diff --git "a/5371/metadata.json" "b/5371/metadata.json" new file mode 100644--- /dev/null +++ "b/5371/metadata.json" @@ -0,0 +1,25362 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "5371", + "quality_score": 0.864, + "per_segment_quality_scores": [ + { + "start": 29.66, + "end": 29.88, + "probability": 0.1438 + }, + { + "start": 55.4, + "end": 58.1, + "probability": 0.8565 + }, + { + "start": 59.64, + "end": 62.14, + "probability": 0.7041 + }, + { + "start": 62.74, + "end": 65.42, + "probability": 0.3444 + }, + { + "start": 66.04, + "end": 69.64, + "probability": 0.683 + }, + { + "start": 70.26, + "end": 73.46, + "probability": 0.9879 + }, + { + "start": 73.98, + "end": 78.78, + "probability": 0.8503 + }, + { + "start": 80.02, + "end": 81.94, + "probability": 0.826 + }, + { + "start": 82.56, + "end": 84.24, + "probability": 0.9965 + }, + { + "start": 84.84, + "end": 86.48, + "probability": 0.8103 + }, + { + "start": 87.16, + "end": 88.34, + "probability": 0.9301 + }, + { + "start": 89.02, + "end": 89.99, + "probability": 0.9989 + }, + { + "start": 90.84, + "end": 91.96, + "probability": 0.9507 + }, + { + "start": 93.29, + "end": 94.48, + "probability": 0.9823 + }, + { + "start": 96.08, + "end": 97.3, + "probability": 0.8398 + }, + { + "start": 97.4, + "end": 98.53, + "probability": 0.6145 + }, + { + "start": 98.76, + "end": 101.22, + "probability": 0.9872 + }, + { + "start": 101.42, + "end": 104.16, + "probability": 0.9922 + }, + { + "start": 104.22, + "end": 107.22, + "probability": 0.9951 + }, + { + "start": 108.16, + "end": 110.48, + "probability": 0.215 + }, + { + "start": 114.38, + "end": 114.88, + "probability": 0.6853 + }, + { + "start": 115.44, + "end": 118.6, + "probability": 0.6196 + }, + { + "start": 118.76, + "end": 123.22, + "probability": 0.9453 + }, + { + "start": 123.68, + "end": 126.06, + "probability": 0.6687 + }, + { + "start": 126.54, + "end": 127.02, + "probability": 0.5639 + }, + { + "start": 127.16, + "end": 127.84, + "probability": 0.066 + }, + { + "start": 127.9, + "end": 129.48, + "probability": 0.8628 + }, + { + "start": 130.24, + "end": 132.88, + "probability": 0.9375 + }, + { + "start": 132.88, + "end": 135.22, + "probability": 0.9345 + }, + { + "start": 135.6, + "end": 136.14, + "probability": 0.5694 + }, + { + "start": 137.16, + "end": 137.86, + "probability": 0.8338 + }, + { + "start": 138.32, + "end": 146.98, + "probability": 0.9126 + }, + { + "start": 147.68, + "end": 152.18, + "probability": 0.8758 + }, + { + "start": 152.36, + "end": 152.64, + "probability": 0.4458 + }, + { + "start": 153.08, + "end": 154.28, + "probability": 0.7929 + }, + { + "start": 154.36, + "end": 155.86, + "probability": 0.9681 + }, + { + "start": 156.62, + "end": 158.22, + "probability": 0.7576 + }, + { + "start": 158.76, + "end": 161.06, + "probability": 0.7562 + }, + { + "start": 161.14, + "end": 161.3, + "probability": 0.278 + }, + { + "start": 161.38, + "end": 162.74, + "probability": 0.7364 + }, + { + "start": 163.18, + "end": 167.02, + "probability": 0.5638 + }, + { + "start": 167.56, + "end": 168.42, + "probability": 0.3145 + }, + { + "start": 168.94, + "end": 169.24, + "probability": 0.6372 + }, + { + "start": 169.88, + "end": 174.78, + "probability": 0.9629 + }, + { + "start": 174.78, + "end": 177.82, + "probability": 0.9257 + }, + { + "start": 178.56, + "end": 181.12, + "probability": 0.9012 + }, + { + "start": 182.06, + "end": 185.46, + "probability": 0.8851 + }, + { + "start": 186.06, + "end": 190.8, + "probability": 0.9175 + }, + { + "start": 191.34, + "end": 193.72, + "probability": 0.8947 + }, + { + "start": 193.9, + "end": 197.6, + "probability": 0.7352 + }, + { + "start": 198.34, + "end": 199.78, + "probability": 0.7271 + }, + { + "start": 201.48, + "end": 202.24, + "probability": 0.6836 + }, + { + "start": 202.52, + "end": 204.24, + "probability": 0.8671 + }, + { + "start": 204.32, + "end": 208.04, + "probability": 0.5398 + }, + { + "start": 208.04, + "end": 208.38, + "probability": 0.8532 + }, + { + "start": 208.56, + "end": 211.0, + "probability": 0.7698 + }, + { + "start": 211.32, + "end": 212.37, + "probability": 0.8239 + }, + { + "start": 212.7, + "end": 215.94, + "probability": 0.9452 + }, + { + "start": 216.86, + "end": 219.64, + "probability": 0.8752 + }, + { + "start": 220.0, + "end": 221.24, + "probability": 0.8099 + }, + { + "start": 222.0, + "end": 222.54, + "probability": 0.7515 + }, + { + "start": 222.68, + "end": 224.16, + "probability": 0.9842 + }, + { + "start": 224.32, + "end": 227.14, + "probability": 0.9725 + }, + { + "start": 228.22, + "end": 229.98, + "probability": 0.6403 + }, + { + "start": 230.28, + "end": 231.26, + "probability": 0.8736 + }, + { + "start": 231.34, + "end": 233.42, + "probability": 0.9793 + }, + { + "start": 234.36, + "end": 235.94, + "probability": 0.446 + }, + { + "start": 236.7, + "end": 238.02, + "probability": 0.9312 + }, + { + "start": 238.86, + "end": 242.52, + "probability": 0.9879 + }, + { + "start": 243.24, + "end": 246.16, + "probability": 0.7747 + }, + { + "start": 247.24, + "end": 249.48, + "probability": 0.9678 + }, + { + "start": 250.06, + "end": 250.42, + "probability": 0.9973 + }, + { + "start": 251.0, + "end": 254.74, + "probability": 0.9966 + }, + { + "start": 256.16, + "end": 263.04, + "probability": 0.998 + }, + { + "start": 264.4, + "end": 266.82, + "probability": 0.9952 + }, + { + "start": 267.3, + "end": 268.4, + "probability": 0.8567 + }, + { + "start": 269.24, + "end": 270.4, + "probability": 0.866 + }, + { + "start": 270.96, + "end": 272.54, + "probability": 0.7121 + }, + { + "start": 273.22, + "end": 273.58, + "probability": 0.6637 + }, + { + "start": 274.3, + "end": 279.28, + "probability": 0.7651 + }, + { + "start": 280.18, + "end": 280.6, + "probability": 0.299 + }, + { + "start": 280.94, + "end": 281.7, + "probability": 0.9635 + }, + { + "start": 281.82, + "end": 282.36, + "probability": 0.7568 + }, + { + "start": 282.42, + "end": 284.34, + "probability": 0.9159 + }, + { + "start": 285.18, + "end": 286.94, + "probability": 0.9447 + }, + { + "start": 287.84, + "end": 291.02, + "probability": 0.9423 + }, + { + "start": 292.72, + "end": 297.08, + "probability": 0.9695 + }, + { + "start": 297.72, + "end": 298.98, + "probability": 0.9653 + }, + { + "start": 299.8, + "end": 303.16, + "probability": 0.9609 + }, + { + "start": 303.86, + "end": 307.52, + "probability": 0.8218 + }, + { + "start": 307.86, + "end": 308.99, + "probability": 0.9938 + }, + { + "start": 309.68, + "end": 311.04, + "probability": 0.9473 + }, + { + "start": 311.58, + "end": 312.58, + "probability": 0.8992 + }, + { + "start": 312.9, + "end": 315.22, + "probability": 0.8725 + }, + { + "start": 315.66, + "end": 317.1, + "probability": 0.8827 + }, + { + "start": 317.72, + "end": 319.7, + "probability": 0.967 + }, + { + "start": 320.54, + "end": 322.5, + "probability": 0.8 + }, + { + "start": 323.16, + "end": 324.8, + "probability": 0.3643 + }, + { + "start": 324.96, + "end": 327.5, + "probability": 0.6526 + }, + { + "start": 328.2, + "end": 329.02, + "probability": 0.9261 + }, + { + "start": 329.64, + "end": 334.0, + "probability": 0.9836 + }, + { + "start": 334.72, + "end": 335.96, + "probability": 0.4829 + }, + { + "start": 336.66, + "end": 338.04, + "probability": 0.9662 + }, + { + "start": 338.86, + "end": 339.4, + "probability": 0.4885 + }, + { + "start": 339.92, + "end": 342.16, + "probability": 0.9238 + }, + { + "start": 342.62, + "end": 344.76, + "probability": 0.887 + }, + { + "start": 345.3, + "end": 347.72, + "probability": 0.9854 + }, + { + "start": 348.12, + "end": 350.51, + "probability": 0.9934 + }, + { + "start": 351.46, + "end": 353.04, + "probability": 0.9981 + }, + { + "start": 353.22, + "end": 358.3, + "probability": 0.9424 + }, + { + "start": 358.94, + "end": 361.06, + "probability": 0.8895 + }, + { + "start": 361.26, + "end": 363.94, + "probability": 0.9509 + }, + { + "start": 364.76, + "end": 368.98, + "probability": 0.8341 + }, + { + "start": 369.52, + "end": 369.88, + "probability": 0.8336 + }, + { + "start": 369.94, + "end": 375.78, + "probability": 0.9916 + }, + { + "start": 376.48, + "end": 379.62, + "probability": 0.9962 + }, + { + "start": 380.18, + "end": 380.76, + "probability": 0.7932 + }, + { + "start": 381.76, + "end": 384.96, + "probability": 0.9985 + }, + { + "start": 385.66, + "end": 387.54, + "probability": 0.8579 + }, + { + "start": 388.18, + "end": 388.52, + "probability": 0.8094 + }, + { + "start": 388.52, + "end": 388.78, + "probability": 0.6932 + }, + { + "start": 388.88, + "end": 389.52, + "probability": 0.8655 + }, + { + "start": 389.66, + "end": 391.0, + "probability": 0.9913 + }, + { + "start": 391.42, + "end": 401.98, + "probability": 0.9489 + }, + { + "start": 402.1, + "end": 409.22, + "probability": 0.9821 + }, + { + "start": 410.4, + "end": 411.38, + "probability": 0.7485 + }, + { + "start": 412.62, + "end": 418.08, + "probability": 0.7281 + }, + { + "start": 418.48, + "end": 420.58, + "probability": 0.9439 + }, + { + "start": 421.26, + "end": 426.16, + "probability": 0.8859 + }, + { + "start": 427.5, + "end": 428.36, + "probability": 0.7015 + }, + { + "start": 428.8, + "end": 429.64, + "probability": 0.8267 + }, + { + "start": 430.04, + "end": 431.53, + "probability": 0.9861 + }, + { + "start": 432.14, + "end": 432.48, + "probability": 0.2304 + }, + { + "start": 432.88, + "end": 433.34, + "probability": 0.473 + }, + { + "start": 434.22, + "end": 435.34, + "probability": 0.9885 + }, + { + "start": 437.44, + "end": 438.18, + "probability": 0.4457 + }, + { + "start": 438.36, + "end": 439.92, + "probability": 0.8866 + }, + { + "start": 440.08, + "end": 442.94, + "probability": 0.9158 + }, + { + "start": 443.5, + "end": 446.18, + "probability": 0.6007 + }, + { + "start": 446.72, + "end": 447.56, + "probability": 0.3985 + }, + { + "start": 448.08, + "end": 450.34, + "probability": 0.9024 + }, + { + "start": 451.02, + "end": 452.68, + "probability": 0.9728 + }, + { + "start": 453.16, + "end": 453.78, + "probability": 0.728 + }, + { + "start": 454.8, + "end": 455.62, + "probability": 0.8655 + }, + { + "start": 464.6, + "end": 464.6, + "probability": 0.0919 + }, + { + "start": 464.6, + "end": 467.58, + "probability": 0.7294 + }, + { + "start": 468.78, + "end": 470.9, + "probability": 0.6909 + }, + { + "start": 471.4, + "end": 472.18, + "probability": 0.277 + }, + { + "start": 472.84, + "end": 475.18, + "probability": 0.8709 + }, + { + "start": 475.78, + "end": 478.5, + "probability": 0.9786 + }, + { + "start": 479.26, + "end": 483.16, + "probability": 0.9548 + }, + { + "start": 485.78, + "end": 487.8, + "probability": 0.8051 + }, + { + "start": 489.0, + "end": 491.72, + "probability": 0.9761 + }, + { + "start": 492.92, + "end": 495.32, + "probability": 0.7737 + }, + { + "start": 495.42, + "end": 497.68, + "probability": 0.8804 + }, + { + "start": 498.46, + "end": 502.06, + "probability": 0.9957 + }, + { + "start": 502.8, + "end": 503.48, + "probability": 0.9961 + }, + { + "start": 504.48, + "end": 507.26, + "probability": 0.8583 + }, + { + "start": 508.24, + "end": 510.38, + "probability": 0.9535 + }, + { + "start": 510.84, + "end": 514.24, + "probability": 0.9236 + }, + { + "start": 514.52, + "end": 516.0, + "probability": 0.9927 + }, + { + "start": 516.28, + "end": 517.74, + "probability": 0.8894 + }, + { + "start": 518.34, + "end": 520.02, + "probability": 0.7261 + }, + { + "start": 520.12, + "end": 524.41, + "probability": 0.6849 + }, + { + "start": 525.3, + "end": 527.04, + "probability": 0.8682 + }, + { + "start": 528.18, + "end": 529.44, + "probability": 0.2305 + }, + { + "start": 529.64, + "end": 531.3, + "probability": 0.6354 + }, + { + "start": 531.3, + "end": 533.26, + "probability": 0.7384 + }, + { + "start": 533.38, + "end": 533.86, + "probability": 0.9175 + }, + { + "start": 535.76, + "end": 538.32, + "probability": 0.8464 + }, + { + "start": 539.56, + "end": 541.22, + "probability": 0.7023 + }, + { + "start": 542.22, + "end": 543.14, + "probability": 0.6183 + }, + { + "start": 543.14, + "end": 545.72, + "probability": 0.9093 + }, + { + "start": 546.78, + "end": 547.2, + "probability": 0.9043 + }, + { + "start": 548.34, + "end": 550.32, + "probability": 0.9728 + }, + { + "start": 553.42, + "end": 554.28, + "probability": 0.5681 + }, + { + "start": 555.4, + "end": 558.14, + "probability": 0.9769 + }, + { + "start": 558.14, + "end": 561.58, + "probability": 0.9793 + }, + { + "start": 562.92, + "end": 564.09, + "probability": 0.9966 + }, + { + "start": 564.76, + "end": 565.7, + "probability": 0.5417 + }, + { + "start": 565.78, + "end": 569.96, + "probability": 0.9924 + }, + { + "start": 569.96, + "end": 572.74, + "probability": 0.9838 + }, + { + "start": 573.22, + "end": 577.2, + "probability": 0.9329 + }, + { + "start": 578.14, + "end": 580.8, + "probability": 0.9386 + }, + { + "start": 581.48, + "end": 586.68, + "probability": 0.8385 + }, + { + "start": 586.84, + "end": 590.96, + "probability": 0.8712 + }, + { + "start": 591.42, + "end": 592.76, + "probability": 0.8185 + }, + { + "start": 593.38, + "end": 593.96, + "probability": 0.9644 + }, + { + "start": 594.74, + "end": 600.06, + "probability": 0.9839 + }, + { + "start": 600.9, + "end": 603.0, + "probability": 0.965 + }, + { + "start": 603.3, + "end": 605.6, + "probability": 0.9976 + }, + { + "start": 606.2, + "end": 609.34, + "probability": 0.689 + }, + { + "start": 609.74, + "end": 612.1, + "probability": 0.9795 + }, + { + "start": 613.2, + "end": 615.64, + "probability": 0.8063 + }, + { + "start": 615.94, + "end": 617.54, + "probability": 0.6645 + }, + { + "start": 617.74, + "end": 620.12, + "probability": 0.9822 + }, + { + "start": 620.56, + "end": 622.16, + "probability": 0.9959 + }, + { + "start": 622.26, + "end": 623.14, + "probability": 0.942 + }, + { + "start": 623.66, + "end": 624.74, + "probability": 0.9639 + }, + { + "start": 625.66, + "end": 628.3, + "probability": 0.9142 + }, + { + "start": 628.86, + "end": 629.46, + "probability": 0.2989 + }, + { + "start": 629.52, + "end": 632.8, + "probability": 0.9221 + }, + { + "start": 633.44, + "end": 633.76, + "probability": 0.4691 + }, + { + "start": 633.76, + "end": 634.94, + "probability": 0.6282 + }, + { + "start": 635.28, + "end": 635.7, + "probability": 0.4885 + }, + { + "start": 635.82, + "end": 637.56, + "probability": 0.9231 + }, + { + "start": 642.6, + "end": 644.28, + "probability": 0.8073 + }, + { + "start": 645.3, + "end": 645.98, + "probability": 0.8068 + }, + { + "start": 646.88, + "end": 647.86, + "probability": 0.9038 + }, + { + "start": 648.4, + "end": 649.84, + "probability": 0.9325 + }, + { + "start": 649.96, + "end": 651.88, + "probability": 0.9538 + }, + { + "start": 652.36, + "end": 653.24, + "probability": 0.8097 + }, + { + "start": 653.4, + "end": 655.9, + "probability": 0.9341 + }, + { + "start": 656.86, + "end": 657.3, + "probability": 0.2996 + }, + { + "start": 658.14, + "end": 661.96, + "probability": 0.7725 + }, + { + "start": 662.58, + "end": 664.64, + "probability": 0.9314 + }, + { + "start": 666.48, + "end": 667.36, + "probability": 0.8609 + }, + { + "start": 667.48, + "end": 668.76, + "probability": 0.9047 + }, + { + "start": 668.92, + "end": 669.76, + "probability": 0.9561 + }, + { + "start": 670.54, + "end": 672.78, + "probability": 0.9584 + }, + { + "start": 674.04, + "end": 678.66, + "probability": 0.8872 + }, + { + "start": 679.18, + "end": 680.04, + "probability": 0.6151 + }, + { + "start": 680.82, + "end": 682.08, + "probability": 0.8355 + }, + { + "start": 683.06, + "end": 685.18, + "probability": 0.9959 + }, + { + "start": 685.34, + "end": 687.18, + "probability": 0.9572 + }, + { + "start": 687.6, + "end": 690.72, + "probability": 0.8542 + }, + { + "start": 690.88, + "end": 695.4, + "probability": 0.8298 + }, + { + "start": 695.4, + "end": 700.86, + "probability": 0.9824 + }, + { + "start": 700.86, + "end": 705.3, + "probability": 0.9208 + }, + { + "start": 705.76, + "end": 706.28, + "probability": 0.4246 + }, + { + "start": 706.38, + "end": 708.88, + "probability": 0.7551 + }, + { + "start": 709.52, + "end": 710.78, + "probability": 0.6906 + }, + { + "start": 711.46, + "end": 713.74, + "probability": 0.7419 + }, + { + "start": 713.74, + "end": 715.72, + "probability": 0.7563 + }, + { + "start": 716.2, + "end": 719.88, + "probability": 0.8385 + }, + { + "start": 720.56, + "end": 724.27, + "probability": 0.7503 + }, + { + "start": 725.04, + "end": 726.68, + "probability": 0.846 + }, + { + "start": 727.68, + "end": 729.44, + "probability": 0.9941 + }, + { + "start": 730.7, + "end": 731.86, + "probability": 0.8623 + }, + { + "start": 734.68, + "end": 738.12, + "probability": 0.9866 + }, + { + "start": 738.12, + "end": 742.08, + "probability": 0.8708 + }, + { + "start": 742.58, + "end": 743.54, + "probability": 0.8432 + }, + { + "start": 744.16, + "end": 745.3, + "probability": 0.5544 + }, + { + "start": 745.84, + "end": 746.98, + "probability": 0.5644 + }, + { + "start": 747.02, + "end": 747.43, + "probability": 0.9294 + }, + { + "start": 748.0, + "end": 750.1, + "probability": 0.6803 + }, + { + "start": 750.22, + "end": 750.78, + "probability": 0.4681 + }, + { + "start": 751.32, + "end": 754.32, + "probability": 0.9928 + }, + { + "start": 754.32, + "end": 758.38, + "probability": 0.99 + }, + { + "start": 758.8, + "end": 764.3, + "probability": 0.9971 + }, + { + "start": 765.02, + "end": 766.56, + "probability": 0.6745 + }, + { + "start": 767.22, + "end": 767.7, + "probability": 0.9678 + }, + { + "start": 767.92, + "end": 769.04, + "probability": 0.9129 + }, + { + "start": 769.24, + "end": 771.04, + "probability": 0.8367 + }, + { + "start": 771.4, + "end": 772.66, + "probability": 0.017 + }, + { + "start": 773.12, + "end": 773.2, + "probability": 0.3876 + }, + { + "start": 773.2, + "end": 775.9, + "probability": 0.9744 + }, + { + "start": 776.02, + "end": 778.3, + "probability": 0.8814 + }, + { + "start": 778.52, + "end": 780.06, + "probability": 0.486 + }, + { + "start": 780.42, + "end": 781.98, + "probability": 0.9404 + }, + { + "start": 782.32, + "end": 783.94, + "probability": 0.9799 + }, + { + "start": 784.08, + "end": 784.82, + "probability": 0.8875 + }, + { + "start": 784.88, + "end": 787.42, + "probability": 0.8215 + }, + { + "start": 787.9, + "end": 790.08, + "probability": 0.7605 + }, + { + "start": 790.9, + "end": 795.13, + "probability": 0.9753 + }, + { + "start": 796.3, + "end": 797.1, + "probability": 0.6643 + }, + { + "start": 797.52, + "end": 798.26, + "probability": 0.8211 + }, + { + "start": 798.38, + "end": 799.16, + "probability": 0.7294 + }, + { + "start": 799.34, + "end": 800.12, + "probability": 0.3847 + }, + { + "start": 800.12, + "end": 800.64, + "probability": 0.1558 + }, + { + "start": 800.64, + "end": 800.71, + "probability": 0.3798 + }, + { + "start": 801.24, + "end": 802.16, + "probability": 0.9764 + }, + { + "start": 802.53, + "end": 806.1, + "probability": 0.9752 + }, + { + "start": 806.42, + "end": 809.26, + "probability": 0.9272 + }, + { + "start": 809.62, + "end": 811.92, + "probability": 0.8573 + }, + { + "start": 812.22, + "end": 813.9, + "probability": 0.8202 + }, + { + "start": 814.36, + "end": 816.12, + "probability": 0.9598 + }, + { + "start": 816.46, + "end": 817.32, + "probability": 0.6953 + }, + { + "start": 817.52, + "end": 818.14, + "probability": 0.5263 + }, + { + "start": 818.48, + "end": 818.62, + "probability": 0.2855 + }, + { + "start": 818.66, + "end": 818.84, + "probability": 0.7766 + }, + { + "start": 819.12, + "end": 819.26, + "probability": 0.3876 + }, + { + "start": 819.26, + "end": 819.78, + "probability": 0.6763 + }, + { + "start": 819.94, + "end": 821.71, + "probability": 0.6591 + }, + { + "start": 822.14, + "end": 825.02, + "probability": 0.7016 + }, + { + "start": 831.62, + "end": 834.28, + "probability": 0.6279 + }, + { + "start": 835.1, + "end": 838.32, + "probability": 0.9947 + }, + { + "start": 838.64, + "end": 842.32, + "probability": 0.9811 + }, + { + "start": 842.32, + "end": 847.82, + "probability": 0.9322 + }, + { + "start": 848.36, + "end": 850.2, + "probability": 0.5117 + }, + { + "start": 850.32, + "end": 851.57, + "probability": 0.9213 + }, + { + "start": 852.44, + "end": 855.5, + "probability": 0.7607 + }, + { + "start": 856.48, + "end": 856.76, + "probability": 0.5804 + }, + { + "start": 856.98, + "end": 857.96, + "probability": 0.8936 + }, + { + "start": 858.2, + "end": 860.92, + "probability": 0.9943 + }, + { + "start": 860.98, + "end": 866.48, + "probability": 0.9856 + }, + { + "start": 867.0, + "end": 868.92, + "probability": 0.6514 + }, + { + "start": 869.16, + "end": 876.64, + "probability": 0.9473 + }, + { + "start": 876.64, + "end": 880.86, + "probability": 0.8874 + }, + { + "start": 881.56, + "end": 883.08, + "probability": 0.972 + }, + { + "start": 883.54, + "end": 887.38, + "probability": 0.9966 + }, + { + "start": 887.64, + "end": 892.1, + "probability": 0.9977 + }, + { + "start": 892.16, + "end": 893.74, + "probability": 0.6455 + }, + { + "start": 893.96, + "end": 896.02, + "probability": 0.6822 + }, + { + "start": 896.08, + "end": 896.64, + "probability": 0.9406 + }, + { + "start": 896.72, + "end": 899.44, + "probability": 0.9732 + }, + { + "start": 899.62, + "end": 903.52, + "probability": 0.9099 + }, + { + "start": 904.24, + "end": 907.58, + "probability": 0.9812 + }, + { + "start": 907.8, + "end": 908.34, + "probability": 0.6054 + }, + { + "start": 908.42, + "end": 914.86, + "probability": 0.9653 + }, + { + "start": 914.88, + "end": 917.5, + "probability": 0.9888 + }, + { + "start": 917.9, + "end": 921.54, + "probability": 0.8151 + }, + { + "start": 922.32, + "end": 922.88, + "probability": 0.4935 + }, + { + "start": 922.98, + "end": 927.28, + "probability": 0.9733 + }, + { + "start": 927.34, + "end": 928.6, + "probability": 0.9394 + }, + { + "start": 929.12, + "end": 934.74, + "probability": 0.9332 + }, + { + "start": 934.74, + "end": 938.66, + "probability": 0.995 + }, + { + "start": 939.16, + "end": 941.72, + "probability": 0.8365 + }, + { + "start": 941.76, + "end": 942.76, + "probability": 0.7012 + }, + { + "start": 942.92, + "end": 943.84, + "probability": 0.7811 + }, + { + "start": 944.32, + "end": 948.0, + "probability": 0.8407 + }, + { + "start": 948.12, + "end": 952.4, + "probability": 0.9659 + }, + { + "start": 953.04, + "end": 953.4, + "probability": 0.5239 + }, + { + "start": 953.76, + "end": 954.92, + "probability": 0.4296 + }, + { + "start": 955.52, + "end": 957.56, + "probability": 0.7415 + }, + { + "start": 957.86, + "end": 958.1, + "probability": 0.5268 + }, + { + "start": 958.42, + "end": 958.86, + "probability": 0.7089 + }, + { + "start": 959.04, + "end": 961.3, + "probability": 0.9035 + }, + { + "start": 961.54, + "end": 963.86, + "probability": 0.754 + }, + { + "start": 964.72, + "end": 966.1, + "probability": 0.7654 + }, + { + "start": 966.3, + "end": 967.4, + "probability": 0.0888 + }, + { + "start": 969.46, + "end": 969.94, + "probability": 0.0563 + }, + { + "start": 969.94, + "end": 970.28, + "probability": 0.6273 + }, + { + "start": 970.34, + "end": 973.16, + "probability": 0.8704 + }, + { + "start": 973.26, + "end": 975.3, + "probability": 0.998 + }, + { + "start": 975.96, + "end": 982.28, + "probability": 0.9888 + }, + { + "start": 982.4, + "end": 984.8, + "probability": 0.6207 + }, + { + "start": 985.24, + "end": 986.28, + "probability": 0.6887 + }, + { + "start": 986.86, + "end": 987.2, + "probability": 0.9396 + }, + { + "start": 988.26, + "end": 994.88, + "probability": 0.8459 + }, + { + "start": 995.68, + "end": 997.52, + "probability": 0.992 + }, + { + "start": 998.32, + "end": 998.9, + "probability": 0.3324 + }, + { + "start": 999.68, + "end": 1002.28, + "probability": 0.9067 + }, + { + "start": 1003.36, + "end": 1005.5, + "probability": 0.9971 + }, + { + "start": 1005.62, + "end": 1006.86, + "probability": 0.9803 + }, + { + "start": 1007.14, + "end": 1007.84, + "probability": 0.7898 + }, + { + "start": 1008.24, + "end": 1009.24, + "probability": 0.8771 + }, + { + "start": 1009.9, + "end": 1012.54, + "probability": 0.9833 + }, + { + "start": 1012.58, + "end": 1014.86, + "probability": 0.9924 + }, + { + "start": 1015.38, + "end": 1017.66, + "probability": 0.9873 + }, + { + "start": 1018.6, + "end": 1021.36, + "probability": 0.9769 + }, + { + "start": 1022.14, + "end": 1025.36, + "probability": 0.9646 + }, + { + "start": 1026.04, + "end": 1026.95, + "probability": 0.9748 + }, + { + "start": 1027.12, + "end": 1031.62, + "probability": 0.9795 + }, + { + "start": 1032.24, + "end": 1034.92, + "probability": 0.9896 + }, + { + "start": 1035.78, + "end": 1037.02, + "probability": 0.697 + }, + { + "start": 1037.7, + "end": 1039.3, + "probability": 0.8027 + }, + { + "start": 1039.94, + "end": 1042.02, + "probability": 0.9717 + }, + { + "start": 1042.52, + "end": 1042.76, + "probability": 0.7942 + }, + { + "start": 1044.26, + "end": 1046.7, + "probability": 0.8895 + }, + { + "start": 1047.18, + "end": 1047.46, + "probability": 0.4699 + }, + { + "start": 1047.52, + "end": 1048.46, + "probability": 0.7827 + }, + { + "start": 1048.64, + "end": 1050.26, + "probability": 0.6202 + }, + { + "start": 1050.96, + "end": 1052.14, + "probability": 0.9221 + }, + { + "start": 1052.48, + "end": 1054.28, + "probability": 0.8651 + }, + { + "start": 1054.74, + "end": 1055.84, + "probability": 0.7829 + }, + { + "start": 1057.16, + "end": 1060.66, + "probability": 0.9526 + }, + { + "start": 1061.64, + "end": 1062.38, + "probability": 0.9821 + }, + { + "start": 1062.7, + "end": 1063.92, + "probability": 0.9883 + }, + { + "start": 1064.12, + "end": 1067.8, + "probability": 0.978 + }, + { + "start": 1068.38, + "end": 1071.74, + "probability": 0.9897 + }, + { + "start": 1072.36, + "end": 1073.18, + "probability": 0.9929 + }, + { + "start": 1073.84, + "end": 1074.72, + "probability": 0.8713 + }, + { + "start": 1075.32, + "end": 1078.66, + "probability": 0.989 + }, + { + "start": 1079.38, + "end": 1080.62, + "probability": 0.5928 + }, + { + "start": 1081.28, + "end": 1081.82, + "probability": 0.8604 + }, + { + "start": 1082.36, + "end": 1084.76, + "probability": 0.8654 + }, + { + "start": 1085.08, + "end": 1086.92, + "probability": 0.6534 + }, + { + "start": 1087.4, + "end": 1087.78, + "probability": 0.873 + }, + { + "start": 1088.46, + "end": 1093.06, + "probability": 0.9288 + }, + { + "start": 1094.16, + "end": 1095.64, + "probability": 0.9909 + }, + { + "start": 1096.12, + "end": 1101.06, + "probability": 0.9707 + }, + { + "start": 1101.54, + "end": 1102.9, + "probability": 0.7483 + }, + { + "start": 1103.6, + "end": 1104.92, + "probability": 0.9875 + }, + { + "start": 1106.0, + "end": 1108.04, + "probability": 0.7539 + }, + { + "start": 1109.48, + "end": 1110.46, + "probability": 0.9482 + }, + { + "start": 1111.7, + "end": 1112.28, + "probability": 0.4737 + }, + { + "start": 1112.36, + "end": 1112.78, + "probability": 0.5663 + }, + { + "start": 1113.78, + "end": 1114.64, + "probability": 0.808 + }, + { + "start": 1115.22, + "end": 1116.48, + "probability": 0.9621 + }, + { + "start": 1117.64, + "end": 1120.72, + "probability": 0.9321 + }, + { + "start": 1121.32, + "end": 1122.38, + "probability": 0.8947 + }, + { + "start": 1122.7, + "end": 1123.78, + "probability": 0.4708 + }, + { + "start": 1124.18, + "end": 1125.58, + "probability": 0.8398 + }, + { + "start": 1126.48, + "end": 1128.08, + "probability": 0.8982 + }, + { + "start": 1129.02, + "end": 1129.72, + "probability": 0.782 + }, + { + "start": 1130.46, + "end": 1131.03, + "probability": 0.9697 + }, + { + "start": 1131.76, + "end": 1133.88, + "probability": 0.8746 + }, + { + "start": 1134.14, + "end": 1136.78, + "probability": 0.498 + }, + { + "start": 1136.88, + "end": 1137.22, + "probability": 0.8535 + }, + { + "start": 1138.02, + "end": 1140.42, + "probability": 0.9923 + }, + { + "start": 1140.48, + "end": 1141.82, + "probability": 0.9512 + }, + { + "start": 1141.98, + "end": 1143.2, + "probability": 0.979 + }, + { + "start": 1143.74, + "end": 1144.08, + "probability": 0.474 + }, + { + "start": 1144.18, + "end": 1145.88, + "probability": 0.7732 + }, + { + "start": 1146.06, + "end": 1149.9, + "probability": 0.927 + }, + { + "start": 1150.3, + "end": 1152.74, + "probability": 0.8668 + }, + { + "start": 1153.38, + "end": 1154.54, + "probability": 0.8564 + }, + { + "start": 1155.22, + "end": 1156.88, + "probability": 0.6556 + }, + { + "start": 1157.74, + "end": 1159.86, + "probability": 0.668 + }, + { + "start": 1160.0, + "end": 1160.52, + "probability": 0.9236 + }, + { + "start": 1160.98, + "end": 1161.86, + "probability": 0.4525 + }, + { + "start": 1161.98, + "end": 1162.68, + "probability": 0.7362 + }, + { + "start": 1163.04, + "end": 1164.02, + "probability": 0.9192 + }, + { + "start": 1164.4, + "end": 1164.82, + "probability": 0.9318 + }, + { + "start": 1165.26, + "end": 1166.22, + "probability": 0.8269 + }, + { + "start": 1167.36, + "end": 1168.32, + "probability": 0.7523 + }, + { + "start": 1169.48, + "end": 1174.68, + "probability": 0.9376 + }, + { + "start": 1175.58, + "end": 1176.5, + "probability": 0.8086 + }, + { + "start": 1177.32, + "end": 1178.4, + "probability": 0.7768 + }, + { + "start": 1178.54, + "end": 1180.68, + "probability": 0.6082 + }, + { + "start": 1181.52, + "end": 1184.54, + "probability": 0.5007 + }, + { + "start": 1185.56, + "end": 1186.84, + "probability": 0.6638 + }, + { + "start": 1187.72, + "end": 1192.38, + "probability": 0.8933 + }, + { + "start": 1193.2, + "end": 1195.74, + "probability": 0.9854 + }, + { + "start": 1196.76, + "end": 1199.36, + "probability": 0.9863 + }, + { + "start": 1200.02, + "end": 1203.02, + "probability": 0.9208 + }, + { + "start": 1203.56, + "end": 1204.41, + "probability": 0.9382 + }, + { + "start": 1205.02, + "end": 1206.04, + "probability": 0.9336 + }, + { + "start": 1206.56, + "end": 1207.5, + "probability": 0.8066 + }, + { + "start": 1208.04, + "end": 1209.6, + "probability": 0.9318 + }, + { + "start": 1210.26, + "end": 1211.54, + "probability": 0.874 + }, + { + "start": 1211.98, + "end": 1213.54, + "probability": 0.449 + }, + { + "start": 1213.58, + "end": 1214.7, + "probability": 0.713 + }, + { + "start": 1215.44, + "end": 1217.02, + "probability": 0.9419 + }, + { + "start": 1217.56, + "end": 1219.68, + "probability": 0.988 + }, + { + "start": 1220.36, + "end": 1223.38, + "probability": 0.4956 + }, + { + "start": 1223.9, + "end": 1227.06, + "probability": 0.6987 + }, + { + "start": 1227.24, + "end": 1228.52, + "probability": 0.4168 + }, + { + "start": 1229.34, + "end": 1231.28, + "probability": 0.9703 + }, + { + "start": 1231.86, + "end": 1232.74, + "probability": 0.6836 + }, + { + "start": 1233.24, + "end": 1234.44, + "probability": 0.8952 + }, + { + "start": 1234.46, + "end": 1237.06, + "probability": 0.4482 + }, + { + "start": 1237.16, + "end": 1238.2, + "probability": 0.8031 + }, + { + "start": 1239.1, + "end": 1240.26, + "probability": 0.9214 + }, + { + "start": 1240.72, + "end": 1244.53, + "probability": 0.8704 + }, + { + "start": 1245.62, + "end": 1247.96, + "probability": 0.9844 + }, + { + "start": 1248.02, + "end": 1251.84, + "probability": 0.9953 + }, + { + "start": 1251.92, + "end": 1252.24, + "probability": 0.4702 + }, + { + "start": 1252.4, + "end": 1255.0, + "probability": 0.773 + }, + { + "start": 1255.4, + "end": 1258.34, + "probability": 0.7896 + }, + { + "start": 1259.3, + "end": 1263.4, + "probability": 0.9967 + }, + { + "start": 1263.4, + "end": 1265.8, + "probability": 0.9997 + }, + { + "start": 1265.86, + "end": 1266.79, + "probability": 0.6604 + }, + { + "start": 1267.46, + "end": 1269.5, + "probability": 0.752 + }, + { + "start": 1270.54, + "end": 1271.92, + "probability": 0.9419 + }, + { + "start": 1273.0, + "end": 1273.6, + "probability": 0.8538 + }, + { + "start": 1273.84, + "end": 1274.34, + "probability": 0.1123 + }, + { + "start": 1275.64, + "end": 1278.5, + "probability": 0.9863 + }, + { + "start": 1278.66, + "end": 1282.74, + "probability": 0.9656 + }, + { + "start": 1283.58, + "end": 1289.18, + "probability": 0.7566 + }, + { + "start": 1289.68, + "end": 1290.92, + "probability": 0.9971 + }, + { + "start": 1291.46, + "end": 1294.43, + "probability": 0.8945 + }, + { + "start": 1295.17, + "end": 1297.12, + "probability": 0.5232 + }, + { + "start": 1297.48, + "end": 1300.3, + "probability": 0.7949 + }, + { + "start": 1300.66, + "end": 1302.08, + "probability": 0.5428 + }, + { + "start": 1302.64, + "end": 1308.36, + "probability": 0.9141 + }, + { + "start": 1309.34, + "end": 1310.78, + "probability": 0.9937 + }, + { + "start": 1311.74, + "end": 1312.3, + "probability": 0.9439 + }, + { + "start": 1312.68, + "end": 1318.66, + "probability": 0.9374 + }, + { + "start": 1321.04, + "end": 1323.38, + "probability": 0.5183 + }, + { + "start": 1325.48, + "end": 1325.82, + "probability": 0.1308 + }, + { + "start": 1327.18, + "end": 1331.18, + "probability": 0.7129 + }, + { + "start": 1331.82, + "end": 1337.96, + "probability": 0.8931 + }, + { + "start": 1337.96, + "end": 1344.28, + "probability": 0.8597 + }, + { + "start": 1345.34, + "end": 1346.38, + "probability": 0.8649 + }, + { + "start": 1347.75, + "end": 1354.5, + "probability": 0.4847 + }, + { + "start": 1354.88, + "end": 1355.88, + "probability": 0.8 + }, + { + "start": 1356.46, + "end": 1357.9, + "probability": 0.6364 + }, + { + "start": 1358.12, + "end": 1361.44, + "probability": 0.9353 + }, + { + "start": 1361.92, + "end": 1364.1, + "probability": 0.7184 + }, + { + "start": 1364.96, + "end": 1367.7, + "probability": 0.9726 + }, + { + "start": 1367.7, + "end": 1370.6, + "probability": 0.9897 + }, + { + "start": 1371.2, + "end": 1377.38, + "probability": 0.7544 + }, + { + "start": 1377.56, + "end": 1379.34, + "probability": 0.5888 + }, + { + "start": 1380.64, + "end": 1381.48, + "probability": 0.7064 + }, + { + "start": 1382.18, + "end": 1385.12, + "probability": 0.67 + }, + { + "start": 1385.72, + "end": 1388.1, + "probability": 0.9597 + }, + { + "start": 1388.52, + "end": 1392.0, + "probability": 0.9868 + }, + { + "start": 1393.08, + "end": 1393.15, + "probability": 0.0759 + }, + { + "start": 1393.96, + "end": 1397.42, + "probability": 0.9882 + }, + { + "start": 1398.8, + "end": 1401.0, + "probability": 0.7256 + }, + { + "start": 1401.72, + "end": 1403.84, + "probability": 0.8566 + }, + { + "start": 1404.54, + "end": 1409.46, + "probability": 0.9921 + }, + { + "start": 1410.06, + "end": 1414.19, + "probability": 0.9972 + }, + { + "start": 1415.1, + "end": 1417.88, + "probability": 0.9933 + }, + { + "start": 1418.52, + "end": 1422.22, + "probability": 0.8693 + }, + { + "start": 1422.42, + "end": 1424.74, + "probability": 0.9473 + }, + { + "start": 1425.44, + "end": 1428.82, + "probability": 0.9966 + }, + { + "start": 1430.04, + "end": 1434.12, + "probability": 0.999 + }, + { + "start": 1434.68, + "end": 1437.64, + "probability": 0.9878 + }, + { + "start": 1437.96, + "end": 1439.04, + "probability": 0.8917 + }, + { + "start": 1439.5, + "end": 1441.46, + "probability": 0.9032 + }, + { + "start": 1442.38, + "end": 1445.2, + "probability": 0.9989 + }, + { + "start": 1445.86, + "end": 1447.08, + "probability": 0.9543 + }, + { + "start": 1447.18, + "end": 1449.12, + "probability": 0.9393 + }, + { + "start": 1450.44, + "end": 1451.16, + "probability": 0.6351 + }, + { + "start": 1451.32, + "end": 1451.9, + "probability": 0.9664 + }, + { + "start": 1452.06, + "end": 1458.54, + "probability": 0.9816 + }, + { + "start": 1459.1, + "end": 1462.04, + "probability": 0.7907 + }, + { + "start": 1463.0, + "end": 1464.11, + "probability": 0.8876 + }, + { + "start": 1464.22, + "end": 1466.68, + "probability": 0.9915 + }, + { + "start": 1467.9, + "end": 1471.6, + "probability": 0.8213 + }, + { + "start": 1471.78, + "end": 1472.6, + "probability": 0.3415 + }, + { + "start": 1472.78, + "end": 1477.42, + "probability": 0.988 + }, + { + "start": 1477.96, + "end": 1481.92, + "probability": 0.7599 + }, + { + "start": 1484.74, + "end": 1485.88, + "probability": 0.4229 + }, + { + "start": 1486.94, + "end": 1492.98, + "probability": 0.9204 + }, + { + "start": 1493.96, + "end": 1498.1, + "probability": 0.8767 + }, + { + "start": 1498.18, + "end": 1498.78, + "probability": 0.6304 + }, + { + "start": 1499.38, + "end": 1505.5, + "probability": 0.9819 + }, + { + "start": 1505.76, + "end": 1507.6, + "probability": 0.8953 + }, + { + "start": 1508.76, + "end": 1509.24, + "probability": 0.8634 + }, + { + "start": 1509.58, + "end": 1511.68, + "probability": 0.925 + }, + { + "start": 1511.8, + "end": 1512.64, + "probability": 0.8325 + }, + { + "start": 1512.86, + "end": 1514.58, + "probability": 0.9914 + }, + { + "start": 1515.26, + "end": 1516.1, + "probability": 0.9837 + }, + { + "start": 1516.78, + "end": 1518.57, + "probability": 0.8215 + }, + { + "start": 1519.44, + "end": 1522.8, + "probability": 0.9911 + }, + { + "start": 1523.32, + "end": 1526.64, + "probability": 0.9307 + }, + { + "start": 1526.78, + "end": 1529.92, + "probability": 0.9895 + }, + { + "start": 1530.72, + "end": 1534.5, + "probability": 0.957 + }, + { + "start": 1537.76, + "end": 1541.0, + "probability": 0.7596 + }, + { + "start": 1541.36, + "end": 1543.08, + "probability": 0.0682 + }, + { + "start": 1543.54, + "end": 1546.16, + "probability": 0.971 + }, + { + "start": 1546.92, + "end": 1551.6, + "probability": 0.9735 + }, + { + "start": 1552.48, + "end": 1557.38, + "probability": 0.9801 + }, + { + "start": 1557.8, + "end": 1561.54, + "probability": 0.6995 + }, + { + "start": 1562.4, + "end": 1563.7, + "probability": 0.9646 + }, + { + "start": 1564.42, + "end": 1566.02, + "probability": 0.9846 + }, + { + "start": 1566.42, + "end": 1570.82, + "probability": 0.992 + }, + { + "start": 1570.98, + "end": 1574.86, + "probability": 0.9919 + }, + { + "start": 1574.96, + "end": 1575.22, + "probability": 0.2526 + }, + { + "start": 1575.32, + "end": 1582.74, + "probability": 0.9352 + }, + { + "start": 1582.92, + "end": 1585.28, + "probability": 0.551 + }, + { + "start": 1585.84, + "end": 1588.24, + "probability": 0.9694 + }, + { + "start": 1589.04, + "end": 1590.14, + "probability": 0.8254 + }, + { + "start": 1590.24, + "end": 1592.88, + "probability": 0.9291 + }, + { + "start": 1593.12, + "end": 1595.58, + "probability": 0.6276 + }, + { + "start": 1595.58, + "end": 1598.92, + "probability": 0.7778 + }, + { + "start": 1599.44, + "end": 1602.82, + "probability": 0.9766 + }, + { + "start": 1603.34, + "end": 1607.88, + "probability": 0.9868 + }, + { + "start": 1608.54, + "end": 1611.8, + "probability": 0.9387 + }, + { + "start": 1612.2, + "end": 1615.2, + "probability": 0.9531 + }, + { + "start": 1615.28, + "end": 1615.38, + "probability": 0.85 + }, + { + "start": 1616.92, + "end": 1618.36, + "probability": 0.7355 + }, + { + "start": 1618.98, + "end": 1619.56, + "probability": 0.6785 + }, + { + "start": 1619.8, + "end": 1620.28, + "probability": 0.3671 + }, + { + "start": 1620.34, + "end": 1624.98, + "probability": 0.8076 + }, + { + "start": 1626.42, + "end": 1628.5, + "probability": 0.9827 + }, + { + "start": 1629.76, + "end": 1634.22, + "probability": 0.9728 + }, + { + "start": 1634.4, + "end": 1634.88, + "probability": 0.6301 + }, + { + "start": 1636.12, + "end": 1637.22, + "probability": 0.9933 + }, + { + "start": 1639.44, + "end": 1642.02, + "probability": 0.9588 + }, + { + "start": 1642.16, + "end": 1645.38, + "probability": 0.8135 + }, + { + "start": 1645.7, + "end": 1648.3, + "probability": 0.5537 + }, + { + "start": 1648.76, + "end": 1648.82, + "probability": 0.4834 + }, + { + "start": 1648.92, + "end": 1649.68, + "probability": 0.3193 + }, + { + "start": 1649.72, + "end": 1650.22, + "probability": 0.6174 + }, + { + "start": 1650.32, + "end": 1651.82, + "probability": 0.5999 + }, + { + "start": 1652.02, + "end": 1653.78, + "probability": 0.9089 + }, + { + "start": 1654.16, + "end": 1654.98, + "probability": 0.687 + }, + { + "start": 1654.98, + "end": 1656.44, + "probability": 0.9365 + }, + { + "start": 1657.24, + "end": 1664.18, + "probability": 0.5178 + }, + { + "start": 1664.5, + "end": 1668.52, + "probability": 0.9971 + }, + { + "start": 1668.62, + "end": 1669.1, + "probability": 0.9637 + }, + { + "start": 1669.7, + "end": 1672.62, + "probability": 0.9476 + }, + { + "start": 1672.62, + "end": 1673.68, + "probability": 0.9919 + }, + { + "start": 1674.22, + "end": 1676.46, + "probability": 0.7663 + }, + { + "start": 1676.62, + "end": 1676.87, + "probability": 0.6289 + }, + { + "start": 1677.62, + "end": 1681.36, + "probability": 0.3986 + }, + { + "start": 1682.34, + "end": 1685.74, + "probability": 0.7473 + }, + { + "start": 1686.16, + "end": 1689.16, + "probability": 0.9421 + }, + { + "start": 1690.22, + "end": 1692.76, + "probability": 0.964 + }, + { + "start": 1693.06, + "end": 1695.82, + "probability": 0.8344 + }, + { + "start": 1696.2, + "end": 1697.6, + "probability": 0.11 + }, + { + "start": 1697.6, + "end": 1700.74, + "probability": 0.9839 + }, + { + "start": 1700.82, + "end": 1702.46, + "probability": 0.8752 + }, + { + "start": 1702.56, + "end": 1704.5, + "probability": 0.9951 + }, + { + "start": 1704.56, + "end": 1705.0, + "probability": 0.8234 + }, + { + "start": 1706.0, + "end": 1706.62, + "probability": 0.929 + }, + { + "start": 1707.58, + "end": 1709.94, + "probability": 0.9959 + }, + { + "start": 1710.06, + "end": 1711.24, + "probability": 0.7477 + }, + { + "start": 1711.26, + "end": 1713.14, + "probability": 0.9893 + }, + { + "start": 1713.62, + "end": 1714.91, + "probability": 0.8364 + }, + { + "start": 1715.32, + "end": 1718.12, + "probability": 0.9363 + }, + { + "start": 1718.74, + "end": 1721.68, + "probability": 0.8643 + }, + { + "start": 1722.64, + "end": 1724.78, + "probability": 0.6844 + }, + { + "start": 1725.08, + "end": 1728.92, + "probability": 0.9678 + }, + { + "start": 1729.8, + "end": 1734.28, + "probability": 0.4945 + }, + { + "start": 1734.28, + "end": 1738.12, + "probability": 0.8103 + }, + { + "start": 1738.88, + "end": 1741.2, + "probability": 0.4061 + }, + { + "start": 1741.2, + "end": 1745.12, + "probability": 0.5225 + }, + { + "start": 1745.2, + "end": 1747.78, + "probability": 0.5422 + }, + { + "start": 1747.94, + "end": 1750.44, + "probability": 0.7393 + }, + { + "start": 1750.76, + "end": 1751.56, + "probability": 0.9323 + }, + { + "start": 1752.2, + "end": 1757.24, + "probability": 0.9719 + }, + { + "start": 1757.86, + "end": 1758.4, + "probability": 0.3422 + }, + { + "start": 1758.6, + "end": 1759.94, + "probability": 0.8207 + }, + { + "start": 1760.02, + "end": 1761.16, + "probability": 0.9907 + }, + { + "start": 1761.94, + "end": 1764.86, + "probability": 0.7571 + }, + { + "start": 1765.46, + "end": 1769.14, + "probability": 0.9173 + }, + { + "start": 1769.18, + "end": 1772.38, + "probability": 0.637 + }, + { + "start": 1772.48, + "end": 1772.98, + "probability": 0.4164 + }, + { + "start": 1773.32, + "end": 1777.54, + "probability": 0.995 + }, + { + "start": 1778.0, + "end": 1778.7, + "probability": 0.3919 + }, + { + "start": 1779.4, + "end": 1779.89, + "probability": 0.5187 + }, + { + "start": 1780.06, + "end": 1780.58, + "probability": 0.4385 + }, + { + "start": 1780.72, + "end": 1785.06, + "probability": 0.9125 + }, + { + "start": 1785.22, + "end": 1787.03, + "probability": 0.9557 + }, + { + "start": 1787.7, + "end": 1791.44, + "probability": 0.666 + }, + { + "start": 1791.48, + "end": 1794.58, + "probability": 0.8678 + }, + { + "start": 1795.14, + "end": 1795.84, + "probability": 0.8544 + }, + { + "start": 1795.94, + "end": 1797.84, + "probability": 0.8106 + }, + { + "start": 1798.26, + "end": 1800.42, + "probability": 0.9523 + }, + { + "start": 1800.84, + "end": 1803.74, + "probability": 0.7572 + }, + { + "start": 1803.94, + "end": 1804.32, + "probability": 0.046 + }, + { + "start": 1804.32, + "end": 1805.48, + "probability": 0.6375 + }, + { + "start": 1806.14, + "end": 1808.7, + "probability": 0.7069 + }, + { + "start": 1808.8, + "end": 1809.06, + "probability": 0.8616 + }, + { + "start": 1809.47, + "end": 1812.28, + "probability": 0.63 + }, + { + "start": 1812.76, + "end": 1812.76, + "probability": 0.0588 + }, + { + "start": 1813.12, + "end": 1813.48, + "probability": 0.7209 + }, + { + "start": 1813.8, + "end": 1817.46, + "probability": 0.97 + }, + { + "start": 1817.74, + "end": 1818.52, + "probability": 0.1248 + }, + { + "start": 1818.86, + "end": 1819.78, + "probability": 0.4885 + }, + { + "start": 1820.14, + "end": 1820.5, + "probability": 0.4555 + }, + { + "start": 1820.9, + "end": 1823.37, + "probability": 0.8853 + }, + { + "start": 1824.04, + "end": 1824.82, + "probability": 0.6901 + }, + { + "start": 1825.42, + "end": 1828.5, + "probability": 0.9812 + }, + { + "start": 1828.5, + "end": 1832.98, + "probability": 0.937 + }, + { + "start": 1833.48, + "end": 1836.16, + "probability": 0.6987 + }, + { + "start": 1836.82, + "end": 1840.78, + "probability": 0.9674 + }, + { + "start": 1841.42, + "end": 1843.56, + "probability": 0.8603 + }, + { + "start": 1844.06, + "end": 1845.7, + "probability": 0.7248 + }, + { + "start": 1846.9, + "end": 1850.86, + "probability": 0.9846 + }, + { + "start": 1851.0, + "end": 1853.92, + "probability": 0.739 + }, + { + "start": 1854.32, + "end": 1856.5, + "probability": 0.5443 + }, + { + "start": 1856.66, + "end": 1857.44, + "probability": 0.7755 + }, + { + "start": 1857.98, + "end": 1861.24, + "probability": 0.8606 + }, + { + "start": 1862.24, + "end": 1865.74, + "probability": 0.971 + }, + { + "start": 1866.44, + "end": 1867.86, + "probability": 0.9963 + }, + { + "start": 1868.76, + "end": 1871.54, + "probability": 0.8257 + }, + { + "start": 1871.56, + "end": 1875.14, + "probability": 0.9684 + }, + { + "start": 1875.94, + "end": 1876.3, + "probability": 0.305 + }, + { + "start": 1876.38, + "end": 1876.9, + "probability": 0.8268 + }, + { + "start": 1877.08, + "end": 1878.4, + "probability": 0.8275 + }, + { + "start": 1878.8, + "end": 1880.42, + "probability": 0.3384 + }, + { + "start": 1880.88, + "end": 1881.32, + "probability": 0.8382 + }, + { + "start": 1881.8, + "end": 1882.8, + "probability": 0.673 + }, + { + "start": 1882.9, + "end": 1886.68, + "probability": 0.901 + }, + { + "start": 1886.82, + "end": 1890.84, + "probability": 0.6224 + }, + { + "start": 1891.06, + "end": 1891.4, + "probability": 0.7387 + }, + { + "start": 1891.84, + "end": 1892.22, + "probability": 0.6373 + }, + { + "start": 1892.44, + "end": 1893.3, + "probability": 0.5549 + }, + { + "start": 1893.4, + "end": 1894.48, + "probability": 0.5327 + }, + { + "start": 1898.88, + "end": 1900.58, + "probability": 0.7814 + }, + { + "start": 1901.32, + "end": 1903.48, + "probability": 0.9059 + }, + { + "start": 1904.9, + "end": 1907.48, + "probability": 0.9814 + }, + { + "start": 1908.74, + "end": 1912.14, + "probability": 0.9506 + }, + { + "start": 1912.94, + "end": 1914.3, + "probability": 0.8586 + }, + { + "start": 1914.52, + "end": 1918.38, + "probability": 0.8984 + }, + { + "start": 1918.38, + "end": 1918.38, + "probability": 0.5266 + }, + { + "start": 1918.38, + "end": 1919.49, + "probability": 0.9776 + }, + { + "start": 1920.02, + "end": 1923.62, + "probability": 0.7031 + }, + { + "start": 1923.82, + "end": 1924.72, + "probability": 0.8702 + }, + { + "start": 1924.96, + "end": 1926.24, + "probability": 0.7679 + }, + { + "start": 1927.26, + "end": 1927.46, + "probability": 0.3195 + }, + { + "start": 1927.9, + "end": 1932.18, + "probability": 0.9888 + }, + { + "start": 1932.18, + "end": 1936.7, + "probability": 0.9906 + }, + { + "start": 1936.84, + "end": 1941.46, + "probability": 0.9643 + }, + { + "start": 1941.48, + "end": 1941.83, + "probability": 0.5595 + }, + { + "start": 1942.42, + "end": 1945.76, + "probability": 0.909 + }, + { + "start": 1945.78, + "end": 1946.96, + "probability": 0.5004 + }, + { + "start": 1947.46, + "end": 1950.64, + "probability": 0.9563 + }, + { + "start": 1950.84, + "end": 1953.54, + "probability": 0.9357 + }, + { + "start": 1953.84, + "end": 1954.68, + "probability": 0.1597 + }, + { + "start": 1955.63, + "end": 1959.32, + "probability": 0.9741 + }, + { + "start": 1960.38, + "end": 1960.84, + "probability": 0.6818 + }, + { + "start": 1961.02, + "end": 1962.14, + "probability": 0.7305 + }, + { + "start": 1962.34, + "end": 1965.1, + "probability": 0.8173 + }, + { + "start": 1965.2, + "end": 1967.72, + "probability": 0.8598 + }, + { + "start": 1967.9, + "end": 1971.18, + "probability": 0.8668 + }, + { + "start": 1971.28, + "end": 1972.12, + "probability": 0.6832 + }, + { + "start": 1972.68, + "end": 1973.36, + "probability": 0.8275 + }, + { + "start": 1973.9, + "end": 1975.94, + "probability": 0.8031 + }, + { + "start": 1976.62, + "end": 1981.02, + "probability": 0.9731 + }, + { + "start": 1981.3, + "end": 1984.72, + "probability": 0.7859 + }, + { + "start": 1985.16, + "end": 1987.74, + "probability": 0.955 + }, + { + "start": 1987.86, + "end": 1989.38, + "probability": 0.5862 + }, + { + "start": 1989.48, + "end": 1993.44, + "probability": 0.9355 + }, + { + "start": 1993.66, + "end": 1998.06, + "probability": 0.748 + }, + { + "start": 1998.08, + "end": 1999.84, + "probability": 0.6976 + }, + { + "start": 2000.62, + "end": 2001.96, + "probability": 0.5342 + }, + { + "start": 2002.06, + "end": 2003.68, + "probability": 0.7823 + }, + { + "start": 2003.92, + "end": 2004.8, + "probability": 0.8234 + }, + { + "start": 2005.34, + "end": 2006.12, + "probability": 0.9634 + }, + { + "start": 2006.3, + "end": 2006.9, + "probability": 0.6478 + }, + { + "start": 2007.24, + "end": 2010.74, + "probability": 0.9434 + }, + { + "start": 2011.7, + "end": 2013.76, + "probability": 0.8566 + }, + { + "start": 2014.6, + "end": 2017.1, + "probability": 0.9961 + }, + { + "start": 2017.1, + "end": 2018.94, + "probability": 0.9198 + }, + { + "start": 2019.96, + "end": 2020.22, + "probability": 0.6022 + }, + { + "start": 2020.46, + "end": 2021.38, + "probability": 0.9207 + }, + { + "start": 2021.66, + "end": 2024.84, + "probability": 0.9501 + }, + { + "start": 2025.88, + "end": 2028.06, + "probability": 0.7839 + }, + { + "start": 2028.2, + "end": 2029.84, + "probability": 0.8778 + }, + { + "start": 2030.46, + "end": 2032.28, + "probability": 0.775 + }, + { + "start": 2033.04, + "end": 2038.18, + "probability": 0.9088 + }, + { + "start": 2038.18, + "end": 2042.42, + "probability": 0.9126 + }, + { + "start": 2043.54, + "end": 2045.72, + "probability": 0.7186 + }, + { + "start": 2046.68, + "end": 2047.06, + "probability": 0.8412 + }, + { + "start": 2047.18, + "end": 2047.5, + "probability": 0.8683 + }, + { + "start": 2047.9, + "end": 2052.1, + "probability": 0.9912 + }, + { + "start": 2052.1, + "end": 2054.1, + "probability": 0.9966 + }, + { + "start": 2055.24, + "end": 2058.86, + "probability": 0.7369 + }, + { + "start": 2059.12, + "end": 2059.66, + "probability": 0.2555 + }, + { + "start": 2060.34, + "end": 2065.64, + "probability": 0.8325 + }, + { + "start": 2065.8, + "end": 2068.94, + "probability": 0.9612 + }, + { + "start": 2069.94, + "end": 2072.56, + "probability": 0.9335 + }, + { + "start": 2073.08, + "end": 2077.52, + "probability": 0.9907 + }, + { + "start": 2078.58, + "end": 2080.72, + "probability": 0.7683 + }, + { + "start": 2081.24, + "end": 2082.02, + "probability": 0.6675 + }, + { + "start": 2083.7, + "end": 2090.4, + "probability": 0.9128 + }, + { + "start": 2092.3, + "end": 2094.28, + "probability": 0.9821 + }, + { + "start": 2096.71, + "end": 2098.86, + "probability": 0.5499 + }, + { + "start": 2099.18, + "end": 2101.56, + "probability": 0.6883 + }, + { + "start": 2101.9, + "end": 2104.52, + "probability": 0.985 + }, + { + "start": 2105.0, + "end": 2106.34, + "probability": 0.6798 + }, + { + "start": 2108.0, + "end": 2111.3, + "probability": 0.619 + }, + { + "start": 2112.0, + "end": 2116.76, + "probability": 0.9825 + }, + { + "start": 2117.3, + "end": 2118.3, + "probability": 0.9584 + }, + { + "start": 2119.6, + "end": 2120.64, + "probability": 0.787 + }, + { + "start": 2121.52, + "end": 2122.62, + "probability": 0.304 + }, + { + "start": 2122.64, + "end": 2124.56, + "probability": 0.6499 + }, + { + "start": 2125.44, + "end": 2128.74, + "probability": 0.9915 + }, + { + "start": 2128.74, + "end": 2132.7, + "probability": 0.9943 + }, + { + "start": 2132.78, + "end": 2134.04, + "probability": 0.8929 + }, + { + "start": 2134.08, + "end": 2134.86, + "probability": 0.7469 + }, + { + "start": 2134.92, + "end": 2135.34, + "probability": 0.7088 + }, + { + "start": 2136.72, + "end": 2138.44, + "probability": 0.4687 + }, + { + "start": 2139.5, + "end": 2141.88, + "probability": 0.6613 + }, + { + "start": 2142.58, + "end": 2147.98, + "probability": 0.9749 + }, + { + "start": 2148.74, + "end": 2150.58, + "probability": 0.9729 + }, + { + "start": 2151.08, + "end": 2154.22, + "probability": 0.9474 + }, + { + "start": 2154.64, + "end": 2154.78, + "probability": 0.699 + }, + { + "start": 2155.6, + "end": 2156.7, + "probability": 0.6771 + }, + { + "start": 2157.12, + "end": 2157.72, + "probability": 0.8813 + }, + { + "start": 2158.36, + "end": 2159.2, + "probability": 0.8094 + }, + { + "start": 2159.22, + "end": 2160.18, + "probability": 0.9729 + }, + { + "start": 2160.3, + "end": 2162.78, + "probability": 0.9878 + }, + { + "start": 2165.88, + "end": 2166.52, + "probability": 0.6415 + }, + { + "start": 2166.98, + "end": 2168.98, + "probability": 0.9144 + }, + { + "start": 2168.98, + "end": 2170.14, + "probability": 0.9823 + }, + { + "start": 2171.16, + "end": 2172.69, + "probability": 0.4967 + }, + { + "start": 2173.48, + "end": 2174.52, + "probability": 0.6557 + }, + { + "start": 2175.18, + "end": 2176.7, + "probability": 0.8018 + }, + { + "start": 2177.62, + "end": 2180.26, + "probability": 0.9443 + }, + { + "start": 2182.47, + "end": 2185.45, + "probability": 0.7428 + }, + { + "start": 2186.9, + "end": 2187.36, + "probability": 0.5528 + }, + { + "start": 2187.62, + "end": 2188.34, + "probability": 0.2548 + }, + { + "start": 2188.76, + "end": 2194.1, + "probability": 0.0289 + }, + { + "start": 2194.7, + "end": 2195.16, + "probability": 0.017 + }, + { + "start": 2195.16, + "end": 2196.22, + "probability": 0.0639 + }, + { + "start": 2196.22, + "end": 2196.22, + "probability": 0.0969 + }, + { + "start": 2196.22, + "end": 2196.22, + "probability": 0.0704 + }, + { + "start": 2196.22, + "end": 2196.22, + "probability": 0.0733 + }, + { + "start": 2196.22, + "end": 2196.22, + "probability": 0.3123 + }, + { + "start": 2196.22, + "end": 2196.52, + "probability": 0.0248 + }, + { + "start": 2196.94, + "end": 2199.56, + "probability": 0.4056 + }, + { + "start": 2200.94, + "end": 2202.54, + "probability": 0.4705 + }, + { + "start": 2203.06, + "end": 2206.31, + "probability": 0.9357 + }, + { + "start": 2208.18, + "end": 2211.56, + "probability": 0.8736 + }, + { + "start": 2211.74, + "end": 2212.14, + "probability": 0.4992 + }, + { + "start": 2212.86, + "end": 2215.14, + "probability": 0.9616 + }, + { + "start": 2215.9, + "end": 2220.15, + "probability": 0.9147 + }, + { + "start": 2220.52, + "end": 2220.72, + "probability": 0.5754 + }, + { + "start": 2220.82, + "end": 2221.24, + "probability": 0.4436 + }, + { + "start": 2221.86, + "end": 2222.4, + "probability": 0.9792 + }, + { + "start": 2223.04, + "end": 2224.52, + "probability": 0.8641 + }, + { + "start": 2225.72, + "end": 2227.4, + "probability": 0.7236 + }, + { + "start": 2227.54, + "end": 2228.39, + "probability": 0.9575 + }, + { + "start": 2228.94, + "end": 2229.34, + "probability": 0.5268 + }, + { + "start": 2229.36, + "end": 2229.78, + "probability": 0.9599 + }, + { + "start": 2230.22, + "end": 2230.78, + "probability": 0.687 + }, + { + "start": 2231.28, + "end": 2234.04, + "probability": 0.87 + }, + { + "start": 2234.86, + "end": 2235.5, + "probability": 0.757 + }, + { + "start": 2236.18, + "end": 2238.12, + "probability": 0.7079 + }, + { + "start": 2239.14, + "end": 2240.72, + "probability": 0.9727 + }, + { + "start": 2241.42, + "end": 2242.16, + "probability": 0.9881 + }, + { + "start": 2242.72, + "end": 2244.53, + "probability": 0.9831 + }, + { + "start": 2245.4, + "end": 2246.78, + "probability": 0.638 + }, + { + "start": 2246.96, + "end": 2247.94, + "probability": 0.8089 + }, + { + "start": 2248.08, + "end": 2250.64, + "probability": 0.7017 + }, + { + "start": 2250.92, + "end": 2251.62, + "probability": 0.6754 + }, + { + "start": 2251.7, + "end": 2255.6, + "probability": 0.9937 + }, + { + "start": 2256.06, + "end": 2258.62, + "probability": 0.9557 + }, + { + "start": 2259.5, + "end": 2261.94, + "probability": 0.7934 + }, + { + "start": 2262.32, + "end": 2264.74, + "probability": 0.6242 + }, + { + "start": 2264.9, + "end": 2268.76, + "probability": 0.8907 + }, + { + "start": 2269.38, + "end": 2270.76, + "probability": 0.9112 + }, + { + "start": 2271.2, + "end": 2277.2, + "probability": 0.9606 + }, + { + "start": 2277.66, + "end": 2282.9, + "probability": 0.9666 + }, + { + "start": 2283.16, + "end": 2283.78, + "probability": 0.6963 + }, + { + "start": 2284.38, + "end": 2284.8, + "probability": 0.7703 + }, + { + "start": 2285.1, + "end": 2287.74, + "probability": 0.9751 + }, + { + "start": 2288.18, + "end": 2288.86, + "probability": 0.9235 + }, + { + "start": 2289.22, + "end": 2290.16, + "probability": 0.6747 + }, + { + "start": 2290.56, + "end": 2292.26, + "probability": 0.8845 + }, + { + "start": 2292.94, + "end": 2295.84, + "probability": 0.9976 + }, + { + "start": 2296.1, + "end": 2298.14, + "probability": 0.9122 + }, + { + "start": 2298.42, + "end": 2299.36, + "probability": 0.832 + }, + { + "start": 2300.14, + "end": 2301.74, + "probability": 0.7873 + }, + { + "start": 2302.48, + "end": 2303.66, + "probability": 0.9374 + }, + { + "start": 2304.02, + "end": 2306.62, + "probability": 0.8069 + }, + { + "start": 2306.62, + "end": 2310.9, + "probability": 0.9619 + }, + { + "start": 2311.04, + "end": 2312.76, + "probability": 0.7433 + }, + { + "start": 2313.26, + "end": 2314.6, + "probability": 0.6551 + }, + { + "start": 2315.44, + "end": 2319.82, + "probability": 0.6866 + }, + { + "start": 2320.18, + "end": 2320.62, + "probability": 0.7212 + }, + { + "start": 2323.58, + "end": 2323.84, + "probability": 0.1038 + }, + { + "start": 2323.84, + "end": 2323.84, + "probability": 0.1645 + }, + { + "start": 2323.84, + "end": 2323.84, + "probability": 0.1598 + }, + { + "start": 2323.84, + "end": 2325.76, + "probability": 0.7804 + }, + { + "start": 2327.9, + "end": 2328.58, + "probability": 0.3512 + }, + { + "start": 2328.68, + "end": 2330.54, + "probability": 0.9897 + }, + { + "start": 2332.18, + "end": 2335.18, + "probability": 0.6487 + }, + { + "start": 2336.1, + "end": 2338.34, + "probability": 0.8633 + }, + { + "start": 2339.26, + "end": 2341.0, + "probability": 0.7551 + }, + { + "start": 2341.44, + "end": 2343.24, + "probability": 0.9223 + }, + { + "start": 2343.98, + "end": 2346.13, + "probability": 0.8775 + }, + { + "start": 2346.58, + "end": 2349.14, + "probability": 0.9425 + }, + { + "start": 2349.4, + "end": 2350.76, + "probability": 0.9779 + }, + { + "start": 2350.86, + "end": 2351.48, + "probability": 0.2039 + }, + { + "start": 2352.16, + "end": 2352.64, + "probability": 0.5598 + }, + { + "start": 2352.76, + "end": 2354.4, + "probability": 0.6335 + }, + { + "start": 2354.46, + "end": 2355.78, + "probability": 0.8017 + }, + { + "start": 2355.96, + "end": 2358.44, + "probability": 0.8242 + }, + { + "start": 2358.72, + "end": 2360.2, + "probability": 0.7503 + }, + { + "start": 2360.58, + "end": 2361.94, + "probability": 0.9751 + }, + { + "start": 2362.6, + "end": 2362.94, + "probability": 0.6811 + }, + { + "start": 2363.5, + "end": 2366.04, + "probability": 0.9264 + }, + { + "start": 2366.62, + "end": 2369.34, + "probability": 0.9878 + }, + { + "start": 2369.4, + "end": 2369.94, + "probability": 0.7562 + }, + { + "start": 2370.52, + "end": 2373.84, + "probability": 0.5056 + }, + { + "start": 2374.62, + "end": 2375.72, + "probability": 0.5061 + }, + { + "start": 2376.08, + "end": 2378.68, + "probability": 0.4785 + }, + { + "start": 2378.78, + "end": 2380.16, + "probability": 0.5327 + }, + { + "start": 2380.24, + "end": 2381.14, + "probability": 0.6537 + }, + { + "start": 2381.24, + "end": 2383.18, + "probability": 0.8522 + }, + { + "start": 2383.24, + "end": 2385.0, + "probability": 0.5204 + }, + { + "start": 2385.38, + "end": 2386.7, + "probability": 0.887 + }, + { + "start": 2387.1, + "end": 2388.26, + "probability": 0.5625 + }, + { + "start": 2388.84, + "end": 2392.66, + "probability": 0.9639 + }, + { + "start": 2392.67, + "end": 2395.16, + "probability": 0.9001 + }, + { + "start": 2395.74, + "end": 2397.74, + "probability": 0.6858 + }, + { + "start": 2398.44, + "end": 2400.42, + "probability": 0.8256 + }, + { + "start": 2400.9, + "end": 2401.22, + "probability": 0.752 + }, + { + "start": 2401.34, + "end": 2402.17, + "probability": 0.8634 + }, + { + "start": 2402.48, + "end": 2403.36, + "probability": 0.9155 + }, + { + "start": 2403.7, + "end": 2404.36, + "probability": 0.8914 + }, + { + "start": 2404.54, + "end": 2405.02, + "probability": 0.6895 + }, + { + "start": 2405.52, + "end": 2407.02, + "probability": 0.9635 + }, + { + "start": 2407.04, + "end": 2408.74, + "probability": 0.9053 + }, + { + "start": 2409.12, + "end": 2413.42, + "probability": 0.9539 + }, + { + "start": 2413.86, + "end": 2414.42, + "probability": 0.751 + }, + { + "start": 2414.48, + "end": 2415.06, + "probability": 0.6658 + }, + { + "start": 2415.6, + "end": 2416.21, + "probability": 0.5427 + }, + { + "start": 2416.78, + "end": 2417.28, + "probability": 0.9399 + }, + { + "start": 2417.42, + "end": 2418.45, + "probability": 0.8894 + }, + { + "start": 2419.08, + "end": 2420.84, + "probability": 0.6608 + }, + { + "start": 2421.4, + "end": 2422.94, + "probability": 0.7461 + }, + { + "start": 2423.5, + "end": 2424.0, + "probability": 0.9562 + }, + { + "start": 2424.72, + "end": 2425.4, + "probability": 0.5971 + }, + { + "start": 2426.3, + "end": 2428.26, + "probability": 0.9346 + }, + { + "start": 2428.72, + "end": 2432.8, + "probability": 0.9911 + }, + { + "start": 2433.14, + "end": 2434.22, + "probability": 0.9097 + }, + { + "start": 2434.46, + "end": 2435.04, + "probability": 0.8513 + }, + { + "start": 2435.08, + "end": 2435.54, + "probability": 0.6268 + }, + { + "start": 2436.02, + "end": 2437.44, + "probability": 0.9424 + }, + { + "start": 2438.12, + "end": 2439.92, + "probability": 0.9196 + }, + { + "start": 2440.14, + "end": 2441.9, + "probability": 0.9564 + }, + { + "start": 2442.36, + "end": 2446.4, + "probability": 0.3462 + }, + { + "start": 2447.86, + "end": 2448.96, + "probability": 0.4393 + }, + { + "start": 2449.82, + "end": 2450.24, + "probability": 0.782 + }, + { + "start": 2450.36, + "end": 2453.1, + "probability": 0.6243 + }, + { + "start": 2453.18, + "end": 2454.66, + "probability": 0.6844 + }, + { + "start": 2455.08, + "end": 2458.08, + "probability": 0.3271 + }, + { + "start": 2458.86, + "end": 2459.22, + "probability": 0.3482 + }, + { + "start": 2459.84, + "end": 2461.38, + "probability": 0.9958 + }, + { + "start": 2462.06, + "end": 2464.56, + "probability": 0.859 + }, + { + "start": 2464.84, + "end": 2465.4, + "probability": 0.714 + }, + { + "start": 2465.7, + "end": 2467.26, + "probability": 0.4765 + }, + { + "start": 2467.74, + "end": 2468.74, + "probability": 0.8689 + }, + { + "start": 2469.16, + "end": 2471.66, + "probability": 0.6378 + }, + { + "start": 2472.3, + "end": 2479.5, + "probability": 0.9702 + }, + { + "start": 2479.96, + "end": 2480.44, + "probability": 0.3196 + }, + { + "start": 2480.99, + "end": 2482.26, + "probability": 0.5394 + }, + { + "start": 2482.38, + "end": 2483.18, + "probability": 0.3638 + }, + { + "start": 2484.46, + "end": 2488.28, + "probability": 0.582 + }, + { + "start": 2488.68, + "end": 2489.28, + "probability": 0.5692 + }, + { + "start": 2489.62, + "end": 2490.42, + "probability": 0.571 + }, + { + "start": 2490.54, + "end": 2492.3, + "probability": 0.2967 + }, + { + "start": 2492.46, + "end": 2494.02, + "probability": 0.8188 + }, + { + "start": 2494.28, + "end": 2497.56, + "probability": 0.9728 + }, + { + "start": 2497.94, + "end": 2499.31, + "probability": 0.7941 + }, + { + "start": 2499.56, + "end": 2504.76, + "probability": 0.8533 + }, + { + "start": 2505.74, + "end": 2508.46, + "probability": 0.4979 + }, + { + "start": 2509.26, + "end": 2511.2, + "probability": 0.5685 + }, + { + "start": 2511.32, + "end": 2511.94, + "probability": 0.726 + }, + { + "start": 2511.94, + "end": 2514.2, + "probability": 0.5417 + }, + { + "start": 2514.58, + "end": 2515.4, + "probability": 0.7985 + }, + { + "start": 2515.62, + "end": 2517.06, + "probability": 0.7911 + }, + { + "start": 2517.58, + "end": 2517.84, + "probability": 0.8411 + }, + { + "start": 2520.84, + "end": 2523.26, + "probability": 0.6721 + }, + { + "start": 2523.94, + "end": 2525.38, + "probability": 0.5786 + }, + { + "start": 2526.38, + "end": 2528.16, + "probability": 0.9463 + }, + { + "start": 2528.28, + "end": 2528.9, + "probability": 0.5142 + }, + { + "start": 2529.04, + "end": 2530.52, + "probability": 0.7024 + }, + { + "start": 2530.98, + "end": 2536.08, + "probability": 0.9327 + }, + { + "start": 2536.48, + "end": 2539.16, + "probability": 0.7432 + }, + { + "start": 2539.42, + "end": 2539.87, + "probability": 0.7917 + }, + { + "start": 2540.36, + "end": 2540.91, + "probability": 0.9384 + }, + { + "start": 2541.42, + "end": 2542.18, + "probability": 0.9351 + }, + { + "start": 2542.56, + "end": 2543.76, + "probability": 0.8083 + }, + { + "start": 2544.0, + "end": 2546.58, + "probability": 0.6815 + }, + { + "start": 2546.58, + "end": 2546.68, + "probability": 0.4493 + }, + { + "start": 2547.18, + "end": 2550.3, + "probability": 0.9663 + }, + { + "start": 2550.88, + "end": 2552.59, + "probability": 0.8341 + }, + { + "start": 2553.2, + "end": 2555.7, + "probability": 0.9773 + }, + { + "start": 2556.92, + "end": 2557.4, + "probability": 0.3652 + }, + { + "start": 2558.04, + "end": 2559.94, + "probability": 0.9763 + }, + { + "start": 2560.08, + "end": 2561.16, + "probability": 0.7779 + }, + { + "start": 2562.0, + "end": 2562.24, + "probability": 0.0787 + }, + { + "start": 2562.24, + "end": 2562.88, + "probability": 0.0299 + }, + { + "start": 2562.9, + "end": 2563.34, + "probability": 0.0967 + }, + { + "start": 2563.38, + "end": 2566.0, + "probability": 0.3879 + }, + { + "start": 2566.2, + "end": 2566.82, + "probability": 0.8459 + }, + { + "start": 2567.64, + "end": 2573.14, + "probability": 0.8492 + }, + { + "start": 2573.38, + "end": 2574.86, + "probability": 0.7706 + }, + { + "start": 2575.81, + "end": 2577.06, + "probability": 0.789 + }, + { + "start": 2577.56, + "end": 2580.38, + "probability": 0.624 + }, + { + "start": 2580.46, + "end": 2581.48, + "probability": 0.7783 + }, + { + "start": 2582.36, + "end": 2587.6, + "probability": 0.9524 + }, + { + "start": 2587.78, + "end": 2590.22, + "probability": 0.772 + }, + { + "start": 2590.38, + "end": 2594.56, + "probability": 0.893 + }, + { + "start": 2595.38, + "end": 2597.02, + "probability": 0.4577 + }, + { + "start": 2597.18, + "end": 2598.16, + "probability": 0.9845 + }, + { + "start": 2598.3, + "end": 2598.8, + "probability": 0.6551 + }, + { + "start": 2598.86, + "end": 2599.92, + "probability": 0.7996 + }, + { + "start": 2600.06, + "end": 2600.06, + "probability": 0.7106 + }, + { + "start": 2600.06, + "end": 2600.52, + "probability": 0.9352 + }, + { + "start": 2600.6, + "end": 2601.02, + "probability": 0.8975 + }, + { + "start": 2601.1, + "end": 2601.2, + "probability": 0.7914 + }, + { + "start": 2602.06, + "end": 2604.34, + "probability": 0.9013 + }, + { + "start": 2604.6, + "end": 2608.08, + "probability": 0.9111 + }, + { + "start": 2608.64, + "end": 2610.86, + "probability": 0.9314 + }, + { + "start": 2611.0, + "end": 2611.86, + "probability": 0.9716 + }, + { + "start": 2611.96, + "end": 2613.65, + "probability": 0.9695 + }, + { + "start": 2614.5, + "end": 2619.72, + "probability": 0.9767 + }, + { + "start": 2620.52, + "end": 2623.82, + "probability": 0.6739 + }, + { + "start": 2623.82, + "end": 2627.96, + "probability": 0.4469 + }, + { + "start": 2627.96, + "end": 2632.66, + "probability": 0.7941 + }, + { + "start": 2633.08, + "end": 2633.44, + "probability": 0.6002 + }, + { + "start": 2633.52, + "end": 2634.56, + "probability": 0.6991 + }, + { + "start": 2635.04, + "end": 2637.18, + "probability": 0.9209 + }, + { + "start": 2637.48, + "end": 2637.96, + "probability": 0.527 + }, + { + "start": 2638.3, + "end": 2638.7, + "probability": 0.8683 + }, + { + "start": 2639.84, + "end": 2642.28, + "probability": 0.8428 + }, + { + "start": 2642.54, + "end": 2645.7, + "probability": 0.8477 + }, + { + "start": 2645.86, + "end": 2648.38, + "probability": 0.9798 + }, + { + "start": 2649.16, + "end": 2651.36, + "probability": 0.9772 + }, + { + "start": 2652.3, + "end": 2654.84, + "probability": 0.6823 + }, + { + "start": 2660.94, + "end": 2661.6, + "probability": 0.697 + }, + { + "start": 2661.82, + "end": 2663.36, + "probability": 0.7814 + }, + { + "start": 2663.76, + "end": 2664.06, + "probability": 0.4118 + }, + { + "start": 2664.16, + "end": 2666.52, + "probability": 0.7484 + }, + { + "start": 2666.6, + "end": 2670.91, + "probability": 0.8696 + }, + { + "start": 2671.54, + "end": 2674.86, + "probability": 0.9491 + }, + { + "start": 2676.17, + "end": 2678.19, + "probability": 0.861 + }, + { + "start": 2679.2, + "end": 2682.1, + "probability": 0.9742 + }, + { + "start": 2682.2, + "end": 2682.84, + "probability": 0.6862 + }, + { + "start": 2683.28, + "end": 2684.18, + "probability": 0.9917 + }, + { + "start": 2684.78, + "end": 2687.02, + "probability": 0.889 + }, + { + "start": 2687.86, + "end": 2689.18, + "probability": 0.9615 + }, + { + "start": 2690.26, + "end": 2691.5, + "probability": 0.9862 + }, + { + "start": 2692.16, + "end": 2693.06, + "probability": 0.9988 + }, + { + "start": 2693.96, + "end": 2698.86, + "probability": 0.9935 + }, + { + "start": 2699.08, + "end": 2701.78, + "probability": 0.9967 + }, + { + "start": 2702.6, + "end": 2704.0, + "probability": 0.9578 + }, + { + "start": 2704.36, + "end": 2706.52, + "probability": 0.9572 + }, + { + "start": 2706.52, + "end": 2710.62, + "probability": 0.4297 + }, + { + "start": 2710.62, + "end": 2711.49, + "probability": 0.7466 + }, + { + "start": 2712.5, + "end": 2714.88, + "probability": 0.8951 + }, + { + "start": 2714.96, + "end": 2715.52, + "probability": 0.734 + }, + { + "start": 2715.74, + "end": 2717.42, + "probability": 0.9824 + }, + { + "start": 2717.96, + "end": 2720.1, + "probability": 0.8921 + }, + { + "start": 2721.22, + "end": 2722.86, + "probability": 0.5998 + }, + { + "start": 2722.92, + "end": 2723.41, + "probability": 0.5339 + }, + { + "start": 2723.72, + "end": 2726.0, + "probability": 0.7299 + }, + { + "start": 2726.8, + "end": 2728.38, + "probability": 0.909 + }, + { + "start": 2728.52, + "end": 2732.33, + "probability": 0.7429 + }, + { + "start": 2732.46, + "end": 2733.08, + "probability": 0.8098 + }, + { + "start": 2733.2, + "end": 2733.6, + "probability": 0.952 + }, + { + "start": 2733.74, + "end": 2734.1, + "probability": 0.6945 + }, + { + "start": 2734.4, + "end": 2735.86, + "probability": 0.8809 + }, + { + "start": 2736.36, + "end": 2737.92, + "probability": 0.6439 + }, + { + "start": 2738.16, + "end": 2738.73, + "probability": 0.6936 + }, + { + "start": 2738.86, + "end": 2742.1, + "probability": 0.954 + }, + { + "start": 2742.14, + "end": 2744.48, + "probability": 0.8283 + }, + { + "start": 2744.64, + "end": 2746.6, + "probability": 0.9242 + }, + { + "start": 2746.96, + "end": 2748.98, + "probability": 0.986 + }, + { + "start": 2748.98, + "end": 2752.18, + "probability": 0.9978 + }, + { + "start": 2752.32, + "end": 2753.6, + "probability": 0.9398 + }, + { + "start": 2753.72, + "end": 2755.26, + "probability": 0.9164 + }, + { + "start": 2755.68, + "end": 2756.32, + "probability": 0.6312 + }, + { + "start": 2756.62, + "end": 2758.3, + "probability": 0.9875 + }, + { + "start": 2758.54, + "end": 2759.73, + "probability": 0.9547 + }, + { + "start": 2760.78, + "end": 2763.62, + "probability": 0.9946 + }, + { + "start": 2764.1, + "end": 2765.72, + "probability": 0.4561 + }, + { + "start": 2765.84, + "end": 2767.5, + "probability": 0.9707 + }, + { + "start": 2767.56, + "end": 2767.9, + "probability": 0.9522 + }, + { + "start": 2767.96, + "end": 2768.28, + "probability": 0.8217 + }, + { + "start": 2768.92, + "end": 2771.76, + "probability": 0.9043 + }, + { + "start": 2771.76, + "end": 2776.06, + "probability": 0.9795 + }, + { + "start": 2776.2, + "end": 2779.06, + "probability": 0.9296 + }, + { + "start": 2779.66, + "end": 2780.02, + "probability": 0.4048 + }, + { + "start": 2780.34, + "end": 2781.3, + "probability": 0.3152 + }, + { + "start": 2782.4, + "end": 2785.82, + "probability": 0.6586 + }, + { + "start": 2787.48, + "end": 2792.86, + "probability": 0.6193 + }, + { + "start": 2792.86, + "end": 2794.0, + "probability": 0.742 + }, + { + "start": 2794.14, + "end": 2796.67, + "probability": 0.4932 + }, + { + "start": 2799.36, + "end": 2799.36, + "probability": 0.0222 + }, + { + "start": 2799.36, + "end": 2799.36, + "probability": 0.0682 + }, + { + "start": 2799.36, + "end": 2801.02, + "probability": 0.3618 + }, + { + "start": 2802.0, + "end": 2802.0, + "probability": 0.1262 + }, + { + "start": 2804.62, + "end": 2807.96, + "probability": 0.9929 + }, + { + "start": 2808.5, + "end": 2811.78, + "probability": 0.8815 + }, + { + "start": 2812.22, + "end": 2813.48, + "probability": 0.7829 + }, + { + "start": 2813.62, + "end": 2817.34, + "probability": 0.8564 + }, + { + "start": 2819.7, + "end": 2822.71, + "probability": 0.9949 + }, + { + "start": 2823.3, + "end": 2826.12, + "probability": 0.999 + }, + { + "start": 2827.34, + "end": 2831.3, + "probability": 0.9986 + }, + { + "start": 2832.1, + "end": 2835.16, + "probability": 0.9977 + }, + { + "start": 2835.16, + "end": 2838.18, + "probability": 0.9887 + }, + { + "start": 2838.86, + "end": 2839.24, + "probability": 0.2353 + }, + { + "start": 2839.46, + "end": 2840.54, + "probability": 0.8377 + }, + { + "start": 2841.1, + "end": 2841.84, + "probability": 0.8258 + }, + { + "start": 2842.74, + "end": 2843.84, + "probability": 0.7742 + }, + { + "start": 2844.54, + "end": 2845.1, + "probability": 0.5695 + }, + { + "start": 2845.18, + "end": 2846.0, + "probability": 0.897 + }, + { + "start": 2846.18, + "end": 2848.52, + "probability": 0.9697 + }, + { + "start": 2849.06, + "end": 2850.22, + "probability": 0.9194 + }, + { + "start": 2850.82, + "end": 2852.26, + "probability": 0.6637 + }, + { + "start": 2853.14, + "end": 2855.46, + "probability": 0.5664 + }, + { + "start": 2856.24, + "end": 2859.86, + "probability": 0.9774 + }, + { + "start": 2860.42, + "end": 2864.02, + "probability": 0.7996 + }, + { + "start": 2864.82, + "end": 2866.72, + "probability": 0.9481 + }, + { + "start": 2867.22, + "end": 2871.66, + "probability": 0.9001 + }, + { + "start": 2872.68, + "end": 2877.87, + "probability": 0.9374 + }, + { + "start": 2879.24, + "end": 2883.36, + "probability": 0.8795 + }, + { + "start": 2883.6, + "end": 2889.68, + "probability": 0.9976 + }, + { + "start": 2889.68, + "end": 2892.6, + "probability": 0.9953 + }, + { + "start": 2893.2, + "end": 2894.5, + "probability": 0.8123 + }, + { + "start": 2895.02, + "end": 2897.08, + "probability": 0.9714 + }, + { + "start": 2897.24, + "end": 2900.7, + "probability": 0.9724 + }, + { + "start": 2901.22, + "end": 2901.52, + "probability": 0.5981 + }, + { + "start": 2901.64, + "end": 2905.4, + "probability": 0.9514 + }, + { + "start": 2905.5, + "end": 2907.42, + "probability": 0.9004 + }, + { + "start": 2907.46, + "end": 2907.94, + "probability": 0.6781 + }, + { + "start": 2907.98, + "end": 2909.48, + "probability": 0.7227 + }, + { + "start": 2910.08, + "end": 2914.36, + "probability": 0.9224 + }, + { + "start": 2914.86, + "end": 2915.34, + "probability": 0.6629 + }, + { + "start": 2915.74, + "end": 2917.76, + "probability": 0.6681 + }, + { + "start": 2918.48, + "end": 2920.22, + "probability": 0.7489 + }, + { + "start": 2920.9, + "end": 2922.1, + "probability": 0.9715 + }, + { + "start": 2922.6, + "end": 2923.2, + "probability": 0.7555 + }, + { + "start": 2923.38, + "end": 2925.84, + "probability": 0.9762 + }, + { + "start": 2925.84, + "end": 2928.53, + "probability": 0.9989 + }, + { + "start": 2929.14, + "end": 2932.16, + "probability": 0.6739 + }, + { + "start": 2932.88, + "end": 2937.56, + "probability": 0.9252 + }, + { + "start": 2938.26, + "end": 2938.9, + "probability": 0.7182 + }, + { + "start": 2941.9, + "end": 2943.74, + "probability": 0.7308 + }, + { + "start": 2944.46, + "end": 2946.24, + "probability": 0.8746 + }, + { + "start": 2946.66, + "end": 2950.3, + "probability": 0.8696 + }, + { + "start": 2950.46, + "end": 2955.04, + "probability": 0.8339 + }, + { + "start": 2957.28, + "end": 2960.12, + "probability": 0.677 + }, + { + "start": 2960.82, + "end": 2962.46, + "probability": 0.7947 + }, + { + "start": 2968.0, + "end": 2968.76, + "probability": 0.6647 + }, + { + "start": 2968.84, + "end": 2969.94, + "probability": 0.4986 + }, + { + "start": 2969.98, + "end": 2971.44, + "probability": 0.8666 + }, + { + "start": 2971.62, + "end": 2974.22, + "probability": 0.8436 + }, + { + "start": 2975.4, + "end": 2978.71, + "probability": 0.9829 + }, + { + "start": 2978.76, + "end": 2983.18, + "probability": 0.9469 + }, + { + "start": 2983.66, + "end": 2984.06, + "probability": 0.5678 + }, + { + "start": 2985.12, + "end": 2986.52, + "probability": 0.9753 + }, + { + "start": 2987.54, + "end": 2989.92, + "probability": 0.8545 + }, + { + "start": 2990.96, + "end": 2997.24, + "probability": 0.9813 + }, + { + "start": 2997.24, + "end": 3001.64, + "probability": 0.9888 + }, + { + "start": 3001.74, + "end": 3003.48, + "probability": 0.7165 + }, + { + "start": 3004.08, + "end": 3004.36, + "probability": 0.1229 + }, + { + "start": 3004.36, + "end": 3006.52, + "probability": 0.8396 + }, + { + "start": 3006.66, + "end": 3012.14, + "probability": 0.7461 + }, + { + "start": 3013.84, + "end": 3017.96, + "probability": 0.743 + }, + { + "start": 3019.02, + "end": 3020.62, + "probability": 0.8238 + }, + { + "start": 3023.4, + "end": 3025.04, + "probability": 0.5504 + }, + { + "start": 3027.22, + "end": 3033.4, + "probability": 0.9683 + }, + { + "start": 3034.92, + "end": 3036.92, + "probability": 0.9014 + }, + { + "start": 3037.9, + "end": 3042.04, + "probability": 0.9697 + }, + { + "start": 3042.62, + "end": 3043.98, + "probability": 0.8558 + }, + { + "start": 3045.04, + "end": 3046.7, + "probability": 0.8782 + }, + { + "start": 3047.3, + "end": 3051.18, + "probability": 0.7958 + }, + { + "start": 3051.94, + "end": 3053.74, + "probability": 0.9749 + }, + { + "start": 3055.04, + "end": 3057.46, + "probability": 0.7766 + }, + { + "start": 3058.22, + "end": 3061.4, + "probability": 0.9814 + }, + { + "start": 3061.58, + "end": 3063.28, + "probability": 0.6677 + }, + { + "start": 3063.76, + "end": 3064.98, + "probability": 0.9646 + }, + { + "start": 3066.12, + "end": 3068.22, + "probability": 0.7232 + }, + { + "start": 3068.76, + "end": 3070.82, + "probability": 0.8127 + }, + { + "start": 3071.44, + "end": 3076.98, + "probability": 0.9382 + }, + { + "start": 3077.58, + "end": 3079.7, + "probability": 0.991 + }, + { + "start": 3080.4, + "end": 3081.32, + "probability": 0.6712 + }, + { + "start": 3081.88, + "end": 3082.48, + "probability": 0.9936 + }, + { + "start": 3083.04, + "end": 3087.74, + "probability": 0.7093 + }, + { + "start": 3088.04, + "end": 3089.08, + "probability": 0.7277 + }, + { + "start": 3089.58, + "end": 3092.98, + "probability": 0.9565 + }, + { + "start": 3094.0, + "end": 3095.1, + "probability": 0.6778 + }, + { + "start": 3096.52, + "end": 3098.04, + "probability": 0.7031 + }, + { + "start": 3099.18, + "end": 3101.86, + "probability": 0.2594 + }, + { + "start": 3102.8, + "end": 3103.38, + "probability": 0.6395 + }, + { + "start": 3105.3, + "end": 3106.68, + "probability": 0.9742 + }, + { + "start": 3108.7, + "end": 3113.66, + "probability": 0.941 + }, + { + "start": 3114.14, + "end": 3115.1, + "probability": 0.9497 + }, + { + "start": 3116.22, + "end": 3118.32, + "probability": 0.8887 + }, + { + "start": 3118.4, + "end": 3120.16, + "probability": 0.467 + }, + { + "start": 3120.66, + "end": 3122.24, + "probability": 0.734 + }, + { + "start": 3122.32, + "end": 3123.8, + "probability": 0.8532 + }, + { + "start": 3126.19, + "end": 3132.08, + "probability": 0.9385 + }, + { + "start": 3133.5, + "end": 3138.24, + "probability": 0.9041 + }, + { + "start": 3138.84, + "end": 3141.18, + "probability": 0.8158 + }, + { + "start": 3142.08, + "end": 3143.7, + "probability": 0.9016 + }, + { + "start": 3144.16, + "end": 3144.8, + "probability": 0.5735 + }, + { + "start": 3144.88, + "end": 3145.72, + "probability": 0.7592 + }, + { + "start": 3145.76, + "end": 3147.89, + "probability": 0.949 + }, + { + "start": 3148.62, + "end": 3150.48, + "probability": 0.9858 + }, + { + "start": 3151.2, + "end": 3156.92, + "probability": 0.8471 + }, + { + "start": 3157.14, + "end": 3159.16, + "probability": 0.7192 + }, + { + "start": 3159.3, + "end": 3161.44, + "probability": 0.9132 + }, + { + "start": 3162.22, + "end": 3166.18, + "probability": 0.8911 + }, + { + "start": 3166.82, + "end": 3170.6, + "probability": 0.9753 + }, + { + "start": 3170.74, + "end": 3171.96, + "probability": 0.7492 + }, + { + "start": 3172.54, + "end": 3173.9, + "probability": 0.9709 + }, + { + "start": 3174.04, + "end": 3176.5, + "probability": 0.9229 + }, + { + "start": 3176.52, + "end": 3181.21, + "probability": 0.9556 + }, + { + "start": 3182.1, + "end": 3183.79, + "probability": 0.5006 + }, + { + "start": 3184.16, + "end": 3184.92, + "probability": 0.467 + }, + { + "start": 3185.2, + "end": 3185.92, + "probability": 0.503 + }, + { + "start": 3185.98, + "end": 3187.14, + "probability": 0.9302 + }, + { + "start": 3187.36, + "end": 3188.2, + "probability": 0.8937 + }, + { + "start": 3188.76, + "end": 3191.0, + "probability": 0.6704 + }, + { + "start": 3191.18, + "end": 3194.88, + "probability": 0.9661 + }, + { + "start": 3195.1, + "end": 3195.6, + "probability": 0.5068 + }, + { + "start": 3195.72, + "end": 3197.4, + "probability": 0.7756 + }, + { + "start": 3197.56, + "end": 3202.38, + "probability": 0.926 + }, + { + "start": 3202.96, + "end": 3206.94, + "probability": 0.9479 + }, + { + "start": 3208.23, + "end": 3211.64, + "probability": 0.6551 + }, + { + "start": 3211.84, + "end": 3213.28, + "probability": 0.8394 + }, + { + "start": 3213.94, + "end": 3217.24, + "probability": 0.938 + }, + { + "start": 3217.34, + "end": 3218.64, + "probability": 0.7896 + }, + { + "start": 3218.78, + "end": 3219.76, + "probability": 0.697 + }, + { + "start": 3220.24, + "end": 3223.82, + "probability": 0.8467 + }, + { + "start": 3224.48, + "end": 3226.94, + "probability": 0.5695 + }, + { + "start": 3227.4, + "end": 3230.38, + "probability": 0.5163 + }, + { + "start": 3230.92, + "end": 3234.24, + "probability": 0.9541 + }, + { + "start": 3234.3, + "end": 3235.5, + "probability": 0.8662 + }, + { + "start": 3235.62, + "end": 3239.7, + "probability": 0.9728 + }, + { + "start": 3239.7, + "end": 3243.56, + "probability": 0.9817 + }, + { + "start": 3244.12, + "end": 3244.78, + "probability": 0.5903 + }, + { + "start": 3245.26, + "end": 3249.18, + "probability": 0.7841 + }, + { + "start": 3252.82, + "end": 3254.62, + "probability": 0.4388 + }, + { + "start": 3255.75, + "end": 3256.47, + "probability": 0.1592 + }, + { + "start": 3257.2, + "end": 3264.74, + "probability": 0.7371 + }, + { + "start": 3264.74, + "end": 3266.58, + "probability": 0.8343 + }, + { + "start": 3266.6, + "end": 3268.3, + "probability": 0.8385 + }, + { + "start": 3268.36, + "end": 3268.81, + "probability": 0.9617 + }, + { + "start": 3269.64, + "end": 3272.2, + "probability": 0.9265 + }, + { + "start": 3273.2, + "end": 3276.3, + "probability": 0.2459 + }, + { + "start": 3276.3, + "end": 3276.3, + "probability": 0.1671 + }, + { + "start": 3276.3, + "end": 3277.34, + "probability": 0.8131 + }, + { + "start": 3277.6, + "end": 3279.78, + "probability": 0.7921 + }, + { + "start": 3280.08, + "end": 3281.46, + "probability": 0.7714 + }, + { + "start": 3283.37, + "end": 3288.48, + "probability": 0.9497 + }, + { + "start": 3289.32, + "end": 3289.6, + "probability": 0.7602 + }, + { + "start": 3290.06, + "end": 3292.26, + "probability": 0.8492 + }, + { + "start": 3292.76, + "end": 3295.99, + "probability": 0.7538 + }, + { + "start": 3296.6, + "end": 3297.18, + "probability": 0.6383 + }, + { + "start": 3297.74, + "end": 3300.62, + "probability": 0.9802 + }, + { + "start": 3300.72, + "end": 3305.78, + "probability": 0.8381 + }, + { + "start": 3306.26, + "end": 3307.98, + "probability": 0.9077 + }, + { + "start": 3308.1, + "end": 3308.54, + "probability": 0.7156 + }, + { + "start": 3308.6, + "end": 3311.94, + "probability": 0.9713 + }, + { + "start": 3312.0, + "end": 3312.6, + "probability": 0.7594 + }, + { + "start": 3313.5, + "end": 3314.66, + "probability": 0.9723 + }, + { + "start": 3315.06, + "end": 3316.22, + "probability": 0.8327 + }, + { + "start": 3316.52, + "end": 3318.54, + "probability": 0.885 + }, + { + "start": 3318.9, + "end": 3321.74, + "probability": 0.8495 + }, + { + "start": 3322.32, + "end": 3329.9, + "probability": 0.9849 + }, + { + "start": 3330.94, + "end": 3335.06, + "probability": 0.8037 + }, + { + "start": 3335.82, + "end": 3338.28, + "probability": 0.9243 + }, + { + "start": 3338.92, + "end": 3341.34, + "probability": 0.9863 + }, + { + "start": 3342.04, + "end": 3346.44, + "probability": 0.9767 + }, + { + "start": 3346.86, + "end": 3348.84, + "probability": 0.9966 + }, + { + "start": 3348.88, + "end": 3351.02, + "probability": 0.4729 + }, + { + "start": 3351.04, + "end": 3355.04, + "probability": 0.7488 + }, + { + "start": 3355.6, + "end": 3355.96, + "probability": 0.6429 + }, + { + "start": 3356.0, + "end": 3357.92, + "probability": 0.7183 + }, + { + "start": 3360.0, + "end": 3361.12, + "probability": 0.6855 + }, + { + "start": 3361.32, + "end": 3362.14, + "probability": 0.7488 + }, + { + "start": 3362.34, + "end": 3364.64, + "probability": 0.9303 + }, + { + "start": 3365.02, + "end": 3369.74, + "probability": 0.542 + }, + { + "start": 3370.9, + "end": 3374.15, + "probability": 0.8963 + }, + { + "start": 3374.68, + "end": 3379.88, + "probability": 0.9841 + }, + { + "start": 3380.3, + "end": 3383.72, + "probability": 0.9878 + }, + { + "start": 3384.48, + "end": 3385.68, + "probability": 0.7544 + }, + { + "start": 3385.78, + "end": 3386.86, + "probability": 0.9525 + }, + { + "start": 3387.2, + "end": 3388.96, + "probability": 0.9955 + }, + { + "start": 3389.48, + "end": 3390.82, + "probability": 0.798 + }, + { + "start": 3391.38, + "end": 3391.64, + "probability": 0.3952 + }, + { + "start": 3391.64, + "end": 3392.54, + "probability": 0.417 + }, + { + "start": 3393.1, + "end": 3397.92, + "probability": 0.8862 + }, + { + "start": 3398.64, + "end": 3399.86, + "probability": 0.9709 + }, + { + "start": 3400.28, + "end": 3401.0, + "probability": 0.5763 + }, + { + "start": 3402.0, + "end": 3403.7, + "probability": 0.9138 + }, + { + "start": 3404.02, + "end": 3405.06, + "probability": 0.728 + }, + { + "start": 3405.22, + "end": 3405.84, + "probability": 0.8074 + }, + { + "start": 3406.18, + "end": 3406.5, + "probability": 0.7685 + }, + { + "start": 3407.04, + "end": 3407.98, + "probability": 0.822 + }, + { + "start": 3408.06, + "end": 3409.06, + "probability": 0.8679 + }, + { + "start": 3409.94, + "end": 3412.62, + "probability": 0.9558 + }, + { + "start": 3413.78, + "end": 3416.79, + "probability": 0.9464 + }, + { + "start": 3417.42, + "end": 3418.44, + "probability": 0.8357 + }, + { + "start": 3418.66, + "end": 3420.86, + "probability": 0.4293 + }, + { + "start": 3421.4, + "end": 3423.94, + "probability": 0.405 + }, + { + "start": 3424.3, + "end": 3425.06, + "probability": 0.7081 + }, + { + "start": 3425.36, + "end": 3426.33, + "probability": 0.7702 + }, + { + "start": 3426.94, + "end": 3427.78, + "probability": 0.6647 + }, + { + "start": 3428.06, + "end": 3433.28, + "probability": 0.9918 + }, + { + "start": 3433.6, + "end": 3438.28, + "probability": 0.9692 + }, + { + "start": 3438.44, + "end": 3439.54, + "probability": 0.6192 + }, + { + "start": 3439.68, + "end": 3440.58, + "probability": 0.8732 + }, + { + "start": 3440.96, + "end": 3442.1, + "probability": 0.9345 + }, + { + "start": 3442.46, + "end": 3444.56, + "probability": 0.9884 + }, + { + "start": 3446.72, + "end": 3451.0, + "probability": 0.9097 + }, + { + "start": 3451.28, + "end": 3455.6, + "probability": 0.9214 + }, + { + "start": 3456.06, + "end": 3458.8, + "probability": 0.6757 + }, + { + "start": 3459.36, + "end": 3460.44, + "probability": 0.9587 + }, + { + "start": 3460.88, + "end": 3466.62, + "probability": 0.9941 + }, + { + "start": 3466.62, + "end": 3472.42, + "probability": 0.9962 + }, + { + "start": 3472.74, + "end": 3474.4, + "probability": 0.6026 + }, + { + "start": 3474.5, + "end": 3475.65, + "probability": 0.8966 + }, + { + "start": 3476.28, + "end": 3480.04, + "probability": 0.9131 + }, + { + "start": 3480.76, + "end": 3483.7, + "probability": 0.9867 + }, + { + "start": 3484.22, + "end": 3486.62, + "probability": 0.9738 + }, + { + "start": 3487.24, + "end": 3487.98, + "probability": 0.9727 + }, + { + "start": 3489.32, + "end": 3490.66, + "probability": 0.8825 + }, + { + "start": 3493.02, + "end": 3494.7, + "probability": 0.0806 + }, + { + "start": 3495.46, + "end": 3496.24, + "probability": 0.1457 + }, + { + "start": 3496.64, + "end": 3501.06, + "probability": 0.8161 + }, + { + "start": 3501.06, + "end": 3506.08, + "probability": 0.6462 + }, + { + "start": 3507.7, + "end": 3508.44, + "probability": 0.3627 + }, + { + "start": 3508.44, + "end": 3509.34, + "probability": 0.4249 + }, + { + "start": 3509.42, + "end": 3510.44, + "probability": 0.6951 + }, + { + "start": 3510.76, + "end": 3512.86, + "probability": 0.537 + }, + { + "start": 3513.16, + "end": 3515.31, + "probability": 0.9729 + }, + { + "start": 3516.3, + "end": 3516.34, + "probability": 0.0892 + }, + { + "start": 3516.36, + "end": 3516.68, + "probability": 0.6681 + }, + { + "start": 3516.7, + "end": 3517.46, + "probability": 0.9144 + }, + { + "start": 3517.71, + "end": 3521.22, + "probability": 0.7472 + }, + { + "start": 3521.6, + "end": 3523.18, + "probability": 0.2649 + }, + { + "start": 3523.48, + "end": 3525.4, + "probability": 0.1105 + }, + { + "start": 3527.32, + "end": 3532.52, + "probability": 0.7691 + }, + { + "start": 3533.42, + "end": 3536.94, + "probability": 0.9363 + }, + { + "start": 3538.06, + "end": 3540.62, + "probability": 0.8352 + }, + { + "start": 3550.68, + "end": 3553.62, + "probability": 0.9969 + }, + { + "start": 3553.8, + "end": 3556.82, + "probability": 0.9985 + }, + { + "start": 3556.82, + "end": 3559.56, + "probability": 0.7602 + }, + { + "start": 3560.42, + "end": 3568.46, + "probability": 0.9861 + }, + { + "start": 3568.46, + "end": 3569.5, + "probability": 0.6194 + }, + { + "start": 3569.5, + "end": 3570.96, + "probability": 0.019 + }, + { + "start": 3571.86, + "end": 3574.26, + "probability": 0.6934 + }, + { + "start": 3574.28, + "end": 3575.48, + "probability": 0.4789 + }, + { + "start": 3576.14, + "end": 3583.76, + "probability": 0.9019 + }, + { + "start": 3583.76, + "end": 3588.44, + "probability": 0.996 + }, + { + "start": 3590.68, + "end": 3591.3, + "probability": 0.6254 + }, + { + "start": 3592.2, + "end": 3592.52, + "probability": 0.7738 + }, + { + "start": 3594.14, + "end": 3595.66, + "probability": 0.6744 + }, + { + "start": 3595.88, + "end": 3598.0, + "probability": 0.8989 + }, + { + "start": 3599.86, + "end": 3604.64, + "probability": 0.6559 + }, + { + "start": 3605.56, + "end": 3609.86, + "probability": 0.7532 + }, + { + "start": 3609.86, + "end": 3612.9, + "probability": 0.926 + }, + { + "start": 3615.0, + "end": 3618.04, + "probability": 0.0737 + }, + { + "start": 3619.5, + "end": 3620.46, + "probability": 0.0601 + }, + { + "start": 3633.62, + "end": 3640.08, + "probability": 0.029 + }, + { + "start": 3663.18, + "end": 3665.0, + "probability": 0.1824 + }, + { + "start": 3665.84, + "end": 3669.68, + "probability": 0.9584 + }, + { + "start": 3669.76, + "end": 3670.7, + "probability": 0.0364 + }, + { + "start": 3670.72, + "end": 3673.06, + "probability": 0.0443 + }, + { + "start": 3677.62, + "end": 3680.66, + "probability": 0.9525 + }, + { + "start": 3681.38, + "end": 3683.32, + "probability": 0.9963 + }, + { + "start": 3683.84, + "end": 3684.94, + "probability": 0.6494 + }, + { + "start": 3685.12, + "end": 3690.6, + "probability": 0.9336 + }, + { + "start": 3691.6, + "end": 3692.3, + "probability": 0.7202 + }, + { + "start": 3693.0, + "end": 3694.98, + "probability": 0.974 + }, + { + "start": 3695.7, + "end": 3697.71, + "probability": 0.9875 + }, + { + "start": 3698.02, + "end": 3700.74, + "probability": 0.9298 + }, + { + "start": 3702.72, + "end": 3705.76, + "probability": 0.9427 + }, + { + "start": 3706.48, + "end": 3708.59, + "probability": 0.6525 + }, + { + "start": 3710.34, + "end": 3716.8, + "probability": 0.978 + }, + { + "start": 3718.04, + "end": 3718.38, + "probability": 0.3652 + }, + { + "start": 3719.2, + "end": 3723.44, + "probability": 0.9142 + }, + { + "start": 3724.52, + "end": 3727.9, + "probability": 0.6719 + }, + { + "start": 3727.94, + "end": 3729.1, + "probability": 0.7494 + }, + { + "start": 3729.82, + "end": 3732.8, + "probability": 0.8849 + }, + { + "start": 3733.38, + "end": 3734.8, + "probability": 0.9019 + }, + { + "start": 3735.58, + "end": 3736.78, + "probability": 0.8514 + }, + { + "start": 3737.5, + "end": 3737.92, + "probability": 0.8447 + }, + { + "start": 3737.96, + "end": 3742.88, + "probability": 0.9354 + }, + { + "start": 3743.52, + "end": 3743.76, + "probability": 0.8844 + }, + { + "start": 3744.38, + "end": 3749.5, + "probability": 0.8526 + }, + { + "start": 3749.52, + "end": 3750.18, + "probability": 0.8879 + }, + { + "start": 3750.62, + "end": 3753.42, + "probability": 0.9918 + }, + { + "start": 3754.16, + "end": 3759.24, + "probability": 0.9891 + }, + { + "start": 3760.62, + "end": 3761.08, + "probability": 0.5038 + }, + { + "start": 3761.16, + "end": 3762.1, + "probability": 0.9738 + }, + { + "start": 3762.2, + "end": 3764.54, + "probability": 0.9004 + }, + { + "start": 3765.3, + "end": 3767.98, + "probability": 0.9796 + }, + { + "start": 3768.58, + "end": 3770.34, + "probability": 0.9661 + }, + { + "start": 3770.94, + "end": 3773.76, + "probability": 0.8842 + }, + { + "start": 3774.98, + "end": 3781.16, + "probability": 0.9866 + }, + { + "start": 3781.84, + "end": 3783.12, + "probability": 0.958 + }, + { + "start": 3784.22, + "end": 3787.34, + "probability": 0.5142 + }, + { + "start": 3788.08, + "end": 3791.98, + "probability": 0.9139 + }, + { + "start": 3792.06, + "end": 3794.26, + "probability": 0.9849 + }, + { + "start": 3795.94, + "end": 3799.0, + "probability": 0.96 + }, + { + "start": 3799.0, + "end": 3801.18, + "probability": 0.9458 + }, + { + "start": 3802.54, + "end": 3805.14, + "probability": 0.9902 + }, + { + "start": 3806.82, + "end": 3807.52, + "probability": 0.9033 + }, + { + "start": 3808.36, + "end": 3810.42, + "probability": 0.9857 + }, + { + "start": 3810.42, + "end": 3813.14, + "probability": 0.9617 + }, + { + "start": 3813.6, + "end": 3817.04, + "probability": 0.5399 + }, + { + "start": 3817.92, + "end": 3820.38, + "probability": 0.939 + }, + { + "start": 3820.38, + "end": 3823.58, + "probability": 0.9954 + }, + { + "start": 3824.12, + "end": 3825.34, + "probability": 0.7163 + }, + { + "start": 3826.48, + "end": 3827.46, + "probability": 0.644 + }, + { + "start": 3827.5, + "end": 3828.28, + "probability": 0.936 + }, + { + "start": 3828.48, + "end": 3830.28, + "probability": 0.7308 + }, + { + "start": 3830.7, + "end": 3831.4, + "probability": 0.9185 + }, + { + "start": 3831.64, + "end": 3832.86, + "probability": 0.9093 + }, + { + "start": 3833.3, + "end": 3834.38, + "probability": 0.9281 + }, + { + "start": 3835.4, + "end": 3836.1, + "probability": 0.9397 + }, + { + "start": 3836.64, + "end": 3837.74, + "probability": 0.9976 + }, + { + "start": 3840.86, + "end": 3845.2, + "probability": 0.383 + }, + { + "start": 3845.82, + "end": 3847.52, + "probability": 0.535 + }, + { + "start": 3848.46, + "end": 3850.0, + "probability": 0.5518 + }, + { + "start": 3850.12, + "end": 3851.7, + "probability": 0.9767 + }, + { + "start": 3852.24, + "end": 3854.44, + "probability": 0.8677 + }, + { + "start": 3854.58, + "end": 3855.12, + "probability": 0.9324 + }, + { + "start": 3855.94, + "end": 3858.0, + "probability": 0.8135 + }, + { + "start": 3858.92, + "end": 3862.34, + "probability": 0.9378 + }, + { + "start": 3863.1, + "end": 3863.56, + "probability": 0.6748 + }, + { + "start": 3863.76, + "end": 3867.78, + "probability": 0.9591 + }, + { + "start": 3868.94, + "end": 3869.82, + "probability": 0.5886 + }, + { + "start": 3870.68, + "end": 3872.88, + "probability": 0.9193 + }, + { + "start": 3873.36, + "end": 3874.62, + "probability": 0.7288 + }, + { + "start": 3874.68, + "end": 3875.14, + "probability": 0.8115 + }, + { + "start": 3875.7, + "end": 3876.7, + "probability": 0.8481 + }, + { + "start": 3876.8, + "end": 3877.38, + "probability": 0.9697 + }, + { + "start": 3877.44, + "end": 3878.22, + "probability": 0.7089 + }, + { + "start": 3878.44, + "end": 3879.44, + "probability": 0.8909 + }, + { + "start": 3879.56, + "end": 3880.68, + "probability": 0.8992 + }, + { + "start": 3881.4, + "end": 3881.92, + "probability": 0.8875 + }, + { + "start": 3882.66, + "end": 3884.44, + "probability": 0.9277 + }, + { + "start": 3885.64, + "end": 3889.68, + "probability": 0.9861 + }, + { + "start": 3890.34, + "end": 3891.7, + "probability": 0.5994 + }, + { + "start": 3892.5, + "end": 3893.16, + "probability": 0.9119 + }, + { + "start": 3893.7, + "end": 3895.82, + "probability": 0.7481 + }, + { + "start": 3896.46, + "end": 3897.22, + "probability": 0.8311 + }, + { + "start": 3897.58, + "end": 3901.16, + "probability": 0.7898 + }, + { + "start": 3902.34, + "end": 3906.68, + "probability": 0.8656 + }, + { + "start": 3907.04, + "end": 3907.72, + "probability": 0.8753 + }, + { + "start": 3907.84, + "end": 3908.92, + "probability": 0.8817 + }, + { + "start": 3909.32, + "end": 3911.78, + "probability": 0.9591 + }, + { + "start": 3912.26, + "end": 3915.78, + "probability": 0.8499 + }, + { + "start": 3916.3, + "end": 3919.58, + "probability": 0.9843 + }, + { + "start": 3919.86, + "end": 3921.43, + "probability": 0.7764 + }, + { + "start": 3922.42, + "end": 3923.2, + "probability": 0.6506 + }, + { + "start": 3923.5, + "end": 3924.76, + "probability": 0.9733 + }, + { + "start": 3925.06, + "end": 3927.48, + "probability": 0.9487 + }, + { + "start": 3928.22, + "end": 3929.72, + "probability": 0.9708 + }, + { + "start": 3930.28, + "end": 3933.0, + "probability": 0.9235 + }, + { + "start": 3933.06, + "end": 3935.38, + "probability": 0.8477 + }, + { + "start": 3936.34, + "end": 3937.7, + "probability": 0.9856 + }, + { + "start": 3938.32, + "end": 3939.0, + "probability": 0.6301 + }, + { + "start": 3939.06, + "end": 3940.1, + "probability": 0.8473 + }, + { + "start": 3940.54, + "end": 3945.4, + "probability": 0.9683 + }, + { + "start": 3946.74, + "end": 3949.44, + "probability": 0.9922 + }, + { + "start": 3949.94, + "end": 3952.52, + "probability": 0.9756 + }, + { + "start": 3953.36, + "end": 3955.82, + "probability": 0.9712 + }, + { + "start": 3956.36, + "end": 3960.4, + "probability": 0.8476 + }, + { + "start": 3960.74, + "end": 3961.18, + "probability": 0.7251 + }, + { + "start": 3961.64, + "end": 3962.92, + "probability": 0.5511 + }, + { + "start": 3963.28, + "end": 3963.72, + "probability": 0.561 + }, + { + "start": 3963.78, + "end": 3964.72, + "probability": 0.4903 + }, + { + "start": 3965.12, + "end": 3970.38, + "probability": 0.9774 + }, + { + "start": 3970.66, + "end": 3972.04, + "probability": 0.5732 + }, + { + "start": 3973.14, + "end": 3974.12, + "probability": 0.583 + }, + { + "start": 3974.46, + "end": 3977.16, + "probability": 0.7053 + }, + { + "start": 3977.32, + "end": 3980.22, + "probability": 0.9487 + }, + { + "start": 3980.22, + "end": 3983.46, + "probability": 0.9109 + }, + { + "start": 3984.18, + "end": 3987.16, + "probability": 0.6771 + }, + { + "start": 3987.72, + "end": 3988.72, + "probability": 0.9834 + }, + { + "start": 3990.72, + "end": 3992.34, + "probability": 0.7871 + }, + { + "start": 3993.24, + "end": 3994.66, + "probability": 0.7585 + }, + { + "start": 3995.54, + "end": 3997.0, + "probability": 0.8428 + }, + { + "start": 3998.02, + "end": 4002.86, + "probability": 0.9293 + }, + { + "start": 4003.8, + "end": 4005.32, + "probability": 0.6824 + }, + { + "start": 4006.02, + "end": 4009.14, + "probability": 0.9604 + }, + { + "start": 4009.24, + "end": 4009.9, + "probability": 0.8967 + }, + { + "start": 4010.18, + "end": 4013.9, + "probability": 0.9169 + }, + { + "start": 4014.56, + "end": 4018.76, + "probability": 0.7321 + }, + { + "start": 4019.58, + "end": 4020.64, + "probability": 0.9317 + }, + { + "start": 4021.16, + "end": 4023.2, + "probability": 0.8152 + }, + { + "start": 4023.58, + "end": 4027.8, + "probability": 0.9266 + }, + { + "start": 4028.4, + "end": 4030.86, + "probability": 0.602 + }, + { + "start": 4031.4, + "end": 4034.34, + "probability": 0.8065 + }, + { + "start": 4034.82, + "end": 4036.84, + "probability": 0.7915 + }, + { + "start": 4037.28, + "end": 4038.4, + "probability": 0.7988 + }, + { + "start": 4038.74, + "end": 4039.5, + "probability": 0.9182 + }, + { + "start": 4040.08, + "end": 4042.06, + "probability": 0.9788 + }, + { + "start": 4042.56, + "end": 4043.8, + "probability": 0.9881 + }, + { + "start": 4044.22, + "end": 4045.62, + "probability": 0.7832 + }, + { + "start": 4046.5, + "end": 4049.72, + "probability": 0.902 + }, + { + "start": 4050.28, + "end": 4050.5, + "probability": 0.4056 + }, + { + "start": 4050.64, + "end": 4055.64, + "probability": 0.6547 + }, + { + "start": 4055.86, + "end": 4057.48, + "probability": 0.9852 + }, + { + "start": 4058.1, + "end": 4059.74, + "probability": 0.7062 + }, + { + "start": 4061.24, + "end": 4064.9, + "probability": 0.9304 + }, + { + "start": 4065.5, + "end": 4066.52, + "probability": 0.5956 + }, + { + "start": 4067.16, + "end": 4067.7, + "probability": 0.9467 + }, + { + "start": 4068.54, + "end": 4073.32, + "probability": 0.9546 + }, + { + "start": 4074.12, + "end": 4075.02, + "probability": 0.8589 + }, + { + "start": 4076.04, + "end": 4076.54, + "probability": 0.9716 + }, + { + "start": 4077.08, + "end": 4078.28, + "probability": 0.9417 + }, + { + "start": 4078.96, + "end": 4083.42, + "probability": 0.7817 + }, + { + "start": 4083.8, + "end": 4088.8, + "probability": 0.7581 + }, + { + "start": 4089.08, + "end": 4089.34, + "probability": 0.7223 + }, + { + "start": 4089.5, + "end": 4090.02, + "probability": 0.5886 + }, + { + "start": 4090.14, + "end": 4096.5, + "probability": 0.6287 + }, + { + "start": 4097.49, + "end": 4100.37, + "probability": 0.981 + }, + { + "start": 4107.88, + "end": 4110.32, + "probability": 0.88 + }, + { + "start": 4111.26, + "end": 4116.88, + "probability": 0.6804 + }, + { + "start": 4116.88, + "end": 4122.44, + "probability": 0.9856 + }, + { + "start": 4124.8, + "end": 4126.34, + "probability": 0.6339 + }, + { + "start": 4126.9, + "end": 4129.38, + "probability": 0.6379 + }, + { + "start": 4130.08, + "end": 4130.72, + "probability": 0.5603 + }, + { + "start": 4131.94, + "end": 4134.1, + "probability": 0.6825 + }, + { + "start": 4134.76, + "end": 4136.0, + "probability": 0.9282 + }, + { + "start": 4136.54, + "end": 4137.72, + "probability": 0.9126 + }, + { + "start": 4138.38, + "end": 4139.52, + "probability": 0.83 + }, + { + "start": 4140.24, + "end": 4142.26, + "probability": 0.9956 + }, + { + "start": 4142.26, + "end": 4145.12, + "probability": 0.7427 + }, + { + "start": 4145.54, + "end": 4147.66, + "probability": 0.972 + }, + { + "start": 4148.0, + "end": 4151.46, + "probability": 0.9558 + }, + { + "start": 4151.66, + "end": 4154.26, + "probability": 0.9678 + }, + { + "start": 4154.46, + "end": 4155.38, + "probability": 0.9963 + }, + { + "start": 4156.12, + "end": 4159.61, + "probability": 0.9736 + }, + { + "start": 4160.78, + "end": 4162.48, + "probability": 0.5863 + }, + { + "start": 4165.76, + "end": 4168.08, + "probability": 0.9943 + }, + { + "start": 4169.24, + "end": 4171.53, + "probability": 0.9023 + }, + { + "start": 4172.5, + "end": 4172.86, + "probability": 0.8896 + }, + { + "start": 4174.76, + "end": 4177.76, + "probability": 0.7028 + }, + { + "start": 4178.76, + "end": 4182.26, + "probability": 0.9636 + }, + { + "start": 4183.8, + "end": 4189.04, + "probability": 0.9866 + }, + { + "start": 4189.04, + "end": 4193.26, + "probability": 0.9976 + }, + { + "start": 4194.54, + "end": 4198.94, + "probability": 0.9807 + }, + { + "start": 4199.7, + "end": 4204.14, + "probability": 0.9963 + }, + { + "start": 4205.76, + "end": 4211.02, + "probability": 0.996 + }, + { + "start": 4212.04, + "end": 4212.62, + "probability": 0.6145 + }, + { + "start": 4214.14, + "end": 4215.12, + "probability": 0.994 + }, + { + "start": 4216.1, + "end": 4218.46, + "probability": 0.9489 + }, + { + "start": 4220.26, + "end": 4224.0, + "probability": 0.9957 + }, + { + "start": 4224.96, + "end": 4228.1, + "probability": 0.6406 + }, + { + "start": 4229.38, + "end": 4237.68, + "probability": 0.9535 + }, + { + "start": 4238.12, + "end": 4238.86, + "probability": 0.9272 + }, + { + "start": 4239.66, + "end": 4241.92, + "probability": 0.9622 + }, + { + "start": 4242.8, + "end": 4244.62, + "probability": 0.9841 + }, + { + "start": 4245.82, + "end": 4247.54, + "probability": 0.7589 + }, + { + "start": 4247.72, + "end": 4251.18, + "probability": 0.9913 + }, + { + "start": 4252.78, + "end": 4258.42, + "probability": 0.9927 + }, + { + "start": 4259.44, + "end": 4263.76, + "probability": 0.9922 + }, + { + "start": 4264.62, + "end": 4268.5, + "probability": 0.9596 + }, + { + "start": 4269.1, + "end": 4271.58, + "probability": 0.9746 + }, + { + "start": 4273.5, + "end": 4274.38, + "probability": 0.9108 + }, + { + "start": 4275.5, + "end": 4278.04, + "probability": 0.9308 + }, + { + "start": 4278.86, + "end": 4283.84, + "probability": 0.9797 + }, + { + "start": 4284.68, + "end": 4285.94, + "probability": 0.9376 + }, + { + "start": 4286.7, + "end": 4289.16, + "probability": 0.9957 + }, + { + "start": 4290.26, + "end": 4291.9, + "probability": 0.7175 + }, + { + "start": 4294.95, + "end": 4300.16, + "probability": 0.8675 + }, + { + "start": 4300.6, + "end": 4302.96, + "probability": 0.9958 + }, + { + "start": 4304.02, + "end": 4305.16, + "probability": 0.8451 + }, + { + "start": 4305.42, + "end": 4306.18, + "probability": 0.8939 + }, + { + "start": 4306.46, + "end": 4309.9, + "probability": 0.9816 + }, + { + "start": 4310.82, + "end": 4314.08, + "probability": 0.9843 + }, + { + "start": 4314.86, + "end": 4317.56, + "probability": 0.9941 + }, + { + "start": 4317.66, + "end": 4319.1, + "probability": 0.9791 + }, + { + "start": 4319.76, + "end": 4321.1, + "probability": 0.6225 + }, + { + "start": 4323.06, + "end": 4324.36, + "probability": 0.7954 + }, + { + "start": 4324.64, + "end": 4325.62, + "probability": 0.8136 + }, + { + "start": 4325.96, + "end": 4327.7, + "probability": 0.9632 + }, + { + "start": 4328.38, + "end": 4330.44, + "probability": 0.7168 + }, + { + "start": 4331.27, + "end": 4334.32, + "probability": 0.7749 + }, + { + "start": 4335.52, + "end": 4338.34, + "probability": 0.9975 + }, + { + "start": 4338.34, + "end": 4341.8, + "probability": 0.6129 + }, + { + "start": 4342.46, + "end": 4346.88, + "probability": 0.9957 + }, + { + "start": 4347.58, + "end": 4350.02, + "probability": 0.9409 + }, + { + "start": 4350.16, + "end": 4354.5, + "probability": 0.9773 + }, + { + "start": 4355.06, + "end": 4355.68, + "probability": 0.6233 + }, + { + "start": 4356.68, + "end": 4357.72, + "probability": 0.9354 + }, + { + "start": 4359.1, + "end": 4360.8, + "probability": 0.6373 + }, + { + "start": 4362.32, + "end": 4363.36, + "probability": 0.96 + }, + { + "start": 4364.02, + "end": 4368.56, + "probability": 0.9742 + }, + { + "start": 4368.68, + "end": 4369.68, + "probability": 0.9486 + }, + { + "start": 4370.12, + "end": 4370.4, + "probability": 0.5523 + }, + { + "start": 4370.94, + "end": 4372.62, + "probability": 0.9867 + }, + { + "start": 4374.13, + "end": 4377.5, + "probability": 0.9938 + }, + { + "start": 4379.2, + "end": 4381.42, + "probability": 0.6127 + }, + { + "start": 4382.74, + "end": 4387.16, + "probability": 0.9957 + }, + { + "start": 4388.06, + "end": 4389.52, + "probability": 0.7469 + }, + { + "start": 4389.7, + "end": 4392.32, + "probability": 0.9344 + }, + { + "start": 4393.04, + "end": 4394.04, + "probability": 0.9447 + }, + { + "start": 4394.72, + "end": 4396.22, + "probability": 0.8121 + }, + { + "start": 4396.82, + "end": 4397.72, + "probability": 0.8217 + }, + { + "start": 4398.64, + "end": 4402.06, + "probability": 0.9847 + }, + { + "start": 4403.5, + "end": 4406.56, + "probability": 0.8096 + }, + { + "start": 4407.36, + "end": 4411.38, + "probability": 0.8963 + }, + { + "start": 4412.04, + "end": 4414.22, + "probability": 0.9785 + }, + { + "start": 4415.32, + "end": 4415.98, + "probability": 0.6055 + }, + { + "start": 4416.08, + "end": 4419.74, + "probability": 0.9957 + }, + { + "start": 4420.86, + "end": 4421.56, + "probability": 0.2836 + }, + { + "start": 4422.28, + "end": 4423.72, + "probability": 0.8669 + }, + { + "start": 4424.32, + "end": 4424.72, + "probability": 0.7195 + }, + { + "start": 4424.94, + "end": 4426.44, + "probability": 0.9035 + }, + { + "start": 4426.64, + "end": 4428.46, + "probability": 0.7943 + }, + { + "start": 4429.5, + "end": 4432.28, + "probability": 0.9976 + }, + { + "start": 4432.28, + "end": 4435.62, + "probability": 0.9611 + }, + { + "start": 4436.48, + "end": 4439.84, + "probability": 0.9603 + }, + { + "start": 4440.7, + "end": 4444.22, + "probability": 0.8636 + }, + { + "start": 4444.84, + "end": 4446.74, + "probability": 0.9582 + }, + { + "start": 4446.82, + "end": 4449.74, + "probability": 0.9927 + }, + { + "start": 4449.98, + "end": 4451.54, + "probability": 0.9946 + }, + { + "start": 4452.96, + "end": 4458.64, + "probability": 0.9918 + }, + { + "start": 4460.26, + "end": 4460.92, + "probability": 0.9678 + }, + { + "start": 4461.76, + "end": 4463.9, + "probability": 0.0973 + }, + { + "start": 4464.26, + "end": 4465.83, + "probability": 0.783 + }, + { + "start": 4466.18, + "end": 4467.96, + "probability": 0.5186 + }, + { + "start": 4468.66, + "end": 4471.02, + "probability": 0.7879 + }, + { + "start": 4471.04, + "end": 4472.08, + "probability": 0.7764 + }, + { + "start": 4472.14, + "end": 4475.2, + "probability": 0.9267 + }, + { + "start": 4475.26, + "end": 4476.11, + "probability": 0.788 + }, + { + "start": 4476.16, + "end": 4476.96, + "probability": 0.3485 + }, + { + "start": 4477.0, + "end": 4477.62, + "probability": 0.8714 + }, + { + "start": 4477.8, + "end": 4480.2, + "probability": 0.9904 + }, + { + "start": 4480.64, + "end": 4486.04, + "probability": 0.9778 + }, + { + "start": 4486.52, + "end": 4488.56, + "probability": 0.8906 + }, + { + "start": 4488.56, + "end": 4490.09, + "probability": 0.0666 + }, + { + "start": 4490.84, + "end": 4492.2, + "probability": 0.6747 + }, + { + "start": 4492.58, + "end": 4493.24, + "probability": 0.0407 + }, + { + "start": 4493.66, + "end": 4494.54, + "probability": 0.0972 + }, + { + "start": 4495.22, + "end": 4496.52, + "probability": 0.2396 + }, + { + "start": 4496.7, + "end": 4498.42, + "probability": 0.9246 + }, + { + "start": 4499.68, + "end": 4503.94, + "probability": 0.74 + }, + { + "start": 4504.64, + "end": 4505.22, + "probability": 0.5587 + }, + { + "start": 4505.32, + "end": 4506.82, + "probability": 0.4991 + }, + { + "start": 4507.2, + "end": 4511.3, + "probability": 0.8958 + }, + { + "start": 4512.44, + "end": 4514.82, + "probability": 0.8655 + }, + { + "start": 4515.04, + "end": 4516.52, + "probability": 0.5699 + }, + { + "start": 4517.26, + "end": 4519.38, + "probability": 0.5655 + }, + { + "start": 4519.42, + "end": 4519.9, + "probability": 0.7225 + }, + { + "start": 4520.64, + "end": 4522.46, + "probability": 0.7575 + }, + { + "start": 4522.7, + "end": 4523.74, + "probability": 0.8868 + }, + { + "start": 4523.84, + "end": 4524.52, + "probability": 0.5316 + }, + { + "start": 4524.84, + "end": 4525.38, + "probability": 0.7543 + }, + { + "start": 4526.16, + "end": 4527.26, + "probability": 0.951 + }, + { + "start": 4527.88, + "end": 4530.28, + "probability": 0.981 + }, + { + "start": 4530.32, + "end": 4531.1, + "probability": 0.976 + }, + { + "start": 4531.18, + "end": 4531.76, + "probability": 0.9325 + }, + { + "start": 4532.96, + "end": 4534.9, + "probability": 0.6122 + }, + { + "start": 4536.64, + "end": 4540.46, + "probability": 0.9912 + }, + { + "start": 4541.56, + "end": 4545.18, + "probability": 0.9954 + }, + { + "start": 4545.22, + "end": 4549.38, + "probability": 0.9779 + }, + { + "start": 4550.72, + "end": 4552.32, + "probability": 0.7115 + }, + { + "start": 4553.38, + "end": 4556.36, + "probability": 0.9904 + }, + { + "start": 4556.36, + "end": 4560.04, + "probability": 0.687 + }, + { + "start": 4560.9, + "end": 4563.94, + "probability": 0.9948 + }, + { + "start": 4564.56, + "end": 4568.04, + "probability": 0.9957 + }, + { + "start": 4568.48, + "end": 4571.56, + "probability": 0.9859 + }, + { + "start": 4573.26, + "end": 4577.34, + "probability": 0.9901 + }, + { + "start": 4577.94, + "end": 4581.86, + "probability": 0.9803 + }, + { + "start": 4582.42, + "end": 4583.16, + "probability": 0.8563 + }, + { + "start": 4583.5, + "end": 4588.16, + "probability": 0.9924 + }, + { + "start": 4589.18, + "end": 4592.48, + "probability": 0.9496 + }, + { + "start": 4592.6, + "end": 4593.02, + "probability": 0.492 + }, + { + "start": 4593.86, + "end": 4595.38, + "probability": 0.9673 + }, + { + "start": 4596.32, + "end": 4597.12, + "probability": 0.6863 + }, + { + "start": 4597.78, + "end": 4599.13, + "probability": 0.4141 + }, + { + "start": 4599.96, + "end": 4602.92, + "probability": 0.7157 + }, + { + "start": 4604.12, + "end": 4607.94, + "probability": 0.9827 + }, + { + "start": 4608.38, + "end": 4610.22, + "probability": 0.9884 + }, + { + "start": 4611.54, + "end": 4614.36, + "probability": 0.9925 + }, + { + "start": 4614.94, + "end": 4616.92, + "probability": 0.8176 + }, + { + "start": 4618.12, + "end": 4620.08, + "probability": 0.6161 + }, + { + "start": 4621.58, + "end": 4622.88, + "probability": 0.4669 + }, + { + "start": 4622.9, + "end": 4624.98, + "probability": 0.3615 + }, + { + "start": 4625.04, + "end": 4628.24, + "probability": 0.9006 + }, + { + "start": 4628.3, + "end": 4629.0, + "probability": 0.9985 + }, + { + "start": 4629.92, + "end": 4634.24, + "probability": 0.756 + }, + { + "start": 4635.58, + "end": 4640.74, + "probability": 0.9871 + }, + { + "start": 4640.86, + "end": 4642.26, + "probability": 0.8903 + }, + { + "start": 4642.68, + "end": 4643.72, + "probability": 0.9985 + }, + { + "start": 4644.76, + "end": 4647.56, + "probability": 0.9913 + }, + { + "start": 4647.62, + "end": 4650.72, + "probability": 0.8507 + }, + { + "start": 4651.42, + "end": 4651.82, + "probability": 0.2602 + }, + { + "start": 4651.86, + "end": 4652.46, + "probability": 0.7463 + }, + { + "start": 4652.6, + "end": 4654.74, + "probability": 0.9684 + }, + { + "start": 4654.84, + "end": 4655.08, + "probability": 0.8412 + }, + { + "start": 4655.66, + "end": 4656.36, + "probability": 0.53 + }, + { + "start": 4656.4, + "end": 4660.44, + "probability": 0.7107 + }, + { + "start": 4661.18, + "end": 4661.86, + "probability": 0.5867 + }, + { + "start": 4662.02, + "end": 4662.32, + "probability": 0.7598 + }, + { + "start": 4662.34, + "end": 4662.68, + "probability": 0.8162 + }, + { + "start": 4663.1, + "end": 4666.32, + "probability": 0.901 + }, + { + "start": 4666.66, + "end": 4668.6, + "probability": 0.9652 + }, + { + "start": 4671.48, + "end": 4674.14, + "probability": 0.7832 + }, + { + "start": 4675.3, + "end": 4678.02, + "probability": 0.973 + }, + { + "start": 4679.22, + "end": 4679.48, + "probability": 0.4447 + }, + { + "start": 4681.14, + "end": 4682.98, + "probability": 0.476 + }, + { + "start": 4691.46, + "end": 4692.56, + "probability": 0.2017 + }, + { + "start": 4693.82, + "end": 4698.08, + "probability": 0.9746 + }, + { + "start": 4699.06, + "end": 4699.42, + "probability": 0.9989 + }, + { + "start": 4701.34, + "end": 4703.52, + "probability": 0.9824 + }, + { + "start": 4706.36, + "end": 4707.68, + "probability": 0.8569 + }, + { + "start": 4708.78, + "end": 4710.22, + "probability": 0.5591 + }, + { + "start": 4710.58, + "end": 4713.52, + "probability": 0.8388 + }, + { + "start": 4713.52, + "end": 4714.96, + "probability": 0.9123 + }, + { + "start": 4715.24, + "end": 4715.8, + "probability": 0.9944 + }, + { + "start": 4716.44, + "end": 4717.5, + "probability": 0.9616 + }, + { + "start": 4718.28, + "end": 4719.0, + "probability": 0.8017 + }, + { + "start": 4719.82, + "end": 4720.74, + "probability": 0.9407 + }, + { + "start": 4721.46, + "end": 4721.88, + "probability": 0.8627 + }, + { + "start": 4723.36, + "end": 4726.64, + "probability": 0.8558 + }, + { + "start": 4727.64, + "end": 4730.2, + "probability": 0.9494 + }, + { + "start": 4731.5, + "end": 4733.55, + "probability": 0.749 + }, + { + "start": 4734.54, + "end": 4735.94, + "probability": 0.8839 + }, + { + "start": 4736.68, + "end": 4739.3, + "probability": 0.8162 + }, + { + "start": 4740.58, + "end": 4743.48, + "probability": 0.9745 + }, + { + "start": 4746.36, + "end": 4748.22, + "probability": 0.9673 + }, + { + "start": 4749.62, + "end": 4751.96, + "probability": 0.9943 + }, + { + "start": 4754.58, + "end": 4756.14, + "probability": 0.8918 + }, + { + "start": 4756.32, + "end": 4760.98, + "probability": 0.8721 + }, + { + "start": 4761.68, + "end": 4762.38, + "probability": 0.2149 + }, + { + "start": 4764.34, + "end": 4765.0, + "probability": 0.5798 + }, + { + "start": 4765.54, + "end": 4767.38, + "probability": 0.8576 + }, + { + "start": 4767.86, + "end": 4770.32, + "probability": 0.9327 + }, + { + "start": 4770.54, + "end": 4770.54, + "probability": 0.0921 + }, + { + "start": 4770.72, + "end": 4773.92, + "probability": 0.7114 + }, + { + "start": 4774.78, + "end": 4778.0, + "probability": 0.9553 + }, + { + "start": 4778.62, + "end": 4779.68, + "probability": 0.9921 + }, + { + "start": 4780.22, + "end": 4780.98, + "probability": 0.7778 + }, + { + "start": 4781.62, + "end": 4782.28, + "probability": 0.8597 + }, + { + "start": 4783.42, + "end": 4785.74, + "probability": 0.7666 + }, + { + "start": 4786.1, + "end": 4792.28, + "probability": 0.9886 + }, + { + "start": 4792.84, + "end": 4793.08, + "probability": 0.8521 + }, + { + "start": 4793.76, + "end": 4797.48, + "probability": 0.6671 + }, + { + "start": 4798.7, + "end": 4799.56, + "probability": 0.5058 + }, + { + "start": 4800.18, + "end": 4803.32, + "probability": 0.9502 + }, + { + "start": 4804.88, + "end": 4810.48, + "probability": 0.9846 + }, + { + "start": 4811.0, + "end": 4815.24, + "probability": 0.8368 + }, + { + "start": 4815.62, + "end": 4817.52, + "probability": 0.6603 + }, + { + "start": 4818.92, + "end": 4819.44, + "probability": 0.7622 + }, + { + "start": 4820.54, + "end": 4822.16, + "probability": 0.9896 + }, + { + "start": 4823.82, + "end": 4826.94, + "probability": 0.9558 + }, + { + "start": 4829.16, + "end": 4832.3, + "probability": 0.2103 + }, + { + "start": 4832.78, + "end": 4833.16, + "probability": 0.4015 + }, + { + "start": 4834.46, + "end": 4836.92, + "probability": 0.9823 + }, + { + "start": 4837.72, + "end": 4838.4, + "probability": 0.9263 + }, + { + "start": 4842.02, + "end": 4843.88, + "probability": 0.6887 + }, + { + "start": 4844.56, + "end": 4845.2, + "probability": 0.6424 + }, + { + "start": 4846.54, + "end": 4847.32, + "probability": 0.5318 + }, + { + "start": 4850.85, + "end": 4854.52, + "probability": 0.971 + }, + { + "start": 4855.7, + "end": 4856.18, + "probability": 0.835 + }, + { + "start": 4856.94, + "end": 4858.64, + "probability": 0.9858 + }, + { + "start": 4859.9, + "end": 4863.32, + "probability": 0.9683 + }, + { + "start": 4863.86, + "end": 4866.36, + "probability": 0.9762 + }, + { + "start": 4867.8, + "end": 4870.26, + "probability": 0.865 + }, + { + "start": 4871.52, + "end": 4873.06, + "probability": 0.9878 + }, + { + "start": 4875.04, + "end": 4876.04, + "probability": 0.7646 + }, + { + "start": 4877.86, + "end": 4879.76, + "probability": 0.6759 + }, + { + "start": 4881.2, + "end": 4882.24, + "probability": 0.999 + }, + { + "start": 4882.8, + "end": 4884.34, + "probability": 0.9993 + }, + { + "start": 4884.74, + "end": 4885.9, + "probability": 0.8751 + }, + { + "start": 4891.98, + "end": 4893.58, + "probability": 0.9962 + }, + { + "start": 4895.26, + "end": 4896.82, + "probability": 0.9727 + }, + { + "start": 4897.98, + "end": 4901.02, + "probability": 0.9219 + }, + { + "start": 4901.64, + "end": 4905.68, + "probability": 0.9679 + }, + { + "start": 4907.3, + "end": 4909.72, + "probability": 0.7 + }, + { + "start": 4909.86, + "end": 4910.72, + "probability": 0.7249 + }, + { + "start": 4911.39, + "end": 4912.54, + "probability": 0.528 + }, + { + "start": 4913.08, + "end": 4914.14, + "probability": 0.9327 + }, + { + "start": 4914.22, + "end": 4914.92, + "probability": 0.5689 + }, + { + "start": 4915.3, + "end": 4917.24, + "probability": 0.9626 + }, + { + "start": 4919.76, + "end": 4922.52, + "probability": 0.8099 + }, + { + "start": 4923.1, + "end": 4924.62, + "probability": 0.5722 + }, + { + "start": 4925.4, + "end": 4926.96, + "probability": 0.988 + }, + { + "start": 4927.9, + "end": 4929.04, + "probability": 0.9038 + }, + { + "start": 4930.46, + "end": 4933.62, + "probability": 0.9454 + }, + { + "start": 4933.8, + "end": 4935.0, + "probability": 0.9905 + }, + { + "start": 4936.66, + "end": 4936.84, + "probability": 0.6759 + }, + { + "start": 4937.5, + "end": 4941.88, + "probability": 0.9937 + }, + { + "start": 4943.54, + "end": 4946.1, + "probability": 0.1566 + }, + { + "start": 4946.12, + "end": 4947.16, + "probability": 0.6032 + }, + { + "start": 4947.46, + "end": 4948.72, + "probability": 0.7236 + }, + { + "start": 4951.16, + "end": 4953.02, + "probability": 0.4263 + }, + { + "start": 4953.02, + "end": 4954.2, + "probability": 0.341 + }, + { + "start": 4954.22, + "end": 4955.27, + "probability": 0.3042 + }, + { + "start": 4955.68, + "end": 4957.62, + "probability": 0.8861 + }, + { + "start": 4957.84, + "end": 4958.98, + "probability": 0.3627 + }, + { + "start": 4960.06, + "end": 4961.1, + "probability": 0.8066 + }, + { + "start": 4963.68, + "end": 4965.98, + "probability": 0.9194 + }, + { + "start": 4966.2, + "end": 4966.84, + "probability": 0.6136 + }, + { + "start": 4968.3, + "end": 4969.8, + "probability": 0.8693 + }, + { + "start": 4970.1, + "end": 4970.3, + "probability": 0.8204 + }, + { + "start": 4971.48, + "end": 4976.18, + "probability": 0.9707 + }, + { + "start": 4976.68, + "end": 4980.4, + "probability": 0.996 + }, + { + "start": 4980.5, + "end": 4983.48, + "probability": 0.917 + }, + { + "start": 4983.84, + "end": 4985.02, + "probability": 0.7387 + }, + { + "start": 4987.21, + "end": 4989.78, + "probability": 0.6557 + }, + { + "start": 4991.84, + "end": 4995.98, + "probability": 0.8596 + }, + { + "start": 4996.86, + "end": 4998.38, + "probability": 0.8898 + }, + { + "start": 4998.44, + "end": 4999.99, + "probability": 0.9628 + }, + { + "start": 5005.28, + "end": 5005.66, + "probability": 0.7005 + }, + { + "start": 5005.8, + "end": 5007.3, + "probability": 0.8369 + }, + { + "start": 5007.42, + "end": 5009.88, + "probability": 0.7454 + }, + { + "start": 5010.0, + "end": 5011.02, + "probability": 0.3992 + }, + { + "start": 5013.14, + "end": 5015.34, + "probability": 0.5205 + }, + { + "start": 5015.38, + "end": 5015.88, + "probability": 0.5792 + }, + { + "start": 5016.28, + "end": 5016.88, + "probability": 0.6886 + }, + { + "start": 5016.9, + "end": 5017.4, + "probability": 0.9258 + }, + { + "start": 5023.94, + "end": 5026.42, + "probability": 0.157 + }, + { + "start": 5026.42, + "end": 5030.06, + "probability": 0.058 + }, + { + "start": 5030.5, + "end": 5030.5, + "probability": 0.0752 + }, + { + "start": 5030.54, + "end": 5030.84, + "probability": 0.0876 + }, + { + "start": 5031.24, + "end": 5035.12, + "probability": 0.5245 + }, + { + "start": 5035.26, + "end": 5039.86, + "probability": 0.9309 + }, + { + "start": 5040.7, + "end": 5042.44, + "probability": 0.8274 + }, + { + "start": 5042.52, + "end": 5045.0, + "probability": 0.6762 + }, + { + "start": 5045.4, + "end": 5049.74, + "probability": 0.9552 + }, + { + "start": 5051.2, + "end": 5051.5, + "probability": 0.7715 + }, + { + "start": 5052.08, + "end": 5053.51, + "probability": 0.6814 + }, + { + "start": 5059.38, + "end": 5060.58, + "probability": 0.8034 + }, + { + "start": 5061.02, + "end": 5062.26, + "probability": 0.8725 + }, + { + "start": 5062.56, + "end": 5063.06, + "probability": 0.1573 + }, + { + "start": 5068.52, + "end": 5068.52, + "probability": 0.3701 + }, + { + "start": 5068.52, + "end": 5070.12, + "probability": 0.748 + }, + { + "start": 5071.74, + "end": 5073.6, + "probability": 0.7182 + }, + { + "start": 5074.16, + "end": 5074.36, + "probability": 0.9946 + }, + { + "start": 5075.7, + "end": 5077.04, + "probability": 0.7588 + }, + { + "start": 5078.9, + "end": 5080.15, + "probability": 0.979 + }, + { + "start": 5081.54, + "end": 5082.74, + "probability": 0.9623 + }, + { + "start": 5084.84, + "end": 5085.18, + "probability": 0.9421 + }, + { + "start": 5086.14, + "end": 5088.04, + "probability": 0.8041 + }, + { + "start": 5089.46, + "end": 5089.46, + "probability": 0.0032 + }, + { + "start": 5099.36, + "end": 5102.36, + "probability": 0.9128 + }, + { + "start": 5103.88, + "end": 5105.34, + "probability": 0.9984 + }, + { + "start": 5106.34, + "end": 5107.58, + "probability": 0.998 + }, + { + "start": 5108.8, + "end": 5110.42, + "probability": 0.9894 + }, + { + "start": 5111.86, + "end": 5114.12, + "probability": 0.999 + }, + { + "start": 5115.82, + "end": 5119.12, + "probability": 0.9984 + }, + { + "start": 5119.86, + "end": 5119.92, + "probability": 0.2366 + }, + { + "start": 5123.82, + "end": 5126.2, + "probability": 0.9956 + }, + { + "start": 5135.7, + "end": 5136.68, + "probability": 0.3779 + }, + { + "start": 5138.3, + "end": 5138.66, + "probability": 0.1504 + }, + { + "start": 5138.66, + "end": 5139.22, + "probability": 0.48 + }, + { + "start": 5140.62, + "end": 5140.82, + "probability": 0.2473 + }, + { + "start": 5141.48, + "end": 5143.54, + "probability": 0.0308 + }, + { + "start": 5146.62, + "end": 5148.92, + "probability": 0.7753 + }, + { + "start": 5149.86, + "end": 5151.48, + "probability": 0.9946 + }, + { + "start": 5153.06, + "end": 5153.7, + "probability": 0.999 + }, + { + "start": 5154.26, + "end": 5156.64, + "probability": 0.8987 + }, + { + "start": 5157.8, + "end": 5159.68, + "probability": 0.998 + }, + { + "start": 5159.82, + "end": 5161.22, + "probability": 0.9991 + }, + { + "start": 5163.06, + "end": 5164.32, + "probability": 0.9971 + }, + { + "start": 5164.76, + "end": 5166.62, + "probability": 0.9836 + }, + { + "start": 5167.12, + "end": 5169.76, + "probability": 0.538 + }, + { + "start": 5170.44, + "end": 5171.3, + "probability": 0.8738 + }, + { + "start": 5171.94, + "end": 5174.65, + "probability": 0.9286 + }, + { + "start": 5175.72, + "end": 5177.22, + "probability": 0.9789 + }, + { + "start": 5178.26, + "end": 5181.02, + "probability": 0.9975 + }, + { + "start": 5181.66, + "end": 5184.14, + "probability": 0.8421 + }, + { + "start": 5184.88, + "end": 5185.6, + "probability": 0.9075 + }, + { + "start": 5186.14, + "end": 5187.44, + "probability": 0.5979 + }, + { + "start": 5187.7, + "end": 5188.38, + "probability": 0.7129 + }, + { + "start": 5188.8, + "end": 5189.48, + "probability": 0.8478 + }, + { + "start": 5190.14, + "end": 5192.1, + "probability": 0.9969 + }, + { + "start": 5192.8, + "end": 5196.31, + "probability": 0.9509 + }, + { + "start": 5197.44, + "end": 5198.28, + "probability": 0.7034 + }, + { + "start": 5199.08, + "end": 5199.94, + "probability": 0.6363 + }, + { + "start": 5201.2, + "end": 5202.26, + "probability": 0.9556 + }, + { + "start": 5202.88, + "end": 5204.84, + "probability": 0.4352 + }, + { + "start": 5205.02, + "end": 5205.92, + "probability": 0.263 + }, + { + "start": 5205.96, + "end": 5208.14, + "probability": 0.6049 + }, + { + "start": 5208.28, + "end": 5209.08, + "probability": 0.6712 + }, + { + "start": 5209.56, + "end": 5212.1, + "probability": 0.8337 + }, + { + "start": 5212.18, + "end": 5213.84, + "probability": 0.451 + }, + { + "start": 5213.96, + "end": 5214.81, + "probability": 0.8787 + }, + { + "start": 5215.04, + "end": 5215.72, + "probability": 0.48 + }, + { + "start": 5215.74, + "end": 5217.04, + "probability": 0.5188 + }, + { + "start": 5217.18, + "end": 5217.72, + "probability": 0.5063 + }, + { + "start": 5217.8, + "end": 5222.58, + "probability": 0.9845 + }, + { + "start": 5223.18, + "end": 5224.32, + "probability": 0.9502 + }, + { + "start": 5224.78, + "end": 5226.35, + "probability": 0.1287 + }, + { + "start": 5226.86, + "end": 5227.2, + "probability": 0.6069 + }, + { + "start": 5227.34, + "end": 5230.28, + "probability": 0.9507 + }, + { + "start": 5230.48, + "end": 5231.7, + "probability": 0.9855 + }, + { + "start": 5231.88, + "end": 5232.98, + "probability": 0.9879 + }, + { + "start": 5233.86, + "end": 5235.02, + "probability": 0.824 + }, + { + "start": 5236.54, + "end": 5237.72, + "probability": 0.9934 + }, + { + "start": 5238.98, + "end": 5241.28, + "probability": 0.8156 + }, + { + "start": 5242.2, + "end": 5243.8, + "probability": 0.5364 + }, + { + "start": 5244.96, + "end": 5245.8, + "probability": 0.8691 + }, + { + "start": 5246.88, + "end": 5247.86, + "probability": 0.9756 + }, + { + "start": 5248.44, + "end": 5248.96, + "probability": 0.9916 + }, + { + "start": 5249.94, + "end": 5251.54, + "probability": 0.9185 + }, + { + "start": 5252.4, + "end": 5253.49, + "probability": 0.9441 + }, + { + "start": 5255.52, + "end": 5257.42, + "probability": 0.915 + }, + { + "start": 5258.24, + "end": 5260.54, + "probability": 0.9609 + }, + { + "start": 5261.22, + "end": 5263.4, + "probability": 0.7852 + }, + { + "start": 5264.4, + "end": 5266.78, + "probability": 0.9979 + }, + { + "start": 5267.26, + "end": 5269.32, + "probability": 0.9168 + }, + { + "start": 5270.88, + "end": 5271.52, + "probability": 0.7432 + }, + { + "start": 5271.52, + "end": 5274.58, + "probability": 0.9642 + }, + { + "start": 5275.1, + "end": 5276.8, + "probability": 0.9841 + }, + { + "start": 5277.3, + "end": 5278.1, + "probability": 0.976 + }, + { + "start": 5278.96, + "end": 5279.86, + "probability": 0.3198 + }, + { + "start": 5280.6, + "end": 5282.15, + "probability": 0.8927 + }, + { + "start": 5282.88, + "end": 5284.78, + "probability": 0.8516 + }, + { + "start": 5284.88, + "end": 5285.5, + "probability": 0.6782 + }, + { + "start": 5285.64, + "end": 5286.54, + "probability": 0.8032 + }, + { + "start": 5286.76, + "end": 5287.02, + "probability": 0.4385 + }, + { + "start": 5287.3, + "end": 5293.44, + "probability": 0.9509 + }, + { + "start": 5293.76, + "end": 5296.44, + "probability": 0.0199 + }, + { + "start": 5297.2, + "end": 5297.84, + "probability": 0.6955 + }, + { + "start": 5298.98, + "end": 5300.3, + "probability": 0.0666 + }, + { + "start": 5300.5, + "end": 5301.14, + "probability": 0.7391 + }, + { + "start": 5302.7, + "end": 5303.72, + "probability": 0.7997 + }, + { + "start": 5304.78, + "end": 5307.4, + "probability": 0.9229 + }, + { + "start": 5308.04, + "end": 5311.56, + "probability": 0.964 + }, + { + "start": 5312.64, + "end": 5314.52, + "probability": 0.8652 + }, + { + "start": 5315.52, + "end": 5316.9, + "probability": 0.9132 + }, + { + "start": 5317.88, + "end": 5322.44, + "probability": 0.9 + }, + { + "start": 5322.68, + "end": 5323.82, + "probability": 0.9769 + }, + { + "start": 5325.16, + "end": 5326.28, + "probability": 0.9854 + }, + { + "start": 5327.1, + "end": 5330.14, + "probability": 0.9744 + }, + { + "start": 5331.4, + "end": 5334.54, + "probability": 0.9336 + }, + { + "start": 5335.34, + "end": 5337.82, + "probability": 0.6893 + }, + { + "start": 5340.88, + "end": 5342.68, + "probability": 0.6658 + }, + { + "start": 5343.36, + "end": 5343.97, + "probability": 0.6832 + }, + { + "start": 5345.08, + "end": 5346.34, + "probability": 0.8917 + }, + { + "start": 5347.3, + "end": 5349.64, + "probability": 0.9673 + }, + { + "start": 5350.42, + "end": 5351.6, + "probability": 0.5773 + }, + { + "start": 5352.2, + "end": 5357.24, + "probability": 0.8322 + }, + { + "start": 5357.94, + "end": 5362.18, + "probability": 0.7698 + }, + { + "start": 5363.76, + "end": 5368.84, + "probability": 0.9888 + }, + { + "start": 5369.1, + "end": 5372.96, + "probability": 0.9975 + }, + { + "start": 5373.92, + "end": 5375.28, + "probability": 0.9926 + }, + { + "start": 5376.7, + "end": 5378.92, + "probability": 0.5371 + }, + { + "start": 5379.58, + "end": 5380.4, + "probability": 0.4922 + }, + { + "start": 5381.38, + "end": 5384.04, + "probability": 0.937 + }, + { + "start": 5384.96, + "end": 5390.0, + "probability": 0.9983 + }, + { + "start": 5390.56, + "end": 5391.22, + "probability": 0.7067 + }, + { + "start": 5391.66, + "end": 5393.52, + "probability": 0.9153 + }, + { + "start": 5394.4, + "end": 5396.02, + "probability": 0.9883 + }, + { + "start": 5398.26, + "end": 5398.36, + "probability": 0.0583 + }, + { + "start": 5398.36, + "end": 5401.38, + "probability": 0.9359 + }, + { + "start": 5401.9, + "end": 5403.08, + "probability": 0.9468 + }, + { + "start": 5403.56, + "end": 5411.14, + "probability": 0.9867 + }, + { + "start": 5411.52, + "end": 5416.38, + "probability": 0.9775 + }, + { + "start": 5417.62, + "end": 5418.1, + "probability": 0.9933 + }, + { + "start": 5418.78, + "end": 5419.78, + "probability": 0.99 + }, + { + "start": 5420.48, + "end": 5423.1, + "probability": 0.504 + }, + { + "start": 5423.3, + "end": 5423.32, + "probability": 0.1732 + }, + { + "start": 5423.32, + "end": 5424.9, + "probability": 0.7527 + }, + { + "start": 5426.04, + "end": 5426.92, + "probability": 0.9695 + }, + { + "start": 5427.6, + "end": 5433.04, + "probability": 0.916 + }, + { + "start": 5434.08, + "end": 5437.02, + "probability": 0.9683 + }, + { + "start": 5438.02, + "end": 5439.42, + "probability": 0.9526 + }, + { + "start": 5440.8, + "end": 5442.92, + "probability": 0.9758 + }, + { + "start": 5444.0, + "end": 5447.1, + "probability": 0.9917 + }, + { + "start": 5447.52, + "end": 5448.42, + "probability": 0.3903 + }, + { + "start": 5449.86, + "end": 5450.58, + "probability": 0.897 + }, + { + "start": 5451.92, + "end": 5453.26, + "probability": 0.9756 + }, + { + "start": 5453.46, + "end": 5456.54, + "probability": 0.9944 + }, + { + "start": 5457.82, + "end": 5459.54, + "probability": 0.9995 + }, + { + "start": 5460.4, + "end": 5461.1, + "probability": 0.9658 + }, + { + "start": 5461.8, + "end": 5463.48, + "probability": 0.9967 + }, + { + "start": 5464.24, + "end": 5465.72, + "probability": 0.9998 + }, + { + "start": 5467.16, + "end": 5468.76, + "probability": 0.9774 + }, + { + "start": 5469.9, + "end": 5471.64, + "probability": 0.6984 + }, + { + "start": 5472.2, + "end": 5473.3, + "probability": 0.9949 + }, + { + "start": 5474.6, + "end": 5476.14, + "probability": 0.7059 + }, + { + "start": 5477.2, + "end": 5479.96, + "probability": 0.8042 + }, + { + "start": 5480.56, + "end": 5483.78, + "probability": 0.9975 + }, + { + "start": 5484.28, + "end": 5486.86, + "probability": 0.7819 + }, + { + "start": 5487.08, + "end": 5488.08, + "probability": 0.1002 + }, + { + "start": 5488.08, + "end": 5488.26, + "probability": 0.5241 + }, + { + "start": 5488.38, + "end": 5488.52, + "probability": 0.1805 + }, + { + "start": 5488.52, + "end": 5488.72, + "probability": 0.095 + }, + { + "start": 5489.24, + "end": 5489.76, + "probability": 0.0709 + }, + { + "start": 5489.76, + "end": 5491.6, + "probability": 0.8491 + }, + { + "start": 5493.7, + "end": 5494.5, + "probability": 0.5169 + }, + { + "start": 5494.5, + "end": 5495.8, + "probability": 0.2613 + }, + { + "start": 5496.0, + "end": 5497.02, + "probability": 0.9984 + }, + { + "start": 5498.18, + "end": 5499.44, + "probability": 0.9958 + }, + { + "start": 5500.08, + "end": 5500.9, + "probability": 0.7694 + }, + { + "start": 5501.7, + "end": 5503.26, + "probability": 0.6263 + }, + { + "start": 5503.82, + "end": 5504.72, + "probability": 0.4258 + }, + { + "start": 5504.82, + "end": 5505.42, + "probability": 0.2497 + }, + { + "start": 5506.4, + "end": 5507.64, + "probability": 0.6837 + }, + { + "start": 5508.58, + "end": 5509.68, + "probability": 0.9484 + }, + { + "start": 5509.88, + "end": 5509.88, + "probability": 0.0207 + }, + { + "start": 5509.88, + "end": 5510.86, + "probability": 0.9292 + }, + { + "start": 5511.02, + "end": 5515.64, + "probability": 0.9317 + }, + { + "start": 5516.24, + "end": 5517.06, + "probability": 0.5654 + }, + { + "start": 5517.14, + "end": 5518.16, + "probability": 0.5346 + }, + { + "start": 5518.28, + "end": 5519.04, + "probability": 0.5008 + }, + { + "start": 5519.18, + "end": 5519.4, + "probability": 0.2498 + }, + { + "start": 5519.4, + "end": 5521.8, + "probability": 0.8946 + }, + { + "start": 5524.76, + "end": 5530.8, + "probability": 0.9744 + }, + { + "start": 5531.3, + "end": 5532.28, + "probability": 0.7971 + }, + { + "start": 5533.2, + "end": 5536.02, + "probability": 0.8535 + }, + { + "start": 5536.8, + "end": 5540.1, + "probability": 0.9656 + }, + { + "start": 5541.04, + "end": 5542.1, + "probability": 0.9523 + }, + { + "start": 5542.76, + "end": 5545.48, + "probability": 0.7806 + }, + { + "start": 5546.36, + "end": 5548.12, + "probability": 0.7595 + }, + { + "start": 5549.54, + "end": 5550.56, + "probability": 0.8718 + }, + { + "start": 5551.08, + "end": 5552.76, + "probability": 0.9868 + }, + { + "start": 5553.4, + "end": 5554.54, + "probability": 0.9346 + }, + { + "start": 5556.66, + "end": 5557.1, + "probability": 0.8787 + }, + { + "start": 5557.92, + "end": 5558.02, + "probability": 0.4188 + }, + { + "start": 5558.6, + "end": 5561.02, + "probability": 0.518 + }, + { + "start": 5561.48, + "end": 5562.6, + "probability": 0.3705 + }, + { + "start": 5563.1, + "end": 5565.76, + "probability": 0.7348 + }, + { + "start": 5565.92, + "end": 5565.92, + "probability": 0.2041 + }, + { + "start": 5567.02, + "end": 5567.45, + "probability": 0.8542 + }, + { + "start": 5570.12, + "end": 5572.44, + "probability": 0.0851 + }, + { + "start": 5572.58, + "end": 5575.42, + "probability": 0.9546 + }, + { + "start": 5575.5, + "end": 5579.22, + "probability": 0.9972 + }, + { + "start": 5580.96, + "end": 5585.22, + "probability": 0.9706 + }, + { + "start": 5586.68, + "end": 5588.72, + "probability": 0.8831 + }, + { + "start": 5592.5, + "end": 5594.24, + "probability": 0.9856 + }, + { + "start": 5594.34, + "end": 5596.53, + "probability": 0.8667 + }, + { + "start": 5597.1, + "end": 5598.36, + "probability": 0.9883 + }, + { + "start": 5599.24, + "end": 5600.82, + "probability": 0.9964 + }, + { + "start": 5600.9, + "end": 5601.16, + "probability": 0.4663 + }, + { + "start": 5601.32, + "end": 5601.8, + "probability": 0.7115 + }, + { + "start": 5602.26, + "end": 5605.02, + "probability": 0.8203 + }, + { + "start": 5605.1, + "end": 5605.84, + "probability": 0.7031 + }, + { + "start": 5606.44, + "end": 5609.93, + "probability": 0.5195 + }, + { + "start": 5611.24, + "end": 5612.36, + "probability": 0.9458 + }, + { + "start": 5615.76, + "end": 5616.11, + "probability": 0.1265 + }, + { + "start": 5621.52, + "end": 5623.26, + "probability": 0.7037 + }, + { + "start": 5624.26, + "end": 5628.14, + "probability": 0.998 + }, + { + "start": 5629.04, + "end": 5629.6, + "probability": 0.8352 + }, + { + "start": 5631.14, + "end": 5634.38, + "probability": 0.7635 + }, + { + "start": 5635.52, + "end": 5638.73, + "probability": 0.9585 + }, + { + "start": 5639.0, + "end": 5641.76, + "probability": 0.9926 + }, + { + "start": 5642.4, + "end": 5642.92, + "probability": 0.9941 + }, + { + "start": 5644.46, + "end": 5644.88, + "probability": 0.9594 + }, + { + "start": 5645.82, + "end": 5647.96, + "probability": 0.9666 + }, + { + "start": 5649.38, + "end": 5649.98, + "probability": 0.9023 + }, + { + "start": 5651.12, + "end": 5652.72, + "probability": 0.7097 + }, + { + "start": 5653.48, + "end": 5655.86, + "probability": 0.9692 + }, + { + "start": 5656.36, + "end": 5657.58, + "probability": 0.89 + }, + { + "start": 5658.06, + "end": 5659.0, + "probability": 0.9735 + }, + { + "start": 5659.48, + "end": 5660.88, + "probability": 0.9548 + }, + { + "start": 5662.65, + "end": 5664.21, + "probability": 0.6514 + }, + { + "start": 5664.72, + "end": 5666.58, + "probability": 0.8348 + }, + { + "start": 5667.5, + "end": 5672.44, + "probability": 0.8932 + }, + { + "start": 5673.18, + "end": 5674.5, + "probability": 0.9285 + }, + { + "start": 5675.14, + "end": 5677.22, + "probability": 0.9526 + }, + { + "start": 5677.84, + "end": 5678.94, + "probability": 0.8834 + }, + { + "start": 5679.94, + "end": 5685.28, + "probability": 0.9988 + }, + { + "start": 5687.3, + "end": 5690.72, + "probability": 0.5806 + }, + { + "start": 5693.88, + "end": 5694.92, + "probability": 0.5871 + }, + { + "start": 5695.5, + "end": 5698.26, + "probability": 0.5571 + }, + { + "start": 5698.86, + "end": 5702.28, + "probability": 0.9823 + }, + { + "start": 5703.04, + "end": 5704.3, + "probability": 0.9786 + }, + { + "start": 5704.86, + "end": 5707.66, + "probability": 0.8884 + }, + { + "start": 5708.96, + "end": 5712.08, + "probability": 0.7949 + }, + { + "start": 5712.34, + "end": 5712.74, + "probability": 0.4589 + }, + { + "start": 5712.76, + "end": 5713.59, + "probability": 0.9533 + }, + { + "start": 5714.34, + "end": 5714.52, + "probability": 0.0779 + }, + { + "start": 5716.7, + "end": 5721.8, + "probability": 0.993 + }, + { + "start": 5722.6, + "end": 5724.94, + "probability": 0.9969 + }, + { + "start": 5726.04, + "end": 5728.58, + "probability": 0.9994 + }, + { + "start": 5729.2, + "end": 5733.12, + "probability": 0.9979 + }, + { + "start": 5734.48, + "end": 5736.12, + "probability": 0.273 + }, + { + "start": 5736.16, + "end": 5740.26, + "probability": 0.5078 + }, + { + "start": 5740.36, + "end": 5741.42, + "probability": 0.8486 + }, + { + "start": 5741.42, + "end": 5742.26, + "probability": 0.9264 + }, + { + "start": 5742.42, + "end": 5743.7, + "probability": 0.8416 + }, + { + "start": 5744.38, + "end": 5745.28, + "probability": 0.8931 + }, + { + "start": 5749.99, + "end": 5752.8, + "probability": 0.5127 + }, + { + "start": 5754.38, + "end": 5756.36, + "probability": 0.9944 + }, + { + "start": 5757.42, + "end": 5759.4, + "probability": 0.9939 + }, + { + "start": 5760.44, + "end": 5763.0, + "probability": 0.989 + }, + { + "start": 5763.88, + "end": 5764.84, + "probability": 0.9238 + }, + { + "start": 5764.86, + "end": 5768.08, + "probability": 0.9967 + }, + { + "start": 5768.76, + "end": 5771.34, + "probability": 0.8716 + }, + { + "start": 5771.98, + "end": 5776.48, + "probability": 0.7089 + }, + { + "start": 5777.26, + "end": 5778.56, + "probability": 0.9441 + }, + { + "start": 5781.46, + "end": 5785.72, + "probability": 0.9106 + }, + { + "start": 5787.42, + "end": 5789.14, + "probability": 0.7166 + }, + { + "start": 5789.56, + "end": 5794.1, + "probability": 0.8505 + }, + { + "start": 5794.2, + "end": 5795.2, + "probability": 0.6384 + }, + { + "start": 5795.3, + "end": 5797.98, + "probability": 0.8982 + }, + { + "start": 5798.36, + "end": 5803.24, + "probability": 0.904 + }, + { + "start": 5803.68, + "end": 5805.3, + "probability": 0.7776 + }, + { + "start": 5805.98, + "end": 5807.84, + "probability": 0.8457 + }, + { + "start": 5808.08, + "end": 5810.72, + "probability": 0.9411 + }, + { + "start": 5810.72, + "end": 5815.06, + "probability": 0.9141 + }, + { + "start": 5815.66, + "end": 5817.6, + "probability": 0.9426 + }, + { + "start": 5818.28, + "end": 5819.6, + "probability": 0.6544 + }, + { + "start": 5820.26, + "end": 5822.66, + "probability": 0.9745 + }, + { + "start": 5823.3, + "end": 5824.84, + "probability": 0.9873 + }, + { + "start": 5825.16, + "end": 5829.14, + "probability": 0.9694 + }, + { + "start": 5829.76, + "end": 5831.08, + "probability": 0.9009 + }, + { + "start": 5831.32, + "end": 5838.22, + "probability": 0.9435 + }, + { + "start": 5838.96, + "end": 5842.72, + "probability": 0.9945 + }, + { + "start": 5843.34, + "end": 5845.34, + "probability": 0.9804 + }, + { + "start": 5845.9, + "end": 5849.12, + "probability": 0.8031 + }, + { + "start": 5849.6, + "end": 5851.94, + "probability": 0.9542 + }, + { + "start": 5852.64, + "end": 5857.04, + "probability": 0.8741 + }, + { + "start": 5857.2, + "end": 5861.84, + "probability": 0.9289 + }, + { + "start": 5861.86, + "end": 5861.93, + "probability": 0.0102 + }, + { + "start": 5862.64, + "end": 5863.54, + "probability": 0.4891 + }, + { + "start": 5863.54, + "end": 5868.4, + "probability": 0.5565 + }, + { + "start": 5868.42, + "end": 5868.42, + "probability": 0.174 + }, + { + "start": 5868.42, + "end": 5868.63, + "probability": 0.3845 + }, + { + "start": 5869.54, + "end": 5871.38, + "probability": 0.607 + }, + { + "start": 5871.58, + "end": 5871.6, + "probability": 0.0177 + }, + { + "start": 5871.6, + "end": 5874.34, + "probability": 0.909 + }, + { + "start": 5877.7, + "end": 5881.28, + "probability": 0.8341 + }, + { + "start": 5882.36, + "end": 5883.56, + "probability": 0.0433 + }, + { + "start": 5883.78, + "end": 5886.58, + "probability": 0.296 + }, + { + "start": 5886.62, + "end": 5891.68, + "probability": 0.2994 + }, + { + "start": 5895.7, + "end": 5896.72, + "probability": 0.2671 + }, + { + "start": 5896.72, + "end": 5896.72, + "probability": 0.0081 + }, + { + "start": 5897.0, + "end": 5897.12, + "probability": 0.2 + }, + { + "start": 5897.12, + "end": 5898.24, + "probability": 0.3587 + }, + { + "start": 5898.6, + "end": 5900.24, + "probability": 0.9251 + }, + { + "start": 5900.34, + "end": 5901.02, + "probability": 0.5162 + }, + { + "start": 5902.2, + "end": 5903.3, + "probability": 0.7483 + }, + { + "start": 5904.64, + "end": 5907.16, + "probability": 0.7136 + }, + { + "start": 5907.94, + "end": 5908.7, + "probability": 0.4602 + }, + { + "start": 5908.82, + "end": 5912.6, + "probability": 0.7952 + }, + { + "start": 5913.36, + "end": 5914.54, + "probability": 0.9644 + }, + { + "start": 5915.24, + "end": 5918.0, + "probability": 0.7545 + }, + { + "start": 5918.8, + "end": 5920.44, + "probability": 0.6671 + }, + { + "start": 5921.62, + "end": 5921.96, + "probability": 0.4053 + }, + { + "start": 5922.14, + "end": 5925.24, + "probability": 0.9618 + }, + { + "start": 5925.28, + "end": 5926.22, + "probability": 0.7907 + }, + { + "start": 5927.52, + "end": 5929.62, + "probability": 0.6205 + }, + { + "start": 5929.62, + "end": 5930.72, + "probability": 0.002 + }, + { + "start": 5930.72, + "end": 5930.72, + "probability": 0.0276 + }, + { + "start": 5930.72, + "end": 5931.44, + "probability": 0.403 + }, + { + "start": 5932.64, + "end": 5933.48, + "probability": 0.8505 + }, + { + "start": 5934.04, + "end": 5934.54, + "probability": 0.7205 + }, + { + "start": 5934.56, + "end": 5935.84, + "probability": 0.3034 + }, + { + "start": 5936.04, + "end": 5937.5, + "probability": 0.8026 + }, + { + "start": 5937.92, + "end": 5939.68, + "probability": 0.9863 + }, + { + "start": 5940.03, + "end": 5943.24, + "probability": 0.8305 + }, + { + "start": 5943.24, + "end": 5943.45, + "probability": 0.3413 + }, + { + "start": 5943.6, + "end": 5946.74, + "probability": 0.9082 + }, + { + "start": 5947.6, + "end": 5949.5, + "probability": 0.7088 + }, + { + "start": 5949.5, + "end": 5950.92, + "probability": 0.9582 + }, + { + "start": 5952.12, + "end": 5952.6, + "probability": 0.8154 + }, + { + "start": 5953.12, + "end": 5953.44, + "probability": 0.7452 + }, + { + "start": 5955.46, + "end": 5956.08, + "probability": 0.1881 + }, + { + "start": 5957.38, + "end": 5958.22, + "probability": 0.3276 + }, + { + "start": 5960.38, + "end": 5963.48, + "probability": 0.7086 + }, + { + "start": 5963.72, + "end": 5965.36, + "probability": 0.698 + }, + { + "start": 5965.56, + "end": 5968.82, + "probability": 0.834 + }, + { + "start": 5969.62, + "end": 5972.36, + "probability": 0.9826 + }, + { + "start": 5973.8, + "end": 5974.84, + "probability": 0.9377 + }, + { + "start": 5974.98, + "end": 5977.94, + "probability": 0.9229 + }, + { + "start": 5978.36, + "end": 5978.7, + "probability": 0.7833 + }, + { + "start": 5978.84, + "end": 5981.44, + "probability": 0.8982 + }, + { + "start": 5981.48, + "end": 5982.04, + "probability": 0.1655 + }, + { + "start": 5982.24, + "end": 5983.94, + "probability": 0.9937 + }, + { + "start": 5984.22, + "end": 5984.22, + "probability": 0.0127 + }, + { + "start": 5985.28, + "end": 5987.1, + "probability": 0.4108 + }, + { + "start": 5987.42, + "end": 5988.52, + "probability": 0.1072 + }, + { + "start": 5989.76, + "end": 5989.8, + "probability": 0.0536 + }, + { + "start": 5989.8, + "end": 5989.8, + "probability": 0.1796 + }, + { + "start": 5989.8, + "end": 5989.8, + "probability": 0.0441 + }, + { + "start": 5989.8, + "end": 5990.66, + "probability": 0.5186 + }, + { + "start": 5990.76, + "end": 5991.64, + "probability": 0.6384 + }, + { + "start": 5992.56, + "end": 5995.72, + "probability": 0.8047 + }, + { + "start": 5997.55, + "end": 5997.94, + "probability": 0.1382 + }, + { + "start": 5998.44, + "end": 5999.4, + "probability": 0.7137 + }, + { + "start": 5999.44, + "end": 6000.48, + "probability": 0.5777 + }, + { + "start": 6001.75, + "end": 6002.34, + "probability": 0.0787 + }, + { + "start": 6002.34, + "end": 6003.66, + "probability": 0.4783 + }, + { + "start": 6003.86, + "end": 6007.28, + "probability": 0.8796 + }, + { + "start": 6007.94, + "end": 6010.3, + "probability": 0.6724 + }, + { + "start": 6010.54, + "end": 6013.02, + "probability": 0.7404 + }, + { + "start": 6013.24, + "end": 6015.96, + "probability": 0.8372 + }, + { + "start": 6016.0, + "end": 6017.05, + "probability": 0.9698 + }, + { + "start": 6018.42, + "end": 6019.96, + "probability": 0.991 + }, + { + "start": 6020.44, + "end": 6024.82, + "probability": 0.7051 + }, + { + "start": 6025.66, + "end": 6027.54, + "probability": 0.9229 + }, + { + "start": 6028.54, + "end": 6031.15, + "probability": 0.9736 + }, + { + "start": 6033.18, + "end": 6038.4, + "probability": 0.9656 + }, + { + "start": 6039.08, + "end": 6039.96, + "probability": 0.5978 + }, + { + "start": 6039.96, + "end": 6042.1, + "probability": 0.6475 + }, + { + "start": 6042.22, + "end": 6046.06, + "probability": 0.4505 + }, + { + "start": 6046.48, + "end": 6047.66, + "probability": 0.9053 + }, + { + "start": 6047.84, + "end": 6051.78, + "probability": 0.0098 + }, + { + "start": 6051.86, + "end": 6054.5, + "probability": 0.1421 + }, + { + "start": 6054.66, + "end": 6054.8, + "probability": 0.072 + }, + { + "start": 6056.05, + "end": 6057.98, + "probability": 0.2488 + }, + { + "start": 6057.98, + "end": 6059.76, + "probability": 0.917 + }, + { + "start": 6061.16, + "end": 6063.32, + "probability": 0.5004 + }, + { + "start": 6063.36, + "end": 6064.44, + "probability": 0.7594 + }, + { + "start": 6065.56, + "end": 6066.88, + "probability": 0.9378 + }, + { + "start": 6067.78, + "end": 6069.16, + "probability": 0.9644 + }, + { + "start": 6069.62, + "end": 6070.72, + "probability": 0.8426 + }, + { + "start": 6071.92, + "end": 6073.76, + "probability": 0.88 + }, + { + "start": 6074.98, + "end": 6077.34, + "probability": 0.9191 + }, + { + "start": 6078.68, + "end": 6081.9, + "probability": 0.87 + }, + { + "start": 6082.52, + "end": 6083.48, + "probability": 0.9845 + }, + { + "start": 6084.56, + "end": 6086.18, + "probability": 0.8792 + }, + { + "start": 6087.52, + "end": 6094.54, + "probability": 0.9985 + }, + { + "start": 6095.5, + "end": 6098.06, + "probability": 0.8709 + }, + { + "start": 6099.8, + "end": 6102.14, + "probability": 0.8416 + }, + { + "start": 6102.82, + "end": 6105.98, + "probability": 0.4517 + }, + { + "start": 6108.26, + "end": 6112.74, + "probability": 0.6752 + }, + { + "start": 6112.84, + "end": 6113.86, + "probability": 0.9575 + }, + { + "start": 6114.46, + "end": 6117.22, + "probability": 0.8061 + }, + { + "start": 6118.42, + "end": 6123.16, + "probability": 0.9949 + }, + { + "start": 6133.28, + "end": 6137.14, + "probability": 0.8274 + }, + { + "start": 6137.82, + "end": 6140.78, + "probability": 0.8734 + }, + { + "start": 6141.28, + "end": 6142.66, + "probability": 0.7527 + }, + { + "start": 6142.7, + "end": 6145.63, + "probability": 0.0507 + }, + { + "start": 6146.8, + "end": 6151.62, + "probability": 0.9935 + }, + { + "start": 6151.62, + "end": 6154.5, + "probability": 0.9973 + }, + { + "start": 6155.02, + "end": 6156.44, + "probability": 0.7968 + }, + { + "start": 6156.64, + "end": 6157.52, + "probability": 0.5874 + }, + { + "start": 6157.9, + "end": 6160.78, + "probability": 0.7821 + }, + { + "start": 6161.28, + "end": 6161.64, + "probability": 0.9109 + }, + { + "start": 6162.38, + "end": 6163.88, + "probability": 0.7922 + }, + { + "start": 6165.7, + "end": 6169.38, + "probability": 0.9745 + }, + { + "start": 6169.38, + "end": 6171.96, + "probability": 0.9284 + }, + { + "start": 6172.1, + "end": 6175.17, + "probability": 0.9982 + }, + { + "start": 6176.18, + "end": 6177.3, + "probability": 0.9268 + }, + { + "start": 6177.64, + "end": 6178.88, + "probability": 0.9946 + }, + { + "start": 6179.54, + "end": 6181.06, + "probability": 0.948 + }, + { + "start": 6181.98, + "end": 6183.96, + "probability": 0.9866 + }, + { + "start": 6184.9, + "end": 6187.92, + "probability": 0.9833 + }, + { + "start": 6188.5, + "end": 6189.74, + "probability": 0.9648 + }, + { + "start": 6190.26, + "end": 6191.3, + "probability": 0.961 + }, + { + "start": 6192.14, + "end": 6193.96, + "probability": 0.9941 + }, + { + "start": 6194.38, + "end": 6197.08, + "probability": 0.9704 + }, + { + "start": 6197.48, + "end": 6199.36, + "probability": 0.7429 + }, + { + "start": 6200.02, + "end": 6201.24, + "probability": 0.8077 + }, + { + "start": 6201.84, + "end": 6202.54, + "probability": 0.9406 + }, + { + "start": 6202.6, + "end": 6203.39, + "probability": 0.9824 + }, + { + "start": 6203.94, + "end": 6209.42, + "probability": 0.5243 + }, + { + "start": 6209.96, + "end": 6210.63, + "probability": 0.619 + }, + { + "start": 6211.62, + "end": 6213.23, + "probability": 0.9956 + }, + { + "start": 6213.5, + "end": 6214.32, + "probability": 0.3838 + }, + { + "start": 6215.8, + "end": 6216.92, + "probability": 0.2007 + }, + { + "start": 6217.78, + "end": 6218.56, + "probability": 0.517 + }, + { + "start": 6218.58, + "end": 6223.68, + "probability": 0.932 + }, + { + "start": 6224.04, + "end": 6225.82, + "probability": 0.9611 + }, + { + "start": 6225.9, + "end": 6227.92, + "probability": 0.9113 + }, + { + "start": 6227.98, + "end": 6230.24, + "probability": 0.9731 + }, + { + "start": 6230.42, + "end": 6232.44, + "probability": 0.9442 + }, + { + "start": 6232.9, + "end": 6233.8, + "probability": 0.9913 + }, + { + "start": 6233.92, + "end": 6235.16, + "probability": 0.9877 + }, + { + "start": 6235.5, + "end": 6236.6, + "probability": 0.7559 + }, + { + "start": 6236.8, + "end": 6239.16, + "probability": 0.9777 + }, + { + "start": 6239.42, + "end": 6242.46, + "probability": 0.8267 + }, + { + "start": 6243.3, + "end": 6243.3, + "probability": 0.1268 + }, + { + "start": 6243.3, + "end": 6245.4, + "probability": 0.9859 + }, + { + "start": 6246.08, + "end": 6247.16, + "probability": 0.9951 + }, + { + "start": 6247.82, + "end": 6251.76, + "probability": 0.9915 + }, + { + "start": 6252.46, + "end": 6253.9, + "probability": 0.9116 + }, + { + "start": 6254.46, + "end": 6257.4, + "probability": 0.9407 + }, + { + "start": 6258.04, + "end": 6258.98, + "probability": 0.5968 + }, + { + "start": 6259.32, + "end": 6262.42, + "probability": 0.726 + }, + { + "start": 6262.42, + "end": 6263.2, + "probability": 0.7582 + }, + { + "start": 6264.28, + "end": 6265.6, + "probability": 0.6719 + }, + { + "start": 6266.48, + "end": 6271.38, + "probability": 0.993 + }, + { + "start": 6272.84, + "end": 6274.04, + "probability": 0.9211 + }, + { + "start": 6274.74, + "end": 6278.0, + "probability": 0.9968 + }, + { + "start": 6278.88, + "end": 6282.96, + "probability": 0.9595 + }, + { + "start": 6283.32, + "end": 6284.29, + "probability": 0.9233 + }, + { + "start": 6285.02, + "end": 6287.0, + "probability": 0.8728 + }, + { + "start": 6287.22, + "end": 6293.02, + "probability": 0.7164 + }, + { + "start": 6295.62, + "end": 6299.68, + "probability": 0.9937 + }, + { + "start": 6299.76, + "end": 6305.24, + "probability": 0.9252 + }, + { + "start": 6305.64, + "end": 6307.16, + "probability": 0.6586 + }, + { + "start": 6307.16, + "end": 6310.9, + "probability": 0.4875 + }, + { + "start": 6311.18, + "end": 6312.42, + "probability": 0.4839 + }, + { + "start": 6312.78, + "end": 6315.66, + "probability": 0.8052 + }, + { + "start": 6315.92, + "end": 6319.2, + "probability": 0.8384 + }, + { + "start": 6319.74, + "end": 6321.34, + "probability": 0.9827 + }, + { + "start": 6321.48, + "end": 6323.06, + "probability": 0.5441 + }, + { + "start": 6323.66, + "end": 6330.0, + "probability": 0.1092 + }, + { + "start": 6330.46, + "end": 6330.95, + "probability": 0.0619 + }, + { + "start": 6332.64, + "end": 6337.22, + "probability": 0.7667 + }, + { + "start": 6337.62, + "end": 6341.85, + "probability": 0.8857 + }, + { + "start": 6342.08, + "end": 6342.96, + "probability": 0.6233 + }, + { + "start": 6343.7, + "end": 6344.8, + "probability": 0.7561 + }, + { + "start": 6346.32, + "end": 6348.34, + "probability": 0.9051 + }, + { + "start": 6348.42, + "end": 6350.56, + "probability": 0.9199 + }, + { + "start": 6351.18, + "end": 6354.44, + "probability": 0.9951 + }, + { + "start": 6354.54, + "end": 6354.64, + "probability": 0.7653 + }, + { + "start": 6354.7, + "end": 6355.42, + "probability": 0.6265 + }, + { + "start": 6355.6, + "end": 6357.6, + "probability": 0.8195 + }, + { + "start": 6358.14, + "end": 6360.2, + "probability": 0.9819 + }, + { + "start": 6360.66, + "end": 6363.86, + "probability": 0.9608 + }, + { + "start": 6364.58, + "end": 6368.42, + "probability": 0.8843 + }, + { + "start": 6369.9, + "end": 6371.86, + "probability": 0.9924 + }, + { + "start": 6372.2, + "end": 6376.08, + "probability": 0.9887 + }, + { + "start": 6376.94, + "end": 6378.94, + "probability": 0.64 + }, + { + "start": 6380.48, + "end": 6381.38, + "probability": 0.7957 + }, + { + "start": 6385.38, + "end": 6388.12, + "probability": 0.7166 + }, + { + "start": 6388.7, + "end": 6390.32, + "probability": 0.9888 + }, + { + "start": 6411.42, + "end": 6411.76, + "probability": 0.3617 + }, + { + "start": 6411.76, + "end": 6411.76, + "probability": 0.075 + }, + { + "start": 6411.76, + "end": 6411.76, + "probability": 0.0286 + }, + { + "start": 6411.76, + "end": 6413.82, + "probability": 0.4623 + }, + { + "start": 6414.5, + "end": 6415.22, + "probability": 0.6785 + }, + { + "start": 6415.9, + "end": 6419.08, + "probability": 0.9109 + }, + { + "start": 6419.46, + "end": 6420.28, + "probability": 0.9108 + }, + { + "start": 6420.56, + "end": 6428.52, + "probability": 0.8211 + }, + { + "start": 6428.52, + "end": 6430.46, + "probability": 0.6186 + }, + { + "start": 6430.84, + "end": 6432.44, + "probability": 0.9797 + }, + { + "start": 6432.74, + "end": 6433.46, + "probability": 0.5812 + }, + { + "start": 6433.56, + "end": 6434.94, + "probability": 0.8897 + }, + { + "start": 6447.26, + "end": 6447.86, + "probability": 0.697 + }, + { + "start": 6449.82, + "end": 6451.28, + "probability": 0.9052 + }, + { + "start": 6452.74, + "end": 6455.74, + "probability": 0.9821 + }, + { + "start": 6457.12, + "end": 6460.76, + "probability": 0.9707 + }, + { + "start": 6461.66, + "end": 6462.13, + "probability": 0.9229 + }, + { + "start": 6463.4, + "end": 6467.18, + "probability": 0.7866 + }, + { + "start": 6468.04, + "end": 6473.96, + "probability": 0.9573 + }, + { + "start": 6474.88, + "end": 6478.44, + "probability": 0.6783 + }, + { + "start": 6479.04, + "end": 6481.04, + "probability": 0.9865 + }, + { + "start": 6482.1, + "end": 6485.04, + "probability": 0.9651 + }, + { + "start": 6485.98, + "end": 6487.1, + "probability": 0.9442 + }, + { + "start": 6488.04, + "end": 6495.48, + "probability": 0.9741 + }, + { + "start": 6496.9, + "end": 6505.38, + "probability": 0.6538 + }, + { + "start": 6506.6, + "end": 6507.41, + "probability": 0.6822 + }, + { + "start": 6508.8, + "end": 6513.28, + "probability": 0.6858 + }, + { + "start": 6514.06, + "end": 6516.38, + "probability": 0.9958 + }, + { + "start": 6517.28, + "end": 6519.96, + "probability": 0.6261 + }, + { + "start": 6520.9, + "end": 6523.5, + "probability": 0.7792 + }, + { + "start": 6524.4, + "end": 6529.98, + "probability": 0.609 + }, + { + "start": 6531.2, + "end": 6535.12, + "probability": 0.8445 + }, + { + "start": 6535.84, + "end": 6537.02, + "probability": 0.9231 + }, + { + "start": 6537.92, + "end": 6539.12, + "probability": 0.8362 + }, + { + "start": 6541.04, + "end": 6544.34, + "probability": 0.9372 + }, + { + "start": 6545.0, + "end": 6546.76, + "probability": 0.9675 + }, + { + "start": 6547.7, + "end": 6549.42, + "probability": 0.8719 + }, + { + "start": 6550.18, + "end": 6553.16, + "probability": 0.7271 + }, + { + "start": 6554.68, + "end": 6561.1, + "probability": 0.9879 + }, + { + "start": 6562.3, + "end": 6562.6, + "probability": 0.2224 + }, + { + "start": 6562.6, + "end": 6563.9, + "probability": 0.3771 + }, + { + "start": 6564.08, + "end": 6565.76, + "probability": 0.4993 + }, + { + "start": 6565.96, + "end": 6567.64, + "probability": 0.8629 + }, + { + "start": 6567.64, + "end": 6568.88, + "probability": 0.2591 + }, + { + "start": 6569.22, + "end": 6569.68, + "probability": 0.8484 + }, + { + "start": 6569.88, + "end": 6570.24, + "probability": 0.6731 + }, + { + "start": 6570.86, + "end": 6573.13, + "probability": 0.8529 + }, + { + "start": 6574.56, + "end": 6577.64, + "probability": 0.8831 + }, + { + "start": 6578.76, + "end": 6587.34, + "probability": 0.9689 + }, + { + "start": 6588.44, + "end": 6588.9, + "probability": 0.8582 + }, + { + "start": 6589.6, + "end": 6591.62, + "probability": 0.9397 + }, + { + "start": 6592.3, + "end": 6595.54, + "probability": 0.8147 + }, + { + "start": 6596.24, + "end": 6598.9, + "probability": 0.8502 + }, + { + "start": 6600.2, + "end": 6602.2, + "probability": 0.8445 + }, + { + "start": 6602.82, + "end": 6606.52, + "probability": 0.5549 + }, + { + "start": 6607.38, + "end": 6608.96, + "probability": 0.5575 + }, + { + "start": 6609.98, + "end": 6611.3, + "probability": 0.0744 + }, + { + "start": 6611.96, + "end": 6613.14, + "probability": 0.7016 + }, + { + "start": 6613.82, + "end": 6614.9, + "probability": 0.4569 + }, + { + "start": 6615.68, + "end": 6623.82, + "probability": 0.9648 + }, + { + "start": 6624.54, + "end": 6625.82, + "probability": 0.968 + }, + { + "start": 6625.98, + "end": 6627.38, + "probability": 0.9439 + }, + { + "start": 6627.82, + "end": 6633.26, + "probability": 0.9676 + }, + { + "start": 6633.3, + "end": 6633.98, + "probability": 0.8575 + }, + { + "start": 6634.4, + "end": 6636.54, + "probability": 0.8724 + }, + { + "start": 6637.2, + "end": 6641.92, + "probability": 0.7952 + }, + { + "start": 6642.04, + "end": 6645.32, + "probability": 0.7357 + }, + { + "start": 6645.72, + "end": 6647.56, + "probability": 0.8296 + }, + { + "start": 6648.34, + "end": 6649.72, + "probability": 0.972 + }, + { + "start": 6650.44, + "end": 6654.6, + "probability": 0.9954 + }, + { + "start": 6655.34, + "end": 6656.26, + "probability": 0.9441 + }, + { + "start": 6656.8, + "end": 6657.88, + "probability": 0.727 + }, + { + "start": 6658.46, + "end": 6660.22, + "probability": 0.7025 + }, + { + "start": 6660.99, + "end": 6663.68, + "probability": 0.6849 + }, + { + "start": 6664.22, + "end": 6665.76, + "probability": 0.9407 + }, + { + "start": 6666.28, + "end": 6668.12, + "probability": 0.7955 + }, + { + "start": 6668.76, + "end": 6670.08, + "probability": 0.8665 + }, + { + "start": 6670.24, + "end": 6672.54, + "probability": 0.9538 + }, + { + "start": 6672.66, + "end": 6673.24, + "probability": 0.9052 + }, + { + "start": 6674.86, + "end": 6674.86, + "probability": 0.32 + }, + { + "start": 6674.86, + "end": 6675.98, + "probability": 0.6837 + }, + { + "start": 6677.6, + "end": 6680.94, + "probability": 0.7383 + }, + { + "start": 6681.98, + "end": 6684.36, + "probability": 0.8151 + }, + { + "start": 6685.38, + "end": 6687.23, + "probability": 0.9781 + }, + { + "start": 6687.82, + "end": 6689.56, + "probability": 0.683 + }, + { + "start": 6690.28, + "end": 6693.02, + "probability": 0.804 + }, + { + "start": 6693.6, + "end": 6695.18, + "probability": 0.9057 + }, + { + "start": 6695.78, + "end": 6697.22, + "probability": 0.9272 + }, + { + "start": 6697.74, + "end": 6699.92, + "probability": 0.9029 + }, + { + "start": 6700.38, + "end": 6701.04, + "probability": 0.7969 + }, + { + "start": 6702.98, + "end": 6704.9, + "probability": 0.6136 + }, + { + "start": 6704.96, + "end": 6709.88, + "probability": 0.9742 + }, + { + "start": 6710.66, + "end": 6714.5, + "probability": 0.4283 + }, + { + "start": 6714.78, + "end": 6717.04, + "probability": 0.9395 + }, + { + "start": 6717.2, + "end": 6717.44, + "probability": 0.5526 + }, + { + "start": 6719.0, + "end": 6722.46, + "probability": 0.9819 + }, + { + "start": 6722.98, + "end": 6723.66, + "probability": 0.8506 + }, + { + "start": 6724.72, + "end": 6725.8, + "probability": 0.023 + }, + { + "start": 6726.46, + "end": 6728.58, + "probability": 0.9545 + }, + { + "start": 6729.88, + "end": 6731.66, + "probability": 0.8715 + }, + { + "start": 6732.38, + "end": 6736.34, + "probability": 0.6665 + }, + { + "start": 6737.56, + "end": 6740.44, + "probability": 0.854 + }, + { + "start": 6743.56, + "end": 6744.88, + "probability": 0.7005 + }, + { + "start": 6746.55, + "end": 6749.2, + "probability": 0.8388 + }, + { + "start": 6750.28, + "end": 6756.48, + "probability": 0.9973 + }, + { + "start": 6757.62, + "end": 6761.02, + "probability": 0.9532 + }, + { + "start": 6761.62, + "end": 6762.8, + "probability": 0.5433 + }, + { + "start": 6764.44, + "end": 6767.24, + "probability": 0.6883 + }, + { + "start": 6767.76, + "end": 6770.28, + "probability": 0.9851 + }, + { + "start": 6770.96, + "end": 6773.58, + "probability": 0.9982 + }, + { + "start": 6774.28, + "end": 6774.9, + "probability": 0.9308 + }, + { + "start": 6776.68, + "end": 6780.44, + "probability": 0.9283 + }, + { + "start": 6780.58, + "end": 6781.16, + "probability": 0.7901 + }, + { + "start": 6782.62, + "end": 6783.58, + "probability": 0.7978 + }, + { + "start": 6783.74, + "end": 6784.94, + "probability": 0.437 + }, + { + "start": 6785.86, + "end": 6788.22, + "probability": 0.6663 + }, + { + "start": 6788.4, + "end": 6789.64, + "probability": 0.8074 + }, + { + "start": 6789.9, + "end": 6792.34, + "probability": 0.8846 + }, + { + "start": 6793.24, + "end": 6795.28, + "probability": 0.8926 + }, + { + "start": 6795.28, + "end": 6796.86, + "probability": 0.9907 + }, + { + "start": 6797.34, + "end": 6798.1, + "probability": 0.4427 + }, + { + "start": 6798.24, + "end": 6798.62, + "probability": 0.3967 + }, + { + "start": 6798.7, + "end": 6799.22, + "probability": 0.2544 + }, + { + "start": 6799.22, + "end": 6800.32, + "probability": 0.6813 + }, + { + "start": 6800.32, + "end": 6801.18, + "probability": 0.5989 + }, + { + "start": 6801.3, + "end": 6803.28, + "probability": 0.444 + }, + { + "start": 6804.14, + "end": 6810.74, + "probability": 0.5935 + }, + { + "start": 6812.77, + "end": 6818.54, + "probability": 0.8874 + }, + { + "start": 6818.66, + "end": 6819.16, + "probability": 0.0834 + }, + { + "start": 6819.16, + "end": 6823.6, + "probability": 0.6951 + }, + { + "start": 6824.12, + "end": 6825.72, + "probability": 0.9719 + }, + { + "start": 6825.92, + "end": 6826.7, + "probability": 0.8132 + }, + { + "start": 6827.28, + "end": 6828.64, + "probability": 0.716 + }, + { + "start": 6829.24, + "end": 6833.22, + "probability": 0.7505 + }, + { + "start": 6833.36, + "end": 6836.94, + "probability": 0.6662 + }, + { + "start": 6837.02, + "end": 6837.86, + "probability": 0.7225 + }, + { + "start": 6837.98, + "end": 6838.56, + "probability": 0.8063 + }, + { + "start": 6838.9, + "end": 6839.36, + "probability": 0.7266 + }, + { + "start": 6839.96, + "end": 6842.74, + "probability": 0.5729 + }, + { + "start": 6843.14, + "end": 6846.2, + "probability": 0.9443 + }, + { + "start": 6846.72, + "end": 6848.92, + "probability": 0.5684 + }, + { + "start": 6849.38, + "end": 6854.7, + "probability": 0.736 + }, + { + "start": 6855.24, + "end": 6857.32, + "probability": 0.6742 + }, + { + "start": 6858.0, + "end": 6860.88, + "probability": 0.7501 + }, + { + "start": 6861.38, + "end": 6869.28, + "probability": 0.6767 + }, + { + "start": 6870.04, + "end": 6872.38, + "probability": 0.8504 + }, + { + "start": 6873.12, + "end": 6876.24, + "probability": 0.6794 + }, + { + "start": 6876.9, + "end": 6878.58, + "probability": 0.7502 + }, + { + "start": 6880.36, + "end": 6882.64, + "probability": 0.6751 + }, + { + "start": 6883.64, + "end": 6887.52, + "probability": 0.8485 + }, + { + "start": 6888.56, + "end": 6890.38, + "probability": 0.9101 + }, + { + "start": 6890.54, + "end": 6892.52, + "probability": 0.6533 + }, + { + "start": 6893.2, + "end": 6895.06, + "probability": 0.9154 + }, + { + "start": 6895.42, + "end": 6895.85, + "probability": 0.8348 + }, + { + "start": 6896.28, + "end": 6896.66, + "probability": 0.6176 + }, + { + "start": 6896.92, + "end": 6897.76, + "probability": 0.7689 + }, + { + "start": 6898.48, + "end": 6898.64, + "probability": 0.5914 + }, + { + "start": 6898.76, + "end": 6899.58, + "probability": 0.7659 + }, + { + "start": 6900.0, + "end": 6901.94, + "probability": 0.9631 + }, + { + "start": 6902.64, + "end": 6903.52, + "probability": 0.7479 + }, + { + "start": 6904.0, + "end": 6906.18, + "probability": 0.8793 + }, + { + "start": 6906.24, + "end": 6907.68, + "probability": 0.7988 + }, + { + "start": 6907.76, + "end": 6908.2, + "probability": 0.8778 + }, + { + "start": 6908.88, + "end": 6911.07, + "probability": 0.9371 + }, + { + "start": 6912.12, + "end": 6916.32, + "probability": 0.7758 + }, + { + "start": 6920.46, + "end": 6921.42, + "probability": 0.7281 + }, + { + "start": 6922.54, + "end": 6923.32, + "probability": 0.7112 + }, + { + "start": 6924.05, + "end": 6927.3, + "probability": 0.9543 + }, + { + "start": 6927.32, + "end": 6927.42, + "probability": 0.5066 + }, + { + "start": 6928.6, + "end": 6929.64, + "probability": 0.7351 + }, + { + "start": 6929.88, + "end": 6932.52, + "probability": 0.0139 + }, + { + "start": 6933.2, + "end": 6936.2, + "probability": 0.0597 + }, + { + "start": 6936.92, + "end": 6937.02, + "probability": 0.0415 + }, + { + "start": 6937.8, + "end": 6940.8, + "probability": 0.9922 + }, + { + "start": 6941.11, + "end": 6943.66, + "probability": 0.3285 + }, + { + "start": 6943.76, + "end": 6944.6, + "probability": 0.9893 + }, + { + "start": 6945.08, + "end": 6947.52, + "probability": 0.2262 + }, + { + "start": 6947.98, + "end": 6953.24, + "probability": 0.9806 + }, + { + "start": 6953.66, + "end": 6957.5, + "probability": 0.9946 + }, + { + "start": 6959.8, + "end": 6961.46, + "probability": 0.0296 + }, + { + "start": 6961.6, + "end": 6962.7, + "probability": 0.2861 + }, + { + "start": 6963.18, + "end": 6965.26, + "probability": 0.0366 + }, + { + "start": 6965.68, + "end": 6966.92, + "probability": 0.559 + }, + { + "start": 6967.1, + "end": 6971.7, + "probability": 0.8936 + }, + { + "start": 6972.04, + "end": 6974.48, + "probability": 0.9202 + }, + { + "start": 6975.76, + "end": 6978.32, + "probability": 0.7305 + }, + { + "start": 6978.88, + "end": 6981.46, + "probability": 0.6526 + }, + { + "start": 6981.72, + "end": 6982.36, + "probability": 0.7286 + }, + { + "start": 6982.78, + "end": 6985.8, + "probability": 0.629 + }, + { + "start": 6985.86, + "end": 6989.6, + "probability": 0.9534 + }, + { + "start": 6989.8, + "end": 6992.36, + "probability": 0.7803 + }, + { + "start": 6993.62, + "end": 6996.16, + "probability": 0.8599 + }, + { + "start": 6996.28, + "end": 6998.92, + "probability": 0.6305 + }, + { + "start": 6999.78, + "end": 7001.08, + "probability": 0.5696 + }, + { + "start": 7001.28, + "end": 7002.3, + "probability": 0.7778 + }, + { + "start": 7002.46, + "end": 7004.28, + "probability": 0.9768 + }, + { + "start": 7006.18, + "end": 7011.6, + "probability": 0.9559 + }, + { + "start": 7011.6, + "end": 7014.06, + "probability": 0.9256 + }, + { + "start": 7014.92, + "end": 7015.52, + "probability": 0.9653 + }, + { + "start": 7017.28, + "end": 7020.28, + "probability": 0.9088 + }, + { + "start": 7020.28, + "end": 7023.68, + "probability": 0.9985 + }, + { + "start": 7024.22, + "end": 7026.86, + "probability": 0.9924 + }, + { + "start": 7028.28, + "end": 7032.06, + "probability": 0.9849 + }, + { + "start": 7032.48, + "end": 7037.52, + "probability": 0.9977 + }, + { + "start": 7039.1, + "end": 7039.8, + "probability": 0.7514 + }, + { + "start": 7041.7, + "end": 7046.1, + "probability": 0.9932 + }, + { + "start": 7046.8, + "end": 7050.38, + "probability": 0.9714 + }, + { + "start": 7053.26, + "end": 7055.16, + "probability": 0.8931 + }, + { + "start": 7056.1, + "end": 7057.22, + "probability": 0.9943 + }, + { + "start": 7057.92, + "end": 7062.1, + "probability": 0.9959 + }, + { + "start": 7062.88, + "end": 7065.1, + "probability": 0.9033 + }, + { + "start": 7066.72, + "end": 7067.32, + "probability": 0.7694 + }, + { + "start": 7068.38, + "end": 7070.82, + "probability": 0.9906 + }, + { + "start": 7070.82, + "end": 7073.32, + "probability": 0.9639 + }, + { + "start": 7075.04, + "end": 7078.32, + "probability": 0.9105 + }, + { + "start": 7078.42, + "end": 7082.14, + "probability": 0.9819 + }, + { + "start": 7083.08, + "end": 7083.9, + "probability": 0.6934 + }, + { + "start": 7084.58, + "end": 7088.94, + "probability": 0.9631 + }, + { + "start": 7089.04, + "end": 7093.8, + "probability": 0.9768 + }, + { + "start": 7094.88, + "end": 7095.44, + "probability": 0.3103 + }, + { + "start": 7096.48, + "end": 7099.28, + "probability": 0.9974 + }, + { + "start": 7099.34, + "end": 7103.08, + "probability": 0.9971 + }, + { + "start": 7103.94, + "end": 7110.24, + "probability": 0.9995 + }, + { + "start": 7110.86, + "end": 7113.88, + "probability": 0.9791 + }, + { + "start": 7114.64, + "end": 7117.02, + "probability": 0.9961 + }, + { + "start": 7118.0, + "end": 7118.46, + "probability": 0.5355 + }, + { + "start": 7118.5, + "end": 7120.04, + "probability": 0.7038 + }, + { + "start": 7121.5, + "end": 7122.02, + "probability": 0.7476 + }, + { + "start": 7122.96, + "end": 7123.38, + "probability": 0.2533 + }, + { + "start": 7123.68, + "end": 7124.82, + "probability": 0.5505 + }, + { + "start": 7125.38, + "end": 7125.38, + "probability": 0.3858 + }, + { + "start": 7125.5, + "end": 7126.74, + "probability": 0.7074 + }, + { + "start": 7127.74, + "end": 7129.54, + "probability": 0.7753 + }, + { + "start": 7130.8, + "end": 7131.68, + "probability": 0.6311 + }, + { + "start": 7134.7, + "end": 7134.98, + "probability": 0.3557 + }, + { + "start": 7136.22, + "end": 7136.64, + "probability": 0.2192 + }, + { + "start": 7136.64, + "end": 7136.64, + "probability": 0.2246 + }, + { + "start": 7136.64, + "end": 7138.82, + "probability": 0.9403 + }, + { + "start": 7139.6, + "end": 7140.24, + "probability": 0.7873 + }, + { + "start": 7141.7, + "end": 7143.58, + "probability": 0.9512 + }, + { + "start": 7144.78, + "end": 7150.0, + "probability": 0.8748 + }, + { + "start": 7150.12, + "end": 7151.54, + "probability": 0.1998 + }, + { + "start": 7151.6, + "end": 7157.38, + "probability": 0.3716 + }, + { + "start": 7157.86, + "end": 7158.72, + "probability": 0.6244 + }, + { + "start": 7159.22, + "end": 7159.98, + "probability": 0.7542 + }, + { + "start": 7160.38, + "end": 7161.02, + "probability": 0.9789 + }, + { + "start": 7161.1, + "end": 7161.7, + "probability": 0.9059 + }, + { + "start": 7162.6, + "end": 7165.04, + "probability": 0.4375 + }, + { + "start": 7166.16, + "end": 7172.41, + "probability": 0.0651 + }, + { + "start": 7172.98, + "end": 7173.18, + "probability": 0.0265 + }, + { + "start": 7173.46, + "end": 7174.02, + "probability": 0.0994 + }, + { + "start": 7174.02, + "end": 7174.02, + "probability": 0.089 + }, + { + "start": 7174.02, + "end": 7176.13, + "probability": 0.7959 + }, + { + "start": 7176.42, + "end": 7180.96, + "probability": 0.9347 + }, + { + "start": 7182.6, + "end": 7184.26, + "probability": 0.802 + }, + { + "start": 7188.42, + "end": 7190.58, + "probability": 0.9126 + }, + { + "start": 7191.12, + "end": 7195.64, + "probability": 0.994 + }, + { + "start": 7196.18, + "end": 7196.5, + "probability": 0.0002 + }, + { + "start": 7205.56, + "end": 7205.56, + "probability": 0.0054 + }, + { + "start": 7205.56, + "end": 7205.56, + "probability": 0.0162 + }, + { + "start": 7205.56, + "end": 7205.56, + "probability": 0.2652 + }, + { + "start": 7215.44, + "end": 7216.16, + "probability": 0.5399 + }, + { + "start": 7216.26, + "end": 7217.4, + "probability": 0.6756 + }, + { + "start": 7217.66, + "end": 7221.14, + "probability": 0.8853 + }, + { + "start": 7222.92, + "end": 7224.62, + "probability": 0.9824 + }, + { + "start": 7227.34, + "end": 7229.82, + "probability": 0.9305 + }, + { + "start": 7230.82, + "end": 7233.6, + "probability": 0.907 + }, + { + "start": 7234.74, + "end": 7235.76, + "probability": 0.8522 + }, + { + "start": 7237.36, + "end": 7239.52, + "probability": 0.9682 + }, + { + "start": 7241.02, + "end": 7242.6, + "probability": 0.5965 + }, + { + "start": 7242.88, + "end": 7246.5, + "probability": 0.6731 + }, + { + "start": 7246.84, + "end": 7249.54, + "probability": 0.7806 + }, + { + "start": 7250.94, + "end": 7253.42, + "probability": 0.9626 + }, + { + "start": 7253.56, + "end": 7255.66, + "probability": 0.9956 + }, + { + "start": 7256.36, + "end": 7259.04, + "probability": 0.9521 + }, + { + "start": 7260.42, + "end": 7263.02, + "probability": 0.8102 + }, + { + "start": 7263.2, + "end": 7264.88, + "probability": 0.7039 + }, + { + "start": 7266.0, + "end": 7268.54, + "probability": 0.8528 + }, + { + "start": 7269.74, + "end": 7271.54, + "probability": 0.989 + }, + { + "start": 7271.8, + "end": 7277.9, + "probability": 0.9978 + }, + { + "start": 7279.22, + "end": 7281.36, + "probability": 0.94 + }, + { + "start": 7281.9, + "end": 7283.06, + "probability": 0.9631 + }, + { + "start": 7283.94, + "end": 7288.5, + "probability": 0.96 + }, + { + "start": 7288.56, + "end": 7290.0, + "probability": 0.9582 + }, + { + "start": 7291.44, + "end": 7292.72, + "probability": 0.7161 + }, + { + "start": 7293.34, + "end": 7294.74, + "probability": 0.6614 + }, + { + "start": 7295.54, + "end": 7298.66, + "probability": 0.7394 + }, + { + "start": 7299.76, + "end": 7302.27, + "probability": 0.5607 + }, + { + "start": 7302.96, + "end": 7308.22, + "probability": 0.4979 + }, + { + "start": 7308.22, + "end": 7313.84, + "probability": 0.9668 + }, + { + "start": 7314.42, + "end": 7317.06, + "probability": 0.9954 + }, + { + "start": 7317.72, + "end": 7318.48, + "probability": 0.9059 + }, + { + "start": 7319.88, + "end": 7325.16, + "probability": 0.9054 + }, + { + "start": 7325.34, + "end": 7327.22, + "probability": 0.9555 + }, + { + "start": 7327.88, + "end": 7329.98, + "probability": 0.9811 + }, + { + "start": 7330.12, + "end": 7331.06, + "probability": 0.9821 + }, + { + "start": 7331.1, + "end": 7333.24, + "probability": 0.9902 + }, + { + "start": 7333.86, + "end": 7336.46, + "probability": 0.9961 + }, + { + "start": 7337.28, + "end": 7340.28, + "probability": 0.9714 + }, + { + "start": 7341.08, + "end": 7345.04, + "probability": 0.9206 + }, + { + "start": 7345.78, + "end": 7345.8, + "probability": 0.5134 + }, + { + "start": 7345.9, + "end": 7346.8, + "probability": 0.9557 + }, + { + "start": 7346.86, + "end": 7347.62, + "probability": 0.7973 + }, + { + "start": 7347.66, + "end": 7348.7, + "probability": 0.9512 + }, + { + "start": 7349.48, + "end": 7353.02, + "probability": 0.7488 + }, + { + "start": 7353.64, + "end": 7355.52, + "probability": 0.9488 + }, + { + "start": 7356.06, + "end": 7356.86, + "probability": 0.9451 + }, + { + "start": 7357.0, + "end": 7357.96, + "probability": 0.7395 + }, + { + "start": 7358.06, + "end": 7358.38, + "probability": 0.2086 + }, + { + "start": 7358.4, + "end": 7358.4, + "probability": 0.4565 + }, + { + "start": 7358.52, + "end": 7360.84, + "probability": 0.9966 + }, + { + "start": 7361.8, + "end": 7362.26, + "probability": 0.4687 + }, + { + "start": 7362.26, + "end": 7363.03, + "probability": 0.5488 + }, + { + "start": 7365.83, + "end": 7366.19, + "probability": 0.13 + }, + { + "start": 7366.28, + "end": 7366.82, + "probability": 0.5256 + }, + { + "start": 7366.88, + "end": 7367.49, + "probability": 0.7339 + }, + { + "start": 7370.45, + "end": 7372.48, + "probability": 0.9263 + }, + { + "start": 7373.12, + "end": 7374.12, + "probability": 0.6493 + }, + { + "start": 7375.44, + "end": 7377.44, + "probability": 0.7951 + }, + { + "start": 7377.52, + "end": 7377.74, + "probability": 0.9065 + }, + { + "start": 7379.32, + "end": 7385.18, + "probability": 0.6598 + }, + { + "start": 7385.18, + "end": 7391.6, + "probability": 0.8939 + }, + { + "start": 7391.66, + "end": 7392.24, + "probability": 0.7022 + }, + { + "start": 7392.62, + "end": 7396.56, + "probability": 0.8816 + }, + { + "start": 7396.64, + "end": 7396.88, + "probability": 0.4508 + }, + { + "start": 7396.92, + "end": 7398.34, + "probability": 0.8737 + }, + { + "start": 7398.76, + "end": 7402.1, + "probability": 0.9941 + }, + { + "start": 7402.74, + "end": 7402.78, + "probability": 0.6909 + }, + { + "start": 7402.92, + "end": 7403.7, + "probability": 0.9611 + }, + { + "start": 7403.84, + "end": 7405.6, + "probability": 0.943 + }, + { + "start": 7405.84, + "end": 7409.02, + "probability": 0.9563 + }, + { + "start": 7409.56, + "end": 7410.52, + "probability": 0.6475 + }, + { + "start": 7410.56, + "end": 7412.08, + "probability": 0.8133 + }, + { + "start": 7412.72, + "end": 7416.32, + "probability": 0.978 + }, + { + "start": 7416.32, + "end": 7419.98, + "probability": 0.9898 + }, + { + "start": 7420.86, + "end": 7421.82, + "probability": 0.9854 + }, + { + "start": 7422.34, + "end": 7427.06, + "probability": 0.6523 + }, + { + "start": 7427.28, + "end": 7431.48, + "probability": 0.4421 + }, + { + "start": 7431.62, + "end": 7432.14, + "probability": 0.5063 + }, + { + "start": 7432.24, + "end": 7433.44, + "probability": 0.752 + }, + { + "start": 7434.34, + "end": 7434.86, + "probability": 0.9045 + }, + { + "start": 7436.46, + "end": 7438.42, + "probability": 0.1425 + }, + { + "start": 7439.16, + "end": 7441.52, + "probability": 0.0217 + }, + { + "start": 7444.18, + "end": 7445.1, + "probability": 0.1 + }, + { + "start": 7445.1, + "end": 7445.7, + "probability": 0.0687 + }, + { + "start": 7445.84, + "end": 7445.94, + "probability": 0.0228 + }, + { + "start": 7445.94, + "end": 7448.7, + "probability": 0.824 + }, + { + "start": 7449.38, + "end": 7451.16, + "probability": 0.597 + }, + { + "start": 7451.96, + "end": 7455.96, + "probability": 0.9688 + }, + { + "start": 7456.2, + "end": 7457.64, + "probability": 0.8997 + }, + { + "start": 7457.88, + "end": 7460.9, + "probability": 0.0558 + }, + { + "start": 7461.78, + "end": 7462.86, + "probability": 0.2111 + }, + { + "start": 7462.98, + "end": 7464.5, + "probability": 0.5506 + }, + { + "start": 7465.18, + "end": 7467.55, + "probability": 0.6756 + }, + { + "start": 7467.76, + "end": 7467.76, + "probability": 0.0035 + }, + { + "start": 7470.24, + "end": 7470.4, + "probability": 0.1054 + }, + { + "start": 7470.4, + "end": 7470.98, + "probability": 0.2465 + }, + { + "start": 7471.32, + "end": 7475.7, + "probability": 0.8197 + }, + { + "start": 7476.3, + "end": 7479.54, + "probability": 0.9372 + }, + { + "start": 7480.14, + "end": 7483.12, + "probability": 0.9829 + }, + { + "start": 7483.24, + "end": 7484.12, + "probability": 0.4934 + }, + { + "start": 7485.3, + "end": 7489.1, + "probability": 0.3213 + }, + { + "start": 7489.16, + "end": 7489.96, + "probability": 0.8492 + }, + { + "start": 7490.12, + "end": 7490.44, + "probability": 0.8578 + }, + { + "start": 7491.24, + "end": 7491.4, + "probability": 0.0063 + }, + { + "start": 7491.4, + "end": 7492.06, + "probability": 0.3134 + }, + { + "start": 7493.2, + "end": 7495.8, + "probability": 0.9463 + }, + { + "start": 7495.92, + "end": 7496.54, + "probability": 0.6116 + }, + { + "start": 7496.7, + "end": 7499.44, + "probability": 0.7108 + }, + { + "start": 7499.88, + "end": 7501.8, + "probability": 0.8113 + }, + { + "start": 7501.88, + "end": 7502.86, + "probability": 0.8459 + }, + { + "start": 7503.84, + "end": 7505.02, + "probability": 0.9688 + }, + { + "start": 7505.72, + "end": 7509.98, + "probability": 0.9961 + }, + { + "start": 7510.5, + "end": 7513.2, + "probability": 0.9543 + }, + { + "start": 7513.84, + "end": 7517.88, + "probability": 0.9424 + }, + { + "start": 7518.18, + "end": 7518.48, + "probability": 0.3305 + }, + { + "start": 7519.22, + "end": 7520.64, + "probability": 0.8032 + }, + { + "start": 7521.46, + "end": 7522.96, + "probability": 0.7923 + }, + { + "start": 7523.48, + "end": 7524.7, + "probability": 0.9421 + }, + { + "start": 7525.46, + "end": 7527.02, + "probability": 0.7816 + }, + { + "start": 7527.34, + "end": 7529.26, + "probability": 0.9692 + }, + { + "start": 7529.46, + "end": 7530.44, + "probability": 0.957 + }, + { + "start": 7531.8, + "end": 7535.96, + "probability": 0.9177 + }, + { + "start": 7536.54, + "end": 7537.76, + "probability": 0.812 + }, + { + "start": 7538.28, + "end": 7539.32, + "probability": 0.9958 + }, + { + "start": 7540.24, + "end": 7542.92, + "probability": 0.9292 + }, + { + "start": 7543.96, + "end": 7546.32, + "probability": 0.5072 + }, + { + "start": 7546.56, + "end": 7548.0, + "probability": 0.9067 + }, + { + "start": 7548.82, + "end": 7551.42, + "probability": 0.9861 + }, + { + "start": 7551.94, + "end": 7552.58, + "probability": 0.7956 + }, + { + "start": 7553.9, + "end": 7560.82, + "probability": 0.7365 + }, + { + "start": 7561.54, + "end": 7566.7, + "probability": 0.9258 + }, + { + "start": 7567.44, + "end": 7570.0, + "probability": 0.7962 + }, + { + "start": 7570.42, + "end": 7571.08, + "probability": 0.9795 + }, + { + "start": 7572.1, + "end": 7573.94, + "probability": 0.5826 + }, + { + "start": 7574.54, + "end": 7575.88, + "probability": 0.9048 + }, + { + "start": 7576.62, + "end": 7581.34, + "probability": 0.9658 + }, + { + "start": 7582.1, + "end": 7585.36, + "probability": 0.9204 + }, + { + "start": 7586.34, + "end": 7589.58, + "probability": 0.9166 + }, + { + "start": 7589.58, + "end": 7593.82, + "probability": 0.715 + }, + { + "start": 7593.96, + "end": 7598.06, + "probability": 0.985 + }, + { + "start": 7599.08, + "end": 7602.36, + "probability": 0.5021 + }, + { + "start": 7603.22, + "end": 7605.48, + "probability": 0.64 + }, + { + "start": 7606.78, + "end": 7609.54, + "probability": 0.9646 + }, + { + "start": 7609.78, + "end": 7610.38, + "probability": 0.9751 + }, + { + "start": 7611.0, + "end": 7612.66, + "probability": 0.9273 + }, + { + "start": 7613.12, + "end": 7614.2, + "probability": 0.89 + }, + { + "start": 7615.48, + "end": 7616.36, + "probability": 0.9963 + }, + { + "start": 7616.66, + "end": 7619.32, + "probability": 0.9861 + }, + { + "start": 7619.98, + "end": 7622.7, + "probability": 0.5558 + }, + { + "start": 7623.36, + "end": 7623.36, + "probability": 0.6973 + }, + { + "start": 7623.94, + "end": 7626.28, + "probability": 0.6668 + }, + { + "start": 7626.28, + "end": 7627.74, + "probability": 0.8598 + }, + { + "start": 7628.08, + "end": 7628.84, + "probability": 0.8 + }, + { + "start": 7629.34, + "end": 7631.64, + "probability": 0.9952 + }, + { + "start": 7632.7, + "end": 7633.42, + "probability": 0.2493 + }, + { + "start": 7633.72, + "end": 7637.72, + "probability": 0.64 + }, + { + "start": 7638.22, + "end": 7640.0, + "probability": 0.7829 + }, + { + "start": 7640.4, + "end": 7643.62, + "probability": 0.9893 + }, + { + "start": 7644.7, + "end": 7645.92, + "probability": 0.6522 + }, + { + "start": 7646.82, + "end": 7647.4, + "probability": 0.7418 + }, + { + "start": 7648.44, + "end": 7650.68, + "probability": 0.8242 + }, + { + "start": 7651.26, + "end": 7652.5, + "probability": 0.9556 + }, + { + "start": 7653.06, + "end": 7654.58, + "probability": 0.5984 + }, + { + "start": 7654.68, + "end": 7656.8, + "probability": 0.991 + }, + { + "start": 7657.06, + "end": 7657.92, + "probability": 0.8323 + }, + { + "start": 7658.42, + "end": 7659.18, + "probability": 0.9795 + }, + { + "start": 7659.9, + "end": 7660.72, + "probability": 0.5368 + }, + { + "start": 7661.78, + "end": 7663.6, + "probability": 0.9866 + }, + { + "start": 7666.1, + "end": 7667.1, + "probability": 0.9946 + }, + { + "start": 7668.22, + "end": 7669.1, + "probability": 0.7795 + }, + { + "start": 7669.56, + "end": 7670.98, + "probability": 0.7681 + }, + { + "start": 7671.42, + "end": 7672.24, + "probability": 0.9483 + }, + { + "start": 7672.56, + "end": 7673.56, + "probability": 0.9592 + }, + { + "start": 7674.82, + "end": 7678.12, + "probability": 0.9076 + }, + { + "start": 7678.8, + "end": 7680.02, + "probability": 0.8872 + }, + { + "start": 7680.94, + "end": 7682.48, + "probability": 0.9908 + }, + { + "start": 7683.82, + "end": 7684.95, + "probability": 0.8294 + }, + { + "start": 7685.74, + "end": 7686.81, + "probability": 0.9282 + }, + { + "start": 7688.0, + "end": 7688.24, + "probability": 0.8429 + }, + { + "start": 7688.76, + "end": 7689.51, + "probability": 0.7321 + }, + { + "start": 7690.52, + "end": 7691.68, + "probability": 0.8811 + }, + { + "start": 7692.06, + "end": 7694.32, + "probability": 0.9559 + }, + { + "start": 7695.22, + "end": 7695.66, + "probability": 0.6091 + }, + { + "start": 7696.48, + "end": 7697.6, + "probability": 0.6464 + }, + { + "start": 7698.24, + "end": 7698.88, + "probability": 0.8404 + }, + { + "start": 7699.98, + "end": 7703.52, + "probability": 0.9677 + }, + { + "start": 7704.1, + "end": 7704.68, + "probability": 0.7391 + }, + { + "start": 7705.84, + "end": 7708.56, + "probability": 0.8123 + }, + { + "start": 7709.64, + "end": 7711.64, + "probability": 0.7416 + }, + { + "start": 7713.28, + "end": 7714.1, + "probability": 0.4494 + }, + { + "start": 7715.18, + "end": 7716.12, + "probability": 0.9224 + }, + { + "start": 7716.38, + "end": 7718.46, + "probability": 0.9187 + }, + { + "start": 7718.48, + "end": 7720.44, + "probability": 0.9116 + }, + { + "start": 7720.62, + "end": 7723.22, + "probability": 0.8407 + }, + { + "start": 7723.28, + "end": 7727.14, + "probability": 0.9658 + }, + { + "start": 7728.06, + "end": 7730.54, + "probability": 0.9705 + }, + { + "start": 7731.84, + "end": 7733.6, + "probability": 0.9978 + }, + { + "start": 7734.36, + "end": 7735.36, + "probability": 0.7349 + }, + { + "start": 7736.48, + "end": 7740.44, + "probability": 0.9825 + }, + { + "start": 7741.28, + "end": 7745.82, + "probability": 0.9919 + }, + { + "start": 7745.88, + "end": 7748.43, + "probability": 0.6864 + }, + { + "start": 7749.42, + "end": 7749.62, + "probability": 0.8442 + }, + { + "start": 7750.5, + "end": 7751.98, + "probability": 0.937 + }, + { + "start": 7752.5, + "end": 7754.38, + "probability": 0.995 + }, + { + "start": 7755.12, + "end": 7756.68, + "probability": 0.952 + }, + { + "start": 7756.88, + "end": 7757.16, + "probability": 0.3788 + }, + { + "start": 7757.3, + "end": 7758.36, + "probability": 0.9133 + }, + { + "start": 7760.32, + "end": 7765.62, + "probability": 0.8102 + }, + { + "start": 7766.38, + "end": 7770.44, + "probability": 0.6216 + }, + { + "start": 7770.52, + "end": 7771.45, + "probability": 0.9858 + }, + { + "start": 7772.72, + "end": 7774.96, + "probability": 0.7442 + }, + { + "start": 7775.22, + "end": 7775.34, + "probability": 0.7939 + }, + { + "start": 7775.58, + "end": 7776.6, + "probability": 0.9131 + }, + { + "start": 7776.7, + "end": 7777.45, + "probability": 0.4364 + }, + { + "start": 7778.04, + "end": 7778.72, + "probability": 0.9629 + }, + { + "start": 7779.74, + "end": 7780.44, + "probability": 0.0241 + }, + { + "start": 7780.98, + "end": 7783.23, + "probability": 0.0622 + }, + { + "start": 7786.98, + "end": 7790.32, + "probability": 0.4708 + }, + { + "start": 7790.74, + "end": 7793.38, + "probability": 0.5338 + }, + { + "start": 7793.6, + "end": 7794.7, + "probability": 0.3813 + }, + { + "start": 7795.06, + "end": 7795.84, + "probability": 0.3305 + }, + { + "start": 7795.94, + "end": 7797.36, + "probability": 0.3483 + }, + { + "start": 7797.36, + "end": 7799.44, + "probability": 0.5197 + }, + { + "start": 7800.22, + "end": 7801.84, + "probability": 0.9516 + }, + { + "start": 7802.88, + "end": 7804.04, + "probability": 0.7547 + }, + { + "start": 7804.78, + "end": 7807.93, + "probability": 0.9497 + }, + { + "start": 7808.04, + "end": 7808.84, + "probability": 0.9256 + }, + { + "start": 7809.56, + "end": 7813.42, + "probability": 0.9482 + }, + { + "start": 7814.04, + "end": 7814.67, + "probability": 0.9153 + }, + { + "start": 7815.68, + "end": 7817.18, + "probability": 0.9012 + }, + { + "start": 7817.64, + "end": 7818.96, + "probability": 0.988 + }, + { + "start": 7819.44, + "end": 7825.52, + "probability": 0.7937 + }, + { + "start": 7825.8, + "end": 7826.52, + "probability": 0.5187 + }, + { + "start": 7827.56, + "end": 7830.68, + "probability": 0.7751 + }, + { + "start": 7831.44, + "end": 7833.02, + "probability": 0.9822 + }, + { + "start": 7833.74, + "end": 7835.36, + "probability": 0.9349 + }, + { + "start": 7835.88, + "end": 7836.78, + "probability": 0.8599 + }, + { + "start": 7836.84, + "end": 7839.14, + "probability": 0.6475 + }, + { + "start": 7839.26, + "end": 7840.08, + "probability": 0.5473 + }, + { + "start": 7840.7, + "end": 7844.18, + "probability": 0.908 + }, + { + "start": 7844.94, + "end": 7846.34, + "probability": 0.9531 + }, + { + "start": 7846.76, + "end": 7849.8, + "probability": 0.0867 + }, + { + "start": 7849.8, + "end": 7850.78, + "probability": 0.1638 + }, + { + "start": 7850.94, + "end": 7852.36, + "probability": 0.7012 + }, + { + "start": 7853.14, + "end": 7854.78, + "probability": 0.7169 + }, + { + "start": 7855.26, + "end": 7856.98, + "probability": 0.9377 + }, + { + "start": 7857.3, + "end": 7859.12, + "probability": 0.8959 + }, + { + "start": 7859.42, + "end": 7860.56, + "probability": 0.7649 + }, + { + "start": 7861.72, + "end": 7863.09, + "probability": 0.9087 + }, + { + "start": 7863.88, + "end": 7865.32, + "probability": 0.8428 + }, + { + "start": 7865.34, + "end": 7865.82, + "probability": 0.3283 + }, + { + "start": 7865.88, + "end": 7866.42, + "probability": 0.4272 + }, + { + "start": 7867.02, + "end": 7868.62, + "probability": 0.953 + }, + { + "start": 7868.8, + "end": 7869.41, + "probability": 0.4536 + }, + { + "start": 7870.38, + "end": 7872.12, + "probability": 0.9484 + }, + { + "start": 7872.64, + "end": 7874.1, + "probability": 0.7247 + }, + { + "start": 7874.68, + "end": 7876.64, + "probability": 0.6547 + }, + { + "start": 7876.7, + "end": 7878.78, + "probability": 0.9404 + }, + { + "start": 7879.28, + "end": 7880.58, + "probability": 0.9644 + }, + { + "start": 7880.66, + "end": 7883.74, + "probability": 0.9204 + }, + { + "start": 7884.16, + "end": 7885.12, + "probability": 0.9468 + }, + { + "start": 7887.16, + "end": 7889.78, + "probability": 0.9978 + }, + { + "start": 7889.86, + "end": 7891.22, + "probability": 0.7015 + }, + { + "start": 7891.74, + "end": 7892.74, + "probability": 0.8721 + }, + { + "start": 7893.16, + "end": 7894.1, + "probability": 0.981 + }, + { + "start": 7894.72, + "end": 7896.82, + "probability": 0.8011 + }, + { + "start": 7896.94, + "end": 7898.5, + "probability": 0.9024 + }, + { + "start": 7899.2, + "end": 7900.68, + "probability": 0.9539 + }, + { + "start": 7901.28, + "end": 7903.88, + "probability": 0.9878 + }, + { + "start": 7903.9, + "end": 7905.32, + "probability": 0.965 + }, + { + "start": 7905.8, + "end": 7906.5, + "probability": 0.668 + }, + { + "start": 7906.68, + "end": 7908.6, + "probability": 0.9943 + }, + { + "start": 7909.14, + "end": 7910.34, + "probability": 0.8621 + }, + { + "start": 7911.0, + "end": 7912.52, + "probability": 0.9961 + }, + { + "start": 7913.04, + "end": 7914.05, + "probability": 0.939 + }, + { + "start": 7914.6, + "end": 7918.15, + "probability": 0.9893 + }, + { + "start": 7918.42, + "end": 7921.78, + "probability": 0.9127 + }, + { + "start": 7922.28, + "end": 7924.62, + "probability": 0.9738 + }, + { + "start": 7924.62, + "end": 7926.26, + "probability": 0.9976 + }, + { + "start": 7926.7, + "end": 7927.68, + "probability": 0.8935 + }, + { + "start": 7928.44, + "end": 7930.44, + "probability": 0.5972 + }, + { + "start": 7932.22, + "end": 7932.64, + "probability": 0.2759 + }, + { + "start": 7932.82, + "end": 7935.88, + "probability": 0.9232 + }, + { + "start": 7936.74, + "end": 7937.74, + "probability": 0.3519 + }, + { + "start": 7939.3, + "end": 7940.56, + "probability": 0.2408 + }, + { + "start": 7941.26, + "end": 7941.36, + "probability": 0.0734 + }, + { + "start": 7941.36, + "end": 7942.69, + "probability": 0.5517 + }, + { + "start": 7946.86, + "end": 7947.26, + "probability": 0.071 + }, + { + "start": 7947.98, + "end": 7950.42, + "probability": 0.5019 + }, + { + "start": 7950.48, + "end": 7951.92, + "probability": 0.9414 + }, + { + "start": 7952.62, + "end": 7953.72, + "probability": 0.2421 + }, + { + "start": 7953.92, + "end": 7957.16, + "probability": 0.211 + }, + { + "start": 7957.52, + "end": 7960.11, + "probability": 0.7194 + }, + { + "start": 7960.8, + "end": 7964.9, + "probability": 0.2421 + }, + { + "start": 7965.8, + "end": 7966.98, + "probability": 0.8089 + }, + { + "start": 7967.58, + "end": 7970.04, + "probability": 0.1545 + }, + { + "start": 7970.08, + "end": 7971.27, + "probability": 0.0007 + }, + { + "start": 7974.44, + "end": 7977.56, + "probability": 0.2625 + }, + { + "start": 7977.76, + "end": 7979.82, + "probability": 0.6204 + }, + { + "start": 7980.38, + "end": 7985.28, + "probability": 0.8574 + }, + { + "start": 7985.88, + "end": 7989.76, + "probability": 0.4839 + }, + { + "start": 7993.42, + "end": 7995.78, + "probability": 0.5356 + }, + { + "start": 7996.16, + "end": 7996.54, + "probability": 0.582 + }, + { + "start": 7996.64, + "end": 7997.6, + "probability": 0.6994 + }, + { + "start": 7998.02, + "end": 7998.46, + "probability": 0.4451 + }, + { + "start": 7999.04, + "end": 8000.28, + "probability": 0.692 + }, + { + "start": 8001.3, + "end": 8002.84, + "probability": 0.8696 + }, + { + "start": 8004.46, + "end": 8006.98, + "probability": 0.3399 + }, + { + "start": 8007.08, + "end": 8007.26, + "probability": 0.0067 + }, + { + "start": 8007.26, + "end": 8007.54, + "probability": 0.1045 + }, + { + "start": 8007.56, + "end": 8007.56, + "probability": 0.4188 + }, + { + "start": 8007.56, + "end": 8008.4, + "probability": 0.0525 + }, + { + "start": 8008.92, + "end": 8009.74, + "probability": 0.6315 + }, + { + "start": 8009.88, + "end": 8010.86, + "probability": 0.4105 + }, + { + "start": 8011.52, + "end": 8012.5, + "probability": 0.6809 + }, + { + "start": 8013.06, + "end": 8014.58, + "probability": 0.8735 + }, + { + "start": 8015.38, + "end": 8017.58, + "probability": 0.8005 + }, + { + "start": 8018.64, + "end": 8019.03, + "probability": 0.9131 + }, + { + "start": 8019.22, + "end": 8019.88, + "probability": 0.7463 + }, + { + "start": 8020.32, + "end": 8023.98, + "probability": 0.9434 + }, + { + "start": 8025.1, + "end": 8027.7, + "probability": 0.9029 + }, + { + "start": 8028.56, + "end": 8029.92, + "probability": 0.8983 + }, + { + "start": 8030.58, + "end": 8031.96, + "probability": 0.9397 + }, + { + "start": 8032.9, + "end": 8036.0, + "probability": 0.7868 + }, + { + "start": 8037.04, + "end": 8038.0, + "probability": 0.8263 + }, + { + "start": 8038.34, + "end": 8038.98, + "probability": 0.6171 + }, + { + "start": 8039.2, + "end": 8039.78, + "probability": 0.8711 + }, + { + "start": 8040.24, + "end": 8040.86, + "probability": 0.7174 + }, + { + "start": 8041.04, + "end": 8041.68, + "probability": 0.7417 + }, + { + "start": 8042.54, + "end": 8045.68, + "probability": 0.5652 + }, + { + "start": 8046.78, + "end": 8048.92, + "probability": 0.9417 + }, + { + "start": 8049.06, + "end": 8050.08, + "probability": 0.9935 + }, + { + "start": 8050.9, + "end": 8052.84, + "probability": 0.9912 + }, + { + "start": 8053.04, + "end": 8053.72, + "probability": 0.9391 + }, + { + "start": 8053.92, + "end": 8054.84, + "probability": 0.2688 + }, + { + "start": 8056.36, + "end": 8057.56, + "probability": 0.5489 + }, + { + "start": 8057.68, + "end": 8058.28, + "probability": 0.3128 + }, + { + "start": 8058.34, + "end": 8059.16, + "probability": 0.7524 + }, + { + "start": 8060.48, + "end": 8062.48, + "probability": 0.0056 + }, + { + "start": 8063.16, + "end": 8063.16, + "probability": 0.0151 + }, + { + "start": 8063.24, + "end": 8063.24, + "probability": 0.0855 + }, + { + "start": 8063.24, + "end": 8064.54, + "probability": 0.7127 + }, + { + "start": 8064.86, + "end": 8067.28, + "probability": 0.8345 + }, + { + "start": 8067.46, + "end": 8067.6, + "probability": 0.6926 + }, + { + "start": 8069.08, + "end": 8071.06, + "probability": 0.9745 + }, + { + "start": 8071.3, + "end": 8074.16, + "probability": 0.9283 + }, + { + "start": 8075.9, + "end": 8076.62, + "probability": 0.6573 + }, + { + "start": 8076.74, + "end": 8080.1, + "probability": 0.9956 + }, + { + "start": 8080.82, + "end": 8083.04, + "probability": 0.6688 + }, + { + "start": 8083.56, + "end": 8086.14, + "probability": 0.8857 + }, + { + "start": 8087.0, + "end": 8089.52, + "probability": 0.9813 + }, + { + "start": 8089.64, + "end": 8091.14, + "probability": 0.7922 + }, + { + "start": 8091.22, + "end": 8091.64, + "probability": 0.5191 + }, + { + "start": 8093.02, + "end": 8093.77, + "probability": 0.958 + }, + { + "start": 8094.96, + "end": 8097.12, + "probability": 0.8606 + }, + { + "start": 8097.3, + "end": 8099.8, + "probability": 0.992 + }, + { + "start": 8099.92, + "end": 8104.36, + "probability": 0.9335 + }, + { + "start": 8104.7, + "end": 8108.9, + "probability": 0.8894 + }, + { + "start": 8110.92, + "end": 8113.5, + "probability": 0.9951 + }, + { + "start": 8113.5, + "end": 8116.08, + "probability": 0.8141 + }, + { + "start": 8116.9, + "end": 8118.06, + "probability": 0.877 + }, + { + "start": 8118.5, + "end": 8120.8, + "probability": 0.971 + }, + { + "start": 8121.68, + "end": 8123.96, + "probability": 0.9229 + }, + { + "start": 8123.98, + "end": 8127.06, + "probability": 0.9964 + }, + { + "start": 8127.88, + "end": 8127.88, + "probability": 0.0059 + }, + { + "start": 8138.4, + "end": 8139.06, + "probability": 0.5006 + }, + { + "start": 8140.82, + "end": 8141.88, + "probability": 0.8123 + }, + { + "start": 8144.52, + "end": 8144.82, + "probability": 0.3037 + }, + { + "start": 8144.9, + "end": 8145.6, + "probability": 0.728 + }, + { + "start": 8145.64, + "end": 8146.78, + "probability": 0.4526 + }, + { + "start": 8147.14, + "end": 8148.04, + "probability": 0.5868 + }, + { + "start": 8148.64, + "end": 8148.86, + "probability": 0.9657 + }, + { + "start": 8150.02, + "end": 8153.54, + "probability": 0.981 + }, + { + "start": 8154.42, + "end": 8158.08, + "probability": 0.5339 + }, + { + "start": 8158.08, + "end": 8161.37, + "probability": 0.964 + }, + { + "start": 8162.16, + "end": 8163.94, + "probability": 0.9481 + }, + { + "start": 8164.9, + "end": 8166.02, + "probability": 0.6165 + }, + { + "start": 8170.48, + "end": 8170.68, + "probability": 0.418 + }, + { + "start": 8172.48, + "end": 8174.2, + "probability": 0.2118 + }, + { + "start": 8175.88, + "end": 8176.16, + "probability": 0.3407 + }, + { + "start": 8176.3, + "end": 8176.52, + "probability": 0.1509 + }, + { + "start": 8176.54, + "end": 8180.42, + "probability": 0.4827 + }, + { + "start": 8180.64, + "end": 8182.72, + "probability": 0.6688 + }, + { + "start": 8182.74, + "end": 8186.76, + "probability": 0.9258 + }, + { + "start": 8186.86, + "end": 8188.42, + "probability": 0.4219 + }, + { + "start": 8188.42, + "end": 8190.72, + "probability": 0.6755 + }, + { + "start": 8190.94, + "end": 8192.8, + "probability": 0.8298 + }, + { + "start": 8192.96, + "end": 8193.16, + "probability": 0.4608 + }, + { + "start": 8193.66, + "end": 8197.0, + "probability": 0.7644 + }, + { + "start": 8197.46, + "end": 8197.54, + "probability": 0.5929 + }, + { + "start": 8197.76, + "end": 8199.76, + "probability": 0.5367 + }, + { + "start": 8202.12, + "end": 8207.32, + "probability": 0.213 + }, + { + "start": 8207.32, + "end": 8212.19, + "probability": 0.6218 + }, + { + "start": 8213.04, + "end": 8213.57, + "probability": 0.5098 + }, + { + "start": 8213.92, + "end": 8215.12, + "probability": 0.0507 + }, + { + "start": 8215.3, + "end": 8219.54, + "probability": 0.7003 + }, + { + "start": 8219.62, + "end": 8220.31, + "probability": 0.6123 + }, + { + "start": 8221.52, + "end": 8224.24, + "probability": 0.5131 + }, + { + "start": 8224.64, + "end": 8226.32, + "probability": 0.7114 + }, + { + "start": 8226.98, + "end": 8228.16, + "probability": 0.8167 + }, + { + "start": 8229.96, + "end": 8230.91, + "probability": 0.0214 + }, + { + "start": 8231.32, + "end": 8233.5, + "probability": 0.0941 + }, + { + "start": 8236.62, + "end": 8240.44, + "probability": 0.4388 + }, + { + "start": 8240.58, + "end": 8243.04, + "probability": 0.1692 + }, + { + "start": 8246.84, + "end": 8247.76, + "probability": 0.4311 + }, + { + "start": 8248.12, + "end": 8249.87, + "probability": 0.3704 + }, + { + "start": 8250.5, + "end": 8251.06, + "probability": 0.8042 + }, + { + "start": 8251.9, + "end": 8253.02, + "probability": 0.0072 + }, + { + "start": 8257.63, + "end": 8260.9, + "probability": 0.5584 + }, + { + "start": 8261.56, + "end": 8261.9, + "probability": 0.4897 + }, + { + "start": 8263.34, + "end": 8264.02, + "probability": 0.3778 + }, + { + "start": 8264.16, + "end": 8267.26, + "probability": 0.7275 + }, + { + "start": 8267.86, + "end": 8269.18, + "probability": 0.6207 + }, + { + "start": 8269.5, + "end": 8273.66, + "probability": 0.8862 + }, + { + "start": 8273.72, + "end": 8276.44, + "probability": 0.7903 + }, + { + "start": 8276.44, + "end": 8281.58, + "probability": 0.7225 + }, + { + "start": 8281.58, + "end": 8282.54, + "probability": 0.5613 + }, + { + "start": 8283.36, + "end": 8283.36, + "probability": 0.0982 + }, + { + "start": 8283.36, + "end": 8283.36, + "probability": 0.0686 + }, + { + "start": 8283.36, + "end": 8284.06, + "probability": 0.405 + }, + { + "start": 8284.4, + "end": 8284.4, + "probability": 0.1357 + }, + { + "start": 8284.4, + "end": 8285.74, + "probability": 0.864 + }, + { + "start": 8285.88, + "end": 8286.65, + "probability": 0.7441 + }, + { + "start": 8288.04, + "end": 8290.36, + "probability": 0.2509 + }, + { + "start": 8291.72, + "end": 8292.62, + "probability": 0.2096 + }, + { + "start": 8294.06, + "end": 8294.62, + "probability": 0.8737 + }, + { + "start": 8294.72, + "end": 8297.24, + "probability": 0.7559 + }, + { + "start": 8297.34, + "end": 8297.88, + "probability": 0.7796 + }, + { + "start": 8298.52, + "end": 8300.64, + "probability": 0.8209 + }, + { + "start": 8301.32, + "end": 8304.9, + "probability": 0.7871 + }, + { + "start": 8306.86, + "end": 8309.68, + "probability": 0.7859 + }, + { + "start": 8311.24, + "end": 8317.08, + "probability": 0.6889 + }, + { + "start": 8318.16, + "end": 8320.96, + "probability": 0.8124 + }, + { + "start": 8321.46, + "end": 8323.84, + "probability": 0.544 + }, + { + "start": 8323.84, + "end": 8331.54, + "probability": 0.6396 + }, + { + "start": 8333.64, + "end": 8335.66, + "probability": 0.9576 + }, + { + "start": 8336.02, + "end": 8336.5, + "probability": 0.5121 + }, + { + "start": 8337.1, + "end": 8337.6, + "probability": 0.7736 + }, + { + "start": 8337.74, + "end": 8338.55, + "probability": 0.3685 + }, + { + "start": 8339.02, + "end": 8340.62, + "probability": 0.3458 + }, + { + "start": 8340.62, + "end": 8342.26, + "probability": 0.4783 + }, + { + "start": 8342.26, + "end": 8343.74, + "probability": 0.5883 + }, + { + "start": 8345.96, + "end": 8349.4, + "probability": 0.6327 + }, + { + "start": 8349.92, + "end": 8350.54, + "probability": 0.188 + }, + { + "start": 8350.7, + "end": 8351.29, + "probability": 0.2606 + }, + { + "start": 8351.68, + "end": 8353.02, + "probability": 0.2684 + }, + { + "start": 8353.16, + "end": 8356.34, + "probability": 0.7097 + }, + { + "start": 8357.02, + "end": 8359.54, + "probability": 0.6933 + }, + { + "start": 8360.18, + "end": 8366.12, + "probability": 0.0082 + }, + { + "start": 8366.2, + "end": 8366.96, + "probability": 0.0294 + }, + { + "start": 8366.96, + "end": 8366.96, + "probability": 0.2428 + }, + { + "start": 8366.96, + "end": 8367.54, + "probability": 0.3192 + }, + { + "start": 8367.72, + "end": 8367.72, + "probability": 0.0412 + }, + { + "start": 8367.72, + "end": 8368.28, + "probability": 0.6645 + }, + { + "start": 8369.56, + "end": 8370.51, + "probability": 0.2333 + }, + { + "start": 8373.14, + "end": 8373.5, + "probability": 0.4809 + }, + { + "start": 8374.4, + "end": 8377.42, + "probability": 0.5781 + }, + { + "start": 8377.8, + "end": 8381.26, + "probability": 0.0984 + }, + { + "start": 8381.56, + "end": 8382.66, + "probability": 0.5161 + }, + { + "start": 8383.94, + "end": 8384.16, + "probability": 0.583 + }, + { + "start": 8384.82, + "end": 8386.52, + "probability": 0.6506 + }, + { + "start": 8386.98, + "end": 8388.56, + "probability": 0.9749 + }, + { + "start": 8389.12, + "end": 8390.38, + "probability": 0.8252 + }, + { + "start": 8390.96, + "end": 8391.58, + "probability": 0.4727 + }, + { + "start": 8391.96, + "end": 8392.96, + "probability": 0.3266 + }, + { + "start": 8393.32, + "end": 8394.9, + "probability": 0.7069 + }, + { + "start": 8395.3, + "end": 8396.06, + "probability": 0.8813 + }, + { + "start": 8396.56, + "end": 8398.48, + "probability": 0.8309 + }, + { + "start": 8400.98, + "end": 8401.37, + "probability": 0.011 + }, + { + "start": 8415.06, + "end": 8415.2, + "probability": 0.0043 + }, + { + "start": 8415.2, + "end": 8415.6, + "probability": 0.5464 + }, + { + "start": 8417.16, + "end": 8418.34, + "probability": 0.7766 + }, + { + "start": 8418.68, + "end": 8420.36, + "probability": 0.9307 + }, + { + "start": 8427.7, + "end": 8428.84, + "probability": 0.6755 + }, + { + "start": 8430.78, + "end": 8434.02, + "probability": 0.7481 + }, + { + "start": 8434.12, + "end": 8435.02, + "probability": 0.8215 + }, + { + "start": 8435.76, + "end": 8437.3, + "probability": 0.9284 + }, + { + "start": 8437.38, + "end": 8439.16, + "probability": 0.7468 + }, + { + "start": 8439.68, + "end": 8440.96, + "probability": 0.9087 + }, + { + "start": 8441.82, + "end": 8442.42, + "probability": 0.329 + }, + { + "start": 8442.58, + "end": 8447.4, + "probability": 0.954 + }, + { + "start": 8447.78, + "end": 8448.12, + "probability": 0.7728 + }, + { + "start": 8448.34, + "end": 8448.44, + "probability": 0.1923 + }, + { + "start": 8448.62, + "end": 8450.72, + "probability": 0.7665 + }, + { + "start": 8451.54, + "end": 8456.88, + "probability": 0.9326 + }, + { + "start": 8457.04, + "end": 8458.86, + "probability": 0.8239 + }, + { + "start": 8459.56, + "end": 8461.46, + "probability": 0.9533 + }, + { + "start": 8462.38, + "end": 8465.14, + "probability": 0.9811 + }, + { + "start": 8470.9, + "end": 8471.88, + "probability": 0.772 + }, + { + "start": 8474.62, + "end": 8475.7, + "probability": 0.7444 + }, + { + "start": 8482.76, + "end": 8484.26, + "probability": 0.4781 + }, + { + "start": 8486.86, + "end": 8487.7, + "probability": 0.7461 + }, + { + "start": 8488.41, + "end": 8491.38, + "probability": 0.5064 + }, + { + "start": 8492.72, + "end": 8493.9, + "probability": 0.7021 + }, + { + "start": 8494.26, + "end": 8497.28, + "probability": 0.9235 + }, + { + "start": 8497.32, + "end": 8497.7, + "probability": 0.4976 + }, + { + "start": 8497.7, + "end": 8500.38, + "probability": 0.9268 + }, + { + "start": 8502.18, + "end": 8503.12, + "probability": 0.6233 + }, + { + "start": 8511.38, + "end": 8511.84, + "probability": 0.6828 + }, + { + "start": 8514.34, + "end": 8517.68, + "probability": 0.8524 + }, + { + "start": 8518.2, + "end": 8525.54, + "probability": 0.625 + }, + { + "start": 8526.12, + "end": 8527.28, + "probability": 0.3291 + }, + { + "start": 8528.25, + "end": 8530.42, + "probability": 0.8353 + }, + { + "start": 8531.38, + "end": 8534.88, + "probability": 0.7168 + }, + { + "start": 8536.12, + "end": 8540.2, + "probability": 0.9607 + }, + { + "start": 8540.32, + "end": 8541.44, + "probability": 0.915 + }, + { + "start": 8542.38, + "end": 8546.1, + "probability": 0.9754 + }, + { + "start": 8546.68, + "end": 8547.86, + "probability": 0.7234 + }, + { + "start": 8548.78, + "end": 8549.97, + "probability": 0.8403 + }, + { + "start": 8550.28, + "end": 8555.2, + "probability": 0.9709 + }, + { + "start": 8555.74, + "end": 8559.66, + "probability": 0.688 + }, + { + "start": 8560.34, + "end": 8563.08, + "probability": 0.9631 + }, + { + "start": 8563.58, + "end": 8563.84, + "probability": 0.674 + }, + { + "start": 8564.42, + "end": 8565.21, + "probability": 0.9821 + }, + { + "start": 8565.68, + "end": 8567.3, + "probability": 0.6151 + }, + { + "start": 8567.44, + "end": 8571.24, + "probability": 0.9917 + }, + { + "start": 8571.72, + "end": 8573.46, + "probability": 0.9688 + }, + { + "start": 8573.64, + "end": 8574.72, + "probability": 0.5771 + }, + { + "start": 8574.86, + "end": 8576.52, + "probability": 0.9868 + }, + { + "start": 8576.88, + "end": 8578.78, + "probability": 0.6776 + }, + { + "start": 8579.3, + "end": 8582.88, + "probability": 0.896 + }, + { + "start": 8583.4, + "end": 8585.14, + "probability": 0.9847 + }, + { + "start": 8586.14, + "end": 8588.78, + "probability": 0.4683 + }, + { + "start": 8589.66, + "end": 8590.34, + "probability": 0.9364 + }, + { + "start": 8590.52, + "end": 8596.16, + "probability": 0.9911 + }, + { + "start": 8597.18, + "end": 8600.32, + "probability": 0.9917 + }, + { + "start": 8600.8, + "end": 8604.8, + "probability": 0.7687 + }, + { + "start": 8605.7, + "end": 8608.53, + "probability": 0.8071 + }, + { + "start": 8609.62, + "end": 8611.76, + "probability": 0.8049 + }, + { + "start": 8614.28, + "end": 8616.14, + "probability": 0.7877 + }, + { + "start": 8618.42, + "end": 8619.5, + "probability": 0.8254 + }, + { + "start": 8625.76, + "end": 8627.36, + "probability": 0.363 + }, + { + "start": 8627.82, + "end": 8628.88, + "probability": 0.5065 + }, + { + "start": 8628.88, + "end": 8629.66, + "probability": 0.9399 + }, + { + "start": 8630.32, + "end": 8630.88, + "probability": 0.9795 + }, + { + "start": 8632.08, + "end": 8634.02, + "probability": 0.4688 + }, + { + "start": 8634.06, + "end": 8634.62, + "probability": 0.843 + }, + { + "start": 8634.66, + "end": 8635.4, + "probability": 0.3032 + }, + { + "start": 8635.76, + "end": 8642.64, + "probability": 0.9971 + }, + { + "start": 8642.78, + "end": 8644.5, + "probability": 0.7819 + }, + { + "start": 8644.58, + "end": 8646.06, + "probability": 0.9964 + }, + { + "start": 8647.9, + "end": 8648.08, + "probability": 0.7944 + }, + { + "start": 8648.18, + "end": 8649.18, + "probability": 0.7589 + }, + { + "start": 8649.38, + "end": 8649.98, + "probability": 0.9518 + }, + { + "start": 8650.04, + "end": 8651.63, + "probability": 0.9763 + }, + { + "start": 8652.16, + "end": 8652.6, + "probability": 0.6243 + }, + { + "start": 8653.52, + "end": 8654.06, + "probability": 0.8568 + }, + { + "start": 8654.16, + "end": 8655.31, + "probability": 0.4168 + }, + { + "start": 8655.56, + "end": 8657.06, + "probability": 0.629 + }, + { + "start": 8657.16, + "end": 8657.65, + "probability": 0.9506 + }, + { + "start": 8657.96, + "end": 8659.48, + "probability": 0.932 + }, + { + "start": 8659.54, + "end": 8659.74, + "probability": 0.6407 + }, + { + "start": 8661.18, + "end": 8662.16, + "probability": 0.752 + }, + { + "start": 8662.78, + "end": 8662.78, + "probability": 0.6884 + }, + { + "start": 8662.94, + "end": 8663.86, + "probability": 0.9003 + }, + { + "start": 8664.84, + "end": 8665.78, + "probability": 0.7583 + }, + { + "start": 8666.54, + "end": 8667.42, + "probability": 0.7556 + }, + { + "start": 8667.92, + "end": 8669.24, + "probability": 0.9277 + }, + { + "start": 8669.72, + "end": 8670.84, + "probability": 0.9479 + }, + { + "start": 8671.34, + "end": 8672.94, + "probability": 0.9795 + }, + { + "start": 8673.82, + "end": 8675.2, + "probability": 0.9717 + }, + { + "start": 8675.64, + "end": 8678.96, + "probability": 0.9788 + }, + { + "start": 8679.4, + "end": 8682.36, + "probability": 0.9702 + }, + { + "start": 8682.88, + "end": 8685.98, + "probability": 0.7683 + }, + { + "start": 8686.4, + "end": 8687.48, + "probability": 0.9851 + }, + { + "start": 8688.52, + "end": 8691.68, + "probability": 0.9253 + }, + { + "start": 8692.28, + "end": 8696.42, + "probability": 0.6333 + }, + { + "start": 8697.46, + "end": 8702.14, + "probability": 0.8746 + }, + { + "start": 8702.16, + "end": 8704.04, + "probability": 0.9478 + }, + { + "start": 8704.86, + "end": 8705.98, + "probability": 0.9907 + }, + { + "start": 8706.56, + "end": 8710.02, + "probability": 0.9444 + }, + { + "start": 8710.44, + "end": 8710.88, + "probability": 0.8955 + }, + { + "start": 8710.98, + "end": 8711.82, + "probability": 0.6275 + }, + { + "start": 8712.78, + "end": 8717.84, + "probability": 0.991 + }, + { + "start": 8718.18, + "end": 8719.18, + "probability": 0.8562 + }, + { + "start": 8719.36, + "end": 8720.5, + "probability": 0.9598 + }, + { + "start": 8721.44, + "end": 8723.96, + "probability": 0.9854 + }, + { + "start": 8724.02, + "end": 8726.32, + "probability": 0.9878 + }, + { + "start": 8727.02, + "end": 8727.95, + "probability": 0.4207 + }, + { + "start": 8729.02, + "end": 8730.85, + "probability": 0.9954 + }, + { + "start": 8731.58, + "end": 8734.22, + "probability": 0.9634 + }, + { + "start": 8734.66, + "end": 8736.34, + "probability": 0.9919 + }, + { + "start": 8736.8, + "end": 8737.34, + "probability": 0.7125 + }, + { + "start": 8737.92, + "end": 8739.1, + "probability": 0.9813 + }, + { + "start": 8739.5, + "end": 8741.1, + "probability": 0.9958 + }, + { + "start": 8742.02, + "end": 8743.78, + "probability": 0.9497 + }, + { + "start": 8744.0, + "end": 8744.48, + "probability": 0.922 + }, + { + "start": 8745.2, + "end": 8747.25, + "probability": 0.9929 + }, + { + "start": 8748.08, + "end": 8752.84, + "probability": 0.9415 + }, + { + "start": 8753.14, + "end": 8755.44, + "probability": 0.8305 + }, + { + "start": 8756.2, + "end": 8758.66, + "probability": 0.9016 + }, + { + "start": 8759.28, + "end": 8761.32, + "probability": 0.9988 + }, + { + "start": 8763.66, + "end": 8764.12, + "probability": 0.6249 + }, + { + "start": 8765.38, + "end": 8770.06, + "probability": 0.4365 + }, + { + "start": 8770.8, + "end": 8772.44, + "probability": 0.967 + }, + { + "start": 8772.52, + "end": 8774.51, + "probability": 0.9186 + }, + { + "start": 8775.14, + "end": 8776.07, + "probability": 0.9901 + }, + { + "start": 8776.64, + "end": 8777.8, + "probability": 0.866 + }, + { + "start": 8777.9, + "end": 8781.68, + "probability": 0.8385 + }, + { + "start": 8781.76, + "end": 8782.46, + "probability": 0.9202 + }, + { + "start": 8783.06, + "end": 8785.07, + "probability": 0.9167 + }, + { + "start": 8785.96, + "end": 8789.22, + "probability": 0.8729 + }, + { + "start": 8789.84, + "end": 8791.4, + "probability": 0.4443 + }, + { + "start": 8791.94, + "end": 8796.42, + "probability": 0.9702 + }, + { + "start": 8796.64, + "end": 8798.08, + "probability": 0.9588 + }, + { + "start": 8798.36, + "end": 8798.91, + "probability": 0.7392 + }, + { + "start": 8799.98, + "end": 8801.98, + "probability": 0.9482 + }, + { + "start": 8802.52, + "end": 8804.31, + "probability": 0.9869 + }, + { + "start": 8804.44, + "end": 8804.92, + "probability": 0.6857 + }, + { + "start": 8805.4, + "end": 8806.16, + "probability": 0.764 + }, + { + "start": 8806.3, + "end": 8807.06, + "probability": 0.6832 + }, + { + "start": 8807.5, + "end": 8811.56, + "probability": 0.9756 + }, + { + "start": 8811.7, + "end": 8812.8, + "probability": 0.6466 + }, + { + "start": 8812.84, + "end": 8813.41, + "probability": 0.9873 + }, + { + "start": 8814.38, + "end": 8817.08, + "probability": 0.9895 + }, + { + "start": 8817.82, + "end": 8820.8, + "probability": 0.996 + }, + { + "start": 8821.36, + "end": 8824.54, + "probability": 0.9554 + }, + { + "start": 8825.38, + "end": 8826.9, + "probability": 0.9651 + }, + { + "start": 8827.54, + "end": 8829.58, + "probability": 0.9902 + }, + { + "start": 8829.62, + "end": 8830.14, + "probability": 0.9612 + }, + { + "start": 8831.38, + "end": 8832.66, + "probability": 0.8147 + }, + { + "start": 8832.76, + "end": 8834.76, + "probability": 0.7556 + }, + { + "start": 8834.9, + "end": 8835.8, + "probability": 0.887 + }, + { + "start": 8836.12, + "end": 8837.8, + "probability": 0.9916 + }, + { + "start": 8839.64, + "end": 8840.94, + "probability": 0.7869 + }, + { + "start": 8841.0, + "end": 8841.9, + "probability": 0.8836 + }, + { + "start": 8842.12, + "end": 8843.68, + "probability": 0.9834 + }, + { + "start": 8844.72, + "end": 8846.14, + "probability": 0.97 + }, + { + "start": 8847.04, + "end": 8850.02, + "probability": 0.8676 + }, + { + "start": 8850.22, + "end": 8852.1, + "probability": 0.0635 + }, + { + "start": 8852.16, + "end": 8853.06, + "probability": 0.6625 + }, + { + "start": 8853.12, + "end": 8853.54, + "probability": 0.4329 + }, + { + "start": 8853.58, + "end": 8854.04, + "probability": 0.7357 + }, + { + "start": 8854.12, + "end": 8854.68, + "probability": 0.6413 + }, + { + "start": 8854.74, + "end": 8856.62, + "probability": 0.9056 + }, + { + "start": 8857.06, + "end": 8857.8, + "probability": 0.6017 + }, + { + "start": 8857.92, + "end": 8859.94, + "probability": 0.5574 + }, + { + "start": 8862.04, + "end": 8864.24, + "probability": 0.7437 + }, + { + "start": 8865.42, + "end": 8868.62, + "probability": 0.5942 + }, + { + "start": 8869.02, + "end": 8871.8, + "probability": 0.9359 + }, + { + "start": 8872.32, + "end": 8874.06, + "probability": 0.9755 + }, + { + "start": 8874.8, + "end": 8878.2, + "probability": 0.9804 + }, + { + "start": 8879.1, + "end": 8880.66, + "probability": 0.4496 + }, + { + "start": 8880.66, + "end": 8881.4, + "probability": 0.9124 + }, + { + "start": 8881.5, + "end": 8884.68, + "probability": 0.9952 + }, + { + "start": 8885.54, + "end": 8888.76, + "probability": 0.7838 + }, + { + "start": 8889.56, + "end": 8890.44, + "probability": 0.7101 + }, + { + "start": 8890.5, + "end": 8891.68, + "probability": 0.988 + }, + { + "start": 8891.8, + "end": 8892.46, + "probability": 0.7246 + }, + { + "start": 8892.6, + "end": 8892.76, + "probability": 0.8582 + }, + { + "start": 8892.9, + "end": 8893.12, + "probability": 0.8323 + }, + { + "start": 8893.3, + "end": 8894.8, + "probability": 0.562 + }, + { + "start": 8894.94, + "end": 8895.54, + "probability": 0.739 + }, + { + "start": 8896.28, + "end": 8898.1, + "probability": 0.9495 + }, + { + "start": 8898.26, + "end": 8899.63, + "probability": 0.931 + }, + { + "start": 8899.98, + "end": 8901.68, + "probability": 0.994 + }, + { + "start": 8902.06, + "end": 8904.52, + "probability": 0.8634 + }, + { + "start": 8905.14, + "end": 8907.12, + "probability": 0.9415 + }, + { + "start": 8909.66, + "end": 8913.1, + "probability": 0.8833 + }, + { + "start": 8913.76, + "end": 8915.14, + "probability": 0.3453 + }, + { + "start": 8916.08, + "end": 8922.48, + "probability": 0.9458 + }, + { + "start": 8922.94, + "end": 8924.12, + "probability": 0.8082 + }, + { + "start": 8924.14, + "end": 8924.26, + "probability": 0.7054 + }, + { + "start": 8924.5, + "end": 8925.95, + "probability": 0.2504 + }, + { + "start": 8927.34, + "end": 8928.54, + "probability": 0.7713 + }, + { + "start": 8929.59, + "end": 8935.5, + "probability": 0.762 + }, + { + "start": 8936.3, + "end": 8939.0, + "probability": 0.9526 + }, + { + "start": 8939.62, + "end": 8943.96, + "probability": 0.7374 + }, + { + "start": 8944.18, + "end": 8947.6, + "probability": 0.8936 + }, + { + "start": 8948.56, + "end": 8949.27, + "probability": 0.3189 + }, + { + "start": 8950.5, + "end": 8950.76, + "probability": 0.8123 + }, + { + "start": 8951.62, + "end": 8956.08, + "probability": 0.5082 + }, + { + "start": 8958.84, + "end": 8959.22, + "probability": 0.908 + }, + { + "start": 8959.78, + "end": 8960.86, + "probability": 0.9741 + }, + { + "start": 8961.6, + "end": 8961.88, + "probability": 0.7674 + }, + { + "start": 8962.74, + "end": 8963.54, + "probability": 0.7202 + }, + { + "start": 8967.44, + "end": 8968.12, + "probability": 0.7713 + }, + { + "start": 8969.04, + "end": 8969.68, + "probability": 0.6229 + }, + { + "start": 8970.84, + "end": 8971.22, + "probability": 0.944 + }, + { + "start": 8972.32, + "end": 8972.98, + "probability": 0.9407 + }, + { + "start": 8974.04, + "end": 8974.48, + "probability": 0.9907 + }, + { + "start": 8975.06, + "end": 8975.64, + "probability": 0.8835 + }, + { + "start": 8977.16, + "end": 8978.06, + "probability": 0.515 + }, + { + "start": 8978.8, + "end": 8979.44, + "probability": 0.8669 + }, + { + "start": 8980.26, + "end": 8980.74, + "probability": 0.9333 + }, + { + "start": 8981.44, + "end": 8982.26, + "probability": 0.8649 + }, + { + "start": 8984.38, + "end": 8986.48, + "probability": 0.9486 + }, + { + "start": 8987.66, + "end": 8988.18, + "probability": 0.9821 + }, + { + "start": 8988.88, + "end": 8989.72, + "probability": 0.9102 + }, + { + "start": 8990.66, + "end": 8990.94, + "probability": 0.7143 + }, + { + "start": 8991.7, + "end": 8992.5, + "probability": 0.5473 + }, + { + "start": 8993.52, + "end": 8995.02, + "probability": 0.7896 + }, + { + "start": 8996.64, + "end": 8998.66, + "probability": 0.553 + }, + { + "start": 8999.22, + "end": 8999.94, + "probability": 0.7658 + }, + { + "start": 9000.92, + "end": 9002.42, + "probability": 0.894 + }, + { + "start": 9003.6, + "end": 9005.7, + "probability": 0.7747 + }, + { + "start": 9008.18, + "end": 9009.7, + "probability": 0.8933 + }, + { + "start": 9010.64, + "end": 9011.96, + "probability": 0.9729 + }, + { + "start": 9013.02, + "end": 9013.38, + "probability": 0.9924 + }, + { + "start": 9014.4, + "end": 9015.24, + "probability": 0.9331 + }, + { + "start": 9016.6, + "end": 9018.72, + "probability": 0.8617 + }, + { + "start": 9019.92, + "end": 9020.02, + "probability": 0.7133 + }, + { + "start": 9020.82, + "end": 9021.6, + "probability": 0.8195 + }, + { + "start": 9022.52, + "end": 9024.38, + "probability": 0.8309 + }, + { + "start": 9026.37, + "end": 9029.04, + "probability": 0.9736 + }, + { + "start": 9029.88, + "end": 9030.14, + "probability": 0.9668 + }, + { + "start": 9030.78, + "end": 9031.42, + "probability": 0.8796 + }, + { + "start": 9034.1, + "end": 9035.62, + "probability": 0.9479 + }, + { + "start": 9036.8, + "end": 9039.18, + "probability": 0.9194 + }, + { + "start": 9040.86, + "end": 9043.92, + "probability": 0.8842 + }, + { + "start": 9045.1, + "end": 9046.66, + "probability": 0.8143 + }, + { + "start": 9048.02, + "end": 9049.78, + "probability": 0.9692 + }, + { + "start": 9051.5, + "end": 9053.14, + "probability": 0.8728 + }, + { + "start": 9054.1, + "end": 9054.5, + "probability": 0.916 + }, + { + "start": 9055.64, + "end": 9056.52, + "probability": 0.9121 + }, + { + "start": 9059.34, + "end": 9059.74, + "probability": 0.992 + }, + { + "start": 9061.12, + "end": 9061.92, + "probability": 0.8348 + }, + { + "start": 9065.42, + "end": 9067.14, + "probability": 0.6334 + }, + { + "start": 9070.5, + "end": 9070.88, + "probability": 0.9372 + }, + { + "start": 9072.0, + "end": 9072.32, + "probability": 0.8124 + }, + { + "start": 9074.88, + "end": 9076.7, + "probability": 0.918 + }, + { + "start": 9078.0, + "end": 9082.06, + "probability": 0.9719 + }, + { + "start": 9082.7, + "end": 9084.28, + "probability": 0.9431 + }, + { + "start": 9085.52, + "end": 9085.88, + "probability": 0.9925 + }, + { + "start": 9087.08, + "end": 9087.86, + "probability": 0.9858 + }, + { + "start": 9088.62, + "end": 9088.98, + "probability": 0.9631 + }, + { + "start": 9089.6, + "end": 9090.24, + "probability": 0.858 + }, + { + "start": 9091.92, + "end": 9091.98, + "probability": 0.6042 + }, + { + "start": 9093.78, + "end": 9094.58, + "probability": 0.4614 + }, + { + "start": 9096.42, + "end": 9098.98, + "probability": 0.7981 + }, + { + "start": 9099.72, + "end": 9101.14, + "probability": 0.8817 + }, + { + "start": 9105.64, + "end": 9105.92, + "probability": 0.8389 + }, + { + "start": 9107.32, + "end": 9107.82, + "probability": 0.8619 + }, + { + "start": 9109.02, + "end": 9110.72, + "probability": 0.882 + }, + { + "start": 9112.12, + "end": 9113.02, + "probability": 0.951 + }, + { + "start": 9114.74, + "end": 9115.24, + "probability": 0.9956 + }, + { + "start": 9116.4, + "end": 9117.08, + "probability": 0.985 + }, + { + "start": 9118.1, + "end": 9118.58, + "probability": 0.9985 + }, + { + "start": 9119.26, + "end": 9119.84, + "probability": 0.813 + }, + { + "start": 9121.44, + "end": 9123.1, + "probability": 0.9603 + }, + { + "start": 9124.64, + "end": 9125.04, + "probability": 0.9834 + }, + { + "start": 9125.72, + "end": 9126.6, + "probability": 0.9426 + }, + { + "start": 9127.96, + "end": 9129.6, + "probability": 0.7886 + }, + { + "start": 9131.08, + "end": 9132.68, + "probability": 0.6481 + }, + { + "start": 9136.5, + "end": 9138.06, + "probability": 0.6291 + }, + { + "start": 9139.18, + "end": 9140.6, + "probability": 0.7726 + }, + { + "start": 9141.82, + "end": 9142.16, + "probability": 0.7937 + }, + { + "start": 9142.68, + "end": 9143.44, + "probability": 0.7521 + }, + { + "start": 9146.02, + "end": 9147.46, + "probability": 0.7667 + }, + { + "start": 9150.94, + "end": 9152.34, + "probability": 0.9397 + }, + { + "start": 9155.78, + "end": 9157.24, + "probability": 0.7146 + }, + { + "start": 9158.78, + "end": 9159.08, + "probability": 0.7971 + }, + { + "start": 9160.3, + "end": 9160.44, + "probability": 0.0165 + }, + { + "start": 9163.96, + "end": 9164.66, + "probability": 0.4845 + }, + { + "start": 9165.82, + "end": 9166.54, + "probability": 0.8389 + }, + { + "start": 9167.08, + "end": 9167.7, + "probability": 0.5121 + }, + { + "start": 9168.56, + "end": 9170.02, + "probability": 0.4963 + }, + { + "start": 9172.32, + "end": 9174.84, + "probability": 0.7615 + }, + { + "start": 9175.56, + "end": 9175.92, + "probability": 0.939 + }, + { + "start": 9176.8, + "end": 9177.54, + "probability": 0.8707 + }, + { + "start": 9179.84, + "end": 9181.2, + "probability": 0.9387 + }, + { + "start": 9182.26, + "end": 9182.7, + "probability": 0.9907 + }, + { + "start": 9183.28, + "end": 9183.62, + "probability": 0.8331 + }, + { + "start": 9185.14, + "end": 9186.62, + "probability": 0.9666 + }, + { + "start": 9187.38, + "end": 9188.66, + "probability": 0.7734 + }, + { + "start": 9189.98, + "end": 9191.24, + "probability": 0.5687 + }, + { + "start": 9192.14, + "end": 9192.46, + "probability": 0.9027 + }, + { + "start": 9192.98, + "end": 9193.54, + "probability": 0.8347 + }, + { + "start": 9194.36, + "end": 9194.82, + "probability": 0.9312 + }, + { + "start": 9195.6, + "end": 9196.3, + "probability": 0.8619 + }, + { + "start": 9197.42, + "end": 9197.86, + "probability": 0.9683 + }, + { + "start": 9198.42, + "end": 9199.6, + "probability": 0.8587 + }, + { + "start": 9200.5, + "end": 9201.2, + "probability": 0.9686 + }, + { + "start": 9201.78, + "end": 9202.24, + "probability": 0.8485 + }, + { + "start": 9203.12, + "end": 9204.64, + "probability": 0.987 + }, + { + "start": 9205.34, + "end": 9206.86, + "probability": 0.8816 + }, + { + "start": 9208.2, + "end": 9209.54, + "probability": 0.6799 + }, + { + "start": 9210.5, + "end": 9212.02, + "probability": 0.7325 + }, + { + "start": 9213.02, + "end": 9214.7, + "probability": 0.9467 + }, + { + "start": 9215.72, + "end": 9216.14, + "probability": 0.9377 + }, + { + "start": 9219.42, + "end": 9220.0, + "probability": 0.5095 + }, + { + "start": 9220.98, + "end": 9222.36, + "probability": 0.8323 + }, + { + "start": 9223.36, + "end": 9225.42, + "probability": 0.7146 + }, + { + "start": 9226.3, + "end": 9227.64, + "probability": 0.9614 + }, + { + "start": 9229.0, + "end": 9229.4, + "probability": 0.9868 + }, + { + "start": 9230.06, + "end": 9230.96, + "probability": 0.939 + }, + { + "start": 9233.52, + "end": 9234.9, + "probability": 0.8083 + }, + { + "start": 9235.86, + "end": 9236.22, + "probability": 0.9767 + }, + { + "start": 9236.78, + "end": 9237.72, + "probability": 0.7539 + }, + { + "start": 9238.42, + "end": 9239.9, + "probability": 0.9056 + }, + { + "start": 9241.24, + "end": 9242.96, + "probability": 0.736 + }, + { + "start": 9244.92, + "end": 9247.9, + "probability": 0.662 + }, + { + "start": 9248.58, + "end": 9249.0, + "probability": 0.9797 + }, + { + "start": 9249.68, + "end": 9250.5, + "probability": 0.7628 + }, + { + "start": 9252.9, + "end": 9254.76, + "probability": 0.8429 + }, + { + "start": 9257.2, + "end": 9259.6, + "probability": 0.8636 + }, + { + "start": 9260.76, + "end": 9262.4, + "probability": 0.8398 + }, + { + "start": 9264.32, + "end": 9266.02, + "probability": 0.9606 + }, + { + "start": 9266.76, + "end": 9267.14, + "probability": 0.9959 + }, + { + "start": 9267.82, + "end": 9268.5, + "probability": 0.6001 + }, + { + "start": 9269.62, + "end": 9270.04, + "probability": 0.6252 + }, + { + "start": 9270.62, + "end": 9271.56, + "probability": 0.6708 + }, + { + "start": 9272.48, + "end": 9272.74, + "probability": 0.9226 + }, + { + "start": 9273.36, + "end": 9274.2, + "probability": 0.8051 + }, + { + "start": 9275.04, + "end": 9275.72, + "probability": 0.9166 + }, + { + "start": 9276.42, + "end": 9277.12, + "probability": 0.9322 + }, + { + "start": 9278.1, + "end": 9278.54, + "probability": 0.9863 + }, + { + "start": 9279.06, + "end": 9279.86, + "probability": 0.845 + }, + { + "start": 9280.76, + "end": 9282.38, + "probability": 0.9518 + }, + { + "start": 9283.26, + "end": 9283.74, + "probability": 0.9857 + }, + { + "start": 9284.26, + "end": 9285.2, + "probability": 0.7999 + }, + { + "start": 9285.88, + "end": 9287.36, + "probability": 0.9495 + }, + { + "start": 9290.24, + "end": 9292.26, + "probability": 0.8881 + }, + { + "start": 9294.24, + "end": 9294.56, + "probability": 0.5505 + }, + { + "start": 9295.48, + "end": 9296.14, + "probability": 0.6065 + }, + { + "start": 9297.8, + "end": 9299.96, + "probability": 0.8401 + }, + { + "start": 9301.8, + "end": 9304.12, + "probability": 0.8558 + }, + { + "start": 9305.18, + "end": 9306.86, + "probability": 0.8835 + }, + { + "start": 9309.74, + "end": 9311.3, + "probability": 0.8062 + }, + { + "start": 9312.12, + "end": 9312.54, + "probability": 0.9919 + }, + { + "start": 9313.62, + "end": 9314.3, + "probability": 0.8208 + }, + { + "start": 9314.92, + "end": 9315.12, + "probability": 0.3265 + }, + { + "start": 9327.88, + "end": 9329.12, + "probability": 0.2837 + }, + { + "start": 9330.54, + "end": 9333.82, + "probability": 0.7909 + }, + { + "start": 9334.8, + "end": 9336.56, + "probability": 0.895 + }, + { + "start": 9337.86, + "end": 9340.26, + "probability": 0.8799 + }, + { + "start": 9341.26, + "end": 9342.42, + "probability": 0.866 + }, + { + "start": 9343.3, + "end": 9344.52, + "probability": 0.8621 + }, + { + "start": 9345.9, + "end": 9346.18, + "probability": 0.9783 + }, + { + "start": 9346.8, + "end": 9347.7, + "probability": 0.6946 + }, + { + "start": 9348.32, + "end": 9348.82, + "probability": 0.8556 + }, + { + "start": 9349.38, + "end": 9350.84, + "probability": 0.5335 + }, + { + "start": 9352.34, + "end": 9353.76, + "probability": 0.8883 + }, + { + "start": 9356.82, + "end": 9358.28, + "probability": 0.5855 + }, + { + "start": 9359.42, + "end": 9359.84, + "probability": 0.9868 + }, + { + "start": 9362.38, + "end": 9363.12, + "probability": 0.7853 + }, + { + "start": 9364.56, + "end": 9366.32, + "probability": 0.7981 + }, + { + "start": 9367.82, + "end": 9368.24, + "probability": 0.9619 + }, + { + "start": 9368.8, + "end": 9369.46, + "probability": 0.874 + }, + { + "start": 9370.36, + "end": 9374.66, + "probability": 0.9827 + }, + { + "start": 9375.66, + "end": 9376.34, + "probability": 0.5645 + }, + { + "start": 9378.12, + "end": 9380.64, + "probability": 0.7697 + }, + { + "start": 9382.12, + "end": 9383.98, + "probability": 0.7368 + }, + { + "start": 9384.66, + "end": 9385.54, + "probability": 0.8322 + }, + { + "start": 9386.84, + "end": 9389.52, + "probability": 0.9061 + }, + { + "start": 9391.48, + "end": 9396.76, + "probability": 0.7643 + }, + { + "start": 9397.78, + "end": 9398.56, + "probability": 0.5391 + }, + { + "start": 9399.62, + "end": 9401.98, + "probability": 0.8876 + }, + { + "start": 9403.04, + "end": 9404.66, + "probability": 0.9686 + }, + { + "start": 9405.8, + "end": 9406.26, + "probability": 0.8767 + }, + { + "start": 9407.98, + "end": 9408.58, + "probability": 0.858 + }, + { + "start": 9409.88, + "end": 9411.82, + "probability": 0.946 + }, + { + "start": 9413.64, + "end": 9416.42, + "probability": 0.934 + }, + { + "start": 9417.44, + "end": 9417.92, + "probability": 0.9219 + }, + { + "start": 9418.6, + "end": 9419.8, + "probability": 0.9286 + }, + { + "start": 9421.04, + "end": 9421.66, + "probability": 0.7877 + }, + { + "start": 9422.94, + "end": 9423.52, + "probability": 0.6639 + }, + { + "start": 9424.98, + "end": 9427.5, + "probability": 0.8586 + }, + { + "start": 9429.34, + "end": 9431.22, + "probability": 0.9574 + }, + { + "start": 9431.98, + "end": 9434.1, + "probability": 0.8137 + }, + { + "start": 9434.76, + "end": 9436.34, + "probability": 0.8914 + }, + { + "start": 9437.96, + "end": 9444.16, + "probability": 0.7992 + }, + { + "start": 9444.68, + "end": 9445.3, + "probability": 0.9286 + }, + { + "start": 9445.96, + "end": 9446.28, + "probability": 0.7002 + }, + { + "start": 9448.65, + "end": 9450.6, + "probability": 0.8087 + }, + { + "start": 9453.16, + "end": 9456.24, + "probability": 0.8479 + }, + { + "start": 9457.5, + "end": 9458.18, + "probability": 0.9005 + }, + { + "start": 9460.78, + "end": 9462.16, + "probability": 0.8455 + }, + { + "start": 9463.48, + "end": 9464.46, + "probability": 0.7628 + }, + { + "start": 9465.3, + "end": 9465.78, + "probability": 0.9517 + }, + { + "start": 9466.92, + "end": 9467.72, + "probability": 0.8646 + }, + { + "start": 9468.56, + "end": 9468.96, + "probability": 0.9876 + }, + { + "start": 9470.26, + "end": 9470.84, + "probability": 0.9425 + }, + { + "start": 9473.22, + "end": 9474.3, + "probability": 0.9681 + }, + { + "start": 9475.54, + "end": 9476.24, + "probability": 0.8458 + }, + { + "start": 9477.96, + "end": 9480.24, + "probability": 0.6118 + }, + { + "start": 9483.58, + "end": 9485.4, + "probability": 0.8995 + }, + { + "start": 9487.06, + "end": 9489.08, + "probability": 0.985 + }, + { + "start": 9489.64, + "end": 9490.52, + "probability": 0.4564 + }, + { + "start": 9493.22, + "end": 9494.22, + "probability": 0.9835 + }, + { + "start": 9495.5, + "end": 9496.36, + "probability": 0.3555 + }, + { + "start": 9498.18, + "end": 9501.0, + "probability": 0.9626 + }, + { + "start": 9503.3, + "end": 9506.37, + "probability": 0.7685 + }, + { + "start": 9508.58, + "end": 9510.64, + "probability": 0.7267 + }, + { + "start": 9512.18, + "end": 9514.08, + "probability": 0.9559 + }, + { + "start": 9514.66, + "end": 9515.42, + "probability": 0.8643 + }, + { + "start": 9520.12, + "end": 9520.94, + "probability": 0.6328 + }, + { + "start": 9521.7, + "end": 9523.64, + "probability": 0.8138 + }, + { + "start": 9525.96, + "end": 9526.8, + "probability": 0.9706 + }, + { + "start": 9527.92, + "end": 9528.8, + "probability": 0.8995 + }, + { + "start": 9531.84, + "end": 9533.72, + "probability": 0.8577 + }, + { + "start": 9534.82, + "end": 9535.2, + "probability": 0.9896 + }, + { + "start": 9536.12, + "end": 9537.02, + "probability": 0.7759 + }, + { + "start": 9538.88, + "end": 9541.62, + "probability": 0.7444 + }, + { + "start": 9543.88, + "end": 9544.58, + "probability": 0.9716 + }, + { + "start": 9545.44, + "end": 9546.24, + "probability": 0.636 + }, + { + "start": 9546.86, + "end": 9547.52, + "probability": 0.5771 + }, + { + "start": 9548.3, + "end": 9549.2, + "probability": 0.7454 + }, + { + "start": 9549.9, + "end": 9551.44, + "probability": 0.8157 + }, + { + "start": 9553.44, + "end": 9553.82, + "probability": 0.9631 + }, + { + "start": 9556.08, + "end": 9556.84, + "probability": 0.6194 + }, + { + "start": 9559.08, + "end": 9560.54, + "probability": 0.9043 + }, + { + "start": 9562.1, + "end": 9563.94, + "probability": 0.8873 + }, + { + "start": 9565.32, + "end": 9566.28, + "probability": 0.9736 + }, + { + "start": 9566.84, + "end": 9567.42, + "probability": 0.7557 + }, + { + "start": 9571.66, + "end": 9572.34, + "probability": 0.777 + }, + { + "start": 9579.38, + "end": 9580.26, + "probability": 0.4729 + }, + { + "start": 9582.28, + "end": 9583.0, + "probability": 0.5485 + }, + { + "start": 9583.96, + "end": 9584.92, + "probability": 0.4338 + }, + { + "start": 9586.92, + "end": 9588.56, + "probability": 0.6613 + }, + { + "start": 9591.22, + "end": 9591.92, + "probability": 0.7565 + }, + { + "start": 9594.28, + "end": 9595.04, + "probability": 0.6706 + }, + { + "start": 9596.96, + "end": 9597.64, + "probability": 0.8148 + }, + { + "start": 9598.52, + "end": 9598.8, + "probability": 0.8381 + }, + { + "start": 9600.5, + "end": 9601.64, + "probability": 0.975 + }, + { + "start": 9602.4, + "end": 9607.4, + "probability": 0.7792 + }, + { + "start": 9608.18, + "end": 9610.7, + "probability": 0.5013 + }, + { + "start": 9616.16, + "end": 9616.58, + "probability": 0.1116 + }, + { + "start": 9617.04, + "end": 9622.0, + "probability": 0.9676 + }, + { + "start": 9649.3, + "end": 9656.16, + "probability": 0.6085 + }, + { + "start": 9656.94, + "end": 9657.72, + "probability": 0.642 + }, + { + "start": 9658.18, + "end": 9659.92, + "probability": 0.7263 + }, + { + "start": 9672.92, + "end": 9676.1, + "probability": 0.7791 + }, + { + "start": 9676.78, + "end": 9679.12, + "probability": 0.854 + }, + { + "start": 9679.66, + "end": 9681.36, + "probability": 0.7176 + }, + { + "start": 9681.86, + "end": 9686.68, + "probability": 0.8126 + }, + { + "start": 9689.14, + "end": 9690.32, + "probability": 0.5099 + }, + { + "start": 9691.54, + "end": 9693.67, + "probability": 0.5768 + }, + { + "start": 9696.04, + "end": 9697.28, + "probability": 0.7596 + }, + { + "start": 9697.68, + "end": 9701.84, + "probability": 0.8563 + }, + { + "start": 9703.08, + "end": 9704.34, + "probability": 0.8215 + }, + { + "start": 9705.66, + "end": 9707.1, + "probability": 0.6845 + }, + { + "start": 9707.62, + "end": 9709.22, + "probability": 0.9751 + }, + { + "start": 9709.9, + "end": 9711.02, + "probability": 0.8074 + }, + { + "start": 9712.66, + "end": 9714.96, + "probability": 0.6962 + }, + { + "start": 9719.56, + "end": 9720.18, + "probability": 0.7717 + }, + { + "start": 9720.46, + "end": 9724.1, + "probability": 0.9957 + }, + { + "start": 9724.72, + "end": 9725.86, + "probability": 0.9783 + }, + { + "start": 9727.4, + "end": 9727.72, + "probability": 0.5577 + }, + { + "start": 9728.34, + "end": 9729.24, + "probability": 0.7064 + }, + { + "start": 9729.84, + "end": 9730.84, + "probability": 0.7275 + }, + { + "start": 9731.66, + "end": 9733.24, + "probability": 0.9175 + }, + { + "start": 9734.34, + "end": 9736.92, + "probability": 0.9276 + }, + { + "start": 9737.84, + "end": 9740.34, + "probability": 0.9467 + }, + { + "start": 9742.3, + "end": 9746.42, + "probability": 0.9202 + }, + { + "start": 9747.42, + "end": 9755.26, + "probability": 0.9971 + }, + { + "start": 9756.64, + "end": 9757.82, + "probability": 0.8774 + }, + { + "start": 9758.88, + "end": 9761.88, + "probability": 0.8843 + }, + { + "start": 9762.58, + "end": 9762.9, + "probability": 0.9993 + }, + { + "start": 9763.52, + "end": 9768.62, + "probability": 0.9993 + }, + { + "start": 9769.2, + "end": 9769.44, + "probability": 0.627 + }, + { + "start": 9770.2, + "end": 9771.46, + "probability": 0.7791 + }, + { + "start": 9772.26, + "end": 9773.78, + "probability": 0.999 + }, + { + "start": 9775.92, + "end": 9776.94, + "probability": 0.9248 + }, + { + "start": 9777.08, + "end": 9781.58, + "probability": 0.9749 + }, + { + "start": 9781.64, + "end": 9784.44, + "probability": 0.8637 + }, + { + "start": 9784.84, + "end": 9786.86, + "probability": 0.9937 + }, + { + "start": 9787.94, + "end": 9789.92, + "probability": 0.932 + }, + { + "start": 9790.12, + "end": 9790.52, + "probability": 0.3029 + }, + { + "start": 9790.68, + "end": 9792.26, + "probability": 0.9464 + }, + { + "start": 9792.84, + "end": 9795.74, + "probability": 0.9811 + }, + { + "start": 9796.78, + "end": 9799.18, + "probability": 0.9957 + }, + { + "start": 9800.04, + "end": 9801.34, + "probability": 0.845 + }, + { + "start": 9801.86, + "end": 9805.96, + "probability": 0.916 + }, + { + "start": 9806.32, + "end": 9807.22, + "probability": 0.9616 + }, + { + "start": 9809.37, + "end": 9813.26, + "probability": 0.988 + }, + { + "start": 9814.7, + "end": 9819.68, + "probability": 0.9898 + }, + { + "start": 9823.18, + "end": 9828.12, + "probability": 0.9956 + }, + { + "start": 9828.16, + "end": 9830.14, + "probability": 0.9209 + }, + { + "start": 9830.84, + "end": 9832.12, + "probability": 0.9053 + }, + { + "start": 9832.44, + "end": 9837.36, + "probability": 0.9912 + }, + { + "start": 9838.6, + "end": 9847.14, + "probability": 0.9915 + }, + { + "start": 9847.6, + "end": 9850.18, + "probability": 0.9927 + }, + { + "start": 9851.0, + "end": 9851.84, + "probability": 0.7835 + }, + { + "start": 9852.7, + "end": 9854.28, + "probability": 0.9631 + }, + { + "start": 9854.68, + "end": 9855.54, + "probability": 0.6484 + }, + { + "start": 9855.56, + "end": 9857.68, + "probability": 0.9693 + }, + { + "start": 9858.32, + "end": 9860.04, + "probability": 0.9862 + }, + { + "start": 9860.56, + "end": 9865.68, + "probability": 0.9978 + }, + { + "start": 9867.54, + "end": 9869.14, + "probability": 0.9168 + }, + { + "start": 9870.12, + "end": 9873.52, + "probability": 0.9886 + }, + { + "start": 9874.12, + "end": 9875.73, + "probability": 0.9989 + }, + { + "start": 9876.4, + "end": 9878.52, + "probability": 0.9862 + }, + { + "start": 9879.72, + "end": 9880.96, + "probability": 0.9292 + }, + { + "start": 9881.1, + "end": 9884.66, + "probability": 0.9868 + }, + { + "start": 9886.34, + "end": 9888.98, + "probability": 0.9868 + }, + { + "start": 9889.28, + "end": 9890.64, + "probability": 0.6202 + }, + { + "start": 9890.68, + "end": 9891.74, + "probability": 0.8441 + }, + { + "start": 9892.14, + "end": 9895.68, + "probability": 0.984 + }, + { + "start": 9895.76, + "end": 9899.92, + "probability": 0.9934 + }, + { + "start": 9900.44, + "end": 9904.38, + "probability": 0.9845 + }, + { + "start": 9905.24, + "end": 9907.42, + "probability": 0.983 + }, + { + "start": 9908.4, + "end": 9909.06, + "probability": 0.864 + }, + { + "start": 9909.22, + "end": 9914.54, + "probability": 0.9988 + }, + { + "start": 9916.14, + "end": 9918.44, + "probability": 0.9604 + }, + { + "start": 9919.1, + "end": 9919.58, + "probability": 0.8773 + }, + { + "start": 9920.02, + "end": 9920.82, + "probability": 0.8889 + }, + { + "start": 9921.24, + "end": 9924.24, + "probability": 0.7931 + }, + { + "start": 9924.66, + "end": 9927.16, + "probability": 0.9934 + }, + { + "start": 9927.84, + "end": 9930.92, + "probability": 0.9596 + }, + { + "start": 9930.92, + "end": 9935.76, + "probability": 0.998 + }, + { + "start": 9936.38, + "end": 9937.26, + "probability": 0.9998 + }, + { + "start": 9938.06, + "end": 9941.06, + "probability": 0.9435 + }, + { + "start": 9941.6, + "end": 9946.54, + "probability": 0.9983 + }, + { + "start": 9946.54, + "end": 9950.28, + "probability": 0.994 + }, + { + "start": 9950.64, + "end": 9953.72, + "probability": 0.9658 + }, + { + "start": 9954.22, + "end": 9955.24, + "probability": 0.7754 + }, + { + "start": 9957.56, + "end": 9958.24, + "probability": 0.9386 + }, + { + "start": 9959.3, + "end": 9960.16, + "probability": 0.9658 + }, + { + "start": 9960.82, + "end": 9963.0, + "probability": 0.9147 + }, + { + "start": 9963.68, + "end": 9966.14, + "probability": 0.9915 + }, + { + "start": 9967.12, + "end": 9967.98, + "probability": 0.9878 + }, + { + "start": 9968.14, + "end": 9969.28, + "probability": 0.5933 + }, + { + "start": 9969.44, + "end": 9973.76, + "probability": 0.9957 + }, + { + "start": 9974.02, + "end": 9974.86, + "probability": 0.8919 + }, + { + "start": 9976.3, + "end": 9979.44, + "probability": 0.9829 + }, + { + "start": 9979.84, + "end": 9981.52, + "probability": 0.9112 + }, + { + "start": 9981.96, + "end": 9986.9, + "probability": 0.8441 + }, + { + "start": 9987.42, + "end": 9988.44, + "probability": 0.8647 + }, + { + "start": 9989.0, + "end": 9989.88, + "probability": 0.9425 + }, + { + "start": 9990.66, + "end": 9991.66, + "probability": 0.7861 + }, + { + "start": 9992.22, + "end": 9994.46, + "probability": 0.9567 + }, + { + "start": 9995.12, + "end": 9999.44, + "probability": 0.9888 + }, + { + "start": 10000.04, + "end": 10003.34, + "probability": 0.9894 + }, + { + "start": 10004.14, + "end": 10005.14, + "probability": 0.7112 + }, + { + "start": 10005.38, + "end": 10007.14, + "probability": 0.9907 + }, + { + "start": 10007.58, + "end": 10008.87, + "probability": 0.9828 + }, + { + "start": 10009.44, + "end": 10010.54, + "probability": 0.968 + }, + { + "start": 10011.18, + "end": 10013.42, + "probability": 0.9761 + }, + { + "start": 10014.4, + "end": 10016.8, + "probability": 0.7948 + }, + { + "start": 10017.62, + "end": 10020.86, + "probability": 0.8209 + }, + { + "start": 10021.62, + "end": 10024.94, + "probability": 0.9699 + }, + { + "start": 10026.44, + "end": 10028.68, + "probability": 0.9763 + }, + { + "start": 10035.18, + "end": 10039.28, + "probability": 0.8913 + }, + { + "start": 10039.96, + "end": 10041.15, + "probability": 0.9734 + }, + { + "start": 10042.56, + "end": 10047.1, + "probability": 0.9562 + }, + { + "start": 10048.3, + "end": 10049.48, + "probability": 0.8971 + }, + { + "start": 10050.8, + "end": 10055.49, + "probability": 0.9932 + }, + { + "start": 10056.06, + "end": 10060.2, + "probability": 0.8141 + }, + { + "start": 10060.44, + "end": 10061.56, + "probability": 0.6255 + }, + { + "start": 10062.88, + "end": 10068.44, + "probability": 0.9971 + }, + { + "start": 10068.84, + "end": 10070.22, + "probability": 0.9899 + }, + { + "start": 10070.74, + "end": 10072.72, + "probability": 0.9929 + }, + { + "start": 10073.8, + "end": 10075.48, + "probability": 0.9465 + }, + { + "start": 10076.6, + "end": 10083.5, + "probability": 0.9641 + }, + { + "start": 10084.12, + "end": 10086.92, + "probability": 0.9884 + }, + { + "start": 10087.66, + "end": 10088.86, + "probability": 0.9191 + }, + { + "start": 10091.2, + "end": 10093.28, + "probability": 0.974 + }, + { + "start": 10094.62, + "end": 10097.06, + "probability": 0.9195 + }, + { + "start": 10097.96, + "end": 10099.12, + "probability": 0.8934 + }, + { + "start": 10101.08, + "end": 10101.76, + "probability": 0.6513 + }, + { + "start": 10101.88, + "end": 10102.16, + "probability": 0.8798 + }, + { + "start": 10102.34, + "end": 10106.86, + "probability": 0.985 + }, + { + "start": 10107.98, + "end": 10110.06, + "probability": 0.9828 + }, + { + "start": 10110.82, + "end": 10111.78, + "probability": 0.8647 + }, + { + "start": 10112.3, + "end": 10114.38, + "probability": 0.959 + }, + { + "start": 10115.3, + "end": 10116.86, + "probability": 0.9818 + }, + { + "start": 10117.56, + "end": 10118.56, + "probability": 0.9189 + }, + { + "start": 10119.26, + "end": 10124.9, + "probability": 0.995 + }, + { + "start": 10124.9, + "end": 10130.4, + "probability": 0.9982 + }, + { + "start": 10130.96, + "end": 10132.69, + "probability": 0.826 + }, + { + "start": 10133.26, + "end": 10138.3, + "probability": 0.9949 + }, + { + "start": 10138.3, + "end": 10143.18, + "probability": 0.9993 + }, + { + "start": 10144.16, + "end": 10145.38, + "probability": 0.9891 + }, + { + "start": 10146.12, + "end": 10147.32, + "probability": 0.7667 + }, + { + "start": 10150.16, + "end": 10150.6, + "probability": 0.3468 + }, + { + "start": 10150.84, + "end": 10151.0, + "probability": 0.7841 + }, + { + "start": 10151.8, + "end": 10152.2, + "probability": 0.8031 + }, + { + "start": 10153.3, + "end": 10153.6, + "probability": 0.8971 + }, + { + "start": 10154.92, + "end": 10158.43, + "probability": 0.9875 + }, + { + "start": 10158.98, + "end": 10162.02, + "probability": 0.9875 + }, + { + "start": 10162.96, + "end": 10165.26, + "probability": 0.9961 + }, + { + "start": 10166.46, + "end": 10172.7, + "probability": 0.9686 + }, + { + "start": 10173.36, + "end": 10177.56, + "probability": 0.9717 + }, + { + "start": 10178.4, + "end": 10179.98, + "probability": 0.8702 + }, + { + "start": 10181.26, + "end": 10185.74, + "probability": 0.9874 + }, + { + "start": 10188.58, + "end": 10189.64, + "probability": 0.7427 + }, + { + "start": 10191.54, + "end": 10195.36, + "probability": 0.9971 + }, + { + "start": 10196.38, + "end": 10198.48, + "probability": 0.9945 + }, + { + "start": 10200.44, + "end": 10203.5, + "probability": 0.9785 + }, + { + "start": 10204.24, + "end": 10207.63, + "probability": 0.9978 + }, + { + "start": 10207.91, + "end": 10211.91, + "probability": 0.9555 + }, + { + "start": 10212.35, + "end": 10212.63, + "probability": 0.7023 + }, + { + "start": 10213.23, + "end": 10214.03, + "probability": 0.5312 + }, + { + "start": 10214.47, + "end": 10215.73, + "probability": 0.6619 + }, + { + "start": 10216.77, + "end": 10217.89, + "probability": 0.3885 + }, + { + "start": 10236.79, + "end": 10238.23, + "probability": 0.5561 + }, + { + "start": 10240.31, + "end": 10241.57, + "probability": 0.887 + }, + { + "start": 10245.19, + "end": 10248.83, + "probability": 0.7257 + }, + { + "start": 10253.79, + "end": 10256.61, + "probability": 0.9636 + }, + { + "start": 10261.49, + "end": 10262.19, + "probability": 0.5575 + }, + { + "start": 10263.73, + "end": 10264.01, + "probability": 0.4788 + }, + { + "start": 10264.55, + "end": 10266.61, + "probability": 0.8446 + }, + { + "start": 10267.23, + "end": 10268.03, + "probability": 0.2656 + }, + { + "start": 10268.85, + "end": 10271.33, + "probability": 0.7727 + }, + { + "start": 10271.59, + "end": 10273.73, + "probability": 0.9545 + }, + { + "start": 10275.19, + "end": 10278.19, + "probability": 0.542 + }, + { + "start": 10278.55, + "end": 10280.64, + "probability": 0.9674 + }, + { + "start": 10280.87, + "end": 10281.43, + "probability": 0.7968 + }, + { + "start": 10281.77, + "end": 10283.61, + "probability": 0.7675 + }, + { + "start": 10284.29, + "end": 10288.09, + "probability": 0.9764 + }, + { + "start": 10288.27, + "end": 10288.83, + "probability": 0.5188 + }, + { + "start": 10289.51, + "end": 10290.87, + "probability": 0.5958 + }, + { + "start": 10290.87, + "end": 10290.87, + "probability": 0.7939 + }, + { + "start": 10291.07, + "end": 10294.07, + "probability": 0.7033 + }, + { + "start": 10294.59, + "end": 10295.53, + "probability": 0.2343 + }, + { + "start": 10295.89, + "end": 10296.27, + "probability": 0.1308 + }, + { + "start": 10297.45, + "end": 10298.95, + "probability": 0.0833 + }, + { + "start": 10300.91, + "end": 10305.81, + "probability": 0.285 + }, + { + "start": 10305.81, + "end": 10307.04, + "probability": 0.0644 + }, + { + "start": 10310.13, + "end": 10311.73, + "probability": 0.0294 + }, + { + "start": 10312.59, + "end": 10314.31, + "probability": 0.2559 + }, + { + "start": 10315.83, + "end": 10317.77, + "probability": 0.035 + }, + { + "start": 10318.71, + "end": 10320.73, + "probability": 0.1672 + }, + { + "start": 10321.29, + "end": 10322.83, + "probability": 0.2621 + }, + { + "start": 10323.19, + "end": 10327.85, + "probability": 0.0312 + }, + { + "start": 10327.85, + "end": 10329.83, + "probability": 0.1089 + }, + { + "start": 10329.83, + "end": 10330.21, + "probability": 0.0772 + }, + { + "start": 10330.49, + "end": 10332.17, + "probability": 0.3186 + }, + { + "start": 10333.05, + "end": 10334.55, + "probability": 0.0076 + }, + { + "start": 10334.55, + "end": 10334.55, + "probability": 0.1546 + }, + { + "start": 10334.55, + "end": 10334.55, + "probability": 0.1106 + }, + { + "start": 10334.55, + "end": 10334.55, + "probability": 0.1038 + }, + { + "start": 10334.55, + "end": 10334.57, + "probability": 0.1277 + }, + { + "start": 10334.67, + "end": 10334.77, + "probability": 0.0599 + }, + { + "start": 10334.77, + "end": 10334.97, + "probability": 0.1515 + }, + { + "start": 10335.0, + "end": 10335.0, + "probability": 0.0 + }, + { + "start": 10335.0, + "end": 10335.0, + "probability": 0.0 + }, + { + "start": 10335.0, + "end": 10335.0, + "probability": 0.0 + }, + { + "start": 10335.0, + "end": 10335.0, + "probability": 0.0 + }, + { + "start": 10335.52, + "end": 10336.52, + "probability": 0.6795 + }, + { + "start": 10337.86, + "end": 10340.7, + "probability": 0.9868 + }, + { + "start": 10341.2, + "end": 10341.2, + "probability": 0.0542 + }, + { + "start": 10341.2, + "end": 10344.48, + "probability": 0.8717 + }, + { + "start": 10344.76, + "end": 10346.72, + "probability": 0.9209 + }, + { + "start": 10346.9, + "end": 10349.34, + "probability": 0.995 + }, + { + "start": 10350.1, + "end": 10350.2, + "probability": 0.3427 + }, + { + "start": 10351.8, + "end": 10352.52, + "probability": 0.494 + }, + { + "start": 10352.82, + "end": 10355.66, + "probability": 0.7977 + }, + { + "start": 10355.78, + "end": 10356.8, + "probability": 0.8465 + }, + { + "start": 10357.34, + "end": 10358.86, + "probability": 0.9415 + }, + { + "start": 10359.2, + "end": 10360.16, + "probability": 0.9158 + }, + { + "start": 10360.96, + "end": 10363.76, + "probability": 0.9774 + }, + { + "start": 10363.76, + "end": 10365.28, + "probability": 0.8136 + }, + { + "start": 10367.42, + "end": 10368.08, + "probability": 0.2117 + }, + { + "start": 10368.2, + "end": 10368.3, + "probability": 0.4103 + }, + { + "start": 10370.14, + "end": 10372.14, + "probability": 0.9875 + }, + { + "start": 10372.52, + "end": 10374.24, + "probability": 0.9508 + }, + { + "start": 10375.24, + "end": 10375.74, + "probability": 0.7859 + }, + { + "start": 10377.0, + "end": 10379.18, + "probability": 0.9591 + }, + { + "start": 10380.08, + "end": 10381.5, + "probability": 0.8479 + }, + { + "start": 10381.72, + "end": 10382.36, + "probability": 0.0602 + }, + { + "start": 10382.42, + "end": 10384.2, + "probability": 0.7476 + }, + { + "start": 10384.62, + "end": 10387.56, + "probability": 0.9632 + }, + { + "start": 10388.1, + "end": 10390.04, + "probability": 0.6929 + }, + { + "start": 10390.56, + "end": 10392.06, + "probability": 0.8154 + }, + { + "start": 10393.28, + "end": 10394.34, + "probability": 0.986 + }, + { + "start": 10395.2, + "end": 10399.88, + "probability": 0.9896 + }, + { + "start": 10400.44, + "end": 10402.82, + "probability": 0.9985 + }, + { + "start": 10403.82, + "end": 10407.44, + "probability": 0.9897 + }, + { + "start": 10408.18, + "end": 10411.0, + "probability": 0.9259 + }, + { + "start": 10411.4, + "end": 10412.28, + "probability": 0.8862 + }, + { + "start": 10412.6, + "end": 10417.5, + "probability": 0.9583 + }, + { + "start": 10418.76, + "end": 10419.7, + "probability": 0.8662 + }, + { + "start": 10420.96, + "end": 10422.38, + "probability": 0.6161 + }, + { + "start": 10422.94, + "end": 10427.24, + "probability": 0.7541 + }, + { + "start": 10427.62, + "end": 10428.42, + "probability": 0.7787 + }, + { + "start": 10429.34, + "end": 10431.64, + "probability": 0.8115 + }, + { + "start": 10432.42, + "end": 10433.5, + "probability": 0.9014 + }, + { + "start": 10433.62, + "end": 10434.54, + "probability": 0.4396 + }, + { + "start": 10434.54, + "end": 10437.7, + "probability": 0.6958 + }, + { + "start": 10437.78, + "end": 10438.96, + "probability": 0.9417 + }, + { + "start": 10439.46, + "end": 10442.76, + "probability": 0.7529 + }, + { + "start": 10443.56, + "end": 10446.58, + "probability": 0.9841 + }, + { + "start": 10446.72, + "end": 10449.14, + "probability": 0.9951 + }, + { + "start": 10449.8, + "end": 10450.04, + "probability": 0.1577 + }, + { + "start": 10450.62, + "end": 10454.32, + "probability": 0.9714 + }, + { + "start": 10455.64, + "end": 10456.92, + "probability": 0.9912 + }, + { + "start": 10457.1, + "end": 10464.1, + "probability": 0.8999 + }, + { + "start": 10464.2, + "end": 10466.26, + "probability": 0.9473 + }, + { + "start": 10466.6, + "end": 10468.76, + "probability": 0.9839 + }, + { + "start": 10469.52, + "end": 10470.14, + "probability": 0.4206 + }, + { + "start": 10470.46, + "end": 10473.08, + "probability": 0.8649 + }, + { + "start": 10473.34, + "end": 10475.12, + "probability": 0.1829 + }, + { + "start": 10476.12, + "end": 10478.18, + "probability": 0.9539 + }, + { + "start": 10479.32, + "end": 10481.12, + "probability": 0.9282 + }, + { + "start": 10481.84, + "end": 10484.14, + "probability": 0.8706 + }, + { + "start": 10485.62, + "end": 10486.22, + "probability": 0.4138 + }, + { + "start": 10486.66, + "end": 10487.66, + "probability": 0.0072 + }, + { + "start": 10488.18, + "end": 10488.9, + "probability": 0.7012 + }, + { + "start": 10489.3, + "end": 10491.9, + "probability": 0.5535 + }, + { + "start": 10493.42, + "end": 10495.22, + "probability": 0.8294 + }, + { + "start": 10496.38, + "end": 10496.9, + "probability": 0.717 + }, + { + "start": 10497.0, + "end": 10498.04, + "probability": 0.3762 + }, + { + "start": 10498.08, + "end": 10501.58, + "probability": 0.8848 + }, + { + "start": 10503.18, + "end": 10504.74, + "probability": 0.3795 + }, + { + "start": 10504.82, + "end": 10508.22, + "probability": 0.5184 + }, + { + "start": 10518.2, + "end": 10520.52, + "probability": 0.7352 + }, + { + "start": 10521.24, + "end": 10524.6, + "probability": 0.9856 + }, + { + "start": 10525.8, + "end": 10529.1, + "probability": 0.9268 + }, + { + "start": 10529.1, + "end": 10533.0, + "probability": 0.8041 + }, + { + "start": 10533.2, + "end": 10535.3, + "probability": 0.9884 + }, + { + "start": 10536.36, + "end": 10537.66, + "probability": 0.8676 + }, + { + "start": 10538.24, + "end": 10538.74, + "probability": 0.7379 + }, + { + "start": 10539.0, + "end": 10545.22, + "probability": 0.9065 + }, + { + "start": 10545.22, + "end": 10549.06, + "probability": 0.7334 + }, + { + "start": 10550.92, + "end": 10553.62, + "probability": 0.853 + }, + { + "start": 10554.12, + "end": 10558.12, + "probability": 0.9624 + }, + { + "start": 10558.88, + "end": 10561.88, + "probability": 0.9893 + }, + { + "start": 10561.88, + "end": 10566.02, + "probability": 0.7661 + }, + { + "start": 10568.36, + "end": 10568.94, + "probability": 0.3079 + }, + { + "start": 10569.74, + "end": 10574.26, + "probability": 0.7187 + }, + { + "start": 10574.26, + "end": 10578.86, + "probability": 0.8589 + }, + { + "start": 10579.4, + "end": 10581.42, + "probability": 0.9161 + }, + { + "start": 10582.34, + "end": 10585.32, + "probability": 0.8803 + }, + { + "start": 10585.62, + "end": 10589.44, + "probability": 0.9862 + }, + { + "start": 10589.74, + "end": 10591.82, + "probability": 0.77 + }, + { + "start": 10593.0, + "end": 10595.48, + "probability": 0.7003 + }, + { + "start": 10595.58, + "end": 10598.14, + "probability": 0.8747 + }, + { + "start": 10598.7, + "end": 10601.68, + "probability": 0.7198 + }, + { + "start": 10602.24, + "end": 10605.46, + "probability": 0.9188 + }, + { + "start": 10606.0, + "end": 10610.14, + "probability": 0.9842 + }, + { + "start": 10610.74, + "end": 10611.34, + "probability": 0.4077 + }, + { + "start": 10611.84, + "end": 10614.56, + "probability": 0.8367 + }, + { + "start": 10614.86, + "end": 10615.48, + "probability": 0.8311 + }, + { + "start": 10616.22, + "end": 10616.98, + "probability": 0.7763 + }, + { + "start": 10619.1, + "end": 10619.74, + "probability": 0.9867 + }, + { + "start": 10623.94, + "end": 10627.92, + "probability": 0.9974 + }, + { + "start": 10629.62, + "end": 10631.52, + "probability": 0.9724 + }, + { + "start": 10632.12, + "end": 10632.54, + "probability": 0.5043 + }, + { + "start": 10634.54, + "end": 10639.06, + "probability": 0.994 + }, + { + "start": 10640.58, + "end": 10640.96, + "probability": 0.6115 + }, + { + "start": 10641.5, + "end": 10643.16, + "probability": 0.6094 + }, + { + "start": 10643.9, + "end": 10646.4, + "probability": 0.7071 + }, + { + "start": 10646.88, + "end": 10649.24, + "probability": 0.7374 + }, + { + "start": 10649.76, + "end": 10650.42, + "probability": 0.9091 + }, + { + "start": 10651.06, + "end": 10652.72, + "probability": 0.9543 + }, + { + "start": 10653.18, + "end": 10654.26, + "probability": 0.7697 + }, + { + "start": 10654.5, + "end": 10659.36, + "probability": 0.9084 + }, + { + "start": 10659.98, + "end": 10662.65, + "probability": 0.783 + }, + { + "start": 10663.14, + "end": 10663.82, + "probability": 0.6192 + }, + { + "start": 10663.92, + "end": 10666.54, + "probability": 0.8195 + }, + { + "start": 10666.58, + "end": 10666.94, + "probability": 0.679 + }, + { + "start": 10667.02, + "end": 10669.56, + "probability": 0.535 + }, + { + "start": 10670.18, + "end": 10675.86, + "probability": 0.8481 + }, + { + "start": 10675.94, + "end": 10681.42, + "probability": 0.6814 + }, + { + "start": 10681.9, + "end": 10684.2, + "probability": 0.9475 + }, + { + "start": 10684.54, + "end": 10685.04, + "probability": 0.9206 + }, + { + "start": 10686.22, + "end": 10686.62, + "probability": 0.4751 + }, + { + "start": 10687.2, + "end": 10691.02, + "probability": 0.7577 + }, + { + "start": 10691.26, + "end": 10692.6, + "probability": 0.8625 + }, + { + "start": 10692.74, + "end": 10693.62, + "probability": 0.8267 + }, + { + "start": 10694.08, + "end": 10694.7, + "probability": 0.8708 + }, + { + "start": 10694.78, + "end": 10696.92, + "probability": 0.8984 + }, + { + "start": 10698.24, + "end": 10701.98, + "probability": 0.7097 + }, + { + "start": 10703.88, + "end": 10704.66, + "probability": 0.7173 + }, + { + "start": 10707.21, + "end": 10709.74, + "probability": 0.9922 + }, + { + "start": 10710.42, + "end": 10711.24, + "probability": 0.9888 + }, + { + "start": 10711.64, + "end": 10713.42, + "probability": 0.957 + }, + { + "start": 10713.44, + "end": 10715.46, + "probability": 0.9368 + }, + { + "start": 10716.22, + "end": 10717.4, + "probability": 0.9917 + }, + { + "start": 10718.24, + "end": 10722.0, + "probability": 0.9906 + }, + { + "start": 10722.9, + "end": 10726.04, + "probability": 0.993 + }, + { + "start": 10726.46, + "end": 10727.26, + "probability": 0.5029 + }, + { + "start": 10727.86, + "end": 10728.82, + "probability": 0.9982 + }, + { + "start": 10729.4, + "end": 10733.42, + "probability": 0.9193 + }, + { + "start": 10733.94, + "end": 10736.46, + "probability": 0.981 + }, + { + "start": 10737.06, + "end": 10740.86, + "probability": 0.5502 + }, + { + "start": 10741.5, + "end": 10742.5, + "probability": 0.9847 + }, + { + "start": 10742.78, + "end": 10747.08, + "probability": 0.5181 + }, + { + "start": 10747.62, + "end": 10748.08, + "probability": 0.7837 + }, + { + "start": 10750.57, + "end": 10754.5, + "probability": 0.9915 + }, + { + "start": 10755.0, + "end": 10756.86, + "probability": 0.9469 + }, + { + "start": 10757.64, + "end": 10759.46, + "probability": 0.8052 + }, + { + "start": 10759.66, + "end": 10760.02, + "probability": 0.8522 + }, + { + "start": 10760.44, + "end": 10760.66, + "probability": 0.4937 + }, + { + "start": 10760.78, + "end": 10762.3, + "probability": 0.9058 + }, + { + "start": 10763.42, + "end": 10767.46, + "probability": 0.8412 + }, + { + "start": 10777.56, + "end": 10777.6, + "probability": 0.0041 + }, + { + "start": 10777.6, + "end": 10779.66, + "probability": 0.6491 + }, + { + "start": 10781.2, + "end": 10785.44, + "probability": 0.9938 + }, + { + "start": 10786.54, + "end": 10789.46, + "probability": 0.993 + }, + { + "start": 10790.3, + "end": 10791.48, + "probability": 0.959 + }, + { + "start": 10792.72, + "end": 10799.48, + "probability": 0.979 + }, + { + "start": 10801.26, + "end": 10804.58, + "probability": 0.991 + }, + { + "start": 10805.2, + "end": 10813.8, + "probability": 0.9561 + }, + { + "start": 10814.26, + "end": 10817.22, + "probability": 0.9783 + }, + { + "start": 10819.58, + "end": 10821.38, + "probability": 0.8421 + }, + { + "start": 10821.92, + "end": 10826.96, + "probability": 0.9502 + }, + { + "start": 10827.8, + "end": 10833.22, + "probability": 0.9927 + }, + { + "start": 10833.98, + "end": 10836.7, + "probability": 0.9653 + }, + { + "start": 10837.44, + "end": 10840.06, + "probability": 0.9694 + }, + { + "start": 10841.12, + "end": 10842.52, + "probability": 0.4084 + }, + { + "start": 10843.16, + "end": 10845.96, + "probability": 0.9517 + }, + { + "start": 10847.02, + "end": 10848.22, + "probability": 0.7811 + }, + { + "start": 10848.88, + "end": 10851.6, + "probability": 0.9403 + }, + { + "start": 10852.62, + "end": 10857.36, + "probability": 0.9946 + }, + { + "start": 10857.84, + "end": 10860.76, + "probability": 0.9769 + }, + { + "start": 10861.14, + "end": 10864.06, + "probability": 0.998 + }, + { + "start": 10864.62, + "end": 10869.14, + "probability": 0.9966 + }, + { + "start": 10869.14, + "end": 10872.44, + "probability": 0.9993 + }, + { + "start": 10873.94, + "end": 10876.5, + "probability": 0.9185 + }, + { + "start": 10878.2, + "end": 10882.44, + "probability": 0.9916 + }, + { + "start": 10882.62, + "end": 10883.3, + "probability": 0.6662 + }, + { + "start": 10884.16, + "end": 10889.82, + "probability": 0.7125 + }, + { + "start": 10890.64, + "end": 10894.86, + "probability": 0.9548 + }, + { + "start": 10895.42, + "end": 10900.04, + "probability": 0.9313 + }, + { + "start": 10900.42, + "end": 10901.3, + "probability": 0.9045 + }, + { + "start": 10902.58, + "end": 10909.02, + "probability": 0.9982 + }, + { + "start": 10909.68, + "end": 10914.06, + "probability": 0.9945 + }, + { + "start": 10914.58, + "end": 10916.18, + "probability": 0.8638 + }, + { + "start": 10918.32, + "end": 10919.64, + "probability": 0.6933 + }, + { + "start": 10920.66, + "end": 10922.64, + "probability": 0.8004 + }, + { + "start": 10923.18, + "end": 10924.52, + "probability": 0.5727 + }, + { + "start": 10925.08, + "end": 10927.08, + "probability": 0.7275 + }, + { + "start": 10927.82, + "end": 10928.5, + "probability": 0.6957 + }, + { + "start": 10930.96, + "end": 10931.42, + "probability": 0.7132 + }, + { + "start": 10933.14, + "end": 10940.1, + "probability": 0.0258 + }, + { + "start": 10940.34, + "end": 10943.3, + "probability": 0.0349 + }, + { + "start": 10943.64, + "end": 10943.74, + "probability": 0.038 + }, + { + "start": 10950.96, + "end": 10950.96, + "probability": 0.0484 + }, + { + "start": 10950.96, + "end": 10951.3, + "probability": 0.1262 + }, + { + "start": 10951.92, + "end": 10957.82, + "probability": 0.6634 + }, + { + "start": 10959.16, + "end": 10962.28, + "probability": 0.7484 + }, + { + "start": 10963.44, + "end": 10965.38, + "probability": 0.8657 + }, + { + "start": 10966.2, + "end": 10968.06, + "probability": 0.9719 + }, + { + "start": 10968.6, + "end": 10970.24, + "probability": 0.861 + }, + { + "start": 10970.82, + "end": 10973.12, + "probability": 0.9926 + }, + { + "start": 10973.12, + "end": 10976.1, + "probability": 0.8421 + }, + { + "start": 10976.98, + "end": 10978.8, + "probability": 0.1224 + }, + { + "start": 10979.36, + "end": 10980.2, + "probability": 0.3851 + }, + { + "start": 10981.58, + "end": 10983.84, + "probability": 0.2853 + }, + { + "start": 10984.4, + "end": 10987.14, + "probability": 0.2148 + }, + { + "start": 10987.8, + "end": 10989.6, + "probability": 0.8877 + }, + { + "start": 10989.94, + "end": 10991.74, + "probability": 0.6658 + }, + { + "start": 10992.12, + "end": 10996.02, + "probability": 0.5507 + }, + { + "start": 10996.52, + "end": 10996.52, + "probability": 0.0806 + }, + { + "start": 10996.52, + "end": 10996.52, + "probability": 0.0476 + }, + { + "start": 10996.52, + "end": 10996.72, + "probability": 0.3802 + }, + { + "start": 10997.1, + "end": 10997.1, + "probability": 0.4531 + }, + { + "start": 10997.82, + "end": 11000.98, + "probability": 0.8769 + }, + { + "start": 11002.3, + "end": 11006.78, + "probability": 0.823 + }, + { + "start": 11007.38, + "end": 11008.04, + "probability": 0.2628 + }, + { + "start": 11008.8, + "end": 11011.94, + "probability": 0.8527 + }, + { + "start": 11021.08, + "end": 11023.1, + "probability": 0.6858 + }, + { + "start": 11023.68, + "end": 11024.46, + "probability": 0.7852 + }, + { + "start": 11026.28, + "end": 11028.98, + "probability": 0.9451 + }, + { + "start": 11030.68, + "end": 11033.78, + "probability": 0.8653 + }, + { + "start": 11035.04, + "end": 11036.22, + "probability": 0.6921 + }, + { + "start": 11037.14, + "end": 11038.2, + "probability": 0.87 + }, + { + "start": 11038.96, + "end": 11040.46, + "probability": 0.9947 + }, + { + "start": 11041.76, + "end": 11042.38, + "probability": 0.8851 + }, + { + "start": 11044.06, + "end": 11044.86, + "probability": 0.9934 + }, + { + "start": 11046.1, + "end": 11048.4, + "probability": 0.8742 + }, + { + "start": 11049.28, + "end": 11053.24, + "probability": 0.9998 + }, + { + "start": 11055.24, + "end": 11056.46, + "probability": 0.7778 + }, + { + "start": 11057.1, + "end": 11058.76, + "probability": 0.9595 + }, + { + "start": 11059.52, + "end": 11062.16, + "probability": 0.7388 + }, + { + "start": 11063.12, + "end": 11063.88, + "probability": 0.2804 + }, + { + "start": 11064.0, + "end": 11065.08, + "probability": 0.7414 + }, + { + "start": 11066.04, + "end": 11066.76, + "probability": 0.4435 + }, + { + "start": 11066.8, + "end": 11068.8, + "probability": 0.8411 + }, + { + "start": 11069.36, + "end": 11072.06, + "probability": 0.9099 + }, + { + "start": 11072.96, + "end": 11075.62, + "probability": 0.9985 + }, + { + "start": 11076.2, + "end": 11078.0, + "probability": 0.5197 + }, + { + "start": 11079.82, + "end": 11081.62, + "probability": 0.778 + }, + { + "start": 11082.2, + "end": 11083.38, + "probability": 0.972 + }, + { + "start": 11084.02, + "end": 11086.42, + "probability": 0.741 + }, + { + "start": 11087.06, + "end": 11087.69, + "probability": 0.8664 + }, + { + "start": 11088.2, + "end": 11088.82, + "probability": 0.7256 + }, + { + "start": 11088.82, + "end": 11090.84, + "probability": 0.9337 + }, + { + "start": 11092.48, + "end": 11095.52, + "probability": 0.9606 + }, + { + "start": 11097.08, + "end": 11100.54, + "probability": 0.7856 + }, + { + "start": 11102.7, + "end": 11105.88, + "probability": 0.9484 + }, + { + "start": 11107.42, + "end": 11109.42, + "probability": 0.9717 + }, + { + "start": 11110.24, + "end": 11111.56, + "probability": 0.9789 + }, + { + "start": 11114.2, + "end": 11117.62, + "probability": 0.9777 + }, + { + "start": 11120.92, + "end": 11122.06, + "probability": 0.8344 + }, + { + "start": 11123.84, + "end": 11126.96, + "probability": 0.996 + }, + { + "start": 11128.86, + "end": 11131.08, + "probability": 0.9423 + }, + { + "start": 11131.72, + "end": 11134.34, + "probability": 0.999 + }, + { + "start": 11135.0, + "end": 11136.0, + "probability": 0.7243 + }, + { + "start": 11137.48, + "end": 11138.14, + "probability": 0.94 + }, + { + "start": 11139.22, + "end": 11141.4, + "probability": 0.9629 + }, + { + "start": 11142.66, + "end": 11143.44, + "probability": 0.8174 + }, + { + "start": 11144.56, + "end": 11145.54, + "probability": 0.8236 + }, + { + "start": 11145.7, + "end": 11147.82, + "probability": 0.9355 + }, + { + "start": 11148.24, + "end": 11150.2, + "probability": 0.9897 + }, + { + "start": 11150.26, + "end": 11150.86, + "probability": 0.8398 + }, + { + "start": 11151.64, + "end": 11152.28, + "probability": 0.772 + }, + { + "start": 11152.66, + "end": 11153.54, + "probability": 0.3102 + }, + { + "start": 11153.56, + "end": 11156.0, + "probability": 0.8292 + }, + { + "start": 11158.5, + "end": 11159.4, + "probability": 0.4133 + }, + { + "start": 11159.5, + "end": 11160.64, + "probability": 0.7708 + }, + { + "start": 11161.56, + "end": 11162.1, + "probability": 0.8951 + }, + { + "start": 11163.24, + "end": 11165.34, + "probability": 0.9924 + }, + { + "start": 11165.72, + "end": 11167.48, + "probability": 0.9595 + }, + { + "start": 11167.6, + "end": 11168.32, + "probability": 0.7373 + }, + { + "start": 11171.61, + "end": 11173.85, + "probability": 0.9524 + }, + { + "start": 11174.82, + "end": 11176.54, + "probability": 0.6963 + }, + { + "start": 11177.22, + "end": 11178.32, + "probability": 0.0253 + }, + { + "start": 11179.52, + "end": 11182.6, + "probability": 0.7678 + }, + { + "start": 11184.7, + "end": 11186.32, + "probability": 0.7928 + }, + { + "start": 11186.77, + "end": 11188.5, + "probability": 0.7061 + }, + { + "start": 11188.86, + "end": 11190.58, + "probability": 0.9026 + }, + { + "start": 11191.28, + "end": 11192.71, + "probability": 0.753 + }, + { + "start": 11193.42, + "end": 11195.32, + "probability": 0.9696 + }, + { + "start": 11195.48, + "end": 11201.28, + "probability": 0.8298 + }, + { + "start": 11201.58, + "end": 11205.66, + "probability": 0.7939 + }, + { + "start": 11207.02, + "end": 11208.72, + "probability": 0.7415 + }, + { + "start": 11209.38, + "end": 11212.76, + "probability": 0.9963 + }, + { + "start": 11213.44, + "end": 11217.76, + "probability": 0.9805 + }, + { + "start": 11217.76, + "end": 11221.32, + "probability": 0.9864 + }, + { + "start": 11221.66, + "end": 11223.76, + "probability": 0.9943 + }, + { + "start": 11224.42, + "end": 11226.8, + "probability": 0.9451 + }, + { + "start": 11227.36, + "end": 11229.36, + "probability": 0.7615 + }, + { + "start": 11229.94, + "end": 11236.7, + "probability": 0.9701 + }, + { + "start": 11236.7, + "end": 11244.14, + "probability": 0.9705 + }, + { + "start": 11244.72, + "end": 11245.76, + "probability": 0.624 + }, + { + "start": 11246.32, + "end": 11247.52, + "probability": 0.7109 + }, + { + "start": 11247.58, + "end": 11248.78, + "probability": 0.8807 + }, + { + "start": 11249.16, + "end": 11249.74, + "probability": 0.4602 + }, + { + "start": 11249.98, + "end": 11250.98, + "probability": 0.7803 + }, + { + "start": 11251.1, + "end": 11251.82, + "probability": 0.8274 + }, + { + "start": 11252.16, + "end": 11255.08, + "probability": 0.9724 + }, + { + "start": 11255.8, + "end": 11259.56, + "probability": 0.8903 + }, + { + "start": 11259.96, + "end": 11264.04, + "probability": 0.9579 + }, + { + "start": 11265.46, + "end": 11266.54, + "probability": 0.7416 + }, + { + "start": 11267.28, + "end": 11270.76, + "probability": 0.9992 + }, + { + "start": 11271.58, + "end": 11272.88, + "probability": 0.9814 + }, + { + "start": 11273.78, + "end": 11274.72, + "probability": 0.9282 + }, + { + "start": 11274.76, + "end": 11275.26, + "probability": 0.9097 + }, + { + "start": 11275.56, + "end": 11276.58, + "probability": 0.7512 + }, + { + "start": 11277.44, + "end": 11281.66, + "probability": 0.9805 + }, + { + "start": 11283.72, + "end": 11285.64, + "probability": 0.6794 + }, + { + "start": 11286.54, + "end": 11292.1, + "probability": 0.9622 + }, + { + "start": 11294.54, + "end": 11295.96, + "probability": 0.4997 + }, + { + "start": 11296.62, + "end": 11302.3, + "probability": 0.986 + }, + { + "start": 11304.16, + "end": 11306.1, + "probability": 0.9984 + }, + { + "start": 11307.0, + "end": 11309.3, + "probability": 0.7335 + }, + { + "start": 11311.08, + "end": 11313.22, + "probability": 0.8793 + }, + { + "start": 11314.38, + "end": 11316.6, + "probability": 0.9883 + }, + { + "start": 11318.36, + "end": 11319.16, + "probability": 0.2908 + }, + { + "start": 11319.96, + "end": 11321.12, + "probability": 0.9177 + }, + { + "start": 11321.26, + "end": 11322.26, + "probability": 0.5526 + }, + { + "start": 11324.32, + "end": 11325.18, + "probability": 0.3312 + }, + { + "start": 11325.94, + "end": 11326.54, + "probability": 0.3505 + }, + { + "start": 11327.06, + "end": 11328.22, + "probability": 0.3261 + }, + { + "start": 11328.38, + "end": 11329.74, + "probability": 0.927 + }, + { + "start": 11330.08, + "end": 11330.42, + "probability": 0.6487 + }, + { + "start": 11330.6, + "end": 11331.92, + "probability": 0.946 + }, + { + "start": 11332.04, + "end": 11333.34, + "probability": 0.9458 + }, + { + "start": 11333.72, + "end": 11339.58, + "probability": 0.9827 + }, + { + "start": 11339.92, + "end": 11341.8, + "probability": 0.9187 + }, + { + "start": 11342.98, + "end": 11345.5, + "probability": 0.9453 + }, + { + "start": 11345.82, + "end": 11348.38, + "probability": 0.8613 + }, + { + "start": 11350.38, + "end": 11359.66, + "probability": 0.9888 + }, + { + "start": 11361.56, + "end": 11362.28, + "probability": 0.8065 + }, + { + "start": 11363.26, + "end": 11364.44, + "probability": 0.7063 + }, + { + "start": 11364.56, + "end": 11365.86, + "probability": 0.9993 + }, + { + "start": 11366.38, + "end": 11367.04, + "probability": 0.731 + }, + { + "start": 11367.74, + "end": 11373.98, + "probability": 0.9905 + }, + { + "start": 11374.18, + "end": 11374.62, + "probability": 0.8313 + }, + { + "start": 11374.62, + "end": 11375.18, + "probability": 0.9807 + }, + { + "start": 11376.58, + "end": 11377.58, + "probability": 0.7597 + }, + { + "start": 11378.54, + "end": 11380.66, + "probability": 0.9829 + }, + { + "start": 11381.52, + "end": 11383.96, + "probability": 0.9903 + }, + { + "start": 11386.48, + "end": 11388.02, + "probability": 0.6156 + }, + { + "start": 11388.64, + "end": 11390.12, + "probability": 0.9272 + }, + { + "start": 11392.6, + "end": 11394.44, + "probability": 0.8593 + }, + { + "start": 11395.22, + "end": 11397.12, + "probability": 0.9165 + }, + { + "start": 11399.02, + "end": 11401.0, + "probability": 0.7341 + }, + { + "start": 11402.14, + "end": 11404.58, + "probability": 0.9783 + }, + { + "start": 11405.16, + "end": 11407.42, + "probability": 0.7134 + }, + { + "start": 11408.52, + "end": 11411.16, + "probability": 0.9688 + }, + { + "start": 11412.46, + "end": 11413.86, + "probability": 0.9697 + }, + { + "start": 11415.44, + "end": 11416.92, + "probability": 0.7407 + }, + { + "start": 11418.2, + "end": 11418.9, + "probability": 0.9692 + }, + { + "start": 11421.86, + "end": 11422.58, + "probability": 0.734 + }, + { + "start": 11435.84, + "end": 11436.7, + "probability": 0.1836 + }, + { + "start": 11437.46, + "end": 11441.08, + "probability": 0.5501 + }, + { + "start": 11443.4, + "end": 11444.04, + "probability": 0.6667 + }, + { + "start": 11444.72, + "end": 11446.1, + "probability": 0.9861 + }, + { + "start": 11449.09, + "end": 11450.76, + "probability": 0.0263 + }, + { + "start": 11453.18, + "end": 11457.24, + "probability": 0.634 + }, + { + "start": 11457.84, + "end": 11461.2, + "probability": 0.9938 + }, + { + "start": 11464.34, + "end": 11467.94, + "probability": 0.7557 + }, + { + "start": 11470.6, + "end": 11472.82, + "probability": 0.9334 + }, + { + "start": 11474.7, + "end": 11475.5, + "probability": 0.6069 + }, + { + "start": 11475.6, + "end": 11476.4, + "probability": 0.8943 + }, + { + "start": 11476.64, + "end": 11481.44, + "probability": 0.8598 + }, + { + "start": 11483.0, + "end": 11486.9, + "probability": 0.9961 + }, + { + "start": 11487.52, + "end": 11491.58, + "probability": 0.9439 + }, + { + "start": 11492.7, + "end": 11495.62, + "probability": 0.9828 + }, + { + "start": 11496.06, + "end": 11496.3, + "probability": 0.4826 + }, + { + "start": 11496.32, + "end": 11500.96, + "probability": 0.9761 + }, + { + "start": 11502.1, + "end": 11504.89, + "probability": 0.9672 + }, + { + "start": 11505.76, + "end": 11509.05, + "probability": 0.7715 + }, + { + "start": 11509.26, + "end": 11510.44, + "probability": 0.0743 + }, + { + "start": 11510.64, + "end": 11511.46, + "probability": 0.3506 + }, + { + "start": 11512.0, + "end": 11513.04, + "probability": 0.7135 + }, + { + "start": 11513.34, + "end": 11515.08, + "probability": 0.8918 + }, + { + "start": 11515.24, + "end": 11516.68, + "probability": 0.7258 + }, + { + "start": 11516.8, + "end": 11520.88, + "probability": 0.9222 + }, + { + "start": 11521.24, + "end": 11523.62, + "probability": 0.9658 + }, + { + "start": 11524.84, + "end": 11531.52, + "probability": 0.8865 + }, + { + "start": 11532.72, + "end": 11535.32, + "probability": 0.9949 + }, + { + "start": 11536.08, + "end": 11537.22, + "probability": 0.7682 + }, + { + "start": 11537.62, + "end": 11540.21, + "probability": 0.6236 + }, + { + "start": 11540.4, + "end": 11540.92, + "probability": 0.9365 + }, + { + "start": 11542.08, + "end": 11543.84, + "probability": 0.7299 + }, + { + "start": 11545.58, + "end": 11550.38, + "probability": 0.9226 + }, + { + "start": 11550.46, + "end": 11552.46, + "probability": 0.9827 + }, + { + "start": 11553.72, + "end": 11556.04, + "probability": 0.6683 + }, + { + "start": 11556.84, + "end": 11561.84, + "probability": 0.9839 + }, + { + "start": 11562.86, + "end": 11564.32, + "probability": 0.7859 + }, + { + "start": 11564.64, + "end": 11572.04, + "probability": 0.9443 + }, + { + "start": 11572.56, + "end": 11573.62, + "probability": 0.8682 + }, + { + "start": 11573.62, + "end": 11573.72, + "probability": 0.7867 + }, + { + "start": 11574.28, + "end": 11575.72, + "probability": 0.96 + }, + { + "start": 11575.78, + "end": 11576.18, + "probability": 0.9461 + }, + { + "start": 11576.3, + "end": 11577.22, + "probability": 0.9932 + }, + { + "start": 11577.72, + "end": 11579.24, + "probability": 0.9849 + }, + { + "start": 11579.76, + "end": 11580.48, + "probability": 0.8629 + }, + { + "start": 11581.32, + "end": 11584.94, + "probability": 0.8752 + }, + { + "start": 11585.02, + "end": 11585.8, + "probability": 0.7555 + }, + { + "start": 11585.94, + "end": 11587.78, + "probability": 0.8569 + }, + { + "start": 11588.96, + "end": 11590.58, + "probability": 0.9126 + }, + { + "start": 11590.7, + "end": 11597.64, + "probability": 0.9756 + }, + { + "start": 11598.02, + "end": 11598.12, + "probability": 0.0762 + }, + { + "start": 11598.82, + "end": 11599.2, + "probability": 0.2118 + }, + { + "start": 11599.2, + "end": 11600.27, + "probability": 0.5081 + }, + { + "start": 11600.58, + "end": 11600.68, + "probability": 0.0832 + }, + { + "start": 11601.14, + "end": 11602.82, + "probability": 0.8996 + }, + { + "start": 11603.12, + "end": 11604.3, + "probability": 0.9071 + }, + { + "start": 11604.44, + "end": 11608.24, + "probability": 0.9839 + }, + { + "start": 11609.76, + "end": 11611.26, + "probability": 0.8547 + }, + { + "start": 11611.6, + "end": 11612.86, + "probability": 0.7338 + }, + { + "start": 11612.96, + "end": 11614.48, + "probability": 0.9977 + }, + { + "start": 11614.76, + "end": 11616.82, + "probability": 0.991 + }, + { + "start": 11616.96, + "end": 11618.54, + "probability": 0.3296 + }, + { + "start": 11619.38, + "end": 11620.18, + "probability": 0.4343 + }, + { + "start": 11620.48, + "end": 11622.46, + "probability": 0.7918 + }, + { + "start": 11622.88, + "end": 11623.24, + "probability": 0.5967 + }, + { + "start": 11623.24, + "end": 11626.84, + "probability": 0.9705 + }, + { + "start": 11627.52, + "end": 11631.73, + "probability": 0.9344 + }, + { + "start": 11632.7, + "end": 11633.88, + "probability": 0.5954 + }, + { + "start": 11634.94, + "end": 11636.26, + "probability": 0.9837 + }, + { + "start": 11636.78, + "end": 11637.9, + "probability": 0.7145 + }, + { + "start": 11649.32, + "end": 11650.9, + "probability": 0.3342 + }, + { + "start": 11650.9, + "end": 11650.9, + "probability": 0.3859 + }, + { + "start": 11651.16, + "end": 11651.98, + "probability": 0.661 + }, + { + "start": 11652.5, + "end": 11654.08, + "probability": 0.9451 + }, + { + "start": 11654.1, + "end": 11656.14, + "probability": 0.9324 + }, + { + "start": 11657.4, + "end": 11658.96, + "probability": 0.9482 + }, + { + "start": 11659.32, + "end": 11663.2, + "probability": 0.9848 + }, + { + "start": 11663.62, + "end": 11664.4, + "probability": 0.8423 + }, + { + "start": 11665.54, + "end": 11668.26, + "probability": 0.7405 + }, + { + "start": 11668.84, + "end": 11673.72, + "probability": 0.878 + }, + { + "start": 11673.98, + "end": 11674.34, + "probability": 0.7222 + }, + { + "start": 11675.58, + "end": 11676.7, + "probability": 0.5292 + }, + { + "start": 11676.78, + "end": 11679.22, + "probability": 0.8049 + }, + { + "start": 11681.08, + "end": 11682.3, + "probability": 0.8442 + }, + { + "start": 11684.3, + "end": 11689.62, + "probability": 0.0622 + }, + { + "start": 11689.62, + "end": 11692.04, + "probability": 0.0368 + }, + { + "start": 11692.9, + "end": 11695.44, + "probability": 0.5944 + }, + { + "start": 11697.24, + "end": 11699.09, + "probability": 0.9015 + }, + { + "start": 11702.98, + "end": 11704.96, + "probability": 0.3679 + }, + { + "start": 11705.96, + "end": 11706.56, + "probability": 0.4766 + }, + { + "start": 11706.78, + "end": 11707.66, + "probability": 0.6359 + }, + { + "start": 11707.7, + "end": 11709.4, + "probability": 0.5675 + }, + { + "start": 11709.58, + "end": 11710.48, + "probability": 0.7069 + }, + { + "start": 11713.56, + "end": 11716.8, + "probability": 0.8989 + }, + { + "start": 11717.78, + "end": 11721.08, + "probability": 0.9475 + }, + { + "start": 11722.36, + "end": 11725.6, + "probability": 0.9091 + }, + { + "start": 11726.18, + "end": 11728.44, + "probability": 0.9827 + }, + { + "start": 11729.4, + "end": 11731.1, + "probability": 0.9862 + }, + { + "start": 11731.94, + "end": 11733.24, + "probability": 0.9712 + }, + { + "start": 11733.88, + "end": 11737.06, + "probability": 0.9943 + }, + { + "start": 11737.62, + "end": 11739.5, + "probability": 0.9113 + }, + { + "start": 11740.12, + "end": 11740.94, + "probability": 0.9136 + }, + { + "start": 11742.0, + "end": 11745.26, + "probability": 0.8698 + }, + { + "start": 11746.72, + "end": 11747.82, + "probability": 0.8492 + }, + { + "start": 11747.9, + "end": 11750.34, + "probability": 0.9698 + }, + { + "start": 11751.12, + "end": 11754.54, + "probability": 0.4712 + }, + { + "start": 11755.44, + "end": 11758.26, + "probability": 0.9286 + }, + { + "start": 11758.68, + "end": 11761.84, + "probability": 0.9973 + }, + { + "start": 11762.36, + "end": 11764.82, + "probability": 0.6334 + }, + { + "start": 11765.6, + "end": 11767.58, + "probability": 0.9933 + }, + { + "start": 11768.14, + "end": 11770.68, + "probability": 0.8869 + }, + { + "start": 11771.3, + "end": 11773.88, + "probability": 0.8964 + }, + { + "start": 11774.46, + "end": 11774.88, + "probability": 0.0159 + }, + { + "start": 11775.0, + "end": 11775.0, + "probability": 0.1489 + }, + { + "start": 11775.0, + "end": 11778.14, + "probability": 0.6912 + }, + { + "start": 11778.86, + "end": 11781.36, + "probability": 0.9554 + }, + { + "start": 11781.96, + "end": 11785.06, + "probability": 0.8091 + }, + { + "start": 11785.46, + "end": 11786.9, + "probability": 0.9219 + }, + { + "start": 11787.18, + "end": 11787.92, + "probability": 0.8565 + }, + { + "start": 11788.56, + "end": 11790.88, + "probability": 0.7846 + }, + { + "start": 11791.2, + "end": 11793.28, + "probability": 0.0836 + }, + { + "start": 11793.44, + "end": 11798.84, + "probability": 0.6645 + }, + { + "start": 11798.84, + "end": 11803.12, + "probability": 0.0735 + }, + { + "start": 11803.12, + "end": 11803.12, + "probability": 0.5732 + }, + { + "start": 11803.12, + "end": 11803.12, + "probability": 0.2741 + }, + { + "start": 11803.2, + "end": 11805.94, + "probability": 0.8555 + }, + { + "start": 11806.8, + "end": 11808.84, + "probability": 0.6158 + }, + { + "start": 11809.06, + "end": 11809.96, + "probability": 0.0377 + }, + { + "start": 11809.96, + "end": 11811.0, + "probability": 0.854 + }, + { + "start": 11812.46, + "end": 11813.88, + "probability": 0.2539 + }, + { + "start": 11814.92, + "end": 11819.56, + "probability": 0.9906 + }, + { + "start": 11820.76, + "end": 11822.07, + "probability": 0.9855 + }, + { + "start": 11823.58, + "end": 11825.38, + "probability": 0.8381 + }, + { + "start": 11825.84, + "end": 11829.84, + "probability": 0.9651 + }, + { + "start": 11830.44, + "end": 11838.7, + "probability": 0.6197 + }, + { + "start": 11841.02, + "end": 11844.54, + "probability": 0.5338 + }, + { + "start": 11845.18, + "end": 11848.86, + "probability": 0.9932 + }, + { + "start": 11849.9, + "end": 11852.2, + "probability": 0.9794 + }, + { + "start": 11852.74, + "end": 11854.04, + "probability": 0.9008 + }, + { + "start": 11854.64, + "end": 11855.6, + "probability": 0.875 + }, + { + "start": 11856.26, + "end": 11859.24, + "probability": 0.959 + }, + { + "start": 11859.54, + "end": 11862.02, + "probability": 0.974 + }, + { + "start": 11862.46, + "end": 11863.04, + "probability": 0.3937 + }, + { + "start": 11863.6, + "end": 11867.68, + "probability": 0.9153 + }, + { + "start": 11867.84, + "end": 11870.2, + "probability": 0.7713 + }, + { + "start": 11870.8, + "end": 11872.82, + "probability": 0.9411 + }, + { + "start": 11873.36, + "end": 11876.22, + "probability": 0.944 + }, + { + "start": 11876.74, + "end": 11878.42, + "probability": 0.9175 + }, + { + "start": 11878.68, + "end": 11880.76, + "probability": 0.822 + }, + { + "start": 11881.24, + "end": 11882.76, + "probability": 0.4493 + }, + { + "start": 11883.38, + "end": 11885.86, + "probability": 0.4417 + }, + { + "start": 11886.94, + "end": 11893.16, + "probability": 0.9661 + }, + { + "start": 11893.66, + "end": 11901.78, + "probability": 0.8936 + }, + { + "start": 11902.86, + "end": 11904.22, + "probability": 0.1087 + }, + { + "start": 11904.22, + "end": 11906.24, + "probability": 0.013 + }, + { + "start": 11907.0, + "end": 11907.92, + "probability": 0.7041 + }, + { + "start": 11908.23, + "end": 11908.76, + "probability": 0.3398 + }, + { + "start": 11908.78, + "end": 11910.62, + "probability": 0.1244 + }, + { + "start": 11910.72, + "end": 11911.7, + "probability": 0.5698 + }, + { + "start": 11912.74, + "end": 11913.18, + "probability": 0.7413 + }, + { + "start": 11913.86, + "end": 11914.04, + "probability": 0.059 + }, + { + "start": 11914.04, + "end": 11915.85, + "probability": 0.7051 + }, + { + "start": 11920.88, + "end": 11922.24, + "probability": 0.8162 + }, + { + "start": 11923.11, + "end": 11925.81, + "probability": 0.87 + }, + { + "start": 11926.38, + "end": 11928.94, + "probability": 0.9882 + }, + { + "start": 11929.0, + "end": 11929.48, + "probability": 0.9311 + }, + { + "start": 11930.4, + "end": 11932.1, + "probability": 0.9858 + }, + { + "start": 11932.94, + "end": 11934.3, + "probability": 0.9932 + }, + { + "start": 11936.58, + "end": 11937.84, + "probability": 0.8059 + }, + { + "start": 11938.4, + "end": 11939.06, + "probability": 0.9678 + }, + { + "start": 11939.68, + "end": 11940.52, + "probability": 0.5069 + }, + { + "start": 11940.66, + "end": 11942.04, + "probability": 0.7634 + }, + { + "start": 11942.42, + "end": 11943.4, + "probability": 0.7377 + }, + { + "start": 11943.6, + "end": 11944.28, + "probability": 0.5002 + }, + { + "start": 11945.62, + "end": 11947.48, + "probability": 0.8945 + }, + { + "start": 11947.8, + "end": 11949.76, + "probability": 0.98 + }, + { + "start": 11951.42, + "end": 11952.34, + "probability": 0.8916 + }, + { + "start": 11953.52, + "end": 11954.04, + "probability": 0.0577 + }, + { + "start": 11954.16, + "end": 11956.82, + "probability": 0.3509 + }, + { + "start": 11956.92, + "end": 11958.46, + "probability": 0.6967 + }, + { + "start": 11959.06, + "end": 11959.48, + "probability": 0.7814 + }, + { + "start": 11960.04, + "end": 11960.92, + "probability": 0.9126 + }, + { + "start": 11960.96, + "end": 11961.74, + "probability": 0.9265 + }, + { + "start": 11961.84, + "end": 11962.36, + "probability": 0.9286 + }, + { + "start": 11962.46, + "end": 11965.98, + "probability": 0.9661 + }, + { + "start": 11968.26, + "end": 11969.41, + "probability": 0.9829 + }, + { + "start": 11970.42, + "end": 11972.06, + "probability": 0.9707 + }, + { + "start": 11972.7, + "end": 11975.24, + "probability": 0.9788 + }, + { + "start": 11977.08, + "end": 11977.86, + "probability": 0.9449 + }, + { + "start": 11979.1, + "end": 11982.78, + "probability": 0.9927 + }, + { + "start": 11983.44, + "end": 11987.18, + "probability": 0.9829 + }, + { + "start": 11987.88, + "end": 11990.32, + "probability": 0.9992 + }, + { + "start": 11991.8, + "end": 11993.22, + "probability": 0.8617 + }, + { + "start": 11994.26, + "end": 11994.72, + "probability": 0.0322 + }, + { + "start": 11994.72, + "end": 11998.0, + "probability": 0.4835 + }, + { + "start": 11999.0, + "end": 11999.72, + "probability": 0.5508 + }, + { + "start": 12001.56, + "end": 12002.89, + "probability": 0.9326 + }, + { + "start": 12002.96, + "end": 12005.42, + "probability": 0.9255 + }, + { + "start": 12005.76, + "end": 12005.94, + "probability": 0.4297 + }, + { + "start": 12008.26, + "end": 12008.52, + "probability": 0.1662 + }, + { + "start": 12008.52, + "end": 12013.0, + "probability": 0.7461 + }, + { + "start": 12013.32, + "end": 12014.34, + "probability": 0.9546 + }, + { + "start": 12014.42, + "end": 12018.2, + "probability": 0.8704 + }, + { + "start": 12019.0, + "end": 12022.14, + "probability": 0.9775 + }, + { + "start": 12023.78, + "end": 12024.26, + "probability": 0.7551 + }, + { + "start": 12025.06, + "end": 12031.32, + "probability": 0.9849 + }, + { + "start": 12032.0, + "end": 12036.12, + "probability": 0.7023 + }, + { + "start": 12037.42, + "end": 12039.5, + "probability": 0.7429 + }, + { + "start": 12040.62, + "end": 12041.78, + "probability": 0.5019 + }, + { + "start": 12042.7, + "end": 12042.92, + "probability": 0.2705 + }, + { + "start": 12044.04, + "end": 12046.08, + "probability": 0.5856 + }, + { + "start": 12046.94, + "end": 12048.4, + "probability": 0.8295 + }, + { + "start": 12049.3, + "end": 12050.92, + "probability": 0.7896 + }, + { + "start": 12051.42, + "end": 12056.14, + "probability": 0.9954 + }, + { + "start": 12056.14, + "end": 12059.74, + "probability": 0.9979 + }, + { + "start": 12062.84, + "end": 12063.42, + "probability": 0.8696 + }, + { + "start": 12063.44, + "end": 12063.44, + "probability": 0.5166 + }, + { + "start": 12063.5, + "end": 12065.02, + "probability": 0.9841 + }, + { + "start": 12065.96, + "end": 12068.92, + "probability": 0.207 + }, + { + "start": 12069.2, + "end": 12070.72, + "probability": 0.0051 + }, + { + "start": 12071.32, + "end": 12071.42, + "probability": 0.219 + }, + { + "start": 12071.42, + "end": 12071.42, + "probability": 0.1142 + }, + { + "start": 12071.42, + "end": 12072.3, + "probability": 0.5448 + }, + { + "start": 12072.54, + "end": 12077.7, + "probability": 0.9799 + }, + { + "start": 12079.02, + "end": 12079.42, + "probability": 0.4371 + }, + { + "start": 12079.42, + "end": 12082.43, + "probability": 0.9639 + }, + { + "start": 12084.66, + "end": 12086.02, + "probability": 0.9839 + }, + { + "start": 12087.78, + "end": 12094.44, + "probability": 0.9238 + }, + { + "start": 12095.2, + "end": 12095.34, + "probability": 0.0353 + }, + { + "start": 12096.28, + "end": 12100.71, + "probability": 0.937 + }, + { + "start": 12101.52, + "end": 12102.8, + "probability": 0.9447 + }, + { + "start": 12104.16, + "end": 12108.85, + "probability": 0.9813 + }, + { + "start": 12109.32, + "end": 12110.9, + "probability": 0.9966 + }, + { + "start": 12111.64, + "end": 12112.22, + "probability": 0.5868 + }, + { + "start": 12113.12, + "end": 12113.48, + "probability": 0.1996 + }, + { + "start": 12113.48, + "end": 12113.48, + "probability": 0.1126 + }, + { + "start": 12113.48, + "end": 12115.1, + "probability": 0.9016 + }, + { + "start": 12116.46, + "end": 12119.88, + "probability": 0.9892 + }, + { + "start": 12120.34, + "end": 12122.6, + "probability": 0.9871 + }, + { + "start": 12124.3, + "end": 12127.24, + "probability": 0.9941 + }, + { + "start": 12127.82, + "end": 12128.58, + "probability": 0.9954 + }, + { + "start": 12130.4, + "end": 12134.82, + "probability": 0.8508 + }, + { + "start": 12135.26, + "end": 12137.17, + "probability": 0.8899 + }, + { + "start": 12138.2, + "end": 12143.36, + "probability": 0.9789 + }, + { + "start": 12144.58, + "end": 12144.94, + "probability": 0.5004 + }, + { + "start": 12145.84, + "end": 12149.32, + "probability": 0.9385 + }, + { + "start": 12149.56, + "end": 12151.46, + "probability": 0.9733 + }, + { + "start": 12152.18, + "end": 12156.48, + "probability": 0.9351 + }, + { + "start": 12158.2, + "end": 12160.22, + "probability": 0.9956 + }, + { + "start": 12160.78, + "end": 12162.26, + "probability": 0.9985 + }, + { + "start": 12162.86, + "end": 12165.88, + "probability": 0.9685 + }, + { + "start": 12167.94, + "end": 12169.74, + "probability": 0.9989 + }, + { + "start": 12170.24, + "end": 12172.14, + "probability": 0.7495 + }, + { + "start": 12173.7, + "end": 12174.28, + "probability": 0.6746 + }, + { + "start": 12175.56, + "end": 12177.66, + "probability": 0.9814 + }, + { + "start": 12179.36, + "end": 12180.61, + "probability": 0.5511 + }, + { + "start": 12182.24, + "end": 12182.98, + "probability": 0.8026 + }, + { + "start": 12183.94, + "end": 12185.26, + "probability": 0.9121 + }, + { + "start": 12185.36, + "end": 12186.92, + "probability": 0.9971 + }, + { + "start": 12188.12, + "end": 12190.0, + "probability": 0.9592 + }, + { + "start": 12191.1, + "end": 12192.14, + "probability": 0.9657 + }, + { + "start": 12192.34, + "end": 12193.28, + "probability": 0.8012 + }, + { + "start": 12193.58, + "end": 12195.78, + "probability": 0.9722 + }, + { + "start": 12196.14, + "end": 12196.84, + "probability": 0.1673 + }, + { + "start": 12197.24, + "end": 12197.82, + "probability": 0.0583 + }, + { + "start": 12197.94, + "end": 12198.62, + "probability": 0.9007 + }, + { + "start": 12200.16, + "end": 12202.12, + "probability": 0.9259 + }, + { + "start": 12203.14, + "end": 12203.92, + "probability": 0.9004 + }, + { + "start": 12204.08, + "end": 12206.96, + "probability": 0.9868 + }, + { + "start": 12207.72, + "end": 12208.68, + "probability": 0.9355 + }, + { + "start": 12209.26, + "end": 12211.24, + "probability": 0.7485 + }, + { + "start": 12211.24, + "end": 12211.98, + "probability": 0.1365 + }, + { + "start": 12211.98, + "end": 12212.7, + "probability": 0.8345 + }, + { + "start": 12212.9, + "end": 12213.3, + "probability": 0.8462 + }, + { + "start": 12213.52, + "end": 12213.52, + "probability": 0.5648 + }, + { + "start": 12213.88, + "end": 12214.74, + "probability": 0.4858 + }, + { + "start": 12214.8, + "end": 12217.58, + "probability": 0.8729 + }, + { + "start": 12223.2, + "end": 12223.74, + "probability": 0.0623 + }, + { + "start": 12223.74, + "end": 12223.74, + "probability": 0.7456 + }, + { + "start": 12223.74, + "end": 12224.32, + "probability": 0.0151 + }, + { + "start": 12224.96, + "end": 12225.32, + "probability": 0.0221 + }, + { + "start": 12225.32, + "end": 12225.46, + "probability": 0.0546 + }, + { + "start": 12226.24, + "end": 12226.76, + "probability": 0.0609 + }, + { + "start": 12229.0, + "end": 12229.0, + "probability": 0.3111 + }, + { + "start": 12244.22, + "end": 12244.22, + "probability": 0.0209 + }, + { + "start": 12244.22, + "end": 12246.3, + "probability": 0.302 + }, + { + "start": 12246.9, + "end": 12247.88, + "probability": 0.2957 + }, + { + "start": 12248.06, + "end": 12249.28, + "probability": 0.7691 + }, + { + "start": 12249.94, + "end": 12257.38, + "probability": 0.8452 + }, + { + "start": 12258.74, + "end": 12261.08, + "probability": 0.884 + }, + { + "start": 12261.98, + "end": 12266.92, + "probability": 0.7351 + }, + { + "start": 12267.5, + "end": 12270.34, + "probability": 0.912 + }, + { + "start": 12278.58, + "end": 12279.42, + "probability": 0.6274 + }, + { + "start": 12281.0, + "end": 12281.92, + "probability": 0.7372 + }, + { + "start": 12284.64, + "end": 12286.22, + "probability": 0.9959 + }, + { + "start": 12287.58, + "end": 12287.9, + "probability": 0.4026 + }, + { + "start": 12288.42, + "end": 12290.16, + "probability": 0.9944 + }, + { + "start": 12291.84, + "end": 12294.18, + "probability": 0.951 + }, + { + "start": 12297.1, + "end": 12302.22, + "probability": 0.943 + }, + { + "start": 12303.52, + "end": 12308.36, + "probability": 0.9554 + }, + { + "start": 12310.74, + "end": 12314.84, + "probability": 0.9784 + }, + { + "start": 12314.84, + "end": 12318.02, + "probability": 0.9973 + }, + { + "start": 12319.6, + "end": 12323.88, + "probability": 0.9968 + }, + { + "start": 12324.28, + "end": 12327.56, + "probability": 0.9742 + }, + { + "start": 12328.4, + "end": 12332.88, + "probability": 0.9301 + }, + { + "start": 12333.36, + "end": 12336.36, + "probability": 0.9791 + }, + { + "start": 12337.14, + "end": 12339.56, + "probability": 0.8429 + }, + { + "start": 12340.08, + "end": 12343.14, + "probability": 0.8975 + }, + { + "start": 12343.82, + "end": 12348.42, + "probability": 0.9548 + }, + { + "start": 12348.66, + "end": 12352.96, + "probability": 0.9748 + }, + { + "start": 12353.7, + "end": 12357.56, + "probability": 0.8724 + }, + { + "start": 12358.34, + "end": 12363.76, + "probability": 0.9137 + }, + { + "start": 12364.3, + "end": 12365.38, + "probability": 0.8385 + }, + { + "start": 12365.58, + "end": 12368.26, + "probability": 0.6614 + }, + { + "start": 12368.26, + "end": 12370.52, + "probability": 0.8562 + }, + { + "start": 12371.44, + "end": 12375.0, + "probability": 0.9932 + }, + { + "start": 12375.66, + "end": 12376.72, + "probability": 0.9928 + }, + { + "start": 12377.66, + "end": 12377.76, + "probability": 0.4062 + }, + { + "start": 12378.64, + "end": 12381.4, + "probability": 0.9204 + }, + { + "start": 12381.64, + "end": 12383.0, + "probability": 0.9253 + }, + { + "start": 12383.42, + "end": 12384.08, + "probability": 0.8313 + }, + { + "start": 12384.32, + "end": 12384.94, + "probability": 0.7289 + }, + { + "start": 12384.98, + "end": 12385.08, + "probability": 0.7535 + }, + { + "start": 12385.32, + "end": 12385.72, + "probability": 0.4513 + }, + { + "start": 12385.86, + "end": 12388.04, + "probability": 0.8617 + }, + { + "start": 12388.22, + "end": 12389.26, + "probability": 0.5257 + }, + { + "start": 12389.6, + "end": 12390.32, + "probability": 0.9402 + }, + { + "start": 12404.24, + "end": 12404.74, + "probability": 0.0175 + }, + { + "start": 12415.22, + "end": 12415.44, + "probability": 0.0128 + }, + { + "start": 12415.44, + "end": 12415.7, + "probability": 0.1763 + }, + { + "start": 12415.7, + "end": 12415.82, + "probability": 0.1601 + }, + { + "start": 12415.82, + "end": 12415.82, + "probability": 0.1016 + }, + { + "start": 12415.82, + "end": 12415.82, + "probability": 0.0898 + }, + { + "start": 12415.82, + "end": 12416.58, + "probability": 0.0217 + }, + { + "start": 12428.12, + "end": 12434.12, + "probability": 0.4969 + }, + { + "start": 12434.44, + "end": 12436.46, + "probability": 0.6862 + }, + { + "start": 12437.25, + "end": 12441.66, + "probability": 0.9406 + }, + { + "start": 12443.38, + "end": 12447.32, + "probability": 0.974 + }, + { + "start": 12448.44, + "end": 12448.92, + "probability": 0.612 + }, + { + "start": 12449.2, + "end": 12451.9, + "probability": 0.8158 + }, + { + "start": 12451.9, + "end": 12454.85, + "probability": 0.8914 + }, + { + "start": 12455.68, + "end": 12459.06, + "probability": 0.9249 + }, + { + "start": 12460.26, + "end": 12464.13, + "probability": 0.9563 + }, + { + "start": 12464.76, + "end": 12465.42, + "probability": 0.4738 + }, + { + "start": 12465.84, + "end": 12467.14, + "probability": 0.5103 + }, + { + "start": 12467.94, + "end": 12468.68, + "probability": 0.3744 + }, + { + "start": 12468.68, + "end": 12469.78, + "probability": 0.8422 + }, + { + "start": 12469.96, + "end": 12471.06, + "probability": 0.5127 + }, + { + "start": 12471.26, + "end": 12471.5, + "probability": 0.7985 + }, + { + "start": 12473.31, + "end": 12475.8, + "probability": 0.3618 + }, + { + "start": 12475.8, + "end": 12475.8, + "probability": 0.1662 + }, + { + "start": 12475.8, + "end": 12478.16, + "probability": 0.9142 + }, + { + "start": 12478.68, + "end": 12479.7, + "probability": 0.8669 + }, + { + "start": 12480.28, + "end": 12481.22, + "probability": 0.9653 + }, + { + "start": 12483.08, + "end": 12485.92, + "probability": 0.957 + }, + { + "start": 12486.94, + "end": 12488.84, + "probability": 0.5517 + }, + { + "start": 12488.9, + "end": 12489.3, + "probability": 0.8088 + }, + { + "start": 12489.38, + "end": 12489.76, + "probability": 0.8087 + }, + { + "start": 12489.9, + "end": 12492.22, + "probability": 0.9517 + }, + { + "start": 12493.58, + "end": 12496.96, + "probability": 0.6595 + }, + { + "start": 12496.96, + "end": 12497.16, + "probability": 0.6983 + }, + { + "start": 12497.18, + "end": 12497.22, + "probability": 0.0001 + }, + { + "start": 12499.7, + "end": 12500.66, + "probability": 0.0458 + }, + { + "start": 12500.66, + "end": 12500.66, + "probability": 0.1614 + }, + { + "start": 12500.66, + "end": 12511.96, + "probability": 0.8533 + }, + { + "start": 12513.38, + "end": 12515.06, + "probability": 0.9933 + }, + { + "start": 12515.7, + "end": 12518.4, + "probability": 0.9948 + }, + { + "start": 12519.7, + "end": 12520.54, + "probability": 0.6713 + }, + { + "start": 12521.18, + "end": 12521.48, + "probability": 0.5418 + }, + { + "start": 12522.32, + "end": 12523.98, + "probability": 0.9878 + }, + { + "start": 12526.68, + "end": 12528.64, + "probability": 0.0519 + }, + { + "start": 12528.88, + "end": 12534.06, + "probability": 0.9971 + }, + { + "start": 12534.22, + "end": 12538.52, + "probability": 0.6383 + }, + { + "start": 12540.08, + "end": 12541.6, + "probability": 0.9971 + }, + { + "start": 12543.06, + "end": 12546.72, + "probability": 0.9922 + }, + { + "start": 12547.78, + "end": 12548.94, + "probability": 0.7433 + }, + { + "start": 12549.92, + "end": 12552.7, + "probability": 0.9597 + }, + { + "start": 12553.56, + "end": 12558.08, + "probability": 0.9929 + }, + { + "start": 12559.72, + "end": 12560.66, + "probability": 0.989 + }, + { + "start": 12560.88, + "end": 12561.92, + "probability": 0.5977 + }, + { + "start": 12562.26, + "end": 12568.9, + "probability": 0.5331 + }, + { + "start": 12569.06, + "end": 12569.16, + "probability": 0.2931 + }, + { + "start": 12571.28, + "end": 12571.4, + "probability": 0.0227 + }, + { + "start": 12571.4, + "end": 12575.76, + "probability": 0.9914 + }, + { + "start": 12577.06, + "end": 12577.48, + "probability": 0.8843 + }, + { + "start": 12577.66, + "end": 12584.64, + "probability": 0.9951 + }, + { + "start": 12585.3, + "end": 12589.54, + "probability": 0.9979 + }, + { + "start": 12589.54, + "end": 12595.52, + "probability": 0.987 + }, + { + "start": 12596.22, + "end": 12597.3, + "probability": 0.7586 + }, + { + "start": 12598.04, + "end": 12598.34, + "probability": 0.8524 + }, + { + "start": 12599.3, + "end": 12600.92, + "probability": 0.7514 + }, + { + "start": 12602.74, + "end": 12604.44, + "probability": 0.9253 + }, + { + "start": 12605.04, + "end": 12610.04, + "probability": 0.9499 + }, + { + "start": 12610.04, + "end": 12613.92, + "probability": 0.9991 + }, + { + "start": 12614.86, + "end": 12615.54, + "probability": 0.5953 + }, + { + "start": 12616.46, + "end": 12617.36, + "probability": 0.809 + }, + { + "start": 12618.32, + "end": 12619.54, + "probability": 0.9768 + }, + { + "start": 12620.16, + "end": 12621.48, + "probability": 0.9851 + }, + { + "start": 12621.6, + "end": 12622.86, + "probability": 0.9383 + }, + { + "start": 12624.06, + "end": 12625.54, + "probability": 0.1905 + }, + { + "start": 12627.84, + "end": 12629.4, + "probability": 0.0658 + }, + { + "start": 12629.89, + "end": 12632.14, + "probability": 0.1297 + }, + { + "start": 12632.4, + "end": 12634.38, + "probability": 0.0399 + }, + { + "start": 12635.46, + "end": 12636.18, + "probability": 0.1463 + }, + { + "start": 12636.18, + "end": 12638.26, + "probability": 0.0639 + }, + { + "start": 12649.8, + "end": 12650.48, + "probability": 0.044 + }, + { + "start": 12681.12, + "end": 12682.06, + "probability": 0.113 + }, + { + "start": 12693.62, + "end": 12697.88, + "probability": 0.9889 + }, + { + "start": 12698.44, + "end": 12700.04, + "probability": 0.6947 + }, + { + "start": 12701.46, + "end": 12706.04, + "probability": 0.6541 + }, + { + "start": 12706.82, + "end": 12707.94, + "probability": 0.8981 + }, + { + "start": 12708.34, + "end": 12710.02, + "probability": 0.6426 + }, + { + "start": 12710.4, + "end": 12712.68, + "probability": 0.7023 + }, + { + "start": 12712.74, + "end": 12713.6, + "probability": 0.8374 + }, + { + "start": 12713.96, + "end": 12714.58, + "probability": 0.3965 + }, + { + "start": 12715.2, + "end": 12718.34, + "probability": 0.9398 + }, + { + "start": 12718.78, + "end": 12719.56, + "probability": 0.9371 + }, + { + "start": 12720.0, + "end": 12722.66, + "probability": 0.9904 + }, + { + "start": 12723.04, + "end": 12723.8, + "probability": 0.9365 + }, + { + "start": 12724.14, + "end": 12725.68, + "probability": 0.8794 + }, + { + "start": 12726.22, + "end": 12730.34, + "probability": 0.7742 + }, + { + "start": 12731.18, + "end": 12732.77, + "probability": 0.7947 + }, + { + "start": 12733.24, + "end": 12738.5, + "probability": 0.9845 + }, + { + "start": 12739.06, + "end": 12740.06, + "probability": 0.8511 + }, + { + "start": 12740.48, + "end": 12746.08, + "probability": 0.936 + }, + { + "start": 12747.18, + "end": 12747.7, + "probability": 0.7414 + }, + { + "start": 12747.84, + "end": 12747.88, + "probability": 0.4154 + }, + { + "start": 12747.88, + "end": 12748.34, + "probability": 0.6011 + }, + { + "start": 12748.34, + "end": 12748.9, + "probability": 0.2858 + }, + { + "start": 12748.9, + "end": 12749.29, + "probability": 0.1879 + }, + { + "start": 12749.36, + "end": 12750.06, + "probability": 0.8186 + }, + { + "start": 12750.2, + "end": 12750.98, + "probability": 0.9809 + }, + { + "start": 12751.3, + "end": 12753.72, + "probability": 0.9309 + }, + { + "start": 12753.76, + "end": 12756.54, + "probability": 0.7803 + }, + { + "start": 12756.92, + "end": 12757.76, + "probability": 0.9233 + }, + { + "start": 12758.34, + "end": 12758.62, + "probability": 0.3779 + }, + { + "start": 12759.69, + "end": 12761.82, + "probability": 0.5078 + }, + { + "start": 12762.44, + "end": 12763.04, + "probability": 0.712 + }, + { + "start": 12763.14, + "end": 12764.1, + "probability": 0.8839 + }, + { + "start": 12764.34, + "end": 12765.86, + "probability": 0.6436 + }, + { + "start": 12766.42, + "end": 12766.76, + "probability": 0.2571 + }, + { + "start": 12766.76, + "end": 12767.36, + "probability": 0.694 + }, + { + "start": 12768.36, + "end": 12769.4, + "probability": 0.8374 + }, + { + "start": 12769.46, + "end": 12770.58, + "probability": 0.9868 + }, + { + "start": 12770.68, + "end": 12771.56, + "probability": 0.9972 + }, + { + "start": 12775.4, + "end": 12776.32, + "probability": 0.4493 + }, + { + "start": 12778.64, + "end": 12778.68, + "probability": 0.4433 + }, + { + "start": 12778.68, + "end": 12779.5, + "probability": 0.5302 + }, + { + "start": 12782.14, + "end": 12782.92, + "probability": 0.7447 + }, + { + "start": 12783.24, + "end": 12784.34, + "probability": 0.7537 + }, + { + "start": 12784.52, + "end": 12787.68, + "probability": 0.9813 + }, + { + "start": 12788.2, + "end": 12789.94, + "probability": 0.9971 + }, + { + "start": 12790.66, + "end": 12791.02, + "probability": 0.9686 + }, + { + "start": 12792.02, + "end": 12794.48, + "probability": 0.0193 + }, + { + "start": 12794.48, + "end": 12797.7, + "probability": 0.6369 + }, + { + "start": 12798.22, + "end": 12803.78, + "probability": 0.9878 + }, + { + "start": 12804.42, + "end": 12805.5, + "probability": 0.4915 + }, + { + "start": 12805.94, + "end": 12808.7, + "probability": 0.713 + }, + { + "start": 12810.04, + "end": 12814.26, + "probability": 0.0822 + }, + { + "start": 12815.24, + "end": 12817.5, + "probability": 0.1562 + }, + { + "start": 12817.54, + "end": 12818.62, + "probability": 0.4675 + }, + { + "start": 12819.54, + "end": 12820.64, + "probability": 0.8128 + }, + { + "start": 12821.06, + "end": 12823.5, + "probability": 0.6753 + }, + { + "start": 12823.92, + "end": 12827.56, + "probability": 0.7399 + }, + { + "start": 12827.68, + "end": 12829.88, + "probability": 0.9437 + }, + { + "start": 12830.22, + "end": 12833.56, + "probability": 0.718 + }, + { + "start": 12833.68, + "end": 12835.16, + "probability": 0.0341 + }, + { + "start": 12835.2, + "end": 12835.86, + "probability": 0.3099 + }, + { + "start": 12836.24, + "end": 12838.24, + "probability": 0.908 + }, + { + "start": 12838.36, + "end": 12843.62, + "probability": 0.9134 + }, + { + "start": 12844.06, + "end": 12844.72, + "probability": 0.8102 + }, + { + "start": 12845.14, + "end": 12850.52, + "probability": 0.9147 + }, + { + "start": 12850.78, + "end": 12851.76, + "probability": 0.9509 + }, + { + "start": 12852.14, + "end": 12854.24, + "probability": 0.9001 + }, + { + "start": 12854.6, + "end": 12856.08, + "probability": 0.9739 + }, + { + "start": 12856.6, + "end": 12858.28, + "probability": 0.736 + }, + { + "start": 12858.8, + "end": 12862.08, + "probability": 0.9277 + }, + { + "start": 12862.14, + "end": 12862.5, + "probability": 0.5192 + }, + { + "start": 12862.76, + "end": 12863.5, + "probability": 0.83 + }, + { + "start": 12863.62, + "end": 12869.14, + "probability": 0.873 + }, + { + "start": 12869.32, + "end": 12869.62, + "probability": 0.6504 + }, + { + "start": 12870.5, + "end": 12872.54, + "probability": 0.816 + }, + { + "start": 12875.4, + "end": 12875.4, + "probability": 0.4175 + }, + { + "start": 12875.4, + "end": 12876.8, + "probability": 0.6679 + }, + { + "start": 12876.92, + "end": 12877.94, + "probability": 0.2118 + }, + { + "start": 12878.02, + "end": 12879.36, + "probability": 0.7506 + }, + { + "start": 12879.8, + "end": 12882.48, + "probability": 0.4922 + }, + { + "start": 12883.52, + "end": 12885.94, + "probability": 0.7684 + }, + { + "start": 12887.56, + "end": 12889.24, + "probability": 0.2681 + }, + { + "start": 12903.22, + "end": 12904.46, + "probability": 0.27 + }, + { + "start": 12906.68, + "end": 12910.18, + "probability": 0.4478 + }, + { + "start": 12910.34, + "end": 12911.44, + "probability": 0.2098 + }, + { + "start": 12912.08, + "end": 12914.4, + "probability": 0.0617 + }, + { + "start": 12915.32, + "end": 12918.02, + "probability": 0.0126 + }, + { + "start": 12918.98, + "end": 12920.8, + "probability": 0.1379 + }, + { + "start": 12925.2, + "end": 12925.32, + "probability": 0.0474 + }, + { + "start": 12925.36, + "end": 12931.08, + "probability": 0.0345 + }, + { + "start": 12931.08, + "end": 12933.44, + "probability": 0.1328 + }, + { + "start": 12933.92, + "end": 12936.86, + "probability": 0.0624 + }, + { + "start": 12937.88, + "end": 12939.72, + "probability": 0.0363 + }, + { + "start": 12940.58, + "end": 12941.56, + "probability": 0.0449 + }, + { + "start": 12942.14, + "end": 12944.0, + "probability": 0.3221 + }, + { + "start": 12944.58, + "end": 12944.86, + "probability": 0.4658 + }, + { + "start": 12946.93, + "end": 12948.66, + "probability": 0.1573 + }, + { + "start": 12948.66, + "end": 12949.3, + "probability": 0.0534 + }, + { + "start": 12949.4, + "end": 12953.44, + "probability": 0.0318 + }, + { + "start": 12954.84, + "end": 12956.98, + "probability": 0.2836 + }, + { + "start": 12957.0, + "end": 12957.0, + "probability": 0.0 + }, + { + "start": 12957.0, + "end": 12957.0, + "probability": 0.0 + }, + { + "start": 12957.0, + "end": 12957.0, + "probability": 0.0 + }, + { + "start": 12957.0, + "end": 12957.0, + "probability": 0.0 + }, + { + "start": 12957.0, + "end": 12957.0, + "probability": 0.0 + }, + { + "start": 12957.0, + "end": 12957.0, + "probability": 0.0 + }, + { + "start": 12957.0, + "end": 12957.0, + "probability": 0.0 + }, + { + "start": 12957.2, + "end": 12957.2, + "probability": 0.0471 + }, + { + "start": 12957.2, + "end": 12957.88, + "probability": 0.1049 + }, + { + "start": 12959.88, + "end": 12961.72, + "probability": 0.6218 + }, + { + "start": 12962.9, + "end": 12964.52, + "probability": 0.776 + }, + { + "start": 12965.84, + "end": 12969.78, + "probability": 0.9676 + }, + { + "start": 12971.84, + "end": 12973.0, + "probability": 0.9957 + }, + { + "start": 12973.16, + "end": 12974.46, + "probability": 0.9172 + }, + { + "start": 12974.46, + "end": 12977.58, + "probability": 0.9204 + }, + { + "start": 12979.2, + "end": 12979.38, + "probability": 0.7035 + }, + { + "start": 12980.74, + "end": 12982.02, + "probability": 0.9276 + }, + { + "start": 12982.92, + "end": 12983.74, + "probability": 0.8639 + }, + { + "start": 12983.95, + "end": 12984.74, + "probability": 0.3417 + }, + { + "start": 12984.94, + "end": 12986.32, + "probability": 0.7465 + }, + { + "start": 12986.9, + "end": 12987.36, + "probability": 0.9767 + }, + { + "start": 12988.8, + "end": 12990.72, + "probability": 0.9926 + }, + { + "start": 12992.06, + "end": 12993.36, + "probability": 0.9929 + }, + { + "start": 12993.52, + "end": 12994.06, + "probability": 0.9525 + }, + { + "start": 12994.14, + "end": 12998.68, + "probability": 0.8273 + }, + { + "start": 13000.6, + "end": 13002.52, + "probability": 0.0661 + }, + { + "start": 13002.66, + "end": 13003.44, + "probability": 0.4963 + }, + { + "start": 13003.76, + "end": 13004.02, + "probability": 0.7894 + }, + { + "start": 13004.58, + "end": 13005.86, + "probability": 0.1379 + }, + { + "start": 13007.06, + "end": 13009.96, + "probability": 0.851 + }, + { + "start": 13010.16, + "end": 13011.96, + "probability": 0.9789 + }, + { + "start": 13013.28, + "end": 13014.7, + "probability": 0.9498 + }, + { + "start": 13014.86, + "end": 13016.68, + "probability": 0.795 + }, + { + "start": 13018.0, + "end": 13019.0, + "probability": 0.7887 + }, + { + "start": 13020.2, + "end": 13021.86, + "probability": 0.8773 + }, + { + "start": 13022.98, + "end": 13025.68, + "probability": 0.9041 + }, + { + "start": 13026.62, + "end": 13028.28, + "probability": 0.775 + }, + { + "start": 13028.56, + "end": 13030.64, + "probability": 0.8412 + }, + { + "start": 13031.52, + "end": 13032.84, + "probability": 0.7217 + }, + { + "start": 13033.22, + "end": 13035.9, + "probability": 0.8294 + }, + { + "start": 13036.42, + "end": 13037.01, + "probability": 0.9148 + }, + { + "start": 13037.82, + "end": 13041.14, + "probability": 0.7961 + }, + { + "start": 13042.56, + "end": 13044.74, + "probability": 0.8089 + }, + { + "start": 13044.9, + "end": 13046.0, + "probability": 0.7358 + }, + { + "start": 13046.62, + "end": 13047.48, + "probability": 0.8849 + }, + { + "start": 13048.66, + "end": 13049.26, + "probability": 0.9116 + }, + { + "start": 13049.48, + "end": 13050.96, + "probability": 0.9551 + }, + { + "start": 13051.06, + "end": 13051.82, + "probability": 0.7694 + }, + { + "start": 13053.38, + "end": 13057.86, + "probability": 0.9931 + }, + { + "start": 13058.68, + "end": 13061.08, + "probability": 0.9338 + }, + { + "start": 13061.76, + "end": 13063.62, + "probability": 0.5539 + }, + { + "start": 13064.14, + "end": 13065.04, + "probability": 0.8464 + }, + { + "start": 13065.16, + "end": 13065.36, + "probability": 0.8271 + }, + { + "start": 13065.48, + "end": 13065.98, + "probability": 0.8097 + }, + { + "start": 13066.06, + "end": 13068.12, + "probability": 0.9037 + }, + { + "start": 13068.98, + "end": 13070.77, + "probability": 0.6145 + }, + { + "start": 13071.34, + "end": 13072.28, + "probability": 0.9424 + }, + { + "start": 13073.56, + "end": 13073.86, + "probability": 0.496 + }, + { + "start": 13073.94, + "end": 13075.98, + "probability": 0.9186 + }, + { + "start": 13075.98, + "end": 13077.5, + "probability": 0.965 + }, + { + "start": 13079.48, + "end": 13080.94, + "probability": 0.8774 + }, + { + "start": 13081.16, + "end": 13086.5, + "probability": 0.9196 + }, + { + "start": 13087.48, + "end": 13089.78, + "probability": 0.9984 + }, + { + "start": 13089.78, + "end": 13093.24, + "probability": 0.988 + }, + { + "start": 13093.38, + "end": 13093.86, + "probability": 0.9498 + }, + { + "start": 13095.74, + "end": 13096.56, + "probability": 0.957 + }, + { + "start": 13097.52, + "end": 13098.74, + "probability": 0.9385 + }, + { + "start": 13099.34, + "end": 13102.92, + "probability": 0.9586 + }, + { + "start": 13103.42, + "end": 13104.84, + "probability": 0.8983 + }, + { + "start": 13106.46, + "end": 13107.68, + "probability": 0.9337 + }, + { + "start": 13108.84, + "end": 13109.68, + "probability": 0.9099 + }, + { + "start": 13110.28, + "end": 13110.56, + "probability": 0.8792 + }, + { + "start": 13111.44, + "end": 13112.36, + "probability": 0.8754 + }, + { + "start": 13113.96, + "end": 13115.34, + "probability": 0.9619 + }, + { + "start": 13116.38, + "end": 13119.74, + "probability": 0.9389 + }, + { + "start": 13120.64, + "end": 13122.08, + "probability": 0.9779 + }, + { + "start": 13122.66, + "end": 13125.02, + "probability": 0.9071 + }, + { + "start": 13125.84, + "end": 13126.88, + "probability": 0.8322 + }, + { + "start": 13128.62, + "end": 13130.36, + "probability": 0.793 + }, + { + "start": 13131.76, + "end": 13132.8, + "probability": 0.9746 + }, + { + "start": 13133.38, + "end": 13134.58, + "probability": 0.8853 + }, + { + "start": 13135.66, + "end": 13137.38, + "probability": 0.9689 + }, + { + "start": 13137.88, + "end": 13138.62, + "probability": 0.9316 + }, + { + "start": 13139.32, + "end": 13140.2, + "probability": 0.8486 + }, + { + "start": 13141.4, + "end": 13144.64, + "probability": 0.7311 + }, + { + "start": 13144.84, + "end": 13145.66, + "probability": 0.8252 + }, + { + "start": 13147.1, + "end": 13149.44, + "probability": 0.9031 + }, + { + "start": 13149.52, + "end": 13150.76, + "probability": 0.8369 + }, + { + "start": 13151.44, + "end": 13153.28, + "probability": 0.8284 + }, + { + "start": 13154.28, + "end": 13156.0, + "probability": 0.7256 + }, + { + "start": 13156.52, + "end": 13156.92, + "probability": 0.8477 + }, + { + "start": 13157.88, + "end": 13160.68, + "probability": 0.6038 + }, + { + "start": 13161.24, + "end": 13164.44, + "probability": 0.9639 + }, + { + "start": 13165.14, + "end": 13167.18, + "probability": 0.9344 + }, + { + "start": 13168.0, + "end": 13168.84, + "probability": 0.7529 + }, + { + "start": 13169.36, + "end": 13170.27, + "probability": 0.805 + }, + { + "start": 13170.42, + "end": 13171.6, + "probability": 0.9517 + }, + { + "start": 13172.28, + "end": 13175.62, + "probability": 0.7619 + }, + { + "start": 13176.64, + "end": 13178.72, + "probability": 0.9593 + }, + { + "start": 13179.88, + "end": 13180.22, + "probability": 0.8553 + }, + { + "start": 13181.2, + "end": 13183.18, + "probability": 0.9883 + }, + { + "start": 13190.78, + "end": 13190.78, + "probability": 0.1059 + }, + { + "start": 13190.78, + "end": 13191.4, + "probability": 0.5878 + }, + { + "start": 13192.02, + "end": 13192.92, + "probability": 0.66 + }, + { + "start": 13192.98, + "end": 13194.2, + "probability": 0.9857 + }, + { + "start": 13194.6, + "end": 13195.73, + "probability": 0.8632 + }, + { + "start": 13196.3, + "end": 13198.62, + "probability": 0.7915 + }, + { + "start": 13199.62, + "end": 13200.9, + "probability": 0.4749 + }, + { + "start": 13201.36, + "end": 13204.74, + "probability": 0.984 + }, + { + "start": 13205.56, + "end": 13206.46, + "probability": 0.9839 + }, + { + "start": 13206.94, + "end": 13208.68, + "probability": 0.8779 + }, + { + "start": 13208.86, + "end": 13210.44, + "probability": 0.8766 + }, + { + "start": 13210.86, + "end": 13212.02, + "probability": 0.8652 + }, + { + "start": 13212.08, + "end": 13212.56, + "probability": 0.814 + }, + { + "start": 13213.32, + "end": 13215.12, + "probability": 0.9522 + }, + { + "start": 13215.26, + "end": 13216.64, + "probability": 0.9869 + }, + { + "start": 13217.34, + "end": 13218.74, + "probability": 0.6184 + }, + { + "start": 13219.16, + "end": 13219.88, + "probability": 0.8082 + }, + { + "start": 13221.36, + "end": 13223.0, + "probability": 0.7151 + }, + { + "start": 13223.74, + "end": 13225.65, + "probability": 0.9282 + }, + { + "start": 13225.98, + "end": 13227.1, + "probability": 0.4709 + }, + { + "start": 13227.92, + "end": 13228.36, + "probability": 0.8433 + }, + { + "start": 13229.06, + "end": 13231.14, + "probability": 0.9398 + }, + { + "start": 13231.42, + "end": 13232.17, + "probability": 0.9727 + }, + { + "start": 13232.98, + "end": 13235.76, + "probability": 0.6624 + }, + { + "start": 13236.38, + "end": 13236.58, + "probability": 0.9416 + }, + { + "start": 13238.12, + "end": 13238.74, + "probability": 0.9888 + }, + { + "start": 13239.5, + "end": 13242.76, + "probability": 0.8927 + }, + { + "start": 13243.86, + "end": 13244.64, + "probability": 0.9099 + }, + { + "start": 13244.7, + "end": 13245.04, + "probability": 0.9695 + }, + { + "start": 13245.32, + "end": 13247.18, + "probability": 0.9762 + }, + { + "start": 13247.54, + "end": 13249.52, + "probability": 0.9985 + }, + { + "start": 13250.56, + "end": 13252.44, + "probability": 0.8822 + }, + { + "start": 13253.34, + "end": 13254.29, + "probability": 0.9341 + }, + { + "start": 13255.16, + "end": 13256.13, + "probability": 0.9863 + }, + { + "start": 13257.16, + "end": 13258.58, + "probability": 0.9269 + }, + { + "start": 13258.74, + "end": 13259.98, + "probability": 0.8977 + }, + { + "start": 13260.08, + "end": 13260.43, + "probability": 0.5974 + }, + { + "start": 13262.68, + "end": 13264.08, + "probability": 0.8903 + }, + { + "start": 13265.14, + "end": 13267.98, + "probability": 0.7983 + }, + { + "start": 13268.26, + "end": 13268.58, + "probability": 0.6108 + }, + { + "start": 13268.7, + "end": 13269.58, + "probability": 0.7397 + }, + { + "start": 13270.42, + "end": 13272.48, + "probability": 0.9932 + }, + { + "start": 13274.0, + "end": 13277.12, + "probability": 0.9872 + }, + { + "start": 13277.76, + "end": 13278.42, + "probability": 0.836 + }, + { + "start": 13278.78, + "end": 13279.52, + "probability": 0.9431 + }, + { + "start": 13279.92, + "end": 13281.64, + "probability": 0.951 + }, + { + "start": 13282.82, + "end": 13287.02, + "probability": 0.9589 + }, + { + "start": 13288.0, + "end": 13288.52, + "probability": 0.7939 + }, + { + "start": 13289.48, + "end": 13291.78, + "probability": 0.9746 + }, + { + "start": 13292.92, + "end": 13297.14, + "probability": 0.9125 + }, + { + "start": 13297.62, + "end": 13298.93, + "probability": 0.0366 + }, + { + "start": 13300.38, + "end": 13300.58, + "probability": 0.4059 + }, + { + "start": 13301.24, + "end": 13302.3, + "probability": 0.7135 + }, + { + "start": 13302.32, + "end": 13304.26, + "probability": 0.9031 + }, + { + "start": 13304.42, + "end": 13304.82, + "probability": 0.6521 + }, + { + "start": 13304.86, + "end": 13305.56, + "probability": 0.752 + }, + { + "start": 13305.72, + "end": 13307.09, + "probability": 0.9528 + }, + { + "start": 13307.42, + "end": 13309.54, + "probability": 0.955 + }, + { + "start": 13310.0, + "end": 13311.52, + "probability": 0.9694 + }, + { + "start": 13312.0, + "end": 13312.26, + "probability": 0.4579 + }, + { + "start": 13313.3, + "end": 13314.14, + "probability": 0.7435 + }, + { + "start": 13314.68, + "end": 13316.14, + "probability": 0.9881 + }, + { + "start": 13316.88, + "end": 13317.12, + "probability": 0.3994 + }, + { + "start": 13317.12, + "end": 13317.28, + "probability": 0.0705 + }, + { + "start": 13317.28, + "end": 13317.46, + "probability": 0.4327 + }, + { + "start": 13317.46, + "end": 13318.58, + "probability": 0.7261 + }, + { + "start": 13318.82, + "end": 13320.32, + "probability": 0.6067 + }, + { + "start": 13321.12, + "end": 13323.48, + "probability": 0.6876 + }, + { + "start": 13324.02, + "end": 13324.8, + "probability": 0.6012 + }, + { + "start": 13325.82, + "end": 13327.12, + "probability": 0.9121 + }, + { + "start": 13328.52, + "end": 13329.98, + "probability": 0.9001 + }, + { + "start": 13331.16, + "end": 13332.4, + "probability": 0.7378 + }, + { + "start": 13333.2, + "end": 13333.82, + "probability": 0.9441 + }, + { + "start": 13334.12, + "end": 13337.0, + "probability": 0.9569 + }, + { + "start": 13337.64, + "end": 13338.76, + "probability": 0.9772 + }, + { + "start": 13339.42, + "end": 13341.36, + "probability": 0.8468 + }, + { + "start": 13341.62, + "end": 13344.16, + "probability": 0.9695 + }, + { + "start": 13344.82, + "end": 13346.98, + "probability": 0.6954 + }, + { + "start": 13347.38, + "end": 13349.06, + "probability": 0.3838 + }, + { + "start": 13349.82, + "end": 13351.94, + "probability": 0.7192 + }, + { + "start": 13352.66, + "end": 13354.14, + "probability": 0.9489 + }, + { + "start": 13354.54, + "end": 13355.4, + "probability": 0.8511 + }, + { + "start": 13355.96, + "end": 13357.54, + "probability": 0.9707 + }, + { + "start": 13358.38, + "end": 13359.32, + "probability": 0.6175 + }, + { + "start": 13359.78, + "end": 13362.06, + "probability": 0.7176 + }, + { + "start": 13362.6, + "end": 13364.38, + "probability": 0.9771 + }, + { + "start": 13365.84, + "end": 13367.36, + "probability": 0.8849 + }, + { + "start": 13367.72, + "end": 13368.68, + "probability": 0.6216 + }, + { + "start": 13368.88, + "end": 13370.48, + "probability": 0.6698 + }, + { + "start": 13370.48, + "end": 13373.0, + "probability": 0.7018 + }, + { + "start": 13373.4, + "end": 13376.42, + "probability": 0.9822 + }, + { + "start": 13377.32, + "end": 13378.08, + "probability": 0.8906 + }, + { + "start": 13379.26, + "end": 13381.2, + "probability": 0.9903 + }, + { + "start": 13382.1, + "end": 13386.14, + "probability": 0.8302 + }, + { + "start": 13386.24, + "end": 13387.22, + "probability": 0.3489 + }, + { + "start": 13387.24, + "end": 13387.56, + "probability": 0.5366 + }, + { + "start": 13388.14, + "end": 13389.17, + "probability": 0.5957 + }, + { + "start": 13389.98, + "end": 13391.59, + "probability": 0.978 + }, + { + "start": 13392.56, + "end": 13395.22, + "probability": 0.9756 + }, + { + "start": 13395.22, + "end": 13397.92, + "probability": 0.9656 + }, + { + "start": 13398.74, + "end": 13400.32, + "probability": 0.9052 + }, + { + "start": 13401.06, + "end": 13402.2, + "probability": 0.9047 + }, + { + "start": 13402.92, + "end": 13404.08, + "probability": 0.968 + }, + { + "start": 13404.32, + "end": 13406.52, + "probability": 0.7549 + }, + { + "start": 13407.16, + "end": 13409.2, + "probability": 0.9692 + }, + { + "start": 13409.66, + "end": 13413.58, + "probability": 0.9655 + }, + { + "start": 13413.6, + "end": 13413.9, + "probability": 0.4486 + }, + { + "start": 13413.92, + "end": 13414.46, + "probability": 0.7398 + }, + { + "start": 13414.9, + "end": 13416.16, + "probability": 0.7232 + }, + { + "start": 13416.86, + "end": 13418.92, + "probability": 0.8288 + }, + { + "start": 13419.16, + "end": 13419.6, + "probability": 0.8537 + }, + { + "start": 13419.72, + "end": 13420.18, + "probability": 0.4978 + }, + { + "start": 13420.64, + "end": 13421.76, + "probability": 0.827 + }, + { + "start": 13421.9, + "end": 13423.7, + "probability": 0.9702 + }, + { + "start": 13423.96, + "end": 13425.06, + "probability": 0.7848 + }, + { + "start": 13425.3, + "end": 13425.66, + "probability": 0.4888 + }, + { + "start": 13426.28, + "end": 13427.4, + "probability": 0.9346 + }, + { + "start": 13428.14, + "end": 13430.56, + "probability": 0.7105 + }, + { + "start": 13430.7, + "end": 13431.78, + "probability": 0.8092 + }, + { + "start": 13431.88, + "end": 13433.08, + "probability": 0.6322 + }, + { + "start": 13433.18, + "end": 13433.84, + "probability": 0.6811 + }, + { + "start": 13434.34, + "end": 13434.9, + "probability": 0.2287 + }, + { + "start": 13435.16, + "end": 13435.76, + "probability": 0.1679 + }, + { + "start": 13435.92, + "end": 13436.16, + "probability": 0.7969 + }, + { + "start": 13436.28, + "end": 13437.36, + "probability": 0.788 + }, + { + "start": 13439.2, + "end": 13440.54, + "probability": 0.832 + }, + { + "start": 13440.89, + "end": 13443.76, + "probability": 0.8656 + }, + { + "start": 13444.82, + "end": 13446.13, + "probability": 0.7124 + }, + { + "start": 13447.44, + "end": 13448.8, + "probability": 0.9673 + }, + { + "start": 13449.22, + "end": 13454.64, + "probability": 0.7075 + }, + { + "start": 13454.82, + "end": 13456.62, + "probability": 0.1593 + }, + { + "start": 13457.2, + "end": 13458.28, + "probability": 0.9227 + }, + { + "start": 13458.56, + "end": 13461.58, + "probability": 0.7009 + }, + { + "start": 13461.58, + "end": 13463.4, + "probability": 0.9962 + }, + { + "start": 13463.58, + "end": 13463.8, + "probability": 0.5796 + }, + { + "start": 13463.8, + "end": 13466.32, + "probability": 0.9973 + }, + { + "start": 13467.38, + "end": 13467.98, + "probability": 0.664 + }, + { + "start": 13468.24, + "end": 13472.84, + "probability": 0.9552 + }, + { + "start": 13472.94, + "end": 13474.26, + "probability": 0.5232 + }, + { + "start": 13475.26, + "end": 13477.88, + "probability": 0.9686 + }, + { + "start": 13478.18, + "end": 13481.56, + "probability": 0.9727 + }, + { + "start": 13481.72, + "end": 13484.5, + "probability": 0.9161 + }, + { + "start": 13485.18, + "end": 13492.14, + "probability": 0.9863 + }, + { + "start": 13492.6, + "end": 13496.54, + "probability": 0.9943 + }, + { + "start": 13497.1, + "end": 13501.96, + "probability": 0.9363 + }, + { + "start": 13502.06, + "end": 13502.28, + "probability": 0.4895 + }, + { + "start": 13502.58, + "end": 13502.8, + "probability": 0.5039 + }, + { + "start": 13505.08, + "end": 13505.38, + "probability": 0.2157 + }, + { + "start": 13506.16, + "end": 13506.52, + "probability": 0.0305 + }, + { + "start": 13507.3, + "end": 13509.12, + "probability": 0.2334 + }, + { + "start": 13512.58, + "end": 13513.88, + "probability": 0.9779 + }, + { + "start": 13516.76, + "end": 13519.68, + "probability": 0.7476 + }, + { + "start": 13520.1, + "end": 13521.18, + "probability": 0.7143 + }, + { + "start": 13521.6, + "end": 13522.76, + "probability": 0.7931 + }, + { + "start": 13523.2, + "end": 13525.35, + "probability": 0.9908 + }, + { + "start": 13526.08, + "end": 13527.82, + "probability": 0.9216 + }, + { + "start": 13528.38, + "end": 13528.96, + "probability": 0.8533 + }, + { + "start": 13529.74, + "end": 13530.34, + "probability": 0.9991 + }, + { + "start": 13530.9, + "end": 13535.62, + "probability": 0.9951 + }, + { + "start": 13535.82, + "end": 13537.78, + "probability": 0.7072 + }, + { + "start": 13538.04, + "end": 13539.84, + "probability": 0.5232 + }, + { + "start": 13540.04, + "end": 13541.9, + "probability": 0.775 + }, + { + "start": 13542.86, + "end": 13544.06, + "probability": 0.9608 + }, + { + "start": 13544.68, + "end": 13547.33, + "probability": 0.7212 + }, + { + "start": 13548.02, + "end": 13551.88, + "probability": 0.9225 + }, + { + "start": 13552.42, + "end": 13553.22, + "probability": 0.9246 + }, + { + "start": 13554.76, + "end": 13555.72, + "probability": 0.7087 + }, + { + "start": 13556.78, + "end": 13557.04, + "probability": 0.3401 + }, + { + "start": 13572.88, + "end": 13577.9, + "probability": 0.0948 + }, + { + "start": 13577.9, + "end": 13580.98, + "probability": 0.0538 + }, + { + "start": 13580.98, + "end": 13582.56, + "probability": 0.0851 + }, + { + "start": 13582.56, + "end": 13582.56, + "probability": 0.0903 + }, + { + "start": 13583.16, + "end": 13584.7, + "probability": 0.492 + }, + { + "start": 13585.64, + "end": 13587.92, + "probability": 0.0264 + }, + { + "start": 13588.16, + "end": 13592.92, + "probability": 0.05 + }, + { + "start": 13607.12, + "end": 13611.74, + "probability": 0.0997 + }, + { + "start": 13611.86, + "end": 13612.26, + "probability": 0.8025 + }, + { + "start": 13613.58, + "end": 13614.59, + "probability": 0.127 + }, + { + "start": 13615.4, + "end": 13618.12, + "probability": 0.4754 + }, + { + "start": 13618.16, + "end": 13619.7, + "probability": 0.6944 + }, + { + "start": 13620.3, + "end": 13621.12, + "probability": 0.7614 + }, + { + "start": 13621.18, + "end": 13623.7, + "probability": 0.4788 + }, + { + "start": 13623.94, + "end": 13624.88, + "probability": 0.0541 + }, + { + "start": 13626.18, + "end": 13626.18, + "probability": 0.0362 + }, + { + "start": 13626.42, + "end": 13627.14, + "probability": 0.0786 + }, + { + "start": 13627.14, + "end": 13630.1, + "probability": 0.0939 + }, + { + "start": 13630.12, + "end": 13631.38, + "probability": 0.0267 + }, + { + "start": 13631.46, + "end": 13632.16, + "probability": 0.2618 + }, + { + "start": 13632.52, + "end": 13632.68, + "probability": 0.0444 + }, + { + "start": 13634.0, + "end": 13634.0, + "probability": 0.0 + }, + { + "start": 13634.0, + "end": 13634.0, + "probability": 0.0 + }, + { + "start": 13634.0, + "end": 13634.0, + "probability": 0.0 + }, + { + "start": 13634.0, + "end": 13634.0, + "probability": 0.0 + }, + { + "start": 13634.0, + "end": 13634.0, + "probability": 0.0 + }, + { + "start": 13634.0, + "end": 13634.0, + "probability": 0.0 + }, + { + "start": 13634.0, + "end": 13634.0, + "probability": 0.0 + }, + { + "start": 13642.1, + "end": 13645.7, + "probability": 0.1359 + }, + { + "start": 13645.7, + "end": 13651.04, + "probability": 0.138 + }, + { + "start": 13651.04, + "end": 13654.62, + "probability": 0.0386 + }, + { + "start": 13654.62, + "end": 13656.28, + "probability": 0.0398 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13756.0, + "end": 13756.0, + "probability": 0.0 + }, + { + "start": 13757.36, + "end": 13758.36, + "probability": 0.0668 + }, + { + "start": 13771.22, + "end": 13774.82, + "probability": 0.7765 + }, + { + "start": 13775.48, + "end": 13777.06, + "probability": 0.7328 + }, + { + "start": 13780.36, + "end": 13782.7, + "probability": 0.0325 + }, + { + "start": 13782.7, + "end": 13783.54, + "probability": 0.0783 + }, + { + "start": 13783.58, + "end": 13786.6, + "probability": 0.1478 + }, + { + "start": 13787.9, + "end": 13790.98, + "probability": 0.0249 + }, + { + "start": 13791.5, + "end": 13794.58, + "probability": 0.212 + }, + { + "start": 13797.36, + "end": 13797.46, + "probability": 0.0828 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.0, + "probability": 0.0 + }, + { + "start": 13881.0, + "end": 13881.28, + "probability": 0.0359 + }, + { + "start": 13881.28, + "end": 13881.28, + "probability": 0.1589 + }, + { + "start": 13881.28, + "end": 13881.28, + "probability": 0.1245 + }, + { + "start": 13881.28, + "end": 13882.34, + "probability": 0.2516 + }, + { + "start": 13882.92, + "end": 13885.68, + "probability": 0.7091 + }, + { + "start": 13885.76, + "end": 13887.4, + "probability": 0.9468 + }, + { + "start": 13887.9, + "end": 13892.16, + "probability": 0.8533 + }, + { + "start": 13892.78, + "end": 13895.26, + "probability": 0.7172 + }, + { + "start": 13895.92, + "end": 13897.38, + "probability": 0.8301 + }, + { + "start": 13897.96, + "end": 13900.68, + "probability": 0.6056 + }, + { + "start": 13901.5, + "end": 13902.46, + "probability": 0.895 + }, + { + "start": 13907.27, + "end": 13910.05, + "probability": 0.679 + }, + { + "start": 13910.48, + "end": 13910.5, + "probability": 0.1544 + }, + { + "start": 13910.5, + "end": 13910.74, + "probability": 0.6474 + }, + { + "start": 13911.3, + "end": 13911.88, + "probability": 0.5772 + }, + { + "start": 13912.82, + "end": 13913.32, + "probability": 0.714 + }, + { + "start": 13931.62, + "end": 13936.2, + "probability": 0.3251 + }, + { + "start": 13936.26, + "end": 13938.26, + "probability": 0.7046 + }, + { + "start": 13938.7, + "end": 13939.7, + "probability": 0.3245 + }, + { + "start": 13940.14, + "end": 13942.68, + "probability": 0.3082 + }, + { + "start": 13942.8, + "end": 13945.08, + "probability": 0.9446 + }, + { + "start": 13945.98, + "end": 13951.77, + "probability": 0.1255 + }, + { + "start": 13954.78, + "end": 13954.88, + "probability": 0.0426 + }, + { + "start": 13955.21, + "end": 13960.84, + "probability": 0.378 + }, + { + "start": 13962.4, + "end": 13962.7, + "probability": 0.0492 + }, + { + "start": 13962.71, + "end": 13963.36, + "probability": 0.0762 + }, + { + "start": 13963.38, + "end": 13964.26, + "probability": 0.1163 + }, + { + "start": 13964.32, + "end": 13966.46, + "probability": 0.0119 + }, + { + "start": 13966.98, + "end": 13969.92, + "probability": 0.1835 + }, + { + "start": 13970.46, + "end": 13971.06, + "probability": 0.2353 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.0, + "end": 14008.0, + "probability": 0.0 + }, + { + "start": 14008.36, + "end": 14008.62, + "probability": 0.0776 + }, + { + "start": 14008.62, + "end": 14010.78, + "probability": 0.3531 + }, + { + "start": 14011.78, + "end": 14012.21, + "probability": 0.0903 + }, + { + "start": 14014.68, + "end": 14015.08, + "probability": 0.19 + }, + { + "start": 14015.42, + "end": 14018.62, + "probability": 0.8538 + }, + { + "start": 14020.06, + "end": 14023.42, + "probability": 0.7866 + }, + { + "start": 14024.14, + "end": 14025.82, + "probability": 0.7246 + }, + { + "start": 14025.96, + "end": 14027.68, + "probability": 0.7101 + }, + { + "start": 14027.78, + "end": 14031.86, + "probability": 0.5687 + }, + { + "start": 14033.2, + "end": 14035.76, + "probability": 0.8586 + }, + { + "start": 14036.78, + "end": 14038.94, + "probability": 0.6257 + }, + { + "start": 14039.22, + "end": 14039.64, + "probability": 0.339 + }, + { + "start": 14039.64, + "end": 14046.46, + "probability": 0.9495 + }, + { + "start": 14046.62, + "end": 14048.32, + "probability": 0.9482 + }, + { + "start": 14049.12, + "end": 14051.6, + "probability": 0.6977 + }, + { + "start": 14052.1, + "end": 14055.66, + "probability": 0.8158 + }, + { + "start": 14056.16, + "end": 14059.84, + "probability": 0.7594 + }, + { + "start": 14059.84, + "end": 14061.44, + "probability": 0.7938 + }, + { + "start": 14062.9, + "end": 14063.06, + "probability": 0.3114 + }, + { + "start": 14063.06, + "end": 14065.4, + "probability": 0.9019 + }, + { + "start": 14066.58, + "end": 14067.06, + "probability": 0.4303 + }, + { + "start": 14067.9, + "end": 14071.48, + "probability": 0.4955 + }, + { + "start": 14072.0, + "end": 14077.1, + "probability": 0.0742 + }, + { + "start": 14077.4, + "end": 14079.12, + "probability": 0.8757 + }, + { + "start": 14079.84, + "end": 14080.04, + "probability": 0.5429 + }, + { + "start": 14080.12, + "end": 14080.8, + "probability": 0.7627 + }, + { + "start": 14080.94, + "end": 14082.54, + "probability": 0.9817 + }, + { + "start": 14084.33, + "end": 14087.9, + "probability": 0.6379 + }, + { + "start": 14088.5, + "end": 14091.14, + "probability": 0.9816 + }, + { + "start": 14092.08, + "end": 14097.6, + "probability": 0.9673 + }, + { + "start": 14097.6, + "end": 14103.22, + "probability": 0.8751 + }, + { + "start": 14103.68, + "end": 14104.34, + "probability": 0.8384 + }, + { + "start": 14104.88, + "end": 14106.8, + "probability": 0.8698 + }, + { + "start": 14107.44, + "end": 14108.28, + "probability": 0.9543 + }, + { + "start": 14108.32, + "end": 14111.26, + "probability": 0.9085 + }, + { + "start": 14111.76, + "end": 14117.76, + "probability": 0.9631 + }, + { + "start": 14117.84, + "end": 14118.64, + "probability": 0.6339 + }, + { + "start": 14119.18, + "end": 14124.64, + "probability": 0.9863 + }, + { + "start": 14124.64, + "end": 14128.0, + "probability": 0.9927 + }, + { + "start": 14128.32, + "end": 14128.76, + "probability": 0.7606 + }, + { + "start": 14129.5, + "end": 14131.32, + "probability": 0.9899 + }, + { + "start": 14131.58, + "end": 14133.25, + "probability": 0.7728 + }, + { + "start": 14140.08, + "end": 14140.44, + "probability": 0.4569 + }, + { + "start": 14140.5, + "end": 14141.32, + "probability": 0.7012 + }, + { + "start": 14141.48, + "end": 14142.62, + "probability": 0.6513 + }, + { + "start": 14142.68, + "end": 14144.4, + "probability": 0.793 + }, + { + "start": 14144.5, + "end": 14145.18, + "probability": 0.8275 + }, + { + "start": 14146.16, + "end": 14148.86, + "probability": 0.9896 + }, + { + "start": 14148.92, + "end": 14150.26, + "probability": 0.763 + }, + { + "start": 14150.42, + "end": 14151.34, + "probability": 0.9639 + }, + { + "start": 14151.48, + "end": 14152.08, + "probability": 0.9655 + }, + { + "start": 14152.82, + "end": 14155.16, + "probability": 0.6268 + }, + { + "start": 14155.28, + "end": 14157.8, + "probability": 0.9891 + }, + { + "start": 14158.44, + "end": 14160.13, + "probability": 0.8303 + }, + { + "start": 14161.02, + "end": 14163.92, + "probability": 0.7726 + }, + { + "start": 14164.26, + "end": 14166.42, + "probability": 0.6853 + }, + { + "start": 14167.14, + "end": 14168.02, + "probability": 0.4902 + }, + { + "start": 14168.88, + "end": 14170.88, + "probability": 0.7891 + }, + { + "start": 14171.12, + "end": 14172.84, + "probability": 0.5848 + }, + { + "start": 14172.9, + "end": 14173.28, + "probability": 0.316 + }, + { + "start": 14174.0, + "end": 14174.54, + "probability": 0.5031 + }, + { + "start": 14174.74, + "end": 14177.56, + "probability": 0.6658 + }, + { + "start": 14177.7, + "end": 14182.82, + "probability": 0.9392 + }, + { + "start": 14182.92, + "end": 14185.4, + "probability": 0.9554 + }, + { + "start": 14185.86, + "end": 14188.4, + "probability": 0.9635 + }, + { + "start": 14188.88, + "end": 14191.44, + "probability": 0.9821 + }, + { + "start": 14192.0, + "end": 14194.52, + "probability": 0.9924 + }, + { + "start": 14194.94, + "end": 14197.02, + "probability": 0.737 + }, + { + "start": 14197.2, + "end": 14199.74, + "probability": 0.8519 + }, + { + "start": 14199.76, + "end": 14202.64, + "probability": 0.9989 + }, + { + "start": 14202.64, + "end": 14205.98, + "probability": 0.8958 + }, + { + "start": 14206.22, + "end": 14206.98, + "probability": 0.75 + }, + { + "start": 14207.4, + "end": 14207.94, + "probability": 0.6747 + }, + { + "start": 14208.32, + "end": 14208.7, + "probability": 0.7321 + }, + { + "start": 14209.1, + "end": 14213.02, + "probability": 0.8403 + }, + { + "start": 14213.46, + "end": 14215.38, + "probability": 0.8678 + }, + { + "start": 14217.02, + "end": 14218.54, + "probability": 0.8073 + }, + { + "start": 14218.7, + "end": 14219.76, + "probability": 0.8027 + }, + { + "start": 14221.82, + "end": 14222.94, + "probability": 0.8294 + }, + { + "start": 14222.94, + "end": 14224.84, + "probability": 0.5127 + }, + { + "start": 14225.62, + "end": 14226.2, + "probability": 0.8668 + }, + { + "start": 14226.84, + "end": 14227.54, + "probability": 0.5888 + }, + { + "start": 14228.06, + "end": 14228.26, + "probability": 0.3662 + }, + { + "start": 14232.2, + "end": 14232.94, + "probability": 0.5096 + }, + { + "start": 14232.94, + "end": 14234.0, + "probability": 0.7786 + }, + { + "start": 14234.12, + "end": 14236.9, + "probability": 0.9028 + }, + { + "start": 14237.42, + "end": 14239.34, + "probability": 0.805 + }, + { + "start": 14240.07, + "end": 14242.84, + "probability": 0.6351 + }, + { + "start": 14243.44, + "end": 14246.52, + "probability": 0.2776 + }, + { + "start": 14246.82, + "end": 14248.66, + "probability": 0.475 + }, + { + "start": 14253.6, + "end": 14254.54, + "probability": 0.237 + }, + { + "start": 14255.96, + "end": 14256.8, + "probability": 0.2394 + }, + { + "start": 14269.82, + "end": 14270.74, + "probability": 0.1364 + }, + { + "start": 14270.74, + "end": 14270.82, + "probability": 0.0637 + }, + { + "start": 14270.82, + "end": 14270.82, + "probability": 0.0888 + }, + { + "start": 14270.82, + "end": 14272.64, + "probability": 0.4165 + }, + { + "start": 14272.86, + "end": 14276.98, + "probability": 0.8669 + }, + { + "start": 14282.08, + "end": 14283.74, + "probability": 0.5146 + }, + { + "start": 14283.88, + "end": 14284.4, + "probability": 0.5739 + }, + { + "start": 14284.52, + "end": 14285.98, + "probability": 0.5818 + }, + { + "start": 14286.8, + "end": 14287.74, + "probability": 0.3051 + }, + { + "start": 14289.62, + "end": 14292.66, + "probability": 0.6547 + }, + { + "start": 14293.2, + "end": 14296.68, + "probability": 0.6365 + }, + { + "start": 14297.02, + "end": 14297.08, + "probability": 0.2068 + }, + { + "start": 14297.08, + "end": 14299.06, + "probability": 0.5985 + }, + { + "start": 14299.2, + "end": 14302.58, + "probability": 0.4411 + }, + { + "start": 14302.78, + "end": 14303.12, + "probability": 0.0574 + }, + { + "start": 14303.12, + "end": 14303.16, + "probability": 0.13 + }, + { + "start": 14303.32, + "end": 14304.52, + "probability": 0.8547 + }, + { + "start": 14305.4, + "end": 14309.46, + "probability": 0.4803 + }, + { + "start": 14314.18, + "end": 14316.42, + "probability": 0.3298 + }, + { + "start": 14318.13, + "end": 14319.32, + "probability": 0.0926 + }, + { + "start": 14320.2, + "end": 14325.32, + "probability": 0.0538 + }, + { + "start": 14327.56, + "end": 14328.54, + "probability": 0.2209 + }, + { + "start": 14328.54, + "end": 14331.22, + "probability": 0.5494 + }, + { + "start": 14331.28, + "end": 14334.12, + "probability": 0.793 + }, + { + "start": 14334.2, + "end": 14337.24, + "probability": 0.8341 + }, + { + "start": 14337.64, + "end": 14338.06, + "probability": 0.5179 + }, + { + "start": 14338.12, + "end": 14339.75, + "probability": 0.6424 + }, + { + "start": 14340.87, + "end": 14342.34, + "probability": 0.9528 + }, + { + "start": 14343.14, + "end": 14343.26, + "probability": 0.003 + }, + { + "start": 14343.3, + "end": 14343.3, + "probability": 0.067 + }, + { + "start": 14343.3, + "end": 14343.85, + "probability": 0.1065 + }, + { + "start": 14344.12, + "end": 14345.24, + "probability": 0.6128 + }, + { + "start": 14346.14, + "end": 14348.02, + "probability": 0.4774 + }, + { + "start": 14349.24, + "end": 14351.84, + "probability": 0.0811 + }, + { + "start": 14351.92, + "end": 14353.08, + "probability": 0.4546 + }, + { + "start": 14353.88, + "end": 14353.88, + "probability": 0.1793 + }, + { + "start": 14353.9, + "end": 14359.64, + "probability": 0.7966 + }, + { + "start": 14360.32, + "end": 14360.94, + "probability": 0.8968 + }, + { + "start": 14361.1, + "end": 14366.48, + "probability": 0.9635 + }, + { + "start": 14367.06, + "end": 14373.3, + "probability": 0.578 + }, + { + "start": 14373.86, + "end": 14377.12, + "probability": 0.9152 + }, + { + "start": 14377.34, + "end": 14379.14, + "probability": 0.9229 + }, + { + "start": 14379.8, + "end": 14382.68, + "probability": 0.8884 + }, + { + "start": 14383.14, + "end": 14386.44, + "probability": 0.9623 + }, + { + "start": 14387.06, + "end": 14395.34, + "probability": 0.9671 + }, + { + "start": 14395.48, + "end": 14398.34, + "probability": 0.8643 + }, + { + "start": 14398.66, + "end": 14398.86, + "probability": 0.7554 + }, + { + "start": 14399.08, + "end": 14400.4, + "probability": 0.6352 + }, + { + "start": 14400.44, + "end": 14403.14, + "probability": 0.7616 + }, + { + "start": 14403.88, + "end": 14404.82, + "probability": 0.8046 + }, + { + "start": 14421.36, + "end": 14423.7, + "probability": 0.1922 + }, + { + "start": 14424.3, + "end": 14426.1, + "probability": 0.0606 + }, + { + "start": 14426.71, + "end": 14427.35, + "probability": 0.0881 + }, + { + "start": 14428.96, + "end": 14430.96, + "probability": 0.0176 + }, + { + "start": 14433.9, + "end": 14436.22, + "probability": 0.165 + }, + { + "start": 14436.74, + "end": 14439.38, + "probability": 0.1467 + }, + { + "start": 14443.44, + "end": 14444.3, + "probability": 0.1521 + }, + { + "start": 14445.4, + "end": 14445.9, + "probability": 0.119 + } + ], + "segments_count": 5069, + "words_count": 24769, + "avg_words_per_segment": 4.8864, + "avg_segment_duration": 1.9721, + "avg_words_per_minute": 102.5855, + "plenum_id": "5371", + "duration": 14486.84, + "title": null, + "plenum_date": "2009-12-16" +} \ No newline at end of file