diff --git "a/69652/metadata.json" "b/69652/metadata.json" new file mode 100644--- /dev/null +++ "b/69652/metadata.json" @@ -0,0 +1,54967 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "69652", + "quality_score": 0.9004, + "per_segment_quality_scores": [ + { + "start": 45.4, + "end": 46.46, + "probability": 0.0002 + }, + { + "start": 48.67, + "end": 51.92, + "probability": 0.7547 + }, + { + "start": 54.18, + "end": 59.04, + "probability": 0.9773 + }, + { + "start": 60.46, + "end": 62.26, + "probability": 0.7 + }, + { + "start": 62.58, + "end": 67.6, + "probability": 0.6238 + }, + { + "start": 68.28, + "end": 69.85, + "probability": 0.7321 + }, + { + "start": 71.12, + "end": 75.8, + "probability": 0.9136 + }, + { + "start": 76.92, + "end": 80.2, + "probability": 0.9151 + }, + { + "start": 80.36, + "end": 83.08, + "probability": 0.9937 + }, + { + "start": 83.9, + "end": 86.64, + "probability": 0.722 + }, + { + "start": 86.78, + "end": 88.68, + "probability": 0.5439 + }, + { + "start": 89.34, + "end": 90.86, + "probability": 0.8786 + }, + { + "start": 90.96, + "end": 92.75, + "probability": 0.9836 + }, + { + "start": 93.06, + "end": 94.0, + "probability": 0.7887 + }, + { + "start": 95.56, + "end": 98.58, + "probability": 0.6503 + }, + { + "start": 100.18, + "end": 100.92, + "probability": 0.6063 + }, + { + "start": 102.18, + "end": 104.12, + "probability": 0.9502 + }, + { + "start": 104.2, + "end": 110.2, + "probability": 0.9375 + }, + { + "start": 111.02, + "end": 113.12, + "probability": 0.7903 + }, + { + "start": 114.62, + "end": 116.84, + "probability": 0.9746 + }, + { + "start": 117.84, + "end": 121.52, + "probability": 0.9589 + }, + { + "start": 122.52, + "end": 123.44, + "probability": 0.723 + }, + { + "start": 124.06, + "end": 128.36, + "probability": 0.9734 + }, + { + "start": 129.44, + "end": 134.3, + "probability": 0.9783 + }, + { + "start": 134.98, + "end": 135.24, + "probability": 0.3098 + }, + { + "start": 136.2, + "end": 137.38, + "probability": 0.6734 + }, + { + "start": 139.48, + "end": 141.84, + "probability": 0.7472 + }, + { + "start": 142.6, + "end": 144.88, + "probability": 0.7717 + }, + { + "start": 145.92, + "end": 147.06, + "probability": 0.9774 + }, + { + "start": 148.2, + "end": 153.66, + "probability": 0.9951 + }, + { + "start": 153.78, + "end": 154.9, + "probability": 0.1492 + }, + { + "start": 156.84, + "end": 161.68, + "probability": 0.9496 + }, + { + "start": 162.6, + "end": 166.24, + "probability": 0.9954 + }, + { + "start": 167.34, + "end": 171.14, + "probability": 0.8708 + }, + { + "start": 172.68, + "end": 177.06, + "probability": 0.988 + }, + { + "start": 177.94, + "end": 180.12, + "probability": 0.7549 + }, + { + "start": 182.86, + "end": 189.48, + "probability": 0.8872 + }, + { + "start": 190.0, + "end": 192.78, + "probability": 0.9982 + }, + { + "start": 194.24, + "end": 195.86, + "probability": 0.788 + }, + { + "start": 196.56, + "end": 197.7, + "probability": 0.8264 + }, + { + "start": 198.64, + "end": 202.6, + "probability": 0.9403 + }, + { + "start": 203.14, + "end": 203.92, + "probability": 0.9494 + }, + { + "start": 208.84, + "end": 209.89, + "probability": 0.7546 + }, + { + "start": 210.3, + "end": 212.5, + "probability": 0.8637 + }, + { + "start": 212.86, + "end": 214.38, + "probability": 0.9886 + }, + { + "start": 218.08, + "end": 219.46, + "probability": 0.5765 + }, + { + "start": 219.94, + "end": 221.04, + "probability": 0.797 + }, + { + "start": 221.04, + "end": 226.08, + "probability": 0.9729 + }, + { + "start": 227.22, + "end": 228.78, + "probability": 0.8111 + }, + { + "start": 229.46, + "end": 232.34, + "probability": 0.8757 + }, + { + "start": 234.6, + "end": 237.24, + "probability": 0.9394 + }, + { + "start": 238.14, + "end": 244.36, + "probability": 0.9587 + }, + { + "start": 245.4, + "end": 245.86, + "probability": 0.3648 + }, + { + "start": 245.86, + "end": 247.18, + "probability": 0.8541 + }, + { + "start": 256.38, + "end": 257.66, + "probability": 0.584 + }, + { + "start": 257.72, + "end": 258.78, + "probability": 0.797 + }, + { + "start": 260.2, + "end": 263.54, + "probability": 0.921 + }, + { + "start": 264.32, + "end": 272.58, + "probability": 0.9878 + }, + { + "start": 273.68, + "end": 275.36, + "probability": 0.9175 + }, + { + "start": 276.04, + "end": 276.71, + "probability": 0.9604 + }, + { + "start": 276.98, + "end": 280.1, + "probability": 0.9268 + }, + { + "start": 280.58, + "end": 281.1, + "probability": 0.6384 + }, + { + "start": 281.44, + "end": 282.02, + "probability": 0.9161 + }, + { + "start": 282.36, + "end": 285.56, + "probability": 0.9896 + }, + { + "start": 286.28, + "end": 286.8, + "probability": 0.9604 + }, + { + "start": 286.94, + "end": 290.48, + "probability": 0.9893 + }, + { + "start": 290.96, + "end": 294.56, + "probability": 0.9537 + }, + { + "start": 295.02, + "end": 298.92, + "probability": 0.9521 + }, + { + "start": 299.52, + "end": 301.68, + "probability": 0.9917 + }, + { + "start": 301.72, + "end": 302.96, + "probability": 0.6676 + }, + { + "start": 303.92, + "end": 310.94, + "probability": 0.9883 + }, + { + "start": 311.46, + "end": 313.3, + "probability": 0.9535 + }, + { + "start": 314.33, + "end": 318.26, + "probability": 0.9839 + }, + { + "start": 318.74, + "end": 319.02, + "probability": 0.9328 + }, + { + "start": 319.16, + "end": 320.38, + "probability": 0.5052 + }, + { + "start": 320.44, + "end": 322.18, + "probability": 0.8105 + }, + { + "start": 324.12, + "end": 324.88, + "probability": 0.6025 + }, + { + "start": 324.96, + "end": 329.56, + "probability": 0.9113 + }, + { + "start": 329.56, + "end": 333.98, + "probability": 0.967 + }, + { + "start": 334.96, + "end": 338.78, + "probability": 0.9443 + }, + { + "start": 338.96, + "end": 340.49, + "probability": 0.9968 + }, + { + "start": 341.18, + "end": 341.72, + "probability": 0.3853 + }, + { + "start": 342.54, + "end": 344.44, + "probability": 0.936 + }, + { + "start": 344.84, + "end": 347.78, + "probability": 0.9685 + }, + { + "start": 348.66, + "end": 349.04, + "probability": 0.7282 + }, + { + "start": 349.66, + "end": 350.38, + "probability": 0.3864 + }, + { + "start": 350.6, + "end": 355.18, + "probability": 0.9252 + }, + { + "start": 355.7, + "end": 355.76, + "probability": 0.0949 + }, + { + "start": 355.76, + "end": 358.2, + "probability": 0.944 + }, + { + "start": 358.26, + "end": 361.16, + "probability": 0.8291 + }, + { + "start": 362.12, + "end": 362.86, + "probability": 0.726 + }, + { + "start": 362.88, + "end": 366.66, + "probability": 0.9283 + }, + { + "start": 367.42, + "end": 370.38, + "probability": 0.5479 + }, + { + "start": 371.32, + "end": 373.76, + "probability": 0.9624 + }, + { + "start": 373.9, + "end": 376.74, + "probability": 0.9816 + }, + { + "start": 376.92, + "end": 378.52, + "probability": 0.1602 + }, + { + "start": 381.84, + "end": 383.2, + "probability": 0.4868 + }, + { + "start": 383.72, + "end": 386.0, + "probability": 0.7473 + }, + { + "start": 386.36, + "end": 389.36, + "probability": 0.8577 + }, + { + "start": 390.16, + "end": 392.54, + "probability": 0.9297 + }, + { + "start": 392.98, + "end": 394.06, + "probability": 0.9976 + }, + { + "start": 394.4, + "end": 400.36, + "probability": 0.7754 + }, + { + "start": 400.36, + "end": 405.08, + "probability": 0.5688 + }, + { + "start": 405.3, + "end": 405.62, + "probability": 0.5329 + }, + { + "start": 406.4, + "end": 409.6, + "probability": 0.9089 + }, + { + "start": 409.64, + "end": 411.22, + "probability": 0.8927 + }, + { + "start": 411.82, + "end": 413.04, + "probability": 0.6548 + }, + { + "start": 413.22, + "end": 413.42, + "probability": 0.8824 + }, + { + "start": 413.64, + "end": 414.18, + "probability": 0.9292 + }, + { + "start": 414.28, + "end": 416.42, + "probability": 0.9719 + }, + { + "start": 416.48, + "end": 417.02, + "probability": 0.7775 + }, + { + "start": 417.16, + "end": 418.56, + "probability": 0.7161 + }, + { + "start": 419.94, + "end": 421.44, + "probability": 0.9352 + }, + { + "start": 422.42, + "end": 424.08, + "probability": 0.8264 + }, + { + "start": 424.22, + "end": 429.82, + "probability": 0.8022 + }, + { + "start": 431.34, + "end": 434.88, + "probability": 0.9481 + }, + { + "start": 435.54, + "end": 437.16, + "probability": 0.9604 + }, + { + "start": 437.92, + "end": 438.77, + "probability": 0.9781 + }, + { + "start": 439.68, + "end": 442.12, + "probability": 0.9979 + }, + { + "start": 442.75, + "end": 447.16, + "probability": 0.9554 + }, + { + "start": 447.64, + "end": 448.84, + "probability": 0.5015 + }, + { + "start": 449.72, + "end": 451.8, + "probability": 0.7288 + }, + { + "start": 452.26, + "end": 453.4, + "probability": 0.8169 + }, + { + "start": 453.6, + "end": 456.8, + "probability": 0.9619 + }, + { + "start": 457.06, + "end": 461.12, + "probability": 0.9343 + }, + { + "start": 461.22, + "end": 461.94, + "probability": 0.85 + }, + { + "start": 462.72, + "end": 464.5, + "probability": 0.8576 + }, + { + "start": 465.08, + "end": 469.06, + "probability": 0.8205 + }, + { + "start": 469.54, + "end": 470.56, + "probability": 0.4026 + }, + { + "start": 470.72, + "end": 471.2, + "probability": 0.5832 + }, + { + "start": 471.3, + "end": 473.22, + "probability": 0.6147 + }, + { + "start": 474.62, + "end": 477.66, + "probability": 0.6952 + }, + { + "start": 478.42, + "end": 480.88, + "probability": 0.7423 + }, + { + "start": 481.46, + "end": 483.74, + "probability": 0.7756 + }, + { + "start": 484.28, + "end": 487.46, + "probability": 0.6599 + }, + { + "start": 488.02, + "end": 488.59, + "probability": 0.8159 + }, + { + "start": 488.98, + "end": 489.92, + "probability": 0.5724 + }, + { + "start": 490.04, + "end": 490.9, + "probability": 0.9406 + }, + { + "start": 491.12, + "end": 492.98, + "probability": 0.7544 + }, + { + "start": 492.98, + "end": 494.72, + "probability": 0.5789 + }, + { + "start": 496.98, + "end": 497.38, + "probability": 0.0075 + }, + { + "start": 498.14, + "end": 498.24, + "probability": 0.1054 + }, + { + "start": 498.24, + "end": 500.0, + "probability": 0.7751 + }, + { + "start": 500.08, + "end": 500.68, + "probability": 0.4205 + }, + { + "start": 501.66, + "end": 502.3, + "probability": 0.7398 + }, + { + "start": 502.4, + "end": 503.32, + "probability": 0.8745 + }, + { + "start": 503.54, + "end": 507.1, + "probability": 0.3613 + }, + { + "start": 507.88, + "end": 511.54, + "probability": 0.9012 + }, + { + "start": 511.62, + "end": 515.04, + "probability": 0.6532 + }, + { + "start": 516.14, + "end": 516.7, + "probability": 0.6719 + }, + { + "start": 516.78, + "end": 519.58, + "probability": 0.9377 + }, + { + "start": 520.28, + "end": 521.73, + "probability": 0.991 + }, + { + "start": 522.04, + "end": 523.62, + "probability": 0.6545 + }, + { + "start": 523.78, + "end": 523.82, + "probability": 0.0494 + }, + { + "start": 524.38, + "end": 527.92, + "probability": 0.9844 + }, + { + "start": 527.98, + "end": 529.3, + "probability": 0.9113 + }, + { + "start": 532.7, + "end": 534.42, + "probability": 0.9723 + }, + { + "start": 536.58, + "end": 538.94, + "probability": 0.9785 + }, + { + "start": 539.14, + "end": 543.2, + "probability": 0.9921 + }, + { + "start": 543.64, + "end": 544.62, + "probability": 0.7202 + }, + { + "start": 544.96, + "end": 547.6, + "probability": 0.5507 + }, + { + "start": 548.04, + "end": 549.5, + "probability": 0.9124 + }, + { + "start": 550.46, + "end": 553.86, + "probability": 0.9856 + }, + { + "start": 553.94, + "end": 555.86, + "probability": 0.7368 + }, + { + "start": 555.94, + "end": 558.34, + "probability": 0.9783 + }, + { + "start": 558.8, + "end": 560.27, + "probability": 0.6271 + }, + { + "start": 560.66, + "end": 563.98, + "probability": 0.9896 + }, + { + "start": 565.52, + "end": 565.62, + "probability": 0.8443 + }, + { + "start": 567.5, + "end": 568.42, + "probability": 0.9406 + }, + { + "start": 568.5, + "end": 572.62, + "probability": 0.9876 + }, + { + "start": 573.48, + "end": 577.2, + "probability": 0.9902 + }, + { + "start": 578.02, + "end": 580.36, + "probability": 0.9193 + }, + { + "start": 580.46, + "end": 583.16, + "probability": 0.9335 + }, + { + "start": 583.84, + "end": 585.16, + "probability": 0.9488 + }, + { + "start": 585.28, + "end": 587.62, + "probability": 0.9938 + }, + { + "start": 587.76, + "end": 590.12, + "probability": 0.099 + }, + { + "start": 590.64, + "end": 591.78, + "probability": 0.5453 + }, + { + "start": 592.1, + "end": 592.32, + "probability": 0.6461 + }, + { + "start": 592.78, + "end": 593.4, + "probability": 0.5179 + }, + { + "start": 593.46, + "end": 594.76, + "probability": 0.8301 + }, + { + "start": 595.92, + "end": 599.8, + "probability": 0.8315 + }, + { + "start": 599.94, + "end": 602.14, + "probability": 0.9893 + }, + { + "start": 602.82, + "end": 603.88, + "probability": 0.9777 + }, + { + "start": 605.24, + "end": 608.36, + "probability": 0.9727 + }, + { + "start": 609.2, + "end": 610.08, + "probability": 0.9775 + }, + { + "start": 611.4, + "end": 613.3, + "probability": 0.9958 + }, + { + "start": 613.3, + "end": 618.26, + "probability": 0.6547 + }, + { + "start": 619.38, + "end": 620.62, + "probability": 0.9573 + }, + { + "start": 620.76, + "end": 623.32, + "probability": 0.9866 + }, + { + "start": 623.32, + "end": 629.68, + "probability": 0.9602 + }, + { + "start": 631.2, + "end": 632.26, + "probability": 0.9534 + }, + { + "start": 632.4, + "end": 634.88, + "probability": 0.9152 + }, + { + "start": 634.88, + "end": 637.6, + "probability": 0.8695 + }, + { + "start": 637.7, + "end": 640.72, + "probability": 0.9179 + }, + { + "start": 641.9, + "end": 645.94, + "probability": 0.6776 + }, + { + "start": 646.32, + "end": 651.0, + "probability": 0.9946 + }, + { + "start": 651.92, + "end": 654.76, + "probability": 0.9819 + }, + { + "start": 655.46, + "end": 659.04, + "probability": 0.9528 + }, + { + "start": 660.26, + "end": 662.88, + "probability": 0.9429 + }, + { + "start": 663.58, + "end": 665.34, + "probability": 0.8614 + }, + { + "start": 666.7, + "end": 668.98, + "probability": 0.3041 + }, + { + "start": 670.24, + "end": 675.16, + "probability": 0.6957 + }, + { + "start": 676.16, + "end": 678.88, + "probability": 0.9483 + }, + { + "start": 681.35, + "end": 686.0, + "probability": 0.9542 + }, + { + "start": 687.46, + "end": 689.3, + "probability": 0.9604 + }, + { + "start": 690.62, + "end": 692.32, + "probability": 0.9445 + }, + { + "start": 692.52, + "end": 694.18, + "probability": 0.9819 + }, + { + "start": 694.18, + "end": 694.28, + "probability": 0.566 + }, + { + "start": 695.88, + "end": 699.26, + "probability": 0.8528 + }, + { + "start": 699.26, + "end": 702.54, + "probability": 0.9338 + }, + { + "start": 703.34, + "end": 703.34, + "probability": 0.0916 + }, + { + "start": 703.34, + "end": 707.34, + "probability": 0.769 + }, + { + "start": 708.78, + "end": 712.48, + "probability": 0.896 + }, + { + "start": 713.58, + "end": 716.84, + "probability": 0.876 + }, + { + "start": 718.34, + "end": 720.46, + "probability": 0.6791 + }, + { + "start": 720.62, + "end": 720.9, + "probability": 0.4424 + }, + { + "start": 720.96, + "end": 724.08, + "probability": 0.9353 + }, + { + "start": 724.18, + "end": 724.72, + "probability": 0.9817 + }, + { + "start": 725.66, + "end": 727.7, + "probability": 0.9415 + }, + { + "start": 727.76, + "end": 730.12, + "probability": 0.5717 + }, + { + "start": 731.2, + "end": 734.76, + "probability": 0.9852 + }, + { + "start": 734.94, + "end": 735.56, + "probability": 0.5108 + }, + { + "start": 736.46, + "end": 739.24, + "probability": 0.8353 + }, + { + "start": 740.12, + "end": 742.9, + "probability": 0.9859 + }, + { + "start": 742.9, + "end": 745.02, + "probability": 0.974 + }, + { + "start": 745.74, + "end": 747.4, + "probability": 0.9787 + }, + { + "start": 748.9, + "end": 749.24, + "probability": 0.574 + }, + { + "start": 749.34, + "end": 752.04, + "probability": 0.8569 + }, + { + "start": 752.22, + "end": 756.8, + "probability": 0.7032 + }, + { + "start": 756.84, + "end": 761.34, + "probability": 0.7196 + }, + { + "start": 761.5, + "end": 761.88, + "probability": 0.657 + }, + { + "start": 762.54, + "end": 763.38, + "probability": 0.7919 + }, + { + "start": 764.28, + "end": 768.7, + "probability": 0.961 + }, + { + "start": 769.3, + "end": 771.08, + "probability": 0.9823 + }, + { + "start": 771.62, + "end": 773.74, + "probability": 0.8956 + }, + { + "start": 774.3, + "end": 776.5, + "probability": 0.8535 + }, + { + "start": 777.18, + "end": 780.46, + "probability": 0.8484 + }, + { + "start": 780.96, + "end": 782.24, + "probability": 0.8457 + }, + { + "start": 782.3, + "end": 782.8, + "probability": 0.6236 + }, + { + "start": 783.26, + "end": 783.62, + "probability": 0.4356 + }, + { + "start": 783.74, + "end": 785.4, + "probability": 0.5308 + }, + { + "start": 785.9, + "end": 790.92, + "probability": 0.7772 + }, + { + "start": 790.96, + "end": 794.76, + "probability": 0.9429 + }, + { + "start": 795.12, + "end": 797.26, + "probability": 0.9568 + }, + { + "start": 797.26, + "end": 804.26, + "probability": 0.9769 + }, + { + "start": 804.34, + "end": 804.62, + "probability": 0.6649 + }, + { + "start": 804.88, + "end": 807.0, + "probability": 0.9743 + }, + { + "start": 807.16, + "end": 809.98, + "probability": 0.9361 + }, + { + "start": 814.6, + "end": 815.02, + "probability": 0.7791 + }, + { + "start": 815.8, + "end": 816.52, + "probability": 0.3069 + }, + { + "start": 816.62, + "end": 818.72, + "probability": 0.6747 + }, + { + "start": 819.44, + "end": 820.84, + "probability": 0.8325 + }, + { + "start": 821.04, + "end": 822.89, + "probability": 0.6022 + }, + { + "start": 824.12, + "end": 826.12, + "probability": 0.9575 + }, + { + "start": 826.26, + "end": 831.86, + "probability": 0.9644 + }, + { + "start": 831.96, + "end": 833.68, + "probability": 0.8043 + }, + { + "start": 835.2, + "end": 836.72, + "probability": 0.9657 + }, + { + "start": 836.8, + "end": 837.7, + "probability": 0.7609 + }, + { + "start": 838.1, + "end": 842.62, + "probability": 0.9953 + }, + { + "start": 843.88, + "end": 845.24, + "probability": 0.9803 + }, + { + "start": 845.44, + "end": 846.12, + "probability": 0.9979 + }, + { + "start": 846.2, + "end": 846.48, + "probability": 0.7902 + }, + { + "start": 846.6, + "end": 849.32, + "probability": 0.9328 + }, + { + "start": 849.46, + "end": 850.26, + "probability": 0.7132 + }, + { + "start": 850.88, + "end": 852.52, + "probability": 0.9604 + }, + { + "start": 852.98, + "end": 854.1, + "probability": 0.9748 + }, + { + "start": 855.0, + "end": 857.06, + "probability": 0.9306 + }, + { + "start": 857.38, + "end": 858.48, + "probability": 0.8928 + }, + { + "start": 858.92, + "end": 860.28, + "probability": 0.5924 + }, + { + "start": 861.02, + "end": 862.24, + "probability": 0.9688 + }, + { + "start": 862.87, + "end": 867.34, + "probability": 0.9938 + }, + { + "start": 868.02, + "end": 872.4, + "probability": 0.9955 + }, + { + "start": 873.44, + "end": 874.98, + "probability": 0.71 + }, + { + "start": 875.94, + "end": 881.36, + "probability": 0.95 + }, + { + "start": 881.44, + "end": 882.34, + "probability": 0.9385 + }, + { + "start": 882.92, + "end": 885.12, + "probability": 0.999 + }, + { + "start": 885.64, + "end": 887.02, + "probability": 0.5127 + }, + { + "start": 887.76, + "end": 889.98, + "probability": 0.6882 + }, + { + "start": 891.0, + "end": 892.64, + "probability": 0.9707 + }, + { + "start": 893.22, + "end": 897.04, + "probability": 0.981 + }, + { + "start": 897.4, + "end": 901.02, + "probability": 0.9662 + }, + { + "start": 901.16, + "end": 905.94, + "probability": 0.991 + }, + { + "start": 906.2, + "end": 907.36, + "probability": 0.5909 + }, + { + "start": 907.5, + "end": 908.62, + "probability": 0.7537 + }, + { + "start": 908.72, + "end": 909.12, + "probability": 0.6708 + }, + { + "start": 909.16, + "end": 909.6, + "probability": 0.7575 + }, + { + "start": 909.76, + "end": 910.22, + "probability": 0.7798 + }, + { + "start": 910.3, + "end": 911.32, + "probability": 0.6082 + }, + { + "start": 913.72, + "end": 914.69, + "probability": 0.7538 + }, + { + "start": 915.3, + "end": 916.26, + "probability": 0.9459 + }, + { + "start": 916.6, + "end": 917.36, + "probability": 0.807 + }, + { + "start": 917.4, + "end": 921.58, + "probability": 0.9578 + }, + { + "start": 922.36, + "end": 924.04, + "probability": 0.839 + }, + { + "start": 924.24, + "end": 925.6, + "probability": 0.8383 + }, + { + "start": 925.72, + "end": 927.8, + "probability": 0.9719 + }, + { + "start": 928.44, + "end": 931.3, + "probability": 0.9963 + }, + { + "start": 931.3, + "end": 938.86, + "probability": 0.8988 + }, + { + "start": 939.7, + "end": 942.74, + "probability": 0.9405 + }, + { + "start": 943.44, + "end": 948.68, + "probability": 0.9954 + }, + { + "start": 949.2, + "end": 953.26, + "probability": 0.9939 + }, + { + "start": 953.58, + "end": 953.74, + "probability": 0.4431 + }, + { + "start": 954.24, + "end": 955.18, + "probability": 0.4727 + }, + { + "start": 955.22, + "end": 957.12, + "probability": 0.7791 + }, + { + "start": 957.78, + "end": 959.87, + "probability": 0.9551 + }, + { + "start": 963.48, + "end": 964.94, + "probability": 0.7018 + }, + { + "start": 965.6, + "end": 970.3, + "probability": 0.908 + }, + { + "start": 971.0, + "end": 976.82, + "probability": 0.9989 + }, + { + "start": 979.28, + "end": 986.86, + "probability": 0.9829 + }, + { + "start": 988.04, + "end": 992.38, + "probability": 0.877 + }, + { + "start": 993.14, + "end": 994.24, + "probability": 0.9196 + }, + { + "start": 994.3, + "end": 998.24, + "probability": 0.9378 + }, + { + "start": 998.9, + "end": 1005.38, + "probability": 0.9629 + }, + { + "start": 1005.88, + "end": 1006.4, + "probability": 0.9726 + }, + { + "start": 1007.66, + "end": 1010.0, + "probability": 0.5917 + }, + { + "start": 1010.08, + "end": 1013.1, + "probability": 0.8093 + }, + { + "start": 1014.69, + "end": 1020.05, + "probability": 0.8965 + }, + { + "start": 1021.19, + "end": 1026.15, + "probability": 0.9905 + }, + { + "start": 1026.92, + "end": 1028.26, + "probability": 0.769 + }, + { + "start": 1028.58, + "end": 1030.94, + "probability": 0.9805 + }, + { + "start": 1031.06, + "end": 1034.96, + "probability": 0.9762 + }, + { + "start": 1035.36, + "end": 1037.94, + "probability": 0.7466 + }, + { + "start": 1039.79, + "end": 1041.43, + "probability": 0.9608 + }, + { + "start": 1041.82, + "end": 1044.08, + "probability": 0.9973 + }, + { + "start": 1045.42, + "end": 1046.32, + "probability": 0.8674 + }, + { + "start": 1046.94, + "end": 1050.66, + "probability": 0.8965 + }, + { + "start": 1050.74, + "end": 1051.64, + "probability": 0.8864 + }, + { + "start": 1052.2, + "end": 1058.28, + "probability": 0.9232 + }, + { + "start": 1058.72, + "end": 1060.74, + "probability": 0.9822 + }, + { + "start": 1060.82, + "end": 1062.75, + "probability": 0.8055 + }, + { + "start": 1063.82, + "end": 1065.54, + "probability": 0.7486 + }, + { + "start": 1065.68, + "end": 1068.3, + "probability": 0.9956 + }, + { + "start": 1068.34, + "end": 1070.94, + "probability": 0.9139 + }, + { + "start": 1071.14, + "end": 1074.68, + "probability": 0.9467 + }, + { + "start": 1074.72, + "end": 1075.58, + "probability": 0.8026 + }, + { + "start": 1075.68, + "end": 1077.74, + "probability": 0.9893 + }, + { + "start": 1077.86, + "end": 1078.94, + "probability": 0.9233 + }, + { + "start": 1079.12, + "end": 1082.64, + "probability": 0.9816 + }, + { + "start": 1082.84, + "end": 1084.24, + "probability": 0.8727 + }, + { + "start": 1084.4, + "end": 1087.0, + "probability": 0.9922 + }, + { + "start": 1087.66, + "end": 1087.96, + "probability": 0.756 + }, + { + "start": 1088.64, + "end": 1092.04, + "probability": 0.8777 + }, + { + "start": 1092.16, + "end": 1093.04, + "probability": 0.5854 + }, + { + "start": 1093.22, + "end": 1095.56, + "probability": 0.9866 + }, + { + "start": 1096.78, + "end": 1103.62, + "probability": 0.7601 + }, + { + "start": 1104.04, + "end": 1105.68, + "probability": 0.986 + }, + { + "start": 1106.52, + "end": 1108.56, + "probability": 0.769 + }, + { + "start": 1108.88, + "end": 1113.18, + "probability": 0.9355 + }, + { + "start": 1113.96, + "end": 1115.94, + "probability": 0.7375 + }, + { + "start": 1119.32, + "end": 1120.72, + "probability": 0.9667 + }, + { + "start": 1137.44, + "end": 1139.34, + "probability": 0.7063 + }, + { + "start": 1139.52, + "end": 1140.36, + "probability": 0.754 + }, + { + "start": 1140.54, + "end": 1141.42, + "probability": 0.8839 + }, + { + "start": 1141.54, + "end": 1144.1, + "probability": 0.8865 + }, + { + "start": 1144.1, + "end": 1146.48, + "probability": 0.9392 + }, + { + "start": 1147.88, + "end": 1149.86, + "probability": 0.902 + }, + { + "start": 1150.96, + "end": 1153.04, + "probability": 0.9368 + }, + { + "start": 1153.34, + "end": 1154.8, + "probability": 0.4829 + }, + { + "start": 1155.4, + "end": 1157.5, + "probability": 0.9973 + }, + { + "start": 1158.68, + "end": 1162.16, + "probability": 0.9835 + }, + { + "start": 1162.96, + "end": 1165.18, + "probability": 0.9133 + }, + { + "start": 1165.8, + "end": 1166.88, + "probability": 0.4731 + }, + { + "start": 1167.06, + "end": 1167.98, + "probability": 0.8635 + }, + { + "start": 1169.1, + "end": 1172.16, + "probability": 0.8278 + }, + { + "start": 1173.12, + "end": 1180.64, + "probability": 0.9525 + }, + { + "start": 1181.32, + "end": 1187.2, + "probability": 0.9778 + }, + { + "start": 1187.96, + "end": 1193.68, + "probability": 0.6106 + }, + { + "start": 1194.48, + "end": 1199.6, + "probability": 0.9829 + }, + { + "start": 1200.12, + "end": 1203.9, + "probability": 0.982 + }, + { + "start": 1205.76, + "end": 1212.66, + "probability": 0.9915 + }, + { + "start": 1213.7, + "end": 1218.74, + "probability": 0.9967 + }, + { + "start": 1218.74, + "end": 1225.94, + "probability": 0.9896 + }, + { + "start": 1226.9, + "end": 1228.32, + "probability": 0.9666 + }, + { + "start": 1229.08, + "end": 1232.7, + "probability": 0.9979 + }, + { + "start": 1232.7, + "end": 1236.74, + "probability": 0.9931 + }, + { + "start": 1237.92, + "end": 1241.38, + "probability": 0.9911 + }, + { + "start": 1241.38, + "end": 1245.1, + "probability": 0.9026 + }, + { + "start": 1246.08, + "end": 1253.28, + "probability": 0.7824 + }, + { + "start": 1253.28, + "end": 1260.76, + "probability": 0.9037 + }, + { + "start": 1261.22, + "end": 1263.08, + "probability": 0.8672 + }, + { + "start": 1264.12, + "end": 1264.38, + "probability": 0.6383 + }, + { + "start": 1264.56, + "end": 1268.4, + "probability": 0.9802 + }, + { + "start": 1268.4, + "end": 1271.84, + "probability": 0.9546 + }, + { + "start": 1272.32, + "end": 1279.78, + "probability": 0.889 + }, + { + "start": 1280.22, + "end": 1283.12, + "probability": 0.9679 + }, + { + "start": 1284.44, + "end": 1285.94, + "probability": 0.9984 + }, + { + "start": 1286.78, + "end": 1292.9, + "probability": 0.8621 + }, + { + "start": 1293.58, + "end": 1297.82, + "probability": 0.9476 + }, + { + "start": 1298.82, + "end": 1304.58, + "probability": 0.9809 + }, + { + "start": 1305.2, + "end": 1306.96, + "probability": 0.9453 + }, + { + "start": 1307.9, + "end": 1310.98, + "probability": 0.8397 + }, + { + "start": 1311.5, + "end": 1314.16, + "probability": 0.9925 + }, + { + "start": 1314.7, + "end": 1317.98, + "probability": 0.9943 + }, + { + "start": 1318.56, + "end": 1323.36, + "probability": 0.9839 + }, + { + "start": 1324.28, + "end": 1328.04, + "probability": 0.9932 + }, + { + "start": 1328.04, + "end": 1332.12, + "probability": 0.9983 + }, + { + "start": 1333.16, + "end": 1333.86, + "probability": 0.7315 + }, + { + "start": 1334.62, + "end": 1340.04, + "probability": 0.9936 + }, + { + "start": 1340.94, + "end": 1342.04, + "probability": 0.9424 + }, + { + "start": 1343.34, + "end": 1345.56, + "probability": 0.932 + }, + { + "start": 1346.16, + "end": 1349.68, + "probability": 0.9842 + }, + { + "start": 1350.8, + "end": 1351.64, + "probability": 0.9415 + }, + { + "start": 1352.5, + "end": 1354.9, + "probability": 0.8184 + }, + { + "start": 1355.44, + "end": 1358.5, + "probability": 0.9868 + }, + { + "start": 1359.12, + "end": 1366.64, + "probability": 0.8146 + }, + { + "start": 1367.7, + "end": 1372.86, + "probability": 0.9896 + }, + { + "start": 1373.62, + "end": 1379.5, + "probability": 0.9375 + }, + { + "start": 1379.9, + "end": 1380.12, + "probability": 0.7462 + }, + { + "start": 1381.02, + "end": 1382.74, + "probability": 0.8514 + }, + { + "start": 1382.92, + "end": 1385.28, + "probability": 0.9216 + }, + { + "start": 1385.42, + "end": 1387.54, + "probability": 0.9189 + }, + { + "start": 1388.58, + "end": 1389.94, + "probability": 0.865 + }, + { + "start": 1390.02, + "end": 1394.7, + "probability": 0.9843 + }, + { + "start": 1394.92, + "end": 1396.14, + "probability": 0.9266 + }, + { + "start": 1396.28, + "end": 1401.24, + "probability": 0.8861 + }, + { + "start": 1401.74, + "end": 1402.92, + "probability": 0.495 + }, + { + "start": 1403.0, + "end": 1405.7, + "probability": 0.5435 + }, + { + "start": 1405.74, + "end": 1407.5, + "probability": 0.9245 + }, + { + "start": 1411.72, + "end": 1413.66, + "probability": 0.7191 + }, + { + "start": 1413.84, + "end": 1416.07, + "probability": 0.8437 + }, + { + "start": 1417.24, + "end": 1421.64, + "probability": 0.9864 + }, + { + "start": 1421.82, + "end": 1425.0, + "probability": 0.9967 + }, + { + "start": 1425.62, + "end": 1427.02, + "probability": 0.9945 + }, + { + "start": 1427.7, + "end": 1432.44, + "probability": 0.998 + }, + { + "start": 1432.44, + "end": 1437.58, + "probability": 0.9988 + }, + { + "start": 1438.12, + "end": 1440.06, + "probability": 0.3946 + }, + { + "start": 1440.1, + "end": 1440.26, + "probability": 0.0103 + }, + { + "start": 1440.36, + "end": 1440.36, + "probability": 0.0755 + }, + { + "start": 1440.36, + "end": 1441.28, + "probability": 0.5381 + }, + { + "start": 1441.28, + "end": 1441.77, + "probability": 0.3257 + }, + { + "start": 1443.06, + "end": 1445.9, + "probability": 0.9919 + }, + { + "start": 1447.21, + "end": 1448.84, + "probability": 0.1911 + }, + { + "start": 1449.82, + "end": 1450.7, + "probability": 0.0115 + }, + { + "start": 1450.84, + "end": 1453.5, + "probability": 0.6032 + }, + { + "start": 1455.02, + "end": 1461.46, + "probability": 0.1493 + }, + { + "start": 1461.96, + "end": 1465.8, + "probability": 0.7339 + }, + { + "start": 1466.78, + "end": 1468.82, + "probability": 0.5353 + }, + { + "start": 1469.0, + "end": 1470.58, + "probability": 0.6411 + }, + { + "start": 1471.0, + "end": 1476.14, + "probability": 0.0528 + }, + { + "start": 1476.14, + "end": 1476.98, + "probability": 0.0833 + }, + { + "start": 1477.58, + "end": 1478.39, + "probability": 0.5244 + }, + { + "start": 1478.7, + "end": 1480.13, + "probability": 0.8397 + }, + { + "start": 1480.48, + "end": 1487.92, + "probability": 0.0565 + }, + { + "start": 1487.92, + "end": 1488.54, + "probability": 0.0265 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.0, + "end": 1545.0, + "probability": 0.0 + }, + { + "start": 1545.14, + "end": 1545.42, + "probability": 0.0917 + }, + { + "start": 1545.42, + "end": 1545.42, + "probability": 0.0912 + }, + { + "start": 1545.42, + "end": 1545.42, + "probability": 0.3838 + }, + { + "start": 1545.42, + "end": 1545.42, + "probability": 0.155 + }, + { + "start": 1545.42, + "end": 1548.26, + "probability": 0.6612 + }, + { + "start": 1549.26, + "end": 1555.26, + "probability": 0.9006 + }, + { + "start": 1555.98, + "end": 1559.22, + "probability": 0.6631 + }, + { + "start": 1559.78, + "end": 1561.02, + "probability": 0.7164 + }, + { + "start": 1561.96, + "end": 1564.22, + "probability": 0.8843 + }, + { + "start": 1564.82, + "end": 1566.14, + "probability": 0.748 + }, + { + "start": 1567.44, + "end": 1567.66, + "probability": 0.0156 + }, + { + "start": 1567.66, + "end": 1570.46, + "probability": 0.8105 + }, + { + "start": 1571.62, + "end": 1575.86, + "probability": 0.9658 + }, + { + "start": 1576.06, + "end": 1577.46, + "probability": 0.9899 + }, + { + "start": 1578.78, + "end": 1579.5, + "probability": 0.0476 + }, + { + "start": 1579.5, + "end": 1580.22, + "probability": 0.4589 + }, + { + "start": 1580.56, + "end": 1580.56, + "probability": 0.1082 + }, + { + "start": 1580.56, + "end": 1580.88, + "probability": 0.3034 + }, + { + "start": 1580.88, + "end": 1584.84, + "probability": 0.629 + }, + { + "start": 1584.96, + "end": 1586.46, + "probability": 0.6014 + }, + { + "start": 1586.9, + "end": 1590.34, + "probability": 0.9717 + }, + { + "start": 1591.12, + "end": 1591.12, + "probability": 0.0015 + }, + { + "start": 1591.26, + "end": 1591.52, + "probability": 0.202 + }, + { + "start": 1591.94, + "end": 1597.12, + "probability": 0.925 + }, + { + "start": 1597.12, + "end": 1600.9, + "probability": 0.514 + }, + { + "start": 1601.52, + "end": 1601.9, + "probability": 0.77 + }, + { + "start": 1602.24, + "end": 1603.4, + "probability": 0.9946 + }, + { + "start": 1603.74, + "end": 1605.28, + "probability": 0.7329 + }, + { + "start": 1605.38, + "end": 1607.1, + "probability": 0.9028 + }, + { + "start": 1607.12, + "end": 1608.9, + "probability": 0.9592 + }, + { + "start": 1609.3, + "end": 1610.78, + "probability": 0.7576 + }, + { + "start": 1611.24, + "end": 1611.26, + "probability": 0.0121 + }, + { + "start": 1611.26, + "end": 1611.26, + "probability": 0.193 + }, + { + "start": 1611.26, + "end": 1613.88, + "probability": 0.8756 + }, + { + "start": 1613.88, + "end": 1618.0, + "probability": 0.9546 + }, + { + "start": 1618.4, + "end": 1618.44, + "probability": 0.0687 + }, + { + "start": 1618.44, + "end": 1618.74, + "probability": 0.7554 + }, + { + "start": 1618.86, + "end": 1621.52, + "probability": 0.958 + }, + { + "start": 1621.88, + "end": 1626.14, + "probability": 0.9941 + }, + { + "start": 1626.26, + "end": 1628.38, + "probability": 0.6747 + }, + { + "start": 1629.08, + "end": 1631.28, + "probability": 0.8328 + }, + { + "start": 1631.46, + "end": 1632.2, + "probability": 0.8676 + }, + { + "start": 1632.54, + "end": 1634.48, + "probability": 0.8508 + }, + { + "start": 1634.56, + "end": 1635.9, + "probability": 0.9156 + }, + { + "start": 1636.22, + "end": 1637.16, + "probability": 0.9503 + }, + { + "start": 1637.22, + "end": 1638.48, + "probability": 0.9919 + }, + { + "start": 1639.02, + "end": 1639.02, + "probability": 0.005 + }, + { + "start": 1639.02, + "end": 1643.34, + "probability": 0.8784 + }, + { + "start": 1643.72, + "end": 1644.14, + "probability": 0.9006 + }, + { + "start": 1644.32, + "end": 1645.24, + "probability": 0.9897 + }, + { + "start": 1645.3, + "end": 1646.74, + "probability": 0.9863 + }, + { + "start": 1646.84, + "end": 1647.76, + "probability": 0.7918 + }, + { + "start": 1648.2, + "end": 1650.1, + "probability": 0.9917 + }, + { + "start": 1650.52, + "end": 1652.66, + "probability": 0.9181 + }, + { + "start": 1653.64, + "end": 1653.92, + "probability": 0.7498 + }, + { + "start": 1654.24, + "end": 1656.18, + "probability": 0.6555 + }, + { + "start": 1656.2, + "end": 1658.96, + "probability": 0.7974 + }, + { + "start": 1659.2, + "end": 1661.92, + "probability": 0.8971 + }, + { + "start": 1662.28, + "end": 1662.54, + "probability": 0.9043 + }, + { + "start": 1663.1, + "end": 1668.18, + "probability": 0.7787 + }, + { + "start": 1669.04, + "end": 1676.5, + "probability": 0.8923 + }, + { + "start": 1676.5, + "end": 1681.76, + "probability": 0.9743 + }, + { + "start": 1682.84, + "end": 1685.12, + "probability": 0.9083 + }, + { + "start": 1685.3, + "end": 1688.82, + "probability": 0.9675 + }, + { + "start": 1689.64, + "end": 1689.94, + "probability": 0.797 + }, + { + "start": 1689.98, + "end": 1692.0, + "probability": 0.6908 + }, + { + "start": 1692.16, + "end": 1693.86, + "probability": 0.9418 + }, + { + "start": 1697.12, + "end": 1697.98, + "probability": 0.7473 + }, + { + "start": 1698.2, + "end": 1701.26, + "probability": 0.7837 + }, + { + "start": 1701.98, + "end": 1701.98, + "probability": 0.5037 + }, + { + "start": 1701.98, + "end": 1702.5, + "probability": 0.738 + }, + { + "start": 1702.86, + "end": 1706.2, + "probability": 0.9793 + }, + { + "start": 1706.94, + "end": 1707.68, + "probability": 0.8505 + }, + { + "start": 1708.34, + "end": 1710.7, + "probability": 0.988 + }, + { + "start": 1711.06, + "end": 1716.52, + "probability": 0.9863 + }, + { + "start": 1717.1, + "end": 1718.12, + "probability": 0.279 + }, + { + "start": 1718.38, + "end": 1718.68, + "probability": 0.866 + }, + { + "start": 1719.14, + "end": 1719.2, + "probability": 0.2864 + }, + { + "start": 1719.2, + "end": 1722.68, + "probability": 0.8577 + }, + { + "start": 1723.22, + "end": 1731.56, + "probability": 0.9901 + }, + { + "start": 1732.12, + "end": 1737.26, + "probability": 0.9915 + }, + { + "start": 1737.38, + "end": 1738.26, + "probability": 0.8315 + }, + { + "start": 1738.72, + "end": 1739.48, + "probability": 0.9844 + }, + { + "start": 1740.86, + "end": 1745.82, + "probability": 0.984 + }, + { + "start": 1745.82, + "end": 1750.84, + "probability": 0.9857 + }, + { + "start": 1751.68, + "end": 1755.12, + "probability": 0.7915 + }, + { + "start": 1756.16, + "end": 1759.84, + "probability": 0.7746 + }, + { + "start": 1760.42, + "end": 1764.34, + "probability": 0.9901 + }, + { + "start": 1765.02, + "end": 1766.2, + "probability": 0.9626 + }, + { + "start": 1766.4, + "end": 1766.62, + "probability": 0.6757 + }, + { + "start": 1767.48, + "end": 1774.78, + "probability": 0.9645 + }, + { + "start": 1776.0, + "end": 1780.36, + "probability": 0.9803 + }, + { + "start": 1780.44, + "end": 1781.44, + "probability": 0.8839 + }, + { + "start": 1781.62, + "end": 1783.04, + "probability": 0.7155 + }, + { + "start": 1783.68, + "end": 1788.14, + "probability": 0.9543 + }, + { + "start": 1790.04, + "end": 1792.08, + "probability": 0.9058 + }, + { + "start": 1792.42, + "end": 1795.04, + "probability": 0.9487 + }, + { + "start": 1795.4, + "end": 1796.42, + "probability": 0.6868 + }, + { + "start": 1796.7, + "end": 1799.18, + "probability": 0.9211 + }, + { + "start": 1799.68, + "end": 1800.66, + "probability": 0.943 + }, + { + "start": 1801.08, + "end": 1806.56, + "probability": 0.9658 + }, + { + "start": 1807.43, + "end": 1814.74, + "probability": 0.9894 + }, + { + "start": 1814.82, + "end": 1817.18, + "probability": 0.7438 + }, + { + "start": 1817.7, + "end": 1818.62, + "probability": 0.746 + }, + { + "start": 1818.7, + "end": 1821.7, + "probability": 0.8936 + }, + { + "start": 1822.04, + "end": 1824.36, + "probability": 0.7756 + }, + { + "start": 1824.36, + "end": 1827.2, + "probability": 0.9568 + }, + { + "start": 1827.28, + "end": 1828.02, + "probability": 0.7661 + }, + { + "start": 1828.2, + "end": 1828.69, + "probability": 0.3477 + }, + { + "start": 1830.0, + "end": 1830.96, + "probability": 0.9238 + }, + { + "start": 1831.08, + "end": 1834.82, + "probability": 0.9531 + }, + { + "start": 1835.42, + "end": 1836.76, + "probability": 0.7672 + }, + { + "start": 1836.9, + "end": 1837.7, + "probability": 0.6842 + }, + { + "start": 1837.76, + "end": 1838.8, + "probability": 0.7186 + }, + { + "start": 1839.24, + "end": 1840.7, + "probability": 0.9242 + }, + { + "start": 1841.18, + "end": 1841.32, + "probability": 0.8753 + }, + { + "start": 1841.36, + "end": 1843.54, + "probability": 0.8827 + }, + { + "start": 1843.64, + "end": 1844.82, + "probability": 0.9665 + }, + { + "start": 1844.9, + "end": 1845.94, + "probability": 0.9233 + }, + { + "start": 1846.22, + "end": 1848.28, + "probability": 0.8795 + }, + { + "start": 1848.68, + "end": 1850.76, + "probability": 0.8638 + }, + { + "start": 1850.8, + "end": 1851.82, + "probability": 0.7899 + }, + { + "start": 1852.36, + "end": 1858.18, + "probability": 0.9536 + }, + { + "start": 1858.9, + "end": 1865.72, + "probability": 0.9139 + }, + { + "start": 1866.18, + "end": 1867.3, + "probability": 0.8328 + }, + { + "start": 1867.66, + "end": 1869.46, + "probability": 0.9375 + }, + { + "start": 1870.1, + "end": 1873.66, + "probability": 0.9799 + }, + { + "start": 1873.66, + "end": 1877.42, + "probability": 0.998 + }, + { + "start": 1877.52, + "end": 1878.28, + "probability": 0.8451 + }, + { + "start": 1878.6, + "end": 1879.44, + "probability": 0.8508 + }, + { + "start": 1879.74, + "end": 1880.68, + "probability": 0.9878 + }, + { + "start": 1881.26, + "end": 1883.96, + "probability": 0.9876 + }, + { + "start": 1883.96, + "end": 1888.4, + "probability": 0.9635 + }, + { + "start": 1888.5, + "end": 1889.64, + "probability": 0.8661 + }, + { + "start": 1890.28, + "end": 1896.26, + "probability": 0.9572 + }, + { + "start": 1896.32, + "end": 1897.54, + "probability": 0.7343 + }, + { + "start": 1897.9, + "end": 1899.82, + "probability": 0.7843 + }, + { + "start": 1900.42, + "end": 1903.38, + "probability": 0.7527 + }, + { + "start": 1903.46, + "end": 1903.74, + "probability": 0.6128 + }, + { + "start": 1903.82, + "end": 1906.96, + "probability": 0.9877 + }, + { + "start": 1907.38, + "end": 1909.9, + "probability": 0.9901 + }, + { + "start": 1910.28, + "end": 1914.08, + "probability": 0.6948 + }, + { + "start": 1914.42, + "end": 1916.7, + "probability": 0.9984 + }, + { + "start": 1917.12, + "end": 1920.39, + "probability": 0.9733 + }, + { + "start": 1921.14, + "end": 1922.88, + "probability": 0.9208 + }, + { + "start": 1923.24, + "end": 1924.54, + "probability": 0.4914 + }, + { + "start": 1924.96, + "end": 1925.98, + "probability": 0.8442 + }, + { + "start": 1926.28, + "end": 1928.88, + "probability": 0.9889 + }, + { + "start": 1929.84, + "end": 1933.12, + "probability": 0.9972 + }, + { + "start": 1933.22, + "end": 1933.94, + "probability": 0.9012 + }, + { + "start": 1934.48, + "end": 1936.24, + "probability": 0.8603 + }, + { + "start": 1936.88, + "end": 1939.44, + "probability": 0.9923 + }, + { + "start": 1939.52, + "end": 1941.06, + "probability": 0.7527 + }, + { + "start": 1941.54, + "end": 1942.64, + "probability": 0.6962 + }, + { + "start": 1942.8, + "end": 1944.9, + "probability": 0.7616 + }, + { + "start": 1945.02, + "end": 1946.5, + "probability": 0.7664 + }, + { + "start": 1946.56, + "end": 1947.5, + "probability": 0.9618 + }, + { + "start": 1947.62, + "end": 1949.54, + "probability": 0.923 + }, + { + "start": 1950.2, + "end": 1954.42, + "probability": 0.991 + }, + { + "start": 1954.42, + "end": 1954.78, + "probability": 0.6885 + }, + { + "start": 1955.66, + "end": 1959.14, + "probability": 0.899 + }, + { + "start": 1959.56, + "end": 1963.64, + "probability": 0.9189 + }, + { + "start": 1964.24, + "end": 1964.86, + "probability": 0.9232 + }, + { + "start": 1965.0, + "end": 1968.74, + "probability": 0.998 + }, + { + "start": 1969.26, + "end": 1970.67, + "probability": 0.7598 + }, + { + "start": 1971.52, + "end": 1972.24, + "probability": 0.5212 + }, + { + "start": 1972.32, + "end": 1972.98, + "probability": 0.9004 + }, + { + "start": 1973.48, + "end": 1978.84, + "probability": 0.9904 + }, + { + "start": 1979.28, + "end": 1980.04, + "probability": 0.9481 + }, + { + "start": 1980.12, + "end": 1981.1, + "probability": 0.8167 + }, + { + "start": 1981.52, + "end": 1982.38, + "probability": 0.7537 + }, + { + "start": 1982.64, + "end": 1986.34, + "probability": 0.9895 + }, + { + "start": 1987.06, + "end": 1992.88, + "probability": 0.9803 + }, + { + "start": 1992.88, + "end": 1996.26, + "probability": 0.9804 + }, + { + "start": 1997.52, + "end": 1998.68, + "probability": 0.8217 + }, + { + "start": 1999.36, + "end": 2000.2, + "probability": 0.4032 + }, + { + "start": 2000.32, + "end": 2000.4, + "probability": 0.8769 + }, + { + "start": 2000.48, + "end": 2002.24, + "probability": 0.9736 + }, + { + "start": 2002.58, + "end": 2003.7, + "probability": 0.9852 + }, + { + "start": 2003.92, + "end": 2004.2, + "probability": 0.7684 + }, + { + "start": 2004.52, + "end": 2005.66, + "probability": 0.7913 + }, + { + "start": 2006.08, + "end": 2006.78, + "probability": 0.8296 + }, + { + "start": 2007.2, + "end": 2007.76, + "probability": 0.9194 + }, + { + "start": 2007.88, + "end": 2012.16, + "probability": 0.9897 + }, + { + "start": 2012.28, + "end": 2015.24, + "probability": 0.9962 + }, + { + "start": 2015.24, + "end": 2019.2, + "probability": 0.9979 + }, + { + "start": 2019.22, + "end": 2021.06, + "probability": 0.8246 + }, + { + "start": 2021.34, + "end": 2023.88, + "probability": 0.7807 + }, + { + "start": 2023.98, + "end": 2024.76, + "probability": 0.8938 + }, + { + "start": 2025.44, + "end": 2028.8, + "probability": 0.9872 + }, + { + "start": 2030.36, + "end": 2032.38, + "probability": 0.6176 + }, + { + "start": 2032.4, + "end": 2034.8, + "probability": 0.9574 + }, + { + "start": 2035.32, + "end": 2038.88, + "probability": 0.9851 + }, + { + "start": 2039.08, + "end": 2039.8, + "probability": 0.8446 + }, + { + "start": 2040.72, + "end": 2043.44, + "probability": 0.9193 + }, + { + "start": 2043.52, + "end": 2045.12, + "probability": 0.9581 + }, + { + "start": 2046.26, + "end": 2047.26, + "probability": 0.6279 + }, + { + "start": 2047.54, + "end": 2049.64, + "probability": 0.7864 + }, + { + "start": 2049.66, + "end": 2049.82, + "probability": 0.5168 + }, + { + "start": 2049.96, + "end": 2052.68, + "probability": 0.609 + }, + { + "start": 2052.96, + "end": 2053.1, + "probability": 0.2945 + }, + { + "start": 2053.1, + "end": 2058.04, + "probability": 0.9734 + }, + { + "start": 2058.56, + "end": 2060.26, + "probability": 0.9301 + }, + { + "start": 2060.46, + "end": 2062.48, + "probability": 0.9543 + }, + { + "start": 2063.26, + "end": 2063.96, + "probability": 0.5042 + }, + { + "start": 2064.0, + "end": 2064.36, + "probability": 0.3035 + }, + { + "start": 2064.48, + "end": 2067.26, + "probability": 0.7479 + }, + { + "start": 2067.94, + "end": 2069.28, + "probability": 0.9891 + }, + { + "start": 2073.86, + "end": 2076.62, + "probability": 0.7336 + }, + { + "start": 2077.38, + "end": 2082.06, + "probability": 0.9711 + }, + { + "start": 2082.44, + "end": 2085.7, + "probability": 0.8696 + }, + { + "start": 2086.3, + "end": 2090.44, + "probability": 0.942 + }, + { + "start": 2090.7, + "end": 2091.56, + "probability": 0.4868 + }, + { + "start": 2091.9, + "end": 2095.32, + "probability": 0.9962 + }, + { + "start": 2095.78, + "end": 2096.72, + "probability": 0.8831 + }, + { + "start": 2096.86, + "end": 2098.18, + "probability": 0.6703 + }, + { + "start": 2098.28, + "end": 2100.26, + "probability": 0.9194 + }, + { + "start": 2100.68, + "end": 2104.22, + "probability": 0.8742 + }, + { + "start": 2105.04, + "end": 2106.46, + "probability": 0.8721 + }, + { + "start": 2106.52, + "end": 2107.86, + "probability": 0.9119 + }, + { + "start": 2107.98, + "end": 2108.54, + "probability": 0.8603 + }, + { + "start": 2108.62, + "end": 2109.78, + "probability": 0.9733 + }, + { + "start": 2110.3, + "end": 2110.96, + "probability": 0.9548 + }, + { + "start": 2111.3, + "end": 2115.12, + "probability": 0.9966 + }, + { + "start": 2115.52, + "end": 2115.94, + "probability": 0.5547 + }, + { + "start": 2116.94, + "end": 2118.82, + "probability": 0.8907 + }, + { + "start": 2119.22, + "end": 2121.48, + "probability": 0.9548 + }, + { + "start": 2121.76, + "end": 2121.9, + "probability": 0.4925 + }, + { + "start": 2122.02, + "end": 2125.94, + "probability": 0.8472 + }, + { + "start": 2126.28, + "end": 2129.4, + "probability": 0.9941 + }, + { + "start": 2129.76, + "end": 2130.71, + "probability": 0.9044 + }, + { + "start": 2131.44, + "end": 2133.42, + "probability": 0.8062 + }, + { + "start": 2133.56, + "end": 2134.76, + "probability": 0.9635 + }, + { + "start": 2135.14, + "end": 2136.64, + "probability": 0.9535 + }, + { + "start": 2137.12, + "end": 2139.02, + "probability": 0.9832 + }, + { + "start": 2139.26, + "end": 2142.68, + "probability": 0.9341 + }, + { + "start": 2143.32, + "end": 2147.94, + "probability": 0.911 + }, + { + "start": 2148.28, + "end": 2149.3, + "probability": 0.949 + }, + { + "start": 2149.76, + "end": 2152.0, + "probability": 0.963 + }, + { + "start": 2152.56, + "end": 2153.14, + "probability": 0.9583 + }, + { + "start": 2153.22, + "end": 2155.36, + "probability": 0.9962 + }, + { + "start": 2155.86, + "end": 2156.48, + "probability": 0.9724 + }, + { + "start": 2156.66, + "end": 2158.08, + "probability": 0.9 + }, + { + "start": 2158.14, + "end": 2159.86, + "probability": 0.9827 + }, + { + "start": 2160.32, + "end": 2163.04, + "probability": 0.9757 + }, + { + "start": 2163.14, + "end": 2164.23, + "probability": 0.9408 + }, + { + "start": 2164.54, + "end": 2167.26, + "probability": 0.9414 + }, + { + "start": 2167.82, + "end": 2169.76, + "probability": 0.7268 + }, + { + "start": 2169.88, + "end": 2171.14, + "probability": 0.8453 + }, + { + "start": 2171.28, + "end": 2171.72, + "probability": 0.8574 + }, + { + "start": 2172.22, + "end": 2175.24, + "probability": 0.9971 + }, + { + "start": 2175.84, + "end": 2177.64, + "probability": 0.9187 + }, + { + "start": 2177.84, + "end": 2178.9, + "probability": 0.9473 + }, + { + "start": 2179.3, + "end": 2183.48, + "probability": 0.9736 + }, + { + "start": 2183.98, + "end": 2185.04, + "probability": 0.8194 + }, + { + "start": 2185.78, + "end": 2188.1, + "probability": 0.8014 + }, + { + "start": 2188.3, + "end": 2189.22, + "probability": 0.8991 + }, + { + "start": 2189.34, + "end": 2190.54, + "probability": 0.4613 + }, + { + "start": 2190.6, + "end": 2190.9, + "probability": 0.5616 + }, + { + "start": 2190.9, + "end": 2190.9, + "probability": 0.3704 + }, + { + "start": 2190.98, + "end": 2194.64, + "probability": 0.9891 + }, + { + "start": 2194.64, + "end": 2195.3, + "probability": 0.563 + }, + { + "start": 2195.76, + "end": 2198.36, + "probability": 0.6912 + }, + { + "start": 2198.38, + "end": 2199.84, + "probability": 0.912 + }, + { + "start": 2200.54, + "end": 2204.18, + "probability": 0.795 + }, + { + "start": 2204.54, + "end": 2206.18, + "probability": 0.7908 + }, + { + "start": 2206.7, + "end": 2211.32, + "probability": 0.9 + }, + { + "start": 2212.06, + "end": 2213.38, + "probability": 0.9951 + }, + { + "start": 2214.7, + "end": 2216.38, + "probability": 0.9543 + }, + { + "start": 2217.04, + "end": 2220.3, + "probability": 0.9585 + }, + { + "start": 2220.72, + "end": 2221.6, + "probability": 0.6678 + }, + { + "start": 2221.74, + "end": 2224.6, + "probability": 0.9972 + }, + { + "start": 2225.2, + "end": 2228.5, + "probability": 0.7757 + }, + { + "start": 2228.82, + "end": 2229.9, + "probability": 0.9103 + }, + { + "start": 2230.02, + "end": 2231.42, + "probability": 0.7618 + }, + { + "start": 2231.72, + "end": 2232.82, + "probability": 0.7455 + }, + { + "start": 2233.08, + "end": 2235.6, + "probability": 0.9764 + }, + { + "start": 2235.96, + "end": 2238.74, + "probability": 0.6329 + }, + { + "start": 2238.86, + "end": 2242.68, + "probability": 0.9795 + }, + { + "start": 2242.8, + "end": 2244.76, + "probability": 0.9068 + }, + { + "start": 2244.96, + "end": 2246.06, + "probability": 0.9854 + }, + { + "start": 2246.34, + "end": 2246.92, + "probability": 0.8145 + }, + { + "start": 2247.0, + "end": 2248.88, + "probability": 0.9893 + }, + { + "start": 2248.98, + "end": 2253.12, + "probability": 0.9983 + }, + { + "start": 2253.18, + "end": 2254.16, + "probability": 0.9768 + }, + { + "start": 2254.56, + "end": 2261.06, + "probability": 0.985 + }, + { + "start": 2261.18, + "end": 2262.14, + "probability": 0.8464 + }, + { + "start": 2262.86, + "end": 2264.68, + "probability": 0.7013 + }, + { + "start": 2265.04, + "end": 2266.16, + "probability": 0.7477 + }, + { + "start": 2266.44, + "end": 2269.92, + "probability": 0.9707 + }, + { + "start": 2270.6, + "end": 2272.5, + "probability": 0.8333 + }, + { + "start": 2272.78, + "end": 2274.26, + "probability": 0.9572 + }, + { + "start": 2274.32, + "end": 2278.34, + "probability": 0.8252 + }, + { + "start": 2278.9, + "end": 2280.76, + "probability": 0.8868 + }, + { + "start": 2281.46, + "end": 2283.14, + "probability": 0.6956 + }, + { + "start": 2283.3, + "end": 2283.8, + "probability": 0.4372 + }, + { + "start": 2283.96, + "end": 2284.14, + "probability": 0.8452 + }, + { + "start": 2284.64, + "end": 2285.22, + "probability": 0.9631 + }, + { + "start": 2285.32, + "end": 2286.16, + "probability": 0.7393 + }, + { + "start": 2286.44, + "end": 2290.0, + "probability": 0.9829 + }, + { + "start": 2290.02, + "end": 2291.24, + "probability": 0.9937 + }, + { + "start": 2293.78, + "end": 2294.12, + "probability": 0.8622 + }, + { + "start": 2294.66, + "end": 2295.5, + "probability": 0.7754 + }, + { + "start": 2295.54, + "end": 2295.9, + "probability": 0.5939 + }, + { + "start": 2296.12, + "end": 2296.64, + "probability": 0.737 + }, + { + "start": 2296.78, + "end": 2297.82, + "probability": 0.8615 + }, + { + "start": 2298.22, + "end": 2299.52, + "probability": 0.9436 + }, + { + "start": 2300.26, + "end": 2303.32, + "probability": 0.9823 + }, + { + "start": 2303.7, + "end": 2304.76, + "probability": 0.9751 + }, + { + "start": 2305.06, + "end": 2310.38, + "probability": 0.9945 + }, + { + "start": 2311.2, + "end": 2313.04, + "probability": 0.9634 + }, + { + "start": 2313.24, + "end": 2315.06, + "probability": 0.9303 + }, + { + "start": 2315.16, + "end": 2315.76, + "probability": 0.9197 + }, + { + "start": 2315.82, + "end": 2318.3, + "probability": 0.9902 + }, + { + "start": 2318.6, + "end": 2321.74, + "probability": 0.953 + }, + { + "start": 2322.18, + "end": 2327.48, + "probability": 0.9763 + }, + { + "start": 2327.96, + "end": 2331.22, + "probability": 0.9958 + }, + { + "start": 2331.62, + "end": 2332.14, + "probability": 0.654 + }, + { + "start": 2332.68, + "end": 2333.52, + "probability": 0.8239 + }, + { + "start": 2333.84, + "end": 2334.88, + "probability": 0.9983 + }, + { + "start": 2335.32, + "end": 2336.06, + "probability": 0.7041 + }, + { + "start": 2336.06, + "end": 2336.5, + "probability": 0.8891 + }, + { + "start": 2336.86, + "end": 2342.06, + "probability": 0.9926 + }, + { + "start": 2342.06, + "end": 2347.2, + "probability": 0.9992 + }, + { + "start": 2347.58, + "end": 2349.14, + "probability": 0.9048 + }, + { + "start": 2349.42, + "end": 2350.3, + "probability": 0.7509 + }, + { + "start": 2350.48, + "end": 2351.84, + "probability": 0.9898 + }, + { + "start": 2352.24, + "end": 2353.26, + "probability": 0.7101 + }, + { + "start": 2353.8, + "end": 2355.58, + "probability": 0.9792 + }, + { + "start": 2356.26, + "end": 2357.94, + "probability": 0.9659 + }, + { + "start": 2358.32, + "end": 2361.48, + "probability": 0.9259 + }, + { + "start": 2361.78, + "end": 2364.44, + "probability": 0.9878 + }, + { + "start": 2364.5, + "end": 2365.02, + "probability": 0.9712 + }, + { + "start": 2365.3, + "end": 2370.66, + "probability": 0.9881 + }, + { + "start": 2370.7, + "end": 2373.4, + "probability": 0.8735 + }, + { + "start": 2373.4, + "end": 2378.26, + "probability": 0.8312 + }, + { + "start": 2378.54, + "end": 2380.34, + "probability": 0.7197 + }, + { + "start": 2381.0, + "end": 2384.8, + "probability": 0.7256 + }, + { + "start": 2385.32, + "end": 2386.72, + "probability": 0.9474 + }, + { + "start": 2386.74, + "end": 2387.08, + "probability": 0.6444 + }, + { + "start": 2387.14, + "end": 2388.24, + "probability": 0.8357 + }, + { + "start": 2388.56, + "end": 2389.0, + "probability": 0.7702 + }, + { + "start": 2389.08, + "end": 2390.34, + "probability": 0.9897 + }, + { + "start": 2390.76, + "end": 2392.18, + "probability": 0.8886 + }, + { + "start": 2392.5, + "end": 2393.2, + "probability": 0.8526 + }, + { + "start": 2393.36, + "end": 2394.58, + "probability": 0.867 + }, + { + "start": 2395.22, + "end": 2398.9, + "probability": 0.8094 + }, + { + "start": 2399.42, + "end": 2402.82, + "probability": 0.9802 + }, + { + "start": 2402.82, + "end": 2406.88, + "probability": 0.8965 + }, + { + "start": 2406.92, + "end": 2409.22, + "probability": 0.6747 + }, + { + "start": 2409.9, + "end": 2410.06, + "probability": 0.1009 + }, + { + "start": 2410.14, + "end": 2414.08, + "probability": 0.8906 + }, + { + "start": 2414.12, + "end": 2416.26, + "probability": 0.8818 + }, + { + "start": 2416.98, + "end": 2420.4, + "probability": 0.9575 + }, + { + "start": 2420.58, + "end": 2420.78, + "probability": 0.1451 + }, + { + "start": 2423.8, + "end": 2424.36, + "probability": 0.0422 + }, + { + "start": 2424.36, + "end": 2427.4, + "probability": 0.8598 + }, + { + "start": 2427.44, + "end": 2428.5, + "probability": 0.7496 + }, + { + "start": 2429.0, + "end": 2429.24, + "probability": 0.6818 + }, + { + "start": 2429.28, + "end": 2430.06, + "probability": 0.8582 + }, + { + "start": 2430.08, + "end": 2430.9, + "probability": 0.8469 + }, + { + "start": 2431.24, + "end": 2432.82, + "probability": 0.8682 + }, + { + "start": 2433.3, + "end": 2435.4, + "probability": 0.9258 + }, + { + "start": 2435.48, + "end": 2437.06, + "probability": 0.9683 + }, + { + "start": 2437.58, + "end": 2440.1, + "probability": 0.9722 + }, + { + "start": 2440.2, + "end": 2440.89, + "probability": 0.8159 + }, + { + "start": 2441.26, + "end": 2442.24, + "probability": 0.8106 + }, + { + "start": 2442.42, + "end": 2444.1, + "probability": 0.8335 + }, + { + "start": 2444.46, + "end": 2446.8, + "probability": 0.8568 + }, + { + "start": 2446.88, + "end": 2447.35, + "probability": 0.6124 + }, + { + "start": 2447.52, + "end": 2449.22, + "probability": 0.6587 + }, + { + "start": 2449.62, + "end": 2452.36, + "probability": 0.9688 + }, + { + "start": 2452.36, + "end": 2455.96, + "probability": 0.9741 + }, + { + "start": 2456.34, + "end": 2457.08, + "probability": 0.8892 + }, + { + "start": 2457.12, + "end": 2460.0, + "probability": 0.9857 + }, + { + "start": 2460.9, + "end": 2462.32, + "probability": 0.781 + }, + { + "start": 2462.38, + "end": 2463.01, + "probability": 0.8354 + }, + { + "start": 2463.48, + "end": 2464.27, + "probability": 0.8652 + }, + { + "start": 2464.64, + "end": 2466.16, + "probability": 0.8787 + }, + { + "start": 2466.22, + "end": 2468.82, + "probability": 0.9634 + }, + { + "start": 2469.3, + "end": 2470.8, + "probability": 0.8743 + }, + { + "start": 2471.1, + "end": 2473.32, + "probability": 0.8271 + }, + { + "start": 2473.66, + "end": 2475.14, + "probability": 0.9722 + }, + { + "start": 2475.24, + "end": 2477.76, + "probability": 0.8921 + }, + { + "start": 2478.24, + "end": 2479.16, + "probability": 0.7235 + }, + { + "start": 2479.26, + "end": 2480.3, + "probability": 0.5901 + }, + { + "start": 2480.6, + "end": 2485.56, + "probability": 0.9854 + }, + { + "start": 2485.86, + "end": 2486.42, + "probability": 0.7469 + }, + { + "start": 2486.5, + "end": 2488.84, + "probability": 0.9956 + }, + { + "start": 2488.84, + "end": 2489.7, + "probability": 0.8273 + }, + { + "start": 2490.64, + "end": 2492.16, + "probability": 0.7325 + }, + { + "start": 2493.38, + "end": 2496.9, + "probability": 0.9281 + }, + { + "start": 2496.94, + "end": 2498.5, + "probability": 0.9808 + }, + { + "start": 2498.58, + "end": 2499.22, + "probability": 0.732 + }, + { + "start": 2499.52, + "end": 2500.34, + "probability": 0.7476 + }, + { + "start": 2500.66, + "end": 2505.56, + "probability": 0.9183 + }, + { + "start": 2505.56, + "end": 2510.2, + "probability": 0.9877 + }, + { + "start": 2510.42, + "end": 2511.08, + "probability": 0.9196 + }, + { + "start": 2512.0, + "end": 2515.88, + "probability": 0.8459 + }, + { + "start": 2516.2, + "end": 2519.68, + "probability": 0.9902 + }, + { + "start": 2520.62, + "end": 2524.95, + "probability": 0.493 + }, + { + "start": 2526.04, + "end": 2528.02, + "probability": 0.7772 + }, + { + "start": 2529.42, + "end": 2533.48, + "probability": 0.862 + }, + { + "start": 2540.5, + "end": 2541.2, + "probability": 0.6153 + }, + { + "start": 2541.78, + "end": 2543.84, + "probability": 0.7705 + }, + { + "start": 2544.74, + "end": 2546.0, + "probability": 0.7389 + }, + { + "start": 2546.88, + "end": 2549.66, + "probability": 0.872 + }, + { + "start": 2549.84, + "end": 2554.4, + "probability": 0.9814 + }, + { + "start": 2555.12, + "end": 2556.98, + "probability": 0.9853 + }, + { + "start": 2557.7, + "end": 2559.42, + "probability": 0.8504 + }, + { + "start": 2560.04, + "end": 2562.96, + "probability": 0.9965 + }, + { + "start": 2563.72, + "end": 2568.12, + "probability": 0.9811 + }, + { + "start": 2568.74, + "end": 2570.27, + "probability": 0.8433 + }, + { + "start": 2571.92, + "end": 2573.44, + "probability": 0.7023 + }, + { + "start": 2574.42, + "end": 2577.24, + "probability": 0.946 + }, + { + "start": 2577.44, + "end": 2577.68, + "probability": 0.7952 + }, + { + "start": 2578.38, + "end": 2579.08, + "probability": 0.4182 + }, + { + "start": 2579.2, + "end": 2579.96, + "probability": 0.7813 + }, + { + "start": 2580.28, + "end": 2582.04, + "probability": 0.6344 + }, + { + "start": 2583.1, + "end": 2585.08, + "probability": 0.8955 + }, + { + "start": 2585.72, + "end": 2589.22, + "probability": 0.9883 + }, + { + "start": 2589.88, + "end": 2591.7, + "probability": 0.9976 + }, + { + "start": 2592.3, + "end": 2595.88, + "probability": 0.9854 + }, + { + "start": 2596.78, + "end": 2597.54, + "probability": 0.8181 + }, + { + "start": 2597.58, + "end": 2603.96, + "probability": 0.9861 + }, + { + "start": 2603.96, + "end": 2609.1, + "probability": 0.9983 + }, + { + "start": 2610.24, + "end": 2613.42, + "probability": 0.9349 + }, + { + "start": 2613.94, + "end": 2618.76, + "probability": 0.8162 + }, + { + "start": 2624.4, + "end": 2628.76, + "probability": 0.9992 + }, + { + "start": 2628.8, + "end": 2630.08, + "probability": 0.8282 + }, + { + "start": 2630.74, + "end": 2635.3, + "probability": 0.9902 + }, + { + "start": 2635.3, + "end": 2639.28, + "probability": 0.8663 + }, + { + "start": 2639.84, + "end": 2641.62, + "probability": 0.787 + }, + { + "start": 2642.06, + "end": 2646.42, + "probability": 0.5472 + }, + { + "start": 2647.22, + "end": 2648.84, + "probability": 0.8779 + }, + { + "start": 2649.52, + "end": 2655.62, + "probability": 0.9932 + }, + { + "start": 2656.4, + "end": 2657.3, + "probability": 0.95 + }, + { + "start": 2657.94, + "end": 2662.62, + "probability": 0.9784 + }, + { + "start": 2663.5, + "end": 2665.94, + "probability": 0.6599 + }, + { + "start": 2666.78, + "end": 2668.9, + "probability": 0.958 + }, + { + "start": 2669.0, + "end": 2669.9, + "probability": 0.7474 + }, + { + "start": 2670.48, + "end": 2671.44, + "probability": 0.8956 + }, + { + "start": 2673.12, + "end": 2675.66, + "probability": 0.8944 + }, + { + "start": 2677.48, + "end": 2680.44, + "probability": 0.8701 + }, + { + "start": 2680.62, + "end": 2683.46, + "probability": 0.7144 + }, + { + "start": 2683.52, + "end": 2685.26, + "probability": 0.8968 + }, + { + "start": 2686.16, + "end": 2688.94, + "probability": 0.9048 + }, + { + "start": 2689.78, + "end": 2692.52, + "probability": 0.834 + }, + { + "start": 2693.22, + "end": 2698.34, + "probability": 0.979 + }, + { + "start": 2699.24, + "end": 2700.0, + "probability": 0.8626 + }, + { + "start": 2700.84, + "end": 2701.9, + "probability": 0.4998 + }, + { + "start": 2702.92, + "end": 2705.12, + "probability": 0.9698 + }, + { + "start": 2705.78, + "end": 2707.18, + "probability": 0.9872 + }, + { + "start": 2707.74, + "end": 2710.32, + "probability": 0.9333 + }, + { + "start": 2711.26, + "end": 2715.1, + "probability": 0.9904 + }, + { + "start": 2715.3, + "end": 2716.52, + "probability": 0.9986 + }, + { + "start": 2717.16, + "end": 2718.4, + "probability": 0.7309 + }, + { + "start": 2719.04, + "end": 2720.72, + "probability": 0.9814 + }, + { + "start": 2721.42, + "end": 2722.64, + "probability": 0.6097 + }, + { + "start": 2723.1, + "end": 2724.46, + "probability": 0.9604 + }, + { + "start": 2725.12, + "end": 2726.22, + "probability": 0.8203 + }, + { + "start": 2726.82, + "end": 2729.18, + "probability": 0.9926 + }, + { + "start": 2730.44, + "end": 2733.18, + "probability": 0.398 + }, + { + "start": 2733.3, + "end": 2735.54, + "probability": 0.8276 + }, + { + "start": 2745.3, + "end": 2745.96, + "probability": 0.6287 + }, + { + "start": 2746.82, + "end": 2747.7, + "probability": 0.854 + }, + { + "start": 2750.02, + "end": 2755.4, + "probability": 0.995 + }, + { + "start": 2755.96, + "end": 2758.62, + "probability": 0.8769 + }, + { + "start": 2759.2, + "end": 2760.18, + "probability": 0.942 + }, + { + "start": 2760.44, + "end": 2760.44, + "probability": 0.3413 + }, + { + "start": 2760.7, + "end": 2761.48, + "probability": 0.8638 + }, + { + "start": 2761.94, + "end": 2763.16, + "probability": 0.9057 + }, + { + "start": 2764.28, + "end": 2765.58, + "probability": 0.7944 + }, + { + "start": 2765.88, + "end": 2767.1, + "probability": 0.9874 + }, + { + "start": 2767.28, + "end": 2773.88, + "probability": 0.979 + }, + { + "start": 2775.1, + "end": 2778.26, + "probability": 0.8704 + }, + { + "start": 2778.82, + "end": 2781.42, + "probability": 0.9312 + }, + { + "start": 2781.72, + "end": 2784.54, + "probability": 0.9351 + }, + { + "start": 2784.84, + "end": 2785.86, + "probability": 0.9702 + }, + { + "start": 2786.02, + "end": 2787.38, + "probability": 0.9143 + }, + { + "start": 2787.8, + "end": 2788.78, + "probability": 0.7418 + }, + { + "start": 2788.86, + "end": 2789.58, + "probability": 0.8884 + }, + { + "start": 2789.8, + "end": 2791.2, + "probability": 0.6666 + }, + { + "start": 2791.84, + "end": 2792.45, + "probability": 0.9136 + }, + { + "start": 2793.02, + "end": 2795.88, + "probability": 0.9922 + }, + { + "start": 2795.96, + "end": 2797.12, + "probability": 0.8616 + }, + { + "start": 2797.54, + "end": 2799.88, + "probability": 0.9409 + }, + { + "start": 2800.0, + "end": 2800.82, + "probability": 0.9768 + }, + { + "start": 2801.32, + "end": 2804.76, + "probability": 0.9803 + }, + { + "start": 2804.76, + "end": 2807.26, + "probability": 0.9993 + }, + { + "start": 2807.9, + "end": 2809.34, + "probability": 0.8236 + }, + { + "start": 2809.36, + "end": 2810.64, + "probability": 0.7878 + }, + { + "start": 2812.58, + "end": 2814.44, + "probability": 0.6533 + }, + { + "start": 2816.46, + "end": 2817.42, + "probability": 0.9531 + }, + { + "start": 2817.56, + "end": 2822.52, + "probability": 0.9766 + }, + { + "start": 2822.78, + "end": 2824.54, + "probability": 0.8975 + }, + { + "start": 2824.78, + "end": 2825.34, + "probability": 0.5262 + }, + { + "start": 2825.42, + "end": 2825.84, + "probability": 0.6769 + }, + { + "start": 2826.24, + "end": 2833.02, + "probability": 0.8643 + }, + { + "start": 2833.22, + "end": 2833.5, + "probability": 0.7219 + }, + { + "start": 2833.98, + "end": 2836.56, + "probability": 0.9373 + }, + { + "start": 2836.76, + "end": 2837.92, + "probability": 0.9409 + }, + { + "start": 2838.06, + "end": 2838.16, + "probability": 0.2531 + }, + { + "start": 2838.78, + "end": 2838.78, + "probability": 0.0039 + }, + { + "start": 2840.32, + "end": 2841.2, + "probability": 0.0095 + }, + { + "start": 2841.26, + "end": 2843.7, + "probability": 0.7595 + }, + { + "start": 2844.04, + "end": 2847.98, + "probability": 0.9429 + }, + { + "start": 2848.64, + "end": 2849.74, + "probability": 0.9231 + }, + { + "start": 2850.18, + "end": 2851.0, + "probability": 0.9254 + }, + { + "start": 2851.48, + "end": 2856.7, + "probability": 0.9759 + }, + { + "start": 2857.64, + "end": 2859.14, + "probability": 0.7227 + }, + { + "start": 2859.72, + "end": 2863.98, + "probability": 0.8601 + }, + { + "start": 2864.46, + "end": 2865.25, + "probability": 0.8545 + }, + { + "start": 2865.36, + "end": 2867.1, + "probability": 0.9717 + }, + { + "start": 2867.68, + "end": 2868.72, + "probability": 0.926 + }, + { + "start": 2869.24, + "end": 2873.64, + "probability": 0.5309 + }, + { + "start": 2874.9, + "end": 2877.49, + "probability": 0.9824 + }, + { + "start": 2878.08, + "end": 2882.22, + "probability": 0.9813 + }, + { + "start": 2882.88, + "end": 2884.14, + "probability": 0.6996 + }, + { + "start": 2884.88, + "end": 2886.26, + "probability": 0.9102 + }, + { + "start": 2887.18, + "end": 2887.62, + "probability": 0.0906 + }, + { + "start": 2888.14, + "end": 2889.6, + "probability": 0.8983 + }, + { + "start": 2890.47, + "end": 2895.99, + "probability": 0.6606 + }, + { + "start": 2897.04, + "end": 2903.66, + "probability": 0.9623 + }, + { + "start": 2904.8, + "end": 2910.44, + "probability": 0.9793 + }, + { + "start": 2910.54, + "end": 2911.52, + "probability": 0.0506 + }, + { + "start": 2911.96, + "end": 2917.36, + "probability": 0.9937 + }, + { + "start": 2918.04, + "end": 2922.3, + "probability": 0.9856 + }, + { + "start": 2923.44, + "end": 2927.76, + "probability": 0.9443 + }, + { + "start": 2928.6, + "end": 2930.16, + "probability": 0.9956 + }, + { + "start": 2930.3, + "end": 2932.14, + "probability": 0.8441 + }, + { + "start": 2932.24, + "end": 2933.5, + "probability": 0.8426 + }, + { + "start": 2934.1, + "end": 2937.14, + "probability": 0.9394 + }, + { + "start": 2938.56, + "end": 2942.68, + "probability": 0.9434 + }, + { + "start": 2942.9, + "end": 2950.22, + "probability": 0.8884 + }, + { + "start": 2950.38, + "end": 2952.84, + "probability": 0.8765 + }, + { + "start": 2953.64, + "end": 2955.3, + "probability": 0.9317 + }, + { + "start": 2956.04, + "end": 2956.64, + "probability": 0.9702 + }, + { + "start": 2957.96, + "end": 2958.96, + "probability": 0.5242 + }, + { + "start": 2959.16, + "end": 2963.74, + "probability": 0.7838 + }, + { + "start": 2967.16, + "end": 2967.82, + "probability": 0.6908 + }, + { + "start": 2968.7, + "end": 2969.92, + "probability": 0.6632 + }, + { + "start": 2969.92, + "end": 2973.34, + "probability": 0.9833 + }, + { + "start": 2973.34, + "end": 2977.64, + "probability": 0.9963 + }, + { + "start": 2978.48, + "end": 2979.36, + "probability": 0.7139 + }, + { + "start": 2980.0, + "end": 2981.12, + "probability": 0.7174 + }, + { + "start": 2981.76, + "end": 2981.9, + "probability": 0.2539 + }, + { + "start": 2982.26, + "end": 2986.2, + "probability": 0.9186 + }, + { + "start": 2986.5, + "end": 2990.46, + "probability": 0.9668 + }, + { + "start": 2990.46, + "end": 2992.32, + "probability": 0.7488 + }, + { + "start": 2994.76, + "end": 2995.26, + "probability": 0.3012 + }, + { + "start": 2995.28, + "end": 2996.82, + "probability": 0.6847 + }, + { + "start": 2996.95, + "end": 2997.56, + "probability": 0.6592 + }, + { + "start": 2997.82, + "end": 2998.96, + "probability": 0.8069 + }, + { + "start": 2999.0, + "end": 2999.48, + "probability": 0.7553 + }, + { + "start": 2999.78, + "end": 3003.1, + "probability": 0.9911 + }, + { + "start": 3003.32, + "end": 3008.26, + "probability": 0.9615 + }, + { + "start": 3008.72, + "end": 3011.56, + "probability": 0.9631 + }, + { + "start": 3011.72, + "end": 3018.08, + "probability": 0.973 + }, + { + "start": 3018.78, + "end": 3020.62, + "probability": 0.588 + }, + { + "start": 3023.4, + "end": 3024.47, + "probability": 0.6707 + }, + { + "start": 3025.44, + "end": 3026.38, + "probability": 0.2808 + }, + { + "start": 3026.86, + "end": 3027.0, + "probability": 0.2903 + }, + { + "start": 3027.0, + "end": 3027.94, + "probability": 0.6413 + }, + { + "start": 3031.36, + "end": 3032.06, + "probability": 0.6241 + }, + { + "start": 3032.2, + "end": 3037.46, + "probability": 0.9479 + }, + { + "start": 3037.46, + "end": 3042.58, + "probability": 0.9949 + }, + { + "start": 3043.58, + "end": 3044.38, + "probability": 0.9274 + }, + { + "start": 3046.6, + "end": 3047.1, + "probability": 0.403 + }, + { + "start": 3047.18, + "end": 3050.1, + "probability": 0.9918 + }, + { + "start": 3053.68, + "end": 3054.02, + "probability": 0.3191 + }, + { + "start": 3054.86, + "end": 3061.17, + "probability": 0.9594 + }, + { + "start": 3061.34, + "end": 3066.26, + "probability": 0.984 + }, + { + "start": 3067.54, + "end": 3071.46, + "probability": 0.9738 + }, + { + "start": 3071.94, + "end": 3073.8, + "probability": 0.8024 + }, + { + "start": 3074.12, + "end": 3076.18, + "probability": 0.9353 + }, + { + "start": 3077.34, + "end": 3079.34, + "probability": 0.9928 + }, + { + "start": 3080.12, + "end": 3084.08, + "probability": 0.9816 + }, + { + "start": 3084.56, + "end": 3087.7, + "probability": 0.9963 + }, + { + "start": 3087.7, + "end": 3091.6, + "probability": 0.9956 + }, + { + "start": 3092.18, + "end": 3093.54, + "probability": 0.5726 + }, + { + "start": 3094.12, + "end": 3095.2, + "probability": 0.8534 + }, + { + "start": 3095.34, + "end": 3095.86, + "probability": 0.8009 + }, + { + "start": 3096.22, + "end": 3103.2, + "probability": 0.9326 + }, + { + "start": 3104.62, + "end": 3106.28, + "probability": 0.7121 + }, + { + "start": 3106.7, + "end": 3109.02, + "probability": 0.9835 + }, + { + "start": 3109.74, + "end": 3113.5, + "probability": 0.9256 + }, + { + "start": 3113.98, + "end": 3118.34, + "probability": 0.9674 + }, + { + "start": 3118.34, + "end": 3122.64, + "probability": 0.944 + }, + { + "start": 3123.48, + "end": 3124.6, + "probability": 0.9927 + }, + { + "start": 3124.98, + "end": 3125.88, + "probability": 0.6661 + }, + { + "start": 3126.32, + "end": 3128.84, + "probability": 0.9653 + }, + { + "start": 3129.2, + "end": 3130.98, + "probability": 0.9568 + }, + { + "start": 3137.08, + "end": 3138.36, + "probability": 0.5895 + }, + { + "start": 3139.34, + "end": 3142.3, + "probability": 0.9933 + }, + { + "start": 3143.14, + "end": 3144.24, + "probability": 0.4967 + }, + { + "start": 3145.02, + "end": 3146.98, + "probability": 0.757 + }, + { + "start": 3147.14, + "end": 3147.96, + "probability": 0.9736 + }, + { + "start": 3148.08, + "end": 3148.64, + "probability": 0.8062 + }, + { + "start": 3149.84, + "end": 3151.64, + "probability": 0.7056 + }, + { + "start": 3151.78, + "end": 3155.18, + "probability": 0.9906 + }, + { + "start": 3156.04, + "end": 3156.28, + "probability": 0.027 + }, + { + "start": 3156.72, + "end": 3160.54, + "probability": 0.9536 + }, + { + "start": 3162.0, + "end": 3165.94, + "probability": 0.4734 + }, + { + "start": 3166.2, + "end": 3168.48, + "probability": 0.7082 + }, + { + "start": 3168.72, + "end": 3169.0, + "probability": 0.5373 + }, + { + "start": 3169.12, + "end": 3172.58, + "probability": 0.7905 + }, + { + "start": 3172.98, + "end": 3173.1, + "probability": 0.0099 + }, + { + "start": 3174.46, + "end": 3176.85, + "probability": 0.759 + }, + { + "start": 3177.6, + "end": 3179.88, + "probability": 0.941 + }, + { + "start": 3180.52, + "end": 3184.16, + "probability": 0.948 + }, + { + "start": 3184.74, + "end": 3186.78, + "probability": 0.4608 + }, + { + "start": 3187.06, + "end": 3187.91, + "probability": 0.7531 + }, + { + "start": 3188.14, + "end": 3189.1, + "probability": 0.2282 + }, + { + "start": 3189.88, + "end": 3190.68, + "probability": 0.486 + }, + { + "start": 3190.68, + "end": 3192.12, + "probability": 0.5559 + }, + { + "start": 3193.26, + "end": 3197.58, + "probability": 0.9709 + }, + { + "start": 3202.12, + "end": 3202.52, + "probability": 0.3655 + }, + { + "start": 3202.76, + "end": 3202.76, + "probability": 0.0005 + }, + { + "start": 3203.88, + "end": 3205.22, + "probability": 0.041 + }, + { + "start": 3207.5, + "end": 3210.28, + "probability": 0.5135 + }, + { + "start": 3211.08, + "end": 3212.34, + "probability": 0.6487 + }, + { + "start": 3212.62, + "end": 3213.26, + "probability": 0.7724 + }, + { + "start": 3213.64, + "end": 3214.52, + "probability": 0.8538 + }, + { + "start": 3214.54, + "end": 3215.88, + "probability": 0.9844 + }, + { + "start": 3216.04, + "end": 3216.5, + "probability": 0.9187 + }, + { + "start": 3216.82, + "end": 3217.3, + "probability": 0.7295 + }, + { + "start": 3217.34, + "end": 3218.28, + "probability": 0.9937 + }, + { + "start": 3218.98, + "end": 3221.26, + "probability": 0.5305 + }, + { + "start": 3223.92, + "end": 3224.99, + "probability": 0.091 + }, + { + "start": 3225.31, + "end": 3225.74, + "probability": 0.4465 + }, + { + "start": 3225.74, + "end": 3226.08, + "probability": 0.2462 + }, + { + "start": 3226.08, + "end": 3226.92, + "probability": 0.7675 + }, + { + "start": 3227.5, + "end": 3230.06, + "probability": 0.9794 + }, + { + "start": 3230.44, + "end": 3230.44, + "probability": 0.1315 + }, + { + "start": 3230.44, + "end": 3234.46, + "probability": 0.8122 + }, + { + "start": 3234.46, + "end": 3239.02, + "probability": 0.9851 + }, + { + "start": 3239.6, + "end": 3242.0, + "probability": 0.5599 + }, + { + "start": 3242.7, + "end": 3245.74, + "probability": 0.9372 + }, + { + "start": 3245.76, + "end": 3249.16, + "probability": 0.9689 + }, + { + "start": 3249.8, + "end": 3254.28, + "probability": 0.9795 + }, + { + "start": 3254.56, + "end": 3255.14, + "probability": 0.6971 + }, + { + "start": 3255.14, + "end": 3260.8, + "probability": 0.5828 + }, + { + "start": 3261.64, + "end": 3266.58, + "probability": 0.804 + }, + { + "start": 3268.86, + "end": 3269.44, + "probability": 0.7485 + }, + { + "start": 3269.62, + "end": 3272.32, + "probability": 0.9714 + }, + { + "start": 3272.66, + "end": 3273.0, + "probability": 0.53 + }, + { + "start": 3273.04, + "end": 3273.38, + "probability": 0.7807 + }, + { + "start": 3273.52, + "end": 3274.56, + "probability": 0.8483 + }, + { + "start": 3275.24, + "end": 3279.18, + "probability": 0.8982 + }, + { + "start": 3280.52, + "end": 3281.66, + "probability": 0.9733 + }, + { + "start": 3282.24, + "end": 3284.54, + "probability": 0.9678 + }, + { + "start": 3286.48, + "end": 3287.48, + "probability": 0.953 + }, + { + "start": 3287.68, + "end": 3289.76, + "probability": 0.1915 + }, + { + "start": 3289.94, + "end": 3291.54, + "probability": 0.9233 + }, + { + "start": 3292.7, + "end": 3293.8, + "probability": 0.9601 + }, + { + "start": 3294.32, + "end": 3302.8, + "probability": 0.9569 + }, + { + "start": 3303.5, + "end": 3306.66, + "probability": 0.672 + }, + { + "start": 3306.66, + "end": 3307.9, + "probability": 0.5972 + }, + { + "start": 3308.04, + "end": 3308.76, + "probability": 0.9176 + }, + { + "start": 3308.9, + "end": 3311.1, + "probability": 0.865 + }, + { + "start": 3311.48, + "end": 3312.14, + "probability": 0.7651 + }, + { + "start": 3313.68, + "end": 3318.16, + "probability": 0.9839 + }, + { + "start": 3319.06, + "end": 3319.48, + "probability": 0.7625 + }, + { + "start": 3319.62, + "end": 3322.3, + "probability": 0.947 + }, + { + "start": 3323.74, + "end": 3325.68, + "probability": 0.999 + }, + { + "start": 3326.72, + "end": 3329.1, + "probability": 0.7397 + }, + { + "start": 3329.72, + "end": 3333.36, + "probability": 0.9258 + }, + { + "start": 3335.22, + "end": 3336.56, + "probability": 0.5332 + }, + { + "start": 3336.72, + "end": 3338.44, + "probability": 0.6553 + }, + { + "start": 3339.08, + "end": 3341.62, + "probability": 0.863 + }, + { + "start": 3342.54, + "end": 3345.16, + "probability": 0.8023 + }, + { + "start": 3345.86, + "end": 3347.48, + "probability": 0.9978 + }, + { + "start": 3348.02, + "end": 3348.62, + "probability": 0.8652 + }, + { + "start": 3349.44, + "end": 3351.74, + "probability": 0.9687 + }, + { + "start": 3352.28, + "end": 3357.34, + "probability": 0.9792 + }, + { + "start": 3358.38, + "end": 3361.8, + "probability": 0.8722 + }, + { + "start": 3362.32, + "end": 3364.2, + "probability": 0.6993 + }, + { + "start": 3364.66, + "end": 3369.42, + "probability": 0.9752 + }, + { + "start": 3369.7, + "end": 3370.84, + "probability": 0.9902 + }, + { + "start": 3371.62, + "end": 3372.0, + "probability": 0.8072 + }, + { + "start": 3374.96, + "end": 3376.22, + "probability": 0.7967 + }, + { + "start": 3376.4, + "end": 3379.84, + "probability": 0.8343 + }, + { + "start": 3380.5, + "end": 3381.36, + "probability": 0.3542 + }, + { + "start": 3382.4, + "end": 3385.7, + "probability": 0.9756 + }, + { + "start": 3385.82, + "end": 3388.56, + "probability": 0.9564 + }, + { + "start": 3390.14, + "end": 3391.0, + "probability": 0.8735 + }, + { + "start": 3392.32, + "end": 3392.98, + "probability": 0.7761 + }, + { + "start": 3394.22, + "end": 3395.04, + "probability": 0.5002 + }, + { + "start": 3395.74, + "end": 3396.64, + "probability": 0.8975 + }, + { + "start": 3397.08, + "end": 3398.11, + "probability": 0.975 + }, + { + "start": 3399.14, + "end": 3400.28, + "probability": 0.8668 + }, + { + "start": 3401.18, + "end": 3403.88, + "probability": 0.9759 + }, + { + "start": 3404.98, + "end": 3405.7, + "probability": 0.8202 + }, + { + "start": 3406.62, + "end": 3407.46, + "probability": 0.9712 + }, + { + "start": 3409.66, + "end": 3412.32, + "probability": 0.9893 + }, + { + "start": 3413.04, + "end": 3414.06, + "probability": 0.9683 + }, + { + "start": 3414.72, + "end": 3416.78, + "probability": 0.9922 + }, + { + "start": 3418.0, + "end": 3422.52, + "probability": 0.9339 + }, + { + "start": 3424.1, + "end": 3425.96, + "probability": 0.4857 + }, + { + "start": 3426.62, + "end": 3427.3, + "probability": 0.7283 + }, + { + "start": 3430.8, + "end": 3432.58, + "probability": 0.9142 + }, + { + "start": 3432.92, + "end": 3434.93, + "probability": 0.98 + }, + { + "start": 3436.92, + "end": 3438.92, + "probability": 0.9578 + }, + { + "start": 3439.18, + "end": 3440.42, + "probability": 0.905 + }, + { + "start": 3442.0, + "end": 3442.36, + "probability": 0.0197 + }, + { + "start": 3442.36, + "end": 3443.8, + "probability": 0.5926 + }, + { + "start": 3444.0, + "end": 3445.83, + "probability": 0.3709 + }, + { + "start": 3446.06, + "end": 3447.89, + "probability": 0.9146 + }, + { + "start": 3449.74, + "end": 3450.78, + "probability": 0.7891 + }, + { + "start": 3451.6, + "end": 3454.86, + "probability": 0.662 + }, + { + "start": 3455.38, + "end": 3456.28, + "probability": 0.4979 + }, + { + "start": 3456.28, + "end": 3458.04, + "probability": 0.6418 + }, + { + "start": 3459.14, + "end": 3461.12, + "probability": 0.9188 + }, + { + "start": 3462.24, + "end": 3467.42, + "probability": 0.9814 + }, + { + "start": 3467.56, + "end": 3473.26, + "probability": 0.7902 + }, + { + "start": 3474.2, + "end": 3476.02, + "probability": 0.8077 + }, + { + "start": 3476.92, + "end": 3477.78, + "probability": 0.9366 + }, + { + "start": 3492.38, + "end": 3493.56, + "probability": 0.9014 + }, + { + "start": 3495.98, + "end": 3497.82, + "probability": 0.7079 + }, + { + "start": 3497.82, + "end": 3499.38, + "probability": 0.6895 + }, + { + "start": 3500.32, + "end": 3505.1, + "probability": 0.9339 + }, + { + "start": 3506.28, + "end": 3508.03, + "probability": 0.9001 + }, + { + "start": 3509.03, + "end": 3512.84, + "probability": 0.9941 + }, + { + "start": 3512.84, + "end": 3516.74, + "probability": 0.678 + }, + { + "start": 3517.46, + "end": 3522.9, + "probability": 0.9928 + }, + { + "start": 3523.16, + "end": 3527.84, + "probability": 0.9886 + }, + { + "start": 3528.16, + "end": 3531.48, + "probability": 0.9158 + }, + { + "start": 3531.56, + "end": 3533.0, + "probability": 0.7627 + }, + { + "start": 3533.16, + "end": 3535.64, + "probability": 0.9598 + }, + { + "start": 3536.2, + "end": 3539.88, + "probability": 0.9702 + }, + { + "start": 3540.38, + "end": 3541.06, + "probability": 0.9155 + }, + { + "start": 3541.16, + "end": 3545.34, + "probability": 0.9784 + }, + { + "start": 3545.64, + "end": 3547.1, + "probability": 0.9882 + }, + { + "start": 3547.18, + "end": 3549.9, + "probability": 0.8649 + }, + { + "start": 3550.34, + "end": 3552.6, + "probability": 0.998 + }, + { + "start": 3552.6, + "end": 3557.14, + "probability": 0.9976 + }, + { + "start": 3557.74, + "end": 3563.42, + "probability": 0.9934 + }, + { + "start": 3563.42, + "end": 3569.7, + "probability": 0.9973 + }, + { + "start": 3570.32, + "end": 3573.62, + "probability": 0.9986 + }, + { + "start": 3573.66, + "end": 3575.44, + "probability": 0.9993 + }, + { + "start": 3575.86, + "end": 3578.14, + "probability": 0.9989 + }, + { + "start": 3578.26, + "end": 3582.88, + "probability": 0.9978 + }, + { + "start": 3582.96, + "end": 3586.94, + "probability": 0.8588 + }, + { + "start": 3587.22, + "end": 3591.46, + "probability": 0.9886 + }, + { + "start": 3591.88, + "end": 3593.18, + "probability": 0.9652 + }, + { + "start": 3593.7, + "end": 3597.8, + "probability": 0.9763 + }, + { + "start": 3598.26, + "end": 3600.98, + "probability": 0.9806 + }, + { + "start": 3601.42, + "end": 3606.36, + "probability": 0.9198 + }, + { + "start": 3606.88, + "end": 3607.9, + "probability": 0.9897 + }, + { + "start": 3608.02, + "end": 3611.6, + "probability": 0.9655 + }, + { + "start": 3612.6, + "end": 3613.3, + "probability": 0.933 + }, + { + "start": 3614.04, + "end": 3618.46, + "probability": 0.9951 + }, + { + "start": 3619.12, + "end": 3622.18, + "probability": 0.8229 + }, + { + "start": 3622.68, + "end": 3623.6, + "probability": 0.8435 + }, + { + "start": 3623.8, + "end": 3625.24, + "probability": 0.9958 + }, + { + "start": 3625.78, + "end": 3633.94, + "probability": 0.979 + }, + { + "start": 3634.18, + "end": 3635.56, + "probability": 0.7866 + }, + { + "start": 3636.52, + "end": 3638.42, + "probability": 0.9907 + }, + { + "start": 3638.56, + "end": 3639.66, + "probability": 0.6992 + }, + { + "start": 3640.14, + "end": 3644.48, + "probability": 0.9912 + }, + { + "start": 3644.96, + "end": 3645.36, + "probability": 0.9246 + }, + { + "start": 3645.46, + "end": 3647.86, + "probability": 0.9739 + }, + { + "start": 3648.14, + "end": 3649.44, + "probability": 0.9775 + }, + { + "start": 3649.66, + "end": 3651.98, + "probability": 0.9819 + }, + { + "start": 3652.2, + "end": 3655.14, + "probability": 0.9978 + }, + { + "start": 3655.58, + "end": 3662.55, + "probability": 0.9941 + }, + { + "start": 3663.08, + "end": 3663.48, + "probability": 0.6826 + }, + { + "start": 3663.56, + "end": 3664.16, + "probability": 0.916 + }, + { + "start": 3664.66, + "end": 3666.52, + "probability": 0.9976 + }, + { + "start": 3667.02, + "end": 3668.34, + "probability": 0.9749 + }, + { + "start": 3668.42, + "end": 3670.94, + "probability": 0.9437 + }, + { + "start": 3671.2, + "end": 3674.28, + "probability": 0.8603 + }, + { + "start": 3674.58, + "end": 3675.88, + "probability": 0.8682 + }, + { + "start": 3676.06, + "end": 3677.6, + "probability": 0.7742 + }, + { + "start": 3678.18, + "end": 3680.16, + "probability": 0.5144 + }, + { + "start": 3680.64, + "end": 3680.92, + "probability": 0.7206 + }, + { + "start": 3681.06, + "end": 3681.3, + "probability": 0.6588 + }, + { + "start": 3681.4, + "end": 3683.42, + "probability": 0.9745 + }, + { + "start": 3683.84, + "end": 3689.68, + "probability": 0.9825 + }, + { + "start": 3689.74, + "end": 3691.16, + "probability": 0.8582 + }, + { + "start": 3691.6, + "end": 3695.64, + "probability": 0.8166 + }, + { + "start": 3695.68, + "end": 3697.78, + "probability": 0.9965 + }, + { + "start": 3698.1, + "end": 3699.34, + "probability": 0.9757 + }, + { + "start": 3699.74, + "end": 3701.57, + "probability": 0.9935 + }, + { + "start": 3702.02, + "end": 3704.0, + "probability": 0.9966 + }, + { + "start": 3704.0, + "end": 3705.14, + "probability": 0.7852 + }, + { + "start": 3705.7, + "end": 3706.14, + "probability": 0.9427 + }, + { + "start": 3706.42, + "end": 3709.58, + "probability": 0.9925 + }, + { + "start": 3710.52, + "end": 3713.16, + "probability": 0.9949 + }, + { + "start": 3713.36, + "end": 3714.96, + "probability": 0.9951 + }, + { + "start": 3715.42, + "end": 3715.96, + "probability": 0.9709 + }, + { + "start": 3716.08, + "end": 3720.06, + "probability": 0.9934 + }, + { + "start": 3720.94, + "end": 3722.36, + "probability": 0.9531 + }, + { + "start": 3722.92, + "end": 3724.12, + "probability": 0.9025 + }, + { + "start": 3725.06, + "end": 3728.8, + "probability": 0.9983 + }, + { + "start": 3729.36, + "end": 3733.88, + "probability": 0.8875 + }, + { + "start": 3734.72, + "end": 3741.7, + "probability": 0.9744 + }, + { + "start": 3741.7, + "end": 3746.64, + "probability": 0.9976 + }, + { + "start": 3747.1, + "end": 3749.34, + "probability": 0.9576 + }, + { + "start": 3749.92, + "end": 3750.52, + "probability": 0.7 + }, + { + "start": 3751.3, + "end": 3755.18, + "probability": 0.9884 + }, + { + "start": 3755.18, + "end": 3760.16, + "probability": 0.9977 + }, + { + "start": 3760.66, + "end": 3762.74, + "probability": 0.9978 + }, + { + "start": 3762.82, + "end": 3764.18, + "probability": 0.9902 + }, + { + "start": 3764.3, + "end": 3764.9, + "probability": 0.5362 + }, + { + "start": 3764.92, + "end": 3766.46, + "probability": 0.8828 + }, + { + "start": 3766.54, + "end": 3766.98, + "probability": 0.8691 + }, + { + "start": 3767.12, + "end": 3767.86, + "probability": 0.7786 + }, + { + "start": 3768.18, + "end": 3769.46, + "probability": 0.9756 + }, + { + "start": 3769.72, + "end": 3770.48, + "probability": 0.7134 + }, + { + "start": 3770.52, + "end": 3771.3, + "probability": 0.723 + }, + { + "start": 3771.52, + "end": 3773.44, + "probability": 0.9985 + }, + { + "start": 3773.44, + "end": 3777.32, + "probability": 0.7932 + }, + { + "start": 3777.58, + "end": 3779.08, + "probability": 0.9698 + }, + { + "start": 3779.64, + "end": 3781.72, + "probability": 0.9973 + }, + { + "start": 3782.52, + "end": 3785.74, + "probability": 0.9893 + }, + { + "start": 3785.74, + "end": 3790.34, + "probability": 0.9419 + }, + { + "start": 3790.5, + "end": 3791.52, + "probability": 0.9836 + }, + { + "start": 3792.36, + "end": 3792.76, + "probability": 0.9921 + }, + { + "start": 3793.32, + "end": 3794.3, + "probability": 0.7995 + }, + { + "start": 3795.06, + "end": 3797.02, + "probability": 0.9962 + }, + { + "start": 3798.56, + "end": 3799.42, + "probability": 0.9625 + }, + { + "start": 3799.58, + "end": 3800.11, + "probability": 0.9115 + }, + { + "start": 3800.68, + "end": 3803.56, + "probability": 0.9926 + }, + { + "start": 3803.88, + "end": 3805.36, + "probability": 0.9798 + }, + { + "start": 3805.64, + "end": 3806.62, + "probability": 0.9857 + }, + { + "start": 3806.68, + "end": 3809.88, + "probability": 0.9929 + }, + { + "start": 3809.9, + "end": 3810.5, + "probability": 0.7189 + }, + { + "start": 3811.2, + "end": 3813.54, + "probability": 0.5833 + }, + { + "start": 3814.58, + "end": 3819.38, + "probability": 0.7511 + }, + { + "start": 3830.68, + "end": 3833.32, + "probability": 0.4778 + }, + { + "start": 3834.38, + "end": 3836.42, + "probability": 0.8709 + }, + { + "start": 3837.22, + "end": 3837.62, + "probability": 0.721 + }, + { + "start": 3837.78, + "end": 3840.63, + "probability": 0.881 + }, + { + "start": 3840.94, + "end": 3842.28, + "probability": 0.9326 + }, + { + "start": 3843.18, + "end": 3844.88, + "probability": 0.2559 + }, + { + "start": 3845.64, + "end": 3846.5, + "probability": 0.9724 + }, + { + "start": 3848.3, + "end": 3850.74, + "probability": 0.7783 + }, + { + "start": 3850.8, + "end": 3851.68, + "probability": 0.4871 + }, + { + "start": 3851.74, + "end": 3852.98, + "probability": 0.4424 + }, + { + "start": 3853.06, + "end": 3853.24, + "probability": 0.7731 + }, + { + "start": 3854.2, + "end": 3857.06, + "probability": 0.8715 + }, + { + "start": 3857.95, + "end": 3859.48, + "probability": 0.9717 + }, + { + "start": 3860.18, + "end": 3866.64, + "probability": 0.9604 + }, + { + "start": 3867.78, + "end": 3870.03, + "probability": 0.5952 + }, + { + "start": 3871.36, + "end": 3872.64, + "probability": 0.9805 + }, + { + "start": 3872.72, + "end": 3873.98, + "probability": 0.8932 + }, + { + "start": 3874.06, + "end": 3875.14, + "probability": 0.6743 + }, + { + "start": 3875.58, + "end": 3880.72, + "probability": 0.987 + }, + { + "start": 3881.44, + "end": 3883.24, + "probability": 0.913 + }, + { + "start": 3883.82, + "end": 3885.04, + "probability": 0.9855 + }, + { + "start": 3886.38, + "end": 3887.18, + "probability": 0.3623 + }, + { + "start": 3887.22, + "end": 3888.12, + "probability": 0.4561 + }, + { + "start": 3888.6, + "end": 3891.08, + "probability": 0.9938 + }, + { + "start": 3891.8, + "end": 3892.86, + "probability": 0.6876 + }, + { + "start": 3893.64, + "end": 3896.4, + "probability": 0.9011 + }, + { + "start": 3897.12, + "end": 3900.58, + "probability": 0.6723 + }, + { + "start": 3900.72, + "end": 3901.2, + "probability": 0.6081 + }, + { + "start": 3901.64, + "end": 3905.46, + "probability": 0.9589 + }, + { + "start": 3906.66, + "end": 3908.92, + "probability": 0.9617 + }, + { + "start": 3911.0, + "end": 3918.06, + "probability": 0.831 + }, + { + "start": 3918.6, + "end": 3919.74, + "probability": 0.3927 + }, + { + "start": 3920.14, + "end": 3920.94, + "probability": 0.5013 + }, + { + "start": 3921.08, + "end": 3921.42, + "probability": 0.6366 + }, + { + "start": 3921.9, + "end": 3926.78, + "probability": 0.7327 + }, + { + "start": 3926.94, + "end": 3928.74, + "probability": 0.3727 + }, + { + "start": 3929.43, + "end": 3932.0, + "probability": 0.945 + }, + { + "start": 3932.1, + "end": 3935.46, + "probability": 0.9217 + }, + { + "start": 3937.08, + "end": 3940.02, + "probability": 0.907 + }, + { + "start": 3940.54, + "end": 3942.64, + "probability": 0.8428 + }, + { + "start": 3943.06, + "end": 3943.54, + "probability": 0.6353 + }, + { + "start": 3944.0, + "end": 3944.88, + "probability": 0.3709 + }, + { + "start": 3945.7, + "end": 3948.16, + "probability": 0.8485 + }, + { + "start": 3948.94, + "end": 3949.94, + "probability": 0.9506 + }, + { + "start": 3951.76, + "end": 3953.6, + "probability": 0.8224 + }, + { + "start": 3954.92, + "end": 3958.08, + "probability": 0.97 + }, + { + "start": 3960.22, + "end": 3962.68, + "probability": 0.6808 + }, + { + "start": 3963.84, + "end": 3963.84, + "probability": 0.1976 + }, + { + "start": 3963.84, + "end": 3964.86, + "probability": 0.9911 + }, + { + "start": 3965.14, + "end": 3968.06, + "probability": 0.9387 + }, + { + "start": 3968.06, + "end": 3969.12, + "probability": 0.1608 + }, + { + "start": 3969.12, + "end": 3972.1, + "probability": 0.6948 + }, + { + "start": 3973.18, + "end": 3975.22, + "probability": 0.8423 + }, + { + "start": 3976.62, + "end": 3978.5, + "probability": 0.7094 + }, + { + "start": 3979.82, + "end": 3980.44, + "probability": 0.0747 + }, + { + "start": 3981.54, + "end": 3981.8, + "probability": 0.3014 + }, + { + "start": 3984.78, + "end": 3986.28, + "probability": 0.0132 + }, + { + "start": 3987.42, + "end": 3987.72, + "probability": 0.1057 + }, + { + "start": 3987.72, + "end": 3989.4, + "probability": 0.6629 + }, + { + "start": 3990.74, + "end": 3992.03, + "probability": 0.5634 + }, + { + "start": 3992.46, + "end": 3994.54, + "probability": 0.816 + }, + { + "start": 3997.76, + "end": 3998.12, + "probability": 0.7629 + }, + { + "start": 4000.68, + "end": 4001.74, + "probability": 0.8034 + }, + { + "start": 4005.64, + "end": 4006.34, + "probability": 0.7484 + }, + { + "start": 4006.5, + "end": 4010.92, + "probability": 0.8999 + }, + { + "start": 4011.82, + "end": 4013.86, + "probability": 0.8806 + }, + { + "start": 4014.64, + "end": 4016.52, + "probability": 0.9746 + }, + { + "start": 4018.18, + "end": 4022.16, + "probability": 0.9707 + }, + { + "start": 4023.38, + "end": 4025.66, + "probability": 0.89 + }, + { + "start": 4026.1, + "end": 4026.92, + "probability": 0.005 + }, + { + "start": 4027.5, + "end": 4028.74, + "probability": 0.8741 + }, + { + "start": 4030.27, + "end": 4032.22, + "probability": 0.3032 + }, + { + "start": 4032.22, + "end": 4032.82, + "probability": 0.4658 + }, + { + "start": 4032.9, + "end": 4033.58, + "probability": 0.0499 + }, + { + "start": 4036.64, + "end": 4040.7, + "probability": 0.5457 + }, + { + "start": 4041.44, + "end": 4047.18, + "probability": 0.9629 + }, + { + "start": 4048.12, + "end": 4049.54, + "probability": 0.7972 + }, + { + "start": 4050.34, + "end": 4053.48, + "probability": 0.8358 + }, + { + "start": 4054.48, + "end": 4056.64, + "probability": 0.7091 + }, + { + "start": 4058.08, + "end": 4059.92, + "probability": 0.9882 + }, + { + "start": 4060.44, + "end": 4066.04, + "probability": 0.6246 + }, + { + "start": 4066.04, + "end": 4070.96, + "probability": 0.9908 + }, + { + "start": 4071.04, + "end": 4072.22, + "probability": 0.8813 + }, + { + "start": 4072.64, + "end": 4074.1, + "probability": 0.995 + }, + { + "start": 4074.72, + "end": 4076.42, + "probability": 0.6355 + }, + { + "start": 4076.64, + "end": 4078.76, + "probability": 0.5788 + }, + { + "start": 4078.88, + "end": 4082.28, + "probability": 0.9903 + }, + { + "start": 4082.28, + "end": 4084.82, + "probability": 0.8346 + }, + { + "start": 4084.96, + "end": 4085.54, + "probability": 0.5594 + }, + { + "start": 4086.2, + "end": 4086.74, + "probability": 0.9526 + }, + { + "start": 4086.74, + "end": 4089.56, + "probability": 0.534 + }, + { + "start": 4089.82, + "end": 4092.02, + "probability": 0.7784 + }, + { + "start": 4092.08, + "end": 4093.38, + "probability": 0.2296 + }, + { + "start": 4094.66, + "end": 4095.46, + "probability": 0.0076 + }, + { + "start": 4099.99, + "end": 4100.44, + "probability": 0.058 + }, + { + "start": 4100.57, + "end": 4100.64, + "probability": 0.0017 + }, + { + "start": 4100.64, + "end": 4100.64, + "probability": 0.1629 + }, + { + "start": 4100.64, + "end": 4100.64, + "probability": 0.1529 + }, + { + "start": 4100.64, + "end": 4101.18, + "probability": 0.4463 + }, + { + "start": 4101.38, + "end": 4103.2, + "probability": 0.1162 + }, + { + "start": 4104.06, + "end": 4104.66, + "probability": 0.5876 + }, + { + "start": 4105.1, + "end": 4106.26, + "probability": 0.6954 + }, + { + "start": 4109.85, + "end": 4112.8, + "probability": 0.7847 + }, + { + "start": 4112.9, + "end": 4113.16, + "probability": 0.9443 + }, + { + "start": 4113.48, + "end": 4114.02, + "probability": 0.5812 + }, + { + "start": 4114.2, + "end": 4115.3, + "probability": 0.4057 + }, + { + "start": 4115.64, + "end": 4117.42, + "probability": 0.2842 + }, + { + "start": 4117.42, + "end": 4123.52, + "probability": 0.9524 + }, + { + "start": 4125.3, + "end": 4126.94, + "probability": 0.6683 + }, + { + "start": 4126.98, + "end": 4130.16, + "probability": 0.92 + }, + { + "start": 4130.56, + "end": 4131.32, + "probability": 0.7453 + }, + { + "start": 4132.14, + "end": 4133.5, + "probability": 0.3472 + }, + { + "start": 4133.5, + "end": 4134.94, + "probability": 0.2385 + }, + { + "start": 4134.94, + "end": 4139.1, + "probability": 0.6919 + }, + { + "start": 4139.16, + "end": 4142.04, + "probability": 0.9767 + }, + { + "start": 4142.14, + "end": 4143.26, + "probability": 0.7091 + }, + { + "start": 4143.32, + "end": 4145.4, + "probability": 0.9053 + }, + { + "start": 4145.64, + "end": 4146.92, + "probability": 0.9497 + }, + { + "start": 4157.23, + "end": 4160.96, + "probability": 0.9331 + }, + { + "start": 4162.7, + "end": 4170.36, + "probability": 0.7785 + }, + { + "start": 4170.96, + "end": 4176.44, + "probability": 0.9922 + }, + { + "start": 4176.54, + "end": 4177.94, + "probability": 0.7459 + }, + { + "start": 4178.06, + "end": 4178.74, + "probability": 0.5305 + }, + { + "start": 4179.26, + "end": 4180.6, + "probability": 0.5075 + }, + { + "start": 4180.86, + "end": 4181.14, + "probability": 0.6441 + }, + { + "start": 4181.14, + "end": 4182.98, + "probability": 0.6737 + }, + { + "start": 4183.68, + "end": 4183.84, + "probability": 0.0773 + }, + { + "start": 4186.94, + "end": 4189.42, + "probability": 0.8218 + }, + { + "start": 4189.46, + "end": 4189.68, + "probability": 0.7078 + }, + { + "start": 4190.58, + "end": 4191.86, + "probability": 0.9613 + }, + { + "start": 4191.92, + "end": 4194.42, + "probability": 0.8837 + }, + { + "start": 4194.42, + "end": 4195.74, + "probability": 0.7741 + }, + { + "start": 4197.98, + "end": 4201.24, + "probability": 0.889 + }, + { + "start": 4202.52, + "end": 4203.3, + "probability": 0.0013 + }, + { + "start": 4203.3, + "end": 4203.3, + "probability": 0.0885 + }, + { + "start": 4203.3, + "end": 4204.05, + "probability": 0.3574 + }, + { + "start": 4204.88, + "end": 4205.68, + "probability": 0.6625 + }, + { + "start": 4206.22, + "end": 4207.26, + "probability": 0.8007 + }, + { + "start": 4207.36, + "end": 4207.7, + "probability": 0.8416 + }, + { + "start": 4207.78, + "end": 4209.68, + "probability": 0.9062 + }, + { + "start": 4210.14, + "end": 4211.68, + "probability": 0.3741 + }, + { + "start": 4213.18, + "end": 4216.64, + "probability": 0.4808 + }, + { + "start": 4225.98, + "end": 4230.14, + "probability": 0.421 + }, + { + "start": 4230.14, + "end": 4230.92, + "probability": 0.0401 + }, + { + "start": 4234.51, + "end": 4235.26, + "probability": 0.0881 + }, + { + "start": 4235.26, + "end": 4235.62, + "probability": 0.0668 + }, + { + "start": 4235.62, + "end": 4235.62, + "probability": 0.0452 + }, + { + "start": 4235.62, + "end": 4236.02, + "probability": 0.4893 + }, + { + "start": 4236.36, + "end": 4239.0, + "probability": 0.3162 + }, + { + "start": 4239.0, + "end": 4239.0, + "probability": 0.0466 + }, + { + "start": 4239.0, + "end": 4239.0, + "probability": 0.1249 + }, + { + "start": 4239.0, + "end": 4239.0, + "probability": 0.2571 + }, + { + "start": 4239.0, + "end": 4239.72, + "probability": 0.2508 + }, + { + "start": 4239.72, + "end": 4240.66, + "probability": 0.6219 + }, + { + "start": 4240.8, + "end": 4245.54, + "probability": 0.9386 + }, + { + "start": 4245.78, + "end": 4248.72, + "probability": 0.5909 + }, + { + "start": 4248.92, + "end": 4249.62, + "probability": 0.7454 + }, + { + "start": 4249.74, + "end": 4250.76, + "probability": 0.6736 + }, + { + "start": 4250.78, + "end": 4252.7, + "probability": 0.7561 + }, + { + "start": 4253.77, + "end": 4255.32, + "probability": 0.1363 + }, + { + "start": 4258.46, + "end": 4259.56, + "probability": 0.4917 + }, + { + "start": 4270.14, + "end": 4270.38, + "probability": 0.2714 + }, + { + "start": 4270.38, + "end": 4274.06, + "probability": 0.7613 + }, + { + "start": 4274.38, + "end": 4278.28, + "probability": 0.9598 + }, + { + "start": 4278.42, + "end": 4279.82, + "probability": 0.5279 + }, + { + "start": 4280.08, + "end": 4283.66, + "probability": 0.9938 + }, + { + "start": 4283.66, + "end": 4288.98, + "probability": 0.9954 + }, + { + "start": 4289.44, + "end": 4290.3, + "probability": 0.3133 + }, + { + "start": 4290.42, + "end": 4293.84, + "probability": 0.9885 + }, + { + "start": 4293.94, + "end": 4295.44, + "probability": 0.614 + }, + { + "start": 4295.78, + "end": 4297.7, + "probability": 0.3388 + }, + { + "start": 4298.78, + "end": 4298.88, + "probability": 0.0283 + }, + { + "start": 4298.88, + "end": 4299.48, + "probability": 0.5505 + }, + { + "start": 4300.96, + "end": 4304.4, + "probability": 0.8765 + }, + { + "start": 4304.64, + "end": 4309.14, + "probability": 0.9964 + }, + { + "start": 4310.46, + "end": 4310.98, + "probability": 0.6014 + }, + { + "start": 4311.56, + "end": 4311.56, + "probability": 0.1415 + }, + { + "start": 4311.56, + "end": 4313.66, + "probability": 0.7637 + }, + { + "start": 4314.28, + "end": 4315.56, + "probability": 0.744 + }, + { + "start": 4318.51, + "end": 4321.61, + "probability": 0.8942 + }, + { + "start": 4321.78, + "end": 4324.54, + "probability": 0.7698 + }, + { + "start": 4324.68, + "end": 4328.74, + "probability": 0.8142 + }, + { + "start": 4329.3, + "end": 4335.1, + "probability": 0.9966 + }, + { + "start": 4335.86, + "end": 4337.26, + "probability": 0.9976 + }, + { + "start": 4338.46, + "end": 4338.92, + "probability": 0.3516 + }, + { + "start": 4338.92, + "end": 4339.98, + "probability": 0.5121 + }, + { + "start": 4340.06, + "end": 4340.51, + "probability": 0.7144 + }, + { + "start": 4341.08, + "end": 4342.04, + "probability": 0.5145 + }, + { + "start": 4342.04, + "end": 4342.5, + "probability": 0.315 + }, + { + "start": 4344.32, + "end": 4345.62, + "probability": 0.8936 + }, + { + "start": 4346.6, + "end": 4347.86, + "probability": 0.8673 + }, + { + "start": 4351.82, + "end": 4353.34, + "probability": 0.7606 + }, + { + "start": 4355.2, + "end": 4356.24, + "probability": 0.993 + }, + { + "start": 4358.06, + "end": 4360.34, + "probability": 0.9988 + }, + { + "start": 4361.4, + "end": 4366.02, + "probability": 0.9937 + }, + { + "start": 4366.16, + "end": 4367.7, + "probability": 0.9779 + }, + { + "start": 4368.42, + "end": 4370.36, + "probability": 0.9811 + }, + { + "start": 4370.9, + "end": 4373.66, + "probability": 0.9825 + }, + { + "start": 4374.44, + "end": 4375.16, + "probability": 0.4375 + }, + { + "start": 4375.9, + "end": 4377.18, + "probability": 0.9854 + }, + { + "start": 4377.76, + "end": 4381.28, + "probability": 0.9663 + }, + { + "start": 4382.22, + "end": 4383.26, + "probability": 0.9304 + }, + { + "start": 4384.1, + "end": 4387.36, + "probability": 0.9909 + }, + { + "start": 4388.36, + "end": 4395.22, + "probability": 0.9253 + }, + { + "start": 4396.62, + "end": 4401.14, + "probability": 0.6741 + }, + { + "start": 4401.8, + "end": 4403.94, + "probability": 0.859 + }, + { + "start": 4405.0, + "end": 4409.36, + "probability": 0.8929 + }, + { + "start": 4411.22, + "end": 4411.72, + "probability": 0.9627 + }, + { + "start": 4411.8, + "end": 4416.0, + "probability": 0.929 + }, + { + "start": 4416.0, + "end": 4418.58, + "probability": 0.9945 + }, + { + "start": 4419.44, + "end": 4424.54, + "probability": 0.92 + }, + { + "start": 4425.16, + "end": 4426.32, + "probability": 0.75 + }, + { + "start": 4426.5, + "end": 4426.88, + "probability": 0.6299 + }, + { + "start": 4427.04, + "end": 4427.64, + "probability": 0.8616 + }, + { + "start": 4427.76, + "end": 4430.58, + "probability": 0.9188 + }, + { + "start": 4430.74, + "end": 4431.56, + "probability": 0.7786 + }, + { + "start": 4432.88, + "end": 4434.02, + "probability": 0.7581 + }, + { + "start": 4434.96, + "end": 4436.1, + "probability": 0.9814 + }, + { + "start": 4437.48, + "end": 4437.8, + "probability": 0.3344 + }, + { + "start": 4438.12, + "end": 4442.74, + "probability": 0.9629 + }, + { + "start": 4442.74, + "end": 4449.2, + "probability": 0.781 + }, + { + "start": 4450.18, + "end": 4454.44, + "probability": 0.9974 + }, + { + "start": 4455.02, + "end": 4456.92, + "probability": 0.9886 + }, + { + "start": 4457.36, + "end": 4460.6, + "probability": 0.9941 + }, + { + "start": 4461.42, + "end": 4466.52, + "probability": 0.9961 + }, + { + "start": 4467.54, + "end": 4473.38, + "probability": 0.984 + }, + { + "start": 4474.46, + "end": 4480.12, + "probability": 0.9784 + }, + { + "start": 4480.68, + "end": 4483.96, + "probability": 0.9771 + }, + { + "start": 4485.72, + "end": 4488.7, + "probability": 0.9971 + }, + { + "start": 4489.5, + "end": 4491.1, + "probability": 0.9544 + }, + { + "start": 4491.72, + "end": 4496.44, + "probability": 0.7484 + }, + { + "start": 4497.2, + "end": 4499.34, + "probability": 0.7804 + }, + { + "start": 4499.7, + "end": 4502.0, + "probability": 0.9594 + }, + { + "start": 4502.68, + "end": 4503.1, + "probability": 0.9626 + }, + { + "start": 4503.22, + "end": 4509.98, + "probability": 0.9807 + }, + { + "start": 4511.14, + "end": 4512.54, + "probability": 0.7815 + }, + { + "start": 4512.6, + "end": 4514.04, + "probability": 0.8087 + }, + { + "start": 4514.54, + "end": 4517.4, + "probability": 0.9559 + }, + { + "start": 4517.88, + "end": 4519.72, + "probability": 0.9955 + }, + { + "start": 4520.26, + "end": 4523.38, + "probability": 0.9821 + }, + { + "start": 4525.28, + "end": 4526.06, + "probability": 0.999 + }, + { + "start": 4526.84, + "end": 4531.06, + "probability": 0.9891 + }, + { + "start": 4531.64, + "end": 4534.04, + "probability": 0.9858 + }, + { + "start": 4534.72, + "end": 4538.4, + "probability": 0.933 + }, + { + "start": 4538.82, + "end": 4539.96, + "probability": 0.9209 + }, + { + "start": 4540.38, + "end": 4542.86, + "probability": 0.9626 + }, + { + "start": 4543.18, + "end": 4543.76, + "probability": 0.7745 + }, + { + "start": 4543.82, + "end": 4548.98, + "probability": 0.9593 + }, + { + "start": 4550.1, + "end": 4554.0, + "probability": 0.9723 + }, + { + "start": 4554.04, + "end": 4557.2, + "probability": 0.9396 + }, + { + "start": 4557.78, + "end": 4564.66, + "probability": 0.9642 + }, + { + "start": 4565.94, + "end": 4567.72, + "probability": 0.5446 + }, + { + "start": 4568.5, + "end": 4569.27, + "probability": 0.7892 + }, + { + "start": 4569.82, + "end": 4572.06, + "probability": 0.9692 + }, + { + "start": 4572.32, + "end": 4572.96, + "probability": 0.8059 + }, + { + "start": 4573.08, + "end": 4576.16, + "probability": 0.9964 + }, + { + "start": 4577.68, + "end": 4578.64, + "probability": 0.9807 + }, + { + "start": 4578.82, + "end": 4579.42, + "probability": 0.9476 + }, + { + "start": 4579.86, + "end": 4583.16, + "probability": 0.9791 + }, + { + "start": 4583.16, + "end": 4585.54, + "probability": 0.9993 + }, + { + "start": 4586.08, + "end": 4586.94, + "probability": 0.4508 + }, + { + "start": 4587.8, + "end": 4595.66, + "probability": 0.9772 + }, + { + "start": 4596.1, + "end": 4600.84, + "probability": 0.9894 + }, + { + "start": 4603.0, + "end": 4606.18, + "probability": 0.7128 + }, + { + "start": 4606.84, + "end": 4607.88, + "probability": 0.8584 + }, + { + "start": 4608.74, + "end": 4610.32, + "probability": 0.8701 + }, + { + "start": 4610.74, + "end": 4614.8, + "probability": 0.9867 + }, + { + "start": 4615.0, + "end": 4617.4, + "probability": 0.8853 + }, + { + "start": 4618.06, + "end": 4621.82, + "probability": 0.9909 + }, + { + "start": 4622.3, + "end": 4624.4, + "probability": 0.7948 + }, + { + "start": 4624.94, + "end": 4628.78, + "probability": 0.9935 + }, + { + "start": 4628.78, + "end": 4634.36, + "probability": 0.9976 + }, + { + "start": 4635.06, + "end": 4638.66, + "probability": 0.9441 + }, + { + "start": 4639.64, + "end": 4642.56, + "probability": 0.9968 + }, + { + "start": 4642.94, + "end": 4645.0, + "probability": 0.9976 + }, + { + "start": 4645.48, + "end": 4650.58, + "probability": 0.8918 + }, + { + "start": 4651.62, + "end": 4653.3, + "probability": 0.9812 + }, + { + "start": 4653.92, + "end": 4658.3, + "probability": 0.9022 + }, + { + "start": 4659.22, + "end": 4663.98, + "probability": 0.9566 + }, + { + "start": 4664.56, + "end": 4668.92, + "probability": 0.9569 + }, + { + "start": 4669.56, + "end": 4672.5, + "probability": 0.9992 + }, + { + "start": 4672.5, + "end": 4675.62, + "probability": 0.9966 + }, + { + "start": 4676.66, + "end": 4680.18, + "probability": 0.998 + }, + { + "start": 4680.18, + "end": 4684.18, + "probability": 0.8723 + }, + { + "start": 4684.68, + "end": 4689.7, + "probability": 0.9984 + }, + { + "start": 4690.24, + "end": 4690.74, + "probability": 0.8097 + }, + { + "start": 4692.06, + "end": 4693.92, + "probability": 0.8386 + }, + { + "start": 4694.04, + "end": 4694.48, + "probability": 0.6014 + }, + { + "start": 4694.58, + "end": 4696.0, + "probability": 0.9402 + }, + { + "start": 4696.18, + "end": 4697.89, + "probability": 0.8365 + }, + { + "start": 4698.48, + "end": 4700.88, + "probability": 0.9896 + }, + { + "start": 4701.0, + "end": 4702.6, + "probability": 0.7504 + }, + { + "start": 4702.78, + "end": 4705.76, + "probability": 0.8169 + }, + { + "start": 4705.88, + "end": 4706.22, + "probability": 0.4643 + }, + { + "start": 4708.54, + "end": 4711.54, + "probability": 0.0069 + }, + { + "start": 4711.54, + "end": 4711.54, + "probability": 0.0712 + }, + { + "start": 4711.54, + "end": 4711.76, + "probability": 0.1005 + }, + { + "start": 4716.12, + "end": 4718.9, + "probability": 0.1104 + }, + { + "start": 4720.8, + "end": 4723.4, + "probability": 0.7768 + }, + { + "start": 4723.98, + "end": 4725.88, + "probability": 0.5651 + }, + { + "start": 4726.2, + "end": 4726.74, + "probability": 0.9103 + }, + { + "start": 4732.4, + "end": 4732.76, + "probability": 0.4594 + }, + { + "start": 4734.18, + "end": 4737.78, + "probability": 0.5054 + }, + { + "start": 4738.62, + "end": 4742.34, + "probability": 0.8489 + }, + { + "start": 4742.76, + "end": 4744.22, + "probability": 0.9396 + }, + { + "start": 4745.38, + "end": 4753.26, + "probability": 0.9482 + }, + { + "start": 4753.94, + "end": 4755.3, + "probability": 0.9918 + }, + { + "start": 4756.1, + "end": 4757.16, + "probability": 0.7354 + }, + { + "start": 4758.24, + "end": 4759.98, + "probability": 0.8504 + }, + { + "start": 4761.4, + "end": 4763.84, + "probability": 0.8962 + }, + { + "start": 4764.48, + "end": 4772.14, + "probability": 0.9758 + }, + { + "start": 4772.28, + "end": 4773.94, + "probability": 0.9174 + }, + { + "start": 4774.52, + "end": 4779.46, + "probability": 0.9614 + }, + { + "start": 4781.22, + "end": 4782.06, + "probability": 0.4396 + }, + { + "start": 4783.12, + "end": 4785.0, + "probability": 0.8539 + }, + { + "start": 4786.94, + "end": 4792.48, + "probability": 0.9965 + }, + { + "start": 4793.34, + "end": 4795.44, + "probability": 0.998 + }, + { + "start": 4795.96, + "end": 4801.7, + "probability": 0.9986 + }, + { + "start": 4802.9, + "end": 4806.48, + "probability": 0.9864 + }, + { + "start": 4806.48, + "end": 4810.26, + "probability": 0.9956 + }, + { + "start": 4811.28, + "end": 4812.75, + "probability": 0.9973 + }, + { + "start": 4813.24, + "end": 4815.13, + "probability": 0.9972 + }, + { + "start": 4815.64, + "end": 4816.99, + "probability": 0.998 + }, + { + "start": 4817.7, + "end": 4819.1, + "probability": 0.9797 + }, + { + "start": 4819.22, + "end": 4820.7, + "probability": 0.9888 + }, + { + "start": 4821.66, + "end": 4821.74, + "probability": 0.1441 + }, + { + "start": 4821.82, + "end": 4822.36, + "probability": 0.7126 + }, + { + "start": 4822.54, + "end": 4825.9, + "probability": 0.9697 + }, + { + "start": 4826.64, + "end": 4827.92, + "probability": 0.8345 + }, + { + "start": 4828.66, + "end": 4829.66, + "probability": 0.8431 + }, + { + "start": 4829.8, + "end": 4831.2, + "probability": 0.9194 + }, + { + "start": 4831.6, + "end": 4833.46, + "probability": 0.925 + }, + { + "start": 4833.86, + "end": 4835.6, + "probability": 0.9872 + }, + { + "start": 4835.74, + "end": 4836.78, + "probability": 0.6625 + }, + { + "start": 4837.24, + "end": 4840.62, + "probability": 0.9754 + }, + { + "start": 4841.34, + "end": 4843.82, + "probability": 0.8538 + }, + { + "start": 4844.4, + "end": 4848.52, + "probability": 0.9913 + }, + { + "start": 4849.12, + "end": 4852.04, + "probability": 0.9939 + }, + { + "start": 4852.04, + "end": 4854.88, + "probability": 0.9996 + }, + { + "start": 4855.5, + "end": 4856.98, + "probability": 0.9967 + }, + { + "start": 4857.08, + "end": 4858.72, + "probability": 0.9705 + }, + { + "start": 4859.1, + "end": 4861.88, + "probability": 0.9067 + }, + { + "start": 4862.38, + "end": 4867.0, + "probability": 0.9998 + }, + { + "start": 4868.22, + "end": 4872.64, + "probability": 0.9206 + }, + { + "start": 4873.66, + "end": 4878.2, + "probability": 0.9946 + }, + { + "start": 4878.28, + "end": 4880.66, + "probability": 0.9756 + }, + { + "start": 4881.02, + "end": 4881.64, + "probability": 0.7765 + }, + { + "start": 4882.08, + "end": 4883.44, + "probability": 0.8411 + }, + { + "start": 4883.84, + "end": 4883.84, + "probability": 0.5546 + }, + { + "start": 4883.84, + "end": 4884.97, + "probability": 0.6108 + }, + { + "start": 4885.82, + "end": 4886.36, + "probability": 0.7038 + }, + { + "start": 4886.56, + "end": 4887.66, + "probability": 0.8051 + }, + { + "start": 4887.72, + "end": 4888.47, + "probability": 0.7986 + }, + { + "start": 4888.76, + "end": 4893.18, + "probability": 0.9964 + }, + { + "start": 4893.62, + "end": 4895.5, + "probability": 0.8463 + }, + { + "start": 4896.28, + "end": 4897.64, + "probability": 0.8349 + }, + { + "start": 4898.14, + "end": 4902.88, + "probability": 0.9969 + }, + { + "start": 4903.58, + "end": 4907.74, + "probability": 0.908 + }, + { + "start": 4908.26, + "end": 4912.86, + "probability": 0.993 + }, + { + "start": 4913.36, + "end": 4919.72, + "probability": 0.9967 + }, + { + "start": 4920.4, + "end": 4924.66, + "probability": 0.983 + }, + { + "start": 4924.74, + "end": 4925.2, + "probability": 0.761 + }, + { + "start": 4925.38, + "end": 4926.97, + "probability": 0.8403 + }, + { + "start": 4927.72, + "end": 4932.4, + "probability": 0.665 + }, + { + "start": 4932.48, + "end": 4935.46, + "probability": 0.7507 + }, + { + "start": 4951.46, + "end": 4953.32, + "probability": 0.822 + }, + { + "start": 4954.4, + "end": 4955.92, + "probability": 0.7806 + }, + { + "start": 4958.7, + "end": 4961.86, + "probability": 0.5681 + }, + { + "start": 4962.38, + "end": 4967.8, + "probability": 0.9264 + }, + { + "start": 4968.76, + "end": 4969.57, + "probability": 0.9954 + }, + { + "start": 4971.22, + "end": 4973.94, + "probability": 0.4215 + }, + { + "start": 4975.84, + "end": 4976.56, + "probability": 0.8394 + }, + { + "start": 4979.2, + "end": 4981.32, + "probability": 0.7481 + }, + { + "start": 4983.3, + "end": 4985.68, + "probability": 0.9424 + }, + { + "start": 4986.66, + "end": 4987.08, + "probability": 0.6418 + }, + { + "start": 4989.22, + "end": 4993.78, + "probability": 0.9452 + }, + { + "start": 4993.86, + "end": 4994.52, + "probability": 0.8049 + }, + { + "start": 4994.54, + "end": 4995.64, + "probability": 0.9897 + }, + { + "start": 4995.74, + "end": 4996.92, + "probability": 0.9148 + }, + { + "start": 4997.8, + "end": 4999.16, + "probability": 0.8457 + }, + { + "start": 5000.0, + "end": 5001.08, + "probability": 0.7761 + }, + { + "start": 5001.64, + "end": 5003.95, + "probability": 0.7181 + }, + { + "start": 5004.88, + "end": 5007.82, + "probability": 0.9381 + }, + { + "start": 5008.3, + "end": 5010.64, + "probability": 0.9977 + }, + { + "start": 5011.24, + "end": 5015.68, + "probability": 0.9499 + }, + { + "start": 5017.3, + "end": 5024.28, + "probability": 0.9125 + }, + { + "start": 5025.4, + "end": 5027.52, + "probability": 0.4813 + }, + { + "start": 5028.28, + "end": 5031.44, + "probability": 0.8434 + }, + { + "start": 5032.0, + "end": 5033.74, + "probability": 0.9446 + }, + { + "start": 5033.84, + "end": 5036.0, + "probability": 0.9096 + }, + { + "start": 5036.38, + "end": 5036.68, + "probability": 0.6378 + }, + { + "start": 5036.82, + "end": 5037.0, + "probability": 0.53 + }, + { + "start": 5037.96, + "end": 5040.0, + "probability": 0.995 + }, + { + "start": 5040.04, + "end": 5040.42, + "probability": 0.4214 + }, + { + "start": 5040.46, + "end": 5041.2, + "probability": 0.9646 + }, + { + "start": 5041.46, + "end": 5042.22, + "probability": 0.981 + }, + { + "start": 5044.1, + "end": 5046.48, + "probability": 0.9749 + }, + { + "start": 5046.82, + "end": 5047.68, + "probability": 0.7452 + }, + { + "start": 5048.08, + "end": 5048.32, + "probability": 0.1823 + }, + { + "start": 5050.8, + "end": 5051.46, + "probability": 0.0952 + }, + { + "start": 5051.98, + "end": 5055.84, + "probability": 0.7944 + }, + { + "start": 5056.76, + "end": 5057.38, + "probability": 0.5057 + }, + { + "start": 5057.38, + "end": 5058.0, + "probability": 0.6888 + }, + { + "start": 5058.78, + "end": 5059.68, + "probability": 0.1091 + }, + { + "start": 5059.74, + "end": 5062.27, + "probability": 0.6326 + }, + { + "start": 5062.44, + "end": 5068.9, + "probability": 0.691 + }, + { + "start": 5072.9, + "end": 5076.42, + "probability": 0.5933 + }, + { + "start": 5078.98, + "end": 5080.02, + "probability": 0.8783 + }, + { + "start": 5082.64, + "end": 5083.8, + "probability": 0.5906 + }, + { + "start": 5085.02, + "end": 5089.5, + "probability": 0.8164 + }, + { + "start": 5091.17, + "end": 5096.92, + "probability": 0.9931 + }, + { + "start": 5097.0, + "end": 5098.16, + "probability": 0.9129 + }, + { + "start": 5098.6, + "end": 5099.74, + "probability": 0.875 + }, + { + "start": 5101.28, + "end": 5101.8, + "probability": 0.6239 + }, + { + "start": 5103.46, + "end": 5110.49, + "probability": 0.985 + }, + { + "start": 5111.32, + "end": 5112.44, + "probability": 0.58 + }, + { + "start": 5113.16, + "end": 5117.02, + "probability": 0.696 + }, + { + "start": 5117.88, + "end": 5121.76, + "probability": 0.8368 + }, + { + "start": 5125.14, + "end": 5126.28, + "probability": 0.7077 + }, + { + "start": 5128.74, + "end": 5130.36, + "probability": 0.9409 + }, + { + "start": 5131.24, + "end": 5133.02, + "probability": 0.7755 + }, + { + "start": 5134.04, + "end": 5135.08, + "probability": 0.8896 + }, + { + "start": 5135.14, + "end": 5140.07, + "probability": 0.8729 + }, + { + "start": 5141.16, + "end": 5142.36, + "probability": 0.9546 + }, + { + "start": 5142.82, + "end": 5144.36, + "probability": 0.9056 + }, + { + "start": 5145.48, + "end": 5146.72, + "probability": 0.8422 + }, + { + "start": 5146.88, + "end": 5149.82, + "probability": 0.9021 + }, + { + "start": 5150.36, + "end": 5151.56, + "probability": 0.7958 + }, + { + "start": 5152.34, + "end": 5153.22, + "probability": 0.6157 + }, + { + "start": 5154.66, + "end": 5157.32, + "probability": 0.9773 + }, + { + "start": 5157.88, + "end": 5158.37, + "probability": 0.4178 + }, + { + "start": 5159.84, + "end": 5160.38, + "probability": 0.9276 + }, + { + "start": 5160.46, + "end": 5161.13, + "probability": 0.9446 + }, + { + "start": 5161.46, + "end": 5162.42, + "probability": 0.7395 + }, + { + "start": 5164.72, + "end": 5165.56, + "probability": 0.7742 + }, + { + "start": 5167.54, + "end": 5171.08, + "probability": 0.9448 + }, + { + "start": 5172.42, + "end": 5173.57, + "probability": 0.6477 + }, + { + "start": 5174.48, + "end": 5175.72, + "probability": 0.8259 + }, + { + "start": 5177.14, + "end": 5177.74, + "probability": 0.6867 + }, + { + "start": 5178.54, + "end": 5179.43, + "probability": 0.7668 + }, + { + "start": 5180.42, + "end": 5180.58, + "probability": 0.0113 + }, + { + "start": 5182.0, + "end": 5182.2, + "probability": 0.3685 + }, + { + "start": 5182.9, + "end": 5184.26, + "probability": 0.267 + }, + { + "start": 5185.66, + "end": 5188.58, + "probability": 0.3621 + }, + { + "start": 5188.66, + "end": 5190.72, + "probability": 0.5583 + }, + { + "start": 5191.14, + "end": 5193.06, + "probability": 0.4852 + }, + { + "start": 5193.3, + "end": 5197.0, + "probability": 0.7069 + }, + { + "start": 5197.32, + "end": 5197.88, + "probability": 0.1995 + }, + { + "start": 5198.66, + "end": 5199.62, + "probability": 0.9438 + }, + { + "start": 5199.98, + "end": 5200.46, + "probability": 0.6969 + }, + { + "start": 5201.1, + "end": 5201.83, + "probability": 0.4676 + }, + { + "start": 5202.24, + "end": 5203.54, + "probability": 0.8452 + }, + { + "start": 5203.94, + "end": 5209.34, + "probability": 0.7935 + }, + { + "start": 5209.9, + "end": 5210.98, + "probability": 0.5135 + }, + { + "start": 5211.18, + "end": 5212.72, + "probability": 0.798 + }, + { + "start": 5213.18, + "end": 5218.66, + "probability": 0.3235 + }, + { + "start": 5218.8, + "end": 5219.04, + "probability": 0.1196 + }, + { + "start": 5219.2, + "end": 5219.24, + "probability": 0.2556 + }, + { + "start": 5219.24, + "end": 5219.24, + "probability": 0.1024 + }, + { + "start": 5219.24, + "end": 5220.6, + "probability": 0.2241 + }, + { + "start": 5220.64, + "end": 5221.56, + "probability": 0.9055 + }, + { + "start": 5221.84, + "end": 5222.98, + "probability": 0.828 + }, + { + "start": 5224.02, + "end": 5225.56, + "probability": 0.8647 + }, + { + "start": 5226.58, + "end": 5227.97, + "probability": 0.9849 + }, + { + "start": 5228.92, + "end": 5231.1, + "probability": 0.9109 + }, + { + "start": 5232.22, + "end": 5234.22, + "probability": 0.5699 + }, + { + "start": 5236.49, + "end": 5238.84, + "probability": 0.9935 + }, + { + "start": 5239.88, + "end": 5241.52, + "probability": 0.8896 + }, + { + "start": 5242.26, + "end": 5243.44, + "probability": 0.9932 + }, + { + "start": 5244.3, + "end": 5245.42, + "probability": 0.9968 + }, + { + "start": 5245.64, + "end": 5247.06, + "probability": 0.9932 + }, + { + "start": 5247.88, + "end": 5250.02, + "probability": 0.9902 + }, + { + "start": 5250.58, + "end": 5251.44, + "probability": 0.7965 + }, + { + "start": 5251.84, + "end": 5254.08, + "probability": 0.5734 + }, + { + "start": 5254.14, + "end": 5256.86, + "probability": 0.7877 + }, + { + "start": 5257.52, + "end": 5260.1, + "probability": 0.6403 + }, + { + "start": 5261.44, + "end": 5261.86, + "probability": 0.975 + }, + { + "start": 5263.02, + "end": 5265.56, + "probability": 0.9339 + }, + { + "start": 5266.06, + "end": 5267.14, + "probability": 0.947 + }, + { + "start": 5269.72, + "end": 5269.72, + "probability": 0.0272 + }, + { + "start": 5269.72, + "end": 5271.92, + "probability": 0.2563 + }, + { + "start": 5272.8, + "end": 5276.86, + "probability": 0.692 + }, + { + "start": 5277.58, + "end": 5278.32, + "probability": 0.8652 + }, + { + "start": 5279.94, + "end": 5282.98, + "probability": 0.717 + }, + { + "start": 5285.3, + "end": 5286.04, + "probability": 0.7034 + }, + { + "start": 5288.7, + "end": 5289.44, + "probability": 0.4275 + }, + { + "start": 5294.22, + "end": 5298.78, + "probability": 0.9544 + }, + { + "start": 5299.52, + "end": 5304.7, + "probability": 0.9797 + }, + { + "start": 5304.78, + "end": 5305.22, + "probability": 0.5778 + }, + { + "start": 5305.36, + "end": 5306.18, + "probability": 0.9162 + }, + { + "start": 5306.64, + "end": 5307.58, + "probability": 0.5892 + }, + { + "start": 5307.66, + "end": 5313.98, + "probability": 0.9871 + }, + { + "start": 5314.7, + "end": 5319.48, + "probability": 0.7983 + }, + { + "start": 5319.48, + "end": 5323.38, + "probability": 0.9949 + }, + { + "start": 5324.06, + "end": 5324.8, + "probability": 0.6372 + }, + { + "start": 5326.14, + "end": 5328.74, + "probability": 0.816 + }, + { + "start": 5329.6, + "end": 5334.08, + "probability": 0.8387 + }, + { + "start": 5334.86, + "end": 5334.88, + "probability": 0.1695 + }, + { + "start": 5334.88, + "end": 5335.9, + "probability": 0.8362 + }, + { + "start": 5337.86, + "end": 5339.14, + "probability": 0.497 + }, + { + "start": 5339.36, + "end": 5339.4, + "probability": 0.6793 + }, + { + "start": 5339.4, + "end": 5339.48, + "probability": 0.4539 + }, + { + "start": 5339.64, + "end": 5340.46, + "probability": 0.3778 + }, + { + "start": 5341.38, + "end": 5342.88, + "probability": 0.6399 + }, + { + "start": 5343.22, + "end": 5344.58, + "probability": 0.408 + }, + { + "start": 5345.16, + "end": 5348.16, + "probability": 0.7614 + }, + { + "start": 5359.0, + "end": 5359.5, + "probability": 0.4977 + }, + { + "start": 5359.56, + "end": 5362.36, + "probability": 0.3938 + }, + { + "start": 5363.62, + "end": 5363.88, + "probability": 0.1502 + }, + { + "start": 5363.96, + "end": 5364.48, + "probability": 0.2655 + }, + { + "start": 5365.1, + "end": 5367.06, + "probability": 0.2326 + }, + { + "start": 5367.42, + "end": 5370.46, + "probability": 0.1536 + }, + { + "start": 5370.9, + "end": 5372.44, + "probability": 0.3243 + }, + { + "start": 5372.72, + "end": 5373.34, + "probability": 0.2395 + }, + { + "start": 5374.24, + "end": 5375.14, + "probability": 0.7162 + }, + { + "start": 5377.46, + "end": 5379.28, + "probability": 0.6855 + }, + { + "start": 5389.04, + "end": 5392.05, + "probability": 0.7947 + }, + { + "start": 5392.5, + "end": 5393.22, + "probability": 0.5991 + }, + { + "start": 5398.32, + "end": 5400.76, + "probability": 0.8914 + }, + { + "start": 5401.38, + "end": 5405.34, + "probability": 0.6933 + }, + { + "start": 5405.64, + "end": 5407.52, + "probability": 0.8068 + }, + { + "start": 5407.92, + "end": 5408.2, + "probability": 0.6904 + }, + { + "start": 5408.2, + "end": 5408.3, + "probability": 0.4922 + }, + { + "start": 5411.42, + "end": 5414.48, + "probability": 0.5864 + }, + { + "start": 5415.78, + "end": 5418.42, + "probability": 0.5662 + }, + { + "start": 5421.58, + "end": 5422.82, + "probability": 0.6989 + }, + { + "start": 5422.82, + "end": 5424.1, + "probability": 0.8076 + }, + { + "start": 5425.54, + "end": 5428.3, + "probability": 0.9034 + }, + { + "start": 5429.38, + "end": 5432.84, + "probability": 0.9683 + }, + { + "start": 5434.0, + "end": 5436.5, + "probability": 0.8691 + }, + { + "start": 5442.96, + "end": 5444.3, + "probability": 0.7489 + }, + { + "start": 5444.36, + "end": 5447.48, + "probability": 0.7706 + }, + { + "start": 5449.3, + "end": 5449.68, + "probability": 0.9202 + }, + { + "start": 5449.84, + "end": 5451.3, + "probability": 0.9028 + }, + { + "start": 5451.38, + "end": 5453.92, + "probability": 0.9834 + }, + { + "start": 5457.18, + "end": 5460.06, + "probability": 0.9704 + }, + { + "start": 5460.1, + "end": 5461.56, + "probability": 0.7943 + }, + { + "start": 5462.16, + "end": 5463.8, + "probability": 0.5603 + }, + { + "start": 5464.28, + "end": 5468.5, + "probability": 0.9817 + }, + { + "start": 5469.8, + "end": 5470.6, + "probability": 0.564 + }, + { + "start": 5470.82, + "end": 5471.62, + "probability": 0.8201 + }, + { + "start": 5471.8, + "end": 5472.68, + "probability": 0.6361 + }, + { + "start": 5481.1, + "end": 5482.48, + "probability": 0.1904 + }, + { + "start": 5493.06, + "end": 5497.04, + "probability": 0.2078 + }, + { + "start": 5498.72, + "end": 5499.14, + "probability": 0.0114 + }, + { + "start": 5499.42, + "end": 5500.74, + "probability": 0.1845 + }, + { + "start": 5500.86, + "end": 5502.34, + "probability": 0.1467 + }, + { + "start": 5502.54, + "end": 5502.7, + "probability": 0.6891 + }, + { + "start": 5502.7, + "end": 5503.56, + "probability": 0.7938 + }, + { + "start": 5503.56, + "end": 5508.88, + "probability": 0.8956 + }, + { + "start": 5509.42, + "end": 5511.38, + "probability": 0.9919 + }, + { + "start": 5511.56, + "end": 5513.08, + "probability": 0.4283 + }, + { + "start": 5513.48, + "end": 5514.88, + "probability": 0.431 + }, + { + "start": 5515.28, + "end": 5517.94, + "probability": 0.9225 + }, + { + "start": 5518.06, + "end": 5520.82, + "probability": 0.907 + }, + { + "start": 5527.03, + "end": 5533.16, + "probability": 0.9456 + }, + { + "start": 5533.74, + "end": 5536.56, + "probability": 0.9788 + }, + { + "start": 5536.62, + "end": 5539.28, + "probability": 0.8512 + }, + { + "start": 5541.08, + "end": 5541.28, + "probability": 0.306 + }, + { + "start": 5544.4, + "end": 5544.78, + "probability": 0.0079 + }, + { + "start": 5566.6, + "end": 5568.7, + "probability": 0.3931 + }, + { + "start": 5569.7, + "end": 5571.14, + "probability": 0.8537 + }, + { + "start": 5571.76, + "end": 5575.02, + "probability": 0.88 + }, + { + "start": 5576.68, + "end": 5577.2, + "probability": 0.3733 + }, + { + "start": 5577.32, + "end": 5579.28, + "probability": 0.7578 + }, + { + "start": 5579.46, + "end": 5580.42, + "probability": 0.6733 + }, + { + "start": 5581.56, + "end": 5584.8, + "probability": 0.9875 + }, + { + "start": 5585.62, + "end": 5589.18, + "probability": 0.998 + }, + { + "start": 5589.82, + "end": 5593.54, + "probability": 0.9937 + }, + { + "start": 5594.34, + "end": 5598.98, + "probability": 0.9974 + }, + { + "start": 5600.56, + "end": 5605.32, + "probability": 0.9973 + }, + { + "start": 5605.32, + "end": 5609.4, + "probability": 0.9977 + }, + { + "start": 5610.24, + "end": 5612.3, + "probability": 0.9781 + }, + { + "start": 5613.16, + "end": 5618.54, + "probability": 0.9873 + }, + { + "start": 5619.34, + "end": 5625.2, + "probability": 0.7562 + }, + { + "start": 5627.98, + "end": 5629.46, + "probability": 0.0586 + }, + { + "start": 5631.3, + "end": 5634.4, + "probability": 0.9923 + }, + { + "start": 5634.4, + "end": 5635.76, + "probability": 0.5641 + }, + { + "start": 5636.64, + "end": 5636.76, + "probability": 0.1994 + }, + { + "start": 5636.76, + "end": 5638.08, + "probability": 0.6018 + }, + { + "start": 5640.2, + "end": 5641.76, + "probability": 0.775 + }, + { + "start": 5650.94, + "end": 5652.74, + "probability": 0.3872 + }, + { + "start": 5653.16, + "end": 5653.16, + "probability": 0.0013 + }, + { + "start": 5680.6, + "end": 5681.24, + "probability": 0.5558 + }, + { + "start": 5683.22, + "end": 5686.94, + "probability": 0.8937 + }, + { + "start": 5687.16, + "end": 5687.8, + "probability": 0.8064 + }, + { + "start": 5694.84, + "end": 5695.12, + "probability": 0.0272 + }, + { + "start": 5695.85, + "end": 5699.18, + "probability": 0.9236 + }, + { + "start": 5699.3, + "end": 5701.02, + "probability": 0.7671 + }, + { + "start": 5702.75, + "end": 5705.82, + "probability": 0.8073 + }, + { + "start": 5706.02, + "end": 5707.82, + "probability": 0.9861 + }, + { + "start": 5708.86, + "end": 5710.2, + "probability": 0.7986 + }, + { + "start": 5712.36, + "end": 5713.9, + "probability": 0.9664 + }, + { + "start": 5714.02, + "end": 5715.68, + "probability": 0.991 + }, + { + "start": 5718.22, + "end": 5719.24, + "probability": 0.2283 + }, + { + "start": 5719.24, + "end": 5720.94, + "probability": 0.5472 + }, + { + "start": 5721.16, + "end": 5724.74, + "probability": 0.0766 + }, + { + "start": 5725.42, + "end": 5725.54, + "probability": 0.0719 + }, + { + "start": 5728.92, + "end": 5730.08, + "probability": 0.1994 + }, + { + "start": 5730.82, + "end": 5735.46, + "probability": 0.1402 + }, + { + "start": 5736.68, + "end": 5736.96, + "probability": 0.1764 + }, + { + "start": 5736.96, + "end": 5737.34, + "probability": 0.006 + }, + { + "start": 5737.52, + "end": 5738.9, + "probability": 0.2895 + }, + { + "start": 5739.88, + "end": 5746.54, + "probability": 0.8156 + }, + { + "start": 5748.62, + "end": 5753.26, + "probability": 0.0216 + }, + { + "start": 5753.28, + "end": 5753.28, + "probability": 0.0022 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.0, + "end": 5832.0, + "probability": 0.0 + }, + { + "start": 5832.34, + "end": 5833.82, + "probability": 0.4014 + }, + { + "start": 5838.41, + "end": 5841.5, + "probability": 0.3881 + }, + { + "start": 5842.88, + "end": 5846.16, + "probability": 0.2779 + }, + { + "start": 5846.5, + "end": 5849.65, + "probability": 0.321 + }, + { + "start": 5853.06, + "end": 5854.36, + "probability": 0.1165 + }, + { + "start": 5854.74, + "end": 5856.36, + "probability": 0.4369 + }, + { + "start": 5856.64, + "end": 5857.0, + "probability": 0.5358 + }, + { + "start": 5857.12, + "end": 5858.98, + "probability": 0.9787 + }, + { + "start": 5859.1, + "end": 5859.86, + "probability": 0.8231 + }, + { + "start": 5859.9, + "end": 5864.11, + "probability": 0.5551 + }, + { + "start": 5864.58, + "end": 5865.32, + "probability": 0.9685 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.0, + "end": 5960.0, + "probability": 0.0 + }, + { + "start": 5960.45, + "end": 5963.34, + "probability": 0.0182 + }, + { + "start": 5963.34, + "end": 5968.3, + "probability": 0.0717 + }, + { + "start": 5969.06, + "end": 5970.12, + "probability": 0.0246 + }, + { + "start": 5970.12, + "end": 5972.4, + "probability": 0.6283 + }, + { + "start": 5972.86, + "end": 5975.74, + "probability": 0.5526 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.0, + "end": 6090.0, + "probability": 0.0 + }, + { + "start": 6090.18, + "end": 6090.72, + "probability": 0.4508 + }, + { + "start": 6091.22, + "end": 6095.9, + "probability": 0.995 + }, + { + "start": 6096.38, + "end": 6098.08, + "probability": 0.9097 + }, + { + "start": 6098.32, + "end": 6101.46, + "probability": 0.8668 + }, + { + "start": 6101.56, + "end": 6102.3, + "probability": 0.9269 + }, + { + "start": 6103.2, + "end": 6104.98, + "probability": 0.9947 + }, + { + "start": 6105.56, + "end": 6106.26, + "probability": 0.8854 + }, + { + "start": 6106.66, + "end": 6107.46, + "probability": 0.7525 + }, + { + "start": 6107.96, + "end": 6108.62, + "probability": 0.5333 + }, + { + "start": 6108.74, + "end": 6110.22, + "probability": 0.9131 + }, + { + "start": 6110.34, + "end": 6111.08, + "probability": 0.6377 + }, + { + "start": 6111.62, + "end": 6114.38, + "probability": 0.7632 + }, + { + "start": 6114.68, + "end": 6118.78, + "probability": 0.8661 + }, + { + "start": 6118.88, + "end": 6121.16, + "probability": 0.9958 + }, + { + "start": 6121.16, + "end": 6124.24, + "probability": 0.9976 + }, + { + "start": 6124.44, + "end": 6124.94, + "probability": 0.6811 + }, + { + "start": 6125.5, + "end": 6127.48, + "probability": 0.9866 + }, + { + "start": 6128.08, + "end": 6132.1, + "probability": 0.9429 + }, + { + "start": 6133.18, + "end": 6133.96, + "probability": 0.8027 + }, + { + "start": 6145.88, + "end": 6147.37, + "probability": 0.4981 + }, + { + "start": 6147.64, + "end": 6149.3, + "probability": 0.8503 + }, + { + "start": 6149.96, + "end": 6150.58, + "probability": 0.721 + }, + { + "start": 6150.78, + "end": 6154.88, + "probability": 0.988 + }, + { + "start": 6155.46, + "end": 6161.12, + "probability": 0.9655 + }, + { + "start": 6161.84, + "end": 6167.98, + "probability": 0.9977 + }, + { + "start": 6168.62, + "end": 6169.8, + "probability": 0.8911 + }, + { + "start": 6170.78, + "end": 6173.68, + "probability": 0.9402 + }, + { + "start": 6175.14, + "end": 6178.0, + "probability": 0.9723 + }, + { + "start": 6179.28, + "end": 6184.14, + "probability": 0.9304 + }, + { + "start": 6184.56, + "end": 6185.54, + "probability": 0.7446 + }, + { + "start": 6185.62, + "end": 6189.02, + "probability": 0.8945 + }, + { + "start": 6189.44, + "end": 6189.88, + "probability": 0.7018 + }, + { + "start": 6189.98, + "end": 6191.12, + "probability": 0.5637 + }, + { + "start": 6191.26, + "end": 6192.46, + "probability": 0.9484 + }, + { + "start": 6193.62, + "end": 6199.06, + "probability": 0.9823 + }, + { + "start": 6199.12, + "end": 6202.6, + "probability": 0.9687 + }, + { + "start": 6203.36, + "end": 6204.46, + "probability": 0.8523 + }, + { + "start": 6205.02, + "end": 6208.84, + "probability": 0.9683 + }, + { + "start": 6209.4, + "end": 6213.94, + "probability": 0.9791 + }, + { + "start": 6214.36, + "end": 6219.68, + "probability": 0.988 + }, + { + "start": 6220.2, + "end": 6223.38, + "probability": 0.9015 + }, + { + "start": 6224.34, + "end": 6224.55, + "probability": 0.8525 + }, + { + "start": 6225.4, + "end": 6227.94, + "probability": 0.9836 + }, + { + "start": 6228.02, + "end": 6231.18, + "probability": 0.9547 + }, + { + "start": 6231.7, + "end": 6232.69, + "probability": 0.9244 + }, + { + "start": 6233.04, + "end": 6234.3, + "probability": 0.9412 + }, + { + "start": 6234.8, + "end": 6235.64, + "probability": 0.7884 + }, + { + "start": 6236.12, + "end": 6241.32, + "probability": 0.7743 + }, + { + "start": 6241.42, + "end": 6242.66, + "probability": 0.9452 + }, + { + "start": 6243.3, + "end": 6246.68, + "probability": 0.9808 + }, + { + "start": 6247.38, + "end": 6250.34, + "probability": 0.9175 + }, + { + "start": 6250.96, + "end": 6251.62, + "probability": 0.9028 + }, + { + "start": 6252.22, + "end": 6256.36, + "probability": 0.6914 + }, + { + "start": 6257.04, + "end": 6259.52, + "probability": 0.9911 + }, + { + "start": 6259.94, + "end": 6261.58, + "probability": 0.99 + }, + { + "start": 6262.02, + "end": 6265.0, + "probability": 0.973 + }, + { + "start": 6266.06, + "end": 6267.28, + "probability": 0.7913 + }, + { + "start": 6267.32, + "end": 6269.48, + "probability": 0.873 + }, + { + "start": 6269.94, + "end": 6271.68, + "probability": 0.9548 + }, + { + "start": 6272.32, + "end": 6275.66, + "probability": 0.8652 + }, + { + "start": 6276.34, + "end": 6281.64, + "probability": 0.8005 + }, + { + "start": 6282.66, + "end": 6283.1, + "probability": 0.3395 + }, + { + "start": 6284.22, + "end": 6285.36, + "probability": 0.5457 + }, + { + "start": 6285.6, + "end": 6286.88, + "probability": 0.573 + }, + { + "start": 6287.66, + "end": 6288.38, + "probability": 0.8582 + }, + { + "start": 6288.88, + "end": 6293.04, + "probability": 0.9878 + }, + { + "start": 6293.4, + "end": 6293.88, + "probability": 0.7105 + }, + { + "start": 6293.96, + "end": 6296.78, + "probability": 0.7617 + }, + { + "start": 6297.73, + "end": 6300.0, + "probability": 0.959 + }, + { + "start": 6300.76, + "end": 6301.14, + "probability": 0.8912 + }, + { + "start": 6301.22, + "end": 6301.68, + "probability": 0.8907 + }, + { + "start": 6301.72, + "end": 6302.48, + "probability": 0.5865 + }, + { + "start": 6302.5, + "end": 6306.22, + "probability": 0.9005 + }, + { + "start": 6306.8, + "end": 6307.82, + "probability": 0.8893 + }, + { + "start": 6308.76, + "end": 6309.86, + "probability": 0.5693 + }, + { + "start": 6309.94, + "end": 6310.52, + "probability": 0.382 + }, + { + "start": 6310.98, + "end": 6312.0, + "probability": 0.6553 + }, + { + "start": 6312.0, + "end": 6312.28, + "probability": 0.5821 + }, + { + "start": 6312.4, + "end": 6313.94, + "probability": 0.9017 + }, + { + "start": 6314.46, + "end": 6317.0, + "probability": 0.9033 + }, + { + "start": 6317.44, + "end": 6321.1, + "probability": 0.9967 + }, + { + "start": 6321.68, + "end": 6323.48, + "probability": 0.5888 + }, + { + "start": 6324.02, + "end": 6324.72, + "probability": 0.7067 + }, + { + "start": 6325.26, + "end": 6326.26, + "probability": 0.7925 + }, + { + "start": 6326.4, + "end": 6326.72, + "probability": 0.9067 + }, + { + "start": 6326.84, + "end": 6327.76, + "probability": 0.9912 + }, + { + "start": 6328.16, + "end": 6329.44, + "probability": 0.9904 + }, + { + "start": 6330.06, + "end": 6332.04, + "probability": 0.8096 + }, + { + "start": 6332.62, + "end": 6334.32, + "probability": 0.7593 + }, + { + "start": 6334.58, + "end": 6335.53, + "probability": 0.9663 + }, + { + "start": 6335.66, + "end": 6336.9, + "probability": 0.9804 + }, + { + "start": 6337.2, + "end": 6339.34, + "probability": 0.9958 + }, + { + "start": 6340.06, + "end": 6343.24, + "probability": 0.8059 + }, + { + "start": 6343.52, + "end": 6344.8, + "probability": 0.8669 + }, + { + "start": 6345.06, + "end": 6346.08, + "probability": 0.4976 + }, + { + "start": 6346.48, + "end": 6347.12, + "probability": 0.8481 + }, + { + "start": 6347.7, + "end": 6348.64, + "probability": 0.5001 + }, + { + "start": 6349.46, + "end": 6350.44, + "probability": 0.1918 + }, + { + "start": 6351.16, + "end": 6352.67, + "probability": 0.2489 + }, + { + "start": 6353.04, + "end": 6354.92, + "probability": 0.0869 + }, + { + "start": 6355.04, + "end": 6357.86, + "probability": 0.7377 + }, + { + "start": 6358.5, + "end": 6360.54, + "probability": 0.6747 + }, + { + "start": 6360.7, + "end": 6362.8, + "probability": 0.7866 + }, + { + "start": 6362.88, + "end": 6363.16, + "probability": 0.0352 + }, + { + "start": 6363.62, + "end": 6367.32, + "probability": 0.0184 + }, + { + "start": 6367.38, + "end": 6370.4, + "probability": 0.8951 + }, + { + "start": 6371.02, + "end": 6371.48, + "probability": 0.9069 + }, + { + "start": 6371.54, + "end": 6372.48, + "probability": 0.9746 + }, + { + "start": 6372.58, + "end": 6373.22, + "probability": 0.5898 + }, + { + "start": 6373.72, + "end": 6376.68, + "probability": 0.9804 + }, + { + "start": 6376.74, + "end": 6380.24, + "probability": 0.9973 + }, + { + "start": 6380.7, + "end": 6382.02, + "probability": 0.8206 + }, + { + "start": 6382.68, + "end": 6384.72, + "probability": 0.8887 + }, + { + "start": 6385.06, + "end": 6387.4, + "probability": 0.9138 + }, + { + "start": 6387.98, + "end": 6388.66, + "probability": 0.9352 + }, + { + "start": 6389.04, + "end": 6390.9, + "probability": 0.7633 + }, + { + "start": 6391.16, + "end": 6392.04, + "probability": 0.8829 + }, + { + "start": 6392.38, + "end": 6393.94, + "probability": 0.6575 + }, + { + "start": 6395.36, + "end": 6395.38, + "probability": 0.0906 + }, + { + "start": 6395.38, + "end": 6395.38, + "probability": 0.2175 + }, + { + "start": 6395.38, + "end": 6397.42, + "probability": 0.874 + }, + { + "start": 6397.64, + "end": 6399.3, + "probability": 0.9245 + }, + { + "start": 6399.94, + "end": 6401.8, + "probability": 0.868 + }, + { + "start": 6402.24, + "end": 6402.84, + "probability": 0.9326 + }, + { + "start": 6403.42, + "end": 6404.08, + "probability": 0.6888 + }, + { + "start": 6404.48, + "end": 6406.9, + "probability": 0.2295 + }, + { + "start": 6407.62, + "end": 6408.24, + "probability": 0.1339 + }, + { + "start": 6408.24, + "end": 6408.66, + "probability": 0.2446 + }, + { + "start": 6410.4, + "end": 6415.46, + "probability": 0.957 + }, + { + "start": 6415.6, + "end": 6415.92, + "probability": 0.623 + }, + { + "start": 6416.06, + "end": 6417.16, + "probability": 0.8379 + }, + { + "start": 6417.56, + "end": 6418.73, + "probability": 0.9357 + }, + { + "start": 6418.94, + "end": 6419.64, + "probability": 0.7696 + }, + { + "start": 6420.02, + "end": 6422.3, + "probability": 0.9629 + }, + { + "start": 6422.92, + "end": 6424.46, + "probability": 0.1628 + }, + { + "start": 6425.02, + "end": 6425.46, + "probability": 0.6069 + }, + { + "start": 6425.62, + "end": 6427.4, + "probability": 0.7313 + }, + { + "start": 6428.8, + "end": 6430.32, + "probability": 0.7586 + }, + { + "start": 6430.82, + "end": 6431.84, + "probability": 0.92 + }, + { + "start": 6431.88, + "end": 6437.26, + "probability": 0.8672 + }, + { + "start": 6437.3, + "end": 6438.26, + "probability": 0.8901 + }, + { + "start": 6438.82, + "end": 6439.9, + "probability": 0.3843 + }, + { + "start": 6439.9, + "end": 6442.26, + "probability": 0.9934 + }, + { + "start": 6442.98, + "end": 6443.16, + "probability": 0.4222 + }, + { + "start": 6443.16, + "end": 6444.12, + "probability": 0.6914 + }, + { + "start": 6444.22, + "end": 6446.7, + "probability": 0.9839 + }, + { + "start": 6446.76, + "end": 6449.06, + "probability": 0.9971 + }, + { + "start": 6449.48, + "end": 6450.7, + "probability": 0.9961 + }, + { + "start": 6451.04, + "end": 6454.34, + "probability": 0.9933 + }, + { + "start": 6454.44, + "end": 6454.98, + "probability": 0.8757 + }, + { + "start": 6455.38, + "end": 6456.2, + "probability": 0.9293 + }, + { + "start": 6456.9, + "end": 6458.9, + "probability": 0.9295 + }, + { + "start": 6459.22, + "end": 6460.32, + "probability": 0.8758 + }, + { + "start": 6460.36, + "end": 6461.18, + "probability": 0.7176 + }, + { + "start": 6461.26, + "end": 6464.2, + "probability": 0.6395 + }, + { + "start": 6464.54, + "end": 6464.96, + "probability": 0.7619 + }, + { + "start": 6465.04, + "end": 6465.64, + "probability": 0.6881 + }, + { + "start": 6465.76, + "end": 6466.76, + "probability": 0.7299 + }, + { + "start": 6466.82, + "end": 6467.44, + "probability": 0.5869 + }, + { + "start": 6467.54, + "end": 6467.76, + "probability": 0.6541 + }, + { + "start": 6467.9, + "end": 6469.26, + "probability": 0.9268 + }, + { + "start": 6469.54, + "end": 6470.56, + "probability": 0.646 + }, + { + "start": 6470.72, + "end": 6470.72, + "probability": 0.1841 + }, + { + "start": 6470.72, + "end": 6473.16, + "probability": 0.4822 + }, + { + "start": 6473.16, + "end": 6473.56, + "probability": 0.6467 + }, + { + "start": 6473.64, + "end": 6479.68, + "probability": 0.676 + }, + { + "start": 6480.14, + "end": 6481.7, + "probability": 0.9974 + }, + { + "start": 6482.6, + "end": 6483.54, + "probability": 0.3303 + }, + { + "start": 6483.88, + "end": 6487.86, + "probability": 0.5251 + }, + { + "start": 6488.12, + "end": 6489.72, + "probability": 0.9771 + }, + { + "start": 6489.92, + "end": 6492.06, + "probability": 0.3387 + }, + { + "start": 6492.3, + "end": 6492.64, + "probability": 0.4079 + }, + { + "start": 6493.14, + "end": 6495.88, + "probability": 0.8198 + }, + { + "start": 6495.96, + "end": 6496.28, + "probability": 0.5577 + }, + { + "start": 6496.38, + "end": 6496.64, + "probability": 0.4094 + }, + { + "start": 6496.68, + "end": 6498.98, + "probability": 0.7364 + }, + { + "start": 6499.04, + "end": 6499.76, + "probability": 0.7512 + }, + { + "start": 6499.9, + "end": 6504.3, + "probability": 0.3967 + }, + { + "start": 6504.38, + "end": 6505.4, + "probability": 0.6992 + }, + { + "start": 6505.54, + "end": 6509.38, + "probability": 0.9663 + }, + { + "start": 6509.5, + "end": 6510.6, + "probability": 0.9095 + }, + { + "start": 6511.1, + "end": 6512.52, + "probability": 0.0224 + }, + { + "start": 6512.52, + "end": 6512.52, + "probability": 0.0018 + }, + { + "start": 6512.52, + "end": 6513.62, + "probability": 0.5508 + }, + { + "start": 6514.56, + "end": 6514.66, + "probability": 0.1146 + }, + { + "start": 6514.66, + "end": 6515.27, + "probability": 0.1808 + }, + { + "start": 6515.3, + "end": 6516.76, + "probability": 0.7151 + }, + { + "start": 6517.08, + "end": 6519.48, + "probability": 0.3484 + }, + { + "start": 6519.62, + "end": 6519.74, + "probability": 0.2309 + }, + { + "start": 6519.74, + "end": 6520.54, + "probability": 0.6012 + }, + { + "start": 6520.78, + "end": 6521.18, + "probability": 0.6156 + }, + { + "start": 6521.28, + "end": 6522.26, + "probability": 0.9756 + }, + { + "start": 6522.38, + "end": 6524.8, + "probability": 0.9807 + }, + { + "start": 6525.1, + "end": 6525.56, + "probability": 0.6886 + }, + { + "start": 6525.56, + "end": 6525.74, + "probability": 0.0155 + }, + { + "start": 6525.74, + "end": 6526.73, + "probability": 0.9611 + }, + { + "start": 6526.96, + "end": 6528.32, + "probability": 0.9028 + }, + { + "start": 6528.32, + "end": 6528.94, + "probability": 0.0649 + }, + { + "start": 6528.94, + "end": 6528.94, + "probability": 0.1368 + }, + { + "start": 6528.94, + "end": 6531.56, + "probability": 0.7525 + }, + { + "start": 6532.14, + "end": 6533.82, + "probability": 0.6592 + }, + { + "start": 6533.98, + "end": 6540.52, + "probability": 0.9904 + }, + { + "start": 6541.12, + "end": 6541.22, + "probability": 0.1189 + }, + { + "start": 6541.26, + "end": 6541.68, + "probability": 0.501 + }, + { + "start": 6541.74, + "end": 6542.4, + "probability": 0.6359 + }, + { + "start": 6542.42, + "end": 6543.34, + "probability": 0.6443 + }, + { + "start": 6543.56, + "end": 6544.08, + "probability": 0.6297 + }, + { + "start": 6544.2, + "end": 6545.02, + "probability": 0.9674 + }, + { + "start": 6545.54, + "end": 6547.98, + "probability": 0.5978 + }, + { + "start": 6548.06, + "end": 6549.02, + "probability": 0.9672 + }, + { + "start": 6549.68, + "end": 6550.02, + "probability": 0.9233 + }, + { + "start": 6550.06, + "end": 6550.84, + "probability": 0.8406 + }, + { + "start": 6551.02, + "end": 6552.3, + "probability": 0.9372 + }, + { + "start": 6552.66, + "end": 6553.8, + "probability": 0.6023 + }, + { + "start": 6554.26, + "end": 6559.4, + "probability": 0.9922 + }, + { + "start": 6559.54, + "end": 6560.72, + "probability": 0.8518 + }, + { + "start": 6561.12, + "end": 6561.22, + "probability": 0.0685 + }, + { + "start": 6561.22, + "end": 6561.22, + "probability": 0.0328 + }, + { + "start": 6561.22, + "end": 6564.54, + "probability": 0.917 + }, + { + "start": 6564.9, + "end": 6565.76, + "probability": 0.92 + }, + { + "start": 6566.66, + "end": 6567.0, + "probability": 0.9414 + }, + { + "start": 6567.3, + "end": 6567.74, + "probability": 0.6421 + }, + { + "start": 6567.82, + "end": 6571.86, + "probability": 0.9549 + }, + { + "start": 6571.86, + "end": 6575.04, + "probability": 0.9965 + }, + { + "start": 6575.88, + "end": 6576.8, + "probability": 0.0585 + }, + { + "start": 6576.8, + "end": 6577.12, + "probability": 0.4538 + }, + { + "start": 6577.12, + "end": 6577.7, + "probability": 0.3092 + }, + { + "start": 6577.7, + "end": 6578.32, + "probability": 0.5596 + }, + { + "start": 6578.46, + "end": 6578.46, + "probability": 0.4305 + }, + { + "start": 6578.46, + "end": 6580.08, + "probability": 0.5125 + }, + { + "start": 6580.08, + "end": 6580.52, + "probability": 0.6466 + }, + { + "start": 6580.7, + "end": 6582.26, + "probability": 0.7357 + }, + { + "start": 6582.36, + "end": 6583.62, + "probability": 0.5497 + }, + { + "start": 6583.62, + "end": 6583.68, + "probability": 0.2313 + }, + { + "start": 6583.68, + "end": 6584.06, + "probability": 0.1176 + }, + { + "start": 6584.08, + "end": 6585.3, + "probability": 0.9878 + }, + { + "start": 6585.32, + "end": 6585.92, + "probability": 0.4507 + }, + { + "start": 6586.06, + "end": 6587.76, + "probability": 0.9579 + }, + { + "start": 6587.76, + "end": 6588.08, + "probability": 0.0811 + }, + { + "start": 6588.28, + "end": 6591.96, + "probability": 0.9922 + }, + { + "start": 6591.96, + "end": 6592.32, + "probability": 0.2603 + }, + { + "start": 6592.32, + "end": 6592.42, + "probability": 0.0504 + }, + { + "start": 6592.42, + "end": 6593.22, + "probability": 0.4345 + }, + { + "start": 6593.22, + "end": 6595.34, + "probability": 0.6097 + }, + { + "start": 6596.14, + "end": 6597.28, + "probability": 0.8469 + }, + { + "start": 6597.42, + "end": 6599.32, + "probability": 0.205 + }, + { + "start": 6599.46, + "end": 6601.0, + "probability": 0.9531 + }, + { + "start": 6601.12, + "end": 6601.32, + "probability": 0.0638 + }, + { + "start": 6601.32, + "end": 6601.32, + "probability": 0.4143 + }, + { + "start": 6601.32, + "end": 6603.98, + "probability": 0.727 + }, + { + "start": 6604.02, + "end": 6606.34, + "probability": 0.9546 + }, + { + "start": 6606.4, + "end": 6608.24, + "probability": 0.5588 + }, + { + "start": 6609.02, + "end": 6610.99, + "probability": 0.3455 + }, + { + "start": 6611.14, + "end": 6611.42, + "probability": 0.3905 + }, + { + "start": 6612.44, + "end": 6616.24, + "probability": 0.8716 + }, + { + "start": 6616.32, + "end": 6617.36, + "probability": 0.75 + }, + { + "start": 6617.42, + "end": 6618.04, + "probability": 0.2414 + }, + { + "start": 6618.14, + "end": 6622.0, + "probability": 0.8162 + }, + { + "start": 6622.32, + "end": 6622.6, + "probability": 0.6113 + }, + { + "start": 6622.82, + "end": 6624.96, + "probability": 0.8782 + }, + { + "start": 6625.06, + "end": 6625.98, + "probability": 0.7352 + }, + { + "start": 6626.06, + "end": 6626.34, + "probability": 0.8066 + }, + { + "start": 6627.24, + "end": 6628.96, + "probability": 0.9912 + }, + { + "start": 6629.34, + "end": 6630.74, + "probability": 0.8396 + }, + { + "start": 6631.0, + "end": 6631.34, + "probability": 0.1401 + }, + { + "start": 6631.34, + "end": 6632.56, + "probability": 0.6906 + }, + { + "start": 6632.74, + "end": 6637.4, + "probability": 0.9983 + }, + { + "start": 6637.82, + "end": 6638.94, + "probability": 0.8648 + }, + { + "start": 6639.06, + "end": 6643.34, + "probability": 0.96 + }, + { + "start": 6643.48, + "end": 6644.84, + "probability": 0.7538 + }, + { + "start": 6644.94, + "end": 6646.18, + "probability": 0.9021 + }, + { + "start": 6646.6, + "end": 6646.64, + "probability": 0.0158 + }, + { + "start": 6646.64, + "end": 6646.64, + "probability": 0.0056 + }, + { + "start": 6646.64, + "end": 6647.72, + "probability": 0.6263 + }, + { + "start": 6648.04, + "end": 6649.0, + "probability": 0.9683 + }, + { + "start": 6649.08, + "end": 6651.1, + "probability": 0.9891 + }, + { + "start": 6651.24, + "end": 6651.92, + "probability": 0.8906 + }, + { + "start": 6652.12, + "end": 6654.98, + "probability": 0.9939 + }, + { + "start": 6655.26, + "end": 6657.64, + "probability": 0.9902 + }, + { + "start": 6657.76, + "end": 6660.32, + "probability": 0.9963 + }, + { + "start": 6660.4, + "end": 6662.5, + "probability": 0.9983 + }, + { + "start": 6662.8, + "end": 6664.28, + "probability": 0.6708 + }, + { + "start": 6664.28, + "end": 6664.52, + "probability": 0.0246 + }, + { + "start": 6664.52, + "end": 6666.0, + "probability": 0.461 + }, + { + "start": 6666.02, + "end": 6667.48, + "probability": 0.8818 + }, + { + "start": 6668.04, + "end": 6668.53, + "probability": 0.5002 + }, + { + "start": 6668.8, + "end": 6670.17, + "probability": 0.9966 + }, + { + "start": 6670.2, + "end": 6672.9, + "probability": 0.8845 + }, + { + "start": 6673.3, + "end": 6675.4, + "probability": 0.9592 + }, + { + "start": 6675.48, + "end": 6676.38, + "probability": 0.9292 + }, + { + "start": 6676.54, + "end": 6677.4, + "probability": 0.9587 + }, + { + "start": 6677.48, + "end": 6679.38, + "probability": 0.9969 + }, + { + "start": 6679.58, + "end": 6680.29, + "probability": 0.9697 + }, + { + "start": 6680.78, + "end": 6680.78, + "probability": 0.1008 + }, + { + "start": 6680.78, + "end": 6680.78, + "probability": 0.6442 + }, + { + "start": 6680.78, + "end": 6682.22, + "probability": 0.955 + }, + { + "start": 6682.48, + "end": 6683.8, + "probability": 0.9885 + }, + { + "start": 6683.88, + "end": 6685.3, + "probability": 0.9969 + }, + { + "start": 6685.5, + "end": 6687.34, + "probability": 0.9795 + }, + { + "start": 6687.34, + "end": 6688.0, + "probability": 0.7218 + }, + { + "start": 6688.16, + "end": 6689.88, + "probability": 0.9905 + }, + { + "start": 6690.48, + "end": 6691.18, + "probability": 0.2861 + }, + { + "start": 6691.44, + "end": 6692.4, + "probability": 0.8433 + }, + { + "start": 6692.76, + "end": 6693.86, + "probability": 0.9183 + }, + { + "start": 6693.92, + "end": 6695.06, + "probability": 0.9604 + }, + { + "start": 6695.28, + "end": 6696.18, + "probability": 0.9068 + }, + { + "start": 6696.22, + "end": 6697.36, + "probability": 0.9011 + }, + { + "start": 6697.54, + "end": 6700.92, + "probability": 0.9878 + }, + { + "start": 6701.14, + "end": 6702.64, + "probability": 0.9712 + }, + { + "start": 6702.92, + "end": 6704.84, + "probability": 0.4919 + }, + { + "start": 6705.02, + "end": 6707.96, + "probability": 0.9497 + }, + { + "start": 6708.0, + "end": 6709.18, + "probability": 0.8675 + }, + { + "start": 6709.64, + "end": 6712.76, + "probability": 0.964 + }, + { + "start": 6712.98, + "end": 6715.28, + "probability": 0.7203 + }, + { + "start": 6715.46, + "end": 6719.66, + "probability": 0.0029 + }, + { + "start": 6719.66, + "end": 6719.66, + "probability": 0.076 + }, + { + "start": 6719.66, + "end": 6719.66, + "probability": 0.1299 + }, + { + "start": 6719.66, + "end": 6719.66, + "probability": 0.0119 + }, + { + "start": 6719.66, + "end": 6723.78, + "probability": 0.9766 + }, + { + "start": 6723.9, + "end": 6726.14, + "probability": 0.5288 + }, + { + "start": 6726.26, + "end": 6729.25, + "probability": 0.9892 + }, + { + "start": 6729.42, + "end": 6729.42, + "probability": 0.0031 + }, + { + "start": 6729.42, + "end": 6733.28, + "probability": 0.9888 + }, + { + "start": 6733.96, + "end": 6734.16, + "probability": 0.0583 + }, + { + "start": 6734.16, + "end": 6735.91, + "probability": 0.6957 + }, + { + "start": 6736.02, + "end": 6738.58, + "probability": 0.9023 + }, + { + "start": 6738.94, + "end": 6739.26, + "probability": 0.6894 + }, + { + "start": 6739.86, + "end": 6740.82, + "probability": 0.346 + }, + { + "start": 6741.14, + "end": 6742.0, + "probability": 0.8597 + }, + { + "start": 6742.1, + "end": 6744.08, + "probability": 0.6492 + }, + { + "start": 6745.3, + "end": 6747.04, + "probability": 0.9945 + }, + { + "start": 6747.1, + "end": 6747.5, + "probability": 0.312 + }, + { + "start": 6747.52, + "end": 6748.02, + "probability": 0.5499 + }, + { + "start": 6748.1, + "end": 6749.1, + "probability": 0.9165 + }, + { + "start": 6749.1, + "end": 6749.92, + "probability": 0.985 + }, + { + "start": 6750.24, + "end": 6751.42, + "probability": 0.5923 + }, + { + "start": 6751.56, + "end": 6752.0, + "probability": 0.9139 + }, + { + "start": 6752.08, + "end": 6753.21, + "probability": 0.7954 + }, + { + "start": 6754.42, + "end": 6758.08, + "probability": 0.9754 + }, + { + "start": 6758.28, + "end": 6762.3, + "probability": 0.9023 + }, + { + "start": 6762.62, + "end": 6764.04, + "probability": 0.5136 + }, + { + "start": 6764.2, + "end": 6765.12, + "probability": 0.606 + }, + { + "start": 6765.5, + "end": 6766.2, + "probability": 0.6597 + }, + { + "start": 6766.3, + "end": 6767.02, + "probability": 0.8515 + }, + { + "start": 6767.06, + "end": 6768.34, + "probability": 0.8159 + }, + { + "start": 6770.58, + "end": 6773.04, + "probability": 0.1956 + }, + { + "start": 6773.12, + "end": 6776.4, + "probability": 0.4206 + }, + { + "start": 6778.38, + "end": 6778.54, + "probability": 0.0206 + }, + { + "start": 6786.24, + "end": 6786.92, + "probability": 0.3853 + }, + { + "start": 6786.92, + "end": 6791.8, + "probability": 0.7606 + }, + { + "start": 6795.04, + "end": 6798.5, + "probability": 0.9707 + }, + { + "start": 6798.64, + "end": 6801.7, + "probability": 0.9623 + }, + { + "start": 6802.08, + "end": 6803.4, + "probability": 0.4372 + }, + { + "start": 6803.58, + "end": 6808.54, + "probability": 0.9796 + }, + { + "start": 6808.98, + "end": 6812.52, + "probability": 0.5897 + }, + { + "start": 6812.58, + "end": 6814.08, + "probability": 0.8775 + }, + { + "start": 6815.72, + "end": 6816.38, + "probability": 0.7908 + }, + { + "start": 6816.42, + "end": 6819.54, + "probability": 0.9579 + }, + { + "start": 6819.56, + "end": 6823.68, + "probability": 0.8144 + }, + { + "start": 6823.88, + "end": 6825.16, + "probability": 0.441 + }, + { + "start": 6825.9, + "end": 6829.04, + "probability": 0.9841 + }, + { + "start": 6829.34, + "end": 6835.32, + "probability": 0.9822 + }, + { + "start": 6836.06, + "end": 6836.98, + "probability": 0.6493 + }, + { + "start": 6837.2, + "end": 6837.82, + "probability": 0.9464 + }, + { + "start": 6837.88, + "end": 6840.42, + "probability": 0.7529 + }, + { + "start": 6841.14, + "end": 6842.94, + "probability": 0.5687 + }, + { + "start": 6842.96, + "end": 6843.28, + "probability": 0.9285 + }, + { + "start": 6844.18, + "end": 6845.75, + "probability": 0.6351 + }, + { + "start": 6847.74, + "end": 6849.86, + "probability": 0.9325 + }, + { + "start": 6850.12, + "end": 6852.14, + "probability": 0.8653 + }, + { + "start": 6853.06, + "end": 6857.44, + "probability": 0.6742 + }, + { + "start": 6858.16, + "end": 6860.82, + "probability": 0.966 + }, + { + "start": 6860.94, + "end": 6865.22, + "probability": 0.9963 + }, + { + "start": 6866.5, + "end": 6870.7, + "probability": 0.995 + }, + { + "start": 6871.64, + "end": 6877.86, + "probability": 0.9398 + }, + { + "start": 6878.42, + "end": 6879.8, + "probability": 0.9701 + }, + { + "start": 6880.54, + "end": 6888.52, + "probability": 0.9727 + }, + { + "start": 6891.42, + "end": 6895.56, + "probability": 0.9946 + }, + { + "start": 6896.42, + "end": 6898.46, + "probability": 0.6816 + }, + { + "start": 6898.86, + "end": 6900.04, + "probability": 0.8734 + }, + { + "start": 6900.22, + "end": 6900.82, + "probability": 0.7173 + }, + { + "start": 6900.88, + "end": 6901.84, + "probability": 0.9046 + }, + { + "start": 6902.28, + "end": 6903.04, + "probability": 0.852 + }, + { + "start": 6903.12, + "end": 6903.88, + "probability": 0.9055 + }, + { + "start": 6904.3, + "end": 6908.14, + "probability": 0.9817 + }, + { + "start": 6908.94, + "end": 6911.6, + "probability": 0.9442 + }, + { + "start": 6912.86, + "end": 6913.76, + "probability": 0.5442 + }, + { + "start": 6914.88, + "end": 6918.32, + "probability": 0.9669 + }, + { + "start": 6918.98, + "end": 6921.79, + "probability": 0.9852 + }, + { + "start": 6923.96, + "end": 6926.0, + "probability": 0.9968 + }, + { + "start": 6927.14, + "end": 6930.02, + "probability": 0.9946 + }, + { + "start": 6930.76, + "end": 6933.04, + "probability": 0.9636 + }, + { + "start": 6933.92, + "end": 6936.68, + "probability": 0.7755 + }, + { + "start": 6937.72, + "end": 6939.62, + "probability": 0.9948 + }, + { + "start": 6940.34, + "end": 6942.86, + "probability": 0.9407 + }, + { + "start": 6944.56, + "end": 6948.54, + "probability": 0.9561 + }, + { + "start": 6948.54, + "end": 6953.42, + "probability": 0.9992 + }, + { + "start": 6955.12, + "end": 6959.66, + "probability": 0.9968 + }, + { + "start": 6959.66, + "end": 6964.98, + "probability": 0.9983 + }, + { + "start": 6967.0, + "end": 6969.24, + "probability": 0.8458 + }, + { + "start": 6970.46, + "end": 6976.12, + "probability": 0.9401 + }, + { + "start": 6976.5, + "end": 6979.38, + "probability": 0.9359 + }, + { + "start": 6979.78, + "end": 6984.36, + "probability": 0.9846 + }, + { + "start": 6984.36, + "end": 6989.1, + "probability": 0.9964 + }, + { + "start": 6990.02, + "end": 6992.34, + "probability": 0.9176 + }, + { + "start": 6994.7, + "end": 6997.52, + "probability": 0.9435 + }, + { + "start": 6998.34, + "end": 7001.36, + "probability": 0.9406 + }, + { + "start": 7002.6, + "end": 7004.58, + "probability": 0.8953 + }, + { + "start": 7005.28, + "end": 7006.58, + "probability": 0.9828 + }, + { + "start": 7007.88, + "end": 7011.96, + "probability": 0.9962 + }, + { + "start": 7012.14, + "end": 7018.9, + "probability": 0.997 + }, + { + "start": 7020.54, + "end": 7022.6, + "probability": 0.9648 + }, + { + "start": 7023.04, + "end": 7023.54, + "probability": 0.9749 + }, + { + "start": 7023.96, + "end": 7029.18, + "probability": 0.998 + }, + { + "start": 7030.02, + "end": 7031.8, + "probability": 0.9826 + }, + { + "start": 7032.64, + "end": 7034.46, + "probability": 0.9943 + }, + { + "start": 7035.76, + "end": 7038.96, + "probability": 0.9951 + }, + { + "start": 7039.78, + "end": 7043.38, + "probability": 0.9965 + }, + { + "start": 7043.82, + "end": 7045.82, + "probability": 0.8126 + }, + { + "start": 7046.82, + "end": 7047.61, + "probability": 0.9782 + }, + { + "start": 7048.66, + "end": 7051.84, + "probability": 0.9136 + }, + { + "start": 7051.84, + "end": 7052.05, + "probability": 0.026 + }, + { + "start": 7055.42, + "end": 7056.64, + "probability": 0.8009 + }, + { + "start": 7057.42, + "end": 7057.92, + "probability": 0.3513 + }, + { + "start": 7058.06, + "end": 7059.2, + "probability": 0.7652 + }, + { + "start": 7060.9, + "end": 7061.62, + "probability": 0.915 + }, + { + "start": 7061.9, + "end": 7063.69, + "probability": 0.9563 + }, + { + "start": 7064.14, + "end": 7066.46, + "probability": 0.708 + }, + { + "start": 7067.24, + "end": 7068.12, + "probability": 0.9308 + }, + { + "start": 7068.5, + "end": 7073.44, + "probability": 0.9775 + }, + { + "start": 7074.66, + "end": 7077.0, + "probability": 0.9636 + }, + { + "start": 7077.82, + "end": 7079.08, + "probability": 0.9697 + }, + { + "start": 7080.08, + "end": 7081.98, + "probability": 0.9641 + }, + { + "start": 7082.62, + "end": 7085.36, + "probability": 0.9896 + }, + { + "start": 7086.62, + "end": 7090.24, + "probability": 0.9833 + }, + { + "start": 7090.78, + "end": 7094.18, + "probability": 0.9734 + }, + { + "start": 7094.9, + "end": 7099.92, + "probability": 0.9602 + }, + { + "start": 7101.2, + "end": 7106.88, + "probability": 0.9888 + }, + { + "start": 7107.16, + "end": 7107.54, + "probability": 0.8248 + }, + { + "start": 7109.18, + "end": 7111.7, + "probability": 0.7839 + }, + { + "start": 7112.88, + "end": 7117.98, + "probability": 0.9643 + }, + { + "start": 7118.64, + "end": 7119.46, + "probability": 0.8271 + }, + { + "start": 7119.92, + "end": 7121.2, + "probability": 0.9498 + }, + { + "start": 7121.62, + "end": 7122.82, + "probability": 0.9714 + }, + { + "start": 7123.0, + "end": 7123.42, + "probability": 0.9808 + }, + { + "start": 7123.82, + "end": 7127.4, + "probability": 0.9918 + }, + { + "start": 7128.08, + "end": 7129.36, + "probability": 0.6676 + }, + { + "start": 7130.1, + "end": 7136.58, + "probability": 0.8362 + }, + { + "start": 7137.6, + "end": 7138.2, + "probability": 0.9062 + }, + { + "start": 7139.26, + "end": 7140.84, + "probability": 0.9512 + }, + { + "start": 7141.56, + "end": 7143.84, + "probability": 0.9539 + }, + { + "start": 7144.36, + "end": 7145.74, + "probability": 0.8372 + }, + { + "start": 7146.58, + "end": 7150.62, + "probability": 0.9269 + }, + { + "start": 7150.68, + "end": 7153.92, + "probability": 0.8357 + }, + { + "start": 7154.36, + "end": 7155.82, + "probability": 0.9712 + }, + { + "start": 7156.42, + "end": 7159.14, + "probability": 0.9718 + }, + { + "start": 7160.02, + "end": 7161.32, + "probability": 0.8304 + }, + { + "start": 7162.58, + "end": 7165.26, + "probability": 0.8197 + }, + { + "start": 7165.9, + "end": 7171.72, + "probability": 0.9907 + }, + { + "start": 7172.46, + "end": 7175.44, + "probability": 0.8617 + }, + { + "start": 7175.52, + "end": 7179.24, + "probability": 0.2994 + }, + { + "start": 7179.24, + "end": 7185.2, + "probability": 0.9471 + }, + { + "start": 7188.12, + "end": 7188.22, + "probability": 0.3854 + }, + { + "start": 7188.44, + "end": 7188.74, + "probability": 0.7876 + }, + { + "start": 7188.92, + "end": 7191.1, + "probability": 0.998 + }, + { + "start": 7191.98, + "end": 7195.38, + "probability": 0.9907 + }, + { + "start": 7197.54, + "end": 7202.68, + "probability": 0.9763 + }, + { + "start": 7203.32, + "end": 7204.78, + "probability": 0.9803 + }, + { + "start": 7206.7, + "end": 7207.02, + "probability": 0.7453 + }, + { + "start": 7207.12, + "end": 7211.48, + "probability": 0.9958 + }, + { + "start": 7211.48, + "end": 7216.84, + "probability": 0.9872 + }, + { + "start": 7218.4, + "end": 7220.22, + "probability": 0.7518 + }, + { + "start": 7220.74, + "end": 7222.32, + "probability": 0.8656 + }, + { + "start": 7223.68, + "end": 7228.0, + "probability": 0.9956 + }, + { + "start": 7228.0, + "end": 7234.28, + "probability": 0.9951 + }, + { + "start": 7234.8, + "end": 7238.84, + "probability": 0.9974 + }, + { + "start": 7240.78, + "end": 7247.48, + "probability": 0.9897 + }, + { + "start": 7248.9, + "end": 7250.74, + "probability": 0.408 + }, + { + "start": 7251.8, + "end": 7254.22, + "probability": 0.9844 + }, + { + "start": 7255.6, + "end": 7261.14, + "probability": 0.9346 + }, + { + "start": 7261.48, + "end": 7267.62, + "probability": 0.711 + }, + { + "start": 7268.98, + "end": 7270.82, + "probability": 0.8863 + }, + { + "start": 7271.48, + "end": 7272.32, + "probability": 0.8036 + }, + { + "start": 7273.16, + "end": 7274.24, + "probability": 0.8905 + }, + { + "start": 7275.0, + "end": 7278.34, + "probability": 0.9812 + }, + { + "start": 7279.44, + "end": 7281.16, + "probability": 0.9736 + }, + { + "start": 7282.2, + "end": 7283.68, + "probability": 0.9495 + }, + { + "start": 7285.08, + "end": 7292.08, + "probability": 0.9966 + }, + { + "start": 7292.92, + "end": 7297.44, + "probability": 0.9989 + }, + { + "start": 7297.84, + "end": 7298.34, + "probability": 0.8381 + }, + { + "start": 7298.78, + "end": 7301.92, + "probability": 0.9948 + }, + { + "start": 7302.34, + "end": 7306.48, + "probability": 0.9865 + }, + { + "start": 7307.18, + "end": 7307.86, + "probability": 0.716 + }, + { + "start": 7308.26, + "end": 7313.19, + "probability": 0.9923 + }, + { + "start": 7314.66, + "end": 7316.06, + "probability": 0.9832 + }, + { + "start": 7316.62, + "end": 7319.34, + "probability": 0.9728 + }, + { + "start": 7320.82, + "end": 7324.66, + "probability": 0.9932 + }, + { + "start": 7325.76, + "end": 7331.6, + "probability": 0.9867 + }, + { + "start": 7332.82, + "end": 7335.4, + "probability": 0.7518 + }, + { + "start": 7336.02, + "end": 7337.18, + "probability": 0.9949 + }, + { + "start": 7338.24, + "end": 7340.18, + "probability": 0.9624 + }, + { + "start": 7340.74, + "end": 7347.36, + "probability": 0.9876 + }, + { + "start": 7347.84, + "end": 7353.94, + "probability": 0.9851 + }, + { + "start": 7355.68, + "end": 7361.66, + "probability": 0.997 + }, + { + "start": 7361.66, + "end": 7368.74, + "probability": 0.999 + }, + { + "start": 7369.42, + "end": 7371.6, + "probability": 0.9475 + }, + { + "start": 7372.04, + "end": 7374.87, + "probability": 0.9274 + }, + { + "start": 7375.54, + "end": 7375.86, + "probability": 0.8253 + }, + { + "start": 7376.88, + "end": 7378.8, + "probability": 0.873 + }, + { + "start": 7379.12, + "end": 7381.86, + "probability": 0.9408 + }, + { + "start": 7382.52, + "end": 7384.78, + "probability": 0.7723 + }, + { + "start": 7385.3, + "end": 7385.9, + "probability": 0.0113 + }, + { + "start": 7405.29, + "end": 7407.9, + "probability": 0.2998 + }, + { + "start": 7409.18, + "end": 7411.0, + "probability": 0.0242 + }, + { + "start": 7411.0, + "end": 7413.66, + "probability": 0.0649 + }, + { + "start": 7435.76, + "end": 7439.18, + "probability": 0.9917 + }, + { + "start": 7440.82, + "end": 7446.26, + "probability": 0.9894 + }, + { + "start": 7447.04, + "end": 7449.64, + "probability": 0.974 + }, + { + "start": 7450.6, + "end": 7451.28, + "probability": 0.4114 + }, + { + "start": 7453.24, + "end": 7456.66, + "probability": 0.9408 + }, + { + "start": 7457.74, + "end": 7460.74, + "probability": 0.9923 + }, + { + "start": 7460.74, + "end": 7465.96, + "probability": 0.9907 + }, + { + "start": 7466.72, + "end": 7469.3, + "probability": 0.7132 + }, + { + "start": 7470.48, + "end": 7474.28, + "probability": 0.9618 + }, + { + "start": 7475.86, + "end": 7482.0, + "probability": 0.9429 + }, + { + "start": 7482.0, + "end": 7488.76, + "probability": 0.9905 + }, + { + "start": 7489.5, + "end": 7491.64, + "probability": 0.8456 + }, + { + "start": 7493.42, + "end": 7495.72, + "probability": 0.9852 + }, + { + "start": 7496.52, + "end": 7505.5, + "probability": 0.996 + }, + { + "start": 7505.68, + "end": 7506.36, + "probability": 0.7435 + }, + { + "start": 7506.52, + "end": 7507.24, + "probability": 0.8476 + }, + { + "start": 7508.06, + "end": 7513.0, + "probability": 0.9867 + }, + { + "start": 7513.0, + "end": 7517.08, + "probability": 0.8993 + }, + { + "start": 7518.62, + "end": 7521.76, + "probability": 0.9983 + }, + { + "start": 7522.8, + "end": 7525.78, + "probability": 0.9742 + }, + { + "start": 7526.94, + "end": 7530.4, + "probability": 0.9987 + }, + { + "start": 7531.12, + "end": 7532.28, + "probability": 0.7915 + }, + { + "start": 7532.88, + "end": 7534.36, + "probability": 0.9458 + }, + { + "start": 7535.08, + "end": 7539.92, + "probability": 0.9941 + }, + { + "start": 7540.08, + "end": 7544.9, + "probability": 0.9897 + }, + { + "start": 7547.7, + "end": 7550.7, + "probability": 0.9988 + }, + { + "start": 7551.46, + "end": 7557.98, + "probability": 0.9924 + }, + { + "start": 7557.98, + "end": 7562.88, + "probability": 0.8559 + }, + { + "start": 7564.24, + "end": 7567.82, + "probability": 0.8395 + }, + { + "start": 7568.28, + "end": 7571.1, + "probability": 0.9314 + }, + { + "start": 7571.96, + "end": 7574.56, + "probability": 0.9863 + }, + { + "start": 7575.1, + "end": 7576.6, + "probability": 0.9795 + }, + { + "start": 7577.36, + "end": 7579.24, + "probability": 0.9722 + }, + { + "start": 7581.65, + "end": 7586.98, + "probability": 0.1074 + }, + { + "start": 7587.24, + "end": 7588.64, + "probability": 0.6228 + }, + { + "start": 7590.08, + "end": 7592.76, + "probability": 0.9766 + }, + { + "start": 7592.88, + "end": 7595.08, + "probability": 0.9633 + }, + { + "start": 7595.92, + "end": 7598.38, + "probability": 0.9168 + }, + { + "start": 7599.42, + "end": 7600.64, + "probability": 0.7622 + }, + { + "start": 7601.44, + "end": 7610.96, + "probability": 0.9516 + }, + { + "start": 7612.16, + "end": 7615.52, + "probability": 0.9587 + }, + { + "start": 7616.78, + "end": 7618.8, + "probability": 0.9576 + }, + { + "start": 7619.48, + "end": 7622.76, + "probability": 0.912 + }, + { + "start": 7622.96, + "end": 7625.02, + "probability": 0.9058 + }, + { + "start": 7625.36, + "end": 7626.54, + "probability": 0.8981 + }, + { + "start": 7628.1, + "end": 7632.28, + "probability": 0.9941 + }, + { + "start": 7634.08, + "end": 7636.04, + "probability": 0.9576 + }, + { + "start": 7636.96, + "end": 7637.88, + "probability": 0.5328 + }, + { + "start": 7638.96, + "end": 7642.24, + "probability": 0.9249 + }, + { + "start": 7642.48, + "end": 7647.24, + "probability": 0.7095 + }, + { + "start": 7647.32, + "end": 7652.62, + "probability": 0.963 + }, + { + "start": 7653.7, + "end": 7654.82, + "probability": 0.8669 + }, + { + "start": 7655.84, + "end": 7660.72, + "probability": 0.9202 + }, + { + "start": 7660.9, + "end": 7662.96, + "probability": 0.7816 + }, + { + "start": 7664.18, + "end": 7667.8, + "probability": 0.2963 + }, + { + "start": 7671.24, + "end": 7673.14, + "probability": 0.569 + }, + { + "start": 7673.66, + "end": 7674.31, + "probability": 0.3984 + }, + { + "start": 7675.12, + "end": 7676.64, + "probability": 0.5266 + }, + { + "start": 7678.38, + "end": 7679.62, + "probability": 0.9751 + }, + { + "start": 7682.26, + "end": 7686.7, + "probability": 0.7922 + }, + { + "start": 7687.24, + "end": 7689.86, + "probability": 0.6309 + }, + { + "start": 7690.66, + "end": 7693.1, + "probability": 0.9924 + }, + { + "start": 7693.46, + "end": 7694.38, + "probability": 0.7495 + }, + { + "start": 7694.5, + "end": 7696.46, + "probability": 0.912 + }, + { + "start": 7696.94, + "end": 7698.14, + "probability": 0.9744 + }, + { + "start": 7698.22, + "end": 7699.5, + "probability": 0.9658 + }, + { + "start": 7700.32, + "end": 7704.09, + "probability": 0.9552 + }, + { + "start": 7704.96, + "end": 7707.52, + "probability": 0.9908 + }, + { + "start": 7708.86, + "end": 7709.68, + "probability": 0.8693 + }, + { + "start": 7710.58, + "end": 7711.66, + "probability": 0.9426 + }, + { + "start": 7711.74, + "end": 7713.88, + "probability": 0.9952 + }, + { + "start": 7714.28, + "end": 7716.0, + "probability": 0.9721 + }, + { + "start": 7716.28, + "end": 7719.4, + "probability": 0.9717 + }, + { + "start": 7720.06, + "end": 7721.72, + "probability": 0.9603 + }, + { + "start": 7722.44, + "end": 7724.72, + "probability": 0.7894 + }, + { + "start": 7724.86, + "end": 7728.02, + "probability": 0.8759 + }, + { + "start": 7728.38, + "end": 7733.02, + "probability": 0.5 + }, + { + "start": 7736.52, + "end": 7737.42, + "probability": 0.4771 + }, + { + "start": 7739.56, + "end": 7741.32, + "probability": 0.8195 + }, + { + "start": 7742.68, + "end": 7743.42, + "probability": 0.1862 + }, + { + "start": 7743.42, + "end": 7743.74, + "probability": 0.2235 + }, + { + "start": 7745.34, + "end": 7750.76, + "probability": 0.9043 + }, + { + "start": 7751.42, + "end": 7753.46, + "probability": 0.9873 + }, + { + "start": 7753.84, + "end": 7755.12, + "probability": 0.916 + }, + { + "start": 7755.6, + "end": 7756.66, + "probability": 0.9077 + }, + { + "start": 7757.14, + "end": 7761.22, + "probability": 0.5718 + }, + { + "start": 7762.6, + "end": 7763.58, + "probability": 0.9377 + }, + { + "start": 7764.54, + "end": 7766.52, + "probability": 0.9783 + }, + { + "start": 7766.6, + "end": 7767.38, + "probability": 0.9739 + }, + { + "start": 7767.96, + "end": 7772.02, + "probability": 0.984 + }, + { + "start": 7772.64, + "end": 7774.6, + "probability": 0.9861 + }, + { + "start": 7775.48, + "end": 7777.58, + "probability": 0.5492 + }, + { + "start": 7778.4, + "end": 7780.14, + "probability": 0.9565 + }, + { + "start": 7781.0, + "end": 7783.0, + "probability": 0.9393 + }, + { + "start": 7783.6, + "end": 7785.18, + "probability": 0.9853 + }, + { + "start": 7785.72, + "end": 7792.22, + "probability": 0.9493 + }, + { + "start": 7792.6, + "end": 7793.48, + "probability": 0.6921 + }, + { + "start": 7793.62, + "end": 7794.24, + "probability": 0.7582 + }, + { + "start": 7794.28, + "end": 7794.42, + "probability": 0.46 + }, + { + "start": 7795.02, + "end": 7796.28, + "probability": 0.8701 + }, + { + "start": 7796.96, + "end": 7801.16, + "probability": 0.9263 + }, + { + "start": 7801.94, + "end": 7804.96, + "probability": 0.9489 + }, + { + "start": 7805.52, + "end": 7807.38, + "probability": 0.987 + }, + { + "start": 7808.2, + "end": 7811.3, + "probability": 0.9551 + }, + { + "start": 7811.8, + "end": 7813.36, + "probability": 0.856 + }, + { + "start": 7813.78, + "end": 7816.14, + "probability": 0.9775 + }, + { + "start": 7816.68, + "end": 7819.84, + "probability": 0.9833 + }, + { + "start": 7820.24, + "end": 7821.58, + "probability": 0.9875 + }, + { + "start": 7821.76, + "end": 7822.98, + "probability": 0.5573 + }, + { + "start": 7823.36, + "end": 7827.66, + "probability": 0.9565 + }, + { + "start": 7828.18, + "end": 7828.52, + "probability": 0.4677 + }, + { + "start": 7828.58, + "end": 7829.74, + "probability": 0.9556 + }, + { + "start": 7830.2, + "end": 7834.4, + "probability": 0.9727 + }, + { + "start": 7835.08, + "end": 7837.85, + "probability": 0.984 + }, + { + "start": 7838.6, + "end": 7842.44, + "probability": 0.8984 + }, + { + "start": 7843.24, + "end": 7843.96, + "probability": 0.8821 + }, + { + "start": 7845.56, + "end": 7846.06, + "probability": 0.6724 + }, + { + "start": 7846.18, + "end": 7847.94, + "probability": 0.5246 + }, + { + "start": 7848.24, + "end": 7852.32, + "probability": 0.8024 + }, + { + "start": 7853.18, + "end": 7858.16, + "probability": 0.9176 + }, + { + "start": 7858.98, + "end": 7860.6, + "probability": 0.9016 + }, + { + "start": 7861.26, + "end": 7862.96, + "probability": 0.9399 + }, + { + "start": 7863.62, + "end": 7866.13, + "probability": 0.6784 + }, + { + "start": 7866.84, + "end": 7869.9, + "probability": 0.991 + }, + { + "start": 7870.02, + "end": 7876.54, + "probability": 0.9371 + }, + { + "start": 7877.26, + "end": 7880.16, + "probability": 0.9175 + }, + { + "start": 7881.24, + "end": 7885.68, + "probability": 0.9084 + }, + { + "start": 7885.78, + "end": 7888.38, + "probability": 0.7819 + }, + { + "start": 7889.08, + "end": 7892.72, + "probability": 0.9941 + }, + { + "start": 7893.8, + "end": 7894.74, + "probability": 0.8871 + }, + { + "start": 7894.82, + "end": 7895.98, + "probability": 0.9428 + }, + { + "start": 7896.56, + "end": 7900.98, + "probability": 0.8262 + }, + { + "start": 7902.08, + "end": 7904.56, + "probability": 0.702 + }, + { + "start": 7905.64, + "end": 7907.2, + "probability": 0.6627 + }, + { + "start": 7907.34, + "end": 7907.86, + "probability": 0.8323 + }, + { + "start": 7908.08, + "end": 7911.32, + "probability": 0.9634 + }, + { + "start": 7911.64, + "end": 7915.08, + "probability": 0.9891 + }, + { + "start": 7915.34, + "end": 7916.72, + "probability": 0.9584 + }, + { + "start": 7917.32, + "end": 7919.88, + "probability": 0.9942 + }, + { + "start": 7920.4, + "end": 7921.7, + "probability": 0.9712 + }, + { + "start": 7921.96, + "end": 7925.52, + "probability": 0.978 + }, + { + "start": 7925.78, + "end": 7926.62, + "probability": 0.8359 + }, + { + "start": 7927.14, + "end": 7930.68, + "probability": 0.9115 + }, + { + "start": 7931.0, + "end": 7935.76, + "probability": 0.9803 + }, + { + "start": 7936.22, + "end": 7943.5, + "probability": 0.9881 + }, + { + "start": 7943.62, + "end": 7948.38, + "probability": 0.9895 + }, + { + "start": 7948.92, + "end": 7950.7, + "probability": 0.358 + }, + { + "start": 7951.06, + "end": 7953.84, + "probability": 0.979 + }, + { + "start": 7954.64, + "end": 7959.48, + "probability": 0.8871 + }, + { + "start": 7960.0, + "end": 7962.62, + "probability": 0.9928 + }, + { + "start": 7962.86, + "end": 7965.86, + "probability": 0.8606 + }, + { + "start": 7966.78, + "end": 7967.0, + "probability": 0.8586 + }, + { + "start": 7967.0, + "end": 7967.81, + "probability": 0.8672 + }, + { + "start": 7968.12, + "end": 7972.48, + "probability": 0.9822 + }, + { + "start": 7972.48, + "end": 7978.24, + "probability": 0.9989 + }, + { + "start": 7978.96, + "end": 7983.52, + "probability": 0.9902 + }, + { + "start": 7984.12, + "end": 7986.42, + "probability": 0.8514 + }, + { + "start": 7986.94, + "end": 7988.86, + "probability": 0.9958 + }, + { + "start": 7989.38, + "end": 7993.2, + "probability": 0.9857 + }, + { + "start": 7993.92, + "end": 7994.42, + "probability": 0.4811 + }, + { + "start": 7995.0, + "end": 8000.19, + "probability": 0.9658 + }, + { + "start": 8000.48, + "end": 8001.16, + "probability": 0.4068 + }, + { + "start": 8001.16, + "end": 8002.88, + "probability": 0.7674 + }, + { + "start": 8003.3, + "end": 8006.66, + "probability": 0.9382 + }, + { + "start": 8007.34, + "end": 8008.68, + "probability": 0.9971 + }, + { + "start": 8009.18, + "end": 8010.86, + "probability": 0.9665 + }, + { + "start": 8010.92, + "end": 8011.88, + "probability": 0.3373 + }, + { + "start": 8012.48, + "end": 8013.88, + "probability": 0.817 + }, + { + "start": 8017.34, + "end": 8019.76, + "probability": 0.9384 + }, + { + "start": 8020.02, + "end": 8022.0, + "probability": 0.9649 + }, + { + "start": 8022.42, + "end": 8023.0, + "probability": 0.7363 + }, + { + "start": 8023.08, + "end": 8024.12, + "probability": 0.7368 + }, + { + "start": 8024.16, + "end": 8025.6, + "probability": 0.9852 + }, + { + "start": 8025.7, + "end": 8026.88, + "probability": 0.7524 + }, + { + "start": 8027.42, + "end": 8029.24, + "probability": 0.8062 + }, + { + "start": 8029.3, + "end": 8031.12, + "probability": 0.91 + }, + { + "start": 8031.4, + "end": 8034.12, + "probability": 0.0015 + }, + { + "start": 8034.96, + "end": 8035.4, + "probability": 0.7681 + }, + { + "start": 8037.19, + "end": 8040.8, + "probability": 0.5793 + }, + { + "start": 8042.2, + "end": 8045.32, + "probability": 0.8905 + }, + { + "start": 8045.82, + "end": 8045.82, + "probability": 0.0776 + }, + { + "start": 8046.92, + "end": 8047.0, + "probability": 0.3322 + }, + { + "start": 8047.0, + "end": 8048.5, + "probability": 0.6737 + }, + { + "start": 8049.2, + "end": 8053.36, + "probability": 0.8652 + }, + { + "start": 8054.26, + "end": 8061.54, + "probability": 0.9364 + }, + { + "start": 8061.66, + "end": 8062.58, + "probability": 0.7229 + }, + { + "start": 8063.28, + "end": 8066.06, + "probability": 0.8598 + }, + { + "start": 8066.26, + "end": 8068.54, + "probability": 0.7641 + }, + { + "start": 8068.64, + "end": 8069.64, + "probability": 0.7112 + }, + { + "start": 8070.78, + "end": 8071.22, + "probability": 0.589 + }, + { + "start": 8071.72, + "end": 8076.76, + "probability": 0.2713 + }, + { + "start": 8077.08, + "end": 8081.3, + "probability": 0.0982 + }, + { + "start": 8081.62, + "end": 8084.6, + "probability": 0.1686 + }, + { + "start": 8085.26, + "end": 8086.78, + "probability": 0.5112 + }, + { + "start": 8087.86, + "end": 8091.9, + "probability": 0.5136 + }, + { + "start": 8092.16, + "end": 8095.72, + "probability": 0.3946 + }, + { + "start": 8095.92, + "end": 8101.72, + "probability": 0.7939 + }, + { + "start": 8102.5, + "end": 8105.0, + "probability": 0.5695 + }, + { + "start": 8105.94, + "end": 8109.48, + "probability": 0.1557 + }, + { + "start": 8111.0, + "end": 8112.06, + "probability": 0.4819 + }, + { + "start": 8113.56, + "end": 8116.86, + "probability": 0.8308 + }, + { + "start": 8120.68, + "end": 8126.4, + "probability": 0.7398 + }, + { + "start": 8127.12, + "end": 8129.58, + "probability": 0.9592 + }, + { + "start": 8130.74, + "end": 8132.38, + "probability": 0.8386 + }, + { + "start": 8134.02, + "end": 8136.18, + "probability": 0.9975 + }, + { + "start": 8136.4, + "end": 8136.54, + "probability": 0.8743 + }, + { + "start": 8137.0, + "end": 8139.64, + "probability": 0.5863 + }, + { + "start": 8140.18, + "end": 8140.46, + "probability": 0.8727 + }, + { + "start": 8140.46, + "end": 8140.94, + "probability": 0.8965 + }, + { + "start": 8143.06, + "end": 8145.72, + "probability": 0.7563 + }, + { + "start": 8146.8, + "end": 8148.12, + "probability": 0.8574 + }, + { + "start": 8148.56, + "end": 8151.3, + "probability": 0.0799 + }, + { + "start": 8152.0, + "end": 8152.0, + "probability": 0.3438 + }, + { + "start": 8152.34, + "end": 8157.68, + "probability": 0.6426 + }, + { + "start": 8158.14, + "end": 8161.34, + "probability": 0.9764 + }, + { + "start": 8161.38, + "end": 8162.32, + "probability": 0.7871 + }, + { + "start": 8162.36, + "end": 8168.38, + "probability": 0.9661 + }, + { + "start": 8168.42, + "end": 8173.74, + "probability": 0.9606 + }, + { + "start": 8174.22, + "end": 8176.86, + "probability": 0.9017 + }, + { + "start": 8178.08, + "end": 8179.36, + "probability": 0.5213 + }, + { + "start": 8179.88, + "end": 8182.9, + "probability": 0.9919 + }, + { + "start": 8184.28, + "end": 8187.64, + "probability": 0.9905 + }, + { + "start": 8188.58, + "end": 8189.0, + "probability": 0.9775 + }, + { + "start": 8189.58, + "end": 8191.76, + "probability": 0.9909 + }, + { + "start": 8192.26, + "end": 8198.54, + "probability": 0.8252 + }, + { + "start": 8199.82, + "end": 8204.86, + "probability": 0.8203 + }, + { + "start": 8205.9, + "end": 8206.34, + "probability": 0.3815 + }, + { + "start": 8207.84, + "end": 8211.62, + "probability": 0.9344 + }, + { + "start": 8212.2, + "end": 8212.6, + "probability": 0.8813 + }, + { + "start": 8213.8, + "end": 8214.46, + "probability": 0.9233 + }, + { + "start": 8216.02, + "end": 8219.74, + "probability": 0.916 + }, + { + "start": 8219.78, + "end": 8220.62, + "probability": 0.8723 + }, + { + "start": 8222.28, + "end": 8224.49, + "probability": 0.8404 + }, + { + "start": 8225.06, + "end": 8226.32, + "probability": 0.9191 + }, + { + "start": 8226.5, + "end": 8229.48, + "probability": 0.9829 + }, + { + "start": 8229.58, + "end": 8231.68, + "probability": 0.806 + }, + { + "start": 8231.8, + "end": 8235.4, + "probability": 0.9299 + }, + { + "start": 8236.04, + "end": 8240.5, + "probability": 0.856 + }, + { + "start": 8240.96, + "end": 8241.6, + "probability": 0.4028 + }, + { + "start": 8241.94, + "end": 8243.6, + "probability": 0.661 + }, + { + "start": 8243.6, + "end": 8245.1, + "probability": 0.9401 + }, + { + "start": 8245.52, + "end": 8246.88, + "probability": 0.6664 + }, + { + "start": 8248.56, + "end": 8249.14, + "probability": 0.7852 + }, + { + "start": 8249.88, + "end": 8251.88, + "probability": 0.7265 + }, + { + "start": 8257.28, + "end": 8258.26, + "probability": 0.8234 + }, + { + "start": 8258.84, + "end": 8263.02, + "probability": 0.998 + }, + { + "start": 8263.96, + "end": 8266.46, + "probability": 0.9803 + }, + { + "start": 8267.46, + "end": 8273.32, + "probability": 0.9921 + }, + { + "start": 8274.44, + "end": 8275.72, + "probability": 0.8945 + }, + { + "start": 8275.84, + "end": 8278.64, + "probability": 0.9683 + }, + { + "start": 8279.32, + "end": 8283.06, + "probability": 0.996 + }, + { + "start": 8284.0, + "end": 8286.58, + "probability": 0.8804 + }, + { + "start": 8286.64, + "end": 8289.0, + "probability": 0.5867 + }, + { + "start": 8289.86, + "end": 8292.76, + "probability": 0.8276 + }, + { + "start": 8293.32, + "end": 8295.2, + "probability": 0.9913 + }, + { + "start": 8296.46, + "end": 8298.06, + "probability": 0.8737 + }, + { + "start": 8298.22, + "end": 8299.84, + "probability": 0.9001 + }, + { + "start": 8300.44, + "end": 8303.26, + "probability": 0.8097 + }, + { + "start": 8305.54, + "end": 8309.98, + "probability": 0.99 + }, + { + "start": 8310.36, + "end": 8313.86, + "probability": 0.9484 + }, + { + "start": 8314.4, + "end": 8318.6, + "probability": 0.4786 + }, + { + "start": 8318.8, + "end": 8319.58, + "probability": 0.8803 + }, + { + "start": 8319.68, + "end": 8321.22, + "probability": 0.7191 + }, + { + "start": 8347.24, + "end": 8349.12, + "probability": 0.2473 + }, + { + "start": 8349.48, + "end": 8353.04, + "probability": 0.7417 + }, + { + "start": 8353.28, + "end": 8354.5, + "probability": 0.4642 + }, + { + "start": 8355.35, + "end": 8360.6, + "probability": 0.75 + }, + { + "start": 8361.7, + "end": 8364.06, + "probability": 0.0596 + }, + { + "start": 8371.5, + "end": 8375.2, + "probability": 0.0478 + }, + { + "start": 8375.66, + "end": 8379.44, + "probability": 0.1048 + }, + { + "start": 8379.52, + "end": 8381.36, + "probability": 0.1031 + }, + { + "start": 8381.7, + "end": 8388.32, + "probability": 0.0865 + }, + { + "start": 8392.02, + "end": 8394.82, + "probability": 0.1378 + }, + { + "start": 8395.36, + "end": 8396.18, + "probability": 0.1461 + }, + { + "start": 8397.58, + "end": 8398.98, + "probability": 0.0302 + }, + { + "start": 8398.98, + "end": 8399.72, + "probability": 0.0262 + }, + { + "start": 8399.87, + "end": 8401.1, + "probability": 0.029 + }, + { + "start": 8402.62, + "end": 8403.28, + "probability": 0.0124 + }, + { + "start": 8404.94, + "end": 8407.42, + "probability": 0.383 + }, + { + "start": 8411.14, + "end": 8412.92, + "probability": 0.0227 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.0, + "end": 8441.0, + "probability": 0.0 + }, + { + "start": 8441.14, + "end": 8441.54, + "probability": 0.1471 + }, + { + "start": 8441.54, + "end": 8441.54, + "probability": 0.1041 + }, + { + "start": 8441.54, + "end": 8442.7, + "probability": 0.8411 + }, + { + "start": 8442.7, + "end": 8446.52, + "probability": 0.9454 + }, + { + "start": 8447.12, + "end": 8449.79, + "probability": 0.9746 + }, + { + "start": 8450.44, + "end": 8453.06, + "probability": 0.9951 + }, + { + "start": 8453.94, + "end": 8454.42, + "probability": 0.5624 + }, + { + "start": 8454.98, + "end": 8457.26, + "probability": 0.7563 + }, + { + "start": 8458.18, + "end": 8463.46, + "probability": 0.8547 + }, + { + "start": 8464.04, + "end": 8468.5, + "probability": 0.9616 + }, + { + "start": 8468.5, + "end": 8471.58, + "probability": 0.8414 + }, + { + "start": 8472.12, + "end": 8476.58, + "probability": 0.9378 + }, + { + "start": 8477.3, + "end": 8477.76, + "probability": 0.7863 + }, + { + "start": 8478.3, + "end": 8481.62, + "probability": 0.8481 + }, + { + "start": 8481.62, + "end": 8486.48, + "probability": 0.9924 + }, + { + "start": 8487.74, + "end": 8487.98, + "probability": 0.7678 + }, + { + "start": 8488.66, + "end": 8489.26, + "probability": 0.9264 + }, + { + "start": 8489.28, + "end": 8494.3, + "probability": 0.9869 + }, + { + "start": 8494.82, + "end": 8495.42, + "probability": 0.782 + }, + { + "start": 8495.84, + "end": 8498.16, + "probability": 0.9125 + }, + { + "start": 8498.56, + "end": 8500.14, + "probability": 0.986 + }, + { + "start": 8501.7, + "end": 8503.26, + "probability": 0.9785 + }, + { + "start": 8503.26, + "end": 8505.47, + "probability": 0.6625 + }, + { + "start": 8506.44, + "end": 8509.44, + "probability": 0.7373 + }, + { + "start": 8515.64, + "end": 8517.74, + "probability": 0.6243 + }, + { + "start": 8517.9, + "end": 8521.36, + "probability": 0.8714 + }, + { + "start": 8521.82, + "end": 8523.12, + "probability": 0.4654 + }, + { + "start": 8523.36, + "end": 8524.2, + "probability": 0.854 + }, + { + "start": 8525.02, + "end": 8525.74, + "probability": 0.6215 + }, + { + "start": 8526.02, + "end": 8526.84, + "probability": 0.9535 + }, + { + "start": 8526.98, + "end": 8527.82, + "probability": 0.6616 + }, + { + "start": 8547.84, + "end": 8553.5, + "probability": 0.2064 + }, + { + "start": 8553.74, + "end": 8556.54, + "probability": 0.9734 + }, + { + "start": 8557.14, + "end": 8558.36, + "probability": 0.498 + }, + { + "start": 8558.98, + "end": 8563.92, + "probability": 0.6797 + }, + { + "start": 8565.32, + "end": 8576.82, + "probability": 0.0257 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8829.0, + "end": 8829.0, + "probability": 0.0 + }, + { + "start": 8832.64, + "end": 8835.52, + "probability": 0.9927 + }, + { + "start": 8835.58, + "end": 8838.48, + "probability": 0.9138 + }, + { + "start": 8839.58, + "end": 8840.78, + "probability": 0.9833 + }, + { + "start": 8841.62, + "end": 8845.12, + "probability": 0.8282 + }, + { + "start": 8845.96, + "end": 8847.72, + "probability": 0.9591 + }, + { + "start": 8848.5, + "end": 8853.62, + "probability": 0.9966 + }, + { + "start": 8854.64, + "end": 8856.88, + "probability": 0.9717 + }, + { + "start": 8857.78, + "end": 8858.98, + "probability": 0.7465 + }, + { + "start": 8860.18, + "end": 8864.34, + "probability": 0.9831 + }, + { + "start": 8865.92, + "end": 8870.76, + "probability": 0.9874 + }, + { + "start": 8872.16, + "end": 8874.44, + "probability": 0.9818 + }, + { + "start": 8875.54, + "end": 8876.28, + "probability": 0.7851 + }, + { + "start": 8877.72, + "end": 8878.94, + "probability": 0.9656 + }, + { + "start": 8879.94, + "end": 8881.18, + "probability": 0.9121 + }, + { + "start": 8881.4, + "end": 8881.94, + "probability": 0.7496 + }, + { + "start": 8883.34, + "end": 8885.82, + "probability": 0.7567 + }, + { + "start": 8886.04, + "end": 8890.88, + "probability": 0.9951 + }, + { + "start": 8891.3, + "end": 8892.35, + "probability": 0.9146 + }, + { + "start": 8893.6, + "end": 8899.72, + "probability": 0.7211 + }, + { + "start": 8900.38, + "end": 8903.64, + "probability": 0.8698 + }, + { + "start": 8905.0, + "end": 8905.88, + "probability": 0.7585 + }, + { + "start": 8907.16, + "end": 8910.56, + "probability": 0.8145 + }, + { + "start": 8912.1, + "end": 8912.5, + "probability": 0.4569 + }, + { + "start": 8912.7, + "end": 8914.62, + "probability": 0.9899 + }, + { + "start": 8914.74, + "end": 8915.81, + "probability": 0.9054 + }, + { + "start": 8916.24, + "end": 8918.26, + "probability": 0.9573 + }, + { + "start": 8919.08, + "end": 8919.5, + "probability": 0.979 + }, + { + "start": 8921.48, + "end": 8922.4, + "probability": 0.7287 + }, + { + "start": 8923.5, + "end": 8923.94, + "probability": 0.6702 + }, + { + "start": 8926.04, + "end": 8931.36, + "probability": 0.9878 + }, + { + "start": 8932.08, + "end": 8934.24, + "probability": 0.9962 + }, + { + "start": 8935.46, + "end": 8935.96, + "probability": 0.2555 + }, + { + "start": 8937.06, + "end": 8937.5, + "probability": 0.9949 + }, + { + "start": 8938.3, + "end": 8939.0, + "probability": 0.9789 + }, + { + "start": 8940.1, + "end": 8940.8, + "probability": 0.9866 + }, + { + "start": 8941.66, + "end": 8944.68, + "probability": 0.991 + }, + { + "start": 8945.28, + "end": 8945.28, + "probability": 0.6323 + }, + { + "start": 8947.04, + "end": 8950.62, + "probability": 0.9485 + }, + { + "start": 8951.94, + "end": 8954.62, + "probability": 0.884 + }, + { + "start": 8955.92, + "end": 8956.52, + "probability": 0.7757 + }, + { + "start": 8957.92, + "end": 8962.32, + "probability": 0.9089 + }, + { + "start": 8964.38, + "end": 8969.86, + "probability": 0.9957 + }, + { + "start": 8970.66, + "end": 8972.54, + "probability": 0.9774 + }, + { + "start": 8973.52, + "end": 8976.58, + "probability": 0.9448 + }, + { + "start": 8977.52, + "end": 8981.84, + "probability": 0.9238 + }, + { + "start": 8982.48, + "end": 8987.96, + "probability": 0.9365 + }, + { + "start": 8988.38, + "end": 8990.06, + "probability": 0.8931 + }, + { + "start": 8990.98, + "end": 8995.84, + "probability": 0.8901 + }, + { + "start": 8996.54, + "end": 9001.3, + "probability": 0.6807 + }, + { + "start": 9002.18, + "end": 9005.2, + "probability": 0.984 + }, + { + "start": 9005.62, + "end": 9009.9, + "probability": 0.965 + }, + { + "start": 9009.94, + "end": 9011.02, + "probability": 0.8154 + }, + { + "start": 9011.36, + "end": 9013.74, + "probability": 0.981 + }, + { + "start": 9013.84, + "end": 9016.64, + "probability": 0.8097 + }, + { + "start": 9017.18, + "end": 9022.36, + "probability": 0.9221 + }, + { + "start": 9023.2, + "end": 9029.72, + "probability": 0.9697 + }, + { + "start": 9030.6, + "end": 9032.6, + "probability": 0.8104 + }, + { + "start": 9033.36, + "end": 9034.78, + "probability": 0.9201 + }, + { + "start": 9035.88, + "end": 9037.78, + "probability": 0.9607 + }, + { + "start": 9038.36, + "end": 9041.4, + "probability": 0.9712 + }, + { + "start": 9042.56, + "end": 9046.32, + "probability": 0.9785 + }, + { + "start": 9047.6, + "end": 9050.14, + "probability": 0.9556 + }, + { + "start": 9051.14, + "end": 9053.16, + "probability": 0.9881 + }, + { + "start": 9053.68, + "end": 9055.82, + "probability": 0.9805 + }, + { + "start": 9057.02, + "end": 9057.14, + "probability": 0.6086 + }, + { + "start": 9057.8, + "end": 9058.4, + "probability": 0.9861 + }, + { + "start": 9059.44, + "end": 9062.98, + "probability": 0.9958 + }, + { + "start": 9063.5, + "end": 9067.0, + "probability": 0.8552 + }, + { + "start": 9067.46, + "end": 9069.1, + "probability": 0.359 + }, + { + "start": 9069.42, + "end": 9072.3, + "probability": 0.619 + }, + { + "start": 9073.24, + "end": 9073.82, + "probability": 0.4176 + }, + { + "start": 9074.02, + "end": 9074.6, + "probability": 0.936 + }, + { + "start": 9075.9, + "end": 9077.34, + "probability": 0.5408 + }, + { + "start": 9079.1, + "end": 9081.64, + "probability": 0.0743 + }, + { + "start": 9081.64, + "end": 9083.32, + "probability": 0.759 + }, + { + "start": 9083.7, + "end": 9085.86, + "probability": 0.801 + }, + { + "start": 9085.86, + "end": 9086.23, + "probability": 0.1615 + }, + { + "start": 9086.64, + "end": 9088.14, + "probability": 0.7017 + }, + { + "start": 9088.62, + "end": 9089.84, + "probability": 0.937 + }, + { + "start": 9093.18, + "end": 9095.8, + "probability": 0.8816 + }, + { + "start": 9097.6, + "end": 9098.64, + "probability": 0.6592 + }, + { + "start": 9100.22, + "end": 9101.56, + "probability": 0.7915 + }, + { + "start": 9104.88, + "end": 9105.8, + "probability": 0.8631 + }, + { + "start": 9106.98, + "end": 9112.7, + "probability": 0.8712 + }, + { + "start": 9114.64, + "end": 9117.18, + "probability": 0.9302 + }, + { + "start": 9118.12, + "end": 9120.04, + "probability": 0.8899 + }, + { + "start": 9121.86, + "end": 9123.74, + "probability": 0.978 + }, + { + "start": 9124.72, + "end": 9128.86, + "probability": 0.9945 + }, + { + "start": 9130.22, + "end": 9138.16, + "probability": 0.91 + }, + { + "start": 9138.16, + "end": 9142.08, + "probability": 0.8534 + }, + { + "start": 9142.68, + "end": 9148.56, + "probability": 0.8795 + }, + { + "start": 9149.22, + "end": 9150.44, + "probability": 0.67 + }, + { + "start": 9150.92, + "end": 9154.1, + "probability": 0.5222 + }, + { + "start": 9154.7, + "end": 9155.28, + "probability": 0.6966 + }, + { + "start": 9155.86, + "end": 9159.34, + "probability": 0.9965 + }, + { + "start": 9159.34, + "end": 9163.1, + "probability": 0.9808 + }, + { + "start": 9164.6, + "end": 9164.64, + "probability": 0.8818 + }, + { + "start": 9167.64, + "end": 9169.46, + "probability": 0.6531 + }, + { + "start": 9169.98, + "end": 9173.9, + "probability": 0.9987 + }, + { + "start": 9174.32, + "end": 9177.78, + "probability": 0.9903 + }, + { + "start": 9178.62, + "end": 9180.42, + "probability": 0.9536 + }, + { + "start": 9182.48, + "end": 9188.3, + "probability": 0.993 + }, + { + "start": 9188.72, + "end": 9189.34, + "probability": 0.4966 + }, + { + "start": 9190.12, + "end": 9193.68, + "probability": 0.8742 + }, + { + "start": 9194.32, + "end": 9198.34, + "probability": 0.7709 + }, + { + "start": 9199.08, + "end": 9202.32, + "probability": 0.9315 + }, + { + "start": 9203.4, + "end": 9208.72, + "probability": 0.9899 + }, + { + "start": 9209.46, + "end": 9211.12, + "probability": 0.9299 + }, + { + "start": 9211.12, + "end": 9212.4, + "probability": 0.9817 + }, + { + "start": 9212.86, + "end": 9219.7, + "probability": 0.9536 + }, + { + "start": 9219.78, + "end": 9220.18, + "probability": 0.7677 + }, + { + "start": 9220.78, + "end": 9222.72, + "probability": 0.7582 + }, + { + "start": 9222.98, + "end": 9224.06, + "probability": 0.7596 + }, + { + "start": 9224.76, + "end": 9227.56, + "probability": 0.8997 + }, + { + "start": 9227.64, + "end": 9228.62, + "probability": 0.5864 + }, + { + "start": 9230.14, + "end": 9230.9, + "probability": 0.3746 + }, + { + "start": 9238.98, + "end": 9242.26, + "probability": 0.231 + }, + { + "start": 9242.26, + "end": 9244.02, + "probability": 0.188 + }, + { + "start": 9244.58, + "end": 9244.98, + "probability": 0.4031 + }, + { + "start": 9245.44, + "end": 9245.72, + "probability": 0.5721 + }, + { + "start": 9245.82, + "end": 9249.22, + "probability": 0.9321 + }, + { + "start": 9250.6, + "end": 9254.42, + "probability": 0.332 + }, + { + "start": 9254.46, + "end": 9256.28, + "probability": 0.3376 + }, + { + "start": 9256.44, + "end": 9257.48, + "probability": 0.9965 + }, + { + "start": 9257.96, + "end": 9262.02, + "probability": 0.6086 + }, + { + "start": 9262.02, + "end": 9265.76, + "probability": 0.8139 + }, + { + "start": 9266.28, + "end": 9267.54, + "probability": 0.8097 + }, + { + "start": 9267.74, + "end": 9274.08, + "probability": 0.9884 + }, + { + "start": 9274.08, + "end": 9279.52, + "probability": 0.9949 + }, + { + "start": 9279.9, + "end": 9281.84, + "probability": 0.1958 + }, + { + "start": 9282.22, + "end": 9282.66, + "probability": 0.6794 + }, + { + "start": 9283.22, + "end": 9285.92, + "probability": 0.9657 + }, + { + "start": 9286.14, + "end": 9288.02, + "probability": 0.9401 + }, + { + "start": 9288.32, + "end": 9290.8, + "probability": 0.8497 + }, + { + "start": 9290.84, + "end": 9291.33, + "probability": 0.9125 + }, + { + "start": 9291.88, + "end": 9294.36, + "probability": 0.9285 + }, + { + "start": 9294.54, + "end": 9296.68, + "probability": 0.9329 + }, + { + "start": 9296.94, + "end": 9297.24, + "probability": 0.6399 + }, + { + "start": 9297.42, + "end": 9301.14, + "probability": 0.7822 + }, + { + "start": 9301.92, + "end": 9305.46, + "probability": 0.7262 + }, + { + "start": 9308.24, + "end": 9310.54, + "probability": 0.2847 + }, + { + "start": 9310.66, + "end": 9313.14, + "probability": 0.9374 + }, + { + "start": 9313.32, + "end": 9314.92, + "probability": 0.5304 + }, + { + "start": 9315.18, + "end": 9315.68, + "probability": 0.4247 + }, + { + "start": 9315.82, + "end": 9318.42, + "probability": 0.6413 + }, + { + "start": 9318.5, + "end": 9320.3, + "probability": 0.1649 + }, + { + "start": 9320.7, + "end": 9321.23, + "probability": 0.2242 + }, + { + "start": 9321.94, + "end": 9325.1, + "probability": 0.0208 + }, + { + "start": 9330.3, + "end": 9330.54, + "probability": 0.5682 + }, + { + "start": 9330.58, + "end": 9331.36, + "probability": 0.8223 + }, + { + "start": 9331.46, + "end": 9332.08, + "probability": 0.7249 + }, + { + "start": 9332.18, + "end": 9332.84, + "probability": 0.7737 + }, + { + "start": 9332.88, + "end": 9333.68, + "probability": 0.7067 + }, + { + "start": 9333.7, + "end": 9338.78, + "probability": 0.9806 + }, + { + "start": 9339.56, + "end": 9340.0, + "probability": 0.5583 + }, + { + "start": 9340.14, + "end": 9340.78, + "probability": 0.916 + }, + { + "start": 9340.86, + "end": 9341.38, + "probability": 0.839 + }, + { + "start": 9341.46, + "end": 9342.16, + "probability": 0.7545 + }, + { + "start": 9342.52, + "end": 9344.11, + "probability": 0.8804 + }, + { + "start": 9344.9, + "end": 9350.92, + "probability": 0.9888 + }, + { + "start": 9351.12, + "end": 9352.14, + "probability": 0.575 + }, + { + "start": 9352.54, + "end": 9353.98, + "probability": 0.9211 + }, + { + "start": 9354.86, + "end": 9355.32, + "probability": 0.6886 + }, + { + "start": 9355.42, + "end": 9356.8, + "probability": 0.9695 + }, + { + "start": 9356.86, + "end": 9362.22, + "probability": 0.9993 + }, + { + "start": 9363.18, + "end": 9368.38, + "probability": 0.9977 + }, + { + "start": 9368.86, + "end": 9371.76, + "probability": 0.6933 + }, + { + "start": 9372.28, + "end": 9373.2, + "probability": 0.9544 + }, + { + "start": 9373.72, + "end": 9377.24, + "probability": 0.986 + }, + { + "start": 9377.24, + "end": 9380.7, + "probability": 0.9846 + }, + { + "start": 9380.78, + "end": 9383.4, + "probability": 0.764 + }, + { + "start": 9383.48, + "end": 9384.66, + "probability": 0.9855 + }, + { + "start": 9385.52, + "end": 9386.42, + "probability": 0.8546 + }, + { + "start": 9387.06, + "end": 9390.66, + "probability": 0.9439 + }, + { + "start": 9390.66, + "end": 9394.6, + "probability": 0.9976 + }, + { + "start": 9395.16, + "end": 9400.02, + "probability": 0.9979 + }, + { + "start": 9400.62, + "end": 9402.7, + "probability": 0.8209 + }, + { + "start": 9403.56, + "end": 9404.74, + "probability": 0.9492 + }, + { + "start": 9405.22, + "end": 9407.92, + "probability": 0.7783 + }, + { + "start": 9408.1, + "end": 9411.12, + "probability": 0.926 + }, + { + "start": 9411.58, + "end": 9412.92, + "probability": 0.7974 + }, + { + "start": 9413.36, + "end": 9418.86, + "probability": 0.9854 + }, + { + "start": 9419.24, + "end": 9422.82, + "probability": 0.9905 + }, + { + "start": 9423.32, + "end": 9425.56, + "probability": 0.9963 + }, + { + "start": 9425.64, + "end": 9426.04, + "probability": 0.8929 + }, + { + "start": 9426.2, + "end": 9427.64, + "probability": 0.5661 + }, + { + "start": 9427.72, + "end": 9428.47, + "probability": 0.7563 + }, + { + "start": 9428.92, + "end": 9429.72, + "probability": 0.0141 + }, + { + "start": 9429.72, + "end": 9430.41, + "probability": 0.5568 + }, + { + "start": 9431.12, + "end": 9433.18, + "probability": 0.9915 + }, + { + "start": 9433.26, + "end": 9434.1, + "probability": 0.9218 + }, + { + "start": 9434.62, + "end": 9435.1, + "probability": 0.9562 + }, + { + "start": 9435.24, + "end": 9436.94, + "probability": 0.9747 + }, + { + "start": 9437.06, + "end": 9438.58, + "probability": 0.894 + }, + { + "start": 9439.14, + "end": 9441.98, + "probability": 0.6646 + }, + { + "start": 9442.76, + "end": 9444.6, + "probability": 0.812 + }, + { + "start": 9445.04, + "end": 9448.49, + "probability": 0.9922 + }, + { + "start": 9449.74, + "end": 9451.56, + "probability": 0.8796 + }, + { + "start": 9452.58, + "end": 9453.78, + "probability": 0.6786 + }, + { + "start": 9453.84, + "end": 9455.46, + "probability": 0.9422 + }, + { + "start": 9455.78, + "end": 9457.88, + "probability": 0.9621 + }, + { + "start": 9458.56, + "end": 9461.02, + "probability": 0.9705 + }, + { + "start": 9462.18, + "end": 9465.44, + "probability": 0.9657 + }, + { + "start": 9465.94, + "end": 9469.14, + "probability": 0.9956 + }, + { + "start": 9469.14, + "end": 9472.54, + "probability": 0.9982 + }, + { + "start": 9473.32, + "end": 9476.48, + "probability": 0.9698 + }, + { + "start": 9477.02, + "end": 9478.76, + "probability": 0.9979 + }, + { + "start": 9479.34, + "end": 9480.96, + "probability": 0.8857 + }, + { + "start": 9481.72, + "end": 9485.4, + "probability": 0.955 + }, + { + "start": 9486.18, + "end": 9487.2, + "probability": 0.9824 + }, + { + "start": 9488.12, + "end": 9489.06, + "probability": 0.9803 + }, + { + "start": 9489.84, + "end": 9491.08, + "probability": 0.9941 + }, + { + "start": 9491.98, + "end": 9496.42, + "probability": 0.9961 + }, + { + "start": 9496.88, + "end": 9497.08, + "probability": 0.4781 + }, + { + "start": 9497.2, + "end": 9497.82, + "probability": 0.9731 + }, + { + "start": 9498.08, + "end": 9498.72, + "probability": 0.7546 + }, + { + "start": 9499.4, + "end": 9501.96, + "probability": 0.9637 + }, + { + "start": 9502.86, + "end": 9505.88, + "probability": 0.9958 + }, + { + "start": 9506.42, + "end": 9507.72, + "probability": 0.9529 + }, + { + "start": 9508.48, + "end": 9509.72, + "probability": 0.991 + }, + { + "start": 9509.84, + "end": 9511.84, + "probability": 0.6419 + }, + { + "start": 9512.74, + "end": 9513.4, + "probability": 0.5469 + }, + { + "start": 9514.04, + "end": 9515.16, + "probability": 0.841 + }, + { + "start": 9515.72, + "end": 9521.66, + "probability": 0.9736 + }, + { + "start": 9521.76, + "end": 9524.1, + "probability": 0.963 + }, + { + "start": 9524.62, + "end": 9526.36, + "probability": 0.9795 + }, + { + "start": 9526.86, + "end": 9527.88, + "probability": 0.8096 + }, + { + "start": 9528.62, + "end": 9529.7, + "probability": 0.9677 + }, + { + "start": 9530.24, + "end": 9532.76, + "probability": 0.96 + }, + { + "start": 9533.4, + "end": 9534.92, + "probability": 0.976 + }, + { + "start": 9535.86, + "end": 9540.2, + "probability": 0.9834 + }, + { + "start": 9540.38, + "end": 9541.74, + "probability": 0.9741 + }, + { + "start": 9541.88, + "end": 9543.2, + "probability": 0.9739 + }, + { + "start": 9543.7, + "end": 9544.5, + "probability": 0.8961 + }, + { + "start": 9544.64, + "end": 9549.8, + "probability": 0.9063 + }, + { + "start": 9550.2, + "end": 9552.3, + "probability": 0.9993 + }, + { + "start": 9552.92, + "end": 9554.02, + "probability": 0.7917 + }, + { + "start": 9554.54, + "end": 9557.54, + "probability": 0.9829 + }, + { + "start": 9558.44, + "end": 9563.16, + "probability": 0.6537 + }, + { + "start": 9563.66, + "end": 9564.88, + "probability": 0.8342 + }, + { + "start": 9564.98, + "end": 9568.5, + "probability": 0.9684 + }, + { + "start": 9569.02, + "end": 9571.7, + "probability": 0.9648 + }, + { + "start": 9572.28, + "end": 9575.24, + "probability": 0.9535 + }, + { + "start": 9575.7, + "end": 9578.2, + "probability": 0.8703 + }, + { + "start": 9578.3, + "end": 9579.02, + "probability": 0.6829 + }, + { + "start": 9579.44, + "end": 9580.7, + "probability": 0.8783 + }, + { + "start": 9581.36, + "end": 9584.8, + "probability": 0.9816 + }, + { + "start": 9585.26, + "end": 9589.1, + "probability": 0.9832 + }, + { + "start": 9589.26, + "end": 9591.7, + "probability": 0.8547 + }, + { + "start": 9592.56, + "end": 9593.98, + "probability": 0.7541 + }, + { + "start": 9594.64, + "end": 9596.48, + "probability": 0.9065 + }, + { + "start": 9597.12, + "end": 9600.34, + "probability": 0.9461 + }, + { + "start": 9600.5, + "end": 9601.88, + "probability": 0.9214 + }, + { + "start": 9602.6, + "end": 9607.64, + "probability": 0.876 + }, + { + "start": 9608.3, + "end": 9613.08, + "probability": 0.778 + }, + { + "start": 9613.64, + "end": 9616.86, + "probability": 0.8158 + }, + { + "start": 9616.86, + "end": 9619.9, + "probability": 0.9957 + }, + { + "start": 9620.78, + "end": 9622.14, + "probability": 0.923 + }, + { + "start": 9622.6, + "end": 9624.26, + "probability": 0.9834 + }, + { + "start": 9624.88, + "end": 9627.04, + "probability": 0.9976 + }, + { + "start": 9627.48, + "end": 9631.58, + "probability": 0.9703 + }, + { + "start": 9632.16, + "end": 9636.16, + "probability": 0.8849 + }, + { + "start": 9636.7, + "end": 9639.34, + "probability": 0.9974 + }, + { + "start": 9639.98, + "end": 9643.2, + "probability": 0.9629 + }, + { + "start": 9643.98, + "end": 9646.0, + "probability": 0.8959 + }, + { + "start": 9646.88, + "end": 9649.4, + "probability": 0.9927 + }, + { + "start": 9650.24, + "end": 9651.66, + "probability": 0.9573 + }, + { + "start": 9652.28, + "end": 9654.0, + "probability": 0.9624 + }, + { + "start": 9654.52, + "end": 9657.22, + "probability": 0.995 + }, + { + "start": 9657.74, + "end": 9659.7, + "probability": 0.9952 + }, + { + "start": 9660.62, + "end": 9666.62, + "probability": 0.9894 + }, + { + "start": 9667.2, + "end": 9668.08, + "probability": 0.7236 + }, + { + "start": 9668.2, + "end": 9671.34, + "probability": 0.8531 + }, + { + "start": 9671.68, + "end": 9673.96, + "probability": 0.9812 + }, + { + "start": 9674.64, + "end": 9677.58, + "probability": 0.9873 + }, + { + "start": 9678.74, + "end": 9683.64, + "probability": 0.9663 + }, + { + "start": 9684.1, + "end": 9684.72, + "probability": 0.5388 + }, + { + "start": 9685.44, + "end": 9689.06, + "probability": 0.901 + }, + { + "start": 9690.28, + "end": 9690.3, + "probability": 0.1871 + }, + { + "start": 9690.3, + "end": 9690.3, + "probability": 0.2869 + }, + { + "start": 9690.3, + "end": 9690.8, + "probability": 0.3392 + }, + { + "start": 9690.8, + "end": 9692.62, + "probability": 0.9891 + }, + { + "start": 9693.18, + "end": 9696.5, + "probability": 0.9419 + }, + { + "start": 9697.18, + "end": 9699.92, + "probability": 0.7715 + }, + { + "start": 9700.64, + "end": 9702.64, + "probability": 0.8196 + }, + { + "start": 9703.42, + "end": 9704.8, + "probability": 0.8527 + }, + { + "start": 9705.46, + "end": 9708.71, + "probability": 0.9855 + }, + { + "start": 9709.8, + "end": 9714.38, + "probability": 0.9955 + }, + { + "start": 9714.92, + "end": 9716.92, + "probability": 0.9977 + }, + { + "start": 9718.44, + "end": 9724.76, + "probability": 0.977 + }, + { + "start": 9725.8, + "end": 9728.88, + "probability": 0.9956 + }, + { + "start": 9728.88, + "end": 9732.24, + "probability": 0.9818 + }, + { + "start": 9732.64, + "end": 9736.38, + "probability": 0.9836 + }, + { + "start": 9736.38, + "end": 9739.32, + "probability": 0.9996 + }, + { + "start": 9739.66, + "end": 9740.32, + "probability": 0.3812 + }, + { + "start": 9740.76, + "end": 9743.77, + "probability": 0.9956 + }, + { + "start": 9744.2, + "end": 9744.92, + "probability": 0.5361 + }, + { + "start": 9745.06, + "end": 9746.5, + "probability": 0.9276 + }, + { + "start": 9746.58, + "end": 9747.06, + "probability": 0.4566 + }, + { + "start": 9747.8, + "end": 9753.94, + "probability": 0.9639 + }, + { + "start": 9754.7, + "end": 9756.96, + "probability": 0.9959 + }, + { + "start": 9757.56, + "end": 9762.52, + "probability": 0.9505 + }, + { + "start": 9762.52, + "end": 9766.6, + "probability": 0.992 + }, + { + "start": 9767.04, + "end": 9769.88, + "probability": 0.5522 + }, + { + "start": 9769.88, + "end": 9772.78, + "probability": 0.5502 + }, + { + "start": 9773.56, + "end": 9774.08, + "probability": 0.4605 + }, + { + "start": 9774.48, + "end": 9778.82, + "probability": 0.9764 + }, + { + "start": 9779.32, + "end": 9780.4, + "probability": 0.8671 + }, + { + "start": 9781.38, + "end": 9783.89, + "probability": 0.9326 + }, + { + "start": 9784.8, + "end": 9788.25, + "probability": 0.8604 + }, + { + "start": 9789.3, + "end": 9795.42, + "probability": 0.9578 + }, + { + "start": 9795.82, + "end": 9796.66, + "probability": 0.5724 + }, + { + "start": 9797.26, + "end": 9799.76, + "probability": 0.8877 + }, + { + "start": 9800.06, + "end": 9800.46, + "probability": 0.8459 + }, + { + "start": 9800.48, + "end": 9801.54, + "probability": 0.9867 + }, + { + "start": 9801.68, + "end": 9802.33, + "probability": 0.9473 + }, + { + "start": 9802.82, + "end": 9807.88, + "probability": 0.9846 + }, + { + "start": 9808.46, + "end": 9809.32, + "probability": 0.8766 + }, + { + "start": 9809.72, + "end": 9813.54, + "probability": 0.9912 + }, + { + "start": 9813.98, + "end": 9815.62, + "probability": 0.9279 + }, + { + "start": 9816.0, + "end": 9819.18, + "probability": 0.9703 + }, + { + "start": 9819.56, + "end": 9821.7, + "probability": 0.9966 + }, + { + "start": 9822.28, + "end": 9825.84, + "probability": 0.9679 + }, + { + "start": 9825.98, + "end": 9827.7, + "probability": 0.5635 + }, + { + "start": 9827.94, + "end": 9829.52, + "probability": 0.8894 + }, + { + "start": 9829.62, + "end": 9830.34, + "probability": 0.7368 + }, + { + "start": 9831.38, + "end": 9838.84, + "probability": 0.9868 + }, + { + "start": 9839.26, + "end": 9842.5, + "probability": 0.9829 + }, + { + "start": 9843.02, + "end": 9845.18, + "probability": 0.9897 + }, + { + "start": 9845.62, + "end": 9848.94, + "probability": 0.9639 + }, + { + "start": 9849.2, + "end": 9852.1, + "probability": 0.9966 + }, + { + "start": 9852.48, + "end": 9856.6, + "probability": 0.9982 + }, + { + "start": 9857.24, + "end": 9858.74, + "probability": 0.9952 + }, + { + "start": 9859.4, + "end": 9859.86, + "probability": 0.4242 + }, + { + "start": 9859.92, + "end": 9860.6, + "probability": 0.5335 + }, + { + "start": 9860.6, + "end": 9861.62, + "probability": 0.826 + }, + { + "start": 9861.76, + "end": 9862.22, + "probability": 0.3265 + }, + { + "start": 9862.72, + "end": 9864.04, + "probability": 0.9794 + }, + { + "start": 9864.2, + "end": 9864.74, + "probability": 0.6824 + }, + { + "start": 9866.12, + "end": 9870.96, + "probability": 0.9712 + }, + { + "start": 9871.72, + "end": 9876.78, + "probability": 0.9507 + }, + { + "start": 9876.96, + "end": 9878.88, + "probability": 0.887 + }, + { + "start": 9879.82, + "end": 9881.32, + "probability": 0.948 + }, + { + "start": 9881.92, + "end": 9882.8, + "probability": 0.9243 + }, + { + "start": 9883.52, + "end": 9884.14, + "probability": 0.9331 + }, + { + "start": 9884.9, + "end": 9891.32, + "probability": 0.7727 + }, + { + "start": 9891.94, + "end": 9894.48, + "probability": 0.9731 + }, + { + "start": 9895.12, + "end": 9896.66, + "probability": 0.9976 + }, + { + "start": 9897.5, + "end": 9899.06, + "probability": 0.9054 + }, + { + "start": 9900.08, + "end": 9902.26, + "probability": 0.8683 + }, + { + "start": 9905.74, + "end": 9911.44, + "probability": 0.8782 + }, + { + "start": 9911.94, + "end": 9914.78, + "probability": 0.2275 + }, + { + "start": 9914.88, + "end": 9917.22, + "probability": 0.8089 + }, + { + "start": 9917.38, + "end": 9918.24, + "probability": 0.4851 + }, + { + "start": 9918.32, + "end": 9920.3, + "probability": 0.9587 + }, + { + "start": 9920.96, + "end": 9925.1, + "probability": 0.7059 + }, + { + "start": 9925.1, + "end": 9925.12, + "probability": 0.3854 + }, + { + "start": 9925.2, + "end": 9927.9, + "probability": 0.9768 + }, + { + "start": 9927.9, + "end": 9932.14, + "probability": 0.9668 + }, + { + "start": 9932.36, + "end": 9933.32, + "probability": 0.574 + }, + { + "start": 9933.76, + "end": 9937.09, + "probability": 0.9928 + }, + { + "start": 9937.38, + "end": 9938.6, + "probability": 0.9338 + }, + { + "start": 9939.88, + "end": 9941.07, + "probability": 0.8815 + }, + { + "start": 9942.4, + "end": 9945.68, + "probability": 0.9972 + }, + { + "start": 9946.44, + "end": 9947.2, + "probability": 0.8049 + }, + { + "start": 9947.22, + "end": 9948.18, + "probability": 0.6679 + }, + { + "start": 9948.3, + "end": 9951.6, + "probability": 0.9247 + }, + { + "start": 9952.02, + "end": 9956.14, + "probability": 0.9971 + }, + { + "start": 9956.76, + "end": 9957.4, + "probability": 0.4373 + }, + { + "start": 9958.0, + "end": 9961.26, + "probability": 0.9432 + }, + { + "start": 9961.64, + "end": 9965.4, + "probability": 0.9847 + }, + { + "start": 9965.86, + "end": 9966.92, + "probability": 0.8095 + }, + { + "start": 9967.62, + "end": 9971.58, + "probability": 0.9227 + }, + { + "start": 9972.52, + "end": 9973.18, + "probability": 0.6866 + }, + { + "start": 9973.22, + "end": 9976.82, + "probability": 0.9863 + }, + { + "start": 9977.44, + "end": 9978.26, + "probability": 0.9146 + }, + { + "start": 9978.34, + "end": 9979.04, + "probability": 0.7926 + }, + { + "start": 9979.64, + "end": 9980.93, + "probability": 0.983 + }, + { + "start": 9981.9, + "end": 9985.08, + "probability": 0.9938 + }, + { + "start": 9985.66, + "end": 9987.44, + "probability": 0.9443 + }, + { + "start": 9988.02, + "end": 9989.88, + "probability": 0.6523 + }, + { + "start": 9990.72, + "end": 9992.2, + "probability": 0.9823 + }, + { + "start": 9992.96, + "end": 9995.86, + "probability": 0.9142 + }, + { + "start": 9996.48, + "end": 10001.5, + "probability": 0.9637 + }, + { + "start": 10002.36, + "end": 10004.52, + "probability": 0.9851 + }, + { + "start": 10005.5, + "end": 10007.3, + "probability": 0.9276 + }, + { + "start": 10007.86, + "end": 10010.7, + "probability": 0.7473 + }, + { + "start": 10012.22, + "end": 10017.04, + "probability": 0.835 + }, + { + "start": 10017.76, + "end": 10020.64, + "probability": 0.9948 + }, + { + "start": 10024.68, + "end": 10025.12, + "probability": 0.4918 + }, + { + "start": 10025.14, + "end": 10030.1, + "probability": 0.9897 + }, + { + "start": 10030.84, + "end": 10033.62, + "probability": 0.9976 + }, + { + "start": 10034.2, + "end": 10035.26, + "probability": 0.7545 + }, + { + "start": 10035.7, + "end": 10036.04, + "probability": 0.5115 + }, + { + "start": 10036.36, + "end": 10038.32, + "probability": 0.9602 + }, + { + "start": 10038.7, + "end": 10039.14, + "probability": 0.5396 + }, + { + "start": 10039.56, + "end": 10040.56, + "probability": 0.8114 + }, + { + "start": 10041.08, + "end": 10042.22, + "probability": 0.9822 + }, + { + "start": 10042.64, + "end": 10046.0, + "probability": 0.9933 + }, + { + "start": 10046.42, + "end": 10049.04, + "probability": 0.9662 + }, + { + "start": 10052.18, + "end": 10055.54, + "probability": 0.6088 + }, + { + "start": 10055.6, + "end": 10058.3, + "probability": 0.8343 + }, + { + "start": 10058.48, + "end": 10059.22, + "probability": 0.8223 + }, + { + "start": 10059.54, + "end": 10062.6, + "probability": 0.8979 + }, + { + "start": 10062.66, + "end": 10063.46, + "probability": 0.6413 + }, + { + "start": 10063.52, + "end": 10066.94, + "probability": 0.8778 + }, + { + "start": 10068.1, + "end": 10070.48, + "probability": 0.8325 + }, + { + "start": 10075.52, + "end": 10078.24, + "probability": 0.7598 + }, + { + "start": 10080.34, + "end": 10080.86, + "probability": 0.9482 + }, + { + "start": 10085.02, + "end": 10086.1, + "probability": 0.9714 + }, + { + "start": 10087.4, + "end": 10088.1, + "probability": 0.9984 + }, + { + "start": 10090.06, + "end": 10093.94, + "probability": 0.8729 + }, + { + "start": 10094.9, + "end": 10096.48, + "probability": 0.9727 + }, + { + "start": 10098.0, + "end": 10100.82, + "probability": 0.9912 + }, + { + "start": 10102.46, + "end": 10105.4, + "probability": 0.8139 + }, + { + "start": 10106.1, + "end": 10108.18, + "probability": 0.746 + }, + { + "start": 10109.28, + "end": 10110.36, + "probability": 0.9297 + }, + { + "start": 10111.12, + "end": 10112.46, + "probability": 0.931 + }, + { + "start": 10113.22, + "end": 10114.44, + "probability": 0.8977 + }, + { + "start": 10115.24, + "end": 10121.36, + "probability": 0.9982 + }, + { + "start": 10122.96, + "end": 10125.16, + "probability": 0.8306 + }, + { + "start": 10126.02, + "end": 10127.86, + "probability": 0.7453 + }, + { + "start": 10128.68, + "end": 10130.98, + "probability": 0.9641 + }, + { + "start": 10131.12, + "end": 10132.22, + "probability": 0.6162 + }, + { + "start": 10133.0, + "end": 10136.16, + "probability": 0.6107 + }, + { + "start": 10137.24, + "end": 10140.98, + "probability": 0.867 + }, + { + "start": 10141.9, + "end": 10145.72, + "probability": 0.9979 + }, + { + "start": 10147.72, + "end": 10149.64, + "probability": 0.9966 + }, + { + "start": 10149.86, + "end": 10152.16, + "probability": 0.8286 + }, + { + "start": 10153.18, + "end": 10155.42, + "probability": 0.8006 + }, + { + "start": 10155.64, + "end": 10157.6, + "probability": 0.9964 + }, + { + "start": 10158.26, + "end": 10160.6, + "probability": 0.9019 + }, + { + "start": 10161.14, + "end": 10163.14, + "probability": 0.9717 + }, + { + "start": 10163.4, + "end": 10164.0, + "probability": 0.8041 + }, + { + "start": 10164.46, + "end": 10166.44, + "probability": 0.8191 + }, + { + "start": 10166.88, + "end": 10168.28, + "probability": 0.8654 + }, + { + "start": 10169.38, + "end": 10172.42, + "probability": 0.9856 + }, + { + "start": 10172.52, + "end": 10173.32, + "probability": 0.7667 + }, + { + "start": 10173.56, + "end": 10174.44, + "probability": 0.9177 + }, + { + "start": 10174.6, + "end": 10175.98, + "probability": 0.9169 + }, + { + "start": 10176.52, + "end": 10177.08, + "probability": 0.9823 + }, + { + "start": 10177.66, + "end": 10178.4, + "probability": 0.9972 + }, + { + "start": 10179.38, + "end": 10181.72, + "probability": 0.9976 + }, + { + "start": 10182.64, + "end": 10184.02, + "probability": 0.8064 + }, + { + "start": 10184.5, + "end": 10185.38, + "probability": 0.9034 + }, + { + "start": 10185.46, + "end": 10186.92, + "probability": 0.4474 + }, + { + "start": 10186.92, + "end": 10187.48, + "probability": 0.6471 + }, + { + "start": 10189.36, + "end": 10192.14, + "probability": 0.9691 + }, + { + "start": 10192.78, + "end": 10193.88, + "probability": 0.9896 + }, + { + "start": 10195.24, + "end": 10201.18, + "probability": 0.9488 + }, + { + "start": 10201.5, + "end": 10203.64, + "probability": 0.9982 + }, + { + "start": 10204.82, + "end": 10209.58, + "probability": 0.984 + }, + { + "start": 10209.58, + "end": 10214.24, + "probability": 0.9687 + }, + { + "start": 10214.4, + "end": 10216.2, + "probability": 0.8013 + }, + { + "start": 10216.66, + "end": 10218.64, + "probability": 0.875 + }, + { + "start": 10219.32, + "end": 10220.24, + "probability": 0.9072 + }, + { + "start": 10221.14, + "end": 10223.37, + "probability": 0.8586 + }, + { + "start": 10223.98, + "end": 10226.38, + "probability": 0.9938 + }, + { + "start": 10226.76, + "end": 10227.46, + "probability": 0.7424 + }, + { + "start": 10228.66, + "end": 10232.64, + "probability": 0.5143 + }, + { + "start": 10232.88, + "end": 10232.94, + "probability": 0.467 + }, + { + "start": 10232.94, + "end": 10236.8, + "probability": 0.9736 + }, + { + "start": 10237.12, + "end": 10240.98, + "probability": 0.9347 + }, + { + "start": 10241.32, + "end": 10243.08, + "probability": 0.8374 + }, + { + "start": 10243.74, + "end": 10244.54, + "probability": 0.8201 + }, + { + "start": 10244.88, + "end": 10245.9, + "probability": 0.0188 + }, + { + "start": 10245.9, + "end": 10247.28, + "probability": 0.4899 + }, + { + "start": 10247.28, + "end": 10247.52, + "probability": 0.6968 + }, + { + "start": 10247.52, + "end": 10249.48, + "probability": 0.7854 + }, + { + "start": 10249.54, + "end": 10250.22, + "probability": 0.5392 + }, + { + "start": 10250.34, + "end": 10251.11, + "probability": 0.9414 + }, + { + "start": 10252.1, + "end": 10256.36, + "probability": 0.7227 + }, + { + "start": 10257.28, + "end": 10257.64, + "probability": 0.3494 + }, + { + "start": 10257.72, + "end": 10258.3, + "probability": 0.4391 + }, + { + "start": 10258.38, + "end": 10259.5, + "probability": 0.752 + }, + { + "start": 10259.88, + "end": 10262.44, + "probability": 0.6197 + }, + { + "start": 10262.52, + "end": 10262.94, + "probability": 0.9009 + }, + { + "start": 10263.44, + "end": 10265.02, + "probability": 0.748 + }, + { + "start": 10265.06, + "end": 10267.56, + "probability": 0.7006 + }, + { + "start": 10268.16, + "end": 10270.26, + "probability": 0.0728 + }, + { + "start": 10271.0, + "end": 10271.32, + "probability": 0.571 + }, + { + "start": 10271.44, + "end": 10272.94, + "probability": 0.6586 + }, + { + "start": 10273.6, + "end": 10274.36, + "probability": 0.4221 + }, + { + "start": 10274.56, + "end": 10275.02, + "probability": 0.7255 + }, + { + "start": 10275.02, + "end": 10276.2, + "probability": 0.507 + }, + { + "start": 10276.38, + "end": 10278.36, + "probability": 0.4638 + }, + { + "start": 10278.46, + "end": 10279.68, + "probability": 0.003 + }, + { + "start": 10279.68, + "end": 10279.68, + "probability": 0.0401 + }, + { + "start": 10279.68, + "end": 10281.5, + "probability": 0.4704 + }, + { + "start": 10281.5, + "end": 10282.88, + "probability": 0.8032 + }, + { + "start": 10282.92, + "end": 10284.92, + "probability": 0.7593 + }, + { + "start": 10285.2, + "end": 10290.44, + "probability": 0.3219 + }, + { + "start": 10293.68, + "end": 10294.06, + "probability": 0.123 + }, + { + "start": 10294.06, + "end": 10294.06, + "probability": 0.0867 + }, + { + "start": 10294.06, + "end": 10294.06, + "probability": 0.4172 + }, + { + "start": 10294.06, + "end": 10297.52, + "probability": 0.7133 + }, + { + "start": 10297.76, + "end": 10298.46, + "probability": 0.9296 + }, + { + "start": 10298.5, + "end": 10299.0, + "probability": 0.7592 + }, + { + "start": 10299.14, + "end": 10299.68, + "probability": 0.67 + }, + { + "start": 10301.42, + "end": 10303.86, + "probability": 0.9466 + }, + { + "start": 10304.04, + "end": 10306.68, + "probability": 0.7821 + }, + { + "start": 10306.92, + "end": 10308.32, + "probability": 0.4647 + }, + { + "start": 10309.3, + "end": 10310.36, + "probability": 0.7417 + }, + { + "start": 10310.74, + "end": 10311.54, + "probability": 0.718 + }, + { + "start": 10311.8, + "end": 10312.66, + "probability": 0.9679 + }, + { + "start": 10312.84, + "end": 10313.96, + "probability": 0.7704 + }, + { + "start": 10314.42, + "end": 10321.19, + "probability": 0.0317 + }, + { + "start": 10322.0, + "end": 10325.02, + "probability": 0.0891 + }, + { + "start": 10327.5, + "end": 10329.18, + "probability": 0.4957 + }, + { + "start": 10330.38, + "end": 10331.34, + "probability": 0.2809 + }, + { + "start": 10331.72, + "end": 10336.1, + "probability": 0.9522 + }, + { + "start": 10336.2, + "end": 10339.8, + "probability": 0.95 + }, + { + "start": 10339.92, + "end": 10341.86, + "probability": 0.8218 + }, + { + "start": 10342.02, + "end": 10343.3, + "probability": 0.385 + }, + { + "start": 10344.08, + "end": 10344.72, + "probability": 0.7365 + }, + { + "start": 10345.64, + "end": 10345.94, + "probability": 0.8954 + }, + { + "start": 10346.04, + "end": 10348.54, + "probability": 0.9332 + }, + { + "start": 10348.76, + "end": 10353.88, + "probability": 0.8246 + }, + { + "start": 10353.94, + "end": 10354.74, + "probability": 0.3126 + }, + { + "start": 10354.92, + "end": 10356.06, + "probability": 0.5892 + }, + { + "start": 10356.18, + "end": 10358.0, + "probability": 0.7251 + }, + { + "start": 10369.82, + "end": 10370.98, + "probability": 0.5782 + }, + { + "start": 10371.88, + "end": 10372.46, + "probability": 0.725 + }, + { + "start": 10375.26, + "end": 10378.22, + "probability": 0.7391 + }, + { + "start": 10378.4, + "end": 10380.22, + "probability": 0.9451 + }, + { + "start": 10382.22, + "end": 10386.4, + "probability": 0.9361 + }, + { + "start": 10386.56, + "end": 10389.3, + "probability": 0.9798 + }, + { + "start": 10389.34, + "end": 10390.36, + "probability": 0.7742 + }, + { + "start": 10391.28, + "end": 10394.21, + "probability": 0.9715 + }, + { + "start": 10395.02, + "end": 10398.24, + "probability": 0.959 + }, + { + "start": 10398.32, + "end": 10399.35, + "probability": 0.9968 + }, + { + "start": 10400.4, + "end": 10400.44, + "probability": 0.1072 + }, + { + "start": 10400.44, + "end": 10405.26, + "probability": 0.854 + }, + { + "start": 10405.9, + "end": 10408.14, + "probability": 0.6984 + }, + { + "start": 10408.76, + "end": 10409.72, + "probability": 0.6589 + }, + { + "start": 10410.14, + "end": 10412.92, + "probability": 0.8336 + }, + { + "start": 10413.36, + "end": 10415.13, + "probability": 0.9494 + }, + { + "start": 10415.2, + "end": 10418.62, + "probability": 0.9836 + }, + { + "start": 10418.7, + "end": 10420.3, + "probability": 0.9735 + }, + { + "start": 10420.82, + "end": 10426.44, + "probability": 0.989 + }, + { + "start": 10426.86, + "end": 10428.0, + "probability": 0.6279 + }, + { + "start": 10428.6, + "end": 10429.72, + "probability": 0.8657 + }, + { + "start": 10430.22, + "end": 10431.4, + "probability": 0.5109 + }, + { + "start": 10431.64, + "end": 10432.12, + "probability": 0.0442 + }, + { + "start": 10432.12, + "end": 10432.48, + "probability": 0.4475 + }, + { + "start": 10432.48, + "end": 10433.56, + "probability": 0.7853 + }, + { + "start": 10433.64, + "end": 10435.46, + "probability": 0.8815 + }, + { + "start": 10436.0, + "end": 10439.46, + "probability": 0.9799 + }, + { + "start": 10439.96, + "end": 10440.4, + "probability": 0.361 + }, + { + "start": 10440.46, + "end": 10441.96, + "probability": 0.8608 + }, + { + "start": 10442.22, + "end": 10443.36, + "probability": 0.759 + }, + { + "start": 10443.4, + "end": 10444.32, + "probability": 0.3286 + }, + { + "start": 10444.62, + "end": 10447.4, + "probability": 0.8694 + }, + { + "start": 10447.74, + "end": 10450.74, + "probability": 0.9647 + }, + { + "start": 10451.42, + "end": 10452.18, + "probability": 0.4518 + }, + { + "start": 10452.3, + "end": 10457.56, + "probability": 0.9773 + }, + { + "start": 10458.18, + "end": 10459.08, + "probability": 0.4192 + }, + { + "start": 10459.68, + "end": 10460.48, + "probability": 0.6375 + }, + { + "start": 10460.58, + "end": 10461.46, + "probability": 0.7615 + }, + { + "start": 10461.74, + "end": 10465.14, + "probability": 0.9622 + }, + { + "start": 10465.26, + "end": 10465.98, + "probability": 0.6011 + }, + { + "start": 10466.32, + "end": 10467.06, + "probability": 0.6498 + }, + { + "start": 10467.18, + "end": 10469.96, + "probability": 0.9644 + }, + { + "start": 10471.08, + "end": 10473.02, + "probability": 0.5675 + }, + { + "start": 10473.06, + "end": 10473.58, + "probability": 0.8437 + }, + { + "start": 10473.58, + "end": 10477.34, + "probability": 0.728 + }, + { + "start": 10477.42, + "end": 10479.64, + "probability": 0.9932 + }, + { + "start": 10479.72, + "end": 10483.14, + "probability": 0.9477 + }, + { + "start": 10483.64, + "end": 10485.36, + "probability": 0.4968 + }, + { + "start": 10485.62, + "end": 10487.4, + "probability": 0.9705 + }, + { + "start": 10487.56, + "end": 10489.26, + "probability": 0.8132 + }, + { + "start": 10490.2, + "end": 10491.98, + "probability": 0.9385 + }, + { + "start": 10492.1, + "end": 10494.5, + "probability": 0.8066 + }, + { + "start": 10497.14, + "end": 10498.46, + "probability": 0.6954 + }, + { + "start": 10498.8, + "end": 10499.96, + "probability": 0.9438 + }, + { + "start": 10500.26, + "end": 10503.32, + "probability": 0.9202 + }, + { + "start": 10504.06, + "end": 10506.78, + "probability": 0.9762 + }, + { + "start": 10507.84, + "end": 10509.03, + "probability": 0.8428 + }, + { + "start": 10509.12, + "end": 10513.98, + "probability": 0.9898 + }, + { + "start": 10515.1, + "end": 10518.1, + "probability": 0.9922 + }, + { + "start": 10518.62, + "end": 10520.42, + "probability": 0.8388 + }, + { + "start": 10521.5, + "end": 10528.76, + "probability": 0.9694 + }, + { + "start": 10530.1, + "end": 10532.64, + "probability": 0.8774 + }, + { + "start": 10533.42, + "end": 10535.24, + "probability": 0.9025 + }, + { + "start": 10535.3, + "end": 10536.27, + "probability": 0.9535 + }, + { + "start": 10536.76, + "end": 10539.6, + "probability": 0.9199 + }, + { + "start": 10540.42, + "end": 10546.42, + "probability": 0.7438 + }, + { + "start": 10547.36, + "end": 10550.44, + "probability": 0.5973 + }, + { + "start": 10550.46, + "end": 10553.46, + "probability": 0.9447 + }, + { + "start": 10554.0, + "end": 10555.98, + "probability": 0.9811 + }, + { + "start": 10557.24, + "end": 10558.9, + "probability": 0.7537 + }, + { + "start": 10558.98, + "end": 10564.19, + "probability": 0.9465 + }, + { + "start": 10565.92, + "end": 10569.94, + "probability": 0.6527 + }, + { + "start": 10570.32, + "end": 10571.3, + "probability": 0.8289 + }, + { + "start": 10571.78, + "end": 10575.92, + "probability": 0.8237 + }, + { + "start": 10576.66, + "end": 10577.9, + "probability": 0.7979 + }, + { + "start": 10578.08, + "end": 10579.52, + "probability": 0.7897 + }, + { + "start": 10580.36, + "end": 10583.84, + "probability": 0.991 + }, + { + "start": 10584.38, + "end": 10586.66, + "probability": 0.911 + }, + { + "start": 10587.14, + "end": 10587.9, + "probability": 0.9261 + }, + { + "start": 10588.38, + "end": 10590.7, + "probability": 0.992 + }, + { + "start": 10591.22, + "end": 10592.8, + "probability": 0.9604 + }, + { + "start": 10592.88, + "end": 10596.24, + "probability": 0.9836 + }, + { + "start": 10596.34, + "end": 10598.64, + "probability": 0.9885 + }, + { + "start": 10599.32, + "end": 10601.36, + "probability": 0.9803 + }, + { + "start": 10601.72, + "end": 10604.9, + "probability": 0.9574 + }, + { + "start": 10605.0, + "end": 10608.12, + "probability": 0.9742 + }, + { + "start": 10608.6, + "end": 10609.69, + "probability": 0.9971 + }, + { + "start": 10610.0, + "end": 10611.12, + "probability": 0.743 + }, + { + "start": 10611.66, + "end": 10612.88, + "probability": 0.8858 + }, + { + "start": 10614.06, + "end": 10616.88, + "probability": 0.9854 + }, + { + "start": 10617.54, + "end": 10619.92, + "probability": 0.5263 + }, + { + "start": 10620.52, + "end": 10623.16, + "probability": 0.9501 + }, + { + "start": 10623.34, + "end": 10625.4, + "probability": 0.8792 + }, + { + "start": 10625.94, + "end": 10627.86, + "probability": 0.9929 + }, + { + "start": 10629.22, + "end": 10630.26, + "probability": 0.9287 + }, + { + "start": 10630.76, + "end": 10634.26, + "probability": 0.9965 + }, + { + "start": 10635.08, + "end": 10639.02, + "probability": 0.9696 + }, + { + "start": 10639.56, + "end": 10644.72, + "probability": 0.9957 + }, + { + "start": 10645.92, + "end": 10650.3, + "probability": 0.8534 + }, + { + "start": 10650.32, + "end": 10651.46, + "probability": 0.5187 + }, + { + "start": 10651.56, + "end": 10655.2, + "probability": 0.9386 + }, + { + "start": 10655.56, + "end": 10656.22, + "probability": 0.7913 + }, + { + "start": 10656.36, + "end": 10657.94, + "probability": 0.998 + }, + { + "start": 10658.34, + "end": 10663.84, + "probability": 0.9771 + }, + { + "start": 10664.52, + "end": 10667.78, + "probability": 0.906 + }, + { + "start": 10668.62, + "end": 10670.48, + "probability": 0.8232 + }, + { + "start": 10671.46, + "end": 10672.62, + "probability": 0.859 + }, + { + "start": 10672.7, + "end": 10675.14, + "probability": 0.9902 + }, + { + "start": 10675.14, + "end": 10679.36, + "probability": 0.9017 + }, + { + "start": 10679.44, + "end": 10681.84, + "probability": 0.0808 + }, + { + "start": 10681.84, + "end": 10683.04, + "probability": 0.5256 + }, + { + "start": 10683.64, + "end": 10687.1, + "probability": 0.9878 + }, + { + "start": 10687.54, + "end": 10690.26, + "probability": 0.895 + }, + { + "start": 10691.3, + "end": 10695.66, + "probability": 0.9638 + }, + { + "start": 10695.82, + "end": 10696.82, + "probability": 0.9802 + }, + { + "start": 10697.76, + "end": 10702.82, + "probability": 0.9954 + }, + { + "start": 10702.88, + "end": 10704.18, + "probability": 0.998 + }, + { + "start": 10704.3, + "end": 10704.91, + "probability": 0.5422 + }, + { + "start": 10705.02, + "end": 10706.52, + "probability": 0.5874 + }, + { + "start": 10707.0, + "end": 10708.06, + "probability": 0.967 + }, + { + "start": 10708.2, + "end": 10708.84, + "probability": 0.5441 + }, + { + "start": 10709.0, + "end": 10710.1, + "probability": 0.6214 + }, + { + "start": 10710.2, + "end": 10711.84, + "probability": 0.5149 + }, + { + "start": 10712.2, + "end": 10712.56, + "probability": 0.5045 + }, + { + "start": 10712.62, + "end": 10715.82, + "probability": 0.8823 + }, + { + "start": 10717.02, + "end": 10717.2, + "probability": 0.8481 + }, + { + "start": 10717.38, + "end": 10718.64, + "probability": 0.967 + }, + { + "start": 10718.68, + "end": 10720.44, + "probability": 0.9553 + }, + { + "start": 10721.16, + "end": 10729.14, + "probability": 0.9536 + }, + { + "start": 10729.28, + "end": 10733.42, + "probability": 0.9771 + }, + { + "start": 10733.46, + "end": 10734.32, + "probability": 0.8997 + }, + { + "start": 10734.68, + "end": 10736.82, + "probability": 0.8678 + }, + { + "start": 10737.04, + "end": 10740.34, + "probability": 0.9806 + }, + { + "start": 10740.88, + "end": 10743.48, + "probability": 0.9581 + }, + { + "start": 10745.12, + "end": 10745.7, + "probability": 0.5786 + }, + { + "start": 10746.38, + "end": 10749.36, + "probability": 0.9528 + }, + { + "start": 10749.82, + "end": 10756.28, + "probability": 0.9806 + }, + { + "start": 10756.92, + "end": 10759.74, + "probability": 0.9816 + }, + { + "start": 10760.3, + "end": 10761.4, + "probability": 0.8636 + }, + { + "start": 10762.02, + "end": 10770.04, + "probability": 0.902 + }, + { + "start": 10770.32, + "end": 10772.46, + "probability": 0.9971 + }, + { + "start": 10773.22, + "end": 10776.38, + "probability": 0.978 + }, + { + "start": 10781.86, + "end": 10785.46, + "probability": 0.6967 + }, + { + "start": 10796.72, + "end": 10798.54, + "probability": 0.5743 + }, + { + "start": 10799.74, + "end": 10802.2, + "probability": 0.8238 + }, + { + "start": 10802.2, + "end": 10805.94, + "probability": 0.9718 + }, + { + "start": 10806.46, + "end": 10806.56, + "probability": 0.0626 + }, + { + "start": 10806.56, + "end": 10810.44, + "probability": 0.9486 + }, + { + "start": 10810.44, + "end": 10814.32, + "probability": 0.9034 + }, + { + "start": 10814.46, + "end": 10815.44, + "probability": 0.8009 + }, + { + "start": 10816.04, + "end": 10817.54, + "probability": 0.9174 + }, + { + "start": 10817.66, + "end": 10820.68, + "probability": 0.8771 + }, + { + "start": 10821.5, + "end": 10824.76, + "probability": 0.9873 + }, + { + "start": 10825.6, + "end": 10828.06, + "probability": 0.9435 + }, + { + "start": 10830.36, + "end": 10831.84, + "probability": 0.4818 + }, + { + "start": 10834.96, + "end": 10835.48, + "probability": 0.7034 + }, + { + "start": 10836.36, + "end": 10841.5, + "probability": 0.9783 + }, + { + "start": 10842.1, + "end": 10847.14, + "probability": 0.9792 + }, + { + "start": 10847.64, + "end": 10853.12, + "probability": 0.9478 + }, + { + "start": 10853.54, + "end": 10855.76, + "probability": 0.9889 + }, + { + "start": 10856.58, + "end": 10856.82, + "probability": 0.3604 + }, + { + "start": 10856.86, + "end": 10857.46, + "probability": 0.8063 + }, + { + "start": 10857.54, + "end": 10860.96, + "probability": 0.9204 + }, + { + "start": 10860.96, + "end": 10864.34, + "probability": 0.789 + }, + { + "start": 10864.86, + "end": 10870.86, + "probability": 0.9345 + }, + { + "start": 10871.56, + "end": 10873.78, + "probability": 0.9835 + }, + { + "start": 10878.88, + "end": 10879.68, + "probability": 0.252 + }, + { + "start": 10879.82, + "end": 10880.76, + "probability": 0.6426 + }, + { + "start": 10880.94, + "end": 10884.74, + "probability": 0.8479 + }, + { + "start": 10885.6, + "end": 10888.8, + "probability": 0.9749 + }, + { + "start": 10888.8, + "end": 10893.86, + "probability": 0.9822 + }, + { + "start": 10894.4, + "end": 10897.48, + "probability": 0.6506 + }, + { + "start": 10898.94, + "end": 10901.0, + "probability": 0.9297 + }, + { + "start": 10901.46, + "end": 10904.08, + "probability": 0.9396 + }, + { + "start": 10904.9, + "end": 10908.82, + "probability": 0.9932 + }, + { + "start": 10909.42, + "end": 10913.08, + "probability": 0.8148 + }, + { + "start": 10913.94, + "end": 10919.4, + "probability": 0.9243 + }, + { + "start": 10920.28, + "end": 10923.2, + "probability": 0.9547 + }, + { + "start": 10926.22, + "end": 10926.22, + "probability": 0.0406 + }, + { + "start": 10926.22, + "end": 10926.7, + "probability": 0.6451 + }, + { + "start": 10927.6, + "end": 10928.0, + "probability": 0.4598 + }, + { + "start": 10929.3, + "end": 10931.78, + "probability": 0.3048 + }, + { + "start": 10931.8, + "end": 10932.54, + "probability": 0.8148 + }, + { + "start": 10932.78, + "end": 10933.0, + "probability": 0.1287 + }, + { + "start": 10933.0, + "end": 10933.72, + "probability": 0.5889 + }, + { + "start": 10933.72, + "end": 10934.86, + "probability": 0.1363 + }, + { + "start": 10935.0, + "end": 10937.66, + "probability": 0.5476 + }, + { + "start": 10937.66, + "end": 10938.6, + "probability": 0.3878 + }, + { + "start": 10938.82, + "end": 10939.76, + "probability": 0.1905 + }, + { + "start": 10940.22, + "end": 10941.04, + "probability": 0.4822 + }, + { + "start": 10941.4, + "end": 10943.76, + "probability": 0.5353 + }, + { + "start": 10944.3, + "end": 10946.3, + "probability": 0.6419 + }, + { + "start": 10946.42, + "end": 10947.72, + "probability": 0.9456 + }, + { + "start": 10947.9, + "end": 10952.96, + "probability": 0.9842 + }, + { + "start": 10953.46, + "end": 10954.44, + "probability": 0.9789 + }, + { + "start": 10954.54, + "end": 10957.54, + "probability": 0.9935 + }, + { + "start": 10958.04, + "end": 10959.42, + "probability": 0.9941 + }, + { + "start": 10959.48, + "end": 10960.72, + "probability": 0.9163 + }, + { + "start": 10960.78, + "end": 10964.24, + "probability": 0.9141 + }, + { + "start": 10964.24, + "end": 10965.88, + "probability": 0.8979 + }, + { + "start": 10966.5, + "end": 10968.86, + "probability": 0.982 + }, + { + "start": 10969.08, + "end": 10970.44, + "probability": 0.9257 + }, + { + "start": 10970.96, + "end": 10974.94, + "probability": 0.8833 + }, + { + "start": 10975.48, + "end": 10975.8, + "probability": 0.1394 + }, + { + "start": 10975.8, + "end": 10977.89, + "probability": 0.6939 + }, + { + "start": 10978.78, + "end": 10980.1, + "probability": 0.5983 + }, + { + "start": 10980.18, + "end": 10980.96, + "probability": 0.5209 + }, + { + "start": 10980.96, + "end": 10982.28, + "probability": 0.2494 + }, + { + "start": 10982.5, + "end": 10985.06, + "probability": 0.6154 + }, + { + "start": 10985.69, + "end": 10986.18, + "probability": 0.1135 + }, + { + "start": 10986.58, + "end": 10987.26, + "probability": 0.3763 + }, + { + "start": 10987.5, + "end": 10987.88, + "probability": 0.9032 + }, + { + "start": 10987.94, + "end": 10991.44, + "probability": 0.9768 + }, + { + "start": 10991.56, + "end": 10991.62, + "probability": 0.1013 + }, + { + "start": 10991.62, + "end": 10992.18, + "probability": 0.2479 + }, + { + "start": 10993.4, + "end": 10997.44, + "probability": 0.1345 + }, + { + "start": 10997.44, + "end": 11000.92, + "probability": 0.4476 + }, + { + "start": 11001.74, + "end": 11005.22, + "probability": 0.6426 + }, + { + "start": 11005.8, + "end": 11005.9, + "probability": 0.0959 + }, + { + "start": 11005.9, + "end": 11010.56, + "probability": 0.7201 + }, + { + "start": 11011.44, + "end": 11014.16, + "probability": 0.6924 + }, + { + "start": 11014.76, + "end": 11016.04, + "probability": 0.9759 + }, + { + "start": 11016.3, + "end": 11017.34, + "probability": 0.4006 + }, + { + "start": 11020.62, + "end": 11021.74, + "probability": 0.6382 + }, + { + "start": 11022.42, + "end": 11022.74, + "probability": 0.0026 + }, + { + "start": 11022.74, + "end": 11022.74, + "probability": 0.3056 + }, + { + "start": 11022.74, + "end": 11023.44, + "probability": 0.5214 + }, + { + "start": 11023.58, + "end": 11025.82, + "probability": 0.3342 + }, + { + "start": 11026.84, + "end": 11027.46, + "probability": 0.0726 + }, + { + "start": 11027.66, + "end": 11030.72, + "probability": 0.9346 + }, + { + "start": 11032.24, + "end": 11032.42, + "probability": 0.5853 + }, + { + "start": 11033.38, + "end": 11033.72, + "probability": 0.0066 + }, + { + "start": 11033.72, + "end": 11034.0, + "probability": 0.0148 + }, + { + "start": 11034.0, + "end": 11034.56, + "probability": 0.2427 + }, + { + "start": 11034.74, + "end": 11035.48, + "probability": 0.5341 + }, + { + "start": 11035.58, + "end": 11036.94, + "probability": 0.8164 + }, + { + "start": 11037.72, + "end": 11039.56, + "probability": 0.5728 + }, + { + "start": 11040.4, + "end": 11040.47, + "probability": 0.0149 + }, + { + "start": 11041.3, + "end": 11041.94, + "probability": 0.4258 + }, + { + "start": 11041.94, + "end": 11042.86, + "probability": 0.2804 + }, + { + "start": 11043.02, + "end": 11043.82, + "probability": 0.067 + }, + { + "start": 11044.24, + "end": 11044.96, + "probability": 0.2832 + }, + { + "start": 11045.08, + "end": 11048.22, + "probability": 0.3502 + }, + { + "start": 11048.22, + "end": 11049.27, + "probability": 0.5281 + }, + { + "start": 11049.44, + "end": 11050.02, + "probability": 0.6194 + }, + { + "start": 11050.14, + "end": 11050.68, + "probability": 0.7024 + }, + { + "start": 11050.86, + "end": 11053.14, + "probability": 0.8279 + }, + { + "start": 11053.24, + "end": 11053.72, + "probability": 0.3959 + }, + { + "start": 11054.22, + "end": 11058.34, + "probability": 0.7913 + }, + { + "start": 11058.6, + "end": 11059.48, + "probability": 0.2695 + }, + { + "start": 11059.58, + "end": 11062.98, + "probability": 0.7557 + }, + { + "start": 11063.04, + "end": 11063.55, + "probability": 0.9299 + }, + { + "start": 11063.78, + "end": 11065.86, + "probability": 0.9897 + }, + { + "start": 11065.96, + "end": 11066.9, + "probability": 0.8788 + }, + { + "start": 11067.04, + "end": 11068.25, + "probability": 0.6248 + }, + { + "start": 11068.62, + "end": 11069.0, + "probability": 0.4042 + }, + { + "start": 11070.68, + "end": 11071.8, + "probability": 0.6368 + }, + { + "start": 11072.12, + "end": 11075.12, + "probability": 0.9052 + }, + { + "start": 11075.12, + "end": 11075.74, + "probability": 0.2963 + }, + { + "start": 11075.74, + "end": 11076.4, + "probability": 0.3229 + }, + { + "start": 11076.46, + "end": 11077.44, + "probability": 0.7657 + }, + { + "start": 11077.64, + "end": 11080.4, + "probability": 0.9729 + }, + { + "start": 11080.86, + "end": 11082.04, + "probability": 0.7563 + }, + { + "start": 11082.44, + "end": 11084.12, + "probability": 0.6895 + }, + { + "start": 11084.24, + "end": 11088.28, + "probability": 0.6672 + }, + { + "start": 11088.32, + "end": 11089.18, + "probability": 0.8186 + }, + { + "start": 11089.66, + "end": 11091.02, + "probability": 0.865 + }, + { + "start": 11091.32, + "end": 11092.9, + "probability": 0.9414 + }, + { + "start": 11093.76, + "end": 11095.34, + "probability": 0.9544 + }, + { + "start": 11095.44, + "end": 11097.41, + "probability": 0.8244 + }, + { + "start": 11098.2, + "end": 11105.82, + "probability": 0.9805 + }, + { + "start": 11106.06, + "end": 11110.46, + "probability": 0.9819 + }, + { + "start": 11110.6, + "end": 11111.48, + "probability": 0.6354 + }, + { + "start": 11111.88, + "end": 11112.34, + "probability": 0.7401 + }, + { + "start": 11112.4, + "end": 11112.92, + "probability": 0.9232 + }, + { + "start": 11113.46, + "end": 11116.06, + "probability": 0.9961 + }, + { + "start": 11116.7, + "end": 11119.68, + "probability": 0.9899 + }, + { + "start": 11120.3, + "end": 11122.36, + "probability": 0.999 + }, + { + "start": 11123.62, + "end": 11127.86, + "probability": 0.9815 + }, + { + "start": 11128.5, + "end": 11132.7, + "probability": 0.9585 + }, + { + "start": 11133.34, + "end": 11138.89, + "probability": 0.98 + }, + { + "start": 11139.3, + "end": 11146.78, + "probability": 0.9961 + }, + { + "start": 11147.44, + "end": 11153.4, + "probability": 0.9875 + }, + { + "start": 11153.54, + "end": 11157.56, + "probability": 0.9856 + }, + { + "start": 11157.72, + "end": 11158.51, + "probability": 0.7852 + }, + { + "start": 11159.52, + "end": 11162.55, + "probability": 0.9969 + }, + { + "start": 11163.02, + "end": 11164.52, + "probability": 0.8782 + }, + { + "start": 11165.2, + "end": 11171.18, + "probability": 0.9943 + }, + { + "start": 11171.24, + "end": 11172.74, + "probability": 0.8581 + }, + { + "start": 11173.66, + "end": 11174.3, + "probability": 0.82 + }, + { + "start": 11174.3, + "end": 11177.18, + "probability": 0.9881 + }, + { + "start": 11177.68, + "end": 11182.36, + "probability": 0.97 + }, + { + "start": 11182.58, + "end": 11182.58, + "probability": 0.0633 + }, + { + "start": 11182.58, + "end": 11184.12, + "probability": 0.9063 + }, + { + "start": 11184.46, + "end": 11184.6, + "probability": 0.0567 + }, + { + "start": 11184.6, + "end": 11189.58, + "probability": 0.6431 + }, + { + "start": 11189.58, + "end": 11189.58, + "probability": 0.078 + }, + { + "start": 11189.6, + "end": 11190.52, + "probability": 0.485 + }, + { + "start": 11190.64, + "end": 11191.54, + "probability": 0.5462 + }, + { + "start": 11191.7, + "end": 11193.08, + "probability": 0.8818 + }, + { + "start": 11193.14, + "end": 11194.54, + "probability": 0.9897 + }, + { + "start": 11194.96, + "end": 11196.54, + "probability": 0.9978 + }, + { + "start": 11198.18, + "end": 11202.32, + "probability": 0.9939 + }, + { + "start": 11202.46, + "end": 11206.02, + "probability": 0.9684 + }, + { + "start": 11206.6, + "end": 11209.26, + "probability": 0.9896 + }, + { + "start": 11209.86, + "end": 11216.18, + "probability": 0.9856 + }, + { + "start": 11216.66, + "end": 11218.64, + "probability": 0.9038 + }, + { + "start": 11218.68, + "end": 11219.16, + "probability": 0.8227 + }, + { + "start": 11220.64, + "end": 11221.38, + "probability": 0.1122 + }, + { + "start": 11221.5, + "end": 11221.76, + "probability": 0.0858 + }, + { + "start": 11221.8, + "end": 11223.62, + "probability": 0.906 + }, + { + "start": 11224.08, + "end": 11228.72, + "probability": 0.9675 + }, + { + "start": 11228.94, + "end": 11232.9, + "probability": 0.0232 + }, + { + "start": 11232.9, + "end": 11232.9, + "probability": 0.0887 + }, + { + "start": 11232.9, + "end": 11232.9, + "probability": 0.016 + }, + { + "start": 11232.9, + "end": 11232.9, + "probability": 0.1594 + }, + { + "start": 11232.9, + "end": 11234.32, + "probability": 0.4662 + }, + { + "start": 11234.42, + "end": 11237.46, + "probability": 0.7637 + }, + { + "start": 11237.46, + "end": 11241.18, + "probability": 0.9875 + }, + { + "start": 11241.46, + "end": 11242.3, + "probability": 0.7248 + }, + { + "start": 11245.54, + "end": 11247.5, + "probability": 0.1726 + }, + { + "start": 11247.5, + "end": 11247.56, + "probability": 0.0324 + }, + { + "start": 11247.56, + "end": 11247.56, + "probability": 0.1876 + }, + { + "start": 11247.56, + "end": 11247.56, + "probability": 0.0922 + }, + { + "start": 11247.56, + "end": 11251.86, + "probability": 0.7892 + }, + { + "start": 11252.94, + "end": 11255.7, + "probability": 0.9795 + }, + { + "start": 11256.38, + "end": 11256.98, + "probability": 0.6021 + }, + { + "start": 11257.16, + "end": 11257.94, + "probability": 0.3182 + }, + { + "start": 11257.98, + "end": 11260.94, + "probability": 0.8964 + }, + { + "start": 11261.16, + "end": 11265.18, + "probability": 0.9636 + }, + { + "start": 11265.78, + "end": 11269.42, + "probability": 0.9966 + }, + { + "start": 11269.42, + "end": 11273.24, + "probability": 0.9917 + }, + { + "start": 11273.8, + "end": 11275.38, + "probability": 0.9997 + }, + { + "start": 11275.96, + "end": 11278.34, + "probability": 0.7959 + }, + { + "start": 11278.96, + "end": 11281.76, + "probability": 0.8532 + }, + { + "start": 11283.59, + "end": 11286.68, + "probability": 0.9629 + }, + { + "start": 11287.3, + "end": 11289.2, + "probability": 0.9519 + }, + { + "start": 11289.74, + "end": 11291.86, + "probability": 0.998 + }, + { + "start": 11292.68, + "end": 11296.2, + "probability": 0.9979 + }, + { + "start": 11296.2, + "end": 11299.08, + "probability": 0.9789 + }, + { + "start": 11299.64, + "end": 11300.06, + "probability": 0.8431 + }, + { + "start": 11300.14, + "end": 11301.7, + "probability": 0.8498 + }, + { + "start": 11302.2, + "end": 11307.92, + "probability": 0.9928 + }, + { + "start": 11307.92, + "end": 11313.78, + "probability": 0.971 + }, + { + "start": 11313.78, + "end": 11318.88, + "probability": 0.986 + }, + { + "start": 11319.82, + "end": 11323.88, + "probability": 0.9683 + }, + { + "start": 11324.92, + "end": 11333.04, + "probability": 0.9431 + }, + { + "start": 11334.06, + "end": 11335.4, + "probability": 0.6283 + }, + { + "start": 11335.64, + "end": 11337.06, + "probability": 0.8916 + }, + { + "start": 11337.72, + "end": 11338.08, + "probability": 0.4652 + }, + { + "start": 11338.2, + "end": 11339.01, + "probability": 0.1134 + }, + { + "start": 11339.12, + "end": 11341.32, + "probability": 0.8797 + }, + { + "start": 11342.46, + "end": 11345.2, + "probability": 0.0685 + }, + { + "start": 11345.5, + "end": 11349.52, + "probability": 0.9849 + }, + { + "start": 11349.58, + "end": 11351.24, + "probability": 0.9677 + }, + { + "start": 11351.58, + "end": 11353.3, + "probability": 0.8432 + }, + { + "start": 11353.56, + "end": 11354.51, + "probability": 0.9287 + }, + { + "start": 11354.54, + "end": 11356.0, + "probability": 0.6858 + }, + { + "start": 11356.24, + "end": 11356.88, + "probability": 0.9395 + }, + { + "start": 11357.14, + "end": 11357.7, + "probability": 0.8481 + }, + { + "start": 11359.72, + "end": 11361.48, + "probability": 0.9033 + }, + { + "start": 11364.76, + "end": 11367.06, + "probability": 0.854 + }, + { + "start": 11368.08, + "end": 11374.86, + "probability": 0.7098 + }, + { + "start": 11375.34, + "end": 11375.62, + "probability": 0.655 + }, + { + "start": 11375.68, + "end": 11375.86, + "probability": 0.2587 + }, + { + "start": 11375.92, + "end": 11376.47, + "probability": 0.1326 + }, + { + "start": 11376.74, + "end": 11378.8, + "probability": 0.7946 + }, + { + "start": 11378.92, + "end": 11384.86, + "probability": 0.984 + }, + { + "start": 11384.92, + "end": 11386.04, + "probability": 0.9712 + }, + { + "start": 11386.84, + "end": 11390.4, + "probability": 0.9901 + }, + { + "start": 11391.34, + "end": 11396.84, + "probability": 0.9757 + }, + { + "start": 11398.18, + "end": 11400.36, + "probability": 0.1199 + }, + { + "start": 11400.36, + "end": 11401.8, + "probability": 0.4932 + }, + { + "start": 11401.88, + "end": 11403.62, + "probability": 0.9954 + }, + { + "start": 11403.86, + "end": 11405.48, + "probability": 0.9986 + }, + { + "start": 11405.94, + "end": 11409.48, + "probability": 0.9912 + }, + { + "start": 11409.62, + "end": 11414.3, + "probability": 0.9973 + }, + { + "start": 11414.74, + "end": 11416.52, + "probability": 0.988 + }, + { + "start": 11417.0, + "end": 11420.26, + "probability": 0.9919 + }, + { + "start": 11420.36, + "end": 11423.24, + "probability": 0.9912 + }, + { + "start": 11423.54, + "end": 11425.4, + "probability": 0.9928 + }, + { + "start": 11425.78, + "end": 11428.64, + "probability": 0.9624 + }, + { + "start": 11429.18, + "end": 11429.84, + "probability": 0.2507 + }, + { + "start": 11429.84, + "end": 11430.34, + "probability": 0.7642 + }, + { + "start": 11430.56, + "end": 11431.42, + "probability": 0.862 + }, + { + "start": 11431.88, + "end": 11433.26, + "probability": 0.9722 + }, + { + "start": 11433.34, + "end": 11434.66, + "probability": 0.9512 + }, + { + "start": 11435.14, + "end": 11437.22, + "probability": 0.9737 + }, + { + "start": 11437.9, + "end": 11441.26, + "probability": 0.9948 + }, + { + "start": 11441.54, + "end": 11445.04, + "probability": 0.9071 + }, + { + "start": 11445.18, + "end": 11445.7, + "probability": 0.0591 + }, + { + "start": 11446.16, + "end": 11450.42, + "probability": 0.2019 + }, + { + "start": 11450.54, + "end": 11451.44, + "probability": 0.6042 + }, + { + "start": 11451.62, + "end": 11452.7, + "probability": 0.8738 + }, + { + "start": 11452.88, + "end": 11453.62, + "probability": 0.5169 + }, + { + "start": 11453.92, + "end": 11455.88, + "probability": 0.9489 + }, + { + "start": 11455.88, + "end": 11456.82, + "probability": 0.8646 + }, + { + "start": 11457.0, + "end": 11458.86, + "probability": 0.925 + }, + { + "start": 11459.02, + "end": 11461.52, + "probability": 0.9803 + }, + { + "start": 11461.52, + "end": 11462.8, + "probability": 0.7647 + }, + { + "start": 11462.86, + "end": 11464.82, + "probability": 0.8845 + }, + { + "start": 11464.82, + "end": 11466.84, + "probability": 0.9606 + }, + { + "start": 11466.84, + "end": 11467.86, + "probability": 0.2872 + }, + { + "start": 11467.86, + "end": 11467.86, + "probability": 0.0457 + }, + { + "start": 11467.86, + "end": 11468.04, + "probability": 0.327 + }, + { + "start": 11468.18, + "end": 11471.86, + "probability": 0.9154 + }, + { + "start": 11471.86, + "end": 11475.48, + "probability": 0.9573 + }, + { + "start": 11475.82, + "end": 11477.02, + "probability": 0.6907 + }, + { + "start": 11478.1, + "end": 11478.68, + "probability": 0.0315 + }, + { + "start": 11478.68, + "end": 11480.96, + "probability": 0.5439 + }, + { + "start": 11481.06, + "end": 11482.14, + "probability": 0.5313 + }, + { + "start": 11482.54, + "end": 11484.06, + "probability": 0.9073 + }, + { + "start": 11484.28, + "end": 11486.56, + "probability": 0.9947 + }, + { + "start": 11486.56, + "end": 11488.62, + "probability": 0.7179 + }, + { + "start": 11488.86, + "end": 11489.26, + "probability": 0.5635 + }, + { + "start": 11490.12, + "end": 11490.52, + "probability": 0.0225 + }, + { + "start": 11490.52, + "end": 11490.52, + "probability": 0.3534 + }, + { + "start": 11491.04, + "end": 11491.14, + "probability": 0.1251 + }, + { + "start": 11491.14, + "end": 11493.13, + "probability": 0.8233 + }, + { + "start": 11493.66, + "end": 11496.62, + "probability": 0.9937 + }, + { + "start": 11496.64, + "end": 11500.98, + "probability": 0.8535 + }, + { + "start": 11501.04, + "end": 11502.04, + "probability": 0.9395 + }, + { + "start": 11502.46, + "end": 11502.96, + "probability": 0.5385 + }, + { + "start": 11503.12, + "end": 11503.95, + "probability": 0.7804 + }, + { + "start": 11504.68, + "end": 11507.46, + "probability": 0.5952 + }, + { + "start": 11508.12, + "end": 11518.6, + "probability": 0.0405 + }, + { + "start": 11518.6, + "end": 11523.68, + "probability": 0.0587 + }, + { + "start": 11523.96, + "end": 11525.02, + "probability": 0.065 + }, + { + "start": 11525.46, + "end": 11525.72, + "probability": 0.0339 + }, + { + "start": 11526.2, + "end": 11526.6, + "probability": 0.3555 + }, + { + "start": 11526.66, + "end": 11527.2, + "probability": 0.5239 + }, + { + "start": 11527.54, + "end": 11527.74, + "probability": 0.828 + }, + { + "start": 11527.94, + "end": 11531.92, + "probability": 0.9922 + }, + { + "start": 11532.48, + "end": 11534.2, + "probability": 0.8818 + }, + { + "start": 11534.2, + "end": 11538.56, + "probability": 0.6198 + }, + { + "start": 11539.2, + "end": 11541.52, + "probability": 0.2189 + }, + { + "start": 11542.04, + "end": 11543.86, + "probability": 0.8718 + }, + { + "start": 11549.58, + "end": 11550.3, + "probability": 0.1371 + }, + { + "start": 11554.38, + "end": 11554.9, + "probability": 0.5082 + }, + { + "start": 11555.06, + "end": 11555.98, + "probability": 0.5999 + }, + { + "start": 11556.2, + "end": 11557.21, + "probability": 0.7958 + }, + { + "start": 11557.72, + "end": 11558.44, + "probability": 0.8369 + }, + { + "start": 11558.76, + "end": 11563.28, + "probability": 0.9232 + }, + { + "start": 11563.28, + "end": 11567.7, + "probability": 0.898 + }, + { + "start": 11568.86, + "end": 11569.12, + "probability": 0.4011 + }, + { + "start": 11569.26, + "end": 11569.92, + "probability": 0.836 + }, + { + "start": 11570.02, + "end": 11570.74, + "probability": 0.9384 + }, + { + "start": 11570.8, + "end": 11572.78, + "probability": 0.7574 + }, + { + "start": 11573.76, + "end": 11575.64, + "probability": 0.8431 + }, + { + "start": 11576.28, + "end": 11577.28, + "probability": 0.8538 + }, + { + "start": 11577.84, + "end": 11578.52, + "probability": 0.8929 + }, + { + "start": 11579.12, + "end": 11581.9, + "probability": 0.9764 + }, + { + "start": 11582.72, + "end": 11588.3, + "probability": 0.8491 + }, + { + "start": 11589.14, + "end": 11590.1, + "probability": 0.6816 + }, + { + "start": 11590.84, + "end": 11592.34, + "probability": 0.891 + }, + { + "start": 11592.88, + "end": 11596.14, + "probability": 0.9618 + }, + { + "start": 11596.86, + "end": 11599.28, + "probability": 0.8773 + }, + { + "start": 11601.22, + "end": 11604.0, + "probability": 0.7524 + }, + { + "start": 11604.86, + "end": 11608.82, + "probability": 0.9798 + }, + { + "start": 11608.82, + "end": 11612.4, + "probability": 0.9897 + }, + { + "start": 11612.58, + "end": 11614.44, + "probability": 0.9721 + }, + { + "start": 11615.84, + "end": 11616.04, + "probability": 0.4278 + }, + { + "start": 11618.38, + "end": 11621.4, + "probability": 0.9372 + }, + { + "start": 11622.44, + "end": 11628.1, + "probability": 0.976 + }, + { + "start": 11628.3, + "end": 11629.76, + "probability": 0.8112 + }, + { + "start": 11630.52, + "end": 11632.76, + "probability": 0.998 + }, + { + "start": 11633.1, + "end": 11633.78, + "probability": 0.4575 + }, + { + "start": 11634.22, + "end": 11637.64, + "probability": 0.9969 + }, + { + "start": 11638.88, + "end": 11640.66, + "probability": 0.8336 + }, + { + "start": 11641.5, + "end": 11647.2, + "probability": 0.9349 + }, + { + "start": 11647.7, + "end": 11648.4, + "probability": 0.9419 + }, + { + "start": 11648.9, + "end": 11650.56, + "probability": 0.9978 + }, + { + "start": 11651.32, + "end": 11653.48, + "probability": 0.9604 + }, + { + "start": 11654.18, + "end": 11656.86, + "probability": 0.931 + }, + { + "start": 11657.54, + "end": 11661.46, + "probability": 0.701 + }, + { + "start": 11662.24, + "end": 11664.94, + "probability": 0.7577 + }, + { + "start": 11666.48, + "end": 11670.6, + "probability": 0.9417 + }, + { + "start": 11670.86, + "end": 11671.88, + "probability": 0.7054 + }, + { + "start": 11672.74, + "end": 11673.94, + "probability": 0.2617 + }, + { + "start": 11674.26, + "end": 11675.28, + "probability": 0.78 + }, + { + "start": 11675.62, + "end": 11676.9, + "probability": 0.9178 + }, + { + "start": 11679.08, + "end": 11680.92, + "probability": 0.8327 + }, + { + "start": 11681.52, + "end": 11682.52, + "probability": 0.8357 + }, + { + "start": 11683.38, + "end": 11684.66, + "probability": 0.9973 + }, + { + "start": 11685.3, + "end": 11687.98, + "probability": 0.9248 + }, + { + "start": 11688.6, + "end": 11691.2, + "probability": 0.9596 + }, + { + "start": 11691.74, + "end": 11692.72, + "probability": 0.9791 + }, + { + "start": 11693.3, + "end": 11698.12, + "probability": 0.9673 + }, + { + "start": 11698.26, + "end": 11698.92, + "probability": 0.6133 + }, + { + "start": 11699.94, + "end": 11704.14, + "probability": 0.8708 + }, + { + "start": 11704.84, + "end": 11707.58, + "probability": 0.7529 + }, + { + "start": 11708.12, + "end": 11709.06, + "probability": 0.5182 + }, + { + "start": 11709.5, + "end": 11711.76, + "probability": 0.8683 + }, + { + "start": 11712.4, + "end": 11714.9, + "probability": 0.7769 + }, + { + "start": 11715.36, + "end": 11716.14, + "probability": 0.8378 + }, + { + "start": 11716.58, + "end": 11716.86, + "probability": 0.646 + }, + { + "start": 11716.98, + "end": 11718.26, + "probability": 0.9252 + }, + { + "start": 11718.72, + "end": 11719.48, + "probability": 0.9727 + }, + { + "start": 11719.96, + "end": 11720.8, + "probability": 0.9886 + }, + { + "start": 11721.96, + "end": 11723.88, + "probability": 0.8207 + }, + { + "start": 11725.08, + "end": 11726.76, + "probability": 0.8236 + }, + { + "start": 11726.94, + "end": 11728.2, + "probability": 0.9961 + }, + { + "start": 11728.92, + "end": 11730.5, + "probability": 0.8793 + }, + { + "start": 11730.58, + "end": 11732.32, + "probability": 0.802 + }, + { + "start": 11733.0, + "end": 11733.52, + "probability": 0.9293 + }, + { + "start": 11733.66, + "end": 11734.38, + "probability": 0.7759 + }, + { + "start": 11734.48, + "end": 11734.8, + "probability": 0.7416 + }, + { + "start": 11735.48, + "end": 11738.28, + "probability": 0.9305 + }, + { + "start": 11738.38, + "end": 11744.5, + "probability": 0.9604 + }, + { + "start": 11744.9, + "end": 11745.81, + "probability": 0.6841 + }, + { + "start": 11745.98, + "end": 11746.86, + "probability": 0.8403 + }, + { + "start": 11747.86, + "end": 11749.86, + "probability": 0.7115 + }, + { + "start": 11750.58, + "end": 11753.42, + "probability": 0.8693 + }, + { + "start": 11754.72, + "end": 11757.1, + "probability": 0.8204 + }, + { + "start": 11758.08, + "end": 11759.91, + "probability": 0.9937 + }, + { + "start": 11761.52, + "end": 11763.52, + "probability": 0.9885 + }, + { + "start": 11764.18, + "end": 11766.24, + "probability": 0.9834 + }, + { + "start": 11766.76, + "end": 11767.54, + "probability": 0.9718 + }, + { + "start": 11768.26, + "end": 11769.9, + "probability": 0.7709 + }, + { + "start": 11770.42, + "end": 11772.6, + "probability": 0.9741 + }, + { + "start": 11773.18, + "end": 11774.54, + "probability": 0.993 + }, + { + "start": 11775.14, + "end": 11779.12, + "probability": 0.993 + }, + { + "start": 11779.68, + "end": 11782.5, + "probability": 0.8613 + }, + { + "start": 11783.12, + "end": 11785.8, + "probability": 0.8381 + }, + { + "start": 11786.36, + "end": 11787.08, + "probability": 0.9349 + }, + { + "start": 11787.18, + "end": 11787.43, + "probability": 0.8418 + }, + { + "start": 11788.02, + "end": 11789.46, + "probability": 0.9971 + }, + { + "start": 11789.88, + "end": 11790.4, + "probability": 0.9645 + }, + { + "start": 11791.16, + "end": 11793.86, + "probability": 0.7594 + }, + { + "start": 11794.48, + "end": 11795.94, + "probability": 0.9182 + }, + { + "start": 11796.24, + "end": 11796.24, + "probability": 0.0031 + }, + { + "start": 11796.98, + "end": 11797.98, + "probability": 0.8347 + }, + { + "start": 11798.24, + "end": 11801.08, + "probability": 0.6516 + }, + { + "start": 11801.4, + "end": 11802.32, + "probability": 0.9497 + }, + { + "start": 11802.8, + "end": 11803.77, + "probability": 0.9875 + }, + { + "start": 11804.76, + "end": 11805.04, + "probability": 0.7036 + }, + { + "start": 11805.24, + "end": 11807.36, + "probability": 0.4178 + }, + { + "start": 11807.42, + "end": 11807.68, + "probability": 0.8238 + }, + { + "start": 11807.74, + "end": 11808.16, + "probability": 0.9087 + }, + { + "start": 11808.32, + "end": 11812.64, + "probability": 0.9476 + }, + { + "start": 11813.06, + "end": 11813.52, + "probability": 0.9609 + }, + { + "start": 11814.6, + "end": 11815.15, + "probability": 0.9966 + }, + { + "start": 11816.08, + "end": 11816.83, + "probability": 0.7834 + }, + { + "start": 11818.34, + "end": 11820.66, + "probability": 0.9672 + }, + { + "start": 11820.74, + "end": 11822.02, + "probability": 0.8742 + }, + { + "start": 11822.74, + "end": 11823.7, + "probability": 0.8875 + }, + { + "start": 11824.72, + "end": 11827.36, + "probability": 0.8482 + }, + { + "start": 11827.64, + "end": 11828.26, + "probability": 0.6925 + }, + { + "start": 11828.54, + "end": 11830.94, + "probability": 0.9853 + }, + { + "start": 11831.62, + "end": 11832.8, + "probability": 0.8248 + }, + { + "start": 11833.4, + "end": 11839.26, + "probability": 0.8713 + }, + { + "start": 11839.74, + "end": 11843.12, + "probability": 0.94 + }, + { + "start": 11843.54, + "end": 11844.6, + "probability": 0.9923 + }, + { + "start": 11845.24, + "end": 11846.06, + "probability": 0.9011 + }, + { + "start": 11846.56, + "end": 11849.84, + "probability": 0.9988 + }, + { + "start": 11849.84, + "end": 11853.3, + "probability": 0.9949 + }, + { + "start": 11853.76, + "end": 11854.48, + "probability": 0.6487 + }, + { + "start": 11855.38, + "end": 11857.02, + "probability": 0.9958 + }, + { + "start": 11857.74, + "end": 11859.1, + "probability": 0.998 + }, + { + "start": 11860.54, + "end": 11863.06, + "probability": 0.9844 + }, + { + "start": 11863.06, + "end": 11866.14, + "probability": 0.9396 + }, + { + "start": 11866.88, + "end": 11869.58, + "probability": 0.9883 + }, + { + "start": 11869.58, + "end": 11873.76, + "probability": 0.9717 + }, + { + "start": 11874.22, + "end": 11875.5, + "probability": 0.6793 + }, + { + "start": 11876.62, + "end": 11877.14, + "probability": 0.7296 + }, + { + "start": 11877.74, + "end": 11878.76, + "probability": 0.9215 + }, + { + "start": 11879.58, + "end": 11881.8, + "probability": 0.998 + }, + { + "start": 11882.22, + "end": 11883.68, + "probability": 0.8891 + }, + { + "start": 11884.2, + "end": 11884.8, + "probability": 0.9766 + }, + { + "start": 11885.66, + "end": 11886.98, + "probability": 0.9846 + }, + { + "start": 11888.2, + "end": 11891.4, + "probability": 0.9226 + }, + { + "start": 11891.98, + "end": 11893.6, + "probability": 0.946 + }, + { + "start": 11894.42, + "end": 11896.8, + "probability": 0.7489 + }, + { + "start": 11897.38, + "end": 11899.32, + "probability": 0.9807 + }, + { + "start": 11899.92, + "end": 11902.18, + "probability": 0.9577 + }, + { + "start": 11902.62, + "end": 11904.2, + "probability": 0.9184 + }, + { + "start": 11905.12, + "end": 11910.14, + "probability": 0.9859 + }, + { + "start": 11910.6, + "end": 11912.64, + "probability": 0.9124 + }, + { + "start": 11913.42, + "end": 11915.26, + "probability": 0.9596 + }, + { + "start": 11915.54, + "end": 11918.52, + "probability": 0.932 + }, + { + "start": 11918.52, + "end": 11919.44, + "probability": 0.6866 + }, + { + "start": 11919.78, + "end": 11921.0, + "probability": 0.6635 + }, + { + "start": 11921.58, + "end": 11923.14, + "probability": 0.9447 + }, + { + "start": 11923.6, + "end": 11926.96, + "probability": 0.9492 + }, + { + "start": 11927.64, + "end": 11929.08, + "probability": 0.9772 + }, + { + "start": 11929.66, + "end": 11932.9, + "probability": 0.775 + }, + { + "start": 11933.46, + "end": 11935.16, + "probability": 0.8345 + }, + { + "start": 11935.76, + "end": 11938.34, + "probability": 0.967 + }, + { + "start": 11939.12, + "end": 11941.38, + "probability": 0.9344 + }, + { + "start": 11941.9, + "end": 11943.96, + "probability": 0.9519 + }, + { + "start": 11944.52, + "end": 11946.24, + "probability": 0.8732 + }, + { + "start": 11946.78, + "end": 11949.98, + "probability": 0.8112 + }, + { + "start": 11950.66, + "end": 11951.52, + "probability": 0.7515 + }, + { + "start": 11952.4, + "end": 11954.88, + "probability": 0.9413 + }, + { + "start": 11955.98, + "end": 11956.86, + "probability": 0.4544 + }, + { + "start": 11956.92, + "end": 11960.48, + "probability": 0.7983 + }, + { + "start": 11961.08, + "end": 11962.92, + "probability": 0.9753 + }, + { + "start": 11963.42, + "end": 11965.56, + "probability": 0.9873 + }, + { + "start": 11966.86, + "end": 11968.14, + "probability": 0.7928 + }, + { + "start": 11968.92, + "end": 11971.78, + "probability": 0.8098 + }, + { + "start": 11972.38, + "end": 11973.66, + "probability": 0.983 + }, + { + "start": 11974.36, + "end": 11976.55, + "probability": 0.9921 + }, + { + "start": 11977.56, + "end": 11980.76, + "probability": 0.9649 + }, + { + "start": 11981.34, + "end": 11983.02, + "probability": 0.9939 + }, + { + "start": 11983.16, + "end": 11984.44, + "probability": 0.832 + }, + { + "start": 11984.46, + "end": 11984.86, + "probability": 0.8824 + }, + { + "start": 11985.06, + "end": 11987.16, + "probability": 0.874 + }, + { + "start": 11987.72, + "end": 11989.36, + "probability": 0.9741 + }, + { + "start": 11989.7, + "end": 11993.64, + "probability": 0.9966 + }, + { + "start": 11994.66, + "end": 11998.64, + "probability": 0.8719 + }, + { + "start": 11999.02, + "end": 11999.8, + "probability": 0.9598 + }, + { + "start": 12000.18, + "end": 12000.28, + "probability": 0.6082 + }, + { + "start": 12000.5, + "end": 12001.84, + "probability": 0.8413 + }, + { + "start": 12002.74, + "end": 12003.84, + "probability": 0.9533 + }, + { + "start": 12004.48, + "end": 12006.74, + "probability": 0.9873 + }, + { + "start": 12007.9, + "end": 12010.09, + "probability": 0.7466 + }, + { + "start": 12010.9, + "end": 12011.66, + "probability": 0.8488 + }, + { + "start": 12012.38, + "end": 12014.98, + "probability": 0.9296 + }, + { + "start": 12015.46, + "end": 12016.14, + "probability": 0.9395 + }, + { + "start": 12017.34, + "end": 12020.48, + "probability": 0.859 + }, + { + "start": 12020.96, + "end": 12024.28, + "probability": 0.9893 + }, + { + "start": 12025.26, + "end": 12026.48, + "probability": 0.8539 + }, + { + "start": 12027.32, + "end": 12029.5, + "probability": 0.9485 + }, + { + "start": 12030.08, + "end": 12030.72, + "probability": 0.6817 + }, + { + "start": 12031.46, + "end": 12033.82, + "probability": 0.9924 + }, + { + "start": 12034.48, + "end": 12035.94, + "probability": 0.8591 + }, + { + "start": 12036.5, + "end": 12039.58, + "probability": 0.991 + }, + { + "start": 12040.08, + "end": 12041.14, + "probability": 0.6334 + }, + { + "start": 12041.24, + "end": 12041.46, + "probability": 0.6138 + }, + { + "start": 12042.1, + "end": 12043.44, + "probability": 0.8984 + }, + { + "start": 12044.02, + "end": 12046.12, + "probability": 0.9856 + }, + { + "start": 12046.52, + "end": 12047.0, + "probability": 0.7437 + }, + { + "start": 12047.08, + "end": 12052.6, + "probability": 0.9722 + }, + { + "start": 12053.18, + "end": 12054.92, + "probability": 0.9878 + }, + { + "start": 12055.66, + "end": 12056.66, + "probability": 0.9343 + }, + { + "start": 12057.26, + "end": 12058.24, + "probability": 0.9116 + }, + { + "start": 12059.06, + "end": 12062.9, + "probability": 0.9487 + }, + { + "start": 12063.38, + "end": 12064.76, + "probability": 0.9661 + }, + { + "start": 12064.78, + "end": 12066.57, + "probability": 0.9724 + }, + { + "start": 12068.76, + "end": 12069.87, + "probability": 0.2051 + }, + { + "start": 12070.54, + "end": 12072.0, + "probability": 0.9311 + }, + { + "start": 12072.66, + "end": 12076.96, + "probability": 0.969 + }, + { + "start": 12078.08, + "end": 12080.32, + "probability": 0.8517 + }, + { + "start": 12080.74, + "end": 12082.74, + "probability": 0.9714 + }, + { + "start": 12083.42, + "end": 12084.82, + "probability": 0.9522 + }, + { + "start": 12086.0, + "end": 12087.0, + "probability": 0.989 + }, + { + "start": 12087.62, + "end": 12089.83, + "probability": 0.9694 + }, + { + "start": 12090.32, + "end": 12092.2, + "probability": 0.8928 + }, + { + "start": 12092.74, + "end": 12095.26, + "probability": 0.9866 + }, + { + "start": 12096.24, + "end": 12097.1, + "probability": 0.8942 + }, + { + "start": 12098.1, + "end": 12100.28, + "probability": 0.976 + }, + { + "start": 12100.4, + "end": 12101.2, + "probability": 0.7378 + }, + { + "start": 12101.74, + "end": 12103.96, + "probability": 0.9979 + }, + { + "start": 12104.44, + "end": 12107.2, + "probability": 0.9912 + }, + { + "start": 12107.62, + "end": 12109.08, + "probability": 0.9316 + }, + { + "start": 12109.72, + "end": 12113.7, + "probability": 0.8953 + }, + { + "start": 12114.06, + "end": 12115.9, + "probability": 0.8438 + }, + { + "start": 12116.22, + "end": 12117.8, + "probability": 0.9871 + }, + { + "start": 12118.26, + "end": 12119.54, + "probability": 0.8257 + }, + { + "start": 12120.06, + "end": 12122.14, + "probability": 0.9648 + }, + { + "start": 12122.5, + "end": 12125.26, + "probability": 0.9457 + }, + { + "start": 12125.7, + "end": 12127.42, + "probability": 0.9907 + }, + { + "start": 12128.08, + "end": 12128.64, + "probability": 0.7957 + }, + { + "start": 12129.32, + "end": 12129.5, + "probability": 0.9397 + }, + { + "start": 12131.56, + "end": 12132.46, + "probability": 0.5864 + }, + { + "start": 12132.72, + "end": 12132.98, + "probability": 0.7971 + }, + { + "start": 12135.96, + "end": 12139.44, + "probability": 0.8701 + }, + { + "start": 12165.76, + "end": 12168.46, + "probability": 0.884 + }, + { + "start": 12170.78, + "end": 12173.88, + "probability": 0.7122 + }, + { + "start": 12177.0, + "end": 12178.34, + "probability": 0.9946 + }, + { + "start": 12180.94, + "end": 12182.96, + "probability": 0.9779 + }, + { + "start": 12183.76, + "end": 12184.36, + "probability": 0.7982 + }, + { + "start": 12186.12, + "end": 12187.08, + "probability": 0.9387 + }, + { + "start": 12189.7, + "end": 12190.4, + "probability": 0.4974 + }, + { + "start": 12190.58, + "end": 12191.4, + "probability": 0.705 + }, + { + "start": 12191.5, + "end": 12196.62, + "probability": 0.9838 + }, + { + "start": 12197.48, + "end": 12199.12, + "probability": 0.9713 + }, + { + "start": 12199.26, + "end": 12203.38, + "probability": 0.9512 + }, + { + "start": 12204.14, + "end": 12209.34, + "probability": 0.9285 + }, + { + "start": 12210.4, + "end": 12213.98, + "probability": 0.9549 + }, + { + "start": 12214.04, + "end": 12221.64, + "probability": 0.9167 + }, + { + "start": 12222.14, + "end": 12225.12, + "probability": 0.9191 + }, + { + "start": 12225.98, + "end": 12226.46, + "probability": 0.5494 + }, + { + "start": 12226.5, + "end": 12229.7, + "probability": 0.9949 + }, + { + "start": 12229.7, + "end": 12233.44, + "probability": 0.9575 + }, + { + "start": 12234.8, + "end": 12237.6, + "probability": 0.9526 + }, + { + "start": 12237.6, + "end": 12241.08, + "probability": 0.988 + }, + { + "start": 12241.7, + "end": 12244.34, + "probability": 0.9734 + }, + { + "start": 12245.66, + "end": 12248.54, + "probability": 0.9941 + }, + { + "start": 12248.54, + "end": 12252.06, + "probability": 0.9861 + }, + { + "start": 12253.22, + "end": 12253.58, + "probability": 0.3392 + }, + { + "start": 12253.78, + "end": 12257.22, + "probability": 0.9946 + }, + { + "start": 12258.48, + "end": 12258.94, + "probability": 0.6309 + }, + { + "start": 12259.04, + "end": 12261.64, + "probability": 0.938 + }, + { + "start": 12261.64, + "end": 12264.82, + "probability": 0.987 + }, + { + "start": 12265.76, + "end": 12269.16, + "probability": 0.9966 + }, + { + "start": 12269.68, + "end": 12272.46, + "probability": 0.9087 + }, + { + "start": 12274.36, + "end": 12276.72, + "probability": 0.9695 + }, + { + "start": 12276.72, + "end": 12279.02, + "probability": 0.9896 + }, + { + "start": 12279.22, + "end": 12284.3, + "probability": 0.95 + }, + { + "start": 12285.42, + "end": 12285.78, + "probability": 0.546 + }, + { + "start": 12285.98, + "end": 12289.0, + "probability": 0.5092 + }, + { + "start": 12289.0, + "end": 12291.66, + "probability": 0.9855 + }, + { + "start": 12292.92, + "end": 12295.48, + "probability": 0.97 + }, + { + "start": 12296.6, + "end": 12300.84, + "probability": 0.9719 + }, + { + "start": 12300.96, + "end": 12301.94, + "probability": 0.6955 + }, + { + "start": 12302.72, + "end": 12304.96, + "probability": 0.9106 + }, + { + "start": 12306.34, + "end": 12309.08, + "probability": 0.9732 + }, + { + "start": 12309.16, + "end": 12313.11, + "probability": 0.6848 + }, + { + "start": 12314.38, + "end": 12317.92, + "probability": 0.939 + }, + { + "start": 12319.38, + "end": 12324.16, + "probability": 0.957 + }, + { + "start": 12325.7, + "end": 12327.38, + "probability": 0.7186 + }, + { + "start": 12327.92, + "end": 12330.8, + "probability": 0.9157 + }, + { + "start": 12331.26, + "end": 12335.18, + "probability": 0.6739 + }, + { + "start": 12336.42, + "end": 12341.56, + "probability": 0.9918 + }, + { + "start": 12343.38, + "end": 12344.27, + "probability": 0.3754 + }, + { + "start": 12344.44, + "end": 12348.02, + "probability": 0.9574 + }, + { + "start": 12349.08, + "end": 12353.36, + "probability": 0.9904 + }, + { + "start": 12353.94, + "end": 12356.3, + "probability": 0.9968 + }, + { + "start": 12357.4, + "end": 12360.32, + "probability": 0.8782 + }, + { + "start": 12360.96, + "end": 12366.86, + "probability": 0.9771 + }, + { + "start": 12367.72, + "end": 12370.46, + "probability": 0.7419 + }, + { + "start": 12371.04, + "end": 12374.5, + "probability": 0.9904 + }, + { + "start": 12374.98, + "end": 12375.22, + "probability": 0.7247 + }, + { + "start": 12376.22, + "end": 12377.56, + "probability": 0.2517 + }, + { + "start": 12378.36, + "end": 12379.92, + "probability": 0.2186 + }, + { + "start": 12381.82, + "end": 12384.28, + "probability": 0.5055 + }, + { + "start": 12386.56, + "end": 12387.04, + "probability": 0.5995 + }, + { + "start": 12396.34, + "end": 12396.62, + "probability": 0.4223 + }, + { + "start": 12396.64, + "end": 12398.44, + "probability": 0.676 + }, + { + "start": 12398.56, + "end": 12401.04, + "probability": 0.8708 + }, + { + "start": 12401.92, + "end": 12404.24, + "probability": 0.8175 + }, + { + "start": 12405.02, + "end": 12406.1, + "probability": 0.9527 + }, + { + "start": 12406.7, + "end": 12409.86, + "probability": 0.8639 + }, + { + "start": 12410.56, + "end": 12416.82, + "probability": 0.9369 + }, + { + "start": 12416.84, + "end": 12421.12, + "probability": 0.9948 + }, + { + "start": 12422.12, + "end": 12427.04, + "probability": 0.9902 + }, + { + "start": 12427.46, + "end": 12428.62, + "probability": 0.9717 + }, + { + "start": 12429.46, + "end": 12431.16, + "probability": 0.9988 + }, + { + "start": 12431.88, + "end": 12432.04, + "probability": 0.4311 + }, + { + "start": 12432.2, + "end": 12435.28, + "probability": 0.9923 + }, + { + "start": 12435.76, + "end": 12436.88, + "probability": 0.6563 + }, + { + "start": 12437.42, + "end": 12441.86, + "probability": 0.8871 + }, + { + "start": 12442.32, + "end": 12443.9, + "probability": 0.8402 + }, + { + "start": 12444.04, + "end": 12446.58, + "probability": 0.9902 + }, + { + "start": 12447.08, + "end": 12447.8, + "probability": 0.2473 + }, + { + "start": 12448.48, + "end": 12449.04, + "probability": 0.9425 + }, + { + "start": 12449.26, + "end": 12454.4, + "probability": 0.981 + }, + { + "start": 12454.84, + "end": 12457.52, + "probability": 0.9695 + }, + { + "start": 12458.06, + "end": 12459.34, + "probability": 0.8413 + }, + { + "start": 12459.88, + "end": 12461.0, + "probability": 0.8846 + }, + { + "start": 12461.64, + "end": 12461.7, + "probability": 0.2994 + }, + { + "start": 12461.78, + "end": 12465.12, + "probability": 0.8771 + }, + { + "start": 12465.12, + "end": 12468.24, + "probability": 0.9575 + }, + { + "start": 12469.02, + "end": 12473.46, + "probability": 0.8818 + }, + { + "start": 12474.02, + "end": 12475.36, + "probability": 0.8423 + }, + { + "start": 12475.62, + "end": 12477.86, + "probability": 0.8162 + }, + { + "start": 12478.44, + "end": 12479.74, + "probability": 0.9033 + }, + { + "start": 12480.0, + "end": 12482.08, + "probability": 0.9067 + }, + { + "start": 12482.5, + "end": 12485.02, + "probability": 0.9252 + }, + { + "start": 12485.82, + "end": 12488.82, + "probability": 0.7316 + }, + { + "start": 12489.48, + "end": 12492.12, + "probability": 0.5406 + }, + { + "start": 12493.38, + "end": 12496.1, + "probability": 0.9785 + }, + { + "start": 12497.14, + "end": 12499.12, + "probability": 0.9113 + }, + { + "start": 12499.92, + "end": 12501.36, + "probability": 0.5466 + }, + { + "start": 12501.84, + "end": 12502.76, + "probability": 0.975 + }, + { + "start": 12503.72, + "end": 12508.36, + "probability": 0.8971 + }, + { + "start": 12509.9, + "end": 12512.6, + "probability": 0.8711 + }, + { + "start": 12512.94, + "end": 12513.54, + "probability": 0.6861 + }, + { + "start": 12513.82, + "end": 12514.36, + "probability": 0.4813 + }, + { + "start": 12521.32, + "end": 12522.9, + "probability": 0.8416 + }, + { + "start": 12535.2, + "end": 12537.02, + "probability": 0.9933 + }, + { + "start": 12537.22, + "end": 12538.92, + "probability": 0.9039 + }, + { + "start": 12539.58, + "end": 12544.74, + "probability": 0.8375 + }, + { + "start": 12544.74, + "end": 12549.86, + "probability": 0.4732 + }, + { + "start": 12549.88, + "end": 12551.12, + "probability": 0.7836 + }, + { + "start": 12551.42, + "end": 12551.74, + "probability": 0.8104 + }, + { + "start": 12562.78, + "end": 12564.04, + "probability": 0.5442 + }, + { + "start": 12564.1, + "end": 12565.39, + "probability": 0.7928 + }, + { + "start": 12565.84, + "end": 12566.6, + "probability": 0.7367 + }, + { + "start": 12566.7, + "end": 12568.0, + "probability": 0.618 + }, + { + "start": 12568.06, + "end": 12568.48, + "probability": 0.5151 + }, + { + "start": 12568.5, + "end": 12569.48, + "probability": 0.9404 + }, + { + "start": 12569.96, + "end": 12573.88, + "probability": 0.9124 + }, + { + "start": 12574.02, + "end": 12574.7, + "probability": 0.7546 + }, + { + "start": 12574.76, + "end": 12575.4, + "probability": 0.9408 + }, + { + "start": 12575.94, + "end": 12578.46, + "probability": 0.9959 + }, + { + "start": 12579.04, + "end": 12582.22, + "probability": 0.7087 + }, + { + "start": 12582.7, + "end": 12585.1, + "probability": 0.9973 + }, + { + "start": 12585.54, + "end": 12588.98, + "probability": 0.981 + }, + { + "start": 12589.04, + "end": 12590.7, + "probability": 0.9853 + }, + { + "start": 12591.12, + "end": 12592.46, + "probability": 0.9794 + }, + { + "start": 12593.5, + "end": 12599.06, + "probability": 0.9907 + }, + { + "start": 12599.66, + "end": 12603.44, + "probability": 0.9912 + }, + { + "start": 12603.86, + "end": 12606.96, + "probability": 0.9802 + }, + { + "start": 12607.02, + "end": 12608.16, + "probability": 0.7631 + }, + { + "start": 12608.48, + "end": 12611.84, + "probability": 0.9531 + }, + { + "start": 12611.94, + "end": 12612.32, + "probability": 0.5312 + }, + { + "start": 12612.36, + "end": 12612.92, + "probability": 0.6369 + }, + { + "start": 12613.46, + "end": 12614.22, + "probability": 0.8649 + }, + { + "start": 12614.3, + "end": 12615.38, + "probability": 0.897 + }, + { + "start": 12615.72, + "end": 12616.22, + "probability": 0.8116 + }, + { + "start": 12616.66, + "end": 12617.36, + "probability": 0.9742 + }, + { + "start": 12617.42, + "end": 12618.04, + "probability": 0.9243 + }, + { + "start": 12618.58, + "end": 12621.51, + "probability": 0.9766 + }, + { + "start": 12621.92, + "end": 12625.76, + "probability": 0.9932 + }, + { + "start": 12625.86, + "end": 12629.8, + "probability": 0.9631 + }, + { + "start": 12629.92, + "end": 12630.9, + "probability": 0.7921 + }, + { + "start": 12631.74, + "end": 12632.84, + "probability": 0.8926 + }, + { + "start": 12633.06, + "end": 12634.4, + "probability": 0.9445 + }, + { + "start": 12634.54, + "end": 12635.88, + "probability": 0.9972 + }, + { + "start": 12636.08, + "end": 12637.0, + "probability": 0.804 + }, + { + "start": 12637.34, + "end": 12638.16, + "probability": 0.7783 + }, + { + "start": 12638.44, + "end": 12643.24, + "probability": 0.9927 + }, + { + "start": 12643.78, + "end": 12644.83, + "probability": 0.6705 + }, + { + "start": 12645.54, + "end": 12649.68, + "probability": 0.9121 + }, + { + "start": 12650.28, + "end": 12651.34, + "probability": 0.7514 + }, + { + "start": 12651.76, + "end": 12652.5, + "probability": 0.685 + }, + { + "start": 12652.92, + "end": 12654.9, + "probability": 0.9288 + }, + { + "start": 12655.28, + "end": 12656.86, + "probability": 0.9507 + }, + { + "start": 12656.98, + "end": 12657.72, + "probability": 0.7337 + }, + { + "start": 12658.0, + "end": 12660.41, + "probability": 0.9956 + }, + { + "start": 12661.0, + "end": 12661.52, + "probability": 0.8348 + }, + { + "start": 12661.62, + "end": 12664.34, + "probability": 0.9523 + }, + { + "start": 12664.74, + "end": 12666.69, + "probability": 0.998 + }, + { + "start": 12667.3, + "end": 12669.12, + "probability": 0.9644 + }, + { + "start": 12669.3, + "end": 12671.37, + "probability": 0.9945 + }, + { + "start": 12672.04, + "end": 12674.23, + "probability": 0.9579 + }, + { + "start": 12674.52, + "end": 12675.28, + "probability": 0.7637 + }, + { + "start": 12675.68, + "end": 12678.94, + "probability": 0.9854 + }, + { + "start": 12679.1, + "end": 12679.66, + "probability": 0.9302 + }, + { + "start": 12680.08, + "end": 12683.64, + "probability": 0.9874 + }, + { + "start": 12683.72, + "end": 12685.46, + "probability": 0.9334 + }, + { + "start": 12685.54, + "end": 12685.84, + "probability": 0.981 + }, + { + "start": 12686.24, + "end": 12687.36, + "probability": 0.9888 + }, + { + "start": 12687.6, + "end": 12688.28, + "probability": 0.6319 + }, + { + "start": 12688.66, + "end": 12689.62, + "probability": 0.7198 + }, + { + "start": 12689.68, + "end": 12690.78, + "probability": 0.9929 + }, + { + "start": 12690.86, + "end": 12691.68, + "probability": 0.9323 + }, + { + "start": 12691.86, + "end": 12693.58, + "probability": 0.9966 + }, + { + "start": 12693.92, + "end": 12694.54, + "probability": 0.9139 + }, + { + "start": 12694.64, + "end": 12695.14, + "probability": 0.9119 + }, + { + "start": 12695.44, + "end": 12697.18, + "probability": 0.9635 + }, + { + "start": 12697.22, + "end": 12699.06, + "probability": 0.9945 + }, + { + "start": 12699.66, + "end": 12701.53, + "probability": 0.9902 + }, + { + "start": 12701.98, + "end": 12704.42, + "probability": 0.939 + }, + { + "start": 12704.9, + "end": 12708.72, + "probability": 0.9937 + }, + { + "start": 12708.86, + "end": 12713.06, + "probability": 0.9953 + }, + { + "start": 12713.2, + "end": 12713.98, + "probability": 0.6438 + }, + { + "start": 12714.32, + "end": 12717.86, + "probability": 0.9862 + }, + { + "start": 12718.06, + "end": 12718.62, + "probability": 0.3588 + }, + { + "start": 12718.96, + "end": 12720.06, + "probability": 0.7542 + }, + { + "start": 12720.16, + "end": 12721.8, + "probability": 0.9629 + }, + { + "start": 12722.56, + "end": 12725.64, + "probability": 0.9726 + }, + { + "start": 12726.12, + "end": 12728.7, + "probability": 0.9491 + }, + { + "start": 12729.6, + "end": 12731.22, + "probability": 0.9883 + }, + { + "start": 12731.38, + "end": 12732.02, + "probability": 0.937 + }, + { + "start": 12733.08, + "end": 12734.4, + "probability": 0.55 + }, + { + "start": 12734.52, + "end": 12735.9, + "probability": 0.8214 + }, + { + "start": 12736.04, + "end": 12738.46, + "probability": 0.9888 + }, + { + "start": 12738.76, + "end": 12739.64, + "probability": 0.9626 + }, + { + "start": 12739.76, + "end": 12743.54, + "probability": 0.9968 + }, + { + "start": 12744.06, + "end": 12745.96, + "probability": 0.7791 + }, + { + "start": 12746.08, + "end": 12746.72, + "probability": 0.9564 + }, + { + "start": 12747.16, + "end": 12748.66, + "probability": 0.6585 + }, + { + "start": 12749.12, + "end": 12751.96, + "probability": 0.8648 + }, + { + "start": 12752.2, + "end": 12752.56, + "probability": 0.8485 + }, + { + "start": 12753.44, + "end": 12753.98, + "probability": 0.7577 + }, + { + "start": 12754.0, + "end": 12755.63, + "probability": 0.831 + }, + { + "start": 12758.54, + "end": 12759.52, + "probability": 0.8441 + }, + { + "start": 12760.34, + "end": 12761.22, + "probability": 0.2123 + }, + { + "start": 12762.58, + "end": 12766.42, + "probability": 0.019 + }, + { + "start": 12769.6, + "end": 12770.64, + "probability": 0.0112 + }, + { + "start": 12770.64, + "end": 12775.68, + "probability": 0.0518 + }, + { + "start": 12776.08, + "end": 12776.96, + "probability": 0.0327 + }, + { + "start": 12776.98, + "end": 12777.38, + "probability": 0.0309 + }, + { + "start": 12778.34, + "end": 12778.96, + "probability": 0.3109 + }, + { + "start": 12778.96, + "end": 12780.1, + "probability": 0.3293 + }, + { + "start": 12780.18, + "end": 12780.44, + "probability": 0.9164 + }, + { + "start": 12780.48, + "end": 12784.56, + "probability": 0.918 + }, + { + "start": 12790.58, + "end": 12792.38, + "probability": 0.5202 + }, + { + "start": 12792.38, + "end": 12793.6, + "probability": 0.7304 + }, + { + "start": 12794.58, + "end": 12796.68, + "probability": 0.922 + }, + { + "start": 12796.94, + "end": 12804.62, + "probability": 0.4601 + }, + { + "start": 12805.54, + "end": 12808.48, + "probability": 0.9727 + }, + { + "start": 12813.24, + "end": 12814.02, + "probability": 0.6781 + }, + { + "start": 12814.84, + "end": 12816.18, + "probability": 0.7041 + }, + { + "start": 12818.38, + "end": 12820.26, + "probability": 0.7451 + }, + { + "start": 12822.44, + "end": 12825.12, + "probability": 0.6645 + }, + { + "start": 12839.54, + "end": 12840.62, + "probability": 0.7126 + }, + { + "start": 12841.22, + "end": 12841.98, + "probability": 0.7425 + }, + { + "start": 12843.08, + "end": 12845.3, + "probability": 0.9141 + }, + { + "start": 12846.62, + "end": 12849.86, + "probability": 0.9146 + }, + { + "start": 12850.5, + "end": 12853.5, + "probability": 0.953 + }, + { + "start": 12853.94, + "end": 12854.84, + "probability": 0.8204 + }, + { + "start": 12855.68, + "end": 12856.72, + "probability": 0.8411 + }, + { + "start": 12858.4, + "end": 12860.68, + "probability": 0.7957 + }, + { + "start": 12862.91, + "end": 12866.06, + "probability": 0.947 + }, + { + "start": 12867.94, + "end": 12870.38, + "probability": 0.99 + }, + { + "start": 12873.5, + "end": 12874.42, + "probability": 0.9933 + }, + { + "start": 12875.02, + "end": 12877.2, + "probability": 0.958 + }, + { + "start": 12878.2, + "end": 12880.25, + "probability": 0.7993 + }, + { + "start": 12880.84, + "end": 12884.22, + "probability": 0.8931 + }, + { + "start": 12885.64, + "end": 12886.6, + "probability": 0.9058 + }, + { + "start": 12887.88, + "end": 12894.28, + "probability": 0.9895 + }, + { + "start": 12896.14, + "end": 12898.12, + "probability": 0.947 + }, + { + "start": 12898.92, + "end": 12901.08, + "probability": 0.9503 + }, + { + "start": 12901.74, + "end": 12903.52, + "probability": 0.903 + }, + { + "start": 12904.42, + "end": 12908.56, + "probability": 0.9447 + }, + { + "start": 12909.1, + "end": 12911.28, + "probability": 0.9707 + }, + { + "start": 12914.94, + "end": 12920.72, + "probability": 0.9243 + }, + { + "start": 12921.8, + "end": 12925.62, + "probability": 0.7477 + }, + { + "start": 12926.5, + "end": 12927.74, + "probability": 0.855 + }, + { + "start": 12928.36, + "end": 12932.4, + "probability": 0.847 + }, + { + "start": 12933.0, + "end": 12935.36, + "probability": 0.9775 + }, + { + "start": 12936.2, + "end": 12937.28, + "probability": 0.9849 + }, + { + "start": 12939.84, + "end": 12943.04, + "probability": 0.9954 + }, + { + "start": 12943.62, + "end": 12944.4, + "probability": 0.6933 + }, + { + "start": 12945.72, + "end": 12947.66, + "probability": 0.9908 + }, + { + "start": 12947.98, + "end": 12950.6, + "probability": 0.9111 + }, + { + "start": 12950.7, + "end": 12951.3, + "probability": 0.9138 + }, + { + "start": 12951.62, + "end": 12952.38, + "probability": 0.873 + }, + { + "start": 12953.06, + "end": 12956.02, + "probability": 0.7998 + }, + { + "start": 12956.24, + "end": 12958.72, + "probability": 0.9947 + }, + { + "start": 12965.82, + "end": 12971.0, + "probability": 0.9986 + }, + { + "start": 12971.8, + "end": 12973.36, + "probability": 0.9404 + }, + { + "start": 12974.4, + "end": 12975.54, + "probability": 0.9619 + }, + { + "start": 12975.62, + "end": 12977.82, + "probability": 0.9951 + }, + { + "start": 12978.44, + "end": 12980.62, + "probability": 0.889 + }, + { + "start": 12981.24, + "end": 12982.42, + "probability": 0.9993 + }, + { + "start": 12984.2, + "end": 12985.62, + "probability": 0.9915 + }, + { + "start": 12986.68, + "end": 12988.2, + "probability": 0.9092 + }, + { + "start": 12988.42, + "end": 12989.08, + "probability": 0.921 + }, + { + "start": 12991.28, + "end": 12995.72, + "probability": 0.9922 + }, + { + "start": 12996.64, + "end": 12998.98, + "probability": 0.9792 + }, + { + "start": 12999.5, + "end": 13001.6, + "probability": 0.9929 + }, + { + "start": 13001.84, + "end": 13002.58, + "probability": 0.737 + }, + { + "start": 13002.84, + "end": 13006.24, + "probability": 0.9753 + }, + { + "start": 13008.28, + "end": 13008.82, + "probability": 0.7668 + }, + { + "start": 13009.66, + "end": 13010.3, + "probability": 0.9733 + }, + { + "start": 13013.0, + "end": 13017.22, + "probability": 0.8962 + }, + { + "start": 13018.4, + "end": 13019.64, + "probability": 0.9749 + }, + { + "start": 13020.42, + "end": 13022.14, + "probability": 0.9712 + }, + { + "start": 13022.9, + "end": 13026.7, + "probability": 0.9987 + }, + { + "start": 13027.0, + "end": 13027.68, + "probability": 0.5675 + }, + { + "start": 13028.12, + "end": 13029.46, + "probability": 0.9983 + }, + { + "start": 13031.0, + "end": 13033.74, + "probability": 0.9268 + }, + { + "start": 13034.32, + "end": 13038.14, + "probability": 0.9821 + }, + { + "start": 13038.6, + "end": 13039.36, + "probability": 0.9845 + }, + { + "start": 13040.5, + "end": 13045.14, + "probability": 0.9967 + }, + { + "start": 13045.38, + "end": 13046.2, + "probability": 0.8044 + }, + { + "start": 13046.76, + "end": 13047.9, + "probability": 0.9828 + }, + { + "start": 13048.24, + "end": 13048.5, + "probability": 0.5773 + }, + { + "start": 13049.86, + "end": 13052.26, + "probability": 0.766 + }, + { + "start": 13052.36, + "end": 13054.26, + "probability": 0.9556 + }, + { + "start": 13068.72, + "end": 13070.28, + "probability": 0.6906 + }, + { + "start": 13076.94, + "end": 13077.58, + "probability": 0.3674 + }, + { + "start": 13078.24, + "end": 13079.54, + "probability": 0.9915 + }, + { + "start": 13083.08, + "end": 13083.96, + "probability": 0.9205 + }, + { + "start": 13085.26, + "end": 13085.88, + "probability": 0.8906 + }, + { + "start": 13086.04, + "end": 13087.16, + "probability": 0.9431 + }, + { + "start": 13087.24, + "end": 13088.24, + "probability": 0.9984 + }, + { + "start": 13089.04, + "end": 13090.7, + "probability": 0.9644 + }, + { + "start": 13091.43, + "end": 13093.8, + "probability": 0.73 + }, + { + "start": 13094.56, + "end": 13096.32, + "probability": 0.8438 + }, + { + "start": 13096.44, + "end": 13097.71, + "probability": 0.9419 + }, + { + "start": 13098.18, + "end": 13101.16, + "probability": 0.9908 + }, + { + "start": 13101.96, + "end": 13103.94, + "probability": 0.9976 + }, + { + "start": 13104.26, + "end": 13105.74, + "probability": 0.8974 + }, + { + "start": 13106.0, + "end": 13107.38, + "probability": 0.875 + }, + { + "start": 13107.5, + "end": 13111.98, + "probability": 0.909 + }, + { + "start": 13113.7, + "end": 13113.7, + "probability": 0.1678 + }, + { + "start": 13113.7, + "end": 13114.96, + "probability": 0.9389 + }, + { + "start": 13114.96, + "end": 13116.7, + "probability": 0.8821 + }, + { + "start": 13117.22, + "end": 13120.64, + "probability": 0.996 + }, + { + "start": 13121.3, + "end": 13122.58, + "probability": 0.9392 + }, + { + "start": 13122.9, + "end": 13125.2, + "probability": 0.9836 + }, + { + "start": 13125.46, + "end": 13126.14, + "probability": 0.9804 + }, + { + "start": 13126.5, + "end": 13127.3, + "probability": 0.7272 + }, + { + "start": 13127.66, + "end": 13128.4, + "probability": 0.5537 + }, + { + "start": 13129.46, + "end": 13129.88, + "probability": 0.9104 + }, + { + "start": 13130.3, + "end": 13133.68, + "probability": 0.9908 + }, + { + "start": 13134.04, + "end": 13134.88, + "probability": 0.9258 + }, + { + "start": 13135.14, + "end": 13137.66, + "probability": 0.9673 + }, + { + "start": 13138.44, + "end": 13138.87, + "probability": 0.9797 + }, + { + "start": 13140.98, + "end": 13143.17, + "probability": 0.9329 + }, + { + "start": 13144.24, + "end": 13144.6, + "probability": 0.7585 + }, + { + "start": 13144.94, + "end": 13147.58, + "probability": 0.9849 + }, + { + "start": 13147.94, + "end": 13149.06, + "probability": 0.6487 + }, + { + "start": 13149.54, + "end": 13154.0, + "probability": 0.9547 + }, + { + "start": 13155.24, + "end": 13157.64, + "probability": 0.8292 + }, + { + "start": 13158.08, + "end": 13159.6, + "probability": 0.8369 + }, + { + "start": 13160.82, + "end": 13164.4, + "probability": 0.9521 + }, + { + "start": 13164.68, + "end": 13167.82, + "probability": 0.9827 + }, + { + "start": 13168.66, + "end": 13168.98, + "probability": 0.6438 + }, + { + "start": 13169.68, + "end": 13173.5, + "probability": 0.9919 + }, + { + "start": 13173.94, + "end": 13175.41, + "probability": 0.4316 + }, + { + "start": 13176.82, + "end": 13180.04, + "probability": 0.9935 + }, + { + "start": 13180.82, + "end": 13185.98, + "probability": 0.821 + }, + { + "start": 13186.54, + "end": 13191.68, + "probability": 0.9458 + }, + { + "start": 13192.1, + "end": 13193.88, + "probability": 0.9775 + }, + { + "start": 13194.9, + "end": 13195.72, + "probability": 0.7388 + }, + { + "start": 13196.36, + "end": 13198.42, + "probability": 0.7244 + }, + { + "start": 13199.14, + "end": 13205.04, + "probability": 0.5667 + }, + { + "start": 13206.42, + "end": 13210.76, + "probability": 0.9404 + }, + { + "start": 13211.38, + "end": 13212.46, + "probability": 0.9767 + }, + { + "start": 13213.76, + "end": 13216.64, + "probability": 0.8481 + }, + { + "start": 13216.68, + "end": 13219.66, + "probability": 0.986 + }, + { + "start": 13221.18, + "end": 13222.66, + "probability": 0.9924 + }, + { + "start": 13223.02, + "end": 13223.24, + "probability": 0.3128 + }, + { + "start": 13223.24, + "end": 13223.3, + "probability": 0.049 + }, + { + "start": 13223.82, + "end": 13223.82, + "probability": 0.1815 + }, + { + "start": 13224.9, + "end": 13227.92, + "probability": 0.5111 + }, + { + "start": 13228.82, + "end": 13230.9, + "probability": 0.9866 + }, + { + "start": 13230.9, + "end": 13233.9, + "probability": 0.9531 + }, + { + "start": 13234.78, + "end": 13236.24, + "probability": 0.2771 + }, + { + "start": 13236.68, + "end": 13238.66, + "probability": 0.8285 + }, + { + "start": 13239.28, + "end": 13242.66, + "probability": 0.9784 + }, + { + "start": 13244.24, + "end": 13245.3, + "probability": 0.8464 + }, + { + "start": 13245.54, + "end": 13246.52, + "probability": 0.9497 + }, + { + "start": 13247.34, + "end": 13249.5, + "probability": 0.9964 + }, + { + "start": 13250.16, + "end": 13251.76, + "probability": 0.9962 + }, + { + "start": 13254.12, + "end": 13254.46, + "probability": 0.8909 + }, + { + "start": 13254.52, + "end": 13258.56, + "probability": 0.9357 + }, + { + "start": 13258.64, + "end": 13259.92, + "probability": 0.8393 + }, + { + "start": 13260.34, + "end": 13262.68, + "probability": 0.996 + }, + { + "start": 13263.22, + "end": 13264.22, + "probability": 0.7329 + }, + { + "start": 13264.64, + "end": 13266.06, + "probability": 0.9668 + }, + { + "start": 13266.16, + "end": 13267.44, + "probability": 0.9783 + }, + { + "start": 13267.84, + "end": 13268.78, + "probability": 0.8457 + }, + { + "start": 13268.82, + "end": 13269.22, + "probability": 0.6934 + }, + { + "start": 13269.46, + "end": 13272.12, + "probability": 0.9921 + }, + { + "start": 13272.58, + "end": 13274.98, + "probability": 0.844 + }, + { + "start": 13275.14, + "end": 13275.44, + "probability": 0.5524 + }, + { + "start": 13275.58, + "end": 13276.43, + "probability": 0.9976 + }, + { + "start": 13277.44, + "end": 13281.32, + "probability": 0.9388 + }, + { + "start": 13285.18, + "end": 13286.1, + "probability": 0.4662 + }, + { + "start": 13304.84, + "end": 13304.84, + "probability": 0.0731 + }, + { + "start": 13304.84, + "end": 13304.84, + "probability": 0.0461 + }, + { + "start": 13304.84, + "end": 13304.84, + "probability": 0.0521 + }, + { + "start": 13304.84, + "end": 13309.24, + "probability": 0.4888 + }, + { + "start": 13309.4, + "end": 13311.57, + "probability": 0.6786 + }, + { + "start": 13312.4, + "end": 13313.58, + "probability": 0.0637 + }, + { + "start": 13313.58, + "end": 13313.58, + "probability": 0.2169 + }, + { + "start": 13313.58, + "end": 13316.33, + "probability": 0.3358 + }, + { + "start": 13321.0, + "end": 13322.18, + "probability": 0.5553 + }, + { + "start": 13340.06, + "end": 13343.64, + "probability": 0.1855 + }, + { + "start": 13344.39, + "end": 13345.92, + "probability": 0.042 + }, + { + "start": 13345.92, + "end": 13347.6, + "probability": 0.0668 + }, + { + "start": 13347.6, + "end": 13347.6, + "probability": 0.0174 + }, + { + "start": 13348.12, + "end": 13348.34, + "probability": 0.1728 + }, + { + "start": 13352.06, + "end": 13352.9, + "probability": 0.2807 + }, + { + "start": 13353.76, + "end": 13354.74, + "probability": 0.489 + }, + { + "start": 13355.08, + "end": 13356.48, + "probability": 0.6144 + }, + { + "start": 13357.2, + "end": 13358.14, + "probability": 0.0188 + }, + { + "start": 13358.14, + "end": 13358.14, + "probability": 0.0139 + }, + { + "start": 13358.14, + "end": 13358.14, + "probability": 0.3276 + }, + { + "start": 13358.14, + "end": 13358.14, + "probability": 0.1814 + }, + { + "start": 13358.14, + "end": 13358.14, + "probability": 0.0395 + }, + { + "start": 13358.14, + "end": 13358.74, + "probability": 0.2065 + }, + { + "start": 13359.54, + "end": 13362.06, + "probability": 0.7015 + }, + { + "start": 13362.66, + "end": 13363.1, + "probability": 0.8025 + }, + { + "start": 13366.38, + "end": 13366.68, + "probability": 0.3352 + }, + { + "start": 13366.68, + "end": 13366.68, + "probability": 0.1355 + }, + { + "start": 13366.68, + "end": 13367.28, + "probability": 0.6937 + }, + { + "start": 13367.98, + "end": 13368.98, + "probability": 0.8132 + }, + { + "start": 13369.91, + "end": 13370.54, + "probability": 0.1066 + }, + { + "start": 13371.22, + "end": 13372.94, + "probability": 0.833 + }, + { + "start": 13373.04, + "end": 13374.66, + "probability": 0.9382 + }, + { + "start": 13374.8, + "end": 13375.4, + "probability": 0.6661 + }, + { + "start": 13375.88, + "end": 13384.94, + "probability": 0.9825 + }, + { + "start": 13385.64, + "end": 13386.18, + "probability": 0.1667 + }, + { + "start": 13386.78, + "end": 13389.88, + "probability": 0.9225 + }, + { + "start": 13390.0, + "end": 13390.98, + "probability": 0.7717 + }, + { + "start": 13391.7, + "end": 13392.84, + "probability": 0.6135 + }, + { + "start": 13393.72, + "end": 13394.4, + "probability": 0.7511 + }, + { + "start": 13396.48, + "end": 13399.52, + "probability": 0.9116 + }, + { + "start": 13400.33, + "end": 13400.4, + "probability": 0.0407 + }, + { + "start": 13400.4, + "end": 13401.3, + "probability": 0.8289 + }, + { + "start": 13401.4, + "end": 13406.86, + "probability": 0.9939 + }, + { + "start": 13407.42, + "end": 13411.2, + "probability": 0.4231 + }, + { + "start": 13411.88, + "end": 13412.32, + "probability": 0.0227 + }, + { + "start": 13412.86, + "end": 13413.94, + "probability": 0.6172 + }, + { + "start": 13413.94, + "end": 13415.68, + "probability": 0.9179 + }, + { + "start": 13415.72, + "end": 13417.06, + "probability": 0.8699 + }, + { + "start": 13417.34, + "end": 13419.48, + "probability": 0.6 + }, + { + "start": 13419.56, + "end": 13420.24, + "probability": 0.1894 + }, + { + "start": 13420.24, + "end": 13420.24, + "probability": 0.0102 + }, + { + "start": 13420.24, + "end": 13420.62, + "probability": 0.1879 + }, + { + "start": 13420.88, + "end": 13422.06, + "probability": 0.6699 + }, + { + "start": 13422.3, + "end": 13422.34, + "probability": 0.3165 + }, + { + "start": 13422.34, + "end": 13427.94, + "probability": 0.9873 + }, + { + "start": 13428.6, + "end": 13435.06, + "probability": 0.9978 + }, + { + "start": 13435.24, + "end": 13436.32, + "probability": 0.7104 + }, + { + "start": 13436.48, + "end": 13440.96, + "probability": 0.9889 + }, + { + "start": 13441.46, + "end": 13445.72, + "probability": 0.9971 + }, + { + "start": 13445.9, + "end": 13446.1, + "probability": 0.6751 + }, + { + "start": 13446.5, + "end": 13447.02, + "probability": 0.6524 + }, + { + "start": 13447.22, + "end": 13449.7, + "probability": 0.9896 + }, + { + "start": 13449.82, + "end": 13450.86, + "probability": 0.8195 + }, + { + "start": 13451.78, + "end": 13452.74, + "probability": 0.6901 + }, + { + "start": 13452.84, + "end": 13454.16, + "probability": 0.1278 + }, + { + "start": 13454.64, + "end": 13456.72, + "probability": 0.8979 + }, + { + "start": 13457.44, + "end": 13458.52, + "probability": 0.8994 + }, + { + "start": 13461.1, + "end": 13462.3, + "probability": 0.9594 + }, + { + "start": 13462.3, + "end": 13463.18, + "probability": 0.8505 + }, + { + "start": 13468.1, + "end": 13468.9, + "probability": 0.6724 + }, + { + "start": 13469.06, + "end": 13470.2, + "probability": 0.9597 + }, + { + "start": 13473.56, + "end": 13475.4, + "probability": 0.8196 + }, + { + "start": 13478.72, + "end": 13480.37, + "probability": 0.7535 + }, + { + "start": 13482.26, + "end": 13484.78, + "probability": 0.7464 + }, + { + "start": 13485.4, + "end": 13486.62, + "probability": 0.96 + }, + { + "start": 13486.74, + "end": 13488.06, + "probability": 0.7953 + }, + { + "start": 13488.6, + "end": 13491.82, + "probability": 0.9839 + }, + { + "start": 13492.44, + "end": 13493.44, + "probability": 0.9561 + }, + { + "start": 13493.7, + "end": 13494.24, + "probability": 0.4085 + }, + { + "start": 13494.86, + "end": 13495.94, + "probability": 0.9785 + }, + { + "start": 13496.68, + "end": 13499.38, + "probability": 0.998 + }, + { + "start": 13500.72, + "end": 13502.38, + "probability": 0.8389 + }, + { + "start": 13502.68, + "end": 13504.06, + "probability": 0.9954 + }, + { + "start": 13505.22, + "end": 13508.22, + "probability": 0.9713 + }, + { + "start": 13508.8, + "end": 13509.76, + "probability": 0.6286 + }, + { + "start": 13509.86, + "end": 13512.38, + "probability": 0.9346 + }, + { + "start": 13512.98, + "end": 13513.82, + "probability": 0.9475 + }, + { + "start": 13514.78, + "end": 13518.66, + "probability": 0.8662 + }, + { + "start": 13518.78, + "end": 13519.92, + "probability": 0.9536 + }, + { + "start": 13520.6, + "end": 13521.5, + "probability": 0.9922 + }, + { + "start": 13521.72, + "end": 13522.04, + "probability": 0.9733 + }, + { + "start": 13523.04, + "end": 13523.54, + "probability": 0.9449 + }, + { + "start": 13523.84, + "end": 13524.72, + "probability": 0.6753 + }, + { + "start": 13526.7, + "end": 13527.48, + "probability": 0.9308 + }, + { + "start": 13527.76, + "end": 13528.3, + "probability": 0.6212 + }, + { + "start": 13528.73, + "end": 13530.2, + "probability": 0.945 + }, + { + "start": 13530.32, + "end": 13530.99, + "probability": 0.964 + }, + { + "start": 13531.98, + "end": 13532.86, + "probability": 0.3592 + }, + { + "start": 13533.32, + "end": 13534.82, + "probability": 0.9893 + }, + { + "start": 13535.04, + "end": 13538.62, + "probability": 0.959 + }, + { + "start": 13539.2, + "end": 13540.84, + "probability": 0.7419 + }, + { + "start": 13542.96, + "end": 13543.57, + "probability": 0.1552 + }, + { + "start": 13544.66, + "end": 13546.26, + "probability": 0.908 + }, + { + "start": 13546.48, + "end": 13547.0, + "probability": 0.7285 + }, + { + "start": 13547.06, + "end": 13548.44, + "probability": 0.9376 + }, + { + "start": 13548.8, + "end": 13549.72, + "probability": 0.9403 + }, + { + "start": 13550.72, + "end": 13551.68, + "probability": 0.6201 + }, + { + "start": 13551.76, + "end": 13552.44, + "probability": 0.9421 + }, + { + "start": 13552.5, + "end": 13553.4, + "probability": 0.5015 + }, + { + "start": 13553.66, + "end": 13557.54, + "probability": 0.9975 + }, + { + "start": 13558.34, + "end": 13558.82, + "probability": 0.8904 + }, + { + "start": 13559.12, + "end": 13562.3, + "probability": 0.9158 + }, + { + "start": 13562.68, + "end": 13563.36, + "probability": 0.8447 + }, + { + "start": 13564.32, + "end": 13567.0, + "probability": 0.9761 + }, + { + "start": 13567.56, + "end": 13570.34, + "probability": 0.9156 + }, + { + "start": 13571.16, + "end": 13573.66, + "probability": 0.9293 + }, + { + "start": 13574.78, + "end": 13576.98, + "probability": 0.9949 + }, + { + "start": 13577.14, + "end": 13577.73, + "probability": 0.7603 + }, + { + "start": 13578.9, + "end": 13580.98, + "probability": 0.9792 + }, + { + "start": 13581.86, + "end": 13585.2, + "probability": 0.9302 + }, + { + "start": 13585.2, + "end": 13585.98, + "probability": 0.5001 + }, + { + "start": 13586.56, + "end": 13589.68, + "probability": 0.8957 + }, + { + "start": 13590.22, + "end": 13591.62, + "probability": 0.6115 + }, + { + "start": 13592.22, + "end": 13595.87, + "probability": 0.6118 + }, + { + "start": 13596.62, + "end": 13598.28, + "probability": 0.9792 + }, + { + "start": 13599.48, + "end": 13604.24, + "probability": 0.6453 + }, + { + "start": 13604.36, + "end": 13604.71, + "probability": 0.9233 + }, + { + "start": 13606.6, + "end": 13608.54, + "probability": 0.9424 + }, + { + "start": 13608.64, + "end": 13609.08, + "probability": 0.88 + }, + { + "start": 13609.14, + "end": 13610.38, + "probability": 0.9185 + }, + { + "start": 13610.7, + "end": 13611.5, + "probability": 0.6318 + }, + { + "start": 13611.56, + "end": 13612.14, + "probability": 0.9196 + }, + { + "start": 13612.52, + "end": 13614.01, + "probability": 0.8673 + }, + { + "start": 13614.68, + "end": 13615.7, + "probability": 0.9316 + }, + { + "start": 13616.48, + "end": 13617.84, + "probability": 0.9517 + }, + { + "start": 13618.78, + "end": 13619.64, + "probability": 0.5193 + }, + { + "start": 13620.36, + "end": 13623.5, + "probability": 0.9748 + }, + { + "start": 13624.0, + "end": 13626.12, + "probability": 0.9671 + }, + { + "start": 13627.44, + "end": 13631.8, + "probability": 0.9636 + }, + { + "start": 13632.98, + "end": 13633.72, + "probability": 0.7981 + }, + { + "start": 13633.92, + "end": 13635.66, + "probability": 0.9945 + }, + { + "start": 13636.2, + "end": 13636.96, + "probability": 0.9844 + }, + { + "start": 13637.62, + "end": 13641.76, + "probability": 0.9447 + }, + { + "start": 13642.92, + "end": 13646.72, + "probability": 0.9965 + }, + { + "start": 13646.72, + "end": 13651.24, + "probability": 0.9918 + }, + { + "start": 13652.48, + "end": 13656.56, + "probability": 0.9966 + }, + { + "start": 13657.18, + "end": 13660.4, + "probability": 0.9009 + }, + { + "start": 13661.28, + "end": 13666.24, + "probability": 0.9685 + }, + { + "start": 13666.24, + "end": 13670.72, + "probability": 0.9972 + }, + { + "start": 13678.98, + "end": 13679.46, + "probability": 0.6056 + }, + { + "start": 13680.1, + "end": 13681.5, + "probability": 0.9737 + }, + { + "start": 13681.86, + "end": 13684.21, + "probability": 0.9795 + }, + { + "start": 13685.1, + "end": 13688.92, + "probability": 0.735 + }, + { + "start": 13690.0, + "end": 13692.3, + "probability": 0.6221 + }, + { + "start": 13692.94, + "end": 13693.7, + "probability": 0.8856 + }, + { + "start": 13696.8, + "end": 13701.22, + "probability": 0.6625 + }, + { + "start": 13702.12, + "end": 13703.46, + "probability": 0.9481 + }, + { + "start": 13703.68, + "end": 13705.22, + "probability": 0.9854 + }, + { + "start": 13705.24, + "end": 13707.1, + "probability": 0.7485 + }, + { + "start": 13707.8, + "end": 13708.68, + "probability": 0.8587 + }, + { + "start": 13709.22, + "end": 13712.1, + "probability": 0.9883 + }, + { + "start": 13712.66, + "end": 13714.24, + "probability": 0.8706 + }, + { + "start": 13715.56, + "end": 13719.94, + "probability": 0.88 + }, + { + "start": 13720.94, + "end": 13721.46, + "probability": 0.845 + }, + { + "start": 13721.66, + "end": 13721.98, + "probability": 0.7874 + }, + { + "start": 13722.02, + "end": 13724.46, + "probability": 0.9604 + }, + { + "start": 13724.74, + "end": 13725.52, + "probability": 0.9626 + }, + { + "start": 13726.26, + "end": 13727.82, + "probability": 0.9875 + }, + { + "start": 13728.36, + "end": 13729.44, + "probability": 0.9617 + }, + { + "start": 13729.78, + "end": 13731.0, + "probability": 0.9326 + }, + { + "start": 13731.66, + "end": 13733.24, + "probability": 0.8354 + }, + { + "start": 13733.3, + "end": 13734.54, + "probability": 0.8583 + }, + { + "start": 13735.02, + "end": 13735.34, + "probability": 0.8562 + }, + { + "start": 13735.48, + "end": 13736.8, + "probability": 0.929 + }, + { + "start": 13737.74, + "end": 13738.52, + "probability": 0.7787 + }, + { + "start": 13739.06, + "end": 13740.34, + "probability": 0.9915 + }, + { + "start": 13741.08, + "end": 13745.94, + "probability": 0.8305 + }, + { + "start": 13746.76, + "end": 13748.7, + "probability": 0.9922 + }, + { + "start": 13749.46, + "end": 13750.82, + "probability": 0.8096 + }, + { + "start": 13751.52, + "end": 13752.09, + "probability": 0.9692 + }, + { + "start": 13752.76, + "end": 13755.7, + "probability": 0.9312 + }, + { + "start": 13756.98, + "end": 13757.72, + "probability": 0.915 + }, + { + "start": 13758.18, + "end": 13760.78, + "probability": 0.9238 + }, + { + "start": 13760.86, + "end": 13762.04, + "probability": 0.9367 + }, + { + "start": 13762.98, + "end": 13768.24, + "probability": 0.9968 + }, + { + "start": 13768.48, + "end": 13772.54, + "probability": 0.9732 + }, + { + "start": 13772.76, + "end": 13774.02, + "probability": 0.9689 + }, + { + "start": 13774.02, + "end": 13774.02, + "probability": 0.0061 + }, + { + "start": 13775.72, + "end": 13778.3, + "probability": 0.9609 + }, + { + "start": 13781.78, + "end": 13785.72, + "probability": 0.9966 + }, + { + "start": 13786.32, + "end": 13789.24, + "probability": 0.7416 + }, + { + "start": 13790.64, + "end": 13793.36, + "probability": 0.9971 + }, + { + "start": 13793.92, + "end": 13794.96, + "probability": 0.954 + }, + { + "start": 13795.76, + "end": 13797.6, + "probability": 0.8485 + }, + { + "start": 13799.0, + "end": 13804.96, + "probability": 0.7043 + }, + { + "start": 13806.28, + "end": 13810.9, + "probability": 0.981 + }, + { + "start": 13811.18, + "end": 13812.34, + "probability": 0.8278 + }, + { + "start": 13813.02, + "end": 13817.4, + "probability": 0.903 + }, + { + "start": 13817.96, + "end": 13819.72, + "probability": 0.9946 + }, + { + "start": 13820.72, + "end": 13822.44, + "probability": 0.8815 + }, + { + "start": 13822.58, + "end": 13823.21, + "probability": 0.9753 + }, + { + "start": 13823.84, + "end": 13827.48, + "probability": 0.9043 + }, + { + "start": 13828.92, + "end": 13830.12, + "probability": 0.8197 + }, + { + "start": 13831.66, + "end": 13833.82, + "probability": 0.8441 + }, + { + "start": 13834.1, + "end": 13836.62, + "probability": 0.9477 + }, + { + "start": 13836.74, + "end": 13837.86, + "probability": 0.8452 + }, + { + "start": 13838.3, + "end": 13840.42, + "probability": 0.9901 + }, + { + "start": 13840.84, + "end": 13841.24, + "probability": 0.5035 + }, + { + "start": 13841.68, + "end": 13842.38, + "probability": 0.6567 + }, + { + "start": 13843.1, + "end": 13845.68, + "probability": 0.984 + }, + { + "start": 13846.2, + "end": 13847.92, + "probability": 0.8313 + }, + { + "start": 13848.04, + "end": 13850.14, + "probability": 0.8688 + }, + { + "start": 13850.2, + "end": 13851.72, + "probability": 0.9814 + }, + { + "start": 13852.24, + "end": 13853.82, + "probability": 0.541 + }, + { + "start": 13854.58, + "end": 13856.8, + "probability": 0.8726 + }, + { + "start": 13856.9, + "end": 13859.38, + "probability": 0.8767 + }, + { + "start": 13860.14, + "end": 13863.16, + "probability": 0.9896 + }, + { + "start": 13863.7, + "end": 13865.88, + "probability": 0.8953 + }, + { + "start": 13866.5, + "end": 13867.78, + "probability": 0.7983 + }, + { + "start": 13868.3, + "end": 13869.96, + "probability": 0.7521 + }, + { + "start": 13870.1, + "end": 13871.22, + "probability": 0.9585 + }, + { + "start": 13871.42, + "end": 13872.26, + "probability": 0.9932 + }, + { + "start": 13873.52, + "end": 13874.84, + "probability": 0.9886 + }, + { + "start": 13875.54, + "end": 13879.6, + "probability": 0.8304 + }, + { + "start": 13881.06, + "end": 13883.03, + "probability": 0.8322 + }, + { + "start": 13884.52, + "end": 13886.7, + "probability": 0.8563 + }, + { + "start": 13887.4, + "end": 13888.82, + "probability": 0.7877 + }, + { + "start": 13889.26, + "end": 13891.74, + "probability": 0.8398 + }, + { + "start": 13892.76, + "end": 13896.8, + "probability": 0.8808 + }, + { + "start": 13897.16, + "end": 13898.02, + "probability": 0.885 + }, + { + "start": 13898.06, + "end": 13898.72, + "probability": 0.8751 + }, + { + "start": 13899.38, + "end": 13900.8, + "probability": 0.9091 + }, + { + "start": 13901.4, + "end": 13905.78, + "probability": 0.9056 + }, + { + "start": 13906.48, + "end": 13908.68, + "probability": 0.8713 + }, + { + "start": 13909.72, + "end": 13910.82, + "probability": 0.9395 + }, + { + "start": 13912.3, + "end": 13912.8, + "probability": 0.6036 + }, + { + "start": 13912.92, + "end": 13913.7, + "probability": 0.9824 + }, + { + "start": 13915.32, + "end": 13916.9, + "probability": 0.3813 + }, + { + "start": 13917.9, + "end": 13923.14, + "probability": 0.6794 + }, + { + "start": 13923.44, + "end": 13926.0, + "probability": 0.6361 + }, + { + "start": 13926.04, + "end": 13926.5, + "probability": 0.7034 + }, + { + "start": 13926.74, + "end": 13928.92, + "probability": 0.9324 + }, + { + "start": 13928.98, + "end": 13930.58, + "probability": 0.8762 + }, + { + "start": 13931.0, + "end": 13932.4, + "probability": 0.7258 + }, + { + "start": 13932.4, + "end": 13933.58, + "probability": 0.3517 + }, + { + "start": 13934.52, + "end": 13940.22, + "probability": 0.9254 + }, + { + "start": 13940.22, + "end": 13941.3, + "probability": 0.5393 + }, + { + "start": 13942.16, + "end": 13943.08, + "probability": 0.7552 + }, + { + "start": 13943.74, + "end": 13945.36, + "probability": 0.4609 + }, + { + "start": 13945.84, + "end": 13949.22, + "probability": 0.9747 + }, + { + "start": 13949.34, + "end": 13950.94, + "probability": 0.9562 + }, + { + "start": 13950.96, + "end": 13953.68, + "probability": 0.7601 + }, + { + "start": 13953.76, + "end": 13955.66, + "probability": 0.8946 + }, + { + "start": 13956.18, + "end": 13959.41, + "probability": 0.5252 + }, + { + "start": 13959.64, + "end": 13961.58, + "probability": 0.3468 + }, + { + "start": 13964.28, + "end": 13969.06, + "probability": 0.6985 + }, + { + "start": 13969.92, + "end": 13971.31, + "probability": 0.1944 + }, + { + "start": 13973.0, + "end": 13973.92, + "probability": 0.5044 + }, + { + "start": 13973.94, + "end": 13977.82, + "probability": 0.9211 + }, + { + "start": 13977.9, + "end": 13978.36, + "probability": 0.8058 + }, + { + "start": 13978.48, + "end": 13978.8, + "probability": 0.84 + }, + { + "start": 13980.48, + "end": 13981.18, + "probability": 0.1236 + }, + { + "start": 13981.9, + "end": 13985.16, + "probability": 0.6936 + }, + { + "start": 13985.24, + "end": 13987.04, + "probability": 0.9692 + }, + { + "start": 13987.14, + "end": 13988.66, + "probability": 0.82 + }, + { + "start": 13988.96, + "end": 13990.7, + "probability": 0.8129 + }, + { + "start": 13992.61, + "end": 13996.44, + "probability": 0.8232 + }, + { + "start": 13997.3, + "end": 13998.58, + "probability": 0.2159 + }, + { + "start": 13998.78, + "end": 13999.94, + "probability": 0.5996 + }, + { + "start": 14000.54, + "end": 14002.0, + "probability": 0.9685 + }, + { + "start": 14002.08, + "end": 14002.64, + "probability": 0.7664 + }, + { + "start": 14002.7, + "end": 14003.66, + "probability": 0.8603 + }, + { + "start": 14004.02, + "end": 14005.76, + "probability": 0.8971 + }, + { + "start": 14005.82, + "end": 14006.96, + "probability": 0.9669 + }, + { + "start": 14007.16, + "end": 14008.16, + "probability": 0.8681 + }, + { + "start": 14008.6, + "end": 14009.6, + "probability": 0.9578 + }, + { + "start": 14010.14, + "end": 14012.92, + "probability": 0.2795 + }, + { + "start": 14014.2, + "end": 14016.86, + "probability": 0.8205 + }, + { + "start": 14016.98, + "end": 14020.82, + "probability": 0.9983 + }, + { + "start": 14021.38, + "end": 14022.66, + "probability": 0.7255 + }, + { + "start": 14023.14, + "end": 14023.82, + "probability": 0.8992 + }, + { + "start": 14023.96, + "end": 14024.92, + "probability": 0.9888 + }, + { + "start": 14025.38, + "end": 14027.34, + "probability": 0.9704 + }, + { + "start": 14028.4, + "end": 14032.06, + "probability": 0.9836 + }, + { + "start": 14032.36, + "end": 14035.06, + "probability": 0.9656 + }, + { + "start": 14035.48, + "end": 14037.4, + "probability": 0.9467 + }, + { + "start": 14038.1, + "end": 14041.38, + "probability": 0.9922 + }, + { + "start": 14042.46, + "end": 14043.6, + "probability": 0.988 + }, + { + "start": 14043.96, + "end": 14045.12, + "probability": 0.96 + }, + { + "start": 14045.98, + "end": 14046.4, + "probability": 0.7581 + }, + { + "start": 14046.5, + "end": 14048.54, + "probability": 0.9443 + }, + { + "start": 14048.84, + "end": 14052.76, + "probability": 0.8306 + }, + { + "start": 14053.3, + "end": 14054.85, + "probability": 0.7621 + }, + { + "start": 14055.78, + "end": 14056.42, + "probability": 0.7993 + }, + { + "start": 14057.4, + "end": 14060.68, + "probability": 0.9989 + }, + { + "start": 14061.36, + "end": 14062.62, + "probability": 0.5933 + }, + { + "start": 14063.08, + "end": 14067.62, + "probability": 0.9777 + }, + { + "start": 14068.54, + "end": 14071.52, + "probability": 0.5806 + }, + { + "start": 14071.86, + "end": 14072.41, + "probability": 0.7257 + }, + { + "start": 14072.9, + "end": 14074.18, + "probability": 0.9087 + }, + { + "start": 14074.64, + "end": 14075.86, + "probability": 0.8787 + }, + { + "start": 14076.3, + "end": 14076.89, + "probability": 0.9186 + }, + { + "start": 14077.0, + "end": 14078.7, + "probability": 0.8188 + }, + { + "start": 14079.22, + "end": 14081.64, + "probability": 0.9509 + }, + { + "start": 14081.74, + "end": 14083.52, + "probability": 0.8987 + }, + { + "start": 14083.94, + "end": 14084.38, + "probability": 0.5806 + }, + { + "start": 14085.22, + "end": 14086.2, + "probability": 0.967 + }, + { + "start": 14087.78, + "end": 14088.87, + "probability": 0.0433 + }, + { + "start": 14089.2, + "end": 14092.12, + "probability": 0.6709 + }, + { + "start": 14092.4, + "end": 14092.86, + "probability": 0.9274 + }, + { + "start": 14092.94, + "end": 14093.8, + "probability": 0.9411 + }, + { + "start": 14093.84, + "end": 14094.48, + "probability": 0.7369 + }, + { + "start": 14094.54, + "end": 14095.34, + "probability": 0.7083 + }, + { + "start": 14096.2, + "end": 14100.48, + "probability": 0.7604 + }, + { + "start": 14101.14, + "end": 14102.94, + "probability": 0.7765 + }, + { + "start": 14102.94, + "end": 14104.38, + "probability": 0.7209 + }, + { + "start": 14104.5, + "end": 14105.56, + "probability": 0.9104 + }, + { + "start": 14106.26, + "end": 14109.74, + "probability": 0.8398 + }, + { + "start": 14110.18, + "end": 14113.21, + "probability": 0.9805 + }, + { + "start": 14113.58, + "end": 14116.24, + "probability": 0.7585 + }, + { + "start": 14116.38, + "end": 14117.48, + "probability": 0.939 + }, + { + "start": 14117.56, + "end": 14120.06, + "probability": 0.8467 + }, + { + "start": 14120.2, + "end": 14123.1, + "probability": 0.9785 + }, + { + "start": 14123.12, + "end": 14123.74, + "probability": 0.9137 + }, + { + "start": 14124.96, + "end": 14126.2, + "probability": 0.0388 + }, + { + "start": 14126.2, + "end": 14126.41, + "probability": 0.1254 + }, + { + "start": 14147.68, + "end": 14147.98, + "probability": 0.3885 + }, + { + "start": 14148.26, + "end": 14148.86, + "probability": 0.2148 + }, + { + "start": 14149.68, + "end": 14154.18, + "probability": 0.0207 + }, + { + "start": 14154.36, + "end": 14156.9, + "probability": 0.5102 + }, + { + "start": 14159.22, + "end": 14159.32, + "probability": 0.9259 + }, + { + "start": 14159.32, + "end": 14160.16, + "probability": 0.7668 + }, + { + "start": 14165.16, + "end": 14167.48, + "probability": 0.2894 + }, + { + "start": 14167.66, + "end": 14168.34, + "probability": 0.1856 + }, + { + "start": 14168.34, + "end": 14172.64, + "probability": 0.0274 + }, + { + "start": 14182.96, + "end": 14187.72, + "probability": 0.9855 + }, + { + "start": 14188.6, + "end": 14189.28, + "probability": 0.9399 + }, + { + "start": 14189.88, + "end": 14195.94, + "probability": 0.9985 + }, + { + "start": 14196.52, + "end": 14197.78, + "probability": 0.6709 + }, + { + "start": 14199.22, + "end": 14202.08, + "probability": 0.7071 + }, + { + "start": 14202.08, + "end": 14204.02, + "probability": 0.908 + }, + { + "start": 14205.56, + "end": 14207.88, + "probability": 0.1813 + }, + { + "start": 14208.3, + "end": 14210.54, + "probability": 0.4095 + }, + { + "start": 14210.56, + "end": 14212.64, + "probability": 0.9717 + }, + { + "start": 14214.56, + "end": 14219.54, + "probability": 0.9488 + }, + { + "start": 14219.54, + "end": 14224.02, + "probability": 0.9952 + }, + { + "start": 14225.06, + "end": 14230.24, + "probability": 0.9934 + }, + { + "start": 14232.08, + "end": 14234.68, + "probability": 0.9967 + }, + { + "start": 14234.72, + "end": 14238.48, + "probability": 0.992 + }, + { + "start": 14239.8, + "end": 14243.11, + "probability": 0.999 + }, + { + "start": 14243.3, + "end": 14246.3, + "probability": 0.9186 + }, + { + "start": 14247.4, + "end": 14250.66, + "probability": 0.9437 + }, + { + "start": 14252.26, + "end": 14258.42, + "probability": 0.9977 + }, + { + "start": 14259.74, + "end": 14264.88, + "probability": 0.9905 + }, + { + "start": 14265.7, + "end": 14269.8, + "probability": 0.9857 + }, + { + "start": 14270.96, + "end": 14273.68, + "probability": 0.9883 + }, + { + "start": 14273.68, + "end": 14276.94, + "probability": 0.9927 + }, + { + "start": 14278.36, + "end": 14280.3, + "probability": 0.9738 + }, + { + "start": 14280.7, + "end": 14286.38, + "probability": 0.9895 + }, + { + "start": 14286.38, + "end": 14291.46, + "probability": 0.9823 + }, + { + "start": 14292.36, + "end": 14292.82, + "probability": 0.4271 + }, + { + "start": 14293.82, + "end": 14295.22, + "probability": 0.8552 + }, + { + "start": 14296.06, + "end": 14298.1, + "probability": 0.998 + }, + { + "start": 14298.82, + "end": 14300.86, + "probability": 0.9809 + }, + { + "start": 14302.98, + "end": 14303.58, + "probability": 0.2845 + }, + { + "start": 14303.72, + "end": 14307.88, + "probability": 0.9971 + }, + { + "start": 14308.86, + "end": 14311.36, + "probability": 0.9894 + }, + { + "start": 14312.32, + "end": 14316.26, + "probability": 0.9441 + }, + { + "start": 14316.32, + "end": 14320.42, + "probability": 0.9972 + }, + { + "start": 14322.74, + "end": 14324.58, + "probability": 0.6423 + }, + { + "start": 14326.66, + "end": 14328.0, + "probability": 0.9628 + }, + { + "start": 14328.22, + "end": 14331.22, + "probability": 0.9715 + }, + { + "start": 14332.24, + "end": 14334.9, + "probability": 0.9869 + }, + { + "start": 14335.56, + "end": 14339.52, + "probability": 0.9963 + }, + { + "start": 14340.44, + "end": 14342.2, + "probability": 0.9196 + }, + { + "start": 14342.74, + "end": 14346.16, + "probability": 0.973 + }, + { + "start": 14347.66, + "end": 14348.98, + "probability": 0.9698 + }, + { + "start": 14349.46, + "end": 14350.42, + "probability": 0.9831 + }, + { + "start": 14350.52, + "end": 14355.9, + "probability": 0.9921 + }, + { + "start": 14356.88, + "end": 14360.8, + "probability": 0.9912 + }, + { + "start": 14361.56, + "end": 14362.46, + "probability": 0.7913 + }, + { + "start": 14363.9, + "end": 14367.28, + "probability": 0.9825 + }, + { + "start": 14367.82, + "end": 14371.98, + "probability": 0.9181 + }, + { + "start": 14373.52, + "end": 14375.96, + "probability": 0.9966 + }, + { + "start": 14376.66, + "end": 14379.94, + "probability": 0.9507 + }, + { + "start": 14380.76, + "end": 14381.92, + "probability": 0.8018 + }, + { + "start": 14383.34, + "end": 14387.02, + "probability": 0.9203 + }, + { + "start": 14387.16, + "end": 14387.74, + "probability": 0.7356 + }, + { + "start": 14389.54, + "end": 14394.5, + "probability": 0.9951 + }, + { + "start": 14395.62, + "end": 14398.78, + "probability": 0.9873 + }, + { + "start": 14399.92, + "end": 14403.24, + "probability": 0.8018 + }, + { + "start": 14404.58, + "end": 14406.34, + "probability": 0.7604 + }, + { + "start": 14406.88, + "end": 14411.32, + "probability": 0.9313 + }, + { + "start": 14411.78, + "end": 14415.1, + "probability": 0.9943 + }, + { + "start": 14415.32, + "end": 14421.2, + "probability": 0.9136 + }, + { + "start": 14421.2, + "end": 14425.54, + "probability": 0.9949 + }, + { + "start": 14426.0, + "end": 14426.2, + "probability": 0.6277 + }, + { + "start": 14426.74, + "end": 14427.12, + "probability": 0.2859 + }, + { + "start": 14427.12, + "end": 14427.66, + "probability": 0.9818 + }, + { + "start": 14447.12, + "end": 14448.1, + "probability": 0.6341 + }, + { + "start": 14449.34, + "end": 14451.72, + "probability": 0.8345 + }, + { + "start": 14452.82, + "end": 14455.9, + "probability": 0.1297 + }, + { + "start": 14456.52, + "end": 14459.44, + "probability": 0.5499 + }, + { + "start": 14459.58, + "end": 14462.4, + "probability": 0.9419 + }, + { + "start": 14462.92, + "end": 14464.3, + "probability": 0.738 + }, + { + "start": 14464.84, + "end": 14467.56, + "probability": 0.9844 + }, + { + "start": 14468.06, + "end": 14469.06, + "probability": 0.9792 + }, + { + "start": 14469.32, + "end": 14469.64, + "probability": 0.6708 + }, + { + "start": 14470.36, + "end": 14474.54, + "probability": 0.8359 + }, + { + "start": 14475.24, + "end": 14480.72, + "probability": 0.9743 + }, + { + "start": 14481.1, + "end": 14483.48, + "probability": 0.891 + }, + { + "start": 14483.98, + "end": 14484.96, + "probability": 0.9237 + }, + { + "start": 14485.08, + "end": 14488.5, + "probability": 0.9471 + }, + { + "start": 14489.16, + "end": 14489.48, + "probability": 0.8591 + }, + { + "start": 14489.5, + "end": 14490.08, + "probability": 0.7693 + }, + { + "start": 14490.2, + "end": 14490.88, + "probability": 0.5416 + }, + { + "start": 14491.08, + "end": 14492.1, + "probability": 0.9051 + }, + { + "start": 14492.6, + "end": 14496.2, + "probability": 0.8462 + }, + { + "start": 14496.72, + "end": 14498.1, + "probability": 0.9521 + }, + { + "start": 14512.28, + "end": 14513.36, + "probability": 0.2732 + }, + { + "start": 14513.36, + "end": 14513.36, + "probability": 0.2188 + }, + { + "start": 14513.36, + "end": 14513.36, + "probability": 0.2764 + }, + { + "start": 14513.36, + "end": 14513.36, + "probability": 0.0138 + }, + { + "start": 14513.36, + "end": 14513.36, + "probability": 0.1542 + }, + { + "start": 14513.36, + "end": 14513.36, + "probability": 0.0492 + }, + { + "start": 14513.36, + "end": 14514.7, + "probability": 0.0857 + }, + { + "start": 14515.56, + "end": 14516.36, + "probability": 0.7276 + }, + { + "start": 14517.22, + "end": 14517.82, + "probability": 0.5449 + }, + { + "start": 14518.54, + "end": 14521.98, + "probability": 0.9162 + }, + { + "start": 14522.5, + "end": 14524.5, + "probability": 0.9072 + }, + { + "start": 14525.04, + "end": 14526.7, + "probability": 0.9334 + }, + { + "start": 14527.24, + "end": 14528.28, + "probability": 0.9912 + }, + { + "start": 14528.68, + "end": 14529.06, + "probability": 0.9351 + }, + { + "start": 14530.2, + "end": 14532.64, + "probability": 0.9324 + }, + { + "start": 14532.74, + "end": 14533.8, + "probability": 0.9961 + }, + { + "start": 14534.58, + "end": 14536.84, + "probability": 0.9719 + }, + { + "start": 14537.6, + "end": 14540.26, + "probability": 0.9866 + }, + { + "start": 14540.64, + "end": 14542.54, + "probability": 0.8269 + }, + { + "start": 14543.22, + "end": 14548.38, + "probability": 0.9935 + }, + { + "start": 14548.38, + "end": 14552.84, + "probability": 0.9985 + }, + { + "start": 14553.12, + "end": 14554.78, + "probability": 0.8236 + }, + { + "start": 14555.22, + "end": 14556.14, + "probability": 0.9702 + }, + { + "start": 14556.72, + "end": 14558.64, + "probability": 0.9697 + }, + { + "start": 14559.56, + "end": 14560.32, + "probability": 0.5487 + }, + { + "start": 14560.74, + "end": 14562.78, + "probability": 0.7482 + }, + { + "start": 14563.44, + "end": 14564.3, + "probability": 0.8883 + }, + { + "start": 14565.32, + "end": 14566.24, + "probability": 0.7993 + }, + { + "start": 14567.24, + "end": 14568.32, + "probability": 0.9724 + }, + { + "start": 14569.14, + "end": 14569.82, + "probability": 0.5581 + }, + { + "start": 14569.94, + "end": 14570.74, + "probability": 0.8991 + }, + { + "start": 14571.08, + "end": 14571.9, + "probability": 0.6669 + }, + { + "start": 14572.32, + "end": 14573.82, + "probability": 0.9584 + }, + { + "start": 14574.0, + "end": 14574.64, + "probability": 0.8262 + }, + { + "start": 14574.76, + "end": 14576.54, + "probability": 0.6229 + }, + { + "start": 14576.72, + "end": 14580.02, + "probability": 0.9879 + }, + { + "start": 14580.48, + "end": 14582.38, + "probability": 0.9701 + }, + { + "start": 14582.68, + "end": 14583.9, + "probability": 0.9788 + }, + { + "start": 14584.24, + "end": 14586.3, + "probability": 0.9956 + }, + { + "start": 14586.56, + "end": 14587.0, + "probability": 0.3209 + }, + { + "start": 14587.64, + "end": 14592.0, + "probability": 0.9927 + }, + { + "start": 14592.78, + "end": 14595.32, + "probability": 0.9873 + }, + { + "start": 14595.76, + "end": 14598.62, + "probability": 0.9927 + }, + { + "start": 14598.88, + "end": 14599.14, + "probability": 0.8428 + }, + { + "start": 14599.66, + "end": 14600.24, + "probability": 0.7232 + }, + { + "start": 14600.54, + "end": 14601.04, + "probability": 0.7177 + }, + { + "start": 14601.28, + "end": 14602.06, + "probability": 0.675 + }, + { + "start": 14603.56, + "end": 14605.2, + "probability": 0.7394 + }, + { + "start": 14625.81, + "end": 14628.87, + "probability": 0.1606 + }, + { + "start": 14629.16, + "end": 14629.48, + "probability": 0.0439 + }, + { + "start": 14630.66, + "end": 14631.08, + "probability": 0.0452 + }, + { + "start": 14632.4, + "end": 14632.6, + "probability": 0.0263 + }, + { + "start": 14636.58, + "end": 14637.44, + "probability": 0.4312 + }, + { + "start": 14638.06, + "end": 14643.04, + "probability": 0.0717 + }, + { + "start": 14645.72, + "end": 14647.12, + "probability": 0.1288 + }, + { + "start": 14653.6, + "end": 14656.9, + "probability": 0.2326 + }, + { + "start": 14657.76, + "end": 14657.76, + "probability": 0.0615 + }, + { + "start": 14657.76, + "end": 14657.76, + "probability": 0.1504 + }, + { + "start": 14657.76, + "end": 14661.02, + "probability": 0.094 + }, + { + "start": 14670.56, + "end": 14678.94, + "probability": 0.0246 + }, + { + "start": 14682.12, + "end": 14683.32, + "probability": 0.0456 + }, + { + "start": 14683.32, + "end": 14684.74, + "probability": 0.1875 + }, + { + "start": 14685.02, + "end": 14685.24, + "probability": 0.1435 + }, + { + "start": 14685.44, + "end": 14686.2, + "probability": 0.0502 + }, + { + "start": 14687.98, + "end": 14690.92, + "probability": 0.3807 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.0, + "end": 14701.0, + "probability": 0.0 + }, + { + "start": 14701.56, + "end": 14705.06, + "probability": 0.9863 + }, + { + "start": 14705.24, + "end": 14706.16, + "probability": 0.8886 + }, + { + "start": 14706.22, + "end": 14711.36, + "probability": 0.9974 + }, + { + "start": 14711.96, + "end": 14715.6, + "probability": 0.9895 + }, + { + "start": 14715.66, + "end": 14717.38, + "probability": 0.9558 + }, + { + "start": 14717.56, + "end": 14719.1, + "probability": 0.9841 + }, + { + "start": 14719.6, + "end": 14723.24, + "probability": 0.9832 + }, + { + "start": 14723.84, + "end": 14726.18, + "probability": 0.9943 + }, + { + "start": 14726.82, + "end": 14731.1, + "probability": 0.9857 + }, + { + "start": 14731.96, + "end": 14734.56, + "probability": 0.9938 + }, + { + "start": 14734.62, + "end": 14736.62, + "probability": 0.9966 + }, + { + "start": 14737.08, + "end": 14739.22, + "probability": 0.9244 + }, + { + "start": 14740.44, + "end": 14741.92, + "probability": 0.8532 + }, + { + "start": 14742.46, + "end": 14744.96, + "probability": 0.9667 + }, + { + "start": 14745.52, + "end": 14747.28, + "probability": 0.9899 + }, + { + "start": 14747.46, + "end": 14750.1, + "probability": 0.9695 + }, + { + "start": 14750.74, + "end": 14752.92, + "probability": 0.9019 + }, + { + "start": 14753.72, + "end": 14760.02, + "probability": 0.905 + }, + { + "start": 14761.6, + "end": 14765.08, + "probability": 0.9971 + }, + { + "start": 14765.76, + "end": 14769.06, + "probability": 0.9338 + }, + { + "start": 14769.6, + "end": 14776.16, + "probability": 0.9761 + }, + { + "start": 14776.74, + "end": 14779.9, + "probability": 0.979 + }, + { + "start": 14780.5, + "end": 14781.6, + "probability": 0.887 + }, + { + "start": 14781.84, + "end": 14782.74, + "probability": 0.8872 + }, + { + "start": 14783.2, + "end": 14789.34, + "probability": 0.9723 + }, + { + "start": 14790.04, + "end": 14790.62, + "probability": 0.7569 + }, + { + "start": 14791.06, + "end": 14792.58, + "probability": 0.8592 + }, + { + "start": 14793.04, + "end": 14799.12, + "probability": 0.9754 + }, + { + "start": 14799.9, + "end": 14802.44, + "probability": 0.8284 + }, + { + "start": 14803.18, + "end": 14806.36, + "probability": 0.98 + }, + { + "start": 14806.48, + "end": 14807.02, + "probability": 0.9479 + }, + { + "start": 14807.48, + "end": 14809.18, + "probability": 0.9535 + }, + { + "start": 14809.8, + "end": 14812.84, + "probability": 0.9631 + }, + { + "start": 14813.06, + "end": 14815.68, + "probability": 0.8073 + }, + { + "start": 14816.14, + "end": 14822.66, + "probability": 0.9917 + }, + { + "start": 14823.04, + "end": 14824.94, + "probability": 0.7068 + }, + { + "start": 14825.16, + "end": 14826.48, + "probability": 0.4691 + }, + { + "start": 14827.5, + "end": 14828.4, + "probability": 0.9005 + }, + { + "start": 14829.92, + "end": 14834.52, + "probability": 0.9825 + }, + { + "start": 14834.54, + "end": 14835.52, + "probability": 0.9677 + }, + { + "start": 14836.36, + "end": 14839.18, + "probability": 0.9852 + }, + { + "start": 14839.82, + "end": 14841.54, + "probability": 0.9225 + }, + { + "start": 14841.66, + "end": 14842.86, + "probability": 0.7699 + }, + { + "start": 14843.54, + "end": 14846.14, + "probability": 0.8528 + }, + { + "start": 14847.67, + "end": 14852.9, + "probability": 0.9902 + }, + { + "start": 14852.9, + "end": 14856.76, + "probability": 0.9272 + }, + { + "start": 14857.38, + "end": 14861.98, + "probability": 0.9885 + }, + { + "start": 14862.52, + "end": 14866.54, + "probability": 0.9922 + }, + { + "start": 14866.54, + "end": 14870.26, + "probability": 0.9976 + }, + { + "start": 14870.8, + "end": 14871.64, + "probability": 0.5837 + }, + { + "start": 14872.16, + "end": 14873.04, + "probability": 0.7978 + }, + { + "start": 14873.52, + "end": 14873.94, + "probability": 0.8329 + }, + { + "start": 14874.42, + "end": 14875.76, + "probability": 0.7485 + }, + { + "start": 14876.2, + "end": 14877.52, + "probability": 0.8636 + }, + { + "start": 14877.7, + "end": 14881.12, + "probability": 0.8528 + }, + { + "start": 14881.6, + "end": 14883.54, + "probability": 0.7762 + }, + { + "start": 14884.16, + "end": 14886.84, + "probability": 0.9945 + }, + { + "start": 14887.68, + "end": 14889.55, + "probability": 0.998 + }, + { + "start": 14890.24, + "end": 14892.02, + "probability": 0.9968 + }, + { + "start": 14892.76, + "end": 14893.54, + "probability": 0.8101 + }, + { + "start": 14894.72, + "end": 14896.16, + "probability": 0.9933 + }, + { + "start": 14896.88, + "end": 14903.34, + "probability": 0.9735 + }, + { + "start": 14903.98, + "end": 14905.52, + "probability": 0.7909 + }, + { + "start": 14906.1, + "end": 14911.1, + "probability": 0.9907 + }, + { + "start": 14911.9, + "end": 14912.38, + "probability": 0.7537 + }, + { + "start": 14912.92, + "end": 14920.54, + "probability": 0.8632 + }, + { + "start": 14920.54, + "end": 14924.52, + "probability": 0.301 + }, + { + "start": 14924.52, + "end": 14924.52, + "probability": 0.0301 + }, + { + "start": 14924.52, + "end": 14924.52, + "probability": 0.5645 + }, + { + "start": 14924.56, + "end": 14926.28, + "probability": 0.8132 + }, + { + "start": 14926.5, + "end": 14927.92, + "probability": 0.8623 + }, + { + "start": 14928.08, + "end": 14928.8, + "probability": 0.4472 + }, + { + "start": 14928.8, + "end": 14930.72, + "probability": 0.9206 + }, + { + "start": 14930.78, + "end": 14931.6, + "probability": 0.6227 + }, + { + "start": 14932.3, + "end": 14935.02, + "probability": 0.1576 + }, + { + "start": 14935.02, + "end": 14935.78, + "probability": 0.5532 + }, + { + "start": 14935.88, + "end": 14937.5, + "probability": 0.8768 + }, + { + "start": 14937.66, + "end": 14938.28, + "probability": 0.8962 + }, + { + "start": 14938.7, + "end": 14938.8, + "probability": 0.1644 + }, + { + "start": 14938.8, + "end": 14940.08, + "probability": 0.6366 + }, + { + "start": 14940.46, + "end": 14940.68, + "probability": 0.5142 + }, + { + "start": 14940.7, + "end": 14941.1, + "probability": 0.4689 + }, + { + "start": 14941.66, + "end": 14942.06, + "probability": 0.2753 + }, + { + "start": 14942.06, + "end": 14942.7, + "probability": 0.5063 + }, + { + "start": 14943.6, + "end": 14945.14, + "probability": 0.2 + }, + { + "start": 14945.16, + "end": 14945.84, + "probability": 0.8057 + }, + { + "start": 14945.94, + "end": 14947.9, + "probability": 0.0556 + }, + { + "start": 14949.32, + "end": 14951.08, + "probability": 0.1604 + }, + { + "start": 14951.12, + "end": 14953.32, + "probability": 0.0739 + }, + { + "start": 14955.72, + "end": 14958.36, + "probability": 0.0616 + }, + { + "start": 14958.76, + "end": 14960.2, + "probability": 0.5301 + }, + { + "start": 14961.48, + "end": 14962.39, + "probability": 0.207 + }, + { + "start": 14963.32, + "end": 14963.32, + "probability": 0.2358 + }, + { + "start": 14963.32, + "end": 14963.32, + "probability": 0.0485 + }, + { + "start": 14963.32, + "end": 14964.14, + "probability": 0.4012 + }, + { + "start": 14965.58, + "end": 14967.92, + "probability": 0.1214 + }, + { + "start": 14971.82, + "end": 14978.46, + "probability": 0.9427 + }, + { + "start": 14978.66, + "end": 14979.96, + "probability": 0.6372 + }, + { + "start": 14980.44, + "end": 14981.88, + "probability": 0.7172 + }, + { + "start": 14981.9, + "end": 14986.5, + "probability": 0.9878 + }, + { + "start": 14987.16, + "end": 14988.84, + "probability": 0.8969 + }, + { + "start": 14989.5, + "end": 14994.76, + "probability": 0.5573 + }, + { + "start": 14994.92, + "end": 14996.96, + "probability": 0.9561 + }, + { + "start": 14997.28, + "end": 15000.84, + "probability": 0.9476 + }, + { + "start": 15001.66, + "end": 15004.64, + "probability": 0.7548 + }, + { + "start": 15004.8, + "end": 15005.4, + "probability": 0.5603 + }, + { + "start": 15005.58, + "end": 15007.8, + "probability": 0.9895 + }, + { + "start": 15009.24, + "end": 15013.34, + "probability": 0.9683 + }, + { + "start": 15014.1, + "end": 15017.25, + "probability": 0.896 + }, + { + "start": 15017.38, + "end": 15019.06, + "probability": 0.8341 + }, + { + "start": 15019.12, + "end": 15020.9, + "probability": 0.7879 + }, + { + "start": 15021.48, + "end": 15025.44, + "probability": 0.9771 + }, + { + "start": 15025.56, + "end": 15031.5, + "probability": 0.8218 + }, + { + "start": 15032.26, + "end": 15036.0, + "probability": 0.8936 + }, + { + "start": 15036.1, + "end": 15039.52, + "probability": 0.9835 + }, + { + "start": 15040.04, + "end": 15043.2, + "probability": 0.8251 + }, + { + "start": 15047.02, + "end": 15048.62, + "probability": 0.808 + }, + { + "start": 15049.32, + "end": 15050.58, + "probability": 0.9689 + }, + { + "start": 15051.42, + "end": 15053.16, + "probability": 0.9344 + }, + { + "start": 15053.7, + "end": 15056.48, + "probability": 0.8687 + }, + { + "start": 15056.68, + "end": 15059.78, + "probability": 0.9937 + }, + { + "start": 15059.78, + "end": 15064.66, + "probability": 0.9908 + }, + { + "start": 15065.26, + "end": 15065.62, + "probability": 0.5061 + }, + { + "start": 15066.2, + "end": 15067.7, + "probability": 0.9828 + }, + { + "start": 15068.64, + "end": 15071.22, + "probability": 0.9701 + }, + { + "start": 15071.38, + "end": 15073.96, + "probability": 0.9577 + }, + { + "start": 15074.08, + "end": 15076.72, + "probability": 0.9919 + }, + { + "start": 15077.62, + "end": 15078.82, + "probability": 0.6564 + }, + { + "start": 15080.58, + "end": 15085.14, + "probability": 0.9127 + }, + { + "start": 15085.66, + "end": 15089.08, + "probability": 0.8031 + }, + { + "start": 15089.6, + "end": 15094.04, + "probability": 0.9736 + }, + { + "start": 15094.1, + "end": 15099.22, + "probability": 0.9006 + }, + { + "start": 15099.62, + "end": 15100.34, + "probability": 0.4929 + }, + { + "start": 15100.92, + "end": 15106.26, + "probability": 0.9496 + }, + { + "start": 15107.18, + "end": 15115.34, + "probability": 0.9912 + }, + { + "start": 15115.76, + "end": 15116.3, + "probability": 0.9388 + }, + { + "start": 15116.78, + "end": 15117.66, + "probability": 0.8105 + }, + { + "start": 15118.2, + "end": 15119.26, + "probability": 0.998 + }, + { + "start": 15119.84, + "end": 15120.78, + "probability": 0.9025 + }, + { + "start": 15120.98, + "end": 15122.24, + "probability": 0.8033 + }, + { + "start": 15122.4, + "end": 15123.02, + "probability": 0.7413 + }, + { + "start": 15123.24, + "end": 15124.36, + "probability": 0.7382 + }, + { + "start": 15125.02, + "end": 15133.0, + "probability": 0.9758 + }, + { + "start": 15133.76, + "end": 15136.66, + "probability": 0.9863 + }, + { + "start": 15137.3, + "end": 15139.7, + "probability": 0.7262 + }, + { + "start": 15140.42, + "end": 15146.54, + "probability": 0.9757 + }, + { + "start": 15147.06, + "end": 15148.76, + "probability": 0.9856 + }, + { + "start": 15149.3, + "end": 15151.58, + "probability": 0.9984 + }, + { + "start": 15152.22, + "end": 15160.26, + "probability": 0.9937 + }, + { + "start": 15161.02, + "end": 15164.54, + "probability": 0.9763 + }, + { + "start": 15165.08, + "end": 15167.94, + "probability": 0.9931 + }, + { + "start": 15168.34, + "end": 15172.9, + "probability": 0.9375 + }, + { + "start": 15173.62, + "end": 15177.8, + "probability": 0.8571 + }, + { + "start": 15178.8, + "end": 15179.5, + "probability": 0.9895 + }, + { + "start": 15180.4, + "end": 15181.26, + "probability": 0.6483 + }, + { + "start": 15181.82, + "end": 15183.02, + "probability": 0.814 + }, + { + "start": 15183.8, + "end": 15188.04, + "probability": 0.9989 + }, + { + "start": 15189.26, + "end": 15195.74, + "probability": 0.9989 + }, + { + "start": 15196.42, + "end": 15198.9, + "probability": 0.9709 + }, + { + "start": 15199.04, + "end": 15204.96, + "probability": 0.9814 + }, + { + "start": 15205.74, + "end": 15211.58, + "probability": 0.9991 + }, + { + "start": 15212.18, + "end": 15217.14, + "probability": 0.9948 + }, + { + "start": 15218.68, + "end": 15220.04, + "probability": 0.9371 + }, + { + "start": 15220.58, + "end": 15222.94, + "probability": 0.9894 + }, + { + "start": 15223.76, + "end": 15225.82, + "probability": 0.9747 + }, + { + "start": 15226.52, + "end": 15230.8, + "probability": 0.9897 + }, + { + "start": 15231.56, + "end": 15233.92, + "probability": 0.9927 + }, + { + "start": 15234.74, + "end": 15238.34, + "probability": 0.8325 + }, + { + "start": 15239.26, + "end": 15243.1, + "probability": 0.998 + }, + { + "start": 15243.68, + "end": 15246.6, + "probability": 0.9678 + }, + { + "start": 15247.68, + "end": 15250.27, + "probability": 0.9988 + }, + { + "start": 15251.28, + "end": 15254.58, + "probability": 0.9939 + }, + { + "start": 15255.2, + "end": 15261.12, + "probability": 0.9907 + }, + { + "start": 15261.64, + "end": 15262.15, + "probability": 0.8794 + }, + { + "start": 15263.18, + "end": 15267.62, + "probability": 0.9974 + }, + { + "start": 15267.78, + "end": 15268.74, + "probability": 0.8965 + }, + { + "start": 15269.16, + "end": 15273.82, + "probability": 0.9813 + }, + { + "start": 15274.32, + "end": 15279.32, + "probability": 0.9951 + }, + { + "start": 15280.3, + "end": 15281.02, + "probability": 0.918 + }, + { + "start": 15281.62, + "end": 15286.78, + "probability": 0.996 + }, + { + "start": 15287.5, + "end": 15290.56, + "probability": 0.861 + }, + { + "start": 15291.72, + "end": 15296.28, + "probability": 0.9873 + }, + { + "start": 15296.78, + "end": 15300.38, + "probability": 0.9842 + }, + { + "start": 15301.2, + "end": 15303.46, + "probability": 0.9511 + }, + { + "start": 15303.98, + "end": 15306.78, + "probability": 0.9985 + }, + { + "start": 15307.24, + "end": 15310.76, + "probability": 0.9969 + }, + { + "start": 15312.3, + "end": 15312.96, + "probability": 0.1638 + }, + { + "start": 15313.42, + "end": 15317.1, + "probability": 0.8879 + }, + { + "start": 15317.68, + "end": 15320.7, + "probability": 0.9238 + }, + { + "start": 15321.12, + "end": 15323.7, + "probability": 0.976 + }, + { + "start": 15323.92, + "end": 15324.42, + "probability": 0.6502 + }, + { + "start": 15324.68, + "end": 15325.32, + "probability": 0.7902 + }, + { + "start": 15326.48, + "end": 15327.12, + "probability": 0.7375 + }, + { + "start": 15335.12, + "end": 15335.12, + "probability": 0.6732 + }, + { + "start": 15335.12, + "end": 15336.74, + "probability": 0.8066 + }, + { + "start": 15342.04, + "end": 15342.2, + "probability": 0.264 + }, + { + "start": 15342.52, + "end": 15343.6, + "probability": 0.7279 + }, + { + "start": 15343.8, + "end": 15344.78, + "probability": 0.9195 + }, + { + "start": 15344.9, + "end": 15346.32, + "probability": 0.8835 + }, + { + "start": 15347.82, + "end": 15350.59, + "probability": 0.9646 + }, + { + "start": 15351.54, + "end": 15354.52, + "probability": 0.9893 + }, + { + "start": 15355.78, + "end": 15361.5, + "probability": 0.9933 + }, + { + "start": 15361.6, + "end": 15364.05, + "probability": 0.4985 + }, + { + "start": 15366.28, + "end": 15367.62, + "probability": 0.9945 + }, + { + "start": 15372.26, + "end": 15373.14, + "probability": 0.7739 + }, + { + "start": 15374.16, + "end": 15375.94, + "probability": 0.8969 + }, + { + "start": 15378.19, + "end": 15381.86, + "probability": 0.8313 + }, + { + "start": 15382.9, + "end": 15383.72, + "probability": 0.0594 + }, + { + "start": 15384.54, + "end": 15389.2, + "probability": 0.6477 + }, + { + "start": 15389.46, + "end": 15391.96, + "probability": 0.3697 + }, + { + "start": 15392.2, + "end": 15394.62, + "probability": 0.0138 + }, + { + "start": 15396.72, + "end": 15397.22, + "probability": 0.0114 + }, + { + "start": 15397.22, + "end": 15397.94, + "probability": 0.1904 + }, + { + "start": 15398.18, + "end": 15401.96, + "probability": 0.6577 + }, + { + "start": 15402.52, + "end": 15403.34, + "probability": 0.6248 + }, + { + "start": 15403.62, + "end": 15404.74, + "probability": 0.8306 + }, + { + "start": 15405.38, + "end": 15408.36, + "probability": 0.8345 + }, + { + "start": 15409.28, + "end": 15411.4, + "probability": 0.9277 + }, + { + "start": 15411.54, + "end": 15413.44, + "probability": 0.9612 + }, + { + "start": 15414.06, + "end": 15414.2, + "probability": 0.5132 + }, + { + "start": 15415.46, + "end": 15417.88, + "probability": 0.9203 + }, + { + "start": 15418.58, + "end": 15421.65, + "probability": 0.9589 + }, + { + "start": 15426.52, + "end": 15427.46, + "probability": 0.2378 + }, + { + "start": 15428.16, + "end": 15428.72, + "probability": 0.2354 + }, + { + "start": 15429.0, + "end": 15432.68, + "probability": 0.9795 + }, + { + "start": 15433.37, + "end": 15435.32, + "probability": 0.9872 + }, + { + "start": 15437.15, + "end": 15439.69, + "probability": 0.959 + }, + { + "start": 15442.99, + "end": 15445.5, + "probability": 0.9141 + }, + { + "start": 15446.98, + "end": 15449.14, + "probability": 0.9697 + }, + { + "start": 15450.48, + "end": 15451.8, + "probability": 0.957 + }, + { + "start": 15455.22, + "end": 15456.1, + "probability": 0.4937 + }, + { + "start": 15456.3, + "end": 15456.5, + "probability": 0.7067 + }, + { + "start": 15456.72, + "end": 15458.94, + "probability": 0.9681 + }, + { + "start": 15459.18, + "end": 15461.54, + "probability": 0.9944 + }, + { + "start": 15463.1, + "end": 15464.24, + "probability": 0.9975 + }, + { + "start": 15465.58, + "end": 15467.78, + "probability": 0.997 + }, + { + "start": 15468.58, + "end": 15470.32, + "probability": 0.988 + }, + { + "start": 15471.62, + "end": 15472.32, + "probability": 0.9944 + }, + { + "start": 15472.96, + "end": 15475.7, + "probability": 0.9996 + }, + { + "start": 15476.42, + "end": 15477.6, + "probability": 0.5284 + }, + { + "start": 15478.92, + "end": 15483.06, + "probability": 0.9756 + }, + { + "start": 15483.62, + "end": 15485.24, + "probability": 0.7554 + }, + { + "start": 15486.48, + "end": 15488.32, + "probability": 0.511 + }, + { + "start": 15488.76, + "end": 15490.5, + "probability": 0.9932 + }, + { + "start": 15490.6, + "end": 15493.26, + "probability": 0.9941 + }, + { + "start": 15494.0, + "end": 15495.0, + "probability": 0.8043 + }, + { + "start": 15495.52, + "end": 15500.3, + "probability": 0.8392 + }, + { + "start": 15501.04, + "end": 15505.46, + "probability": 0.9737 + }, + { + "start": 15506.92, + "end": 15510.04, + "probability": 0.6905 + }, + { + "start": 15510.7, + "end": 15511.6, + "probability": 0.2625 + }, + { + "start": 15512.68, + "end": 15514.72, + "probability": 0.9879 + }, + { + "start": 15514.92, + "end": 15516.7, + "probability": 0.991 + }, + { + "start": 15517.72, + "end": 15524.02, + "probability": 0.9919 + }, + { + "start": 15525.34, + "end": 15527.96, + "probability": 0.9646 + }, + { + "start": 15528.76, + "end": 15533.24, + "probability": 0.9972 + }, + { + "start": 15534.44, + "end": 15535.2, + "probability": 0.4086 + }, + { + "start": 15535.4, + "end": 15539.74, + "probability": 0.9706 + }, + { + "start": 15540.3, + "end": 15542.66, + "probability": 0.9868 + }, + { + "start": 15543.32, + "end": 15544.06, + "probability": 0.9469 + }, + { + "start": 15545.74, + "end": 15547.32, + "probability": 0.9985 + }, + { + "start": 15548.36, + "end": 15549.6, + "probability": 0.9143 + }, + { + "start": 15550.85, + "end": 15556.28, + "probability": 0.9958 + }, + { + "start": 15556.98, + "end": 15559.34, + "probability": 0.8278 + }, + { + "start": 15561.08, + "end": 15561.32, + "probability": 0.9752 + }, + { + "start": 15561.42, + "end": 15564.98, + "probability": 0.9916 + }, + { + "start": 15565.58, + "end": 15567.52, + "probability": 0.9836 + }, + { + "start": 15568.52, + "end": 15572.58, + "probability": 0.9775 + }, + { + "start": 15572.72, + "end": 15574.36, + "probability": 0.6509 + }, + { + "start": 15574.52, + "end": 15575.31, + "probability": 0.8564 + }, + { + "start": 15577.24, + "end": 15580.38, + "probability": 0.9976 + }, + { + "start": 15582.16, + "end": 15584.26, + "probability": 0.999 + }, + { + "start": 15584.86, + "end": 15585.55, + "probability": 0.9932 + }, + { + "start": 15585.8, + "end": 15590.6, + "probability": 0.5909 + }, + { + "start": 15591.02, + "end": 15592.44, + "probability": 0.9985 + }, + { + "start": 15592.54, + "end": 15593.72, + "probability": 0.9304 + }, + { + "start": 15595.58, + "end": 15597.56, + "probability": 0.9941 + }, + { + "start": 15598.88, + "end": 15600.18, + "probability": 0.9917 + }, + { + "start": 15601.0, + "end": 15603.38, + "probability": 0.9546 + }, + { + "start": 15605.24, + "end": 15606.92, + "probability": 0.7671 + }, + { + "start": 15607.52, + "end": 15609.62, + "probability": 0.9922 + }, + { + "start": 15609.68, + "end": 15612.44, + "probability": 0.9395 + }, + { + "start": 15613.02, + "end": 15614.12, + "probability": 0.8018 + }, + { + "start": 15614.22, + "end": 15617.52, + "probability": 0.9581 + }, + { + "start": 15618.32, + "end": 15619.0, + "probability": 0.7127 + }, + { + "start": 15619.1, + "end": 15624.28, + "probability": 0.993 + }, + { + "start": 15625.12, + "end": 15625.72, + "probability": 0.5065 + }, + { + "start": 15626.42, + "end": 15628.5, + "probability": 0.9729 + }, + { + "start": 15628.6, + "end": 15630.06, + "probability": 0.9971 + }, + { + "start": 15630.56, + "end": 15635.44, + "probability": 0.9961 + }, + { + "start": 15635.54, + "end": 15636.32, + "probability": 0.8359 + }, + { + "start": 15636.4, + "end": 15637.16, + "probability": 0.947 + }, + { + "start": 15637.74, + "end": 15638.82, + "probability": 0.9897 + }, + { + "start": 15639.64, + "end": 15642.24, + "probability": 0.9922 + }, + { + "start": 15642.24, + "end": 15644.7, + "probability": 0.996 + }, + { + "start": 15645.18, + "end": 15648.56, + "probability": 0.9976 + }, + { + "start": 15649.52, + "end": 15650.86, + "probability": 0.9795 + }, + { + "start": 15650.94, + "end": 15652.08, + "probability": 0.9254 + }, + { + "start": 15652.58, + "end": 15653.34, + "probability": 0.7523 + }, + { + "start": 15653.4, + "end": 15653.9, + "probability": 0.7646 + }, + { + "start": 15653.98, + "end": 15654.58, + "probability": 0.686 + }, + { + "start": 15654.68, + "end": 15655.86, + "probability": 0.8742 + }, + { + "start": 15656.92, + "end": 15660.94, + "probability": 0.9187 + }, + { + "start": 15662.0, + "end": 15663.48, + "probability": 0.9744 + }, + { + "start": 15671.3, + "end": 15674.36, + "probability": 0.7259 + }, + { + "start": 15675.38, + "end": 15677.72, + "probability": 0.9398 + }, + { + "start": 15678.28, + "end": 15680.46, + "probability": 0.9504 + }, + { + "start": 15681.34, + "end": 15682.94, + "probability": 0.9663 + }, + { + "start": 15684.06, + "end": 15685.44, + "probability": 0.9189 + }, + { + "start": 15686.64, + "end": 15688.16, + "probability": 0.9082 + }, + { + "start": 15689.98, + "end": 15691.4, + "probability": 0.9636 + }, + { + "start": 15694.46, + "end": 15695.76, + "probability": 0.4992 + }, + { + "start": 15698.59, + "end": 15701.14, + "probability": 0.8726 + }, + { + "start": 15701.22, + "end": 15701.48, + "probability": 0.3296 + }, + { + "start": 15701.57, + "end": 15703.59, + "probability": 0.4444 + }, + { + "start": 15704.28, + "end": 15708.98, + "probability": 0.8947 + }, + { + "start": 15709.04, + "end": 15709.78, + "probability": 0.4253 + }, + { + "start": 15709.84, + "end": 15710.0, + "probability": 0.4656 + }, + { + "start": 15710.0, + "end": 15711.32, + "probability": 0.996 + }, + { + "start": 15711.4, + "end": 15712.7, + "probability": 0.6051 + }, + { + "start": 15713.08, + "end": 15715.02, + "probability": 0.5857 + }, + { + "start": 15715.14, + "end": 15716.22, + "probability": 0.9678 + }, + { + "start": 15716.55, + "end": 15721.1, + "probability": 0.8494 + }, + { + "start": 15721.16, + "end": 15721.56, + "probability": 0.5453 + }, + { + "start": 15721.74, + "end": 15722.62, + "probability": 0.9482 + }, + { + "start": 15723.16, + "end": 15724.64, + "probability": 0.8263 + }, + { + "start": 15725.16, + "end": 15727.76, + "probability": 0.9883 + }, + { + "start": 15728.18, + "end": 15730.54, + "probability": 0.8787 + }, + { + "start": 15731.44, + "end": 15733.24, + "probability": 0.8387 + }, + { + "start": 15734.0, + "end": 15738.52, + "probability": 0.9937 + }, + { + "start": 15740.2, + "end": 15741.12, + "probability": 0.8828 + }, + { + "start": 15741.8, + "end": 15744.74, + "probability": 0.9873 + }, + { + "start": 15744.74, + "end": 15749.16, + "probability": 0.929 + }, + { + "start": 15750.72, + "end": 15751.46, + "probability": 0.9161 + }, + { + "start": 15752.26, + "end": 15753.32, + "probability": 0.7216 + }, + { + "start": 15754.24, + "end": 15754.88, + "probability": 0.8123 + }, + { + "start": 15755.76, + "end": 15757.78, + "probability": 0.8599 + }, + { + "start": 15759.26, + "end": 15761.18, + "probability": 0.7983 + }, + { + "start": 15762.18, + "end": 15764.48, + "probability": 0.9336 + }, + { + "start": 15765.96, + "end": 15767.36, + "probability": 0.9385 + }, + { + "start": 15768.06, + "end": 15768.86, + "probability": 0.9368 + }, + { + "start": 15769.0, + "end": 15773.42, + "probability": 0.9824 + }, + { + "start": 15773.94, + "end": 15776.02, + "probability": 0.8438 + }, + { + "start": 15777.88, + "end": 15778.7, + "probability": 0.7039 + }, + { + "start": 15778.84, + "end": 15779.58, + "probability": 0.8452 + }, + { + "start": 15779.58, + "end": 15781.34, + "probability": 0.7657 + }, + { + "start": 15783.0, + "end": 15784.9, + "probability": 0.959 + }, + { + "start": 15787.92, + "end": 15791.16, + "probability": 0.9551 + }, + { + "start": 15792.42, + "end": 15793.64, + "probability": 0.6851 + }, + { + "start": 15795.3, + "end": 15796.68, + "probability": 0.4583 + }, + { + "start": 15797.14, + "end": 15797.48, + "probability": 0.0753 + }, + { + "start": 15797.56, + "end": 15797.56, + "probability": 0.0044 + }, + { + "start": 15797.56, + "end": 15800.96, + "probability": 0.9539 + }, + { + "start": 15802.72, + "end": 15803.96, + "probability": 0.6457 + }, + { + "start": 15805.1, + "end": 15805.78, + "probability": 0.7249 + }, + { + "start": 15806.6, + "end": 15809.0, + "probability": 0.934 + }, + { + "start": 15810.8, + "end": 15815.1, + "probability": 0.9913 + }, + { + "start": 15815.9, + "end": 15816.9, + "probability": 0.6509 + }, + { + "start": 15817.78, + "end": 15817.98, + "probability": 0.4122 + }, + { + "start": 15817.98, + "end": 15819.16, + "probability": 0.6977 + }, + { + "start": 15819.9, + "end": 15822.98, + "probability": 0.9917 + }, + { + "start": 15823.68, + "end": 15825.74, + "probability": 0.9878 + }, + { + "start": 15827.12, + "end": 15827.91, + "probability": 0.7288 + }, + { + "start": 15827.96, + "end": 15829.08, + "probability": 0.9785 + }, + { + "start": 15829.48, + "end": 15834.24, + "probability": 0.9951 + }, + { + "start": 15834.72, + "end": 15836.14, + "probability": 0.9919 + }, + { + "start": 15836.24, + "end": 15838.08, + "probability": 0.9187 + }, + { + "start": 15838.82, + "end": 15839.42, + "probability": 0.5261 + }, + { + "start": 15839.5, + "end": 15840.12, + "probability": 0.7155 + }, + { + "start": 15840.18, + "end": 15841.14, + "probability": 0.9215 + }, + { + "start": 15841.24, + "end": 15842.58, + "probability": 0.95 + }, + { + "start": 15843.36, + "end": 15846.16, + "probability": 0.9932 + }, + { + "start": 15847.38, + "end": 15849.26, + "probability": 0.9583 + }, + { + "start": 15849.36, + "end": 15851.38, + "probability": 0.9976 + }, + { + "start": 15851.8, + "end": 15853.9, + "probability": 0.9971 + }, + { + "start": 15854.22, + "end": 15858.52, + "probability": 0.9961 + }, + { + "start": 15859.36, + "end": 15861.88, + "probability": 0.9791 + }, + { + "start": 15862.88, + "end": 15863.36, + "probability": 0.7512 + }, + { + "start": 15864.12, + "end": 15865.76, + "probability": 0.9104 + }, + { + "start": 15865.86, + "end": 15868.9, + "probability": 0.9814 + }, + { + "start": 15869.44, + "end": 15876.28, + "probability": 0.9751 + }, + { + "start": 15876.8, + "end": 15881.2, + "probability": 0.9541 + }, + { + "start": 15881.6, + "end": 15884.19, + "probability": 0.9602 + }, + { + "start": 15884.88, + "end": 15888.92, + "probability": 0.9893 + }, + { + "start": 15889.02, + "end": 15889.72, + "probability": 0.951 + }, + { + "start": 15889.82, + "end": 15891.36, + "probability": 0.7244 + }, + { + "start": 15891.9, + "end": 15895.76, + "probability": 0.9977 + }, + { + "start": 15896.34, + "end": 15898.4, + "probability": 0.5079 + }, + { + "start": 15898.64, + "end": 15899.84, + "probability": 0.8311 + }, + { + "start": 15900.3, + "end": 15901.2, + "probability": 0.7593 + }, + { + "start": 15902.22, + "end": 15903.24, + "probability": 0.98 + }, + { + "start": 15903.4, + "end": 15904.94, + "probability": 0.9929 + }, + { + "start": 15905.74, + "end": 15906.86, + "probability": 0.9883 + }, + { + "start": 15906.98, + "end": 15907.92, + "probability": 0.9746 + }, + { + "start": 15909.14, + "end": 15911.48, + "probability": 0.658 + }, + { + "start": 15911.58, + "end": 15912.2, + "probability": 0.978 + }, + { + "start": 15913.42, + "end": 15917.88, + "probability": 0.9736 + }, + { + "start": 15918.52, + "end": 15921.68, + "probability": 0.9602 + }, + { + "start": 15922.22, + "end": 15924.54, + "probability": 0.973 + }, + { + "start": 15925.22, + "end": 15926.82, + "probability": 0.8945 + }, + { + "start": 15928.72, + "end": 15929.86, + "probability": 0.7479 + }, + { + "start": 15930.38, + "end": 15931.7, + "probability": 0.7686 + }, + { + "start": 15932.5, + "end": 15933.26, + "probability": 0.814 + }, + { + "start": 15934.74, + "end": 15938.26, + "probability": 0.9715 + }, + { + "start": 15939.3, + "end": 15941.3, + "probability": 0.9967 + }, + { + "start": 15941.46, + "end": 15944.22, + "probability": 0.8581 + }, + { + "start": 15945.7, + "end": 15947.12, + "probability": 0.9626 + }, + { + "start": 15947.38, + "end": 15949.82, + "probability": 0.9778 + }, + { + "start": 15950.42, + "end": 15953.76, + "probability": 0.9224 + }, + { + "start": 15954.9, + "end": 15958.08, + "probability": 0.8097 + }, + { + "start": 15958.44, + "end": 15959.02, + "probability": 0.9729 + }, + { + "start": 15959.08, + "end": 15959.92, + "probability": 0.9934 + }, + { + "start": 15960.42, + "end": 15964.62, + "probability": 0.9966 + }, + { + "start": 15964.72, + "end": 15965.56, + "probability": 0.9012 + }, + { + "start": 15965.82, + "end": 15966.56, + "probability": 0.3847 + }, + { + "start": 15966.64, + "end": 15967.18, + "probability": 0.8946 + }, + { + "start": 15968.04, + "end": 15969.68, + "probability": 0.9807 + }, + { + "start": 15970.06, + "end": 15973.08, + "probability": 0.9876 + }, + { + "start": 15973.46, + "end": 15974.66, + "probability": 0.9954 + }, + { + "start": 15975.22, + "end": 15976.5, + "probability": 0.8436 + }, + { + "start": 15977.48, + "end": 15979.34, + "probability": 0.9612 + }, + { + "start": 15979.84, + "end": 15981.34, + "probability": 0.8725 + }, + { + "start": 15981.44, + "end": 15982.34, + "probability": 0.7982 + }, + { + "start": 15982.86, + "end": 15989.5, + "probability": 0.9214 + }, + { + "start": 15990.02, + "end": 15992.6, + "probability": 0.9861 + }, + { + "start": 15993.18, + "end": 15995.22, + "probability": 0.9893 + }, + { + "start": 15995.64, + "end": 15995.88, + "probability": 0.6161 + }, + { + "start": 15996.1, + "end": 15996.56, + "probability": 0.6316 + }, + { + "start": 15998.48, + "end": 16000.2, + "probability": 0.889 + }, + { + "start": 16002.08, + "end": 16003.4, + "probability": 0.9912 + }, + { + "start": 16016.98, + "end": 16017.6, + "probability": 0.7032 + }, + { + "start": 16017.62, + "end": 16019.26, + "probability": 0.7093 + }, + { + "start": 16019.68, + "end": 16021.3, + "probability": 0.8754 + }, + { + "start": 16021.6, + "end": 16021.86, + "probability": 0.7537 + }, + { + "start": 16022.1, + "end": 16023.54, + "probability": 0.7357 + }, + { + "start": 16023.74, + "end": 16023.88, + "probability": 0.2397 + }, + { + "start": 16024.62, + "end": 16026.62, + "probability": 0.9624 + }, + { + "start": 16027.44, + "end": 16028.18, + "probability": 0.9341 + }, + { + "start": 16028.36, + "end": 16029.9, + "probability": 0.9912 + }, + { + "start": 16029.98, + "end": 16030.9, + "probability": 0.9043 + }, + { + "start": 16031.66, + "end": 16033.16, + "probability": 0.7177 + }, + { + "start": 16033.24, + "end": 16033.78, + "probability": 0.7608 + }, + { + "start": 16033.9, + "end": 16035.5, + "probability": 0.9456 + }, + { + "start": 16035.86, + "end": 16036.26, + "probability": 0.6741 + }, + { + "start": 16036.38, + "end": 16040.12, + "probability": 0.9888 + }, + { + "start": 16040.52, + "end": 16042.12, + "probability": 0.9407 + }, + { + "start": 16042.54, + "end": 16046.73, + "probability": 0.9761 + }, + { + "start": 16047.54, + "end": 16048.94, + "probability": 0.8722 + }, + { + "start": 16049.02, + "end": 16050.06, + "probability": 0.8325 + }, + { + "start": 16050.3, + "end": 16050.86, + "probability": 0.4982 + }, + { + "start": 16050.86, + "end": 16051.67, + "probability": 0.2203 + }, + { + "start": 16052.02, + "end": 16058.54, + "probability": 0.7908 + }, + { + "start": 16058.9, + "end": 16060.24, + "probability": 0.9722 + }, + { + "start": 16060.98, + "end": 16062.3, + "probability": 0.9683 + }, + { + "start": 16062.86, + "end": 16071.48, + "probability": 0.9722 + }, + { + "start": 16071.92, + "end": 16073.0, + "probability": 0.7071 + }, + { + "start": 16073.36, + "end": 16074.78, + "probability": 0.9932 + }, + { + "start": 16075.0, + "end": 16081.16, + "probability": 0.7256 + }, + { + "start": 16081.8, + "end": 16082.66, + "probability": 0.959 + }, + { + "start": 16083.34, + "end": 16086.64, + "probability": 0.9338 + }, + { + "start": 16087.64, + "end": 16091.04, + "probability": 0.9886 + }, + { + "start": 16091.38, + "end": 16094.74, + "probability": 0.9927 + }, + { + "start": 16095.12, + "end": 16096.2, + "probability": 0.79 + }, + { + "start": 16096.56, + "end": 16099.54, + "probability": 0.9507 + }, + { + "start": 16100.32, + "end": 16101.14, + "probability": 0.5771 + }, + { + "start": 16101.66, + "end": 16102.96, + "probability": 0.3531 + }, + { + "start": 16104.14, + "end": 16106.68, + "probability": 0.7428 + }, + { + "start": 16106.7, + "end": 16107.88, + "probability": 0.5185 + }, + { + "start": 16107.88, + "end": 16108.6, + "probability": 0.9667 + }, + { + "start": 16111.66, + "end": 16114.48, + "probability": 0.1758 + }, + { + "start": 16115.66, + "end": 16116.96, + "probability": 0.2311 + }, + { + "start": 16118.8, + "end": 16122.4, + "probability": 0.0501 + }, + { + "start": 16124.54, + "end": 16124.54, + "probability": 0.0392 + }, + { + "start": 16124.54, + "end": 16124.9, + "probability": 0.2505 + }, + { + "start": 16125.18, + "end": 16125.86, + "probability": 0.2081 + }, + { + "start": 16125.9, + "end": 16126.08, + "probability": 0.8621 + }, + { + "start": 16126.61, + "end": 16128.85, + "probability": 0.813 + }, + { + "start": 16129.18, + "end": 16130.58, + "probability": 0.7509 + }, + { + "start": 16130.8, + "end": 16132.94, + "probability": 0.9114 + }, + { + "start": 16133.0, + "end": 16136.2, + "probability": 0.724 + }, + { + "start": 16136.42, + "end": 16138.0, + "probability": 0.0767 + }, + { + "start": 16138.38, + "end": 16140.42, + "probability": 0.9214 + }, + { + "start": 16140.6, + "end": 16141.66, + "probability": 0.296 + }, + { + "start": 16142.34, + "end": 16143.6, + "probability": 0.9544 + }, + { + "start": 16157.32, + "end": 16158.3, + "probability": 0.5178 + }, + { + "start": 16162.32, + "end": 16166.12, + "probability": 0.77 + }, + { + "start": 16166.94, + "end": 16168.76, + "probability": 0.9144 + }, + { + "start": 16170.58, + "end": 16173.78, + "probability": 0.9507 + }, + { + "start": 16175.34, + "end": 16177.52, + "probability": 0.9359 + }, + { + "start": 16182.76, + "end": 16184.88, + "probability": 0.8944 + }, + { + "start": 16186.2, + "end": 16188.64, + "probability": 0.9959 + }, + { + "start": 16189.52, + "end": 16191.78, + "probability": 0.9966 + }, + { + "start": 16191.94, + "end": 16198.2, + "probability": 0.9825 + }, + { + "start": 16200.82, + "end": 16204.26, + "probability": 0.9761 + }, + { + "start": 16205.16, + "end": 16207.0, + "probability": 0.7619 + }, + { + "start": 16207.96, + "end": 16209.84, + "probability": 0.817 + }, + { + "start": 16210.6, + "end": 16212.64, + "probability": 0.6878 + }, + { + "start": 16213.42, + "end": 16216.84, + "probability": 0.9556 + }, + { + "start": 16218.06, + "end": 16222.54, + "probability": 0.9415 + }, + { + "start": 16223.38, + "end": 16225.02, + "probability": 0.9902 + }, + { + "start": 16226.78, + "end": 16228.6, + "probability": 0.9869 + }, + { + "start": 16230.9, + "end": 16231.74, + "probability": 0.5109 + }, + { + "start": 16232.28, + "end": 16233.04, + "probability": 0.4829 + }, + { + "start": 16234.79, + "end": 16235.2, + "probability": 0.2287 + }, + { + "start": 16236.16, + "end": 16237.04, + "probability": 0.8806 + }, + { + "start": 16237.14, + "end": 16239.16, + "probability": 0.88 + }, + { + "start": 16239.26, + "end": 16240.48, + "probability": 0.3808 + }, + { + "start": 16241.32, + "end": 16244.18, + "probability": 0.9109 + }, + { + "start": 16244.78, + "end": 16245.12, + "probability": 0.1008 + }, + { + "start": 16246.36, + "end": 16246.72, + "probability": 0.007 + }, + { + "start": 16246.72, + "end": 16247.34, + "probability": 0.0596 + }, + { + "start": 16247.56, + "end": 16249.1, + "probability": 0.7325 + }, + { + "start": 16249.88, + "end": 16252.36, + "probability": 0.9624 + }, + { + "start": 16253.1, + "end": 16255.6, + "probability": 0.9813 + }, + { + "start": 16256.24, + "end": 16263.76, + "probability": 0.8819 + }, + { + "start": 16264.38, + "end": 16266.5, + "probability": 0.9058 + }, + { + "start": 16267.24, + "end": 16267.36, + "probability": 0.2648 + }, + { + "start": 16267.46, + "end": 16269.56, + "probability": 0.9475 + }, + { + "start": 16269.6, + "end": 16270.06, + "probability": 0.9394 + }, + { + "start": 16270.24, + "end": 16273.18, + "probability": 0.9827 + }, + { + "start": 16273.38, + "end": 16277.1, + "probability": 0.9729 + }, + { + "start": 16277.64, + "end": 16278.82, + "probability": 0.9775 + }, + { + "start": 16279.28, + "end": 16282.06, + "probability": 0.7446 + }, + { + "start": 16282.26, + "end": 16286.2, + "probability": 0.9678 + }, + { + "start": 16286.2, + "end": 16290.0, + "probability": 0.9954 + }, + { + "start": 16291.2, + "end": 16295.56, + "probability": 0.9468 + }, + { + "start": 16295.68, + "end": 16297.66, + "probability": 0.9935 + }, + { + "start": 16297.94, + "end": 16299.38, + "probability": 0.9618 + }, + { + "start": 16300.76, + "end": 16307.18, + "probability": 0.9836 + }, + { + "start": 16308.16, + "end": 16312.8, + "probability": 0.7354 + }, + { + "start": 16315.21, + "end": 16316.8, + "probability": 0.5181 + }, + { + "start": 16320.68, + "end": 16324.6, + "probability": 0.9877 + }, + { + "start": 16325.5, + "end": 16332.02, + "probability": 0.9974 + }, + { + "start": 16334.72, + "end": 16336.46, + "probability": 0.9975 + }, + { + "start": 16337.0, + "end": 16337.76, + "probability": 0.9468 + }, + { + "start": 16338.86, + "end": 16340.52, + "probability": 0.9928 + }, + { + "start": 16340.68, + "end": 16343.95, + "probability": 0.7652 + }, + { + "start": 16345.46, + "end": 16348.97, + "probability": 0.9917 + }, + { + "start": 16349.96, + "end": 16351.94, + "probability": 0.9487 + }, + { + "start": 16352.68, + "end": 16355.8, + "probability": 0.9896 + }, + { + "start": 16355.8, + "end": 16359.76, + "probability": 0.9968 + }, + { + "start": 16362.52, + "end": 16366.9, + "probability": 0.9984 + }, + { + "start": 16366.9, + "end": 16369.46, + "probability": 0.9942 + }, + { + "start": 16369.76, + "end": 16372.12, + "probability": 0.9805 + }, + { + "start": 16372.94, + "end": 16375.54, + "probability": 0.9899 + }, + { + "start": 16376.64, + "end": 16381.14, + "probability": 0.9619 + }, + { + "start": 16381.96, + "end": 16384.8, + "probability": 0.9949 + }, + { + "start": 16384.8, + "end": 16388.56, + "probability": 0.996 + }, + { + "start": 16389.26, + "end": 16391.48, + "probability": 0.9983 + }, + { + "start": 16392.78, + "end": 16395.92, + "probability": 0.9385 + }, + { + "start": 16396.32, + "end": 16398.72, + "probability": 0.5256 + }, + { + "start": 16398.86, + "end": 16403.42, + "probability": 0.964 + }, + { + "start": 16404.42, + "end": 16410.36, + "probability": 0.9932 + }, + { + "start": 16411.2, + "end": 16414.94, + "probability": 0.9961 + }, + { + "start": 16416.12, + "end": 16420.78, + "probability": 0.9806 + }, + { + "start": 16420.78, + "end": 16426.24, + "probability": 0.9388 + }, + { + "start": 16426.38, + "end": 16427.64, + "probability": 0.761 + }, + { + "start": 16428.62, + "end": 16432.02, + "probability": 0.9673 + }, + { + "start": 16432.44, + "end": 16435.32, + "probability": 0.9006 + }, + { + "start": 16435.32, + "end": 16439.92, + "probability": 0.9768 + }, + { + "start": 16440.06, + "end": 16441.74, + "probability": 0.587 + }, + { + "start": 16442.28, + "end": 16444.54, + "probability": 0.9976 + }, + { + "start": 16444.96, + "end": 16447.54, + "probability": 0.6883 + }, + { + "start": 16448.08, + "end": 16451.34, + "probability": 0.9902 + }, + { + "start": 16451.5, + "end": 16453.5, + "probability": 0.9135 + }, + { + "start": 16453.64, + "end": 16454.56, + "probability": 0.9445 + }, + { + "start": 16455.06, + "end": 16456.88, + "probability": 0.8966 + }, + { + "start": 16457.62, + "end": 16459.4, + "probability": 0.8315 + }, + { + "start": 16459.94, + "end": 16462.7, + "probability": 0.5532 + }, + { + "start": 16462.8, + "end": 16465.04, + "probability": 0.9775 + }, + { + "start": 16465.12, + "end": 16467.06, + "probability": 0.8282 + }, + { + "start": 16467.46, + "end": 16471.08, + "probability": 0.9355 + }, + { + "start": 16471.56, + "end": 16474.82, + "probability": 0.9653 + }, + { + "start": 16475.18, + "end": 16479.5, + "probability": 0.9865 + }, + { + "start": 16480.36, + "end": 16484.38, + "probability": 0.9943 + }, + { + "start": 16485.52, + "end": 16490.42, + "probability": 0.9953 + }, + { + "start": 16491.14, + "end": 16496.52, + "probability": 0.995 + }, + { + "start": 16496.6, + "end": 16498.78, + "probability": 0.9048 + }, + { + "start": 16499.38, + "end": 16501.53, + "probability": 0.9833 + }, + { + "start": 16503.16, + "end": 16508.18, + "probability": 0.9896 + }, + { + "start": 16508.26, + "end": 16508.98, + "probability": 0.7318 + }, + { + "start": 16509.12, + "end": 16510.9, + "probability": 0.4843 + }, + { + "start": 16510.98, + "end": 16514.34, + "probability": 0.9716 + }, + { + "start": 16514.52, + "end": 16514.96, + "probability": 0.9328 + }, + { + "start": 16515.22, + "end": 16516.08, + "probability": 0.965 + }, + { + "start": 16516.76, + "end": 16522.12, + "probability": 0.9872 + }, + { + "start": 16523.5, + "end": 16525.94, + "probability": 0.9983 + }, + { + "start": 16526.26, + "end": 16527.56, + "probability": 0.7668 + }, + { + "start": 16527.6, + "end": 16529.96, + "probability": 0.7976 + }, + { + "start": 16531.14, + "end": 16533.5, + "probability": 0.9646 + }, + { + "start": 16533.8, + "end": 16536.78, + "probability": 0.9974 + }, + { + "start": 16537.3, + "end": 16538.96, + "probability": 0.9978 + }, + { + "start": 16540.12, + "end": 16541.4, + "probability": 0.9688 + }, + { + "start": 16542.2, + "end": 16543.28, + "probability": 0.807 + }, + { + "start": 16543.36, + "end": 16545.4, + "probability": 0.9049 + }, + { + "start": 16545.82, + "end": 16546.97, + "probability": 0.98 + }, + { + "start": 16547.76, + "end": 16549.64, + "probability": 0.9957 + }, + { + "start": 16549.92, + "end": 16552.46, + "probability": 0.9848 + }, + { + "start": 16553.16, + "end": 16553.46, + "probability": 0.1328 + }, + { + "start": 16555.26, + "end": 16555.36, + "probability": 0.1022 + }, + { + "start": 16555.36, + "end": 16555.58, + "probability": 0.3497 + }, + { + "start": 16555.6, + "end": 16560.94, + "probability": 0.9623 + }, + { + "start": 16561.5, + "end": 16562.5, + "probability": 0.0249 + }, + { + "start": 16562.54, + "end": 16564.2, + "probability": 0.7895 + }, + { + "start": 16564.34, + "end": 16569.04, + "probability": 0.5587 + }, + { + "start": 16569.06, + "end": 16571.08, + "probability": 0.3382 + }, + { + "start": 16571.36, + "end": 16573.68, + "probability": 0.827 + }, + { + "start": 16573.84, + "end": 16575.46, + "probability": 0.7734 + }, + { + "start": 16575.7, + "end": 16579.1, + "probability": 0.9675 + }, + { + "start": 16579.22, + "end": 16579.8, + "probability": 0.1016 + }, + { + "start": 16580.48, + "end": 16581.7, + "probability": 0.4663 + }, + { + "start": 16581.76, + "end": 16584.24, + "probability": 0.83 + }, + { + "start": 16584.38, + "end": 16585.9, + "probability": 0.6961 + }, + { + "start": 16586.44, + "end": 16586.7, + "probability": 0.0695 + }, + { + "start": 16586.7, + "end": 16587.72, + "probability": 0.3302 + }, + { + "start": 16589.0, + "end": 16590.32, + "probability": 0.1469 + }, + { + "start": 16590.32, + "end": 16591.77, + "probability": 0.7659 + }, + { + "start": 16592.72, + "end": 16594.56, + "probability": 0.8178 + }, + { + "start": 16595.14, + "end": 16595.14, + "probability": 0.4295 + }, + { + "start": 16595.14, + "end": 16596.5, + "probability": 0.749 + }, + { + "start": 16596.6, + "end": 16597.3, + "probability": 0.7677 + }, + { + "start": 16597.48, + "end": 16598.26, + "probability": 0.7222 + }, + { + "start": 16598.38, + "end": 16601.64, + "probability": 0.9691 + }, + { + "start": 16601.64, + "end": 16601.8, + "probability": 0.1774 + }, + { + "start": 16601.94, + "end": 16605.06, + "probability": 0.8325 + }, + { + "start": 16605.14, + "end": 16605.72, + "probability": 0.5959 + }, + { + "start": 16605.82, + "end": 16606.9, + "probability": 0.9644 + }, + { + "start": 16607.34, + "end": 16608.1, + "probability": 0.8442 + }, + { + "start": 16608.68, + "end": 16608.88, + "probability": 0.2773 + }, + { + "start": 16608.88, + "end": 16610.78, + "probability": 0.6852 + }, + { + "start": 16611.44, + "end": 16612.44, + "probability": 0.6979 + }, + { + "start": 16612.44, + "end": 16613.83, + "probability": 0.8369 + }, + { + "start": 16613.92, + "end": 16614.82, + "probability": 0.826 + }, + { + "start": 16615.22, + "end": 16618.42, + "probability": 0.9857 + }, + { + "start": 16618.44, + "end": 16619.74, + "probability": 0.9962 + }, + { + "start": 16619.94, + "end": 16620.68, + "probability": 0.3939 + }, + { + "start": 16620.78, + "end": 16622.18, + "probability": 0.4973 + }, + { + "start": 16622.5, + "end": 16623.7, + "probability": 0.0178 + }, + { + "start": 16624.14, + "end": 16625.86, + "probability": 0.9755 + }, + { + "start": 16625.94, + "end": 16626.88, + "probability": 0.8103 + }, + { + "start": 16627.04, + "end": 16628.98, + "probability": 0.9834 + }, + { + "start": 16629.18, + "end": 16630.46, + "probability": 0.8304 + }, + { + "start": 16630.6, + "end": 16634.5, + "probability": 0.9697 + }, + { + "start": 16635.02, + "end": 16638.26, + "probability": 0.9966 + }, + { + "start": 16638.32, + "end": 16641.62, + "probability": 0.8502 + }, + { + "start": 16641.62, + "end": 16645.84, + "probability": 0.9657 + }, + { + "start": 16646.28, + "end": 16648.28, + "probability": 0.9761 + }, + { + "start": 16648.72, + "end": 16653.18, + "probability": 0.9818 + }, + { + "start": 16653.28, + "end": 16657.04, + "probability": 0.9961 + }, + { + "start": 16657.88, + "end": 16658.34, + "probability": 0.7545 + }, + { + "start": 16658.48, + "end": 16660.7, + "probability": 0.8443 + }, + { + "start": 16661.04, + "end": 16665.12, + "probability": 0.9628 + }, + { + "start": 16665.3, + "end": 16670.74, + "probability": 0.9849 + }, + { + "start": 16675.6, + "end": 16676.84, + "probability": 0.5207 + }, + { + "start": 16676.9, + "end": 16680.04, + "probability": 0.9899 + }, + { + "start": 16680.54, + "end": 16681.96, + "probability": 0.9222 + }, + { + "start": 16682.1, + "end": 16682.82, + "probability": 0.6029 + }, + { + "start": 16684.32, + "end": 16686.18, + "probability": 0.7127 + }, + { + "start": 16686.8, + "end": 16689.78, + "probability": 0.9943 + }, + { + "start": 16690.2, + "end": 16692.36, + "probability": 0.9262 + }, + { + "start": 16692.42, + "end": 16694.8, + "probability": 0.9937 + }, + { + "start": 16695.48, + "end": 16701.66, + "probability": 0.9515 + }, + { + "start": 16702.34, + "end": 16706.46, + "probability": 0.9953 + }, + { + "start": 16707.04, + "end": 16708.38, + "probability": 0.6683 + }, + { + "start": 16709.22, + "end": 16712.74, + "probability": 0.9692 + }, + { + "start": 16712.74, + "end": 16716.14, + "probability": 0.9919 + }, + { + "start": 16716.74, + "end": 16722.32, + "probability": 0.9884 + }, + { + "start": 16722.74, + "end": 16724.7, + "probability": 0.9902 + }, + { + "start": 16725.26, + "end": 16725.84, + "probability": 0.7199 + }, + { + "start": 16726.36, + "end": 16729.42, + "probability": 0.9118 + }, + { + "start": 16729.98, + "end": 16732.28, + "probability": 0.9077 + }, + { + "start": 16732.44, + "end": 16734.16, + "probability": 0.9893 + }, + { + "start": 16734.3, + "end": 16738.16, + "probability": 0.9933 + }, + { + "start": 16738.62, + "end": 16741.22, + "probability": 0.9661 + }, + { + "start": 16741.4, + "end": 16745.6, + "probability": 0.8183 + }, + { + "start": 16745.6, + "end": 16747.42, + "probability": 0.7773 + }, + { + "start": 16747.44, + "end": 16747.68, + "probability": 0.0286 + }, + { + "start": 16747.68, + "end": 16749.26, + "probability": 0.1854 + }, + { + "start": 16749.6, + "end": 16750.18, + "probability": 0.4685 + }, + { + "start": 16750.26, + "end": 16751.66, + "probability": 0.9221 + }, + { + "start": 16752.54, + "end": 16754.5, + "probability": 0.9907 + }, + { + "start": 16755.24, + "end": 16755.62, + "probability": 0.1925 + }, + { + "start": 16755.72, + "end": 16758.56, + "probability": 0.9159 + }, + { + "start": 16758.82, + "end": 16765.56, + "probability": 0.8638 + }, + { + "start": 16766.22, + "end": 16769.0, + "probability": 0.9822 + }, + { + "start": 16769.5, + "end": 16772.48, + "probability": 0.896 + }, + { + "start": 16772.82, + "end": 16774.2, + "probability": 0.9243 + }, + { + "start": 16774.54, + "end": 16774.9, + "probability": 0.7657 + }, + { + "start": 16774.98, + "end": 16775.48, + "probability": 0.5939 + }, + { + "start": 16775.66, + "end": 16778.76, + "probability": 0.7578 + }, + { + "start": 16778.84, + "end": 16779.44, + "probability": 0.829 + }, + { + "start": 16790.38, + "end": 16792.66, + "probability": 0.8678 + }, + { + "start": 16793.6, + "end": 16794.56, + "probability": 0.2971 + }, + { + "start": 16794.92, + "end": 16795.26, + "probability": 0.5346 + }, + { + "start": 16795.28, + "end": 16796.58, + "probability": 0.8237 + }, + { + "start": 16797.28, + "end": 16798.02, + "probability": 0.5126 + }, + { + "start": 16801.37, + "end": 16803.84, + "probability": 0.7532 + }, + { + "start": 16804.06, + "end": 16804.86, + "probability": 0.4856 + }, + { + "start": 16815.38, + "end": 16817.96, + "probability": 0.6603 + }, + { + "start": 16819.34, + "end": 16821.84, + "probability": 0.9941 + }, + { + "start": 16822.82, + "end": 16823.66, + "probability": 0.7091 + }, + { + "start": 16824.28, + "end": 16826.0, + "probability": 0.9102 + }, + { + "start": 16827.32, + "end": 16828.42, + "probability": 0.947 + }, + { + "start": 16829.5, + "end": 16833.94, + "probability": 0.7773 + }, + { + "start": 16835.78, + "end": 16836.95, + "probability": 0.9968 + }, + { + "start": 16837.46, + "end": 16838.71, + "probability": 0.9956 + }, + { + "start": 16839.92, + "end": 16842.4, + "probability": 0.9841 + }, + { + "start": 16843.04, + "end": 16846.71, + "probability": 0.9468 + }, + { + "start": 16847.84, + "end": 16851.7, + "probability": 0.9863 + }, + { + "start": 16852.38, + "end": 16853.58, + "probability": 0.9294 + }, + { + "start": 16853.84, + "end": 16854.77, + "probability": 0.9365 + }, + { + "start": 16855.0, + "end": 16861.56, + "probability": 0.898 + }, + { + "start": 16861.56, + "end": 16869.44, + "probability": 0.6833 + }, + { + "start": 16870.44, + "end": 16872.9, + "probability": 0.7689 + }, + { + "start": 16873.6, + "end": 16874.4, + "probability": 0.8555 + }, + { + "start": 16875.26, + "end": 16885.82, + "probability": 0.9636 + }, + { + "start": 16887.2, + "end": 16888.14, + "probability": 0.6319 + }, + { + "start": 16889.16, + "end": 16891.0, + "probability": 0.9689 + }, + { + "start": 16892.1, + "end": 16896.16, + "probability": 0.9905 + }, + { + "start": 16896.16, + "end": 16901.38, + "probability": 0.9508 + }, + { + "start": 16902.18, + "end": 16905.74, + "probability": 0.8447 + }, + { + "start": 16906.44, + "end": 16908.04, + "probability": 0.8476 + }, + { + "start": 16908.62, + "end": 16913.96, + "probability": 0.8658 + }, + { + "start": 16915.08, + "end": 16916.8, + "probability": 0.7534 + }, + { + "start": 16917.68, + "end": 16921.58, + "probability": 0.9914 + }, + { + "start": 16922.42, + "end": 16924.04, + "probability": 0.9074 + }, + { + "start": 16924.7, + "end": 16927.28, + "probability": 0.9172 + }, + { + "start": 16928.84, + "end": 16933.18, + "probability": 0.9084 + }, + { + "start": 16934.58, + "end": 16936.62, + "probability": 0.9812 + }, + { + "start": 16937.18, + "end": 16941.3, + "probability": 0.965 + }, + { + "start": 16942.22, + "end": 16944.6, + "probability": 0.8955 + }, + { + "start": 16945.14, + "end": 16948.42, + "probability": 0.9921 + }, + { + "start": 16948.88, + "end": 16951.5, + "probability": 0.9836 + }, + { + "start": 16952.72, + "end": 16955.52, + "probability": 0.9863 + }, + { + "start": 16955.52, + "end": 16959.74, + "probability": 0.9916 + }, + { + "start": 16961.84, + "end": 16967.22, + "probability": 0.9908 + }, + { + "start": 16967.86, + "end": 16971.76, + "probability": 0.9916 + }, + { + "start": 16972.58, + "end": 16978.06, + "probability": 0.8569 + }, + { + "start": 16979.08, + "end": 16986.0, + "probability": 0.9237 + }, + { + "start": 16987.3, + "end": 16994.52, + "probability": 0.9566 + }, + { + "start": 16994.52, + "end": 17001.82, + "probability": 0.9984 + }, + { + "start": 17002.3, + "end": 17004.86, + "probability": 0.9088 + }, + { + "start": 17007.18, + "end": 17008.2, + "probability": 0.7356 + }, + { + "start": 17008.74, + "end": 17010.36, + "probability": 0.9463 + }, + { + "start": 17011.16, + "end": 17013.58, + "probability": 0.8862 + }, + { + "start": 17014.9, + "end": 17016.3, + "probability": 0.9379 + }, + { + "start": 17017.0, + "end": 17018.74, + "probability": 0.8696 + }, + { + "start": 17020.06, + "end": 17025.92, + "probability": 0.7888 + }, + { + "start": 17026.58, + "end": 17029.36, + "probability": 0.9087 + }, + { + "start": 17030.12, + "end": 17032.8, + "probability": 0.9663 + }, + { + "start": 17034.24, + "end": 17037.44, + "probability": 0.498 + }, + { + "start": 17038.28, + "end": 17041.64, + "probability": 0.7095 + }, + { + "start": 17042.88, + "end": 17043.58, + "probability": 0.5426 + }, + { + "start": 17044.46, + "end": 17053.7, + "probability": 0.9838 + }, + { + "start": 17055.76, + "end": 17059.26, + "probability": 0.9706 + }, + { + "start": 17059.46, + "end": 17061.22, + "probability": 0.1532 + }, + { + "start": 17061.5, + "end": 17063.62, + "probability": 0.6509 + }, + { + "start": 17064.5, + "end": 17068.17, + "probability": 0.8092 + }, + { + "start": 17068.36, + "end": 17070.06, + "probability": 0.9515 + }, + { + "start": 17070.12, + "end": 17071.66, + "probability": 0.8805 + }, + { + "start": 17071.84, + "end": 17072.56, + "probability": 0.0689 + }, + { + "start": 17072.68, + "end": 17074.34, + "probability": 0.3205 + }, + { + "start": 17074.42, + "end": 17074.78, + "probability": 0.4336 + }, + { + "start": 17074.9, + "end": 17076.72, + "probability": 0.5332 + }, + { + "start": 17076.82, + "end": 17077.98, + "probability": 0.8555 + }, + { + "start": 17078.84, + "end": 17080.96, + "probability": 0.9943 + }, + { + "start": 17081.52, + "end": 17083.02, + "probability": 0.8497 + }, + { + "start": 17084.0, + "end": 17087.06, + "probability": 0.7781 + }, + { + "start": 17087.58, + "end": 17088.9, + "probability": 0.7628 + }, + { + "start": 17089.74, + "end": 17092.32, + "probability": 0.9503 + }, + { + "start": 17092.98, + "end": 17093.46, + "probability": 0.6013 + }, + { + "start": 17093.54, + "end": 17097.76, + "probability": 0.9944 + }, + { + "start": 17097.78, + "end": 17098.56, + "probability": 0.8153 + }, + { + "start": 17099.58, + "end": 17100.44, + "probability": 0.7853 + }, + { + "start": 17100.54, + "end": 17101.06, + "probability": 0.9618 + }, + { + "start": 17101.16, + "end": 17105.24, + "probability": 0.7686 + }, + { + "start": 17105.88, + "end": 17106.84, + "probability": 0.7607 + }, + { + "start": 17108.0, + "end": 17110.02, + "probability": 0.7765 + }, + { + "start": 17110.32, + "end": 17114.42, + "probability": 0.9009 + }, + { + "start": 17114.42, + "end": 17118.08, + "probability": 0.9639 + }, + { + "start": 17119.2, + "end": 17123.64, + "probability": 0.9707 + }, + { + "start": 17124.36, + "end": 17132.84, + "probability": 0.965 + }, + { + "start": 17135.48, + "end": 17139.0, + "probability": 0.884 + }, + { + "start": 17139.66, + "end": 17142.14, + "probability": 0.9451 + }, + { + "start": 17142.7, + "end": 17144.8, + "probability": 0.9148 + }, + { + "start": 17145.02, + "end": 17145.98, + "probability": 0.9076 + }, + { + "start": 17146.48, + "end": 17150.86, + "probability": 0.9771 + }, + { + "start": 17152.4, + "end": 17152.96, + "probability": 0.8896 + }, + { + "start": 17154.76, + "end": 17158.8, + "probability": 0.9883 + }, + { + "start": 17158.8, + "end": 17163.86, + "probability": 0.9765 + }, + { + "start": 17165.06, + "end": 17170.22, + "probability": 0.9912 + }, + { + "start": 17170.76, + "end": 17175.86, + "probability": 0.9866 + }, + { + "start": 17176.5, + "end": 17183.0, + "probability": 0.9128 + }, + { + "start": 17183.62, + "end": 17187.3, + "probability": 0.9802 + }, + { + "start": 17191.31, + "end": 17191.52, + "probability": 0.0372 + }, + { + "start": 17192.44, + "end": 17192.74, + "probability": 0.0198 + }, + { + "start": 17192.74, + "end": 17192.74, + "probability": 0.1512 + }, + { + "start": 17192.74, + "end": 17192.74, + "probability": 0.1468 + }, + { + "start": 17192.74, + "end": 17194.02, + "probability": 0.3038 + }, + { + "start": 17194.46, + "end": 17194.58, + "probability": 0.7614 + }, + { + "start": 17194.58, + "end": 17198.92, + "probability": 0.8542 + }, + { + "start": 17199.9, + "end": 17205.42, + "probability": 0.9769 + }, + { + "start": 17205.64, + "end": 17208.02, + "probability": 0.9764 + }, + { + "start": 17208.58, + "end": 17209.41, + "probability": 0.9683 + }, + { + "start": 17210.66, + "end": 17217.04, + "probability": 0.9773 + }, + { + "start": 17217.94, + "end": 17221.42, + "probability": 0.6779 + }, + { + "start": 17222.68, + "end": 17228.82, + "probability": 0.9855 + }, + { + "start": 17230.14, + "end": 17235.02, + "probability": 0.5777 + }, + { + "start": 17237.0, + "end": 17237.0, + "probability": 0.14 + }, + { + "start": 17237.0, + "end": 17237.0, + "probability": 0.5807 + }, + { + "start": 17237.0, + "end": 17240.34, + "probability": 0.804 + }, + { + "start": 17240.42, + "end": 17242.4, + "probability": 0.9158 + }, + { + "start": 17242.8, + "end": 17249.48, + "probability": 0.8378 + }, + { + "start": 17249.72, + "end": 17251.14, + "probability": 0.883 + }, + { + "start": 17252.2, + "end": 17256.92, + "probability": 0.9433 + }, + { + "start": 17257.28, + "end": 17262.96, + "probability": 0.9314 + }, + { + "start": 17264.58, + "end": 17268.02, + "probability": 0.8508 + }, + { + "start": 17268.68, + "end": 17272.18, + "probability": 0.9117 + }, + { + "start": 17272.18, + "end": 17274.68, + "probability": 0.8887 + }, + { + "start": 17275.48, + "end": 17279.28, + "probability": 0.9585 + }, + { + "start": 17280.52, + "end": 17283.84, + "probability": 0.98 + }, + { + "start": 17284.3, + "end": 17287.76, + "probability": 0.8866 + }, + { + "start": 17288.86, + "end": 17292.28, + "probability": 0.9623 + }, + { + "start": 17293.32, + "end": 17297.3, + "probability": 0.9279 + }, + { + "start": 17297.3, + "end": 17300.9, + "probability": 0.9902 + }, + { + "start": 17302.64, + "end": 17306.82, + "probability": 0.9017 + }, + { + "start": 17307.52, + "end": 17309.06, + "probability": 0.9287 + }, + { + "start": 17309.82, + "end": 17310.72, + "probability": 0.8818 + }, + { + "start": 17312.48, + "end": 17313.68, + "probability": 0.8981 + }, + { + "start": 17314.9, + "end": 17320.94, + "probability": 0.9839 + }, + { + "start": 17321.52, + "end": 17325.68, + "probability": 0.9922 + }, + { + "start": 17328.04, + "end": 17330.64, + "probability": 0.1804 + }, + { + "start": 17330.64, + "end": 17336.0, + "probability": 0.7485 + }, + { + "start": 17338.56, + "end": 17343.9, + "probability": 0.9888 + }, + { + "start": 17344.48, + "end": 17346.02, + "probability": 0.9573 + }, + { + "start": 17346.56, + "end": 17351.38, + "probability": 0.994 + }, + { + "start": 17352.72, + "end": 17356.9, + "probability": 0.9475 + }, + { + "start": 17358.18, + "end": 17358.98, + "probability": 0.5352 + }, + { + "start": 17359.02, + "end": 17363.06, + "probability": 0.8311 + }, + { + "start": 17363.76, + "end": 17369.44, + "probability": 0.8521 + }, + { + "start": 17370.44, + "end": 17373.04, + "probability": 0.9911 + }, + { + "start": 17373.68, + "end": 17378.08, + "probability": 0.9891 + }, + { + "start": 17378.7, + "end": 17385.66, + "probability": 0.9935 + }, + { + "start": 17388.42, + "end": 17397.56, + "probability": 0.9849 + }, + { + "start": 17398.26, + "end": 17402.9, + "probability": 0.8608 + }, + { + "start": 17403.78, + "end": 17409.16, + "probability": 0.9512 + }, + { + "start": 17409.16, + "end": 17414.76, + "probability": 0.8271 + }, + { + "start": 17415.5, + "end": 17425.46, + "probability": 0.9415 + }, + { + "start": 17425.48, + "end": 17432.78, + "probability": 0.9729 + }, + { + "start": 17432.78, + "end": 17437.22, + "probability": 0.9906 + }, + { + "start": 17437.22, + "end": 17441.74, + "probability": 0.9746 + }, + { + "start": 17442.52, + "end": 17444.38, + "probability": 0.8933 + }, + { + "start": 17444.94, + "end": 17446.74, + "probability": 0.9933 + }, + { + "start": 17447.28, + "end": 17453.02, + "probability": 0.9109 + }, + { + "start": 17456.14, + "end": 17461.28, + "probability": 0.5985 + }, + { + "start": 17461.58, + "end": 17465.4, + "probability": 0.5264 + }, + { + "start": 17465.4, + "end": 17465.4, + "probability": 0.3541 + }, + { + "start": 17465.4, + "end": 17466.32, + "probability": 0.0651 + }, + { + "start": 17466.34, + "end": 17466.92, + "probability": 0.5539 + }, + { + "start": 17467.22, + "end": 17468.04, + "probability": 0.391 + }, + { + "start": 17468.14, + "end": 17469.04, + "probability": 0.6143 + }, + { + "start": 17469.74, + "end": 17471.54, + "probability": 0.811 + }, + { + "start": 17471.98, + "end": 17473.04, + "probability": 0.9238 + }, + { + "start": 17473.08, + "end": 17473.86, + "probability": 0.5751 + }, + { + "start": 17474.12, + "end": 17475.54, + "probability": 0.9645 + }, + { + "start": 17475.6, + "end": 17476.72, + "probability": 0.9224 + }, + { + "start": 17477.08, + "end": 17477.7, + "probability": 0.6032 + }, + { + "start": 17477.78, + "end": 17479.06, + "probability": 0.086 + }, + { + "start": 17479.18, + "end": 17479.86, + "probability": 0.4937 + }, + { + "start": 17479.92, + "end": 17481.26, + "probability": 0.6189 + }, + { + "start": 17481.86, + "end": 17483.44, + "probability": 0.671 + }, + { + "start": 17483.49, + "end": 17485.14, + "probability": 0.9448 + }, + { + "start": 17485.48, + "end": 17486.14, + "probability": 0.92 + }, + { + "start": 17486.64, + "end": 17487.88, + "probability": 0.9852 + }, + { + "start": 17489.1, + "end": 17489.12, + "probability": 0.0421 + }, + { + "start": 17489.12, + "end": 17497.48, + "probability": 0.9771 + }, + { + "start": 17498.14, + "end": 17499.32, + "probability": 0.6001 + }, + { + "start": 17499.52, + "end": 17499.54, + "probability": 0.0569 + }, + { + "start": 17499.54, + "end": 17503.06, + "probability": 0.9435 + }, + { + "start": 17503.1, + "end": 17503.7, + "probability": 0.1363 + }, + { + "start": 17503.7, + "end": 17503.7, + "probability": 0.0554 + }, + { + "start": 17503.7, + "end": 17503.7, + "probability": 0.1354 + }, + { + "start": 17503.7, + "end": 17510.18, + "probability": 0.4602 + }, + { + "start": 17510.18, + "end": 17514.14, + "probability": 0.9984 + }, + { + "start": 17516.1, + "end": 17516.56, + "probability": 0.0333 + }, + { + "start": 17517.9, + "end": 17517.9, + "probability": 0.2575 + }, + { + "start": 17517.9, + "end": 17517.9, + "probability": 0.0354 + }, + { + "start": 17517.9, + "end": 17519.73, + "probability": 0.5435 + }, + { + "start": 17520.86, + "end": 17524.58, + "probability": 0.8505 + }, + { + "start": 17525.14, + "end": 17525.32, + "probability": 0.4906 + }, + { + "start": 17525.32, + "end": 17530.84, + "probability": 0.7279 + }, + { + "start": 17531.22, + "end": 17531.22, + "probability": 0.348 + }, + { + "start": 17531.22, + "end": 17531.98, + "probability": 0.5149 + }, + { + "start": 17532.68, + "end": 17532.92, + "probability": 0.3319 + }, + { + "start": 17533.14, + "end": 17533.18, + "probability": 0.7793 + }, + { + "start": 17533.18, + "end": 17533.18, + "probability": 0.0471 + }, + { + "start": 17533.18, + "end": 17534.48, + "probability": 0.4648 + }, + { + "start": 17534.54, + "end": 17537.88, + "probability": 0.7923 + }, + { + "start": 17538.16, + "end": 17539.8, + "probability": 0.8506 + }, + { + "start": 17541.3, + "end": 17542.82, + "probability": 0.6823 + }, + { + "start": 17542.9, + "end": 17542.94, + "probability": 0.2471 + }, + { + "start": 17542.94, + "end": 17543.18, + "probability": 0.4818 + }, + { + "start": 17543.18, + "end": 17546.12, + "probability": 0.4256 + }, + { + "start": 17546.12, + "end": 17546.52, + "probability": 0.2913 + }, + { + "start": 17546.63, + "end": 17549.72, + "probability": 0.9338 + }, + { + "start": 17550.08, + "end": 17551.3, + "probability": 0.9875 + }, + { + "start": 17551.44, + "end": 17552.74, + "probability": 0.9714 + }, + { + "start": 17553.28, + "end": 17553.86, + "probability": 0.5931 + }, + { + "start": 17554.36, + "end": 17555.88, + "probability": 0.3662 + }, + { + "start": 17556.12, + "end": 17558.06, + "probability": 0.4348 + }, + { + "start": 17558.58, + "end": 17563.46, + "probability": 0.7915 + }, + { + "start": 17564.3, + "end": 17566.98, + "probability": 0.9597 + }, + { + "start": 17567.56, + "end": 17567.68, + "probability": 0.0673 + }, + { + "start": 17567.68, + "end": 17572.64, + "probability": 0.9158 + }, + { + "start": 17573.04, + "end": 17573.6, + "probability": 0.1436 + }, + { + "start": 17573.6, + "end": 17574.4, + "probability": 0.1301 + }, + { + "start": 17575.48, + "end": 17579.98, + "probability": 0.6155 + }, + { + "start": 17580.86, + "end": 17582.54, + "probability": 0.828 + }, + { + "start": 17583.38, + "end": 17586.44, + "probability": 0.9139 + }, + { + "start": 17586.5, + "end": 17588.68, + "probability": 0.7622 + }, + { + "start": 17588.82, + "end": 17589.24, + "probability": 0.1112 + }, + { + "start": 17589.8, + "end": 17593.52, + "probability": 0.979 + }, + { + "start": 17594.06, + "end": 17600.94, + "probability": 0.9501 + }, + { + "start": 17601.48, + "end": 17604.82, + "probability": 0.9897 + }, + { + "start": 17605.24, + "end": 17611.52, + "probability": 0.9338 + }, + { + "start": 17611.52, + "end": 17612.08, + "probability": 0.7063 + }, + { + "start": 17612.6, + "end": 17612.68, + "probability": 0.1748 + }, + { + "start": 17612.92, + "end": 17612.92, + "probability": 0.0537 + }, + { + "start": 17612.92, + "end": 17612.92, + "probability": 0.0217 + }, + { + "start": 17612.92, + "end": 17614.1, + "probability": 0.8148 + }, + { + "start": 17615.04, + "end": 17616.7, + "probability": 0.9712 + }, + { + "start": 17617.8, + "end": 17621.12, + "probability": 0.9806 + }, + { + "start": 17621.12, + "end": 17621.46, + "probability": 0.6575 + }, + { + "start": 17621.56, + "end": 17624.26, + "probability": 0.7891 + }, + { + "start": 17624.44, + "end": 17625.38, + "probability": 0.6525 + }, + { + "start": 17625.84, + "end": 17626.36, + "probability": 0.7164 + }, + { + "start": 17626.44, + "end": 17628.0, + "probability": 0.6745 + }, + { + "start": 17628.38, + "end": 17629.18, + "probability": 0.9528 + }, + { + "start": 17629.22, + "end": 17633.28, + "probability": 0.9234 + }, + { + "start": 17633.46, + "end": 17634.52, + "probability": 0.9414 + }, + { + "start": 17635.0, + "end": 17637.64, + "probability": 0.9658 + }, + { + "start": 17637.92, + "end": 17639.2, + "probability": 0.9277 + }, + { + "start": 17639.62, + "end": 17640.26, + "probability": 0.661 + }, + { + "start": 17640.46, + "end": 17642.0, + "probability": 0.8082 + }, + { + "start": 17642.08, + "end": 17643.7, + "probability": 0.0534 + }, + { + "start": 17644.38, + "end": 17646.2, + "probability": 0.5299 + }, + { + "start": 17646.24, + "end": 17649.44, + "probability": 0.3979 + }, + { + "start": 17650.34, + "end": 17650.34, + "probability": 0.5191 + }, + { + "start": 17650.62, + "end": 17651.16, + "probability": 0.2477 + }, + { + "start": 17656.82, + "end": 17658.38, + "probability": 0.839 + }, + { + "start": 17660.6, + "end": 17661.64, + "probability": 0.9219 + }, + { + "start": 17662.74, + "end": 17662.74, + "probability": 0.0025 + }, + { + "start": 17663.46, + "end": 17667.76, + "probability": 0.0346 + }, + { + "start": 17667.76, + "end": 17672.4, + "probability": 0.9649 + }, + { + "start": 17672.4, + "end": 17673.22, + "probability": 0.6336 + }, + { + "start": 17673.34, + "end": 17673.64, + "probability": 0.6667 + }, + { + "start": 17673.78, + "end": 17675.6, + "probability": 0.979 + }, + { + "start": 17675.7, + "end": 17680.1, + "probability": 0.9873 + }, + { + "start": 17681.16, + "end": 17685.54, + "probability": 0.8268 + }, + { + "start": 17685.6, + "end": 17687.92, + "probability": 0.9421 + }, + { + "start": 17688.64, + "end": 17692.64, + "probability": 0.9777 + }, + { + "start": 17693.34, + "end": 17696.14, + "probability": 0.9953 + }, + { + "start": 17697.88, + "end": 17699.9, + "probability": 0.7514 + }, + { + "start": 17700.54, + "end": 17704.18, + "probability": 0.9153 + }, + { + "start": 17704.8, + "end": 17706.0, + "probability": 0.8652 + }, + { + "start": 17706.64, + "end": 17708.66, + "probability": 0.995 + }, + { + "start": 17708.84, + "end": 17709.72, + "probability": 0.979 + }, + { + "start": 17710.52, + "end": 17711.86, + "probability": 0.9616 + }, + { + "start": 17712.34, + "end": 17714.0, + "probability": 0.8703 + }, + { + "start": 17714.12, + "end": 17714.82, + "probability": 0.6794 + }, + { + "start": 17715.32, + "end": 17717.22, + "probability": 0.8162 + }, + { + "start": 17718.52, + "end": 17721.26, + "probability": 0.4407 + }, + { + "start": 17721.92, + "end": 17724.64, + "probability": 0.9513 + }, + { + "start": 17725.34, + "end": 17728.2, + "probability": 0.9883 + }, + { + "start": 17728.24, + "end": 17733.22, + "probability": 0.9824 + }, + { + "start": 17734.74, + "end": 17736.88, + "probability": 0.994 + }, + { + "start": 17736.94, + "end": 17740.34, + "probability": 0.9927 + }, + { + "start": 17740.96, + "end": 17744.5, + "probability": 0.9884 + }, + { + "start": 17744.8, + "end": 17746.24, + "probability": 0.9213 + }, + { + "start": 17747.5, + "end": 17750.96, + "probability": 0.9742 + }, + { + "start": 17752.18, + "end": 17755.94, + "probability": 0.8002 + }, + { + "start": 17757.78, + "end": 17760.52, + "probability": 0.6353 + }, + { + "start": 17761.04, + "end": 17762.32, + "probability": 0.2645 + }, + { + "start": 17762.32, + "end": 17762.32, + "probability": 0.0852 + }, + { + "start": 17762.32, + "end": 17764.45, + "probability": 0.7587 + }, + { + "start": 17765.28, + "end": 17767.84, + "probability": 0.7769 + }, + { + "start": 17768.38, + "end": 17773.68, + "probability": 0.9945 + }, + { + "start": 17773.78, + "end": 17774.3, + "probability": 0.7599 + }, + { + "start": 17775.46, + "end": 17778.54, + "probability": 0.991 + }, + { + "start": 17778.64, + "end": 17779.6, + "probability": 0.8852 + }, + { + "start": 17779.82, + "end": 17782.56, + "probability": 0.9902 + }, + { + "start": 17782.9, + "end": 17787.02, + "probability": 0.9337 + }, + { + "start": 17787.28, + "end": 17787.3, + "probability": 0.2343 + }, + { + "start": 17787.46, + "end": 17788.59, + "probability": 0.9171 + }, + { + "start": 17789.1, + "end": 17791.54, + "probability": 0.9951 + }, + { + "start": 17791.88, + "end": 17794.14, + "probability": 0.8957 + }, + { + "start": 17794.76, + "end": 17797.5, + "probability": 0.9801 + }, + { + "start": 17797.8, + "end": 17800.88, + "probability": 0.9894 + }, + { + "start": 17801.52, + "end": 17803.54, + "probability": 0.8608 + }, + { + "start": 17804.14, + "end": 17806.82, + "probability": 0.9883 + }, + { + "start": 17807.26, + "end": 17809.96, + "probability": 0.9929 + }, + { + "start": 17810.3, + "end": 17811.6, + "probability": 0.8108 + }, + { + "start": 17812.72, + "end": 17813.5, + "probability": 0.7637 + }, + { + "start": 17813.68, + "end": 17816.18, + "probability": 0.9697 + }, + { + "start": 17816.76, + "end": 17819.38, + "probability": 0.6742 + }, + { + "start": 17819.78, + "end": 17820.55, + "probability": 0.9694 + }, + { + "start": 17821.5, + "end": 17823.3, + "probability": 0.959 + }, + { + "start": 17823.7, + "end": 17825.02, + "probability": 0.8947 + }, + { + "start": 17825.1, + "end": 17825.94, + "probability": 0.9449 + }, + { + "start": 17826.1, + "end": 17827.96, + "probability": 0.9972 + }, + { + "start": 17828.72, + "end": 17835.54, + "probability": 0.9875 + }, + { + "start": 17835.68, + "end": 17837.34, + "probability": 0.9966 + }, + { + "start": 17837.6, + "end": 17838.74, + "probability": 0.9468 + }, + { + "start": 17838.94, + "end": 17840.84, + "probability": 0.8231 + }, + { + "start": 17841.02, + "end": 17844.04, + "probability": 0.9911 + }, + { + "start": 17845.0, + "end": 17850.56, + "probability": 0.9889 + }, + { + "start": 17850.56, + "end": 17854.82, + "probability": 0.9976 + }, + { + "start": 17855.4, + "end": 17857.3, + "probability": 0.9844 + }, + { + "start": 17857.42, + "end": 17859.66, + "probability": 0.9888 + }, + { + "start": 17859.8, + "end": 17860.88, + "probability": 0.8199 + }, + { + "start": 17861.78, + "end": 17866.26, + "probability": 0.8623 + }, + { + "start": 17866.9, + "end": 17873.5, + "probability": 0.9694 + }, + { + "start": 17873.6, + "end": 17877.98, + "probability": 0.9082 + }, + { + "start": 17879.14, + "end": 17885.58, + "probability": 0.8555 + }, + { + "start": 17885.68, + "end": 17886.27, + "probability": 0.9269 + }, + { + "start": 17887.7, + "end": 17889.76, + "probability": 0.8137 + }, + { + "start": 17889.84, + "end": 17889.86, + "probability": 0.3362 + }, + { + "start": 17889.88, + "end": 17889.95, + "probability": 0.6598 + }, + { + "start": 17890.22, + "end": 17891.3, + "probability": 0.2401 + }, + { + "start": 17891.46, + "end": 17892.21, + "probability": 0.6667 + }, + { + "start": 17892.82, + "end": 17894.76, + "probability": 0.9514 + }, + { + "start": 17895.02, + "end": 17895.72, + "probability": 0.6746 + }, + { + "start": 17895.94, + "end": 17896.58, + "probability": 0.766 + }, + { + "start": 17896.9, + "end": 17898.16, + "probability": 0.6596 + }, + { + "start": 17898.83, + "end": 17900.74, + "probability": 0.6953 + }, + { + "start": 17900.8, + "end": 17901.66, + "probability": 0.6331 + }, + { + "start": 17904.36, + "end": 17904.84, + "probability": 0.0006 + }, + { + "start": 17904.94, + "end": 17905.58, + "probability": 0.5248 + }, + { + "start": 17905.58, + "end": 17905.58, + "probability": 0.5756 + }, + { + "start": 17905.68, + "end": 17905.86, + "probability": 0.0099 + }, + { + "start": 17905.9, + "end": 17905.9, + "probability": 0.0534 + }, + { + "start": 17905.9, + "end": 17905.9, + "probability": 0.0138 + }, + { + "start": 17905.9, + "end": 17905.9, + "probability": 0.0389 + }, + { + "start": 17905.9, + "end": 17907.65, + "probability": 0.9866 + }, + { + "start": 17908.7, + "end": 17914.52, + "probability": 0.9937 + }, + { + "start": 17915.26, + "end": 17918.47, + "probability": 0.9458 + }, + { + "start": 17919.52, + "end": 17922.22, + "probability": 0.9888 + }, + { + "start": 17922.26, + "end": 17924.91, + "probability": 0.9891 + }, + { + "start": 17925.66, + "end": 17928.24, + "probability": 0.9883 + }, + { + "start": 17928.84, + "end": 17932.58, + "probability": 0.6987 + }, + { + "start": 17932.8, + "end": 17933.16, + "probability": 0.5766 + }, + { + "start": 17933.22, + "end": 17936.26, + "probability": 0.7173 + }, + { + "start": 17936.74, + "end": 17937.92, + "probability": 0.8932 + }, + { + "start": 17938.08, + "end": 17938.16, + "probability": 0.7678 + }, + { + "start": 17938.26, + "end": 17940.46, + "probability": 0.9937 + }, + { + "start": 17940.52, + "end": 17943.84, + "probability": 0.9883 + }, + { + "start": 17943.84, + "end": 17944.1, + "probability": 0.6693 + }, + { + "start": 17944.86, + "end": 17945.32, + "probability": 0.5355 + }, + { + "start": 17945.5, + "end": 17947.15, + "probability": 0.6429 + }, + { + "start": 17950.22, + "end": 17951.04, + "probability": 0.6847 + }, + { + "start": 17951.14, + "end": 17953.6, + "probability": 0.8981 + }, + { + "start": 17953.68, + "end": 17955.84, + "probability": 0.9165 + }, + { + "start": 17956.38, + "end": 17956.78, + "probability": 0.4474 + }, + { + "start": 17959.26, + "end": 17960.28, + "probability": 0.0033 + }, + { + "start": 17961.88, + "end": 17964.18, + "probability": 0.4847 + }, + { + "start": 17964.24, + "end": 17965.52, + "probability": 0.6473 + }, + { + "start": 17965.68, + "end": 17967.34, + "probability": 0.9808 + }, + { + "start": 17968.24, + "end": 17969.3, + "probability": 0.8784 + }, + { + "start": 17970.76, + "end": 17971.54, + "probability": 0.8831 + }, + { + "start": 17971.62, + "end": 17971.96, + "probability": 0.9208 + }, + { + "start": 17979.56, + "end": 17981.68, + "probability": 0.7572 + }, + { + "start": 17983.26, + "end": 17984.52, + "probability": 0.7598 + }, + { + "start": 17984.74, + "end": 17987.92, + "probability": 0.8434 + }, + { + "start": 17989.4, + "end": 17996.82, + "probability": 0.9897 + }, + { + "start": 17996.95, + "end": 17997.56, + "probability": 0.5201 + }, + { + "start": 17998.7, + "end": 18001.62, + "probability": 0.0133 + }, + { + "start": 18001.62, + "end": 18002.44, + "probability": 0.0692 + }, + { + "start": 18002.44, + "end": 18002.44, + "probability": 0.0195 + }, + { + "start": 18002.44, + "end": 18002.54, + "probability": 0.319 + }, + { + "start": 18002.54, + "end": 18003.72, + "probability": 0.8556 + }, + { + "start": 18003.94, + "end": 18005.54, + "probability": 0.9495 + }, + { + "start": 18005.7, + "end": 18006.07, + "probability": 0.3024 + }, + { + "start": 18006.6, + "end": 18006.72, + "probability": 0.039 + }, + { + "start": 18006.72, + "end": 18007.86, + "probability": 0.6467 + }, + { + "start": 18008.36, + "end": 18010.9, + "probability": 0.9971 + }, + { + "start": 18010.98, + "end": 18014.24, + "probability": 0.865 + }, + { + "start": 18014.38, + "end": 18015.3, + "probability": 0.6018 + }, + { + "start": 18015.48, + "end": 18016.9, + "probability": 0.7668 + }, + { + "start": 18017.18, + "end": 18018.63, + "probability": 0.9919 + }, + { + "start": 18018.94, + "end": 18022.78, + "probability": 0.9968 + }, + { + "start": 18023.34, + "end": 18026.16, + "probability": 0.9013 + }, + { + "start": 18026.7, + "end": 18027.34, + "probability": 0.8336 + }, + { + "start": 18028.2, + "end": 18029.94, + "probability": 0.7179 + }, + { + "start": 18031.04, + "end": 18033.6, + "probability": 0.8304 + }, + { + "start": 18034.12, + "end": 18036.36, + "probability": 0.9292 + }, + { + "start": 18037.28, + "end": 18038.44, + "probability": 0.9893 + }, + { + "start": 18038.98, + "end": 18040.27, + "probability": 0.9868 + }, + { + "start": 18040.92, + "end": 18042.56, + "probability": 0.9885 + }, + { + "start": 18043.66, + "end": 18044.4, + "probability": 0.4926 + }, + { + "start": 18044.46, + "end": 18045.66, + "probability": 0.8051 + }, + { + "start": 18045.76, + "end": 18046.52, + "probability": 0.5444 + }, + { + "start": 18046.68, + "end": 18047.54, + "probability": 0.8839 + }, + { + "start": 18047.76, + "end": 18048.86, + "probability": 0.7737 + }, + { + "start": 18048.94, + "end": 18051.6, + "probability": 0.9158 + }, + { + "start": 18051.94, + "end": 18052.44, + "probability": 0.0286 + }, + { + "start": 18053.16, + "end": 18053.66, + "probability": 0.0271 + }, + { + "start": 18053.66, + "end": 18055.82, + "probability": 0.9835 + }, + { + "start": 18055.92, + "end": 18058.26, + "probability": 0.9761 + }, + { + "start": 18059.5, + "end": 18061.22, + "probability": 0.8393 + }, + { + "start": 18061.5, + "end": 18062.58, + "probability": 0.8303 + }, + { + "start": 18062.64, + "end": 18065.34, + "probability": 0.9317 + }, + { + "start": 18065.62, + "end": 18067.1, + "probability": 0.7609 + }, + { + "start": 18067.18, + "end": 18067.68, + "probability": 0.7823 + }, + { + "start": 18068.14, + "end": 18069.92, + "probability": 0.5094 + }, + { + "start": 18071.88, + "end": 18073.21, + "probability": 0.9473 + }, + { + "start": 18075.22, + "end": 18075.92, + "probability": 0.0521 + }, + { + "start": 18076.2, + "end": 18076.42, + "probability": 0.5857 + }, + { + "start": 18076.68, + "end": 18079.5, + "probability": 0.0715 + }, + { + "start": 18080.58, + "end": 18081.24, + "probability": 0.7035 + }, + { + "start": 18087.81, + "end": 18090.22, + "probability": 0.8982 + }, + { + "start": 18090.32, + "end": 18090.82, + "probability": 0.6601 + }, + { + "start": 18091.28, + "end": 18092.66, + "probability": 0.9728 + }, + { + "start": 18094.02, + "end": 18095.54, + "probability": 0.9822 + }, + { + "start": 18096.2, + "end": 18096.65, + "probability": 0.0103 + }, + { + "start": 18097.14, + "end": 18099.48, + "probability": 0.9691 + }, + { + "start": 18099.9, + "end": 18100.44, + "probability": 0.8915 + }, + { + "start": 18100.5, + "end": 18100.91, + "probability": 0.3065 + }, + { + "start": 18104.2, + "end": 18104.94, + "probability": 0.1773 + }, + { + "start": 18104.94, + "end": 18104.94, + "probability": 0.0354 + }, + { + "start": 18104.94, + "end": 18106.12, + "probability": 0.0614 + }, + { + "start": 18106.14, + "end": 18106.77, + "probability": 0.6996 + }, + { + "start": 18106.96, + "end": 18107.9, + "probability": 0.229 + }, + { + "start": 18107.98, + "end": 18109.92, + "probability": 0.4495 + }, + { + "start": 18110.44, + "end": 18110.88, + "probability": 0.1892 + }, + { + "start": 18111.08, + "end": 18114.22, + "probability": 0.678 + }, + { + "start": 18116.2, + "end": 18116.2, + "probability": 0.0538 + }, + { + "start": 18116.2, + "end": 18116.2, + "probability": 0.0166 + }, + { + "start": 18116.2, + "end": 18116.2, + "probability": 0.026 + }, + { + "start": 18116.2, + "end": 18116.2, + "probability": 0.1395 + }, + { + "start": 18116.2, + "end": 18116.2, + "probability": 0.2302 + }, + { + "start": 18116.2, + "end": 18116.2, + "probability": 0.0442 + }, + { + "start": 18116.2, + "end": 18117.38, + "probability": 0.7103 + }, + { + "start": 18117.54, + "end": 18119.34, + "probability": 0.8638 + }, + { + "start": 18119.68, + "end": 18120.86, + "probability": 0.6446 + }, + { + "start": 18122.64, + "end": 18124.96, + "probability": 0.3441 + }, + { + "start": 18126.74, + "end": 18127.88, + "probability": 0.7822 + }, + { + "start": 18127.98, + "end": 18128.56, + "probability": 0.8364 + }, + { + "start": 18128.9, + "end": 18129.82, + "probability": 0.9364 + }, + { + "start": 18129.88, + "end": 18131.94, + "probability": 0.954 + }, + { + "start": 18132.34, + "end": 18135.02, + "probability": 0.9958 + }, + { + "start": 18138.78, + "end": 18140.32, + "probability": 0.1491 + }, + { + "start": 18140.4, + "end": 18143.16, + "probability": 0.046 + }, + { + "start": 18145.24, + "end": 18147.44, + "probability": 0.499 + }, + { + "start": 18147.96, + "end": 18151.36, + "probability": 0.9285 + }, + { + "start": 18151.72, + "end": 18151.82, + "probability": 0.3779 + }, + { + "start": 18152.78, + "end": 18154.16, + "probability": 0.0979 + }, + { + "start": 18157.26, + "end": 18159.44, + "probability": 0.7908 + }, + { + "start": 18159.44, + "end": 18159.66, + "probability": 0.0304 + }, + { + "start": 18159.66, + "end": 18160.18, + "probability": 0.5519 + }, + { + "start": 18160.2, + "end": 18161.82, + "probability": 0.3309 + }, + { + "start": 18161.84, + "end": 18162.7, + "probability": 0.8872 + }, + { + "start": 18167.84, + "end": 18171.72, + "probability": 0.7696 + }, + { + "start": 18172.36, + "end": 18173.46, + "probability": 0.111 + }, + { + "start": 18174.76, + "end": 18178.6, + "probability": 0.8642 + }, + { + "start": 18180.22, + "end": 18182.1, + "probability": 0.8031 + }, + { + "start": 18182.28, + "end": 18184.73, + "probability": 0.9873 + }, + { + "start": 18185.0, + "end": 18187.92, + "probability": 0.7913 + }, + { + "start": 18190.2, + "end": 18192.52, + "probability": 0.4833 + }, + { + "start": 18192.6, + "end": 18196.18, + "probability": 0.773 + }, + { + "start": 18197.88, + "end": 18199.32, + "probability": 0.9498 + }, + { + "start": 18203.76, + "end": 18206.62, + "probability": 0.771 + }, + { + "start": 18215.48, + "end": 18216.54, + "probability": 0.5278 + }, + { + "start": 18216.54, + "end": 18218.72, + "probability": 0.9593 + }, + { + "start": 18221.02, + "end": 18223.32, + "probability": 0.7283 + }, + { + "start": 18225.08, + "end": 18226.04, + "probability": 0.937 + }, + { + "start": 18226.1, + "end": 18228.08, + "probability": 0.9634 + }, + { + "start": 18228.18, + "end": 18228.18, + "probability": 0.1805 + }, + { + "start": 18228.18, + "end": 18229.6, + "probability": 0.3644 + }, + { + "start": 18229.66, + "end": 18229.78, + "probability": 0.4441 + }, + { + "start": 18229.78, + "end": 18230.3, + "probability": 0.2468 + }, + { + "start": 18230.32, + "end": 18231.92, + "probability": 0.761 + }, + { + "start": 18231.94, + "end": 18233.13, + "probability": 0.9812 + }, + { + "start": 18233.38, + "end": 18233.86, + "probability": 0.8702 + }, + { + "start": 18236.86, + "end": 18237.88, + "probability": 0.7993 + }, + { + "start": 18238.42, + "end": 18238.9, + "probability": 0.6156 + }, + { + "start": 18240.42, + "end": 18246.0, + "probability": 0.9281 + }, + { + "start": 18246.8, + "end": 18252.42, + "probability": 0.8111 + }, + { + "start": 18253.9, + "end": 18256.6, + "probability": 0.9717 + }, + { + "start": 18257.6, + "end": 18259.64, + "probability": 0.9266 + }, + { + "start": 18261.26, + "end": 18263.7, + "probability": 0.9775 + }, + { + "start": 18265.12, + "end": 18269.62, + "probability": 0.9986 + }, + { + "start": 18269.72, + "end": 18270.92, + "probability": 0.9083 + }, + { + "start": 18271.16, + "end": 18272.92, + "probability": 0.9594 + }, + { + "start": 18274.8, + "end": 18275.54, + "probability": 0.6563 + }, + { + "start": 18277.48, + "end": 18279.07, + "probability": 0.9214 + }, + { + "start": 18280.48, + "end": 18282.18, + "probability": 0.9989 + }, + { + "start": 18282.3, + "end": 18283.28, + "probability": 0.6095 + }, + { + "start": 18283.8, + "end": 18285.74, + "probability": 0.9034 + }, + { + "start": 18286.54, + "end": 18289.4, + "probability": 0.9675 + }, + { + "start": 18289.6, + "end": 18292.18, + "probability": 0.9963 + }, + { + "start": 18292.22, + "end": 18297.3, + "probability": 0.9773 + }, + { + "start": 18297.3, + "end": 18300.32, + "probability": 0.9719 + }, + { + "start": 18300.38, + "end": 18301.32, + "probability": 0.827 + }, + { + "start": 18301.66, + "end": 18303.58, + "probability": 0.9496 + }, + { + "start": 18303.64, + "end": 18305.68, + "probability": 0.9943 + }, + { + "start": 18306.24, + "end": 18309.28, + "probability": 0.8868 + }, + { + "start": 18309.32, + "end": 18313.42, + "probability": 0.9891 + }, + { + "start": 18313.84, + "end": 18316.46, + "probability": 0.6589 + }, + { + "start": 18317.76, + "end": 18319.86, + "probability": 0.9324 + }, + { + "start": 18320.3, + "end": 18325.28, + "probability": 0.9877 + }, + { + "start": 18326.2, + "end": 18327.94, + "probability": 0.8519 + }, + { + "start": 18328.5, + "end": 18332.48, + "probability": 0.9867 + }, + { + "start": 18332.48, + "end": 18336.68, + "probability": 0.988 + }, + { + "start": 18337.34, + "end": 18340.74, + "probability": 0.9668 + }, + { + "start": 18340.74, + "end": 18346.26, + "probability": 0.9841 + }, + { + "start": 18346.46, + "end": 18348.44, + "probability": 0.4937 + }, + { + "start": 18349.12, + "end": 18351.1, + "probability": 0.9159 + }, + { + "start": 18351.4, + "end": 18353.1, + "probability": 0.8854 + }, + { + "start": 18353.6, + "end": 18355.24, + "probability": 0.9709 + }, + { + "start": 18356.02, + "end": 18358.44, + "probability": 0.8644 + }, + { + "start": 18359.24, + "end": 18360.68, + "probability": 0.6243 + }, + { + "start": 18362.06, + "end": 18365.24, + "probability": 0.1552 + }, + { + "start": 18366.32, + "end": 18366.82, + "probability": 0.1383 + }, + { + "start": 18366.82, + "end": 18367.92, + "probability": 0.1058 + }, + { + "start": 18368.88, + "end": 18368.88, + "probability": 0.0835 + }, + { + "start": 18368.88, + "end": 18378.64, + "probability": 0.8689 + }, + { + "start": 18379.46, + "end": 18385.14, + "probability": 0.9841 + }, + { + "start": 18386.42, + "end": 18388.3, + "probability": 0.9822 + }, + { + "start": 18388.44, + "end": 18390.08, + "probability": 0.8058 + }, + { + "start": 18390.42, + "end": 18391.88, + "probability": 0.8182 + }, + { + "start": 18391.96, + "end": 18392.84, + "probability": 0.8171 + }, + { + "start": 18392.98, + "end": 18395.98, + "probability": 0.8662 + }, + { + "start": 18396.06, + "end": 18396.66, + "probability": 0.9474 + }, + { + "start": 18396.78, + "end": 18397.42, + "probability": 0.9502 + }, + { + "start": 18398.28, + "end": 18399.7, + "probability": 0.9922 + }, + { + "start": 18400.14, + "end": 18402.06, + "probability": 0.7798 + }, + { + "start": 18402.12, + "end": 18403.16, + "probability": 0.8846 + }, + { + "start": 18404.64, + "end": 18405.3, + "probability": 0.8978 + }, + { + "start": 18406.06, + "end": 18412.4, + "probability": 0.9797 + }, + { + "start": 18413.64, + "end": 18414.22, + "probability": 0.392 + }, + { + "start": 18414.58, + "end": 18416.72, + "probability": 0.9348 + }, + { + "start": 18416.82, + "end": 18417.94, + "probability": 0.9649 + }, + { + "start": 18418.14, + "end": 18420.32, + "probability": 0.8619 + }, + { + "start": 18420.82, + "end": 18422.44, + "probability": 0.8171 + }, + { + "start": 18422.78, + "end": 18431.4, + "probability": 0.9009 + }, + { + "start": 18432.66, + "end": 18435.46, + "probability": 0.9971 + }, + { + "start": 18436.32, + "end": 18438.86, + "probability": 0.73 + }, + { + "start": 18438.92, + "end": 18439.48, + "probability": 0.8039 + }, + { + "start": 18441.98, + "end": 18445.04, + "probability": 0.8422 + }, + { + "start": 18446.12, + "end": 18447.9, + "probability": 0.9833 + }, + { + "start": 18449.2, + "end": 18449.8, + "probability": 0.7994 + }, + { + "start": 18450.62, + "end": 18453.0, + "probability": 0.9746 + }, + { + "start": 18454.38, + "end": 18455.18, + "probability": 0.8334 + }, + { + "start": 18455.32, + "end": 18458.66, + "probability": 0.9786 + }, + { + "start": 18459.34, + "end": 18462.5, + "probability": 0.7658 + }, + { + "start": 18463.26, + "end": 18465.86, + "probability": 0.99 + }, + { + "start": 18466.1, + "end": 18469.24, + "probability": 0.9874 + }, + { + "start": 18471.02, + "end": 18473.24, + "probability": 0.9934 + }, + { + "start": 18474.42, + "end": 18481.18, + "probability": 0.9268 + }, + { + "start": 18481.22, + "end": 18486.92, + "probability": 0.9844 + }, + { + "start": 18487.56, + "end": 18493.58, + "probability": 0.8031 + }, + { + "start": 18494.16, + "end": 18495.84, + "probability": 0.8896 + }, + { + "start": 18496.18, + "end": 18497.62, + "probability": 0.8533 + }, + { + "start": 18497.62, + "end": 18498.14, + "probability": 0.6934 + }, + { + "start": 18498.14, + "end": 18498.94, + "probability": 0.4377 + }, + { + "start": 18499.02, + "end": 18500.18, + "probability": 0.8945 + }, + { + "start": 18500.24, + "end": 18502.2, + "probability": 0.9658 + }, + { + "start": 18502.74, + "end": 18506.08, + "probability": 0.0517 + }, + { + "start": 18506.08, + "end": 18506.3, + "probability": 0.1309 + }, + { + "start": 18506.34, + "end": 18507.59, + "probability": 0.8744 + }, + { + "start": 18508.04, + "end": 18510.12, + "probability": 0.9736 + }, + { + "start": 18510.2, + "end": 18512.94, + "probability": 0.9182 + }, + { + "start": 18512.94, + "end": 18513.12, + "probability": 0.6469 + }, + { + "start": 18513.12, + "end": 18516.98, + "probability": 0.7052 + }, + { + "start": 18517.0, + "end": 18518.75, + "probability": 0.3319 + }, + { + "start": 18518.76, + "end": 18519.75, + "probability": 0.8348 + }, + { + "start": 18520.82, + "end": 18523.18, + "probability": 0.9656 + }, + { + "start": 18527.04, + "end": 18529.14, + "probability": 0.5652 + }, + { + "start": 18531.06, + "end": 18533.32, + "probability": 0.2659 + }, + { + "start": 18545.54, + "end": 18545.88, + "probability": 0.2658 + }, + { + "start": 18548.88, + "end": 18550.12, + "probability": 0.8381 + }, + { + "start": 18551.56, + "end": 18552.38, + "probability": 0.7314 + }, + { + "start": 18552.92, + "end": 18553.8, + "probability": 0.7364 + }, + { + "start": 18555.46, + "end": 18560.18, + "probability": 0.9746 + }, + { + "start": 18564.24, + "end": 18565.04, + "probability": 0.8531 + }, + { + "start": 18567.66, + "end": 18569.98, + "probability": 0.795 + }, + { + "start": 18571.04, + "end": 18572.24, + "probability": 0.9751 + }, + { + "start": 18575.56, + "end": 18576.14, + "probability": 0.9193 + }, + { + "start": 18578.24, + "end": 18581.83, + "probability": 0.9585 + }, + { + "start": 18584.86, + "end": 18585.6, + "probability": 0.3778 + }, + { + "start": 18587.9, + "end": 18589.0, + "probability": 0.8726 + }, + { + "start": 18591.37, + "end": 18597.38, + "probability": 0.9121 + }, + { + "start": 18599.68, + "end": 18600.46, + "probability": 0.7407 + }, + { + "start": 18602.38, + "end": 18603.82, + "probability": 0.9367 + }, + { + "start": 18605.04, + "end": 18605.68, + "probability": 0.8278 + }, + { + "start": 18606.94, + "end": 18609.08, + "probability": 0.9761 + }, + { + "start": 18612.92, + "end": 18614.06, + "probability": 0.787 + }, + { + "start": 18614.86, + "end": 18615.72, + "probability": 0.1348 + }, + { + "start": 18616.92, + "end": 18617.9, + "probability": 0.5488 + }, + { + "start": 18617.9, + "end": 18618.14, + "probability": 0.2072 + }, + { + "start": 18618.14, + "end": 18619.64, + "probability": 0.1064 + }, + { + "start": 18619.64, + "end": 18620.92, + "probability": 0.4898 + }, + { + "start": 18624.4, + "end": 18626.04, + "probability": 0.9928 + }, + { + "start": 18626.26, + "end": 18629.3, + "probability": 0.9878 + }, + { + "start": 18630.6, + "end": 18630.6, + "probability": 0.0056 + }, + { + "start": 18630.6, + "end": 18633.38, + "probability": 0.9983 + }, + { + "start": 18634.6, + "end": 18635.54, + "probability": 0.7101 + }, + { + "start": 18636.72, + "end": 18638.14, + "probability": 0.9984 + }, + { + "start": 18638.98, + "end": 18643.6, + "probability": 0.9595 + }, + { + "start": 18644.46, + "end": 18646.32, + "probability": 0.9976 + }, + { + "start": 18647.08, + "end": 18649.24, + "probability": 0.9914 + }, + { + "start": 18649.82, + "end": 18652.62, + "probability": 0.9896 + }, + { + "start": 18654.84, + "end": 18658.1, + "probability": 0.9464 + }, + { + "start": 18659.22, + "end": 18660.04, + "probability": 0.7962 + }, + { + "start": 18661.94, + "end": 18666.22, + "probability": 0.9993 + }, + { + "start": 18667.76, + "end": 18671.38, + "probability": 0.8865 + }, + { + "start": 18672.84, + "end": 18674.28, + "probability": 0.9699 + }, + { + "start": 18675.04, + "end": 18677.34, + "probability": 0.9238 + }, + { + "start": 18679.0, + "end": 18682.02, + "probability": 0.9476 + }, + { + "start": 18682.14, + "end": 18682.48, + "probability": 0.7371 + }, + { + "start": 18682.54, + "end": 18683.96, + "probability": 0.9988 + }, + { + "start": 18684.42, + "end": 18687.76, + "probability": 0.9641 + }, + { + "start": 18689.36, + "end": 18690.88, + "probability": 0.7353 + }, + { + "start": 18691.86, + "end": 18695.04, + "probability": 0.9912 + }, + { + "start": 18695.24, + "end": 18696.78, + "probability": 0.7621 + }, + { + "start": 18696.92, + "end": 18697.28, + "probability": 0.8765 + }, + { + "start": 18698.24, + "end": 18699.32, + "probability": 0.8997 + }, + { + "start": 18700.08, + "end": 18701.34, + "probability": 0.8529 + }, + { + "start": 18702.08, + "end": 18707.32, + "probability": 0.9924 + }, + { + "start": 18708.74, + "end": 18710.59, + "probability": 0.999 + }, + { + "start": 18710.94, + "end": 18713.78, + "probability": 0.9979 + }, + { + "start": 18714.46, + "end": 18719.02, + "probability": 0.9917 + }, + { + "start": 18719.94, + "end": 18722.1, + "probability": 0.9941 + }, + { + "start": 18723.1, + "end": 18726.12, + "probability": 0.8938 + }, + { + "start": 18726.46, + "end": 18727.88, + "probability": 0.7891 + }, + { + "start": 18729.44, + "end": 18730.66, + "probability": 0.473 + }, + { + "start": 18730.66, + "end": 18732.58, + "probability": 0.9774 + }, + { + "start": 18733.38, + "end": 18737.26, + "probability": 0.9755 + }, + { + "start": 18738.1, + "end": 18739.78, + "probability": 0.9641 + }, + { + "start": 18740.46, + "end": 18745.08, + "probability": 0.9968 + }, + { + "start": 18745.66, + "end": 18747.08, + "probability": 0.9719 + }, + { + "start": 18747.26, + "end": 18748.52, + "probability": 0.9342 + }, + { + "start": 18749.22, + "end": 18750.34, + "probability": 0.9578 + }, + { + "start": 18750.42, + "end": 18751.26, + "probability": 0.9252 + }, + { + "start": 18751.7, + "end": 18752.76, + "probability": 0.8877 + }, + { + "start": 18753.3, + "end": 18757.98, + "probability": 0.9873 + }, + { + "start": 18758.56, + "end": 18763.08, + "probability": 0.995 + }, + { + "start": 18763.26, + "end": 18767.68, + "probability": 0.959 + }, + { + "start": 18767.82, + "end": 18768.5, + "probability": 0.0511 + }, + { + "start": 18768.56, + "end": 18768.68, + "probability": 0.3389 + }, + { + "start": 18768.68, + "end": 18770.02, + "probability": 0.8115 + }, + { + "start": 18770.8, + "end": 18770.86, + "probability": 0.4551 + }, + { + "start": 18770.86, + "end": 18775.54, + "probability": 0.9648 + }, + { + "start": 18776.48, + "end": 18777.62, + "probability": 0.9889 + }, + { + "start": 18778.54, + "end": 18780.24, + "probability": 0.9262 + }, + { + "start": 18780.94, + "end": 18783.63, + "probability": 0.9018 + }, + { + "start": 18785.24, + "end": 18787.02, + "probability": 0.9845 + }, + { + "start": 18787.94, + "end": 18789.28, + "probability": 0.9689 + }, + { + "start": 18789.52, + "end": 18790.8, + "probability": 0.9893 + }, + { + "start": 18791.88, + "end": 18793.3, + "probability": 0.9973 + }, + { + "start": 18794.18, + "end": 18796.32, + "probability": 0.9988 + }, + { + "start": 18797.5, + "end": 18798.74, + "probability": 0.8823 + }, + { + "start": 18799.02, + "end": 18800.52, + "probability": 0.9453 + }, + { + "start": 18800.98, + "end": 18801.14, + "probability": 0.1877 + }, + { + "start": 18801.14, + "end": 18804.92, + "probability": 0.6766 + }, + { + "start": 18805.52, + "end": 18808.4, + "probability": 0.9654 + }, + { + "start": 18809.42, + "end": 18811.32, + "probability": 0.9406 + }, + { + "start": 18811.96, + "end": 18812.2, + "probability": 0.0572 + }, + { + "start": 18812.2, + "end": 18813.52, + "probability": 0.6529 + }, + { + "start": 18813.82, + "end": 18815.24, + "probability": 0.2401 + }, + { + "start": 18815.24, + "end": 18815.72, + "probability": 0.5981 + }, + { + "start": 18815.78, + "end": 18816.58, + "probability": 0.2846 + }, + { + "start": 18817.04, + "end": 18819.6, + "probability": 0.9883 + }, + { + "start": 18820.96, + "end": 18822.24, + "probability": 0.167 + }, + { + "start": 18822.24, + "end": 18823.2, + "probability": 0.4521 + }, + { + "start": 18823.2, + "end": 18823.38, + "probability": 0.6174 + }, + { + "start": 18823.68, + "end": 18826.62, + "probability": 0.2225 + }, + { + "start": 18826.68, + "end": 18827.74, + "probability": 0.2622 + }, + { + "start": 18828.56, + "end": 18829.1, + "probability": 0.1949 + }, + { + "start": 18829.1, + "end": 18829.24, + "probability": 0.2547 + }, + { + "start": 18830.82, + "end": 18830.82, + "probability": 0.5551 + }, + { + "start": 18830.82, + "end": 18831.46, + "probability": 0.3082 + }, + { + "start": 18841.34, + "end": 18842.88, + "probability": 0.3459 + }, + { + "start": 18844.04, + "end": 18847.86, + "probability": 0.1111 + }, + { + "start": 18849.38, + "end": 18854.19, + "probability": 0.0928 + }, + { + "start": 18862.82, + "end": 18863.16, + "probability": 0.2275 + }, + { + "start": 18864.4, + "end": 18865.6, + "probability": 0.1726 + }, + { + "start": 18865.96, + "end": 18868.32, + "probability": 0.072 + }, + { + "start": 18868.32, + "end": 18868.34, + "probability": 0.0796 + }, + { + "start": 18868.34, + "end": 18868.66, + "probability": 0.0437 + }, + { + "start": 18868.66, + "end": 18870.41, + "probability": 0.1029 + }, + { + "start": 18870.7, + "end": 18871.7, + "probability": 0.0667 + }, + { + "start": 18873.56, + "end": 18875.4, + "probability": 0.0707 + }, + { + "start": 18879.14, + "end": 18882.38, + "probability": 0.0513 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18915.0, + "end": 18915.0, + "probability": 0.0 + }, + { + "start": 18934.85, + "end": 18936.78, + "probability": 0.075 + }, + { + "start": 18936.78, + "end": 18937.28, + "probability": 0.0404 + }, + { + "start": 18938.03, + "end": 18938.78, + "probability": 0.1275 + }, + { + "start": 18939.84, + "end": 18944.34, + "probability": 0.1121 + }, + { + "start": 18945.8, + "end": 18946.22, + "probability": 0.0516 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.0, + "end": 19037.0, + "probability": 0.0 + }, + { + "start": 19037.08, + "end": 19040.92, + "probability": 0.6934 + }, + { + "start": 19041.0, + "end": 19041.89, + "probability": 0.9894 + }, + { + "start": 19042.75, + "end": 19043.71, + "probability": 0.7482 + }, + { + "start": 19044.35, + "end": 19044.91, + "probability": 0.5004 + }, + { + "start": 19045.05, + "end": 19048.47, + "probability": 0.9718 + }, + { + "start": 19048.53, + "end": 19049.39, + "probability": 0.928 + }, + { + "start": 19049.53, + "end": 19051.07, + "probability": 0.9165 + }, + { + "start": 19051.67, + "end": 19052.81, + "probability": 0.9448 + }, + { + "start": 19053.37, + "end": 19055.05, + "probability": 0.9582 + }, + { + "start": 19055.11, + "end": 19057.03, + "probability": 0.9073 + }, + { + "start": 19057.69, + "end": 19062.95, + "probability": 0.8212 + }, + { + "start": 19063.17, + "end": 19065.03, + "probability": 0.9971 + }, + { + "start": 19065.15, + "end": 19066.71, + "probability": 0.9146 + }, + { + "start": 19066.81, + "end": 19067.73, + "probability": 0.7645 + }, + { + "start": 19067.87, + "end": 19072.13, + "probability": 0.9489 + }, + { + "start": 19072.93, + "end": 19074.47, + "probability": 0.2267 + }, + { + "start": 19074.49, + "end": 19074.91, + "probability": 0.7238 + }, + { + "start": 19074.97, + "end": 19075.45, + "probability": 0.9064 + }, + { + "start": 19075.85, + "end": 19077.79, + "probability": 0.9089 + }, + { + "start": 19077.87, + "end": 19079.12, + "probability": 0.7339 + }, + { + "start": 19079.25, + "end": 19079.67, + "probability": 0.0119 + }, + { + "start": 19082.51, + "end": 19085.53, + "probability": 0.8407 + }, + { + "start": 19085.99, + "end": 19088.19, + "probability": 0.5708 + }, + { + "start": 19088.35, + "end": 19089.57, + "probability": 0.0903 + }, + { + "start": 19089.57, + "end": 19091.11, + "probability": 0.7458 + }, + { + "start": 19091.11, + "end": 19091.91, + "probability": 0.9132 + }, + { + "start": 19092.13, + "end": 19094.49, + "probability": 0.5407 + }, + { + "start": 19094.57, + "end": 19097.03, + "probability": 0.9221 + }, + { + "start": 19097.91, + "end": 19098.13, + "probability": 0.0051 + }, + { + "start": 19098.13, + "end": 19099.79, + "probability": 0.2448 + }, + { + "start": 19099.79, + "end": 19099.79, + "probability": 0.0271 + }, + { + "start": 19099.79, + "end": 19102.25, + "probability": 0.5766 + }, + { + "start": 19103.41, + "end": 19108.17, + "probability": 0.9932 + }, + { + "start": 19108.89, + "end": 19113.91, + "probability": 0.9641 + }, + { + "start": 19114.69, + "end": 19117.13, + "probability": 0.9971 + }, + { + "start": 19117.73, + "end": 19122.23, + "probability": 0.9793 + }, + { + "start": 19123.05, + "end": 19130.75, + "probability": 0.9582 + }, + { + "start": 19131.59, + "end": 19136.67, + "probability": 0.9955 + }, + { + "start": 19136.97, + "end": 19143.01, + "probability": 0.9902 + }, + { + "start": 19143.37, + "end": 19148.45, + "probability": 0.9971 + }, + { + "start": 19148.45, + "end": 19152.79, + "probability": 0.9964 + }, + { + "start": 19153.39, + "end": 19155.11, + "probability": 0.7535 + }, + { + "start": 19155.51, + "end": 19159.27, + "probability": 0.9819 + }, + { + "start": 19159.27, + "end": 19162.63, + "probability": 0.9983 + }, + { + "start": 19163.11, + "end": 19164.61, + "probability": 0.9566 + }, + { + "start": 19164.79, + "end": 19165.57, + "probability": 0.4996 + }, + { + "start": 19166.15, + "end": 19168.14, + "probability": 0.9883 + }, + { + "start": 19168.77, + "end": 19169.25, + "probability": 0.6041 + }, + { + "start": 19169.29, + "end": 19172.41, + "probability": 0.9172 + }, + { + "start": 19172.89, + "end": 19174.57, + "probability": 0.9397 + }, + { + "start": 19174.83, + "end": 19177.91, + "probability": 0.9729 + }, + { + "start": 19177.95, + "end": 19180.87, + "probability": 0.9304 + }, + { + "start": 19181.07, + "end": 19183.47, + "probability": 0.6414 + }, + { + "start": 19183.53, + "end": 19186.12, + "probability": 0.9944 + }, + { + "start": 19186.83, + "end": 19190.25, + "probability": 0.9252 + }, + { + "start": 19190.67, + "end": 19194.43, + "probability": 0.9957 + }, + { + "start": 19194.51, + "end": 19195.03, + "probability": 0.5764 + }, + { + "start": 19195.37, + "end": 19200.47, + "probability": 0.9982 + }, + { + "start": 19200.99, + "end": 19203.11, + "probability": 0.8496 + }, + { + "start": 19203.19, + "end": 19203.73, + "probability": 0.7677 + }, + { + "start": 19205.17, + "end": 19210.29, + "probability": 0.8114 + }, + { + "start": 19210.57, + "end": 19212.31, + "probability": 0.7201 + }, + { + "start": 19212.35, + "end": 19212.65, + "probability": 0.8337 + }, + { + "start": 19212.87, + "end": 19217.91, + "probability": 0.0114 + }, + { + "start": 19219.23, + "end": 19221.99, + "probability": 0.5943 + }, + { + "start": 19222.51, + "end": 19223.07, + "probability": 0.6714 + }, + { + "start": 19224.39, + "end": 19226.15, + "probability": 0.8958 + }, + { + "start": 19226.97, + "end": 19228.69, + "probability": 0.9883 + }, + { + "start": 19229.33, + "end": 19232.85, + "probability": 0.8562 + }, + { + "start": 19233.57, + "end": 19237.03, + "probability": 0.9585 + }, + { + "start": 19238.03, + "end": 19240.35, + "probability": 0.9848 + }, + { + "start": 19241.29, + "end": 19241.49, + "probability": 0.4923 + }, + { + "start": 19242.79, + "end": 19243.45, + "probability": 0.3624 + }, + { + "start": 19244.95, + "end": 19245.31, + "probability": 0.9404 + }, + { + "start": 19246.31, + "end": 19247.09, + "probability": 0.557 + }, + { + "start": 19248.65, + "end": 19249.13, + "probability": 0.9805 + }, + { + "start": 19250.67, + "end": 19251.71, + "probability": 0.8312 + }, + { + "start": 19252.47, + "end": 19253.11, + "probability": 0.9261 + }, + { + "start": 19253.83, + "end": 19254.75, + "probability": 0.9768 + }, + { + "start": 19255.69, + "end": 19257.63, + "probability": 0.9675 + }, + { + "start": 19258.63, + "end": 19260.97, + "probability": 0.9889 + }, + { + "start": 19263.31, + "end": 19268.43, + "probability": 0.9733 + }, + { + "start": 19269.47, + "end": 19271.89, + "probability": 0.7848 + }, + { + "start": 19272.71, + "end": 19275.01, + "probability": 0.95 + }, + { + "start": 19275.99, + "end": 19278.29, + "probability": 0.7288 + }, + { + "start": 19279.33, + "end": 19281.41, + "probability": 0.9198 + }, + { + "start": 19282.25, + "end": 19282.73, + "probability": 0.6245 + }, + { + "start": 19283.39, + "end": 19284.23, + "probability": 0.9469 + }, + { + "start": 19285.23, + "end": 19287.75, + "probability": 0.8237 + }, + { + "start": 19288.31, + "end": 19288.75, + "probability": 0.9901 + }, + { + "start": 19290.53, + "end": 19292.71, + "probability": 0.9421 + }, + { + "start": 19293.85, + "end": 19294.79, + "probability": 0.94 + }, + { + "start": 19295.59, + "end": 19295.83, + "probability": 0.5619 + }, + { + "start": 19296.61, + "end": 19297.45, + "probability": 0.669 + }, + { + "start": 19298.77, + "end": 19299.55, + "probability": 0.8452 + }, + { + "start": 19300.57, + "end": 19301.67, + "probability": 0.9135 + }, + { + "start": 19302.61, + "end": 19305.53, + "probability": 0.9764 + }, + { + "start": 19307.19, + "end": 19307.95, + "probability": 0.9073 + }, + { + "start": 19308.47, + "end": 19309.63, + "probability": 0.9707 + }, + { + "start": 19310.53, + "end": 19310.97, + "probability": 0.973 + }, + { + "start": 19312.19, + "end": 19313.05, + "probability": 0.975 + }, + { + "start": 19313.65, + "end": 19314.07, + "probability": 0.9831 + }, + { + "start": 19314.89, + "end": 19315.67, + "probability": 0.8925 + }, + { + "start": 19316.59, + "end": 19317.03, + "probability": 0.991 + }, + { + "start": 19317.73, + "end": 19318.59, + "probability": 0.9856 + }, + { + "start": 19319.37, + "end": 19319.71, + "probability": 0.9878 + }, + { + "start": 19320.81, + "end": 19321.85, + "probability": 0.7585 + }, + { + "start": 19322.85, + "end": 19323.13, + "probability": 0.7778 + }, + { + "start": 19324.39, + "end": 19325.11, + "probability": 0.8087 + }, + { + "start": 19327.01, + "end": 19329.89, + "probability": 0.9813 + }, + { + "start": 19330.43, + "end": 19331.13, + "probability": 0.9453 + }, + { + "start": 19332.55, + "end": 19333.31, + "probability": 0.9573 + }, + { + "start": 19333.95, + "end": 19334.81, + "probability": 0.9245 + }, + { + "start": 19336.03, + "end": 19336.43, + "probability": 0.9407 + }, + { + "start": 19337.43, + "end": 19338.39, + "probability": 0.8426 + }, + { + "start": 19339.19, + "end": 19339.65, + "probability": 0.9793 + }, + { + "start": 19340.51, + "end": 19341.33, + "probability": 0.9802 + }, + { + "start": 19342.17, + "end": 19342.97, + "probability": 0.9859 + }, + { + "start": 19343.79, + "end": 19344.67, + "probability": 0.9077 + }, + { + "start": 19345.87, + "end": 19346.33, + "probability": 0.993 + }, + { + "start": 19347.25, + "end": 19347.97, + "probability": 0.7763 + }, + { + "start": 19348.71, + "end": 19349.09, + "probability": 0.5638 + }, + { + "start": 19350.23, + "end": 19352.65, + "probability": 0.9566 + }, + { + "start": 19353.31, + "end": 19353.97, + "probability": 0.9673 + }, + { + "start": 19354.79, + "end": 19355.21, + "probability": 0.9688 + }, + { + "start": 19356.13, + "end": 19356.91, + "probability": 0.5889 + }, + { + "start": 19359.82, + "end": 19362.47, + "probability": 0.8443 + }, + { + "start": 19363.63, + "end": 19366.05, + "probability": 0.9406 + }, + { + "start": 19366.71, + "end": 19366.97, + "probability": 0.9224 + }, + { + "start": 19367.79, + "end": 19368.71, + "probability": 0.9505 + }, + { + "start": 19369.97, + "end": 19372.15, + "probability": 0.8194 + }, + { + "start": 19373.27, + "end": 19373.71, + "probability": 0.991 + }, + { + "start": 19375.15, + "end": 19375.97, + "probability": 0.6663 + }, + { + "start": 19377.07, + "end": 19377.49, + "probability": 0.7298 + }, + { + "start": 19378.45, + "end": 19379.65, + "probability": 0.6681 + }, + { + "start": 19380.37, + "end": 19380.77, + "probability": 0.9816 + }, + { + "start": 19381.51, + "end": 19383.27, + "probability": 0.6693 + }, + { + "start": 19384.13, + "end": 19385.07, + "probability": 0.8391 + }, + { + "start": 19386.53, + "end": 19389.61, + "probability": 0.8881 + }, + { + "start": 19390.49, + "end": 19390.81, + "probability": 0.9569 + }, + { + "start": 19391.55, + "end": 19392.35, + "probability": 0.7926 + }, + { + "start": 19392.93, + "end": 19394.97, + "probability": 0.9415 + }, + { + "start": 19398.68, + "end": 19404.53, + "probability": 0.8405 + }, + { + "start": 19405.43, + "end": 19405.69, + "probability": 0.5656 + }, + { + "start": 19406.59, + "end": 19407.33, + "probability": 0.812 + }, + { + "start": 19408.45, + "end": 19408.95, + "probability": 0.9105 + }, + { + "start": 19409.87, + "end": 19410.65, + "probability": 0.2954 + }, + { + "start": 19411.99, + "end": 19413.59, + "probability": 0.8423 + }, + { + "start": 19414.33, + "end": 19416.31, + "probability": 0.9427 + }, + { + "start": 19417.05, + "end": 19417.37, + "probability": 0.6911 + }, + { + "start": 19417.91, + "end": 19418.61, + "probability": 0.9484 + }, + { + "start": 19419.35, + "end": 19421.23, + "probability": 0.9541 + }, + { + "start": 19425.07, + "end": 19426.29, + "probability": 0.5785 + }, + { + "start": 19429.43, + "end": 19430.11, + "probability": 0.4523 + }, + { + "start": 19431.75, + "end": 19432.13, + "probability": 0.9053 + }, + { + "start": 19432.93, + "end": 19435.57, + "probability": 0.4556 + }, + { + "start": 19436.51, + "end": 19438.13, + "probability": 0.7965 + }, + { + "start": 19443.15, + "end": 19443.95, + "probability": 0.9746 + }, + { + "start": 19447.19, + "end": 19448.05, + "probability": 0.5754 + }, + { + "start": 19449.39, + "end": 19451.47, + "probability": 0.7239 + }, + { + "start": 19452.57, + "end": 19454.85, + "probability": 0.8838 + }, + { + "start": 19455.67, + "end": 19458.75, + "probability": 0.9073 + }, + { + "start": 19459.71, + "end": 19461.49, + "probability": 0.9411 + }, + { + "start": 19462.91, + "end": 19464.31, + "probability": 0.9705 + }, + { + "start": 19465.33, + "end": 19465.89, + "probability": 0.9681 + }, + { + "start": 19466.49, + "end": 19467.59, + "probability": 0.868 + }, + { + "start": 19468.33, + "end": 19470.21, + "probability": 0.9754 + }, + { + "start": 19471.11, + "end": 19473.35, + "probability": 0.7156 + }, + { + "start": 19474.45, + "end": 19474.85, + "probability": 0.5186 + }, + { + "start": 19476.23, + "end": 19476.91, + "probability": 0.8078 + }, + { + "start": 19478.17, + "end": 19478.53, + "probability": 0.9561 + }, + { + "start": 19479.49, + "end": 19481.13, + "probability": 0.9281 + }, + { + "start": 19482.11, + "end": 19484.15, + "probability": 0.8166 + }, + { + "start": 19485.29, + "end": 19487.33, + "probability": 0.9819 + }, + { + "start": 19488.15, + "end": 19490.97, + "probability": 0.8234 + }, + { + "start": 19494.25, + "end": 19499.17, + "probability": 0.9327 + }, + { + "start": 19500.31, + "end": 19501.49, + "probability": 0.9707 + }, + { + "start": 19502.31, + "end": 19502.61, + "probability": 0.9883 + }, + { + "start": 19503.67, + "end": 19504.47, + "probability": 0.6929 + }, + { + "start": 19506.01, + "end": 19508.45, + "probability": 0.929 + }, + { + "start": 19509.57, + "end": 19512.43, + "probability": 0.9678 + }, + { + "start": 19513.55, + "end": 19515.95, + "probability": 0.9517 + }, + { + "start": 19516.69, + "end": 19525.53, + "probability": 0.9347 + }, + { + "start": 19526.35, + "end": 19527.45, + "probability": 0.7811 + }, + { + "start": 19528.23, + "end": 19528.49, + "probability": 0.7017 + }, + { + "start": 19529.41, + "end": 19531.55, + "probability": 0.4199 + }, + { + "start": 19532.45, + "end": 19533.77, + "probability": 0.8414 + }, + { + "start": 19534.61, + "end": 19534.99, + "probability": 0.804 + }, + { + "start": 19536.75, + "end": 19537.77, + "probability": 0.5924 + }, + { + "start": 19538.55, + "end": 19540.87, + "probability": 0.8401 + }, + { + "start": 19542.71, + "end": 19543.25, + "probability": 0.9824 + }, + { + "start": 19545.15, + "end": 19545.93, + "probability": 0.9029 + }, + { + "start": 19547.75, + "end": 19551.77, + "probability": 0.9836 + }, + { + "start": 19552.33, + "end": 19554.13, + "probability": 0.9434 + }, + { + "start": 19554.85, + "end": 19555.85, + "probability": 0.8805 + }, + { + "start": 19556.69, + "end": 19557.11, + "probability": 0.9904 + }, + { + "start": 19559.49, + "end": 19561.49, + "probability": 0.6073 + }, + { + "start": 19562.43, + "end": 19563.35, + "probability": 0.693 + }, + { + "start": 19564.41, + "end": 19564.85, + "probability": 0.8542 + }, + { + "start": 19565.57, + "end": 19566.45, + "probability": 0.9393 + }, + { + "start": 19567.3, + "end": 19569.73, + "probability": 0.9316 + }, + { + "start": 19570.53, + "end": 19575.83, + "probability": 0.9576 + }, + { + "start": 19578.71, + "end": 19579.25, + "probability": 0.9964 + }, + { + "start": 19580.69, + "end": 19581.77, + "probability": 0.8439 + }, + { + "start": 19583.35, + "end": 19583.87, + "probability": 0.9941 + }, + { + "start": 19584.99, + "end": 19586.11, + "probability": 0.9353 + }, + { + "start": 19586.67, + "end": 19587.07, + "probability": 0.9954 + }, + { + "start": 19589.05, + "end": 19589.67, + "probability": 0.5782 + }, + { + "start": 19591.07, + "end": 19591.51, + "probability": 0.6875 + }, + { + "start": 19592.37, + "end": 19593.17, + "probability": 0.859 + }, + { + "start": 19595.55, + "end": 19595.93, + "probability": 0.9438 + }, + { + "start": 19597.07, + "end": 19597.97, + "probability": 0.7896 + }, + { + "start": 19598.71, + "end": 19601.67, + "probability": 0.9918 + }, + { + "start": 19602.49, + "end": 19603.45, + "probability": 0.9291 + }, + { + "start": 19604.49, + "end": 19604.95, + "probability": 0.9928 + }, + { + "start": 19605.65, + "end": 19606.65, + "probability": 0.9165 + }, + { + "start": 19608.81, + "end": 19610.97, + "probability": 0.8895 + }, + { + "start": 19612.11, + "end": 19612.57, + "probability": 0.9884 + }, + { + "start": 19613.29, + "end": 19614.11, + "probability": 0.9274 + }, + { + "start": 19616.45, + "end": 19617.71, + "probability": 0.9244 + }, + { + "start": 19618.77, + "end": 19619.87, + "probability": 0.5865 + }, + { + "start": 19621.05, + "end": 19621.33, + "probability": 0.7168 + }, + { + "start": 19622.29, + "end": 19623.07, + "probability": 0.8787 + }, + { + "start": 19624.81, + "end": 19627.05, + "probability": 0.9404 + }, + { + "start": 19627.99, + "end": 19628.49, + "probability": 0.9881 + }, + { + "start": 19629.31, + "end": 19630.25, + "probability": 0.9522 + }, + { + "start": 19631.03, + "end": 19631.61, + "probability": 0.9884 + }, + { + "start": 19632.55, + "end": 19633.39, + "probability": 0.7408 + }, + { + "start": 19634.17, + "end": 19636.29, + "probability": 0.971 + }, + { + "start": 19636.99, + "end": 19637.51, + "probability": 0.9657 + }, + { + "start": 19638.29, + "end": 19639.05, + "probability": 0.9114 + }, + { + "start": 19639.85, + "end": 19640.29, + "probability": 0.9847 + }, + { + "start": 19640.91, + "end": 19641.75, + "probability": 0.9855 + }, + { + "start": 19643.31, + "end": 19643.73, + "probability": 0.991 + }, + { + "start": 19644.51, + "end": 19645.67, + "probability": 0.551 + }, + { + "start": 19646.87, + "end": 19648.83, + "probability": 0.491 + }, + { + "start": 19648.91, + "end": 19651.76, + "probability": 0.8828 + }, + { + "start": 19652.95, + "end": 19653.91, + "probability": 0.4412 + }, + { + "start": 19653.93, + "end": 19655.97, + "probability": 0.818 + }, + { + "start": 19656.71, + "end": 19657.45, + "probability": 0.7823 + }, + { + "start": 19657.97, + "end": 19658.77, + "probability": 0.6046 + }, + { + "start": 19660.01, + "end": 19662.33, + "probability": 0.9717 + }, + { + "start": 19663.19, + "end": 19665.53, + "probability": 0.9814 + }, + { + "start": 19666.29, + "end": 19668.39, + "probability": 0.9675 + }, + { + "start": 19669.09, + "end": 19671.35, + "probability": 0.9905 + }, + { + "start": 19672.87, + "end": 19674.79, + "probability": 0.9905 + }, + { + "start": 19675.81, + "end": 19676.67, + "probability": 0.9977 + }, + { + "start": 19677.33, + "end": 19682.91, + "probability": 0.822 + }, + { + "start": 19683.57, + "end": 19684.13, + "probability": 0.4044 + }, + { + "start": 19685.01, + "end": 19685.75, + "probability": 0.9222 + }, + { + "start": 19686.29, + "end": 19687.05, + "probability": 0.9075 + }, + { + "start": 19687.77, + "end": 19688.67, + "probability": 0.9356 + }, + { + "start": 19691.65, + "end": 19692.89, + "probability": 0.7458 + }, + { + "start": 19693.59, + "end": 19695.97, + "probability": 0.9303 + }, + { + "start": 19696.77, + "end": 19699.19, + "probability": 0.9708 + }, + { + "start": 19700.03, + "end": 19701.87, + "probability": 0.9706 + }, + { + "start": 19702.91, + "end": 19703.77, + "probability": 0.9907 + }, + { + "start": 19706.57, + "end": 19707.59, + "probability": 0.59 + }, + { + "start": 19708.49, + "end": 19709.25, + "probability": 0.8346 + }, + { + "start": 19709.79, + "end": 19710.79, + "probability": 0.8085 + }, + { + "start": 19711.59, + "end": 19714.35, + "probability": 0.8845 + }, + { + "start": 19715.03, + "end": 19720.49, + "probability": 0.9932 + }, + { + "start": 19721.25, + "end": 19723.77, + "probability": 0.5193 + }, + { + "start": 19723.87, + "end": 19727.07, + "probability": 0.9808 + }, + { + "start": 19727.63, + "end": 19727.99, + "probability": 0.0023 + }, + { + "start": 19729.79, + "end": 19731.13, + "probability": 0.069 + }, + { + "start": 19779.41, + "end": 19781.05, + "probability": 0.0734 + }, + { + "start": 19782.21, + "end": 19783.41, + "probability": 0.0371 + }, + { + "start": 19784.71, + "end": 19786.49, + "probability": 0.0385 + }, + { + "start": 19786.49, + "end": 19787.47, + "probability": 0.0098 + }, + { + "start": 19787.47, + "end": 19787.73, + "probability": 0.05 + }, + { + "start": 19822.73, + "end": 19823.71, + "probability": 0.1909 + }, + { + "start": 19824.43, + "end": 19826.45, + "probability": 0.2187 + }, + { + "start": 19826.77, + "end": 19830.01, + "probability": 0.8728 + }, + { + "start": 19830.31, + "end": 19833.13, + "probability": 0.9011 + }, + { + "start": 19834.17, + "end": 19834.49, + "probability": 0.771 + }, + { + "start": 19834.59, + "end": 19837.23, + "probability": 0.9951 + }, + { + "start": 19837.47, + "end": 19839.05, + "probability": 0.7703 + }, + { + "start": 19839.59, + "end": 19841.41, + "probability": 0.5524 + }, + { + "start": 19842.17, + "end": 19844.19, + "probability": 0.9946 + }, + { + "start": 19844.69, + "end": 19848.37, + "probability": 0.9979 + }, + { + "start": 19854.41, + "end": 19857.29, + "probability": 0.884 + }, + { + "start": 19857.31, + "end": 19858.77, + "probability": 0.3806 + }, + { + "start": 19861.43, + "end": 19863.49, + "probability": 0.8713 + }, + { + "start": 19864.89, + "end": 19866.33, + "probability": 0.9028 + }, + { + "start": 19866.75, + "end": 19869.71, + "probability": 0.9297 + }, + { + "start": 19869.89, + "end": 19873.31, + "probability": 0.9535 + }, + { + "start": 19874.13, + "end": 19874.83, + "probability": 0.9799 + }, + { + "start": 19876.15, + "end": 19880.33, + "probability": 0.981 + }, + { + "start": 19881.65, + "end": 19884.95, + "probability": 0.9528 + }, + { + "start": 19885.85, + "end": 19886.73, + "probability": 0.8484 + }, + { + "start": 19887.65, + "end": 19890.43, + "probability": 0.914 + }, + { + "start": 19890.57, + "end": 19892.09, + "probability": 0.9404 + }, + { + "start": 19892.17, + "end": 19892.43, + "probability": 0.6073 + }, + { + "start": 19893.29, + "end": 19893.79, + "probability": 0.3888 + }, + { + "start": 19893.97, + "end": 19896.55, + "probability": 0.9167 + }, + { + "start": 19896.71, + "end": 19900.65, + "probability": 0.9883 + }, + { + "start": 19900.71, + "end": 19901.25, + "probability": 0.8403 + }, + { + "start": 19901.73, + "end": 19902.43, + "probability": 0.9893 + }, + { + "start": 19902.65, + "end": 19903.19, + "probability": 0.8703 + }, + { + "start": 19904.33, + "end": 19906.79, + "probability": 0.9492 + }, + { + "start": 19906.87, + "end": 19910.17, + "probability": 0.9841 + }, + { + "start": 19910.29, + "end": 19910.85, + "probability": 0.9256 + }, + { + "start": 19910.95, + "end": 19911.93, + "probability": 0.8935 + }, + { + "start": 19912.35, + "end": 19913.41, + "probability": 0.9462 + }, + { + "start": 19913.45, + "end": 19913.99, + "probability": 0.981 + }, + { + "start": 19914.07, + "end": 19915.13, + "probability": 0.8017 + }, + { + "start": 19915.49, + "end": 19916.39, + "probability": 0.6526 + }, + { + "start": 19917.45, + "end": 19921.59, + "probability": 0.8937 + }, + { + "start": 19922.63, + "end": 19925.51, + "probability": 0.9807 + }, + { + "start": 19925.67, + "end": 19926.27, + "probability": 0.9775 + }, + { + "start": 19926.31, + "end": 19927.35, + "probability": 0.8848 + }, + { + "start": 19927.83, + "end": 19931.33, + "probability": 0.7808 + }, + { + "start": 19935.29, + "end": 19940.59, + "probability": 0.9803 + }, + { + "start": 19940.59, + "end": 19944.99, + "probability": 0.6687 + }, + { + "start": 19946.33, + "end": 19949.01, + "probability": 0.6532 + }, + { + "start": 19949.63, + "end": 19950.23, + "probability": 0.9392 + }, + { + "start": 19950.63, + "end": 19951.91, + "probability": 0.3055 + }, + { + "start": 19952.03, + "end": 19954.53, + "probability": 0.9465 + }, + { + "start": 19955.25, + "end": 19956.15, + "probability": 0.732 + }, + { + "start": 19957.11, + "end": 19962.05, + "probability": 0.6844 + }, + { + "start": 19962.95, + "end": 19964.55, + "probability": 0.9351 + }, + { + "start": 19964.69, + "end": 19965.35, + "probability": 0.4882 + }, + { + "start": 19965.51, + "end": 19966.99, + "probability": 0.9023 + }, + { + "start": 19967.65, + "end": 19969.11, + "probability": 0.9935 + }, + { + "start": 19969.73, + "end": 19971.15, + "probability": 0.8799 + }, + { + "start": 19972.49, + "end": 19975.27, + "probability": 0.8276 + }, + { + "start": 19975.89, + "end": 19978.71, + "probability": 0.9689 + }, + { + "start": 19979.45, + "end": 19984.45, + "probability": 0.5118 + }, + { + "start": 19985.17, + "end": 19989.17, + "probability": 0.8612 + }, + { + "start": 19989.25, + "end": 19990.73, + "probability": 0.9832 + }, + { + "start": 19990.83, + "end": 19991.17, + "probability": 0.6553 + }, + { + "start": 19992.09, + "end": 19993.91, + "probability": 0.8956 + }, + { + "start": 19994.31, + "end": 19994.77, + "probability": 0.5634 + }, + { + "start": 19995.03, + "end": 19995.85, + "probability": 0.4804 + }, + { + "start": 19995.87, + "end": 19997.17, + "probability": 0.8604 + }, + { + "start": 19997.23, + "end": 19998.65, + "probability": 0.7205 + }, + { + "start": 19999.03, + "end": 20000.03, + "probability": 0.896 + }, + { + "start": 20001.57, + "end": 20002.43, + "probability": 0.8608 + }, + { + "start": 20003.01, + "end": 20003.51, + "probability": 0.8662 + }, + { + "start": 20004.13, + "end": 20008.55, + "probability": 0.024 + }, + { + "start": 20009.95, + "end": 20010.53, + "probability": 0.0322 + }, + { + "start": 20036.59, + "end": 20036.69, + "probability": 0.1212 + }, + { + "start": 20036.73, + "end": 20036.77, + "probability": 0.1061 + }, + { + "start": 20036.77, + "end": 20036.77, + "probability": 0.0557 + }, + { + "start": 20036.77, + "end": 20036.95, + "probability": 0.0402 + }, + { + "start": 20053.51, + "end": 20057.17, + "probability": 0.8184 + }, + { + "start": 20057.27, + "end": 20059.03, + "probability": 0.9563 + }, + { + "start": 20060.13, + "end": 20063.89, + "probability": 0.9675 + }, + { + "start": 20064.03, + "end": 20066.07, + "probability": 0.8357 + }, + { + "start": 20066.19, + "end": 20067.13, + "probability": 0.6759 + }, + { + "start": 20067.45, + "end": 20069.63, + "probability": 0.9448 + }, + { + "start": 20070.45, + "end": 20074.37, + "probability": 0.7962 + }, + { + "start": 20074.51, + "end": 20076.25, + "probability": 0.4991 + }, + { + "start": 20076.89, + "end": 20082.69, + "probability": 0.9213 + }, + { + "start": 20084.17, + "end": 20087.57, + "probability": 0.9946 + }, + { + "start": 20087.57, + "end": 20091.19, + "probability": 0.9946 + }, + { + "start": 20091.71, + "end": 20092.37, + "probability": 0.763 + }, + { + "start": 20092.57, + "end": 20095.26, + "probability": 0.618 + }, + { + "start": 20096.21, + "end": 20097.53, + "probability": 0.931 + }, + { + "start": 20097.81, + "end": 20101.59, + "probability": 0.8456 + }, + { + "start": 20101.65, + "end": 20104.15, + "probability": 0.9478 + }, + { + "start": 20104.87, + "end": 20109.15, + "probability": 0.9938 + }, + { + "start": 20110.57, + "end": 20114.83, + "probability": 0.9971 + }, + { + "start": 20115.57, + "end": 20115.95, + "probability": 0.8679 + }, + { + "start": 20118.51, + "end": 20122.79, + "probability": 0.9965 + }, + { + "start": 20122.93, + "end": 20124.55, + "probability": 0.7526 + }, + { + "start": 20125.67, + "end": 20126.67, + "probability": 0.7947 + }, + { + "start": 20128.27, + "end": 20130.17, + "probability": 0.9686 + }, + { + "start": 20130.31, + "end": 20133.71, + "probability": 0.8599 + }, + { + "start": 20134.23, + "end": 20136.89, + "probability": 0.969 + }, + { + "start": 20137.13, + "end": 20138.69, + "probability": 0.7123 + }, + { + "start": 20139.25, + "end": 20141.69, + "probability": 0.7115 + }, + { + "start": 20142.13, + "end": 20142.97, + "probability": 0.6266 + }, + { + "start": 20143.03, + "end": 20143.63, + "probability": 0.5587 + }, + { + "start": 20144.15, + "end": 20145.05, + "probability": 0.6853 + }, + { + "start": 20167.71, + "end": 20170.31, + "probability": 0.1902 + }, + { + "start": 20170.53, + "end": 20172.03, + "probability": 0.8197 + }, + { + "start": 20172.53, + "end": 20173.37, + "probability": 0.3101 + }, + { + "start": 20173.99, + "end": 20179.03, + "probability": 0.5064 + }, + { + "start": 20181.29, + "end": 20182.19, + "probability": 0.3656 + }, + { + "start": 20189.41, + "end": 20192.19, + "probability": 0.0335 + }, + { + "start": 20195.97, + "end": 20196.13, + "probability": 0.0153 + }, + { + "start": 20196.54, + "end": 20203.43, + "probability": 0.1978 + }, + { + "start": 20203.43, + "end": 20205.99, + "probability": 0.1663 + }, + { + "start": 20206.41, + "end": 20207.75, + "probability": 0.0827 + }, + { + "start": 20208.47, + "end": 20211.19, + "probability": 0.0596 + }, + { + "start": 20211.85, + "end": 20215.81, + "probability": 0.0673 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.0, + "end": 20243.0, + "probability": 0.0 + }, + { + "start": 20243.32, + "end": 20246.26, + "probability": 0.8167 + }, + { + "start": 20246.7, + "end": 20247.78, + "probability": 0.6395 + }, + { + "start": 20247.84, + "end": 20249.18, + "probability": 0.9013 + }, + { + "start": 20249.3, + "end": 20250.26, + "probability": 0.6106 + }, + { + "start": 20250.26, + "end": 20251.22, + "probability": 0.7703 + }, + { + "start": 20251.26, + "end": 20252.46, + "probability": 0.7948 + }, + { + "start": 20252.48, + "end": 20252.9, + "probability": 0.9251 + }, + { + "start": 20254.6, + "end": 20259.54, + "probability": 0.9634 + }, + { + "start": 20260.18, + "end": 20262.66, + "probability": 0.999 + }, + { + "start": 20263.54, + "end": 20263.82, + "probability": 0.6251 + }, + { + "start": 20264.64, + "end": 20265.86, + "probability": 0.9351 + }, + { + "start": 20266.0, + "end": 20266.74, + "probability": 0.8556 + }, + { + "start": 20267.2, + "end": 20269.9, + "probability": 0.9465 + }, + { + "start": 20270.82, + "end": 20276.32, + "probability": 0.9609 + }, + { + "start": 20277.08, + "end": 20277.88, + "probability": 0.847 + }, + { + "start": 20278.06, + "end": 20284.64, + "probability": 0.9843 + }, + { + "start": 20285.28, + "end": 20287.28, + "probability": 0.9408 + }, + { + "start": 20287.9, + "end": 20288.44, + "probability": 0.7918 + }, + { + "start": 20289.6, + "end": 20293.8, + "probability": 0.9859 + }, + { + "start": 20294.55, + "end": 20298.63, + "probability": 0.9956 + }, + { + "start": 20299.36, + "end": 20302.74, + "probability": 0.9634 + }, + { + "start": 20303.6, + "end": 20305.76, + "probability": 0.8436 + }, + { + "start": 20306.72, + "end": 20311.7, + "probability": 0.9925 + }, + { + "start": 20312.18, + "end": 20318.78, + "probability": 0.9857 + }, + { + "start": 20319.42, + "end": 20322.16, + "probability": 0.6554 + }, + { + "start": 20323.56, + "end": 20327.34, + "probability": 0.9951 + }, + { + "start": 20328.82, + "end": 20333.2, + "probability": 0.9797 + }, + { + "start": 20333.2, + "end": 20337.2, + "probability": 0.9984 + }, + { + "start": 20337.86, + "end": 20339.08, + "probability": 0.75 + }, + { + "start": 20339.7, + "end": 20341.78, + "probability": 0.85 + }, + { + "start": 20342.36, + "end": 20347.44, + "probability": 0.9934 + }, + { + "start": 20347.44, + "end": 20352.38, + "probability": 0.9604 + }, + { + "start": 20352.96, + "end": 20355.12, + "probability": 0.5428 + }, + { + "start": 20356.12, + "end": 20361.8, + "probability": 0.9946 + }, + { + "start": 20362.32, + "end": 20364.92, + "probability": 0.9817 + }, + { + "start": 20366.44, + "end": 20369.56, + "probability": 0.7606 + }, + { + "start": 20370.3, + "end": 20372.32, + "probability": 0.8811 + }, + { + "start": 20372.88, + "end": 20375.79, + "probability": 0.7357 + }, + { + "start": 20376.54, + "end": 20377.22, + "probability": 0.2199 + }, + { + "start": 20377.92, + "end": 20379.8, + "probability": 0.884 + }, + { + "start": 20380.18, + "end": 20382.1, + "probability": 0.9973 + }, + { + "start": 20383.44, + "end": 20387.82, + "probability": 0.7556 + }, + { + "start": 20388.06, + "end": 20389.03, + "probability": 0.9037 + }, + { + "start": 20389.12, + "end": 20393.14, + "probability": 0.7491 + }, + { + "start": 20393.76, + "end": 20396.82, + "probability": 0.8956 + }, + { + "start": 20397.74, + "end": 20398.5, + "probability": 0.7169 + }, + { + "start": 20398.98, + "end": 20403.72, + "probability": 0.6523 + }, + { + "start": 20404.32, + "end": 20405.54, + "probability": 0.8745 + }, + { + "start": 20406.36, + "end": 20411.44, + "probability": 0.9913 + }, + { + "start": 20411.44, + "end": 20418.86, + "probability": 0.999 + }, + { + "start": 20419.8, + "end": 20423.36, + "probability": 0.9977 + }, + { + "start": 20423.96, + "end": 20431.1, + "probability": 0.9015 + }, + { + "start": 20431.56, + "end": 20436.18, + "probability": 0.9912 + }, + { + "start": 20436.18, + "end": 20439.16, + "probability": 0.9783 + }, + { + "start": 20440.1, + "end": 20443.36, + "probability": 0.9092 + }, + { + "start": 20443.88, + "end": 20446.84, + "probability": 0.9983 + }, + { + "start": 20447.28, + "end": 20448.87, + "probability": 0.855 + }, + { + "start": 20449.38, + "end": 20453.4, + "probability": 0.9952 + }, + { + "start": 20453.68, + "end": 20458.0, + "probability": 0.9811 + }, + { + "start": 20458.0, + "end": 20462.78, + "probability": 0.968 + }, + { + "start": 20464.22, + "end": 20465.28, + "probability": 0.6693 + }, + { + "start": 20466.58, + "end": 20473.34, + "probability": 0.9149 + }, + { + "start": 20473.34, + "end": 20475.0, + "probability": 0.9198 + }, + { + "start": 20477.36, + "end": 20481.52, + "probability": 0.6575 + }, + { + "start": 20489.62, + "end": 20490.25, + "probability": 0.4628 + }, + { + "start": 20491.18, + "end": 20493.36, + "probability": 0.3624 + }, + { + "start": 20493.92, + "end": 20494.68, + "probability": 0.6856 + }, + { + "start": 20495.06, + "end": 20499.64, + "probability": 0.8907 + }, + { + "start": 20500.0, + "end": 20505.32, + "probability": 0.8973 + }, + { + "start": 20505.64, + "end": 20509.56, + "probability": 0.8989 + }, + { + "start": 20510.24, + "end": 20511.8, + "probability": 0.995 + }, + { + "start": 20512.18, + "end": 20516.62, + "probability": 0.2474 + }, + { + "start": 20517.2, + "end": 20517.44, + "probability": 0.0011 + }, + { + "start": 20519.86, + "end": 20520.74, + "probability": 0.934 + }, + { + "start": 20521.44, + "end": 20522.18, + "probability": 0.9786 + }, + { + "start": 20522.44, + "end": 20523.3, + "probability": 0.9169 + }, + { + "start": 20523.66, + "end": 20524.66, + "probability": 0.9539 + }, + { + "start": 20524.9, + "end": 20525.54, + "probability": 0.9582 + }, + { + "start": 20525.9, + "end": 20527.38, + "probability": 0.9581 + }, + { + "start": 20527.72, + "end": 20528.56, + "probability": 0.9203 + }, + { + "start": 20528.92, + "end": 20530.22, + "probability": 0.981 + }, + { + "start": 20530.38, + "end": 20532.48, + "probability": 0.981 + }, + { + "start": 20532.94, + "end": 20537.2, + "probability": 0.9766 + }, + { + "start": 20537.48, + "end": 20539.76, + "probability": 0.998 + }, + { + "start": 20540.28, + "end": 20544.66, + "probability": 0.8458 + }, + { + "start": 20544.66, + "end": 20550.4, + "probability": 0.9912 + }, + { + "start": 20550.66, + "end": 20552.44, + "probability": 0.9932 + }, + { + "start": 20552.8, + "end": 20553.74, + "probability": 0.7927 + }, + { + "start": 20553.88, + "end": 20554.49, + "probability": 0.6948 + }, + { + "start": 20554.66, + "end": 20555.44, + "probability": 0.8059 + }, + { + "start": 20555.8, + "end": 20557.9, + "probability": 0.9658 + }, + { + "start": 20558.18, + "end": 20560.34, + "probability": 0.989 + }, + { + "start": 20560.72, + "end": 20562.16, + "probability": 0.8677 + }, + { + "start": 20562.46, + "end": 20563.2, + "probability": 0.5939 + }, + { + "start": 20563.72, + "end": 20563.98, + "probability": 0.6955 + }, + { + "start": 20565.18, + "end": 20565.9, + "probability": 0.4839 + }, + { + "start": 20566.04, + "end": 20567.7, + "probability": 0.9663 + }, + { + "start": 20567.76, + "end": 20567.76, + "probability": 0.0321 + }, + { + "start": 20567.84, + "end": 20568.78, + "probability": 0.6039 + }, + { + "start": 20568.78, + "end": 20570.4, + "probability": 0.8057 + }, + { + "start": 20570.42, + "end": 20572.08, + "probability": 0.9683 + }, + { + "start": 20572.66, + "end": 20575.8, + "probability": 0.9952 + }, + { + "start": 20576.7, + "end": 20579.64, + "probability": 0.9529 + }, + { + "start": 20580.32, + "end": 20583.56, + "probability": 0.9253 + }, + { + "start": 20584.28, + "end": 20589.02, + "probability": 0.9917 + }, + { + "start": 20589.9, + "end": 20595.3, + "probability": 0.9729 + }, + { + "start": 20596.78, + "end": 20603.84, + "probability": 0.9749 + }, + { + "start": 20604.2, + "end": 20605.44, + "probability": 0.8972 + }, + { + "start": 20606.24, + "end": 20610.82, + "probability": 0.9851 + }, + { + "start": 20611.58, + "end": 20613.8, + "probability": 0.9421 + }, + { + "start": 20614.04, + "end": 20615.86, + "probability": 0.821 + }, + { + "start": 20616.2, + "end": 20618.0, + "probability": 0.7927 + }, + { + "start": 20618.02, + "end": 20621.0, + "probability": 0.9016 + }, + { + "start": 20621.52, + "end": 20622.68, + "probability": 0.9878 + }, + { + "start": 20623.26, + "end": 20626.48, + "probability": 0.9602 + }, + { + "start": 20626.48, + "end": 20630.94, + "probability": 0.9924 + }, + { + "start": 20631.58, + "end": 20633.92, + "probability": 0.9966 + }, + { + "start": 20634.06, + "end": 20635.18, + "probability": 0.9654 + }, + { + "start": 20635.58, + "end": 20637.74, + "probability": 0.9108 + }, + { + "start": 20638.22, + "end": 20641.8, + "probability": 0.6563 + }, + { + "start": 20642.06, + "end": 20648.9, + "probability": 0.9902 + }, + { + "start": 20649.02, + "end": 20649.78, + "probability": 0.829 + }, + { + "start": 20649.9, + "end": 20652.7, + "probability": 0.9665 + }, + { + "start": 20652.7, + "end": 20655.92, + "probability": 0.901 + }, + { + "start": 20656.6, + "end": 20660.26, + "probability": 0.7412 + }, + { + "start": 20660.26, + "end": 20663.58, + "probability": 0.9453 + }, + { + "start": 20664.16, + "end": 20665.46, + "probability": 0.9468 + }, + { + "start": 20665.76, + "end": 20667.2, + "probability": 0.9927 + }, + { + "start": 20667.4, + "end": 20669.12, + "probability": 0.9148 + }, + { + "start": 20669.3, + "end": 20670.9, + "probability": 0.9755 + }, + { + "start": 20671.28, + "end": 20673.72, + "probability": 0.9897 + }, + { + "start": 20674.28, + "end": 20676.42, + "probability": 0.9956 + }, + { + "start": 20676.86, + "end": 20677.86, + "probability": 0.813 + }, + { + "start": 20677.98, + "end": 20679.36, + "probability": 0.9657 + }, + { + "start": 20679.54, + "end": 20680.7, + "probability": 0.6733 + }, + { + "start": 20680.8, + "end": 20681.5, + "probability": 0.8208 + }, + { + "start": 20681.56, + "end": 20682.6, + "probability": 0.9826 + }, + { + "start": 20682.66, + "end": 20683.98, + "probability": 0.9536 + }, + { + "start": 20684.48, + "end": 20687.82, + "probability": 0.9808 + }, + { + "start": 20687.82, + "end": 20691.7, + "probability": 0.9983 + }, + { + "start": 20692.4, + "end": 20696.92, + "probability": 0.9906 + }, + { + "start": 20696.92, + "end": 20701.18, + "probability": 0.9971 + }, + { + "start": 20701.68, + "end": 20703.16, + "probability": 0.9793 + }, + { + "start": 20703.38, + "end": 20704.44, + "probability": 0.8703 + }, + { + "start": 20704.78, + "end": 20707.8, + "probability": 0.8025 + }, + { + "start": 20708.02, + "end": 20709.33, + "probability": 0.9782 + }, + { + "start": 20709.56, + "end": 20714.28, + "probability": 0.9613 + }, + { + "start": 20714.28, + "end": 20718.76, + "probability": 0.9912 + }, + { + "start": 20719.06, + "end": 20723.2, + "probability": 0.9373 + }, + { + "start": 20723.3, + "end": 20723.62, + "probability": 0.7437 + }, + { + "start": 20724.44, + "end": 20726.94, + "probability": 0.8739 + }, + { + "start": 20727.32, + "end": 20730.54, + "probability": 0.5988 + }, + { + "start": 20730.54, + "end": 20731.46, + "probability": 0.8102 + }, + { + "start": 20749.8, + "end": 20750.58, + "probability": 0.3208 + }, + { + "start": 20750.68, + "end": 20753.38, + "probability": 0.7445 + }, + { + "start": 20754.46, + "end": 20760.94, + "probability": 0.9871 + }, + { + "start": 20761.96, + "end": 20763.44, + "probability": 0.7563 + }, + { + "start": 20763.44, + "end": 20763.51, + "probability": 0.0118 + }, + { + "start": 20763.9, + "end": 20765.04, + "probability": 0.7685 + }, + { + "start": 20765.68, + "end": 20768.4, + "probability": 0.8313 + }, + { + "start": 20770.84, + "end": 20774.68, + "probability": 0.9579 + }, + { + "start": 20778.08, + "end": 20784.56, + "probability": 0.6512 + }, + { + "start": 20785.88, + "end": 20791.84, + "probability": 0.8459 + }, + { + "start": 20793.32, + "end": 20794.44, + "probability": 0.7314 + }, + { + "start": 20795.08, + "end": 20797.66, + "probability": 0.9641 + }, + { + "start": 20798.5, + "end": 20799.44, + "probability": 0.6705 + }, + { + "start": 20799.6, + "end": 20804.56, + "probability": 0.9896 + }, + { + "start": 20804.56, + "end": 20809.94, + "probability": 0.9932 + }, + { + "start": 20811.08, + "end": 20814.28, + "probability": 0.9211 + }, + { + "start": 20815.08, + "end": 20819.08, + "probability": 0.9842 + }, + { + "start": 20819.08, + "end": 20822.28, + "probability": 0.995 + }, + { + "start": 20823.24, + "end": 20827.5, + "probability": 0.9593 + }, + { + "start": 20827.5, + "end": 20833.1, + "probability": 0.9974 + }, + { + "start": 20833.92, + "end": 20836.28, + "probability": 0.9246 + }, + { + "start": 20836.38, + "end": 20837.18, + "probability": 0.8799 + }, + { + "start": 20837.28, + "end": 20838.2, + "probability": 0.9208 + }, + { + "start": 20838.32, + "end": 20840.9, + "probability": 0.8397 + }, + { + "start": 20841.9, + "end": 20846.84, + "probability": 0.9897 + }, + { + "start": 20846.84, + "end": 20852.42, + "probability": 0.9624 + }, + { + "start": 20852.98, + "end": 20857.02, + "probability": 0.9675 + }, + { + "start": 20858.1, + "end": 20860.82, + "probability": 0.9838 + }, + { + "start": 20860.94, + "end": 20865.3, + "probability": 0.9225 + }, + { + "start": 20865.48, + "end": 20867.02, + "probability": 0.958 + }, + { + "start": 20868.18, + "end": 20868.48, + "probability": 0.5869 + }, + { + "start": 20868.6, + "end": 20871.88, + "probability": 0.9902 + }, + { + "start": 20872.36, + "end": 20875.22, + "probability": 0.9827 + }, + { + "start": 20875.42, + "end": 20879.06, + "probability": 0.9785 + }, + { + "start": 20880.04, + "end": 20880.18, + "probability": 0.4991 + }, + { + "start": 20880.3, + "end": 20882.78, + "probability": 0.7597 + }, + { + "start": 20882.78, + "end": 20885.46, + "probability": 0.9904 + }, + { + "start": 20886.26, + "end": 20889.24, + "probability": 0.9917 + }, + { + "start": 20889.5, + "end": 20892.18, + "probability": 0.9767 + }, + { + "start": 20892.3, + "end": 20892.68, + "probability": 0.9166 + }, + { + "start": 20893.24, + "end": 20895.7, + "probability": 0.9429 + }, + { + "start": 20896.38, + "end": 20901.88, + "probability": 0.9489 + }, + { + "start": 20902.4, + "end": 20904.72, + "probability": 0.9551 + }, + { + "start": 20906.06, + "end": 20907.04, + "probability": 0.6225 + }, + { + "start": 20908.1, + "end": 20909.84, + "probability": 0.8571 + }, + { + "start": 20909.94, + "end": 20912.06, + "probability": 0.8598 + }, + { + "start": 20912.66, + "end": 20917.08, + "probability": 0.9602 + }, + { + "start": 20917.24, + "end": 20919.36, + "probability": 0.7877 + }, + { + "start": 20919.84, + "end": 20922.52, + "probability": 0.6319 + }, + { + "start": 20922.62, + "end": 20923.26, + "probability": 0.9582 + }, + { + "start": 20923.42, + "end": 20924.4, + "probability": 0.8271 + }, + { + "start": 20946.3, + "end": 20949.66, + "probability": 0.2568 + }, + { + "start": 20949.68, + "end": 20951.56, + "probability": 0.7836 + }, + { + "start": 20951.94, + "end": 20953.14, + "probability": 0.4916 + }, + { + "start": 20953.8, + "end": 20959.28, + "probability": 0.7148 + }, + { + "start": 20960.92, + "end": 20962.82, + "probability": 0.668 + }, + { + "start": 20975.48, + "end": 20976.96, + "probability": 0.0952 + }, + { + "start": 20976.96, + "end": 20978.04, + "probability": 0.0187 + }, + { + "start": 20978.44, + "end": 20978.74, + "probability": 0.054 + }, + { + "start": 20979.32, + "end": 20982.32, + "probability": 0.0572 + }, + { + "start": 20982.32, + "end": 20989.08, + "probability": 0.0787 + }, + { + "start": 20989.4, + "end": 20990.88, + "probability": 0.119 + }, + { + "start": 20990.88, + "end": 20991.4, + "probability": 0.1707 + }, + { + "start": 20991.4, + "end": 20991.4, + "probability": 0.3461 + }, + { + "start": 20991.4, + "end": 20993.92, + "probability": 0.2084 + }, + { + "start": 20994.17, + "end": 20997.0, + "probability": 0.076 + }, + { + "start": 20998.1, + "end": 20999.06, + "probability": 0.0235 + }, + { + "start": 21001.36, + "end": 21006.04, + "probability": 0.1174 + }, + { + "start": 21006.86, + "end": 21008.32, + "probability": 0.0924 + }, + { + "start": 21008.32, + "end": 21008.46, + "probability": 0.1911 + }, + { + "start": 21008.46, + "end": 21008.86, + "probability": 0.126 + }, + { + "start": 21009.56, + "end": 21009.74, + "probability": 0.1934 + }, + { + "start": 21009.74, + "end": 21009.74, + "probability": 0.0898 + }, + { + "start": 21009.74, + "end": 21009.76, + "probability": 0.1288 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.0, + "end": 21010.0, + "probability": 0.0 + }, + { + "start": 21010.95, + "end": 21013.64, + "probability": 0.9954 + }, + { + "start": 21013.64, + "end": 21018.48, + "probability": 0.9651 + }, + { + "start": 21019.18, + "end": 21022.8, + "probability": 0.9966 + }, + { + "start": 21023.42, + "end": 21026.5, + "probability": 0.7873 + }, + { + "start": 21026.58, + "end": 21027.72, + "probability": 0.6835 + }, + { + "start": 21027.76, + "end": 21029.24, + "probability": 0.979 + }, + { + "start": 21029.9, + "end": 21031.42, + "probability": 0.8977 + }, + { + "start": 21031.48, + "end": 21032.58, + "probability": 0.9553 + }, + { + "start": 21033.42, + "end": 21036.4, + "probability": 0.5244 + }, + { + "start": 21037.48, + "end": 21040.88, + "probability": 0.8726 + }, + { + "start": 21041.8, + "end": 21044.3, + "probability": 0.9792 + }, + { + "start": 21044.62, + "end": 21045.0, + "probability": 0.8436 + }, + { + "start": 21045.18, + "end": 21046.18, + "probability": 0.8413 + }, + { + "start": 21046.56, + "end": 21051.96, + "probability": 0.9727 + }, + { + "start": 21051.96, + "end": 21058.64, + "probability": 0.97 + }, + { + "start": 21059.24, + "end": 21062.38, + "probability": 0.939 + }, + { + "start": 21063.72, + "end": 21065.64, + "probability": 0.6936 + }, + { + "start": 21066.26, + "end": 21067.36, + "probability": 0.8872 + }, + { + "start": 21067.85, + "end": 21072.6, + "probability": 0.9637 + }, + { + "start": 21072.6, + "end": 21077.34, + "probability": 0.9599 + }, + { + "start": 21077.56, + "end": 21079.08, + "probability": 0.6591 + }, + { + "start": 21079.88, + "end": 21081.62, + "probability": 0.897 + }, + { + "start": 21082.38, + "end": 21087.28, + "probability": 0.9551 + }, + { + "start": 21088.3, + "end": 21090.26, + "probability": 0.9531 + }, + { + "start": 21090.26, + "end": 21094.24, + "probability": 0.9846 + }, + { + "start": 21094.92, + "end": 21096.6, + "probability": 0.7034 + }, + { + "start": 21097.16, + "end": 21102.78, + "probability": 0.9271 + }, + { + "start": 21103.54, + "end": 21107.1, + "probability": 0.6188 + }, + { + "start": 21107.68, + "end": 21109.54, + "probability": 0.8365 + }, + { + "start": 21110.3, + "end": 21113.38, + "probability": 0.8693 + }, + { + "start": 21114.06, + "end": 21117.96, + "probability": 0.9813 + }, + { + "start": 21118.52, + "end": 21124.22, + "probability": 0.9482 + }, + { + "start": 21124.96, + "end": 21126.68, + "probability": 0.9838 + }, + { + "start": 21127.74, + "end": 21133.4, + "probability": 0.9958 + }, + { + "start": 21133.56, + "end": 21138.82, + "probability": 0.911 + }, + { + "start": 21138.88, + "end": 21140.38, + "probability": 0.9366 + }, + { + "start": 21140.82, + "end": 21144.04, + "probability": 0.925 + }, + { + "start": 21144.56, + "end": 21145.62, + "probability": 0.9277 + }, + { + "start": 21146.22, + "end": 21148.7, + "probability": 0.6499 + }, + { + "start": 21149.34, + "end": 21150.82, + "probability": 0.8346 + }, + { + "start": 21151.3, + "end": 21152.12, + "probability": 0.9347 + }, + { + "start": 21152.6, + "end": 21153.9, + "probability": 0.9841 + }, + { + "start": 21153.96, + "end": 21155.22, + "probability": 0.988 + }, + { + "start": 21155.66, + "end": 21160.86, + "probability": 0.9849 + }, + { + "start": 21161.92, + "end": 21164.72, + "probability": 0.9563 + }, + { + "start": 21165.46, + "end": 21170.92, + "probability": 0.9937 + }, + { + "start": 21171.48, + "end": 21173.02, + "probability": 0.82 + }, + { + "start": 21173.12, + "end": 21175.9, + "probability": 0.8989 + }, + { + "start": 21176.36, + "end": 21181.48, + "probability": 0.9888 + }, + { + "start": 21182.3, + "end": 21184.05, + "probability": 0.6434 + }, + { + "start": 21184.38, + "end": 21186.96, + "probability": 0.9442 + }, + { + "start": 21187.44, + "end": 21190.64, + "probability": 0.9111 + }, + { + "start": 21191.24, + "end": 21194.74, + "probability": 0.9818 + }, + { + "start": 21195.24, + "end": 21197.42, + "probability": 0.9569 + }, + { + "start": 21197.94, + "end": 21199.72, + "probability": 0.8004 + }, + { + "start": 21200.26, + "end": 21204.62, + "probability": 0.9924 + }, + { + "start": 21206.28, + "end": 21210.0, + "probability": 0.9951 + }, + { + "start": 21210.78, + "end": 21211.56, + "probability": 0.7229 + }, + { + "start": 21211.72, + "end": 21213.18, + "probability": 0.7812 + }, + { + "start": 21213.68, + "end": 21219.08, + "probability": 0.9587 + }, + { + "start": 21219.66, + "end": 21221.74, + "probability": 0.9934 + }, + { + "start": 21222.12, + "end": 21223.42, + "probability": 0.987 + }, + { + "start": 21223.48, + "end": 21223.98, + "probability": 0.9919 + }, + { + "start": 21224.0, + "end": 21224.64, + "probability": 0.9933 + }, + { + "start": 21224.92, + "end": 21225.48, + "probability": 0.9398 + }, + { + "start": 21226.32, + "end": 21229.34, + "probability": 0.7069 + }, + { + "start": 21230.14, + "end": 21232.38, + "probability": 0.9766 + }, + { + "start": 21233.06, + "end": 21234.32, + "probability": 0.91 + }, + { + "start": 21234.84, + "end": 21236.3, + "probability": 0.9883 + }, + { + "start": 21236.74, + "end": 21239.22, + "probability": 0.8184 + }, + { + "start": 21239.68, + "end": 21240.94, + "probability": 0.895 + }, + { + "start": 21243.16, + "end": 21246.3, + "probability": 0.9485 + }, + { + "start": 21247.58, + "end": 21251.22, + "probability": 0.999 + }, + { + "start": 21252.0, + "end": 21255.52, + "probability": 0.9968 + }, + { + "start": 21256.12, + "end": 21258.28, + "probability": 0.9976 + }, + { + "start": 21258.8, + "end": 21260.52, + "probability": 0.8384 + }, + { + "start": 21261.22, + "end": 21263.16, + "probability": 0.9741 + }, + { + "start": 21263.62, + "end": 21265.34, + "probability": 0.9788 + }, + { + "start": 21265.8, + "end": 21268.7, + "probability": 0.8578 + }, + { + "start": 21269.16, + "end": 21271.16, + "probability": 0.9874 + }, + { + "start": 21271.96, + "end": 21275.16, + "probability": 0.9385 + }, + { + "start": 21275.8, + "end": 21278.06, + "probability": 0.9937 + }, + { + "start": 21278.48, + "end": 21280.64, + "probability": 0.9808 + }, + { + "start": 21281.0, + "end": 21282.02, + "probability": 0.9859 + }, + { + "start": 21282.22, + "end": 21282.94, + "probability": 0.4048 + }, + { + "start": 21282.94, + "end": 21284.56, + "probability": 0.2773 + }, + { + "start": 21285.28, + "end": 21291.64, + "probability": 0.8759 + }, + { + "start": 21292.14, + "end": 21293.78, + "probability": 0.9401 + }, + { + "start": 21294.18, + "end": 21295.82, + "probability": 0.9949 + }, + { + "start": 21295.9, + "end": 21299.4, + "probability": 0.9448 + }, + { + "start": 21299.96, + "end": 21303.18, + "probability": 0.9539 + }, + { + "start": 21303.62, + "end": 21305.11, + "probability": 0.9956 + }, + { + "start": 21306.46, + "end": 21308.66, + "probability": 0.7441 + }, + { + "start": 21309.36, + "end": 21312.82, + "probability": 0.9724 + }, + { + "start": 21313.36, + "end": 21316.88, + "probability": 0.9819 + }, + { + "start": 21317.1, + "end": 21318.44, + "probability": 0.4788 + }, + { + "start": 21319.02, + "end": 21321.18, + "probability": 0.6455 + }, + { + "start": 21321.98, + "end": 21323.42, + "probability": 0.6058 + }, + { + "start": 21323.5, + "end": 21324.3, + "probability": 0.6596 + }, + { + "start": 21324.74, + "end": 21326.76, + "probability": 0.9393 + }, + { + "start": 21327.28, + "end": 21329.64, + "probability": 0.8336 + }, + { + "start": 21330.22, + "end": 21332.2, + "probability": 0.6864 + }, + { + "start": 21332.78, + "end": 21334.4, + "probability": 0.8507 + }, + { + "start": 21335.14, + "end": 21337.14, + "probability": 0.9684 + }, + { + "start": 21337.66, + "end": 21339.26, + "probability": 0.9133 + }, + { + "start": 21340.18, + "end": 21341.44, + "probability": 0.6416 + }, + { + "start": 21342.22, + "end": 21344.58, + "probability": 0.9695 + }, + { + "start": 21345.16, + "end": 21348.18, + "probability": 0.7817 + }, + { + "start": 21348.72, + "end": 21351.58, + "probability": 0.9384 + }, + { + "start": 21351.76, + "end": 21352.36, + "probability": 0.9326 + }, + { + "start": 21352.88, + "end": 21355.26, + "probability": 0.9833 + }, + { + "start": 21355.68, + "end": 21356.84, + "probability": 0.958 + }, + { + "start": 21357.3, + "end": 21358.67, + "probability": 0.9697 + }, + { + "start": 21359.44, + "end": 21362.22, + "probability": 0.9586 + }, + { + "start": 21362.34, + "end": 21363.24, + "probability": 0.9778 + }, + { + "start": 21363.3, + "end": 21364.26, + "probability": 0.8027 + }, + { + "start": 21364.8, + "end": 21366.38, + "probability": 0.9905 + }, + { + "start": 21366.8, + "end": 21372.0, + "probability": 0.9897 + }, + { + "start": 21372.4, + "end": 21374.04, + "probability": 0.8393 + }, + { + "start": 21375.22, + "end": 21382.08, + "probability": 0.9526 + }, + { + "start": 21382.08, + "end": 21383.4, + "probability": 0.6065 + }, + { + "start": 21383.94, + "end": 21386.15, + "probability": 0.9912 + }, + { + "start": 21386.5, + "end": 21388.04, + "probability": 0.9364 + }, + { + "start": 21388.16, + "end": 21388.66, + "probability": 0.4986 + }, + { + "start": 21388.88, + "end": 21388.98, + "probability": 0.4631 + }, + { + "start": 21389.94, + "end": 21390.52, + "probability": 0.8156 + }, + { + "start": 21391.16, + "end": 21393.24, + "probability": 0.9914 + }, + { + "start": 21393.34, + "end": 21396.56, + "probability": 0.8888 + }, + { + "start": 21396.7, + "end": 21397.8, + "probability": 0.9514 + }, + { + "start": 21398.68, + "end": 21401.34, + "probability": 0.9331 + }, + { + "start": 21402.04, + "end": 21403.86, + "probability": 0.909 + }, + { + "start": 21404.38, + "end": 21407.9, + "probability": 0.9823 + }, + { + "start": 21408.48, + "end": 21410.92, + "probability": 0.9888 + }, + { + "start": 21411.7, + "end": 21413.94, + "probability": 0.9895 + }, + { + "start": 21414.46, + "end": 21417.34, + "probability": 0.9956 + }, + { + "start": 21417.8, + "end": 21418.02, + "probability": 0.3126 + }, + { + "start": 21418.08, + "end": 21419.3, + "probability": 0.7209 + }, + { + "start": 21419.66, + "end": 21423.18, + "probability": 0.8733 + }, + { + "start": 21423.86, + "end": 21425.04, + "probability": 0.9608 + }, + { + "start": 21425.12, + "end": 21427.44, + "probability": 0.9834 + }, + { + "start": 21427.88, + "end": 21428.84, + "probability": 0.4995 + }, + { + "start": 21429.7, + "end": 21431.68, + "probability": 0.9984 + }, + { + "start": 21432.28, + "end": 21433.74, + "probability": 0.9602 + }, + { + "start": 21434.2, + "end": 21437.52, + "probability": 0.9945 + }, + { + "start": 21437.88, + "end": 21440.18, + "probability": 0.894 + }, + { + "start": 21440.6, + "end": 21443.1, + "probability": 0.9683 + }, + { + "start": 21443.7, + "end": 21444.86, + "probability": 0.8695 + }, + { + "start": 21445.38, + "end": 21447.58, + "probability": 0.8586 + }, + { + "start": 21448.1, + "end": 21449.42, + "probability": 0.9817 + }, + { + "start": 21449.84, + "end": 21453.6, + "probability": 0.9906 + }, + { + "start": 21454.08, + "end": 21457.9, + "probability": 0.9329 + }, + { + "start": 21458.04, + "end": 21459.5, + "probability": 0.9791 + }, + { + "start": 21459.92, + "end": 21461.16, + "probability": 0.78 + }, + { + "start": 21461.52, + "end": 21462.5, + "probability": 0.9622 + }, + { + "start": 21462.6, + "end": 21463.42, + "probability": 0.6357 + }, + { + "start": 21463.76, + "end": 21467.34, + "probability": 0.9574 + }, + { + "start": 21468.04, + "end": 21469.1, + "probability": 0.9559 + }, + { + "start": 21470.06, + "end": 21472.4, + "probability": 0.9082 + }, + { + "start": 21472.4, + "end": 21475.72, + "probability": 0.5524 + }, + { + "start": 21476.24, + "end": 21479.68, + "probability": 0.6021 + }, + { + "start": 21480.24, + "end": 21481.98, + "probability": 0.9735 + }, + { + "start": 21482.38, + "end": 21483.76, + "probability": 0.9188 + }, + { + "start": 21484.64, + "end": 21486.6, + "probability": 0.9287 + }, + { + "start": 21486.66, + "end": 21488.54, + "probability": 0.9009 + }, + { + "start": 21488.98, + "end": 21490.98, + "probability": 0.8672 + }, + { + "start": 21491.58, + "end": 21496.36, + "probability": 0.7392 + }, + { + "start": 21496.78, + "end": 21498.38, + "probability": 0.9181 + }, + { + "start": 21499.02, + "end": 21500.84, + "probability": 0.9969 + }, + { + "start": 21501.38, + "end": 21504.64, + "probability": 0.9971 + }, + { + "start": 21504.64, + "end": 21507.7, + "probability": 0.9875 + }, + { + "start": 21508.16, + "end": 21509.9, + "probability": 0.9153 + }, + { + "start": 21510.34, + "end": 21512.12, + "probability": 0.9753 + }, + { + "start": 21512.64, + "end": 21515.8, + "probability": 0.9451 + }, + { + "start": 21516.58, + "end": 21518.01, + "probability": 0.5928 + }, + { + "start": 21518.62, + "end": 21520.4, + "probability": 0.9782 + }, + { + "start": 21520.8, + "end": 21522.0, + "probability": 0.9716 + }, + { + "start": 21522.3, + "end": 21523.34, + "probability": 0.5644 + }, + { + "start": 21523.48, + "end": 21524.76, + "probability": 0.9225 + }, + { + "start": 21525.18, + "end": 21526.42, + "probability": 0.9893 + }, + { + "start": 21526.46, + "end": 21528.94, + "probability": 0.99 + }, + { + "start": 21529.48, + "end": 21530.8, + "probability": 0.9737 + }, + { + "start": 21531.38, + "end": 21532.96, + "probability": 0.9788 + }, + { + "start": 21533.34, + "end": 21534.3, + "probability": 0.9772 + }, + { + "start": 21534.66, + "end": 21537.12, + "probability": 0.9227 + }, + { + "start": 21537.3, + "end": 21537.68, + "probability": 0.851 + }, + { + "start": 21541.52, + "end": 21546.26, + "probability": 0.7553 + }, + { + "start": 21567.84, + "end": 21569.84, + "probability": 0.633 + }, + { + "start": 21570.8, + "end": 21575.32, + "probability": 0.8391 + }, + { + "start": 21576.14, + "end": 21580.6, + "probability": 0.9951 + }, + { + "start": 21581.26, + "end": 21584.36, + "probability": 0.9922 + }, + { + "start": 21584.94, + "end": 21587.58, + "probability": 0.9937 + }, + { + "start": 21589.42, + "end": 21594.62, + "probability": 0.9792 + }, + { + "start": 21595.36, + "end": 21598.18, + "probability": 0.9663 + }, + { + "start": 21599.22, + "end": 21602.06, + "probability": 0.9376 + }, + { + "start": 21602.64, + "end": 21603.78, + "probability": 0.6734 + }, + { + "start": 21603.88, + "end": 21606.28, + "probability": 0.9561 + }, + { + "start": 21606.94, + "end": 21611.02, + "probability": 0.9963 + }, + { + "start": 21612.88, + "end": 21616.7, + "probability": 0.9956 + }, + { + "start": 21617.44, + "end": 21620.38, + "probability": 0.9893 + }, + { + "start": 21620.92, + "end": 21622.14, + "probability": 0.772 + }, + { + "start": 21622.32, + "end": 21627.39, + "probability": 0.564 + }, + { + "start": 21629.06, + "end": 21631.5, + "probability": 0.9426 + }, + { + "start": 21631.72, + "end": 21634.96, + "probability": 0.9847 + }, + { + "start": 21635.96, + "end": 21641.22, + "probability": 0.9744 + }, + { + "start": 21642.45, + "end": 21645.74, + "probability": 0.6765 + }, + { + "start": 21646.34, + "end": 21649.48, + "probability": 0.9462 + }, + { + "start": 21650.16, + "end": 21653.92, + "probability": 0.9822 + }, + { + "start": 21654.22, + "end": 21657.04, + "probability": 0.628 + }, + { + "start": 21657.12, + "end": 21659.24, + "probability": 0.508 + }, + { + "start": 21660.1, + "end": 21663.84, + "probability": 0.9841 + }, + { + "start": 21664.78, + "end": 21669.88, + "probability": 0.9792 + }, + { + "start": 21670.32, + "end": 21672.44, + "probability": 0.9885 + }, + { + "start": 21672.5, + "end": 21673.22, + "probability": 0.7647 + }, + { + "start": 21673.42, + "end": 21674.38, + "probability": 0.4802 + }, + { + "start": 21674.42, + "end": 21675.52, + "probability": 0.9408 + }, + { + "start": 21676.32, + "end": 21681.36, + "probability": 0.939 + }, + { + "start": 21681.36, + "end": 21688.06, + "probability": 0.9875 + }, + { + "start": 21689.74, + "end": 21694.48, + "probability": 0.9957 + }, + { + "start": 21695.1, + "end": 21701.38, + "probability": 0.8833 + }, + { + "start": 21701.38, + "end": 21706.3, + "probability": 0.9411 + }, + { + "start": 21706.3, + "end": 21709.88, + "probability": 0.9951 + }, + { + "start": 21711.06, + "end": 21713.62, + "probability": 0.9941 + }, + { + "start": 21713.62, + "end": 21717.96, + "probability": 0.9672 + }, + { + "start": 21718.54, + "end": 21722.38, + "probability": 0.9847 + }, + { + "start": 21723.12, + "end": 21725.84, + "probability": 0.9919 + }, + { + "start": 21725.84, + "end": 21728.98, + "probability": 0.8898 + }, + { + "start": 21729.18, + "end": 21732.1, + "probability": 0.9928 + }, + { + "start": 21733.88, + "end": 21736.8, + "probability": 0.8588 + }, + { + "start": 21736.8, + "end": 21739.52, + "probability": 0.9941 + }, + { + "start": 21740.16, + "end": 21745.4, + "probability": 0.9887 + }, + { + "start": 21745.7, + "end": 21752.04, + "probability": 0.9958 + }, + { + "start": 21753.1, + "end": 21753.54, + "probability": 0.4549 + }, + { + "start": 21753.68, + "end": 21754.74, + "probability": 0.6835 + }, + { + "start": 21754.88, + "end": 21757.06, + "probability": 0.9317 + }, + { + "start": 21757.72, + "end": 21761.82, + "probability": 0.9038 + }, + { + "start": 21762.02, + "end": 21765.22, + "probability": 0.7118 + }, + { + "start": 21765.94, + "end": 21768.64, + "probability": 0.9958 + }, + { + "start": 21769.2, + "end": 21773.8, + "probability": 0.9979 + }, + { + "start": 21774.28, + "end": 21777.26, + "probability": 0.9843 + }, + { + "start": 21778.86, + "end": 21783.36, + "probability": 0.9595 + }, + { + "start": 21784.04, + "end": 21786.34, + "probability": 0.9437 + }, + { + "start": 21786.34, + "end": 21789.54, + "probability": 0.9397 + }, + { + "start": 21790.22, + "end": 21793.24, + "probability": 0.9806 + }, + { + "start": 21793.24, + "end": 21797.12, + "probability": 0.9914 + }, + { + "start": 21798.12, + "end": 21801.16, + "probability": 0.9961 + }, + { + "start": 21801.72, + "end": 21805.12, + "probability": 0.9853 + }, + { + "start": 21805.9, + "end": 21808.3, + "probability": 0.8815 + }, + { + "start": 21809.34, + "end": 21809.98, + "probability": 0.7521 + }, + { + "start": 21810.16, + "end": 21813.62, + "probability": 0.843 + }, + { + "start": 21814.46, + "end": 21817.16, + "probability": 0.9854 + }, + { + "start": 21817.16, + "end": 21819.82, + "probability": 0.8706 + }, + { + "start": 21820.52, + "end": 21822.4, + "probability": 0.9545 + }, + { + "start": 21822.88, + "end": 21823.54, + "probability": 0.8472 + }, + { + "start": 21823.62, + "end": 21826.98, + "probability": 0.9763 + }, + { + "start": 21827.62, + "end": 21830.54, + "probability": 0.9648 + }, + { + "start": 21831.82, + "end": 21832.46, + "probability": 0.548 + }, + { + "start": 21833.72, + "end": 21835.38, + "probability": 0.4899 + }, + { + "start": 21838.41, + "end": 21840.54, + "probability": 0.574 + }, + { + "start": 21842.92, + "end": 21847.96, + "probability": 0.9493 + }, + { + "start": 21848.0, + "end": 21850.58, + "probability": 0.9504 + }, + { + "start": 21851.76, + "end": 21857.84, + "probability": 0.1637 + }, + { + "start": 21872.52, + "end": 21874.34, + "probability": 0.5637 + }, + { + "start": 21875.28, + "end": 21883.3, + "probability": 0.7333 + }, + { + "start": 21883.68, + "end": 21887.76, + "probability": 0.7531 + }, + { + "start": 21888.1, + "end": 21889.3, + "probability": 0.9382 + }, + { + "start": 21889.54, + "end": 21890.9, + "probability": 0.5721 + }, + { + "start": 21891.76, + "end": 21891.76, + "probability": 0.1908 + }, + { + "start": 21891.76, + "end": 21896.26, + "probability": 0.444 + }, + { + "start": 21896.6, + "end": 21897.0, + "probability": 0.2939 + }, + { + "start": 21898.64, + "end": 21898.74, + "probability": 0.7192 + }, + { + "start": 21899.22, + "end": 21900.32, + "probability": 0.7802 + }, + { + "start": 21900.32, + "end": 21902.02, + "probability": 0.9541 + }, + { + "start": 21902.4, + "end": 21908.36, + "probability": 0.6294 + }, + { + "start": 21908.8, + "end": 21910.96, + "probability": 0.0404 + }, + { + "start": 21910.96, + "end": 21910.96, + "probability": 0.3338 + }, + { + "start": 21910.96, + "end": 21910.96, + "probability": 0.0771 + }, + { + "start": 21910.96, + "end": 21910.96, + "probability": 0.0298 + }, + { + "start": 21910.96, + "end": 21914.04, + "probability": 0.5633 + }, + { + "start": 21925.58, + "end": 21927.23, + "probability": 0.7266 + }, + { + "start": 21930.22, + "end": 21932.3, + "probability": 0.8101 + }, + { + "start": 21932.32, + "end": 21933.28, + "probability": 0.7931 + }, + { + "start": 21933.42, + "end": 21934.02, + "probability": 0.9025 + }, + { + "start": 21934.26, + "end": 21942.98, + "probability": 0.9901 + }, + { + "start": 21944.46, + "end": 21945.82, + "probability": 0.8755 + }, + { + "start": 21946.04, + "end": 21947.56, + "probability": 0.9905 + }, + { + "start": 21948.04, + "end": 21952.48, + "probability": 0.9404 + }, + { + "start": 21952.48, + "end": 21956.38, + "probability": 0.9969 + }, + { + "start": 21956.88, + "end": 21962.22, + "probability": 0.9917 + }, + { + "start": 21962.3, + "end": 21969.6, + "probability": 0.9887 + }, + { + "start": 21969.6, + "end": 21976.04, + "probability": 0.9761 + }, + { + "start": 21976.64, + "end": 21977.88, + "probability": 0.8299 + }, + { + "start": 21978.56, + "end": 21979.5, + "probability": 0.5919 + }, + { + "start": 21979.9, + "end": 21985.76, + "probability": 0.9902 + }, + { + "start": 21985.82, + "end": 21987.95, + "probability": 0.8332 + }, + { + "start": 21988.6, + "end": 21990.7, + "probability": 0.8965 + }, + { + "start": 21990.74, + "end": 21993.88, + "probability": 0.9719 + }, + { + "start": 21995.24, + "end": 22002.08, + "probability": 0.996 + }, + { + "start": 22002.08, + "end": 22010.1, + "probability": 0.998 + }, + { + "start": 22011.14, + "end": 22015.76, + "probability": 0.9873 + }, + { + "start": 22016.04, + "end": 22019.28, + "probability": 0.9976 + }, + { + "start": 22019.28, + "end": 22023.68, + "probability": 0.8284 + }, + { + "start": 22024.36, + "end": 22025.8, + "probability": 0.9262 + }, + { + "start": 22026.7, + "end": 22031.94, + "probability": 0.9896 + }, + { + "start": 22031.94, + "end": 22036.56, + "probability": 0.7157 + }, + { + "start": 22037.42, + "end": 22039.44, + "probability": 0.8597 + }, + { + "start": 22039.66, + "end": 22042.64, + "probability": 0.7234 + }, + { + "start": 22042.76, + "end": 22044.1, + "probability": 0.8959 + }, + { + "start": 22044.1, + "end": 22047.64, + "probability": 0.7904 + }, + { + "start": 22048.12, + "end": 22055.38, + "probability": 0.9697 + }, + { + "start": 22056.04, + "end": 22062.22, + "probability": 0.9723 + }, + { + "start": 22062.72, + "end": 22063.9, + "probability": 0.8225 + }, + { + "start": 22064.6, + "end": 22068.74, + "probability": 0.9978 + }, + { + "start": 22069.18, + "end": 22071.2, + "probability": 0.9605 + }, + { + "start": 22071.82, + "end": 22074.4, + "probability": 0.8457 + }, + { + "start": 22074.88, + "end": 22079.8, + "probability": 0.7136 + }, + { + "start": 22080.18, + "end": 22082.16, + "probability": 0.9766 + }, + { + "start": 22082.28, + "end": 22084.94, + "probability": 0.9433 + }, + { + "start": 22085.46, + "end": 22087.88, + "probability": 0.9989 + }, + { + "start": 22088.52, + "end": 22090.02, + "probability": 0.6888 + }, + { + "start": 22090.3, + "end": 22093.22, + "probability": 0.9685 + }, + { + "start": 22094.15, + "end": 22097.78, + "probability": 0.887 + }, + { + "start": 22097.96, + "end": 22098.98, + "probability": 0.4058 + }, + { + "start": 22099.54, + "end": 22101.46, + "probability": 0.9785 + }, + { + "start": 22101.78, + "end": 22106.18, + "probability": 0.8986 + }, + { + "start": 22106.18, + "end": 22111.06, + "probability": 0.9952 + }, + { + "start": 22111.18, + "end": 22112.24, + "probability": 0.8835 + }, + { + "start": 22112.52, + "end": 22115.3, + "probability": 0.9642 + }, + { + "start": 22115.96, + "end": 22119.52, + "probability": 0.9933 + }, + { + "start": 22120.02, + "end": 22123.62, + "probability": 0.9904 + }, + { + "start": 22124.22, + "end": 22128.45, + "probability": 0.9976 + }, + { + "start": 22128.46, + "end": 22132.98, + "probability": 0.999 + }, + { + "start": 22132.98, + "end": 22137.44, + "probability": 0.9977 + }, + { + "start": 22137.8, + "end": 22141.66, + "probability": 0.9962 + }, + { + "start": 22142.34, + "end": 22146.76, + "probability": 0.9888 + }, + { + "start": 22146.88, + "end": 22148.7, + "probability": 0.8691 + }, + { + "start": 22148.76, + "end": 22152.12, + "probability": 0.9237 + }, + { + "start": 22152.72, + "end": 22155.7, + "probability": 0.9933 + }, + { + "start": 22155.9, + "end": 22160.38, + "probability": 0.9943 + }, + { + "start": 22160.82, + "end": 22162.8, + "probability": 0.5407 + }, + { + "start": 22163.56, + "end": 22165.64, + "probability": 0.8955 + }, + { + "start": 22165.68, + "end": 22169.8, + "probability": 0.9959 + }, + { + "start": 22170.5, + "end": 22173.38, + "probability": 0.9753 + }, + { + "start": 22174.02, + "end": 22178.16, + "probability": 0.9624 + }, + { + "start": 22178.88, + "end": 22180.32, + "probability": 0.9287 + }, + { + "start": 22180.64, + "end": 22186.28, + "probability": 0.9761 + }, + { + "start": 22186.78, + "end": 22191.02, + "probability": 0.9141 + }, + { + "start": 22191.38, + "end": 22197.28, + "probability": 0.998 + }, + { + "start": 22197.36, + "end": 22200.06, + "probability": 0.9933 + }, + { + "start": 22200.32, + "end": 22200.6, + "probability": 0.7408 + }, + { + "start": 22201.56, + "end": 22202.12, + "probability": 0.3659 + }, + { + "start": 22204.0, + "end": 22205.24, + "probability": 0.7815 + }, + { + "start": 22215.72, + "end": 22217.4, + "probability": 0.5916 + }, + { + "start": 22219.6, + "end": 22222.34, + "probability": 0.8335 + }, + { + "start": 22224.28, + "end": 22229.54, + "probability": 0.9607 + }, + { + "start": 22231.48, + "end": 22232.76, + "probability": 0.8658 + }, + { + "start": 22233.84, + "end": 22235.52, + "probability": 0.7459 + }, + { + "start": 22237.06, + "end": 22243.23, + "probability": 0.9337 + }, + { + "start": 22244.32, + "end": 22246.28, + "probability": 0.8032 + }, + { + "start": 22247.58, + "end": 22248.22, + "probability": 0.3569 + }, + { + "start": 22248.28, + "end": 22252.38, + "probability": 0.9735 + }, + { + "start": 22253.58, + "end": 22259.02, + "probability": 0.9645 + }, + { + "start": 22259.02, + "end": 22263.58, + "probability": 0.9714 + }, + { + "start": 22264.3, + "end": 22266.22, + "probability": 0.8057 + }, + { + "start": 22266.88, + "end": 22269.94, + "probability": 0.7334 + }, + { + "start": 22271.48, + "end": 22273.28, + "probability": 0.9763 + }, + { + "start": 22274.28, + "end": 22274.82, + "probability": 0.4515 + }, + { + "start": 22275.6, + "end": 22276.53, + "probability": 0.8276 + }, + { + "start": 22277.62, + "end": 22278.76, + "probability": 0.644 + }, + { + "start": 22280.22, + "end": 22283.08, + "probability": 0.9518 + }, + { + "start": 22283.78, + "end": 22286.44, + "probability": 0.9322 + }, + { + "start": 22286.98, + "end": 22289.44, + "probability": 0.5768 + }, + { + "start": 22290.06, + "end": 22292.56, + "probability": 0.989 + }, + { + "start": 22293.04, + "end": 22293.8, + "probability": 0.9756 + }, + { + "start": 22294.48, + "end": 22297.08, + "probability": 0.939 + }, + { + "start": 22297.18, + "end": 22297.74, + "probability": 0.6899 + }, + { + "start": 22297.8, + "end": 22298.56, + "probability": 0.8624 + }, + { + "start": 22299.8, + "end": 22300.7, + "probability": 0.8756 + }, + { + "start": 22301.48, + "end": 22304.42, + "probability": 0.7796 + }, + { + "start": 22304.98, + "end": 22313.09, + "probability": 0.9891 + }, + { + "start": 22314.16, + "end": 22316.58, + "probability": 0.9428 + }, + { + "start": 22317.58, + "end": 22321.16, + "probability": 0.97 + }, + { + "start": 22321.9, + "end": 22326.59, + "probability": 0.9492 + }, + { + "start": 22327.42, + "end": 22329.2, + "probability": 0.903 + }, + { + "start": 22330.94, + "end": 22333.82, + "probability": 0.8708 + }, + { + "start": 22334.82, + "end": 22342.58, + "probability": 0.9758 + }, + { + "start": 22343.54, + "end": 22348.92, + "probability": 0.9952 + }, + { + "start": 22349.86, + "end": 22355.1, + "probability": 0.6861 + }, + { + "start": 22355.8, + "end": 22356.6, + "probability": 0.7332 + }, + { + "start": 22357.44, + "end": 22359.9, + "probability": 0.828 + }, + { + "start": 22361.66, + "end": 22363.46, + "probability": 0.9346 + }, + { + "start": 22364.52, + "end": 22369.04, + "probability": 0.9209 + }, + { + "start": 22370.26, + "end": 22374.68, + "probability": 0.9667 + }, + { + "start": 22375.38, + "end": 22377.12, + "probability": 0.6341 + }, + { + "start": 22377.84, + "end": 22379.64, + "probability": 0.8638 + }, + { + "start": 22381.2, + "end": 22382.02, + "probability": 0.9375 + }, + { + "start": 22384.16, + "end": 22388.44, + "probability": 0.9523 + }, + { + "start": 22390.08, + "end": 22391.04, + "probability": 0.7551 + }, + { + "start": 22392.12, + "end": 22392.72, + "probability": 0.522 + }, + { + "start": 22393.38, + "end": 22394.72, + "probability": 0.7867 + }, + { + "start": 22395.3, + "end": 22396.52, + "probability": 0.9009 + }, + { + "start": 22398.08, + "end": 22399.48, + "probability": 0.9863 + }, + { + "start": 22400.1, + "end": 22402.1, + "probability": 0.8605 + }, + { + "start": 22403.08, + "end": 22408.56, + "probability": 0.8178 + }, + { + "start": 22409.2, + "end": 22413.0, + "probability": 0.5713 + }, + { + "start": 22413.88, + "end": 22417.84, + "probability": 0.7398 + }, + { + "start": 22418.66, + "end": 22419.9, + "probability": 0.787 + }, + { + "start": 22420.52, + "end": 22424.96, + "probability": 0.7673 + }, + { + "start": 22425.26, + "end": 22426.5, + "probability": 0.4675 + }, + { + "start": 22431.78, + "end": 22433.82, + "probability": 0.749 + }, + { + "start": 22435.12, + "end": 22436.76, + "probability": 0.966 + }, + { + "start": 22436.96, + "end": 22438.54, + "probability": 0.6877 + }, + { + "start": 22438.62, + "end": 22439.38, + "probability": 0.671 + }, + { + "start": 22439.94, + "end": 22441.52, + "probability": 0.7352 + }, + { + "start": 22441.68, + "end": 22442.16, + "probability": 0.1941 + }, + { + "start": 22443.16, + "end": 22444.42, + "probability": 0.8751 + }, + { + "start": 22445.72, + "end": 22446.16, + "probability": 0.9761 + }, + { + "start": 22449.2, + "end": 22453.32, + "probability": 0.9617 + }, + { + "start": 22453.32, + "end": 22456.62, + "probability": 0.9976 + }, + { + "start": 22457.28, + "end": 22460.2, + "probability": 0.8401 + }, + { + "start": 22460.68, + "end": 22464.8, + "probability": 0.9887 + }, + { + "start": 22464.8, + "end": 22468.56, + "probability": 0.8642 + }, + { + "start": 22469.54, + "end": 22471.18, + "probability": 0.603 + }, + { + "start": 22472.76, + "end": 22474.36, + "probability": 0.9614 + }, + { + "start": 22475.64, + "end": 22481.98, + "probability": 0.9271 + }, + { + "start": 22482.78, + "end": 22487.5, + "probability": 0.9836 + }, + { + "start": 22488.22, + "end": 22489.3, + "probability": 0.8547 + }, + { + "start": 22490.28, + "end": 22495.82, + "probability": 0.7668 + }, + { + "start": 22496.76, + "end": 22497.62, + "probability": 0.9294 + }, + { + "start": 22498.28, + "end": 22500.0, + "probability": 0.978 + }, + { + "start": 22500.52, + "end": 22501.52, + "probability": 0.602 + }, + { + "start": 22502.22, + "end": 22503.02, + "probability": 0.6087 + }, + { + "start": 22504.24, + "end": 22504.8, + "probability": 0.4895 + }, + { + "start": 22506.62, + "end": 22507.96, + "probability": 0.917 + }, + { + "start": 22511.62, + "end": 22514.94, + "probability": 0.7305 + }, + { + "start": 22515.02, + "end": 22515.72, + "probability": 0.8972 + }, + { + "start": 22521.92, + "end": 22522.68, + "probability": 0.6115 + }, + { + "start": 22523.14, + "end": 22524.42, + "probability": 0.8983 + }, + { + "start": 22525.1, + "end": 22525.78, + "probability": 0.7552 + }, + { + "start": 22526.5, + "end": 22527.76, + "probability": 0.9683 + }, + { + "start": 22528.56, + "end": 22529.2, + "probability": 0.7546 + }, + { + "start": 22529.86, + "end": 22531.21, + "probability": 0.6454 + }, + { + "start": 22531.5, + "end": 22531.96, + "probability": 0.8557 + }, + { + "start": 22536.08, + "end": 22537.08, + "probability": 0.0007 + }, + { + "start": 22538.06, + "end": 22539.32, + "probability": 0.8738 + }, + { + "start": 22540.0, + "end": 22540.92, + "probability": 0.5158 + }, + { + "start": 22541.02, + "end": 22541.23, + "probability": 0.5441 + }, + { + "start": 22542.3, + "end": 22542.88, + "probability": 0.6716 + }, + { + "start": 22550.22, + "end": 22550.62, + "probability": 0.2719 + }, + { + "start": 22550.62, + "end": 22550.82, + "probability": 0.103 + }, + { + "start": 22551.1, + "end": 22551.1, + "probability": 0.0735 + }, + { + "start": 22551.1, + "end": 22551.1, + "probability": 0.4398 + }, + { + "start": 22551.1, + "end": 22551.28, + "probability": 0.1095 + }, + { + "start": 22563.84, + "end": 22566.26, + "probability": 0.5394 + }, + { + "start": 22567.44, + "end": 22569.96, + "probability": 0.317 + }, + { + "start": 22570.42, + "end": 22573.5, + "probability": 0.8236 + }, + { + "start": 22573.68, + "end": 22574.28, + "probability": 0.7299 + }, + { + "start": 22574.4, + "end": 22576.14, + "probability": 0.9312 + }, + { + "start": 22576.22, + "end": 22577.66, + "probability": 0.8909 + }, + { + "start": 22579.0, + "end": 22582.76, + "probability": 0.9861 + }, + { + "start": 22583.58, + "end": 22587.34, + "probability": 0.9158 + }, + { + "start": 22587.5, + "end": 22589.24, + "probability": 0.9744 + }, + { + "start": 22589.76, + "end": 22593.0, + "probability": 0.9932 + }, + { + "start": 22593.32, + "end": 22596.88, + "probability": 0.9943 + }, + { + "start": 22596.88, + "end": 22599.62, + "probability": 0.9273 + }, + { + "start": 22599.72, + "end": 22603.68, + "probability": 0.9848 + }, + { + "start": 22605.06, + "end": 22609.78, + "probability": 0.9538 + }, + { + "start": 22609.94, + "end": 22612.26, + "probability": 0.9973 + }, + { + "start": 22613.2, + "end": 22614.72, + "probability": 0.9276 + }, + { + "start": 22614.8, + "end": 22615.94, + "probability": 0.4052 + }, + { + "start": 22616.04, + "end": 22617.0, + "probability": 0.8267 + }, + { + "start": 22617.04, + "end": 22618.06, + "probability": 0.7971 + }, + { + "start": 22618.34, + "end": 22623.06, + "probability": 0.9932 + }, + { + "start": 22623.1, + "end": 22624.5, + "probability": 0.9956 + }, + { + "start": 22624.7, + "end": 22626.8, + "probability": 0.9927 + }, + { + "start": 22627.58, + "end": 22627.74, + "probability": 0.9741 + }, + { + "start": 22629.72, + "end": 22632.74, + "probability": 0.9849 + }, + { + "start": 22632.74, + "end": 22638.7, + "probability": 0.9949 + }, + { + "start": 22639.32, + "end": 22642.48, + "probability": 0.8822 + }, + { + "start": 22642.58, + "end": 22646.16, + "probability": 0.9673 + }, + { + "start": 22646.3, + "end": 22647.22, + "probability": 0.7225 + }, + { + "start": 22647.86, + "end": 22652.18, + "probability": 0.9576 + }, + { + "start": 22652.28, + "end": 22653.66, + "probability": 0.9933 + }, + { + "start": 22653.8, + "end": 22654.04, + "probability": 0.8262 + }, + { + "start": 22654.3, + "end": 22654.88, + "probability": 0.5412 + }, + { + "start": 22655.02, + "end": 22655.65, + "probability": 0.9093 + }, + { + "start": 22656.0, + "end": 22657.78, + "probability": 0.9737 + }, + { + "start": 22658.1, + "end": 22661.9, + "probability": 0.9678 + }, + { + "start": 22662.68, + "end": 22665.12, + "probability": 0.9559 + }, + { + "start": 22665.2, + "end": 22671.4, + "probability": 0.9828 + }, + { + "start": 22671.4, + "end": 22673.76, + "probability": 0.9974 + }, + { + "start": 22673.94, + "end": 22677.44, + "probability": 0.6392 + }, + { + "start": 22677.78, + "end": 22678.68, + "probability": 0.2642 + }, + { + "start": 22678.8, + "end": 22680.74, + "probability": 0.644 + }, + { + "start": 22681.12, + "end": 22682.38, + "probability": 0.7847 + }, + { + "start": 22682.46, + "end": 22684.96, + "probability": 0.9538 + }, + { + "start": 22686.03, + "end": 22689.82, + "probability": 0.9944 + }, + { + "start": 22690.06, + "end": 22696.5, + "probability": 0.971 + }, + { + "start": 22697.02, + "end": 22703.66, + "probability": 0.9906 + }, + { + "start": 22703.78, + "end": 22710.78, + "probability": 0.9947 + }, + { + "start": 22710.83, + "end": 22716.26, + "probability": 0.9575 + }, + { + "start": 22716.66, + "end": 22720.1, + "probability": 0.998 + }, + { + "start": 22720.5, + "end": 22724.24, + "probability": 0.9893 + }, + { + "start": 22724.62, + "end": 22724.98, + "probability": 0.4101 + }, + { + "start": 22725.08, + "end": 22726.36, + "probability": 0.9688 + }, + { + "start": 22726.44, + "end": 22729.96, + "probability": 0.9724 + }, + { + "start": 22731.26, + "end": 22734.34, + "probability": 0.8803 + }, + { + "start": 22734.66, + "end": 22737.32, + "probability": 0.7405 + }, + { + "start": 22737.32, + "end": 22742.34, + "probability": 0.9807 + }, + { + "start": 22742.8, + "end": 22746.86, + "probability": 0.9645 + }, + { + "start": 22748.0, + "end": 22749.18, + "probability": 0.8684 + }, + { + "start": 22749.92, + "end": 22751.1, + "probability": 0.6021 + }, + { + "start": 22751.97, + "end": 22757.06, + "probability": 0.9938 + }, + { + "start": 22757.98, + "end": 22761.3, + "probability": 0.9628 + }, + { + "start": 22761.38, + "end": 22762.84, + "probability": 0.9236 + }, + { + "start": 22763.24, + "end": 22763.48, + "probability": 0.4081 + }, + { + "start": 22763.48, + "end": 22765.16, + "probability": 0.77 + }, + { + "start": 22765.22, + "end": 22767.6, + "probability": 0.9675 + }, + { + "start": 22767.7, + "end": 22768.0, + "probability": 0.7689 + }, + { + "start": 22768.06, + "end": 22772.57, + "probability": 0.9951 + }, + { + "start": 22772.86, + "end": 22775.96, + "probability": 0.9971 + }, + { + "start": 22776.72, + "end": 22778.76, + "probability": 0.9839 + }, + { + "start": 22778.82, + "end": 22779.62, + "probability": 0.8912 + }, + { + "start": 22779.68, + "end": 22783.7, + "probability": 0.9869 + }, + { + "start": 22785.72, + "end": 22786.04, + "probability": 0.3495 + }, + { + "start": 22786.12, + "end": 22786.32, + "probability": 0.8595 + }, + { + "start": 22786.44, + "end": 22787.1, + "probability": 0.6067 + }, + { + "start": 22787.28, + "end": 22792.42, + "probability": 0.9782 + }, + { + "start": 22793.0, + "end": 22794.42, + "probability": 0.764 + }, + { + "start": 22794.66, + "end": 22797.43, + "probability": 0.8067 + }, + { + "start": 22798.36, + "end": 22804.0, + "probability": 0.9554 + }, + { + "start": 22805.24, + "end": 22805.64, + "probability": 0.8802 + }, + { + "start": 22805.74, + "end": 22808.22, + "probability": 0.8361 + }, + { + "start": 22808.44, + "end": 22810.94, + "probability": 0.7943 + }, + { + "start": 22811.78, + "end": 22815.24, + "probability": 0.9603 + }, + { + "start": 22815.24, + "end": 22819.28, + "probability": 0.9989 + }, + { + "start": 22820.46, + "end": 22822.46, + "probability": 0.9438 + }, + { + "start": 22822.62, + "end": 22826.64, + "probability": 0.9771 + }, + { + "start": 22827.65, + "end": 22831.7, + "probability": 0.9923 + }, + { + "start": 22831.78, + "end": 22834.18, + "probability": 0.9922 + }, + { + "start": 22834.98, + "end": 22839.06, + "probability": 0.9785 + }, + { + "start": 22839.28, + "end": 22841.72, + "probability": 0.7393 + }, + { + "start": 22841.86, + "end": 22842.58, + "probability": 0.8225 + }, + { + "start": 22842.94, + "end": 22844.28, + "probability": 0.8566 + }, + { + "start": 22844.72, + "end": 22846.48, + "probability": 0.8665 + }, + { + "start": 22846.66, + "end": 22846.92, + "probability": 0.8469 + }, + { + "start": 22847.14, + "end": 22847.82, + "probability": 0.7848 + }, + { + "start": 22848.02, + "end": 22852.02, + "probability": 0.8261 + }, + { + "start": 22852.7, + "end": 22855.66, + "probability": 0.8056 + }, + { + "start": 22855.82, + "end": 22857.01, + "probability": 0.7638 + }, + { + "start": 22858.18, + "end": 22860.18, + "probability": 0.8406 + }, + { + "start": 22860.54, + "end": 22861.56, + "probability": 0.7234 + }, + { + "start": 22862.04, + "end": 22866.12, + "probability": 0.449 + }, + { + "start": 22868.98, + "end": 22870.56, + "probability": 0.7557 + }, + { + "start": 22871.82, + "end": 22874.6, + "probability": 0.751 + }, + { + "start": 22883.06, + "end": 22884.14, + "probability": 0.3694 + }, + { + "start": 22884.66, + "end": 22885.64, + "probability": 0.3335 + }, + { + "start": 22886.1, + "end": 22888.76, + "probability": 0.5733 + }, + { + "start": 22889.86, + "end": 22892.68, + "probability": 0.9819 + }, + { + "start": 22893.84, + "end": 22895.68, + "probability": 0.7499 + }, + { + "start": 22895.8, + "end": 22897.52, + "probability": 0.8266 + }, + { + "start": 22898.06, + "end": 22900.04, + "probability": 0.9634 + }, + { + "start": 22900.86, + "end": 22906.1, + "probability": 0.9309 + }, + { + "start": 22906.92, + "end": 22907.82, + "probability": 0.9177 + }, + { + "start": 22909.34, + "end": 22913.16, + "probability": 0.9685 + }, + { + "start": 22913.74, + "end": 22918.4, + "probability": 0.998 + }, + { + "start": 22918.4, + "end": 22922.1, + "probability": 0.9702 + }, + { + "start": 22923.18, + "end": 22925.3, + "probability": 0.9917 + }, + { + "start": 22925.92, + "end": 22929.24, + "probability": 0.9254 + }, + { + "start": 22929.9, + "end": 22933.72, + "probability": 0.9355 + }, + { + "start": 22933.96, + "end": 22935.84, + "probability": 0.7015 + }, + { + "start": 22936.3, + "end": 22938.9, + "probability": 0.9981 + }, + { + "start": 22939.52, + "end": 22942.43, + "probability": 0.9797 + }, + { + "start": 22942.84, + "end": 22944.9, + "probability": 0.9698 + }, + { + "start": 22945.5, + "end": 22945.72, + "probability": 0.6309 + }, + { + "start": 22945.82, + "end": 22952.72, + "probability": 0.9585 + }, + { + "start": 22952.98, + "end": 22954.02, + "probability": 0.7891 + }, + { + "start": 22954.38, + "end": 22955.96, + "probability": 0.878 + }, + { + "start": 22956.34, + "end": 22956.84, + "probability": 0.8806 + }, + { + "start": 22957.06, + "end": 22958.74, + "probability": 0.8329 + }, + { + "start": 22958.84, + "end": 22960.2, + "probability": 0.7964 + }, + { + "start": 22960.3, + "end": 22961.16, + "probability": 0.8496 + }, + { + "start": 22961.78, + "end": 22965.74, + "probability": 0.8715 + }, + { + "start": 22965.94, + "end": 22967.3, + "probability": 0.3001 + }, + { + "start": 22967.54, + "end": 22973.7, + "probability": 0.9456 + }, + { + "start": 22974.26, + "end": 22976.53, + "probability": 0.7935 + }, + { + "start": 22977.04, + "end": 22979.26, + "probability": 0.9524 + }, + { + "start": 22979.32, + "end": 22979.84, + "probability": 0.7501 + }, + { + "start": 22980.78, + "end": 22982.24, + "probability": 0.8369 + }, + { + "start": 22982.62, + "end": 22983.74, + "probability": 0.1651 + }, + { + "start": 22984.14, + "end": 22985.6, + "probability": 0.5914 + }, + { + "start": 22987.56, + "end": 22988.08, + "probability": 0.7003 + }, + { + "start": 22994.46, + "end": 22995.86, + "probability": 0.7662 + }, + { + "start": 22995.86, + "end": 22996.44, + "probability": 0.9492 + }, + { + "start": 22997.08, + "end": 22997.96, + "probability": 0.4627 + }, + { + "start": 22998.22, + "end": 22999.32, + "probability": 0.0639 + }, + { + "start": 23000.04, + "end": 23000.82, + "probability": 0.4041 + }, + { + "start": 23001.9, + "end": 23002.66, + "probability": 0.2109 + }, + { + "start": 23002.66, + "end": 23005.86, + "probability": 0.5002 + }, + { + "start": 23005.94, + "end": 23010.54, + "probability": 0.9182 + }, + { + "start": 23011.24, + "end": 23012.5, + "probability": 0.7693 + }, + { + "start": 23012.56, + "end": 23012.56, + "probability": 0.475 + }, + { + "start": 23012.58, + "end": 23013.6, + "probability": 0.8945 + }, + { + "start": 23014.26, + "end": 23017.06, + "probability": 0.9822 + }, + { + "start": 23017.22, + "end": 23017.86, + "probability": 0.4992 + }, + { + "start": 23018.42, + "end": 23020.12, + "probability": 0.4099 + }, + { + "start": 23020.3, + "end": 23023.34, + "probability": 0.9893 + }, + { + "start": 23023.46, + "end": 23024.54, + "probability": 0.9438 + }, + { + "start": 23024.62, + "end": 23025.65, + "probability": 0.6087 + }, + { + "start": 23026.44, + "end": 23026.98, + "probability": 0.9333 + }, + { + "start": 23027.06, + "end": 23027.94, + "probability": 0.8924 + }, + { + "start": 23028.46, + "end": 23029.96, + "probability": 0.9877 + }, + { + "start": 23030.46, + "end": 23034.86, + "probability": 0.9956 + }, + { + "start": 23034.86, + "end": 23039.3, + "probability": 0.9787 + }, + { + "start": 23039.92, + "end": 23041.28, + "probability": 0.5285 + }, + { + "start": 23041.96, + "end": 23043.36, + "probability": 0.989 + }, + { + "start": 23043.4, + "end": 23044.36, + "probability": 0.9158 + }, + { + "start": 23045.3, + "end": 23047.66, + "probability": 0.9077 + }, + { + "start": 23047.66, + "end": 23050.28, + "probability": 0.9995 + }, + { + "start": 23050.34, + "end": 23053.18, + "probability": 0.9902 + }, + { + "start": 23053.52, + "end": 23054.96, + "probability": 0.999 + }, + { + "start": 23055.52, + "end": 23056.22, + "probability": 0.6996 + }, + { + "start": 23056.86, + "end": 23060.02, + "probability": 0.984 + }, + { + "start": 23060.44, + "end": 23063.98, + "probability": 0.8975 + }, + { + "start": 23064.36, + "end": 23066.58, + "probability": 0.9539 + }, + { + "start": 23066.7, + "end": 23069.48, + "probability": 0.9314 + }, + { + "start": 23069.6, + "end": 23069.9, + "probability": 0.3477 + }, + { + "start": 23070.04, + "end": 23070.56, + "probability": 0.8571 + }, + { + "start": 23070.7, + "end": 23071.52, + "probability": 0.7877 + }, + { + "start": 23071.6, + "end": 23073.24, + "probability": 0.8951 + }, + { + "start": 23073.54, + "end": 23075.0, + "probability": 0.945 + }, + { + "start": 23075.5, + "end": 23077.82, + "probability": 0.8001 + }, + { + "start": 23078.42, + "end": 23078.86, + "probability": 0.9183 + }, + { + "start": 23079.06, + "end": 23081.86, + "probability": 0.9359 + }, + { + "start": 23081.86, + "end": 23084.55, + "probability": 0.9548 + }, + { + "start": 23085.22, + "end": 23089.14, + "probability": 0.8811 + }, + { + "start": 23089.26, + "end": 23093.44, + "probability": 0.9831 + }, + { + "start": 23093.52, + "end": 23095.42, + "probability": 0.8539 + }, + { + "start": 23095.9, + "end": 23098.58, + "probability": 0.8906 + }, + { + "start": 23100.21, + "end": 23103.6, + "probability": 0.8989 + }, + { + "start": 23104.26, + "end": 23105.34, + "probability": 0.717 + }, + { + "start": 23105.36, + "end": 23107.89, + "probability": 0.9469 + }, + { + "start": 23108.32, + "end": 23109.16, + "probability": 0.636 + }, + { + "start": 23109.24, + "end": 23110.0, + "probability": 0.9905 + }, + { + "start": 23110.3, + "end": 23110.74, + "probability": 0.079 + }, + { + "start": 23110.76, + "end": 23113.27, + "probability": 0.9912 + }, + { + "start": 23113.72, + "end": 23115.62, + "probability": 0.9928 + }, + { + "start": 23115.66, + "end": 23116.7, + "probability": 0.7415 + }, + { + "start": 23118.56, + "end": 23118.72, + "probability": 0.6818 + }, + { + "start": 23118.72, + "end": 23118.82, + "probability": 0.4839 + }, + { + "start": 23120.88, + "end": 23123.34, + "probability": 0.9756 + }, + { + "start": 23123.92, + "end": 23126.96, + "probability": 0.9259 + }, + { + "start": 23127.48, + "end": 23130.46, + "probability": 0.9027 + }, + { + "start": 23131.54, + "end": 23133.62, + "probability": 0.9671 + }, + { + "start": 23134.26, + "end": 23135.02, + "probability": 0.3212 + }, + { + "start": 23136.28, + "end": 23137.1, + "probability": 0.6174 + }, + { + "start": 23137.34, + "end": 23137.46, + "probability": 0.5868 + }, + { + "start": 23137.5, + "end": 23138.76, + "probability": 0.8783 + }, + { + "start": 23139.14, + "end": 23141.92, + "probability": 0.9507 + }, + { + "start": 23143.54, + "end": 23144.2, + "probability": 0.3708 + }, + { + "start": 23145.38, + "end": 23145.96, + "probability": 0.4131 + }, + { + "start": 23146.16, + "end": 23146.86, + "probability": 0.5262 + }, + { + "start": 23147.7, + "end": 23148.96, + "probability": 0.3176 + }, + { + "start": 23149.3, + "end": 23150.16, + "probability": 0.6483 + }, + { + "start": 23155.68, + "end": 23157.8, + "probability": 0.7773 + }, + { + "start": 23159.74, + "end": 23160.76, + "probability": 0.3401 + }, + { + "start": 23165.58, + "end": 23166.5, + "probability": 0.1823 + }, + { + "start": 23168.46, + "end": 23171.06, + "probability": 0.6044 + }, + { + "start": 23171.78, + "end": 23174.26, + "probability": 0.5513 + }, + { + "start": 23174.72, + "end": 23175.98, + "probability": 0.1379 + }, + { + "start": 23175.98, + "end": 23176.1, + "probability": 0.2638 + }, + { + "start": 23176.12, + "end": 23178.46, + "probability": 0.4996 + }, + { + "start": 23180.46, + "end": 23180.9, + "probability": 0.0379 + }, + { + "start": 23180.9, + "end": 23180.9, + "probability": 0.4353 + }, + { + "start": 23180.9, + "end": 23180.9, + "probability": 0.5808 + }, + { + "start": 23180.9, + "end": 23183.26, + "probability": 0.5779 + }, + { + "start": 23184.28, + "end": 23185.16, + "probability": 0.0001 + }, + { + "start": 23185.76, + "end": 23187.22, + "probability": 0.0309 + }, + { + "start": 23187.22, + "end": 23187.8, + "probability": 0.029 + }, + { + "start": 23187.8, + "end": 23187.8, + "probability": 0.0754 + }, + { + "start": 23187.8, + "end": 23188.14, + "probability": 0.0608 + }, + { + "start": 23189.94, + "end": 23191.02, + "probability": 0.2778 + }, + { + "start": 23192.46, + "end": 23193.44, + "probability": 0.7917 + }, + { + "start": 23196.2, + "end": 23196.68, + "probability": 0.1654 + }, + { + "start": 23225.04, + "end": 23225.86, + "probability": 0.4151 + }, + { + "start": 23226.66, + "end": 23227.56, + "probability": 0.6501 + }, + { + "start": 23230.78, + "end": 23232.4, + "probability": 0.7286 + }, + { + "start": 23234.5, + "end": 23237.48, + "probability": 0.8521 + }, + { + "start": 23238.66, + "end": 23240.14, + "probability": 0.7855 + }, + { + "start": 23240.18, + "end": 23241.64, + "probability": 0.9554 + }, + { + "start": 23242.48, + "end": 23243.12, + "probability": 0.8792 + }, + { + "start": 23243.56, + "end": 23244.64, + "probability": 0.6968 + }, + { + "start": 23245.0, + "end": 23247.6, + "probability": 0.0758 + }, + { + "start": 23247.6, + "end": 23247.6, + "probability": 0.1395 + }, + { + "start": 23247.6, + "end": 23248.9, + "probability": 0.894 + }, + { + "start": 23250.1, + "end": 23251.11, + "probability": 0.9177 + }, + { + "start": 23252.06, + "end": 23254.56, + "probability": 0.8114 + }, + { + "start": 23255.2, + "end": 23258.88, + "probability": 0.9578 + }, + { + "start": 23260.26, + "end": 23262.2, + "probability": 0.9683 + }, + { + "start": 23262.22, + "end": 23264.14, + "probability": 0.9458 + }, + { + "start": 23264.9, + "end": 23265.9, + "probability": 0.8939 + }, + { + "start": 23268.34, + "end": 23269.46, + "probability": 0.8018 + }, + { + "start": 23270.18, + "end": 23272.62, + "probability": 0.9887 + }, + { + "start": 23272.72, + "end": 23274.68, + "probability": 0.8228 + }, + { + "start": 23274.84, + "end": 23276.04, + "probability": 0.9569 + }, + { + "start": 23276.84, + "end": 23278.04, + "probability": 0.5005 + }, + { + "start": 23278.34, + "end": 23279.96, + "probability": 0.7952 + }, + { + "start": 23280.0, + "end": 23280.78, + "probability": 0.4888 + }, + { + "start": 23281.04, + "end": 23283.5, + "probability": 0.599 + }, + { + "start": 23284.8, + "end": 23286.96, + "probability": 0.9416 + }, + { + "start": 23287.3, + "end": 23288.26, + "probability": 0.4776 + }, + { + "start": 23288.48, + "end": 23289.64, + "probability": 0.8542 + }, + { + "start": 23289.86, + "end": 23290.76, + "probability": 0.754 + }, + { + "start": 23291.54, + "end": 23292.08, + "probability": 0.7923 + }, + { + "start": 23292.24, + "end": 23293.98, + "probability": 0.9474 + }, + { + "start": 23294.12, + "end": 23295.82, + "probability": 0.7849 + }, + { + "start": 23296.64, + "end": 23298.24, + "probability": 0.8916 + }, + { + "start": 23298.96, + "end": 23302.08, + "probability": 0.8828 + }, + { + "start": 23302.52, + "end": 23303.58, + "probability": 0.8416 + }, + { + "start": 23303.7, + "end": 23305.26, + "probability": 0.9909 + }, + { + "start": 23305.52, + "end": 23307.52, + "probability": 0.9531 + }, + { + "start": 23308.5, + "end": 23310.6, + "probability": 0.7515 + }, + { + "start": 23311.54, + "end": 23313.66, + "probability": 0.9658 + }, + { + "start": 23314.2, + "end": 23316.34, + "probability": 0.9842 + }, + { + "start": 23316.92, + "end": 23318.9, + "probability": 0.9922 + }, + { + "start": 23319.6, + "end": 23320.14, + "probability": 0.7676 + }, + { + "start": 23321.2, + "end": 23325.26, + "probability": 0.9048 + }, + { + "start": 23325.52, + "end": 23326.68, + "probability": 0.7381 + }, + { + "start": 23327.7, + "end": 23333.6, + "probability": 0.9779 + }, + { + "start": 23333.72, + "end": 23334.78, + "probability": 0.9902 + }, + { + "start": 23336.78, + "end": 23337.65, + "probability": 0.6575 + }, + { + "start": 23337.81, + "end": 23338.9, + "probability": 0.5224 + }, + { + "start": 23339.08, + "end": 23341.3, + "probability": 0.9771 + }, + { + "start": 23341.32, + "end": 23342.52, + "probability": 0.8167 + }, + { + "start": 23343.0, + "end": 23344.94, + "probability": 0.9632 + }, + { + "start": 23345.1, + "end": 23345.94, + "probability": 0.9379 + }, + { + "start": 23346.04, + "end": 23347.18, + "probability": 0.8891 + }, + { + "start": 23347.64, + "end": 23349.04, + "probability": 0.8052 + }, + { + "start": 23349.1, + "end": 23350.82, + "probability": 0.9178 + }, + { + "start": 23351.22, + "end": 23353.38, + "probability": 0.8945 + }, + { + "start": 23353.74, + "end": 23355.24, + "probability": 0.9983 + }, + { + "start": 23355.8, + "end": 23358.5, + "probability": 0.9703 + }, + { + "start": 23359.14, + "end": 23362.74, + "probability": 0.9941 + }, + { + "start": 23364.39, + "end": 23366.54, + "probability": 0.9458 + }, + { + "start": 23367.16, + "end": 23369.64, + "probability": 0.9676 + }, + { + "start": 23370.86, + "end": 23372.68, + "probability": 0.8638 + }, + { + "start": 23373.22, + "end": 23376.32, + "probability": 0.9977 + }, + { + "start": 23376.74, + "end": 23378.56, + "probability": 0.8594 + }, + { + "start": 23379.96, + "end": 23381.18, + "probability": 0.8638 + }, + { + "start": 23382.0, + "end": 23383.98, + "probability": 0.9946 + }, + { + "start": 23384.34, + "end": 23385.14, + "probability": 0.5707 + }, + { + "start": 23385.56, + "end": 23387.68, + "probability": 0.827 + }, + { + "start": 23388.38, + "end": 23392.9, + "probability": 0.9944 + }, + { + "start": 23393.0, + "end": 23394.4, + "probability": 0.8626 + }, + { + "start": 23394.5, + "end": 23395.34, + "probability": 0.9036 + }, + { + "start": 23396.0, + "end": 23398.47, + "probability": 0.9213 + }, + { + "start": 23399.94, + "end": 23401.34, + "probability": 0.9858 + }, + { + "start": 23401.56, + "end": 23402.22, + "probability": 0.4189 + }, + { + "start": 23402.64, + "end": 23404.4, + "probability": 0.9797 + }, + { + "start": 23404.84, + "end": 23407.78, + "probability": 0.9863 + }, + { + "start": 23408.16, + "end": 23413.1, + "probability": 0.9914 + }, + { + "start": 23413.5, + "end": 23414.92, + "probability": 0.9867 + }, + { + "start": 23415.82, + "end": 23417.94, + "probability": 0.9729 + }, + { + "start": 23418.4, + "end": 23421.74, + "probability": 0.9602 + }, + { + "start": 23422.02, + "end": 23423.02, + "probability": 0.8536 + }, + { + "start": 23423.4, + "end": 23425.48, + "probability": 0.9556 + }, + { + "start": 23426.02, + "end": 23433.66, + "probability": 0.9628 + }, + { + "start": 23433.76, + "end": 23434.12, + "probability": 0.8002 + }, + { + "start": 23435.16, + "end": 23435.72, + "probability": 0.6727 + }, + { + "start": 23437.12, + "end": 23439.44, + "probability": 0.6859 + }, + { + "start": 23440.28, + "end": 23440.94, + "probability": 0.1688 + }, + { + "start": 23442.66, + "end": 23443.16, + "probability": 0.0145 + }, + { + "start": 23444.86, + "end": 23446.4, + "probability": 0.5731 + }, + { + "start": 23447.68, + "end": 23448.04, + "probability": 0.3659 + }, + { + "start": 23451.34, + "end": 23452.1, + "probability": 0.5328 + }, + { + "start": 23452.86, + "end": 23454.44, + "probability": 0.8989 + }, + { + "start": 23490.74, + "end": 23492.72, + "probability": 0.7678 + }, + { + "start": 23493.3, + "end": 23495.08, + "probability": 0.669 + }, + { + "start": 23496.6, + "end": 23497.84, + "probability": 0.8857 + }, + { + "start": 23498.74, + "end": 23503.0, + "probability": 0.6746 + }, + { + "start": 23503.0, + "end": 23506.36, + "probability": 0.8664 + }, + { + "start": 23507.1, + "end": 23509.32, + "probability": 0.9541 + }, + { + "start": 23510.38, + "end": 23510.82, + "probability": 0.8106 + }, + { + "start": 23510.9, + "end": 23512.75, + "probability": 0.9435 + }, + { + "start": 23513.26, + "end": 23514.24, + "probability": 0.9264 + }, + { + "start": 23514.32, + "end": 23516.34, + "probability": 0.9917 + }, + { + "start": 23516.34, + "end": 23519.64, + "probability": 0.7956 + }, + { + "start": 23520.44, + "end": 23521.5, + "probability": 0.8117 + }, + { + "start": 23521.62, + "end": 23525.76, + "probability": 0.9855 + }, + { + "start": 23526.48, + "end": 23528.38, + "probability": 0.9902 + }, + { + "start": 23528.38, + "end": 23531.68, + "probability": 0.9854 + }, + { + "start": 23531.74, + "end": 23532.56, + "probability": 0.9792 + }, + { + "start": 23533.12, + "end": 23535.6, + "probability": 0.6183 + }, + { + "start": 23536.48, + "end": 23538.66, + "probability": 0.7598 + }, + { + "start": 23539.42, + "end": 23542.2, + "probability": 0.9938 + }, + { + "start": 23542.74, + "end": 23545.44, + "probability": 0.9422 + }, + { + "start": 23546.28, + "end": 23547.78, + "probability": 0.9953 + }, + { + "start": 23548.48, + "end": 23548.7, + "probability": 0.74 + }, + { + "start": 23548.84, + "end": 23549.44, + "probability": 0.784 + }, + { + "start": 23549.56, + "end": 23550.92, + "probability": 0.7464 + }, + { + "start": 23551.42, + "end": 23554.12, + "probability": 0.97 + }, + { + "start": 23555.82, + "end": 23559.66, + "probability": 0.9836 + }, + { + "start": 23560.32, + "end": 23565.16, + "probability": 0.9921 + }, + { + "start": 23565.76, + "end": 23569.12, + "probability": 0.9701 + }, + { + "start": 23569.88, + "end": 23571.98, + "probability": 0.7373 + }, + { + "start": 23572.44, + "end": 23574.1, + "probability": 0.97 + }, + { + "start": 23574.16, + "end": 23577.32, + "probability": 0.9803 + }, + { + "start": 23578.16, + "end": 23582.22, + "probability": 0.9969 + }, + { + "start": 23583.16, + "end": 23584.6, + "probability": 0.9908 + }, + { + "start": 23586.16, + "end": 23590.5, + "probability": 0.9956 + }, + { + "start": 23591.38, + "end": 23593.36, + "probability": 0.9426 + }, + { + "start": 23594.0, + "end": 23594.84, + "probability": 0.8535 + }, + { + "start": 23595.7, + "end": 23598.8, + "probability": 0.9855 + }, + { + "start": 23599.36, + "end": 23602.9, + "probability": 0.9622 + }, + { + "start": 23603.64, + "end": 23603.96, + "probability": 0.3558 + }, + { + "start": 23604.06, + "end": 23605.52, + "probability": 0.9789 + }, + { + "start": 23605.64, + "end": 23609.46, + "probability": 0.9885 + }, + { + "start": 23610.18, + "end": 23615.46, + "probability": 0.9819 + }, + { + "start": 23616.02, + "end": 23619.42, + "probability": 0.9989 + }, + { + "start": 23620.26, + "end": 23623.94, + "probability": 0.9863 + }, + { + "start": 23625.04, + "end": 23628.8, + "probability": 0.9946 + }, + { + "start": 23629.7, + "end": 23634.34, + "probability": 0.95 + }, + { + "start": 23635.06, + "end": 23638.38, + "probability": 0.8914 + }, + { + "start": 23638.98, + "end": 23642.82, + "probability": 0.9622 + }, + { + "start": 23643.56, + "end": 23645.62, + "probability": 0.8643 + }, + { + "start": 23646.62, + "end": 23647.22, + "probability": 0.4292 + }, + { + "start": 23647.3, + "end": 23651.74, + "probability": 0.9756 + }, + { + "start": 23652.28, + "end": 23655.56, + "probability": 0.9536 + }, + { + "start": 23656.5, + "end": 23659.52, + "probability": 0.9947 + }, + { + "start": 23659.52, + "end": 23663.14, + "probability": 0.9863 + }, + { + "start": 23663.66, + "end": 23665.72, + "probability": 0.9767 + }, + { + "start": 23666.36, + "end": 23670.56, + "probability": 0.8649 + }, + { + "start": 23671.6, + "end": 23673.92, + "probability": 0.7339 + }, + { + "start": 23674.5, + "end": 23679.18, + "probability": 0.9727 + }, + { + "start": 23679.72, + "end": 23681.7, + "probability": 0.925 + }, + { + "start": 23682.22, + "end": 23683.48, + "probability": 0.9337 + }, + { + "start": 23683.94, + "end": 23690.28, + "probability": 0.9303 + }, + { + "start": 23691.14, + "end": 23691.95, + "probability": 0.6243 + }, + { + "start": 23692.74, + "end": 23694.82, + "probability": 0.8621 + }, + { + "start": 23695.28, + "end": 23695.7, + "probability": 0.8362 + }, + { + "start": 23695.78, + "end": 23697.14, + "probability": 0.731 + }, + { + "start": 23697.78, + "end": 23698.17, + "probability": 0.957 + }, + { + "start": 23699.26, + "end": 23700.4, + "probability": 0.7595 + }, + { + "start": 23700.61, + "end": 23701.76, + "probability": 0.5236 + }, + { + "start": 23702.18, + "end": 23703.76, + "probability": 0.8751 + }, + { + "start": 23704.14, + "end": 23707.72, + "probability": 0.3807 + }, + { + "start": 23709.27, + "end": 23711.96, + "probability": 0.7867 + }, + { + "start": 23712.06, + "end": 23717.3, + "probability": 0.0562 + }, + { + "start": 23717.3, + "end": 23719.72, + "probability": 0.0381 + }, + { + "start": 23724.44, + "end": 23727.99, + "probability": 0.1404 + }, + { + "start": 23728.42, + "end": 23728.86, + "probability": 0.1306 + }, + { + "start": 23740.7, + "end": 23741.72, + "probability": 0.3102 + }, + { + "start": 23741.72, + "end": 23742.46, + "probability": 0.1023 + }, + { + "start": 23743.34, + "end": 23746.48, + "probability": 0.7188 + }, + { + "start": 23747.8, + "end": 23748.9, + "probability": 0.9688 + }, + { + "start": 23749.96, + "end": 23751.32, + "probability": 0.5089 + }, + { + "start": 23751.54, + "end": 23751.64, + "probability": 0.5963 + }, + { + "start": 23753.38, + "end": 23754.98, + "probability": 0.7886 + }, + { + "start": 23755.4, + "end": 23758.24, + "probability": 0.7934 + }, + { + "start": 23759.24, + "end": 23761.78, + "probability": 0.9834 + }, + { + "start": 23761.84, + "end": 23764.42, + "probability": 0.9924 + }, + { + "start": 23764.52, + "end": 23765.48, + "probability": 0.8032 + }, + { + "start": 23766.6, + "end": 23770.64, + "probability": 0.8347 + }, + { + "start": 23772.4, + "end": 23775.72, + "probability": 0.9939 + }, + { + "start": 23776.3, + "end": 23780.7, + "probability": 0.9431 + }, + { + "start": 23781.88, + "end": 23784.58, + "probability": 0.8916 + }, + { + "start": 23784.62, + "end": 23786.24, + "probability": 0.7471 + }, + { + "start": 23786.6, + "end": 23788.09, + "probability": 0.9722 + }, + { + "start": 23789.12, + "end": 23792.36, + "probability": 0.9909 + }, + { + "start": 23793.04, + "end": 23794.82, + "probability": 0.8752 + }, + { + "start": 23795.68, + "end": 23800.73, + "probability": 0.9957 + }, + { + "start": 23801.08, + "end": 23804.16, + "probability": 0.9977 + }, + { + "start": 23804.7, + "end": 23807.46, + "probability": 0.9902 + }, + { + "start": 23808.0, + "end": 23808.92, + "probability": 0.9971 + }, + { + "start": 23809.8, + "end": 23815.86, + "probability": 0.9945 + }, + { + "start": 23816.14, + "end": 23817.54, + "probability": 0.7799 + }, + { + "start": 23819.4, + "end": 23821.76, + "probability": 0.7212 + }, + { + "start": 23822.4, + "end": 23824.0, + "probability": 0.9964 + }, + { + "start": 23824.92, + "end": 23826.96, + "probability": 0.9375 + }, + { + "start": 23828.16, + "end": 23830.34, + "probability": 0.9963 + }, + { + "start": 23832.14, + "end": 23834.1, + "probability": 0.9526 + }, + { + "start": 23834.56, + "end": 23836.24, + "probability": 0.7854 + }, + { + "start": 23836.38, + "end": 23843.92, + "probability": 0.9442 + }, + { + "start": 23844.02, + "end": 23845.91, + "probability": 0.9814 + }, + { + "start": 23846.5, + "end": 23848.74, + "probability": 0.9885 + }, + { + "start": 23848.8, + "end": 23851.46, + "probability": 0.9591 + }, + { + "start": 23852.02, + "end": 23856.18, + "probability": 0.631 + }, + { + "start": 23856.58, + "end": 23859.22, + "probability": 0.9958 + }, + { + "start": 23859.72, + "end": 23860.42, + "probability": 0.9253 + }, + { + "start": 23860.48, + "end": 23862.28, + "probability": 0.9868 + }, + { + "start": 23862.76, + "end": 23865.13, + "probability": 0.7354 + }, + { + "start": 23865.68, + "end": 23866.16, + "probability": 0.7309 + }, + { + "start": 23866.26, + "end": 23866.82, + "probability": 0.7345 + }, + { + "start": 23866.9, + "end": 23870.48, + "probability": 0.89 + }, + { + "start": 23871.06, + "end": 23875.5, + "probability": 0.9492 + }, + { + "start": 23875.66, + "end": 23877.2, + "probability": 0.9902 + }, + { + "start": 23878.5, + "end": 23879.71, + "probability": 0.9985 + }, + { + "start": 23879.96, + "end": 23883.22, + "probability": 0.9517 + }, + { + "start": 23885.44, + "end": 23886.0, + "probability": 0.6833 + }, + { + "start": 23886.62, + "end": 23887.12, + "probability": 0.5324 + }, + { + "start": 23887.92, + "end": 23889.08, + "probability": 0.7668 + }, + { + "start": 23889.08, + "end": 23889.18, + "probability": 0.408 + }, + { + "start": 23889.34, + "end": 23892.02, + "probability": 0.7573 + }, + { + "start": 23892.68, + "end": 23892.9, + "probability": 0.5921 + }, + { + "start": 23893.44, + "end": 23895.26, + "probability": 0.8216 + }, + { + "start": 23896.1, + "end": 23899.28, + "probability": 0.9338 + }, + { + "start": 23899.68, + "end": 23904.3, + "probability": 0.95 + }, + { + "start": 23905.2, + "end": 23906.7, + "probability": 0.487 + }, + { + "start": 23906.92, + "end": 23909.04, + "probability": 0.9583 + }, + { + "start": 23909.42, + "end": 23911.96, + "probability": 0.9762 + }, + { + "start": 23912.0, + "end": 23913.42, + "probability": 0.9896 + }, + { + "start": 23913.82, + "end": 23915.4, + "probability": 0.9677 + }, + { + "start": 23916.04, + "end": 23917.44, + "probability": 0.7285 + }, + { + "start": 23918.08, + "end": 23920.0, + "probability": 0.67 + }, + { + "start": 23920.1, + "end": 23922.14, + "probability": 0.9795 + }, + { + "start": 23922.24, + "end": 23923.74, + "probability": 0.9055 + }, + { + "start": 23923.94, + "end": 23925.66, + "probability": 0.9327 + }, + { + "start": 23926.3, + "end": 23928.88, + "probability": 0.9141 + }, + { + "start": 23929.4, + "end": 23932.08, + "probability": 0.8599 + }, + { + "start": 23932.98, + "end": 23936.26, + "probability": 0.8154 + }, + { + "start": 23936.68, + "end": 23937.88, + "probability": 0.9605 + }, + { + "start": 23938.56, + "end": 23940.66, + "probability": 0.9899 + }, + { + "start": 23940.78, + "end": 23941.62, + "probability": 0.9069 + }, + { + "start": 23942.14, + "end": 23944.72, + "probability": 0.9375 + }, + { + "start": 23944.92, + "end": 23948.96, + "probability": 0.984 + }, + { + "start": 23949.22, + "end": 23950.77, + "probability": 0.981 + }, + { + "start": 23951.56, + "end": 23953.42, + "probability": 0.8695 + }, + { + "start": 23953.42, + "end": 23956.48, + "probability": 0.9219 + }, + { + "start": 23957.3, + "end": 23959.72, + "probability": 0.9823 + }, + { + "start": 23959.98, + "end": 23961.82, + "probability": 0.9423 + }, + { + "start": 23961.82, + "end": 23964.96, + "probability": 0.9714 + }, + { + "start": 23965.08, + "end": 23965.72, + "probability": 0.6164 + }, + { + "start": 23966.66, + "end": 23969.7, + "probability": 0.9791 + }, + { + "start": 23970.32, + "end": 23972.58, + "probability": 0.9911 + }, + { + "start": 23973.22, + "end": 23974.74, + "probability": 0.9879 + }, + { + "start": 23975.02, + "end": 23977.92, + "probability": 0.8623 + }, + { + "start": 23977.92, + "end": 23981.98, + "probability": 0.9106 + }, + { + "start": 23982.38, + "end": 23987.96, + "probability": 0.9944 + }, + { + "start": 23988.26, + "end": 23991.98, + "probability": 0.847 + }, + { + "start": 23992.8, + "end": 23997.84, + "probability": 0.9731 + }, + { + "start": 23998.4, + "end": 24002.22, + "probability": 0.7489 + }, + { + "start": 24002.3, + "end": 24003.16, + "probability": 0.8099 + }, + { + "start": 24003.5, + "end": 24004.14, + "probability": 0.4575 + }, + { + "start": 24004.28, + "end": 24005.08, + "probability": 0.6456 + }, + { + "start": 24005.44, + "end": 24006.14, + "probability": 0.7971 + }, + { + "start": 24007.14, + "end": 24011.36, + "probability": 0.9715 + }, + { + "start": 24012.26, + "end": 24012.26, + "probability": 0.0952 + }, + { + "start": 24012.26, + "end": 24014.74, + "probability": 0.7632 + }, + { + "start": 24015.08, + "end": 24017.56, + "probability": 0.8403 + }, + { + "start": 24017.84, + "end": 24020.36, + "probability": 0.9224 + }, + { + "start": 24021.14, + "end": 24022.76, + "probability": 0.932 + }, + { + "start": 24023.18, + "end": 24027.0, + "probability": 0.99 + }, + { + "start": 24027.44, + "end": 24029.52, + "probability": 0.908 + }, + { + "start": 24029.72, + "end": 24032.66, + "probability": 0.9868 + }, + { + "start": 24033.14, + "end": 24034.66, + "probability": 0.9613 + }, + { + "start": 24034.94, + "end": 24036.88, + "probability": 0.9368 + }, + { + "start": 24037.22, + "end": 24037.52, + "probability": 0.6829 + }, + { + "start": 24037.9, + "end": 24038.4, + "probability": 0.4236 + }, + { + "start": 24038.64, + "end": 24040.0, + "probability": 0.4101 + }, + { + "start": 24040.88, + "end": 24041.96, + "probability": 0.7461 + }, + { + "start": 24042.14, + "end": 24042.34, + "probability": 0.6787 + }, + { + "start": 24048.58, + "end": 24050.16, + "probability": 0.5149 + }, + { + "start": 24050.72, + "end": 24050.76, + "probability": 0.0342 + }, + { + "start": 24050.76, + "end": 24050.76, + "probability": 0.0637 + }, + { + "start": 24050.76, + "end": 24050.76, + "probability": 0.3508 + }, + { + "start": 24050.76, + "end": 24050.92, + "probability": 0.0492 + }, + { + "start": 24050.92, + "end": 24050.92, + "probability": 0.0501 + }, + { + "start": 24050.92, + "end": 24050.92, + "probability": 0.0683 + }, + { + "start": 24059.16, + "end": 24061.74, + "probability": 0.4266 + }, + { + "start": 24062.44, + "end": 24068.44, + "probability": 0.539 + }, + { + "start": 24068.78, + "end": 24070.8, + "probability": 0.474 + }, + { + "start": 24072.06, + "end": 24074.24, + "probability": 0.9434 + }, + { + "start": 24074.4, + "end": 24080.2, + "probability": 0.9774 + }, + { + "start": 24081.06, + "end": 24083.36, + "probability": 0.9119 + }, + { + "start": 24083.94, + "end": 24085.66, + "probability": 0.9121 + }, + { + "start": 24085.7, + "end": 24088.3, + "probability": 0.942 + }, + { + "start": 24089.62, + "end": 24091.42, + "probability": 0.9712 + }, + { + "start": 24092.44, + "end": 24094.56, + "probability": 0.9449 + }, + { + "start": 24095.22, + "end": 24095.78, + "probability": 0.6573 + }, + { + "start": 24096.2, + "end": 24098.94, + "probability": 0.616 + }, + { + "start": 24099.0, + "end": 24101.0, + "probability": 0.951 + }, + { + "start": 24102.07, + "end": 24103.98, + "probability": 0.9907 + }, + { + "start": 24104.12, + "end": 24107.03, + "probability": 0.9927 + }, + { + "start": 24108.18, + "end": 24109.16, + "probability": 0.9567 + }, + { + "start": 24109.24, + "end": 24110.16, + "probability": 0.9659 + }, + { + "start": 24110.24, + "end": 24111.34, + "probability": 0.9263 + }, + { + "start": 24111.4, + "end": 24112.68, + "probability": 0.943 + }, + { + "start": 24112.9, + "end": 24114.26, + "probability": 0.8103 + }, + { + "start": 24114.34, + "end": 24117.0, + "probability": 0.8663 + }, + { + "start": 24117.98, + "end": 24121.38, + "probability": 0.9043 + }, + { + "start": 24121.38, + "end": 24123.48, + "probability": 0.0379 + }, + { + "start": 24123.66, + "end": 24125.36, + "probability": 0.581 + }, + { + "start": 24126.04, + "end": 24131.1, + "probability": 0.7925 + }, + { + "start": 24131.46, + "end": 24133.5, + "probability": 0.9223 + }, + { + "start": 24133.52, + "end": 24134.5, + "probability": 0.9162 + }, + { + "start": 24134.56, + "end": 24136.48, + "probability": 0.8608 + }, + { + "start": 24136.58, + "end": 24137.64, + "probability": 0.6453 + }, + { + "start": 24138.32, + "end": 24141.3, + "probability": 0.7458 + }, + { + "start": 24141.3, + "end": 24144.8, + "probability": 0.894 + }, + { + "start": 24144.86, + "end": 24146.54, + "probability": 0.9946 + }, + { + "start": 24146.98, + "end": 24149.18, + "probability": 0.9032 + }, + { + "start": 24149.64, + "end": 24150.74, + "probability": 0.9409 + }, + { + "start": 24151.16, + "end": 24151.96, + "probability": 0.4129 + }, + { + "start": 24152.04, + "end": 24155.32, + "probability": 0.7109 + }, + { + "start": 24155.4, + "end": 24160.12, + "probability": 0.8736 + }, + { + "start": 24160.12, + "end": 24162.46, + "probability": 0.7697 + }, + { + "start": 24163.48, + "end": 24165.52, + "probability": 0.9279 + }, + { + "start": 24165.72, + "end": 24167.0, + "probability": 0.5078 + }, + { + "start": 24167.52, + "end": 24169.82, + "probability": 0.827 + }, + { + "start": 24169.98, + "end": 24173.04, + "probability": 0.9069 + }, + { + "start": 24173.2, + "end": 24174.2, + "probability": 0.9026 + }, + { + "start": 24174.88, + "end": 24175.66, + "probability": 0.7326 + }, + { + "start": 24175.78, + "end": 24176.73, + "probability": 0.6693 + }, + { + "start": 24176.96, + "end": 24178.9, + "probability": 0.8344 + }, + { + "start": 24179.26, + "end": 24180.46, + "probability": 0.7131 + }, + { + "start": 24180.7, + "end": 24181.4, + "probability": 0.605 + }, + { + "start": 24181.66, + "end": 24185.56, + "probability": 0.5036 + }, + { + "start": 24185.68, + "end": 24187.0, + "probability": 0.9478 + }, + { + "start": 24188.14, + "end": 24190.14, + "probability": 0.6708 + }, + { + "start": 24190.16, + "end": 24192.1, + "probability": 0.9711 + }, + { + "start": 24192.64, + "end": 24193.3, + "probability": 0.6678 + }, + { + "start": 24193.9, + "end": 24196.12, + "probability": 0.9028 + }, + { + "start": 24197.58, + "end": 24201.78, + "probability": 0.7556 + }, + { + "start": 24201.78, + "end": 24205.8, + "probability": 0.9912 + }, + { + "start": 24205.86, + "end": 24208.36, + "probability": 0.8289 + }, + { + "start": 24208.52, + "end": 24209.14, + "probability": 0.458 + }, + { + "start": 24209.58, + "end": 24210.82, + "probability": 0.674 + }, + { + "start": 24210.84, + "end": 24213.06, + "probability": 0.9479 + }, + { + "start": 24213.5, + "end": 24215.84, + "probability": 0.906 + }, + { + "start": 24216.02, + "end": 24218.6, + "probability": 0.9275 + }, + { + "start": 24219.44, + "end": 24220.34, + "probability": 0.8813 + }, + { + "start": 24220.64, + "end": 24221.52, + "probability": 0.9529 + }, + { + "start": 24221.58, + "end": 24224.3, + "probability": 0.8452 + }, + { + "start": 24224.7, + "end": 24225.66, + "probability": 0.4234 + }, + { + "start": 24226.7, + "end": 24228.96, + "probability": 0.6862 + }, + { + "start": 24229.26, + "end": 24231.39, + "probability": 0.6661 + }, + { + "start": 24231.5, + "end": 24231.86, + "probability": 0.7854 + }, + { + "start": 24232.18, + "end": 24233.0, + "probability": 0.4659 + }, + { + "start": 24233.62, + "end": 24234.7, + "probability": 0.7839 + }, + { + "start": 24234.82, + "end": 24235.96, + "probability": 0.6732 + }, + { + "start": 24236.02, + "end": 24237.4, + "probability": 0.7065 + }, + { + "start": 24237.8, + "end": 24238.22, + "probability": 0.7356 + }, + { + "start": 24238.38, + "end": 24239.02, + "probability": 0.5379 + }, + { + "start": 24239.42, + "end": 24241.86, + "probability": 0.9872 + }, + { + "start": 24242.26, + "end": 24244.61, + "probability": 0.8636 + }, + { + "start": 24244.78, + "end": 24246.76, + "probability": 0.9983 + }, + { + "start": 24247.26, + "end": 24248.22, + "probability": 0.7146 + }, + { + "start": 24248.86, + "end": 24250.96, + "probability": 0.9556 + }, + { + "start": 24250.98, + "end": 24252.78, + "probability": 0.8124 + }, + { + "start": 24253.16, + "end": 24255.4, + "probability": 0.9975 + }, + { + "start": 24255.4, + "end": 24257.74, + "probability": 0.6784 + }, + { + "start": 24257.8, + "end": 24258.36, + "probability": 0.6681 + }, + { + "start": 24258.36, + "end": 24259.44, + "probability": 0.8602 + }, + { + "start": 24260.46, + "end": 24263.4, + "probability": 0.7349 + }, + { + "start": 24264.06, + "end": 24265.14, + "probability": 0.9253 + }, + { + "start": 24265.18, + "end": 24267.54, + "probability": 0.9368 + }, + { + "start": 24267.66, + "end": 24269.96, + "probability": 0.9206 + }, + { + "start": 24270.4, + "end": 24275.1, + "probability": 0.9944 + }, + { + "start": 24275.48, + "end": 24276.6, + "probability": 0.9582 + }, + { + "start": 24276.96, + "end": 24278.82, + "probability": 0.6704 + }, + { + "start": 24278.86, + "end": 24283.18, + "probability": 0.5224 + }, + { + "start": 24284.24, + "end": 24287.9, + "probability": 0.8384 + }, + { + "start": 24287.96, + "end": 24289.28, + "probability": 0.8654 + }, + { + "start": 24289.92, + "end": 24292.06, + "probability": 0.7312 + }, + { + "start": 24292.58, + "end": 24298.28, + "probability": 0.8876 + }, + { + "start": 24298.92, + "end": 24301.22, + "probability": 0.665 + }, + { + "start": 24301.52, + "end": 24302.0, + "probability": 0.8382 + }, + { + "start": 24302.88, + "end": 24304.72, + "probability": 0.8117 + }, + { + "start": 24305.2, + "end": 24307.0, + "probability": 0.9901 + }, + { + "start": 24308.2, + "end": 24309.62, + "probability": 0.9924 + }, + { + "start": 24315.56, + "end": 24317.88, + "probability": 0.5777 + }, + { + "start": 24318.44, + "end": 24319.83, + "probability": 0.6812 + }, + { + "start": 24321.28, + "end": 24324.72, + "probability": 0.6949 + }, + { + "start": 24324.86, + "end": 24326.16, + "probability": 0.7245 + }, + { + "start": 24326.32, + "end": 24328.14, + "probability": 0.7496 + }, + { + "start": 24328.24, + "end": 24328.38, + "probability": 0.4259 + }, + { + "start": 24328.62, + "end": 24329.48, + "probability": 0.4284 + }, + { + "start": 24329.58, + "end": 24331.02, + "probability": 0.9757 + }, + { + "start": 24331.72, + "end": 24333.74, + "probability": 0.9148 + }, + { + "start": 24333.9, + "end": 24334.7, + "probability": 0.791 + }, + { + "start": 24336.5, + "end": 24338.22, + "probability": 0.9609 + }, + { + "start": 24339.68, + "end": 24342.17, + "probability": 0.9727 + }, + { + "start": 24342.96, + "end": 24344.22, + "probability": 0.6328 + }, + { + "start": 24346.54, + "end": 24348.6, + "probability": 0.7563 + }, + { + "start": 24351.02, + "end": 24355.5, + "probability": 0.9374 + }, + { + "start": 24357.04, + "end": 24359.02, + "probability": 0.3283 + }, + { + "start": 24359.6, + "end": 24360.58, + "probability": 0.8767 + }, + { + "start": 24360.68, + "end": 24360.96, + "probability": 0.7592 + }, + { + "start": 24360.96, + "end": 24361.98, + "probability": 0.8616 + }, + { + "start": 24363.08, + "end": 24363.22, + "probability": 0.0434 + }, + { + "start": 24363.22, + "end": 24363.66, + "probability": 0.3717 + }, + { + "start": 24364.1, + "end": 24366.66, + "probability": 0.8997 + }, + { + "start": 24367.94, + "end": 24370.44, + "probability": 0.8093 + }, + { + "start": 24370.78, + "end": 24371.78, + "probability": 0.9725 + }, + { + "start": 24371.88, + "end": 24374.26, + "probability": 0.8408 + }, + { + "start": 24374.96, + "end": 24375.4, + "probability": 0.001 + }, + { + "start": 24379.24, + "end": 24379.88, + "probability": 0.8903 + }, + { + "start": 24381.9, + "end": 24383.54, + "probability": 0.7858 + }, + { + "start": 24383.68, + "end": 24386.58, + "probability": 0.9727 + }, + { + "start": 24387.32, + "end": 24391.68, + "probability": 0.876 + }, + { + "start": 24394.54, + "end": 24400.38, + "probability": 0.9683 + }, + { + "start": 24402.98, + "end": 24404.38, + "probability": 0.988 + }, + { + "start": 24404.92, + "end": 24408.44, + "probability": 0.7461 + }, + { + "start": 24409.88, + "end": 24420.14, + "probability": 0.799 + }, + { + "start": 24422.08, + "end": 24425.42, + "probability": 0.8654 + }, + { + "start": 24425.46, + "end": 24430.86, + "probability": 0.9917 + }, + { + "start": 24432.06, + "end": 24438.5, + "probability": 0.9354 + }, + { + "start": 24438.86, + "end": 24440.64, + "probability": 0.9416 + }, + { + "start": 24441.26, + "end": 24445.26, + "probability": 0.9604 + }, + { + "start": 24445.92, + "end": 24448.5, + "probability": 0.8762 + }, + { + "start": 24449.3, + "end": 24452.22, + "probability": 0.9326 + }, + { + "start": 24453.38, + "end": 24458.04, + "probability": 0.87 + }, + { + "start": 24458.2, + "end": 24464.48, + "probability": 0.9708 + }, + { + "start": 24464.64, + "end": 24469.46, + "probability": 0.819 + }, + { + "start": 24469.5, + "end": 24470.16, + "probability": 0.6617 + }, + { + "start": 24470.64, + "end": 24472.18, + "probability": 0.7589 + }, + { + "start": 24475.02, + "end": 24476.4, + "probability": 0.9945 + }, + { + "start": 24478.1, + "end": 24479.46, + "probability": 0.9429 + }, + { + "start": 24481.28, + "end": 24483.52, + "probability": 0.773 + }, + { + "start": 24486.06, + "end": 24489.06, + "probability": 0.9454 + }, + { + "start": 24496.14, + "end": 24500.36, + "probability": 0.6889 + }, + { + "start": 24500.42, + "end": 24501.72, + "probability": 0.8928 + }, + { + "start": 24502.8, + "end": 24503.3, + "probability": 0.4877 + }, + { + "start": 24503.3, + "end": 24506.2, + "probability": 0.9927 + }, + { + "start": 24506.2, + "end": 24509.4, + "probability": 0.9925 + }, + { + "start": 24510.1, + "end": 24513.0, + "probability": 0.9536 + }, + { + "start": 24513.56, + "end": 24521.76, + "probability": 0.9631 + }, + { + "start": 24522.6, + "end": 24523.96, + "probability": 0.8034 + }, + { + "start": 24524.88, + "end": 24527.58, + "probability": 0.9976 + }, + { + "start": 24528.48, + "end": 24534.26, + "probability": 0.9326 + }, + { + "start": 24534.62, + "end": 24536.38, + "probability": 0.7658 + }, + { + "start": 24537.36, + "end": 24540.08, + "probability": 0.7411 + }, + { + "start": 24540.92, + "end": 24542.76, + "probability": 0.7182 + }, + { + "start": 24542.92, + "end": 24545.86, + "probability": 0.9701 + }, + { + "start": 24546.68, + "end": 24547.94, + "probability": 0.8041 + }, + { + "start": 24549.52, + "end": 24552.76, + "probability": 0.6112 + }, + { + "start": 24553.58, + "end": 24555.78, + "probability": 0.7144 + }, + { + "start": 24556.42, + "end": 24556.74, + "probability": 0.6126 + }, + { + "start": 24557.3, + "end": 24557.58, + "probability": 0.9847 + }, + { + "start": 24558.64, + "end": 24559.4, + "probability": 0.7772 + }, + { + "start": 24560.08, + "end": 24560.7, + "probability": 0.9629 + }, + { + "start": 24565.3, + "end": 24567.0, + "probability": 0.5788 + }, + { + "start": 24567.42, + "end": 24571.76, + "probability": 0.6804 + }, + { + "start": 24572.22, + "end": 24575.86, + "probability": 0.843 + }, + { + "start": 24576.16, + "end": 24576.46, + "probability": 0.8281 + }, + { + "start": 24577.3, + "end": 24579.84, + "probability": 0.9761 + }, + { + "start": 24580.56, + "end": 24587.96, + "probability": 0.9871 + }, + { + "start": 24588.8, + "end": 24597.46, + "probability": 0.9923 + }, + { + "start": 24598.26, + "end": 24598.64, + "probability": 0.4333 + }, + { + "start": 24598.76, + "end": 24602.37, + "probability": 0.9968 + }, + { + "start": 24602.72, + "end": 24603.76, + "probability": 0.8095 + }, + { + "start": 24604.24, + "end": 24604.44, + "probability": 0.8265 + }, + { + "start": 24605.36, + "end": 24607.42, + "probability": 0.7216 + }, + { + "start": 24607.98, + "end": 24609.7, + "probability": 0.594 + }, + { + "start": 24610.9, + "end": 24614.22, + "probability": 0.7859 + }, + { + "start": 24614.86, + "end": 24615.74, + "probability": 0.9692 + }, + { + "start": 24616.36, + "end": 24620.78, + "probability": 0.9778 + }, + { + "start": 24620.88, + "end": 24626.4, + "probability": 0.8839 + }, + { + "start": 24627.08, + "end": 24629.5, + "probability": 0.9749 + }, + { + "start": 24630.3, + "end": 24630.56, + "probability": 0.8312 + }, + { + "start": 24631.26, + "end": 24631.4, + "probability": 0.6495 + }, + { + "start": 24631.4, + "end": 24632.3, + "probability": 0.1153 + }, + { + "start": 24632.3, + "end": 24633.88, + "probability": 0.592 + }, + { + "start": 24634.02, + "end": 24634.54, + "probability": 0.8877 + }, + { + "start": 24635.93, + "end": 24639.64, + "probability": 0.743 + }, + { + "start": 24641.28, + "end": 24642.02, + "probability": 0.9114 + }, + { + "start": 24644.44, + "end": 24645.85, + "probability": 0.9348 + }, + { + "start": 24646.32, + "end": 24647.61, + "probability": 0.6366 + }, + { + "start": 24648.56, + "end": 24652.9, + "probability": 0.8935 + }, + { + "start": 24653.46, + "end": 24658.15, + "probability": 0.9694 + }, + { + "start": 24658.9, + "end": 24661.36, + "probability": 0.9939 + }, + { + "start": 24662.8, + "end": 24664.76, + "probability": 0.9625 + }, + { + "start": 24665.08, + "end": 24665.68, + "probability": 0.3751 + }, + { + "start": 24665.92, + "end": 24669.44, + "probability": 0.99 + }, + { + "start": 24669.94, + "end": 24671.66, + "probability": 0.995 + }, + { + "start": 24672.28, + "end": 24673.42, + "probability": 0.9383 + }, + { + "start": 24674.0, + "end": 24678.02, + "probability": 0.9666 + }, + { + "start": 24678.14, + "end": 24681.68, + "probability": 0.9398 + }, + { + "start": 24682.5, + "end": 24686.88, + "probability": 0.9255 + }, + { + "start": 24687.52, + "end": 24690.18, + "probability": 0.8105 + }, + { + "start": 24690.94, + "end": 24695.64, + "probability": 0.9599 + }, + { + "start": 24696.62, + "end": 24696.64, + "probability": 0.173 + }, + { + "start": 24696.82, + "end": 24702.52, + "probability": 0.9826 + }, + { + "start": 24702.9, + "end": 24705.94, + "probability": 0.6855 + }, + { + "start": 24705.98, + "end": 24708.3, + "probability": 0.5745 + }, + { + "start": 24708.96, + "end": 24711.02, + "probability": 0.6322 + }, + { + "start": 24711.72, + "end": 24715.72, + "probability": 0.7918 + }, + { + "start": 24716.26, + "end": 24719.72, + "probability": 0.9867 + }, + { + "start": 24719.84, + "end": 24721.04, + "probability": 0.9912 + }, + { + "start": 24721.16, + "end": 24722.13, + "probability": 0.9912 + }, + { + "start": 24722.8, + "end": 24725.96, + "probability": 0.9912 + }, + { + "start": 24726.7, + "end": 24727.28, + "probability": 0.8839 + }, + { + "start": 24727.82, + "end": 24737.32, + "probability": 0.9318 + }, + { + "start": 24738.02, + "end": 24738.24, + "probability": 0.3454 + }, + { + "start": 24738.36, + "end": 24739.58, + "probability": 0.8995 + }, + { + "start": 24739.82, + "end": 24740.22, + "probability": 0.8507 + }, + { + "start": 24740.68, + "end": 24742.76, + "probability": 0.9724 + }, + { + "start": 24743.2, + "end": 24744.04, + "probability": 0.8992 + }, + { + "start": 24745.0, + "end": 24748.28, + "probability": 0.8684 + }, + { + "start": 24748.28, + "end": 24750.78, + "probability": 0.984 + }, + { + "start": 24751.5, + "end": 24753.58, + "probability": 0.9888 + }, + { + "start": 24753.58, + "end": 24755.28, + "probability": 0.7665 + }, + { + "start": 24755.56, + "end": 24756.9, + "probability": 0.4385 + }, + { + "start": 24756.98, + "end": 24759.08, + "probability": 0.938 + }, + { + "start": 24759.48, + "end": 24764.24, + "probability": 0.9708 + }, + { + "start": 24764.76, + "end": 24766.16, + "probability": 0.9843 + }, + { + "start": 24766.2, + "end": 24768.28, + "probability": 0.9944 + }, + { + "start": 24768.6, + "end": 24769.08, + "probability": 0.6129 + }, + { + "start": 24769.1, + "end": 24771.1, + "probability": 0.8877 + }, + { + "start": 24771.7, + "end": 24776.06, + "probability": 0.7113 + }, + { + "start": 24776.44, + "end": 24777.32, + "probability": 0.9885 + }, + { + "start": 24778.16, + "end": 24778.8, + "probability": 0.9761 + }, + { + "start": 24778.92, + "end": 24782.02, + "probability": 0.986 + }, + { + "start": 24782.54, + "end": 24784.37, + "probability": 0.9942 + }, + { + "start": 24784.92, + "end": 24786.88, + "probability": 0.9839 + }, + { + "start": 24786.92, + "end": 24788.32, + "probability": 0.8637 + }, + { + "start": 24789.1, + "end": 24793.02, + "probability": 0.7998 + }, + { + "start": 24793.74, + "end": 24797.52, + "probability": 0.9891 + }, + { + "start": 24797.62, + "end": 24800.44, + "probability": 0.9961 + }, + { + "start": 24800.6, + "end": 24801.36, + "probability": 0.9889 + }, + { + "start": 24801.42, + "end": 24802.72, + "probability": 0.885 + }, + { + "start": 24803.8, + "end": 24805.94, + "probability": 0.9937 + }, + { + "start": 24806.68, + "end": 24808.48, + "probability": 0.8689 + }, + { + "start": 24809.14, + "end": 24811.42, + "probability": 0.9804 + }, + { + "start": 24811.92, + "end": 24815.88, + "probability": 0.9915 + }, + { + "start": 24815.88, + "end": 24820.62, + "probability": 0.9963 + }, + { + "start": 24820.66, + "end": 24821.06, + "probability": 0.5588 + }, + { + "start": 24821.2, + "end": 24821.42, + "probability": 0.4337 + }, + { + "start": 24821.46, + "end": 24824.7, + "probability": 0.9937 + }, + { + "start": 24825.58, + "end": 24826.98, + "probability": 0.8684 + }, + { + "start": 24827.06, + "end": 24829.72, + "probability": 0.9674 + }, + { + "start": 24830.08, + "end": 24832.04, + "probability": 0.9246 + }, + { + "start": 24832.44, + "end": 24836.48, + "probability": 0.9869 + }, + { + "start": 24836.76, + "end": 24838.16, + "probability": 0.5794 + }, + { + "start": 24838.54, + "end": 24839.3, + "probability": 0.7742 + }, + { + "start": 24839.6, + "end": 24840.02, + "probability": 0.721 + }, + { + "start": 24840.24, + "end": 24843.44, + "probability": 0.9766 + }, + { + "start": 24843.76, + "end": 24845.38, + "probability": 0.8879 + }, + { + "start": 24846.06, + "end": 24846.6, + "probability": 0.9511 + }, + { + "start": 24847.22, + "end": 24847.46, + "probability": 0.8279 + }, + { + "start": 24847.78, + "end": 24851.08, + "probability": 0.7476 + }, + { + "start": 24851.54, + "end": 24853.96, + "probability": 0.8546 + }, + { + "start": 24854.78, + "end": 24856.08, + "probability": 0.7384 + }, + { + "start": 24856.2, + "end": 24856.98, + "probability": 0.901 + }, + { + "start": 24857.02, + "end": 24859.48, + "probability": 0.9463 + }, + { + "start": 24860.62, + "end": 24862.98, + "probability": 0.7188 + }, + { + "start": 24865.32, + "end": 24868.08, + "probability": 0.7687 + }, + { + "start": 24868.46, + "end": 24872.94, + "probability": 0.9987 + }, + { + "start": 24873.88, + "end": 24878.5, + "probability": 0.9728 + }, + { + "start": 24878.76, + "end": 24879.76, + "probability": 0.9971 + }, + { + "start": 24880.28, + "end": 24881.26, + "probability": 0.8405 + }, + { + "start": 24881.8, + "end": 24886.1, + "probability": 0.9873 + }, + { + "start": 24887.2, + "end": 24890.34, + "probability": 0.9828 + }, + { + "start": 24891.04, + "end": 24892.56, + "probability": 0.7925 + }, + { + "start": 24893.66, + "end": 24898.42, + "probability": 0.9943 + }, + { + "start": 24898.74, + "end": 24902.2, + "probability": 0.9974 + }, + { + "start": 24902.2, + "end": 24904.68, + "probability": 0.9983 + }, + { + "start": 24905.4, + "end": 24908.36, + "probability": 0.9599 + }, + { + "start": 24908.42, + "end": 24909.5, + "probability": 0.828 + }, + { + "start": 24909.98, + "end": 24912.16, + "probability": 0.9932 + }, + { + "start": 24912.34, + "end": 24912.5, + "probability": 0.3552 + }, + { + "start": 24912.58, + "end": 24915.18, + "probability": 0.9793 + }, + { + "start": 24915.76, + "end": 24916.98, + "probability": 0.955 + }, + { + "start": 24917.32, + "end": 24919.32, + "probability": 0.7558 + }, + { + "start": 24919.58, + "end": 24926.3, + "probability": 0.988 + }, + { + "start": 24926.3, + "end": 24932.06, + "probability": 0.995 + }, + { + "start": 24932.42, + "end": 24933.62, + "probability": 0.7916 + }, + { + "start": 24934.02, + "end": 24936.96, + "probability": 0.9968 + }, + { + "start": 24937.24, + "end": 24938.92, + "probability": 0.9663 + }, + { + "start": 24939.36, + "end": 24939.48, + "probability": 0.5293 + }, + { + "start": 24939.58, + "end": 24941.16, + "probability": 0.9869 + }, + { + "start": 24941.7, + "end": 24944.7, + "probability": 0.995 + }, + { + "start": 24944.8, + "end": 24945.6, + "probability": 0.9355 + }, + { + "start": 24945.84, + "end": 24946.04, + "probability": 0.8048 + }, + { + "start": 24946.42, + "end": 24948.38, + "probability": 0.7517 + }, + { + "start": 24948.64, + "end": 24950.8, + "probability": 0.7424 + }, + { + "start": 24951.54, + "end": 24952.9, + "probability": 0.8633 + }, + { + "start": 24953.36, + "end": 24959.32, + "probability": 0.9767 + }, + { + "start": 24959.94, + "end": 24963.6, + "probability": 0.5647 + }, + { + "start": 24963.64, + "end": 24968.4, + "probability": 0.9805 + }, + { + "start": 24969.4, + "end": 24974.34, + "probability": 0.4725 + }, + { + "start": 24974.92, + "end": 24978.36, + "probability": 0.8597 + }, + { + "start": 24978.7, + "end": 24986.82, + "probability": 0.9846 + }, + { + "start": 24987.5, + "end": 24987.82, + "probability": 0.8381 + }, + { + "start": 24991.1, + "end": 24993.59, + "probability": 0.3351 + }, + { + "start": 25006.82, + "end": 25006.94, + "probability": 0.1299 + }, + { + "start": 25006.94, + "end": 25010.8, + "probability": 0.8181 + }, + { + "start": 25011.66, + "end": 25012.42, + "probability": 0.4941 + }, + { + "start": 25013.04, + "end": 25014.04, + "probability": 0.0655 + }, + { + "start": 25015.44, + "end": 25017.24, + "probability": 0.713 + }, + { + "start": 25017.66, + "end": 25018.48, + "probability": 0.1716 + }, + { + "start": 25018.84, + "end": 25025.08, + "probability": 0.9906 + }, + { + "start": 25025.46, + "end": 25030.32, + "probability": 0.993 + }, + { + "start": 25030.32, + "end": 25034.54, + "probability": 0.9583 + }, + { + "start": 25037.0, + "end": 25046.38, + "probability": 0.908 + }, + { + "start": 25046.88, + "end": 25049.2, + "probability": 0.0498 + }, + { + "start": 25049.2, + "end": 25049.62, + "probability": 0.5618 + }, + { + "start": 25049.82, + "end": 25050.4, + "probability": 0.6505 + }, + { + "start": 25050.4, + "end": 25050.5, + "probability": 0.6397 + }, + { + "start": 25052.38, + "end": 25056.62, + "probability": 0.6968 + }, + { + "start": 25056.82, + "end": 25057.26, + "probability": 0.0379 + }, + { + "start": 25057.86, + "end": 25062.64, + "probability": 0.6807 + }, + { + "start": 25063.3, + "end": 25071.4, + "probability": 0.9108 + }, + { + "start": 25072.24, + "end": 25076.54, + "probability": 0.774 + }, + { + "start": 25078.26, + "end": 25080.12, + "probability": 0.9577 + }, + { + "start": 25080.32, + "end": 25081.2, + "probability": 0.908 + }, + { + "start": 25081.28, + "end": 25082.22, + "probability": 0.717 + }, + { + "start": 25082.68, + "end": 25083.64, + "probability": 0.89 + }, + { + "start": 25084.18, + "end": 25086.22, + "probability": 0.8671 + }, + { + "start": 25087.1, + "end": 25088.8, + "probability": 0.6787 + }, + { + "start": 25089.24, + "end": 25090.32, + "probability": 0.7845 + }, + { + "start": 25090.7, + "end": 25091.72, + "probability": 0.9407 + }, + { + "start": 25091.76, + "end": 25093.32, + "probability": 0.9714 + }, + { + "start": 25094.58, + "end": 25095.78, + "probability": 0.8551 + }, + { + "start": 25098.2, + "end": 25099.64, + "probability": 0.8253 + }, + { + "start": 25100.78, + "end": 25107.06, + "probability": 0.6821 + }, + { + "start": 25107.44, + "end": 25108.32, + "probability": 0.8389 + }, + { + "start": 25108.36, + "end": 25110.52, + "probability": 0.9694 + }, + { + "start": 25110.84, + "end": 25114.66, + "probability": 0.988 + }, + { + "start": 25115.12, + "end": 25119.04, + "probability": 0.8707 + }, + { + "start": 25120.24, + "end": 25123.5, + "probability": 0.9688 + }, + { + "start": 25124.1, + "end": 25125.0, + "probability": 0.9404 + }, + { + "start": 25125.68, + "end": 25126.44, + "probability": 0.327 + }, + { + "start": 25127.12, + "end": 25130.16, + "probability": 0.9829 + }, + { + "start": 25130.68, + "end": 25133.34, + "probability": 0.9694 + }, + { + "start": 25134.04, + "end": 25134.94, + "probability": 0.9656 + }, + { + "start": 25135.58, + "end": 25136.82, + "probability": 0.9805 + }, + { + "start": 25137.32, + "end": 25142.96, + "probability": 0.9888 + }, + { + "start": 25143.62, + "end": 25144.22, + "probability": 0.8974 + }, + { + "start": 25145.32, + "end": 25147.1, + "probability": 0.8635 + }, + { + "start": 25147.9, + "end": 25151.5, + "probability": 0.9954 + }, + { + "start": 25151.5, + "end": 25154.74, + "probability": 0.9994 + }, + { + "start": 25155.44, + "end": 25157.14, + "probability": 0.9011 + }, + { + "start": 25157.54, + "end": 25162.4, + "probability": 0.9287 + }, + { + "start": 25163.14, + "end": 25170.18, + "probability": 0.9868 + }, + { + "start": 25171.3, + "end": 25175.2, + "probability": 0.9811 + }, + { + "start": 25176.42, + "end": 25177.06, + "probability": 0.5323 + }, + { + "start": 25177.98, + "end": 25179.54, + "probability": 0.9406 + }, + { + "start": 25180.66, + "end": 25185.18, + "probability": 0.8359 + }, + { + "start": 25185.18, + "end": 25188.18, + "probability": 0.9941 + }, + { + "start": 25188.54, + "end": 25190.16, + "probability": 0.9365 + }, + { + "start": 25190.82, + "end": 25191.8, + "probability": 0.7692 + }, + { + "start": 25192.96, + "end": 25196.18, + "probability": 0.9205 + }, + { + "start": 25196.76, + "end": 25200.3, + "probability": 0.9502 + }, + { + "start": 25200.92, + "end": 25201.84, + "probability": 0.7337 + }, + { + "start": 25202.68, + "end": 25203.42, + "probability": 0.53 + }, + { + "start": 25205.06, + "end": 25210.31, + "probability": 0.9976 + }, + { + "start": 25211.2, + "end": 25212.82, + "probability": 0.7282 + }, + { + "start": 25213.56, + "end": 25217.34, + "probability": 0.9866 + }, + { + "start": 25217.34, + "end": 25221.58, + "probability": 0.9953 + }, + { + "start": 25222.98, + "end": 25224.88, + "probability": 0.9954 + }, + { + "start": 25226.14, + "end": 25229.76, + "probability": 0.997 + }, + { + "start": 25230.64, + "end": 25232.36, + "probability": 0.946 + }, + { + "start": 25233.86, + "end": 25234.48, + "probability": 0.9822 + }, + { + "start": 25235.72, + "end": 25241.12, + "probability": 0.9912 + }, + { + "start": 25242.66, + "end": 25246.78, + "probability": 0.9973 + }, + { + "start": 25247.28, + "end": 25251.32, + "probability": 0.9902 + }, + { + "start": 25252.36, + "end": 25255.18, + "probability": 0.9951 + }, + { + "start": 25256.7, + "end": 25260.72, + "probability": 0.9685 + }, + { + "start": 25261.08, + "end": 25261.74, + "probability": 0.5379 + }, + { + "start": 25262.28, + "end": 25265.08, + "probability": 0.792 + }, + { + "start": 25266.88, + "end": 25271.76, + "probability": 0.8924 + }, + { + "start": 25275.6, + "end": 25278.42, + "probability": 0.0212 + }, + { + "start": 25278.42, + "end": 25281.28, + "probability": 0.321 + }, + { + "start": 25281.3, + "end": 25281.84, + "probability": 0.0038 + }, + { + "start": 25282.36, + "end": 25284.68, + "probability": 0.0265 + }, + { + "start": 25284.68, + "end": 25285.02, + "probability": 0.0831 + }, + { + "start": 25285.02, + "end": 25285.02, + "probability": 0.0437 + }, + { + "start": 25285.02, + "end": 25287.31, + "probability": 0.4152 + }, + { + "start": 25289.0, + "end": 25289.28, + "probability": 0.2004 + }, + { + "start": 25289.36, + "end": 25291.98, + "probability": 0.0782 + }, + { + "start": 25292.48, + "end": 25293.56, + "probability": 0.1147 + }, + { + "start": 25295.52, + "end": 25295.52, + "probability": 0.0254 + }, + { + "start": 25295.52, + "end": 25295.52, + "probability": 0.2508 + }, + { + "start": 25295.52, + "end": 25296.96, + "probability": 0.2533 + }, + { + "start": 25296.96, + "end": 25299.24, + "probability": 0.3386 + }, + { + "start": 25299.28, + "end": 25300.22, + "probability": 0.6637 + }, + { + "start": 25300.22, + "end": 25301.6, + "probability": 0.6073 + }, + { + "start": 25301.98, + "end": 25303.0, + "probability": 0.6751 + }, + { + "start": 25303.12, + "end": 25304.52, + "probability": 0.9233 + }, + { + "start": 25304.58, + "end": 25305.56, + "probability": 0.4619 + }, + { + "start": 25306.18, + "end": 25309.36, + "probability": 0.8249 + }, + { + "start": 25309.36, + "end": 25311.64, + "probability": 0.8366 + }, + { + "start": 25312.82, + "end": 25313.18, + "probability": 0.4355 + }, + { + "start": 25313.26, + "end": 25316.84, + "probability": 0.7954 + }, + { + "start": 25318.06, + "end": 25321.52, + "probability": 0.9576 + }, + { + "start": 25323.3, + "end": 25324.1, + "probability": 0.9791 + }, + { + "start": 25324.28, + "end": 25326.0, + "probability": 0.7982 + }, + { + "start": 25327.08, + "end": 25328.34, + "probability": 0.9468 + }, + { + "start": 25328.78, + "end": 25332.06, + "probability": 0.921 + }, + { + "start": 25332.18, + "end": 25336.72, + "probability": 0.8671 + }, + { + "start": 25336.98, + "end": 25340.09, + "probability": 0.9688 + }, + { + "start": 25342.08, + "end": 25344.86, + "probability": 0.9907 + }, + { + "start": 25345.66, + "end": 25349.6, + "probability": 0.9542 + }, + { + "start": 25350.12, + "end": 25351.48, + "probability": 0.9934 + }, + { + "start": 25352.16, + "end": 25352.82, + "probability": 0.4869 + }, + { + "start": 25352.92, + "end": 25356.62, + "probability": 0.9814 + }, + { + "start": 25358.26, + "end": 25360.26, + "probability": 0.999 + }, + { + "start": 25360.78, + "end": 25362.02, + "probability": 0.6555 + }, + { + "start": 25362.24, + "end": 25365.16, + "probability": 0.7301 + }, + { + "start": 25365.2, + "end": 25367.82, + "probability": 0.9231 + }, + { + "start": 25368.22, + "end": 25369.54, + "probability": 0.9932 + }, + { + "start": 25369.74, + "end": 25370.18, + "probability": 0.8752 + }, + { + "start": 25370.26, + "end": 25370.76, + "probability": 0.8925 + }, + { + "start": 25371.22, + "end": 25372.38, + "probability": 0.9614 + }, + { + "start": 25373.42, + "end": 25376.36, + "probability": 0.4993 + }, + { + "start": 25377.08, + "end": 25379.06, + "probability": 0.6242 + }, + { + "start": 25379.8, + "end": 25382.54, + "probability": 0.942 + }, + { + "start": 25383.18, + "end": 25386.36, + "probability": 0.7424 + }, + { + "start": 25387.32, + "end": 25387.32, + "probability": 0.098 + }, + { + "start": 25387.32, + "end": 25387.98, + "probability": 0.6449 + }, + { + "start": 25388.14, + "end": 25391.44, + "probability": 0.9941 + }, + { + "start": 25391.76, + "end": 25396.44, + "probability": 0.9895 + }, + { + "start": 25397.58, + "end": 25398.18, + "probability": 0.7038 + }, + { + "start": 25398.64, + "end": 25399.22, + "probability": 0.8612 + }, + { + "start": 25399.34, + "end": 25400.28, + "probability": 0.8422 + }, + { + "start": 25400.62, + "end": 25401.22, + "probability": 0.9638 + }, + { + "start": 25401.4, + "end": 25401.98, + "probability": 0.8011 + }, + { + "start": 25402.18, + "end": 25402.62, + "probability": 0.6091 + }, + { + "start": 25402.72, + "end": 25403.32, + "probability": 0.8136 + }, + { + "start": 25404.82, + "end": 25409.44, + "probability": 0.9388 + }, + { + "start": 25410.66, + "end": 25410.82, + "probability": 0.1907 + }, + { + "start": 25411.38, + "end": 25412.74, + "probability": 0.9836 + }, + { + "start": 25412.9, + "end": 25416.12, + "probability": 0.9943 + }, + { + "start": 25417.18, + "end": 25418.52, + "probability": 0.6368 + }, + { + "start": 25418.94, + "end": 25421.92, + "probability": 0.7229 + }, + { + "start": 25423.02, + "end": 25424.46, + "probability": 0.9946 + }, + { + "start": 25425.38, + "end": 25426.66, + "probability": 0.9552 + }, + { + "start": 25426.7, + "end": 25428.9, + "probability": 0.9664 + }, + { + "start": 25429.44, + "end": 25430.1, + "probability": 0.5107 + }, + { + "start": 25430.1, + "end": 25431.62, + "probability": 0.7499 + }, + { + "start": 25431.68, + "end": 25432.7, + "probability": 0.7945 + }, + { + "start": 25432.78, + "end": 25433.44, + "probability": 0.824 + }, + { + "start": 25433.86, + "end": 25434.46, + "probability": 0.7233 + }, + { + "start": 25434.62, + "end": 25436.89, + "probability": 0.9791 + }, + { + "start": 25437.3, + "end": 25438.2, + "probability": 0.6806 + }, + { + "start": 25438.88, + "end": 25441.12, + "probability": 0.9932 + }, + { + "start": 25441.56, + "end": 25442.37, + "probability": 0.9613 + }, + { + "start": 25442.8, + "end": 25444.84, + "probability": 0.9818 + }, + { + "start": 25445.56, + "end": 25446.06, + "probability": 0.7297 + }, + { + "start": 25446.14, + "end": 25446.5, + "probability": 0.0353 + }, + { + "start": 25446.6, + "end": 25448.24, + "probability": 0.5828 + }, + { + "start": 25448.4, + "end": 25449.3, + "probability": 0.6996 + }, + { + "start": 25449.66, + "end": 25451.28, + "probability": 0.9912 + }, + { + "start": 25451.64, + "end": 25452.88, + "probability": 0.8891 + }, + { + "start": 25452.96, + "end": 25454.12, + "probability": 0.9985 + }, + { + "start": 25455.08, + "end": 25457.58, + "probability": 0.9574 + }, + { + "start": 25457.72, + "end": 25460.1, + "probability": 0.8152 + }, + { + "start": 25460.76, + "end": 25463.06, + "probability": 0.9136 + }, + { + "start": 25463.64, + "end": 25469.0, + "probability": 0.991 + }, + { + "start": 25469.16, + "end": 25473.42, + "probability": 0.9827 + }, + { + "start": 25474.06, + "end": 25477.16, + "probability": 0.9624 + }, + { + "start": 25478.0, + "end": 25481.8, + "probability": 0.8546 + }, + { + "start": 25482.72, + "end": 25484.6, + "probability": 0.988 + }, + { + "start": 25484.6, + "end": 25486.88, + "probability": 0.9861 + }, + { + "start": 25487.94, + "end": 25490.36, + "probability": 0.985 + }, + { + "start": 25490.98, + "end": 25493.14, + "probability": 0.8787 + }, + { + "start": 25493.28, + "end": 25495.22, + "probability": 0.9488 + }, + { + "start": 25495.8, + "end": 25496.74, + "probability": 0.9181 + }, + { + "start": 25497.24, + "end": 25497.74, + "probability": 0.8721 + }, + { + "start": 25497.88, + "end": 25499.04, + "probability": 0.2054 + }, + { + "start": 25499.04, + "end": 25499.93, + "probability": 0.8389 + }, + { + "start": 25500.24, + "end": 25501.46, + "probability": 0.6592 + }, + { + "start": 25501.56, + "end": 25502.6, + "probability": 0.5844 + }, + { + "start": 25503.54, + "end": 25505.32, + "probability": 0.2183 + }, + { + "start": 25505.84, + "end": 25507.79, + "probability": 0.2356 + }, + { + "start": 25508.12, + "end": 25510.44, + "probability": 0.9453 + }, + { + "start": 25510.7, + "end": 25511.14, + "probability": 0.8865 + }, + { + "start": 25511.26, + "end": 25512.74, + "probability": 0.9393 + }, + { + "start": 25512.8, + "end": 25514.56, + "probability": 0.61 + }, + { + "start": 25515.14, + "end": 25518.76, + "probability": 0.8967 + }, + { + "start": 25519.38, + "end": 25520.4, + "probability": 0.8672 + }, + { + "start": 25520.48, + "end": 25524.7, + "probability": 0.998 + }, + { + "start": 25524.78, + "end": 25526.58, + "probability": 0.9956 + }, + { + "start": 25527.18, + "end": 25528.8, + "probability": 0.9995 + }, + { + "start": 25529.38, + "end": 25531.42, + "probability": 0.9958 + }, + { + "start": 25531.94, + "end": 25533.18, + "probability": 0.9874 + }, + { + "start": 25533.8, + "end": 25534.03, + "probability": 0.6829 + }, + { + "start": 25534.54, + "end": 25535.66, + "probability": 0.9683 + }, + { + "start": 25535.74, + "end": 25538.4, + "probability": 0.8796 + }, + { + "start": 25538.5, + "end": 25539.46, + "probability": 0.7424 + }, + { + "start": 25539.52, + "end": 25541.06, + "probability": 0.811 + }, + { + "start": 25541.52, + "end": 25542.62, + "probability": 0.8945 + }, + { + "start": 25542.82, + "end": 25543.4, + "probability": 0.9688 + }, + { + "start": 25544.18, + "end": 25545.74, + "probability": 0.8975 + }, + { + "start": 25546.3, + "end": 25549.68, + "probability": 0.9833 + }, + { + "start": 25549.98, + "end": 25552.56, + "probability": 0.787 + }, + { + "start": 25552.58, + "end": 25553.38, + "probability": 0.6339 + }, + { + "start": 25553.9, + "end": 25557.46, + "probability": 0.9417 + }, + { + "start": 25557.6, + "end": 25557.96, + "probability": 0.6748 + }, + { + "start": 25558.46, + "end": 25559.3, + "probability": 0.6191 + }, + { + "start": 25559.34, + "end": 25562.44, + "probability": 0.7325 + }, + { + "start": 25562.5, + "end": 25563.76, + "probability": 0.6957 + }, + { + "start": 25563.88, + "end": 25564.34, + "probability": 0.7192 + }, + { + "start": 25564.78, + "end": 25565.62, + "probability": 0.9148 + }, + { + "start": 25565.96, + "end": 25568.8, + "probability": 0.9937 + }, + { + "start": 25569.36, + "end": 25572.2, + "probability": 0.968 + }, + { + "start": 25572.74, + "end": 25573.3, + "probability": 0.5156 + }, + { + "start": 25573.86, + "end": 25575.45, + "probability": 0.397 + }, + { + "start": 25576.18, + "end": 25577.96, + "probability": 0.9969 + }, + { + "start": 25578.46, + "end": 25582.46, + "probability": 0.9848 + }, + { + "start": 25582.94, + "end": 25583.92, + "probability": 0.9107 + }, + { + "start": 25584.34, + "end": 25587.1, + "probability": 0.9971 + }, + { + "start": 25587.86, + "end": 25590.0, + "probability": 0.9897 + }, + { + "start": 25590.12, + "end": 25591.16, + "probability": 0.948 + }, + { + "start": 25592.06, + "end": 25593.96, + "probability": 0.7078 + }, + { + "start": 25594.82, + "end": 25598.66, + "probability": 0.91 + }, + { + "start": 25599.1, + "end": 25600.2, + "probability": 0.2747 + }, + { + "start": 25600.28, + "end": 25600.86, + "probability": 0.614 + }, + { + "start": 25601.66, + "end": 25601.8, + "probability": 0.2378 + }, + { + "start": 25602.82, + "end": 25604.88, + "probability": 0.3983 + }, + { + "start": 25619.54, + "end": 25619.54, + "probability": 0.0054 + }, + { + "start": 25619.54, + "end": 25619.54, + "probability": 0.069 + }, + { + "start": 25619.54, + "end": 25621.46, + "probability": 0.5866 + }, + { + "start": 25621.86, + "end": 25625.06, + "probability": 0.7935 + }, + { + "start": 25625.64, + "end": 25627.02, + "probability": 0.9532 + }, + { + "start": 25628.02, + "end": 25630.28, + "probability": 0.9744 + }, + { + "start": 25630.96, + "end": 25636.18, + "probability": 0.999 + }, + { + "start": 25636.82, + "end": 25637.84, + "probability": 0.6246 + }, + { + "start": 25638.56, + "end": 25641.66, + "probability": 0.9951 + }, + { + "start": 25641.76, + "end": 25642.0, + "probability": 0.3625 + }, + { + "start": 25642.12, + "end": 25644.29, + "probability": 0.8472 + }, + { + "start": 25647.18, + "end": 25647.5, + "probability": 0.3722 + }, + { + "start": 25647.5, + "end": 25647.5, + "probability": 0.2265 + }, + { + "start": 25647.5, + "end": 25647.5, + "probability": 0.1285 + }, + { + "start": 25647.5, + "end": 25647.5, + "probability": 0.1185 + }, + { + "start": 25647.5, + "end": 25650.29, + "probability": 0.3069 + }, + { + "start": 25651.1, + "end": 25652.12, + "probability": 0.9287 + }, + { + "start": 25652.28, + "end": 25654.3, + "probability": 0.9045 + }, + { + "start": 25654.62, + "end": 25655.04, + "probability": 0.1916 + }, + { + "start": 25655.18, + "end": 25657.78, + "probability": 0.6294 + }, + { + "start": 25658.96, + "end": 25664.66, + "probability": 0.9748 + }, + { + "start": 25665.76, + "end": 25671.36, + "probability": 0.9961 + }, + { + "start": 25672.46, + "end": 25673.74, + "probability": 0.8411 + }, + { + "start": 25674.36, + "end": 25675.16, + "probability": 0.9571 + }, + { + "start": 25676.0, + "end": 25678.16, + "probability": 0.8832 + }, + { + "start": 25678.86, + "end": 25680.74, + "probability": 0.9861 + }, + { + "start": 25681.66, + "end": 25685.54, + "probability": 0.973 + }, + { + "start": 25686.22, + "end": 25689.0, + "probability": 0.4808 + }, + { + "start": 25689.0, + "end": 25689.24, + "probability": 0.1852 + }, + { + "start": 25689.26, + "end": 25692.6, + "probability": 0.8378 + }, + { + "start": 25693.62, + "end": 25697.98, + "probability": 0.9347 + }, + { + "start": 25698.76, + "end": 25701.0, + "probability": 0.9907 + }, + { + "start": 25701.86, + "end": 25703.68, + "probability": 0.9788 + }, + { + "start": 25704.46, + "end": 25709.9, + "probability": 0.9794 + }, + { + "start": 25710.34, + "end": 25711.38, + "probability": 0.9085 + }, + { + "start": 25711.88, + "end": 25714.58, + "probability": 0.9705 + }, + { + "start": 25715.6, + "end": 25717.88, + "probability": 0.9421 + }, + { + "start": 25718.96, + "end": 25723.82, + "probability": 0.99 + }, + { + "start": 25724.96, + "end": 25726.18, + "probability": 0.6472 + }, + { + "start": 25727.6, + "end": 25733.16, + "probability": 0.9992 + }, + { + "start": 25733.84, + "end": 25735.76, + "probability": 0.8735 + }, + { + "start": 25736.86, + "end": 25740.64, + "probability": 0.9362 + }, + { + "start": 25741.5, + "end": 25743.98, + "probability": 0.9098 + }, + { + "start": 25744.06, + "end": 25745.09, + "probability": 0.9768 + }, + { + "start": 25746.68, + "end": 25748.2, + "probability": 0.7409 + }, + { + "start": 25748.86, + "end": 25749.3, + "probability": 0.2126 + }, + { + "start": 25749.84, + "end": 25753.7, + "probability": 0.9759 + }, + { + "start": 25754.36, + "end": 25756.98, + "probability": 0.9976 + }, + { + "start": 25757.34, + "end": 25758.88, + "probability": 0.7699 + }, + { + "start": 25759.0, + "end": 25763.2, + "probability": 0.9966 + }, + { + "start": 25763.74, + "end": 25766.16, + "probability": 0.9975 + }, + { + "start": 25767.56, + "end": 25768.54, + "probability": 0.4977 + }, + { + "start": 25768.76, + "end": 25769.82, + "probability": 0.6554 + }, + { + "start": 25770.0, + "end": 25770.14, + "probability": 0.8338 + }, + { + "start": 25770.3, + "end": 25771.06, + "probability": 0.6377 + }, + { + "start": 25771.3, + "end": 25774.22, + "probability": 0.7822 + }, + { + "start": 25774.72, + "end": 25777.1, + "probability": 0.8572 + }, + { + "start": 25777.38, + "end": 25777.64, + "probability": 0.8306 + }, + { + "start": 25777.72, + "end": 25779.28, + "probability": 0.9876 + }, + { + "start": 25780.0, + "end": 25781.78, + "probability": 0.8308 + }, + { + "start": 25782.66, + "end": 25784.32, + "probability": 0.9947 + }, + { + "start": 25784.46, + "end": 25786.16, + "probability": 0.9927 + }, + { + "start": 25786.6, + "end": 25789.46, + "probability": 0.9754 + }, + { + "start": 25790.24, + "end": 25792.88, + "probability": 0.9951 + }, + { + "start": 25793.0, + "end": 25794.58, + "probability": 0.9575 + }, + { + "start": 25795.1, + "end": 25796.34, + "probability": 0.9926 + }, + { + "start": 25797.16, + "end": 25798.44, + "probability": 0.9896 + }, + { + "start": 25800.7, + "end": 25802.36, + "probability": 0.8949 + }, + { + "start": 25802.5, + "end": 25803.24, + "probability": 0.6388 + }, + { + "start": 25803.36, + "end": 25803.96, + "probability": 0.6881 + }, + { + "start": 25804.24, + "end": 25804.74, + "probability": 0.4806 + }, + { + "start": 25804.78, + "end": 25806.0, + "probability": 0.9158 + }, + { + "start": 25806.04, + "end": 25808.32, + "probability": 0.9193 + }, + { + "start": 25809.4, + "end": 25811.38, + "probability": 0.9905 + }, + { + "start": 25811.38, + "end": 25814.22, + "probability": 0.9846 + }, + { + "start": 25814.86, + "end": 25818.94, + "probability": 0.9968 + }, + { + "start": 25819.58, + "end": 25823.18, + "probability": 0.9987 + }, + { + "start": 25823.18, + "end": 25826.94, + "probability": 0.9932 + }, + { + "start": 25827.38, + "end": 25828.72, + "probability": 0.7342 + }, + { + "start": 25829.84, + "end": 25832.98, + "probability": 0.9621 + }, + { + "start": 25833.66, + "end": 25836.76, + "probability": 0.9961 + }, + { + "start": 25837.68, + "end": 25838.78, + "probability": 0.9108 + }, + { + "start": 25839.62, + "end": 25843.68, + "probability": 0.9138 + }, + { + "start": 25844.54, + "end": 25845.58, + "probability": 0.7865 + }, + { + "start": 25846.46, + "end": 25847.26, + "probability": 0.2473 + }, + { + "start": 25848.12, + "end": 25848.7, + "probability": 0.0434 + }, + { + "start": 25849.24, + "end": 25849.24, + "probability": 0.0208 + }, + { + "start": 25850.94, + "end": 25851.82, + "probability": 0.6571 + }, + { + "start": 25852.38, + "end": 25854.1, + "probability": 0.9913 + }, + { + "start": 25855.2, + "end": 25857.98, + "probability": 0.9766 + }, + { + "start": 25859.26, + "end": 25861.5, + "probability": 0.9961 + }, + { + "start": 25861.64, + "end": 25865.3, + "probability": 0.9604 + }, + { + "start": 25865.3, + "end": 25869.72, + "probability": 0.979 + }, + { + "start": 25870.46, + "end": 25874.58, + "probability": 0.9577 + }, + { + "start": 25875.36, + "end": 25875.9, + "probability": 0.7451 + }, + { + "start": 25876.1, + "end": 25880.78, + "probability": 0.9902 + }, + { + "start": 25880.78, + "end": 25884.88, + "probability": 0.9988 + }, + { + "start": 25885.58, + "end": 25886.2, + "probability": 0.7357 + }, + { + "start": 25886.22, + "end": 25887.08, + "probability": 0.7994 + }, + { + "start": 25887.38, + "end": 25890.54, + "probability": 0.9983 + }, + { + "start": 25891.22, + "end": 25894.76, + "probability": 0.9988 + }, + { + "start": 25895.62, + "end": 25897.8, + "probability": 0.9961 + }, + { + "start": 25897.8, + "end": 25901.4, + "probability": 0.998 + }, + { + "start": 25901.92, + "end": 25905.35, + "probability": 0.9966 + }, + { + "start": 25905.76, + "end": 25910.04, + "probability": 0.9987 + }, + { + "start": 25910.96, + "end": 25915.22, + "probability": 0.9937 + }, + { + "start": 25915.32, + "end": 25915.7, + "probability": 0.7977 + }, + { + "start": 25916.26, + "end": 25916.72, + "probability": 0.3907 + }, + { + "start": 25916.84, + "end": 25919.84, + "probability": 0.8965 + }, + { + "start": 25920.98, + "end": 25923.06, + "probability": 0.9799 + }, + { + "start": 25923.54, + "end": 25927.5, + "probability": 0.9419 + }, + { + "start": 25927.68, + "end": 25929.32, + "probability": 0.9282 + }, + { + "start": 25930.08, + "end": 25931.48, + "probability": 0.8814 + }, + { + "start": 25934.6, + "end": 25936.3, + "probability": 0.5937 + }, + { + "start": 25936.36, + "end": 25937.4, + "probability": 0.8774 + }, + { + "start": 25937.96, + "end": 25937.96, + "probability": 0.7804 + }, + { + "start": 25938.32, + "end": 25938.4, + "probability": 0.0556 + }, + { + "start": 25938.4, + "end": 25938.4, + "probability": 0.4435 + }, + { + "start": 25938.4, + "end": 25940.12, + "probability": 0.9917 + }, + { + "start": 25943.6, + "end": 25945.72, + "probability": 0.0464 + }, + { + "start": 25946.84, + "end": 25947.92, + "probability": 0.0255 + }, + { + "start": 25951.54, + "end": 25953.36, + "probability": 0.5211 + }, + { + "start": 25953.5, + "end": 25953.68, + "probability": 0.387 + }, + { + "start": 25953.68, + "end": 25954.4, + "probability": 0.5378 + }, + { + "start": 25954.62, + "end": 25955.39, + "probability": 0.3389 + }, + { + "start": 25956.96, + "end": 25957.78, + "probability": 0.789 + }, + { + "start": 25958.02, + "end": 25960.03, + "probability": 0.5447 + }, + { + "start": 25960.62, + "end": 25962.16, + "probability": 0.1467 + }, + { + "start": 25962.34, + "end": 25962.86, + "probability": 0.8819 + }, + { + "start": 25963.04, + "end": 25964.86, + "probability": 0.8664 + }, + { + "start": 25965.46, + "end": 25966.3, + "probability": 0.113 + }, + { + "start": 25966.3, + "end": 25966.84, + "probability": 0.6599 + }, + { + "start": 25967.66, + "end": 25969.04, + "probability": 0.755 + }, + { + "start": 25971.7, + "end": 25973.28, + "probability": 0.9964 + }, + { + "start": 25974.96, + "end": 25975.46, + "probability": 0.803 + }, + { + "start": 25977.24, + "end": 25979.82, + "probability": 0.9913 + }, + { + "start": 25979.82, + "end": 25982.74, + "probability": 0.9951 + }, + { + "start": 25984.64, + "end": 25987.56, + "probability": 0.9302 + }, + { + "start": 25988.9, + "end": 25991.04, + "probability": 0.9829 + }, + { + "start": 25992.44, + "end": 25997.26, + "probability": 0.9935 + }, + { + "start": 25997.34, + "end": 25998.44, + "probability": 0.964 + }, + { + "start": 25999.8, + "end": 26001.9, + "probability": 0.9847 + }, + { + "start": 26003.02, + "end": 26003.82, + "probability": 0.7808 + }, + { + "start": 26004.86, + "end": 26007.0, + "probability": 0.9097 + }, + { + "start": 26008.68, + "end": 26011.72, + "probability": 0.8593 + }, + { + "start": 26013.54, + "end": 26016.22, + "probability": 0.9968 + }, + { + "start": 26017.14, + "end": 26018.42, + "probability": 0.9877 + }, + { + "start": 26019.2, + "end": 26020.44, + "probability": 0.9414 + }, + { + "start": 26021.42, + "end": 26023.28, + "probability": 0.8618 + }, + { + "start": 26024.14, + "end": 26025.64, + "probability": 0.9835 + }, + { + "start": 26026.26, + "end": 26027.4, + "probability": 0.8357 + }, + { + "start": 26028.6, + "end": 26033.5, + "probability": 0.9187 + }, + { + "start": 26034.54, + "end": 26036.2, + "probability": 0.9565 + }, + { + "start": 26037.7, + "end": 26038.38, + "probability": 0.8136 + }, + { + "start": 26039.7, + "end": 26041.78, + "probability": 0.7323 + }, + { + "start": 26043.46, + "end": 26045.82, + "probability": 0.9883 + }, + { + "start": 26046.96, + "end": 26048.6, + "probability": 0.966 + }, + { + "start": 26049.24, + "end": 26049.9, + "probability": 0.9945 + }, + { + "start": 26050.86, + "end": 26051.48, + "probability": 0.6836 + }, + { + "start": 26052.64, + "end": 26054.14, + "probability": 0.999 + }, + { + "start": 26055.36, + "end": 26059.44, + "probability": 0.997 + }, + { + "start": 26059.44, + "end": 26062.52, + "probability": 0.9209 + }, + { + "start": 26063.86, + "end": 26065.4, + "probability": 0.9279 + }, + { + "start": 26066.16, + "end": 26067.21, + "probability": 0.9062 + }, + { + "start": 26068.7, + "end": 26069.56, + "probability": 0.9118 + }, + { + "start": 26070.3, + "end": 26071.4, + "probability": 0.9847 + }, + { + "start": 26073.12, + "end": 26073.96, + "probability": 0.7664 + }, + { + "start": 26074.96, + "end": 26079.28, + "probability": 0.8911 + }, + { + "start": 26079.28, + "end": 26082.76, + "probability": 0.98 + }, + { + "start": 26084.24, + "end": 26084.78, + "probability": 0.6918 + }, + { + "start": 26086.3, + "end": 26088.28, + "probability": 0.7296 + }, + { + "start": 26089.08, + "end": 26090.62, + "probability": 0.5372 + }, + { + "start": 26092.28, + "end": 26097.02, + "probability": 0.6781 + }, + { + "start": 26098.2, + "end": 26100.68, + "probability": 0.8318 + }, + { + "start": 26101.3, + "end": 26102.7, + "probability": 0.8535 + }, + { + "start": 26104.22, + "end": 26105.54, + "probability": 0.4987 + }, + { + "start": 26106.48, + "end": 26109.76, + "probability": 0.8043 + }, + { + "start": 26110.68, + "end": 26111.06, + "probability": 0.606 + }, + { + "start": 26111.84, + "end": 26112.9, + "probability": 0.8906 + }, + { + "start": 26115.8, + "end": 26118.38, + "probability": 0.6919 + }, + { + "start": 26118.84, + "end": 26119.5, + "probability": 0.6827 + }, + { + "start": 26120.02, + "end": 26120.22, + "probability": 0.9462 + }, + { + "start": 26120.86, + "end": 26121.22, + "probability": 0.7891 + }, + { + "start": 26121.86, + "end": 26122.92, + "probability": 0.781 + }, + { + "start": 26124.24, + "end": 26124.88, + "probability": 0.3517 + }, + { + "start": 26125.82, + "end": 26126.54, + "probability": 0.208 + }, + { + "start": 26126.54, + "end": 26128.92, + "probability": 0.6561 + }, + { + "start": 26129.18, + "end": 26130.72, + "probability": 0.8702 + }, + { + "start": 26131.42, + "end": 26133.52, + "probability": 0.6685 + }, + { + "start": 26133.76, + "end": 26136.14, + "probability": 0.9906 + }, + { + "start": 26136.74, + "end": 26138.36, + "probability": 0.9993 + }, + { + "start": 26139.76, + "end": 26141.92, + "probability": 0.9842 + }, + { + "start": 26142.74, + "end": 26145.22, + "probability": 0.9918 + }, + { + "start": 26146.0, + "end": 26147.02, + "probability": 0.9067 + }, + { + "start": 26148.86, + "end": 26151.12, + "probability": 0.8225 + }, + { + "start": 26152.42, + "end": 26154.38, + "probability": 0.959 + }, + { + "start": 26156.18, + "end": 26157.22, + "probability": 0.9848 + }, + { + "start": 26158.58, + "end": 26160.6, + "probability": 0.9731 + }, + { + "start": 26161.82, + "end": 26162.56, + "probability": 0.5319 + }, + { + "start": 26162.66, + "end": 26163.04, + "probability": 0.7295 + }, + { + "start": 26163.44, + "end": 26165.14, + "probability": 0.7555 + }, + { + "start": 26167.5, + "end": 26167.86, + "probability": 0.7399 + }, + { + "start": 26168.4, + "end": 26169.52, + "probability": 0.9922 + }, + { + "start": 26171.98, + "end": 26174.16, + "probability": 0.986 + }, + { + "start": 26175.18, + "end": 26175.7, + "probability": 0.84 + }, + { + "start": 26175.78, + "end": 26177.76, + "probability": 0.604 + }, + { + "start": 26177.8, + "end": 26178.76, + "probability": 0.442 + }, + { + "start": 26178.76, + "end": 26179.46, + "probability": 0.6476 + }, + { + "start": 26180.16, + "end": 26181.66, + "probability": 0.8279 + }, + { + "start": 26182.62, + "end": 26186.46, + "probability": 0.9743 + }, + { + "start": 26186.94, + "end": 26189.8, + "probability": 0.9946 + }, + { + "start": 26190.08, + "end": 26190.32, + "probability": 0.928 + }, + { + "start": 26191.16, + "end": 26195.46, + "probability": 0.9385 + }, + { + "start": 26204.02, + "end": 26207.0, + "probability": 0.6647 + }, + { + "start": 26208.76, + "end": 26212.94, + "probability": 0.7546 + }, + { + "start": 26221.4, + "end": 26223.14, + "probability": 0.8363 + }, + { + "start": 26223.84, + "end": 26224.1, + "probability": 0.8588 + }, + { + "start": 26224.96, + "end": 26225.88, + "probability": 0.8098 + }, + { + "start": 26235.44, + "end": 26238.1, + "probability": 0.7218 + }, + { + "start": 26239.76, + "end": 26243.66, + "probability": 0.8995 + }, + { + "start": 26244.38, + "end": 26245.92, + "probability": 0.9763 + }, + { + "start": 26247.96, + "end": 26254.46, + "probability": 0.9074 + }, + { + "start": 26256.12, + "end": 26258.96, + "probability": 0.9821 + }, + { + "start": 26259.26, + "end": 26263.55, + "probability": 0.9596 + }, + { + "start": 26264.44, + "end": 26266.7, + "probability": 0.8401 + }, + { + "start": 26267.86, + "end": 26268.56, + "probability": 0.5908 + }, + { + "start": 26269.84, + "end": 26270.0, + "probability": 0.0289 + }, + { + "start": 26270.04, + "end": 26274.14, + "probability": 0.9956 + }, + { + "start": 26275.82, + "end": 26276.54, + "probability": 0.1845 + }, + { + "start": 26276.54, + "end": 26279.8, + "probability": 0.8928 + }, + { + "start": 26280.54, + "end": 26282.78, + "probability": 0.5671 + }, + { + "start": 26283.72, + "end": 26287.22, + "probability": 0.9414 + }, + { + "start": 26288.24, + "end": 26291.48, + "probability": 0.9975 + }, + { + "start": 26292.24, + "end": 26293.16, + "probability": 0.4874 + }, + { + "start": 26293.9, + "end": 26296.38, + "probability": 0.9995 + }, + { + "start": 26297.05, + "end": 26298.36, + "probability": 0.9869 + }, + { + "start": 26299.46, + "end": 26302.14, + "probability": 0.7209 + }, + { + "start": 26302.74, + "end": 26305.9, + "probability": 0.948 + }, + { + "start": 26306.4, + "end": 26308.16, + "probability": 0.9995 + }, + { + "start": 26309.38, + "end": 26313.34, + "probability": 0.9989 + }, + { + "start": 26313.86, + "end": 26317.4, + "probability": 0.8916 + }, + { + "start": 26318.72, + "end": 26319.84, + "probability": 0.8805 + }, + { + "start": 26320.96, + "end": 26323.54, + "probability": 0.4006 + }, + { + "start": 26323.54, + "end": 26323.61, + "probability": 0.3723 + }, + { + "start": 26326.68, + "end": 26333.42, + "probability": 0.7534 + }, + { + "start": 26333.96, + "end": 26335.6, + "probability": 0.7389 + }, + { + "start": 26336.12, + "end": 26337.36, + "probability": 0.9821 + }, + { + "start": 26338.14, + "end": 26338.56, + "probability": 0.8683 + }, + { + "start": 26340.0, + "end": 26346.84, + "probability": 0.986 + }, + { + "start": 26347.84, + "end": 26348.63, + "probability": 0.9979 + }, + { + "start": 26349.66, + "end": 26351.4, + "probability": 0.9269 + }, + { + "start": 26351.72, + "end": 26353.18, + "probability": 0.69 + }, + { + "start": 26354.44, + "end": 26354.8, + "probability": 0.1845 + }, + { + "start": 26354.8, + "end": 26355.02, + "probability": 0.6415 + }, + { + "start": 26356.28, + "end": 26356.28, + "probability": 0.254 + }, + { + "start": 26356.28, + "end": 26357.01, + "probability": 0.7001 + }, + { + "start": 26358.52, + "end": 26358.64, + "probability": 0.6391 + }, + { + "start": 26358.64, + "end": 26359.2, + "probability": 0.4563 + }, + { + "start": 26362.0, + "end": 26362.5, + "probability": 0.513 + }, + { + "start": 26364.06, + "end": 26366.14, + "probability": 0.0766 + }, + { + "start": 26366.14, + "end": 26366.14, + "probability": 0.2711 + }, + { + "start": 26366.14, + "end": 26368.24, + "probability": 0.3689 + }, + { + "start": 26368.34, + "end": 26368.41, + "probability": 0.3913 + }, + { + "start": 26368.5, + "end": 26373.32, + "probability": 0.84 + }, + { + "start": 26373.72, + "end": 26375.36, + "probability": 0.9916 + }, + { + "start": 26375.38, + "end": 26376.54, + "probability": 0.7133 + }, + { + "start": 26377.12, + "end": 26377.12, + "probability": 0.4576 + }, + { + "start": 26377.12, + "end": 26377.24, + "probability": 0.5647 + }, + { + "start": 26377.24, + "end": 26378.34, + "probability": 0.2425 + }, + { + "start": 26378.5, + "end": 26379.34, + "probability": 0.5731 + }, + { + "start": 26379.64, + "end": 26380.93, + "probability": 0.7712 + }, + { + "start": 26384.35, + "end": 26386.9, + "probability": 0.5556 + }, + { + "start": 26387.0, + "end": 26389.5, + "probability": 0.9504 + }, + { + "start": 26389.66, + "end": 26392.2, + "probability": 0.4908 + }, + { + "start": 26392.28, + "end": 26392.44, + "probability": 0.6886 + }, + { + "start": 26392.44, + "end": 26393.14, + "probability": 0.6614 + }, + { + "start": 26393.4, + "end": 26395.32, + "probability": 0.9774 + }, + { + "start": 26395.34, + "end": 26395.98, + "probability": 0.424 + }, + { + "start": 26396.12, + "end": 26397.96, + "probability": 0.4323 + }, + { + "start": 26398.28, + "end": 26399.24, + "probability": 0.6246 + }, + { + "start": 26399.48, + "end": 26400.08, + "probability": 0.1549 + }, + { + "start": 26400.46, + "end": 26404.56, + "probability": 0.9077 + }, + { + "start": 26404.56, + "end": 26405.16, + "probability": 0.4284 + }, + { + "start": 26405.36, + "end": 26406.4, + "probability": 0.5286 + }, + { + "start": 26406.56, + "end": 26408.86, + "probability": 0.1033 + }, + { + "start": 26408.86, + "end": 26409.0, + "probability": 0.2171 + }, + { + "start": 26409.0, + "end": 26409.84, + "probability": 0.5549 + }, + { + "start": 26410.26, + "end": 26414.56, + "probability": 0.8625 + }, + { + "start": 26415.92, + "end": 26419.8, + "probability": 0.9976 + }, + { + "start": 26420.4, + "end": 26421.24, + "probability": 0.7173 + }, + { + "start": 26422.14, + "end": 26427.36, + "probability": 0.9213 + }, + { + "start": 26427.84, + "end": 26427.86, + "probability": 0.2021 + }, + { + "start": 26427.86, + "end": 26429.44, + "probability": 0.9215 + }, + { + "start": 26431.1, + "end": 26433.98, + "probability": 0.0445 + }, + { + "start": 26433.98, + "end": 26435.16, + "probability": 0.422 + }, + { + "start": 26435.98, + "end": 26439.14, + "probability": 0.8632 + }, + { + "start": 26440.89, + "end": 26446.68, + "probability": 0.8812 + }, + { + "start": 26447.04, + "end": 26447.64, + "probability": 0.662 + }, + { + "start": 26447.74, + "end": 26452.95, + "probability": 0.9297 + }, + { + "start": 26453.68, + "end": 26454.32, + "probability": 0.7759 + }, + { + "start": 26454.4, + "end": 26455.26, + "probability": 0.7059 + }, + { + "start": 26455.34, + "end": 26457.38, + "probability": 0.8175 + }, + { + "start": 26458.2, + "end": 26461.9, + "probability": 0.98 + }, + { + "start": 26462.84, + "end": 26464.26, + "probability": 0.8266 + }, + { + "start": 26464.4, + "end": 26467.98, + "probability": 0.9829 + }, + { + "start": 26468.58, + "end": 26474.5, + "probability": 0.8828 + }, + { + "start": 26475.42, + "end": 26478.78, + "probability": 0.909 + }, + { + "start": 26479.5, + "end": 26484.02, + "probability": 0.92 + }, + { + "start": 26484.56, + "end": 26488.05, + "probability": 0.98 + }, + { + "start": 26488.2, + "end": 26488.78, + "probability": 0.4205 + }, + { + "start": 26488.98, + "end": 26489.9, + "probability": 0.9526 + }, + { + "start": 26490.18, + "end": 26493.6, + "probability": 0.9966 + }, + { + "start": 26494.0, + "end": 26495.24, + "probability": 0.7792 + }, + { + "start": 26495.62, + "end": 26496.7, + "probability": 0.9692 + }, + { + "start": 26496.76, + "end": 26498.18, + "probability": 0.8662 + }, + { + "start": 26498.54, + "end": 26498.76, + "probability": 0.5161 + }, + { + "start": 26498.9, + "end": 26500.86, + "probability": 0.8315 + }, + { + "start": 26501.32, + "end": 26502.16, + "probability": 0.7173 + }, + { + "start": 26502.26, + "end": 26504.22, + "probability": 0.8509 + }, + { + "start": 26504.48, + "end": 26506.1, + "probability": 0.4666 + }, + { + "start": 26506.26, + "end": 26506.26, + "probability": 0.8516 + }, + { + "start": 26506.26, + "end": 26507.12, + "probability": 0.765 + }, + { + "start": 26507.2, + "end": 26508.27, + "probability": 0.499 + }, + { + "start": 26508.86, + "end": 26512.27, + "probability": 0.9529 + }, + { + "start": 26512.74, + "end": 26515.18, + "probability": 0.9259 + }, + { + "start": 26515.66, + "end": 26517.16, + "probability": 0.8375 + }, + { + "start": 26517.56, + "end": 26518.56, + "probability": 0.8466 + }, + { + "start": 26518.62, + "end": 26521.18, + "probability": 0.9746 + }, + { + "start": 26521.24, + "end": 26521.46, + "probability": 0.6467 + }, + { + "start": 26521.72, + "end": 26526.8, + "probability": 0.9912 + }, + { + "start": 26527.5, + "end": 26528.9, + "probability": 0.9351 + }, + { + "start": 26529.1, + "end": 26530.1, + "probability": 0.7908 + }, + { + "start": 26530.16, + "end": 26531.38, + "probability": 0.9297 + }, + { + "start": 26531.66, + "end": 26532.48, + "probability": 0.9824 + }, + { + "start": 26532.58, + "end": 26533.46, + "probability": 0.9583 + }, + { + "start": 26533.48, + "end": 26534.07, + "probability": 0.9167 + }, + { + "start": 26534.88, + "end": 26537.58, + "probability": 0.9058 + }, + { + "start": 26537.9, + "end": 26538.88, + "probability": 0.6788 + }, + { + "start": 26539.16, + "end": 26541.7, + "probability": 0.8485 + }, + { + "start": 26542.22, + "end": 26545.0, + "probability": 0.9687 + }, + { + "start": 26547.82, + "end": 26549.0, + "probability": 0.9411 + }, + { + "start": 26549.52, + "end": 26553.18, + "probability": 0.8359 + }, + { + "start": 26553.84, + "end": 26557.11, + "probability": 0.9079 + }, + { + "start": 26557.78, + "end": 26560.02, + "probability": 0.9824 + }, + { + "start": 26560.64, + "end": 26563.88, + "probability": 0.9614 + }, + { + "start": 26564.34, + "end": 26565.84, + "probability": 0.1768 + }, + { + "start": 26566.14, + "end": 26567.6, + "probability": 0.4293 + }, + { + "start": 26567.6, + "end": 26568.92, + "probability": 0.4782 + }, + { + "start": 26569.2, + "end": 26570.08, + "probability": 0.9224 + }, + { + "start": 26570.12, + "end": 26571.92, + "probability": 0.7886 + }, + { + "start": 26573.28, + "end": 26574.44, + "probability": 0.1792 + }, + { + "start": 26575.17, + "end": 26576.5, + "probability": 0.1888 + }, + { + "start": 26576.5, + "end": 26576.5, + "probability": 0.0622 + }, + { + "start": 26576.5, + "end": 26576.5, + "probability": 0.2521 + }, + { + "start": 26576.5, + "end": 26577.68, + "probability": 0.042 + }, + { + "start": 26577.68, + "end": 26578.56, + "probability": 0.5608 + }, + { + "start": 26579.68, + "end": 26580.02, + "probability": 0.2819 + }, + { + "start": 26580.9, + "end": 26581.3, + "probability": 0.2876 + }, + { + "start": 26581.32, + "end": 26583.28, + "probability": 0.343 + }, + { + "start": 26584.48, + "end": 26584.48, + "probability": 0.4535 + }, + { + "start": 26584.48, + "end": 26587.84, + "probability": 0.3176 + }, + { + "start": 26588.12, + "end": 26588.56, + "probability": 0.0715 + }, + { + "start": 26588.56, + "end": 26590.31, + "probability": 0.6056 + }, + { + "start": 26590.68, + "end": 26591.06, + "probability": 0.3522 + }, + { + "start": 26591.26, + "end": 26591.42, + "probability": 0.3281 + }, + { + "start": 26591.46, + "end": 26591.58, + "probability": 0.2712 + }, + { + "start": 26591.58, + "end": 26591.58, + "probability": 0.2068 + }, + { + "start": 26591.58, + "end": 26596.46, + "probability": 0.9204 + }, + { + "start": 26596.62, + "end": 26599.36, + "probability": 0.5969 + }, + { + "start": 26599.84, + "end": 26601.64, + "probability": 0.6286 + }, + { + "start": 26601.72, + "end": 26602.02, + "probability": 0.7776 + }, + { + "start": 26602.2, + "end": 26602.2, + "probability": 0.0565 + }, + { + "start": 26602.24, + "end": 26602.24, + "probability": 0.2262 + }, + { + "start": 26602.24, + "end": 26602.26, + "probability": 0.0775 + }, + { + "start": 26602.26, + "end": 26602.26, + "probability": 0.1251 + }, + { + "start": 26602.26, + "end": 26602.68, + "probability": 0.1549 + }, + { + "start": 26602.92, + "end": 26612.4, + "probability": 0.7932 + }, + { + "start": 26612.4, + "end": 26613.8, + "probability": 0.6057 + }, + { + "start": 26614.92, + "end": 26615.7, + "probability": 0.7287 + }, + { + "start": 26615.92, + "end": 26619.08, + "probability": 0.3949 + }, + { + "start": 26619.24, + "end": 26619.94, + "probability": 0.1298 + }, + { + "start": 26619.94, + "end": 26620.52, + "probability": 0.3725 + }, + { + "start": 26620.6, + "end": 26620.76, + "probability": 0.0157 + }, + { + "start": 26622.62, + "end": 26623.66, + "probability": 0.0665 + }, + { + "start": 26623.66, + "end": 26625.6, + "probability": 0.3171 + }, + { + "start": 26625.8, + "end": 26627.34, + "probability": 0.6194 + }, + { + "start": 26627.42, + "end": 26628.86, + "probability": 0.1774 + }, + { + "start": 26629.94, + "end": 26634.58, + "probability": 0.2439 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.0, + "end": 26747.0, + "probability": 0.0 + }, + { + "start": 26747.53, + "end": 26749.48, + "probability": 0.8309 + }, + { + "start": 26750.32, + "end": 26754.48, + "probability": 0.9965 + }, + { + "start": 26754.48, + "end": 26761.04, + "probability": 0.9822 + }, + { + "start": 26761.24, + "end": 26764.36, + "probability": 0.9635 + }, + { + "start": 26765.36, + "end": 26768.0, + "probability": 0.9961 + }, + { + "start": 26768.58, + "end": 26774.66, + "probability": 0.9941 + }, + { + "start": 26775.48, + "end": 26776.84, + "probability": 0.801 + }, + { + "start": 26777.66, + "end": 26783.88, + "probability": 0.9943 + }, + { + "start": 26785.24, + "end": 26787.42, + "probability": 0.8555 + }, + { + "start": 26789.18, + "end": 26793.46, + "probability": 0.7444 + }, + { + "start": 26794.26, + "end": 26798.04, + "probability": 0.6678 + }, + { + "start": 26798.43, + "end": 26802.05, + "probability": 0.915 + }, + { + "start": 26803.04, + "end": 26806.4, + "probability": 0.9888 + }, + { + "start": 26806.54, + "end": 26807.92, + "probability": 0.9967 + }, + { + "start": 26808.54, + "end": 26815.0, + "probability": 0.7601 + }, + { + "start": 26815.18, + "end": 26816.5, + "probability": 0.8586 + }, + { + "start": 26816.94, + "end": 26819.18, + "probability": 0.9949 + }, + { + "start": 26819.4, + "end": 26821.25, + "probability": 0.9443 + }, + { + "start": 26822.02, + "end": 26822.76, + "probability": 0.944 + }, + { + "start": 26822.86, + "end": 26826.86, + "probability": 0.9978 + }, + { + "start": 26827.38, + "end": 26828.38, + "probability": 0.8929 + }, + { + "start": 26828.82, + "end": 26832.02, + "probability": 0.9905 + }, + { + "start": 26832.52, + "end": 26834.2, + "probability": 0.6948 + }, + { + "start": 26834.36, + "end": 26836.4, + "probability": 0.9878 + }, + { + "start": 26836.82, + "end": 26837.9, + "probability": 0.7746 + }, + { + "start": 26838.02, + "end": 26838.46, + "probability": 0.9414 + }, + { + "start": 26839.38, + "end": 26841.08, + "probability": 0.9653 + }, + { + "start": 26842.7, + "end": 26846.48, + "probability": 0.9966 + }, + { + "start": 26847.08, + "end": 26850.0, + "probability": 0.9489 + }, + { + "start": 26850.7, + "end": 26853.88, + "probability": 0.9836 + }, + { + "start": 26853.88, + "end": 26859.5, + "probability": 0.9951 + }, + { + "start": 26860.4, + "end": 26861.05, + "probability": 0.4554 + }, + { + "start": 26861.68, + "end": 26864.94, + "probability": 0.9535 + }, + { + "start": 26865.44, + "end": 26871.0, + "probability": 0.978 + }, + { + "start": 26871.72, + "end": 26878.68, + "probability": 0.7881 + }, + { + "start": 26879.26, + "end": 26881.38, + "probability": 0.9886 + }, + { + "start": 26882.14, + "end": 26884.46, + "probability": 0.7724 + }, + { + "start": 26885.0, + "end": 26888.9, + "probability": 0.9764 + }, + { + "start": 26889.84, + "end": 26890.62, + "probability": 0.7268 + }, + { + "start": 26891.0, + "end": 26891.96, + "probability": 0.4958 + }, + { + "start": 26892.1, + "end": 26895.14, + "probability": 0.5237 + }, + { + "start": 26895.6, + "end": 26897.06, + "probability": 0.8011 + }, + { + "start": 26897.1, + "end": 26898.08, + "probability": 0.8245 + }, + { + "start": 26898.88, + "end": 26901.22, + "probability": 0.9263 + }, + { + "start": 26902.22, + "end": 26904.76, + "probability": 0.8999 + }, + { + "start": 26905.68, + "end": 26907.8, + "probability": 0.6887 + }, + { + "start": 26907.96, + "end": 26909.0, + "probability": 0.972 + }, + { + "start": 26909.24, + "end": 26914.48, + "probability": 0.9973 + }, + { + "start": 26915.2, + "end": 26916.06, + "probability": 0.7472 + }, + { + "start": 26916.28, + "end": 26922.68, + "probability": 0.985 + }, + { + "start": 26923.18, + "end": 26928.92, + "probability": 0.9267 + }, + { + "start": 26928.92, + "end": 26936.8, + "probability": 0.9338 + }, + { + "start": 26936.94, + "end": 26937.82, + "probability": 0.5421 + }, + { + "start": 26937.9, + "end": 26938.72, + "probability": 0.9381 + }, + { + "start": 26939.44, + "end": 26942.0, + "probability": 0.9944 + }, + { + "start": 26942.4, + "end": 26942.96, + "probability": 0.7563 + }, + { + "start": 26943.08, + "end": 26944.12, + "probability": 0.7103 + }, + { + "start": 26944.2, + "end": 26951.82, + "probability": 0.9727 + }, + { + "start": 26951.82, + "end": 26959.74, + "probability": 0.9328 + }, + { + "start": 26959.88, + "end": 26960.28, + "probability": 0.7398 + }, + { + "start": 26960.6, + "end": 26963.78, + "probability": 0.4778 + }, + { + "start": 26970.02, + "end": 26973.48, + "probability": 0.9904 + }, + { + "start": 26974.68, + "end": 26975.66, + "probability": 0.7253 + }, + { + "start": 26977.22, + "end": 26977.78, + "probability": 0.8581 + }, + { + "start": 26978.54, + "end": 26979.94, + "probability": 0.8043 + }, + { + "start": 26981.58, + "end": 26982.26, + "probability": 0.5796 + }, + { + "start": 26982.34, + "end": 26983.34, + "probability": 0.7139 + }, + { + "start": 26983.42, + "end": 26984.88, + "probability": 0.9441 + }, + { + "start": 26984.9, + "end": 26985.82, + "probability": 0.8886 + }, + { + "start": 26986.04, + "end": 26986.5, + "probability": 0.9841 + }, + { + "start": 26988.12, + "end": 26993.02, + "probability": 0.872 + }, + { + "start": 26993.02, + "end": 26993.58, + "probability": 0.4067 + }, + { + "start": 26994.35, + "end": 26996.46, + "probability": 0.345 + }, + { + "start": 26996.76, + "end": 26997.4, + "probability": 0.664 + }, + { + "start": 26997.5, + "end": 26997.68, + "probability": 0.845 + }, + { + "start": 26997.68, + "end": 26998.02, + "probability": 0.6486 + }, + { + "start": 26998.06, + "end": 26999.17, + "probability": 0.9719 + }, + { + "start": 26999.2, + "end": 27000.3, + "probability": 0.8984 + }, + { + "start": 27000.34, + "end": 27001.76, + "probability": 0.9932 + }, + { + "start": 27002.42, + "end": 27003.24, + "probability": 0.2445 + }, + { + "start": 27003.6, + "end": 27003.86, + "probability": 0.9077 + }, + { + "start": 27003.94, + "end": 27004.44, + "probability": 0.7101 + }, + { + "start": 27004.56, + "end": 27008.32, + "probability": 0.8964 + }, + { + "start": 27009.1, + "end": 27012.44, + "probability": 0.9775 + }, + { + "start": 27012.76, + "end": 27014.58, + "probability": 0.8893 + }, + { + "start": 27015.5, + "end": 27017.32, + "probability": 0.9975 + }, + { + "start": 27017.4, + "end": 27018.86, + "probability": 0.9263 + }, + { + "start": 27018.96, + "end": 27020.87, + "probability": 0.9961 + }, + { + "start": 27021.36, + "end": 27023.04, + "probability": 0.9756 + }, + { + "start": 27024.4, + "end": 27028.92, + "probability": 0.8492 + }, + { + "start": 27029.12, + "end": 27030.66, + "probability": 0.9128 + }, + { + "start": 27030.8, + "end": 27031.96, + "probability": 0.9432 + }, + { + "start": 27032.7, + "end": 27035.84, + "probability": 0.897 + }, + { + "start": 27036.16, + "end": 27038.48, + "probability": 0.9951 + }, + { + "start": 27038.62, + "end": 27039.16, + "probability": 0.4957 + }, + { + "start": 27039.5, + "end": 27041.36, + "probability": 0.9987 + }, + { + "start": 27042.02, + "end": 27042.86, + "probability": 0.8955 + }, + { + "start": 27043.58, + "end": 27044.48, + "probability": 0.8006 + }, + { + "start": 27044.6, + "end": 27044.88, + "probability": 0.9465 + }, + { + "start": 27045.0, + "end": 27045.94, + "probability": 0.8955 + }, + { + "start": 27046.2, + "end": 27047.04, + "probability": 0.9589 + }, + { + "start": 27047.16, + "end": 27047.46, + "probability": 0.7184 + }, + { + "start": 27048.04, + "end": 27048.94, + "probability": 0.8995 + }, + { + "start": 27049.26, + "end": 27051.34, + "probability": 0.9816 + }, + { + "start": 27052.3, + "end": 27053.5, + "probability": 0.9326 + }, + { + "start": 27053.9, + "end": 27054.72, + "probability": 0.9399 + }, + { + "start": 27055.74, + "end": 27056.48, + "probability": 0.939 + }, + { + "start": 27056.56, + "end": 27058.1, + "probability": 0.7081 + }, + { + "start": 27058.48, + "end": 27060.74, + "probability": 0.9875 + }, + { + "start": 27061.62, + "end": 27063.54, + "probability": 0.9839 + }, + { + "start": 27064.38, + "end": 27070.0, + "probability": 0.9671 + }, + { + "start": 27070.96, + "end": 27071.18, + "probability": 0.462 + }, + { + "start": 27071.26, + "end": 27072.56, + "probability": 0.917 + }, + { + "start": 27072.64, + "end": 27074.68, + "probability": 0.9866 + }, + { + "start": 27075.46, + "end": 27079.68, + "probability": 0.9482 + }, + { + "start": 27080.76, + "end": 27082.06, + "probability": 0.8977 + }, + { + "start": 27082.2, + "end": 27082.94, + "probability": 0.7467 + }, + { + "start": 27083.04, + "end": 27083.56, + "probability": 0.8829 + }, + { + "start": 27083.68, + "end": 27084.64, + "probability": 0.7211 + }, + { + "start": 27084.78, + "end": 27086.32, + "probability": 0.9849 + }, + { + "start": 27086.78, + "end": 27087.92, + "probability": 0.91 + }, + { + "start": 27088.08, + "end": 27088.66, + "probability": 0.3427 + }, + { + "start": 27089.76, + "end": 27090.4, + "probability": 0.7249 + }, + { + "start": 27091.32, + "end": 27092.4, + "probability": 0.7782 + }, + { + "start": 27093.32, + "end": 27096.24, + "probability": 0.989 + }, + { + "start": 27096.34, + "end": 27098.74, + "probability": 0.9961 + }, + { + "start": 27099.1, + "end": 27102.16, + "probability": 0.9302 + }, + { + "start": 27102.5, + "end": 27106.96, + "probability": 0.9753 + }, + { + "start": 27106.96, + "end": 27109.5, + "probability": 0.9907 + }, + { + "start": 27109.86, + "end": 27110.65, + "probability": 0.9647 + }, + { + "start": 27111.86, + "end": 27113.94, + "probability": 0.9907 + }, + { + "start": 27114.64, + "end": 27115.0, + "probability": 0.3988 + }, + { + "start": 27115.06, + "end": 27117.85, + "probability": 0.9888 + }, + { + "start": 27118.88, + "end": 27119.48, + "probability": 0.5359 + }, + { + "start": 27119.58, + "end": 27120.64, + "probability": 0.8984 + }, + { + "start": 27121.0, + "end": 27121.48, + "probability": 0.4394 + }, + { + "start": 27121.56, + "end": 27122.5, + "probability": 0.8654 + }, + { + "start": 27122.54, + "end": 27124.28, + "probability": 0.8057 + }, + { + "start": 27124.64, + "end": 27127.1, + "probability": 0.6429 + }, + { + "start": 27127.72, + "end": 27128.6, + "probability": 0.7272 + }, + { + "start": 27128.68, + "end": 27130.04, + "probability": 0.998 + }, + { + "start": 27130.5, + "end": 27131.56, + "probability": 0.9514 + }, + { + "start": 27131.72, + "end": 27132.48, + "probability": 0.9675 + }, + { + "start": 27134.1, + "end": 27135.62, + "probability": 0.9756 + }, + { + "start": 27136.76, + "end": 27138.56, + "probability": 0.9861 + }, + { + "start": 27139.26, + "end": 27139.52, + "probability": 0.3532 + }, + { + "start": 27139.54, + "end": 27141.44, + "probability": 0.6239 + }, + { + "start": 27143.48, + "end": 27144.67, + "probability": 0.9852 + }, + { + "start": 27145.34, + "end": 27147.74, + "probability": 0.9983 + }, + { + "start": 27147.74, + "end": 27151.04, + "probability": 0.8623 + }, + { + "start": 27151.58, + "end": 27152.28, + "probability": 0.3329 + }, + { + "start": 27152.4, + "end": 27154.54, + "probability": 0.7469 + }, + { + "start": 27155.18, + "end": 27158.34, + "probability": 0.8595 + }, + { + "start": 27159.02, + "end": 27160.66, + "probability": 0.9941 + }, + { + "start": 27161.34, + "end": 27161.98, + "probability": 0.8176 + }, + { + "start": 27162.52, + "end": 27164.22, + "probability": 0.9163 + }, + { + "start": 27165.06, + "end": 27165.64, + "probability": 0.6366 + }, + { + "start": 27166.34, + "end": 27170.24, + "probability": 0.9884 + }, + { + "start": 27171.28, + "end": 27174.62, + "probability": 0.9645 + }, + { + "start": 27176.1, + "end": 27176.64, + "probability": 0.6661 + }, + { + "start": 27176.66, + "end": 27180.54, + "probability": 0.991 + }, + { + "start": 27181.08, + "end": 27181.96, + "probability": 0.5508 + }, + { + "start": 27182.32, + "end": 27187.4, + "probability": 0.9498 + }, + { + "start": 27187.78, + "end": 27190.04, + "probability": 0.9438 + }, + { + "start": 27190.78, + "end": 27192.46, + "probability": 0.9707 + }, + { + "start": 27192.8, + "end": 27194.08, + "probability": 0.9839 + }, + { + "start": 27194.38, + "end": 27194.76, + "probability": 0.6794 + }, + { + "start": 27195.08, + "end": 27197.54, + "probability": 0.9321 + }, + { + "start": 27197.64, + "end": 27200.14, + "probability": 0.9561 + }, + { + "start": 27200.66, + "end": 27201.32, + "probability": 0.6889 + }, + { + "start": 27201.64, + "end": 27203.7, + "probability": 0.8916 + }, + { + "start": 27204.86, + "end": 27205.46, + "probability": 0.6013 + }, + { + "start": 27205.66, + "end": 27206.3, + "probability": 0.4199 + }, + { + "start": 27207.43, + "end": 27209.04, + "probability": 0.4366 + }, + { + "start": 27209.26, + "end": 27211.54, + "probability": 0.321 + }, + { + "start": 27212.46, + "end": 27215.88, + "probability": 0.8325 + }, + { + "start": 27217.28, + "end": 27219.42, + "probability": 0.9753 + }, + { + "start": 27219.84, + "end": 27221.12, + "probability": 0.8883 + }, + { + "start": 27221.76, + "end": 27222.44, + "probability": 0.4855 + }, + { + "start": 27223.0, + "end": 27225.64, + "probability": 0.7332 + }, + { + "start": 27225.7, + "end": 27226.38, + "probability": 0.7367 + }, + { + "start": 27226.56, + "end": 27227.64, + "probability": 0.4998 + }, + { + "start": 27228.02, + "end": 27228.96, + "probability": 0.7467 + }, + { + "start": 27229.12, + "end": 27229.68, + "probability": 0.796 + }, + { + "start": 27229.98, + "end": 27232.75, + "probability": 0.9609 + }, + { + "start": 27234.32, + "end": 27235.18, + "probability": 0.059 + }, + { + "start": 27235.6, + "end": 27240.76, + "probability": 0.1639 + }, + { + "start": 27240.76, + "end": 27241.53, + "probability": 0.0158 + }, + { + "start": 27242.2, + "end": 27243.14, + "probability": 0.3249 + }, + { + "start": 27244.18, + "end": 27244.52, + "probability": 0.5075 + }, + { + "start": 27244.72, + "end": 27246.26, + "probability": 0.7144 + }, + { + "start": 27246.52, + "end": 27248.82, + "probability": 0.9744 + }, + { + "start": 27249.3, + "end": 27253.62, + "probability": 0.9822 + }, + { + "start": 27253.7, + "end": 27260.44, + "probability": 0.9575 + }, + { + "start": 27261.22, + "end": 27263.72, + "probability": 0.8899 + }, + { + "start": 27264.5, + "end": 27267.42, + "probability": 0.968 + }, + { + "start": 27267.44, + "end": 27271.66, + "probability": 0.9146 + }, + { + "start": 27271.72, + "end": 27272.92, + "probability": 0.9164 + }, + { + "start": 27273.56, + "end": 27274.96, + "probability": 0.8732 + }, + { + "start": 27275.74, + "end": 27278.5, + "probability": 0.7774 + }, + { + "start": 27279.22, + "end": 27280.33, + "probability": 0.9932 + }, + { + "start": 27280.62, + "end": 27281.04, + "probability": 0.958 + }, + { + "start": 27281.48, + "end": 27282.3, + "probability": 0.9189 + }, + { + "start": 27282.36, + "end": 27284.9, + "probability": 0.967 + }, + { + "start": 27285.0, + "end": 27287.38, + "probability": 0.8531 + }, + { + "start": 27288.18, + "end": 27290.94, + "probability": 0.8511 + }, + { + "start": 27291.98, + "end": 27293.3, + "probability": 0.8956 + }, + { + "start": 27293.88, + "end": 27296.16, + "probability": 0.7952 + }, + { + "start": 27296.76, + "end": 27303.66, + "probability": 0.9247 + }, + { + "start": 27304.06, + "end": 27308.34, + "probability": 0.9922 + }, + { + "start": 27309.42, + "end": 27310.08, + "probability": 0.6918 + }, + { + "start": 27310.52, + "end": 27318.64, + "probability": 0.9777 + }, + { + "start": 27319.64, + "end": 27320.42, + "probability": 0.9729 + }, + { + "start": 27320.84, + "end": 27324.38, + "probability": 0.9768 + }, + { + "start": 27324.38, + "end": 27327.3, + "probability": 0.9945 + }, + { + "start": 27327.9, + "end": 27331.38, + "probability": 0.8301 + }, + { + "start": 27332.04, + "end": 27333.02, + "probability": 0.9049 + }, + { + "start": 27334.4, + "end": 27335.66, + "probability": 0.8012 + }, + { + "start": 27335.72, + "end": 27336.32, + "probability": 0.6359 + }, + { + "start": 27336.46, + "end": 27339.16, + "probability": 0.9893 + }, + { + "start": 27339.6, + "end": 27343.82, + "probability": 0.9751 + }, + { + "start": 27343.88, + "end": 27349.4, + "probability": 0.9932 + }, + { + "start": 27349.88, + "end": 27350.3, + "probability": 0.1584 + }, + { + "start": 27351.02, + "end": 27356.16, + "probability": 0.8864 + }, + { + "start": 27356.96, + "end": 27361.78, + "probability": 0.9893 + }, + { + "start": 27362.54, + "end": 27362.76, + "probability": 0.4067 + }, + { + "start": 27363.56, + "end": 27364.28, + "probability": 0.7469 + }, + { + "start": 27364.6, + "end": 27366.92, + "probability": 0.7803 + }, + { + "start": 27367.08, + "end": 27367.7, + "probability": 0.5322 + }, + { + "start": 27367.92, + "end": 27374.1, + "probability": 0.8886 + }, + { + "start": 27374.56, + "end": 27378.46, + "probability": 0.9533 + }, + { + "start": 27379.34, + "end": 27383.16, + "probability": 0.972 + }, + { + "start": 27384.16, + "end": 27385.54, + "probability": 0.8888 + }, + { + "start": 27386.18, + "end": 27386.98, + "probability": 0.5894 + }, + { + "start": 27387.54, + "end": 27389.66, + "probability": 0.8773 + }, + { + "start": 27390.02, + "end": 27391.86, + "probability": 0.924 + }, + { + "start": 27392.16, + "end": 27393.28, + "probability": 0.9357 + }, + { + "start": 27393.38, + "end": 27394.3, + "probability": 0.9868 + }, + { + "start": 27394.54, + "end": 27395.94, + "probability": 0.9402 + }, + { + "start": 27396.26, + "end": 27398.64, + "probability": 0.9505 + }, + { + "start": 27398.72, + "end": 27399.82, + "probability": 0.8597 + }, + { + "start": 27400.08, + "end": 27400.48, + "probability": 0.3098 + }, + { + "start": 27400.88, + "end": 27404.28, + "probability": 0.9122 + }, + { + "start": 27404.54, + "end": 27409.36, + "probability": 0.971 + }, + { + "start": 27409.36, + "end": 27413.0, + "probability": 0.8939 + }, + { + "start": 27413.76, + "end": 27414.8, + "probability": 0.6377 + }, + { + "start": 27415.02, + "end": 27416.12, + "probability": 0.9016 + }, + { + "start": 27416.26, + "end": 27419.86, + "probability": 0.9854 + }, + { + "start": 27419.86, + "end": 27423.15, + "probability": 0.8161 + }, + { + "start": 27423.32, + "end": 27424.64, + "probability": 0.5249 + }, + { + "start": 27425.06, + "end": 27427.04, + "probability": 0.9243 + }, + { + "start": 27427.14, + "end": 27432.6, + "probability": 0.9575 + }, + { + "start": 27432.6, + "end": 27438.0, + "probability": 0.9904 + }, + { + "start": 27438.0, + "end": 27438.74, + "probability": 0.6871 + }, + { + "start": 27439.68, + "end": 27442.58, + "probability": 0.8227 + }, + { + "start": 27443.12, + "end": 27445.62, + "probability": 0.6453 + }, + { + "start": 27446.34, + "end": 27447.3, + "probability": 0.7883 + }, + { + "start": 27447.66, + "end": 27448.02, + "probability": 0.6158 + }, + { + "start": 27448.18, + "end": 27456.82, + "probability": 0.9214 + }, + { + "start": 27460.62, + "end": 27464.5, + "probability": 0.9771 + }, + { + "start": 27464.56, + "end": 27464.96, + "probability": 0.3453 + }, + { + "start": 27465.0, + "end": 27465.06, + "probability": 0.048 + }, + { + "start": 27465.06, + "end": 27468.08, + "probability": 0.9281 + }, + { + "start": 27469.16, + "end": 27470.56, + "probability": 0.9502 + }, + { + "start": 27472.47, + "end": 27473.98, + "probability": 0.8127 + }, + { + "start": 27475.78, + "end": 27476.82, + "probability": 0.9164 + }, + { + "start": 27477.68, + "end": 27478.14, + "probability": 0.18 + }, + { + "start": 27495.76, + "end": 27498.98, + "probability": 0.5824 + }, + { + "start": 27500.72, + "end": 27501.74, + "probability": 0.6727 + }, + { + "start": 27502.92, + "end": 27503.62, + "probability": 0.6259 + }, + { + "start": 27504.26, + "end": 27507.22, + "probability": 0.5299 + }, + { + "start": 27507.78, + "end": 27510.56, + "probability": 0.9106 + }, + { + "start": 27511.74, + "end": 27516.6, + "probability": 0.744 + }, + { + "start": 27516.86, + "end": 27517.84, + "probability": 0.9432 + }, + { + "start": 27518.06, + "end": 27520.32, + "probability": 0.9683 + }, + { + "start": 27520.32, + "end": 27521.46, + "probability": 0.9546 + }, + { + "start": 27522.0, + "end": 27522.14, + "probability": 0.8826 + }, + { + "start": 27523.26, + "end": 27523.76, + "probability": 0.2086 + }, + { + "start": 27523.8, + "end": 27531.4, + "probability": 0.944 + }, + { + "start": 27532.38, + "end": 27533.2, + "probability": 0.8589 + }, + { + "start": 27534.56, + "end": 27537.66, + "probability": 0.9871 + }, + { + "start": 27538.68, + "end": 27540.32, + "probability": 0.9118 + }, + { + "start": 27545.88, + "end": 27546.36, + "probability": 0.5627 + }, + { + "start": 27549.12, + "end": 27550.44, + "probability": 0.9795 + }, + { + "start": 27552.18, + "end": 27554.04, + "probability": 0.8789 + }, + { + "start": 27554.08, + "end": 27556.38, + "probability": 0.9596 + }, + { + "start": 27557.44, + "end": 27558.86, + "probability": 0.9963 + }, + { + "start": 27560.26, + "end": 27561.34, + "probability": 0.2786 + }, + { + "start": 27561.88, + "end": 27563.54, + "probability": 0.9724 + }, + { + "start": 27564.78, + "end": 27565.44, + "probability": 0.8954 + }, + { + "start": 27566.3, + "end": 27568.26, + "probability": 0.9844 + }, + { + "start": 27569.72, + "end": 27571.76, + "probability": 0.9893 + }, + { + "start": 27573.4, + "end": 27573.88, + "probability": 0.9058 + }, + { + "start": 27574.64, + "end": 27575.48, + "probability": 0.9537 + }, + { + "start": 27576.24, + "end": 27578.0, + "probability": 0.6204 + }, + { + "start": 27579.76, + "end": 27584.72, + "probability": 0.9834 + }, + { + "start": 27585.98, + "end": 27586.47, + "probability": 0.8755 + }, + { + "start": 27589.68, + "end": 27590.7, + "probability": 0.709 + }, + { + "start": 27591.78, + "end": 27594.42, + "probability": 0.4 + }, + { + "start": 27594.58, + "end": 27595.2, + "probability": 0.581 + }, + { + "start": 27595.32, + "end": 27596.22, + "probability": 0.5292 + }, + { + "start": 27596.3, + "end": 27597.44, + "probability": 0.7516 + }, + { + "start": 27597.86, + "end": 27599.24, + "probability": 0.9646 + }, + { + "start": 27599.42, + "end": 27604.38, + "probability": 0.98 + }, + { + "start": 27604.38, + "end": 27608.8, + "probability": 0.9319 + }, + { + "start": 27608.8, + "end": 27611.38, + "probability": 0.7578 + }, + { + "start": 27612.04, + "end": 27614.72, + "probability": 0.7949 + }, + { + "start": 27615.53, + "end": 27615.6, + "probability": 0.3784 + }, + { + "start": 27615.6, + "end": 27616.62, + "probability": 0.8229 + }, + { + "start": 27617.79, + "end": 27620.02, + "probability": 0.8785 + }, + { + "start": 27620.46, + "end": 27623.1, + "probability": 0.9297 + }, + { + "start": 27624.48, + "end": 27627.82, + "probability": 0.4332 + }, + { + "start": 27627.9, + "end": 27628.84, + "probability": 0.9539 + }, + { + "start": 27629.24, + "end": 27632.32, + "probability": 0.7922 + }, + { + "start": 27633.42, + "end": 27637.1, + "probability": 0.7909 + }, + { + "start": 27637.16, + "end": 27639.28, + "probability": 0.9982 + }, + { + "start": 27640.24, + "end": 27644.96, + "probability": 0.9189 + }, + { + "start": 27645.1, + "end": 27645.86, + "probability": 0.7613 + }, + { + "start": 27645.94, + "end": 27647.68, + "probability": 0.861 + }, + { + "start": 27648.22, + "end": 27651.14, + "probability": 0.9353 + }, + { + "start": 27651.94, + "end": 27654.66, + "probability": 0.816 + }, + { + "start": 27655.8, + "end": 27657.18, + "probability": 0.8342 + }, + { + "start": 27658.3, + "end": 27662.7, + "probability": 0.9078 + }, + { + "start": 27663.46, + "end": 27665.3, + "probability": 0.9976 + }, + { + "start": 27666.52, + "end": 27668.34, + "probability": 0.9298 + }, + { + "start": 27671.58, + "end": 27676.28, + "probability": 0.378 + }, + { + "start": 27676.28, + "end": 27682.96, + "probability": 0.6516 + }, + { + "start": 27682.96, + "end": 27691.32, + "probability": 0.6615 + }, + { + "start": 27691.32, + "end": 27693.94, + "probability": 0.42 + }, + { + "start": 27694.18, + "end": 27695.72, + "probability": 0.6534 + }, + { + "start": 27696.04, + "end": 27696.84, + "probability": 0.8559 + }, + { + "start": 27698.72, + "end": 27704.24, + "probability": 0.9937 + }, + { + "start": 27704.32, + "end": 27706.12, + "probability": 0.845 + }, + { + "start": 27706.38, + "end": 27712.4, + "probability": 0.9847 + }, + { + "start": 27712.94, + "end": 27714.36, + "probability": 0.7075 + }, + { + "start": 27716.02, + "end": 27718.58, + "probability": 0.7218 + }, + { + "start": 27719.98, + "end": 27721.96, + "probability": 0.9395 + }, + { + "start": 27723.18, + "end": 27726.7, + "probability": 0.9819 + }, + { + "start": 27726.7, + "end": 27730.8, + "probability": 0.9963 + }, + { + "start": 27732.66, + "end": 27733.88, + "probability": 0.9237 + }, + { + "start": 27734.96, + "end": 27739.52, + "probability": 0.9167 + }, + { + "start": 27739.6, + "end": 27740.48, + "probability": 0.8857 + }, + { + "start": 27740.62, + "end": 27741.58, + "probability": 0.8293 + }, + { + "start": 27741.76, + "end": 27746.8, + "probability": 0.8823 + }, + { + "start": 27747.4, + "end": 27750.7, + "probability": 0.8896 + }, + { + "start": 27750.94, + "end": 27753.53, + "probability": 0.7533 + }, + { + "start": 27755.08, + "end": 27760.92, + "probability": 0.7067 + }, + { + "start": 27761.44, + "end": 27763.32, + "probability": 0.9819 + }, + { + "start": 27763.54, + "end": 27767.26, + "probability": 0.8484 + }, + { + "start": 27769.04, + "end": 27775.02, + "probability": 0.8714 + }, + { + "start": 27775.36, + "end": 27776.34, + "probability": 0.5 + }, + { + "start": 27776.5, + "end": 27780.3, + "probability": 0.9501 + }, + { + "start": 27781.56, + "end": 27785.14, + "probability": 0.9565 + }, + { + "start": 27785.78, + "end": 27788.78, + "probability": 0.5789 + }, + { + "start": 27789.88, + "end": 27791.62, + "probability": 0.9115 + }, + { + "start": 27792.86, + "end": 27799.36, + "probability": 0.9939 + }, + { + "start": 27800.2, + "end": 27804.48, + "probability": 0.9707 + }, + { + "start": 27804.82, + "end": 27806.9, + "probability": 0.9886 + }, + { + "start": 27807.3, + "end": 27809.98, + "probability": 0.9946 + }, + { + "start": 27810.12, + "end": 27811.3, + "probability": 0.6631 + }, + { + "start": 27812.18, + "end": 27813.14, + "probability": 0.6954 + }, + { + "start": 27813.56, + "end": 27818.74, + "probability": 0.8302 + }, + { + "start": 27819.32, + "end": 27820.56, + "probability": 0.8478 + }, + { + "start": 27821.78, + "end": 27824.02, + "probability": 0.9932 + }, + { + "start": 27825.96, + "end": 27827.18, + "probability": 0.7964 + }, + { + "start": 27827.88, + "end": 27830.26, + "probability": 0.9795 + }, + { + "start": 27832.54, + "end": 27835.54, + "probability": 0.831 + }, + { + "start": 27835.7, + "end": 27839.46, + "probability": 0.6661 + }, + { + "start": 27840.12, + "end": 27843.46, + "probability": 0.8049 + }, + { + "start": 27844.32, + "end": 27845.52, + "probability": 0.8566 + }, + { + "start": 27845.58, + "end": 27846.4, + "probability": 0.8645 + }, + { + "start": 27846.8, + "end": 27849.24, + "probability": 0.8764 + }, + { + "start": 27849.54, + "end": 27850.84, + "probability": 0.6746 + }, + { + "start": 27851.36, + "end": 27854.68, + "probability": 0.577 + }, + { + "start": 27856.3, + "end": 27856.88, + "probability": 0.5978 + }, + { + "start": 27858.52, + "end": 27862.84, + "probability": 0.9407 + }, + { + "start": 27862.94, + "end": 27867.16, + "probability": 0.9089 + }, + { + "start": 27867.78, + "end": 27869.74, + "probability": 0.8555 + }, + { + "start": 27870.02, + "end": 27871.54, + "probability": 0.6768 + }, + { + "start": 27872.04, + "end": 27874.46, + "probability": 0.7149 + }, + { + "start": 27874.84, + "end": 27879.4, + "probability": 0.9778 + }, + { + "start": 27880.74, + "end": 27881.48, + "probability": 0.6541 + }, + { + "start": 27883.4, + "end": 27884.24, + "probability": 0.6182 + }, + { + "start": 27885.02, + "end": 27892.73, + "probability": 0.8945 + }, + { + "start": 27894.04, + "end": 27905.5, + "probability": 0.8836 + }, + { + "start": 27906.9, + "end": 27908.12, + "probability": 0.5704 + }, + { + "start": 27910.12, + "end": 27910.94, + "probability": 0.671 + }, + { + "start": 27911.1, + "end": 27916.32, + "probability": 0.8169 + }, + { + "start": 27916.92, + "end": 27924.4, + "probability": 0.9172 + }, + { + "start": 27925.3, + "end": 27925.5, + "probability": 0.3337 + }, + { + "start": 27926.08, + "end": 27927.65, + "probability": 0.7366 + }, + { + "start": 27929.52, + "end": 27933.62, + "probability": 0.8977 + }, + { + "start": 27933.88, + "end": 27935.24, + "probability": 0.9707 + }, + { + "start": 27935.52, + "end": 27941.84, + "probability": 0.8707 + }, + { + "start": 27942.44, + "end": 27944.1, + "probability": 0.8291 + }, + { + "start": 27945.5, + "end": 27946.62, + "probability": 0.7475 + }, + { + "start": 27946.84, + "end": 27949.26, + "probability": 0.9509 + }, + { + "start": 27949.36, + "end": 27949.84, + "probability": 0.8213 + }, + { + "start": 27950.04, + "end": 27952.48, + "probability": 0.8216 + }, + { + "start": 27954.18, + "end": 27956.5, + "probability": 0.3284 + }, + { + "start": 27956.88, + "end": 27968.46, + "probability": 0.8142 + }, + { + "start": 27968.88, + "end": 27970.62, + "probability": 0.6582 + }, + { + "start": 27972.0, + "end": 27973.88, + "probability": 0.6606 + }, + { + "start": 27973.92, + "end": 27977.14, + "probability": 0.9563 + }, + { + "start": 27978.1, + "end": 27981.64, + "probability": 0.9684 + }, + { + "start": 27981.64, + "end": 27991.42, + "probability": 0.7894 + }, + { + "start": 27991.86, + "end": 27995.96, + "probability": 0.8619 + }, + { + "start": 27996.06, + "end": 27996.62, + "probability": 0.9298 + }, + { + "start": 27997.22, + "end": 28001.72, + "probability": 0.7408 + }, + { + "start": 28001.96, + "end": 28005.84, + "probability": 0.3 + }, + { + "start": 28006.22, + "end": 28012.74, + "probability": 0.927 + }, + { + "start": 28012.86, + "end": 28016.18, + "probability": 0.9738 + }, + { + "start": 28016.24, + "end": 28018.22, + "probability": 0.9148 + }, + { + "start": 28019.04, + "end": 28019.38, + "probability": 0.5217 + }, + { + "start": 28019.46, + "end": 28022.4, + "probability": 0.8041 + }, + { + "start": 28022.7, + "end": 28023.88, + "probability": 0.6209 + }, + { + "start": 28024.1, + "end": 28025.26, + "probability": 0.6235 + }, + { + "start": 28025.44, + "end": 28027.5, + "probability": 0.5805 + }, + { + "start": 28027.86, + "end": 28031.24, + "probability": 0.9841 + }, + { + "start": 28031.54, + "end": 28033.18, + "probability": 0.8701 + }, + { + "start": 28033.56, + "end": 28036.51, + "probability": 0.8234 + }, + { + "start": 28036.86, + "end": 28039.48, + "probability": 0.2483 + }, + { + "start": 28040.08, + "end": 28042.08, + "probability": 0.7166 + }, + { + "start": 28042.36, + "end": 28042.86, + "probability": 0.3449 + }, + { + "start": 28043.14, + "end": 28047.76, + "probability": 0.6411 + }, + { + "start": 28049.46, + "end": 28054.44, + "probability": 0.9954 + }, + { + "start": 28054.92, + "end": 28057.92, + "probability": 0.6555 + }, + { + "start": 28058.18, + "end": 28059.49, + "probability": 0.9186 + }, + { + "start": 28060.14, + "end": 28061.96, + "probability": 0.3973 + }, + { + "start": 28062.36, + "end": 28064.82, + "probability": 0.902 + }, + { + "start": 28065.36, + "end": 28067.72, + "probability": 0.533 + }, + { + "start": 28068.51, + "end": 28072.78, + "probability": 0.7855 + }, + { + "start": 28072.96, + "end": 28077.04, + "probability": 0.5036 + }, + { + "start": 28077.34, + "end": 28081.66, + "probability": 0.6224 + }, + { + "start": 28081.66, + "end": 28084.96, + "probability": 0.6758 + }, + { + "start": 28085.26, + "end": 28085.56, + "probability": 0.7471 + }, + { + "start": 28086.52, + "end": 28088.8, + "probability": 0.936 + }, + { + "start": 28089.1, + "end": 28090.4, + "probability": 0.0282 + }, + { + "start": 28090.8, + "end": 28092.74, + "probability": 0.8225 + }, + { + "start": 28092.98, + "end": 28096.12, + "probability": 0.9851 + }, + { + "start": 28096.24, + "end": 28097.04, + "probability": 0.6614 + }, + { + "start": 28097.88, + "end": 28101.02, + "probability": 0.9639 + }, + { + "start": 28101.54, + "end": 28105.3, + "probability": 0.9741 + }, + { + "start": 28106.18, + "end": 28107.64, + "probability": 0.8442 + }, + { + "start": 28108.38, + "end": 28114.5, + "probability": 0.9367 + }, + { + "start": 28114.84, + "end": 28116.2, + "probability": 0.5151 + }, + { + "start": 28116.38, + "end": 28117.29, + "probability": 0.3406 + }, + { + "start": 28118.02, + "end": 28119.28, + "probability": 0.4521 + }, + { + "start": 28119.4, + "end": 28123.58, + "probability": 0.3679 + }, + { + "start": 28124.24, + "end": 28124.34, + "probability": 0.0265 + }, + { + "start": 28124.34, + "end": 28125.46, + "probability": 0.802 + }, + { + "start": 28125.54, + "end": 28127.32, + "probability": 0.6277 + }, + { + "start": 28127.96, + "end": 28131.74, + "probability": 0.4547 + }, + { + "start": 28131.78, + "end": 28132.52, + "probability": 0.8721 + }, + { + "start": 28132.72, + "end": 28133.24, + "probability": 0.7004 + }, + { + "start": 28133.36, + "end": 28133.94, + "probability": 0.7943 + }, + { + "start": 28134.24, + "end": 28136.08, + "probability": 0.9273 + }, + { + "start": 28138.4, + "end": 28140.56, + "probability": 0.6351 + }, + { + "start": 28140.98, + "end": 28144.62, + "probability": 0.5612 + }, + { + "start": 28144.7, + "end": 28145.92, + "probability": 0.4189 + }, + { + "start": 28146.98, + "end": 28149.56, + "probability": 0.869 + }, + { + "start": 28149.6, + "end": 28149.72, + "probability": 0.1388 + }, + { + "start": 28152.42, + "end": 28154.16, + "probability": 0.4447 + }, + { + "start": 28154.7, + "end": 28161.26, + "probability": 0.6584 + }, + { + "start": 28161.86, + "end": 28166.96, + "probability": 0.1775 + }, + { + "start": 28167.34, + "end": 28170.66, + "probability": 0.5671 + }, + { + "start": 28171.1, + "end": 28171.56, + "probability": 0.7981 + }, + { + "start": 28171.58, + "end": 28172.08, + "probability": 0.6908 + }, + { + "start": 28172.34, + "end": 28174.12, + "probability": 0.8047 + }, + { + "start": 28174.2, + "end": 28177.16, + "probability": 0.9354 + }, + { + "start": 28177.2, + "end": 28180.36, + "probability": 0.6401 + }, + { + "start": 28181.14, + "end": 28183.2, + "probability": 0.6279 + }, + { + "start": 28184.4, + "end": 28185.92, + "probability": 0.4321 + }, + { + "start": 28186.28, + "end": 28187.32, + "probability": 0.2326 + }, + { + "start": 28194.38, + "end": 28194.98, + "probability": 0.6853 + }, + { + "start": 28196.52, + "end": 28197.08, + "probability": 0.0156 + }, + { + "start": 28198.24, + "end": 28201.16, + "probability": 0.6374 + }, + { + "start": 28201.18, + "end": 28201.76, + "probability": 0.3441 + }, + { + "start": 28202.14, + "end": 28207.76, + "probability": 0.9444 + }, + { + "start": 28208.22, + "end": 28211.34, + "probability": 0.8812 + }, + { + "start": 28212.12, + "end": 28215.48, + "probability": 0.9956 + }, + { + "start": 28216.3, + "end": 28216.88, + "probability": 0.5738 + }, + { + "start": 28217.76, + "end": 28221.14, + "probability": 0.8185 + }, + { + "start": 28222.14, + "end": 28223.3, + "probability": 0.9349 + }, + { + "start": 28230.28, + "end": 28231.44, + "probability": 0.7379 + }, + { + "start": 28231.52, + "end": 28236.26, + "probability": 0.5094 + }, + { + "start": 28236.64, + "end": 28237.44, + "probability": 0.305 + }, + { + "start": 28237.52, + "end": 28239.12, + "probability": 0.6795 + }, + { + "start": 28239.56, + "end": 28243.78, + "probability": 0.8372 + }, + { + "start": 28244.78, + "end": 28248.34, + "probability": 0.9971 + }, + { + "start": 28249.26, + "end": 28250.16, + "probability": 0.6447 + }, + { + "start": 28250.82, + "end": 28253.62, + "probability": 0.9307 + }, + { + "start": 28254.66, + "end": 28256.62, + "probability": 0.9315 + }, + { + "start": 28257.28, + "end": 28257.9, + "probability": 0.9341 + }, + { + "start": 28258.66, + "end": 28260.3, + "probability": 0.9874 + }, + { + "start": 28260.72, + "end": 28262.7, + "probability": 0.9775 + }, + { + "start": 28263.32, + "end": 28268.58, + "probability": 0.857 + }, + { + "start": 28269.66, + "end": 28272.5, + "probability": 0.947 + }, + { + "start": 28272.6, + "end": 28272.82, + "probability": 0.7612 + }, + { + "start": 28276.48, + "end": 28281.78, + "probability": 0.9854 + }, + { + "start": 28282.78, + "end": 28285.76, + "probability": 0.7789 + }, + { + "start": 28286.44, + "end": 28293.66, + "probability": 0.9432 + }, + { + "start": 28293.74, + "end": 28296.98, + "probability": 0.9949 + }, + { + "start": 28296.98, + "end": 28301.16, + "probability": 0.7838 + }, + { + "start": 28302.34, + "end": 28303.98, + "probability": 0.9915 + }, + { + "start": 28304.86, + "end": 28308.76, + "probability": 0.9909 + }, + { + "start": 28309.62, + "end": 28309.96, + "probability": 0.4034 + }, + { + "start": 28310.1, + "end": 28315.18, + "probability": 0.9832 + }, + { + "start": 28316.2, + "end": 28321.18, + "probability": 0.9725 + }, + { + "start": 28321.18, + "end": 28325.66, + "probability": 0.995 + }, + { + "start": 28326.54, + "end": 28330.02, + "probability": 0.7975 + }, + { + "start": 28330.02, + "end": 28333.78, + "probability": 0.9976 + }, + { + "start": 28334.76, + "end": 28341.14, + "probability": 0.9985 + }, + { + "start": 28342.64, + "end": 28348.92, + "probability": 0.9977 + }, + { + "start": 28348.92, + "end": 28353.82, + "probability": 0.999 + }, + { + "start": 28358.58, + "end": 28361.34, + "probability": 0.9912 + }, + { + "start": 28365.8, + "end": 28371.06, + "probability": 0.8409 + }, + { + "start": 28372.56, + "end": 28377.82, + "probability": 0.8918 + }, + { + "start": 28377.9, + "end": 28378.78, + "probability": 0.8853 + }, + { + "start": 28378.86, + "end": 28381.78, + "probability": 0.9203 + }, + { + "start": 28383.04, + "end": 28386.5, + "probability": 0.9707 + }, + { + "start": 28387.22, + "end": 28389.2, + "probability": 0.7639 + }, + { + "start": 28390.08, + "end": 28390.3, + "probability": 0.3583 + }, + { + "start": 28390.36, + "end": 28392.4, + "probability": 0.8098 + }, + { + "start": 28392.48, + "end": 28397.3, + "probability": 0.9603 + }, + { + "start": 28398.26, + "end": 28399.22, + "probability": 0.9764 + }, + { + "start": 28399.4, + "end": 28400.32, + "probability": 0.7985 + }, + { + "start": 28400.52, + "end": 28402.3, + "probability": 0.4601 + }, + { + "start": 28402.48, + "end": 28405.24, + "probability": 0.8586 + }, + { + "start": 28405.86, + "end": 28406.88, + "probability": 0.4633 + }, + { + "start": 28407.22, + "end": 28407.32, + "probability": 0.2857 + }, + { + "start": 28407.74, + "end": 28410.5, + "probability": 0.767 + }, + { + "start": 28410.52, + "end": 28411.8, + "probability": 0.9893 + }, + { + "start": 28413.5, + "end": 28415.08, + "probability": 0.6657 + }, + { + "start": 28415.14, + "end": 28415.26, + "probability": 0.5922 + }, + { + "start": 28415.28, + "end": 28416.88, + "probability": 0.9895 + }, + { + "start": 28417.34, + "end": 28420.0, + "probability": 0.9027 + }, + { + "start": 28420.58, + "end": 28423.44, + "probability": 0.746 + }, + { + "start": 28423.64, + "end": 28423.84, + "probability": 0.4854 + }, + { + "start": 28423.84, + "end": 28423.94, + "probability": 0.8035 + }, + { + "start": 28425.12, + "end": 28427.16, + "probability": 0.7726 + }, + { + "start": 28427.44, + "end": 28429.34, + "probability": 0.7589 + }, + { + "start": 28429.36, + "end": 28432.19, + "probability": 0.7223 + }, + { + "start": 28432.76, + "end": 28433.8, + "probability": 0.8104 + }, + { + "start": 28438.1, + "end": 28439.64, + "probability": 0.6789 + }, + { + "start": 28439.7, + "end": 28440.16, + "probability": 0.7256 + }, + { + "start": 28440.32, + "end": 28443.08, + "probability": 0.4515 + }, + { + "start": 28443.08, + "end": 28443.2, + "probability": 0.9341 + }, + { + "start": 28445.14, + "end": 28447.18, + "probability": 0.6081 + }, + { + "start": 28447.8, + "end": 28449.7, + "probability": 0.7275 + }, + { + "start": 28450.24, + "end": 28454.5, + "probability": 0.9262 + }, + { + "start": 28455.0, + "end": 28455.78, + "probability": 0.4601 + }, + { + "start": 28456.31, + "end": 28460.34, + "probability": 0.171 + }, + { + "start": 28460.34, + "end": 28461.65, + "probability": 0.6075 + }, + { + "start": 28462.36, + "end": 28465.48, + "probability": 0.875 + }, + { + "start": 28465.54, + "end": 28466.83, + "probability": 0.5283 + }, + { + "start": 28467.66, + "end": 28470.5, + "probability": 0.9036 + }, + { + "start": 28470.56, + "end": 28470.72, + "probability": 0.1671 + }, + { + "start": 28470.72, + "end": 28471.4, + "probability": 0.7025 + }, + { + "start": 28472.22, + "end": 28477.18, + "probability": 0.827 + }, + { + "start": 28477.78, + "end": 28479.1, + "probability": 0.7902 + }, + { + "start": 28480.32, + "end": 28483.5, + "probability": 0.898 + }, + { + "start": 28483.5, + "end": 28486.8, + "probability": 0.9642 + }, + { + "start": 28487.74, + "end": 28492.26, + "probability": 0.4898 + }, + { + "start": 28493.22, + "end": 28494.2, + "probability": 0.6712 + }, + { + "start": 28495.3, + "end": 28501.4, + "probability": 0.8929 + }, + { + "start": 28502.2, + "end": 28507.94, + "probability": 0.5737 + }, + { + "start": 28507.94, + "end": 28512.52, + "probability": 0.6322 + }, + { + "start": 28513.3, + "end": 28515.1, + "probability": 0.8954 + }, + { + "start": 28515.72, + "end": 28519.76, + "probability": 0.9304 + }, + { + "start": 28520.56, + "end": 28521.14, + "probability": 0.7862 + }, + { + "start": 28529.14, + "end": 28530.12, + "probability": 0.8345 + }, + { + "start": 28531.24, + "end": 28532.15, + "probability": 0.9984 + }, + { + "start": 28533.24, + "end": 28535.02, + "probability": 0.9977 + }, + { + "start": 28535.8, + "end": 28536.7, + "probability": 0.9553 + }, + { + "start": 28537.32, + "end": 28538.16, + "probability": 0.748 + }, + { + "start": 28539.66, + "end": 28542.58, + "probability": 0.9651 + }, + { + "start": 28543.94, + "end": 28545.65, + "probability": 0.9979 + }, + { + "start": 28545.92, + "end": 28548.3, + "probability": 0.9925 + }, + { + "start": 28548.56, + "end": 28552.66, + "probability": 0.0647 + }, + { + "start": 28552.66, + "end": 28554.58, + "probability": 0.596 + }, + { + "start": 28554.74, + "end": 28555.3, + "probability": 0.8294 + }, + { + "start": 28558.16, + "end": 28561.82, + "probability": 0.9271 + }, + { + "start": 28561.84, + "end": 28563.63, + "probability": 0.7731 + }, + { + "start": 28564.26, + "end": 28566.2, + "probability": 0.5853 + }, + { + "start": 28566.2, + "end": 28566.7, + "probability": 0.7789 + }, + { + "start": 28566.78, + "end": 28567.12, + "probability": 0.3313 + }, + { + "start": 28567.72, + "end": 28569.32, + "probability": 0.8745 + }, + { + "start": 28569.92, + "end": 28573.64, + "probability": 0.9397 + }, + { + "start": 28573.78, + "end": 28576.8, + "probability": 0.8307 + }, + { + "start": 28576.92, + "end": 28578.68, + "probability": 0.6838 + }, + { + "start": 28579.14, + "end": 28581.16, + "probability": 0.084 + }, + { + "start": 28581.5, + "end": 28582.54, + "probability": 0.7441 + }, + { + "start": 28582.54, + "end": 28588.22, + "probability": 0.9419 + }, + { + "start": 28589.04, + "end": 28589.36, + "probability": 0.0093 + }, + { + "start": 28589.36, + "end": 28593.14, + "probability": 0.7927 + }, + { + "start": 28593.92, + "end": 28594.96, + "probability": 0.8101 + }, + { + "start": 28595.04, + "end": 28600.45, + "probability": 0.8911 + }, + { + "start": 28601.2, + "end": 28603.24, + "probability": 0.6133 + }, + { + "start": 28613.36, + "end": 28617.94, + "probability": 0.9363 + }, + { + "start": 28617.94, + "end": 28617.94, + "probability": 0.0437 + }, + { + "start": 28617.94, + "end": 28617.94, + "probability": 0.1226 + }, + { + "start": 28617.94, + "end": 28618.48, + "probability": 0.3784 + }, + { + "start": 28618.7, + "end": 28621.28, + "probability": 0.9131 + }, + { + "start": 28621.9, + "end": 28622.8, + "probability": 0.6895 + }, + { + "start": 28622.94, + "end": 28626.62, + "probability": 0.8258 + }, + { + "start": 28627.04, + "end": 28628.28, + "probability": 0.8702 + }, + { + "start": 28628.34, + "end": 28629.04, + "probability": 0.9137 + }, + { + "start": 28629.38, + "end": 28631.14, + "probability": 0.6167 + }, + { + "start": 28631.24, + "end": 28633.96, + "probability": 0.9409 + }, + { + "start": 28634.04, + "end": 28634.98, + "probability": 0.9235 + }, + { + "start": 28636.0, + "end": 28637.26, + "probability": 0.9299 + }, + { + "start": 28639.92, + "end": 28642.22, + "probability": 0.5874 + }, + { + "start": 28642.76, + "end": 28646.44, + "probability": 0.8104 + }, + { + "start": 28646.82, + "end": 28650.2, + "probability": 0.9387 + }, + { + "start": 28654.0, + "end": 28654.7, + "probability": 0.4743 + }, + { + "start": 28655.34, + "end": 28659.34, + "probability": 0.8902 + }, + { + "start": 28659.42, + "end": 28660.76, + "probability": 0.7102 + }, + { + "start": 28661.12, + "end": 28662.54, + "probability": 0.4961 + }, + { + "start": 28662.82, + "end": 28663.9, + "probability": 0.8836 + }, + { + "start": 28664.34, + "end": 28666.4, + "probability": 0.6839 + }, + { + "start": 28666.7, + "end": 28671.16, + "probability": 0.9458 + }, + { + "start": 28671.48, + "end": 28672.04, + "probability": 0.5128 + }, + { + "start": 28672.86, + "end": 28674.84, + "probability": 0.9624 + }, + { + "start": 28674.88, + "end": 28676.02, + "probability": 0.9165 + }, + { + "start": 28676.06, + "end": 28676.06, + "probability": 0.1951 + }, + { + "start": 28676.16, + "end": 28676.98, + "probability": 0.639 + }, + { + "start": 28677.26, + "end": 28679.4, + "probability": 0.8716 + }, + { + "start": 28679.88, + "end": 28680.98, + "probability": 0.4608 + }, + { + "start": 28681.0, + "end": 28681.62, + "probability": 0.9163 + }, + { + "start": 28681.64, + "end": 28683.96, + "probability": 0.8174 + }, + { + "start": 28684.02, + "end": 28684.6, + "probability": 0.9275 + }, + { + "start": 28684.92, + "end": 28685.34, + "probability": 0.3251 + }, + { + "start": 28685.5, + "end": 28686.06, + "probability": 0.6448 + }, + { + "start": 28686.1, + "end": 28687.02, + "probability": 0.6911 + }, + { + "start": 28687.1, + "end": 28689.06, + "probability": 0.9927 + }, + { + "start": 28689.06, + "end": 28692.56, + "probability": 0.9937 + }, + { + "start": 28695.88, + "end": 28698.7, + "probability": 0.4682 + }, + { + "start": 28700.5, + "end": 28700.5, + "probability": 0.0312 + }, + { + "start": 28701.06, + "end": 28701.8, + "probability": 0.0154 + }, + { + "start": 28701.8, + "end": 28702.24, + "probability": 0.1765 + }, + { + "start": 28702.8, + "end": 28704.4, + "probability": 0.3942 + }, + { + "start": 28706.16, + "end": 28710.74, + "probability": 0.9758 + }, + { + "start": 28710.9, + "end": 28713.74, + "probability": 0.9596 + }, + { + "start": 28714.14, + "end": 28717.46, + "probability": 0.9254 + }, + { + "start": 28718.52, + "end": 28723.84, + "probability": 0.8412 + }, + { + "start": 28724.52, + "end": 28730.18, + "probability": 0.8512 + }, + { + "start": 28731.58, + "end": 28733.42, + "probability": 0.1916 + }, + { + "start": 28733.68, + "end": 28734.52, + "probability": 0.324 + }, + { + "start": 28734.74, + "end": 28736.64, + "probability": 0.7972 + }, + { + "start": 28736.74, + "end": 28739.62, + "probability": 0.3747 + }, + { + "start": 28740.16, + "end": 28742.02, + "probability": 0.7392 + }, + { + "start": 28742.8, + "end": 28743.86, + "probability": 0.5889 + }, + { + "start": 28743.92, + "end": 28747.5, + "probability": 0.9066 + }, + { + "start": 28747.6, + "end": 28749.78, + "probability": 0.9855 + }, + { + "start": 28750.24, + "end": 28752.56, + "probability": 0.9805 + }, + { + "start": 28752.82, + "end": 28757.24, + "probability": 0.5008 + }, + { + "start": 28757.24, + "end": 28760.24, + "probability": 0.5034 + }, + { + "start": 28760.62, + "end": 28761.28, + "probability": 0.2538 + }, + { + "start": 28761.28, + "end": 28766.04, + "probability": 0.8845 + }, + { + "start": 28766.2, + "end": 28767.46, + "probability": 0.3978 + }, + { + "start": 28767.62, + "end": 28772.0, + "probability": 0.9191 + }, + { + "start": 28772.0, + "end": 28777.18, + "probability": 0.9948 + }, + { + "start": 28777.78, + "end": 28779.92, + "probability": 0.9961 + }, + { + "start": 28780.12, + "end": 28782.32, + "probability": 0.9878 + }, + { + "start": 28783.2, + "end": 28788.64, + "probability": 0.9826 + }, + { + "start": 28789.28, + "end": 28792.14, + "probability": 0.7936 + }, + { + "start": 28792.8, + "end": 28796.28, + "probability": 0.9399 + }, + { + "start": 28796.28, + "end": 28799.6, + "probability": 0.9891 + }, + { + "start": 28799.86, + "end": 28802.12, + "probability": 0.9938 + }, + { + "start": 28802.2, + "end": 28805.4, + "probability": 0.9337 + }, + { + "start": 28805.82, + "end": 28810.56, + "probability": 0.9406 + }, + { + "start": 28810.56, + "end": 28813.88, + "probability": 0.9844 + }, + { + "start": 28814.7, + "end": 28817.86, + "probability": 0.9948 + }, + { + "start": 28818.16, + "end": 28819.6, + "probability": 0.6122 + }, + { + "start": 28820.1, + "end": 28824.36, + "probability": 0.9717 + }, + { + "start": 28824.96, + "end": 28827.88, + "probability": 0.9196 + }, + { + "start": 28828.52, + "end": 28828.96, + "probability": 0.5094 + }, + { + "start": 28829.02, + "end": 28833.06, + "probability": 0.987 + }, + { + "start": 28833.06, + "end": 28837.46, + "probability": 0.9917 + }, + { + "start": 28837.78, + "end": 28841.94, + "probability": 0.9792 + }, + { + "start": 28842.5, + "end": 28848.96, + "probability": 0.9843 + }, + { + "start": 28849.28, + "end": 28853.24, + "probability": 0.9918 + }, + { + "start": 28853.24, + "end": 28857.28, + "probability": 0.9297 + }, + { + "start": 28859.02, + "end": 28863.8, + "probability": 0.6213 + }, + { + "start": 28864.36, + "end": 28865.44, + "probability": 0.6494 + }, + { + "start": 28866.3, + "end": 28867.24, + "probability": 0.7052 + }, + { + "start": 28867.26, + "end": 28870.72, + "probability": 0.7957 + }, + { + "start": 28870.8, + "end": 28871.2, + "probability": 0.1027 + }, + { + "start": 28871.2, + "end": 28872.36, + "probability": 0.8444 + }, + { + "start": 28872.86, + "end": 28874.14, + "probability": 0.6664 + }, + { + "start": 28874.18, + "end": 28875.6, + "probability": 0.9904 + }, + { + "start": 28876.04, + "end": 28878.66, + "probability": 0.7429 + }, + { + "start": 28879.38, + "end": 28884.6, + "probability": 0.538 + }, + { + "start": 28884.6, + "end": 28888.5, + "probability": 0.9784 + }, + { + "start": 28889.3, + "end": 28892.32, + "probability": 0.8316 + }, + { + "start": 28893.52, + "end": 28893.82, + "probability": 0.001 + }, + { + "start": 28894.68, + "end": 28896.62, + "probability": 0.2049 + }, + { + "start": 28898.06, + "end": 28898.96, + "probability": 0.2837 + }, + { + "start": 28902.14, + "end": 28902.82, + "probability": 0.0412 + }, + { + "start": 28903.94, + "end": 28904.26, + "probability": 0.0511 + }, + { + "start": 28904.26, + "end": 28904.26, + "probability": 0.7869 + }, + { + "start": 28904.26, + "end": 28904.26, + "probability": 0.2142 + }, + { + "start": 28904.26, + "end": 28904.26, + "probability": 0.5217 + }, + { + "start": 28904.26, + "end": 28907.32, + "probability": 0.6575 + }, + { + "start": 28908.02, + "end": 28909.64, + "probability": 0.5762 + }, + { + "start": 28911.36, + "end": 28911.78, + "probability": 0.386 + }, + { + "start": 28912.86, + "end": 28915.14, + "probability": 0.9588 + }, + { + "start": 28915.7, + "end": 28916.38, + "probability": 0.615 + }, + { + "start": 28916.96, + "end": 28920.48, + "probability": 0.9385 + }, + { + "start": 28921.8, + "end": 28924.6, + "probability": 0.7671 + }, + { + "start": 28925.84, + "end": 28926.64, + "probability": 0.6316 + }, + { + "start": 28927.86, + "end": 28928.46, + "probability": 0.8112 + }, + { + "start": 28928.98, + "end": 28931.18, + "probability": 0.9047 + }, + { + "start": 28933.08, + "end": 28935.24, + "probability": 0.9779 + }, + { + "start": 28937.26, + "end": 28939.98, + "probability": 0.9626 + }, + { + "start": 28941.0, + "end": 28943.66, + "probability": 0.818 + }, + { + "start": 28944.22, + "end": 28948.64, + "probability": 0.9054 + }, + { + "start": 28949.48, + "end": 28953.8, + "probability": 0.927 + }, + { + "start": 28954.54, + "end": 28957.34, + "probability": 0.9642 + }, + { + "start": 28958.56, + "end": 28960.23, + "probability": 0.9842 + }, + { + "start": 28961.24, + "end": 28963.37, + "probability": 0.9923 + }, + { + "start": 28964.1, + "end": 28966.58, + "probability": 0.9976 + }, + { + "start": 28967.42, + "end": 28971.88, + "probability": 0.9733 + }, + { + "start": 28972.08, + "end": 28974.22, + "probability": 0.9722 + }, + { + "start": 28975.4, + "end": 28977.98, + "probability": 0.9422 + }, + { + "start": 28978.06, + "end": 28979.12, + "probability": 0.6106 + }, + { + "start": 28979.92, + "end": 28983.02, + "probability": 0.9351 + }, + { + "start": 28983.9, + "end": 28986.18, + "probability": 0.9381 + }, + { + "start": 28987.7, + "end": 28992.28, + "probability": 0.9848 + }, + { + "start": 28993.0, + "end": 28997.16, + "probability": 0.9452 + }, + { + "start": 28997.54, + "end": 28999.08, + "probability": 0.9329 + }, + { + "start": 28999.36, + "end": 29002.1, + "probability": 0.9634 + }, + { + "start": 29002.34, + "end": 29003.84, + "probability": 0.9608 + }, + { + "start": 29004.6, + "end": 29006.78, + "probability": 0.9326 + }, + { + "start": 29007.12, + "end": 29009.44, + "probability": 0.9695 + }, + { + "start": 29010.5, + "end": 29012.52, + "probability": 0.842 + }, + { + "start": 29013.86, + "end": 29014.86, + "probability": 0.9987 + }, + { + "start": 29016.24, + "end": 29017.7, + "probability": 0.6703 + }, + { + "start": 29017.98, + "end": 29019.06, + "probability": 0.9259 + }, + { + "start": 29019.2, + "end": 29020.66, + "probability": 0.8047 + }, + { + "start": 29021.64, + "end": 29023.58, + "probability": 0.9791 + }, + { + "start": 29024.18, + "end": 29025.34, + "probability": 0.9479 + }, + { + "start": 29027.38, + "end": 29031.02, + "probability": 0.9818 + }, + { + "start": 29031.06, + "end": 29032.42, + "probability": 0.9097 + }, + { + "start": 29032.6, + "end": 29035.22, + "probability": 0.9962 + }, + { + "start": 29036.04, + "end": 29039.38, + "probability": 0.9002 + }, + { + "start": 29039.9, + "end": 29040.64, + "probability": 0.6444 + }, + { + "start": 29041.38, + "end": 29042.36, + "probability": 0.9213 + }, + { + "start": 29042.78, + "end": 29044.1, + "probability": 0.4819 + }, + { + "start": 29044.52, + "end": 29045.68, + "probability": 0.4351 + }, + { + "start": 29046.28, + "end": 29047.24, + "probability": 0.908 + }, + { + "start": 29047.74, + "end": 29049.56, + "probability": 0.9932 + }, + { + "start": 29050.32, + "end": 29053.28, + "probability": 0.9885 + }, + { + "start": 29053.34, + "end": 29054.64, + "probability": 0.9938 + }, + { + "start": 29054.7, + "end": 29056.36, + "probability": 0.6743 + }, + { + "start": 29056.82, + "end": 29058.8, + "probability": 0.9962 + }, + { + "start": 29058.94, + "end": 29062.4, + "probability": 0.9946 + }, + { + "start": 29062.7, + "end": 29064.88, + "probability": 0.7633 + }, + { + "start": 29065.14, + "end": 29066.78, + "probability": 0.7815 + }, + { + "start": 29067.06, + "end": 29068.46, + "probability": 0.945 + }, + { + "start": 29068.94, + "end": 29070.44, + "probability": 0.7752 + }, + { + "start": 29070.44, + "end": 29073.18, + "probability": 0.726 + }, + { + "start": 29073.62, + "end": 29075.0, + "probability": 0.6794 + }, + { + "start": 29076.42, + "end": 29077.95, + "probability": 0.3957 + }, + { + "start": 29078.22, + "end": 29078.78, + "probability": 0.0375 + }, + { + "start": 29078.78, + "end": 29079.38, + "probability": 0.1091 + }, + { + "start": 29080.14, + "end": 29080.44, + "probability": 0.1063 + }, + { + "start": 29080.58, + "end": 29082.9, + "probability": 0.6531 + }, + { + "start": 29082.94, + "end": 29083.62, + "probability": 0.7472 + }, + { + "start": 29083.82, + "end": 29085.52, + "probability": 0.8469 + }, + { + "start": 29086.64, + "end": 29090.04, + "probability": 0.9974 + }, + { + "start": 29091.16, + "end": 29094.78, + "probability": 0.9694 + }, + { + "start": 29095.1, + "end": 29096.96, + "probability": 0.06 + }, + { + "start": 29096.96, + "end": 29102.12, + "probability": 0.9191 + }, + { + "start": 29102.58, + "end": 29106.18, + "probability": 0.9747 + }, + { + "start": 29106.18, + "end": 29109.76, + "probability": 0.9002 + }, + { + "start": 29110.42, + "end": 29114.1, + "probability": 0.9906 + }, + { + "start": 29114.44, + "end": 29119.6, + "probability": 0.8862 + }, + { + "start": 29119.86, + "end": 29121.96, + "probability": 0.9034 + }, + { + "start": 29122.24, + "end": 29127.48, + "probability": 0.9907 + }, + { + "start": 29127.74, + "end": 29130.87, + "probability": 0.9982 + }, + { + "start": 29131.44, + "end": 29135.64, + "probability": 0.9865 + }, + { + "start": 29135.76, + "end": 29137.08, + "probability": 0.8491 + }, + { + "start": 29137.1, + "end": 29138.1, + "probability": 0.6165 + }, + { + "start": 29139.18, + "end": 29139.2, + "probability": 0.2303 + }, + { + "start": 29139.2, + "end": 29139.3, + "probability": 0.2187 + }, + { + "start": 29139.3, + "end": 29140.85, + "probability": 0.7739 + }, + { + "start": 29141.44, + "end": 29142.94, + "probability": 0.9763 + }, + { + "start": 29143.54, + "end": 29144.54, + "probability": 0.6316 + }, + { + "start": 29145.42, + "end": 29147.12, + "probability": 0.96 + }, + { + "start": 29147.98, + "end": 29151.46, + "probability": 0.7605 + }, + { + "start": 29152.36, + "end": 29156.42, + "probability": 0.8757 + }, + { + "start": 29157.84, + "end": 29162.18, + "probability": 0.6336 + }, + { + "start": 29164.68, + "end": 29165.14, + "probability": 0.8217 + }, + { + "start": 29167.84, + "end": 29169.54, + "probability": 0.8824 + }, + { + "start": 29170.7, + "end": 29172.32, + "probability": 0.7247 + }, + { + "start": 29172.78, + "end": 29173.34, + "probability": 0.3238 + }, + { + "start": 29174.06, + "end": 29174.82, + "probability": 0.5002 + }, + { + "start": 29175.52, + "end": 29177.94, + "probability": 0.5196 + }, + { + "start": 29178.56, + "end": 29180.46, + "probability": 0.7095 + }, + { + "start": 29180.56, + "end": 29185.16, + "probability": 0.799 + }, + { + "start": 29186.56, + "end": 29192.52, + "probability": 0.708 + }, + { + "start": 29193.72, + "end": 29193.98, + "probability": 0.7856 + }, + { + "start": 29194.0, + "end": 29194.0, + "probability": 0.6955 + }, + { + "start": 29194.44, + "end": 29196.24, + "probability": 0.989 + }, + { + "start": 29196.4, + "end": 29198.68, + "probability": 0.8092 + }, + { + "start": 29199.08, + "end": 29199.8, + "probability": 0.0624 + }, + { + "start": 29200.16, + "end": 29203.42, + "probability": 0.9788 + }, + { + "start": 29204.12, + "end": 29208.58, + "probability": 0.7473 + }, + { + "start": 29209.54, + "end": 29217.28, + "probability": 0.8936 + }, + { + "start": 29217.44, + "end": 29220.03, + "probability": 0.9982 + }, + { + "start": 29220.76, + "end": 29222.3, + "probability": 0.9456 + }, + { + "start": 29222.84, + "end": 29228.24, + "probability": 0.9724 + }, + { + "start": 29228.86, + "end": 29232.14, + "probability": 0.9991 + }, + { + "start": 29232.32, + "end": 29235.22, + "probability": 0.9258 + }, + { + "start": 29235.78, + "end": 29239.26, + "probability": 0.9819 + }, + { + "start": 29239.82, + "end": 29242.92, + "probability": 0.9957 + }, + { + "start": 29243.58, + "end": 29245.2, + "probability": 0.9881 + }, + { + "start": 29245.88, + "end": 29248.44, + "probability": 0.9728 + }, + { + "start": 29249.4, + "end": 29251.76, + "probability": 0.9963 + }, + { + "start": 29251.84, + "end": 29253.54, + "probability": 0.9971 + }, + { + "start": 29254.32, + "end": 29259.12, + "probability": 0.9415 + }, + { + "start": 29259.46, + "end": 29261.28, + "probability": 0.9501 + }, + { + "start": 29261.7, + "end": 29262.48, + "probability": 0.7977 + }, + { + "start": 29262.86, + "end": 29267.06, + "probability": 0.9871 + }, + { + "start": 29267.86, + "end": 29270.66, + "probability": 0.6813 + }, + { + "start": 29270.9, + "end": 29272.38, + "probability": 0.8554 + }, + { + "start": 29272.8, + "end": 29273.98, + "probability": 0.6925 + }, + { + "start": 29274.44, + "end": 29277.52, + "probability": 0.9966 + }, + { + "start": 29277.6, + "end": 29278.72, + "probability": 0.93 + }, + { + "start": 29279.18, + "end": 29281.26, + "probability": 0.947 + }, + { + "start": 29281.72, + "end": 29284.74, + "probability": 0.8936 + }, + { + "start": 29285.68, + "end": 29289.0, + "probability": 0.8576 + }, + { + "start": 29289.52, + "end": 29292.2, + "probability": 0.9827 + }, + { + "start": 29292.56, + "end": 29293.54, + "probability": 0.5371 + }, + { + "start": 29294.08, + "end": 29295.62, + "probability": 0.8955 + }, + { + "start": 29295.98, + "end": 29297.54, + "probability": 0.8712 + }, + { + "start": 29298.34, + "end": 29298.86, + "probability": 0.7443 + }, + { + "start": 29298.88, + "end": 29299.7, + "probability": 0.9966 + }, + { + "start": 29299.84, + "end": 29301.18, + "probability": 0.9995 + }, + { + "start": 29301.84, + "end": 29303.18, + "probability": 0.975 + }, + { + "start": 29303.88, + "end": 29305.84, + "probability": 0.7722 + }, + { + "start": 29306.3, + "end": 29306.74, + "probability": 0.6249 + }, + { + "start": 29306.92, + "end": 29311.0, + "probability": 0.9878 + }, + { + "start": 29311.0, + "end": 29314.4, + "probability": 0.9966 + }, + { + "start": 29314.44, + "end": 29317.32, + "probability": 0.8315 + }, + { + "start": 29317.78, + "end": 29319.7, + "probability": 0.7982 + }, + { + "start": 29320.1, + "end": 29324.86, + "probability": 0.983 + }, + { + "start": 29325.2, + "end": 29326.48, + "probability": 0.9758 + }, + { + "start": 29326.58, + "end": 29327.94, + "probability": 0.9696 + }, + { + "start": 29328.44, + "end": 29331.1, + "probability": 0.9963 + }, + { + "start": 29331.2, + "end": 29331.68, + "probability": 0.6714 + }, + { + "start": 29332.24, + "end": 29335.02, + "probability": 0.9761 + }, + { + "start": 29335.32, + "end": 29336.54, + "probability": 0.7077 + }, + { + "start": 29336.64, + "end": 29337.6, + "probability": 0.8953 + }, + { + "start": 29337.96, + "end": 29340.2, + "probability": 0.7422 + }, + { + "start": 29340.36, + "end": 29345.3, + "probability": 0.9957 + }, + { + "start": 29345.3, + "end": 29349.92, + "probability": 0.8677 + }, + { + "start": 29349.98, + "end": 29352.68, + "probability": 0.9713 + }, + { + "start": 29353.28, + "end": 29356.8, + "probability": 0.9976 + }, + { + "start": 29356.98, + "end": 29358.6, + "probability": 0.9714 + }, + { + "start": 29359.02, + "end": 29360.98, + "probability": 0.8402 + }, + { + "start": 29361.86, + "end": 29363.77, + "probability": 0.9661 + }, + { + "start": 29364.8, + "end": 29365.46, + "probability": 0.5653 + }, + { + "start": 29365.5, + "end": 29366.94, + "probability": 0.8198 + }, + { + "start": 29367.1, + "end": 29367.7, + "probability": 0.7251 + }, + { + "start": 29367.82, + "end": 29368.88, + "probability": 0.9805 + }, + { + "start": 29368.94, + "end": 29370.41, + "probability": 0.9966 + }, + { + "start": 29371.36, + "end": 29375.66, + "probability": 0.8168 + }, + { + "start": 29375.86, + "end": 29377.3, + "probability": 0.9805 + }, + { + "start": 29377.82, + "end": 29381.66, + "probability": 0.9989 + }, + { + "start": 29382.3, + "end": 29385.7, + "probability": 0.9961 + }, + { + "start": 29385.84, + "end": 29386.96, + "probability": 0.9547 + }, + { + "start": 29387.4, + "end": 29389.16, + "probability": 0.9927 + }, + { + "start": 29389.54, + "end": 29392.76, + "probability": 0.9839 + }, + { + "start": 29392.86, + "end": 29394.44, + "probability": 0.7869 + }, + { + "start": 29395.06, + "end": 29396.04, + "probability": 0.7198 + }, + { + "start": 29396.4, + "end": 29399.1, + "probability": 0.876 + }, + { + "start": 29399.24, + "end": 29403.72, + "probability": 0.9859 + }, + { + "start": 29404.18, + "end": 29408.5, + "probability": 0.9949 + }, + { + "start": 29409.18, + "end": 29411.78, + "probability": 0.995 + }, + { + "start": 29412.18, + "end": 29413.56, + "probability": 0.9795 + }, + { + "start": 29413.9, + "end": 29415.64, + "probability": 0.9752 + }, + { + "start": 29415.96, + "end": 29420.22, + "probability": 0.9929 + }, + { + "start": 29420.96, + "end": 29421.26, + "probability": 0.2782 + }, + { + "start": 29421.88, + "end": 29424.18, + "probability": 0.9722 + }, + { + "start": 29424.5, + "end": 29426.46, + "probability": 0.8833 + }, + { + "start": 29427.32, + "end": 29429.58, + "probability": 0.6691 + }, + { + "start": 29430.48, + "end": 29432.02, + "probability": 0.8432 + }, + { + "start": 29435.34, + "end": 29436.74, + "probability": 0.8356 + }, + { + "start": 29437.36, + "end": 29438.18, + "probability": 0.8415 + }, + { + "start": 29439.36, + "end": 29439.6, + "probability": 0.7246 + }, + { + "start": 29440.38, + "end": 29444.88, + "probability": 0.7236 + }, + { + "start": 29446.54, + "end": 29448.02, + "probability": 0.6603 + }, + { + "start": 29448.02, + "end": 29450.0, + "probability": 0.6399 + }, + { + "start": 29450.28, + "end": 29451.5, + "probability": 0.893 + }, + { + "start": 29451.86, + "end": 29453.88, + "probability": 0.8706 + }, + { + "start": 29454.08, + "end": 29454.84, + "probability": 0.35 + }, + { + "start": 29454.88, + "end": 29456.92, + "probability": 0.8767 + }, + { + "start": 29457.1, + "end": 29461.18, + "probability": 0.9922 + }, + { + "start": 29461.34, + "end": 29464.3, + "probability": 0.8014 + }, + { + "start": 29464.52, + "end": 29466.18, + "probability": 0.9315 + }, + { + "start": 29466.26, + "end": 29468.16, + "probability": 0.9767 + }, + { + "start": 29468.4, + "end": 29469.62, + "probability": 0.4855 + }, + { + "start": 29470.16, + "end": 29473.06, + "probability": 0.9604 + }, + { + "start": 29473.64, + "end": 29476.29, + "probability": 0.5332 + }, + { + "start": 29476.76, + "end": 29477.34, + "probability": 0.7019 + }, + { + "start": 29477.76, + "end": 29480.66, + "probability": 0.9088 + }, + { + "start": 29481.18, + "end": 29482.76, + "probability": 0.8342 + }, + { + "start": 29482.98, + "end": 29485.74, + "probability": 0.9091 + }, + { + "start": 29486.2, + "end": 29487.62, + "probability": 0.9465 + }, + { + "start": 29487.66, + "end": 29489.24, + "probability": 0.798 + }, + { + "start": 29489.62, + "end": 29490.49, + "probability": 0.719 + }, + { + "start": 29491.0, + "end": 29492.4, + "probability": 0.9588 + }, + { + "start": 29492.54, + "end": 29494.68, + "probability": 0.9925 + }, + { + "start": 29495.16, + "end": 29498.83, + "probability": 0.7547 + }, + { + "start": 29499.68, + "end": 29500.72, + "probability": 0.6521 + }, + { + "start": 29501.32, + "end": 29503.92, + "probability": 0.7469 + }, + { + "start": 29504.36, + "end": 29505.34, + "probability": 0.7607 + }, + { + "start": 29505.4, + "end": 29506.92, + "probability": 0.8672 + }, + { + "start": 29507.26, + "end": 29508.54, + "probability": 0.9698 + }, + { + "start": 29508.64, + "end": 29509.02, + "probability": 0.8984 + }, + { + "start": 29509.58, + "end": 29511.06, + "probability": 0.9607 + }, + { + "start": 29511.64, + "end": 29512.41, + "probability": 0.8497 + }, + { + "start": 29513.12, + "end": 29521.08, + "probability": 0.9414 + }, + { + "start": 29521.5, + "end": 29521.94, + "probability": 0.8183 + }, + { + "start": 29522.66, + "end": 29524.64, + "probability": 0.7357 + }, + { + "start": 29525.2, + "end": 29528.32, + "probability": 0.5933 + }, + { + "start": 29528.88, + "end": 29530.02, + "probability": 0.7636 + }, + { + "start": 29530.08, + "end": 29532.3, + "probability": 0.9969 + }, + { + "start": 29532.54, + "end": 29533.18, + "probability": 0.5405 + }, + { + "start": 29533.24, + "end": 29533.64, + "probability": 0.6997 + }, + { + "start": 29533.68, + "end": 29534.31, + "probability": 0.885 + }, + { + "start": 29534.88, + "end": 29537.42, + "probability": 0.9746 + }, + { + "start": 29538.02, + "end": 29538.96, + "probability": 0.7749 + }, + { + "start": 29539.68, + "end": 29540.66, + "probability": 0.9539 + }, + { + "start": 29541.46, + "end": 29546.3, + "probability": 0.9778 + }, + { + "start": 29546.72, + "end": 29548.78, + "probability": 0.9597 + }, + { + "start": 29548.88, + "end": 29552.88, + "probability": 0.872 + }, + { + "start": 29553.52, + "end": 29554.8, + "probability": 0.881 + }, + { + "start": 29555.04, + "end": 29558.32, + "probability": 0.8694 + }, + { + "start": 29558.76, + "end": 29561.96, + "probability": 0.9541 + }, + { + "start": 29562.28, + "end": 29563.48, + "probability": 0.8105 + }, + { + "start": 29563.98, + "end": 29566.54, + "probability": 0.9924 + }, + { + "start": 29566.88, + "end": 29567.6, + "probability": 0.8764 + }, + { + "start": 29567.72, + "end": 29573.32, + "probability": 0.8676 + }, + { + "start": 29573.56, + "end": 29576.76, + "probability": 0.9516 + }, + { + "start": 29577.72, + "end": 29582.2, + "probability": 0.985 + }, + { + "start": 29582.2, + "end": 29585.68, + "probability": 0.989 + }, + { + "start": 29586.52, + "end": 29591.5, + "probability": 0.9971 + }, + { + "start": 29592.06, + "end": 29596.42, + "probability": 0.9966 + }, + { + "start": 29596.78, + "end": 29597.0, + "probability": 0.4965 + }, + { + "start": 29597.2, + "end": 29598.73, + "probability": 0.9989 + }, + { + "start": 29598.82, + "end": 29600.2, + "probability": 0.8214 + }, + { + "start": 29600.88, + "end": 29601.7, + "probability": 0.7085 + }, + { + "start": 29601.84, + "end": 29603.8, + "probability": 0.9567 + }, + { + "start": 29603.92, + "end": 29604.92, + "probability": 0.8418 + }, + { + "start": 29605.0, + "end": 29606.11, + "probability": 0.9366 + }, + { + "start": 29606.6, + "end": 29609.96, + "probability": 0.9595 + }, + { + "start": 29610.66, + "end": 29615.32, + "probability": 0.9697 + }, + { + "start": 29615.42, + "end": 29616.52, + "probability": 0.5418 + }, + { + "start": 29617.12, + "end": 29618.57, + "probability": 0.939 + }, + { + "start": 29618.7, + "end": 29619.72, + "probability": 0.6898 + }, + { + "start": 29620.02, + "end": 29623.4, + "probability": 0.9657 + }, + { + "start": 29624.02, + "end": 29626.72, + "probability": 0.9966 + }, + { + "start": 29626.92, + "end": 29630.04, + "probability": 0.9692 + }, + { + "start": 29630.46, + "end": 29631.48, + "probability": 0.9424 + }, + { + "start": 29632.22, + "end": 29632.94, + "probability": 0.4987 + }, + { + "start": 29632.94, + "end": 29634.36, + "probability": 0.7063 + }, + { + "start": 29634.4, + "end": 29638.12, + "probability": 0.9775 + }, + { + "start": 29638.7, + "end": 29642.16, + "probability": 0.9774 + }, + { + "start": 29642.58, + "end": 29646.42, + "probability": 0.991 + }, + { + "start": 29646.58, + "end": 29647.28, + "probability": 0.8338 + }, + { + "start": 29647.4, + "end": 29648.28, + "probability": 0.827 + }, + { + "start": 29648.76, + "end": 29649.02, + "probability": 0.8014 + }, + { + "start": 29649.08, + "end": 29649.4, + "probability": 0.8051 + }, + { + "start": 29649.62, + "end": 29652.62, + "probability": 0.9409 + }, + { + "start": 29652.66, + "end": 29653.0, + "probability": 0.305 + }, + { + "start": 29653.22, + "end": 29653.84, + "probability": 0.101 + }, + { + "start": 29654.28, + "end": 29655.24, + "probability": 0.5678 + }, + { + "start": 29656.3, + "end": 29658.82, + "probability": 0.7564 + }, + { + "start": 29659.28, + "end": 29662.2, + "probability": 0.9628 + }, + { + "start": 29662.4, + "end": 29664.78, + "probability": 0.8726 + }, + { + "start": 29665.2, + "end": 29665.74, + "probability": 0.8754 + }, + { + "start": 29666.06, + "end": 29668.7, + "probability": 0.9663 + }, + { + "start": 29668.94, + "end": 29672.3, + "probability": 0.7425 + }, + { + "start": 29672.32, + "end": 29672.62, + "probability": 0.7513 + }, + { + "start": 29672.78, + "end": 29675.6, + "probability": 0.736 + }, + { + "start": 29676.0, + "end": 29679.32, + "probability": 0.8845 + }, + { + "start": 29680.48, + "end": 29682.36, + "probability": 0.9978 + }, + { + "start": 29682.92, + "end": 29685.16, + "probability": 0.673 + }, + { + "start": 29685.46, + "end": 29686.2, + "probability": 0.637 + }, + { + "start": 29687.04, + "end": 29691.44, + "probability": 0.0866 + }, + { + "start": 29691.44, + "end": 29691.46, + "probability": 0.0914 + }, + { + "start": 29691.46, + "end": 29692.44, + "probability": 0.4362 + }, + { + "start": 29695.46, + "end": 29698.16, + "probability": 0.5396 + }, + { + "start": 29698.26, + "end": 29699.64, + "probability": 0.9495 + }, + { + "start": 29700.44, + "end": 29703.18, + "probability": 0.9939 + }, + { + "start": 29703.4, + "end": 29705.18, + "probability": 0.6984 + }, + { + "start": 29705.76, + "end": 29706.48, + "probability": 0.916 + }, + { + "start": 29706.8, + "end": 29709.72, + "probability": 0.1244 + }, + { + "start": 29710.38, + "end": 29713.2, + "probability": 0.5892 + }, + { + "start": 29713.44, + "end": 29714.53, + "probability": 0.7129 + }, + { + "start": 29715.2, + "end": 29715.54, + "probability": 0.9204 + }, + { + "start": 29715.54, + "end": 29716.1, + "probability": 0.2772 + }, + { + "start": 29716.26, + "end": 29716.26, + "probability": 0.0016 + }, + { + "start": 29716.26, + "end": 29717.88, + "probability": 0.7446 + }, + { + "start": 29717.94, + "end": 29719.84, + "probability": 0.9029 + }, + { + "start": 29720.22, + "end": 29721.14, + "probability": 0.3014 + }, + { + "start": 29722.64, + "end": 29724.44, + "probability": 0.8707 + }, + { + "start": 29727.14, + "end": 29729.24, + "probability": 0.6767 + }, + { + "start": 29729.42, + "end": 29730.7, + "probability": 0.7596 + }, + { + "start": 29730.7, + "end": 29731.5, + "probability": 0.6627 + }, + { + "start": 29731.66, + "end": 29732.34, + "probability": 0.6276 + }, + { + "start": 29732.94, + "end": 29737.44, + "probability": 0.4223 + }, + { + "start": 29737.72, + "end": 29738.3, + "probability": 0.3506 + }, + { + "start": 29738.36, + "end": 29739.26, + "probability": 0.9771 + }, + { + "start": 29739.26, + "end": 29742.78, + "probability": 0.8147 + }, + { + "start": 29742.9, + "end": 29744.41, + "probability": 0.8645 + }, + { + "start": 29744.74, + "end": 29746.23, + "probability": 0.9468 + }, + { + "start": 29746.46, + "end": 29748.92, + "probability": 0.7457 + }, + { + "start": 29749.38, + "end": 29750.74, + "probability": 0.9579 + }, + { + "start": 29750.8, + "end": 29751.92, + "probability": 0.8289 + }, + { + "start": 29751.92, + "end": 29751.99, + "probability": 0.7264 + }, + { + "start": 29753.06, + "end": 29754.94, + "probability": 0.7397 + }, + { + "start": 29754.94, + "end": 29755.94, + "probability": 0.5151 + }, + { + "start": 29756.02, + "end": 29757.44, + "probability": 0.9515 + }, + { + "start": 29757.98, + "end": 29758.92, + "probability": 0.9517 + }, + { + "start": 29759.54, + "end": 29761.02, + "probability": 0.7732 + }, + { + "start": 29761.54, + "end": 29764.42, + "probability": 0.6029 + }, + { + "start": 29764.74, + "end": 29765.72, + "probability": 0.6982 + }, + { + "start": 29765.78, + "end": 29766.64, + "probability": 0.5973 + }, + { + "start": 29766.76, + "end": 29767.08, + "probability": 0.3832 + }, + { + "start": 29767.18, + "end": 29768.08, + "probability": 0.3947 + }, + { + "start": 29768.76, + "end": 29772.02, + "probability": 0.8932 + }, + { + "start": 29772.56, + "end": 29773.76, + "probability": 0.8999 + }, + { + "start": 29774.08, + "end": 29777.82, + "probability": 0.9844 + }, + { + "start": 29778.26, + "end": 29780.94, + "probability": 0.7115 + }, + { + "start": 29782.05, + "end": 29784.35, + "probability": 0.5091 + }, + { + "start": 29784.58, + "end": 29785.42, + "probability": 0.6112 + }, + { + "start": 29785.5, + "end": 29787.1, + "probability": 0.8353 + }, + { + "start": 29787.18, + "end": 29788.38, + "probability": 0.6193 + }, + { + "start": 29789.56, + "end": 29791.12, + "probability": 0.5529 + }, + { + "start": 29791.76, + "end": 29792.22, + "probability": 0.6263 + }, + { + "start": 29792.96, + "end": 29793.98, + "probability": 0.2515 + }, + { + "start": 29794.06, + "end": 29795.7, + "probability": 0.8788 + }, + { + "start": 29795.74, + "end": 29796.31, + "probability": 0.9849 + }, + { + "start": 29796.74, + "end": 29799.96, + "probability": 0.9542 + }, + { + "start": 29800.1, + "end": 29803.64, + "probability": 0.8898 + }, + { + "start": 29803.76, + "end": 29804.66, + "probability": 0.5968 + }, + { + "start": 29806.66, + "end": 29808.48, + "probability": 0.7364 + }, + { + "start": 29808.72, + "end": 29810.84, + "probability": 0.7634 + }, + { + "start": 29810.92, + "end": 29811.74, + "probability": 0.9374 + }, + { + "start": 29811.8, + "end": 29813.2, + "probability": 0.9697 + }, + { + "start": 29813.4, + "end": 29814.8, + "probability": 0.7538 + }, + { + "start": 29815.44, + "end": 29818.68, + "probability": 0.6571 + }, + { + "start": 29818.9, + "end": 29821.2, + "probability": 0.7685 + }, + { + "start": 29821.62, + "end": 29823.46, + "probability": 0.6671 + }, + { + "start": 29824.0, + "end": 29824.6, + "probability": 0.2607 + }, + { + "start": 29824.8, + "end": 29826.22, + "probability": 0.8035 + }, + { + "start": 29826.36, + "end": 29827.68, + "probability": 0.9645 + }, + { + "start": 29828.22, + "end": 29830.2, + "probability": 0.8997 + }, + { + "start": 29830.62, + "end": 29835.36, + "probability": 0.9127 + }, + { + "start": 29835.44, + "end": 29838.06, + "probability": 0.9404 + }, + { + "start": 29838.06, + "end": 29840.74, + "probability": 0.9954 + }, + { + "start": 29841.18, + "end": 29843.26, + "probability": 0.9912 + }, + { + "start": 29843.36, + "end": 29845.98, + "probability": 0.9196 + }, + { + "start": 29846.16, + "end": 29850.38, + "probability": 0.8108 + }, + { + "start": 29850.52, + "end": 29852.1, + "probability": 0.8828 + }, + { + "start": 29852.52, + "end": 29855.28, + "probability": 0.9849 + }, + { + "start": 29856.0, + "end": 29857.36, + "probability": 0.9463 + }, + { + "start": 29857.5, + "end": 29861.16, + "probability": 0.9366 + }, + { + "start": 29861.38, + "end": 29862.12, + "probability": 0.7921 + }, + { + "start": 29862.28, + "end": 29864.66, + "probability": 0.5509 + }, + { + "start": 29864.98, + "end": 29866.16, + "probability": 0.9785 + }, + { + "start": 29866.22, + "end": 29868.7, + "probability": 0.7906 + }, + { + "start": 29868.86, + "end": 29869.85, + "probability": 0.5737 + }, + { + "start": 29870.06, + "end": 29873.06, + "probability": 0.9432 + }, + { + "start": 29873.36, + "end": 29875.02, + "probability": 0.8984 + }, + { + "start": 29875.12, + "end": 29876.29, + "probability": 0.4959 + }, + { + "start": 29877.68, + "end": 29878.9, + "probability": 0.9106 + }, + { + "start": 29878.98, + "end": 29880.6, + "probability": 0.8926 + }, + { + "start": 29880.72, + "end": 29881.42, + "probability": 0.714 + }, + { + "start": 29881.66, + "end": 29884.1, + "probability": 0.5167 + }, + { + "start": 29884.28, + "end": 29885.5, + "probability": 0.9212 + }, + { + "start": 29885.9, + "end": 29888.2, + "probability": 0.9249 + }, + { + "start": 29888.64, + "end": 29890.32, + "probability": 0.9961 + }, + { + "start": 29890.64, + "end": 29891.92, + "probability": 0.9036 + }, + { + "start": 29892.0, + "end": 29893.56, + "probability": 0.8182 + }, + { + "start": 29893.66, + "end": 29895.04, + "probability": 0.5635 + }, + { + "start": 29895.04, + "end": 29895.26, + "probability": 0.5476 + }, + { + "start": 29895.72, + "end": 29897.22, + "probability": 0.7033 + }, + { + "start": 29897.38, + "end": 29898.46, + "probability": 0.9668 + }, + { + "start": 29898.98, + "end": 29900.74, + "probability": 0.918 + }, + { + "start": 29901.54, + "end": 29902.78, + "probability": 0.9089 + }, + { + "start": 29902.78, + "end": 29904.5, + "probability": 0.5324 + }, + { + "start": 29905.2, + "end": 29907.92, + "probability": 0.9521 + }, + { + "start": 29908.0, + "end": 29909.3, + "probability": 0.8212 + }, + { + "start": 29909.3, + "end": 29909.38, + "probability": 0.0838 + }, + { + "start": 29909.38, + "end": 29909.7, + "probability": 0.4868 + }, + { + "start": 29909.82, + "end": 29910.36, + "probability": 0.3583 + }, + { + "start": 29910.76, + "end": 29913.98, + "probability": 0.7378 + }, + { + "start": 29914.38, + "end": 29914.84, + "probability": 0.499 + }, + { + "start": 29914.9, + "end": 29916.86, + "probability": 0.7485 + }, + { + "start": 29917.2, + "end": 29918.34, + "probability": 0.8673 + }, + { + "start": 29918.82, + "end": 29919.74, + "probability": 0.3638 + }, + { + "start": 29919.84, + "end": 29921.38, + "probability": 0.7832 + }, + { + "start": 29921.44, + "end": 29923.68, + "probability": 0.6254 + }, + { + "start": 29923.78, + "end": 29924.58, + "probability": 0.9448 + }, + { + "start": 29925.36, + "end": 29926.06, + "probability": 0.8712 + }, + { + "start": 29926.94, + "end": 29928.52, + "probability": 0.9829 + }, + { + "start": 29928.64, + "end": 29929.66, + "probability": 0.8825 + }, + { + "start": 29930.08, + "end": 29930.96, + "probability": 0.3511 + }, + { + "start": 29931.22, + "end": 29932.56, + "probability": 0.8368 + }, + { + "start": 29932.66, + "end": 29933.46, + "probability": 0.8357 + }, + { + "start": 29933.58, + "end": 29935.83, + "probability": 0.962 + }, + { + "start": 29936.36, + "end": 29936.76, + "probability": 0.7183 + }, + { + "start": 29936.82, + "end": 29939.84, + "probability": 0.9154 + }, + { + "start": 29939.96, + "end": 29941.06, + "probability": 0.9956 + }, + { + "start": 29941.14, + "end": 29941.7, + "probability": 0.6234 + }, + { + "start": 29941.88, + "end": 29942.47, + "probability": 0.9054 + }, + { + "start": 29942.66, + "end": 29944.24, + "probability": 0.9702 + }, + { + "start": 29944.28, + "end": 29945.7, + "probability": 0.9691 + }, + { + "start": 29946.48, + "end": 29947.56, + "probability": 0.8215 + }, + { + "start": 29948.16, + "end": 29949.72, + "probability": 0.9343 + }, + { + "start": 29949.74, + "end": 29951.3, + "probability": 0.8484 + }, + { + "start": 29951.42, + "end": 29952.01, + "probability": 0.2242 + }, + { + "start": 29952.68, + "end": 29954.64, + "probability": 0.6727 + }, + { + "start": 29955.28, + "end": 29956.43, + "probability": 0.9787 + }, + { + "start": 29956.66, + "end": 29958.16, + "probability": 0.8584 + }, + { + "start": 29958.64, + "end": 29963.54, + "probability": 0.7649 + }, + { + "start": 29975.1, + "end": 29977.8, + "probability": 0.08 + }, + { + "start": 29978.12, + "end": 29980.08, + "probability": 0.039 + }, + { + "start": 29980.08, + "end": 29983.3, + "probability": 0.115 + }, + { + "start": 29983.8, + "end": 29985.68, + "probability": 0.0566 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.0, + "end": 30090.0, + "probability": 0.0 + }, + { + "start": 30090.08, + "end": 30092.35, + "probability": 0.0117 + }, + { + "start": 30092.66, + "end": 30094.54, + "probability": 0.3783 + }, + { + "start": 30094.66, + "end": 30097.58, + "probability": 0.9007 + }, + { + "start": 30102.66, + "end": 30103.3, + "probability": 0.6982 + }, + { + "start": 30104.12, + "end": 30106.02, + "probability": 0.7676 + }, + { + "start": 30106.66, + "end": 30110.16, + "probability": 0.773 + }, + { + "start": 30110.32, + "end": 30112.84, + "probability": 0.5485 + }, + { + "start": 30114.18, + "end": 30118.2, + "probability": 0.6043 + }, + { + "start": 30118.84, + "end": 30119.22, + "probability": 0.1525 + }, + { + "start": 30119.4, + "end": 30122.8, + "probability": 0.7766 + }, + { + "start": 30123.52, + "end": 30124.9, + "probability": 0.9045 + }, + { + "start": 30126.92, + "end": 30131.1, + "probability": 0.9757 + }, + { + "start": 30133.72, + "end": 30133.72, + "probability": 0.2233 + }, + { + "start": 30133.72, + "end": 30134.2, + "probability": 0.3713 + }, + { + "start": 30134.2, + "end": 30135.28, + "probability": 0.7823 + }, + { + "start": 30135.5, + "end": 30137.9, + "probability": 0.9877 + }, + { + "start": 30138.94, + "end": 30139.48, + "probability": 0.9001 + }, + { + "start": 30140.54, + "end": 30143.24, + "probability": 0.9749 + }, + { + "start": 30144.6, + "end": 30146.94, + "probability": 0.9766 + }, + { + "start": 30147.8, + "end": 30151.9, + "probability": 0.9939 + }, + { + "start": 30152.64, + "end": 30156.02, + "probability": 0.9743 + }, + { + "start": 30158.54, + "end": 30161.14, + "probability": 0.8292 + }, + { + "start": 30163.14, + "end": 30164.36, + "probability": 0.9703 + }, + { + "start": 30164.46, + "end": 30167.28, + "probability": 0.827 + }, + { + "start": 30168.38, + "end": 30170.18, + "probability": 0.7266 + }, + { + "start": 30171.4, + "end": 30173.06, + "probability": 0.6384 + }, + { + "start": 30173.92, + "end": 30177.24, + "probability": 0.9984 + }, + { + "start": 30178.06, + "end": 30182.32, + "probability": 0.991 + }, + { + "start": 30182.5, + "end": 30184.04, + "probability": 0.7335 + }, + { + "start": 30185.22, + "end": 30186.88, + "probability": 0.4955 + }, + { + "start": 30187.72, + "end": 30189.72, + "probability": 0.8484 + }, + { + "start": 30190.24, + "end": 30193.56, + "probability": 0.9956 + }, + { + "start": 30194.88, + "end": 30201.14, + "probability": 0.998 + }, + { + "start": 30202.58, + "end": 30207.14, + "probability": 0.989 + }, + { + "start": 30207.58, + "end": 30210.26, + "probability": 0.9266 + }, + { + "start": 30210.88, + "end": 30211.76, + "probability": 0.651 + }, + { + "start": 30212.74, + "end": 30215.22, + "probability": 0.944 + }, + { + "start": 30215.9, + "end": 30218.98, + "probability": 0.8862 + }, + { + "start": 30219.98, + "end": 30222.49, + "probability": 0.9673 + }, + { + "start": 30222.8, + "end": 30224.98, + "probability": 0.9974 + }, + { + "start": 30226.12, + "end": 30227.36, + "probability": 0.8222 + }, + { + "start": 30227.54, + "end": 30228.04, + "probability": 0.467 + }, + { + "start": 30228.06, + "end": 30230.22, + "probability": 0.8538 + }, + { + "start": 30231.82, + "end": 30233.62, + "probability": 0.9647 + }, + { + "start": 30234.86, + "end": 30235.38, + "probability": 0.8638 + }, + { + "start": 30235.54, + "end": 30237.68, + "probability": 0.959 + }, + { + "start": 30238.4, + "end": 30239.22, + "probability": 0.9769 + }, + { + "start": 30240.44, + "end": 30242.2, + "probability": 0.7971 + }, + { + "start": 30242.86, + "end": 30244.29, + "probability": 0.566 + }, + { + "start": 30245.42, + "end": 30246.04, + "probability": 0.9287 + }, + { + "start": 30247.36, + "end": 30248.64, + "probability": 0.3625 + }, + { + "start": 30249.54, + "end": 30251.96, + "probability": 0.8087 + }, + { + "start": 30264.64, + "end": 30267.12, + "probability": 0.5177 + }, + { + "start": 30268.22, + "end": 30268.96, + "probability": 0.0259 + }, + { + "start": 30269.8, + "end": 30271.38, + "probability": 0.0575 + }, + { + "start": 30271.38, + "end": 30271.38, + "probability": 0.0917 + }, + { + "start": 30271.38, + "end": 30271.38, + "probability": 0.2595 + }, + { + "start": 30271.38, + "end": 30274.18, + "probability": 0.0057 + }, + { + "start": 30276.3, + "end": 30276.5, + "probability": 0.1168 + }, + { + "start": 30276.5, + "end": 30276.5, + "probability": 0.0246 + }, + { + "start": 30276.5, + "end": 30277.06, + "probability": 0.1188 + }, + { + "start": 30278.04, + "end": 30279.3, + "probability": 0.3462 + }, + { + "start": 30280.64, + "end": 30286.38, + "probability": 0.9108 + }, + { + "start": 30288.46, + "end": 30290.68, + "probability": 0.8616 + }, + { + "start": 30292.14, + "end": 30295.12, + "probability": 0.8513 + }, + { + "start": 30295.66, + "end": 30296.14, + "probability": 0.4753 + }, + { + "start": 30297.7, + "end": 30298.6, + "probability": 0.6226 + }, + { + "start": 30299.66, + "end": 30302.73, + "probability": 0.7676 + }, + { + "start": 30304.28, + "end": 30304.9, + "probability": 0.2478 + }, + { + "start": 30305.14, + "end": 30306.04, + "probability": 0.7004 + }, + { + "start": 30306.78, + "end": 30308.8, + "probability": 0.8901 + }, + { + "start": 30309.94, + "end": 30311.7, + "probability": 0.9679 + }, + { + "start": 30312.72, + "end": 30312.74, + "probability": 0.3432 + }, + { + "start": 30312.76, + "end": 30315.54, + "probability": 0.8486 + }, + { + "start": 30315.94, + "end": 30317.42, + "probability": 0.6703 + }, + { + "start": 30317.94, + "end": 30319.82, + "probability": 0.9631 + }, + { + "start": 30320.54, + "end": 30322.24, + "probability": 0.9928 + }, + { + "start": 30323.76, + "end": 30325.6, + "probability": 0.8696 + }, + { + "start": 30325.74, + "end": 30326.28, + "probability": 0.7232 + }, + { + "start": 30326.84, + "end": 30330.34, + "probability": 0.9608 + }, + { + "start": 30331.46, + "end": 30332.74, + "probability": 0.7067 + }, + { + "start": 30333.68, + "end": 30334.44, + "probability": 0.8088 + }, + { + "start": 30334.78, + "end": 30335.88, + "probability": 0.7881 + }, + { + "start": 30337.92, + "end": 30338.18, + "probability": 0.054 + }, + { + "start": 30338.18, + "end": 30338.5, + "probability": 0.2294 + }, + { + "start": 30339.32, + "end": 30339.54, + "probability": 0.5397 + }, + { + "start": 30340.44, + "end": 30341.98, + "probability": 0.874 + }, + { + "start": 30342.06, + "end": 30343.52, + "probability": 0.7502 + }, + { + "start": 30344.0, + "end": 30345.58, + "probability": 0.8672 + }, + { + "start": 30346.08, + "end": 30347.86, + "probability": 0.9439 + }, + { + "start": 30348.18, + "end": 30350.54, + "probability": 0.9198 + }, + { + "start": 30351.1, + "end": 30354.24, + "probability": 0.8926 + }, + { + "start": 30355.06, + "end": 30360.28, + "probability": 0.9326 + }, + { + "start": 30361.9, + "end": 30365.22, + "probability": 0.9814 + }, + { + "start": 30367.54, + "end": 30369.96, + "probability": 0.1702 + }, + { + "start": 30370.52, + "end": 30370.6, + "probability": 0.1753 + }, + { + "start": 30370.6, + "end": 30373.23, + "probability": 0.6664 + }, + { + "start": 30373.86, + "end": 30375.36, + "probability": 0.9067 + }, + { + "start": 30376.26, + "end": 30378.24, + "probability": 0.8925 + }, + { + "start": 30378.26, + "end": 30387.44, + "probability": 0.9336 + }, + { + "start": 30389.58, + "end": 30390.75, + "probability": 0.8481 + }, + { + "start": 30391.7, + "end": 30393.04, + "probability": 0.9619 + }, + { + "start": 30393.1, + "end": 30393.54, + "probability": 0.4351 + }, + { + "start": 30393.62, + "end": 30393.8, + "probability": 0.5697 + }, + { + "start": 30393.98, + "end": 30395.68, + "probability": 0.9644 + }, + { + "start": 30396.24, + "end": 30397.12, + "probability": 0.7363 + }, + { + "start": 30397.72, + "end": 30398.49, + "probability": 0.9937 + }, + { + "start": 30399.4, + "end": 30402.46, + "probability": 0.8776 + }, + { + "start": 30402.52, + "end": 30403.29, + "probability": 0.9175 + }, + { + "start": 30403.66, + "end": 30404.4, + "probability": 0.993 + }, + { + "start": 30405.24, + "end": 30406.7, + "probability": 0.1958 + }, + { + "start": 30406.7, + "end": 30408.5, + "probability": 0.4683 + }, + { + "start": 30408.66, + "end": 30411.0, + "probability": 0.9617 + }, + { + "start": 30411.0, + "end": 30414.2, + "probability": 0.6572 + }, + { + "start": 30414.2, + "end": 30417.34, + "probability": 0.8042 + }, + { + "start": 30418.14, + "end": 30419.08, + "probability": 0.404 + }, + { + "start": 30419.56, + "end": 30420.18, + "probability": 0.784 + }, + { + "start": 30420.88, + "end": 30423.78, + "probability": 0.7091 + }, + { + "start": 30424.38, + "end": 30425.12, + "probability": 0.7868 + }, + { + "start": 30425.36, + "end": 30428.18, + "probability": 0.5781 + }, + { + "start": 30428.56, + "end": 30429.52, + "probability": 0.9106 + }, + { + "start": 30429.94, + "end": 30431.75, + "probability": 0.6757 + }, + { + "start": 30432.78, + "end": 30433.22, + "probability": 0.6187 + }, + { + "start": 30434.36, + "end": 30436.03, + "probability": 0.6907 + }, + { + "start": 30436.5, + "end": 30437.04, + "probability": 0.5706 + }, + { + "start": 30437.18, + "end": 30437.42, + "probability": 0.8223 + }, + { + "start": 30437.52, + "end": 30440.22, + "probability": 0.926 + }, + { + "start": 30440.74, + "end": 30442.68, + "probability": 0.9692 + }, + { + "start": 30442.98, + "end": 30443.86, + "probability": 0.6541 + }, + { + "start": 30445.56, + "end": 30446.54, + "probability": 0.6699 + }, + { + "start": 30446.62, + "end": 30447.38, + "probability": 0.8716 + }, + { + "start": 30448.4, + "end": 30449.55, + "probability": 0.6956 + }, + { + "start": 30451.95, + "end": 30454.88, + "probability": 0.8381 + }, + { + "start": 30454.99, + "end": 30456.63, + "probability": 0.5697 + }, + { + "start": 30458.04, + "end": 30460.5, + "probability": 0.788 + }, + { + "start": 30461.58, + "end": 30462.44, + "probability": 0.6214 + }, + { + "start": 30462.6, + "end": 30465.76, + "probability": 0.9877 + }, + { + "start": 30466.18, + "end": 30466.6, + "probability": 0.5281 + }, + { + "start": 30467.6, + "end": 30470.62, + "probability": 0.9454 + }, + { + "start": 30470.62, + "end": 30474.64, + "probability": 0.7097 + }, + { + "start": 30476.2, + "end": 30476.5, + "probability": 0.315 + }, + { + "start": 30476.58, + "end": 30479.92, + "probability": 0.746 + }, + { + "start": 30480.02, + "end": 30484.48, + "probability": 0.8908 + }, + { + "start": 30484.6, + "end": 30484.94, + "probability": 0.777 + }, + { + "start": 30486.8, + "end": 30489.44, + "probability": 0.26 + }, + { + "start": 30490.76, + "end": 30494.12, + "probability": 0.7572 + }, + { + "start": 30494.3, + "end": 30495.72, + "probability": 0.7285 + }, + { + "start": 30496.24, + "end": 30498.38, + "probability": 0.1727 + }, + { + "start": 30498.38, + "end": 30498.38, + "probability": 0.1194 + }, + { + "start": 30498.42, + "end": 30498.73, + "probability": 0.6362 + }, + { + "start": 30499.82, + "end": 30501.06, + "probability": 0.5182 + }, + { + "start": 30501.08, + "end": 30506.84, + "probability": 0.3595 + }, + { + "start": 30507.14, + "end": 30507.14, + "probability": 0.1287 + }, + { + "start": 30507.14, + "end": 30507.14, + "probability": 0.0407 + }, + { + "start": 30507.14, + "end": 30507.14, + "probability": 0.2545 + }, + { + "start": 30507.14, + "end": 30507.54, + "probability": 0.2207 + }, + { + "start": 30507.54, + "end": 30508.96, + "probability": 0.7798 + }, + { + "start": 30510.28, + "end": 30510.92, + "probability": 0.2999 + }, + { + "start": 30510.92, + "end": 30512.02, + "probability": 0.6448 + }, + { + "start": 30512.86, + "end": 30513.46, + "probability": 0.3335 + }, + { + "start": 30513.5, + "end": 30513.5, + "probability": 0.534 + }, + { + "start": 30513.76, + "end": 30513.86, + "probability": 0.5489 + }, + { + "start": 30513.86, + "end": 30514.58, + "probability": 0.7851 + }, + { + "start": 30515.3, + "end": 30516.56, + "probability": 0.4338 + }, + { + "start": 30516.68, + "end": 30517.5, + "probability": 0.4979 + }, + { + "start": 30518.12, + "end": 30518.66, + "probability": 0.1087 + }, + { + "start": 30518.92, + "end": 30519.86, + "probability": 0.4379 + }, + { + "start": 30519.86, + "end": 30519.92, + "probability": 0.0769 + }, + { + "start": 30519.92, + "end": 30520.34, + "probability": 0.7903 + }, + { + "start": 30520.46, + "end": 30521.74, + "probability": 0.6402 + }, + { + "start": 30521.74, + "end": 30524.42, + "probability": 0.2265 + }, + { + "start": 30524.56, + "end": 30524.56, + "probability": 0.4995 + }, + { + "start": 30524.86, + "end": 30527.26, + "probability": 0.4278 + }, + { + "start": 30527.26, + "end": 30528.78, + "probability": 0.6033 + }, + { + "start": 30528.88, + "end": 30529.86, + "probability": 0.5975 + }, + { + "start": 30530.68, + "end": 30535.46, + "probability": 0.8654 + }, + { + "start": 30536.5, + "end": 30539.08, + "probability": 0.8691 + }, + { + "start": 30539.08, + "end": 30542.34, + "probability": 0.7659 + }, + { + "start": 30542.44, + "end": 30546.9, + "probability": 0.9409 + }, + { + "start": 30547.8, + "end": 30549.68, + "probability": 0.9285 + }, + { + "start": 30549.68, + "end": 30551.9, + "probability": 0.7974 + }, + { + "start": 30552.18, + "end": 30552.66, + "probability": 0.3585 + }, + { + "start": 30553.24, + "end": 30554.34, + "probability": 0.8505 + }, + { + "start": 30554.82, + "end": 30557.58, + "probability": 0.8381 + }, + { + "start": 30557.66, + "end": 30560.96, + "probability": 0.7151 + }, + { + "start": 30561.64, + "end": 30563.56, + "probability": 0.9421 + }, + { + "start": 30563.56, + "end": 30566.22, + "probability": 0.7184 + }, + { + "start": 30567.1, + "end": 30572.02, + "probability": 0.9228 + }, + { + "start": 30573.62, + "end": 30574.5, + "probability": 0.7835 + }, + { + "start": 30574.64, + "end": 30579.23, + "probability": 0.4425 + }, + { + "start": 30579.4, + "end": 30584.46, + "probability": 0.8092 + }, + { + "start": 30585.24, + "end": 30587.06, + "probability": 0.8101 + }, + { + "start": 30587.12, + "end": 30590.32, + "probability": 0.8732 + }, + { + "start": 30590.46, + "end": 30592.28, + "probability": 0.807 + }, + { + "start": 30592.28, + "end": 30594.56, + "probability": 0.7413 + }, + { + "start": 30595.2, + "end": 30597.56, + "probability": 0.9967 + }, + { + "start": 30598.48, + "end": 30599.51, + "probability": 0.7309 + }, + { + "start": 30599.74, + "end": 30600.26, + "probability": 0.8246 + }, + { + "start": 30601.2, + "end": 30603.62, + "probability": 0.7748 + }, + { + "start": 30604.98, + "end": 30605.18, + "probability": 0.03 + }, + { + "start": 30605.18, + "end": 30605.64, + "probability": 0.1618 + }, + { + "start": 30605.82, + "end": 30606.34, + "probability": 0.5231 + }, + { + "start": 30606.4, + "end": 30606.72, + "probability": 0.6089 + }, + { + "start": 30606.76, + "end": 30607.52, + "probability": 0.9209 + }, + { + "start": 30607.88, + "end": 30610.64, + "probability": 0.7529 + }, + { + "start": 30610.78, + "end": 30611.08, + "probability": 0.0207 + }, + { + "start": 30611.24, + "end": 30611.6, + "probability": 0.3516 + }, + { + "start": 30612.76, + "end": 30613.42, + "probability": 0.4536 + }, + { + "start": 30614.32, + "end": 30615.52, + "probability": 0.9056 + }, + { + "start": 30617.56, + "end": 30617.56, + "probability": 0.1745 + }, + { + "start": 30617.56, + "end": 30622.0, + "probability": 0.6792 + }, + { + "start": 30622.0, + "end": 30624.55, + "probability": 0.73 + }, + { + "start": 30625.74, + "end": 30628.58, + "probability": 0.9438 + }, + { + "start": 30628.64, + "end": 30632.8, + "probability": 0.74 + }, + { + "start": 30634.1, + "end": 30635.44, + "probability": 0.7436 + }, + { + "start": 30635.52, + "end": 30637.96, + "probability": 0.7626 + }, + { + "start": 30638.62, + "end": 30640.24, + "probability": 0.6185 + }, + { + "start": 30640.8, + "end": 30642.28, + "probability": 0.4429 + }, + { + "start": 30646.08, + "end": 30649.46, + "probability": 0.0544 + }, + { + "start": 30650.0, + "end": 30655.18, + "probability": 0.6167 + }, + { + "start": 30656.78, + "end": 30657.98, + "probability": 0.5606 + }, + { + "start": 30658.04, + "end": 30658.7, + "probability": 0.4944 + }, + { + "start": 30658.8, + "end": 30660.58, + "probability": 0.5161 + }, + { + "start": 30660.62, + "end": 30662.64, + "probability": 0.7165 + }, + { + "start": 30662.86, + "end": 30663.46, + "probability": 0.9675 + }, + { + "start": 30664.62, + "end": 30666.62, + "probability": 0.7845 + }, + { + "start": 30667.34, + "end": 30670.74, + "probability": 0.9811 + }, + { + "start": 30672.1, + "end": 30674.68, + "probability": 0.7701 + }, + { + "start": 30674.74, + "end": 30676.48, + "probability": 0.7362 + }, + { + "start": 30677.12, + "end": 30679.52, + "probability": 0.8556 + }, + { + "start": 30679.52, + "end": 30682.02, + "probability": 0.734 + }, + { + "start": 30682.96, + "end": 30685.14, + "probability": 0.7871 + }, + { + "start": 30686.16, + "end": 30689.1, + "probability": 0.7817 + }, + { + "start": 30689.26, + "end": 30690.36, + "probability": 0.4275 + }, + { + "start": 30690.64, + "end": 30692.7, + "probability": 0.6287 + }, + { + "start": 30693.94, + "end": 30697.12, + "probability": 0.6383 + }, + { + "start": 30697.82, + "end": 30701.52, + "probability": 0.9358 + }, + { + "start": 30702.04, + "end": 30703.86, + "probability": 0.741 + }, + { + "start": 30704.52, + "end": 30705.88, + "probability": 0.5225 + }, + { + "start": 30707.1, + "end": 30707.96, + "probability": 0.5666 + }, + { + "start": 30708.04, + "end": 30710.69, + "probability": 0.4827 + }, + { + "start": 30711.98, + "end": 30714.38, + "probability": 0.7821 + }, + { + "start": 30714.54, + "end": 30715.66, + "probability": 0.8482 + }, + { + "start": 30717.92, + "end": 30718.58, + "probability": 0.0606 + }, + { + "start": 30719.12, + "end": 30720.2, + "probability": 0.7011 + }, + { + "start": 30720.2, + "end": 30720.22, + "probability": 0.3653 + }, + { + "start": 30720.22, + "end": 30721.08, + "probability": 0.0312 + }, + { + "start": 30721.7, + "end": 30722.2, + "probability": 0.3302 + }, + { + "start": 30722.2, + "end": 30722.3, + "probability": 0.8584 + }, + { + "start": 30722.72, + "end": 30723.84, + "probability": 0.5733 + }, + { + "start": 30724.86, + "end": 30725.2, + "probability": 0.6504 + }, + { + "start": 30726.58, + "end": 30728.1, + "probability": 0.5519 + }, + { + "start": 30732.22, + "end": 30732.32, + "probability": 0.0532 + }, + { + "start": 30733.3, + "end": 30734.04, + "probability": 0.3307 + }, + { + "start": 30734.28, + "end": 30735.2, + "probability": 0.0327 + }, + { + "start": 30735.38, + "end": 30738.18, + "probability": 0.7571 + }, + { + "start": 30738.24, + "end": 30738.79, + "probability": 0.458 + }, + { + "start": 30739.46, + "end": 30740.4, + "probability": 0.4751 + }, + { + "start": 30740.42, + "end": 30744.16, + "probability": 0.8824 + }, + { + "start": 30744.26, + "end": 30745.67, + "probability": 0.6487 + }, + { + "start": 30747.18, + "end": 30747.38, + "probability": 0.3287 + }, + { + "start": 30747.96, + "end": 30748.18, + "probability": 0.263 + }, + { + "start": 30749.08, + "end": 30751.58, + "probability": 0.5936 + }, + { + "start": 30751.96, + "end": 30753.2, + "probability": 0.9474 + }, + { + "start": 30753.58, + "end": 30754.78, + "probability": 0.6263 + }, + { + "start": 30755.12, + "end": 30756.6, + "probability": 0.9243 + }, + { + "start": 30757.24, + "end": 30759.36, + "probability": 0.9413 + }, + { + "start": 30759.98, + "end": 30762.96, + "probability": 0.9058 + }, + { + "start": 30764.44, + "end": 30765.78, + "probability": 0.3532 + }, + { + "start": 30765.9, + "end": 30766.26, + "probability": 0.0157 + }, + { + "start": 30767.6, + "end": 30767.6, + "probability": 0.1976 + }, + { + "start": 30767.6, + "end": 30768.65, + "probability": 0.5658 + }, + { + "start": 30768.84, + "end": 30769.54, + "probability": 0.3067 + }, + { + "start": 30770.02, + "end": 30771.44, + "probability": 0.9172 + }, + { + "start": 30772.67, + "end": 30773.38, + "probability": 0.1974 + }, + { + "start": 30773.48, + "end": 30774.66, + "probability": 0.5094 + }, + { + "start": 30776.58, + "end": 30781.44, + "probability": 0.5008 + }, + { + "start": 30781.86, + "end": 30786.6, + "probability": 0.7869 + }, + { + "start": 30787.04, + "end": 30791.12, + "probability": 0.7663 + }, + { + "start": 30791.12, + "end": 30794.5, + "probability": 0.9754 + }, + { + "start": 30794.56, + "end": 30800.24, + "probability": 0.9538 + }, + { + "start": 30800.64, + "end": 30804.86, + "probability": 0.0612 + }, + { + "start": 30808.7, + "end": 30809.66, + "probability": 0.0314 + }, + { + "start": 30809.66, + "end": 30809.66, + "probability": 0.0339 + }, + { + "start": 30809.66, + "end": 30812.2, + "probability": 0.8385 + }, + { + "start": 30814.12, + "end": 30814.14, + "probability": 0.1209 + }, + { + "start": 30814.14, + "end": 30815.88, + "probability": 0.6178 + }, + { + "start": 30817.68, + "end": 30819.48, + "probability": 0.5909 + }, + { + "start": 30819.68, + "end": 30820.46, + "probability": 0.489 + }, + { + "start": 30820.52, + "end": 30821.52, + "probability": 0.8588 + }, + { + "start": 30821.84, + "end": 30822.68, + "probability": 0.9027 + }, + { + "start": 30822.92, + "end": 30825.74, + "probability": 0.3872 + }, + { + "start": 30825.94, + "end": 30827.32, + "probability": 0.9604 + }, + { + "start": 30827.4, + "end": 30828.06, + "probability": 0.8599 + }, + { + "start": 30828.42, + "end": 30829.14, + "probability": 0.9359 + }, + { + "start": 30829.22, + "end": 30831.06, + "probability": 0.8901 + }, + { + "start": 30831.74, + "end": 30833.38, + "probability": 0.8353 + }, + { + "start": 30834.46, + "end": 30838.58, + "probability": 0.8871 + }, + { + "start": 30839.71, + "end": 30843.64, + "probability": 0.9043 + }, + { + "start": 30844.4, + "end": 30845.74, + "probability": 0.9321 + }, + { + "start": 30846.26, + "end": 30846.56, + "probability": 0.6001 + }, + { + "start": 30846.58, + "end": 30851.36, + "probability": 0.9881 + }, + { + "start": 30852.38, + "end": 30852.8, + "probability": 0.7101 + }, + { + "start": 30853.56, + "end": 30855.4, + "probability": 0.9859 + }, + { + "start": 30855.82, + "end": 30857.72, + "probability": 0.9659 + }, + { + "start": 30858.3, + "end": 30860.96, + "probability": 0.9394 + }, + { + "start": 30861.7, + "end": 30864.74, + "probability": 0.9993 + }, + { + "start": 30864.84, + "end": 30866.22, + "probability": 0.9664 + }, + { + "start": 30866.96, + "end": 30868.42, + "probability": 0.8778 + }, + { + "start": 30869.54, + "end": 30872.34, + "probability": 0.9573 + }, + { + "start": 30873.3, + "end": 30875.74, + "probability": 0.9627 + }, + { + "start": 30876.56, + "end": 30879.16, + "probability": 0.9862 + }, + { + "start": 30879.74, + "end": 30882.5, + "probability": 0.9556 + }, + { + "start": 30883.3, + "end": 30885.3, + "probability": 0.798 + }, + { + "start": 30886.22, + "end": 30888.5, + "probability": 0.9084 + }, + { + "start": 30889.84, + "end": 30890.66, + "probability": 0.7576 + }, + { + "start": 30891.86, + "end": 30895.66, + "probability": 0.9698 + }, + { + "start": 30895.78, + "end": 30896.1, + "probability": 0.8278 + }, + { + "start": 30896.16, + "end": 30898.56, + "probability": 0.9165 + }, + { + "start": 30899.1, + "end": 30899.48, + "probability": 0.9337 + }, + { + "start": 30899.86, + "end": 30900.78, + "probability": 0.916 + }, + { + "start": 30901.06, + "end": 30903.36, + "probability": 0.9038 + }, + { + "start": 30904.3, + "end": 30908.42, + "probability": 0.9099 + }, + { + "start": 30909.2, + "end": 30910.4, + "probability": 0.8064 + }, + { + "start": 30911.28, + "end": 30912.34, + "probability": 0.8936 + }, + { + "start": 30912.5, + "end": 30913.3, + "probability": 0.9874 + }, + { + "start": 30913.4, + "end": 30922.08, + "probability": 0.9849 + }, + { + "start": 30923.12, + "end": 30923.32, + "probability": 0.6936 + }, + { + "start": 30924.7, + "end": 30928.74, + "probability": 0.9962 + }, + { + "start": 30929.28, + "end": 30933.18, + "probability": 0.9456 + }, + { + "start": 30933.68, + "end": 30936.84, + "probability": 0.9959 + }, + { + "start": 30937.8, + "end": 30944.04, + "probability": 0.9985 + }, + { + "start": 30944.4, + "end": 30947.76, + "probability": 0.9702 + }, + { + "start": 30947.98, + "end": 30950.9, + "probability": 0.9793 + }, + { + "start": 30951.66, + "end": 30953.9, + "probability": 0.9603 + }, + { + "start": 30954.38, + "end": 30955.63, + "probability": 0.9888 + }, + { + "start": 30956.36, + "end": 30959.98, + "probability": 0.9702 + }, + { + "start": 30960.72, + "end": 30963.36, + "probability": 0.9799 + }, + { + "start": 30964.26, + "end": 30968.46, + "probability": 0.9983 + }, + { + "start": 30968.54, + "end": 30969.56, + "probability": 0.6598 + }, + { + "start": 30969.56, + "end": 30976.22, + "probability": 0.9608 + }, + { + "start": 30976.66, + "end": 30978.72, + "probability": 0.9617 + }, + { + "start": 30979.76, + "end": 30982.0, + "probability": 0.9513 + }, + { + "start": 30982.58, + "end": 30983.62, + "probability": 0.9147 + }, + { + "start": 30983.7, + "end": 30988.1, + "probability": 0.9932 + }, + { + "start": 30988.1, + "end": 30992.7, + "probability": 0.9867 + }, + { + "start": 30993.1, + "end": 30995.28, + "probability": 0.9995 + }, + { + "start": 30996.14, + "end": 30997.92, + "probability": 0.8785 + }, + { + "start": 30998.44, + "end": 30999.06, + "probability": 0.7887 + }, + { + "start": 30999.16, + "end": 30999.86, + "probability": 0.7412 + }, + { + "start": 30999.98, + "end": 31004.46, + "probability": 0.9945 + }, + { + "start": 31004.82, + "end": 31006.46, + "probability": 0.8251 + }, + { + "start": 31007.0, + "end": 31010.12, + "probability": 0.9857 + }, + { + "start": 31010.52, + "end": 31013.72, + "probability": 0.9772 + }, + { + "start": 31013.72, + "end": 31016.2, + "probability": 0.9982 + }, + { + "start": 31016.84, + "end": 31018.24, + "probability": 0.7085 + }, + { + "start": 31018.78, + "end": 31022.36, + "probability": 0.9989 + }, + { + "start": 31022.8, + "end": 31023.24, + "probability": 0.8842 + }, + { + "start": 31023.96, + "end": 31027.5, + "probability": 0.8579 + }, + { + "start": 31027.84, + "end": 31029.3, + "probability": 0.8886 + }, + { + "start": 31030.12, + "end": 31035.06, + "probability": 0.7595 + }, + { + "start": 31035.7, + "end": 31038.52, + "probability": 0.9717 + }, + { + "start": 31039.12, + "end": 31040.6, + "probability": 0.8467 + }, + { + "start": 31040.7, + "end": 31040.94, + "probability": 0.2919 + }, + { + "start": 31041.36, + "end": 31042.52, + "probability": 0.7081 + }, + { + "start": 31042.68, + "end": 31044.14, + "probability": 0.9299 + }, + { + "start": 31044.28, + "end": 31045.18, + "probability": 0.723 + }, + { + "start": 31045.66, + "end": 31047.8, + "probability": 0.9487 + }, + { + "start": 31048.02, + "end": 31048.28, + "probability": 0.8277 + }, + { + "start": 31048.58, + "end": 31051.76, + "probability": 0.9531 + }, + { + "start": 31052.54, + "end": 31055.66, + "probability": 0.9867 + }, + { + "start": 31055.72, + "end": 31056.08, + "probability": 0.5931 + }, + { + "start": 31056.62, + "end": 31060.22, + "probability": 0.9861 + }, + { + "start": 31061.02, + "end": 31061.58, + "probability": 0.8113 + }, + { + "start": 31062.72, + "end": 31065.64, + "probability": 0.7774 + }, + { + "start": 31065.7, + "end": 31065.8, + "probability": 0.6832 + }, + { + "start": 31067.96, + "end": 31068.62, + "probability": 0.701 + }, + { + "start": 31069.44, + "end": 31070.22, + "probability": 0.7798 + }, + { + "start": 31071.8, + "end": 31074.12, + "probability": 0.8678 + }, + { + "start": 31075.32, + "end": 31075.62, + "probability": 0.9189 + }, + { + "start": 31077.18, + "end": 31078.42, + "probability": 0.9253 + }, + { + "start": 31087.36, + "end": 31088.3, + "probability": 0.5271 + }, + { + "start": 31089.16, + "end": 31090.52, + "probability": 0.7742 + }, + { + "start": 31091.96, + "end": 31094.68, + "probability": 0.9845 + }, + { + "start": 31094.68, + "end": 31098.88, + "probability": 0.8755 + }, + { + "start": 31099.6, + "end": 31101.46, + "probability": 0.9829 + }, + { + "start": 31101.64, + "end": 31103.3, + "probability": 0.9963 + }, + { + "start": 31104.06, + "end": 31104.72, + "probability": 0.6724 + }, + { + "start": 31106.24, + "end": 31110.18, + "probability": 0.7574 + }, + { + "start": 31110.5, + "end": 31110.7, + "probability": 0.0693 + }, + { + "start": 31111.46, + "end": 31112.52, + "probability": 0.8033 + }, + { + "start": 31112.7, + "end": 31113.76, + "probability": 0.8589 + }, + { + "start": 31114.04, + "end": 31116.74, + "probability": 0.7453 + }, + { + "start": 31117.4, + "end": 31121.36, + "probability": 0.9715 + }, + { + "start": 31123.18, + "end": 31127.68, + "probability": 0.8753 + }, + { + "start": 31127.68, + "end": 31130.8, + "probability": 0.9584 + }, + { + "start": 31131.96, + "end": 31134.78, + "probability": 0.7426 + }, + { + "start": 31134.78, + "end": 31136.96, + "probability": 0.836 + }, + { + "start": 31137.58, + "end": 31140.74, + "probability": 0.8367 + }, + { + "start": 31141.78, + "end": 31142.0, + "probability": 0.3744 + }, + { + "start": 31142.12, + "end": 31145.0, + "probability": 0.8877 + }, + { + "start": 31145.6, + "end": 31148.14, + "probability": 0.7014 + }, + { + "start": 31150.02, + "end": 31150.64, + "probability": 0.7214 + }, + { + "start": 31151.2, + "end": 31154.22, + "probability": 0.7075 + }, + { + "start": 31154.74, + "end": 31156.16, + "probability": 0.9686 + }, + { + "start": 31157.24, + "end": 31157.32, + "probability": 0.3252 + }, + { + "start": 31157.38, + "end": 31157.56, + "probability": 0.1984 + }, + { + "start": 31158.2, + "end": 31158.76, + "probability": 0.676 + }, + { + "start": 31158.9, + "end": 31159.94, + "probability": 0.6266 + }, + { + "start": 31160.26, + "end": 31163.3, + "probability": 0.8862 + }, + { + "start": 31163.4, + "end": 31163.6, + "probability": 0.2665 + }, + { + "start": 31164.16, + "end": 31169.12, + "probability": 0.9519 + }, + { + "start": 31169.78, + "end": 31170.52, + "probability": 0.5834 + }, + { + "start": 31170.98, + "end": 31173.64, + "probability": 0.4287 + }, + { + "start": 31173.96, + "end": 31174.8, + "probability": 0.1317 + }, + { + "start": 31176.9, + "end": 31178.46, + "probability": 0.4798 + }, + { + "start": 31178.52, + "end": 31179.82, + "probability": 0.408 + }, + { + "start": 31180.76, + "end": 31184.12, + "probability": 0.7924 + }, + { + "start": 31186.36, + "end": 31187.04, + "probability": 0.6211 + }, + { + "start": 31188.5, + "end": 31190.5, + "probability": 0.7245 + }, + { + "start": 31190.94, + "end": 31193.5, + "probability": 0.9891 + }, + { + "start": 31194.38, + "end": 31197.38, + "probability": 0.0926 + }, + { + "start": 31197.38, + "end": 31199.4, + "probability": 0.6679 + }, + { + "start": 31200.38, + "end": 31205.68, + "probability": 0.9969 + }, + { + "start": 31205.68, + "end": 31210.4, + "probability": 0.998 + }, + { + "start": 31211.28, + "end": 31214.3, + "probability": 0.7124 + }, + { + "start": 31215.38, + "end": 31216.24, + "probability": 0.5102 + }, + { + "start": 31216.78, + "end": 31218.7, + "probability": 0.7708 + }, + { + "start": 31218.82, + "end": 31221.14, + "probability": 0.8372 + }, + { + "start": 31221.14, + "end": 31221.14, + "probability": 0.0413 + }, + { + "start": 31221.14, + "end": 31223.64, + "probability": 0.9889 + }, + { + "start": 31224.38, + "end": 31225.88, + "probability": 0.5629 + }, + { + "start": 31226.74, + "end": 31232.02, + "probability": 0.7147 + }, + { + "start": 31233.44, + "end": 31235.54, + "probability": 0.8387 + }, + { + "start": 31238.32, + "end": 31238.76, + "probability": 0.4926 + }, + { + "start": 31240.24, + "end": 31242.55, + "probability": 0.8947 + }, + { + "start": 31243.83, + "end": 31243.94, + "probability": 0.7063 + }, + { + "start": 31243.96, + "end": 31245.22, + "probability": 0.8945 + }, + { + "start": 31245.8, + "end": 31246.2, + "probability": 0.4103 + }, + { + "start": 31247.54, + "end": 31249.76, + "probability": 0.8311 + }, + { + "start": 31249.92, + "end": 31250.26, + "probability": 0.9479 + }, + { + "start": 31250.26, + "end": 31252.02, + "probability": 0.9691 + }, + { + "start": 31252.04, + "end": 31254.21, + "probability": 0.6552 + }, + { + "start": 31254.94, + "end": 31255.9, + "probability": 0.6108 + }, + { + "start": 31256.0, + "end": 31256.26, + "probability": 0.5951 + }, + { + "start": 31256.62, + "end": 31257.16, + "probability": 0.8413 + }, + { + "start": 31258.9, + "end": 31259.36, + "probability": 0.3694 + }, + { + "start": 31260.9, + "end": 31261.44, + "probability": 0.2627 + }, + { + "start": 31261.44, + "end": 31261.66, + "probability": 0.5413 + }, + { + "start": 31261.78, + "end": 31265.3, + "probability": 0.6411 + }, + { + "start": 31265.44, + "end": 31265.58, + "probability": 0.8652 + }, + { + "start": 31267.68, + "end": 31269.72, + "probability": 0.9689 + }, + { + "start": 31270.42, + "end": 31275.28, + "probability": 0.9952 + }, + { + "start": 31275.28, + "end": 31279.42, + "probability": 0.9969 + }, + { + "start": 31280.36, + "end": 31283.96, + "probability": 0.9727 + }, + { + "start": 31284.82, + "end": 31285.38, + "probability": 0.8597 + }, + { + "start": 31285.92, + "end": 31287.62, + "probability": 0.9873 + }, + { + "start": 31287.72, + "end": 31288.32, + "probability": 0.7576 + }, + { + "start": 31288.52, + "end": 31292.12, + "probability": 0.9689 + }, + { + "start": 31292.12, + "end": 31295.7, + "probability": 0.9883 + }, + { + "start": 31296.14, + "end": 31302.76, + "probability": 0.6686 + }, + { + "start": 31303.48, + "end": 31306.86, + "probability": 0.9858 + }, + { + "start": 31308.0, + "end": 31308.72, + "probability": 0.6907 + }, + { + "start": 31309.2, + "end": 31312.52, + "probability": 0.8939 + }, + { + "start": 31313.1, + "end": 31318.2, + "probability": 0.9937 + }, + { + "start": 31318.2, + "end": 31321.26, + "probability": 0.9579 + }, + { + "start": 31322.24, + "end": 31324.3, + "probability": 0.7038 + }, + { + "start": 31324.46, + "end": 31326.3, + "probability": 0.8643 + }, + { + "start": 31326.38, + "end": 31327.04, + "probability": 0.7179 + }, + { + "start": 31327.52, + "end": 31331.36, + "probability": 0.8508 + }, + { + "start": 31332.18, + "end": 31333.08, + "probability": 0.5618 + }, + { + "start": 31333.6, + "end": 31334.74, + "probability": 0.795 + }, + { + "start": 31336.32, + "end": 31339.48, + "probability": 0.5131 + }, + { + "start": 31340.02, + "end": 31341.6, + "probability": 0.7499 + }, + { + "start": 31343.08, + "end": 31346.76, + "probability": 0.9864 + }, + { + "start": 31347.5, + "end": 31348.6, + "probability": 0.8658 + }, + { + "start": 31349.53, + "end": 31355.44, + "probability": 0.6151 + }, + { + "start": 31356.1, + "end": 31361.58, + "probability": 0.9858 + }, + { + "start": 31362.22, + "end": 31365.44, + "probability": 0.1397 + }, + { + "start": 31366.32, + "end": 31367.68, + "probability": 0.8005 + }, + { + "start": 31368.24, + "end": 31369.24, + "probability": 0.7831 + }, + { + "start": 31369.94, + "end": 31373.74, + "probability": 0.8105 + }, + { + "start": 31375.16, + "end": 31380.4, + "probability": 0.8033 + }, + { + "start": 31381.0, + "end": 31383.26, + "probability": 0.9458 + }, + { + "start": 31385.2, + "end": 31389.4, + "probability": 0.9854 + }, + { + "start": 31389.4, + "end": 31393.92, + "probability": 0.9729 + }, + { + "start": 31393.98, + "end": 31395.16, + "probability": 0.9241 + }, + { + "start": 31396.3, + "end": 31399.62, + "probability": 0.9129 + }, + { + "start": 31400.24, + "end": 31402.06, + "probability": 0.9451 + }, + { + "start": 31402.36, + "end": 31403.0, + "probability": 0.8818 + }, + { + "start": 31403.14, + "end": 31403.7, + "probability": 0.6716 + }, + { + "start": 31403.78, + "end": 31405.94, + "probability": 0.7538 + }, + { + "start": 31406.54, + "end": 31407.44, + "probability": 0.4978 + }, + { + "start": 31408.4, + "end": 31409.74, + "probability": 0.9289 + }, + { + "start": 31410.36, + "end": 31411.78, + "probability": 0.9526 + }, + { + "start": 31412.38, + "end": 31415.48, + "probability": 0.6678 + }, + { + "start": 31416.24, + "end": 31417.08, + "probability": 0.7808 + }, + { + "start": 31417.8, + "end": 31421.16, + "probability": 0.9763 + }, + { + "start": 31422.24, + "end": 31424.9, + "probability": 0.97 + }, + { + "start": 31426.12, + "end": 31426.6, + "probability": 0.4726 + }, + { + "start": 31427.34, + "end": 31428.12, + "probability": 0.5822 + }, + { + "start": 31428.18, + "end": 31429.32, + "probability": 0.9055 + }, + { + "start": 31429.54, + "end": 31432.32, + "probability": 0.9717 + }, + { + "start": 31432.42, + "end": 31433.28, + "probability": 0.6854 + }, + { + "start": 31434.0, + "end": 31436.52, + "probability": 0.8117 + }, + { + "start": 31437.74, + "end": 31438.54, + "probability": 0.9556 + }, + { + "start": 31438.58, + "end": 31444.48, + "probability": 0.7443 + }, + { + "start": 31444.84, + "end": 31445.42, + "probability": 0.7461 + }, + { + "start": 31446.1, + "end": 31447.66, + "probability": 0.6127 + }, + { + "start": 31449.86, + "end": 31456.44, + "probability": 0.792 + }, + { + "start": 31457.06, + "end": 31460.24, + "probability": 0.8993 + }, + { + "start": 31460.24, + "end": 31464.26, + "probability": 0.9979 + }, + { + "start": 31464.86, + "end": 31465.3, + "probability": 0.9596 + }, + { + "start": 31466.0, + "end": 31466.86, + "probability": 0.8376 + }, + { + "start": 31467.44, + "end": 31472.16, + "probability": 0.992 + }, + { + "start": 31472.2, + "end": 31473.26, + "probability": 0.9539 + }, + { + "start": 31473.92, + "end": 31478.18, + "probability": 0.9561 + }, + { + "start": 31478.8, + "end": 31482.02, + "probability": 0.9339 + }, + { + "start": 31483.08, + "end": 31483.92, + "probability": 0.9526 + }, + { + "start": 31485.08, + "end": 31486.0, + "probability": 0.701 + }, + { + "start": 31486.54, + "end": 31489.66, + "probability": 0.9191 + }, + { + "start": 31490.18, + "end": 31494.98, + "probability": 0.8939 + }, + { + "start": 31496.0, + "end": 31496.24, + "probability": 0.9573 + }, + { + "start": 31497.12, + "end": 31498.52, + "probability": 0.9807 + }, + { + "start": 31500.4, + "end": 31507.98, + "probability": 0.9273 + }, + { + "start": 31509.02, + "end": 31511.0, + "probability": 0.8846 + }, + { + "start": 31511.44, + "end": 31517.26, + "probability": 0.9626 + }, + { + "start": 31517.58, + "end": 31518.74, + "probability": 0.8506 + }, + { + "start": 31519.56, + "end": 31522.44, + "probability": 0.9248 + }, + { + "start": 31523.02, + "end": 31527.42, + "probability": 0.9836 + }, + { + "start": 31527.42, + "end": 31533.04, + "probability": 0.9964 + }, + { + "start": 31533.34, + "end": 31536.6, + "probability": 0.9827 + }, + { + "start": 31537.52, + "end": 31543.2, + "probability": 0.9727 + }, + { + "start": 31543.34, + "end": 31543.92, + "probability": 0.9373 + }, + { + "start": 31544.3, + "end": 31544.88, + "probability": 0.439 + }, + { + "start": 31545.08, + "end": 31545.84, + "probability": 0.9109 + }, + { + "start": 31546.16, + "end": 31548.58, + "probability": 0.7432 + }, + { + "start": 31548.72, + "end": 31550.76, + "probability": 0.8331 + }, + { + "start": 31550.9, + "end": 31552.5, + "probability": 0.9634 + }, + { + "start": 31553.1, + "end": 31558.46, + "probability": 0.9832 + }, + { + "start": 31559.7, + "end": 31563.16, + "probability": 0.8441 + }, + { + "start": 31563.7, + "end": 31565.82, + "probability": 0.8136 + }, + { + "start": 31566.46, + "end": 31572.32, + "probability": 0.9528 + }, + { + "start": 31572.38, + "end": 31577.46, + "probability": 0.9034 + }, + { + "start": 31578.22, + "end": 31585.2, + "probability": 0.9408 + }, + { + "start": 31585.2, + "end": 31591.66, + "probability": 0.9953 + }, + { + "start": 31592.22, + "end": 31593.82, + "probability": 0.8358 + }, + { + "start": 31594.62, + "end": 31596.54, + "probability": 0.67 + }, + { + "start": 31597.18, + "end": 31601.34, + "probability": 0.8267 + }, + { + "start": 31601.86, + "end": 31601.96, + "probability": 0.6841 + }, + { + "start": 31602.36, + "end": 31602.84, + "probability": 0.3214 + }, + { + "start": 31603.08, + "end": 31603.84, + "probability": 0.8414 + }, + { + "start": 31603.92, + "end": 31606.2, + "probability": 0.9524 + }, + { + "start": 31606.38, + "end": 31609.02, + "probability": 0.9868 + }, + { + "start": 31609.9, + "end": 31611.48, + "probability": 0.9417 + }, + { + "start": 31612.56, + "end": 31613.12, + "probability": 0.9054 + }, + { + "start": 31614.94, + "end": 31617.0, + "probability": 0.6656 + }, + { + "start": 31617.9, + "end": 31619.5, + "probability": 0.9574 + }, + { + "start": 31620.66, + "end": 31622.06, + "probability": 0.8482 + }, + { + "start": 31633.42, + "end": 31635.62, + "probability": 0.9131 + }, + { + "start": 31638.04, + "end": 31641.36, + "probability": 0.9316 + }, + { + "start": 31642.6, + "end": 31643.0, + "probability": 0.4951 + }, + { + "start": 31643.12, + "end": 31643.94, + "probability": 0.6315 + }, + { + "start": 31644.06, + "end": 31645.12, + "probability": 0.7192 + }, + { + "start": 31645.6, + "end": 31646.49, + "probability": 0.6455 + }, + { + "start": 31648.56, + "end": 31651.32, + "probability": 0.9827 + }, + { + "start": 31651.84, + "end": 31655.34, + "probability": 0.8043 + }, + { + "start": 31655.98, + "end": 31657.02, + "probability": 0.78 + }, + { + "start": 31658.06, + "end": 31659.16, + "probability": 0.6842 + }, + { + "start": 31659.32, + "end": 31659.94, + "probability": 0.5674 + }, + { + "start": 31660.02, + "end": 31662.92, + "probability": 0.8101 + }, + { + "start": 31663.04, + "end": 31666.81, + "probability": 0.7976 + }, + { + "start": 31666.84, + "end": 31669.72, + "probability": 0.999 + }, + { + "start": 31670.72, + "end": 31670.82, + "probability": 0.2607 + }, + { + "start": 31670.94, + "end": 31674.66, + "probability": 0.8006 + }, + { + "start": 31678.76, + "end": 31680.82, + "probability": 0.601 + }, + { + "start": 31680.82, + "end": 31682.96, + "probability": 0.7221 + }, + { + "start": 31684.08, + "end": 31685.64, + "probability": 0.8456 + }, + { + "start": 31685.82, + "end": 31686.64, + "probability": 0.8692 + }, + { + "start": 31686.74, + "end": 31687.74, + "probability": 0.7959 + }, + { + "start": 31688.42, + "end": 31691.58, + "probability": 0.8845 + }, + { + "start": 31692.4, + "end": 31694.76, + "probability": 0.8747 + }, + { + "start": 31695.34, + "end": 31697.64, + "probability": 0.8373 + }, + { + "start": 31699.18, + "end": 31701.34, + "probability": 0.9626 + }, + { + "start": 31701.34, + "end": 31704.26, + "probability": 0.9054 + }, + { + "start": 31705.94, + "end": 31706.6, + "probability": 0.8298 + }, + { + "start": 31708.52, + "end": 31713.78, + "probability": 0.9737 + }, + { + "start": 31714.54, + "end": 31717.94, + "probability": 0.9552 + }, + { + "start": 31719.64, + "end": 31721.98, + "probability": 0.6934 + }, + { + "start": 31722.12, + "end": 31724.46, + "probability": 0.9436 + }, + { + "start": 31725.5, + "end": 31727.9, + "probability": 0.9263 + }, + { + "start": 31728.48, + "end": 31729.72, + "probability": 0.9161 + }, + { + "start": 31730.48, + "end": 31732.9, + "probability": 0.5503 + }, + { + "start": 31732.9, + "end": 31735.22, + "probability": 0.9267 + }, + { + "start": 31737.08, + "end": 31739.2, + "probability": 0.9937 + }, + { + "start": 31739.2, + "end": 31741.24, + "probability": 0.8213 + }, + { + "start": 31741.34, + "end": 31743.18, + "probability": 0.5761 + }, + { + "start": 31744.56, + "end": 31745.3, + "probability": 0.5635 + }, + { + "start": 31745.44, + "end": 31748.14, + "probability": 0.8514 + }, + { + "start": 31748.14, + "end": 31749.82, + "probability": 0.9821 + }, + { + "start": 31750.58, + "end": 31752.76, + "probability": 0.9394 + }, + { + "start": 31752.76, + "end": 31755.3, + "probability": 0.8093 + }, + { + "start": 31756.26, + "end": 31758.6, + "probability": 0.7612 + }, + { + "start": 31760.96, + "end": 31764.06, + "probability": 0.6959 + }, + { + "start": 31764.18, + "end": 31766.74, + "probability": 0.8427 + }, + { + "start": 31769.2, + "end": 31772.49, + "probability": 0.8803 + }, + { + "start": 31773.54, + "end": 31776.58, + "probability": 0.8959 + }, + { + "start": 31777.36, + "end": 31780.86, + "probability": 0.9893 + }, + { + "start": 31780.9, + "end": 31783.94, + "probability": 0.9224 + }, + { + "start": 31783.94, + "end": 31786.6, + "probability": 0.9205 + }, + { + "start": 31787.98, + "end": 31791.18, + "probability": 0.9848 + }, + { + "start": 31795.4, + "end": 31799.6, + "probability": 0.768 + }, + { + "start": 31800.2, + "end": 31802.2, + "probability": 0.9348 + }, + { + "start": 31803.46, + "end": 31805.88, + "probability": 0.6045 + }, + { + "start": 31806.44, + "end": 31810.36, + "probability": 0.8425 + }, + { + "start": 31811.34, + "end": 31813.76, + "probability": 0.9497 + }, + { + "start": 31813.76, + "end": 31817.81, + "probability": 0.992 + }, + { + "start": 31819.7, + "end": 31821.0, + "probability": 0.6342 + }, + { + "start": 31821.32, + "end": 31822.06, + "probability": 0.3785 + }, + { + "start": 31822.46, + "end": 31823.36, + "probability": 0.8138 + }, + { + "start": 31824.18, + "end": 31824.26, + "probability": 0.2284 + }, + { + "start": 31824.26, + "end": 31824.42, + "probability": 0.1016 + }, + { + "start": 31824.56, + "end": 31825.54, + "probability": 0.7078 + }, + { + "start": 31825.54, + "end": 31826.06, + "probability": 0.7792 + }, + { + "start": 31826.58, + "end": 31828.62, + "probability": 0.091 + }, + { + "start": 31828.68, + "end": 31828.92, + "probability": 0.6532 + }, + { + "start": 31829.0, + "end": 31829.88, + "probability": 0.1392 + }, + { + "start": 31830.14, + "end": 31831.0, + "probability": 0.6974 + }, + { + "start": 31831.2, + "end": 31834.66, + "probability": 0.9269 + }, + { + "start": 31835.32, + "end": 31836.28, + "probability": 0.7527 + }, + { + "start": 31836.74, + "end": 31837.24, + "probability": 0.8603 + }, + { + "start": 31840.1, + "end": 31840.92, + "probability": 0.2671 + }, + { + "start": 31842.58, + "end": 31842.7, + "probability": 0.2391 + }, + { + "start": 31842.7, + "end": 31842.7, + "probability": 0.132 + }, + { + "start": 31842.7, + "end": 31845.28, + "probability": 0.8124 + }, + { + "start": 31847.44, + "end": 31847.96, + "probability": 0.8546 + }, + { + "start": 31852.66, + "end": 31853.36, + "probability": 0.2281 + }, + { + "start": 31854.62, + "end": 31858.78, + "probability": 0.9641 + }, + { + "start": 31859.78, + "end": 31861.96, + "probability": 0.9053 + }, + { + "start": 31863.06, + "end": 31864.0, + "probability": 0.0006 + }, + { + "start": 31864.79, + "end": 31867.7, + "probability": 0.7257 + }, + { + "start": 31868.08, + "end": 31872.8, + "probability": 0.6208 + }, + { + "start": 31872.8, + "end": 31876.78, + "probability": 0.9954 + }, + { + "start": 31877.02, + "end": 31878.08, + "probability": 0.8714 + }, + { + "start": 31879.12, + "end": 31881.5, + "probability": 0.991 + }, + { + "start": 31882.14, + "end": 31883.46, + "probability": 0.7128 + }, + { + "start": 31883.46, + "end": 31885.0, + "probability": 0.6933 + }, + { + "start": 31885.8, + "end": 31886.64, + "probability": 0.691 + }, + { + "start": 31886.78, + "end": 31891.04, + "probability": 0.9868 + }, + { + "start": 31891.04, + "end": 31893.78, + "probability": 0.9984 + }, + { + "start": 31894.38, + "end": 31896.22, + "probability": 0.8849 + }, + { + "start": 31896.32, + "end": 31899.72, + "probability": 0.9925 + }, + { + "start": 31900.0, + "end": 31902.8, + "probability": 0.9971 + }, + { + "start": 31903.3, + "end": 31905.8, + "probability": 0.9985 + }, + { + "start": 31905.94, + "end": 31906.24, + "probability": 0.8592 + }, + { + "start": 31906.32, + "end": 31906.9, + "probability": 0.8586 + }, + { + "start": 31907.14, + "end": 31911.76, + "probability": 0.8668 + }, + { + "start": 31912.76, + "end": 31914.24, + "probability": 0.9757 + }, + { + "start": 31914.88, + "end": 31916.96, + "probability": 0.9789 + }, + { + "start": 31917.48, + "end": 31921.1, + "probability": 0.9765 + }, + { + "start": 31921.38, + "end": 31924.48, + "probability": 0.9617 + }, + { + "start": 31924.88, + "end": 31926.36, + "probability": 0.9585 + }, + { + "start": 31926.66, + "end": 31928.18, + "probability": 0.8368 + }, + { + "start": 31928.96, + "end": 31931.42, + "probability": 0.9863 + }, + { + "start": 31931.54, + "end": 31933.64, + "probability": 0.9207 + }, + { + "start": 31933.98, + "end": 31936.18, + "probability": 0.9528 + }, + { + "start": 31936.76, + "end": 31937.74, + "probability": 0.9917 + }, + { + "start": 31938.78, + "end": 31943.74, + "probability": 0.9884 + }, + { + "start": 31944.56, + "end": 31947.18, + "probability": 0.8442 + }, + { + "start": 31947.52, + "end": 31948.58, + "probability": 0.8821 + }, + { + "start": 31948.88, + "end": 31951.14, + "probability": 0.9937 + }, + { + "start": 31951.5, + "end": 31953.22, + "probability": 0.957 + }, + { + "start": 31954.01, + "end": 31960.38, + "probability": 0.813 + }, + { + "start": 31960.74, + "end": 31962.52, + "probability": 0.8145 + }, + { + "start": 31962.84, + "end": 31964.92, + "probability": 0.849 + }, + { + "start": 31965.74, + "end": 31969.16, + "probability": 0.9103 + }, + { + "start": 31969.16, + "end": 31972.28, + "probability": 0.9932 + }, + { + "start": 31972.6, + "end": 31974.24, + "probability": 0.9906 + }, + { + "start": 31974.34, + "end": 31975.8, + "probability": 0.9855 + }, + { + "start": 31976.12, + "end": 31977.56, + "probability": 0.8313 + }, + { + "start": 31977.9, + "end": 31980.62, + "probability": 0.9786 + }, + { + "start": 31980.74, + "end": 31980.94, + "probability": 0.677 + }, + { + "start": 31981.18, + "end": 31982.94, + "probability": 0.8551 + }, + { + "start": 31983.18, + "end": 31985.48, + "probability": 0.9246 + }, + { + "start": 31985.8, + "end": 31985.9, + "probability": 0.4248 + }, + { + "start": 31987.88, + "end": 31988.54, + "probability": 0.4327 + }, + { + "start": 31988.7, + "end": 31992.24, + "probability": 0.9242 + }, + { + "start": 31993.1, + "end": 31994.12, + "probability": 0.7304 + }, + { + "start": 31994.86, + "end": 31995.74, + "probability": 0.8797 + }, + { + "start": 31998.91, + "end": 32003.46, + "probability": 0.9466 + }, + { + "start": 32003.96, + "end": 32006.9, + "probability": 0.7722 + }, + { + "start": 32007.06, + "end": 32007.52, + "probability": 0.9895 + }, + { + "start": 32008.54, + "end": 32010.92, + "probability": 0.829 + }, + { + "start": 32011.0, + "end": 32014.76, + "probability": 0.0567 + }, + { + "start": 32015.68, + "end": 32016.16, + "probability": 0.1459 + }, + { + "start": 32016.16, + "end": 32016.6, + "probability": 0.0979 + }, + { + "start": 32017.38, + "end": 32019.28, + "probability": 0.6716 + }, + { + "start": 32023.9, + "end": 32026.04, + "probability": 0.9064 + }, + { + "start": 32027.5, + "end": 32028.54, + "probability": 0.8129 + }, + { + "start": 32029.34, + "end": 32031.26, + "probability": 0.8961 + }, + { + "start": 32033.02, + "end": 32033.12, + "probability": 0.0255 + }, + { + "start": 32033.12, + "end": 32035.44, + "probability": 0.851 + }, + { + "start": 32035.44, + "end": 32038.58, + "probability": 0.9764 + }, + { + "start": 32039.16, + "end": 32042.28, + "probability": 0.9738 + }, + { + "start": 32043.62, + "end": 32044.68, + "probability": 0.9027 + }, + { + "start": 32044.76, + "end": 32048.98, + "probability": 0.9306 + }, + { + "start": 32049.84, + "end": 32052.3, + "probability": 0.6817 + }, + { + "start": 32052.52, + "end": 32052.68, + "probability": 0.3126 + }, + { + "start": 32052.78, + "end": 32053.08, + "probability": 0.7882 + }, + { + "start": 32054.46, + "end": 32056.0, + "probability": 0.9644 + }, + { + "start": 32056.08, + "end": 32058.44, + "probability": 0.9244 + }, + { + "start": 32060.16, + "end": 32062.1, + "probability": 0.9258 + }, + { + "start": 32062.96, + "end": 32065.26, + "probability": 0.8096 + }, + { + "start": 32065.26, + "end": 32068.24, + "probability": 0.9966 + }, + { + "start": 32068.46, + "end": 32068.96, + "probability": 0.7026 + }, + { + "start": 32070.44, + "end": 32072.93, + "probability": 0.986 + }, + { + "start": 32073.12, + "end": 32075.44, + "probability": 0.9942 + }, + { + "start": 32075.5, + "end": 32080.08, + "probability": 0.991 + }, + { + "start": 32082.0, + "end": 32083.63, + "probability": 0.6347 + }, + { + "start": 32083.86, + "end": 32086.66, + "probability": 0.7874 + }, + { + "start": 32086.66, + "end": 32090.44, + "probability": 0.9731 + }, + { + "start": 32091.26, + "end": 32094.44, + "probability": 0.7939 + }, + { + "start": 32094.44, + "end": 32098.28, + "probability": 0.9252 + }, + { + "start": 32099.54, + "end": 32101.76, + "probability": 0.761 + }, + { + "start": 32101.86, + "end": 32102.7, + "probability": 0.5016 + }, + { + "start": 32102.88, + "end": 32103.76, + "probability": 0.061 + }, + { + "start": 32103.76, + "end": 32104.4, + "probability": 0.153 + }, + { + "start": 32104.76, + "end": 32105.24, + "probability": 0.6575 + }, + { + "start": 32105.64, + "end": 32106.71, + "probability": 0.8956 + }, + { + "start": 32107.36, + "end": 32109.04, + "probability": 0.8647 + }, + { + "start": 32109.94, + "end": 32114.56, + "probability": 0.4827 + }, + { + "start": 32115.16, + "end": 32116.32, + "probability": 0.998 + }, + { + "start": 32116.38, + "end": 32118.98, + "probability": 0.836 + }, + { + "start": 32119.1, + "end": 32119.42, + "probability": 0.7333 + }, + { + "start": 32119.62, + "end": 32120.52, + "probability": 0.8804 + }, + { + "start": 32120.56, + "end": 32123.21, + "probability": 0.9736 + }, + { + "start": 32124.0, + "end": 32125.6, + "probability": 0.8029 + }, + { + "start": 32125.7, + "end": 32127.5, + "probability": 0.9144 + }, + { + "start": 32128.26, + "end": 32129.86, + "probability": 0.9285 + }, + { + "start": 32130.04, + "end": 32130.74, + "probability": 0.3497 + }, + { + "start": 32130.8, + "end": 32130.94, + "probability": 0.0726 + }, + { + "start": 32130.94, + "end": 32132.12, + "probability": 0.6624 + }, + { + "start": 32132.16, + "end": 32133.22, + "probability": 0.4336 + }, + { + "start": 32133.54, + "end": 32133.76, + "probability": 0.7457 + }, + { + "start": 32133.88, + "end": 32134.38, + "probability": 0.2517 + }, + { + "start": 32134.96, + "end": 32136.1, + "probability": 0.7799 + }, + { + "start": 32136.54, + "end": 32139.68, + "probability": 0.9341 + }, + { + "start": 32140.36, + "end": 32144.98, + "probability": 0.9357 + }, + { + "start": 32145.06, + "end": 32145.56, + "probability": 0.5835 + }, + { + "start": 32145.64, + "end": 32146.32, + "probability": 0.5806 + }, + { + "start": 32147.08, + "end": 32149.1, + "probability": 0.449 + }, + { + "start": 32149.5, + "end": 32151.82, + "probability": 0.8711 + }, + { + "start": 32153.14, + "end": 32154.72, + "probability": 0.0418 + }, + { + "start": 32155.02, + "end": 32157.72, + "probability": 0.9146 + }, + { + "start": 32157.9, + "end": 32158.76, + "probability": 0.2516 + }, + { + "start": 32158.76, + "end": 32159.8, + "probability": 0.3887 + }, + { + "start": 32160.2, + "end": 32163.96, + "probability": 0.7199 + }, + { + "start": 32164.3, + "end": 32168.74, + "probability": 0.886 + }, + { + "start": 32169.18, + "end": 32171.81, + "probability": 0.6989 + }, + { + "start": 32172.9, + "end": 32175.4, + "probability": 0.9645 + }, + { + "start": 32176.22, + "end": 32177.94, + "probability": 0.9556 + }, + { + "start": 32178.3, + "end": 32179.55, + "probability": 0.9897 + }, + { + "start": 32180.1, + "end": 32183.36, + "probability": 0.8281 + }, + { + "start": 32184.54, + "end": 32184.96, + "probability": 0.664 + }, + { + "start": 32185.06, + "end": 32185.75, + "probability": 0.113 + }, + { + "start": 32197.24, + "end": 32200.08, + "probability": 0.043 + }, + { + "start": 32200.08, + "end": 32200.42, + "probability": 0.0132 + } + ], + "segments_count": 10990, + "words_count": 54003, + "avg_words_per_segment": 4.9138, + "avg_segment_duration": 2.1132, + "avg_words_per_minute": 100.2312, + "plenum_id": "69652", + "duration": 32327.05, + "title": null, + "plenum_date": "2018-01-03" +} \ No newline at end of file