, + "end": 16083.76, + "probability": 0.9961 + }, + { + "start": 16084.5, + "end": 16085.2, + "probability": 0.2703 + }, + { + "start": 16085.6, + "end": 16089.28, + "probability": 0.9658 + }, + { + "start": 16089.28, + "end": 16093.16, + "probability": 0.9726 + }, + { + "start": 16095.64, + "end": 16099.34, + "probability": 0.9512 + }, + { + "start": 16099.36, + "end": 16105.38, + "probability": 0.9932 + }, + { + "start": 16106.64, + "end": 16107.16, + "probability": 0.6754 + }, + { + "start": 16107.4, + "end": 16108.21, + "probability": 0.731 + }, + { + "start": 16108.38, + "end": 16112.8, + "probability": 0.9736 + }, + { + "start": 16113.32, + "end": 16114.18, + "probability": 0.9572 + }, + { + "start": 16114.24, + "end": 16114.78, + "probability": 0.5595 + }, + { + "start": 16115.42, + "end": 16117.1, + "probability": 0.998 + }, + { + "start": 16117.78, + "end": 16118.54, + "probability": 0.9709 + }, + { + "start": 16119.18, + "end": 16123.9, + "probability": 0.8936 + }, + { + "start": 16125.26, + "end": 16129.14, + "probability": 0.9493 + }, + { + "start": 16131.46, + "end": 16132.12, + "probability": 0.6048 + }, + { + "start": 16132.46, + "end": 16135.02, + "probability": 0.969 + }, + { + "start": 16135.64, + "end": 16135.94, + "probability": 0.8564 + }, + { + "start": 16137.48, + "end": 16141.14, + "probability": 0.9862 + }, + { + "start": 16141.22, + "end": 16141.6, + "probability": 0.6838 + }, + { + "start": 16141.7, + "end": 16142.46, + "probability": 0.6684 + }, + { + "start": 16143.14, + "end": 16145.44, + "probability": 0.9738 + }, + { + "start": 16146.06, + "end": 16146.58, + "probability": 0.328 + }, + { + "start": 16148.96, + "end": 16154.86, + "probability": 0.9712 + }, + { + "start": 16155.82, + "end": 16160.06, + "probability": 0.9889 + }, + { + "start": 16161.02, + "end": 16161.58, + "probability": 0.4871 + }, + { + "start": 16161.78, + "end": 16162.02, + "probability": 0.7153 + }, + { + "start": 16162.06, + "end": 16163.4, + "probability": 0.6898 + }, + { + "start": 16163.44, + "end": 16166.8, + "probability": 0.9557 + }, + { + "start": 16167.68, + "end": 16172.68, + "probability": 0.9868 + }, + { + "start": 16172.68, + "end": 16176.96, + "probability": 0.9976 + }, + { + "start": 16176.96, + "end": 16181.44, + "probability": 0.9838 + }, + { + "start": 16182.04, + "end": 16184.88, + "probability": 0.9345 + }, + { + "start": 16185.0, + "end": 16185.26, + "probability": 0.7093 + }, + { + "start": 16185.58, + "end": 16187.19, + "probability": 0.6329 + }, + { + "start": 16187.36, + "end": 16188.9, + "probability": 0.8844 + }, + { + "start": 16189.54, + "end": 16191.24, + "probability": 0.8656 + }, + { + "start": 16200.72, + "end": 16200.86, + "probability": 0.2493 + }, + { + "start": 16200.9, + "end": 16201.72, + "probability": 0.6726 + }, + { + "start": 16202.02, + "end": 16208.77, + "probability": 0.9426 + }, + { + "start": 16209.08, + "end": 16213.34, + "probability": 0.9977 + }, + { + "start": 16214.54, + "end": 16218.59, + "probability": 0.8405 + }, + { + "start": 16218.74, + "end": 16218.86, + "probability": 0.5904 + }, + { + "start": 16218.86, + "end": 16220.6, + "probability": 0.5672 + }, + { + "start": 16220.66, + "end": 16224.3, + "probability": 0.9313 + }, + { + "start": 16224.31, + "end": 16226.9, + "probability": 0.9985 + }, + { + "start": 16227.12, + "end": 16229.24, + "probability": 0.6969 + }, + { + "start": 16229.34, + "end": 16231.68, + "probability": 0.8336 + }, + { + "start": 16232.24, + "end": 16233.5, + "probability": 0.7164 + }, + { + "start": 16233.76, + "end": 16234.62, + "probability": 0.8567 + }, + { + "start": 16234.66, + "end": 16235.46, + "probability": 0.9543 + }, + { + "start": 16235.58, + "end": 16238.58, + "probability": 0.8979 + }, + { + "start": 16238.78, + "end": 16239.78, + "probability": 0.942 + }, + { + "start": 16239.98, + "end": 16245.36, + "probability": 0.9888 + }, + { + "start": 16245.36, + "end": 16248.46, + "probability": 0.9987 + }, + { + "start": 16249.12, + "end": 16252.54, + "probability": 0.9891 + }, + { + "start": 16252.92, + "end": 16255.46, + "probability": 0.9793 + }, + { + "start": 16255.46, + "end": 16258.78, + "probability": 0.851 + }, + { + "start": 16259.02, + "end": 16262.22, + "probability": 0.8895 + }, + { + "start": 16262.74, + "end": 16263.8, + "probability": 0.8149 + }, + { + "start": 16264.14, + "end": 16266.1, + "probability": 0.896 + }, + { + "start": 16266.38, + "end": 16268.34, + "probability": 0.9104 + }, + { + "start": 16268.6, + "end": 16269.34, + "probability": 0.8136 + }, + { + "start": 16269.62, + "end": 16270.62, + "probability": 0.7705 + }, + { + "start": 16270.64, + "end": 16272.1, + "probability": 0.9282 + }, + { + "start": 16272.16, + "end": 16274.8, + "probability": 0.8462 + }, + { + "start": 16275.38, + "end": 16276.4, + "probability": 0.9736 + }, + { + "start": 16276.5, + "end": 16280.99, + "probability": 0.9973 + }, + { + "start": 16281.72, + "end": 16287.76, + "probability": 0.9981 + }, + { + "start": 16288.64, + "end": 16292.11, + "probability": 0.9954 + }, + { + "start": 16292.52, + "end": 16295.8, + "probability": 0.9358 + }, + { + "start": 16296.22, + "end": 16301.5, + "probability": 0.9923 + }, + { + "start": 16301.64, + "end": 16303.02, + "probability": 0.7354 + }, + { + "start": 16303.42, + "end": 16307.74, + "probability": 0.9976 + }, + { + "start": 16307.74, + "end": 16314.4, + "probability": 0.9983 + }, + { + "start": 16315.0, + "end": 16316.16, + "probability": 0.5613 + }, + { + "start": 16316.38, + "end": 16318.42, + "probability": 0.8061 + }, + { + "start": 16318.5, + "end": 16319.92, + "probability": 0.7367 + }, + { + "start": 16320.02, + "end": 16326.1, + "probability": 0.9604 + }, + { + "start": 16326.48, + "end": 16328.54, + "probability": 0.998 + }, + { + "start": 16328.92, + "end": 16330.92, + "probability": 0.8484 + }, + { + "start": 16331.52, + "end": 16334.76, + "probability": 0.6931 + }, + { + "start": 16335.18, + "end": 16335.78, + "probability": 0.5938 + }, + { + "start": 16335.88, + "end": 16336.94, + "probability": 0.5959 + }, + { + "start": 16337.0, + "end": 16337.7, + "probability": 0.7394 + }, + { + "start": 16338.38, + "end": 16345.84, + "probability": 0.9921 + }, + { + "start": 16345.96, + "end": 16347.88, + "probability": 0.9371 + }, + { + "start": 16348.5, + "end": 16352.72, + "probability": 0.9847 + }, + { + "start": 16352.86, + "end": 16357.1, + "probability": 0.9668 + }, + { + "start": 16357.24, + "end": 16359.7, + "probability": 0.918 + }, + { + "start": 16359.8, + "end": 16360.66, + "probability": 0.57 + }, + { + "start": 16360.74, + "end": 16362.68, + "probability": 0.9829 + }, + { + "start": 16363.42, + "end": 16367.62, + "probability": 0.9873 + }, + { + "start": 16368.08, + "end": 16372.72, + "probability": 0.9964 + }, + { + "start": 16373.52, + "end": 16375.34, + "probability": 0.9891 + }, + { + "start": 16375.34, + "end": 16378.6, + "probability": 0.9983 + }, + { + "start": 16379.0, + "end": 16382.94, + "probability": 0.999 + }, + { + "start": 16382.94, + "end": 16389.0, + "probability": 0.9993 + }, + { + "start": 16389.0, + "end": 16393.52, + "probability": 0.9939 + }, + { + "start": 16394.06, + "end": 16397.56, + "probability": 0.9976 + }, + { + "start": 16400.11, + "end": 16404.08, + "probability": 0.9919 + }, + { + "start": 16404.42, + "end": 16405.52, + "probability": 0.6544 + }, + { + "start": 16405.66, + "end": 16406.8, + "probability": 0.6611 + }, + { + "start": 16407.14, + "end": 16408.47, + "probability": 0.9711 + }, + { + "start": 16408.7, + "end": 16413.94, + "probability": 0.9414 + }, + { + "start": 16414.1, + "end": 16414.62, + "probability": 0.7329 + }, + { + "start": 16415.16, + "end": 16415.62, + "probability": 0.8519 + }, + { + "start": 16415.7, + "end": 16421.38, + "probability": 0.998 + }, + { + "start": 16421.72, + "end": 16423.42, + "probability": 0.8977 + }, + { + "start": 16423.6, + "end": 16428.1, + "probability": 0.9974 + }, + { + "start": 16428.32, + "end": 16429.72, + "probability": 0.9598 + }, + { + "start": 16430.18, + "end": 16431.14, + "probability": 0.9816 + }, + { + "start": 16431.18, + "end": 16431.8, + "probability": 0.9307 + }, + { + "start": 16431.9, + "end": 16435.52, + "probability": 0.9687 + }, + { + "start": 16435.64, + "end": 16439.52, + "probability": 0.9961 + }, + { + "start": 16439.56, + "end": 16442.02, + "probability": 0.7803 + }, + { + "start": 16442.22, + "end": 16442.68, + "probability": 0.8103 + }, + { + "start": 16442.7, + "end": 16443.98, + "probability": 0.5356 + }, + { + "start": 16444.1, + "end": 16444.28, + "probability": 0.5442 + }, + { + "start": 16444.58, + "end": 16446.3, + "probability": 0.9649 + }, + { + "start": 16446.38, + "end": 16448.52, + "probability": 0.9124 + }, + { + "start": 16450.23, + "end": 16452.28, + "probability": 0.6998 + }, + { + "start": 16463.1, + "end": 16463.66, + "probability": 0.6438 + }, + { + "start": 16464.8, + "end": 16465.0, + "probability": 0.2976 + }, + { + "start": 16465.08, + "end": 16465.38, + "probability": 0.6573 + }, + { + "start": 16466.24, + "end": 16468.26, + "probability": 0.7516 + }, + { + "start": 16469.22, + "end": 16472.0, + "probability": 0.8125 + }, + { + "start": 16473.16, + "end": 16479.78, + "probability": 0.9932 + }, + { + "start": 16479.78, + "end": 16485.96, + "probability": 0.9891 + }, + { + "start": 16486.8, + "end": 16491.5, + "probability": 0.902 + }, + { + "start": 16491.96, + "end": 16493.58, + "probability": 0.8918 + }, + { + "start": 16494.38, + "end": 16499.2, + "probability": 0.8807 + }, + { + "start": 16499.9, + "end": 16500.72, + "probability": 0.6625 + }, + { + "start": 16501.28, + "end": 16501.98, + "probability": 0.6428 + }, + { + "start": 16502.48, + "end": 16503.44, + "probability": 0.959 + }, + { + "start": 16503.72, + "end": 16504.9, + "probability": 0.9459 + }, + { + "start": 16504.98, + "end": 16506.02, + "probability": 0.978 + }, + { + "start": 16506.22, + "end": 16507.22, + "probability": 0.892 + }, + { + "start": 16507.32, + "end": 16508.38, + "probability": 0.9861 + }, + { + "start": 16508.48, + "end": 16509.62, + "probability": 0.9962 + }, + { + "start": 16509.68, + "end": 16510.5, + "probability": 0.985 + }, + { + "start": 16510.62, + "end": 16512.54, + "probability": 0.846 + }, + { + "start": 16513.2, + "end": 16517.26, + "probability": 0.9962 + }, + { + "start": 16517.26, + "end": 16522.06, + "probability": 0.9907 + }, + { + "start": 16522.32, + "end": 16524.12, + "probability": 0.9492 + }, + { + "start": 16525.18, + "end": 16528.98, + "probability": 0.9685 + }, + { + "start": 16528.98, + "end": 16533.08, + "probability": 0.9934 + }, + { + "start": 16533.5, + "end": 16535.8, + "probability": 0.9954 + }, + { + "start": 16535.92, + "end": 16537.24, + "probability": 0.9932 + }, + { + "start": 16537.36, + "end": 16538.78, + "probability": 0.9864 + }, + { + "start": 16539.04, + "end": 16543.12, + "probability": 0.9448 + }, + { + "start": 16543.76, + "end": 16546.68, + "probability": 0.9468 + }, + { + "start": 16547.18, + "end": 16550.0, + "probability": 0.9966 + }, + { + "start": 16550.02, + "end": 16552.17, + "probability": 0.999 + }, + { + "start": 16552.9, + "end": 16554.04, + "probability": 0.8844 + }, + { + "start": 16554.14, + "end": 16558.46, + "probability": 0.9339 + }, + { + "start": 16558.6, + "end": 16559.22, + "probability": 0.4436 + }, + { + "start": 16559.64, + "end": 16562.4, + "probability": 0.9742 + }, + { + "start": 16563.22, + "end": 16563.8, + "probability": 0.4344 + }, + { + "start": 16563.84, + "end": 16567.4, + "probability": 0.6227 + }, + { + "start": 16567.74, + "end": 16567.92, + "probability": 0.4224 + }, + { + "start": 16567.98, + "end": 16569.26, + "probability": 0.7799 + }, + { + "start": 16569.58, + "end": 16571.12, + "probability": 0.9692 + }, + { + "start": 16571.22, + "end": 16571.62, + "probability": 0.8743 + }, + { + "start": 16571.94, + "end": 16574.76, + "probability": 0.9769 + }, + { + "start": 16575.52, + "end": 16578.04, + "probability": 0.8332 + }, + { + "start": 16578.66, + "end": 16582.58, + "probability": 0.9608 + }, + { + "start": 16583.22, + "end": 16584.66, + "probability": 0.9283 + }, + { + "start": 16584.84, + "end": 16586.86, + "probability": 0.9591 + }, + { + "start": 16586.96, + "end": 16588.12, + "probability": 0.7478 + }, + { + "start": 16588.88, + "end": 16591.26, + "probability": 0.8299 + }, + { + "start": 16591.5, + "end": 16594.38, + "probability": 0.9914 + }, + { + "start": 16595.92, + "end": 16597.18, + "probability": 0.8372 + }, + { + "start": 16597.92, + "end": 16598.84, + "probability": 0.6454 + }, + { + "start": 16599.88, + "end": 16602.94, + "probability": 0.9956 + }, + { + "start": 16603.02, + "end": 16604.44, + "probability": 0.8231 + }, + { + "start": 16604.54, + "end": 16606.84, + "probability": 0.7759 + }, + { + "start": 16608.56, + "end": 16610.36, + "probability": 0.914 + }, + { + "start": 16611.46, + "end": 16613.98, + "probability": 0.99 + }, + { + "start": 16614.1, + "end": 16616.34, + "probability": 0.9966 + }, + { + "start": 16616.62, + "end": 16617.62, + "probability": 0.9007 + }, + { + "start": 16617.66, + "end": 16618.92, + "probability": 0.4588 + }, + { + "start": 16619.06, + "end": 16623.9, + "probability": 0.9398 + }, + { + "start": 16624.5, + "end": 16627.58, + "probability": 0.9677 + }, + { + "start": 16628.38, + "end": 16630.74, + "probability": 0.971 + }, + { + "start": 16630.74, + "end": 16634.78, + "probability": 0.9722 + }, + { + "start": 16635.14, + "end": 16637.66, + "probability": 0.8953 + }, + { + "start": 16637.94, + "end": 16639.12, + "probability": 0.9771 + }, + { + "start": 16639.24, + "end": 16639.64, + "probability": 0.9656 + }, + { + "start": 16639.74, + "end": 16640.12, + "probability": 0.9873 + }, + { + "start": 16640.26, + "end": 16640.8, + "probability": 0.9838 + }, + { + "start": 16641.26, + "end": 16642.24, + "probability": 0.7673 + }, + { + "start": 16643.1, + "end": 16644.16, + "probability": 0.5381 + }, + { + "start": 16644.4, + "end": 16645.12, + "probability": 0.5805 + }, + { + "start": 16645.28, + "end": 16646.62, + "probability": 0.9601 + }, + { + "start": 16646.68, + "end": 16647.32, + "probability": 0.9786 + }, + { + "start": 16647.34, + "end": 16648.88, + "probability": 0.9771 + }, + { + "start": 16649.48, + "end": 16652.48, + "probability": 0.9568 + }, + { + "start": 16652.86, + "end": 16656.36, + "probability": 0.9659 + }, + { + "start": 16656.44, + "end": 16662.18, + "probability": 0.9904 + }, + { + "start": 16663.04, + "end": 16664.76, + "probability": 0.4373 + }, + { + "start": 16664.9, + "end": 16667.86, + "probability": 0.9795 + }, + { + "start": 16667.86, + "end": 16672.12, + "probability": 0.9932 + }, + { + "start": 16672.5, + "end": 16673.82, + "probability": 0.9856 + }, + { + "start": 16673.86, + "end": 16675.28, + "probability": 0.9844 + }, + { + "start": 16675.38, + "end": 16677.06, + "probability": 0.8222 + }, + { + "start": 16677.58, + "end": 16681.46, + "probability": 0.9448 + }, + { + "start": 16682.48, + "end": 16685.81, + "probability": 0.9875 + }, + { + "start": 16686.34, + "end": 16688.5, + "probability": 0.8668 + }, + { + "start": 16688.58, + "end": 16692.09, + "probability": 0.9578 + }, + { + "start": 16692.96, + "end": 16694.54, + "probability": 0.9591 + }, + { + "start": 16695.28, + "end": 16696.89, + "probability": 0.5488 + }, + { + "start": 16697.16, + "end": 16700.6, + "probability": 0.9429 + }, + { + "start": 16700.6, + "end": 16705.4, + "probability": 0.9807 + }, + { + "start": 16705.84, + "end": 16709.26, + "probability": 0.9966 + }, + { + "start": 16709.86, + "end": 16712.6, + "probability": 0.9873 + }, + { + "start": 16712.92, + "end": 16713.52, + "probability": 0.7441 + }, + { + "start": 16713.72, + "end": 16716.08, + "probability": 0.9329 + }, + { + "start": 16716.28, + "end": 16717.6, + "probability": 0.9493 + }, + { + "start": 16718.2, + "end": 16718.72, + "probability": 0.419 + }, + { + "start": 16718.86, + "end": 16720.96, + "probability": 0.8671 + }, + { + "start": 16736.7, + "end": 16736.7, + "probability": 0.443 + }, + { + "start": 16736.7, + "end": 16736.7, + "probability": 0.1582 + }, + { + "start": 16736.7, + "end": 16736.72, + "probability": 0.072 + }, + { + "start": 16748.54, + "end": 16749.68, + "probability": 0.3806 + }, + { + "start": 16751.14, + "end": 16752.68, + "probability": 0.6197 + }, + { + "start": 16752.82, + "end": 16754.56, + "probability": 0.9966 + }, + { + "start": 16754.68, + "end": 16756.0, + "probability": 0.45 + }, + { + "start": 16756.52, + "end": 16759.7, + "probability": 0.9486 + }, + { + "start": 16760.28, + "end": 16762.22, + "probability": 0.9186 + }, + { + "start": 16762.9, + "end": 16766.76, + "probability": 0.8372 + }, + { + "start": 16767.84, + "end": 16769.32, + "probability": 0.9708 + }, + { + "start": 16769.68, + "end": 16770.09, + "probability": 0.7041 + }, + { + "start": 16770.5, + "end": 16772.28, + "probability": 0.5442 + }, + { + "start": 16772.5, + "end": 16774.26, + "probability": 0.8293 + }, + { + "start": 16774.6, + "end": 16775.56, + "probability": 0.9678 + }, + { + "start": 16775.68, + "end": 16776.24, + "probability": 0.4931 + }, + { + "start": 16776.96, + "end": 16777.7, + "probability": 0.8538 + }, + { + "start": 16778.6, + "end": 16781.96, + "probability": 0.9297 + }, + { + "start": 16782.82, + "end": 16784.54, + "probability": 0.7864 + }, + { + "start": 16785.36, + "end": 16786.58, + "probability": 0.9694 + }, + { + "start": 16786.84, + "end": 16790.76, + "probability": 0.9962 + }, + { + "start": 16790.76, + "end": 16795.22, + "probability": 0.9088 + }, + { + "start": 16795.4, + "end": 16797.21, + "probability": 0.6737 + }, + { + "start": 16797.92, + "end": 16799.14, + "probability": 0.8997 + }, + { + "start": 16799.92, + "end": 16803.38, + "probability": 0.6416 + }, + { + "start": 16803.54, + "end": 16804.75, + "probability": 0.785 + }, + { + "start": 16805.12, + "end": 16807.2, + "probability": 0.8369 + }, + { + "start": 16807.98, + "end": 16810.75, + "probability": 0.9263 + }, + { + "start": 16810.82, + "end": 16813.54, + "probability": 0.9816 + }, + { + "start": 16813.54, + "end": 16815.94, + "probability": 0.9098 + }, + { + "start": 16817.12, + "end": 16819.3, + "probability": 0.6868 + }, + { + "start": 16820.3, + "end": 16821.18, + "probability": 0.9548 + }, + { + "start": 16821.28, + "end": 16823.48, + "probability": 0.9951 + }, + { + "start": 16823.76, + "end": 16826.06, + "probability": 0.9656 + }, + { + "start": 16826.58, + "end": 16830.46, + "probability": 0.9412 + }, + { + "start": 16830.46, + "end": 16832.8, + "probability": 0.9948 + }, + { + "start": 16832.94, + "end": 16834.12, + "probability": 0.9513 + }, + { + "start": 16834.7, + "end": 16837.08, + "probability": 0.9972 + }, + { + "start": 16838.06, + "end": 16840.0, + "probability": 0.9376 + }, + { + "start": 16840.46, + "end": 16840.86, + "probability": 0.4941 + }, + { + "start": 16841.02, + "end": 16841.46, + "probability": 0.6404 + }, + { + "start": 16841.58, + "end": 16842.42, + "probability": 0.7753 + }, + { + "start": 16842.42, + "end": 16843.9, + "probability": 0.7142 + }, + { + "start": 16844.78, + "end": 16846.08, + "probability": 0.8924 + }, + { + "start": 16846.16, + "end": 16846.79, + "probability": 0.9766 + }, + { + "start": 16847.0, + "end": 16849.12, + "probability": 0.8884 + }, + { + "start": 16849.2, + "end": 16851.24, + "probability": 0.9135 + }, + { + "start": 16851.82, + "end": 16854.12, + "probability": 0.9789 + }, + { + "start": 16854.44, + "end": 16855.48, + "probability": 0.9757 + }, + { + "start": 16855.92, + "end": 16858.18, + "probability": 0.9448 + }, + { + "start": 16858.74, + "end": 16860.33, + "probability": 0.9825 + }, + { + "start": 16861.4, + "end": 16862.86, + "probability": 0.9475 + }, + { + "start": 16863.0, + "end": 16863.84, + "probability": 0.9155 + }, + { + "start": 16863.86, + "end": 16865.26, + "probability": 0.9857 + }, + { + "start": 16865.6, + "end": 16867.06, + "probability": 0.9714 + }, + { + "start": 16867.1, + "end": 16869.38, + "probability": 0.8049 + }, + { + "start": 16869.44, + "end": 16876.34, + "probability": 0.9777 + }, + { + "start": 16878.6, + "end": 16880.9, + "probability": 0.9953 + }, + { + "start": 16883.12, + "end": 16883.58, + "probability": 0.5002 + }, + { + "start": 16883.6, + "end": 16888.76, + "probability": 0.9818 + }, + { + "start": 16889.4, + "end": 16893.18, + "probability": 0.9922 + }, + { + "start": 16893.54, + "end": 16894.14, + "probability": 0.7959 + }, + { + "start": 16895.12, + "end": 16895.54, + "probability": 0.5974 + }, + { + "start": 16896.28, + "end": 16897.68, + "probability": 0.6709 + }, + { + "start": 16897.86, + "end": 16899.94, + "probability": 0.9748 + }, + { + "start": 16900.02, + "end": 16902.86, + "probability": 0.7988 + }, + { + "start": 16903.46, + "end": 16907.61, + "probability": 0.9231 + }, + { + "start": 16908.36, + "end": 16911.12, + "probability": 0.5178 + }, + { + "start": 16911.72, + "end": 16913.8, + "probability": 0.8294 + }, + { + "start": 16913.92, + "end": 16918.3, + "probability": 0.9919 + }, + { + "start": 16919.12, + "end": 16921.92, + "probability": 0.5758 + }, + { + "start": 16922.32, + "end": 16923.16, + "probability": 0.6838 + }, + { + "start": 16923.22, + "end": 16926.52, + "probability": 0.8752 + }, + { + "start": 16926.64, + "end": 16928.76, + "probability": 0.9822 + }, + { + "start": 16929.2, + "end": 16932.41, + "probability": 0.9862 + }, + { + "start": 16932.72, + "end": 16937.08, + "probability": 0.8894 + }, + { + "start": 16937.16, + "end": 16939.32, + "probability": 0.7982 + }, + { + "start": 16939.48, + "end": 16940.1, + "probability": 0.7667 + }, + { + "start": 16940.56, + "end": 16943.14, + "probability": 0.9801 + }, + { + "start": 16943.5, + "end": 16944.44, + "probability": 0.6805 + }, + { + "start": 16945.2, + "end": 16946.92, + "probability": 0.9946 + }, + { + "start": 16946.96, + "end": 16948.36, + "probability": 0.9395 + }, + { + "start": 16948.86, + "end": 16950.89, + "probability": 0.7399 + }, + { + "start": 16951.6, + "end": 16954.44, + "probability": 0.8281 + }, + { + "start": 16954.52, + "end": 16956.14, + "probability": 0.924 + }, + { + "start": 16956.4, + "end": 16960.94, + "probability": 0.9832 + }, + { + "start": 16960.94, + "end": 16962.92, + "probability": 0.9912 + }, + { + "start": 16963.96, + "end": 16966.38, + "probability": 0.894 + }, + { + "start": 16966.72, + "end": 16968.18, + "probability": 0.9473 + }, + { + "start": 16968.38, + "end": 16969.22, + "probability": 0.7551 + }, + { + "start": 16969.26, + "end": 16970.8, + "probability": 0.9912 + }, + { + "start": 16971.26, + "end": 16972.9, + "probability": 0.9712 + }, + { + "start": 16973.22, + "end": 16974.48, + "probability": 0.96 + }, + { + "start": 16974.74, + "end": 16979.14, + "probability": 0.9988 + }, + { + "start": 16979.2, + "end": 16980.06, + "probability": 0.5302 + }, + { + "start": 16980.48, + "end": 16984.72, + "probability": 0.9278 + }, + { + "start": 16984.76, + "end": 16985.4, + "probability": 0.9543 + }, + { + "start": 16986.3, + "end": 16987.44, + "probability": 0.6563 + }, + { + "start": 16987.56, + "end": 16987.76, + "probability": 0.7577 + }, + { + "start": 16989.26, + "end": 16989.48, + "probability": 0.3598 + }, + { + "start": 16990.06, + "end": 16991.8, + "probability": 0.9233 + }, + { + "start": 16992.0, + "end": 16992.48, + "probability": 0.1855 + }, + { + "start": 16992.76, + "end": 16993.64, + "probability": 0.9375 + }, + { + "start": 16993.64, + "end": 16995.3, + "probability": 0.9391 + }, + { + "start": 16996.18, + "end": 16996.88, + "probability": 0.7606 + }, + { + "start": 16996.94, + "end": 16999.58, + "probability": 0.4986 + }, + { + "start": 17016.84, + "end": 17016.84, + "probability": 0.2169 + }, + { + "start": 17016.84, + "end": 17019.14, + "probability": 0.4956 + }, + { + "start": 17022.2, + "end": 17024.42, + "probability": 0.9051 + }, + { + "start": 17025.84, + "end": 17027.98, + "probability": 0.8849 + }, + { + "start": 17030.4, + "end": 17033.34, + "probability": 0.7775 + }, + { + "start": 17033.96, + "end": 17037.68, + "probability": 0.5223 + }, + { + "start": 17038.44, + "end": 17039.9, + "probability": 0.9634 + }, + { + "start": 17041.96, + "end": 17044.9, + "probability": 0.9673 + }, + { + "start": 17045.44, + "end": 17047.42, + "probability": 0.9976 + }, + { + "start": 17049.0, + "end": 17051.91, + "probability": 0.8322 + }, + { + "start": 17053.76, + "end": 17059.0, + "probability": 0.998 + }, + { + "start": 17059.68, + "end": 17061.32, + "probability": 0.5352 + }, + { + "start": 17061.96, + "end": 17065.54, + "probability": 0.9847 + }, + { + "start": 17066.18, + "end": 17070.78, + "probability": 0.9904 + }, + { + "start": 17070.78, + "end": 17073.82, + "probability": 0.997 + }, + { + "start": 17074.54, + "end": 17075.64, + "probability": 0.9376 + }, + { + "start": 17077.26, + "end": 17080.98, + "probability": 0.8116 + }, + { + "start": 17081.68, + "end": 17085.1, + "probability": 0.9946 + }, + { + "start": 17085.8, + "end": 17088.88, + "probability": 0.947 + }, + { + "start": 17088.94, + "end": 17092.64, + "probability": 0.979 + }, + { + "start": 17093.6, + "end": 17097.58, + "probability": 0.9586 + }, + { + "start": 17098.74, + "end": 17101.24, + "probability": 0.9893 + }, + { + "start": 17101.3, + "end": 17105.98, + "probability": 0.9872 + }, + { + "start": 17106.2, + "end": 17109.34, + "probability": 0.9552 + }, + { + "start": 17110.34, + "end": 17111.36, + "probability": 0.8482 + }, + { + "start": 17111.68, + "end": 17112.52, + "probability": 0.3638 + }, + { + "start": 17112.52, + "end": 17117.12, + "probability": 0.9839 + }, + { + "start": 17118.52, + "end": 17122.64, + "probability": 0.9927 + }, + { + "start": 17123.76, + "end": 17124.14, + "probability": 0.6578 + }, + { + "start": 17124.34, + "end": 17130.32, + "probability": 0.9858 + }, + { + "start": 17131.32, + "end": 17132.86, + "probability": 0.8057 + }, + { + "start": 17133.4, + "end": 17139.22, + "probability": 0.9616 + }, + { + "start": 17140.16, + "end": 17142.66, + "probability": 0.7748 + }, + { + "start": 17142.7, + "end": 17144.36, + "probability": 0.9913 + }, + { + "start": 17145.52, + "end": 17146.0, + "probability": 0.2146 + }, + { + "start": 17146.0, + "end": 17150.1, + "probability": 0.7767 + }, + { + "start": 17151.08, + "end": 17151.74, + "probability": 0.833 + }, + { + "start": 17151.86, + "end": 17155.2, + "probability": 0.9198 + }, + { + "start": 17155.78, + "end": 17157.8, + "probability": 0.9779 + }, + { + "start": 17159.28, + "end": 17163.38, + "probability": 0.9992 + }, + { + "start": 17164.56, + "end": 17168.6, + "probability": 0.9979 + }, + { + "start": 17169.42, + "end": 17172.38, + "probability": 0.9912 + }, + { + "start": 17172.94, + "end": 17175.5, + "probability": 0.9544 + }, + { + "start": 17176.26, + "end": 17176.86, + "probability": 0.6968 + }, + { + "start": 17177.06, + "end": 17180.62, + "probability": 0.9633 + }, + { + "start": 17180.62, + "end": 17183.36, + "probability": 0.9435 + }, + { + "start": 17183.54, + "end": 17183.78, + "probability": 0.799 + }, + { + "start": 17184.9, + "end": 17186.65, + "probability": 0.8717 + }, + { + "start": 17187.74, + "end": 17188.28, + "probability": 0.6506 + }, + { + "start": 17191.08, + "end": 17191.62, + "probability": 0.5015 + }, + { + "start": 17191.62, + "end": 17192.76, + "probability": 0.8429 + }, + { + "start": 17192.82, + "end": 17193.73, + "probability": 0.6679 + }, + { + "start": 17195.5, + "end": 17197.2, + "probability": 0.64 + }, + { + "start": 17198.12, + "end": 17199.04, + "probability": 0.6592 + }, + { + "start": 17199.58, + "end": 17200.38, + "probability": 0.8432 + }, + { + "start": 17201.26, + "end": 17202.58, + "probability": 0.7037 + }, + { + "start": 17203.42, + "end": 17205.25, + "probability": 0.8408 + }, + { + "start": 17205.64, + "end": 17209.82, + "probability": 0.9824 + }, + { + "start": 17210.5, + "end": 17211.38, + "probability": 0.4115 + }, + { + "start": 17211.5, + "end": 17212.18, + "probability": 0.8547 + }, + { + "start": 17212.3, + "end": 17214.36, + "probability": 0.9803 + }, + { + "start": 17215.3, + "end": 17219.28, + "probability": 0.9904 + }, + { + "start": 17219.72, + "end": 17222.47, + "probability": 0.8827 + }, + { + "start": 17222.8, + "end": 17228.04, + "probability": 0.9692 + }, + { + "start": 17228.56, + "end": 17231.1, + "probability": 0.999 + }, + { + "start": 17231.52, + "end": 17232.98, + "probability": 0.9961 + }, + { + "start": 17233.44, + "end": 17233.82, + "probability": 0.8599 + }, + { + "start": 17233.82, + "end": 17236.16, + "probability": 0.9824 + }, + { + "start": 17236.64, + "end": 17240.48, + "probability": 0.9889 + }, + { + "start": 17240.98, + "end": 17243.36, + "probability": 0.9973 + }, + { + "start": 17243.66, + "end": 17245.6, + "probability": 0.8367 + }, + { + "start": 17246.1, + "end": 17248.16, + "probability": 0.2627 + }, + { + "start": 17249.12, + "end": 17251.68, + "probability": 0.9741 + }, + { + "start": 17252.42, + "end": 17254.8, + "probability": 0.8222 + }, + { + "start": 17254.8, + "end": 17257.14, + "probability": 0.9629 + }, + { + "start": 17257.4, + "end": 17260.88, + "probability": 0.9868 + }, + { + "start": 17261.44, + "end": 17264.58, + "probability": 0.9548 + }, + { + "start": 17265.16, + "end": 17266.04, + "probability": 0.9425 + }, + { + "start": 17267.04, + "end": 17269.52, + "probability": 0.9133 + }, + { + "start": 17270.26, + "end": 17271.14, + "probability": 0.9531 + }, + { + "start": 17271.22, + "end": 17272.78, + "probability": 0.9421 + }, + { + "start": 17272.84, + "end": 17278.14, + "probability": 0.9847 + }, + { + "start": 17278.9, + "end": 17281.06, + "probability": 0.9981 + }, + { + "start": 17281.68, + "end": 17283.5, + "probability": 0.987 + }, + { + "start": 17283.9, + "end": 17284.52, + "probability": 0.8795 + }, + { + "start": 17284.64, + "end": 17285.34, + "probability": 0.5856 + }, + { + "start": 17285.42, + "end": 17289.74, + "probability": 0.958 + }, + { + "start": 17289.74, + "end": 17294.48, + "probability": 0.9966 + }, + { + "start": 17295.42, + "end": 17299.84, + "probability": 0.7552 + }, + { + "start": 17300.78, + "end": 17306.44, + "probability": 0.9871 + }, + { + "start": 17307.18, + "end": 17308.94, + "probability": 0.9568 + }, + { + "start": 17309.02, + "end": 17309.64, + "probability": 0.6023 + }, + { + "start": 17310.4, + "end": 17314.18, + "probability": 0.9156 + }, + { + "start": 17314.18, + "end": 17318.0, + "probability": 0.709 + }, + { + "start": 17318.14, + "end": 17319.96, + "probability": 0.9641 + }, + { + "start": 17320.72, + "end": 17321.86, + "probability": 0.7402 + }, + { + "start": 17322.78, + "end": 17326.34, + "probability": 0.999 + }, + { + "start": 17327.12, + "end": 17330.46, + "probability": 0.9884 + }, + { + "start": 17330.9, + "end": 17332.7, + "probability": 0.9971 + }, + { + "start": 17332.7, + "end": 17334.66, + "probability": 0.9917 + }, + { + "start": 17335.06, + "end": 17337.7, + "probability": 0.9792 + }, + { + "start": 17337.76, + "end": 17338.46, + "probability": 0.6884 + }, + { + "start": 17339.18, + "end": 17339.74, + "probability": 0.8339 + }, + { + "start": 17340.16, + "end": 17340.48, + "probability": 0.6159 + }, + { + "start": 17340.52, + "end": 17342.06, + "probability": 0.6626 + }, + { + "start": 17342.92, + "end": 17345.74, + "probability": 0.9434 + }, + { + "start": 17346.3, + "end": 17346.72, + "probability": 0.6127 + }, + { + "start": 17346.78, + "end": 17347.1, + "probability": 0.5716 + }, + { + "start": 17365.84, + "end": 17365.94, + "probability": 0.6435 + }, + { + "start": 17365.94, + "end": 17365.94, + "probability": 0.1482 + }, + { + "start": 17365.94, + "end": 17367.78, + "probability": 0.5233 + }, + { + "start": 17367.9, + "end": 17369.8, + "probability": 0.8852 + }, + { + "start": 17370.06, + "end": 17372.76, + "probability": 0.4589 + }, + { + "start": 17373.46, + "end": 17377.06, + "probability": 0.7793 + }, + { + "start": 17378.0, + "end": 17378.02, + "probability": 0.0173 + }, + { + "start": 17378.02, + "end": 17379.8, + "probability": 0.5399 + }, + { + "start": 17379.9, + "end": 17380.54, + "probability": 0.7188 + }, + { + "start": 17381.4, + "end": 17382.86, + "probability": 0.817 + }, + { + "start": 17383.28, + "end": 17386.62, + "probability": 0.9045 + }, + { + "start": 17386.74, + "end": 17387.52, + "probability": 0.8213 + }, + { + "start": 17395.4, + "end": 17395.4, + "probability": 0.5279 + }, + { + "start": 17395.4, + "end": 17396.02, + "probability": 0.5629 + }, + { + "start": 17401.18, + "end": 17403.16, + "probability": 0.6567 + }, + { + "start": 17405.62, + "end": 17407.84, + "probability": 0.9731 + }, + { + "start": 17409.44, + "end": 17413.42, + "probability": 0.9763 + }, + { + "start": 17414.24, + "end": 17414.94, + "probability": 0.9361 + }, + { + "start": 17416.12, + "end": 17417.62, + "probability": 0.9835 + }, + { + "start": 17418.44, + "end": 17420.18, + "probability": 0.8568 + }, + { + "start": 17421.6, + "end": 17427.84, + "probability": 0.9766 + }, + { + "start": 17428.84, + "end": 17430.9, + "probability": 0.8426 + }, + { + "start": 17432.04, + "end": 17433.38, + "probability": 0.8633 + }, + { + "start": 17434.02, + "end": 17438.82, + "probability": 0.8378 + }, + { + "start": 17440.16, + "end": 17444.22, + "probability": 0.9395 + }, + { + "start": 17444.74, + "end": 17446.9, + "probability": 0.8384 + }, + { + "start": 17447.48, + "end": 17450.18, + "probability": 0.952 + }, + { + "start": 17450.76, + "end": 17452.02, + "probability": 0.9229 + }, + { + "start": 17452.82, + "end": 17459.28, + "probability": 0.9131 + }, + { + "start": 17459.34, + "end": 17462.42, + "probability": 0.9792 + }, + { + "start": 17463.0, + "end": 17466.94, + "probability": 0.8145 + }, + { + "start": 17467.7, + "end": 17468.64, + "probability": 0.5155 + }, + { + "start": 17469.88, + "end": 17471.06, + "probability": 0.615 + }, + { + "start": 17472.26, + "end": 17472.66, + "probability": 0.6794 + }, + { + "start": 17472.82, + "end": 17477.96, + "probability": 0.9747 + }, + { + "start": 17478.64, + "end": 17480.2, + "probability": 0.9189 + }, + { + "start": 17481.44, + "end": 17484.96, + "probability": 0.9961 + }, + { + "start": 17486.92, + "end": 17491.4, + "probability": 0.9512 + }, + { + "start": 17493.2, + "end": 17495.32, + "probability": 0.9032 + }, + { + "start": 17496.24, + "end": 17497.56, + "probability": 0.8591 + }, + { + "start": 17497.76, + "end": 17498.77, + "probability": 0.6777 + }, + { + "start": 17502.02, + "end": 17503.72, + "probability": 0.7583 + }, + { + "start": 17504.36, + "end": 17505.38, + "probability": 0.9484 + }, + { + "start": 17506.02, + "end": 17509.68, + "probability": 0.9562 + }, + { + "start": 17510.86, + "end": 17513.98, + "probability": 0.9116 + }, + { + "start": 17516.46, + "end": 17518.22, + "probability": 0.9185 + }, + { + "start": 17518.96, + "end": 17524.02, + "probability": 0.9683 + }, + { + "start": 17524.38, + "end": 17525.34, + "probability": 0.8613 + }, + { + "start": 17526.78, + "end": 17532.42, + "probability": 0.9859 + }, + { + "start": 17533.26, + "end": 17535.12, + "probability": 0.9948 + }, + { + "start": 17535.8, + "end": 17536.86, + "probability": 0.823 + }, + { + "start": 17537.82, + "end": 17538.94, + "probability": 0.7891 + }, + { + "start": 17540.62, + "end": 17541.82, + "probability": 0.5382 + }, + { + "start": 17543.18, + "end": 17546.72, + "probability": 0.9897 + }, + { + "start": 17548.4, + "end": 17558.06, + "probability": 0.8828 + }, + { + "start": 17560.78, + "end": 17562.8, + "probability": 0.8125 + }, + { + "start": 17564.66, + "end": 17570.8, + "probability": 0.9865 + }, + { + "start": 17571.34, + "end": 17574.02, + "probability": 0.9858 + }, + { + "start": 17574.84, + "end": 17576.78, + "probability": 0.9115 + }, + { + "start": 17577.84, + "end": 17578.95, + "probability": 0.9327 + }, + { + "start": 17580.3, + "end": 17584.68, + "probability": 0.9963 + }, + { + "start": 17584.78, + "end": 17586.42, + "probability": 0.6923 + }, + { + "start": 17587.26, + "end": 17591.72, + "probability": 0.9208 + }, + { + "start": 17592.68, + "end": 17593.3, + "probability": 0.0093 + }, + { + "start": 17595.64, + "end": 17598.6, + "probability": 0.9985 + }, + { + "start": 17599.14, + "end": 17601.12, + "probability": 0.983 + }, + { + "start": 17601.64, + "end": 17609.2, + "probability": 0.971 + }, + { + "start": 17610.34, + "end": 17613.52, + "probability": 0.8302 + }, + { + "start": 17614.26, + "end": 17616.06, + "probability": 0.9574 + }, + { + "start": 17616.92, + "end": 17619.36, + "probability": 0.7545 + }, + { + "start": 17620.2, + "end": 17623.78, + "probability": 0.6971 + }, + { + "start": 17624.42, + "end": 17625.5, + "probability": 0.8746 + }, + { + "start": 17626.5, + "end": 17628.08, + "probability": 0.8538 + }, + { + "start": 17628.62, + "end": 17632.76, + "probability": 0.983 + }, + { + "start": 17633.36, + "end": 17635.06, + "probability": 0.8166 + }, + { + "start": 17635.46, + "end": 17641.1, + "probability": 0.8078 + }, + { + "start": 17641.1, + "end": 17644.8, + "probability": 0.9661 + }, + { + "start": 17645.04, + "end": 17645.4, + "probability": 0.2279 + }, + { + "start": 17645.48, + "end": 17645.54, + "probability": 0.4332 + }, + { + "start": 17645.54, + "end": 17650.48, + "probability": 0.9946 + }, + { + "start": 17650.64, + "end": 17653.56, + "probability": 0.9563 + }, + { + "start": 17654.12, + "end": 17657.5, + "probability": 0.9949 + }, + { + "start": 17657.96, + "end": 17658.74, + "probability": 0.8809 + }, + { + "start": 17659.56, + "end": 17660.96, + "probability": 0.9247 + }, + { + "start": 17661.52, + "end": 17665.2, + "probability": 0.9809 + }, + { + "start": 17666.2, + "end": 17667.82, + "probability": 0.9824 + }, + { + "start": 17668.68, + "end": 17671.62, + "probability": 0.993 + }, + { + "start": 17671.74, + "end": 17671.94, + "probability": 0.7027 + }, + { + "start": 17673.06, + "end": 17674.68, + "probability": 0.56 + }, + { + "start": 17674.78, + "end": 17676.98, + "probability": 0.6261 + }, + { + "start": 17677.32, + "end": 17680.96, + "probability": 0.7457 + }, + { + "start": 17698.94, + "end": 17699.34, + "probability": 0.7743 + }, + { + "start": 17700.88, + "end": 17703.02, + "probability": 0.7043 + }, + { + "start": 17705.14, + "end": 17707.98, + "probability": 0.989 + }, + { + "start": 17710.2, + "end": 17712.82, + "probability": 0.7877 + }, + { + "start": 17712.82, + "end": 17715.08, + "probability": 0.9944 + }, + { + "start": 17716.34, + "end": 17721.08, + "probability": 0.9408 + }, + { + "start": 17721.65, + "end": 17729.38, + "probability": 0.9955 + }, + { + "start": 17730.86, + "end": 17733.42, + "probability": 0.9958 + }, + { + "start": 17733.42, + "end": 17736.36, + "probability": 0.8763 + }, + { + "start": 17737.64, + "end": 17740.46, + "probability": 0.8504 + }, + { + "start": 17740.64, + "end": 17741.26, + "probability": 0.809 + }, + { + "start": 17743.02, + "end": 17746.32, + "probability": 0.9646 + }, + { + "start": 17747.18, + "end": 17750.22, + "probability": 0.9448 + }, + { + "start": 17751.38, + "end": 17755.34, + "probability": 0.9916 + }, + { + "start": 17755.48, + "end": 17756.12, + "probability": 0.644 + }, + { + "start": 17756.24, + "end": 17756.92, + "probability": 0.5286 + }, + { + "start": 17757.54, + "end": 17759.86, + "probability": 0.8711 + }, + { + "start": 17760.68, + "end": 17764.2, + "probability": 0.9966 + }, + { + "start": 17765.0, + "end": 17767.38, + "probability": 0.7463 + }, + { + "start": 17768.36, + "end": 17771.88, + "probability": 0.9794 + }, + { + "start": 17771.88, + "end": 17777.6, + "probability": 0.9945 + }, + { + "start": 17778.42, + "end": 17781.02, + "probability": 0.983 + }, + { + "start": 17782.64, + "end": 17784.98, + "probability": 0.875 + }, + { + "start": 17785.86, + "end": 17788.56, + "probability": 0.9268 + }, + { + "start": 17789.12, + "end": 17789.76, + "probability": 0.9832 + }, + { + "start": 17790.64, + "end": 17794.97, + "probability": 0.993 + }, + { + "start": 17795.64, + "end": 17797.76, + "probability": 0.8518 + }, + { + "start": 17798.98, + "end": 17799.7, + "probability": 0.7275 + }, + { + "start": 17799.7, + "end": 17799.96, + "probability": 0.8939 + }, + { + "start": 17800.06, + "end": 17804.32, + "probability": 0.8751 + }, + { + "start": 17805.0, + "end": 17807.8, + "probability": 0.9971 + }, + { + "start": 17808.46, + "end": 17810.86, + "probability": 0.9762 + }, + { + "start": 17811.88, + "end": 17815.6, + "probability": 0.9193 + }, + { + "start": 17816.56, + "end": 17820.6, + "probability": 0.9551 + }, + { + "start": 17821.26, + "end": 17822.4, + "probability": 0.724 + }, + { + "start": 17823.52, + "end": 17827.18, + "probability": 0.8796 + }, + { + "start": 17828.76, + "end": 17830.94, + "probability": 0.9936 + }, + { + "start": 17830.94, + "end": 17834.0, + "probability": 0.9946 + }, + { + "start": 17834.92, + "end": 17837.36, + "probability": 0.9989 + }, + { + "start": 17837.36, + "end": 17841.32, + "probability": 0.879 + }, + { + "start": 17842.28, + "end": 17844.78, + "probability": 0.9927 + }, + { + "start": 17847.02, + "end": 17851.92, + "probability": 0.9113 + }, + { + "start": 17852.42, + "end": 17858.12, + "probability": 0.9674 + }, + { + "start": 17858.98, + "end": 17863.78, + "probability": 0.9756 + }, + { + "start": 17863.98, + "end": 17865.13, + "probability": 0.7097 + }, + { + "start": 17866.3, + "end": 17870.32, + "probability": 0.9682 + }, + { + "start": 17870.84, + "end": 17873.26, + "probability": 0.9456 + }, + { + "start": 17874.46, + "end": 17879.72, + "probability": 0.894 + }, + { + "start": 17880.36, + "end": 17883.76, + "probability": 0.8972 + }, + { + "start": 17884.7, + "end": 17888.16, + "probability": 0.8896 + }, + { + "start": 17888.16, + "end": 17890.84, + "probability": 0.9816 + }, + { + "start": 17892.1, + "end": 17893.68, + "probability": 0.9862 + }, + { + "start": 17895.72, + "end": 17897.06, + "probability": 0.7262 + }, + { + "start": 17899.12, + "end": 17900.92, + "probability": 0.5389 + }, + { + "start": 17901.62, + "end": 17902.2, + "probability": 0.3093 + }, + { + "start": 17903.24, + "end": 17903.88, + "probability": 0.7941 + }, + { + "start": 17904.3, + "end": 17905.64, + "probability": 0.9785 + }, + { + "start": 17907.86, + "end": 17910.66, + "probability": 0.8729 + }, + { + "start": 17910.76, + "end": 17911.04, + "probability": 0.362 + }, + { + "start": 17911.08, + "end": 17911.4, + "probability": 0.4752 + }, + { + "start": 17911.46, + "end": 17911.88, + "probability": 0.8075 + }, + { + "start": 17928.38, + "end": 17928.38, + "probability": 0.2289 + }, + { + "start": 17928.38, + "end": 17929.92, + "probability": 0.3269 + }, + { + "start": 17930.06, + "end": 17931.34, + "probability": 0.7345 + }, + { + "start": 17932.38, + "end": 17933.18, + "probability": 0.7051 + }, + { + "start": 17933.32, + "end": 17938.9, + "probability": 0.4812 + }, + { + "start": 17940.03, + "end": 17940.56, + "probability": 0.0 + }, + { + "start": 17940.56, + "end": 17943.68, + "probability": 0.6589 + }, + { + "start": 17943.72, + "end": 17944.12, + "probability": 0.8021 + }, + { + "start": 17968.88, + "end": 17969.72, + "probability": 0.4524 + }, + { + "start": 17969.94, + "end": 17971.18, + "probability": 0.7161 + }, + { + "start": 17971.26, + "end": 17973.44, + "probability": 0.7215 + }, + { + "start": 17975.08, + "end": 17976.0, + "probability": 0.7432 + }, + { + "start": 17980.06, + "end": 17980.78, + "probability": 0.0889 + }, + { + "start": 17980.78, + "end": 17982.24, + "probability": 0.7215 + }, + { + "start": 17982.4, + "end": 17984.44, + "probability": 0.6143 + }, + { + "start": 17986.32, + "end": 17988.1, + "probability": 0.7086 + }, + { + "start": 17989.32, + "end": 17991.32, + "probability": 0.9443 + }, + { + "start": 17993.44, + "end": 17994.12, + "probability": 0.8814 + }, + { + "start": 17994.3, + "end": 17996.6, + "probability": 0.9917 + }, + { + "start": 17996.6, + "end": 17999.46, + "probability": 0.9932 + }, + { + "start": 18000.68, + "end": 18002.8, + "probability": 0.511 + }, + { + "start": 18004.42, + "end": 18007.58, + "probability": 0.8299 + }, + { + "start": 18010.14, + "end": 18011.28, + "probability": 0.9764 + }, + { + "start": 18011.6, + "end": 18012.5, + "probability": 0.9232 + }, + { + "start": 18012.68, + "end": 18013.52, + "probability": 0.9054 + }, + { + "start": 18013.68, + "end": 18015.78, + "probability": 0.8802 + }, + { + "start": 18016.7, + "end": 18019.5, + "probability": 0.799 + }, + { + "start": 18020.38, + "end": 18021.26, + "probability": 0.5903 + }, + { + "start": 18021.82, + "end": 18024.56, + "probability": 0.9962 + }, + { + "start": 18027.66, + "end": 18029.58, + "probability": 0.9855 + }, + { + "start": 18029.96, + "end": 18033.02, + "probability": 0.9144 + }, + { + "start": 18035.06, + "end": 18038.26, + "probability": 0.8958 + }, + { + "start": 18039.06, + "end": 18041.14, + "probability": 0.5388 + }, + { + "start": 18041.94, + "end": 18046.04, + "probability": 0.9959 + }, + { + "start": 18049.06, + "end": 18054.12, + "probability": 0.9556 + }, + { + "start": 18054.92, + "end": 18057.24, + "probability": 0.9976 + }, + { + "start": 18058.22, + "end": 18060.78, + "probability": 0.8872 + }, + { + "start": 18062.46, + "end": 18065.88, + "probability": 0.9946 + }, + { + "start": 18066.04, + "end": 18066.58, + "probability": 0.574 + }, + { + "start": 18066.66, + "end": 18068.5, + "probability": 0.9162 + }, + { + "start": 18070.56, + "end": 18073.66, + "probability": 0.9417 + }, + { + "start": 18074.44, + "end": 18076.92, + "probability": 0.9296 + }, + { + "start": 18078.52, + "end": 18080.9, + "probability": 0.4901 + }, + { + "start": 18081.9, + "end": 18085.44, + "probability": 0.991 + }, + { + "start": 18085.44, + "end": 18089.0, + "probability": 0.9814 + }, + { + "start": 18090.1, + "end": 18093.32, + "probability": 0.9363 + }, + { + "start": 18093.92, + "end": 18095.84, + "probability": 0.8106 + }, + { + "start": 18096.54, + "end": 18102.48, + "probability": 0.9918 + }, + { + "start": 18104.14, + "end": 18105.46, + "probability": 0.9056 + }, + { + "start": 18106.78, + "end": 18108.76, + "probability": 0.9651 + }, + { + "start": 18108.98, + "end": 18110.02, + "probability": 0.9788 + }, + { + "start": 18110.18, + "end": 18112.64, + "probability": 0.9829 + }, + { + "start": 18115.44, + "end": 18120.0, + "probability": 0.9412 + }, + { + "start": 18120.04, + "end": 18123.68, + "probability": 0.9312 + }, + { + "start": 18124.56, + "end": 18128.76, + "probability": 0.7938 + }, + { + "start": 18130.18, + "end": 18134.94, + "probability": 0.9658 + }, + { + "start": 18135.92, + "end": 18136.48, + "probability": 0.5218 + }, + { + "start": 18136.78, + "end": 18137.44, + "probability": 0.6539 + }, + { + "start": 18137.5, + "end": 18138.82, + "probability": 0.6872 + }, + { + "start": 18138.94, + "end": 18139.38, + "probability": 0.6033 + }, + { + "start": 18141.96, + "end": 18149.04, + "probability": 0.9849 + }, + { + "start": 18149.98, + "end": 18152.34, + "probability": 0.9651 + }, + { + "start": 18153.2, + "end": 18155.31, + "probability": 0.9023 + }, + { + "start": 18155.82, + "end": 18158.08, + "probability": 0.904 + }, + { + "start": 18159.48, + "end": 18161.76, + "probability": 0.6723 + }, + { + "start": 18161.84, + "end": 18162.92, + "probability": 0.7014 + }, + { + "start": 18163.92, + "end": 18166.92, + "probability": 0.823 + }, + { + "start": 18167.8, + "end": 18169.96, + "probability": 0.9412 + }, + { + "start": 18170.2, + "end": 18171.42, + "probability": 0.4524 + }, + { + "start": 18171.86, + "end": 18174.06, + "probability": 0.9907 + }, + { + "start": 18174.2, + "end": 18174.82, + "probability": 0.4404 + }, + { + "start": 18174.88, + "end": 18177.23, + "probability": 0.8875 + }, + { + "start": 18177.46, + "end": 18178.38, + "probability": 0.7514 + }, + { + "start": 18178.48, + "end": 18184.18, + "probability": 0.9876 + }, + { + "start": 18184.38, + "end": 18191.56, + "probability": 0.9483 + }, + { + "start": 18191.86, + "end": 18194.1, + "probability": 0.7668 + }, + { + "start": 18194.28, + "end": 18195.02, + "probability": 0.5036 + }, + { + "start": 18195.56, + "end": 18197.0, + "probability": 0.7537 + }, + { + "start": 18197.06, + "end": 18202.76, + "probability": 0.6116 + }, + { + "start": 18202.96, + "end": 18204.2, + "probability": 0.6239 + }, + { + "start": 18204.36, + "end": 18205.52, + "probability": 0.7823 + }, + { + "start": 18205.62, + "end": 18206.2, + "probability": 0.5403 + }, + { + "start": 18209.08, + "end": 18210.26, + "probability": 0.5957 + }, + { + "start": 18210.36, + "end": 18211.82, + "probability": 0.9365 + }, + { + "start": 18211.98, + "end": 18212.5, + "probability": 0.4836 + }, + { + "start": 18212.52, + "end": 18214.0, + "probability": 0.9426 + }, + { + "start": 18214.38, + "end": 18215.26, + "probability": 0.7337 + }, + { + "start": 18215.92, + "end": 18216.98, + "probability": 0.7326 + }, + { + "start": 18217.2, + "end": 18218.26, + "probability": 0.5952 + }, + { + "start": 18218.4, + "end": 18220.64, + "probability": 0.9829 + }, + { + "start": 18221.12, + "end": 18222.82, + "probability": 0.6895 + }, + { + "start": 18222.96, + "end": 18224.12, + "probability": 0.7533 + }, + { + "start": 18224.4, + "end": 18226.52, + "probability": 0.9906 + }, + { + "start": 18227.5, + "end": 18232.26, + "probability": 0.6846 + }, + { + "start": 18232.28, + "end": 18233.88, + "probability": 0.5984 + }, + { + "start": 18234.72, + "end": 18234.78, + "probability": 0.4976 + }, + { + "start": 18234.9, + "end": 18235.52, + "probability": 0.5623 + }, + { + "start": 18236.84, + "end": 18239.12, + "probability": 0.5385 + }, + { + "start": 18239.54, + "end": 18240.58, + "probability": 0.7162 + }, + { + "start": 18240.74, + "end": 18241.76, + "probability": 0.4245 + }, + { + "start": 18241.82, + "end": 18242.52, + "probability": 0.9111 + }, + { + "start": 18242.6, + "end": 18243.88, + "probability": 0.8319 + }, + { + "start": 18245.36, + "end": 18247.04, + "probability": 0.7792 + }, + { + "start": 18248.32, + "end": 18253.48, + "probability": 0.755 + }, + { + "start": 18253.68, + "end": 18254.38, + "probability": 0.6716 + }, + { + "start": 18254.42, + "end": 18258.78, + "probability": 0.9589 + }, + { + "start": 18259.34, + "end": 18262.27, + "probability": 0.7248 + }, + { + "start": 18263.18, + "end": 18266.18, + "probability": 0.9399 + }, + { + "start": 18267.1, + "end": 18268.24, + "probability": 0.6082 + }, + { + "start": 18268.38, + "end": 18270.54, + "probability": 0.8696 + }, + { + "start": 18271.52, + "end": 18274.82, + "probability": 0.8446 + }, + { + "start": 18275.82, + "end": 18278.08, + "probability": 0.9414 + }, + { + "start": 18279.38, + "end": 18282.0, + "probability": 0.8632 + }, + { + "start": 18282.92, + "end": 18283.8, + "probability": 0.5293 + }, + { + "start": 18287.36, + "end": 18289.58, + "probability": 0.6665 + }, + { + "start": 18290.7, + "end": 18293.8, + "probability": 0.7791 + }, + { + "start": 18294.44, + "end": 18296.0, + "probability": 0.943 + }, + { + "start": 18296.12, + "end": 18298.54, + "probability": 0.9915 + }, + { + "start": 18299.52, + "end": 18300.76, + "probability": 0.8821 + }, + { + "start": 18301.02, + "end": 18304.64, + "probability": 0.767 + }, + { + "start": 18305.4, + "end": 18306.68, + "probability": 0.7275 + }, + { + "start": 18307.22, + "end": 18308.84, + "probability": 0.8749 + }, + { + "start": 18309.02, + "end": 18309.7, + "probability": 0.4151 + }, + { + "start": 18309.74, + "end": 18310.22, + "probability": 0.5826 + }, + { + "start": 18312.34, + "end": 18314.04, + "probability": 0.9702 + }, + { + "start": 18314.24, + "end": 18316.13, + "probability": 0.9537 + }, + { + "start": 18319.02, + "end": 18319.02, + "probability": 0.0327 + }, + { + "start": 18319.02, + "end": 18321.28, + "probability": 0.5115 + }, + { + "start": 18322.82, + "end": 18327.28, + "probability": 0.9823 + }, + { + "start": 18327.88, + "end": 18331.76, + "probability": 0.9874 + }, + { + "start": 18332.42, + "end": 18336.3, + "probability": 0.9934 + }, + { + "start": 18337.02, + "end": 18337.82, + "probability": 0.6657 + }, + { + "start": 18338.44, + "end": 18339.7, + "probability": 0.8064 + }, + { + "start": 18340.32, + "end": 18345.4, + "probability": 0.9431 + }, + { + "start": 18346.36, + "end": 18349.12, + "probability": 0.8063 + }, + { + "start": 18350.02, + "end": 18351.88, + "probability": 0.5683 + }, + { + "start": 18353.35, + "end": 18355.28, + "probability": 0.4755 + }, + { + "start": 18355.28, + "end": 18356.76, + "probability": 0.4318 + }, + { + "start": 18357.52, + "end": 18359.82, + "probability": 0.8761 + }, + { + "start": 18360.68, + "end": 18362.1, + "probability": 0.7714 + }, + { + "start": 18362.18, + "end": 18364.24, + "probability": 0.855 + }, + { + "start": 18364.66, + "end": 18369.5, + "probability": 0.9286 + }, + { + "start": 18369.54, + "end": 18371.02, + "probability": 0.2162 + }, + { + "start": 18371.72, + "end": 18373.58, + "probability": 0.9432 + }, + { + "start": 18373.64, + "end": 18375.22, + "probability": 0.5094 + }, + { + "start": 18375.76, + "end": 18376.78, + "probability": 0.8546 + }, + { + "start": 18377.64, + "end": 18379.44, + "probability": 0.9814 + }, + { + "start": 18380.1, + "end": 18381.48, + "probability": 0.9632 + }, + { + "start": 18383.12, + "end": 18387.0, + "probability": 0.5837 + }, + { + "start": 18388.43, + "end": 18390.46, + "probability": 0.9609 + }, + { + "start": 18390.62, + "end": 18391.81, + "probability": 0.4446 + }, + { + "start": 18392.56, + "end": 18393.0, + "probability": 0.6639 + }, + { + "start": 18394.36, + "end": 18396.56, + "probability": 0.7903 + }, + { + "start": 18397.24, + "end": 18398.56, + "probability": 0.8245 + }, + { + "start": 18399.16, + "end": 18400.66, + "probability": 0.734 + }, + { + "start": 18402.28, + "end": 18403.6, + "probability": 0.9661 + }, + { + "start": 18403.84, + "end": 18405.02, + "probability": 0.8873 + }, + { + "start": 18405.12, + "end": 18405.76, + "probability": 0.8669 + }, + { + "start": 18406.38, + "end": 18408.52, + "probability": 0.8274 + }, + { + "start": 18408.56, + "end": 18410.04, + "probability": 0.9649 + }, + { + "start": 18411.6, + "end": 18415.38, + "probability": 0.9746 + }, + { + "start": 18415.48, + "end": 18416.38, + "probability": 0.7762 + }, + { + "start": 18417.5, + "end": 18420.66, + "probability": 0.423 + }, + { + "start": 18421.08, + "end": 18424.0, + "probability": 0.9514 + }, + { + "start": 18424.6, + "end": 18425.26, + "probability": 0.9258 + }, + { + "start": 18427.02, + "end": 18427.9, + "probability": 0.8456 + }, + { + "start": 18428.5, + "end": 18429.46, + "probability": 0.8588 + }, + { + "start": 18429.58, + "end": 18434.25, + "probability": 0.9596 + }, + { + "start": 18434.38, + "end": 18436.96, + "probability": 0.9273 + }, + { + "start": 18437.5, + "end": 18438.86, + "probability": 0.81 + }, + { + "start": 18439.54, + "end": 18441.7, + "probability": 0.7448 + }, + { + "start": 18442.64, + "end": 18444.0, + "probability": 0.4829 + }, + { + "start": 18444.28, + "end": 18445.91, + "probability": 0.7217 + }, + { + "start": 18446.71, + "end": 18451.9, + "probability": 0.6369 + }, + { + "start": 18452.1, + "end": 18453.4, + "probability": 0.9389 + }, + { + "start": 18454.08, + "end": 18456.4, + "probability": 0.895 + }, + { + "start": 18457.2, + "end": 18458.3, + "probability": 0.7114 + }, + { + "start": 18458.36, + "end": 18459.2, + "probability": 0.9307 + }, + { + "start": 18459.3, + "end": 18462.48, + "probability": 0.7695 + }, + { + "start": 18463.04, + "end": 18465.76, + "probability": 0.788 + }, + { + "start": 18465.86, + "end": 18467.62, + "probability": 0.6525 + }, + { + "start": 18468.06, + "end": 18469.04, + "probability": 0.5132 + }, + { + "start": 18470.36, + "end": 18471.74, + "probability": 0.694 + }, + { + "start": 18471.86, + "end": 18472.67, + "probability": 0.9163 + }, + { + "start": 18472.88, + "end": 18473.16, + "probability": 0.4123 + }, + { + "start": 18473.42, + "end": 18475.64, + "probability": 0.6585 + }, + { + "start": 18476.12, + "end": 18477.4, + "probability": 0.8463 + }, + { + "start": 18478.08, + "end": 18483.98, + "probability": 0.9097 + }, + { + "start": 18484.08, + "end": 18486.62, + "probability": 0.9708 + }, + { + "start": 18487.14, + "end": 18490.04, + "probability": 0.9724 + }, + { + "start": 18490.22, + "end": 18492.22, + "probability": 0.6908 + }, + { + "start": 18492.9, + "end": 18494.84, + "probability": 0.8455 + }, + { + "start": 18495.7, + "end": 18497.22, + "probability": 0.9325 + }, + { + "start": 18497.8, + "end": 18499.64, + "probability": 0.8231 + }, + { + "start": 18502.42, + "end": 18508.22, + "probability": 0.442 + }, + { + "start": 18508.22, + "end": 18513.36, + "probability": 0.9283 + }, + { + "start": 18513.46, + "end": 18514.0, + "probability": 0.3632 + }, + { + "start": 18514.38, + "end": 18515.24, + "probability": 0.8645 + }, + { + "start": 18515.3, + "end": 18515.98, + "probability": 0.6535 + }, + { + "start": 18516.14, + "end": 18517.2, + "probability": 0.5271 + }, + { + "start": 18517.94, + "end": 18520.1, + "probability": 0.9113 + }, + { + "start": 18521.08, + "end": 18523.58, + "probability": 0.8892 + }, + { + "start": 18523.86, + "end": 18525.08, + "probability": 0.7108 + }, + { + "start": 18525.18, + "end": 18525.58, + "probability": 0.818 + }, + { + "start": 18525.7, + "end": 18526.3, + "probability": 0.9414 + }, + { + "start": 18527.6, + "end": 18531.38, + "probability": 0.6626 + }, + { + "start": 18531.92, + "end": 18534.06, + "probability": 0.5855 + }, + { + "start": 18535.4, + "end": 18536.94, + "probability": 0.7961 + }, + { + "start": 18537.98, + "end": 18539.7, + "probability": 0.8099 + }, + { + "start": 18540.78, + "end": 18544.66, + "probability": 0.8715 + }, + { + "start": 18545.32, + "end": 18546.58, + "probability": 0.8428 + }, + { + "start": 18550.06, + "end": 18550.38, + "probability": 0.3439 + }, + { + "start": 18550.6, + "end": 18553.32, + "probability": 0.8365 + }, + { + "start": 18553.34, + "end": 18554.58, + "probability": 0.962 + }, + { + "start": 18554.72, + "end": 18557.18, + "probability": 0.8487 + }, + { + "start": 18557.34, + "end": 18558.9, + "probability": 0.9705 + }, + { + "start": 18559.44, + "end": 18561.28, + "probability": 0.648 + }, + { + "start": 18562.58, + "end": 18564.34, + "probability": 0.9912 + }, + { + "start": 18564.48, + "end": 18568.88, + "probability": 0.9204 + }, + { + "start": 18568.88, + "end": 18571.34, + "probability": 0.7974 + }, + { + "start": 18572.3, + "end": 18573.07, + "probability": 0.5882 + }, + { + "start": 18573.34, + "end": 18574.09, + "probability": 0.707 + }, + { + "start": 18575.26, + "end": 18576.88, + "probability": 0.9841 + }, + { + "start": 18577.36, + "end": 18580.88, + "probability": 0.9098 + }, + { + "start": 18581.24, + "end": 18582.8, + "probability": 0.9972 + }, + { + "start": 18583.62, + "end": 18585.56, + "probability": 0.9923 + }, + { + "start": 18586.44, + "end": 18587.5, + "probability": 0.6077 + }, + { + "start": 18588.44, + "end": 18590.24, + "probability": 0.9014 + }, + { + "start": 18591.6, + "end": 18592.2, + "probability": 0.9532 + }, + { + "start": 18593.04, + "end": 18594.46, + "probability": 0.9022 + }, + { + "start": 18594.94, + "end": 18596.52, + "probability": 0.9074 + }, + { + "start": 18596.72, + "end": 18597.28, + "probability": 0.711 + }, + { + "start": 18597.7, + "end": 18599.18, + "probability": 0.8535 + }, + { + "start": 18599.44, + "end": 18599.8, + "probability": 0.3212 + }, + { + "start": 18599.88, + "end": 18600.48, + "probability": 0.5474 + }, + { + "start": 18600.84, + "end": 18601.21, + "probability": 0.143 + }, + { + "start": 18602.12, + "end": 18603.08, + "probability": 0.9639 + }, + { + "start": 18603.12, + "end": 18604.23, + "probability": 0.9971 + }, + { + "start": 18605.1, + "end": 18607.2, + "probability": 0.6721 + }, + { + "start": 18607.82, + "end": 18608.14, + "probability": 0.8864 + }, + { + "start": 18608.24, + "end": 18611.9, + "probability": 0.8569 + }, + { + "start": 18613.24, + "end": 18613.76, + "probability": 0.9275 + }, + { + "start": 18614.0, + "end": 18618.38, + "probability": 0.9454 + }, + { + "start": 18618.52, + "end": 18618.66, + "probability": 0.2143 + }, + { + "start": 18618.84, + "end": 18620.42, + "probability": 0.7158 + }, + { + "start": 18621.64, + "end": 18625.56, + "probability": 0.6658 + }, + { + "start": 18626.16, + "end": 18629.6, + "probability": 0.9228 + }, + { + "start": 18630.12, + "end": 18633.34, + "probability": 0.6572 + }, + { + "start": 18634.2, + "end": 18635.64, + "probability": 0.9906 + }, + { + "start": 18636.48, + "end": 18638.2, + "probability": 0.9788 + }, + { + "start": 18638.44, + "end": 18640.1, + "probability": 0.8479 + }, + { + "start": 18640.18, + "end": 18640.68, + "probability": 0.9461 + }, + { + "start": 18640.78, + "end": 18641.08, + "probability": 0.6972 + }, + { + "start": 18642.86, + "end": 18648.28, + "probability": 0.6583 + }, + { + "start": 18648.88, + "end": 18650.3, + "probability": 0.9077 + }, + { + "start": 18651.16, + "end": 18654.58, + "probability": 0.9789 + }, + { + "start": 18654.78, + "end": 18657.5, + "probability": 0.9912 + }, + { + "start": 18658.12, + "end": 18660.94, + "probability": 0.4762 + }, + { + "start": 18661.62, + "end": 18663.08, + "probability": 0.9447 + }, + { + "start": 18663.16, + "end": 18663.42, + "probability": 0.7985 + }, + { + "start": 18663.74, + "end": 18664.56, + "probability": 0.4655 + }, + { + "start": 18666.82, + "end": 18668.7, + "probability": 0.7444 + }, + { + "start": 18669.9, + "end": 18670.24, + "probability": 0.6978 + }, + { + "start": 18686.48, + "end": 18686.76, + "probability": 0.2818 + }, + { + "start": 18686.78, + "end": 18688.6, + "probability": 0.6989 + }, + { + "start": 18690.56, + "end": 18694.4, + "probability": 0.8714 + }, + { + "start": 18695.78, + "end": 18697.86, + "probability": 0.9099 + }, + { + "start": 18699.12, + "end": 18701.3, + "probability": 0.9563 + }, + { + "start": 18702.2, + "end": 18705.8, + "probability": 0.973 + }, + { + "start": 18706.42, + "end": 18709.58, + "probability": 0.9665 + }, + { + "start": 18710.78, + "end": 18712.14, + "probability": 0.8921 + }, + { + "start": 18712.7, + "end": 18715.54, + "probability": 0.5898 + }, + { + "start": 18716.22, + "end": 18718.12, + "probability": 0.9443 + }, + { + "start": 18719.84, + "end": 18721.64, + "probability": 0.9119 + }, + { + "start": 18722.8, + "end": 18724.44, + "probability": 0.959 + }, + { + "start": 18724.64, + "end": 18727.0, + "probability": 0.9302 + }, + { + "start": 18727.58, + "end": 18728.56, + "probability": 0.6276 + }, + { + "start": 18729.52, + "end": 18731.02, + "probability": 0.8729 + }, + { + "start": 18732.26, + "end": 18733.08, + "probability": 0.9479 + }, + { + "start": 18734.5, + "end": 18736.52, + "probability": 0.9407 + }, + { + "start": 18737.08, + "end": 18737.3, + "probability": 0.8102 + }, + { + "start": 18738.44, + "end": 18741.44, + "probability": 0.9462 + }, + { + "start": 18742.52, + "end": 18743.64, + "probability": 0.782 + }, + { + "start": 18744.56, + "end": 18746.62, + "probability": 0.9941 + }, + { + "start": 18748.64, + "end": 18749.64, + "probability": 0.8344 + }, + { + "start": 18751.06, + "end": 18751.58, + "probability": 0.812 + }, + { + "start": 18752.46, + "end": 18755.22, + "probability": 0.9027 + }, + { + "start": 18756.46, + "end": 18756.94, + "probability": 0.8484 + }, + { + "start": 18757.74, + "end": 18759.42, + "probability": 0.9739 + }, + { + "start": 18760.04, + "end": 18763.24, + "probability": 0.9058 + }, + { + "start": 18763.82, + "end": 18766.48, + "probability": 0.9406 + }, + { + "start": 18767.28, + "end": 18767.52, + "probability": 0.7313 + }, + { + "start": 18768.2, + "end": 18771.78, + "probability": 0.8273 + }, + { + "start": 18772.74, + "end": 18774.08, + "probability": 0.9232 + }, + { + "start": 18774.62, + "end": 18774.9, + "probability": 0.6266 + }, + { + "start": 18775.84, + "end": 18777.36, + "probability": 0.8943 + }, + { + "start": 18778.06, + "end": 18778.66, + "probability": 0.8028 + }, + { + "start": 18778.86, + "end": 18781.02, + "probability": 0.9854 + }, + { + "start": 18782.08, + "end": 18783.42, + "probability": 0.8761 + }, + { + "start": 18785.16, + "end": 18785.7, + "probability": 0.6795 + }, + { + "start": 18786.44, + "end": 18794.64, + "probability": 0.9775 + }, + { + "start": 18795.16, + "end": 18797.22, + "probability": 0.991 + }, + { + "start": 18798.64, + "end": 18801.8, + "probability": 0.9522 + }, + { + "start": 18802.66, + "end": 18806.42, + "probability": 0.8062 + }, + { + "start": 18808.58, + "end": 18809.04, + "probability": 0.8939 + }, + { + "start": 18809.82, + "end": 18812.62, + "probability": 0.8658 + }, + { + "start": 18814.29, + "end": 18815.61, + "probability": 0.6113 + }, + { + "start": 18815.78, + "end": 18816.58, + "probability": 0.8603 + }, + { + "start": 18817.0, + "end": 18818.81, + "probability": 0.8969 + }, + { + "start": 18820.52, + "end": 18821.14, + "probability": 0.5317 + }, + { + "start": 18821.86, + "end": 18825.28, + "probability": 0.9958 + }, + { + "start": 18825.36, + "end": 18826.22, + "probability": 0.9693 + }, + { + "start": 18827.42, + "end": 18829.22, + "probability": 0.8379 + }, + { + "start": 18829.52, + "end": 18834.72, + "probability": 0.9033 + }, + { + "start": 18835.12, + "end": 18836.48, + "probability": 0.6733 + }, + { + "start": 18836.98, + "end": 18840.12, + "probability": 0.7061 + }, + { + "start": 18840.62, + "end": 18841.84, + "probability": 0.978 + }, + { + "start": 18841.92, + "end": 18842.36, + "probability": 0.9193 + }, + { + "start": 18842.7, + "end": 18843.41, + "probability": 0.6931 + }, + { + "start": 18844.02, + "end": 18844.9, + "probability": 0.9885 + }, + { + "start": 18844.96, + "end": 18846.12, + "probability": 0.9627 + }, + { + "start": 18846.44, + "end": 18846.9, + "probability": 0.9807 + }, + { + "start": 18848.12, + "end": 18849.24, + "probability": 0.9823 + }, + { + "start": 18850.26, + "end": 18851.7, + "probability": 0.5832 + }, + { + "start": 18852.64, + "end": 18853.24, + "probability": 0.8787 + }, + { + "start": 18854.76, + "end": 18858.1, + "probability": 0.8002 + }, + { + "start": 18858.66, + "end": 18862.9, + "probability": 0.979 + }, + { + "start": 18863.66, + "end": 18864.76, + "probability": 0.3134 + }, + { + "start": 18865.46, + "end": 18866.36, + "probability": 0.9971 + }, + { + "start": 18867.08, + "end": 18868.54, + "probability": 0.9164 + }, + { + "start": 18869.16, + "end": 18871.04, + "probability": 0.7485 + }, + { + "start": 18871.62, + "end": 18872.58, + "probability": 0.886 + }, + { + "start": 18873.3, + "end": 18874.74, + "probability": 0.9412 + }, + { + "start": 18875.54, + "end": 18877.58, + "probability": 0.9486 + }, + { + "start": 18877.74, + "end": 18878.56, + "probability": 0.874 + }, + { + "start": 18878.72, + "end": 18879.32, + "probability": 0.6416 + }, + { + "start": 18879.68, + "end": 18882.02, + "probability": 0.8473 + }, + { + "start": 18882.86, + "end": 18886.08, + "probability": 0.8922 + }, + { + "start": 18886.56, + "end": 18889.9, + "probability": 0.9922 + }, + { + "start": 18890.18, + "end": 18890.98, + "probability": 0.9307 + }, + { + "start": 18891.3, + "end": 18892.66, + "probability": 0.9134 + }, + { + "start": 18893.1, + "end": 18893.54, + "probability": 0.8018 + }, + { + "start": 18894.1, + "end": 18895.46, + "probability": 0.9617 + }, + { + "start": 18895.98, + "end": 18897.18, + "probability": 0.9736 + }, + { + "start": 18898.4, + "end": 18901.34, + "probability": 0.8462 + }, + { + "start": 18903.6, + "end": 18906.04, + "probability": 0.8382 + }, + { + "start": 18907.42, + "end": 18907.94, + "probability": 0.8784 + }, + { + "start": 18909.22, + "end": 18910.36, + "probability": 0.9813 + }, + { + "start": 18910.54, + "end": 18911.44, + "probability": 0.9357 + }, + { + "start": 18912.66, + "end": 18914.48, + "probability": 0.8241 + }, + { + "start": 18915.9, + "end": 18918.66, + "probability": 0.8535 + }, + { + "start": 18919.52, + "end": 18920.66, + "probability": 0.8296 + }, + { + "start": 18921.18, + "end": 18924.26, + "probability": 0.8833 + }, + { + "start": 18925.3, + "end": 18927.88, + "probability": 0.9898 + }, + { + "start": 18928.28, + "end": 18933.04, + "probability": 0.9928 + }, + { + "start": 18933.34, + "end": 18933.76, + "probability": 0.5113 + }, + { + "start": 18933.98, + "end": 18935.22, + "probability": 0.5592 + }, + { + "start": 18935.42, + "end": 18937.7, + "probability": 0.8884 + }, + { + "start": 18938.5, + "end": 18940.68, + "probability": 0.9766 + }, + { + "start": 18941.26, + "end": 18942.37, + "probability": 0.9091 + }, + { + "start": 18943.18, + "end": 18944.34, + "probability": 0.7783 + }, + { + "start": 18945.32, + "end": 18948.44, + "probability": 0.9768 + }, + { + "start": 18948.84, + "end": 18951.38, + "probability": 0.9485 + }, + { + "start": 18951.52, + "end": 18951.8, + "probability": 0.8715 + }, + { + "start": 18952.32, + "end": 18952.97, + "probability": 0.6859 + }, + { + "start": 18953.34, + "end": 18954.18, + "probability": 0.9465 + }, + { + "start": 18954.74, + "end": 18955.4, + "probability": 0.6402 + }, + { + "start": 18955.46, + "end": 18957.84, + "probability": 0.9606 + }, + { + "start": 18958.3, + "end": 18960.98, + "probability": 0.9966 + }, + { + "start": 18961.72, + "end": 18963.62, + "probability": 0.9976 + }, + { + "start": 18963.76, + "end": 18964.18, + "probability": 0.7806 + }, + { + "start": 18964.68, + "end": 18966.74, + "probability": 0.9568 + }, + { + "start": 18966.82, + "end": 18967.5, + "probability": 0.6621 + }, + { + "start": 18967.8, + "end": 18969.06, + "probability": 0.9029 + }, + { + "start": 18969.48, + "end": 18977.06, + "probability": 0.9208 + }, + { + "start": 18977.16, + "end": 18977.74, + "probability": 0.6514 + }, + { + "start": 18978.54, + "end": 18979.44, + "probability": 0.9788 + }, + { + "start": 18979.92, + "end": 18981.32, + "probability": 0.7568 + }, + { + "start": 18981.78, + "end": 18982.54, + "probability": 0.9048 + }, + { + "start": 18983.1, + "end": 18986.82, + "probability": 0.9113 + }, + { + "start": 18987.6, + "end": 18989.14, + "probability": 0.8775 + }, + { + "start": 18989.72, + "end": 18991.52, + "probability": 0.961 + }, + { + "start": 18992.94, + "end": 18995.66, + "probability": 0.9192 + }, + { + "start": 18997.6, + "end": 18998.26, + "probability": 0.7163 + }, + { + "start": 18998.26, + "end": 19000.06, + "probability": 0.8729 + }, + { + "start": 19000.06, + "end": 19000.92, + "probability": 0.6199 + }, + { + "start": 19002.48, + "end": 19003.3, + "probability": 0.9805 + }, + { + "start": 19005.42, + "end": 19007.86, + "probability": 0.7759 + }, + { + "start": 19008.68, + "end": 19010.16, + "probability": 0.874 + }, + { + "start": 19010.68, + "end": 19011.92, + "probability": 0.7152 + }, + { + "start": 19013.12, + "end": 19018.44, + "probability": 0.9644 + }, + { + "start": 19018.94, + "end": 19019.54, + "probability": 0.9669 + }, + { + "start": 19020.94, + "end": 19021.32, + "probability": 0.9097 + }, + { + "start": 19021.5, + "end": 19022.14, + "probability": 0.6358 + }, + { + "start": 19022.22, + "end": 19025.22, + "probability": 0.9971 + }, + { + "start": 19025.44, + "end": 19025.83, + "probability": 0.9177 + }, + { + "start": 19026.32, + "end": 19026.9, + "probability": 0.7168 + }, + { + "start": 19026.98, + "end": 19028.44, + "probability": 0.7824 + }, + { + "start": 19029.58, + "end": 19029.68, + "probability": 0.0433 + }, + { + "start": 19029.68, + "end": 19031.2, + "probability": 0.802 + }, + { + "start": 19031.26, + "end": 19032.22, + "probability": 0.9382 + }, + { + "start": 19033.02, + "end": 19035.02, + "probability": 0.998 + }, + { + "start": 19036.24, + "end": 19038.88, + "probability": 0.8761 + }, + { + "start": 19039.6, + "end": 19040.96, + "probability": 0.9388 + }, + { + "start": 19041.82, + "end": 19044.64, + "probability": 0.9647 + }, + { + "start": 19045.2, + "end": 19047.08, + "probability": 0.6802 + }, + { + "start": 19047.62, + "end": 19050.18, + "probability": 0.9957 + }, + { + "start": 19050.78, + "end": 19053.02, + "probability": 0.9982 + }, + { + "start": 19053.56, + "end": 19058.94, + "probability": 0.9403 + }, + { + "start": 19059.5, + "end": 19060.12, + "probability": 0.4843 + }, + { + "start": 19060.98, + "end": 19063.38, + "probability": 0.9791 + }, + { + "start": 19065.02, + "end": 19066.06, + "probability": 0.9635 + }, + { + "start": 19066.52, + "end": 19068.32, + "probability": 0.9 + }, + { + "start": 19068.56, + "end": 19069.5, + "probability": 0.9296 + }, + { + "start": 19070.06, + "end": 19073.46, + "probability": 0.7324 + }, + { + "start": 19075.76, + "end": 19078.64, + "probability": 0.9836 + }, + { + "start": 19078.78, + "end": 19080.36, + "probability": 0.8369 + }, + { + "start": 19080.9, + "end": 19083.32, + "probability": 0.9565 + }, + { + "start": 19083.7, + "end": 19084.68, + "probability": 0.9905 + }, + { + "start": 19085.46, + "end": 19087.82, + "probability": 0.7627 + }, + { + "start": 19090.8, + "end": 19093.4, + "probability": 0.8196 + }, + { + "start": 19093.64, + "end": 19095.56, + "probability": 0.8401 + }, + { + "start": 19096.06, + "end": 19096.58, + "probability": 0.8504 + }, + { + "start": 19096.88, + "end": 19097.08, + "probability": 0.2943 + }, + { + "start": 19097.51, + "end": 19099.48, + "probability": 0.7891 + }, + { + "start": 19100.02, + "end": 19102.5, + "probability": 0.979 + }, + { + "start": 19102.92, + "end": 19104.6, + "probability": 0.8828 + }, + { + "start": 19104.64, + "end": 19106.28, + "probability": 0.8526 + }, + { + "start": 19106.66, + "end": 19107.64, + "probability": 0.5291 + }, + { + "start": 19107.74, + "end": 19108.26, + "probability": 0.7012 + }, + { + "start": 19108.36, + "end": 19109.64, + "probability": 0.5688 + }, + { + "start": 19109.78, + "end": 19111.12, + "probability": 0.8314 + }, + { + "start": 19111.84, + "end": 19112.7, + "probability": 0.9116 + }, + { + "start": 19114.08, + "end": 19115.06, + "probability": 0.9062 + }, + { + "start": 19115.78, + "end": 19117.68, + "probability": 0.9814 + }, + { + "start": 19118.14, + "end": 19119.18, + "probability": 0.7676 + }, + { + "start": 19121.0, + "end": 19121.68, + "probability": 0.8587 + }, + { + "start": 19121.88, + "end": 19124.84, + "probability": 0.99 + }, + { + "start": 19125.38, + "end": 19128.94, + "probability": 0.9729 + }, + { + "start": 19129.1, + "end": 19131.58, + "probability": 0.9655 + }, + { + "start": 19131.96, + "end": 19132.36, + "probability": 0.6174 + }, + { + "start": 19132.48, + "end": 19133.74, + "probability": 0.8974 + }, + { + "start": 19134.06, + "end": 19136.02, + "probability": 0.9678 + }, + { + "start": 19136.08, + "end": 19137.24, + "probability": 0.969 + }, + { + "start": 19137.46, + "end": 19139.16, + "probability": 0.9303 + }, + { + "start": 19139.5, + "end": 19142.28, + "probability": 0.7554 + }, + { + "start": 19144.74, + "end": 19146.22, + "probability": 0.9663 + }, + { + "start": 19147.66, + "end": 19148.5, + "probability": 0.9561 + }, + { + "start": 19149.9, + "end": 19150.54, + "probability": 0.8238 + }, + { + "start": 19151.34, + "end": 19152.1, + "probability": 0.911 + }, + { + "start": 19152.82, + "end": 19154.21, + "probability": 0.9627 + }, + { + "start": 19154.8, + "end": 19156.45, + "probability": 0.9414 + }, + { + "start": 19157.16, + "end": 19157.74, + "probability": 0.759 + }, + { + "start": 19159.1, + "end": 19161.34, + "probability": 0.9927 + }, + { + "start": 19162.1, + "end": 19164.68, + "probability": 0.9229 + }, + { + "start": 19165.18, + "end": 19167.82, + "probability": 0.8257 + }, + { + "start": 19168.16, + "end": 19168.86, + "probability": 0.9834 + }, + { + "start": 19169.2, + "end": 19171.42, + "probability": 0.9988 + }, + { + "start": 19172.06, + "end": 19177.68, + "probability": 0.9883 + }, + { + "start": 19177.96, + "end": 19178.94, + "probability": 0.9629 + }, + { + "start": 19178.98, + "end": 19181.02, + "probability": 0.6731 + }, + { + "start": 19182.36, + "end": 19188.08, + "probability": 0.9799 + }, + { + "start": 19188.88, + "end": 19189.78, + "probability": 0.6387 + }, + { + "start": 19190.7, + "end": 19191.7, + "probability": 0.6934 + }, + { + "start": 19191.72, + "end": 19192.52, + "probability": 0.7086 + }, + { + "start": 19192.6, + "end": 19194.0, + "probability": 0.8538 + }, + { + "start": 19195.26, + "end": 19197.88, + "probability": 0.8951 + }, + { + "start": 19198.82, + "end": 19200.44, + "probability": 0.97 + }, + { + "start": 19200.68, + "end": 19201.82, + "probability": 0.9491 + }, + { + "start": 19201.86, + "end": 19202.8, + "probability": 0.9594 + }, + { + "start": 19203.42, + "end": 19204.56, + "probability": 0.7771 + }, + { + "start": 19204.98, + "end": 19205.8, + "probability": 0.9113 + }, + { + "start": 19205.84, + "end": 19206.98, + "probability": 0.9819 + }, + { + "start": 19207.36, + "end": 19212.56, + "probability": 0.9664 + }, + { + "start": 19212.88, + "end": 19214.98, + "probability": 0.7751 + }, + { + "start": 19215.56, + "end": 19217.94, + "probability": 0.7749 + }, + { + "start": 19218.28, + "end": 19219.08, + "probability": 0.9335 + }, + { + "start": 19219.12, + "end": 19219.98, + "probability": 0.8822 + }, + { + "start": 19220.28, + "end": 19221.38, + "probability": 0.6255 + }, + { + "start": 19221.5, + "end": 19222.44, + "probability": 0.794 + }, + { + "start": 19222.88, + "end": 19223.98, + "probability": 0.8545 + }, + { + "start": 19224.44, + "end": 19227.92, + "probability": 0.8902 + }, + { + "start": 19227.96, + "end": 19228.92, + "probability": 0.8527 + }, + { + "start": 19229.28, + "end": 19231.54, + "probability": 0.9636 + }, + { + "start": 19232.1, + "end": 19233.7, + "probability": 0.7723 + }, + { + "start": 19235.0, + "end": 19236.48, + "probability": 0.8869 + }, + { + "start": 19237.1, + "end": 19238.1, + "probability": 0.5906 + }, + { + "start": 19238.46, + "end": 19242.42, + "probability": 0.9675 + }, + { + "start": 19242.52, + "end": 19243.28, + "probability": 0.8839 + }, + { + "start": 19244.4, + "end": 19245.7, + "probability": 0.8921 + }, + { + "start": 19246.14, + "end": 19247.0, + "probability": 0.9946 + }, + { + "start": 19247.58, + "end": 19247.94, + "probability": 0.8809 + }, + { + "start": 19248.68, + "end": 19249.17, + "probability": 0.3066 + }, + { + "start": 19250.0, + "end": 19254.96, + "probability": 0.97 + }, + { + "start": 19255.04, + "end": 19258.34, + "probability": 0.9124 + }, + { + "start": 19258.98, + "end": 19263.36, + "probability": 0.9884 + }, + { + "start": 19264.6, + "end": 19265.96, + "probability": 0.7495 + }, + { + "start": 19266.7, + "end": 19267.4, + "probability": 0.8221 + }, + { + "start": 19268.3, + "end": 19268.86, + "probability": 0.9259 + }, + { + "start": 19269.62, + "end": 19271.78, + "probability": 0.7993 + }, + { + "start": 19272.56, + "end": 19273.38, + "probability": 0.7547 + }, + { + "start": 19274.22, + "end": 19274.92, + "probability": 0.7184 + }, + { + "start": 19275.36, + "end": 19278.96, + "probability": 0.9575 + }, + { + "start": 19279.88, + "end": 19283.02, + "probability": 0.9015 + }, + { + "start": 19283.62, + "end": 19284.74, + "probability": 0.9199 + }, + { + "start": 19285.32, + "end": 19287.64, + "probability": 0.9946 + }, + { + "start": 19287.86, + "end": 19289.14, + "probability": 0.8139 + }, + { + "start": 19289.2, + "end": 19289.9, + "probability": 0.9741 + }, + { + "start": 19290.28, + "end": 19293.06, + "probability": 0.95 + }, + { + "start": 19293.54, + "end": 19295.08, + "probability": 0.9438 + }, + { + "start": 19295.14, + "end": 19297.2, + "probability": 0.9978 + }, + { + "start": 19297.5, + "end": 19298.18, + "probability": 0.91 + }, + { + "start": 19298.22, + "end": 19302.04, + "probability": 0.983 + }, + { + "start": 19302.38, + "end": 19304.24, + "probability": 0.9797 + }, + { + "start": 19304.82, + "end": 19307.34, + "probability": 0.9008 + }, + { + "start": 19307.7, + "end": 19310.34, + "probability": 0.9578 + }, + { + "start": 19310.68, + "end": 19314.16, + "probability": 0.8964 + }, + { + "start": 19314.6, + "end": 19315.7, + "probability": 0.9307 + }, + { + "start": 19316.04, + "end": 19318.88, + "probability": 0.7653 + }, + { + "start": 19319.28, + "end": 19319.28, + "probability": 0.285 + }, + { + "start": 19319.28, + "end": 19320.32, + "probability": 0.5472 + }, + { + "start": 19320.86, + "end": 19321.24, + "probability": 0.641 + }, + { + "start": 19321.96, + "end": 19327.3, + "probability": 0.9668 + }, + { + "start": 19327.32, + "end": 19329.54, + "probability": 0.8036 + }, + { + "start": 19330.16, + "end": 19331.84, + "probability": 0.8898 + }, + { + "start": 19332.32, + "end": 19333.46, + "probability": 0.9642 + }, + { + "start": 19333.84, + "end": 19334.74, + "probability": 0.7506 + }, + { + "start": 19335.24, + "end": 19336.8, + "probability": 0.875 + }, + { + "start": 19337.22, + "end": 19341.14, + "probability": 0.853 + }, + { + "start": 19341.64, + "end": 19342.9, + "probability": 0.9492 + }, + { + "start": 19343.34, + "end": 19344.58, + "probability": 0.9484 + }, + { + "start": 19344.94, + "end": 19347.28, + "probability": 0.9412 + }, + { + "start": 19348.0, + "end": 19349.52, + "probability": 0.9453 + }, + { + "start": 19349.9, + "end": 19351.9, + "probability": 0.7943 + }, + { + "start": 19378.38, + "end": 19378.38, + "probability": 0.5822 + }, + { + "start": 19378.38, + "end": 19378.66, + "probability": 0.344 + }, + { + "start": 19378.66, + "end": 19379.94, + "probability": 0.6305 + }, + { + "start": 19384.66, + "end": 19385.82, + "probability": 0.6602 + }, + { + "start": 19387.16, + "end": 19390.41, + "probability": 0.8699 + }, + { + "start": 19394.52, + "end": 19397.5, + "probability": 0.5661 + }, + { + "start": 19398.26, + "end": 19401.6, + "probability": 0.8269 + }, + { + "start": 19402.3, + "end": 19403.91, + "probability": 0.9652 + }, + { + "start": 19406.16, + "end": 19408.34, + "probability": 0.967 + }, + { + "start": 19409.66, + "end": 19411.76, + "probability": 0.9822 + }, + { + "start": 19411.84, + "end": 19415.12, + "probability": 0.9946 + }, + { + "start": 19416.18, + "end": 19420.2, + "probability": 0.9819 + }, + { + "start": 19421.64, + "end": 19427.16, + "probability": 0.9629 + }, + { + "start": 19428.56, + "end": 19431.52, + "probability": 0.6297 + }, + { + "start": 19433.96, + "end": 19437.6, + "probability": 0.946 + }, + { + "start": 19437.72, + "end": 19439.24, + "probability": 0.8609 + }, + { + "start": 19439.34, + "end": 19440.1, + "probability": 0.7417 + }, + { + "start": 19441.04, + "end": 19441.66, + "probability": 0.5526 + }, + { + "start": 19443.5, + "end": 19447.2, + "probability": 0.9795 + }, + { + "start": 19448.0, + "end": 19449.12, + "probability": 0.981 + }, + { + "start": 19451.54, + "end": 19454.0, + "probability": 0.8695 + }, + { + "start": 19454.72, + "end": 19455.84, + "probability": 0.9697 + }, + { + "start": 19455.98, + "end": 19458.14, + "probability": 0.9922 + }, + { + "start": 19459.14, + "end": 19459.58, + "probability": 0.9538 + }, + { + "start": 19459.78, + "end": 19460.34, + "probability": 0.3882 + }, + { + "start": 19460.4, + "end": 19461.08, + "probability": 0.3907 + }, + { + "start": 19461.38, + "end": 19463.88, + "probability": 0.6212 + }, + { + "start": 19464.72, + "end": 19466.36, + "probability": 0.9751 + }, + { + "start": 19466.42, + "end": 19467.56, + "probability": 0.9476 + }, + { + "start": 19467.6, + "end": 19469.26, + "probability": 0.9941 + }, + { + "start": 19470.26, + "end": 19472.46, + "probability": 0.9419 + }, + { + "start": 19474.16, + "end": 19478.22, + "probability": 0.9849 + }, + { + "start": 19479.66, + "end": 19483.41, + "probability": 0.9993 + }, + { + "start": 19483.9, + "end": 19484.64, + "probability": 0.8492 + }, + { + "start": 19484.74, + "end": 19485.92, + "probability": 0.8613 + }, + { + "start": 19488.4, + "end": 19490.62, + "probability": 0.9839 + }, + { + "start": 19493.91, + "end": 19497.66, + "probability": 0.9297 + }, + { + "start": 19499.7, + "end": 19501.38, + "probability": 0.9109 + }, + { + "start": 19501.5, + "end": 19505.2, + "probability": 0.701 + }, + { + "start": 19506.14, + "end": 19508.28, + "probability": 0.988 + }, + { + "start": 19508.78, + "end": 19510.92, + "probability": 0.8835 + }, + { + "start": 19510.94, + "end": 19511.9, + "probability": 0.6663 + }, + { + "start": 19512.92, + "end": 19514.64, + "probability": 0.8641 + }, + { + "start": 19515.32, + "end": 19515.72, + "probability": 0.8428 + }, + { + "start": 19516.08, + "end": 19517.32, + "probability": 0.9136 + }, + { + "start": 19517.44, + "end": 19520.42, + "probability": 0.9922 + }, + { + "start": 19520.62, + "end": 19521.98, + "probability": 0.7486 + }, + { + "start": 19522.74, + "end": 19524.56, + "probability": 0.7262 + }, + { + "start": 19524.78, + "end": 19526.52, + "probability": 0.7858 + }, + { + "start": 19528.4, + "end": 19530.02, + "probability": 0.8798 + }, + { + "start": 19531.86, + "end": 19536.22, + "probability": 0.969 + }, + { + "start": 19537.76, + "end": 19540.46, + "probability": 0.8761 + }, + { + "start": 19541.0, + "end": 19541.82, + "probability": 0.9647 + }, + { + "start": 19542.16, + "end": 19544.18, + "probability": 0.9392 + }, + { + "start": 19544.28, + "end": 19545.42, + "probability": 0.973 + }, + { + "start": 19545.88, + "end": 19546.64, + "probability": 0.9053 + }, + { + "start": 19546.7, + "end": 19548.54, + "probability": 0.9692 + }, + { + "start": 19549.32, + "end": 19550.94, + "probability": 0.6058 + }, + { + "start": 19551.06, + "end": 19552.06, + "probability": 0.9873 + }, + { + "start": 19552.24, + "end": 19553.18, + "probability": 0.8936 + }, + { + "start": 19553.34, + "end": 19553.98, + "probability": 0.6145 + }, + { + "start": 19554.52, + "end": 19555.98, + "probability": 0.9956 + }, + { + "start": 19556.06, + "end": 19559.62, + "probability": 0.9714 + }, + { + "start": 19561.24, + "end": 19562.43, + "probability": 0.9689 + }, + { + "start": 19562.96, + "end": 19563.86, + "probability": 0.9653 + }, + { + "start": 19564.02, + "end": 19564.72, + "probability": 0.8147 + }, + { + "start": 19564.84, + "end": 19565.74, + "probability": 0.9651 + }, + { + "start": 19566.5, + "end": 19567.44, + "probability": 0.5447 + }, + { + "start": 19567.46, + "end": 19568.52, + "probability": 0.9211 + }, + { + "start": 19568.7, + "end": 19569.96, + "probability": 0.7621 + }, + { + "start": 19570.36, + "end": 19572.66, + "probability": 0.9048 + }, + { + "start": 19574.26, + "end": 19575.38, + "probability": 0.9966 + }, + { + "start": 19575.6, + "end": 19578.32, + "probability": 0.925 + }, + { + "start": 19579.84, + "end": 19582.56, + "probability": 0.4034 + }, + { + "start": 19582.56, + "end": 19583.14, + "probability": 0.6655 + }, + { + "start": 19583.28, + "end": 19585.18, + "probability": 0.7312 + }, + { + "start": 19585.9, + "end": 19586.9, + "probability": 0.5503 + }, + { + "start": 19587.0, + "end": 19587.32, + "probability": 0.7606 + }, + { + "start": 19587.4, + "end": 19588.1, + "probability": 0.7276 + }, + { + "start": 19588.58, + "end": 19589.73, + "probability": 0.978 + }, + { + "start": 19591.14, + "end": 19592.96, + "probability": 0.9907 + }, + { + "start": 19592.98, + "end": 19593.9, + "probability": 0.8052 + }, + { + "start": 19594.0, + "end": 19594.54, + "probability": 0.681 + }, + { + "start": 19594.82, + "end": 19596.2, + "probability": 0.866 + }, + { + "start": 19596.76, + "end": 19599.08, + "probability": 0.9731 + }, + { + "start": 19599.14, + "end": 19600.3, + "probability": 0.9136 + }, + { + "start": 19600.42, + "end": 19600.94, + "probability": 0.7466 + }, + { + "start": 19602.2, + "end": 19603.9, + "probability": 0.4851 + }, + { + "start": 19605.68, + "end": 19607.06, + "probability": 0.5871 + }, + { + "start": 19607.3, + "end": 19608.86, + "probability": 0.9585 + }, + { + "start": 19609.12, + "end": 19611.7, + "probability": 0.582 + }, + { + "start": 19611.98, + "end": 19612.7, + "probability": 0.7134 + }, + { + "start": 19613.06, + "end": 19614.06, + "probability": 0.5949 + }, + { + "start": 19614.2, + "end": 19616.18, + "probability": 0.9691 + }, + { + "start": 19616.88, + "end": 19618.8, + "probability": 0.6347 + }, + { + "start": 19619.74, + "end": 19622.04, + "probability": 0.9751 + }, + { + "start": 19622.24, + "end": 19626.16, + "probability": 0.8941 + }, + { + "start": 19626.88, + "end": 19629.94, + "probability": 0.9847 + }, + { + "start": 19631.34, + "end": 19632.34, + "probability": 0.8708 + }, + { + "start": 19632.72, + "end": 19634.16, + "probability": 0.9438 + }, + { + "start": 19634.2, + "end": 19637.24, + "probability": 0.9636 + }, + { + "start": 19637.94, + "end": 19640.06, + "probability": 0.5952 + }, + { + "start": 19640.5, + "end": 19641.72, + "probability": 0.9753 + }, + { + "start": 19641.86, + "end": 19642.72, + "probability": 0.6743 + }, + { + "start": 19642.86, + "end": 19644.1, + "probability": 0.9401 + }, + { + "start": 19646.26, + "end": 19646.82, + "probability": 0.7289 + }, + { + "start": 19646.88, + "end": 19649.26, + "probability": 0.9731 + }, + { + "start": 19649.3, + "end": 19650.62, + "probability": 0.9827 + }, + { + "start": 19650.68, + "end": 19653.46, + "probability": 0.9866 + }, + { + "start": 19656.0, + "end": 19657.74, + "probability": 0.9149 + }, + { + "start": 19657.88, + "end": 19658.84, + "probability": 0.7935 + }, + { + "start": 19659.18, + "end": 19660.08, + "probability": 0.6664 + }, + { + "start": 19661.06, + "end": 19662.64, + "probability": 0.7992 + }, + { + "start": 19663.18, + "end": 19664.14, + "probability": 0.9655 + }, + { + "start": 19664.84, + "end": 19667.18, + "probability": 0.9976 + }, + { + "start": 19668.46, + "end": 19668.86, + "probability": 0.8547 + }, + { + "start": 19668.94, + "end": 19669.96, + "probability": 0.9149 + }, + { + "start": 19670.04, + "end": 19671.1, + "probability": 0.8226 + }, + { + "start": 19671.28, + "end": 19672.78, + "probability": 0.6069 + }, + { + "start": 19673.0, + "end": 19674.6, + "probability": 0.9583 + }, + { + "start": 19676.1, + "end": 19683.28, + "probability": 0.9118 + }, + { + "start": 19683.36, + "end": 19684.28, + "probability": 0.7542 + }, + { + "start": 19684.7, + "end": 19686.36, + "probability": 0.9681 + }, + { + "start": 19687.08, + "end": 19687.56, + "probability": 0.859 + }, + { + "start": 19688.02, + "end": 19689.34, + "probability": 0.4072 + }, + { + "start": 19689.34, + "end": 19691.14, + "probability": 0.8343 + }, + { + "start": 19691.56, + "end": 19691.92, + "probability": 0.3631 + }, + { + "start": 19691.98, + "end": 19693.14, + "probability": 0.8979 + }, + { + "start": 19693.22, + "end": 19693.84, + "probability": 0.7316 + }, + { + "start": 19695.04, + "end": 19696.28, + "probability": 0.9282 + }, + { + "start": 19696.3, + "end": 19697.14, + "probability": 0.9211 + }, + { + "start": 19697.32, + "end": 19698.32, + "probability": 0.9795 + }, + { + "start": 19699.22, + "end": 19700.9, + "probability": 0.5413 + }, + { + "start": 19701.06, + "end": 19701.94, + "probability": 0.8397 + }, + { + "start": 19702.3, + "end": 19702.72, + "probability": 0.6563 + }, + { + "start": 19702.84, + "end": 19703.82, + "probability": 0.5436 + }, + { + "start": 19704.42, + "end": 19705.86, + "probability": 0.8213 + }, + { + "start": 19706.92, + "end": 19709.0, + "probability": 0.7606 + }, + { + "start": 19709.04, + "end": 19710.62, + "probability": 0.6937 + }, + { + "start": 19710.7, + "end": 19711.64, + "probability": 0.9887 + }, + { + "start": 19713.96, + "end": 19716.36, + "probability": 0.7658 + }, + { + "start": 19716.36, + "end": 19720.36, + "probability": 0.8742 + }, + { + "start": 19720.38, + "end": 19723.06, + "probability": 0.9918 + }, + { + "start": 19723.92, + "end": 19727.36, + "probability": 0.9369 + }, + { + "start": 19728.08, + "end": 19730.48, + "probability": 0.9947 + }, + { + "start": 19731.14, + "end": 19733.16, + "probability": 0.984 + }, + { + "start": 19733.42, + "end": 19734.54, + "probability": 0.9901 + }, + { + "start": 19735.52, + "end": 19741.18, + "probability": 0.829 + }, + { + "start": 19742.02, + "end": 19745.78, + "probability": 0.9512 + }, + { + "start": 19745.98, + "end": 19751.82, + "probability": 0.9967 + }, + { + "start": 19752.74, + "end": 19757.4, + "probability": 0.9872 + }, + { + "start": 19758.36, + "end": 19761.24, + "probability": 0.0009 + }, + { + "start": 19761.24, + "end": 19762.1, + "probability": 0.8726 + }, + { + "start": 19762.24, + "end": 19762.96, + "probability": 0.449 + }, + { + "start": 19762.98, + "end": 19766.16, + "probability": 0.2629 + }, + { + "start": 19766.26, + "end": 19766.56, + "probability": 0.2676 + }, + { + "start": 19766.7, + "end": 19767.0, + "probability": 0.4191 + }, + { + "start": 19767.02, + "end": 19768.24, + "probability": 0.6562 + }, + { + "start": 19768.3, + "end": 19770.42, + "probability": 0.7941 + }, + { + "start": 19770.92, + "end": 19774.4, + "probability": 0.9855 + }, + { + "start": 19774.96, + "end": 19776.24, + "probability": 0.7329 + }, + { + "start": 19776.42, + "end": 19776.94, + "probability": 0.454 + }, + { + "start": 19777.74, + "end": 19779.08, + "probability": 0.9487 + }, + { + "start": 19779.2, + "end": 19780.98, + "probability": 0.8054 + }, + { + "start": 19781.42, + "end": 19782.29, + "probability": 0.9465 + }, + { + "start": 19782.66, + "end": 19783.16, + "probability": 0.6321 + }, + { + "start": 19783.18, + "end": 19784.98, + "probability": 0.8389 + }, + { + "start": 19785.6, + "end": 19786.86, + "probability": 0.983 + }, + { + "start": 19787.82, + "end": 19790.34, + "probability": 0.9268 + }, + { + "start": 19790.97, + "end": 19793.12, + "probability": 0.611 + }, + { + "start": 19793.16, + "end": 19794.38, + "probability": 0.9106 + }, + { + "start": 19794.5, + "end": 19794.74, + "probability": 0.7279 + }, + { + "start": 19795.34, + "end": 19796.76, + "probability": 0.5686 + }, + { + "start": 19798.18, + "end": 19800.36, + "probability": 0.6096 + }, + { + "start": 19802.82, + "end": 19805.52, + "probability": 0.6716 + }, + { + "start": 19805.52, + "end": 19809.62, + "probability": 0.5367 + }, + { + "start": 19809.7, + "end": 19811.3, + "probability": 0.9231 + }, + { + "start": 19811.4, + "end": 19812.3, + "probability": 0.9819 + }, + { + "start": 19812.3, + "end": 19813.52, + "probability": 0.5447 + }, + { + "start": 19813.58, + "end": 19815.58, + "probability": 0.8369 + }, + { + "start": 19815.78, + "end": 19816.74, + "probability": 0.9104 + }, + { + "start": 19816.94, + "end": 19819.46, + "probability": 0.8118 + }, + { + "start": 19819.58, + "end": 19820.66, + "probability": 0.886 + }, + { + "start": 19821.18, + "end": 19822.3, + "probability": 0.9858 + }, + { + "start": 19822.74, + "end": 19823.26, + "probability": 0.9692 + }, + { + "start": 19823.3, + "end": 19823.84, + "probability": 0.6627 + }, + { + "start": 19823.86, + "end": 19827.54, + "probability": 0.9488 + }, + { + "start": 19827.94, + "end": 19828.66, + "probability": 0.6289 + }, + { + "start": 19828.68, + "end": 19829.3, + "probability": 0.2001 + }, + { + "start": 19829.58, + "end": 19830.94, + "probability": 0.6766 + }, + { + "start": 19831.02, + "end": 19834.94, + "probability": 0.995 + }, + { + "start": 19835.04, + "end": 19835.72, + "probability": 0.4152 + }, + { + "start": 19836.24, + "end": 19837.4, + "probability": 0.9793 + }, + { + "start": 19837.5, + "end": 19839.68, + "probability": 0.7991 + }, + { + "start": 19840.48, + "end": 19841.2, + "probability": 0.7749 + }, + { + "start": 19841.48, + "end": 19842.68, + "probability": 0.8729 + }, + { + "start": 19843.32, + "end": 19844.26, + "probability": 0.9202 + }, + { + "start": 19844.62, + "end": 19845.18, + "probability": 0.9907 + }, + { + "start": 19846.04, + "end": 19847.96, + "probability": 0.9844 + }, + { + "start": 19848.12, + "end": 19849.24, + "probability": 0.9967 + }, + { + "start": 19849.36, + "end": 19850.3, + "probability": 0.5086 + }, + { + "start": 19851.08, + "end": 19854.36, + "probability": 0.8441 + }, + { + "start": 19854.76, + "end": 19857.28, + "probability": 0.9473 + }, + { + "start": 19857.9, + "end": 19858.74, + "probability": 0.9323 + }, + { + "start": 19859.5, + "end": 19862.36, + "probability": 0.9119 + }, + { + "start": 19862.42, + "end": 19865.62, + "probability": 0.9871 + }, + { + "start": 19865.72, + "end": 19867.12, + "probability": 0.9663 + }, + { + "start": 19867.18, + "end": 19868.4, + "probability": 0.8623 + }, + { + "start": 19868.86, + "end": 19870.76, + "probability": 0.984 + }, + { + "start": 19870.88, + "end": 19872.62, + "probability": 0.6021 + }, + { + "start": 19873.42, + "end": 19874.74, + "probability": 0.7173 + }, + { + "start": 19875.22, + "end": 19876.5, + "probability": 0.9242 + }, + { + "start": 19876.9, + "end": 19879.42, + "probability": 0.7702 + }, + { + "start": 19879.52, + "end": 19882.4, + "probability": 0.8123 + }, + { + "start": 19882.8, + "end": 19883.32, + "probability": 0.945 + }, + { + "start": 19883.38, + "end": 19884.02, + "probability": 0.8672 + }, + { + "start": 19884.1, + "end": 19885.06, + "probability": 0.8817 + }, + { + "start": 19885.22, + "end": 19886.8, + "probability": 0.9941 + }, + { + "start": 19887.44, + "end": 19889.18, + "probability": 0.9673 + }, + { + "start": 19889.3, + "end": 19889.84, + "probability": 0.7437 + }, + { + "start": 19889.88, + "end": 19890.3, + "probability": 0.7222 + }, + { + "start": 19890.68, + "end": 19891.89, + "probability": 0.9773 + }, + { + "start": 19892.36, + "end": 19893.44, + "probability": 0.5124 + }, + { + "start": 19893.88, + "end": 19894.82, + "probability": 0.9314 + }, + { + "start": 19895.3, + "end": 19896.21, + "probability": 0.9269 + }, + { + "start": 19896.4, + "end": 19897.76, + "probability": 0.8892 + }, + { + "start": 19897.94, + "end": 19899.9, + "probability": 0.9139 + }, + { + "start": 19900.38, + "end": 19903.08, + "probability": 0.9872 + }, + { + "start": 19903.32, + "end": 19903.94, + "probability": 0.9259 + }, + { + "start": 19905.14, + "end": 19905.58, + "probability": 0.8681 + }, + { + "start": 19908.68, + "end": 19912.12, + "probability": 0.8528 + }, + { + "start": 19914.54, + "end": 19916.92, + "probability": 0.8739 + }, + { + "start": 19919.66, + "end": 19921.92, + "probability": 0.7567 + }, + { + "start": 19921.96, + "end": 19923.6, + "probability": 0.5509 + }, + { + "start": 19923.7, + "end": 19924.08, + "probability": 0.8251 + }, + { + "start": 19924.1, + "end": 19926.44, + "probability": 0.732 + }, + { + "start": 19927.98, + "end": 19931.77, + "probability": 0.9971 + }, + { + "start": 19932.92, + "end": 19935.12, + "probability": 0.9112 + }, + { + "start": 19936.16, + "end": 19937.06, + "probability": 0.6991 + }, + { + "start": 19937.14, + "end": 19941.5, + "probability": 0.8953 + }, + { + "start": 19942.25, + "end": 19944.57, + "probability": 0.994 + }, + { + "start": 19946.14, + "end": 19951.88, + "probability": 0.9094 + }, + { + "start": 19952.46, + "end": 19954.07, + "probability": 0.9951 + }, + { + "start": 19955.37, + "end": 19958.38, + "probability": 0.9822 + }, + { + "start": 19958.46, + "end": 19960.64, + "probability": 0.9358 + }, + { + "start": 19961.04, + "end": 19961.7, + "probability": 0.938 + }, + { + "start": 19961.8, + "end": 19963.18, + "probability": 0.7399 + }, + { + "start": 19963.32, + "end": 19964.44, + "probability": 0.7623 + }, + { + "start": 19964.54, + "end": 19966.38, + "probability": 0.9675 + }, + { + "start": 19967.1, + "end": 19970.88, + "probability": 0.7526 + }, + { + "start": 19971.46, + "end": 19974.22, + "probability": 0.9821 + }, + { + "start": 19974.66, + "end": 19976.46, + "probability": 0.8921 + }, + { + "start": 19977.0, + "end": 19978.42, + "probability": 0.9768 + }, + { + "start": 19979.08, + "end": 19979.6, + "probability": 0.5992 + }, + { + "start": 19979.66, + "end": 19980.12, + "probability": 0.8167 + }, + { + "start": 19980.18, + "end": 19981.32, + "probability": 0.9183 + }, + { + "start": 19981.46, + "end": 19982.73, + "probability": 0.5386 + }, + { + "start": 19982.9, + "end": 19985.9, + "probability": 0.7017 + }, + { + "start": 19985.94, + "end": 19989.32, + "probability": 0.8574 + }, + { + "start": 19989.88, + "end": 19993.74, + "probability": 0.9883 + }, + { + "start": 19993.94, + "end": 19996.41, + "probability": 0.8151 + }, + { + "start": 19997.52, + "end": 19999.92, + "probability": 0.938 + }, + { + "start": 20000.88, + "end": 20002.8, + "probability": 0.8476 + }, + { + "start": 20002.9, + "end": 20004.44, + "probability": 0.9541 + }, + { + "start": 20004.9, + "end": 20008.28, + "probability": 0.8924 + }, + { + "start": 20008.4, + "end": 20009.14, + "probability": 0.7763 + }, + { + "start": 20009.54, + "end": 20010.48, + "probability": 0.8173 + }, + { + "start": 20010.54, + "end": 20011.84, + "probability": 0.6266 + }, + { + "start": 20011.96, + "end": 20012.18, + "probability": 0.2724 + }, + { + "start": 20012.2, + "end": 20013.78, + "probability": 0.7863 + }, + { + "start": 20014.12, + "end": 20017.07, + "probability": 0.774 + }, + { + "start": 20018.02, + "end": 20019.84, + "probability": 0.8273 + }, + { + "start": 20019.84, + "end": 20020.02, + "probability": 0.5475 + }, + { + "start": 20020.46, + "end": 20021.34, + "probability": 0.6971 + }, + { + "start": 20022.48, + "end": 20022.96, + "probability": 0.7651 + }, + { + "start": 20026.52, + "end": 20029.22, + "probability": 0.75 + }, + { + "start": 20029.82, + "end": 20031.22, + "probability": 0.9175 + }, + { + "start": 20031.36, + "end": 20031.94, + "probability": 0.7013 + }, + { + "start": 20032.02, + "end": 20033.66, + "probability": 0.9956 + }, + { + "start": 20033.72, + "end": 20035.21, + "probability": 0.9767 + }, + { + "start": 20035.34, + "end": 20036.72, + "probability": 0.8651 + }, + { + "start": 20036.8, + "end": 20037.68, + "probability": 0.9276 + }, + { + "start": 20037.8, + "end": 20039.94, + "probability": 0.7456 + }, + { + "start": 20040.0, + "end": 20040.57, + "probability": 0.7881 + }, + { + "start": 20040.9, + "end": 20042.22, + "probability": 0.9353 + }, + { + "start": 20042.26, + "end": 20042.82, + "probability": 0.9388 + }, + { + "start": 20042.88, + "end": 20047.12, + "probability": 0.5828 + }, + { + "start": 20048.16, + "end": 20049.42, + "probability": 0.7381 + }, + { + "start": 20049.92, + "end": 20052.26, + "probability": 0.8324 + }, + { + "start": 20052.42, + "end": 20053.24, + "probability": 0.6776 + }, + { + "start": 20054.07, + "end": 20055.64, + "probability": 0.9974 + }, + { + "start": 20055.74, + "end": 20057.94, + "probability": 0.7253 + }, + { + "start": 20058.42, + "end": 20059.84, + "probability": 0.8378 + }, + { + "start": 20059.96, + "end": 20061.86, + "probability": 0.7576 + }, + { + "start": 20061.92, + "end": 20063.06, + "probability": 0.9093 + }, + { + "start": 20063.08, + "end": 20063.98, + "probability": 0.8259 + }, + { + "start": 20064.04, + "end": 20065.72, + "probability": 0.9756 + }, + { + "start": 20065.94, + "end": 20067.84, + "probability": 0.9736 + }, + { + "start": 20067.98, + "end": 20069.22, + "probability": 0.6806 + }, + { + "start": 20069.34, + "end": 20071.3, + "probability": 0.8366 + }, + { + "start": 20071.62, + "end": 20072.48, + "probability": 0.3337 + }, + { + "start": 20072.7, + "end": 20073.54, + "probability": 0.6302 + }, + { + "start": 20073.98, + "end": 20077.84, + "probability": 0.9099 + }, + { + "start": 20078.06, + "end": 20079.5, + "probability": 0.4175 + }, + { + "start": 20079.5, + "end": 20080.2, + "probability": 0.7673 + }, + { + "start": 20080.8, + "end": 20081.92, + "probability": 0.1664 + }, + { + "start": 20081.94, + "end": 20084.88, + "probability": 0.9769 + }, + { + "start": 20084.96, + "end": 20085.1, + "probability": 0.2961 + }, + { + "start": 20085.18, + "end": 20085.36, + "probability": 0.3002 + }, + { + "start": 20085.46, + "end": 20086.32, + "probability": 0.882 + }, + { + "start": 20086.34, + "end": 20087.76, + "probability": 0.8867 + }, + { + "start": 20088.08, + "end": 20088.76, + "probability": 0.8409 + }, + { + "start": 20089.18, + "end": 20090.74, + "probability": 0.9184 + }, + { + "start": 20090.8, + "end": 20091.82, + "probability": 0.8575 + }, + { + "start": 20092.04, + "end": 20094.28, + "probability": 0.6187 + }, + { + "start": 20094.92, + "end": 20096.36, + "probability": 0.9836 + }, + { + "start": 20096.5, + "end": 20098.62, + "probability": 0.0898 + }, + { + "start": 20099.36, + "end": 20103.12, + "probability": 0.9158 + }, + { + "start": 20103.6, + "end": 20103.96, + "probability": 0.8168 + }, + { + "start": 20104.64, + "end": 20107.52, + "probability": 0.9878 + }, + { + "start": 20107.52, + "end": 20110.8, + "probability": 0.9964 + }, + { + "start": 20111.32, + "end": 20115.2, + "probability": 0.949 + }, + { + "start": 20115.22, + "end": 20116.32, + "probability": 0.7803 + }, + { + "start": 20116.62, + "end": 20117.54, + "probability": 0.6386 + }, + { + "start": 20117.66, + "end": 20118.72, + "probability": 0.6948 + }, + { + "start": 20119.16, + "end": 20120.06, + "probability": 0.9282 + }, + { + "start": 20120.06, + "end": 20120.44, + "probability": 0.5663 + }, + { + "start": 20120.5, + "end": 20121.46, + "probability": 0.8149 + }, + { + "start": 20121.52, + "end": 20123.56, + "probability": 0.9299 + }, + { + "start": 20124.0, + "end": 20125.98, + "probability": 0.9628 + }, + { + "start": 20126.38, + "end": 20127.8, + "probability": 0.6763 + }, + { + "start": 20127.88, + "end": 20132.4, + "probability": 0.9226 + }, + { + "start": 20132.48, + "end": 20133.0, + "probability": 0.4688 + }, + { + "start": 20133.02, + "end": 20133.92, + "probability": 0.9297 + }, + { + "start": 20134.28, + "end": 20137.7, + "probability": 0.6859 + }, + { + "start": 20138.64, + "end": 20139.32, + "probability": 0.6713 + }, + { + "start": 20139.32, + "end": 20142.16, + "probability": 0.7754 + }, + { + "start": 20142.88, + "end": 20145.78, + "probability": 0.8921 + }, + { + "start": 20146.2, + "end": 20147.98, + "probability": 0.5303 + }, + { + "start": 20147.98, + "end": 20148.68, + "probability": 0.6775 + }, + { + "start": 20150.94, + "end": 20151.5, + "probability": 0.2652 + }, + { + "start": 20151.5, + "end": 20153.57, + "probability": 0.6107 + }, + { + "start": 20154.1, + "end": 20157.64, + "probability": 0.7788 + }, + { + "start": 20158.3, + "end": 20161.36, + "probability": 0.7081 + }, + { + "start": 20162.66, + "end": 20163.42, + "probability": 0.6975 + }, + { + "start": 20163.5, + "end": 20164.34, + "probability": 0.6281 + }, + { + "start": 20164.69, + "end": 20166.23, + "probability": 0.2603 + }, + { + "start": 20166.66, + "end": 20169.8, + "probability": 0.7395 + }, + { + "start": 20169.96, + "end": 20172.18, + "probability": 0.6998 + }, + { + "start": 20172.88, + "end": 20174.24, + "probability": 0.0659 + }, + { + "start": 20174.24, + "end": 20175.02, + "probability": 0.4403 + }, + { + "start": 20175.16, + "end": 20176.52, + "probability": 0.5041 + }, + { + "start": 20176.6, + "end": 20177.84, + "probability": 0.2784 + }, + { + "start": 20177.94, + "end": 20178.72, + "probability": 0.8607 + }, + { + "start": 20179.04, + "end": 20181.88, + "probability": 0.7711 + }, + { + "start": 20182.02, + "end": 20184.22, + "probability": 0.7734 + }, + { + "start": 20184.62, + "end": 20185.36, + "probability": 0.3454 + }, + { + "start": 20187.33, + "end": 20192.18, + "probability": 0.8888 + }, + { + "start": 20193.26, + "end": 20194.06, + "probability": 0.6419 + }, + { + "start": 20194.08, + "end": 20194.74, + "probability": 0.9305 + }, + { + "start": 20194.94, + "end": 20195.66, + "probability": 0.8914 + }, + { + "start": 20195.88, + "end": 20196.76, + "probability": 0.88 + }, + { + "start": 20197.2, + "end": 20197.62, + "probability": 0.9214 + }, + { + "start": 20198.06, + "end": 20199.66, + "probability": 0.7783 + }, + { + "start": 20199.9, + "end": 20201.72, + "probability": 0.9384 + }, + { + "start": 20201.98, + "end": 20204.04, + "probability": 0.7855 + }, + { + "start": 20204.22, + "end": 20204.98, + "probability": 0.572 + }, + { + "start": 20205.06, + "end": 20205.92, + "probability": 0.8502 + }, + { + "start": 20206.16, + "end": 20206.7, + "probability": 0.6326 + }, + { + "start": 20207.22, + "end": 20208.03, + "probability": 0.8242 + }, + { + "start": 20208.58, + "end": 20209.62, + "probability": 0.8334 + }, + { + "start": 20209.7, + "end": 20211.7, + "probability": 0.833 + }, + { + "start": 20212.12, + "end": 20214.46, + "probability": 0.6108 + }, + { + "start": 20215.36, + "end": 20217.76, + "probability": 0.9233 + }, + { + "start": 20218.14, + "end": 20219.28, + "probability": 0.7494 + }, + { + "start": 20219.38, + "end": 20220.1, + "probability": 0.3441 + }, + { + "start": 20220.64, + "end": 20224.88, + "probability": 0.5989 + }, + { + "start": 20225.04, + "end": 20227.04, + "probability": 0.9852 + }, + { + "start": 20227.38, + "end": 20228.95, + "probability": 0.8176 + }, + { + "start": 20229.12, + "end": 20230.08, + "probability": 0.5641 + }, + { + "start": 20230.18, + "end": 20231.16, + "probability": 0.5223 + }, + { + "start": 20231.42, + "end": 20232.14, + "probability": 0.3684 + }, + { + "start": 20232.55, + "end": 20237.52, + "probability": 0.7627 + }, + { + "start": 20238.98, + "end": 20241.25, + "probability": 0.2025 + }, + { + "start": 20241.88, + "end": 20243.2, + "probability": 0.4088 + }, + { + "start": 20243.36, + "end": 20246.84, + "probability": 0.0219 + }, + { + "start": 20250.92, + "end": 20255.44, + "probability": 0.0135 + }, + { + "start": 20256.22, + "end": 20263.16, + "probability": 0.5454 + }, + { + "start": 20263.68, + "end": 20265.08, + "probability": 0.2587 + }, + { + "start": 20265.42, + "end": 20267.72, + "probability": 0.447 + }, + { + "start": 20267.92, + "end": 20269.43, + "probability": 0.5186 + }, + { + "start": 20269.64, + "end": 20270.3, + "probability": 0.5298 + }, + { + "start": 20272.1, + "end": 20275.68, + "probability": 0.667 + }, + { + "start": 20276.56, + "end": 20276.98, + "probability": 0.2276 + }, + { + "start": 20278.58, + "end": 20279.72, + "probability": 0.7255 + }, + { + "start": 20279.78, + "end": 20281.08, + "probability": 0.5993 + }, + { + "start": 20281.18, + "end": 20282.74, + "probability": 0.9703 + }, + { + "start": 20283.34, + "end": 20286.78, + "probability": 0.1807 + }, + { + "start": 20286.88, + "end": 20288.38, + "probability": 0.2652 + }, + { + "start": 20288.88, + "end": 20290.86, + "probability": 0.0275 + }, + { + "start": 20290.86, + "end": 20292.24, + "probability": 0.2479 + }, + { + "start": 20292.88, + "end": 20292.98, + "probability": 0.1682 + }, + { + "start": 20293.56, + "end": 20295.88, + "probability": 0.7665 + }, + { + "start": 20296.38, + "end": 20297.82, + "probability": 0.4896 + }, + { + "start": 20298.3, + "end": 20299.86, + "probability": 0.3523 + }, + { + "start": 20300.26, + "end": 20303.74, + "probability": 0.8167 + }, + { + "start": 20304.18, + "end": 20305.84, + "probability": 0.6738 + }, + { + "start": 20306.44, + "end": 20307.22, + "probability": 0.8393 + }, + { + "start": 20307.6, + "end": 20310.64, + "probability": 0.9957 + }, + { + "start": 20312.2, + "end": 20317.96, + "probability": 0.9462 + }, + { + "start": 20317.96, + "end": 20321.56, + "probability": 0.9971 + }, + { + "start": 20322.14, + "end": 20326.36, + "probability": 0.435 + }, + { + "start": 20326.64, + "end": 20326.86, + "probability": 0.8207 + }, + { + "start": 20327.32, + "end": 20327.86, + "probability": 0.724 + }, + { + "start": 20328.12, + "end": 20329.56, + "probability": 0.8407 + }, + { + "start": 20330.62, + "end": 20334.84, + "probability": 0.9616 + }, + { + "start": 20335.7, + "end": 20337.72, + "probability": 0.6594 + }, + { + "start": 20337.94, + "end": 20338.58, + "probability": 0.6402 + }, + { + "start": 20342.16, + "end": 20342.42, + "probability": 0.8636 + }, + { + "start": 20350.08, + "end": 20350.72, + "probability": 0.2461 + }, + { + "start": 20352.84, + "end": 20354.62, + "probability": 0.7153 + }, + { + "start": 20354.74, + "end": 20355.26, + "probability": 0.7774 + }, + { + "start": 20355.3, + "end": 20355.72, + "probability": 0.7936 + }, + { + "start": 20355.8, + "end": 20356.46, + "probability": 0.8609 + }, + { + "start": 20356.72, + "end": 20357.72, + "probability": 0.9927 + }, + { + "start": 20358.26, + "end": 20358.46, + "probability": 0.9597 + }, + { + "start": 20359.5, + "end": 20360.5, + "probability": 0.8564 + }, + { + "start": 20360.82, + "end": 20361.88, + "probability": 0.9023 + }, + { + "start": 20361.96, + "end": 20363.44, + "probability": 0.8705 + }, + { + "start": 20364.54, + "end": 20366.44, + "probability": 0.9456 + }, + { + "start": 20367.34, + "end": 20368.12, + "probability": 0.5959 + }, + { + "start": 20369.82, + "end": 20376.06, + "probability": 0.7758 + }, + { + "start": 20378.42, + "end": 20380.44, + "probability": 0.8953 + }, + { + "start": 20381.58, + "end": 20382.06, + "probability": 0.6031 + }, + { + "start": 20382.06, + "end": 20385.52, + "probability": 0.95 + }, + { + "start": 20385.76, + "end": 20387.04, + "probability": 0.7588 + }, + { + "start": 20387.32, + "end": 20392.52, + "probability": 0.7866 + }, + { + "start": 20393.56, + "end": 20394.88, + "probability": 0.6586 + }, + { + "start": 20395.12, + "end": 20396.57, + "probability": 0.5911 + }, + { + "start": 20397.24, + "end": 20400.28, + "probability": 0.9705 + }, + { + "start": 20400.28, + "end": 20402.78, + "probability": 0.9734 + }, + { + "start": 20403.92, + "end": 20408.34, + "probability": 0.9484 + }, + { + "start": 20408.34, + "end": 20412.48, + "probability": 0.931 + }, + { + "start": 20413.18, + "end": 20413.86, + "probability": 0.8108 + }, + { + "start": 20415.36, + "end": 20417.24, + "probability": 0.7634 + }, + { + "start": 20418.34, + "end": 20419.6, + "probability": 0.9976 + }, + { + "start": 20420.12, + "end": 20421.46, + "probability": 0.976 + }, + { + "start": 20422.58, + "end": 20424.4, + "probability": 0.946 + }, + { + "start": 20424.54, + "end": 20425.22, + "probability": 0.7599 + }, + { + "start": 20425.28, + "end": 20426.28, + "probability": 0.8387 + }, + { + "start": 20427.02, + "end": 20428.4, + "probability": 0.5606 + }, + { + "start": 20429.34, + "end": 20433.06, + "probability": 0.9809 + }, + { + "start": 20433.06, + "end": 20438.46, + "probability": 0.9828 + }, + { + "start": 20439.42, + "end": 20442.44, + "probability": 0.99 + }, + { + "start": 20443.32, + "end": 20448.5, + "probability": 0.9743 + }, + { + "start": 20449.32, + "end": 20450.92, + "probability": 0.9374 + }, + { + "start": 20452.4, + "end": 20453.76, + "probability": 0.9067 + }, + { + "start": 20454.44, + "end": 20455.02, + "probability": 0.775 + }, + { + "start": 20455.28, + "end": 20459.49, + "probability": 0.9866 + }, + { + "start": 20462.46, + "end": 20463.16, + "probability": 0.7638 + }, + { + "start": 20464.08, + "end": 20469.04, + "probability": 0.9487 + }, + { + "start": 20470.94, + "end": 20474.98, + "probability": 0.6873 + }, + { + "start": 20475.58, + "end": 20480.0, + "probability": 0.9901 + }, + { + "start": 20480.44, + "end": 20484.59, + "probability": 0.9565 + }, + { + "start": 20486.4, + "end": 20488.64, + "probability": 0.8308 + }, + { + "start": 20489.22, + "end": 20494.02, + "probability": 0.8778 + }, + { + "start": 20494.56, + "end": 20499.4, + "probability": 0.7386 + }, + { + "start": 20499.4, + "end": 20502.44, + "probability": 0.9924 + }, + { + "start": 20503.44, + "end": 20509.54, + "probability": 0.9732 + }, + { + "start": 20511.54, + "end": 20516.78, + "probability": 0.9177 + }, + { + "start": 20517.62, + "end": 20519.92, + "probability": 0.9056 + }, + { + "start": 20520.54, + "end": 20528.16, + "probability": 0.9774 + }, + { + "start": 20529.6, + "end": 20530.54, + "probability": 0.6698 + }, + { + "start": 20531.56, + "end": 20532.18, + "probability": 0.6698 + }, + { + "start": 20532.7, + "end": 20536.26, + "probability": 0.9391 + }, + { + "start": 20536.26, + "end": 20540.96, + "probability": 0.9247 + }, + { + "start": 20541.56, + "end": 20543.3, + "probability": 0.6463 + }, + { + "start": 20544.7, + "end": 20545.9, + "probability": 0.9248 + }, + { + "start": 20546.78, + "end": 20551.72, + "probability": 0.9844 + }, + { + "start": 20552.38, + "end": 20554.38, + "probability": 0.9985 + }, + { + "start": 20554.96, + "end": 20557.88, + "probability": 0.9732 + }, + { + "start": 20560.28, + "end": 20561.1, + "probability": 0.7566 + }, + { + "start": 20562.76, + "end": 20565.68, + "probability": 0.9661 + }, + { + "start": 20566.8, + "end": 20573.04, + "probability": 0.9025 + }, + { + "start": 20574.4, + "end": 20577.18, + "probability": 0.75 + }, + { + "start": 20577.78, + "end": 20578.38, + "probability": 0.6286 + }, + { + "start": 20578.98, + "end": 20579.98, + "probability": 0.7952 + }, + { + "start": 20580.9, + "end": 20581.9, + "probability": 0.9521 + }, + { + "start": 20583.14, + "end": 20588.42, + "probability": 0.9149 + }, + { + "start": 20589.3, + "end": 20594.6, + "probability": 0.9665 + }, + { + "start": 20594.7, + "end": 20595.48, + "probability": 0.835 + }, + { + "start": 20597.16, + "end": 20598.4, + "probability": 0.6197 + }, + { + "start": 20598.96, + "end": 20603.3, + "probability": 0.7353 + }, + { + "start": 20603.6, + "end": 20604.68, + "probability": 0.9854 + }, + { + "start": 20605.86, + "end": 20609.4, + "probability": 0.9336 + }, + { + "start": 20610.48, + "end": 20616.44, + "probability": 0.9575 + }, + { + "start": 20617.82, + "end": 20623.44, + "probability": 0.838 + }, + { + "start": 20623.62, + "end": 20624.88, + "probability": 0.9404 + }, + { + "start": 20625.7, + "end": 20626.9, + "probability": 0.7135 + }, + { + "start": 20627.72, + "end": 20628.62, + "probability": 0.6254 + }, + { + "start": 20629.92, + "end": 20630.54, + "probability": 0.7384 + }, + { + "start": 20630.88, + "end": 20631.5, + "probability": 0.3643 + }, + { + "start": 20631.7, + "end": 20632.28, + "probability": 0.413 + }, + { + "start": 20632.32, + "end": 20632.86, + "probability": 0.7635 + }, + { + "start": 20633.02, + "end": 20633.36, + "probability": 0.8011 + }, + { + "start": 20633.76, + "end": 20634.28, + "probability": 0.4782 + }, + { + "start": 20634.42, + "end": 20634.98, + "probability": 0.5423 + }, + { + "start": 20635.06, + "end": 20635.28, + "probability": 0.7947 + }, + { + "start": 20635.4, + "end": 20635.96, + "probability": 0.7744 + }, + { + "start": 20636.34, + "end": 20637.06, + "probability": 0.4591 + }, + { + "start": 20637.18, + "end": 20637.74, + "probability": 0.4985 + }, + { + "start": 20638.9, + "end": 20640.28, + "probability": 0.9448 + }, + { + "start": 20640.78, + "end": 20642.18, + "probability": 0.7272 + }, + { + "start": 20642.74, + "end": 20644.28, + "probability": 0.5345 + }, + { + "start": 20645.28, + "end": 20646.32, + "probability": 0.9819 + }, + { + "start": 20647.16, + "end": 20653.33, + "probability": 0.9875 + }, + { + "start": 20655.0, + "end": 20659.88, + "probability": 0.9567 + }, + { + "start": 20660.62, + "end": 20661.42, + "probability": 0.7527 + }, + { + "start": 20661.46, + "end": 20661.86, + "probability": 0.3762 + }, + { + "start": 20662.3, + "end": 20662.62, + "probability": 0.8228 + }, + { + "start": 20662.66, + "end": 20663.0, + "probability": 0.5408 + }, + { + "start": 20663.04, + "end": 20663.86, + "probability": 0.4387 + }, + { + "start": 20664.44, + "end": 20667.4, + "probability": 0.5488 + }, + { + "start": 20667.92, + "end": 20670.6, + "probability": 0.8361 + }, + { + "start": 20671.26, + "end": 20673.28, + "probability": 0.9067 + }, + { + "start": 20673.68, + "end": 20678.2, + "probability": 0.9183 + }, + { + "start": 20678.2, + "end": 20681.63, + "probability": 0.8617 + }, + { + "start": 20683.02, + "end": 20683.58, + "probability": 0.9941 + }, + { + "start": 20684.58, + "end": 20686.4, + "probability": 0.7438 + }, + { + "start": 20689.18, + "end": 20698.34, + "probability": 0.8772 + }, + { + "start": 20698.68, + "end": 20699.1, + "probability": 0.8759 + }, + { + "start": 20699.54, + "end": 20700.36, + "probability": 0.9575 + }, + { + "start": 20700.82, + "end": 20701.96, + "probability": 0.7342 + }, + { + "start": 20702.38, + "end": 20703.14, + "probability": 0.9834 + }, + { + "start": 20704.82, + "end": 20706.3, + "probability": 0.6877 + }, + { + "start": 20706.98, + "end": 20708.66, + "probability": 0.9977 + }, + { + "start": 20709.36, + "end": 20715.0, + "probability": 0.871 + }, + { + "start": 20716.2, + "end": 20719.84, + "probability": 0.9502 + }, + { + "start": 20720.0, + "end": 20721.08, + "probability": 0.9528 + }, + { + "start": 20721.48, + "end": 20724.08, + "probability": 0.6256 + }, + { + "start": 20724.66, + "end": 20728.7, + "probability": 0.6774 + }, + { + "start": 20729.66, + "end": 20736.46, + "probability": 0.8837 + }, + { + "start": 20736.6, + "end": 20737.08, + "probability": 0.331 + }, + { + "start": 20737.12, + "end": 20739.0, + "probability": 0.5806 + }, + { + "start": 20739.48, + "end": 20739.64, + "probability": 0.4433 + }, + { + "start": 20740.34, + "end": 20740.48, + "probability": 0.0065 + }, + { + "start": 20740.48, + "end": 20742.74, + "probability": 0.2943 + }, + { + "start": 20743.08, + "end": 20744.3, + "probability": 0.9073 + }, + { + "start": 20745.6, + "end": 20747.38, + "probability": 0.5174 + }, + { + "start": 20763.46, + "end": 20765.44, + "probability": 0.6326 + }, + { + "start": 20766.28, + "end": 20767.48, + "probability": 0.6254 + }, + { + "start": 20770.09, + "end": 20773.72, + "probability": 0.9329 + }, + { + "start": 20773.84, + "end": 20778.0, + "probability": 0.9777 + }, + { + "start": 20778.0, + "end": 20780.84, + "probability": 0.7583 + }, + { + "start": 20782.2, + "end": 20785.44, + "probability": 0.9949 + }, + { + "start": 20786.0, + "end": 20788.26, + "probability": 0.7276 + }, + { + "start": 20789.72, + "end": 20794.17, + "probability": 0.9402 + }, + { + "start": 20795.52, + "end": 20799.24, + "probability": 0.9758 + }, + { + "start": 20800.86, + "end": 20803.32, + "probability": 0.9791 + }, + { + "start": 20803.44, + "end": 20806.82, + "probability": 0.7369 + }, + { + "start": 20808.52, + "end": 20812.12, + "probability": 0.9777 + }, + { + "start": 20812.12, + "end": 20816.16, + "probability": 0.9426 + }, + { + "start": 20817.44, + "end": 20817.78, + "probability": 0.6502 + }, + { + "start": 20817.96, + "end": 20821.52, + "probability": 0.9886 + }, + { + "start": 20822.6, + "end": 20826.06, + "probability": 0.9951 + }, + { + "start": 20827.12, + "end": 20830.64, + "probability": 0.9862 + }, + { + "start": 20831.34, + "end": 20835.1, + "probability": 0.8223 + }, + { + "start": 20835.66, + "end": 20837.16, + "probability": 0.9359 + }, + { + "start": 20838.24, + "end": 20842.46, + "probability": 0.9663 + }, + { + "start": 20843.7, + "end": 20846.9, + "probability": 0.9924 + }, + { + "start": 20847.18, + "end": 20853.08, + "probability": 0.993 + }, + { + "start": 20854.16, + "end": 20857.72, + "probability": 0.9842 + }, + { + "start": 20858.4, + "end": 20861.1, + "probability": 0.9973 + }, + { + "start": 20862.0, + "end": 20866.74, + "probability": 0.876 + }, + { + "start": 20867.48, + "end": 20868.1, + "probability": 0.168 + }, + { + "start": 20869.46, + "end": 20871.98, + "probability": 0.9458 + }, + { + "start": 20872.86, + "end": 20875.02, + "probability": 0.6559 + }, + { + "start": 20875.04, + "end": 20876.92, + "probability": 0.9605 + }, + { + "start": 20877.48, + "end": 20882.84, + "probability": 0.8836 + }, + { + "start": 20883.44, + "end": 20883.86, + "probability": 0.7548 + }, + { + "start": 20885.14, + "end": 20886.5, + "probability": 0.7682 + }, + { + "start": 20887.58, + "end": 20889.22, + "probability": 0.6284 + }, + { + "start": 20892.58, + "end": 20893.1, + "probability": 0.4471 + }, + { + "start": 20894.25, + "end": 20897.28, + "probability": 0.6978 + }, + { + "start": 20897.36, + "end": 20898.5, + "probability": 0.8174 + }, + { + "start": 20899.32, + "end": 20901.07, + "probability": 0.7062 + }, + { + "start": 20920.18, + "end": 20920.18, + "probability": 0.3397 + }, + { + "start": 20920.18, + "end": 20922.66, + "probability": 0.3769 + }, + { + "start": 20922.66, + "end": 20926.26, + "probability": 0.8049 + }, + { + "start": 20926.28, + "end": 20926.66, + "probability": 0.8594 + }, + { + "start": 20928.0, + "end": 20930.51, + "probability": 0.4667 + }, + { + "start": 20931.14, + "end": 20931.26, + "probability": 0.1032 + }, + { + "start": 20931.26, + "end": 20931.26, + "probability": 0.0591 + }, + { + "start": 20931.26, + "end": 20932.52, + "probability": 0.3642 + }, + { + "start": 20932.52, + "end": 20933.54, + "probability": 0.3077 + }, + { + "start": 20933.54, + "end": 20935.84, + "probability": 0.4891 + }, + { + "start": 20950.88, + "end": 20951.04, + "probability": 0.6634 + }, + { + "start": 20954.54, + "end": 20956.24, + "probability": 0.547 + }, + { + "start": 20958.4, + "end": 20960.26, + "probability": 0.7136 + }, + { + "start": 20962.5, + "end": 20966.42, + "probability": 0.8572 + }, + { + "start": 20968.62, + "end": 20969.94, + "probability": 0.9863 + }, + { + "start": 20972.44, + "end": 20980.84, + "probability": 0.8631 + }, + { + "start": 20982.12, + "end": 20987.42, + "probability": 0.8825 + }, + { + "start": 20989.06, + "end": 20989.7, + "probability": 0.9198 + }, + { + "start": 20991.24, + "end": 20993.14, + "probability": 0.9926 + }, + { + "start": 20994.5, + "end": 20995.98, + "probability": 0.9792 + }, + { + "start": 20997.3, + "end": 20999.04, + "probability": 0.9898 + }, + { + "start": 21000.26, + "end": 21001.14, + "probability": 0.9956 + }, + { + "start": 21003.16, + "end": 21008.6, + "probability": 0.9966 + }, + { + "start": 21010.1, + "end": 21019.78, + "probability": 0.9916 + }, + { + "start": 21020.36, + "end": 21024.58, + "probability": 0.6912 + }, + { + "start": 21025.78, + "end": 21027.46, + "probability": 0.7605 + }, + { + "start": 21028.6, + "end": 21033.14, + "probability": 0.9581 + }, + { + "start": 21034.96, + "end": 21035.74, + "probability": 0.6174 + }, + { + "start": 21036.26, + "end": 21039.62, + "probability": 0.7805 + }, + { + "start": 21041.3, + "end": 21045.82, + "probability": 0.9304 + }, + { + "start": 21046.64, + "end": 21047.16, + "probability": 0.9831 + }, + { + "start": 21048.98, + "end": 21050.14, + "probability": 0.9942 + }, + { + "start": 21051.8, + "end": 21052.86, + "probability": 0.7376 + }, + { + "start": 21052.86, + "end": 21055.3, + "probability": 0.7751 + }, + { + "start": 21057.82, + "end": 21058.88, + "probability": 0.9429 + }, + { + "start": 21060.36, + "end": 21061.2, + "probability": 0.4975 + }, + { + "start": 21062.26, + "end": 21063.24, + "probability": 0.8091 + }, + { + "start": 21064.52, + "end": 21065.56, + "probability": 0.8987 + }, + { + "start": 21066.82, + "end": 21068.9, + "probability": 0.9272 + }, + { + "start": 21071.78, + "end": 21074.88, + "probability": 0.8216 + }, + { + "start": 21076.94, + "end": 21078.14, + "probability": 0.6615 + }, + { + "start": 21079.0, + "end": 21079.64, + "probability": 0.8901 + }, + { + "start": 21080.48, + "end": 21081.92, + "probability": 0.9929 + }, + { + "start": 21082.96, + "end": 21086.24, + "probability": 0.8208 + }, + { + "start": 21086.24, + "end": 21087.66, + "probability": 0.9305 + }, + { + "start": 21087.74, + "end": 21088.73, + "probability": 0.8762 + }, + { + "start": 21089.8, + "end": 21091.7, + "probability": 0.9874 + }, + { + "start": 21094.0, + "end": 21096.92, + "probability": 0.985 + }, + { + "start": 21099.58, + "end": 21099.9, + "probability": 0.3057 + }, + { + "start": 21102.58, + "end": 21104.6, + "probability": 0.9578 + }, + { + "start": 21106.18, + "end": 21108.94, + "probability": 0.9577 + }, + { + "start": 21110.98, + "end": 21114.22, + "probability": 0.9538 + }, + { + "start": 21115.3, + "end": 21116.9, + "probability": 0.9208 + }, + { + "start": 21118.22, + "end": 21119.06, + "probability": 0.7253 + }, + { + "start": 21119.66, + "end": 21121.1, + "probability": 0.9824 + }, + { + "start": 21122.1, + "end": 21123.3, + "probability": 0.9799 + }, + { + "start": 21124.94, + "end": 21125.98, + "probability": 0.9662 + }, + { + "start": 21127.64, + "end": 21133.02, + "probability": 0.7181 + }, + { + "start": 21133.34, + "end": 21134.16, + "probability": 0.7971 + }, + { + "start": 21134.4, + "end": 21134.88, + "probability": 0.543 + }, + { + "start": 21134.94, + "end": 21135.44, + "probability": 0.6916 + }, + { + "start": 21135.48, + "end": 21136.18, + "probability": 0.6719 + }, + { + "start": 21136.2, + "end": 21136.78, + "probability": 0.8081 + }, + { + "start": 21137.3, + "end": 21138.22, + "probability": 0.812 + }, + { + "start": 21138.34, + "end": 21139.2, + "probability": 0.8032 + }, + { + "start": 21139.34, + "end": 21140.1, + "probability": 0.4093 + }, + { + "start": 21140.1, + "end": 21141.22, + "probability": 0.2314 + }, + { + "start": 21141.74, + "end": 21142.6, + "probability": 0.6543 + }, + { + "start": 21143.24, + "end": 21146.06, + "probability": 0.6484 + }, + { + "start": 21146.54, + "end": 21147.14, + "probability": 0.7561 + }, + { + "start": 21154.66, + "end": 21156.06, + "probability": 0.4765 + }, + { + "start": 21157.56, + "end": 21161.32, + "probability": 0.9921 + }, + { + "start": 21162.8, + "end": 21164.72, + "probability": 0.9947 + }, + { + "start": 21165.74, + "end": 21168.88, + "probability": 0.9849 + }, + { + "start": 21170.14, + "end": 21171.04, + "probability": 0.8594 + }, + { + "start": 21173.6, + "end": 21174.26, + "probability": 0.9886 + }, + { + "start": 21175.02, + "end": 21176.88, + "probability": 0.9827 + }, + { + "start": 21177.86, + "end": 21179.96, + "probability": 0.986 + }, + { + "start": 21181.0, + "end": 21181.44, + "probability": 0.2948 + }, + { + "start": 21182.52, + "end": 21185.02, + "probability": 0.8622 + }, + { + "start": 21187.04, + "end": 21192.26, + "probability": 0.9573 + }, + { + "start": 21193.5, + "end": 21194.02, + "probability": 0.9401 + }, + { + "start": 21194.04, + "end": 21201.34, + "probability": 0.8959 + }, + { + "start": 21202.12, + "end": 21203.08, + "probability": 0.5931 + }, + { + "start": 21203.5, + "end": 21204.96, + "probability": 0.88 + }, + { + "start": 21205.92, + "end": 21208.96, + "probability": 0.9927 + }, + { + "start": 21210.0, + "end": 21213.64, + "probability": 0.9882 + }, + { + "start": 21213.7, + "end": 21214.24, + "probability": 0.5537 + }, + { + "start": 21215.18, + "end": 21219.02, + "probability": 0.9377 + }, + { + "start": 21220.5, + "end": 21224.32, + "probability": 0.9834 + }, + { + "start": 21225.96, + "end": 21226.94, + "probability": 0.7686 + }, + { + "start": 21228.2, + "end": 21233.82, + "probability": 0.9908 + }, + { + "start": 21236.5, + "end": 21237.9, + "probability": 0.9647 + }, + { + "start": 21238.18, + "end": 21244.24, + "probability": 0.8506 + }, + { + "start": 21246.34, + "end": 21247.0, + "probability": 0.4314 + }, + { + "start": 21248.52, + "end": 21249.36, + "probability": 0.7803 + }, + { + "start": 21251.34, + "end": 21255.04, + "probability": 0.6421 + }, + { + "start": 21259.38, + "end": 21262.18, + "probability": 0.9683 + }, + { + "start": 21262.74, + "end": 21265.64, + "probability": 0.9753 + }, + { + "start": 21267.96, + "end": 21269.14, + "probability": 0.9878 + }, + { + "start": 21271.58, + "end": 21273.94, + "probability": 0.949 + }, + { + "start": 21274.04, + "end": 21275.3, + "probability": 0.9364 + }, + { + "start": 21275.96, + "end": 21278.24, + "probability": 0.5498 + }, + { + "start": 21279.44, + "end": 21281.28, + "probability": 0.7648 + }, + { + "start": 21281.98, + "end": 21284.86, + "probability": 0.9911 + }, + { + "start": 21284.92, + "end": 21287.26, + "probability": 0.9629 + }, + { + "start": 21287.36, + "end": 21288.5, + "probability": 0.6782 + }, + { + "start": 21289.87, + "end": 21290.46, + "probability": 0.7637 + }, + { + "start": 21291.04, + "end": 21291.72, + "probability": 0.5688 + }, + { + "start": 21292.26, + "end": 21295.06, + "probability": 0.0474 + }, + { + "start": 21296.06, + "end": 21299.88, + "probability": 0.6628 + }, + { + "start": 21299.92, + "end": 21301.86, + "probability": 0.4343 + }, + { + "start": 21301.86, + "end": 21302.14, + "probability": 0.8959 + }, + { + "start": 21302.6, + "end": 21303.04, + "probability": 0.4918 + }, + { + "start": 21312.34, + "end": 21312.72, + "probability": 0.0508 + }, + { + "start": 21312.72, + "end": 21314.62, + "probability": 0.2054 + }, + { + "start": 21316.04, + "end": 21319.52, + "probability": 0.4697 + }, + { + "start": 21319.7, + "end": 21322.02, + "probability": 0.627 + }, + { + "start": 21324.6, + "end": 21326.36, + "probability": 0.9944 + }, + { + "start": 21328.82, + "end": 21331.74, + "probability": 0.9425 + }, + { + "start": 21332.52, + "end": 21333.98, + "probability": 0.9526 + }, + { + "start": 21336.9, + "end": 21337.38, + "probability": 0.9254 + }, + { + "start": 21337.46, + "end": 21338.36, + "probability": 0.9302 + }, + { + "start": 21338.4, + "end": 21341.36, + "probability": 0.998 + }, + { + "start": 21343.3, + "end": 21345.26, + "probability": 0.8691 + }, + { + "start": 21346.44, + "end": 21347.94, + "probability": 0.7107 + }, + { + "start": 21348.14, + "end": 21349.16, + "probability": 0.8892 + }, + { + "start": 21349.48, + "end": 21351.92, + "probability": 0.9697 + }, + { + "start": 21352.94, + "end": 21354.86, + "probability": 0.5261 + }, + { + "start": 21357.14, + "end": 21359.72, + "probability": 0.7939 + }, + { + "start": 21360.0, + "end": 21364.44, + "probability": 0.8114 + }, + { + "start": 21369.68, + "end": 21371.97, + "probability": 0.9111 + }, + { + "start": 21372.9, + "end": 21373.88, + "probability": 0.7114 + }, + { + "start": 21376.02, + "end": 21377.2, + "probability": 0.8533 + }, + { + "start": 21377.24, + "end": 21379.72, + "probability": 0.9689 + }, + { + "start": 21379.96, + "end": 21381.2, + "probability": 0.5193 + }, + { + "start": 21382.8, + "end": 21388.08, + "probability": 0.9849 + }, + { + "start": 21389.16, + "end": 21391.82, + "probability": 0.7886 + }, + { + "start": 21392.9, + "end": 21396.68, + "probability": 0.978 + }, + { + "start": 21398.18, + "end": 21400.1, + "probability": 0.7824 + }, + { + "start": 21400.22, + "end": 21401.12, + "probability": 0.8055 + }, + { + "start": 21401.74, + "end": 21404.64, + "probability": 0.9727 + }, + { + "start": 21405.88, + "end": 21407.02, + "probability": 0.6998 + }, + { + "start": 21409.62, + "end": 21413.58, + "probability": 0.8557 + }, + { + "start": 21413.66, + "end": 21417.12, + "probability": 0.9744 + }, + { + "start": 21418.16, + "end": 21420.98, + "probability": 0.9473 + }, + { + "start": 21421.94, + "end": 21424.66, + "probability": 0.9274 + }, + { + "start": 21425.96, + "end": 21429.3, + "probability": 0.7007 + }, + { + "start": 21430.78, + "end": 21431.68, + "probability": 0.8529 + }, + { + "start": 21432.4, + "end": 21433.14, + "probability": 0.6076 + }, + { + "start": 21433.46, + "end": 21434.32, + "probability": 0.9155 + }, + { + "start": 21434.74, + "end": 21436.32, + "probability": 0.7917 + }, + { + "start": 21437.16, + "end": 21439.78, + "probability": 0.9141 + }, + { + "start": 21440.6, + "end": 21441.6, + "probability": 0.7384 + }, + { + "start": 21441.64, + "end": 21443.32, + "probability": 0.8891 + }, + { + "start": 21444.02, + "end": 21444.92, + "probability": 0.983 + }, + { + "start": 21445.7, + "end": 21446.44, + "probability": 0.9071 + }, + { + "start": 21447.2, + "end": 21447.92, + "probability": 0.7656 + }, + { + "start": 21449.24, + "end": 21449.96, + "probability": 0.6607 + }, + { + "start": 21451.28, + "end": 21451.82, + "probability": 0.9738 + }, + { + "start": 21453.18, + "end": 21454.08, + "probability": 0.7756 + }, + { + "start": 21455.44, + "end": 21463.8, + "probability": 0.8762 + }, + { + "start": 21463.8, + "end": 21468.96, + "probability": 0.7795 + }, + { + "start": 21469.0, + "end": 21469.98, + "probability": 0.8896 + }, + { + "start": 21470.8, + "end": 21473.58, + "probability": 0.9015 + }, + { + "start": 21474.96, + "end": 21477.3, + "probability": 0.9956 + }, + { + "start": 21477.52, + "end": 21478.3, + "probability": 0.7273 + }, + { + "start": 21479.32, + "end": 21481.24, + "probability": 0.9683 + }, + { + "start": 21481.6, + "end": 21483.92, + "probability": 0.9769 + }, + { + "start": 21486.82, + "end": 21490.6, + "probability": 0.966 + }, + { + "start": 21491.98, + "end": 21497.5, + "probability": 0.7609 + }, + { + "start": 21498.7, + "end": 21501.8, + "probability": 0.8213 + }, + { + "start": 21502.08, + "end": 21503.62, + "probability": 0.4203 + }, + { + "start": 21504.06, + "end": 21505.12, + "probability": 0.9561 + }, + { + "start": 21505.6, + "end": 21507.08, + "probability": 0.9775 + }, + { + "start": 21508.22, + "end": 21508.98, + "probability": 0.7893 + }, + { + "start": 21509.58, + "end": 21515.22, + "probability": 0.9142 + }, + { + "start": 21515.3, + "end": 21517.0, + "probability": 0.9918 + }, + { + "start": 21517.14, + "end": 21519.0, + "probability": 0.7613 + }, + { + "start": 21519.56, + "end": 21520.7, + "probability": 0.4248 + }, + { + "start": 21521.56, + "end": 21524.64, + "probability": 0.9157 + }, + { + "start": 21526.04, + "end": 21529.88, + "probability": 0.4977 + }, + { + "start": 21530.96, + "end": 21531.36, + "probability": 0.4037 + }, + { + "start": 21532.04, + "end": 21536.44, + "probability": 0.5347 + }, + { + "start": 21536.54, + "end": 21538.02, + "probability": 0.9062 + }, + { + "start": 21542.05, + "end": 21544.8, + "probability": 0.8201 + }, + { + "start": 21546.86, + "end": 21548.6, + "probability": 0.6342 + }, + { + "start": 21549.22, + "end": 21549.42, + "probability": 0.4724 + }, + { + "start": 21550.18, + "end": 21550.18, + "probability": 0.0064 + }, + { + "start": 21550.26, + "end": 21550.38, + "probability": 0.2313 + }, + { + "start": 21552.36, + "end": 21557.51, + "probability": 0.9668 + }, + { + "start": 21557.62, + "end": 21561.54, + "probability": 0.9895 + }, + { + "start": 21561.92, + "end": 21563.94, + "probability": 0.7768 + }, + { + "start": 21565.4, + "end": 21569.98, + "probability": 0.9344 + }, + { + "start": 21570.72, + "end": 21572.5, + "probability": 0.9604 + }, + { + "start": 21572.8, + "end": 21575.02, + "probability": 0.6814 + }, + { + "start": 21575.38, + "end": 21576.9, + "probability": 0.9283 + }, + { + "start": 21577.08, + "end": 21579.4, + "probability": 0.8696 + }, + { + "start": 21579.94, + "end": 21582.62, + "probability": 0.9751 + }, + { + "start": 21583.8, + "end": 21586.94, + "probability": 0.8608 + }, + { + "start": 21589.02, + "end": 21590.14, + "probability": 0.9657 + }, + { + "start": 21591.5, + "end": 21596.24, + "probability": 0.9761 + }, + { + "start": 21596.34, + "end": 21596.76, + "probability": 0.802 + }, + { + "start": 21597.98, + "end": 21599.24, + "probability": 0.9922 + }, + { + "start": 21599.88, + "end": 21601.84, + "probability": 0.9692 + }, + { + "start": 21602.96, + "end": 21605.8, + "probability": 0.6817 + }, + { + "start": 21607.4, + "end": 21609.28, + "probability": 0.7169 + }, + { + "start": 21610.14, + "end": 21612.46, + "probability": 0.5129 + }, + { + "start": 21613.1, + "end": 21618.02, + "probability": 0.989 + }, + { + "start": 21618.08, + "end": 21620.68, + "probability": 0.9928 + }, + { + "start": 21621.2, + "end": 21623.8, + "probability": 0.8002 + }, + { + "start": 21624.4, + "end": 21627.84, + "probability": 0.863 + }, + { + "start": 21628.18, + "end": 21629.8, + "probability": 0.6658 + }, + { + "start": 21630.64, + "end": 21639.38, + "probability": 0.9619 + }, + { + "start": 21639.52, + "end": 21640.34, + "probability": 0.9104 + }, + { + "start": 21640.44, + "end": 21641.58, + "probability": 0.8843 + }, + { + "start": 21641.66, + "end": 21641.84, + "probability": 0.5257 + }, + { + "start": 21642.94, + "end": 21643.14, + "probability": 0.252 + }, + { + "start": 21643.34, + "end": 21644.9, + "probability": 0.5125 + }, + { + "start": 21647.14, + "end": 21648.36, + "probability": 0.8777 + }, + { + "start": 21648.48, + "end": 21651.58, + "probability": 0.9869 + }, + { + "start": 21653.52, + "end": 21656.82, + "probability": 0.9709 + }, + { + "start": 21658.9, + "end": 21659.74, + "probability": 0.7971 + }, + { + "start": 21661.44, + "end": 21662.34, + "probability": 0.9424 + }, + { + "start": 21664.74, + "end": 21670.38, + "probability": 0.6697 + }, + { + "start": 21671.0, + "end": 21674.46, + "probability": 0.9145 + }, + { + "start": 21675.7, + "end": 21684.64, + "probability": 0.9932 + }, + { + "start": 21685.44, + "end": 21687.34, + "probability": 0.8616 + }, + { + "start": 21688.12, + "end": 21692.74, + "probability": 0.9849 + }, + { + "start": 21692.86, + "end": 21694.44, + "probability": 0.9366 + }, + { + "start": 21694.92, + "end": 21696.64, + "probability": 0.6 + }, + { + "start": 21697.06, + "end": 21698.24, + "probability": 0.946 + }, + { + "start": 21698.3, + "end": 21702.14, + "probability": 0.9552 + }, + { + "start": 21702.14, + "end": 21705.64, + "probability": 0.7086 + }, + { + "start": 21705.96, + "end": 21707.0, + "probability": 0.6626 + }, + { + "start": 21707.56, + "end": 21709.44, + "probability": 0.926 + }, + { + "start": 21709.84, + "end": 21713.88, + "probability": 0.5723 + }, + { + "start": 21713.98, + "end": 21715.88, + "probability": 0.9784 + }, + { + "start": 21716.44, + "end": 21718.55, + "probability": 0.4952 + }, + { + "start": 21718.68, + "end": 21718.86, + "probability": 0.4384 + }, + { + "start": 21719.34, + "end": 21720.72, + "probability": 0.5611 + }, + { + "start": 21735.22, + "end": 21735.42, + "probability": 0.7276 + }, + { + "start": 21738.2, + "end": 21738.62, + "probability": 0.3868 + }, + { + "start": 21738.62, + "end": 21740.32, + "probability": 0.6971 + }, + { + "start": 21741.2, + "end": 21743.56, + "probability": 0.8091 + }, + { + "start": 21745.02, + "end": 21748.12, + "probability": 0.9852 + }, + { + "start": 21749.1, + "end": 21751.48, + "probability": 0.9441 + }, + { + "start": 21753.14, + "end": 21755.9, + "probability": 0.8821 + }, + { + "start": 21757.12, + "end": 21762.48, + "probability": 0.8724 + }, + { + "start": 21762.88, + "end": 21764.34, + "probability": 0.7688 + }, + { + "start": 21765.32, + "end": 21768.74, + "probability": 0.9587 + }, + { + "start": 21769.48, + "end": 21772.14, + "probability": 0.7524 + }, + { + "start": 21772.32, + "end": 21775.68, + "probability": 0.9583 + }, + { + "start": 21776.68, + "end": 21781.18, + "probability": 0.9194 + }, + { + "start": 21781.28, + "end": 21786.92, + "probability": 0.9924 + }, + { + "start": 21788.12, + "end": 21789.68, + "probability": 0.5868 + }, + { + "start": 21791.58, + "end": 21795.58, + "probability": 0.9733 + }, + { + "start": 21796.86, + "end": 21799.38, + "probability": 0.9849 + }, + { + "start": 21799.38, + "end": 21803.38, + "probability": 0.892 + }, + { + "start": 21804.65, + "end": 21805.1, + "probability": 0.2869 + }, + { + "start": 21805.1, + "end": 21810.58, + "probability": 0.8815 + }, + { + "start": 21810.62, + "end": 21810.9, + "probability": 0.3899 + }, + { + "start": 21812.42, + "end": 21815.34, + "probability": 0.9434 + }, + { + "start": 21815.58, + "end": 21816.4, + "probability": 0.6787 + }, + { + "start": 21817.82, + "end": 21820.8, + "probability": 0.9883 + }, + { + "start": 21820.8, + "end": 21823.4, + "probability": 0.9985 + }, + { + "start": 21824.54, + "end": 21825.5, + "probability": 0.6851 + }, + { + "start": 21825.94, + "end": 21829.76, + "probability": 0.8813 + }, + { + "start": 21830.54, + "end": 21833.34, + "probability": 0.9809 + }, + { + "start": 21834.84, + "end": 21836.64, + "probability": 0.8295 + }, + { + "start": 21836.72, + "end": 21841.3, + "probability": 0.937 + }, + { + "start": 21841.78, + "end": 21842.2, + "probability": 0.8058 + }, + { + "start": 21842.76, + "end": 21843.66, + "probability": 0.5813 + }, + { + "start": 21843.74, + "end": 21844.42, + "probability": 0.9729 + }, + { + "start": 21844.94, + "end": 21847.56, + "probability": 0.8458 + }, + { + "start": 21849.82, + "end": 21850.78, + "probability": 0.7198 + }, + { + "start": 21851.18, + "end": 21854.6, + "probability": 0.9227 + }, + { + "start": 21854.7, + "end": 21856.72, + "probability": 0.8784 + }, + { + "start": 21857.62, + "end": 21858.42, + "probability": 0.6669 + }, + { + "start": 21861.38, + "end": 21861.9, + "probability": 0.0872 + }, + { + "start": 21874.48, + "end": 21874.7, + "probability": 0.501 + }, + { + "start": 21874.7, + "end": 21877.2, + "probability": 0.4992 + }, + { + "start": 21877.22, + "end": 21881.12, + "probability": 0.8907 + }, + { + "start": 21881.16, + "end": 21881.62, + "probability": 0.8493 + }, + { + "start": 21882.72, + "end": 21883.28, + "probability": 0.0684 + }, + { + "start": 21884.72, + "end": 21885.38, + "probability": 0.0707 + }, + { + "start": 21885.4, + "end": 21888.12, + "probability": 0.9957 + }, + { + "start": 21888.46, + "end": 21889.74, + "probability": 0.863 + }, + { + "start": 21890.34, + "end": 21891.02, + "probability": 0.875 + }, + { + "start": 21891.98, + "end": 21896.08, + "probability": 0.8547 + }, + { + "start": 21896.46, + "end": 21898.48, + "probability": 0.8447 + }, + { + "start": 21899.3, + "end": 21903.08, + "probability": 0.8727 + }, + { + "start": 21904.18, + "end": 21907.68, + "probability": 0.8431 + }, + { + "start": 21909.64, + "end": 21912.34, + "probability": 0.8599 + }, + { + "start": 21923.58, + "end": 21924.64, + "probability": 0.8213 + }, + { + "start": 21925.22, + "end": 21926.3, + "probability": 0.9446 + }, + { + "start": 21926.3, + "end": 21926.66, + "probability": 0.9246 + }, + { + "start": 21928.66, + "end": 21929.48, + "probability": 0.7606 + }, + { + "start": 21929.58, + "end": 21930.2, + "probability": 0.5549 + }, + { + "start": 21930.26, + "end": 21932.97, + "probability": 0.9845 + }, + { + "start": 21933.16, + "end": 21935.02, + "probability": 0.9705 + }, + { + "start": 21935.56, + "end": 21936.98, + "probability": 0.9927 + }, + { + "start": 21939.82, + "end": 21942.66, + "probability": 0.9465 + }, + { + "start": 21943.12, + "end": 21943.8, + "probability": 0.7381 + }, + { + "start": 21943.96, + "end": 21944.96, + "probability": 0.8293 + }, + { + "start": 21944.98, + "end": 21949.3, + "probability": 0.8263 + }, + { + "start": 21949.48, + "end": 21951.24, + "probability": 0.9676 + }, + { + "start": 21951.26, + "end": 21954.78, + "probability": 0.7268 + }, + { + "start": 21954.8, + "end": 21959.34, + "probability": 0.9976 + }, + { + "start": 21959.4, + "end": 21960.0, + "probability": 0.8443 + }, + { + "start": 21960.16, + "end": 21961.58, + "probability": 0.7688 + }, + { + "start": 21962.86, + "end": 21964.52, + "probability": 0.9706 + }, + { + "start": 21964.64, + "end": 21967.4, + "probability": 0.7038 + }, + { + "start": 21967.56, + "end": 21969.36, + "probability": 0.9978 + }, + { + "start": 21970.34, + "end": 21973.18, + "probability": 0.5828 + }, + { + "start": 21973.42, + "end": 21973.42, + "probability": 0.0844 + }, + { + "start": 21973.42, + "end": 21974.16, + "probability": 0.8134 + }, + { + "start": 21974.86, + "end": 21978.38, + "probability": 0.7754 + }, + { + "start": 21980.18, + "end": 21982.86, + "probability": 0.7155 + }, + { + "start": 21983.8, + "end": 21984.1, + "probability": 0.223 + }, + { + "start": 21985.66, + "end": 21990.18, + "probability": 0.4237 + }, + { + "start": 21990.18, + "end": 21994.84, + "probability": 0.0398 + }, + { + "start": 21996.3, + "end": 21996.65, + "probability": 0.0219 + }, + { + "start": 21997.74, + "end": 21997.88, + "probability": 0.0342 + }, + { + "start": 21997.88, + "end": 21997.88, + "probability": 0.2132 + }, + { + "start": 21997.88, + "end": 21999.64, + "probability": 0.654 + }, + { + "start": 21999.88, + "end": 22001.58, + "probability": 0.3957 + }, + { + "start": 22001.64, + "end": 22002.58, + "probability": 0.8357 + }, + { + "start": 22004.66, + "end": 22005.68, + "probability": 0.939 + }, + { + "start": 22006.32, + "end": 22008.32, + "probability": 0.9546 + }, + { + "start": 22008.54, + "end": 22009.44, + "probability": 0.9858 + }, + { + "start": 22009.58, + "end": 22011.98, + "probability": 0.9881 + }, + { + "start": 22012.16, + "end": 22014.8, + "probability": 0.9544 + }, + { + "start": 22015.96, + "end": 22021.4, + "probability": 0.976 + }, + { + "start": 22021.46, + "end": 22024.02, + "probability": 0.7835 + }, + { + "start": 22024.5, + "end": 22030.42, + "probability": 0.9786 + }, + { + "start": 22031.16, + "end": 22034.46, + "probability": 0.9044 + }, + { + "start": 22035.82, + "end": 22040.82, + "probability": 0.7333 + }, + { + "start": 22042.12, + "end": 22046.44, + "probability": 0.9316 + }, + { + "start": 22046.72, + "end": 22049.48, + "probability": 0.9983 + }, + { + "start": 22051.26, + "end": 22052.02, + "probability": 0.1544 + }, + { + "start": 22052.84, + "end": 22055.84, + "probability": 0.9959 + }, + { + "start": 22056.66, + "end": 22060.34, + "probability": 0.9638 + }, + { + "start": 22060.54, + "end": 22061.76, + "probability": 0.7984 + }, + { + "start": 22062.42, + "end": 22063.94, + "probability": 0.7646 + }, + { + "start": 22064.6, + "end": 22066.16, + "probability": 0.9623 + }, + { + "start": 22066.98, + "end": 22069.46, + "probability": 0.9858 + }, + { + "start": 22069.68, + "end": 22071.0, + "probability": 0.9958 + }, + { + "start": 22071.02, + "end": 22072.82, + "probability": 0.9497 + }, + { + "start": 22073.38, + "end": 22075.1, + "probability": 0.6375 + }, + { + "start": 22082.67, + "end": 22086.76, + "probability": 0.7163 + }, + { + "start": 22087.42, + "end": 22088.56, + "probability": 0.623 + }, + { + "start": 22088.56, + "end": 22089.38, + "probability": 0.9681 + }, + { + "start": 22089.5, + "end": 22090.74, + "probability": 0.8571 + }, + { + "start": 22090.92, + "end": 22092.54, + "probability": 0.8376 + }, + { + "start": 22094.9, + "end": 22097.4, + "probability": 0.7828 + }, + { + "start": 22097.62, + "end": 22098.98, + "probability": 0.3439 + }, + { + "start": 22099.04, + "end": 22100.86, + "probability": 0.382 + }, + { + "start": 22100.86, + "end": 22105.54, + "probability": 0.8991 + }, + { + "start": 22105.64, + "end": 22108.04, + "probability": 0.6915 + }, + { + "start": 22108.18, + "end": 22109.5, + "probability": 0.8551 + }, + { + "start": 22109.92, + "end": 22112.62, + "probability": 0.6611 + }, + { + "start": 22113.7, + "end": 22114.32, + "probability": 0.47 + }, + { + "start": 22114.38, + "end": 22115.14, + "probability": 0.5777 + }, + { + "start": 22115.2, + "end": 22115.38, + "probability": 0.3994 + }, + { + "start": 22115.46, + "end": 22117.5, + "probability": 0.5186 + }, + { + "start": 22118.1, + "end": 22120.7, + "probability": 0.9892 + }, + { + "start": 22120.78, + "end": 22122.82, + "probability": 0.9203 + }, + { + "start": 22122.94, + "end": 22123.63, + "probability": 0.9889 + }, + { + "start": 22126.12, + "end": 22126.14, + "probability": 0.0479 + }, + { + "start": 22126.14, + "end": 22126.14, + "probability": 0.2504 + }, + { + "start": 22126.14, + "end": 22128.1, + "probability": 0.7803 + }, + { + "start": 22128.4, + "end": 22131.28, + "probability": 0.9448 + }, + { + "start": 22131.36, + "end": 22131.85, + "probability": 0.6235 + }, + { + "start": 22132.2, + "end": 22132.58, + "probability": 0.4706 + }, + { + "start": 22132.92, + "end": 22135.32, + "probability": 0.938 + }, + { + "start": 22135.32, + "end": 22135.86, + "probability": 0.6905 + }, + { + "start": 22136.12, + "end": 22136.98, + "probability": 0.7361 + }, + { + "start": 22137.0, + "end": 22139.86, + "probability": 0.5884 + }, + { + "start": 22139.86, + "end": 22139.88, + "probability": 0.5944 + }, + { + "start": 22139.88, + "end": 22140.48, + "probability": 0.5264 + }, + { + "start": 22140.68, + "end": 22142.12, + "probability": 0.9883 + }, + { + "start": 22142.18, + "end": 22143.3, + "probability": 0.8999 + }, + { + "start": 22144.42, + "end": 22147.64, + "probability": 0.97 + }, + { + "start": 22147.84, + "end": 22149.7, + "probability": 0.5918 + }, + { + "start": 22149.7, + "end": 22152.0, + "probability": 0.9983 + }, + { + "start": 22152.22, + "end": 22152.68, + "probability": 0.4033 + }, + { + "start": 22152.7, + "end": 22153.06, + "probability": 0.9207 + }, + { + "start": 22153.14, + "end": 22154.12, + "probability": 0.8491 + }, + { + "start": 22154.32, + "end": 22156.28, + "probability": 0.909 + }, + { + "start": 22156.96, + "end": 22160.32, + "probability": 0.9966 + }, + { + "start": 22160.42, + "end": 22162.86, + "probability": 0.9567 + }, + { + "start": 22163.32, + "end": 22164.31, + "probability": 0.8179 + }, + { + "start": 22164.86, + "end": 22168.0, + "probability": 0.9922 + }, + { + "start": 22168.0, + "end": 22168.16, + "probability": 0.538 + }, + { + "start": 22168.58, + "end": 22170.66, + "probability": 0.8557 + }, + { + "start": 22171.2, + "end": 22171.34, + "probability": 0.6863 + }, + { + "start": 22171.34, + "end": 22173.0, + "probability": 0.9009 + }, + { + "start": 22173.06, + "end": 22174.66, + "probability": 0.9932 + }, + { + "start": 22174.66, + "end": 22175.08, + "probability": 0.3888 + }, + { + "start": 22175.08, + "end": 22175.3, + "probability": 0.3696 + }, + { + "start": 22175.3, + "end": 22175.8, + "probability": 0.9385 + }, + { + "start": 22176.06, + "end": 22176.94, + "probability": 0.5996 + }, + { + "start": 22177.04, + "end": 22179.38, + "probability": 0.6102 + }, + { + "start": 22180.25, + "end": 22180.76, + "probability": 0.2781 + }, + { + "start": 22180.84, + "end": 22181.78, + "probability": 0.4234 + }, + { + "start": 22182.4, + "end": 22185.04, + "probability": 0.9429 + }, + { + "start": 22185.36, + "end": 22189.52, + "probability": 0.9775 + }, + { + "start": 22189.74, + "end": 22190.12, + "probability": 0.9084 + }, + { + "start": 22190.66, + "end": 22191.14, + "probability": 0.3639 + }, + { + "start": 22191.78, + "end": 22195.5, + "probability": 0.9006 + }, + { + "start": 22195.52, + "end": 22196.08, + "probability": 0.5264 + }, + { + "start": 22196.14, + "end": 22196.96, + "probability": 0.2006 + }, + { + "start": 22197.0, + "end": 22198.18, + "probability": 0.9049 + }, + { + "start": 22198.28, + "end": 22198.93, + "probability": 0.953 + }, + { + "start": 22201.1, + "end": 22201.8, + "probability": 0.9648 + }, + { + "start": 22202.04, + "end": 22202.52, + "probability": 0.9268 + }, + { + "start": 22202.82, + "end": 22203.34, + "probability": 0.9388 + }, + { + "start": 22204.32, + "end": 22205.82, + "probability": 0.828 + }, + { + "start": 22206.32, + "end": 22209.5, + "probability": 0.9858 + }, + { + "start": 22209.54, + "end": 22210.34, + "probability": 0.426 + }, + { + "start": 22210.76, + "end": 22214.64, + "probability": 0.3151 + }, + { + "start": 22214.64, + "end": 22214.64, + "probability": 0.6998 + }, + { + "start": 22214.64, + "end": 22217.42, + "probability": 0.4977 + }, + { + "start": 22217.46, + "end": 22217.54, + "probability": 0.1682 + }, + { + "start": 22217.54, + "end": 22218.42, + "probability": 0.6412 + }, + { + "start": 22218.54, + "end": 22219.18, + "probability": 0.5326 + }, + { + "start": 22219.22, + "end": 22221.92, + "probability": 0.4526 + }, + { + "start": 22222.0, + "end": 22222.1, + "probability": 0.2476 + }, + { + "start": 22222.1, + "end": 22222.48, + "probability": 0.6698 + }, + { + "start": 22222.54, + "end": 22223.46, + "probability": 0.8737 + }, + { + "start": 22223.68, + "end": 22223.86, + "probability": 0.4462 + }, + { + "start": 22224.12, + "end": 22224.74, + "probability": 0.4387 + }, + { + "start": 22224.94, + "end": 22226.74, + "probability": 0.9877 + }, + { + "start": 22226.84, + "end": 22229.28, + "probability": 0.8925 + }, + { + "start": 22229.46, + "end": 22231.88, + "probability": 0.9958 + }, + { + "start": 22232.62, + "end": 22236.32, + "probability": 0.9988 + }, + { + "start": 22236.68, + "end": 22237.02, + "probability": 0.8053 + }, + { + "start": 22237.16, + "end": 22241.12, + "probability": 0.6911 + }, + { + "start": 22242.74, + "end": 22244.04, + "probability": 0.7657 + }, + { + "start": 22245.46, + "end": 22246.26, + "probability": 0.3385 + }, + { + "start": 22246.38, + "end": 22248.76, + "probability": 0.9106 + }, + { + "start": 22249.68, + "end": 22250.08, + "probability": 0.804 + }, + { + "start": 22250.66, + "end": 22251.4, + "probability": 0.4812 + }, + { + "start": 22251.4, + "end": 22252.74, + "probability": 0.9595 + }, + { + "start": 22253.12, + "end": 22255.12, + "probability": 0.7488 + }, + { + "start": 22255.5, + "end": 22256.28, + "probability": 0.4814 + }, + { + "start": 22256.34, + "end": 22258.26, + "probability": 0.6899 + }, + { + "start": 22258.6, + "end": 22260.3, + "probability": 0.8423 + }, + { + "start": 22260.58, + "end": 22263.72, + "probability": 0.7391 + }, + { + "start": 22264.64, + "end": 22265.16, + "probability": 0.3672 + }, + { + "start": 22265.54, + "end": 22267.86, + "probability": 0.9946 + }, + { + "start": 22267.96, + "end": 22270.0, + "probability": 0.5972 + }, + { + "start": 22270.0, + "end": 22270.14, + "probability": 0.1697 + }, + { + "start": 22270.14, + "end": 22273.48, + "probability": 0.9775 + }, + { + "start": 22273.72, + "end": 22275.5, + "probability": 0.7337 + }, + { + "start": 22275.58, + "end": 22277.65, + "probability": 0.868 + }, + { + "start": 22278.04, + "end": 22279.4, + "probability": 0.0113 + }, + { + "start": 22279.48, + "end": 22280.66, + "probability": 0.1708 + }, + { + "start": 22280.74, + "end": 22284.08, + "probability": 0.9843 + }, + { + "start": 22284.6, + "end": 22286.76, + "probability": 0.7986 + }, + { + "start": 22287.42, + "end": 22289.56, + "probability": 0.9883 + }, + { + "start": 22292.42, + "end": 22293.82, + "probability": 0.991 + }, + { + "start": 22295.14, + "end": 22297.3, + "probability": 0.999 + }, + { + "start": 22297.56, + "end": 22298.72, + "probability": 0.5789 + }, + { + "start": 22299.46, + "end": 22300.82, + "probability": 0.8804 + }, + { + "start": 22301.34, + "end": 22303.2, + "probability": 0.9841 + }, + { + "start": 22304.1, + "end": 22304.94, + "probability": 0.9807 + }, + { + "start": 22305.44, + "end": 22306.58, + "probability": 0.9458 + }, + { + "start": 22306.74, + "end": 22307.66, + "probability": 0.9216 + }, + { + "start": 22307.78, + "end": 22308.12, + "probability": 0.476 + }, + { + "start": 22308.22, + "end": 22309.04, + "probability": 0.5351 + }, + { + "start": 22309.04, + "end": 22310.1, + "probability": 0.0297 + }, + { + "start": 22310.14, + "end": 22311.75, + "probability": 0.4867 + }, + { + "start": 22312.7, + "end": 22315.04, + "probability": 0.478 + }, + { + "start": 22315.54, + "end": 22316.26, + "probability": 0.3163 + }, + { + "start": 22316.26, + "end": 22316.74, + "probability": 0.1831 + }, + { + "start": 22319.28, + "end": 22320.5, + "probability": 0.2009 + }, + { + "start": 22320.5, + "end": 22320.94, + "probability": 0.0421 + }, + { + "start": 22321.18, + "end": 22323.06, + "probability": 0.5744 + }, + { + "start": 22323.8, + "end": 22324.7, + "probability": 0.6621 + }, + { + "start": 22324.82, + "end": 22326.94, + "probability": 0.6238 + }, + { + "start": 22330.5, + "end": 22331.26, + "probability": 0.6534 + }, + { + "start": 22331.26, + "end": 22331.26, + "probability": 0.0307 + }, + { + "start": 22331.38, + "end": 22333.16, + "probability": 0.6014 + }, + { + "start": 22333.18, + "end": 22336.7, + "probability": 0.9012 + }, + { + "start": 22338.18, + "end": 22340.36, + "probability": 0.9314 + }, + { + "start": 22340.42, + "end": 22341.36, + "probability": 0.7831 + }, + { + "start": 22341.44, + "end": 22345.52, + "probability": 0.9594 + }, + { + "start": 22346.26, + "end": 22347.83, + "probability": 0.869 + }, + { + "start": 22348.76, + "end": 22348.76, + "probability": 0.0565 + }, + { + "start": 22348.76, + "end": 22352.6, + "probability": 0.9722 + }, + { + "start": 22353.24, + "end": 22356.56, + "probability": 0.7299 + }, + { + "start": 22357.5, + "end": 22358.22, + "probability": 0.9812 + }, + { + "start": 22358.94, + "end": 22361.14, + "probability": 0.9044 + }, + { + "start": 22361.86, + "end": 22364.98, + "probability": 0.9319 + }, + { + "start": 22365.2, + "end": 22366.86, + "probability": 0.943 + }, + { + "start": 22368.42, + "end": 22369.4, + "probability": 0.8901 + }, + { + "start": 22369.86, + "end": 22371.26, + "probability": 0.8116 + }, + { + "start": 22372.24, + "end": 22374.26, + "probability": 0.5681 + }, + { + "start": 22375.46, + "end": 22376.24, + "probability": 0.8546 + }, + { + "start": 22376.38, + "end": 22379.48, + "probability": 0.675 + }, + { + "start": 22380.54, + "end": 22381.1, + "probability": 0.5984 + }, + { + "start": 22381.59, + "end": 22383.2, + "probability": 0.7957 + }, + { + "start": 22383.28, + "end": 22385.54, + "probability": 0.877 + }, + { + "start": 22386.7, + "end": 22386.78, + "probability": 0.021 + }, + { + "start": 22386.98, + "end": 22388.36, + "probability": 0.3412 + }, + { + "start": 22389.36, + "end": 22390.06, + "probability": 0.0448 + }, + { + "start": 22390.06, + "end": 22394.2, + "probability": 0.8299 + }, + { + "start": 22394.26, + "end": 22394.8, + "probability": 0.7134 + }, + { + "start": 22394.9, + "end": 22395.18, + "probability": 0.6959 + }, + { + "start": 22395.18, + "end": 22396.32, + "probability": 0.2329 + }, + { + "start": 22396.32, + "end": 22396.96, + "probability": 0.3763 + }, + { + "start": 22397.12, + "end": 22403.14, + "probability": 0.8792 + }, + { + "start": 22403.56, + "end": 22406.84, + "probability": 0.7607 + }, + { + "start": 22407.64, + "end": 22412.92, + "probability": 0.9698 + }, + { + "start": 22412.92, + "end": 22418.46, + "probability": 0.9922 + }, + { + "start": 22419.38, + "end": 22420.63, + "probability": 0.822 + }, + { + "start": 22421.1, + "end": 22423.64, + "probability": 0.9848 + }, + { + "start": 22423.64, + "end": 22426.94, + "probability": 0.9749 + }, + { + "start": 22427.48, + "end": 22435.0, + "probability": 0.8455 + }, + { + "start": 22435.42, + "end": 22436.14, + "probability": 0.3697 + }, + { + "start": 22436.54, + "end": 22437.59, + "probability": 0.7359 + }, + { + "start": 22437.8, + "end": 22439.58, + "probability": 0.7986 + }, + { + "start": 22440.26, + "end": 22441.66, + "probability": 0.6505 + }, + { + "start": 22441.76, + "end": 22443.7, + "probability": 0.6634 + }, + { + "start": 22444.24, + "end": 22445.46, + "probability": 0.4745 + }, + { + "start": 22445.98, + "end": 22446.94, + "probability": 0.6404 + }, + { + "start": 22457.52, + "end": 22459.66, + "probability": 0.4698 + }, + { + "start": 22459.84, + "end": 22461.72, + "probability": 0.184 + }, + { + "start": 22462.06, + "end": 22464.16, + "probability": 0.5318 + }, + { + "start": 22464.16, + "end": 22464.32, + "probability": 0.007 + }, + { + "start": 22464.32, + "end": 22464.5, + "probability": 0.0338 + }, + { + "start": 22464.5, + "end": 22465.88, + "probability": 0.0239 + }, + { + "start": 22467.24, + "end": 22467.9, + "probability": 0.1086 + }, + { + "start": 22468.64, + "end": 22469.16, + "probability": 0.2153 + }, + { + "start": 22469.2, + "end": 22472.5, + "probability": 0.201 + }, + { + "start": 22472.5, + "end": 22472.7, + "probability": 0.6542 + }, + { + "start": 22474.1, + "end": 22476.31, + "probability": 0.0775 + }, + { + "start": 22479.84, + "end": 22482.62, + "probability": 0.1756 + }, + { + "start": 22483.16, + "end": 22483.88, + "probability": 0.1781 + }, + { + "start": 22483.88, + "end": 22485.0, + "probability": 0.0135 + }, + { + "start": 22487.02, + "end": 22491.08, + "probability": 0.0901 + }, + { + "start": 22491.68, + "end": 22492.6, + "probability": 0.0107 + }, + { + "start": 22495.06, + "end": 22495.66, + "probability": 0.0001 + }, + { + "start": 22496.76, + "end": 22498.88, + "probability": 0.0485 + }, + { + "start": 22499.1, + "end": 22499.28, + "probability": 0.0336 + }, + { + "start": 22499.28, + "end": 22499.28, + "probability": 0.2709 + }, + { + "start": 22499.28, + "end": 22499.58, + "probability": 0.0953 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.0, + "end": 22527.0, + "probability": 0.0 + }, + { + "start": 22527.12, + "end": 22527.12, + "probability": 0.0719 + }, + { + "start": 22527.12, + "end": 22527.12, + "probability": 0.0324 + }, + { + "start": 22527.12, + "end": 22528.16, + "probability": 0.5025 + }, + { + "start": 22528.26, + "end": 22529.26, + "probability": 0.7755 + }, + { + "start": 22530.04, + "end": 22530.92, + "probability": 0.7872 + }, + { + "start": 22531.1, + "end": 22532.24, + "probability": 0.9268 + }, + { + "start": 22532.6, + "end": 22533.54, + "probability": 0.756 + }, + { + "start": 22535.06, + "end": 22535.24, + "probability": 0.7211 + }, + { + "start": 22536.2, + "end": 22536.8, + "probability": 0.6605 + }, + { + "start": 22536.86, + "end": 22538.0, + "probability": 0.7821 + }, + { + "start": 22538.08, + "end": 22543.08, + "probability": 0.9935 + }, + { + "start": 22543.24, + "end": 22546.08, + "probability": 0.9951 + }, + { + "start": 22546.34, + "end": 22547.04, + "probability": 0.877 + }, + { + "start": 22547.36, + "end": 22549.96, + "probability": 0.9612 + }, + { + "start": 22550.58, + "end": 22552.34, + "probability": 0.9912 + }, + { + "start": 22552.38, + "end": 22555.92, + "probability": 0.9849 + }, + { + "start": 22556.5, + "end": 22558.74, + "probability": 0.8733 + }, + { + "start": 22559.1, + "end": 22559.96, + "probability": 0.9793 + }, + { + "start": 22560.12, + "end": 22562.92, + "probability": 0.9816 + }, + { + "start": 22562.92, + "end": 22565.5, + "probability": 0.9869 + }, + { + "start": 22565.92, + "end": 22570.52, + "probability": 0.5364 + }, + { + "start": 22570.79, + "end": 22570.86, + "probability": 0.0699 + }, + { + "start": 22570.86, + "end": 22571.78, + "probability": 0.8763 + }, + { + "start": 22571.9, + "end": 22572.34, + "probability": 0.9032 + }, + { + "start": 22572.44, + "end": 22574.61, + "probability": 0.9507 + }, + { + "start": 22575.28, + "end": 22577.5, + "probability": 0.9867 + }, + { + "start": 22578.0, + "end": 22578.02, + "probability": 0.0476 + }, + { + "start": 22578.02, + "end": 22578.02, + "probability": 0.0123 + }, + { + "start": 22578.22, + "end": 22579.04, + "probability": 0.5427 + }, + { + "start": 22579.16, + "end": 22579.7, + "probability": 0.5163 + }, + { + "start": 22579.78, + "end": 22581.02, + "probability": 0.754 + }, + { + "start": 22581.5, + "end": 22583.5, + "probability": 0.9126 + }, + { + "start": 22583.7, + "end": 22585.12, + "probability": 0.9124 + }, + { + "start": 22587.28, + "end": 22587.28, + "probability": 0.1001 + }, + { + "start": 22587.28, + "end": 22587.28, + "probability": 0.0808 + }, + { + "start": 22587.28, + "end": 22587.28, + "probability": 0.0649 + }, + { + "start": 22587.28, + "end": 22588.2, + "probability": 0.8114 + }, + { + "start": 22588.44, + "end": 22588.44, + "probability": 0.1174 + }, + { + "start": 22588.44, + "end": 22591.5, + "probability": 0.3837 + }, + { + "start": 22592.54, + "end": 22592.98, + "probability": 0.0128 + }, + { + "start": 22593.72, + "end": 22596.3, + "probability": 0.0155 + }, + { + "start": 22596.58, + "end": 22597.62, + "probability": 0.3928 + }, + { + "start": 22597.92, + "end": 22601.58, + "probability": 0.5976 + }, + { + "start": 22601.7, + "end": 22604.26, + "probability": 0.8967 + }, + { + "start": 22604.36, + "end": 22605.46, + "probability": 0.7586 + }, + { + "start": 22605.64, + "end": 22606.76, + "probability": 0.8423 + }, + { + "start": 22607.18, + "end": 22607.7, + "probability": 0.041 + }, + { + "start": 22607.7, + "end": 22607.7, + "probability": 0.0068 + }, + { + "start": 22608.4, + "end": 22609.46, + "probability": 0.1854 + }, + { + "start": 22609.46, + "end": 22612.2, + "probability": 0.5686 + }, + { + "start": 22612.28, + "end": 22612.9, + "probability": 0.7461 + }, + { + "start": 22613.2, + "end": 22614.5, + "probability": 0.8706 + }, + { + "start": 22615.02, + "end": 22616.34, + "probability": 0.7854 + }, + { + "start": 22616.84, + "end": 22618.06, + "probability": 0.6098 + }, + { + "start": 22618.06, + "end": 22620.8, + "probability": 0.5086 + }, + { + "start": 22620.88, + "end": 22621.32, + "probability": 0.7183 + }, + { + "start": 22621.42, + "end": 22622.22, + "probability": 0.7277 + }, + { + "start": 22623.94, + "end": 22628.22, + "probability": 0.5304 + }, + { + "start": 22634.56, + "end": 22634.58, + "probability": 0.3683 + }, + { + "start": 22634.58, + "end": 22638.07, + "probability": 0.5441 + }, + { + "start": 22639.81, + "end": 22642.52, + "probability": 0.6111 + }, + { + "start": 22642.76, + "end": 22643.96, + "probability": 0.5881 + }, + { + "start": 22644.4, + "end": 22644.7, + "probability": 0.459 + }, + { + "start": 22645.7, + "end": 22648.58, + "probability": 0.8641 + }, + { + "start": 22649.44, + "end": 22651.64, + "probability": 0.9211 + }, + { + "start": 22652.4, + "end": 22653.76, + "probability": 0.9244 + }, + { + "start": 22653.9, + "end": 22654.7, + "probability": 0.955 + }, + { + "start": 22655.16, + "end": 22656.34, + "probability": 0.6764 + }, + { + "start": 22656.86, + "end": 22657.3, + "probability": 0.846 + }, + { + "start": 22658.14, + "end": 22659.12, + "probability": 0.9966 + }, + { + "start": 22660.22, + "end": 22662.32, + "probability": 0.9647 + }, + { + "start": 22662.74, + "end": 22664.64, + "probability": 0.8192 + }, + { + "start": 22665.22, + "end": 22667.96, + "probability": 0.7117 + }, + { + "start": 22668.54, + "end": 22673.66, + "probability": 0.9922 + }, + { + "start": 22674.22, + "end": 22675.0, + "probability": 0.998 + }, + { + "start": 22675.7, + "end": 22676.54, + "probability": 0.7572 + }, + { + "start": 22677.26, + "end": 22677.94, + "probability": 0.8212 + }, + { + "start": 22678.7, + "end": 22679.48, + "probability": 0.8026 + }, + { + "start": 22679.66, + "end": 22680.12, + "probability": 0.7128 + }, + { + "start": 22680.12, + "end": 22683.28, + "probability": 0.8945 + }, + { + "start": 22683.76, + "end": 22684.92, + "probability": 0.7189 + }, + { + "start": 22685.28, + "end": 22687.4, + "probability": 0.9958 + }, + { + "start": 22688.1, + "end": 22689.5, + "probability": 0.7834 + }, + { + "start": 22689.88, + "end": 22690.62, + "probability": 0.7664 + }, + { + "start": 22690.62, + "end": 22692.26, + "probability": 0.9767 + }, + { + "start": 22692.94, + "end": 22692.94, + "probability": 0.0583 + }, + { + "start": 22692.94, + "end": 22696.52, + "probability": 0.9131 + }, + { + "start": 22697.12, + "end": 22698.98, + "probability": 0.9443 + }, + { + "start": 22699.62, + "end": 22703.18, + "probability": 0.8685 + }, + { + "start": 22703.52, + "end": 22708.58, + "probability": 0.8096 + }, + { + "start": 22708.92, + "end": 22709.59, + "probability": 0.9875 + }, + { + "start": 22710.0, + "end": 22711.93, + "probability": 0.9268 + }, + { + "start": 22712.52, + "end": 22714.74, + "probability": 0.9751 + }, + { + "start": 22714.78, + "end": 22715.94, + "probability": 0.9863 + }, + { + "start": 22716.02, + "end": 22716.56, + "probability": 0.9729 + }, + { + "start": 22716.66, + "end": 22717.46, + "probability": 0.6027 + }, + { + "start": 22718.3, + "end": 22719.26, + "probability": 0.97 + }, + { + "start": 22720.2, + "end": 22723.86, + "probability": 0.9746 + }, + { + "start": 22724.36, + "end": 22725.26, + "probability": 0.7671 + }, + { + "start": 22725.66, + "end": 22729.22, + "probability": 0.9975 + }, + { + "start": 22730.14, + "end": 22731.38, + "probability": 0.7393 + }, + { + "start": 22731.5, + "end": 22731.98, + "probability": 0.6093 + }, + { + "start": 22732.52, + "end": 22733.36, + "probability": 0.8971 + }, + { + "start": 22733.66, + "end": 22736.29, + "probability": 0.9338 + }, + { + "start": 22736.84, + "end": 22740.18, + "probability": 0.8635 + }, + { + "start": 22740.82, + "end": 22742.46, + "probability": 0.7841 + }, + { + "start": 22743.06, + "end": 22743.86, + "probability": 0.6636 + }, + { + "start": 22744.34, + "end": 22748.16, + "probability": 0.8034 + }, + { + "start": 22748.66, + "end": 22749.62, + "probability": 0.8687 + }, + { + "start": 22750.3, + "end": 22751.24, + "probability": 0.569 + }, + { + "start": 22751.78, + "end": 22754.86, + "probability": 0.9978 + }, + { + "start": 22754.92, + "end": 22755.84, + "probability": 0.1228 + }, + { + "start": 22756.48, + "end": 22756.9, + "probability": 0.9421 + }, + { + "start": 22757.36, + "end": 22757.66, + "probability": 0.5023 + }, + { + "start": 22757.7, + "end": 22763.16, + "probability": 0.9886 + }, + { + "start": 22764.14, + "end": 22766.06, + "probability": 0.9956 + }, + { + "start": 22766.26, + "end": 22767.04, + "probability": 0.4814 + }, + { + "start": 22767.08, + "end": 22768.26, + "probability": 0.9348 + }, + { + "start": 22768.34, + "end": 22769.21, + "probability": 0.906 + }, + { + "start": 22769.9, + "end": 22771.34, + "probability": 0.832 + }, + { + "start": 22771.38, + "end": 22772.44, + "probability": 0.9542 + }, + { + "start": 22772.72, + "end": 22773.66, + "probability": 0.9817 + }, + { + "start": 22774.18, + "end": 22774.96, + "probability": 0.7069 + }, + { + "start": 22775.0, + "end": 22775.88, + "probability": 0.6239 + }, + { + "start": 22776.14, + "end": 22778.4, + "probability": 0.5596 + }, + { + "start": 22778.72, + "end": 22779.84, + "probability": 0.7208 + }, + { + "start": 22780.12, + "end": 22781.14, + "probability": 0.9659 + }, + { + "start": 22781.22, + "end": 22782.76, + "probability": 0.9663 + }, + { + "start": 22783.14, + "end": 22784.44, + "probability": 0.9192 + }, + { + "start": 22784.94, + "end": 22785.82, + "probability": 0.8621 + }, + { + "start": 22786.62, + "end": 22789.68, + "probability": 0.8879 + }, + { + "start": 22790.28, + "end": 22793.6, + "probability": 0.8254 + }, + { + "start": 22793.6, + "end": 22793.76, + "probability": 0.0942 + }, + { + "start": 22793.94, + "end": 22795.2, + "probability": 0.7698 + }, + { + "start": 22795.46, + "end": 22796.05, + "probability": 0.0508 + }, + { + "start": 22796.24, + "end": 22797.14, + "probability": 0.9338 + }, + { + "start": 22797.92, + "end": 22799.94, + "probability": 0.6387 + }, + { + "start": 22800.04, + "end": 22801.32, + "probability": 0.8781 + }, + { + "start": 22801.62, + "end": 22803.26, + "probability": 0.8181 + }, + { + "start": 22803.66, + "end": 22803.9, + "probability": 0.2851 + }, + { + "start": 22804.1, + "end": 22804.5, + "probability": 0.4115 + }, + { + "start": 22804.58, + "end": 22805.17, + "probability": 0.4613 + }, + { + "start": 22805.9, + "end": 22807.84, + "probability": 0.0551 + }, + { + "start": 22808.0, + "end": 22808.24, + "probability": 0.1275 + }, + { + "start": 22808.7, + "end": 22809.36, + "probability": 0.7223 + }, + { + "start": 22812.32, + "end": 22812.32, + "probability": 0.2047 + }, + { + "start": 22812.32, + "end": 22812.32, + "probability": 0.1121 + }, + { + "start": 22812.32, + "end": 22812.32, + "probability": 0.2479 + }, + { + "start": 22812.32, + "end": 22812.32, + "probability": 0.3512 + }, + { + "start": 22812.32, + "end": 22815.43, + "probability": 0.9529 + }, + { + "start": 22815.86, + "end": 22818.58, + "probability": 0.8482 + }, + { + "start": 22818.82, + "end": 22819.54, + "probability": 0.4869 + }, + { + "start": 22820.06, + "end": 22824.06, + "probability": 0.9868 + }, + { + "start": 22824.32, + "end": 22824.82, + "probability": 0.2216 + }, + { + "start": 22824.96, + "end": 22825.86, + "probability": 0.9274 + }, + { + "start": 22825.9, + "end": 22826.84, + "probability": 0.7334 + }, + { + "start": 22827.06, + "end": 22827.54, + "probability": 0.7491 + }, + { + "start": 22827.56, + "end": 22828.14, + "probability": 0.9488 + }, + { + "start": 22828.16, + "end": 22828.9, + "probability": 0.6398 + }, + { + "start": 22829.3, + "end": 22830.92, + "probability": 0.9238 + }, + { + "start": 22831.44, + "end": 22834.44, + "probability": 0.9828 + }, + { + "start": 22834.48, + "end": 22834.54, + "probability": 0.2404 + }, + { + "start": 22834.54, + "end": 22836.06, + "probability": 0.8884 + }, + { + "start": 22836.4, + "end": 22841.18, + "probability": 0.6731 + }, + { + "start": 22841.76, + "end": 22844.78, + "probability": 0.9727 + }, + { + "start": 22844.78, + "end": 22849.16, + "probability": 0.9974 + }, + { + "start": 22850.04, + "end": 22851.3, + "probability": 0.6702 + }, + { + "start": 22851.44, + "end": 22852.32, + "probability": 0.9114 + }, + { + "start": 22852.66, + "end": 22853.14, + "probability": 0.5011 + }, + { + "start": 22853.34, + "end": 22854.36, + "probability": 0.8436 + }, + { + "start": 22854.64, + "end": 22854.92, + "probability": 0.4806 + }, + { + "start": 22856.06, + "end": 22857.16, + "probability": 0.7663 + }, + { + "start": 22857.4, + "end": 22858.28, + "probability": 0.8098 + }, + { + "start": 22858.54, + "end": 22859.66, + "probability": 0.9714 + }, + { + "start": 22859.82, + "end": 22860.84, + "probability": 0.8995 + }, + { + "start": 22861.02, + "end": 22865.58, + "probability": 0.9382 + }, + { + "start": 22866.0, + "end": 22869.44, + "probability": 0.9456 + }, + { + "start": 22869.44, + "end": 22873.02, + "probability": 0.9157 + }, + { + "start": 22873.7, + "end": 22874.54, + "probability": 0.9056 + }, + { + "start": 22874.66, + "end": 22875.3, + "probability": 0.7431 + }, + { + "start": 22875.72, + "end": 22878.42, + "probability": 0.9406 + }, + { + "start": 22879.4, + "end": 22883.52, + "probability": 0.9139 + }, + { + "start": 22883.86, + "end": 22883.86, + "probability": 0.1737 + }, + { + "start": 22883.86, + "end": 22884.54, + "probability": 0.769 + }, + { + "start": 22884.66, + "end": 22885.86, + "probability": 0.4577 + }, + { + "start": 22886.3, + "end": 22887.15, + "probability": 0.7414 + }, + { + "start": 22887.86, + "end": 22889.8, + "probability": 0.3666 + }, + { + "start": 22889.84, + "end": 22889.94, + "probability": 0.5546 + }, + { + "start": 22890.46, + "end": 22890.48, + "probability": 0.2532 + }, + { + "start": 22890.48, + "end": 22890.7, + "probability": 0.7371 + }, + { + "start": 22890.86, + "end": 22891.7, + "probability": 0.3388 + }, + { + "start": 22891.96, + "end": 22893.12, + "probability": 0.473 + }, + { + "start": 22893.18, + "end": 22893.84, + "probability": 0.1884 + }, + { + "start": 22893.84, + "end": 22894.92, + "probability": 0.2291 + }, + { + "start": 22894.92, + "end": 22895.68, + "probability": 0.7023 + }, + { + "start": 22896.02, + "end": 22896.84, + "probability": 0.2676 + }, + { + "start": 22896.84, + "end": 22898.72, + "probability": 0.1639 + }, + { + "start": 22899.22, + "end": 22900.43, + "probability": 0.8895 + }, + { + "start": 22901.24, + "end": 22902.3, + "probability": 0.5591 + }, + { + "start": 22902.86, + "end": 22904.58, + "probability": 0.8788 + }, + { + "start": 22904.96, + "end": 22905.28, + "probability": 0.2147 + }, + { + "start": 22905.34, + "end": 22906.06, + "probability": 0.9082 + }, + { + "start": 22906.82, + "end": 22909.32, + "probability": 0.4507 + }, + { + "start": 22909.52, + "end": 22913.16, + "probability": 0.8088 + }, + { + "start": 22913.32, + "end": 22915.3, + "probability": 0.3371 + }, + { + "start": 22915.42, + "end": 22915.58, + "probability": 0.3813 + }, + { + "start": 22915.9, + "end": 22916.51, + "probability": 0.4478 + }, + { + "start": 22916.62, + "end": 22919.74, + "probability": 0.9933 + }, + { + "start": 22919.76, + "end": 22920.54, + "probability": 0.0641 + }, + { + "start": 22920.58, + "end": 22923.14, + "probability": 0.6953 + }, + { + "start": 22924.0, + "end": 22927.64, + "probability": 0.8657 + }, + { + "start": 22928.18, + "end": 22929.36, + "probability": 0.9953 + }, + { + "start": 22930.02, + "end": 22931.9, + "probability": 0.9904 + }, + { + "start": 22932.18, + "end": 22932.84, + "probability": 0.9753 + }, + { + "start": 22932.94, + "end": 22933.76, + "probability": 0.9738 + }, + { + "start": 22933.8, + "end": 22934.85, + "probability": 0.9797 + }, + { + "start": 22935.34, + "end": 22936.19, + "probability": 0.8911 + }, + { + "start": 22936.9, + "end": 22938.14, + "probability": 0.9646 + }, + { + "start": 22938.78, + "end": 22940.22, + "probability": 0.8931 + }, + { + "start": 22940.58, + "end": 22942.68, + "probability": 0.9114 + }, + { + "start": 22943.02, + "end": 22944.81, + "probability": 0.865 + }, + { + "start": 22945.2, + "end": 22949.55, + "probability": 0.9805 + }, + { + "start": 22949.86, + "end": 22950.96, + "probability": 0.7587 + }, + { + "start": 22951.24, + "end": 22955.2, + "probability": 0.9949 + }, + { + "start": 22955.6, + "end": 22956.39, + "probability": 0.855 + }, + { + "start": 22957.22, + "end": 22958.78, + "probability": 0.715 + }, + { + "start": 22958.82, + "end": 22960.8, + "probability": 0.972 + }, + { + "start": 22961.54, + "end": 22962.2, + "probability": 0.8268 + }, + { + "start": 22962.82, + "end": 22968.04, + "probability": 0.9947 + }, + { + "start": 22968.54, + "end": 22969.42, + "probability": 0.5653 + }, + { + "start": 22969.9, + "end": 22971.14, + "probability": 0.6621 + }, + { + "start": 22971.18, + "end": 22972.8, + "probability": 0.5915 + }, + { + "start": 22973.1, + "end": 22977.14, + "probability": 0.9954 + }, + { + "start": 22977.22, + "end": 22980.18, + "probability": 0.9941 + }, + { + "start": 22980.5, + "end": 22981.99, + "probability": 0.9988 + }, + { + "start": 22982.34, + "end": 22984.48, + "probability": 0.9154 + }, + { + "start": 22985.16, + "end": 22986.54, + "probability": 0.6826 + }, + { + "start": 22987.2, + "end": 22987.26, + "probability": 0.0381 + }, + { + "start": 22987.88, + "end": 22990.43, + "probability": 0.761 + }, + { + "start": 22991.22, + "end": 22991.56, + "probability": 0.0174 + }, + { + "start": 22991.56, + "end": 22992.51, + "probability": 0.0677 + }, + { + "start": 22994.36, + "end": 22995.08, + "probability": 0.2826 + }, + { + "start": 22995.14, + "end": 22996.34, + "probability": 0.9534 + }, + { + "start": 22996.34, + "end": 22997.02, + "probability": 0.2997 + }, + { + "start": 22997.44, + "end": 23003.42, + "probability": 0.9912 + }, + { + "start": 23003.8, + "end": 23004.72, + "probability": 0.9102 + }, + { + "start": 23005.04, + "end": 23006.06, + "probability": 0.833 + }, + { + "start": 23006.32, + "end": 23006.8, + "probability": 0.9884 + }, + { + "start": 23007.06, + "end": 23012.04, + "probability": 0.9863 + }, + { + "start": 23012.04, + "end": 23016.48, + "probability": 0.9993 + }, + { + "start": 23017.0, + "end": 23019.98, + "probability": 0.9688 + }, + { + "start": 23020.8, + "end": 23021.4, + "probability": 0.8339 + }, + { + "start": 23021.78, + "end": 23026.86, + "probability": 0.8682 + }, + { + "start": 23027.2, + "end": 23029.52, + "probability": 0.981 + }, + { + "start": 23029.66, + "end": 23030.1, + "probability": 0.4146 + }, + { + "start": 23030.38, + "end": 23031.5, + "probability": 0.7098 + }, + { + "start": 23031.52, + "end": 23033.86, + "probability": 0.9814 + }, + { + "start": 23034.38, + "end": 23037.14, + "probability": 0.8947 + }, + { + "start": 23038.02, + "end": 23038.66, + "probability": 0.6741 + }, + { + "start": 23039.58, + "end": 23040.06, + "probability": 0.0114 + }, + { + "start": 23040.06, + "end": 23040.96, + "probability": 0.8736 + }, + { + "start": 23045.28, + "end": 23045.28, + "probability": 0.0292 + }, + { + "start": 23045.28, + "end": 23045.58, + "probability": 0.6002 + }, + { + "start": 23045.86, + "end": 23052.16, + "probability": 0.6567 + }, + { + "start": 23052.34, + "end": 23054.14, + "probability": 0.6907 + }, + { + "start": 23054.82, + "end": 23056.98, + "probability": 0.9785 + }, + { + "start": 23057.1, + "end": 23057.9, + "probability": 0.7454 + }, + { + "start": 23058.88, + "end": 23060.18, + "probability": 0.5695 + }, + { + "start": 23060.88, + "end": 23065.06, + "probability": 0.9957 + }, + { + "start": 23065.78, + "end": 23066.56, + "probability": 0.6596 + }, + { + "start": 23066.64, + "end": 23072.44, + "probability": 0.9681 + }, + { + "start": 23072.64, + "end": 23076.86, + "probability": 0.5673 + }, + { + "start": 23077.6, + "end": 23078.68, + "probability": 0.9668 + }, + { + "start": 23080.18, + "end": 23083.98, + "probability": 0.8733 + }, + { + "start": 23084.88, + "end": 23085.64, + "probability": 0.761 + }, + { + "start": 23086.3, + "end": 23087.08, + "probability": 0.5327 + }, + { + "start": 23087.08, + "end": 23087.48, + "probability": 0.3028 + }, + { + "start": 23087.8, + "end": 23090.96, + "probability": 0.9597 + }, + { + "start": 23091.22, + "end": 23092.58, + "probability": 0.9348 + }, + { + "start": 23092.66, + "end": 23096.72, + "probability": 0.9456 + }, + { + "start": 23096.76, + "end": 23097.28, + "probability": 0.5881 + }, + { + "start": 23097.88, + "end": 23102.7, + "probability": 0.9144 + }, + { + "start": 23103.1, + "end": 23104.76, + "probability": 0.9322 + }, + { + "start": 23104.82, + "end": 23106.5, + "probability": 0.5394 + }, + { + "start": 23106.92, + "end": 23111.14, + "probability": 0.8524 + }, + { + "start": 23112.34, + "end": 23112.96, + "probability": 0.468 + }, + { + "start": 23113.44, + "end": 23114.98, + "probability": 0.8002 + }, + { + "start": 23115.5, + "end": 23117.72, + "probability": 0.8789 + }, + { + "start": 23118.84, + "end": 23120.0, + "probability": 0.8569 + }, + { + "start": 23120.0, + "end": 23120.56, + "probability": 0.9804 + }, + { + "start": 23121.6, + "end": 23123.54, + "probability": 0.6238 + }, + { + "start": 23124.5, + "end": 23124.64, + "probability": 0.7269 + }, + { + "start": 23124.72, + "end": 23127.72, + "probability": 0.9893 + }, + { + "start": 23128.07, + "end": 23131.1, + "probability": 0.9922 + }, + { + "start": 23131.66, + "end": 23132.46, + "probability": 0.7204 + }, + { + "start": 23132.86, + "end": 23135.42, + "probability": 0.7811 + }, + { + "start": 23136.22, + "end": 23137.96, + "probability": 0.9702 + }, + { + "start": 23138.2, + "end": 23139.54, + "probability": 0.897 + }, + { + "start": 23139.8, + "end": 23142.38, + "probability": 0.499 + }, + { + "start": 23142.38, + "end": 23145.78, + "probability": 0.0096 + }, + { + "start": 23145.78, + "end": 23146.96, + "probability": 0.6692 + }, + { + "start": 23147.88, + "end": 23150.84, + "probability": 0.873 + }, + { + "start": 23151.5, + "end": 23152.94, + "probability": 0.983 + }, + { + "start": 23153.56, + "end": 23157.6, + "probability": 0.9746 + }, + { + "start": 23158.5, + "end": 23163.58, + "probability": 0.9282 + }, + { + "start": 23164.06, + "end": 23167.92, + "probability": 0.863 + }, + { + "start": 23168.76, + "end": 23169.58, + "probability": 0.9818 + }, + { + "start": 23170.14, + "end": 23172.12, + "probability": 0.9385 + }, + { + "start": 23172.4, + "end": 23172.8, + "probability": 0.4515 + }, + { + "start": 23172.98, + "end": 23176.62, + "probability": 0.8999 + }, + { + "start": 23176.62, + "end": 23181.04, + "probability": 0.9074 + }, + { + "start": 23181.62, + "end": 23183.42, + "probability": 0.9574 + }, + { + "start": 23183.48, + "end": 23184.6, + "probability": 0.5582 + }, + { + "start": 23185.04, + "end": 23185.76, + "probability": 0.8333 + }, + { + "start": 23186.0, + "end": 23186.18, + "probability": 0.3688 + }, + { + "start": 23186.24, + "end": 23187.32, + "probability": 0.6155 + }, + { + "start": 23187.32, + "end": 23188.64, + "probability": 0.5684 + }, + { + "start": 23189.76, + "end": 23191.06, + "probability": 0.4947 + }, + { + "start": 23193.1, + "end": 23193.1, + "probability": 0.1591 + }, + { + "start": 23193.1, + "end": 23194.34, + "probability": 0.5301 + }, + { + "start": 23194.52, + "end": 23196.05, + "probability": 0.6969 + }, + { + "start": 23196.96, + "end": 23198.12, + "probability": 0.3743 + }, + { + "start": 23198.68, + "end": 23199.44, + "probability": 0.646 + }, + { + "start": 23199.6, + "end": 23200.7, + "probability": 0.6777 + }, + { + "start": 23200.86, + "end": 23201.54, + "probability": 0.3179 + }, + { + "start": 23201.62, + "end": 23203.5, + "probability": 0.948 + }, + { + "start": 23204.3, + "end": 23207.58, + "probability": 0.3101 + }, + { + "start": 23207.58, + "end": 23209.08, + "probability": 0.0552 + }, + { + "start": 23209.96, + "end": 23211.24, + "probability": 0.8185 + }, + { + "start": 23212.06, + "end": 23213.6, + "probability": 0.9192 + }, + { + "start": 23214.28, + "end": 23214.6, + "probability": 0.2461 + }, + { + "start": 23214.86, + "end": 23215.06, + "probability": 0.3251 + }, + { + "start": 23215.08, + "end": 23215.87, + "probability": 0.5811 + }, + { + "start": 23216.5, + "end": 23217.35, + "probability": 0.2179 + }, + { + "start": 23217.48, + "end": 23220.68, + "probability": 0.7956 + }, + { + "start": 23221.34, + "end": 23224.5, + "probability": 0.7676 + }, + { + "start": 23224.58, + "end": 23224.8, + "probability": 0.3559 + }, + { + "start": 23224.84, + "end": 23225.52, + "probability": 0.7874 + }, + { + "start": 23227.0, + "end": 23228.62, + "probability": 0.9357 + }, + { + "start": 23228.7, + "end": 23229.06, + "probability": 0.7117 + }, + { + "start": 23229.12, + "end": 23234.12, + "probability": 0.9071 + }, + { + "start": 23234.68, + "end": 23237.4, + "probability": 0.4684 + }, + { + "start": 23237.96, + "end": 23242.66, + "probability": 0.5055 + }, + { + "start": 23243.4, + "end": 23245.5, + "probability": 0.6389 + }, + { + "start": 23246.95, + "end": 23249.12, + "probability": 0.4653 + }, + { + "start": 23249.74, + "end": 23250.94, + "probability": 0.7912 + }, + { + "start": 23251.42, + "end": 23252.04, + "probability": 0.9297 + }, + { + "start": 23252.5, + "end": 23253.06, + "probability": 0.5784 + }, + { + "start": 23253.26, + "end": 23254.04, + "probability": 0.5362 + }, + { + "start": 23254.32, + "end": 23255.27, + "probability": 0.7153 + }, + { + "start": 23255.56, + "end": 23256.34, + "probability": 0.0134 + }, + { + "start": 23256.52, + "end": 23259.46, + "probability": 0.7175 + }, + { + "start": 23259.58, + "end": 23260.42, + "probability": 0.2042 + }, + { + "start": 23263.58, + "end": 23265.2, + "probability": 0.4061 + }, + { + "start": 23275.8, + "end": 23282.32, + "probability": 0.1361 + }, + { + "start": 23284.47, + "end": 23285.66, + "probability": 0.1358 + }, + { + "start": 23287.6, + "end": 23288.36, + "probability": 0.1871 + }, + { + "start": 23288.36, + "end": 23288.58, + "probability": 0.0879 + }, + { + "start": 23288.6, + "end": 23291.22, + "probability": 0.1424 + }, + { + "start": 23291.96, + "end": 23294.14, + "probability": 0.5806 + }, + { + "start": 23294.14, + "end": 23295.76, + "probability": 0.066 + }, + { + "start": 23295.76, + "end": 23296.88, + "probability": 0.1254 + }, + { + "start": 23298.0, + "end": 23298.24, + "probability": 0.1468 + }, + { + "start": 23298.24, + "end": 23298.24, + "probability": 0.0377 + }, + { + "start": 23298.24, + "end": 23298.24, + "probability": 0.1981 + }, + { + "start": 23298.24, + "end": 23298.24, + "probability": 0.2793 + }, + { + "start": 23298.24, + "end": 23298.24, + "probability": 0.1176 + }, + { + "start": 23298.24, + "end": 23298.24, + "probability": 0.4538 + }, + { + "start": 23298.24, + "end": 23298.34, + "probability": 0.7042 + }, + { + "start": 23358.02, + "end": 23360.64, + "probability": 0.0597 + }, + { + "start": 23363.69, + "end": 23363.69, + "probability": 0.0 + }, + { + "start": 23363.69, + "end": 23363.69, + "probability": 0.0 + }, + { + "start": 23363.69, + "end": 23363.69, + "probability": 0.0 + }, + { + "start": 23363.69, + "end": 23363.69, + "probability": 0.0 + }, + { + "start": 23363.69, + "end": 23363.69, + "probability": 0.0 + } + ], + "segments_count": 8233, + "words_count": 40281, + "avg_words_per_segment": 4.8926, + "avg_segment_duration": 2.0563, + "avg_words_per_minute": 103.4451, + "plenum_id": "37091", + "duration": 23363.69, + "title": null, + "plenum_date": "2014-05-21" +} \ No newline at end of file