diff --git "a/46933/metadata.json" "b/46933/metadata.json" new file mode 100644--- /dev/null +++ "b/46933/metadata.json" @@ -0,0 +1,58772 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "46933", + "quality_score": 0.6594, + "per_segment_quality_scores": [ + { + "start": 364.0, + "end": 364.0, + "probability": 0.0 + }, + { + "start": 364.0, + "end": 364.0, + "probability": 0.0 + }, + { + "start": 364.0, + "end": 364.0, + "probability": 0.0 + }, + { + "start": 364.0, + "end": 364.0, + "probability": 0.0 + }, + { + "start": 364.0, + "end": 364.0, + "probability": 0.0 + }, + { + "start": 364.0, + "end": 364.0, + "probability": 0.0 + }, + { + "start": 375.52, + "end": 375.78, + "probability": 0.7038 + }, + { + "start": 378.48, + "end": 381.98, + "probability": 0.6752 + }, + { + "start": 382.52, + "end": 384.56, + "probability": 0.9758 + }, + { + "start": 385.36, + "end": 389.48, + "probability": 0.7446 + }, + { + "start": 390.32, + "end": 395.92, + "probability": 0.9827 + }, + { + "start": 397.26, + "end": 399.66, + "probability": 0.9103 + }, + { + "start": 400.48, + "end": 401.74, + "probability": 0.8158 + }, + { + "start": 401.74, + "end": 402.9, + "probability": 0.6058 + }, + { + "start": 403.0, + "end": 404.5, + "probability": 0.9114 + }, + { + "start": 404.68, + "end": 405.4, + "probability": 0.7337 + }, + { + "start": 405.4, + "end": 406.26, + "probability": 0.6314 + }, + { + "start": 406.8, + "end": 409.26, + "probability": 0.9117 + }, + { + "start": 409.36, + "end": 410.86, + "probability": 0.3588 + }, + { + "start": 411.82, + "end": 416.41, + "probability": 0.9264 + }, + { + "start": 417.12, + "end": 419.26, + "probability": 0.7189 + }, + { + "start": 422.26, + "end": 425.1, + "probability": 0.9598 + }, + { + "start": 427.18, + "end": 428.24, + "probability": 0.912 + }, + { + "start": 428.32, + "end": 429.48, + "probability": 0.9825 + }, + { + "start": 429.64, + "end": 434.12, + "probability": 0.9598 + }, + { + "start": 434.12, + "end": 439.14, + "probability": 0.998 + }, + { + "start": 439.96, + "end": 440.98, + "probability": 0.6621 + }, + { + "start": 442.48, + "end": 446.3, + "probability": 0.9341 + }, + { + "start": 446.92, + "end": 450.62, + "probability": 0.9949 + }, + { + "start": 450.62, + "end": 454.16, + "probability": 0.9902 + }, + { + "start": 454.64, + "end": 457.94, + "probability": 0.8104 + }, + { + "start": 458.1, + "end": 463.5, + "probability": 0.9878 + }, + { + "start": 463.62, + "end": 467.24, + "probability": 0.9598 + }, + { + "start": 467.76, + "end": 471.52, + "probability": 0.9164 + }, + { + "start": 472.48, + "end": 476.6, + "probability": 0.9083 + }, + { + "start": 476.7, + "end": 478.78, + "probability": 0.8595 + }, + { + "start": 479.42, + "end": 486.72, + "probability": 0.9967 + }, + { + "start": 487.5, + "end": 488.94, + "probability": 0.6978 + }, + { + "start": 489.28, + "end": 490.1, + "probability": 0.5688 + }, + { + "start": 490.1, + "end": 495.12, + "probability": 0.9087 + }, + { + "start": 495.38, + "end": 496.74, + "probability": 0.9634 + }, + { + "start": 497.16, + "end": 501.3, + "probability": 0.8962 + }, + { + "start": 503.26, + "end": 508.9, + "probability": 0.898 + }, + { + "start": 509.28, + "end": 510.9, + "probability": 0.9488 + }, + { + "start": 511.06, + "end": 516.8, + "probability": 0.9825 + }, + { + "start": 517.04, + "end": 517.42, + "probability": 0.5947 + }, + { + "start": 517.5, + "end": 518.12, + "probability": 0.7337 + }, + { + "start": 518.72, + "end": 522.44, + "probability": 0.991 + }, + { + "start": 525.04, + "end": 532.86, + "probability": 0.9973 + }, + { + "start": 534.86, + "end": 537.56, + "probability": 0.9923 + }, + { + "start": 546.44, + "end": 548.22, + "probability": 0.1208 + }, + { + "start": 553.34, + "end": 555.66, + "probability": 0.974 + }, + { + "start": 555.76, + "end": 559.44, + "probability": 0.9957 + }, + { + "start": 560.99, + "end": 563.94, + "probability": 0.9702 + }, + { + "start": 564.6, + "end": 569.42, + "probability": 0.9786 + }, + { + "start": 569.8, + "end": 571.5, + "probability": 0.8788 + }, + { + "start": 571.58, + "end": 572.22, + "probability": 0.8602 + }, + { + "start": 573.18, + "end": 573.88, + "probability": 0.7341 + }, + { + "start": 573.92, + "end": 574.7, + "probability": 0.8422 + }, + { + "start": 574.76, + "end": 575.58, + "probability": 0.6626 + }, + { + "start": 575.64, + "end": 576.76, + "probability": 0.949 + }, + { + "start": 577.02, + "end": 579.0, + "probability": 0.964 + }, + { + "start": 579.66, + "end": 582.06, + "probability": 0.8717 + }, + { + "start": 582.44, + "end": 583.46, + "probability": 0.6168 + }, + { + "start": 584.12, + "end": 584.9, + "probability": 0.6003 + }, + { + "start": 585.36, + "end": 586.96, + "probability": 0.0004 + }, + { + "start": 590.2, + "end": 592.76, + "probability": 0.9736 + }, + { + "start": 592.96, + "end": 598.24, + "probability": 0.9166 + }, + { + "start": 598.78, + "end": 599.78, + "probability": 0.9505 + }, + { + "start": 600.02, + "end": 600.98, + "probability": 0.8666 + }, + { + "start": 601.26, + "end": 602.22, + "probability": 0.9354 + }, + { + "start": 602.36, + "end": 603.32, + "probability": 0.9375 + }, + { + "start": 603.98, + "end": 606.26, + "probability": 0.9861 + }, + { + "start": 606.8, + "end": 610.74, + "probability": 0.9943 + }, + { + "start": 617.52, + "end": 618.43, + "probability": 0.4902 + }, + { + "start": 619.98, + "end": 624.2, + "probability": 0.9155 + }, + { + "start": 624.42, + "end": 625.86, + "probability": 0.8901 + }, + { + "start": 626.94, + "end": 629.58, + "probability": 0.8645 + }, + { + "start": 630.02, + "end": 633.96, + "probability": 0.2593 + }, + { + "start": 634.12, + "end": 634.12, + "probability": 0.1085 + }, + { + "start": 634.2, + "end": 635.3, + "probability": 0.5781 + }, + { + "start": 635.72, + "end": 636.18, + "probability": 0.644 + }, + { + "start": 638.44, + "end": 640.88, + "probability": 0.981 + }, + { + "start": 641.34, + "end": 644.58, + "probability": 0.2409 + }, + { + "start": 645.36, + "end": 647.98, + "probability": 0.7208 + }, + { + "start": 648.32, + "end": 654.1, + "probability": 0.9848 + }, + { + "start": 654.38, + "end": 661.74, + "probability": 0.8988 + }, + { + "start": 684.06, + "end": 687.76, + "probability": 0.8823 + }, + { + "start": 688.84, + "end": 691.4, + "probability": 0.8691 + }, + { + "start": 691.4, + "end": 693.74, + "probability": 0.9198 + }, + { + "start": 694.06, + "end": 697.98, + "probability": 0.971 + }, + { + "start": 698.2, + "end": 698.2, + "probability": 0.0001 + }, + { + "start": 698.78, + "end": 699.88, + "probability": 0.9287 + }, + { + "start": 700.44, + "end": 703.26, + "probability": 0.9668 + }, + { + "start": 708.87, + "end": 712.8, + "probability": 0.5277 + }, + { + "start": 713.14, + "end": 716.18, + "probability": 0.9044 + }, + { + "start": 716.56, + "end": 719.82, + "probability": 0.9478 + }, + { + "start": 719.98, + "end": 722.42, + "probability": 0.7135 + }, + { + "start": 727.22, + "end": 727.94, + "probability": 0.5425 + }, + { + "start": 732.12, + "end": 734.82, + "probability": 0.0217 + }, + { + "start": 780.24, + "end": 781.68, + "probability": 0.0483 + }, + { + "start": 794.2, + "end": 794.88, + "probability": 0.0008 + }, + { + "start": 944.18, + "end": 944.6, + "probability": 0.306 + }, + { + "start": 945.2, + "end": 948.98, + "probability": 0.9977 + }, + { + "start": 952.12, + "end": 955.64, + "probability": 0.7302 + }, + { + "start": 955.74, + "end": 958.42, + "probability": 0.5042 + }, + { + "start": 958.5, + "end": 961.02, + "probability": 0.9948 + }, + { + "start": 961.18, + "end": 961.99, + "probability": 0.8054 + }, + { + "start": 962.08, + "end": 965.02, + "probability": 0.5172 + }, + { + "start": 965.08, + "end": 965.69, + "probability": 0.8625 + }, + { + "start": 966.48, + "end": 969.94, + "probability": 0.7331 + }, + { + "start": 970.02, + "end": 972.72, + "probability": 0.9429 + }, + { + "start": 973.76, + "end": 976.8, + "probability": 0.9987 + }, + { + "start": 976.8, + "end": 979.52, + "probability": 0.9979 + }, + { + "start": 979.8, + "end": 981.46, + "probability": 0.6331 + }, + { + "start": 982.44, + "end": 983.22, + "probability": 0.48 + }, + { + "start": 983.3, + "end": 985.49, + "probability": 0.6813 + }, + { + "start": 986.1, + "end": 987.58, + "probability": 0.7146 + }, + { + "start": 988.22, + "end": 990.12, + "probability": 0.4396 + }, + { + "start": 990.84, + "end": 992.22, + "probability": 0.7566 + }, + { + "start": 992.94, + "end": 995.36, + "probability": 0.9248 + }, + { + "start": 997.04, + "end": 998.76, + "probability": 0.9093 + }, + { + "start": 1002.5, + "end": 1004.58, + "probability": 0.7722 + }, + { + "start": 1005.26, + "end": 1006.12, + "probability": 0.5787 + }, + { + "start": 1006.84, + "end": 1007.63, + "probability": 0.8472 + }, + { + "start": 1009.0, + "end": 1013.9, + "probability": 0.9429 + }, + { + "start": 1014.68, + "end": 1015.28, + "probability": 0.8866 + }, + { + "start": 1015.38, + "end": 1022.26, + "probability": 0.9932 + }, + { + "start": 1022.38, + "end": 1022.96, + "probability": 0.5527 + }, + { + "start": 1023.04, + "end": 1023.89, + "probability": 0.6497 + }, + { + "start": 1024.12, + "end": 1025.2, + "probability": 0.792 + }, + { + "start": 1025.28, + "end": 1026.02, + "probability": 0.9154 + }, + { + "start": 1026.88, + "end": 1027.94, + "probability": 0.9212 + }, + { + "start": 1028.06, + "end": 1031.28, + "probability": 0.9062 + }, + { + "start": 1032.2, + "end": 1035.47, + "probability": 0.8845 + }, + { + "start": 1036.24, + "end": 1038.71, + "probability": 0.9624 + }, + { + "start": 1041.21, + "end": 1044.25, + "probability": 0.904 + }, + { + "start": 1045.34, + "end": 1048.6, + "probability": 0.9766 + }, + { + "start": 1049.39, + "end": 1051.3, + "probability": 0.9336 + }, + { + "start": 1051.48, + "end": 1053.67, + "probability": 0.9351 + }, + { + "start": 1055.34, + "end": 1058.9, + "probability": 0.9786 + }, + { + "start": 1059.96, + "end": 1064.76, + "probability": 0.9968 + }, + { + "start": 1066.1, + "end": 1070.28, + "probability": 0.9956 + }, + { + "start": 1071.62, + "end": 1074.5, + "probability": 0.988 + }, + { + "start": 1075.62, + "end": 1077.72, + "probability": 0.9596 + }, + { + "start": 1077.8, + "end": 1079.6, + "probability": 0.9794 + }, + { + "start": 1080.28, + "end": 1083.1, + "probability": 0.9809 + }, + { + "start": 1083.26, + "end": 1085.16, + "probability": 0.9836 + }, + { + "start": 1085.96, + "end": 1089.84, + "probability": 0.9229 + }, + { + "start": 1090.64, + "end": 1093.52, + "probability": 0.996 + }, + { + "start": 1094.64, + "end": 1095.0, + "probability": 0.6385 + }, + { + "start": 1095.74, + "end": 1096.5, + "probability": 0.7543 + }, + { + "start": 1096.54, + "end": 1098.14, + "probability": 0.6432 + }, + { + "start": 1098.36, + "end": 1098.58, + "probability": 0.8284 + }, + { + "start": 1098.93, + "end": 1103.9, + "probability": 0.9834 + }, + { + "start": 1103.98, + "end": 1107.48, + "probability": 0.8308 + }, + { + "start": 1107.56, + "end": 1108.38, + "probability": 0.886 + }, + { + "start": 1109.16, + "end": 1110.06, + "probability": 0.907 + }, + { + "start": 1111.06, + "end": 1116.25, + "probability": 0.9865 + }, + { + "start": 1118.4, + "end": 1121.8, + "probability": 0.9613 + }, + { + "start": 1122.62, + "end": 1124.34, + "probability": 0.9688 + }, + { + "start": 1124.62, + "end": 1129.46, + "probability": 0.9813 + }, + { + "start": 1129.94, + "end": 1132.46, + "probability": 0.9462 + }, + { + "start": 1133.12, + "end": 1134.66, + "probability": 0.9097 + }, + { + "start": 1135.62, + "end": 1138.66, + "probability": 0.8936 + }, + { + "start": 1139.74, + "end": 1146.04, + "probability": 0.9961 + }, + { + "start": 1146.62, + "end": 1147.94, + "probability": 0.9551 + }, + { + "start": 1148.68, + "end": 1151.62, + "probability": 0.9753 + }, + { + "start": 1151.86, + "end": 1154.3, + "probability": 0.8309 + }, + { + "start": 1154.44, + "end": 1156.9, + "probability": 0.9709 + }, + { + "start": 1158.0, + "end": 1164.04, + "probability": 0.9932 + }, + { + "start": 1164.7, + "end": 1165.87, + "probability": 0.7037 + }, + { + "start": 1166.22, + "end": 1170.04, + "probability": 0.8374 + }, + { + "start": 1170.3, + "end": 1172.34, + "probability": 0.9768 + }, + { + "start": 1172.94, + "end": 1178.66, + "probability": 0.9926 + }, + { + "start": 1178.76, + "end": 1180.38, + "probability": 0.9631 + }, + { + "start": 1180.78, + "end": 1184.18, + "probability": 0.9984 + }, + { + "start": 1184.26, + "end": 1185.16, + "probability": 0.9501 + }, + { + "start": 1185.36, + "end": 1187.74, + "probability": 0.9845 + }, + { + "start": 1188.46, + "end": 1189.18, + "probability": 0.9127 + }, + { + "start": 1189.34, + "end": 1190.54, + "probability": 0.987 + }, + { + "start": 1190.6, + "end": 1192.12, + "probability": 0.9709 + }, + { + "start": 1192.16, + "end": 1193.34, + "probability": 0.7888 + }, + { + "start": 1194.24, + "end": 1197.66, + "probability": 0.9602 + }, + { + "start": 1198.18, + "end": 1203.32, + "probability": 0.9734 + }, + { + "start": 1203.42, + "end": 1204.3, + "probability": 0.9458 + }, + { + "start": 1204.9, + "end": 1206.28, + "probability": 0.7656 + }, + { + "start": 1207.4, + "end": 1211.36, + "probability": 0.8491 + }, + { + "start": 1211.42, + "end": 1212.54, + "probability": 0.6426 + }, + { + "start": 1212.68, + "end": 1214.24, + "probability": 0.8538 + }, + { + "start": 1215.36, + "end": 1218.74, + "probability": 0.9302 + }, + { + "start": 1219.44, + "end": 1220.14, + "probability": 0.2459 + }, + { + "start": 1221.06, + "end": 1222.58, + "probability": 0.7257 + }, + { + "start": 1222.82, + "end": 1227.84, + "probability": 0.8419 + }, + { + "start": 1228.84, + "end": 1232.1, + "probability": 0.7864 + }, + { + "start": 1232.7, + "end": 1234.88, + "probability": 0.9436 + }, + { + "start": 1236.08, + "end": 1240.2, + "probability": 0.8726 + }, + { + "start": 1240.26, + "end": 1242.02, + "probability": 0.9607 + }, + { + "start": 1243.38, + "end": 1244.94, + "probability": 0.9946 + }, + { + "start": 1245.04, + "end": 1246.98, + "probability": 0.0475 + }, + { + "start": 1247.14, + "end": 1248.5, + "probability": 0.7693 + }, + { + "start": 1248.58, + "end": 1250.44, + "probability": 0.9805 + }, + { + "start": 1251.1, + "end": 1253.7, + "probability": 0.8565 + }, + { + "start": 1253.8, + "end": 1258.24, + "probability": 0.9573 + }, + { + "start": 1258.98, + "end": 1262.62, + "probability": 0.9893 + }, + { + "start": 1262.62, + "end": 1266.06, + "probability": 0.9968 + }, + { + "start": 1266.2, + "end": 1267.2, + "probability": 0.9893 + }, + { + "start": 1270.06, + "end": 1271.46, + "probability": 0.6572 + }, + { + "start": 1271.7, + "end": 1272.46, + "probability": 0.8538 + }, + { + "start": 1273.82, + "end": 1274.64, + "probability": 0.8592 + }, + { + "start": 1275.3, + "end": 1276.07, + "probability": 0.8476 + }, + { + "start": 1276.3, + "end": 1279.42, + "probability": 0.9946 + }, + { + "start": 1279.5, + "end": 1281.64, + "probability": 0.7823 + }, + { + "start": 1281.64, + "end": 1284.38, + "probability": 0.9902 + }, + { + "start": 1284.92, + "end": 1285.82, + "probability": 0.574 + }, + { + "start": 1285.92, + "end": 1290.18, + "probability": 0.9719 + }, + { + "start": 1290.28, + "end": 1291.4, + "probability": 0.8104 + }, + { + "start": 1291.52, + "end": 1292.08, + "probability": 0.8801 + }, + { + "start": 1292.52, + "end": 1294.6, + "probability": 0.9774 + }, + { + "start": 1294.62, + "end": 1295.54, + "probability": 0.7173 + }, + { + "start": 1296.44, + "end": 1297.44, + "probability": 0.7917 + }, + { + "start": 1297.56, + "end": 1298.74, + "probability": 0.7553 + }, + { + "start": 1298.8, + "end": 1301.92, + "probability": 0.9218 + }, + { + "start": 1302.02, + "end": 1303.28, + "probability": 0.9122 + }, + { + "start": 1303.58, + "end": 1304.7, + "probability": 0.8667 + }, + { + "start": 1304.86, + "end": 1305.84, + "probability": 0.2847 + }, + { + "start": 1306.56, + "end": 1309.22, + "probability": 0.9966 + }, + { + "start": 1309.22, + "end": 1311.84, + "probability": 0.9878 + }, + { + "start": 1311.98, + "end": 1317.82, + "probability": 0.9829 + }, + { + "start": 1318.34, + "end": 1319.44, + "probability": 0.97 + }, + { + "start": 1320.22, + "end": 1322.34, + "probability": 0.9958 + }, + { + "start": 1323.24, + "end": 1324.88, + "probability": 0.9824 + }, + { + "start": 1325.0, + "end": 1326.47, + "probability": 0.9855 + }, + { + "start": 1326.96, + "end": 1328.38, + "probability": 0.6767 + }, + { + "start": 1328.5, + "end": 1330.16, + "probability": 0.9872 + }, + { + "start": 1330.64, + "end": 1331.76, + "probability": 0.9365 + }, + { + "start": 1332.54, + "end": 1332.78, + "probability": 0.378 + }, + { + "start": 1333.44, + "end": 1336.14, + "probability": 0.9715 + }, + { + "start": 1336.72, + "end": 1338.42, + "probability": 0.7737 + }, + { + "start": 1339.2, + "end": 1342.74, + "probability": 0.9673 + }, + { + "start": 1344.66, + "end": 1345.66, + "probability": 0.8774 + }, + { + "start": 1346.62, + "end": 1347.74, + "probability": 0.8709 + }, + { + "start": 1348.54, + "end": 1349.76, + "probability": 0.812 + }, + { + "start": 1350.26, + "end": 1352.86, + "probability": 0.9399 + }, + { + "start": 1352.96, + "end": 1354.54, + "probability": 0.9595 + }, + { + "start": 1355.16, + "end": 1358.08, + "probability": 0.9585 + }, + { + "start": 1358.2, + "end": 1360.22, + "probability": 0.7888 + }, + { + "start": 1360.36, + "end": 1361.34, + "probability": 0.9502 + }, + { + "start": 1361.38, + "end": 1363.18, + "probability": 0.7399 + }, + { + "start": 1363.28, + "end": 1363.42, + "probability": 0.4572 + }, + { + "start": 1364.66, + "end": 1367.6, + "probability": 0.9728 + }, + { + "start": 1368.44, + "end": 1372.1, + "probability": 0.9917 + }, + { + "start": 1372.16, + "end": 1378.24, + "probability": 0.8003 + }, + { + "start": 1378.26, + "end": 1378.5, + "probability": 0.7334 + }, + { + "start": 1379.14, + "end": 1382.28, + "probability": 0.8763 + }, + { + "start": 1382.62, + "end": 1384.7, + "probability": 0.8847 + }, + { + "start": 1384.7, + "end": 1389.54, + "probability": 0.8205 + }, + { + "start": 1389.7, + "end": 1390.6, + "probability": 0.852 + }, + { + "start": 1390.7, + "end": 1392.4, + "probability": 0.8864 + }, + { + "start": 1394.48, + "end": 1395.2, + "probability": 0.958 + }, + { + "start": 1395.66, + "end": 1396.52, + "probability": 0.619 + }, + { + "start": 1397.32, + "end": 1400.1, + "probability": 0.9911 + }, + { + "start": 1400.74, + "end": 1401.9, + "probability": 0.6155 + }, + { + "start": 1402.5, + "end": 1404.32, + "probability": 0.7559 + }, + { + "start": 1404.86, + "end": 1407.82, + "probability": 0.9449 + }, + { + "start": 1408.4, + "end": 1410.9, + "probability": 0.9946 + }, + { + "start": 1411.64, + "end": 1416.16, + "probability": 0.9958 + }, + { + "start": 1416.94, + "end": 1417.64, + "probability": 0.877 + }, + { + "start": 1417.74, + "end": 1418.82, + "probability": 0.7642 + }, + { + "start": 1418.84, + "end": 1419.58, + "probability": 0.959 + }, + { + "start": 1419.64, + "end": 1420.48, + "probability": 0.8696 + }, + { + "start": 1420.56, + "end": 1422.12, + "probability": 0.7503 + }, + { + "start": 1423.36, + "end": 1424.32, + "probability": 0.7769 + }, + { + "start": 1425.1, + "end": 1425.82, + "probability": 0.2427 + }, + { + "start": 1426.72, + "end": 1429.38, + "probability": 0.9592 + }, + { + "start": 1430.34, + "end": 1433.5, + "probability": 0.923 + }, + { + "start": 1434.1, + "end": 1436.86, + "probability": 0.9891 + }, + { + "start": 1438.4, + "end": 1439.0, + "probability": 0.7434 + }, + { + "start": 1440.18, + "end": 1445.14, + "probability": 0.9316 + }, + { + "start": 1445.76, + "end": 1447.38, + "probability": 0.761 + }, + { + "start": 1448.8, + "end": 1450.28, + "probability": 0.9616 + }, + { + "start": 1451.64, + "end": 1453.98, + "probability": 0.9895 + }, + { + "start": 1454.82, + "end": 1455.42, + "probability": 0.8662 + }, + { + "start": 1455.76, + "end": 1457.22, + "probability": 0.9916 + }, + { + "start": 1457.38, + "end": 1458.28, + "probability": 0.9952 + }, + { + "start": 1459.02, + "end": 1459.48, + "probability": 0.8984 + }, + { + "start": 1461.3, + "end": 1462.22, + "probability": 0.6136 + }, + { + "start": 1462.78, + "end": 1464.02, + "probability": 0.9788 + }, + { + "start": 1464.16, + "end": 1466.62, + "probability": 0.9922 + }, + { + "start": 1466.78, + "end": 1467.34, + "probability": 0.7586 + }, + { + "start": 1468.46, + "end": 1469.68, + "probability": 0.869 + }, + { + "start": 1470.54, + "end": 1471.56, + "probability": 0.8879 + }, + { + "start": 1471.58, + "end": 1472.84, + "probability": 0.9591 + }, + { + "start": 1473.06, + "end": 1474.11, + "probability": 0.9722 + }, + { + "start": 1474.2, + "end": 1475.56, + "probability": 0.8819 + }, + { + "start": 1475.64, + "end": 1476.66, + "probability": 0.9101 + }, + { + "start": 1476.74, + "end": 1477.28, + "probability": 0.4454 + }, + { + "start": 1477.88, + "end": 1479.64, + "probability": 0.5074 + }, + { + "start": 1480.7, + "end": 1486.74, + "probability": 0.9836 + }, + { + "start": 1486.94, + "end": 1488.86, + "probability": 0.972 + }, + { + "start": 1490.06, + "end": 1491.84, + "probability": 0.8802 + }, + { + "start": 1492.54, + "end": 1494.66, + "probability": 0.7373 + }, + { + "start": 1495.36, + "end": 1497.78, + "probability": 0.973 + }, + { + "start": 1498.7, + "end": 1502.46, + "probability": 0.9562 + }, + { + "start": 1503.84, + "end": 1505.26, + "probability": 0.9774 + }, + { + "start": 1505.36, + "end": 1506.22, + "probability": 0.9316 + }, + { + "start": 1506.86, + "end": 1508.3, + "probability": 0.6135 + }, + { + "start": 1508.4, + "end": 1509.72, + "probability": 0.9992 + }, + { + "start": 1510.48, + "end": 1512.34, + "probability": 0.8295 + }, + { + "start": 1513.2, + "end": 1516.9, + "probability": 0.9836 + }, + { + "start": 1516.96, + "end": 1519.1, + "probability": 0.8613 + }, + { + "start": 1520.08, + "end": 1521.76, + "probability": 0.8589 + }, + { + "start": 1521.82, + "end": 1522.62, + "probability": 0.9066 + }, + { + "start": 1523.04, + "end": 1523.82, + "probability": 0.9698 + }, + { + "start": 1523.9, + "end": 1526.52, + "probability": 0.994 + }, + { + "start": 1526.52, + "end": 1531.7, + "probability": 0.9071 + }, + { + "start": 1531.84, + "end": 1533.18, + "probability": 0.494 + }, + { + "start": 1533.84, + "end": 1534.84, + "probability": 0.9442 + }, + { + "start": 1535.42, + "end": 1538.46, + "probability": 0.9856 + }, + { + "start": 1538.92, + "end": 1540.16, + "probability": 0.9624 + }, + { + "start": 1540.56, + "end": 1541.14, + "probability": 0.7384 + }, + { + "start": 1542.52, + "end": 1545.78, + "probability": 0.9788 + }, + { + "start": 1546.76, + "end": 1550.82, + "probability": 0.9706 + }, + { + "start": 1551.96, + "end": 1553.94, + "probability": 0.998 + }, + { + "start": 1555.48, + "end": 1556.06, + "probability": 0.7842 + }, + { + "start": 1557.04, + "end": 1557.9, + "probability": 0.9678 + }, + { + "start": 1558.64, + "end": 1560.82, + "probability": 0.9971 + }, + { + "start": 1562.02, + "end": 1563.96, + "probability": 0.7771 + }, + { + "start": 1564.14, + "end": 1565.88, + "probability": 0.5089 + }, + { + "start": 1565.98, + "end": 1566.8, + "probability": 0.6609 + }, + { + "start": 1566.92, + "end": 1568.12, + "probability": 0.7868 + }, + { + "start": 1568.22, + "end": 1569.84, + "probability": 0.9889 + }, + { + "start": 1569.92, + "end": 1571.4, + "probability": 0.889 + }, + { + "start": 1572.0, + "end": 1573.24, + "probability": 0.978 + }, + { + "start": 1573.38, + "end": 1574.86, + "probability": 0.9012 + }, + { + "start": 1575.8, + "end": 1577.04, + "probability": 0.957 + }, + { + "start": 1577.1, + "end": 1579.18, + "probability": 0.9637 + }, + { + "start": 1579.9, + "end": 1581.96, + "probability": 0.5728 + }, + { + "start": 1583.04, + "end": 1584.96, + "probability": 0.9956 + }, + { + "start": 1587.3, + "end": 1587.96, + "probability": 0.9584 + }, + { + "start": 1589.34, + "end": 1593.2, + "probability": 0.7525 + }, + { + "start": 1593.26, + "end": 1594.08, + "probability": 0.7109 + }, + { + "start": 1594.94, + "end": 1595.22, + "probability": 0.3678 + }, + { + "start": 1596.28, + "end": 1597.44, + "probability": 0.7388 + }, + { + "start": 1597.8, + "end": 1601.14, + "probability": 0.877 + }, + { + "start": 1601.74, + "end": 1608.42, + "probability": 0.9775 + }, + { + "start": 1608.56, + "end": 1609.7, + "probability": 0.9984 + }, + { + "start": 1610.87, + "end": 1611.08, + "probability": 0.0525 + }, + { + "start": 1611.08, + "end": 1612.32, + "probability": 0.7767 + }, + { + "start": 1612.5, + "end": 1613.36, + "probability": 0.3105 + }, + { + "start": 1613.94, + "end": 1615.18, + "probability": 0.4136 + }, + { + "start": 1616.9, + "end": 1618.42, + "probability": 0.3455 + }, + { + "start": 1618.72, + "end": 1621.82, + "probability": 0.7064 + }, + { + "start": 1622.38, + "end": 1623.3, + "probability": 0.8245 + }, + { + "start": 1624.08, + "end": 1624.58, + "probability": 0.4342 + }, + { + "start": 1625.18, + "end": 1625.9, + "probability": 0.5884 + }, + { + "start": 1626.36, + "end": 1627.16, + "probability": 0.9084 + }, + { + "start": 1627.26, + "end": 1629.17, + "probability": 0.6057 + }, + { + "start": 1629.74, + "end": 1629.98, + "probability": 0.8205 + }, + { + "start": 1630.06, + "end": 1630.48, + "probability": 0.3377 + }, + { + "start": 1630.58, + "end": 1631.48, + "probability": 0.5179 + }, + { + "start": 1631.48, + "end": 1631.7, + "probability": 0.7207 + }, + { + "start": 1631.92, + "end": 1632.9, + "probability": 0.9624 + }, + { + "start": 1632.98, + "end": 1633.87, + "probability": 0.793 + }, + { + "start": 1635.1, + "end": 1635.92, + "probability": 0.5423 + }, + { + "start": 1635.92, + "end": 1637.12, + "probability": 0.8474 + }, + { + "start": 1637.4, + "end": 1638.14, + "probability": 0.8941 + }, + { + "start": 1638.44, + "end": 1641.46, + "probability": 0.7041 + }, + { + "start": 1641.66, + "end": 1642.56, + "probability": 0.5462 + }, + { + "start": 1642.68, + "end": 1646.48, + "probability": 0.9609 + }, + { + "start": 1646.48, + "end": 1648.94, + "probability": 0.9695 + }, + { + "start": 1649.0, + "end": 1649.54, + "probability": 0.4752 + }, + { + "start": 1650.44, + "end": 1653.04, + "probability": 0.8042 + }, + { + "start": 1654.12, + "end": 1654.46, + "probability": 0.5823 + }, + { + "start": 1656.28, + "end": 1657.16, + "probability": 0.5209 + }, + { + "start": 1657.24, + "end": 1658.4, + "probability": 0.6855 + }, + { + "start": 1658.5, + "end": 1659.69, + "probability": 0.8022 + }, + { + "start": 1660.88, + "end": 1663.28, + "probability": 0.6531 + }, + { + "start": 1664.53, + "end": 1668.88, + "probability": 0.9816 + }, + { + "start": 1669.04, + "end": 1670.6, + "probability": 0.724 + }, + { + "start": 1671.06, + "end": 1672.8, + "probability": 0.9656 + }, + { + "start": 1673.16, + "end": 1674.0, + "probability": 0.6084 + }, + { + "start": 1674.6, + "end": 1676.56, + "probability": 0.6492 + }, + { + "start": 1678.32, + "end": 1680.22, + "probability": 0.6209 + }, + { + "start": 1680.72, + "end": 1680.92, + "probability": 0.3473 + }, + { + "start": 1681.46, + "end": 1683.1, + "probability": 0.8993 + }, + { + "start": 1683.2, + "end": 1683.96, + "probability": 0.4543 + }, + { + "start": 1684.12, + "end": 1684.44, + "probability": 0.4901 + }, + { + "start": 1685.44, + "end": 1685.44, + "probability": 0.1978 + }, + { + "start": 1685.44, + "end": 1685.8, + "probability": 0.0784 + }, + { + "start": 1685.8, + "end": 1686.14, + "probability": 0.2043 + }, + { + "start": 1686.36, + "end": 1686.5, + "probability": 0.4479 + }, + { + "start": 1687.42, + "end": 1688.3, + "probability": 0.405 + }, + { + "start": 1689.14, + "end": 1691.38, + "probability": 0.5013 + }, + { + "start": 1693.43, + "end": 1695.7, + "probability": 0.9678 + }, + { + "start": 1696.16, + "end": 1696.44, + "probability": 0.873 + }, + { + "start": 1696.88, + "end": 1699.3, + "probability": 0.894 + }, + { + "start": 1699.42, + "end": 1700.0, + "probability": 0.5454 + }, + { + "start": 1700.64, + "end": 1702.22, + "probability": 0.9877 + }, + { + "start": 1702.52, + "end": 1703.5, + "probability": 0.6688 + }, + { + "start": 1704.1, + "end": 1705.48, + "probability": 0.7192 + }, + { + "start": 1705.64, + "end": 1707.32, + "probability": 0.8896 + }, + { + "start": 1707.86, + "end": 1711.22, + "probability": 0.9102 + }, + { + "start": 1712.22, + "end": 1714.0, + "probability": 0.9579 + }, + { + "start": 1714.56, + "end": 1715.33, + "probability": 0.9077 + }, + { + "start": 1716.12, + "end": 1716.89, + "probability": 0.6 + }, + { + "start": 1718.22, + "end": 1720.84, + "probability": 0.9728 + }, + { + "start": 1721.66, + "end": 1723.04, + "probability": 0.9037 + }, + { + "start": 1723.1, + "end": 1726.52, + "probability": 0.8703 + }, + { + "start": 1727.56, + "end": 1728.18, + "probability": 0.7231 + }, + { + "start": 1728.92, + "end": 1729.6, + "probability": 0.9604 + }, + { + "start": 1730.02, + "end": 1731.02, + "probability": 0.979 + }, + { + "start": 1731.48, + "end": 1734.48, + "probability": 0.9796 + }, + { + "start": 1735.44, + "end": 1737.58, + "probability": 0.9268 + }, + { + "start": 1738.52, + "end": 1741.3, + "probability": 0.9861 + }, + { + "start": 1741.42, + "end": 1742.94, + "probability": 0.9932 + }, + { + "start": 1744.0, + "end": 1748.1, + "probability": 0.969 + }, + { + "start": 1748.94, + "end": 1750.23, + "probability": 0.73 + }, + { + "start": 1750.78, + "end": 1751.6, + "probability": 0.8394 + }, + { + "start": 1752.5, + "end": 1755.22, + "probability": 0.8252 + }, + { + "start": 1755.94, + "end": 1760.2, + "probability": 0.9763 + }, + { + "start": 1760.9, + "end": 1764.62, + "probability": 0.9215 + }, + { + "start": 1766.66, + "end": 1768.14, + "probability": 0.8023 + }, + { + "start": 1769.34, + "end": 1773.44, + "probability": 0.958 + }, + { + "start": 1774.32, + "end": 1774.58, + "probability": 0.901 + }, + { + "start": 1775.44, + "end": 1782.28, + "probability": 0.9065 + }, + { + "start": 1783.18, + "end": 1784.5, + "probability": 0.9937 + }, + { + "start": 1786.82, + "end": 1789.78, + "probability": 0.8748 + }, + { + "start": 1790.18, + "end": 1791.14, + "probability": 0.7599 + }, + { + "start": 1791.22, + "end": 1792.1, + "probability": 0.9036 + }, + { + "start": 1792.2, + "end": 1794.0, + "probability": 0.9357 + }, + { + "start": 1794.38, + "end": 1796.48, + "probability": 0.9573 + }, + { + "start": 1797.26, + "end": 1799.15, + "probability": 0.9707 + }, + { + "start": 1800.56, + "end": 1805.22, + "probability": 0.9929 + }, + { + "start": 1805.8, + "end": 1806.78, + "probability": 0.6264 + }, + { + "start": 1807.42, + "end": 1808.56, + "probability": 0.9647 + }, + { + "start": 1808.68, + "end": 1809.54, + "probability": 0.8696 + }, + { + "start": 1809.64, + "end": 1810.48, + "probability": 0.794 + }, + { + "start": 1810.54, + "end": 1811.18, + "probability": 0.7261 + }, + { + "start": 1811.26, + "end": 1811.98, + "probability": 0.7683 + }, + { + "start": 1812.08, + "end": 1813.02, + "probability": 0.824 + }, + { + "start": 1813.84, + "end": 1818.54, + "probability": 0.8456 + }, + { + "start": 1819.42, + "end": 1820.31, + "probability": 0.4923 + }, + { + "start": 1823.98, + "end": 1826.6, + "probability": 0.9806 + }, + { + "start": 1826.7, + "end": 1830.4, + "probability": 0.9717 + }, + { + "start": 1830.46, + "end": 1831.44, + "probability": 0.9227 + }, + { + "start": 1831.76, + "end": 1832.2, + "probability": 0.5067 + }, + { + "start": 1833.04, + "end": 1834.02, + "probability": 0.9106 + }, + { + "start": 1836.54, + "end": 1836.98, + "probability": 0.0587 + }, + { + "start": 1836.98, + "end": 1839.27, + "probability": 0.3252 + }, + { + "start": 1839.38, + "end": 1840.82, + "probability": 0.068 + }, + { + "start": 1841.78, + "end": 1844.56, + "probability": 0.9189 + }, + { + "start": 1845.26, + "end": 1846.96, + "probability": 0.9895 + }, + { + "start": 1848.76, + "end": 1849.4, + "probability": 0.4614 + }, + { + "start": 1849.4, + "end": 1850.54, + "probability": 0.7222 + }, + { + "start": 1851.72, + "end": 1854.62, + "probability": 0.9935 + }, + { + "start": 1855.98, + "end": 1856.98, + "probability": 0.8315 + }, + { + "start": 1858.04, + "end": 1858.96, + "probability": 0.7972 + }, + { + "start": 1859.74, + "end": 1861.1, + "probability": 0.0178 + }, + { + "start": 1861.7, + "end": 1862.16, + "probability": 0.3843 + }, + { + "start": 1862.26, + "end": 1862.52, + "probability": 0.3843 + }, + { + "start": 1862.58, + "end": 1863.66, + "probability": 0.9458 + }, + { + "start": 1863.72, + "end": 1863.98, + "probability": 0.5267 + }, + { + "start": 1864.02, + "end": 1864.88, + "probability": 0.2142 + }, + { + "start": 1866.15, + "end": 1868.68, + "probability": 0.1069 + }, + { + "start": 1870.3, + "end": 1870.3, + "probability": 0.4836 + }, + { + "start": 1870.3, + "end": 1870.98, + "probability": 0.6462 + }, + { + "start": 1871.0, + "end": 1872.16, + "probability": 0.6708 + }, + { + "start": 1872.26, + "end": 1874.74, + "probability": 0.2725 + }, + { + "start": 1874.82, + "end": 1874.82, + "probability": 0.303 + }, + { + "start": 1875.02, + "end": 1876.2, + "probability": 0.7371 + }, + { + "start": 1876.78, + "end": 1879.24, + "probability": 0.5524 + }, + { + "start": 1879.72, + "end": 1880.46, + "probability": 0.9155 + }, + { + "start": 1880.56, + "end": 1881.4, + "probability": 0.9421 + }, + { + "start": 1881.44, + "end": 1882.46, + "probability": 0.7008 + }, + { + "start": 1882.76, + "end": 1884.78, + "probability": 0.9176 + }, + { + "start": 1885.8, + "end": 1886.76, + "probability": 0.959 + }, + { + "start": 1886.8, + "end": 1889.58, + "probability": 0.7047 + }, + { + "start": 1889.62, + "end": 1890.29, + "probability": 0.8007 + }, + { + "start": 1891.18, + "end": 1892.64, + "probability": 0.8181 + }, + { + "start": 1893.3, + "end": 1893.94, + "probability": 0.8418 + }, + { + "start": 1894.02, + "end": 1894.68, + "probability": 0.9526 + }, + { + "start": 1894.7, + "end": 1895.24, + "probability": 0.9004 + }, + { + "start": 1895.3, + "end": 1895.88, + "probability": 0.7042 + }, + { + "start": 1896.12, + "end": 1896.98, + "probability": 0.78 + }, + { + "start": 1897.36, + "end": 1899.38, + "probability": 0.9673 + }, + { + "start": 1900.08, + "end": 1901.18, + "probability": 0.7681 + }, + { + "start": 1901.94, + "end": 1904.16, + "probability": 0.9551 + }, + { + "start": 1908.14, + "end": 1908.98, + "probability": 0.9653 + }, + { + "start": 1909.04, + "end": 1909.74, + "probability": 0.9524 + }, + { + "start": 1910.28, + "end": 1911.74, + "probability": 0.9604 + }, + { + "start": 1912.36, + "end": 1913.2, + "probability": 0.8411 + }, + { + "start": 1913.96, + "end": 1914.36, + "probability": 0.606 + }, + { + "start": 1914.4, + "end": 1916.82, + "probability": 0.8649 + }, + { + "start": 1917.87, + "end": 1920.94, + "probability": 0.6819 + }, + { + "start": 1921.74, + "end": 1924.14, + "probability": 0.7679 + }, + { + "start": 1924.7, + "end": 1925.58, + "probability": 0.9289 + }, + { + "start": 1925.98, + "end": 1926.6, + "probability": 0.6128 + }, + { + "start": 1926.72, + "end": 1929.16, + "probability": 0.3557 + }, + { + "start": 1929.2, + "end": 1931.56, + "probability": 0.3778 + }, + { + "start": 1931.98, + "end": 1932.64, + "probability": 0.5582 + }, + { + "start": 1932.64, + "end": 1936.4, + "probability": 0.7495 + }, + { + "start": 1936.6, + "end": 1938.88, + "probability": 0.7451 + }, + { + "start": 1939.02, + "end": 1939.12, + "probability": 0.0555 + }, + { + "start": 1939.16, + "end": 1939.65, + "probability": 0.5635 + }, + { + "start": 1939.82, + "end": 1940.62, + "probability": 0.9209 + }, + { + "start": 1940.7, + "end": 1942.42, + "probability": 0.6508 + }, + { + "start": 1942.56, + "end": 1942.64, + "probability": 0.7937 + }, + { + "start": 1943.54, + "end": 1943.68, + "probability": 0.5882 + }, + { + "start": 1943.68, + "end": 1944.54, + "probability": 0.8799 + }, + { + "start": 1944.68, + "end": 1945.46, + "probability": 0.3767 + }, + { + "start": 1945.5, + "end": 1946.58, + "probability": 0.7747 + }, + { + "start": 1946.64, + "end": 1947.14, + "probability": 0.5013 + }, + { + "start": 1947.78, + "end": 1948.28, + "probability": 0.8971 + }, + { + "start": 1948.45, + "end": 1951.68, + "probability": 0.9815 + }, + { + "start": 1951.76, + "end": 1952.82, + "probability": 0.9824 + }, + { + "start": 1953.13, + "end": 1954.08, + "probability": 0.2309 + }, + { + "start": 1954.08, + "end": 1955.22, + "probability": 0.562 + }, + { + "start": 1955.79, + "end": 1957.94, + "probability": 0.7532 + }, + { + "start": 1958.08, + "end": 1958.56, + "probability": 0.4137 + }, + { + "start": 1958.56, + "end": 1962.52, + "probability": 0.8587 + }, + { + "start": 1964.04, + "end": 1964.88, + "probability": 0.3207 + }, + { + "start": 1965.04, + "end": 1965.76, + "probability": 0.7431 + }, + { + "start": 1965.88, + "end": 1972.1, + "probability": 0.8474 + }, + { + "start": 1973.0, + "end": 1975.66, + "probability": 0.9855 + }, + { + "start": 1975.72, + "end": 1978.16, + "probability": 0.8344 + }, + { + "start": 1979.32, + "end": 1979.78, + "probability": 0.7034 + }, + { + "start": 1980.84, + "end": 1981.12, + "probability": 0.9851 + }, + { + "start": 1981.76, + "end": 1982.54, + "probability": 0.0057 + }, + { + "start": 1982.6, + "end": 1982.96, + "probability": 0.5433 + }, + { + "start": 1983.04, + "end": 1984.1, + "probability": 0.6564 + }, + { + "start": 1985.27, + "end": 1988.5, + "probability": 0.9967 + }, + { + "start": 1988.54, + "end": 1989.16, + "probability": 0.7434 + }, + { + "start": 1989.2, + "end": 1990.06, + "probability": 0.7126 + }, + { + "start": 1990.08, + "end": 1991.36, + "probability": 0.937 + }, + { + "start": 1992.0, + "end": 1992.98, + "probability": 0.8013 + }, + { + "start": 1994.47, + "end": 1998.64, + "probability": 0.9899 + }, + { + "start": 1999.7, + "end": 2001.22, + "probability": 0.0581 + }, + { + "start": 2002.58, + "end": 2004.28, + "probability": 0.1859 + }, + { + "start": 2004.54, + "end": 2004.54, + "probability": 0.0073 + }, + { + "start": 2004.54, + "end": 2004.96, + "probability": 0.6473 + }, + { + "start": 2005.78, + "end": 2006.92, + "probability": 0.7374 + }, + { + "start": 2009.08, + "end": 2009.54, + "probability": 0.98 + }, + { + "start": 2012.28, + "end": 2015.78, + "probability": 0.8821 + }, + { + "start": 2015.92, + "end": 2016.96, + "probability": 0.9684 + }, + { + "start": 2017.78, + "end": 2019.92, + "probability": 0.9948 + }, + { + "start": 2019.92, + "end": 2022.46, + "probability": 0.99 + }, + { + "start": 2023.2, + "end": 2023.98, + "probability": 0.8687 + }, + { + "start": 2025.62, + "end": 2027.32, + "probability": 0.9492 + }, + { + "start": 2028.0, + "end": 2028.98, + "probability": 0.4449 + }, + { + "start": 2029.28, + "end": 2029.76, + "probability": 0.7436 + }, + { + "start": 2029.84, + "end": 2030.83, + "probability": 0.9766 + }, + { + "start": 2031.26, + "end": 2034.98, + "probability": 0.9956 + }, + { + "start": 2036.34, + "end": 2037.5, + "probability": 0.1061 + }, + { + "start": 2037.5, + "end": 2037.94, + "probability": 0.5483 + }, + { + "start": 2038.24, + "end": 2038.54, + "probability": 0.56 + }, + { + "start": 2038.64, + "end": 2039.26, + "probability": 0.7698 + }, + { + "start": 2039.48, + "end": 2040.98, + "probability": 0.9429 + }, + { + "start": 2041.06, + "end": 2041.64, + "probability": 0.7568 + }, + { + "start": 2042.8, + "end": 2042.86, + "probability": 0.22 + }, + { + "start": 2042.9, + "end": 2044.88, + "probability": 0.9792 + }, + { + "start": 2045.02, + "end": 2045.74, + "probability": 0.7363 + }, + { + "start": 2046.42, + "end": 2050.34, + "probability": 0.8759 + }, + { + "start": 2051.2, + "end": 2053.44, + "probability": 0.975 + }, + { + "start": 2053.5, + "end": 2055.58, + "probability": 0.8227 + }, + { + "start": 2057.8, + "end": 2059.84, + "probability": 0.8179 + }, + { + "start": 2060.36, + "end": 2064.3, + "probability": 0.7604 + }, + { + "start": 2065.87, + "end": 2069.36, + "probability": 0.959 + }, + { + "start": 2070.02, + "end": 2072.24, + "probability": 0.8696 + }, + { + "start": 2072.38, + "end": 2072.5, + "probability": 0.3842 + }, + { + "start": 2072.64, + "end": 2075.26, + "probability": 0.9386 + }, + { + "start": 2075.6, + "end": 2079.46, + "probability": 0.9731 + }, + { + "start": 2080.14, + "end": 2082.38, + "probability": 0.8816 + }, + { + "start": 2082.98, + "end": 2087.42, + "probability": 0.9824 + }, + { + "start": 2087.48, + "end": 2087.74, + "probability": 0.6373 + }, + { + "start": 2087.82, + "end": 2092.04, + "probability": 0.9917 + }, + { + "start": 2092.66, + "end": 2095.82, + "probability": 0.9048 + }, + { + "start": 2096.38, + "end": 2097.98, + "probability": 0.9954 + }, + { + "start": 2098.16, + "end": 2099.54, + "probability": 0.8533 + }, + { + "start": 2100.2, + "end": 2100.24, + "probability": 0.0108 + }, + { + "start": 2100.86, + "end": 2101.54, + "probability": 0.0163 + }, + { + "start": 2101.7, + "end": 2102.4, + "probability": 0.0603 + }, + { + "start": 2102.48, + "end": 2104.24, + "probability": 0.3798 + }, + { + "start": 2104.44, + "end": 2104.54, + "probability": 0.2812 + }, + { + "start": 2104.54, + "end": 2105.04, + "probability": 0.5775 + }, + { + "start": 2105.3, + "end": 2108.83, + "probability": 0.9921 + }, + { + "start": 2109.58, + "end": 2110.0, + "probability": 0.2144 + }, + { + "start": 2110.78, + "end": 2112.8, + "probability": 0.0493 + }, + { + "start": 2113.56, + "end": 2118.3, + "probability": 0.8542 + }, + { + "start": 2119.16, + "end": 2122.02, + "probability": 0.9565 + }, + { + "start": 2122.76, + "end": 2125.9, + "probability": 0.965 + }, + { + "start": 2126.42, + "end": 2127.48, + "probability": 0.9491 + }, + { + "start": 2127.5, + "end": 2129.48, + "probability": 0.9946 + }, + { + "start": 2129.62, + "end": 2132.96, + "probability": 0.7559 + }, + { + "start": 2133.66, + "end": 2136.48, + "probability": 0.9959 + }, + { + "start": 2137.4, + "end": 2143.72, + "probability": 0.9752 + }, + { + "start": 2144.32, + "end": 2145.9, + "probability": 0.9764 + }, + { + "start": 2146.32, + "end": 2149.54, + "probability": 0.9939 + }, + { + "start": 2149.72, + "end": 2151.32, + "probability": 0.9135 + }, + { + "start": 2151.92, + "end": 2152.82, + "probability": 0.5093 + }, + { + "start": 2153.84, + "end": 2157.03, + "probability": 0.991 + }, + { + "start": 2158.1, + "end": 2158.56, + "probability": 0.7425 + }, + { + "start": 2159.78, + "end": 2160.84, + "probability": 0.0374 + }, + { + "start": 2161.9, + "end": 2163.89, + "probability": 0.5192 + }, + { + "start": 2164.84, + "end": 2166.33, + "probability": 0.3733 + }, + { + "start": 2167.2, + "end": 2169.62, + "probability": 0.3318 + }, + { + "start": 2169.8, + "end": 2169.99, + "probability": 0.3547 + }, + { + "start": 2170.46, + "end": 2170.68, + "probability": 0.184 + }, + { + "start": 2170.82, + "end": 2172.24, + "probability": 0.2708 + }, + { + "start": 2172.3, + "end": 2173.0, + "probability": 0.6582 + }, + { + "start": 2173.46, + "end": 2175.4, + "probability": 0.9624 + }, + { + "start": 2175.48, + "end": 2180.0, + "probability": 0.9911 + }, + { + "start": 2180.1, + "end": 2181.35, + "probability": 0.9966 + }, + { + "start": 2181.94, + "end": 2183.54, + "probability": 0.4411 + }, + { + "start": 2183.62, + "end": 2183.98, + "probability": 0.8567 + }, + { + "start": 2184.58, + "end": 2186.3, + "probability": 0.985 + }, + { + "start": 2186.64, + "end": 2187.48, + "probability": 0.7712 + }, + { + "start": 2187.74, + "end": 2188.4, + "probability": 0.9122 + }, + { + "start": 2188.5, + "end": 2189.82, + "probability": 0.7769 + }, + { + "start": 2190.9, + "end": 2193.12, + "probability": 0.0687 + }, + { + "start": 2193.16, + "end": 2193.16, + "probability": 0.1221 + }, + { + "start": 2194.12, + "end": 2194.24, + "probability": 0.1924 + }, + { + "start": 2195.0, + "end": 2198.38, + "probability": 0.1492 + }, + { + "start": 2198.46, + "end": 2199.18, + "probability": 0.0425 + }, + { + "start": 2199.18, + "end": 2199.92, + "probability": 0.5541 + }, + { + "start": 2200.06, + "end": 2201.1, + "probability": 0.9134 + }, + { + "start": 2201.87, + "end": 2203.78, + "probability": 0.6451 + }, + { + "start": 2203.88, + "end": 2208.76, + "probability": 0.7746 + }, + { + "start": 2211.66, + "end": 2212.62, + "probability": 0.5426 + }, + { + "start": 2212.62, + "end": 2212.68, + "probability": 0.7855 + }, + { + "start": 2212.68, + "end": 2212.76, + "probability": 0.7773 + }, + { + "start": 2212.76, + "end": 2214.54, + "probability": 0.6929 + }, + { + "start": 2214.62, + "end": 2215.32, + "probability": 0.5963 + }, + { + "start": 2215.5, + "end": 2218.08, + "probability": 0.3486 + }, + { + "start": 2219.14, + "end": 2219.16, + "probability": 0.3295 + }, + { + "start": 2219.16, + "end": 2219.38, + "probability": 0.7279 + }, + { + "start": 2219.54, + "end": 2220.76, + "probability": 0.8969 + }, + { + "start": 2220.92, + "end": 2221.31, + "probability": 0.9592 + }, + { + "start": 2222.18, + "end": 2223.38, + "probability": 0.9663 + }, + { + "start": 2224.0, + "end": 2224.88, + "probability": 0.6697 + }, + { + "start": 2224.98, + "end": 2225.99, + "probability": 0.9453 + }, + { + "start": 2226.6, + "end": 2227.72, + "probability": 0.7873 + }, + { + "start": 2227.82, + "end": 2229.5, + "probability": 0.5937 + }, + { + "start": 2229.54, + "end": 2230.2, + "probability": 0.531 + }, + { + "start": 2230.4, + "end": 2230.54, + "probability": 0.0968 + }, + { + "start": 2230.76, + "end": 2231.74, + "probability": 0.9712 + }, + { + "start": 2232.72, + "end": 2235.2, + "probability": 0.9805 + }, + { + "start": 2235.32, + "end": 2236.2, + "probability": 0.6023 + }, + { + "start": 2237.1, + "end": 2238.07, + "probability": 0.9946 + }, + { + "start": 2239.38, + "end": 2244.2, + "probability": 0.8042 + }, + { + "start": 2244.72, + "end": 2245.2, + "probability": 0.8624 + }, + { + "start": 2245.26, + "end": 2248.5, + "probability": 0.9711 + }, + { + "start": 2249.3, + "end": 2251.24, + "probability": 0.9453 + }, + { + "start": 2251.9, + "end": 2253.54, + "probability": 0.9984 + }, + { + "start": 2254.16, + "end": 2260.12, + "probability": 0.7321 + }, + { + "start": 2262.32, + "end": 2265.06, + "probability": 0.6709 + }, + { + "start": 2265.14, + "end": 2270.04, + "probability": 0.9964 + }, + { + "start": 2271.1, + "end": 2272.02, + "probability": 0.8101 + }, + { + "start": 2273.54, + "end": 2273.64, + "probability": 0.0542 + }, + { + "start": 2276.82, + "end": 2279.18, + "probability": 0.0881 + }, + { + "start": 2279.38, + "end": 2279.96, + "probability": 0.4797 + }, + { + "start": 2280.3, + "end": 2281.72, + "probability": 0.0211 + }, + { + "start": 2281.98, + "end": 2282.64, + "probability": 0.6639 + }, + { + "start": 2282.7, + "end": 2283.66, + "probability": 0.6145 + }, + { + "start": 2283.68, + "end": 2284.38, + "probability": 0.1688 + }, + { + "start": 2284.5, + "end": 2285.14, + "probability": 0.5295 + }, + { + "start": 2285.28, + "end": 2288.5, + "probability": 0.7685 + }, + { + "start": 2289.12, + "end": 2289.12, + "probability": 0.0165 + }, + { + "start": 2289.12, + "end": 2290.35, + "probability": 0.9956 + }, + { + "start": 2290.62, + "end": 2293.8, + "probability": 0.6082 + }, + { + "start": 2293.92, + "end": 2294.24, + "probability": 0.5481 + }, + { + "start": 2294.68, + "end": 2295.54, + "probability": 0.7808 + }, + { + "start": 2295.62, + "end": 2297.61, + "probability": 0.7617 + }, + { + "start": 2297.78, + "end": 2298.2, + "probability": 0.9304 + }, + { + "start": 2299.16, + "end": 2299.92, + "probability": 0.6779 + }, + { + "start": 2299.94, + "end": 2300.44, + "probability": 0.8474 + }, + { + "start": 2300.48, + "end": 2303.78, + "probability": 0.9419 + }, + { + "start": 2303.92, + "end": 2304.26, + "probability": 0.082 + }, + { + "start": 2304.82, + "end": 2305.48, + "probability": 0.2357 + }, + { + "start": 2305.66, + "end": 2307.68, + "probability": 0.7559 + }, + { + "start": 2307.84, + "end": 2308.04, + "probability": 0.9182 + }, + { + "start": 2308.04, + "end": 2309.25, + "probability": 0.9878 + }, + { + "start": 2309.76, + "end": 2311.15, + "probability": 0.9877 + }, + { + "start": 2311.94, + "end": 2313.54, + "probability": 0.9004 + }, + { + "start": 2314.72, + "end": 2318.22, + "probability": 0.0381 + }, + { + "start": 2318.3, + "end": 2320.22, + "probability": 0.1164 + }, + { + "start": 2320.22, + "end": 2325.62, + "probability": 0.5117 + }, + { + "start": 2326.16, + "end": 2326.91, + "probability": 0.3564 + }, + { + "start": 2327.06, + "end": 2331.3, + "probability": 0.8788 + }, + { + "start": 2331.74, + "end": 2336.46, + "probability": 0.7906 + }, + { + "start": 2336.66, + "end": 2337.56, + "probability": 0.5401 + }, + { + "start": 2338.04, + "end": 2338.74, + "probability": 0.481 + }, + { + "start": 2339.36, + "end": 2341.58, + "probability": 0.9259 + }, + { + "start": 2342.08, + "end": 2344.38, + "probability": 0.9292 + }, + { + "start": 2345.02, + "end": 2347.9, + "probability": 0.856 + }, + { + "start": 2349.28, + "end": 2350.46, + "probability": 0.9948 + }, + { + "start": 2350.52, + "end": 2352.68, + "probability": 0.9694 + }, + { + "start": 2352.74, + "end": 2353.62, + "probability": 0.9567 + }, + { + "start": 2353.68, + "end": 2354.64, + "probability": 0.6855 + }, + { + "start": 2355.02, + "end": 2357.18, + "probability": 0.5816 + }, + { + "start": 2357.3, + "end": 2360.14, + "probability": 0.6607 + }, + { + "start": 2361.14, + "end": 2364.14, + "probability": 0.9834 + }, + { + "start": 2364.26, + "end": 2365.97, + "probability": 0.8994 + }, + { + "start": 2366.86, + "end": 2368.14, + "probability": 0.7709 + }, + { + "start": 2369.82, + "end": 2371.74, + "probability": 0.8449 + }, + { + "start": 2372.6, + "end": 2376.06, + "probability": 0.9156 + }, + { + "start": 2376.64, + "end": 2378.76, + "probability": 0.9737 + }, + { + "start": 2379.48, + "end": 2380.18, + "probability": 0.959 + }, + { + "start": 2380.28, + "end": 2381.06, + "probability": 0.9301 + }, + { + "start": 2381.24, + "end": 2382.04, + "probability": 0.9745 + }, + { + "start": 2382.14, + "end": 2383.26, + "probability": 0.7906 + }, + { + "start": 2383.98, + "end": 2385.66, + "probability": 0.8391 + }, + { + "start": 2385.92, + "end": 2386.68, + "probability": 0.7895 + }, + { + "start": 2387.02, + "end": 2387.78, + "probability": 0.8945 + }, + { + "start": 2388.18, + "end": 2390.64, + "probability": 0.9578 + }, + { + "start": 2391.3, + "end": 2394.48, + "probability": 0.5816 + }, + { + "start": 2394.56, + "end": 2395.38, + "probability": 0.7122 + }, + { + "start": 2396.08, + "end": 2402.3, + "probability": 0.7617 + }, + { + "start": 2402.82, + "end": 2404.56, + "probability": 0.8099 + }, + { + "start": 2405.16, + "end": 2407.24, + "probability": 0.9019 + }, + { + "start": 2407.32, + "end": 2409.38, + "probability": 0.9915 + }, + { + "start": 2410.24, + "end": 2411.04, + "probability": 0.894 + }, + { + "start": 2411.14, + "end": 2412.22, + "probability": 0.6662 + }, + { + "start": 2413.02, + "end": 2414.08, + "probability": 0.9675 + }, + { + "start": 2414.1, + "end": 2414.89, + "probability": 0.9407 + }, + { + "start": 2415.04, + "end": 2416.26, + "probability": 0.9922 + }, + { + "start": 2416.34, + "end": 2416.76, + "probability": 0.5588 + }, + { + "start": 2417.98, + "end": 2418.88, + "probability": 0.9676 + }, + { + "start": 2419.3, + "end": 2420.82, + "probability": 0.9574 + }, + { + "start": 2421.2, + "end": 2422.36, + "probability": 0.9858 + }, + { + "start": 2422.7, + "end": 2424.56, + "probability": 0.98 + }, + { + "start": 2424.8, + "end": 2426.5, + "probability": 0.7653 + }, + { + "start": 2427.38, + "end": 2429.06, + "probability": 0.9253 + }, + { + "start": 2429.84, + "end": 2433.0, + "probability": 0.9973 + }, + { + "start": 2433.0, + "end": 2436.64, + "probability": 0.8119 + }, + { + "start": 2436.76, + "end": 2437.4, + "probability": 0.4508 + }, + { + "start": 2439.78, + "end": 2443.02, + "probability": 0.7626 + }, + { + "start": 2444.02, + "end": 2445.52, + "probability": 0.9414 + }, + { + "start": 2445.6, + "end": 2447.82, + "probability": 0.7587 + }, + { + "start": 2447.9, + "end": 2448.78, + "probability": 0.7834 + }, + { + "start": 2448.94, + "end": 2449.16, + "probability": 0.8146 + }, + { + "start": 2449.22, + "end": 2451.9, + "probability": 0.9715 + }, + { + "start": 2452.32, + "end": 2454.78, + "probability": 0.8787 + }, + { + "start": 2455.1, + "end": 2458.62, + "probability": 0.9893 + }, + { + "start": 2458.68, + "end": 2460.36, + "probability": 0.7414 + }, + { + "start": 2460.7, + "end": 2461.74, + "probability": 0.0089 + }, + { + "start": 2463.64, + "end": 2468.84, + "probability": 0.9858 + }, + { + "start": 2468.87, + "end": 2473.22, + "probability": 0.97 + }, + { + "start": 2475.48, + "end": 2479.88, + "probability": 0.4882 + }, + { + "start": 2482.8, + "end": 2485.2, + "probability": 0.5758 + }, + { + "start": 2488.48, + "end": 2492.96, + "probability": 0.6684 + }, + { + "start": 2494.12, + "end": 2495.42, + "probability": 0.9165 + }, + { + "start": 2496.36, + "end": 2500.28, + "probability": 0.9644 + }, + { + "start": 2501.3, + "end": 2503.36, + "probability": 0.873 + }, + { + "start": 2504.12, + "end": 2506.46, + "probability": 0.4885 + }, + { + "start": 2506.58, + "end": 2510.0, + "probability": 0.8678 + }, + { + "start": 2511.46, + "end": 2512.6, + "probability": 0.6858 + }, + { + "start": 2513.56, + "end": 2515.37, + "probability": 0.9683 + }, + { + "start": 2516.64, + "end": 2517.54, + "probability": 0.7359 + }, + { + "start": 2518.54, + "end": 2521.45, + "probability": 0.9684 + }, + { + "start": 2522.38, + "end": 2525.96, + "probability": 0.6374 + }, + { + "start": 2526.74, + "end": 2530.46, + "probability": 0.9952 + }, + { + "start": 2531.2, + "end": 2533.45, + "probability": 0.9958 + }, + { + "start": 2533.58, + "end": 2535.7, + "probability": 0.7697 + }, + { + "start": 2535.7, + "end": 2541.1, + "probability": 0.6598 + }, + { + "start": 2541.14, + "end": 2542.82, + "probability": 0.979 + }, + { + "start": 2543.58, + "end": 2545.86, + "probability": 0.889 + }, + { + "start": 2546.38, + "end": 2547.9, + "probability": 0.9143 + }, + { + "start": 2548.46, + "end": 2549.3, + "probability": 0.897 + }, + { + "start": 2549.7, + "end": 2552.06, + "probability": 0.1258 + }, + { + "start": 2552.58, + "end": 2554.34, + "probability": 0.5449 + }, + { + "start": 2554.46, + "end": 2555.5, + "probability": 0.9882 + }, + { + "start": 2556.26, + "end": 2556.96, + "probability": 0.7509 + }, + { + "start": 2557.06, + "end": 2558.14, + "probability": 0.5904 + }, + { + "start": 2558.22, + "end": 2558.8, + "probability": 0.8304 + }, + { + "start": 2559.56, + "end": 2561.06, + "probability": 0.9668 + }, + { + "start": 2565.08, + "end": 2567.38, + "probability": 0.8008 + }, + { + "start": 2567.9, + "end": 2568.92, + "probability": 0.6529 + }, + { + "start": 2570.44, + "end": 2573.74, + "probability": 0.6017 + }, + { + "start": 2574.72, + "end": 2577.86, + "probability": 0.5446 + }, + { + "start": 2578.64, + "end": 2580.76, + "probability": 0.7939 + }, + { + "start": 2581.22, + "end": 2581.96, + "probability": 0.6985 + }, + { + "start": 2582.24, + "end": 2586.34, + "probability": 0.9823 + }, + { + "start": 2586.48, + "end": 2587.38, + "probability": 0.9464 + }, + { + "start": 2587.5, + "end": 2588.3, + "probability": 0.7052 + }, + { + "start": 2589.2, + "end": 2593.24, + "probability": 0.9959 + }, + { + "start": 2593.24, + "end": 2598.04, + "probability": 0.9288 + }, + { + "start": 2598.88, + "end": 2601.5, + "probability": 0.9936 + }, + { + "start": 2602.42, + "end": 2605.72, + "probability": 0.99 + }, + { + "start": 2607.02, + "end": 2610.62, + "probability": 0.8633 + }, + { + "start": 2611.4, + "end": 2615.52, + "probability": 0.9958 + }, + { + "start": 2615.58, + "end": 2617.3, + "probability": 0.7085 + }, + { + "start": 2617.56, + "end": 2619.0, + "probability": 0.7554 + }, + { + "start": 2619.08, + "end": 2620.54, + "probability": 0.9838 + }, + { + "start": 2621.12, + "end": 2625.52, + "probability": 0.8665 + }, + { + "start": 2626.0, + "end": 2626.8, + "probability": 0.774 + }, + { + "start": 2626.84, + "end": 2627.6, + "probability": 0.8579 + }, + { + "start": 2627.66, + "end": 2628.8, + "probability": 0.9148 + }, + { + "start": 2628.84, + "end": 2630.04, + "probability": 0.9443 + }, + { + "start": 2630.6, + "end": 2631.32, + "probability": 0.6726 + }, + { + "start": 2631.46, + "end": 2632.94, + "probability": 0.8757 + }, + { + "start": 2633.06, + "end": 2637.44, + "probability": 0.9974 + }, + { + "start": 2637.62, + "end": 2643.22, + "probability": 0.8723 + }, + { + "start": 2643.4, + "end": 2647.2, + "probability": 0.8945 + }, + { + "start": 2647.32, + "end": 2649.52, + "probability": 0.9617 + }, + { + "start": 2650.36, + "end": 2654.44, + "probability": 0.9824 + }, + { + "start": 2655.3, + "end": 2656.04, + "probability": 0.9536 + }, + { + "start": 2656.6, + "end": 2660.56, + "probability": 0.9971 + }, + { + "start": 2661.16, + "end": 2663.02, + "probability": 0.6859 + }, + { + "start": 2663.58, + "end": 2667.1, + "probability": 0.8334 + }, + { + "start": 2667.74, + "end": 2673.92, + "probability": 0.8042 + }, + { + "start": 2676.56, + "end": 2677.58, + "probability": 0.7951 + }, + { + "start": 2679.96, + "end": 2681.16, + "probability": 0.965 + }, + { + "start": 2682.66, + "end": 2683.14, + "probability": 0.9902 + }, + { + "start": 2683.76, + "end": 2687.38, + "probability": 0.9565 + }, + { + "start": 2687.46, + "end": 2689.44, + "probability": 0.9407 + }, + { + "start": 2690.48, + "end": 2693.56, + "probability": 0.6796 + }, + { + "start": 2694.52, + "end": 2696.8, + "probability": 0.891 + }, + { + "start": 2697.68, + "end": 2703.26, + "probability": 0.5082 + }, + { + "start": 2703.5, + "end": 2704.04, + "probability": 0.5601 + }, + { + "start": 2704.52, + "end": 2706.26, + "probability": 0.9943 + }, + { + "start": 2706.4, + "end": 2707.78, + "probability": 0.8219 + }, + { + "start": 2708.08, + "end": 2709.28, + "probability": 0.9771 + }, + { + "start": 2710.18, + "end": 2710.98, + "probability": 0.5823 + }, + { + "start": 2711.02, + "end": 2712.2, + "probability": 0.7671 + }, + { + "start": 2712.28, + "end": 2715.96, + "probability": 0.9954 + }, + { + "start": 2716.38, + "end": 2718.5, + "probability": 0.8735 + }, + { + "start": 2718.5, + "end": 2721.98, + "probability": 0.9899 + }, + { + "start": 2722.5, + "end": 2725.12, + "probability": 0.8604 + }, + { + "start": 2726.42, + "end": 2727.02, + "probability": 0.7817 + }, + { + "start": 2728.96, + "end": 2729.8, + "probability": 0.8246 + }, + { + "start": 2730.88, + "end": 2733.06, + "probability": 0.838 + }, + { + "start": 2734.12, + "end": 2734.72, + "probability": 0.9429 + }, + { + "start": 2734.82, + "end": 2736.3, + "probability": 0.9457 + }, + { + "start": 2736.76, + "end": 2739.24, + "probability": 0.8164 + }, + { + "start": 2739.38, + "end": 2740.94, + "probability": 0.7833 + }, + { + "start": 2741.54, + "end": 2744.5, + "probability": 0.7477 + }, + { + "start": 2750.46, + "end": 2754.28, + "probability": 0.7352 + }, + { + "start": 2755.04, + "end": 2758.92, + "probability": 0.8944 + }, + { + "start": 2759.44, + "end": 2760.56, + "probability": 0.6366 + }, + { + "start": 2761.8, + "end": 2762.56, + "probability": 0.7131 + }, + { + "start": 2763.46, + "end": 2767.9, + "probability": 0.9681 + }, + { + "start": 2768.42, + "end": 2773.38, + "probability": 0.7206 + }, + { + "start": 2773.98, + "end": 2776.12, + "probability": 0.9623 + }, + { + "start": 2777.14, + "end": 2780.9, + "probability": 0.989 + }, + { + "start": 2780.9, + "end": 2783.94, + "probability": 0.9777 + }, + { + "start": 2784.74, + "end": 2787.52, + "probability": 0.9976 + }, + { + "start": 2787.52, + "end": 2792.12, + "probability": 0.9962 + }, + { + "start": 2792.76, + "end": 2795.58, + "probability": 0.7681 + }, + { + "start": 2795.96, + "end": 2797.88, + "probability": 0.7387 + }, + { + "start": 2799.3, + "end": 2802.72, + "probability": 0.8879 + }, + { + "start": 2802.98, + "end": 2806.1, + "probability": 0.9924 + }, + { + "start": 2806.1, + "end": 2810.72, + "probability": 0.9803 + }, + { + "start": 2811.88, + "end": 2815.74, + "probability": 0.9969 + }, + { + "start": 2816.66, + "end": 2817.52, + "probability": 0.8445 + }, + { + "start": 2818.74, + "end": 2822.68, + "probability": 0.9724 + }, + { + "start": 2822.76, + "end": 2823.88, + "probability": 0.8353 + }, + { + "start": 2824.66, + "end": 2825.54, + "probability": 0.7064 + }, + { + "start": 2826.32, + "end": 2829.92, + "probability": 0.9975 + }, + { + "start": 2829.96, + "end": 2831.2, + "probability": 0.7875 + }, + { + "start": 2832.0, + "end": 2836.38, + "probability": 0.9819 + }, + { + "start": 2837.28, + "end": 2840.32, + "probability": 0.9785 + }, + { + "start": 2840.38, + "end": 2846.42, + "probability": 0.9922 + }, + { + "start": 2847.66, + "end": 2849.04, + "probability": 0.5719 + }, + { + "start": 2849.22, + "end": 2850.14, + "probability": 0.9371 + }, + { + "start": 2850.22, + "end": 2852.0, + "probability": 0.9792 + }, + { + "start": 2852.06, + "end": 2855.02, + "probability": 0.9852 + }, + { + "start": 2856.86, + "end": 2860.88, + "probability": 0.4861 + }, + { + "start": 2861.82, + "end": 2862.8, + "probability": 0.8523 + }, + { + "start": 2863.04, + "end": 2864.21, + "probability": 0.953 + }, + { + "start": 2864.76, + "end": 2866.86, + "probability": 0.9946 + }, + { + "start": 2868.04, + "end": 2874.56, + "probability": 0.9946 + }, + { + "start": 2874.64, + "end": 2875.64, + "probability": 0.9139 + }, + { + "start": 2876.28, + "end": 2880.6, + "probability": 0.9817 + }, + { + "start": 2881.42, + "end": 2883.54, + "probability": 0.9507 + }, + { + "start": 2884.62, + "end": 2889.2, + "probability": 0.9424 + }, + { + "start": 2889.2, + "end": 2893.16, + "probability": 0.9825 + }, + { + "start": 2894.32, + "end": 2896.74, + "probability": 0.98 + }, + { + "start": 2897.66, + "end": 2898.74, + "probability": 0.7253 + }, + { + "start": 2898.92, + "end": 2902.1, + "probability": 0.9169 + }, + { + "start": 2903.26, + "end": 2907.94, + "probability": 0.7543 + }, + { + "start": 2908.62, + "end": 2912.2, + "probability": 0.9818 + }, + { + "start": 2913.64, + "end": 2916.56, + "probability": 0.9951 + }, + { + "start": 2916.56, + "end": 2920.58, + "probability": 0.9984 + }, + { + "start": 2921.38, + "end": 2924.92, + "probability": 0.9554 + }, + { + "start": 2925.56, + "end": 2925.98, + "probability": 0.9253 + }, + { + "start": 2926.9, + "end": 2930.14, + "probability": 0.973 + }, + { + "start": 2930.82, + "end": 2931.66, + "probability": 0.5031 + }, + { + "start": 2932.58, + "end": 2934.28, + "probability": 0.9315 + }, + { + "start": 2934.8, + "end": 2938.24, + "probability": 0.8408 + }, + { + "start": 2940.26, + "end": 2943.96, + "probability": 0.96 + }, + { + "start": 2944.64, + "end": 2948.58, + "probability": 0.9888 + }, + { + "start": 2949.84, + "end": 2952.86, + "probability": 0.8125 + }, + { + "start": 2953.46, + "end": 2954.8, + "probability": 0.8416 + }, + { + "start": 2955.34, + "end": 2958.26, + "probability": 0.9796 + }, + { + "start": 2959.2, + "end": 2962.52, + "probability": 0.8253 + }, + { + "start": 2963.16, + "end": 2966.12, + "probability": 0.7212 + }, + { + "start": 2967.16, + "end": 2971.72, + "probability": 0.991 + }, + { + "start": 2972.32, + "end": 2973.64, + "probability": 0.9175 + }, + { + "start": 2974.18, + "end": 2975.38, + "probability": 0.6604 + }, + { + "start": 2975.98, + "end": 2979.1, + "probability": 0.9878 + }, + { + "start": 2979.78, + "end": 2980.08, + "probability": 0.5752 + }, + { + "start": 2980.28, + "end": 2982.74, + "probability": 0.711 + }, + { + "start": 2983.34, + "end": 2989.68, + "probability": 0.9927 + }, + { + "start": 2990.08, + "end": 2993.42, + "probability": 0.9982 + }, + { + "start": 2993.98, + "end": 2995.1, + "probability": 0.968 + }, + { + "start": 2995.74, + "end": 2999.38, + "probability": 0.9901 + }, + { + "start": 2999.94, + "end": 3002.2, + "probability": 0.7882 + }, + { + "start": 3002.9, + "end": 3006.88, + "probability": 0.9865 + }, + { + "start": 3007.38, + "end": 3009.1, + "probability": 0.849 + }, + { + "start": 3009.8, + "end": 3013.8, + "probability": 0.9977 + }, + { + "start": 3013.8, + "end": 3017.92, + "probability": 0.9996 + }, + { + "start": 3018.96, + "end": 3021.32, + "probability": 0.9873 + }, + { + "start": 3021.94, + "end": 3023.46, + "probability": 0.9104 + }, + { + "start": 3024.1, + "end": 3027.26, + "probability": 0.9784 + }, + { + "start": 3027.4, + "end": 3028.88, + "probability": 0.7518 + }, + { + "start": 3030.02, + "end": 3032.02, + "probability": 0.6067 + }, + { + "start": 3032.56, + "end": 3034.62, + "probability": 0.859 + }, + { + "start": 3035.1, + "end": 3039.68, + "probability": 0.9748 + }, + { + "start": 3040.2, + "end": 3042.28, + "probability": 0.9722 + }, + { + "start": 3043.34, + "end": 3046.36, + "probability": 0.9897 + }, + { + "start": 3046.84, + "end": 3048.02, + "probability": 0.688 + }, + { + "start": 3048.38, + "end": 3049.9, + "probability": 0.821 + }, + { + "start": 3050.34, + "end": 3052.96, + "probability": 0.9885 + }, + { + "start": 3053.4, + "end": 3055.24, + "probability": 0.9437 + }, + { + "start": 3055.88, + "end": 3058.94, + "probability": 0.993 + }, + { + "start": 3059.48, + "end": 3064.24, + "probability": 0.9943 + }, + { + "start": 3065.38, + "end": 3066.08, + "probability": 0.6558 + }, + { + "start": 3066.46, + "end": 3071.08, + "probability": 0.8771 + }, + { + "start": 3071.9, + "end": 3073.36, + "probability": 0.8666 + }, + { + "start": 3073.48, + "end": 3076.46, + "probability": 0.9763 + }, + { + "start": 3077.18, + "end": 3079.9, + "probability": 0.8566 + }, + { + "start": 3080.68, + "end": 3083.76, + "probability": 0.9829 + }, + { + "start": 3084.7, + "end": 3090.26, + "probability": 0.9935 + }, + { + "start": 3090.26, + "end": 3096.7, + "probability": 0.9832 + }, + { + "start": 3097.24, + "end": 3098.22, + "probability": 0.9092 + }, + { + "start": 3099.52, + "end": 3101.56, + "probability": 0.9797 + }, + { + "start": 3102.12, + "end": 3104.02, + "probability": 0.9937 + }, + { + "start": 3104.44, + "end": 3108.0, + "probability": 0.9585 + }, + { + "start": 3108.0, + "end": 3112.18, + "probability": 0.9974 + }, + { + "start": 3112.22, + "end": 3114.44, + "probability": 0.9389 + }, + { + "start": 3115.06, + "end": 3120.08, + "probability": 0.9902 + }, + { + "start": 3121.04, + "end": 3123.84, + "probability": 0.9969 + }, + { + "start": 3124.4, + "end": 3127.14, + "probability": 0.9804 + }, + { + "start": 3127.8, + "end": 3129.28, + "probability": 0.9811 + }, + { + "start": 3130.04, + "end": 3132.66, + "probability": 0.9633 + }, + { + "start": 3133.08, + "end": 3134.64, + "probability": 0.8419 + }, + { + "start": 3134.68, + "end": 3136.8, + "probability": 0.6995 + }, + { + "start": 3137.5, + "end": 3139.98, + "probability": 0.7629 + }, + { + "start": 3140.54, + "end": 3143.24, + "probability": 0.995 + }, + { + "start": 3143.9, + "end": 3145.76, + "probability": 0.9433 + }, + { + "start": 3146.72, + "end": 3148.02, + "probability": 0.9316 + }, + { + "start": 3148.72, + "end": 3149.9, + "probability": 0.9432 + }, + { + "start": 3150.46, + "end": 3153.66, + "probability": 0.9918 + }, + { + "start": 3154.88, + "end": 3157.42, + "probability": 0.9971 + }, + { + "start": 3158.36, + "end": 3161.32, + "probability": 0.9761 + }, + { + "start": 3162.06, + "end": 3164.42, + "probability": 0.8963 + }, + { + "start": 3164.94, + "end": 3166.52, + "probability": 0.9619 + }, + { + "start": 3166.8, + "end": 3168.48, + "probability": 0.8245 + }, + { + "start": 3169.04, + "end": 3171.54, + "probability": 0.9864 + }, + { + "start": 3172.88, + "end": 3174.4, + "probability": 0.979 + }, + { + "start": 3174.84, + "end": 3175.84, + "probability": 0.9823 + }, + { + "start": 3176.32, + "end": 3178.96, + "probability": 0.8694 + }, + { + "start": 3179.6, + "end": 3184.12, + "probability": 0.9962 + }, + { + "start": 3184.74, + "end": 3188.42, + "probability": 0.9275 + }, + { + "start": 3189.46, + "end": 3191.76, + "probability": 0.9757 + }, + { + "start": 3192.3, + "end": 3197.44, + "probability": 0.9879 + }, + { + "start": 3198.22, + "end": 3199.38, + "probability": 0.7179 + }, + { + "start": 3199.54, + "end": 3201.32, + "probability": 0.6582 + }, + { + "start": 3201.78, + "end": 3206.56, + "probability": 0.958 + }, + { + "start": 3207.32, + "end": 3209.98, + "probability": 0.9943 + }, + { + "start": 3210.32, + "end": 3211.76, + "probability": 0.8954 + }, + { + "start": 3212.34, + "end": 3214.44, + "probability": 0.9585 + }, + { + "start": 3215.04, + "end": 3217.5, + "probability": 0.99 + }, + { + "start": 3218.38, + "end": 3222.06, + "probability": 0.9667 + }, + { + "start": 3223.46, + "end": 3225.4, + "probability": 0.9739 + }, + { + "start": 3225.96, + "end": 3227.92, + "probability": 0.9701 + }, + { + "start": 3228.52, + "end": 3230.94, + "probability": 0.8616 + }, + { + "start": 3232.36, + "end": 3237.78, + "probability": 0.9971 + }, + { + "start": 3238.42, + "end": 3239.12, + "probability": 0.9263 + }, + { + "start": 3239.6, + "end": 3244.22, + "probability": 0.9685 + }, + { + "start": 3244.78, + "end": 3246.3, + "probability": 0.9604 + }, + { + "start": 3247.42, + "end": 3248.6, + "probability": 0.9029 + }, + { + "start": 3249.74, + "end": 3253.16, + "probability": 0.8741 + }, + { + "start": 3253.72, + "end": 3257.06, + "probability": 0.8552 + }, + { + "start": 3257.66, + "end": 3260.18, + "probability": 0.9892 + }, + { + "start": 3260.86, + "end": 3262.2, + "probability": 0.97 + }, + { + "start": 3262.92, + "end": 3269.92, + "probability": 0.9518 + }, + { + "start": 3270.22, + "end": 3270.87, + "probability": 0.8128 + }, + { + "start": 3272.0, + "end": 3274.08, + "probability": 0.7526 + }, + { + "start": 3274.62, + "end": 3277.2, + "probability": 0.9841 + }, + { + "start": 3277.82, + "end": 3279.72, + "probability": 0.9833 + }, + { + "start": 3279.88, + "end": 3282.34, + "probability": 0.9006 + }, + { + "start": 3282.56, + "end": 3282.6, + "probability": 0.1136 + }, + { + "start": 3283.56, + "end": 3284.22, + "probability": 0.9746 + }, + { + "start": 3285.66, + "end": 3290.66, + "probability": 0.9956 + }, + { + "start": 3290.72, + "end": 3292.16, + "probability": 0.9655 + }, + { + "start": 3293.32, + "end": 3297.34, + "probability": 0.8705 + }, + { + "start": 3297.92, + "end": 3301.72, + "probability": 0.9996 + }, + { + "start": 3302.28, + "end": 3303.44, + "probability": 0.9993 + }, + { + "start": 3304.08, + "end": 3308.02, + "probability": 0.9816 + }, + { + "start": 3309.16, + "end": 3313.6, + "probability": 0.9946 + }, + { + "start": 3313.6, + "end": 3317.64, + "probability": 0.9883 + }, + { + "start": 3318.4, + "end": 3322.22, + "probability": 0.9847 + }, + { + "start": 3322.26, + "end": 3323.33, + "probability": 0.7416 + }, + { + "start": 3324.38, + "end": 3326.24, + "probability": 0.9067 + }, + { + "start": 3327.28, + "end": 3329.36, + "probability": 0.9964 + }, + { + "start": 3330.36, + "end": 3333.62, + "probability": 0.9548 + }, + { + "start": 3334.28, + "end": 3335.94, + "probability": 0.9691 + }, + { + "start": 3336.34, + "end": 3338.86, + "probability": 0.9899 + }, + { + "start": 3339.34, + "end": 3340.26, + "probability": 0.875 + }, + { + "start": 3340.82, + "end": 3342.52, + "probability": 0.979 + }, + { + "start": 3343.24, + "end": 3344.28, + "probability": 0.7475 + }, + { + "start": 3345.04, + "end": 3348.38, + "probability": 0.98 + }, + { + "start": 3348.94, + "end": 3350.18, + "probability": 0.932 + }, + { + "start": 3350.82, + "end": 3351.45, + "probability": 0.749 + }, + { + "start": 3351.8, + "end": 3353.64, + "probability": 0.9293 + }, + { + "start": 3354.1, + "end": 3355.08, + "probability": 0.8238 + }, + { + "start": 3355.9, + "end": 3357.98, + "probability": 0.972 + }, + { + "start": 3358.7, + "end": 3361.98, + "probability": 0.9202 + }, + { + "start": 3362.5, + "end": 3363.56, + "probability": 0.8213 + }, + { + "start": 3364.2, + "end": 3368.64, + "probability": 0.9955 + }, + { + "start": 3368.74, + "end": 3369.3, + "probability": 0.8243 + }, + { + "start": 3369.38, + "end": 3370.12, + "probability": 0.7204 + }, + { + "start": 3370.64, + "end": 3372.4, + "probability": 0.9863 + }, + { + "start": 3372.98, + "end": 3375.34, + "probability": 0.9909 + }, + { + "start": 3375.96, + "end": 3379.48, + "probability": 0.993 + }, + { + "start": 3379.68, + "end": 3381.56, + "probability": 0.8598 + }, + { + "start": 3382.32, + "end": 3383.79, + "probability": 0.9636 + }, + { + "start": 3384.44, + "end": 3386.72, + "probability": 0.9517 + }, + { + "start": 3387.3, + "end": 3389.0, + "probability": 0.9983 + }, + { + "start": 3390.2, + "end": 3391.56, + "probability": 0.9421 + }, + { + "start": 3392.28, + "end": 3394.68, + "probability": 0.9602 + }, + { + "start": 3395.48, + "end": 3398.62, + "probability": 0.9971 + }, + { + "start": 3399.34, + "end": 3400.38, + "probability": 0.8104 + }, + { + "start": 3401.08, + "end": 3402.84, + "probability": 0.9907 + }, + { + "start": 3403.44, + "end": 3404.8, + "probability": 0.9847 + }, + { + "start": 3406.8, + "end": 3407.12, + "probability": 0.7344 + }, + { + "start": 3407.98, + "end": 3411.36, + "probability": 0.9662 + }, + { + "start": 3411.9, + "end": 3414.7, + "probability": 0.9886 + }, + { + "start": 3414.9, + "end": 3417.58, + "probability": 0.7554 + }, + { + "start": 3418.22, + "end": 3420.38, + "probability": 0.9902 + }, + { + "start": 3421.0, + "end": 3422.16, + "probability": 0.8182 + }, + { + "start": 3422.86, + "end": 3424.84, + "probability": 0.9811 + }, + { + "start": 3425.02, + "end": 3425.87, + "probability": 0.9675 + }, + { + "start": 3426.56, + "end": 3427.46, + "probability": 0.9847 + }, + { + "start": 3427.52, + "end": 3428.66, + "probability": 0.9865 + }, + { + "start": 3428.74, + "end": 3430.0, + "probability": 0.9199 + }, + { + "start": 3430.7, + "end": 3433.36, + "probability": 0.7226 + }, + { + "start": 3434.44, + "end": 3435.48, + "probability": 0.7644 + }, + { + "start": 3435.62, + "end": 3437.92, + "probability": 0.8267 + }, + { + "start": 3439.32, + "end": 3442.12, + "probability": 0.992 + }, + { + "start": 3443.08, + "end": 3445.46, + "probability": 0.9886 + }, + { + "start": 3446.6, + "end": 3448.8, + "probability": 0.9978 + }, + { + "start": 3449.7, + "end": 3451.34, + "probability": 0.9907 + }, + { + "start": 3452.2, + "end": 3455.38, + "probability": 0.9944 + }, + { + "start": 3456.12, + "end": 3457.76, + "probability": 0.989 + }, + { + "start": 3457.84, + "end": 3458.56, + "probability": 0.8657 + }, + { + "start": 3458.96, + "end": 3460.14, + "probability": 0.9439 + }, + { + "start": 3460.54, + "end": 3461.28, + "probability": 0.9044 + }, + { + "start": 3461.76, + "end": 3463.72, + "probability": 0.8411 + }, + { + "start": 3464.68, + "end": 3466.78, + "probability": 0.9851 + }, + { + "start": 3467.42, + "end": 3470.1, + "probability": 0.9948 + }, + { + "start": 3470.1, + "end": 3474.88, + "probability": 0.9491 + }, + { + "start": 3475.6, + "end": 3478.68, + "probability": 0.9502 + }, + { + "start": 3479.8, + "end": 3483.68, + "probability": 0.8304 + }, + { + "start": 3484.24, + "end": 3486.88, + "probability": 0.9334 + }, + { + "start": 3487.38, + "end": 3489.98, + "probability": 0.9678 + }, + { + "start": 3490.64, + "end": 3492.2, + "probability": 0.9575 + }, + { + "start": 3492.64, + "end": 3495.32, + "probability": 0.9856 + }, + { + "start": 3496.04, + "end": 3500.18, + "probability": 0.9985 + }, + { + "start": 3500.32, + "end": 3504.04, + "probability": 0.9366 + }, + { + "start": 3504.88, + "end": 3507.88, + "probability": 0.9978 + }, + { + "start": 3508.74, + "end": 3511.92, + "probability": 0.9905 + }, + { + "start": 3512.74, + "end": 3515.02, + "probability": 0.7583 + }, + { + "start": 3515.78, + "end": 3517.7, + "probability": 0.847 + }, + { + "start": 3518.3, + "end": 3519.46, + "probability": 0.9701 + }, + { + "start": 3520.02, + "end": 3521.24, + "probability": 0.986 + }, + { + "start": 3521.78, + "end": 3528.24, + "probability": 0.9971 + }, + { + "start": 3529.04, + "end": 3531.9, + "probability": 0.9347 + }, + { + "start": 3532.62, + "end": 3533.38, + "probability": 0.3542 + }, + { + "start": 3534.12, + "end": 3535.58, + "probability": 0.9514 + }, + { + "start": 3535.78, + "end": 3536.94, + "probability": 0.9128 + }, + { + "start": 3537.48, + "end": 3539.14, + "probability": 0.9956 + }, + { + "start": 3539.7, + "end": 3541.0, + "probability": 0.9346 + }, + { + "start": 3541.18, + "end": 3541.94, + "probability": 0.9901 + }, + { + "start": 3541.98, + "end": 3543.34, + "probability": 0.9855 + }, + { + "start": 3543.4, + "end": 3543.88, + "probability": 0.9499 + }, + { + "start": 3545.12, + "end": 3546.6, + "probability": 0.7783 + }, + { + "start": 3547.14, + "end": 3547.92, + "probability": 0.6474 + }, + { + "start": 3551.32, + "end": 3552.46, + "probability": 0.7292 + }, + { + "start": 3552.58, + "end": 3553.8, + "probability": 0.8793 + }, + { + "start": 3553.9, + "end": 3555.46, + "probability": 0.806 + }, + { + "start": 3555.5, + "end": 3557.9, + "probability": 0.9927 + }, + { + "start": 3558.46, + "end": 3562.63, + "probability": 0.9856 + }, + { + "start": 3564.0, + "end": 3565.44, + "probability": 0.3489 + }, + { + "start": 3565.88, + "end": 3569.36, + "probability": 0.9967 + }, + { + "start": 3569.36, + "end": 3573.92, + "probability": 0.9912 + }, + { + "start": 3574.28, + "end": 3575.68, + "probability": 0.8646 + }, + { + "start": 3576.16, + "end": 3581.08, + "probability": 0.997 + }, + { + "start": 3581.14, + "end": 3586.61, + "probability": 0.8092 + }, + { + "start": 3587.14, + "end": 3588.78, + "probability": 0.7056 + }, + { + "start": 3589.56, + "end": 3591.32, + "probability": 0.8704 + }, + { + "start": 3591.7, + "end": 3592.86, + "probability": 0.6773 + }, + { + "start": 3593.18, + "end": 3595.64, + "probability": 0.6867 + }, + { + "start": 3595.84, + "end": 3596.24, + "probability": 0.8209 + }, + { + "start": 3596.46, + "end": 3600.28, + "probability": 0.9924 + }, + { + "start": 3600.86, + "end": 3603.4, + "probability": 0.896 + }, + { + "start": 3603.48, + "end": 3606.47, + "probability": 0.8655 + }, + { + "start": 3607.22, + "end": 3608.88, + "probability": 0.6959 + }, + { + "start": 3609.58, + "end": 3609.7, + "probability": 0.7813 + }, + { + "start": 3610.32, + "end": 3612.84, + "probability": 0.7722 + }, + { + "start": 3614.92, + "end": 3619.08, + "probability": 0.975 + }, + { + "start": 3631.96, + "end": 3633.72, + "probability": 0.7274 + }, + { + "start": 3636.18, + "end": 3639.4, + "probability": 0.9766 + }, + { + "start": 3639.4, + "end": 3645.76, + "probability": 0.9924 + }, + { + "start": 3646.42, + "end": 3647.04, + "probability": 0.959 + }, + { + "start": 3647.12, + "end": 3652.74, + "probability": 0.9542 + }, + { + "start": 3654.2, + "end": 3657.4, + "probability": 0.9891 + }, + { + "start": 3658.64, + "end": 3660.68, + "probability": 0.9752 + }, + { + "start": 3661.92, + "end": 3664.56, + "probability": 0.974 + }, + { + "start": 3664.66, + "end": 3666.98, + "probability": 0.681 + }, + { + "start": 3667.1, + "end": 3667.96, + "probability": 0.8982 + }, + { + "start": 3669.02, + "end": 3672.78, + "probability": 0.86 + }, + { + "start": 3674.02, + "end": 3674.04, + "probability": 0.0569 + }, + { + "start": 3674.04, + "end": 3675.4, + "probability": 0.9331 + }, + { + "start": 3676.84, + "end": 3678.86, + "probability": 0.9381 + }, + { + "start": 3679.86, + "end": 3682.34, + "probability": 0.9967 + }, + { + "start": 3682.34, + "end": 3685.62, + "probability": 0.9995 + }, + { + "start": 3686.78, + "end": 3691.52, + "probability": 0.9974 + }, + { + "start": 3691.92, + "end": 3693.54, + "probability": 0.917 + }, + { + "start": 3695.14, + "end": 3698.88, + "probability": 0.9946 + }, + { + "start": 3700.26, + "end": 3705.84, + "probability": 0.8551 + }, + { + "start": 3706.3, + "end": 3710.18, + "probability": 0.9491 + }, + { + "start": 3710.74, + "end": 3713.34, + "probability": 0.9843 + }, + { + "start": 3714.62, + "end": 3715.28, + "probability": 0.5567 + }, + { + "start": 3716.1, + "end": 3718.9, + "probability": 0.9201 + }, + { + "start": 3718.9, + "end": 3721.86, + "probability": 0.9905 + }, + { + "start": 3722.98, + "end": 3724.04, + "probability": 0.7941 + }, + { + "start": 3724.38, + "end": 3729.16, + "probability": 0.912 + }, + { + "start": 3729.86, + "end": 3732.88, + "probability": 0.9935 + }, + { + "start": 3733.8, + "end": 3736.52, + "probability": 0.9391 + }, + { + "start": 3737.66, + "end": 3738.6, + "probability": 0.7708 + }, + { + "start": 3739.44, + "end": 3742.28, + "probability": 0.9764 + }, + { + "start": 3742.74, + "end": 3743.36, + "probability": 0.6027 + }, + { + "start": 3743.76, + "end": 3745.08, + "probability": 0.9897 + }, + { + "start": 3746.06, + "end": 3747.2, + "probability": 0.9445 + }, + { + "start": 3747.84, + "end": 3750.72, + "probability": 0.9894 + }, + { + "start": 3751.82, + "end": 3754.1, + "probability": 0.9912 + }, + { + "start": 3754.72, + "end": 3755.62, + "probability": 0.8023 + }, + { + "start": 3755.8, + "end": 3756.38, + "probability": 0.2828 + }, + { + "start": 3756.44, + "end": 3758.64, + "probability": 0.6429 + }, + { + "start": 3758.66, + "end": 3761.04, + "probability": 0.9812 + }, + { + "start": 3761.7, + "end": 3761.98, + "probability": 0.2779 + }, + { + "start": 3761.98, + "end": 3761.98, + "probability": 0.0122 + }, + { + "start": 3761.98, + "end": 3761.98, + "probability": 0.0947 + }, + { + "start": 3761.98, + "end": 3763.62, + "probability": 0.4726 + }, + { + "start": 3763.78, + "end": 3764.64, + "probability": 0.7688 + }, + { + "start": 3765.38, + "end": 3766.5, + "probability": 0.0353 + }, + { + "start": 3766.92, + "end": 3767.76, + "probability": 0.6929 + }, + { + "start": 3767.86, + "end": 3768.46, + "probability": 0.3045 + }, + { + "start": 3768.46, + "end": 3768.58, + "probability": 0.5922 + }, + { + "start": 3770.85, + "end": 3775.7, + "probability": 0.6252 + }, + { + "start": 3775.7, + "end": 3777.74, + "probability": 0.7499 + }, + { + "start": 3777.98, + "end": 3779.86, + "probability": 0.8551 + }, + { + "start": 3779.94, + "end": 3781.02, + "probability": 0.8919 + }, + { + "start": 3781.68, + "end": 3782.58, + "probability": 0.6897 + }, + { + "start": 3783.36, + "end": 3785.22, + "probability": 0.7394 + }, + { + "start": 3787.16, + "end": 3788.94, + "probability": 0.2359 + }, + { + "start": 3788.94, + "end": 3792.13, + "probability": 0.821 + }, + { + "start": 3792.48, + "end": 3794.16, + "probability": 0.9591 + }, + { + "start": 3794.72, + "end": 3795.28, + "probability": 0.0642 + }, + { + "start": 3795.33, + "end": 3796.92, + "probability": 0.1782 + }, + { + "start": 3798.64, + "end": 3798.64, + "probability": 0.155 + }, + { + "start": 3798.82, + "end": 3799.98, + "probability": 0.1038 + }, + { + "start": 3800.04, + "end": 3800.42, + "probability": 0.2426 + }, + { + "start": 3800.58, + "end": 3801.02, + "probability": 0.0611 + }, + { + "start": 3801.18, + "end": 3802.42, + "probability": 0.0381 + }, + { + "start": 3802.62, + "end": 3803.88, + "probability": 0.106 + }, + { + "start": 3804.04, + "end": 3809.82, + "probability": 0.0434 + }, + { + "start": 3809.82, + "end": 3809.82, + "probability": 0.009 + }, + { + "start": 3810.36, + "end": 3810.68, + "probability": 0.0323 + }, + { + "start": 3810.68, + "end": 3810.68, + "probability": 0.0485 + }, + { + "start": 3810.68, + "end": 3810.68, + "probability": 0.1363 + }, + { + "start": 3810.68, + "end": 3810.68, + "probability": 0.0429 + }, + { + "start": 3810.68, + "end": 3812.58, + "probability": 0.8002 + }, + { + "start": 3812.62, + "end": 3814.64, + "probability": 0.8169 + }, + { + "start": 3815.42, + "end": 3817.26, + "probability": 0.951 + }, + { + "start": 3817.34, + "end": 3817.9, + "probability": 0.4744 + }, + { + "start": 3818.0, + "end": 3818.6, + "probability": 0.7432 + }, + { + "start": 3818.74, + "end": 3819.3, + "probability": 0.3788 + }, + { + "start": 3819.72, + "end": 3821.02, + "probability": 0.8058 + }, + { + "start": 3821.08, + "end": 3823.0, + "probability": 0.8967 + }, + { + "start": 3823.18, + "end": 3824.78, + "probability": 0.9006 + }, + { + "start": 3825.22, + "end": 3828.81, + "probability": 0.9702 + }, + { + "start": 3829.72, + "end": 3832.38, + "probability": 0.8675 + }, + { + "start": 3832.98, + "end": 3836.48, + "probability": 0.9506 + }, + { + "start": 3837.28, + "end": 3837.34, + "probability": 0.1535 + }, + { + "start": 3837.34, + "end": 3837.34, + "probability": 0.0655 + }, + { + "start": 3837.34, + "end": 3840.1, + "probability": 0.9819 + }, + { + "start": 3840.1, + "end": 3844.96, + "probability": 0.983 + }, + { + "start": 3844.98, + "end": 3846.78, + "probability": 0.5694 + }, + { + "start": 3847.56, + "end": 3849.48, + "probability": 0.957 + }, + { + "start": 3849.86, + "end": 3853.3, + "probability": 0.9633 + }, + { + "start": 3854.14, + "end": 3854.9, + "probability": 0.9536 + }, + { + "start": 3855.72, + "end": 3857.78, + "probability": 0.9859 + }, + { + "start": 3858.74, + "end": 3862.28, + "probability": 0.9908 + }, + { + "start": 3862.28, + "end": 3866.36, + "probability": 0.9596 + }, + { + "start": 3867.4, + "end": 3868.86, + "probability": 0.7078 + }, + { + "start": 3868.9, + "end": 3871.6, + "probability": 0.9832 + }, + { + "start": 3872.3, + "end": 3873.04, + "probability": 0.8733 + }, + { + "start": 3873.78, + "end": 3875.04, + "probability": 0.671 + }, + { + "start": 3876.54, + "end": 3878.1, + "probability": 0.9724 + }, + { + "start": 3878.12, + "end": 3879.6, + "probability": 0.8975 + }, + { + "start": 3880.06, + "end": 3882.82, + "probability": 0.9793 + }, + { + "start": 3886.7, + "end": 3886.92, + "probability": 0.1778 + }, + { + "start": 3886.92, + "end": 3888.34, + "probability": 0.8166 + }, + { + "start": 3889.52, + "end": 3891.3, + "probability": 0.9386 + }, + { + "start": 3892.22, + "end": 3895.2, + "probability": 0.7026 + }, + { + "start": 3895.5, + "end": 3898.58, + "probability": 0.823 + }, + { + "start": 3898.7, + "end": 3903.3, + "probability": 0.9478 + }, + { + "start": 3903.74, + "end": 3905.89, + "probability": 0.9587 + }, + { + "start": 3906.14, + "end": 3911.7, + "probability": 0.9299 + }, + { + "start": 3912.08, + "end": 3912.94, + "probability": 0.6298 + }, + { + "start": 3913.02, + "end": 3913.8, + "probability": 0.8812 + }, + { + "start": 3913.86, + "end": 3914.62, + "probability": 0.683 + }, + { + "start": 3914.7, + "end": 3915.94, + "probability": 0.9824 + }, + { + "start": 3916.32, + "end": 3917.44, + "probability": 0.2419 + }, + { + "start": 3918.28, + "end": 3920.26, + "probability": 0.8841 + }, + { + "start": 3921.32, + "end": 3925.06, + "probability": 0.9125 + }, + { + "start": 3925.16, + "end": 3925.32, + "probability": 0.4867 + }, + { + "start": 3925.4, + "end": 3927.26, + "probability": 0.551 + }, + { + "start": 3927.5, + "end": 3928.32, + "probability": 0.158 + }, + { + "start": 3928.6, + "end": 3929.16, + "probability": 0.6191 + }, + { + "start": 3929.38, + "end": 3933.28, + "probability": 0.7991 + }, + { + "start": 3933.4, + "end": 3934.52, + "probability": 0.9131 + }, + { + "start": 3936.2, + "end": 3939.96, + "probability": 0.9922 + }, + { + "start": 3940.1, + "end": 3942.92, + "probability": 0.9806 + }, + { + "start": 3943.04, + "end": 3943.8, + "probability": 0.6791 + }, + { + "start": 3944.94, + "end": 3948.74, + "probability": 0.9775 + }, + { + "start": 3950.08, + "end": 3952.76, + "probability": 0.9691 + }, + { + "start": 3954.02, + "end": 3957.24, + "probability": 0.4132 + }, + { + "start": 3957.24, + "end": 3958.98, + "probability": 0.3399 + }, + { + "start": 3959.4, + "end": 3962.28, + "probability": 0.402 + }, + { + "start": 3962.4, + "end": 3962.5, + "probability": 0.3855 + }, + { + "start": 3962.5, + "end": 3964.6, + "probability": 0.7744 + }, + { + "start": 3965.06, + "end": 3967.64, + "probability": 0.8328 + }, + { + "start": 3967.86, + "end": 3968.5, + "probability": 0.7387 + }, + { + "start": 3969.56, + "end": 3971.5, + "probability": 0.9412 + }, + { + "start": 3971.6, + "end": 3972.02, + "probability": 0.7978 + }, + { + "start": 3972.06, + "end": 3972.34, + "probability": 0.8208 + }, + { + "start": 3972.4, + "end": 3973.26, + "probability": 0.8291 + }, + { + "start": 3973.32, + "end": 3973.78, + "probability": 0.6068 + }, + { + "start": 3973.96, + "end": 3974.6, + "probability": 0.6981 + }, + { + "start": 3975.16, + "end": 3977.18, + "probability": 0.876 + }, + { + "start": 3978.02, + "end": 3978.62, + "probability": 0.7992 + }, + { + "start": 3978.66, + "end": 3982.84, + "probability": 0.777 + }, + { + "start": 3983.08, + "end": 3984.72, + "probability": 0.7691 + }, + { + "start": 3984.86, + "end": 3986.21, + "probability": 0.5916 + }, + { + "start": 3987.34, + "end": 3988.28, + "probability": 0.8314 + }, + { + "start": 3989.38, + "end": 3993.5, + "probability": 0.9957 + }, + { + "start": 3995.06, + "end": 3996.96, + "probability": 0.2011 + }, + { + "start": 3997.32, + "end": 3998.12, + "probability": 0.2059 + }, + { + "start": 3998.14, + "end": 3999.4, + "probability": 0.7073 + }, + { + "start": 3999.46, + "end": 4000.34, + "probability": 0.2142 + }, + { + "start": 4000.72, + "end": 4001.94, + "probability": 0.9478 + }, + { + "start": 4002.72, + "end": 4006.62, + "probability": 0.821 + }, + { + "start": 4006.7, + "end": 4008.02, + "probability": 0.889 + }, + { + "start": 4008.9, + "end": 4010.8, + "probability": 0.9012 + }, + { + "start": 4013.18, + "end": 4014.84, + "probability": 0.9863 + }, + { + "start": 4015.12, + "end": 4017.34, + "probability": 0.9722 + }, + { + "start": 4017.48, + "end": 4018.6, + "probability": 0.9432 + }, + { + "start": 4018.72, + "end": 4020.16, + "probability": 0.5496 + }, + { + "start": 4020.28, + "end": 4021.12, + "probability": 0.2983 + }, + { + "start": 4021.98, + "end": 4024.4, + "probability": 0.9307 + }, + { + "start": 4024.42, + "end": 4025.24, + "probability": 0.6801 + }, + { + "start": 4025.28, + "end": 4026.14, + "probability": 0.7857 + }, + { + "start": 4026.24, + "end": 4026.9, + "probability": 0.7471 + }, + { + "start": 4027.1, + "end": 4028.38, + "probability": 0.9166 + }, + { + "start": 4029.92, + "end": 4030.04, + "probability": 0.0036 + }, + { + "start": 4030.86, + "end": 4032.73, + "probability": 0.3472 + }, + { + "start": 4033.0, + "end": 4033.76, + "probability": 0.5187 + }, + { + "start": 4034.2, + "end": 4035.6, + "probability": 0.0432 + }, + { + "start": 4035.7, + "end": 4036.34, + "probability": 0.1527 + }, + { + "start": 4039.66, + "end": 4041.1, + "probability": 0.3786 + }, + { + "start": 4042.8, + "end": 4046.24, + "probability": 0.1228 + }, + { + "start": 4046.42, + "end": 4048.2, + "probability": 0.8077 + }, + { + "start": 4048.3, + "end": 4048.76, + "probability": 0.5382 + }, + { + "start": 4049.52, + "end": 4050.08, + "probability": 0.1465 + }, + { + "start": 4050.32, + "end": 4052.9, + "probability": 0.9484 + }, + { + "start": 4053.04, + "end": 4055.51, + "probability": 0.7457 + }, + { + "start": 4056.94, + "end": 4058.92, + "probability": 0.98 + }, + { + "start": 4059.24, + "end": 4060.6, + "probability": 0.9354 + }, + { + "start": 4060.96, + "end": 4065.54, + "probability": 0.9938 + }, + { + "start": 4067.04, + "end": 4068.56, + "probability": 0.9874 + }, + { + "start": 4068.96, + "end": 4069.64, + "probability": 0.8051 + }, + { + "start": 4069.8, + "end": 4071.1, + "probability": 0.9824 + }, + { + "start": 4071.16, + "end": 4072.18, + "probability": 0.9878 + }, + { + "start": 4072.28, + "end": 4075.36, + "probability": 0.9624 + }, + { + "start": 4075.6, + "end": 4076.72, + "probability": 0.9805 + }, + { + "start": 4076.78, + "end": 4077.28, + "probability": 0.9643 + }, + { + "start": 4077.3, + "end": 4077.4, + "probability": 0.9847 + }, + { + "start": 4077.84, + "end": 4078.38, + "probability": 0.5946 + }, + { + "start": 4078.52, + "end": 4079.1, + "probability": 0.4076 + }, + { + "start": 4079.22, + "end": 4080.9, + "probability": 0.9915 + }, + { + "start": 4081.48, + "end": 4082.38, + "probability": 0.7485 + }, + { + "start": 4082.54, + "end": 4084.82, + "probability": 0.9509 + }, + { + "start": 4085.08, + "end": 4086.68, + "probability": 0.5482 + }, + { + "start": 4087.2, + "end": 4087.88, + "probability": 0.9709 + }, + { + "start": 4087.98, + "end": 4091.14, + "probability": 0.9209 + }, + { + "start": 4091.46, + "end": 4092.2, + "probability": 0.8075 + }, + { + "start": 4094.6, + "end": 4096.7, + "probability": 0.9762 + }, + { + "start": 4097.66, + "end": 4102.06, + "probability": 0.9946 + }, + { + "start": 4102.4, + "end": 4104.84, + "probability": 0.7513 + }, + { + "start": 4105.82, + "end": 4107.94, + "probability": 0.9338 + }, + { + "start": 4108.04, + "end": 4110.42, + "probability": 0.813 + }, + { + "start": 4111.02, + "end": 4113.08, + "probability": 0.9523 + }, + { + "start": 4114.58, + "end": 4117.88, + "probability": 0.9705 + }, + { + "start": 4118.36, + "end": 4122.44, + "probability": 0.9764 + }, + { + "start": 4122.44, + "end": 4125.64, + "probability": 0.8875 + }, + { + "start": 4126.62, + "end": 4129.14, + "probability": 0.9251 + }, + { + "start": 4129.78, + "end": 4134.04, + "probability": 0.9838 + }, + { + "start": 4135.88, + "end": 4136.9, + "probability": 0.7492 + }, + { + "start": 4137.6, + "end": 4138.56, + "probability": 0.7061 + }, + { + "start": 4139.36, + "end": 4140.78, + "probability": 0.9507 + }, + { + "start": 4141.72, + "end": 4143.1, + "probability": 0.8411 + }, + { + "start": 4143.1, + "end": 4144.4, + "probability": 0.9074 + }, + { + "start": 4144.86, + "end": 4146.5, + "probability": 0.8807 + }, + { + "start": 4147.4, + "end": 4150.7, + "probability": 0.9748 + }, + { + "start": 4151.42, + "end": 4152.36, + "probability": 0.2586 + }, + { + "start": 4153.24, + "end": 4154.3, + "probability": 0.8973 + }, + { + "start": 4154.46, + "end": 4158.88, + "probability": 0.9839 + }, + { + "start": 4159.44, + "end": 4162.91, + "probability": 0.9644 + }, + { + "start": 4164.6, + "end": 4166.0, + "probability": 0.9106 + }, + { + "start": 4166.14, + "end": 4167.6, + "probability": 0.8978 + }, + { + "start": 4167.92, + "end": 4170.5, + "probability": 0.9956 + }, + { + "start": 4170.5, + "end": 4172.8, + "probability": 0.8513 + }, + { + "start": 4172.88, + "end": 4174.44, + "probability": 0.9394 + }, + { + "start": 4175.18, + "end": 4176.66, + "probability": 0.9924 + }, + { + "start": 4176.82, + "end": 4177.56, + "probability": 0.6327 + }, + { + "start": 4177.68, + "end": 4180.18, + "probability": 0.9798 + }, + { + "start": 4180.72, + "end": 4183.22, + "probability": 0.9394 + }, + { + "start": 4184.3, + "end": 4186.54, + "probability": 0.9437 + }, + { + "start": 4187.42, + "end": 4189.08, + "probability": 0.9682 + }, + { + "start": 4189.54, + "end": 4191.06, + "probability": 0.9917 + }, + { + "start": 4191.42, + "end": 4193.16, + "probability": 0.998 + }, + { + "start": 4193.56, + "end": 4196.38, + "probability": 0.9919 + }, + { + "start": 4196.38, + "end": 4201.05, + "probability": 0.9995 + }, + { + "start": 4201.86, + "end": 4201.86, + "probability": 0.2761 + }, + { + "start": 4201.86, + "end": 4201.86, + "probability": 0.3465 + }, + { + "start": 4202.0, + "end": 4203.17, + "probability": 0.7338 + }, + { + "start": 4203.78, + "end": 4205.9, + "probability": 0.9919 + }, + { + "start": 4206.68, + "end": 4208.84, + "probability": 0.8044 + }, + { + "start": 4209.42, + "end": 4212.28, + "probability": 0.7117 + }, + { + "start": 4212.84, + "end": 4214.72, + "probability": 0.8789 + }, + { + "start": 4215.38, + "end": 4220.82, + "probability": 0.9858 + }, + { + "start": 4221.58, + "end": 4224.52, + "probability": 0.9052 + }, + { + "start": 4225.26, + "end": 4228.48, + "probability": 0.8272 + }, + { + "start": 4228.82, + "end": 4231.31, + "probability": 0.9913 + }, + { + "start": 4231.58, + "end": 4236.38, + "probability": 0.9181 + }, + { + "start": 4236.42, + "end": 4240.32, + "probability": 0.9958 + }, + { + "start": 4240.7, + "end": 4245.5, + "probability": 0.9943 + }, + { + "start": 4245.5, + "end": 4248.8, + "probability": 0.9964 + }, + { + "start": 4249.56, + "end": 4253.08, + "probability": 0.7245 + }, + { + "start": 4253.76, + "end": 4257.76, + "probability": 0.9874 + }, + { + "start": 4258.28, + "end": 4261.42, + "probability": 0.9941 + }, + { + "start": 4262.74, + "end": 4263.94, + "probability": 0.7947 + }, + { + "start": 4264.48, + "end": 4265.71, + "probability": 0.8939 + }, + { + "start": 4266.06, + "end": 4270.24, + "probability": 0.9092 + }, + { + "start": 4271.34, + "end": 4272.02, + "probability": 0.6089 + }, + { + "start": 4272.22, + "end": 4274.02, + "probability": 0.9753 + }, + { + "start": 4274.12, + "end": 4276.0, + "probability": 0.8264 + }, + { + "start": 4277.0, + "end": 4277.96, + "probability": 0.5523 + }, + { + "start": 4278.52, + "end": 4282.86, + "probability": 0.9694 + }, + { + "start": 4283.26, + "end": 4283.92, + "probability": 0.9701 + }, + { + "start": 4285.76, + "end": 4288.18, + "probability": 0.982 + }, + { + "start": 4288.66, + "end": 4290.14, + "probability": 0.9843 + }, + { + "start": 4290.3, + "end": 4293.46, + "probability": 0.9665 + }, + { + "start": 4294.04, + "end": 4294.96, + "probability": 0.5059 + }, + { + "start": 4295.52, + "end": 4302.6, + "probability": 0.9842 + }, + { + "start": 4304.16, + "end": 4307.76, + "probability": 0.9133 + }, + { + "start": 4307.76, + "end": 4310.66, + "probability": 0.8959 + }, + { + "start": 4311.56, + "end": 4316.22, + "probability": 0.8787 + }, + { + "start": 4317.18, + "end": 4317.68, + "probability": 0.9814 + }, + { + "start": 4318.56, + "end": 4319.44, + "probability": 0.7892 + }, + { + "start": 4319.86, + "end": 4322.44, + "probability": 0.9521 + }, + { + "start": 4323.68, + "end": 4327.96, + "probability": 0.9956 + }, + { + "start": 4328.06, + "end": 4329.16, + "probability": 0.8156 + }, + { + "start": 4330.12, + "end": 4333.62, + "probability": 0.9816 + }, + { + "start": 4334.44, + "end": 4336.54, + "probability": 0.9914 + }, + { + "start": 4336.7, + "end": 4337.28, + "probability": 0.6169 + }, + { + "start": 4337.38, + "end": 4339.64, + "probability": 0.9667 + }, + { + "start": 4340.38, + "end": 4342.4, + "probability": 0.8932 + }, + { + "start": 4347.86, + "end": 4350.12, + "probability": 0.7926 + }, + { + "start": 4350.82, + "end": 4351.32, + "probability": 0.7445 + }, + { + "start": 4351.42, + "end": 4353.3, + "probability": 0.8611 + }, + { + "start": 4353.34, + "end": 4354.0, + "probability": 0.3937 + }, + { + "start": 4354.14, + "end": 4356.96, + "probability": 0.8548 + }, + { + "start": 4357.4, + "end": 4359.92, + "probability": 0.9405 + }, + { + "start": 4359.92, + "end": 4360.46, + "probability": 0.4995 + }, + { + "start": 4361.22, + "end": 4364.4, + "probability": 0.8317 + }, + { + "start": 4366.08, + "end": 4368.22, + "probability": 0.8866 + }, + { + "start": 4368.7, + "end": 4369.38, + "probability": 0.9129 + }, + { + "start": 4369.44, + "end": 4374.02, + "probability": 0.8672 + }, + { + "start": 4374.06, + "end": 4378.0, + "probability": 0.9578 + }, + { + "start": 4378.54, + "end": 4381.6, + "probability": 0.7953 + }, + { + "start": 4383.34, + "end": 4385.1, + "probability": 0.5659 + }, + { + "start": 4385.66, + "end": 4389.36, + "probability": 0.714 + }, + { + "start": 4389.58, + "end": 4390.3, + "probability": 0.8662 + }, + { + "start": 4391.14, + "end": 4391.92, + "probability": 0.641 + }, + { + "start": 4391.96, + "end": 4394.16, + "probability": 0.6539 + }, + { + "start": 4394.16, + "end": 4394.67, + "probability": 0.9341 + }, + { + "start": 4395.56, + "end": 4396.7, + "probability": 0.6033 + }, + { + "start": 4396.8, + "end": 4398.56, + "probability": 0.4333 + }, + { + "start": 4398.62, + "end": 4399.13, + "probability": 0.7852 + }, + { + "start": 4399.98, + "end": 4403.71, + "probability": 0.9379 + }, + { + "start": 4404.94, + "end": 4406.8, + "probability": 0.9541 + }, + { + "start": 4407.22, + "end": 4411.54, + "probability": 0.9745 + }, + { + "start": 4413.06, + "end": 4414.82, + "probability": 0.7748 + }, + { + "start": 4415.72, + "end": 4418.06, + "probability": 0.9801 + }, + { + "start": 4419.84, + "end": 4420.7, + "probability": 0.8059 + }, + { + "start": 4420.8, + "end": 4421.56, + "probability": 0.6521 + }, + { + "start": 4421.64, + "end": 4424.08, + "probability": 0.8947 + }, + { + "start": 4424.54, + "end": 4426.18, + "probability": 0.9496 + }, + { + "start": 4426.78, + "end": 4428.16, + "probability": 0.962 + }, + { + "start": 4429.28, + "end": 4431.74, + "probability": 0.994 + }, + { + "start": 4432.6, + "end": 4434.32, + "probability": 0.9956 + }, + { + "start": 4434.38, + "end": 4434.94, + "probability": 0.5833 + }, + { + "start": 4434.94, + "end": 4437.1, + "probability": 0.9824 + }, + { + "start": 4439.38, + "end": 4442.88, + "probability": 0.9966 + }, + { + "start": 4444.62, + "end": 4447.18, + "probability": 0.5529 + }, + { + "start": 4447.82, + "end": 4453.18, + "probability": 0.8689 + }, + { + "start": 4454.02, + "end": 4457.56, + "probability": 0.9474 + }, + { + "start": 4458.06, + "end": 4460.42, + "probability": 0.1645 + }, + { + "start": 4460.44, + "end": 4461.91, + "probability": 0.9755 + }, + { + "start": 4462.26, + "end": 4463.26, + "probability": 0.9666 + }, + { + "start": 4463.98, + "end": 4467.28, + "probability": 0.1263 + }, + { + "start": 4467.64, + "end": 4467.66, + "probability": 0.3084 + }, + { + "start": 4467.66, + "end": 4469.23, + "probability": 0.9051 + }, + { + "start": 4470.24, + "end": 4474.05, + "probability": 0.8099 + }, + { + "start": 4474.28, + "end": 4478.34, + "probability": 0.9252 + }, + { + "start": 4478.46, + "end": 4479.12, + "probability": 0.7974 + }, + { + "start": 4479.24, + "end": 4483.76, + "probability": 0.9974 + }, + { + "start": 4483.76, + "end": 4486.68, + "probability": 0.9947 + }, + { + "start": 4487.36, + "end": 4487.84, + "probability": 0.0333 + }, + { + "start": 4487.84, + "end": 4490.74, + "probability": 0.3244 + }, + { + "start": 4490.94, + "end": 4492.44, + "probability": 0.9601 + }, + { + "start": 4493.0, + "end": 4493.62, + "probability": 0.5782 + }, + { + "start": 4495.54, + "end": 4496.68, + "probability": 0.1208 + }, + { + "start": 4496.78, + "end": 4497.98, + "probability": 0.4776 + }, + { + "start": 4498.52, + "end": 4499.6, + "probability": 0.0684 + }, + { + "start": 4502.1, + "end": 4503.42, + "probability": 0.0113 + }, + { + "start": 4506.1, + "end": 4507.9, + "probability": 0.2681 + }, + { + "start": 4508.12, + "end": 4508.54, + "probability": 0.1734 + }, + { + "start": 4509.78, + "end": 4512.38, + "probability": 0.9052 + }, + { + "start": 4513.76, + "end": 4517.56, + "probability": 0.9279 + }, + { + "start": 4518.28, + "end": 4521.62, + "probability": 0.9797 + }, + { + "start": 4522.0, + "end": 4525.26, + "probability": 0.5458 + }, + { + "start": 4525.46, + "end": 4530.82, + "probability": 0.7826 + }, + { + "start": 4530.86, + "end": 4533.16, + "probability": 0.1582 + }, + { + "start": 4533.16, + "end": 4536.08, + "probability": 0.9163 + }, + { + "start": 4538.76, + "end": 4542.22, + "probability": 0.9915 + }, + { + "start": 4542.22, + "end": 4545.6, + "probability": 0.9974 + }, + { + "start": 4545.66, + "end": 4546.0, + "probability": 0.555 + }, + { + "start": 4546.12, + "end": 4548.74, + "probability": 0.9044 + }, + { + "start": 4548.86, + "end": 4549.48, + "probability": 0.8155 + }, + { + "start": 4550.32, + "end": 4552.1, + "probability": 0.9292 + }, + { + "start": 4552.48, + "end": 4558.8, + "probability": 0.9703 + }, + { + "start": 4559.12, + "end": 4559.91, + "probability": 0.946 + }, + { + "start": 4560.06, + "end": 4560.98, + "probability": 0.8572 + }, + { + "start": 4561.22, + "end": 4564.72, + "probability": 0.9868 + }, + { + "start": 4564.78, + "end": 4566.86, + "probability": 0.7175 + }, + { + "start": 4566.98, + "end": 4567.3, + "probability": 0.3121 + }, + { + "start": 4567.34, + "end": 4568.5, + "probability": 0.7114 + }, + { + "start": 4568.56, + "end": 4569.49, + "probability": 0.8722 + }, + { + "start": 4569.54, + "end": 4571.46, + "probability": 0.1306 + }, + { + "start": 4571.5, + "end": 4572.38, + "probability": 0.3345 + }, + { + "start": 4572.4, + "end": 4574.28, + "probability": 0.7177 + }, + { + "start": 4575.0, + "end": 4576.1, + "probability": 0.9468 + }, + { + "start": 4576.4, + "end": 4577.4, + "probability": 0.6201 + }, + { + "start": 4577.84, + "end": 4579.38, + "probability": 0.8669 + }, + { + "start": 4579.54, + "end": 4579.98, + "probability": 0.4997 + }, + { + "start": 4580.06, + "end": 4581.28, + "probability": 0.6056 + }, + { + "start": 4581.34, + "end": 4581.7, + "probability": 0.9924 + }, + { + "start": 4583.98, + "end": 4586.12, + "probability": 0.8082 + }, + { + "start": 4586.92, + "end": 4587.42, + "probability": 0.4801 + }, + { + "start": 4587.5, + "end": 4587.72, + "probability": 0.3299 + }, + { + "start": 4588.02, + "end": 4593.32, + "probability": 0.9478 + }, + { + "start": 4593.98, + "end": 4594.04, + "probability": 0.4655 + }, + { + "start": 4594.08, + "end": 4594.74, + "probability": 0.6744 + }, + { + "start": 4594.84, + "end": 4596.88, + "probability": 0.9795 + }, + { + "start": 4598.39, + "end": 4600.14, + "probability": 0.9357 + }, + { + "start": 4600.88, + "end": 4603.84, + "probability": 0.9687 + }, + { + "start": 4604.18, + "end": 4606.68, + "probability": 0.9557 + }, + { + "start": 4608.02, + "end": 4610.5, + "probability": 0.9885 + }, + { + "start": 4611.1, + "end": 4613.8, + "probability": 0.9976 + }, + { + "start": 4614.38, + "end": 4617.96, + "probability": 0.9977 + }, + { + "start": 4618.54, + "end": 4619.8, + "probability": 0.9788 + }, + { + "start": 4620.48, + "end": 4622.24, + "probability": 0.9863 + }, + { + "start": 4622.82, + "end": 4625.67, + "probability": 0.9987 + }, + { + "start": 4626.32, + "end": 4628.34, + "probability": 0.8608 + }, + { + "start": 4629.06, + "end": 4630.98, + "probability": 0.9929 + }, + { + "start": 4630.98, + "end": 4633.62, + "probability": 0.9837 + }, + { + "start": 4639.38, + "end": 4645.08, + "probability": 0.9792 + }, + { + "start": 4645.86, + "end": 4647.98, + "probability": 0.9745 + }, + { + "start": 4648.04, + "end": 4649.2, + "probability": 0.8402 + }, + { + "start": 4649.26, + "end": 4650.26, + "probability": 0.8159 + }, + { + "start": 4650.68, + "end": 4653.52, + "probability": 0.9854 + }, + { + "start": 4654.34, + "end": 4654.76, + "probability": 0.3711 + }, + { + "start": 4654.88, + "end": 4655.32, + "probability": 0.8815 + }, + { + "start": 4655.44, + "end": 4656.12, + "probability": 0.7239 + }, + { + "start": 4656.24, + "end": 4660.22, + "probability": 0.7842 + }, + { + "start": 4660.26, + "end": 4661.6, + "probability": 0.9026 + }, + { + "start": 4661.78, + "end": 4661.96, + "probability": 0.6423 + }, + { + "start": 4662.02, + "end": 4664.68, + "probability": 0.9532 + }, + { + "start": 4665.36, + "end": 4667.84, + "probability": 0.7643 + }, + { + "start": 4667.84, + "end": 4670.2, + "probability": 0.8618 + }, + { + "start": 4670.94, + "end": 4672.1, + "probability": 0.8867 + }, + { + "start": 4673.2, + "end": 4673.88, + "probability": 0.7603 + }, + { + "start": 4674.46, + "end": 4677.34, + "probability": 0.9944 + }, + { + "start": 4678.14, + "end": 4680.66, + "probability": 0.9912 + }, + { + "start": 4681.48, + "end": 4682.14, + "probability": 0.375 + }, + { + "start": 4682.5, + "end": 4686.1, + "probability": 0.9691 + }, + { + "start": 4686.16, + "end": 4686.58, + "probability": 0.0104 + }, + { + "start": 4686.96, + "end": 4690.38, + "probability": 0.9747 + }, + { + "start": 4691.12, + "end": 4692.76, + "probability": 0.5505 + }, + { + "start": 4693.14, + "end": 4694.57, + "probability": 0.9839 + }, + { + "start": 4694.96, + "end": 4695.7, + "probability": 0.8805 + }, + { + "start": 4695.76, + "end": 4697.42, + "probability": 0.999 + }, + { + "start": 4697.88, + "end": 4699.82, + "probability": 0.9873 + }, + { + "start": 4700.02, + "end": 4700.16, + "probability": 0.4183 + }, + { + "start": 4700.38, + "end": 4702.52, + "probability": 0.9922 + }, + { + "start": 4703.86, + "end": 4703.86, + "probability": 0.2309 + }, + { + "start": 4703.86, + "end": 4704.94, + "probability": 0.5812 + }, + { + "start": 4704.94, + "end": 4708.44, + "probability": 0.8416 + }, + { + "start": 4709.1, + "end": 4711.84, + "probability": 0.9899 + }, + { + "start": 4711.9, + "end": 4714.36, + "probability": 0.4996 + }, + { + "start": 4715.64, + "end": 4716.26, + "probability": 0.0367 + }, + { + "start": 4716.26, + "end": 4717.34, + "probability": 0.5573 + }, + { + "start": 4717.56, + "end": 4719.08, + "probability": 0.9016 + }, + { + "start": 4719.2, + "end": 4720.21, + "probability": 0.5748 + }, + { + "start": 4720.76, + "end": 4721.82, + "probability": 0.8917 + }, + { + "start": 4722.52, + "end": 4724.66, + "probability": 0.7997 + }, + { + "start": 4724.68, + "end": 4727.16, + "probability": 0.8815 + }, + { + "start": 4727.32, + "end": 4729.56, + "probability": 0.9902 + }, + { + "start": 4729.98, + "end": 4731.16, + "probability": 0.9736 + }, + { + "start": 4731.6, + "end": 4732.78, + "probability": 0.8408 + }, + { + "start": 4733.32, + "end": 4733.66, + "probability": 0.0424 + }, + { + "start": 4733.66, + "end": 4734.7, + "probability": 0.5904 + }, + { + "start": 4735.35, + "end": 4736.98, + "probability": 0.8237 + }, + { + "start": 4738.32, + "end": 4741.48, + "probability": 0.1306 + }, + { + "start": 4742.2, + "end": 4743.6, + "probability": 0.0139 + }, + { + "start": 4748.56, + "end": 4749.68, + "probability": 0.1328 + }, + { + "start": 4749.68, + "end": 4755.38, + "probability": 0.3542 + }, + { + "start": 4755.38, + "end": 4755.38, + "probability": 0.4373 + }, + { + "start": 4755.38, + "end": 4755.72, + "probability": 0.2407 + }, + { + "start": 4755.74, + "end": 4758.0, + "probability": 0.1603 + }, + { + "start": 4759.6, + "end": 4760.16, + "probability": 0.0144 + }, + { + "start": 4760.38, + "end": 4760.38, + "probability": 0.2002 + }, + { + "start": 4760.38, + "end": 4760.72, + "probability": 0.1494 + }, + { + "start": 4760.9, + "end": 4763.86, + "probability": 0.2378 + }, + { + "start": 4764.38, + "end": 4765.32, + "probability": 0.0301 + }, + { + "start": 4768.48, + "end": 4769.04, + "probability": 0.0818 + }, + { + "start": 4769.04, + "end": 4769.41, + "probability": 0.086 + }, + { + "start": 4769.52, + "end": 4769.6, + "probability": 0.0583 + }, + { + "start": 4779.16, + "end": 4781.92, + "probability": 0.0148 + }, + { + "start": 4781.92, + "end": 4785.74, + "probability": 0.0819 + }, + { + "start": 4785.74, + "end": 4785.74, + "probability": 0.0569 + }, + { + "start": 4785.74, + "end": 4785.94, + "probability": 0.072 + }, + { + "start": 4785.94, + "end": 4786.44, + "probability": 0.0432 + }, + { + "start": 4787.22, + "end": 4788.66, + "probability": 0.0778 + }, + { + "start": 4791.88, + "end": 4792.52, + "probability": 0.0324 + }, + { + "start": 4792.6, + "end": 4795.76, + "probability": 0.054 + }, + { + "start": 4795.92, + "end": 4796.1, + "probability": 0.0669 + }, + { + "start": 4796.2, + "end": 4797.14, + "probability": 0.0335 + }, + { + "start": 4797.14, + "end": 4806.66, + "probability": 0.0899 + }, + { + "start": 4807.47, + "end": 4809.52, + "probability": 0.1236 + }, + { + "start": 4810.46, + "end": 4811.88, + "probability": 0.0979 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.0, + "end": 4812.0, + "probability": 0.0 + }, + { + "start": 4812.1, + "end": 4812.58, + "probability": 0.1859 + }, + { + "start": 4812.74, + "end": 4814.76, + "probability": 0.6993 + }, + { + "start": 4814.86, + "end": 4818.36, + "probability": 0.9689 + }, + { + "start": 4819.1, + "end": 4821.35, + "probability": 0.8994 + }, + { + "start": 4821.9, + "end": 4823.0, + "probability": 0.8896 + }, + { + "start": 4823.96, + "end": 4825.28, + "probability": 0.624 + }, + { + "start": 4825.98, + "end": 4826.86, + "probability": 0.904 + }, + { + "start": 4827.0, + "end": 4827.56, + "probability": 0.6187 + }, + { + "start": 4827.62, + "end": 4828.58, + "probability": 0.8443 + }, + { + "start": 4828.98, + "end": 4829.7, + "probability": 0.9823 + }, + { + "start": 4830.36, + "end": 4835.74, + "probability": 0.8433 + }, + { + "start": 4842.2, + "end": 4847.6, + "probability": 0.8569 + }, + { + "start": 4847.78, + "end": 4848.58, + "probability": 0.7519 + }, + { + "start": 4849.0, + "end": 4851.88, + "probability": 0.7715 + }, + { + "start": 4851.88, + "end": 4853.14, + "probability": 0.6798 + }, + { + "start": 4853.84, + "end": 4855.62, + "probability": 0.9097 + }, + { + "start": 4855.82, + "end": 4856.16, + "probability": 0.8318 + }, + { + "start": 4857.42, + "end": 4858.89, + "probability": 0.5325 + }, + { + "start": 4861.26, + "end": 4862.2, + "probability": 0.7429 + }, + { + "start": 4862.36, + "end": 4863.12, + "probability": 0.3746 + }, + { + "start": 4864.4, + "end": 4868.2, + "probability": 0.7351 + }, + { + "start": 4868.38, + "end": 4870.2, + "probability": 0.2864 + }, + { + "start": 4870.2, + "end": 4872.1, + "probability": 0.7933 + }, + { + "start": 4872.12, + "end": 4872.12, + "probability": 0.6875 + }, + { + "start": 4872.12, + "end": 4873.46, + "probability": 0.9458 + }, + { + "start": 4873.68, + "end": 4875.68, + "probability": 0.9186 + }, + { + "start": 4875.8, + "end": 4879.2, + "probability": 0.9663 + }, + { + "start": 4879.82, + "end": 4884.64, + "probability": 0.963 + }, + { + "start": 4885.2, + "end": 4887.78, + "probability": 0.8994 + }, + { + "start": 4888.26, + "end": 4892.8, + "probability": 0.8238 + }, + { + "start": 4893.44, + "end": 4895.18, + "probability": 0.7605 + }, + { + "start": 4902.24, + "end": 4905.6, + "probability": 0.9272 + }, + { + "start": 4906.33, + "end": 4911.42, + "probability": 0.659 + }, + { + "start": 4912.38, + "end": 4914.24, + "probability": 0.6642 + }, + { + "start": 4915.4, + "end": 4919.0, + "probability": 0.9526 + }, + { + "start": 4919.64, + "end": 4921.4, + "probability": 0.8476 + }, + { + "start": 4921.78, + "end": 4924.26, + "probability": 0.8948 + }, + { + "start": 4924.34, + "end": 4925.66, + "probability": 0.556 + }, + { + "start": 4925.74, + "end": 4928.08, + "probability": 0.839 + }, + { + "start": 4929.6, + "end": 4932.26, + "probability": 0.538 + }, + { + "start": 4932.36, + "end": 4933.6, + "probability": 0.9943 + }, + { + "start": 4933.66, + "end": 4935.58, + "probability": 0.7382 + }, + { + "start": 4937.18, + "end": 4941.16, + "probability": 0.928 + }, + { + "start": 4942.58, + "end": 4946.7, + "probability": 0.8889 + }, + { + "start": 4947.32, + "end": 4948.74, + "probability": 0.6467 + }, + { + "start": 4949.88, + "end": 4952.92, + "probability": 0.9543 + }, + { + "start": 4953.04, + "end": 4954.38, + "probability": 0.995 + }, + { + "start": 4954.44, + "end": 4955.5, + "probability": 0.9088 + }, + { + "start": 4956.0, + "end": 4959.68, + "probability": 0.9951 + }, + { + "start": 4959.86, + "end": 4960.58, + "probability": 0.7641 + }, + { + "start": 4960.66, + "end": 4962.02, + "probability": 0.9236 + }, + { + "start": 4963.02, + "end": 4965.58, + "probability": 0.7801 + }, + { + "start": 4965.68, + "end": 4966.44, + "probability": 0.8743 + }, + { + "start": 4966.5, + "end": 4967.58, + "probability": 0.9213 + }, + { + "start": 4967.9, + "end": 4971.4, + "probability": 0.948 + }, + { + "start": 4974.64, + "end": 4977.18, + "probability": 0.1556 + }, + { + "start": 4977.48, + "end": 4979.48, + "probability": 0.9981 + }, + { + "start": 4980.08, + "end": 4983.78, + "probability": 0.9901 + }, + { + "start": 4983.9, + "end": 4985.08, + "probability": 0.9034 + }, + { + "start": 4985.12, + "end": 4986.08, + "probability": 0.9314 + }, + { + "start": 4986.18, + "end": 4987.44, + "probability": 0.9605 + }, + { + "start": 4988.62, + "end": 4989.8, + "probability": 0.8447 + }, + { + "start": 4989.82, + "end": 4992.16, + "probability": 0.6638 + }, + { + "start": 4992.3, + "end": 4993.72, + "probability": 0.7221 + }, + { + "start": 4993.78, + "end": 4995.44, + "probability": 0.8286 + }, + { + "start": 4995.66, + "end": 4997.64, + "probability": 0.6906 + }, + { + "start": 4998.35, + "end": 5004.2, + "probability": 0.9435 + }, + { + "start": 5005.04, + "end": 5007.62, + "probability": 0.7488 + }, + { + "start": 5007.68, + "end": 5009.36, + "probability": 0.9679 + }, + { + "start": 5009.72, + "end": 5015.36, + "probability": 0.9963 + }, + { + "start": 5015.82, + "end": 5017.86, + "probability": 0.8384 + }, + { + "start": 5021.2, + "end": 5026.04, + "probability": 0.9988 + }, + { + "start": 5026.48, + "end": 5027.48, + "probability": 0.7378 + }, + { + "start": 5027.48, + "end": 5032.96, + "probability": 0.9904 + }, + { + "start": 5033.48, + "end": 5034.58, + "probability": 0.9291 + }, + { + "start": 5034.68, + "end": 5038.64, + "probability": 0.8606 + }, + { + "start": 5039.2, + "end": 5043.68, + "probability": 0.9752 + }, + { + "start": 5044.82, + "end": 5048.22, + "probability": 0.9178 + }, + { + "start": 5048.94, + "end": 5049.72, + "probability": 0.9126 + }, + { + "start": 5049.92, + "end": 5053.08, + "probability": 0.9165 + }, + { + "start": 5053.16, + "end": 5053.52, + "probability": 0.7604 + }, + { + "start": 5059.08, + "end": 5059.46, + "probability": 0.3997 + }, + { + "start": 5059.48, + "end": 5063.12, + "probability": 0.7695 + }, + { + "start": 5063.72, + "end": 5064.74, + "probability": 0.9297 + }, + { + "start": 5064.76, + "end": 5065.24, + "probability": 0.8825 + }, + { + "start": 5065.5, + "end": 5067.08, + "probability": 0.6038 + }, + { + "start": 5067.76, + "end": 5070.22, + "probability": 0.995 + }, + { + "start": 5070.3, + "end": 5072.14, + "probability": 0.9867 + }, + { + "start": 5072.16, + "end": 5073.08, + "probability": 0.6264 + }, + { + "start": 5073.08, + "end": 5073.16, + "probability": 0.2293 + }, + { + "start": 5073.16, + "end": 5074.2, + "probability": 0.698 + }, + { + "start": 5074.88, + "end": 5076.58, + "probability": 0.9341 + }, + { + "start": 5076.66, + "end": 5081.1, + "probability": 0.9572 + }, + { + "start": 5081.22, + "end": 5083.66, + "probability": 0.9888 + }, + { + "start": 5084.32, + "end": 5086.88, + "probability": 0.8952 + }, + { + "start": 5086.98, + "end": 5089.35, + "probability": 0.8681 + }, + { + "start": 5089.62, + "end": 5092.88, + "probability": 0.9486 + }, + { + "start": 5093.38, + "end": 5094.86, + "probability": 0.8396 + }, + { + "start": 5095.04, + "end": 5100.4, + "probability": 0.9378 + }, + { + "start": 5100.64, + "end": 5103.28, + "probability": 0.8449 + }, + { + "start": 5103.28, + "end": 5105.92, + "probability": 0.9661 + }, + { + "start": 5106.32, + "end": 5108.68, + "probability": 0.9791 + }, + { + "start": 5108.86, + "end": 5109.52, + "probability": 0.7901 + }, + { + "start": 5110.0, + "end": 5111.18, + "probability": 0.9068 + }, + { + "start": 5114.8, + "end": 5117.86, + "probability": 0.753 + }, + { + "start": 5117.86, + "end": 5121.0, + "probability": 0.9481 + }, + { + "start": 5121.06, + "end": 5122.06, + "probability": 0.77 + }, + { + "start": 5122.2, + "end": 5124.2, + "probability": 0.7707 + }, + { + "start": 5124.24, + "end": 5126.32, + "probability": 0.9845 + }, + { + "start": 5126.82, + "end": 5127.28, + "probability": 0.4863 + }, + { + "start": 5127.36, + "end": 5129.26, + "probability": 0.8982 + }, + { + "start": 5129.42, + "end": 5132.6, + "probability": 0.9785 + }, + { + "start": 5133.3, + "end": 5135.36, + "probability": 0.8574 + }, + { + "start": 5135.68, + "end": 5141.0, + "probability": 0.9822 + }, + { + "start": 5143.88, + "end": 5143.88, + "probability": 0.331 + }, + { + "start": 5143.9, + "end": 5147.62, + "probability": 0.9893 + }, + { + "start": 5148.06, + "end": 5149.18, + "probability": 0.913 + }, + { + "start": 5149.26, + "end": 5150.08, + "probability": 0.9493 + }, + { + "start": 5150.18, + "end": 5154.42, + "probability": 0.9435 + }, + { + "start": 5154.42, + "end": 5158.42, + "probability": 0.9959 + }, + { + "start": 5159.08, + "end": 5161.22, + "probability": 0.5823 + }, + { + "start": 5161.48, + "end": 5163.96, + "probability": 0.9108 + }, + { + "start": 5164.76, + "end": 5167.14, + "probability": 0.9994 + }, + { + "start": 5167.32, + "end": 5168.94, + "probability": 0.8523 + }, + { + "start": 5170.14, + "end": 5171.6, + "probability": 0.878 + }, + { + "start": 5171.86, + "end": 5177.64, + "probability": 0.9664 + }, + { + "start": 5177.84, + "end": 5178.48, + "probability": 0.468 + }, + { + "start": 5179.28, + "end": 5180.26, + "probability": 0.2545 + }, + { + "start": 5180.36, + "end": 5181.02, + "probability": 0.7595 + }, + { + "start": 5181.06, + "end": 5181.94, + "probability": 0.4678 + }, + { + "start": 5182.78, + "end": 5186.9, + "probability": 0.9829 + }, + { + "start": 5187.24, + "end": 5189.88, + "probability": 0.8353 + }, + { + "start": 5190.36, + "end": 5193.4, + "probability": 0.0725 + }, + { + "start": 5194.1, + "end": 5195.64, + "probability": 0.1569 + }, + { + "start": 5195.64, + "end": 5198.92, + "probability": 0.4741 + }, + { + "start": 5198.92, + "end": 5200.34, + "probability": 0.8156 + }, + { + "start": 5200.62, + "end": 5201.0, + "probability": 0.8922 + }, + { + "start": 5201.43, + "end": 5204.34, + "probability": 0.8928 + }, + { + "start": 5204.48, + "end": 5206.06, + "probability": 0.8854 + }, + { + "start": 5206.16, + "end": 5207.84, + "probability": 0.8117 + }, + { + "start": 5208.7, + "end": 5210.98, + "probability": 0.8754 + }, + { + "start": 5211.2, + "end": 5213.82, + "probability": 0.9503 + }, + { + "start": 5215.44, + "end": 5218.06, + "probability": 0.8873 + }, + { + "start": 5223.28, + "end": 5224.66, + "probability": 0.1272 + }, + { + "start": 5224.88, + "end": 5227.56, + "probability": 0.3284 + }, + { + "start": 5228.32, + "end": 5230.54, + "probability": 0.9961 + }, + { + "start": 5231.0, + "end": 5234.3, + "probability": 0.8213 + }, + { + "start": 5234.68, + "end": 5235.04, + "probability": 0.6582 + }, + { + "start": 5235.28, + "end": 5240.24, + "probability": 0.953 + }, + { + "start": 5240.3, + "end": 5241.82, + "probability": 0.9099 + }, + { + "start": 5244.02, + "end": 5247.46, + "probability": 0.8734 + }, + { + "start": 5253.32, + "end": 5253.86, + "probability": 0.3949 + }, + { + "start": 5259.9, + "end": 5260.5, + "probability": 0.0057 + }, + { + "start": 5264.44, + "end": 5265.24, + "probability": 0.0024 + }, + { + "start": 5270.79, + "end": 5273.76, + "probability": 0.704 + }, + { + "start": 5273.9, + "end": 5275.58, + "probability": 0.4613 + }, + { + "start": 5276.0, + "end": 5277.04, + "probability": 0.2772 + }, + { + "start": 5280.36, + "end": 5282.26, + "probability": 0.7246 + }, + { + "start": 5282.26, + "end": 5283.2, + "probability": 0.8233 + }, + { + "start": 5283.24, + "end": 5286.24, + "probability": 0.9954 + }, + { + "start": 5286.9, + "end": 5287.86, + "probability": 0.528 + }, + { + "start": 5289.83, + "end": 5292.92, + "probability": 0.9816 + }, + { + "start": 5293.26, + "end": 5299.01, + "probability": 0.9432 + }, + { + "start": 5299.98, + "end": 5305.6, + "probability": 0.7416 + }, + { + "start": 5306.64, + "end": 5310.56, + "probability": 0.9903 + }, + { + "start": 5310.76, + "end": 5313.58, + "probability": 0.8849 + }, + { + "start": 5314.24, + "end": 5315.04, + "probability": 0.7459 + }, + { + "start": 5315.74, + "end": 5318.1, + "probability": 0.9429 + }, + { + "start": 5318.32, + "end": 5319.7, + "probability": 0.864 + }, + { + "start": 5320.58, + "end": 5322.88, + "probability": 0.9904 + }, + { + "start": 5322.92, + "end": 5323.3, + "probability": 0.8676 + }, + { + "start": 5323.46, + "end": 5325.38, + "probability": 0.7437 + }, + { + "start": 5326.08, + "end": 5329.88, + "probability": 0.9661 + }, + { + "start": 5330.02, + "end": 5332.54, + "probability": 0.9595 + }, + { + "start": 5332.72, + "end": 5334.56, + "probability": 0.978 + }, + { + "start": 5335.0, + "end": 5335.48, + "probability": 0.8872 + }, + { + "start": 5335.86, + "end": 5340.88, + "probability": 0.9781 + }, + { + "start": 5341.24, + "end": 5344.98, + "probability": 0.7755 + }, + { + "start": 5345.92, + "end": 5349.84, + "probability": 0.9805 + }, + { + "start": 5358.88, + "end": 5366.14, + "probability": 0.9332 + }, + { + "start": 5366.28, + "end": 5366.88, + "probability": 0.5398 + }, + { + "start": 5366.94, + "end": 5367.6, + "probability": 0.6116 + }, + { + "start": 5368.0, + "end": 5368.96, + "probability": 0.7049 + }, + { + "start": 5375.9, + "end": 5386.14, + "probability": 0.0163 + }, + { + "start": 5386.14, + "end": 5390.22, + "probability": 0.6717 + }, + { + "start": 5390.4, + "end": 5392.53, + "probability": 0.9897 + }, + { + "start": 5392.92, + "end": 5397.72, + "probability": 0.7659 + }, + { + "start": 5397.74, + "end": 5398.5, + "probability": 0.5205 + }, + { + "start": 5398.56, + "end": 5400.08, + "probability": 0.5305 + }, + { + "start": 5400.48, + "end": 5404.5, + "probability": 0.3075 + }, + { + "start": 5424.52, + "end": 5425.7, + "probability": 0.0958 + }, + { + "start": 5427.16, + "end": 5429.32, + "probability": 0.7874 + }, + { + "start": 5431.61, + "end": 5435.62, + "probability": 0.8134 + }, + { + "start": 5436.1, + "end": 5439.02, + "probability": 0.7758 + }, + { + "start": 5439.3, + "end": 5442.18, + "probability": 0.9525 + }, + { + "start": 5442.8, + "end": 5447.06, + "probability": 0.7213 + }, + { + "start": 5449.18, + "end": 5451.5, + "probability": 0.6427 + }, + { + "start": 5462.28, + "end": 5466.34, + "probability": 0.521 + }, + { + "start": 5470.68, + "end": 5474.06, + "probability": 0.7474 + }, + { + "start": 5474.24, + "end": 5474.98, + "probability": 0.8455 + }, + { + "start": 5475.18, + "end": 5479.28, + "probability": 0.791 + }, + { + "start": 5479.4, + "end": 5480.3, + "probability": 0.8164 + }, + { + "start": 5480.38, + "end": 5481.3, + "probability": 0.889 + }, + { + "start": 5481.38, + "end": 5481.88, + "probability": 0.6239 + }, + { + "start": 5482.4, + "end": 5484.3, + "probability": 0.9383 + }, + { + "start": 5484.62, + "end": 5486.08, + "probability": 0.9873 + }, + { + "start": 5487.02, + "end": 5490.12, + "probability": 0.7208 + }, + { + "start": 5490.36, + "end": 5491.84, + "probability": 0.7864 + }, + { + "start": 5492.28, + "end": 5494.83, + "probability": 0.9249 + }, + { + "start": 5498.56, + "end": 5499.36, + "probability": 0.8168 + }, + { + "start": 5500.68, + "end": 5504.3, + "probability": 0.7702 + }, + { + "start": 5504.86, + "end": 5506.94, + "probability": 0.7 + }, + { + "start": 5507.54, + "end": 5508.31, + "probability": 0.8564 + }, + { + "start": 5508.68, + "end": 5509.68, + "probability": 0.8617 + }, + { + "start": 5510.7, + "end": 5513.54, + "probability": 0.2596 + }, + { + "start": 5513.7, + "end": 5520.02, + "probability": 0.8248 + }, + { + "start": 5528.76, + "end": 5531.24, + "probability": 0.6082 + }, + { + "start": 5533.28, + "end": 5536.96, + "probability": 0.7513 + }, + { + "start": 5537.6, + "end": 5539.94, + "probability": 0.9168 + }, + { + "start": 5540.32, + "end": 5548.84, + "probability": 0.897 + }, + { + "start": 5549.06, + "end": 5551.7, + "probability": 0.9932 + }, + { + "start": 5551.7, + "end": 5552.88, + "probability": 0.1602 + }, + { + "start": 5552.88, + "end": 5553.66, + "probability": 0.4085 + }, + { + "start": 5567.1, + "end": 5569.34, + "probability": 0.4431 + }, + { + "start": 5573.6, + "end": 5575.08, + "probability": 0.288 + }, + { + "start": 5575.6, + "end": 5576.68, + "probability": 0.6609 + }, + { + "start": 5583.44, + "end": 5584.26, + "probability": 0.2158 + }, + { + "start": 5584.84, + "end": 5585.32, + "probability": 0.3441 + }, + { + "start": 5586.02, + "end": 5587.4, + "probability": 0.8698 + }, + { + "start": 5587.66, + "end": 5589.3, + "probability": 0.8489 + }, + { + "start": 5589.74, + "end": 5593.56, + "probability": 0.8805 + }, + { + "start": 5594.2, + "end": 5595.9, + "probability": 0.846 + }, + { + "start": 5595.94, + "end": 5597.34, + "probability": 0.894 + }, + { + "start": 5597.52, + "end": 5598.56, + "probability": 0.849 + }, + { + "start": 5599.06, + "end": 5600.15, + "probability": 0.9663 + }, + { + "start": 5600.96, + "end": 5603.42, + "probability": 0.7793 + }, + { + "start": 5604.28, + "end": 5604.94, + "probability": 0.8689 + }, + { + "start": 5604.94, + "end": 5607.62, + "probability": 0.5808 + }, + { + "start": 5607.72, + "end": 5609.7, + "probability": 0.9689 + }, + { + "start": 5610.3, + "end": 5613.5, + "probability": 0.8445 + }, + { + "start": 5613.58, + "end": 5615.38, + "probability": 0.9364 + }, + { + "start": 5615.62, + "end": 5617.79, + "probability": 0.7628 + }, + { + "start": 5618.58, + "end": 5621.32, + "probability": 0.8384 + }, + { + "start": 5621.64, + "end": 5623.62, + "probability": 0.9961 + }, + { + "start": 5623.98, + "end": 5626.46, + "probability": 0.8647 + }, + { + "start": 5627.02, + "end": 5627.8, + "probability": 0.527 + }, + { + "start": 5627.84, + "end": 5629.92, + "probability": 0.9559 + }, + { + "start": 5630.0, + "end": 5630.26, + "probability": 0.81 + }, + { + "start": 5630.34, + "end": 5630.84, + "probability": 0.5187 + }, + { + "start": 5631.28, + "end": 5632.04, + "probability": 0.9502 + }, + { + "start": 5632.14, + "end": 5634.42, + "probability": 0.9224 + }, + { + "start": 5642.11, + "end": 5644.98, + "probability": 0.9462 + }, + { + "start": 5645.42, + "end": 5646.94, + "probability": 0.9047 + }, + { + "start": 5647.2, + "end": 5648.54, + "probability": 0.9329 + }, + { + "start": 5650.24, + "end": 5651.42, + "probability": 0.1645 + }, + { + "start": 5651.46, + "end": 5654.22, + "probability": 0.5303 + }, + { + "start": 5654.4, + "end": 5656.8, + "probability": 0.6726 + }, + { + "start": 5657.14, + "end": 5658.43, + "probability": 0.9922 + }, + { + "start": 5658.66, + "end": 5659.42, + "probability": 0.8065 + }, + { + "start": 5660.08, + "end": 5662.66, + "probability": 0.5272 + }, + { + "start": 5663.12, + "end": 5665.28, + "probability": 0.8826 + }, + { + "start": 5666.6, + "end": 5667.18, + "probability": 0.7852 + }, + { + "start": 5667.3, + "end": 5669.42, + "probability": 0.9274 + }, + { + "start": 5677.06, + "end": 5681.82, + "probability": 0.7887 + }, + { + "start": 5682.4, + "end": 5684.96, + "probability": 0.5216 + }, + { + "start": 5685.08, + "end": 5685.7, + "probability": 0.8063 + }, + { + "start": 5685.8, + "end": 5686.96, + "probability": 0.9268 + }, + { + "start": 5687.04, + "end": 5687.9, + "probability": 0.927 + }, + { + "start": 5688.24, + "end": 5690.78, + "probability": 0.9925 + }, + { + "start": 5691.04, + "end": 5692.94, + "probability": 0.9318 + }, + { + "start": 5693.76, + "end": 5696.18, + "probability": 0.5879 + }, + { + "start": 5696.92, + "end": 5698.34, + "probability": 0.852 + }, + { + "start": 5705.65, + "end": 5708.4, + "probability": 0.7656 + }, + { + "start": 5708.58, + "end": 5709.34, + "probability": 0.7063 + }, + { + "start": 5709.38, + "end": 5710.2, + "probability": 0.8167 + }, + { + "start": 5710.24, + "end": 5714.2, + "probability": 0.9344 + }, + { + "start": 5726.14, + "end": 5727.78, + "probability": 0.3666 + }, + { + "start": 5728.02, + "end": 5729.64, + "probability": 0.7696 + }, + { + "start": 5730.3, + "end": 5733.3, + "probability": 0.9117 + }, + { + "start": 5733.44, + "end": 5736.24, + "probability": 0.4636 + }, + { + "start": 5736.8, + "end": 5739.05, + "probability": 0.3551 + }, + { + "start": 5741.42, + "end": 5742.14, + "probability": 0.419 + }, + { + "start": 5742.82, + "end": 5746.7, + "probability": 0.8127 + }, + { + "start": 5750.56, + "end": 5754.72, + "probability": 0.7788 + }, + { + "start": 5755.34, + "end": 5760.38, + "probability": 0.9102 + }, + { + "start": 5760.9, + "end": 5762.46, + "probability": 0.8113 + }, + { + "start": 5771.01, + "end": 5771.95, + "probability": 0.5553 + }, + { + "start": 5772.09, + "end": 5772.97, + "probability": 0.3614 + }, + { + "start": 5776.97, + "end": 5779.99, + "probability": 0.5073 + }, + { + "start": 5780.09, + "end": 5780.73, + "probability": 0.522 + }, + { + "start": 5780.99, + "end": 5781.93, + "probability": 0.5984 + }, + { + "start": 5784.29, + "end": 5785.25, + "probability": 0.8289 + }, + { + "start": 5786.53, + "end": 5792.83, + "probability": 0.0372 + }, + { + "start": 5793.93, + "end": 5796.93, + "probability": 0.5166 + }, + { + "start": 5796.93, + "end": 5798.39, + "probability": 0.5468 + }, + { + "start": 5799.43, + "end": 5799.95, + "probability": 0.4143 + }, + { + "start": 5800.03, + "end": 5801.25, + "probability": 0.8681 + }, + { + "start": 5801.31, + "end": 5807.01, + "probability": 0.5999 + }, + { + "start": 5808.35, + "end": 5810.61, + "probability": 0.3074 + }, + { + "start": 5810.79, + "end": 5814.02, + "probability": 0.3513 + }, + { + "start": 5815.17, + "end": 5821.09, + "probability": 0.877 + }, + { + "start": 5821.57, + "end": 5822.81, + "probability": 0.8288 + }, + { + "start": 5823.01, + "end": 5825.23, + "probability": 0.6265 + }, + { + "start": 5825.61, + "end": 5827.23, + "probability": 0.8567 + }, + { + "start": 5827.51, + "end": 5829.87, + "probability": 0.8054 + }, + { + "start": 5830.55, + "end": 5830.99, + "probability": 0.8535 + }, + { + "start": 5832.52, + "end": 5835.83, + "probability": 0.673 + }, + { + "start": 5835.93, + "end": 5836.71, + "probability": 0.9778 + }, + { + "start": 5836.87, + "end": 5840.67, + "probability": 0.4072 + }, + { + "start": 5845.03, + "end": 5846.63, + "probability": 0.6476 + }, + { + "start": 5846.93, + "end": 5848.33, + "probability": 0.4806 + }, + { + "start": 5848.85, + "end": 5850.51, + "probability": 0.3017 + }, + { + "start": 5850.77, + "end": 5853.04, + "probability": 0.9545 + }, + { + "start": 5853.25, + "end": 5858.23, + "probability": 0.9166 + }, + { + "start": 5858.53, + "end": 5860.79, + "probability": 0.9304 + }, + { + "start": 5863.19, + "end": 5866.55, + "probability": 0.3626 + }, + { + "start": 5867.31, + "end": 5867.31, + "probability": 0.0114 + }, + { + "start": 5869.43, + "end": 5871.03, + "probability": 0.1098 + }, + { + "start": 5875.97, + "end": 5882.33, + "probability": 0.0708 + }, + { + "start": 5882.53, + "end": 5887.47, + "probability": 0.5832 + }, + { + "start": 5888.11, + "end": 5890.33, + "probability": 0.9583 + }, + { + "start": 5890.73, + "end": 5891.85, + "probability": 0.8551 + }, + { + "start": 5891.89, + "end": 5893.23, + "probability": 0.8662 + }, + { + "start": 5893.33, + "end": 5894.53, + "probability": 0.978 + }, + { + "start": 5894.59, + "end": 5895.25, + "probability": 0.8532 + }, + { + "start": 5895.37, + "end": 5896.77, + "probability": 0.9465 + }, + { + "start": 5897.13, + "end": 5897.79, + "probability": 0.7076 + }, + { + "start": 5897.89, + "end": 5898.24, + "probability": 0.895 + }, + { + "start": 5899.11, + "end": 5899.43, + "probability": 0.8489 + }, + { + "start": 5899.61, + "end": 5900.91, + "probability": 0.9268 + }, + { + "start": 5902.39, + "end": 5907.95, + "probability": 0.4897 + }, + { + "start": 5908.93, + "end": 5910.47, + "probability": 0.0463 + }, + { + "start": 5913.46, + "end": 5916.21, + "probability": 0.8663 + }, + { + "start": 5917.57, + "end": 5920.05, + "probability": 0.4246 + }, + { + "start": 5920.61, + "end": 5921.8, + "probability": 0.9614 + }, + { + "start": 5922.09, + "end": 5922.43, + "probability": 0.8002 + }, + { + "start": 5922.47, + "end": 5923.63, + "probability": 0.7725 + }, + { + "start": 5924.09, + "end": 5926.76, + "probability": 0.9392 + }, + { + "start": 5927.43, + "end": 5927.69, + "probability": 0.0689 + }, + { + "start": 5927.69, + "end": 5929.75, + "probability": 0.8405 + }, + { + "start": 5930.13, + "end": 5930.99, + "probability": 0.8669 + }, + { + "start": 5931.07, + "end": 5933.31, + "probability": 0.9736 + }, + { + "start": 5933.47, + "end": 5934.73, + "probability": 0.0813 + }, + { + "start": 5935.03, + "end": 5936.81, + "probability": 0.8397 + }, + { + "start": 5936.99, + "end": 5938.57, + "probability": 0.9312 + }, + { + "start": 5938.71, + "end": 5942.57, + "probability": 0.8688 + }, + { + "start": 5942.81, + "end": 5943.73, + "probability": 0.5623 + }, + { + "start": 5950.11, + "end": 5952.85, + "probability": 0.4608 + }, + { + "start": 5954.17, + "end": 5956.45, + "probability": 0.1048 + }, + { + "start": 5958.67, + "end": 5960.87, + "probability": 0.0079 + }, + { + "start": 5961.79, + "end": 5963.47, + "probability": 0.1655 + }, + { + "start": 5963.47, + "end": 5965.89, + "probability": 0.0813 + }, + { + "start": 5968.47, + "end": 5971.89, + "probability": 0.1257 + }, + { + "start": 5974.13, + "end": 5977.57, + "probability": 0.2759 + }, + { + "start": 6003.05, + "end": 6008.85, + "probability": 0.5568 + }, + { + "start": 6009.37, + "end": 6013.47, + "probability": 0.4084 + }, + { + "start": 6013.63, + "end": 6014.61, + "probability": 0.4848 + }, + { + "start": 6014.75, + "end": 6020.23, + "probability": 0.9586 + }, + { + "start": 6020.27, + "end": 6020.85, + "probability": 0.0033 + }, + { + "start": 6020.89, + "end": 6020.89, + "probability": 0.3114 + }, + { + "start": 6020.99, + "end": 6024.91, + "probability": 0.6914 + }, + { + "start": 6025.41, + "end": 6028.72, + "probability": 0.7143 + }, + { + "start": 6029.45, + "end": 6030.29, + "probability": 0.9779 + }, + { + "start": 6030.39, + "end": 6030.89, + "probability": 0.7441 + }, + { + "start": 6031.07, + "end": 6033.61, + "probability": 0.9255 + }, + { + "start": 6033.73, + "end": 6035.53, + "probability": 0.9211 + }, + { + "start": 6035.73, + "end": 6035.73, + "probability": 0.0664 + }, + { + "start": 6035.73, + "end": 6037.99, + "probability": 0.7147 + }, + { + "start": 6038.37, + "end": 6040.95, + "probability": 0.9102 + }, + { + "start": 6041.03, + "end": 6043.46, + "probability": 0.9837 + }, + { + "start": 6043.67, + "end": 6044.49, + "probability": 0.8216 + }, + { + "start": 6044.59, + "end": 6046.81, + "probability": 0.8387 + }, + { + "start": 6050.29, + "end": 6050.55, + "probability": 0.2244 + }, + { + "start": 6050.55, + "end": 6050.55, + "probability": 0.6461 + }, + { + "start": 6051.57, + "end": 6056.11, + "probability": 0.9945 + }, + { + "start": 6057.09, + "end": 6059.09, + "probability": 0.8772 + }, + { + "start": 6059.77, + "end": 6064.37, + "probability": 0.8489 + }, + { + "start": 6064.91, + "end": 6065.43, + "probability": 0.4741 + }, + { + "start": 6065.77, + "end": 6067.05, + "probability": 0.5873 + }, + { + "start": 6067.23, + "end": 6070.83, + "probability": 0.873 + }, + { + "start": 6071.99, + "end": 6073.01, + "probability": 0.1495 + }, + { + "start": 6073.13, + "end": 6079.98, + "probability": 0.8909 + }, + { + "start": 6081.23, + "end": 6084.11, + "probability": 0.978 + }, + { + "start": 6084.17, + "end": 6085.85, + "probability": 0.7354 + }, + { + "start": 6088.33, + "end": 6090.83, + "probability": 0.734 + }, + { + "start": 6091.57, + "end": 6092.73, + "probability": 0.75 + }, + { + "start": 6092.87, + "end": 6095.95, + "probability": 0.9958 + }, + { + "start": 6096.21, + "end": 6098.99, + "probability": 0.9802 + }, + { + "start": 6099.43, + "end": 6101.03, + "probability": 0.5477 + }, + { + "start": 6101.03, + "end": 6102.61, + "probability": 0.2614 + }, + { + "start": 6102.61, + "end": 6105.67, + "probability": 0.9847 + }, + { + "start": 6105.91, + "end": 6108.37, + "probability": 0.8401 + }, + { + "start": 6108.79, + "end": 6110.21, + "probability": 0.778 + }, + { + "start": 6110.39, + "end": 6113.53, + "probability": 0.7568 + }, + { + "start": 6113.75, + "end": 6116.39, + "probability": 0.7575 + }, + { + "start": 6116.79, + "end": 6118.01, + "probability": 0.8386 + }, + { + "start": 6118.07, + "end": 6120.07, + "probability": 0.7856 + }, + { + "start": 6120.21, + "end": 6120.91, + "probability": 0.9263 + }, + { + "start": 6121.39, + "end": 6123.05, + "probability": 0.76 + }, + { + "start": 6123.05, + "end": 6124.11, + "probability": 0.4412 + }, + { + "start": 6124.13, + "end": 6125.98, + "probability": 0.8568 + }, + { + "start": 6126.27, + "end": 6130.23, + "probability": 0.9714 + }, + { + "start": 6130.55, + "end": 6136.09, + "probability": 0.6603 + }, + { + "start": 6137.84, + "end": 6139.99, + "probability": 0.9495 + }, + { + "start": 6142.07, + "end": 6142.41, + "probability": 0.0379 + }, + { + "start": 6142.67, + "end": 6145.89, + "probability": 0.7527 + }, + { + "start": 6145.95, + "end": 6146.61, + "probability": 0.8239 + }, + { + "start": 6146.73, + "end": 6149.44, + "probability": 0.9727 + }, + { + "start": 6149.85, + "end": 6150.57, + "probability": 0.6996 + }, + { + "start": 6150.75, + "end": 6151.81, + "probability": 0.6718 + }, + { + "start": 6151.87, + "end": 6153.55, + "probability": 0.6081 + }, + { + "start": 6154.21, + "end": 6166.05, + "probability": 0.9839 + }, + { + "start": 6166.11, + "end": 6169.91, + "probability": 0.9979 + }, + { + "start": 6170.03, + "end": 6170.47, + "probability": 0.8221 + }, + { + "start": 6170.67, + "end": 6171.33, + "probability": 0.873 + }, + { + "start": 6171.49, + "end": 6171.73, + "probability": 0.6826 + }, + { + "start": 6171.79, + "end": 6172.17, + "probability": 0.6859 + }, + { + "start": 6172.29, + "end": 6173.09, + "probability": 0.741 + }, + { + "start": 6173.31, + "end": 6174.93, + "probability": 0.8411 + }, + { + "start": 6180.39, + "end": 6181.15, + "probability": 0.4856 + }, + { + "start": 6181.25, + "end": 6183.97, + "probability": 0.9836 + }, + { + "start": 6184.13, + "end": 6185.56, + "probability": 0.7021 + }, + { + "start": 6185.67, + "end": 6186.19, + "probability": 0.4511 + }, + { + "start": 6186.23, + "end": 6186.33, + "probability": 0.7054 + }, + { + "start": 6190.57, + "end": 6191.29, + "probability": 0.515 + }, + { + "start": 6191.81, + "end": 6194.19, + "probability": 0.0157 + }, + { + "start": 6198.97, + "end": 6199.59, + "probability": 0.1215 + }, + { + "start": 6200.25, + "end": 6203.33, + "probability": 0.0753 + }, + { + "start": 6203.53, + "end": 6206.93, + "probability": 0.4975 + }, + { + "start": 6207.07, + "end": 6208.19, + "probability": 0.9658 + }, + { + "start": 6208.81, + "end": 6212.03, + "probability": 0.7995 + }, + { + "start": 6212.57, + "end": 6214.89, + "probability": 0.4539 + }, + { + "start": 6218.03, + "end": 6219.59, + "probability": 0.2229 + }, + { + "start": 6229.81, + "end": 6232.99, + "probability": 0.4022 + }, + { + "start": 6233.31, + "end": 6235.23, + "probability": 0.8989 + }, + { + "start": 6235.87, + "end": 6240.03, + "probability": 0.9794 + }, + { + "start": 6240.73, + "end": 6241.17, + "probability": 0.7919 + }, + { + "start": 6247.63, + "end": 6248.27, + "probability": 0.4143 + }, + { + "start": 6248.51, + "end": 6249.05, + "probability": 0.462 + }, + { + "start": 6249.43, + "end": 6250.33, + "probability": 0.5653 + }, + { + "start": 6255.93, + "end": 6255.93, + "probability": 0.3201 + }, + { + "start": 6255.93, + "end": 6257.11, + "probability": 0.4363 + }, + { + "start": 6258.29, + "end": 6261.99, + "probability": 0.6813 + }, + { + "start": 6262.43, + "end": 6266.31, + "probability": 0.7537 + }, + { + "start": 6277.23, + "end": 6277.33, + "probability": 0.1421 + }, + { + "start": 6278.11, + "end": 6278.87, + "probability": 0.3278 + }, + { + "start": 6292.99, + "end": 6297.34, + "probability": 0.1044 + }, + { + "start": 6298.51, + "end": 6306.13, + "probability": 0.1439 + }, + { + "start": 6307.7, + "end": 6309.37, + "probability": 0.6236 + }, + { + "start": 6309.86, + "end": 6310.44, + "probability": 0.3559 + }, + { + "start": 6312.57, + "end": 6316.88, + "probability": 0.3763 + }, + { + "start": 6325.34, + "end": 6327.16, + "probability": 0.2186 + }, + { + "start": 6327.16, + "end": 6327.62, + "probability": 0.0819 + }, + { + "start": 6329.1, + "end": 6330.4, + "probability": 0.5753 + }, + { + "start": 6330.64, + "end": 6333.21, + "probability": 0.7723 + }, + { + "start": 6334.0, + "end": 6337.38, + "probability": 0.3477 + }, + { + "start": 6341.8, + "end": 6342.28, + "probability": 0.0734 + }, + { + "start": 6344.34, + "end": 6345.94, + "probability": 0.0096 + }, + { + "start": 6353.46, + "end": 6354.86, + "probability": 0.244 + }, + { + "start": 6355.5, + "end": 6357.96, + "probability": 0.2365 + }, + { + "start": 6358.04, + "end": 6359.88, + "probability": 0.0861 + }, + { + "start": 6359.94, + "end": 6361.64, + "probability": 0.1547 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6362.0, + "end": 6362.0, + "probability": 0.0 + }, + { + "start": 6363.08, + "end": 6364.06, + "probability": 0.4055 + }, + { + "start": 6365.33, + "end": 6366.8, + "probability": 0.0826 + }, + { + "start": 6366.8, + "end": 6366.8, + "probability": 0.2032 + }, + { + "start": 6366.8, + "end": 6366.8, + "probability": 0.6239 + }, + { + "start": 6366.8, + "end": 6366.8, + "probability": 0.4268 + }, + { + "start": 6366.8, + "end": 6366.8, + "probability": 0.536 + }, + { + "start": 6366.8, + "end": 6366.8, + "probability": 0.0778 + }, + { + "start": 6366.8, + "end": 6368.14, + "probability": 0.2836 + }, + { + "start": 6368.8, + "end": 6370.5, + "probability": 0.473 + }, + { + "start": 6371.1, + "end": 6373.0, + "probability": 0.3021 + }, + { + "start": 6373.06, + "end": 6373.28, + "probability": 0.3519 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.0, + "end": 6484.0, + "probability": 0.0 + }, + { + "start": 6484.22, + "end": 6484.74, + "probability": 0.168 + }, + { + "start": 6484.74, + "end": 6487.78, + "probability": 0.3388 + }, + { + "start": 6488.28, + "end": 6490.62, + "probability": 0.525 + }, + { + "start": 6490.72, + "end": 6491.96, + "probability": 0.2798 + }, + { + "start": 6492.12, + "end": 6492.5, + "probability": 0.7831 + }, + { + "start": 6496.7, + "end": 6497.38, + "probability": 0.4104 + }, + { + "start": 6497.6, + "end": 6498.18, + "probability": 0.3876 + }, + { + "start": 6502.67, + "end": 6510.64, + "probability": 0.0757 + }, + { + "start": 6511.44, + "end": 6515.84, + "probability": 0.6332 + }, + { + "start": 6516.34, + "end": 6518.66, + "probability": 0.7923 + }, + { + "start": 6520.14, + "end": 6521.18, + "probability": 0.626 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.0, + "end": 6621.0, + "probability": 0.0 + }, + { + "start": 6621.69, + "end": 6626.52, + "probability": 0.6689 + }, + { + "start": 6626.98, + "end": 6630.06, + "probability": 0.8748 + }, + { + "start": 6630.78, + "end": 6633.52, + "probability": 0.6901 + }, + { + "start": 6646.52, + "end": 6647.32, + "probability": 0.1263 + }, + { + "start": 6647.32, + "end": 6651.0, + "probability": 0.4078 + }, + { + "start": 6651.96, + "end": 6656.56, + "probability": 0.7458 + }, + { + "start": 6656.86, + "end": 6658.06, + "probability": 0.895 + }, + { + "start": 6658.28, + "end": 6659.8, + "probability": 0.4949 + }, + { + "start": 6659.94, + "end": 6661.18, + "probability": 0.9013 + }, + { + "start": 6661.18, + "end": 6662.18, + "probability": 0.4914 + }, + { + "start": 6663.0, + "end": 6666.34, + "probability": 0.541 + }, + { + "start": 6666.42, + "end": 6666.98, + "probability": 0.5189 + }, + { + "start": 6672.86, + "end": 6677.98, + "probability": 0.0741 + }, + { + "start": 6677.98, + "end": 6679.22, + "probability": 0.5751 + }, + { + "start": 6679.86, + "end": 6685.94, + "probability": 0.6375 + }, + { + "start": 6686.64, + "end": 6689.58, + "probability": 0.796 + }, + { + "start": 6690.04, + "end": 6694.16, + "probability": 0.4969 + }, + { + "start": 6696.4, + "end": 6698.22, + "probability": 0.1535 + }, + { + "start": 6700.03, + "end": 6703.18, + "probability": 0.1077 + }, + { + "start": 6712.02, + "end": 6712.82, + "probability": 0.0059 + }, + { + "start": 6713.2, + "end": 6716.5, + "probability": 0.1395 + }, + { + "start": 6717.08, + "end": 6718.46, + "probability": 0.4699 + }, + { + "start": 6719.2, + "end": 6719.36, + "probability": 0.0701 + }, + { + "start": 6727.4, + "end": 6729.4, + "probability": 0.1702 + }, + { + "start": 6736.54, + "end": 6737.74, + "probability": 0.137 + }, + { + "start": 6747.36, + "end": 6749.98, + "probability": 0.9343 + }, + { + "start": 6750.0, + "end": 6750.0, + "probability": 0.0 + }, + { + "start": 6750.14, + "end": 6753.42, + "probability": 0.9875 + }, + { + "start": 6753.6, + "end": 6754.52, + "probability": 0.331 + }, + { + "start": 6756.43, + "end": 6760.9, + "probability": 0.9632 + }, + { + "start": 6760.98, + "end": 6764.58, + "probability": 0.9644 + }, + { + "start": 6764.68, + "end": 6765.79, + "probability": 0.7339 + }, + { + "start": 6766.62, + "end": 6768.5, + "probability": 0.8621 + }, + { + "start": 6768.62, + "end": 6769.86, + "probability": 0.8803 + }, + { + "start": 6781.78, + "end": 6785.59, + "probability": 0.0964 + }, + { + "start": 6787.26, + "end": 6788.54, + "probability": 0.2045 + }, + { + "start": 6789.12, + "end": 6794.82, + "probability": 0.8134 + }, + { + "start": 6795.12, + "end": 6799.9, + "probability": 0.976 + }, + { + "start": 6800.82, + "end": 6803.56, + "probability": 0.5359 + }, + { + "start": 6803.66, + "end": 6804.62, + "probability": 0.3719 + }, + { + "start": 6805.52, + "end": 6806.58, + "probability": 0.5573 + }, + { + "start": 6812.9, + "end": 6819.48, + "probability": 0.2274 + }, + { + "start": 6824.1, + "end": 6826.8, + "probability": 0.0025 + }, + { + "start": 6826.8, + "end": 6828.78, + "probability": 0.1492 + }, + { + "start": 6829.0, + "end": 6830.72, + "probability": 0.1633 + }, + { + "start": 6830.72, + "end": 6836.16, + "probability": 0.5298 + }, + { + "start": 6836.28, + "end": 6836.38, + "probability": 0.1537 + }, + { + "start": 6836.38, + "end": 6836.68, + "probability": 0.2597 + }, + { + "start": 6840.9, + "end": 6841.5, + "probability": 0.3003 + }, + { + "start": 6856.2, + "end": 6857.3, + "probability": 0.5239 + }, + { + "start": 6857.92, + "end": 6861.48, + "probability": 0.0008 + }, + { + "start": 6861.82, + "end": 6863.84, + "probability": 0.2513 + }, + { + "start": 6864.22, + "end": 6865.76, + "probability": 0.0849 + }, + { + "start": 6865.76, + "end": 6868.12, + "probability": 0.0658 + }, + { + "start": 6869.1, + "end": 6869.34, + "probability": 0.3017 + }, + { + "start": 6869.71, + "end": 6871.36, + "probability": 0.2657 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6890.0, + "end": 6890.0, + "probability": 0.0 + }, + { + "start": 6897.86, + "end": 6898.0, + "probability": 0.1696 + }, + { + "start": 6900.86, + "end": 6902.26, + "probability": 0.2143 + }, + { + "start": 6903.54, + "end": 6910.52, + "probability": 0.5405 + }, + { + "start": 6911.4, + "end": 6913.62, + "probability": 0.8593 + }, + { + "start": 6913.66, + "end": 6917.54, + "probability": 0.9868 + }, + { + "start": 6917.64, + "end": 6919.72, + "probability": 0.5526 + }, + { + "start": 6919.92, + "end": 6920.94, + "probability": 0.4768 + }, + { + "start": 6922.18, + "end": 6925.7, + "probability": 0.7455 + }, + { + "start": 6928.18, + "end": 6929.72, + "probability": 0.0867 + }, + { + "start": 6931.18, + "end": 6932.06, + "probability": 0.0806 + }, + { + "start": 6933.58, + "end": 6936.54, + "probability": 0.0002 + }, + { + "start": 6936.9, + "end": 6940.3, + "probability": 0.4461 + }, + { + "start": 6940.42, + "end": 6942.6, + "probability": 0.8008 + }, + { + "start": 6943.86, + "end": 6944.49, + "probability": 0.9282 + }, + { + "start": 6946.04, + "end": 6947.54, + "probability": 0.8889 + }, + { + "start": 6947.64, + "end": 6950.32, + "probability": 0.7311 + }, + { + "start": 6950.36, + "end": 6950.96, + "probability": 0.6193 + }, + { + "start": 6965.74, + "end": 6969.3, + "probability": 0.3203 + }, + { + "start": 6969.3, + "end": 6971.54, + "probability": 0.5196 + }, + { + "start": 6972.6, + "end": 6973.2, + "probability": 0.5867 + }, + { + "start": 6973.86, + "end": 6976.8, + "probability": 0.897 + }, + { + "start": 6977.56, + "end": 6979.04, + "probability": 0.7859 + }, + { + "start": 6989.26, + "end": 6991.6, + "probability": 0.4517 + }, + { + "start": 6995.32, + "end": 6998.54, + "probability": 0.652 + }, + { + "start": 6999.38, + "end": 7002.86, + "probability": 0.6877 + }, + { + "start": 7002.98, + "end": 7006.16, + "probability": 0.3961 + }, + { + "start": 7009.22, + "end": 7012.3, + "probability": 0.0383 + }, + { + "start": 7013.92, + "end": 7014.9, + "probability": 0.1024 + }, + { + "start": 7015.74, + "end": 7017.06, + "probability": 0.5659 + }, + { + "start": 7017.72, + "end": 7021.04, + "probability": 0.7612 + }, + { + "start": 7021.18, + "end": 7022.87, + "probability": 0.7372 + }, + { + "start": 7023.44, + "end": 7027.2, + "probability": 0.8866 + }, + { + "start": 7027.68, + "end": 7030.66, + "probability": 0.4162 + }, + { + "start": 7031.4, + "end": 7033.34, + "probability": 0.1905 + }, + { + "start": 7034.86, + "end": 7037.4, + "probability": 0.5902 + }, + { + "start": 7037.68, + "end": 7038.3, + "probability": 0.8096 + }, + { + "start": 7038.54, + "end": 7041.4, + "probability": 0.7636 + }, + { + "start": 7041.9, + "end": 7044.24, + "probability": 0.8875 + }, + { + "start": 7044.58, + "end": 7046.74, + "probability": 0.869 + }, + { + "start": 7049.18, + "end": 7051.92, + "probability": 0.1442 + }, + { + "start": 7058.04, + "end": 7058.8, + "probability": 0.0001 + }, + { + "start": 7060.86, + "end": 7062.42, + "probability": 0.0106 + }, + { + "start": 7065.82, + "end": 7066.8, + "probability": 0.1495 + }, + { + "start": 7066.8, + "end": 7071.4, + "probability": 0.5597 + }, + { + "start": 7071.9, + "end": 7076.86, + "probability": 0.7772 + }, + { + "start": 7077.4, + "end": 7079.56, + "probability": 0.7823 + }, + { + "start": 7080.28, + "end": 7082.04, + "probability": 0.8849 + }, + { + "start": 7082.56, + "end": 7085.72, + "probability": 0.8619 + }, + { + "start": 7088.76, + "end": 7089.46, + "probability": 0.3641 + }, + { + "start": 7089.6, + "end": 7095.14, + "probability": 0.5689 + }, + { + "start": 7096.84, + "end": 7099.2, + "probability": 0.9976 + }, + { + "start": 7099.4, + "end": 7101.52, + "probability": 0.9377 + }, + { + "start": 7103.86, + "end": 7107.34, + "probability": 0.9116 + }, + { + "start": 7107.98, + "end": 7112.44, + "probability": 0.4399 + }, + { + "start": 7112.44, + "end": 7114.78, + "probability": 0.6439 + }, + { + "start": 7114.86, + "end": 7116.94, + "probability": 0.912 + }, + { + "start": 7117.0, + "end": 7118.46, + "probability": 0.9482 + }, + { + "start": 7118.84, + "end": 7120.48, + "probability": 0.7194 + }, + { + "start": 7120.66, + "end": 7122.02, + "probability": 0.7753 + }, + { + "start": 7122.82, + "end": 7125.28, + "probability": 0.9335 + }, + { + "start": 7126.16, + "end": 7126.72, + "probability": 0.5295 + }, + { + "start": 7127.64, + "end": 7128.66, + "probability": 0.8353 + }, + { + "start": 7128.82, + "end": 7130.44, + "probability": 0.9268 + }, + { + "start": 7130.5, + "end": 7131.34, + "probability": 0.8812 + }, + { + "start": 7131.38, + "end": 7132.0, + "probability": 0.9618 + }, + { + "start": 7132.84, + "end": 7141.68, + "probability": 0.8878 + }, + { + "start": 7141.86, + "end": 7143.02, + "probability": 0.9383 + }, + { + "start": 7143.1, + "end": 7143.24, + "probability": 0.4146 + }, + { + "start": 7143.28, + "end": 7144.22, + "probability": 0.7806 + }, + { + "start": 7144.7, + "end": 7149.96, + "probability": 0.9573 + }, + { + "start": 7150.82, + "end": 7152.59, + "probability": 0.9263 + }, + { + "start": 7153.08, + "end": 7157.58, + "probability": 0.9971 + }, + { + "start": 7157.68, + "end": 7159.78, + "probability": 0.8996 + }, + { + "start": 7160.52, + "end": 7165.0, + "probability": 0.9402 + }, + { + "start": 7165.0, + "end": 7167.94, + "probability": 0.9985 + }, + { + "start": 7168.72, + "end": 7172.54, + "probability": 0.991 + }, + { + "start": 7172.94, + "end": 7175.3, + "probability": 0.8376 + }, + { + "start": 7175.78, + "end": 7177.02, + "probability": 0.9087 + }, + { + "start": 7177.66, + "end": 7180.0, + "probability": 0.6315 + }, + { + "start": 7180.18, + "end": 7180.42, + "probability": 0.5702 + }, + { + "start": 7180.5, + "end": 7181.34, + "probability": 0.5886 + }, + { + "start": 7181.46, + "end": 7182.88, + "probability": 0.8569 + }, + { + "start": 7182.96, + "end": 7184.2, + "probability": 0.971 + }, + { + "start": 7184.78, + "end": 7185.8, + "probability": 0.7219 + }, + { + "start": 7185.96, + "end": 7186.26, + "probability": 0.9527 + }, + { + "start": 7186.38, + "end": 7188.28, + "probability": 0.8666 + }, + { + "start": 7188.49, + "end": 7189.92, + "probability": 0.8418 + }, + { + "start": 7190.3, + "end": 7192.94, + "probability": 0.7363 + }, + { + "start": 7193.08, + "end": 7196.58, + "probability": 0.9938 + }, + { + "start": 7197.18, + "end": 7201.02, + "probability": 0.9929 + }, + { + "start": 7201.68, + "end": 7204.86, + "probability": 0.8456 + }, + { + "start": 7205.06, + "end": 7206.1, + "probability": 0.9846 + }, + { + "start": 7206.66, + "end": 7210.82, + "probability": 0.9507 + }, + { + "start": 7210.98, + "end": 7213.48, + "probability": 0.9943 + }, + { + "start": 7213.84, + "end": 7215.48, + "probability": 0.8474 + }, + { + "start": 7216.38, + "end": 7218.78, + "probability": 0.9017 + }, + { + "start": 7218.86, + "end": 7219.3, + "probability": 0.8558 + }, + { + "start": 7227.41, + "end": 7231.02, + "probability": 0.6309 + }, + { + "start": 7231.38, + "end": 7233.64, + "probability": 0.9819 + }, + { + "start": 7234.69, + "end": 7239.92, + "probability": 0.9723 + }, + { + "start": 7240.82, + "end": 7246.34, + "probability": 0.985 + }, + { + "start": 7246.64, + "end": 7247.24, + "probability": 0.5804 + }, + { + "start": 7248.02, + "end": 7251.36, + "probability": 0.9971 + }, + { + "start": 7251.36, + "end": 7257.12, + "probability": 0.9861 + }, + { + "start": 7257.12, + "end": 7261.5, + "probability": 0.7534 + }, + { + "start": 7262.02, + "end": 7264.6, + "probability": 0.9979 + }, + { + "start": 7265.74, + "end": 7269.36, + "probability": 0.9937 + }, + { + "start": 7269.78, + "end": 7270.18, + "probability": 0.5708 + }, + { + "start": 7270.32, + "end": 7271.83, + "probability": 0.9973 + }, + { + "start": 7272.44, + "end": 7274.5, + "probability": 0.9562 + }, + { + "start": 7274.8, + "end": 7278.09, + "probability": 0.9875 + }, + { + "start": 7278.34, + "end": 7281.86, + "probability": 0.8311 + }, + { + "start": 7282.14, + "end": 7282.35, + "probability": 0.1204 + }, + { + "start": 7283.06, + "end": 7287.64, + "probability": 0.8499 + }, + { + "start": 7287.72, + "end": 7289.86, + "probability": 0.9478 + }, + { + "start": 7289.92, + "end": 7292.24, + "probability": 0.5579 + }, + { + "start": 7292.3, + "end": 7297.6, + "probability": 0.8121 + }, + { + "start": 7297.88, + "end": 7300.68, + "probability": 0.6737 + }, + { + "start": 7301.0, + "end": 7302.1, + "probability": 0.6723 + }, + { + "start": 7302.16, + "end": 7303.68, + "probability": 0.9899 + }, + { + "start": 7303.74, + "end": 7308.22, + "probability": 0.9833 + }, + { + "start": 7308.64, + "end": 7314.18, + "probability": 0.9969 + }, + { + "start": 7314.18, + "end": 7317.72, + "probability": 0.9926 + }, + { + "start": 7317.94, + "end": 7318.74, + "probability": 0.6981 + }, + { + "start": 7318.94, + "end": 7319.32, + "probability": 0.0362 + }, + { + "start": 7321.11, + "end": 7323.28, + "probability": 0.1031 + }, + { + "start": 7323.62, + "end": 7324.8, + "probability": 0.5953 + }, + { + "start": 7325.08, + "end": 7326.24, + "probability": 0.9387 + }, + { + "start": 7326.34, + "end": 7327.02, + "probability": 0.9325 + }, + { + "start": 7327.1, + "end": 7328.74, + "probability": 0.9878 + }, + { + "start": 7329.4, + "end": 7333.8, + "probability": 0.9077 + }, + { + "start": 7334.26, + "end": 7334.96, + "probability": 0.6963 + }, + { + "start": 7336.34, + "end": 7337.52, + "probability": 0.7852 + }, + { + "start": 7341.0, + "end": 7341.1, + "probability": 0.0 + }, + { + "start": 7345.75, + "end": 7349.57, + "probability": 0.7132 + }, + { + "start": 7350.9, + "end": 7356.55, + "probability": 0.901 + }, + { + "start": 7356.67, + "end": 7357.25, + "probability": 0.5514 + }, + { + "start": 7361.67, + "end": 7363.09, + "probability": 0.611 + }, + { + "start": 7363.81, + "end": 7364.57, + "probability": 0.0301 + }, + { + "start": 7366.39, + "end": 7369.51, + "probability": 0.1333 + }, + { + "start": 7370.77, + "end": 7374.11, + "probability": 0.0749 + }, + { + "start": 7374.11, + "end": 7378.09, + "probability": 0.4457 + }, + { + "start": 7378.97, + "end": 7379.71, + "probability": 0.7602 + }, + { + "start": 7379.83, + "end": 7384.21, + "probability": 0.9145 + }, + { + "start": 7384.71, + "end": 7385.41, + "probability": 0.5845 + }, + { + "start": 7385.67, + "end": 7387.37, + "probability": 0.7772 + }, + { + "start": 7387.47, + "end": 7388.29, + "probability": 0.4648 + }, + { + "start": 7398.89, + "end": 7400.73, + "probability": 0.0509 + }, + { + "start": 7402.47, + "end": 7406.55, + "probability": 0.1179 + }, + { + "start": 7406.59, + "end": 7410.11, + "probability": 0.6656 + }, + { + "start": 7410.27, + "end": 7413.71, + "probability": 0.9419 + }, + { + "start": 7429.89, + "end": 7433.19, + "probability": 0.6472 + }, + { + "start": 7433.31, + "end": 7438.05, + "probability": 0.7256 + }, + { + "start": 7438.35, + "end": 7438.35, + "probability": 0.5965 + }, + { + "start": 7438.35, + "end": 7440.73, + "probability": 0.82 + }, + { + "start": 7441.37, + "end": 7442.01, + "probability": 0.5459 + }, + { + "start": 7442.15, + "end": 7442.81, + "probability": 0.4055 + }, + { + "start": 7442.81, + "end": 7443.59, + "probability": 0.4015 + }, + { + "start": 7445.47, + "end": 7452.99, + "probability": 0.1583 + }, + { + "start": 7456.75, + "end": 7458.69, + "probability": 0.1274 + }, + { + "start": 7458.69, + "end": 7460.21, + "probability": 0.2821 + }, + { + "start": 7461.01, + "end": 7464.47, + "probability": 0.8441 + }, + { + "start": 7464.77, + "end": 7471.41, + "probability": 0.9056 + }, + { + "start": 7471.81, + "end": 7476.79, + "probability": 0.9153 + }, + { + "start": 7476.79, + "end": 7479.93, + "probability": 0.9915 + }, + { + "start": 7480.53, + "end": 7482.69, + "probability": 0.8176 + }, + { + "start": 7485.55, + "end": 7486.91, + "probability": 0.0889 + }, + { + "start": 7489.71, + "end": 7489.71, + "probability": 0.0211 + }, + { + "start": 7491.31, + "end": 7492.39, + "probability": 0.0257 + }, + { + "start": 7495.29, + "end": 7497.35, + "probability": 0.0657 + }, + { + "start": 7497.97, + "end": 7499.26, + "probability": 0.1194 + }, + { + "start": 7503.47, + "end": 7511.53, + "probability": 0.8618 + }, + { + "start": 7511.87, + "end": 7513.95, + "probability": 0.7244 + }, + { + "start": 7514.25, + "end": 7519.51, + "probability": 0.5137 + }, + { + "start": 7519.79, + "end": 7523.21, + "probability": 0.8661 + }, + { + "start": 7524.17, + "end": 7527.61, + "probability": 0.894 + }, + { + "start": 7528.07, + "end": 7530.51, + "probability": 0.9238 + }, + { + "start": 7531.11, + "end": 7531.21, + "probability": 0.1922 + }, + { + "start": 7533.19, + "end": 7537.91, + "probability": 0.0473 + }, + { + "start": 7541.37, + "end": 7542.43, + "probability": 0.3762 + }, + { + "start": 7547.25, + "end": 7548.39, + "probability": 0.1444 + }, + { + "start": 7548.39, + "end": 7548.95, + "probability": 0.2018 + }, + { + "start": 7549.65, + "end": 7550.77, + "probability": 0.2318 + }, + { + "start": 7550.91, + "end": 7556.71, + "probability": 0.8012 + }, + { + "start": 7557.15, + "end": 7563.57, + "probability": 0.7817 + }, + { + "start": 7564.17, + "end": 7565.01, + "probability": 0.1127 + }, + { + "start": 7565.03, + "end": 7565.73, + "probability": 0.2178 + }, + { + "start": 7565.73, + "end": 7566.43, + "probability": 0.3084 + }, + { + "start": 7569.24, + "end": 7570.43, + "probability": 0.3232 + }, + { + "start": 7574.09, + "end": 7574.29, + "probability": 0.0913 + }, + { + "start": 7576.13, + "end": 7576.65, + "probability": 0.0302 + }, + { + "start": 7580.67, + "end": 7581.41, + "probability": 0.1625 + }, + { + "start": 7581.41, + "end": 7581.69, + "probability": 0.1534 + }, + { + "start": 7582.29, + "end": 7583.93, + "probability": 0.4739 + }, + { + "start": 7584.31, + "end": 7587.83, + "probability": 0.794 + }, + { + "start": 7588.57, + "end": 7591.39, + "probability": 0.5608 + }, + { + "start": 7598.67, + "end": 7605.31, + "probability": 0.505 + }, + { + "start": 7605.37, + "end": 7606.07, + "probability": 0.5322 + }, + { + "start": 7606.17, + "end": 7606.67, + "probability": 0.5586 + }, + { + "start": 7606.75, + "end": 7607.73, + "probability": 0.837 + }, + { + "start": 7607.81, + "end": 7609.37, + "probability": 0.8281 + }, + { + "start": 7609.47, + "end": 7612.07, + "probability": 0.8131 + }, + { + "start": 7612.53, + "end": 7614.19, + "probability": 0.9881 + }, + { + "start": 7614.27, + "end": 7617.41, + "probability": 0.6908 + }, + { + "start": 7618.17, + "end": 7620.93, + "probability": 0.8323 + }, + { + "start": 7622.01, + "end": 7627.87, + "probability": 0.6511 + }, + { + "start": 7627.99, + "end": 7630.59, + "probability": 0.1182 + }, + { + "start": 7631.67, + "end": 7635.61, + "probability": 0.0924 + }, + { + "start": 7652.65, + "end": 7656.63, + "probability": 0.5765 + }, + { + "start": 7657.01, + "end": 7662.85, + "probability": 0.9089 + }, + { + "start": 7663.43, + "end": 7667.25, + "probability": 0.7386 + }, + { + "start": 7667.39, + "end": 7671.65, + "probability": 0.7104 + }, + { + "start": 7672.35, + "end": 7673.45, + "probability": 0.1528 + }, + { + "start": 7674.49, + "end": 7676.75, + "probability": 0.5119 + }, + { + "start": 7678.85, + "end": 7680.83, + "probability": 0.0733 + }, + { + "start": 7683.67, + "end": 7686.45, + "probability": 0.1061 + }, + { + "start": 7687.71, + "end": 7692.29, + "probability": 0.593 + }, + { + "start": 7692.45, + "end": 7700.15, + "probability": 0.6678 + }, + { + "start": 7700.61, + "end": 7700.87, + "probability": 0.0018 + }, + { + "start": 7720.87, + "end": 7730.89, + "probability": 0.8714 + }, + { + "start": 7731.53, + "end": 7733.19, + "probability": 0.5164 + }, + { + "start": 7733.25, + "end": 7733.85, + "probability": 0.468 + }, + { + "start": 7734.23, + "end": 7735.31, + "probability": 0.5658 + }, + { + "start": 7736.05, + "end": 7741.47, + "probability": 0.4227 + }, + { + "start": 7741.53, + "end": 7742.71, + "probability": 0.1562 + }, + { + "start": 7743.87, + "end": 7749.61, + "probability": 0.2687 + }, + { + "start": 7752.02, + "end": 7757.25, + "probability": 0.4852 + }, + { + "start": 7757.45, + "end": 7760.17, + "probability": 0.8627 + }, + { + "start": 7760.51, + "end": 7764.81, + "probability": 0.8904 + }, + { + "start": 7765.29, + "end": 7766.13, + "probability": 0.3174 + }, + { + "start": 7766.13, + "end": 7767.41, + "probability": 0.2733 + }, + { + "start": 7767.73, + "end": 7770.37, + "probability": 0.9792 + }, + { + "start": 7771.27, + "end": 7781.93, + "probability": 0.1382 + }, + { + "start": 7781.93, + "end": 7782.43, + "probability": 0.0893 + }, + { + "start": 7783.03, + "end": 7783.23, + "probability": 0.3533 + }, + { + "start": 7783.23, + "end": 7783.31, + "probability": 0.0297 + }, + { + "start": 7783.31, + "end": 7788.07, + "probability": 0.6255 + }, + { + "start": 7788.19, + "end": 7792.53, + "probability": 0.8417 + }, + { + "start": 7793.47, + "end": 7798.43, + "probability": 0.5495 + }, + { + "start": 7801.1, + "end": 7804.15, + "probability": 0.7117 + }, + { + "start": 7805.56, + "end": 7807.65, + "probability": 0.6005 + }, + { + "start": 7807.79, + "end": 7809.19, + "probability": 0.8557 + }, + { + "start": 7809.75, + "end": 7812.85, + "probability": 0.9455 + }, + { + "start": 7815.05, + "end": 7816.13, + "probability": 0.8388 + }, + { + "start": 7820.57, + "end": 7823.57, + "probability": 0.0785 + }, + { + "start": 7826.31, + "end": 7829.19, + "probability": 0.0751 + }, + { + "start": 7829.67, + "end": 7830.27, + "probability": 0.1127 + }, + { + "start": 7830.27, + "end": 7830.37, + "probability": 0.3748 + }, + { + "start": 7830.37, + "end": 7831.37, + "probability": 0.169 + }, + { + "start": 7832.01, + "end": 7834.59, + "probability": 0.4835 + }, + { + "start": 7834.87, + "end": 7839.13, + "probability": 0.8015 + }, + { + "start": 7840.57, + "end": 7840.73, + "probability": 0.0175 + }, + { + "start": 7841.69, + "end": 7844.91, + "probability": 0.1128 + }, + { + "start": 7846.25, + "end": 7848.63, + "probability": 0.0415 + }, + { + "start": 7870.99, + "end": 7872.61, + "probability": 0.3117 + }, + { + "start": 7872.71, + "end": 7873.21, + "probability": 0.6943 + }, + { + "start": 7873.31, + "end": 7873.45, + "probability": 0.0467 + }, + { + "start": 7873.45, + "end": 7873.45, + "probability": 0.6998 + }, + { + "start": 7873.45, + "end": 7874.75, + "probability": 0.5098 + }, + { + "start": 7874.75, + "end": 7878.13, + "probability": 0.2888 + }, + { + "start": 7889.53, + "end": 7891.69, + "probability": 0.0119 + }, + { + "start": 7898.39, + "end": 7900.99, + "probability": 0.1346 + }, + { + "start": 7905.29, + "end": 7907.29, + "probability": 0.3121 + }, + { + "start": 7934.0, + "end": 7934.0, + "probability": 0.0 + }, + { + "start": 7934.0, + "end": 7934.0, + "probability": 0.0 + }, + { + "start": 7934.0, + "end": 7934.0, + "probability": 0.0 + }, + { + "start": 7934.0, + "end": 7934.0, + "probability": 0.0 + }, + { + "start": 7934.0, + "end": 7934.0, + "probability": 0.0 + }, + { + "start": 7934.0, + "end": 7934.0, + "probability": 0.0 + }, + { + "start": 7934.0, + "end": 7934.0, + "probability": 0.0 + }, + { + "start": 7934.18, + "end": 7934.28, + "probability": 0.4285 + }, + { + "start": 7934.28, + "end": 7934.64, + "probability": 0.4009 + }, + { + "start": 7936.34, + "end": 7936.68, + "probability": 0.1239 + }, + { + "start": 7936.76, + "end": 7940.92, + "probability": 0.9097 + }, + { + "start": 7941.12, + "end": 7941.46, + "probability": 0.5485 + }, + { + "start": 7941.58, + "end": 7942.6, + "probability": 0.5378 + }, + { + "start": 7945.42, + "end": 7945.42, + "probability": 0.2093 + }, + { + "start": 7945.42, + "end": 7945.42, + "probability": 0.1001 + }, + { + "start": 7945.42, + "end": 7945.42, + "probability": 0.3094 + }, + { + "start": 7945.42, + "end": 7945.5, + "probability": 0.2886 + }, + { + "start": 7945.5, + "end": 7947.1, + "probability": 0.2243 + }, + { + "start": 7947.84, + "end": 7949.32, + "probability": 0.2106 + }, + { + "start": 7949.96, + "end": 7952.46, + "probability": 0.7094 + }, + { + "start": 7952.94, + "end": 7956.82, + "probability": 0.9103 + }, + { + "start": 7956.94, + "end": 7958.48, + "probability": 0.7487 + }, + { + "start": 7958.58, + "end": 7959.1, + "probability": 0.4607 + }, + { + "start": 7959.14, + "end": 7960.05, + "probability": 0.698 + }, + { + "start": 7960.98, + "end": 7967.74, + "probability": 0.1592 + }, + { + "start": 7971.94, + "end": 7973.04, + "probability": 0.2155 + }, + { + "start": 7973.74, + "end": 7976.46, + "probability": 0.0972 + }, + { + "start": 7976.46, + "end": 7977.12, + "probability": 0.1752 + }, + { + "start": 7977.16, + "end": 7977.34, + "probability": 0.1902 + }, + { + "start": 7977.68, + "end": 7977.88, + "probability": 0.6357 + }, + { + "start": 7978.1, + "end": 7983.14, + "probability": 0.8743 + }, + { + "start": 7983.44, + "end": 7984.66, + "probability": 0.8358 + }, + { + "start": 7985.36, + "end": 7989.2, + "probability": 0.9092 + }, + { + "start": 7989.26, + "end": 7989.82, + "probability": 0.6963 + }, + { + "start": 7994.02, + "end": 7998.58, + "probability": 0.3425 + }, + { + "start": 8004.24, + "end": 8005.26, + "probability": 0.1756 + }, + { + "start": 8005.26, + "end": 8005.3, + "probability": 0.2727 + }, + { + "start": 8005.3, + "end": 8005.46, + "probability": 0.4141 + }, + { + "start": 8005.46, + "end": 8007.4, + "probability": 0.2831 + }, + { + "start": 8007.56, + "end": 8011.46, + "probability": 0.8098 + }, + { + "start": 8012.38, + "end": 8017.16, + "probability": 0.628 + }, + { + "start": 8017.72, + "end": 8018.5, + "probability": 0.4872 + }, + { + "start": 8018.56, + "end": 8019.66, + "probability": 0.4956 + }, + { + "start": 8019.66, + "end": 8021.16, + "probability": 0.2295 + }, + { + "start": 8024.02, + "end": 8025.7, + "probability": 0.2466 + }, + { + "start": 8026.0, + "end": 8027.56, + "probability": 0.1523 + }, + { + "start": 8028.49, + "end": 8029.68, + "probability": 0.2272 + }, + { + "start": 8029.72, + "end": 8032.6, + "probability": 0.1914 + }, + { + "start": 8032.68, + "end": 8033.16, + "probability": 0.1459 + }, + { + "start": 8034.24, + "end": 8035.2, + "probability": 0.3245 + }, + { + "start": 8035.88, + "end": 8038.38, + "probability": 0.5283 + }, + { + "start": 8039.16, + "end": 8043.62, + "probability": 0.9308 + }, + { + "start": 8043.7, + "end": 8044.58, + "probability": 0.5053 + }, + { + "start": 8044.7, + "end": 8045.46, + "probability": 0.8468 + }, + { + "start": 8045.46, + "end": 8046.26, + "probability": 0.7714 + }, + { + "start": 8046.64, + "end": 8048.12, + "probability": 0.9629 + }, + { + "start": 8048.86, + "end": 8049.72, + "probability": 0.2319 + }, + { + "start": 8051.72, + "end": 8053.18, + "probability": 0.897 + }, + { + "start": 8053.52, + "end": 8057.98, + "probability": 0.7159 + }, + { + "start": 8058.7, + "end": 8063.46, + "probability": 0.8929 + }, + { + "start": 8063.76, + "end": 8070.06, + "probability": 0.7749 + }, + { + "start": 8070.3, + "end": 8071.59, + "probability": 0.6583 + }, + { + "start": 8071.62, + "end": 8072.98, + "probability": 0.5534 + }, + { + "start": 8074.58, + "end": 8076.92, + "probability": 0.0821 + }, + { + "start": 8076.92, + "end": 8078.0, + "probability": 0.0848 + }, + { + "start": 8078.0, + "end": 8079.08, + "probability": 0.162 + }, + { + "start": 8080.3, + "end": 8080.8, + "probability": 0.3977 + }, + { + "start": 8083.94, + "end": 8085.82, + "probability": 0.2518 + }, + { + "start": 8086.56, + "end": 8087.8, + "probability": 0.1914 + }, + { + "start": 8088.62, + "end": 8090.0, + "probability": 0.4684 + }, + { + "start": 8090.16, + "end": 8095.62, + "probability": 0.8786 + }, + { + "start": 8095.74, + "end": 8101.1, + "probability": 0.9376 + }, + { + "start": 8101.18, + "end": 8101.66, + "probability": 0.5652 + }, + { + "start": 8101.76, + "end": 8102.5, + "probability": 0.4265 + }, + { + "start": 8104.5, + "end": 8106.5, + "probability": 0.068 + }, + { + "start": 8123.98, + "end": 8124.36, + "probability": 0.7115 + }, + { + "start": 8128.76, + "end": 8130.28, + "probability": 0.3484 + }, + { + "start": 8130.54, + "end": 8130.54, + "probability": 0.1087 + }, + { + "start": 8130.54, + "end": 8132.36, + "probability": 0.2169 + }, + { + "start": 8132.89, + "end": 8133.25, + "probability": 0.0532 + }, + { + "start": 8133.68, + "end": 8137.38, + "probability": 0.3785 + }, + { + "start": 8139.11, + "end": 8158.16, + "probability": 0.0385 + }, + { + "start": 8158.67, + "end": 8159.44, + "probability": 0.4675 + }, + { + "start": 8159.44, + "end": 8161.4, + "probability": 0.4314 + }, + { + "start": 8161.76, + "end": 8163.24, + "probability": 0.7766 + }, + { + "start": 8163.34, + "end": 8165.58, + "probability": 0.0771 + }, + { + "start": 8166.22, + "end": 8166.38, + "probability": 0.0895 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.0, + "end": 8184.0, + "probability": 0.0 + }, + { + "start": 8184.46, + "end": 8185.34, + "probability": 0.2817 + }, + { + "start": 8185.86, + "end": 8187.06, + "probability": 0.4571 + }, + { + "start": 8187.88, + "end": 8188.92, + "probability": 0.9258 + }, + { + "start": 8189.88, + "end": 8194.42, + "probability": 0.9576 + }, + { + "start": 8194.94, + "end": 8195.54, + "probability": 0.8269 + }, + { + "start": 8203.48, + "end": 8205.12, + "probability": 0.0966 + }, + { + "start": 8205.28, + "end": 8206.48, + "probability": 0.6635 + }, + { + "start": 8206.62, + "end": 8207.06, + "probability": 0.2587 + }, + { + "start": 8207.18, + "end": 8212.44, + "probability": 0.6009 + }, + { + "start": 8212.58, + "end": 8213.18, + "probability": 0.6256 + }, + { + "start": 8213.2, + "end": 8214.48, + "probability": 0.6381 + }, + { + "start": 8217.18, + "end": 8218.42, + "probability": 0.2325 + }, + { + "start": 8218.42, + "end": 8218.9, + "probability": 0.2073 + }, + { + "start": 8219.36, + "end": 8222.22, + "probability": 0.2507 + }, + { + "start": 8223.0, + "end": 8225.34, + "probability": 0.1864 + }, + { + "start": 8225.5, + "end": 8226.1, + "probability": 0.0393 + }, + { + "start": 8231.3, + "end": 8231.94, + "probability": 0.2841 + }, + { + "start": 8232.74, + "end": 8234.06, + "probability": 0.6241 + }, + { + "start": 8235.04, + "end": 8236.04, + "probability": 0.3986 + }, + { + "start": 8237.04, + "end": 8240.28, + "probability": 0.9 + }, + { + "start": 8240.28, + "end": 8244.54, + "probability": 0.8933 + }, + { + "start": 8244.78, + "end": 8245.56, + "probability": 0.1571 + }, + { + "start": 8245.74, + "end": 8246.88, + "probability": 0.129 + }, + { + "start": 8248.52, + "end": 8255.66, + "probability": 0.0829 + }, + { + "start": 8260.08, + "end": 8261.44, + "probability": 0.1158 + }, + { + "start": 8261.44, + "end": 8263.44, + "probability": 0.4078 + }, + { + "start": 8264.14, + "end": 8264.67, + "probability": 0.7429 + }, + { + "start": 8265.98, + "end": 8269.76, + "probability": 0.9554 + }, + { + "start": 8270.18, + "end": 8272.06, + "probability": 0.9153 + }, + { + "start": 8272.9, + "end": 8274.34, + "probability": 0.6832 + }, + { + "start": 8274.62, + "end": 8275.28, + "probability": 0.4735 + }, + { + "start": 8275.46, + "end": 8277.54, + "probability": 0.5338 + }, + { + "start": 8277.64, + "end": 8279.98, + "probability": 0.8152 + }, + { + "start": 8280.02, + "end": 8281.0, + "probability": 0.9614 + }, + { + "start": 8281.2, + "end": 8281.76, + "probability": 0.6459 + }, + { + "start": 8281.76, + "end": 8283.04, + "probability": 0.4761 + }, + { + "start": 8284.82, + "end": 8288.6, + "probability": 0.5948 + }, + { + "start": 8290.24, + "end": 8293.1, + "probability": 0.1488 + }, + { + "start": 8293.54, + "end": 8293.62, + "probability": 0.1969 + }, + { + "start": 8293.62, + "end": 8294.9, + "probability": 0.2678 + }, + { + "start": 8295.76, + "end": 8299.24, + "probability": 0.4744 + }, + { + "start": 8299.84, + "end": 8306.28, + "probability": 0.3883 + }, + { + "start": 8308.38, + "end": 8308.86, + "probability": 0.041 + }, + { + "start": 8308.86, + "end": 8310.02, + "probability": 0.048 + }, + { + "start": 8310.28, + "end": 8311.24, + "probability": 0.6599 + }, + { + "start": 8319.24, + "end": 8321.42, + "probability": 0.7213 + }, + { + "start": 8321.42, + "end": 8325.14, + "probability": 0.8928 + }, + { + "start": 8325.34, + "end": 8325.96, + "probability": 0.7056 + }, + { + "start": 8326.86, + "end": 8329.34, + "probability": 0.798 + }, + { + "start": 8329.7, + "end": 8329.78, + "probability": 0.3404 + }, + { + "start": 8329.88, + "end": 8330.7, + "probability": 0.9359 + }, + { + "start": 8330.78, + "end": 8333.54, + "probability": 0.8291 + }, + { + "start": 8334.0, + "end": 8334.3, + "probability": 0.0914 + }, + { + "start": 8334.34, + "end": 8334.82, + "probability": 0.5693 + }, + { + "start": 8334.86, + "end": 8337.1, + "probability": 0.6627 + }, + { + "start": 8337.1, + "end": 8341.32, + "probability": 0.7118 + }, + { + "start": 8346.59, + "end": 8352.72, + "probability": 0.4647 + }, + { + "start": 8360.4, + "end": 8367.34, + "probability": 0.8493 + }, + { + "start": 8369.38, + "end": 8374.9, + "probability": 0.0663 + }, + { + "start": 8375.46, + "end": 8379.4, + "probability": 0.1309 + }, + { + "start": 8387.46, + "end": 8388.6, + "probability": 0.2155 + }, + { + "start": 8389.14, + "end": 8390.76, + "probability": 0.1989 + }, + { + "start": 8392.68, + "end": 8400.86, + "probability": 0.8541 + }, + { + "start": 8403.18, + "end": 8406.28, + "probability": 0.7407 + }, + { + "start": 8406.9, + "end": 8409.52, + "probability": 0.7665 + }, + { + "start": 8410.4, + "end": 8414.7, + "probability": 0.7171 + }, + { + "start": 8415.26, + "end": 8418.58, + "probability": 0.8521 + }, + { + "start": 8418.72, + "end": 8420.5, + "probability": 0.664 + }, + { + "start": 8420.72, + "end": 8423.28, + "probability": 0.9179 + }, + { + "start": 8423.84, + "end": 8425.08, + "probability": 0.7385 + }, + { + "start": 8425.62, + "end": 8429.16, + "probability": 0.8641 + }, + { + "start": 8429.76, + "end": 8432.87, + "probability": 0.9605 + }, + { + "start": 8433.13, + "end": 8435.63, + "probability": 0.4809 + }, + { + "start": 8436.9, + "end": 8437.72, + "probability": 0.9202 + }, + { + "start": 8439.82, + "end": 8441.66, + "probability": 0.6451 + }, + { + "start": 8442.38, + "end": 8445.06, + "probability": 0.8515 + }, + { + "start": 8445.26, + "end": 8447.88, + "probability": 0.9484 + }, + { + "start": 8448.36, + "end": 8450.36, + "probability": 0.9277 + }, + { + "start": 8451.04, + "end": 8456.48, + "probability": 0.9573 + }, + { + "start": 8457.24, + "end": 8460.14, + "probability": 0.827 + }, + { + "start": 8460.76, + "end": 8463.5, + "probability": 0.7433 + }, + { + "start": 8464.36, + "end": 8464.64, + "probability": 0.6219 + }, + { + "start": 8465.54, + "end": 8466.74, + "probability": 0.6529 + }, + { + "start": 8467.5, + "end": 8471.38, + "probability": 0.8662 + }, + { + "start": 8472.14, + "end": 8474.62, + "probability": 0.9438 + }, + { + "start": 8475.22, + "end": 8477.86, + "probability": 0.8181 + }, + { + "start": 8478.58, + "end": 8480.88, + "probability": 0.991 + }, + { + "start": 8481.72, + "end": 8484.2, + "probability": 0.9861 + }, + { + "start": 8484.68, + "end": 8486.92, + "probability": 0.814 + }, + { + "start": 8487.38, + "end": 8489.54, + "probability": 0.9462 + }, + { + "start": 8490.46, + "end": 8495.1, + "probability": 0.882 + }, + { + "start": 8497.64, + "end": 8500.92, + "probability": 0.9625 + }, + { + "start": 8501.78, + "end": 8504.8, + "probability": 0.9086 + }, + { + "start": 8505.48, + "end": 8507.72, + "probability": 0.9631 + }, + { + "start": 8508.84, + "end": 8515.36, + "probability": 0.9474 + }, + { + "start": 8516.04, + "end": 8519.4, + "probability": 0.9778 + }, + { + "start": 8520.12, + "end": 8520.92, + "probability": 0.6578 + }, + { + "start": 8521.8, + "end": 8524.06, + "probability": 0.943 + }, + { + "start": 8524.74, + "end": 8530.72, + "probability": 0.8918 + }, + { + "start": 8531.34, + "end": 8533.68, + "probability": 0.9692 + }, + { + "start": 8536.85, + "end": 8539.28, + "probability": 0.7343 + }, + { + "start": 8539.84, + "end": 8541.72, + "probability": 0.9744 + }, + { + "start": 8542.28, + "end": 8545.3, + "probability": 0.9749 + }, + { + "start": 8548.12, + "end": 8549.04, + "probability": 0.5478 + }, + { + "start": 8549.8, + "end": 8551.7, + "probability": 0.7603 + }, + { + "start": 8553.16, + "end": 8556.02, + "probability": 0.9014 + }, + { + "start": 8556.64, + "end": 8558.44, + "probability": 0.7387 + }, + { + "start": 8559.46, + "end": 8561.66, + "probability": 0.9771 + }, + { + "start": 8562.26, + "end": 8565.06, + "probability": 0.9587 + }, + { + "start": 8565.86, + "end": 8568.78, + "probability": 0.9602 + }, + { + "start": 8569.52, + "end": 8575.66, + "probability": 0.9853 + }, + { + "start": 8576.7, + "end": 8579.12, + "probability": 0.7817 + }, + { + "start": 8580.12, + "end": 8580.5, + "probability": 0.98 + }, + { + "start": 8581.04, + "end": 8584.94, + "probability": 0.8788 + }, + { + "start": 8587.46, + "end": 8590.16, + "probability": 0.9076 + }, + { + "start": 8591.48, + "end": 8593.94, + "probability": 0.9335 + }, + { + "start": 8595.72, + "end": 8598.12, + "probability": 0.7668 + }, + { + "start": 8598.64, + "end": 8599.08, + "probability": 0.9683 + }, + { + "start": 8599.78, + "end": 8600.82, + "probability": 0.7939 + }, + { + "start": 8601.5, + "end": 8603.8, + "probability": 0.8342 + }, + { + "start": 8605.84, + "end": 8606.42, + "probability": 0.7546 + }, + { + "start": 8609.68, + "end": 8611.7, + "probability": 0.4794 + }, + { + "start": 8612.94, + "end": 8613.3, + "probability": 0.854 + }, + { + "start": 8613.98, + "end": 8614.84, + "probability": 0.8497 + }, + { + "start": 8616.71, + "end": 8620.04, + "probability": 0.9064 + }, + { + "start": 8621.68, + "end": 8624.32, + "probability": 0.9589 + }, + { + "start": 8626.34, + "end": 8627.2, + "probability": 0.9889 + }, + { + "start": 8628.22, + "end": 8629.38, + "probability": 0.9499 + }, + { + "start": 8630.3, + "end": 8630.9, + "probability": 0.9845 + }, + { + "start": 8631.84, + "end": 8632.66, + "probability": 0.9646 + }, + { + "start": 8634.02, + "end": 8634.12, + "probability": 0.9714 + }, + { + "start": 8634.72, + "end": 8635.72, + "probability": 0.4105 + }, + { + "start": 8636.24, + "end": 8638.22, + "probability": 0.9408 + }, + { + "start": 8639.3, + "end": 8641.6, + "probability": 0.7348 + }, + { + "start": 8642.28, + "end": 8644.64, + "probability": 0.8076 + }, + { + "start": 8645.58, + "end": 8647.5, + "probability": 0.8962 + }, + { + "start": 8648.42, + "end": 8648.94, + "probability": 0.9219 + }, + { + "start": 8649.54, + "end": 8650.52, + "probability": 0.9856 + }, + { + "start": 8653.12, + "end": 8655.06, + "probability": 0.9687 + }, + { + "start": 8655.78, + "end": 8658.42, + "probability": 0.9751 + }, + { + "start": 8660.9, + "end": 8663.16, + "probability": 0.9695 + }, + { + "start": 8665.92, + "end": 8666.62, + "probability": 0.9734 + }, + { + "start": 8667.14, + "end": 8667.76, + "probability": 0.6302 + }, + { + "start": 8669.22, + "end": 8672.56, + "probability": 0.7697 + }, + { + "start": 8673.18, + "end": 8673.52, + "probability": 0.5901 + }, + { + "start": 8674.26, + "end": 8675.02, + "probability": 0.9202 + }, + { + "start": 8676.02, + "end": 8680.66, + "probability": 0.9586 + }, + { + "start": 8681.18, + "end": 8684.14, + "probability": 0.9357 + }, + { + "start": 8685.28, + "end": 8687.18, + "probability": 0.9576 + }, + { + "start": 8688.04, + "end": 8688.5, + "probability": 0.9401 + }, + { + "start": 8689.36, + "end": 8690.46, + "probability": 0.9944 + }, + { + "start": 8691.22, + "end": 8693.38, + "probability": 0.9917 + }, + { + "start": 8694.22, + "end": 8694.52, + "probability": 0.7522 + }, + { + "start": 8695.26, + "end": 8696.44, + "probability": 0.4332 + }, + { + "start": 8697.56, + "end": 8699.56, + "probability": 0.8496 + }, + { + "start": 8701.2, + "end": 8704.14, + "probability": 0.6488 + }, + { + "start": 8705.82, + "end": 8708.24, + "probability": 0.9488 + }, + { + "start": 8710.16, + "end": 8713.16, + "probability": 0.8851 + }, + { + "start": 8713.8, + "end": 8716.56, + "probability": 0.9416 + }, + { + "start": 8717.42, + "end": 8722.2, + "probability": 0.9651 + }, + { + "start": 8723.12, + "end": 8723.44, + "probability": 0.7369 + }, + { + "start": 8724.58, + "end": 8725.68, + "probability": 0.6591 + }, + { + "start": 8726.52, + "end": 8728.44, + "probability": 0.8118 + }, + { + "start": 8730.14, + "end": 8733.94, + "probability": 0.9313 + }, + { + "start": 8734.46, + "end": 8736.88, + "probability": 0.9626 + }, + { + "start": 8737.4, + "end": 8737.88, + "probability": 0.8874 + }, + { + "start": 8738.54, + "end": 8739.98, + "probability": 0.8435 + }, + { + "start": 8741.5, + "end": 8744.38, + "probability": 0.8861 + }, + { + "start": 8746.1, + "end": 8749.12, + "probability": 0.8629 + }, + { + "start": 8750.16, + "end": 8751.66, + "probability": 0.9871 + }, + { + "start": 8752.38, + "end": 8753.36, + "probability": 0.7275 + }, + { + "start": 8754.24, + "end": 8758.16, + "probability": 0.8485 + }, + { + "start": 8758.94, + "end": 8761.52, + "probability": 0.8591 + }, + { + "start": 8762.3, + "end": 8764.6, + "probability": 0.8124 + }, + { + "start": 8766.9, + "end": 8768.62, + "probability": 0.978 + }, + { + "start": 8771.04, + "end": 8772.96, + "probability": 0.873 + }, + { + "start": 8773.68, + "end": 8775.9, + "probability": 0.9605 + }, + { + "start": 8777.24, + "end": 8779.28, + "probability": 0.9516 + }, + { + "start": 8779.96, + "end": 8780.5, + "probability": 0.7197 + }, + { + "start": 8781.38, + "end": 8782.34, + "probability": 0.8203 + }, + { + "start": 8783.22, + "end": 8785.84, + "probability": 0.9234 + }, + { + "start": 8788.56, + "end": 8792.44, + "probability": 0.5018 + }, + { + "start": 8794.76, + "end": 8795.64, + "probability": 0.626 + }, + { + "start": 8797.9, + "end": 8798.3, + "probability": 0.8874 + }, + { + "start": 8799.52, + "end": 8800.32, + "probability": 0.6527 + }, + { + "start": 8801.3, + "end": 8803.28, + "probability": 0.9108 + }, + { + "start": 8804.26, + "end": 8807.58, + "probability": 0.8691 + }, + { + "start": 8808.18, + "end": 8809.08, + "probability": 0.8039 + }, + { + "start": 8811.56, + "end": 8814.04, + "probability": 0.8437 + }, + { + "start": 8815.04, + "end": 8817.96, + "probability": 0.8464 + }, + { + "start": 8820.16, + "end": 8822.9, + "probability": 0.7867 + }, + { + "start": 8824.16, + "end": 8829.1, + "probability": 0.9678 + }, + { + "start": 8830.54, + "end": 8833.96, + "probability": 0.8796 + }, + { + "start": 8836.24, + "end": 8838.16, + "probability": 0.9215 + }, + { + "start": 8839.59, + "end": 8842.7, + "probability": 0.6481 + }, + { + "start": 8843.24, + "end": 8843.7, + "probability": 0.9412 + }, + { + "start": 8844.66, + "end": 8845.56, + "probability": 0.8638 + }, + { + "start": 8847.1, + "end": 8847.84, + "probability": 0.993 + }, + { + "start": 8848.74, + "end": 8849.58, + "probability": 0.6191 + }, + { + "start": 8850.54, + "end": 8853.64, + "probability": 0.7006 + }, + { + "start": 8855.58, + "end": 8858.82, + "probability": 0.9111 + }, + { + "start": 8860.82, + "end": 8861.3, + "probability": 0.9036 + }, + { + "start": 8861.92, + "end": 8862.82, + "probability": 0.6736 + }, + { + "start": 8864.62, + "end": 8868.24, + "probability": 0.9579 + }, + { + "start": 8869.92, + "end": 8870.88, + "probability": 0.9517 + }, + { + "start": 8872.02, + "end": 8872.94, + "probability": 0.9045 + }, + { + "start": 8873.5, + "end": 8874.36, + "probability": 0.8945 + }, + { + "start": 8876.0, + "end": 8876.8, + "probability": 0.1273 + }, + { + "start": 8891.22, + "end": 8893.74, + "probability": 0.6798 + }, + { + "start": 8893.8, + "end": 8897.12, + "probability": 0.8447 + }, + { + "start": 8897.5, + "end": 8900.03, + "probability": 0.3039 + }, + { + "start": 8902.2, + "end": 8902.48, + "probability": 0.9746 + }, + { + "start": 8906.6, + "end": 8907.58, + "probability": 0.6327 + }, + { + "start": 8908.66, + "end": 8911.86, + "probability": 0.757 + }, + { + "start": 8913.2, + "end": 8915.64, + "probability": 0.8716 + }, + { + "start": 8918.28, + "end": 8920.42, + "probability": 0.9844 + }, + { + "start": 8922.2, + "end": 8924.54, + "probability": 0.9597 + }, + { + "start": 8925.62, + "end": 8926.54, + "probability": 0.8901 + }, + { + "start": 8927.08, + "end": 8927.9, + "probability": 0.9633 + }, + { + "start": 8931.36, + "end": 8932.0, + "probability": 0.7158 + }, + { + "start": 8933.18, + "end": 8934.28, + "probability": 0.9495 + }, + { + "start": 8935.44, + "end": 8939.14, + "probability": 0.6913 + }, + { + "start": 8940.67, + "end": 8942.94, + "probability": 0.8561 + }, + { + "start": 8946.32, + "end": 8948.42, + "probability": 0.9162 + }, + { + "start": 8950.44, + "end": 8952.48, + "probability": 0.8966 + }, + { + "start": 8954.58, + "end": 8963.16, + "probability": 0.9078 + }, + { + "start": 8963.82, + "end": 8964.76, + "probability": 0.2886 + }, + { + "start": 8970.02, + "end": 8971.5, + "probability": 0.1736 + }, + { + "start": 8973.0, + "end": 8975.62, + "probability": 0.5491 + }, + { + "start": 8977.1, + "end": 8981.32, + "probability": 0.8202 + }, + { + "start": 8981.98, + "end": 8984.38, + "probability": 0.8558 + }, + { + "start": 8986.28, + "end": 8990.68, + "probability": 0.6971 + }, + { + "start": 8993.0, + "end": 8994.86, + "probability": 0.7398 + }, + { + "start": 8998.24, + "end": 9001.2, + "probability": 0.8802 + }, + { + "start": 9002.2, + "end": 9003.52, + "probability": 0.5019 + }, + { + "start": 9008.26, + "end": 9009.08, + "probability": 0.6384 + }, + { + "start": 9009.28, + "end": 9013.8, + "probability": 0.9558 + }, + { + "start": 9014.96, + "end": 9015.3, + "probability": 0.5798 + }, + { + "start": 9015.3, + "end": 9017.44, + "probability": 0.9091 + }, + { + "start": 9017.9, + "end": 9019.3, + "probability": 0.2232 + }, + { + "start": 9019.56, + "end": 9025.18, + "probability": 0.597 + }, + { + "start": 9026.28, + "end": 9026.54, + "probability": 0.9763 + }, + { + "start": 9042.56, + "end": 9043.72, + "probability": 0.6684 + }, + { + "start": 9045.4, + "end": 9046.72, + "probability": 0.4431 + }, + { + "start": 9049.42, + "end": 9050.56, + "probability": 0.7706 + }, + { + "start": 9051.68, + "end": 9052.0, + "probability": 0.0288 + }, + { + "start": 9058.9, + "end": 9059.82, + "probability": 0.0491 + }, + { + "start": 9061.36, + "end": 9064.93, + "probability": 0.0205 + }, + { + "start": 9068.86, + "end": 9070.0, + "probability": 0.0446 + }, + { + "start": 9081.3, + "end": 9081.36, + "probability": 0.1788 + }, + { + "start": 9092.24, + "end": 9092.72, + "probability": 0.133 + }, + { + "start": 9093.36, + "end": 9093.52, + "probability": 0.0416 + }, + { + "start": 9158.24, + "end": 9158.32, + "probability": 0.0251 + }, + { + "start": 9159.3, + "end": 9160.5, + "probability": 0.1039 + }, + { + "start": 9160.5, + "end": 9160.98, + "probability": 0.0543 + }, + { + "start": 9162.74, + "end": 9164.82, + "probability": 0.0307 + }, + { + "start": 9164.82, + "end": 9167.62, + "probability": 0.122 + }, + { + "start": 9167.64, + "end": 9169.08, + "probability": 0.0641 + }, + { + "start": 9171.96, + "end": 9172.42, + "probability": 0.0447 + }, + { + "start": 9189.08, + "end": 9192.76, + "probability": 0.0225 + }, + { + "start": 9192.76, + "end": 9194.21, + "probability": 0.0902 + }, + { + "start": 9196.84, + "end": 9198.3, + "probability": 0.0159 + }, + { + "start": 9198.3, + "end": 9198.98, + "probability": 0.0512 + }, + { + "start": 9198.98, + "end": 9199.18, + "probability": 0.407 + }, + { + "start": 9199.18, + "end": 9200.16, + "probability": 0.0556 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.0, + "end": 9265.0, + "probability": 0.0 + }, + { + "start": 9265.18, + "end": 9265.18, + "probability": 0.0134 + }, + { + "start": 9265.18, + "end": 9265.18, + "probability": 0.0609 + }, + { + "start": 9265.18, + "end": 9269.2, + "probability": 0.5275 + }, + { + "start": 9270.14, + "end": 9270.32, + "probability": 0.4268 + }, + { + "start": 9270.32, + "end": 9270.95, + "probability": 0.5061 + }, + { + "start": 9271.42, + "end": 9272.22, + "probability": 0.5265 + }, + { + "start": 9284.97, + "end": 9286.9, + "probability": 0.1939 + }, + { + "start": 9288.51, + "end": 9288.93, + "probability": 0.263 + }, + { + "start": 9289.7, + "end": 9293.8, + "probability": 0.7072 + }, + { + "start": 9294.94, + "end": 9297.48, + "probability": 0.9948 + }, + { + "start": 9298.82, + "end": 9300.26, + "probability": 0.431 + }, + { + "start": 9301.08, + "end": 9307.08, + "probability": 0.8124 + }, + { + "start": 9307.82, + "end": 9308.52, + "probability": 0.6123 + }, + { + "start": 9308.86, + "end": 9309.56, + "probability": 0.6979 + }, + { + "start": 9309.62, + "end": 9310.82, + "probability": 0.7249 + }, + { + "start": 9313.54, + "end": 9316.2, + "probability": 0.3706 + }, + { + "start": 9317.9, + "end": 9319.42, + "probability": 0.0863 + }, + { + "start": 9326.68, + "end": 9327.02, + "probability": 0.1415 + }, + { + "start": 9327.02, + "end": 9331.0, + "probability": 0.542 + }, + { + "start": 9331.54, + "end": 9332.08, + "probability": 0.8793 + }, + { + "start": 9332.74, + "end": 9336.52, + "probability": 0.7464 + }, + { + "start": 9336.52, + "end": 9337.5, + "probability": 0.8203 + }, + { + "start": 9337.54, + "end": 9338.38, + "probability": 0.7445 + }, + { + "start": 9339.4, + "end": 9340.76, + "probability": 0.8022 + }, + { + "start": 9340.98, + "end": 9341.46, + "probability": 0.2502 + }, + { + "start": 9341.52, + "end": 9342.76, + "probability": 0.537 + }, + { + "start": 9342.76, + "end": 9347.54, + "probability": 0.8402 + }, + { + "start": 9347.64, + "end": 9348.14, + "probability": 0.5814 + }, + { + "start": 9348.18, + "end": 9351.94, + "probability": 0.8843 + }, + { + "start": 9367.25, + "end": 9368.02, + "probability": 0.0974 + }, + { + "start": 9368.02, + "end": 9368.02, + "probability": 0.0584 + }, + { + "start": 9368.02, + "end": 9368.02, + "probability": 0.1945 + }, + { + "start": 9368.02, + "end": 9368.02, + "probability": 0.2942 + }, + { + "start": 9368.02, + "end": 9368.42, + "probability": 0.1759 + }, + { + "start": 9368.98, + "end": 9369.38, + "probability": 0.6443 + }, + { + "start": 9369.56, + "end": 9374.0, + "probability": 0.9861 + }, + { + "start": 9374.6, + "end": 9375.3, + "probability": 0.8561 + }, + { + "start": 9375.62, + "end": 9376.96, + "probability": 0.9091 + }, + { + "start": 9377.58, + "end": 9380.34, + "probability": 0.926 + }, + { + "start": 9380.86, + "end": 9383.38, + "probability": 0.8758 + }, + { + "start": 9389.52, + "end": 9390.3, + "probability": 0.0615 + }, + { + "start": 9390.3, + "end": 9390.78, + "probability": 0.0517 + }, + { + "start": 9390.9, + "end": 9392.06, + "probability": 0.0634 + }, + { + "start": 9396.13, + "end": 9396.13, + "probability": 0.1908 + }, + { + "start": 9396.13, + "end": 9397.11, + "probability": 0.2287 + }, + { + "start": 9397.91, + "end": 9399.71, + "probability": 0.6082 + }, + { + "start": 9400.15, + "end": 9406.51, + "probability": 0.8529 + }, + { + "start": 9406.67, + "end": 9409.67, + "probability": 0.9619 + }, + { + "start": 9409.83, + "end": 9413.9, + "probability": 0.1073 + }, + { + "start": 9417.41, + "end": 9420.35, + "probability": 0.048 + }, + { + "start": 9420.35, + "end": 9422.35, + "probability": 0.0692 + }, + { + "start": 9422.43, + "end": 9424.43, + "probability": 0.0924 + }, + { + "start": 9425.45, + "end": 9426.13, + "probability": 0.4013 + }, + { + "start": 9426.69, + "end": 9428.37, + "probability": 0.8115 + }, + { + "start": 9429.57, + "end": 9430.91, + "probability": 0.6008 + }, + { + "start": 9430.91, + "end": 9432.27, + "probability": 0.7014 + }, + { + "start": 9432.84, + "end": 9435.87, + "probability": 0.9918 + }, + { + "start": 9436.31, + "end": 9438.87, + "probability": 0.2783 + }, + { + "start": 9439.75, + "end": 9441.35, + "probability": 0.3209 + }, + { + "start": 9453.43, + "end": 9458.87, + "probability": 0.8158 + }, + { + "start": 9459.73, + "end": 9463.31, + "probability": 0.9867 + }, + { + "start": 9466.35, + "end": 9469.11, + "probability": 0.7055 + }, + { + "start": 9470.41, + "end": 9471.59, + "probability": 0.6285 + }, + { + "start": 9471.61, + "end": 9472.19, + "probability": 0.7049 + }, + { + "start": 9472.19, + "end": 9472.89, + "probability": 0.6139 + }, + { + "start": 9481.15, + "end": 9492.16, + "probability": 0.6655 + }, + { + "start": 9492.19, + "end": 9494.25, + "probability": 0.0564 + }, + { + "start": 9494.81, + "end": 9498.72, + "probability": 0.1395 + }, + { + "start": 9500.17, + "end": 9503.69, + "probability": 0.46 + }, + { + "start": 9503.83, + "end": 9506.81, + "probability": 0.5109 + }, + { + "start": 9507.11, + "end": 9509.98, + "probability": 0.5012 + }, + { + "start": 9509.99, + "end": 9514.39, + "probability": 0.9692 + }, + { + "start": 9514.71, + "end": 9515.61, + "probability": 0.9652 + }, + { + "start": 9522.85, + "end": 9528.25, + "probability": 0.6015 + }, + { + "start": 9528.91, + "end": 9530.35, + "probability": 0.7086 + }, + { + "start": 9531.35, + "end": 9538.21, + "probability": 0.7539 + }, + { + "start": 9538.41, + "end": 9543.46, + "probability": 0.1684 + }, + { + "start": 9544.89, + "end": 9549.05, + "probability": 0.1376 + }, + { + "start": 9549.59, + "end": 9553.03, + "probability": 0.8972 + }, + { + "start": 9554.33, + "end": 9555.71, + "probability": 0.9961 + }, + { + "start": 9555.81, + "end": 9556.21, + "probability": 0.4552 + }, + { + "start": 9556.23, + "end": 9557.81, + "probability": 0.8085 + }, + { + "start": 9558.27, + "end": 9559.25, + "probability": 0.9803 + }, + { + "start": 9559.33, + "end": 9560.65, + "probability": 0.9797 + }, + { + "start": 9561.59, + "end": 9563.11, + "probability": 0.2327 + }, + { + "start": 9563.11, + "end": 9564.13, + "probability": 0.7501 + }, + { + "start": 9564.91, + "end": 9567.23, + "probability": 0.002 + }, + { + "start": 9575.07, + "end": 9577.21, + "probability": 0.9633 + }, + { + "start": 9577.67, + "end": 9580.79, + "probability": 0.7563 + }, + { + "start": 9581.85, + "end": 9581.85, + "probability": 0.5635 + }, + { + "start": 9582.05, + "end": 9582.39, + "probability": 0.8691 + }, + { + "start": 9585.21, + "end": 9587.53, + "probability": 0.4072 + }, + { + "start": 9589.09, + "end": 9594.31, + "probability": 0.6967 + }, + { + "start": 9595.19, + "end": 9595.31, + "probability": 0.0004 + }, + { + "start": 9599.27, + "end": 9599.39, + "probability": 0.0468 + }, + { + "start": 9599.39, + "end": 9599.49, + "probability": 0.3876 + }, + { + "start": 9600.03, + "end": 9601.37, + "probability": 0.6357 + }, + { + "start": 9601.39, + "end": 9602.51, + "probability": 0.4765 + }, + { + "start": 9603.07, + "end": 9603.59, + "probability": 0.7642 + }, + { + "start": 9604.29, + "end": 9606.85, + "probability": 0.3506 + }, + { + "start": 9608.39, + "end": 9610.89, + "probability": 0.6278 + }, + { + "start": 9610.89, + "end": 9613.67, + "probability": 0.774 + }, + { + "start": 9613.71, + "end": 9615.41, + "probability": 0.9041 + }, + { + "start": 9615.49, + "end": 9616.73, + "probability": 0.6604 + }, + { + "start": 9617.43, + "end": 9618.29, + "probability": 0.4001 + }, + { + "start": 9619.11, + "end": 9619.73, + "probability": 0.5169 + }, + { + "start": 9620.12, + "end": 9622.87, + "probability": 0.5952 + }, + { + "start": 9622.89, + "end": 9624.15, + "probability": 0.3533 + }, + { + "start": 9624.29, + "end": 9626.01, + "probability": 0.6502 + }, + { + "start": 9626.07, + "end": 9626.27, + "probability": 0.4365 + }, + { + "start": 9626.43, + "end": 9626.91, + "probability": 0.8163 + }, + { + "start": 9627.07, + "end": 9628.03, + "probability": 0.8173 + }, + { + "start": 9628.19, + "end": 9632.25, + "probability": 0.8664 + }, + { + "start": 9632.43, + "end": 9633.75, + "probability": 0.9092 + }, + { + "start": 9633.85, + "end": 9636.61, + "probability": 0.6774 + }, + { + "start": 9637.29, + "end": 9637.81, + "probability": 0.9205 + }, + { + "start": 9639.83, + "end": 9642.17, + "probability": 0.4768 + }, + { + "start": 9642.27, + "end": 9642.55, + "probability": 0.4788 + }, + { + "start": 9642.71, + "end": 9642.71, + "probability": 0.6355 + }, + { + "start": 9642.71, + "end": 9643.41, + "probability": 0.174 + }, + { + "start": 9643.51, + "end": 9644.01, + "probability": 0.3388 + }, + { + "start": 9644.05, + "end": 9644.73, + "probability": 0.6466 + }, + { + "start": 9644.85, + "end": 9646.45, + "probability": 0.8287 + }, + { + "start": 9646.49, + "end": 9647.33, + "probability": 0.9029 + }, + { + "start": 9647.53, + "end": 9648.47, + "probability": 0.7427 + }, + { + "start": 9648.55, + "end": 9650.99, + "probability": 0.7253 + }, + { + "start": 9652.45, + "end": 9652.87, + "probability": 0.188 + }, + { + "start": 9652.87, + "end": 9654.33, + "probability": 0.4576 + }, + { + "start": 9654.47, + "end": 9661.59, + "probability": 0.9382 + }, + { + "start": 9661.73, + "end": 9662.77, + "probability": 0.8614 + }, + { + "start": 9667.29, + "end": 9668.39, + "probability": 0.4419 + }, + { + "start": 9668.47, + "end": 9669.91, + "probability": 0.2368 + }, + { + "start": 9670.29, + "end": 9673.17, + "probability": 0.698 + }, + { + "start": 9674.17, + "end": 9680.81, + "probability": 0.8172 + }, + { + "start": 9682.57, + "end": 9682.99, + "probability": 0.4905 + }, + { + "start": 9684.31, + "end": 9686.31, + "probability": 0.8918 + }, + { + "start": 9687.33, + "end": 9689.19, + "probability": 0.9671 + }, + { + "start": 9689.81, + "end": 9691.95, + "probability": 0.7084 + }, + { + "start": 9692.81, + "end": 9695.35, + "probability": 0.738 + }, + { + "start": 9696.11, + "end": 9700.61, + "probability": 0.9437 + }, + { + "start": 9701.41, + "end": 9701.95, + "probability": 0.998 + }, + { + "start": 9702.47, + "end": 9703.51, + "probability": 0.6673 + }, + { + "start": 9705.03, + "end": 9705.87, + "probability": 0.6404 + }, + { + "start": 9706.99, + "end": 9708.37, + "probability": 0.8535 + }, + { + "start": 9711.04, + "end": 9714.75, + "probability": 0.8905 + }, + { + "start": 9715.35, + "end": 9717.79, + "probability": 0.8326 + }, + { + "start": 9718.33, + "end": 9720.31, + "probability": 0.9299 + }, + { + "start": 9721.29, + "end": 9721.87, + "probability": 0.9894 + }, + { + "start": 9722.57, + "end": 9723.43, + "probability": 0.9677 + }, + { + "start": 9724.11, + "end": 9727.51, + "probability": 0.9777 + }, + { + "start": 9728.57, + "end": 9729.49, + "probability": 0.9763 + }, + { + "start": 9730.13, + "end": 9730.55, + "probability": 0.9894 + }, + { + "start": 9731.27, + "end": 9733.25, + "probability": 0.7477 + }, + { + "start": 9734.34, + "end": 9736.15, + "probability": 0.8327 + }, + { + "start": 9736.75, + "end": 9737.29, + "probability": 0.9699 + }, + { + "start": 9737.83, + "end": 9738.83, + "probability": 0.9065 + }, + { + "start": 9739.45, + "end": 9741.15, + "probability": 0.7733 + }, + { + "start": 9742.25, + "end": 9743.93, + "probability": 0.9668 + }, + { + "start": 9746.29, + "end": 9746.93, + "probability": 0.9849 + }, + { + "start": 9747.81, + "end": 9748.57, + "probability": 0.7837 + }, + { + "start": 9749.41, + "end": 9751.05, + "probability": 0.9938 + }, + { + "start": 9751.89, + "end": 9752.31, + "probability": 0.966 + }, + { + "start": 9753.25, + "end": 9756.63, + "probability": 0.9034 + }, + { + "start": 9757.77, + "end": 9758.13, + "probability": 0.573 + }, + { + "start": 9758.89, + "end": 9759.57, + "probability": 0.7817 + }, + { + "start": 9760.61, + "end": 9762.09, + "probability": 0.7629 + }, + { + "start": 9762.89, + "end": 9764.51, + "probability": 0.9675 + }, + { + "start": 9765.43, + "end": 9765.89, + "probability": 0.965 + }, + { + "start": 9767.41, + "end": 9768.25, + "probability": 0.943 + }, + { + "start": 9769.15, + "end": 9769.65, + "probability": 0.9912 + }, + { + "start": 9770.47, + "end": 9772.39, + "probability": 0.8671 + }, + { + "start": 9773.47, + "end": 9775.39, + "probability": 0.9717 + }, + { + "start": 9776.09, + "end": 9776.59, + "probability": 0.9933 + }, + { + "start": 9777.31, + "end": 9778.25, + "probability": 0.8557 + }, + { + "start": 9778.83, + "end": 9780.95, + "probability": 0.9879 + }, + { + "start": 9782.23, + "end": 9782.73, + "probability": 0.994 + }, + { + "start": 9783.67, + "end": 9784.71, + "probability": 0.7335 + }, + { + "start": 9785.75, + "end": 9786.03, + "probability": 0.7926 + }, + { + "start": 9787.05, + "end": 9787.89, + "probability": 0.8145 + }, + { + "start": 9788.61, + "end": 9790.47, + "probability": 0.9733 + }, + { + "start": 9791.27, + "end": 9792.03, + "probability": 0.9529 + }, + { + "start": 9792.73, + "end": 9794.57, + "probability": 0.9307 + }, + { + "start": 9795.29, + "end": 9795.97, + "probability": 0.9726 + }, + { + "start": 9797.15, + "end": 9799.21, + "probability": 0.9869 + }, + { + "start": 9799.81, + "end": 9800.25, + "probability": 0.9953 + }, + { + "start": 9801.13, + "end": 9801.91, + "probability": 0.971 + }, + { + "start": 9802.75, + "end": 9804.89, + "probability": 0.8143 + }, + { + "start": 9805.71, + "end": 9807.63, + "probability": 0.9679 + }, + { + "start": 9809.89, + "end": 9812.97, + "probability": 0.3557 + }, + { + "start": 9813.91, + "end": 9814.19, + "probability": 0.8914 + }, + { + "start": 9815.53, + "end": 9816.43, + "probability": 0.6672 + }, + { + "start": 9817.11, + "end": 9817.49, + "probability": 0.9518 + }, + { + "start": 9818.21, + "end": 9819.21, + "probability": 0.8994 + }, + { + "start": 9823.63, + "end": 9824.11, + "probability": 0.8081 + }, + { + "start": 9827.07, + "end": 9827.27, + "probability": 0.2404 + }, + { + "start": 9828.69, + "end": 9829.13, + "probability": 0.67 + }, + { + "start": 9830.71, + "end": 9831.55, + "probability": 0.9324 + }, + { + "start": 9832.39, + "end": 9834.17, + "probability": 0.9873 + }, + { + "start": 9835.07, + "end": 9837.09, + "probability": 0.9799 + }, + { + "start": 9838.27, + "end": 9840.23, + "probability": 0.9658 + }, + { + "start": 9841.09, + "end": 9843.65, + "probability": 0.9783 + }, + { + "start": 9844.73, + "end": 9846.83, + "probability": 0.6186 + }, + { + "start": 9847.97, + "end": 9849.59, + "probability": 0.9871 + }, + { + "start": 9850.71, + "end": 9851.09, + "probability": 0.9807 + }, + { + "start": 9851.81, + "end": 9852.65, + "probability": 0.7498 + }, + { + "start": 9853.47, + "end": 9853.85, + "probability": 0.9878 + }, + { + "start": 9854.75, + "end": 9855.51, + "probability": 0.8497 + }, + { + "start": 9856.19, + "end": 9856.45, + "probability": 0.523 + }, + { + "start": 9857.25, + "end": 9858.01, + "probability": 0.6822 + }, + { + "start": 9863.75, + "end": 9869.13, + "probability": 0.7164 + }, + { + "start": 9869.73, + "end": 9871.53, + "probability": 0.7146 + }, + { + "start": 9872.33, + "end": 9874.41, + "probability": 0.8787 + }, + { + "start": 9877.13, + "end": 9879.25, + "probability": 0.7729 + }, + { + "start": 9881.47, + "end": 9884.97, + "probability": 0.8778 + }, + { + "start": 9885.93, + "end": 9887.65, + "probability": 0.8962 + }, + { + "start": 9889.67, + "end": 9893.01, + "probability": 0.746 + }, + { + "start": 9893.93, + "end": 9895.67, + "probability": 0.5005 + }, + { + "start": 9896.59, + "end": 9899.99, + "probability": 0.8368 + }, + { + "start": 9902.61, + "end": 9904.79, + "probability": 0.881 + }, + { + "start": 9905.83, + "end": 9906.43, + "probability": 0.8817 + }, + { + "start": 9906.99, + "end": 9908.39, + "probability": 0.9593 + }, + { + "start": 9909.07, + "end": 9914.77, + "probability": 0.893 + }, + { + "start": 9915.83, + "end": 9917.69, + "probability": 0.9881 + }, + { + "start": 9919.45, + "end": 9921.93, + "probability": 0.9784 + }, + { + "start": 9923.27, + "end": 9923.27, + "probability": 0.7332 + }, + { + "start": 9924.31, + "end": 9925.73, + "probability": 0.6894 + }, + { + "start": 9929.23, + "end": 9935.05, + "probability": 0.7538 + }, + { + "start": 9936.13, + "end": 9938.23, + "probability": 0.8747 + }, + { + "start": 9939.17, + "end": 9941.25, + "probability": 0.7288 + }, + { + "start": 9942.13, + "end": 9944.39, + "probability": 0.9506 + }, + { + "start": 9945.55, + "end": 9947.89, + "probability": 0.9382 + }, + { + "start": 9952.28, + "end": 9956.03, + "probability": 0.5891 + }, + { + "start": 9958.55, + "end": 9960.29, + "probability": 0.5352 + }, + { + "start": 9962.25, + "end": 9963.89, + "probability": 0.9245 + }, + { + "start": 9964.87, + "end": 9966.19, + "probability": 0.7948 + }, + { + "start": 9967.03, + "end": 9969.43, + "probability": 0.929 + }, + { + "start": 9972.01, + "end": 9972.37, + "probability": 0.8778 + }, + { + "start": 9973.91, + "end": 9974.89, + "probability": 0.7312 + }, + { + "start": 9975.77, + "end": 9977.59, + "probability": 0.7453 + }, + { + "start": 9978.57, + "end": 9980.57, + "probability": 0.8984 + }, + { + "start": 9981.27, + "end": 9981.61, + "probability": 0.8306 + }, + { + "start": 9982.25, + "end": 9983.25, + "probability": 0.6896 + }, + { + "start": 9984.49, + "end": 9984.91, + "probability": 0.9935 + }, + { + "start": 9986.31, + "end": 9987.13, + "probability": 0.6837 + }, + { + "start": 9989.13, + "end": 9991.73, + "probability": 0.8393 + }, + { + "start": 9993.83, + "end": 9994.27, + "probability": 0.7563 + }, + { + "start": 9995.53, + "end": 9996.45, + "probability": 0.9554 + }, + { + "start": 9997.31, + "end": 9997.75, + "probability": 0.9323 + }, + { + "start": 9998.53, + "end": 9999.41, + "probability": 0.9442 + }, + { + "start": 10000.27, + "end": 10002.87, + "probability": 0.9753 + }, + { + "start": 10003.69, + "end": 10006.43, + "probability": 0.9248 + }, + { + "start": 10008.55, + "end": 10009.05, + "probability": 0.9935 + }, + { + "start": 10010.13, + "end": 10011.11, + "probability": 0.9912 + }, + { + "start": 10012.01, + "end": 10014.19, + "probability": 0.9789 + }, + { + "start": 10015.25, + "end": 10015.53, + "probability": 0.7052 + }, + { + "start": 10016.23, + "end": 10017.11, + "probability": 0.438 + }, + { + "start": 10017.75, + "end": 10018.23, + "probability": 0.8918 + }, + { + "start": 10018.91, + "end": 10019.85, + "probability": 0.8855 + }, + { + "start": 10021.09, + "end": 10021.57, + "probability": 0.9094 + }, + { + "start": 10022.53, + "end": 10023.21, + "probability": 0.8504 + }, + { + "start": 10024.83, + "end": 10027.69, + "probability": 0.7465 + }, + { + "start": 10038.99, + "end": 10040.57, + "probability": 0.6783 + }, + { + "start": 10041.63, + "end": 10041.97, + "probability": 0.8566 + }, + { + "start": 10042.87, + "end": 10043.47, + "probability": 0.926 + }, + { + "start": 10044.83, + "end": 10046.75, + "probability": 0.9396 + }, + { + "start": 10047.69, + "end": 10048.11, + "probability": 0.8651 + }, + { + "start": 10049.55, + "end": 10049.91, + "probability": 0.9727 + }, + { + "start": 10050.45, + "end": 10051.17, + "probability": 0.9836 + }, + { + "start": 10052.31, + "end": 10052.87, + "probability": 0.9618 + }, + { + "start": 10053.67, + "end": 10054.51, + "probability": 0.8934 + }, + { + "start": 10055.63, + "end": 10056.05, + "probability": 0.957 + }, + { + "start": 10058.05, + "end": 10058.99, + "probability": 0.9855 + }, + { + "start": 10059.65, + "end": 10061.93, + "probability": 0.979 + }, + { + "start": 10062.85, + "end": 10063.11, + "probability": 0.99 + }, + { + "start": 10063.91, + "end": 10065.03, + "probability": 0.5208 + }, + { + "start": 10067.79, + "end": 10068.27, + "probability": 0.9281 + }, + { + "start": 10069.43, + "end": 10070.31, + "probability": 0.7759 + }, + { + "start": 10071.29, + "end": 10075.33, + "probability": 0.8653 + }, + { + "start": 10076.21, + "end": 10078.41, + "probability": 0.9106 + }, + { + "start": 10080.17, + "end": 10082.11, + "probability": 0.781 + }, + { + "start": 10082.93, + "end": 10083.35, + "probability": 0.9759 + }, + { + "start": 10084.89, + "end": 10085.65, + "probability": 0.8008 + }, + { + "start": 10086.43, + "end": 10087.39, + "probability": 0.9712 + }, + { + "start": 10088.65, + "end": 10089.47, + "probability": 0.9691 + }, + { + "start": 10091.45, + "end": 10092.01, + "probability": 0.1741 + }, + { + "start": 10096.73, + "end": 10103.97, + "probability": 0.7165 + }, + { + "start": 10105.85, + "end": 10109.19, + "probability": 0.4859 + }, + { + "start": 10109.43, + "end": 10112.75, + "probability": 0.875 + }, + { + "start": 10114.27, + "end": 10114.47, + "probability": 0.5269 + }, + { + "start": 10118.43, + "end": 10120.25, + "probability": 0.6284 + }, + { + "start": 10125.17, + "end": 10126.03, + "probability": 0.5808 + }, + { + "start": 10127.23, + "end": 10128.85, + "probability": 0.6604 + }, + { + "start": 10130.17, + "end": 10130.83, + "probability": 0.7925 + }, + { + "start": 10133.93, + "end": 10136.93, + "probability": 0.872 + }, + { + "start": 10138.29, + "end": 10139.49, + "probability": 0.5266 + }, + { + "start": 10141.13, + "end": 10142.17, + "probability": 0.5709 + }, + { + "start": 10143.49, + "end": 10151.69, + "probability": 0.8174 + }, + { + "start": 10154.11, + "end": 10155.43, + "probability": 0.4847 + }, + { + "start": 10158.93, + "end": 10163.09, + "probability": 0.6657 + }, + { + "start": 10163.23, + "end": 10165.27, + "probability": 0.9935 + }, + { + "start": 10166.81, + "end": 10170.51, + "probability": 0.9434 + }, + { + "start": 10170.51, + "end": 10172.67, + "probability": 0.2504 + }, + { + "start": 10173.43, + "end": 10174.51, + "probability": 0.3712 + }, + { + "start": 10178.33, + "end": 10178.41, + "probability": 0.2577 + }, + { + "start": 10178.41, + "end": 10178.81, + "probability": 0.5039 + }, + { + "start": 10178.81, + "end": 10179.49, + "probability": 0.4502 + }, + { + "start": 10179.83, + "end": 10181.21, + "probability": 0.8647 + }, + { + "start": 10201.19, + "end": 10202.31, + "probability": 0.8418 + }, + { + "start": 10202.52, + "end": 10205.49, + "probability": 0.874 + }, + { + "start": 10205.65, + "end": 10208.55, + "probability": 0.8707 + }, + { + "start": 10209.79, + "end": 10210.99, + "probability": 0.6843 + }, + { + "start": 10211.31, + "end": 10213.93, + "probability": 0.9547 + }, + { + "start": 10215.59, + "end": 10217.27, + "probability": 0.1378 + }, + { + "start": 10217.83, + "end": 10221.89, + "probability": 0.026 + }, + { + "start": 10325.0, + "end": 10325.0, + "probability": 0.0 + }, + { + "start": 10325.14, + "end": 10326.68, + "probability": 0.7249 + }, + { + "start": 10328.04, + "end": 10329.7, + "probability": 0.9342 + }, + { + "start": 10331.76, + "end": 10336.66, + "probability": 0.7847 + }, + { + "start": 10337.28, + "end": 10338.86, + "probability": 0.7173 + }, + { + "start": 10339.12, + "end": 10345.54, + "probability": 0.9857 + }, + { + "start": 10346.8, + "end": 10351.96, + "probability": 0.9963 + }, + { + "start": 10351.96, + "end": 10360.06, + "probability": 0.7505 + }, + { + "start": 10360.34, + "end": 10361.08, + "probability": 0.5362 + }, + { + "start": 10361.12, + "end": 10362.82, + "probability": 0.5828 + }, + { + "start": 10362.96, + "end": 10366.66, + "probability": 0.9482 + }, + { + "start": 10371.8, + "end": 10379.12, + "probability": 0.4438 + }, + { + "start": 10379.12, + "end": 10379.12, + "probability": 0.0756 + }, + { + "start": 10379.12, + "end": 10379.12, + "probability": 0.4386 + }, + { + "start": 10379.12, + "end": 10379.12, + "probability": 0.0249 + }, + { + "start": 10379.12, + "end": 10381.86, + "probability": 0.8091 + }, + { + "start": 10382.48, + "end": 10383.42, + "probability": 0.6858 + }, + { + "start": 10383.96, + "end": 10388.66, + "probability": 0.9478 + }, + { + "start": 10389.2, + "end": 10394.6, + "probability": 0.9118 + }, + { + "start": 10394.74, + "end": 10395.82, + "probability": 0.8804 + }, + { + "start": 10395.98, + "end": 10396.4, + "probability": 0.4974 + }, + { + "start": 10400.22, + "end": 10401.58, + "probability": 0.2584 + }, + { + "start": 10409.78, + "end": 10409.78, + "probability": 0.2292 + }, + { + "start": 10415.2, + "end": 10416.7, + "probability": 0.1854 + }, + { + "start": 10416.7, + "end": 10416.8, + "probability": 0.1016 + }, + { + "start": 10416.8, + "end": 10416.84, + "probability": 0.3523 + }, + { + "start": 10416.84, + "end": 10419.34, + "probability": 0.503 + }, + { + "start": 10420.49, + "end": 10431.14, + "probability": 0.8623 + }, + { + "start": 10432.3, + "end": 10435.88, + "probability": 0.7657 + }, + { + "start": 10436.04, + "end": 10437.16, + "probability": 0.6702 + }, + { + "start": 10437.24, + "end": 10438.4, + "probability": 0.8527 + }, + { + "start": 10438.88, + "end": 10440.94, + "probability": 0.2582 + }, + { + "start": 10441.48, + "end": 10442.02, + "probability": 0.2184 + }, + { + "start": 10442.1, + "end": 10442.34, + "probability": 0.182 + }, + { + "start": 10442.34, + "end": 10443.74, + "probability": 0.2723 + }, + { + "start": 10446.32, + "end": 10446.74, + "probability": 0.112 + }, + { + "start": 10455.86, + "end": 10456.8, + "probability": 0.8594 + }, + { + "start": 10457.48, + "end": 10462.14, + "probability": 0.6578 + }, + { + "start": 10465.84, + "end": 10471.68, + "probability": 0.7238 + }, + { + "start": 10471.68, + "end": 10473.04, + "probability": 0.7236 + }, + { + "start": 10475.19, + "end": 10482.31, + "probability": 0.9219 + }, + { + "start": 10483.02, + "end": 10485.86, + "probability": 0.8459 + }, + { + "start": 10486.02, + "end": 10488.06, + "probability": 0.9566 + }, + { + "start": 10488.36, + "end": 10497.14, + "probability": 0.8354 + }, + { + "start": 10498.16, + "end": 10500.22, + "probability": 0.6561 + }, + { + "start": 10500.22, + "end": 10501.98, + "probability": 0.7291 + }, + { + "start": 10503.06, + "end": 10506.06, + "probability": 0.1309 + }, + { + "start": 10517.7, + "end": 10518.76, + "probability": 0.1629 + }, + { + "start": 10519.14, + "end": 10519.3, + "probability": 0.1495 + }, + { + "start": 10519.3, + "end": 10519.3, + "probability": 0.4519 + }, + { + "start": 10519.3, + "end": 10519.82, + "probability": 0.1503 + }, + { + "start": 10520.1, + "end": 10520.88, + "probability": 0.2131 + }, + { + "start": 10521.14, + "end": 10521.52, + "probability": 0.7591 + }, + { + "start": 10521.74, + "end": 10528.14, + "probability": 0.8762 + }, + { + "start": 10528.56, + "end": 10535.2, + "probability": 0.8461 + }, + { + "start": 10535.3, + "end": 10535.82, + "probability": 0.6083 + }, + { + "start": 10535.92, + "end": 10536.46, + "probability": 0.5627 + }, + { + "start": 10536.54, + "end": 10537.5, + "probability": 0.6422 + }, + { + "start": 10541.3, + "end": 10547.74, + "probability": 0.7506 + }, + { + "start": 10550.9, + "end": 10551.94, + "probability": 0.1348 + }, + { + "start": 10552.52, + "end": 10553.04, + "probability": 0.0571 + }, + { + "start": 10553.06, + "end": 10555.8, + "probability": 0.3021 + }, + { + "start": 10556.96, + "end": 10557.52, + "probability": 0.4249 + }, + { + "start": 10558.84, + "end": 10559.18, + "probability": 0.3087 + }, + { + "start": 10559.72, + "end": 10561.2, + "probability": 0.5358 + }, + { + "start": 10565.54, + "end": 10566.48, + "probability": 0.9932 + }, + { + "start": 10568.32, + "end": 10569.66, + "probability": 0.9136 + }, + { + "start": 10569.74, + "end": 10573.06, + "probability": 0.798 + }, + { + "start": 10573.54, + "end": 10580.08, + "probability": 0.8525 + }, + { + "start": 10580.58, + "end": 10582.12, + "probability": 0.343 + }, + { + "start": 10582.12, + "end": 10582.6, + "probability": 0.4292 + }, + { + "start": 10582.68, + "end": 10583.89, + "probability": 0.9945 + }, + { + "start": 10585.24, + "end": 10585.66, + "probability": 0.5104 + }, + { + "start": 10585.76, + "end": 10586.76, + "probability": 0.8824 + }, + { + "start": 10587.26, + "end": 10592.64, + "probability": 0.8967 + }, + { + "start": 10593.0, + "end": 10593.58, + "probability": 0.6202 + }, + { + "start": 10593.62, + "end": 10594.16, + "probability": 0.5658 + }, + { + "start": 10594.18, + "end": 10595.5, + "probability": 0.5346 + }, + { + "start": 10600.92, + "end": 10604.32, + "probability": 0.1883 + }, + { + "start": 10605.1, + "end": 10605.4, + "probability": 0.2196 + }, + { + "start": 10607.1, + "end": 10609.27, + "probability": 0.4714 + }, + { + "start": 10610.1, + "end": 10612.04, + "probability": 0.2603 + }, + { + "start": 10612.34, + "end": 10613.08, + "probability": 0.3873 + }, + { + "start": 10613.38, + "end": 10613.66, + "probability": 0.6357 + }, + { + "start": 10613.66, + "end": 10620.54, + "probability": 0.9101 + }, + { + "start": 10621.06, + "end": 10623.58, + "probability": 0.9935 + }, + { + "start": 10623.72, + "end": 10624.88, + "probability": 0.9876 + }, + { + "start": 10625.7, + "end": 10626.14, + "probability": 0.0972 + }, + { + "start": 10626.26, + "end": 10628.76, + "probability": 0.7549 + }, + { + "start": 10629.26, + "end": 10630.44, + "probability": 0.775 + }, + { + "start": 10630.54, + "end": 10631.7, + "probability": 0.8804 + }, + { + "start": 10632.16, + "end": 10639.42, + "probability": 0.6465 + }, + { + "start": 10639.88, + "end": 10642.18, + "probability": 0.8948 + }, + { + "start": 10660.48, + "end": 10661.3, + "probability": 0.0536 + }, + { + "start": 10661.3, + "end": 10661.3, + "probability": 0.0999 + }, + { + "start": 10661.3, + "end": 10661.3, + "probability": 0.2443 + }, + { + "start": 10661.3, + "end": 10661.3, + "probability": 0.2002 + }, + { + "start": 10661.3, + "end": 10661.3, + "probability": 0.1096 + }, + { + "start": 10661.3, + "end": 10662.51, + "probability": 0.2548 + }, + { + "start": 10663.28, + "end": 10668.7, + "probability": 0.5055 + }, + { + "start": 10668.74, + "end": 10669.26, + "probability": 0.621 + }, + { + "start": 10671.18, + "end": 10672.34, + "probability": 0.1579 + }, + { + "start": 10674.7, + "end": 10677.44, + "probability": 0.6978 + }, + { + "start": 10678.8, + "end": 10680.6, + "probability": 0.9131 + }, + { + "start": 10680.64, + "end": 10680.92, + "probability": 0.8275 + }, + { + "start": 10682.24, + "end": 10683.16, + "probability": 0.6213 + }, + { + "start": 10683.9, + "end": 10688.96, + "probability": 0.5757 + }, + { + "start": 10688.96, + "end": 10693.0, + "probability": 0.7206 + }, + { + "start": 10694.02, + "end": 10695.16, + "probability": 0.6309 + }, + { + "start": 10695.82, + "end": 10699.32, + "probability": 0.7977 + }, + { + "start": 10699.38, + "end": 10699.94, + "probability": 0.5228 + }, + { + "start": 10699.96, + "end": 10701.38, + "probability": 0.2585 + }, + { + "start": 10717.14, + "end": 10718.12, + "probability": 0.1201 + }, + { + "start": 10718.12, + "end": 10718.12, + "probability": 0.1076 + }, + { + "start": 10718.12, + "end": 10718.12, + "probability": 0.1353 + }, + { + "start": 10718.12, + "end": 10718.12, + "probability": 0.248 + }, + { + "start": 10718.12, + "end": 10719.23, + "probability": 0.3213 + }, + { + "start": 10720.44, + "end": 10723.82, + "probability": 0.8935 + }, + { + "start": 10724.44, + "end": 10725.38, + "probability": 0.3949 + }, + { + "start": 10726.7, + "end": 10731.14, + "probability": 0.7947 + }, + { + "start": 10731.26, + "end": 10732.64, + "probability": 0.5708 + }, + { + "start": 10732.7, + "end": 10733.22, + "probability": 0.5609 + }, + { + "start": 10734.56, + "end": 10738.44, + "probability": 0.2418 + }, + { + "start": 10741.08, + "end": 10741.26, + "probability": 0.0772 + }, + { + "start": 10741.26, + "end": 10741.26, + "probability": 0.3299 + }, + { + "start": 10741.26, + "end": 10741.26, + "probability": 0.0165 + }, + { + "start": 10741.26, + "end": 10742.12, + "probability": 0.3321 + }, + { + "start": 10742.12, + "end": 10744.3, + "probability": 0.9385 + }, + { + "start": 10748.84, + "end": 10752.36, + "probability": 0.483 + }, + { + "start": 10752.44, + "end": 10755.9, + "probability": 0.8448 + }, + { + "start": 10756.72, + "end": 10759.18, + "probability": 0.8809 + }, + { + "start": 10759.98, + "end": 10765.46, + "probability": 0.5826 + }, + { + "start": 10765.78, + "end": 10766.44, + "probability": 0.5645 + }, + { + "start": 10766.46, + "end": 10767.18, + "probability": 0.6374 + }, + { + "start": 10768.38, + "end": 10772.0, + "probability": 0.2215 + }, + { + "start": 10777.98, + "end": 10780.34, + "probability": 0.1215 + }, + { + "start": 10781.04, + "end": 10784.16, + "probability": 0.2074 + }, + { + "start": 10787.3, + "end": 10787.9, + "probability": 0.4574 + }, + { + "start": 10789.76, + "end": 10794.04, + "probability": 0.8615 + }, + { + "start": 10794.68, + "end": 10797.5, + "probability": 0.595 + }, + { + "start": 10798.08, + "end": 10799.26, + "probability": 0.8749 + }, + { + "start": 10799.64, + "end": 10801.86, + "probability": 0.9941 + }, + { + "start": 10802.06, + "end": 10806.46, + "probability": 0.938 + }, + { + "start": 10806.46, + "end": 10811.56, + "probability": 0.9846 + }, + { + "start": 10811.64, + "end": 10812.16, + "probability": 0.5835 + }, + { + "start": 10812.18, + "end": 10812.68, + "probability": 0.6284 + }, + { + "start": 10834.48, + "end": 10839.18, + "probability": 0.1059 + }, + { + "start": 10839.26, + "end": 10840.14, + "probability": 0.0989 + }, + { + "start": 10840.14, + "end": 10840.14, + "probability": 0.1951 + }, + { + "start": 10840.36, + "end": 10840.92, + "probability": 0.2559 + }, + { + "start": 10841.62, + "end": 10844.06, + "probability": 0.111 + }, + { + "start": 10844.14, + "end": 10844.9, + "probability": 0.3458 + }, + { + "start": 10845.2, + "end": 10845.3, + "probability": 0.4934 + }, + { + "start": 10845.52, + "end": 10850.52, + "probability": 0.9185 + }, + { + "start": 10862.4, + "end": 10865.68, + "probability": 0.3043 + }, + { + "start": 10865.68, + "end": 10873.8, + "probability": 0.2869 + }, + { + "start": 10874.3, + "end": 10875.16, + "probability": 0.2526 + }, + { + "start": 10878.1, + "end": 10878.94, + "probability": 0.2598 + }, + { + "start": 10878.94, + "end": 10880.34, + "probability": 0.1535 + }, + { + "start": 10881.78, + "end": 10882.02, + "probability": 0.2151 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.0, + "end": 10942.0, + "probability": 0.0 + }, + { + "start": 10942.32, + "end": 10942.65, + "probability": 0.1614 + }, + { + "start": 10943.24, + "end": 10943.8, + "probability": 0.1803 + }, + { + "start": 10944.3, + "end": 10944.56, + "probability": 0.4003 + }, + { + "start": 10944.56, + "end": 10948.1, + "probability": 0.7715 + }, + { + "start": 10949.22, + "end": 10952.8, + "probability": 0.8279 + }, + { + "start": 10952.88, + "end": 10953.42, + "probability": 0.6171 + }, + { + "start": 10953.48, + "end": 10954.12, + "probability": 0.7566 + }, + { + "start": 10954.3, + "end": 10955.2, + "probability": 0.639 + }, + { + "start": 10955.44, + "end": 10958.06, + "probability": 0.0589 + }, + { + "start": 10960.74, + "end": 10962.14, + "probability": 0.0915 + }, + { + "start": 10968.02, + "end": 10969.28, + "probability": 0.2142 + }, + { + "start": 10969.28, + "end": 10973.28, + "probability": 0.7537 + }, + { + "start": 10974.18, + "end": 10979.72, + "probability": 0.6201 + }, + { + "start": 10980.96, + "end": 10985.6, + "probability": 0.8316 + }, + { + "start": 10985.92, + "end": 10986.86, + "probability": 0.5149 + }, + { + "start": 10987.2, + "end": 10987.98, + "probability": 0.512 + }, + { + "start": 10988.66, + "end": 10991.62, + "probability": 0.0688 + }, + { + "start": 10993.72, + "end": 10995.44, + "probability": 0.1256 + }, + { + "start": 10996.26, + "end": 10996.38, + "probability": 0.2105 + }, + { + "start": 11005.38, + "end": 11005.64, + "probability": 0.4185 + }, + { + "start": 11005.64, + "end": 11007.14, + "probability": 0.2908 + }, + { + "start": 11007.74, + "end": 11008.7, + "probability": 0.2616 + }, + { + "start": 11008.82, + "end": 11011.22, + "probability": 0.9658 + }, + { + "start": 11011.74, + "end": 11015.38, + "probability": 0.7251 + }, + { + "start": 11015.96, + "end": 11017.82, + "probability": 0.6516 + }, + { + "start": 11019.4, + "end": 11020.08, + "probability": 0.2275 + }, + { + "start": 11020.08, + "end": 11021.46, + "probability": 0.4293 + }, + { + "start": 11030.3, + "end": 11030.62, + "probability": 0.2402 + }, + { + "start": 11030.96, + "end": 11031.92, + "probability": 0.101 + }, + { + "start": 11032.32, + "end": 11032.58, + "probability": 0.1573 + }, + { + "start": 11032.86, + "end": 11034.4, + "probability": 0.1621 + }, + { + "start": 11035.62, + "end": 11036.24, + "probability": 0.1528 + }, + { + "start": 11037.02, + "end": 11040.66, + "probability": 0.4965 + }, + { + "start": 11041.18, + "end": 11042.08, + "probability": 0.7452 + }, + { + "start": 11042.16, + "end": 11048.38, + "probability": 0.7535 + }, + { + "start": 11048.98, + "end": 11050.34, + "probability": 0.7317 + }, + { + "start": 11053.2, + "end": 11057.32, + "probability": 0.0972 + }, + { + "start": 11060.6, + "end": 11068.29, + "probability": 0.8317 + }, + { + "start": 11069.94, + "end": 11070.96, + "probability": 0.4825 + }, + { + "start": 11071.26, + "end": 11072.39, + "probability": 0.6278 + }, + { + "start": 11072.54, + "end": 11073.7, + "probability": 0.4334 + }, + { + "start": 11076.27, + "end": 11078.24, + "probability": 0.1635 + }, + { + "start": 11079.18, + "end": 11081.08, + "probability": 0.2984 + }, + { + "start": 11082.58, + "end": 11087.1, + "probability": 0.0912 + }, + { + "start": 11087.6, + "end": 11093.5, + "probability": 0.5767 + }, + { + "start": 11094.1, + "end": 11095.14, + "probability": 0.6758 + }, + { + "start": 11096.3, + "end": 11097.72, + "probability": 0.7105 + }, + { + "start": 11098.16, + "end": 11105.08, + "probability": 0.887 + }, + { + "start": 11105.46, + "end": 11109.74, + "probability": 0.9773 + }, + { + "start": 11110.12, + "end": 11111.3, + "probability": 0.5773 + }, + { + "start": 11111.52, + "end": 11112.61, + "probability": 0.6487 + }, + { + "start": 11112.88, + "end": 11113.8, + "probability": 0.5556 + }, + { + "start": 11116.2, + "end": 11116.76, + "probability": 0.39 + }, + { + "start": 11121.22, + "end": 11123.24, + "probability": 0.0946 + }, + { + "start": 11132.61, + "end": 11134.58, + "probability": 0.2426 + }, + { + "start": 11134.6, + "end": 11139.2, + "probability": 0.687 + }, + { + "start": 11139.28, + "end": 11144.32, + "probability": 0.9478 + }, + { + "start": 11144.62, + "end": 11147.89, + "probability": 0.9564 + }, + { + "start": 11148.48, + "end": 11151.46, + "probability": 0.582 + }, + { + "start": 11151.5, + "end": 11152.04, + "probability": 0.5373 + }, + { + "start": 11152.6, + "end": 11154.36, + "probability": 0.1126 + }, + { + "start": 11160.16, + "end": 11165.24, + "probability": 0.1244 + }, + { + "start": 11167.96, + "end": 11168.38, + "probability": 0.1746 + }, + { + "start": 11169.2, + "end": 11170.54, + "probability": 0.2438 + }, + { + "start": 11171.24, + "end": 11173.64, + "probability": 0.7548 + }, + { + "start": 11173.78, + "end": 11177.92, + "probability": 0.9349 + }, + { + "start": 11180.0, + "end": 11188.18, + "probability": 0.8442 + }, + { + "start": 11188.22, + "end": 11189.3, + "probability": 0.8458 + }, + { + "start": 11189.62, + "end": 11192.78, + "probability": 0.572 + }, + { + "start": 11192.84, + "end": 11193.36, + "probability": 0.5699 + }, + { + "start": 11193.36, + "end": 11193.74, + "probability": 0.6848 + }, + { + "start": 11209.46, + "end": 11210.38, + "probability": 0.366 + }, + { + "start": 11211.9, + "end": 11212.36, + "probability": 0.3907 + }, + { + "start": 11212.36, + "end": 11212.36, + "probability": 0.0967 + }, + { + "start": 11212.36, + "end": 11212.36, + "probability": 0.2791 + }, + { + "start": 11212.36, + "end": 11212.36, + "probability": 0.2033 + }, + { + "start": 11212.36, + "end": 11212.36, + "probability": 0.152 + }, + { + "start": 11212.36, + "end": 11212.36, + "probability": 0.1843 + }, + { + "start": 11212.36, + "end": 11213.18, + "probability": 0.3435 + }, + { + "start": 11213.44, + "end": 11221.22, + "probability": 0.8147 + }, + { + "start": 11226.86, + "end": 11232.58, + "probability": 0.4742 + }, + { + "start": 11232.74, + "end": 11234.82, + "probability": 0.6357 + }, + { + "start": 11235.02, + "end": 11237.82, + "probability": 0.851 + }, + { + "start": 11238.02, + "end": 11243.88, + "probability": 0.9715 + }, + { + "start": 11251.94, + "end": 11254.32, + "probability": 0.7505 + }, + { + "start": 11256.54, + "end": 11257.28, + "probability": 0.1036 + }, + { + "start": 11261.12, + "end": 11261.68, + "probability": 0.3056 + }, + { + "start": 11262.1, + "end": 11266.48, + "probability": 0.5535 + }, + { + "start": 11267.14, + "end": 11270.62, + "probability": 0.9414 + }, + { + "start": 11271.22, + "end": 11277.62, + "probability": 0.8972 + }, + { + "start": 11277.7, + "end": 11279.16, + "probability": 0.5175 + }, + { + "start": 11280.76, + "end": 11282.36, + "probability": 0.033 + }, + { + "start": 11288.5, + "end": 11292.96, + "probability": 0.0859 + }, + { + "start": 11293.44, + "end": 11293.62, + "probability": 0.2796 + }, + { + "start": 11293.62, + "end": 11293.62, + "probability": 0.0902 + }, + { + "start": 11293.62, + "end": 11295.26, + "probability": 0.2769 + }, + { + "start": 11295.28, + "end": 11296.18, + "probability": 0.2791 + }, + { + "start": 11296.4, + "end": 11297.12, + "probability": 0.4611 + }, + { + "start": 11297.12, + "end": 11300.8, + "probability": 0.7551 + }, + { + "start": 11301.6, + "end": 11304.68, + "probability": 0.8691 + }, + { + "start": 11305.72, + "end": 11306.88, + "probability": 0.9246 + }, + { + "start": 11308.04, + "end": 11310.24, + "probability": 0.601 + }, + { + "start": 11310.56, + "end": 11311.46, + "probability": 0.2729 + }, + { + "start": 11311.48, + "end": 11312.44, + "probability": 0.6231 + }, + { + "start": 11316.86, + "end": 11318.46, + "probability": 0.4833 + }, + { + "start": 11327.96, + "end": 11329.08, + "probability": 0.0824 + }, + { + "start": 11329.08, + "end": 11329.08, + "probability": 0.2261 + }, + { + "start": 11329.08, + "end": 11329.08, + "probability": 0.244 + }, + { + "start": 11329.08, + "end": 11329.08, + "probability": 0.1168 + }, + { + "start": 11329.08, + "end": 11329.08, + "probability": 0.0171 + }, + { + "start": 11329.12, + "end": 11329.34, + "probability": 0.2778 + }, + { + "start": 11329.46, + "end": 11329.76, + "probability": 0.5095 + }, + { + "start": 11330.04, + "end": 11335.9, + "probability": 0.5995 + }, + { + "start": 11335.9, + "end": 11337.14, + "probability": 0.5846 + }, + { + "start": 11337.4, + "end": 11337.4, + "probability": 0.1872 + }, + { + "start": 11337.4, + "end": 11338.5, + "probability": 0.7298 + }, + { + "start": 11339.32, + "end": 11341.28, + "probability": 0.5944 + }, + { + "start": 11343.48, + "end": 11345.7, + "probability": 0.6237 + }, + { + "start": 11346.44, + "end": 11349.04, + "probability": 0.9424 + }, + { + "start": 11349.68, + "end": 11350.52, + "probability": 0.6461 + }, + { + "start": 11350.94, + "end": 11351.68, + "probability": 0.3794 + }, + { + "start": 11356.67, + "end": 11357.62, + "probability": 0.1012 + }, + { + "start": 11360.1, + "end": 11360.38, + "probability": 0.1875 + }, + { + "start": 11367.92, + "end": 11368.14, + "probability": 0.22 + }, + { + "start": 11368.14, + "end": 11371.95, + "probability": 0.6615 + }, + { + "start": 11373.0, + "end": 11375.9, + "probability": 0.9033 + }, + { + "start": 11376.68, + "end": 11379.36, + "probability": 0.8415 + }, + { + "start": 11380.02, + "end": 11381.22, + "probability": 0.627 + }, + { + "start": 11381.34, + "end": 11382.12, + "probability": 0.5358 + }, + { + "start": 11396.18, + "end": 11397.1, + "probability": 0.5947 + }, + { + "start": 11398.17, + "end": 11398.4, + "probability": 0.1125 + }, + { + "start": 11398.4, + "end": 11398.68, + "probability": 0.3615 + }, + { + "start": 11399.6, + "end": 11401.98, + "probability": 0.0779 + }, + { + "start": 11402.12, + "end": 11403.46, + "probability": 0.7251 + }, + { + "start": 11406.04, + "end": 11409.62, + "probability": 0.0471 + }, + { + "start": 11409.62, + "end": 11409.62, + "probability": 0.0264 + }, + { + "start": 11409.62, + "end": 11410.98, + "probability": 0.7126 + }, + { + "start": 11411.5, + "end": 11412.74, + "probability": 0.958 + }, + { + "start": 11414.24, + "end": 11418.98, + "probability": 0.7873 + }, + { + "start": 11420.72, + "end": 11422.02, + "probability": 0.153 + }, + { + "start": 11423.36, + "end": 11424.54, + "probability": 0.458 + }, + { + "start": 11424.68, + "end": 11425.48, + "probability": 0.0377 + }, + { + "start": 11426.24, + "end": 11426.64, + "probability": 0.0781 + }, + { + "start": 11431.76, + "end": 11432.82, + "probability": 0.0196 + }, + { + "start": 11443.26, + "end": 11444.86, + "probability": 0.2291 + }, + { + "start": 11444.86, + "end": 11447.08, + "probability": 0.8544 + }, + { + "start": 11447.88, + "end": 11448.72, + "probability": 0.7578 + }, + { + "start": 11449.22, + "end": 11450.88, + "probability": 0.9272 + }, + { + "start": 11451.08, + "end": 11452.58, + "probability": 0.3374 + }, + { + "start": 11452.86, + "end": 11453.49, + "probability": 0.7233 + }, + { + "start": 11453.9, + "end": 11455.74, + "probability": 0.6897 + }, + { + "start": 11455.8, + "end": 11456.92, + "probability": 0.6224 + }, + { + "start": 11459.1, + "end": 11461.06, + "probability": 0.7705 + }, + { + "start": 11461.36, + "end": 11462.8, + "probability": 0.0278 + }, + { + "start": 11463.12, + "end": 11465.64, + "probability": 0.0385 + }, + { + "start": 11465.92, + "end": 11467.58, + "probability": 0.4489 + }, + { + "start": 11472.32, + "end": 11475.48, + "probability": 0.3381 + }, + { + "start": 11476.25, + "end": 11479.53, + "probability": 0.3545 + }, + { + "start": 11481.06, + "end": 11481.5, + "probability": 0.0929 + }, + { + "start": 11484.12, + "end": 11485.08, + "probability": 0.6482 + }, + { + "start": 11485.84, + "end": 11494.02, + "probability": 0.8927 + }, + { + "start": 11494.52, + "end": 11495.41, + "probability": 0.4829 + }, + { + "start": 11495.74, + "end": 11498.48, + "probability": 0.4124 + }, + { + "start": 11499.2, + "end": 11503.7, + "probability": 0.1854 + }, + { + "start": 11508.02, + "end": 11511.12, + "probability": 0.0201 + }, + { + "start": 11511.67, + "end": 11512.34, + "probability": 0.1719 + }, + { + "start": 11512.34, + "end": 11513.06, + "probability": 0.3075 + }, + { + "start": 11513.06, + "end": 11514.08, + "probability": 0.2601 + }, + { + "start": 11514.6, + "end": 11514.9, + "probability": 0.7317 + }, + { + "start": 11515.2, + "end": 11521.0, + "probability": 0.8344 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.0, + "end": 11615.0, + "probability": 0.0 + }, + { + "start": 11615.14, + "end": 11619.22, + "probability": 0.0535 + }, + { + "start": 11619.92, + "end": 11620.9, + "probability": 0.2268 + }, + { + "start": 11621.52, + "end": 11624.94, + "probability": 0.8304 + }, + { + "start": 11625.92, + "end": 11630.26, + "probability": 0.8701 + }, + { + "start": 11630.26, + "end": 11631.34, + "probability": 0.7873 + }, + { + "start": 11633.42, + "end": 11636.54, + "probability": 0.946 + }, + { + "start": 11636.74, + "end": 11637.22, + "probability": 0.2615 + }, + { + "start": 11637.6, + "end": 11637.74, + "probability": 0.328 + }, + { + "start": 11637.86, + "end": 11643.36, + "probability": 0.9347 + }, + { + "start": 11643.36, + "end": 11643.9, + "probability": 0.2988 + }, + { + "start": 11643.92, + "end": 11644.66, + "probability": 0.4048 + }, + { + "start": 11644.76, + "end": 11645.52, + "probability": 0.2845 + }, + { + "start": 11647.8, + "end": 11650.98, + "probability": 0.0215 + }, + { + "start": 11659.26, + "end": 11660.56, + "probability": 0.0179 + }, + { + "start": 11666.92, + "end": 11667.4, + "probability": 0.2684 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.0, + "end": 11763.0, + "probability": 0.0 + }, + { + "start": 11763.58, + "end": 11765.44, + "probability": 0.005 + }, + { + "start": 11766.66, + "end": 11766.66, + "probability": 0.0843 + }, + { + "start": 11766.66, + "end": 11766.66, + "probability": 0.1547 + }, + { + "start": 11766.66, + "end": 11766.66, + "probability": 0.0921 + }, + { + "start": 11766.66, + "end": 11770.12, + "probability": 0.7564 + }, + { + "start": 11774.42, + "end": 11778.48, + "probability": 0.859 + }, + { + "start": 11778.54, + "end": 11779.35, + "probability": 0.5055 + }, + { + "start": 11780.0, + "end": 11780.0, + "probability": 0.0164 + }, + { + "start": 11798.26, + "end": 11798.56, + "probability": 0.293 + }, + { + "start": 11798.56, + "end": 11798.86, + "probability": 0.1577 + }, + { + "start": 11798.94, + "end": 11799.98, + "probability": 0.3804 + }, + { + "start": 11800.2, + "end": 11800.52, + "probability": 0.4433 + }, + { + "start": 11800.52, + "end": 11804.1, + "probability": 0.8412 + }, + { + "start": 11804.1, + "end": 11807.98, + "probability": 0.9688 + }, + { + "start": 11808.96, + "end": 11813.72, + "probability": 0.991 + }, + { + "start": 11814.04, + "end": 11814.56, + "probability": 0.5284 + }, + { + "start": 11814.76, + "end": 11815.36, + "probability": 0.1669 + }, + { + "start": 11830.82, + "end": 11833.72, + "probability": 0.1924 + }, + { + "start": 11834.38, + "end": 11835.98, + "probability": 0.6825 + }, + { + "start": 11836.1, + "end": 11841.62, + "probability": 0.9089 + }, + { + "start": 11842.58, + "end": 11845.2, + "probability": 0.6358 + }, + { + "start": 11850.36, + "end": 11853.46, + "probability": 0.873 + }, + { + "start": 11854.32, + "end": 11856.62, + "probability": 0.9827 + }, + { + "start": 11856.66, + "end": 11857.78, + "probability": 0.9784 + }, + { + "start": 11858.0, + "end": 11860.92, + "probability": 0.9658 + }, + { + "start": 11861.44, + "end": 11863.92, + "probability": 0.887 + }, + { + "start": 11865.04, + "end": 11866.0, + "probability": 0.5322 + }, + { + "start": 11866.4, + "end": 11870.0, + "probability": 0.9628 + }, + { + "start": 11871.64, + "end": 11874.14, + "probability": 0.6792 + }, + { + "start": 11874.28, + "end": 11874.96, + "probability": 0.8979 + }, + { + "start": 11876.06, + "end": 11877.46, + "probability": 0.4668 + }, + { + "start": 11878.58, + "end": 11879.64, + "probability": 0.9366 + }, + { + "start": 11879.72, + "end": 11884.16, + "probability": 0.9653 + }, + { + "start": 11884.32, + "end": 11885.42, + "probability": 0.7215 + }, + { + "start": 11885.84, + "end": 11887.0, + "probability": 0.7311 + }, + { + "start": 11888.1, + "end": 11889.2, + "probability": 0.186 + }, + { + "start": 11890.34, + "end": 11891.66, + "probability": 0.0944 + }, + { + "start": 11894.46, + "end": 11895.74, + "probability": 0.0558 + }, + { + "start": 11902.44, + "end": 11903.28, + "probability": 0.0255 + }, + { + "start": 11903.94, + "end": 11905.3, + "probability": 0.1696 + }, + { + "start": 11906.58, + "end": 11909.18, + "probability": 0.1218 + }, + { + "start": 11913.0, + "end": 11915.62, + "probability": 0.7572 + }, + { + "start": 11915.7, + "end": 11917.27, + "probability": 0.9495 + }, + { + "start": 11918.28, + "end": 11924.72, + "probability": 0.5769 + }, + { + "start": 11924.84, + "end": 11930.12, + "probability": 0.95 + }, + { + "start": 11930.28, + "end": 11931.1, + "probability": 0.675 + }, + { + "start": 11932.98, + "end": 11939.76, + "probability": 0.7838 + }, + { + "start": 11941.54, + "end": 11943.86, + "probability": 0.923 + }, + { + "start": 11944.25, + "end": 11947.42, + "probability": 0.6763 + }, + { + "start": 11947.48, + "end": 11947.98, + "probability": 0.4565 + }, + { + "start": 11948.96, + "end": 11949.73, + "probability": 0.215 + }, + { + "start": 11951.38, + "end": 11952.26, + "probability": 0.1419 + }, + { + "start": 11956.72, + "end": 11958.2, + "probability": 0.0519 + }, + { + "start": 11959.34, + "end": 11960.0, + "probability": 0.0658 + }, + { + "start": 11961.0, + "end": 11961.88, + "probability": 0.356 + }, + { + "start": 11961.88, + "end": 11963.58, + "probability": 0.29 + }, + { + "start": 11964.32, + "end": 11965.34, + "probability": 0.2684 + }, + { + "start": 11965.36, + "end": 11971.64, + "probability": 0.9002 + }, + { + "start": 11972.14, + "end": 11976.42, + "probability": 0.9235 + }, + { + "start": 11976.54, + "end": 11977.06, + "probability": 0.4496 + }, + { + "start": 11977.16, + "end": 11977.74, + "probability": 0.5682 + }, + { + "start": 11977.76, + "end": 11978.94, + "probability": 0.4858 + }, + { + "start": 11984.42, + "end": 11986.84, + "probability": 0.3956 + }, + { + "start": 11995.04, + "end": 11995.04, + "probability": 0.104 + }, + { + "start": 11995.04, + "end": 11995.04, + "probability": 0.158 + }, + { + "start": 11995.04, + "end": 11995.06, + "probability": 0.051 + }, + { + "start": 11995.06, + "end": 11995.66, + "probability": 0.3445 + }, + { + "start": 11995.66, + "end": 11996.56, + "probability": 0.342 + }, + { + "start": 11996.64, + "end": 11996.92, + "probability": 0.4923 + }, + { + "start": 11997.1, + "end": 12000.12, + "probability": 0.86 + }, + { + "start": 12000.74, + "end": 12002.82, + "probability": 0.8541 + }, + { + "start": 12003.82, + "end": 12007.78, + "probability": 0.6321 + }, + { + "start": 12008.14, + "end": 12008.74, + "probability": 0.3907 + }, + { + "start": 12008.78, + "end": 12009.32, + "probability": 0.4664 + }, + { + "start": 12009.36, + "end": 12010.74, + "probability": 0.2418 + }, + { + "start": 12026.16, + "end": 12026.26, + "probability": 0.3081 + }, + { + "start": 12026.26, + "end": 12026.26, + "probability": 0.1145 + }, + { + "start": 12026.26, + "end": 12026.26, + "probability": 0.26 + }, + { + "start": 12026.26, + "end": 12026.26, + "probability": 0.1547 + }, + { + "start": 12026.26, + "end": 12026.26, + "probability": 0.1282 + }, + { + "start": 12026.26, + "end": 12029.7, + "probability": 0.3286 + }, + { + "start": 12030.26, + "end": 12031.28, + "probability": 0.6726 + }, + { + "start": 12031.88, + "end": 12036.58, + "probability": 0.7238 + }, + { + "start": 12036.64, + "end": 12037.34, + "probability": 0.6892 + }, + { + "start": 12038.88, + "end": 12039.54, + "probability": 0.8678 + }, + { + "start": 12048.0, + "end": 12048.76, + "probability": 0.3578 + }, + { + "start": 12049.78, + "end": 12051.34, + "probability": 0.5887 + }, + { + "start": 12051.48, + "end": 12053.6, + "probability": 0.806 + }, + { + "start": 12053.74, + "end": 12056.04, + "probability": 0.7867 + }, + { + "start": 12056.24, + "end": 12057.74, + "probability": 0.5191 + }, + { + "start": 12057.76, + "end": 12058.42, + "probability": 0.5956 + }, + { + "start": 12064.42, + "end": 12069.38, + "probability": 0.0575 + }, + { + "start": 12073.6, + "end": 12073.7, + "probability": 0.274 + }, + { + "start": 12073.7, + "end": 12074.68, + "probability": 0.3535 + }, + { + "start": 12074.68, + "end": 12075.24, + "probability": 0.2842 + }, + { + "start": 12075.48, + "end": 12075.8, + "probability": 0.7013 + }, + { + "start": 12076.12, + "end": 12081.26, + "probability": 0.8957 + }, + { + "start": 12082.0, + "end": 12086.42, + "probability": 0.7955 + }, + { + "start": 12086.66, + "end": 12087.2, + "probability": 0.5867 + }, + { + "start": 12087.28, + "end": 12087.7, + "probability": 0.6235 + }, + { + "start": 12098.22, + "end": 12098.9, + "probability": 0.7227 + }, + { + "start": 12099.68, + "end": 12100.98, + "probability": 0.3588 + }, + { + "start": 12102.11, + "end": 12104.2, + "probability": 0.0245 + }, + { + "start": 12104.58, + "end": 12104.78, + "probability": 0.3889 + }, + { + "start": 12105.16, + "end": 12105.6, + "probability": 0.0357 + }, + { + "start": 12105.6, + "end": 12105.6, + "probability": 0.0596 + }, + { + "start": 12105.72, + "end": 12106.7, + "probability": 0.3927 + }, + { + "start": 12106.92, + "end": 12107.24, + "probability": 0.4677 + }, + { + "start": 12107.57, + "end": 12112.94, + "probability": 0.7935 + }, + { + "start": 12113.0, + "end": 12118.2, + "probability": 0.8833 + }, + { + "start": 12118.28, + "end": 12119.0, + "probability": 0.9048 + }, + { + "start": 12119.68, + "end": 12121.12, + "probability": 0.232 + }, + { + "start": 12121.9, + "end": 12130.52, + "probability": 0.0667 + }, + { + "start": 12132.24, + "end": 12132.6, + "probability": 0.3007 + }, + { + "start": 12134.34, + "end": 12135.44, + "probability": 0.1186 + }, + { + "start": 12138.28, + "end": 12138.7, + "probability": 0.0829 + }, + { + "start": 12138.7, + "end": 12139.36, + "probability": 0.2767 + }, + { + "start": 12139.84, + "end": 12140.12, + "probability": 0.7747 + }, + { + "start": 12140.4, + "end": 12147.04, + "probability": 0.8623 + }, + { + "start": 12148.1, + "end": 12149.34, + "probability": 0.8303 + }, + { + "start": 12149.6, + "end": 12155.12, + "probability": 0.9724 + }, + { + "start": 12156.28, + "end": 12159.26, + "probability": 0.6441 + }, + { + "start": 12159.98, + "end": 12160.6, + "probability": 0.0786 + }, + { + "start": 12167.96, + "end": 12168.66, + "probability": 0.0676 + }, + { + "start": 12168.66, + "end": 12170.48, + "probability": 0.2768 + }, + { + "start": 12170.7, + "end": 12171.06, + "probability": 0.4759 + }, + { + "start": 12171.06, + "end": 12172.98, + "probability": 0.3892 + }, + { + "start": 12173.74, + "end": 12177.24, + "probability": 0.8935 + }, + { + "start": 12179.14, + "end": 12182.82, + "probability": 0.8407 + }, + { + "start": 12182.88, + "end": 12183.5, + "probability": 0.4493 + }, + { + "start": 12185.72, + "end": 12188.72, + "probability": 0.1038 + }, + { + "start": 12192.28, + "end": 12192.28, + "probability": 0.0459 + }, + { + "start": 12198.24, + "end": 12199.56, + "probability": 0.0364 + }, + { + "start": 12199.56, + "end": 12199.66, + "probability": 0.1635 + }, + { + "start": 12199.66, + "end": 12199.66, + "probability": 0.0692 + }, + { + "start": 12199.66, + "end": 12204.4, + "probability": 0.8198 + }, + { + "start": 12204.62, + "end": 12207.16, + "probability": 0.8361 + }, + { + "start": 12207.5, + "end": 12208.36, + "probability": 0.8089 + }, + { + "start": 12210.3, + "end": 12211.02, + "probability": 0.7512 + }, + { + "start": 12211.62, + "end": 12212.12, + "probability": 0.8864 + }, + { + "start": 12214.22, + "end": 12217.86, + "probability": 0.1721 + }, + { + "start": 12223.81, + "end": 12224.96, + "probability": 0.0473 + }, + { + "start": 12228.67, + "end": 12230.41, + "probability": 0.8529 + }, + { + "start": 12230.8, + "end": 12236.08, + "probability": 0.8893 + }, + { + "start": 12237.26, + "end": 12240.79, + "probability": 0.8872 + }, + { + "start": 12252.27, + "end": 12253.49, + "probability": 0.2085 + }, + { + "start": 12254.55, + "end": 12254.85, + "probability": 0.0357 + }, + { + "start": 12259.59, + "end": 12260.39, + "probability": 0.0492 + }, + { + "start": 12260.39, + "end": 12260.39, + "probability": 0.2052 + }, + { + "start": 12260.39, + "end": 12260.39, + "probability": 0.26 + }, + { + "start": 12260.39, + "end": 12260.39, + "probability": 0.1302 + }, + { + "start": 12260.39, + "end": 12262.55, + "probability": 0.4362 + }, + { + "start": 12263.43, + "end": 12270.67, + "probability": 0.9328 + }, + { + "start": 12271.69, + "end": 12274.89, + "probability": 0.6498 + }, + { + "start": 12275.99, + "end": 12285.01, + "probability": 0.9695 + }, + { + "start": 12285.27, + "end": 12285.89, + "probability": 0.4604 + }, + { + "start": 12285.91, + "end": 12286.81, + "probability": 0.6735 + }, + { + "start": 12293.21, + "end": 12294.88, + "probability": 0.5781 + }, + { + "start": 12295.33, + "end": 12295.73, + "probability": 0.313 + }, + { + "start": 12295.79, + "end": 12297.17, + "probability": 0.9942 + }, + { + "start": 12297.55, + "end": 12299.47, + "probability": 0.1263 + }, + { + "start": 12301.31, + "end": 12302.41, + "probability": 0.0841 + }, + { + "start": 12302.41, + "end": 12303.41, + "probability": 0.2331 + }, + { + "start": 12303.49, + "end": 12303.81, + "probability": 0.2236 + }, + { + "start": 12303.85, + "end": 12303.99, + "probability": 0.2779 + }, + { + "start": 12303.99, + "end": 12307.94, + "probability": 0.4439 + }, + { + "start": 12308.83, + "end": 12311.57, + "probability": 0.9303 + }, + { + "start": 12312.05, + "end": 12316.69, + "probability": 0.8788 + }, + { + "start": 12316.91, + "end": 12318.51, + "probability": 0.5189 + }, + { + "start": 12318.55, + "end": 12320.07, + "probability": 0.3743 + }, + { + "start": 12323.09, + "end": 12326.39, + "probability": 0.1567 + }, + { + "start": 12328.61, + "end": 12330.55, + "probability": 0.1847 + }, + { + "start": 12331.27, + "end": 12332.01, + "probability": 0.3262 + }, + { + "start": 12332.01, + "end": 12332.01, + "probability": 0.0299 + }, + { + "start": 12332.01, + "end": 12332.43, + "probability": 0.3401 + }, + { + "start": 12332.53, + "end": 12332.85, + "probability": 0.5551 + }, + { + "start": 12333.27, + "end": 12337.79, + "probability": 0.9312 + }, + { + "start": 12337.89, + "end": 12346.79, + "probability": 0.7348 + }, + { + "start": 12346.91, + "end": 12347.65, + "probability": 0.6294 + }, + { + "start": 12356.99, + "end": 12359.75, + "probability": 0.2672 + }, + { + "start": 12360.77, + "end": 12361.47, + "probability": 0.1865 + }, + { + "start": 12364.14, + "end": 12365.13, + "probability": 0.1892 + }, + { + "start": 12365.13, + "end": 12366.13, + "probability": 0.1574 + }, + { + "start": 12366.13, + "end": 12366.71, + "probability": 0.26 + }, + { + "start": 12366.85, + "end": 12367.29, + "probability": 0.6835 + }, + { + "start": 12367.57, + "end": 12377.39, + "probability": 0.6654 + }, + { + "start": 12378.17, + "end": 12379.74, + "probability": 0.5963 + }, + { + "start": 12380.43, + "end": 12381.39, + "probability": 0.5187 + }, + { + "start": 12381.47, + "end": 12387.93, + "probability": 0.916 + }, + { + "start": 12388.39, + "end": 12389.09, + "probability": 0.5446 + }, + { + "start": 12389.11, + "end": 12389.55, + "probability": 0.6689 + }, + { + "start": 12394.21, + "end": 12396.97, + "probability": 0.8016 + }, + { + "start": 12397.67, + "end": 12398.45, + "probability": 0.0352 + }, + { + "start": 12405.89, + "end": 12406.77, + "probability": 0.2582 + }, + { + "start": 12406.77, + "end": 12407.17, + "probability": 0.2276 + }, + { + "start": 12407.17, + "end": 12407.17, + "probability": 0.4029 + }, + { + "start": 12407.17, + "end": 12408.19, + "probability": 0.3547 + }, + { + "start": 12408.79, + "end": 12408.79, + "probability": 0.3476 + }, + { + "start": 12409.75, + "end": 12410.89, + "probability": 0.5181 + }, + { + "start": 12411.25, + "end": 12413.51, + "probability": 0.9611 + }, + { + "start": 12414.37, + "end": 12416.73, + "probability": 0.8438 + }, + { + "start": 12417.53, + "end": 12419.04, + "probability": 0.5141 + }, + { + "start": 12419.09, + "end": 12419.67, + "probability": 0.6919 + }, + { + "start": 12420.71, + "end": 12423.53, + "probability": 0.0605 + }, + { + "start": 12423.95, + "end": 12424.03, + "probability": 0.2433 + }, + { + "start": 12424.07, + "end": 12425.55, + "probability": 0.2306 + }, + { + "start": 12428.67, + "end": 12429.19, + "probability": 0.0241 + }, + { + "start": 12433.75, + "end": 12434.41, + "probability": 0.1908 + }, + { + "start": 12434.45, + "end": 12435.21, + "probability": 0.3931 + }, + { + "start": 12435.35, + "end": 12435.75, + "probability": 0.712 + }, + { + "start": 12435.91, + "end": 12440.79, + "probability": 0.8914 + }, + { + "start": 12442.05, + "end": 12442.57, + "probability": 0.7198 + }, + { + "start": 12442.65, + "end": 12444.03, + "probability": 0.9303 + }, + { + "start": 12444.53, + "end": 12447.31, + "probability": 0.0225 + }, + { + "start": 12447.31, + "end": 12448.21, + "probability": 0.2382 + }, + { + "start": 12448.33, + "end": 12450.15, + "probability": 0.7052 + }, + { + "start": 12450.39, + "end": 12451.75, + "probability": 0.6816 + }, + { + "start": 12451.75, + "end": 12455.15, + "probability": 0.7883 + }, + { + "start": 12455.33, + "end": 12458.25, + "probability": 0.9362 + }, + { + "start": 12458.59, + "end": 12462.77, + "probability": 0.9946 + }, + { + "start": 12463.77, + "end": 12470.39, + "probability": 0.9775 + }, + { + "start": 12470.85, + "end": 12473.25, + "probability": 0.9844 + }, + { + "start": 12474.47, + "end": 12478.19, + "probability": 0.611 + }, + { + "start": 12478.29, + "end": 12480.21, + "probability": 0.998 + }, + { + "start": 12480.33, + "end": 12481.51, + "probability": 0.5911 + }, + { + "start": 12484.85, + "end": 12485.87, + "probability": 0.4704 + }, + { + "start": 12494.41, + "end": 12495.55, + "probability": 0.0029 + }, + { + "start": 12495.67, + "end": 12495.67, + "probability": 0.2536 + }, + { + "start": 12495.67, + "end": 12495.67, + "probability": 0.353 + }, + { + "start": 12495.67, + "end": 12495.67, + "probability": 0.3991 + }, + { + "start": 12495.67, + "end": 12498.07, + "probability": 0.5655 + }, + { + "start": 12499.37, + "end": 12503.03, + "probability": 0.9862 + }, + { + "start": 12503.49, + "end": 12510.43, + "probability": 0.8744 + }, + { + "start": 12510.63, + "end": 12510.69, + "probability": 0.6669 + }, + { + "start": 12510.69, + "end": 12511.49, + "probability": 0.6203 + }, + { + "start": 12517.89, + "end": 12523.53, + "probability": 0.5793 + }, + { + "start": 12523.79, + "end": 12524.97, + "probability": 0.6542 + }, + { + "start": 12525.15, + "end": 12526.25, + "probability": 0.7723 + }, + { + "start": 12527.15, + "end": 12529.81, + "probability": 0.6465 + }, + { + "start": 12539.55, + "end": 12539.61, + "probability": 0.036 + }, + { + "start": 12540.95, + "end": 12542.69, + "probability": 0.291 + }, + { + "start": 12543.74, + "end": 12546.27, + "probability": 0.1811 + }, + { + "start": 12547.55, + "end": 12548.33, + "probability": 0.4837 + }, + { + "start": 12548.33, + "end": 12548.59, + "probability": 0.269 + }, + { + "start": 12548.59, + "end": 12549.43, + "probability": 0.7263 + }, + { + "start": 12549.53, + "end": 12549.83, + "probability": 0.5834 + }, + { + "start": 12549.83, + "end": 12557.73, + "probability": 0.8955 + }, + { + "start": 12559.13, + "end": 12559.99, + "probability": 0.6648 + }, + { + "start": 12572.55, + "end": 12573.55, + "probability": 0.252 + }, + { + "start": 12574.45, + "end": 12581.27, + "probability": 0.8365 + }, + { + "start": 12581.47, + "end": 12584.31, + "probability": 0.8578 + }, + { + "start": 12587.31, + "end": 12589.23, + "probability": 0.4013 + }, + { + "start": 12591.71, + "end": 12594.69, + "probability": 0.0385 + }, + { + "start": 12595.93, + "end": 12596.59, + "probability": 0.3354 + }, + { + "start": 12604.15, + "end": 12604.99, + "probability": 0.1005 + }, + { + "start": 12605.47, + "end": 12609.93, + "probability": 0.7579 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12731.0, + "end": 12731.0, + "probability": 0.0 + }, + { + "start": 12741.2, + "end": 12742.2, + "probability": 0.3525 + }, + { + "start": 12742.4, + "end": 12745.88, + "probability": 0.8186 + }, + { + "start": 12745.92, + "end": 12746.8, + "probability": 0.8695 + }, + { + "start": 12747.26, + "end": 12748.54, + "probability": 0.2259 + }, + { + "start": 12749.72, + "end": 12753.52, + "probability": 0.1167 + }, + { + "start": 12754.34, + "end": 12757.28, + "probability": 0.103 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12862.0, + "end": 12862.0, + "probability": 0.0 + }, + { + "start": 12871.86, + "end": 12874.66, + "probability": 0.6584 + }, + { + "start": 12875.24, + "end": 12875.78, + "probability": 0.1585 + }, + { + "start": 12878.11, + "end": 12882.24, + "probability": 0.5102 + }, + { + "start": 12882.56, + "end": 12882.7, + "probability": 0.0721 + }, + { + "start": 12883.74, + "end": 12886.72, + "probability": 0.003 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12986.0, + "end": 12986.0, + "probability": 0.0 + }, + { + "start": 12993.4, + "end": 12998.98, + "probability": 0.8119 + }, + { + "start": 12999.14, + "end": 13006.92, + "probability": 0.87 + }, + { + "start": 13007.0, + "end": 13007.58, + "probability": 0.4556 + }, + { + "start": 13007.58, + "end": 13008.34, + "probability": 0.4037 + }, + { + "start": 13025.47, + "end": 13027.38, + "probability": 0.2483 + }, + { + "start": 13027.38, + "end": 13027.38, + "probability": 0.0777 + }, + { + "start": 13027.38, + "end": 13028.04, + "probability": 0.4078 + }, + { + "start": 13028.29, + "end": 13031.0, + "probability": 0.0261 + }, + { + "start": 13034.05, + "end": 13037.62, + "probability": 0.3948 + }, + { + "start": 13038.14, + "end": 13038.8, + "probability": 0.1089 + }, + { + "start": 13038.8, + "end": 13038.8, + "probability": 0.0739 + }, + { + "start": 13038.8, + "end": 13038.8, + "probability": 0.1544 + }, + { + "start": 13038.8, + "end": 13038.8, + "probability": 0.6432 + }, + { + "start": 13038.8, + "end": 13039.5, + "probability": 0.2137 + }, + { + "start": 13039.5, + "end": 13040.5, + "probability": 0.5687 + }, + { + "start": 13042.3, + "end": 13044.58, + "probability": 0.7151 + }, + { + "start": 13045.24, + "end": 13046.34, + "probability": 0.3744 + }, + { + "start": 13052.04, + "end": 13055.98, + "probability": 0.6542 + }, + { + "start": 13061.2, + "end": 13061.2, + "probability": 0.316 + }, + { + "start": 13061.2, + "end": 13061.2, + "probability": 0.0588 + }, + { + "start": 13061.2, + "end": 13061.2, + "probability": 0.2652 + }, + { + "start": 13061.2, + "end": 13061.2, + "probability": 0.0862 + }, + { + "start": 13061.2, + "end": 13061.2, + "probability": 0.1507 + }, + { + "start": 13061.2, + "end": 13064.06, + "probability": 0.4678 + }, + { + "start": 13065.08, + "end": 13068.8, + "probability": 0.8418 + }, + { + "start": 13069.64, + "end": 13071.88, + "probability": 0.4258 + }, + { + "start": 13073.22, + "end": 13078.64, + "probability": 0.9159 + }, + { + "start": 13078.76, + "end": 13082.0, + "probability": 0.6218 + }, + { + "start": 13082.02, + "end": 13082.48, + "probability": 0.5391 + }, + { + "start": 13084.14, + "end": 13086.22, + "probability": 0.0907 + }, + { + "start": 13086.94, + "end": 13087.82, + "probability": 0.0382 + }, + { + "start": 13089.02, + "end": 13090.9, + "probability": 0.0633 + }, + { + "start": 13095.16, + "end": 13097.46, + "probability": 0.2108 + }, + { + "start": 13097.48, + "end": 13098.28, + "probability": 0.4601 + }, + { + "start": 13098.34, + "end": 13098.66, + "probability": 0.6746 + }, + { + "start": 13098.66, + "end": 13099.6, + "probability": 0.2022 + }, + { + "start": 13099.7, + "end": 13100.02, + "probability": 0.5303 + }, + { + "start": 13100.28, + "end": 13104.54, + "probability": 0.8681 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.0, + "end": 13210.0, + "probability": 0.0 + }, + { + "start": 13210.2, + "end": 13213.88, + "probability": 0.5292 + }, + { + "start": 13214.46, + "end": 13215.72, + "probability": 0.035 + }, + { + "start": 13215.74, + "end": 13215.74, + "probability": 0.1041 + }, + { + "start": 13215.74, + "end": 13215.74, + "probability": 0.2377 + }, + { + "start": 13216.06, + "end": 13218.64, + "probability": 0.2255 + }, + { + "start": 13218.98, + "end": 13219.94, + "probability": 0.1245 + }, + { + "start": 13221.1, + "end": 13221.38, + "probability": 0.1089 + }, + { + "start": 13221.38, + "end": 13221.38, + "probability": 0.7412 + }, + { + "start": 13221.38, + "end": 13221.38, + "probability": 0.0561 + }, + { + "start": 13221.38, + "end": 13221.38, + "probability": 0.299 + }, + { + "start": 13221.38, + "end": 13221.38, + "probability": 0.1241 + }, + { + "start": 13221.38, + "end": 13221.62, + "probability": 0.2351 + }, + { + "start": 13222.82, + "end": 13223.84, + "probability": 0.2287 + }, + { + "start": 13223.84, + "end": 13223.94, + "probability": 0.3746 + }, + { + "start": 13224.1, + "end": 13230.1, + "probability": 0.6581 + }, + { + "start": 13230.2, + "end": 13230.84, + "probability": 0.4813 + }, + { + "start": 13230.84, + "end": 13231.52, + "probability": 0.5546 + }, + { + "start": 13231.94, + "end": 13235.78, + "probability": 0.0511 + }, + { + "start": 13237.5, + "end": 13237.5, + "probability": 0.0791 + }, + { + "start": 13243.44, + "end": 13245.12, + "probability": 0.241 + }, + { + "start": 13245.14, + "end": 13246.5, + "probability": 0.2297 + }, + { + "start": 13246.74, + "end": 13247.78, + "probability": 0.3924 + }, + { + "start": 13248.16, + "end": 13249.22, + "probability": 0.4942 + }, + { + "start": 13249.22, + "end": 13252.72, + "probability": 0.8769 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.0, + "end": 13338.0, + "probability": 0.0 + }, + { + "start": 13338.6, + "end": 13340.17, + "probability": 0.0272 + }, + { + "start": 13340.32, + "end": 13340.36, + "probability": 0.0251 + }, + { + "start": 13340.36, + "end": 13340.54, + "probability": 0.5985 + }, + { + "start": 13340.86, + "end": 13343.2, + "probability": 0.6788 + }, + { + "start": 13343.32, + "end": 13344.88, + "probability": 0.8038 + }, + { + "start": 13345.52, + "end": 13345.54, + "probability": 0.4261 + }, + { + "start": 13345.54, + "end": 13346.24, + "probability": 0.5603 + }, + { + "start": 13346.26, + "end": 13346.84, + "probability": 0.3943 + }, + { + "start": 13346.84, + "end": 13348.02, + "probability": 0.3648 + }, + { + "start": 13360.4, + "end": 13361.42, + "probability": 0.2425 + }, + { + "start": 13361.68, + "end": 13363.14, + "probability": 0.0167 + }, + { + "start": 13363.14, + "end": 13363.24, + "probability": 0.064 + }, + { + "start": 13363.26, + "end": 13363.26, + "probability": 0.1873 + }, + { + "start": 13363.36, + "end": 13365.18, + "probability": 0.3544 + }, + { + "start": 13365.36, + "end": 13366.0, + "probability": 0.1626 + }, + { + "start": 13367.44, + "end": 13368.52, + "probability": 0.2339 + }, + { + "start": 13369.26, + "end": 13370.72, + "probability": 0.2423 + }, + { + "start": 13371.04, + "end": 13375.42, + "probability": 0.6647 + }, + { + "start": 13375.54, + "end": 13376.6, + "probability": 0.8876 + }, + { + "start": 13376.62, + "end": 13377.12, + "probability": 0.7911 + }, + { + "start": 13378.92, + "end": 13381.18, + "probability": 0.4692 + }, + { + "start": 13383.16, + "end": 13388.32, + "probability": 0.9703 + }, + { + "start": 13388.48, + "end": 13389.6, + "probability": 0.5584 + }, + { + "start": 13389.78, + "end": 13390.32, + "probability": 0.4408 + }, + { + "start": 13390.34, + "end": 13391.12, + "probability": 0.6695 + }, + { + "start": 13393.76, + "end": 13397.56, + "probability": 0.3983 + }, + { + "start": 13398.48, + "end": 13398.98, + "probability": 0.0978 + }, + { + "start": 13400.36, + "end": 13403.94, + "probability": 0.3428 + }, + { + "start": 13404.4, + "end": 13409.48, + "probability": 0.8608 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.0, + "end": 13468.0, + "probability": 0.0 + }, + { + "start": 13468.68, + "end": 13469.1, + "probability": 0.0322 + }, + { + "start": 13470.1, + "end": 13471.18, + "probability": 0.1067 + }, + { + "start": 13471.2, + "end": 13471.38, + "probability": 0.0872 + }, + { + "start": 13471.4, + "end": 13472.36, + "probability": 0.0164 + }, + { + "start": 13472.48, + "end": 13474.06, + "probability": 0.425 + }, + { + "start": 13474.94, + "end": 13475.2, + "probability": 0.123 + }, + { + "start": 13475.2, + "end": 13475.2, + "probability": 0.0581 + }, + { + "start": 13475.2, + "end": 13475.2, + "probability": 0.7658 + }, + { + "start": 13475.2, + "end": 13475.2, + "probability": 0.0312 + }, + { + "start": 13475.2, + "end": 13477.42, + "probability": 0.2449 + }, + { + "start": 13487.08, + "end": 13489.64, + "probability": 0.247 + }, + { + "start": 13491.36, + "end": 13492.62, + "probability": 0.0862 + }, + { + "start": 13495.95, + "end": 13497.7, + "probability": 0.0388 + }, + { + "start": 13498.24, + "end": 13498.86, + "probability": 0.1303 + }, + { + "start": 13498.86, + "end": 13500.7, + "probability": 0.1293 + }, + { + "start": 13500.7, + "end": 13500.7, + "probability": 0.3642 + }, + { + "start": 13500.7, + "end": 13503.22, + "probability": 0.4326 + }, + { + "start": 13503.62, + "end": 13504.4, + "probability": 0.6767 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.0, + "end": 13590.0, + "probability": 0.0 + }, + { + "start": 13590.18, + "end": 13592.12, + "probability": 0.5364 + }, + { + "start": 13592.22, + "end": 13592.76, + "probability": 0.8426 + }, + { + "start": 13605.92, + "end": 13607.94, + "probability": 0.6337 + }, + { + "start": 13608.06, + "end": 13608.92, + "probability": 0.141 + }, + { + "start": 13608.92, + "end": 13609.66, + "probability": 0.2732 + }, + { + "start": 13610.38, + "end": 13612.45, + "probability": 0.0178 + }, + { + "start": 13615.66, + "end": 13618.88, + "probability": 0.8084 + }, + { + "start": 13635.46, + "end": 13641.1, + "probability": 0.4754 + }, + { + "start": 13641.1, + "end": 13646.26, + "probability": 0.6404 + }, + { + "start": 13647.12, + "end": 13647.42, + "probability": 0.4623 + }, + { + "start": 13651.02, + "end": 13652.46, + "probability": 0.0149 + }, + { + "start": 13652.46, + "end": 13655.76, + "probability": 0.4774 + }, + { + "start": 13655.9, + "end": 13659.9, + "probability": 0.0502 + }, + { + "start": 13671.36, + "end": 13671.74, + "probability": 0.1257 + }, + { + "start": 13671.88, + "end": 13671.88, + "probability": 0.1078 + }, + { + "start": 13671.88, + "end": 13674.5, + "probability": 0.0786 + }, + { + "start": 13675.74, + "end": 13679.54, + "probability": 0.3058 + }, + { + "start": 13680.16, + "end": 13681.82, + "probability": 0.2097 + }, + { + "start": 13681.82, + "end": 13684.26, + "probability": 0.2923 + }, + { + "start": 13684.92, + "end": 13686.42, + "probability": 0.154 + }, + { + "start": 13687.58, + "end": 13689.98, + "probability": 0.1046 + }, + { + "start": 13689.98, + "end": 13690.34, + "probability": 0.1485 + }, + { + "start": 13690.34, + "end": 13690.34, + "probability": 0.1224 + }, + { + "start": 13690.34, + "end": 13690.34, + "probability": 0.1161 + }, + { + "start": 13690.34, + "end": 13690.46, + "probability": 0.4869 + }, + { + "start": 13690.54, + "end": 13690.92, + "probability": 0.0412 + }, + { + "start": 13691.18, + "end": 13692.0, + "probability": 0.2166 + }, + { + "start": 13692.32, + "end": 13695.72, + "probability": 0.0483 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.0, + "end": 13715.0, + "probability": 0.0 + }, + { + "start": 13715.18, + "end": 13719.29, + "probability": 0.3533 + }, + { + "start": 13720.7, + "end": 13734.32, + "probability": 0.8534 + }, + { + "start": 13734.32, + "end": 13739.46, + "probability": 0.8784 + }, + { + "start": 13739.58, + "end": 13740.83, + "probability": 0.6019 + }, + { + "start": 13740.94, + "end": 13741.58, + "probability": 0.5316 + }, + { + "start": 13741.6, + "end": 13742.9, + "probability": 0.5214 + }, + { + "start": 13743.5, + "end": 13748.62, + "probability": 0.0908 + }, + { + "start": 13753.8, + "end": 13754.78, + "probability": 0.1405 + }, + { + "start": 13757.59, + "end": 13757.8, + "probability": 0.2519 + }, + { + "start": 13757.8, + "end": 13757.8, + "probability": 0.28 + }, + { + "start": 13757.8, + "end": 13758.66, + "probability": 0.2969 + }, + { + "start": 13758.68, + "end": 13759.0, + "probability": 0.4304 + }, + { + "start": 13759.24, + "end": 13762.12, + "probability": 0.592 + }, + { + "start": 13762.54, + "end": 13766.3, + "probability": 0.7069 + }, + { + "start": 13766.38, + "end": 13767.02, + "probability": 0.5411 + }, + { + "start": 13767.02, + "end": 13768.28, + "probability": 0.4655 + }, + { + "start": 13781.46, + "end": 13782.74, + "probability": 0.1687 + }, + { + "start": 13782.74, + "end": 13782.74, + "probability": 0.0884 + }, + { + "start": 13782.74, + "end": 13783.3, + "probability": 0.2562 + }, + { + "start": 13783.3, + "end": 13785.36, + "probability": 0.0149 + }, + { + "start": 13788.8, + "end": 13792.21, + "probability": 0.4994 + }, + { + "start": 13794.68, + "end": 13797.62, + "probability": 0.4072 + }, + { + "start": 13801.88, + "end": 13802.88, + "probability": 0.0134 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13866.0, + "end": 13866.0, + "probability": 0.0 + }, + { + "start": 13871.2, + "end": 13871.8, + "probability": 0.1824 + }, + { + "start": 13881.88, + "end": 13882.7, + "probability": 0.2207 + }, + { + "start": 13883.22, + "end": 13884.66, + "probability": 0.8391 + }, + { + "start": 13890.0, + "end": 13891.94, + "probability": 0.4769 + }, + { + "start": 13892.52, + "end": 13893.48, + "probability": 0.1637 + }, + { + "start": 13896.73, + "end": 13896.86, + "probability": 0.0079 + }, + { + "start": 13896.86, + "end": 13898.32, + "probability": 0.2919 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.0, + "end": 13998.0, + "probability": 0.0 + }, + { + "start": 13998.37, + "end": 13999.51, + "probability": 0.0769 + }, + { + "start": 14000.96, + "end": 14003.68, + "probability": 0.0388 + }, + { + "start": 14005.92, + "end": 14009.22, + "probability": 0.4443 + }, + { + "start": 14012.14, + "end": 14012.78, + "probability": 0.9223 + }, + { + "start": 14015.94, + "end": 14016.88, + "probability": 0.3504 + }, + { + "start": 14025.28, + "end": 14032.54, + "probability": 0.2811 + }, + { + "start": 14034.88, + "end": 14039.04, + "probability": 0.4864 + }, + { + "start": 14039.04, + "end": 14041.5, + "probability": 0.561 + }, + { + "start": 14058.34, + "end": 14059.7, + "probability": 0.5447 + }, + { + "start": 14060.68, + "end": 14063.18, + "probability": 0.1976 + }, + { + "start": 14063.44, + "end": 14063.54, + "probability": 0.0313 + }, + { + "start": 14063.54, + "end": 14064.6, + "probability": 0.2891 + }, + { + "start": 14065.33, + "end": 14065.98, + "probability": 0.1062 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14154.0, + "end": 14154.0, + "probability": 0.0 + }, + { + "start": 14157.04, + "end": 14158.09, + "probability": 0.208 + }, + { + "start": 14158.7, + "end": 14160.98, + "probability": 0.6245 + }, + { + "start": 14161.78, + "end": 14166.76, + "probability": 0.9009 + }, + { + "start": 14167.7, + "end": 14173.52, + "probability": 0.8335 + }, + { + "start": 14173.54, + "end": 14174.38, + "probability": 0.5402 + }, + { + "start": 14175.1, + "end": 14179.04, + "probability": 0.158 + }, + { + "start": 14183.52, + "end": 14185.52, + "probability": 0.0733 + }, + { + "start": 14185.52, + "end": 14185.52, + "probability": 0.1154 + }, + { + "start": 14188.18, + "end": 14189.52, + "probability": 0.0297 + }, + { + "start": 14190.74, + "end": 14193.0, + "probability": 0.676 + }, + { + "start": 14193.98, + "end": 14197.42, + "probability": 0.8566 + }, + { + "start": 14197.56, + "end": 14202.24, + "probability": 0.861 + }, + { + "start": 14202.32, + "end": 14202.96, + "probability": 0.6416 + }, + { + "start": 14202.96, + "end": 14204.04, + "probability": 0.5655 + }, + { + "start": 14204.24, + "end": 14208.84, + "probability": 0.4044 + }, + { + "start": 14215.8, + "end": 14217.6, + "probability": 0.066 + }, + { + "start": 14219.06, + "end": 14219.72, + "probability": 0.3126 + }, + { + "start": 14219.72, + "end": 14220.26, + "probability": 0.4406 + }, + { + "start": 14220.26, + "end": 14221.24, + "probability": 0.2952 + }, + { + "start": 14221.56, + "end": 14221.9, + "probability": 0.4332 + }, + { + "start": 14222.24, + "end": 14226.4, + "probability": 0.8557 + }, + { + "start": 14227.48, + "end": 14230.04, + "probability": 0.896 + }, + { + "start": 14233.5, + "end": 14235.98, + "probability": 0.7601 + }, + { + "start": 14236.04, + "end": 14237.33, + "probability": 0.6517 + }, + { + "start": 14237.52, + "end": 14238.7, + "probability": 0.7162 + }, + { + "start": 14239.1, + "end": 14240.58, + "probability": 0.5633 + }, + { + "start": 14240.62, + "end": 14244.52, + "probability": 0.8641 + }, + { + "start": 14251.78, + "end": 14252.14, + "probability": 0.5348 + }, + { + "start": 14252.14, + "end": 14258.0, + "probability": 0.0851 + }, + { + "start": 14258.32, + "end": 14258.56, + "probability": 0.187 + }, + { + "start": 14258.56, + "end": 14260.4, + "probability": 0.0841 + }, + { + "start": 14260.4, + "end": 14261.26, + "probability": 0.1687 + }, + { + "start": 14261.84, + "end": 14265.12, + "probability": 0.7208 + }, + { + "start": 14266.98, + "end": 14269.68, + "probability": 0.7875 + }, + { + "start": 14269.98, + "end": 14271.2, + "probability": 0.8009 + }, + { + "start": 14271.48, + "end": 14272.44, + "probability": 0.8829 + }, + { + "start": 14273.82, + "end": 14275.78, + "probability": 0.517 + }, + { + "start": 14279.48, + "end": 14281.68, + "probability": 0.7184 + }, + { + "start": 14282.7, + "end": 14285.48, + "probability": 0.9325 + }, + { + "start": 14286.12, + "end": 14286.74, + "probability": 0.3031 + }, + { + "start": 14286.76, + "end": 14287.2, + "probability": 0.6726 + }, + { + "start": 14292.58, + "end": 14293.22, + "probability": 0.7511 + }, + { + "start": 14301.44, + "end": 14302.62, + "probability": 0.0384 + }, + { + "start": 14302.62, + "end": 14302.68, + "probability": 0.0551 + }, + { + "start": 14302.68, + "end": 14302.68, + "probability": 0.1591 + }, + { + "start": 14302.68, + "end": 14302.68, + "probability": 0.3217 + }, + { + "start": 14302.68, + "end": 14304.56, + "probability": 0.2169 + }, + { + "start": 14306.84, + "end": 14309.96, + "probability": 0.9648 + }, + { + "start": 14312.08, + "end": 14315.8, + "probability": 0.8682 + }, + { + "start": 14316.36, + "end": 14317.92, + "probability": 0.8591 + }, + { + "start": 14324.09, + "end": 14329.94, + "probability": 0.976 + }, + { + "start": 14330.0, + "end": 14332.45, + "probability": 0.9966 + }, + { + "start": 14335.3, + "end": 14339.86, + "probability": 0.9113 + }, + { + "start": 14340.44, + "end": 14341.64, + "probability": 0.7863 + }, + { + "start": 14342.46, + "end": 14342.68, + "probability": 0.4107 + }, + { + "start": 14342.68, + "end": 14343.18, + "probability": 0.4154 + }, + { + "start": 14348.12, + "end": 14351.68, + "probability": 0.7377 + }, + { + "start": 14351.68, + "end": 14351.94, + "probability": 0.1077 + }, + { + "start": 14352.42, + "end": 14354.02, + "probability": 0.1566 + }, + { + "start": 14354.02, + "end": 14354.02, + "probability": 0.0173 + }, + { + "start": 14357.56, + "end": 14358.36, + "probability": 0.2763 + }, + { + "start": 14358.56, + "end": 14361.64, + "probability": 0.4001 + }, + { + "start": 14362.68, + "end": 14367.18, + "probability": 0.9038 + }, + { + "start": 14367.32, + "end": 14370.24, + "probability": 0.9901 + }, + { + "start": 14370.9, + "end": 14372.15, + "probability": 0.5024 + }, + { + "start": 14372.22, + "end": 14372.66, + "probability": 0.5254 + }, + { + "start": 14373.2, + "end": 14383.38, + "probability": 0.8415 + }, + { + "start": 14385.86, + "end": 14385.86, + "probability": 0.1882 + }, + { + "start": 14385.86, + "end": 14385.86, + "probability": 0.1253 + }, + { + "start": 14385.86, + "end": 14385.86, + "probability": 0.2792 + }, + { + "start": 14385.86, + "end": 14385.86, + "probability": 0.1018 + }, + { + "start": 14385.86, + "end": 14386.72, + "probability": 0.5135 + }, + { + "start": 14387.3, + "end": 14393.62, + "probability": 0.8757 + }, + { + "start": 14395.32, + "end": 14398.44, + "probability": 0.8532 + }, + { + "start": 14398.68, + "end": 14401.5, + "probability": 0.8472 + }, + { + "start": 14402.18, + "end": 14402.9, + "probability": 0.8944 + }, + { + "start": 14404.98, + "end": 14405.66, + "probability": 0.4927 + }, + { + "start": 14406.72, + "end": 14409.38, + "probability": 0.4593 + }, + { + "start": 14410.0, + "end": 14410.84, + "probability": 0.6192 + }, + { + "start": 14416.02, + "end": 14418.82, + "probability": 0.232 + }, + { + "start": 14429.96, + "end": 14429.96, + "probability": 0.0457 + }, + { + "start": 14429.96, + "end": 14429.96, + "probability": 0.2308 + }, + { + "start": 14429.96, + "end": 14429.96, + "probability": 0.0968 + }, + { + "start": 14429.96, + "end": 14429.96, + "probability": 0.1277 + }, + { + "start": 14429.96, + "end": 14430.84, + "probability": 0.6009 + }, + { + "start": 14430.98, + "end": 14431.22, + "probability": 0.1335 + }, + { + "start": 14431.22, + "end": 14432.04, + "probability": 0.2907 + }, + { + "start": 14432.2, + "end": 14432.7, + "probability": 0.7079 + }, + { + "start": 14432.72, + "end": 14437.72, + "probability": 0.7012 + }, + { + "start": 14437.76, + "end": 14438.8, + "probability": 0.9165 + }, + { + "start": 14439.64, + "end": 14442.01, + "probability": 0.4926 + }, + { + "start": 14444.68, + "end": 14450.94, + "probability": 0.946 + }, + { + "start": 14451.0, + "end": 14451.86, + "probability": 0.5957 + }, + { + "start": 14452.3, + "end": 14453.18, + "probability": 0.4265 + }, + { + "start": 14470.82, + "end": 14474.46, + "probability": 0.6415 + }, + { + "start": 14474.96, + "end": 14474.96, + "probability": 0.0889 + }, + { + "start": 14474.96, + "end": 14474.96, + "probability": 0.1343 + }, + { + "start": 14474.96, + "end": 14474.96, + "probability": 0.1653 + }, + { + "start": 14478.86, + "end": 14479.68, + "probability": 0.2872 + }, + { + "start": 14481.05, + "end": 14485.98, + "probability": 0.363 + }, + { + "start": 14493.76, + "end": 14498.92, + "probability": 0.0236 + }, + { + "start": 14499.96, + "end": 14504.76, + "probability": 0.4907 + }, + { + "start": 14504.84, + "end": 14506.24, + "probability": 0.4452 + }, + { + "start": 14507.51, + "end": 14507.96, + "probability": 0.0809 + }, + { + "start": 14509.48, + "end": 14510.28, + "probability": 0.108 + }, + { + "start": 14510.4, + "end": 14510.4, + "probability": 0.1437 + }, + { + "start": 14510.42, + "end": 14515.1, + "probability": 0.0966 + }, + { + "start": 14519.12, + "end": 14520.22, + "probability": 0.1961 + }, + { + "start": 14521.16, + "end": 14524.48, + "probability": 0.2751 + }, + { + "start": 14525.02, + "end": 14529.76, + "probability": 0.5029 + }, + { + "start": 14530.4, + "end": 14531.52, + "probability": 0.5986 + }, + { + "start": 14531.52, + "end": 14531.52, + "probability": 0.7431 + }, + { + "start": 14532.06, + "end": 14534.92, + "probability": 0.2143 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.0, + "end": 14562.0, + "probability": 0.0 + }, + { + "start": 14562.72, + "end": 14563.32, + "probability": 0.0095 + }, + { + "start": 14563.36, + "end": 14563.52, + "probability": 0.136 + }, + { + "start": 14563.58, + "end": 14563.6, + "probability": 0.2679 + }, + { + "start": 14563.6, + "end": 14564.12, + "probability": 0.3006 + }, + { + "start": 14564.12, + "end": 14566.04, + "probability": 0.565 + }, + { + "start": 14568.88, + "end": 14569.46, + "probability": 0.3709 + }, + { + "start": 14570.04, + "end": 14571.86, + "probability": 0.2342 + }, + { + "start": 14574.78, + "end": 14577.42, + "probability": 0.6356 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.0, + "end": 14710.0, + "probability": 0.0 + }, + { + "start": 14710.14, + "end": 14713.02, + "probability": 0.4471 + }, + { + "start": 14713.56, + "end": 14717.33, + "probability": 0.8445 + }, + { + "start": 14717.64, + "end": 14718.78, + "probability": 0.9236 + }, + { + "start": 14721.38, + "end": 14723.98, + "probability": 0.9463 + }, + { + "start": 14726.36, + "end": 14729.18, + "probability": 0.8303 + }, + { + "start": 14730.18, + "end": 14733.08, + "probability": 0.9591 + }, + { + "start": 14733.16, + "end": 14734.86, + "probability": 0.6283 + }, + { + "start": 14734.94, + "end": 14735.54, + "probability": 0.5808 + }, + { + "start": 14736.24, + "end": 14738.32, + "probability": 0.8553 + }, + { + "start": 14741.62, + "end": 14744.54, + "probability": 0.1535 + }, + { + "start": 14749.43, + "end": 14750.0, + "probability": 0.3532 + }, + { + "start": 14750.02, + "end": 14751.7, + "probability": 0.2243 + }, + { + "start": 14752.26, + "end": 14752.56, + "probability": 0.6242 + }, + { + "start": 14752.8, + "end": 14758.14, + "probability": 0.9395 + }, + { + "start": 14758.84, + "end": 14761.9, + "probability": 0.7984 + }, + { + "start": 14764.66, + "end": 14770.54, + "probability": 0.6393 + }, + { + "start": 14778.22, + "end": 14782.34, + "probability": 0.0566 + }, + { + "start": 14782.34, + "end": 14782.4, + "probability": 0.0869 + }, + { + "start": 14782.4, + "end": 14782.4, + "probability": 0.0372 + }, + { + "start": 14782.4, + "end": 14785.54, + "probability": 0.4239 + }, + { + "start": 14786.04, + "end": 14788.16, + "probability": 0.8849 + }, + { + "start": 14788.8, + "end": 14789.3, + "probability": 0.9642 + }, + { + "start": 14791.3, + "end": 14793.84, + "probability": 0.9911 + }, + { + "start": 14802.76, + "end": 14806.74, + "probability": 0.7461 + }, + { + "start": 14811.06, + "end": 14814.14, + "probability": 0.493 + }, + { + "start": 14823.06, + "end": 14824.76, + "probability": 0.054 + }, + { + "start": 14825.36, + "end": 14826.36, + "probability": 0.1454 + }, + { + "start": 14826.36, + "end": 14826.36, + "probability": 0.0265 + }, + { + "start": 14826.36, + "end": 14827.14, + "probability": 0.3409 + }, + { + "start": 14827.26, + "end": 14827.56, + "probability": 0.7461 + }, + { + "start": 14827.56, + "end": 14830.14, + "probability": 0.5548 + }, + { + "start": 14830.28, + "end": 14831.34, + "probability": 0.5879 + }, + { + "start": 14831.82, + "end": 14833.86, + "probability": 0.8014 + }, + { + "start": 14835.02, + "end": 14837.14, + "probability": 0.9213 + }, + { + "start": 14837.26, + "end": 14838.28, + "probability": 0.6778 + }, + { + "start": 14839.06, + "end": 14849.98, + "probability": 0.8243 + }, + { + "start": 14852.92, + "end": 14858.62, + "probability": 0.9514 + }, + { + "start": 14858.96, + "end": 14860.62, + "probability": 0.9538 + }, + { + "start": 14862.36, + "end": 14865.88, + "probability": 0.8335 + }, + { + "start": 14867.12, + "end": 14871.22, + "probability": 0.9797 + }, + { + "start": 14871.32, + "end": 14872.3, + "probability": 0.603 + }, + { + "start": 14872.82, + "end": 14873.48, + "probability": 0.5737 + }, + { + "start": 14874.86, + "end": 14875.96, + "probability": 0.2155 + }, + { + "start": 14888.2, + "end": 14890.24, + "probability": 0.0486 + }, + { + "start": 14890.9, + "end": 14891.32, + "probability": 0.1234 + }, + { + "start": 14891.82, + "end": 14895.7, + "probability": 0.3095 + }, + { + "start": 14895.7, + "end": 14897.58, + "probability": 0.2917 + }, + { + "start": 14900.62, + "end": 14902.54, + "probability": 0.5507 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15000.0, + "end": 15000.0, + "probability": 0.0 + }, + { + "start": 15005.3, + "end": 15018.12, + "probability": 0.3594 + }, + { + "start": 15019.8, + "end": 15020.56, + "probability": 0.6553 + }, + { + "start": 15020.86, + "end": 15025.54, + "probability": 0.9828 + }, + { + "start": 15025.68, + "end": 15026.88, + "probability": 0.7605 + }, + { + "start": 15027.08, + "end": 15027.94, + "probability": 0.9515 + }, + { + "start": 15028.22, + "end": 15031.34, + "probability": 0.1349 + }, + { + "start": 15032.26, + "end": 15033.56, + "probability": 0.129 + }, + { + "start": 15041.14, + "end": 15041.84, + "probability": 0.0786 + }, + { + "start": 15042.62, + "end": 15044.82, + "probability": 0.3162 + }, + { + "start": 15044.82, + "end": 15045.0, + "probability": 0.2446 + }, + { + "start": 15045.1, + "end": 15045.86, + "probability": 0.3525 + }, + { + "start": 15045.94, + "end": 15046.26, + "probability": 0.4873 + }, + { + "start": 15046.42, + "end": 15049.52, + "probability": 0.8662 + }, + { + "start": 15050.34, + "end": 15053.3, + "probability": 0.8604 + }, + { + "start": 15053.4, + "end": 15054.74, + "probability": 0.5632 + }, + { + "start": 15054.78, + "end": 15055.96, + "probability": 0.6093 + }, + { + "start": 15056.34, + "end": 15062.02, + "probability": 0.281 + }, + { + "start": 15063.52, + "end": 15064.6, + "probability": 0.1243 + }, + { + "start": 15069.68, + "end": 15070.4, + "probability": 0.1685 + }, + { + "start": 15072.24, + "end": 15072.96, + "probability": 0.0584 + }, + { + "start": 15073.38, + "end": 15075.9, + "probability": 0.33 + }, + { + "start": 15076.52, + "end": 15077.28, + "probability": 0.8576 + }, + { + "start": 15077.28, + "end": 15082.52, + "probability": 0.9477 + }, + { + "start": 15083.02, + "end": 15085.17, + "probability": 0.8486 + }, + { + "start": 15087.78, + "end": 15092.78, + "probability": 0.8081 + }, + { + "start": 15093.48, + "end": 15095.1, + "probability": 0.5797 + }, + { + "start": 15095.12, + "end": 15096.26, + "probability": 0.4614 + }, + { + "start": 15098.2, + "end": 15103.86, + "probability": 0.1746 + }, + { + "start": 15106.36, + "end": 15109.02, + "probability": 0.1197 + }, + { + "start": 15110.46, + "end": 15111.44, + "probability": 0.3684 + }, + { + "start": 15112.34, + "end": 15112.64, + "probability": 0.1553 + }, + { + "start": 15112.7, + "end": 15113.78, + "probability": 0.4035 + }, + { + "start": 15114.08, + "end": 15114.42, + "probability": 0.5172 + }, + { + "start": 15114.74, + "end": 15115.5, + "probability": 0.9099 + }, + { + "start": 15115.58, + "end": 15117.48, + "probability": 0.8413 + }, + { + "start": 15117.78, + "end": 15119.34, + "probability": 0.916 + }, + { + "start": 15120.4, + "end": 15120.98, + "probability": 0.932 + }, + { + "start": 15121.08, + "end": 15123.0, + "probability": 0.9368 + }, + { + "start": 15123.04, + "end": 15127.66, + "probability": 0.8424 + }, + { + "start": 15127.78, + "end": 15129.17, + "probability": 0.7542 + }, + { + "start": 15129.56, + "end": 15142.2, + "probability": 0.8841 + }, + { + "start": 15142.68, + "end": 15148.14, + "probability": 0.9932 + }, + { + "start": 15148.14, + "end": 15151.46, + "probability": 0.9955 + }, + { + "start": 15151.86, + "end": 15153.42, + "probability": 0.6028 + }, + { + "start": 15153.42, + "end": 15153.96, + "probability": 0.5479 + }, + { + "start": 15159.18, + "end": 15160.8, + "probability": 0.074 + }, + { + "start": 15167.77, + "end": 15168.26, + "probability": 0.1629 + }, + { + "start": 15170.1, + "end": 15171.26, + "probability": 0.2385 + }, + { + "start": 15171.26, + "end": 15174.44, + "probability": 0.5205 + }, + { + "start": 15174.48, + "end": 15178.58, + "probability": 0.8726 + }, + { + "start": 15178.66, + "end": 15181.71, + "probability": 0.651 + }, + { + "start": 15184.64, + "end": 15190.8, + "probability": 0.8869 + }, + { + "start": 15190.9, + "end": 15192.23, + "probability": 0.5124 + }, + { + "start": 15192.38, + "end": 15193.94, + "probability": 0.4104 + }, + { + "start": 15198.36, + "end": 15198.82, + "probability": 0.1504 + }, + { + "start": 15206.8, + "end": 15207.0, + "probability": 0.0985 + }, + { + "start": 15207.72, + "end": 15207.72, + "probability": 0.1453 + }, + { + "start": 15207.72, + "end": 15208.72, + "probability": 0.6369 + }, + { + "start": 15209.1, + "end": 15210.02, + "probability": 0.3405 + }, + { + "start": 15210.04, + "end": 15210.7, + "probability": 0.2942 + }, + { + "start": 15210.9, + "end": 15211.34, + "probability": 0.5723 + }, + { + "start": 15211.52, + "end": 15216.38, + "probability": 0.6787 + }, + { + "start": 15216.46, + "end": 15218.94, + "probability": 0.8746 + }, + { + "start": 15220.28, + "end": 15224.46, + "probability": 0.7073 + }, + { + "start": 15225.06, + "end": 15227.1, + "probability": 0.8588 + }, + { + "start": 15227.14, + "end": 15228.02, + "probability": 0.5026 + }, + { + "start": 15232.44, + "end": 15234.92, + "probability": 0.469 + }, + { + "start": 15235.48, + "end": 15238.68, + "probability": 0.1693 + }, + { + "start": 15239.8, + "end": 15243.32, + "probability": 0.1835 + }, + { + "start": 15244.8, + "end": 15245.16, + "probability": 0.2594 + }, + { + "start": 15245.32, + "end": 15245.78, + "probability": 0.2838 + }, + { + "start": 15246.14, + "end": 15246.38, + "probability": 0.6097 + }, + { + "start": 15246.7, + "end": 15253.94, + "probability": 0.7389 + }, + { + "start": 15254.76, + "end": 15259.88, + "probability": 0.7083 + }, + { + "start": 15261.6, + "end": 15273.72, + "probability": 0.8276 + }, + { + "start": 15273.72, + "end": 15275.36, + "probability": 0.7688 + }, + { + "start": 15275.6, + "end": 15276.88, + "probability": 0.4816 + }, + { + "start": 15278.36, + "end": 15282.3, + "probability": 0.7478 + }, + { + "start": 15284.02, + "end": 15286.8, + "probability": 0.9186 + }, + { + "start": 15287.58, + "end": 15290.88, + "probability": 0.9709 + }, + { + "start": 15290.9, + "end": 15291.99, + "probability": 0.6527 + }, + { + "start": 15292.28, + "end": 15293.26, + "probability": 0.4789 + }, + { + "start": 15293.5, + "end": 15294.84, + "probability": 0.8104 + }, + { + "start": 15300.72, + "end": 15302.24, + "probability": 0.0522 + }, + { + "start": 15310.6, + "end": 15310.78, + "probability": 0.2038 + }, + { + "start": 15310.78, + "end": 15314.6, + "probability": 0.7041 + }, + { + "start": 15315.4, + "end": 15318.18, + "probability": 0.9595 + }, + { + "start": 15318.42, + "end": 15320.05, + "probability": 0.814 + }, + { + "start": 15320.86, + "end": 15323.94, + "probability": 0.9736 + }, + { + "start": 15323.94, + "end": 15324.52, + "probability": 0.3936 + }, + { + "start": 15339.9, + "end": 15340.08, + "probability": 0.2879 + }, + { + "start": 15340.08, + "end": 15340.14, + "probability": 0.0718 + }, + { + "start": 15340.14, + "end": 15340.14, + "probability": 0.3452 + }, + { + "start": 15340.14, + "end": 15340.14, + "probability": 0.0218 + }, + { + "start": 15340.14, + "end": 15340.74, + "probability": 0.242 + }, + { + "start": 15340.94, + "end": 15341.46, + "probability": 0.3126 + }, + { + "start": 15341.56, + "end": 15341.84, + "probability": 0.492 + }, + { + "start": 15342.02, + "end": 15344.74, + "probability": 0.5937 + }, + { + "start": 15345.74, + "end": 15351.5, + "probability": 0.9411 + }, + { + "start": 15351.84, + "end": 15352.3, + "probability": 0.6287 + }, + { + "start": 15352.74, + "end": 15353.44, + "probability": 0.9051 + }, + { + "start": 15356.78, + "end": 15360.76, + "probability": 0.172 + }, + { + "start": 15365.68, + "end": 15368.04, + "probability": 0.2616 + }, + { + "start": 15370.94, + "end": 15371.76, + "probability": 0.162 + }, + { + "start": 15372.28, + "end": 15372.58, + "probability": 0.6028 + }, + { + "start": 15372.8, + "end": 15377.32, + "probability": 0.8161 + }, + { + "start": 15377.48, + "end": 15378.36, + "probability": 0.6604 + }, + { + "start": 15378.38, + "end": 15379.06, + "probability": 0.8573 + }, + { + "start": 15379.8, + "end": 15382.42, + "probability": 0.6706 + }, + { + "start": 15384.82, + "end": 15386.36, + "probability": 0.5509 + }, + { + "start": 15386.58, + "end": 15391.74, + "probability": 0.9666 + }, + { + "start": 15391.8, + "end": 15392.78, + "probability": 0.9288 + }, + { + "start": 15393.34, + "end": 15398.98, + "probability": 0.1914 + }, + { + "start": 15407.8, + "end": 15410.2, + "probability": 0.0613 + }, + { + "start": 15410.2, + "end": 15410.94, + "probability": 0.1106 + }, + { + "start": 15410.94, + "end": 15411.48, + "probability": 0.3499 + }, + { + "start": 15411.48, + "end": 15412.92, + "probability": 0.3457 + }, + { + "start": 15413.74, + "end": 15418.12, + "probability": 0.9503 + }, + { + "start": 15418.68, + "end": 15421.26, + "probability": 0.9258 + }, + { + "start": 15421.36, + "end": 15422.27, + "probability": 0.538 + }, + { + "start": 15422.66, + "end": 15423.14, + "probability": 0.7278 + }, + { + "start": 15424.5, + "end": 15425.62, + "probability": 0.8532 + }, + { + "start": 15437.8, + "end": 15438.5, + "probability": 0.2461 + }, + { + "start": 15438.5, + "end": 15438.5, + "probability": 0.052 + }, + { + "start": 15438.5, + "end": 15438.5, + "probability": 0.3597 + }, + { + "start": 15438.5, + "end": 15438.5, + "probability": 0.0156 + }, + { + "start": 15438.5, + "end": 15440.46, + "probability": 0.4563 + }, + { + "start": 15440.46, + "end": 15443.42, + "probability": 0.945 + }, + { + "start": 15443.94, + "end": 15445.0, + "probability": 0.6419 + }, + { + "start": 15445.32, + "end": 15451.56, + "probability": 0.8657 + }, + { + "start": 15451.66, + "end": 15452.74, + "probability": 0.6435 + }, + { + "start": 15453.14, + "end": 15454.12, + "probability": 0.8458 + }, + { + "start": 15461.64, + "end": 15463.16, + "probability": 0.5054 + }, + { + "start": 15463.7, + "end": 15465.8, + "probability": 0.0314 + }, + { + "start": 15468.97, + "end": 15470.28, + "probability": 0.2156 + }, + { + "start": 15471.16, + "end": 15472.16, + "probability": 0.2866 + }, + { + "start": 15472.76, + "end": 15473.18, + "probability": 0.5214 + }, + { + "start": 15473.44, + "end": 15481.66, + "probability": 0.9058 + }, + { + "start": 15481.74, + "end": 15482.52, + "probability": 0.7622 + }, + { + "start": 15483.3, + "end": 15487.0, + "probability": 0.7206 + }, + { + "start": 15487.54, + "end": 15496.46, + "probability": 0.7904 + }, + { + "start": 15497.02, + "end": 15498.64, + "probability": 0.6944 + }, + { + "start": 15499.5, + "end": 15512.38, + "probability": 0.9053 + }, + { + "start": 15512.56, + "end": 15513.18, + "probability": 0.6217 + }, + { + "start": 15513.28, + "end": 15513.76, + "probability": 0.6004 + }, + { + "start": 15513.88, + "end": 15515.0, + "probability": 0.5735 + }, + { + "start": 15529.06, + "end": 15531.46, + "probability": 0.082 + }, + { + "start": 15532.16, + "end": 15532.78, + "probability": 0.0278 + }, + { + "start": 15533.86, + "end": 15534.14, + "probability": 0.1501 + }, + { + "start": 15534.14, + "end": 15535.58, + "probability": 0.2829 + }, + { + "start": 15535.64, + "end": 15537.3, + "probability": 0.4862 + }, + { + "start": 15538.0, + "end": 15542.92, + "probability": 0.2691 + }, + { + "start": 15543.76, + "end": 15545.72, + "probability": 0.8892 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16216.42, + "end": 16218.98, + "probability": 0.1416 + }, + { + "start": 16219.0, + "end": 16219.0, + "probability": 0.0 + }, + { + "start": 16219.0, + "end": 16219.0, + "probability": 0.0 + }, + { + "start": 16219.0, + "end": 16219.0, + "probability": 0.0 + }, + { + "start": 16219.0, + "end": 16219.0, + "probability": 0.0 + }, + { + "start": 16219.0, + "end": 16219.0, + "probability": 0.0 + }, + { + "start": 16219.0, + "end": 16219.0, + "probability": 0.0 + }, + { + "start": 16219.0, + "end": 16219.0, + "probability": 0.0 + }, + { + "start": 16231.7, + "end": 16232.02, + "probability": 0.0225 + }, + { + "start": 16232.02, + "end": 16232.12, + "probability": 0.0756 + }, + { + "start": 16232.12, + "end": 16232.72, + "probability": 0.0859 + }, + { + "start": 16240.16, + "end": 16240.18, + "probability": 0.1547 + }, + { + "start": 16241.96, + "end": 16242.78, + "probability": 0.2654 + }, + { + "start": 16243.72, + "end": 16243.72, + "probability": 0.3094 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17298.0, + "end": 17298.0, + "probability": 0.0 + }, + { + "start": 17385.28, + "end": 17386.34, + "probability": 0.0896 + }, + { + "start": 17387.54, + "end": 17387.58, + "probability": 0.0169 + }, + { + "start": 17388.2, + "end": 17388.94, + "probability": 0.062 + }, + { + "start": 17388.94, + "end": 17389.74, + "probability": 0.0653 + }, + { + "start": 17390.52, + "end": 17392.54, + "probability": 0.1042 + }, + { + "start": 17392.54, + "end": 17394.26, + "probability": 0.3563 + }, + { + "start": 17394.62, + "end": 17395.75, + "probability": 0.1336 + }, + { + "start": 17397.44, + "end": 17398.38, + "probability": 0.0359 + }, + { + "start": 17426.0, + "end": 17426.0, + "probability": 0.0 + }, + { + "start": 17426.0, + "end": 17426.0, + "probability": 0.0 + }, + { + "start": 17426.0, + "end": 17426.0, + "probability": 0.0 + }, + { + "start": 17426.0, + "end": 17426.0, + "probability": 0.0 + }, + { + "start": 17426.0, + "end": 17426.0, + "probability": 0.0 + }, + { + "start": 17426.0, + "end": 17426.0, + "probability": 0.0 + }, + { + "start": 17426.0, + "end": 17426.0, + "probability": 0.0 + }, + { + "start": 17427.1, + "end": 17429.06, + "probability": 0.1748 + }, + { + "start": 17429.06, + "end": 17430.82, + "probability": 0.0885 + }, + { + "start": 17430.82, + "end": 17433.21, + "probability": 0.0154 + }, + { + "start": 17435.66, + "end": 17437.62, + "probability": 0.0221 + }, + { + "start": 17440.68, + "end": 17442.5, + "probability": 0.0379 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.0, + "probability": 0.0 + }, + { + "start": 18022.0, + "end": 18022.3, + "probability": 0.1339 + }, + { + "start": 18022.3, + "end": 18022.66, + "probability": 0.0149 + }, + { + "start": 18024.54, + "end": 18025.42, + "probability": 0.553 + }, + { + "start": 18029.66, + "end": 18030.66, + "probability": 0.6357 + }, + { + "start": 18034.52, + "end": 18034.76, + "probability": 0.547 + }, + { + "start": 18035.48, + "end": 18036.44, + "probability": 0.4549 + }, + { + "start": 18039.72, + "end": 18042.18, + "probability": 0.9201 + }, + { + "start": 18043.1, + "end": 18043.54, + "probability": 0.966 + }, + { + "start": 18046.38, + "end": 18047.18, + "probability": 0.5193 + }, + { + "start": 18049.68, + "end": 18051.16, + "probability": 0.5208 + }, + { + "start": 18054.04, + "end": 18055.06, + "probability": 0.6316 + }, + { + "start": 18058.14, + "end": 18059.4, + "probability": 0.6735 + }, + { + "start": 18063.04, + "end": 18064.06, + "probability": 0.4394 + }, + { + "start": 18065.04, + "end": 18065.42, + "probability": 0.8923 + }, + { + "start": 18066.56, + "end": 18071.02, + "probability": 0.8935 + }, + { + "start": 18071.88, + "end": 18072.46, + "probability": 0.2876 + }, + { + "start": 18072.56, + "end": 18074.74, + "probability": 0.0291 + }, + { + "start": 18075.34, + "end": 18075.38, + "probability": 0.4477 + }, + { + "start": 18079.06, + "end": 18080.7, + "probability": 0.5266 + }, + { + "start": 18089.56, + "end": 18090.76, + "probability": 0.5772 + }, + { + "start": 18090.8, + "end": 18094.2, + "probability": 0.9903 + }, + { + "start": 18104.06, + "end": 18104.16, + "probability": 0.0131 + }, + { + "start": 18118.28, + "end": 18119.24, + "probability": 0.1361 + }, + { + "start": 18124.0, + "end": 18125.66, + "probability": 0.0169 + }, + { + "start": 18138.48, + "end": 18138.58, + "probability": 0.0289 + }, + { + "start": 18138.58, + "end": 18138.58, + "probability": 0.1469 + }, + { + "start": 18138.58, + "end": 18138.58, + "probability": 0.002 + }, + { + "start": 18152.14, + "end": 18154.6, + "probability": 0.994 + }, + { + "start": 18192.4, + "end": 18193.46, + "probability": 0.6864 + }, + { + "start": 18193.82, + "end": 18194.46, + "probability": 0.7273 + }, + { + "start": 18194.76, + "end": 18195.28, + "probability": 0.8633 + }, + { + "start": 18195.34, + "end": 18197.36, + "probability": 0.9862 + }, + { + "start": 18198.1, + "end": 18198.48, + "probability": 0.7848 + }, + { + "start": 18202.6, + "end": 18202.7, + "probability": 0.0204 + }, + { + "start": 18202.7, + "end": 18208.2, + "probability": 0.8783 + }, + { + "start": 18208.38, + "end": 18208.56, + "probability": 0.3144 + }, + { + "start": 18208.56, + "end": 18213.0, + "probability": 0.9645 + }, + { + "start": 18214.26, + "end": 18214.38, + "probability": 0.2764 + }, + { + "start": 18214.44, + "end": 18214.88, + "probability": 0.894 + }, + { + "start": 18215.0, + "end": 18217.96, + "probability": 0.9844 + }, + { + "start": 18219.46, + "end": 18219.9, + "probability": 0.2571 + }, + { + "start": 18226.34, + "end": 18227.3, + "probability": 0.6172 + }, + { + "start": 18231.94, + "end": 18234.0, + "probability": 0.709 + }, + { + "start": 18247.4, + "end": 18251.24, + "probability": 0.7332 + }, + { + "start": 18251.82, + "end": 18253.34, + "probability": 0.9843 + }, + { + "start": 18254.04, + "end": 18255.4, + "probability": 0.9474 + }, + { + "start": 18255.96, + "end": 18261.24, + "probability": 0.8222 + }, + { + "start": 18261.34, + "end": 18262.18, + "probability": 0.9744 + }, + { + "start": 18262.64, + "end": 18263.42, + "probability": 0.6351 + }, + { + "start": 18279.1, + "end": 18280.58, + "probability": 0.0487 + }, + { + "start": 18281.84, + "end": 18283.04, + "probability": 0.0258 + }, + { + "start": 18283.88, + "end": 18285.44, + "probability": 0.0661 + }, + { + "start": 18289.98, + "end": 18290.08, + "probability": 0.0763 + }, + { + "start": 18290.08, + "end": 18293.96, + "probability": 0.5367 + }, + { + "start": 18294.64, + "end": 18294.98, + "probability": 0.5147 + }, + { + "start": 18295.2, + "end": 18300.38, + "probability": 0.9334 + }, + { + "start": 18301.08, + "end": 18303.82, + "probability": 0.9474 + }, + { + "start": 18304.44, + "end": 18306.62, + "probability": 0.813 + }, + { + "start": 18307.3, + "end": 18310.54, + "probability": 0.8149 + }, + { + "start": 18310.54, + "end": 18315.44, + "probability": 0.9883 + }, + { + "start": 18316.6, + "end": 18320.6, + "probability": 0.8183 + }, + { + "start": 18322.0, + "end": 18323.94, + "probability": 0.4695 + }, + { + "start": 18324.58, + "end": 18324.82, + "probability": 0.877 + }, + { + "start": 18325.72, + "end": 18326.64, + "probability": 0.8068 + }, + { + "start": 18327.28, + "end": 18327.68, + "probability": 0.9854 + }, + { + "start": 18328.6, + "end": 18332.36, + "probability": 0.8656 + }, + { + "start": 18333.34, + "end": 18335.22, + "probability": 0.9114 + }, + { + "start": 18337.38, + "end": 18338.15, + "probability": 0.5802 + }, + { + "start": 18339.14, + "end": 18339.5, + "probability": 0.9712 + }, + { + "start": 18340.02, + "end": 18340.82, + "probability": 0.8419 + }, + { + "start": 18341.54, + "end": 18341.92, + "probability": 0.8491 + }, + { + "start": 18342.66, + "end": 18343.3, + "probability": 0.568 + }, + { + "start": 18344.06, + "end": 18344.54, + "probability": 0.9863 + }, + { + "start": 18345.06, + "end": 18345.96, + "probability": 0.7198 + }, + { + "start": 18346.6, + "end": 18347.1, + "probability": 0.9744 + }, + { + "start": 18347.94, + "end": 18348.84, + "probability": 0.9851 + }, + { + "start": 18349.38, + "end": 18351.1, + "probability": 0.97 + }, + { + "start": 18351.62, + "end": 18352.16, + "probability": 0.9901 + }, + { + "start": 18353.0, + "end": 18353.86, + "probability": 0.9722 + }, + { + "start": 18354.6, + "end": 18355.4, + "probability": 0.9902 + }, + { + "start": 18356.04, + "end": 18356.84, + "probability": 0.9717 + }, + { + "start": 18357.96, + "end": 18358.72, + "probability": 0.9912 + }, + { + "start": 18359.36, + "end": 18360.24, + "probability": 0.8475 + }, + { + "start": 18361.32, + "end": 18361.66, + "probability": 0.7393 + }, + { + "start": 18362.3, + "end": 18363.38, + "probability": 0.9172 + }, + { + "start": 18364.54, + "end": 18364.94, + "probability": 0.9085 + }, + { + "start": 18365.5, + "end": 18366.32, + "probability": 0.742 + }, + { + "start": 18367.2, + "end": 18367.64, + "probability": 0.7416 + }, + { + "start": 18368.3, + "end": 18369.06, + "probability": 0.6201 + }, + { + "start": 18371.44, + "end": 18373.5, + "probability": 0.9741 + }, + { + "start": 18374.38, + "end": 18374.86, + "probability": 0.9858 + }, + { + "start": 18375.38, + "end": 18376.18, + "probability": 0.9029 + }, + { + "start": 18376.82, + "end": 18377.3, + "probability": 0.6952 + }, + { + "start": 18378.02, + "end": 18378.82, + "probability": 0.9822 + }, + { + "start": 18379.72, + "end": 18381.64, + "probability": 0.9688 + }, + { + "start": 18382.16, + "end": 18382.62, + "probability": 0.9842 + }, + { + "start": 18383.3, + "end": 18384.12, + "probability": 0.9793 + }, + { + "start": 18384.98, + "end": 18385.22, + "probability": 0.746 + }, + { + "start": 18385.88, + "end": 18386.86, + "probability": 0.9792 + }, + { + "start": 18387.56, + "end": 18387.88, + "probability": 0.5829 + }, + { + "start": 18388.44, + "end": 18389.16, + "probability": 0.5985 + }, + { + "start": 18389.94, + "end": 18392.16, + "probability": 0.9757 + }, + { + "start": 18392.98, + "end": 18393.42, + "probability": 0.989 + }, + { + "start": 18394.02, + "end": 18394.74, + "probability": 0.9141 + }, + { + "start": 18395.66, + "end": 18397.5, + "probability": 0.9932 + }, + { + "start": 18398.22, + "end": 18398.66, + "probability": 0.9613 + }, + { + "start": 18400.06, + "end": 18401.06, + "probability": 0.9502 + }, + { + "start": 18401.7, + "end": 18402.16, + "probability": 0.9934 + }, + { + "start": 18402.98, + "end": 18403.7, + "probability": 0.74 + }, + { + "start": 18404.92, + "end": 18405.34, + "probability": 0.9827 + }, + { + "start": 18406.12, + "end": 18406.92, + "probability": 0.9243 + }, + { + "start": 18410.14, + "end": 18411.7, + "probability": 0.2855 + }, + { + "start": 18412.76, + "end": 18413.08, + "probability": 0.746 + }, + { + "start": 18413.76, + "end": 18414.42, + "probability": 0.8291 + }, + { + "start": 18415.34, + "end": 18415.8, + "probability": 0.9578 + }, + { + "start": 18417.02, + "end": 18418.0, + "probability": 0.7848 + }, + { + "start": 18418.96, + "end": 18419.4, + "probability": 0.9771 + }, + { + "start": 18420.34, + "end": 18421.3, + "probability": 0.9448 + }, + { + "start": 18422.24, + "end": 18424.36, + "probability": 0.979 + }, + { + "start": 18425.34, + "end": 18427.26, + "probability": 0.9871 + }, + { + "start": 18428.22, + "end": 18428.74, + "probability": 0.9806 + }, + { + "start": 18429.78, + "end": 18431.24, + "probability": 0.9655 + }, + { + "start": 18431.98, + "end": 18432.48, + "probability": 0.9899 + }, + { + "start": 18433.46, + "end": 18434.24, + "probability": 0.6451 + }, + { + "start": 18435.16, + "end": 18435.46, + "probability": 0.7304 + }, + { + "start": 18436.1, + "end": 18437.04, + "probability": 0.8742 + }, + { + "start": 18438.02, + "end": 18438.46, + "probability": 0.9006 + }, + { + "start": 18439.74, + "end": 18440.62, + "probability": 0.7049 + }, + { + "start": 18441.54, + "end": 18441.98, + "probability": 0.974 + }, + { + "start": 18442.76, + "end": 18443.7, + "probability": 0.9761 + }, + { + "start": 18444.42, + "end": 18444.94, + "probability": 0.992 + }, + { + "start": 18445.66, + "end": 18447.78, + "probability": 0.9888 + }, + { + "start": 18448.42, + "end": 18449.26, + "probability": 0.9678 + }, + { + "start": 18450.92, + "end": 18452.92, + "probability": 0.8471 + }, + { + "start": 18453.64, + "end": 18453.98, + "probability": 0.9946 + }, + { + "start": 18454.66, + "end": 18455.48, + "probability": 0.9573 + }, + { + "start": 18456.32, + "end": 18456.52, + "probability": 0.4871 + }, + { + "start": 18457.3, + "end": 18458.56, + "probability": 0.6681 + }, + { + "start": 18459.24, + "end": 18459.54, + "probability": 0.897 + }, + { + "start": 18460.52, + "end": 18461.46, + "probability": 0.7829 + }, + { + "start": 18462.1, + "end": 18462.42, + "probability": 0.9406 + }, + { + "start": 18463.22, + "end": 18464.26, + "probability": 0.9769 + }, + { + "start": 18469.18, + "end": 18473.0, + "probability": 0.7218 + }, + { + "start": 18474.34, + "end": 18476.94, + "probability": 0.958 + }, + { + "start": 18480.56, + "end": 18481.9, + "probability": 0.9578 + }, + { + "start": 18483.16, + "end": 18484.06, + "probability": 0.9888 + }, + { + "start": 18485.0, + "end": 18486.33, + "probability": 0.6368 + }, + { + "start": 18487.92, + "end": 18488.32, + "probability": 0.5223 + }, + { + "start": 18489.02, + "end": 18490.02, + "probability": 0.8144 + }, + { + "start": 18491.16, + "end": 18491.56, + "probability": 0.9354 + }, + { + "start": 18492.34, + "end": 18493.04, + "probability": 0.853 + }, + { + "start": 18494.2, + "end": 18494.74, + "probability": 0.9521 + }, + { + "start": 18495.46, + "end": 18496.38, + "probability": 0.4426 + }, + { + "start": 18499.68, + "end": 18500.12, + "probability": 0.9812 + }, + { + "start": 18500.72, + "end": 18501.5, + "probability": 0.9455 + }, + { + "start": 18502.36, + "end": 18502.82, + "probability": 0.7612 + }, + { + "start": 18503.4, + "end": 18504.3, + "probability": 0.7323 + }, + { + "start": 18508.38, + "end": 18508.9, + "probability": 0.8076 + }, + { + "start": 18510.04, + "end": 18511.06, + "probability": 0.7921 + }, + { + "start": 18513.88, + "end": 18515.54, + "probability": 0.1856 + }, + { + "start": 18516.82, + "end": 18517.92, + "probability": 0.2495 + }, + { + "start": 18518.8, + "end": 18519.36, + "probability": 0.6937 + }, + { + "start": 18523.72, + "end": 18524.5, + "probability": 0.3837 + }, + { + "start": 18525.32, + "end": 18525.62, + "probability": 0.5036 + }, + { + "start": 18526.28, + "end": 18527.08, + "probability": 0.7146 + }, + { + "start": 18531.9, + "end": 18535.42, + "probability": 0.6727 + }, + { + "start": 18536.38, + "end": 18537.76, + "probability": 0.749 + }, + { + "start": 18539.02, + "end": 18540.54, + "probability": 0.7255 + }, + { + "start": 18541.4, + "end": 18543.14, + "probability": 0.9416 + }, + { + "start": 18544.12, + "end": 18546.2, + "probability": 0.8702 + }, + { + "start": 18546.97, + "end": 18548.76, + "probability": 0.959 + }, + { + "start": 18549.4, + "end": 18549.72, + "probability": 0.9427 + }, + { + "start": 18551.18, + "end": 18552.04, + "probability": 0.9278 + }, + { + "start": 18553.46, + "end": 18554.52, + "probability": 0.6495 + }, + { + "start": 18555.16, + "end": 18555.66, + "probability": 0.794 + }, + { + "start": 18556.26, + "end": 18556.62, + "probability": 0.7887 + }, + { + "start": 18557.3, + "end": 18558.26, + "probability": 0.9637 + }, + { + "start": 18558.86, + "end": 18559.38, + "probability": 0.9734 + }, + { + "start": 18560.02, + "end": 18561.02, + "probability": 0.9916 + }, + { + "start": 18561.72, + "end": 18563.22, + "probability": 0.916 + }, + { + "start": 18564.62, + "end": 18566.44, + "probability": 0.9873 + }, + { + "start": 18567.42, + "end": 18569.14, + "probability": 0.9901 + }, + { + "start": 18569.88, + "end": 18570.48, + "probability": 0.9821 + }, + { + "start": 18571.12, + "end": 18572.42, + "probability": 0.9879 + }, + { + "start": 18574.04, + "end": 18574.62, + "probability": 0.9836 + }, + { + "start": 18576.16, + "end": 18577.22, + "probability": 0.726 + }, + { + "start": 18578.1, + "end": 18578.54, + "probability": 0.7218 + }, + { + "start": 18579.24, + "end": 18579.92, + "probability": 0.7707 + }, + { + "start": 18581.46, + "end": 18583.24, + "probability": 0.9849 + }, + { + "start": 18584.2, + "end": 18585.18, + "probability": 0.7136 + }, + { + "start": 18586.24, + "end": 18586.66, + "probability": 0.8906 + }, + { + "start": 18587.82, + "end": 18588.58, + "probability": 0.8342 + }, + { + "start": 18589.44, + "end": 18591.46, + "probability": 0.8757 + }, + { + "start": 18592.32, + "end": 18594.28, + "probability": 0.9852 + }, + { + "start": 18596.02, + "end": 18597.46, + "probability": 0.9705 + }, + { + "start": 18598.26, + "end": 18599.8, + "probability": 0.9778 + }, + { + "start": 18601.4, + "end": 18602.56, + "probability": 0.6946 + }, + { + "start": 18603.78, + "end": 18606.08, + "probability": 0.6854 + }, + { + "start": 18607.12, + "end": 18608.26, + "probability": 0.8156 + }, + { + "start": 18609.28, + "end": 18609.6, + "probability": 0.9714 + }, + { + "start": 18611.08, + "end": 18612.04, + "probability": 0.7368 + }, + { + "start": 18613.38, + "end": 18615.96, + "probability": 0.6822 + }, + { + "start": 18623.12, + "end": 18626.3, + "probability": 0.6168 + }, + { + "start": 18626.96, + "end": 18627.34, + "probability": 0.9076 + }, + { + "start": 18628.06, + "end": 18629.0, + "probability": 0.6109 + }, + { + "start": 18629.84, + "end": 18631.42, + "probability": 0.8597 + }, + { + "start": 18632.74, + "end": 18634.62, + "probability": 0.8419 + }, + { + "start": 18637.06, + "end": 18637.38, + "probability": 0.9309 + }, + { + "start": 18637.9, + "end": 18638.68, + "probability": 0.9205 + }, + { + "start": 18639.68, + "end": 18640.1, + "probability": 0.9769 + }, + { + "start": 18640.72, + "end": 18641.78, + "probability": 0.8925 + }, + { + "start": 18645.8, + "end": 18646.24, + "probability": 0.9897 + }, + { + "start": 18646.88, + "end": 18647.84, + "probability": 0.8525 + }, + { + "start": 18648.48, + "end": 18648.72, + "probability": 0.5169 + }, + { + "start": 18649.44, + "end": 18650.5, + "probability": 0.6439 + }, + { + "start": 18651.42, + "end": 18651.74, + "probability": 0.7596 + }, + { + "start": 18653.18, + "end": 18653.72, + "probability": 0.9667 + }, + { + "start": 18655.14, + "end": 18657.46, + "probability": 0.9573 + }, + { + "start": 18658.32, + "end": 18659.04, + "probability": 0.9697 + }, + { + "start": 18659.86, + "end": 18660.68, + "probability": 0.8818 + }, + { + "start": 18661.44, + "end": 18661.9, + "probability": 0.9679 + }, + { + "start": 18662.54, + "end": 18663.08, + "probability": 0.978 + }, + { + "start": 18664.89, + "end": 18666.96, + "probability": 0.9436 + }, + { + "start": 18668.06, + "end": 18668.44, + "probability": 0.9897 + }, + { + "start": 18669.14, + "end": 18669.9, + "probability": 0.8946 + }, + { + "start": 18670.64, + "end": 18672.68, + "probability": 0.9775 + }, + { + "start": 18673.74, + "end": 18674.26, + "probability": 0.9876 + }, + { + "start": 18674.9, + "end": 18675.68, + "probability": 0.9499 + }, + { + "start": 18676.6, + "end": 18676.88, + "probability": 0.7318 + }, + { + "start": 18678.62, + "end": 18679.02, + "probability": 0.5163 + }, + { + "start": 18680.32, + "end": 18680.66, + "probability": 0.9733 + }, + { + "start": 18681.38, + "end": 18682.1, + "probability": 0.9674 + }, + { + "start": 18683.6, + "end": 18684.08, + "probability": 0.9964 + }, + { + "start": 18684.8, + "end": 18685.62, + "probability": 0.9515 + }, + { + "start": 18687.18, + "end": 18687.6, + "probability": 0.9451 + }, + { + "start": 18688.36, + "end": 18689.34, + "probability": 0.9397 + }, + { + "start": 18690.42, + "end": 18690.82, + "probability": 0.9912 + }, + { + "start": 18692.34, + "end": 18693.26, + "probability": 0.9612 + }, + { + "start": 18694.44, + "end": 18694.92, + "probability": 0.9944 + }, + { + "start": 18696.9, + "end": 18698.08, + "probability": 0.7471 + }, + { + "start": 18698.7, + "end": 18699.18, + "probability": 0.9775 + }, + { + "start": 18699.98, + "end": 18700.82, + "probability": 0.9462 + }, + { + "start": 18701.94, + "end": 18702.32, + "probability": 0.9544 + }, + { + "start": 18703.04, + "end": 18703.96, + "probability": 0.9618 + }, + { + "start": 18705.7, + "end": 18705.8, + "probability": 0.9756 + }, + { + "start": 18707.1, + "end": 18707.84, + "probability": 0.65 + }, + { + "start": 18714.52, + "end": 18714.98, + "probability": 0.708 + }, + { + "start": 18717.34, + "end": 18718.16, + "probability": 0.8348 + }, + { + "start": 18719.58, + "end": 18719.88, + "probability": 0.8361 + }, + { + "start": 18721.0, + "end": 18721.7, + "probability": 0.5278 + }, + { + "start": 18725.45, + "end": 18726.7, + "probability": 0.9621 + }, + { + "start": 18728.18, + "end": 18730.22, + "probability": 0.9763 + }, + { + "start": 18731.46, + "end": 18733.34, + "probability": 0.9745 + }, + { + "start": 18736.06, + "end": 18736.56, + "probability": 0.991 + }, + { + "start": 18737.64, + "end": 18738.78, + "probability": 0.6348 + }, + { + "start": 18739.66, + "end": 18739.94, + "probability": 0.5441 + }, + { + "start": 18745.84, + "end": 18750.24, + "probability": 0.9757 + }, + { + "start": 18751.38, + "end": 18752.7, + "probability": 0.5127 + }, + { + "start": 18756.58, + "end": 18758.2, + "probability": 0.7395 + }, + { + "start": 18764.08, + "end": 18765.08, + "probability": 0.3153 + }, + { + "start": 18765.18, + "end": 18769.96, + "probability": 0.9569 + }, + { + "start": 18770.64, + "end": 18771.68, + "probability": 0.5613 + }, + { + "start": 18771.82, + "end": 18773.6, + "probability": 0.741 + }, + { + "start": 18773.68, + "end": 18774.56, + "probability": 0.896 + }, + { + "start": 18778.74, + "end": 18779.34, + "probability": 0.0515 + }, + { + "start": 18781.84, + "end": 18783.56, + "probability": 0.0584 + }, + { + "start": 18791.1, + "end": 18792.26, + "probability": 0.0182 + }, + { + "start": 18795.3, + "end": 18798.1, + "probability": 0.0758 + }, + { + "start": 18801.44, + "end": 18801.44, + "probability": 0.0821 + }, + { + "start": 18807.54, + "end": 18808.62, + "probability": 0.0715 + }, + { + "start": 18809.94, + "end": 18897.0, + "probability": 0.0036 + }, + { + "start": 18897.0, + "end": 18897.0, + "probability": 0.0 + }, + { + "start": 18897.0, + "end": 18897.0, + "probability": 0.0 + }, + { + "start": 18897.0, + "end": 18897.0, + "probability": 0.0 + }, + { + "start": 18897.0, + "end": 18897.0, + "probability": 0.0 + }, + { + "start": 18897.32, + "end": 18898.88, + "probability": 0.1448 + }, + { + "start": 18898.88, + "end": 18900.12, + "probability": 0.0759 + }, + { + "start": 18900.68, + "end": 18903.7, + "probability": 0.7354 + }, + { + "start": 18903.8, + "end": 18904.48, + "probability": 0.616 + }, + { + "start": 18904.56, + "end": 18905.18, + "probability": 0.588 + }, + { + "start": 18905.28, + "end": 18906.72, + "probability": 0.6113 + }, + { + "start": 18913.1, + "end": 18915.46, + "probability": 0.1135 + }, + { + "start": 18916.6, + "end": 18918.06, + "probability": 0.1455 + }, + { + "start": 18919.16, + "end": 18923.08, + "probability": 0.9597 + }, + { + "start": 18924.18, + "end": 18925.06, + "probability": 0.4787 + }, + { + "start": 18926.18, + "end": 18927.02, + "probability": 0.5164 + }, + { + "start": 18927.56, + "end": 18927.72, + "probability": 0.7622 + }, + { + "start": 18927.78, + "end": 18928.16, + "probability": 0.9328 + }, + { + "start": 18928.28, + "end": 18928.76, + "probability": 0.5098 + }, + { + "start": 18928.94, + "end": 18929.14, + "probability": 0.2233 + }, + { + "start": 18929.18, + "end": 18931.12, + "probability": 0.9355 + }, + { + "start": 18931.44, + "end": 18931.7, + "probability": 0.4037 + }, + { + "start": 18931.82, + "end": 18937.26, + "probability": 0.8545 + }, + { + "start": 18937.42, + "end": 18938.4, + "probability": 0.8888 + }, + { + "start": 18939.02, + "end": 18948.64, + "probability": 0.9272 + }, + { + "start": 18950.5, + "end": 18953.58, + "probability": 0.9663 + }, + { + "start": 18954.52, + "end": 18957.96, + "probability": 0.9872 + }, + { + "start": 18958.4, + "end": 18959.6, + "probability": 0.6295 + }, + { + "start": 18959.72, + "end": 18960.58, + "probability": 0.7555 + }, + { + "start": 18962.26, + "end": 18963.32, + "probability": 0.5044 + }, + { + "start": 18969.7, + "end": 18970.24, + "probability": 0.0227 + }, + { + "start": 18976.26, + "end": 18978.14, + "probability": 0.1401 + }, + { + "start": 18978.72, + "end": 18979.26, + "probability": 0.1642 + }, + { + "start": 18983.96, + "end": 18984.5, + "probability": 0.3178 + }, + { + "start": 18985.64, + "end": 18989.14, + "probability": 0.7247 + }, + { + "start": 18989.64, + "end": 18992.54, + "probability": 0.7502 + }, + { + "start": 18993.74, + "end": 18995.82, + "probability": 0.5893 + }, + { + "start": 18996.46, + "end": 18997.6, + "probability": 0.5865 + }, + { + "start": 18997.84, + "end": 18998.26, + "probability": 0.6286 + }, + { + "start": 18999.44, + "end": 19000.23, + "probability": 0.0587 + }, + { + "start": 19001.5, + "end": 19005.84, + "probability": 0.0816 + }, + { + "start": 19016.2, + "end": 19016.3, + "probability": 0.0333 + }, + { + "start": 19016.44, + "end": 19016.44, + "probability": 0.1616 + }, + { + "start": 19016.44, + "end": 19016.44, + "probability": 0.0223 + }, + { + "start": 19016.44, + "end": 19016.68, + "probability": 0.2453 + }, + { + "start": 19017.5, + "end": 19021.26, + "probability": 0.8626 + }, + { + "start": 19021.5, + "end": 19023.0, + "probability": 0.7309 + }, + { + "start": 19023.62, + "end": 19025.3, + "probability": 0.9524 + }, + { + "start": 19027.1, + "end": 19030.52, + "probability": 0.9543 + }, + { + "start": 19030.68, + "end": 19031.62, + "probability": 0.7201 + }, + { + "start": 19031.82, + "end": 19032.52, + "probability": 0.6482 + }, + { + "start": 19032.6, + "end": 19035.6, + "probability": 0.747 + }, + { + "start": 19036.82, + "end": 19040.14, + "probability": 0.8791 + }, + { + "start": 19041.16, + "end": 19046.68, + "probability": 0.1584 + }, + { + "start": 19056.16, + "end": 19056.3, + "probability": 0.0956 + }, + { + "start": 19056.3, + "end": 19060.3, + "probability": 0.7118 + }, + { + "start": 19060.44, + "end": 19062.2, + "probability": 0.8083 + }, + { + "start": 19062.84, + "end": 19067.46, + "probability": 0.7548 + }, + { + "start": 19067.54, + "end": 19068.76, + "probability": 0.8602 + }, + { + "start": 19070.28, + "end": 19074.44, + "probability": 0.8619 + }, + { + "start": 19075.3, + "end": 19076.08, + "probability": 0.8338 + }, + { + "start": 19076.22, + "end": 19079.74, + "probability": 0.7515 + }, + { + "start": 19079.74, + "end": 19080.62, + "probability": 0.3299 + }, + { + "start": 19080.86, + "end": 19081.78, + "probability": 0.6588 + }, + { + "start": 19082.14, + "end": 19083.74, + "probability": 0.9478 + }, + { + "start": 19086.94, + "end": 19093.64, + "probability": 0.9807 + }, + { + "start": 19094.62, + "end": 19101.66, + "probability": 0.5081 + }, + { + "start": 19102.5, + "end": 19104.52, + "probability": 0.0944 + }, + { + "start": 19109.76, + "end": 19110.98, + "probability": 0.3633 + }, + { + "start": 19110.98, + "end": 19114.76, + "probability": 0.6009 + }, + { + "start": 19116.08, + "end": 19120.36, + "probability": 0.6235 + }, + { + "start": 19121.0, + "end": 19123.48, + "probability": 0.9367 + }, + { + "start": 19123.94, + "end": 19124.64, + "probability": 0.6139 + }, + { + "start": 19124.68, + "end": 19125.24, + "probability": 0.6815 + }, + { + "start": 19125.34, + "end": 19126.06, + "probability": 0.3751 + }, + { + "start": 19126.98, + "end": 19129.74, + "probability": 0.6362 + }, + { + "start": 19134.68, + "end": 19136.76, + "probability": 0.0393 + }, + { + "start": 19137.5, + "end": 19138.2, + "probability": 0.0918 + }, + { + "start": 19138.92, + "end": 19140.8, + "probability": 0.1256 + }, + { + "start": 19141.38, + "end": 19143.38, + "probability": 0.587 + }, + { + "start": 19144.14, + "end": 19145.42, + "probability": 0.7146 + }, + { + "start": 19147.12, + "end": 19151.18, + "probability": 0.8751 + }, + { + "start": 19152.92, + "end": 19153.32, + "probability": 0.3839 + }, + { + "start": 19153.38, + "end": 19154.0, + "probability": 0.6945 + }, + { + "start": 19154.06, + "end": 19154.3, + "probability": 0.5136 + }, + { + "start": 19154.42, + "end": 19158.28, + "probability": 0.9505 + }, + { + "start": 19159.08, + "end": 19159.72, + "probability": 0.7755 + }, + { + "start": 19160.24, + "end": 19161.02, + "probability": 0.9703 + }, + { + "start": 19161.02, + "end": 19163.76, + "probability": 0.9358 + }, + { + "start": 19163.86, + "end": 19166.6, + "probability": 0.9274 + }, + { + "start": 19166.9, + "end": 19168.26, + "probability": 0.8311 + }, + { + "start": 19168.3, + "end": 19169.14, + "probability": 0.8692 + }, + { + "start": 19169.28, + "end": 19170.6, + "probability": 0.6239 + }, + { + "start": 19171.16, + "end": 19171.84, + "probability": 0.6014 + }, + { + "start": 19171.86, + "end": 19172.5, + "probability": 0.6771 + }, + { + "start": 19193.86, + "end": 19196.48, + "probability": 0.2838 + }, + { + "start": 19197.68, + "end": 19198.72, + "probability": 0.2061 + }, + { + "start": 19199.86, + "end": 19200.46, + "probability": 0.1039 + }, + { + "start": 19205.18, + "end": 19205.52, + "probability": 0.2164 + }, + { + "start": 19206.3, + "end": 19207.0, + "probability": 0.2251 + }, + { + "start": 19207.0, + "end": 19211.26, + "probability": 0.4907 + }, + { + "start": 19212.54, + "end": 19213.38, + "probability": 0.0866 + }, + { + "start": 19214.32, + "end": 19215.3, + "probability": 0.1062 + }, + { + "start": 19215.3, + "end": 19215.3, + "probability": 0.2783 + }, + { + "start": 19215.3, + "end": 19218.6, + "probability": 0.6607 + }, + { + "start": 19218.92, + "end": 19219.34, + "probability": 0.6475 + }, + { + "start": 19219.38, + "end": 19219.84, + "probability": 0.6023 + }, + { + "start": 19219.84, + "end": 19220.76, + "probability": 0.2428 + }, + { + "start": 19235.26, + "end": 19235.26, + "probability": 0.1719 + }, + { + "start": 19235.26, + "end": 19235.26, + "probability": 0.0958 + }, + { + "start": 19235.26, + "end": 19235.26, + "probability": 0.1179 + }, + { + "start": 19235.26, + "end": 19235.26, + "probability": 0.2968 + }, + { + "start": 19235.26, + "end": 19236.22, + "probability": 0.5113 + }, + { + "start": 19237.04, + "end": 19240.68, + "probability": 0.8429 + }, + { + "start": 19241.38, + "end": 19244.96, + "probability": 0.9697 + }, + { + "start": 19246.04, + "end": 19248.18, + "probability": 0.9714 + }, + { + "start": 19249.0, + "end": 19251.52, + "probability": 0.1477 + }, + { + "start": 19267.52, + "end": 19268.4, + "probability": 0.0512 + }, + { + "start": 19268.4, + "end": 19268.4, + "probability": 0.1322 + }, + { + "start": 19268.4, + "end": 19268.4, + "probability": 0.032 + }, + { + "start": 19268.4, + "end": 19268.4, + "probability": 0.0149 + }, + { + "start": 19268.4, + "end": 19268.48, + "probability": 0.2388 + }, + { + "start": 19268.6, + "end": 19268.84, + "probability": 0.435 + }, + { + "start": 19268.86, + "end": 19275.64, + "probability": 0.9002 + }, + { + "start": 19276.78, + "end": 19277.48, + "probability": 0.9367 + }, + { + "start": 19284.66, + "end": 19288.22, + "probability": 0.9002 + }, + { + "start": 19288.58, + "end": 19289.18, + "probability": 0.6155 + }, + { + "start": 19289.26, + "end": 19290.12, + "probability": 0.8961 + }, + { + "start": 19306.16, + "end": 19306.26, + "probability": 0.3662 + }, + { + "start": 19306.26, + "end": 19306.26, + "probability": 0.122 + }, + { + "start": 19306.26, + "end": 19306.26, + "probability": 0.2864 + }, + { + "start": 19306.26, + "end": 19306.26, + "probability": 0.157 + }, + { + "start": 19306.26, + "end": 19306.26, + "probability": 0.1419 + }, + { + "start": 19306.26, + "end": 19306.6, + "probability": 0.4844 + }, + { + "start": 19307.22, + "end": 19309.22, + "probability": 0.5021 + }, + { + "start": 19309.38, + "end": 19309.74, + "probability": 0.4946 + }, + { + "start": 19310.14, + "end": 19310.36, + "probability": 0.8304 + }, + { + "start": 19310.4, + "end": 19317.34, + "probability": 0.7158 + }, + { + "start": 19318.24, + "end": 19319.9, + "probability": 0.3911 + }, + { + "start": 19320.06, + "end": 19328.4, + "probability": 0.9862 + }, + { + "start": 19329.26, + "end": 19331.28, + "probability": 0.3341 + }, + { + "start": 19334.88, + "end": 19335.82, + "probability": 0.088 + }, + { + "start": 19337.42, + "end": 19338.3, + "probability": 0.2224 + }, + { + "start": 19338.84, + "end": 19341.9, + "probability": 0.2146 + }, + { + "start": 19344.18, + "end": 19344.72, + "probability": 0.115 + }, + { + "start": 19344.9, + "end": 19345.66, + "probability": 0.3084 + }, + { + "start": 19345.94, + "end": 19346.68, + "probability": 0.3744 + }, + { + "start": 19346.76, + "end": 19347.04, + "probability": 0.7401 + }, + { + "start": 19347.08, + "end": 19351.36, + "probability": 0.6985 + }, + { + "start": 19351.9, + "end": 19357.38, + "probability": 0.8583 + }, + { + "start": 19357.64, + "end": 19358.08, + "probability": 0.5599 + }, + { + "start": 19358.1, + "end": 19358.46, + "probability": 0.4539 + }, + { + "start": 19359.36, + "end": 19362.1, + "probability": 0.7489 + }, + { + "start": 19370.0, + "end": 19371.12, + "probability": 0.1159 + }, + { + "start": 19371.12, + "end": 19371.12, + "probability": 0.1151 + }, + { + "start": 19371.12, + "end": 19371.12, + "probability": 0.3264 + }, + { + "start": 19371.12, + "end": 19371.12, + "probability": 0.0254 + }, + { + "start": 19371.12, + "end": 19371.78, + "probability": 0.4165 + }, + { + "start": 19374.7, + "end": 19377.74, + "probability": 0.2975 + }, + { + "start": 19378.2, + "end": 19380.78, + "probability": 0.9722 + }, + { + "start": 19381.56, + "end": 19382.06, + "probability": 0.3323 + }, + { + "start": 19382.06, + "end": 19387.26, + "probability": 0.8263 + }, + { + "start": 19387.64, + "end": 19389.64, + "probability": 0.7491 + }, + { + "start": 19390.1, + "end": 19391.3, + "probability": 0.7295 + }, + { + "start": 19391.38, + "end": 19392.34, + "probability": 0.8002 + }, + { + "start": 19393.18, + "end": 19395.1, + "probability": 0.9325 + }, + { + "start": 19396.26, + "end": 19398.56, + "probability": 0.9712 + }, + { + "start": 19399.02, + "end": 19400.76, + "probability": 0.2587 + }, + { + "start": 19401.66, + "end": 19403.18, + "probability": 0.1124 + }, + { + "start": 19406.58, + "end": 19407.56, + "probability": 0.0978 + }, + { + "start": 19411.48, + "end": 19414.56, + "probability": 0.1822 + }, + { + "start": 19415.08, + "end": 19415.62, + "probability": 0.1193 + }, + { + "start": 19415.7, + "end": 19416.0, + "probability": 0.3105 + }, + { + "start": 19416.26, + "end": 19416.8, + "probability": 0.3431 + }, + { + "start": 19417.04, + "end": 19417.28, + "probability": 0.729 + }, + { + "start": 19417.32, + "end": 19423.62, + "probability": 0.9616 + }, + { + "start": 19424.94, + "end": 19425.36, + "probability": 0.3086 + }, + { + "start": 19426.02, + "end": 19450.32, + "probability": 0.6863 + }, + { + "start": 19451.22, + "end": 19453.02, + "probability": 0.8657 + }, + { + "start": 19453.36, + "end": 19459.72, + "probability": 0.9722 + }, + { + "start": 19460.14, + "end": 19462.82, + "probability": 0.9027 + }, + { + "start": 19463.14, + "end": 19463.84, + "probability": 0.6028 + }, + { + "start": 19464.24, + "end": 19466.74, + "probability": 0.8045 + }, + { + "start": 19467.44, + "end": 19467.64, + "probability": 0.4993 + }, + { + "start": 19469.44, + "end": 19470.42, + "probability": 0.0786 + }, + { + "start": 19472.1, + "end": 19472.94, + "probability": 0.0674 + }, + { + "start": 19477.94, + "end": 19478.66, + "probability": 0.1888 + }, + { + "start": 19478.66, + "end": 19479.54, + "probability": 0.4727 + }, + { + "start": 19480.08, + "end": 19480.66, + "probability": 0.4936 + }, + { + "start": 19480.74, + "end": 19486.64, + "probability": 0.8396 + }, + { + "start": 19487.3, + "end": 19489.92, + "probability": 0.5681 + }, + { + "start": 19490.02, + "end": 19490.58, + "probability": 0.699 + }, + { + "start": 19493.02, + "end": 19497.4, + "probability": 0.3241 + }, + { + "start": 19498.66, + "end": 19500.26, + "probability": 0.0723 + }, + { + "start": 19505.6, + "end": 19507.1, + "probability": 0.099 + }, + { + "start": 19509.59, + "end": 19511.8, + "probability": 0.0883 + }, + { + "start": 19516.65, + "end": 19520.86, + "probability": 0.5535 + }, + { + "start": 19521.68, + "end": 19524.12, + "probability": 0.9566 + }, + { + "start": 19524.76, + "end": 19530.92, + "probability": 0.8555 + }, + { + "start": 19530.92, + "end": 19534.28, + "probability": 0.911 + }, + { + "start": 19536.6, + "end": 19537.36, + "probability": 0.0278 + }, + { + "start": 19540.54, + "end": 19541.58, + "probability": 0.1207 + }, + { + "start": 19552.68, + "end": 19553.14, + "probability": 0.1392 + }, + { + "start": 19553.14, + "end": 19555.22, + "probability": 0.6705 + }, + { + "start": 19555.98, + "end": 19559.58, + "probability": 0.9302 + }, + { + "start": 19559.66, + "end": 19561.28, + "probability": 0.7412 + }, + { + "start": 19562.16, + "end": 19563.38, + "probability": 0.9615 + }, + { + "start": 19564.06, + "end": 19568.44, + "probability": 0.8934 + }, + { + "start": 19568.62, + "end": 19573.84, + "probability": 0.9881 + }, + { + "start": 19574.77, + "end": 19577.82, + "probability": 0.3645 + }, + { + "start": 19578.54, + "end": 19579.92, + "probability": 0.0557 + }, + { + "start": 19584.18, + "end": 19584.18, + "probability": 0.3079 + }, + { + "start": 19585.28, + "end": 19586.22, + "probability": 0.0563 + }, + { + "start": 19586.22, + "end": 19588.36, + "probability": 0.4964 + }, + { + "start": 19589.2, + "end": 19590.8, + "probability": 0.8734 + }, + { + "start": 19590.88, + "end": 19594.08, + "probability": 0.877 + }, + { + "start": 19594.66, + "end": 19601.3, + "probability": 0.2422 + }, + { + "start": 19602.58, + "end": 19602.76, + "probability": 0.0149 + }, + { + "start": 19602.76, + "end": 19604.18, + "probability": 0.2264 + }, + { + "start": 19604.2, + "end": 19606.88, + "probability": 0.1126 + }, + { + "start": 19607.8, + "end": 19610.65, + "probability": 0.1936 + }, + { + "start": 19611.3, + "end": 19614.52, + "probability": 0.923 + }, + { + "start": 19614.54, + "end": 19616.94, + "probability": 0.9054 + }, + { + "start": 19622.06, + "end": 19624.19, + "probability": 0.6318 + }, + { + "start": 19624.46, + "end": 19625.08, + "probability": 0.7158 + }, + { + "start": 19625.14, + "end": 19627.22, + "probability": 0.9257 + }, + { + "start": 19627.92, + "end": 19631.66, + "probability": 0.9344 + }, + { + "start": 19642.38, + "end": 19643.38, + "probability": 0.7016 + }, + { + "start": 19643.62, + "end": 19652.64, + "probability": 0.6902 + }, + { + "start": 19653.12, + "end": 19655.5, + "probability": 0.9459 + }, + { + "start": 19655.64, + "end": 19656.86, + "probability": 0.5744 + }, + { + "start": 19656.92, + "end": 19657.38, + "probability": 0.7221 + }, + { + "start": 19658.5, + "end": 19661.68, + "probability": 0.8825 + }, + { + "start": 19664.52, + "end": 19666.78, + "probability": 0.4334 + }, + { + "start": 19677.5, + "end": 19679.28, + "probability": 0.2571 + }, + { + "start": 19679.28, + "end": 19679.28, + "probability": 0.0691 + }, + { + "start": 19679.28, + "end": 19679.28, + "probability": 0.3274 + }, + { + "start": 19679.28, + "end": 19680.24, + "probability": 0.0145 + }, + { + "start": 19682.52, + "end": 19682.6, + "probability": 0.2469 + }, + { + "start": 19683.72, + "end": 19683.82, + "probability": 0.3191 + }, + { + "start": 19688.74, + "end": 19689.68, + "probability": 0.3491 + }, + { + "start": 19689.68, + "end": 19689.94, + "probability": 0.0266 + }, + { + "start": 19690.34, + "end": 19690.44, + "probability": 0.0717 + }, + { + "start": 19690.44, + "end": 19690.44, + "probability": 0.0399 + }, + { + "start": 19690.44, + "end": 19693.16, + "probability": 0.5583 + }, + { + "start": 19693.26, + "end": 19694.98, + "probability": 0.7484 + }, + { + "start": 19695.5, + "end": 19696.54, + "probability": 0.7191 + }, + { + "start": 19699.0, + "end": 19700.9, + "probability": 0.4523 + }, + { + "start": 19704.74, + "end": 19705.6, + "probability": 0.3312 + }, + { + "start": 19706.3, + "end": 19709.03, + "probability": 0.0599 + }, + { + "start": 19710.72, + "end": 19712.26, + "probability": 0.2128 + }, + { + "start": 19713.14, + "end": 19713.44, + "probability": 0.287 + }, + { + "start": 19713.66, + "end": 19714.0, + "probability": 0.2786 + }, + { + "start": 19714.38, + "end": 19714.62, + "probability": 0.8694 + }, + { + "start": 19714.66, + "end": 19721.0, + "probability": 0.9282 + }, + { + "start": 19721.2, + "end": 19722.4, + "probability": 0.9422 + }, + { + "start": 19723.98, + "end": 19725.0, + "probability": 0.5635 + }, + { + "start": 19725.54, + "end": 19728.88, + "probability": 0.8591 + }, + { + "start": 19732.8, + "end": 19735.18, + "probability": 0.9513 + }, + { + "start": 19736.28, + "end": 19738.5, + "probability": 0.9077 + }, + { + "start": 19738.66, + "end": 19739.81, + "probability": 0.9589 + }, + { + "start": 19740.16, + "end": 19740.74, + "probability": 0.4029 + }, + { + "start": 19740.74, + "end": 19741.55, + "probability": 0.0769 + }, + { + "start": 19742.86, + "end": 19744.34, + "probability": 0.1416 + }, + { + "start": 19744.66, + "end": 19746.44, + "probability": 0.4492 + }, + { + "start": 19754.54, + "end": 19754.72, + "probability": 0.217 + }, + { + "start": 19754.72, + "end": 19757.06, + "probability": 0.525 + }, + { + "start": 19757.58, + "end": 19762.32, + "probability": 0.8961 + }, + { + "start": 19762.72, + "end": 19764.6, + "probability": 0.9851 + }, + { + "start": 19765.12, + "end": 19769.22, + "probability": 0.5551 + }, + { + "start": 19769.28, + "end": 19769.68, + "probability": 0.609 + }, + { + "start": 19769.8, + "end": 19770.58, + "probability": 0.6233 + }, + { + "start": 19772.58, + "end": 19777.08, + "probability": 0.147 + }, + { + "start": 19777.62, + "end": 19779.33, + "probability": 0.1769 + }, + { + "start": 19787.74, + "end": 19789.44, + "probability": 0.4468 + }, + { + "start": 19789.5, + "end": 19789.78, + "probability": 0.2414 + }, + { + "start": 19789.92, + "end": 19790.6, + "probability": 0.3601 + }, + { + "start": 19790.68, + "end": 19790.94, + "probability": 0.5308 + }, + { + "start": 19790.94, + "end": 19795.08, + "probability": 0.5551 + }, + { + "start": 19795.26, + "end": 19798.1, + "probability": 0.8855 + }, + { + "start": 19798.18, + "end": 19801.35, + "probability": 0.7285 + }, + { + "start": 19801.72, + "end": 19802.84, + "probability": 0.458 + }, + { + "start": 19804.45, + "end": 19804.68, + "probability": 0.2179 + }, + { + "start": 19804.68, + "end": 19805.28, + "probability": 0.5307 + }, + { + "start": 19805.3, + "end": 19805.84, + "probability": 0.6427 + }, + { + "start": 19820.22, + "end": 19821.24, + "probability": 0.2344 + }, + { + "start": 19821.24, + "end": 19821.26, + "probability": 0.1079 + }, + { + "start": 19821.26, + "end": 19821.26, + "probability": 0.2542 + }, + { + "start": 19821.26, + "end": 19821.26, + "probability": 0.2988 + }, + { + "start": 19821.26, + "end": 19821.26, + "probability": 0.1264 + }, + { + "start": 19821.26, + "end": 19826.0, + "probability": 0.6413 + }, + { + "start": 19827.96, + "end": 19829.76, + "probability": 0.4721 + }, + { + "start": 19830.32, + "end": 19832.98, + "probability": 0.4912 + }, + { + "start": 19834.74, + "end": 19837.88, + "probability": 0.5803 + }, + { + "start": 19838.94, + "end": 19840.23, + "probability": 0.723 + }, + { + "start": 19840.24, + "end": 19841.06, + "probability": 0.5225 + }, + { + "start": 19843.82, + "end": 19844.2, + "probability": 0.8207 + }, + { + "start": 19855.04, + "end": 19855.8, + "probability": 0.0719 + }, + { + "start": 19855.88, + "end": 19855.88, + "probability": 0.1122 + }, + { + "start": 19855.88, + "end": 19855.96, + "probability": 0.179 + }, + { + "start": 19855.96, + "end": 19855.98, + "probability": 0.3162 + }, + { + "start": 19855.98, + "end": 19858.3, + "probability": 0.4752 + }, + { + "start": 19859.06, + "end": 19862.04, + "probability": 0.907 + }, + { + "start": 19874.84, + "end": 19878.14, + "probability": 0.5736 + }, + { + "start": 19878.66, + "end": 19883.68, + "probability": 0.7757 + }, + { + "start": 19883.74, + "end": 19884.38, + "probability": 0.4768 + }, + { + "start": 19884.86, + "end": 19885.56, + "probability": 0.7492 + }, + { + "start": 19887.14, + "end": 19888.38, + "probability": 0.1134 + }, + { + "start": 19889.88, + "end": 19891.86, + "probability": 0.0586 + }, + { + "start": 19891.86, + "end": 19892.22, + "probability": 0.1258 + }, + { + "start": 19900.88, + "end": 19900.96, + "probability": 0.0066 + }, + { + "start": 19900.96, + "end": 19901.62, + "probability": 0.1319 + }, + { + "start": 19901.9, + "end": 19902.68, + "probability": 0.3462 + }, + { + "start": 19902.88, + "end": 19903.14, + "probability": 0.478 + }, + { + "start": 19903.32, + "end": 19911.6, + "probability": 0.5457 + }, + { + "start": 19916.53, + "end": 19918.54, + "probability": 0.667 + }, + { + "start": 19918.9, + "end": 19923.74, + "probability": 0.8149 + }, + { + "start": 19924.88, + "end": 19927.46, + "probability": 0.5312 + }, + { + "start": 19931.18, + "end": 19935.73, + "probability": 0.7358 + }, + { + "start": 19940.88, + "end": 19944.26, + "probability": 0.4887 + }, + { + "start": 19944.3, + "end": 19945.66, + "probability": 0.5136 + }, + { + "start": 19946.52, + "end": 19946.52, + "probability": 0.3532 + }, + { + "start": 19946.52, + "end": 19947.16, + "probability": 0.5729 + }, + { + "start": 19947.22, + "end": 19947.88, + "probability": 0.5933 + }, + { + "start": 19947.9, + "end": 19949.56, + "probability": 0.5273 + }, + { + "start": 19951.6, + "end": 19952.96, + "probability": 0.2205 + }, + { + "start": 19955.16, + "end": 19955.94, + "probability": 0.0944 + }, + { + "start": 19958.76, + "end": 19959.1, + "probability": 0.3088 + }, + { + "start": 19959.98, + "end": 19964.58, + "probability": 0.1245 + }, + { + "start": 19965.05, + "end": 19969.12, + "probability": 0.4877 + }, + { + "start": 19969.24, + "end": 19974.26, + "probability": 0.9165 + }, + { + "start": 19974.9, + "end": 19977.03, + "probability": 0.875 + }, + { + "start": 19978.4, + "end": 19984.58, + "probability": 0.9605 + }, + { + "start": 19984.98, + "end": 19988.9, + "probability": 0.9787 + }, + { + "start": 19989.04, + "end": 19990.82, + "probability": 0.8909 + }, + { + "start": 19992.92, + "end": 19994.82, + "probability": 0.8856 + }, + { + "start": 19995.52, + "end": 19996.9, + "probability": 0.9319 + }, + { + "start": 19996.9, + "end": 20002.6, + "probability": 0.9419 + }, + { + "start": 20003.06, + "end": 20005.48, + "probability": 0.0117 + }, + { + "start": 20006.76, + "end": 20008.0, + "probability": 0.7296 + }, + { + "start": 20008.84, + "end": 20010.82, + "probability": 0.7688 + }, + { + "start": 20012.42, + "end": 20012.84, + "probability": 0.9795 + }, + { + "start": 20013.44, + "end": 20017.16, + "probability": 0.7507 + }, + { + "start": 20017.76, + "end": 20021.12, + "probability": 0.9102 + }, + { + "start": 20022.04, + "end": 20024.06, + "probability": 0.5148 + }, + { + "start": 20025.58, + "end": 20026.04, + "probability": 0.9543 + }, + { + "start": 20026.64, + "end": 20027.66, + "probability": 0.8669 + }, + { + "start": 20028.24, + "end": 20028.66, + "probability": 0.7944 + }, + { + "start": 20029.4, + "end": 20030.52, + "probability": 0.4821 + }, + { + "start": 20031.14, + "end": 20031.66, + "probability": 0.9518 + }, + { + "start": 20032.18, + "end": 20032.98, + "probability": 0.6215 + }, + { + "start": 20034.1, + "end": 20034.86, + "probability": 0.9746 + }, + { + "start": 20035.58, + "end": 20036.62, + "probability": 0.8895 + }, + { + "start": 20037.36, + "end": 20039.28, + "probability": 0.912 + }, + { + "start": 20040.42, + "end": 20042.2, + "probability": 0.9762 + }, + { + "start": 20043.2, + "end": 20045.42, + "probability": 0.9517 + }, + { + "start": 20046.02, + "end": 20049.66, + "probability": 0.8479 + }, + { + "start": 20051.02, + "end": 20052.18, + "probability": 0.8164 + }, + { + "start": 20053.02, + "end": 20054.92, + "probability": 0.8161 + }, + { + "start": 20055.66, + "end": 20056.24, + "probability": 0.5938 + }, + { + "start": 20056.82, + "end": 20057.64, + "probability": 0.6505 + }, + { + "start": 20059.14, + "end": 20061.26, + "probability": 0.9704 + }, + { + "start": 20062.24, + "end": 20064.0, + "probability": 0.922 + }, + { + "start": 20067.32, + "end": 20069.28, + "probability": 0.9641 + }, + { + "start": 20070.72, + "end": 20073.28, + "probability": 0.9165 + }, + { + "start": 20074.28, + "end": 20074.76, + "probability": 0.9652 + }, + { + "start": 20075.32, + "end": 20076.52, + "probability": 0.8442 + }, + { + "start": 20077.48, + "end": 20079.76, + "probability": 0.8686 + }, + { + "start": 20080.94, + "end": 20081.34, + "probability": 0.7124 + }, + { + "start": 20082.34, + "end": 20083.08, + "probability": 0.6388 + }, + { + "start": 20084.82, + "end": 20085.8, + "probability": 0.9028 + }, + { + "start": 20086.5, + "end": 20087.44, + "probability": 0.9666 + }, + { + "start": 20088.24, + "end": 20090.18, + "probability": 0.8808 + }, + { + "start": 20094.18, + "end": 20096.64, + "probability": 0.945 + }, + { + "start": 20097.76, + "end": 20100.18, + "probability": 0.9184 + }, + { + "start": 20101.14, + "end": 20101.6, + "probability": 0.9875 + }, + { + "start": 20102.42, + "end": 20103.26, + "probability": 0.7313 + }, + { + "start": 20104.44, + "end": 20104.88, + "probability": 0.9941 + }, + { + "start": 20105.56, + "end": 20106.28, + "probability": 0.6217 + }, + { + "start": 20107.06, + "end": 20108.52, + "probability": 0.7054 + }, + { + "start": 20112.54, + "end": 20114.2, + "probability": 0.7699 + }, + { + "start": 20115.64, + "end": 20115.94, + "probability": 0.8241 + }, + { + "start": 20116.5, + "end": 20116.74, + "probability": 0.8796 + }, + { + "start": 20121.6, + "end": 20123.16, + "probability": 0.5979 + }, + { + "start": 20123.98, + "end": 20124.98, + "probability": 0.6522 + }, + { + "start": 20126.34, + "end": 20126.8, + "probability": 0.5606 + }, + { + "start": 20127.42, + "end": 20128.3, + "probability": 0.9039 + }, + { + "start": 20130.68, + "end": 20132.8, + "probability": 0.8631 + }, + { + "start": 20133.84, + "end": 20135.82, + "probability": 0.9685 + }, + { + "start": 20136.36, + "end": 20136.98, + "probability": 0.991 + }, + { + "start": 20137.62, + "end": 20139.02, + "probability": 0.936 + }, + { + "start": 20139.82, + "end": 20142.36, + "probability": 0.8207 + }, + { + "start": 20144.24, + "end": 20147.2, + "probability": 0.9886 + }, + { + "start": 20148.0, + "end": 20148.26, + "probability": 0.5004 + }, + { + "start": 20149.08, + "end": 20149.96, + "probability": 0.5894 + }, + { + "start": 20150.98, + "end": 20151.3, + "probability": 0.8507 + }, + { + "start": 20152.06, + "end": 20152.94, + "probability": 0.8047 + }, + { + "start": 20153.68, + "end": 20154.18, + "probability": 0.978 + }, + { + "start": 20154.8, + "end": 20155.94, + "probability": 0.9676 + }, + { + "start": 20156.48, + "end": 20156.92, + "probability": 0.9863 + }, + { + "start": 20157.68, + "end": 20158.6, + "probability": 0.9451 + }, + { + "start": 20159.82, + "end": 20160.16, + "probability": 0.8918 + }, + { + "start": 20160.82, + "end": 20161.8, + "probability": 0.8029 + }, + { + "start": 20163.0, + "end": 20165.2, + "probability": 0.9642 + }, + { + "start": 20166.92, + "end": 20168.38, + "probability": 0.7946 + }, + { + "start": 20168.96, + "end": 20169.18, + "probability": 0.4859 + }, + { + "start": 20169.94, + "end": 20170.84, + "probability": 0.5484 + }, + { + "start": 20173.68, + "end": 20174.18, + "probability": 0.96 + }, + { + "start": 20174.82, + "end": 20175.92, + "probability": 0.8426 + }, + { + "start": 20178.84, + "end": 20181.28, + "probability": 0.9572 + }, + { + "start": 20182.42, + "end": 20184.86, + "probability": 0.9082 + }, + { + "start": 20185.56, + "end": 20186.18, + "probability": 0.9878 + }, + { + "start": 20187.7, + "end": 20188.2, + "probability": 0.9738 + }, + { + "start": 20190.16, + "end": 20193.44, + "probability": 0.9719 + }, + { + "start": 20194.12, + "end": 20194.58, + "probability": 0.8044 + }, + { + "start": 20195.34, + "end": 20196.28, + "probability": 0.9712 + }, + { + "start": 20198.5, + "end": 20199.16, + "probability": 0.6732 + }, + { + "start": 20200.08, + "end": 20200.38, + "probability": 0.6432 + }, + { + "start": 20201.06, + "end": 20202.08, + "probability": 0.2488 + }, + { + "start": 20202.76, + "end": 20203.56, + "probability": 0.9641 + }, + { + "start": 20204.18, + "end": 20204.9, + "probability": 0.9296 + }, + { + "start": 20205.46, + "end": 20207.6, + "probability": 0.8071 + }, + { + "start": 20208.46, + "end": 20208.96, + "probability": 0.959 + }, + { + "start": 20210.16, + "end": 20211.08, + "probability": 0.9405 + }, + { + "start": 20211.84, + "end": 20213.86, + "probability": 0.9705 + }, + { + "start": 20214.72, + "end": 20215.2, + "probability": 0.9626 + }, + { + "start": 20216.02, + "end": 20216.8, + "probability": 0.9927 + }, + { + "start": 20217.9, + "end": 20221.2, + "probability": 0.9836 + }, + { + "start": 20221.98, + "end": 20222.76, + "probability": 0.9614 + }, + { + "start": 20226.78, + "end": 20228.72, + "probability": 0.7699 + }, + { + "start": 20229.24, + "end": 20230.9, + "probability": 0.9502 + }, + { + "start": 20231.7, + "end": 20232.22, + "probability": 0.9531 + }, + { + "start": 20232.74, + "end": 20236.38, + "probability": 0.7736 + }, + { + "start": 20239.44, + "end": 20241.62, + "probability": 0.9616 + }, + { + "start": 20243.59, + "end": 20247.02, + "probability": 0.6931 + }, + { + "start": 20247.8, + "end": 20250.54, + "probability": 0.979 + }, + { + "start": 20251.32, + "end": 20252.7, + "probability": 0.9724 + }, + { + "start": 20253.62, + "end": 20254.24, + "probability": 0.6779 + }, + { + "start": 20255.06, + "end": 20256.82, + "probability": 0.9191 + }, + { + "start": 20257.48, + "end": 20257.96, + "probability": 0.9761 + }, + { + "start": 20258.98, + "end": 20259.88, + "probability": 0.9898 + }, + { + "start": 20260.52, + "end": 20261.06, + "probability": 0.9756 + }, + { + "start": 20261.72, + "end": 20262.48, + "probability": 0.7442 + }, + { + "start": 20263.7, + "end": 20265.24, + "probability": 0.9783 + }, + { + "start": 20268.18, + "end": 20268.96, + "probability": 0.7261 + }, + { + "start": 20269.66, + "end": 20270.52, + "probability": 0.7293 + }, + { + "start": 20271.38, + "end": 20271.88, + "probability": 0.986 + }, + { + "start": 20273.32, + "end": 20274.56, + "probability": 0.9808 + }, + { + "start": 20276.18, + "end": 20277.78, + "probability": 0.9883 + }, + { + "start": 20278.72, + "end": 20280.02, + "probability": 0.7598 + }, + { + "start": 20280.68, + "end": 20281.02, + "probability": 0.7205 + }, + { + "start": 20281.76, + "end": 20282.5, + "probability": 0.7222 + }, + { + "start": 20284.22, + "end": 20288.88, + "probability": 0.3616 + }, + { + "start": 20292.02, + "end": 20292.66, + "probability": 0.6586 + }, + { + "start": 20293.78, + "end": 20294.06, + "probability": 0.61 + }, + { + "start": 20295.1, + "end": 20295.84, + "probability": 0.7714 + }, + { + "start": 20296.72, + "end": 20297.12, + "probability": 0.8786 + }, + { + "start": 20297.74, + "end": 20298.6, + "probability": 0.9138 + }, + { + "start": 20299.9, + "end": 20301.84, + "probability": 0.9359 + }, + { + "start": 20305.6, + "end": 20305.82, + "probability": 0.9817 + }, + { + "start": 20306.34, + "end": 20307.24, + "probability": 0.9759 + }, + { + "start": 20308.04, + "end": 20309.72, + "probability": 0.9437 + }, + { + "start": 20312.08, + "end": 20313.64, + "probability": 0.9886 + }, + { + "start": 20314.58, + "end": 20316.08, + "probability": 0.9041 + }, + { + "start": 20317.94, + "end": 20318.86, + "probability": 0.9849 + }, + { + "start": 20319.84, + "end": 20320.22, + "probability": 0.7544 + }, + { + "start": 20325.32, + "end": 20326.66, + "probability": 0.356 + }, + { + "start": 20332.64, + "end": 20334.8, + "probability": 0.7368 + }, + { + "start": 20340.16, + "end": 20342.34, + "probability": 0.5593 + }, + { + "start": 20344.94, + "end": 20345.82, + "probability": 0.887 + }, + { + "start": 20347.5, + "end": 20348.16, + "probability": 0.5815 + }, + { + "start": 20350.98, + "end": 20352.54, + "probability": 0.8835 + }, + { + "start": 20354.44, + "end": 20355.58, + "probability": 0.7915 + }, + { + "start": 20357.72, + "end": 20358.16, + "probability": 0.9657 + }, + { + "start": 20359.72, + "end": 20360.88, + "probability": 0.7009 + }, + { + "start": 20362.0, + "end": 20362.38, + "probability": 0.9889 + }, + { + "start": 20363.26, + "end": 20364.18, + "probability": 0.7007 + }, + { + "start": 20367.16, + "end": 20367.46, + "probability": 0.9875 + }, + { + "start": 20368.78, + "end": 20369.68, + "probability": 0.645 + }, + { + "start": 20370.7, + "end": 20370.92, + "probability": 0.655 + }, + { + "start": 20371.62, + "end": 20372.48, + "probability": 0.8296 + }, + { + "start": 20373.6, + "end": 20374.12, + "probability": 0.9468 + }, + { + "start": 20374.78, + "end": 20375.74, + "probability": 0.8725 + }, + { + "start": 20379.36, + "end": 20380.12, + "probability": 0.9123 + }, + { + "start": 20380.8, + "end": 20381.6, + "probability": 0.8502 + }, + { + "start": 20382.56, + "end": 20384.74, + "probability": 0.9761 + }, + { + "start": 20385.68, + "end": 20386.6, + "probability": 0.9759 + }, + { + "start": 20387.16, + "end": 20389.6, + "probability": 0.9813 + }, + { + "start": 20390.4, + "end": 20395.76, + "probability": 0.9035 + }, + { + "start": 20401.27, + "end": 20404.02, + "probability": 0.7399 + }, + { + "start": 20406.18, + "end": 20408.04, + "probability": 0.6999 + }, + { + "start": 20409.96, + "end": 20412.08, + "probability": 0.4863 + }, + { + "start": 20413.18, + "end": 20413.96, + "probability": 0.6038 + }, + { + "start": 20415.52, + "end": 20417.42, + "probability": 0.9346 + }, + { + "start": 20419.08, + "end": 20422.86, + "probability": 0.9658 + }, + { + "start": 20424.42, + "end": 20425.36, + "probability": 0.8947 + }, + { + "start": 20426.62, + "end": 20427.06, + "probability": 0.8605 + }, + { + "start": 20429.98, + "end": 20430.52, + "probability": 0.9896 + }, + { + "start": 20431.38, + "end": 20432.22, + "probability": 0.9573 + }, + { + "start": 20433.28, + "end": 20435.24, + "probability": 0.9862 + }, + { + "start": 20436.4, + "end": 20436.8, + "probability": 0.9934 + }, + { + "start": 20440.0, + "end": 20441.36, + "probability": 0.7536 + }, + { + "start": 20442.14, + "end": 20442.9, + "probability": 0.8228 + }, + { + "start": 20444.32, + "end": 20445.32, + "probability": 0.8172 + }, + { + "start": 20446.3, + "end": 20446.76, + "probability": 0.7402 + }, + { + "start": 20447.98, + "end": 20449.14, + "probability": 0.8415 + }, + { + "start": 20450.82, + "end": 20451.36, + "probability": 0.9245 + }, + { + "start": 20452.88, + "end": 20453.88, + "probability": 0.9156 + }, + { + "start": 20454.84, + "end": 20455.32, + "probability": 0.9434 + }, + { + "start": 20455.98, + "end": 20456.86, + "probability": 0.9452 + }, + { + "start": 20457.6, + "end": 20459.64, + "probability": 0.9556 + }, + { + "start": 20462.28, + "end": 20462.68, + "probability": 0.9912 + }, + { + "start": 20463.7, + "end": 20464.5, + "probability": 0.9843 + }, + { + "start": 20465.46, + "end": 20465.94, + "probability": 0.9938 + }, + { + "start": 20466.86, + "end": 20467.58, + "probability": 0.7575 + }, + { + "start": 20469.06, + "end": 20469.3, + "probability": 0.5245 + }, + { + "start": 20470.1, + "end": 20470.94, + "probability": 0.6611 + }, + { + "start": 20471.88, + "end": 20472.82, + "probability": 0.9392 + }, + { + "start": 20473.8, + "end": 20474.62, + "probability": 0.8021 + }, + { + "start": 20475.94, + "end": 20478.94, + "probability": 0.7928 + }, + { + "start": 20479.92, + "end": 20480.66, + "probability": 0.8079 + }, + { + "start": 20486.32, + "end": 20486.88, + "probability": 0.7863 + }, + { + "start": 20488.18, + "end": 20489.48, + "probability": 0.715 + }, + { + "start": 20490.6, + "end": 20491.14, + "probability": 0.9407 + }, + { + "start": 20491.82, + "end": 20493.08, + "probability": 0.6948 + }, + { + "start": 20493.16, + "end": 20496.62, + "probability": 0.9897 + }, + { + "start": 20497.43, + "end": 20499.04, + "probability": 0.0616 + }, + { + "start": 20499.7, + "end": 20501.6, + "probability": 0.8946 + }, + { + "start": 20504.18, + "end": 20505.14, + "probability": 0.3905 + }, + { + "start": 20519.16, + "end": 20520.44, + "probability": 0.5201 + }, + { + "start": 20522.07, + "end": 20524.18, + "probability": 0.4913 + }, + { + "start": 20527.72, + "end": 20529.3, + "probability": 0.6898 + }, + { + "start": 20530.4, + "end": 20531.28, + "probability": 0.6286 + }, + { + "start": 20534.8, + "end": 20535.06, + "probability": 0.5288 + }, + { + "start": 20537.22, + "end": 20538.02, + "probability": 0.6688 + }, + { + "start": 20540.26, + "end": 20543.34, + "probability": 0.7414 + }, + { + "start": 20545.08, + "end": 20547.6, + "probability": 0.8748 + }, + { + "start": 20550.02, + "end": 20550.98, + "probability": 0.7351 + }, + { + "start": 20554.32, + "end": 20555.2, + "probability": 0.8926 + }, + { + "start": 20556.76, + "end": 20557.86, + "probability": 0.8254 + }, + { + "start": 20560.12, + "end": 20560.56, + "probability": 0.9399 + }, + { + "start": 20561.34, + "end": 20562.46, + "probability": 0.7575 + }, + { + "start": 20563.18, + "end": 20565.38, + "probability": 0.9302 + }, + { + "start": 20566.04, + "end": 20567.12, + "probability": 0.7797 + }, + { + "start": 20571.0, + "end": 20571.26, + "probability": 0.544 + }, + { + "start": 20573.36, + "end": 20574.78, + "probability": 0.6195 + }, + { + "start": 20575.66, + "end": 20577.4, + "probability": 0.9468 + }, + { + "start": 20578.2, + "end": 20578.96, + "probability": 0.7584 + }, + { + "start": 20582.14, + "end": 20583.34, + "probability": 0.9272 + }, + { + "start": 20584.79, + "end": 20588.68, + "probability": 0.7452 + }, + { + "start": 20589.22, + "end": 20590.13, + "probability": 0.1897 + }, + { + "start": 20591.96, + "end": 20592.4, + "probability": 0.9314 + }, + { + "start": 20598.12, + "end": 20599.62, + "probability": 0.5711 + }, + { + "start": 20599.68, + "end": 20602.68, + "probability": 0.9762 + }, + { + "start": 20604.14, + "end": 20607.46, + "probability": 0.0879 + }, + { + "start": 20630.4, + "end": 20631.2, + "probability": 0.0377 + }, + { + "start": 20643.18, + "end": 20645.28, + "probability": 0.1046 + }, + { + "start": 20701.95, + "end": 20707.1, + "probability": 0.3914 + }, + { + "start": 20708.32, + "end": 20710.38, + "probability": 0.6383 + }, + { + "start": 20711.1, + "end": 20712.06, + "probability": 0.5549 + }, + { + "start": 20712.86, + "end": 20716.18, + "probability": 0.823 + }, + { + "start": 20716.66, + "end": 20729.54, + "probability": 0.518 + }, + { + "start": 20730.12, + "end": 20733.34, + "probability": 0.8917 + }, + { + "start": 20736.53, + "end": 20739.66, + "probability": 0.0203 + }, + { + "start": 20739.66, + "end": 20740.92, + "probability": 0.0259 + }, + { + "start": 20755.68, + "end": 20756.72, + "probability": 0.0089 + }, + { + "start": 20757.36, + "end": 20757.76, + "probability": 0.1084 + }, + { + "start": 20758.44, + "end": 20759.59, + "probability": 0.6878 + }, + { + "start": 20760.46, + "end": 20760.7, + "probability": 0.887 + }, + { + "start": 20762.22, + "end": 20763.02, + "probability": 0.7924 + }, + { + "start": 20767.14, + "end": 20769.18, + "probability": 0.8939 + }, + { + "start": 20770.22, + "end": 20772.66, + "probability": 0.923 + }, + { + "start": 20776.2, + "end": 20776.97, + "probability": 0.656 + }, + { + "start": 20777.7, + "end": 20777.96, + "probability": 0.5897 + }, + { + "start": 20778.76, + "end": 20779.64, + "probability": 0.4829 + }, + { + "start": 20780.32, + "end": 20780.78, + "probability": 0.9663 + }, + { + "start": 20781.46, + "end": 20782.26, + "probability": 0.7159 + }, + { + "start": 20783.12, + "end": 20783.6, + "probability": 0.9827 + }, + { + "start": 20784.52, + "end": 20785.58, + "probability": 0.9618 + }, + { + "start": 20786.49, + "end": 20789.28, + "probability": 0.9336 + }, + { + "start": 20792.1, + "end": 20794.28, + "probability": 0.9907 + }, + { + "start": 20794.84, + "end": 20795.84, + "probability": 0.934 + }, + { + "start": 20796.48, + "end": 20797.02, + "probability": 0.9896 + }, + { + "start": 20797.68, + "end": 20798.44, + "probability": 0.8907 + }, + { + "start": 20799.62, + "end": 20800.08, + "probability": 0.9948 + }, + { + "start": 20800.64, + "end": 20801.3, + "probability": 0.9886 + }, + { + "start": 20802.28, + "end": 20802.7, + "probability": 0.9951 + }, + { + "start": 20803.5, + "end": 20804.42, + "probability": 0.77 + }, + { + "start": 20805.06, + "end": 20805.34, + "probability": 0.7144 + }, + { + "start": 20806.22, + "end": 20807.18, + "probability": 0.5533 + }, + { + "start": 20807.94, + "end": 20808.3, + "probability": 0.8623 + }, + { + "start": 20808.98, + "end": 20809.72, + "probability": 0.6424 + }, + { + "start": 20810.86, + "end": 20813.0, + "probability": 0.9621 + }, + { + "start": 20814.1, + "end": 20816.18, + "probability": 0.8752 + }, + { + "start": 20819.32, + "end": 20821.54, + "probability": 0.9827 + }, + { + "start": 20823.76, + "end": 20825.96, + "probability": 0.8438 + }, + { + "start": 20829.92, + "end": 20830.7, + "probability": 0.672 + }, + { + "start": 20831.66, + "end": 20831.94, + "probability": 0.9329 + }, + { + "start": 20832.66, + "end": 20833.56, + "probability": 0.7251 + }, + { + "start": 20836.7, + "end": 20839.04, + "probability": 0.7624 + }, + { + "start": 20840.76, + "end": 20841.04, + "probability": 0.97 + }, + { + "start": 20841.74, + "end": 20842.62, + "probability": 0.9488 + }, + { + "start": 20843.42, + "end": 20843.68, + "probability": 0.9946 + }, + { + "start": 20844.32, + "end": 20845.1, + "probability": 0.8372 + }, + { + "start": 20845.92, + "end": 20847.78, + "probability": 0.9886 + }, + { + "start": 20848.74, + "end": 20849.22, + "probability": 0.9788 + }, + { + "start": 20850.98, + "end": 20852.02, + "probability": 0.936 + }, + { + "start": 20853.0, + "end": 20853.42, + "probability": 0.9939 + }, + { + "start": 20854.1, + "end": 20854.82, + "probability": 0.5977 + }, + { + "start": 20855.68, + "end": 20855.94, + "probability": 0.5354 + }, + { + "start": 20856.76, + "end": 20857.56, + "probability": 0.8408 + }, + { + "start": 20858.46, + "end": 20859.92, + "probability": 0.8272 + }, + { + "start": 20860.68, + "end": 20862.42, + "probability": 0.9695 + }, + { + "start": 20863.56, + "end": 20864.06, + "probability": 0.9528 + }, + { + "start": 20865.02, + "end": 20865.82, + "probability": 0.9527 + }, + { + "start": 20867.12, + "end": 20867.68, + "probability": 0.9816 + }, + { + "start": 20869.12, + "end": 20870.12, + "probability": 0.8652 + }, + { + "start": 20871.14, + "end": 20871.58, + "probability": 0.9775 + }, + { + "start": 20872.4, + "end": 20873.36, + "probability": 0.9437 + }, + { + "start": 20874.26, + "end": 20874.82, + "probability": 0.9585 + }, + { + "start": 20875.58, + "end": 20876.56, + "probability": 0.8234 + }, + { + "start": 20877.68, + "end": 20879.52, + "probability": 0.994 + }, + { + "start": 20880.44, + "end": 20881.02, + "probability": 0.9967 + }, + { + "start": 20882.1, + "end": 20883.16, + "probability": 0.9412 + }, + { + "start": 20883.92, + "end": 20884.26, + "probability": 0.8033 + }, + { + "start": 20885.04, + "end": 20885.92, + "probability": 0.7467 + }, + { + "start": 20886.74, + "end": 20888.82, + "probability": 0.9821 + }, + { + "start": 20889.68, + "end": 20890.68, + "probability": 0.9575 + }, + { + "start": 20892.2, + "end": 20893.12, + "probability": 0.829 + }, + { + "start": 20893.7, + "end": 20894.66, + "probability": 0.9943 + }, + { + "start": 20895.32, + "end": 20896.26, + "probability": 0.9736 + }, + { + "start": 20897.58, + "end": 20898.1, + "probability": 0.9951 + }, + { + "start": 20898.82, + "end": 20903.14, + "probability": 0.9751 + }, + { + "start": 20905.18, + "end": 20907.08, + "probability": 0.8175 + }, + { + "start": 20907.64, + "end": 20908.56, + "probability": 0.4715 + }, + { + "start": 20909.46, + "end": 20909.96, + "probability": 0.653 + }, + { + "start": 20910.86, + "end": 20911.78, + "probability": 0.9005 + }, + { + "start": 20913.3, + "end": 20916.66, + "probability": 0.7812 + }, + { + "start": 20917.24, + "end": 20918.12, + "probability": 0.8692 + }, + { + "start": 20918.68, + "end": 20919.2, + "probability": 0.9917 + }, + { + "start": 20919.9, + "end": 20920.94, + "probability": 0.9849 + }, + { + "start": 20927.48, + "end": 20930.32, + "probability": 0.6754 + }, + { + "start": 20930.96, + "end": 20931.7, + "probability": 0.3206 + }, + { + "start": 20932.82, + "end": 20933.16, + "probability": 0.7362 + }, + { + "start": 20933.92, + "end": 20934.76, + "probability": 0.9233 + }, + { + "start": 20936.22, + "end": 20937.62, + "probability": 0.9793 + }, + { + "start": 20939.86, + "end": 20942.82, + "probability": 0.9789 + }, + { + "start": 20944.4, + "end": 20945.28, + "probability": 0.9917 + }, + { + "start": 20945.98, + "end": 20946.92, + "probability": 0.91 + }, + { + "start": 20948.04, + "end": 20948.62, + "probability": 0.9845 + }, + { + "start": 20950.08, + "end": 20950.8, + "probability": 0.9763 + }, + { + "start": 20951.66, + "end": 20953.86, + "probability": 0.7041 + }, + { + "start": 20956.04, + "end": 20956.25, + "probability": 0.1643 + }, + { + "start": 20960.9, + "end": 20961.18, + "probability": 0.4998 + }, + { + "start": 20961.94, + "end": 20962.58, + "probability": 0.5805 + }, + { + "start": 20963.44, + "end": 20963.76, + "probability": 0.7104 + }, + { + "start": 20964.94, + "end": 20965.78, + "probability": 0.864 + }, + { + "start": 20968.02, + "end": 20969.98, + "probability": 0.9646 + }, + { + "start": 20970.84, + "end": 20971.48, + "probability": 0.8696 + }, + { + "start": 20972.22, + "end": 20972.86, + "probability": 0.99 + }, + { + "start": 20973.7, + "end": 20974.2, + "probability": 0.9049 + }, + { + "start": 20974.84, + "end": 20975.52, + "probability": 0.9549 + }, + { + "start": 20976.9, + "end": 20977.3, + "probability": 0.9495 + }, + { + "start": 20979.96, + "end": 20980.76, + "probability": 0.9509 + }, + { + "start": 20981.82, + "end": 20982.22, + "probability": 0.9556 + }, + { + "start": 20983.78, + "end": 20984.38, + "probability": 0.994 + }, + { + "start": 20985.28, + "end": 20985.66, + "probability": 0.9946 + }, + { + "start": 20986.32, + "end": 20986.74, + "probability": 0.8383 + }, + { + "start": 20988.56, + "end": 20988.82, + "probability": 0.7181 + }, + { + "start": 20990.28, + "end": 20991.06, + "probability": 0.7242 + }, + { + "start": 20991.84, + "end": 20992.2, + "probability": 0.6287 + }, + { + "start": 20993.34, + "end": 20994.14, + "probability": 0.952 + }, + { + "start": 20995.4, + "end": 20997.92, + "probability": 0.9552 + }, + { + "start": 20998.66, + "end": 21000.54, + "probability": 0.978 + }, + { + "start": 21001.16, + "end": 21003.48, + "probability": 0.9725 + }, + { + "start": 21004.58, + "end": 21005.54, + "probability": 0.9881 + }, + { + "start": 21006.2, + "end": 21008.08, + "probability": 0.9822 + }, + { + "start": 21008.96, + "end": 21010.66, + "probability": 0.9948 + }, + { + "start": 21011.8, + "end": 21012.18, + "probability": 0.9956 + }, + { + "start": 21012.9, + "end": 21013.76, + "probability": 0.9946 + }, + { + "start": 21014.4, + "end": 21014.76, + "probability": 0.9919 + }, + { + "start": 21015.42, + "end": 21016.12, + "probability": 0.421 + }, + { + "start": 21018.0, + "end": 21020.0, + "probability": 0.6981 + }, + { + "start": 21020.64, + "end": 21021.38, + "probability": 0.8178 + }, + { + "start": 21023.28, + "end": 21025.22, + "probability": 0.9529 + }, + { + "start": 21026.48, + "end": 21026.98, + "probability": 0.9696 + }, + { + "start": 21027.64, + "end": 21029.0, + "probability": 0.863 + }, + { + "start": 21037.72, + "end": 21038.34, + "probability": 0.7831 + }, + { + "start": 21038.9, + "end": 21043.96, + "probability": 0.686 + }, + { + "start": 21044.56, + "end": 21045.48, + "probability": 0.8276 + }, + { + "start": 21052.34, + "end": 21052.84, + "probability": 0.8075 + }, + { + "start": 21053.94, + "end": 21054.94, + "probability": 0.5586 + }, + { + "start": 21056.12, + "end": 21056.46, + "probability": 0.5909 + }, + { + "start": 21057.3, + "end": 21058.04, + "probability": 0.8593 + }, + { + "start": 21058.96, + "end": 21060.74, + "probability": 0.8861 + }, + { + "start": 21062.14, + "end": 21062.54, + "probability": 0.9766 + }, + { + "start": 21063.22, + "end": 21064.12, + "probability": 0.8538 + }, + { + "start": 21064.92, + "end": 21067.22, + "probability": 0.9729 + }, + { + "start": 21068.06, + "end": 21068.54, + "probability": 0.993 + }, + { + "start": 21069.42, + "end": 21070.38, + "probability": 0.6783 + }, + { + "start": 21070.94, + "end": 21071.4, + "probability": 0.9836 + }, + { + "start": 21072.08, + "end": 21073.4, + "probability": 0.8331 + }, + { + "start": 21074.74, + "end": 21074.9, + "probability": 0.3303 + }, + { + "start": 21077.32, + "end": 21078.98, + "probability": 0.7533 + }, + { + "start": 21081.06, + "end": 21081.58, + "probability": 0.9383 + }, + { + "start": 21083.52, + "end": 21084.56, + "probability": 0.7777 + }, + { + "start": 21086.48, + "end": 21088.3, + "probability": 0.871 + }, + { + "start": 21090.04, + "end": 21092.08, + "probability": 0.86 + }, + { + "start": 21093.38, + "end": 21093.92, + "probability": 0.9958 + }, + { + "start": 21095.14, + "end": 21096.66, + "probability": 0.604 + }, + { + "start": 21097.58, + "end": 21098.06, + "probability": 0.9932 + }, + { + "start": 21098.92, + "end": 21099.96, + "probability": 0.7406 + }, + { + "start": 21101.66, + "end": 21102.06, + "probability": 0.6888 + }, + { + "start": 21102.92, + "end": 21103.72, + "probability": 0.7742 + }, + { + "start": 21104.92, + "end": 21105.36, + "probability": 0.746 + }, + { + "start": 21106.2, + "end": 21107.36, + "probability": 0.7974 + }, + { + "start": 21108.08, + "end": 21108.46, + "probability": 0.9434 + }, + { + "start": 21109.08, + "end": 21110.0, + "probability": 0.7308 + }, + { + "start": 21112.92, + "end": 21114.7, + "probability": 0.8969 + }, + { + "start": 21116.24, + "end": 21116.52, + "probability": 0.5443 + }, + { + "start": 21121.04, + "end": 21121.88, + "probability": 0.5582 + }, + { + "start": 21123.22, + "end": 21123.58, + "probability": 0.8665 + }, + { + "start": 21124.52, + "end": 21124.9, + "probability": 0.8759 + }, + { + "start": 21126.58, + "end": 21128.62, + "probability": 0.9536 + }, + { + "start": 21129.38, + "end": 21130.86, + "probability": 0.7265 + }, + { + "start": 21132.58, + "end": 21134.48, + "probability": 0.9727 + }, + { + "start": 21135.2, + "end": 21136.3, + "probability": 0.9763 + }, + { + "start": 21137.1, + "end": 21137.9, + "probability": 0.8325 + }, + { + "start": 21139.88, + "end": 21140.56, + "probability": 0.9712 + }, + { + "start": 21141.54, + "end": 21142.32, + "probability": 0.8573 + }, + { + "start": 21144.86, + "end": 21146.4, + "probability": 0.9203 + }, + { + "start": 21150.0, + "end": 21150.28, + "probability": 0.6096 + }, + { + "start": 21155.08, + "end": 21156.34, + "probability": 0.8276 + }, + { + "start": 21157.86, + "end": 21159.14, + "probability": 0.7287 + }, + { + "start": 21160.1, + "end": 21160.5, + "probability": 0.9827 + }, + { + "start": 21161.14, + "end": 21161.88, + "probability": 0.9198 + }, + { + "start": 21162.9, + "end": 21163.4, + "probability": 0.9727 + }, + { + "start": 21164.1, + "end": 21165.0, + "probability": 0.9226 + }, + { + "start": 21165.86, + "end": 21166.28, + "probability": 0.6743 + }, + { + "start": 21166.98, + "end": 21168.06, + "probability": 0.9208 + }, + { + "start": 21173.1, + "end": 21173.52, + "probability": 0.7224 + }, + { + "start": 21174.44, + "end": 21175.42, + "probability": 0.8338 + }, + { + "start": 21176.26, + "end": 21178.5, + "probability": 0.8572 + }, + { + "start": 21179.14, + "end": 21179.6, + "probability": 0.9115 + }, + { + "start": 21180.36, + "end": 21181.3, + "probability": 0.9475 + }, + { + "start": 21182.62, + "end": 21185.06, + "probability": 0.927 + }, + { + "start": 21185.88, + "end": 21187.8, + "probability": 0.9878 + }, + { + "start": 21189.93, + "end": 21192.7, + "probability": 0.9768 + }, + { + "start": 21193.68, + "end": 21194.1, + "probability": 0.8989 + }, + { + "start": 21194.8, + "end": 21195.66, + "probability": 0.7989 + }, + { + "start": 21196.4, + "end": 21196.84, + "probability": 0.9658 + }, + { + "start": 21197.84, + "end": 21198.38, + "probability": 0.8726 + }, + { + "start": 21202.34, + "end": 21202.62, + "probability": 0.5275 + }, + { + "start": 21203.76, + "end": 21204.52, + "probability": 0.7355 + }, + { + "start": 21205.34, + "end": 21206.72, + "probability": 0.881 + }, + { + "start": 21211.54, + "end": 21212.32, + "probability": 0.3934 + }, + { + "start": 21212.98, + "end": 21213.3, + "probability": 0.7374 + }, + { + "start": 21214.34, + "end": 21215.48, + "probability": 0.6805 + }, + { + "start": 21216.48, + "end": 21218.46, + "probability": 0.8499 + }, + { + "start": 21218.54, + "end": 21221.7, + "probability": 0.7249 + }, + { + "start": 21222.28, + "end": 21225.84, + "probability": 0.5991 + }, + { + "start": 21228.2, + "end": 21229.5, + "probability": 0.7725 + }, + { + "start": 21230.5, + "end": 21230.98, + "probability": 0.9556 + }, + { + "start": 21232.46, + "end": 21233.5, + "probability": 0.6937 + }, + { + "start": 21240.54, + "end": 21241.84, + "probability": 0.7686 + }, + { + "start": 21242.76, + "end": 21246.02, + "probability": 0.9229 + }, + { + "start": 21247.66, + "end": 21250.02, + "probability": 0.8364 + }, + { + "start": 21253.31, + "end": 21255.98, + "probability": 0.5947 + }, + { + "start": 21257.58, + "end": 21259.46, + "probability": 0.6376 + }, + { + "start": 21261.44, + "end": 21262.72, + "probability": 0.7207 + }, + { + "start": 21264.12, + "end": 21265.2, + "probability": 0.9131 + }, + { + "start": 21266.46, + "end": 21267.26, + "probability": 0.6937 + }, + { + "start": 21272.96, + "end": 21274.04, + "probability": 0.1455 + }, + { + "start": 21275.0, + "end": 21275.76, + "probability": 0.0624 + }, + { + "start": 21299.08, + "end": 21299.8, + "probability": 0.3065 + }, + { + "start": 21302.4, + "end": 21302.9, + "probability": 0.6067 + }, + { + "start": 21302.98, + "end": 21304.64, + "probability": 0.7738 + }, + { + "start": 21305.1, + "end": 21306.08, + "probability": 0.7065 + }, + { + "start": 21328.9, + "end": 21330.24, + "probability": 0.0112 + }, + { + "start": 21376.78, + "end": 21378.62, + "probability": 0.8074 + }, + { + "start": 21379.14, + "end": 21380.02, + "probability": 0.8638 + }, + { + "start": 21387.33, + "end": 21388.6, + "probability": 0.2057 + }, + { + "start": 21388.6, + "end": 21388.6, + "probability": 0.24 + }, + { + "start": 21388.6, + "end": 21391.35, + "probability": 0.711 + }, + { + "start": 21392.48, + "end": 21395.12, + "probability": 0.758 + }, + { + "start": 21395.14, + "end": 21398.04, + "probability": 0.9429 + }, + { + "start": 21399.02, + "end": 21401.0, + "probability": 0.8594 + }, + { + "start": 21401.8, + "end": 21402.52, + "probability": 0.9603 + }, + { + "start": 21403.14, + "end": 21404.26, + "probability": 0.8737 + }, + { + "start": 21405.32, + "end": 21406.32, + "probability": 0.8394 + }, + { + "start": 21408.78, + "end": 21410.78, + "probability": 0.9038 + }, + { + "start": 21411.32, + "end": 21412.8, + "probability": 0.9292 + }, + { + "start": 21413.44, + "end": 21416.8, + "probability": 0.9036 + }, + { + "start": 21416.9, + "end": 21417.3, + "probability": 0.4661 + }, + { + "start": 21417.4, + "end": 21418.18, + "probability": 0.4437 + }, + { + "start": 21419.34, + "end": 21423.88, + "probability": 0.1004 + }, + { + "start": 21430.28, + "end": 21430.38, + "probability": 0.1418 + }, + { + "start": 21430.38, + "end": 21433.68, + "probability": 0.4775 + }, + { + "start": 21434.48, + "end": 21436.94, + "probability": 0.9352 + }, + { + "start": 21437.84, + "end": 21438.26, + "probability": 0.593 + }, + { + "start": 21440.96, + "end": 21443.8, + "probability": 0.9644 + }, + { + "start": 21444.6, + "end": 21445.24, + "probability": 0.2438 + }, + { + "start": 21446.96, + "end": 21451.18, + "probability": 0.7804 + }, + { + "start": 21455.03, + "end": 21457.68, + "probability": 0.6838 + }, + { + "start": 21460.02, + "end": 21460.4, + "probability": 0.0803 + }, + { + "start": 21460.42, + "end": 21461.72, + "probability": 0.4279 + }, + { + "start": 21463.2, + "end": 21465.7, + "probability": 0.0848 + }, + { + "start": 21465.7, + "end": 21466.7, + "probability": 0.1769 + }, + { + "start": 21466.98, + "end": 21467.1, + "probability": 0.2305 + }, + { + "start": 21467.1, + "end": 21470.94, + "probability": 0.1069 + }, + { + "start": 21471.76, + "end": 21472.22, + "probability": 0.1702 + }, + { + "start": 21472.86, + "end": 21475.12, + "probability": 0.6349 + }, + { + "start": 21476.52, + "end": 21478.18, + "probability": 0.7358 + }, + { + "start": 21478.34, + "end": 21479.62, + "probability": 0.8711 + }, + { + "start": 21479.84, + "end": 21481.56, + "probability": 0.7826 + }, + { + "start": 21482.94, + "end": 21484.18, + "probability": 0.895 + }, + { + "start": 21485.24, + "end": 21491.5, + "probability": 0.8276 + }, + { + "start": 21491.64, + "end": 21497.72, + "probability": 0.995 + }, + { + "start": 21498.34, + "end": 21501.94, + "probability": 0.6461 + }, + { + "start": 21515.16, + "end": 21515.4, + "probability": 0.0805 + }, + { + "start": 21515.4, + "end": 21515.4, + "probability": 0.0659 + }, + { + "start": 21515.4, + "end": 21515.4, + "probability": 0.2004 + }, + { + "start": 21515.4, + "end": 21515.4, + "probability": 0.3079 + }, + { + "start": 21515.4, + "end": 21515.5, + "probability": 0.1974 + }, + { + "start": 21515.86, + "end": 21515.96, + "probability": 0.3665 + }, + { + "start": 21516.42, + "end": 21516.66, + "probability": 0.6731 + }, + { + "start": 21516.92, + "end": 21520.02, + "probability": 0.8781 + }, + { + "start": 21520.62, + "end": 21523.32, + "probability": 0.7018 + }, + { + "start": 21523.38, + "end": 21523.74, + "probability": 0.5519 + }, + { + "start": 21535.34, + "end": 21538.56, + "probability": 0.6806 + }, + { + "start": 21539.18, + "end": 21539.82, + "probability": 0.1063 + }, + { + "start": 21539.82, + "end": 21540.32, + "probability": 0.3069 + }, + { + "start": 21540.32, + "end": 21540.32, + "probability": 0.0161 + }, + { + "start": 21540.38, + "end": 21541.36, + "probability": 0.3987 + }, + { + "start": 21541.92, + "end": 21545.64, + "probability": 0.4208 + }, + { + "start": 21547.38, + "end": 21550.64, + "probability": 0.9101 + }, + { + "start": 21551.36, + "end": 21554.06, + "probability": 0.9404 + }, + { + "start": 21554.18, + "end": 21555.58, + "probability": 0.8277 + }, + { + "start": 21556.06, + "end": 21556.68, + "probability": 0.6407 + }, + { + "start": 21556.78, + "end": 21558.3, + "probability": 0.938 + }, + { + "start": 21559.34, + "end": 21560.1, + "probability": 0.8388 + }, + { + "start": 21561.3, + "end": 21561.78, + "probability": 0.8318 + }, + { + "start": 21575.5, + "end": 21576.36, + "probability": 0.4531 + }, + { + "start": 21576.46, + "end": 21576.64, + "probability": 0.1185 + }, + { + "start": 21576.64, + "end": 21576.64, + "probability": 0.1089 + }, + { + "start": 21576.64, + "end": 21576.64, + "probability": 0.424 + }, + { + "start": 21576.64, + "end": 21576.64, + "probability": 0.0881 + }, + { + "start": 21576.64, + "end": 21576.86, + "probability": 0.3481 + }, + { + "start": 21576.94, + "end": 21577.12, + "probability": 0.4198 + }, + { + "start": 21577.53, + "end": 21580.92, + "probability": 0.9447 + }, + { + "start": 21581.78, + "end": 21583.04, + "probability": 0.6626 + }, + { + "start": 21583.6, + "end": 21586.9, + "probability": 0.7569 + }, + { + "start": 21588.08, + "end": 21590.12, + "probability": 0.7176 + }, + { + "start": 21603.36, + "end": 21606.46, + "probability": 0.258 + }, + { + "start": 21607.81, + "end": 21610.54, + "probability": 0.112 + }, + { + "start": 21611.32, + "end": 21612.8, + "probability": 0.2099 + }, + { + "start": 21612.94, + "end": 21613.14, + "probability": 0.4331 + }, + { + "start": 21613.5, + "end": 21619.94, + "probability": 0.8691 + }, + { + "start": 21621.48, + "end": 21623.84, + "probability": 0.875 + }, + { + "start": 21627.92, + "end": 21629.28, + "probability": 0.7033 + }, + { + "start": 21629.78, + "end": 21631.34, + "probability": 0.4343 + }, + { + "start": 21631.78, + "end": 21634.98, + "probability": 0.9635 + }, + { + "start": 21635.72, + "end": 21636.44, + "probability": 0.575 + }, + { + "start": 21636.5, + "end": 21637.0, + "probability": 0.6972 + }, + { + "start": 21641.14, + "end": 21642.08, + "probability": 0.1054 + }, + { + "start": 21643.32, + "end": 21645.66, + "probability": 0.0847 + }, + { + "start": 21648.18, + "end": 21652.94, + "probability": 0.1952 + }, + { + "start": 21652.94, + "end": 21653.2, + "probability": 0.4193 + }, + { + "start": 21653.48, + "end": 21654.02, + "probability": 0.3572 + }, + { + "start": 21654.2, + "end": 21654.48, + "probability": 0.4758 + }, + { + "start": 21654.78, + "end": 21659.6, + "probability": 0.8992 + }, + { + "start": 21659.96, + "end": 21661.42, + "probability": 0.6602 + }, + { + "start": 21662.22, + "end": 21662.84, + "probability": 0.5978 + }, + { + "start": 21662.9, + "end": 21663.28, + "probability": 0.6436 + }, + { + "start": 21667.13, + "end": 21667.2, + "probability": 0.1754 + }, + { + "start": 21668.12, + "end": 21669.02, + "probability": 0.0622 + }, + { + "start": 21671.8, + "end": 21672.34, + "probability": 0.1205 + }, + { + "start": 21674.74, + "end": 21677.82, + "probability": 0.0056 + }, + { + "start": 21678.28, + "end": 21678.66, + "probability": 0.0833 + }, + { + "start": 21678.68, + "end": 21679.18, + "probability": 0.3047 + }, + { + "start": 21679.58, + "end": 21679.78, + "probability": 0.4852 + }, + { + "start": 21680.02, + "end": 21684.78, + "probability": 0.9755 + }, + { + "start": 21685.48, + "end": 21686.5, + "probability": 0.8805 + }, + { + "start": 21687.86, + "end": 21691.2, + "probability": 0.7599 + }, + { + "start": 21691.98, + "end": 21694.72, + "probability": 0.5686 + }, + { + "start": 21694.74, + "end": 21695.94, + "probability": 0.7559 + }, + { + "start": 21696.86, + "end": 21697.14, + "probability": 0.8432 + }, + { + "start": 21711.18, + "end": 21712.4, + "probability": 0.1675 + }, + { + "start": 21712.4, + "end": 21712.5, + "probability": 0.0726 + }, + { + "start": 21712.5, + "end": 21712.5, + "probability": 0.355 + }, + { + "start": 21712.5, + "end": 21712.5, + "probability": 0.4694 + }, + { + "start": 21712.5, + "end": 21712.5, + "probability": 0.0519 + }, + { + "start": 21712.5, + "end": 21712.84, + "probability": 0.3486 + }, + { + "start": 21712.94, + "end": 21713.12, + "probability": 0.4193 + }, + { + "start": 21713.22, + "end": 21720.18, + "probability": 0.9722 + }, + { + "start": 21722.94, + "end": 21724.74, + "probability": 0.5057 + }, + { + "start": 21727.58, + "end": 21733.24, + "probability": 0.7434 + }, + { + "start": 21733.84, + "end": 21735.16, + "probability": 0.8243 + }, + { + "start": 21737.96, + "end": 21739.24, + "probability": 0.3629 + }, + { + "start": 21742.36, + "end": 21744.3, + "probability": 0.1087 + }, + { + "start": 21754.73, + "end": 21755.08, + "probability": 0.1259 + }, + { + "start": 21755.08, + "end": 21755.08, + "probability": 0.2101 + }, + { + "start": 21755.08, + "end": 21755.2, + "probability": 0.233 + }, + { + "start": 21755.4, + "end": 21755.56, + "probability": 0.6238 + }, + { + "start": 21755.88, + "end": 21763.1, + "probability": 0.8216 + }, + { + "start": 21763.64, + "end": 21764.48, + "probability": 0.8301 + }, + { + "start": 21764.82, + "end": 21765.5, + "probability": 0.7517 + }, + { + "start": 21765.72, + "end": 21770.94, + "probability": 0.9331 + }, + { + "start": 21772.76, + "end": 21773.82, + "probability": 0.5862 + }, + { + "start": 21773.98, + "end": 21774.4, + "probability": 0.4987 + }, + { + "start": 21779.8, + "end": 21780.91, + "probability": 0.2054 + }, + { + "start": 21787.58, + "end": 21788.32, + "probability": 0.089 + }, + { + "start": 21790.24, + "end": 21790.44, + "probability": 0.2526 + }, + { + "start": 21790.44, + "end": 21792.72, + "probability": 0.333 + }, + { + "start": 21793.26, + "end": 21796.26, + "probability": 0.9608 + }, + { + "start": 21796.78, + "end": 21798.5, + "probability": 0.9053 + }, + { + "start": 21799.4, + "end": 21800.67, + "probability": 0.545 + }, + { + "start": 21801.38, + "end": 21801.86, + "probability": 0.4653 + }, + { + "start": 21803.13, + "end": 21804.76, + "probability": 0.1307 + }, + { + "start": 21816.46, + "end": 21816.68, + "probability": 0.0206 + }, + { + "start": 21816.68, + "end": 21816.68, + "probability": 0.1593 + }, + { + "start": 21816.68, + "end": 21816.68, + "probability": 0.1058 + }, + { + "start": 21816.68, + "end": 21819.26, + "probability": 0.3591 + }, + { + "start": 21819.9, + "end": 21822.26, + "probability": 0.8801 + }, + { + "start": 21822.78, + "end": 21825.26, + "probability": 0.971 + }, + { + "start": 21825.82, + "end": 21827.0, + "probability": 0.5136 + }, + { + "start": 21827.02, + "end": 21829.26, + "probability": 0.4467 + }, + { + "start": 21830.38, + "end": 21830.64, + "probability": 0.1066 + }, + { + "start": 21834.86, + "end": 21834.88, + "probability": 0.0973 + }, + { + "start": 21842.36, + "end": 21842.56, + "probability": 0.0288 + }, + { + "start": 21842.56, + "end": 21842.56, + "probability": 0.1088 + }, + { + "start": 21842.56, + "end": 21842.56, + "probability": 0.3982 + }, + { + "start": 21842.56, + "end": 21843.0, + "probability": 0.59 + }, + { + "start": 21844.12, + "end": 21844.44, + "probability": 0.3907 + }, + { + "start": 21844.66, + "end": 21845.32, + "probability": 0.0938 + }, + { + "start": 21845.4, + "end": 21845.6, + "probability": 0.66 + }, + { + "start": 21845.94, + "end": 21850.44, + "probability": 0.9941 + }, + { + "start": 21850.94, + "end": 21853.72, + "probability": 0.5725 + }, + { + "start": 21864.82, + "end": 21869.4, + "probability": 0.9766 + }, + { + "start": 21869.9, + "end": 21871.02, + "probability": 0.6578 + }, + { + "start": 21871.12, + "end": 21872.14, + "probability": 0.8949 + }, + { + "start": 21872.78, + "end": 21876.68, + "probability": 0.3046 + }, + { + "start": 21877.06, + "end": 21877.36, + "probability": 0.0695 + }, + { + "start": 21877.4, + "end": 21879.84, + "probability": 0.2 + }, + { + "start": 21879.92, + "end": 21882.02, + "probability": 0.4249 + }, + { + "start": 21882.02, + "end": 21882.06, + "probability": 0.1498 + }, + { + "start": 21889.72, + "end": 21890.0, + "probability": 0.2962 + }, + { + "start": 21890.16, + "end": 21890.94, + "probability": 0.3819 + }, + { + "start": 21891.04, + "end": 21891.22, + "probability": 0.762 + }, + { + "start": 21891.34, + "end": 21897.12, + "probability": 0.877 + }, + { + "start": 21897.12, + "end": 21898.36, + "probability": 0.6675 + }, + { + "start": 21898.44, + "end": 21899.14, + "probability": 0.8731 + }, + { + "start": 21899.8, + "end": 21902.56, + "probability": 0.759 + }, + { + "start": 21903.48, + "end": 21912.9, + "probability": 0.9653 + }, + { + "start": 21914.68, + "end": 21915.22, + "probability": 0.5411 + }, + { + "start": 21915.34, + "end": 21915.64, + "probability": 0.8216 + }, + { + "start": 21916.4, + "end": 21919.46, + "probability": 0.0911 + }, + { + "start": 21928.44, + "end": 21928.58, + "probability": 0.0474 + }, + { + "start": 21928.58, + "end": 21928.58, + "probability": 0.173 + }, + { + "start": 21928.58, + "end": 21928.58, + "probability": 0.2843 + }, + { + "start": 21928.58, + "end": 21929.06, + "probability": 0.5092 + }, + { + "start": 21930.32, + "end": 21930.44, + "probability": 0.5342 + }, + { + "start": 21930.44, + "end": 21930.66, + "probability": 0.3037 + }, + { + "start": 21930.72, + "end": 21930.86, + "probability": 0.5439 + }, + { + "start": 21931.33, + "end": 21933.5, + "probability": 0.8107 + }, + { + "start": 21934.56, + "end": 21936.9, + "probability": 0.8041 + }, + { + "start": 21937.5, + "end": 21938.2, + "probability": 0.5817 + }, + { + "start": 21938.22, + "end": 21938.88, + "probability": 0.5583 + }, + { + "start": 21938.88, + "end": 21939.56, + "probability": 0.6284 + }, + { + "start": 21955.64, + "end": 21956.08, + "probability": 0.2708 + }, + { + "start": 21956.08, + "end": 21956.08, + "probability": 0.0439 + }, + { + "start": 21956.08, + "end": 21956.08, + "probability": 0.3107 + }, + { + "start": 21956.08, + "end": 21956.08, + "probability": 0.0243 + }, + { + "start": 21956.08, + "end": 21957.9, + "probability": 0.2449 + }, + { + "start": 21958.84, + "end": 21959.64, + "probability": 0.5394 + }, + { + "start": 21960.3, + "end": 21963.78, + "probability": 0.7215 + }, + { + "start": 21965.18, + "end": 21965.84, + "probability": 0.6235 + }, + { + "start": 21965.96, + "end": 21970.96, + "probability": 0.6918 + }, + { + "start": 21971.22, + "end": 21973.88, + "probability": 0.4357 + }, + { + "start": 21973.92, + "end": 21974.54, + "probability": 0.6905 + }, + { + "start": 21974.58, + "end": 21975.12, + "probability": 0.8758 + }, + { + "start": 21975.2, + "end": 21975.88, + "probability": 0.6811 + }, + { + "start": 21992.94, + "end": 21993.78, + "probability": 0.3514 + }, + { + "start": 21993.78, + "end": 21993.78, + "probability": 0.0234 + }, + { + "start": 21993.78, + "end": 21993.78, + "probability": 0.1498 + }, + { + "start": 21993.78, + "end": 21993.78, + "probability": 0.1678 + }, + { + "start": 21993.78, + "end": 21993.78, + "probability": 0.1438 + }, + { + "start": 21993.78, + "end": 21995.92, + "probability": 0.7837 + }, + { + "start": 21997.6, + "end": 22001.58, + "probability": 0.9617 + }, + { + "start": 22001.72, + "end": 22002.58, + "probability": 0.671 + }, + { + "start": 22002.72, + "end": 22005.24, + "probability": 0.6416 + }, + { + "start": 22005.48, + "end": 22011.15, + "probability": 0.2829 + }, + { + "start": 22013.56, + "end": 22015.3, + "probability": 0.0063 + }, + { + "start": 22016.08, + "end": 22018.48, + "probability": 0.1979 + }, + { + "start": 22021.4, + "end": 22023.8, + "probability": 0.107 + }, + { + "start": 22023.8, + "end": 22025.06, + "probability": 0.0877 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.0, + "end": 22108.0, + "probability": 0.0 + }, + { + "start": 22108.48, + "end": 22109.88, + "probability": 0.0786 + }, + { + "start": 22110.08, + "end": 22110.9, + "probability": 0.1177 + }, + { + "start": 22111.12, + "end": 22112.8, + "probability": 0.7961 + }, + { + "start": 22112.86, + "end": 22113.68, + "probability": 0.8908 + }, + { + "start": 22114.14, + "end": 22115.22, + "probability": 0.7093 + }, + { + "start": 22115.32, + "end": 22119.32, + "probability": 0.2191 + }, + { + "start": 22129.32, + "end": 22129.5, + "probability": 0.1117 + }, + { + "start": 22129.5, + "end": 22130.24, + "probability": 0.4823 + }, + { + "start": 22131.64, + "end": 22134.68, + "probability": 0.5455 + }, + { + "start": 22135.2, + "end": 22142.9, + "probability": 0.8694 + }, + { + "start": 22142.9, + "end": 22162.02, + "probability": 0.9606 + }, + { + "start": 22162.12, + "end": 22162.96, + "probability": 0.6741 + }, + { + "start": 22172.4, + "end": 22179.18, + "probability": 0.1314 + }, + { + "start": 22179.74, + "end": 22179.9, + "probability": 0.3156 + }, + { + "start": 22179.9, + "end": 22180.92, + "probability": 0.3498 + }, + { + "start": 22181.46, + "end": 22185.92, + "probability": 0.5871 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22310.0, + "end": 22310.0, + "probability": 0.0 + }, + { + "start": 22312.3, + "end": 22312.94, + "probability": 0.0337 + }, + { + "start": 22312.96, + "end": 22313.22, + "probability": 0.0524 + }, + { + "start": 22324.56, + "end": 22325.18, + "probability": 0.1139 + }, + { + "start": 22326.38, + "end": 22332.9, + "probability": 0.2038 + }, + { + "start": 22333.02, + "end": 22333.12, + "probability": 0.2474 + }, + { + "start": 22333.12, + "end": 22334.08, + "probability": 0.1767 + }, + { + "start": 22335.12, + "end": 22337.14, + "probability": 0.3395 + }, + { + "start": 22337.14, + "end": 22338.04, + "probability": 0.0442 + }, + { + "start": 22338.04, + "end": 22343.08, + "probability": 0.1005 + }, + { + "start": 22343.78, + "end": 22344.06, + "probability": 0.279 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22465.0, + "end": 22465.0, + "probability": 0.0 + }, + { + "start": 22467.54, + "end": 22467.78, + "probability": 0.1482 + }, + { + "start": 22473.76, + "end": 22475.16, + "probability": 0.0768 + }, + { + "start": 22475.16, + "end": 22482.36, + "probability": 0.113 + }, + { + "start": 22482.82, + "end": 22487.16, + "probability": 0.0295 + }, + { + "start": 22487.16, + "end": 22489.58, + "probability": 0.0639 + }, + { + "start": 22489.58, + "end": 22489.84, + "probability": 0.0853 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22771.0, + "end": 22771.0, + "probability": 0.0 + }, + { + "start": 22779.74, + "end": 22780.58, + "probability": 0.5338 + }, + { + "start": 22782.02, + "end": 22782.52, + "probability": 0.6849 + }, + { + "start": 22783.08, + "end": 22784.9, + "probability": 0.5952 + }, + { + "start": 22785.52, + "end": 22786.4, + "probability": 0.8864 + }, + { + "start": 22787.1, + "end": 22788.92, + "probability": 0.9222 + }, + { + "start": 22789.98, + "end": 22792.18, + "probability": 0.9946 + }, + { + "start": 22793.62, + "end": 22795.5, + "probability": 0.9292 + }, + { + "start": 22796.4, + "end": 22796.9, + "probability": 0.9847 + }, + { + "start": 22797.9, + "end": 22798.68, + "probability": 0.9184 + }, + { + "start": 22801.08, + "end": 22803.16, + "probability": 0.9912 + }, + { + "start": 22804.2, + "end": 22804.66, + "probability": 0.9885 + }, + { + "start": 22805.26, + "end": 22805.98, + "probability": 0.8928 + }, + { + "start": 22806.98, + "end": 22807.84, + "probability": 0.3105 + }, + { + "start": 22813.38, + "end": 22814.4, + "probability": 0.0977 + }, + { + "start": 22817.84, + "end": 22821.18, + "probability": 0.685 + }, + { + "start": 22822.28, + "end": 22824.28, + "probability": 0.8423 + }, + { + "start": 22827.5, + "end": 22829.1, + "probability": 0.9769 + }, + { + "start": 22830.22, + "end": 22831.04, + "probability": 0.7175 + }, + { + "start": 22831.92, + "end": 22833.18, + "probability": 0.5184 + }, + { + "start": 22834.5, + "end": 22835.46, + "probability": 0.974 + }, + { + "start": 22836.84, + "end": 22837.62, + "probability": 0.4155 + }, + { + "start": 22843.28, + "end": 22844.32, + "probability": 0.7729 + }, + { + "start": 22845.48, + "end": 22845.82, + "probability": 0.7304 + }, + { + "start": 22848.92, + "end": 22849.8, + "probability": 0.5839 + }, + { + "start": 22850.88, + "end": 22851.2, + "probability": 0.8303 + }, + { + "start": 22851.94, + "end": 22852.72, + "probability": 0.5665 + }, + { + "start": 22853.66, + "end": 22854.3, + "probability": 0.9816 + }, + { + "start": 22854.88, + "end": 22855.64, + "probability": 0.9649 + }, + { + "start": 22856.91, + "end": 22859.38, + "probability": 0.9814 + }, + { + "start": 22861.1, + "end": 22861.52, + "probability": 0.9873 + }, + { + "start": 22862.56, + "end": 22863.92, + "probability": 0.9886 + }, + { + "start": 22867.18, + "end": 22867.86, + "probability": 0.5999 + }, + { + "start": 22868.62, + "end": 22869.94, + "probability": 0.729 + }, + { + "start": 22872.14, + "end": 22874.7, + "probability": 0.9392 + }, + { + "start": 22875.84, + "end": 22877.6, + "probability": 0.6857 + }, + { + "start": 22879.38, + "end": 22880.56, + "probability": 0.6864 + }, + { + "start": 22881.32, + "end": 22882.14, + "probability": 0.7734 + }, + { + "start": 22885.9, + "end": 22888.92, + "probability": 0.7509 + }, + { + "start": 22890.4, + "end": 22892.14, + "probability": 0.9496 + }, + { + "start": 22896.48, + "end": 22898.72, + "probability": 0.8023 + }, + { + "start": 22899.58, + "end": 22900.7, + "probability": 0.9662 + }, + { + "start": 22901.42, + "end": 22903.7, + "probability": 0.8329 + }, + { + "start": 22905.86, + "end": 22908.2, + "probability": 0.7546 + }, + { + "start": 22908.72, + "end": 22910.12, + "probability": 0.8722 + }, + { + "start": 22911.1, + "end": 22911.56, + "probability": 0.9764 + }, + { + "start": 22912.86, + "end": 22913.14, + "probability": 0.7404 + }, + { + "start": 22916.18, + "end": 22921.48, + "probability": 0.4253 + }, + { + "start": 22923.3, + "end": 22926.72, + "probability": 0.4017 + }, + { + "start": 22927.38, + "end": 22929.86, + "probability": 0.8611 + }, + { + "start": 22932.56, + "end": 22934.58, + "probability": 0.6105 + }, + { + "start": 22935.54, + "end": 22936.1, + "probability": 0.9636 + }, + { + "start": 22936.7, + "end": 22937.68, + "probability": 0.6367 + }, + { + "start": 22940.92, + "end": 22943.0, + "probability": 0.883 + }, + { + "start": 22945.24, + "end": 22948.94, + "probability": 0.7916 + }, + { + "start": 22949.88, + "end": 22950.3, + "probability": 0.9153 + }, + { + "start": 22950.92, + "end": 22951.32, + "probability": 0.9324 + }, + { + "start": 22958.52, + "end": 22959.68, + "probability": 0.2094 + }, + { + "start": 22961.6, + "end": 22962.06, + "probability": 0.8617 + }, + { + "start": 22963.4, + "end": 22964.24, + "probability": 0.6341 + }, + { + "start": 22965.42, + "end": 22965.72, + "probability": 0.88 + }, + { + "start": 22966.4, + "end": 22967.4, + "probability": 0.8314 + }, + { + "start": 22968.14, + "end": 22968.62, + "probability": 0.9194 + }, + { + "start": 22969.4, + "end": 22970.98, + "probability": 0.939 + }, + { + "start": 22972.0, + "end": 22973.36, + "probability": 0.9849 + }, + { + "start": 22974.08, + "end": 22974.96, + "probability": 0.9465 + }, + { + "start": 22976.06, + "end": 22976.52, + "probability": 0.9878 + }, + { + "start": 22977.68, + "end": 22978.46, + "probability": 0.8893 + }, + { + "start": 22979.24, + "end": 22979.66, + "probability": 0.9792 + }, + { + "start": 22980.28, + "end": 22980.76, + "probability": 0.9691 + }, + { + "start": 22982.4, + "end": 22984.14, + "probability": 0.6668 + }, + { + "start": 22985.8, + "end": 22989.3, + "probability": 0.4744 + }, + { + "start": 23001.16, + "end": 23002.06, + "probability": 0.1673 + }, + { + "start": 23003.29, + "end": 23004.8, + "probability": 0.6535 + }, + { + "start": 23008.48, + "end": 23008.86, + "probability": 0.591 + }, + { + "start": 23010.4, + "end": 23011.16, + "probability": 0.6936 + }, + { + "start": 23012.32, + "end": 23013.52, + "probability": 0.9307 + }, + { + "start": 23014.84, + "end": 23016.66, + "probability": 0.8684 + }, + { + "start": 23021.4, + "end": 23022.47, + "probability": 0.1517 + }, + { + "start": 23022.82, + "end": 23023.2, + "probability": 0.2004 + }, + { + "start": 23023.2, + "end": 23024.2, + "probability": 0.0937 + }, + { + "start": 23024.64, + "end": 23024.92, + "probability": 0.7422 + }, + { + "start": 23025.56, + "end": 23028.02, + "probability": 0.18 + }, + { + "start": 23029.44, + "end": 23032.76, + "probability": 0.1898 + }, + { + "start": 23036.2, + "end": 23036.78, + "probability": 0.0101 + }, + { + "start": 23037.44, + "end": 23039.5, + "probability": 0.6289 + }, + { + "start": 23041.28, + "end": 23042.4, + "probability": 0.0531 + }, + { + "start": 23044.42, + "end": 23044.88, + "probability": 0.7636 + }, + { + "start": 23045.62, + "end": 23046.48, + "probability": 0.0607 + }, + { + "start": 23047.6, + "end": 23048.12, + "probability": 0.8649 + }, + { + "start": 23049.56, + "end": 23050.84, + "probability": 0.0987 + }, + { + "start": 23052.42, + "end": 23052.84, + "probability": 0.4652 + }, + { + "start": 23054.0, + "end": 23054.62, + "probability": 0.0324 + }, + { + "start": 23056.32, + "end": 23056.42, + "probability": 0.0698 + }, + { + "start": 23062.7, + "end": 23063.18, + "probability": 0.8638 + }, + { + "start": 23063.82, + "end": 23064.56, + "probability": 0.0959 + }, + { + "start": 23065.3, + "end": 23065.6, + "probability": 0.4661 + }, + { + "start": 23066.62, + "end": 23069.38, + "probability": 0.0207 + }, + { + "start": 23071.44, + "end": 23073.14, + "probability": 0.0774 + }, + { + "start": 23073.14, + "end": 23073.24, + "probability": 0.1834 + }, + { + "start": 23128.0, + "end": 23128.0, + "probability": 0.0 + }, + { + "start": 23128.0, + "end": 23128.0, + "probability": 0.0 + }, + { + "start": 23128.0, + "end": 23128.0, + "probability": 0.0 + }, + { + "start": 23128.0, + "end": 23128.0, + "probability": 0.0 + }, + { + "start": 23128.0, + "end": 23128.0, + "probability": 0.0 + }, + { + "start": 23128.0, + "end": 23128.0, + "probability": 0.0 + }, + { + "start": 23144.26, + "end": 23147.0, + "probability": 0.9524 + }, + { + "start": 23148.5, + "end": 23149.36, + "probability": 0.5518 + }, + { + "start": 23149.38, + "end": 23150.54, + "probability": 0.6841 + }, + { + "start": 23150.62, + "end": 23152.38, + "probability": 0.8076 + }, + { + "start": 23153.54, + "end": 23153.88, + "probability": 0.0173 + }, + { + "start": 23156.88, + "end": 23158.4, + "probability": 0.1288 + }, + { + "start": 23158.4, + "end": 23160.98, + "probability": 0.0604 + }, + { + "start": 23161.72, + "end": 23162.02, + "probability": 0.1382 + }, + { + "start": 23206.68, + "end": 23208.14, + "probability": 0.0163 + }, + { + "start": 23209.18, + "end": 23212.92, + "probability": 0.0522 + }, + { + "start": 23214.2, + "end": 23214.3, + "probability": 0.1401 + }, + { + "start": 23214.3, + "end": 23215.62, + "probability": 0.1051 + }, + { + "start": 23217.68, + "end": 23219.2, + "probability": 0.1058 + }, + { + "start": 23219.8, + "end": 23220.6, + "probability": 0.0499 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32941.0, + "end": 32941.0, + "probability": 0.0 + }, + { + "start": 32942.24, + "end": 32942.24, + "probability": 0.1488 + }, + { + "start": 32942.24, + "end": 32942.24, + "probability": 0.0955 + }, + { + "start": 32942.24, + "end": 32942.24, + "probability": 0.182 + }, + { + "start": 32942.24, + "end": 32943.86, + "probability": 0.7769 + }, + { + "start": 32944.7, + "end": 32947.8, + "probability": 0.1692 + }, + { + "start": 32949.2, + "end": 32950.44, + "probability": 0.4643 + }, + { + "start": 32951.46, + "end": 32955.66, + "probability": 0.9239 + }, + { + "start": 32956.56, + "end": 32957.94, + "probability": 0.9883 + }, + { + "start": 32959.06, + "end": 32960.66, + "probability": 0.7765 + }, + { + "start": 32960.86, + "end": 32962.68, + "probability": 0.8726 + }, + { + "start": 32964.48, + "end": 32968.36, + "probability": 0.5874 + }, + { + "start": 32969.0, + "end": 32971.18, + "probability": 0.8875 + }, + { + "start": 32972.46, + "end": 32975.26, + "probability": 0.6723 + }, + { + "start": 32980.0, + "end": 32981.46, + "probability": 0.0647 + }, + { + "start": 32982.42, + "end": 32987.5, + "probability": 0.1697 + }, + { + "start": 33014.9, + "end": 33016.5, + "probability": 0.3251 + }, + { + "start": 33016.6, + "end": 33020.42, + "probability": 0.7377 + }, + { + "start": 33022.1, + "end": 33025.54, + "probability": 0.7902 + }, + { + "start": 33026.7, + "end": 33029.24, + "probability": 0.9785 + }, + { + "start": 33030.38, + "end": 33034.38, + "probability": 0.9839 + }, + { + "start": 33034.38, + "end": 33038.74, + "probability": 0.8735 + }, + { + "start": 33039.8, + "end": 33043.06, + "probability": 0.6596 + }, + { + "start": 33048.28, + "end": 33053.46, + "probability": 0.994 + }, + { + "start": 33054.42, + "end": 33059.88, + "probability": 0.5362 + }, + { + "start": 33061.02, + "end": 33062.86, + "probability": 0.657 + }, + { + "start": 33063.48, + "end": 33064.39, + "probability": 0.1763 + }, + { + "start": 33070.02, + "end": 33070.7, + "probability": 0.7191 + }, + { + "start": 33070.8, + "end": 33071.76, + "probability": 0.7779 + }, + { + "start": 33072.18, + "end": 33073.48, + "probability": 0.7523 + }, + { + "start": 33073.5, + "end": 33074.66, + "probability": 0.8988 + }, + { + "start": 33074.96, + "end": 33076.82, + "probability": 0.8206 + }, + { + "start": 33079.06, + "end": 33082.02, + "probability": 0.6558 + }, + { + "start": 33082.02, + "end": 33082.97, + "probability": 0.2099 + }, + { + "start": 33084.04, + "end": 33087.36, + "probability": 0.8043 + }, + { + "start": 33087.72, + "end": 33090.58, + "probability": 0.6659 + }, + { + "start": 33092.45, + "end": 33095.12, + "probability": 0.6211 + }, + { + "start": 33097.92, + "end": 33101.26, + "probability": 0.7478 + }, + { + "start": 33102.08, + "end": 33105.08, + "probability": 0.9032 + }, + { + "start": 33105.72, + "end": 33108.04, + "probability": 0.9097 + }, + { + "start": 33108.74, + "end": 33116.18, + "probability": 0.7956 + }, + { + "start": 33117.1, + "end": 33117.64, + "probability": 0.9807 + }, + { + "start": 33118.34, + "end": 33119.66, + "probability": 0.7591 + }, + { + "start": 33120.3, + "end": 33120.82, + "probability": 0.5133 + }, + { + "start": 33121.38, + "end": 33122.66, + "probability": 0.5671 + }, + { + "start": 33127.76, + "end": 33130.44, + "probability": 0.8595 + }, + { + "start": 33132.08, + "end": 33133.04, + "probability": 0.8301 + }, + { + "start": 33134.12, + "end": 33137.04, + "probability": 0.9731 + }, + { + "start": 33139.08, + "end": 33140.06, + "probability": 0.9593 + }, + { + "start": 33140.96, + "end": 33141.8, + "probability": 0.9845 + }, + { + "start": 33142.78, + "end": 33143.32, + "probability": 0.9873 + }, + { + "start": 33143.94, + "end": 33145.36, + "probability": 0.9323 + }, + { + "start": 33147.2, + "end": 33148.42, + "probability": 0.8264 + }, + { + "start": 33149.28, + "end": 33149.68, + "probability": 0.9666 + }, + { + "start": 33150.62, + "end": 33151.5, + "probability": 0.6102 + }, + { + "start": 33152.5, + "end": 33152.78, + "probability": 0.6731 + }, + { + "start": 33153.54, + "end": 33154.56, + "probability": 0.613 + }, + { + "start": 33155.46, + "end": 33155.82, + "probability": 0.9303 + }, + { + "start": 33156.48, + "end": 33157.4, + "probability": 0.8625 + }, + { + "start": 33158.46, + "end": 33158.9, + "probability": 0.9272 + }, + { + "start": 33159.66, + "end": 33160.52, + "probability": 0.9102 + }, + { + "start": 33161.48, + "end": 33162.06, + "probability": 0.9632 + }, + { + "start": 33162.8, + "end": 33163.68, + "probability": 0.9224 + }, + { + "start": 33164.44, + "end": 33170.02, + "probability": 0.971 + }, + { + "start": 33170.88, + "end": 33171.38, + "probability": 0.9756 + }, + { + "start": 33172.24, + "end": 33173.08, + "probability": 0.3882 + }, + { + "start": 33174.58, + "end": 33175.08, + "probability": 0.9875 + }, + { + "start": 33175.78, + "end": 33176.76, + "probability": 0.9768 + }, + { + "start": 33177.88, + "end": 33178.14, + "probability": 0.5584 + }, + { + "start": 33178.9, + "end": 33179.74, + "probability": 0.6226 + }, + { + "start": 33180.94, + "end": 33182.82, + "probability": 0.9883 + }, + { + "start": 33184.42, + "end": 33184.88, + "probability": 0.8639 + }, + { + "start": 33186.08, + "end": 33187.44, + "probability": 0.9343 + }, + { + "start": 33188.44, + "end": 33190.86, + "probability": 0.7867 + }, + { + "start": 33191.74, + "end": 33192.28, + "probability": 0.9783 + }, + { + "start": 33193.22, + "end": 33194.04, + "probability": 0.9332 + }, + { + "start": 33194.82, + "end": 33197.62, + "probability": 0.9272 + }, + { + "start": 33198.24, + "end": 33199.04, + "probability": 0.9779 + }, + { + "start": 33199.88, + "end": 33200.34, + "probability": 0.9893 + }, + { + "start": 33201.12, + "end": 33202.02, + "probability": 0.9312 + }, + { + "start": 33202.98, + "end": 33203.44, + "probability": 0.9972 + }, + { + "start": 33206.24, + "end": 33207.26, + "probability": 0.553 + }, + { + "start": 33208.08, + "end": 33210.1, + "probability": 0.6177 + }, + { + "start": 33211.28, + "end": 33211.82, + "probability": 0.9854 + }, + { + "start": 33212.44, + "end": 33213.54, + "probability": 0.7303 + }, + { + "start": 33214.34, + "end": 33214.86, + "probability": 0.9795 + }, + { + "start": 33215.54, + "end": 33216.52, + "probability": 0.983 + }, + { + "start": 33217.58, + "end": 33218.16, + "probability": 0.9816 + }, + { + "start": 33218.92, + "end": 33220.08, + "probability": 0.9536 + }, + { + "start": 33220.84, + "end": 33221.38, + "probability": 0.9927 + }, + { + "start": 33222.14, + "end": 33223.12, + "probability": 0.9365 + }, + { + "start": 33223.88, + "end": 33224.46, + "probability": 0.9964 + }, + { + "start": 33225.16, + "end": 33226.3, + "probability": 0.9964 + }, + { + "start": 33227.62, + "end": 33228.08, + "probability": 0.9707 + }, + { + "start": 33228.88, + "end": 33230.78, + "probability": 0.8221 + }, + { + "start": 33231.92, + "end": 33232.16, + "probability": 0.8131 + }, + { + "start": 33233.72, + "end": 33234.02, + "probability": 0.7353 + }, + { + "start": 33234.92, + "end": 33236.08, + "probability": 0.9782 + }, + { + "start": 33236.68, + "end": 33237.0, + "probability": 0.9474 + }, + { + "start": 33237.56, + "end": 33238.56, + "probability": 0.8404 + }, + { + "start": 33240.34, + "end": 33242.76, + "probability": 0.9109 + }, + { + "start": 33244.04, + "end": 33244.8, + "probability": 0.9852 + }, + { + "start": 33245.56, + "end": 33246.58, + "probability": 0.8469 + }, + { + "start": 33249.58, + "end": 33252.84, + "probability": 0.8184 + }, + { + "start": 33253.66, + "end": 33254.7, + "probability": 0.9225 + }, + { + "start": 33255.28, + "end": 33257.56, + "probability": 0.9714 + }, + { + "start": 33259.0, + "end": 33259.52, + "probability": 0.8305 + }, + { + "start": 33260.28, + "end": 33260.62, + "probability": 0.4862 + }, + { + "start": 33262.84, + "end": 33266.02, + "probability": 0.7101 + }, + { + "start": 33266.86, + "end": 33267.42, + "probability": 0.9771 + }, + { + "start": 33268.1, + "end": 33268.98, + "probability": 0.8219 + }, + { + "start": 33270.48, + "end": 33270.76, + "probability": 0.9832 + }, + { + "start": 33271.46, + "end": 33272.6, + "probability": 0.9482 + }, + { + "start": 33273.36, + "end": 33273.86, + "probability": 0.9863 + }, + { + "start": 33274.64, + "end": 33275.46, + "probability": 0.9351 + }, + { + "start": 33276.28, + "end": 33276.7, + "probability": 0.9797 + }, + { + "start": 33277.24, + "end": 33278.1, + "probability": 0.9426 + }, + { + "start": 33279.22, + "end": 33280.83, + "probability": 0.5983 + }, + { + "start": 33282.1, + "end": 33284.36, + "probability": 0.9683 + }, + { + "start": 33285.04, + "end": 33285.46, + "probability": 0.9949 + }, + { + "start": 33286.28, + "end": 33287.16, + "probability": 0.5741 + }, + { + "start": 33288.92, + "end": 33289.46, + "probability": 0.9238 + }, + { + "start": 33290.86, + "end": 33291.84, + "probability": 0.8907 + }, + { + "start": 33292.66, + "end": 33294.6, + "probability": 0.9648 + }, + { + "start": 33295.48, + "end": 33296.04, + "probability": 0.8892 + }, + { + "start": 33296.68, + "end": 33297.46, + "probability": 0.9943 + }, + { + "start": 33298.26, + "end": 33298.8, + "probability": 0.9469 + }, + { + "start": 33299.42, + "end": 33300.22, + "probability": 0.969 + }, + { + "start": 33301.74, + "end": 33302.12, + "probability": 0.9165 + }, + { + "start": 33303.44, + "end": 33304.16, + "probability": 0.9236 + }, + { + "start": 33307.08, + "end": 33309.16, + "probability": 0.7928 + }, + { + "start": 33309.92, + "end": 33310.62, + "probability": 0.9257 + }, + { + "start": 33312.36, + "end": 33312.76, + "probability": 0.9653 + }, + { + "start": 33314.34, + "end": 33314.84, + "probability": 0.5025 + }, + { + "start": 33315.72, + "end": 33316.0, + "probability": 0.688 + }, + { + "start": 33316.68, + "end": 33317.62, + "probability": 0.5964 + }, + { + "start": 33324.52, + "end": 33324.98, + "probability": 0.5799 + }, + { + "start": 33326.1, + "end": 33326.98, + "probability": 0.806 + }, + { + "start": 33330.4, + "end": 33332.96, + "probability": 0.942 + }, + { + "start": 33333.92, + "end": 33335.92, + "probability": 0.9574 + }, + { + "start": 33336.44, + "end": 33336.84, + "probability": 0.9518 + }, + { + "start": 33338.0, + "end": 33338.86, + "probability": 0.9759 + }, + { + "start": 33340.2, + "end": 33342.34, + "probability": 0.9855 + }, + { + "start": 33343.26, + "end": 33343.66, + "probability": 0.953 + }, + { + "start": 33344.36, + "end": 33345.4, + "probability": 0.9958 + }, + { + "start": 33346.1, + "end": 33346.42, + "probability": 0.9915 + }, + { + "start": 33347.06, + "end": 33348.14, + "probability": 0.8708 + }, + { + "start": 33349.0, + "end": 33349.32, + "probability": 0.7284 + }, + { + "start": 33350.02, + "end": 33350.84, + "probability": 0.5899 + }, + { + "start": 33351.94, + "end": 33352.42, + "probability": 0.772 + }, + { + "start": 33353.1, + "end": 33353.9, + "probability": 0.9698 + }, + { + "start": 33354.8, + "end": 33356.92, + "probability": 0.9763 + }, + { + "start": 33357.74, + "end": 33360.08, + "probability": 0.981 + }, + { + "start": 33362.12, + "end": 33364.7, + "probability": 0.8822 + }, + { + "start": 33365.32, + "end": 33365.88, + "probability": 0.9242 + }, + { + "start": 33366.42, + "end": 33367.3, + "probability": 0.9821 + }, + { + "start": 33368.62, + "end": 33369.2, + "probability": 0.9917 + }, + { + "start": 33370.3, + "end": 33371.36, + "probability": 0.7132 + }, + { + "start": 33372.9, + "end": 33373.36, + "probability": 0.9885 + }, + { + "start": 33374.86, + "end": 33375.66, + "probability": 0.7639 + }, + { + "start": 33377.22, + "end": 33377.7, + "probability": 0.7406 + }, + { + "start": 33378.44, + "end": 33379.52, + "probability": 0.8696 + }, + { + "start": 33380.3, + "end": 33380.76, + "probability": 0.9777 + }, + { + "start": 33381.5, + "end": 33382.38, + "probability": 0.8261 + }, + { + "start": 33383.94, + "end": 33385.82, + "probability": 0.9518 + }, + { + "start": 33386.68, + "end": 33387.24, + "probability": 0.9924 + }, + { + "start": 33388.04, + "end": 33388.98, + "probability": 0.8058 + }, + { + "start": 33391.72, + "end": 33392.24, + "probability": 0.9938 + }, + { + "start": 33393.2, + "end": 33394.66, + "probability": 0.8322 + }, + { + "start": 33396.54, + "end": 33398.6, + "probability": 0.9844 + }, + { + "start": 33399.22, + "end": 33400.26, + "probability": 0.9469 + }, + { + "start": 33402.54, + "end": 33403.04, + "probability": 0.9937 + }, + { + "start": 33405.18, + "end": 33406.2, + "probability": 0.581 + }, + { + "start": 33407.16, + "end": 33407.46, + "probability": 0.791 + }, + { + "start": 33408.2, + "end": 33409.16, + "probability": 0.6903 + }, + { + "start": 33410.54, + "end": 33413.56, + "probability": 0.9369 + }, + { + "start": 33414.26, + "end": 33415.14, + "probability": 0.7044 + }, + { + "start": 33415.84, + "end": 33416.36, + "probability": 0.9948 + }, + { + "start": 33416.94, + "end": 33417.86, + "probability": 0.7602 + }, + { + "start": 33418.96, + "end": 33420.94, + "probability": 0.9834 + }, + { + "start": 33423.56, + "end": 33424.02, + "probability": 0.9944 + }, + { + "start": 33425.0, + "end": 33425.88, + "probability": 0.8177 + }, + { + "start": 33426.64, + "end": 33427.02, + "probability": 0.992 + }, + { + "start": 33427.58, + "end": 33428.0, + "probability": 0.973 + }, + { + "start": 33432.54, + "end": 33433.66, + "probability": 0.2669 + }, + { + "start": 33436.36, + "end": 33436.8, + "probability": 0.7556 + }, + { + "start": 33438.06, + "end": 33438.86, + "probability": 0.7604 + }, + { + "start": 33439.68, + "end": 33441.9, + "probability": 0.9482 + }, + { + "start": 33443.04, + "end": 33443.44, + "probability": 0.8662 + }, + { + "start": 33444.04, + "end": 33444.88, + "probability": 0.9884 + }, + { + "start": 33445.82, + "end": 33447.6, + "probability": 0.9231 + }, + { + "start": 33448.44, + "end": 33449.0, + "probability": 0.8783 + }, + { + "start": 33449.82, + "end": 33450.54, + "probability": 0.9075 + }, + { + "start": 33451.86, + "end": 33452.38, + "probability": 0.9845 + }, + { + "start": 33452.94, + "end": 33453.86, + "probability": 0.9887 + }, + { + "start": 33454.96, + "end": 33456.68, + "probability": 0.9507 + }, + { + "start": 33458.02, + "end": 33458.38, + "probability": 0.959 + }, + { + "start": 33459.14, + "end": 33459.96, + "probability": 0.9536 + }, + { + "start": 33460.74, + "end": 33461.1, + "probability": 0.991 + }, + { + "start": 33461.84, + "end": 33462.16, + "probability": 0.5795 + }, + { + "start": 33464.88, + "end": 33465.4, + "probability": 0.818 + }, + { + "start": 33466.14, + "end": 33466.96, + "probability": 0.8424 + }, + { + "start": 33467.62, + "end": 33468.0, + "probability": 0.9447 + }, + { + "start": 33469.22, + "end": 33469.66, + "probability": 0.8339 + }, + { + "start": 33470.78, + "end": 33472.3, + "probability": 0.9917 + }, + { + "start": 33473.42, + "end": 33474.0, + "probability": 0.9878 + }, + { + "start": 33474.94, + "end": 33475.82, + "probability": 0.956 + }, + { + "start": 33477.42, + "end": 33480.12, + "probability": 0.9901 + }, + { + "start": 33481.2, + "end": 33481.6, + "probability": 0.9888 + }, + { + "start": 33482.5, + "end": 33483.4, + "probability": 0.9316 + }, + { + "start": 33484.02, + "end": 33484.44, + "probability": 0.5983 + }, + { + "start": 33485.28, + "end": 33486.57, + "probability": 0.4836 + }, + { + "start": 33488.88, + "end": 33489.42, + "probability": 0.9178 + }, + { + "start": 33490.38, + "end": 33490.96, + "probability": 0.6349 + }, + { + "start": 33491.94, + "end": 33492.42, + "probability": 0.819 + }, + { + "start": 33493.16, + "end": 33493.94, + "probability": 0.7265 + }, + { + "start": 33494.88, + "end": 33495.3, + "probability": 0.8477 + }, + { + "start": 33496.38, + "end": 33497.22, + "probability": 0.828 + }, + { + "start": 33498.08, + "end": 33498.38, + "probability": 0.9878 + }, + { + "start": 33499.24, + "end": 33499.98, + "probability": 0.9425 + }, + { + "start": 33501.32, + "end": 33501.8, + "probability": 0.9593 + }, + { + "start": 33502.58, + "end": 33503.28, + "probability": 0.819 + }, + { + "start": 33504.74, + "end": 33506.8, + "probability": 0.9935 + }, + { + "start": 33507.84, + "end": 33510.22, + "probability": 0.9924 + }, + { + "start": 33510.92, + "end": 33511.4, + "probability": 0.9939 + }, + { + "start": 33512.1, + "end": 33512.98, + "probability": 0.9847 + }, + { + "start": 33514.2, + "end": 33514.74, + "probability": 0.9818 + }, + { + "start": 33515.82, + "end": 33517.0, + "probability": 0.9395 + }, + { + "start": 33517.74, + "end": 33519.2, + "probability": 0.9949 + }, + { + "start": 33520.18, + "end": 33521.32, + "probability": 0.5897 + }, + { + "start": 33521.48, + "end": 33524.48, + "probability": 0.9808 + }, + { + "start": 33525.34, + "end": 33526.62, + "probability": 0.6037 + }, + { + "start": 33527.48, + "end": 33527.96, + "probability": 0.9446 + }, + { + "start": 33528.5, + "end": 33531.48, + "probability": 0.6436 + }, + { + "start": 33532.48, + "end": 33532.92, + "probability": 0.9907 + }, + { + "start": 33535.78, + "end": 33536.5, + "probability": 0.6023 + }, + { + "start": 33537.46, + "end": 33537.8, + "probability": 0.9437 + }, + { + "start": 33541.6, + "end": 33542.96, + "probability": 0.8037 + }, + { + "start": 33544.34, + "end": 33544.82, + "probability": 0.814 + }, + { + "start": 33550.96, + "end": 33551.66, + "probability": 0.4733 + }, + { + "start": 33551.8, + "end": 33555.8, + "probability": 0.9753 + }, + { + "start": 33557.72, + "end": 33558.48, + "probability": 0.6892 + }, + { + "start": 33558.64, + "end": 33559.64, + "probability": 0.7615 + }, + { + "start": 33559.8, + "end": 33561.06, + "probability": 0.7816 + }, + { + "start": 33561.18, + "end": 33562.12, + "probability": 0.9158 + }, + { + "start": 33562.9, + "end": 33562.9, + "probability": 0.0463 + }, + { + "start": 33571.28, + "end": 33573.3, + "probability": 0.0844 + }, + { + "start": 33577.8, + "end": 33579.63, + "probability": 0.0266 + }, + { + "start": 33581.44, + "end": 33587.4, + "probability": 0.0573 + }, + { + "start": 33589.24, + "end": 33590.0, + "probability": 0.0611 + }, + { + "start": 33590.0, + "end": 33590.0, + "probability": 0.0966 + }, + { + "start": 33590.0, + "end": 33594.22, + "probability": 0.1381 + }, + { + "start": 33598.08, + "end": 33598.66, + "probability": 0.1319 + }, + { + "start": 33613.72, + "end": 33615.92, + "probability": 0.0148 + }, + { + "start": 33621.54, + "end": 33628.82, + "probability": 0.6042 + }, + { + "start": 33629.42, + "end": 33632.44, + "probability": 0.4119 + }, + { + "start": 33632.76, + "end": 33633.52, + "probability": 0.0759 + }, + { + "start": 33639.48, + "end": 33645.5, + "probability": 0.6847 + }, + { + "start": 33645.82, + "end": 33645.98, + "probability": 0.1273 + }, + { + "start": 33645.98, + "end": 33648.36, + "probability": 0.3764 + }, + { + "start": 33648.63, + "end": 33648.75, + "probability": 0.0087 + }, + { + "start": 33691.0, + "end": 33691.0, + "probability": 0.0 + }, + { + "start": 33691.0, + "end": 33691.0, + "probability": 0.0 + }, + { + "start": 33691.0, + "end": 33691.0, + "probability": 0.0 + }, + { + "start": 33691.0, + "end": 33691.0, + "probability": 0.0 + }, + { + "start": 33691.22, + "end": 33699.58, + "probability": 0.1293 + }, + { + "start": 33699.58, + "end": 33699.64, + "probability": 0.245 + }, + { + "start": 33700.48, + "end": 33701.46, + "probability": 0.3005 + }, + { + "start": 33710.64, + "end": 33712.48, + "probability": 0.1196 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33818.0, + "end": 33818.0, + "probability": 0.0 + }, + { + "start": 33824.33, + "end": 33826.08, + "probability": 0.265 + }, + { + "start": 33827.6, + "end": 33829.62, + "probability": 0.0071 + }, + { + "start": 33831.66, + "end": 33831.88, + "probability": 0.4201 + }, + { + "start": 33831.9, + "end": 33833.28, + "probability": 0.6161 + }, + { + "start": 33833.28, + "end": 33834.1, + "probability": 0.2657 + }, + { + "start": 33835.18, + "end": 33839.02, + "probability": 0.0246 + }, + { + "start": 33839.24, + "end": 33839.34, + "probability": 0.12 + }, + { + "start": 33839.34, + "end": 33840.16, + "probability": 0.5353 + }, + { + "start": 33840.58, + "end": 33841.08, + "probability": 0.1557 + }, + { + "start": 33841.82, + "end": 33846.76, + "probability": 0.5692 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33946.0, + "end": 33946.0, + "probability": 0.0 + }, + { + "start": 33953.84, + "end": 33955.24, + "probability": 0.6133 + }, + { + "start": 33955.24, + "end": 33955.24, + "probability": 0.0363 + }, + { + "start": 33955.24, + "end": 33955.24, + "probability": 0.188 + }, + { + "start": 33955.24, + "end": 33957.44, + "probability": 0.345 + }, + { + "start": 33958.04, + "end": 33958.04, + "probability": 0.259 + }, + { + "start": 33958.04, + "end": 33958.04, + "probability": 0.1696 + }, + { + "start": 33958.04, + "end": 33958.04, + "probability": 0.4185 + }, + { + "start": 33958.04, + "end": 33958.94, + "probability": 0.3211 + }, + { + "start": 33958.94, + "end": 33961.59, + "probability": 0.568 + }, + { + "start": 33962.02, + "end": 33963.45, + "probability": 0.5086 + }, + { + "start": 33963.56, + "end": 33964.3, + "probability": 0.4973 + }, + { + "start": 33969.52, + "end": 33970.18, + "probability": 0.033 + }, + { + "start": 33970.18, + "end": 33970.32, + "probability": 0.0753 + }, + { + "start": 33973.18, + "end": 33975.56, + "probability": 0.0513 + }, + { + "start": 33975.76, + "end": 33975.86, + "probability": 0.0066 + }, + { + "start": 33979.36, + "end": 33985.4, + "probability": 0.4625 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.0, + "end": 34073.0, + "probability": 0.0 + }, + { + "start": 34073.28, + "end": 34074.28, + "probability": 0.5679 + }, + { + "start": 34074.28, + "end": 34074.28, + "probability": 0.0122 + }, + { + "start": 34074.28, + "end": 34074.28, + "probability": 0.1329 + }, + { + "start": 34074.28, + "end": 34074.28, + "probability": 0.1808 + }, + { + "start": 34074.28, + "end": 34080.9, + "probability": 0.7257 + }, + { + "start": 34082.7, + "end": 34084.46, + "probability": 0.9432 + }, + { + "start": 34087.9, + "end": 34094.88, + "probability": 0.7696 + }, + { + "start": 34095.94, + "end": 34097.14, + "probability": 0.7606 + }, + { + "start": 34097.94, + "end": 34101.68, + "probability": 0.9885 + }, + { + "start": 34102.42, + "end": 34103.14, + "probability": 0.953 + }, + { + "start": 34105.99, + "end": 34109.36, + "probability": 0.6178 + }, + { + "start": 34110.32, + "end": 34111.6, + "probability": 0.371 + }, + { + "start": 34113.12, + "end": 34117.22, + "probability": 0.2606 + }, + { + "start": 34117.56, + "end": 34121.66, + "probability": 0.9375 + }, + { + "start": 34121.66, + "end": 34122.24, + "probability": 0.8355 + }, + { + "start": 34122.8, + "end": 34125.74, + "probability": 0.9693 + }, + { + "start": 34127.14, + "end": 34128.38, + "probability": 0.7021 + }, + { + "start": 34129.0, + "end": 34129.98, + "probability": 0.8599 + }, + { + "start": 34130.06, + "end": 34132.62, + "probability": 0.6769 + }, + { + "start": 34132.68, + "end": 34135.38, + "probability": 0.7759 + }, + { + "start": 34135.8, + "end": 34138.48, + "probability": 0.4909 + }, + { + "start": 34138.56, + "end": 34139.46, + "probability": 0.7172 + }, + { + "start": 34141.7, + "end": 34143.84, + "probability": 0.8445 + }, + { + "start": 34149.76, + "end": 34150.7, + "probability": 0.1429 + }, + { + "start": 34151.1, + "end": 34152.1, + "probability": 0.0505 + }, + { + "start": 34152.42, + "end": 34152.46, + "probability": 0.2935 + }, + { + "start": 34152.46, + "end": 34152.46, + "probability": 0.3166 + }, + { + "start": 34152.46, + "end": 34153.54, + "probability": 0.3096 + }, + { + "start": 34154.08, + "end": 34154.36, + "probability": 0.5717 + }, + { + "start": 34155.2, + "end": 34158.24, + "probability": 0.8183 + }, + { + "start": 34158.96, + "end": 34162.9, + "probability": 0.7497 + }, + { + "start": 34163.1, + "end": 34164.1, + "probability": 0.5162 + }, + { + "start": 34164.48, + "end": 34165.5, + "probability": 0.4088 + }, + { + "start": 34166.76, + "end": 34169.54, + "probability": 0.2272 + }, + { + "start": 34173.12, + "end": 34173.12, + "probability": 0.0429 + }, + { + "start": 34179.6, + "end": 34180.04, + "probability": 0.0508 + }, + { + "start": 34180.04, + "end": 34180.04, + "probability": 0.2887 + }, + { + "start": 34180.04, + "end": 34180.04, + "probability": 0.0586 + }, + { + "start": 34180.04, + "end": 34180.62, + "probability": 0.4001 + }, + { + "start": 34180.78, + "end": 34184.42, + "probability": 0.6407 + }, + { + "start": 34184.48, + "end": 34184.78, + "probability": 0.4535 + }, + { + "start": 34185.0, + "end": 34185.96, + "probability": 0.4048 + }, + { + "start": 34186.12, + "end": 34187.98, + "probability": 0.7964 + }, + { + "start": 34188.72, + "end": 34192.74, + "probability": 0.9929 + }, + { + "start": 34192.9, + "end": 34193.98, + "probability": 0.6376 + }, + { + "start": 34194.22, + "end": 34195.6, + "probability": 0.544 + }, + { + "start": 34197.42, + "end": 34200.7, + "probability": 0.2271 + }, + { + "start": 34204.0, + "end": 34208.66, + "probability": 0.0917 + }, + { + "start": 34211.3, + "end": 34211.56, + "probability": 0.3044 + }, + { + "start": 34211.56, + "end": 34214.72, + "probability": 0.4817 + }, + { + "start": 34215.4, + "end": 34217.72, + "probability": 0.9833 + }, + { + "start": 34217.72, + "end": 34221.24, + "probability": 0.8611 + }, + { + "start": 34221.92, + "end": 34222.16, + "probability": 0.3337 + }, + { + "start": 34222.3, + "end": 34225.0, + "probability": 0.9574 + }, + { + "start": 34225.14, + "end": 34228.74, + "probability": 0.7932 + }, + { + "start": 34229.12, + "end": 34230.44, + "probability": 0.6711 + }, + { + "start": 34231.22, + "end": 34234.44, + "probability": 0.7601 + }, + { + "start": 34235.14, + "end": 34236.1, + "probability": 0.6771 + }, + { + "start": 34236.12, + "end": 34236.72, + "probability": 0.5849 + }, + { + "start": 34237.1, + "end": 34239.68, + "probability": 0.2282 + }, + { + "start": 34240.84, + "end": 34241.33, + "probability": 0.0879 + }, + { + "start": 34244.22, + "end": 34244.76, + "probability": 0.0932 + }, + { + "start": 34248.9, + "end": 34251.94, + "probability": 0.1415 + }, + { + "start": 34252.52, + "end": 34252.96, + "probability": 0.0328 + }, + { + "start": 34253.18, + "end": 34254.06, + "probability": 0.3852 + }, + { + "start": 34254.4, + "end": 34254.58, + "probability": 0.4255 + }, + { + "start": 34254.94, + "end": 34261.3, + "probability": 0.9236 + }, + { + "start": 34261.44, + "end": 34262.46, + "probability": 0.8445 + }, + { + "start": 34263.74, + "end": 34266.95, + "probability": 0.8436 + }, + { + "start": 34268.38, + "end": 34272.72, + "probability": 0.905 + }, + { + "start": 34273.26, + "end": 34276.44, + "probability": 0.9962 + }, + { + "start": 34276.5, + "end": 34277.45, + "probability": 0.5007 + }, + { + "start": 34277.88, + "end": 34278.42, + "probability": 0.4103 + }, + { + "start": 34281.3, + "end": 34283.32, + "probability": 0.2399 + }, + { + "start": 34283.96, + "end": 34286.46, + "probability": 0.0751 + }, + { + "start": 34289.36, + "end": 34291.68, + "probability": 0.0898 + }, + { + "start": 34292.54, + "end": 34293.46, + "probability": 0.3596 + }, + { + "start": 34293.46, + "end": 34293.76, + "probability": 0.2175 + }, + { + "start": 34294.1, + "end": 34294.68, + "probability": 0.3467 + }, + { + "start": 34294.86, + "end": 34295.16, + "probability": 0.4149 + }, + { + "start": 34295.32, + "end": 34300.84, + "probability": 0.9562 + }, + { + "start": 34301.76, + "end": 34304.98, + "probability": 0.8348 + }, + { + "start": 34305.02, + "end": 34305.94, + "probability": 0.7318 + }, + { + "start": 34319.26, + "end": 34319.9, + "probability": 0.6407 + }, + { + "start": 34319.9, + "end": 34319.9, + "probability": 0.1086 + }, + { + "start": 34319.9, + "end": 34319.9, + "probability": 0.2981 + }, + { + "start": 34319.9, + "end": 34319.9, + "probability": 0.0132 + }, + { + "start": 34319.9, + "end": 34323.53, + "probability": 0.4569 + }, + { + "start": 34324.58, + "end": 34327.0, + "probability": 0.9766 + }, + { + "start": 34327.12, + "end": 34329.84, + "probability": 0.9968 + }, + { + "start": 34331.3, + "end": 34334.66, + "probability": 0.668 + }, + { + "start": 34335.32, + "end": 34336.29, + "probability": 0.6654 + }, + { + "start": 34336.76, + "end": 34337.75, + "probability": 0.9885 + }, + { + "start": 34339.3, + "end": 34340.32, + "probability": 0.3113 + }, + { + "start": 34345.84, + "end": 34346.88, + "probability": 0.0039 + }, + { + "start": 34347.94, + "end": 34349.04, + "probability": 0.1612 + }, + { + "start": 34351.52, + "end": 34353.36, + "probability": 0.1391 + }, + { + "start": 34353.78, + "end": 34353.94, + "probability": 0.0698 + }, + { + "start": 34353.94, + "end": 34354.0, + "probability": 0.3604 + }, + { + "start": 34354.0, + "end": 34354.44, + "probability": 0.2399 + }, + { + "start": 34354.72, + "end": 34355.48, + "probability": 0.3522 + }, + { + "start": 34355.54, + "end": 34355.88, + "probability": 0.5584 + }, + { + "start": 34356.08, + "end": 34360.7, + "probability": 0.894 + }, + { + "start": 34364.02, + "end": 34365.16, + "probability": 0.5582 + }, + { + "start": 34365.46, + "end": 34368.34, + "probability": 0.7869 + }, + { + "start": 34368.56, + "end": 34370.02, + "probability": 0.9219 + }, + { + "start": 34370.86, + "end": 34374.68, + "probability": 0.8999 + }, + { + "start": 34375.26, + "end": 34376.48, + "probability": 0.8149 + }, + { + "start": 34376.94, + "end": 34380.62, + "probability": 0.5283 + }, + { + "start": 34380.84, + "end": 34381.06, + "probability": 0.3771 + }, + { + "start": 34385.06, + "end": 34387.04, + "probability": 0.989 + }, + { + "start": 34387.7, + "end": 34392.4, + "probability": 0.9673 + }, + { + "start": 34392.54, + "end": 34393.74, + "probability": 0.7292 + }, + { + "start": 34394.2, + "end": 34395.4, + "probability": 0.6724 + }, + { + "start": 34395.72, + "end": 34396.42, + "probability": 0.2091 + }, + { + "start": 34396.42, + "end": 34397.2, + "probability": 0.4276 + }, + { + "start": 34400.56, + "end": 34403.08, + "probability": 0.2436 + }, + { + "start": 34403.95, + "end": 34408.66, + "probability": 0.095 + }, + { + "start": 34410.0, + "end": 34411.7, + "probability": 0.1531 + }, + { + "start": 34411.7, + "end": 34413.66, + "probability": 0.0472 + }, + { + "start": 34413.86, + "end": 34414.56, + "probability": 0.3568 + }, + { + "start": 34414.8, + "end": 34415.2, + "probability": 0.4823 + }, + { + "start": 34415.43, + "end": 34421.88, + "probability": 0.8835 + }, + { + "start": 34422.02, + "end": 34423.3, + "probability": 0.9494 + }, + { + "start": 34423.86, + "end": 34428.36, + "probability": 0.9303 + }, + { + "start": 34429.16, + "end": 34429.32, + "probability": 0.2935 + }, + { + "start": 34451.12, + "end": 34456.2, + "probability": 0.6752 + }, + { + "start": 34456.2, + "end": 34459.64, + "probability": 0.9977 + }, + { + "start": 34463.88, + "end": 34467.44, + "probability": 0.2504 + }, + { + "start": 34468.43, + "end": 34468.96, + "probability": 0.2717 + }, + { + "start": 34476.24, + "end": 34476.82, + "probability": 0.3173 + }, + { + "start": 34476.82, + "end": 34476.82, + "probability": 0.2354 + }, + { + "start": 34476.82, + "end": 34477.16, + "probability": 0.3325 + }, + { + "start": 34477.26, + "end": 34477.58, + "probability": 0.5074 + }, + { + "start": 34477.9, + "end": 34481.38, + "probability": 0.8551 + }, + { + "start": 34482.32, + "end": 34485.82, + "probability": 0.8618 + }, + { + "start": 34485.96, + "end": 34486.58, + "probability": 0.5999 + }, + { + "start": 34486.66, + "end": 34487.3, + "probability": 0.7288 + }, + { + "start": 34493.65, + "end": 34495.24, + "probability": 0.2153 + }, + { + "start": 34500.34, + "end": 34501.52, + "probability": 0.0686 + }, + { + "start": 34501.52, + "end": 34501.54, + "probability": 0.0975 + }, + { + "start": 34501.54, + "end": 34501.54, + "probability": 0.0341 + }, + { + "start": 34501.6, + "end": 34502.5, + "probability": 0.223 + }, + { + "start": 34502.52, + "end": 34502.84, + "probability": 0.4146 + }, + { + "start": 34502.84, + "end": 34503.84, + "probability": 0.3572 + }, + { + "start": 34504.06, + "end": 34504.34, + "probability": 0.6519 + }, + { + "start": 34504.68, + "end": 34508.64, + "probability": 0.7916 + }, + { + "start": 34508.74, + "end": 34510.52, + "probability": 0.9905 + }, + { + "start": 34511.42, + "end": 34513.49, + "probability": 0.5689 + }, + { + "start": 34515.14, + "end": 34515.8, + "probability": 0.5402 + }, + { + "start": 34515.84, + "end": 34516.28, + "probability": 0.596 + }, + { + "start": 34516.38, + "end": 34517.04, + "probability": 0.7171 + }, + { + "start": 34523.21, + "end": 34528.84, + "probability": 0.3077 + }, + { + "start": 34531.7, + "end": 34532.28, + "probability": 0.162 + }, + { + "start": 34532.94, + "end": 34538.02, + "probability": 0.2231 + }, + { + "start": 34540.28, + "end": 34541.46, + "probability": 0.3514 + }, + { + "start": 34541.76, + "end": 34548.14, + "probability": 0.9093 + }, + { + "start": 34549.32, + "end": 34551.72, + "probability": 0.8008 + }, + { + "start": 34552.54, + "end": 34557.16, + "probability": 0.9629 + }, + { + "start": 34557.26, + "end": 34559.22, + "probability": 0.8107 + }, + { + "start": 34560.86, + "end": 34564.08, + "probability": 0.1219 + }, + { + "start": 34577.82, + "end": 34578.62, + "probability": 0.2954 + }, + { + "start": 34580.54, + "end": 34584.92, + "probability": 0.1083 + }, + { + "start": 34585.58, + "end": 34588.78, + "probability": 0.4402 + }, + { + "start": 34589.28, + "end": 34593.8, + "probability": 0.8076 + }, + { + "start": 34593.9, + "end": 34594.76, + "probability": 0.8584 + }, + { + "start": 34594.8, + "end": 34595.58, + "probability": 0.9653 + }, + { + "start": 34596.58, + "end": 34597.44, + "probability": 0.9432 + }, + { + "start": 34597.54, + "end": 34603.42, + "probability": 0.8438 + }, + { + "start": 34603.42, + "end": 34606.7, + "probability": 0.9974 + }, + { + "start": 34606.78, + "end": 34608.14, + "probability": 0.6254 + }, + { + "start": 34608.48, + "end": 34613.82, + "probability": 0.9683 + }, + { + "start": 34613.82, + "end": 34620.12, + "probability": 0.9877 + }, + { + "start": 34620.28, + "end": 34621.02, + "probability": 0.793 + }, + { + "start": 34621.12, + "end": 34622.82, + "probability": 0.8033 + }, + { + "start": 34624.38, + "end": 34626.44, + "probability": 0.7487 + }, + { + "start": 34627.02, + "end": 34627.48, + "probability": 0.4672 + }, + { + "start": 34627.64, + "end": 34628.22, + "probability": 0.9668 + }, + { + "start": 34628.54, + "end": 34631.74, + "probability": 0.459 + }, + { + "start": 34632.44, + "end": 34632.8, + "probability": 0.9507 + }, + { + "start": 34633.38, + "end": 34634.42, + "probability": 0.8577 + }, + { + "start": 34635.2, + "end": 34635.62, + "probability": 0.9651 + }, + { + "start": 34636.22, + "end": 34640.42, + "probability": 0.7072 + }, + { + "start": 34641.08, + "end": 34643.04, + "probability": 0.8726 + }, + { + "start": 34643.68, + "end": 34645.48, + "probability": 0.9821 + }, + { + "start": 34646.3, + "end": 34648.28, + "probability": 0.8369 + }, + { + "start": 34649.0, + "end": 34649.38, + "probability": 0.8943 + }, + { + "start": 34650.2, + "end": 34650.86, + "probability": 0.5555 + }, + { + "start": 34651.66, + "end": 34652.16, + "probability": 0.9922 + }, + { + "start": 34653.02, + "end": 34653.84, + "probability": 0.7141 + }, + { + "start": 34655.1, + "end": 34657.04, + "probability": 0.981 + }, + { + "start": 34657.94, + "end": 34658.38, + "probability": 0.9844 + }, + { + "start": 34659.18, + "end": 34660.0, + "probability": 0.7098 + }, + { + "start": 34661.08, + "end": 34661.52, + "probability": 0.7286 + }, + { + "start": 34662.4, + "end": 34663.16, + "probability": 0.8226 + }, + { + "start": 34664.06, + "end": 34664.54, + "probability": 0.9723 + }, + { + "start": 34665.12, + "end": 34665.92, + "probability": 0.9046 + }, + { + "start": 34666.48, + "end": 34668.74, + "probability": 0.9784 + }, + { + "start": 34669.44, + "end": 34671.48, + "probability": 0.967 + }, + { + "start": 34672.28, + "end": 34674.04, + "probability": 0.8238 + }, + { + "start": 34674.64, + "end": 34675.06, + "probability": 0.761 + }, + { + "start": 34675.8, + "end": 34676.6, + "probability": 0.4539 + }, + { + "start": 34677.44, + "end": 34679.24, + "probability": 0.958 + }, + { + "start": 34680.12, + "end": 34681.94, + "probability": 0.9019 + }, + { + "start": 34682.64, + "end": 34683.08, + "probability": 0.5907 + }, + { + "start": 34683.82, + "end": 34684.6, + "probability": 0.7796 + }, + { + "start": 34690.46, + "end": 34691.46, + "probability": 0.8494 + }, + { + "start": 34692.68, + "end": 34693.58, + "probability": 0.6267 + }, + { + "start": 34695.28, + "end": 34695.76, + "probability": 0.965 + }, + { + "start": 34696.44, + "end": 34697.3, + "probability": 0.8898 + }, + { + "start": 34699.5, + "end": 34701.84, + "probability": 0.9519 + }, + { + "start": 34703.08, + "end": 34703.48, + "probability": 0.676 + }, + { + "start": 34704.34, + "end": 34704.96, + "probability": 0.6195 + }, + { + "start": 34706.22, + "end": 34706.66, + "probability": 0.9658 + }, + { + "start": 34707.38, + "end": 34708.2, + "probability": 0.9815 + }, + { + "start": 34708.94, + "end": 34709.38, + "probability": 0.9778 + }, + { + "start": 34710.0, + "end": 34710.76, + "probability": 0.8819 + }, + { + "start": 34711.68, + "end": 34713.42, + "probability": 0.9907 + }, + { + "start": 34714.34, + "end": 34714.76, + "probability": 0.9674 + }, + { + "start": 34715.28, + "end": 34716.12, + "probability": 0.6842 + }, + { + "start": 34717.28, + "end": 34717.7, + "probability": 0.5848 + }, + { + "start": 34718.36, + "end": 34719.18, + "probability": 0.6309 + }, + { + "start": 34720.28, + "end": 34720.72, + "probability": 0.9844 + }, + { + "start": 34721.44, + "end": 34722.24, + "probability": 0.919 + }, + { + "start": 34723.08, + "end": 34724.44, + "probability": 0.8082 + }, + { + "start": 34725.54, + "end": 34727.18, + "probability": 0.9873 + }, + { + "start": 34728.28, + "end": 34728.74, + "probability": 0.9704 + }, + { + "start": 34729.46, + "end": 34730.2, + "probability": 0.8948 + }, + { + "start": 34730.92, + "end": 34731.42, + "probability": 0.9886 + }, + { + "start": 34732.02, + "end": 34733.1, + "probability": 0.8369 + }, + { + "start": 34734.02, + "end": 34734.44, + "probability": 0.9841 + }, + { + "start": 34735.14, + "end": 34735.94, + "probability": 0.8938 + }, + { + "start": 34736.86, + "end": 34738.58, + "probability": 0.9824 + }, + { + "start": 34740.16, + "end": 34740.62, + "probability": 0.99 + }, + { + "start": 34741.18, + "end": 34741.94, + "probability": 0.8145 + }, + { + "start": 34742.84, + "end": 34744.76, + "probability": 0.6996 + }, + { + "start": 34745.76, + "end": 34747.22, + "probability": 0.8703 + }, + { + "start": 34748.08, + "end": 34749.72, + "probability": 0.9845 + }, + { + "start": 34750.4, + "end": 34751.96, + "probability": 0.6613 + }, + { + "start": 34752.78, + "end": 34754.3, + "probability": 0.9633 + }, + { + "start": 34755.28, + "end": 34757.02, + "probability": 0.9745 + }, + { + "start": 34757.88, + "end": 34759.68, + "probability": 0.9211 + }, + { + "start": 34761.38, + "end": 34763.08, + "probability": 0.8097 + }, + { + "start": 34764.16, + "end": 34764.58, + "probability": 0.7175 + }, + { + "start": 34765.36, + "end": 34766.26, + "probability": 0.7986 + }, + { + "start": 34767.1, + "end": 34767.42, + "probability": 0.9897 + }, + { + "start": 34768.1, + "end": 34769.3, + "probability": 0.7772 + }, + { + "start": 34769.88, + "end": 34774.4, + "probability": 0.965 + }, + { + "start": 34777.32, + "end": 34778.66, + "probability": 0.9924 + }, + { + "start": 34779.56, + "end": 34783.04, + "probability": 0.9494 + }, + { + "start": 34784.12, + "end": 34784.58, + "probability": 0.9961 + }, + { + "start": 34785.12, + "end": 34787.14, + "probability": 0.9915 + }, + { + "start": 34787.92, + "end": 34789.06, + "probability": 0.8016 + }, + { + "start": 34789.9, + "end": 34790.2, + "probability": 0.6046 + }, + { + "start": 34790.88, + "end": 34791.68, + "probability": 0.8779 + }, + { + "start": 34792.84, + "end": 34793.26, + "probability": 0.9486 + }, + { + "start": 34793.92, + "end": 34794.6, + "probability": 0.8782 + }, + { + "start": 34795.58, + "end": 34797.88, + "probability": 0.5458 + }, + { + "start": 34800.62, + "end": 34804.94, + "probability": 0.9375 + }, + { + "start": 34806.16, + "end": 34806.94, + "probability": 0.7563 + }, + { + "start": 34807.72, + "end": 34809.5, + "probability": 0.7737 + }, + { + "start": 34810.48, + "end": 34810.82, + "probability": 0.8576 + }, + { + "start": 34811.58, + "end": 34812.44, + "probability": 0.9119 + }, + { + "start": 34813.44, + "end": 34815.04, + "probability": 0.9709 + }, + { + "start": 34815.82, + "end": 34816.28, + "probability": 0.894 + }, + { + "start": 34817.02, + "end": 34817.72, + "probability": 0.9527 + }, + { + "start": 34822.06, + "end": 34823.58, + "probability": 0.7958 + }, + { + "start": 34825.6, + "end": 34826.72, + "probability": 0.8241 + }, + { + "start": 34827.6, + "end": 34827.9, + "probability": 0.9924 + }, + { + "start": 34828.62, + "end": 34829.46, + "probability": 0.6736 + }, + { + "start": 34830.22, + "end": 34830.68, + "probability": 0.9562 + }, + { + "start": 34831.48, + "end": 34832.16, + "probability": 0.8895 + }, + { + "start": 34832.82, + "end": 34834.44, + "probability": 0.9847 + }, + { + "start": 34835.08, + "end": 34835.58, + "probability": 0.974 + }, + { + "start": 34836.2, + "end": 34836.94, + "probability": 0.714 + }, + { + "start": 34839.04, + "end": 34839.5, + "probability": 0.7448 + }, + { + "start": 34840.34, + "end": 34841.14, + "probability": 0.9753 + }, + { + "start": 34841.88, + "end": 34842.16, + "probability": 0.8464 + }, + { + "start": 34842.76, + "end": 34843.82, + "probability": 0.9621 + }, + { + "start": 34845.0, + "end": 34845.4, + "probability": 0.9858 + }, + { + "start": 34846.88, + "end": 34847.58, + "probability": 0.9092 + }, + { + "start": 34848.12, + "end": 34851.4, + "probability": 0.9862 + }, + { + "start": 34852.66, + "end": 34853.1, + "probability": 0.9448 + }, + { + "start": 34853.84, + "end": 34854.64, + "probability": 0.9785 + }, + { + "start": 34855.3, + "end": 34857.02, + "probability": 0.9876 + }, + { + "start": 34857.84, + "end": 34858.12, + "probability": 0.5798 + }, + { + "start": 34859.02, + "end": 34859.92, + "probability": 0.8796 + }, + { + "start": 34860.68, + "end": 34862.26, + "probability": 0.9128 + }, + { + "start": 34863.1, + "end": 34865.0, + "probability": 0.9735 + }, + { + "start": 34865.96, + "end": 34867.82, + "probability": 0.9841 + }, + { + "start": 34868.64, + "end": 34871.48, + "probability": 0.982 + }, + { + "start": 34872.38, + "end": 34873.0, + "probability": 0.9839 + }, + { + "start": 34873.62, + "end": 34874.8, + "probability": 0.9037 + }, + { + "start": 34875.4, + "end": 34876.46, + "probability": 0.9857 + }, + { + "start": 34877.3, + "end": 34878.06, + "probability": 0.9942 + }, + { + "start": 34878.86, + "end": 34879.38, + "probability": 0.9639 + }, + { + "start": 34879.9, + "end": 34880.82, + "probability": 0.6604 + }, + { + "start": 34881.84, + "end": 34882.22, + "probability": 0.6549 + }, + { + "start": 34883.42, + "end": 34884.22, + "probability": 0.791 + }, + { + "start": 34885.22, + "end": 34885.7, + "probability": 0.9233 + }, + { + "start": 34886.26, + "end": 34887.1, + "probability": 0.9245 + }, + { + "start": 34887.88, + "end": 34889.38, + "probability": 0.9832 + }, + { + "start": 34891.34, + "end": 34894.06, + "probability": 0.9836 + }, + { + "start": 34894.68, + "end": 34895.18, + "probability": 0.9701 + }, + { + "start": 34895.74, + "end": 34897.58, + "probability": 0.9806 + }, + { + "start": 34898.2, + "end": 34899.98, + "probability": 0.9429 + }, + { + "start": 34900.74, + "end": 34901.16, + "probability": 0.9753 + }, + { + "start": 34902.06, + "end": 34903.1, + "probability": 0.9826 + }, + { + "start": 34905.32, + "end": 34905.82, + "probability": 0.9976 + }, + { + "start": 34907.48, + "end": 34908.42, + "probability": 0.7577 + }, + { + "start": 34909.26, + "end": 34909.66, + "probability": 0.6545 + }, + { + "start": 34910.28, + "end": 34911.14, + "probability": 0.6897 + }, + { + "start": 34912.42, + "end": 34914.4, + "probability": 0.9081 + }, + { + "start": 34915.0, + "end": 34915.46, + "probability": 0.9447 + }, + { + "start": 34916.36, + "end": 34917.48, + "probability": 0.7028 + }, + { + "start": 34919.08, + "end": 34919.66, + "probability": 0.9958 + }, + { + "start": 34920.54, + "end": 34921.54, + "probability": 0.768 + }, + { + "start": 34923.82, + "end": 34924.86, + "probability": 0.9944 + }, + { + "start": 34925.76, + "end": 34926.8, + "probability": 0.9354 + }, + { + "start": 34928.96, + "end": 34929.86, + "probability": 0.9885 + }, + { + "start": 34930.72, + "end": 34931.54, + "probability": 0.9597 + }, + { + "start": 34932.26, + "end": 34932.68, + "probability": 0.9819 + }, + { + "start": 34933.6, + "end": 34934.54, + "probability": 0.8811 + }, + { + "start": 34943.18, + "end": 34946.96, + "probability": 0.494 + }, + { + "start": 34947.48, + "end": 34953.2, + "probability": 0.8307 + }, + { + "start": 34954.06, + "end": 34957.94, + "probability": 0.6873 + }, + { + "start": 34958.88, + "end": 34960.92, + "probability": 0.8118 + }, + { + "start": 34961.32, + "end": 34964.04, + "probability": 0.3847 + }, + { + "start": 34964.2, + "end": 34969.86, + "probability": 0.8852 + }, + { + "start": 34970.96, + "end": 34976.2, + "probability": 0.7902 + }, + { + "start": 34981.56, + "end": 34984.8, + "probability": 0.5239 + }, + { + "start": 34986.04, + "end": 34987.74, + "probability": 0.936 + }, + { + "start": 34988.48, + "end": 34989.0, + "probability": 0.9925 + }, + { + "start": 34989.64, + "end": 34990.44, + "probability": 0.8751 + }, + { + "start": 34991.84, + "end": 34992.24, + "probability": 0.8894 + }, + { + "start": 34993.54, + "end": 34994.52, + "probability": 0.9324 + }, + { + "start": 34996.18, + "end": 34998.78, + "probability": 0.97 + }, + { + "start": 35000.72, + "end": 35003.22, + "probability": 0.6144 + }, + { + "start": 35003.88, + "end": 35009.8, + "probability": 0.8962 + }, + { + "start": 35010.38, + "end": 35012.76, + "probability": 0.7941 + }, + { + "start": 35013.68, + "end": 35015.9, + "probability": 0.772 + }, + { + "start": 35016.82, + "end": 35018.56, + "probability": 0.9334 + }, + { + "start": 35019.36, + "end": 35021.52, + "probability": 0.991 + }, + { + "start": 35022.24, + "end": 35023.96, + "probability": 0.9375 + }, + { + "start": 35024.66, + "end": 35026.38, + "probability": 0.9509 + }, + { + "start": 35028.72, + "end": 35039.66, + "probability": 0.8584 + }, + { + "start": 35040.76, + "end": 35044.56, + "probability": 0.9796 + }, + { + "start": 35044.74, + "end": 35046.48, + "probability": 0.0683 + }, + { + "start": 35052.28, + "end": 35053.7, + "probability": 0.7031 + }, + { + "start": 35053.84, + "end": 35057.64, + "probability": 0.9861 + }, + { + "start": 35058.94, + "end": 35059.8, + "probability": 0.6164 + }, + { + "start": 35059.9, + "end": 35061.1, + "probability": 0.8106 + }, + { + "start": 35061.18, + "end": 35062.5, + "probability": 0.9423 + }, + { + "start": 35063.72, + "end": 35066.3, + "probability": 0.0648 + }, + { + "start": 35080.0, + "end": 35082.46, + "probability": 0.0418 + }, + { + "start": 35097.3, + "end": 35102.46, + "probability": 0.5389 + }, + { + "start": 35102.46, + "end": 35103.76, + "probability": 0.3988 + }, + { + "start": 35103.76, + "end": 35110.34, + "probability": 0.7663 + }, + { + "start": 35110.4, + "end": 35113.48, + "probability": 0.0402 + }, + { + "start": 35122.89, + "end": 35125.78, + "probability": 0.7037 + }, + { + "start": 35125.78, + "end": 35125.78, + "probability": 0.2327 + }, + { + "start": 35125.78, + "end": 35126.58, + "probability": 0.0141 + }, + { + "start": 35126.74, + "end": 35127.28, + "probability": 0.0134 + }, + { + "start": 35131.48, + "end": 35131.86, + "probability": 0.1576 + }, + { + "start": 35132.98, + "end": 35136.04, + "probability": 0.7986 + }, + { + "start": 35184.0, + "end": 35184.0, + "probability": 0.0 + }, + { + "start": 35184.0, + "end": 35184.0, + "probability": 0.0 + }, + { + "start": 35184.0, + "end": 35184.0, + "probability": 0.0 + }, + { + "start": 35184.0, + "end": 35184.0, + "probability": 0.0 + }, + { + "start": 35184.26, + "end": 35186.28, + "probability": 0.1339 + }, + { + "start": 35202.64, + "end": 35207.22, + "probability": 0.2265 + }, + { + "start": 35207.22, + "end": 35210.16, + "probability": 0.4313 + }, + { + "start": 35211.04, + "end": 35213.66, + "probability": 0.9043 + }, + { + "start": 35214.38, + "end": 35222.28, + "probability": 0.8813 + }, + { + "start": 35222.28, + "end": 35224.56, + "probability": 0.7272 + }, + { + "start": 35224.58, + "end": 35225.64, + "probability": 0.7159 + }, + { + "start": 35226.24, + "end": 35226.92, + "probability": 0.514 + }, + { + "start": 35227.2, + "end": 35228.32, + "probability": 0.8702 + }, + { + "start": 35228.46, + "end": 35228.58, + "probability": 0.5498 + }, + { + "start": 35232.7, + "end": 35233.28, + "probability": 0.4982 + }, + { + "start": 35233.28, + "end": 35235.82, + "probability": 0.9506 + }, + { + "start": 35235.88, + "end": 35236.36, + "probability": 0.371 + }, + { + "start": 35236.52, + "end": 35237.26, + "probability": 0.6857 + }, + { + "start": 35250.66, + "end": 35252.84, + "probability": 0.3716 + }, + { + "start": 35253.06, + "end": 35254.03, + "probability": 0.0042 + }, + { + "start": 35254.12, + "end": 35254.12, + "probability": 0.3796 + }, + { + "start": 35254.44, + "end": 35255.58, + "probability": 0.1524 + }, + { + "start": 35255.64, + "end": 35256.18, + "probability": 0.1517 + }, + { + "start": 35261.88, + "end": 35262.18, + "probability": 0.1771 + }, + { + "start": 35264.98, + "end": 35265.1, + "probability": 0.2459 + }, + { + "start": 35265.1, + "end": 35269.96, + "probability": 0.6711 + }, + { + "start": 35271.6, + "end": 35271.7, + "probability": 0.1603 + }, + { + "start": 35271.7, + "end": 35271.7, + "probability": 0.0667 + }, + { + "start": 35271.7, + "end": 35271.7, + "probability": 0.2245 + }, + { + "start": 35271.7, + "end": 35273.94, + "probability": 0.2662 + }, + { + "start": 35275.04, + "end": 35276.54, + "probability": 0.5223 + }, + { + "start": 35276.54, + "end": 35277.56, + "probability": 0.4519 + }, + { + "start": 35281.66, + "end": 35283.48, + "probability": 0.5334 + }, + { + "start": 35292.38, + "end": 35292.66, + "probability": 0.117 + }, + { + "start": 35294.84, + "end": 35298.68, + "probability": 0.2869 + }, + { + "start": 35300.74, + "end": 35301.0, + "probability": 0.1682 + }, + { + "start": 35303.54, + "end": 35303.62, + "probability": 0.124 + }, + { + "start": 35303.62, + "end": 35303.62, + "probability": 0.3359 + }, + { + "start": 35303.62, + "end": 35303.62, + "probability": 0.1067 + }, + { + "start": 35303.62, + "end": 35304.74, + "probability": 0.2184 + }, + { + "start": 35304.74, + "end": 35306.06, + "probability": 0.5004 + }, + { + "start": 35307.94, + "end": 35310.68, + "probability": 0.5426 + }, + { + "start": 35316.96, + "end": 35318.36, + "probability": 0.8086 + }, + { + "start": 35319.32, + "end": 35320.58, + "probability": 0.2822 + }, + { + "start": 35320.73, + "end": 35320.8, + "probability": 0.0058 + }, + { + "start": 35320.8, + "end": 35320.8, + "probability": 0.2317 + }, + { + "start": 35321.16, + "end": 35321.34, + "probability": 0.0092 + }, + { + "start": 35324.4, + "end": 35325.38, + "probability": 0.1752 + }, + { + "start": 35326.0, + "end": 35326.36, + "probability": 0.5771 + }, + { + "start": 35326.36, + "end": 35335.08, + "probability": 0.7725 + }, + { + "start": 35335.16, + "end": 35342.72, + "probability": 0.9518 + }, + { + "start": 35342.88, + "end": 35344.24, + "probability": 0.6976 + }, + { + "start": 35345.04, + "end": 35345.74, + "probability": 0.5321 + }, + { + "start": 35345.78, + "end": 35346.4, + "probability": 0.4608 + }, + { + "start": 35346.4, + "end": 35347.22, + "probability": 0.6423 + }, + { + "start": 35348.52, + "end": 35350.78, + "probability": 0.2585 + }, + { + "start": 35351.54, + "end": 35352.92, + "probability": 0.0106 + }, + { + "start": 35353.82, + "end": 35354.88, + "probability": 0.2434 + }, + { + "start": 35357.04, + "end": 35358.36, + "probability": 0.0444 + }, + { + "start": 35360.9, + "end": 35361.48, + "probability": 0.2355 + }, + { + "start": 35366.16, + "end": 35366.96, + "probability": 0.1291 + }, + { + "start": 35367.08, + "end": 35369.8, + "probability": 0.2792 + }, + { + "start": 35370.1, + "end": 35375.78, + "probability": 0.848 + }, + { + "start": 35377.42, + "end": 35384.32, + "probability": 0.2474 + }, + { + "start": 35384.76, + "end": 35385.0, + "probability": 0.4789 + }, + { + "start": 35387.6, + "end": 35388.32, + "probability": 0.5766 + }, + { + "start": 35388.44, + "end": 35389.8, + "probability": 0.8433 + }, + { + "start": 35390.14, + "end": 35394.16, + "probability": 0.9419 + }, + { + "start": 35395.56, + "end": 35399.78, + "probability": 0.7395 + }, + { + "start": 35399.9, + "end": 35403.48, + "probability": 0.859 + }, + { + "start": 35403.98, + "end": 35407.46, + "probability": 0.8803 + }, + { + "start": 35408.1, + "end": 35409.44, + "probability": 0.4034 + }, + { + "start": 35409.44, + "end": 35413.64, + "probability": 0.1492 + }, + { + "start": 35413.64, + "end": 35416.46, + "probability": 0.5277 + }, + { + "start": 35424.86, + "end": 35425.18, + "probability": 0.2593 + }, + { + "start": 35425.18, + "end": 35425.4, + "probability": 0.2426 + }, + { + "start": 35425.46, + "end": 35426.46, + "probability": 0.2484 + }, + { + "start": 35426.64, + "end": 35432.38, + "probability": 0.8009 + }, + { + "start": 35433.0, + "end": 35436.68, + "probability": 0.6141 + }, + { + "start": 35436.68, + "end": 35437.72, + "probability": 0.5822 + }, + { + "start": 35460.88, + "end": 35461.6, + "probability": 0.4384 + }, + { + "start": 35465.0, + "end": 35468.95, + "probability": 0.1744 + }, + { + "start": 35487.73, + "end": 35489.21, + "probability": 0.0044 + }, + { + "start": 35490.07, + "end": 35491.69, + "probability": 0.1363 + }, + { + "start": 35493.83, + "end": 35494.73, + "probability": 0.0386 + }, + { + "start": 35494.73, + "end": 35495.23, + "probability": 0.1125 + }, + { + "start": 35495.83, + "end": 35499.59, + "probability": 0.646 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35550.0, + "end": 35550.0, + "probability": 0.0 + }, + { + "start": 35566.74, + "end": 35572.1, + "probability": 0.7007 + }, + { + "start": 35573.46, + "end": 35573.78, + "probability": 0.5036 + }, + { + "start": 35574.36, + "end": 35580.82, + "probability": 0.9765 + }, + { + "start": 35581.68, + "end": 35585.62, + "probability": 0.8794 + }, + { + "start": 35598.47, + "end": 35598.96, + "probability": 0.1243 + }, + { + "start": 35599.7, + "end": 35602.92, + "probability": 0.1123 + }, + { + "start": 35602.92, + "end": 35602.92, + "probability": 0.3786 + }, + { + "start": 35602.92, + "end": 35602.92, + "probability": 0.1068 + }, + { + "start": 35603.32, + "end": 35604.56, + "probability": 0.1235 + }, + { + "start": 35605.18, + "end": 35605.74, + "probability": 0.1249 + }, + { + "start": 35606.04, + "end": 35606.72, + "probability": 0.4136 + }, + { + "start": 35606.82, + "end": 35607.16, + "probability": 0.8258 + }, + { + "start": 35607.52, + "end": 35612.4, + "probability": 0.9626 + }, + { + "start": 35612.52, + "end": 35615.04, + "probability": 0.6581 + }, + { + "start": 35616.1, + "end": 35618.3, + "probability": 0.5488 + }, + { + "start": 35619.38, + "end": 35623.32, + "probability": 0.9336 + }, + { + "start": 35623.32, + "end": 35626.5, + "probability": 0.996 + }, + { + "start": 35626.74, + "end": 35628.03, + "probability": 0.8376 + }, + { + "start": 35628.14, + "end": 35628.34, + "probability": 0.0844 + }, + { + "start": 35645.6, + "end": 35646.6, + "probability": 0.3188 + }, + { + "start": 35647.06, + "end": 35650.88, + "probability": 0.5759 + }, + { + "start": 35650.88, + "end": 35650.88, + "probability": 0.0305 + }, + { + "start": 35650.88, + "end": 35650.88, + "probability": 0.1065 + }, + { + "start": 35650.88, + "end": 35650.96, + "probability": 0.1512 + }, + { + "start": 35651.64, + "end": 35652.34, + "probability": 0.1591 + }, + { + "start": 35652.34, + "end": 35652.34, + "probability": 0.2261 + }, + { + "start": 35652.34, + "end": 35652.34, + "probability": 0.2173 + }, + { + "start": 35652.34, + "end": 35652.34, + "probability": 0.5947 + }, + { + "start": 35652.34, + "end": 35654.92, + "probability": 0.5908 + }, + { + "start": 35654.92, + "end": 35656.68, + "probability": 0.4917 + }, + { + "start": 35656.82, + "end": 35657.58, + "probability": 0.5244 + }, + { + "start": 35678.24, + "end": 35678.6, + "probability": 0.7013 + }, + { + "start": 35682.76, + "end": 35684.82, + "probability": 0.2354 + }, + { + "start": 35685.62, + "end": 35688.44, + "probability": 0.0371 + }, + { + "start": 35688.84, + "end": 35690.92, + "probability": 0.2878 + }, + { + "start": 35709.06, + "end": 35713.58, + "probability": 0.009 + }, + { + "start": 35713.58, + "end": 35713.92, + "probability": 0.0874 + }, + { + "start": 35714.68, + "end": 35719.44, + "probability": 0.2014 + }, + { + "start": 35719.76, + "end": 35721.96, + "probability": 0.6495 + }, + { + "start": 35723.02, + "end": 35723.18, + "probability": 0.1091 + }, + { + "start": 35724.94, + "end": 35726.2, + "probability": 0.0527 + }, + { + "start": 35728.06, + "end": 35731.62, + "probability": 0.1724 + }, + { + "start": 35731.62, + "end": 35732.14, + "probability": 0.4649 + }, + { + "start": 35737.03, + "end": 35737.68, + "probability": 0.0596 + }, + { + "start": 35738.66, + "end": 35738.9, + "probability": 0.1388 + }, + { + "start": 35742.84, + "end": 35743.26, + "probability": 0.278 + }, + { + "start": 35746.52, + "end": 35747.7, + "probability": 0.3069 + }, + { + "start": 35749.64, + "end": 35749.76, + "probability": 0.5563 + }, + { + "start": 35751.82, + "end": 35753.22, + "probability": 0.1746 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35763.0, + "end": 35763.0, + "probability": 0.0 + }, + { + "start": 35778.42, + "end": 35782.78, + "probability": 0.8691 + }, + { + "start": 35790.7, + "end": 35791.52, + "probability": 0.7538 + }, + { + "start": 35791.56, + "end": 35797.18, + "probability": 0.9818 + }, + { + "start": 35797.5, + "end": 35799.88, + "probability": 0.8202 + }, + { + "start": 35801.3, + "end": 35803.08, + "probability": 0.0494 + }, + { + "start": 35803.82, + "end": 35804.52, + "probability": 0.0254 + }, + { + "start": 35810.8, + "end": 35820.64, + "probability": 0.0995 + }, + { + "start": 35821.6, + "end": 35822.5, + "probability": 0.835 + }, + { + "start": 35822.58, + "end": 35822.82, + "probability": 0.0338 + }, + { + "start": 35823.1, + "end": 35823.8, + "probability": 0.3281 + }, + { + "start": 35823.92, + "end": 35824.24, + "probability": 0.695 + }, + { + "start": 35824.52, + "end": 35832.1, + "probability": 0.875 + }, + { + "start": 35832.32, + "end": 35834.46, + "probability": 0.9729 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35931.0, + "end": 35931.0, + "probability": 0.0 + }, + { + "start": 35946.42, + "end": 35948.54, + "probability": 0.884 + }, + { + "start": 35949.54, + "end": 35951.93, + "probability": 0.7188 + }, + { + "start": 35952.68, + "end": 35953.86, + "probability": 0.5038 + }, + { + "start": 35954.18, + "end": 35957.5, + "probability": 0.866 + }, + { + "start": 35957.62, + "end": 35960.3, + "probability": 0.9587 + }, + { + "start": 35966.24, + "end": 35970.74, + "probability": 0.7902 + }, + { + "start": 35970.86, + "end": 35975.82, + "probability": 0.0811 + }, + { + "start": 35976.06, + "end": 35976.2, + "probability": 0.2101 + }, + { + "start": 35976.2, + "end": 35976.2, + "probability": 0.2535 + }, + { + "start": 35976.2, + "end": 35977.36, + "probability": 0.1894 + }, + { + "start": 35977.92, + "end": 35978.68, + "probability": 0.3384 + }, + { + "start": 35979.42, + "end": 35980.38, + "probability": 0.5189 + }, + { + "start": 35981.08, + "end": 35983.62, + "probability": 0.7467 + }, + { + "start": 35984.26, + "end": 35986.3, + "probability": 0.542 + }, + { + "start": 35986.48, + "end": 35989.3, + "probability": 0.9479 + }, + { + "start": 35989.62, + "end": 35993.16, + "probability": 0.6581 + }, + { + "start": 35993.22, + "end": 35993.7, + "probability": 0.5419 + }, + { + "start": 36007.56, + "end": 36007.98, + "probability": 0.3281 + }, + { + "start": 36009.44, + "end": 36010.62, + "probability": 0.0923 + }, + { + "start": 36011.06, + "end": 36012.26, + "probability": 0.3052 + }, + { + "start": 36012.28, + "end": 36015.04, + "probability": 0.0118 + }, + { + "start": 36017.09, + "end": 36020.34, + "probability": 0.2514 + }, + { + "start": 36023.26, + "end": 36027.4, + "probability": 0.2482 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36113.0, + "end": 36113.0, + "probability": 0.0 + }, + { + "start": 36119.58, + "end": 36122.5, + "probability": 0.791 + }, + { + "start": 36122.88, + "end": 36128.82, + "probability": 0.9453 + }, + { + "start": 36129.26, + "end": 36132.68, + "probability": 0.6078 + }, + { + "start": 36133.44, + "end": 36136.44, + "probability": 0.4946 + }, + { + "start": 36136.7, + "end": 36139.28, + "probability": 0.0936 + }, + { + "start": 36141.99, + "end": 36144.46, + "probability": 0.2634 + }, + { + "start": 36145.4, + "end": 36147.1, + "probability": 0.1303 + }, + { + "start": 36149.62, + "end": 36149.62, + "probability": 0.454 + }, + { + "start": 36149.62, + "end": 36156.54, + "probability": 0.8153 + }, + { + "start": 36157.62, + "end": 36160.56, + "probability": 0.9403 + }, + { + "start": 36161.58, + "end": 36172.7, + "probability": 0.9951 + }, + { + "start": 36173.32, + "end": 36176.38, + "probability": 0.0477 + }, + { + "start": 36184.18, + "end": 36184.48, + "probability": 0.0794 + }, + { + "start": 36184.48, + "end": 36184.48, + "probability": 0.1323 + }, + { + "start": 36184.48, + "end": 36184.48, + "probability": 0.3518 + }, + { + "start": 36184.48, + "end": 36184.86, + "probability": 0.3728 + }, + { + "start": 36188.04, + "end": 36191.04, + "probability": 0.5775 + }, + { + "start": 36191.8, + "end": 36194.14, + "probability": 0.9222 + }, + { + "start": 36194.34, + "end": 36197.22, + "probability": 0.9858 + }, + { + "start": 36197.54, + "end": 36199.68, + "probability": 0.6509 + }, + { + "start": 36213.3, + "end": 36214.44, + "probability": 0.0937 + }, + { + "start": 36214.44, + "end": 36214.44, + "probability": 0.2685 + }, + { + "start": 36214.44, + "end": 36214.44, + "probability": 0.033 + }, + { + "start": 36214.44, + "end": 36214.94, + "probability": 0.3018 + }, + { + "start": 36215.28, + "end": 36215.9, + "probability": 0.3367 + }, + { + "start": 36216.12, + "end": 36216.42, + "probability": 0.5976 + }, + { + "start": 36216.6, + "end": 36220.54, + "probability": 0.9512 + }, + { + "start": 36220.54, + "end": 36225.06, + "probability": 0.899 + }, + { + "start": 36225.84, + "end": 36228.22, + "probability": 0.8203 + }, + { + "start": 36229.5, + "end": 36233.44, + "probability": 0.781 + }, + { + "start": 36235.09, + "end": 36239.52, + "probability": 0.6879 + }, + { + "start": 36240.06, + "end": 36240.7, + "probability": 0.5499 + }, + { + "start": 36240.76, + "end": 36241.82, + "probability": 0.4769 + }, + { + "start": 36241.84, + "end": 36242.64, + "probability": 0.5428 + }, + { + "start": 36249.87, + "end": 36252.38, + "probability": 0.2473 + }, + { + "start": 36253.46, + "end": 36255.34, + "probability": 0.1228 + }, + { + "start": 36256.4, + "end": 36258.0, + "probability": 0.1855 + }, + { + "start": 36258.5, + "end": 36261.7, + "probability": 0.2492 + }, + { + "start": 36262.02, + "end": 36263.32, + "probability": 0.925 + }, + { + "start": 36263.42, + "end": 36264.58, + "probability": 0.9006 + }, + { + "start": 36264.66, + "end": 36280.48, + "probability": 0.7916 + }, + { + "start": 36280.72, + "end": 36284.12, + "probability": 0.6555 + }, + { + "start": 36284.86, + "end": 36285.78, + "probability": 0.7207 + }, + { + "start": 36286.22, + "end": 36290.7, + "probability": 0.9646 + }, + { + "start": 36290.7, + "end": 36295.72, + "probability": 0.9881 + }, + { + "start": 36296.28, + "end": 36298.6, + "probability": 0.9569 + }, + { + "start": 36298.76, + "end": 36300.64, + "probability": 0.9125 + }, + { + "start": 36300.76, + "end": 36303.56, + "probability": 0.6228 + }, + { + "start": 36304.44, + "end": 36306.9, + "probability": 0.0116 + }, + { + "start": 36307.6, + "end": 36309.14, + "probability": 0.7201 + }, + { + "start": 36309.74, + "end": 36311.88, + "probability": 0.8914 + }, + { + "start": 36312.5, + "end": 36317.8, + "probability": 0.8641 + }, + { + "start": 36318.34, + "end": 36320.04, + "probability": 0.9278 + }, + { + "start": 36320.94, + "end": 36321.32, + "probability": 0.994 + }, + { + "start": 36321.9, + "end": 36323.04, + "probability": 0.8348 + }, + { + "start": 36323.88, + "end": 36326.04, + "probability": 0.7751 + }, + { + "start": 36326.66, + "end": 36327.06, + "probability": 0.9094 + }, + { + "start": 36327.7, + "end": 36328.6, + "probability": 0.6077 + }, + { + "start": 36329.3, + "end": 36329.76, + "probability": 0.9697 + }, + { + "start": 36330.48, + "end": 36331.38, + "probability": 0.6011 + }, + { + "start": 36336.22, + "end": 36340.6, + "probability": 0.7649 + }, + { + "start": 36341.54, + "end": 36341.98, + "probability": 0.8776 + }, + { + "start": 36342.52, + "end": 36343.48, + "probability": 0.8075 + }, + { + "start": 36344.4, + "end": 36346.24, + "probability": 0.8747 + }, + { + "start": 36347.1, + "end": 36349.4, + "probability": 0.8324 + }, + { + "start": 36350.3, + "end": 36350.78, + "probability": 0.8516 + }, + { + "start": 36351.34, + "end": 36352.0, + "probability": 0.9797 + }, + { + "start": 36352.96, + "end": 36354.98, + "probability": 0.9819 + }, + { + "start": 36355.6, + "end": 36357.34, + "probability": 0.7373 + }, + { + "start": 36357.94, + "end": 36358.4, + "probability": 0.9849 + }, + { + "start": 36359.08, + "end": 36359.92, + "probability": 0.5547 + }, + { + "start": 36360.82, + "end": 36362.56, + "probability": 0.7203 + }, + { + "start": 36363.8, + "end": 36365.36, + "probability": 0.9774 + }, + { + "start": 36366.04, + "end": 36367.82, + "probability": 0.9561 + }, + { + "start": 36368.8, + "end": 36372.72, + "probability": 0.9795 + }, + { + "start": 36373.34, + "end": 36375.08, + "probability": 0.9748 + }, + { + "start": 36376.02, + "end": 36377.64, + "probability": 0.6137 + }, + { + "start": 36378.96, + "end": 36381.3, + "probability": 0.9756 + }, + { + "start": 36382.1, + "end": 36382.36, + "probability": 0.534 + }, + { + "start": 36382.98, + "end": 36383.82, + "probability": 0.5182 + }, + { + "start": 36384.58, + "end": 36386.2, + "probability": 0.9746 + }, + { + "start": 36387.28, + "end": 36387.82, + "probability": 0.9308 + }, + { + "start": 36389.2, + "end": 36389.62, + "probability": 0.8816 + }, + { + "start": 36391.28, + "end": 36393.04, + "probability": 0.6825 + }, + { + "start": 36394.64, + "end": 36395.1, + "probability": 0.9854 + }, + { + "start": 36395.66, + "end": 36396.46, + "probability": 0.9305 + }, + { + "start": 36397.42, + "end": 36399.04, + "probability": 0.7522 + }, + { + "start": 36399.82, + "end": 36401.46, + "probability": 0.9877 + }, + { + "start": 36402.76, + "end": 36403.24, + "probability": 0.9928 + }, + { + "start": 36404.18, + "end": 36405.06, + "probability": 0.9241 + }, + { + "start": 36406.32, + "end": 36409.88, + "probability": 0.4317 + }, + { + "start": 36410.7, + "end": 36411.06, + "probability": 0.5228 + }, + { + "start": 36411.58, + "end": 36412.54, + "probability": 0.7342 + }, + { + "start": 36413.68, + "end": 36414.1, + "probability": 0.9704 + }, + { + "start": 36414.7, + "end": 36415.54, + "probability": 0.7234 + }, + { + "start": 36416.46, + "end": 36418.3, + "probability": 0.9795 + }, + { + "start": 36418.92, + "end": 36420.66, + "probability": 0.94 + }, + { + "start": 36424.16, + "end": 36426.42, + "probability": 0.9749 + }, + { + "start": 36427.88, + "end": 36428.46, + "probability": 0.9912 + }, + { + "start": 36429.5, + "end": 36430.44, + "probability": 0.9784 + }, + { + "start": 36431.0, + "end": 36432.34, + "probability": 0.9927 + }, + { + "start": 36433.02, + "end": 36433.88, + "probability": 0.7749 + }, + { + "start": 36434.7, + "end": 36436.76, + "probability": 0.9958 + }, + { + "start": 36447.12, + "end": 36448.46, + "probability": 0.7325 + }, + { + "start": 36449.84, + "end": 36451.14, + "probability": 0.6632 + }, + { + "start": 36451.88, + "end": 36452.34, + "probability": 0.9474 + }, + { + "start": 36452.9, + "end": 36453.86, + "probability": 0.9423 + }, + { + "start": 36454.86, + "end": 36455.92, + "probability": 0.9294 + }, + { + "start": 36456.56, + "end": 36457.54, + "probability": 0.813 + }, + { + "start": 36458.4, + "end": 36460.48, + "probability": 0.978 + }, + { + "start": 36463.9, + "end": 36466.08, + "probability": 0.7432 + }, + { + "start": 36466.68, + "end": 36467.6, + "probability": 0.958 + }, + { + "start": 36468.22, + "end": 36469.18, + "probability": 0.9226 + }, + { + "start": 36469.78, + "end": 36470.32, + "probability": 0.9876 + }, + { + "start": 36470.84, + "end": 36471.94, + "probability": 0.9705 + }, + { + "start": 36473.96, + "end": 36474.46, + "probability": 0.7166 + }, + { + "start": 36475.78, + "end": 36476.46, + "probability": 0.4015 + }, + { + "start": 36477.68, + "end": 36478.02, + "probability": 0.7109 + }, + { + "start": 36478.72, + "end": 36479.5, + "probability": 0.9301 + }, + { + "start": 36480.54, + "end": 36482.74, + "probability": 0.9826 + }, + { + "start": 36483.76, + "end": 36485.7, + "probability": 0.9185 + }, + { + "start": 36486.74, + "end": 36488.32, + "probability": 0.9599 + }, + { + "start": 36489.58, + "end": 36490.18, + "probability": 0.9899 + }, + { + "start": 36491.04, + "end": 36491.66, + "probability": 0.8998 + }, + { + "start": 36497.02, + "end": 36497.46, + "probability": 0.6555 + }, + { + "start": 36498.42, + "end": 36499.4, + "probability": 0.2618 + }, + { + "start": 36500.52, + "end": 36500.96, + "probability": 0.9163 + }, + { + "start": 36501.52, + "end": 36502.36, + "probability": 0.8827 + }, + { + "start": 36505.06, + "end": 36506.98, + "probability": 0.7747 + }, + { + "start": 36508.04, + "end": 36508.48, + "probability": 0.9487 + }, + { + "start": 36509.1, + "end": 36509.96, + "probability": 0.9011 + }, + { + "start": 36511.43, + "end": 36513.46, + "probability": 0.9831 + }, + { + "start": 36514.56, + "end": 36515.14, + "probability": 0.9943 + }, + { + "start": 36516.02, + "end": 36516.68, + "probability": 0.9743 + }, + { + "start": 36517.52, + "end": 36519.18, + "probability": 0.9623 + }, + { + "start": 36521.22, + "end": 36521.62, + "probability": 0.2508 + }, + { + "start": 36523.22, + "end": 36523.76, + "probability": 0.5374 + }, + { + "start": 36525.44, + "end": 36525.74, + "probability": 0.8851 + }, + { + "start": 36527.32, + "end": 36528.04, + "probability": 0.8156 + }, + { + "start": 36529.06, + "end": 36530.62, + "probability": 0.9836 + }, + { + "start": 36531.88, + "end": 36533.78, + "probability": 0.9097 + }, + { + "start": 36534.54, + "end": 36535.04, + "probability": 0.5673 + }, + { + "start": 36535.58, + "end": 36536.52, + "probability": 0.9675 + }, + { + "start": 36537.56, + "end": 36538.14, + "probability": 0.9658 + }, + { + "start": 36538.68, + "end": 36539.18, + "probability": 0.7223 + }, + { + "start": 36542.44, + "end": 36543.54, + "probability": 0.5508 + }, + { + "start": 36553.08, + "end": 36555.12, + "probability": 0.4906 + }, + { + "start": 36556.22, + "end": 36557.14, + "probability": 0.774 + }, + { + "start": 36557.88, + "end": 36558.96, + "probability": 0.8988 + }, + { + "start": 36559.74, + "end": 36561.74, + "probability": 0.9683 + }, + { + "start": 36562.46, + "end": 36564.08, + "probability": 0.8748 + }, + { + "start": 36565.42, + "end": 36567.48, + "probability": 0.9846 + }, + { + "start": 36570.36, + "end": 36572.86, + "probability": 0.9815 + }, + { + "start": 36573.72, + "end": 36576.42, + "probability": 0.9339 + }, + { + "start": 36577.82, + "end": 36580.62, + "probability": 0.8571 + }, + { + "start": 36581.74, + "end": 36582.1, + "probability": 0.7197 + }, + { + "start": 36582.76, + "end": 36583.56, + "probability": 0.6175 + }, + { + "start": 36585.04, + "end": 36588.32, + "probability": 0.8522 + }, + { + "start": 36589.16, + "end": 36589.64, + "probability": 0.6713 + }, + { + "start": 36590.3, + "end": 36591.06, + "probability": 0.869 + }, + { + "start": 36591.74, + "end": 36593.52, + "probability": 0.9224 + }, + { + "start": 36594.16, + "end": 36595.88, + "probability": 0.9827 + }, + { + "start": 36597.08, + "end": 36598.44, + "probability": 0.9958 + }, + { + "start": 36599.26, + "end": 36600.2, + "probability": 0.9789 + }, + { + "start": 36601.02, + "end": 36601.64, + "probability": 0.9951 + }, + { + "start": 36602.54, + "end": 36603.54, + "probability": 0.8858 + }, + { + "start": 36604.26, + "end": 36605.62, + "probability": 0.9867 + }, + { + "start": 36606.22, + "end": 36607.64, + "probability": 0.8494 + }, + { + "start": 36609.06, + "end": 36609.5, + "probability": 0.9961 + }, + { + "start": 36610.36, + "end": 36611.34, + "probability": 0.8179 + }, + { + "start": 36613.02, + "end": 36613.54, + "probability": 0.7832 + }, + { + "start": 36614.96, + "end": 36615.92, + "probability": 0.6947 + }, + { + "start": 36616.92, + "end": 36617.38, + "probability": 0.9436 + }, + { + "start": 36618.06, + "end": 36618.9, + "probability": 0.7337 + }, + { + "start": 36621.06, + "end": 36621.98, + "probability": 0.971 + }, + { + "start": 36622.58, + "end": 36623.74, + "probability": 0.863 + }, + { + "start": 36624.4, + "end": 36624.92, + "probability": 0.9001 + }, + { + "start": 36625.7, + "end": 36626.66, + "probability": 0.761 + }, + { + "start": 36627.82, + "end": 36628.32, + "probability": 0.9902 + }, + { + "start": 36629.2, + "end": 36630.1, + "probability": 0.689 + }, + { + "start": 36631.86, + "end": 36633.32, + "probability": 0.8199 + }, + { + "start": 36633.92, + "end": 36634.62, + "probability": 0.9536 + }, + { + "start": 36635.72, + "end": 36638.16, + "probability": 0.8661 + }, + { + "start": 36638.94, + "end": 36639.22, + "probability": 0.7703 + }, + { + "start": 36639.74, + "end": 36640.72, + "probability": 0.8488 + }, + { + "start": 36642.12, + "end": 36642.9, + "probability": 0.8271 + }, + { + "start": 36643.46, + "end": 36644.36, + "probability": 0.9079 + }, + { + "start": 36645.1, + "end": 36645.62, + "probability": 0.7446 + }, + { + "start": 36646.44, + "end": 36647.48, + "probability": 0.9753 + }, + { + "start": 36648.06, + "end": 36649.86, + "probability": 0.9863 + }, + { + "start": 36650.5, + "end": 36652.74, + "probability": 0.9382 + }, + { + "start": 36653.6, + "end": 36655.62, + "probability": 0.8594 + }, + { + "start": 36656.7, + "end": 36658.56, + "probability": 0.9585 + }, + { + "start": 36659.42, + "end": 36661.06, + "probability": 0.9635 + }, + { + "start": 36663.02, + "end": 36666.12, + "probability": 0.5989 + }, + { + "start": 36669.22, + "end": 36672.16, + "probability": 0.7241 + }, + { + "start": 36672.96, + "end": 36674.66, + "probability": 0.874 + }, + { + "start": 36675.8, + "end": 36676.16, + "probability": 0.8198 + }, + { + "start": 36678.26, + "end": 36680.64, + "probability": 0.3727 + }, + { + "start": 36681.36, + "end": 36681.72, + "probability": 0.848 + }, + { + "start": 36682.28, + "end": 36683.48, + "probability": 0.7349 + }, + { + "start": 36685.22, + "end": 36688.08, + "probability": 0.921 + }, + { + "start": 36688.68, + "end": 36689.56, + "probability": 0.8158 + }, + { + "start": 36690.14, + "end": 36690.6, + "probability": 0.8259 + }, + { + "start": 36691.6, + "end": 36692.62, + "probability": 0.9205 + }, + { + "start": 36693.54, + "end": 36695.28, + "probability": 0.9775 + }, + { + "start": 36697.02, + "end": 36697.46, + "probability": 0.9814 + }, + { + "start": 36698.2, + "end": 36700.03, + "probability": 0.8349 + }, + { + "start": 36700.62, + "end": 36703.12, + "probability": 0.969 + }, + { + "start": 36704.0, + "end": 36704.48, + "probability": 0.9839 + }, + { + "start": 36705.1, + "end": 36706.08, + "probability": 0.9458 + }, + { + "start": 36707.1, + "end": 36707.38, + "probability": 0.5838 + }, + { + "start": 36708.08, + "end": 36708.86, + "probability": 0.8123 + }, + { + "start": 36709.98, + "end": 36710.6, + "probability": 0.8193 + }, + { + "start": 36711.3, + "end": 36712.2, + "probability": 0.9108 + }, + { + "start": 36713.02, + "end": 36717.36, + "probability": 0.9838 + }, + { + "start": 36718.32, + "end": 36719.82, + "probability": 0.9621 + }, + { + "start": 36721.68, + "end": 36724.78, + "probability": 0.944 + }, + { + "start": 36725.74, + "end": 36726.32, + "probability": 0.9495 + }, + { + "start": 36727.16, + "end": 36728.34, + "probability": 0.8939 + }, + { + "start": 36730.06, + "end": 36735.22, + "probability": 0.9674 + }, + { + "start": 36735.77, + "end": 36740.98, + "probability": 0.6051 + }, + { + "start": 36742.32, + "end": 36743.32, + "probability": 0.646 + }, + { + "start": 36744.48, + "end": 36744.92, + "probability": 0.9521 + }, + { + "start": 36746.86, + "end": 36749.32, + "probability": 0.9644 + }, + { + "start": 36750.46, + "end": 36751.38, + "probability": 0.7288 + }, + { + "start": 36753.06, + "end": 36753.52, + "probability": 0.9866 + }, + { + "start": 36756.12, + "end": 36757.7, + "probability": 0.7768 + }, + { + "start": 36759.08, + "end": 36759.42, + "probability": 0.825 + }, + { + "start": 36760.96, + "end": 36761.96, + "probability": 0.5774 + }, + { + "start": 36763.72, + "end": 36765.56, + "probability": 0.9512 + }, + { + "start": 36766.8, + "end": 36768.3, + "probability": 0.6498 + }, + { + "start": 36769.8, + "end": 36771.26, + "probability": 0.6058 + }, + { + "start": 36773.4, + "end": 36774.54, + "probability": 0.8076 + }, + { + "start": 36777.7, + "end": 36780.64, + "probability": 0.8736 + }, + { + "start": 36782.52, + "end": 36786.24, + "probability": 0.672 + }, + { + "start": 36788.64, + "end": 36790.78, + "probability": 0.7928 + }, + { + "start": 36791.78, + "end": 36794.14, + "probability": 0.7458 + }, + { + "start": 36796.96, + "end": 36799.92, + "probability": 0.7592 + }, + { + "start": 36800.1, + "end": 36804.26, + "probability": 0.9239 + }, + { + "start": 36804.46, + "end": 36806.46, + "probability": 0.4993 + }, + { + "start": 36806.52, + "end": 36808.29, + "probability": 0.3328 + }, + { + "start": 36811.64, + "end": 36812.52, + "probability": 0.59 + }, + { + "start": 36813.08, + "end": 36816.9, + "probability": 0.6876 + }, + { + "start": 36816.92, + "end": 36817.36, + "probability": 0.5205 + }, + { + "start": 36818.56, + "end": 36819.7, + "probability": 0.6454 + }, + { + "start": 36819.78, + "end": 36821.6, + "probability": 0.6897 + }, + { + "start": 36825.2, + "end": 36826.24, + "probability": 0.0539 + }, + { + "start": 36826.9, + "end": 36827.5, + "probability": 0.1237 + }, + { + "start": 36832.04, + "end": 36835.68, + "probability": 0.0315 + }, + { + "start": 36835.88, + "end": 36836.6, + "probability": 0.0114 + }, + { + "start": 36887.66, + "end": 36893.02, + "probability": 0.744 + }, + { + "start": 36893.78, + "end": 36898.2, + "probability": 0.7927 + }, + { + "start": 36898.9, + "end": 36900.02, + "probability": 0.4723 + }, + { + "start": 36900.82, + "end": 36901.64, + "probability": 0.4821 + }, + { + "start": 36902.9, + "end": 36903.62, + "probability": 0.4902 + }, + { + "start": 36903.92, + "end": 36910.34, + "probability": 0.9146 + }, + { + "start": 36911.1, + "end": 36912.56, + "probability": 0.5783 + }, + { + "start": 36918.9, + "end": 36920.42, + "probability": 0.6249 + }, + { + "start": 36921.34, + "end": 36922.66, + "probability": 0.7096 + }, + { + "start": 36922.76, + "end": 36924.24, + "probability": 0.8963 + }, + { + "start": 36924.4, + "end": 36927.44, + "probability": 0.8735 + }, + { + "start": 36935.54, + "end": 36937.12, + "probability": 0.7271 + }, + { + "start": 36941.68, + "end": 36945.3, + "probability": 0.6803 + }, + { + "start": 36946.22, + "end": 36946.8, + "probability": 0.767 + }, + { + "start": 36947.32, + "end": 36949.32, + "probability": 0.9434 + }, + { + "start": 36950.1, + "end": 36950.64, + "probability": 0.3903 + }, + { + "start": 36950.66, + "end": 36951.08, + "probability": 0.4435 + }, + { + "start": 36951.08, + "end": 36953.73, + "probability": 0.9858 + }, + { + "start": 36955.24, + "end": 36960.7, + "probability": 0.931 + }, + { + "start": 36962.49, + "end": 36965.5, + "probability": 0.6594 + }, + { + "start": 36966.56, + "end": 36968.42, + "probability": 0.9852 + }, + { + "start": 36969.46, + "end": 36972.9, + "probability": 0.8168 + }, + { + "start": 36973.7, + "end": 36974.7, + "probability": 0.6349 + }, + { + "start": 36976.76, + "end": 36980.18, + "probability": 0.8411 + }, + { + "start": 36983.02, + "end": 36983.96, + "probability": 0.6418 + }, + { + "start": 36984.66, + "end": 36985.16, + "probability": 0.9517 + }, + { + "start": 36985.78, + "end": 36986.7, + "probability": 0.8141 + }, + { + "start": 36987.54, + "end": 36988.9, + "probability": 0.9925 + }, + { + "start": 36989.66, + "end": 36991.16, + "probability": 0.9344 + }, + { + "start": 36992.08, + "end": 36994.52, + "probability": 0.9867 + }, + { + "start": 36995.22, + "end": 36995.68, + "probability": 0.946 + }, + { + "start": 36996.4, + "end": 36997.38, + "probability": 0.5552 + }, + { + "start": 36998.06, + "end": 36999.94, + "probability": 0.7404 + }, + { + "start": 37000.58, + "end": 37002.98, + "probability": 0.9893 + }, + { + "start": 37005.36, + "end": 37008.12, + "probability": 0.9235 + }, + { + "start": 37009.8, + "end": 37010.58, + "probability": 0.9004 + }, + { + "start": 37012.16, + "end": 37014.08, + "probability": 0.7949 + }, + { + "start": 37014.84, + "end": 37015.78, + "probability": 0.8326 + }, + { + "start": 37019.18, + "end": 37019.72, + "probability": 0.9214 + }, + { + "start": 37020.66, + "end": 37022.38, + "probability": 0.912 + }, + { + "start": 37023.1, + "end": 37024.7, + "probability": 0.9333 + }, + { + "start": 37025.32, + "end": 37027.3, + "probability": 0.8243 + }, + { + "start": 37028.0, + "end": 37029.94, + "probability": 0.8236 + }, + { + "start": 37031.53, + "end": 37035.92, + "probability": 0.8858 + }, + { + "start": 37037.2, + "end": 37037.7, + "probability": 0.9935 + }, + { + "start": 37039.3, + "end": 37040.18, + "probability": 0.7348 + }, + { + "start": 37040.96, + "end": 37042.72, + "probability": 0.7465 + }, + { + "start": 37044.08, + "end": 37046.38, + "probability": 0.9261 + }, + { + "start": 37047.44, + "end": 37047.98, + "probability": 0.9442 + }, + { + "start": 37048.94, + "end": 37049.88, + "probability": 0.8598 + }, + { + "start": 37050.72, + "end": 37052.76, + "probability": 0.9564 + }, + { + "start": 37053.32, + "end": 37055.08, + "probability": 0.9124 + }, + { + "start": 37056.16, + "end": 37057.62, + "probability": 0.7723 + }, + { + "start": 37058.64, + "end": 37060.5, + "probability": 0.9792 + }, + { + "start": 37061.12, + "end": 37061.52, + "probability": 0.9851 + }, + { + "start": 37062.04, + "end": 37062.74, + "probability": 0.5352 + }, + { + "start": 37063.54, + "end": 37065.2, + "probability": 0.9795 + }, + { + "start": 37065.9, + "end": 37068.78, + "probability": 0.8809 + }, + { + "start": 37069.94, + "end": 37074.34, + "probability": 0.758 + }, + { + "start": 37075.46, + "end": 37077.48, + "probability": 0.9875 + }, + { + "start": 37078.36, + "end": 37080.52, + "probability": 0.8301 + }, + { + "start": 37081.26, + "end": 37081.78, + "probability": 0.9961 + }, + { + "start": 37082.86, + "end": 37083.74, + "probability": 0.976 + }, + { + "start": 37084.48, + "end": 37086.62, + "probability": 0.9919 + }, + { + "start": 37087.56, + "end": 37088.02, + "probability": 0.9971 + }, + { + "start": 37090.48, + "end": 37091.34, + "probability": 0.4277 + }, + { + "start": 37092.5, + "end": 37092.98, + "probability": 0.5543 + }, + { + "start": 37093.76, + "end": 37094.7, + "probability": 0.7369 + }, + { + "start": 37095.5, + "end": 37097.16, + "probability": 0.9303 + }, + { + "start": 37097.96, + "end": 37098.44, + "probability": 0.9651 + }, + { + "start": 37099.14, + "end": 37099.96, + "probability": 0.9675 + }, + { + "start": 37100.5, + "end": 37101.96, + "probability": 0.9628 + }, + { + "start": 37103.2, + "end": 37103.6, + "probability": 0.9766 + }, + { + "start": 37104.24, + "end": 37105.1, + "probability": 0.8312 + }, + { + "start": 37105.92, + "end": 37109.76, + "probability": 0.9854 + }, + { + "start": 37110.28, + "end": 37111.24, + "probability": 0.7576 + }, + { + "start": 37111.88, + "end": 37112.38, + "probability": 0.9938 + }, + { + "start": 37112.9, + "end": 37114.42, + "probability": 0.9348 + }, + { + "start": 37116.14, + "end": 37117.32, + "probability": 0.6558 + }, + { + "start": 37120.84, + "end": 37123.1, + "probability": 0.1723 + }, + { + "start": 37124.3, + "end": 37125.8, + "probability": 0.7563 + }, + { + "start": 37127.68, + "end": 37130.78, + "probability": 0.7733 + }, + { + "start": 37133.18, + "end": 37135.18, + "probability": 0.7284 + }, + { + "start": 37135.82, + "end": 37136.34, + "probability": 0.833 + }, + { + "start": 37137.34, + "end": 37138.38, + "probability": 0.7229 + }, + { + "start": 37140.8, + "end": 37142.46, + "probability": 0.9771 + }, + { + "start": 37147.78, + "end": 37151.36, + "probability": 0.5378 + }, + { + "start": 37152.12, + "end": 37152.5, + "probability": 0.6768 + }, + { + "start": 37154.06, + "end": 37155.04, + "probability": 0.8089 + }, + { + "start": 37158.38, + "end": 37160.4, + "probability": 0.9414 + }, + { + "start": 37162.06, + "end": 37162.54, + "probability": 0.9792 + }, + { + "start": 37163.44, + "end": 37164.56, + "probability": 0.9583 + }, + { + "start": 37165.44, + "end": 37165.78, + "probability": 0.9734 + }, + { + "start": 37166.34, + "end": 37167.2, + "probability": 0.9487 + }, + { + "start": 37168.32, + "end": 37168.82, + "probability": 0.9829 + }, + { + "start": 37169.44, + "end": 37170.2, + "probability": 0.965 + }, + { + "start": 37171.28, + "end": 37173.28, + "probability": 0.611 + }, + { + "start": 37174.5, + "end": 37174.8, + "probability": 0.9932 + }, + { + "start": 37175.56, + "end": 37176.4, + "probability": 0.9533 + }, + { + "start": 37177.14, + "end": 37177.4, + "probability": 0.5279 + }, + { + "start": 37178.1, + "end": 37179.04, + "probability": 0.6372 + }, + { + "start": 37180.24, + "end": 37180.56, + "probability": 0.9209 + }, + { + "start": 37181.34, + "end": 37182.2, + "probability": 0.8538 + }, + { + "start": 37182.92, + "end": 37184.66, + "probability": 0.9404 + }, + { + "start": 37185.5, + "end": 37187.16, + "probability": 0.9846 + }, + { + "start": 37188.06, + "end": 37189.76, + "probability": 0.9757 + }, + { + "start": 37190.58, + "end": 37191.0, + "probability": 0.9722 + }, + { + "start": 37191.52, + "end": 37192.4, + "probability": 0.9454 + }, + { + "start": 37192.96, + "end": 37193.46, + "probability": 0.9958 + }, + { + "start": 37194.04, + "end": 37194.66, + "probability": 0.9485 + }, + { + "start": 37196.3, + "end": 37199.28, + "probability": 0.8696 + }, + { + "start": 37200.12, + "end": 37200.62, + "probability": 0.9069 + }, + { + "start": 37201.96, + "end": 37202.66, + "probability": 0.9201 + }, + { + "start": 37203.58, + "end": 37203.8, + "probability": 0.4986 + }, + { + "start": 37204.58, + "end": 37205.34, + "probability": 0.7995 + }, + { + "start": 37206.1, + "end": 37208.78, + "probability": 0.9322 + }, + { + "start": 37209.8, + "end": 37211.94, + "probability": 0.9532 + }, + { + "start": 37212.72, + "end": 37213.16, + "probability": 0.901 + }, + { + "start": 37214.86, + "end": 37215.82, + "probability": 0.974 + }, + { + "start": 37218.98, + "end": 37221.22, + "probability": 0.9821 + }, + { + "start": 37222.8, + "end": 37226.16, + "probability": 0.9898 + }, + { + "start": 37226.7, + "end": 37228.9, + "probability": 0.9883 + }, + { + "start": 37229.58, + "end": 37230.08, + "probability": 0.9899 + }, + { + "start": 37230.8, + "end": 37231.62, + "probability": 0.738 + }, + { + "start": 37232.32, + "end": 37232.74, + "probability": 0.9927 + }, + { + "start": 37233.48, + "end": 37234.2, + "probability": 0.892 + }, + { + "start": 37235.1, + "end": 37235.88, + "probability": 0.5863 + }, + { + "start": 37236.64, + "end": 37237.48, + "probability": 0.7441 + }, + { + "start": 37251.5, + "end": 37252.78, + "probability": 0.6479 + }, + { + "start": 37253.84, + "end": 37254.46, + "probability": 0.9233 + }, + { + "start": 37255.46, + "end": 37256.84, + "probability": 0.8124 + }, + { + "start": 37257.66, + "end": 37258.14, + "probability": 0.9707 + }, + { + "start": 37259.06, + "end": 37259.86, + "probability": 0.9475 + }, + { + "start": 37263.52, + "end": 37263.96, + "probability": 0.7441 + }, + { + "start": 37264.86, + "end": 37265.8, + "probability": 0.5532 + }, + { + "start": 37267.04, + "end": 37267.42, + "probability": 0.9287 + }, + { + "start": 37268.62, + "end": 37269.34, + "probability": 0.8772 + }, + { + "start": 37270.16, + "end": 37270.54, + "probability": 0.8176 + }, + { + "start": 37271.3, + "end": 37272.34, + "probability": 0.8984 + }, + { + "start": 37273.06, + "end": 37274.7, + "probability": 0.8253 + }, + { + "start": 37278.24, + "end": 37280.1, + "probability": 0.8564 + }, + { + "start": 37281.16, + "end": 37281.68, + "probability": 0.9771 + }, + { + "start": 37282.2, + "end": 37283.42, + "probability": 0.8003 + }, + { + "start": 37284.0, + "end": 37284.46, + "probability": 0.8172 + }, + { + "start": 37285.02, + "end": 37286.48, + "probability": 0.833 + }, + { + "start": 37287.8, + "end": 37289.62, + "probability": 0.9386 + }, + { + "start": 37290.7, + "end": 37291.26, + "probability": 0.8127 + }, + { + "start": 37293.68, + "end": 37294.7, + "probability": 0.5554 + }, + { + "start": 37296.9, + "end": 37298.8, + "probability": 0.8739 + }, + { + "start": 37300.22, + "end": 37301.76, + "probability": 0.6058 + }, + { + "start": 37302.34, + "end": 37303.54, + "probability": 0.8213 + }, + { + "start": 37304.44, + "end": 37307.26, + "probability": 0.8668 + }, + { + "start": 37308.16, + "end": 37308.68, + "probability": 0.9855 + }, + { + "start": 37309.42, + "end": 37310.48, + "probability": 0.7145 + }, + { + "start": 37312.42, + "end": 37317.04, + "probability": 0.8715 + }, + { + "start": 37317.72, + "end": 37318.14, + "probability": 0.9778 + }, + { + "start": 37318.72, + "end": 37319.56, + "probability": 0.9119 + }, + { + "start": 37320.3, + "end": 37320.62, + "probability": 0.8844 + }, + { + "start": 37321.18, + "end": 37322.26, + "probability": 0.9036 + }, + { + "start": 37323.1, + "end": 37323.56, + "probability": 0.9866 + }, + { + "start": 37324.38, + "end": 37325.16, + "probability": 0.8917 + }, + { + "start": 37325.8, + "end": 37327.68, + "probability": 0.9575 + }, + { + "start": 37328.38, + "end": 37328.8, + "probability": 0.9146 + }, + { + "start": 37329.44, + "end": 37330.36, + "probability": 0.9821 + }, + { + "start": 37331.06, + "end": 37332.74, + "probability": 0.979 + }, + { + "start": 37333.44, + "end": 37333.98, + "probability": 0.9785 + }, + { + "start": 37334.6, + "end": 37335.44, + "probability": 0.9115 + }, + { + "start": 37335.96, + "end": 37336.52, + "probability": 0.9824 + }, + { + "start": 37337.06, + "end": 37337.94, + "probability": 0.9326 + }, + { + "start": 37338.72, + "end": 37339.04, + "probability": 0.616 + }, + { + "start": 37339.82, + "end": 37340.68, + "probability": 0.7524 + }, + { + "start": 37342.34, + "end": 37345.12, + "probability": 0.8051 + }, + { + "start": 37346.64, + "end": 37347.54, + "probability": 0.9392 + }, + { + "start": 37348.06, + "end": 37348.94, + "probability": 0.9229 + }, + { + "start": 37349.78, + "end": 37350.26, + "probability": 0.9326 + }, + { + "start": 37350.84, + "end": 37351.56, + "probability": 0.9613 + }, + { + "start": 37353.08, + "end": 37354.44, + "probability": 0.985 + }, + { + "start": 37355.88, + "end": 37356.7, + "probability": 0.8789 + }, + { + "start": 37357.44, + "end": 37358.44, + "probability": 0.9937 + }, + { + "start": 37359.44, + "end": 37360.2, + "probability": 0.9871 + }, + { + "start": 37361.3, + "end": 37363.2, + "probability": 0.9791 + }, + { + "start": 37366.06, + "end": 37367.99, + "probability": 0.6917 + }, + { + "start": 37369.26, + "end": 37372.0, + "probability": 0.7448 + }, + { + "start": 37372.68, + "end": 37375.72, + "probability": 0.7812 + }, + { + "start": 37376.4, + "end": 37376.86, + "probability": 0.9554 + }, + { + "start": 37378.14, + "end": 37381.24, + "probability": 0.9581 + }, + { + "start": 37381.82, + "end": 37382.84, + "probability": 0.9457 + }, + { + "start": 37383.4, + "end": 37385.52, + "probability": 0.9711 + }, + { + "start": 37386.2, + "end": 37390.4, + "probability": 0.983 + }, + { + "start": 37391.16, + "end": 37392.0, + "probability": 0.8126 + }, + { + "start": 37393.44, + "end": 37395.2, + "probability": 0.9894 + }, + { + "start": 37396.46, + "end": 37396.88, + "probability": 0.7244 + }, + { + "start": 37397.6, + "end": 37398.38, + "probability": 0.5881 + }, + { + "start": 37400.18, + "end": 37402.18, + "probability": 0.9597 + }, + { + "start": 37405.5, + "end": 37406.1, + "probability": 0.9761 + }, + { + "start": 37407.3, + "end": 37408.61, + "probability": 0.8913 + }, + { + "start": 37409.72, + "end": 37417.58, + "probability": 0.7505 + }, + { + "start": 37417.69, + "end": 37418.28, + "probability": 0.0788 + }, + { + "start": 37419.24, + "end": 37420.22, + "probability": 0.3562 + }, + { + "start": 37427.2, + "end": 37427.92, + "probability": 0.6661 + }, + { + "start": 37428.72, + "end": 37429.72, + "probability": 0.5052 + }, + { + "start": 37433.24, + "end": 37433.88, + "probability": 0.9774 + }, + { + "start": 37436.36, + "end": 37437.4, + "probability": 0.6941 + }, + { + "start": 37438.1, + "end": 37439.5, + "probability": 0.981 + }, + { + "start": 37440.14, + "end": 37441.64, + "probability": 0.8945 + }, + { + "start": 37442.5, + "end": 37445.3, + "probability": 0.9861 + }, + { + "start": 37446.18, + "end": 37448.08, + "probability": 0.9644 + }, + { + "start": 37448.98, + "end": 37451.47, + "probability": 0.4056 + }, + { + "start": 37457.14, + "end": 37459.24, + "probability": 0.502 + }, + { + "start": 37460.9, + "end": 37461.94, + "probability": 0.6301 + }, + { + "start": 37463.02, + "end": 37463.48, + "probability": 0.8996 + }, + { + "start": 37465.56, + "end": 37466.52, + "probability": 0.912 + }, + { + "start": 37469.18, + "end": 37471.26, + "probability": 0.9852 + }, + { + "start": 37472.44, + "end": 37473.92, + "probability": 0.9904 + }, + { + "start": 37475.16, + "end": 37477.64, + "probability": 0.4592 + }, + { + "start": 37481.16, + "end": 37483.04, + "probability": 0.4976 + }, + { + "start": 37483.82, + "end": 37485.5, + "probability": 0.8776 + }, + { + "start": 37486.2, + "end": 37489.22, + "probability": 0.9104 + }, + { + "start": 37490.08, + "end": 37490.82, + "probability": 0.5793 + }, + { + "start": 37492.64, + "end": 37494.38, + "probability": 0.815 + }, + { + "start": 37500.44, + "end": 37501.49, + "probability": 0.4981 + }, + { + "start": 37502.77, + "end": 37511.98, + "probability": 0.5083 + }, + { + "start": 37512.76, + "end": 37512.98, + "probability": 0.4608 + }, + { + "start": 37513.16, + "end": 37515.41, + "probability": 0.7328 + }, + { + "start": 37516.1, + "end": 37516.48, + "probability": 0.233 + }, + { + "start": 37516.56, + "end": 37521.04, + "probability": 0.0189 + }, + { + "start": 37553.46, + "end": 37557.9, + "probability": 0.4571 + }, + { + "start": 37558.44, + "end": 37560.84, + "probability": 0.7461 + }, + { + "start": 37561.4, + "end": 37563.18, + "probability": 0.4776 + }, + { + "start": 37563.45, + "end": 37563.52, + "probability": 0.0603 + }, + { + "start": 37568.46, + "end": 37569.34, + "probability": 0.4389 + }, + { + "start": 37570.88, + "end": 37571.82, + "probability": 0.5425 + }, + { + "start": 37573.36, + "end": 37574.52, + "probability": 0.7879 + }, + { + "start": 37575.98, + "end": 37578.28, + "probability": 0.6072 + }, + { + "start": 37578.38, + "end": 37582.6, + "probability": 0.782 + }, + { + "start": 37583.14, + "end": 37585.4, + "probability": 0.3173 + }, + { + "start": 37586.12, + "end": 37586.9, + "probability": 0.6262 + }, + { + "start": 37587.54, + "end": 37590.62, + "probability": 0.1686 + }, + { + "start": 37592.36, + "end": 37592.66, + "probability": 0.0316 + }, + { + "start": 37595.1, + "end": 37596.18, + "probability": 0.226 + }, + { + "start": 37596.72, + "end": 37600.2, + "probability": 0.7191 + }, + { + "start": 37600.32, + "end": 37600.68, + "probability": 0.697 + }, + { + "start": 37600.68, + "end": 37601.1, + "probability": 0.7234 + }, + { + "start": 37601.22, + "end": 37606.62, + "probability": 0.9695 + }, + { + "start": 37607.78, + "end": 37610.55, + "probability": 0.9482 + }, + { + "start": 37611.56, + "end": 37615.86, + "probability": 0.9788 + }, + { + "start": 37616.62, + "end": 37620.5, + "probability": 0.9914 + }, + { + "start": 37620.92, + "end": 37621.64, + "probability": 0.5427 + }, + { + "start": 37621.82, + "end": 37622.74, + "probability": 0.5154 + }, + { + "start": 37623.68, + "end": 37626.14, + "probability": 0.887 + }, + { + "start": 37626.88, + "end": 37628.2, + "probability": 0.7131 + }, + { + "start": 37629.9, + "end": 37631.02, + "probability": 0.1401 + }, + { + "start": 37633.38, + "end": 37634.52, + "probability": 0.099 + }, + { + "start": 37635.52, + "end": 37636.98, + "probability": 0.1277 + }, + { + "start": 37647.48, + "end": 37648.72, + "probability": 0.0097 + }, + { + "start": 37650.82, + "end": 37653.88, + "probability": 0.8977 + }, + { + "start": 37654.52, + "end": 37656.02, + "probability": 0.8541 + }, + { + "start": 37656.6, + "end": 37661.12, + "probability": 0.837 + }, + { + "start": 37661.66, + "end": 37667.66, + "probability": 0.6517 + }, + { + "start": 37668.0, + "end": 37668.92, + "probability": 0.6223 + }, + { + "start": 37685.96, + "end": 37689.52, + "probability": 0.6052 + }, + { + "start": 37689.72, + "end": 37695.6, + "probability": 0.877 + }, + { + "start": 37696.08, + "end": 37701.02, + "probability": 0.4536 + }, + { + "start": 37702.0, + "end": 37704.34, + "probability": 0.8528 + }, + { + "start": 37705.58, + "end": 37705.58, + "probability": 0.5145 + }, + { + "start": 37705.58, + "end": 37706.2, + "probability": 0.6586 + }, + { + "start": 37706.6, + "end": 37707.24, + "probability": 0.7511 + }, + { + "start": 37711.9, + "end": 37717.46, + "probability": 0.1391 + }, + { + "start": 37722.6, + "end": 37723.52, + "probability": 0.119 + }, + { + "start": 37724.76, + "end": 37725.26, + "probability": 0.1333 + }, + { + "start": 37725.5, + "end": 37726.5, + "probability": 0.2312 + }, + { + "start": 37726.54, + "end": 37729.04, + "probability": 0.6356 + }, + { + "start": 37729.04, + "end": 37734.64, + "probability": 0.915 + }, + { + "start": 37735.52, + "end": 37741.1, + "probability": 0.7626 + }, + { + "start": 37742.17, + "end": 37748.43, + "probability": 0.8647 + }, + { + "start": 37748.6, + "end": 37750.1, + "probability": 0.5665 + }, + { + "start": 37750.42, + "end": 37750.96, + "probability": 0.6097 + }, + { + "start": 37753.42, + "end": 37756.62, + "probability": 0.6001 + }, + { + "start": 37762.98, + "end": 37765.7, + "probability": 0.188 + }, + { + "start": 37771.78, + "end": 37772.1, + "probability": 0.1 + }, + { + "start": 37772.1, + "end": 37772.1, + "probability": 0.2344 + }, + { + "start": 37772.1, + "end": 37772.1, + "probability": 0.4352 + }, + { + "start": 37772.1, + "end": 37772.44, + "probability": 0.1816 + }, + { + "start": 37773.04, + "end": 37774.12, + "probability": 0.1735 + }, + { + "start": 37774.12, + "end": 37774.9, + "probability": 0.3842 + }, + { + "start": 37774.9, + "end": 37782.48, + "probability": 0.7621 + }, + { + "start": 37782.9, + "end": 37788.1, + "probability": 0.8237 + }, + { + "start": 37788.14, + "end": 37788.7, + "probability": 0.7395 + }, + { + "start": 37789.14, + "end": 37791.6, + "probability": 0.7042 + }, + { + "start": 37791.64, + "end": 37792.16, + "probability": 0.7198 + }, + { + "start": 37792.46, + "end": 37793.24, + "probability": 0.7076 + }, + { + "start": 37795.66, + "end": 37797.78, + "probability": 0.5656 + }, + { + "start": 37804.44, + "end": 37804.7, + "probability": 0.4111 + }, + { + "start": 37804.7, + "end": 37811.06, + "probability": 0.0755 + }, + { + "start": 37811.06, + "end": 37811.26, + "probability": 0.0777 + }, + { + "start": 37811.26, + "end": 37811.26, + "probability": 0.2676 + }, + { + "start": 37811.26, + "end": 37812.46, + "probability": 0.342 + }, + { + "start": 37813.32, + "end": 37814.58, + "probability": 0.1664 + }, + { + "start": 37814.82, + "end": 37820.12, + "probability": 0.6837 + }, + { + "start": 37820.48, + "end": 37821.1, + "probability": 0.2697 + }, + { + "start": 37821.16, + "end": 37821.54, + "probability": 0.651 + }, + { + "start": 37821.62, + "end": 37827.66, + "probability": 0.645 + }, + { + "start": 37828.02, + "end": 37829.18, + "probability": 0.8072 + }, + { + "start": 37829.5, + "end": 37830.02, + "probability": 0.5501 + }, + { + "start": 37830.06, + "end": 37830.7, + "probability": 0.7626 + }, + { + "start": 37832.8, + "end": 37836.08, + "probability": 0.2825 + }, + { + "start": 37836.88, + "end": 37840.62, + "probability": 0.0621 + }, + { + "start": 37844.62, + "end": 37846.5, + "probability": 0.2102 + }, + { + "start": 37846.52, + "end": 37847.0, + "probability": 0.2745 + }, + { + "start": 37847.0, + "end": 37847.0, + "probability": 0.2124 + }, + { + "start": 37847.0, + "end": 37847.0, + "probability": 0.0944 + }, + { + "start": 37847.0, + "end": 37849.64, + "probability": 0.335 + }, + { + "start": 37849.78, + "end": 37855.5, + "probability": 0.7878 + }, + { + "start": 37856.44, + "end": 37859.91, + "probability": 0.5958 + }, + { + "start": 37861.32, + "end": 37865.26, + "probability": 0.8535 + }, + { + "start": 37866.08, + "end": 37869.22, + "probability": 0.8002 + }, + { + "start": 37869.48, + "end": 37870.26, + "probability": 0.9719 + }, + { + "start": 37892.7, + "end": 37894.74, + "probability": 0.2931 + }, + { + "start": 37895.08, + "end": 37895.78, + "probability": 0.0877 + }, + { + "start": 37895.78, + "end": 37896.32, + "probability": 0.2876 + }, + { + "start": 37896.58, + "end": 37897.28, + "probability": 0.4616 + }, + { + "start": 37899.46, + "end": 37899.46, + "probability": 0.2251 + }, + { + "start": 37899.46, + "end": 37900.84, + "probability": 0.2945 + }, + { + "start": 37901.38, + "end": 37904.94, + "probability": 0.1125 + }, + { + "start": 37904.94, + "end": 37905.06, + "probability": 0.3904 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.0, + "end": 38009.0, + "probability": 0.0 + }, + { + "start": 38009.28, + "end": 38012.14, + "probability": 0.7092 + }, + { + "start": 38012.68, + "end": 38018.92, + "probability": 0.9071 + }, + { + "start": 38018.92, + "end": 38019.18, + "probability": 0.7234 + }, + { + "start": 38019.32, + "end": 38023.0, + "probability": 0.5356 + }, + { + "start": 38023.76, + "end": 38024.62, + "probability": 0.0235 + }, + { + "start": 38025.26, + "end": 38029.24, + "probability": 0.4319 + }, + { + "start": 38030.78, + "end": 38032.66, + "probability": 0.0001 + }, + { + "start": 38049.08, + "end": 38050.1, + "probability": 0.3343 + }, + { + "start": 38050.52, + "end": 38059.2, + "probability": 0.8959 + }, + { + "start": 38059.64, + "end": 38060.02, + "probability": 0.2696 + }, + { + "start": 38060.06, + "end": 38060.48, + "probability": 0.7439 + }, + { + "start": 38060.58, + "end": 38061.64, + "probability": 0.4013 + }, + { + "start": 38061.64, + "end": 38063.04, + "probability": 0.7515 + }, + { + "start": 38063.4, + "end": 38063.58, + "probability": 0.0791 + }, + { + "start": 38063.58, + "end": 38063.58, + "probability": 0.3312 + }, + { + "start": 38063.58, + "end": 38065.02, + "probability": 0.3546 + }, + { + "start": 38065.12, + "end": 38066.74, + "probability": 0.0477 + }, + { + "start": 38066.96, + "end": 38066.96, + "probability": 0.1895 + }, + { + "start": 38067.24, + "end": 38068.5, + "probability": 0.0088 + }, + { + "start": 38072.42, + "end": 38072.94, + "probability": 0.4796 + }, + { + "start": 38082.76, + "end": 38084.18, + "probability": 0.0705 + }, + { + "start": 38085.76, + "end": 38089.94, + "probability": 0.4854 + }, + { + "start": 38090.38, + "end": 38090.74, + "probability": 0.7144 + }, + { + "start": 38090.74, + "end": 38091.48, + "probability": 0.5408 + }, + { + "start": 38091.86, + "end": 38098.7, + "probability": 0.8639 + }, + { + "start": 38099.86, + "end": 38102.27, + "probability": 0.9443 + }, + { + "start": 38103.58, + "end": 38105.32, + "probability": 0.8882 + }, + { + "start": 38105.93, + "end": 38112.62, + "probability": 0.8445 + }, + { + "start": 38112.72, + "end": 38113.56, + "probability": 0.4511 + }, + { + "start": 38113.6, + "end": 38116.0, + "probability": 0.717 + }, + { + "start": 38116.04, + "end": 38117.26, + "probability": 0.6966 + }, + { + "start": 38126.64, + "end": 38130.74, + "probability": 0.0842 + }, + { + "start": 38130.78, + "end": 38132.16, + "probability": 0.0498 + }, + { + "start": 38132.3, + "end": 38132.3, + "probability": 0.2195 + }, + { + "start": 38132.42, + "end": 38133.2, + "probability": 0.5408 + }, + { + "start": 38133.2, + "end": 38137.96, + "probability": 0.501 + }, + { + "start": 38138.2, + "end": 38145.56, + "probability": 0.8391 + }, + { + "start": 38145.94, + "end": 38148.52, + "probability": 0.7199 + }, + { + "start": 38148.52, + "end": 38155.14, + "probability": 0.5596 + }, + { + "start": 38155.28, + "end": 38155.9, + "probability": 0.4477 + }, + { + "start": 38155.92, + "end": 38157.62, + "probability": 0.7575 + }, + { + "start": 38158.08, + "end": 38160.12, + "probability": 0.4716 + }, + { + "start": 38167.44, + "end": 38169.6, + "probability": 0.2248 + }, + { + "start": 38171.34, + "end": 38171.48, + "probability": 0.0281 + }, + { + "start": 38174.0, + "end": 38176.08, + "probability": 0.0408 + }, + { + "start": 38176.08, + "end": 38176.08, + "probability": 0.2845 + }, + { + "start": 38176.08, + "end": 38176.08, + "probability": 0.5018 + }, + { + "start": 38176.08, + "end": 38178.34, + "probability": 0.2597 + }, + { + "start": 38178.74, + "end": 38186.56, + "probability": 0.8414 + }, + { + "start": 38186.96, + "end": 38187.26, + "probability": 0.5672 + }, + { + "start": 38188.3, + "end": 38188.38, + "probability": 0.3692 + }, + { + "start": 38188.38, + "end": 38195.98, + "probability": 0.635 + }, + { + "start": 38196.14, + "end": 38196.14, + "probability": 0.4091 + }, + { + "start": 38196.14, + "end": 38198.08, + "probability": 0.6138 + }, + { + "start": 38198.1, + "end": 38199.14, + "probability": 0.7072 + }, + { + "start": 38210.98, + "end": 38210.98, + "probability": 0.3117 + }, + { + "start": 38212.9, + "end": 38215.6, + "probability": 0.0702 + }, + { + "start": 38216.04, + "end": 38217.4, + "probability": 0.2935 + }, + { + "start": 38217.4, + "end": 38217.4, + "probability": 0.2634 + }, + { + "start": 38217.4, + "end": 38217.4, + "probability": 0.2907 + }, + { + "start": 38217.4, + "end": 38218.34, + "probability": 0.3775 + }, + { + "start": 38219.0, + "end": 38220.44, + "probability": 0.4129 + }, + { + "start": 38220.84, + "end": 38227.28, + "probability": 0.8364 + }, + { + "start": 38228.1, + "end": 38230.98, + "probability": 0.9224 + }, + { + "start": 38232.12, + "end": 38237.16, + "probability": 0.8613 + }, + { + "start": 38237.54, + "end": 38243.14, + "probability": 0.9855 + }, + { + "start": 38243.46, + "end": 38243.82, + "probability": 0.3221 + }, + { + "start": 38243.98, + "end": 38244.4, + "probability": 0.1401 + }, + { + "start": 38244.42, + "end": 38245.18, + "probability": 0.5349 + }, + { + "start": 38248.2, + "end": 38252.66, + "probability": 0.0521 + }, + { + "start": 38263.0, + "end": 38263.78, + "probability": 0.45 + }, + { + "start": 38263.78, + "end": 38264.62, + "probability": 0.3167 + }, + { + "start": 38265.22, + "end": 38266.48, + "probability": 0.6364 + }, + { + "start": 38266.8, + "end": 38273.24, + "probability": 0.9566 + }, + { + "start": 38273.62, + "end": 38274.18, + "probability": 0.7737 + }, + { + "start": 38276.2, + "end": 38283.08, + "probability": 0.6848 + }, + { + "start": 38283.18, + "end": 38283.9, + "probability": 0.5309 + }, + { + "start": 38284.26, + "end": 38284.86, + "probability": 0.7269 + }, + { + "start": 38284.86, + "end": 38285.88, + "probability": 0.6741 + }, + { + "start": 38286.24, + "end": 38289.84, + "probability": 0.5634 + }, + { + "start": 38291.68, + "end": 38295.58, + "probability": 0.0567 + }, + { + "start": 38306.84, + "end": 38307.64, + "probability": 0.1402 + }, + { + "start": 38307.64, + "end": 38307.8, + "probability": 0.3331 + }, + { + "start": 38308.52, + "end": 38308.52, + "probability": 0.1087 + }, + { + "start": 38308.52, + "end": 38313.06, + "probability": 0.5302 + }, + { + "start": 38313.64, + "end": 38316.64, + "probability": 0.4784 + }, + { + "start": 38317.38, + "end": 38320.16, + "probability": 0.7475 + }, + { + "start": 38320.46, + "end": 38320.9, + "probability": 0.4501 + }, + { + "start": 38321.04, + "end": 38329.54, + "probability": 0.8784 + }, + { + "start": 38330.2, + "end": 38331.62, + "probability": 0.5475 + }, + { + "start": 38331.66, + "end": 38332.34, + "probability": 0.736 + }, + { + "start": 38332.48, + "end": 38339.14, + "probability": 0.7219 + }, + { + "start": 38339.18, + "end": 38339.18, + "probability": 0.4519 + }, + { + "start": 38339.18, + "end": 38340.02, + "probability": 0.6325 + }, + { + "start": 38340.1, + "end": 38340.72, + "probability": 0.5173 + }, + { + "start": 38341.14, + "end": 38344.24, + "probability": 0.0324 + }, + { + "start": 38346.34, + "end": 38348.8, + "probability": 0.0506 + }, + { + "start": 38358.16, + "end": 38359.2, + "probability": 0.132 + }, + { + "start": 38359.2, + "end": 38363.46, + "probability": 0.2003 + }, + { + "start": 38364.0, + "end": 38366.84, + "probability": 0.0534 + }, + { + "start": 38367.46, + "end": 38369.55, + "probability": 0.6348 + }, + { + "start": 38370.4, + "end": 38372.58, + "probability": 0.4215 + }, + { + "start": 38373.2, + "end": 38374.18, + "probability": 0.3775 + }, + { + "start": 38374.18, + "end": 38374.58, + "probability": 0.4211 + }, + { + "start": 38374.58, + "end": 38375.42, + "probability": 0.526 + }, + { + "start": 38375.66, + "end": 38381.42, + "probability": 0.868 + }, + { + "start": 38382.7, + "end": 38385.69, + "probability": 0.6981 + }, + { + "start": 38386.66, + "end": 38392.14, + "probability": 0.7067 + }, + { + "start": 38392.8, + "end": 38400.06, + "probability": 0.9637 + }, + { + "start": 38400.16, + "end": 38400.48, + "probability": 0.3001 + }, + { + "start": 38400.52, + "end": 38401.18, + "probability": 0.4241 + }, + { + "start": 38413.68, + "end": 38418.54, + "probability": 0.0883 + }, + { + "start": 38418.94, + "end": 38419.66, + "probability": 0.0604 + }, + { + "start": 38419.66, + "end": 38420.32, + "probability": 0.3535 + }, + { + "start": 38420.32, + "end": 38420.56, + "probability": 0.0552 + }, + { + "start": 38421.44, + "end": 38423.08, + "probability": 0.3566 + }, + { + "start": 38423.7, + "end": 38425.62, + "probability": 0.674 + }, + { + "start": 38425.68, + "end": 38429.28, + "probability": 0.8051 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38523.0, + "end": 38523.0, + "probability": 0.0 + }, + { + "start": 38535.22, + "end": 38536.94, + "probability": 0.0319 + }, + { + "start": 38537.34, + "end": 38539.38, + "probability": 0.5636 + }, + { + "start": 38541.1, + "end": 38542.46, + "probability": 0.2887 + }, + { + "start": 38544.68, + "end": 38547.2, + "probability": 0.6051 + }, + { + "start": 38547.26, + "end": 38548.02, + "probability": 0.1933 + }, + { + "start": 38548.02, + "end": 38550.92, + "probability": 0.2707 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38659.0, + "end": 38659.0, + "probability": 0.0 + }, + { + "start": 38672.94, + "end": 38674.3, + "probability": 0.4824 + }, + { + "start": 38684.12, + "end": 38685.26, + "probability": 0.0038 + }, + { + "start": 38688.42, + "end": 38689.02, + "probability": 0.2598 + }, + { + "start": 38689.02, + "end": 38690.8, + "probability": 0.4465 + }, + { + "start": 38691.2, + "end": 38696.66, + "probability": 0.8901 + }, + { + "start": 38696.66, + "end": 38698.68, + "probability": 0.0101 + }, + { + "start": 38699.22, + "end": 38699.7, + "probability": 0.2256 + }, + { + "start": 38699.7, + "end": 38699.84, + "probability": 0.2003 + }, + { + "start": 38699.86, + "end": 38703.18, + "probability": 0.3033 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38782.0, + "end": 38782.0, + "probability": 0.0 + }, + { + "start": 38787.02, + "end": 38790.56, + "probability": 0.2834 + }, + { + "start": 38792.62, + "end": 38799.6, + "probability": 0.8404 + }, + { + "start": 38799.9, + "end": 38800.76, + "probability": 0.3867 + }, + { + "start": 38801.12, + "end": 38802.32, + "probability": 0.4201 + }, + { + "start": 38802.38, + "end": 38802.9, + "probability": 0.5637 + }, + { + "start": 38802.98, + "end": 38803.78, + "probability": 0.5539 + }, + { + "start": 38810.06, + "end": 38811.28, + "probability": 0.8406 + }, + { + "start": 38814.04, + "end": 38818.08, + "probability": 0.0877 + }, + { + "start": 38820.64, + "end": 38821.98, + "probability": 0.2066 + }, + { + "start": 38821.98, + "end": 38824.3, + "probability": 0.2407 + }, + { + "start": 38824.56, + "end": 38827.02, + "probability": 0.9319 + }, + { + "start": 38827.56, + "end": 38831.8, + "probability": 0.7881 + }, + { + "start": 38834.48, + "end": 38835.04, + "probability": 0.5045 + }, + { + "start": 38835.12, + "end": 38836.12, + "probability": 0.9737 + }, + { + "start": 38844.56, + "end": 38846.73, + "probability": 0.5028 + }, + { + "start": 38854.26, + "end": 38855.14, + "probability": 0.2235 + }, + { + "start": 38855.14, + "end": 38856.78, + "probability": 0.1379 + }, + { + "start": 38856.94, + "end": 38860.86, + "probability": 0.8385 + }, + { + "start": 38861.44, + "end": 38868.3, + "probability": 0.7513 + }, + { + "start": 38868.8, + "end": 38868.8, + "probability": 0.7354 + }, + { + "start": 38868.8, + "end": 38869.26, + "probability": 0.5782 + }, + { + "start": 38869.28, + "end": 38870.06, + "probability": 0.6746 + }, + { + "start": 38881.72, + "end": 38883.16, + "probability": 0.1468 + }, + { + "start": 38883.72, + "end": 38884.48, + "probability": 0.0282 + }, + { + "start": 38890.54, + "end": 38891.48, + "probability": 0.1927 + }, + { + "start": 38891.48, + "end": 38893.56, + "probability": 0.6569 + }, + { + "start": 38893.94, + "end": 38897.88, + "probability": 0.9466 + }, + { + "start": 38899.14, + "end": 38903.96, + "probability": 0.8981 + }, + { + "start": 38904.7, + "end": 38911.62, + "probability": 0.859 + }, + { + "start": 38911.72, + "end": 38912.12, + "probability": 0.581 + }, + { + "start": 38917.4, + "end": 38918.18, + "probability": 0.5399 + }, + { + "start": 38918.98, + "end": 38921.36, + "probability": 0.5538 + }, + { + "start": 38930.8, + "end": 38931.44, + "probability": 0.0005 + }, + { + "start": 38931.74, + "end": 38931.84, + "probability": 0.2665 + }, + { + "start": 38931.84, + "end": 38931.84, + "probability": 0.2446 + }, + { + "start": 38931.84, + "end": 38931.84, + "probability": 0.3885 + }, + { + "start": 38931.84, + "end": 38932.97, + "probability": 0.2636 + }, + { + "start": 38933.38, + "end": 38935.76, + "probability": 0.6861 + }, + { + "start": 38936.28, + "end": 38937.57, + "probability": 0.3583 + }, + { + "start": 38939.48, + "end": 38939.8, + "probability": 0.3028 + }, + { + "start": 38940.4, + "end": 38944.98, + "probability": 0.4847 + }, + { + "start": 38945.02, + "end": 38945.58, + "probability": 0.6388 + }, + { + "start": 38946.32, + "end": 38947.06, + "probability": 0.4948 + }, + { + "start": 38951.86, + "end": 38955.28, + "probability": 0.5902 + }, + { + "start": 38962.4, + "end": 38963.48, + "probability": 0.0021 + }, + { + "start": 38963.92, + "end": 38964.16, + "probability": 0.2488 + }, + { + "start": 38964.16, + "end": 38964.32, + "probability": 0.177 + }, + { + "start": 38964.32, + "end": 38964.32, + "probability": 0.0061 + }, + { + "start": 38964.32, + "end": 38965.1, + "probability": 0.1356 + }, + { + "start": 38965.1, + "end": 38966.6, + "probability": 0.8147 + }, + { + "start": 38967.24, + "end": 38973.58, + "probability": 0.6349 + }, + { + "start": 38974.16, + "end": 38974.92, + "probability": 0.657 + }, + { + "start": 38974.92, + "end": 38975.54, + "probability": 0.5884 + }, + { + "start": 38975.54, + "end": 38976.18, + "probability": 0.7133 + }, + { + "start": 38992.68, + "end": 38994.54, + "probability": 0.3616 + }, + { + "start": 38994.58, + "end": 38994.58, + "probability": 0.1187 + }, + { + "start": 38994.58, + "end": 38994.58, + "probability": 0.1111 + }, + { + "start": 38994.58, + "end": 38994.58, + "probability": 0.2805 + }, + { + "start": 38994.58, + "end": 38994.58, + "probability": 0.0768 + }, + { + "start": 38994.58, + "end": 38995.08, + "probability": 0.238 + }, + { + "start": 38995.6, + "end": 38997.24, + "probability": 0.4067 + }, + { + "start": 38997.26, + "end": 39003.1, + "probability": 0.778 + }, + { + "start": 39003.74, + "end": 39004.98, + "probability": 0.9917 + }, + { + "start": 39006.78, + "end": 39007.68, + "probability": 0.3198 + }, + { + "start": 39008.54, + "end": 39011.6, + "probability": 0.8286 + }, + { + "start": 39013.26, + "end": 39013.4, + "probability": 0.2053 + }, + { + "start": 39013.4, + "end": 39014.08, + "probability": 0.1542 + }, + { + "start": 39015.94, + "end": 39016.5, + "probability": 0.2678 + }, + { + "start": 39016.56, + "end": 39019.48, + "probability": 0.7021 + }, + { + "start": 39019.54, + "end": 39020.52, + "probability": 0.9484 + }, + { + "start": 39022.02, + "end": 39022.6, + "probability": 0.7772 + }, + { + "start": 39023.12, + "end": 39024.54, + "probability": 0.8004 + }, + { + "start": 39025.12, + "end": 39025.38, + "probability": 0.0774 + }, + { + "start": 39025.38, + "end": 39027.16, + "probability": 0.6458 + }, + { + "start": 39027.64, + "end": 39030.64, + "probability": 0.851 + }, + { + "start": 39030.64, + "end": 39037.22, + "probability": 0.7515 + }, + { + "start": 39037.46, + "end": 39037.96, + "probability": 0.8173 + }, + { + "start": 39037.98, + "end": 39038.72, + "probability": 0.7521 + }, + { + "start": 39043.72, + "end": 39046.38, + "probability": 0.645 + }, + { + "start": 39047.08, + "end": 39047.33, + "probability": 0.0932 + }, + { + "start": 39053.96, + "end": 39054.9, + "probability": 0.1152 + }, + { + "start": 39055.42, + "end": 39057.46, + "probability": 0.1814 + }, + { + "start": 39058.39, + "end": 39058.52, + "probability": 0.4091 + }, + { + "start": 39058.76, + "end": 39063.92, + "probability": 0.6006 + }, + { + "start": 39063.96, + "end": 39065.28, + "probability": 0.8695 + }, + { + "start": 39065.8, + "end": 39071.52, + "probability": 0.8286 + }, + { + "start": 39072.02, + "end": 39072.72, + "probability": 0.5451 + }, + { + "start": 39074.5, + "end": 39077.62, + "probability": 0.5957 + }, + { + "start": 39083.76, + "end": 39085.78, + "probability": 0.4155 + }, + { + "start": 39086.3, + "end": 39087.82, + "probability": 0.2316 + }, + { + "start": 39087.9, + "end": 39089.43, + "probability": 0.3906 + }, + { + "start": 39091.22, + "end": 39091.92, + "probability": 0.1948 + }, + { + "start": 39092.7, + "end": 39093.12, + "probability": 0.1191 + }, + { + "start": 39093.12, + "end": 39093.66, + "probability": 0.3251 + }, + { + "start": 39094.16, + "end": 39094.6, + "probability": 0.4864 + }, + { + "start": 39094.78, + "end": 39095.94, + "probability": 0.5512 + }, + { + "start": 39096.0, + "end": 39100.68, + "probability": 0.89 + }, + { + "start": 39101.58, + "end": 39105.5, + "probability": 0.802 + }, + { + "start": 39106.04, + "end": 39106.58, + "probability": 0.8329 + }, + { + "start": 39107.2, + "end": 39108.42, + "probability": 0.9554 + }, + { + "start": 39108.46, + "end": 39108.46, + "probability": 0.7792 + }, + { + "start": 39108.54, + "end": 39111.2, + "probability": 0.6842 + }, + { + "start": 39111.54, + "end": 39112.44, + "probability": 0.0008 + }, + { + "start": 39112.44, + "end": 39114.88, + "probability": 0.4568 + }, + { + "start": 39115.5, + "end": 39117.3, + "probability": 0.7421 + }, + { + "start": 39117.3, + "end": 39120.14, + "probability": 0.294 + }, + { + "start": 39120.4, + "end": 39125.02, + "probability": 0.1728 + }, + { + "start": 39125.58, + "end": 39126.98, + "probability": 0.639 + }, + { + "start": 39127.74, + "end": 39128.74, + "probability": 0.523 + }, + { + "start": 39128.92, + "end": 39129.48, + "probability": 0.4896 + }, + { + "start": 39129.5, + "end": 39129.92, + "probability": 0.7374 + }, + { + "start": 39129.92, + "end": 39130.98, + "probability": 0.8493 + }, + { + "start": 39131.5, + "end": 39134.38, + "probability": 0.9905 + }, + { + "start": 39134.76, + "end": 39137.84, + "probability": 0.4588 + }, + { + "start": 39139.04, + "end": 39140.26, + "probability": 0.5921 + }, + { + "start": 39140.88, + "end": 39142.42, + "probability": 0.3843 + }, + { + "start": 39142.42, + "end": 39143.34, + "probability": 0.437 + }, + { + "start": 39143.46, + "end": 39144.32, + "probability": 0.5325 + }, + { + "start": 39144.9, + "end": 39145.64, + "probability": 0.3594 + }, + { + "start": 39145.8, + "end": 39151.6, + "probability": 0.5342 + }, + { + "start": 39151.82, + "end": 39153.46, + "probability": 0.7138 + }, + { + "start": 39153.78, + "end": 39153.88, + "probability": 0.5459 + }, + { + "start": 39153.88, + "end": 39154.62, + "probability": 0.6897 + }, + { + "start": 39154.88, + "end": 39155.86, + "probability": 0.6753 + }, + { + "start": 39157.4, + "end": 39158.78, + "probability": 0.1689 + }, + { + "start": 39163.6, + "end": 39165.4, + "probability": 0.1379 + }, + { + "start": 39167.2, + "end": 39170.72, + "probability": 0.1241 + }, + { + "start": 39172.92, + "end": 39175.9, + "probability": 0.2155 + }, + { + "start": 39176.28, + "end": 39181.06, + "probability": 0.7999 + }, + { + "start": 39181.74, + "end": 39184.14, + "probability": 0.6595 + }, + { + "start": 39185.04, + "end": 39185.68, + "probability": 0.5128 + }, + { + "start": 39185.78, + "end": 39189.32, + "probability": 0.87 + }, + { + "start": 39189.92, + "end": 39194.92, + "probability": 0.8938 + }, + { + "start": 39194.92, + "end": 39200.08, + "probability": 0.8673 + }, + { + "start": 39200.16, + "end": 39201.4, + "probability": 0.3973 + }, + { + "start": 39203.36, + "end": 39206.28, + "probability": 0.6128 + }, + { + "start": 39206.66, + "end": 39208.6, + "probability": 0.0153 + }, + { + "start": 39209.3, + "end": 39213.96, + "probability": 0.9011 + }, + { + "start": 39220.16, + "end": 39226.92, + "probability": 0.5702 + }, + { + "start": 39227.5, + "end": 39229.52, + "probability": 0.9307 + }, + { + "start": 39230.54, + "end": 39232.36, + "probability": 0.9239 + }, + { + "start": 39233.08, + "end": 39235.12, + "probability": 0.971 + }, + { + "start": 39235.82, + "end": 39237.78, + "probability": 0.9487 + }, + { + "start": 39238.62, + "end": 39239.06, + "probability": 0.9863 + }, + { + "start": 39239.86, + "end": 39240.7, + "probability": 0.7944 + }, + { + "start": 39241.5, + "end": 39243.4, + "probability": 0.7346 + }, + { + "start": 39245.3, + "end": 39248.18, + "probability": 0.2391 + }, + { + "start": 39258.66, + "end": 39259.96, + "probability": 0.1718 + }, + { + "start": 39260.74, + "end": 39263.04, + "probability": 0.6525 + }, + { + "start": 39268.5, + "end": 39272.64, + "probability": 0.8589 + }, + { + "start": 39273.32, + "end": 39275.46, + "probability": 0.9377 + }, + { + "start": 39276.32, + "end": 39278.1, + "probability": 0.8429 + }, + { + "start": 39278.66, + "end": 39280.64, + "probability": 0.8621 + }, + { + "start": 39281.16, + "end": 39282.82, + "probability": 0.8153 + }, + { + "start": 39283.34, + "end": 39287.26, + "probability": 0.9559 + }, + { + "start": 39288.48, + "end": 39293.3, + "probability": 0.9408 + }, + { + "start": 39294.06, + "end": 39295.82, + "probability": 0.7773 + }, + { + "start": 39296.5, + "end": 39298.5, + "probability": 0.821 + }, + { + "start": 39299.2, + "end": 39301.26, + "probability": 0.9218 + }, + { + "start": 39301.84, + "end": 39304.7, + "probability": 0.7368 + }, + { + "start": 39305.52, + "end": 39307.32, + "probability": 0.6408 + }, + { + "start": 39308.02, + "end": 39309.94, + "probability": 0.9792 + }, + { + "start": 39310.58, + "end": 39312.28, + "probability": 0.9105 + }, + { + "start": 39313.02, + "end": 39317.54, + "probability": 0.8566 + }, + { + "start": 39318.2, + "end": 39320.1, + "probability": 0.7406 + }, + { + "start": 39320.84, + "end": 39322.88, + "probability": 0.9741 + }, + { + "start": 39323.54, + "end": 39325.98, + "probability": 0.7508 + }, + { + "start": 39326.84, + "end": 39329.58, + "probability": 0.9795 + }, + { + "start": 39330.8, + "end": 39331.78, + "probability": 0.8922 + }, + { + "start": 39333.44, + "end": 39334.14, + "probability": 0.9884 + }, + { + "start": 39336.04, + "end": 39337.28, + "probability": 0.7405 + }, + { + "start": 39338.66, + "end": 39340.78, + "probability": 0.8735 + }, + { + "start": 39341.64, + "end": 39343.76, + "probability": 0.7781 + }, + { + "start": 39344.48, + "end": 39347.62, + "probability": 0.6627 + }, + { + "start": 39348.74, + "end": 39349.08, + "probability": 0.9437 + }, + { + "start": 39349.86, + "end": 39351.08, + "probability": 0.896 + }, + { + "start": 39351.7, + "end": 39353.46, + "probability": 0.8969 + }, + { + "start": 39354.44, + "end": 39356.32, + "probability": 0.9896 + }, + { + "start": 39357.42, + "end": 39358.02, + "probability": 0.9841 + }, + { + "start": 39359.0, + "end": 39360.26, + "probability": 0.8045 + }, + { + "start": 39360.96, + "end": 39366.0, + "probability": 0.9712 + }, + { + "start": 39366.78, + "end": 39368.52, + "probability": 0.7494 + }, + { + "start": 39370.04, + "end": 39370.92, + "probability": 0.6371 + }, + { + "start": 39373.3, + "end": 39374.46, + "probability": 0.6507 + }, + { + "start": 39375.3, + "end": 39377.18, + "probability": 0.9449 + }, + { + "start": 39378.62, + "end": 39380.04, + "probability": 0.8086 + }, + { + "start": 39380.56, + "end": 39382.76, + "probability": 0.9055 + }, + { + "start": 39383.32, + "end": 39383.84, + "probability": 0.9943 + }, + { + "start": 39384.38, + "end": 39385.56, + "probability": 0.9635 + }, + { + "start": 39388.44, + "end": 39389.06, + "probability": 0.9928 + }, + { + "start": 39390.6, + "end": 39391.6, + "probability": 0.7283 + }, + { + "start": 39392.24, + "end": 39394.02, + "probability": 0.967 + }, + { + "start": 39396.98, + "end": 39398.72, + "probability": 0.7561 + }, + { + "start": 39399.76, + "end": 39403.68, + "probability": 0.7486 + }, + { + "start": 39405.4, + "end": 39407.46, + "probability": 0.907 + }, + { + "start": 39408.44, + "end": 39408.78, + "probability": 0.8651 + }, + { + "start": 39409.48, + "end": 39410.3, + "probability": 0.8078 + }, + { + "start": 39411.14, + "end": 39413.48, + "probability": 0.9392 + }, + { + "start": 39414.24, + "end": 39414.74, + "probability": 0.9895 + }, + { + "start": 39415.36, + "end": 39416.1, + "probability": 0.8905 + }, + { + "start": 39416.66, + "end": 39416.94, + "probability": 0.9338 + }, + { + "start": 39417.46, + "end": 39418.32, + "probability": 0.7254 + }, + { + "start": 39419.14, + "end": 39421.1, + "probability": 0.8767 + }, + { + "start": 39421.82, + "end": 39423.7, + "probability": 0.9578 + }, + { + "start": 39424.58, + "end": 39426.42, + "probability": 0.7131 + }, + { + "start": 39427.2, + "end": 39429.72, + "probability": 0.915 + }, + { + "start": 39430.34, + "end": 39431.14, + "probability": 0.7001 + }, + { + "start": 39434.46, + "end": 39436.58, + "probability": 0.9286 + }, + { + "start": 39438.4, + "end": 39438.86, + "probability": 0.9069 + }, + { + "start": 39439.52, + "end": 39440.42, + "probability": 0.9562 + }, + { + "start": 39440.98, + "end": 39441.4, + "probability": 0.9326 + }, + { + "start": 39441.92, + "end": 39442.72, + "probability": 0.8578 + }, + { + "start": 39443.36, + "end": 39448.04, + "probability": 0.9492 + }, + { + "start": 39449.04, + "end": 39451.64, + "probability": 0.4624 + }, + { + "start": 39461.78, + "end": 39466.18, + "probability": 0.8153 + }, + { + "start": 39467.38, + "end": 39469.04, + "probability": 0.8551 + }, + { + "start": 39470.14, + "end": 39470.54, + "probability": 0.8548 + }, + { + "start": 39472.0, + "end": 39472.9, + "probability": 0.8252 + }, + { + "start": 39475.94, + "end": 39477.68, + "probability": 0.9096 + }, + { + "start": 39478.94, + "end": 39479.44, + "probability": 0.9333 + }, + { + "start": 39480.22, + "end": 39481.04, + "probability": 0.4419 + }, + { + "start": 39481.64, + "end": 39483.68, + "probability": 0.9546 + }, + { + "start": 39486.24, + "end": 39486.74, + "probability": 0.6072 + }, + { + "start": 39488.18, + "end": 39489.18, + "probability": 0.7137 + }, + { + "start": 39490.02, + "end": 39492.36, + "probability": 0.9352 + }, + { + "start": 39492.94, + "end": 39493.86, + "probability": 0.9611 + }, + { + "start": 39494.38, + "end": 39495.58, + "probability": 0.7642 + }, + { + "start": 39496.38, + "end": 39497.98, + "probability": 0.9657 + }, + { + "start": 39500.02, + "end": 39502.5, + "probability": 0.9842 + }, + { + "start": 39503.76, + "end": 39504.98, + "probability": 0.8499 + }, + { + "start": 39505.66, + "end": 39507.3, + "probability": 0.9141 + }, + { + "start": 39510.58, + "end": 39511.34, + "probability": 0.8003 + }, + { + "start": 39512.08, + "end": 39512.4, + "probability": 0.6729 + }, + { + "start": 39515.44, + "end": 39516.98, + "probability": 0.4631 + }, + { + "start": 39517.76, + "end": 39518.82, + "probability": 0.7809 + }, + { + "start": 39519.54, + "end": 39521.14, + "probability": 0.9487 + }, + { + "start": 39521.74, + "end": 39523.9, + "probability": 0.8945 + }, + { + "start": 39524.66, + "end": 39525.24, + "probability": 0.9316 + }, + { + "start": 39526.04, + "end": 39527.04, + "probability": 0.9423 + }, + { + "start": 39530.42, + "end": 39531.36, + "probability": 0.9928 + }, + { + "start": 39532.9, + "end": 39534.02, + "probability": 0.8663 + }, + { + "start": 39535.34, + "end": 39537.42, + "probability": 0.8249 + }, + { + "start": 39538.14, + "end": 39540.24, + "probability": 0.9196 + }, + { + "start": 39541.0, + "end": 39541.32, + "probability": 0.7646 + }, + { + "start": 39542.76, + "end": 39543.82, + "probability": 0.5878 + }, + { + "start": 39545.66, + "end": 39547.82, + "probability": 0.7996 + }, + { + "start": 39549.48, + "end": 39549.96, + "probability": 0.8042 + }, + { + "start": 39550.64, + "end": 39551.48, + "probability": 0.9306 + }, + { + "start": 39552.5, + "end": 39554.72, + "probability": 0.9417 + }, + { + "start": 39555.86, + "end": 39556.6, + "probability": 0.9966 + }, + { + "start": 39557.36, + "end": 39558.2, + "probability": 0.8993 + }, + { + "start": 39559.02, + "end": 39559.46, + "probability": 0.9893 + }, + { + "start": 39560.02, + "end": 39562.3, + "probability": 0.8846 + }, + { + "start": 39563.08, + "end": 39564.08, + "probability": 0.9686 + }, + { + "start": 39565.22, + "end": 39565.6, + "probability": 0.9826 + }, + { + "start": 39566.66, + "end": 39568.44, + "probability": 0.9601 + }, + { + "start": 39569.14, + "end": 39569.54, + "probability": 0.9968 + }, + { + "start": 39570.62, + "end": 39571.44, + "probability": 0.3214 + }, + { + "start": 39572.12, + "end": 39573.84, + "probability": 0.6808 + }, + { + "start": 39574.72, + "end": 39576.76, + "probability": 0.9498 + }, + { + "start": 39577.52, + "end": 39577.98, + "probability": 0.9624 + }, + { + "start": 39578.66, + "end": 39579.52, + "probability": 0.601 + }, + { + "start": 39583.9, + "end": 39585.6, + "probability": 0.6713 + }, + { + "start": 39587.42, + "end": 39591.2, + "probability": 0.7473 + }, + { + "start": 39592.16, + "end": 39592.64, + "probability": 0.9299 + }, + { + "start": 39593.56, + "end": 39594.0, + "probability": 0.9225 + }, + { + "start": 39595.3, + "end": 39595.66, + "probability": 0.9502 + }, + { + "start": 39597.44, + "end": 39597.86, + "probability": 0.8625 + }, + { + "start": 39599.26, + "end": 39600.8, + "probability": 0.9891 + }, + { + "start": 39601.54, + "end": 39603.8, + "probability": 0.9593 + }, + { + "start": 39606.88, + "end": 39609.18, + "probability": 0.8969 + }, + { + "start": 39610.4, + "end": 39612.48, + "probability": 0.5732 + }, + { + "start": 39613.86, + "end": 39616.08, + "probability": 0.8675 + }, + { + "start": 39616.74, + "end": 39617.38, + "probability": 0.9593 + }, + { + "start": 39618.16, + "end": 39618.96, + "probability": 0.785 + }, + { + "start": 39620.74, + "end": 39621.32, + "probability": 0.9855 + }, + { + "start": 39622.6, + "end": 39623.56, + "probability": 0.9489 + }, + { + "start": 39624.72, + "end": 39626.4, + "probability": 0.9829 + }, + { + "start": 39627.12, + "end": 39628.76, + "probability": 0.9879 + }, + { + "start": 39629.5, + "end": 39629.88, + "probability": 0.9849 + }, + { + "start": 39631.3, + "end": 39632.2, + "probability": 0.8061 + }, + { + "start": 39633.0, + "end": 39635.02, + "probability": 0.9816 + }, + { + "start": 39639.28, + "end": 39642.62, + "probability": 0.6628 + }, + { + "start": 39644.78, + "end": 39645.72, + "probability": 0.9044 + }, + { + "start": 39646.42, + "end": 39648.92, + "probability": 0.9017 + }, + { + "start": 39649.56, + "end": 39655.26, + "probability": 0.9885 + }, + { + "start": 39659.08, + "end": 39659.8, + "probability": 0.015 + }, + { + "start": 39662.32, + "end": 39662.84, + "probability": 0.0823 + }, + { + "start": 39665.6, + "end": 39666.84, + "probability": 0.6689 + }, + { + "start": 39668.3, + "end": 39668.72, + "probability": 0.7545 + }, + { + "start": 39672.18, + "end": 39675.56, + "probability": 0.5282 + }, + { + "start": 39677.36, + "end": 39677.84, + "probability": 0.9178 + }, + { + "start": 39679.42, + "end": 39680.42, + "probability": 0.7581 + }, + { + "start": 39681.16, + "end": 39683.74, + "probability": 0.9505 + }, + { + "start": 39685.1, + "end": 39686.22, + "probability": 0.98 + }, + { + "start": 39687.62, + "end": 39688.08, + "probability": 0.9795 + }, + { + "start": 39690.08, + "end": 39691.16, + "probability": 0.8279 + }, + { + "start": 39692.14, + "end": 39692.66, + "probability": 0.7102 + }, + { + "start": 39694.56, + "end": 39695.42, + "probability": 0.6034 + }, + { + "start": 39696.92, + "end": 39702.84, + "probability": 0.7961 + }, + { + "start": 39705.1, + "end": 39705.62, + "probability": 0.8621 + }, + { + "start": 39706.4, + "end": 39708.7, + "probability": 0.7025 + }, + { + "start": 39710.82, + "end": 39716.52, + "probability": 0.5957 + }, + { + "start": 39718.64, + "end": 39723.04, + "probability": 0.3675 + }, + { + "start": 39724.18, + "end": 39727.2, + "probability": 0.5634 + }, + { + "start": 39727.98, + "end": 39728.56, + "probability": 0.4875 + }, + { + "start": 39728.76, + "end": 39730.64, + "probability": 0.534 + }, + { + "start": 39731.54, + "end": 39732.7, + "probability": 0.3419 + }, + { + "start": 39739.02, + "end": 39741.52, + "probability": 0.8501 + }, + { + "start": 39741.58, + "end": 39742.96, + "probability": 0.8702 + }, + { + "start": 39743.24, + "end": 39745.04, + "probability": 0.2188 + }, + { + "start": 39752.82, + "end": 39753.88, + "probability": 0.0396 + }, + { + "start": 39755.28, + "end": 39756.96, + "probability": 0.7921 + }, + { + "start": 39765.98, + "end": 39766.86, + "probability": 0.001 + }, + { + "start": 39767.8, + "end": 39772.2, + "probability": 0.0699 + }, + { + "start": 39772.2, + "end": 39772.2, + "probability": 0.0042 + }, + { + "start": 39772.2, + "end": 39772.2, + "probability": 0.0458 + }, + { + "start": 39772.2, + "end": 39774.2, + "probability": 0.4957 + }, + { + "start": 39774.48, + "end": 39774.78, + "probability": 0.4503 + }, + { + "start": 39834.0, + "end": 39834.0, + "probability": 0.0 + }, + { + "start": 39834.0, + "end": 39834.0, + "probability": 0.0 + }, + { + "start": 39834.32, + "end": 39835.18, + "probability": 0.4543 + }, + { + "start": 39835.2, + "end": 39838.08, + "probability": 0.6222 + }, + { + "start": 39838.4, + "end": 39839.94, + "probability": 0.1584 + }, + { + "start": 39839.94, + "end": 39841.26, + "probability": 0.2606 + }, + { + "start": 39842.14, + "end": 39843.88, + "probability": 0.1535 + }, + { + "start": 39864.42, + "end": 39865.86, + "probability": 0.2837 + }, + { + "start": 39867.38, + "end": 39868.36, + "probability": 0.654 + }, + { + "start": 39869.32, + "end": 39875.32, + "probability": 0.733 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.0, + "end": 39958.0, + "probability": 0.0 + }, + { + "start": 39958.28, + "end": 39958.46, + "probability": 0.4036 + }, + { + "start": 39958.46, + "end": 39959.1, + "probability": 0.4552 + }, + { + "start": 39959.52, + "end": 39964.24, + "probability": 0.362 + }, + { + "start": 39964.88, + "end": 39965.58, + "probability": 0.6842 + }, + { + "start": 39965.58, + "end": 39966.38, + "probability": 0.6604 + }, + { + "start": 39987.98, + "end": 39994.12, + "probability": 0.308 + }, + { + "start": 39995.06, + "end": 39995.3, + "probability": 0.1378 + }, + { + "start": 40001.42, + "end": 40007.74, + "probability": 0.0804 + }, + { + "start": 40012.64, + "end": 40015.34, + "probability": 0.1643 + }, + { + "start": 40015.34, + "end": 40017.6, + "probability": 0.5052 + }, + { + "start": 40017.94, + "end": 40019.66, + "probability": 0.9019 + }, + { + "start": 40020.14, + "end": 40025.56, + "probability": 0.7339 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40095.0, + "end": 40095.0, + "probability": 0.0 + }, + { + "start": 40112.2, + "end": 40115.04, + "probability": 0.5094 + }, + { + "start": 40115.08, + "end": 40116.34, + "probability": 0.8743 + }, + { + "start": 40116.46, + "end": 40123.02, + "probability": 0.8809 + }, + { + "start": 40123.08, + "end": 40123.54, + "probability": 0.4752 + }, + { + "start": 40123.58, + "end": 40124.56, + "probability": 0.8766 + }, + { + "start": 40146.98, + "end": 40151.5, + "probability": 0.6258 + }, + { + "start": 40151.78, + "end": 40151.8, + "probability": 0.1823 + }, + { + "start": 40151.8, + "end": 40151.8, + "probability": 0.1512 + }, + { + "start": 40151.8, + "end": 40153.38, + "probability": 0.3115 + }, + { + "start": 40153.78, + "end": 40154.06, + "probability": 0.1106 + }, + { + "start": 40154.06, + "end": 40154.56, + "probability": 0.0004 + }, + { + "start": 40159.62, + "end": 40160.6, + "probability": 0.3916 + }, + { + "start": 40161.72, + "end": 40164.54, + "probability": 0.0399 + }, + { + "start": 40172.98, + "end": 40174.15, + "probability": 0.0622 + }, + { + "start": 40177.54, + "end": 40182.06, + "probability": 0.4709 + }, + { + "start": 40186.86, + "end": 40189.86, + "probability": 0.3398 + }, + { + "start": 40189.86, + "end": 40190.38, + "probability": 0.3775 + }, + { + "start": 40191.02, + "end": 40192.54, + "probability": 0.0565 + }, + { + "start": 40193.62, + "end": 40194.76, + "probability": 0.1026 + }, + { + "start": 40195.86, + "end": 40196.64, + "probability": 0.2157 + }, + { + "start": 40197.34, + "end": 40197.72, + "probability": 0.0887 + }, + { + "start": 40198.98, + "end": 40203.62, + "probability": 0.2732 + }, + { + "start": 40205.3, + "end": 40206.4, + "probability": 0.1583 + }, + { + "start": 40212.3, + "end": 40213.4, + "probability": 0.2001 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.0, + "end": 40221.0, + "probability": 0.0 + }, + { + "start": 40221.28, + "end": 40222.74, + "probability": 0.0481 + }, + { + "start": 40222.74, + "end": 40229.28, + "probability": 0.9396 + }, + { + "start": 40229.64, + "end": 40230.93, + "probability": 0.9868 + }, + { + "start": 40231.68, + "end": 40233.48, + "probability": 0.8117 + }, + { + "start": 40248.82, + "end": 40249.74, + "probability": 0.0973 + }, + { + "start": 40249.92, + "end": 40250.28, + "probability": 0.0025 + }, + { + "start": 40250.4, + "end": 40250.4, + "probability": 0.2144 + }, + { + "start": 40250.4, + "end": 40250.4, + "probability": 0.005 + }, + { + "start": 40250.4, + "end": 40251.1, + "probability": 0.0835 + }, + { + "start": 40251.1, + "end": 40253.0, + "probability": 0.6792 + }, + { + "start": 40253.42, + "end": 40259.18, + "probability": 0.8488 + }, + { + "start": 40259.76, + "end": 40260.54, + "probability": 0.3929 + }, + { + "start": 40260.54, + "end": 40261.04, + "probability": 0.6106 + }, + { + "start": 40261.12, + "end": 40261.84, + "probability": 0.7782 + }, + { + "start": 40271.92, + "end": 40272.18, + "probability": 0.3829 + }, + { + "start": 40272.18, + "end": 40272.3, + "probability": 0.0726 + }, + { + "start": 40272.5, + "end": 40272.84, + "probability": 0.1467 + }, + { + "start": 40272.84, + "end": 40272.94, + "probability": 0.1987 + }, + { + "start": 40273.4, + "end": 40274.2, + "probability": 0.0713 + }, + { + "start": 40278.02, + "end": 40280.96, + "probability": 0.5172 + }, + { + "start": 40281.36, + "end": 40284.84, + "probability": 0.6644 + }, + { + "start": 40286.72, + "end": 40289.46, + "probability": 0.7802 + }, + { + "start": 40290.5, + "end": 40296.96, + "probability": 0.8479 + }, + { + "start": 40297.6, + "end": 40298.84, + "probability": 0.7139 + }, + { + "start": 40299.36, + "end": 40300.94, + "probability": 0.5766 + }, + { + "start": 40302.28, + "end": 40303.88, + "probability": 0.5416 + }, + { + "start": 40305.02, + "end": 40305.82, + "probability": 0.0226 + }, + { + "start": 40306.8, + "end": 40309.56, + "probability": 0.4057 + }, + { + "start": 40321.9, + "end": 40322.34, + "probability": 0.2912 + }, + { + "start": 40322.6, + "end": 40323.56, + "probability": 0.3271 + }, + { + "start": 40323.8, + "end": 40324.24, + "probability": 0.4604 + }, + { + "start": 40324.44, + "end": 40327.62, + "probability": 0.6527 + }, + { + "start": 40327.82, + "end": 40330.42, + "probability": 0.9233 + }, + { + "start": 40330.82, + "end": 40334.28, + "probability": 0.7644 + }, + { + "start": 40334.56, + "end": 40335.56, + "probability": 0.8971 + }, + { + "start": 40343.28, + "end": 40346.86, + "probability": 0.4487 + }, + { + "start": 40352.5, + "end": 40352.88, + "probability": 0.5227 + }, + { + "start": 40352.9, + "end": 40354.84, + "probability": 0.4644 + }, + { + "start": 40354.94, + "end": 40357.04, + "probability": 0.8752 + }, + { + "start": 40357.78, + "end": 40358.78, + "probability": 0.5194 + }, + { + "start": 40358.78, + "end": 40365.66, + "probability": 0.5448 + }, + { + "start": 40365.66, + "end": 40375.32, + "probability": 0.5051 + }, + { + "start": 40375.42, + "end": 40375.42, + "probability": 0.3436 + }, + { + "start": 40375.42, + "end": 40376.16, + "probability": 0.5034 + }, + { + "start": 40376.28, + "end": 40377.02, + "probability": 0.6713 + }, + { + "start": 40379.73, + "end": 40381.34, + "probability": 0.1136 + }, + { + "start": 40394.32, + "end": 40394.32, + "probability": 0.1637 + }, + { + "start": 40394.32, + "end": 40396.29, + "probability": 0.579 + }, + { + "start": 40396.62, + "end": 40400.28, + "probability": 0.3344 + }, + { + "start": 40402.28, + "end": 40404.81, + "probability": 0.6803 + }, + { + "start": 40406.34, + "end": 40407.6, + "probability": 0.7958 + }, + { + "start": 40407.82, + "end": 40412.82, + "probability": 0.8306 + }, + { + "start": 40412.88, + "end": 40413.79, + "probability": 0.8659 + }, + { + "start": 40414.78, + "end": 40415.34, + "probability": 0.0283 + }, + { + "start": 40416.62, + "end": 40416.86, + "probability": 0.0344 + }, + { + "start": 40421.62, + "end": 40422.38, + "probability": 0.2873 + }, + { + "start": 40429.72, + "end": 40430.42, + "probability": 0.1401 + }, + { + "start": 40430.42, + "end": 40432.07, + "probability": 0.2435 + }, + { + "start": 40432.94, + "end": 40435.74, + "probability": 0.7516 + }, + { + "start": 40436.32, + "end": 40443.04, + "probability": 0.8713 + }, + { + "start": 40443.28, + "end": 40444.2, + "probability": 0.8892 + }, + { + "start": 40444.6, + "end": 40446.0, + "probability": 0.9191 + }, + { + "start": 40454.84, + "end": 40457.42, + "probability": 0.5129 + }, + { + "start": 40461.56, + "end": 40462.56, + "probability": 0.0202 + }, + { + "start": 40462.56, + "end": 40462.56, + "probability": 0.1308 + }, + { + "start": 40462.56, + "end": 40462.62, + "probability": 0.179 + }, + { + "start": 40462.62, + "end": 40462.62, + "probability": 0.0081 + }, + { + "start": 40462.62, + "end": 40463.18, + "probability": 0.4543 + }, + { + "start": 40463.76, + "end": 40465.0, + "probability": 0.5174 + }, + { + "start": 40465.02, + "end": 40467.0, + "probability": 0.8517 + }, + { + "start": 40467.48, + "end": 40472.08, + "probability": 0.9453 + }, + { + "start": 40472.08, + "end": 40473.6, + "probability": 0.5277 + }, + { + "start": 40473.92, + "end": 40476.62, + "probability": 0.6775 + }, + { + "start": 40477.0, + "end": 40477.58, + "probability": 0.7527 + }, + { + "start": 40486.46, + "end": 40491.06, + "probability": 0.1526 + }, + { + "start": 40491.62, + "end": 40491.98, + "probability": 0.2856 + }, + { + "start": 40493.12, + "end": 40493.68, + "probability": 0.0765 + }, + { + "start": 40495.64, + "end": 40498.48, + "probability": 0.6936 + }, + { + "start": 40498.88, + "end": 40502.74, + "probability": 0.4932 + }, + { + "start": 40504.68, + "end": 40505.76, + "probability": 0.9875 + }, + { + "start": 40506.96, + "end": 40507.98, + "probability": 0.2183 + }, + { + "start": 40508.78, + "end": 40511.98, + "probability": 0.8839 + }, + { + "start": 40511.98, + "end": 40517.02, + "probability": 0.8726 + }, + { + "start": 40517.34, + "end": 40518.41, + "probability": 0.9435 + }, + { + "start": 40520.24, + "end": 40524.13, + "probability": 0.4587 + }, + { + "start": 40525.82, + "end": 40528.46, + "probability": 0.1658 + }, + { + "start": 40529.8, + "end": 40531.58, + "probability": 0.364 + }, + { + "start": 40534.82, + "end": 40535.48, + "probability": 0.5316 + }, + { + "start": 40535.48, + "end": 40537.1, + "probability": 0.5377 + }, + { + "start": 40537.16, + "end": 40540.46, + "probability": 0.9512 + }, + { + "start": 40540.78, + "end": 40545.6, + "probability": 0.9346 + }, + { + "start": 40545.8, + "end": 40546.32, + "probability": 0.6997 + }, + { + "start": 40546.36, + "end": 40547.34, + "probability": 0.6845 + }, + { + "start": 40558.38, + "end": 40559.98, + "probability": 0.1827 + }, + { + "start": 40563.32, + "end": 40563.76, + "probability": 0.2816 + }, + { + "start": 40563.96, + "end": 40567.6, + "probability": 0.6182 + }, + { + "start": 40568.04, + "end": 40573.72, + "probability": 0.5024 + }, + { + "start": 40573.72, + "end": 40579.16, + "probability": 0.6438 + }, + { + "start": 40583.14, + "end": 40586.76, + "probability": 0.1653 + }, + { + "start": 40586.86, + "end": 40587.36, + "probability": 0.3383 + }, + { + "start": 40587.42, + "end": 40588.44, + "probability": 0.6075 + }, + { + "start": 40593.04, + "end": 40593.72, + "probability": 0.0744 + }, + { + "start": 40597.16, + "end": 40601.28, + "probability": 0.1946 + }, + { + "start": 40604.04, + "end": 40606.34, + "probability": 0.4367 + }, + { + "start": 40606.4, + "end": 40611.58, + "probability": 0.7823 + }, + { + "start": 40612.02, + "end": 40614.5, + "probability": 0.937 + }, + { + "start": 40615.02, + "end": 40624.76, + "probability": 0.7403 + }, + { + "start": 40624.78, + "end": 40625.91, + "probability": 0.8468 + }, + { + "start": 40627.12, + "end": 40630.48, + "probability": 0.2704 + }, + { + "start": 40631.36, + "end": 40635.78, + "probability": 0.3279 + }, + { + "start": 40642.41, + "end": 40642.88, + "probability": 0.1128 + }, + { + "start": 40642.88, + "end": 40643.36, + "probability": 0.348 + }, + { + "start": 40643.9, + "end": 40644.78, + "probability": 0.2715 + }, + { + "start": 40644.86, + "end": 40646.56, + "probability": 0.8911 + }, + { + "start": 40646.9, + "end": 40652.46, + "probability": 0.6701 + }, + { + "start": 40652.66, + "end": 40653.74, + "probability": 0.8094 + }, + { + "start": 40654.24, + "end": 40655.3, + "probability": 0.5652 + }, + { + "start": 40655.8, + "end": 40658.78, + "probability": 0.0976 + }, + { + "start": 40672.52, + "end": 40673.12, + "probability": 0.0362 + }, + { + "start": 40673.12, + "end": 40673.18, + "probability": 0.0854 + }, + { + "start": 40673.18, + "end": 40673.18, + "probability": 0.0074 + }, + { + "start": 40673.18, + "end": 40674.8, + "probability": 0.2569 + }, + { + "start": 40674.86, + "end": 40676.56, + "probability": 0.8874 + }, + { + "start": 40676.92, + "end": 40678.4, + "probability": 0.6351 + }, + { + "start": 40678.54, + "end": 40684.06, + "probability": 0.8593 + }, + { + "start": 40684.46, + "end": 40685.88, + "probability": 0.6646 + }, + { + "start": 40686.52, + "end": 40687.24, + "probability": 0.4425 + }, + { + "start": 40687.56, + "end": 40688.28, + "probability": 0.61 + }, + { + "start": 40691.6, + "end": 40700.44, + "probability": 0.6275 + }, + { + "start": 40703.57, + "end": 40704.76, + "probability": 0.5478 + }, + { + "start": 40708.32, + "end": 40708.98, + "probability": 0.3965 + }, + { + "start": 40708.98, + "end": 40708.98, + "probability": 0.0624 + }, + { + "start": 40708.98, + "end": 40708.98, + "probability": 0.0782 + }, + { + "start": 40708.98, + "end": 40709.06, + "probability": 0.1752 + }, + { + "start": 40709.06, + "end": 40709.06, + "probability": 0.1081 + }, + { + "start": 40709.06, + "end": 40711.9, + "probability": 0.5031 + }, + { + "start": 40711.96, + "end": 40718.5, + "probability": 0.2759 + }, + { + "start": 40718.84, + "end": 40721.22, + "probability": 0.6932 + }, + { + "start": 40722.16, + "end": 40728.06, + "probability": 0.7282 + }, + { + "start": 40728.48, + "end": 40730.66, + "probability": 0.6898 + }, + { + "start": 40730.68, + "end": 40731.28, + "probability": 0.4986 + }, + { + "start": 40735.64, + "end": 40738.6, + "probability": 0.6729 + }, + { + "start": 40747.9, + "end": 40748.46, + "probability": 0.0551 + }, + { + "start": 40748.52, + "end": 40749.18, + "probability": 0.2567 + }, + { + "start": 40749.18, + "end": 40749.18, + "probability": 0.321 + }, + { + "start": 40749.18, + "end": 40749.25, + "probability": 0.235 + }, + { + "start": 40749.82, + "end": 40751.36, + "probability": 0.8836 + }, + { + "start": 40751.46, + "end": 40756.18, + "probability": 0.7506 + }, + { + "start": 40756.44, + "end": 40757.33, + "probability": 0.529 + }, + { + "start": 40757.5, + "end": 40758.13, + "probability": 0.7318 + }, + { + "start": 40775.72, + "end": 40775.72, + "probability": 0.2753 + }, + { + "start": 40775.72, + "end": 40775.72, + "probability": 0.0885 + }, + { + "start": 40775.72, + "end": 40775.72, + "probability": 0.221 + }, + { + "start": 40775.72, + "end": 40775.72, + "probability": 0.0062 + }, + { + "start": 40775.72, + "end": 40776.56, + "probability": 0.2878 + }, + { + "start": 40777.36, + "end": 40779.52, + "probability": 0.2706 + }, + { + "start": 40779.56, + "end": 40781.12, + "probability": 0.8533 + }, + { + "start": 40781.58, + "end": 40787.96, + "probability": 0.6146 + }, + { + "start": 40788.58, + "end": 40788.58, + "probability": 0.346 + }, + { + "start": 40788.58, + "end": 40789.24, + "probability": 0.6971 + }, + { + "start": 40789.58, + "end": 40790.36, + "probability": 0.85 + }, + { + "start": 40791.0, + "end": 40796.0, + "probability": 0.699 + }, + { + "start": 40797.16, + "end": 40799.16, + "probability": 0.0592 + }, + { + "start": 40801.14, + "end": 40803.12, + "probability": 0.3182 + }, + { + "start": 40807.14, + "end": 40807.28, + "probability": 0.3349 + }, + { + "start": 40807.28, + "end": 40808.6, + "probability": 0.3121 + }, + { + "start": 40809.12, + "end": 40810.4, + "probability": 0.4761 + }, + { + "start": 40810.46, + "end": 40815.32, + "probability": 0.7528 + }, + { + "start": 40815.82, + "end": 40818.39, + "probability": 0.9779 + }, + { + "start": 40819.33, + "end": 40826.86, + "probability": 0.8269 + }, + { + "start": 40827.14, + "end": 40828.19, + "probability": 0.9636 + }, + { + "start": 40828.78, + "end": 40831.42, + "probability": 0.3175 + }, + { + "start": 40840.76, + "end": 40842.76, + "probability": 0.0626 + }, + { + "start": 40844.24, + "end": 40844.72, + "probability": 0.2903 + }, + { + "start": 40844.72, + "end": 40847.36, + "probability": 0.4346 + }, + { + "start": 40847.48, + "end": 40849.34, + "probability": 0.9271 + }, + { + "start": 40849.52, + "end": 40853.48, + "probability": 0.8159 + }, + { + "start": 40853.9, + "end": 40855.26, + "probability": 0.7785 + }, + { + "start": 40855.34, + "end": 40856.16, + "probability": 0.7227 + }, + { + "start": 40856.8, + "end": 40857.95, + "probability": 0.9753 + }, + { + "start": 40858.16, + "end": 40858.37, + "probability": 0.1622 + }, + { + "start": 40859.76, + "end": 40860.2, + "probability": 0.0489 + }, + { + "start": 40871.14, + "end": 40872.06, + "probability": 0.0812 + }, + { + "start": 40873.65, + "end": 40874.14, + "probability": 0.1807 + }, + { + "start": 40874.14, + "end": 40875.02, + "probability": 0.3544 + }, + { + "start": 40875.56, + "end": 40876.48, + "probability": 0.5344 + }, + { + "start": 40876.58, + "end": 40878.7, + "probability": 0.8749 + }, + { + "start": 40879.16, + "end": 40886.16, + "probability": 0.5865 + }, + { + "start": 40886.24, + "end": 40886.24, + "probability": 0.3509 + }, + { + "start": 40886.24, + "end": 40886.94, + "probability": 0.7948 + }, + { + "start": 40887.2, + "end": 40888.66, + "probability": 0.558 + }, + { + "start": 40896.91, + "end": 40898.68, + "probability": 0.0341 + }, + { + "start": 40901.73, + "end": 40902.28, + "probability": 0.3328 + }, + { + "start": 40903.28, + "end": 40904.6, + "probability": 0.1431 + }, + { + "start": 40905.96, + "end": 40906.98, + "probability": 0.2099 + }, + { + "start": 40907.68, + "end": 40909.18, + "probability": 0.4721 + }, + { + "start": 40909.5, + "end": 40914.16, + "probability": 0.4802 + }, + { + "start": 40916.06, + "end": 40916.98, + "probability": 0.9849 + }, + { + "start": 40917.8, + "end": 40923.56, + "probability": 0.7461 + }, + { + "start": 40926.1, + "end": 40928.0, + "probability": 0.5629 + }, + { + "start": 40928.58, + "end": 40930.06, + "probability": 0.9246 + }, + { + "start": 40930.56, + "end": 40932.2, + "probability": 0.9626 + }, + { + "start": 40932.46, + "end": 40934.17, + "probability": 0.0236 + }, + { + "start": 40949.44, + "end": 40950.14, + "probability": 0.0271 + }, + { + "start": 40950.14, + "end": 40950.14, + "probability": 0.2071 + }, + { + "start": 40950.14, + "end": 40950.14, + "probability": 0.3525 + }, + { + "start": 40950.14, + "end": 40951.88, + "probability": 0.1208 + }, + { + "start": 40952.32, + "end": 40953.78, + "probability": 0.8004 + }, + { + "start": 40954.08, + "end": 40958.46, + "probability": 0.6658 + }, + { + "start": 40958.78, + "end": 40959.79, + "probability": 0.8352 + }, + { + "start": 40960.0, + "end": 40960.86, + "probability": 0.86 + }, + { + "start": 40971.3, + "end": 40973.72, + "probability": 0.091 + }, + { + "start": 40975.84, + "end": 40976.66, + "probability": 0.2007 + }, + { + "start": 40976.86, + "end": 40979.92, + "probability": 0.1866 + }, + { + "start": 40979.92, + "end": 40981.48, + "probability": 0.8462 + }, + { + "start": 40981.98, + "end": 40983.62, + "probability": 0.3162 + }, + { + "start": 40984.96, + "end": 40988.64, + "probability": 0.4903 + }, + { + "start": 40989.3, + "end": 40989.3, + "probability": 0.4403 + }, + { + "start": 40989.3, + "end": 40989.96, + "probability": 0.6331 + }, + { + "start": 40990.02, + "end": 40991.18, + "probability": 0.7045 + }, + { + "start": 40992.96, + "end": 40996.64, + "probability": 0.0325 + }, + { + "start": 40999.32, + "end": 40999.88, + "probability": 0.1378 + }, + { + "start": 41005.78, + "end": 41009.5, + "probability": 0.3496 + }, + { + "start": 41012.4, + "end": 41015.86, + "probability": 0.7023 + }, + { + "start": 41015.98, + "end": 41018.36, + "probability": 0.7631 + }, + { + "start": 41019.46, + "end": 41024.1, + "probability": 0.7816 + }, + { + "start": 41024.6, + "end": 41027.12, + "probability": 0.9286 + }, + { + "start": 41027.68, + "end": 41034.4, + "probability": 0.8252 + }, + { + "start": 41034.68, + "end": 41035.76, + "probability": 0.779 + }, + { + "start": 41041.66, + "end": 41045.22, + "probability": 0.6355 + }, + { + "start": 41052.58, + "end": 41053.62, + "probability": 0.001 + }, + { + "start": 41054.1, + "end": 41054.2, + "probability": 0.0597 + }, + { + "start": 41054.2, + "end": 41054.46, + "probability": 0.2552 + }, + { + "start": 41054.46, + "end": 41054.5, + "probability": 0.3519 + }, + { + "start": 41054.5, + "end": 41054.92, + "probability": 0.1378 + }, + { + "start": 41055.24, + "end": 41056.78, + "probability": 0.844 + }, + { + "start": 41057.22, + "end": 41062.25, + "probability": 0.7328 + }, + { + "start": 41062.64, + "end": 41063.65, + "probability": 0.6759 + }, + { + "start": 41063.94, + "end": 41064.92, + "probability": 0.9113 + }, + { + "start": 41086.82, + "end": 41090.3, + "probability": 0.2956 + }, + { + "start": 41090.92, + "end": 41090.92, + "probability": 0.0764 + }, + { + "start": 41090.92, + "end": 41093.06, + "probability": 0.1869 + }, + { + "start": 41093.38, + "end": 41097.28, + "probability": 0.013 + }, + { + "start": 41097.62, + "end": 41102.2, + "probability": 0.0885 + }, + { + "start": 41102.2, + "end": 41102.2, + "probability": 0.0015 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41161.0, + "end": 41161.0, + "probability": 0.0 + }, + { + "start": 41180.34, + "end": 41182.98, + "probability": 0.745 + }, + { + "start": 41183.22, + "end": 41191.24, + "probability": 0.7633 + }, + { + "start": 41191.38, + "end": 41194.72, + "probability": 0.9007 + }, + { + "start": 41194.72, + "end": 41201.36, + "probability": 0.831 + }, + { + "start": 41203.12, + "end": 41204.0, + "probability": 0.0121 + }, + { + "start": 41204.66, + "end": 41206.66, + "probability": 0.0865 + }, + { + "start": 41207.66, + "end": 41208.86, + "probability": 0.6779 + }, + { + "start": 41209.74, + "end": 41211.72, + "probability": 0.8872 + }, + { + "start": 41212.58, + "end": 41215.08, + "probability": 0.9004 + }, + { + "start": 41215.9, + "end": 41216.42, + "probability": 0.9801 + }, + { + "start": 41217.42, + "end": 41218.52, + "probability": 0.8759 + }, + { + "start": 41219.14, + "end": 41220.76, + "probability": 0.9197 + }, + { + "start": 41221.52, + "end": 41223.38, + "probability": 0.9576 + }, + { + "start": 41225.44, + "end": 41227.26, + "probability": 0.9541 + }, + { + "start": 41228.1, + "end": 41228.36, + "probability": 0.9683 + }, + { + "start": 41228.92, + "end": 41229.6, + "probability": 0.5339 + }, + { + "start": 41230.52, + "end": 41232.2, + "probability": 0.7078 + }, + { + "start": 41233.08, + "end": 41233.58, + "probability": 0.9678 + }, + { + "start": 41234.5, + "end": 41235.5, + "probability": 0.9571 + }, + { + "start": 41236.86, + "end": 41238.78, + "probability": 0.9333 + }, + { + "start": 41242.86, + "end": 41245.02, + "probability": 0.9917 + }, + { + "start": 41246.08, + "end": 41247.04, + "probability": 0.9218 + }, + { + "start": 41247.68, + "end": 41249.8, + "probability": 0.9304 + }, + { + "start": 41250.88, + "end": 41252.58, + "probability": 0.981 + }, + { + "start": 41253.54, + "end": 41258.38, + "probability": 0.9059 + }, + { + "start": 41259.08, + "end": 41260.92, + "probability": 0.6265 + }, + { + "start": 41262.24, + "end": 41264.16, + "probability": 0.9368 + }, + { + "start": 41264.92, + "end": 41269.42, + "probability": 0.9706 + }, + { + "start": 41270.22, + "end": 41275.36, + "probability": 0.9384 + }, + { + "start": 41275.98, + "end": 41278.22, + "probability": 0.9834 + }, + { + "start": 41279.0, + "end": 41280.94, + "probability": 0.8039 + }, + { + "start": 41281.96, + "end": 41282.42, + "probability": 0.5596 + }, + { + "start": 41282.94, + "end": 41283.88, + "probability": 0.6863 + }, + { + "start": 41284.56, + "end": 41286.1, + "probability": 0.8898 + }, + { + "start": 41287.36, + "end": 41289.92, + "probability": 0.9924 + }, + { + "start": 41290.56, + "end": 41292.94, + "probability": 0.8599 + }, + { + "start": 41293.64, + "end": 41295.9, + "probability": 0.8618 + }, + { + "start": 41297.0, + "end": 41297.46, + "probability": 0.9902 + }, + { + "start": 41298.14, + "end": 41300.14, + "probability": 0.9876 + }, + { + "start": 41300.7, + "end": 41301.58, + "probability": 0.7198 + }, + { + "start": 41302.36, + "end": 41302.82, + "probability": 0.9958 + }, + { + "start": 41303.36, + "end": 41304.22, + "probability": 0.9779 + }, + { + "start": 41304.92, + "end": 41306.6, + "probability": 0.8771 + }, + { + "start": 41307.7, + "end": 41308.04, + "probability": 0.7095 + }, + { + "start": 41310.72, + "end": 41311.72, + "probability": 0.5372 + }, + { + "start": 41312.8, + "end": 41313.08, + "probability": 0.6096 + }, + { + "start": 41314.1, + "end": 41315.02, + "probability": 0.7913 + }, + { + "start": 41315.9, + "end": 41316.48, + "probability": 0.9744 + }, + { + "start": 41317.54, + "end": 41318.52, + "probability": 0.7688 + }, + { + "start": 41319.56, + "end": 41321.48, + "probability": 0.9813 + }, + { + "start": 41322.42, + "end": 41322.9, + "probability": 0.9766 + }, + { + "start": 41323.64, + "end": 41324.72, + "probability": 0.9502 + }, + { + "start": 41325.96, + "end": 41326.5, + "probability": 0.995 + }, + { + "start": 41327.44, + "end": 41328.26, + "probability": 0.8933 + }, + { + "start": 41329.02, + "end": 41329.56, + "probability": 0.9945 + }, + { + "start": 41330.28, + "end": 41331.18, + "probability": 0.9492 + }, + { + "start": 41332.06, + "end": 41332.52, + "probability": 0.9729 + }, + { + "start": 41333.72, + "end": 41334.58, + "probability": 0.7699 + }, + { + "start": 41335.54, + "end": 41335.96, + "probability": 0.9977 + }, + { + "start": 41337.58, + "end": 41341.34, + "probability": 0.8389 + }, + { + "start": 41342.22, + "end": 41342.58, + "probability": 0.9704 + }, + { + "start": 41343.16, + "end": 41344.16, + "probability": 0.8907 + }, + { + "start": 41345.56, + "end": 41345.9, + "probability": 0.8701 + }, + { + "start": 41346.72, + "end": 41347.76, + "probability": 0.7657 + }, + { + "start": 41348.86, + "end": 41350.88, + "probability": 0.9543 + }, + { + "start": 41352.19, + "end": 41356.78, + "probability": 0.8371 + }, + { + "start": 41357.44, + "end": 41357.92, + "probability": 0.9927 + }, + { + "start": 41358.9, + "end": 41359.62, + "probability": 0.9723 + }, + { + "start": 41361.46, + "end": 41361.94, + "probability": 0.7742 + }, + { + "start": 41363.02, + "end": 41363.74, + "probability": 0.6646 + }, + { + "start": 41364.6, + "end": 41365.06, + "probability": 0.8367 + }, + { + "start": 41365.82, + "end": 41366.68, + "probability": 0.8936 + }, + { + "start": 41368.1, + "end": 41368.68, + "probability": 0.9739 + }, + { + "start": 41369.3, + "end": 41369.74, + "probability": 0.89 + }, + { + "start": 41370.88, + "end": 41371.16, + "probability": 0.9744 + }, + { + "start": 41371.8, + "end": 41372.84, + "probability": 0.9166 + }, + { + "start": 41373.54, + "end": 41373.84, + "probability": 0.9739 + }, + { + "start": 41374.44, + "end": 41375.24, + "probability": 0.9436 + }, + { + "start": 41376.1, + "end": 41378.14, + "probability": 0.9325 + }, + { + "start": 41380.0, + "end": 41382.14, + "probability": 0.6407 + }, + { + "start": 41385.0, + "end": 41386.46, + "probability": 0.8848 + }, + { + "start": 41389.9, + "end": 41390.84, + "probability": 0.5832 + }, + { + "start": 41392.28, + "end": 41394.2, + "probability": 0.7971 + }, + { + "start": 41395.0, + "end": 41395.36, + "probability": 0.8142 + }, + { + "start": 41395.92, + "end": 41396.84, + "probability": 0.7627 + }, + { + "start": 41400.28, + "end": 41401.98, + "probability": 0.8236 + }, + { + "start": 41403.86, + "end": 41404.36, + "probability": 0.9416 + }, + { + "start": 41405.28, + "end": 41405.98, + "probability": 0.9822 + }, + { + "start": 41406.84, + "end": 41407.26, + "probability": 0.9386 + }, + { + "start": 41407.8, + "end": 41408.52, + "probability": 0.9496 + }, + { + "start": 41409.22, + "end": 41409.64, + "probability": 0.9788 + }, + { + "start": 41410.22, + "end": 41411.06, + "probability": 0.9423 + }, + { + "start": 41413.58, + "end": 41414.16, + "probability": 0.5023 + }, + { + "start": 41416.14, + "end": 41416.66, + "probability": 0.9715 + }, + { + "start": 41417.46, + "end": 41418.12, + "probability": 0.8423 + }, + { + "start": 41419.0, + "end": 41419.36, + "probability": 0.9914 + }, + { + "start": 41420.04, + "end": 41420.72, + "probability": 0.7774 + }, + { + "start": 41421.5, + "end": 41421.96, + "probability": 0.8123 + }, + { + "start": 41422.56, + "end": 41423.24, + "probability": 0.963 + }, + { + "start": 41424.18, + "end": 41426.28, + "probability": 0.9314 + }, + { + "start": 41428.14, + "end": 41429.84, + "probability": 0.9382 + }, + { + "start": 41430.46, + "end": 41430.92, + "probability": 0.9966 + }, + { + "start": 41432.18, + "end": 41433.94, + "probability": 0.9895 + }, + { + "start": 41434.74, + "end": 41436.42, + "probability": 0.9863 + }, + { + "start": 41437.26, + "end": 41438.98, + "probability": 0.9854 + }, + { + "start": 41439.78, + "end": 41440.16, + "probability": 0.558 + }, + { + "start": 41440.82, + "end": 41441.6, + "probability": 0.8599 + }, + { + "start": 41442.48, + "end": 41442.8, + "probability": 0.9331 + }, + { + "start": 41443.54, + "end": 41444.26, + "probability": 0.6684 + }, + { + "start": 41445.2, + "end": 41446.64, + "probability": 0.8881 + }, + { + "start": 41448.36, + "end": 41450.4, + "probability": 0.7213 + }, + { + "start": 41451.62, + "end": 41453.74, + "probability": 0.9654 + }, + { + "start": 41454.6, + "end": 41458.94, + "probability": 0.8916 + }, + { + "start": 41459.82, + "end": 41460.32, + "probability": 0.9896 + }, + { + "start": 41460.88, + "end": 41461.86, + "probability": 0.5675 + }, + { + "start": 41462.98, + "end": 41463.4, + "probability": 0.6109 + }, + { + "start": 41464.24, + "end": 41464.92, + "probability": 0.6008 + }, + { + "start": 41468.66, + "end": 41470.54, + "probability": 0.8238 + }, + { + "start": 41471.5, + "end": 41472.56, + "probability": 0.9426 + }, + { + "start": 41473.46, + "end": 41473.86, + "probability": 0.798 + }, + { + "start": 41474.46, + "end": 41475.28, + "probability": 0.855 + }, + { + "start": 41477.74, + "end": 41478.4, + "probability": 0.981 + }, + { + "start": 41479.5, + "end": 41480.46, + "probability": 0.971 + }, + { + "start": 41481.22, + "end": 41481.78, + "probability": 0.9821 + }, + { + "start": 41482.32, + "end": 41483.28, + "probability": 0.9003 + }, + { + "start": 41484.04, + "end": 41484.52, + "probability": 0.967 + }, + { + "start": 41485.24, + "end": 41486.78, + "probability": 0.8325 + }, + { + "start": 41488.76, + "end": 41491.14, + "probability": 0.9572 + }, + { + "start": 41493.64, + "end": 41494.1, + "probability": 0.7664 + }, + { + "start": 41495.66, + "end": 41496.6, + "probability": 0.6709 + }, + { + "start": 41498.2, + "end": 41499.68, + "probability": 0.7619 + }, + { + "start": 41500.64, + "end": 41501.08, + "probability": 0.9287 + }, + { + "start": 41502.06, + "end": 41503.18, + "probability": 0.7652 + }, + { + "start": 41504.0, + "end": 41505.82, + "probability": 0.8039 + }, + { + "start": 41506.78, + "end": 41507.24, + "probability": 0.9871 + }, + { + "start": 41507.82, + "end": 41508.68, + "probability": 0.7018 + }, + { + "start": 41510.36, + "end": 41513.7, + "probability": 0.9223 + }, + { + "start": 41515.76, + "end": 41517.84, + "probability": 0.8328 + }, + { + "start": 41518.62, + "end": 41520.12, + "probability": 0.8001 + }, + { + "start": 41521.6, + "end": 41524.54, + "probability": 0.7987 + }, + { + "start": 41525.6, + "end": 41526.14, + "probability": 0.8403 + }, + { + "start": 41527.06, + "end": 41528.14, + "probability": 0.9512 + }, + { + "start": 41528.82, + "end": 41530.58, + "probability": 0.9681 + }, + { + "start": 41531.32, + "end": 41533.42, + "probability": 0.9585 + }, + { + "start": 41534.1, + "end": 41535.82, + "probability": 0.8163 + }, + { + "start": 41536.72, + "end": 41537.26, + "probability": 0.9113 + }, + { + "start": 41537.98, + "end": 41538.48, + "probability": 0.9577 + }, + { + "start": 41542.32, + "end": 41544.04, + "probability": 0.9077 + }, + { + "start": 41546.18, + "end": 41546.94, + "probability": 0.9253 + }, + { + "start": 41547.48, + "end": 41548.34, + "probability": 0.6029 + }, + { + "start": 41549.9, + "end": 41551.66, + "probability": 0.8691 + }, + { + "start": 41553.06, + "end": 41553.5, + "probability": 0.9222 + }, + { + "start": 41554.58, + "end": 41554.98, + "probability": 0.8403 + }, + { + "start": 41560.88, + "end": 41562.66, + "probability": 0.3956 + }, + { + "start": 41567.6, + "end": 41567.98, + "probability": 0.4264 + }, + { + "start": 41570.38, + "end": 41570.86, + "probability": 0.7896 + }, + { + "start": 41571.86, + "end": 41572.56, + "probability": 0.8235 + }, + { + "start": 41573.6, + "end": 41575.56, + "probability": 0.6555 + }, + { + "start": 41578.12, + "end": 41580.0, + "probability": 0.9354 + }, + { + "start": 41580.92, + "end": 41581.4, + "probability": 0.8699 + }, + { + "start": 41582.02, + "end": 41582.92, + "probability": 0.8858 + }, + { + "start": 41583.62, + "end": 41583.92, + "probability": 0.9624 + }, + { + "start": 41584.74, + "end": 41585.98, + "probability": 0.8436 + }, + { + "start": 41586.86, + "end": 41589.96, + "probability": 0.9553 + }, + { + "start": 41590.7, + "end": 41591.68, + "probability": 0.9709 + }, + { + "start": 41592.46, + "end": 41593.34, + "probability": 0.9932 + }, + { + "start": 41594.22, + "end": 41595.02, + "probability": 0.8519 + }, + { + "start": 41595.64, + "end": 41596.06, + "probability": 0.6787 + }, + { + "start": 41596.88, + "end": 41597.76, + "probability": 0.8674 + }, + { + "start": 41598.54, + "end": 41600.04, + "probability": 0.8315 + }, + { + "start": 41601.2, + "end": 41603.22, + "probability": 0.9329 + }, + { + "start": 41607.08, + "end": 41607.86, + "probability": 0.9615 + }, + { + "start": 41608.62, + "end": 41609.42, + "probability": 0.9613 + }, + { + "start": 41611.64, + "end": 41614.12, + "probability": 0.9714 + }, + { + "start": 41614.92, + "end": 41615.42, + "probability": 0.9175 + }, + { + "start": 41616.1, + "end": 41617.42, + "probability": 0.6836 + }, + { + "start": 41618.48, + "end": 41620.24, + "probability": 0.3706 + }, + { + "start": 41621.86, + "end": 41623.1, + "probability": 0.007 + }, + { + "start": 41627.66, + "end": 41632.7, + "probability": 0.9532 + }, + { + "start": 41637.1, + "end": 41638.46, + "probability": 0.0109 + }, + { + "start": 41639.64, + "end": 41642.76, + "probability": 0.6299 + }, + { + "start": 41643.58, + "end": 41645.82, + "probability": 0.7239 + }, + { + "start": 41648.24, + "end": 41648.68, + "probability": 0.5529 + }, + { + "start": 41650.32, + "end": 41651.42, + "probability": 0.6877 + }, + { + "start": 41653.1, + "end": 41655.22, + "probability": 0.9218 + }, + { + "start": 41656.38, + "end": 41658.64, + "probability": 0.7636 + }, + { + "start": 41661.04, + "end": 41662.66, + "probability": 0.216 + }, + { + "start": 41668.6, + "end": 41669.74, + "probability": 0.1974 + }, + { + "start": 41670.62, + "end": 41670.88, + "probability": 0.5172 + }, + { + "start": 41672.5, + "end": 41673.5, + "probability": 0.6874 + }, + { + "start": 41676.16, + "end": 41678.08, + "probability": 0.8314 + }, + { + "start": 41679.62, + "end": 41681.94, + "probability": 0.9297 + }, + { + "start": 41684.9, + "end": 41686.98, + "probability": 0.9339 + }, + { + "start": 41688.02, + "end": 41689.46, + "probability": 0.9763 + }, + { + "start": 41690.48, + "end": 41691.26, + "probability": 0.9028 + }, + { + "start": 41692.44, + "end": 41692.7, + "probability": 0.9888 + }, + { + "start": 41697.04, + "end": 41697.86, + "probability": 0.7021 + }, + { + "start": 41698.6, + "end": 41702.14, + "probability": 0.7892 + }, + { + "start": 41705.78, + "end": 41706.62, + "probability": 0.8235 + }, + { + "start": 41707.44, + "end": 41708.6, + "probability": 0.8131 + }, + { + "start": 41709.38, + "end": 41709.68, + "probability": 0.6746 + }, + { + "start": 41710.53, + "end": 41714.3, + "probability": 0.6589 + }, + { + "start": 41716.65, + "end": 41717.0, + "probability": 0.0172 + }, + { + "start": 41719.02, + "end": 41723.6, + "probability": 0.8824 + }, + { + "start": 41724.5, + "end": 41726.76, + "probability": 0.5636 + }, + { + "start": 41729.54, + "end": 41730.74, + "probability": 0.503 + }, + { + "start": 41734.06, + "end": 41735.08, + "probability": 0.5821 + }, + { + "start": 41736.68, + "end": 41738.18, + "probability": 0.6569 + }, + { + "start": 41738.3, + "end": 41742.46, + "probability": 0.9768 + }, + { + "start": 41743.52, + "end": 41745.08, + "probability": 0.3829 + }, + { + "start": 41745.46, + "end": 41747.06, + "probability": 0.5167 + }, + { + "start": 41762.33, + "end": 41765.88, + "probability": 0.5992 + }, + { + "start": 41766.02, + "end": 41767.86, + "probability": 0.9478 + }, + { + "start": 41794.34, + "end": 41795.5, + "probability": 0.8177 + }, + { + "start": 41796.04, + "end": 41797.79, + "probability": 0.6377 + }, + { + "start": 41798.72, + "end": 41802.6, + "probability": 0.6318 + }, + { + "start": 41805.22, + "end": 41805.32, + "probability": 0.8494 + }, + { + "start": 41805.96, + "end": 41809.76, + "probability": 0.9624 + }, + { + "start": 41810.64, + "end": 41812.32, + "probability": 0.7499 + }, + { + "start": 41813.4, + "end": 41816.96, + "probability": 0.5752 + }, + { + "start": 41817.54, + "end": 41819.82, + "probability": 0.8942 + }, + { + "start": 41820.5, + "end": 41823.8, + "probability": 0.8044 + }, + { + "start": 41824.06, + "end": 41829.42, + "probability": 0.7379 + }, + { + "start": 41829.9, + "end": 41831.09, + "probability": 0.9491 + }, + { + "start": 41832.0, + "end": 41833.18, + "probability": 0.763 + }, + { + "start": 41846.58, + "end": 41847.38, + "probability": 0.284 + }, + { + "start": 41847.38, + "end": 41847.38, + "probability": 0.0691 + }, + { + "start": 41847.38, + "end": 41847.38, + "probability": 0.2142 + }, + { + "start": 41847.38, + "end": 41847.38, + "probability": 0.0081 + }, + { + "start": 41847.38, + "end": 41849.4, + "probability": 0.3489 + }, + { + "start": 41850.4, + "end": 41853.14, + "probability": 0.4521 + }, + { + "start": 41853.68, + "end": 41853.82, + "probability": 0.8441 + }, + { + "start": 41855.34, + "end": 41864.04, + "probability": 0.6562 + }, + { + "start": 41864.72, + "end": 41865.62, + "probability": 0.6554 + }, + { + "start": 41865.7, + "end": 41866.26, + "probability": 0.7551 + }, + { + "start": 41866.7, + "end": 41867.1, + "probability": 0.7539 + }, + { + "start": 41876.08, + "end": 41877.7, + "probability": 0.255 + }, + { + "start": 41879.52, + "end": 41880.52, + "probability": 0.051 + }, + { + "start": 41885.2, + "end": 41885.92, + "probability": 0.2976 + }, + { + "start": 41885.92, + "end": 41886.78, + "probability": 0.377 + }, + { + "start": 41887.58, + "end": 41889.16, + "probability": 0.7497 + }, + { + "start": 41889.88, + "end": 41896.94, + "probability": 0.7672 + }, + { + "start": 41896.94, + "end": 41896.94, + "probability": 0.0029 + }, + { + "start": 41898.66, + "end": 41899.48, + "probability": 0.1691 + }, + { + "start": 41901.66, + "end": 41903.66, + "probability": 0.5374 + }, + { + "start": 41905.77, + "end": 41908.34, + "probability": 0.5801 + }, + { + "start": 41908.42, + "end": 41911.02, + "probability": 0.9443 + }, + { + "start": 41912.26, + "end": 41919.54, + "probability": 0.7792 + }, + { + "start": 41920.2, + "end": 41921.72, + "probability": 0.9681 + }, + { + "start": 41924.03, + "end": 41927.92, + "probability": 0.7881 + }, + { + "start": 41927.98, + "end": 41929.78, + "probability": 0.9322 + }, + { + "start": 41931.36, + "end": 41932.04, + "probability": 0.0695 + }, + { + "start": 41944.34, + "end": 41944.86, + "probability": 0.0509 + }, + { + "start": 41944.86, + "end": 41944.86, + "probability": 0.1022 + }, + { + "start": 41944.86, + "end": 41944.86, + "probability": 0.6638 + }, + { + "start": 41944.86, + "end": 41946.39, + "probability": 0.2679 + }, + { + "start": 41946.68, + "end": 41949.46, + "probability": 0.8978 + }, + { + "start": 41950.18, + "end": 41952.7, + "probability": 0.7887 + }, + { + "start": 41952.92, + "end": 41955.93, + "probability": 0.6073 + }, + { + "start": 41956.1, + "end": 41957.11, + "probability": 0.9512 + }, + { + "start": 41981.38, + "end": 41985.26, + "probability": 0.4708 + }, + { + "start": 41985.7, + "end": 41985.72, + "probability": 0.1059 + }, + { + "start": 41985.72, + "end": 41987.74, + "probability": 0.3149 + }, + { + "start": 41988.1, + "end": 41989.32, + "probability": 0.0084 + }, + { + "start": 41989.4, + "end": 41990.34, + "probability": 0.0002 + }, + { + "start": 42010.72, + "end": 42011.84, + "probability": 0.3531 + }, + { + "start": 42012.48, + "end": 42017.12, + "probability": 0.1447 + }, + { + "start": 42017.98, + "end": 42018.5, + "probability": 0.4946 + }, + { + "start": 42019.48, + "end": 42021.64, + "probability": 0.013 + }, + { + "start": 42023.76, + "end": 42026.88, + "probability": 0.1188 + }, + { + "start": 42026.88, + "end": 42027.62, + "probability": 0.1413 + }, + { + "start": 42027.62, + "end": 42027.64, + "probability": 0.0772 + }, + { + "start": 42027.64, + "end": 42028.62, + "probability": 0.4616 + }, + { + "start": 42028.72, + "end": 42029.82, + "probability": 0.3334 + }, + { + "start": 42031.72, + "end": 42032.9, + "probability": 0.2559 + }, + { + "start": 42036.48, + "end": 42036.88, + "probability": 0.0693 + }, + { + "start": 42042.58, + "end": 42043.88, + "probability": 0.0457 + }, + { + "start": 42048.03, + "end": 42049.28, + "probability": 0.1143 + }, + { + "start": 42049.28, + "end": 42050.08, + "probability": 0.1987 + }, + { + "start": 42050.96, + "end": 42051.98, + "probability": 0.2034 + }, + { + "start": 42051.98, + "end": 42052.72, + "probability": 0.0437 + }, + { + "start": 42053.26, + "end": 42054.78, + "probability": 0.3164 + }, + { + "start": 42054.78, + "end": 42054.78, + "probability": 0.3251 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42055.0, + "end": 42055.0, + "probability": 0.0 + }, + { + "start": 42056.06, + "end": 42059.52, + "probability": 0.303 + }, + { + "start": 42059.82, + "end": 42060.98, + "probability": 0.1616 + }, + { + "start": 42060.98, + "end": 42061.44, + "probability": 0.2323 + }, + { + "start": 42061.7, + "end": 42068.4, + "probability": 0.6029 + }, + { + "start": 42073.18, + "end": 42073.18, + "probability": 0.0006 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42181.0, + "end": 42181.0, + "probability": 0.0 + }, + { + "start": 42191.5, + "end": 42199.62, + "probability": 0.8613 + }, + { + "start": 42200.77, + "end": 42204.26, + "probability": 0.8862 + }, + { + "start": 42204.28, + "end": 42204.68, + "probability": 0.7597 + }, + { + "start": 42205.68, + "end": 42209.68, + "probability": 0.3233 + }, + { + "start": 42211.28, + "end": 42211.44, + "probability": 0.1599 + }, + { + "start": 42213.98, + "end": 42214.32, + "probability": 0.1678 + }, + { + "start": 42221.06, + "end": 42221.78, + "probability": 0.2005 + }, + { + "start": 42221.78, + "end": 42222.28, + "probability": 0.2986 + }, + { + "start": 42223.3, + "end": 42224.78, + "probability": 0.2508 + }, + { + "start": 42224.94, + "end": 42227.58, + "probability": 0.8123 + }, + { + "start": 42227.96, + "end": 42235.7, + "probability": 0.8982 + }, + { + "start": 42236.08, + "end": 42237.8, + "probability": 0.7057 + }, + { + "start": 42238.22, + "end": 42238.88, + "probability": 0.7222 + }, + { + "start": 42239.4, + "end": 42240.38, + "probability": 0.7188 + }, + { + "start": 42242.02, + "end": 42244.14, + "probability": 0.1643 + }, + { + "start": 42244.14, + "end": 42244.14, + "probability": 0.108 + }, + { + "start": 42244.36, + "end": 42244.7, + "probability": 0.2062 + }, + { + "start": 42244.7, + "end": 42245.0, + "probability": 0.2504 + }, + { + "start": 42245.02, + "end": 42245.56, + "probability": 0.1096 + }, + { + "start": 42258.0, + "end": 42261.36, + "probability": 0.548 + }, + { + "start": 42261.82, + "end": 42268.08, + "probability": 0.897 + }, + { + "start": 42272.52, + "end": 42273.62, + "probability": 0.7483 + }, + { + "start": 42275.76, + "end": 42285.74, + "probability": 0.8504 + }, + { + "start": 42286.12, + "end": 42286.8, + "probability": 0.7205 + }, + { + "start": 42287.12, + "end": 42288.61, + "probability": 0.6052 + }, + { + "start": 42289.04, + "end": 42291.02, + "probability": 0.6419 + }, + { + "start": 42293.84, + "end": 42293.96, + "probability": 0.1503 + }, + { + "start": 42300.82, + "end": 42302.2, + "probability": 0.151 + }, + { + "start": 42303.08, + "end": 42303.62, + "probability": 0.2901 + }, + { + "start": 42303.62, + "end": 42305.46, + "probability": 0.6577 + }, + { + "start": 42305.48, + "end": 42308.02, + "probability": 0.6295 + }, + { + "start": 42308.5, + "end": 42315.52, + "probability": 0.667 + }, + { + "start": 42316.18, + "end": 42317.08, + "probability": 0.7614 + }, + { + "start": 42318.48, + "end": 42319.24, + "probability": 0.7921 + }, + { + "start": 42328.88, + "end": 42329.3, + "probability": 0.8338 + }, + { + "start": 42330.32, + "end": 42333.1, + "probability": 0.2397 + }, + { + "start": 42333.66, + "end": 42333.76, + "probability": 0.1402 + }, + { + "start": 42335.72, + "end": 42337.56, + "probability": 0.1214 + }, + { + "start": 42337.56, + "end": 42339.43, + "probability": 0.4603 + }, + { + "start": 42339.7, + "end": 42341.38, + "probability": 0.8735 + }, + { + "start": 42341.9, + "end": 42344.68, + "probability": 0.6672 + }, + { + "start": 42346.18, + "end": 42349.7, + "probability": 0.8337 + }, + { + "start": 42349.96, + "end": 42350.78, + "probability": 0.6926 + }, + { + "start": 42351.16, + "end": 42352.18, + "probability": 0.6804 + }, + { + "start": 42358.47, + "end": 42360.4, + "probability": 0.2529 + }, + { + "start": 42368.5, + "end": 42369.12, + "probability": 0.1905 + }, + { + "start": 42369.12, + "end": 42371.02, + "probability": 0.2935 + }, + { + "start": 42371.44, + "end": 42376.08, + "probability": 0.9056 + }, + { + "start": 42376.62, + "end": 42379.96, + "probability": 0.7455 + }, + { + "start": 42382.42, + "end": 42389.74, + "probability": 0.8551 + }, + { + "start": 42389.98, + "end": 42391.03, + "probability": 0.8225 + }, + { + "start": 42392.28, + "end": 42393.98, + "probability": 0.4182 + }, + { + "start": 42394.56, + "end": 42395.88, + "probability": 0.0453 + }, + { + "start": 42405.92, + "end": 42406.54, + "probability": 0.1341 + }, + { + "start": 42406.54, + "end": 42406.78, + "probability": 0.2451 + }, + { + "start": 42406.78, + "end": 42406.88, + "probability": 0.2107 + }, + { + "start": 42406.88, + "end": 42408.82, + "probability": 0.183 + }, + { + "start": 42408.92, + "end": 42410.98, + "probability": 0.8564 + }, + { + "start": 42411.4, + "end": 42415.28, + "probability": 0.7707 + }, + { + "start": 42415.36, + "end": 42420.22, + "probability": 0.686 + }, + { + "start": 42420.3, + "end": 42421.0, + "probability": 0.7137 + }, + { + "start": 42422.42, + "end": 42425.06, + "probability": 0.8498 + }, + { + "start": 42432.38, + "end": 42433.94, + "probability": 0.1254 + }, + { + "start": 42434.32, + "end": 42435.58, + "probability": 0.1055 + }, + { + "start": 42435.72, + "end": 42436.12, + "probability": 0.3018 + }, + { + "start": 42436.12, + "end": 42436.48, + "probability": 0.0079 + }, + { + "start": 42436.48, + "end": 42438.44, + "probability": 0.263 + }, + { + "start": 42438.54, + "end": 42439.88, + "probability": 0.8501 + }, + { + "start": 42440.36, + "end": 42443.42, + "probability": 0.8465 + }, + { + "start": 42443.94, + "end": 42445.38, + "probability": 0.7257 + }, + { + "start": 42445.8, + "end": 42447.12, + "probability": 0.651 + }, + { + "start": 42447.46, + "end": 42448.12, + "probability": 0.3817 + }, + { + "start": 42448.64, + "end": 42449.52, + "probability": 0.6185 + }, + { + "start": 42456.94, + "end": 42456.94, + "probability": 0.4469 + }, + { + "start": 42456.94, + "end": 42457.92, + "probability": 0.1081 + }, + { + "start": 42457.98, + "end": 42458.52, + "probability": 0.3081 + }, + { + "start": 42458.52, + "end": 42461.42, + "probability": 0.2739 + }, + { + "start": 42465.68, + "end": 42465.82, + "probability": 0.306 + }, + { + "start": 42465.82, + "end": 42468.22, + "probability": 0.3205 + }, + { + "start": 42468.22, + "end": 42472.92, + "probability": 0.8688 + }, + { + "start": 42473.56, + "end": 42476.16, + "probability": 0.9345 + }, + { + "start": 42477.82, + "end": 42481.3, + "probability": 0.7913 + }, + { + "start": 42481.8, + "end": 42483.06, + "probability": 0.7859 + }, + { + "start": 42483.5, + "end": 42484.53, + "probability": 0.9086 + }, + { + "start": 42485.28, + "end": 42485.84, + "probability": 0.7792 + }, + { + "start": 42493.54, + "end": 42495.3, + "probability": 0.1109 + }, + { + "start": 42498.42, + "end": 42500.1, + "probability": 0.1546 + }, + { + "start": 42501.16, + "end": 42501.88, + "probability": 0.2891 + }, + { + "start": 42501.88, + "end": 42503.45, + "probability": 0.1632 + }, + { + "start": 42503.5, + "end": 42504.92, + "probability": 0.8554 + }, + { + "start": 42505.18, + "end": 42508.28, + "probability": 0.8068 + }, + { + "start": 42508.62, + "end": 42509.88, + "probability": 0.759 + }, + { + "start": 42509.96, + "end": 42511.13, + "probability": 0.7649 + }, + { + "start": 42511.56, + "end": 42512.59, + "probability": 0.9471 + }, + { + "start": 42513.66, + "end": 42513.66, + "probability": 0.6163 + }, + { + "start": 42514.2, + "end": 42515.26, + "probability": 0.1375 + }, + { + "start": 42528.86, + "end": 42529.72, + "probability": 0.157 + }, + { + "start": 42529.72, + "end": 42530.16, + "probability": 0.2938 + }, + { + "start": 42530.72, + "end": 42531.7, + "probability": 0.2546 + }, + { + "start": 42531.76, + "end": 42533.96, + "probability": 0.9116 + }, + { + "start": 42534.48, + "end": 42539.37, + "probability": 0.7559 + }, + { + "start": 42540.34, + "end": 42542.34, + "probability": 0.8297 + }, + { + "start": 42542.34, + "end": 42543.16, + "probability": 0.8237 + }, + { + "start": 42543.56, + "end": 42544.3, + "probability": 0.5414 + }, + { + "start": 42545.84, + "end": 42548.02, + "probability": 0.5504 + }, + { + "start": 42548.6, + "end": 42549.66, + "probability": 0.1643 + }, + { + "start": 42552.7, + "end": 42555.94, + "probability": 0.3162 + }, + { + "start": 42557.44, + "end": 42558.07, + "probability": 0.1068 + }, + { + "start": 42560.42, + "end": 42563.04, + "probability": 0.4227 + }, + { + "start": 42563.34, + "end": 42568.0, + "probability": 0.9125 + }, + { + "start": 42568.34, + "end": 42570.54, + "probability": 0.8084 + }, + { + "start": 42571.98, + "end": 42579.22, + "probability": 0.9016 + }, + { + "start": 42579.42, + "end": 42579.88, + "probability": 0.5178 + }, + { + "start": 42581.74, + "end": 42582.42, + "probability": 0.4133 + }, + { + "start": 42597.18, + "end": 42598.2, + "probability": 0.0576 + }, + { + "start": 42601.5, + "end": 42603.38, + "probability": 0.6184 + }, + { + "start": 42603.9, + "end": 42607.26, + "probability": 0.7422 + }, + { + "start": 42607.84, + "end": 42609.5, + "probability": 0.9653 + }, + { + "start": 42609.6, + "end": 42612.32, + "probability": 0.8748 + }, + { + "start": 42612.42, + "end": 42614.52, + "probability": 0.9226 + }, + { + "start": 42615.28, + "end": 42618.04, + "probability": 0.225 + }, + { + "start": 42619.18, + "end": 42622.32, + "probability": 0.1394 + }, + { + "start": 42623.36, + "end": 42625.38, + "probability": 0.2051 + }, + { + "start": 42625.58, + "end": 42626.26, + "probability": 0.1074 + }, + { + "start": 42639.88, + "end": 42639.9, + "probability": 0.1296 + }, + { + "start": 42639.9, + "end": 42641.93, + "probability": 0.0115 + }, + { + "start": 42643.36, + "end": 42644.22, + "probability": 0.0716 + }, + { + "start": 42644.98, + "end": 42646.43, + "probability": 0.0536 + }, + { + "start": 42668.02, + "end": 42670.78, + "probability": 0.2466 + }, + { + "start": 42670.78, + "end": 42674.08, + "probability": 0.4664 + }, + { + "start": 42675.22, + "end": 42677.6, + "probability": 0.8246 + }, + { + "start": 42677.92, + "end": 42681.86, + "probability": 0.6254 + }, + { + "start": 42683.33, + "end": 42687.3, + "probability": 0.6446 + }, + { + "start": 42689.27, + "end": 42692.92, + "probability": 0.6666 + }, + { + "start": 42692.96, + "end": 42693.94, + "probability": 0.7992 + }, + { + "start": 42694.72, + "end": 42695.76, + "probability": 0.8641 + }, + { + "start": 42695.88, + "end": 42697.0, + "probability": 0.7832 + }, + { + "start": 42697.28, + "end": 42703.08, + "probability": 0.9518 + }, + { + "start": 42703.3, + "end": 42703.96, + "probability": 0.5964 + }, + { + "start": 42704.32, + "end": 42708.97, + "probability": 0.8887 + }, + { + "start": 42709.08, + "end": 42711.5, + "probability": 0.6764 + }, + { + "start": 42711.66, + "end": 42712.82, + "probability": 0.4519 + }, + { + "start": 42712.94, + "end": 42714.08, + "probability": 0.7084 + }, + { + "start": 42714.22, + "end": 42715.99, + "probability": 0.7009 + }, + { + "start": 42716.46, + "end": 42717.62, + "probability": 0.9287 + }, + { + "start": 42718.16, + "end": 42718.38, + "probability": 0.8304 + }, + { + "start": 42731.9, + "end": 42732.74, + "probability": 0.2833 + }, + { + "start": 42733.92, + "end": 42734.1, + "probability": 0.0832 + }, + { + "start": 42734.9, + "end": 42735.3, + "probability": 0.1594 + }, + { + "start": 42736.24, + "end": 42736.52, + "probability": 0.1786 + }, + { + "start": 42736.52, + "end": 42739.32, + "probability": 0.3047 + }, + { + "start": 42739.4, + "end": 42740.46, + "probability": 0.8573 + }, + { + "start": 42740.5, + "end": 42740.72, + "probability": 0.4904 + }, + { + "start": 42740.74, + "end": 42741.1, + "probability": 0.5596 + }, + { + "start": 42741.12, + "end": 42741.56, + "probability": 0.5773 + }, + { + "start": 42741.64, + "end": 42748.8, + "probability": 0.7917 + }, + { + "start": 42749.28, + "end": 42757.74, + "probability": 0.9575 + }, + { + "start": 42758.52, + "end": 42759.94, + "probability": 0.6832 + }, + { + "start": 42759.98, + "end": 42761.9, + "probability": 0.7051 + }, + { + "start": 42762.18, + "end": 42762.86, + "probability": 0.8448 + }, + { + "start": 42764.6, + "end": 42766.54, + "probability": 0.0275 + }, + { + "start": 42767.24, + "end": 42769.4, + "probability": 0.1108 + }, + { + "start": 42775.64, + "end": 42778.38, + "probability": 0.0484 + }, + { + "start": 42779.32, + "end": 42780.34, + "probability": 0.1175 + }, + { + "start": 42781.34, + "end": 42785.06, + "probability": 0.5117 + }, + { + "start": 42785.08, + "end": 42786.02, + "probability": 0.5306 + }, + { + "start": 42786.04, + "end": 42793.46, + "probability": 0.7918 + }, + { + "start": 42794.42, + "end": 42795.74, + "probability": 0.7296 + }, + { + "start": 42796.12, + "end": 42797.87, + "probability": 0.9699 + }, + { + "start": 42812.9, + "end": 42814.42, + "probability": 0.2023 + }, + { + "start": 42814.46, + "end": 42815.76, + "probability": 0.6877 + }, + { + "start": 42815.76, + "end": 42820.94, + "probability": 0.818 + }, + { + "start": 42821.22, + "end": 42822.26, + "probability": 0.8552 + }, + { + "start": 42823.0, + "end": 42825.71, + "probability": 0.0425 + }, + { + "start": 42832.76, + "end": 42833.76, + "probability": 0.2004 + }, + { + "start": 42834.78, + "end": 42834.88, + "probability": 0.3143 + }, + { + "start": 42839.9, + "end": 42840.88, + "probability": 0.3407 + }, + { + "start": 42841.06, + "end": 42841.74, + "probability": 0.5002 + }, + { + "start": 42841.82, + "end": 42842.94, + "probability": 0.1252 + }, + { + "start": 42843.12, + "end": 42844.12, + "probability": 0.7406 + }, + { + "start": 42844.32, + "end": 42847.14, + "probability": 0.7093 + }, + { + "start": 42847.82, + "end": 42852.64, + "probability": 0.8767 + }, + { + "start": 42853.14, + "end": 42854.29, + "probability": 0.9646 + }, + { + "start": 42856.36, + "end": 42859.3, + "probability": 0.5366 + }, + { + "start": 42859.64, + "end": 42860.86, + "probability": 0.9699 + }, + { + "start": 42867.12, + "end": 42870.36, + "probability": 0.533 + }, + { + "start": 42870.66, + "end": 42871.96, + "probability": 0.6112 + }, + { + "start": 42872.04, + "end": 42875.26, + "probability": 0.1921 + }, + { + "start": 42882.24, + "end": 42883.3, + "probability": 0.1109 + }, + { + "start": 42883.3, + "end": 42887.94, + "probability": 0.7763 + }, + { + "start": 42888.2, + "end": 42889.82, + "probability": 0.0796 + }, + { + "start": 42889.82, + "end": 42894.42, + "probability": 0.1068 + }, + { + "start": 42898.94, + "end": 42899.12, + "probability": 0.0082 + }, + { + "start": 42899.12, + "end": 42900.76, + "probability": 0.0001 + }, + { + "start": 42912.98, + "end": 42913.9, + "probability": 0.349 + }, + { + "start": 42914.76, + "end": 42914.76, + "probability": 0.0194 + }, + { + "start": 42919.57, + "end": 42919.93, + "probability": 0.0191 + }, + { + "start": 42921.54, + "end": 42921.54, + "probability": 0.0321 + }, + { + "start": 42921.54, + "end": 42924.54, + "probability": 0.0903 + }, + { + "start": 42924.74, + "end": 42927.18, + "probability": 0.3416 + }, + { + "start": 42927.88, + "end": 42928.32, + "probability": 0.5992 + }, + { + "start": 42941.0, + "end": 42941.0, + "probability": 0.0 + }, + { + "start": 42941.0, + "end": 42941.0, + "probability": 0.0 + }, + { + "start": 42941.0, + "end": 42941.0, + "probability": 0.0 + }, + { + "start": 42941.0, + "end": 42941.0, + "probability": 0.0 + }, + { + "start": 42941.0, + "end": 42941.0, + "probability": 0.0 + }, + { + "start": 42941.0, + "end": 42941.0, + "probability": 0.0 + }, + { + "start": 42941.0, + "end": 42941.0, + "probability": 0.0 + }, + { + "start": 42941.82, + "end": 42942.16, + "probability": 0.0734 + }, + { + "start": 42942.16, + "end": 42942.16, + "probability": 0.1725 + }, + { + "start": 42942.16, + "end": 42950.34, + "probability": 0.8057 + }, + { + "start": 42950.34, + "end": 42951.33, + "probability": 0.5288 + }, + { + "start": 42971.42, + "end": 42977.74, + "probability": 0.5171 + }, + { + "start": 42978.1, + "end": 42979.14, + "probability": 0.1261 + }, + { + "start": 42979.14, + "end": 42979.18, + "probability": 0.2745 + }, + { + "start": 42979.44, + "end": 42979.64, + "probability": 0.1393 + }, + { + "start": 42979.64, + "end": 42981.5, + "probability": 0.2929 + }, + { + "start": 43004.3, + "end": 43006.2, + "probability": 0.7409 + }, + { + "start": 43006.44, + "end": 43014.64, + "probability": 0.6458 + }, + { + "start": 43014.78, + "end": 43016.64, + "probability": 0.5174 + }, + { + "start": 43016.86, + "end": 43018.91, + "probability": 0.5639 + }, + { + "start": 43020.42, + "end": 43021.36, + "probability": 0.1645 + }, + { + "start": 43023.43, + "end": 43025.0, + "probability": 0.3788 + }, + { + "start": 43027.82, + "end": 43028.58, + "probability": 0.1249 + }, + { + "start": 43030.34, + "end": 43032.0, + "probability": 0.1466 + }, + { + "start": 43032.0, + "end": 43033.1, + "probability": 0.1363 + }, + { + "start": 43035.42, + "end": 43038.24, + "probability": 0.1982 + }, + { + "start": 43039.48, + "end": 43043.24, + "probability": 0.1368 + }, + { + "start": 43043.24, + "end": 43048.4, + "probability": 0.0474 + }, + { + "start": 43052.98, + "end": 43055.06, + "probability": 0.0823 + }, + { + "start": 43055.58, + "end": 43055.58, + "probability": 0.0973 + }, + { + "start": 43055.58, + "end": 43056.46, + "probability": 0.4656 + }, + { + "start": 43056.5, + "end": 43057.58, + "probability": 0.469 + }, + { + "start": 43059.98, + "end": 43061.4, + "probability": 0.044 + }, + { + "start": 43061.56, + "end": 43064.22, + "probability": 0.1358 + }, + { + "start": 43064.38, + "end": 43064.94, + "probability": 0.0871 + }, + { + "start": 43064.94, + "end": 43065.08, + "probability": 0.0746 + }, + { + "start": 43065.08, + "end": 43065.08, + "probability": 0.1318 + }, + { + "start": 43065.08, + "end": 43065.74, + "probability": 0.0566 + }, + { + "start": 43065.96, + "end": 43068.12, + "probability": 0.1752 + }, + { + "start": 43068.12, + "end": 43068.89, + "probability": 0.3257 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43069.0, + "end": 43069.0, + "probability": 0.0 + }, + { + "start": 43075.1, + "end": 43077.44, + "probability": 0.5816 + }, + { + "start": 43077.88, + "end": 43079.46, + "probability": 0.5707 + }, + { + "start": 43079.58, + "end": 43084.91, + "probability": 0.8617 + }, + { + "start": 43085.72, + "end": 43086.4, + "probability": 0.7515 + }, + { + "start": 43086.42, + "end": 43087.85, + "probability": 0.9839 + }, + { + "start": 43088.54, + "end": 43092.02, + "probability": 0.5235 + }, + { + "start": 43099.24, + "end": 43099.96, + "probability": 0.0274 + }, + { + "start": 43100.28, + "end": 43100.46, + "probability": 0.0881 + }, + { + "start": 43100.64, + "end": 43101.18, + "probability": 0.2705 + }, + { + "start": 43101.18, + "end": 43103.62, + "probability": 0.007 + }, + { + "start": 43104.6, + "end": 43106.7, + "probability": 0.2494 + }, + { + "start": 43106.7, + "end": 43108.68, + "probability": 0.836 + }, + { + "start": 43109.1, + "end": 43114.46, + "probability": 0.8547 + }, + { + "start": 43115.2, + "end": 43116.72, + "probability": 0.7422 + }, + { + "start": 43117.1, + "end": 43117.8, + "probability": 0.6645 + }, + { + "start": 43118.32, + "end": 43119.12, + "probability": 0.6423 + }, + { + "start": 43127.92, + "end": 43129.26, + "probability": 0.4885 + }, + { + "start": 43137.84, + "end": 43138.5, + "probability": 0.1264 + }, + { + "start": 43138.5, + "end": 43138.96, + "probability": 0.3753 + }, + { + "start": 43139.68, + "end": 43141.1, + "probability": 0.2956 + }, + { + "start": 43141.1, + "end": 43146.6, + "probability": 0.8098 + }, + { + "start": 43146.98, + "end": 43149.42, + "probability": 0.4199 + }, + { + "start": 43149.42, + "end": 43149.92, + "probability": 0.4712 + }, + { + "start": 43152.74, + "end": 43154.24, + "probability": 0.6457 + }, + { + "start": 43154.4, + "end": 43154.86, + "probability": 0.4312 + }, + { + "start": 43155.26, + "end": 43156.02, + "probability": 0.691 + }, + { + "start": 43156.16, + "end": 43161.28, + "probability": 0.7325 + }, + { + "start": 43162.62, + "end": 43163.28, + "probability": 0.6325 + }, + { + "start": 43163.6, + "end": 43169.96, + "probability": 0.6981 + }, + { + "start": 43170.5, + "end": 43175.78, + "probability": 0.9082 + }, + { + "start": 43175.88, + "end": 43177.24, + "probability": 0.9803 + }, + { + "start": 43179.7, + "end": 43181.6, + "probability": 0.0101 + }, + { + "start": 43184.56, + "end": 43188.9, + "probability": 0.8526 + }, + { + "start": 43189.7, + "end": 43195.18, + "probability": 0.9779 + }, + { + "start": 43195.7, + "end": 43196.24, + "probability": 0.9085 + }, + { + "start": 43196.76, + "end": 43197.6, + "probability": 0.9593 + }, + { + "start": 43198.62, + "end": 43200.82, + "probability": 0.9777 + }, + { + "start": 43201.52, + "end": 43204.5, + "probability": 0.9834 + }, + { + "start": 43205.02, + "end": 43210.52, + "probability": 0.5405 + }, + { + "start": 43212.04, + "end": 43216.0, + "probability": 0.9006 + }, + { + "start": 43216.62, + "end": 43219.54, + "probability": 0.9285 + }, + { + "start": 43221.12, + "end": 43223.16, + "probability": 0.8896 + }, + { + "start": 43223.78, + "end": 43225.64, + "probability": 0.9215 + }, + { + "start": 43226.34, + "end": 43226.9, + "probability": 0.9834 + }, + { + "start": 43227.44, + "end": 43228.52, + "probability": 0.9772 + }, + { + "start": 43229.24, + "end": 43231.88, + "probability": 0.9873 + }, + { + "start": 43233.98, + "end": 43236.9, + "probability": 0.4434 + }, + { + "start": 43237.72, + "end": 43239.56, + "probability": 0.8501 + }, + { + "start": 43240.14, + "end": 43245.38, + "probability": 0.9575 + }, + { + "start": 43246.84, + "end": 43247.36, + "probability": 0.9837 + }, + { + "start": 43248.14, + "end": 43249.08, + "probability": 0.9331 + }, + { + "start": 43249.88, + "end": 43250.36, + "probability": 0.9889 + }, + { + "start": 43251.12, + "end": 43252.26, + "probability": 0.9364 + }, + { + "start": 43252.82, + "end": 43253.3, + "probability": 0.9803 + }, + { + "start": 43254.08, + "end": 43256.1, + "probability": 0.976 + }, + { + "start": 43256.82, + "end": 43257.5, + "probability": 0.2977 + }, + { + "start": 43258.78, + "end": 43259.18, + "probability": 0.59 + }, + { + "start": 43259.98, + "end": 43260.92, + "probability": 0.8318 + }, + { + "start": 43261.64, + "end": 43261.96, + "probability": 0.9805 + }, + { + "start": 43262.52, + "end": 43263.36, + "probability": 0.8962 + }, + { + "start": 43264.14, + "end": 43266.3, + "probability": 0.9912 + }, + { + "start": 43267.24, + "end": 43267.68, + "probability": 0.8924 + }, + { + "start": 43268.44, + "end": 43269.66, + "probability": 0.9415 + }, + { + "start": 43270.64, + "end": 43272.98, + "probability": 0.9159 + }, + { + "start": 43274.04, + "end": 43275.76, + "probability": 0.9839 + }, + { + "start": 43276.66, + "end": 43278.14, + "probability": 0.8438 + }, + { + "start": 43278.74, + "end": 43279.7, + "probability": 0.984 + }, + { + "start": 43280.66, + "end": 43281.84, + "probability": 0.8639 + }, + { + "start": 43283.26, + "end": 43283.78, + "probability": 0.7458 + }, + { + "start": 43284.9, + "end": 43285.76, + "probability": 0.5287 + }, + { + "start": 43287.06, + "end": 43288.62, + "probability": 0.7607 + }, + { + "start": 43289.32, + "end": 43291.08, + "probability": 0.9618 + }, + { + "start": 43291.76, + "end": 43293.86, + "probability": 0.9629 + }, + { + "start": 43294.86, + "end": 43295.36, + "probability": 0.9919 + }, + { + "start": 43295.92, + "end": 43296.9, + "probability": 0.9598 + }, + { + "start": 43297.76, + "end": 43298.3, + "probability": 0.9917 + }, + { + "start": 43299.04, + "end": 43299.98, + "probability": 0.9019 + }, + { + "start": 43300.7, + "end": 43302.38, + "probability": 0.9794 + }, + { + "start": 43305.2, + "end": 43305.58, + "probability": 0.9255 + }, + { + "start": 43306.32, + "end": 43307.2, + "probability": 0.7713 + }, + { + "start": 43310.18, + "end": 43310.52, + "probability": 0.755 + }, + { + "start": 43311.3, + "end": 43315.18, + "probability": 0.7793 + }, + { + "start": 43315.7, + "end": 43317.6, + "probability": 0.9255 + }, + { + "start": 43318.6, + "end": 43319.04, + "probability": 0.8848 + }, + { + "start": 43319.96, + "end": 43320.88, + "probability": 0.8089 + }, + { + "start": 43322.16, + "end": 43324.16, + "probability": 0.9707 + }, + { + "start": 43325.76, + "end": 43328.8, + "probability": 0.7921 + }, + { + "start": 43329.66, + "end": 43330.56, + "probability": 0.9134 + }, + { + "start": 43331.3, + "end": 43331.64, + "probability": 0.9757 + }, + { + "start": 43332.42, + "end": 43333.48, + "probability": 0.9922 + }, + { + "start": 43335.48, + "end": 43337.84, + "probability": 0.8049 + }, + { + "start": 43338.8, + "end": 43339.9, + "probability": 0.853 + }, + { + "start": 43340.74, + "end": 43341.5, + "probability": 0.8637 + }, + { + "start": 43344.74, + "end": 43347.42, + "probability": 0.9441 + }, + { + "start": 43349.58, + "end": 43351.54, + "probability": 0.9226 + }, + { + "start": 43353.02, + "end": 43355.34, + "probability": 0.9449 + }, + { + "start": 43355.88, + "end": 43356.78, + "probability": 0.964 + }, + { + "start": 43357.64, + "end": 43358.96, + "probability": 0.9118 + }, + { + "start": 43362.0, + "end": 43363.92, + "probability": 0.5945 + }, + { + "start": 43365.26, + "end": 43366.66, + "probability": 0.8945 + }, + { + "start": 43367.4, + "end": 43369.1, + "probability": 0.8171 + }, + { + "start": 43370.18, + "end": 43371.9, + "probability": 0.959 + }, + { + "start": 43372.76, + "end": 43373.9, + "probability": 0.9585 + }, + { + "start": 43376.58, + "end": 43377.52, + "probability": 0.726 + }, + { + "start": 43378.78, + "end": 43379.9, + "probability": 0.9799 + }, + { + "start": 43380.46, + "end": 43380.94, + "probability": 0.9878 + }, + { + "start": 43381.46, + "end": 43382.18, + "probability": 0.9676 + }, + { + "start": 43386.0, + "end": 43386.52, + "probability": 0.9578 + }, + { + "start": 43387.4, + "end": 43388.8, + "probability": 0.8346 + }, + { + "start": 43391.56, + "end": 43392.2, + "probability": 0.5872 + }, + { + "start": 43393.02, + "end": 43393.52, + "probability": 0.7124 + }, + { + "start": 43394.04, + "end": 43394.82, + "probability": 0.7078 + }, + { + "start": 43398.74, + "end": 43399.3, + "probability": 0.9635 + }, + { + "start": 43400.06, + "end": 43400.88, + "probability": 0.792 + }, + { + "start": 43402.1, + "end": 43403.94, + "probability": 0.9225 + }, + { + "start": 43405.19, + "end": 43406.44, + "probability": 0.9265 + }, + { + "start": 43409.74, + "end": 43410.74, + "probability": 0.2591 + }, + { + "start": 43411.54, + "end": 43413.28, + "probability": 0.7872 + }, + { + "start": 43413.94, + "end": 43414.34, + "probability": 0.9639 + }, + { + "start": 43415.82, + "end": 43416.7, + "probability": 0.9782 + }, + { + "start": 43417.92, + "end": 43419.92, + "probability": 0.9707 + }, + { + "start": 43420.54, + "end": 43422.32, + "probability": 0.9909 + }, + { + "start": 43423.24, + "end": 43423.72, + "probability": 0.9888 + }, + { + "start": 43424.4, + "end": 43425.4, + "probability": 0.9897 + }, + { + "start": 43426.66, + "end": 43427.26, + "probability": 0.985 + }, + { + "start": 43427.8, + "end": 43428.82, + "probability": 0.7426 + }, + { + "start": 43429.46, + "end": 43429.98, + "probability": 0.9792 + }, + { + "start": 43430.72, + "end": 43431.56, + "probability": 0.9144 + }, + { + "start": 43435.0, + "end": 43435.78, + "probability": 0.9047 + }, + { + "start": 43436.5, + "end": 43437.18, + "probability": 0.5308 + }, + { + "start": 43438.16, + "end": 43440.5, + "probability": 0.7802 + }, + { + "start": 43442.04, + "end": 43444.74, + "probability": 0.8794 + }, + { + "start": 43445.3, + "end": 43446.68, + "probability": 0.76 + }, + { + "start": 43447.5, + "end": 43448.6, + "probability": 0.9049 + }, + { + "start": 43449.24, + "end": 43450.12, + "probability": 0.9795 + }, + { + "start": 43451.2, + "end": 43453.0, + "probability": 0.9808 + }, + { + "start": 43454.46, + "end": 43454.98, + "probability": 0.9514 + }, + { + "start": 43455.82, + "end": 43456.66, + "probability": 0.914 + }, + { + "start": 43457.66, + "end": 43458.1, + "probability": 0.9854 + }, + { + "start": 43458.66, + "end": 43459.62, + "probability": 0.9686 + }, + { + "start": 43460.58, + "end": 43460.96, + "probability": 0.9907 + }, + { + "start": 43462.2, + "end": 43463.12, + "probability": 0.8561 + }, + { + "start": 43464.6, + "end": 43464.9, + "probability": 0.9944 + }, + { + "start": 43465.62, + "end": 43466.48, + "probability": 0.9294 + }, + { + "start": 43467.52, + "end": 43467.78, + "probability": 0.7826 + }, + { + "start": 43468.7, + "end": 43469.6, + "probability": 0.7365 + }, + { + "start": 43470.5, + "end": 43472.28, + "probability": 0.929 + }, + { + "start": 43473.3, + "end": 43473.72, + "probability": 0.6617 + }, + { + "start": 43474.62, + "end": 43475.54, + "probability": 0.9832 + }, + { + "start": 43476.34, + "end": 43476.8, + "probability": 0.9946 + }, + { + "start": 43477.44, + "end": 43478.4, + "probability": 0.7873 + }, + { + "start": 43479.45, + "end": 43481.62, + "probability": 0.8602 + }, + { + "start": 43483.26, + "end": 43485.5, + "probability": 0.926 + }, + { + "start": 43486.2, + "end": 43486.68, + "probability": 0.9795 + }, + { + "start": 43488.88, + "end": 43490.0, + "probability": 0.6895 + }, + { + "start": 43490.92, + "end": 43491.2, + "probability": 0.7451 + }, + { + "start": 43492.14, + "end": 43492.92, + "probability": 0.6238 + }, + { + "start": 43495.58, + "end": 43497.46, + "probability": 0.8996 + }, + { + "start": 43499.26, + "end": 43501.18, + "probability": 0.6938 + }, + { + "start": 43501.84, + "end": 43502.7, + "probability": 0.9303 + }, + { + "start": 43503.6, + "end": 43505.5, + "probability": 0.9111 + }, + { + "start": 43508.18, + "end": 43508.94, + "probability": 0.9103 + }, + { + "start": 43509.6, + "end": 43510.52, + "probability": 0.8803 + }, + { + "start": 43511.26, + "end": 43511.78, + "probability": 0.9124 + }, + { + "start": 43512.74, + "end": 43513.64, + "probability": 0.9706 + }, + { + "start": 43514.34, + "end": 43514.72, + "probability": 0.9749 + }, + { + "start": 43515.66, + "end": 43516.12, + "probability": 0.9717 + }, + { + "start": 43517.5, + "end": 43517.94, + "probability": 0.9907 + }, + { + "start": 43518.76, + "end": 43519.58, + "probability": 0.6823 + }, + { + "start": 43520.58, + "end": 43520.84, + "probability": 0.7041 + }, + { + "start": 43521.58, + "end": 43522.36, + "probability": 0.6843 + }, + { + "start": 43523.22, + "end": 43525.54, + "probability": 0.9377 + }, + { + "start": 43527.68, + "end": 43528.1, + "probability": 0.8706 + }, + { + "start": 43528.8, + "end": 43529.62, + "probability": 0.859 + }, + { + "start": 43533.64, + "end": 43534.08, + "probability": 0.6584 + }, + { + "start": 43534.76, + "end": 43535.48, + "probability": 0.5972 + }, + { + "start": 43537.22, + "end": 43538.88, + "probability": 0.908 + }, + { + "start": 43539.78, + "end": 43540.28, + "probability": 0.9619 + }, + { + "start": 43540.84, + "end": 43541.24, + "probability": 0.921 + }, + { + "start": 43542.52, + "end": 43542.96, + "probability": 0.979 + }, + { + "start": 43544.24, + "end": 43545.08, + "probability": 0.8597 + }, + { + "start": 43545.98, + "end": 43547.28, + "probability": 0.9901 + }, + { + "start": 43548.52, + "end": 43549.02, + "probability": 0.9889 + }, + { + "start": 43549.58, + "end": 43550.7, + "probability": 0.903 + }, + { + "start": 43551.62, + "end": 43552.08, + "probability": 0.9922 + }, + { + "start": 43553.02, + "end": 43553.98, + "probability": 0.9741 + }, + { + "start": 43555.24, + "end": 43555.66, + "probability": 0.9961 + }, + { + "start": 43556.3, + "end": 43557.22, + "probability": 0.9835 + }, + { + "start": 43557.98, + "end": 43558.26, + "probability": 0.9961 + }, + { + "start": 43558.94, + "end": 43559.96, + "probability": 0.7376 + }, + { + "start": 43561.16, + "end": 43561.44, + "probability": 0.9499 + }, + { + "start": 43562.26, + "end": 43563.18, + "probability": 0.8221 + }, + { + "start": 43565.82, + "end": 43566.42, + "probability": 0.9048 + }, + { + "start": 43567.36, + "end": 43568.36, + "probability": 0.931 + }, + { + "start": 43569.75, + "end": 43571.82, + "probability": 0.9826 + }, + { + "start": 43573.86, + "end": 43576.4, + "probability": 0.9448 + }, + { + "start": 43578.5, + "end": 43579.96, + "probability": 0.9372 + }, + { + "start": 43580.78, + "end": 43581.28, + "probability": 0.9622 + }, + { + "start": 43582.0, + "end": 43582.86, + "probability": 0.995 + }, + { + "start": 43583.64, + "end": 43584.16, + "probability": 0.9875 + }, + { + "start": 43584.74, + "end": 43585.48, + "probability": 0.9893 + }, + { + "start": 43586.24, + "end": 43586.68, + "probability": 0.9927 + }, + { + "start": 43587.34, + "end": 43588.08, + "probability": 0.7519 + }, + { + "start": 43589.46, + "end": 43589.96, + "probability": 0.7639 + }, + { + "start": 43590.68, + "end": 43591.84, + "probability": 0.5642 + }, + { + "start": 43593.62, + "end": 43598.72, + "probability": 0.6965 + }, + { + "start": 43598.78, + "end": 43602.14, + "probability": 0.9914 + }, + { + "start": 43605.39, + "end": 43606.91, + "probability": 0.4808 + }, + { + "start": 43608.2, + "end": 43610.3, + "probability": 0.5327 + }, + { + "start": 43612.5, + "end": 43613.5, + "probability": 0.7313 + }, + { + "start": 43616.84, + "end": 43617.16, + "probability": 0.656 + }, + { + "start": 43618.68, + "end": 43619.95, + "probability": 0.7033 + }, + { + "start": 43620.92, + "end": 43623.1, + "probability": 0.8821 + }, + { + "start": 43623.92, + "end": 43624.82, + "probability": 0.8372 + }, + { + "start": 43626.58, + "end": 43628.6, + "probability": 0.6957 + }, + { + "start": 43629.42, + "end": 43630.42, + "probability": 0.7395 + }, + { + "start": 43633.12, + "end": 43635.82, + "probability": 0.927 + }, + { + "start": 43641.78, + "end": 43642.92, + "probability": 0.7289 + }, + { + "start": 43647.26, + "end": 43648.04, + "probability": 0.6196 + }, + { + "start": 43651.42, + "end": 43651.66, + "probability": 0.5611 + }, + { + "start": 43652.18, + "end": 43653.4, + "probability": 0.6836 + }, + { + "start": 43654.52, + "end": 43657.24, + "probability": 0.7748 + }, + { + "start": 43657.44, + "end": 43660.48, + "probability": 0.9795 + }, + { + "start": 43660.48, + "end": 43662.96, + "probability": 0.5327 + }, + { + "start": 43663.2, + "end": 43664.02, + "probability": 0.3621 + }, + { + "start": 43665.62, + "end": 43667.76, + "probability": 0.9253 + }, + { + "start": 43668.64, + "end": 43669.64, + "probability": 0.732 + }, + { + "start": 43670.36, + "end": 43671.06, + "probability": 0.4878 + }, + { + "start": 43671.14, + "end": 43671.96, + "probability": 0.456 + }, + { + "start": 43672.16, + "end": 43673.16, + "probability": 0.7497 + }, + { + "start": 43673.24, + "end": 43674.26, + "probability": 0.8774 + }, + { + "start": 43682.74, + "end": 43682.74, + "probability": 0.0144 + }, + { + "start": 43688.1, + "end": 43690.5, + "probability": 0.3209 + }, + { + "start": 43693.18, + "end": 43695.84, + "probability": 0.4761 + }, + { + "start": 43696.5, + "end": 43697.4, + "probability": 0.8581 + }, + { + "start": 43698.16, + "end": 43702.88, + "probability": 0.873 + }, + { + "start": 43703.02, + "end": 43705.54, + "probability": 0.8162 + }, + { + "start": 43707.3, + "end": 43711.02, + "probability": 0.8475 + }, + { + "start": 43711.56, + "end": 43712.68, + "probability": 0.8031 + }, + { + "start": 43712.86, + "end": 43715.84, + "probability": 0.9751 + }, + { + "start": 43715.84, + "end": 43721.28, + "probability": 0.7441 + }, + { + "start": 43722.04, + "end": 43724.4, + "probability": 0.9263 + }, + { + "start": 43727.64, + "end": 43729.74, + "probability": 0.8687 + }, + { + "start": 43732.08, + "end": 43733.52, + "probability": 0.7836 + }, + { + "start": 43735.24, + "end": 43738.28, + "probability": 0.9632 + }, + { + "start": 43755.24, + "end": 43756.08, + "probability": 0.7485 + }, + { + "start": 43757.8, + "end": 43762.52, + "probability": 0.9816 + }, + { + "start": 43762.52, + "end": 43768.6, + "probability": 0.8883 + }, + { + "start": 43768.72, + "end": 43769.16, + "probability": 0.4546 + }, + { + "start": 43769.18, + "end": 43770.42, + "probability": 0.6009 + }, + { + "start": 43770.94, + "end": 43772.4, + "probability": 0.9614 + }, + { + "start": 43772.7, + "end": 43773.04, + "probability": 0.3222 + }, + { + "start": 43775.38, + "end": 43778.1, + "probability": 0.785 + }, + { + "start": 43790.18, + "end": 43790.74, + "probability": 0.1439 + }, + { + "start": 43790.74, + "end": 43790.74, + "probability": 0.0619 + }, + { + "start": 43790.74, + "end": 43790.74, + "probability": 0.188 + }, + { + "start": 43790.74, + "end": 43790.74, + "probability": 0.1622 + }, + { + "start": 43790.74, + "end": 43792.92, + "probability": 0.5665 + }, + { + "start": 43795.54, + "end": 43797.72, + "probability": 0.7559 + }, + { + "start": 43797.88, + "end": 43799.22, + "probability": 0.9329 + }, + { + "start": 43800.14, + "end": 43803.6, + "probability": 0.585 + }, + { + "start": 43804.62, + "end": 43809.32, + "probability": 0.7002 + }, + { + "start": 43812.76, + "end": 43815.28, + "probability": 0.7358 + }, + { + "start": 43815.56, + "end": 43818.48, + "probability": 0.7641 + }, + { + "start": 43818.48, + "end": 43819.0, + "probability": 0.8032 + }, + { + "start": 43819.9, + "end": 43821.4, + "probability": 0.3806 + }, + { + "start": 43821.6, + "end": 43821.6, + "probability": 0.5723 + }, + { + "start": 43821.6, + "end": 43823.58, + "probability": 0.6647 + }, + { + "start": 43823.6, + "end": 43825.6, + "probability": 0.6695 + }, + { + "start": 43826.9, + "end": 43829.96, + "probability": 0.5153 + }, + { + "start": 43830.18, + "end": 43831.08, + "probability": 0.6642 + }, + { + "start": 43831.14, + "end": 43832.34, + "probability": 0.602 + }, + { + "start": 43832.46, + "end": 43833.88, + "probability": 0.2167 + }, + { + "start": 43836.96, + "end": 43837.1, + "probability": 0.0213 + }, + { + "start": 43845.42, + "end": 43851.72, + "probability": 0.2271 + }, + { + "start": 43852.12, + "end": 43853.34, + "probability": 0.8178 + }, + { + "start": 43853.52, + "end": 43854.06, + "probability": 0.3573 + }, + { + "start": 43854.06, + "end": 43854.82, + "probability": 0.4453 + }, + { + "start": 43854.94, + "end": 43855.22, + "probability": 0.5596 + }, + { + "start": 43855.5, + "end": 43861.26, + "probability": 0.8618 + }, + { + "start": 43861.26, + "end": 43862.14, + "probability": 0.9048 + }, + { + "start": 43862.18, + "end": 43862.96, + "probability": 0.8398 + }, + { + "start": 43864.46, + "end": 43866.98, + "probability": 0.7157 + }, + { + "start": 43869.78, + "end": 43874.8, + "probability": 0.7656 + }, + { + "start": 43875.26, + "end": 43877.2, + "probability": 0.5197 + }, + { + "start": 43879.74, + "end": 43883.9, + "probability": 0.5745 + }, + { + "start": 43884.34, + "end": 43885.02, + "probability": 0.5645 + }, + { + "start": 43885.24, + "end": 43886.62, + "probability": 0.8817 + }, + { + "start": 43886.82, + "end": 43888.02, + "probability": 0.8005 + }, + { + "start": 43888.76, + "end": 43893.38, + "probability": 0.0369 + }, + { + "start": 43896.32, + "end": 43897.0, + "probability": 0.1623 + }, + { + "start": 43903.68, + "end": 43904.74, + "probability": 0.311 + }, + { + "start": 43904.74, + "end": 43906.76, + "probability": 0.5257 + }, + { + "start": 43907.56, + "end": 43910.76, + "probability": 0.8549 + }, + { + "start": 43912.14, + "end": 43915.86, + "probability": 0.6458 + }, + { + "start": 43916.54, + "end": 43918.42, + "probability": 0.6903 + }, + { + "start": 43918.88, + "end": 43920.13, + "probability": 0.5943 + }, + { + "start": 43920.3, + "end": 43920.94, + "probability": 0.3505 + }, + { + "start": 43920.94, + "end": 43920.94, + "probability": 0.0177 + }, + { + "start": 43922.98, + "end": 43923.98, + "probability": 0.2584 + }, + { + "start": 43925.84, + "end": 43925.98, + "probability": 0.6582 + }, + { + "start": 43926.52, + "end": 43927.1, + "probability": 0.0977 + }, + { + "start": 43928.72, + "end": 43929.84, + "probability": 0.2738 + }, + { + "start": 43935.84, + "end": 43936.08, + "probability": 0.2018 + }, + { + "start": 43936.34, + "end": 43936.98, + "probability": 0.4141 + }, + { + "start": 43937.06, + "end": 43939.7, + "probability": 0.7225 + }, + { + "start": 43939.94, + "end": 43942.68, + "probability": 0.8839 + }, + { + "start": 43943.6, + "end": 43947.88, + "probability": 0.9691 + }, + { + "start": 43948.42, + "end": 43951.16, + "probability": 0.9926 + }, + { + "start": 43951.16, + "end": 43955.72, + "probability": 0.9281 + }, + { + "start": 43955.88, + "end": 43956.32, + "probability": 0.8552 + }, + { + "start": 43956.44, + "end": 43957.36, + "probability": 0.7493 + }, + { + "start": 43958.02, + "end": 43961.96, + "probability": 0.3957 + }, + { + "start": 43963.74, + "end": 43964.64, + "probability": 0.0796 + }, + { + "start": 43973.82, + "end": 43973.92, + "probability": 0.0118 + }, + { + "start": 43974.78, + "end": 43974.84, + "probability": 0.3982 + }, + { + "start": 43974.84, + "end": 43976.54, + "probability": 0.8069 + }, + { + "start": 43976.7, + "end": 43978.78, + "probability": 0.7955 + }, + { + "start": 43979.28, + "end": 43982.44, + "probability": 0.8992 + }, + { + "start": 43983.1, + "end": 43983.64, + "probability": 0.5466 + }, + { + "start": 43984.24, + "end": 43991.74, + "probability": 0.9375 + }, + { + "start": 43992.44, + "end": 43996.24, + "probability": 0.7781 + }, + { + "start": 43996.78, + "end": 43999.94, + "probability": 0.8538 + }, + { + "start": 44001.04, + "end": 44003.66, + "probability": 0.1571 + }, + { + "start": 44004.4, + "end": 44007.78, + "probability": 0.1764 + }, + { + "start": 44009.96, + "end": 44011.22, + "probability": 0.0321 + }, + { + "start": 44015.62, + "end": 44016.24, + "probability": 0.1984 + }, + { + "start": 44017.08, + "end": 44018.72, + "probability": 0.0935 + }, + { + "start": 44020.2, + "end": 44024.03, + "probability": 0.5355 + }, + { + "start": 44024.94, + "end": 44028.82, + "probability": 0.7614 + }, + { + "start": 44028.92, + "end": 44029.52, + "probability": 0.9228 + }, + { + "start": 44031.76, + "end": 44034.03, + "probability": 0.8892 + }, + { + "start": 44035.84, + "end": 44037.81, + "probability": 0.8954 + }, + { + "start": 44037.98, + "end": 44042.2, + "probability": 0.916 + }, + { + "start": 44042.56, + "end": 44049.14, + "probability": 0.9751 + }, + { + "start": 44049.7, + "end": 44051.02, + "probability": 0.8386 + }, + { + "start": 44051.1, + "end": 44051.94, + "probability": 0.8496 + }, + { + "start": 44055.49, + "end": 44056.83, + "probability": 0.0672 + }, + { + "start": 44059.86, + "end": 44060.66, + "probability": 0.3389 + }, + { + "start": 44066.38, + "end": 44067.64, + "probability": 0.6716 + }, + { + "start": 44067.64, + "end": 44067.88, + "probability": 0.2398 + }, + { + "start": 44067.96, + "end": 44068.94, + "probability": 0.3818 + }, + { + "start": 44069.06, + "end": 44069.36, + "probability": 0.4897 + }, + { + "start": 44069.84, + "end": 44073.78, + "probability": 0.8321 + }, + { + "start": 44074.52, + "end": 44076.64, + "probability": 0.9097 + }, + { + "start": 44077.72, + "end": 44079.22, + "probability": 0.6997 + }, + { + "start": 44079.3, + "end": 44079.98, + "probability": 0.4946 + }, + { + "start": 44084.64, + "end": 44089.02, + "probability": 0.0475 + }, + { + "start": 44096.98, + "end": 44097.86, + "probability": 0.1674 + }, + { + "start": 44100.06, + "end": 44103.84, + "probability": 0.5749 + }, + { + "start": 44104.02, + "end": 44105.4, + "probability": 0.774 + }, + { + "start": 44106.02, + "end": 44106.36, + "probability": 0.576 + }, + { + "start": 44106.36, + "end": 44108.18, + "probability": 0.9233 + }, + { + "start": 44109.14, + "end": 44109.14, + "probability": 0.0641 + }, + { + "start": 44109.14, + "end": 44109.14, + "probability": 0.0343 + }, + { + "start": 44109.14, + "end": 44109.14, + "probability": 0.4902 + }, + { + "start": 44109.14, + "end": 44109.68, + "probability": 0.3342 + }, + { + "start": 44110.2, + "end": 44116.03, + "probability": 0.7713 + }, + { + "start": 44116.56, + "end": 44117.02, + "probability": 0.7632 + }, + { + "start": 44118.04, + "end": 44118.16, + "probability": 0.244 + }, + { + "start": 44118.16, + "end": 44118.56, + "probability": 0.3374 + }, + { + "start": 44119.18, + "end": 44124.72, + "probability": 0.6241 + }, + { + "start": 44126.16, + "end": 44127.24, + "probability": 0.1916 + }, + { + "start": 44130.96, + "end": 44131.76, + "probability": 0.0884 + }, + { + "start": 44131.78, + "end": 44134.3, + "probability": 0.3604 + }, + { + "start": 44135.28, + "end": 44136.6, + "probability": 0.547 + }, + { + "start": 44137.66, + "end": 44140.54, + "probability": 0.8987 + }, + { + "start": 44140.54, + "end": 44145.88, + "probability": 0.9041 + }, + { + "start": 44149.02, + "end": 44152.56, + "probability": 0.8649 + }, + { + "start": 44153.08, + "end": 44155.61, + "probability": 0.554 + }, + { + "start": 44160.74, + "end": 44162.4, + "probability": 0.7134 + }, + { + "start": 44162.48, + "end": 44163.52, + "probability": 0.7796 + }, + { + "start": 44163.6, + "end": 44164.64, + "probability": 0.6795 + }, + { + "start": 44165.16, + "end": 44166.0, + "probability": 0.1345 + }, + { + "start": 44167.22, + "end": 44173.14, + "probability": 0.0829 + }, + { + "start": 44173.14, + "end": 44174.08, + "probability": 0.1565 + }, + { + "start": 44174.42, + "end": 44178.12, + "probability": 0.095 + }, + { + "start": 44179.44, + "end": 44179.96, + "probability": 0.1316 + }, + { + "start": 44181.94, + "end": 44187.12, + "probability": 0.6291 + }, + { + "start": 44187.62, + "end": 44191.52, + "probability": 0.8708 + }, + { + "start": 44191.72, + "end": 44192.92, + "probability": 0.9752 + }, + { + "start": 44194.36, + "end": 44198.06, + "probability": 0.9791 + }, + { + "start": 44199.1, + "end": 44203.18, + "probability": 0.9698 + }, + { + "start": 44203.2, + "end": 44205.98, + "probability": 0.9394 + }, + { + "start": 44206.54, + "end": 44210.64, + "probability": 0.9884 + }, + { + "start": 44210.76, + "end": 44215.61, + "probability": 0.9655 + }, + { + "start": 44217.0, + "end": 44219.48, + "probability": 0.8564 + }, + { + "start": 44219.76, + "end": 44221.71, + "probability": 0.9702 + }, + { + "start": 44221.88, + "end": 44223.08, + "probability": 0.9628 + }, + { + "start": 44223.38, + "end": 44226.02, + "probability": 0.9089 + }, + { + "start": 44226.48, + "end": 44226.48, + "probability": 0.0002 + }, + { + "start": 44232.5, + "end": 44234.1, + "probability": 0.1551 + }, + { + "start": 44234.76, + "end": 44239.73, + "probability": 0.4771 + }, + { + "start": 44240.06, + "end": 44242.7, + "probability": 0.3368 + }, + { + "start": 44243.22, + "end": 44244.34, + "probability": 0.8966 + }, + { + "start": 44245.24, + "end": 44247.06, + "probability": 0.9729 + }, + { + "start": 44247.22, + "end": 44247.64, + "probability": 0.3168 + }, + { + "start": 44252.2, + "end": 44252.78, + "probability": 0.3435 + }, + { + "start": 44254.36, + "end": 44257.66, + "probability": 0.3732 + }, + { + "start": 44257.66, + "end": 44257.82, + "probability": 0.2297 + }, + { + "start": 44258.1, + "end": 44260.64, + "probability": 0.832 + }, + { + "start": 44260.76, + "end": 44265.16, + "probability": 0.9881 + }, + { + "start": 44266.62, + "end": 44269.68, + "probability": 0.021 + }, + { + "start": 44277.84, + "end": 44279.1, + "probability": 0.6551 + }, + { + "start": 44279.92, + "end": 44282.72, + "probability": 0.8404 + }, + { + "start": 44283.52, + "end": 44288.5, + "probability": 0.939 + }, + { + "start": 44289.42, + "end": 44290.18, + "probability": 0.9546 + }, + { + "start": 44290.76, + "end": 44291.82, + "probability": 0.9276 + }, + { + "start": 44292.38, + "end": 44294.52, + "probability": 0.9727 + }, + { + "start": 44295.12, + "end": 44297.18, + "probability": 0.9124 + }, + { + "start": 44298.16, + "end": 44299.18, + "probability": 0.9901 + }, + { + "start": 44299.86, + "end": 44300.68, + "probability": 0.4776 + }, + { + "start": 44301.5, + "end": 44302.06, + "probability": 0.6091 + }, + { + "start": 44302.64, + "end": 44303.64, + "probability": 0.5648 + }, + { + "start": 44304.38, + "end": 44304.8, + "probability": 0.9551 + }, + { + "start": 44305.66, + "end": 44309.18, + "probability": 0.9314 + }, + { + "start": 44310.68, + "end": 44311.68, + "probability": 0.9922 + }, + { + "start": 44312.96, + "end": 44313.96, + "probability": 0.9706 + }, + { + "start": 44314.82, + "end": 44316.64, + "probability": 0.8664 + }, + { + "start": 44317.54, + "end": 44319.34, + "probability": 0.9948 + }, + { + "start": 44320.18, + "end": 44320.68, + "probability": 0.9968 + }, + { + "start": 44321.36, + "end": 44322.54, + "probability": 0.9967 + }, + { + "start": 44323.22, + "end": 44325.14, + "probability": 0.8285 + }, + { + "start": 44326.82, + "end": 44327.26, + "probability": 0.7243 + }, + { + "start": 44327.94, + "end": 44328.8, + "probability": 0.3424 + }, + { + "start": 44330.46, + "end": 44335.62, + "probability": 0.9159 + }, + { + "start": 44336.7, + "end": 44339.18, + "probability": 0.9904 + }, + { + "start": 44340.4, + "end": 44342.68, + "probability": 0.9651 + }, + { + "start": 44343.48, + "end": 44345.7, + "probability": 0.9667 + }, + { + "start": 44346.26, + "end": 44346.76, + "probability": 0.9927 + }, + { + "start": 44347.44, + "end": 44348.58, + "probability": 0.9839 + }, + { + "start": 44349.22, + "end": 44351.82, + "probability": 0.9035 + }, + { + "start": 44352.6, + "end": 44354.14, + "probability": 0.978 + }, + { + "start": 44355.48, + "end": 44355.84, + "probability": 0.7515 + }, + { + "start": 44356.52, + "end": 44357.34, + "probability": 0.6561 + }, + { + "start": 44358.66, + "end": 44359.12, + "probability": 0.9897 + }, + { + "start": 44359.64, + "end": 44360.7, + "probability": 0.9825 + }, + { + "start": 44361.44, + "end": 44363.66, + "probability": 0.9333 + }, + { + "start": 44364.78, + "end": 44365.42, + "probability": 0.9891 + }, + { + "start": 44365.94, + "end": 44366.86, + "probability": 0.6972 + }, + { + "start": 44367.92, + "end": 44368.5, + "probability": 0.9504 + }, + { + "start": 44369.1, + "end": 44370.24, + "probability": 0.9253 + }, + { + "start": 44371.08, + "end": 44373.0, + "probability": 0.7808 + }, + { + "start": 44378.2, + "end": 44380.86, + "probability": 0.7786 + }, + { + "start": 44382.24, + "end": 44383.18, + "probability": 0.8197 + }, + { + "start": 44384.26, + "end": 44384.7, + "probability": 0.6084 + }, + { + "start": 44385.38, + "end": 44386.28, + "probability": 0.9562 + }, + { + "start": 44387.7, + "end": 44390.32, + "probability": 0.9416 + }, + { + "start": 44391.76, + "end": 44392.46, + "probability": 0.9842 + }, + { + "start": 44393.02, + "end": 44397.08, + "probability": 0.9673 + }, + { + "start": 44397.96, + "end": 44398.54, + "probability": 0.9631 + }, + { + "start": 44399.22, + "end": 44403.18, + "probability": 0.9804 + }, + { + "start": 44404.46, + "end": 44405.68, + "probability": 0.9915 + }, + { + "start": 44406.2, + "end": 44410.8, + "probability": 0.7789 + }, + { + "start": 44411.8, + "end": 44412.18, + "probability": 0.9146 + }, + { + "start": 44413.14, + "end": 44416.56, + "probability": 0.9346 + }, + { + "start": 44418.86, + "end": 44419.84, + "probability": 0.9792 + }, + { + "start": 44420.86, + "end": 44422.2, + "probability": 0.7608 + }, + { + "start": 44422.96, + "end": 44423.98, + "probability": 0.9861 + }, + { + "start": 44424.72, + "end": 44425.82, + "probability": 0.9106 + }, + { + "start": 44428.56, + "end": 44433.7, + "probability": 0.7583 + }, + { + "start": 44434.66, + "end": 44435.2, + "probability": 0.9878 + }, + { + "start": 44435.9, + "end": 44436.98, + "probability": 0.9312 + }, + { + "start": 44438.21, + "end": 44440.76, + "probability": 0.815 + }, + { + "start": 44445.16, + "end": 44445.56, + "probability": 0.9844 + }, + { + "start": 44446.4, + "end": 44450.28, + "probability": 0.9366 + }, + { + "start": 44451.94, + "end": 44453.96, + "probability": 0.8944 + }, + { + "start": 44455.46, + "end": 44457.7, + "probability": 0.7887 + }, + { + "start": 44460.3, + "end": 44462.4, + "probability": 0.9297 + }, + { + "start": 44464.26, + "end": 44464.76, + "probability": 0.9797 + }, + { + "start": 44465.34, + "end": 44466.5, + "probability": 0.9467 + }, + { + "start": 44468.48, + "end": 44469.02, + "probability": 0.9953 + }, + { + "start": 44469.78, + "end": 44471.06, + "probability": 0.9724 + }, + { + "start": 44471.8, + "end": 44472.3, + "probability": 0.9211 + }, + { + "start": 44473.36, + "end": 44474.28, + "probability": 0.942 + }, + { + "start": 44475.32, + "end": 44475.86, + "probability": 0.9891 + }, + { + "start": 44476.48, + "end": 44477.54, + "probability": 0.3917 + }, + { + "start": 44478.9, + "end": 44479.36, + "probability": 0.9867 + }, + { + "start": 44480.02, + "end": 44480.84, + "probability": 0.9535 + }, + { + "start": 44481.96, + "end": 44482.5, + "probability": 0.9959 + }, + { + "start": 44483.34, + "end": 44483.86, + "probability": 0.4503 + }, + { + "start": 44485.66, + "end": 44488.02, + "probability": 0.6884 + }, + { + "start": 44488.98, + "end": 44489.3, + "probability": 0.8102 + }, + { + "start": 44489.92, + "end": 44490.3, + "probability": 0.8963 + }, + { + "start": 44491.46, + "end": 44493.6, + "probability": 0.9894 + }, + { + "start": 44495.96, + "end": 44496.42, + "probability": 0.9875 + }, + { + "start": 44497.14, + "end": 44497.96, + "probability": 0.8872 + }, + { + "start": 44498.64, + "end": 44499.14, + "probability": 0.9827 + }, + { + "start": 44499.78, + "end": 44500.68, + "probability": 0.9413 + }, + { + "start": 44501.4, + "end": 44502.54, + "probability": 0.9941 + }, + { + "start": 44503.68, + "end": 44504.4, + "probability": 0.9925 + }, + { + "start": 44505.24, + "end": 44507.16, + "probability": 0.9958 + }, + { + "start": 44508.08, + "end": 44508.4, + "probability": 0.9954 + }, + { + "start": 44509.0, + "end": 44509.88, + "probability": 0.9585 + }, + { + "start": 44510.66, + "end": 44511.06, + "probability": 0.9688 + }, + { + "start": 44511.76, + "end": 44512.48, + "probability": 0.9252 + }, + { + "start": 44514.0, + "end": 44514.26, + "probability": 0.7257 + }, + { + "start": 44515.08, + "end": 44516.18, + "probability": 0.7053 + }, + { + "start": 44517.28, + "end": 44517.64, + "probability": 0.9455 + }, + { + "start": 44518.38, + "end": 44520.1, + "probability": 0.843 + }, + { + "start": 44521.78, + "end": 44522.52, + "probability": 0.9632 + }, + { + "start": 44523.76, + "end": 44525.7, + "probability": 0.9748 + }, + { + "start": 44526.38, + "end": 44528.48, + "probability": 0.9905 + }, + { + "start": 44529.38, + "end": 44531.22, + "probability": 0.9794 + }, + { + "start": 44531.88, + "end": 44532.38, + "probability": 0.989 + }, + { + "start": 44532.94, + "end": 44533.8, + "probability": 0.7454 + }, + { + "start": 44534.7, + "end": 44535.16, + "probability": 0.986 + }, + { + "start": 44536.12, + "end": 44537.38, + "probability": 0.9928 + }, + { + "start": 44538.5, + "end": 44538.94, + "probability": 0.9867 + }, + { + "start": 44540.26, + "end": 44541.14, + "probability": 0.8741 + }, + { + "start": 44541.98, + "end": 44544.02, + "probability": 0.8184 + }, + { + "start": 44545.26, + "end": 44545.78, + "probability": 0.9695 + }, + { + "start": 44546.4, + "end": 44547.76, + "probability": 0.8324 + }, + { + "start": 44548.68, + "end": 44550.1, + "probability": 0.9866 + }, + { + "start": 44551.06, + "end": 44552.88, + "probability": 0.7061 + }, + { + "start": 44556.02, + "end": 44560.29, + "probability": 0.1769 + }, + { + "start": 44562.64, + "end": 44564.44, + "probability": 0.4518 + }, + { + "start": 44566.42, + "end": 44567.76, + "probability": 0.3715 + }, + { + "start": 44595.1, + "end": 44596.58, + "probability": 0.1607 + }, + { + "start": 44597.44, + "end": 44597.66, + "probability": 0.501 + }, + { + "start": 44598.44, + "end": 44599.86, + "probability": 0.8322 + }, + { + "start": 44600.9, + "end": 44601.28, + "probability": 0.8116 + }, + { + "start": 44601.92, + "end": 44603.08, + "probability": 0.8118 + }, + { + "start": 44603.96, + "end": 44606.48, + "probability": 0.7263 + }, + { + "start": 44608.98, + "end": 44609.48, + "probability": 0.9074 + }, + { + "start": 44610.32, + "end": 44611.12, + "probability": 0.6996 + }, + { + "start": 44612.08, + "end": 44612.4, + "probability": 0.9948 + }, + { + "start": 44613.04, + "end": 44614.26, + "probability": 0.7432 + }, + { + "start": 44615.14, + "end": 44616.46, + "probability": 0.5816 + }, + { + "start": 44617.18, + "end": 44618.72, + "probability": 0.8127 + }, + { + "start": 44620.02, + "end": 44620.38, + "probability": 0.9601 + }, + { + "start": 44621.96, + "end": 44622.84, + "probability": 0.9357 + }, + { + "start": 44624.92, + "end": 44625.46, + "probability": 0.9756 + }, + { + "start": 44626.72, + "end": 44627.42, + "probability": 0.8196 + }, + { + "start": 44629.52, + "end": 44631.28, + "probability": 0.8636 + }, + { + "start": 44636.86, + "end": 44640.24, + "probability": 0.7133 + }, + { + "start": 44641.48, + "end": 44646.14, + "probability": 0.9518 + }, + { + "start": 44647.18, + "end": 44647.58, + "probability": 0.9207 + }, + { + "start": 44648.2, + "end": 44649.1, + "probability": 0.9111 + }, + { + "start": 44649.64, + "end": 44651.9, + "probability": 0.928 + }, + { + "start": 44652.46, + "end": 44654.48, + "probability": 0.9702 + }, + { + "start": 44655.42, + "end": 44656.54, + "probability": 0.9528 + }, + { + "start": 44658.92, + "end": 44661.88, + "probability": 0.5892 + }, + { + "start": 44663.93, + "end": 44665.36, + "probability": 0.9505 + }, + { + "start": 44666.54, + "end": 44667.32, + "probability": 0.714 + }, + { + "start": 44668.02, + "end": 44668.84, + "probability": 0.9578 + }, + { + "start": 44670.68, + "end": 44672.02, + "probability": 0.8494 + }, + { + "start": 44673.32, + "end": 44675.34, + "probability": 0.9875 + }, + { + "start": 44676.34, + "end": 44678.62, + "probability": 0.9578 + }, + { + "start": 44679.64, + "end": 44681.68, + "probability": 0.9716 + }, + { + "start": 44683.52, + "end": 44684.2, + "probability": 0.9946 + }, + { + "start": 44685.4, + "end": 44686.48, + "probability": 0.9451 + }, + { + "start": 44687.1, + "end": 44687.4, + "probability": 0.7412 + }, + { + "start": 44688.2, + "end": 44689.48, + "probability": 0.8529 + }, + { + "start": 44691.64, + "end": 44692.04, + "probability": 0.7327 + }, + { + "start": 44692.58, + "end": 44693.48, + "probability": 0.805 + }, + { + "start": 44695.08, + "end": 44698.74, + "probability": 0.8757 + }, + { + "start": 44699.84, + "end": 44700.4, + "probability": 0.9743 + }, + { + "start": 44701.46, + "end": 44703.76, + "probability": 0.8917 + }, + { + "start": 44715.02, + "end": 44717.32, + "probability": 0.8073 + }, + { + "start": 44720.56, + "end": 44725.6, + "probability": 0.7462 + }, + { + "start": 44726.98, + "end": 44727.52, + "probability": 0.9759 + }, + { + "start": 44728.22, + "end": 44729.08, + "probability": 0.8668 + }, + { + "start": 44730.02, + "end": 44730.6, + "probability": 0.9845 + }, + { + "start": 44731.34, + "end": 44732.2, + "probability": 0.9275 + }, + { + "start": 44733.24, + "end": 44733.64, + "probability": 0.9591 + }, + { + "start": 44734.28, + "end": 44735.22, + "probability": 0.9605 + }, + { + "start": 44736.24, + "end": 44736.72, + "probability": 0.989 + }, + { + "start": 44737.44, + "end": 44738.58, + "probability": 0.9165 + }, + { + "start": 44739.64, + "end": 44742.02, + "probability": 0.1396 + }, + { + "start": 44749.46, + "end": 44751.68, + "probability": 0.5803 + }, + { + "start": 44751.84, + "end": 44752.46, + "probability": 0.6976 + }, + { + "start": 44752.52, + "end": 44753.5, + "probability": 0.689 + }, + { + "start": 44754.24, + "end": 44756.44, + "probability": 0.5593 + }, + { + "start": 44756.58, + "end": 44758.88, + "probability": 0.8686 + }, + { + "start": 44758.96, + "end": 44762.52, + "probability": 0.0736 + }, + { + "start": 44781.06, + "end": 44786.34, + "probability": 0.947 + }, + { + "start": 44786.42, + "end": 44787.7, + "probability": 0.9062 + }, + { + "start": 44788.32, + "end": 44790.44, + "probability": 0.487 + }, + { + "start": 44803.14, + "end": 44805.74, + "probability": 0.4723 + }, + { + "start": 44809.68, + "end": 44811.3, + "probability": 0.6275 + }, + { + "start": 44816.06, + "end": 44820.02, + "probability": 0.8304 + }, + { + "start": 44823.14, + "end": 44825.06, + "probability": 0.645 + }, + { + "start": 44826.74, + "end": 44828.14, + "probability": 0.8828 + }, + { + "start": 44828.38, + "end": 44831.38, + "probability": 0.9642 + }, + { + "start": 44831.86, + "end": 44834.42, + "probability": 0.9899 + }, + { + "start": 44836.68, + "end": 44838.64, + "probability": 0.7996 + }, + { + "start": 44839.38, + "end": 44844.39, + "probability": 0.8332 + }, + { + "start": 44844.62, + "end": 44846.9, + "probability": 0.1671 + }, + { + "start": 44847.86, + "end": 44848.42, + "probability": 0.7617 + }, + { + "start": 44849.14, + "end": 44852.9, + "probability": 0.7884 + }, + { + "start": 44853.22, + "end": 44854.8, + "probability": 0.7279 + }, + { + "start": 44855.32, + "end": 44856.7, + "probability": 0.9413 + }, + { + "start": 44857.64, + "end": 44858.06, + "probability": 0.1318 + }, + { + "start": 44858.62, + "end": 44863.18, + "probability": 0.9082 + }, + { + "start": 44863.18, + "end": 44864.2, + "probability": 0.6945 + }, + { + "start": 44864.34, + "end": 44864.86, + "probability": 0.4979 + }, + { + "start": 44865.04, + "end": 44867.06, + "probability": 0.9941 + }, + { + "start": 44867.22, + "end": 44870.02, + "probability": 0.8556 + }, + { + "start": 44870.54, + "end": 44872.68, + "probability": 0.9066 + }, + { + "start": 44873.36, + "end": 44875.34, + "probability": 0.9141 + }, + { + "start": 44876.06, + "end": 44881.84, + "probability": 0.9839 + }, + { + "start": 44882.3, + "end": 44887.97, + "probability": 0.7107 + }, + { + "start": 44888.44, + "end": 44895.52, + "probability": 0.1852 + }, + { + "start": 44897.78, + "end": 44899.42, + "probability": 0.7757 + }, + { + "start": 44901.0, + "end": 44902.46, + "probability": 0.9253 + }, + { + "start": 44906.52, + "end": 44907.52, + "probability": 0.7627 + }, + { + "start": 44907.56, + "end": 44909.46, + "probability": 0.852 + }, + { + "start": 44909.84, + "end": 44914.12, + "probability": 0.8751 + }, + { + "start": 44915.06, + "end": 44919.16, + "probability": 0.9683 + }, + { + "start": 44919.34, + "end": 44919.99, + "probability": 0.5223 + }, + { + "start": 44920.14, + "end": 44924.7, + "probability": 0.9773 + }, + { + "start": 44924.8, + "end": 44925.58, + "probability": 0.8253 + }, + { + "start": 44926.38, + "end": 44929.56, + "probability": 0.9081 + }, + { + "start": 44933.2, + "end": 44936.3, + "probability": 0.4698 + }, + { + "start": 44936.34, + "end": 44936.5, + "probability": 0.379 + }, + { + "start": 44936.5, + "end": 44937.2, + "probability": 0.9489 + }, + { + "start": 44937.3, + "end": 44939.74, + "probability": 0.584 + }, + { + "start": 44939.78, + "end": 44940.76, + "probability": 0.6008 + }, + { + "start": 44940.8, + "end": 44943.62, + "probability": 0.9243 + }, + { + "start": 44944.36, + "end": 44948.52, + "probability": 0.9603 + }, + { + "start": 44949.48, + "end": 44953.52, + "probability": 0.9602 + }, + { + "start": 44954.9, + "end": 44956.08, + "probability": 0.8451 + }, + { + "start": 44963.94, + "end": 44966.26, + "probability": 0.9705 + }, + { + "start": 44967.31, + "end": 44970.31, + "probability": 0.0369 + }, + { + "start": 44975.16, + "end": 44975.26, + "probability": 0.032 + }, + { + "start": 44975.82, + "end": 44978.28, + "probability": 0.1237 + }, + { + "start": 44980.24, + "end": 44981.06, + "probability": 0.0232 + }, + { + "start": 44984.06, + "end": 44985.28, + "probability": 0.0572 + }, + { + "start": 44987.65, + "end": 44990.08, + "probability": 0.0485 + }, + { + "start": 44992.96, + "end": 44994.78, + "probability": 0.0809 + }, + { + "start": 44999.14, + "end": 45000.96, + "probability": 0.1034 + }, + { + "start": 45002.46, + "end": 45003.56, + "probability": 0.0171 + }, + { + "start": 45004.24, + "end": 45004.34, + "probability": 0.0772 + }, + { + "start": 45004.34, + "end": 45004.96, + "probability": 0.1124 + }, + { + "start": 45005.38, + "end": 45006.84, + "probability": 0.0874 + }, + { + "start": 45006.92, + "end": 45007.1, + "probability": 0.1661 + }, + { + "start": 45007.72, + "end": 45009.98, + "probability": 0.0336 + }, + { + "start": 45010.5, + "end": 45013.32, + "probability": 0.0935 + }, + { + "start": 45014.88, + "end": 45015.28, + "probability": 0.1061 + }, + { + "start": 45016.06, + "end": 45017.35, + "probability": 0.0266 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45028.0, + "end": 45028.0, + "probability": 0.0 + }, + { + "start": 45029.2, + "end": 45030.26, + "probability": 0.3359 + }, + { + "start": 45041.52, + "end": 45044.68, + "probability": 0.4995 + }, + { + "start": 45045.9, + "end": 45046.6, + "probability": 0.8281 + }, + { + "start": 45047.82, + "end": 45050.94, + "probability": 0.5826 + }, + { + "start": 45051.06, + "end": 45051.64, + "probability": 0.4725 + }, + { + "start": 45052.26, + "end": 45053.16, + "probability": 0.6425 + }, + { + "start": 45054.39, + "end": 45057.32, + "probability": 0.8845 + }, + { + "start": 45057.56, + "end": 45058.33, + "probability": 0.5293 + }, + { + "start": 45058.62, + "end": 45059.42, + "probability": 0.5093 + }, + { + "start": 45067.52, + "end": 45071.02, + "probability": 0.0984 + }, + { + "start": 45071.02, + "end": 45071.02, + "probability": 0.1767 + }, + { + "start": 45071.02, + "end": 45071.02, + "probability": 0.0918 + }, + { + "start": 45071.98, + "end": 45072.08, + "probability": 0.0351 + }, + { + "start": 45072.42, + "end": 45072.42, + "probability": 0.0849 + }, + { + "start": 45072.42, + "end": 45072.42, + "probability": 0.0548 + }, + { + "start": 45072.42, + "end": 45072.42, + "probability": 0.1754 + }, + { + "start": 45072.42, + "end": 45072.64, + "probability": 0.0677 + }, + { + "start": 45072.64, + "end": 45073.76, + "probability": 0.1822 + }, + { + "start": 45074.74, + "end": 45077.12, + "probability": 0.6472 + }, + { + "start": 45077.48, + "end": 45079.74, + "probability": 0.6398 + }, + { + "start": 45081.96, + "end": 45084.88, + "probability": 0.5056 + }, + { + "start": 45084.94, + "end": 45085.46, + "probability": 0.3027 + }, + { + "start": 45085.48, + "end": 45086.66, + "probability": 0.2628 + }, + { + "start": 45099.85, + "end": 45102.72, + "probability": 0.0853 + }, + { + "start": 45102.72, + "end": 45103.42, + "probability": 0.1682 + }, + { + "start": 45104.22, + "end": 45106.4, + "probability": 0.1606 + }, + { + "start": 45106.9, + "end": 45108.1, + "probability": 0.4527 + }, + { + "start": 45111.64, + "end": 45114.02, + "probability": 0.3693 + }, + { + "start": 45114.38, + "end": 45114.38, + "probability": 0.0142 + }, + { + "start": 45114.38, + "end": 45114.48, + "probability": 0.6395 + }, + { + "start": 45114.48, + "end": 45117.58, + "probability": 0.1916 + }, + { + "start": 45118.42, + "end": 45118.42, + "probability": 0.3503 + }, + { + "start": 45118.55, + "end": 45118.9, + "probability": 0.8303 + }, + { + "start": 45118.9, + "end": 45120.75, + "probability": 0.2644 + }, + { + "start": 45121.54, + "end": 45127.72, + "probability": 0.342 + }, + { + "start": 45127.92, + "end": 45130.18, + "probability": 0.7721 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45199.0, + "end": 45199.0, + "probability": 0.0 + }, + { + "start": 45206.56, + "end": 45207.96, + "probability": 0.0003 + }, + { + "start": 45211.46, + "end": 45214.32, + "probability": 0.3118 + }, + { + "start": 45214.4, + "end": 45216.17, + "probability": 0.7693 + }, + { + "start": 45217.1, + "end": 45220.22, + "probability": 0.9548 + }, + { + "start": 45220.26, + "end": 45221.97, + "probability": 0.784 + }, + { + "start": 45223.02, + "end": 45223.98, + "probability": 0.6361 + }, + { + "start": 45224.02, + "end": 45231.78, + "probability": 0.3555 + }, + { + "start": 45232.02, + "end": 45232.78, + "probability": 0.2017 + }, + { + "start": 45232.98, + "end": 45233.62, + "probability": 0.4135 + }, + { + "start": 45234.56, + "end": 45235.72, + "probability": 0.0823 + }, + { + "start": 45236.62, + "end": 45239.88, + "probability": 0.0348 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45346.0, + "end": 45346.0, + "probability": 0.0 + }, + { + "start": 45360.32, + "end": 45360.58, + "probability": 0.2487 + }, + { + "start": 45360.86, + "end": 45361.5, + "probability": 0.3577 + }, + { + "start": 45361.62, + "end": 45361.94, + "probability": 0.6397 + }, + { + "start": 45362.08, + "end": 45364.22, + "probability": 0.782 + }, + { + "start": 45364.92, + "end": 45366.2, + "probability": 0.7571 + }, + { + "start": 45366.8, + "end": 45368.08, + "probability": 0.8676 + }, + { + "start": 45368.14, + "end": 45368.9, + "probability": 0.9142 + }, + { + "start": 45373.18, + "end": 45374.88, + "probability": 0.7362 + }, + { + "start": 45379.7, + "end": 45381.94, + "probability": 0.0673 + }, + { + "start": 45384.74, + "end": 45385.36, + "probability": 0.1648 + }, + { + "start": 45386.06, + "end": 45390.12, + "probability": 0.2254 + }, + { + "start": 45399.1, + "end": 45401.52, + "probability": 0.0007 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45466.0, + "end": 45466.0, + "probability": 0.0 + }, + { + "start": 45478.1, + "end": 45480.3, + "probability": 0.3725 + }, + { + "start": 45480.32, + "end": 45483.04, + "probability": 0.8077 + }, + { + "start": 45483.92, + "end": 45484.8, + "probability": 0.9258 + }, + { + "start": 45486.64, + "end": 45487.58, + "probability": 0.311 + }, + { + "start": 45487.72, + "end": 45488.44, + "probability": 0.1812 + }, + { + "start": 45488.56, + "end": 45489.8, + "probability": 0.825 + }, + { + "start": 45489.92, + "end": 45491.02, + "probability": 0.9478 + }, + { + "start": 45491.1, + "end": 45492.62, + "probability": 0.8006 + }, + { + "start": 45493.18, + "end": 45496.4, + "probability": 0.7673 + }, + { + "start": 45496.46, + "end": 45497.47, + "probability": 0.986 + }, + { + "start": 45498.66, + "end": 45500.54, + "probability": 0.0095 + }, + { + "start": 45502.4, + "end": 45505.1, + "probability": 0.2248 + }, + { + "start": 45520.02, + "end": 45521.48, + "probability": 0.4305 + }, + { + "start": 45524.2, + "end": 45526.08, + "probability": 0.1932 + }, + { + "start": 45527.4, + "end": 45529.52, + "probability": 0.0984 + }, + { + "start": 45531.6, + "end": 45535.62, + "probability": 0.4632 + }, + { + "start": 45537.04, + "end": 45538.32, + "probability": 0.0296 + }, + { + "start": 45538.5, + "end": 45542.9, + "probability": 0.613 + }, + { + "start": 45542.9, + "end": 45544.76, + "probability": 0.3414 + }, + { + "start": 45545.46, + "end": 45545.46, + "probability": 0.307 + }, + { + "start": 45545.46, + "end": 45548.56, + "probability": 0.8687 + }, + { + "start": 45549.02, + "end": 45551.6, + "probability": 0.9285 + }, + { + "start": 45552.12, + "end": 45554.18, + "probability": 0.6928 + }, + { + "start": 45554.38, + "end": 45557.8, + "probability": 0.8684 + }, + { + "start": 45558.16, + "end": 45561.3, + "probability": 0.7252 + }, + { + "start": 45562.14, + "end": 45565.36, + "probability": 0.8767 + }, + { + "start": 45569.7, + "end": 45574.44, + "probability": 0.5597 + }, + { + "start": 45575.02, + "end": 45577.26, + "probability": 0.3592 + }, + { + "start": 45577.36, + "end": 45577.6, + "probability": 0.5114 + }, + { + "start": 45577.7, + "end": 45582.86, + "probability": 0.8888 + }, + { + "start": 45583.28, + "end": 45585.1, + "probability": 0.7157 + }, + { + "start": 45585.16, + "end": 45585.96, + "probability": 0.881 + }, + { + "start": 45586.5, + "end": 45588.08, + "probability": 0.7151 + }, + { + "start": 45588.68, + "end": 45591.3, + "probability": 0.5088 + }, + { + "start": 45591.94, + "end": 45593.86, + "probability": 0.8933 + }, + { + "start": 45594.46, + "end": 45597.46, + "probability": 0.7224 + }, + { + "start": 45600.06, + "end": 45601.76, + "probability": 0.6547 + }, + { + "start": 45602.1, + "end": 45602.3, + "probability": 0.6383 + }, + { + "start": 45602.3, + "end": 45607.22, + "probability": 0.8945 + }, + { + "start": 45607.86, + "end": 45609.08, + "probability": 0.5318 + }, + { + "start": 45609.18, + "end": 45609.88, + "probability": 0.7757 + }, + { + "start": 45610.14, + "end": 45611.82, + "probability": 0.6818 + }, + { + "start": 45611.86, + "end": 45613.86, + "probability": 0.5329 + }, + { + "start": 45614.5, + "end": 45615.22, + "probability": 0.7247 + }, + { + "start": 45615.8, + "end": 45619.1, + "probability": 0.8396 + }, + { + "start": 45619.22, + "end": 45620.44, + "probability": 0.9587 + }, + { + "start": 45631.62, + "end": 45634.3, + "probability": 0.1328 + }, + { + "start": 45634.3, + "end": 45634.86, + "probability": 0.299 + }, + { + "start": 45634.98, + "end": 45636.02, + "probability": 0.1163 + }, + { + "start": 45636.14, + "end": 45636.54, + "probability": 0.7251 + }, + { + "start": 45636.54, + "end": 45639.9, + "probability": 0.4587 + }, + { + "start": 45639.9, + "end": 45640.0, + "probability": 0.7492 + }, + { + "start": 45641.22, + "end": 45641.32, + "probability": 0.475 + }, + { + "start": 45642.2, + "end": 45642.66, + "probability": 0.1137 + }, + { + "start": 45642.66, + "end": 45643.42, + "probability": 0.3458 + }, + { + "start": 45644.66, + "end": 45649.9, + "probability": 0.8119 + }, + { + "start": 45649.98, + "end": 45653.08, + "probability": 0.9575 + }, + { + "start": 45653.3, + "end": 45655.86, + "probability": 0.6797 + }, + { + "start": 45656.76, + "end": 45658.56, + "probability": 0.7558 + }, + { + "start": 45659.74, + "end": 45662.8, + "probability": 0.7235 + }, + { + "start": 45671.48, + "end": 45672.28, + "probability": 0.0219 + }, + { + "start": 45683.06, + "end": 45683.42, + "probability": 0.2179 + }, + { + "start": 45683.42, + "end": 45686.1, + "probability": 0.2415 + }, + { + "start": 45686.94, + "end": 45691.54, + "probability": 0.9099 + }, + { + "start": 45691.94, + "end": 45694.0, + "probability": 0.8447 + }, + { + "start": 45694.86, + "end": 45696.32, + "probability": 0.9211 + }, + { + "start": 45697.44, + "end": 45699.76, + "probability": 0.7077 + }, + { + "start": 45699.84, + "end": 45701.6, + "probability": 0.8024 + }, + { + "start": 45702.26, + "end": 45709.18, + "probability": 0.7717 + }, + { + "start": 45709.4, + "end": 45710.42, + "probability": 0.8559 + }, + { + "start": 45710.6, + "end": 45711.9, + "probability": 0.4919 + }, + { + "start": 45712.38, + "end": 45713.3, + "probability": 0.8863 + }, + { + "start": 45715.64, + "end": 45716.34, + "probability": 0.1425 + }, + { + "start": 45716.34, + "end": 45717.78, + "probability": 0.3507 + }, + { + "start": 45717.78, + "end": 45720.48, + "probability": 0.7548 + }, + { + "start": 45721.16, + "end": 45722.94, + "probability": 0.6714 + }, + { + "start": 45723.04, + "end": 45725.62, + "probability": 0.6627 + }, + { + "start": 45726.18, + "end": 45728.32, + "probability": 0.9404 + }, + { + "start": 45729.36, + "end": 45730.9, + "probability": 0.811 + }, + { + "start": 45731.0, + "end": 45732.0, + "probability": 0.6616 + }, + { + "start": 45740.52, + "end": 45741.86, + "probability": 0.5857 + }, + { + "start": 45741.86, + "end": 45742.42, + "probability": 0.6637 + }, + { + "start": 45748.13, + "end": 45748.84, + "probability": 0.0945 + }, + { + "start": 45749.36, + "end": 45751.0, + "probability": 0.4993 + }, + { + "start": 45751.0, + "end": 45751.0, + "probability": 0.0148 + }, + { + "start": 45751.0, + "end": 45751.0, + "probability": 0.0352 + }, + { + "start": 45751.0, + "end": 45751.0, + "probability": 0.1168 + }, + { + "start": 45751.0, + "end": 45754.32, + "probability": 0.4642 + }, + { + "start": 45755.38, + "end": 45756.18, + "probability": 0.7764 + }, + { + "start": 45757.46, + "end": 45759.96, + "probability": 0.6377 + }, + { + "start": 45760.42, + "end": 45760.42, + "probability": 0.0072 + }, + { + "start": 45760.56, + "end": 45761.08, + "probability": 0.4947 + }, + { + "start": 45761.92, + "end": 45762.52, + "probability": 0.2531 + }, + { + "start": 45763.06, + "end": 45763.74, + "probability": 0.3261 + }, + { + "start": 45764.28, + "end": 45765.28, + "probability": 0.1597 + }, + { + "start": 45765.56, + "end": 45767.42, + "probability": 0.7262 + }, + { + "start": 45767.66, + "end": 45769.3, + "probability": 0.8428 + }, + { + "start": 45769.5, + "end": 45772.72, + "probability": 0.9494 + }, + { + "start": 45773.88, + "end": 45774.86, + "probability": 0.6639 + }, + { + "start": 45775.42, + "end": 45775.76, + "probability": 0.1219 + }, + { + "start": 45775.94, + "end": 45776.88, + "probability": 0.7271 + }, + { + "start": 45777.0, + "end": 45777.72, + "probability": 0.8139 + }, + { + "start": 45777.78, + "end": 45779.14, + "probability": 0.6719 + }, + { + "start": 45779.8, + "end": 45780.84, + "probability": 0.7221 + }, + { + "start": 45781.46, + "end": 45783.02, + "probability": 0.5117 + }, + { + "start": 45783.16, + "end": 45783.8, + "probability": 0.6893 + }, + { + "start": 45783.9, + "end": 45784.78, + "probability": 0.4536 + }, + { + "start": 45785.16, + "end": 45786.49, + "probability": 0.8403 + }, + { + "start": 45786.65, + "end": 45787.79, + "probability": 0.8045 + }, + { + "start": 45803.25, + "end": 45805.87, + "probability": 0.5959 + }, + { + "start": 45806.53, + "end": 45807.83, + "probability": 0.0073 + }, + { + "start": 45808.4, + "end": 45808.61, + "probability": 0.2109 + }, + { + "start": 45808.97, + "end": 45811.45, + "probability": 0.3064 + }, + { + "start": 45815.15, + "end": 45817.15, + "probability": 0.0739 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.0, + "end": 45909.0, + "probability": 0.0 + }, + { + "start": 45909.76, + "end": 45912.66, + "probability": 0.1695 + }, + { + "start": 45918.24, + "end": 45918.24, + "probability": 0.636 + }, + { + "start": 45918.26, + "end": 45919.46, + "probability": 0.0791 + }, + { + "start": 45921.04, + "end": 45921.58, + "probability": 0.0314 + }, + { + "start": 45922.48, + "end": 45923.12, + "probability": 0.1328 + }, + { + "start": 45923.96, + "end": 45924.78, + "probability": 0.3245 + }, + { + "start": 45924.78, + "end": 45932.22, + "probability": 0.4818 + }, + { + "start": 45933.18, + "end": 45936.6, + "probability": 0.5789 + }, + { + "start": 45936.68, + "end": 45937.5, + "probability": 0.947 + }, + { + "start": 45937.6, + "end": 45939.78, + "probability": 0.9913 + }, + { + "start": 45939.82, + "end": 45940.76, + "probability": 0.4571 + }, + { + "start": 45940.76, + "end": 45940.86, + "probability": 0.2626 + }, + { + "start": 45941.24, + "end": 45943.24, + "probability": 0.9043 + }, + { + "start": 45944.24, + "end": 45948.54, + "probability": 0.5441 + }, + { + "start": 45949.28, + "end": 45950.52, + "probability": 0.9208 + }, + { + "start": 45950.94, + "end": 45955.32, + "probability": 0.8831 + }, + { + "start": 45955.92, + "end": 45959.44, + "probability": 0.7315 + }, + { + "start": 45959.5, + "end": 45960.56, + "probability": 0.9914 + }, + { + "start": 45967.41, + "end": 45968.22, + "probability": 0.3973 + }, + { + "start": 45969.26, + "end": 45969.64, + "probability": 0.0956 + }, + { + "start": 45976.18, + "end": 45977.56, + "probability": 0.1346 + }, + { + "start": 45977.56, + "end": 45981.2, + "probability": 0.4015 + }, + { + "start": 45982.76, + "end": 45986.48, + "probability": 0.8215 + }, + { + "start": 45988.24, + "end": 45996.62, + "probability": 0.3142 + }, + { + "start": 45997.16, + "end": 45997.42, + "probability": 0.7754 + }, + { + "start": 45998.38, + "end": 45998.82, + "probability": 0.5383 + }, + { + "start": 45998.82, + "end": 45998.92, + "probability": 0.632 + }, + { + "start": 45999.48, + "end": 46000.72, + "probability": 0.8813 + }, + { + "start": 46001.18, + "end": 46006.1, + "probability": 0.8352 + }, + { + "start": 46006.4, + "end": 46007.4, + "probability": 0.8313 + }, + { + "start": 46010.28, + "end": 46015.78, + "probability": 0.0433 + }, + { + "start": 46015.78, + "end": 46016.68, + "probability": 0.6203 + }, + { + "start": 46017.22, + "end": 46021.78, + "probability": 0.3308 + }, + { + "start": 46022.58, + "end": 46022.96, + "probability": 0.5199 + }, + { + "start": 46024.32, + "end": 46025.94, + "probability": 0.9216 + }, + { + "start": 46026.16, + "end": 46026.16, + "probability": 0.8592 + }, + { + "start": 46026.46, + "end": 46027.26, + "probability": 0.6844 + }, + { + "start": 46027.78, + "end": 46027.92, + "probability": 0.2136 + }, + { + "start": 46028.64, + "end": 46031.8, + "probability": 0.747 + }, + { + "start": 46031.88, + "end": 46032.79, + "probability": 0.7099 + }, + { + "start": 46038.5, + "end": 46040.32, + "probability": 0.0834 + }, + { + "start": 46046.46, + "end": 46046.68, + "probability": 0.3045 + }, + { + "start": 46046.68, + "end": 46046.98, + "probability": 0.1897 + }, + { + "start": 46047.02, + "end": 46048.0, + "probability": 0.4399 + }, + { + "start": 46048.22, + "end": 46048.58, + "probability": 0.6608 + }, + { + "start": 46048.58, + "end": 46053.48, + "probability": 0.8682 + }, + { + "start": 46053.64, + "end": 46056.28, + "probability": 0.9215 + }, + { + "start": 46057.12, + "end": 46057.68, + "probability": 0.3591 + }, + { + "start": 46058.72, + "end": 46061.22, + "probability": 0.2931 + }, + { + "start": 46062.42, + "end": 46062.92, + "probability": 0.4102 + }, + { + "start": 46063.48, + "end": 46064.16, + "probability": 0.9109 + }, + { + "start": 46065.66, + "end": 46069.1, + "probability": 0.9018 + }, + { + "start": 46069.56, + "end": 46072.28, + "probability": 0.8715 + }, + { + "start": 46072.76, + "end": 46073.82, + "probability": 0.8827 + }, + { + "start": 46074.72, + "end": 46076.24, + "probability": 0.6941 + }, + { + "start": 46076.74, + "end": 46077.44, + "probability": 0.0213 + }, + { + "start": 46078.1, + "end": 46078.56, + "probability": 0.5238 + }, + { + "start": 46079.08, + "end": 46080.4, + "probability": 0.6698 + }, + { + "start": 46080.68, + "end": 46081.56, + "probability": 0.5541 + }, + { + "start": 46082.34, + "end": 46082.44, + "probability": 0.0151 + }, + { + "start": 46082.54, + "end": 46083.18, + "probability": 0.9908 + }, + { + "start": 46083.52, + "end": 46084.5, + "probability": 0.8638 + }, + { + "start": 46085.52, + "end": 46086.6, + "probability": 0.6581 + }, + { + "start": 46087.04, + "end": 46089.78, + "probability": 0.8116 + }, + { + "start": 46090.68, + "end": 46092.08, + "probability": 0.8381 + }, + { + "start": 46092.18, + "end": 46093.25, + "probability": 0.9414 + }, + { + "start": 46094.77, + "end": 46098.3, + "probability": 0.9553 + }, + { + "start": 46098.3, + "end": 46099.02, + "probability": 0.5173 + }, + { + "start": 46107.06, + "end": 46107.7, + "probability": 0.0894 + }, + { + "start": 46107.7, + "end": 46108.57, + "probability": 0.8328 + }, + { + "start": 46109.56, + "end": 46113.78, + "probability": 0.5323 + }, + { + "start": 46114.3, + "end": 46115.62, + "probability": 0.5806 + }, + { + "start": 46116.62, + "end": 46117.26, + "probability": 0.4899 + }, + { + "start": 46117.8, + "end": 46127.68, + "probability": 0.8506 + }, + { + "start": 46127.74, + "end": 46128.67, + "probability": 0.6808 + }, + { + "start": 46129.72, + "end": 46133.0, + "probability": 0.5978 + }, + { + "start": 46134.17, + "end": 46137.14, + "probability": 0.0155 + }, + { + "start": 46142.06, + "end": 46142.58, + "probability": 0.248 + }, + { + "start": 46142.58, + "end": 46143.62, + "probability": 0.6867 + }, + { + "start": 46143.74, + "end": 46147.48, + "probability": 0.8208 + }, + { + "start": 46147.54, + "end": 46148.74, + "probability": 0.9308 + }, + { + "start": 46148.88, + "end": 46149.48, + "probability": 0.9261 + }, + { + "start": 46149.82, + "end": 46151.06, + "probability": 0.6577 + }, + { + "start": 46152.06, + "end": 46153.86, + "probability": 0.8637 + }, + { + "start": 46154.56, + "end": 46155.32, + "probability": 0.8868 + }, + { + "start": 46156.12, + "end": 46157.3, + "probability": 0.1065 + }, + { + "start": 46157.68, + "end": 46161.44, + "probability": 0.4261 + }, + { + "start": 46163.06, + "end": 46164.56, + "probability": 0.6395 + }, + { + "start": 46165.04, + "end": 46165.64, + "probability": 0.1558 + }, + { + "start": 46167.04, + "end": 46167.66, + "probability": 0.1559 + }, + { + "start": 46169.34, + "end": 46170.49, + "probability": 0.5809 + }, + { + "start": 46174.1, + "end": 46176.72, + "probability": 0.9912 + }, + { + "start": 46176.76, + "end": 46178.68, + "probability": 0.8807 + }, + { + "start": 46178.86, + "end": 46179.32, + "probability": 0.2717 + }, + { + "start": 46179.52, + "end": 46179.68, + "probability": 0.3201 + }, + { + "start": 46179.86, + "end": 46180.26, + "probability": 0.037 + }, + { + "start": 46180.54, + "end": 46182.42, + "probability": 0.6307 + }, + { + "start": 46182.94, + "end": 46187.54, + "probability": 0.7322 + }, + { + "start": 46187.54, + "end": 46189.12, + "probability": 0.5602 + }, + { + "start": 46190.81, + "end": 46194.24, + "probability": 0.8454 + }, + { + "start": 46199.51, + "end": 46200.73, + "probability": 0.1495 + }, + { + "start": 46202.38, + "end": 46203.84, + "probability": 0.2352 + }, + { + "start": 46203.88, + "end": 46204.4, + "probability": 0.3044 + }, + { + "start": 46204.5, + "end": 46204.76, + "probability": 0.6656 + }, + { + "start": 46204.98, + "end": 46207.78, + "probability": 0.592 + }, + { + "start": 46208.1, + "end": 46208.8, + "probability": 0.7754 + }, + { + "start": 46209.38, + "end": 46214.0, + "probability": 0.901 + }, + { + "start": 46214.74, + "end": 46217.1, + "probability": 0.2307 + }, + { + "start": 46217.56, + "end": 46218.08, + "probability": 0.1593 + }, + { + "start": 46218.44, + "end": 46219.7, + "probability": 0.0359 + }, + { + "start": 46219.88, + "end": 46223.92, + "probability": 0.1797 + }, + { + "start": 46231.32, + "end": 46237.92, + "probability": 0.8877 + }, + { + "start": 46238.1, + "end": 46238.48, + "probability": 0.6439 + }, + { + "start": 46238.78, + "end": 46238.96, + "probability": 0.6677 + }, + { + "start": 46239.2, + "end": 46239.88, + "probability": 0.6569 + }, + { + "start": 46241.62, + "end": 46246.86, + "probability": 0.9831 + }, + { + "start": 46246.9, + "end": 46247.26, + "probability": 0.9514 + }, + { + "start": 46247.54, + "end": 46247.66, + "probability": 0.5928 + }, + { + "start": 46247.78, + "end": 46250.9, + "probability": 0.9734 + }, + { + "start": 46269.0, + "end": 46269.34, + "probability": 0.169 + }, + { + "start": 46269.34, + "end": 46271.32, + "probability": 0.3716 + }, + { + "start": 46271.98, + "end": 46272.68, + "probability": 0.6468 + }, + { + "start": 46274.24, + "end": 46278.28, + "probability": 0.9368 + }, + { + "start": 46278.38, + "end": 46282.54, + "probability": 0.9408 + }, + { + "start": 46282.6, + "end": 46283.08, + "probability": 0.5743 + }, + { + "start": 46284.02, + "end": 46284.96, + "probability": 0.928 + }, + { + "start": 46285.72, + "end": 46288.92, + "probability": 0.6651 + }, + { + "start": 46289.5, + "end": 46292.42, + "probability": 0.5815 + }, + { + "start": 46292.52, + "end": 46293.1, + "probability": 0.9159 + }, + { + "start": 46293.74, + "end": 46294.34, + "probability": 0.6196 + }, + { + "start": 46295.06, + "end": 46299.7, + "probability": 0.9563 + }, + { + "start": 46300.56, + "end": 46301.68, + "probability": 0.5717 + }, + { + "start": 46302.88, + "end": 46303.51, + "probability": 0.8703 + }, + { + "start": 46305.2, + "end": 46308.7, + "probability": 0.2292 + }, + { + "start": 46316.52, + "end": 46317.28, + "probability": 0.0801 + }, + { + "start": 46317.28, + "end": 46317.88, + "probability": 0.4267 + }, + { + "start": 46318.62, + "end": 46319.4, + "probability": 0.5885 + }, + { + "start": 46319.42, + "end": 46322.04, + "probability": 0.7297 + }, + { + "start": 46323.47, + "end": 46324.5, + "probability": 0.1841 + }, + { + "start": 46324.52, + "end": 46326.72, + "probability": 0.6219 + }, + { + "start": 46327.02, + "end": 46328.18, + "probability": 0.3228 + }, + { + "start": 46328.74, + "end": 46329.78, + "probability": 0.4438 + }, + { + "start": 46331.88, + "end": 46333.54, + "probability": 0.3474 + }, + { + "start": 46334.62, + "end": 46335.94, + "probability": 0.5197 + }, + { + "start": 46337.02, + "end": 46339.06, + "probability": 0.5032 + }, + { + "start": 46339.32, + "end": 46339.86, + "probability": 0.4059 + }, + { + "start": 46340.42, + "end": 46341.64, + "probability": 0.7305 + }, + { + "start": 46342.26, + "end": 46349.6, + "probability": 0.1983 + }, + { + "start": 46350.76, + "end": 46352.4, + "probability": 0.0017 + }, + { + "start": 46356.72, + "end": 46357.68, + "probability": 0.0797 + }, + { + "start": 46358.06, + "end": 46359.74, + "probability": 0.3928 + }, + { + "start": 46360.32, + "end": 46364.3, + "probability": 0.7347 + }, + { + "start": 46365.54, + "end": 46368.78, + "probability": 0.8365 + }, + { + "start": 46369.06, + "end": 46369.52, + "probability": 0.9373 + }, + { + "start": 46369.8, + "end": 46371.6, + "probability": 0.5425 + }, + { + "start": 46372.56, + "end": 46374.15, + "probability": 0.4549 + }, + { + "start": 46375.86, + "end": 46376.74, + "probability": 0.6646 + }, + { + "start": 46390.98, + "end": 46391.64, + "probability": 0.5192 + }, + { + "start": 46392.46, + "end": 46392.46, + "probability": 0.1604 + }, + { + "start": 46392.46, + "end": 46396.42, + "probability": 0.1708 + }, + { + "start": 46396.94, + "end": 46398.0, + "probability": 0.1819 + }, + { + "start": 46399.74, + "end": 46400.16, + "probability": 0.0032 + }, + { + "start": 46401.6, + "end": 46401.6, + "probability": 0.2984 + }, + { + "start": 46402.52, + "end": 46412.6, + "probability": 0.3137 + }, + { + "start": 46412.94, + "end": 46412.98, + "probability": 0.1136 + }, + { + "start": 46412.98, + "end": 46414.16, + "probability": 0.5024 + }, + { + "start": 46414.72, + "end": 46416.72, + "probability": 0.9004 + }, + { + "start": 46417.22, + "end": 46418.68, + "probability": 0.6963 + }, + { + "start": 46419.28, + "end": 46420.08, + "probability": 0.8954 + }, + { + "start": 46423.12, + "end": 46424.91, + "probability": 0.9595 + }, + { + "start": 46425.58, + "end": 46426.04, + "probability": 0.1197 + }, + { + "start": 46426.54, + "end": 46427.38, + "probability": 0.1994 + }, + { + "start": 46427.82, + "end": 46430.3, + "probability": 0.7424 + }, + { + "start": 46433.96, + "end": 46436.32, + "probability": 0.3404 + }, + { + "start": 46446.78, + "end": 46448.18, + "probability": 0.2466 + }, + { + "start": 46450.72, + "end": 46451.02, + "probability": 0.285 + }, + { + "start": 46451.14, + "end": 46451.68, + "probability": 0.2736 + }, + { + "start": 46452.04, + "end": 46452.36, + "probability": 0.4989 + }, + { + "start": 46452.66, + "end": 46460.2, + "probability": 0.8893 + }, + { + "start": 46461.48, + "end": 46464.5, + "probability": 0.9011 + }, + { + "start": 46466.3, + "end": 46467.74, + "probability": 0.6159 + }, + { + "start": 46467.86, + "end": 46471.32, + "probability": 0.8036 + }, + { + "start": 46471.4, + "end": 46472.08, + "probability": 0.9054 + }, + { + "start": 46472.46, + "end": 46473.7, + "probability": 0.8074 + }, + { + "start": 46474.24, + "end": 46476.26, + "probability": 0.5305 + }, + { + "start": 46476.88, + "end": 46480.06, + "probability": 0.6238 + }, + { + "start": 46480.12, + "end": 46480.84, + "probability": 0.3869 + }, + { + "start": 46482.72, + "end": 46488.22, + "probability": 0.0507 + }, + { + "start": 46492.42, + "end": 46495.54, + "probability": 0.087 + }, + { + "start": 46495.98, + "end": 46497.56, + "probability": 0.5012 + }, + { + "start": 46497.68, + "end": 46497.9, + "probability": 0.3181 + }, + { + "start": 46497.96, + "end": 46498.26, + "probability": 0.5083 + }, + { + "start": 46498.34, + "end": 46501.12, + "probability": 0.7886 + }, + { + "start": 46501.2, + "end": 46502.78, + "probability": 0.8111 + }, + { + "start": 46502.9, + "end": 46510.12, + "probability": 0.6902 + }, + { + "start": 46510.82, + "end": 46512.94, + "probability": 0.5898 + }, + { + "start": 46513.04, + "end": 46513.6, + "probability": 0.7133 + }, + { + "start": 46513.74, + "end": 46515.08, + "probability": 0.6673 + }, + { + "start": 46517.64, + "end": 46520.1, + "probability": 0.2536 + }, + { + "start": 46528.82, + "end": 46530.82, + "probability": 0.7284 + }, + { + "start": 46530.9, + "end": 46531.96, + "probability": 0.6091 + }, + { + "start": 46532.12, + "end": 46532.34, + "probability": 0.2093 + }, + { + "start": 46532.4, + "end": 46533.18, + "probability": 0.4752 + }, + { + "start": 46533.34, + "end": 46533.56, + "probability": 0.891 + }, + { + "start": 46533.62, + "end": 46536.66, + "probability": 0.6995 + }, + { + "start": 46537.24, + "end": 46539.18, + "probability": 0.7599 + }, + { + "start": 46539.3, + "end": 46544.46, + "probability": 0.7327 + }, + { + "start": 46544.58, + "end": 46545.82, + "probability": 0.5021 + }, + { + "start": 46545.82, + "end": 46546.75, + "probability": 0.5048 + }, + { + "start": 46555.36, + "end": 46556.6, + "probability": 0.0692 + }, + { + "start": 46563.96, + "end": 46564.24, + "probability": 0.0101 + }, + { + "start": 46564.9, + "end": 46565.02, + "probability": 0.0449 + }, + { + "start": 46565.02, + "end": 46571.42, + "probability": 0.8308 + }, + { + "start": 46571.74, + "end": 46573.06, + "probability": 0.0959 + }, + { + "start": 46573.52, + "end": 46574.38, + "probability": 0.2156 + }, + { + "start": 46574.38, + "end": 46577.02, + "probability": 0.5767 + }, + { + "start": 46577.26, + "end": 46577.54, + "probability": 0.2205 + }, + { + "start": 46577.62, + "end": 46578.28, + "probability": 0.9653 + }, + { + "start": 46578.96, + "end": 46579.52, + "probability": 0.929 + }, + { + "start": 46579.82, + "end": 46583.56, + "probability": 0.9196 + }, + { + "start": 46583.64, + "end": 46585.56, + "probability": 0.9536 + }, + { + "start": 46585.64, + "end": 46586.63, + "probability": 0.8155 + }, + { + "start": 46586.92, + "end": 46592.74, + "probability": 0.7973 + }, + { + "start": 46610.86, + "end": 46611.04, + "probability": 0.1675 + }, + { + "start": 46611.04, + "end": 46611.32, + "probability": 0.2538 + }, + { + "start": 46611.6, + "end": 46612.28, + "probability": 0.3487 + }, + { + "start": 46612.46, + "end": 46613.18, + "probability": 0.6243 + }, + { + "start": 46613.18, + "end": 46614.92, + "probability": 0.741 + }, + { + "start": 46615.18, + "end": 46618.64, + "probability": 0.7788 + }, + { + "start": 46619.25, + "end": 46620.48, + "probability": 0.6662 + }, + { + "start": 46621.06, + "end": 46622.16, + "probability": 0.6421 + }, + { + "start": 46626.58, + "end": 46627.2, + "probability": 0.4206 + }, + { + "start": 46628.06, + "end": 46632.06, + "probability": 0.8427 + }, + { + "start": 46632.14, + "end": 46633.29, + "probability": 0.9365 + }, + { + "start": 46639.1, + "end": 46640.28, + "probability": 0.0324 + }, + { + "start": 46646.7, + "end": 46646.9, + "probability": 0.0992 + }, + { + "start": 46646.9, + "end": 46647.32, + "probability": 0.2346 + }, + { + "start": 46647.32, + "end": 46648.12, + "probability": 0.3715 + }, + { + "start": 46648.26, + "end": 46648.36, + "probability": 0.6654 + }, + { + "start": 46648.82, + "end": 46652.42, + "probability": 0.6715 + }, + { + "start": 46652.5, + "end": 46653.88, + "probability": 0.6976 + }, + { + "start": 46658.5, + "end": 46659.76, + "probability": 0.7285 + }, + { + "start": 46661.96, + "end": 46663.14, + "probability": 0.9099 + }, + { + "start": 46663.24, + "end": 46664.22, + "probability": 0.7314 + }, + { + "start": 46665.33, + "end": 46668.9, + "probability": 0.6138 + }, + { + "start": 46670.73, + "end": 46678.0, + "probability": 0.0039 + }, + { + "start": 46678.36, + "end": 46682.04, + "probability": 0.402 + }, + { + "start": 46682.82, + "end": 46684.56, + "probability": 0.897 + }, + { + "start": 46685.42, + "end": 46685.42, + "probability": 0.1337 + }, + { + "start": 46685.42, + "end": 46685.42, + "probability": 0.2726 + }, + { + "start": 46685.42, + "end": 46685.42, + "probability": 0.1201 + }, + { + "start": 46685.42, + "end": 46685.42, + "probability": 0.0277 + }, + { + "start": 46685.42, + "end": 46685.42, + "probability": 0.0378 + }, + { + "start": 46685.42, + "end": 46686.06, + "probability": 0.2833 + }, + { + "start": 46686.28, + "end": 46687.66, + "probability": 0.3994 + }, + { + "start": 46688.8, + "end": 46691.0, + "probability": 0.4493 + }, + { + "start": 46691.46, + "end": 46692.3, + "probability": 0.281 + }, + { + "start": 46692.34, + "end": 46693.14, + "probability": 0.0651 + }, + { + "start": 46693.62, + "end": 46694.44, + "probability": 0.4989 + }, + { + "start": 46695.34, + "end": 46695.66, + "probability": 0.8639 + }, + { + "start": 46700.12, + "end": 46702.38, + "probability": 0.6071 + }, + { + "start": 46702.48, + "end": 46703.27, + "probability": 0.4466 + }, + { + "start": 46711.16, + "end": 46711.66, + "probability": 0.1534 + }, + { + "start": 46715.04, + "end": 46716.18, + "probability": 0.064 + }, + { + "start": 46722.06, + "end": 46727.36, + "probability": 0.0363 + }, + { + "start": 46727.36, + "end": 46727.36, + "probability": 0.3863 + }, + { + "start": 46727.36, + "end": 46727.36, + "probability": 0.5073 + }, + { + "start": 46727.36, + "end": 46728.16, + "probability": 0.1843 + }, + { + "start": 46730.36, + "end": 46731.92, + "probability": 0.0067 + }, + { + "start": 46732.9, + "end": 46735.73, + "probability": 0.043 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46748.0, + "end": 46748.0, + "probability": 0.0 + }, + { + "start": 46766.68, + "end": 46767.22, + "probability": 0.2514 + }, + { + "start": 46767.22, + "end": 46767.54, + "probability": 0.0924 + }, + { + "start": 46768.5, + "end": 46769.2, + "probability": 0.8524 + }, + { + "start": 46769.36, + "end": 46777.22, + "probability": 0.8591 + }, + { + "start": 46777.56, + "end": 46782.2, + "probability": 0.9668 + }, + { + "start": 46782.6, + "end": 46784.06, + "probability": 0.9135 + }, + { + "start": 46784.4, + "end": 46787.74, + "probability": 0.4503 + }, + { + "start": 46803.1, + "end": 46803.66, + "probability": 0.0805 + }, + { + "start": 46803.66, + "end": 46806.06, + "probability": 0.6902 + }, + { + "start": 46806.5, + "end": 46810.24, + "probability": 0.9723 + }, + { + "start": 46811.14, + "end": 46814.08, + "probability": 0.537 + }, + { + "start": 46814.36, + "end": 46815.04, + "probability": 0.7036 + }, + { + "start": 46815.2, + "end": 46815.62, + "probability": 0.9789 + }, + { + "start": 46816.18, + "end": 46817.97, + "probability": 0.9376 + }, + { + "start": 46819.06, + "end": 46823.1, + "probability": 0.5193 + }, + { + "start": 46823.3, + "end": 46824.38, + "probability": 0.6558 + }, + { + "start": 46824.58, + "end": 46825.7, + "probability": 0.8952 + }, + { + "start": 46826.3, + "end": 46830.28, + "probability": 0.953 + }, + { + "start": 46839.08, + "end": 46839.98, + "probability": 0.1282 + }, + { + "start": 46840.52, + "end": 46840.64, + "probability": 0.083 + }, + { + "start": 46842.99, + "end": 46855.82, + "probability": 0.7921 + }, + { + "start": 46856.96, + "end": 46858.62, + "probability": 0.7482 + }, + { + "start": 46859.66, + "end": 46860.68, + "probability": 0.4205 + }, + { + "start": 46861.36, + "end": 46864.46, + "probability": 0.0007 + }, + { + "start": 46865.84, + "end": 46866.16, + "probability": 0.6515 + }, + { + "start": 46866.24, + "end": 46869.86, + "probability": 0.9119 + }, + { + "start": 46870.0, + "end": 46874.1, + "probability": 0.6265 + }, + { + "start": 46874.12, + "end": 46875.82, + "probability": 0.5573 + }, + { + "start": 46875.96, + "end": 46877.4, + "probability": 0.7349 + }, + { + "start": 46878.12, + "end": 46882.7, + "probability": 0.8239 + }, + { + "start": 46884.7, + "end": 46886.42, + "probability": 0.8118 + }, + { + "start": 46897.3, + "end": 46897.52, + "probability": 0.0438 + }, + { + "start": 46897.6, + "end": 46900.4, + "probability": 0.6046 + }, + { + "start": 46900.92, + "end": 46903.0, + "probability": 0.9404 + }, + { + "start": 46903.46, + "end": 46905.28, + "probability": 0.6295 + }, + { + "start": 46905.81, + "end": 46910.58, + "probability": 0.907 + }, + { + "start": 46911.38, + "end": 46914.86, + "probability": 0.7125 + }, + { + "start": 46914.94, + "end": 46920.32, + "probability": 0.8406 + }, + { + "start": 46921.88, + "end": 46925.48, + "probability": 0.0274 + }, + { + "start": 46928.98, + "end": 46931.94, + "probability": 0.1186 + }, + { + "start": 46931.94, + "end": 46933.32, + "probability": 0.3263 + }, + { + "start": 46934.2, + "end": 46936.36, + "probability": 0.3071 + }, + { + "start": 46936.68, + "end": 46939.74, + "probability": 0.8271 + }, + { + "start": 46940.9, + "end": 46945.22, + "probability": 0.8657 + }, + { + "start": 46945.48, + "end": 46947.74, + "probability": 0.5079 + }, + { + "start": 46947.74, + "end": 46950.24, + "probability": 0.8691 + }, + { + "start": 46950.44, + "end": 46951.58, + "probability": 0.6662 + }, + { + "start": 46951.74, + "end": 46953.18, + "probability": 0.2267 + }, + { + "start": 46953.46, + "end": 46954.3, + "probability": 0.6437 + }, + { + "start": 46954.82, + "end": 46955.08, + "probability": 0.6363 + }, + { + "start": 46955.84, + "end": 46964.12, + "probability": 0.8346 + }, + { + "start": 46964.34, + "end": 46964.98, + "probability": 0.6202 + }, + { + "start": 46965.02, + "end": 46965.74, + "probability": 0.6793 + }, + { + "start": 46966.16, + "end": 46968.36, + "probability": 0.8836 + }, + { + "start": 46968.84, + "end": 46972.18, + "probability": 0.0026 + }, + { + "start": 46981.9, + "end": 46984.76, + "probability": 0.2763 + }, + { + "start": 46985.34, + "end": 46991.2, + "probability": 0.8589 + }, + { + "start": 46992.98, + "end": 46996.96, + "probability": 0.7887 + }, + { + "start": 46998.12, + "end": 47000.64, + "probability": 0.4372 + }, + { + "start": 47001.1, + "end": 47002.6, + "probability": 0.4762 + }, + { + "start": 47003.28, + "end": 47006.88, + "probability": 0.8425 + }, + { + "start": 47007.06, + "end": 47009.12, + "probability": 0.5491 + }, + { + "start": 47017.36, + "end": 47020.54, + "probability": 0.423 + }, + { + "start": 47030.72, + "end": 47033.82, + "probability": 0.7205 + }, + { + "start": 47037.2, + "end": 47037.3, + "probability": 0.372 + }, + { + "start": 47039.9, + "end": 47041.1, + "probability": 0.4894 + }, + { + "start": 47041.1, + "end": 47045.84, + "probability": 0.6735 + }, + { + "start": 47046.6, + "end": 47051.6, + "probability": 0.502 + }, + { + "start": 47052.16, + "end": 47052.16, + "probability": 0.5245 + }, + { + "start": 47054.3, + "end": 47057.1, + "probability": 0.7408 + }, + { + "start": 47058.3, + "end": 47060.3, + "probability": 0.2874 + }, + { + "start": 47060.42, + "end": 47060.54, + "probability": 0.3056 + }, + { + "start": 47060.54, + "end": 47062.44, + "probability": 0.5051 + }, + { + "start": 47063.74, + "end": 47065.14, + "probability": 0.5344 + }, + { + "start": 47065.58, + "end": 47067.84, + "probability": 0.511 + }, + { + "start": 47067.96, + "end": 47068.73, + "probability": 0.8513 + }, + { + "start": 47069.78, + "end": 47071.12, + "probability": 0.1855 + }, + { + "start": 47071.14, + "end": 47071.62, + "probability": 0.6818 + }, + { + "start": 47072.1, + "end": 47072.98, + "probability": 0.286 + }, + { + "start": 47073.12, + "end": 47074.48, + "probability": 0.821 + }, + { + "start": 47075.04, + "end": 47076.6, + "probability": 0.8349 + }, + { + "start": 47076.84, + "end": 47081.68, + "probability": 0.9041 + }, + { + "start": 47083.98, + "end": 47088.5, + "probability": 0.0959 + }, + { + "start": 47095.22, + "end": 47095.82, + "probability": 0.2513 + }, + { + "start": 47095.82, + "end": 47096.7, + "probability": 0.4159 + }, + { + "start": 47096.94, + "end": 47097.14, + "probability": 0.8207 + }, + { + "start": 47097.26, + "end": 47102.44, + "probability": 0.4755 + }, + { + "start": 47102.46, + "end": 47102.82, + "probability": 0.6466 + }, + { + "start": 47102.98, + "end": 47103.58, + "probability": 0.954 + }, + { + "start": 47104.6, + "end": 47107.16, + "probability": 0.979 + }, + { + "start": 47108.7, + "end": 47109.76, + "probability": 0.8461 + }, + { + "start": 47110.68, + "end": 47112.7, + "probability": 0.7696 + }, + { + "start": 47112.94, + "end": 47113.04, + "probability": 0.0988 + }, + { + "start": 47113.28, + "end": 47113.94, + "probability": 0.9507 + }, + { + "start": 47114.86, + "end": 47116.04, + "probability": 0.9664 + }, + { + "start": 47116.66, + "end": 47119.26, + "probability": 0.5882 + }, + { + "start": 47119.9, + "end": 47122.0, + "probability": 0.7827 + }, + { + "start": 47126.64, + "end": 47127.26, + "probability": 0.4313 + }, + { + "start": 47129.0, + "end": 47133.74, + "probability": 0.4197 + }, + { + "start": 47139.9, + "end": 47141.32, + "probability": 0.6943 + }, + { + "start": 47145.52, + "end": 47149.4, + "probability": 0.7402 + }, + { + "start": 47150.42, + "end": 47152.66, + "probability": 0.7327 + }, + { + "start": 47152.66, + "end": 47153.12, + "probability": 0.4006 + }, + { + "start": 47153.12, + "end": 47154.46, + "probability": 0.7067 + }, + { + "start": 47159.22, + "end": 47161.18, + "probability": 0.5479 + }, + { + "start": 47161.24, + "end": 47161.84, + "probability": 0.6364 + }, + { + "start": 47161.84, + "end": 47163.66, + "probability": 0.7842 + }, + { + "start": 47164.96, + "end": 47167.02, + "probability": 0.0027 + }, + { + "start": 47167.02, + "end": 47170.34, + "probability": 0.6477 + }, + { + "start": 47171.34, + "end": 47173.6, + "probability": 0.8839 + }, + { + "start": 47175.02, + "end": 47178.48, + "probability": 0.9486 + }, + { + "start": 47179.08, + "end": 47180.5, + "probability": 0.9008 + }, + { + "start": 47182.6, + "end": 47184.0, + "probability": 0.8046 + }, + { + "start": 47184.28, + "end": 47190.24, + "probability": 0.6582 + }, + { + "start": 47191.46, + "end": 47194.92, + "probability": 0.7799 + }, + { + "start": 47195.46, + "end": 47196.42, + "probability": 0.878 + }, + { + "start": 47197.52, + "end": 47198.32, + "probability": 0.7516 + }, + { + "start": 47198.4, + "end": 47200.16, + "probability": 0.3798 + }, + { + "start": 47200.24, + "end": 47201.32, + "probability": 0.5109 + }, + { + "start": 47202.4, + "end": 47203.02, + "probability": 0.3817 + }, + { + "start": 47203.16, + "end": 47203.52, + "probability": 0.7108 + }, + { + "start": 47203.84, + "end": 47204.9, + "probability": 0.2326 + }, + { + "start": 47205.62, + "end": 47206.86, + "probability": 0.6908 + }, + { + "start": 47207.1, + "end": 47213.78, + "probability": 0.9769 + }, + { + "start": 47214.08, + "end": 47216.32, + "probability": 0.6782 + }, + { + "start": 47216.4, + "end": 47219.94, + "probability": 0.6933 + }, + { + "start": 47220.28, + "end": 47220.56, + "probability": 0.2307 + }, + { + "start": 47221.44, + "end": 47222.3, + "probability": 0.1646 + }, + { + "start": 47222.84, + "end": 47230.44, + "probability": 0.6896 + }, + { + "start": 47233.5, + "end": 47233.5, + "probability": 0.0425 + }, + { + "start": 47233.72, + "end": 47235.5, + "probability": 0.6875 + }, + { + "start": 47236.56, + "end": 47238.66, + "probability": 0.6882 + }, + { + "start": 47240.52, + "end": 47242.14, + "probability": 0.0616 + }, + { + "start": 47244.62, + "end": 47245.62, + "probability": 0.4961 + }, + { + "start": 47245.78, + "end": 47248.82, + "probability": 0.4493 + }, + { + "start": 47249.28, + "end": 47253.18, + "probability": 0.5491 + }, + { + "start": 47253.28, + "end": 47254.22, + "probability": 0.0607 + }, + { + "start": 47255.3, + "end": 47261.52, + "probability": 0.9443 + }, + { + "start": 47261.9, + "end": 47264.68, + "probability": 0.6821 + }, + { + "start": 47265.28, + "end": 47267.08, + "probability": 0.4248 + }, + { + "start": 47267.36, + "end": 47268.3, + "probability": 0.535 + }, + { + "start": 47268.58, + "end": 47270.76, + "probability": 0.5786 + }, + { + "start": 47276.7, + "end": 47277.86, + "probability": 0.3778 + }, + { + "start": 47278.0, + "end": 47278.34, + "probability": 0.8073 + }, + { + "start": 47278.54, + "end": 47282.09, + "probability": 0.6766 + }, + { + "start": 47282.68, + "end": 47283.99, + "probability": 0.8473 + }, + { + "start": 47284.54, + "end": 47287.42, + "probability": 0.5071 + }, + { + "start": 47287.56, + "end": 47288.12, + "probability": 0.607 + }, + { + "start": 47288.12, + "end": 47291.52, + "probability": 0.8846 + }, + { + "start": 47291.6, + "end": 47292.1, + "probability": 0.6396 + }, + { + "start": 47292.16, + "end": 47292.66, + "probability": 0.6428 + }, + { + "start": 47292.74, + "end": 47293.56, + "probability": 0.35 + }, + { + "start": 47295.48, + "end": 47298.72, + "probability": 0.0023 + }, + { + "start": 47299.92, + "end": 47303.04, + "probability": 0.0386 + }, + { + "start": 47308.04, + "end": 47308.48, + "probability": 0.2355 + }, + { + "start": 47308.48, + "end": 47310.88, + "probability": 0.5586 + }, + { + "start": 47311.22, + "end": 47311.84, + "probability": 0.824 + }, + { + "start": 47311.86, + "end": 47317.68, + "probability": 0.9661 + }, + { + "start": 47320.34, + "end": 47321.82, + "probability": 0.4274 + }, + { + "start": 47327.17, + "end": 47330.79, + "probability": 0.9604 + }, + { + "start": 47332.04, + "end": 47336.08, + "probability": 0.5256 + }, + { + "start": 47336.83, + "end": 47341.42, + "probability": 0.6271 + }, + { + "start": 47341.42, + "end": 47345.31, + "probability": 0.9553 + }, + { + "start": 47345.5, + "end": 47348.5, + "probability": 0.0722 + }, + { + "start": 47348.66, + "end": 47350.68, + "probability": 0.8743 + }, + { + "start": 47350.82, + "end": 47351.66, + "probability": 0.5 + }, + { + "start": 47351.84, + "end": 47352.4, + "probability": 0.6353 + }, + { + "start": 47352.5, + "end": 47353.44, + "probability": 0.6808 + }, + { + "start": 47357.64, + "end": 47360.14, + "probability": 0.7626 + }, + { + "start": 47360.58, + "end": 47361.26, + "probability": 0.6919 + }, + { + "start": 47361.3, + "end": 47361.78, + "probability": 0.6786 + }, + { + "start": 47361.88, + "end": 47363.54, + "probability": 0.7376 + }, + { + "start": 47377.22, + "end": 47380.14, + "probability": 0.6339 + }, + { + "start": 47380.14, + "end": 47382.81, + "probability": 0.6108 + }, + { + "start": 47383.5, + "end": 47384.04, + "probability": 0.1953 + }, + { + "start": 47384.04, + "end": 47384.04, + "probability": 0.0636 + }, + { + "start": 47384.04, + "end": 47384.04, + "probability": 0.0222 + }, + { + "start": 47384.04, + "end": 47385.66, + "probability": 0.0551 + }, + { + "start": 47385.76, + "end": 47386.32, + "probability": 0.2265 + }, + { + "start": 47386.64, + "end": 47387.38, + "probability": 0.2908 + }, + { + "start": 47387.38, + "end": 47388.52, + "probability": 0.7083 + }, + { + "start": 47388.7, + "end": 47399.88, + "probability": 0.1739 + }, + { + "start": 47399.88, + "end": 47404.25, + "probability": 0.4711 + }, + { + "start": 47405.1, + "end": 47408.04, + "probability": 0.2257 + }, + { + "start": 47408.46, + "end": 47408.66, + "probability": 0.0628 + }, + { + "start": 47408.66, + "end": 47408.66, + "probability": 0.036 + }, + { + "start": 47408.68, + "end": 47409.66, + "probability": 0.3408 + }, + { + "start": 47410.26, + "end": 47413.16, + "probability": 0.0029 + }, + { + "start": 47414.32, + "end": 47415.08, + "probability": 0.335 + }, + { + "start": 47417.67, + "end": 47418.36, + "probability": 0.0684 + }, + { + "start": 47418.36, + "end": 47418.36, + "probability": 0.0163 + }, + { + "start": 47419.78, + "end": 47420.32, + "probability": 0.0007 + }, + { + "start": 47420.32, + "end": 47420.32, + "probability": 0.009 + }, + { + "start": 47420.32, + "end": 47420.32, + "probability": 0.0848 + }, + { + "start": 47420.32, + "end": 47420.32, + "probability": 0.0112 + }, + { + "start": 47420.32, + "end": 47421.76, + "probability": 0.5946 + }, + { + "start": 47421.84, + "end": 47423.08, + "probability": 0.398 + }, + { + "start": 47423.08, + "end": 47427.12, + "probability": 0.2153 + }, + { + "start": 47427.2, + "end": 47431.7, + "probability": 0.6139 + }, + { + "start": 47431.76, + "end": 47433.46, + "probability": 0.7397 + }, + { + "start": 47435.56, + "end": 47439.52, + "probability": 0.5951 + }, + { + "start": 47440.22, + "end": 47442.14, + "probability": 0.7384 + }, + { + "start": 47442.42, + "end": 47445.0, + "probability": 0.6716 + }, + { + "start": 47445.24, + "end": 47447.24, + "probability": 0.8835 + }, + { + "start": 47450.24, + "end": 47451.24, + "probability": 0.252 + }, + { + "start": 47451.8, + "end": 47455.08, + "probability": 0.2714 + }, + { + "start": 47455.26, + "end": 47456.67, + "probability": 0.8257 + }, + { + "start": 47457.18, + "end": 47460.2, + "probability": 0.6503 + }, + { + "start": 47461.66, + "end": 47464.34, + "probability": 0.7629 + }, + { + "start": 47465.54, + "end": 47466.56, + "probability": 0.0098 + }, + { + "start": 47467.36, + "end": 47468.84, + "probability": 0.9132 + }, + { + "start": 47470.3, + "end": 47470.7, + "probability": 0.9705 + }, + { + "start": 47471.68, + "end": 47472.7, + "probability": 0.7788 + }, + { + "start": 47474.94, + "end": 47477.3, + "probability": 0.8945 + }, + { + "start": 47478.52, + "end": 47481.52, + "probability": 0.8411 + }, + { + "start": 47482.54, + "end": 47484.36, + "probability": 0.7659 + }, + { + "start": 47485.32, + "end": 47489.72, + "probability": 0.9875 + }, + { + "start": 47490.58, + "end": 47492.54, + "probability": 0.8144 + }, + { + "start": 47493.62, + "end": 47494.08, + "probability": 0.9812 + }, + { + "start": 47495.9, + "end": 47496.7, + "probability": 0.5626 + }, + { + "start": 47498.02, + "end": 47498.48, + "probability": 0.9305 + }, + { + "start": 47499.82, + "end": 47500.7, + "probability": 0.6579 + }, + { + "start": 47503.26, + "end": 47504.12, + "probability": 0.5061 + }, + { + "start": 47505.12, + "end": 47506.18, + "probability": 0.4382 + }, + { + "start": 47507.14, + "end": 47507.48, + "probability": 0.8634 + }, + { + "start": 47508.08, + "end": 47509.12, + "probability": 0.7312 + }, + { + "start": 47509.86, + "end": 47510.34, + "probability": 0.9632 + }, + { + "start": 47511.26, + "end": 47512.0, + "probability": 0.947 + }, + { + "start": 47512.82, + "end": 47514.84, + "probability": 0.9743 + }, + { + "start": 47515.8, + "end": 47517.74, + "probability": 0.9757 + }, + { + "start": 47518.46, + "end": 47520.84, + "probability": 0.9746 + }, + { + "start": 47521.6, + "end": 47523.56, + "probability": 0.8271 + }, + { + "start": 47525.04, + "end": 47525.5, + "probability": 0.9824 + }, + { + "start": 47527.0, + "end": 47527.9, + "probability": 0.6201 + }, + { + "start": 47531.08, + "end": 47531.66, + "probability": 0.9941 + }, + { + "start": 47532.54, + "end": 47533.42, + "probability": 0.7851 + }, + { + "start": 47534.48, + "end": 47534.8, + "probability": 0.761 + }, + { + "start": 47535.56, + "end": 47536.48, + "probability": 0.801 + }, + { + "start": 47537.28, + "end": 47537.8, + "probability": 0.9033 + }, + { + "start": 47538.42, + "end": 47539.28, + "probability": 0.9633 + }, + { + "start": 47540.24, + "end": 47540.74, + "probability": 0.9767 + }, + { + "start": 47545.68, + "end": 47546.64, + "probability": 0.6691 + }, + { + "start": 47547.64, + "end": 47549.48, + "probability": 0.9559 + }, + { + "start": 47550.44, + "end": 47551.52, + "probability": 0.9778 + }, + { + "start": 47552.28, + "end": 47552.62, + "probability": 0.6641 + }, + { + "start": 47553.36, + "end": 47553.93, + "probability": 0.3883 + }, + { + "start": 47555.28, + "end": 47555.74, + "probability": 0.9346 + }, + { + "start": 47556.32, + "end": 47557.22, + "probability": 0.9666 + }, + { + "start": 47558.04, + "end": 47558.48, + "probability": 0.99 + }, + { + "start": 47559.34, + "end": 47560.12, + "probability": 0.8787 + }, + { + "start": 47562.64, + "end": 47564.82, + "probability": 0.9785 + }, + { + "start": 47565.88, + "end": 47568.92, + "probability": 0.9635 + }, + { + "start": 47569.6, + "end": 47570.0, + "probability": 0.9944 + }, + { + "start": 47572.26, + "end": 47573.08, + "probability": 0.5732 + }, + { + "start": 47574.34, + "end": 47574.72, + "probability": 0.8679 + }, + { + "start": 47575.46, + "end": 47576.3, + "probability": 0.903 + }, + { + "start": 47577.16, + "end": 47579.46, + "probability": 0.7683 + }, + { + "start": 47582.38, + "end": 47584.2, + "probability": 0.8736 + }, + { + "start": 47585.52, + "end": 47585.94, + "probability": 0.974 + }, + { + "start": 47587.54, + "end": 47588.38, + "probability": 0.8239 + }, + { + "start": 47589.96, + "end": 47590.5, + "probability": 0.9891 + }, + { + "start": 47592.16, + "end": 47593.18, + "probability": 0.5353 + }, + { + "start": 47596.16, + "end": 47596.38, + "probability": 0.4655 + }, + { + "start": 47597.84, + "end": 47598.12, + "probability": 0.0031 + }, + { + "start": 47598.78, + "end": 47601.06, + "probability": 0.1908 + }, + { + "start": 47602.2, + "end": 47602.76, + "probability": 0.7778 + }, + { + "start": 47604.52, + "end": 47605.4, + "probability": 0.572 + }, + { + "start": 47607.16, + "end": 47609.38, + "probability": 0.8885 + }, + { + "start": 47610.66, + "end": 47611.16, + "probability": 0.8887 + }, + { + "start": 47611.98, + "end": 47613.06, + "probability": 0.9564 + }, + { + "start": 47616.44, + "end": 47618.02, + "probability": 0.9852 + }, + { + "start": 47618.58, + "end": 47619.48, + "probability": 0.6521 + }, + { + "start": 47620.14, + "end": 47621.92, + "probability": 0.9292 + }, + { + "start": 47624.04, + "end": 47626.08, + "probability": 0.085 + }, + { + "start": 47626.6, + "end": 47627.73, + "probability": 0.3834 + }, + { + "start": 47632.38, + "end": 47632.66, + "probability": 0.7383 + }, + { + "start": 47636.88, + "end": 47638.0, + "probability": 0.6684 + }, + { + "start": 47638.82, + "end": 47640.52, + "probability": 0.908 + }, + { + "start": 47642.1, + "end": 47644.34, + "probability": 0.837 + }, + { + "start": 47645.56, + "end": 47646.06, + "probability": 0.926 + }, + { + "start": 47646.72, + "end": 47647.58, + "probability": 0.9494 + }, + { + "start": 47649.93, + "end": 47652.24, + "probability": 0.7578 + }, + { + "start": 47653.12, + "end": 47653.6, + "probability": 0.959 + }, + { + "start": 47654.34, + "end": 47655.2, + "probability": 0.8501 + }, + { + "start": 47655.88, + "end": 47656.42, + "probability": 0.9735 + }, + { + "start": 47657.0, + "end": 47657.64, + "probability": 0.9749 + }, + { + "start": 47660.48, + "end": 47661.3, + "probability": 0.8418 + }, + { + "start": 47662.54, + "end": 47663.36, + "probability": 0.5558 + }, + { + "start": 47664.32, + "end": 47664.74, + "probability": 0.7605 + }, + { + "start": 47665.68, + "end": 47666.54, + "probability": 0.8735 + }, + { + "start": 47667.84, + "end": 47670.28, + "probability": 0.9358 + }, + { + "start": 47671.46, + "end": 47673.52, + "probability": 0.958 + }, + { + "start": 47676.7, + "end": 47677.16, + "probability": 0.6946 + }, + { + "start": 47678.12, + "end": 47679.0, + "probability": 0.9386 + }, + { + "start": 47680.04, + "end": 47680.46, + "probability": 0.945 + }, + { + "start": 47680.98, + "end": 47681.78, + "probability": 0.9449 + }, + { + "start": 47682.88, + "end": 47683.38, + "probability": 0.9766 + }, + { + "start": 47683.9, + "end": 47684.92, + "probability": 0.4612 + }, + { + "start": 47687.56, + "end": 47688.0, + "probability": 0.9448 + }, + { + "start": 47688.62, + "end": 47689.28, + "probability": 0.5879 + }, + { + "start": 47690.18, + "end": 47691.76, + "probability": 0.7388 + }, + { + "start": 47692.58, + "end": 47693.02, + "probability": 0.9222 + }, + { + "start": 47693.64, + "end": 47694.38, + "probability": 0.9068 + }, + { + "start": 47695.82, + "end": 47697.52, + "probability": 0.9741 + }, + { + "start": 47700.38, + "end": 47702.34, + "probability": 0.9406 + }, + { + "start": 47703.4, + "end": 47703.98, + "probability": 0.9915 + }, + { + "start": 47704.74, + "end": 47706.32, + "probability": 0.9934 + }, + { + "start": 47707.1, + "end": 47707.86, + "probability": 0.8896 + }, + { + "start": 47708.54, + "end": 47709.0, + "probability": 0.9977 + }, + { + "start": 47709.98, + "end": 47710.6, + "probability": 0.9937 + }, + { + "start": 47711.4, + "end": 47711.84, + "probability": 0.9977 + }, + { + "start": 47712.42, + "end": 47713.18, + "probability": 0.9941 + }, + { + "start": 47714.22, + "end": 47714.62, + "probability": 0.9974 + }, + { + "start": 47715.14, + "end": 47715.44, + "probability": 0.856 + }, + { + "start": 47721.64, + "end": 47723.42, + "probability": 0.3309 + }, + { + "start": 47724.16, + "end": 47724.88, + "probability": 0.6896 + }, + { + "start": 47726.66, + "end": 47728.12, + "probability": 0.7654 + }, + { + "start": 47731.72, + "end": 47732.42, + "probability": 0.5022 + }, + { + "start": 47733.38, + "end": 47734.14, + "probability": 0.9036 + }, + { + "start": 47734.92, + "end": 47735.76, + "probability": 0.8233 + }, + { + "start": 47737.06, + "end": 47737.44, + "probability": 0.6902 + }, + { + "start": 47738.06, + "end": 47738.88, + "probability": 0.6233 + }, + { + "start": 47740.6, + "end": 47741.12, + "probability": 0.8115 + }, + { + "start": 47741.9, + "end": 47742.76, + "probability": 0.9642 + }, + { + "start": 47743.72, + "end": 47745.68, + "probability": 0.9811 + }, + { + "start": 47746.8, + "end": 47748.88, + "probability": 0.7563 + }, + { + "start": 47751.66, + "end": 47752.54, + "probability": 0.9802 + }, + { + "start": 47753.16, + "end": 47753.96, + "probability": 0.9888 + }, + { + "start": 47755.84, + "end": 47756.34, + "probability": 0.9878 + }, + { + "start": 47757.1, + "end": 47758.02, + "probability": 0.8021 + }, + { + "start": 47758.96, + "end": 47759.52, + "probability": 0.8573 + }, + { + "start": 47760.28, + "end": 47761.62, + "probability": 0.9165 + }, + { + "start": 47762.52, + "end": 47763.9, + "probability": 0.9691 + }, + { + "start": 47764.5, + "end": 47765.86, + "probability": 0.8486 + }, + { + "start": 47766.82, + "end": 47768.34, + "probability": 0.9717 + }, + { + "start": 47769.02, + "end": 47771.5, + "probability": 0.989 + }, + { + "start": 47772.06, + "end": 47773.86, + "probability": 0.8792 + }, + { + "start": 47775.38, + "end": 47775.96, + "probability": 0.9948 + }, + { + "start": 47777.5, + "end": 47778.38, + "probability": 0.9905 + }, + { + "start": 47779.22, + "end": 47779.88, + "probability": 0.9976 + }, + { + "start": 47780.44, + "end": 47781.26, + "probability": 0.8846 + }, + { + "start": 47782.34, + "end": 47782.8, + "probability": 0.9924 + }, + { + "start": 47783.66, + "end": 47784.58, + "probability": 0.8655 + }, + { + "start": 47785.44, + "end": 47785.96, + "probability": 0.7999 + }, + { + "start": 47786.9, + "end": 47787.86, + "probability": 0.724 + }, + { + "start": 47788.66, + "end": 47789.26, + "probability": 0.9504 + }, + { + "start": 47790.1, + "end": 47791.62, + "probability": 0.875 + }, + { + "start": 47792.26, + "end": 47792.7, + "probability": 0.8682 + }, + { + "start": 47793.48, + "end": 47794.46, + "probability": 0.9212 + }, + { + "start": 47795.42, + "end": 47795.9, + "probability": 0.9881 + }, + { + "start": 47796.8, + "end": 47797.76, + "probability": 0.7265 + }, + { + "start": 47798.5, + "end": 47800.46, + "probability": 0.7687 + }, + { + "start": 47802.6, + "end": 47805.8, + "probability": 0.8088 + }, + { + "start": 47806.74, + "end": 47807.18, + "probability": 0.98 + }, + { + "start": 47809.0, + "end": 47809.72, + "probability": 0.5604 + }, + { + "start": 47811.2, + "end": 47814.06, + "probability": 0.6784 + }, + { + "start": 47815.28, + "end": 47817.7, + "probability": 0.8541 + }, + { + "start": 47818.72, + "end": 47819.04, + "probability": 0.8696 + }, + { + "start": 47823.58, + "end": 47824.28, + "probability": 0.6481 + }, + { + "start": 47825.36, + "end": 47825.68, + "probability": 0.9168 + }, + { + "start": 47826.98, + "end": 47827.86, + "probability": 0.7929 + }, + { + "start": 47830.26, + "end": 47832.58, + "probability": 0.7724 + }, + { + "start": 47833.4, + "end": 47838.82, + "probability": 0.1939 + }, + { + "start": 47838.82, + "end": 47841.86, + "probability": 0.0133 + }, + { + "start": 47842.0, + "end": 47843.28, + "probability": 0.09 + }, + { + "start": 47843.32, + "end": 47843.58, + "probability": 0.0759 + }, + { + "start": 47843.58, + "end": 47843.78, + "probability": 0.1671 + }, + { + "start": 47873.44, + "end": 47873.7, + "probability": 0.5541 + }, + { + "start": 47875.06, + "end": 47875.9, + "probability": 0.725 + }, + { + "start": 47876.74, + "end": 47879.08, + "probability": 0.82 + }, + { + "start": 47881.56, + "end": 47882.84, + "probability": 0.9613 + }, + { + "start": 47887.38, + "end": 47888.3, + "probability": 0.7826 + }, + { + "start": 47889.1, + "end": 47889.76, + "probability": 0.8544 + }, + { + "start": 47892.5, + "end": 47893.24, + "probability": 0.9451 + }, + { + "start": 47894.12, + "end": 47894.96, + "probability": 0.7599 + }, + { + "start": 47895.76, + "end": 47901.92, + "probability": 0.1207 + }, + { + "start": 47902.78, + "end": 47902.98, + "probability": 0.4075 + }, + { + "start": 47911.32, + "end": 47913.34, + "probability": 0.5097 + }, + { + "start": 47914.24, + "end": 47914.5, + "probability": 0.5065 + }, + { + "start": 47915.26, + "end": 47916.24, + "probability": 0.7412 + }, + { + "start": 47917.06, + "end": 47918.9, + "probability": 0.8464 + }, + { + "start": 47920.36, + "end": 47920.72, + "probability": 0.7184 + }, + { + "start": 47922.0, + "end": 47922.84, + "probability": 0.8145 + }, + { + "start": 47923.78, + "end": 47924.7, + "probability": 0.9424 + }, + { + "start": 47925.3, + "end": 47926.28, + "probability": 0.9347 + }, + { + "start": 47931.2, + "end": 47933.48, + "probability": 0.8372 + }, + { + "start": 47935.64, + "end": 47938.02, + "probability": 0.8193 + }, + { + "start": 47940.28, + "end": 47942.62, + "probability": 0.8955 + }, + { + "start": 47945.62, + "end": 47948.06, + "probability": 0.8178 + }, + { + "start": 47950.04, + "end": 47950.52, + "probability": 0.9653 + }, + { + "start": 47951.88, + "end": 47952.64, + "probability": 0.8596 + }, + { + "start": 47953.5, + "end": 47955.4, + "probability": 0.9095 + }, + { + "start": 47959.14, + "end": 47961.34, + "probability": 0.9341 + }, + { + "start": 47961.9, + "end": 47962.3, + "probability": 0.9888 + }, + { + "start": 47965.08, + "end": 47965.66, + "probability": 0.174 + }, + { + "start": 47965.76, + "end": 47969.24, + "probability": 0.8328 + }, + { + "start": 47969.92, + "end": 47970.98, + "probability": 0.3988 + }, + { + "start": 47972.5, + "end": 47974.5, + "probability": 0.791 + }, + { + "start": 47976.2, + "end": 47976.6, + "probability": 0.9724 + }, + { + "start": 47977.66, + "end": 47980.36, + "probability": 0.6055 + }, + { + "start": 47981.22, + "end": 47981.44, + "probability": 0.5015 + }, + { + "start": 47984.8, + "end": 47985.68, + "probability": 0.6444 + }, + { + "start": 47987.34, + "end": 47987.86, + "probability": 0.9272 + }, + { + "start": 47989.52, + "end": 47991.58, + "probability": 0.9289 + }, + { + "start": 47992.44, + "end": 47994.46, + "probability": 0.9507 + }, + { + "start": 47997.6, + "end": 47999.12, + "probability": 0.9553 + }, + { + "start": 48000.68, + "end": 48001.18, + "probability": 0.9753 + }, + { + "start": 48003.42, + "end": 48005.96, + "probability": 0.9707 + }, + { + "start": 48007.88, + "end": 48008.82, + "probability": 0.7922 + }, + { + "start": 48011.22, + "end": 48011.92, + "probability": 0.6212 + }, + { + "start": 48013.28, + "end": 48014.3, + "probability": 0.6043 + }, + { + "start": 48015.04, + "end": 48016.28, + "probability": 0.8745 + }, + { + "start": 48017.16, + "end": 48017.42, + "probability": 0.5098 + }, + { + "start": 48022.86, + "end": 48023.72, + "probability": 0.5336 + }, + { + "start": 48026.41, + "end": 48028.24, + "probability": 0.6249 + }, + { + "start": 48030.8, + "end": 48033.38, + "probability": 0.7049 + }, + { + "start": 48041.12, + "end": 48041.98, + "probability": 0.7225 + }, + { + "start": 48043.04, + "end": 48043.28, + "probability": 0.5931 + }, + { + "start": 48045.62, + "end": 48046.14, + "probability": 0.7406 + }, + { + "start": 48048.72, + "end": 48049.12, + "probability": 0.9266 + }, + { + "start": 48051.04, + "end": 48053.86, + "probability": 0.7933 + }, + { + "start": 48059.94, + "end": 48060.26, + "probability": 0.5234 + }, + { + "start": 48061.64, + "end": 48062.46, + "probability": 0.6768 + }, + { + "start": 48064.56, + "end": 48067.72, + "probability": 0.6527 + }, + { + "start": 48069.68, + "end": 48070.54, + "probability": 0.8882 + }, + { + "start": 48074.44, + "end": 48075.32, + "probability": 0.4136 + }, + { + "start": 48075.54, + "end": 48078.38, + "probability": 0.9549 + }, + { + "start": 48079.69, + "end": 48081.5, + "probability": 0.8525 + }, + { + "start": 48083.04, + "end": 48086.42, + "probability": 0.5008 + }, + { + "start": 48090.62, + "end": 48092.4, + "probability": 0.6939 + }, + { + "start": 48102.0, + "end": 48104.84, + "probability": 0.5602 + }, + { + "start": 48107.82, + "end": 48111.64, + "probability": 0.7816 + }, + { + "start": 48112.64, + "end": 48114.1, + "probability": 0.8145 + }, + { + "start": 48115.54, + "end": 48118.7, + "probability": 0.818 + }, + { + "start": 48126.0, + "end": 48126.36, + "probability": 0.041 + }, + { + "start": 48126.76, + "end": 48126.97, + "probability": 0.2344 + }, + { + "start": 48127.02, + "end": 48127.74, + "probability": 0.0472 + }, + { + "start": 48247.0, + "end": 48247.0, + "probability": 0.0 + }, + { + "start": 48247.0, + "end": 48247.0, + "probability": 0.0 + }, + { + "start": 48247.0, + "end": 48247.0, + "probability": 0.0 + }, + { + "start": 48247.0, + "end": 48247.0, + "probability": 0.0 + }, + { + "start": 48247.0, + "end": 48247.0, + "probability": 0.0 + }, + { + "start": 48247.52, + "end": 48249.88, + "probability": 0.0205 + }, + { + "start": 48250.62, + "end": 48250.9, + "probability": 0.0455 + }, + { + "start": 48253.02, + "end": 48253.24, + "probability": 0.028 + }, + { + "start": 48261.46, + "end": 48261.46, + "probability": 0.1864 + }, + { + "start": 48262.44, + "end": 48265.04, + "probability": 0.2481 + }, + { + "start": 48266.04, + "end": 48267.36, + "probability": 0.7962 + }, + { + "start": 48283.36, + "end": 48284.74, + "probability": 0.796 + }, + { + "start": 48284.74, + "end": 48285.44, + "probability": 0.4382 + }, + { + "start": 48285.5, + "end": 48288.96, + "probability": 0.7359 + }, + { + "start": 48289.48, + "end": 48290.48, + "probability": 0.1176 + }, + { + "start": 48290.48, + "end": 48291.96, + "probability": 0.2688 + }, + { + "start": 48292.65, + "end": 48294.12, + "probability": 0.1437 + }, + { + "start": 48294.88, + "end": 48295.06, + "probability": 0.0315 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48386.0, + "end": 48386.0, + "probability": 0.0 + }, + { + "start": 48404.32, + "end": 48406.76, + "probability": 0.4862 + }, + { + "start": 48408.06, + "end": 48410.36, + "probability": 0.8683 + }, + { + "start": 48411.64, + "end": 48412.94, + "probability": 0.8357 + }, + { + "start": 48413.56, + "end": 48414.04, + "probability": 0.7024 + }, + { + "start": 48414.66, + "end": 48415.72, + "probability": 0.9742 + }, + { + "start": 48417.22, + "end": 48420.6, + "probability": 0.8573 + }, + { + "start": 48422.66, + "end": 48424.88, + "probability": 0.9006 + }, + { + "start": 48425.72, + "end": 48430.78, + "probability": 0.2483 + }, + { + "start": 48431.48, + "end": 48432.56, + "probability": 0.524 + }, + { + "start": 48432.98, + "end": 48434.68, + "probability": 0.6691 + }, + { + "start": 48435.84, + "end": 48437.4, + "probability": 0.7684 + }, + { + "start": 48437.6, + "end": 48441.2, + "probability": 0.984 + }, + { + "start": 48441.76, + "end": 48444.64, + "probability": 0.9749 + }, + { + "start": 48449.44, + "end": 48453.42, + "probability": 0.6479 + }, + { + "start": 48453.78, + "end": 48457.76, + "probability": 0.6894 + }, + { + "start": 48457.98, + "end": 48460.06, + "probability": 0.996 + }, + { + "start": 48460.92, + "end": 48463.0, + "probability": 0.9873 + }, + { + "start": 48465.34, + "end": 48467.98, + "probability": 0.6676 + }, + { + "start": 48471.07, + "end": 48475.47, + "probability": 0.9169 + }, + { + "start": 48475.84, + "end": 48477.82, + "probability": 0.4686 + }, + { + "start": 48478.18, + "end": 48480.9, + "probability": 0.7689 + }, + { + "start": 48485.3, + "end": 48486.42, + "probability": 0.09 + }, + { + "start": 48487.4, + "end": 48495.58, + "probability": 0.4938 + }, + { + "start": 48496.2, + "end": 48496.76, + "probability": 0.83 + }, + { + "start": 48498.16, + "end": 48500.14, + "probability": 0.9111 + }, + { + "start": 48501.32, + "end": 48506.14, + "probability": 0.9479 + }, + { + "start": 48506.3, + "end": 48507.92, + "probability": 0.8018 + }, + { + "start": 48508.04, + "end": 48508.84, + "probability": 0.7821 + }, + { + "start": 48509.02, + "end": 48510.43, + "probability": 0.6475 + }, + { + "start": 48510.76, + "end": 48511.62, + "probability": 0.8092 + }, + { + "start": 48511.76, + "end": 48513.02, + "probability": 0.6448 + }, + { + "start": 48513.46, + "end": 48514.2, + "probability": 0.6646 + }, + { + "start": 48514.28, + "end": 48514.88, + "probability": 0.7118 + }, + { + "start": 48514.94, + "end": 48515.08, + "probability": 0.5438 + }, + { + "start": 48520.8, + "end": 48521.38, + "probability": 0.5752 + }, + { + "start": 48532.44, + "end": 48532.58, + "probability": 0.0521 + }, + { + "start": 48532.58, + "end": 48536.16, + "probability": 0.4768 + }, + { + "start": 48537.02, + "end": 48538.6, + "probability": 0.6621 + }, + { + "start": 48538.9, + "end": 48541.94, + "probability": 0.2347 + }, + { + "start": 48542.02, + "end": 48542.4, + "probability": 0.5083 + }, + { + "start": 48542.7, + "end": 48544.86, + "probability": 0.5757 + }, + { + "start": 48547.04, + "end": 48547.92, + "probability": 0.742 + }, + { + "start": 48548.02, + "end": 48549.96, + "probability": 0.7591 + }, + { + "start": 48550.76, + "end": 48554.68, + "probability": 0.481 + }, + { + "start": 48555.08, + "end": 48555.32, + "probability": 0.8147 + }, + { + "start": 48556.28, + "end": 48559.4, + "probability": 0.8244 + }, + { + "start": 48561.98, + "end": 48565.84, + "probability": 0.6215 + }, + { + "start": 48566.38, + "end": 48568.06, + "probability": 0.9497 + }, + { + "start": 48574.9, + "end": 48575.76, + "probability": 0.1818 + }, + { + "start": 48575.8, + "end": 48578.06, + "probability": 0.7068 + }, + { + "start": 48580.12, + "end": 48580.78, + "probability": 0.3086 + }, + { + "start": 48580.78, + "end": 48582.26, + "probability": 0.763 + }, + { + "start": 48585.98, + "end": 48586.36, + "probability": 0.401 + }, + { + "start": 48586.56, + "end": 48590.18, + "probability": 0.8267 + }, + { + "start": 48595.82, + "end": 48598.36, + "probability": 0.513 + }, + { + "start": 48598.9, + "end": 48602.51, + "probability": 0.5087 + }, + { + "start": 48603.84, + "end": 48605.18, + "probability": 0.8306 + }, + { + "start": 48609.94, + "end": 48615.36, + "probability": 0.667 + }, + { + "start": 48615.38, + "end": 48620.08, + "probability": 0.8358 + }, + { + "start": 48621.82, + "end": 48623.3, + "probability": 0.0857 + }, + { + "start": 48623.72, + "end": 48624.14, + "probability": 0.3781 + }, + { + "start": 48624.2, + "end": 48624.36, + "probability": 0.6234 + }, + { + "start": 48626.06, + "end": 48631.08, + "probability": 0.3965 + }, + { + "start": 48633.52, + "end": 48636.5, + "probability": 0.7241 + }, + { + "start": 48636.56, + "end": 48640.4, + "probability": 0.7834 + }, + { + "start": 48640.94, + "end": 48641.6, + "probability": 0.2408 + }, + { + "start": 48641.72, + "end": 48644.62, + "probability": 0.8429 + }, + { + "start": 48646.95, + "end": 48650.82, + "probability": 0.9575 + }, + { + "start": 48651.06, + "end": 48653.54, + "probability": 0.7251 + }, + { + "start": 48655.4, + "end": 48668.02, + "probability": 0.0314 + }, + { + "start": 48668.68, + "end": 48669.87, + "probability": 0.2725 + }, + { + "start": 48670.26, + "end": 48673.24, + "probability": 0.6608 + }, + { + "start": 48673.32, + "end": 48674.2, + "probability": 0.628 + }, + { + "start": 48679.78, + "end": 48680.96, + "probability": 0.0408 + }, + { + "start": 48683.14, + "end": 48685.2, + "probability": 0.2092 + }, + { + "start": 48686.2, + "end": 48687.42, + "probability": 0.0277 + }, + { + "start": 48687.42, + "end": 48693.48, + "probability": 0.2584 + }, + { + "start": 48693.48, + "end": 48693.48, + "probability": 0.591 + }, + { + "start": 48693.5, + "end": 48700.7, + "probability": 0.4728 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48771.0, + "end": 48771.0, + "probability": 0.0 + }, + { + "start": 48781.8, + "end": 48782.32, + "probability": 0.8894 + }, + { + "start": 48782.92, + "end": 48785.22, + "probability": 0.665 + }, + { + "start": 48785.76, + "end": 48788.78, + "probability": 0.8097 + }, + { + "start": 48788.88, + "end": 48790.04, + "probability": 0.7317 + }, + { + "start": 48790.08, + "end": 48791.8, + "probability": 0.7399 + }, + { + "start": 48791.8, + "end": 48792.48, + "probability": 0.6765 + }, + { + "start": 48792.52, + "end": 48793.58, + "probability": 0.7243 + }, + { + "start": 48793.96, + "end": 48796.2, + "probability": 0.8257 + }, + { + "start": 48796.3, + "end": 48798.52, + "probability": 0.4524 + }, + { + "start": 48808.6, + "end": 48809.08, + "probability": 0.0744 + }, + { + "start": 48809.08, + "end": 48811.36, + "probability": 0.2285 + }, + { + "start": 48811.6, + "end": 48813.64, + "probability": 0.9321 + }, + { + "start": 48814.5, + "end": 48818.42, + "probability": 0.8289 + }, + { + "start": 48818.94, + "end": 48819.18, + "probability": 0.6877 + }, + { + "start": 48819.5, + "end": 48820.4, + "probability": 0.8735 + }, + { + "start": 48821.12, + "end": 48821.46, + "probability": 0.8618 + }, + { + "start": 48822.26, + "end": 48823.12, + "probability": 0.7253 + }, + { + "start": 48823.66, + "end": 48825.5, + "probability": 0.7541 + }, + { + "start": 48826.2, + "end": 48832.46, + "probability": 0.6193 + }, + { + "start": 48833.08, + "end": 48835.72, + "probability": 0.9189 + }, + { + "start": 48835.76, + "end": 48836.14, + "probability": 0.4921 + }, + { + "start": 48836.18, + "end": 48837.22, + "probability": 0.743 + }, + { + "start": 48837.26, + "end": 48838.2, + "probability": 0.8846 + }, + { + "start": 48838.24, + "end": 48839.54, + "probability": 0.8581 + }, + { + "start": 48840.0, + "end": 48843.42, + "probability": 0.6114 + }, + { + "start": 48843.5, + "end": 48844.28, + "probability": 0.837 + }, + { + "start": 48844.72, + "end": 48845.62, + "probability": 0.1178 + }, + { + "start": 48859.32, + "end": 48861.32, + "probability": 0.1253 + }, + { + "start": 48861.46, + "end": 48861.78, + "probability": 0.439 + }, + { + "start": 48861.78, + "end": 48861.78, + "probability": 0.0898 + }, + { + "start": 48861.78, + "end": 48861.78, + "probability": 0.1238 + }, + { + "start": 48861.78, + "end": 48861.78, + "probability": 0.3279 + }, + { + "start": 48861.78, + "end": 48867.44, + "probability": 0.8909 + }, + { + "start": 48869.74, + "end": 48871.56, + "probability": 0.7261 + }, + { + "start": 48872.6, + "end": 48876.08, + "probability": 0.7889 + }, + { + "start": 48876.22, + "end": 48877.44, + "probability": 0.2982 + }, + { + "start": 48877.64, + "end": 48878.06, + "probability": 0.6228 + }, + { + "start": 48878.76, + "end": 48883.88, + "probability": 0.4199 + }, + { + "start": 48884.02, + "end": 48884.86, + "probability": 0.5284 + }, + { + "start": 48885.4, + "end": 48887.48, + "probability": 0.4619 + }, + { + "start": 48887.78, + "end": 48890.18, + "probability": 0.5469 + }, + { + "start": 48898.98, + "end": 48900.34, + "probability": 0.294 + }, + { + "start": 48900.52, + "end": 48903.7, + "probability": 0.6318 + }, + { + "start": 48903.78, + "end": 48904.5, + "probability": 0.4488 + }, + { + "start": 48904.7, + "end": 48905.56, + "probability": 0.6388 + }, + { + "start": 48905.84, + "end": 48906.36, + "probability": 0.7792 + }, + { + "start": 48906.7, + "end": 48907.74, + "probability": 0.7888 + }, + { + "start": 48907.9, + "end": 48909.22, + "probability": 0.7228 + }, + { + "start": 48909.24, + "end": 48909.9, + "probability": 0.6034 + }, + { + "start": 48909.94, + "end": 48910.5, + "probability": 0.5807 + }, + { + "start": 48910.52, + "end": 48911.58, + "probability": 0.6745 + }, + { + "start": 48932.52, + "end": 48932.64, + "probability": 0.0346 + }, + { + "start": 48932.64, + "end": 48933.96, + "probability": 0.3051 + }, + { + "start": 48934.14, + "end": 48934.44, + "probability": 0.3476 + }, + { + "start": 48934.76, + "end": 48941.34, + "probability": 0.088 + }, + { + "start": 48941.36, + "end": 48941.64, + "probability": 0.9013 + }, + { + "start": 48941.7, + "end": 48942.32, + "probability": 0.7609 + }, + { + "start": 48942.34, + "end": 48943.72, + "probability": 0.7604 + }, + { + "start": 48945.38, + "end": 48946.88, + "probability": 0.7716 + }, + { + "start": 48946.88, + "end": 48946.88, + "probability": 0.4396 + }, + { + "start": 48948.82, + "end": 48955.36, + "probability": 0.6667 + }, + { + "start": 48955.52, + "end": 48957.62, + "probability": 0.5554 + }, + { + "start": 48957.82, + "end": 48962.32, + "probability": 0.0089 + }, + { + "start": 48962.4, + "end": 48963.42, + "probability": 0.1354 + }, + { + "start": 48968.14, + "end": 48971.98, + "probability": 0.0031 + }, + { + "start": 48972.0, + "end": 48972.0, + "probability": 0.0 + }, + { + "start": 48988.59, + "end": 48990.72, + "probability": 0.376 + }, + { + "start": 48991.48, + "end": 48992.96, + "probability": 0.4247 + }, + { + "start": 48996.36, + "end": 48998.72, + "probability": 0.1485 + }, + { + "start": 48999.56, + "end": 49000.12, + "probability": 0.6132 + }, + { + "start": 49000.28, + "end": 49001.3, + "probability": 0.7146 + }, + { + "start": 49002.02, + "end": 49004.5, + "probability": 0.5607 + }, + { + "start": 49004.5, + "end": 49005.78, + "probability": 0.3688 + }, + { + "start": 49006.22, + "end": 49008.42, + "probability": 0.8163 + }, + { + "start": 49008.48, + "end": 49009.44, + "probability": 0.3904 + }, + { + "start": 49010.2, + "end": 49012.56, + "probability": 0.9016 + }, + { + "start": 49013.62, + "end": 49018.12, + "probability": 0.9082 + }, + { + "start": 49018.18, + "end": 49019.05, + "probability": 0.6556 + }, + { + "start": 49019.6, + "end": 49022.2, + "probability": 0.021 + }, + { + "start": 49023.24, + "end": 49023.34, + "probability": 0.0178 + }, + { + "start": 49033.96, + "end": 49034.06, + "probability": 0.0627 + }, + { + "start": 49034.06, + "end": 49040.46, + "probability": 0.2684 + }, + { + "start": 49041.0, + "end": 49042.0, + "probability": 0.5242 + }, + { + "start": 49042.4, + "end": 49044.7, + "probability": 0.7038 + }, + { + "start": 49044.78, + "end": 49046.0, + "probability": 0.7487 + }, + { + "start": 49046.14, + "end": 49051.52, + "probability": 0.4954 + }, + { + "start": 49051.9, + "end": 49053.46, + "probability": 0.0859 + }, + { + "start": 49054.9, + "end": 49058.58, + "probability": 0.1212 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.0, + "end": 49092.0, + "probability": 0.0 + }, + { + "start": 49092.45, + "end": 49092.9, + "probability": 0.0664 + }, + { + "start": 49092.9, + "end": 49092.96, + "probability": 0.1897 + }, + { + "start": 49095.48, + "end": 49096.16, + "probability": 0.611 + }, + { + "start": 49096.46, + "end": 49096.8, + "probability": 0.5099 + }, + { + "start": 49096.8, + "end": 49098.12, + "probability": 0.7812 + }, + { + "start": 49099.0, + "end": 49099.0, + "probability": 0.0169 + }, + { + "start": 49100.44, + "end": 49101.84, + "probability": 0.8774 + }, + { + "start": 49102.76, + "end": 49104.75, + "probability": 0.3426 + }, + { + "start": 49105.66, + "end": 49107.3, + "probability": 0.7365 + }, + { + "start": 49107.5, + "end": 49109.76, + "probability": 0.8187 + }, + { + "start": 49110.34, + "end": 49114.12, + "probability": 0.8613 + }, + { + "start": 49114.28, + "end": 49116.22, + "probability": 0.7078 + }, + { + "start": 49116.34, + "end": 49117.9, + "probability": 0.3786 + }, + { + "start": 49117.9, + "end": 49123.36, + "probability": 0.4417 + }, + { + "start": 49123.44, + "end": 49124.42, + "probability": 0.8017 + }, + { + "start": 49124.6, + "end": 49126.06, + "probability": 0.9034 + }, + { + "start": 49127.64, + "end": 49130.74, + "probability": 0.8122 + }, + { + "start": 49130.84, + "end": 49131.5, + "probability": 0.6466 + }, + { + "start": 49132.02, + "end": 49132.6, + "probability": 0.5026 + }, + { + "start": 49132.68, + "end": 49137.25, + "probability": 0.0842 + }, + { + "start": 49138.94, + "end": 49141.9, + "probability": 0.1184 + }, + { + "start": 49143.46, + "end": 49145.6, + "probability": 0.2072 + }, + { + "start": 49155.56, + "end": 49156.04, + "probability": 0.5386 + }, + { + "start": 49156.22, + "end": 49160.85, + "probability": 0.8534 + }, + { + "start": 49161.32, + "end": 49162.06, + "probability": 0.6482 + }, + { + "start": 49162.28, + "end": 49163.5, + "probability": 0.4796 + }, + { + "start": 49164.99, + "end": 49169.54, + "probability": 0.8311 + }, + { + "start": 49174.52, + "end": 49179.22, + "probability": 0.5092 + }, + { + "start": 49179.26, + "end": 49180.42, + "probability": 0.8578 + }, + { + "start": 49187.24, + "end": 49188.88, + "probability": 0.7841 + }, + { + "start": 49189.74, + "end": 49192.2, + "probability": 0.8724 + }, + { + "start": 49192.26, + "end": 49193.41, + "probability": 0.946 + }, + { + "start": 49193.92, + "end": 49194.94, + "probability": 0.6806 + }, + { + "start": 49200.42, + "end": 49204.08, + "probability": 0.9954 + }, + { + "start": 49204.08, + "end": 49209.26, + "probability": 0.9308 + }, + { + "start": 49209.34, + "end": 49211.42, + "probability": 0.1599 + }, + { + "start": 49212.02, + "end": 49214.08, + "probability": 0.9478 + }, + { + "start": 49214.56, + "end": 49216.4, + "probability": 0.9961 + }, + { + "start": 49220.22, + "end": 49220.94, + "probability": 0.6486 + }, + { + "start": 49221.0, + "end": 49221.54, + "probability": 0.6506 + }, + { + "start": 49221.62, + "end": 49222.72, + "probability": 0.8786 + }, + { + "start": 49228.68, + "end": 49233.34, + "probability": 0.406 + }, + { + "start": 49233.34, + "end": 49236.13, + "probability": 0.8686 + }, + { + "start": 49236.2, + "end": 49237.58, + "probability": 0.0879 + }, + { + "start": 49237.58, + "end": 49237.58, + "probability": 0.0365 + }, + { + "start": 49238.46, + "end": 49242.82, + "probability": 0.5791 + }, + { + "start": 49243.5, + "end": 49245.98, + "probability": 0.816 + }, + { + "start": 49245.98, + "end": 49249.26, + "probability": 0.7573 + }, + { + "start": 49249.4, + "end": 49251.04, + "probability": 0.1902 + }, + { + "start": 49251.79, + "end": 49253.98, + "probability": 0.6544 + }, + { + "start": 49254.18, + "end": 49255.8, + "probability": 0.7818 + }, + { + "start": 49257.52, + "end": 49259.4, + "probability": 0.8869 + }, + { + "start": 49262.18, + "end": 49270.82, + "probability": 0.9932 + }, + { + "start": 49270.88, + "end": 49275.84, + "probability": 0.8711 + }, + { + "start": 49276.48, + "end": 49282.66, + "probability": 0.9707 + }, + { + "start": 49283.82, + "end": 49285.08, + "probability": 0.5648 + }, + { + "start": 49285.1, + "end": 49285.78, + "probability": 0.5854 + }, + { + "start": 49285.78, + "end": 49287.22, + "probability": 0.8859 + }, + { + "start": 49287.9, + "end": 49290.14, + "probability": 0.0223 + }, + { + "start": 49295.18, + "end": 49295.9, + "probability": 0.0 + }, + { + "start": 49302.46, + "end": 49302.66, + "probability": 0.0781 + }, + { + "start": 49306.3, + "end": 49307.88, + "probability": 0.3632 + }, + { + "start": 49308.8, + "end": 49309.18, + "probability": 0.923 + }, + { + "start": 49309.39, + "end": 49316.38, + "probability": 0.6604 + }, + { + "start": 49316.46, + "end": 49318.38, + "probability": 0.9887 + }, + { + "start": 49320.22, + "end": 49320.9, + "probability": 0.5866 + }, + { + "start": 49320.96, + "end": 49321.58, + "probability": 0.4771 + }, + { + "start": 49321.58, + "end": 49323.64, + "probability": 0.6993 + }, + { + "start": 49338.32, + "end": 49338.32, + "probability": 0.1425 + }, + { + "start": 49339.24, + "end": 49341.17, + "probability": 0.568 + }, + { + "start": 49342.28, + "end": 49342.5, + "probability": 0.0212 + }, + { + "start": 49342.5, + "end": 49342.5, + "probability": 0.1406 + }, + { + "start": 49343.58, + "end": 49347.24, + "probability": 0.6634 + }, + { + "start": 49348.12, + "end": 49351.96, + "probability": 0.8183 + }, + { + "start": 49352.76, + "end": 49355.22, + "probability": 0.7423 + }, + { + "start": 49355.38, + "end": 49358.14, + "probability": 0.8598 + }, + { + "start": 49358.66, + "end": 49364.96, + "probability": 0.9479 + }, + { + "start": 49365.08, + "end": 49366.78, + "probability": 0.9713 + }, + { + "start": 49367.28, + "end": 49368.46, + "probability": 0.7952 + }, + { + "start": 49368.54, + "end": 49371.46, + "probability": 0.8447 + }, + { + "start": 49371.46, + "end": 49374.66, + "probability": 0.9021 + }, + { + "start": 49375.28, + "end": 49375.86, + "probability": 0.6973 + }, + { + "start": 49377.3, + "end": 49379.56, + "probability": 0.9922 + }, + { + "start": 49379.74, + "end": 49381.18, + "probability": 0.75 + }, + { + "start": 49381.64, + "end": 49386.38, + "probability": 0.9965 + }, + { + "start": 49387.38, + "end": 49388.04, + "probability": 0.6986 + }, + { + "start": 49388.14, + "end": 49393.7, + "probability": 0.9576 + }, + { + "start": 49394.26, + "end": 49399.12, + "probability": 0.9544 + }, + { + "start": 49400.36, + "end": 49403.3, + "probability": 0.9937 + }, + { + "start": 49403.36, + "end": 49404.54, + "probability": 0.6542 + }, + { + "start": 49404.96, + "end": 49408.9, + "probability": 0.9901 + }, + { + "start": 49409.68, + "end": 49413.06, + "probability": 0.9875 + }, + { + "start": 49413.56, + "end": 49416.36, + "probability": 0.97 + }, + { + "start": 49416.72, + "end": 49420.18, + "probability": 0.9678 + }, + { + "start": 49420.98, + "end": 49425.36, + "probability": 0.9295 + }, + { + "start": 49425.5, + "end": 49427.24, + "probability": 0.8536 + }, + { + "start": 49427.94, + "end": 49430.18, + "probability": 0.8844 + }, + { + "start": 49430.92, + "end": 49434.46, + "probability": 0.8621 + }, + { + "start": 49434.46, + "end": 49439.14, + "probability": 0.9927 + }, + { + "start": 49439.82, + "end": 49441.16, + "probability": 0.6931 + }, + { + "start": 49443.18, + "end": 49446.84, + "probability": 0.8625 + }, + { + "start": 49447.7, + "end": 49448.76, + "probability": 0.9035 + }, + { + "start": 49449.48, + "end": 49450.7, + "probability": 0.7212 + }, + { + "start": 49450.86, + "end": 49451.7, + "probability": 0.9278 + }, + { + "start": 49451.88, + "end": 49452.54, + "probability": 0.9319 + }, + { + "start": 49452.72, + "end": 49453.32, + "probability": 0.8736 + }, + { + "start": 49453.78, + "end": 49455.72, + "probability": 0.9906 + }, + { + "start": 49456.2, + "end": 49460.4, + "probability": 0.9787 + }, + { + "start": 49460.4, + "end": 49463.92, + "probability": 0.9846 + }, + { + "start": 49464.76, + "end": 49466.56, + "probability": 0.614 + }, + { + "start": 49466.64, + "end": 49471.3, + "probability": 0.8319 + }, + { + "start": 49471.92, + "end": 49479.34, + "probability": 0.9101 + }, + { + "start": 49480.2, + "end": 49480.38, + "probability": 0.0646 + } + ], + "segments_count": 11751, + "words_count": 41839, + "avg_words_per_segment": 3.5605, + "avg_segment_duration": 1.5779, + "avg_words_per_minute": 50.6474, + "plenum_id": "46933", + "duration": 49565.08, + "title": null, + "plenum_date": "2015-11-18" +} \ No newline at end of file